
February 1979

This document describes the assembly language supported by VAX/VMS.

All symbols, expressions, addressing modes, and directives are detailed. No

prior knowledge of the VAX-11 MACRO asst mbler is assumed.

VAX-11 MACRO

Language Reference Manual

Order No. AA-D032B-TE

SUPERSESSION/UPDATE INFORMATION: This revised document supersedes

the VAX-11 MACRO Language

Reference Manual (Order No.

AA-DO32A-TE)

OPERATING SYSTEM AND VERSION: VAX/VMS V1.5

SOFTWARE VERSION: VAX-11 MACRO V2.0

To order additional copies of this document, contact the Software Distribution

Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, August 1978
Revised, February 1979

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responéibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright C) 1978, 1979 by Digital Equipment Corporation

The postage~prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0S/8
DECUS EDUSYSTEM PHA

. UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET~-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-~20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI

DECnet IAS PDT

DATATRIEVE TRAX

CONTENTS

PREFACE

SUMMARY OF TECHNICAL CHANGES

CHAPTER 1 INTRODUCTION

CHAPTER 2 MACRO SOURCE STATEMENT FORMAT

2.1 LABEL FIELD

2.2 OPERATOR FIELD

2.3 OPERAND FIELD

2.4 COMMENT FIELD

CHAPTER (
%
) THE COMPONENTS OF MACRO SOURCE STATEMENTS

CHARACTER SET

NUMBERS

Integers

Floating-Point Numbers

Packed Decimal Strings

SYMBOLS

Permanent Symbols

User-defined Symbols and Macro Names

Determining Symbol Values

LOCAL LABELS

TERMS AND EXPRESSIONS

UNARY OPERATORS

Radix Control Operators

Textual Operators

ASCII Operator

Register Mask Operator

Numeric Control Operators

Floating Point Operator

Complement Operator

BINARY OPERATORS

.1 Arithmetic Shift Operator

.2 Logical AND Operator

.3

.4

w
N

=

w
h
=

¢

e

N

W
W
w
w
h
h
N
N
B
E

[)

L]

L]

*

L]

N

=

.

L]

Logical Inclusive OR Operator

Logical Exclusive OR Operator

DIRECT ASSIGNMENT STATEMENTS

CURRENT LOCATION COUNTERW
W
W
W
W
W
W
w
W
w
W
w
W
w
W
w
w
w
w
W
w
w
w
w
w
w
u
w
w
u
w
w
w
w
w

W
O
S
N
N
N
N
N
O
A
O
N
O
N

A
T

W
W
W
W
I
N
I
N
N
N
E

L]

CHAPTER o ADDRESSING MODES

GENERAL REGISTER MODES

Register Mode

Register Deferred Mode

Autoincrement Mode

Autoincrement Deferred Mode

Autodecrement Mode

Displacement Mode

Displacement Deferred Mode

Literal ModeF

O

O

G

N

G
N
S

L]

[]

*
[]

L]

*
.

L J

*

N
e
l

e
l

[]

*
*

.
[]

*

N
V
W
N

[

*

iii

Page

vii

(I
I

N
I

i
H
F
H
R
O
N
O
O
A
U
T
U
B
E
W
W
W
H
E

W
W
W
W
w
W
w
w
w
w
w
w
w
w
w
w
w
w

!
|
- R
E
R
Y

|

=
0

0
0
0
0
~
y

ON

=

A

G

S

|

CHAPTER

CONTENTS

PROGRAM COUNTER MODES

Relative Mode

Relative Deferred Mode

Absolute Mode

Immediate Mode

General Mode

INDEX MODE

BRANCH MODE

e

e

e

o

9

s

o

¢

s

e

0

V
W

N

B

B

D
D

W
O

19
)]

GENERAL ASSEMBLER DIRECTIVES

.ADDRESS

.ALIGN

.ASCIx

.ASCII

.ASCIC

.ASCID

.ASCIZ

. BLKx

.BYTE

.CROSS

.DEBUG

.DEFAULT

.DISABLE

.DOUBLE

.ENABLE

.END

.ENDC

.ENTRY

.ERROR

.EVEN

.EXTERNAL

.FLOAT

.GLOBAL

. IDENT

IF

LIF x

LIIF
.LIST

.LONG

.MASK

.NLIST

.NOCROSS

.NOSHOW

.ODD

.OPDEF

.PACKED

.PAGE

.PRINT

.PSECT

.QUAD

. REFn

-RESTORE PSECT

.SAVE PSECT

.SHOW

.SIGNED_ BYTE

. SIGNED_WORD

iv

|
P
F
R
P
R
P
O
Y
O
O
I
N
O
W

w

O
 E
C
E
G
N
C
G

R
N

R
T

N
S

N

N
T

N

R
E

N
E
)

I
1

= o
o

u
n

5-38

5-39

5-42

5-42

5-43

5-44

5-49

5-50

5-51

5-52

5-54

5-56

5-57

CONTENTS

.SUBTITLE

.TITLE

. TRANSFER

. WARN

. WEAK

.WORD

CHAPTER 6 MACROS

6.1 ARGUMENTS IN MACROS

6.1.1 Default Values

6.1.2 Keyword Arguments

6.1.3 String Arguments

6.1.4 Argument Concatenation

6.1.5 Passing Numeric Values of Symbols

6.1.6 Created Local Labels

6.1.7 Macro String Operators

6.1.7.1 $LENGTH Operator

6.1.7.2 $LOCATE Operator

6.1.7.3 $EXTRACT Operator

6.2 MACRO DIRECTIVES

. ENDM

. ENDR

.IRP

. IRPC

.LIBRARY

.MACRO

.MCALL

.MDELETE

MEXIT

.NARG

.NCHR

.NTYPE

.REPEAT

APPENDIX A ASCII CHARACTER SET

APPENDIX B VAX~-11] MACRO ASSEMBLER DIRECTIVES AND

LANGUAGE SUMMARY

B.1 ASSEMBLER DIRECTIVES

B.2 SPECIAL CHARACTERS

B.3 OPERATORS

B.3.1 Unary Operators

B.3.2 Binary Operators

B.3.3 Macro String Operators

B.4 ADDRESSING MODES

APPENDIX C PERMANENT SYMBOL TABLE

c.1 OPCODES (ALPHABETIC ORDER)

C.2 OPCODES (NUMERIC ORDER)

APPENDIX D HEXADECIMAL/DECIMAL CONVERSION

D.1 HEXADECIMAL TO DECIMAL

D.2 DECIMAL TO HEXADECIMAL

D.3 POWERS OF 2 AND 16

Page

5-59

o

| [
I

|
=
M
o
oW
W
H

A
N

|

-12

6-13

P
P
Y
T
Y
R
Y

-

H
H
R
W
O
V
O
N
H

[

o
 N
a
]

|
~

=

?
t
j
?

?
a
0

0O
N

CONTENTS

Page

INDEX
Index-1

FIGURES

FIGURE 5-1 Using Transfer Vectors 5-61

TABLES

TABLE 3-1 Special Characters Used in VAX-11 MACRO
Statements 3-1

3-2 Separating Characters in VAX-11 MACRO
Statements 3-3

3-3 Unary Operators 3-11
3-4 Binary Operators 3-15
4-1 Addressing Modes 4-2
4-2 Floating Point Short Literals 4-11
4-3 Index Mode Addressing 4-17
5-1 Summary of General Assembler Directives 5-1
5-2 -ENABLE and .DISABLE Symbolic Arguments 5-18
5-3 Condition Tests for Conditional Assembly

Directives 5-30
5-4 Operand Descriptors 5-40
5-5 Program Section Attributes 5-45
5-6 Default Program Section Attributes 5-47
5-7 .SHOW and .NOSHOW Symbolic Arguments 5-55
6-1 Summary of Macro Directives 6-2
A-1 Hexadecimal/ASCII Conversion A-1
B-1 Assembler Directives B-1
B-2 Special Characters Used in VAX-11 MACRO

Statements B-7
B-3 Unary Operators B-8
B-4 Binary Operators B-9
B-5 Macro String Operators B-10
B-6 Addressing Modes B-11
D-1 Hexadecimal/Decimal Conversion D-3

PREFACE

MANUAL OBJECTIVES

This manual describes the VAX-11 MACRO language: the features that

are in the language and the format and function of each feature. The

VAX-11 MACRO User's Guide describes how to use VAX-11l MACRO.

INTENDED AUDIENCE

This manual is intended for all programmers writing VAX-11] MACRO

programs. Programmers should be familiar with assembly language

programming, the VAX-11l instruction set, and the VAX/VMS operating

system before reading this manual.

The VAX-11 MACRO User's Guide provides a brief introduction to the

assembler and describes the commands necessary to use VAX-11 MACRO.

The VAX-11/780 Architecture Handbook describes the VAX-11/780

instruction set. All programmers should read these manuals before

using this language reference manual.

STRUCTURE OF THIS DOCUMENT

This manual is organized into six chapters and five appendixes, as

follows:

e Chapter 1 introduces the features of the VAX-11 MACRO language

® Chapter 2 describes the format used in VAX-11 MACRO source

statements

e Chapter 3 describes the components of VAX-11 MACRO source

statements: the character set; numbers; symbols; 1local

labels; terms and expressions; unary and binary operators;

direct assignment statements; and the current location

counter

e Chapter 4 summarizes and gives examples of the use of the
VAX-11 MACRO addressing modes

e Chapter 5 describes the VAX-11] MACRO general assembler

directives

e Chapter 6 describes the directives used in defining and

expanding macros -

e Appendix A lists the ASCII character set that can be used in

VAX~-11 MACRO programs

vii

Appendix B summarizes the general assembler and macro
directives (in alphabetical order), special characters, unary
operators, binary operators, and addressing modes

Appendix C lists alphabetically the permanent symbols defined
for use with VAX-11] MACRO

Appendix D gives rules for hexadecimal/decimal conversion

ASSOCIATED DOCUMENTS

The following documents are relevant to VAX-11 MACRO programming:

VAX-11 MACRO User's Guide

VAX/VMS Command Language User's Guide

VAX-11l Linker Reference Manual

VAX-11l Symbolic Debugger Reference Manual

For a complete 1list of all VAX-11 documents, including a brief
description of each, see the VAX-11l Information Directory.

CONVENTIONS USED IN THIS DOCUMENT

The following conventions are observed in this manual, as in the other
VAX-11 documents:

Brackets ([]) indicate that the enclosed argument is optional

Uppercase words and letters, used in formats, indicate that
the word or letter s .ould be typed exactly as shown

Lowercase words and etters, used in formats, indicate that a
word or value of the user's choice is to be substituted

Ellipses (...) indicate that the preceding item(s) can be
repeated one or more times

viii

SUMMARY OF TECHNICAL CHANGES

This manual documents VAX-11 MACRO V2.0. This section summarizes the

technical changes from Version 1.

The following new directives have been added:

@ .ASCID - stores an ASCII string with a string descriptor

e .CROSS and .NOCROSS - control the cross reference listing

e .DEFAULT - controls the default displacement

e .OPDEF - defines an opcode

e .SIGNED BYTE and .SIGNED_WORD - specify signed data storage

The following directives have had new arguments added:

e .ENABLE=SUPPRESSION -~ suppresses listing of unreferenced

symbols in the symbol table

e .SAVE PSECT LOCAL_BLOCK - preserves the local label block when

the program section is saved

In addition, new forms of directives and directive arguments have been

added to make VAX-11 MACRO programs easier to read. These new forms

have the same effect as their equivalent old form. The old forms are

still accepted by the assembler. The following new forms of

directives have been added:

New Form 014 Form

.DISABLE : .DSABL

.ENABLE .ENABL

.EXTERNAL .EXTRN

.GLOBAL .GLOBL

.IF FALSE .IFF

.IF TRUE JIFT

.IF TRUE FALSE .IFTF

.NOSHOW ~ .NLIST

.REPEAT .REPT

.RESTORE PSECT .RESTORE

.SAVE PSECT .SAVE

.SHOW LLIST

.SUBTITLE .SBTTL

ix

New forms have been added for symbolic arguments for the .ENABLE,
-DISABLE, .SHOW, and .NOSHOW directives and for the condition tests
used in the .IF and .IIF directives.

All the preceding directives are described in Chapter 5 except the
-REPEAT directive which is described in Chapter 6.

Three new macro string operators, ¥LENGTH, 3%LOCATE, and $EXTRACT, have
been added to allow string manipulation in macros. These string
operators are described in Section 6.1.7.

The following miscellaneous changes have also been made:

® The assembler checks that the correct number of arguments are
specified in a macro call.

® The register mask in the .ENTRY directive must be an absolute
expression.

® In data storage directives with a repetition factor, only the
repetition factor must be an absolute expression. The
expression specifying the value to be stored can be any kind
of expression (documentation change).

® The general addressing mode is indexable (documentation
change).

CHAPTER 1

INTRODUCTION

The VAX-11 MACRO assembler translates source programs into object (or

binary) code and produces a listing file and an object module file.

The VAX-11 Linker then combines object modules to produce an

executable image. See the VAX-11 MACRO User's Guide for more

information on using the assembler. This chapter introduces the

features of the VAX-11 MACRO language.

VAX-11 MACRO source programs consist of a series of source statements.

Each statement can contain an instruction, an assembler directive, or

a direct assignment statement. The instructions, which can be any of

the VAX-11/780 native mode instructions, can perform many types of

data manipulation such as multiplication, transfer of control, and

data conversion. The instructions are described in the VAX-11/780
Architecture Handbook. The assembler directives and direct assignment

Statements create and initialize data areas and provide tools for

using the instructions.

Source statements have four fields: label, operator, operand, and

comment. The label field identifies the location in the program. The

operator field contains the instruction opcode or directive. The

operand field contains the instruction operands or the directive
arguments. The instruction operands specify the locations that are

accessed by the instruction. The comment field explains the meaning

of the statement.

There are two classes of assembler directives: the general assembler

directives and the macro directives.

The general assembler directives can be used to perform the following:

@ Store data or reserve memory for data storage

® Control the alignment in memory of parts of the program

e Specify the methods of accessing the sections of memory in

which the program will be stored.

e Specify the entry point of the program or of part of the

program

e Specify the way in which symbols will be referenced

e Specify that a part of the program is to be assembled only

under certain conditions

e Control the format and content of the listing file

e Display informational messages

1-1

INTRODUCTION

® Control the assembler options that are used to interpret the
source program

® Define new opcodes

The macro directives are used to define macros and repeat blocks,
which allow a programmer to repeat identical or similar series of
source statements throughout a program without having to reenter the
statements each time. Macros and repeat blocks can thus help minimize
programmer errors.

CHAPTER 2

MACRO SOURCE STATEMENT FORMAT

A source program consists of a sequence of source statements, which
the assembler interprets and processes, one by one, generating object
code or performing a specific assembly-time process. A source

statement can be on one source line or can extend onto several source
lines. Each source line can be up to 132 characters 1long; however,

no line should exceed 80 characters to ensure that the source line
fits (with the binary expansion) on one line in the listing file.

MACRO statements can consist of up to four fields:

e Label field -- allows the program to symbolically define a
location in a program

® Operator field -- specifies the action to be performed by the

statement; this field can be an instruction, an assembler
directive, or a macro call

® Operand field -- contains the instruction operand(s) or the
assembler directive argument(s) or the macro argument(s)

e Comment field -- contains a comment that explains the meaning

of the statement; this field does not affect program
execution

The label field and the comment field are optional. The 1label field
ends with a colon (:) and the comment field starts with a semicolon
(:). The operand field must conform to the format of the instruction,
directive, or macro specified in the operator field.

Although the statement fields can be separated by a space or tab (see

Table 3-2), formatting statements with the tab character is
recommended for consistency and clarity. By DIGITAL convention, tab
characters are used to separate the statement fields as follows:

Field Begins in Column Tab Characters to Reach Column

Label 1 0

Operator 9 1

Operand 17 2

Comment 41 5

MACRO SOURCE STATEMENT FORMAT

For example:

.TITLE ROUTI1

.ENTRY START,O0 BEGINNING OF ROUTINE
CLRL RO : CLEAR REGISTER

LABT: SUBL3 $10,4 (AP)R2 ; SUBTRACT 10
LAB2: BRB CONT : BRANCH TO ANOTHER ROUTINE

A single statement can be continued on several lines by using a hyphen
(=) as the last nonblank character before the comment field or at the
end of line (when there is no comment). For example:

LABl: MOVAL W“BOO$AL_VECTOR,— ; SAVE ADDRESS OF

RPBSL IOVEC (R7) ; BOOT DEVICE DRIVER.

VAX-11 MACRO treats the above statement as equivalent to the following
statement:

LABl: MOVAL W*BOOAL_VECTOR,RPBL_IOVEC(R7) ; SAVE BOOT DRIVER

A statement can be continued at any point. But wuser-defined and

permanent symbol names should not be continued on two lines. If a
symbol name is continued and the first character on the second line is
a tab or a blank, the symbol name will be terminated at that
character. (Section 3.3 describes symbols in detail.)

Note that when a statement occurs in a macro definition (see Chapter
6), the statement cannot contain more than 500 characters.

Blank lines, although 1legal, have no significance in the source
program except that they terminate a continued line.

The following sections describe each of the statement fields in
detail.

2.1 LABEL FIELD

A label is a user-defined symbol that identifies a 1location in the
program. The symbol is assigned a value equal to the location counter
at the location in the program section in which the label occurs (see
the VAX-11 MACRO User's Guide for information on program sections).
The user-defined symbol name can be up to 15 characters long and can
contain any alphanumeric character and the underline(), dollar sign
($), and period (.) characters. Section 3.3 describes The rules for
forming user-defined symbol names in more detail.

If a statement contains a label, the label must be in the first field
on the line.

A label is terminated by a colon (:) or a double colon (z2). The
single colon indicates that the label is defined only for the current
module (an internal symbol). A double colon indicates that the 1label
is globally defined; that is, the label can be referenced by other
object modules (see Section 3.3.2).

Once a label is defined, it cannot be redefined during the source
program. If a label is defined more than once, VAX-11 MACRO displays
an error message when the label is defined and again when it is
referenced.

MACRO SOURCE STATEMENT FORMAT

If a label extends past column 7, it should be placed on a line by

itself so that the operator field can start in column 9.

For example:

ROUTINE EVALUATES EXPRESSIONS

THE ARG-LIST CONTAINS AN ERRO!

INCREMENT ERROR COUNT

THIS TESTS ROUTINE

REFERENCED EXTERNALLY

GO TO EXIT ROUTINE

TABLES STORES EXPECTED VALUES

DATA TABLE ACCESSED BY STORE

ROUTINE IN ALGO MODULE

EVAL: CLRL RO

ERROR_IN ARG:

INCL RO

TEST:: MOVL EXP,R1

TEST1: BRW EXIT_ROU

EXP: « BLKL 50

DATA:: . BLKW 25

W
O

M
O

W
O

W
E

W
O

W

N
E

W
O

N

2.2 OPERATOR FIELD

The operator field specifies the action to be performed by the

statement. This field can contain either an instruction, or an

assembler directive, or a macro call.

When the operator is an instruction, VAX-11 MACRO generates the binary

code for that instruction in the object module; the instruction set

is described in the VAX-11/780 Architecture Handbook. When the

operator is a directive, VAX-11] MACRO performs certain control actions

or processing operations during source program assembly; the

assembler directives are described in Chapters 5 and 6 of this manual.

When the operator is a macro call, VAX-11 MACRO expands the macro;

macro calls are described in Chapter 6.

Either a space or a tab character terminates the operator field;

however, the tab is the recommended terminating character.

2.3 OPERAND FIELD

The operand field can contain operands for instructions or arguments

for assembler directives or macro calls.

Operands for instructions specify the locations in memory or the

registers that are used by the machine operation. Operands for

instructions specify the addressing mode for the instruction. Chapter

4 describes the VAX-11 addressing modes. The operand field for a

specific instruction must contain the number of operands required by

that instruction. See the VAX-11/780 Architecture Handbook for a

description of the instructions and their operands.

Arguments for a directive must meet the format requirements of the

directive. Chapters 5 and 6 describe the directives and the format of

their arguments.

Operands for a macro must meet the requirements specified in the macro

definition. See the description of the .MACRO directive in Chapter 6.

If two or more operands are specified, they should be separated by

commas. VAX-11 MACRO also allows a space or tab to be used as a

separator for arguments to directives that do not accept expressions

(see Section 3.5). However, a comma is required to separate operands

for instructions and for directives that accept expressions as

arguments.

MACRO SOURCE STATEMENT FORMAT

The semicolon that starts the comment field terminates the operand
field. If a line does not have a comment field, the operand field is
terminated by the end of the 1line.

2.4 COMMENT FIELD

The comment field contains text that explains the meaning of the
statement. Every line of code should have a comment. Comments do not
affect assembly processing or program execution except for messages
displayed during assembly by the .ERROR, +«PRINT, and .WARN directives
(see descriptions in Chapter 5).

The comment field must be preceded by a semicolon and is terminated by
the end of the 1line. The comment field can contain any printable
ASCII character (see Appendix A).

If a comment does not fit on one line, it can be continued on the
next, but the continuation must be preceded by another semicolon. A
comment can appear on a line by itself,

The comment's text normally conveys the meaning rather than the action
of the statement. The instruction MOVAL BUF PTR 1,R7, for instance,
should have a comment such as "GET POINTER TO FIRST BUFFER" not "MOVE
ADDRESS OF BUF_PTR1 TO R7."

For example:

MOVAL STRING_DES 1,R0 ; GET ADDRESS OF STRING

;+ DESCRIPTOR
MOVZIWL (RO),R1 H
MOVL 4(RO),RO

GET LENGTH OF STRING

GET ADDRESS OF STRING

2-4

CHAPTER 3

THE COMPONENTS OF MACRO SOURCE STATEMENTS

This chapter describes the components of VAX-11 MACRO source

statements. These components consist of the character set; numbers;
symbols; 1local labels; terms and expressions; unary and binary

operators; direct assignment statements; and the current location

counter.

3.1 CHARACTER SET

The following characters can be used in VAX-11 MACRO source

statements:

e Both uppercase and lowercase letters (A through %2, a through

z) are accepted. However, the assembler considers lowercase

letters equivalent to uppercase except when they appear in

ASCII strings.

e The digits 0 through 9.

e The special characters listed in Table 3-1.

Table 3-1

Special Characters Used in VAX-11 MACRO Statements

Character Character Name Function

F ==

_ Underline Character in symbol names

$ Dollar sign Character in symbol names

. Period Character in symbol names,

current location counter, and

decimal point

Colon Label terminator

= Equal sign Direct assignment operator and

' macro keyword argument terminator

Tab Field terminator

Space Field terminator

(continued on next page)

3-1

THE COMPONENTS OF MACRO SOURCE STATEMENTS

Table 3-1 (Cont.)

Special Characters Used in VAX-11 MACRO Statements

Character Character Name Function

Number sign Immediate addressing mode

indicator

@ At sign Deferred addressing mode

indicator and arithmetic shift

operator

' Comma Field, operand, and item

separator

; Semicolon Comment field indicator

+ Plus sign Autoincrement addressing mode

indicator, unary plus operator,

and arithmetic addition operator

- Minus sign or Autodecrement addressing mode

hyphen indicator, unary minus operator,

arithmetic subtraction operator,

and line continuation indicator

* Asterisk Arithmetic multiplication

operator

/ Slash Arithmetic division operator

& Ampersand Logical AND operator

! Exclamation Logical inclusive OR operator

point

\ Backslash Logical exclusive OR and numeric

conversion indicator in macro

arguments

- Circumflex Unary operators and macro

argument delimiter

[] Square brackets Index addressing mode and repeat

count indicators

() Parentheses Register deferred addressing mode

indicators

<> Angle brackets Argument or expression grouping

delimiters

? Question mark Created label indicator in macro

arguments

' Apostrophe Macro argument concatenation

indicator

$ Percent sign Macro string operators

Table 3-2 defines the separating characters used in VAX-11l MACRO.

THE COMPONENTS OF MACRO SOURCE STATEMENTS

Table 3-2

Separating Characters in VAX-11] MACRO Statements

Character Character Name Usage

Space or tab Separator between statement

fields. Spaces within

expressions (see Section 3.5) are

ignored.

’ Comma Separator between symbolic
arguments within the operand

field. Multiple expressions in

the operand field must be

separated by commas.

3.2 NUMBERS

Numbers can be integers, floating-point numbers, or packed decimal

strings.

3.2.1 1Integers

Integers can be used in any expression including expressions in

operands and in direct assignment statements (Section 3.5 describes

expressions).

Format

snn

An optional sign: plus sign (+) for positive numbers (the

default) or minus sign (-) for negative numbers.

nn

A string of numeric characters that are 1legal for the current

radix.

VAX-11 MACRO interprets all integers in the source program as decimal

unless the number is preceded by a radix control operator (see Section

3.6.1).

Integers must be in the range of -2147483648 through 2147483647 for

signed data or in the range of 0 through 4294967295 for unsigned data.

Negative numbers must be preceded by a minus sign; VAX-11 MACRO

translates such numbers into 2's complement form. In positive

numbers, the plus sign is optional.

3.2.2 Floating-Point Numbers

A floating-point number can be used in the .FLOAT and .DOUBLE

directives (described in Chapter 5) or as an operand in a

floating-point instruction. A floating-point number cannot be used in

an expression or with a wunary or binary operator except the unary

THE COMPONENTS OF MACRO SOURCE STATEMENTS

plus, unary minus, and unary floating-point operator (°F). Sections
3.6 and 3.7 describe unary and binary operators.

A floating-point number can be specified with or without an exponent.

Formats

Floating-point number without exponent:

snn

snn.nn

snn.

Floating-point number with exponent:

snnEsnn

snn.nnEsnn

snn.Esnn

s

An optional sign.

nn

A string of decimal digits in the range of 0 through 9.

The decimal point can appear anywhere to the right of the first digit.
However, note that a floating-point number cannot start with a decimal
point because VAX-1ll MACRO will treat the number as a user-defined
symbol (see Section 3.3.2).

Floating-point numbers can be either single-precision (32-bit) or
double-precision (64-bit) quantities. The degree of precision is 7
digits for single-precision numbers and 16 digits for double-precision
numbers.

The magnitude of a nonzero floating-point number cannot be smaller
than approximately 0.29E-38 or greater than approximately 1.7E38.

Single-precision floating-point numbers can be rounded (by default) or
truncated. The .ENABLE and .DISABLE directives (described in Chapter
5) control whether single-precision floating-point numbers are rounded
or truncated. Double-precision floating point numbers are always
rounded.

The VAX-11/780 Architecture Handbook describes the internal format of
floating-point numbers.

3.2.3 Packed Decimal Strings

A packed decimal string can be used only in the .PACKED directive
(described in Chapter 5).

Format

snn

An optional sign.

nn

A string of from 1 to 31 decimal digits in the range of 0 through

3-4

THE COMPONENTS OF MACRO SOURCE STATEMENTS

A packed decimal string cannot have a decimal point or an exponent.

The VAX-11/780 Architecture Handbook describes the internal format of

packed decimal strings.

3.3 SYMBOLS

Three types of symbols can be used in VAX-11] MACRO source programs:

permanent symbols, user-defined symbols, and macro names.

3.3.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (see Appendix

C), the VAX-11 MACRO directives (see Chapters 5 and 6), and the

register names. The instruction mnemonics and directives need not be

defined before being used in the operator field of a VAX-11 MACRO

source statement. The register names need not be defined before being

used in the addressing modes (see Chapter 4). The register names

cannot be redefined; that is, no user-defined symbol can have one of

the register names listed below.

The 16 general registers of the VAX-11/780 processor can be expressed

in a source program only as follows:

Register

Name Processor Register

RO General register 0

R1 General register 1

R2 General register 2

R11 General register 11

R12 or General register 12 or argument pointer. If RI12 is

AP used as an argument pointer, the name AP is

recommended ; if R12 is used as a general register,

the name R1l2 is recommended.

FP Frame pointer

SP Stack pointer

PC Program counter

THE COMPONENTS OF MACRO SOURCE STATEMENTS

3.3.2 User-defined Symbols and Macro Names

User~defined symbols can be used as labels or can be equated to a
specific value by a direct assignment statement (see Section 3.8).

User-defined symbols also can be used in any expression (see Section
3.5).

The following rules govern the creation of user-defined symbols:

® User-defined symbols can be composed of alphanumeric
characters, underlines (), dollar signs ($), and periods (.).
Any other character terminates the symbol.

® The first character of a symbol must not be a number.

® The symbol must be no more than 15 characters long and must be
unique.

In addition, by DIGITAL convention:

® The dollar sign ($) is reserved for names defined by DIGITAL.
This convention ensures that a user-defined name (which does
not have a dollar sign) will not conflict with a
DIGITAL-defined name (which does have a dollar sign).

@ The period (.) should not be used in any global symbol name
(see Section 3.3.3) because other languages, such as FORTRAN,
do not allow periods in symbol names.

Macro names follow the same rules and conventions as user-defined
symbols (see the description of the .MACRO directive in Chapter 6 for
more information on macro names). User-defined symbols and macro
names do not conflict; that 1is, the same name can be used for a
user-defined symbol and a macro. However, to avoid confusion,
user-defined symbols and macros should be given different names.

3.3.3 Determining Symbol Values

The value of a symbol depends on its use in the program. VAX-11 MACRO
uses a different method to determine the values of symbols in the
operator field than it uses to determine the values of symbols in the
operand field.

A symbol in the operator field can be either a permanent symbol or a
macro name. VAX-11 MACRO searches for a symbol definition in the
following order:

® Previously defined macro names

® User-defined opcode (see the .OPDEF description in Chapter 5)

® Permanent symbols (instructions and directives)

® Macro libraries

This search order allows permanent symbols to be redefined as macro
names. If a symbol in the operator field is not defined as a macro or
a permanent symbol, the assembler displays an error message.

A symbol in the operand field must be either a user-defined symbol or
a register name. ‘

THE COMPONENTS OF MACRO SOURCE STATEMENTS

User-defined symbols can be either local (internal) symbols or global

(external) symbols. Whether symbols are local or global depends on

their use in the source program.

A local symbol can be referenced only in the module in which it is

defined. If local symbols with the same names are defined in

different modules, the symbols are completely independent. A global

symbol's definition, however, can be referenced from any module in the

program.

Normally, VAX-11 MACRO treats all user-defined symbols as local when

they are defined. However, a symbol definition can be explicitly

declared to be global by any one of the following three methods:

e Use of the double colon (::) in defining a label (see Section

2.1)

e Use of the double equal sign (==) in a direct assignment

statement (see Section 3.8)

e Use of the .GLOBAL, .ENTRY, or .WEAK directive (see Chapter 5)

When a symbol is referenced within the module in which it is defined,

VAX-11 MACRO considers the reference an internal reference. When a

symbol is referenced within a module in which it is not defined,

VAX~11 MACRO considers the reference an external reference (that is,

the symbol is defined in another module). The .DISABLE directive can

be used to make references to symbols not defined in the current

module illegal. 1In this case, the .EXTERNAL directive must be used to

specify that the reference is an external reference. See Chapter 5

for descriptions of the .DISABLE and .EXTERNAL directives.

3.4 LOCAL LABELS

Local labels are used to identify addresses within a block of source

code.

Format

nn$

nn

A decimal integer in the range of 1 through 65535.

Local labels can be used in the same way as user-defined symbol

labels, but with the following differences:

e Local labels cannot be referenced outside the block of source

code in which they appear.

e Local labels can be reused in another block of source code.

e Local labels do not appear in the symbol tables and, thus,

cannot be accessed by the debugger.

e Local labels cannot be used in .END (see Chapter 5)

By convention, local labels are positioned the same as statement

labels; that is, they are 1left-justified in the source text.

Although local labels can appear in the program in any order, by

convention, the local labels in any block of source code should be in

numeric order.

Local labels are useful as branch addresses when the address 1is
the block.only within

numeric

Consequently,

used instead.

DIGITAL recommends that users create 1
1$ to 29999$ because the assembler au
in the range of 30000$ to
6.1.6).

A local

labels

® A user-defined label

655358 for

THE COMPONENTS OF MACRO SOURCE STATEMENTS

used
Local labels distinguish between labels that

are used only in a small block of code and labels that are
elsewhere in the module.

names

referenced
A disadvantage of local labels is that their

cannot provide

local

unrelated sequences of statements;

any indication of their purpose.
should not be used to label logically

user-defined symbols should be

ocal labels only in the range of
tomatically creates local labels

use in macros (see Section

label block is delimited by the following statements:

® A .PSECT directive (see Chapter 5)

® The .ENABLE and .DISABLE directives (see Chapter 5) which
extend a local

.PSECT directives

A local

However, the

label

label block is usually delimited by two
-ENABLE LOCAL BLOCK directive starts a local block that

block
can

beyond user-defined labels and

user-defined 1labels.

is terminated only by one of the following:

® A second .ENABLE LOCAL_BLOCK directive

®¢ A .DISABLE LOCAL BLOCK directive followed by a user-defined
label or a .PSECT directive

Although local label blocks can extend from one
DIGITALanother,

should be used instead.

program section to
recommends that local labels in one program section

not be referenced from another program section. User-defined symbols

An example showing the use of local labels follows.

RPSUB:

10S:

MOVL

SUBL2

BGTR

ADDL2

MOVL

CLRL

CMPL

BGTR

SUBL

INCL

BRB

MOVL

BRW

COMP:

10S$:

208:

. ENABLE

ENTR1: POPR

ADDL3

BRB

ENTR2: SUBL2

AMOUNT,RO

DELTA,RO

108

DELTA,RO

MAX,R1

R2

RO,R1

208

INCR,RO

R2

108

R2,COUNT

TEST

LOCAL BLOCK

"M<RO,R1,R2>
RO,R1,R3

108

R2,R3

W
O

N
E

N
G

M
O

N

W
E

N

W

N
G

W
O

N

W
O

W
O

W

w
e

W
O

TM
S

W
O

“
e

w
e

w
2 STARTS LOCAL LABEL BLOCK

DEFINE LOCAL LABEL 10$

CONDITIONAL BRANCH TO LOCAL LABEL
EXECUTED WHEN RO NOT > 0

ENDS PREVIOUS LOCAL LABEL

BLOCK AND STARTS NEW ONE

DEFINE NEW LOCAL LABEL 10$

CONDITIONAL BRANCH TO LOCAL LABEL
EXECUTED WHEN RO NOT > R1

UNCONDITIONAL BRANCH TO LOCAL LABEL
DEFINE LOCAL LABEL

UNCONDITIONAL BRANCH TO

USER-DEFINED LABEL

START LOCAL LABEL BLOCK

THAT WILL NOT BE TERMINATED

BY A USER-DEFINED LABEL

BRANCH TO LOCAL LABEL THAT IS AFTER
A USER-DEFINED LABEL

DOES NOT START A NEW

LOCAL LABEL BLOCK

THE COMPONENTS OF MACRO SOURCE STATEMENTS

10s: SUBL2 R2,R3 DEFINE LOCAL LABEL

BGTR 208 CONDITIONAL BRANCH TO LOCAL LABEL

INCL RO EXECUTED WHEN R2 NOT > R3
BRB NEXT UNCONDITIONAL BRANCH TO

USER-DEFINED LABEL

DEFINE LOCAL LABEL

DIRECTIVE FOLLOWED

BY USER-DEFINED LABEL TERMINATES

LOCAL LABEL BLOCK

208: DECL RO

.DISABLE LOCAL_BLOCK

NEXT: CLRL R4

N
e

W
O

W
N
E

W
P

N
G

N
I

"
I

N
P

w
2

3.5 TERMS AND EXPRESSIONS

A term can be any one of the following:

e A number

e A symbol

@ The current location counter (see Section 3.9)

e A textual operator followed by text (see Section 3.6.2)

e Any of the above preceded by a unary operator (see Section
3.6)

VAX-11 MACRO evaluates terms as longword (4-byte) values. If an
undefined symbol 1is used as a term, the linker determines the term's
value. The current location counter (.) has the value of the location
counter at the start of the current operand.

Expressions are combinations of terms joined by binary operators (see

Section 3.7) and evaluated as longword (4-byte) values. VAX-11l MACRO
evaluates expressions from left to right with no operator precedence
rules. However, angle brackets (<>) can be used to change the order
of evaluation. Any part of an expression that is enclosed in angle
brackets is first evaluated to a single value, which is then used in
evaluating the complete expression. For example, the expressions
A*B+C and A*<B+C> are different. Angle brackets can also be used to

apply a unary operator to an entire expression, such as -<A+B>.

Note that unary operators are considered part of a term; thus, VAX-1ll
MACRO performs the action indicated by a unary operator before it

performs the action indicated by any binary operator.

All expressions are one of three types: relocatable, absolute, or

external (global).

e An expression is relocatable if its value is fixed relative to
the start of the program section in which it appears. The
current location counter 1is relocatable in a relocatable
program section.

® An expression is absolute if its wvalue is an assembly-time
constant. An expression whose terms are all numbers is

absolute. An expression that consists of a relocatable term
minus another relocatable term from the same program section
is absolute, because such an expression reduces to an

assembly-time constant.

® An expression is external if it contains one or more symbols
that are not defined in the current module.

3-9

THE COMPONENTS OF MACRO SOURCE STATEMENTS

Any type of expression can be used 1in

® .ALIGN alignment directive

most macro statements, but

restrictions are placed on expressions used in:

® .BLKx storage allocation directives

e .IF and .IIF conditional assembly block directives

® .REPEAT repeat block directive

® .OPDEF opcode definition directive

® .ENTRY entry point directive

e .BYTE, .LONG, .WORD, .SIGNED_BYTE, and .SIGNED WORD directive

repetition factors

® Direct assignment statements (see Section 3.8)

See Chapter 5 for descriptions of the directives listed above, except

.REPEAT which 1is described in Chapter 6. Expressions used in these

directives and 1in direct assignment statements can only contain

symbols that have been previously defined in the current module. They

cannot contain either external symbols or symbols defined later in the

current module. In addition, the expressions in these directives must

be absolute. Expressions in direct

relocatable.

An example showing the use of expressions

A = 2*%100

.BLKB A+50

LAB: « BLKW A

HALF = LAB+<A/2>

LAB2: +.BLKB LAB2-LAB

«.WORD LAB3-LAB2

LAB3: «.WORD TST+LAB+2

3.6 UNARY OPERATORS

W
E

W
O

N
S

N
P

M

W
O

N
S

N
G

W
E

N
G

W
E

“
N
F

"
o

w
O

assignment statements can be

follows.

2*100 IS AN ABSOLUTE EXPRESSION

A+50 IS AN ABSOLUTE EXPRESSION A

CONTAINS NO UNDEFINED SYMBOLS

LAB IS RELOCATABLE

LAB+<A/2> IS A RELOCATABLE

EXPRESSION AND CONTAINS NO

UNDEFINED SYMBOLS

LAB2-LAB IS AN ABSOLUYUTE EXPRESSI

AND CONTAINS NO UNDEFINED SYMBOL

LAB3-LAB2 IS AN ABSOLUTE EXPRESS

BUT CONTAINS THE SYMBOL LAB3

THAT IS DEFINED LATER IN THIS MO

TST+LAB+2 IS AN EXTERNAL EXPRESS

BECAUSE TST IS AN EXTERNAL SYMBO

A unary operator modifies a term or an expression, and indicates an

action to be performed on that term or expression. Expressions must

be enclosed in angle brackets. Unary operators can be wused to

indicate whether a term or expression is positive or negative (if

unary plus or minus is not specified, the value is assumed to be plus,

by default). In addition, unary operators perform radix conversion,

textual conversion (including ASCII conversion), and numeric control

operations, as described in Sections 3.6.1 through 3.6.3. Table 3-3

summarizes the unary operations.

3-10

THE COMPONENTS OF MACRO SOURCE STATEMENTS

Table 3-3

Unary Operators

Unary

Operator Operator Name Example Operation

F —— e i — — ——

+ Plus sign +A Results in the positive

value of A

- Minus sign -A Results in the negative
(2's complement) value

of A

B Binary “B11000111 Specifies that 11000111
is a binary number

D Decimal “Dl127 Specifies that 127 is a
decimal number

"0 | oOctal “034 Specifies that 34 is an
octal number

X Hexadecimal “XFCF9 Specifies that FCF9 is
a hexadecimal number

A ASCII “A/ABC/ Produces an ASCII
string; the characters

between the matching

delimiters are

converted to ASCII

representation

M Register mask # "M<R3,R4,R5> | Specifies the registers

R3, R4, and R5 in the

. register mask

F Floating point “F3.0 Specifies that 3.0 is a
floating-point number

°C Complement ~Cc24 Produces the 1's
complement value of 24

(decimal)

More than one unary operator can be applied to a single term or to an

expression enclosed in angle brackets. For example:

-+-A

This construct is equivalent to:

=<+<=A>>

3.6.1 Radix Control Operators

VAX-11 MACRO accepts terms or expressions in four different radixes:

binary, decimal, octal, and hexadecimal. The default radix is

decimal. Expressions must be enclosed in angle brackets.

3-11

THE COMPONENTS OF MACRO SOURCE STATEMENTS

Formats

“Bnn
“Dnn
“Onn
“Xnn

nn

A string of characters that are legal in the specified radix.
The legal characters for each radix are listed below.

Format Radix Name Legal Characters

“Bnn Binary 0 and 1

“Dnn Decimal 0 through 9

“Onn Octal 0 through 7

“Xnn Hexadecimal 0 through 9 and A through F

Radix control operators can be included in the source program anywhere
a numeric value is legal. A radix control operator affects only the
term or expression immediately following it, causing that term or
expression to be evaluated in the specified radix.

For example:

«WORD "B00001101
.WORD D123
.WORD "047
.WORD <A+7013>

. LONG "X<F1C3+FFFFF-20>

BINARY RADIX

DECIMAL RADIX (DEFAULT)

OCTAL RADIX

13 IS IN OCTAL RADIX

ALL NUMBERS IN EXPRESSION

ARE IN HEXADECIMAL RADIXN
E

W

W

N

W
O

w
O

The circumflex cannot be separated from the B, D, 0, or X that follows
it, but the entire radix control operator can be separated by spaces
and tabs from the term or expression that is to be evaluated in that
radix.

The decimal operator, the default, is needed only within an expression
that has another radix control operator. 1In the following example,
the 16 would be interpreted as an octal number if the "D operator did
not precede it:

. LONG “0<10000 + 100 + "D16>

3.6.2 Textual Operators

The textual operators are the ASCII operator ("A) and the register
mask operator ("M).

3.6.2.1 ASCII Operator - The /ASCII -operator -<converts a string of
Printable characters to their ‘8-bit ASCII values and stores them one
character to a byte. The string of characters must be enclosed in a
pair of matching delimiters.

The delimiters can be any printable character except the space, tab,
or semicolon (;). Although alphanumeric characters can be used as
delimiters, nonalphanumeric -characters -should be used to avoid
confusion.

THE COMPONENTS OF MACRO SOURCE STATEMENTS

Format

“Astring

string

A delimited ASCII string from 1 through 8 characters long.

The delimited ASCII string must not be larger than the data type of

the operand. For example, if the "A operator occurs in an operand in
a MOVW instruction (the data type is a word), the delimited string

cannot be more than two characters.

For example:

MOVES CHARACTERS A,B,C,D,

INTO RO RIGHT JUSTIFIED WITH

"A" IN LOW-ORDER BYTE AND "D"

IN HIGH-ORDER BYTE

COMPARES X AND Y AS ASCII

CHARACTERS WITH CONTENTS OF LOW

ORDER 2 BYTES OF RO

GENERATES 8 BYTES OF ASCII DATA

MOVE ASCII CHARACTERS AB INTO

RO; "A" IN LOW-ORDER BYTE; "B"

IN NEXT; AND ZERO THE 2 HIGH-

ORDER BYTES

MOVL #$"A/ABCD/,R0O

CMPW #"A/XY/,RO

. QUAD "A%1234/678%
MOVL #$"A/AB/,RO

W
O

M
O

W
E

M
O

W
O

W
S

W
E

N
G

W
O

N
e

N

"
G

3.6.2.2 Register Mask Operator - The register mask operator converts

a register name or a list of register names enclosed in angle brackets

into a 1- or 2-byte register mask. The register mask is used by the

PUSHR and POPR instructions and the .ENTRY and .MASK directives (see

Chapter 5).

Formats

"Mreg-name

"M<reg-name-list>

reg-name

One of the register names or the DV or IV arithmetic trap enable

specifiers.

reg-name-list

A list of register names and/or the DV and IV arithmetic trap

enable specifiers, separated by commas.

The register mask operator sets a bit in the register mask for every

register name or arithmetic trap enable specified in the list. The

bits corresponding to each register name and arithmetic trap enable

specifier are listed below.

3-13

THE COMPONENTS OF MACRO SOURCE STATEMENTS

Register Name Arithmetic Trap Bits

Enable

RO through R11l 0 through 11 (respectively)

R12 or AP 12

FP 13

Sp IV 14

DV 15

When the register mask operator is wused in a POPR or PUSHR

instruction, RO through R11l, R12 or AP, FP, and SP can be specified.

The PC register name and the IV and DV arithmetic trap enable

specifiers cannot be specified.

When the register mask operator 1is wused in the .ENTRY or .MASK

directives, R2 through Rll and the IV and DV arithmetic trap enable

specifiers can be specified. However, RO, R1l, FP, SP, and PC cannot

be specified. IV sets the integer overflow trap, and DV sets the

decimal string overflow trap.

See the VAX-11/780 Architecture Handbook for more information on

register masks and arithmetic trap enable specifiers.

For example:

.ENTRY RT1l, "M<R3,R4,R5,R6,IV> SAVE REGISTERS R3,R4

R5, AND R6 AND SET THE

INTEGER OVERFLOW TRAP

SAVE REGISTERS RO,R1,

R2, AND R3

RESTORE RO,R1,R2, AND R3

PUSHR # "M<RO,R1,R2,R3>

W
e

M
O

W
N
E

N
S

W
N
e

O

POPR # "M<RO,R1,R2,R3>

3.6.3 Numeric Control Operators

The numeric control operators are the floating-point operator (°"F) and
the complement operator (°C).

3.6.3.1 Floating Point Operator - The floating-point operator accepts

a floating-point number and converts it to its internal representation

(a 4-byte value). This value can be used in any expression. VAX-11

MACRO does not perform floating-point expression evaluation.

Format

“"Fliteral

literal

A floating-point number (see Section 3.2.2).

The floating-point operator is useful because it allows a

floating-point number in an instruction that accepts integers.

For example:

NOTE THE RECOMMENDED INSTRUCTION

TO MOVE THIS FLOATING-POINT NUMBE:

IS THE MOVF INSTRUCTION

MOVL $°F3.7,R0

e

W

“
o

MOVF #3.7,R0O

3-14

THE COMPONENTS OF MACRO SOURCE STATEMENTS

3.6.3.2 Complement Operator - The complement operator produces the

1's complement of the specified value.

Format

“Cterm

term

Any term or expression. If an expression is specified, it must
be enclosed in angle brackets.

VAX-11 MACRO evaluates the term or expression as a 4-byte value before
complementing it.

For example:

PRODUCES FFFFFF00 (HEX)

PRODUCES COMPLEMENT OF

25 (DEC) WHICH IS

FFFFFFE6 (HEX)

. LONG “C"XFF

. LONG ~“C25

e

W
e

W
P

W

3.7 BINARY OPERATORS

In contrast to unary operators, binary operators specifz actions to be
performed on two terms or expressions. Expressions must be enclosed
in angle brackets. Table 3-4 summarizes the binary operators.

Table 3-4

Binary Operators

Binary

Operator Operator Name Example Operation

e——

+ Plus sign A+B Addition

- Minus sign A-B Subtraction

* Asterisk A*B Multiplication

/ Slash A/B Division

@ At sign A@B Arithmetic shift

& Ampersand A&B Logical AND

! Exclamation point A!B Logical inclusive OR

\ Backslash A\B Logical exclusive OR

All binary operators have equal priority. Terms or expressions can be

grouped for evaluation by enclosing them in angle brackets. The
enclosed terms and expressions are then evaluated first, and remaining
operations are performed from left to right. For example:

. LONG 1+2%3 ; EQUALS 9

. LONG 1+<2*3> ; EQUALS 7

3-15

THE COMPONENTS OF MACRO SOURCE STATEMENTS

Note that a 4-byte result is returned from all binary operations. If

a 1l-byte or 2-byte operand is used, the result is the low-order

byte(s) of the 4-byte result. VAX-11l MACRO displays an error message

if the truncation causes a loss of significance.

The following sections describe the arithmetic shift, logical AND,
logical inclusive OR, and 1logical exclusive OR operators in more
detail.

3.7.1 Arithmetic Shift Operator

The arithmetic shift operator (@) is used to perform 1left and right

arithmetic shift of arithmetic gquantities. The first argument is

shifted left or right the number of bit positions specified by the

second argument. If the second argument is positive, the first

argument is shifted left; 'if the second argument is negative, the

first argument 1is shifted right. When the first argument is shifted

left, the low-order bits are set to 0; and when the first argqument is

shifted right, the high-order bits are set to the value of the

original high-order bit (the sign bit).

For example:

. LONG "B101@4

. LONG l1e2

MOVL #<"B1100000@-5>,R0

YIELDS 1010000 (BINARY)

YIELDS 100 (BINARY)

YIELDS 11 (BINARY)«
e

e

W

. LONG l1@Aa

. LONG "X1234@-A
YIELDS 10000 (BINARY)

YIELDS 123 (HEX)e

W

3.7.2 Logical AND Operator

The logical AND operator (&) takes the logical AND of two operands.

For example:

“B1010
“B1100

. LONG A&B ; YIELDS 1000 (BINARY)

w

>

3.7.3 Logical Inclusive OR Operator

The logical inclusive OR operator (!) takes the logical inclusive OR
of two operands.

For example:

A = "B1010

B = “B1100

.LONG A!B ; YIELDS 1110 (BINARY)

3-16

THE COMPONENTS OF MACRO SOURCE STATEMENTS

3.7.4 Logical Exclusive OR Operator

The logical exclusive OR operator (\) takes the logical exclusive OR

of two arguments.

For example:

A = "B1010

B = "B1100

. LONG A\B ; YIELDS 0110 (BINARY)

3.8 DIRECT ASSIGNMENT STATEMENTS

A direct assignment statement equates a symbol to a specific value.

Unlike a symbol that is wused as a label, a symbol defined with a

direct assignment statement can be redefined as many times as desired.

Formats

symbol=expression

symbol==expression

symbol

A user-defined symbol.

expression

An expression that does not contain any undefined symbols (see

Section 3.5). .

The format with a single equal sign (=) defines a local symbol and the

format with a double equal sign (==) defines a global symbol. See

Section 3.3.3 for more information about local and global symbols.

The following three syntactic rules apply to direct assignment
statements:

e An equal sign (=) or double equal sign (==) must separate the

symbol from the expression defining the symbol's value.

Spaces preceding and/or following the direct assignment
operators have no significance in the resulting value.

e Only one symbol can be defined in a single direct assignment

statement.

@ A direct assignment statement can be followed only by a

comment field.

In addition, by DIGITAL convention, the symbol in a direct assignment
statement is placed 'in the label field.

For example:

TO <1270/10>+32-16

OR 143 (DECIMAL)

A=1 s+ THE SYMBOL *“A' IS EQUATED

; TO THE VALUE 1

B = A@5 ; THE SYMBOL 'B' IS EQUATED

: TO 1@5 OR 20 (HEX)"

C = 127*10 s+ THE SYMBOL 'C' IS EQUATED

;s TO 1270 (DEC)

D = "X100/°X10 : THE SYMBOL 'D' IS EQUATED
; TO 10 (HEX)

E = <B/10>+A1-<C> ;s THE SYMBOL ‘'E' IS EQUATED

H

3-17

THE COMPONENTS OF MACRO SOURCE STATEMENTS

3.9 CURRENT LOCATION COUNTER

The period (.), the symbol for the current 1location counter, always

has the value of the address of the current byte. VAX-11 MACRO sets

the current location counter to 0 at the beginning of the assembly and

at the beginning of each new program section.

Every VAX-11 MACRO source statement that allocates memory in the

object module increments the value of the current location counter by

the number of bytes allocated. For example, the directive .LONG O

increments the current location counter by 4, but a direct assignment

statement, except the special form described below, does not increase

the current location counter because no memory is allocated.

The current location counter can be explicitly set by a special form

of the direct assignment statement. The 1location counter can be

either incremented or decremented. Explicitly setting the 1location

counter is often useful when defining data areas. Data storage area

should not be reserved by explicitly setting the 1location counter;

the .BLK directives should be used instead (see Chapter 5).

Format

.=expression

expression

An expression that does not contain any undefined symbols (see

Section 3.5).

In a relocatable program section, the expression must be relocatable;

that 1is, the expression must be relative to an address in the current

program section (it can be relative to the current location counter).

For example:

MOVES LOCATION COUNTER= ,+40 :

; FORWARD

When a program section previously defined in the current module is

continued, the current 1location counter is set to the last value of

the current location counter in that program section.

When the current location counter is used in the operand field of an

instruction, the current location counter has the value of the address

of that operand--it does not have the value of the address of the

beginning of the instruction. For this reason, the current location

counter is not normally used as a part of the operand specifier.

3-18

CHAPTER 4

ADDRESSING MODES

This chapter summarizes the VAX-11 addressing modes and contains

examples of VAX-11 MACRO statements that use these addressing modes.

The VAX-11/780 Architecture Handbook describes the addressing modes in

detail.

There are four types of addressing modes:

e General Register

e Program Counter

e Index

e Branch

Although index mode is a general register mode, it is considered a

separate type of mode because it can be used only in combination with

another type of mode.

Table 4-1 summarizes the addressing modes.

4.1 GENERAL REGISTER MODES

The general register modes use registers RO through R12, AP (the same

as R12), FP, and SP.

There are eight general register modes:

e Register

® Register Deferred

e Autoincrement

e Autoincrement Deferred

e Autodecrement

e Displacement

e Displacement Deferred

e Literal

ADDRESSING MODES (ebed3xeuuopanurjuod)*3juelsuodjurod-burjleolye10‘jueisuoo1sbajurue‘uorssaiadxsuy
Tea9

311
*ssoippeuebuidyioedsuorssaidxsuyssaappe

juswsdeTdsipeburhyroeadsuorssaidxsuy(€°puor3loeg
99s)sepow3seqUIRIILSD103Spow-aseqaY3jurpa1310o9dsuyayjy
Seswes3ylaqjouuedXYy°XYJo9oefdurlpesnaquedI93st1baa
ds10‘44‘4va9yl3eyj#3oN°zZTYybnoayloy1s3sibaiTeisusabAuy

Xy

*uyJoaoeldutpesnaquedi93stbox
ds10‘d4‘dva2yl3jeyl83oN°zT¥ybnoayaoy193sihel1TeasusbhAuy

u
y

sAoy¥
adi3a

ejeppueiadoaylJoaz1say3zAqs3jus3juod193sibeasylsjusaweiourlossado0idsyz{pueaado
sax93lJOssaippe8ylsuiejuodia3siboy8+(uy)juswaIdurolInypueiadoayj

paaisjag
saxJOssaippea9ylsurejuodia3stibay9(uy)193st1boyI93s1b9y
ONpueiado8ylsuiejuod193sibaySuy193sibayTeasuan

Z91qexapuruoridriaosaganteAs3euUIOg9pPOWadAgTewioapbuissaippv~eXxaH
SapoWbuissaappyT-¥

e1qe
l

ADDRESSING MODES

ST
Teas3l1l

9y3z
‘{pueasado

syi|
€-0

Tea9311#.S

S9pOWbuissaippv(*3uod)1-¥3T19elL

ADDRESSING MODES (sbed3xauuopanurjzuod)O
NsaXSoXZoTqexapu

l

paompenb
i0‘paombuot‘piom‘a33Aqese

p2103ss1Tea931Taylx!pueiasdoY3STparjroadsTeIs3TT9yl(3uswsoeTdsIp®©
Sejou)ssaippe[en3liiAa3nyosqeuesepaiolsSTparjioadsssaippeayy‘!pueisadoayzjoSsa

ippea9ylsTparjroadsssaippesylA1sA1309dsaa‘jusawsderdstppaombuot
pue‘paom‘@3hqsjeoipur_7puetM‘.!DdwoazjuswaoerdsipBsepal1olsSTpatrjioads
ssaappeay3lIssaippepueisadoay3zJo
ssalppea9ylSTpatJroadsssaappeoylA1ea13oadsaz‘JuswedoerdsippaombuoT
pue‘piom‘83Aqejeorpur_7pue'M‘g{DdgwoigJuawadoeTdsIp

eSepaiolsstpoarJroadsssaippe®y3‘pueiado8yljossaippe9
yls1paryioadsssaappeoyll'llnllll!ll

l'l[lllrlilluotadiaosaq

8
Texa311#.1Teaal1T#a3e1pauuy

6ss@appe#?o3nfosqy
d

ssaappe_19
a

Ssaippe_Meo
|ssaappe_g9pa1i1ajaqgssaippep9AT3RTaY
g

Ssaappe_1
o)ssaappe_Mvssaappe_g193uno)ssaa

ppe9AT3RT9Yweiboag
anTepAsJeuiog3ponadAl
Tewioap

pburssaippvy
2.

S9poWbuisseaippv(*3u0))T-¥a1qel

4-4

ADDRESSING MODES

O
NO
N

S
T

s
s
e
i
p
p
e

8
y
l

31

¢
0
d

w
o
i
l

so
—
—

youeag

Jr

m—
——

adAilL

SOpOWbuTIsSsSaippvV

4-5

ADDRESSING MODES

4.1.1 Register Mode

In register mode, the operand is the contents of the specifiedregister, except for quadword, double-precision floating-point, orfield operands, where the operand is the contents of register n
concatenated with the contents of register n+l. The least significantbytes of the operand are in register n and the most significant bytes
are in register n+l. The results are unpredictable if PC is used in
register mode or if SP is used in register mode with a quadword,double-precision floating-point, or field operand extending into PC.

Formats

Rn

AP

FP

SP

n

A number in the range of 0 through 12.

Example

CLRB RO ; CLEAR LOWEST BYTE OF RO
CLRQ R1 ; CLEAR R1 AND R2
TSTW R10 ; TEST LOWER WORD OF R10
INCL R4 ; ADD 1 TO R4

4.1.2 Register Deferred Mode

In register deferred mode, the register contains the address of the
operand. Register deferred mode ¢an be used with index mode (seeSection 4.3).

Formats

(Rn)

(AP)
(FP)

(SP)

n

A number in the range of 0 through 12.

Example

MOVAL LDATA,R3 MOVE ADDRESS OF LDATA TO R3’

CMPL (R3) ,RO ; COMPARE VALUE AT LDATA TO RO
BEQL 10$;i IF THEY ARE THE SAME, IGNORE
CLRL (R3) ; CLEAR LONGWORD AT LDATA

10$: MOVL (SP) ,R1 ; COPY TOP ITEM OF STACK INTO R1
MOVZBL (AP) ,R4 GET NUMBER OF ARGUMENTS IN CALL

4.1.3 Autoincrement Mode

In autoincrement mode, the register contains the address of the
operand. After evaluating the operand address contained in the
register, the processor increments that address By the size of +the
operand data type. The processor increments the contents of the

ADDRESSING MODES

register by 1, 2, 4, or 8 for a byte, word, longword, or quadword

operand, respectively.

Autoincrement mode can be used with index mode (see Section 4.3), but -

the index register cannot be the same as the register specified in

autoincrement mode.

Formats

(Rn)+

{AP)+

(FP)+

(SP)+

n

A number in the range of 0 through 12.

Example

MOVAL TABLE,R1

CLRQ (R1)+

CLRL (R1)+

GET ADDRESS OF TABLE

CLEAR FIRST AND SECOND LONGWORDS

AND THIRD LONGWORD IN TABLE

LEAVE R1 POINTING TO TABLE +12

GET ADDRESS OF BYTARR

INCREMENT FIRST BYTE OF BYTARR

AND SECOND

; EXCLUSIVE-OR THE TWO LONGWORDS

WHOSE ADDRESSES ARE STORED IN

R3 AND R4 AND STORE RESULT IN

ADDRESS CONTAINED;IN R5, THEN

ADD 4 TO R3, R4, AND R5

MOVAB BYTARR,R2

INCB (R2)+

INCB (R2)+

XORL3 (R3)+,(R4) +, (R5)

w
e

W
6

w
e

w
o

=

we

W
e

W
e

W
o

W

W

N

4.1.4 Autoincrement Deferred Mode

In autoincrement deferred mode, the register contains an address that
is the address of the operand address (a pointer to the operand).

After evaluating the operand address, the processor increments the
contents of the register by 4 (the size in bytes of an address).

Autoincrement deferred mode can be used with index mode (see Section

4.3), but the index register cannot be the same as the register

specified in autoincrement deferred mode.

Formats

@ (Rn)+

@ (AP)+

Q(FP)+

@(spP)+

n

A number in the range of 0 through 12.

Example

MOVAL PNTLIS,R2

CLRQ @(R2)+

GET ADDRESS OF POINTER LIST

CLEAR QUADWORD POINTED TO BY

FIRST ABSOLUTE ADDRESS IN PNTLIS

THEN ADD 4 TO R2 :

CLEAR BYTE POINTED TO BY SECOND,

ABSOLUTE ADDRESS IN PNTLIS

THEN ADD 4 TO R2

‘CLRB @ (R2)+

N

W
e

W
e

W
i

W
e

W
M
o

W

4-7

ADDRESSING MODES

MOVL R10,@(RO) + MOVE R10 TO LOCATION WHOSE ADDRESS
IS POINTED TO BY RO; THEN ADD 4
TO ROw

e

“
e

w
e

4.1.5 Autodecrement Mode

In autodecrement mode, the processor decrements the contents of the
register by the size of the operand data type; then the register
contains the address of the operand. The processor decrements the
register by 1, 2, 4, or 8 for byte, word, longword, or quadword
operands, respectively.

Autodecrement mode can be used with index mode (see Section 4.3), but
the index register cannot be the same as the register specified in
autodecrement mode.

Formats

- (Rn)
- (AP)
= (FP)

-(SP)

n

A number in the range of 0 through 12.

Example

CLRQ -(R1) SUBTRACT 8 FROM R1 AND ZERO THE
QUADWORD WHOSE ADDRESS IS THEN

IN R1

PUSH THE ZERO-EXTENDED LOW BYTE

OF R3 ONTO THE STACK AS A LONGWORD
ONTO THE STACK

SUBTRACT 1 FROM RO AND COMPARE LOW
BYTE OF R1 WITH BYTE WHOSE ADDRESS
IS NOW IN RO

MOVZBL R3,-(SP)

CMPB R1l,-(RO)

W
E

e

N

N

W
e

W
y

W

W
e

W

4.1.6 Displacement Mode

In displacement mode, the sum of the contents of the register and the
displacement (sign extended to a longword) is the address of the
operand.

Displacement mode can be used with index mode (ste Secition 4.3).

Formats

dis (Rn)

dis (AP)

dis (FP)

dis (SP)

n

A number in the range of 0 through 12.

dis

An expression specifying a displacement; the eXpression can be
preceded by one of the following displacement length specifiers,
which indicate the number of bytes needed to store the
displacement.

4-8

ADDRESSING MODES

Displacement

Length Specifier Meaning

B” Displacement redquires 1 byte
Ww” Displacement requires 1 word (2 bytes)
L Displacement requires 1 longword (4 bytes)

If no displacement length specified precedes the expression and

the value of the expression is known, the assembler chooses the

smallest number of bytes (1, 2, or 4) needed to store the

displacement. If no length specifier precedes the expression and

the value of the expression is unknown, the assembler reserves 1

word (2 bytes) for the displacement. Note that 1if the

displacement is either relocatable or defined later in the source

program, the assembler considers it unknown. If the actual

displacement does not fit in the memory reserved, the linker

displays an error message.
~

Example

GET ADDRESS OF KEYWORDS

GET BYTE WHOSE ADDRESS IS

I0 PLUS ADDRESS OF KEYWORDS

THE DISPLACEMENT IS STORED AS A BYTE

GET BYTE WHOSE ADDRESS IS ACCOUNT

PLUS ADDRESS OF KEYWORDS

THE DISPLACEMENT IS STORED AS A BYTE

CLEAR WORD WHOSE ADDRESS

IS STA PLUS CONTENTS OF Rl

THE DISPLACEMENT IS STORED

AS A LONGWORD

MOVE RO TO ADDRESS THAT IS -2

PLUS THE CONTENTS OF R2

THE DISPLACEMENT IS STORED AS A BYTE

TEST THE BYTE WHOSE ADDRESS

IS EXTRN PLUS THE

ADDRESS OF KEYWORDS

THE DISPLACEMENT IS STORED AS A WORD

SINCE EXTRN IS UNDEFINED

MOVE <CONTENTS OF R5> + 2

TO RO

MOVAB KEYWORDS,R3

MOVB B"IO(R3) ,R4

MovB B"ACCOUNT(R3),R5

CLRW L"STA(R1)

MOVL RO,-2(R2)

TSTB EXTRN(R3)

MOVAB 2(R5) ,RO

W
O

W
O

W

N
E

W

W

W
e

M
o

M
E

W

W
e

W

W

W
e

V
W

W

_W
e
W

W

"
o

N

Note

If the value of the displacement is 0 and no displacement length

is specified, the assembler uses register deferred mode rather

than displacement mode.

4.1.7 Displacement Deferred Mode

In displacement deferred mode, the sum of the contents of the register

and the displacement {sign extended to a longword) is the address of

the operand address {a pointer to the operand).

Displacement deferred mode can be used with index mode (see Section

4.3).

4-9

ADDRESSING MODES

Formats

@dis (Rn)

@dis (AP)

@dis (FP)

@dis (SP)

n

dis

A number in the range of 0 through 12.

An expression specifying a displacement; the expression can be
preceded by one of the following displacement length specifiers,
which indicate the number of bytes needed to store the
displacement,

Displacement

Length Specifier Meaning

B® Displacement requires 1 byte
Ww* Displacement requires 1 word (2 bytes)
L" Displacement requires 1 longword (4 bytes)

If no displacement length specifier precedes the expression and
the value of the expression is know, the assembler chooses the
smallest number of bytes (1, 2, or 4) needed to store the
displacement. If no length specifier precedes the expression and
the value of the expression is unknown, the assembler reserves 1
word (2 bytes) for the displacement. Note that if the
displacement is either relocatable or defined later in the source
program, the assembler considers it unkndwn. If the actual
displacement does not fit in the memory reserved, the 1linker
displays an error message.

Example

MOVAL ARRPOINT,R6

CLRL @16 (R6)

GET ADDRESS OF ARRAY OF POINTERS
CLEAR LONGWQRD POINTED TO BY

LONGWORD WHOSE ADDRESS IS 16

PLUS THE ADDRESS OF ARRPOINT

; THE DISPLACEMENT IS STORED AS A BYTE
MOVL @B OFFS(R6) ,@RSOFF (R6) ; MOVE THE LONGWORD POINTED TO

7 BY LONGWORD WHQSE ADDRESS IS
OFFS PLUS THE ADDRESS OF ARRPOINT
TO THE ADDRESS POINTED TO BY
LONGWORD WHOSE ADDRESS IS

RSOFFS PLUS THE ADDRESS OF ARRPOINT

N
e

W
e

W

w
e

CLRW 284 (R2) CLEAR THE WORD THA? IS POINTED
TO BY LONGWORD AT 84 PLUS THE
CONTENTS OF R24-THE ASSEMBLER USES
BYTE DISPLACEMENT AUTOMATICALLYN

E

WM
o
e

W
e

W

W
e

W
e

W
e

"

W
y

4.1.8 Literal Mode

In literal mode, the value of the literal is stored in the addressing
mode byte itself.

Formats

#literal
S"#literal

THE FIRST DISPLACEMENT IS STOREDAS A BYTE
THE SECOND DISPLACEMENT IS STGRED AS A WOR

literal

ADDRESSING MODES

An expression, an integer constant, or a floating-point constant.

‘Phe

integers must be in the range of 0 through 63 and

constants

literal must fit in the short 1literal form. That is,

floating-point

must be one of the 64 values listed in Table 4-2,

Floating-point short literals are stored with a 3-bit exponent

and a 3-bit fraction. Table 4-2 also shows the value of the

exponent and the fraction for each 1literal. See the VAX-11l

Architecture Handbook for information on the format of short

literals.

Table 4-2

Floating Point Short Literals

Fraction

0 1 2 3 4 5 6 7

Exponent

0 ., 0.5] 0.5625] 0,625} 0.6875} 0.75| 0.8125| 0.875 0.9375

1 1.00 1.125 | 1.25 1.37 1.5 1.625 1.75 1.875

2 2.0] 2.25 2.5 2.75 3.0 3.25 3.5 3.75

3 4.0| 4.5 5.0 5.5 6.0 6.5 7.0 7.5

4 8.0{ 9.0 10.0 11.0 12.0 | 13.0 14.0 15.0

5 16.0]18.0 20.0 22.0 24.0 26.0 28.0 30.0

6 32.0]136.0 40.0 J44.0 48.0 | 52.0 56.0 60.0

7 64.0]72.0 80.0 88.0 96.0 |104.0 112.0 120.0

Example

MOVL #1,R0 ; RO IS SET TO 1; THE 1 IS STORED

; IN THE INSTRUCTION AS A SHORT

; LITERAL

MOVB S”#CR,R1 ; THE LOW BYTE OF Rl IS SET

; TO THE VALUE €R

; CR IS STORED IN THE INSTRUCTION
;s AS A SHORT LITERAL

; IF CR IS NOT IN RANGE 0-63,

: THE'LINKER PRODUCES A TRUNCATION
; ERROR

MOVF #0.625,R6 ; R6 IS SET TO THE FLOATING

; POINT VALUE 0.625; IT IS STOREfi

; IN THE FLOATING POINT SHORT

; LITERAL FORM

Notes

1. When the #literal format is used, the assembler chooses
whether to use litefal mode or immediate mode (see Section

4.2,4), The assembler uses immediate mode if 4ny of the
following eonditions are met:

e The value¢of the literal does not f£it in the short literal
form

e The literal is a relocatabld or external expression (see

Seetion 3,5)

e The litéfal is an expression that ceontains undefined
symbols

ADDRESSING MODES

The difference between immediate mode and literal mode is the
amount of storage that it takes to store the literal in the

instruction.

2. The S"#literal format forces the assembler to use 1literal
mode.

4.2 PROGRAM COUNTER MODES

The program counter modes use PC for a general register.

There are five program counter modes:

e Relative

® Relative Deferred

e Absolute

e Immediate

® General

4,2.1 Relative Mode

In relative mode, the address specified is the address of the operand.
The assembler stores the address as a displacement from PC.

Relative mode can be used with index mode (see Section 4.3).

Format

address

address

An expression specifying an address; the expression can be
preceded by one of the following displacement length specifiers,

which indicate the number of bytes needed to store the
displacement,

Displacement

Length Specifier Meaning

B® Displacement requires 1 byte
wt Displacement requires 1”7 word (2 bytes)
L” Displacement requires 1 longword (4 bytes)

If no displacement length specifier precedes the address
expression and the value of the expression is known, the
assembler chooses the smallest number of bytes (1, 2, or 4)
needed to store the displacement. If no 1length specifier
precedes the address expression and the value of the expression
is unknown, the assembler uses the default displacement length
(see the description of .DEFAULT in Chapter 5). If the address
expression is either defined later in the program or defined in
another program section, the assembler considers the value
unknown,

ADDRESSING MODES

Example

MOVL LABEL,R1 GET LONGWORD AT LABEL; THE

ASSEMBLER USES DEFAULT

DISPLACEMENT UNLESS LABEL

PREVIOUSLY DEFINED IN THIS SECTION

COMPARE R10 WITH LONGWORD AT

ADDRESS DATA+4; THE ASSEMBLER

USES A WORD DISPLACEMENT

CMPL W <DATA+4> ,R10

N
y

W
M
e

W
e

W
e

W
y

e

“
w
o

4.2.2 Relative Deferred Mode

In relative deferred mode, the address specified is the address of the
operand address (a pointer to the operand). The assembler stores the
address specified as a displacement from PC.

Relative deferred mode can be used with index mode (see Section 4.3).

Format

@Qaddress

address

An expression specifying an address; the expression can be

preceded by one of the following displacement length specifiers,

which indicate the number of bytes needed to store the

displacement.

Displacement
Length Specifier Meaning

B” Displacement requires 1 byte

w” Displacement requires 1 word (2 bytes)

L® Displacement requires 1 longword (4 bytes)

If no displacement 1length specifier precedes the address

expression and the wvalue of the expression 1is known, the

assembler chooses the smallest number of bytes (1, 2, or 4)

needed to store the displacement. If no length specifier

precedes the address expression and the value of the expression

is unknown, the assembler uses the default displacement length

(see the description of .DEFAULT in Chapter 5). If the address

expression 1is either defined later in the program or defined in

another program section, the assembler considers the value

LONGWORD AT COUNTS+4; ASSEMBLER

USES A LONGWORD DISPLACEMENT

unknown.

Example

CLRL @W” PNTR ; CLEAR LONGWORD POINTED TO BY

; LONGWORD AT PNTR; THE ASSEMBLER

; USES A WORD DISPLACEMENT

INCB @L"COUNTS+4 ; INCREMENT BYTE POINTED TO BY

;

H

4,2.3 Absolute Mode

In absolute mode, the address specified is the address of the operand.

The address is stored as an absolute virtual address (compare relative

mode, where the address is stored as a displacement from PC).

ADDRESSING MODES

Absolute mode can be used with index mode (see Section 4.3).

Format

@Q#address

address

An expression specifying an address.

Example

CLRL @$#°X1100

CLRB . Q@#ACCOUNT

CLEAR THE CONTENTS OF LOCATION 1100 (HEX)

CLEAR THE CONTENTS OF LOCATION

ACCOUNT; THE ADDRESS IS STORED

ABSOLUTELY, NOT AS A DISPLACEMENT

CALL THE PROCEDURE SYSS$FAO WITH

THREE ARGUMENTS ON THE STACK

CALLS #3,@#SYSSFAO

N
e

W

W
e

W

W

W

4.2.4 Immediate Mode

In immediate mode, the literal specified is the operand.

Formats

#literal

I"#literal

literal

An expression, an integer constant, or a floating-point constant.

Exdmple

MOVL #1000,RO RO IS SET TO 1000; THE OPERAND 1000

IS STORED IN A LONGWORD

THE LOW BYTE OF Rl 1S SET
TO THE VALUE OF BAR

R6 IS SET TO THE FLOATING

POINT VALUE 0.1; IT IS STORED

AS A 4-BYTE FLOATING POINT

VALUE (IT CAN NOT BE

REPRESENTED AS A SHORT LITERAL)

THE 5 IS STORED IN A LONGWORD

BECAUSE THE 1~ FORCES THE

ASSEMBLER TO USE IMMEDIATE MODE;

MOVB §$BAR,R1

MOVF #0.1,R6

ADDL2 1“$5,R0

W
e

N
P

W
O

V
e

W
E

W

N
P

e

M
O

N

N
9

W

Notes

l. When the #literal format is wused, the assembler chooses

whether to use 1literal mode (Section 4.1.8) or immediate

mode, 1If the literal is an integer from 0 through 63 or a
floating-point constant that fits in the short literal form,
the assembler uses 1literal mode. If the 1literal 1is an

eXpression, the assembler uses 1literal mode if all the

following conditions are met:

e The expression is absolute

e The expression contains no undefined symbols

e The value of the expression fits in the short literal form

In all other cases, the assembler uses immediate mode.

4-14

ADDRESSING MODES

The difference between immediate mode and literal mode is the

amount of storage required to store the 1literal in the

instruction. The assembler stores an immediate mode 1literal

in a byte, word, or longword depending on the operand data

type.

2. The I"#literal format forces the assembler to use immediate

mode.

4.2.5 General Mode

In general mode, the address specified is the address of the operand.

The linker converts the addressing mode to either relative or absolute
mode. If the address is relocatable, the linker converts general mode

to relative mode. If the address is absolute, the linker converts

general mode to absolute mode. General mode is used to write
position-independent code when the programmer does not know whether

the address is relocatable or absolute. A general addressing mode

operand requires 5 bytes of storage.

General mode can be used with index mode (see Section 4.3).

Format

G"address

address

An expression specifying an address.

Example ¢

CLEARS THE LONGWORD AT LABEL_1

IF LABEL 1 IS DEFINED AS ABSOLUTE

THEN THIS IS CONVERTED TO ABSOLUTE
MODE; IF IT IS DEFINED AS

RELOCATABLE, THEN THIS IS CONVERTED

TO RELATIVE MODE

CALLS #5,G"SYS$SERVICE ; CALLS PROCEDURE SYS$SERVICE

; WITH 5 ARGUMENTS ON STACK

CLRL G“LABEL_l

N

W

N

N

e

N

4.3 INDEX MODE

Index mode is a general register mode that can be wused only in

combination with another mode, called the base mode. The base mode

can be any addressing mode except register, immediate, literal, index,

or branch. The assembler first evaluates the base mode to get the

base address. Then the assembler adds the base address to the product

of the <contents of the index register and the number of bytes of the

operand data type. This sum is the operand address.

Combining index mode with the other addressing modes produces the

following addressing modes:

e Register Deferred Index

e Autoincrement Index

e Autoincrement Deferred Index

e Autodecrement Index

4-15

ADDRESSING MODES

e Displacement Index

e Displacement Deferred Index

e Relative Index

e Relative Deferred Index

e Absolute Index

e General Index

The process of first evaluating the base mode and then adding the

index register is the same for each of these modes.

Formats

base-mode[Rx]

base-mode[AP]

base-mode[FP]

base-mode[SP]

base-mode

Any addressing mode except register, immediate, 1literal, index,

or branch, specifying the base address.

A number in the range 0 through 12, specifying the index

register.

Table 4-3 lists t%e formats of index mode addressing.

Examples

i

; REGISTER DEFERRED INDEX MODE

i

OFFS=20

MOVAB BLIST,R9

MOVL #0OFFS,R1

DEFINE OFFS

GET ADDRESS OF BLIST

SET UP INDEX REGISTER

CLRB (R9) [R1] CLEAR BYTE WHOSE ADDRESS

IS THE ADDRESS OF BLIST

PLUS 20*1

CLRQ (R9) [R1] CLEAR QUADWORD WHOSE

ADDRESS IS THE ADDRESS

OF BLIST PLUS 20%*8N

e

W
M
e

W
9

W
M
E

N

W
e

"

“
e

AUTOINCREMENT INDEX MODE

w
e

w
o

w
o

CLRW (R9)+([R1] CLEAR WORD WHOSE ADDRESS

IS ADDRESS OF BLIST PLUS

20*2; R9 NOW CONTAINS

ADDRESS OF BLIST+2N

W
e

"
e

%

AUTOINCREMENT DEFERRED INDEX MODE

¢

w
e

“
o

MOVAL POINT,R8

MOVL $#30,R2

CLRW @(R8) +[R2]

GET ADDRESS OF POINT

SET UP INDEX REGISTER

CLEAR WORD WHOSE ADDRESS

IS 30*2 PLUS THE ADDRESS

STORED IN POINT; R8 NOW

CONTAINS 4 PLUS ADDRESS OF

POINTe

W
M

W

N
I

W
e

W

W

~
e

°

’

.

’

*

ADDRESSING MODES

DISPLACEMENT DEFERRED INDEX MODE

GET ADDRESS OF ADDRESS ARRAY

SET UP INDEX REGISTER

TEST FLOATING POINT VALUE

WHOSE ADDRESS IS 100*4 PLUS

MOVAL ADDARR,R9

MOVL $100,R1

TSTF @40 (R9) [R1]

e

®
e

W
y

W
o

O

Table 4-3

Index Mode Addressing

Mode Format*

F=============================F==================fl

Register Deferred Index (Rn) [Rx]

Autoincrement Index (Rn) +[Rx]

Autoincrement Deferred @(Rn)+[§x]
Index

Autodecrement Index -(Rn) [Rx]

Displacement Index dis (Rn) [Rx]

Displacement Deferred @dis (Rn) [Rx]

Index

Relative Index address [Rx]

Relative Deferred Index @address [Rx]

Absolute Index @#address[Rx]

General Index G"address [Rx]

Key:

Rn

Any general register RO through R12 or the AP, FP,

register.

Rx

Any general register RO through R12 or the AP, FP,

register. Rx cannot be the same register as Rn in the

autoincrement index, autoincrement deferred index,

decrement index addressing modes.

dis

An expression specifying a displacement.

address

An expression specifying an address.

4-17

THE ADDRESS STORED AT (ADDARR+40)

ADDRESSING MODES

Notes

1., If the base mode alters the contents of its register
(autoincrement, autoincrement deferred, and autodecrement),
the index mode cannot specify the same register.

2. The index register is added to the address after the base
mode 1is completely evaluated. For example, in autoincrement
deferred index mode, the base register contains the address
of the operand address. The index register (times the length
of the operand data type) is added to the operand address
rather than to the address stored in the base register.

4.4 BRANCH MODE

In branch mode, the address is stored as an implied displacement from
PC. This mode can only be used in branch instructions. The
displacement for conditional branch instructions and the BRB
instruction is stored in a byte. The displacement for the BRW
instruction is stored in a word (2 bytes). A byte displacement allows
a range of 127 bytes forward and 128 bytes backward. A word
displacement allows a range of 32767 bytes forward and 32768 bytes
backward. The displacement is relative to the updated PC, the byte
past the byte or word where the displacement 1is stored. See the
VAX-11/780 Architecture Handbook for more information on the branch
‘instructions.

Format

address

address

An expression that represents an address.

Example

ADDL3 (R1)+,R0,TOTAL TOTAL VALUES AND SET CONDITION

CODES

BRANCH TO LABEL1l IF RESULT IS

LESS THAN OR EQUAL TO 0

BRANCH UNCONDITIONALLY TO LABEL

BLEQ LABEL1

N

W
e

W
e

w
e

N
9

BRW LABEL

CHAPTER 5

GENERAL ASSEMBLER DIRECTIVES

The general assembler directives provide facilities for performing

eleven different types of functions. Table 5-1 lists these types of

functions and the directives that fall under them. The remainder of

this chapter describes the directives in detail, showing their formats

and giving examples of their |use. For ease of reference, the

directives are presented in alphabetical order. 1In addition, Appendix

B contains a summary of all assembler directives.

Table 5-1

Summary of General Assembler Directives

Category Directives*

Listing Control . SHOW (.LIST)

Directives . NOSHOW (.NLIST)

.TITLE

.SUBTITLE (.SBTTL)

« IDENT

- PAGE

Message Display . PRINT

Directives .WARN

« ERROR

Assembler Option .ENABLE (.ENABL)

Directives .DISABLE (.DSABL)

.DEFAULT

Data Storage .BYTE

Directives .WORD

. LONG

.ADDRESS

. QUAD

. PACKED

.ASCII

.ASCIC

.ASCID

.ASCIZ

. FLOAT

.DOUBLE

.SIGNED BYTE

.SIGNED_WORD

* The alternate form, if any, is given in parentheses.

(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 5-1 (Cont.)

Summary of General Assembler Directives

Category Directives*

w

Location Control .ALIGN

Directives . EVEN

.ODD

. BLKA

«BLKB

« BLKD

. BLKF

«BLKL

«BLKQ

« BLKW

«END

Program . PSECT

Sectioning .SAVE PSECT (.SAVE)
Directives -RESTORE_PSECT (.RESTORE)

Symbol Control .GLOBAL (.GLOBL)

Directives .EXTERNAL (.EXTRN)
Directives .DEBUG

-WEAK

Routine Entry Point .ENTRY
Definition . TRANSFER
Directives -MASK

Conditional .IF

and Subconditional . ENDC

Assembly .IF FALSE (. IFF)
Block Directives .IF TRUE (. IFT)

.IF TRUE FALSE (.IFTF)
LIIF -

Cross-Reference .CROSS

Directives -NOCROSS

Instruction .OPDEF

Generation .REF1

Directives «REF2

.REF4

-REFS8

* The alternate form, if any, is given in parentheses.

S 5-2

GENERAL ASSEMBLER DIRECTIVES

.ADDRESS

+ADDRESS -- ADDRESS STORAGE DIRECTIVE

.ADDRESS stores successive longwords containing addresses in the

object module. DIGITAL recommends that .ADDRESS rather than .LONG be

used for storing address data to provide additional information to the

linker. In shareable 1images, addresses must be specified with

.ADDRESS to produce position-independent code.

Format

.ADDRESS address-list

Parameter

address-list

A list of symbols or expressions, separated by commas, that

VAX-11 MACRO interprets as addresses. Repetition factors are not

allowed.

Example

TABLE: .ADDRESS LAB 4,LAB 3,ROUTTERM ; REFERENCE TABLE

GENERAL ASSEMBLER DIRECTIVES

ALIGN

+ALIGN -- LOCATION COUNTER ALIGNMENT DIRECTIVE

-ALIGN aligns the location counter to the boundary specified by either
an integer or a keyword.

Formats

.ALIGN integer[,expression]

.ALIGN keyword|[,expression}

Parameters

integer

An integer in the range of 0 through 9. The location counter is
aligned at an address that is a multiple of 2 raised to the power
of the integer.

keyword

One of five keywords that specify the alignment boundary. The
location counter is aligned to an address that is the next
multiple of the values listed below.

Keyword Size (in Bytes)

BYTE 20 = 1

WORD 271 = 2

LONG 272 = 4

QUAD 2°3 =8
PAGE 279 = 512

expression

Specifies the £fill value to be stored in each byte. The
expression must not contain any undefined symbols and must be an
absolute expression (see Section 3.5).

Example

.ALIGN BYTE,O ; BYTE ALIGNMENT-FILL WITH NULL

.ALIGN WORD ; WORD ALIGNMENT

JALIGN 3,°aA/ / 7 QUAD ALIGNMENT-FILL WITH BLANKS
.ALIGN PAGE : PAGE ALIGNMENT

Notes

1. The alignment specified in .ALIGN cannot exceed the alignment
of the program section in which the alignment is attempted
(see the description of .PSECT). For example, if the default
program section alignment (BYTE) is being used and .ALIGN is
specified with a WORD or larger alignment, the assembler
displays an error message.

2. 1If the optional expression is supplied, the bytes skipped by
the 1location counter (if any) are filled with the value of
that expression. Otherwise, the bytes are zero filled.

GENERAL ASSEMBLER DIRECTIVES

3. Although most instructions do not require any data alignment

other than byte alignment, execution speed is improved by the

following alignments:

Data Length Alignment

Word Word

Longword Longword

Quadword Quadword

GENERAL ASSEMBLER DIRECTIVES

LASCIx

ASCIx -- ASCII CHARACTER STORAGE DIRECTIVES

VAX-11 MACRO has four ASCII character storage directives:

Directive Function

ASCII ASCII string storage

ASCIC Counted ASCII string storage

ASCID String-descriptor ASCII string storage

ASCIZ Zero-terminated ASCII string storage

Each directive is followed by a string of characters enclosed in a

pair of matching delimiters. The delimiters can be any printable

character except the space, tab, equal sign (=), semicolon (;), or

left angle bracket (<). The character used as the delimiter cannot

appear in the string itself. Alphanumeric characters can be used as

delimiters; however, nonalphanumeric characters should be used to

avoid confusion.

Any character except the null, carriage return, and form feed

characters can appear within the string. The assembler does not

convert lowercase alphabetic characters to uppercase.

ASCII character storage directives convert the characters +to their

8-bit ASCII value (see Appendix A) and store them one character to a

byte.

Any character, including the null carriage return, and form feed

characters, can also be represented by an expression enclosed in angle

brackets outside of the delimiters. The ASCII character storage

directives store the 8-bit binary value specified by the expression.

ASCII strings can be continued over several lines but the string on

each 1line must be delimited at both ends; however, a different pair

of delimiters can be used for each line. For example:

CR=13

LF=10

.ASCII /ABC DEFG/

.ASCIZ @Any character can be delimitere@

.ASCIC ? lowercase is not converted to UPPER?

JASCII ? this is a test!?XCR>KLF>!Isn't it?!

.ASCII \ Angle Brackets <are part <of> this> string \

.ASCII / This string is continued / -

\ on the next line \

+ASCII <CR>XLF>! this string includes an expression! -

<128+CR>? whose value is a 13 plus 128?

The following sections describe each of the four ASCII character

storage directives, giving the formats and examples of each.

GENERAL ASSEMBLER DIRECTIVES

.ASCII

.ASCII -- ASCII STRING STORAGE DIRECTIVE

LASCII stores in the next available byte the ASCII value of each

character in the ASCII string or the value of each byte expression.

Format

.ASCII stging

Parameter

string

A delimited ASCII string.

Example

CR=13

LF=10

.ASCII "DATE: 17-NOV-1977"

.ASCII /EOF/<CR><LF>

.ASCIC

+ASCIC -- COUNTED ASCII STRING STORAGE DIRECTIVE

.ASCIC performs the same function as .ASCII, except that .ASCIC

inserts a count byte before the string data. The count byte contains

the length of the string in bytes. The length given includes any

bytes of nonprintable characters outside the delimited string but

excludes the count byte.

.ASCIC is useful in copying text because the count indicates the

length of the text to be copied.

Format

.ASCIC string

Parameter

string

A delimited ASCII string.

Example

" CR=13

.ASCIC #HELLO#<CR> THIS COUNTED ASCII STRING
IS EQUIVALENT TO

THE COUNT

FOLLOWED BY THE ASCII STRING
.BYTE 6

.ASCII #HELLO#<CR> N
G

W
e

W
O

“
o

GENERAL ASSEMBLER DIRECTIVES

.ASCID

+ASCID -- STRING-DESCRIPTOR ASCII STRING STORAGE DIRECTIVE

-ASCID performs the same function as ASCII, except that .ASCID inserts
a string descriptor before the string data.

The string descriptor consists of 1) two bytes of descriptor
information, 2) two bytes that specify the length of the string, and
3) a longword that points to the string. String descriptors are used
in calling procedures (see Appendix C of the VAX-11/780 Architecture
Handbook).

Format

.ASCID string

Parameter

string

A delimited ASCII string.

Example

STRING DESCRIPTOR

ANOTHER ONE

DESCR1: .ASCID /ARGUMENT FOR CALL/
DESCR2: .ASCID /SECOND ARGUMENT/

-

w
e

PUT ADDRESS OF DESCRIPTORS

ON THE STACK

CALL PROCEDURE

PUSHAL DESCR1

PUSHAL DESCR2

CALLS #2,STRNG_PROC

.ASCIZ

+ASCIZ -~ ZERO-TERMINATED ASCII STRING STORAGE DIRECTIVE

“
e

W

w
s

«.ASCIZ performs the same function as .ASCII, except that .ASCIZ
appends a null byte as the final character of the string. Thus, when
a list or text string is created with an .ASCIZ directive, the user
need only perform a search for the null character in the last byte to
determine the end of the string.

Format

.ASCIZ string

Parameter

string

A delimited ASCII string.

Example

FF=12

6 CHARACTERS IN STRING

7 BYTES OF DATA

3 CHARACTERS IN STRINGS

4 BYTES OF DATA

.ASCIZ /ABCDEF/

.ASCIZ /A/<FF>/B/

e

e

W
y

W

GENERAL ASSEMBLER DIRECTIVES

.BLKXx

.BLKx -- BLOCK STORAGE ALLOCATION DIRECTIVES

VAX-11 MACRO has seven block storage directives:

Directive Function

.BLKA Reserves storage for addresses (longwords)

.BLKB Reserves storage for byte data

.BLKD Reserves storage for double-precision,

floating-point data (quadwords)

.BLKF Reserves storage for single-precision,

floating-point data (longwords)

.BLKL Reserves storage for longword data

.BLKQ Reserves storage for quadword data

.BLKW Reserves storage for word data

Each directive reserves storage for a different data type. The value

of the expression determines the number of data items for which VAX-11

MACRO reserves storage. For example, .BLKL 4 reserves storage for 4

longwords of data and .BLKB 2 reserves storage for 2 bytes of data.

The total number of bytes reserved is equal to the length of the data

type times the value of the expression as follows:

Directive Number of Bytes Allocated

.BLKB Value of expression

« BLKW 2 * yvalue of expression

.BLKA

.BLKF 4 * yalue of expression

« BLKL

+BLKD 8 * value of expression

.BLKQ

Formats

.BLKA expression

.BLKB expression

.BLKD expression

.BLKF expression

.BLKL expression

.BLKQ expression

.BLKW expression

Parameter

expression

An expression specifying the amount of storage to be allocated.
All the symbols in the expression must be defined and the
expression must be an absolute expression (see Section 3.5). 1f

the expression is omitted, a default value of 1 is assumed.

Example

.BLKB

« BLKQ

« BLKL

. BLKF

15

3

<3*4>

GENERAL ASSEMBLER DIRECTIVES

N
S

W

N
0

N

w
0 SPACE FOR 15 BYTES

SPACE FOR 3 QUADWORDS (24 BYTES)
SPACE FOR 1 LONGWORD (4 BYTES)

SPACE FOR 12 SINGLE PRECISION

FLOATING-POINT VALUES (48 BYTES)

.BYTE

GENERAL ASSEMBLER DIRECTIVES

-~ BYTE STORAGE DIRECTIVE

.BYTE

.BYTE generates successive bytes of binary data in the object module.

Format

.BYTE expression-list
-

Parameter

expre

expre

[expr

Example

.BYTE <1024-1000>*2

.BYTE "XA,FIF,10,65-<21*3>

.BYTE 0 ‘

.BYTE X,X+3[5*4],%

Notes

1. The assembler displays an error message

bytes

“XFFFFFF.

ssion-list

One or more expressions separated by commas.

first evaluated as a longword expression.

expression is truncated to 1 byte.

in the range of 0 through 255 for unsigned data or inshould be

Each expression is

Then the value of each

The value of each expression

the range of -128 through +128 for signed data.

Each expression optionally can be

delimited by square brackets.

repetition factor has the format:

expressionl[expression2]

ssionl

An expression that specifies the

ession2]

An expression that specifies the

be repeated. The expression

symbols and must be an absolute

The square brackets are required.

that exceeds 1 byte.

a truncation diagnostic message

question. For example:

A: .BYTE A

N

W
O

W
e

W

N

5-11

At link time, a relocatable expression can result in a
In this case,

followed by a repetition factor

An expression followed by a

value to be stored.

number of times the value will

must not contain any undefined

expression (see Section 3.5).

STORES

STORES

STORES

STORES

A VALUE OF 48

4 BYTES OF DATA

1 BYTE OF DATA

22 BYTES OF DATA

e

W
e

W
4

W

if the high-order 3

of the longword expression has a value other than 0 or

value

the VAX-11l Linker issues

for the object module in

RELOCATABLE VALUE A WILL

CAUSE VAX-11 LINKER TRUNCATION

DIAGNOSTIC IF THE STATEMENT

HAS A VIRTUAL ADDRESS OF 256

OR ABOVE

GENERAL ASSEMBLER DIRECTIVES

The .SIGNED BYTE directive is the same as .BYTE except the
assembler displays a diagnostic message if a value in the
range from 129 to 255 is specified. See the description of
-SIGNED_BYTE for more information.

GENERAL ASSEMBLER DIRECTIVES

.CROSS

.NOCROSS

.CROSS AND .NOCROSS -- CROSS-REFERENCE DIRECTIVES

‘'VAX-11 MACRO produces a cross-reference 1listing when the CROSS

qualifier is specified in the MACRO command. The .CROSS and .NOCROSS
directives control which symbols are included in the cross-reference
listing. The .CROSS and .NOCROSS directives have an effect only if
/CROSS was specified in the MACRO command (see the VAX-11 MACRO User's
Guide).

By default, the cross-reference listing includes the definition and
all the references to every symbol in the module. The cross-reference
listing can be disabled for all symbols or for a specified 1list of
symbols.

.NOCROSS without a symbol list disables the cross-reference listing of
all symbols. .CROSS without a symbol list reenables the
cross-reference listing. Any symbol definition or reference that
appears after .NOCROSS without a symbol 1list and before the next
.CROSS without a symbol list is excluded from the <cross reference
listing.

.NOCROSS with a symbol list disables the cross-reference 1listing for

the listed symbols. .CROSS with a symbol 1list reenables the
cross-reference listing of the listed symbols.

Formats

.CROSS

.CROSS symbol-list

.NOCROSS

.NOCROSS symbol-list

Parameter

symbol-list

A list of legal symbol names separated by commas.

Examples

. NOCROSS : STOP CROSS REFERENCE

LAB1l: MOVL LOC1l,LOC2 ; COPY DATA

.CROSS ; REENABLE CROSS REFERENCE

The definition of LABl and the references to LOCl and LOC2 are not

included in the cross reference listing.

.NOCROSS LOC1 DO NOT CROSS REFERENCE LOCl;

LAB2: MOVL LOC1,LOC2 ; COPY DATA

.CROSS LOC1 ; REENABLE CROSS REFERENCE

; OF LOC1

The definition of LAB2 and the reference to LOC2 are included in the
cross reference, but the reference to LOCl is not included in the
cross reference.

5-13

Notes

GENERAL ASSEMBLER DIRECTIVES

.CROSS without a symbol 1list will not reenable the
cross-reference 1listing of a symbol specified in .NOCROSS
with a symbol list.

If the cross-reference listing of all symbols is disabled,
.CROSS with a symbol 1list will have no effect until the
cross-reference listing is reenabled by .CROSS without a
symbol 1list.

5~14

GENERAL ASSEMBLER DIRECTIVES

.DEBUG

.DEBUG -- DEBUG SYMBOL ATTRIBUTE DIRECTIVE

.DEBUG specifies that the symbols in the list are made known to the

debugger. During an interactive debugging session, these symbols can

be used to refer to memory locations or to examine the values assigned
to the symbols.

Format

.DEBUG symbol-list

Parameter

symbol-list

A list of legal symbols separated by commas.

Example

MAKE THESE SYMBOLS KNOWN

TO THE DEBUGGER
.DEBUG INPUT,OUTPUT,-

LAB_30,LAB_40 e

=

Note

The assembler adds the symbols in the symbol list to the symbol
table in the object module. The programmer need not specify

global symbols in the .DEBUG directive because global symbols

automatically are put in the object module's symbol table. See

the description of .ENABLE for information on making information
about all symbols available to the debugger.

5-15

GENERAL ASSEMBLER DIRECTIVES

.DEFAULT

« DEFAULT ~- DEFAULT CONTROL DIRECTIVE

-DEFAULT determines the default displacement length for the relative
and relative deferred addressing modes (see Sections 4.2.1 and 4.2.2),

Format

.DEFAULT DISPLACEMENT, keyword

Parameter

keyword

One of three keywords--BYTE, WORD, LONG--indicating the default
displacement length.

Example

.DEFAULT DISPLACEMENT,WORD

MOVL LABEL,R1

WORD IS DEFAULT

ASSEMBLER USES WORD

DISPLACEMENT UNLESS

LABEL HAS BEEN DEFINED

LONG IS DEFAULT

ASSEMBLER USES LONGWORD

DISPLACEMENT UNLESS

COUNTS HAS BEEN DEFINED

.DEFAULT DISPLACEMENT,LONG

INCB @COUNTS+4
W
M
E

N
E

W
O

N
E

N

N
e

w
e

w
9

Notes

l. .DEFAULT has no effect on the default displacement for
displacement and displacement deferred addressing modes (see
Sections 4.1.6 and 4.1.7).

2. If there is no .DEFAULT in a source module, the default
displacement length is a longword.

.DISABLE

«DISABLE -- FUNCTION CONTROL DIRECTIVE

-DISABLE disables, or inhibits, the specified assembler functions.
See the description of .ENABLE for more information.

Format

.DISABLE argument-list

Parameter

argument-list

One or more of the symbolic arguments listed in Table 5-2 in the
description of (ENABLE. Either the long form or the short form
of the symbolic arguments can be used. IFf multiple arguments are
specified, they must be separated by commas, spaces, or tabs.

Note

The alternate form of .DISABLE is .DSABL.

5-16

GENERAL ASSEMBLER DIRECTIVES

.DOUBLE

.DOUBLE -- FLOATING POINT STORAGE DIRECTIVE

.DOUBLE evaluates the specified floating-point constants and stores

the results in the object module. .DOUBLE generates 64-bit,

double-precision, floating-point data (1 bit of sign, 8 bits of

exponent, and 55 bits of fraction). See the description of .FLOAT for

information on storing single precision floating point numbers.

Format

.DOUBLE literal-list

Parameter

literal-list

A list of floating-point constants (see Section 3.2.2) . The

constants cannot contain any unary or binary operators except

unary plus or unary minus.

Example

CONSTANT

LIST
.DOUBLE 1000,1.0E3,1.0000000E-9

.DOUBLE 3.1415928, 1.107153423828

.DOUBLE 5, 10, 15, 0, 0.5 -

W
O

W

1. Double precision floating point numbers are always rounded.

They are not effected by .ENABLE TRUNCATION.

2. The floating point constants in the literal 1list must not be

preceded by the floating point operator ("F).

GENERAL ASSEMBLER DIRECTIVES

.ENABLE

+-ENABLE -- FUNCTION CONTROL DIRECTIVE

-ENABLE enables the specified assembly function. .ENABLE and its
negative form, .DISABLE, control the following assembler functions.

® Creating local label blocks.

e Making all 1local symbols available to the debugger and
enabling the traceback feature.

@ Specifying that wundefined symbol references are external
references.

e Truncating or rounding of single-precision, floating-point
numbers.

® Suppressing the listing of symbols that are defined but not
referenced.

@ Specifying that all PC references are absolute not relative.

Format

.ENABLE argument-list

Parameter

argument-~list

One or more of the symbolic arguments 1listed in Table 5-2.
Either the long form or the short form of the symbolic arguments
can be used.

If multiple arguments are specified, they must be separated by
commas, spaces, or tabs.

Table 5-2
-ENABLE and .DISABLE Symbolic Arguments

Default
Long Form Short Form Condition Function

ABSOLUTE AMA Disabled When ABSOLUTE is enabled,

all PC relative addressing

modes are assembled as

absolute addressing modes.

DEBUG DBG Disabled When DEBUG is enabled, all

local symbols are included
in the object module's
symbol table for use by

the debugger.

(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

.ENABLE and

Table 5-2 (Cont.)

.DISABLE Symbolic Arguments

Long Form Short Form

Default

Condition Function

GLOBAL

LOCAL_BLOCK

SUPPRESSION

TRACEBACK

TRUNCATION

GBL

LSB

SUP

TBK

FPT

Enabled

Disabled

Disabled

Enabled

Disabled

When GLOBAL is enabled,

all undefined symbols are

considered external

symbols. When GLOBAL is

disabled, any undefined

symbol that is not listed

in a .EXTERNAL directive

causes an assembly error.

When LOCAL BLOCK is

enabled, the current local

label block is ended and a

new one is started. When

LOCAL BLOCK is disabled,

the current local label

block is ended. See

Section 3.4 for a complete

description of local label

blocks.

When SUPPRESSION is

enabled, all symbols that

are defined but not

referred to are not listed

in the symbol table. When

SUPPRESSION is disabled,

all symbols that are

defined are listed in the

symbol table.

When TRACEBACK is enabled,

the program section names

and lengths, module names,

and routine names are

included in the object

module for use by the

debugger. When TRACEBACK

is disabled, VAX-11 MACRO

excludes this information

and, in addition, does not

make any local symbol

information available to

the debugger.

When TRUNCATION is

enabled, floating-point

numbers are truncated.

When TRUNCATION is

disabled, floating-point

numbers are rounded.

GENERAL ASSEMBLER DIRECTIVES

Example

.ENABLE ABSOLUTE, GLOBAL ASSEMBLE RELATIVE ADDRESS MODE

AS ABSOLUTE ADDRESS MODE.

UNDEFINED REFERENCES ARE GLOBAL-
e

W
e

o

.DISABLE TRUNCATION,TRACEBACK ROUND FLOATING-POINT NUMBERS.

DO NOT PUT ANY DEBUGGING

INFORMATION INTO OBJECT MODULE~
y

w
e

w
e

Note

The alternate form of .ENABLE is .ENABL.

GENERAL ASSEMBLER DIRECTIVES

.END

.END -- ASSEMBLY TERMINATION DIRECTIVE

.END terminates the source program. No additional text should occur

beyond this point in the current source file or in any additional

source files specified in the command line for this assembly. If any

additional text does occur, the assembler displays an error message

and ignores the text. The additional text does not appear in either

the listing file or the object file.

Format

<END [symbol]

Parameter

symbol

The address (called the transfer address) at which program

execution is to begin.

Example

.ENTRY START,O ; ENTRY MASK

. ; MAIN PROGRAM

.END START

1. The transfer address must be in a program section that has

the EXE attribute (see the description of .PSECT).

2. When an executable image consisting of séveral object modules

is 1linked, only one object module should be terminated by an

.END directive that specifies a transfer address. All other

object modules should be terminated by .END directives that

do not specify a transfer address. If an executable image

either contains no transfer address or contains more than one

transfer address, the VAX-11 Linker displays an error

message.

3. If the source program contains an unterminated conditional

code block when the .END directive 1is specified, the

assembler displays an error message.

.ENDC

.ENDC -~ END CONDITIONAL DIRECTIVE

.ENDC terminates the conditional range started by .IF. See the

description of .IF for more information and examples.

Format

. ENDC

GENERAL ASSEMBLER DIRECTIVES

.ENTRY

+-ENTRY -- ENTRY DIRECTIVE

.ENTRY defines a symbolic name for an entry point and stores a
register save mask (2 bytes) at that location. The symbol is defined
as a global symbol with a value equal to the value of the 1location
counter at the .ENTRY directive. The entry point can be used as the
transfer address of the program. The register save mask is used to
determine which registers are saved before the procedure is called.
These saved registers are automatically restored when the procedure
returns control to the calling program. See the description of the
procedure call instructions in the VAX-11/780 Architecture Handbook.

Format

«ENTRY symbol ,expression

Parameter

symbol

The symbolic name for the entry point.

expression

The register save mask for the entry point. The expression must
be an absolute expression and must not contain any undefined
symbols.

Example

PROCEDURE STARTS HERE.

REGISTERS 2,3,7 ARE

PRESERVED BY CALL AND

RET INSTRUCTIONS

.ENTRY CALC, "M<R2,R3,R7>

®
e

W
e

W
w
e

Notes

l. The register mask operator ("M) is convenient to use for
setting the bits in the register save mask (see Section
3.6.2.2).

2. An assembly error occurs if the expression has bits o, 1, 12,
or 13 set. These bits correspond to the registers RO, Rl,
AP, and FP and are reserved for the CALL interface.

3. DIGITAL recommends that .ENTRY be used to define all callable
entry points including the transfer address of the program.
Although the following construct also defines an entry point,
its use is discouraged:

symbol:: .WORD expression

Although a procedure starting with this construct can be
called, the entry mask is not checked for any illegal
registers and the symbol cannot be used in a .MASK directive.

GENERAL ASSEMBLER DIRECTIVES

.ENTRY should be used only for procedures that will be called

by the CALLS or CALLG instruction. A routine that is entered

by the BSB or JSB instruction should not use .ENTRY because

these instructions do not expect a register save mask. These

routines should begin in the following format:

symbol:: first instruction

The first instruction of the routine immediately follows the

symbol.

GERERAL ASSEMBLER DIRECTIVES

.ERROR

«ERROR -- ERROR DIRECTIVE

-ERROR causes the assembler to display an error message on the
terminal or batch log file and in the listing file (if there is one).

Format

.ERROR [expression] ; comment

Parameters

expression

An expression whose value is displayed when .ERROR is encountered
during assembly.

; comment

A comment that is displayed when .ERROR is encountered during
assembly. The comment must be preceded by a semicolon.

Example

.IF DEFINED LONG‘MESS

«IF GREATER lOOO-WORK_AREA

-ERROR 25 ; NEED LARGER WORK_AREA
. ENDC

« ENDC

If the symbol LONG_MESS is defined and if the symbol WORK_AREA has a
value of 1000 or less, the following error message is displayed:

$MACRO-E-GENERR, Generated ERROR: 25 NEED LARGER WORK_AREA

Notes

1. .ERROR, .WARN, and .PRINT are called the message display
directives. They can be uséd to display information
indicating that a macro call contains an error or an illegal
set of coenditions (see Chapter 6 for more information on
macre calls).

2. When the assembly is finished, the assembler displays
total number of errors and warnings and the sequence numbers
of the lines causing the errors or warnings on the terminal.
See the VAX-1l1 MACRO User"s Guide for moré information on
errors and warnings.

3. 1If -ERROR is included in a maéro library (see the
MACRO User's Guide), the comment should end
additional semicolon. ©Otherwise, the librarian will

the

VAX-11

with

strip

an

the comment from the directive and it will not be displayed
when the macro is called.

4. The line contaihing the .ERROR directive is not included
the listihg file.

5. If the expression has a value of 0, it is not ‘displayed
the error message.

5-24

in

in

GENERAL ASSEMBLER DIRECTIVES

.EVEN

.EVEN -- EVEN LOCATION COUNTER ALIGNMENT DIRECTIVE

.EVEN ensures that the current value of the location counter is even

by adding 1 if the current value is odd. If the current value is

already even, no action is taken.

Format

.EVEN

.EXTERNAL

.EXTERNAL -- EXTERNAL SYMBOL ATTRIBUTE DIRECTIVE

.EXTERNAL indicates that specified symbols are external; that is, the

symbols are defined in another object module and cannot be defined

until link time (see Section 3.3.3).

Format

.EXTERNAL symbol-list

Parameter

symbol-list

A list of legal symbols separated by commas.

Example

. EXTERNAL SIN,TAN,COS ; THESE SYMBOLS ARE DEFINED IN

. EXTERNAL SINH,COSH,TANH ; EXTERNALLY ASSEMBLED MODULES

Notes

1. If the GLOBAL arqument is enabled (see Table 5-2 in the
description of .ENABLE), all unresolved references will be

marked as global and external. Thus, if GLOBAL 1is endbled,

the programmer need not specify .EXTERNAL. However, if

GLOBAL is disabled, the programmer must explicitly specify

.EXTERNAL, to declare any symbols that are defined externally

but referred to in the currént module.

2. If GLOBAL is disabled and the assembler finds symbols that

are not defined in the currént module and are not listed in a

.EXTERNAL directive, the assembler displays an error message.

3. The alternate form of .EXTERNAL is .EXTRN.

GENERAL ASSEMBLER DIRECTIVES

.FLOAT

«FLOAT -- FLOATING-POINT STORAGE DIRECTIVE

-FLOAT evaluates the specified floating-point constants and stores the
results in the object module. . FLOAT generates 32-bit,
single-precision, floating-point data (1 bit of sign, 8 bits of
exponent, and 23 bits of fractional significance). See the
description of .DOUBLE for information on storing double-precision
floating-point numbers.

Format

.FLOAT literal-list

Parameter

literal-list

A list of floating-point constants (see Section 3.2.2). The
constants cannot contain any unary or binary operators except
unary plus and unary minus.

Example

.FLOAT 134.5782,74218.34E20 ; SINGLE PRECISION
+FLOAT 134.2,0.1342E3,1342E-1 ; THESE ALL GENERATE 134.2
+FLOAT -0.75,1E38,-1.0E-37 ; DATA
.FLOAT 0,25,50 ; LIST

Notes

l. See the description of .ENABLE for information on specifying
floating-point rounding or truncation.

2. The floating point constants in the literal list must not be
preceded by the floating point unary operator (°F).

5-26

GENERAL ASSEMBLER DIRECTIVES

.GLOBAL

«.GLOBAL -~ GLOBAL SYMBOL ATTRIBUTE DIRECTIVE

.GLOBAL indicates that specified symbol names are either globally

defined 1in the current module or externally defined in another module

(see Section 3.3.3).

Format

.GLOBAL symbol-list

Parameter

symbol-list

A list of legal symbol names separated by commas.

Example

.GLOBAL LAB_40,LAB_30 ; MAKE THESE SYMBOL NAMES

s GLOBALLY KNOWN

.GLOBAL UKN_13 ; TO ALL LINKED MODULES

Notes

1. .GLOBAL is provided for MACRO-11 compatibility only. DIGITAL

recommends that global definitions be specified by a double

colon or double equals sign (see Section 2.2.1 and 3.8) and

that external references be specified by .EXTERNAL (when

necessary).

2. The alternate form of .GLOBAL is .GLOBL.

5-27

GENERAL ASSEMBLER DIRECTIVES

JADENT

«IDENT -~ IDERTIFICATION DIRECTIVE

- IDENT provides a means of identifying the object module. This
identification is in addition to the name assigned to the object
module with .TITLE. A character string can be specified in .IDENT to
label the object module. This string is printed in the header of the
listing file as well as appearing in the object module.

Format

. IDENT string

Parameter

string

A 1- to 1l5-character string that identifies the module, such as a
string that specifies a version number. The string must be
delimited. The delimiters can be any paired printing characters,
other than the 1left angle bracket (<) or the semicolon (:), as
long as the delimiting character is not contained in the text
string itself.

Example

.IDENT /3-47/ ;7 VERSION AND EDIT NUMBERS

The character string 3-47 is included in the object module.

Notes

l. If one source module contains more than one .IDENT, the 1last
directive given establishes the character string that forms
part of the object module identification.

2. 1If the delimiting characters do not match, or if an illegal
delimiting character is used, the assembler displays an error
message.

GENERAL ASSEMBLER DIRECTIVES

AF

~ «IF -- CONDITIONAL ASSEMBLY BLOCK DIRECTIVES

A conditional assembly block is a series of source statements that is

assembled only if a certain condition is met. .IF starts the

conditional block and .ENDC ends the conditional block. Each .IF must

have a corresponding .ENDC. The .IF directive contains a condition
test and one or two arguments. The condition test specified Iis
applied to the argument(s). If the test is met, all MACRO statements

between .IF and .ENDC are assembled. If the test 1is not met, the

statements are not assembled. An exception to this occurs when
subconditional directives are used (see the description of .IF_x

directive).

Conditional blocks can be nested, that is a conditional block <can be

inside of another conditional block. 1In this case the statements in
the inner conditional block are assembled only if the condition is met
for both the outer and inner block.

Format

.IF condition argument(s)

«ENDC

Parameters

condition

A specified condition that must be met if the block 1is to be
included in the assembly. Table 5«3 lists the conditions that

can be tested by the conditional assembly directives. The

condition must be separated from the argument(s) by a comma,

space, or tab.

argument(s)

The symbolic argument(s) or expression(s) of the specified

conditional test, If the argument is an expression, it cannot
contain any undefined symbols and must be an absolute expression

(see Section 3.5).

range

The block of source code that is conditionally included in the

assembly.

5-29

GENERAL ASSEMBLER DIRECTIVES

Table 5-3

Condition Tests for Conditional Assembly Directives

Complement Number of | Condition that
Condition Test Condition Test Argument Type Arguments | Assembles Block

—{

Long Short | Long Short

Form Form Form Form

EQUAL EQ NOT_EQUAL NE Expression 1 Expression is equal to

0 (or not equal to 0)

GREATER GT LESS_EQUAL LE Expression 1 Expression is greater

than 0 (or less than

or egqual to 0)

LESS_THAN LT GREATER_EQUAL GE Expression 1 Expression is less

than 0 (or greater

than or equal to 0)

DEFINED DF NOT DEFINED NDF Symbolic 1 Symbol is defined (or

- not defined)

BLANK* B NOT BLANK* NB Macro 1 Argument is blank (or

- nonblank)

IDENTICAL* IDN BIFFERENT* DIF Macro 2 Arguments are

identical (or

different)

* The BLANK, NOT BLANK, IDENTICAL, and DIFFERENT conditions are only

useful

detail.

Examples

1.

in macro definitions. Chapter 6 describes macro directives in

An example of a conditional assembly directive is:

.IF EQUAL ALPHA+1

« ENDC

Nested conditional directives take the form:

. IF

.IF

« ENDC

. ENDC

s

w
o

condition,argument(s)

condition,argument(s)

5-30

ASSEMBLE BLOCK IF ALPHA+1=0

DO NOT ASSEMBLE IF ALPHA+1l NOT=0

GENERAL ASSEMBLER DIRECTIVES

3. The following conditional directives can govern whether
assembly is to occur:

.IF DEFINED SYM1

.IF DEFINED SYM2

. ENDC

. ENDC

In this example, if the outermost condition is not satisfied, no

deeper level of evaluation of nested conditional statements within the

program occurs. Therefore, both SYM1 and SYM2 must be defined for the
code to be assembled.

Notes

1. If .ENDC occurs outside a conditional assembly block, the
assembler displays an error message.

2. VAX-1ll MACRO permits a nesting depth of 31 conditional
assembly levels. If a statement attempts to exceed this
nesting level depth, the assembler displays an error message.

3. The assembler displays an error message if .IF specifies any
of the following: a condition test other than those in Table

5-3, an illegal argument, or a null argument specified in an
.IF directive.

4. The .SHOW and .NOSHOW directives control whether condition
blocks that are not assembled are included in the listing
file.

5-31

GENERAL ASSEMBLER DIRECTIVES

JF_Xx

«IF_x —- SUBCONDITIONAL ASSEMBLY BLOCK DIRECTIVES

VAX-11 MACRO has three subconditional assembly block directives:

Directive Function

.IF_FALSE If the condition of the assehbly block tests
false, the program is to include the source code

following the .IF FALSE directive and continuing

up to the next subconditional directive or to the
end of the conditional assembly block.

.IF_TRUE If the condition of the assembly block tests true,

the program is to include the source code
following the .IF TRUE directive and continuing up
to the next subconditional directive or to the end
of the conditional assembly block.

-IF_TRUE_FALSE Always include the source code following the

- .IF_TRUE FALSE directive and continuing up to the
next subconditional directive or to the end of the
conditional assembly block. This source code is
included regardless of whether the condition of

the assembly block tests true or false.

The implied argument of a subconditional directive is the condition
test specified when the conditional assembly block was entered. A
conditional or subconditional directive in a nested conditional
assembly block is not evaluated if the preceding (or outer) condition
in the block is not satisfied (see examples 3 and 4 below).

A conditional block with a subconditional directive is different than
a nested conditional block. 1If the condition in the .IF is not met,
the inner conditional block(s) are not assembled, but a subconditional
directive can cause a block to be assembled.

Formats

.IF_FALSE

. IF_TRUE

. IF_TRUE_FALSE

Examples

l. Assume that symbol SYM is defined:

. IF DEFINED SYM TESTS TRUE SINCE SYM IS DEFINED.

ASSEMBLES THE FOLLOWING CODE. \

“
-
e

w
e

- IF_FALSE ; TESTS FALSE SINCE PREVIOUS

. ;7 .IF WAS TRUE. DO NOT

. ; ASSEMBLE THE FOLLOWING CODE.

.IF_TRUE TESTS TRUE. SYM IS DEFINED.

-
e

o

ASSEMBLES THE FOLLOWING CODE.

5-32

GENERAL ASSEMBLER DIRECTIVES

.IF_TRUE_FALSE

.IF_TRUE

. ENDC

-
y

e

-

W
e

“
w
o

ASSEMBLES FOLLOWING CODE

UNCONDITIONALLY.

TESTS TRUE. SYM IS DEFINED.

ASSEMBLES REMAINDER OF

CONDITIONAL ASSEMBLY BLOCK.

Assume that symbol X is defined and that symbol Y is not defined:

.IF DEFINED X

.IF DEFINED Y

.IF_FALSE

.IF_TRUE

« ENDC

« ENDC

"

W
O

N

W
O

W
y

W

N
0

W
e

w
e

“
§

TESTS TRUE. SYMBOL X IS DEFINED.

TESTS FALSE. SYMBOL Y IS NOT

DEFINED.

TESTS TRUE. SYMBOL Y IS NOT

DEFINED.

ASSEMBLES THE FOLLOWING CODE.

TESTS FALSE. SYMBOL Y IS NOT

DEFINED.

DOES NOT ASSEMBLE THE FOLLOWING

CODE.

Assume that symbol A is defined and that symbol B is not defined:

.IF DEFINED A

.IF_FALSE

.IF NOT_DEFINED B

. ENDC

. ENDC

e

W

-

“
w
o

.
o

w
e

TESTS TRUE. A IS DEFINED.

ASSEMBLES THE FOLLOWING CODE.

TESTS FALSE. A IS DEFINED. DOES

NOT ASSEMBLE THE FOLLOWING CODE.

NESTED CONDITIONAL DIRECTIVE

IS NOT EVALUATED.

Assume that symbol X is not defined but symbol Y is defined:

.IF DEFINED X

.IF DEFINED Y

.IF_FALSE

N
e

W
e

N

W
M
o

W
E

W

e

w
o

TESTS FALSE. SYMBOL X IS NOT

DEFINED.

DOES NOT ASSEMBLE THE

FOLLOWING CODE.

NESTED CONDITIONAL DIRECTIVE

IS NOT EVALUATED.

NESTED SUBCONDITIONAL

DIRECTIVE IS NOT EVALUATED.

GENERAL ASSEMBLER DIRECTIVES

-IF_TRUE ; NESTED SUBCONDITIONAL

. ; DIRECTIVE IS NOT EVALUATED.

«ENDC

. ENDC

If a subconditional directive appears outside a conditional

assembly block, the assembler displays an error message.

The alternate forms of .IF_FALSE, .IF_TRUE, and

.IF_TRUE_FALSE are .IFF, .IFT, and .IFTF.

5-34

GENERAL ASSEMBLER DIRECTIVES

AIF

«IIF —-- IMMEDIATE CONDITIONAL ASSEMBLY BLOCK DIRECTIVE

.IIF provides a means of writing a one-line conditional assembly

block. The condition to be tested and the conditional assembly block

are expressed completely within the 1line containing the .IIF

directive; no terminating .ENDC statement is required.

Format

.IIF condition argument(s), statement

Parameters

condition

One of the legal condition tests defined for conditional assembly

blocks in Table 5-3 (See the description of .IF). The condition

must be separated from the argument(s) by a comma, space, or tab.

argument(s)

The argument associated with the immediate conditional directive;

that 1is, an expression or symbolic argument (described in Table

5-3). If the argument is an expression, it cannot contain any

undefined symbols and must be an absolute expression (see Section

3.3.3). The argument(s) must be separated from the statement by

a comma.

statement

The statement to be assembled if the condition is satisfied.

Example

Condition Argument Statement

.IIF DEFINED EXAM, BEQL ALPHA

This directive generates the following code if the symbol EXAM is

defined within the source program:

BEQL ALPHA

Note

The assembler displays an error message if .IIF specifies any of

the following: a condition test other than those listed in Table

5-3, an illegal argument, or a null argument.

GENERAL ASSEMBLER DIRECTIVES

LIST

+LIST -- LISTING DIRECTIVE

.LIST is equivalent to the .SHOW. See the description of .SHOW for

more information.

Formats

. LIST

.LIST argument-list

Parameter

argument-list

One or more of the symbolic argument defined in Table 5-7 in the

description of .SHOW. Either the long form or the short form of

the arguments can be used. 1If multiple arguments are specified,

they must be separated by commas, spaces, or tabs.

5-36

GENERAL ASSEMBLER DIRECTIVES

.LONG

« LONG -- LONGWORD STORAGE DIRECTIVE

.LONG generates successive longwords of data in the object module.

Format

.LONG expression-list

Parameters

expression-list

One or more expressions separated by commas. Each expression

optionally can be followed by a repetition factor delimited by

sguare brackets.

An expression followed by a repetition factor has the format:

expressionl [expression2]

expressionl

An expression that specifies the value to be stored.

[expression2]

An expression that specifies the number of times the value will

be repeated. The expression must not contain any undefined

symbols and must be an absolute expression (see Section 3.5).

The square brackets are required.

Example

3 LONGWORDS OF DATA

1 LONGWORD OF DATA

22 LONGWORDS OF DATA

LAB_3: .LONG LAB 3, "X7FFFFFFF, A'ABCD'

.LONG “XF@4

.LONG 0[22] e

W
y

w
e

Note

Each expression in the 1list must have a value that can be

represented in 32 bits.

GENERAL ASSEMBLER DIRECTIVES

.MASK

«MASK

+-MASK

—-= MASK DIRECTIVE

reserves a word for a register save mask for a transfer vector.

See the description of .TRANSFER for more information and for an

example of .MASK.

Format

.MASK symbol [,expression]

Parameters

symbo

expre

Notes

1.

1

A symbol defined in an .ENTRY directive.

ssion

A register save mask.

If .MASK does not contain an expression, the assembler directs

the 1linker to copy the register save mask specified in .ENTRY to

the word reserved by .MASK.

If .MASK contains an expression, the assembler directs the linker

to combine this expression with the register save mask specified

in .ENTRY and store the result in the word reserved by .MASK.

The linker performs an inclusive OR operation to combine the mask

in the entry point and the value of the expression.

Consequently, a register specified in either .ENTRY or .MASK will

be included in the combined mask. See the description of .ENTRY

for more information on entry masks.

.NLIST

+«NLIST -- LISTING DIRECTIVE

.NLIST is equivalent to .NOSHOW. See the description of .SHOW for

more information.

Formats

«NLIST

.NLIST argument-list

Parameter

argument-list

One or more of the symbolic arguments listed in Table 5-7 in the

description of .SHOW. Either the long form or the short form of

the arguments can be used. If multiple arguments are specified,

they must be separated by commas, spaces, or tabs.

5-38

GENERAL ASSEMBLER DIRECTIVES

.NOCROSS

.NOCROSS -- CROSS REFERENCE DIRECTIVE

VAX-11 MACRO produces a cross-reference listing when the CROSS

qualifier is specified in the MACRO command. The .CROSS and .NOCROSS

directives control which symbols are included in the cross-reference

listing. The description of .NOCROSS is included with the description

of .CROSS.

.NOSHOW

.NOSHOW -- LISTING DIRECTIVE

.NOSHOW specifies listing control options. See the description of

.SHOW for more information.

Formats

. SHOW

.SHOW argument-list

‘Parameter

argument-list

One or more of the symbolic arguments listed in Table 5-7 in the

description of .SHOW. Either the long form or the short form of

the arguments can be used. If multiple arguments are specified,
they must be separated by commas, spaces, or tabs.

.ODD

.ODD -~ ODD LOCATION COUNTER ALIGNMENT DIRECTIVE

.ODD ensures that the current value of the location counter is odd by

adding 1 if the current value is even. If the current value is

already odd, no action is taken.

Format

.ODD

5-39

GENERAL ASSEMBLER DIRECTIVES

.OPDEF

«OPDEF ~-- OPCODE DEFINITION DIRECTIVE

-OPDEF defines an opcode, which it inserts into a user-defined opcode
table. The assembler searches this table before it searches the
permanent symbol table. This directive can redefine an existing
opcode name or create a new one.

Format

.OPDEF opcode value,operand-descriptor-list

Parameters

opcode

An ASCII string specifying the name of the opcode. The string
can be up to 15 characters long and can contain the letters A
through Z; the digits 0 through 9;
underline (), dollar sign

delimiters.

value

An expression that specifies the
expression must not contain any undefined values and must be an
absolute expression (see
expression must be in the
(hexadecimal FFFF).

operand-descriptor-list

Section

range

($),

and the special characters
_ and period (.). The string

should not start with a digit and should not

value of

3.5).

be surrounded by

the opcode. The

The value of the

of 0 through decimal 65535

A list of operand descriptors tnat specifies the number of
operands and the type of each. Up to 16 operand descriptors are
allowed in the list. Table 5-4 lists the operand descriptors.

Table 5-4

Operand Descriptors

Data Type

Access Byte Word Long- Floating| Double Quad-
Type word Point Floating | word

Point

Address AB AW AL AF AD AQ

Read-only RB RW RL RF RD RQ

Modify MB MW ML MF MD MQ

Write-only WB WW WL WF WD WQ

Field VB VW VL VF VD vVQ

Branch BB BW - - - -

GENERAL ASSEMBLER DIRECTIVES

Examples

.OPDEF MOVL3 “XFFA9,RL,ML,WL : DEFINES AN

; INSTRUCTION, MOVL3, WHICH USES

; THE RESERVED OPCODE FF.

.OPDEF DIVF2 “X46 ,RF,MF ; REDEFINES THE DIVF2 AND

.OPDEF MOVC5 “X2C,RW,AB,AB,RW,AB *+ ; MOVC5 INSTRUCTIONS.

.OPDEF CALL ~“X10,BB :+ EQUIVALENT TO A BSBB

Notes

1. A macro can also be used to redefine an opcode (see the

description of .MACRO in Chapter 6). Note that the macro

name table is searched before the user-defined opcode table.

2. .OPDEF is useful 1in creating "custom" instructions that

execute user-written microcode. Note that DIGITAL does not

support or provide tools for wuser-written microcode. This

directive is supplied to allow programmers who have developed

tools and written microcode to execute their microcode in a

MACRO program.

3. The operand descriptors are specified in a format similar to

the operand specifier notation described in the VAX-11/780

Architecture Handbook. The first character specifies the

operand access type and the second character specifies the

operand data type.

GENERAL ASSEMBLER DIRECTIVES

.PACKED

« PACKED -- PACKED DECIMAL STRING STORAGE DIRECTIVE

- PACKED generates packed decimal data, 2 digits per byte. Packed
decimal data is wuseful in calculations requiring exact accuracy.
Packed decimal data is operated on by the decimal string instructions.
See the VAX-11/780 Architecture Handbook for more information on the
format of packed decimal data.

Format

+PACKED decimal-string[,symbol]

Parameters

decimal-string

A decimal number from 0 through 31 digits long with an optional
g%g?é).Each digit can be in the range of 0.through 9 (see Section

symbol

An optional symbol that is assigned a value equivalent to the
number of decimal digits in the string. The sign is not counted
as a digit.

Example

. PACKED -12,PACK_SIZE ; PACK_SIZE GETS VALUE OF 2
- PACKED +500

.PACKED 0

. PACKED -O,SUM_SIZE : SUM_SIZE GETS VALUE OF 1

«PAGE -- PAGE EJECTION DIRECTIVE

.PAGE forces a new page in the listing; the directive itself is not
printed in the listing.

VAX-11 MACRO ignores .PAGE in a macro definition. The paging
operation is performed only during macro expansion. Chapter 6
describes macro directives and facilities in detail.

Format

. PAGE

GENERAL ASSEMBLER DIRECTIVES

.PRINT

« PRINT -- ASSEMBLY MESSAGE DIRECTIVE

.PRINT causes the assembler to display an informational message. The
message consists of the value of the expression and the comment
specified in the .PRINT directive. The message is displayed on the

terminal for interactive jobs and in the log file for batch jobs. The

message produced by .PRINT is not considered an error or warning

message.

Format

.PRINT [expression] ;comment

Parameters

expression

An expression whose value is displayed when .PRINT is encountered
during assembly.

comment

A comment that is displayed when .PRINT is encountered during

assembly. The comment must be preceded by a semicolon.

Example

.PRINT 2 ; THE SINE ROUTINE HAS BEEN CHANGED

Notes

1. .PRINT, .ERROR, and .WARN are called the message display

directives. They can be used to display information

indicating that a macro call contains an error or an illegal

set of conditions (See Chapter 6 for more information on

macro calls).

2. If .PRINT is included in a macro library (see the VAX-11

MACRO User's Guide), the comment should end with an

additional semicolon. Otherwise, the comment will be

stripped from the directive and will not be displayed when

the macro is called.

3. If the expression has a value of 0, it is not displayed with

the message.

5-43

GENERAL ASSEMBLER DIRECTIVES

.PSECT

« PSECT ~- PROGRAM SECTIONING DIRECTIVE

.PSECT defines a program section and its attributes and refers to a
program section once it is defined.

Program sections can be used to:

® Develop modular programs

® Separate instructions from data

@ Allow different modules to access the same data

® Protect read-only data and instructions from being modified

@ Identify sections of the object module to the debugger

® Control the order in which program sections are stored 1in
virtual memory

See the VAX-1l MACRO User's Guide for more information on using
program sections.

When the assembler encounters a .PSECT directive that specifies a new
program section name, it creates a new program section and stores the
name, attributes, and alignment of the program section. The assembler
includes all data and instructions that follow the .PSECT directive in
that program section until it encounters another .PSECT directive.
The assembler starts all program sections at a location counter of
relocatable 0.

If the assembler encounters a .PSECT directive that specifies the name
of a previously defined »>rogram section, it stores the new data or
instructions so that they lcgically follow the 1last entry in the
previously defined program section. Specifically, the 1location
counter is set to the value of the location counter at the end of the
previously defined program section. The programmer need not list the
attributes when continuing a program section but any attributes that
are listed must be the same as those previously listed for the program
section.

The assembler automatically defines two program sections: the
absolute program section and the unnamed (or blank) program section.
Any symbol definitions that appear before any instruction, data, or
-PSECT directive are placed in: the absolute program section. Any
instructions or data that appear before the first named program
section is defined are placed in the unnamed program section. Any
-PSECT directive that does not include a program section name
specifies the unnamed program section.

A maximum of 254 user-defined, named program sections can be defined.

The attributes listed in the .PSECT directive only describe the
contents of the program section. The assembler does not check to
ensure that the contents of the program section actually include the
attributes listed.

However, the assembler and the 1linker do check that all program
sections with the same name have exactly the same attributes. The
assembler and linker display an error message if the program section
attributes are not consistent.

5-44

GENERAL ASSEMBLER DIRECTIVES

Program section names are independent of local symbol, global symbol,

and macro names. Thus, the same symbolic name can be used for a

program section and for a local symbol, global symbol, or macro name.

Formats

.PSECT

.PSECT program-section-name{,argument-list]

Parameters

program-section-name

The name of the program section. This name can be up to 15

characters 1long and can contain any alphanumeric character and

the underline (), dollar sign ($), and period (.) characters.

However, the first character must not be a digit in the range of

0 through 9.

argument-list

A list containing the program section attributes and the program

section alignment. Table 5-5 1lists the attributes and their
functions. Table 5-6 lists the default attributes and their

opposites. Program sections are aligned when an integer in the

range of 0 through 9 is specified or when one of the five
keywords 1listed below is specified. If an integer is specified,

the program section is 1linked to begin at the next wvirtual
address that 1is a multiple of 2 raised to the power of the
integer. If a keyword 1is specified, the program section is

linked to begin at the next virtual address that is a multiple of
the values listed below:

Keyword Size (in Bytes)

BYTE

WORD

LONG

QUAD

PAGE

~

~

”~

~

~

D
N

W
W
h
H
H
O

n
u
n
u
n
n

0
1
0
0

BYTE is the default.

Table 5-5

Program Section Attributes

Attribute Function

Name

ABS Absolute--The linker assigns the program section an
absolute address. The contents of the program section
can be only symbol definitions (usually definitions of
symbolic offsets to data structures that are used by

the routines being assembled). An absolute program
section contributes no binary code to the image, so its

byte allocation request to the linker is 0. The size
of the data structure being defined is the size of the
absolute program section printed 1in the "program

section synopsis" at the end of the listing. Compare
this attribute with its opposite, REL.

(continued on next page)

5-45

GENERAL ASSEMBLER DIRECTIVES

Table 5-5 (Cont.)

Program Section Attributes

Attribute

Name

Function

|

CON

EXE

GBL

LCL

LIB

NOEXE

NOPIC

NORD

NOSHR

NOWRT

OVR

Concatenate--Program sections with the same name and
attributes (including CON) are merged into one program
section. Their contents are merged in the order 1in
which the linker acquires them. The allocated virtual
address space is the sum of the individual requested

allocations.

Executable--The program section contains instructions.

This attribute provides the capability of separating
instructions from read-only and read/write data. The
linker uses this attribute 1in gathering program
sections and in verifying that the transfer address is
in an executable program section.

Global--Program sections that have the same name and
attributes, including GBL and OVR, will have the same
relocatable address in memory even when the program
sections are in different clusters (see the VAX-1l1l
Linker Reference Manual for more information on
clusters). This attribute is specified for FORTRAN

COMMON block program sections (see the VAX-1l FORTRAN

IV-PLUS User's Guide). Compare this attribute with its
opposite, LCL.

Local--The program section 1is restricted to its
cluster. Compare this attribute with its opposite,

GBL.

Library Segment--Reserved for future use.

Not Executable--The program section contains data only;

it does not contain instructions.

Non-Position-Independent Content--The program section
is assigned to a fixed location in virtual memory (when
it is in a shareable image).

Nonreadable-~Reserved for future use.

No Share--The program section is reserved for private
use at execution time by the initiating process.

Nonwritable--The program section's contents cannot be
altered (written into) at execution time.

Overlay--Program sections with the same name and
attributes, including OVR, have the same relocatable
base address in memory. The allocated virtual address
space 1is the requested allocation of the largest
overlaying program section. Compare this attribute
with its opposite, CON.

(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 5-5 (Cont.)

Program Section Attributes

Attribute

Name

Function

PIC

RD

REL

SHR

USR

WRT

Position~Independent Content--The program section can

be relocated; that is, it can be assigned to any

memory area (when it is in a shareable image).

Readable--Reserved for future use.

Relocatable--The linker assigns the program section a
relocatable base address. The contents of the program

section can be code or data. Compare this attribute

with its opposite, ABS.

Share--The program section can be shared at execution

time by multiple processes. This attribute is assigned

to a program section that can be linked into a

shareable image.

User Segment-~Reserved for future use.

Write--The program section's contents can be altered

(written into) at execution time.

Table 5-6

Default Program Section Attributes

Examples

Default

Attribute

Opposite

Attribute

CON

EXE

LCL

NOPIC

NOSHR

RD

REL

WRT

OVR

NOEXE

GBL

PIC

SHR

NORD

ABS

NOWRT

. PSECT

. PSECT

PROGRAM SECTION TO CONTAIN

EXECUTABLE CODE
CODE, NOWRT, EXE, LONG

-

w
0

RWDATA ,WRT,NOEXE, QUAD

PROGRAM SECTION TO CONTAIN

MODIFIABLE DATA

-
8

“
e
o

Notes

GENERAL ASSEMBLER DIRECTIVES

The .ALIGN directive cannot specify an alignment greater than
that of the current program section; consequently, .PSECT
should specify the largest alignment needed in the program
section. For efficiency of execution, an alignment of
longword or larger is recommended for all program sections
that have longword data.

The attributes of the default absolute and the default
unnamed program sections are 1listed below. Note that the
program section names include the periods and enclosed
spaces.

Program Section

Name Attributes and Alignment

. ABS . NOPIC,USR,CON,ABS,LCL,NOSHR,NOEXE,NORD, NOWRT,BYTE

. BLANK . NOPIC,USR,CON,REL,LCL,NOSHR,NOEXE,RD,WRT,BYTE

GENERAL ASSEMBLER DIRECTIVES

.QUAD

.QUAD -- QUADWORD STORAGE DIRECTIVE

.QUAD generates 64 bits (8 bytes) of binary data.

Format

.QUAD literal

.QUAD symbol

Parameters

literal

Any constant value. This value can be preceded by “o, "B, "X, or
“D to specify the radix as octal, binary, hexadecimal, or

decimal, respectively; or it can be preceded by “A to specify

the ASCII text operator. Decimal is the default radix.

symbol

A symbol defined somewhere in the program. This symbol results

in a sign-extended, 32-bit value being stored in a quadword.

Example

. QUAD “A'..ASK?..' :+ EACH ASCII CHARACTER IS STORED
; IN A BYTE

.QUAD 0 ; QUAD 0

. QUAD “X0123456789ABCDEF ; QUAD HEX VALUE SPECIFIED

. QUAD “B1111000111001101 ; QUAD HEX VALUE SPECIFIED

. QUAD LABEL : LABEL HAS A 32 BIT
; VALUE ZERO EXTENDED.

Note

.QUAD is different from other data storage directives (.BYTE,

.WORD, and .LONG) in that it does not evaluate expressions and

that it accepts only one value. It does not accept a list.

GENERAL ASSEMBLER DIRECTIVES

-REFn

+REFn -- OPERAND GENERATION DIRECTIVES

VAX-11 MACRO has four operand storage directives used in macros (see
Chapter 6) to define new opcodes:

Directive Function

REF1 Generates a byte operand

REF2 Generates a word operand

REF4 Generates a longword operand

REF8 Generates a quadword operand

-REFn is provided for compatibility with VAX-11 MACRO VI1.0. .OPDEF
provides greater functionality and is easier to use than .REFn;
consequently, .OPDEF should be used instead of .REFn.

Formats

.REF1 operand

.REF2 operand

.REF4 operand

.REF8 operand

Parameter

operand

An operand of byte, word, longword, or quadword context,
respectively.

Example

+.MACRO MOVL3 A,B,C

.BYTE “XFF, "XA9

.REF4 A ; THIS OPERAND HAS LONGWORD CONTEXT

.REF4 B s THIS OPERAND HAS LONGWORD CONTEXT

.REF4 C 's THIS OPERAND HAS LONGWORD CONTEXT

.ENDM MOVL3

MOVL3 R0, @LAB-1,(R7) +[R10]

This example uses .REF4 to create a new instruction, MOVL3, which uses
the reserved opcode FF. See the example in .OPDEF for a preferred
method to create a new instruction.

GENERAL ASSEMBLER DIRECTIVES

.RESTORE_PSECT

+RESTORE_PSECT -- RESTORE PREVIOUS PROGRAM SECTION CONTEXT DIRECTIVE

.RESTORE_PSECT retrieves the program section from the top of the

program section context stack, an internal stack in the assembler. If

the stack is empty when .RESTORE PSECT is issued, the assembler

displays an error message. When .RESTORE_PSECT retrieves a program

section, it restores the current location counter to the value it had

when the program section was saved. The local label block is also

restored if it was saved when the program section was saved.

Format N

.RESTORE_PSECT

Example

.SAVE PSECT and .RESTORE PSECT are useful in macros that define

program sections (see ~Chapter 6). The macro definition below

saves the current program section context and defines new program

sections. Then, it restores the saved program section. If the

macro did not save and restore the program section context each

time the macro was invoked, the program section would change.

INITIALIZE SYMBOLS

AND DATA AREAS

SAVE. THE CURRENT PSECT

DEFINE NEW PSECT

DEFINE SYMBOLS

.MACRO INITD

.SAVE PSECT

.PSECT SYMBOLS,ABS

HELP LEV=2

MAXNUM=100
RATE1=16

RATE2=4

.PSECT DATA,NOEXE,LONG

TABL: .BLKL 100

TEMP: .BLKB 16

.RESTORE_PSECT

DEFINE ANOTHER PSECT

100 LONGWORDS IN TABL

MORE STORAGE

RESTORE THE PSECT

IN EFFECT WHEN

MACRO IS INVOKEDW
O

W
E

M
O

W
M

N
E

W
P

N
G

W

M
G

W
E

N
S

W
O

"
o

S

. ENDM

Note

The alternate form of .RESTORE_PSECT is .RESTORE.

5-51

GENERAL ASSEMBLER DIRECTIVES

.SAVE__PSECT

+SAVE_PSECT -- SAVE CURRENT PROGRAM SECTION CONTEXT DIRECTIVE

-SAVE_PSECT stores the current program section context on the top of
the program section context stack, an internal assembler stack, while
leaving the current program section context in effect.

-SAVE_PSECT and .RESTORE_PSECT are useful in macros that define
program sections (see Chapter 6). See the description of
-RESTORE_PSECT for another example using .SAVE_PSECT.

Format

.SAVQ_PSECT [LOCAL_BLOCK]

Parameter

LOCAL_BLOCK

An optional keyword that specifies that the current local 1label
is to be saved with the program section context.

Example

PROGRAM START:: .WORD 0 THIS CREATES LOCAL LABEL BLOCK
“BLBC R0,20$ BRANCH IS LOW BIT CLEAR

SMACRO-E-UNDEFSYMBOL, Undefined symbol !

THIS WILL GENERATE AN ERROR

SINCE THE DEFINITION FOR 20$

IS IN A DIFFERENT LOCAL

LABEL BLOCK

SAVE CURRENT PSECT NUMBER

SWITCH TO NEW PSECT

THIS ALSO CREATES NEW LOCAL

LABEL BLOCK

SET POINTER TO STRING

STRING TO BE PRINTED

BACK TO ORIGINAL PSECT

NOTE THAT THIS IS STILL LOCAL

LABEL BLOCK THAT WAS STARTED

BY .PSECT STRINGS

LOAD UP STRING ADDRESS

TYPE IT OUT

NOT IN SAME LOCAL LABEL

BLOCK AS REFERENCE

-
y

o

.SAVE_PSECT

.PSECT STRINGS

PNTR = .

.ASCII /SOME ASCII TEXT/

.RESTORE_PSECT

MOVAB W“PNTR,RO

BSBW PRINT IT

208 RSB

W
M
E

W
Y

N
P

N
I

M
O

N

M
G

W
E

M
O

W
E

N
S

N
S

W
O

N
P

N
P

N
G

N
e

“

4

; THIS TIME USING .SAVE_PSECT LOCAL_ BLOCK

’

OTHER LABEL:: THIS CREATES NEW LOCAL LABEL
- BLOCK

BRAKCH IF LOW BIT CLEAR

WILL NOT PRODUCE AN ERROR

BECAUSE LOCAL LABEL BLOCK
IS SAVED

SAVE CURRENT PSECT NUMBER

AND THE LQCAL LABEL BLOCK

SWITCH TO NEW PSECT

THIS ALSO CREATES NEW

LOCAL LABEL BLOCK

-
n

BLBC R0,20%

.SAVE_PSECT LOCAL_BLOCK

e

N
0

W
S

Q
W

W
E

N
0

N
G

.PSECT STRINGS

e

s

W

5-52

PNTR =

20S:

Notes

GENERAL ASSEMBLER DIRECTIVES

.ASCII /SOME ASCII TEXT/

.RESTORE_PSECT

MOVAB WTM PNTR,RO

BSBW PRINT_IT

RSB

If the stack is full when

occurs. The stack capacity is

The program section context

current location counter

the location counter in the current program section.

W
O

W
E

W
S

W
O

W
O

N
P

M
E

N
E

N
9

w
O SET POINTER TO STRING

TEXT TO BE PRINTED

BACK TO ORIGINAL PSECT

NOTE WE ARE BACK IN LOCAL

LABEL BLOCK STARTED BY

OTHER_LABEL

LOAD UP STRING ADDRESS

TYPE IT OUT

IS NOW IN SAME LOCAL LABEL

BLOCK AS REFERENCE

.SAVE§PSECT is 1issued, an error

1.

includes the values of the

and the maximum value assigned to

The alternate form of .SAVE_PSECT is .SAVE.

GERERAL ASSEMBLER DIRECTIVES

SHOW

.NOSHOW

-SHOW AND .NOSHOW -- LISTING DIRECTIVES

-.SHOW and .NOSHOW specify listing control options in the source text
of a program. .SHOW and .NOSHOW can be used with or without an
argument list.

When used with an argument list, .SHOW causes certain types of 1lines
to be included in the listing file and .NOSHOW causes certain types of
lines to be excluded. .SHOW and .NOSHOW control the listing of the
source 1lines that are in conditional assembly blocks (see the
description of .IF), macros, and repeat blocks (see Chapter 6).

When used without arguments, these directives alter the listing level
count. The listing level count is initialized to 0. Each time .SHOW
appears in a program, the listing level count is incremented; each
time .NOSHOW appears in a program, the listing level count is
decremented.

When the listing level count is negative, the 1listing is suppressed
(unless the 1line contains an error). Conversely, when the listing
level count is positive, the listing is generated. When the count is
0, the line is either listed or suppressed, depending on the value of
the listing control symbolic arguments.

Formats

«.SHOW

.SHOW argument-list

. NOSHOW

.NOSHOW argument-list

Parameter

argument-list

One or more of the optional symbolic arguments, defined in Table
5-7. Either the long form or the short form of the arguments can
be used. Each argument can be used alone or in combination with
other arguments. If multiple arguments are specified, they must
be separated by commas, tabs, or spaces. If any argument is not
specifically included in a listing control statement, its default
value (Show or Noshow) is assumed throughout the source program.

5-54

GENERAL ASSEMBLER DIRECTIVES

Table 5-7

.SHOW and .NOSHOW Symbolic Arguments

Long Form Short. Form Default Function

. = Pem— —]

BINARY MEB Noshow Lists macro expansions and
repeat block expansions

that generate binary code.

BINARY is a subset of

EXPANSIONS.

CALLS MC Show Lists macro calls and
repeat block specifiers.

CONDITIONALS CND Show Lists unsatisfied
conditional code

associated with the

conditional assembly

directives.

DEFINITIONS MD Show Lists macro and repeat
range definitions that

appear in an input source

file.

EXPANSIONS ME Noshow Lists macro gnd repeat
range expansions.

Example

.MACRO XX

.SéOW ; LIST NEXT LINE.

- . NOSHOW ; DO NOT LIST REMAINDER OF MACRO
. ; EXPANSION.

.EfiDM

.NOSHOW EXPANSIONS ; DO NOT LIST MACRO EXPANSIONS.

‘e XX

Notes

1. The 1listing 1level count allows macros to be listed

selectively; a macro definition can specify .NOSHOW at the

beginning to decrement the 1listing count and can specify
.SHOW at the end to restore the listing count to its original
value.

2. The alternate forms of .SHOW and .NOSHOW are .LIST and

.NLIST.

GERERAL ASSEMBLER DIRECTIVES

.SIGNED__BYTE

.SIGNED_BYTE -~ SIGNED BYTE DATA DIRECTIVE

.SIGNED_BYTE is equivalent to .BYTE, except that VAX-11 MACRO
indicates that the data is signed in the object module. The linker
uses this information to test for overflow conditions.

Format

-SIGNED BYTE expression-list

Parameters

expression-list

An expression or list of expressions separated by commas. Each
expression optionally can be followed by a repetition factor
delimited by square brackets.

An expression followed by a repetition factor has the format:

expressionl{expression2]

expressionl

An expression that specifies the value to be stored.

[expression2]

An expression that specifies the number of times the value will
he repeated. The expression must not contain any undefined
symbols and must be an absolute expression (see Section 3.5).
The square brackets are required.

Example

-SIGNED BYTE LABEL1~-LABEL2 ; DATA MUST FIT
-SIGNED BYTE ALPHA{20] ; IN BYTE

Note

Specifying .SIGNED BYTE allows the 1linker to detect overflow
conditions when the value of the expression is in the range of
128 through 255. Values in this range can be stored as unsigned
data but cannot be stored as signed data in a byte.

GENERAL ASSEMBLER DIRECTIVES

SIGNED_WORD

-SIGNED_WORD ~- SIGNED WORD STORAGE DIRECTIVE

.SIGNED WORD 1is equivalent to .WORD except that the assembler

indicates that the data is signed in the object module. The linker

uses this information to test for overflow conditions. .SIGNED WORD

is useful after the case instruction to ensure that the displacement

fits in a word.

Format

.SIGNED _WORD expression-list

Parameters

expression-list

An expression or list of expressions separated by commas. Each

expression optionally can be followed by a repetition factor

delimited by square brackets.

An expression followed by a repetition factor has the format:

expressionl[expression2]

expressionl

An expression that specifies the value to be stored.

[expression2]

An expression that specifies the number of times the value will

be repeated. The expression must not contain any undefined

symbols and must be an abgolute expression (see Section 3.5).

The square brackets are required.

Example

.MACRO CASE,SRC,DISPLIST,TYPE=W;LIMIT=#0,NMODE= S~ #,?BASE, ?MAX
MACRO TO USE CASE INSTRUCTION

SRC IS SELECTOR, DISPLIST 1S LIST
OF DISPLACEMENTS, TYPE 1S B-BYTE

W-WORD, L-LONG, LIMIT IS THE BASE

VALUE OF SELECTOR
CASE'TYPE SRC, LIMIT,NMODE '<<MAX-BASE>/2>-1

CASE INSTRUCTIOM

LOCAL LABEI SPECIFYING BASE

TO SET UP OFFSET LIST

OFFSET LIST

~

w
e

w
a

s

T
M
o

BASE:

. IRP EP,(DISPLIST>

.SIGNED_WORD EP~-BASE

“
b

W

w
e

W

W
O

N

e

.ENDR

MAX: , LOCAL LABEL USED TO COUNT ARG3

.ENDM CASE

CASE IVAR <ERR_PROC;SORT,REV SORT> ; IF IVAR=0, ERPON;

CASEW IVAFR,$0,57$#<330001$-3000085/2>-1

30000%: 4 § WSCRT. LABEL SPECIFYING BASE
«SIGNED_WORD ERR PROC~30006GS ; QPFSET LIST

.SIGNEDWOED SORT~30000$; OFPSET LIST
-SIGNED_WORD REV SORT-30000¢ : OFFSET LIST

30001%: = LOCAL LABEL USED 7O COUNT ARGSH

w
g

G
y

=}, FOWARD SORT; =2,BACKWARD SORI

GENERAL ASSEMBLER DIRECTIVES

CASE TEST <TEST1,TEST2,TEST3>,L,#1 :

CASEL TEST, #1,S " #<<30003-30002>/2>-1

30002: s+ LOCAL LABEL SPECIFYING BASE

OFFSET LIST

OFFSET LIST

OFFSET LIST

; LOCAL LABEL USED TO COUNT ARGS

; VALUE OF TEST CAN BE 1,2, OR 3

.SIGNED WORD TEST1-30002$

.SIGNED_WORD TEST2-30002$

.SIGNED_WORD TEST3-30002$

30003s:

e

“
e

“
o

In this example, the CASE macro uses .SIGNED WORD to create a CASEB,

CASEW, or CASEL instruction. See Chapter 6 for a description of the

directives used to define the macro.

Note

Specifying .SIGNED WORD allows the 1linker to detect overflow

conditions when the value of the expression is in the range of
32768 through 65535. Values in this range can be stored as

unsigned data but cannot be stored as signed data in a word.

GENERAL ASSEMBLER DIRECTIVES

.SUBTITLE

-SUBTITLE -- SUBTITLE DIRECTIVE

.SUBTITLE causes the assembler to print a line of text in the table of

contents that is produced immediately before the assembly listing.

The assembler also prints the line of text as the subtitle on the

second 1line of each assembly 1listing page. This subtitle text is

printed on each page until altered by a subsequent .SUBTITLE directive

in the program.

Format

.SUBTITLE comment-string

Parameter

comment-string

An ASCII string from 1 to 47 characters long; excess characters

are truncated. This string represents the line of text to be

printed in the table of contents and as the subtitle in the

assembly listing.

Examples

1. .SUBTITLE CONDITIONAL ASSEMBLY

This directive cause the assembler to print the following

text as the subtitle of the assembly listing:

CONDITIONAL ASSEMBLY

2. TABLE OF CONTENTS

(1) 5000 ASSEMBLER DIRECTIVES

(2) 1300 MACRO DEFINITIONS

(2) 2300 DATA TABLES AND INITIALIZATION

(3) 4800 MAIN ROUTINE

(4) 2800 CALCULATIONS

(4) 5000 I/0 ROUTINES

(5) 1300 CONDITIONAL ASSEMBLY

During assembly, a table of contents 1is printed for the assembly

listing. It contains the source page number and the line sequence

number of the source file and the text accompanying each .SUBTITLE

directive.

Note

The alternate form of .SUBTITLE is .SBTTL.

-TITLE

GENERAL ASSEMBLER DIRECTIVES

«TITLE -- TITLE DIRECTIVE

.TITLE assigns a name to the object module. This name is the first 15

or fewer

Format

nonblank characters following the directive.

.TITLE module-name comment-string

Parameters

module-name

An identifier from 1 to 15 characters long.

comment~string

An ASCII string from 1 to 47 characters long; excess characters

are

Example

Notes

truncated.

.TITLE EVAL EVALUATES EXPRESSIONS

The module name specified with .TITLE bears no relationship

to the file specification of the object module, as specified

in the VAX-11 MACRO command line. Rather, the object module

name appears in the linker load map, and is also the module

name that the debugger and librarian recognize.

If .TITLE is not specified, MACRO assigns the default name

+MAIN, to the object module. If more than one .TITLE

directiveis specified in the source program, the last .TITLE

directive encountered establishes the name for the entire
object module.

When evaluating the module-name, MACRO ignores all spaces

and/or tabs up to the first nonspace/nontab character after

+TITLE,

GERERAL ASSEMBLER DIRECTIVES

.TRANSFER

- TRANSFER -~ TRANSFER DIRECTIVE

.TRANSFER redefines a global symbol for use in a shareable image. The
linker redefines the symbol as the value of the location counter at
the .TRANSFER directive after a shareable image is linked.

When shareable images are relinked, they should be relinked so that
the programs linked with them need not be relinked. This can only be
achieved if the entry points in the shareable image do not change
their addresses when the source code is changed and the image is
relinked. To build such a shareable image, the programmer creates an

object module that contains a transfer vector for each entry point and
does not change the order of the transfer vectors. This object module
is 1linked at the beginning of the shareable image and the addresses
will remain fixed even if source code for a routine is changed. After
each .TRANSFER directive, a register save mask ({(for procedures only)
and a branch to the first instruction of the routine should appear.

Figure 5-1 illustrates the use of entry vectors. The .TRANSFER

directive does not cause any memory to be allocated and does not

generate any binary code. It merely generates instructions to the

linker to redefine the symbol when a shareable image is being created.

.TRANSFER can be used with procedures entered by the CALLS or CALLG

instruction. In this case, .TRANSFER 1is used with the .ENTRY and

.MASK directives. The branch to the actual routine must be a branch
to the entry point plus 2. Adding 2 to the address is necessary to

bypass the 2-byte register save mask.

Linked with Shareable Image Linked with Object Modules

Program * Program *

Calling CALLS ROUTB Calling CALLS ROUTB

Procedure - Procedure °

.TRANSFER ROUTA *

.MASK ROUTA

Transfer BRW ROUTA+2

Vector .TRANSFER ROUTB-=

Module MASK RQUTB

BRW ROUTB+2 —

Shareable <
Image

Other .ENTRY ROUTB,0 ENTRY ROUTB, 0=

Obiect ;START OF ROUTINE-= Object ; START OF ROUTINE

Mocliul . : Modules 2
¢ RET RET

.

Figure 5-1 Using Transfer Vectors

5-61

GENERAL ASSEMBLER DIRECTIVES

Format

. TRANSFER symbol

Parameter

symbol

A global symbol that is an entry point in a procedure or routine.

Example

. TRANSFER ROUTINE A

.MASK ROUTINE A, "M<R4,R5> ;s COPY ENTRY MASK

- s AND ADD REGISTERS

;s 4 AND 5

BRW ROUTINE A+2 ; BRANCH TO ROUTINE

’ (PAST ENTRY MASK)

ENTRY POINT, SAVE. ENTRY ROUTINE_A, "M<R2,R3>

REGISTERS 2 AND 3

-
y

w
9

RET

In this example, .MASK copies a routine's entry mask to the new entry

address specified by .TRANSFER. If the routine 1is placed in a

shareable image and then called, registers 2, 3, 4, and 5 will be

saved.

5-62

GENERAL ASSEMBLER DIRECTIVES

.WARN

+WARN -- WARNING DIRECTIVE

.WARN causes the assembler to display a warning message on the

terminal or batch log file and in the listing file (if there is one).

Format

.WARN [expression] j;comment

Parameters

expression

An expression whose value is displayed when .WARN is encountered

during assembly.

scomment

A comment that is displayed when .WARN is encountered. The

comment must be preceded by a semicolon.

Example

.IF DEFINED FULL

.IF DEFINED DOUBLE PREC

.WARN s THIS COMBINATION NOT TESTED

.ENDC

.ENDC

If the symbols FULL and DOUBLE_PREC are both defined, the following

warning message is displayed.

EMACRO-W-GENWRN, Generated WARNING: THIS COMBINATION NOT TESTED

Notes

1. .WARN, .ERROR, and .PRINT are called the message display

directives. They can be used to display information
indicating that a macro call contains an error or an illegal

set of conditions (see Chapter 6 for more information on

macro calls).

2. When the assembly is finished, the assembler displays the

total. number of errors and warnings and the page numbers and

line numbers of the lines causing the errors or warning on

the terminal (or in the batch log file). See the VAX-11

MACRO User's Guide for more information on errors and

warnings.

3. If .WARN is included in a macro library (see the VAX-11 MACRO

User's Guide), the comment should end with an additional

semicolon. Otherwise, the comment will be stripped from the

directive and will not be displayed when the macro is called.

4. The line containing the .WARN directive is not included in

the listing file.

5. If the expression has a value of 0, it is not displayed in

the warning message.

GERERAL ASSEMBLER DIRECTIVES

WEAK

«WEAK -~ WEAK SYMBOL ATTRIBUTE DIRECTIVE

.WEAK specifies symbols that are either defined externally in another

module or defined globally in the current module. .WEAK suppresses

any object library search for the symbol.

When .WEAK specifies a symbol that is not defined in the current

module, the symbol 1is externally defined. 1If the linker finds the

symbol's definition in another module, it uses that definition. If

the 1linker does not find an external definition, the symbol has a

value of 0 and the linker does not report an error. The 1linker does

not search a library for the symbol, but if a module brought in from a

library for another reason contains the symbol definition, the 1linker

uses it.

When .WEAK specifies a symbol that is defined in the current module,

the symbol 1is considered to be globally defined. However, if this

module is inserted in an object library, this symbol is not inserted

in the library's symbol table. Consequently, searching the library at

link time to resolve this symbol does not cause the module to be

included.

Format

.WEAK symbol-list

Parameter

symbol-list

A list of legal symbols separated by commas.

Example

.WEAK IOCAR,LAB3

GENERAL ASSEMBLER DIRECTIVES

-WORD

+WORD -- WORD STORAGE DIRECTIVE

.WORD generates successive words (2 bytes) of data in the object

module.

Format

+WORD expression-list

Parameter

expression-list

One or more expressions separated by commas. Each expression
optionally can be followed by a repetition factor delimited by
square brackets.

An expression followed by a repetition factor has the format:

expressionl [expression2]

expressionl

An expression that specifies the value to be stored.

[expression2]

An expression that specifies the number of times the value will
be repeated. The expression must not contain any undefined
symbols and must be an absolute expression (see Section 3.5).
The square brackets are required.

Example

.WORD “X3F,FIVE[3],32

Notes

l. The expression is first evaluated as a longword, then

truncated to a word. The value of the expression should be

in the range of -32768 through 32767 for signed data or 0

through 65535 for unsigned data. The assembler displays an

error if the high-order 2 bytes of the longword expression

/ have a value other than 0 or “XFFFF.

2. The .SIGNED WORD directive is the same as .WORD except that

the assembler displays a diagnostic message if a value is in

the range from 32768 to 65535.

CHAPTER 6

MACROS

By using macros, a programmer can use a single 1line to insert a
sequence of source lines into a program.

A macro definition contains the source lines of the macro. The macro
definition can optionally have formal arguments. These formal
arguments can be used throughout the sequence of source lines. Later,

the formal arguments are replaced by the actual arguments in the macro

call.

The macro call consists of the macro name optionally followed by

actual arguments. The assembler replaces the line containing the

macro call with the source lines in the macro definition. It replaces

any occurrences of formal arguments in the macro definition with the

actual arguments specified in the macro call. This process is called

the macro expansion.

By default, macro expansions are not printed in the assembly listing.

They are printed only when the .SHOW directive (see description in

Chapter 5) specifies the EXPANSIONS argument. In the examples in this

chapter, the macro expansions are listed as they would appear if .SHOW

EXPANSIONS was specified in the source file.

The macro directives provide facilities for performing eight

categories of functions. Table 6-1 lists these categories and the

directives that fall wunder thenm. Section 6.1 describes macro

arguments, Section 6.2 describes the directives in detail. For ease

of reference, the directives are presented in alphabetical order.

6.1 ARGUMENTS IN MACROS

Macros have two types of arguments: actual and formal. Actual

arguments are the strings given in the macro call after the name of

the macro. Formal arguments are specified by name in the macro

definition: that 1is, after the macro name in the .MACRO directive.

Actual arguments in macro calls and formal arguments in macro

definitions can be separated by commas, tabs, or spaces.

The number of actual arguments in the macro call can be less than or
equal to the number of formal arguments in the macro definition. But

if the number of actual arguments is greater than the number of formal

arguments, the assembler displays an error message.

Formal and actual arguments normally maintain a strict positional

relationship. That 1is, the first actual argument in a macro call

replaces all occurrences of the first formal argument in the macro

definition. However, this strict positional relationship can be

overridden by the use of keyword arguments (see Section 6.1.2).

MACROS

Table 6-1

Summary of Macro Directives

Category Directives*

Macro Definition .MACRO

Directives . ENDM

Macro Library . LIBRARY

Directives +MCALL

Macro Deletion «.MDELETE

Directive

Macro Exit «MEXIT

Directive

Argument Attribute «NARG

Directives «NCHR

+NTYPE

Indefinite Repeat «IRP

Block Directives « IRPC

Repeat Block +.REPEAT (.REPT)

Directives

End Range « ENDR

Directive

* The alternate form, if any, 1is

given in parentheses.

An example of a macro definition using formal arguments follows:

.MACRO

. LONG

-WORD

.BYTE

- ENDM

The following

macro defined

1. STORE

. LONG

«WORD

.BYTE

STORE

+ LONG

+.WORD

.BYTE

STORE

ARG1

ARG3

ARG2

STORE

ARG1,ARG2,ARG3

two examples show possible calls and expansions

above.

3,2,1

1

2

N

X

X-Y

ARGl IS FIRST ARGUMENT

ARG3 IS THIRD ARGUMENT

ARG2 IS SECOND ARGUMENTw
o

W
O

W

of the

MACRO CALL

3 IS FIRST ARGUMENT

1 IS THIRD ARGUMENT

2 IS SECOND ARGUMENTe

W
e

W
e

W

MACRO CALL

X IS FIRST ARGUMENT

Z IS THIRD ARGUMENT

X~Y IS SECOND ARGUMENT|

W
e

W

N

MACROS

6.1.1 Default Values

Default values are values that are defined in the macro definition.

They are used when no value 1is specified in the macro call for a

formal argument.

Default values are specified in the .MACRO directive as follows:

formal-argument-name = default-value

An example of a macro definition specifying default values follows:

«MACRO STORE ARG1l=12,ARG2=0,ARG3=1000

.« LONG ARG1

.WORD ARG3

.BYTE ARG2

. ENDM STORE

The following three examples show possible calls and expansions of the

macro defined above.

1. STORE ; NO ARGUMENTS SUPPLIED

. LONG 12

-WORD 1000

.BYTE 0

2. STORE 1 5,X ; LAST TWO ARGUMENTS SUPPLIED

« LONG 12

«WORD X

+BYTE 5

3. STORE 1 ; FIRST ARGUMENT SUPPLIED

. LONG 1

-WORD 1000

.BYTE 0

6.1.2 Keyword Arguments

Keyword arguments allow a macro call to specify the arguments in any

order; however, the macro call must specify the same formal argument

names that appear in the macro definition. Keyword arguments are

useful when a macro definition has many formal arguments, only some of

which need to be specified in the call.

In any one macro call the arguments should be either all positional

arguments or all keyword arguments. When positional and keyword

arguments are combined in a macro, only the positional arguments

correspond by position to the formal arguments; the keyword arguments

are not used. If a formal argument corresponds to both a positional

argument and a keyword argument, the argument that appears last in the

macro call overrides any other argument definition for the same

argument.

For example, the following macro definition specifies three arguments:

+.MACRO STORE ARGl ,ARG2,ARG3

« LONG ARG1l

«WORD ARG3

+BYTE ARG2

« ENDM STORE

MACROS

The following macro call specifies keyword arguments:

STORE ARG3=27+5/4 ,ARG2=5,ARG1=SYMBL

. LONG SYMBL

.WORD 27+5/4

.BYTE 5

Because the keywords are specified in the macro call, the arguments in
the macro call need not be given in the order they were listed in the

macro definition.

6.1.3 String Arguments

If an actual argument is a string containing characters that the
assembler interprets as separators (such as a tab, space, or comma),

the string must be enclosed by delimiters. String delimiters are
usually paired angle brackets (<>). However, the assembler also

interprets any character after an initial circumflex (7) as a
delimiter. Thus, to pass an angle bracket as part of a string, the
programmer can use the circumflex form of the delimiter.

The following are examples of delimited macro arguments:

<HAVE THE SUPPLIES RUN OUT?>

<LAST NAME, FIRST NAME>

<LAB: CLRL R4>

“$ARGUMENT IS <LAST,FIRST> FOR CALLS%

"?EXPRESSION IS <5+3>*<4+2>?

In the last two examples the initial circumflex indicates the percent
sign (%) and question mark (?), respectively, are the delimiters.

Note that only the left hand delimiter is preceded by a circumflex.

The assembler interprets a string argument enclosed by delimiters as
one actual argument and associates it with one formal argument. If a
string argument that contains separator characters is not enclosed by
delimiters, the assembler interprets it as successive actual arguments

and associates it with successive formal arguments.

For example, the following macro call has one formal argument.

«.MACRO REPEAT STRNG

.ASCII /STRNG/

.ASCII /STRNG/

- ENDM REPEAT

The following two macro calls demonstrate actual arguments with and

without delimiters.

1. REPEAT <A B C D E>

.ASCII /A B CD E/

.ASCII /A B C D E/

2. REPEAT A B C D E

$MACRO-E-TOOMNYARGS, Too many arguments in MACRO call

Note that the assember interpreted the second macro call as having
five actual arguments instead of one actual argument with spaces.

When a macro is called, the assembler removes the delimiters (if

present) around a string before associating it with the formal

arguments,
\

MACROS

If a string contains a semicolon, the string must be enclosed by
delimiters, or the semicolon will mark the start of the comment field.

To pass a number containing a radix or unary operator (for example,
“XF19), the entire argument must be enclosed by delimiters, or the
assembler will interpret the radix operator as a delimiter. The

following. are macro arguments that are enclosed in delimiters because
they contain radix operators:

<"XF19>

<"B01100011>

<°F1.5>

Macros can be nested, that is a macro definition can contain a call to
another macro. 1If within a macro definition, another macro is called
and passed a string argument, the programmer must delimit the argument

so that the entire string 1is passed to the second macro as one
argument.,

The following macro definition contains a call to the REPEAT macro

defined in an earlier example:

+MACRO CNTRPT LABl,LAB2,STR_ARG

LABl: .BYTE LAB2-LABl-1 ; LENGTH OF 2+STRING

REPEAT <STR_ARG> CALL REPEAT MACROe

LAB2:

« ENDM CNTRPT

Note that the argument in the call to REPEAT is enclosed 1in angle

brackets even though the actual argument does not contain any
separator characters. This is done because the actual argument in the
call to REPEAT is a formal argument in the macro definition and will
be replaced with an actual argument that may contain separator

characters,

The following example calls the macro CNTRPT which in turn calls the
macro REPEAT:

CNTRPT ST,FIN,<LEARN YOUR ABC'S>

ST: +.BYTE FIN-ST-1 : LENGTH OF 2*STRING

REPEAT <LEARN YOUR ABC'S> ; CALL REPEAT MACRO

.ASCII /LEARN YOUR ABC'S/

.ASCII /LEARN YOUR ABC'S/

FIN:

An alternative method to pass string arguments in nested macros is to

enclose the macro argument in nested delimiters. In this case the

macro calls in the macro definitions should not have delimiters. Each

time the delimited argument is used in a macro call, the assembler

removes the outermost pair of delimiters before associating it with

the formal argument. This method is not recommended because it
requires that the programmer know how deeply a macro is nested.

The following macro definition also contains a call to the repeat

macro:

.MACRO CNTRPT2 LABl,LAB2,STR_ARG

LABl: +BYTE LAB2-LAB1-1 ; LENGTH OF 2*STRING

REPEAT STR_ARG CALL REPEAT MACROe

LAB2:

- ENDM CNTRPT2

MACROS

Note that the argument in the call to REPEAT is not enclosed in angle
brackets.

The following example calls the macro CNTRPT2:

CNTRPT2 BEG,TERM,<<MIND YOUR P'S AND Q'S>>

BEG: .BYTE TERM-BEG-1 ; LENGTH OF 2*STRING

REPEAT <MIND YOUR P'S AND Q'S>

.ASCII /MIND YOUR P'S AND Q's/

.ASCII /MIND YOUR P'S AND Q'S/

TERM:

Note that even though the call to REPEAT in the macro definition is
not enclosed in delimiters, the call in the expansion is enclosed in
delimiters because the call to CNTRPT2 contains nested delimiters
around the string argument.

6.1.4 Argument Concatenation

The argument concatenation operator, the apostrophe ('), concatenates

a macro argument with some constant text. Apostrophes can either

precede or follow a formal argument name in the macro source.

If an apostrophe precedes the argument name, the text before the
apostrophe 1is concatenated with the actual argument when the macro is

expanded. For example, if ARGl is a formal argument associated with

the actual argument TEST, ABCDE'ARGl is expanded to ABCDETEST.

If an apostrophe follows the formal argument name, the actual argument

is concatenated with the text that follows the apostrophe when the
macro is expanded. For example, 1if ARG2 is a formal argument

associated with the actual argument MOV, ARG2'L is expanded to MOVL.

Note that the apostrophe itself does not appear in the macro

expansion.

To concatenate two arguments, separate the two formal arguments with

two successive apostrophes. Two apostrophes are needed because each
concatenation operation discards an apostrophe from the expansion.

An example of a macro definition that uses concatenation follows:

«MACRO CONCAT INST,SIZE,NUM

TEST'NUM': INST''SIZE RO,R'NUM

TEST'NUM'X:

. ENDM CONCAT

Note that two successive apostrophes are used when concatenating the

two formal arguments INST and SIZE.

An example of a macro call and expansion follows:

CONCAT MOV,L,5

TEST5: MOVL RO,R5

TESTSX:

MACROS

6.1.5 Passing Numeric Values of Symbols

When a symbol is specified as an actual argument, the name of the

symbol, not the numeric value of the symbol, is passed to the macro.

However, the value of the symbol can be passed by inserting a

backslash before the symbol in the macro call. The assembler then

passes the characters representing the decimal value of the symbol to

the macro. For example, if the symbol COUNT has a value of 2 and the

actual argument specified is \COUNT, the assembler passes the string

"2" to the macro; it does not pass the name of the symbol, "COUNT".

Passing numeric values of symbols 1is especially useful with the

apostrophe (') concatenation operator for creating new symbols.

An example of a macro definition for passing numeric values of symbols

follows:

.MACRO TESTDEF,TESTNO,ENTRYMASK="2"M<>?

.ENTRY TEST'TESTNO,ENTRYMASK ; USES ARG CONCATENATION

.ENDM TESTDEF

The following example shows a possible call and expansion of the macro

defined above:

COUNT = 2

TESTDEF \COUNT

.ENTRY TEST2, M<>

COUNT + 1

TESTDEF \COUNT, "?"M<R3,R4>?

.ENTRY TEST3, "M<R3,R4>

COUNT

6.1.6 Created Local Labels

Local labels are often very useful in macros. Although the programmer

can specify 1local labels in the macro definition, these local labels

might be duplicated elsewhere in the local label block and might thus

cause errors. However, the programmer can use the assembler to create

local labels in the macro expansion which will not conflict with other

local labels. These labels are called created local labels.

Created local labels range from 30000$ through 65535$. Each time the

assembler creates a new local label, it increments the numeric part of

the label name by 1. Consequently, no user-defined 1local 1labels

should be in the range of 300008 through 655358.

The programmer specifies a created local label by a question mark (?)

placed in front of the formal argument name. When the macro is

expanded, the assembler creates a new local label if the corresponding

actual argument 1is blank. I1f the corresponding actual argument is

specified, the assembler substitutes the actual argument for the

formal argument. Created local symbols can be used only in the first

31 formal arguments specified in the .MACRO directive.

Created local labels can be associated only with positional actual

arguments; created 1local 1labels cannot be associated with keyword

actual arguments.

MACROS

The following example is a macro definition specifying a created local

label:

«.MACRO POSITIVE ARG1,?L1

TSTL ARG1

BGEQ Ll

MNEGL ARG1 ,ARG1

Ll: « ENDM POSITIVE

The following three calls and expansions of the macro defined above

show both created local labels and a user-specified local label:

l. POSITIVE RO

TSTL RO

BGEQ 300008

MNEGL RO,RO

300008$:

2. POSITIVE COUNT

TSTL COUNT

BGEQ 30001$

MNEGL COUNT,COUNT

300018:

3. POSITIVE VALUE,10$

TSTL VALUE

BGEQ 10$

MNEGL VALUE,VALUE

6.1.7 Macro String Operators

The three macro string operators are:

e S$SLENGTH

e 3$LOCATE

e 3IEXTRACT

These operators perform string manipulations on macro arguments and

ASCII strings. They can be used only in macros and repeat blocks.

The following sections describe these operators and give their formats

and examples of their use.

MACROS

%LENGTH

6.1.7.1 SLENGTH Operator - The 3LENGTH operator returns the length of

a string. For example, the value of $LENGTH(<ABCDE>) is 5.

Format

$LENGTH(string)

Parameters

string

A macro argument or a delimited string. The string can be

delimited by angle brackets or a character preceded by a

circumflex (see Section 6.1.3).

Examples

Macro definition:

MACRO CHECKS IF ARGl

IS BETWEEN 3 AND

.MACRO CHK_SIZE ARG1

.IF GREATER EQUAL $LENGTH (ARG1) -3

w
e

W
o

w
o

.IF LESS THAN 6-%LENGTH (ARG1) 6 CHARACTERS LONG

.ERROR ; ARGUMENT ARGl IS GREATER THAN 6 CHARACTERS
« ENDC ; IF MORE THAN 6

.IF_FALSE . ;3 IF LESS THAN 3

- ERROR ; ARGUMENT ARGl IS LESS THAN 3 CHARACTERS

« ENDC ; OTHERWISE DO

- ENDM CHK_SIZE ; NOTHING

Macro calls and expansions of the macro defined above:

1. CHK_SIZE A ; SHOULD BE TOO SHORT

.IF GREATER EQUAL 1-3 ; IS BETWEEN 3 AND

.IF LESS_THXN 6—-1 ; 6 CHARACTERS LONG
« ERROR ; ARGUMENT A IS GREATER THAN 6 CHARACTERS

« ENDC ; IF MORE THAN 6

.IF FALSE ; IF LESS THAN 3
$MACRO-E-GENERR, Generated ERROR: ARGUMENT A IS LESS THAN 3 CHARACTERS

«ENDC ; OTHERWISE DO

2. CHK_SIZE ABC ; SHOULD BE OK

.IF GREATER_EQUAL 3-3 ; IS BETWEEN 3 AND

.IF LESS_ THAN 6-3 ; 6 CHARACTERS LONG

« ERROR ; ARGUMENT ABC IS GREATER THAN 6 CHARACTERS

« ENDC ; IF MORE THAN 6

.IF_FALSE ; IF LESS THAN 3

« ERROR ; ARGUMENT ABC IS LESS THAN 3 CHARACTERS

« ENDC ; OTHERWISE DO

MACROS

%LOCATE

6.1.7.2 S$LOCATE Operator - The %LOCATE operator locates a substring
within a string. If SLOCATE finds a match of the substring, it
returns the character position of the first character of the match 1in
the string. For example, the value of %LOCATE(<D>,<ABCDEF>) is 3.
Note that the first character position of a string is 0. If SLOCATE
does not find a match, it returns a value equal to the length of the
string. For example, the value of $LOCATE(<Z>,<ABCDEF>) is 6.

The $LOCATE operator returns a numeric value that can be used in any
expression.

Format

$LOCATE(stringl,string2 [,symbol])

Parameters

stringl

A string that specifies the substring. The substring can be
either a macro argument or a delimited string. The delimiters
can be either angle brackets or a character preceded by a
circumflex.

string?2

The string that is searched for the substring. The string can be
either a macro argument or a delimited string. The delimiters
can be either angle brackets or a character preceded by a
circumflex.

symbol

An optional symbol or decimal number that specifies the position
in string2 at which the assembler should start the search. If
this argument is omitted, the assembler starts the search at
position 0 (the beginning of the string). A symbol must be an
absolute symbol that has been previously defined and a number
must be an unsigned decimal number. Expressions and radix
operators are not allowed. '

Example

Macro definition:

+.MACRO BIT_NAME ARG1 ; CHECKS IF ARGl IS IN LIST

.IF EQUAL ¥LOCATE (ARGl ,<DELDFWDLTDMOESC>)~15

;7 IF IT IS NOT PRINT ERROR

« ERROR ; ARGl IS AN INVALID BIT NAME

«ENDC ; IF IT IS DO

. ENDM BIT_NAME ;7 NOTHING

Macro calls and expansions of the macro defined above:

1. BIT_NAME ESC ; IS IN LIST

.IF EQUAL 12-15

; IF IT IS NOT PRINT ERROR
« ERROR ; ESC IS AN INVALID BIT NAME

« ENDC ; IF IT IS DO

MACROS

2

2. BIT_NAME FOO

.IF EQUAL 15-15

NOT IN LIST

-

; IF IT IS NOT PRINT ERROR

$MACRO-E-GENERR, Generated ERROR: FOO IS AN INVALID BIT NAME

. ENDC ; IF IT IS DO

Note

If the optional symbol is specified, the search begins at the

character position of string2 specified by the symbol. For

example, the value of %LOCATE(<ACE>,<SPACE_HOLDER>,5) 1is 12
because there is no match after the 5th character position.

%EXTRACT

6.1.7.3 SEXTRACT Operator - The $EXTRACT operator extracts a

substring from a string. It returns the substring that begins at the
specified position and is the specified 1length. For example, the

value of $EXTRACT(2,3,<ABCDEF>) is CDE. Note that the first character
in a string is in position 0.

Format

$EXTRACT(symboll,symbol2,string)

Parameters

symboll

A symbol or decimal number that specifies the starting position

of the substring. A symbol must be an absolute symbol that has

been previously defined and a number must be an unsigned decimal

number. Expressions and radix operators are not allowed.

symbol2

A symbol or decimal number that specifies the 1length of the
substring. A symbol must be an absolute symbol that has been

previously defined and a 'number must be an unsigned decimal
number. Expressions and radix operators are not allowed.

string

A macro argument or a delimited string. The string can be

delimited by angle brackets or a character preceded by a

circumflex.

Example

Macro definition:

.MACRO RESERVE ARGl

XX = $LOCATE(<=>,ARGl)

.IF EQUAL XX-$LENGTH (ARG1)

«WARN ; INCORRECT FORMAT FOR MACRO CALL - ARGl

-MEXIT

. ENDC

MACROS

$EXTRACT(0,XX,ARG1)::

XX = XX+1

.BLKB $EXTRACT(XX, 3,ARG1)

- ENDM RESERVE

Macro calls and expansions of the macro defined above:

1. RESERVE FOOBAR

XX = 6

.IF EQUAL XX-6

IMACRO-W-GENWRN, Generated WARNING: INCORRECT FORMAT FOR MACRO CALL - FOOBA

+MEXIT

2. RESERVE LOCATION=12

«IF EQUAL XX-11

«WARN ; INCORRECT FORMAT FOR MACRO CALL - LOCATION=12

«MEXIT

« ENDC

LOCATION::

XX = XX+1

+BLKB 12

Notes

If the starting position specified is greater than or equal to

the 1length of the string, $EXTRACT returns a null string (a

string of 0 characters). If the length specified is 0, $EXTRACT

returns a null string.

6.2 MACRO DIRECTIVES

The remainder of this chapter describes the macro directives 1in

detail, showing their formats and giving examples of their use. The

directives are presented in alphabetical order.

MACROS

.ENDM

« ENDM--END DEFINITION DIRECTIVE

.ENDM terminates the macro definition. See the description of .MACRO

for an example of the use of .ENDM.

Format

.ENDM [macro-name]

Parameter

macro-—-name

Note

The name of the macro whose definition is to be terminated. The

macro name is optional; but, if specified, it must match the

name defined in the matching .MACRO directive. The macro name

should be specified so that the assembler can detect any

improperly nested macro definitions.

If .ENDM is encountered outside a macro definition, the assembler

displays an error message.

.ENDR

« ENDR--END RANGE DIRECTIVE

.ENDR indicates the end of a repeat range. It must be the final

statement of every indefinite repeat block directive (.IRP and « IRPC)
and every repeat block directive (.REPEAT). See the description of

these directives for examples of the use of .ENDR.

Format

. ENDR

MACROS

.IRP

« IRP-~INDEFINITE REPEAT ARGUMENT DIRECTIVE

+-IRP replaces a formal argument with successive actual arguments
specified in an argument list. This replacement process occurs during
the expansion of the indefinite repeat block range. The .ENDR
directive specifies the end of the range.

-IRP is analogous to a macro definition with only one formal argument.,
At each expansion of the repeat block, this formal argument is
replaced with successive elements from the argument list. The
directive and its range are coded inline within the source program,
This type of macro definition and its range do not require calling the
macro by name, as do other macros described in this chapter.

-IRP can appear either within or outside another macro definition,
indefinite repeat block, or repeat block (see the description of
-REPEAT). The rules for specifying .IRP arguments are the same as
those for specifying macro arguments.

Format

«IRP symbol,<argument list>

Parameters

symbol

A formal argument that 1is successively replaced with the
specified actual arguments enclosed in angle brackets. If no
formal argument is specified, the assembler displays an error
message.

<argument list>

A list of actual arguments enclosed in angle brackets and used in
expanding the indefinite repeat range. An actual argument can
consist of one or more characters; multiple arguments must be
separated by a 1legal separator (comma, space, or tab). If no
actual arguments are specified, no action is taken.

range

The block of source text to be repeated once for each occurrence
of an actual argument in the list. The range can contain macro
definitions and repeat ranges. .MEXIT is legal within the range.

MACROS

Example

Macro definition:

.MACRO CALL SUB SUBR,Al1,A2,A3,A4,A5,A6,A7,A8,A9,A10

.NARG COUNT

.IRP ARG,<Al0,A9,A8,A7,A6,A5,A4,A3,A2,A1>

+.IIF NOT_BLANK ARG, PUSHL ARG

«ENDR

CALLS #<COUNT-1>,SUBR ; NOTE SUBR IS COUNTED

.ENDM CALL_SUB

Macro call and expansion of the macro defi ed above:

CALL SUB TEST,INRES,INTES,U LIS,OUTCON,#205

.NARG COUNT

.IRP ARG,<,,,s,%205,0UTCON,UNLIS,INTES,INRES>

.IIF NOT_BLANK ARG, PUSHL ARG

« ENDR

.IIF NOT_BLANK , PUSHL

.IIF NOT_BLANK , PUSHL

.IIF NOT_BLANK , PUSHL

.IIF NOT BLANK , PUSHL

.IIF NOT_BLANK , PUSHL

.IIF NOT BLANK #205, PUSHL #205

.IIF NOT BLANK OUTCON, PUSHL OUTCON

.IIF NOT_BLANK UNLIS, PUSHL UNLIS

.IIF NOT_BLANK INTES, PUSHL INTES

.IIF NOT BLANK INRES, PUSHL INRES

CALLS F<COUNT-1>,TEST ; NOTE TEST IS COUNTED

This example uses the .NARG directive to count the arguments and the

.IIF NOT_BLANK directive (see descriptions of .IF and .IIF in Chapter

5). to determine whether the actual argument is blank. If the

argument is blank, no binary code is generated.

MACROS

IRPC

« IRPC-~INDEFINITE REPEAT CHARACTER DIRECTIVE

+-IRPC is similar to .IRP except that .IRPC permits single-character
substitution, rather than argument substitution. On each iteration of
the indefinite repeat range, the formal argument is replaced with each
successive character in the specified string. The .ENDR directive
specifies the end of the range.

.IRPC is analogous to a macro definition with only one formal
argument. At each expansion of the repeat block, this formal argument
is replaced with successive characters from the actual argument
string. The directive and 1its range are coded inline within the
Source program and do not require calling the macro by name, as do
other macros described in this chapter.

+.IRPC can appear either within or outside another macro definition,
indefinite repeat block, or repeat block (see description of .REPEAT).

Format

«IRPC symbol,<string>

« ENDR

Parameters

symbol

A formal argument that is successively replaced with the
specified characters enclosed in angle brackets. If no formal
argument is specified, the assembler displays an error message.

<string>

A sequence of characters enclosed in angle brackets and used in
the expansion of the indefinite repeat range. Although the angle
brackets are required only when the string contains separating
characters, their use is recommended for legibility.

range

The block of source text to be repeated once for each occurrence
of a character in the 1list. The range can contain macro
definitions and repeat ranges., .MEXIT is legal within the range.

Example

Macro Definition:

.MACRO HASH_SYM SYMBOL

+.NCHR HV,<SYMBOL>
« IRPC CHR,<SYMBOL>

HV = HV"A?CHR?

.ENDR

. ENDM HASH_SYM

MACROS

Macro call and expansion of the macro defined above:

HV

HV

HV

HV

HV

HV w

o
u
w
n
u
n

This

HASH_SYM <MOVC5>

.NCHR HV,<MOVC5>

.IRPC CHR,<MOVC5>

HV+“A?CHR?

.ENDR

HV+"A?M?

HV+"A?20?

HV+"A?2V?

HV+"A?C?

HV+"A?5?

example uses the .NCHR directive to count the

characters in actual argument.

number of

MACROS

.LIBRARY

« LIBRARY--MACRO LIBRARY DIRECTIVE

-LIBRARY adds a name to the VAX-11 MACRO library 1list that is
searched whenever a .MCALL or an undefined opcode is encountered. The
libraries are searched in the reverse order in which they were
specified to the assembler.

If the programmer omits any information from the macro-library-name
argument, default values are assumed. The device defaults to the
user's disk; the directory defaults to the user's directory; and the
file type defaults to MLB.

DIGITAL recommends that libraries be specified in the MACRO command
line with the /LIBRARY qualifier rather than with the .LIBRARY
directive. The .LIBRARY directive makes moving files cumbersome.

Format

-.LIBRARY macro-library-name

Parameter

macro-library-name

A delimited string that is the file specification of a macro
library.

Example

.LIBRARY /DBl:[TEST]USERM/ ; MACRO LIBRARY USERM.MLB

.LIBRARY ?DBl:SYSDEF.MLB?

.LIBRARY \CURRENT.MLB\

MACROS

.MACRO

«MACRO--MACRO DEFINITION DIRECTIVE

.MACRO begins the definition of a macro. It gives the macro name and

a list of formal arguments (see Section 6.1). If the name specified

is the same as the name of a previously defined macro, the previous

definition is deleted and replaced with the new one. The .MACRO

directive is followed by the source text to be included in the macro

expansion. The .ENDM directive specifies the end of the range.

Macro names do not conflict with user-defined symbols. A macro and a

user-defined symbol can both have the same name.

When the assembler encounters a .MACRO directive, it adds the macro

name to its macro name table and stores the source text of the macro

(up to the matching .ENDM directive). No other ©processing occurs

until the macro is expanded.

The symbols in the formal argument list are associated with the macro

name and are 1limited to the scope of the definition of that macro.

For this reason, the symbols that appear in the formal argument list

can also appear elsewhere in the program.

Format

.MACRO macro-name [formal-argument-list]

.ENDM [macro name]

Parameters

macro-name

The name of the macro to be defined; this name can be any legal

symbol up to 15 characters long.

formal-argument-list

The symbols, separated by commas, to be replaced by the actual

arguments in the macro call.

range

The source text to be included in the macro expansion.

MACROS

Example

Macro definition:

.MACRO USERDEF

.PSECT DEFS,ABS

MYSYM= 5

HIVAL= "XFFF123

LOWVAL= 0

.PSECT RWDATA,NOEXE,LONG

TABLE: .BLKL 100

LIST: .BLKB 10

.MACRO USERDEF ; REDEFINE IT TO NULL

.ENDM USERDEF

- ENDM USERDEF

Macro calls and expansions of the macro defined above:

1. USERDF ; SHOULD EXPAND DATA
.PSECT DEFS,ABS

MYSYM= 5§

HIVAL= “XFFF123

LOWVAL= 0

.PSECT RWDATA,NOEXE,LONG

TABLE: BLKL 100

LIST: -BLKB 10

.MACRO USERDEF ; REDEFINE IT TO NULL

«ENDM USERDEF

2. USERDF ; SHOULD EXPAND NOTHING

In this example, when the macro is called the first time it defines
some symbols and data storage areas and then redefines itself. When
the macro is called a second time, the macro expansion contains no
source text.

Notes

l. 1If a macro has the same name as a VAX-11/780 opcode, the
macro is used instead of the instruction. This feature
allows a programmer to temporarily redefine an opcode.

2. If a macro has the same name as a VAX-11/780 opcode and is in
a macro library, the ,MCALL directive must be used to define
the macro. Otherwise, because the symbol is already defined
(as the opcode), the assembler will not search the macro
libraries.,

3. The programmer can redefine a macro with new source text
during assembly by specifying a second .MACRO directive with
the same name. Including a second .MACRO directive within
the original macro definition causes the first macro call to
redefine the macro. This is useful when a macro performs
initialization or defines symbols; that 1is, when an
operation is performed only once. The macro redefinition can
eliminate unneeded source text in a macro or it can delete
the entire macro. The .MDELETE directive provides another
way to delete macros.

MACROS

-MCALL

«MCALL--MACRO CALL DIRECTIVE

+MCALL specifies the names of the system and/or user-defined macros

that are required to assemble the source program but are not defined

in the source file.

If any named macro is not found upon completion of the search (that

is, 1f the macro is not defined in any of the macro libraries), the

assembler displays an error message.

Format

«MCALL macro-name-list

Parameter

macro-name-list

A list of macros to be defined for this assembly. The names must

be separated by commas.

Example

SUBSTITUTE MACRO IN

LIBRARY FOR INSQUE

INSTRUCTION

+MCALL INSQUE

w
e

e

W

Note

+MCALL is provided for compatibility with MACRO-11; DIGITAL

recommends that it not be used. When VAX-11] MACRO finds an

unknown symbol in the opcode field, it automatically searches all

macro libraries. If it finds the symbol in a library, it uses

the macro definition and expands the macro reference. If VAX-11

MACRO does not find the unknown symbol in the library, it

displays an error message. There 1is one exception for which

.MCALL must be used: when a macro has the same name as an opcode

(see description of .MACRO).

MACROS

.MDELETE

«MDELETE-~MACRO DELETION DIRECTIVE

.MDELETE deletes the definitions of specified macros. The number of

macros actually deleted is printed in the assembly listing on the same

line as the .MDELETE directive,

.MDELETE completely deletes the macro, freeing memory as necessary,

whereas the technique of macro redefinition explained 1in the

description of .MACRO merely redefines the macro.

Format

.MDELETE macro-name-list

Parameter

macro-name-list

A list of macros whose definitions are to be deleted. The names

must be separated by commas.

Example

.MDELETE USERDEF, $SSDEF,ALTR

MACROS

MEXIT

+MEXIT--MACRO EXIT DIRECTIVE

+.MEXIT terminates a macro expansion before the end of the macro.
Termination is the same as if .ENDM was encountered. The directive
can also be used within repeat blocks. .MEXIT 1is most wuseful in
conditional expansion of macros because it bypasses the complexities
of nested conditional directives and alternate assembly paths.

Format

«MEXIT

Example

«.MACRO ALTR N,A,B

+.IF EQ N ; START CONDITIONAL ASSEMBLY BLOCK.

+MEXIT ; TERMINATE MACRO EXPANSION.

«ENDC ; END CONDITIONAL ASSEMBLY BLOCK.

- ENDM ALTR ; NORMAL END OF MACRO.

In this example, if the actual argument for the formal argument N
equals 0, the conditional block would be assembled, and the macro
expansion would be terminated by .MEXIT.

Notes

l. When .MEXIT occurs in a repeat block, the assembler

terminates the current repetition of the range and suppresses
further expansion of the repeat range.

2. When macros or repeat blocks are nested, .MEXIT exits to the
next higher level of expansion.

3. If .MEXIT occurs outside a macro definition or a repeat

block, the assembler displays an error message.

MACROS

.NARG

+NARG-~NUMBER OF ARGUMENTS DIRECTIVE

.NARG determines the number of arguments in the current macro call.

.NARG counts all the positional arguments specified in the macro call,

including null arguments (specified by adjacent commas).

assigned to the specified symbol does not include either

The value

any keyword

arguments or any formal arguments that have default values.

Format

«NARG symbol

Parameter

symbol

A symbol that 1s assigned a

arguments in the macro call.

Example

Macro definition:

value equal to

.MACRO CNT ARG Al,A2,A3,A4,A5,A6,A7,A8,A9=DEF9,A10=DEF10

KEYWORD ARGUMENTS ARE NOT COUNTED

«NARG COUNTER : COUNTER IS SET
«WORD COUNTER ; STORE VALUE OF

.ENDM CNT_ARG

Macro calls and expansions of the macro defined above:

1. CNT_ARG TEST,FIND,ANS ; COUNTER WILL

« NARG COUNTER ; COUNTER IS SET

«WORD COUNTER ; STORE VALUE OF

2. CNT_ARG ; COUNTER WILL

«NARG COUNTER ; COUNTER IS SET

«WORD COUNTER ; STORE VALUE OF

3. CNT_ARG TEST,A2=SYMB2,A3=5Y3 ; COUNTER WILL

«NARG COUNTER ; COUNTER IS SET

«WORD COUNTER ; STORE VALUE OF

;

4, CNT_ARG ,SYMBL,, ; COUNTER WILL

« NARG COUNTER ; COUNTER IS SET

-WORD COUNTER ; STORE VALUE OF

; NULL ARGUMENTS

Note

If .NARG appears outside of

an error message.

a macro, the assembler

the number of

TO NO. OF ARGS

COUNTER

3

TO NO. OF ARGS

COUNTER

0

TO NO. OF ARGS

COUNTER

1

TO NO. OF ARGS

COUNTER

3

TO NO.

COUNTER

ARE COUNTED

OF ARGS

displays

MACROS

.NCHR

«NCHR--NUMBER OF CHARACTERS DIRECTIVE

.NCHR determines the number of characters in a specified character

string. It can appear anywhere 1in a VAX-1ll MACRO program and is

useful in calculating the length of macro arguments.

Format

.NCHR symbol,<string>

Parameters

symbol

A symbol that is assigned a wvalue equal to the number of

characters in the specified character string.

<string>

A sequence of printable characters. The character string must be

delimited by angle brackets or a character preceded by a
circumflex only if the specified character string contains a
legal separator (comma, space, and/or tab) or a semicolon.

Example

Macro definition:

+.MACRO CHAR MESS

« NCHR CHRCNT ,<MESS>

+WORD CHRCNT

.ASCII /MESS/

. ENDM CHAR

DEFINE MACRO

ASSIGN VALUE TO CHRCNT

STORE VALUE

STORE CHARACTERS

FINISHW

N

W

N
4

W

Macro calls and expansions of the macro defined above:

1. CHAR <HELLO>
.NCHR CHRCNT,<HELLO>

.WORD CHRCNT

.ASCII /HELLO/

CHRCNT WILL = 5

ASSIGN VALUE TO CHRCNT

STORE VALUE

STORE CHARACTERSw
e

W

W
m
e

“
o

2. CHAR <14, 75.39 4> ; CHRCNT WILL = 12(DEC)

«NCHR CHRCNT,<14, 75.39 4> ; ASSIGN VALUE TO CHRCNT

«WORD CHRCNT ; STORE VALUE

i+ASCII /14, 75.39 4/ STORE CHARACTERS

MACROS

.NTYPE

«NTYPE--OPERAND TYPE DIRECTIVE

.NTYPE determines the addressing mode of the specified operand.

The value of the symbol is set to the specified addressing mode. In

most cases, an 8-bit (l-byte) value is returned. Bits 0 through 3 are

the register associated with the mode, and bits 4 through 7 are the

addressing mode. To provide concise addressing information, the mode

bits 4 through 7 are not exactly the same as the numeric value of the

addressing mode described in Table 4-1. Specifically, literal mode is

indicated by a 0 in bits 4 through 7 instead of the values 0 through 3

described in Table 4-1. Mode 1 indicates an immediate mode operand,

mode 2 indicates an absolute mode operand, and mode 3 indicates a

general mode operand.

For indexed addressing mode, a 16-bit (2-byte) value is returned. The

high-order byte contains the addressing mode of the base operand

specifier and the low-order byte contains the addressing mode of the

primary operand (the index register).

See the VAX-11/780 Architecture Handbook or Chapter 4 of this manual

for more information on addressing modes.

Format

.NTYPE symbol ,operand

Parameter

symbol

Any legal VAX-11 MACRO symbol. This symbol is assigned a value

equal to the 8- or 16-bit addressing mode of the operand argument

that follows.

operand

Any legal address expression, as used with an opcode, If no

argument is specified, 0 is assumed.

Example

Macro Definition:

THE FOLLOWING MACRO IS USED TO PUSH AN ADDRESS ON THE STACK. 1IT CHECKS

THE OPERAND TYPE (BY USING .NTYPE) TO DETERMINE IF THE OPERAND IS AN

ADDRESS AND, IF NOT, THE MACRO SIMPLY PUSHES THE ARGUMENT ON THE STACK

AND GENERATES A WARNING MESSAGE.

w
e

W
p

“
e

W

W
w
e

W

«MACRO PUSHADR ADDR

.NTYPE A,ADDR ASSIGNS OPERAND TYPE TO AF2

A = A@-4&"XF ; ISOLATE ADDRESSING MODE

.IF IDENTICAL 0,<ADDR> ; IS ARGUMENT EXACTLY O

PUSHL #0 ; STACK ZERO

JMEXIT ; EXIT FROM MACRO

. ENDC

ERR = 0 ERR TELLS IF MODE IS ADDRESS

ERR = 0 FOR ADDRESS, 1 WHEN NOT

IS MODE NOT LITERAL OR IMMEDIATE-

W
e

W

»IIF LESS_EQUAL A-1l, ERR=1

MACROS

.IIF EQUAL A-5, ERR=1

.IF EQUAL ERR

PUSHAL ADDR

.IFF

PUSHL ADDR

-WARN ; ADDR IS NOT AN ADDRESS

. ENDC

. ENDM PUSHADR

IS MODE NOT REGISTER

IS MODE ADDRESS?

YES, STACK ADDRESS

NO

THEN STACK OPERAND & WARNT
M
y

W
e

W

W

W

Macro calls and expansions of the macro defined above:

1. PUSHADR (RO)

PUSHAL (RO)

VALID ARGUMENT

YES, STACK ADDRESSe

e

2. PUSHADR (R1) [R4] ; VALID ARGUMENT

PUSHAL (R1) [R4] ; YES, STACK ADDRESS

3. PUSHADR 0 ; IS ZERO

PUSHL #0 ; STACK ZERO

4, PUSHADR #1 ; NOT AN ADDRESS

PUSHL $#1 ; THEN STACK OPERAND & WARN

¥MACRO-W-GENWRN, Generated WARNING: #1 IS NOT AN ADDRESS

5. PUSHADR RO NOT AN ADDRESSi

PUSHL RO ; THEN STACK OPERAND & WARN

¥MACRO-W-GENWRN, Generated WARNING: RO IS NOT AN ADDRESS

Note that to save space, this example is listed as it would appear if

.SHOW BINARY, not ,SHOW EXPANSIONS, was specified 1in the source

program.

MACROS

.REPEAT

«REPEAT--REPEAT BLOCK DIRECTIVE

.REPEAT repeats a block of code, a specified number of times, inline

with other source code. The .ENDR directive specifies the end of the

range.

Format

.REPEAT expression

« ENDR

Parameters

expression

An expression whose value controls the number of times the range

is to be assembled within the program. When the expression is

less than or equal to 0, the repeat block is not assembled. The

expression must not contain any undefined symbols and must be an

absolute expression (see Section 3.5).

range

The source text to be repeated the number of times specified by

the value of the expression. The repeat block can contain macro

definitions, indefinite repeat blocks, or other repeat blocks.

.MEXIT is legal within the range.

Example

Macro definition:

+MACRO COPIES STRING,NUM

«REPEAT NUM

.ASCII /STRING/

« ENDR

«BYTE 0

. ENDM COPIES

Macro calls and expansions of the macro defined above:

1, COPIES <ABCDEF>,5

.REPEAT 5

.ASCII /ABCDEF/

« ENDR

.ASCII /ABCDEF/

.ASCII /ABCDEF/

.ASCII /ABCDEF/

.ASCII /ABCDEF/

.ASCII /ABCDEF/

.BYTE 0

MACROS.

2.

VARB = 3

COPIES <HOW MANY TIMES>,\VARB

.REPEAT 3

.ASCII /HOW MANY TIMES/

« ENDR

.ASCII /HOW MANY TIMES/

+.ASCII /HOW MANY TIMES/

.ASCII /HOW MANY TIMES/

.BYTE 0

Note

The alternate form of .REPEAT is .REPT.

each.

APPENDIX A

ASCII CHARACTER SET

Table A-1 lists the ASCII characters and the hexadecimal code

Table A-1

Hexadecimal /ASCII Conversion

HEX ASCII HEX ASCII HEX ASCII HEX ASCII

Code Char. Code Char. Code Char. Code Char.

— — m—— ee e e—

00 NUL 20 SP 40 @ 60 \

01 SOH 21 ! 41 A 61 a

02 STX 22 " 42 B 62 b

03 ETX 23 # 43 C 63 C

04 EOT 24 S 44 D 64 d

05 ENQ 25 % 45 E 65 e

06 ACK 26 & 46 F 66 f

07 BEL 27 ' 47 G 67 g

08 BS 28 (48 H 68 h

09 HT 29) 49 I 69 i

0A LF 2A * 4A J 6A j

0B VT 2B + 4B K 6B k

0cC FF 2C ’ 4C L 6C 1

oD CR 2D - 4D M 6D m

OE SO 2E . 4E N 6E n

OF SI 2F / 4F o} 6F o
10 DLE 30 0 50 P 70 P

11 DC1 31 1 51 Q 71 q

12 DC2 32 2 52 R 72 r

13 DC3 33 3 53 S 73 s

14 DC4 34 4 54 T 74 t

15 NAK 35 5 55 U 75 u

16 SYN 36 6 56 \Y/ 76 v

17 ETB 37 7 57 W 77 w

18 CAN 38 8 58 X 78 X

19 EM 39 9 59 Y 79 y

1A SUB 3A : 5A Z 7A p A

1B ESC 3B ; 5B [7B {

1C FS 3C < 5C \ 7C |

1D GS 3D = 5D] 7D }

1E RS 3E > 5E - 7E ~

1F Us 3F ? 5F —_ 7F DEL

for

APPENDIX B

VAX-11 MACRO ASSEMBLER DIRECTIVES AND LANGUAGE SUMMARY

B.1 ASSEMBLER DIRECTIVES

The following table summarizes the VAX-11 MACRO assembler directives.

Table B-1

Assembler Directives

Format Operation

.ADDRESS address-list Stores successive longwords of

address data

+ALIGN keyword [,expression] Aligns the location counter to

the boundary specified by the

keyword

.ALIGN integer [,expression] Aligns location counter to the

boundary specified by (27integer)

.ASCIC string Stores the ASCII string string

(enclosed in delimiters),

preceded by a count byte

.ASCID string Stores the ASCII (enclosed in

delimiters), preceded by a string

descriptor

+ASCII string Stores the ASCII string (enclosed

in delimiters)

.ASCIZ string Stores the ASCII string (enclosed

in delimiters) followed by a 0

byte.

.BLKA expression ’ Reserves longwords of address
data

.BLKB expression Reserves bytes for data

.BLKD expression Reserves quadwords for

double-precision, floating-point

data

(continued on next page)

VAX-11 MACRO ASSEMBLER DIRECTIVES AND LANGUAGE SUMMARY

Table B-1 (Cont.)

Assembler Directives

Format Operation

.BLKF expression

.BLKL expression

.BLKQ expression

.BLKW expression

.BYTE expression-list

.CROSS

.CROSS symbol-list

.DEBUG symbol-list

.DEFAULT DISPLACEMENT, keyword

.DISABLE argument-list

.DOUBLE literal-list

.DSABL argument-list

.ENABL argument-list

.ENABLE argument-list

.END [symbol]

. ENDC

.ENDM [macro-name]

« ENDR

.ENTRY symbol [,expression]

Reserves longwords for

single-precision, floating-point

data

Reserves longwords for data

Reserves gquadwords for data

Reserves words for data

Generates successive bytes of

data; each byte contains the

value of the specified expression

Enables cross-referencing of all

symbols

Cross-references specified

symbols

Makes symbol names known to the

debugger

Specifies the default ,

displacement length for the

relative addressing modes

Disables function(s) specified in

argument-list

Generates 8-byte,

double-precision, floating-point

data

Equivalent to .DISABLE

Equivalent to .ENABLE

Enables function(s) specified in

argument-list

Indicates logical end of source

program; optional symbol

specifies transfer address

Indicates end of conditional

assembly block

Indicates end of macro definition

Indicates end of repeat block

Procedure entry directive

(continued on next page)

VAX-11 MACRO ASSEMBLER DIRECTIVES AND LANGUAGE SUMMARY

Table B~-1 (Cont.)

Assembler Directives

Format Operation

.ERROR [expression] j;comment

+.EVEN

.EXTERNAL symbol-list

.EXTRN symbol-list

+FLOAT literal-list

.GLOBAL symbol-list

. GLOBL

+IDENT string

.IF condition argument(s)

. IFF

.IF_FALSE

«IFT

«IFTF

.IF_TRUE

.IF_TRUE_FALSE

Displays specified error message

Ensures that the current location

counter has an even value (adds 1

if it is odd)

Indicates specified symbols are

externally defined

Equivalent to .EXTERNAL

Generates 4-byte,

single-precision, floating point

data

Indicates specified symbols are

global symbols

Equivalent to .GLOBAL

Provides means of labeling object

module with additional data

Begins a conditional assembly

block of source code which is

included in the assembly only if

the stated condition is met with

respect to the argument(s)

specified

Equivalent to .IF_FALSE

Appears only within a conditional

assembly block; begins block of

code to be assembled if the

original condition tests false

Equivalent to .IF_TRUE

Equivalent to .IF_TRUE_FALSE

Appears only within a conditional

assembly block; begins block of

code to be assembled if the

original condition tests true

Appears only within a conditional

assembly block; begins block of

code to be assembled

unconditionally

(continued on next page)

VAX-11 MACRO ASSEMBLER DIRECTIVES AND LANGUAGE SUMMARY

Table B-1 (Cont.)

Assembler Directives

Format Operation

fi=

.IIF condition argument(s),

statement

.IRP symbol, <argument list>

.IRPC symbol, <string>

.LIBRARY macro-library-name

.LIST [argument-list]

.LONG expression-list

.MACRO macro-name argument-list

.MASK symbol [,expression]

.MCALL macro-name-list

.MDELETE macro-name-list

«MEXIT

.NARG symbol

.NCHR symbol,<string>

.NLIST [argument-list]

.NOCROSS

Acts as a l1-1line conditional

assembly block where the

condition is tested for the

argument specified; the

statement is assembled only if

the condition tests true

Replaces a formal argument with

successive actual arguments

specified in an argument list

Replaces a formal argument with

successive single characters

specified ‘in string

Specifies a macro library

Equivalent to .SHOW

Generates successive longwords of

data; each longword contains the

value of the specified

expression.

Begins a macro definition

Reserves a word for and copies a

register save mask

Specifies the system and/or

user-defined macros in libraries

that are required to assemble the

source program

Deletes from memory the macro

definitions of the macros in the

list

Exits from the expansion of a

macro before the end of the macro

is encountered

Determines the number of

arguments in the current macro

call

Determines the number of

characters in a specified

character string

Equivalent to .NOSHOW

Disables cross-referencing of all

symbols

(continued on next page)

VAX-11 MACRO ASSEMBLER DIRECTIVES AND LANGUAGE SUMMARY

Table B- 1l (Cont.)

Assembler Directives

Format Operation

.NOCROSS symbol-list

- NOSHOW

.NOSHOW argument-list

.NTYPE symbol ,operand

.ODD

.OPDEF opcode value,

operand~descriptor-list

. PACKED decimal-string [,symbol]

. PAGE

. PRINT [expression] }comment

- PSECT

.PSECT section-name

argument-list

.QUAD literal

.QUAD symbol

.REF1 operand

«REF2 operand

.REF4 operand

.REF8 operand

.REPEAT expression

«REPT

Disables cross-referencing of

specified symbols

Decrements listing level count

Controls listing of macros and

conditional assembly blocks

Can appear only within a macro

definition; equates the symbol

to the addressino mode of the

specified operand

Ensures that the current location

counter has an odd value (adds 1

if it is even)

Defines an opcode and its

operand list

Generates packed decimal data, 2

digits per byte

Causes the assembly listing to

skip to the top of the next page,

and to increment the page count

Displays the specified message

Begins or resumes the blank

program section

Begins or resumes a user-defined

program section

Stores 8-bytes of data

Stores 8-bytes of data

Generates byte operand

Generates word operand

Generates longword operand

Generates quadword operand

block; the

up to the next

is repeated the

specified by the

Begins a repeat

section of code

.ENDR directive

number of times

expression

Equivalent to .REPEAT

(continued on next page)

VAX-11 MACRO ASSEMBLER DIRECTIVES AND LANGUAGE SUMMARY

Table B-1 (Cont.)

Assembler Directives

Format Operation

. RESTORE

.RESTORE_PSECT

.SAVE [LOCAL_BLOCK]

-SAVE_PSECT [LOCAL_BLOCK]

.SBTTL comment~string

. SHOW

.SHOW argument-list

.SIGNED BYTE expression-list

-.SIGNED_WORD expression-list

.SUBTITLE comment-string

.TITLE module-name

comment-string

.TRANSFER symbol

.WARN [expression] j;comment

.WEAK symbol-list

.WORD expression-list

Equivalent to .RESTORE_PSECT

Restores program section context

from the program section context

stack

Equivalent to .SAVE_ PSECT

Saves current program section

context on the program section

context stack

Equivalent to .SUBTITLE

Increments listing level count

Controls listing of macros and

conditional assembly blocks

Stores successive bytes (8 bits)

of signed data

Stores successive words (16 bits)

of signed data

Causes the specified string to be

printed as part of the assembly

listing page header; the string

component of each .SUBTITLE is

collected into a table of

contents at the beginning of the

assembly listing

Assigns the first 15 characters in

the string as an object module

name and causes the string to

appear on each page of the

assembly listing

Directs the linker to redefine

the value of the global symbol

for use in a shareable image

Displays specified warning

message

Indicates that each of the listed

symbols has the weak attribute

Generates successive words of

data; each word contains the

value of the corresponding

specified expression

VAX-11 MACRO ASSEMBLER DIRECTIVES AND LANGUAGE SUMMARY

B.2 SPECIAL CHARACTERS

The following table summarizes the VAX-11 MACRO special characters.

Table B-2

Special Characters Used in VAX-11 MACRO Statements

Character Character Name Function(s)

_ Underline Character in symbol names

$ Dollar sign Character in symbol names

. Period Character in symbol names,

current location counter, and

decimal point

: Colon Label terminator

= Equal sign Direct assignment operator and

macro keyword argument terminator

Tab Field terminator

Space Field terminator

Number sign Immediate addressing mode

indicator

@ At sign Deferred addressing mode

indicator and arithmetic shift

operator

’ Comma Field, operand, and item

separator

; Semicolon Comment field indicator

+ Plus sign Autoincrement addressing mode

indicator, unary plus operator,

and arithmetic addition operator

- Minus sign Autodecrement addressing mode

indicator, unary minus operator,

arithmetic subtraction operator,

and line continuation indicator

* Asterisk Arithmetic multiplication

operator

/ Slash Arithmetic division operator

& Ampersand Logical AND operator

! Exclamation Logical inclusive OR operator

point

(continued on next page)

VAX-11 MACRO ASSEMBLER DIRECTIVES AND LANGUAGE SUMMARY

Table B-2 (Cont.)

Special Characters Used in VAX-1l MACRO Statements

Character Character Name Function(s)

\ Backslash Logical exclusive OR and numeric
conversion indicator in macro

arguments

° Circumflex Unary operator indicator and

macro argument delimiter

[] Square brackets Index addressing mode and repeat

count indicators

() Parentheses Register deferred addressing mode
indicators

<> Angle brackets Argument or expression grouping

delimiters

? Question mark Created label indicator in macro

arguments

! Apostrophe Macro argument concatenation
indicator

$ Percent sign Macro string operators

B.3 OPERATORS

B.3.1 Unary Operators

The following table summarizes the VAX-1l MACRO unary operators.

Table B-3

Unary Operators

Unary Operator

Operator Name Example Effect

m

+ Plus sign +A Results in the positive

value of A (default)

- Minus sign -A Results in the negative
(2's complement) value

of A

“B Binary “B11000111 Specifies that 11000111
is a binary number

(continued on next page)

VAX-11 MACRO ASSEMBLER DIRECTIVES AND LANGUAGE SUMMARY

Table B-3 (Cont.)

Unary Operators

Unary Operator

Operator Name Example Effect

D Decimal D127 Specifies that 127 is a

decimal number

"0 Octal 034 Specifies that 34 is an

octal number

X Hexadecimal “XFCF9 Specifies that FCF9 is

a hexadecimal number

“A ASCII “A/ABC/ Produces an ASCII

string; the characters

between the matching

delimiters are

converted to ASCII

representation

M Register mask “M<R3,R4,R5> | Specifies the registers

R3, R4, and RS in the

register mask

°F Floating point “F3.0 Specifies that 3.0 is a

floating-point number

e Complement “Cc24 Produces the 1l's

complement value of 24

(decimal)

B.3.2 Binary Operators

The following table summarizes the VAX-11l MACRO binary operators.

Table B-4

Binary Operators

Binary Operator

Operator Name Example Operation

= =5

+ Plus sign A+B Addition

- Minus sign A-B Subtraction

* Asterisk A*B Multiplication

/ Slash A/B Division

@ At sign A@B Arithmetic Shift

& Ampersand A&B Logical AND

! Exclamation point A!B Logical inclusive OR

\ Backslash A\B Logical exclusive OR

VAX-11 MACRO ASSEMBLER DIRECTIVES AND LANGUAGE SUMMARY

B.3.3 Macro String Operators

The following table summarizes the macro string operators. These
operators can be used only in macros.

Table B-5

Macro String Operators

Format Function

$LENGTH (string) Returns the length of the

string

$LOCATE (stringl,string2[,symbol]) Locates the substring
stringl within string2

starting the search at the

character position specified

by symbol

$EXTRACT (symboll,symbol2,string) Extracts a substring from
string that begins at

character position specified

by symboll and has a length

specified by symbol2

B.4 ADDRESSING MODES

The following table summarizes the VAX-11 MACRO addressing modes.

VAX-11 MACRO ASSEMBLER DIRECTIVES AND LANGUAGE SUMMARY (ebed3x3uuopsnurluUO0D)*3jue3lsuodjurod-burieoly®10‘3uelSuocd13693UTue‘uoTSse1dXxduyTeId3311
*ss@1ppeuebutAyroeadsuorsseidxsuyssaippe

judawedeTdsTp©burdhyrosadsuorssoidxsuy(€°%uor3odes
93s)sopow@9seqUTRIILSD103JSpow-aseqY3luIpe1J1o9adsuyay3y
Seswesa8ylaqJouuedXYy°XY¥Jo9deldurpasnoquedI93s1bO1
ds10‘g4‘qv3yl3ey3z93oN“‘zTY¥ybnoiylzoy1393s1bo1TeisushAuy

Xy

*uyjo9delduTlpasnaqued133STHOI
ds10‘dg‘dv8yleyl93oN°ZT¥ybnoiyzouy193s1Ha1TeiIdUSHKuy

uy

.5S
adA3

ejeppueiadoay3jo9zI1say3lxAqS3U93U0D193516918Yy3ysjuawWeaIdUT1oss9d01day3x{pueiaado
sox9ylJOSS3IppPk3ylSsuTejuod133sibay8+(uyg)juawaidurolnypueiadoay3zpe1193aq
s9xJOssdappe8Yyjzsurejuod193sibay9(uy)193s1boy193st1boy
ONpue1adoay3suiejuod133s1boySuy193st1boyTeI9UdDH

éoTqexapuruot3diiosaqganfteAgYeWwiIoyg9PONodAgTewroapburssaippy
,

-BX3HS9pPOWbuissaippy9-4d91qeL

B-11

VAX-11 MACRO ASSEMBLER DIRECTIVES AND LANGUAGE SUMMARY

B-12

VAX-11 MACRO ASSEMBLER DIRECTIVES AND LANGUAGE SUMMARY (abed3x3u
piompenb10‘piombuor‘piom‘93&qesep2103sSTTRISITT2yl¢pueiado8TeIa3TT#_I

ONY3lSTpaT3ToadsT[eI93T[YLTexa3IT#93eTpauwuwyuesepa103sSTparjroadssaxssa1ppe3ylSTpodr31oadsssaippeaYL6ssa1ppe#d93nfosqy‘quawdoe1dsIppiombuot‘'M‘_g¢{Ddwoiaz3uswaderdstpJdssa1ppe_19dBSepd103sSTparjroadsassS91ppe_Md
ay3{pueiadoayyxJossaippe\'4ssai1ppe_g193Uno)sax9ylSTpaT3toodsssoippeaylssa1ppe9ATIRTIYweiboig

—|

éda1qexapuruotadriosaganteA¥JBWIOISpPONad&yTewroapburssaippy-BX9H

sS9ponburssaippy(*3u0)
)

9-g
a1qer

B-13

VAX-11 MACRO ASSEMBLER DIRECTIVES AND LANGUAGE SUMMARY

ONONs8x

SUOTI31ONIJISUTYyoueiq9lY3ITMpasnaqAfuouedspouw
youeiq£{Dd03juawa0oe[dsipkbsep2103sSTssaippesTyl¢pueiado9UlSTpar3jtroadsssaippeaygyoueiq10‘xaput‘Teas3lIrl‘33eTpoumt‘193stba13dsoxsapouburssaappeAueaquedapow-aseq-{pueaadoay3yzJossd1ppea9yls19dA3ejeppueiado3ylJoIB21S9ylpueXyJOS3U33U0D3Yy3jojonpoid9ylpuessa31Ippkaseqay3lJowuns8yl{xXx9putr9ylsoT3jroads193s1bh91BY3puessaippeaseq9ylso13109dsspouw-aseqYLanTeA23nfosgeueseSSIIppE
9U3lS$91031SI9JUTIT9yl‘ssaippeTen3ITAa93nTosgeueSsepdUTISPSTssaappeaylIT{Ddwo1iygjusawadoe[dsIp®SeSS31ppe3ylS9103SIdYUIT9yl‘S1ge3ed01a1
9ylJt‘{pueiadoay3yJossaippe9ylSTpatr3roadsssaippe3yl

ssaippe

[xy4]spouw-aseqssa1ppe_»o youeigXapurTeaauan youeagxopur(*3u0))I23Uno)weiboig
¢9Tqexapur uotidtriosaqTewIOap-BX3H x3BWI0g

9PONbutssaippv
odAg

SOpOWbuissaiappv(*3u0D)9-9°1qeL

B-14

~

7 APPENDIX C

PERMANENT SYMBOL T2 iLE

The permanent symbol table (PST) contains the symbols that VAX-11

MACRO automatically recognizes. These symbols consist of both opcodes

and assembler directives. Sections C.1 and C.2 below present the

opcodes (instruction set) in alphabetical and numerical order,

respectively. Appendix B (in Section B.l) presents the assembler

directives.

The VAX-11/780 Architecture Handbook provides a detailed description

of the instruction set.

C.1 OPCODES (ALPHABETIC ORDER)

Hexadecimal

Value Mnemonic Functional Name

9D ACBB Add compare and branch byte

6F ACBD Add compare and branch double

4F ACBF Add compare and branch floating

Fl ACBL Add compare and branch long

3D ACBW Add compare and branch word

58 ADAWI Add aligned word interlocked

80 ADDB2 Add byte 2 operand

81 ADDB3 Add byte 3 operand

60 ADDD2 Add double 2 operand

61 ADDD3 Add double 3 operand

40 ADDF2 Add floating 2 operand

41 ADDF3 Add floating 3 operand

Cco ADDL2 Add long 2 operand

Cl ADDL3 Add long 3 operand

20 ADDP4 Add packed 4 operand

21 ADDP6 Add packed 6 operand

AQ ADDW2 Add word 2 operand

Al ADDW3 Add word 3 operand

D8 ADWC Add with carry

F3 AOBLEQ Add one and branch on less or equal

F2 AOBLSS Add one and branch on less

78 ASHL Arithmetic shift long

F8 ASHP Arithmetic shift and round packed

79 ASHQ Arithmetic shift quad

El BBC Branch on bit clear

E5 BBCC Branch on bit clear and clear

E7 BBCCI Branch on bit clear and clear interlocked

E3 BBCS Branch on bit clear and set

EQ BBS Branch on bit set

PERMANENT SYMBOL TABLE

Hexadecimal

Value Mnemonic Functional Name

E4 BBSC Branch on bit set and clear

E2 BBSS Branch on bit set and set

E6 BBSSI Branch on bit set and set interlocked

1E BCC Branch on carry clear

1F BCS Branch on carry set

13 BEQL Branch on equal

13 BEQLU Branch on equal unsigned

18 BGEQ Branch on greater or equal

1E BGEQU Branch on greater or equal unsigned

14 BGTR Branch on greater

1A BGTRU Branch on greater unsigned

8A BICB2 Bit clear byte 2 operand

8B BICB3 Bit clear byte 3 operand

CA BICL2 Bit clear long 2 operand

CB BICL3 Bit clear long 3 operand

B9 BICPSW Bit clear program status word

AA BICW2 Bit clear word 2 operand

AB BICW3 Bit clear word 3 operand

88 BISB2 Bit set byte 2 operand

89 BISB3 Bit set byte 3 operand

Cc8 BISL2 Bit set long 2 operand

c9 BISL3 Bit set long 3 operand

B8 BISPSW Bit set program status word

A8 BISW2 Bit set word 2 operand

A9 BISW3 Bit set word 3 operand

93 BITB Bit test byte

D3 BITL Bit test 1long

B3 BITW Bit test word

E9 BLBC Branch on low bit clear

E8 BLBS Branch on low bit set

15 BLEQ Branch on less or equal

1B BLEQU Branch on less or equal unsigned

19 BLSS Branch on less

1F BLSSU Branch on less unsigned

12 BNEQ Branch on not equal

12 BNEQU Branch on not equal unsigned

03 BPT Break point trap

11 BRB Branch with byte displacement

31 BRW Branch with word displacement

10 BSBB Branch to subroutine with byte displacement

30 BSBW Branch to subroutine with word displacement

1C BVC Branch on overflow clear

1D BVS Branch on overflow set

FA CALLG Call with general argument list

FB CALLS Call with stack

8F CASEB Case byte

CF CASEL Case long

AF CASEW Case word ’

BD CHME Change mode to executive

BC CHMK Change mode to kernel

BE CHMS Change mode to supervisor

BF CHMU Change mode to user

94 CLRB Clear byte

Hexadecimal

Value Mnemonic

7C CLRD

DF CLRF

D4 CLRL

7C CLRQ

B4 CLRW

91 CMPB

29 CMPC3

2D CMPC5

71 CMPD

51 CMPF

D1 CMPL

35 CMPP3

37 CMPP4

EC CMPV

Bl CMPW

ED CMPZV

0B CRC

6C CVTBD

4C CVTBF

98 CVTBL

99 CVTBW

68 CVTDB

76 CVTDF

6A CVTDL

69 CVTDW

48 CVTFB

56 CVTFD

4A CVTFL

49 CVTFW

F6 CVTLB

6E CVTLD

4E CVTLF

F9 CVTLP

F7 CVTLW

36 CVTPL

08 CVTPS

24 CVTPT

6B CVTRDL

4B CVTRFL

09 CVTSP

26 CVTTP

33 CVTWB

6D CVTWD

4D CVTWF

32 CVTWL

97 DECB

D7 DECL

B7 DECW

86 DIVB2

87 DIVB3

66 DIVD2

67 DIVD3

46 DIVF2

47 DIVF3

Clear d

Clear £

Clear 1

Clear q

Clear w

Compare

Compare

Compare

Compare

Compare

Compare

Compare

Compare

Compare

Compare

Compare

Calcula

Convert

Convert

Convert

Convert

Convert

Convert

Convert

Convert

Convert

Convert

Convert

Convert

Convert

Convert

Convert

Convert

Convert

Convert

Convert

Convert

Convert

Convert

Convert

Convert

Convert

Convert

Convert

Convert

Decreme

Decreme

Decreme

Divide

Divide

Divide

Divide

Divide

Divide

PERMANENRT SYMBOL TABLE

Functional Name

ouble

loat

ong

uad

ord

byte

character 3 operand

character 5 operand

double

floating

long

packed 3 operand

packed 4 operand

field

word

zero-extended field

te cyclic redundancy check

byte to double

byte to float

byte to long

byte to word

double to byte

double to float

double to long

double to word

float to byte

float to double

float to long

float to word

long to byte

long to double

long to float

long to packed

long to word

packed to long

packed to leading separate

packed to trailing

rounded double to long

rounded float to long

leading separate to packed

trailing to packed

word to byte

word to double

word to float

word to long

nt byte

nt long

nt word

byte 2 operand

byte 3 operand

double 2 operand

double 3 operand

floating 2 operand

floating 3 operand

Hexadecimal

Value Mnemonic

coé DIVL2

C7 DIVL3

27 DIVP

A6 DIVW2

A7 DIVW3

38 EDITPC

7B EDIV

74 EMODD

54 EMODF

7A EMUL

EE EXTV

EF EXTZV

EB FFC

EA FFS

00 HALT

96 INCB

D6 INCL

B6 INCW

oA INDEX

0OE INSQUE

FO INSV

17 JMP

16 JSB

06 LDPCTX

3A LOCC

39 MATCHC

92 MCOMB

D2 MCOML

B2 MCOMW

DB MFPR

8E MNEGB

72 MNEGD

52 MNEGF

CE MNEGL

AE MNEGW

9E MOVAB

7E MOVAD

DE MOVAF

DE MOVAL

7E MOVAQ

3E MOVAW

90 MOVB

28 MOVC3

2C MOVC5

70 MOVD

50 MOVF

DO MOVL

34 MOVP

PERMANENT SYMBOL TABLE

Functional Name

Divide long 2 operand

Divide long 3 operand

Divide packed

Divide word 2 operand

Divide word 3 operand

Edit packed to character

Extended divide

Extended modulus double

Extended modulus floating

Extended multiply

Extract field

Extract zero-extended field

Find first clear bit

Find first set bit

Halt

Increment byte

Increment long

Increment word

Index calculation

Insert into queue

Insert field

Jump

Jump to subroutine

Load program context

Locate character

Match characters

Move complemented byte

Move complemented long

Move complemented word

Move from processor register

Move negated byte

Move negated double

Move negated floating

Move negated long

Move negated word

Move address of byte

Move address of double

Move address of float

Move address of long

Move address of quad

Move address of word

Move byte

Move character 3 operand

Move character 5, operand

Move double

Move float

Move long

Move packed

PERMANENT SYMBOL TABLE

Hexadecimal

Value Mnemonic Functional Name

DC MOVPSL Move program status longword

7D MOVQ Move quad

2E MOVTC Move translated characters

2F MOVTUC Move translated until character

B0 MOVW Move word

0A MOVZBL Move 2zero-extended byte to long

9B MOVZBW Move zero-extended byte to word

3C MOVZWL Move zero-extended word to long

DA MTPR Move to processor register

84 MULB2 Multiply byte 2 operand

85 MULB3 Multiply byte 3 operand

64 MULD2 Multiply double 2 operand

65 MULD3 Multiply double 3 operand

44 MULF2 Multiply floating 2 operand

45 MULF3 Multiply floating 3 operand

C4 MULL2 Multiply long 2 operand

C5 MULL3 Multiply long 3 operand

25 MULP Multiply packed

A4 MULW2 Multiply word 2 operand

A5 MULW3 Multiply word 3 operand

01 NOP No operation

75 POLYD Evaluate polynomial double

55 POLYF Evaluate polynomial floating

BA POPR Pop registers

0C PROBER Probe read access

0D PROBEW Probe write access

9F PUSHAB Push address of byte

7F PUSHAD Push address of double

DF PUSHAF Push address of float

DF PUSHAL Push address of long

7F PUSHAQ Push address of quad

3F PUSHAW Push address of word

DD PUSHL Push long

BB PUSHR Push registers

02 REI Return from exception or interrupt

OF REMQUE Remove from queue

04 RET Return from called procedure

9C ROTL Rotate long

05 RSB Return from subroutine

D9 SBWC Subtract with carry

2A SCANC Scan for character

3B SKPC Skip character

F4 SOBGEQ Subtract one and branch on greater or equal

F5 SOBGTR Subtract one and branch on greater

2B SPANC Span characters

82 SUBB2 Subtract byte 2 operand

83 SUBB3 Subtract byte 3 operand

62 SUBD2 Subtract double 2 operand

63 SUBD3 Subtract double 3 operand

42 SUBF2 Subtract floating 2 operand

43 SUBF3 Subtract floating 3 operand

C2 SUBL2 Subtract long 2 operand

C3 SUBL3 Subtract long 3 operand

22 SUBP4 Subtract packed 4 operand

23 SUBP6 Subtract packed 6 operand

C-5

PERMANENT SYNMBOL TABLE

Hexadecimal

Value Mnemonic Functional Name

A2 SUBW2 Subtract word 2 operand

A3 SUBW3 Subtract word 3 operand

07 SVPCTX Save process context

95 TSTB Test byte

73 TSTD Test double

53 TSTF Test float

D5 TSTL Test long

B5 TSTW Test word

FC XFC Extended function call

8C XORB2 Exclusive-OR byte 2 operand

8D XORB3 Exclusive-OR byte 3 operand

CcC XORL2 Exclusive-OR long 2 operand
Cb XORL3 Exclusive-OR long 3 operand

AC XORW2 Exclusive-OR word 2 operand

AD XORW3 Exclusive-OR word 3 operand

PERMANENT SYMBOL TABLE

APPENDIX D

HEXADECIMAL/DECIMAL CONVERSION

Table D-1 lists the decimal value for each possible hexadecimal value

in each byte of a 1longword. The following sections contain

instructions to use the table to convert hexadecimal numbers to

decimal and vice versa.

D.1 HEXADECIMAL TO DECIMAL

For each integer position of the hexadecimal value, 1locate the

corresponding column integer and record its decimal equivalent in the

conversion table. Add the decimal equivalent to obtain the decimal

value.

For example:

DO500ADO (16) = ?2(10)

D0000000 = 3,489,660,928

500000 = 5,242,880

AQ0O = 2,560

DO = 208

DO500ADO = 3,494,904,576

D.2 DECIMAL TO HEXADECIMAL

Step 1l: locate in the conversion table the largest decimal value that

does not exceed the decimal number to be converted. Step 2: record

the hexadecimal equivalent followed by the number of O0s that

corresponds to the integer c¢olumn minus 1. Step 3: subtract the

table decimal value from the decimal number to be converted. Step 4:

repeat steps 1 through 3 until the subtraction balance equals 0. Add

the hexadecimal equivalents to obtain the hexadecimal value.

HEXADECIMAL/DECIMAL CONVERSION

Example:

22,466 (10) = ?(16)

20,480 = 5000 22,466

1,792 = 700 -20,480

192 = Co ——e

2 = 2 1,986

s = — - 1,792

22,466 = 57C2

194

- 192

2

- 2

0

D.3 POWERS OF 2 AND 16

This section lists the decimal values of powers of 2 and 16. These

values are often useful in converting decimal numbers to hexadecimal.

Powers of 2 Powers of 16

2%*%n n 16**n n

256 8 1 0

512 9 16 1

1024 10 256 2

2048 11 4096 3

4096 12 65536 4

8192 13 1048576 5

16384 14 16777216 6

32768 15 268435456 7

65536 16 4294967296 8

131072 17 68719476736 9

262144 18 1099511627776 10

524288 19 17592186044416 11

1048576 20 281474976710656 12

2097152 21 4503599627370496 13

4194304 22 72057594037927936 14

8388608 23 1152921504606846976 15

16777216 24

HEXADECIMAL/DECIMAL CONVERSION

JYOMONO1

oL

Z1D0T61OZLo‘gO2ZST‘6bOTEW’98LOTI6‘T8S‘TZTOT6S’'9ZE’‘TOZOTLw‘szeiize’to)1Tg9LT4918‘Cg9G0‘sy9968‘0ZLg9£€’PES’TT99L£’6PS'P8Tg9T0‘06L°CS6°Cg0T¥09TV¥09G6‘zV¥096‘0FV¥09€‘G6S9W09L‘G8P’OTV¥09T‘ZLL’LO9T¥098’pSse’w89’‘zV66AA16bog‘c6%98‘9¢6©z8’68s678T/LEV’66vr6‘'v66°0GT6©vOT’6T6’STV‘C6
8882188%¥0‘C889L'2Z¢8882'%ZS8809‘88¢£’S88ZL'LTIZ'®ET8E€V9‘€8V/LPT‘C8LLZ1TLZe6L'TLZL9'8CLTSL’‘’8SPLZgo‘obe‘LLTTIS'OBPV‘LITLZ61’8W0‘6L8°TL
999699¢€9’T9YRSX499TZ’‘€6E996p‘16299962°€99‘00T99€L’CT9'0T9'T9SS08S08Z'TS08¥%‘02S089‘LZ¢€S0sg’‘zwvz’sS080°988°€8G08Z/LLT'ThE’TS47792NNYAR|778€/914P¥1/2927voE‘v6T’YP$98‘80T‘LYv$Z8TVLELO’T17
3€8v€89L€882‘2T€809’961€8TLS¥I’‘E€8b9’‘tee’os€89€’90£’508€4Z43AZ1sZZ61’S8ZTLO'TETZZsT’L60’CZTew'‘wss’‘seZ216‘0L8'9ESrdTT91T962T960‘%YT9€6’69T9.6’8%0'1T9TZ‘LLL'9TT9sh‘sev’892T
0000000000000000
03XdHO03dXdIHDIAXIHD3dX3Ho3aX3Hok(¢XdHo3dX3H03dX3H

INDEX

A
“A operator, 3-12, 3-13
Absolute,

index mode, 4-15, 4-16
mode, 4-13, 4-14

program sections, 5-45

Accuracy of floating-point

numbers, 3-4

Addition, 3-15

Address data,

initializing memory with, 5-3
reserving memory for, 5-9

.ADDRESS directive, 5-3

Address, starting, 5-21, 5-22

Address, transfer, 5-21, 5-22
Addressing modes, 2-3, 4-1

through 4-18

summary of, 4-2 through 4-5,

B-11 through B-14

.ALIGN directive, 5-4, 5-5

Alignment,

data, 5-4, 5-5

location counter, 5-4, 5-5

5-25, 5-39

program section, 5-45, 5-48

AMA attribute, 5-18

AND operator, 3-16

AP register, 3-5

Argument,

concatenation in macros, 6-6

macro, 6-1 through 6-8

pointer, 3-5

Arithmetic shift,

operator, 3-16

Arithmetic trap enable, 3-13, 3-14
.ASCIC directive, 5-7

.ASCID directive, 5-8

ASCII,

character set, A-l

hexadecimal conversion, A-1

operator, 3-12, 3-14

strings, 3-12, 3-13, 5-6
string storage, 5-6 through 5-8

.ASCIXx storage directives, 5-6

through 5-8

.ASCIZ directive, 5-8

Assembler directives, 2-3, 5-1

through 5-65, 6-1 through
6-29

summary of, 5-1, 5-2, 6-2,

B-1 through B-6

Assembler functions, 5-18 through

5~20

Assigning a value, 3-17
Assignment statements, 3-17,

3-18

Attributes, program section,
5-44 through 5-48

Autodecrement index mode, 4-15

4-16

Autodecrement mode, 4-8

Autoincrement deferred index mode,
4-15, 4-16

Autoincrement deferred mode, 4-7,
4-8

Autoincrement index mode, 4-15,
4-16

Autoincrement mode, 4-6, 4-7

B” displacement specifier,

4-8 through 4-10, 4-12, 4-13
"B unary operator, 3-11, 3-12
Base mode, 4-15, 4-16

Binary operators, 3-15 through
3-17, B-9

Binary radix, 3-12

Blank lines, 2-2

.BLKA directive,

.BLKB directive,

.BLKD directive,

.BLKF directive,

.BLKL directive,

.BLKQ directive,

.BLKW directive,

.BLKx directive,

Block labels, 3-7, 3-8

Block storage directives, 5-9
Branch instruction, 4-18

Byte data,

initializing memory with, 5-11,
5-56

reserving memory for, 5-9

.BYTE directive, 5-11

U1
U'
IU
'I
U'
IQ
:1
UI
U1
(J
'I

|
W
O

O
W
O
W
W
O
W
Y
W
Y
W
L
Y

C

~C operator, 3-15
Call instruction, 5-22, 5-23

Changes from VAX-11 MACRO V1.0, ix

Character,

indefinite repeat block, 6-16,
6-17

separating, 3-3

set, 3-1, 3-2

set, ASCII, A-1

special, 3-1 3-2, B-7, B-8

strings, 3-12, 3-13, 5-6

Characters, counting, 6-9, 6-25

Combining arguments in macros, 6-6

Index-1

INDEX

Comment field, 2-1, 2-4

Complement operator, 3-15

Concatenated program sections,

5-46

Concatenating arguments in

macros, 6-6

Conditional assembly blocks,

5-29 through 5-35

controlling listing of, 5-54,

5-55

one line block, 5-35

subconditionals, 5-32 through

5-34

Condition tests, 5-30

Continuation lines, 2-2

Continuing program sections, 5-44

Controlling listings, 5-54, 5-55

Counted ASCII string storage,

5-7

Counter, current location, 3-18

Counting characters, 6-9, 6-25

Counting macro arguments, 6-24

Counts, repeat, 3-10, 5-11, 5-37,

5-56, 5-57, 5-65

.CROSS directive, 5-13, 5-14

Cross reference listing, 5-13,

5-14

Current location counter, 3-18

D

“D unary operator, 3-11, 3-12

Data alignment, 5-4, 5-5

Data, reserving memory for, 5-9

Data, initializing memory with,

address, 5-3

ASCII, 5-6 through 5-8

byte, 5-11, 5-56

double-precision, 5-17

floating-point, 5-26

longword, 5-37

packed decimal, 5-42

quadword, 5-49

signed, 5-56, 5-57

word, 5-57, 5-65

DBG attribute, 5-18

.DEBUG directive, 5-15

Debugging information, 5-15, 5-18

Decimal/hexadecimal conversion,

'D-1' through D-4

Decimal radix, 3-11, 3-12

Decimal strings, 3-4, 3-5, 5-42

.DEFAULT directive, 5-16

Default program sections, 5-44,

5-48

Default radix, 3-11

Default values of macro

arguments, 6-3

Deferred mode,

autoincrement, 4-7

displacement, 4-9, 4-10

register, 4-6

relative, 4-13

Defining,

labels, 2-2

macros, 6-19, 6-20

opcodes, 5-40, 5-41

Degree of precision, 3-4

Deleting a macro, 6-22

Delimited ASCII strings, 5-6

Delimiters in macro arguments,

6-4 through 6-6

Descriptors, string, 5-8

Direct assignment statements,

3-17, 3-18

Directives, 2-3, 3-5, 5-1

through 5-65, 6-1 through

6-29

.DISABLE directive, 5-16, 5-18

through 5-20

LOCAL_ BLOCK attribute, 3-8

Disabling assembler functions,

5-16, 5-18 through 5-20

Displacement,

controlling default, 5-16

deferred index mode, 4-15, 4-16

deferred mode, 4-9, 4-10

index mode, 4-15, 4-16

mode, 4-8, 4-9

specifier, 4-8 through 4-10,

4-12, 4-13

Division, 3-15

Documenting a program, 2-4

.DOUBLE directive, 5-17

Double precision, 3-4, 5-17

Double-precision data,

initializing memory with, 5-17

reserving memory for, 5-9

.DSABL directive, 5-16, 5-18

through 5-20

DV arithmetic trap enable, 3-14

.ENABIL directive, 5-18 through

5-20

.ENABLE directive, 5-18 through

5-20

LOCAL_BLOCK attribute, 3-8

Enabling assembler functions, 5-18

through 5-20

.END directive, 5-21

Index-2

INDEX

.ENDC directive, 5-21, 5-29

through 5-31

Ending,

conditional assembly blocks,

5-21, 5-29 through 5-31

macro definitions, 6-13, 6-19,

6-20

modules, 5-21

repeat range definitions, 6-13,

6-14 through 6-16

.ENDM directive, 6-13, 6-19, 6-20

.ENDR directive, 6-13 through 6-16

.ENTRY directive, 5-22, 5-23

Entry mask, 3-13, 3-14, 5-22, 5-23,

5-38

.ERROR directive, 5-24

Exclusive OR operator, 3-17

Executable program sections,

5-44 through 5-46

Expanding a macro, 6-1, 6-2

Exponent, 3-4

Expressions, 3-9, 3-10

evaluation of, 3-9

floating point, 3-14

restrictions on, 3-10

.EXTERNAL directive, 5-25

External symbols, 3-7, 5-25, 5-27,

5-64

$EXTRACT macro string operator,

'6-11

.EXTRN directive, 5-25

.EVEN directive, 5-25

Exiting a macro, 6-13, 6-19, 6-20

F

“F operator, 3-14, 3-15

Factors, repetition, 3-10, 5-11,

5-37, 5-56, 5-57, 5-65

Field,

comment, 2-1, 2-4

label, 2-1 through 2-3

operand, 2-1, 2-3, 2-4

operator, 2-1, 2-3

.FLOAT directive, 5-25

Floating-point data,

initializing memory with, 5-17,

5-26

reserving memory for, 5-9

Floating-point expressions, 3-14

Floating-point numbers, 3-3,

3-4, 3-14, 3-15

format of, 3-4

rounding of, 5-18, 5-19

truncation of, 5-18, 5-19

Floating-point operator, 3-15

Floating-point short literals,

4-11

Format, statement, 2-1 through

2-4

Formatting with tabs, 2-1, 2-2

FP register, 3-5, 3-14

FPT attribute, 5-18, 5-19

Frame pointer, 3-5

Functions, assembler, 5-18 through

5-20

G

GBL attribute, 5-18, 5-19

General mode, 4-15

General registers, 3-5

General register modes, 4-1

through 4-12

.GLOBAL directive, 5-27

Global program sections, 5-46

Global symbols, 2-2, 3-7, 3-17,

5-18, 5-19, 5-25, 5-27, 5-64

defining, 2-2

weak, 5-64

.GLOBL directive, 5-27

H

Hexadecimal/ASCII conversion, A-1l

Hexadecimal/decimal conversion,

D-1 through D-4

Hexadecimal radix, 3-12

I~ addressing mode, 4-14, 4-15

. IDENT directive, 5-28

Identifying a module, 5-28, 5-60

.IF directive, 5-29 through 5-31

.IF_FALSE directive, 5-32 through

5-34

.IF_TRUE directive, 5-32 through

5-34

.IF_TRUE_FALSE directive, 5-32

through 5-34

.IFF directive, 5-32 through 5-34

.IFT directive, 5-32 through 5-34

.IFTF directive, 5-32 through 5-34

.IFx directives, 5-32 through 5-34

.IIF directive, 5-35

Immediate conditional block, 5-35

Imnmediate mode, 4-14

Inclusive OR operator, 3-17

Indefinite repeat blocks, 6-14,

6-15

Indefinite repeat character blocks,

6-16, 6-17

Index mode, 4-15 through 4-18

Index-3

INDEX

Initializing memory with,

address data, 5-3

ASCITI data, 5-6 through 5-8

byte data, 5-11, 5-56

floating-point data, 5-17,

5-26

longword data, 5-37

packed data, 5-42

quadword data, 5-49

word data, 5-57, 5-65

Instructions, 1-1, 2-3, 3-5,

C-1 through C-8

redefining, 5-40, 6-20

Integer expressions, 3-9, 3-10

Integers, 3-3

Internal symbols, 2-2, 3-7, 3-17

.IRP directive, 6-14, 6-15

.IRPC directive, 6-16, 6-17

IV arithmetic trap enable, 3-14

K

Keyword arguments in macros, 6-3,

6-4

L

L"” displacement specifier, 4-8

through 4-10, 4-12, 4-13

Label,

defining a, 2-2

field, 2-1, 2-2

local, 3-7, 3-8

names, 2-2

terminator, 2-2

$LENGTH macro string operator, 6-9

Length of source line, 2-1

Lexical operators, 6-8 through 6-12

.LIBRARY directive, 6-18

Lines, continuation, 2-2

.LIST directive, 5-36, 5-54, 5-55

Listing,

control of, 5-42, 5-54, 5-55

cross reference, 5-13, 5-14

table of contents, 5-59

Literal mode, 4-10 through 4-12

Literals, short, 4-10 through 4-12

Local label block,

delimiters, 3-8

disabling, 3-8, 5-18, 5-19

enabling, 3-8, 5-~18, 5-19

restoring, 5-51

saving, 5-52

Local labels, 3-7, 3-8, 5-18,

5-19

created, 6-7, 6-8

Local program sections, 5-46

2LOCATE macro string operator,

6-10, 6-11

Location counter, 3-18

alignment, 5-4, 5-5, 5-28, 5-35

Logical AND operator, 3-16

Logical exclusive OR operator,

3-17

Logical inclusive OR operator,

3-16

.LONG directive, 5-37

Longword data,

initializing memory with, 5-37

reserving memory for, 5-9

LSB attribute, 3-8, 5-19

“M operator, 3-13, 3-14

Machine instructions, 1-1

.MACRO directive, 6-19, 6-20

Macros, 6-1 through 6-29

arguments in, 6-1 through 6-8

calls to, 2-3

controlling listing of, 5-54,

5-55

definitions of, 6-19, 6-20

deletion of, 6-22

exiting from, 6-23

expanding, 6-1, 6-2

libraries containing, 6-18

maximum line size, 2-2

names of, 3-6, 6-13, 6-19, 6-20

redefining, 6-19, 6-20

string operators in, 6-8 through

6-12

.MASK directive, 5-22, 5-38

Mask, register save, 3-13, 3-14,

5-22, 5-38

.MCALL directive, 6-21

.MDELETE directive, 6-22

Messages, printing assembly, 5-24,

5-43, 5-63

.MEXIT directive, 6-23

Mnemonic instructions, 3-5, C-1

through C-8

Modes, addressing, 2-3, 4-1

through 4-18 .

summary of, 4-2 through 4-5,

B-11 through B-14

Module, identifying, 5-28, 5-60

Multiplication, 3-15

Names,

macro, 3-6, 6-13, 6-19, 6-20

Index-4

Names (Cont.)

module, 5-60

register, 3-5

symbol, 3-6

.NARG directive,

.NCHR directive,

Negative numbers,

.NLIST directive,

5-~55

.NOCROSS directive,

5-39

.NOSHOW directive,

5-55

.NTYPE directive, 6-26

Number of macro arguments, 6-1,

6-24

Numbers, 3-3

floating point, 3-3, 3-4, 3-14,

3-15, 5-17, 5-26

integer, 3-3

packed decimal, 3-4, 3-5, 5-42

Numeric control operators, 3-14,

3-15

6-24

6-25

3-3

5-38, 5-54,

5-13, 5-14,

5—39' 5‘54,

o)

0 unary operator, 3-11, 3-12

Octal radix, 3-11, 3-12

.ODD directive, 5-39

Opcodes, C-1 through C-8

defining, 5-40, 5-41

redefining, 5-40, 6-20

.OPDEF directive, 5-40, 5-41

Operand,

field, 2-1, 2-3

generation directives,

types, 6-26

Operator,

binary, 3-15 through 3-17, B-9

field, 2-1, 2-3

macro string, 6-8 through 6-12

unary, 3-10 through 3-15, B-8,

B-9

OR operators, 3-17

Overlaid program sections,

5-50

5-46

P

Packed decimal strings, 3-4, 3-5,

5-42

.PACKED directive, 5-42

.PAGE directive, 5-42

Page ejection, 5-42

INDEX

Passing numeric values in macros,

6~7

PC register, 3-5

Permanent symbols, 3-5, C-1

Position-independent code, 5-46,

5-47

Precision of floating-point

numbers, 3-4

.PRINT directive, 5-43

Printing assembly messages, 5-24,

5-43, 5-63

Program counter, 3-5

Program counter modes,

through 4-15

Program sections,

5-48

4-12

5-44 through

Q

.QUAD directive, 5-49

Quadword data,

initializing memory with, 5-49

reserving memory for, 5-9

R

3-11,

3-11

3-11, 3-12

6-5

Radix control, 3-12

Radix default,

Radix operators,

in macro arguments,

Real numbers, 3-3, 3-4

Redefining,

instructions,

macros, 6-19,

opcodes, 5-40,

.REFn directive,

Register,

deferred index mode,

deferred mode, 4-6

mask operator, 3-13,

mode, 4-6

names, 3-5

save mask,

5-38

Relative,

default displacement,

deferred index mode,

5-40,

6-20

6-20

5-50

6-20

4-15, 4-16

3-14

3-13, 3-14, 5-22,

5-16

4-15, 4-16

deferred mode, 4-13

index mode, 4-15, 4-16

mode, 4-12, 4-13

Relocatable program sections, 5-47

Repeat blocks, 6-28, 6-29

character, indefinite repeat,

6-16, 6-17

controlling listing of, 5-54, 5-55

Index-5

INDEX

Repeat blocks (Cont.)

indefinite, 6-14, 6-15

Repeat counts, 3-10, 5-11, 5-37,

5-56, 5-57, 5-65

.REPEAT directive, 6-28, 6-29

Repeating a block of code, 6-28,

6-29

Repetition factors, 3-10, 5-11,

5-37, 5-56, 5-57, 5-65

.REPT directive, 6-28, 6-29

.RESTORE directive, 5-51

.RESTORE PSECT directive, 5-51

Restoring a program section,

5-51

Reserved bits in entry mask, 3-14,

5-22

Reserving storage, 5-9

Rounding floating-point numbers,

5-18, 5-19

S

S” addressing mode, 4-10 through

4-12

.SAVE directive, 5-52

.SAVE PSECT directive, 5-52

Saving a program section, 5-52

Saving local label block, 5-52

.SBTTL directive, 5-=59

Sections, program, 5-44

through 5-48

Separating characters, 3-3

Shareable images, 5-61, 5-62

Shareable program sections, 5-47

Shift operator, arithmetic, 3-16

Short literals, 4-10 through 4-12

.SHOW directive, 5-54, 5-55

.SIGNED_BYTE directive, 5-56

Signed data storage, 5-56 through

5-58

.SIGNED_WORD directive, 5-57, 5-58

Single precision, 3-4, 5-26

Single-precision data,

initializing memory with, 5-26

reserving memory for, 5-9

Source lines,

blank, 2-2

continuing, 2-2

format of, 2-1

length of, 2-1

SP register, 3-5

Special characters, 3-1, 3-2,

B-7, B-8

Stack pointer, 3-5

Starting address, 5-21, 5-22

Statement format, 2-1 through 2-4

Storage, reserving, 5-9

ASCII, 5-6 through 5-8

block, 5-9

Storing,

address, 5-3

ASCII, 5-6 through 5-8

byte, 5-11, 5-56

double-precision, 5-17

floating—-point, 5-26

longword, 5-37

packed decimal, 5-42

signed, 5-56, 5-57

quadword, 5-49

word, 5-57, 5-65

String,

arguments in macros, 6-4 through

6-6

AsCII, 3-12, 3-13, 5-6

descriptors, 5-8

operators, 6-8 through 6-12

packed decimal, 3-4, 3-5, 5-42

Subconditional assembly blocks,

5-29 through 5-31

.SUBTITLE directive, 5-59

Subtraction, 3-15

Suppressing symbol table listing,

5-18, 5-19

Symbols, 3-5, 3-17

external, 3-7, 5-25, 5-27, 5-64

global, 2-2, 3-7, 3-17, 5-18

through 5-20, 5-25, 5-27, 5-64

internal, 3-7

names of, 3-6

permanent, 3-5, C-1

undefined, 5-18, 5-19

user-defined, 2-2, 3-6

T

Tab formatting, 2-1, 2-2

Table of contents, listing, 5-59

TBK attribute, 5-19

Technical changes from VAX-11

MACRO V1.0, ix

Temporary labels, 3-7, 3-8

Terms, 3-9

Testing conditions, 5-30

Textual operators, 3-12 through 3-14

.TITLE directive, 5-60

Traceback information, 5-19

.TRANSFER directive, 5-61, 5-62

Trap enable, arithmetic, 3-13,

3-14

Truncating floating=-point number,

5-18, 5-19

Type of operand in macros, 6-24

Index-6

INDEX

U w

Unary operators, 3-10 through W displacement specifier, 4-7,
3-15, B-8, B-9 4-8 through 4-10, 4-12, 4-13

in macro arguments, 6-5 .WARN directive, 5-63

summary of, 3-11, B-8, B-9 Warning directive, 5-63

Undefined symbols, 5-18, 5-19 .WEAK directive, 5-64

User-defined program sections, Weak symbols, 5-64

5-44 through 5-48 Word data,

User-defined symbol, 2-2 initializing memory with, 5-57,

User—-generated, 5-65

errors, 5-24 reserving memory for, 5-9

messages, 5-43 .WORD directive, 5-65

opcodes, 5-40, 5-41 Write protecting program sections,

operands, 5-50 5-44, 5-46

warnings, 5-63

X

“X unary operator, 3-12

Value, passing arguments by, 6-7

Vector, transfer, 5-61, 5-62 Zero terminated ASCII string,
Version number, 5-28 5-8

Index-7

VAX-11 MACRO

Language Reference Manual

AA-D032B-TE

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will

use comments submitted on this form at the company's

discretion. If you require a written reply and are

eligible to receive one under Software Performance

Report (SPR) service, submit your comments on an SPR

form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

Assembly language programmer

Higher-level language programmer

Occasional programmer (experienced)

User with little programming experience

Student programmer

Q
O
0
O
0
a
d
o
d

Other (please specify)

Name Date

Organization

Street

City. State Zip Code

or

Country

— — — Do Not Tear - Fold Here and Tape

dlilgliltiall

—_— - Do Not Tear - Fold Here

No Postage

Necessary

if Mailed in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS TwW/A14

DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

