MEMORY TUNING PROCEDURE | | | |) | |---|--|---|-----| | | | | | | | | | | | | | | • , | | | | | *. | | | | | • | | | | | | | | | | | | | | | , | | | | |) | | | | | | | | | | | | | | | • | | | | | ٠. | | | | | • | | • | | | • | | | | | | | | | · | j | | | | | | | | | | | #### PDP-8 MEMORY TUNING PROCEDURE This procedure describes a method for checking out and tuning the basic 4K core memory and memory wing of the PDP-8 digital computer, using the rest of the computer (central processor wing and power supply). It is assumed that all of the equipment used is in working condition and properly calibrated. ## TEST EQUIPMENT REQUIRED The following test equipment is required for checking out and tuning the memory and memory wing, in addition to the ordinary hand tools. If the specified equipment is not available, a substitute may be used if its parameters equal or exceed those of the specified item. | Test Equipment | Manufacturer and Model | |---------------------------------|---| | Digital Computer | DEC, PDP-8 | | Oscilloscope | Tektronix, Type 547 | | Preamplifier | Tektronix, Type lAl | | Voltage Probes (2) | Tektronix, Type P6Ø1Ø | | Current Probe with | Tektronix, Type P6Ø16 | | Terminator or Pre-
amplifier | | | Multimeter | Triplet, 63Ø-NA | | Program Tapes* | DEC, Maindec 8Ø2
(Checkerboard-Low and
Checkerboard-High) | *Optional, requires that an ASR-33 Paper Tape Reader be available. ## **PRELIMINARY** This part of the procedure is to be used before a new memory wing is first installed. If the memory wing has previously been checked out, go on to the next part, POWER. Figure 1 shows the flow of operations in this part. # Components Check that all the modules listed below are installed in their correct locations. From the module side, location 1 is on the right and location 32 is on the left. Figure 1. Preliminary Operations Flow Diagram | Location | Module | Location | <u>Module</u> | Location | <u>Module</u> | |----------|--------|----------|---------------|----------|---------------| | MA25 | GØØ7 | MCDØ6 | G2Ø9 | MC19 | w6ø7 | | MA26 | GØØ7 | MCDØ7 | G2Ø9 | MC2Ø | B6Ø2 | | MA27 | GØØ7 | MCDØ8 | G2Ø9 | MC21 | G2Ø8 | | MA28 | gøø7 | MCDØ9 | G2Ø9 | MC22 | G2Ø8 | | MA29 | gøø7 | MCD12 | G2Ø 9 | MC24 | G2Ø8 | | MA3Ø | GØØ7 | MCD13 | G2Ø9 | MC25 | G2Ø8* | | MA31 | GØØ7* | MCD14 | G2Ø9 | MD19 | B1Ø4 | | MB25 | gøø7 | MCD15 | G2Ø 9 | MD2Ø | в36 ø | | MB26 | gøø7 | MC16 | в684 | MD21 | G2Ø8 | | MB27 | GØØ7 | MD16 | B2Ø4 | MD22 | G2Ø8 | | MB28 | GØØ7 | MCD17 | w3øø | MD24 | G2Ø8 | | MB29 | GØØ7 | MCD18 | w3øø | | | | MB3Ø | GØØ7 | | | | | | MB31 | GØØ8 | | | | | | | | | | | | *Installed only when the 188 Parity Option is used. Check that the core stack is fastened to the wing at MAB9-24 and the current limiting resistors are installed on the component plate at MAB1-8. The two WØ25 connectors with white wires from the core stack should be plugged into MCD1Ø and MCD11; the WØ25 connector with colored wires should be plugged into MCD23. Check that eight G6Ø3 Memory Selection Matrix modules are plugged into the sockets on the side of the core stack, and that their contacts align with the connector contacts. If the contacts are not aligned, remove the module, file the shallow index keyway deep enough to align the contacts, and replace the module. Check that a 6.8 microforad 35 vdc capacitor is connected from the sense amplifier +10/4, -15/8, and +10/10 busses in either MA25-31 or MB25-30 to ground. Also check that a 22 ohm resistor is connected from the MEM STROBE bus at MA25L to ground. # Wiring Check each of the power connections on the memory wing frame for shorts to ground or each other. Use an ohmmeter set to the X10 scale and the positive probe on ground. With all the marginal power switches off (down), all connections except +10 and -15 should read ∞ : the latter should read less than 100 ohms. With all the marginal switches on MC (up), the +10 and -15 connections should read ∞ and the +10MC and -15MC connections should read less than 100 ohms. Check both the + and - sides of the R/W and INH terminals on the power supply for any short to ground. When this has been done, the memory wing can be mounted on the main computer frame, the power wires can be connected, and the cables from the central processor wing plugged into the memory wing. Check the memory wing logic wiring for loose or broken wires, and foreign objects such as solder whiskers, pieces of wire, etc. Remove all foreign objects. Check that all modifications have been made. In particular, check that one wire connects the following terminals together. If other wires are present or go to different terminals, remove them and install the correct wire. | MD17E | to | MD175 | NOTE: These connections | |-------|----|-------|---| | MC17S | to | MD17M | may be shown wrongly on | | MC18P | to | MD18S | the $W3\emptyset\emptyset$ modules at the | | MC18M | to | MD18M | lower left of print | | MC18H | to | MD18F | $BS-D-8M-\emptyset-15$. | ## Power ## Logic Power Unplug the R/W and INH wires from their connections on the memory wing and be sure thay are not touching anything. Then turn the POWER switch on: the fans should now be running. Set the voltmeter to the 30 vdc scale and measure the +10 volts on all the +10 volt busses (A terminals) in the memory wing: it should be +10 ½ 1/2 volts dc. Then measure the -15 volt busses (B terminals): they should have -15 ½ 1/2 volts dc on them. ## Memory Power Switch the voltmeter to the 60 vdc scale and measure the voltage across the R/W and INH connectors at the power supply. Each should read 30 ± 3 volts dc. If either is too low, turn the power switch off and check for a low resistance path. Turn the POWER switch off, plug the R/W and INH wires into their connectors on the memory wing, and place the voltmeter probes across the INH terminals. Then turn the POWER switch back on and check the voltage. If less than 27 volts or significantly less than previously measured, turn the POWER switch off and check the inhibit circuit in the memory wing. If normal, Figure 2. Power Check Procedures Flow Diagram, sheet 1. check the R/W voltage: again turn the POWER switch off if less than 27 volts or significantly less than previously measured. Turn the POWER switch off and remove the B360 module from MD20. (This is the MEMORY STROBE delay module — when missing the MB register can never be set by the contents of any cores). Now turn the POWER switch back on and, after the memory power delay, press the START key. The computer should run continuously, cycling through memory as it reads and writes all zeros. The AND, FETCH, EXECUTE, and RUN indicators should be on. If not working properly, correct the trouble before proceeding further. ## Inhibit Current Set up the oscilloscope for external triggering, and trigger it with the BT2A pulse. (This is a negative pulse obtained at MD3ØU). Then connect the current probe and its terminator or preamplifier to the input of channel 1 and a voltage probe to the input of channel 2. Calibrate both probes, then adjust the sensitivity of channel 1 for 5Ø milliamperes per centimeter and of channel 2 for 2 volts per centimeter. Observe the bit 5 inhibit current by placing the current probe around the yellow wire from MC 24N. If normal, adjust the potentiometer on the outside G8Ø8 (located in the power supply) for an inhibit pulse amplitude of 31Ø milliamperes. If not normal, move the current probe to another yellow wire in the same vicinity and adjust the inhibit current. Figure 3. Representative Inhibit Current Waveforms. Check all 12 (or 13 if the Parity Option is used) inhibit currents. Use the yellow wires from the terminals listed below. If the timing is wrong, check the INHIBIT flip-flop in the B2Ø4 at MD16 (see drawing BS-D-8M-Ø-15) and/or the W3ØØ at MCD18. If one bit is abnormal, swap the G2Ø8 module with a known good one to determine if the module is bad. Be sure the POWER switch is off when removing and replacing modules. | <u>Bit</u> | Output | <u>Bit</u> | Output | <u>Bit</u> | Output | |------------|--------|------------|--------|------------|--------| | ø | MC21E | 4 | MC24E | 8 | MD22E | | 1^{J} | MC21N | 5/ | MC24N | 9 | MD22N | | 2 / | MC22E | 6 | MD21E | 1Ø | MD24E | | 3 / | MC22N | 7 | MD21N | 11 | MD24N | | | | | | P | MC25N | # Read/Write Current Observe the Y axis read and write current waveforms by placing the current probe around the yellow wire from MCl2N. If normal, adjust the potentiometer on the inside G8Ø8 (located in the power supply) for read and write pulse amplitudes of 33Ø milliamperes. If not normal, decrease the oscilloscope sweep speed and observe the abnormal envelope. Then, with alternate sweeps in use, look at the outputs and inputs of the G2Ø9 modules in MCDl2-15 to determine which (if any) is faulty. (Use drawing BS-D-8M-Ø-13). Turn off the POWER switch and swap the seemingly-bad module(s) for a good one(s) to see if the G2Ø9 module or G6Ø3 module is at fault. If not these modules, check the MB levels. Figure 4. Representative Read and Write Current Waveforms. Observe the X axis read and write current waveforms by placing the current probe around the yellow wire from MCØ9N. These should be the same as those for the Y axis. If the amplitude has not already been set, adjust it for 330 milliamperes with the inside G808 in the power supply. Be sure all malfunctions are corrected in both axes before proceeding further. ## CLAMPS # First Stage Clamp Check the first stage clamp voltage with respect to -15 volts. Set the voltmeter to the 6 volt dc scale, place the negative probe on the -15 volt bus (B terminals), and look at terminals MA31M and MB30M. Each should read approximately 4.0 volts. If different, check the circuit for low-resistance shorts. # Second Stage Clamp Check the second stage clamp voltage with respect to -15 volts. Change the voltmeter to the 12 volt dc scale and look at terminals MA31N and MB3ØN with the positive probe. The meter should read approximately 7.2 volts. If not, adjust it to this value with the lower potentiometer on the GØØ8 in MB31. Now place the oscilloscope voltage probe on terminals E and F of every sense amplifier in MA25-31 or MB25-30. Both terminals should show identical signals at +8.0 volts dc. Readjust the second stage clamp voltage for this operating level if it is different. If any individual G007 Sense Amplifiers are at different levels, check both the first and second stage clamp voltages at terminals M and N, respectively, to be sure they are the same as the other modules. If not, remove and check the module. ## STATIC BALANCE Remove the sense lines from the GDD7 sense amplifiers, set the voltmeter to the D.3 volt dc scale and measure the voltage between terminals E and F of all the sense amplifiers in MA25-31 and MB25-30. These should be within \pm 25 millivolts of each other, but may be as much as 75 millivolts if the memory has been tuned before. If more than 75 millivolts, adjust the balance potentiometer R4 on the module for a minimum voltage. If a good balance cannot be obtained, the module must be repaired. Before removing it, check the first and second stage clamp voltages to see if they are different from the other sense amplifiers. Figure 5. Clamp Procedure Flow Diagram. Figure 6. Static Balance and DC Tracking Procedure Flow Diagram ## DC TRACKING With the inputs of all the sense amplifiers open, measure the voltage difference between the modules on terminals E and on terminals F. Set the voltmeter on the Ø.3 volt dc scale and put one probe on terminal E of some sense amplifier such as bit Ø in MA25. Then look at terminal E of the other sense amplifiers, being careful about the polarity. The reading between the highest and the lowest must not exceed 200 millivolts. If any module is more than 200 millivolts from the others, recheck its static balance and readjust if necessary. If it is still more than 200 millivolts from the others, it must be removed and repaired. Repeat the above process for terminals F of all the sense amplifiers. When finished, connect the core sense lines to the modules. Use drawing BS-D-8M- \emptyset -15 to locate any specific sense amplifiers. ## SLICE VOLTAGE Set the voltmeter to the 12 volt dc scale and measure the slice voltage between ground and MA31H. It should be +7.2 volts (\emptyset .8 volts less than the sense differential amplifier dc levels). If different, adjust the upper potentiometer on the GØØ8 at MB31 for this voltage. ## SENSE AMPLIFIER TUNING Replace the oscilloscope current probe with the second voltage probe, and set the channel 1 gain to 1 volt per centimeter. Now look at the slicer output, terminal J, of all the sense amplifiers in MA 25-31 and MB25-30. A dc level of +0.7 volts should be observed. Place the channel 2 probe on terminal E, then F, of the same module and check that there is no slicer response during the core=0 responses of the amplifier. Be sure all sense amplifiers are checked, and that the core=0 response of the amplifier does not exceed 0.5 volts. With probe 1 on MA25J and probe 2 on MA25E (bit \emptyset), place a temporary jumper from ground to MC21D. (This is the bit \emptyset inhibit driver: the jumper disables it, causing a 1 to be written in this bit throughout the memory). The core=1 response of the amplifier should now be seen on channel 1. My Jou Check that the amplitude of this signal is at least 2 volts, and that no core=Ø responses are produced. The slicer output must have a negative trapazoidal wave for each core=l response, both negative and positive. See Figure 7 for representative waveforms. Check the slicer output waveform on terminal J carefully. Its amplitude must go to -4.0 ± 0.3 volts. Its width, at the +0.7 volt dc level, must equal the width of the core=1 response at the +7.2 volt slice level. There should be a little time jitter in the rising and falling times: this should equal the same time jitter of the core=1 output at the slice level caused by differences of core response. This is called the core dispersion. If the sense amplifier is both statically and dynamically balanced, then each half of the differential amplifier and slicer will have equal gain and two equal response waveforms will be produced as the computer cycles through the alternating core arrangement. Slightly readjust the potentiometer on the sense amplifier to minimize the difference between the two falling and rising waveforms: try to get the rising waveforms to coincide. If the sense amplifier cannot be dynamically balanced, it must be removed and repaired. If any core has a slow response time, the falling waveform will be delayed and/or distorted (See Figure 8). If this occurs, the core stack must be rejected. To look at a specific location, connect a temporary jumper from ground to PD18D, shorting out the COUNT PC pulse. Then set the switch register to the address desired, press LOAD ADDRESS, and finally press START. If there is a lot of time jitter in the falling and rising waveforms, it can be caused by excessive core dispersion, poor common mode rejection in the differential amplifiers, or read and write currents that are too great or which do not change linearly. Poor common mode rejection can be recognized because other sense amplifiers will not show this problem. When this occurs, the sense amplifier must be removed and repaired. When the problem is in the memory, examine the read and write current waveforms carefully. If they are smooth and the proper size (33% milliamperes), then the core stack has too much dispersion and it must be rejected. However, try a smaller read and write Figure 8. Typical Sense Amplifier Output Waveforms current (and consequently a smaller inhibit current) and see if this improves the slicer waveforms. (Be sure you can get a 2 volt core=1 response from the differential amplifiers). Repeat the above process for every bit, placing the jumper and probes at the locations listed below. | Bit | Ground Jumper | Probe l (slicer) | Probe 2 (amplifier) | |-------------|---------------|-------------------|---------------------| | √ ø | MC21D | MA25J, ~ | MA25E or F | | ~ 1 | MC21T | MB25 チ | MB25E or F | | 又2 | MC22D | ма26ј | MA26E or F | | <i>J</i> 3 | MC22T | мв26ј | MB26E or F | | 4 | MC24D | MA27J | MA27E or F | | √5
√6 | MC24T | MB27J~ | MB27E or F | | | MD21D | MA28J | MA28E or F | | √ 7 | MD21T | MB28J | MB28E or F | | \$ 5
10 | MD22D | MA29JX | MA29E or F | | 1/2 | MD22T | MB29J | MB29E or F | | ∨}ø | MD24Ď | т ТФЕАМ | MA3ØE or F | | √ 11 | MD24T/ | MB3ØJ ✓ | MB3ØE or F | | P | MC25T | MA31J | MA31E or F | | | | | | ## STROBE Turn the POWER switch off, replace the B360 in MD20, and ground MD24T with a temporary jumper. Turn the POWER switch back on, and press START. Place probe 1 on MB30J and observe the output of the bit 11 slicer. Place probe 2 on MB30T and observe the MEMORY STROBE pulse. Adjust the delay line on the B360 at MD20 until the leading edge of the MEMORY STROBE pulse occurs at or just past the midpoint of the slice output. Refer to Figure for typical waveforms. Check the SAll pulse output by moving probe 1 to MB3ØK. The pulse must go positive to -Ø.3 volts at least, and must be at least 8Ø nanoseconds wide. If not, the sense amplifier module must be removed and repaired. Then check all the other output pulses by grounding the corresponding inhibit driver inputs. (Note that the instruction register decoder may require ground jumpers on PB27H, PB27F, and PB27L in order to cycle when grounding bits Ø, 1, and 2). | Bit | Ground Jumper | Probe 1 (pulse output) | |-----|---------------|------------------------| | Ø | MC21D | MA25K | | 1 | MC21T | MB25K | | 2 | MC22D | MA26K | | 3 | MC22T | мв26к | | 4 | MC24D | MA27K | | 5 | MC24T | MB27K | | 6 | MD21D | MA28K | | 7 | MD21T | MB28K | | 8 | MD22D | MA29K | | 9 | MD22T | MB29K | | 1Ø | MD24D | MA3ØK | | 11 | MD24T | мвзøк | | P | MC25T | MA31K | | | | | Remove all jumpers when finished. Then check that both l's and \emptyset 's can be deposited and examined throughout the memory. ## MARGINS If the ASR 33 or other paper tape reader is available and working, first load the RIM Loader subroutine into memory (see Appendix 1), then read in the checkerboard-low tape. If a paper tape reader is not available, load this program in memory manually. Set the Switch Register (SR) to $\emptyset\emptyset\emptyset$ 1 and press LOAD ADDRESS, then set the SR to $\emptyset1\emptyset\emptyset*$ and press START. Place probe 1 on the slice level bus (H terminals in MA25-31 and MB25-30) and probe 2 on the output of some differential amplifier (terminal E or F in MA25-31 or MB25-30). Set both channels for a gain of 2 volts per centimeter with ground reference on the lowest grid line. Turn the SENSE AMP switch on the memory wing to MC, then very slowly decrease the +10 volt marginal voltage. When the program halts at location 71, record the contents of the AC-CUMULATOR indicators (the bit that is on or off is the bit (sense amplifier) that failed) and the marginal voltage. Then return the marginal voltage to +10 volts and press CONTINUE. ^{*} For EMI or Ferroxcube core memories. Refer to the Maindec 802 write-up if other memories are used. The computer will halt again at location 74, with the ACCUMULATOR indicators containing the address where the error occurred. The sense amplifiers must be able to operate with the marginal voltage reduced 5.5 volts (to +4.5 volts), and normally will operate 6 volts below normal (at +4 volts). Press CONTINUE again to resume testing, and slowly increase the +10 volt marginal voltage until the program again halts at location 71. Once again note which single bit in the ACCUMU-LATOR indicaters is on or off, decrease the marginal voltage to +10 volts, then press CONTINUE. Now note the address, and press CONTINUE again to resume testing. The sense amplifiers must be able to operate with the marginal voltage increased 5.5 volts (to +15.5 volts), and normally will operate 6 volts above normal (at +16 volts). If the voltage spread is at least 11 volts and centered at +10 volts, then the memory is working passably (it's working well if the spread is 12 volts or more). If the spread is reasonably wide but not centered, set the marginal voltage to whichever margin it will work at, then change the slice level until the program fails at this point. Return the marginal voltage to normal, press CONTINUE twice to restart the program, and vary the marginal voltage to the other extreme until the program again fails. In this manner the marginal spread can be centered using the slice level. Rebalancing a sense amplifier can also help it to meet the marginal conditions. With the program running at normal marginal voltage, place probe 1 on terminal J of the sense amplifier that fails at high margins and observe the slicer output. Then place probe 2 on the MEMORY STROBE bus (terminal L) and adjust the two traces for a common ground reference. Now increase the marginal voltage and observe the slicer output move to the left as the sense amplifier speeds up. When the program fails (the trailing edge of the strobe pulse will occur with the trailing edge of the slicer output), reduce the marginal voltage a little bit and restart the program (by pressing CONTINUE twice), then adjust the balance potentiometer on the sense amplifier module until the two traces at the trailing edge of the slicer output are as nearly together as possible. Then increase the marginal voltage again and see if it has improved enough. If it has, then check the lower marginal voltage limit to see if it has changed. The same procedure can be used to improve the lower marginal voltage limits. In this case, the slicer output moves to the right as the sense amplifiers slow down. If the same bit fails at both the upper and lower limits, it is due to either a poor core output in that plane, or a low sense amplifier gain, or both. Place probe 1 on terminal J of this module, and probe 2 on all the other slicer outputs (terminal J) and observe the relative widths of the waveforms when the program is running at normal margins. Find the sense amplifier with the widest response, and swap the two modules (be sure to turn the POWER switch off). Then check to see how much this has improved the margins. Changing the read/write current, inhibit current, and/or the second stage clamp voltage can improve the marginal voltage limits slightly if done correctly. However, once any of these are changed, the slice level and probably one or more of the others must also be readjusted and a new set of marginal voltage limits Increasing the read and write currents increases the core=1 response and the noise in the rest of the core. optimal inhibit current will produce the smallest core=0 response (as seen on terminals E and F). The second stage clamp voltage changes the operating level of both the second stage of the differential amplifiers and the slicer, with only small changes in gain and common mode noise rejection. The second stage clamp should only be changed slightly if limiting is noticed on one side of any sense amplifier output at either terminal E or F. | | | N. Carlotte and Ca | |---|--|--| | | | | | | | | | | | | | | | • | | | | , | | | | ; . | | , | | , | | | | • | | | | • |)
} | • | | | | | | | | • | | | | | | | | · . | | | | : | | | | | | | | | | | | | | | | , | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | / | | | | | | | | | | | | | | | | | ## APPENDIX 1 ## RIM LOADER The readin mode (RIM) loader is a short program that reads the contents of another program tape and loads it into memory. The program tape must be punched in the RIM format, i.e., first an absolute address and then the information to be placed in that address. This program will only work with the 33 ASR reader, and must be loaded into memory manually. | Location | Content | Mnemonic | Comments | |---------------|---------------|-----------|-------------------------------------| | 77ØØ | 6Ø32 | KCC | /Clear ac and reader flag. | | 77Ø1 | 6Ø31 | KSF | /Skip if flag is set. | | 77Ø2 | 5ø31 | JMP1 | /Do it again if flag is clear. | | 77 ø 3 | 6ø36 | KRB | /Read buffer when filled. | | 77Ø4 | 7 1ø 6 | CLL RTL | /Clear link and rotate left twice. | | 77Ø5 | 7øø6 | RTL | /Rotate left twice again for checks | | 77Ø6 | 751 ø | SPA | /Skip if not leader or trailer. | | 77Ø7 | 53 Ø 1 | JMP 77Ø1 | /Repeat if leader or trailer. | | 771Ø | 7 øø 6 | RTL | /Rotate left twice if program. | | 7711 | 6Ø31 | KSF | /Skip if flag is set. | | 7712 | 5311 | JMP1 | /Do it again if flag is clear. | | 7713 | 6ø34 | KRS | /Read buffer without clearing ac. | | 7714 | 742Ø | SNL | /Skip if link is set. | | 7715 | 37 2 ø | DCA I .+3 | Deposit information in address. | | 7716 | 33 2ø | DCA .+2 | /Deposit address. | | 7717 | 53 ø ø | JMP 77ØØ | Repeat the entire program. | | 772Ø | ØØØØ | Z | /Storage for absolute address. | | | | | | | | | N. S. | |--|--|---| | | | , | | | | | | | | • | | | | ;
, | \
\
/ | | | | 7 | • | | | | : | | | | , | | | | , | | | | , | | | | • | | | | • | ## APPENDIX 2 ## CHECKERBOARD The following programs are Checkerboard-Low and Checkerboard-High. These may be loaded manually into memory in the event that the program tapes are not available, the RIM Loader is not working, or these programs do not work correctly. For a full description, flow chart, and operating instructions, refer to the MAINDEC 802 Memory Checkerboard Test manual. | | Location | | | Instruction | | | |-----|--------------|-----|---------------|---------------|-------------|--| | Low | <u> High</u> | Tag | Low | <u> High</u> | Mnemonic | | | 1 | 745ø | | 7121 | 7121 | CLL CML IAC | | | 2 | 7451 | | 31 Ø 7 | 3353 | DCA COM | | | 3 | 7452 | STX | 76Ø4 | 76 ø 4 | LAS | | | 4 | | | 1111 | · | TAD MUD | | | 5 | 7453 | | 31Ø5 | 3354 | DCA PAT | | | 6 | | | 1111 | | TAD MUD | | | 7 | 7454 | | 31Ø6 | 3355 | DCA SA | | | 1ø | 7455 | STB | 21 ø 7 | 2353 | ISZ COM | | | 11 | 7456 | | 11 ø 7 | 1353 | TAD COM | | | 12 | 7457 | | Ø1Ø3 | Ø352 | AND DOT | | | 13 | 746Ø | | 764Ø | 764ø | SZA CLA | | | 14 | 7461 | | 11ø2 | 1351 | TAD NOT | | | 15 | 7462 | | 1ø77 | 135Ø | TAD HOT | | | 16 | 7463 | | 3Ø25 | 3272 | DCA Y | | | 17 | | STC | 11ø1 | | TAD POT | | | | 7464 | STC | · | 1347 | TAD SOT | | | 2ø | 7465 | | 11ø6 | 1355 | TAD SA | | | 21 | 7466 | | 765Ø | 765Ø | SNA CLA | | | 22 | 7467 | | 5øø3 | 5252 | JMP STX | | | 23 | 747ø | | 11ø5 | 1355 | TAD PAT | | | 24 | 7471 | | Ø1 Ø Ø | Ø346 | AND ROT | | | 25 | 7472 | Y | øøøø | øøøø | 11112 1101 | | | 26 | 7473 | | 11ø2 | 1351 | TAD NOT | | | 27 | 7474 | | 1Ø77 | 135Ø | TAD HOT | | | зø | 7475 | | 3Ø33 | 33ØØ | DCA X | | | 31 | 7476 | | 11Ø5 | 1354 | TAD PAT | | | 32 | 7477 | | ø1ø3 | Ø352 | AND DOT | | | 33 | 75ØØ | x | Ø | øøø | ØØØØ | | |------|---------------|-----|-----|--------------|---------------|------------| | 34 | 75Ø1 | | 7 | ø4ø | 7 ø4ø | CMA | | 35 | 75Ø2 | | 7 | 420 | 742Ø | SNL | | 36 | 75 ø 3 | | 5 | Ø4 7 | 5314 | JMP CCK | | 37 | 75 ø 4 | | 3 | 5ø6 | 3755 | DCA I SA | | 4Ø | 75 ø 5 | STD | 2 | 1ø6 | 2355 | ISZ SA | | 41 | 75 ø 6 | | . 2 | 1 ø 5 | 2354 | ISZ PAT | | 42 | 75 ø 7 | | 1 | 1ø6 | 1355 | TAD SA | | 43 | 751ø | | Ø | 1ø4 | Ø345 | AND BOT | | 44 | 7511 | | 7 | 65Ø | 765Ø | SNA CLA | | 45 | 7512 | | 5 | Ø17 | 5264 | JMP STC | | 46 | 7513 | | 5, | Ø31 | 5276 | JMP X-2 | | 47 | 7514 | CCK | 3 | 11ø | 3356 | DCA WRD | | 5ø | 7515 | | 1 | 5 ø 6 | 1755 | TAD I SA | | 51 | 7516 | | 7, | Ø41 | 7 ø4 1 | CMA IAC | | 52 | 7517 | | 1 | 11ø | 1356 | TAD WRD | | 53 | 752Ø | | 7 | 64Ø | 764ø | SZA CLA | | 54 | 7521 | • | 5, | Ø7Ø | 5335 | JMP CC3 | | 55 | 7522 | | 1 | 11ø | 1356 | TAD WRD | | 56 | 7523 | | 7, | Ø4Ø | 7ø4ø | CMA | | 57 | 7524 | | 3 | 5ø6 | 3755 | DCA I SA | | 6ø | 7525 | | 1. | 5 ø 6 | 1755 | TAD I SA | | 61 | 7526 | | 7, | ØØ1 | 7 øø 1 | IAC | | 62 | 7527 | | 1 | 11ø | 1356 | TAD WRD | | 63 | 753Ø | | 7 | 64 ø | 764Ø | SZA CLA | | 64 | 7531 | | 5, | Ø7ø | 5335 | JMP CC3 | | 65 | 7532 | CC2 | 1 | 11ø | 1356 | TAD WRD | | 66 | 7533 | | 7. | 1 øø | 71 øø | CLL | | 67 | 7534 | | 5, | Ø37 | 53 ø4 | JMP STD -1 | | 78 | 7535 | CC3 | 1 | 5 ø 6 | 1755 | TAD I SA | | 71 | 7536 | El | 74 | 4ø2 | 74 ø2 | HLT | | 72 | 7537 | | 73 | 2øø | 7 2øø | CLA | | 73 | 75 4ø | _ | 1 | 1ø6 | 1355 | TAD SA | | 74 | 7541 | ElA | 74 | 4ø2 | 7 4ø 2 | HLT | | 75 | 7542 | | 7: | 3 <i>ø</i> ø | 7 BØ Ø | CLA CLL | | | 7543 | | | | 73 øø | CLA CLL | | 76 | 7544 | CC4 | 5) | Ø65 | 5332 | JMP CC2 | | 77 | 755 ø | HOT | | 64 ø | 764Ø | /Constant | | 100 | 7546 | ROT | ø | 2øø | ø2øø | /Constant | | 1Ø1 | | POT | Ø | 1øø | øløø | /Constant | | 1Ø2 | 7551 | NOT | Ø | ØlØ | ØØlØ | /Constant | | 1,03 | 7552 | DOT | Ø | ØØ2 | ØØØ2 | /Constant | | | | | | | | | | 1ø4 | 7545 | BOT | ØØ77 | ØØ77 | /Constant | |-----|------|-----|--------|------|-----------| | 1ø5 | 7554 | PAT | øøøø · | øøøø | /Variable | | 1ø6 | 7555 | SA | ØØØØ | øøøø | /Variable | | 1Ø7 | 7553 | COM | ØØØØ | øøøø | /Variable | | 11ø | 7556 | WRD | ØØØØ | øøøø | /Variable | | 111 | | MUD | Ø112 | | /Constant | | | 7547 | SOT | · | ø4øø | /Constant |