February 1979

This document describes the assembly language supported by VAX/VMS,
All symbols, expressions, addressing modes, and directives are detailed. No
prior knowledge of the VAX-11 MACRO ass¢ nbler is assumed.

VAX-11 MACRO
Language Reference Manual

Order No. AA-DO32B-TE

SUPERSESSION/UPDATE INFORMATION: This revised document supersedes
the VAX-11 MACRO Language
Reference Manual (Order No.

AA-DO32A-TE)
OPERATING SYSTEM AND VERSION: VAX/VMS V1.5
SOFTWARE VERSION; VAX-11 MACRO V2.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, August 1978
Revised, February 1979

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responéibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright C) 1978, 1979 by Digital Equipment Corporation

The postage~-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem~10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM PHA

. UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB~8 TYPESET-11
DECCOMM DECSYSTEM-~20 TMS-~11
ASSIST-11 RTS-~8 ITPS~10
VAX VMS SBI
DECnet IAS PDT
DATATRIEVE TRAX

CONTENTS

PREFACE
SUMMARY OF TECHNICAL CHANGES

CHAPTER 1 INTRODUCTION

CHAPTER 2 MACRO SOURCE STATEMENT FORMAT

2.1 LABEL FIELD

2.2 OPERATOR FIELD
2.3 OPERAND FIELD
2.4 COMMENT FIELD

CHAPTER
CHARACTER SET

NUMBERS
Integers

SYMBOLS

wN - WN -

* e 0

LOCAL LABELS

UNARY OPERATORS

WONNNNNOAOOAOAONONAAMTERWWWWINNNNKE
. .
N

CHAPTER 4 ADDRESSING MODES

Register Mode

S S e L

. L[]

e
M

. e

O~ UL WM

Literal Mode

THE COMPONENTS OF MACRO SOURCE STATEMENTS

Floating-Point Numbers
Packed Decimal Strings

Permanent Symbols
User-defined Symbols and Macro Names
Determining Symbol Values

TERMS AND EXPRESSIONS

Radix Control Operators
Textual Operators
ASCII Operator
Register Mask Operator
Numeric Control Operators
1 Floating Point Operator
2 Complement Operator

BINARY OPERATORS
.1 Arithmetic Shift Operator
.2 Logical AND Operator
.3 Logical Inclusive OR Operator
.4 Logical Exclusive OR Operator
DIRECT ASSIGNMENT STATEMENTS
CURRENT LOCATION COUNTER

GENERAL REGISTER MODES

Register Deferred Mode
Autoincrement Mode
Autoincrement Deferred Mode
Autodecrement Mode
Displacement Mode
Displacement Deferred Mode

Page

vii

I
HFRONOOAUTULEBWWWH

=

|
o

WWWWwWWwwwwwwwwwwww
1 |

e o

wNN

w
I
=
=Y

3-14

w w

1
o
aun

3-16
3-16

w
I
=
(<)}

www
1

e

o~

| |
=WYoo~ OO =

CONTENTS

Page
4.2 PROGRAM COUNTER MODES 4-12
4.2.1 Relative Mode 4-12
4.2.2 Relative Deferred Mode 4-13
4.2.3 Absolute Mode 4-13
4.2.4 Immediate Mode 4-14
4.2.5 General Mode 4-15
4.3 INDEX MODE 4-15
4.4 BRANCH MODE 4-18
CHAPTER 5 GENERAL ASSEMBLER DIRECTIVES 5-1
.ADDRESS 5-3
ALIGN 5-4
.ASCIx 5-6
.ASCII 5-7
.ASCIC 5-7
.ASCID 5-8
.ASCIZ 5-8
. BLKx 5-9
.BYTE 5-11
.CROSS 5-13
.DEBUG 5-~15
.DEPFAULT 5-16
.DISABLE 5~16
.DOUBLE 5-17
.ENABLE 5-18
.END 5-21
. ENDC 5=21
.ENTRY 5-22
.ERROR 5-24
.EVEN 5-25
. EXTERNAL 5-25
.FLOAT 5-26
.GLOBAL 5-27
. IDENT 5-28
.IF 5-29
IF x 5-32
LITF 5-35
.LIST 5-36
. LONG 5-37
.MASK 5-38
.NLIST 5-38
.NOCROSS 5-39
. NOSHOW 5-39
.ODD 5-39
.OPDEF 5-40
. PACKED 5-42
.PAGE 5-42
. PRINT 5-43
.PSECT 5-44
. QUAD 5-49
.REFn 5=-50
.RESTORE_PSECT 5-51
.SAVE_PSECT ‘ 5-52
. SHOW 5-54
.SIGNED BYTE 5-56

. SIGNED_ WORD 5-57

iv

CHAPTER

APPENDIX

APPENDIX

APPENDIX

APPENDIX

CONTENTS

.SUBTITLE

.TITLE

. TRANSFER

. WARN

.WEAK

. WORD

6 MACROS

6.1 ARGUMENTS IN MACROS

6.1.1 Default Values

6.1.2 Keyword Arguments

6.1.3 String Arguments

6.1.4 Argument Concatenation

6.1.5 Passing Numeric Values of Symbols

6.1.6 Created Local Labels

6.1.7 Macro String Operators

6.1.7.1 $LENGTH Operator

6.1.7.2 $LOCATE Operator

6.1.7.3 $EXTRACT Operator

6.2 MACRO DIRECTIVES

.ENDM

. ENDR

.IRP

. IRPC

.LIBRARY

.MACRO

.MCALL

.MDELETE

.MEXIT

.NARG

.NCHR

.NTYPE

.REPEAT

A ASCII CHARACTER SET

B VAX-11 MACRO ASSEMBLER DIRECTIVES AND
LANGUAGE SUMMARY

B.1l ASSEMBLER DIRECTIVES

B.2 SPECIAL CHARACTERS

B.3 OPERATORS

B.3.1 Unary Operators

B.3.2 Binary Operators

B.3.3 Macro String Operators

B.4 ADDRESSING MODES

C PERMANENT SYMBOL TABLE

Cc.1 OPCODES (ALPHABETIC ORDER)

Cc.2 OPCODES (NUMERIC ORDER)

D HEXADECIMAL/DECIMAL CONVERSION

D.1 HEXADECIMAL TO DECIMAL

D.2 DECIMAL TO HEXADECIMAL

D.3 POWERS OF 2 AND 16

Page

5-59

| 1|
HFHOONNOAE_WWE

e s Xakakakaka kANl
!

-12
6-13

PPPRTEY g
— HRWOWONH

[
[=Na)

i
<

11
N

oo o ? anQ 0

CONTENTS

Page
INDEX Index-1
FIGURES
FIGURE 5-1 Using Transfer Vectors 5-61
TABLES
TABLE 3-1 Special Characters Used in VAX~1l MACRO
Statements 3-1
3-2 Separating Characters in VAX-1l MACRO
Statements 3-3
3-3 Unary Operators 3-11
3-4 Binary Operators 3-15
4-1 Addressing Modes 4-2
4-2 Floating Point Short Literals 4-11
4-3 Index Mode Addressing 4-17
5-1 Summary of General Assembler Directives 5-1
5-2 -ENABLE and .DISABLE Symbolic Arguments 5-18
5-3 Condition Tests for Conditional Assembly
Directives 5-30
5-4 Operand Descriptors 5-40
5-5 Program Section Attributes 5-45
5-6 Default Program Section Attributes 5-47
5-7 .SHOW and .NOSHOW Symbolic Arguments 5-55
6-1 Summary of Macro Directives 6-2
aA-1 Hexadecimal/ASCII Conversion A-1l
B-1 Assembler Directives B-1
B-2 Special Characters Used in VAX-11 MACRO
Statements B-7
B-3 Unary Operators B-8
B-4 Binary Operators B-9
B-5 Macro String Operators B-10
B-6 Addressing Modes B-11
D-1 Hexadecimal/Decimal Conversion D-3

vi

PREFACE

MANUAL OBJECTIVES

This manual describes the VAX-11l MACRO language: the features that
are in the language and the format and function of each feature. The
VAX-11 MACRO User's Guide describes how to use VAX-11 MACRO.

INTENDED AUDIENCE

This manual is intended for all programmers writing VAX-11 MACRO
programs. Programmers should be familiar with assembly language
programming, the VAX-1l instruction set, and the VAX/VMS operating
system before reading this manual.

The VAX-11 MACRO User's Guide provides a brief introduction to the
assembler and describes the commands necessary to use VAX-11 MACRO.
The VAX-11/780 Architecture Handbook describes the VAX-11/780
instruction set. All programmers should read these manuals before
using this language reference manual.

STRUCTURE OF THIS DOCUMENT

This manual is organized into six chapters and five appendixes, as
follows:

e Chapter 1 introduces the features of the VAX-11 MACRO language

® Chapter 2 describes the format used in VAX-11 MACRO source
statements

e Chapter 3 describes the components of VAX-11 MACRO source
statements: the character set; numbers; symbols; 1local
labels; terms and expressions; wunary and binary operators;
direct assignment statements; and the current location
counter

e Chapter 4 summarizes and gives examples of the use of the
VAX-11 MACRO addressing modes

e Chapter 5 describes the VAX-11 MACRO general assembler
directives

e Chapter 6 describes the directives used in defining and
expanding macros -

e Appendix A lists the ASCII character set that can be used in
VAX~11 MACRO programs

vii

Appendix B summarizes the general assembler and macro
directives (in alphabetical order), special characters, unary
operators, binary operators, and addressing modes

Appendix C lists alphabetically the permanent symbols defined
for use with VAX-11 MACRO

Appendix D gives rules for hexadecimal/decimal conversion

ASSOCIATED DOCUMENTS

The following documents are relevant to VAX-11 MACRO programming:

VAX-11 MACRO User's Guide

VAX/VMS Command Language User's Guide

VAX~11 Linker Reference Manual

VAX-11 Symbolic Debugger Reference Manual

For a complete 1list of all VAX-11 documents, including a brief
description of each, see the VAX-11l Information Directory.

CONVENTIONS USED IN THIS DOCUMENT

The following conventions are observed in this manual, as in the other
VAX-11 documents:

Brackets ([]) indicate that the enclosed argument is optional

Uppercase words and letters, used in formats, indicate that
the word or letter s .ould be typed exactly as shown

Lowercase words and etters, used in formats, indicate that a
word or value of the user's choice is to be substituted

Ellipses (...) indicate that the preceding item(s) can be
repeated one or more times

viii

SUMMARY OF TECHNICAL CHANGES

This manual documents VAX-11 MACRO V2.0. This section summarizes the
technical changes from Version 1.

The following new directives have been added:

e .ASCID - stores an ASCII string with a string descriptor

e .CROSS and .NOCROSS - control the cross reference listing

e .DEFAULT - controls the default displacement

e .OPDEF - defines an opcode

e .SIGNED BYTE and .SIGNED_WORD - specify signed data storage
The following directives have had new arguments added:

e .ENABLE=SUPPRESSION -~ suppresses listing of unreferenced
symbols in the symbol table

e .SAVE_PSECT LOCAL_BLOCK - preserves the local label block when
the program section is saved

In addition, new forms of directives and directive arguments have been
added to make VAX-11 MACRO programs easier to read. These new forms
have the same effect as their equivalent o0ld form. The old forms are
still accepted by the assembler. The following new forms of
directives have been added:

New Form 014 Form
.DISABLE » .DSABL
. ENABLE .ENABL
.EXTERNAL .EXTRN
.GLOBAL .GLOBL
.IF FALSE .IFF
.IF_TRUE LIFT
.IF_TRUE_FALSE LIFTF
.NOSHOW ~ .NLIST
.REPEAT .REPT
.RESTORE PSECT .RESTORE
.SAVE PSECT .SAVE
.SHOW ™ LLIST
.SUBTITLE .SBTTL

ix

New forms have been added for symbolic arguments for the .ENABLE,
-DISABLE, .SHOW, and .NOSHOW directives and for the condition tests
used in the .IF and .IIF directives.

All the preceding directives are described in Chapter 5 except the
-REPEAT directive which is described in Chapter 6.

Three new macro string operators, $LENGTH, $LOCATE, and $EXTRACT, have
been added to allow string manipulation in macros. These string
operators are described in Section 6.1.7.

The following miscellaneous changes have also been made:

® The assembler checks that the correct number of arguments are
specified in a macro call.

® The register mask in the .ENTRY directive must be an absolute
expression.

e In data storage directives with a repetition factor, only the
repetition factor must be an absolute expression. The
expression specifying the value to be stored can be any kind
of expression (documentation change).

® The general addressing mode is indexable (documentation
change).

CHAPTER 1

INTRODUCTION

The VAX-11 MACRO assembler translates source programs into object (or
binary) code and produces a listing file and an object module file.
The VAX-11 Linker then combines object modules to produce an
executable image. See the VAX-11 MACRO User's Guide for more
information on using the assembler. This chapter introduces the
features of the VAX-11] MACRO language.

VAX-11 MACRO source programs consist of a series of source statements.
Each statement can contain an instruction, an assembler directive, or
a direct assignment statement. The instructions, which can be any of
the VAX-11/780 native mode instructions, can perform many types of
data manipulation such as multiplication, transfer of control, and
data conversion. The instructions are described in the VAX-11/780
Architecture Handbook. The assembler directives and direct assignment
Statements create and initialize data areas and provide tools for
using the instructions.

Source statements have four fields: label, operator, operand, and
comment. The label field identifies the location in the program. The
operator field contains the instruction opcode or directive. The
operand field contains the instruction operands or the directive
arguments. The instruction operands specify the locations that are
accessed by the instruction. The comment field explains the meaning
of the statement.

There are two classes of assembler directives: the general assembler
directives and the macro directives.

The general assembler directives can be used to perform the following:
e Store data or reserve memory for data storage
® Control the alignment in memory of parts of the program

e Specify the methods of accessing the sections of memory in
which the program will be stored.

e Specify the entry point of the program or of part of the
program

e Specify the way in which symbols will be referenced

e Specify that a part of the program is to be assembled only
under certain conditions

e Control the format and content of the listing file

e Display informational messages

1-1

INTRODUCTION

e Control the assembler options that are used to interpret the
source program

® Define new opcodes

The macro directives are used to define macros and repeat blocks,
which allow a programmer to repeat identical or similar series of
source statements throughout a program without having to reenter the
statements each time. Macros and repeat blocks can thus help minimize
programmer errors.

CHAPTER 2

MACRO SOURCE STATEMENT FORMAT

A source program consists of a sequence of source statements, which
the assembler interprets and processes, one by one, generating object
code or performing a specific assembly-time process. A source
statement can be on one source line or can extend onto several source
lines. Each source line can be up to 132 characters 1long; however,
no 1line should exceed 80 characters to ensure that the source line
fits (with the binary expansion) on one line in the listing file.

MACRO statements can consist of up to four fields:

e Label field -~ allows the program to symbolically define a
location in a program

e Operator field -- specifies the action to be performed by the
statement; this field can be an instruction, an assembler
directive, or a macro call

e Operand field -- contains the instruction operand(s) or the
assembler directive argument(s) or the macro argument (s)

e Comment field -- contains a comment that explains the meaning
of the statement; this field does not affect program
execution

The label field and the comment field are optional. The 1label field
ends with a colon (:) and the comment field starts with a semicolon
(;:). The operand field must conform to the format of the instruction,
directive, or macro specified in the operator field.

Although the statement fields can be separated by a space or tab (see
Table 3-2), formatting statements with the tab character is
recommended for consistency and clarity. By DIGITAL convention, tab
characters are used to separate the statement fields as follows:

Field Begins in Column Tab Characters to Reach Column
Label 1 0
Operator 9 1
Operand 17 2
Comment 41 5

2-1

MACRO SQURCE STATEMENT FORMAT

For example:

.TITLE ROUT1

.ENTRY START,O0 ; BEGINNING OF ROUTINE
CLRL RO ; CLEAR REGISTER
LABT: SUBL3 #10,4(AP)R2 ; SUBTRACT 10
LAB2: BRB CONT ; BRANCH TO ANOTHER ROUTINE

A single statement can be continued on several lines by using a hyphen
(=) as the last nonblank character before the comment field or at the
end of line (when there is no comment). For example:

LABl: MOVAL W“BOO$AL_VECTOR,- ; SAVE ADDRESS OF
RPB§L_IOVEC (R7) ; BOOT DEVICE DRIVER.,

VAX-11 MACRO treats the above statement as equivalent to the following
statement:

LABl: MOVAL W‘BOOAL_VECTOR,RPBL_IOVEC(R7) ; SAVE BOOT DRIVER

A statement can be continued at any point. But user-defined and
permanent symbol names should not be continued on two lines. If a
symbol name is continued and the first character on the second line is
a tab or a blank, the symbol name will be terminated at that
character. (Section 3.3 describes symbols in detail.)

Note that when a statement occurs in a macro definition (see Chapter
6), the statement cannot contain more than 500 characters.

Blank lines, although 1legal, have no significance in the source
program except that they terminate a continued line.

The following sections describe each of the statement fields in
detail.

2.1 LABEL FIELD

A label is a user-defined symbol that identifies a 1location in the
program. The symbol is assigned a value equal to the location counter
at the location in the program section in which the label occurs (see
the VAX-11 MACRO User's Guide for information on program sections).
The user-defined symbol name can be up to 15 characters long and can
contain any alphanumeric character and the underline(_), dollar sign
($), and period (.) characters. Section 3.3 describes The rules for
forming user-defined symbol names in more detail.

If a statement contains a label, the label must be in the first field
on the line.

A label is terminated by a colon (:) or a double colon (22). The
single colon indicates that the label is defined only for the current
module (an internal symbol). A double colon indicates that the 1label
is globally defined; that is, the label can be referenced by other
object modules (see Section 3.3.2).

Once a label is defined, it cannot be redefined during the source
program. If a label is defined more than once, VAX-11 MACRO displays
an error message when the label is defined and again when it is
referenced.

2-2

MACRO SOURCE STATEMENT FORMAT

If a label extends past column 7, it should be placed on a line by
itself so that the operator field can start in column 9.

For example:

ROUTINE EVALUATES EXPRESSIONS
THE ARG-LIST CONTAINS AN ERRO]
INCREMENT ERROR COUNT

THIS TESTS ROUTINE

REFERENCED EXTERNALLY

GO TO EXIT ROUTINE

TABLES STORES EXPECTED VALUES
DATA TABLE ACCESSED BY STORE
ROUTINE IN ALGO MODULE

EVAL: CLRL RO
ERROR_IN ARG:

INCL RO
TEST:: MOVL EXP,R1

TEST1: BRW EXIT_ROU
EXP: «BLKL 50
DATA:: .BLKW 25

e we We WE We we wo wo “o

2.2 OPERATOR FIELD

The operator field specifies the action to be performed by the
statement. This field can contain either an instruction, or an
assembler directive, or a macro call.

When the operator is an instruction, VAX-11 MACRO generates the binary
code for that instruction in the object module; the instruction set
is described in the VAX-11/780 Architecture Handbook. When the
operator is a directive, VAX-11 MACRO performs certain control actions
or processing operations during source program assembly; the
assembler directives are described in Chapters 5 and 6 of this manual.
When the operator is a macro call, VAX-11 MACRO expands the macroj;
macro calls are described in Chapter 6.

Either a space or a tab character terminates the operator field;
however, the tab is the recommended terminating character.

2.3 OPERAND FIELD

The operand field can contain operands for instructions or arguments
for assembler directives or macro calls.

Operands for instructions specify the locations in memory or the
registers that are used by the machine operation. Operands for
instructions specify the addressing mode for the instruction. Chapter
4 describes the VAX-11 addressing modes. The operand field for a
specific instruction must contain the number of operands required by
that instruction. See the VAX-11/780 Architecture Handbook for a
description of the instructions and their operands.

Arguments for a directive must meet the format requirements of the
directive. Chapters 5 and 6 describe the directives and the format of
their arguments.

Operands for a macro must meet the requirements specified in the macro
definition. See the description of the .MACRO directive in Chapter 6.

If two or more operands are specified, they should be separated by
commas. VAX-11 MACRO also allows a space or tab to be used as a
separator for arguments to directives that do not accept expressions
(see Section 3.5). However, a comma is required to separate operands
for instructions and for directives that accept expressions as
arguments.

2-3

MACRO SOURCE STATEMENT FORMAT

The semicolon that starts the comment field terminates the operand
field. If a line does not have a comment field, the operand field is
terminated by the end of the line.

2.4 COMMENT FIELD

The comment field contains text that explains the meaning of the
statement. Every line of code should have a comment. Comments do not
affect assembly processing or program execution except for messages
displayed during assembly by the .ERROR, «PRINT, and .WARN directives
(see descriptions in Chapter 5).

The comment field must be preceded by a semicolon and is terminated by
the end of the 1line. The comment field can contain any printable
ASCII character (see Appendix A).

If a comment does not fit on one line, it can be continued on the
next, but the continuation must be preceded by another semicolon. A
comment can appear on a line by itself,.

The comment's text normally conveys the meaning rather than the action
of the statement. The instruction MOVAL BUF_PTR 1,R7, for instance,
should have a comment such as "GET POINTER TO FIRST BUFFER" not "MOVE
ADDRESS OF BUF_PTR_1 TO R7."

For example:

MOVAL STRING_DES_1,R0 ; GET ADDRESS OF STRING
; DESCRIPTOR
MOVZWL (RO),R1 ;

MOVL 4(RO) ,RO

GET LENGTH OF STRING
GET ADDRESS OF STRING

2—-4

CHAPTER 3

THE COMPONENTS OF MACRO SOURCE STATEMENTS

This chapter describes the components of VAX-11 MACRO source
statements. These components consist of the character set; numbers;
symbols; 1local labels; terms and expressions; unary and binary
operators; direct assignment statements; and the current location
counter.

3.1 CHARACTER SET

The following characters can be wused in VAX-11 MACRO source
statements:

e Both uppercase and lowercase letters (A through Z, a through
z) are accepted. However, the assembler considers lowercase
letters equivalent to uppercase except when they appear in
ASCII strings.

e The digits 0 through 9.

® The special characters listed in Table 3-1.

Table 3-1
Special Characters Used in VAX-11 MACRO Statements

Character Character Name Function
P — e |
_ Underline Character in symbol names
$ Dollar sign Character in symbol names
. Period Character in symbol names,

current location counter, and
decimal point

Colon Label terminator

= Equal sign Direct assignment operator and
! macro keyword argument terminator

Tab Field terminator

Space Field terminator

(continued on next page)

THE COMPONENTS OF MACRO SOURCE STATEMENTS

Table 3-1 (Cont.)
Special Characters Used in VAX-11 MACRO Statements

Character Character Name Function

Number sign Immediate addressing mode
indicator

@ At sign Deferred addressing mode
indicator and arithmetic shift
operator

’ Comma Field, operand, and item
separator

; Semicolon Comment field indicator

+ Plus sign Autoincrement addressing mode
indicator, unary plus operator,
and arithmetic addition operator

- Minus sign or Autodecrement addressing mode

hyphen indicator, unary minus operator,

arithmetic subtraction operator,
and line continuation indicator

* Asterisk Arithmetic multiplication
operator

/ Slash Arithmetic division operator

& Ampersand Logical AND operator

! Exclamation Logical inclusive OR operator

point

\ Backslash Logical exclusive OR and numeric
conversion indicator in macro
arguments

- Circumflex Unary operators and macro
argument delimiter

[1 Square brackets Index addressing mode and repeat
count indicators

() Parentheses Register deferred addressing mode
indicators

<> Angle brackets Argument or expression grouping
delimiters

? Question mark Created label indicator in macro
arguments

' Apostrophe Macro argument concatenation
indicator

% Percent sign Macro string operators

Table 3-2 defines the separating characters used in VAX-11 MACRO.

THE COMPONENTS OF MACRO SOURCE STATEMENTS

Table 3-2
Separating Characters in VAX-11 MACRO Statements

Character Character Name Usage

Space or tab Separator between statement
fields. Spaces within
expressions (see Section 3.5) are
ignored.

' Comma Separator between symbolic
arguments within the operand
field. Multiple expressions in
the operand field must be
separated by commas.

3.2 NUMBERS

Numbers can be integers, floating-point numbers, or packed decimal
strings.

3.2.1 1Integers

Integers can be used in any expression including expressions in
operands and in direct assignment statements (Section 3.5 describes
expressions).

Format

snn

An optional sign: plus sign (+) for positive numbers (the
default) or minus sign (-) for negative numbers.

nn
A string of numeric characters that are legal for the current
radix.

VAX-11 MACRO interprets all integers in the source program as decimal
unless the number is preceded by a radix control operator (see Section
3.6.1).

Integers must be in the range of -2147483648 through 2147483647 for
signed data or in the range of 0 through 4294967295 for unsigned data.

Negative numbers must be preceded by a minus sign; VAX-11 MACRO
translates such numbers into 2's complement form. In positive
numbers, the plus sign is optional.

3.2.2 Floating-Point Numbers

A floating-point number can be wused in the .FLOAT and .DOUBLE
directives (described in Chapter 5) or as an operand in a
floating-point instruction. A floating-point number cannot be used in
an expression or with a unary or binary operator except the unary

THE COMPONENTS OF MACRO SOURCE STATEMENTS

pPlus, unary minus, and unary floating-point operator (°F). Sections
3.6 and 3.7 describe unary and binary operators.
A floating-point number can be specified with or without an exponent.
Formats
Floating-point number without exponent:

snn

snn.nn

snn.

Floating-point number with exponent:

snnEsnn
snn.nnEsnn
snn.Esnn
s
An optional sign.
nn

A string of decimal digits in the range of 0 through 9.

The decimal point can appear anywhere to the right of the first digit.
However, note that a floating-point number cannot start with a decimal
point because VAX-1l MACRO will treat the number as a user-defined
symbol (see Section 3.3.2).

Floating-point numbers can be either single-precision (32-bit) or
double-precision (64-bit) quantities. The degree of precision is 7
digits for single-precision numbers and 16 digits for double-precision
numbers.

The magnitude of a nonzero floating-point number cannot be smaller
than approximately 0.29E-38 or greater than approximately 1.7E38.

Single-precision floating-point numbers can be rounded (by default) or
truncated. The .ENABLE and .DISABLE directives (described in Chapter
5) control whether single-precision floating-point numbers are rounded
or truncated. Double-precision floating point numbers are always
rounded.

The VAX-11/780 Architecture Handbook describes the internal format of
floating-point numbers.

3.2.3 Packed Decimal Strings

A packed decimal string can be used only in the .PACKED directive
(described in Chapter 5).

Format

snn

An optional sign.

nn
A string of from 1 to 31 decimal digits in the range of 0 through

3-4

THE COMPONENTS OF MACRO SOURCE STATEMENTS

A packed decimal string cannot have a decimal point or an exponent.

The VAX-11/780 Architecture Handbook describes the internal format of
packed decimal strings.

3.3 SYMBOLS

Three types of symbols can be used in VAX-11 MACRO source programs:
permanent symbols, user-defined symbols, and macro names.

3.3.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (see Appendix
C), the VAX-11 MACRO directives (see Chapters 5 and 6), and the
register names. The instruction mnemonics and directives need not be
defined before being used in the operator field of a VAX-11 MACRO
source statement. The register names need not be defined before being
used in the addressing modes (see Chapter 4). The register names
cannot be redefined; that is, no user-defined symbol can have one of
the register names listed below.

The 16 general registers of the VAX-11/780 processor can be expressed
in a source program only as follows:

Register
Name Processor Register
RO General register 0
R1 General register 1
R2 General register 2
R11 General register 11
R12 or General register 12 or argument pointer. If R12 is
AP used as an argument pointer, the name AP is
recommended ; if R12 is used as a general register,
the name R1l2 is recommended.
FP Frame pointer
SP Stack pointer
PC Program counter

THE COMPONENTS OF MACRO SOURCE STATEMENTS

3.3.2 User-defined Symbols and Macro Names

User-defined symbols can be used as labels or can be equated to a
specific value by a direct assignment statement (see Section 3.8).

User-defined symbols also can be used in any expression (see Section
3.5).

The following rules govern the creation of user-defined symbols:

® User-defined symbols can be composed of alphanumeric
characters, underlines (), dollar signs ($), and periods ().
Any other character terminates the symbol.

® The first character of a symbol must not be a number.

e The symbol must be no more than 15 characters long and must be
unique.

In addition, by DIGITAL convention:

® The dollar sign ($) is reserved for names defined by DIGITAL.
This convention ensures that a user-defined name (which does
not have a dollar sign) will not conflict with a
DIGITAL-defined name (which does have a dollar sign).

e The period (.) should not be used in any global symbol name
(see Section 3.3.3) because other languages, such as FORTRAN,
do not allow periods in symbol names.

Macro names follow the same rules and conventions as user-defined
symbols (see the description of the .MACRO directive in Chapter 6 for
more information on macro names). User-defined symbols and macro
names do not conflict; that 1is, the same name can be used for a
user-defined symbol and a macro. However, to avoid confusion,
user-defined symbols and macros should be given different names.

3.3.3 Determining Symbol Values
The value of a symbol depends on its use in the program. VAX-11 MACRO
uses a different method to determine the values of symbols in the
operator field than it uses to determine the values of symbols in the
operand field.
A symbol in the operator field can be either a permanent symbol or a
macro name. VAX-11 MACRO searches for a symbol definition in the
following order:

® Previously defined macro names

® User-defined opcode (see the .OPDEF description in Chapter 5)

® Permanent symbols (instructions and directives)

® Macro libraries
This search order allows permanent symbols to be redefined as macro
names. If a symbol in the operator field is not defined as a macro or
a permanent symbol, the assembler displays an error message.

A symbol in the operand field must be either a user-defined symbol or
a register name. :

THE COMPONENTS OF MACRO SOURCE STATEMENTS

User-defined symbols can be either local (internal) symbols or global
(external) symbols. Whether symbols are local or global depends on
their use in the source program.

A local symbol can be referenced only in the module in which it is
defined. If local symbols with the same names are defined in
different modules, the symbols are completely independent. A global
symbol's definition, however, can be referenced from any module in the
program.

Normally, VAX-11 MACRO treats all user-defined symbols as local when
they are defined. However, a symbol definition can be explicitly
declared to be global by any one of the following three methods:

e Use of the double colon (::) in defining a label (see Section
2.1)

e Use of the double equal sign (==) 1in a direct assignment
statement (see Section 3.8)

e Use of the .GLOBAL, .ENTRY, or .WEAK directive (see Chapter 5)

When a symbol is referenced within the module in which it is defined,
VAX-11 MACRO considers the reference an internal reference. When a
symbol is referenced within a module in which it is not defined,
VAX~-11 MACRO considers the reference an external reference (that is,
the symbol is defined in another module). The .DISABLE directive can
be used to make references to symbols not defined in the current
module illegal. 1In this case, the .EXTERNAL directive must be used to
specify that the reference is an external reference. See Chapter 5
for descriptions of the .DISABLE and .EXTERNAL directives.

3.4 LOCAL LABELS

Local labels are used to identify addresses within a block of source
code.

Format
nn$

nn
A decimal integer in the range of 1 through 65535.

Local labels can be used in the same way as user-defined symbol
labels, but with the following differences:

e Local labels cannot be referenced outside the block of source
code in which they appear.

e Local labels can be reused in another block of source code.

e Local labels do not appear in the symbol tables and, thus,
cannot be accessed by the debugger.

e Local labels cannot be used in .END (see Chapter 5)

By convention, local labels are positioned the same as statement
labels; that is, they are left-justified in the source text.
Although local labels can appear in the program in any order, by
convention, the local labels in any block of source code should be in
numeric order.

3-7

THE COMPONENTS OF MACRO SOURCE STATEMENTS

Local labels are useful as branch addresses when the address is used
only within the block. Local labels distinguish between labels that
are used only in a small block of code and labels that are referenced
elsewhere in the module. A disadvantage of local labels is that their

numeric names cannot provide any indication of their purpose.
Consequently, local 1labels should not be used to label logically
unrelated sequences of statements; user-defined symbols should be

used instead.

DIGITAL recommends that users create local labels only in the range of
1$ to 29999% because the assembler automatically creates local labels

in the range of 30000$ to 65535$ for use in macros (see Section
6.1.6).
A local label block is delimited by the following statements:

® A user-defined label
® A .PSECT directive (see Chapter 5)
e The .ENABLE and .DISABLE directives (see Chapter 5) which can
extend a 1local 1label block beyond user-defined labels and
.PSECT directives
A local label block is usually delimited by two user-defined 1labels.
However, the .ENABLE LOCAL_BLOCK directive starts a local block that
is terminated only by one of the following:
e A second .ENABLE LOCAL_BLOCK directive

e A .DISABLE LOCAL BLOCK directive followed by a user-defined

label or a .PSECT directive

Although local label blocks can extend from one
DIGITAL

another,

should be used instead.

program section to

recommends that local labels in one program section
not be referenced from another program section.

User-defined symbols

An example showing the use of local labels follows.

RPSUB: MOVL AMOUNT, RO ; STARTS LOCAL LABEL BLOCK
10$: SUBL2 DELTA,RO ; DEFINE LOCAL LABEL 10$
BGTR 108 ; CONDITIONAL BRANCH TO LOCAL LABEL
ADDL2 DELTA, RO ; EXECUTED WHEN RG NOT > 0
COMP: MOVL MAX,R1 ; ENDS PREVIOUS LOCAL LABEL
CLRL R2 ; BLOCK AND STARTS NEW ONE
10$: CMPL RO,R1 ; DEFINE NEW LOCAL LABEL 10$
BGTR 208 ; CONDITIONAL BRANCH TO LOCAL LARBEL
SUBL INCR, RO ; EXECUTED WHEN RO NOT > Rl
INCL R2 P e e e
BRB 108 ; UNCONDITIONAL BRANCH TO LOCAL LABEL
20$: MOVL R2,COUNT ; DEFINE LOCAL LABEL
BRW TEST ; UNCONDITIONAL BRANCH TO
; USER-DEFINED LABEL
.ENABLE LOCAL BLOCK ; START LOCAL LABEL BLOCK
ENTR1: POPR # "M<RO,R1,R2> ; THAT WILL NOT BE TERMINATED
ADDL3 RO,R1,R3 ; BY A USER-DEFINED LABEL
BRB 108 ; BRANCH TO LOCAL LABEL THAT IS AFTER
; A USER-DEFINED LABEL
ENTR2: SUBL2 R2,R3 ; DOES NOT START A NEW
’

LOCAL LABEL BLOCK

THE COMPONENTS OF MACRO SOURCE STATEMENTS

108$: SUBL2 R2,R3 DEFINE LOCAL LABEL

BGTR 208 CONDITIONAL BRANCH TO LOCAL LABEL
INCL RO EXECUTED WHEN R2 NOT > R3
BRB NEXT UNCONDITIONAL BRANCH TO

USER-DEFINED LABEL

DEFINE LOCAL LABEL

DIRECTIVE FOLLOWED

BY USER~DEFINED LABEL TERMINATES
LOCAL LABEL BLOCK

208: DECL RO
.DISABLE LOCAL_BLOCK
NEXT: CLRL R4

Ne Ne Ne e Ne W we we e

3.5 TERMS AND EXPRESSIONS
A term can be any one of the following:
e A number
e A symbol
® The current location counter (see Section 3.9)
e A textual operator followed by text (see Section 3.6.2)

e Any of the above preceded by a unary operator (see Section
3.6)

VAX-11 MACRO evaluates terms as longword (4-byte) values. If an
undefined symbol 1is used as a term, the linker determines the term's
value. The current location counter (.) has the value of the location
counter at the start of the current operand.

Expressions are combinations of terms joined by binary operators (see
Section 3.7) and evaluated as longword (4-byte) values. VAX-11l MACRO
evaluates expressions from left to right with no operator precedence
rules. However, angle brackets (<>) can be used to change the order
of evaluation. Any part of an expression that is enclosed in angle
brackets 1is first evaluated to a single value, which is then used in
evaluating the complete expression. For example, the expressions
A*B+C and A*<B+C> are different. Angle brackets can also be used to
apply a unary operator to an entire expression, such as -<A+B>.

Note that unary operators are considered part of a term; thus, VAX-11
MACRO performs the action indicated by a unary operator before it
performs the action indicated by any binary operator.

All expressions are one of three types: relocatable, absolute, or
external (global).

e An expression is relocatable if its value is fixed relative to
the start of the program section in which it appears. The
current location counter is relocatable in a relocatable
program section.

® An expression is absolute if its wvalue is an assembly-time
constant. An expression whose terms are all numbers is
absolute. An expression that consists of a relocatable term
minus another relocatable term from the same program section
is absolute, because such an expression reduces to an
assembly-time constant.

® An expression is external if it contains one or more symbols
that are not defined in the current module.

3-9

THE COMPONENTS OF MACRO SOURCE STATEMENTS

Any type of expression can be used 1in

® .ALIGN alignment directive

most macro statements, but
restrictions are placed on expressions used in:

® .BLKx storage allocation directives

® .IF and .IIF conditional assembly block directives

® .REPEAT repeat block directive

® .OPDEF opcode definition directive

® .ENTRY entry point directive

e .BYTE, .LONG, .WORD, .SIGNED BYTE, and .SIGNED WORD directive

repetition factors

® Direct assignment statements (see Section 3.8)

See Chapter 5 for descriptions of the directives listed above, except
.REPEAT which 1is described in Chapter 6. Expressions used in these

directives and in direct assignment

statements can only contain

symbols that have been previously defined in the current module. They
cannot contain either external symbols or symbols defined later in the
current module. 1In addition, the expressions in these directives must

be absolute. Expressions in direct
relocatable.

An example showing the use of expressions

A = 2*100
.BLKB A+50

LAB: «BLKW A
HALF = LAB+<A/2>

LAB2: .BLKB LAB2-LAB

«WORD LAB3-LAB2

LAB3: .WORD TST+LAB+2

3.6 UNARY OPERATORS

NS N NS NP NG e NS N N N Ne N e N8

assignment statements can be

follows.

2*100 IS AN ABSOLUTE EXPRESSION
A+50 IS AN ABSOLUTE EXPRESSION A
CONTAINS NO UNDEFINED SYMBOLS
LAB IS RELOCATABLE

LAB+<A/2> IS A RELOCATABLE
EXPRESSION AND CONTAINS NO
UNDEFINED SYMBOLS

LAB2-LAB IS AN ABSOLUTE EXPRESSI
AND CONTAINS NO UNDEFINED SYMBOL
LAB3-LAB2 IS AN ABSOLUTE EXPRESS
BUT CONTAINS THE SYMBOL LAB3
THAT IS DEFINED LATER IN THIS MO
TST+LAB+2 IS AN EXTERNAL EXPRESS
BECAUSE TST IS AN EXTERNAL SYMBO

A unary operator modifies a term or an expression, and indicates an
action to be performed on that term or expression. Expressions must

be enclosed in angle brackets. Unary

operators can be used to

indicate whether a term or expression is positive or negative (if
unary plus or minus is not specified, the value is assumed to be plus,
by default). In addition, unary operators perform radix conversion,
textual conversion (including ASCII conversion), and numeric control
operations, as described in Sections 3.6.1 through 3.6.3. Table 3-3

summarizes the unary operations.

3-10

THE COMPONENTS OF MACRO SOURCE STATEMENTS

Operation

Results in the positive
value of A

Results in the negative
(2's complement) value
of A

Specifies that 11000111
is a binary number

Specifies that 127 is a
decimal number

Specifies that 34 is an
octal number

Specifies that FCF9 is
a hexadecimal number

Produces an ASCII
string; the characters
between the matching
delimiters are
converted to ASCII
representation

Specifies the registers
R3, R4, and R5 in the
register mask

Specifies that 3.0 is a
floating-point number

Table 3-3
Unary Operators
Unary
Operator Operator Name Example
e e e e ———
+ Plus sign +A
- Minus sign -A
“B Binary “B11000111
“D Decimal “D127
e) Octal “034
°X Hexadecimal “XFCF9
“A ASCII “a/ABC/
"M Register mask #"M<R3,R4,R5>
“F Floating point | "F3.0
“C Complement ~c24

Produces the 1's
complement value of 24
(decimal)

More than one unary operator can be applied to a single term or to

expression enclosed in angle brackets.

-+-A

This construct is equivalent to:

—<+<-A>>

3.6.1 Radix Control Operators

VAX-11 MACRO accepts terms or expressions in four
and hexadecimal.
Expressions must be enclosed in angle brackets.

binary,
decimal.

decimal,

octal,

3-11

For example:

different

The default radix

radixes:

THE COMPONENTS OF MACRO SOURCE STATEMENTS

Formats
“Bnn
“Dnn
“Onn
“Xnn
nn

A string of characters that are legal in the specified radix.
The legal characters for each radix are listed below.

Format Radix Name Legal Characters

“Bnn Binary 0 and 1

“Dnn Decimal 0 through 9

“Onn Octal 0 through 7

“Xnn Hexadecimal 0 through 9 and A through F

Radix control operators can be included in the source program anywhere
a numeric value is legal. A radix control operator affects only the
term or expression immediately following it, causing that term or
expression to be evaluated in the specified radix.

For example:

.WORD “B00001101

.WORD D123

.WORD “047

.WORD <A+7013>

.LONG “X<F1C3+FFFFF-20>

BINARY RADIX

DECIMAL RADIX (DEFAULT)
OCTAL RADIX

13 IS IN OCTAL RADIX

ALL NUMBERS IN EXPRESSION
ARE IN HEXADECIMAL RADIX

we we Ne o we we

The circumflex cannot be separated from the B, D, O, or X that follows
it, but the entire radix control operator can be separated by spaces
and tabs from the term or expression that is to be evaluated in that
radix.

The decimal operator, the default, is needed only within an expression
that has another radix control operator. In the following example,
the 16 would be interpreted as an octal number if the "D operator did
not precede it:

. LONG "0<10000 + 100 + “D16>

3.6.2 Textual Operators
The textual operators are the ASCII operator ("A) and the register
mask operator ("M).

3.6.2.1 ASCII Operator - The.ASCII -operator converts =a string of
printable characters to their 8-bit ASCII values and -stores them one
character to a byte. The string of characters must be enclosed in a
pair of matching delimiters.

The delimiters can be any printable character except the space, tab,
or semicolon (;). Although alphanumeric characters can be used as
delimiters, nonalphanumeric -characters -should be used to avoid
confusion.

THE COMPONENTS OF MACRO SOURCE STATEMENTS

Format
“Astring

string
A delimited ASCII string from 1 through 8 characters long.

The delimited ASCII string must not be larger than the data type of
the operand. For example, if the "A operator occurs in an operand in
a MOVW instruction (the data type is a word), the delimited string
cannot be more than two characters.

For example:

MOVES CHARACTERS A,B,C,D,

INTO RO RIGHT JUSTIFIED WITH
"A" IN LOW-ORDER BYTE AND "D"
IN HIGH-ORDER BYTE

COMPARES X AND Y AS ASCII
CHARACTERS WITH CONTENTS OF LOW
ORDER 2 BYTES OF RO

GENERATES 8 BYTES OF ASCII DATA
MOVE ASCII CHARACTERS AB INTO
RO; "A" IN LOW-ORDER BYTE; "B"
IN NEXT; AND ZERO THE 2 HIGH-
ORDER BYTES

MOVL #"A/ABCD/,R0

CMPW #"A/XY/,R0O

.QUAD “A%$1234/678%
MOVL #"A/AB/,RO

WO WE e e We We WE Ne W “e W “we

3.6.2.2 Register Mask Operator - The register mask operator converts
a register name or a list of register names enclosed in angle brackets
into a 1- or 2-byte register mask. The register mask is used by the
PUSHR and POPR instructions and the .ENTRY and .MASK directives (see
Chapter 5).

Formats

"Mreg-name
“M<reg-name-list>

reg-name
One of the register names or the DV or IV arithmetic trap enable
specifiers.

reg-name-list
A list of register names and/or the DV and IV arithmetic trap
enable specifiers, separated by commas.

The register mask operator sets a bit in the register mask for every
register name or arithmetic trap enable specified in the list. The
bits corresponding to each register name and arithmetic trap enable
specifier are listed below.

3-13

THE COMPONENTS OF MACRO SOURCE STATEMENTS

Register Name Arithmetic Trap Bits
Enable
RO through R11 0 through 11 (respectively)
R12 or AP 12
FP 13
SP v 14
DV 15

When the register mask operator is used in a POPR or PUSHR
instruction, RO through R11l, R12 or AP, FP, and SP can be specified.
The PC register name and the IV and DV arithmetic trap enable
specifiers cannot be specified.

When the register mask operator is wused in the .ENTRY or .MASK
directives, R2 through R1l1l and the IV and DV arithmetic trap enable
specifiers can be specified. However, RO, R1l, FP, SP, and PC cannot
be specified. IV sets the integer overflow trap, and DV sets the
decimal string overflow trap.

See the VAX-11/780 Architecture Handbook for more information on
register masks and arithmetic trap enable specifiers.

For example:

.ENTRY RT1, M<R3,R4,R5,R6,IV> SAVE REGISTERS R3,R4
R5, AND R6 AND SET THE
INTEGER OVERFLOW TRAP
SAVE REGISTERS RO,R1,
R2, AND R3
RESTORE RO,R1,R2, AND R3

PUSHR # "M<RO,R1,R2,R3>

~e we we N we we

POPR #"M<RO,R1,R2,R3>

3.6.3 Numeric Control Operators

The numeric control operators are the floating-point operator (°F) and
the complement operator (°C).

3.6.3.1 Floating Point Operator - The floating-point operator accepts
a floating-point number and converts it to its internal representation
(a 4-byte value). This value can be used in any expression. VAX-11
MACRO does not perform floating-point expression evaluation.

Format
“Fliteral

literal
A floating-point number (see Section 3.2.2).

The floating-point operator is useful because it allows a
floating-point number in an instruction that accepts integers.

For example:

MOVL $°F3.7,R0 NOTE THE RECOMMENDED INSTRUCTION
TO MOVE THIS FLOATING-POINT NUMBE

IS THE MOVF INSTRUCTION

~e wo “weo

MOVF $#3.7,R0

3-14

THE COMPONENTS OF MACRO SOURCE STATEMENTS
3.6.3.2 Complement Operator -~ The complement operator produces the
1's complement of the specified value.
Format
“Cterm
term
Any term or expression. If an expression is specified, it must

be enclosed in angle brackets.

VAX-11 MACRO evaluates the term or expression as a 4-byte value before
complementing it.

For example:

. LONG “C"XFF
. LONG “c25

PRODUCES FFFFFF00 (HEX)
PRODUCES COMPLEMENT OF
25 (DEC) WHICH IS
FFFFFFE6 (HEX)

~e wo wo o

3.7 BINARY OPERATORS

In contrast to unary operators, binary operators specify actions to be
performed on two terms or expressions. Expressions must be enclosed
in angle brackets. Table 3-4 summarizes the binary operators.

Table 3-4
Binary Operators
Binary
Operator Operator Name Example Operation
—te———————eee e e
+ Plus sign A+B Addition
- Minus sign A-B Subtraction
* Asterisk A*B Multiplication
/ Slash A/B Division
@ At sign A@B Arithmetic shift
& Ampersand A&B Logical AND
! Exclamation point AlB Logical inclusive OR
\ Backslash A\B Logical exclusive OR

All binary operators have equal priority. Terms or expressions can be
grouped for evaluation by enclosing them in angle brackets. The
enclosed terms and expressions are then evaluated first, and remaining
operations are performed from left to right. For example:

. LONG 1+2%*3
. LONG 14<2%*3>

EQUALS 9
EQUALS 7

.
’
.
’

3-15

THE COMPONENTS OF MACRO SOURCE STATEMENTS

Note that a 4-byte result is returned from all binary operations. If
a 1l-byte or 2-byte operand is used, the result is the low-order
byte(s) of the 4-byte result. VAX-11 MACRO displays an error message
if the truncation causes a loss of significance.

The following sections describe the arithmetic shift, 1logical AND,
logical inclusive OR, and 1logical exclusive OR operators in more
detail.

3.7.1 Arithmetic Shift Operator

The arithmetic shift operator (@) is used to perform 1left and right
arithmetic shift of arithmetic quantities. The first argument is
shifted left or right the number of bit positions specified by the
second argument. If the second argument is positive, the first
argument is shifted left; if the second argument is negative, the
first argument is shifted right. When the first argument is shifted
left, the low-order bits are set to 0; and when the first argument is
shifted right, the high-order bits are set to the value of the
original high-order bit (the sign bit).

For example:
. LONG "Bl01@4

.LONG 1@2
MOVL #<°B1100000@-5>,R0

YIELDS 1010000 (BINARY)
YIELDS 100 (BINARY)
YIELDS 11 (BINARY)

. wo we

.LONG 1lea
. LONG “X1234@-A

YIELDS 10000 (BINARY)
YIELDS 123 (HEX)

~e we

3.7.2 Logical AND Operator
The logical AND operator (&) takes the logical AND of two operands.

For example:

A = “B101l0
B = "B1100
.LONG A&B ; YIELDS 1000 (BINARY)

3.7.3 Logical Inclusive OR Operator

The logical inclusive OR operator (!) takes the logical inclusive OR
of two operands.

For example:

A = "B1010
B = "B1100
. LONG AlB ; YIELDS 1110 (BINARY)

3-16

THE COMPONENTS OF MACRO SOURCE STATEMENTS

3.7.4 Logical Exclusive OR Operator

The logical exclusive OR operator (\) takes the logical exclusive OR
of two arguments.

For example:

A = “B1010
B = "B1100
.LONG A\B ; YIELDS 0110 (BINARY)

3.8 DIRECT ASSIGNMENT STATEMENTS

A direct assignment statement equates a symbol to a specific value.
Unlike a symbol that is wused as a label, a symbol defined with a
direct assignment statement can be redefined as many times as desired.

Formats

symbol=expression
symbol==expression

symbol
A user-defined symbol.

expression
An expression that does not contain any undefined symbols (see
Section 3.5). .

The format with a single equal sign (=) defines a local symbol and the
format with a double equal sign (==) defines a global symbol. See
Section 3.3.3 for more information about local and global symbols.

The following three syntactic rules apply to direct assignment
statements:

® An equal sign (=) or double equal sign (==) must separate the
symbol from the expression defining the symbol's value.
Spaces preceding and/or following the direct assignment
operators have no significance in the resulting value.

e Only one symbol can be defined in a single direct assignment
statement.

e A direct assignment statement can be followed only by a
comment field.

In addition, by DIGITAL convention, the symbol in a direct assignment
statement is placed !in the label field.

For example:

TO <1270/10>+32-16
OR 143 (DECIMAL)

A=1 ; THE SYMBOL “A' IS EQUATED
; TO THE VALUE 1

B = A@5 ; THE SYMBOL 'B' IS EQUATED
: TO 1@5 OR 20 (HEX)"

C = 127*10 ; THE SYMBOL 'C' 1S EQUATED
; TO 1270(DEC)

D = "X100/°X10 ; THE SYMBOL 'D' IS EQUATED
; TO 10 (HEX)

E = <B/10>+A1-<C> : THE SYMBOL 'E' IS EQUATED
’
:

3-17

THE COMPONENTS OF MACRO SOURCE STATEMENTS

3.9 CURRENT LOCATION COUNTER

The period (.), the symbol for the current location counter, always
has the value of the address of the current byte. VAX-11 MACRO sets
the current location counter to 0 at the beginning of the assembly and
at the beginning of each new program section.

Every VAX-11 MACRO source statement that allocates memory in the
object module increments the value of the current location counter by
the number of bytes allocated. For example, the directive .LONG 0
increments the current location counter by 4, but a direct assignment
statement, except the special form described below, does not increase
the current location counter because no memory is allocated.

The current location counter can be explicitly set by a special form
of the direct assignment statement. The 1location counter can be
either incremented or decremented. Explicitly setting the location
counter is often useful when defining data areas. Data storage area
should not be reserved by explicitly setting the location counter;
the .BLK directives should be used instead (see Chapter 5).

Format
.=expression

expression
An expression that does not contain any undefined symbols (see
Section 3.5).

In a relocatable program section, the expression must be relocatable;
that 1is, the expression must be relative to an address in the current
program section (it can be relative to the current location counter).

For example:

. = .+40 ; MOVES LOCATION COUNTER
; FORWARD

When a program section previously defined in the current module is
continued, the current location counter is set to the last value of
the current location counter in that program section.

When the current location counter is used in the operand field of an
instruction, the current location counter has the value of the address
of that operand--it does not have the value of the address of the
beginning of the instruction. For this reason, the current location
counter is not normally used as a part of the operand specifier.

3-18

CHAPTER 4

ADDRESSING MODES

This chapter summarizes the VAX-11 addressing modes and contains
examples of VAX-11 MACRO statements that use these addressing modes.
The VAX-11/780 Architecture Handbook describes the addressing modes in
detail.

There are four types of addressing modes:

e General Register

e Program Counter

e Index

e Branch
Although index mode is a general register mode, it is considered a
separate type of mode because it can be used only in combination with

another type of mode.

Table 4-1 summarizes the addressing modes.

4.1 GENERAL REGISTER MODES

The general register modes use registers RO through R12, AP (the same
as R12), FP, and SP.

There are eight general register modes:
® Register
e Register Deferred
e Autoincrement
e Autoincrement Deferred
e Autodecrement
e Displacement
e Displacement Deferred

e Literal

ADDRESSING MODES

(ebed 3xeu uo psnurjuod) :

‘juejsuod jurod-Burleory e 10 ‘juelsuoo isbejur ue ‘uorssaadxs uy

Teza31t
*ssaappe ue Bbuihkyioads uorsseidxs uy
ssaappe
*juswedeTdsip e buihAyrosads uorssoidxs uy
Stp
*(g°p uorjzoag
®9S) s9pow Iseq UIRIILD I0J Ipouw-aseq sYjl uf patryroads uy ayjz
Se dwes ay3 aq jouued xy °XY Jo ade(d ur pesn aq ued 193sibai
ds 10 ‘d4g ‘dv 94yl 3eyl 930N °ZTH ybnoiyl ou 193s1hai Teisusb Auy
xy
‘ud 3o aoerd ut pesn aq ued 193stboi
ds 10 ‘dd ‘dqv 8yl eyl 83oN °ZTY uybnoayjy ou 193s1ho1 Teisuab Auy
uy
shoy
adX3
ejep pueiado ayz jo 8z1s ay3z 4Aq
s3juajuod 193sibea syl sjuswaioutg
lossadoad ay3 {pueasado
sax 9Yy3l Jo ssaippe 8yl surejuod 193sibay 8 +(uy) juswsadurolny
pueiado ay3 paaasazaqg
sax JO ssaappe ay3l sureluod 193siboy 9 (uy) I93s1bay
I931s1bay
ON pueiado a8yl suiejuod 193siboy q uyg I93sibay Teaauan
Hﬂ!lll’lll'lll!lll" —_— ‘"1
Zatqgexapur uotadraosag anTeA xIewIog 9pPON ad4iy,
Tewioap burssaippy
~exXay

sapoW buissaappy
T1-v °1qel

ADDRESSING MODES

(ebed 3xau uo pINUIIUOD)

Te1931T 3I0ys e se palols
ST Tea931T 2yl ‘{puerado ay3l| €-0 Te1931T#.S
ON 9yl st porjroads Teis3lrl dUl Teasatl# Tea13311
KA1eat3oadsaa
4qususoeTdsTp paombuot
pue ‘piom ‘o3Aq @3eDTpUT
.1 pue ‘ M ‘ g ¢!ssaippe d (ug)sip.T9
pueisdo ay3l jo ssaippe 3yl a (ug)stp Md
ST jusweoeTdsIp 92yl pue 193s1Hai g (ud)stp_ €9 paaiajad
sax oy3z 3o s3jus3uod ayjz Jo uns 3yl (ud)stpd juswaoe1ds1a
K1aa1309dsai
‘quouaoeTdsIp paombuol pue
fpiom ‘93Aq 93eOTpPUT T pue’ M g (ug)sip 1
4/ g ‘!pueiado ay3l jo ssaippe 9yl o) (uq)sip_M
ST juswsoeTdsip aYy3l pue 193sibai v (ug)sip. g
sax ay3 JO s3juejuod 8yl 3Jo uns syl (ug)stp juaweoeTds1d
pueaado ay3l jo ssaippe
sy3 surejuod usayl i93sibai
sya ¢edX3 ejep pueisdo ayi 3Jo
221s aya Aq s3usa3juod 1s3sibaa
Sax sy3 s3juswaidap 10ss8d01d YL L (uyg) - juawaiosapoliny
Aq sjuajuod 193s1bai
ay3 s3juswaidoui lossedoid (*3uo0))
ay3z !ssaippe pueiado ay3l peoaisjeq | a93s1boy
sox Jo sseappe 9yl sutejuod 1a3stbay 6 +(ug)?d juswaIduIolNy Teaauad
rH = = — ———— HHJ
Zoatqexspul uotidraosaq anyep yIBWIOT apon adiy
Teuroap puissaippv
—-ex9aH

S9poW buissalippy¥
(*3uo)d) 1-% °o1Gel

ADDRESSING MODES

(sbed 3xau uo panurjuod)

ON

S9X

S9X

sox

¢oTqexapur

paompenb

10 ‘paombuor ‘piom ‘93Aq e se
poi103s ST [eIS®ITIT 9yl {pueasdo
Y3l S paryroads Teialrl ayl

(3uswsoeTdsip e

Se jou) ssaippe [en3ITA ajnrosqe

ue se paiols ST parIrdads

ssaippe ayaz {puesado ayz Jo

Sseappe 8yl s perjroeds ssaippe syl

ATsAt309dsaa

‘3uswsdeTdsip paombuor

pue ‘piom ‘e3Aq sjed1put .1 pue

‘UM g !Dd woa3z juswederdsip

B Sse paiols ST parjioads

Ssaippe ay3 Issaippe pueiado ayz jo
Ssaippe ayjl ST patjioads ssaippe ayl

A1sa130adsaz

‘jusweoetdsIp paombuoil

pue ‘paom ‘83Aq s3edrput .1 pue
‘M Y.g D4 woi3z juswaderdsip

e se pai1ols ST paryroads ssaippe
ay3 ‘!pueiado sy3z Jo ssaippe

9yl ST parJioads ssaappe ayl

uotadraosag

MmO

<COM

antea
Teuroap
-exoH

Tera3 114 I
Te1931T4#

ssaappe#p

ssaappe_19
ssaappe_mp
sseippe_g9

ssaippep

ssaappe_1
ssaippe_M
ssaappe_g

ssaippe

sieuwrog

ajeipauwuwy

ajnTosqy

paiiajag
aAT3eTSY

aAT3eTSY

apon
purssaippy

I93uno)
weiboag

adAg,

SOpOW buissaippv
(*3uod) 1-% s1qel

4-4

ADDRESSING MODES

SUOTI3ONIISUT youeiq

2yl Y3Im pasn aq ATuo ued apou
youeiq {Dd 03 3juswedeTdsIp e SE
pa10o3s SI Ssaippe STyl {pueiaado
ON ay3 ST pet1jioads ssaippe 8yl - ssaappe youeag youeag

youeiq 10 ‘xXoput ‘TeISITT
493erpouny ‘193sibea 3dsoxa aspou
puisseappe Aue aq ued spou-aseq
{pueiado oyl JO ssaippe 3yl

st 9dA3 ejep pueiado ay3z jo 8zIS
ay3 pue Xy JO S3ua3juod ayi 3o
jonpoad eyl pue ssaippe aseq ayl
Jo wns ay3 ¢{Xepul 9yl sargroads
193s1bhea oyl pue ssaippe

ON oseq oyl sarjioads apow-sseq Byl 74 [xy] spou-aseq xapul xapul

anTeA 93nfosqe ue se SsS3Ippe
ay3 So103S I9yUIT 9yl ‘ssaippe
1{en3iIA 23NTOSqge ue Se pauijap
s1 ssaippe @yl JT ¢Dd woij
qusuweoeldsIp e se ssaippe 3yl
S9103S JI93UIT @Yl ‘orqeiedoTal

se paurjsp SI Ssaappe (*3uoD)
ay3z 3t ‘{pueiado 8yl jo ssaappe I93uno)
sax oyl ST pat3roads ssaappe 3yl - ssaippe_ D TeasusH weiaboid
ZaTgexapul uotidtaosaq antTeA gleuiod SPON adAlL
Tewioap Buiseaippy
~©eX9H

S9poW burssaippv
(*3uo0D) T-¥ @19l

4-5

ADDRESSING MODES

4.1.1 Register Mode

In register mode, the operand is the contents of the specified
register, except for quadword, double-precision floating-point, or
field operands, where the operand is the contents o¢f register n
Cconcatenated with the contents of register n+l. The least significant
bytes of the operand are in register n and the most significant bytes
are in register n+l. The results are unpredictable if PC is used in
register mode or if SP is used in register mode with a quadword,
double-precision floating-point, or field operand extending into PC.

Formats
Rn
AP
FP
SP
n

A number in the range of 0 through 12.

Example
CLRB RO ; CLEAR LOWEST BYTE OF RO
CLRQ R1 ; CLEAR R1 AND R2
TSTW R10 ; TEST LOWER WORD OF R10
INCL R4 ; ADD 1 TO R4

4.1.2 Register Deferred Mode

In register deferred miode, the register contains the address of the
operand. Register deferred mode ¢an be used with index mode (see
Section 4.3).

Formats
(Rn)
(AP)
(FP)
(sp)
n

A number in the range of 0 through 12,

Example

MOVAL LDATA,R3 MOVE ADDRESS OF LDATA TO R3

’
CMPL (R3) ,RO ; COMPARE VALUE AT LDATA TO RO
BEQL 108 ; IF THEY ARE THE SAME, IGNORE
CLRL (R3) ; CLEAR LONGWORD AT LDATA
10§: MOVL (SP) ,R1 i COPY TOP ITEM OF STACK INTO R1
’

MOVZBL (AP) ,R4 GET NUMBER OF ARGUMENTS IN CALL

4.1.3 Autoincrement Mode

In autoincrement mode, the register contains the address of the
operand. After evaluating the operand address contained in the
register, the processor increments that address by the size of the
operand data type. The processor increments the contents of the

ADDRESSING MODES

register by 1, 2, 4, or 8 for a byte, word, longword, or quadword
operand, respectively.

Autoincrement mode can be used with index mode (see Section 4.3), but:
the index register cannot be the same as the register specified in
autoincrement mode.

Formats
(Rn)+
{AP) +
(FP) +
(SP)+

n

A number in the range of 0 through 12.
Example

GET ADDRESS OF TABLE

CLEAR FIRST AND SECOND LONGWORDS
AND THIRD LONGWORD IN TABLE
LEAVE R1 POINTING TO TABLE +12
GET ADDRESS OF BYTARR

INCREMENT FIRST BYTE OF BYTARR
AND SECOND

; EXCLUSIVE-OR THE TWO LONGWORDS
WHOSE ADDRESSES ARE STORED IN

R3 AND R4 AND STORE RESULT IN
ADDRESS CONTAINED; IN R5, THEN
ADD 4 TO R3, R4, AND R5

MOVAL TABLE,R1
CLRQ (R1)+
CLRL (R1)+

MOVAB BYTARR,R2

INCB (R2)+

INCB (R2)+

XORL3 (R3) +, (R4) +, (R5)

~e %o %o we 4 No Ne W We w0 N0 W

4.1.4 Autoincrement Deferred Mode

In autoincrement deferred mode, the register contains an address that
is the address of the operand address (a pointer to the operand).
After evaluating the operand address, the processor increments the
contents of the register by 4 (the size in bytes of an address).

Autoincrement deferred mode can be used with index mode (see Section
4.3), but the index register cannot be the same as the register
specified in autoincrement deferred mode.

Formats
@ (Rn)+
@ (AP)+
@(FP)+
@(spP)+
n

A number in the range of 0 through 12.
Example

GET ADDRESS OF POINTER LIST
CLEAR QUADWORD POINTED TO BY
FIRST ABSOLUTE ADDRESS IN PNTLIS
THEN ADD 4 TO R2 :
CLEAR BYTE POINTED TO BY SECOND
ABSOLUTE ADDRESS IN PNTLIS

THEN ADD 4 TO R2

MOVAL PNTLIS,R2
CLRQ @ (R2) +

‘CLRB @(R2) +

Ne We We Wé We W W

4-7

ADDRESSING MODES

MOVL R10,@(RO) + MOVE R10 TO LOCATION WHOSE ADDRESS
IS POINTED TO BY RO; THEN ADD 4

TO RO

~e w» wo

4.1.5 Autodecrement Mode

In autodecrement mode, the processor decrements the contents of the
register by the size of the operand data type; then the register
contains the address of the operand. The processor decrements the
register by 1, 2, 4, or 8 for byte, word, longword, or quadword
operands, respectively.

Autodecrement mode can be used with index mode (see Section 4.3), but
the 1index register cannot be the same as the register specified in
autodecrement mode.

Formats
-{(Rn)
-(AP)
= (FP)
-(sp)

n

A number in the range of 0 through 12.

Example
CLRQ -(R1) SUBTRACT 8 FROM R1 AND ZERO THE

QUADWORD WHOSE ADDRESS IS THEN
IN R1
PUSH THE ZERO-EXTENDED LOW BYTE
OF R3 ONTO THE STACK AS A LONGWORD
ONTO THE STACK
SUBTRACT 1 FROM RO AND COMPARE LOW
BYTE OF R1 WITH BYTE WHOSE ADDRESS
IS NOW IN RO

MOVZBL R3,-(SP)

CMPB R1l,-(RO)

W Ne We We We W W W we

4.1.6 Displacement Mode

In displacement mode, the sum of the contents of the register and the
displacement (sign extended to a longword) is the address of the
operand.

Displacement mode can be used with index mode ({see Bettion 4.3).

Formats
dis(Rn)
dis (AP)
dis(FP)
dis(SP)

n

A number in the range of 0 through 12,

dis
An expression specifying a displacement; the expression can be
preceded by one of the following displacement length specifiers,
which indicate the number of bytes needed to store the
displacement.

4-8

ADDRESSING MODES

Displacement
Length Specifier Meaning
B” Displacement requires 1 byte
W Displacement requires 1 word (2 bytes)
L° Displacement requires 1 longword (4 bytes)

If no displacement length specified precedes the expression and
the value of the expression is known, the assembler chooses the
smallest number of bytes (1, 2, or 4) needed to store the
displacement. If no length specifier precedes the expression and
the value of the expression is unknown, the assembler reserves 1
word (2 bytes) for the displacement. Note that if the
displacement is either relocatable or defined later in the source
program, the assembler considers it unknown. If the actual
displacement does not fit in the memory reserved, the linker
displays an error message.

~

Example

MOVAB KEYWORDS ,R3
MOovB B"IO(R3) ,R4

GET ADDRESS OF KEYWORDS

GET BYTE WHOSE ADDRESS IS

I0 PLUS ADDRESS OF KEYWORDS

THE DISPLACEMENT IS STORED AS A BYTE
GET BYTE WHOSE ADDRESS IS ACCOUNT
PLUS ADDRESS OF KEYWORDS

THE DISPLACEMENT IS STORED AS A BYTE
CLEAR WORD WHOSE ADDRESS

IS STA PLUS CONTENTS OF Rl

THE DISPLACEMENT IS STORED

AS A LONGWORD

MOVE RO TO ADDRESS THAT IS -2

PLUS THE CONTENTS OF R2

THE DISPLACEMENT IS STORED AS A BYTE
TEST THE BYTE WHOSE ADDRESS

IS EXTRN PLUS THE

ADDRESS OF KEYWORDS

THE DISPLACEMENT IS STORED AS A WORD
SINCE EXTRN IS UNDEFINED

MOVE <CONTENTS OF R5> + 2

TO RO

MOVB B"ACCOUNT(R3) ,RS5

CLRW L"STA(R1)

MOVL RO,-2(R2)

TSTB EXTRN(R3)

MOVAB 2(R5) ,RO

MO WE NE NG We Ne NG N We We We e We N V6 W W Ve e We %o

Note

If the value of the displacement is 0 and no displacement length
is specified, the assembler uses register deferred mode rather
than displacement mode,

4.1.7 Displacement Deferred Mode

In displacement deferred mode, the sum of the contents of the register
and the displacement {sign extended to a longword) is the address of
the operand address {a pointer to the operand).

Displacement deferred mode can be used with index mode (see Section
4.3).

ADDRESSING MODES

Formats
@dis (Rn)
@dis(AP)
@dis (FP)
@dis (SP)
n

dis

A number in the range of 0 through 12.

An expression specifying a displacement; the expression can be
preceded by one of the following displacement length specifiers,
which indicate the number of bytes needed to store the
displacement.

Displacement
Length Specifier Meaning
B" Displacement requires 1 byte
w* Displacement requires 1 word (2 bytes)
L® Displacement requires 1 longword (4 bytes)

If no displacement length specifier precedes the expression and
the value of the expression is know, the assembler chooses the
smallest number of bytes (1, 2, or 4) needed to store the
displacement. If no length specifier precedes the expression and
the value of the expression is unknown, the assembler reserves 1
word (2 bytes) for the displacement. Note that if the
displacement is either relocatable or defined later in the source
program, the assembler considers it unknown. If the actual
displacement does not fit in the memory reserved, the linker
displays an error message.

Example

4.1.8

MOVAL ARRPOINT,R6
CLRL @16 (R6)

GET ADDRESS OF ARRAY OF POINTERS
CLEAR LONGWQORD POINTED TO BY
LONGWORD WHOSE ADDRESS IS 16
PLUS THE ADDRESS OF ARRPOINT
; THE DISPLACEMENT IS STORED AS A BYTE
MOVL @B"OFFS (R6) , @RSOFF (R6) ; MOVE THE LONGWORD POINTED TO
3 BY LONGWORD WHQSE ADDRESS IS
OFFS PLUS THE ADDRESS OF ARRPOINT
TO THE ADDRESS POINTED TO BY
LONGWORD WHOSE ADDRESS IS
RSOFFS PLUS THE ADDRESS OF ARRPOINT

N we we wo

CLRW @84 (R2) CLEAR THE WORD THA? IS POINTED

TO BY LONGWORD AT 84 PLUS THE
CONTENTS OF R24-THE ASSEMBLER USES
BYTE DISPLACEMENT AUTOMATICALLY

N ™o Ne Ne N We we N W W

Literal Mode

In literal mode, the value of the literal is stored in the addressing
mode byte itself,

Formats

#literal
S"#literal

THE FIRST DISPLACEMENT IS STORED AS A BYTE
THE SECOND DISPLACEMEN® IS STORED AS A WOR

ADDRESSING MODES

literal
An expression, an integer constant, or a floating-point constant.
Phe literal must fit in the short 1literal form. That is,
integers must be in the range of 0 through 63 and floating-point
constants must be one of the 64 values listed in Table 4-2,
Floating-point short literals are stored with a 3-bit exponent
and a 3-bit fraction. Table 4-2 also shows the value of the
exponent and the fraction for each 1literal. See the VAX-11
Architecture Handbook for information on the format of short

literals.
Table 4-2
Floating Point Short Literals
Fraction
0 1 2 3 4 5 6 7
Exponent
0 . 0.5| 0.5625| 0,625 0.6875{ 0.75; 0.8125| 0.875 0.9375
1 1.00 1.125 | 1.25 1.37 1.5 1.625 1.75 1.875
2 2.0] 2.25 2.5 2.75 3.0 3.25 3.5 3.75
3 4.0| 4.5 5.0 5.5 6.0 6.5 7.0 7.5
4 8.0 9.0 10.0 11.0 12.0 | 13.0 14.0 15.0
5 16.0]/18.0 20.0 22.0 24.0 | 26.0 28.0 30.0
6 32,0136.0 40.0 }44.0 48.0 | 52.0 56.0 60.0
7 64.0]172.0 80.0 |[88.0 96.0 {104.0 112.0 120.0
Example

MOVL #1,R0 RO IS SET TO 1; THE 1 IS STORED
IN THE INSTRUCTION AS A SHORT
LITERAL

THE LOW BYTE OF Rl IS SET

TO THE VALUE CR

CR IS STORED IN THE INSTRUCTION
AS A SHORT LITERAL

IF CR IS NOT IN RANGE 0-63,

THE LINKER PRODUCES A TRUNCATION
ERROR

R6 IS SET PO THE FLOATING

POINT VALUE 0.625; IT IS STORED
IN THE FLOATING POINT SHORT

LITERAL FORM

MOVB S"#CR,R1

MOVF $0.625,R6

we WP We We WP We We We W W We We W “o

Notes

1. When the #literal format is wused, the assembler chooses
whether to wuse }iteral mode or immediate mode (see Section
4.2,4), The assembler uses immediate mode if 4ny of the
following conditions are met:

e The value¢ of the literal does not £it ip the Short literal
form

e The literal is a relocatabld or external expression (see

e The litéfel is an expression that contains undefined
symbols

ADDRESSING MODES

The difference between immediate mode and literal mode is the
amount of storage that it takes to store the literal in the
instruction.

2, The S"#literal format forces the assembler to use 1literal
mode.

4.2 PROGRAM COUNTER MODES
The program counter modes use PC for a general register.
There are five program counter modes:

® Relative

e Relative Deferred

e Absolute

e Immediate

® General

4,2,1 Relative Mode

In relative mode, the address specified is the address of the operand.
The assembler stores the address as a displacement from PC.

Relative mode can be used with index mode (see Section 4.3).
Format
address
address
An expression specifying an address; the expression can be

preceded by one of the following displacement length specifiers,
which indicate the number of bytes needed to store the

displacement.
Displacement
Length Specifier Meaning
B® Displacement requires 1 byte
we Displacement requires 1” word (2 bytes)
L® Displacement requires 1 longword (4 bytes)

If no displacement 1length specifier precedes the address
expression and the value of the expression is known, the
assembler chooses the smallest number of bytes (1, 2, or 4)
needed to store the displacement. If no 1length specifier
precedes the address expression and the value of the expression
is wunknown, the assembler uses the default displacement length
(see the description of .DEFAULT in Chapter 5). If the address
expression 1is either defined later in the program or defined in
another program section, the assembler considers the value
unknown.,

ADDRESSING MODES

Example

MOVL LABEL,R1 GET LONGWORD AT LABEL; THE
ASSEMBLER USES DEFAULT
DISPLACEMENT UNLESS LABEL
PREVIOUSLY DEFINED IN THIS SECTION
COMPARE R10 WITH LONGWORD AT
ADDRESS DATA+4; THE ASSEMBLER
USES A WORD DISPLACEMENT

CMPL W~ <DATA+4>,R10

Ne %o We we Ne N we

4,2.2 Relative Deferred Mode

In relative deferred mode, the address specified is the address of the
operand address (a pointer to the operand). The assembler stores the
address specified as a displacement from PC.

Relative deferred mode can be used with index mode (see Section 4.3).
Format
@address
address
An expression specifying an address; the expression can be
preceded by one of the following displacement length specifiers,

which indicate the number of bytes needed to store the
displacement.

Displacement
Length Specifier Meaning
B” Displacement requires 1 byte
w* Displacement requires 1 word (2 bytes)
L° Displacement requires 1 longword (4 bytes)

If no displacement 1length specifier precedes the address
expression and the value of the expression 1is known, the
assembler chooses the smallest number of bytes (1, 2, or 4)
needed to store the displacement. If no length specifier
precedes the address expression and the value of the expression
is unknown, the assembler uses the default displacement length
(see the description of .DEFAULT in Chapter 5). If the address
expression 1is either defined later in the program or defined in
another program section, the assembler considers the value
unknown.

Example

CLRL @W"PNTR CLEAR LONGWORD POINTED TO BY
LONGWORD AT PNTR; THE ASSEMBLER
USES A WORD DISPLACEMENT
INCREMENT BYTE POINTED TO BY

LONGWORD AT COUNTS+4; ASSEMBLER
USES A LONGWORD DISPLACEMENT

INCB @L"COUNTS+4

LK T TR TR T 1)

4.2.3 Absolute Mode

In absolute mode, the address specified is the address of the operand.
The address is stored as an absolute virtual address (compare relative
mode, where the address is stored as a displacement from PC).

ADDRESSING MODES

Absolute mode can be used with index mode (see Section 4.3).
Format
@#address

address
An expression specifying an address.

Example

CLRL @4#°X1100

CLEAR THE CONTENTS OF LOCATION 1100 (HEX)
CLRB - @#ACCOUNT

CLEAR THE CONTENTS OF LOCATION
ACCOUNT; THE ADDRESS IS STORED
ABSOLUTELY, NOT AS A DISPLACEMENT
CALL THE PROCEDURE SYSSFAO WITH
THREE ARGUMENTS ON THE STACK

CALLS #3,@#SYSSFAO

N %o %o %o W “we

4,.2.4 Immediate Mode

In immediate mode, the literal specified is the operand.

Formats
#literal
I¢4literal
literal
An expression, an integer constant, or a floating-point constant.
Exdmple
MOVL #1000,R0 ; RO IS SET TO 1000; THE OPERAND 1000
; IS STORED IN A LONGWORD
MOVB #BAR,R1 #+ THE LOW BYTE OF R1 IS SET
; TO THE VALUE OF BAR
MOVF #0.1,R6 ; R6 IS SET TO THE FLOATING
; POINT VALUE 0.1; IT IS STORED
; AS A 4-BYTE FLOATING POINT
7 VALUE (IT CAN NOT BE
) ; REPRESENTED AS A SHORT LITERAL)
ADDL2 I°45,R0 ; THE 5 IS STORED IN A LONGWORD
; BECAUSE THE 1" FORCES THE
; ASSEMBLER TO USE IMMEDIATE MODE;
Motes

l. When the f#literal format is used, the assembler chooses
whether to wuse 1literal mode (Section 4.1.8) or immediate
mode, If the literal is an integer from 0 through 63 or a
floating-point constant that fits in the short literal form,
the assembler uses 1literal mode. If the literal 1is an
expression, the assembler uses 1literal mode if all the
following conditions are met:

e The expression is absolute
e The expression contains no undefined symbols
e The value of the expression fits in the short literal form

In all other cases, the assembler uses immediate mode.

4-14

ADDRESSING MODES

The difference between immediate mode and literal mode is the
amount of storage required to store the 1literal in the
instruction. The assembler stores an immediate mode 1literal
in a byte, word, or longword depending on the operand data
type.

2. The I"#literal format forces the assembler to use immediate
mode.

4.2.5 General Mode

In general mode, the address specified is the address of the operand.
The linker converts the addressing mode to either relative or absolute
mode. If the address is relocatable, the linker converts general mode
to relative mode. If the address is absolute, the linker converts
general mode to absolute mode. General mode is used to write
position-independent code when the programmer does not know whether
the address is relocatable or absolute. A general addressing mode
operand requires 5 bytes of storage.

General mode can be used with index mode (see Section 4.3).
Format
G"address

address
An expression specifying an address,.

Example .

CLEARS THE LONGWORD AT LABEL_1

IF LABEL 1 IS DEFINED AS ABSOLUTE
THEN THIS IS CONVERTED TO ABSOLUTE
MODE; IF IT IS DEFINED AS
RELOCATABLE, THEN THIS IS CONVERTED
TO RELATIVE MODE

CALLS #5,G"SYSSSERVICE ; CALLS PROCEDURE SYS$SERVICE

WITH 5 ARGUMENTS ON STACK

CLRL G“LABEL_l

e W we wWe e wo

.

~.

4.3 INDEX MODE

Index mode is a general register mode that can be used only in
combination with another mode, called the base mode., The base mode
can be any addressing mode except register, immediate, literal, index,
or branch. The assembler first evaluates the base mode to geat the
base address. Then the assembler adds the base address to the product
of the contents of the index register and the number of bytes of the
operand data type. This sum is the operand address.

Combining index mode with the other addressing modes produces the
following addressing modes:

e Register Deferred Index
e Autoincrement Index
e Autoincrement Deferred Index

e Autodecrement Index

4-15

ADDRESSING MODES

e Displacement Index

e Displacement Deferred Index
e Relative Index

e Relative Deferred Index

e Absolute Index

® General Index

The process of first evaluating the base mode and then adding the

index register is the same for each of these modes.
Formats

base-mode [Rx]
base-mode [AP]
base-mode [FP]
base-mode [SP]

base-mode

Any addressing mode except register, immediate, 1literal,
or branch, specifying the base address.

A number in the range 0 through 12, specifying the
register.

Table 4-3 lists t%e formats of index mode addressing.

Examples

H
; REGISTER DEFERRED INDEX MODE
i

OFFS=20 DEFINE OFFS

GET ADDRESS OF BLIST

SET UP INDEX REGISTER

MOVAB BLIST,R9
MOVL #0FFS,R1

CLRB (R9) [R1] CLEAR BYTE WHOSE ADDRESS
IS THE ADDRESS OF BLIST
PLUS 20%*1

CLRQ (R9) [R1] CLEAR QUADWORD WHOSE

ADDRESS IS THE ADDRESS
OF BLIST PLUS 20%*8

Ne Ne Ne we N we W e N

AUTOINCREMENT INDEX MODE

e wo we

CLRW (R9)+[R1] CLEAR WORD WHOSE ADDRESS
IS ADDRESS OF BLIST PLUS
20*2; R9 NOW CONTAINS

ADDRESS OF BLIST+2

“ we we we

AUTOINCREMENT DEFERRED INDEX MODE

.y %o we

MOVAL POINT,RS8
MOVL #30,R2
CLRW @ (R8) +[R2]

GET ADDRESS OF POINT

SET UP INDEX REGISTER
CLEAR WORD WHOSE ADDRESS
IS 30%*2 PLUS THE ADDRESS
STORED IN POINT; R8 NOW
CONTAINS 4 PLUS ADDRESS OF
POINT

Ne we W N wo we “o

~

4-16

index,

index

~e we

*

ADDRESSING MODES

DISPLACEMENT DEFERRED INDEX MODE

MOVAL ADDARR,R9
MOVL #100,R1
TSTF @40(R9) [R1]

GET ADDRESS OF ADDRESS ARRAY

SET UP INDEX REGISTER

TEST FLOATING POINT VALUE

WHOSE ADDRESS IS 100*4 PLUS

THE ADDRESS STORED AT (ADDARR+40)

wo we we we “o

Table 4-3
Index Mode Addressing

Mode Format#*
Register Deferred Index (Rn) [Rx]
Autoincrement Index (Rn) +[Rx]
Autoincrement Deferred @(Rn)+[ﬁx]
Index
Autodecrement Index -(Rn) [Rx]
Displacement Index dis (Rn) [Rx]
Displacement Deferred @dis(Rn) [Rx]
Index
Relative Index address [Rx]
Relative Deferred Index Qaddress [Rx]
Absolute Index @#address [Rx]
General Index G address [Rx]

Key:

Rn
Any general register RO through R12 or the AP, FP, or SP
register.

Rx
Any general register RO through R12 or the AP, FP, or SP
register. Rx cannot be the same register as Rn in the
autoincrement index, autoincrement deferred index, and
decrement index addressing modes.

dis
An expression specifying a displacement.

address

An expression specifying an address.

ADDRESSING MODES

Notes

1. If the base mode alters the contents of its register
(autoincrement, autoincrement deferred, and autodecrement),
the index mode cannot specify the same register.

2. The index register is added to the address after the base
mode 1is completely evaluated. For example, in autoincrement
deferred index mode, the base register contains the address
of the operand address. The index register (times the length
of the operand data type) is added to the operand address
rather than to the address stored in the base register.

4.4 BRANCH MODE

In branch mode, the address is stored as an implied displacement from
PC. This mode can only be used in branch instructions. The
displacement for conditional branch instructions and the BRB
instruction is stored in a byte. The displacement for the BRW
instruction is stored in a word (2 bytes). A byte displacement allows
a range of 127 bytes forward and 128 bytes backward. A word
displacement allows a range of 32767 bytes forward and 32768 bytes
backward. The displacement 1is relative to the updated PC, the byte
past the byte or word where the displacement is stored. See the
VAX-11/780 Architecture Handbook for more information on the branch
.instructions.

Format
address

address
An expression that represents an address.

Example

ADDL3 (R1)+,R0,TOTAL TOTAL VALUES AND SET CONDITION
CODES
BRANCH TO LABELl1l IF RESULT IS

LESS THAN OR EQUAL TO 0
BRANCH UNCONDITIONALLY TO LABEL

BLEQ LABEL1

we “e wo we W

BRW LABEL

4-18

CHAPTER 5

GENERAL ASSEMBLER DIRECTIVES

The general assembler directives provide facilities for performing
eleven different types of functions. Table 5-1 lists these types of
functions and the directives that fall under them. The remainder of
this chapter describes the directives in detail, showing their formats
and giving examples of their use. For ease of reference, the
directives are presented in alphabetical order. In addition, Appendix
B contains a summary of all assembler directives.

Table 5-1
Summary of General Assembler Directives

Category Directives*

Listing Control .SHOW (.LIST)
Directives . NOSHOW (.NLIST)
.TITLE

.SUBTITLE (.SBTTL)
. IDENT

. PAGE

Message Display . PRINT
Directives .WARN
. ERROR

Assembler Option .ENABLE (.ENABL)
Directives .DISABLE (.DSABL)
.DEFAULT

Data Storage .BYTE
Directives .WORD

. LONG
.ADDRESS

. QUAD

. PACKED
.ASCII
.ASCIC
.ASCID
.ASCIZ
.FLOAT
.DOUBLE
.SIGNED BYTE
.SIGNED_WORD

* The alternate form, if any, is given in parentheses.

(continued on next page)

5-1

GENERAL ASSEMBLER DIRECTIVES

Table 5-1 (Cont.)
Summary of General Assembler Directives

Category Directives*
W
Location Control .ALIGN
Directives . EVEN
.0ODD
.BLKA
.BLKB
«BLKD
.BLKF
«BLKL
+BLKQ
- BLKW
«END
Program . PSECT
Sectioning .SAVE PSECT (.SAVE)
Directives -RESTORE_PSECT (.RESTORE)
Symbol Control .GLOBAL (.GLOBL)
Directives «EXTERNAL (.EXTRN)
Directives .DEBUG
.WEAK
Routine Entry Point «ENTRY
Definition . TRANSFER
Directives .MASK
Conditional .IF
and Subconditional «ENDC
Assembly .IF FALSE (.IFF)
Block Directives .IF TRUE (.IFT)
.IF TRUE FALSE (.IFTF)
LIIF -
Cross-Reference .CROSS
Directives .NOCROSS
Instruction .OPDEF
Generation -REF1
Directives <REF2
.REF4
-REF8

* The alternate form, if any, is given in parentheses.

T 5-2

GENERAL ASSEMBLER DIRECTIVES
.ADDRESS

.ADDRESS -- ADDRESS STORAGE DIRECTIVE

.ADDRESS stores successive longwords containing addresses in the
object module. DIGITAL recommends that .ADDRESS rather than .LONG be
used for storing address data to provide additional information to the
linker. In shareable images, addresses must be specified with
.ADDRESS to produce position-independent code.

Format
.ADDRESS address-list

Parameter

address-list
A list of symbols or expressions, separated by commas, that
VAX-11 MACRO interprets as addresses. Repetition factors are not

allowed.

Example

TABLE: .ADDRESS LAB_4,LAB_3,ROUTTERM ; REFERENCE TABLE

5-3

GENERAL ASSEMBLER DIRECTIVES

.ALIGN

-ALIGN -- LOCATION COURTER ALIGNMENT DIRECTIVE

.ALIGN aligns the location counter to the boundary specified by either
an integer or a keyword.

Formats

.ALIGN integer[,expression]
.ALIGN keyword|[,expression]

Parameters

integer
An integer in the range of 0 through 9. The location counter is
aligned at an address that is a multiple of 2 raised to the power
of the integer.

keyword
One of five keywords that specify the alignment boundary. The

location counter is aligned to an address that is the next
multiple of the values listed below.

Keyword Size (in Bytes)

BYTE 270 = 1

WORD 271 = 2

LONG 272 = 4

QUAD 2°3 =28

PAGE 279 = 512
expression

Specifies the fill value to be stored in each byte. The
expression must not contain any undefined symbols and must be an
absolute expression (see Section 3.5).

Example
.ALIGN BYTE,O ; BYTE ALIGNMENT-FILL WITH NULL
.ALIGN WORD ; WORD ALIGNMENT
LALIGN 3,7a/ / ; QUAD ALIGNMENT-FILL WITH BLANKS
.ALIGN PAGE ; PAGE ALIGNMENT

Notes

1. The alignment specified in .ALIGN cannot exceed the alignment
of the program section in which the alignment is attempted
(see the description of .PSECT). For example, if the default
program section alignment (BYTE) is being used and .ALIGN is
specified with a WORD or larger alignment, the assembler
displays an error message.

2. If the optional expression is supplied, the bytes skipped by
the 1location counter (if any) are filled with the value of
that expression. Otherwise, the bytes are zero filled.

GENERAL ASSEMBLER DIRECTIVES

3. Although most instructions do not require any data alignment
other than byte alignment, execution speed is improved by the
following alignments:

Data Length Alignment

Word Word
Longword Longword
Quadword Quadword

GENERAL ASSEMBLER DIRECTIVES

.ASCIx

ASCIx -- ASCII CHARACTER STORAGE DIRECTIVES

VAX-11 MACRO has four ASCII character storage directives:

Directive Function

ASCII ASCII string storage

ASCIC Counted ASCII string storage

ASCID String-descriptor ASCII string storage
ASCIZ Zero-terminated ASCII string storage

Each directive is followed by a string of characters enclosed in a
pair of matching delimiters. The delimiters can be any printable
character except the space, tab, equal sign (=), semicolon (;), or
left angle bracket (<). The character used as the delimiter cannot
appear in the string itself. Alphanumeric characters can be used as
delimiters; however, nonalphanumeric characters should be used to
avoid confusion.

Any character except the null, carriage return, and form feed
characters can appear within the string. The assembler does not
convert lowercase alphabetic characters to uppercase.

ASCII character storage directives convert the characters +to their
8-bit ASCII value (see Appendix A) and store them one character to a
byte.

Any character, including the null carriage return, and form feed
characters, can also be represented by an expression enclosed in angle
brackets outside of the delimiters. The ASCII character storage
directives store the 8-bit binary value specified by the expression.

ASCII strings can be continued over several lines but the string on
each line must be delimited at both ends; however, a different pair
of delimiters can be used for each line. For example:

CR=13
LF=10

.ASCII /ABC DEFG/
.ASCIZ @Any character can be delimiter@
.ASCIC ? lowercase is not converted to UPPER?
.ASCII ? this is a test!?XCR>LF>!Isn't it?!
.ASCII \ Angle Brackets <are part <of> this> string \
.ASCII / This string is continued / -
\ on the next line \
+ASCII <CR>}LF>! this string includes an expression! -

<128+CR>? whose value is a 13 plus 1287

The following sections describe each of the four ASCII character
storage directives, giving the formats and examples of each.

GENERAL ASSEMBLER DIRECTIVES

.ASCII

.ASCII -- ASCII STRING STORAGE DIRECTIVE

.ASCII stores in the next available byte the ASCII value of each
character in the ASCII string or the value of each byte expression.

Format
.ASCII stging
Parameter
string
A delimited ASCII string.
Example

CR=13
LF=10

.ASCII "DATE: 17-NOV-1977"
.ASCII /EOF/<CR><KLF>

.ASCIC

.ASCIC -- COUNTED ASCII STRING STORAGE DIRECTIVE

.ASCIC performs the same function as .ASCII, except that .ASCIC
inserts a count byte before the string data. The count byte contains
the length of the string in bytes. The 1length given includes any
bytes of nonprintable characters outside the delimited string but
excludes the count byte.

.ASCIC is useful in copying text because the count indicates the
length of the text to be copied.

Format
.ASCIC string
Parameter
string
A delimited ASCII string.
Example
" CR=13
THIS COUNTED ASCII STRING
IS EQUIVALENT TO

THE COUNT
FOLLOWED BY THE ASCII STRING

.ASCIC #HELLO#<CR>

.BYTE 6
.ASCII #HELLO#<CR>

we we wo we

5-7

GENERAL ASSEMBLER DIRECTIVES

.ASCID

+ASCID -- STRING-DESCRIPTOR ASCII STRING STORAGE DIRECTIVE

«ASCID performs the same function as ASCII, except that .ASCID inserts
a string descriptor before the string data.

The string descriptor consists of 1) two bytes of descriptor
information, 2) two bytes that specify the length of the string, and
3) a longword that points to the string. String descriptors are used
in calling procedures (see Appendix C of the VAX-11/780 Architecture
Handbook) .

Format
+ASCID string
Parameter
string
A delimited ASCII string.
Example

STRING DESCRIPTOR
ANOTHER ONE

DESCR1: .ASCID /ARGUMENT FOR CALL/
DESCR2: .ASCID /SECOND ARGUMENT/

~. we

PUT ADDRESS OF DESCRIPTORS
ON THE STACK
CALL PROCEDURE

PUSHAL DESCR1
PUSHAL DESCR2
CALLS #Z,STRNG_PROC

.ASCIZ

+ASCIZ -- ZERO-TERMINATED ASCII STRING STORAGE DIRECTIVE

~e o wo

«.ASCIZ performs the same function as .ASCII, except that .ASCIZ
appends a null byte as the final character of the string. Thus, when
a list or text string is created with an .ASCIZ directive, the user
need only perform a search for the null character in the last byte to
determine the end of the string.
Format

.ASCIZ string
Parameter
string

A delimited ASCII string.
Example
FF=12
6 CHARACTERS IN STRING
7 BYTES OF DATA

3 CHARACTERS IN STRINGS
4 BYTES OF DATA

.ASCIZ /ABCDEF/
.ASCIZ /A/<KFF>/B/

e o wp wo

GENERAL ASSEMBLER DIRECTIVES

.BLKX

.BLKx -- BLOCK STORAGE ALLOCATION DIRECTIVES

VAX-11 MACRO has seven block storage directives:

Directive Function

.BLKA Reserves storage for addresses (longwords)

.BLKB Reserves storage for byte data

.BLKD Reserves storage for double-precision,
floating-point data (quadwords)

.BLKF Reserves storage for single-precision,
floating-point data (longwords)

.BLKL Reserves storage for longword data

.BLKQ Reserves storage for quadword data

.BLKW Reserves storage for word data

Each directive reserves storage for a different data type. The value
of the expression determines the number of data items for which VAX-1l
MACRO reserves storage. For example, .BLKL 4 reserves storage for 4
longwords of data and .BLKB 2 reserves storage for 2 bytes of data.

The total number of bytes reserved is equal to the length of the data
type times the value of the expression as follows:

Directive Number of Bytes Allocated
.BLKB Value of expression
« BLKW 2 * yvalue of expression
.BLKA
.BLKF 4 * yvalue of expression
«BLKL
.BLKD 8 * value of expression
.BLKQ

Formats

.BLKA expression
.BLKB expression
.BLKD expression
.BLKF expression
.BLKL expression
.BLKQ expression
.BLKW expression

Parameter

expression
An expression specifying the amount of storage to be allocated.
All the symbols in the expression must be defined and the

expression must be an absolute expression (see Section 3.5). If
the expression is omitted, a default value of 1 is assumed.

Example

.BLKB
.BLKQ
«BLKL
.BLKF

15

<3*4>

GENERAL ASSEMBLER DIRECTIVES

SPACE FOR 15 BYTES

SPACE FOR 3 QUADWORDS (24 BYTES)
SPACE FOR 1 LONGWORD (4 BYTES)
SPACE FOR 12 SINGLE PRECISION
FLOATING-POINT VALUES (48 BYTES)

we W %o we we

5-10

GENERAL ASSEMBLER DIRECTIVES

.BYTE

+BYTE -- BYTE STORAGE DIRECTIVE
.BYTE generates successive bytes of binary data in the object module.
Format
.BYTE expression-list
-
Parameter
expression~list
One or more expressions separated by commas. Each expression is
first evaluated as a longword expression. Then the value of each
expression is truncated to 1 byte. The value of each expression
should be in the range of 0 through 255 for unsigned data or in
the range of -128 through +128 for signed data.
Each expression optionally can be followed by a repetition factor
delimited by square brackets. An expression followed by a
repetition factor has the format:
expressionl[expression2]
expressionl
An expression that specifies the value to be stored.
[expression2]
An expression that specifies the number of times the value will
be repeated. The expression must not contain any undefined

symbols and must be an absolute expression (see Section 3.5).
The square brackets are required.

Example
.BYTE <1024-1000>*2 : STORES A VALUE OF 48
.BYTE “XA,FIF,10,65-<21*3> : STORES 4 BYTES OF DATA
.BYTE 0 : s+ STORES 1 BYTE OF DATA
.BYTE X,X+3[5*%4]1,%2 : STORES 22 BYTES OF DATA
Notes

1. The assembler displays an error message if the high-order 3
bytes of the longword expression has a value other than 0 or
“XFFFFFF.

2. At link time, a relocatable expression can result in a value
that exceeds 1 byte. 1In this case, the VAX-1l Linker issues
a truncation diagnostic message for the object module in
question. For example:
A: .BYTE A RELOCATABLE VALUE A WILL

CAUSE VAX-11 LINKER TRUNCATION

DIAGNOSTIC IF THE STATEMENT

HAS A VIRTUAL ADDRESS OF 256

OR ABOVE

~e we we wo we

5-11

GENERAL ASSEMBLER DIRECTIVES

The .SIGNED BYTE directive is the same as .BYTE except the
assembler displays a diagnostic message if a value in the

range from 129 to 255 is specified. See the description of
.SIGNED_BYTE for more information.

5-12

GENERAL ASSEMBLER DIRECTIVES

.CROSS
.NOCROSS

.CROSS AND .NOCROSS -- CROSS-REFERENCE DIRECTIVES

‘VAX-11 MACRO produces a cross-reference 1listing when the CROSS
qualifier 1is specified in the MACRO command. The .CROSS and .NOCROSS
directives control which symbols are included in the cross-reference
listing. The .CROSS and .NOCROSS directives have an effect only if
/CROSS was specified in the MACRO command (see the VAX-11 MACRO User's
Guide).

By default, the cross-reference listing includes the definition and
all the references to every symbol in the module. The cross-reference
listing can be disabled for all symbols or for a specified 1list of
symbols.

.NOCROSS without a symbol list disables the cross-reference listing of
all symbols. .CROSS without a symbol list reenables the
cross-reference listing. Any symbol definition or reference that
appears after .NOCROSS without a symbol 1list and before the next
.CROSS without a symbol list is excluded from the <cross reference
listing.

.NOCROSS with a symbol list disables the cross-reference 1listing for
the listed symbols. .CROSS with a symbol 1list reenables the
cross-reference listing of the listed symbols.
Formats

.CROSS

.CROSS symbol-list

.NOCROSS

.NOCROSS symbol-list
Parameter
symbol-list

A list of legal symbol names separated by commas.

Examples

.NOCROSS ; STOP CROSS REFERENCE
LABl: MOVL LOC1,LOC2 ; COPY DATA

.CROSS ; REENABLE CROSS REFERENCE

The definition of LABl and the references to LOCl and LOC2 are not
included in the cross reference listing.

.NOCROSS LOCl1 ; DO NOT CROSS REFERENCE LOC1
LAB2: MOVL LOC1,LOC2 ; COPY DATA
.CROSS LOC1 ; REENABLE CROSS REFERENCE
; OF LOC1

The definition of LAB2 and the reference to LOC2 are included in the
cross reference, but the reference to LOCl is not included in the
cross reference.

5-13

Notes

GENERAL ASSEMBLER DIRECTIVES

.CROSS without a symbol 1list will not reenable the
cross~reference 1listing of a symbol specified in .NOCROSS
with a symbol list.

If the cross-reference listing of all symbols is disabled,
.CROSS with a symbol 1list will have no effect until the
cross-reference listing is reenabled by .CROSS without a

symbol list.

5~14

GENERAL ASSEMBLER DIRECTIVES

.DEBUG

.DEBUG -- DEBUG SYMBOL ATTRIBUTE DIRECTIVE
.DEBUG specifies that the symbols in the list are made Kknown to the
debugger. During an interactive debugging session, these symbols can
be used to refer to memory locations or to examine the values assigned
to the symbols.
Format

.DEBUG symbol-list
Parameter
symbol-list

A list of legal symbols separated by commas.

Example

MAKE THESE SYMBOLS KNOWN
TO THE DEBUGGER

.DEBUG INPUT,OUTPUT,-
LAB_30,LAB_40

~ we

Note

The assembler adds the symbols in the symbol list to the symbol
table in the object module. The programmer need not specify
global symbols in the .DEBUG directive because global symbols
automatically are put in the object module's symbol table. See
the description of .ENABLE for information on making information
about all symbols available to the debugger.

5-15

GENERAL ASSEMBLER DIRECTIVES

.DEFAULT

+DEFAULT ~- DEFAULT CONTROL DIRECTIVE

-DEFAULT determines the default displacement length for the relative
and relative deferred addressing modes (see Sections 4.2.1 and 4,.2.2).

Format

-DEFAULT DISPLACEMENT, keyword
Parameter
keyword

One of three keywords--BYTE, WORD, LONG--indicating the default
displacement length,

Example
«DEFAULT DISPLACEMENT, WORD ; WORD IS DEFAULT
MOVL LABEL,R1 ; ASSEMBLER USES WORD
; DISPLACEMENT UNLESS
; LABEL HAS BEEN DEFINED
«DEFAULT DISPLACEMENT, LONG ; LONG IS DEFAULT
INCB QCOUNTS+4 ; ASSEMBLER USES LONGWORD
; DISPLACEMENT UNLESS
; COUNTS HAS BEEN DEFINED
Notes

l. .DEFAULT has no effect on the default displacement for
displacement and displacement deferred addressing modes (see
Sections 4.1.6 and 4.1.7).

2. 1If there is no .DEFAULT in a source module, the default
displacement length is a longword.

-DISABLE

+DISABLE -- FUNCTION CONTROL DIRECTIVE

-DISABLE disables, or inhibits, the specified assembler functions.
See the description of .ENABLE for more information.

Format
.DISABLE argument-list

Parameter

argument-list
One or more of the symbolic arguments listed in Table 5-2 in the
description of .ENABLE. Either the long form or the short form
of the symbolic arguments can be used. IFf multiple arguments are
specified, they must be separated by commas, spaces, or tabs.

Note

The alternate form of .DISABLE is .DSABL.

5-16

GENERAL ASSEMBLER DIRECTIVES

.DOUBLE

.DOUBLE -- FLOATING POINT STORAGE DIRECTIVE

.DOUBLE evaluates the specified floating-point constants and stores
the results in the object module. .DOUBLE generates 64-bit,
double-precision, floating-point data (1 bit of sign, 8 bits of
exponent, and 55 bits of fraction). See the description of .FLOAT for
information on storing single precision floating point numbers.

Format
.DOUBLE literal-list
Parameter
literal-list
A list of floating-point constants (see Section 3.2.2). The

constants cannot contain any unary or binary operators except
unary plus or unary minus.

Example
.DOUBLE 1000,1.0E3,1.0000000E-9 ; CONSTANT
.DOUBLE 3.1415928, 1.107153423828 ; LIST
.DOUBLE 5, 10, 15, 0, 0.5 ;

Notes

1. Double precision floating point numbers are always rounded.
They are not effected by .ENABLE TRUNCATION.

2. The floating point constants in the literal list must not be
preceded by the floating point operator ("F).

GENERAL ASSEMBLER DIRECTIVES

.ENABLE

+-ENABLE ~- FUNCTION CONTROL DIRECTIVE

-ENABLE enables the specified assembly function. .ENABLE and its
negative form, .DISABLE, control the following assembler functions.

® Creating local label blocks.

e Making all 1local symbols available to the debugger and
enabling the traceback feature.

o Specifying that undefined symbol references are external
references.

e Truncating or rounding of single-precision, floating-point
numbers.

® Suppressing the listing of symbols that are defined but not
referenced.

e Specifying that all PC references are absolute not relative.
Format
.ENABLE argument-list
Parameter
argument-list
One or more of the symbolic arguments listed in Table 5-2.
Either the long form or the short form of the symbolic arguments

can be used.

If multiple arguments are specified, they must be separated by
commas, spaces, or tabs.

Table 5-2
-ENABLE and .DISABLE Symbolic Arguments
Default
Long Form Short Form Condition Function
=——_—————T=* — =
ABSOLUTE AMA Disabled When ABSOLUTE is enabled,
all PC relative addressing
modes are assembled as
absolute addressing modes.
DEBUG DBG Disabled When DEBUG is enabled, all
local symbols are included
in the object module's
symbol table for use by
the debugger.

(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 5-2 (Cont.)

.ENABLE and .DISABLE Symbolic Arguments

Long Form

Short Form

Default
Condition

Function

GLOBAL

LOCAL_BLOCK

SUPPRESSION

TRACEBACK

TRUNCATION

GBL

LSB

SUP

TBK

FPT

Enabled

Disabled

Disabled

Enabled

Disabled

When GLOBAL is enabled,
all undefined symbols are
considered external
symbols. When GLOBAL is
disabled, any undefined
symbol that is not listed
in a .EXTERNAL directive
causes an assembly error.

When LOCAL BLOCK is
enabled, the current local
label block is ended and a
new one is started. When
LOCAL BLOCK is disabled,
the current local label
block is ended. See
Section 3.4 for a complete
description of local label
blocks.

When SUPPRESSION is
enabled, all symbols that
are defined but not
referred to are not listed
in the symbol table. When
SUPPRESSION is disabled,
all symbols that are
defined are listed in the
symbol table.

When TRACEBACK is enabled,
the program section names
and lengths, module names,
and routine names are
included in the object
module for use by the
debugger. When TRACEBACK
is disabled, VAX-11 MACRO
excludes this information
and, in addition, does not
make any local symbol
information available to
the debugger.

When TRUNCATION is
enabled, floating-point
numbers are truncated.
When TRUNCATION is
disabled, floating-point
numbers are rounded.

GENERAL ASSEMBLER DIRECTIVES

Example

.ENABLE ABSOLUTE, GLOBAL ASSEMBLE RELATIVE ADDRESS MODE
AS ABSOLUTE ADDRESS MODE.
UNDEFINED REFERENCES ARE GLOBAL

- we we

.DISABLE TRUNCATION,TRACEBACK ROUND FLOATING-POINT NUMBERS.
DO NOT PUT ANY DEBUGGING

INFORMATION INTO OBJECT MODULE

~e we we

Note

The alternate form of .ENABLE is .ENABL.

5-20

GENERAL ASSEMBLER DIRECTIVES

.END

.END -- ASSEMBLY TERMINATION DIRECTIVE

.END terminates the source program. No additional text should occur
beyond this point in the current source file or in any additional
source files specified in the command line for this assembly. If any
additional text does occur, the assembler displays an error message
and ignores the text. The additional text does not appear in either
the listing file or the object file.

Format

.END [symbol]
Parameter
symbol

The address (called the transfer address) at which program
execution is to begin.

Example

.ENTRY START,0 ; ENTRY MASK
. ; MAIN PROGRAM

.END START

1. The transfer address must be in a program section that has
the EXE attribute (see the description of .PSECT).

2. When an executable image consisting of séveral object modules
is 1linked, only one object module should be terminated by an
.END directive that specifies a transfer address. All other
object modules should be terminated by .END directives that
do not specify a transfer address. If an executable image
either contains no transfer address or contains more than one
transfer address, the VAX-1l1l Linker displays an error
message.

3. If the source program contains an unterminated conditional

code block when the .END directive is specified, the
assembler displays an error message.

.ENDC

.ERDC -- END CONDITIONAL DIRECTIVE

.ENDC terminates the conditional range started by .IF. See the
description of .IF for more information and examples.

Format

.ENDC

5-21

GENERAL ASSEMBLER DIRECTIVES

.ENTRY

+ENTRY -- ENTRY DIRECTIVE

.ENTRY defines a symbolic name for an entry point and stores a
register save mask (2 bytes) at that location. The symbol is defined
as a global symbol with a value equal to the value of the 1location
counter at the .ENTRY directive. The entry point can be used as the
transfer address of the program. The register save mask is used to
determine which registers are saved before the procedure is called.
These saved registers are automatically restored when the procedure
returns control to the calling program. See the description of the
procedure call instructions in the VAX-11/780 Architecture Handbook.

Format
«ENTRY symbol,expression

Parameter

symbol
The symbolic name for the entry point.

expression
The register save mask for the entry point. The expression must
be an absolute expression and must not contain any undefined
symbols.

Example

.ENTRY CALC, "M<R2,R3,R7> PROCEDURE STARTS HERE.

REGISTERS 2,3,7 ARE
PRESERVED BY CALL AND
RET INSTRUCTIONS

we wo we wo

Notes

1. The register mask operator (M) is convenient to use for
setting the bits in the register save mask (see Section
3.6.2.2).

2. An assembly error occurs if the expression has bits 0, 1, 12,
or 13 set. These bits correspond to the registers RO, R1,
AP, and FP and are reserved for the CALL interface.

3. DIGITAL recommends that .ENTRY be used to define all callable
entry points including the transfer address of the program.
Although the following construct also defines an entry point,
its use is discouraged:

symbol:: .WORD expression
Although a procedure starting with this construct can be

called, the entry mask is not checked for any illegal
registers and the symbol cannot be used in a .MASK directive.

GENERAL ASSEMBLER DIRECTIVES

.ENTRY should be used only for procedures that will be called
by the CALLS or CALLG instruction. A routine that is entered
by the BSB or JSB instruction should not use .ENTRY because
these instructions do not expect a register save mask. These
routines should begin in the following format:

symbol:: first instruction

The first instruction of the routine immediately follows the
symbol.

5-23

GENERAL ASSEMBLER DIRECTIVES

.ERROR

«ERROR -- ERROR DIRECTIVE

+ERROR causes the assembler to display an error message on the
terminal or batch log file and in the listing file (if there is one).

Forma

t

.ERROR [expression] ; comment

Parameters

expression

An expression whose value is displayed when .ERROR is encountered

during assembly.

; comment

Exampie

A comment that is displayed when .ERROR is encountered during

assembly. The comment must be preceded by a semicolon.

.IF DEFINED LONG_MESS

.IF GREATER 1000=WORK AREA

.ERROR 25 ; NEED LARGER WORK AREA
.ENDC -
.ENDC

If the symbol LONG_MESS is defined and if the symbol WORK_AREA has a
value of 1000 or less, the following error message is displayed:

Notes

tMACRO-E-GENERR, Generated ERROR: 25 NEED LARGER WORK_AREA

1.

5.

-ERROR, .WARN, and .PRINT are called the message display
directives, They can be wuséd to display information
indicating that a macro call contains an error or an illegal
set of cenditions (see Chapter 6 for more information on
macre calls).

When the assembly is finished, the assembler displays the
total number of errors and warnings and the sequencie numbers
of the lines causing the errors or warnings on the terminal.
See the VAX-11 MACRO User's Guide for morée information on
errors and warnings.

If .ERROR is included in a maéro library (see the VAX-11
MACRO _ User's Guide), the comment should end with an
additional semicoloh. ©Otherwise, the 1librarian will strip
the comment from the directive and 4t will not be displayed
when the macro is called.

The line contaihing the .ERROR directive is not included in
the listing file.

If the expression has a value of 0, it is not displayed in
the error message.

5-24

GENERAL ASSEMBLER DIRECTIVES

.EVEN

.EVEN -- EVEN LOCATION COUNTER ALIGNMENT DIRECTIVE

.EVEN ensures that the current value of the location counter 1is even
by adding 1 if the current value is odd. If the current value is
already even, no action is taken.

Format

.EVEN

.EXTERNAL

.EXTERNAL -- EXTERNAL SYMBOL ATTRIBUTE DIRECTIVE
.EXTERNAL indicates that specified symbols are external; that is, the
symbols are defined in another object module and cannot be defined
until link time (see Section 3.3.3).
Format
.EXTERNAL symbol-list
Parameter
symbol-list
A list of legal symbols separated by commas.
Example

- EXTERNAL SIN, TAN,COS ; THESE SYMBOLS ARE DEFINED IN
. EXTERNAL SINH,COSH,TANH ; EXTERNALLY ASSEMBLED MODULES

Notes

1. 1If the GLOBAL argusient is enabled (see Table 5-2 in the
description of .ENABLE), all unresolved references will be
marked as global and external., Thus, if GLOBAL 1is enabled,
the programmer need not specify .EXTERNAL. However, if
GLOBAL is disabled, the programmer must eéxplicitly specify
.EXTERNAL to declaré any symbols that are defined externally
but referred to in the currént module.

2. If GLOBAL is disabled and the assembler finds symbols that
are not defined in the currént module and are not listed in a
.EXTERNAL directive, the assembler displays an error message.

3. The alternate form of .EXTERNAL is .EXTRN.

GENERAL ASSEMBLER DIRECTIVES

.FLOAT

+FLOAT -- FLOATING-POINT STORAGE DIRECTIVE

-FLOAT evaluates the specified floating-point constants and stores the
results in the object module. .FLOAT generates 32-bit,
single-precision, floating-point data (1 bit of sign, 8 bits of
exponent, and 23 bits of fractional significance). See the
description of .DOUBLE for information on storing double-precision
floating-point numbers.

Format
.FLOAT literal-list
Parameter
literal-list
A list of floating-point constants (see Section 3.2.2). The

constants cannot contain any unary or binary operators except
unary plus and unary minus.

Example
.FLOAT 134.5782,74218.34E20 ;7 SINGLE PRECISION
+FLOAT 134.2,0.1342E3,1342E-1 ; THESE ALL GENERATE 134.2
.FLOAT -0.75,1E38,~1.0E-37 ;s DATA
.FLOAT 0,25,50 ; LIST
Notes

l. See the description of .ENABLE for information on specifying
floating-point rounding or truncation.

2. The floating point constants in the literal list must not be
preceded by the floating point unary operator ("F).

5-26

GENERAL ASSEMBLER DIRECTIVES
.GLOBAL

.GLOBAL -~ GLOBAL SYMBOL ATTRIBUTE DIRECTIVE

.GLOBAL indicates that specified symbol names are either globally
defined in the current module or externally defined in another module

(see Section 3.3.3).
Format

.GLOBAL symbol-list
Parameter
symbol-list

A list of legal symbol names separated by commas.

Example
.GLOBAL LAB_40,LAB_30 ; MAKE THESE SYMBOL NAMES
; GLOBALLY KNOWN
.GLOBAL UKN_13 ; TO ALL LINKED MODULES
Notes

1. .GLOBAL is provided for MACRO-11 compatibility only. DIGITAL
recommends that global definitions be specified by a double
colon or double equals sign (see Section 2.2.1 and 3.8) and
that external references be specified by .EXTERNAL (when
necessary).

2. The alternate form of .GLOBAL is .GLOBL.

5-27

GENERAL ASSEMBLER DIRECTIVES

IDENT

«IDENT -- IDENTIFICATION DIRECTIVE

-IDENT provides a means of identifying the object module. This
identification is in addition to the name assigned to the object
module with .TITLE. A character string can be specified in .IDENT to
label the object module. This string is printed in the header of the
listing file as well as appearing in the object module.

Format
.IDENT string
Parameter
string
A 1- to 15-character string that identifies the module, such as a
string that specifies a version number. The string must be
delimited. The delimiters can be any paired printing characters,
other than the left angle bracket (<) or the semicolon (;), as
long as the delimiting character is not contained in the text
string itself.
Example
.IDENT /3-47/ ; VERSION AND EDIT NUMBERS
The character string 3-47 is included in the object module.
Notes
1. If one source module contains more than one .IDENT, the last
directive given establishes the character string that forms
part of the object module identification.
2. If the delimiting characters do not match, or if an illegal

delimiting character is used, the assembler displays an error
message.

GENERAL ASSEMBLER DIRECTIVES

AF

~ «IF -- CONDITIONAL ASSEMBLY BLOCK DIRECTIVES

A conditional assembly block is a series of source statements that is
assembled only if a certain condition is met. .IF starts the
conditional block and .ENDC ends the conditional block. Each .IF must
have a corresponding .ENDC. The .IF directive contains a condition
test and one or two arguments. The condition test specified is
applied to the argument(s). If the test is met, all MACRO statements
between .IF and .ENDC are assembled. If the test is not met, the
statements are not assembled. An exception to this occurs when
subconditional directives are used (see the description of .IF_x
directive).

Conditional blocks can be nested, that is a conditional block can be
inside of another conditional block. In this case the statements in
the inner conditional block are assembled only if the condition is met
for both the outer and inner block.

Format

.IF condition argument(s)

.ENDC

Parameters

condition
A specified condition that must be met if the block is to be
included in the assembly. Table 5-3 lists the conditions that
can be tested by the conditional assembly directives. The
condition must be separated from the argument(s) by a comma,
space, or tab.

argument (s)
The symbolic argument(s) or expression(s) of the specified
conditional test, If the argument is an expression, it cannot
contain any undefined symbols and must be an absolute expression
(see Section 3.5).

range

The block of source code that is conditionally included in the
assembly.

5-29

GENERAL ASSEMBLER DIRECTIVES

Table 5-3

Condition Tests for Conditional Assembly Directives

Complement Number of | Condition that

Condition Test Condition Test Argument Type Arguments | Assembles Block

—— e |

Long Short | Long Short

Form Form Form Form

EQUAL EQ NOT_EQUAL NE Expression 1 Expression is equal to
0 (or not equal to 0)

GREATER GT LESS_EQUAL LE Expression 1 Expression is greater
than 0 (or less than
or equal to 0)

LESS_THAN LT GREATER_EQUAL GE Expression 1 Expression is less
than 0 (or greater
than or equal to 0)

DEFINED DF NOT_DEFINED NDF Symbolic 1 Symbol is defined (or
not defined)

BLANK* B NOT BLANK* NB Macro 1 Argument is blank (or

- nonblank)

IDENTICAL* IDN DIFFERENT* DIF Macro 2 Arguments are
identical (or
different)

* The BLANK, NOT_BLANK, IDENTICAL, and DIFFERENT conditions are only

useful in
detail.

Examples

1.

macro definitions. Chapter 6 describes macro directives in

An example of a conditional assembly directive is:

.IF EQUAL ALPHA+1

. ENDC

Nested conditional directives take the form:

3
’
.
’

.IF condition,argument (s)
.IF condition,argument (s)
« ENDC
. ENDC

ASSEMBLE BLOCK IF ALPHA+1=0
DO NOT ASSEMBLE IF ALPHA+l1 NOT=0

GENERAL ASSEMBLER DIRECTIVES

3. The following conditional directives can govern whether
assembly is to occur:

.IF DEFINED SYM1
.IF DEFINED SYM2

.

.ENDC
.ENDC

In this example, if the outermost condition 1is not satisfied, no
deeper level of evaluation of nested conditional statements within the
program occurs. Therefore, both SYMl and SYM2 must be defined for the
code to be assembled.

Notes

1. If .ENDC occurs outside a conditional assembly block, the
assembler displays an error message.

2. VAX-11 MACRO permits a nesting depth of 31 conditional
assembly levels. If a statement attempts to exceed this
nesting level depth, the assembler displays an error message.

3. The assembler displays an error message if .IF specifies any
of the following: a condition test other than those in Table
5-3, an illegal argument, or a null argument specified in an
.IF directive.

4, The .SHOW and .NOSHOW directives control whether condition

blocks that are not assembled are included in the listing
file.

5-31

GENERAL ASSEMBLER DIRECTIVES

JF_x

«IF_x —- SUBCONDITIONAL ASSEMBLY BLOCK DIRECTIVES

VAX-11 MACRO has three subconditional assembly block directives:

Directive Function
.IF_FALSE If the condition of the assehbly block tests

false, the program is to include the source code
following the .IF_FALSE directive and continuing
up to the next subconditional directive or to the
end of the conditional assembly block.

.IF_TRUE If the condition of the assembly block tests true,
the program is to include the source code
following the .IF _TRUE directive and continuing up
to the next subconditional directive or to the end
of the conditional assembly block.

.IF_TRUE_FALSE Always include the source code following the
- .IF_TRUE FALSE directive and continuing up to the
next subconditional directive or to the end of the
conditional assembly block. This source code is
included regardless of whether the condition of
the assembly block tests true or false.

The implied argument of a subconditional directive is the condition
test specified when the conditional assembly block was entered. A
conditional or subconditional directive in a nested conditional
assembly block is not evaluated if the preceding (or outer) condition
in the block is not satisfied (see examples 3 and 4 below).

A conditional block with a subconditional directive is different than
a nested conditional block. If the condition in the .IF is not met,
the inner conditional block(s) are not assembled, but a subconditional
directive can cause a block to be assembled.
Formats

.IF_FALSE

. IF_TRUE

. IF_TRUE_FALSE
Examples

1. Assume that symbol SYM is defined:

. IF DEFINED SYM ; TESTS TRUE SINCE SYM IS DEFINED.
. ; ASSEMBLES THE FOLLOWING CODE. '
- IF_FALSE TESTS FALSE SINCE PREVIOUS

.IF WAS TRUE. DO NOT
ASSEMBLE THE FOLLOWING CODE.

~e wo e

.IF_TRUE

TESTS TRUE. SYM IS DEFINED.
ASSEMBLES THE FOLLOWING CODE.

e we

5-32

GENERAL ASSEMBLER DIRECTIVES

.IF_TRUE_FALSE

.IF_TRUE

. ENDC

ASSEMBLES FOLLOWING CODE
UNCONDITIONALLY.

TESTS TRUE. SYM IS DEFINED.
ASSEMBLES REMAINDER OF
CONDITIONAL ASSEMBLY BLOCK.

2. Assume that symbol X is defined and that symbol Y is not defined:

.IF DEFINED X
.IF DEFINED Y

.IF_FALSE

.IF_TRUE

«ENDC
. ENDC

Ne e we wo wo we

e weo we ~o

TESTS TRUE. SYMBOL X IS DEFINED.
TESTS FALSE. SYMBOL Y IS NOT
DEFINED.

TESTS TRUE. SYMBOL Y IS NOT
DEFINED.

ASSEMBLES THE FOLLOWING CODE.

TESTS FALSE. SYMBOL Y IS NOT
DEFINED.

DOES NOT ASSEMBLE THE FOLLOWING
CODE.

3. Assume that symbol A is defined and that symbol B is not defined:

.IF DEFINED A

.IF_FALSE

.IF NOT_DEFINED B

.

.ENDC
. ENDC

.
’
-
’

-~ wo

.
’
.
’

TESTS TRUE. A IS DEFINED.
ASSEMBLES THE FOLLOWING CODE.

TESTS FALSE. A IS DEFINED. DOES
NOT ASSEMBLE THE FOLLOWING CODE.

NESTED CONDITIONAL DIRECTIVE
IS NOT EVALUATED.

4. Assume that symbol X is not defined but symbol Y is defined:

.IF DEFINED X

.IF DEFINED Y

.IF_FALSE

5-33

Ne Ne %o wo we we

~e w~e¢

TESTS FALSE. SYMBOL X IS NOT
DEFINED.

DOES NOT ASSEMBLE THE
FOLLOWING CODE.

NESTED CONDITIONAL DIRECTIVE
IS NOT EVALUATED.

NESTED SUBCONDITIONAL
DIRECTIVE IS NOT EVALUATED.

GENERAL ASSEMBLER DIRECTIVES

.IF_TRUE ; NESTED SUBCONDITIONAL

. ; DIRECTIVE IS NOT EVALUATED.
.ENDC
.ENDC

If a subconditional directive appears outside a conditional
assembly block, the assembler displays an error message.

The alternate forms of .IF_FALSE, .IF_TRUE, and
.IF_TRUE_FALSE are .IFF, .IFT, and .IFTF.

5-34

GENERAL ASSEMBLER DIRECTIVES

AIF

«IIF -- IMMEDIATE CONDITIONAL ASSEMBLY BLOCK DIRECTIVE
.IIF provides a means of writing a one-line conditional assembly
block. The condition to be tested and the conditional assembly block
are expressed completely within the 1line containing the .IIF
directive; no terminating .ENDC statement is required.
Format
.IIF condition argument(s), statement
Parameters
condition
One of the legal condition tests defined for conditional assembly
blocks in Table 5-3 (See the description of .IF). The condition
must be separated from the argument(s) by a comma, space, or tab.
argument (s)
The argument associated with the immediate conditional directive;
that is, an expression or symbolic argument (described in Table
5-3). If the argument is an expression, it cannot contain any
undefined symbols and must be an absolute expression (see Section
3.3.3). The argument(s) must be separated from the statement by
a comma.
statement
The statement to be assembled if the condition is satisfied.
Example
Condition Argument Statement
.IIF DEFINED EXAM, BEQL ALPHA

This directive generates the following code if the symbol EXAM is
defined within the source program:

BEQL ALPHA
Note
The assembler displays an error message if .IIF specifies any of

the following: a condition test other than those listed in Table
5-3, an illegal argument, or a null argument.

GENERAL ASSEMBLER DIRECTIVES

LIST

«LIST -- LISTING DIRECTIVE

.LIST is equivalent to the .SHOW. See the description of .SHOW for
more information.

Formats

.LIST
.LIST argument-list

Parameter
argument-list

One or more of the symbolic argument defined in Table 5-7 in the
description of .SHOW. Either the long form or the short form of
the arguments can be used. 1If multiple arguments are specified,
they must be separated by commas, spaces, or tabs.

5-36

GENERAL ASSEMBLER DIRECTIVES

.LONG

.LONG -- LONGWORD STORAGE DIRECTIVE
.LONG generates successive longwords of data in the object module.
Format
.LONG expression-list
Parameters
expression-list
One or more expressions separated by commas. Each expression
optionally can be followed by a repetition factor delimited by
sguare brackets.
An expression followed by a repetition factor has the format:
expressionl[expression2]
expressionl
An expression that specifies the value to be stored.
[expression2]
An expression that specifies the number of times the value will
be repeated. The expression must not contain any undefined
symbols and must be an absolute expression (see Section 3.5).
The square brackets are required.
Example
LAB_3: .LONG LAB_3, X7FFFFFFF, A'ABCD' ; 3 LONGWORDS OF DATA
.LONG “XF@4 ; 1 LONGWORD OF DATA
.LONG 0[22] ;s 22 LONGWORDS OF DATA

Note

Each expression in the 1list must have a value that can be
represented in 32 bits.

5-37

GERERAL ASSEMBLER DIRECTIVES

.MASK

«MASK
<MASK

== MASK DIRECTIVE

reserves a word for a register save mask for a transfer vector.

See the description of .TRANSFER for more information and for an
example of .MASK.

Format

«MASK symbol|[,expression}]

Parameters

symbol

A symbol defined in an .ENTRY directive.

expression

Notes

1.

A register save mask.

If .MASK does not contain an expression, the assembler directs
the 1linker to copy the register save mask specified in .ENTRY to
the word reserved by .MASK.

If .MASK contains an expression, the assembler directs the linker
to combine this expression with the register save mask specified
in .ENTRY and store the result in the word reserved by .MASK.
The linker performs an inclusive OR operation to combine the mask
in the entry point and the value of the expression.
Consequently, a register specified in either .ENTRY or .MASK will
be included in the combined mask. See the description of .ENTRY
for more information on entry masks.

NLIST

«NLIST -- LISTING DIRECTIVE

.NLIST is equivalent to .NOSHOW. See the description of .SHOW for

more

information.

Formats

«NLIST
.NLIST argument-list

Parameter

argument~list

One or more of the symbolic arguments listed in Table 5-7 in the
description of .SHOW. Either the long form or the short form of
the arguments can be used. 1If multiple arguments are specified,
they must be separated by commas, spaces, or tabs.

5-38

GENERAL ASSEMBLER DIRECTIVES

.NOCROSS

.NOCROSS -- CROSS REFERENCE DIRECTIVE

VAX-11 MACRO produces a cross-reference listing when the CROSS
qualifier is specified in the MACRO command. The .CROSS and .NOCROSS
directives control which symbols are included in the cross-reference

listing. The description of .NOCROSS is included with the description
of .CROSS.

.NOSHOW

.NOSHOW -- LISTING DIRECTIVE

.NOSHOW specifies listing control options. See the description of
.SHOW for more information.

Formats

. SHOW
.SHOW argument-list

‘Parameter

argument-list
One or more of the symbolic arguments listed in Table 5-7 in the
description of .SHOW. Either the long form or the short form of

the arguments can be used. If multiple arguments are specified,
they must be separated by commas, spaces, or tabs.

.ODD

.ODD -~ ODD LOCATION COUNTER ALIGNMENT DIRECTIVE

.ODD ensures that the current value of the location counter is odd by
adding 1 if the current value is even. If the current value is
already odd, no action is taken.

Format

.0ODD

5-39

GENERAL ASSEMBLER DIRECTIVES

-OPDEF

«OPDEF -- OPCODE DEFINITION DIRECTIVE

-OPDEF defines an opcode, which it inserts into a user-defined opcode
table. The assembler searches this table before it searches the
permanent symbol table. This directive can redefine an existing
opcode name or create a new one.

Format

.OPDEF opcode value,operand-descriptor-list
Parameters
opcode

An ASCII string specifying the name of the opcode. The string
can be up to 15 characters long and can contain the letters A
through Z; the digits 0 through 9; and the special characters
underline (_), dollar sign ($), and period (.). The string
should not start with a digit and should not be surrounded by
delimiters.

value

An expression that specifies the wvalue of the opcode. The
expression must not contain any undefined values and must be an
absolute expression (see Section 3.5). The wvalue of the
expression must be in the range of 0 through decimal 65535
(hexadecimal FFFF).

operand-descriptor-list
A list of operand descriptors tnat specifies the number of

operands and the type of each. Up to 16 operand descriptors are
allowed in the list. Table 5-4 lists the operand descriptors.

Table 5-4
Operand Descriptors
Data Type
Access Byte Word Long- Floating{ Double Quad-
Type word Point Floating | word
Point
E—_——_—ﬁ_——_%
Address AB AW AL AF AD AQ
Read-only RB RW RL RF RD RQ
Modify MB MW ML MF MD MQ
Write-only WB WW WL WF WD WQ
Field VB VW VL VF VD vQ
Branch BB BW - - - -

GENERAL ASSEMBLER DIRECTIVES

Examples
.OPDEF MOVL3 “XFFA9,RL,ML,WL ; DEFINES AN
; INSTRUCTION, MOVL3, WHICH USES
; THE RESERVED OPCODE FF.
.OPDEF DIVF2 “X46,RF,MF ; REDEFINES THE DIVF2 AND
.OPDEF MOVC5 ~X2C,RW,AB,AB,RW,AB « ; MOVCS5 INSTRUCTIONS.
.OPDEF CALL “X10,BB ; EQUIVALENT TO A BSBB
Notes

1. A macro can also be used to redefine an opcode (see the
description of .MACRO in Chapter 6). Note that the macro
name table is searched before the user-defined opcode table.

2. .OPDEF is useful 1in creating "custom" instructions that
execute user-written microcode. Note that DIGITAL does not
support or provide tools for user-written microcode. This
directive is supplied to allow programmers who have developed
tools and written microcode to execute their microcode in a
MACRO program.

3. The operand descriptors are specified in a format similar to
the operand specifier notation described in the VAX-11/780
Architecture Handbook. The first character specifies the
operand access type and the second character specifies the
operand data type.

5-41

GENERAL ASSEMBLER DIRECTIVES

.PACKED

«PACKED -- PACKED .DECIMAL STRING STORAGE DIRECTIVE

-PACKED generates packed decimal data, 2 digits per byte. Packed
decimal data is useful in calculations requiring exact accuracy.
Packed decimal data is operated on by the decimal string instructions.
See the VAX-11/780 Architecture Handbook for more information on the
format of packed decimal data.

Format
+PACKED decimal-string[,symbol]
Parameters
decimal-string
A decimal number from 0 through 31 digits long with an optional
g%g?é).Each digit can be in the range of 0.through 9 (see Section
symbol
An optional symbol that is assigned a value equivalent to the

number of decimal digits in the string. The sign is not counted
as a digit.

Example
. PACKED -12,PACK_SIZE H PACK_SIZE GETS VALUE OF 2
. PACKED +500
.PACKED 0
. PACKED —O,SUM_SIZE : SUM_SIZE GETS VALUE OF 1
.PAGE

«PAGE -~ PAGE EJECTION DIRECTIVE

.PAGE forces a new page in the listing; the directive itself is not
printed in the listing.

VAX-11 MACRO ignores .PAGE in a macro definition. The paging

operation is performed only during macro expansion. Chapter 6
describes macro directives and facilities in detail.

Format

- PAGE

GENERAL ASSEMBLER DIRECTIVES

.PRINT

«PRINT -- ASSEMBLY MESSAGE DIRECTIVE

.PRINT causes the assembler to display an informational message. The
message consists of the value of the expression and the comment
specified in the .PRINT directive. The message is displayed on the
terminal for interactive jobs and in the log file for batch jobs. The
message produced by .PRINT is not considered an error or warning
message.

Format

.PRINT [expression] ;comment
Parameters
expression

An expression whose value is displayed when .PRINT is encountered
during assembly.

comment

A comment that is displayed when .PRINT is encountered during
assembly. The comment must be preceded by a semicolon.

Example
.PRINT 2 ; THE SINE ROUTINE HAS BEEN CHANGED
Notes

1. .PRINT, .ERROR, and .WARN are called the message display
directives. They can be used to display information
indicating that a macro call contains an error or an illegal
set of conditions (See Chapter 6 for more information on
macro calls).

2. If .PRINT is included in a macro 1library (see the VAX-11
MACRO User's Guide), the comment should end with an
additional semicolon. Otherwise, the comment will be
stripped from the directive and will not be displayed when
the macro is called.

3. If the expression has a value of 0, it is not displayed with
the message.

5-43

GENERAL ASSEMBLER DIRECTIVES

.PSECT

«PSECT ~- PROGRAM SECTIONING DIRECTIVE

-PSECT defines a program section and its attributes and refers to a
program section once it is defined.

Program sections can be used to:
® Develop modular programs
® Separate instructions from data
® Allow different modules to access the same data
® Protect read-only data and instructions from being modified
e Identify sections of the object module to the debugger

® Control the order in which program sections are stored in
virtual memory

See the VAX-11 MACRO User's Guide for more information on using
program sections.

When the assembler encounters a .PSECT directive that specifies a new
program section name, it creates a new program section and stores the
name, attributes, and alignment of the program section. The assembler
includes all data and instructions that follow the .PSECT directive in
that program section until it encounters another .PSECT directive.
The assembler starts all program sections at a location counter of
relocatable 0.

If the assembler encounters a .PSECT directive that specifies the name
of a previously defined »>rogram section, it stores the new data or
instructions so that they lcgically follow the 1last entry in the
previously defined program section. Specifically, the 1location
counter is set to the value of the location counter at the end of the
previously defined program section. The programmer need not list the
attributes when continuing a program section but any attributes that
are listed must be the same as those previously listed for the program
section.

The assembler automatically defines two program sections: the
absolute program section and the unnamed (or blank) program section.
Any symbol definitions that appear before any instruction, data, or
-PSECT directive are placed in- the absolute program section. Any
instructions or data that appear before the first named program
section is defined are placed in the unnamed program section. Any
+PSECT directive that does not include a program section name
specifies the unnamed program section.

A maximum of 254 user-defined, named program sections can be defined.

The attributes listed in the .PSECT directive only describe the
contents of the program section. The assembler does not check to
ensure that the contents of the program section actually include the
attributes listed.

However, the assembler and the 1linker do check that all program
sections with the same name have exactly the same attributes. The
assembler and linker display an error message if the program section
attributes are not consistent.

5-44

GENERAL ASSEMBLER DIRECTIVES

Program section names are independent of local symbol, global symbol,
and macro names. Thus, the same symbolic name can be used for a
program section and for a local symbol, global symbol, or macro name.

Formats

+«PSECT
.PSECT program-section-name[,argument-~list]

Parameters
program-section-name

The name of the program section. This name can be up to 15
characters 1long and can contain any alphanumeric character and
the underline (), dollar sign ($), and period (.) characters.
However, the first character must not be a digit in the range of
0 through 9.

argument-list

A list containing the program section attributes and the program
section alignment. Table 5-5 1lists the attributes and their
functions. Table 5-6 lists the default attributes and their
opposites. Program sections are aligned when an integer in the
range of 0 through 9 is specified or when one of the five
keywords 1listed below is specified. If an integer is specified,
the program section is 1linked to begin at the next virtual
address that is a multiple of 2 raised to the power of the
integer. If a keyword is specified, the program section is
linked to begin at the next virtual address that is a multiple of
the values listed below:

Keyword Size (in Bytes)

BYTE
WORD
LONG
QUAD
PAGE

~
-~
-~
-~
~

NN
VWO
nmnuonn

U100 > N =
=
N

BYTE is the default.

Table 5-5
Program Section Attributes

Attribute Function
Name
ABS Absolute--The linker assigns the program section an

absolute address. The contents of the program section
can be only symbol definitions (usually definitions of
symbolic offsets to data structures that are used by
the routines being assembled). An absolute program
section contributes no binary code to the image, so its
byte allocation request to the linker is 0. The size
of the data structure being defined is the size of the
absolute program section printed in the "program
section synopsis" at the end of the listing. Compare
this attribute with its opposite, REL.

(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 5-5 (Cont.)
Program Section Attributes

Attribute
Name

CON

EXE

GBL

LCL

LIB

NOEXE

NOPIC

NORD

NOSHR

NOWRT

OVR

mmm

Function

Concatenate--Program sections with the same name and
attributes (including CON) are merged into one program
section. Their contents are merged in the order in
which the linker acquires them. The allocated virtual
address space is the sum of the individual requested
allocations.

Executable--The program section contains instructions.
This attribute provides the capability of separating
instructions from read-only and read/write data. The
linker uses this attribute in gathering program
sections and in verifying that the transfer address is
in an executable program section.

Global--Program sections that have the same name and
attributes, including GBL and OVR, will have the same
relocatable address in memory even when the program
sections are 1in different clusters (see the VAX-11l
Linker Reference Manual for more information on
clusters). This attribute 1is specified for FORTRAN
COMMON block program sections (see the VAX-1ll FORTRAN
IV-PLUS User's Guide). Compare this attribute with its
opposite, LCL.

Local--The program section is restricted to its
cluster. Compare this attribute with its opposite,
GBL.

Library Segment--Reserved for future use.

Not Executable--The program section contains data only;
it does not contain instructions.

Non-Position-Independent Content--The program section
is assigned to a fixed location in virtual memory (when
it is in a shareable image).

Nonreadable-~Reserved for future use.

No Share--The program section is reserved for private
use at execution time by the initiating process.

Nonwritable--The program section's contents cannot be
altered (written into) at execution time.

Overlay--Program sections with the same name and
attributes, including OVR, have the same relocatable
base address in memory. The allocated virtual address
space 1is the requested allocation of the largest
overlaying program section. Compare this attribute
with its opposite, CON.

(continued on next page)

5-46

GENERAL ASSEMBLER DIRECTIVES

Table 5-5 (Cont.)
Program Section Attributes

Attribute Function
Name

ey — — |
PIC Position-Independent Content--The program section can

be relocated; that is, it can be assigned to any
memory area (when it is in a shareable image).

RD Readable--Reserved for future use.

REL Relocatable--The linker assigns the program section a
relocatable base address. The contents of the program
section can be code or data. Compare this attribute
with its opposite, ABS.

SHR Share--The program section can be shared at execution
time by multiple processes. This attribute is assigned
to a program section that can be linked into a
shareable image.

USR User Segment--Reserved for future use.

WRT Write~-The program section's contents can be altered
(written into) at execution time.

Table 5-6
Default Program Section Attributes

Default Opposite
Attribute Attribute
CON OVR

EXE NOEXE

LCL GBL

NOPIC PIC

NOSHR SHR

RD NORD

REL ABS

WRT NOWRT

Examples

PROGRAM SECTION TO CONTAIN
EXECUTABLE CODE

.PSECT CODE,NOWRT,EXE,LONG

~e we

.PSECT RWDATA,WRT,NOEXE,QUAD
PROGRAM SECTION TO CONTAIN
MODIFIABLE DATA

~e we

5-47

Rotes

GENERAL ASSEMBLER DIRECTIVES

The .ALIGN directive cannot specify an alignment greater than
that of the current program section; consequently, .PSECT
should specify the largest alignment needed in the program
section. For efficiency of execution, an alignment of
longword or larger is recommended for all program sections
that have longword data.

The attributes of the default absolute and the default
unnamed program sections are 1listed below. Note that the
program section names include the periods and enclosed
spaces.

Program Section

Name Attributes and Alignment
. ABS . NOPIC,USR,CON,ABS,LCL,NOSHR,NOEXE, NORD, NOWRT ,BYTE
. BLANK . NOPIC,USR,CON,REL,LCL,NOSHR,NOEXE,RD,WRT,BYTE

GENERAL ASSEMBLER DIRECTIVES

.QUAD

.QUAD -- QUADWORD STORAGE DIRECTIVE
.QUAD generates 64 bits (8 bytes) of binary data.
Format

.QUAD literal
.QUAD symbol

Parameters

literal
Any constant value. This value can be preceded by “o, "B, "X, or
“D to specify the radix as octal, binary, hexadecimal, or
decimal, respectively; or it can be preceded by “"A to specify
the ASCII text operator. Decimal is the default radix.

symbol

A symbol defined somewhere in the program. This symbol results
in a sign-extended, 32-bit value being stored in a quadword.

Example
.QUAD “A'..ASK?..' : EACH ASCII CHARACTER IS STORED
; IN A BYTE
. QUAD 0 ; QUAD 0
.QUAD “X0123456789ABCDEF ; QUAD HEX VALUE SPECIFIED
. QUAD “B1111000111001101 ; QUAD HEX VALUE SPECIFIED
. QUAD LABEL ; LABEL HAS A 32 BIT
; VALUE ZERO EXTENDED.
Note

.QUAD is different from other data storage directives (.BYTE,
.WORD, and .LONG) in that it does not evaluate expressions and
that it accepts only one value. It does not accept a list.

GENERAL ASSEMBLER DIRECTIVES

.REFn

+REFn -- OPERAND GENERATION DIRECTIVES

VAX-11 MACRO has four operand storage directives used in macros (see
Chapter 6) to define new opcodes:

Directive Function

REF1 Generates a byte operand
REF2 Generates a word operand
REF4 Generates a longword operand
REFS8 Generates a quadword operand

-REFn is provided for compatibility with VAX-11 MACRO V1.0. .OPDEF
provides greater functionality and is easier to use than <.REFn;
consequently, .OPDEF should be used instead of .REFn.

Formats

.REF1 operand
.REF2 operand
.REF4 operand
.REF8 operand

Parameter
operand

An operand of byte, word, longword, or quadword context,
respectively.

Example

.MACRO MOVL3 A,B,C
.BYTE “XFF, "XA9

.REF4 A '+ THIS OPERAND HAS LONGWORD CONTEXT
-REF4 B #+ THIS OPERAND HAS LONGWORD CONTEXT
.REF4 C ' THIS OPERAND HAS LONGWORD CONTEXT

.ENDM MOVL3
MOVL3 RO,QLAB-1, (R7)+[R10]
This example uses .REF4 to create a new instruction, MOVL3, which uses

the reserved opcode FF. See the example in .OPDEF for a preferred
method to create a new instruction.

5-50

GENERAL ASSEMBLER DIRECTIVES

.RESTORE_PSECT

+RESTORE_PSECT -- RESTORE PREVIOUS PROGRAM SECTION CONTEXT DIRECTIVE

.RESTORE_PSECT retrieves the program section from the top of the
program Section context stack, an internal stack in the assembler. If
the stack is empty when .RESTORE PSECT is issued, the assembler
displays an error message. When™ .RESTORE_PSECT retrieves a program
section, it restores the current location counter to the value it had
when the program section was saved. The local label block is also
restored if it was saved when the program section was saved.

Format \
-RESTORE_PSECT
Example

.SAVE PSECT and .RESTORE PSECT are useful in macros that define
program sections (see ~Chapter 6). The macro definition below
saves the current program section context and defines new program
sections. Then, it restores the saved program section. If the
macro did not save and restore the program section context each
time the macro was invoked, the program section would change.

INITIALIZE SYMBOLS

AND DATA AREAS
SAVE.THE CURRENT PSECT
DEFINE NEW PSECT
DEFINE SYMBOLS

.MACRO INITD

.SAVE PSECT
.PSECT SYMBOLS,ABS
HELP LEV=2
MAXNUM=100
RATE1l=16
RATE2=4
.PSECT DATA,NOEXE,LONG
TABL: .BLKL 100
TEMP: .BLKB 16
.RESTORE_PSECT

DEFINE ANOTHER PSECT
100 LONGWORDS IN TABL
MORE STORAGE

RESTORE THE PSECT

IN EFFECT WHEN

MACRO IS INVOKED

N WO WO N NE NE WO N Ne N N we “e “o

. ENDM
Note

The alternate form of .RESTORE_PSECT is .RESTORE.

GENERAL ASSEMBLER DIRECTIVES

-SAVE_PSECT

.SAVE_?SECT == SAVE CURRENT PROGRAM SECTION CONTEXT DIRECTIVE
-SAVE_PSECT stores the current program section context on the top of
the program section context stack, an internal assembler stack, while
leaving the current program section context in effect.
-SAVE_PSECT and .RESTORE_PSECT are useful in macros that define
program sections (see Chapter 6). See the description of
-RESTORE_PSECT for another example using .SAVE_PSECT.
Format

.SAVE_PSECT [LOCAL_BLOCK]
Parameter
LOCAL_BLOCK

An optional keyword that specifies that the current 1local label
is to be saved with the program section context.

Example
PROGRAM START:: .WORD 0

“BLBC RO,20$
$MACRO~-E-UNDEFSYMBOL, Undefined symbol

THIS CREATES LOCAL LABEL BLOCK
BRANCH IS LOW BIT CLEAR
!

. we

THIS WILL GENERATE AN ERROR
SINCE THE DEFINITION FOR 20$
IS IN A DIFFERENT LOCAL
LABEL BLOCK

SAVE CURRENT PSECT NUMBER
SWITCH TO NEW PSECT

THIS ALSO CREATES NEW LOCAL
LABEL BLOCK

SET POINTER TO STRING

STRING TO BE PRINTED

BACK TO ORIGINAL PSECT

NOTE THAT THIS IS STILL LOCAL
LABEL BLOCK THAT WAS STARTED
BY .PSECT STRINGS

LOAD UP STRING ADDRESS

TYPE IT OUT

NOT IN SAME LOCAL LABEL
BLOCK AS REFERENCE

.SAVE_PSECT
.PSECT STRINGS

PNTR = ,
+ASCII /SOME ASCII TEXT/
-RESTORE_PSECT

MOVAB W PNTR,R0
BSBW PRINT IT
20$: RSB

WO N NP N NG NE MY WE WO WE WD N3 NG NS Ne Ne Ne wo

; THIS TIME USING .SAVE_PSECT LOCAL_BLOCK

1

o} THIS CREATES NEW LOCAL LARBEL
BLOCK

BRANCH IF LOW BIT CLEAR
WILL NOT PRODUCE AN ERROR
BECAUSE LOCAL LABEL BLOCK
IS SAVED

SAVE CURRENT PSECT NUMBER
AND THE LOCAL LABEL BLOCK
SWITCH TO NEW PSECT

THIS ALSO CREATES NEW
LOCAL LABEL BLOCK

THER_LABEL::

BLBC R0, 20%

+SAVE_PSECT LOCAL_BLOCK

.PSECT STRINGS

W e Ne e WO e @8 W N0 WG wp

5-52

PNTR =

208$:

Notes

GENERAL ASSEMBLER DIRECTIVES

SET POINTER TO STRING

TEXT TO BE PRINTED

BACK TO ORIGINAL PSECT
NOTE WE ARE BACK IN LOCAL
LABEL BLOCK STARTED BY
OTHER_LABEL

LOAD UP STRING ADDRESS
TYPE IT OUT

IS NOW IN SAME LOCAL LABEL
BLOCK AS REFERENCE

.ASCII /SOME ASCII TEXT/
.RESTORE_PSECT

MOVAB W"PNTR,RO
BSBW PRINT_IT
RSB

N0 NE NE N WO MY Me N N wO

If the stack is full when .SAVE PSECT 1is issued, an error
occurs. The stack capacity is 31.

The program section context includes the values of the
current location counter and the maximum value assigned to
the location counter in the current program section.

The alternate form of .SAVE_PSECT is .SAVE.

GENERAL ASSEHBLER DIRECTIVES

.SHOW
-.NOSHOW

+SHOW AND .NOSHOW -- LISTING DIRECTIVES

.SHOW and .NOSHOW specify listing control options in the source text
of a program. .SHOW and .NOSHOW can be used with or without an
argument list.

When used with an argument list, .SHOW causes certain types of lines
to be included in the listing file and .NOSHOW causes certain types of
lines to be excluded. .SHOW and .NOSHOW control the listing of the
source lines that are in conditional assembly blocks (see the
description of .IF), macros, and repeat blocks (see Chapter 6).

When used without arguments, these directives alter the listing level
count. The listing level count is initialized to 0. Each time .SHOW
appears in a program, the listing level count is incremented; each
time .NOSHOW appears in a program, the 1listing 1level count is
decremented.

When the listing level count is negative, the listing is suppressed
(unless the 1line contains an error). Conversely, when the listing
level count is positive, the listing is generated. When the count is
0, the line is either listed or suppressed, depending on the value of
the listing control symbolic arguments.

Formats

«SHOW

.SHOW argument-list

- NOSHOW

-NOSHOW argument-list

Parameter
argument-list

One or more of the optional symbolic arquments, defined in Table
5-7. Either the long form or the short form of the arguments can
be used. Each argument can be used alone or in combination with
other arguments. If multiple arguments are specified, they must
be separated by commas, tabs, or spaces. If any argument is not
specifically included in a listing control statement, its default
value (Show or Noshow) is assumed throughout the source program.

5-54

GENERAL ASSEMBLER DIRECTIVES

Table 5-7
.SHOW and .NOSHOW Symbolic Arguments
Long Form Short. Form Default Function
e e e
BINARY MEB Noshow Lists macro expansions and
repeat block expansions
that generate binary code.
BINARY is a subset of
EXPANSIONS.
CALLS MC Show Lists macro calls and
repeat block specifiers.
CONDITIONALS CND Show Lists unsatisfied
conditional code
associated with the
conditional assembly
directives.
DEFINITIONS MD Show Lists macro and repeat
range definitions that
appear in an input source
file.
EXPANSIONS ME Noshow Lists macro and repeat
range expansions.
Example
.MACRO XX
. SHOW ; LIST NEXT LINE.
x=0
. NOSHOW ; DO NOT LIST REMAINDER OF MACRO
. ; EXPANSION.
. ENDM
.NOSHOW EXPANSIONS ; DO NOT LIST MACRO EXPANSIONS.
XX
x=.
Notes
1. The 1listing level count allows macros to be listed

selectively; a macro definition can specify .NOSHOW at the
beginning to decrement the
.SHOW at the end to restore the listing count to its original

value.

2. The alternate forms

.NLIST.

listing count and can specify

of .SHOW and .NOSHOW are .LIST and

5-55

GERERAL ASSEMBLER DIRECTIVES

.SIGNED__BYTE

+SIGNED_BYTE -- SIGNED BYTE DATA DIRECTIVE

.SIGNED_BYTE is equivalent to .BYTE, except that VAXx-11 MACRO.
indicates that the data is signed in the object module. The linker

uses this information to test for overflow conditions.
Format
+SIGNED BYTE expression-list
Parameters
expression-list

An expression or list of expressions separated by commas.

Each

expression optionally can be followed by a repetition factor

delimited by square brackets.
An expression followed by a repetition factor has the format:
expressionl{expression2]
expressionl
An expression that specifies the value to be stored.
[expression2]

An expression that specifies the number of times the value

will

be repeated. The expression must not contain any undefined
symbols and must be an absolute expression (see Section 3.5).

The square brackets are required.

Example

-SIGNED BYTE LABEL1~-LABEL?2 ; DATA MUST FIT
-SIGNED_BYTE ALPHAT20] ; IN BYTE

Note

Specifying .SIGNED_BYTE allows the 1linker to detect overflow
conditions when the value of the expression is in the range of
128 through 255. Values in this range can be stored as unsigned

data but cannot be stored as signed data in a byte.

GENERAL ASSEMBLER DIRECTIVES

SIGNED_WORD

.SIGNED_WORD ~- SIGNED WORD STORAGE DIRECTIVE
.SIGNED_WORD 1is equivalent to .WORD except that the assembler
indicates that the data is signed in the object module. The linker
uses this information to test for overflow conditions. .SIGNED_WORD
is wuseful after the case instruction to ensure that the displacement
fits in a word.
Format
-SIGNED_WORD expression-list
Parameters
expression-list
An expression or list of expressions separated by commas. Each
expression optionally can be followed by a repetition factor
delimited by square brackets.
An expression followed by a repetition factor has the format:
expressionl[expression2]
expressionl
An expression that specifies the value to be stored.
[expression2]
An expression that specifies the number of times the value will
be repeated. The expression must not coptain any undefined

symbols and must be an abgolute expression (see Section 3.5).
The square brackets are reguired.

Example
.MACRO CASE,SRC,DISPLIST,TYPE=W,LIMIT=$#0,NMODE=S"#,?BASE, ?MAX
{ MACRO TO USE CASE INSTRUCTION
; SRC IS SELECTOR, DISPLIST IS LIST
¢ OF DISPLACEMENTS, TYPE 1§ B-BYTE
; W-WORD, L-LONG, LIMIT IS THE BASE
: VALUE OF SELECTOR
CASE'TYPE SRC, LIMIT, NMODE ' {¢<MAX=<BASE>/2>-1
; CASE INSTRUCTIONM
BASE: ; LOCAL LABEIL SPECIFYING BASE
, IRD EP,<DISPLIST> ; TO SET UP OFFSET LIST
-SIGNED_WORD EP-BASE ; OFFSET LIST
. ENDR ;
MAX: , ; LOCAL LABEL USED TO CQUNT ARG3
.ENDM CASE s
CASE IVAR <ERR PROG,SORT,REV SORT> ; IF IVAR=0, BRPOR:
CASEW IVAPR, 50,57 #<7300015+3060085/2 -1
360008%: A g LOUNT LABEL BPECIFYIRG BASE
«SIGNED_WORD ERR_PROC-30000% ; OFFEET LIST
.SIGNED_WORD SORT~30000$ s OFFSET LIST
B .SIGNED WORD REV_SORT-30000¢ : OFFSET LIST
36001§: - i LOCAHL LABEL USED 70 COUNT ARGE

i ?
; =1, FOWARD SORT; =2,BACKWARD SORI

GENERAL ASSEMBLER DIRECTIVES

CASE TEST <TEST1,TEST2,TEST3>,L,#1 :
CASEL TEST, #1,S " #<<30003$-300028>/2>~-1
30002: ; LOCAL LABEL SPECIFYING BASE
.SIGNED_WORD TEST1-30002$; OFFSET LIST
.SIGNED WORD TEST2-30002$: OFFSET LIST
. SIGNED_WORD TEST3-30002$; OFFSET LIST
30003$: LOCAL LABEL USED TO COUNT ARGS

; VALUE OF TEST CAN BE 1,2, OR 3

In this example, the CASE macro uses .SIGNED WORD to create a CASEB,
CASEW, or CASEL instruction. See Chapter 6 for a description of the
directives used to define the macro.

Note

Specifying .SIGNED WORD allows the 1linker to detect overflow
conditions when the value of the expression is in the range of
32768 through 65535. Values in this range can be stored as
unsigned data but cannot be stored as signed data in a word.

GENERAL ASSEMBLER DIRECTIVES

.SUBTITLE

«SUBTITLE -- SUBTITLE DIRECTIVE

.SUBTITLE causes the assembler to print a line of text in the table of
contents that is produced immediately before the assembly listing.
The assembler also prints the line of text as the subtitle on the
second 1line of each assembly 1listing page. This subtitle text is
printed on each page until altered by a subsequent .SUBTITLE directive
in the program.

Format
+.SUBTITLE comment-string

Parameter

comment-string
An ASCII string from 1 to 47 characters long; excess characters
are truncated. This string represents the line of text to be
printed in the table of contents and as the subtitle in the
assembly listing.

Examples

l. .SUBTITLE CONDITIONAL ASSEMBLY

This directive cause the assembler to print the <following
text as the subtitle of the assembly listing:

CONDITIONAL ASSEMBLY
2. TABLE OF CONTENTS

(1) 5000 ASSEMBLER DIRECTIVES

(2) 1300 MACRO DEFINITIONS

(2) 2300 DATA TABLES AND INITIALIZATION
(3) 4800 MAIN ROUTINE

(4) 2800 CALCULATIONS

(4) 5000 I/0 ROUTINES

(5) 1300 CONDITIONAL ASSEMBLY

During assembly, a table of contents is printed for the assembly
listing. It contains the source page number and the line sequence
number of the source file and the text accompanying each .SUBTITLE
directive.

Note

The alternate form of .SUBTITLE is .SBTTL.

-TITLE

GENERAL ASSEMBLER DIRECTIVES

«TITLE -- TITLE DIRECTIVE

.TITLE assigns a name to the object module. This name is the first 15

or fewer

Format

nonblank characters following the directive.

.TITLE module-name comment-string

Parameters

module-name

An identifier from 1 to 15 characters long.

comment~-string

An ASCII string from 1 to 47 characters long; excess characters

are

Example

Notes

truncated.

+TITLE EVAL EVALUATES EXPRESSIONS

The module name specified with .TITLE bears no relationship
to the file specification of the object module, as specified
in the VAX~11l MACRO command line. Rather, the object module
name appears in the linker load map, and is also the module
name that the debugger and librarian recognize.

If .TITLE is not specified, MACRO assigns the default name
.MAIN, to the object module. If more than one .TITLE
directive is specified in the source program, the last .TITLE
directive encountered establishes the name for the entire
object module.

When evaluating the module-name, MACRO ignores all spaces
and/or tabs up to the first nonspace/nontab character after
LTITLE.

GENERAL ASSEMBLER DIRECTIVES

.TRANSFER

.TRANSFER -~ TRANSFER DIRECTIVE

.TRANSFER redefines a global symbol for use in a shareable image. The
linker redefines the symbol as the value of the location counter at
the .TRANSFER directive after a shareable image is linked.

When shareable images are relinked, they should be relinked so that
the programs linked with them need not be relinked. This can only be
achieved if the entry points in the shareable image do not change
their addresses when the source code is changed and the image is
relinked. To build such a shareable image, the programmer creates an
object module that contains a transfer vector for each entry point and
does not change the order of the transfer vectors. This object module
is linked at the beginning of the shareable image and the addresses
will remain fixed even if source code for a routine is changed. After
each .TRANSFER directive, a register save mask {for procedures only)
and a branch to the first instruction of the routine should appear.

Figure 5-~1 illustrates the use of entry vectors. The .TRANSFER
directive does not cause any memory to be allocated and does not
generate any binary code. It merely generates instructions to the
linker tc redefine the symbol when a shareable image is being created.

.TRANSFER can be used with procedures entered by the CALLS or CALLG
instruction. In this case, .TRANSFER 1is used with the .ENTRY and
.MASK directives. The branch to the actual routine must be a branch
to the entry point plus 2. Adding 2 to the address is necessary to
bypass the 2-byte register save mask.

Linked with Shareable Image Linked with Object Modules
Program * Program *
Calling CALLS ROUTB Calling CALLS ROUTB
Procedure . Procedure | o
.TRANSFER ROUTA *
.MASK ROUTA
Transfer BRW ROUTA+2
Vector .TRANSFER ROUTB-=
Module MASK RQUTB
BRW ROUTB+2 ——
Shareable <
Image
Other .ENTRY ROUTB,0 .ENTRY ROUTB, 0=
. ;START OF ROUTINE == Object ; START OF ROUTINE
Object o .
Modules : Modules :
RET RET

Figure 5-1 Using Transfer Vectors

5-61

GENERAL ASSEMBLER DIRECTIVES

Format

. TRANSFER symbol
Parameter
symbol

A global symbol that is an entry point in a procedure or routine.

Example
.TRANSFER ROUTINE A
«MASK ROUTINE A, "M<R4,R5> ; COPY ENTRY MASK
- ; AND ADD REGISTERS
4 AND 5
BRW ROUTINE_A+2 BRANCH TO ROUTINE

we we wo

(PAST ENTRY MASK)

.ENTRY ROUTINE_A,“M(RZ,R3> ENTRY POINT, SAVE

REGISTERS 2 AND 3

~e wo

RET

In this example, .MASK copies a routine's entry mask to the new entry
address specified by .TRANSFER. If the routine 1is placed in a
shareable image and then called, registers 2, 3, 4, and 5 will be
saved.

GENERAL ASSEMBLER DIRECTIVES

.WARN

«WARN -~ WARNING DIRECTIVE

.WARN causes the assembler to display a warning message on the
terminal or batch log file and in the listing file (if there is one).

Format

.WARN [expression] ;comment
bParameters
expression

An expression whose value is displayed when .WARN is encountered
during assembly.

scomment

A comment that is displayed when .WARN is encountered. The
comment must be preceded by a semicolon.

Example

.IF DEFINED FULL

.IF DEFINED DOUBLE PREC

«WARN ; THIS COMBINATION NOT TESTED
. ENDC

.ENDC

If the symbols FULL and DOUBLE_PREC are both defined, the following
warning message is displayed.

$MACRO-W-GENWRN, Generated WARNING: THIS COMBINATION NOT TESTED
Notes

1. .WARN, .ERROR, and .PRINT are called the message display
directives. They can be used to display information
indicating that a macro call contains an error or an illegal
set of conditions (see Chapter 6 for more information on
macro calls).

2. When the assembly is finished, the assembler displays the
total . number of errors and warnings and the page numbers and
line numbers of the lines causing the errors or warning on
the terminal (or in the batch log file). See the VAX-11
MACRO User's Guide for more information on errors and
warnings.

3. If .WARN is included in a macro library (see the VAX-11 MACRO

User's Guide), the comment should end with an additional
semicolon. Otherwise, the comment will be stripped from the
directive and will not be displayed when the macro is called.

4. The line containing the .WARN directive is not included in
the listing file.

5. 1If the expression has a value of 0, it is not displayed in
the warning message.

GERERAL ASSEMBLER DIRECTIVES

\WEAK

«WEAK -- WEAK SYMBOL ATTRIBUTE DIRECTIVE

.WEAK specifies symbols that are either defined externally in another
module or defined globally in the current module. .WEAK suppresses
any object library search for the symbol.

When .WEAK specifies a symbol that is not defined in the current
module, the symbol 1is externally defined. If the linker finds the
symbol's definition in another module, it uses that definition. If
the 1linker does not find an external definition, the symbol has a
value of 0 and the linker does not report an error. The 1linker does
not search a library for the symbol, but if a module brought in from a
library for another reason contains the symbol definition, the 1linker
uses it.

When .WEAK specifies a symbol that is defined in the current module,
the symbol is considered to be globally defined. However, if this
module is inserted in an object library, this symbol is not inserted
in the library's symbol table. Consequently, searching the library at
link time to resolve this symbol does not cause the module to be
included.
Format

.WEAK symbol-list
Parameter
symbol-list

A list of legal symbols separated by commas.
Example

.WEAK IOCAR,LAB_3

GENERAL ASSEMBLER DIRECTIVES

.WORD

«WORD -- WORD STORAGE DIRECTIVE

-WORD generates successive words (2 bytes) of data in the object
module.

Format

+.WORD expression-list
Parameter
expression-list

One or more expressions separated by commas. Each expression
optionally can be followed by a repetition factor delimited by
square brackets.

An expression followed by a repetition factor has the format:
expressionl[expression2]
expressionl
An expression that specifies the value to be stored.
[expression2]
An expression that specifies the number of times the value will
be repeated. The expression must not contain any undefined
symbols and must be an absolute expression (see Section 3.5).
The square brackets are required.
Example
.WORD "X3F,FIVE[3],32
Notes
1. The expression 1is first evaluated as a longword, then
truncated to a word. The value of the expression should be
in the range of -32768 through 32767 for signed data or O
through 65535 for unsigned data. The assembler displays an
error if the high-order 2 bytes of the 1longword expression
‘ have a value other than 0 or “XFFFF.
2., The .SIGNED WORD directive is the same as .WORD except that

the assembler displays a diagnostic message if a value is in
the range from 32768 to 65535.

CHAPTER 6

MACROS

By using macros, a programmer can use a single 1line to insert a
sequence of source lines into a program.

A macro definition contains the source lines of the macro. The macro
definition can optionally have formal arguments. These formal
arguments can be used throughout the sequence of source lines. Later,
the formal arguments are replaced by the actual arguments in the macro
call.

The macro call consists of the macro name optionally followed by
actual arguments. The assembler replaces the line containing the
macro call with the source lines in the macro definition. It replaces
any occurrences of formal arguments in the macro definition with the
actual arguments specified in the macro call. This process is called
the macro expansion.

By default, macro expansions are not printed in the assembly listing.
They are printed only when the .SHOW directive (see description in
Chapter 5) specifies the EXPANSIONS argument. In the examples in this
chapter, the macro expansions are listed as they would appear if .SHOW
EXPANSIONS was specified in the source file,

The macro directives provide facilities for performing eight
categories of functions. Table 6-1 lists these categories and the
directives that fall under them, Section 6.1 describes macro
arguments. Section 6.2 describes the directives in detail. For ease
of reference, the directives are presented in alphabetical order.

6.1 ARGUMENTS IN MACROS

Macros have two types of arguments: actual and formal. Actual
arguments are the strings given in the macro call after the name of
the macro. Formal arguments are specified by name in the macro
definition: that 1is, after the macro name in the .MACRO directive.
Actual arguments in macro calls and formal arguments in macro
definitions can be separated by commas, tabs, or spaces.

The number of actual arguments in the macro call can be less than or
equal to the number of formal arguments in the macro definition. But
if the number of actual arguments is greater than the number of formal
arguments, the assembler displays an error message.

Formal and actual arguments normally maintain a strict positional
relationship. That 1is, the first actual argument in a macro call
replaces all occurrences of the first formal argument in the macro
definition. However, this strict positional relationship can be
overridden by the use of keyword arguments (see Section 6.1.2).

MACROS

Table 6-1

Summary of Macro Directives

Category Directives*
m
Macro Definition +MACRO
Directives . ENDM
Macro Library . LIBRARY
Directives +MCALL
Macro Deletion «MDELETE
Directive
Macro Exit .MEXIT
Directive
Argument Attribute - NARG
Directives .NCHR

+NTYPE
Indefinite Repeat +IRP
Block Directives «IRPC
Repeat Block +.REPEAT (.REPT)
Directives
End Range «ENDR
Directive
* The alternate form, if any, is

given in parentheses.

An example of a macro definition using formal arguments follows:

«MACRO
. LONG
«WORD
.BYTE
.ENDM

The following
macro defined

1. STORE
. LONG
«WORD
.BYTE

2. STORE
. LONG
.WORD
.BYTE

STORE
ARG1
ARG3
ARG2
STORE

two examples show possible calls and expansions

above.

3'2,1

ARG1,ARG2,ARG3

LYRR TR

MACRO CALL

wo we we W

MACRO CALL

we we we o

3 IS FIRST ARGUMENT
1 IS THIRD ARGUMENT
2 IS SECOND ARGUMENT

X IS FIRST ARGUMENT
Z IS THIRD ARGUMENT
X-Y IS SECOND ARGUMENT

ARGl IS FIRST ARGUMENT
ARG3 IS THIRD ARGUMENT
ARG2 IS SECOND ARGUMENT

of

the

MACROS

6.1.1 Default Values

Default values are values that are defined in the macro definition.
They are used when no value 1is specified in the macro call for a
formal argument.

Default values are specified in the .MACRO directive as follows:
formal-argument-name = default-value
An example of a macro definition specifying default values follows:
.MACRO STORE ARG1=12,ARG2=0,ARG3=1000
.LONG ARG1
.WORD ARG3
.BYTE ARG2
. ENDM STORE

The following three examples show possible calls and expansions of the
macro defined above.

1. STORE ; NO ARGUMENTS SUPPLIED
.LONG 12
+WORD 1000
.BYTE 0

2. STORE 1 5.X ; LAST TWO ARGUMENTS SUPPLIED
+«LONG 12
«WORD X
.BYTE 5

3. STORE 1 ; FIRST ARGUMENT SUPPLIED
« LONG 1
.WORD 1000
.BYTE 0

6.1.2 Keyword Arguments

Keyword arguments allow a macro call to specify the arguments in any
order; however, the macro call must specify the same formal argument
names that appear in the macro definition. Keyword arguments are
useful when a macro definition has many formal arguments, only some of
which need to be specified in the call.

In any one macro call the arguments should be either all positional
arguments or all keyword arguments. When positional and keyword
arguments are combined in a macro, only the positional arguments
correspond by position to the formal arguments; the keyword arguments
are not used. If a formal argument corresponds to both a positional
argument and a keyword argument, the argument that appears last in the
macro call overrides any other argument definition for the same
argument,

For example, the following macro definition specifies three arguments:

+.MACRO STORE ARGl ,ARG2,ARG3
« LONG ARG1

<WORD ARG3

.BYTE ARG2

- ENDM STORE

MACROS

The following macro call specifies keyword arguments:

STORE ARG3=27+5/4 ,ARG2=5,ARG1=SYMBL
« LONG SYMBL

«WORD 27+5/4

«BYTE 5

Because the keywords are specified in the macro call, the arguments in
the macro call need not be given in the order they were listed in the
macro definition.

6.1.3 String Arguments

If an actual argument is a string containing characters that the
assembler interprets as separators (such as a tab, space, or comma),
the string must be enclosed by delimiters. String delimiters are
usually paired angle brackets (<>). However, the assembler also
interprets any character after an initial circumflex (") as a
delimiter. Thus, to pass an angle bracket as part of a string, the
programmer can use the circumflex form of the delimiter.

The following are examples of delimited macro arguments:

<HAVE THE SUPPLIES RUN OUT?>

<LAST NAME, FIRST NAME>

<LAB: CLRL R4>

“$ARGUMENT IS <LAST,FIRST> FOR CALLS%
“"?EXPRESSION IS <5+3>*%<4+2>?

In the last two examples the initial circumflex indicates the percent
sign (%) and question mark (?), respectively, are the delimiters.
Note that only the left hand delimiter is preceded by a circumflex.

The assembler interprets a string argument enclosed by delimiters as
one actual argument and associates it with one formal argument. If a
string argument that contains separator characters is not enclosed by
delimiters, the assembler interprets it as successive actual arguments
and associates it with successive formal arguments.

For example, the following macro call has one formal argument.

.MACRO REPEAT STRNG
.ASCII /STRNG/
.ASCII /STRNG/
- ENDM REPEAT

The following two macro calls demonstrate actual arguments with and
without delimiters.

1. REPEAT <A B C D E>
LASCII /A B CDE/
.ASCII /A B C D E/

2. REPEAT A B CDE
$MACRO-E-TOOMNYARGS, Too many arguments in MACRO call

Note that the assember interpreted the second macro call as having
five actual arguments instead of one actual argument with spaces.

When a macro is called, the assembler removes the delimiters (if
present) around a string before associating it with the formal
arguments,

\

MACROS

If a string contains a semicolon, the string must be enclosed by
delimiters, or the semicolon will mark the start of the comment field.

To pass a number containing a radix or unary operator (for example,
“XF19), the entire argument must be enclosed by delimiters, or the
assembler will interpret the radix operator as a delimiter. The
following. are macro arguments that are enclosed in delimiters because
they contain radix operators:

<"XF19>
<"B01100011>
<"Fl.5>

Macros can be nested, that is a macro definition can contain a call to
another macro. If within a macro definition, another macro is called
and passed a string argument, the programmer must delimit the argument
so that the entire string is passed to the second macro as one
argument.

The following macro definition contains a call to the REPEAT macro
defined in an earlier example:

+MACRO CNTRPT LAB1,LAB2,STR_ARG
LAB1: .BYTE LAB2-LABl-1 ; LENGTH OF 2+STRING

REPEAT <STR_ARG> ; CALL REPEAT MACRO
LAB2:
. ENDM CNTRPT

Note that the argument in the call to REPEAT is enclosed in angle
brackets even though the actual argument does not contain any
separator characters. This is done because the actual argument in the
call to REPEAT is a formal argument in the macro definition and will
be replaced with an actual argument that may contain separator
characters.

The following example calls the macro CNTRPT which in turn calls the
macro REPEAT:

CNTRPT ST,FIN,<LEARN YOUR ABC'S>

ST: .BYTE FIN-ST-1 ; LENGTH OF 2*STRING
REPEAT <LEARN YOUR ABC'S> ; CALL REPEAT MACRO
.ASCII /LEARN YOUR ABC'S/
.ASCII /LEARN YOUR ABC'S/

FIN:

An alternative method to pass string arguments in nested macros is to
enclose the macro argument in nested delimiters. In this case the
macro calls in the macro definitions should not have delimiters. Each
time the delimited argument 1is used in a macro call, the assembler
removes the outermost pair of delimiters before associating it with
the formal argument. This method is not recommended because it
requires that the programmer know how deeply a macro is nested.

The following macro definition also contains a call to the repeat
macro:

+MACRO CNTRPT2 LAB1,LAB2,STR_ARG
LABl: +BYTE LAB2-LAB1-1 ; LENGTH OF 2*STRING

REPEAT STR_ARG ; CALL REPEAT MACRO

LAB2:
« ENDM CNTRPT2

MACROS

Note that the argument in the call to REPEAT is not enclosed in angle
brackets.,

The following example calls the macro CNTRPT2:

CNTRPT2 BEG,TERM,<<MIND YOUR P'S AND Q'S>>
BEG: .BYTE TERM-BEG-1 ; LENGTH OF 2*STRING
REPEAT <MIND YOUR P'S AND Q'sS>
.ASCII /MIND YOUR P'S AND Q'S/
.ASCII /MIND YOUR P'S AND Q's/
TERM:

Note that even though the call to REPEAT in the macro definition is
not enclosed in delimiters, the call in the expansion is enclosed in
delimiters because the call to CNTRPT2 contains nested delimiters
around the string argument.

6.1.4 Argument Concatenation

The argument concatenation operator, the apostrophe ('), concatenates
a macro argument with some constant text. Apostrophes can either
precede or follow a formal argument name in the macro source.

If an apostrophe precedes the argument name, the text before the
apostrophe 1is concatenated with the actual argument when the macro is
expanded. For example, if ARGl is a formal argument associated with
the actual argument TEST, ABCDE'ARGl is expanded to ABCDETEST.

If an apostrophe follows the formal argument name, the actual argument
is concatenated with the text that follows the apostrophe when the
macro is expanded. For example, if ARG2 is a formal argument
associated with the actual argument MOV, ARG2'L is expanded to MOVL.

Note that the apostrophe itself does not appear in the macro
expansion.

To concatenate two arguments, separate the two formal arguments with
two successive apostrophes. Two apostrophes are needed because each
concatenation operation discards an apostrophe from the expansion.

An example of a macro definition that uses concatenation follows:

+MACRO CONCAT INST,SIZE,NUM
TEST'NUM': INST''SIZE RO,R'NUM
TEST'NUM'X:

- ENDM CONCAT

Note that two successive apostrophes are used when concatenating the
two formal arguments INST and SIZE.

An example of a macro call and expansion follows:
CONCAT MOV,L,5

TESTS5: MOVL RO,R5
TESTSX:

MACROS

6.1.5 Passing Numeric Values of Symbols

When a symbol is specified as an actual argument, the name of the
symbol, not the numeric value of the symbol, is passed to the macro.
However, the value of the symbol can be passed by inserting a
backslash before the symbol in the macro call. The assembler then
passes the characters representing the decimal value of the symbol to
the macro. For example, if the symbol COUNT has a value of 2 and the
actual argument specified is \COUNT, the assembler passes the string
"2" to the macro; it does not pass the name of the symbol, "COUNT".

Passing numeric values of symbols is especially useful with the
apostrophe (') concatenation operator for creating new symbols.

An example of a macro definition for passing numeric values of symbols
follows:

.MACRO TESTDEF,TESTNO,ENTRYMASK="?"M<>?
.ENTRY TEST'TESTNO,ENTRYMASK ; USES ARG CONCATENATION
. ENDM TESTDEF

The following example shows a possible call and expansion of the macro
defined above:

COUNT = 2

TESTDEF \COUNT

.ENTRY TEST2, M

COUNT + 1

TESTDEF \COUNT, “?"M<R3,R4>?
.ENTRY TEST3,"M<R3,R4>

COUNT

6.1.6 Created Local Labels

Local labels are often very useful in macros. Although the programmer
can specify local labels in the macro definition, these local labels
might be duplicated elsewhere in the local label block and might thus
cause errors. However, the programmer can use the assembler to create
local labels in the macro expansion which will not conflict with other
local labels. These labels are called created local labels.

Created local labels range from 300005 through 65535$. Each time the
assembler creates a new local label, it increments the numeric part of
the label name by 1, Consequently, no user-defined 1local labels
should be in the range of 300005 through 65535$.

The programmer specifies a created local label by a question mark (?)
placed in front of the formal argument name. When the macro is
expanded, the assembler creates a new local label if the corresponding
actual argument 1is blank. If the corresponding actual argument is
specified, the assembler substitutes the actual argument for the
formal argument., Created local symbols can be used only in the first
31 formal arguments specified in the .MACRO directive.

Created local labels can be associated only with positional actual
arguments; created 1local 1labels cannot be associated with keyword
actual arguments,

MACROS

The following example is a macro definition specifying a created local
label:

.MACRO POSITIVE ARG1,?L1
TSTL ARG1
BGEQ L1
MNEGL ARG1,ARG1
Ll: « ENDM POSITIVE

The following three calls and expansions of the macro defined above
show both created local labels and a user-specified local label:

l. POSITIVE RO
TSTL RO
BGEQ 300008
MNEGL RO,RO

30000$:
2. POSITIVE COUNT
TSTL COUNT
BGEQ 300018
MNEGL COUNT,COUNT
30001$:
3. POSITIVE VALUE,10$
TSTL VALUE
BGEQ 108
MNEGL VALUE,VALUE
108$:

6.1.7 Macro String Operators
The three macro string operators are:
e S$LENGTH
e 3LOCATE
e S$EXTRACT
These operators perform string manipulations on macro arguments and
ASCII strings. They can be used only in macros and repeat blocks.

The following sections describe these operators and give their formats
and examples of their use.

6-8

MACROS

%LENGTH

6.1.7.1 SLENGTH Operator - The RLENGTH operator returns the length of
a string. For example, the value of $LENGTH(<ABCDE>) is 5.

Format
$LENGTH(string)

Parameters

string
A macro argument or a delimited string. The string can be
delimited by angle brackets or a character preceded by a
circumflex (see Section 6.1.3).

Examples

Macro definition:

MACRO CHECKS IF ARGl
IS BETWEEN 3 AND

.MACRO CHK_SIZE ARGl
.IF GREATER EQUAL $LENGTH (ARG1) -3

~e W wo

.IF LESS THAN 6-%LENGTH (ARG1) 6 CHARACTERS LONG
.ERROR ; ARGUMENT ARGl IS GREATER THAN 6 CHARACTERS
.ENDC ; IF MORE THAN 6
.IF_FALSE ., ; IF LESS THAN 3

« ERROR ; ARGUMENT ARGl IS LESS THAN 3 CHARACTERS

« ENDC ; OTHERWISE DO

. ENDM CHK_SIZE ; NOTHING

Macro calls and expansions of the macro defined above:

1. CHK_SIZE A ; SHOULD BE TOO SHORT
.IF GREATER_EQUAL 1-3 ; IS BETWEEN 3 AND
.IF LESS_THAN 6-1 ; 6 CHARACTERS LONG
.ERROR ; ARGUMENT A IS GREATER THAN 6 CHARACTERS
.ENDC ; IF MORE THAN 6
.IF_FALSE ; IF LESS THAN 3
$MACRO-E-GENERR, Generated ERROR: ARGUMENT A IS LESS THAN 3 CHARACTERS
.ENDC ; OTHERWISE DO
2. CHK_SIZE ABC ; SHOULD BE OK
.IF GREATER_EQUAL 3-3 ; IS BETWEEN 3 AND
.IF LESS_THAN 6-3 ; 6 CHARACTERS LONG
- ERROR ; ARGUMENT ABC IS GREATER THAN 6 CHARACTERS
.ENDC ; IF MORE THAN 6
.IF_FALSE ; IF LESS THAN 3
.ERROR ; ARGUMENT ABC IS LESS THAN 3 CHARACTERS
.ENDC ; OTHERWISE DO

MACROS

%LOCATE

6.1.7.2 SLOCATE Operator - The 3LOCATE operator locates a substring
within a string. If SLOCATE f£finds a match of the substring, it
returns the character position of the first character of the match in
the string. For example, the value of %LOCATE(<D>,<ABCDEF>) is 3.
Note that the first character position of a string is 0. If SLOCATE
does not find a match, it returns a value equal to the length of the
string. For example, the value of $LOCATE(<Z>,<ABCDEF>) is 6.

The $LOCATE operator returns a numeric value that can be used in any
expression.

Format

3LOCATE (stringl,string2 [,symbol])
Parameters
stringl

A string that specifies the substring. The substring can be
either a macro argument or a delimited string. The delimiters
can be either angle brackets or a character preceded by a
circumflex.

string2

The string that is searched for the substring. The string can be
either a macro argument or a delimited string. The delimiters
can be either angle brackets or a character preceded by a
circumflex.

symbol

An optional symbol or decimal number that specifies the position
in string2 at which the assembler should start the search. If
this argument is omitted, the assembler starts the search at
position 0 (the beginning of the string). A symbol must be an
absolute symbol that has been previously defined and a number
must be an unsigned decimal number. Expressions and radix
operators are not allowed. ‘

Example
Macro definition:
+.MACRO BIT NAME ARGl ; CHECKS IF ARGl IS IN LIST

.IF EQUAL $LOCATE (ARG1 ,<DELDFWDLTDMOESC>) ~15
; IF IT IS NOT PRINT ERROR

« ERROR ; ARGl IS AN INVALID BIT NAME
«ENDC ; IF IT IS DO
« ENDM BIT_NAME ; NOTHING

Macro calls and expansions of the macro defined above:

1. BIT_NAME ESC ; IS IN LIST
.IF EQUAL 12-15
; IF IT IS NOT PRINT ERROR
« ERROR ; ESC IS AN INVALID BIT NAME
« ENDC ; IF IT IS DO

MACROS

2

2. BIT_NAME FOO
. IF EQUAL 15-15

NOT IN LIST

~e

; IF IT IS NOT PRINT ERROR
$MACRO-E-GENERR, Generated ERROR: FO0O IS AN INVALID BIT NAME

«ENDC ; IF IT IS DO
Note

If the optional symbol is specified, the search begins at the
character position of string2 specified by the symbol. For
example, the value of $LOCATE(<ACE>,<SPACE_HOLDER>,5) is 12
because there is no match after the 5th character position.

%EXTRACT

6.1.7.3 S$EXTRACT Operator - The $EXTRACT operator extracts a
substring from a string. It returns the substring that begins at the
specified position and is the specified 1length. For example, the
value of $EXTRACT(2,3,<ABCDEF>) is CDE. Note that the first character
in a string is in position 0.

Format

$EXTRACT (symboll,symbol2,string)
Parameters
symboll

A symbol or decimal number that specifies the starting position
of the substring. A symbol must be an absolute symbol that has
been previously defined and a number must be an unsigned decimal
number. Expressions and radix operators are not allowed.

symbol2

A symbol or decimal number that specifies the 1length of the
substring. A symbol must be an absolute symbol that has been
previously defined and a 'number must be an unsigned decimal
number. Expressions and radix operators are not allowed.

string

A macro argument or a delimited string. The string can be
delimited by angle brackets or a character preceded by a
circumflex.

Example
Macro definition:

.MACRO RESERVE ARGl
XX = $LOCATE(<=>,ARGl)
.IF EQUAL XX-$LENGTH (ARG1)
+«WARN ; INCORRECT FORMAT FOR MACRO CALL - ARGl
~MEXIT
. ENDC

MACROS

$EXTRACT(0,XX,ARG1) ::

XX = XX+1
-BLKB $EXTRACT (XX, 3,ARG1)
«ENDM RESERVE

Macro calls and expansions of the macro defined above:

1. RESERVE FOOBAR

XX = 6
+IF EQUAL XX-6

¥MACRO-W-GENWRN, Generated WARNING: INCORRECT FORMAT FOR MACRO CALL - FOOBA
+MEXIT

2. RESERVE LOCATION=12
XX 8

«IF EQUAL XX-11

-WARN ;7 INCORRECT FORMAT FOR MACRO CALL - LOCATION=12
«MEXIT

+«ENDC

LOCATION::
XX = XX+1
+BLKB 12

Notes

If the starting position specified is greater than or equal to
the 1length of the string, $EXTRACT returns a null string (a
string of 0 characters). If the length specified is 0, $EXTRACT
returns a null string.

6.2 MACRO DIRECTIVES

The remainder of this chapter describes the macro directives in
detail, showing their formats and giving examples of their use. The
directives are presented in alphabetical order.

MACROS

.ENDM

+«ENDM--END DEFINITION DIRECTIVE

.ENDM terminates the macro definition. See the description of .MACRO
for an example of the use of .ENDM.

Format

.ENDM [macro-name]

Parameter

macro-name

Note

The name of the macro whose definition is to be terminated. The
macro name is optional; but, if specified, it must match the
name defined in the matching .MACRO directive. The macro name
should be specified so that the assembler can detect any
improperly nested macro definitions.

If .ENDM is encountered outside a macro definition, the assembler
displays an error message.

.ENDR

« ENDR--END RANGE DIRECTIVE

.ENDR indicates the end of a repeat range. It must be the final
statement of every indefinite repeat block directive (.IRP and .IRPC)
and every repeat block directive (.REPEAT). See the description of
these directives for examples of the use of .ENDR.

Format

. ENDR

MACROS

IRP

« IRP-~INDEFINITE REPEAT ARGUMENT DIRECTIVE

-IRP replaces a formal argument with successive actual arguments
specified in an argument list. This replacement process occurs during
the expansion of the indefinite repeat block range. The .ENDR
directive specifies the end of the range.

-IRP is analogous to a macro definition with only one formal argument.
At each expansion of the repeat block, this formal argument is
replaced with successive elements from the argument 1list. The
directive and its range are coded inline within the source program,
This type of macro definition and its range do not require calling the
macro by name, as do other macros described in this chapter.

.IRP can appear either within or outside another macro definition,
indefinite repeat block, or repeat block (see the description of
-REPEAT). The rules for specifying .IRP arguments are the same as
those for specifying macro arguments.

Format

«IRP symbol,<argument list>

Parameters
symbol

A formal argument that is successively replaced with the
specified actual arguments enclosed in angle brackets. If no
formal argument is specified, the assembler displays an error
message.

<argument list>

A list of actual arguments enclosed in angle brackets and used in
expanding the indefinite repeat range. An actual argument can
consist of one or more characters; multiple arguments must be
separated by a legal separator (comma, space, or tab). If no
actual arguments are specified, no action is taken.

range
The block of source text to be repeated once for each occurrence

of an actual argument in the list. The range can contain macro
definitions and repeat ranges. .MEXIT is legal within the range.

MACROS

Example
Macro definition:
.MACRO CALL SUB SUBR,Al1,A2,A3,A4,A5,A6,A7,A8,A9,A10

.NARG COUNT
.IRP ARG,<Al0,A9,A8,A7,A6,A5,A4,A3,A2,A1>

.IIF NOT_BLANK ARG, PUSHL ARG
.ENDR
CALLS #<COUNT-1>,SUBR ; NOTE SUBR IS COUNTED

.ENDM CALL_SUB

Macro call and expansion of the macro defi ed above:

CALL_SUB TEST, INRES,INTES,U LIS,OUTCON,#205
.NARG COUNT

- IRP ARG,<,,,,¢#205,0UTCON,UNLIS,INTES, INRES>
.IIF NOT_BLANK ARG, PUSHL ARG

- ENDR

.IIF NOT_BLANK , PUSHL

.IIF NOT_BLANK , PUSHL

.IIF NOT_BLANK , PUSHL

.IIF NOT BLANK , PUSHL

.IIF NOT_BLANK , PUSHL

.IIF NOT_BLANK #205, PUSHL #205

.IIF NOT_BLANK OUTCON, PUSHL OUTCON

.IIF NOT_BLANK UNLIS, PUSHL UNLIS

.IIF NOT_BLANK INTES, PUSHL INTES

.IIF NOT_BLANK INRES, PUSHL INRES

CALLS ¥<COUNT-1>,TEST ; NOTE TEST IS COUNTED

This example uses the .NARG directive to count the arguments and the
.IIF NOT_BLANK directive (see descriptions of .IF and .IIF in Chapter
5). to determine whether the actual argument is blank. If the
argument is blank, no binary code is generated.

MACROS

IRPC

« IRPC-~INDEFINITE REPEAT CHARACTER DIRECTIVE

-IRPC is similar to .IRP except that .IRPC permits single-character
substitution, rather than argument substitution. On each iteration of
the indefinite repeat range, the formal argument is replaced with each
successive character in the specified string. The .ENDR directive
specifies the end of the range.

.IRPC is analogous to a macro definition with only one formal
argument. At each expansion of the repeat block, this formal argument
is replaced with successive characters from the actual argument
string. The directive and its range are coded inline within the
source program and do not require calling the macro by name, as do
other macros described in this chapter.

.IRPC can appear either within or outside another macro definition,
indefinite repeat block, or repeat block (see description of .REPEAT).

Format

«IRPC symbol,<string>

Parameters
symbol

A formal argument that 1is successively replaced with the
specified characters enclosed in angle brackets. If no formal
argument is specified, the assembler displays an error message.

<string>

A sequence of characters enclosed in angle brackets and used in
the expansion of the indefinite repeat range. Although the angle
brackets are required only when the string contains separating
characters, their use is recommended for legibility.

range

The block of source text to be repeated once for each occurrence
of a character in the 1list, The range can contain macro
definitions and repeat ranges. .MEXIT is legal within the range.

Example
Macro Definition:

-MACRO HASH_SYM SYMBOL
+«NCHR HV,<SYMBOL>
«IRPC CHR,<SYMBOL>
HV = HV"A?CHR?
«ENDR
« ENDM HASH_SYM

6-16

MACROS

Macro call and expansion of the macro defined above:

HV =

HV
HV
HV
HV
HV

wononounn

This

HASH_SYM <MOVC5>
-NCHR HV,<MOVC5>
«IRPC CHR,<MOVC5>

HV+"A?CHR?
«ENDR

HV+"A?M?

HV+"A?0?

HV+"A?V?

HV+"A?C?

HV+"A?5?

example uses the .NCHR directive to count the

characters in actual argument.

number

of

MACROS

.LIBRARY

- LIBRARY--MACRO LIBRARY DIRECTIVE

-LIBRARY adds a name to the VAX-11 MACRO library 1list that is
searched whenever a .MCALL or an undefined opcode is encountered. The
libraries are searched in the reverse order in which they were
specified to the assembler.

If the programmer omits any information from the macro-library-name
argument, default values are assumed. The device defaults to the

user's disk; the directory defaults to the user's directory; and the
file type defaults to MLB.

DIGITAL recommends that libraries be specified in the MACRO command
line with the /LIBRARY qualifier rather than with the .LIBRARY
directive. The .LIBRARY directive makes moving files cumbersome.
Format

.LIBRARY macro-library-name
Parameter

macro-library-name

A delimited string that is the file specification of a macro
library.

Example
.LIBRARY /DBl:[TEST]USERM/ ; MACRO LIBRARY USERM.MLB

.LIBRARY ?DBl:SYSDEF.MLB?
.LIBRARY \CURRENT.MLB\

6-18

MACROS

.MACRO

«MACRO--MACRO DEFINITION DIRECTIVE

.MACRO begins the definition of a macro. It gives the macro name and
a list of formal arguments (see Section 6.1). If the name specified
is the same as the name of a previously defined macro, the previous
definition is deleted and replaced with the new one. The .MACRO
directive is followed by the source text to be included in the macro
expansion. The .ENDM directive specifies the end of the range.

Macro names do not conflict with user-defined symbols. A macro and a
user-defined symbol can both have the same name.

When the assembler encounters a .MACRO directive, it adds the macro
name to its macro name table and stores the source text of the macro
(up to the matching .ENDM directive). No other processing occurs
until the macro is expanded.

The symbols in the formal argument list are associated with the macro
name and are limited to the scope of the definition of that macro.
For this reason, the symbols that appear in the formal argument list
can also appear elsewhere in the program.

Format

.MACRO macro-name [formal-argument-list]

.ENDM [macro name]
Parameters
macro-name

The name of the macro to be defined; this name can be any 1legal
symbol up to 15 characters long.

formal-argument-list

The symbols, separated by commas, to be replaced by the actual
arguments in the macro call.

range

The source text to be included in the macro expansion.

MACROS

Example
Macro definition:

«MACRO USERDEF
.PSECT DEFS,ABS

MYSYM= 5
HIVAL= “XFFF123
LOWVAL= 0

.PSECT RWDATA,NOEXE, LONG
TABLE: .BLKL 100
LIST: «BLKB 10
«MACRO USERDEF ; REDEFINE IT TO NULL
«ENDM USERDEF
«ENDM USERDEF

Macro calls and expansions of the macro defined above:

1. USERDF ; SHOULD EXPAND DATA
.PSECT DEFS,ABS

MYSYM= §

HIVAL= “XFFF123

LOWVAL= 0

.PSECT RWDATA,NOEXE,LONG

TABLE: .BLKL 100

LIST: .BLKB 10
«MACRO USERDEF ; REDEFINE IT TO NULL
.ENDM USERDEF

2. USERDF ; SHOULD EXPAND NOTHING

In this example, when the macro is called the first time it defines
some symbols and data storage areas and then redefines itself. When
the macro is called a second time, the macro expansion contains no
source text.

Notes

1. If a macro has the same name as a VAX-11/780 opcode, the
macro is wused instead of the instruction. This feature
allows a programmer to temporarily redefine an opcode.

2. If a macro has the same name as a VAX-11/780 opcode and is in
a macro library, the .MCALL directive must be used to define
the macro. Otherwise, because the symbol is already defined
(as the opcode), the assembler will not search the macro
libraries.

3. The programmer can redefine a macro with new source text
during assembly by specifying a second .MACRO directive with
the same name. Including a second .MACRO directive within
the original macro definition causes the first macro call to
redefine the macro. This is useful when a macro performs
initialization or defines symbols; that 1is, when an
operation is performed only once. The macro redefinition can
eliminate unneeded source text in a macro or it can delete
the entire macro. The ,MDELETE directive provides another
way to delete macros,

MACROS

-.MCALL

«MCALL~-MACRO CALL DIRECTIVE

.MCALL specifies the names of the system and/or user-defined macros
that are required to assemble the source program but are not defined
in the source file.

If any named macro is not found upon completion of the search (that
is, if the macro is not defined in any of the macro libraries), the
assembler displays an error message.

Format
+MCALL macro-name-list
Parameter

macro-name-list

A list of macros to be defined for this assembly. The names must
be separated by commas.

Example

; SUBSTITUTE MACRO IN
; LIBRARY FOR INSQUE
; INSTRUCTION

«MCALL INSQUE

Note

«MCALL is provided for compatibility with MACRO-11; DIGITAL
recommends that it not be used. When VAX-11 MACRO finds an
unknown symbol in the opcode field, it automatically searches all
macro libraries. If it finds the symbol in a library, it uses
the macro definition and expands the macro reference. If VAX-11
MACRO does not find the unknown symbol in the library, it
displays an error message. There 1is one exception for which
.MCALL must be used: when a macro has the same name as an opcode
(see description of .MACRO).

MACROS

-.MDELETE

«MDELETE-~~MACRO DELETION DIRECTIVE

.MDELETE deletes the definitions of specified macros. The number of
macros actually deleted is printed in the assembly listing on the same
line as the .MDELETE directive.

.MDELETE completely deletes the macro, freeing memory as necessary,
whereas the technique of macro redefinition explained 1in the
description of .MACRO merely redefines the macro.
Format

.MDELETE macro-name-list
Parameter

macro-name-list

A list of macros whose definitions are to be deleted. The names
must be separated by commas.

Example

-MDELETE USERDEF, $SSDEF ,ALTR

MACROS

MEXIT

+MEXIT--MACRO EXIT DIRECTIVE
+MEXIT terminates a macro expansion before the end of the macro.
Termination is the same as if .ENDM was encountered. The directive
can also be used within repeat blocks. .MEXIT is most wuseful in
conditional expansion of macros because it bypasses the complexities
of nested conditional directives and alternate assembly paths.
Format

«MEXIT
Example

«MACRO ALTR N,A,B

.IF EQ N ; START CONDITIONAL ASSEMBLY BLOCK.
«MEXIT ; TERMINATE MACRO EXPANSION.

«ENDC ; END CONDITIONAL ASSEMBLY BLOCK.

+« ENDM ALTR ; NORMAL END OF MACRO.

In this example, if the actual argument for the formal argument N
equals 0, the conditional block would be assembled, and the macro
expansion would be terminated by .MEXIT.

Notes
1. When .MEXIT occurs in a repeat block, the assembler
terminates the current repetition of the range and suppresses
further expansion of the repeat range.

2. When macros or repeat blocks are nested, .MEXIT exits to the
next higher level of expansion.

3. If .MEXIT occurs outside a macro definition or a repeat
block, the assembler displays an error message.

MACROS

.NARG

+NARG--NUMBER OF ARGUMENTS DIRECTIVE
.NARG determines the number of arguments in the current macro call.
.NARG counts all the positional arguments specified in the macro call,
including null arguments (specified by adjacent commas). The value
assigned to the specified symbol does not include either any keyword
arguments or any formal arguments that have default values.
Format

«NARG symbol
Parameter

symbol

A symbol that 1is assigned a value equal to the number of
arguments in the macro call,

Example

Macro definition:
«MACRO CNT_ARG Al,A2,A3,A4,A5,A6,A7,A8,A9=DEF9,A10=DEF10
.NARG COUNTER ; COUNTER IS SET TO NO. OF ARGS
+WORD COUNTER ; STORE VALUE OF COUNTER
.ENDM CNT_ARG

Macro calls and expansions of the macro defined above:

1. CNT ARG TEST,FIND,ANS

.NARG COUNTER
.WORD COUNTER

COUNTER WILL = 3
COUNTER IS SET TO NO. OF ARGS
STORE VALUE OF COUNTER

- we we

2. CNT_ARG
.NARG COUNTER
.WORD COUNTER

COUNTER WILL = 0
COUNTER IS SET TO NO. OF ARGS
STORE VALUE OF COUNTER

~e weo we

3. CNT_ARG TEST,A2=SYMB2,A3=SY3
+«NARG COUNTER
+«WORD COUNTER

COUNTER WILL = 1

COUNTER IS SET TO NO. OF ARGS
STORE VALUE OF COUNTER

KEYWORD ARGUMENTS ARE NOT COUNTED

we Wo we w

COUNTER WILL = 3

COUNTER IS SET TO NO. OF ARGS
STORE VALUE OF COUNTER

NULL ARGUMENTS ARE COUNTED

4. CNT_ARG ,SYMBL,,
.NARG COUNTER
.WORD COUNTER

N we we w

Note

If .NARG appears outside of a macro, the assembler displays
an error message.

MACROS

.NCHR

+NCHR--NUMBER OF CHARACTERS DIRECTIVE
.NCHR determines the number of characters in a specified character

string. It can appear anywhere in a VAX-11 MACRO program and is
useful in calculating the length of macro arguments.

Format

«NCHR symbol ,<string>
Parameters
symbol

A symbol that is assigned a wvalue equal to the number of
characters in the specified character string.

<string>

A sequence of printable characters. The character string must be
delimited by angle brackets or a character preceded by a
circumflex only if the specified character string contains a
legal separator (comma, space, and/or tab) or a semicolon.

Example
Macro definition:

DEFINE MACRO

ASSIGN VALUE TO CHRCNT
STORE VALUE

STORE CHARACTERS
FINISH

-MACRO CHAR MESS
+«NCHR CHRCNT,<MESS>
«WORD CHRCNT

.ASCII /MESS/

. ENDM CHAR

we we we wo we

Macro calls and expansions of the macro defined above:

CHRCNT WILL = 5

ASSIGN VALUE TO CHRCNT
STORE VALUE

STORE CHARACTERS

1. CHAR <HELLO>
«NCHR CHRCNT ,<HELLO>
«WORD CHRCNT
+ASCII /HELLO/

“e N6 Ne N

CHRCNT WILL = 12(DEC)
ASSIGN VALUE TO CHRCNT
STORE VALUE

STORE CHARACTERS

2. CHAR <14, 75.39 4>
.NCHR CHRCNT,<14, 75.39 4>
.WORD CHRCNT
«ASCII /14, 75.39 4/

we wo W we

MACROS

.NTYPE

+NTYPE--OPERAND TYPE DIRECTIVE
.NTYPE determines the addressing mode of the specified operand.

The value of the symbol is set to the specified addressing mode. In
most cases, an 8-bit (l-byte) value is returned. Bits 0 through 3 are
the register associated with the mode, and bits 4 through 7 are the
addressing mode. To provide concise addressing information, the mode
bits 4 through 7 are not exactly the same as the numeric value of the
addressing mode described in Table 4-1., Specifically, literal mode is
indicated by a 0 in bits 4 through 7 instead of the values 0 through 3
described in Table 4-1. Mode 1 indicates an immediate mode operand,
mode 2 indicates an absolute mode operand, and mode 3 indicates a
general mode operand.

For indexed addressing mode, a 16-bit (2-byte) value is returned. The
high~order byte contains the addressing mode of the base operand
specifier and the low-order byte contains the addressing mode of the
primary operand (the index register).

See the VAX-11/780 Architecture Handbook or Chapter 4 of this manual
for more information on addressing modes.

Format
.NTYPE symbol,operand

Parameter

symbol
Any legal VAX-11 MACRO symbol. This symbol is assigned a wvalue
equal to the 8- or 16-bit addressing mode of the operand argument
that follows.

operand

Any legal address expression, as used with an opcode. If no
argument is specified, 0 is assumed.

Example

Macro Definition:

THE FOLLOWING MACRO IS USED TO PUSH AN ADDRESS ON THE STACK. IT CHECKS
THE OPERAND TYPE (BY USING .NTYPE) TO DETERMINE IF THE OPERAND IS AN
ADDRESS AND, IF NOT, THE MACRO SIMPLY PUSHES THE ARGUMENT ON THE STACK
AND GENERATES A WARNING MESSAGE.

We We we wo we N

«MACRO PUSHADR ADDR

.NTYPE A,ADDR ASSIGNS OPERAND TYPE TO A

I
A = A@-4&"XF ; ISOLATE ADDRESSING MODE
.IF IDENTICAL 0,<ADDR> ; IS ARGUMENT EXACTLY 0
PUSHL #0 ; STACK ZERO
<MEXIT ; EXIT FROM MACRO
. ENDC
ERR = 0 ERR TELLS IF MODE IS ADDRESS

ERR = 0 FOR ADDRESS, 1 WHEN NOT
IS MODE NOT LITERAL OR IMMEDIATE

~ we ws

,IIF LESS_EQUAL A-1, ERR=1

MACROS

.IIF EQUAL A-5, ERR=1

.IF EQUAL ERR

PUSHAL ADDR

+IFF

PUSHL ADDR

-WARN ; ADDR IS NOT AN ADDRESS
«ENDC

« ENDM PUSHADR

IS MODE NOT REGISTER

IS MODE ADDRESS?

YES, STACK ADDRESS

NO

THEN STACK OPERAND & WARN

N e we we we

Macro calls and expansions of the macro defined above:

1. PUSHADR (RO) ; VALID ARGUMENT
PUSHAL (RO) ; YES, STACK ADDRESS
2. PUSHADR (R1) [R4] ; VALID ARGUMENT
PUSHAL (R1) [R4] ;7 YES, STACK ADDRESS
3. PUSHADR 0 ; IS ZERO
PUSHL #0 ;7 STACK ZERO
4. PUSHADR #1 ; NOT AN ADDRESS
PUSHL $#1 ;7 THEN STACK OPERAND & WARN

¥IMACRO-W~-GENWRN, Generated WARNING: #1 IS NOT AN ADDRESS

5. PUSHADR RO NOT AN ADDRESS
PUSHL RO ; THEN STACK OPERAND & WARN
¥MACRO-W-GENWRN, Generated WARNING: RO IS NOT AN ADDRESS

e

Note that to save space, this example is listed as it would appear if
.SHOW BINARY, not .SHOW EXPANSIONS, was specified in the source
program.

MACROS

.REPEAT

«REPEAT--REPEAT BLOCK DIRECTIVE

.REPEAT repeats a block of code, a specified number of times, inline

with other source code. The .ENDR directive specifies the end of the

range.

Format
.REPEAT expression
range
- ENDR

Parameters

expression
An expression whose value controls the number of times the range
is to be assembled within the program. When the expression is
less than or equal to 0, the repeat block is not assembled. The
expression must not contain any undefined symbols and must be an
absolute expression (see Section 3.5).

range
The source text to be repeated the number of times specified by
the value of the expression. The repeat block can contain macro
definitions, indefinite repeat blocks, or other repeat blocks.
.MEXIT is legal within the range.

Example

Macro definition:

.MACRO COPIES STRING,NUM
+REPEAT NUM

.ASCII /STRING/

« ENDR

«BYTE 0

- ENDM COPIES

Macro calls and expansions of the macro defined above:

l.

COPIES <ABCDEF>,5

-REPEAT 5
.ASCII /ABCDEF/
«ENDR

.ASCII /ABCDEF/
.ASCII /ABCDEF/
.ASCII /ABCDEF/
.ASCII /ABCDEF/
.ASCII /ABCDEF/
+BYTE 0

MACROS -

2.

VARB = 3
COPIES <HOW MANY TIMES>,\VARB
-REPEAT 3
.ASCII /HOW MANY TIMES/
+«ENDR
.ASCII /HOW MANY TIMES/
.ASCII /HOW MANY TIMES/
.ASCII /HOW MANY TIMES/
-BYTE 0

Note

The alternate form of .REPEAT is .REPT.

each.

APPENDIX A

ASCII CHARACTER SET

Table A-1 lists the ASCII characters and the hexadecimal code
Table A-1
Hexadecimal /ASCII Conversion
HEX ASCII HEX ASCII HEX ASCII HEX ASCII
Code Char. Code Char. Code Char. Code Char.
ﬁ:—::——m

00 NUL 20 SP 40 a 60 \
01 SOH 21 ! 41 A 61 a
02 STX 22 " 42 B 62 b
03 ETX 23 # 43 C 63 o]
04 EOT 24 S 44 D 64 d
05 ENQ 25 % 45 E 65 e
06 ACK 26 & 46 F 66 f
07 BEL 27 ' 47 G 67 g
08 BS 28 (48 H 68 h
09 HT 29) 49 I 69 i
0A LF 2A * 4A J 6A 3
0B VT 2B + 4B K 6B k
ocC FF 2C R 4C L 6C 1
0D CR 2D - 4D M 6D m
0E SO 2E . 4E N 6E n
OF SI 2F / 4F 0 6F o
10 DLE 30 0 50 P 70 P
11 DC1 31 1 51 Q 71 q
12 DC2 32 2 52 R 72 r
13 DC3 33 3 53 S 73 s
14 DC4 34 4 54 T 74 t
15 NAK 35 5 55 U 75 u
16 SYN 36 6 56 \'4 76 \
17 ETB 37 7 57 W 77 w
18 CAN 38 8 58 X 78 X
19 EM 39 9 59 Y 79 y
1A SUB 3A : 5A Z 7A z
1B ESC 3B ; 5B [7B {
1C FS 3C < 5C \ 7C |
1D GS 3D = 5D 1 7D 1
1E RS 3E > S5E - 7E ~
1F us 3F ? S5F —_ TF DEL

for

APPENDIX B

VAX-11 MACRO ASSEMBLER DIRECTIVES AND LANGUAGE SUMMARY

B.1 ASSEMBLER DIRECTIVES

The following table summarizes the VAX-11 MACRO assembler directives.

Table B-1
Assembler Directives

Format Operation

.ADDRESS address-list Stores successive longwords of
address data

.ALIGN keyword [,expression] Aligns the location counter to
the boundary specified by the
keyword

.ALIGN integer [,expression] Aligns location counter to the

boundary specified by (2 7integer)

.ASCIC string Stores the ASCII string string
(enclosed in delimiters),
preceded by a count byte

.ASCID string Stores the ASCII (enclosed in
delimiters), preceded by a string
descriptor

.ASCII string Stores the ASCII string (enclosed
in delimiters)

.ASCIZ string Stores the ASCII string (enclosed
in delimiters) followed by a 0
byte.

.BLKA expression ’ Reserves longwords of address
data

.BLKB expression Reserves bytes for data

.BLKD expression Reserves quadwords for
double-precision, floating-point
data

(continued on next page)

VAX-11] MACRO ASSEMBLER DIRECTIVES AND LANGUAGE SUMMARY

Table B-1 (Cont.)
Assembler Directives

Format

Operation

.BLKF expression

.BLKL expression
.BLKQ expression
.BLKW expression
.BYTE expression-list
.CROSS

.CROSS symbol-list

.DEBUG symbol-list

.DEFAULT DISPLACEMENT, keyword

.DISABLE argument-list

.DOUBLE literal-list

.DSABL argument-list

.ENABL argument-list

.ENABLE argument-list

.END [symbol]

.ENDC

.ENDM [macro-name]
«ENDR

.ENTRY symbol [,expression]

Reserves longwords for
single-precision, floating-point
data

Reserves longwords for data
Reserves gquadwords for data
Reserves words for data

Generates successive bytes of
data; each byte contains the
value of the specified expression

Enables cross-referencing of all
symbols

Cross-references specified
symbols

Makes symbol names known to the
debugger

Specifies the default
displacement length for the
relative addressing modes

Disables function(s) specified in
argument-list

Generates 8-byte,
double-precision, floating-point
data

Equivalent to .DISABLE
Equivalent to .ENABLE

Enables function(s) specified in
argument-list

Indicates logical end of source
program; optional symbol
specifies transfer address

Indicates end of conditional
assembly block

Indicates end of macro definition
Indicates end of repeat block

Procedure entry directive

(continued on next page)

VAX-11 MACRO ASSEMBLER DIRECTIVES AND LANGUAGE SUMMARY

Table B~1 (Cont.)
Assembler Directives

Format

Operation

.ERROR [expression] ;comment

.EVEN

.EXTERNAL symbol-list

.EXTRN symbol-list

.FLOAT literal-list

.GLOBAL symbol-list

«GLOBL

«IDENT string

.IF condition argument (s)

. IFF

.IF_FALSE

«IFT
.IFTF

.IF_TRUE

.IF_TRUE_FALSE

Displays specified error message

Ensures that the current location
counter has an even value (adds 1
if it is odd)

Indicates specified symbols are
externally defined

Equivalent to .EXTERNAL

Generates 4-byte,
single-precision, floating point
data

Indicates specified symbols are
global symbols

Equivalent to .GLOBAL

Provides means of labeling object
module with additional data

Begins a conditional assembly
block of source code which is
included in the assembly only if
the stated condition is met with
respect to the argument (s)
specified

Equivalent to .IF_FALSE

Appears only within a conditional
assembly block; begins block of
code to be assembled if the
original condition tests false

Equivalent to . IF_TRUE
Equivalent to .IF_TRUE_FALSE

Appears only within a conditional
assembly block; begins block of
code to be assembled if the
original condition tests true

Appears only within a conditional
assembly block; begins block of
code to be assembled
unconditionally

(continued on next page)

VAX-11 MACRO ASSEMBLER DIRECTIVES AND LANGUAGE SUMMARY

Table B-1 (Cont.)
Assembler Directives

Format Operation
.I1IF condition argument(s), Acts as a l1-line conditional
statement assembly block where the

condition is tested for the
argument specified; the
statement is assembled only if
the condition tests true

.IRP symbol, <argument list> Replaces a formal argument with
successive actual arguments
specified in an argument list

.IRPC symbol, <string> Replaces a formal argument with
successive single characters
specified ‘in string

.LIBRARY macro-library-name Specifies a macro library
.LIST [argument-list] Equivalent to .SHOW
.LONG expression~list Generates successive longwords of

data; each longword contains the
value of the specified
expression.

.MACRO macro-name argument-list |Begins a macro definition

.MASK symbol [,expression] Reserves a word for and copies a
register save mask

.MCALL macro-name-list Specifies the system and/or
user-defined macros in libraries
that are required to assemble the
source program

.MDELETE macro-name-list Deletes from memory the macro
definitions of the macros in the
list

«MEXIT Exits from the expansion of a

macro before the end of the macro
is encountered

.NARG symbol Determines the number of
arguments in the current macro
call

.NCHR symbol,<string> Determines the number of

characters in a specified
character string

.NLIST [argument-list] Equivalent to .NOSHOW
.NOCROSS Disables cross-referencing of all
symbols

(continued on next page)

VAX-11 MACRO ASSEMBLER DIRECTIVES AND LANGUAGE SUMMARY

Table B-

1l (Cont.)

Assembler Directives

Format

Operation

.NOCROSS symbol-list

- NOSHOW

.NOSHOW argument-list

.NTYPE symbol ,operand

.ODD

.OPDEF opcode value,
operand~descriptor-list

. PACKED decimal-string [,symbol]

. PAGE

.PRINT [expression] ;comment

« PSECT

.PSECT section-name

argument-list
.QUAD literal
. QUAD symbol
.REF1 operand
.REF2 operand
.REF4 operand
.REF8 operand

.REPEAT expression

«REPT

Disables cross-~referencing of
specified symbols

Decrements listing level count

Controls listing of macros and
conditional assembly blocks

Can appear only within a macro
definition; equates the symbol
to the addressinc mode of the
specified operand

Ensures that the current location
counter has an odd value (adds 1
if it is even)

Defines an opcode and its
operand list

Generates packed decimal data, 2
digits per byte

Causes the assembly listing to
skip to the top of the next page,
and to increment the page count
Displays the specified message

Begins or resumes the blank
program section

Begins or resumes a user-defined
program section

Stores 8-bytes of data
Stores 8-bytes of data
Generates byte operand
Generates word operand
Generates longword operand
Generates quadword operand

block; the

up to the next

is repeated the
specified by the

Begins a repeat
section of code
.ENDR directive
number of times
expression

Equivalent to .REPEAT

(continued on next page)

VAX-11 MACRO ASSEMBLER DIRECTIVES AND LANGUAGE SUMMARY

Table B-1 (Cont.)
Assembler Directives

Format Operation
. RESTORE Equivalent to -RESTORE_PSECT
+RESTORE_PSECT Restores program section context

+SAVE [LOCAL_BLOCK]

«SAVE_PSECT [LOCAL_BLOCK]

.SBTTL comment-string
. SHOW

.SHOW argument-list
.SIGNED_BYTE expression-list
.SIGNED_WORD expression-list

.SUBTITLE comment-string

.TITLE module-name
comment-string

. TRANSFER symbol

.WARN [expression] j;comment
.WEAK symbol-list

.WORD expression-list

from the program section context
stack

Equivalent to .SAVE PSECT

Saves current program section
context on the program section
context stack

Equivalent to .SUBTITLE
Increments listing level count

Controls listing of macros and
conditional assembly blocks

Stores successive bytes (8 bits)
of signed data

Stores successive words (16 bits)
of signed data

Causes the specified string to be
printed as part of the assembly
listing page header; the string
component of each .SUBTITLE is
collected into a table of
contents at the beginning of the
assembly listing

Assigns the first 15 characters in
the string as an object module
name and causes the string to
appear on each page of the
assembly listing

Directs the linker to redefine
the value of the global symbol
for use in a shareable image

Displays specified warning
message

Indicates that each of the listed
symbols has the weak attribute

Generates successive words of
data; each word contains the
value of the corresponding
specified expression

VAX-11 MACRO ASSEMBLER DIRECTIVES AND LANGUAGE SUMMARY

B.2 SPECIAL CHARACTERS

The following table summarizes the VAX-11 MACRO special characters.

Table B-2
Special Characters Used in VAX-11 MACRO Statements
Character Character Name Function (s)
- Underline Character in symbol names
$ Dollar sign Character in symbol names
. Period Character in symbol names,
current location counter, and
decimal point
: Colon Label terminator
= Equal sign Direct assignment operator and
macro keyword argument terminator
Tab Field terminator
Space Field terminator
Number sign Immediate addressing mode
indicator
@ At sign Deferred addressing mode
indicator and arithmetic shift
operator
’ Comma Field, operand, and item
separator
; Semicolon Comment field indicator
+ Plus sign Autoincrement addressing mode
indicator, unary plus operator,
and arithmetic addition operator
- Minus sign Autodecrement addressing mode
indicator, unary minus operator,
arithmetic subtraction operator,
and line continuation indicator
* Asterisk Arithmetic multiplication
operator
/ Slash Arithmetic division operator
& Ampersand Logical AND operator
! Exclamation Logical inclusive OR operator
point

(continued on next page)

VAX-11 MACRO ASSEMBLER DIRECTIVES AND LANGUAGE SUMMARY

Table B-~2 (Cont.)
Special Characters Used in VAX-11] MACRO Statements

Character Character Name Function(s)

\ Backslash
conversion indicator in macro
arguments

° Circumflex Unary operator indicator and
macro argument delimiter

[} Square brackets
count indicators

() Parentheses
indicators

<> Angle brackets Argument or expression grouping
delimiters

? Question mark
arguments

' Apostrophe Macro argument concatenation
indicator

$ Percent sign Macro string operators

e ——————————————ey

Logical exclusive OR and numeric

Index addressing mode and repeat

Register deferred addressing mode

Created label indicator in macro

B.3 OPERATORS

B.3.1 DUnary Operators

The following table summarizes the VAX-11 MACRO unary operators.

Table B-3
Unary Operators

Unary
Operator

+

Operator
Name

Plus sign

Minus sign

Binary

Example

I N S

+A Results in the positive
value of A (default)

~-A Results in the negative
(2's complement) value
of A

“B11000111 Specifies that 11000111

Effect

is a binary number

(continued on next page)

VAX-11 MACRO ASSEMBLER DIRECTIVES ARD LANGUAGE SUMMARY

Table B-3 (Cont.)
Unary Operators

Unary Operator
Operator Name Example Effect

D Decimal D127 Specifies that 127 is a
decimal number

“0 Octal "034 Specifies that 34 is an
octal number

°X Hexadecimal “XFCF9 Specifies that FCF9 is
a hexadecimal number

“A ASCII “A/ABC/ Produces an ASCII
string; the characters
between the matching
delimiters are
converted to ASCII
representation

M Register mask "M<R3,R4,R5> | Specifies the registers
R3, R4, and R5 in the
register mask

°F Floating point | "F3.0 Specifies that 3.0 is a
floating-point number

“c Complement “Cc24 Produces the 1's
complement value of 24
(decimal)

B.3.2 Binary Operators
The following table summarizes the VAX-11 MACRO binary operators.

&

Table B-4
Binary Operators
Binary Operator
Operator Name Example Operation
| ——— reen m::#

+ Plus sign A+B Addition
- Minus sign A-B Subtraction
* Asterisk A*B Multiplication
/ Slash A/B Division
@ At sign A@B Arithmetic Shift
& Ampersand As&B Logical AND
! Exclamation point A!B Logical inclusive OR
\ Backslash A\B Logical exclusive OR

VAX-11 MACRO ASSEMBLER DIRECTIVES AND LANGUAGE SUMMARY

B.3.3 Macro String Operators

The following table summarizes the macro string operators. These
operators can be used only in macros.

Table B-5
Macro String Operators

Format Function
— — F o e = |
$LENGTH (string) Returns the length of the
string
$LOCATE (stringl,string2[,symbol]) Locates the substring

stringl within string2
starting the search at the
character position specified
by symbol

$EXTRACT (symboll,symbol2,string) Extracts a substring from
string that begins at
character position specified
by symboll and has a length
specified by symbol2

B.4 ADDRESSING MODES

The following table summarizes the VAX-11 MACRO addressing modes.

VAX-11 MACRO ASSEMBLER DIRECTIVES AND LANGUAGE SUMMARY

(9bed 3xdu uo psanur3lUOD)

*3jue3suod jurtod-Hburleoly ® 10 ‘3ue3SUOD 19bajur ue ‘uorsseidxs uy

1213311

*ssaippe ue burijyroads uorssaidxs uy

ssa1ppe

*juswaderdstp © burAjyrosds uorssaidxs uy

sSTP
*(€°y uor3ldag
99S) S9pow Iseq UTRIISD 10J Spow-dseq aY3l ur paryroaeds uy oyl
Se awes ay3z aq jouued XYy °xXy¥ jJo @de[d utr pssn aq ued 193siboi
ds 10 ‘d4 ‘dv¥ 9Y3 3ey3z 930N °ZIY ybnoiylz oy 193s1bo1 Teisush Auy
x3
‘uy jo aderd ul pasn °q ued 133s1h91
ds 10 ‘dg ‘dV 9yl 3eyl 930N °‘ZTY ybnoiyi oy 193s1bo1 Teisush Auy
uy
X9y &
ad&3
ejep pueiado ay3z 3o 9zT1s ayl £q
s3us3juod 193s1beo1 ay3 sjuswsiodur
Iosse9do1d ay3 ¢puerado
S8 9yl JO ssaIppe 3yl SuTejuod 133sTtbay 8 + (uy) juswaidurolny
pueiado ay3z pa1183aqg
s9x Jo ssaippe ayj surejuod 133s1bay 9 (uy) 193s1boy
193s1bay
ON pueiado ay3 surejuod 133siboy S uy 193st1bay 102 C)EY)
- L
SoTgexapur uot3driosaqg anTeA y3BWIOT SPOW adAig,
Tewtoap butssaippy
i ~BX3H

sopol buirssaippy
9-4 91qelL

B-11

VAX-11 MACRO ASSEMBLER DIRECTIVES AND LANGUAGE SUMMARY

(sbed 3xau UO PaNUTIUOD)

ON

S9X

sox

soX

S9X

| e

¢aTqexapul

Te193TI] 3I0US B Se paiols
ST Te1931l 9ay3z ‘pueiado a3yl
9y3 st paTjIoads TeIdITT dUL

K1aa1309dsaa

4 quawaoeTdsTp paombuot

pue ‘piom ‘33&Kq 23eOTpPUT

J1pue ‘' M ‘ g ¢ssaippe

pueiado ay3z jo ssaippe ayl

s1 juaweoeldsip 9yl pue 1d3s1bax
ay3 JO S3uUS3UO0D dY3 JO uns aYyL

Ataat3oadsai

4 quawaoe[dsTIp piombuol pue

‘piom ‘93Kq 93eDTPUT _T pue’ M

4+ g ‘pueiado ay3 jo ssaippe 33Ul
sT juswadoerdsip 9yl pue 133s1bax
syl 3O S3jUd3UO0D 33Ul JO uns YL

pueiado dyyz Jo ssaippe

oy3 sutejuod uayl 193sibai

ay3z ¢adXy ezep pueiado ay3y jo
9z1s ay3l Xq sjua3uod 193sibax
oy} sjudwaidap 10s5s9001d YL

¥ Kq s3jusjuod 193s1boi

ay3 s3jusawaidur 1o0ssadoid

aya !ssaappe pueirddo 3yl

Jo ssaippe ay3l surejuod 133sthay

uotadradsaq

€-0

ma s

< O A

6

anTeA
TeuWTO3pP
-exaH

12123174 S
ILECER Y

(ug) sTP_Td
(ug) sTp_M9D
(ug) stp_ 99

(ug) sTPd

(ud) sTP. 1
(wg)sTP M
(ug)stp 9

(ug) stP

(ug) -

+(uy)d

»3BWIOI

1219311

po1193aq

juswadeidsta

jusweorTdsTd

JusawWa 1d9poIny

pei11azaq

JUSAWIDUTOINY

I S ISR S N ——

2PON
purssaippy

(*3u0))
193s169y
{e13uad

adiy,

SsopoN burssaippy
(*3uo0)) 9-9 a1qel

B-12

VAX-11 MACRO ASSEMBLER DIRECTIVES ARD LANGUAGE SUMMARY

(abed 3xsu uo panuUI3UOD)

piompenb
10 ‘piombuor ‘piom ‘93Lq e se
pa103s ST [RISITIT 9yl ¢pueiado 8 TeId3T1#_I
ON 9yl sT parjroads TeIa3ITT YL TeI193TT# S3eTpauuy
(3uawasoerdstp ®
se 30U) sSsa1Ippe [BN3ITA 3d3jnfosqe
ue se paio3s ST patJroads
ssaippe ay3y ¢pueiado ayz 3o
sox ssai1ppe ay3l ST parjIoads ssaippe ayj 6 ssoIppe#p ajnfosqvy
K1sat1309dsax
‘juswdoe1dsTp paombuot
pue ‘piom ‘93&q 83eOTpPUT _T pue
‘M ‘.9 4d5d woiz juswaderdsip d ssa1ppe_19
B se paiols SI partjroads a ssai1ppe_Md
ssaippe a9yl {ssaippe pueiado ayyx 3o g ssaippe_g9 pa2iiajaq
sax ssa21ppe 9yl ST par3jroads ssa1ppe YL ssaipped dATIRTSY
A13a1309dsaa
41quawade1dstp paombuot
pue ‘piom ‘93&q @3eOTIPUT _T pue
‘M ‘g ${D5d woiz juswaoerdsip | ssaippe_1
® Se pa103s ST parjioads ssaippe o) ssai1ppe_M
ay3z ‘{pueiado ay3 Jo ssaippe v ssaippe_g 193uno)
sax 9yl st poat13roads ssaippe ayg ssai1ppe V.S #3-3 3 we 16013
—— |
Zatgexapur uo13dra0saqg anteA y3BWI0J PO adLy
Tewroap butssaippy
-B2X9H

sopol burssaippy
(*3uo0)) 9-g =1qeL

B-13

VAX-11 MACRO ASSEMBLER DIRECTIVES AND LANGUAGE SUMMARY

ON

ON

S9X

SUOT3ONIJISUT yYodueiq

9yl Y3TM pasn aq Afuo ued spouw
youeiq £Dd 03 juswadoerdsip e se
p2103s ST ssaippe siylx ¢pueiado
9yl ST pa13toads ssaippe oyl

youeaq 10 ‘xapur ‘TeISITT
‘33eTpoumt ‘193stboax 3dsoxs spou
burssaippe Aue aq ued aspou-aseq
- {pueiado 3ay3z JO sS2Ippe Y3

sT 9dA3 ejep puriddo ayz Jo 9ZIS
9Yy3l pue Xy JO S3US3UO0D 3Yyjz Jo
jonpoad ay3 pue sss1ppe dseq ay3l
JO uns 8yl {xXSpur 8yl sarTjyroads
193s1ba1 ay3 pue ssaappe

aseq ¥yl sa1Jrodds spouw-dseq SYL

anTeA a3nTosge Ue se SsaIppe
2U3 S91038 19)UIT Syl ’‘ssaippe
Ten3ITA 23NTOSgR UB SEB paUTIap
ST ssaoIppe 2yl IT {Dd woig
juswaoeTdsIp e Sk sSsaIppe oyl
$9103S ISYUIT 9yl ‘a[qeiedoral
Se pauUTIaP ST SSDIppe

2y3 31 ‘{pueiado ay3l Jjo ssaippe
?y3 sT par13roads ssaippe ayg

ssaippe

[xg] spou-3seq

ssaippe_9

youeag

xapur

TeaI3UdXY

youeag

Xopur

(*3u0))
I23Unod
we1boig

¢9Tqexapur

uot3idriosaqg

anteA
TeuWTOap
-exsH

s3eWIog

SPON
burssaippv

od&

Ssopo buissaiappy
(*3u0)) 9-9 °1qel

B-14

) APPENDIX C

PERMANRENT SYMBOL T2 3LE

The permanent symbol table (PST) contains the symbols that VAX-11
MACRO automatically recognizes. These symbols consist of both opcodes
and assembler directives. Sections C.1 and C.2 below present the
opcodes (instruction set) in alphabetical and numerical order,
respectively. Appendix B (in Section B.l) presents the assembler
directives.

The VAX-11/780 Architecture Handbook provides a detailed description
of the instruction set.

C.1 OPCODES (ALPHABETIC ORDER)

Hexadecimal

Value Mnemonic Functional Name
9D ACBB Add compare and branch byte
6F ACBD Add compare and branch double
4F ACBF Add compare and branch floating
Fl ACBL Add compare and branch long
3D ACBW Add compare and branch word
58 ADAWI Add aligned word interlocked
80 ADDB2 Add byte 2 operand
81 ADDB3 Add byte 3 operand
60 ADDD2 Add double 2 operand
61 ADDD3 Add double 3 operand
40 ADDF2 Add floating 2 operand
41 ADDF3 Add floating 3 operand
Cco ADDL2 Add long 2 operand
Cl1 ADDL3 Add long 3 operand
20 ADDP4 Add packed 4 operand
21 ADDP6 Add packed 6 operand
A0 ADDW2 Add word 2 operand
Al ADDW3 Add word 3 operand
D8 ADWC Add with carry
F3 AOBLEQ Add one and branch on less or equal
F2 AOBLSS Add one and branch on less
78 ASHL Arithmetic shift long
F8 ASHP Arithmetic shift and round packed
79 ASHQ Arithmetic shift quad
El BBC Branch on bit clear
E5 BBCC Branch on bit clear and clear
E7 BBCCI Branch on bit clear and clear interlocked
E3 BBCS Branch on bit clear and set
EQ BBS Branch on bit set

PERMANENT SYMBOL TABLE

Hexadecimal

Value Mnemonic Functional Name

E4 BBSC Branch on bit set and clear

E2 BBSS Branch on bit set and set

E6 BBSSI Branch on bit set and set interlocked
1E BCC Branch on carry clear

1F BCS Branch on carry set

13 BEQL Branch on equal

13 BEQLU Branch on equal unsigned

18 BGEQ Branch on greater or equal

1E BGEQU Branch on greater or equal unsigned
14 BGTR Branch on greater

1A BGTRU Branch on greater unsigned

8A BICB2 Bit clear byte 2 operand

8B BICB3 Bit clear byte 3 operand

CA BICL2 Bit clear long 2 operand

CB BICL3 Bit clear long 3 operand

B9 BICPSW Bit clear program status word
AA BICW2 Bit clear word 2 operand

AB BICW3 Bit clear word 3 operand

88 BISB2 Bit set byte 2 operand

89 BISB3 Bit set byte 3 operand

c8 BISL2 Bit set long 2 operand

c9 BISL3 Bit set long 3 operand

B8 BISPSW Bit set program status word

A8 BISW2 Bit set word 2 operand

A9 BISW3 Bit set word 3 operand

93 BITB Bit test byte

D3 BITL Bit test long

B3 BITW Bit test word

E9 BLBC Branch on low bit clear

E8 BLBS Branch on low bit set

15 BLEQ Branch on less or equal

1B BLEQU Branch on less or equal unsigned
19 BLSS Branch on less

1F BLSSU Branch on less unsigned

12 BNEQ Branch on not equal

12 BNEQU Branch on not equal unsigned

03 BPT Break point trap

11 BRB Branch with byte displacement
31 BRW Branch with word displacement
10 BSBB Branch to subroutine with byte displacement
30 BSBW Branch to subroutine with word displacement
1C) BVC Branch on overflow clear

1D BVS Branch on overflow set

FA CALLG Call with general argument list
FB CALLS Call with stack

8F CASEB Case byte

CF CASEL Case long

AF CASEW Case word !

BD CHME Change mode to executive

BC CHMK Change mode to kernel

BE CHMS Change mode to supervisor

BF CHMU Change mode to user

94 CLRB Clear byte

Hexadecimal
Value Mnemonic

7C CLRD
DF CLRF
D4 CLRL
7C CLRQ
B4 CLRW
91 CMPB
29 CMPC3
2D CMPC5
71 CMPD
51 CMPF
D1l CMPL
35 CMPP3
37 CMPP4
EC CMPV
Bl CMPW
ED CMPZV
0B CRC
6C CVTBD
4C CVTBF
98 CVTBL
99 CVTBW
68 CVTDB
76 CVTDF
6A CVTDL
69 CVTDW
48 CVTFB
56 CVTFD
4A CVTFL
49 CVTFW
F6 CVTLB
6E CVTLD
4E CVTLF
F9 CVTLP
F7 CVTLW
36 CVTPL
08 CVTPS
24 CVTPT
6B CVTRDL
4B CVTRFL
09 CVTSP
26 CVTTP
33 CVTWB
6D CVTWD
4D CVTWF
32 CVTWL
97 DECB
D7 DECL
B7 DECW
86 DIVB2
87 DIVB3
66 DIVD2
67 DIVD3
46 DIVF2
47 DIVF3

PERMANENT SYMBOL TABLE

Functional Name

Clear double
Clear float
Clear long
Clear quad
Clear word

Compare

Compare
Compare
Compare
Compare
Compare
Compare
Compare
Compare

Compare
Compare

byte

character 3 operand
character 5 operand
double

floating

long

packed 3 operand
packed 4 operand
field

word
zero~extended field

Calculate cyclic redundancy check

Convert
Convert
Convert
Convert
Convert

Convert
Convert
Convert
Convert
Convert
Convert
Convert
Convert

Convert
Convert
Convert
Convert
Convert
Convert
Convert
Convert

Convert
Convert

byte to double
byte to float
byte to long
byte to word
double to byte

double to float
double to long
double to word
float to byte
float to double
float to long
float to word
long to byte

long to double

long to float

long to packed

long to word

packed to long

packed to leading separate
packed to trailing

rounded double to long

rounded float to long
leading separate to packed

Convert trailing to packed
Convert word to byte
Convert word to double
Convert word to float
Convert word to long
Decrement byte

Decrement long

Decrement word

Divide byte 2 operand
Divide byte 3 operand
Divide double 2 operand
Divide double 3 operand
Divide floating 2 operand
Divide floating 3 operand

PERMANENT SYMBOL TABLE

Hexadecimal

Value Mnemonic Functional Name
cé DIVL2 Divide long 2 operand
Cc7 DIVL3 Divide long 3 operand
27 DIVP Divide packed
A6 DIVW2 Divide word 2 operand
A7 DIVW3 Divide word 3 operand
38 EDITPC Edit packed to character
7B EDIV Extended divide
74 EMODD Extended modulus double
54 EMODF Extended modulus floating
7A EMUL Extended multiply
EE EXTV Extract field
EF EXTZV Extract zero-extended field
EB FFC Find first clear bit
EA FFS Find first set bit
00 HALT Halt
96 INCB Increment byte
D6 INCL Increment long
B6 INCW Increment word
0A INDEX Index calculation
OE INSQUE Insert into queue
FO INSV Insert field
17 JMP Jump
16 JSB Jump to subroutine
06 LDPCTX Load program context
3a LOCC Locate character
39 MATCHC Match characters
92 MCOMB Move complemented byte
D2 MCOML Move complemented long
B2 MCOMW Move complemented word
DB MFPR Move from processor register
8E MNEGB Move negated byte
72 MNEGD Move negated double
52 MNEGF Move negated floating
CE MNEGL Move negated long
AE MNEGW Move negated word
9E MOVAB Move address of byte
7E MOVAD Move address of double
DE MOVAF Move address of float
DE MOVAL Move address of long
7E MOVAQ Move address of quad
3E MOVAW Move address of word
920 MOVB Move byte
28 MOVC3 Move character 3 operand
2C MOVC5 Move character 5 operand
70 MOVD Move double
50 MOVF Move float
DO MOVL Move long
34 MOVP Move packed

PERMANENT SYMBOL TABLE

Hexadecimal

Value Mnemonic Functional Name
DC MOVPSL Move program status longword
7D MOVQ Move quad
2E MOVTC Move translated characters
2F MOVTUC Move translated until character
BO MOVW Move word
0A MOVZBL Move zero-extended byte to long
9B MOVZBW Move zero-extended byte to word
3C MOVZWL Move zero-extended word to long
DA MTPR Move to processor register
84 MULB2 Multiply byte 2 operand
85 MULB3 Multiply byte 3 operand
64 MULD2 Multiply double 2 operand
65 MULD3 Multiply double 3 operand
44 MULF2 Multiply floating 2 operand
45 MULF3 Multiply floating 3 operand
C4 MULL2 Multiply long 2 operand
C5 MULL3 Multiply long 3 operand
25 MULP Multiply packed
A4 MULW2 Multiply word 2 operand
A5 MULW3 Multiply word 3 operand
01 NOP No operation
75 POLYD Evaluate polynomial double
55 POLYF Evaluate polynomial floating
BA POPR Pop registers
ocC PROBER Probe read access
0D PROBEW Probe write access
9F PUSHAB Push address of byte
7F PUSHAD Push address of double
DF PUSHAF Push address of float
DF PUSHAL Push address of long
7F PUSHAQ Push address of quad
3F PUSHAW Push address of word
DD PUSHL Push long
BB PUSHR Push registers
02 REI Return from exception or interrupt
OF REMQUE Remove from queue
04 RET Return from called procedure
9C ROTL Rotate 1long
05 RSB Return from subroutine
D9 SBWC Subtract with carry
2A SCANC Scan for character
3B SKPC Skip character
F4 SOBGEQ Subtract one and branch on greater or equal
F5 SOBGTR Subtract one and branch on greater
2B SPANC Span characters
82 SUBB2 Subtract byte 2 operand
83 SUBB3 Subtract byte 3 operand
62 SUBD2 Subtract double 2 operand
63 SUBD3 Subtract double 3 operand
42 SUBF2 Subtract floating 2 operand
43 SUBF3 Subtract floating 3 operand
C2 SUBL2 Subtract long 2 operand
c3 SUBL3 Subtract long 3 operand
22 SUBP4 Subtract packed 4 operand
23 SUBP6 Subtract packed 6 operand

Cc-5

PERMANENT SYMBOL TABLE

Hexadecimal

Value Mnemonic Functional Name
A2 SUBW2 Subtract word 2 operand
A3 SUBW3 Subtract word 3 operand
07 SVPCTX Save process context
95 TSTB Test byte
73 TSTD Test double
53 TSTF Test float
DS TSTL Test long
BS TSTW Test word
FC XFC Extended function call
8C XORB2 Exclusive-OR byte 2 operand
8D XORB3 Exclusive-OR byte 3 operand
cC XORL2 Exclusive-OR long 2 operand
CDh XORL3 Exclusive~OR long 3 operand
AC XORW2 Exclusive-OR word 2 operand
AD XORW3 Exclusive-OR word 3 operand

PERMANENT SYMBOL TABLE

AZ1LXd dd NWHD dg g3svo as paaissai ds ONLAOW daz

ALX3d ad SWHO ad SOINW as peaissai a5 OLAOW gz

AZdwWd aa IWHO asg £9H0X as paAiasai as SOdWO az

AdWO o AWHO od [4:2-(0) ¢ o8 paaiasai oS SOAOW oY4

odd g3 ¥HSNd ad €€014d g8 paaiasaz g9 ONVdS (4

Sdd va ddod ve [4:1e24:] V8 paAassaa vs ONVOS \ {4

ol 1:| 63 MsSdoId 6€ gdgsig 68 peaissaa 6S €0dWD 62

sd14 83 Msdsld 8€ casId 88 IMVavy 8S €0A0OW 8¢

100dg L3 Mmoaa Lg €9AIQ L8 paaassaa LS dAId Lz

Issad 93 MONI o8 ¢gAlId 98 adLAd 9¢ dLLAD 9z

foJol: 1| sd MLSL sd €810W S8 dx704d SS dINW 14

osdg va MY bd 2EINW 4] daonwd 14°] LdLAD 144

s0€8 €d MLIg €g €94ns €8 diLSL €S od€ns 1 X4

ssgd (4! MWOONW cd cgdans c8 dOINW [4°] vdans [44

ogd 13 MdWd 14 £gaav 18 dduWd 1s 94aav 154

sgd 0d MAOW og zaaay 08 JAOKW 0§ vdaav 0Z

TVHSNd ‘JvHSNd aa M3svo dv OvHsnd ‘dvHsnd aL J90V av nssg ‘sog a1

TYAOW ‘AVAOW aa MOINN gy OVAOW ‘QVAOW aL JTLAD av ndaog ‘208 at

THSNd aa £MY¥O0X av dAoW acl dMLIAD avy SAg at

TSAAONW oa TMUOX o) 4 du10 ‘@u¥1d oL J9IAD oV OAd o1

Yddw ga EMDId av AlQad 1A TAYLAD av ndais a7

YdINW Ya CcMO1d A 44 INWE YL TdLAD A\ 44 nyLoe ¥1

omMgs 6a EMSId 6V OHSY 6L MJILAD (34 s814 6T

oMav 8d ZMsId 8V THSV 8L gdIAD 34 daod 8T

103a La EMAICQ LY paAaissal LL €JAId Ly dure LT

TONI od ZMAIQ 9V daLAD 9L ¢dAId 9 gse 91

TLSL sa EMTINW SY ax710d SL €4TNNW Sy ok {:| ST

TY10 ‘a¥10 va CMINN 1A} aqowa e CdINKW 144 ¥lLod vi

1514 €a emans £V aLssy €L €440s 134 n1d3g ‘10a3s €T

TWOOW ca mans (A4 AOINW L cdadns (44 noang ‘dang [

TdWO 1a €Maavy v adwWo L €£4aav v ayg 1T

TAOW oa zmaavy ov aAOW 0L z24aav ov ggsdg 01

paAalasai a4 TISVYO dd gavHsnd a6 asgov a9 MVHSNd a€ IndWaY d0

paaissaa a4 TOINW a0 9VAOW 36 aTLAD a9 MYAOKW qg andsSNI 30

paAlssai ad € TH0X as gdg0v ae amLAD as MEOV ae mIagoud ao

odX od ¢ TH0X 20 T1L0Y 26 agLad 29 TMZAOW o1 ¥y3daoud o0

STIVYO a4 €1019 €0 MYZAOW g6 TAQYLAD g9 odds 21 ol-te} g0

OT1IV0 vda ¢10149 ¥o T4ZAOW V6 TALAD Y9 0001 Ve X3aNI Yo

d1LAD 6d €£18189 60 MELAD 66 MALAD 69 OHOLYW 6¢€ dSLAD 60

dHSY 84 ¢1s1d 80 TELAD 86 gaiAd 89 odlLIad 8¢ SdLAD 80

MILAD La €1A10 Lo g03d L6 €dAlId L9 ¥dduwd LE XLOdAS L0

a1LAD 9d C¢1AIq 90 gONI 96 ZaAla 99 TdLAD 9¢ X10441 90

¥19808 Ssd €TINW SO g1SL G6 €QTINW S9 €d4dWO S€ gsy S0

dangos vd ZTINW 2] 2o to) v6 ¢aInuW ¥9 dAOW be L3y 14Y

da1gov €d €£14d0n8s €0 al51d €6 €dans €9 gMLAD 33 idg €0

$8740V ¢d z2714ans (4} GWOONW Z6 casans Z9 TMLAD (4% I3y (4]

190V 14 £1aav 10 g9dWo 16 gaaav 19 Mug 1€ dON 10

ASNI 0d ZT1aav 00 SAONW 06 caaav 09 mase 0€ L7IVH 00
uor3lonaysul anieA uogaonajsul snfTeA uor3onaysul anfTeA uor3doNaIjsul anteA uoTloNIIsSUI anfeA UoT3IONIJISUI dSnTeA
X3H X3H X3H X3H X3H X3H

(43QY0 DIYAWNN) SIA0DE0 Z°D

APPENDIX D

HEXADECIMAL/DECIMAL CONVERSION

Table D-1 lists the decimal value for each possible hexadecimal value
in each byte of a longword. The following sections contain
instructions to use the table to convert hexadecimal numbers to
decimal and vice versa.

D.1 HEXADECIMAL TO DECIMAL

For each integer position of the hexadecimal wvalue, locate the
corresponding column integer and record its decimal equivalent in the
conversion table. Add the decimal equivalent to obtain the decimal
value.

For example:

DO500ADO (16) = ?(10)
D0000000 = 3,489,660,928
500000 = 5,242,880
A00 = 2,560
DO = 208
D0O500ADO = 3,494,904,576

D.2 DECIMAL TO HEXADECIMAL

Step 1: 1locate in the conversion table the largest decimal value that
does not exceed the decimal number to be converted. Step 2: record
the hexadecimal equivalent followed by the number of O0s that
corresponds to the integer <¢olumn minus 1. Step 3: subtract the
table decimal value from the decimal number to be converted. Step 4:
repeat steps 1 through 3 until the subtraction balance equals 0. Add
the hexadecimal equivalents to obtain the hexadecimal value.

HEXADECIMAL/DECIMAL CONVERSION

Example:
22,466 (10) = ?(16)
20,480 = 5000 22,466
1,792 = 700 -20,480
192 = co ———
2 = 2 1,986
r—— = e— - 1,792
22,466 = 57C2
194
- 192
2
- 2
0

D.3 POWERS OF 2 AND 16

This section lists the decimal values of powers of 2 and 16. These
values are often useful in converting decimal numbers to hexadecimal.

Powers of 2 Powers of 16
2%%n n 16**n n
256 8 1 0
512 9 16 1
1024 10 256 2
2048 11 4096 3
4096 12 65536 4
8192 13 1048576 5
16384 14 16777216 6
32768 15 268435456 7
65536 16 4294967296 8
131072 17 68719476736 9
262144 18 1099511627776 10
524288 19 17592186044416 11
1048576 20 281474976710656 12
2097152 21 4503599627370496 13
4194304 22 72057594037927936 14
8388608 23 1152921504606846976 15

16777216 24

JYOMONOT

\

\

HEXADECIMAL/DECIMAL CONVERSION

o]

e N
qyoM ayoM
., .
ILXE aLAg N aLAg aLAE
e o - N
r N~ N~ A\ N\
ST 4 d ov8‘c 4 OFPP‘T9 Jd 0b0‘€86 d OF9‘8ZL'ST A 0bT’8G9‘TST 4 O0¥8‘TES’9Z0‘F 4
vI 3 4 v8S’€E @ ppE‘LS @ v0OS‘LTI6 3 H90‘089°FT 3 pT0‘T88‘kPEc I ¥B8E‘960'8GL’'E &
€T da a 8ze‘t 4 8vz'ts a 896'TS8 Q@ 88VTE9‘ET A 808‘€0T‘8TC d 8Z6‘099‘68%‘t a
r4 S O ZLO'E D TST'6h O TER'98L O Z16‘z8S’‘TT O zTe6S‘9zZE‘TOCZ O zZLw‘szzi’izeit 9D
IT € g 918‘z 9 960‘Gy 9 968‘0ZL 9 9€E€‘HES’'TT € 9LE‘6%S‘¥8T € 910‘06L°CS6‘Z 4
0T V¥ ¥V 096‘'Z VY 096‘0%y ¥ 09€‘GS9 ¥ 09L‘S8P’OT ¥ 09T‘ZLL’L9T V¥ 09§’'psc€’v89‘c v
6 6 6 vog‘e 6 ©98‘9¢ 6 ©78’'68S 6 ©8I‘LEV’‘6 6 ©v6‘v66°0GT 6 bvOT‘6T6'STIP‘C 6
8 8 8 8¥0‘t 8 89L'CE 8 88Z'WTS 8 809‘88£’s 8 8ZLLTIZ'¥ET 8 €¥9‘€8v’LYT’C 8
L L L ZeL'T L 2,982 L TSL'8SP L zeo‘obe‘L L TIS‘OPP’/LIT L T61°8%0‘6L8°T L
9 9 9 9¢S'T 9 9Ls'vT 9 9TZ‘t6E 9 9SP16C’9 9 962€99’00T 9 9€L’CT90T9‘T 9
S S S 082’1 S 08%’0¢ S 089°LZ¢€ S 088‘zZvZ‘s S 080°988°‘¢8 S o08z’LLT'‘ZRHE’T S
7 17 ¥ vZo‘T ¥ ¥BE'ST v wHT‘Z9C ¥ BOE‘weT’® 7 $98‘80T‘LY v vC8'IVL'ELO’T ¥
€ € € 89L € 88Z‘CT € 809'96T € 8ZLSHT‘E € 8¥9’‘Tec’‘os € 89£90£‘S08 €
4 4 rAN 4 ¢ Z Zet’s T TLO'TET T 2TST’Le0’c T Tew'wes’geg ¢ TT16‘0L89€S 4
T T 1 962 T 960'% T 9€6/G9 T 9.58%0°T 1 9TZ‘LLL! 9T T o9sb’‘sev’89e T
0 0 0 o 0o o 0o o0 0 o 0 o 0 o 0
ad XdH XdH J3d XdH 03d X3H ok (4 X3H odd XdH oad XdH o3a X3

NOISHIANOD TVWIOIA/TVWIDIAVXEH
1-d *19eL

o

INDEX

A

“A operator, 3-12, 3-13
Absolute,
index mode, 4-15, 4-l6
mode, 4-13, 4-14
program sections, 5-45
Accuracy of floating-point
numbers, 3-4
Addition, 3-15
Address data,
initializing memory with, 5-3
reserving memory for, 5-9
.ADDRESS directive, 5-3
Address, starting, 5-21, 5-22
Address, transfer, 5-21, 5-22
Addressing modes, 2-3, 4-1
through 4-18
summary of, 4-2 through 4-5,
B-11 through B-14
.ALIGN directive, 5-4, 5-5
Alignment,
data, 5-4, 5-5
location counter, 5-4, 5-5
5-25, 5-39
program section, 5-45, 5-48
AMA attribute, 5-18
AND operator, 3-16
AP register, 3-5
Argument,
concatenation in macros, 6-6
macro, 6-1 through 6-8
pointer, 3-5
Arithmetic shift,
operator, 3-16
Arithmetic trap enable, 3-13, 3-14
.ASCIC directive, 5-7
.ASCID directive, 5-8
ASCII,
character set, A-1
hexadecimal conversion, A-1
operator, 3-12, 3-14
strings, 3-12, 3-13, 5-6
string storage, 5-6 through 5-8
.ASCIx storage directives, 5-6
through 5-8
.ASCIZ directive, 5-8
Assembler directives, 2-3, 5-1
through 5-65, 6-1 through
6-29
summary of, 5-1, 5-2, 6-2,
B-1 through B-6
Assembler functions, 5-18 through
5-20
Assigning a value, 3-17
Assignment statements, 3-17,
3-18

Attributes, program section,
5-44 through 5-48
Autodecrement index mode, 4-15
4-16
Autodecrement mode, 4-8
Autoincrement deferred index mode,

4-15, 4-16

Autoincrement deferred mode, 4-7,
4-8

Autoincrement index mode, 4-15,
4-16

Autoincrement mode, 4-6, 4-7

B” displacement specifier,
4-8 through 4-10, 4-12, 4-13
"B unary operator, 3-11, 3-12
Base mode, 4-15, 4-16
Binary operators, 3-15 through
3-17, B-9
Binary radix, 3-12
Blank lines, 2-2
.BLKA directive,
.BLKB directive,
.BLKD directive,
.BLKF directive,
.BLKL directive,
.BLKQ directive,
.BLKW directive,
.BLKx directive,
Block labels, 3-7, 3-8
Block storage directives, 5-9
Branch instruction, 4-18
Byte data,
initializing memory with, 5-11,
5-56
reserving memory for, 5-9
.BYTE directive, 5-11

U‘IU'IUIL;'IMUIUIW
O WO WWYWWYWYWYLY

C

“C operator, 3-15
Call instruction, 5-22, 5-23
Changes from VAX-11 MACRO V1.0, ix
Character,

indefinite repeat block, 6-16,

6-17

separating, 3-3

set, 3-1, 3-2

set, ASCII, A-1

special, 3-1 3-2, B-7, B-8

strings, 3-12, 3-13, 5-6
Characters, counting, 6-9, 6-25
Combining arguments in macros, 6-6

Index-1

INDEX

Comment field, 2-1, 2-4
Complement operator, 3-15
Concatenated program sections,
5-46
Concatenating arguments in
macros, 6-6
Conditional assembly blocks,
5-29 through 5-35
controlling listing of, 5-54,
5-55
one line block, 5-35
subconditionals, 5-32 through
5-34
Condition tests, 5-30
Continuation lines, 2-2
Continuing program sections, 5-44
Controlling listings, 5-54, 5-55
Counted ASCII string storage,
5-7
Counter, current location, 3-18
Counting characters, 6-9, 6-25
Counting macro arguments, 6-24
Counts, repeat, 3-10, 5-11, 5-37,
5-56, 5-57, 5-65
.CROSS directive, 5-13, 5-14
Cross reference listing, 5-13,
5-14
Current location counter, 3-18

D

“D unary operator, 3-11, 3-12
Data alignment, 5-4, 5-5
Data, reserving memory for, 5-9
Data, initializing memory with,
address, 5-3
ASCII, 5-6 through 5-8
byte, 5-11, 5-56 i
double-precision, 5-17
floating-point, 5-26
longword, 5-37
packed decimal, 5-42
quadword, 5-49
signed, 5-56, 5-57
DBG attribute, 5-18
.DEBUG directive, 5-15
Debugging information, 5-15, 5-18
Decimal/hexadecimal conversion,
'D-1' through D-4
Decimal radix, 3-11, 3-12
Decimal strings, 3-4, 3-5, 5-42
.DEFAULT directive, 5-16
Default program sections, 5-44,
5-48
Default radix, 3-11

Default values of macro
arguments, 6-3
Deferred mode,
autoincrement, 4-7
displacement, 4-9, 4-10
register, 4-6
relative, 4-13
Defining,
labels, 2-2
macros, 6-19, 6-20
opcodes, 5-40, 5-41
Degree of precision, 3-4
Deleting a macro, 6-22
Delimited ASCII strings, 5-6
Delimiters in macro arguments,
6-4 through 6-6
Descriptors, string, 5-8
Direct assignment statements,
3-17, 3-18
Directives, 2-3, 3-5, 5-1
through 5-65, 6-1 through
6-29
.DISABLE directive, 5-16, 5-18
through 5-20
LOCAL_BLOCK attribute, 3-8
Disabling assembler functions,
5-16, 5-~18 through 5-20
Displacement,
controlling default, 5-16
deferred index mode, 4-15, 4-16
deferred mode, 4-9, 4-10
index mode, 4-15, 4-16
mode, 4-8, 4-9
specifier, 4-8 through 4-10,
4-12, 4-13
Division, 3-15
Documenting a program, 2-4
.DOUBLE directive, 5-17
Double precision, 3-4, 5-17
Double-precision data,
initializing memory with, 5-17
reserving memory for, 5-9
.DSABL directive, 5-16, 5-18
through 5-20
DV arithmetic trap enable, 3-14

.ENABIL directive, 5-18 through
5-20

.ENABLE directive, 5-18 through
5-20

LOCAL_BLOCK attribute, 3-8

Enabling assembler functions, 5-18
through 5-20

.END directive, 5-21

Index-2

INDEX

.ENDC directive, 5-21, 5-29
through 5-31
Ending,
conditional assembly blocks,
5-21, 5-29 through 5-31
macro definitions, 6-13, 6-19,
6-20
modules, 5-21
repeat range definitions, 6-13,
6-14 through 6-16
.ENDM directive, 6-13, 6-19, 6~20
.ENDR directive, 6-13 through 6-16
.ENTRY directive, 5-22, 5-23
Entry mask, 3-13, 3-14, 5-22, 5-23,
5-38
.ERROR directive, 5-24
Exclusive OR operator, 3-17
Executable program sections,
5-44 through 5-46
Expanding a macro, 6-1, 6-2
Exponent, 3-4
Expressions, 3-9, 3-10
evaluation of, 3-9
floating point, 3-14
restrictions on, 3-10
.EXTERNAL directive, 5-25
External symbols, 3-7, 5-25, 5-27,
5-64
3EXTRACT macro string operator,
"6-11
.EXTRN directive, 5-25
.EVEN directive, 5-25
Exiting a macro, 6-13, 6-19, 6-20

F

“F operator, 3-14, 3-15
Factors, repetition, 3-10, 5-11,
5-37, 5-56, 5-57, 5-65
Field,
comment, 2-1, 2-4
label, 2-1 through 2-3
operand, 2-1, 2-3, 2-4
operator, 2-1, 2-3
.FLOAT directive, 5-25
Floating-point data,
initializing memory with, 5-17,
5-26
reserving memory for, 5-9
Floating-point expressions, 3-14
Floating-point numbers, 3-3,
3-4, 3-14, 3-15
format of, 3-4
rounding of, 5-18, 5-19
truncation of, 5-18, 5-19
Floating-point operator, 3-15
Floating-point short literals,
4-11

Format, statement, 2-1 through
2-4

Formatting with tabs, 2-1, 2-2

FP register, 3-5, 3-14

FPT attribute, 5-18, 5-19

Frame pointer, 3-5

Functions, assembler, 5-18 through
5-20

G

GBL attribute, 5-18, 5-19
General mode, 4-15
General registers, 3-5
General register modes, 4-1
through 4-12
.GLOBAL directive, 5-27
Global program sections, 5-46
Global symbols, 2-2, 3-7, 3-17,
5-18, 5-19, 5-25, 5-27, 5-64
defining, 2-~2
weak, 5-64
_.GLOBL directive, 5-27

H

Hexadecimal/ASCII conversion, A-1

Hexadecimal/decimal conversion,
D-1 through D-4

Hexadecimal radix, 3-12

I” addressing mode, 4-14, 4-15

. IDENT directive, 5-28

Identifying a module, 5-28, 5-60

.IF directive, 5-29 through 5-31

.IF_FALSE directive, 5-32 through
5-34

.IF_TRUE directive, 5-32 through
5-34

.IF_TRUE_FALSE directive, 5-32
through 5-34

.IFF directive, 5-32 through 5-34

LIFT directive, 5-32 through 5-34

.IFTF directive, 5-32 through 5-34

.IFx directives, 5-32 through 5-34

.IIF directive, 5-35

Immediate conditional block, 5-35

Immediate mode, 4-14

Inclusive OR operator, 3-17

Indefinite repeat blocks, 6-14,

6-15
Indefinite repeat character blocks,
6-16, 6-17

Index mode, 4-15 through 4-18

Index-3

INDEX

Initializing memory with,
address data, 5-3
ASCII data, 5-6 through 5-8
byte data, 5-11, 5-56
floating-point data, 5-17,
5-26
longword data, 5-37
packed data, 5-42
quadword data, 5-49
word data, 5-57, 5-65
Instructions, 1-1, 2-3, 3-5,
C-1 through C-8
redefining, 5-40, 6-20
Integer expressions, 3-~9, 3-10
Integers, 3-3
Internal symbols, 2-2, 3-7, 3-17
.IRP directive, 6-14, 6-15
.IRPC directive, 6-~16, 6-17
IV arithmetic trap enable, 3-14

K

Keyword arguments in macros, 6-3,
6-4

L

L~ displacement specifier, 4-8
through 4-10, 4-12, 4-13

Label,

defining a, 2-2

field, 2-1, 2-2

local, 3-7, 3-8

names, 2-2

terminator, 2-2
$LENGTH macro string operator, 6-9
Length of source line, 2-1
Lexical operators, 6-8 through 6-12
.LIBRARY directive, 6-18
Lines, continuation, 2-2
.LIST directive, 5-36, 5-54, 5-55
Listing,

control of, 5-42, 5-54, 5-55

cross reference, 5-13, 5-14

table of contents, 5-59
Literal mode, 4-10 through 4-12
Literals, short, 4-10 through 4-12
Local label block,

delimiters, 3-8

disabling, 3-8, 5-18, 5-19

enabling, 3-8, 5-18, 5-19

restoring, 5-51

saving, 5-52
Local labels, 3-7, 3-8, 5-18,

5-19
created, 6-7, 6-8

Local program sections, 5-46
$LOCATE macro string operator,
6-10, 6-11
Location counter, 3-18
alignment, 5-4, 5-5, 5-28, 5-35
Logical AND operator, 3-16
Logical exclusive OR operator,
3-17
Logical inclusive OR operator,
3-16
.LONG directive, 5-37
Longword data,
initializing memory with, 5-37
reserving memory for, 5-9
LSB attribute, 3-8, 5-19

“M operator, 3-13, 3-14
Machine instructions, 1-1
.MACRO directive, 6-19, 6-20
Macros, 6-1 through 6-29
arguments in, 6-1 through 6-8
calls to, 2-3
controlling listing of, 5-54,
5-55
definitions of, 6-19, 6-20
deletion of, 6-22
exiting from, 6-23
expanding, 6~1, 6-2
libraries containing, 6-18
maximum line size, 2-2
names of, 3-6, 6-13, 6-19, 6-20
redefining, 6-19, 6-20
string operators in, 6-8 through
6-12
.MASK directive, 5-22, 5-38
Mask, register save, 3-13, 3-14,
5-22, 5-38
.MCALL directive, 6-21
.MDELETE directive, 6-22
Messages, printing assembly, 5-24,
5-43, 5-63
.MEXIT directive, 6-23
Mnemonic instructions, 3-5, C-1
through C-8
Modes, addressing, 2-3, 4-1
through 4-18 _
summary of, 4-2 through 4-5,
B-11 through B-14
Module, identifying, 5-28, 5-60
Multiplication, 3-15

Names,
macro, 3-6, 6-13, 6-19, 6-20

Index~4

Names (Cont.)
module, 5-60
register, 3-5
symbol, 3-6

.NARG directive,

.NCHR directive,

Negative numbers,

.NLIST directive,

5~55
.NOCROSS directive,
5-39

.NOSHOW directive,
5-55

.NTYPE directive, 6-26

Number of macro arguments, 6-1,
6-24

Numbers, 3-3

floating point, 3-3, 3-4, 3-14,
3-15, 5-17, 5-26
integer, 3-3
packed decimal, 3-4, 3-5, 5-42
Numeric control operators, 3-14,
3-15

6-24
6-25
3-3
5-38, 5-54,

5-13, 5-14,

5-39, 5-54,

o)

~0 unary operator, 3-11, 3-12

Octal radix, 3-11, 3-12

.ODD directive, 5-39

Opcodes, C-1 through C-8
defining, 5-40, 5-41
redefining, 5-40, 6-20

.OPDEF directive, 5-40, 5-41

Operand,
field, 2-1, 2-3
generation directives,
types, 6-26

Operator,
binary, 3-15 through 3-17, B-9
field, 2-1, 2-3
macro string, 6~8 through 6-12
unary, 3-10 through 3-15, B-8,

B-9
OR operators, 3-17
Overlaid program sections, 5-46

5-50

P

Packed decimal strings, 3-4, 3-5,
5-42

.PACKED directive, 5-42

.PAGE directive, 5-42

Page ejection, 5-42

INDEX

Passing numeric values in macros,
6~7

PC register, 3-5

Permanent symbols, 3-5, C-1

Position-independent code, 5-46,
5-47

Precision of floating-point
numbers, 3-4

.PRINT directive, 5-43

Printing assembly messages, 5-24,
5-43, 5-63

Program counter, 3-5

Program counter modes,
through 4-15

Program sections,
5-48

4-12

5-44 through

Q

.QUAD directive, 5-49
Quadword data,
initializing memory with, 5-49

reserving memory for, 5-9

R

Radix control, 3-11, 3-12
Radix default, 3-11
Radix operators, 3-11, 3-12
in macro arguments, 6-5
Real numbers, 3-3, 3-4
Redefining,
instructions, 5-40,
macros, 6-19, 6-20
opcodes, 5-40, 6-20
.REFn directive, 5-50
Register,
deferred index mode,
deferred mode, 4-6
mask operator, 3-13,
mode, 4-6
names, 3-5
save mask,
5-38
Relative,
default displacement,
deferred index mode,
deferred mode, 4-13
index mode, 4-15, 4-16
mode, 4-12, 4-13
Relocatable program sections, 5-47
Repeat blocks, 6-28, 6-29
character, indefinite repeat,
6-16, 6-17

6-20

4-15, 4-16

3-14

3-13, 3-14, 5-22,

5-16

4-15, 4-16

controlling listing of, 5-54, 5-55

Index-5

INDEX

Repeat blocks (Cont.)
indefinite, 6-14, 6-15

Repeat counts, 3-10, 5-11, 5-37,
5-56, 5-57, 5-65

.REPEAT directive, 6-28, 6-29

Repeating a block of code, 6-28,
6-29

Repetition factors, 3-10, 5-11,
5-37, 5-56, 5-57, 5-65

.REPT directive, 6-28, 6-29

.RESTORE directive, 5-51

.RESTORE_PSECT directive, 5-51

Restoring a program section,
5-51

Reserved bits in entry mask, 3-14,
5-22

Reserving storage, 5-9

Rounding floating-point numbers,
5-18, 5-19

S

S” addressing mode, 4-10 through
4-12
.SAVE directive, 5-52
.SAVE_PSECT directive, 5-52
Saving a program section, 5-52
Saving local label block, 5-52
.SBTTL directive, 5-59
Sections, program, 5-44
through 5-48
Separating characters, 3-3
Shareable images, 5-61, 5-62
Shareable program sections, 5-47
Shift operator, arithmetic, 3-16
Short literals, 4-10 through 4-12
.SHOW directive, 5-54, 5-55
«.SIGNED_BYTE directive, 5-56
Signed data storage, 5-56 through
5-58
.SIGNED_WORD directive, 5-57, 5-58
Single precision, 3-4, 5-26
Single-precision data,
initializing memory with, 5-26
reserving memory for, 5-9
Source lines,
blank, 2-2
continuing, 2-2
format of, 2-1
length of, 2-1
SP register, 3-5
Special characters, 3-1, 3-2,
B-7, B-8
Stack pointer, 3-5
Starting address, 5-21, 5-22
Statement format, 2-1 through 2-4

Storage, reserving, 5-9
ASCII, 5-6 through 5-8
block, 5-9
Storing,
address, 5-3
ASCII, 5-6 through 5-8
byte, 5-11, 5-56
double-precision, 5-17
floating-point, 5-26
longword, 5-37
packed decimal, 5-42
signed, 5-56, 5-57
quadword, 5-49
word, 5-57, 5-65
String,
arguments in macros, 6-4 through
6-6
ASCII, 3-12, 3-13, 5-6
descriptors, 5-8
operators, 6-8 through 6-12
packed decimal, 3-4, 3-5, 5-42
Subconditional assembly blocks,
5-29 through 5-31
.SUBTITLE directive, 5-59
Subtraction, 3-15
Suppressing symbol table listing,
5-18, 5-19
Symbols, 3-5, 3-17
external, 3-7, 5-25, 5-27, 5-64
global, 2-2, 3-7, 3-17, 5-18
through 5-20, 5-25, 5-27, 5-64
internal, 3-7
names of, 3-6
permanent, 3-5, C-1
undefined, 5-18, 5-19
user-defined, 2-2, 3-6

T

Tab formatting, 2-1, 2-2

Table of contents, listing, 5-59

TBK attribute, 5-19

Technical changes from VAX-11
MACRO V1.0, ix

Temporary labels, 3-7, 3-8

Terms, 3-9

Testing conditions, 5-30

Textual operators, 3-12 through 3-14

.TITLE directive, 5-60

Traceback information, 5-19

.TRANSFER directive, 5-61, 5-62

Trap enable, arithmetic, 3-13,

3-14
Truncating floating-point number,
5-18, 5-19

Type of operand in macros, 6-24

Index-6

Unary operators,

3-15, B-8,

U

B-9

in macro arguments, 6-5

summary of, 3-11, B-8,
Undefined symbols, 5-18, 5-19

B-9

INDEX

3-10 through

User-defined program sections,
5-44 through 5-48
User-defined symbol, 2-2

User—-generated,
errors, 5-24

messages, 5-43
opcodes, 5-40, 5-41
operands, 5-50
warnings, 5-63

\'}

Value, passing arguments by,
Vector, transfer, 5-61, 5-62

Version number,

5-28

6-7

Index-7

W

W" displacement specifier, 4-7,
4-8 through 4-10, 4-12, 4-13
.WARN directive, 5-63
Warning directive, 5-63
.WEAK directive, 5-64
Weak symbols, 5-64
Word data,
initializing memory with, 5-57,
5-65
reserving memory for, 5-9
.WORD directive, 5-65
Write protecting program sections,
5-44, 5-46

X

“X unary operator, 3-12

y 4

Zero terminated ASCII string,
5-8

VAX-11 MACRO
Language Reference Manual
AA-D032B-TE

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

ooooog

Other (please specify)

Name Date

Organization

Street

City. State Z2ip Code
or
Country

— — — DoNotTear- Fold HereandTape — — — — — — — — — — — — — — — — — — —

No Postage
Necessary
if Mailed in the

United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS TW/A14
DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

_ - DoNotTear-FoldHere @ — — — — — — - - + 0 1 - - — — = — — —

