
February 1979

This document contains information that an assembly language

programmer needs to use the capabilities of the VAX-11 MACRO

assembly language efficiently. .

VA X-11

MACRO User’s Guide

Order No. AA-DO33B-TE

SUPERSESSION/UPDATE INFORMATION: This revised document supersedes

the VAX-11 MACRO User's Guide

(Order No. AA-DO33A-TE)

OPERATING SYSTEM AND VERSION: VAX/VMS V1.5

SOFTWARE VERSION: VAX-11 MACRO V2.0

To order additional copies of this document, contact the Software Distribution

Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, August 1978

Revised, February 1979

The information in this document is subject to change without notice

and should not be construed as a commitment by Digital Equipment

Corporation. Digital Equipment Corporation assumes no responsibility

for any errors that may appear in this document.

The software described in this document is furnished under a license

and may only be used or copied in accordance with the terms of such

license.

No responsibility is assumed for the use or reliability of software on

equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright C) 1978, 1979 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this

document requests the user's critical evaluation to assist us in pre-

paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem~10 MASSBUS

DEC DECtape OMNIBUS

PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS

COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8

DDT LAB-8 TYPESET-11

DECCOMM DECSYSTEM-20 TMS-11

ASSIST-11 RTS-8 ITPS~10

VAX VMS SBI

DECnet IAS PDT

DATATRIEVE TRAX

CONTENTS

Page

PREFACE
v

SUMMARY OF TECHNICAL CHANGES vii

CHAPTER 1 INTRODUCTION 1-1

1.1 DEVELOPING A VAX-11 MACRO PROGRAM 1-1
1.2 VAX-11 MACRO ASSEMBLER 1-3
1.3 USER-DEFINED SYMBOLS 1-4
1.4 MACROS 1-5
1.5 PROGRAM SECTIONS 1-5
1.6 LINKING MACRO PROGRAMS 1-7
1.6.1 Resolving Symbolic and Library References 1-8
1.6.2 Program Relocation and Address Assignment 1-9
1.7 DEBUGGING MACRO PROGRAMS 1-9

CHAPTER 2 USING VAX-11l MACRO 2-1

2.1 THE MACRO COMMAND 2~-1
2.1.1 File Specifications 2-2
2.1.2 Qualifiers 2-3
2.1.2.1 The /CROSS and /NOCROSS Qualifiers 2-5
2.1.2.2 The /ENABLE and /DISABLE Qualifiers 2-5
2.1.2.3 The /LIBRARY Qualifier 2-6
2.1.2.4 The /LIST and /NOLIST Qualifiers 2-7
2.1.2.5 The /OBJECT and /NOOBJECT Qualifiers 2-7
2.1.2.6 The /SHOW and /NOSHOW Qualifiers 2-7
2.1.3 Diagnostic Messages 2-8
2.2 LISTING FILE FORMAT 2-10
2.2.1 Table of Contents and Page Headings 2-10
2.2.2 Source Statements and Hexadecimal Code 2-11
2.2.3 Symbol Table 2-12
2.2.4 Program Section Synopsis 2-12
2.2.5 Cross-Reference Listing 2-12
2.2.6 Assembly Summary 2-13
2.2.7 Assembly Listing Example 2-13

CHAPTER 3 WRITING POSITION-INDEPENDENT CODE 3-1

APPENDIX A DTAGNOSTIC MESSAGES A-1

INDEX Index-1

FIGURES

FIGURE 1-1 Developing a VAX-11 MACRO Program 1-2

1-2 Function of a VAX-11 MACRO Assembler 1-3
1-3 Link Functions 1-7

iii

CONTENTS

Page

TABLES

TABLE 1 File Specification Defaults 2-3

2 VAX-11 MACRO Command Qualifiers 2-4

-3 /CROSS Qualifier Functions 2-5

4 /ENABLE and /DISABLE Qualifier Functions 2-6

5 2-8

1 3-2

/SHOW and /NOSHOW Qualifier Functions

Relative and Absolute Addressing Modes

PREFACE

MANUAL OBJECTIVES

This manual describes how to use the VAX-11 MACRO assembly language.
It 1is designed to enable users to assemble programs coded in VAX-11
MACRO. The features of the VAX-11 MACRO language are described in the
VAX-11 MACRO Language Reference Manual.

INTENDED AUDIENCE

This manual is intended for all VAX-11 MACRO programmers. This manual
assumes that the reader has had some assembly language programming
experience and has read the VAX/VMS Primer. Chapter 3 of this guide
is intended for experienced MACRO programmers who want to create
shareable images.

STRUCTURE OF THIS DOCUMENT

This manual is organized into three chapters and one appendix, as
follows:

e Chapter 1 provides an introduction to VAX-11 MACRO assembler
for users who are not familiar with the operation of an
assembler.

e Chapter 2 describes the MACRO command, which invokes the
VAX-11 MACRO assembler.

e Chapter 3 describes how to write position-independent code for
use in shareable images.

e Appendix A describes the VAX-11 MACRO error messages.

ASSOCIATED DOCUMENTS

The following documents are relevant to VAX-11 MACRO programming:

e VAX-11 MACRO Language Reference Manual

e VAX-11/780 Architecture Handbook

e VAX/VMS Primer

e VAX/VMS Command Language User's Guide

e VAX-11l Linker Reference Manual

e VAX-1l1l Symbolic Debugger Reference Manual

VAX/VMS System Services Reference Manual

VAX/VMS 1I/0 User's Guide

For a complete 1list of all VAX-1ll documents, 1including a brief

description of each, see the VAX-11l Information Directory.

CONVENTIONS USED IN THIS DOCUMENT

The following conventions are observed in this gquide, as in other

VAX-11 documents:

Brackets ([]) indicate that the enclosed argument is optional.

Uppercase words and letters, used in formats, indicate that
you should type the word or letter exactly as shown.

Lowercase words and letters, used in formats, indicate that

you are to substitute a word or value of your choice.

Ellipses (...) indicate that the preceding item(s) can be

repeated one or more times.

vi

SUMMARY OF TECHNICAL CHANGES

This manual documents VAX-11 MACRO V2.0. This section summarizes the

technical changes 1in the use of the assembler from Version 1.0.

Technical changes in the VAX-11l MACRO language are documented in the

VAX-11 MACRO Language Reference Manual.

The /CROSS and /NOCROSS qualifiers have been added to the MACRO

command to control the cross-reference listing.

The SUPPRESSION function has been added to the /ENABLE and /DISABLE

qualifiers to the MACRO command to allow suppression of the listing of

unreferenced symbols in the symbol table.

You no longer need to specify macro library files in the MACRO command

before the source files. In fact, macro 1library files should

generally be specified after the source files. However, any MACRO

command that follows the description in the Version 1.0 documentation

will still work.

The formats of the listing file and of the diagnostic messages have

been changed.

The assembler itself now runs 1in native mode rather than in

compatibility mode. This does not change the object code that the

assembler produces, which has always been native mode code, but is

only an internal assembler change.

vii

CHAPTER 1

INTRODUCTION

The VAX-11 MACRO language consists of the VAX-11/780 native mode
instruction set and the assembler directives. The instruction set
allows you to perform many types of data manipulation, such as add,
compare, increment, move, and complement. The instructions are
described in the VAX-11/780 Architecture Handbook. The assembler
directives create and initialize data areas and provide tools for
using the instruction set more effectively. The directives are
described in the VAX-11 MACRO Language Reference Manual. This chapter
provides an introduction to the assembler.

1.1 DEVELOPING A VAX-11l MACRO PROGRAM

You write a VAX-11 MACRO program as a sequence of assembly language
statements in the following format:

label: operator operand(s) ; comments

The operator and operand are either 1) instructions selected from the
VAX-11/780 instruction set and data needed by the instructions or 2)
assembler directives (instructions to the assembler to guide the
assembly process). The statement label, which is optional, identifies
the statement line so that you can refer to the instructions or data
on that line from other parts of the program. Comments, which are
optional, explain what operations are being performed.

You use tabs and spaces to make the program more readable. When vyou
have finished creating the program as a complete, edited file, you
submit it as input to the VAX-11 MACRO language assembler. The VAX-11
MACRO language assembler processes (assembles) the 1language
statements, converting them to an internal machine language code

(object code). The object code is next processed by the linker, which
combines your program units, making the program suitable for
execution. Figure 1-1 1illustrates the development of an executable
VAX-11 MACRO program.

To develop a VAX-11 MACRO program you must follow the four steps
illustrated in Figure 1-1. The commands associated with these steps
are:

$ EDIT

$ MACRO

$ LINK

$ RUN

Chapter 2 of this manual describes the MACRO command. The VAX/VMS
Command Language User's Guide describes the EDIT, LINK, and RUN
commands.

INTRODUCTION

$ EDIT NAME.MAR

Use the file type of MAR to

indicate the source file Create the

contains a VAX-11 MACRO source program

program.

NAME.MAR

macro libraries

$ MACRO NAME
The MACRO command

assumes the file type of an

source program >
If you use the /LIST

qualifier, the assembler

creates a listing file.

$ LINK NAME

The LINK command assumes -

input file is MAR (.MLB for

macro libraries). Assemble the NAME.OBJ

(NAME. LIS)

object libraries

debugger

jchzgf;a(t\(/)p:Boff an itr:‘pu: file Link the NAME.EXE

s DB, or oblee object module (NAME.MAP)
libraries).

If you use the /MAP qualifier,

the linker creates a map file.

$ RUN NAME

The RUN command assumes

the file type of an image is :
EXE. image

Run the

executable

Figure 1-1 Developing a VAX-11 MACRO Program

VAX-11] MACRO allows you to use a modular approach to your prodram.

You can create an entire program as a series of smaller independent

subprograms or modules. Each module consists of a number of routines.

A routine is a sequence of code that performs one procedure.

Modular programming facilitates program creation, debugging,

maintenance, and enhancement as follows:

e You can write and test each routine independently of other

routines, Then vyou can test the module consisting of these

routines independently of other modules.

e Different programmers can develop and maintain different

modules.

e Changing a program requires changing and testing only the

module in which the change occurs.

VAX-11 MACRO assembles each module separately. Then the linker Jjoins

them all into a complete program.

INTRODUCTION

1.2 VAX-11l MACRO ASSEMBLER

The VAX-11] MACRO assembler accepts information in one format (that is,

your source program) and translates it into another format (that is,

an object module). The assembler interprets and processes the
assembly language statements, one at a time, and generates one or more
computer instructions or data items. Because you originally use the
editor to create a VAX-11l MACRO program in ASCII format, your program

must be translated into a machine format that the computer can use.

The VAX-1l MACRO assembler performs this translation, producing as

output a new version of the program in object format, called an object

module, You <can request the VAX-11 MACRO assembler to produce a

listing of the source program at the same time. Figure 1-2

illustrates the role of the assembler.

MACRO

LIBRARIES

¥

SOURCE - | osuecT

PROGRAM > ASSEMBLE "1 MobuLE

LISTING

(OPTIONAL)

Figure 1-2 Function of a VAX-11 MACRO Assembler

During assembly processing, the VAX-11] MACRO assembler:

e Accounts for all instructions used within the source program

and determines their relative positions within the program

unit; it does this by means of a storage location counter

® Keeps track of all user-defined symbols and their respective

values in a symbol table

e Converts assembly language mnemonics, user-defined symbols,

and data values into their respective machine language (object

code) equivalents

During processing, the assembler converts each program language
statement into numerical data (the object code) and assigns the data a

relative storage location. As the assembler translates and assigns
each statement, it wupdates the wvalue of the 1location counter

INTRODUCTION

accordingly. The 1linker «converts the relative storage 1locations

assigned by the assembler to virtual storage 1locations in the

computer's memory. Each location has an associated number called its

address,

A VAX-1ll MACRO assembly 1listing shows the addresses of memory

locations and their contents as hexadecimal numbers. The hexadecimal

numbers represent the machine language code that makes up the object

module. See Section 2.2 for more information on the listing file.

1.3 USER~-DEFINED SYMBOLS

User-defined symbols are symbolic names that you can use to:

e Identify the location of a routine

e Identify the location of data

® Represent a value

A symbol that identifies a location in memory is called a label. You

can wuse labels to refer to locations without knowing exactly where

they will be in memory.

You also can use a symbol to replace a constant used in several places

in your program. This allows you to change the value referred to in

several locations by simply redefining the symbol as a different

value.

A symbol can be internal to one module; that is, the symbol 1is only

referred to in the module in which it is defined. An internal symbol

is also called a local symbol.

A symbol that is referred to in modules other than the one in which it

is defined 1is called a global symbol. Global symbols are the key to

modular programming. Global symbols provide communication between

modules. You use a double colon (::) to define a global symbol used

as a label and a double equal sign (==) to define a global symbol used

to represent a value.

The assembler replaces each reference to a 1local symbol with the

symbol's address or value., However, the assembler does not know the

address of a global symbol defined in a different module. Therefore,

it indicates to the 1linker that the symbol is global. The linker

replaces each global symbol reference with the symbol's address or

value,

As the assembler processes your module, it builds a symbol table. The

symbol table contains all symbols wused in the module with each

symbol's address or value (when known). The symbol table is printed

in the 1listing file (see Section 2.2.3). The assembler does not

usually write the complete symbol table to the object module; instead

it writes a symbol table that contains only global symbols. The

linker uses the global symbol tables to resolve global symbol

references. The VAX-11 Symbolic Debugger (see Section 1.7) also uses

the object module symbol table. Consequently, you may want to include
local symbols in the object module symbol table. To include a
specific local symbol, you must specify it in the .DEBUG directive.
To include all 1local symbols, you must specify the /ENABLE=DEBUG
qualifier in the MACRO command or .ENABLE DEBUG in the source file.

INTRODUCTION

There are two specialized kinds of global symbols: weak and universal

symbols. Weak symbols do not have to be resolved by the linker (see

the description of the .WEAK directive in the VAX-11 MACRO Language

Reference Manual). Universal symbols are used in shareable images

(see the description of universal symbols in the VAX-11 Linker

Reference Manual).

Local labels are temporary labels (consisting of a number followed by

a dollar sign) that you can use to refer to locations between symbolic

labels (see the VAX-11 MACRO Language Reference Manual). Local labels

are not symbols; local 1labels <can be reused in the same object

module. Consequently, local labels are not included in the symbol

table and are not available to the linker or debugger.

1.4 MACROS

Macros are a very useful feature of the VAX-11 MACRO assembly

language. A macro 1is any sequence of coding instructions that you

want to recur in your program. You first define the macro and give it

a name. Then, you can call the macro from any other part of your

program by simply entering the macro name in the operator field of a

statement 1line. You must define a macro before you can refer to it.

The assembler directives that define macros are described in Chapter 6

of the VAX-11 MACRO Language Reference Manual.

Every time the assembler encounters the macro name, it inserts the

code contained in the macro definition. This is called expanding a

macro.

You can also define macros that contain conditional assembly

directives. Each time the macro 1is expanded, the conditions are

checked. Thus, you can generate several different code sequences from

one macro.

In addition to using macros that you define, you can use system macros

provided by the VAX/VMS operating system. These system macros perform

useful functions such as calling system services. The VAX/VMS System

Services Reference Manual describes how you can use system macros to

call system services to perform, for example, file and record

handling, process control, and memory management services.

Macros can be defined in a macro library. The system macros, for

example, are defined in the system macro library. A macro library is

a library consisting entirely of macro definitions. You can refer to

macros in libraries in the same way that you refer to macros in your

object modules. You must specify the name of the macro library in the

MACRO command (with the /LIBRARY qualifier). You do not have to

specify the name of the default library, the system macro library.

1.5 PROGRAM SECTIONS

You can segment your object module into a series of program sections.

Using program sections allows you to write more modular programs, have

increased error protection, and control the order in which vyour

routines are stored in virtual memory. The assembler writes program

section information into the object module, and the linker uses this

information in creating an executable program image.

INTRODUCTION

You specify the start of a program section and describe its attributes
by using the .PSECT directive (see the VAX-11 MACRO Language Reference

Manual). Within each module the assembler maintains several location
counters -- one for each program section.

You can continue a previously defined program section by using a

second .PSECT directive that specifies the same name as the .PSECT

directive that defined the original program section.

Because the assembler does not know where each program section goes,

all references between sections are relative to the base of the

section. The linker resolves these references at link time.

You can use program sections to perform any of the following:

® Separate your object module into smaller sections of code.

Each program section should contain a complete routine. This

can increase the modularity of your program, making it easier

to debug, maintain, and enhance.

e Allow different modules to gain access to the same data
locations. (This is done in FORTRAN by using the COMMON

statement.) If you specify the same program section name with

the overlay (OVR) attribute in different modules, each program

section shares the same virtual memory.

e Separate areas where you intend to write information from

areas where you do not intend to write information. For

example, if your program erroneously writes to an area with
the no-write (NOWRT) attribute, a memory access violation
occurs. Separating such areas in your program into program
sections makes debugging your program easier because the

program sections act as additional protection from miscoded
instructions or logic errors.

e Identify sections of your object module to the debugger. The
debugger uses the program section name to identify a location
and to identify the section of the program being examined.
Consequently, you should always specify names for all program

sections. Do not use the default program sections that the

assembler creates when you do not specify .PSECT or when you

specify .PSECT with no program section name.

® Produce shareable program sections to use in shareable images.

One copy of a shareable image on disk and in physical memory
can be used by many processes at the same time. Several

processes can gain access to the data in a shareable image.

In addition, large programs that are used in many processes

can be made into shareable images to improve system

performance. See the VAX-1l Linker Reference Manual for more

information on shareable images.

® Control the order in which program sections are stored in

virtual memory; this can improve the performance of programs

larger than your working set. Making frequently accessed

program sections contiguous with each other in virtual memory

increases the probability of having a frequently accessed

program section in your working set.

The linker separates all program sections into groups with similar
attributes. Within these groups the 1linker stores the program

sections alphabetically by name.

1-6

INTRODUCTION

Program sections with the same name and the overlay attribute are

stored starting at the same address in virtual memory. Program

sections with the same name and the concatenate attribute are

concatenated in the order that they are specified to the linker.

The attributes you specify in the .PSECT directive describe but do not

control the contents of the program section; you must ensure that the

program section actually has those attributes. For example, you

should not include instructions to be executed in a program section

with the NOEXE (not executable) attribute.

1.6 LINKING MACRO PROGRAMS

The object module produced by the MACRO command may in itself be

incomplete. It may need to be joined, or linked, with other object

modules or library files to form a complete functioning program. The

link operation:

e Joins together the object modules that use symbols with the

object modules that define them

e Relocates individual object modules as necessary and assigns

virtual memory addresses

® Produces an executable image and an optional map, as shown in

Figure 1-3

OBJECT

LIBRARIES

|

OBJECT o LINK _ [EXECUTABLE

MODULE(S) o MODULE

MAP

(OPTIONAL)

Figure 1-3 Link Functions

INTRODUCTION

The link operation, in addition to joining object modules togethers

assigns virtual memory addresses to the relative addresses calculated

by the VAX-11l MACRO assembler. Because the memory addresses of one

object module must be relocated to accommodate the addresses used in

another object module, the 1link operation serves to resolve all

address changes. The result of the link operation is an image with

all module links resolved and all virtual memory addresses and storage

information assigned. The 1image, then, 1is a picture of what your

program looks like just before execution. :

An executable image is one that you can run on the system. Unless

your program contains 1logic errors that prevent it from running

properly (errors that the system cannot always detect), running the

executable 1image of your program should produce the results you

intended. However, if logic errors exist within your program, running

the program will produce either erroneous results or none at all. 1If

this is the case, you must study the source program, debug it, edit

it, then perform the assembly and link operations again.

You can also link VAX-11l MACRO modules with subprograms written 1in

other native mode languages, such as VAX-11 FORTRAN IV-PLUS. This

capability gives you both the flexibility of assembly language

programming and the ease of programming in a high-level language. For

example, you can write a subprogram to perform data acquisition in

VAX-11 MACRO and other subprograms to perform data analysis or file

input/output in VAX-11] FORTRAN IV-PLUS.

In addition, the linker allows you to use object library files. These

are files that contain already written, debugged, and 1linked

subprograms and subroutines, Because you gain access to object

library files at link time, their routines can be used by your program

as needed.

1.6.1 Resolving Symbolic and Library References

The linker reads through all the object modules that you indicate as

input to the LINK command. It gathers and evaluates information

provided by the assembler that is necessary for program linking. For

each input module, this information 1includes the object code,

information needed for relocation, the relative address of the first

instruction, the global symbols used, and the length of each program

section.

One of the 1linker's functions 1is to resolve all global symbol

references and library references in the joined routines.

During translation, the assembler notes which symbols in the object

module are global. During 1linking, the linker keeps track of the

global references and definitions found in all the object modules, and

as linking proceeds, makes the appropriate correlations and modifies

instructions or data as necessary. After linking, the linker outputs

a 1list of all symbolic references that were not resolved (undefined

globals) either because of a programming error or because some

necessary object modules were not included in the LINK command.

References to library files also involve the use of global symbols.

You gain access to the routines in a library by naming a routine as a

global symbol in the source code of your program. You then link your

program with the appropriate library file and the linker resolves the

library references just as it does for any global symbol.

INTRODUCTION

1.6.2 Program Relocation and Address Assignment

A second important function of the linker is to "fix" relative memory

addresses so that they are wvirtual. The object module represents

translated source instructions that have been assigned memory

addresses relative to a base address of 0.

The linker assigns a base address to the 1image and fixes the base

address of each program section.

1.7 DEBUGGING MACRO PROGRAMS

Debugging is the process of finding and correcting errors in

executable programs; that 1is, in programs that have been assembled

and linked without diagnostic messages, but that produce invalid

results., (For information about diagnostic messages produced‘by

VAX-11 MACRO, see Section 2.1.3 and Appendix A.)

The debugger provided with the VAX/VMS system is a symbolic debugger;

it can refer to instructions and data by symbolic names. However, it

can only gain access to the names that are included in the symbol

table in the object module. By default, the debugger can gain access

to global symbol and program section names. If you want to debug with

local symbol names, you must specify the /ENABLE=DEBUG qualifier in

the MACRO command or include .ENABLE DEBUG in the source code.

See the VAX-11 Symbolic Debugger Reference Manual for more information

on debugging VAX-11 MACRO programs.
]

CHAPTER 2

USING VAX-11] MACRO

The MACRO command invokes the VAX-11] MACRO assembler. The assembler

reads your source program; checks it for syntax errors; produces an

object module; and, optionally produces a listing file. Section 2.1

describes the format of the MACRO command and Section 2.2 describes

the listing file.

2.1 THE MACRO COMMAND

Format

$ MACRO[/qualifiers] file-spec-list[/qualifiers]

Parameters

/qualifiers

Command or file qualifiers that indicate special actions to be

performed by the assembler (see Section 2.1.2).

file-spec-list

A file specification or list of file specifications that specify

the source and macro 1library input files to be assembled into

object modules (see Section 2.1.1). If the file specifications

are separated by plus signs (+), the files are concatenated and

assembled into one object module. If the file specifications are

separated by commas (,), the files are assembled separately into

individual object modules. The default file type 1is MAR for

source files and MLB for macro library files.

The assembler reads your source files in the order in which vyou

specify thenm. You can request the assembler to perform several

assemblies with one command. The assembler, by default, produces an

object module with the same file name as your first input file. You

can use the /OBJECT qualifier to specify the file name of the object

module. You can suppress the production of the object module by using

the /NOOBJECT qualifier.

In interactive mode, the assembler does not, by default, produce a

listing file; you must use the /LIST qualifier to specify a listing

file. In batch mode, the assembler, by default, produces a 1listing

file with the same file name as the first input file. You can use the

/LIST qualifier to specify the file name of the listing file.

USING VAX-11 MACRO

Examples

1. $ MACRO PART1+PART2+PART3

The assembler concatenates the source files PART1l, PART2, and

PART3 and assembles them into one object module with a name of

PART1. No listing file is created.

2. $ MACRO/LIST APROG,BPROG,CPROG

The assembler independently assembles the three source files

APROG, BPROG, and CPROG into object modules and listing files.

3. $ MACRO MYPROG/LIST+MLIB/LIBRARY

The assembler uses the macro library MLIB to assemble the source

file MYPROG and creates an output object module and listing files

with the file name MYPROG.

The following sections describe the file specifications, command and

file qualifiers, and how the assembler handles errors.

2.1.1 File Specifications

A file specification indicates the input file to be processed, or the

output file to be produced.

Format

device:{[directory]filename.filetype;version

Parameters

device

The physical device on which a file 1is stored or 1is to be

written,.

[directory]

The name of the directory under which the file is cataloged. The

square brackets are required.

filename

The name of the file; filename can be up to 9 characters long.

filetype

The type of the file, describing the kind of data in the file;

filetype can be up to 3 characters long.

version

The version number of the file. Versions are identified by a

decimal number, which is incremented each time a new version of

the file is created.

USING VAX-11] MACRO

You need not explicitly state all elements of a file specification
each time you assemble a program, The only part of the file
specification that is always required is the file name. 1If you omit
any other part of the file specification, a default value is used.
Table 2-1 summarizes the default values.

Table 2-1

File Specification Defaults

Optional

Element Default

——— e ——————

device User's current default device

directory User's current default directory

filetype Depends on usage:

Source input file MAR
Macro library file MLB

Object module OBJ
Listing file LIS

version Input: highest existing version
Output: highest existing version plus 1

You can also specify a logical name rather than a complete file
specification. See the VAX/VMS Command Language User's Guide for more
information on logical names.

2.1.2 Qualifiers

Qualifiers specify that the assembler should perform the specified
actions. Qualifiers can be used as either command qualifiers or file
qualifiers. A command qualifier affects all the assemblies specified
in the MACRO command. A file qualifier affects only the assembly that
it qualifies,

All MACRO qualifiers except the /LIBRARY qualifier can be either
command qualifiers or file qualifiers. The /LIBRARY qualifier can
only be a file qualifier.

A qualifier can have one of the following formats:

/qualifier

/qualifier=function

/qualifier=(functionl, function2, ..., functionn)

USING VAX-11] MACRO

Table 2-2 lists the MACRO qualifiers, their possible functions, and

their default functions. Note that some values have a long form and a

short form. You can use either form; the effect is the same., Square

brackets around the equal sign in the table indicate that the

qualifier can appear with or without functions.

Table 2-2

VAX-11 MACRO Command Qualifiers

Functions N five
- egativ

Qualifier Form Default

Long Form Short Form

/CROSS [=] ALL - /NOCROSS /NOCROSS

DIRECTIVES DIR

MACROS MAC

OPCODES OPC

REGISTERS REG

SYMBOLS SYM

/DISABLE= | ABSOLUTE AMA /ENABLE= /DISABLE=

DEBUG DBG (AMA,DBG,LSB,SUP,FPT)

GLOBAL GBL

SUPPRESSION sSupP

TRACEBACK TBK

TRUNCATION FPT

/ENABLE= ABSOLUTE AMA /DISABLE= /ENABLE=(GBL, TBK)

. DEBUG DBG

GLOBAL GBL

SUPPRESSION SuUPp

TRACEBACK TBK

TRUNCATION FPT

/LIBRARY -- - - Not a library

/LIST[=] file-spec - /NOLIST /NOLIST (interactive
mode)

/LIST (batch mode)

/OBJECT[=]]|file-spec - /NOOBJECT /OBJECT

/SHOW [=] BINARY MEB /NOSHOW[=] /SHOW= (MC,CND,MD)

CALLS MC

CONDITIONALS CND

DEFINITIONS MD

EXPANSIONS ME

The following sections describe the VAX-11 MACRO command qualifiers in

detail.

USING VAX-1l MACRO

2.1.2.1 The /CROSS and /NOCROSS Qualifiers - The /CROSS.and /NOCROSS
qualifiers control whether a cross-reference listing is included in

the listing file. 1If you specify the /CROSS qualifier, the 1listing
file includes a cross-reference 1listing. Note that if you enter a

MACRO command with the /CROSS qualifier interactively, you must also

specify the /LIST qualifier. The /NOCROSS qualifier is the default;

you need not specify it to have the cross-reference listing excluded.

Table 2-3 lists the functions that you can specify 1in a /CROSS
qualifier. You can specify either the long form or the short form of

the functions. If you specify the /CROSS qualifier with no functions,

it is equivalent to /CR0OSS=(MAC,SYM). See Section 2.2.5 for a

description of the format of the cross-reference 1listing. See the

VAX-11 MACRO Language Reference Manual for a description of the .CROSS

and .NOCROSS directives.

Table 2-3

/CROSS Qualifier Functions

Long Form Short Form Meaning

ALL - Includes directives, macros, opcodes,

registers, and symbols in the

cross-reference listing

DIRECTIVES DIR Includes directives in the

cross-reference listing

MACROS MAC Includes macros in the cross-reference

listing

OPCODES OPC Includes opcodes in the

cross-reference listing

REGISTERS REG Includes register references in the
cross-reference listing

SYMBOLS SYM Includes user-defined symbols in the
cross-reference listing

2.1.2.2 The /ENABLE and /DISABLE Qualifiers - The /ENABLE and

/DISABLE qualifiers have the same effect as the .ENABLE and .DISABLE

assembler directives, respectively. They control the way that the

assembler interprets your source program. The /ENABLE and /DISABLE

qualifiers override any .ENABLE or .DISABLE directives in the source

program. See the VAX-1ll MACRO Language Reference Manual for more

information on the .ENABLE and .DISABLE directives.

Table 2-4 lists the functions that you can specify in an /ENABLE or

/DISABLE qualifier. You can specify either the long form or the short
form of the functions. If you specify more than one function, vyou

must enclose the function list in parentheses. If you use an /ENABLE

or /DISABLE qualifier, you must specify at least one function in the

qualifier.

USING VAX-11 MACRO

/ENABLE and /DISABLE Qualifier Functions

Long Form Meaning

ABSOLUTE

DEBUG

GLOBAL

SUPPRESSION

TRACEBACK

TRUNCATION

When ABSOLUTE is enabled,

all PC relative addressing

modes are assembled as

absolute addressing modes

When DEBUG is

local symbols

in the symbol

object module

enabled, all

are included

table in the

for use by

Table 2-4

Short Form Default

AMA /DISABLE

DBG /DISABLE

GBL /ENABLE

sSyUpP /DISABLE

TBK /ENABLE

FPT /DISABLE

the debugger

When GLOBAL is enabled,

all undefined symbols are

considered to be external

symbols; when GLOBAL is

disabled, any undefined

symbol that is not listed

in a .EXTERNAL directive

causes an assembly error

When SUPPRESSION is

enabled, all symbols that

are defined but not

referred to are not listed

in the symbol table; when

SUPPRESSION is disabled,

all symbols that are

defined are listed in the

symbol table

When TRACEBACK is enabled,

MACRO includes the program

section names and lengths,

module names, and routine

names in the object module

for use by the debugger;

when TRACEBACK is

disabled, MACRO excludes

this information and, in

addition, does not make

any local symbol

information available to

the debugger

When TRUNCATION is

enabled, floating-point

numbers are truncated;

when TRUNCATION is

disabled, floating-point

numbers are rounded

2.1.2‘3 The /LIBRARY Qualifier - The
that the associated input file contains a macro library.

/LIBRARY qualifier

qualifier affects only the input file that it qualifies.

indicates

The /LIBRARY

USING VAX-11 MACRO

2.1.2.4 The /LIST and /NOLIST Qualifiers - The /LIST and /NOLIST

qualifiers control whether an output listing file is created. If you

specify the /NOLIST qualifier, no listing file is created. If you

specify the /LIST qualifier, a listing file is created. The_ /LIST

qualifier determines the file specification of the output 1listing

file.

If you enter the MACRO command interactively, the assembler does not,

by default, create a listing file. 1If you execute the MACRO command

in batch mode, however, the assembler does create a 1listing file by

default.

If you specify the /LIST qualifier with a file specification, the

assembler uses that file specification for the output listing file.

If you specify the /LIST qualifier without a file specification, the

default file name depends on whether /LIST is used as a command

qualifier or as a file qualifier. If /LIST is used as a command

qualifier, the default file name is the name of the first input source

file. If /LIST is used as a file qualifier, the default file name is

the name of the file that /LIST qualifies.

2.1.2.5 The /OBJECT and /NOOBJECT Qualifiers - The /OBJECT and

/NOOBJECT qualifiers control whether an object module is created. The

/OBJECT qualifier is the default; you need not specify it to have an

object module created. If you specify the /NOOBJECT qualifier, no

object module is created.

If you do not specify either the /OBJECT or the /NOOBJECT qualifier,

the assembler creates an object module with the same file name as the

first input file.

If you specify the /OBJECT qualifier with a file specification, the

assembler uses that file specification for the output object file.

If you specify the /OBJECT qualifier without a file specification, the

default file name depends on whether /OBJECT is used as a command

qualifier or as a file qualifier. If /OBJECT is used as a command

qualifier, the default file name is the name of the first input file.

If /OBJECT is used as a file qualifier, the default file name is the

name of the file that /OBJECT qualifies.

2.1.2.6 The /SHOW and /NOSHOW Qualifiers - The /SHOW and /NOSHOW

qualifiers have the same effect as the ,SHOW and .NOSHOW assembler

directives, respectively. They control what 1lines appear 1in the

listing. Note that if you enter a MACRO command with a /SHOW or

/NOSHOW qualifier interactively, vyou must also specify the /LIST

qualifier. The /SHOW and /NOSHOW qualifiers have different effects

depending on whether you specify them with or without functions.

If you specify /SHOW or /NOSHOW with functions, the qualifier controls

the listing of source lines that are in conditional assembly blocks,

macros, or repeat blocks. The /SHOW and /NOSHOW qualifiers override

any .SHOW or .NOSHOW directives that are in the source program. Table

2-5 describes the /SHOW and /NOSHOW functions. You can specify either

the 1long form or the short form of the functions. If you use more

than one function, you must enclose the function list in parentheses.

USING VAX-1ll MACRO

Specifying either the /SHOW or /NOSHOW qualifier with no function is

equivalent to starting your source file with an extra .SHOW or .NOSHOW

directive, respectively. The listing count is incremented by a /SHOW

qualifier and 1is decremented by a /NOSHOW qualifier. The listing

count controls whether all source lines are listed. If the 1listing

count 1is positive, all source lines are listed (including lines in

conditional assembly blocks, macros, and repeat blocks). If the

listing count is negative, no lines are listed. If the listing count

is 0, all lines except lines in conditional blocks, macros, and repeat

blocks are 1listed: these 1lines are listed depending on the values

specified in .SHOW and .NOSHOW directives.

Table 2-5

/SHOW and /NOSHOW Qualifier Functions

Long Form Short Form Default Function

BINARY MEB /NOSHOW Lists macro expansions and

repeat block expansions

that generate binary code;

BINARY is a subset of

EXPANSIONS

CALLS MC / SHOW Lists macro calls and

repeat block specifiers

CONDITIONALS CND /SHOW Lists unsatisfied

conditional code

associated with the

conditional assembly

directives

DEFINITIONS MD /SHOW Lists macro and repeat

range definitions that

appear in an input source

file

EXPANSIONS ME /NOSHOW Lists macro and repeat

range expansions

2.1.3 Diagnostic Messages

If the assembler encounters an error during assembly, it displays a

diagnostic message. The assembler displays the message on the

terminal (for interactive jobs) or in the batch log file (for batch

jobs) and in the listing file.

Appendix A describes the VAX-11 MACRO diagnostic messages.

USING VAX-1ll MACRO

There are two levels of severity: error and warning. Object modules

created with an error message cannot be linked into an image file.

Object modules created with a warning message can be 1linked into an

image file although the linker will display a diagnostic message.

The assembler displays diagnostic messages in the following format:

EMACRO-1-code, text

1

A severity code indicator. It has a value of E for an error or a

value of W for a warning.

code

An abbreviation of the message text.

text

The explanation of the message.

For example:

$MACRO-E-ILLMASKBITS, Reserved bits set in ENTRY mask

The assembler displays on the terminal or batch log file the following

information: ,

e The line from the listing that would precede the error message

if there were a listing file. This line is often the source

line that contains the error, but sometimes it 1is only the

binary expansion of the source line.

e The error message itself.

If the assembler has detected any errors during the assembly process,

it displays a diagnostic summary when the assembly is completed. It

displays this summary on the terminal or batch log file and 1listing

file. The summary contains the total number of errors and warnings

with the line number and page number (enclosed in parentheses) of

each, The assembler also displays at the end of the error summary a

list of the file specifications in the MACRO command (see Section

2.2.6).

An example of a diagnostic summary follows.

$ MACRO/LIST PROG

There were 6 errors and 1 warnings, on lines:

100 (1) 1100 (1) 400 (2) 200 (3) 800 (3) 1200 (3)

400 (5)

/LIST PROG

$

USING VAX-11 MACRO

2.2 LISTING FILE FORMAT

The listing file produced by VAX-11 MACRO has the following six parts.

@ Table of contents (optional) and page headings

® Source statements and hexadecimal code

e Symbol table

e Program section synopsis

@ Cross-reference listing (optional)

® Assembly summary

The following sections describe these six parts. Section 2.2.7

contains an example of a listing.

2.2.1 Table of Contents and Page Headings

If the source module contains any optional .SUBTITLE directives,

VAX-11 MACRO prints a table of contents before the assembly listing.

The table of contents lists all the subtitles specified in .SUBTITLE

directives. The subtitle is listed with the source page number and

the line number of the .SUBTITLE directive.

VAX-11] MACRO prints a new page in the listing file when it encounters

a .PAGE directive in the source, when it encounters a new page in the

source file, or when the existing page of the listing is filled. On

the top of each page in the listing, VAX-11] MACRO prints two header

lines. The first 1line of the header contains the following

information:

e Title of the module specified in the .TITLE directive

e Comment after the title of the module in the .TITLE directive

® Date

e Time of day

e Assembler version identification

e Listing page number

The second line of the header contains the following information:

e The identifying information specified in the .IDENT directive

(often used to specify a version number)

e Subtitle of the section of the module specified 1in the

.SUBTITLE directive

® Source file creation date and time

® Source file specification

® Source page number

USING VAX-11 MACRO

2.2.2 Source Statements and Hexadecimal Code

This section is the main part of the listing: it contains the source

lines of the module and the hexadecimal code generated. Each line of
code contains the following information:

e The source line, including comments

¢ The line number from the editor or, if the file has no 1line

numbers, the sequence number of the line

e The location counter

e The hexadecimal code

The hexadecimal code is printed with the lowest address on the right.

The hexadecimal code listed for an instruction contains, from right to

left:

e The opcode

e The addressing mode for the first operand (if any)

e The addressing mode for the second operand (if any)

e The addressing mode for the third operand (if any)

The binary code for data storage is listed from right to 1left. The

number of data items that are listed on one line depends on the size

of the data type as follows:

Data Type Number of Items per Line

Byte 12

Word 7

Longword 4

Quadword 1

ASCII 12 (characters)

Packed decimal 24 (digits)

string

If an expression contains an externally defined symbol, the assembler

lists the wvalue of the expression followed by an apostrophe. The

assembler evaluates the expression by assigning a value of 0 to the

externally defined symbol. The apostrophe indicates that the linker

will complete the evaluation of the expression.

VAX-11 MACRO also prints the diagnostic messages in this section of

the 1listing. It prints each diagnostic message immediately after the

line at which the error was detected. See Section 2.1.3 for a

description of the diagnostic message format and Appendix A for a list

of the VAX-11 MACRO diagnostic messages.

USING VAX-11 MACRO

2.2.3 Symbol Table

The symbol table lists all symbols, except permanent symbols, that are

defined or referred to in the module. The symbols are listed

alphabetically, in three columns. The symbol's value (when known) 1is

listed next to the symbol. If the symbol is assigned a value by a

direct assignment statement or a directive (such as the .NARG

directive), the symbol is separated from the value by an equal sign.

If the symbol is defined externally (the value is unknown), the value

is listed as a string of asterisks. The following letters are used in

the symbol table to describe special attributes of symbols.

Letter Meaning

D The symbol is a local symbol that will be
made available to the debugger.

G The symbol is globally defined in a module.

R The symbol is relocatable.

W The symbol is a weak global symbol (specified
in a .WEAK directive).

X The symbol is defined externally.

U The symbol is not defined (produced when
.DISABLE GLOBAL has been specified and

undefined symbol is not specified in

.EXTERNAL).

If a symbol is defined externally or as a relocatable value, the

number of the program section in which it appears first is printed.

See Section 2.2.4 for information about program section numbers.

2.2.4 Program Section Synopsis

The program section synopsis lists the program sections, their size,

their attributes, and their alignment. The program sections are

listed in the order in which they are defined in the program. Each

program section is assigned a number based on the order in which it is
defined in the program: this number is printed after the size of the

program section.

2.2.5 Cross-Reference Listing

The assembler lists the cross references separately for the following

groups: symbols, macros, directives, opcodes, and registers. Within
each group each item is listed alphabetically. For each 1item, the

following information is listed:

e Symbol name

e Value

e Line number and page number of the symbol's definition

e Line number and page number of each reference to the symbol

USING VAX-11 MACRO

You control which groups are cross referenced by specifying values in

the /CROSS qualifier. You can exclude certain symbols from the

cross-reference listing by using the .CR0OSS and .NOCROSS directives.

2.2.6 Assembly Summary

The assembly summary contains internal assembler performance

indicators, a diagnostic summary, and the qualifiers and file

specifications in the MACRO command.

The internal assembler performance indicators include the page faults,

CPU time, and elapsed time for the different stages of the assembly.

In addition, the indicators include the working set 1limit and the

number of symbols, source lines, object records, and macros and the

memory required to process these.

If the assembler detected any errors in the module, it prints the same

diagnostic summary in the listing that it displays on the terminal.

If no errors occurred, the assembler prints the following message in

the assembly summary:

There were no errors or warnings.

The last line in the 1listing file shows the qualifiers and file

specifications entered in the MACRO command.

2,2.7 Assembly Listing Example

The following pages show an example of a typical assembly listing.

USING VAX-11 MACRO

s3ue@3uo0)JoaTqel
JUT0dA13Ua3anpadoid007(z)

SUOT3ITUTIapPOadew(0Z¢(1)
S139WyUITIeS9[dWUTSOp©0FSUTINOY=JTYD

2-14

USING VAX-11l MACRO (Zz30T3xed)OPO)TRWIDSPEXSHpueSjUsSWSlelS20INO0Ssbleunod031pasnTaqelTed01idsvd006%0000 009S
000000SS0000

asvoWNAN3*00¥S0000
sbie3junhod03}pasnhfagqelTeoo07q¢SXYW00ES0000

HdgNa-*00ZS0000IsTT198330¢asva-43QdOMTQINDIS*®00TS0000ISTT195330dn3080}!¢<ISIM4s1a>‘addad1°000SQ000uoTioniisuyased¢
0080000

1=<Z/<ASVE=XYWD>>,IAONN'LIKITD4SddAL,3SYD00LY0000
XVWe‘ASVHE‘4.S=HAORNO=LIWIT!M=TdXLLSITASIAYD84S‘ASYD0dIOYN®009%0000==!00S¥0000{00vY

0000
bUOT=]‘(ITNEI3P)PIOMaM‘33Agey3dAd{00EY0000

JO03d8(3saul30anTeAIseyLIKIT{00Z%0000
sju2uwaoe1dsSIpP301ISI11SII1dSIC{00TY0000

10309198ase)odsi0000000!00680000
HEF£i00880000{00LE

0000
AJOWN‘LIWIN’A4dAL’LSITESIU’DusJsvD{009€0000{00S€

0000
*UOTIDNIISUTFSYD9SN03OJdewdUTFAQ{00%E0000++¢00€€0000

SUOTITUTFIIPO0IDENH1LIL4nsS”*00Z€0000001E
0000

S8J5U3133813ATIPI3I=Dd¢
000€0000

UoS3ju3wadeidsIpplomasf¢qdomMLNIWIDOVYIdSIQLinvdda“0060000008Z
0000

lsbbngap¢
00LZ0000

9yl03ataerieARSToquisajew¢ONUNAAMYYNT®009Z000000SZ0000

-=!00¥Z0000
{00€Z0000

(dv)91Ulpautelzuod200Z2Z0000
SSaippe33Ul3@P3I03ISITNSAI3Y3lPuBPIINIIXdSTUOIILIado8yl{00120000{00020000

3LNdIno¢00610000
¢00810000

3Tns3x30SSIIPDVY(dv)9li00LT0000
UOTSTATP=¢‘UOTIRITIAIITNUWSZ{00910000

‘uctioeliqns=1‘UOTIIPPE=-)-~X3PUTl1030IadQ(dv)eyZ00ST0000
13b33UTPUODIS(av)s¢00¥T0000

Jabajuy3ISIT4(aviv{00€ET0000{0021
0000

$INANI¢00TT0000{00010000

*3Ins9ada8ylsuinlax{20060000
pueUOTleI3dOOT39uWaUlITI®PIISanbalIylsandaIXe‘saundug{0080000

SeX3pufl101ei13doUPpueS13H3JUTOM]$3d300®AUIINOISTUL!o0L0000SNOGILAINMOSHdTYNCILONNG¢00S0000++¢000
000000¢0000

i/107ALN3Q1°0020000
OT33uylraeafduisOp03IJUIINOY=)I¥vd31L1L°0070000

(1)84UYW*DIYD(HSOIr]t14d6Z:TTLTT6L6T=NVY[=EZT0
iabed6Z°Z0AOIJBRTT=XVAPPITTSTT6L6T=NVL=ESTiawylyieITAUTSOp03BUTINOY-JTVD

2-15

USING VAX-11 MACRO welpoldHDUITTED01UINIIY3ainiie3sjedipul

TebaTIY10‘0AQUOTISTATP‘MOT3II3A01030UINISY
juationbay3ajerndIed(€)0AQUOTSTAIPDPTOAY0STJIOSTATP3Tdd8uD(g)weiboldHUTTIED031uUINIayP3IINDD0MOTIIIA0UY
1onpoi1d9ylLjeindte)(2)welboldDUTTTIEd03uinaiayP3I1NDD0MOTIIIACUy

9J2U9I33FTIP3ylwiogd(1)
PRIINOI0MOTIIDAO0uyanssylIjetndted(o)

X9pufiJ03®l13d0TEeHaTllTueparT3roadsauITInolrHurIlTed3UTINOIUOTIENIRA®03YydaedsiQX2puUl10381340SUulejucdY
JjuswNpblePuUODISSUTPIUOD€Yjusunblie3ISITFSUTEIUODZH

3SI1TuaunbiewolzJuaunbie339*43Q$SSUTpauliepsijutodXdIN3Surinoy
0¥UTSN1el1s8ylpueJusunbieY3INOIY3lUTIINSIIayluanialpueUOTIBRTNOTRD9yluwlojaad‘3ISITuUawnbiea9ylwollsijuaunbieayz3139(2)

BIYYW*DIVO[HSOr)sT8a6Z°Z0AO1JBWTT=XVA

Zabeg 3Ied)SpPODTRWUTIOSPRXSHpPuURS3USWSIRISsa Sa Gn Sa fa Su Ouon Sa S O Oa(1N[T TNoa Su SuSu Sa Ga Oa fa Sa Su 04 &y S Sa O

(dv)919du
3d(dv)9te‘cu’‘eyHy
3

du3Ju3(dy)ois
’zu’‘cd

du
d(dv)9te‘gd’‘zydd
y<AIQ’INW’80Saay>by

(dvdz
t

04IVWYONTSSSH<pU’EU’‘ZUDK
WL

YOIVD
6Z:TT3TT

6L6T=NUL~ET
PYITTIIT

6L6T=-NVL-E
T

ang*L3dTd
10

SAd£1A
1Q

10481LSL13ySA
d

L3dSAdL3dSAYtr1aavHddas
vdTACKWTAOKWTAOKW"IMZAUWAYIL
NE®

1YMON‘IX3‘3qodTM0d1D3Ssd*
jJutodA13u’331npadoldA1LILENS®

sdd3A
L$10W<4ns:a
av

o oun Sa Ou

00&€00
%E

00¢¢00
0¢

008200L20082oo¥e00
12

00
0200St0060080o
L

00
9

00s00%oo
t

001 20aInosg%00av00
#0

8%008%000%
00

4€00€1

9€00
Qa1

1€00SD0€00®0
2200

9200Qi

%2
00

12001D

12
00£100€100

400004

80
00

LO
OO

2000¢

0000
,DJ100

00
00000000
0000
00

00000000

00
00

0
0

oj]1
013°]8013]G
oSt£Sa
i

odAvNoV48,0000 ot010
1

012080o

jujodAIjua3ainpadold573dWYITIeS7dUISOp03SUTINOY=
0
s

z
s

Zs13°)A0
s

2-16

USING VAX-11l MACRO

)13abed sTsdoukguotrjloagwexboirdpueoTqelToquisALYLIMONQY
ALXE1dmay

ax
d

a4X3

dHSON1101YHSON1071
dLXdLYMON(JQUON3IXION¥YHSON101

8
LUVYW*DTV

D(HSOr)sT8a
6Z2°C0

A
CIJ®K

TT=XVA

134Sdv NOOasnJIdON
NODdsnOIJdON
NOOusnOIdON$33INqTIV

LLLTLTTPPyASeeNis}SdouAs312as4d;ternacscesncscnscnewd
6Z3TT31T6L6T=NY[=TPYSTITSTT6L61=-NVL=EL

(*z)2o
(*tJ10
(0)oo
*ON

1LD3Sd (°9¢L)O%000000(°0)
00000000

(*o)00000000Uoi3edoTTy
¢0@d

62000000
Z0X

%okokokokk%
€04¥1€0000000adS¥0000000d¥6€E000000¢0a94

00000000
¢0a¥

12000000

4402
7

0ou
*

JNVg
*

Sdv°sweu133dSdansTYWYONTSSS-
¢-c

)JT¥O

a1ge}ToquasRlo]

2-17

USING VAX-1l1 MACRO

)14abed
(2)

2)

**CSEONIANITA

2)00L
-

4=620000004X=000
00000

d=S¥0
00000

d=6€£000000¥4=00000000¥4=12000000ANI
VA

10wdudTOGKXS

2-18

USING VAX-11l MACRO

(2)S

abed AxeumngATquessypue(°3U0))BUTISTT90USISIOY-SSOID84UVYW"DTV(HSOL)2186C°C20A01D®WTT=XVA

JI¥D
SSO¥O/1S1

1/
*sputuIemIOSJO0JIdOUdlI3s319yl

*o1deW[JUTIAPO3pasnsemAJowauw[en3ITA30abed|
*ZssedUTsplodal399(q0GHUTONPOId‘]sSsedUTpPeal9IamSaUIT8dINOS46

*sSToquAs[ed07¢pue[eJ0T-UOU[PIOYO3pPaledol[®Padedsarqel[OquwAs3Osabed(]al1amaIayl
9p0d93eTPIWIIIUTIUJI3IFNQO3pasndIamAlowawTen3IATAJO(sabed$)S3IkAZHSl“sabed(0GT1semITwll39SDUTNIOM3yl

€8°202002000€°1020020060¢€S{e303unl1I3TAqUWIsSSy£€1°00200:0080°00:00200£3Indino30U3I33I9I«SS0ID
10°00:0020020°002002004indinosysdoudsloa9sd
00°0020030010°0020020013indinoatgel(oquidg96°00:00:000€°00200:00L8¢ssed
00°0020020000°00300200|331083aTgel10quwAs
12°1020020029°00200200191[ssegd
1L°002002002Z2°00:002%00r&4burssasoidpuvruwwo)S1°00200:200$0°00200:009uotleziteritul

9ui]lposdery2WILNd4Ds3ine3abeyqaseyd
+"||l|'l||'-"|l-l-"'\i-.?iSJ03eD}JPUTIdURWIOIIAd+""'||-'-"""""'l'|+2)00¥%t1)009%i3svd

®°*SYONIYIAFYNOILINIA3ZY42180dIV¥Wboancsncsnsrranvssassccccsncadi90U3dlI9398YySS0I)SOIJ®W|toscncscccervcansessecnsanea
nnd6Z3TT3TT6L61=-NVL~EZPEITILTT

6L6T=NYL=EZOTI’dwy3gaeaTdwysop03Juranoy 9JUaT193Fal$501DTV

2-19

CHAPTER 3

WRITING POSITION-INDEPENDENT CODE

An object module produced by VAX-11 MACRO is relocatable; that is, it

can be 1linked anywhere in virtual memory. The 1linker modifies
relocatable addresses so that they reflect the virtual memory
locations in which the module will run. Once linked, the image can
only be moved in virtual memory if the source code follows the
restrictions described in this chapter. Source code that follows
these restrictions, and thus can be moved in virtual memory, is called

"position-independent code." Source code that does not follow these
restrictions is called "position-dependent code." 1Images linked from
position-dependent code will run correctly only at one virtual memory
location.

Position independence is important if you are creating a shareable
image. To use a shareable 1image, you must relink it with object
modules. 1If the shareable image is position independent, the linker
can place it anywhere in virtual memory. If the shareable image is

position dependent, the linker must place it at a fixed virtual
address, You cannot link object modules with two position-dependent,
shareable images that share a virtual address.

The linker does not use the position-independent code (PIC) program
section attribute to determine whether a shareable image is position
independent. The linker assumes that when it is linking a shareable
image, the shareable image is position independent unless the source
code contains a .ADDRESS assembler directive or unless a base address

was specified in the LINK command. Consequently, if you are linking a
shareable image that is position dependent, specify a base address in

the LINK command or use a .ADDRESS directive in the source code.
Otherwise, the 1linker will assume that the image is position

independent and the shareable image will not execute correctly. See
the VAX-11 Linker Reference Manual for more information on 1linking

shareable images.

Position independence depends on the addressing modes used in the

source code and the way addresses are stored in the program. The

remainder of this chapter assumes that vyou are familiar with the

addressing modes described in Chapter 4 of the VAX-11 MACRO Language
Reference Manual.

The following addressing modes involve only register references and
are always position independent if the register's value is set by an

instruction that is itself position independent.

WRITING POSITION-INDEPENDENT CODE

Format Mode

Rn Register

(Rn) Register deferred

(Rn) + Autoincrement

@(Rn)+ Autoincrement deferred

-(Rn) Autodecrement

The displacement addressing modes are position independent if the

expression specifying the displacement 1is absolute and 1if the

register's value is set by an instruction that is position independent

itself. The displacement addressing modes are listed below.

Format Mode

dis (Rn) Displacement

@dis (Rn) Displacement deferred

Relative and relative deferred addressing modes are position

independent 1if the address expression 1is relocatable. Absolute

addressing mode is position independent if the address expression is

absolute (for example, an address in the system space). Because the
linker converts general addressing mode to relative if the expression

is relocatable and converts it to absolute 1if the expression is

absolute, using general addressing mode ensures that the code is
position independent. Table 3-1 summarizes the position independence
or dependence of relative and absolute modes.

Table 3-1

Relative and Absolute Addressing Modes

Position Independence/Dependence

Relocatable Absolute

Mode Address Expression Address Expression

Relative Position independent Position dependent

Relative Position independent Position dependent

Deferred

Absolute Position dependent Position independent

General Position independent Position independent

The index addressing modes are position independent if the base mode

is position independent and if the index register contains an absolute

number (not an address).

In addition, to ensure position independence, you must make sure that

no addresses are stored as data. For example, if you have a table of

pointers, the code will be position dependent. But if you replace the

table of ©pointers with a table of displacements from a relocatable

address, then the code can be position independent.

WRITING POSITION-INDEPENDENT CODE

The remainder of this chapter presents four examples showing the use
of the different addressing modes to write position-independent code.

Example 1

POSITION-DEPENDENT CODE

POSITION-INDEPENDENT CODE

POSITION-DEPENDENT CODE

POSITION-INDEPENDENT CODE

MOVL # TABADDR,RO

MOVAB TABADDR,RO

MOVAB IOCSGL_DEVLIST,RO

MOVL #I0CSGL_DEVLIST,RO

-

w
W
e

W
9

W

This example demonstrates the use of relative and absolute modes in
writing position-independent code. All the instructions 1in this
example move an address to RO. The address TABADDR is a relocatable
address; the address IOCSGL DEVLIST is absolute. If the address is
relocatable, relative mode is position-independent and absolute mode
is not. But, if the address 1is absolute, absolute mode is
position-independent and relative mode is not.

Example 2

CHARS: (ASCII \ABCDEFGHIJKLMNOPQRSTUVWXYZ\

PUT OFFSET OF LETTER E IN R3.

POSITION-DEPENDENT CODE

PUT ADDRESS OF CHARS IN R3.

POSITION-INDEPENDENT CODE

PUT OFFSET OF LETTER E IN R3.

POSITION-INDEPENDENT CODE

MOVL #4,R3

MOVB CHARS (R3) ,RO

MOVAB CHARS,R3

MOVB 4 (R3) ,RO

MOVL #4,R3

MOVB CHARS[R3],RO

W

W
M

W
M
y

w
e

N

W

This example demonstrates the use of displacement and index modes in
writing position-independent code. The address CHARS is a relocatable
address. Compare the first addressing mode, which 1is position
dependent, with the two following equivalent addressing modes, which
are position independent.

WRITING POSITION-INDEPENDENT CODE

Example 3

; SETTING UP A STRING DESCRIPTOR IN A POSITION-DEPENDENT WAY

.ALIGN LONG

DESCRIP:

. LONG EOSTR-STR ; LENGTH OF STRING.

.ADDRESS STR ; CODE IS POSITION DEPENDENT

STR: .ASCII \AN ASCII STRING\ ; THE STRING

EOSTR: ; THE END OF STRING
; TO ACCESS THIS DESCRIPTOR

MOVAB DESCRIP,R2 ; GET ADDRESS OF DESCRIPTOR

’

; SETTING UP A STRING DESCRIPTOR IN A POSITION-INDEPENDENT WAY

; BY CREATING THE STRING DESCRIPTOR ON THE STACK

PUSHAB STR ; POSITION-INDEPENDENT REFERENCE

TO GET ADDRESS OF STRING ON THE

STACK

PUSHL #EOSTR-STR PUSH LENGTH OF STRING ON STACK

W

W
M
o

W
M

W

W

MOVL SP,R2 GET ADDRESS OF DESCRIPTOR

i

; SETTING UP A LIST HEAD IN A POSITION-DEPENDENT WAY

QHEADA: ,ADDRESS QHEADA ; THIS IS POSITION DEPENDENT

.ADDRESS QHEADA ;

i

; SETTING UP A LIST HEAD IN A POSITION-INDEPENDENT WAY BY USING

; EXECUTABLE INSTRUCTIONS TO STORE ADDRESSES

QHEADB: .BLKA 2 ; RESERVE 2 LONGWORDS FOR ADDRESS

STORAGE-

; SOURCE CODE TO STORE ADDRESSES

MOVAB QHEADB,RO

MOVL RO, (RO)

GET THE ADDRESS OF THE LIST HEAD.

STORE THE FIRST ADDRESS (THE

FORWARD LINK).

STORE THE SECOND ADDRESS (THE

BACKWARD LINK).
MOVAL (RO)+, (RO)

N

W
9

W

N

W

This example demonstrates a way to avoid having absolute virtual

addresses stored as data. Both string descriptors used in the VAX-1l1

procedure calling standard and the list head for the INSQUE and REMQUE

instructions require absolute virtual addresses. To make code

position independent, the addresses must be stored by executable

instructions rather than as data in the source code.

WRITING POSITION-INDEPENDENT CODE

Example 4

; CREATING A POSITION-DEPENDENT DISPATCH TABLE

DISPATBL: ;s LIST OF

«ADDRESS ROUTINO ; ABSOLUTE VIRTUAL

.ADDRESS ROUTIN1 ; ADDRESSES

.ADDRESS ROUTIN2 ; CAUSING CODE TO BE

.ADDRESS ROUTIN3 ; POSITION DEPENDENT

; ROUTIN2 IS ENTERED BY THE FOLLOWING INSTRUCTIONS

MOVL #<2*4> ,R3 ; GET OFFSET OF ADDRESS

; OF ROUTIN2

JSB @DISPATBL[R3] ; ENTER ROUTIN2

CREATING AN EQUIVALENT OFFSET LIST USING THE CASE INSTRUCTION

SOURCE CODE IS POSITION INDEPENDENT

-
y

e

w
o

DISPAT: CASEB R3,#0,#3 ; CASE INSTRUCTION

10$: .SIGNED_WORD ROUTINO-10$; LIST OF OFFSETS

. SIGNED_WORD ROUTIN1-10% ; FROM PC.

.SIGNED WORD ROUTIN2-10$; CODE IS

'.SIGNED:WORD ROUTIN3-10$ POSITION INDEPENDENT.

; ROUTIN2 IS ENTERED BY THE FOLLOWING INSTRUCTIONS

MOVL #2,R3 ; GET OFFSET OF ROUTIN2 IN

; LIST OF OFFSETS

BSBB DISPAT ; ENTER ROUTIN2 USING CASE

; INSTRUCTION.

This example demonstrates another way to avoid storing absolute

virtual addresses as data. The dispatch table is a list of entry

points to routines. This is a frequently used way to enter one of a

series of routines, but the code is position dependent. The same

functionality can usually be provided in a position-independent way by

using the CASE instruction, which transfers control to a routine based

on an offset to the PC.

APPENDIX A

DIAGNOSTIC MESSAGES

If the assembler encounters an error during an assembly, it displays a

diagnostic message on the terminal or batch log file and in the

listing file (if there is one). The general format of VAX-11 MACRO

diagnostic messages is:

$MACRO-1-code, text

1

A severity level indicator. It has a value of E for an error or

a value of W for a warning.

code

An abbreviation of the message text; the message descriptions in

this appendix are alphabetized by this code.

text

The explanation of the message.

For example:

¥MACRO-E-ILLMASKBITS, Reserved bits set in ENTRY mask

Some input and output diagnostic messages are followed by an RMS error

message.

Listed below are the diagnostic messages displayed by the VAX-11 MACRO

assembler. Each message is accompanied by an explanation of the cause

of the error and recommended user action to correct the error.

ADRLSTSYNX, Address list syntax error

Explanation: The address 1list 1in the .ADDRESS directive

contained a syntax error.

User Action: Correct the syntax.

Severity: Error

ALIGNXCEED, Alignment exceeds PSECT alignment

Explanation: The .ALIGN directive specified an alignment larger

than the program section alignment. For example, the .PSECT

directive specified byte alignment (the default) and the .ALIGN

directive specified a longword alignment. This message can also

be caused by-a .PSECT directive with an illegal alignment.

DIAGNOSTIC MESSAGES

User Action: Correct conflicting alignments. The .PSECT

directive should specify the largest alignment required in the
program section.

Severity: Error

ARGTOOLONG, Argument too long

Explanation: An argument was more than 512 characters long.

User Action: Reduce the length of the argument.

Severity: Error

ASCTOOLONG, ACSII string too long

Explanation: The string in an .ASCIC directive was longer than

255 characters or the string in an .ASCID directive was more than
65535 characters.

User Action: Reduce the length of the string.

Severity: Error

ASGNMNTSYNX, Assignment syntax error

Explanation: A direct assignment statement contained a syntax

error.

User Action: Correct the syntax.

Severity: Error

BADENTRY, Bad format for .ENTRY statement

Explanation: The .ENTRY directive did not specify an entry point
name and an entry mask.

User Action: Correct the .ENTRY directive syntax.

Severity: Error

BADLEXARG, Illegal lexical function argument

Explanation: The argument to a macro string operator was

invalid. String arguments can be macro arguments or strings

delimited by angle brackets or the circumflex delimiters. Symbol

arguments can be absolute symbols or decimal integers.

User Action: Correct the argument syntax.

Severity: Error

DIAGNOSTIC MESSAGES

BADLEXFORM, Illegal format for lexical function

Explanation: The macro string operator contained a syntax error.

User Action: Correct the macro string operator syntax.

Severity: Error

BADLOGICPC, Internal logic error detected at PC XXXXX

Explanation: There was an internal error in the VAX-~-1ll MACRO
assembler; XxXxXXX 1indicates the value of the PC at the time the
error was detected. The assembler does not produce an object

module or listing file.

User Action: Retry the assembly. 1If the error is reproducible,
notify your system manager to submit a Software Problem Report

(SPR). The address displayed with the error message and the
source program should be included in the SPR.

Severity: Error

BADVALUE, xxxxx 1s an invalid keyword value

Explanation: A command qualifier had an illegal value; XXXXX
indicates the value specified in the command. The assembler does
not produce an object module or a listing file.

User Action: Reenter the command with the correct syntax.

Severity: Error

BLKDIRSYNX, Block directive syntax error

Explanation: A conditional block or a repeat block directive
contained a syntax error.

User Action: Correct the directive syntax.

Severity: Error

BRDESTRANGE, Branch destination out of range

Explanation: The address specified in the branch instruction was
too far away from the current PC. Branch instructions with byte
displacements have a range of from -128 bytes to +127 bytes from
the current PC. Branch instruction with word displacements have
a range of from -32768 bytes to +32767 bytes from the current PC.

User Action: Use a branch instruction with a word displacement
instead of one with a byte displacement; use a jump (JMP)
instruction instead of a branch instruction; or change the
program 1logic so that the branch destination is closer to the
branch instruction.

Severity: Error

DIAGNOSTIC MESSAGES

CANTFINDMAC, Can't locate macro in macro libraries

Explanation: A macro name specified in a .MCALL directive
not defined in the macro libraries searched.

was

User Action: Specify, in the MACRO command, the macro library
that defines the macro.

Severity: Error

CLOSEIN, Error closing file-spec as input

Explanation: The assembler encountered an I/O error when closing

an input source or macro library file; file-spec is the file

specification of the file being closed.

User Action: Retry the operation or make a new copy of the

and retry the operation with the copy.

Severity: Error

CLOSEOUT, Error closing file-spec as output

file

Explanation: The assembler encountered an I/O error when closing

an output object or listing file; file-spec 1is the

specification of the file being closed.

file

User Action: Retry the operation. If the error is reproducible,

notify your system manager.

Severity: Error

DATALSTSYNX, Data list syntax error

Explanation: The data list in the directive contained a syntax

error. For example, the directive .LONG 3,,5 contains a data

list syntax error because there is no data item between the two

commas.

User Action: Correct the syntax of the data list.

Severity: Error

DATATRUNC, Data truncation error

Explanation: The specified value did not fit in the given data

type. The assembler truncated the value so that it fit.

User Action: Reduce the value or the number of characters in an

ASCII string or change the data type.

Severity: Warning

DIRSYNX, Directive syntax error

Explanation: The directive contained a syntax error.

User Action: Correct the syntax of the directive.

Severity: Error

DIAGNOSTIC MESSAGES

DIVBYZERO, Division by zero error

Explanation: An expression contained a division by 0.

User Action: Change the values in the expression.

Severity: Warning

EMSKNOTABS, Entry mask not absolute

Explanation: The entry mask expression was not absolute or

contained undefined symbols.

User Action: Change the values in the expression.

Severity: Error

ENDWRNGMAC, Statement ends wrong MACRO

Explanation: The .ENDM directive specified a different name than

its corresponding .MACRO directive.

User Action: Correct the name in the .ENDM directive to ensure

that the .ENDM directive and .MACRO directive correspond as

required.

Severity: Error

EXPOVR32, Expression overflowed 32-bits

Explanation: The value of the expression could not be stored in

a longword (32 bits). The assembler truncated the value to 32

bits.

User Action: Change the values in the expression.

Severity: Warning

FLTPNTSYNX, Floating point syntax error

Explanation: A floating-point constant contained a syntax error.

User Action: Correct the syntax of the constant.

Severity: Warning

GENERR, Generated ERROR: xxxXxX message

Explanation: A .ERROR directive was assembled; xxxxx 1is the

value of the expression specified in the directive; and message
is the text specified in the directive.

User Action: Follow the instructions in the message.

Severity: Error

DIAGNOSTIC MESSAGES

GENWRN, Generated WARNING: XXXXX message

Explanation: A .WARN directive was assembled; xxxxx 1is the

value of the expression specified in the directive; and message

is the text specified in the directive.

User Action: Follow the instructions in the message.

Severity: Warning

IFDIRSYNX, IF directive syntax error

Explanation: A conditional assembly directive contained a syntax

error.

User Action: Correct the syntax of the directive.

Severity: Error

IFEXPRNTABS, IF expression not absolute

Explanation: The expression in a .IF directive was not an

absolute expression or contained undefined symbols.

User Action: Change the values in the expression.

Severity: Error

IFLEVLXCED, IF nesting level exceeded

Explanation: The assembler encountered more than 31 levels of

nested conditional assembly blocks.

User Action: Restructure the program to decrease nesting of

conditional assembly blocks.

Severity: Error

ILLARGDESC, Illegal operand argument descriptor

Explanation: The operand descriptor in an .OPDEF directive was

invalid.

User Action: Use one of the valid operand descriptors.

Severity: Error

ILLASCARG, Illegal ASCII argument

Explanation: The argument to an .ASCIx directive did not have

enclosing delimiters or an expression was not enclosed in angle

brackets.

User Action: Correct the syntax of the argument.

Severity: Error

DIAGNOSTIC MESSAGES

ILLBRDEST, Illegal branch destination

Explanation: The destination of a branch instruction was not an
address, for example, BRB 10(R9).

User Action: Change the destination of the branch instruction or
use a jump (JMP) instruction.

Severity: Error

ILLCHR, Illegal character

Explanation: The source line contained a character that was
illegal in its context.

User Action: Delete the illegal character.

Severity: Error

ILLDFLTARG, Illegal argument for .DEFAULT directive

Explanation: A .DEFAULT directive did not specify DISPLACEMENT
or the displacement specified was not BYTE, WORD, or LONGWORD.

User Action: Correct the .DEFAULT directive.

Severity: Error

ILLEXPR, Illegal expression

Explanation: A radix wunary operator was not followed by a
number, or 1left and right angle brackets did not match in an
expression.

User Action: Correct the syntax of the expression.

Severity: Error

ILLIFCOND, Illegal IF condition

Explanation: The condition specified in a conditional assembly
was not a wvalid condition, or there were no symbols after a

DIFFERENT or IDENTICAL condition,

User Action: Correct the syntax of the conditional assembly
directive.

Severity: Error

ILLINDXREG, Invalid index register

Explanation: The base mode changed the value of the register and
the index register was the same as the register in the base mode;
the base mode was literal or immediate mode; or PC was used as
the index register.

User Action: Correct the addressing mode.

Severity: Error

DIAGNOSTIC MESSAGES

ILLMACARGNM, Illegal MACRO argument name

Explanation: The name in the .MACRO directive contained an

illegal character.

User Action: Delete the illegal character.

Severity: Error

ILLMACNAM, Illegal MACRO name

Explanation: No macro name was specified in the .MACRO

directive.

User Action: Specify the macro name in the .MACRO directive.

Severity: Error

ILLMASKBITS, Reserved bits set in ENTRY mask

Explanation: The register save mask in an LENTRY or .MASK

directive specified RO, R1l, AP, or PC registers (corresponding to

bits 0, 1, 12, and 13).

User Action: Remove these registers from the register save mask.

Severity: Error

ILLMODE, Illegal mode !

Explanation: An invalid addressing mode for the instruction was

specified.

User Action: Specify a legal addressing mode.

Severity: Error

ILLOPDEF, Illegal format for .OPDEF

Explanation: The .OPDEF directive had incorrect syntax.

User Action: Correct the .OPDEF directive syntax.

Severity: Error

ILLOPDEFVAL, Illegal value for opcode definition

Explanation: The value specified in the .OPDEF directive did not

fit in two bytes.

User Action: Correct the value in the directive.

Severity: Error

DIAGNOSTIC MESSAGES

ILLREGHERE, This register may not be used here

Explanation: This register cannot be used here, for example,
PUSHL (PC).

User Action: Use another register.

Severity: Error

ILLREGNUM, Illeqal register number

Explanation: A register name was not in the range RO through R12
or was not the AP, FP, SP, OR PC register name.

User Action: Correct the illegal register name.

Severity: Error

ILLSYMLEN, Symbol exceeds 15 characters

Explanation: The symbol name was longer than 15 characters. The
assembler truncated the name to 15 characters.

User Action: Truncate the name to 15 characters.

Severity: Warning

INSVIRMEM, Insufficient virtual memory

Explanation: The module being assembled has too many symbols and:
macro definitions for the virtual memory available or a macro
definition called itself (a recursive definition). The assembler
terminated the assembly.

User Action: 1Increase the virtual memory available by contacting
the system manager; reduce the level of macro nesting; split
the module into several smaller modules; or eliminate the
recursive macro definition.

Severity: Error

INVALIGN, Invalid alignment

Explanation: No integer or keyword followed the .ALIGN
directive,

User Action: Correct the syntax of the .ALIGN directive.

Severity: Error

LINETOOLONG, Line too long

Explanation:' A source line in a macro definition was longer than
500 characters.

User Action: Restructure the source code so that the 1line is
shorter.

Severity: Error

DIAGNOSTIC MESSAGES

MACLBFMTERR, Macro library format error

Explanation: A format error occurred in the macro library.

User Action: Retry the assembly and, if the error still occurs,

use the LIBRARY command (see the VAX/VMS Command Language User's

Guide) to re-create the library from the source code.

Severity: Error

MAYNOTINDEX, This mode may not be indexed

Explanation: The base mode was register, immediate, or 1literal

mode.

User Action: Change the addressing mode.

Severity: Error

MCHINSTSYNX, Machine instruction syntax error

Explanation: A syntax error occurred in an instruction,

example, MOVL, A.

User Action: Correct the instruction syntax.

Severity: Error

MISSINGEND, Missing .END statement

Explanation: There was no .END directive at the end of

for

the

module. The assembler inserted an .END directive after the last

line.

User Action: Insert a .END directive.

Severity: Warning

MSGCMAIIF, Missing comma in ,IIF statement

Explanation: The condition was not separated from the statement

in an .IIF directive.

User Action: 1Insert a comma in the directive.

Severity: Error

MULDEFLBL, Multiple definition of label

Explanation: The same label was defined twice in the module.

User Action: Delete the second label definition or change one of

the labels to a different symbol name.

Severity: Error

A-10

DIAGNOSTIC MESSAGES

NOFORMALARG, No formal argument for .IRP/.IRPC

Explanation: There were no formal arguments in an .IRP or .IRPC
directive.

User Action: Correct the syntax of .IRP or .IRPC directive.

Severity: Error

NOTDECSTRNG, Illegal character in decimal string

Explanation: A decimal string contained a character other

the digits 0 through 9 and a leading plus or minus sign.

User Action: Correct the syntax of the decimal string.

Severity: Error

NOTENABLOPT, Not a legal ENABLE option

Explanation: An argument to a .ENABLE or .DISABLE directive

not a legal option.

than

was

User Action: Delete the option or replace it with a legal
option.

Severity: Error

NOTENUFOPR, Not enough operands supplied

Explanation: The instruction requires more operands than
specified in the statement.

User Action: Add the operands or change the instruction.

Severity: Error

NOTINANIF, Statement outside condition body

Explanation: A .IF_FALSE, .IF_TRUE, .IF_TRUE_FALSE, .IFF, .
or L.IFTF subconditional directive was not in a conditi

assembly block.

User Action: Replace the subconditional directive with

conditional directive or delete the subconditional directive.

Severity: Error

NOTINMACRO, Statement not in MACRO body

Explanation: The .NARG directive was not in a macro defini

or expansion.

User Action: Delete or move the 1line containing the .
directive.

Severity: Error

A-11

were

IFT,

onal

a

tion

NARG

DIAGNOSTIC MESSAGES

NOTLGLISTOP, Not a legal listing option

Explanation: The argument to a .SHOW, .NOSHOW, .LIST, or .NLIST

directive was not a legal option.

User Action: Delete the illegal option or replace it with a

legal option.

Severity: Error

NOTPSECTOPT, Not a valid PSECT option

Explanation: The attribute specified in the .PSECT directive was

invalid.

User Action: Delete the invalid attribute or replace it with a

valid one.

Severity: Error

OPENIN, Error opening file-spec as input

Explanation: The assembler encountered an I/0 error when opening
an input source or macro library file; file-spec is the file

specification of the file being opened. This message is produced

when the file cannot be found.

User Action: Retry the assembly or make a new copy of the inpud\
file and then retry the assembly.

Severity: Error

OPENOUT, Error opening file-spec as output

Explanation: The assembler encountered an 1/0 error when opening
an output object module or listing file; file-spec is the file

specification of the file being opened. This message is produced

when the device is write locked or is not mounted.

User Action: Retry the assembly and, if the error is
reproducible, notify your system manager.

Severity: Error

OPRNDSYNX, Operand syntax error

Explanation: An operand contained a syntax error.

User Action: Correct the operand syntax.

Severity: Error

A-12

DIAGNOSTIC MESSAGES

PACKTOOLONG, Packed decimal string too long

Explanation: The numeric string in a .PACKED directive had more

than 31 digits.

User Action: Reduce the length of the decimal string.

Severity: Error

PSECOPCNFLC, Conflicting PSECT options

Explanation: The values specified in a .PSECT directive

conflicted with each other or were not the same as the values

specified in a preceding .PSECT directive that specified the same

program section name.

User Action: Correct the conflicting values in the LPSECT

directive(s).

Severity: Error

PSECTBUFOVF, PSECT context buffer overflow

Explanation: The .SAVE PSECT directive attempted to save a

program section context when the program section context buffer

was filled. A maximum of 31 program section contexts can be

saved in the buffer.

User Action: Reduce the amount of program section nesting.

Severity: Error

PSECTBUFUND, PSECT context buffer underflow

Explanation: The .RESTORE_PSECT directive attempted to restore a

program section context when the program section context buffer

was empty.

User Action: Ensure that each .RESTORE_PSECT directive

corresponds to a .SAVE_PSECT directive.

Severity: Error

READERR, error reading file-spec

Explanation: The assembler encountered an I/0O error when reading

an input source or macro library file; file-spec is the file

specification of the file being read.

User Action: Retry the assembly, or create a new copy of the

input file and then retry the assembly.

Severity: Error

A~13

DIAGNOSTIC MESSAGES

REGOPSYNX, Register operand syntax error

Explanation: The addressing mode syntax contained an error.

User Action: Correct the addressing mode syntax.

Severity: Error

RMSERROR, RMS service error

Explanation: The assembler encountered an error during a VAX-ll

RMS operation.

User Action: Retry the operation; consult the VAX-1l Record

Management Services Reference Manual for more information.

Severity: Error

RPTCNTNTABS, Repeat count not absolute

Explanation: The repeat count in a .BYTE, .WORD, . LONG,

.SIGNED_BYTE, or .SIGNED_WORD directive contained an undefined

symbol or was a relative expression.

User Action: Replace the expression with an absolute expression

that does not contain any undefined symbols.

Severity: Error

SYMDCLEXTRN, Symbol declared external

Explanation: A label definition or direct assignment statement

specified a symbol that was previously declared external

.EXTERNAL directive.

User Action: Delete the external declaration or change the

of the internal symbol.

Severity: Error

SYMDEFINMOD, Symbol is defined in module

Explanation: A .EXTERNAL directive specified a 1label that

previously defined in the module.

User Action: Delete the external declaration or rename

internal symbol.

Severity: Error

SYMNOTABS, Symbol is not absolute

in a

name

was

the

Explanation: The argument in a macro string operator was a

relative symbol or was undefined.

User Action: Ensure that symbol is defined as an absolute

symbol.

Severity: Error

A-14

DIAGNOSTIC MESSAGES

SYMOUTPHASE, Symbol out of phase

Explanation: A label definition specified a 1label that was

defined later in the module; or a local 1label definition

specified a local label that was defined later in the same 1local

label block.

User Action: Ensure that the label is defined only once in the

module or that the local label is defined only once in the local

label block.

Severity: Error

TEXT, No input file given

Explanation: The macro command did not contain any source files;

it contained only macro library files.

User Action: Specify a source file in the command line.

Severity: Error

TOOMNYARGS, Too many arguments in MACRO call

Explanation: The macro call contained more arguments than were

specified in the .MACRO directive in the macro definition.

User Action: Ensure that the macro call corresponds to the macro

definition.

Severity: Error

TOOMNYOPRND, Too many operands for instruction

Explanation: Too many operands were specified for the

instruction.

User Action: Reduce the number of operands.

Severity: Error

TOOMNYPSECT, Too many PSECTs declared

Explanation: More than 255 user-defined program sections were

declared.

User Action: Reduce the number of program sections.

Severity: Error

A-15

DIAGNOSTIC MESSAGES

UNDEFSYMBOL, Undefined symbol

Explanation: A local label was referred to but not defined in a
local 1label block; or, if GLOBAL was disabled, a symbol was
referred to but not defined in the module or specified in a

.EXTERNAL directive,

User Action: Define the local label or symbol, or specify the
symbol in a .EXTERNAL directive.

Severity: Error

UNDEFXFRADR, Undefined transfer address

Explanation: The .END directive specified a transfer address
that was not defined in the module or specified in a .EXTERNAL

directive.

User Action: Define the transfer address or delete it from the

.END directive.

Severity: Error

UNPROQUAL, Unprocessed qualifiers

Explanation: Either the /SHOW or the /CROSS qualifier was

specified without the /LIST qualifier. The assembler does not

process the source file or produce an object module.

User Action: Reenter the command with the /LIST qualifier.

Severity: Error

UNRECSTMT, Unrecognized statement

Explanation: The operator was not an opcode, directive,
user-defined opcode, previously defined macro, or macro in a
library.

User Action: Change the operator to a valid opcode, directive,
or macro; or define the macro.

Severity: Error

UNTERMARG, Unterminated argument

Explanation: The string argument was missing a delimiter or the
macro argument was missing an angle bracket.

User Action: Add the delimiter or angle bracket.

Severity: Error

DIAGNOSTIC MESSAGES

UNTERMCOND, Unterminated conditional

Explanation: A conditional assembly block was not terminated by
a J.ENDC directive. The assembler inserted a .ENDC directive
before the .END directive.

User Action: Add the .ENDC directive.

Severity: Error

WRITEERR, Error writing file-spec

Explanation: The assembler encountered an I/0 error when writing
to the output object module or listing file; file-spec is the
file specification of the file being written.

User Action: Retry the assembly. If the error is reproducible,
notify your system manager.

Severity: Error

A-17

INDEX

A

Absolute addressing mode, 2-6

Addressing modes, 3-1, 3-2

controlling,2~6

position-independent, 3-1

through 3-5

Assembler, role of, 1-3

Assembly summary, 2-13

Binary code, 2-11

C

Changes from VAX-11l MACRO V1, vii
Code,

hexadecimal, 2-11

position-independent, 3-1

through 3-5

Command format, 2-1

Common data areas, 1-6

Compatibility mode, vii

Conditional blocks, controlling

listing of, 2-7, 2-8

Controlling the listing file, 2-7,

2-8

Cross reference listing, 2-5, 2-12,

2-13

/CROSS qualifier, 2-5

D

Data, sharing, 1-6

Debugging programs, 1-4, 1-9, 2-6

Default file specifications, 2-3

Developing a program, 1-1, 1-2

Diagnostic messages, A-1 through

A-17

/DISABLE qualifier, 2-5, 2-6

E

/ENABLE qualifier, 2-5, 2-6

Errors, 2-8, 2-9, A-1

Executable image, producing a, 1-7

External symbols, 2-6

F

File specifications, 2-2, 2-3
Floating point numbers, 2-6

Format of statements, 1-1

G

Global symbols, 1-4, 1-5, 2-6

H

Hexadecimal code, 2-11

Identifying a location, 1-4

Image, shareable, 3-1

Internal symbols, 1-4

L

Labels, 1-4

Library, macro, vii, 1-5, 2-6

/LIBRARY qualifier, 2-6
Linking,

object modules, 1-7, 1-8

programs, 1-7, 1-8

/LIST qualifier, 2-7
Listing file, 2-10 through 2-19

controlling the, 2-7, 2-8

creating the, 2-1, 2-7

Local symbols, 1-4

Locations, identifying, 1-4

MACRO command, 2-1 through 2-8

Macro libraries, vii, 1-5

Macros, 1-5

controlling listing of, 2-7, 2-8

Messages,

diagnostic, 2-8, 2-9, A-1 through
A-17

Modular programming, 1-2

N

Native mode, vii
/NOLIST qualifier, 2-7

/NOOBJECT qualifier, 2-7
/NOSHOW qualifier, 2-7, 2-8

O

Object modules,

creating, 2-1, 2-7

linking, 1-7, 1-8

/OBJECT qualifier, 2-7

Index-1

INDEX

P

Page headings, listing, 2-10

PIC attribute, 3-1

Position~-independent code,

3-1 through 3-5

Program,

debugging, 1-4, 1-9, 2-6

developing, 1-1, 1-2

linking, 1-7, 1-8

modular, 1-2

sections, 1~-5 through 1-7

segmenting, 1-5, 1-6

Q

Qualifiers, 2-3 through 2-8

R

Read-only program sections, 1-6

Repeat blocks, controlling listing

of, 2-7, 2-8

Rounding floating point numbers,

2-5, 2-6

S

Sections, program, 1-5 through 1-7

Segmenting your program, 1-5, 1-6

Services, system, 1-5

Shareable image, 3-1

Sharing data, 1-6

/SHOW qualifier, 2-7, 2-8

Source statements, 2-11

Specifications, file, 2-2

Statement format, 1-1

Statements, source, 2-11

Suppressing listing of

unreferenced symbols, 2-6

Symbol table, 1-4, 2-12

Symbols, 1-4, 1-5, 2-6

System services, 1-5

T

Table, symbol, 1-4, 2-12

Technical changes, vii

Traceback, 2-6

I'runcating floating point numbers,

2-6

U

Undefined symbols, 2-6

Universal symbols, 1-5

User~-defined symbols, 1-4, 1-5

W

Weak symbols, 1-5

Write protecting program sections,

1-6

Index-2

"

S

S

G

G

S

-

o
t

A
D

S

S

S

T

P

S
R

R

)

M

G

A

S
0

G

S

I
R

M

S
N

G
V

A
P

T
R

e

S

S

VAX-11] MACRO

User's Guide

AA-DQO33B~TE

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's

discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Pl
ea

se

cu

t
al

on
g

th
is

li

ne
.

Please indicate the type of reader that you most nearly represent.

Assembly language programmer

Higher-level language programmer

Occasional programmer (experienced)

User with little programming experience

Student programmer

O
O
o
O
o
d
o
d

Other (please specify)

Name Date

Organization

Street

City. State Zip Code

or

Cronntd rer

— — Do Not Tear- Fold Here and Tape — — — — — —_—— = - —_ — -

il l
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

— e—

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS TW/A14

DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

-— DoNotTear-FoldHere @ 2 — — = e — = — — — — — =— — —

No Postage

Necessary

if Mailed in the

United States

