February 1979
This document contains information that an assembly language

programmer needs to use the capabilities of the VAX-11 MACRO
assembly language efficiently. .

VAX-11
MACRO User’s Guide

Order No. AA-DO33B-TE

SUPERSESSION/UPDATE INFORMATION: This revised document supersedes
the VAX-11 MACRO User's Guide
{Order No. AA-DO33A-TE)
OPERATING SYSTEM AND VERSION: VAX/VMS V1.5

SOFTWARE VERSION: VAX-11 MACRO V2.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, August 1978
Revised, February 1979

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility

for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such

license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright C) 1978, 1979 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS~10
VAX VMS SBI
DECnet IAS PDT
DATATRIEVE TRAX

CONTENTS

Page
PREFACE v
SUMMARY OF TECHNICAL CHANGES vii
CHAPTER 1 INTRODUCTION 1-1
1.1 DEVELOPING A VAX-11 MACRO PROGRAM 1-1
1.2 VAX-11 MACRO ASSEMBLER 1-3
1.3 USER-DEFINED SYMBOLS 1-4
1.4 MACROS 1-5
1.5 PROGRAM SECTIONS 1-5
1.6 LINKING MACRO PROGRAMS 1-7
1.6.1 Resolving Symbolic and Library References 1-8
1.6.2 Program Relocation and Address Assignment 1-9
1.7 DEBUGGING MACRO PROGRAMS 1-9
CHAPTER 2 USING VAX-11l MACRO 2-1
2.1 THE MACRO COMMAND 2-1
2.1.1 File Specifications 2~2
2.1.2 Qualifiers 2-3
2.1.2.1 The /CROSS and /NOCROSS Qualifiers 2-5
2.1.2.2 The /ENABLE and /DISABLE Qualifiers 2~5
2.1.2.3 The /LIBRARY Qualifier 2~6
2.1.2.4 The /LIST and /NOLIST Qualifiers 2-7
2.1.2.5 The /OBJECT and /NOOBJECT Qualifiers 2-7
2.1.2.6 The /SHOW and /NOSHOW Qualifiers 2-7
2.1.3 Diagnostic Messages 2-8
2.2 LISTING FILE FORMAT 2-10
2.2.1 Table of Contents and Page Headings 2-10
2.2.2 Source Statements and Hexadecimal Code 2-11
2.2.3 Symbol Table 2-12
2.2.4 Program Section Synopsis 2-12
2.2.5 Cross-Reference Listing 2-12
2.2.6 Assembly Summary 2-13
2.2.7 Assembly Listing Example 2-13
CHAPTER 3 WRITING POSITION-INDEPENDENT CODE 3-1
APPENDIX A DIAGNOSTIC MESSAGES A-1
INDEX Index-1
FIGURES
FIGURE 1-1 Developing a VAX-~1l MACRO Program 1-2
1-2 Function of a VAX-1ll MACRO Assembler 1-3
1-3 Link Functions 1-7

iii

CONTENTS

Page
TABLES

TABLE 2-1 File Specification Defaults 2-3
2-2 VAX-11 MACRO Command Qualifiers 2-4
2-3 /CROSS Qualifier Functions 2-5
2-4 /ENABLE and /DISABLE Qualifier Functions 2-6
2-5 /SHOW and /NOSHOW Qualifier Functions 2-8
3-1 Relative and Absolute Addressing Modes 3-2

iv

PREFACE

MANUAL OBJECTIVES

This manual describes how to use the VAX-11 MACRO assembly language.
It is designed to enable users to assemble programs coded in VAX-11
MACRO. The features of the VAX-11 MACRO language are described in the
VAX-11 MACRO Language Reference Manual.

INTENDED AUDIENCE

This manual is intended for all VAX-11 MACRO programmers. This manual
assumes that the reader has had some assembly language programming
experience and has read the VAX/VMS Primer. Chapter 3 of this guide
is intended for experienced MACRO programmers who want to create
shareable images.

STRUCTURE OF THIS DOCUMENT

This manual is organized into three chapters and one appendix, as
follows:

® Chapter 1 provides an introduction to VAX~1ll MACRO assembler
for users who are not familiar with the operation of an
assembler.

e Chapter 2 describes the MACRO command, which invokes the
VAX-11 MACRO assembler.

e Chapter 3 describes how to write position-independent code for
use in shareable images.

e Appendix A describes the VAX-11 MACRO error messages.

ASSOCIATED DOCUMENTS
The following documents are relevant to VAX-11 MACRO programming:

e VAX-11 MACRO Language Reference Manual

e VAX-11/780 Architecture Handbook

e VAX/VMS Primer

e VAX/VMS Command Language User's Guide

e VAX-1ll Linker Reference Manual

e VAX-1l Symbolic Debugger Reference Manual

[J

VAX/VMS System Services Reference Manual

VAX/VMS 1/0 User's Guide

For a complete 1list of all VAX-11 documents, including a brief
description of each, see the VAX-1l Information Directory.

CONVENTIONS USED IN THIS DOCUMENT

The following conventions are observed in this gquide, as in other
VAX-11 documents:

Brackets ([]) indicate that the enclosed argument is optional.

Uppercase words and letters, used in formats, indicate that
you should type the word or letter exactly as shown.

Lowercase words and letters, used in formats, indicate that
you are to substitute a word or value of your choice.

Ellipses (...) indicate that the preceding item(s) can be
repeated one or more times.

vi

SUMMARY OF TECHNICAL CHANGES

This manual documents VAX-11 MACRO V2.0. This section summarizes the
technical changes in the use of the assembler from Version 1.0.
Technical changes in the VAX-11 MACRO language are documented in the
VAX-11 MACRO Language Reference Manual.

The /CROSS and /NOCROSS qualifiers have been added to the MACRO
command to control the cross-reference listing.

The SUPPRESSION function has been added to the /ENABLE and /DISABLE
qualifiers to the MACRO command to allow suppression of the listing of
unreferenced symbols in the symbol table.

You no longer need to specify macro library files in the MACRO command
before the source files. In fact, macro 1library files should
generally be specified after the source files. However, any MACRO
command that follows the description in the Version 1.0 documentation
will still work.

The formats of the listing file and of the diagnostic messages have
been changed.

The assembler itself now runs 1in native mode rather than in
compatibility mode. This does not change the object code that the
assembler produces, which has always been native mode code, but is
only an internal assembler change.

vii

CHAPTER 1

INTRODUCTION

The VAX-11 MACRO language consists of the VAX-11/780 native mode
instruction set and the assembler directives. The instruction set
allows you to perform many types of data manipulation, such as add,
compare, increment, move, and complement. The instructions are
described in the VAX-11/780 Architecture Handbook. The assembler
directives create and initialize data areas and provide tools for
using the instruction set more effectively. The directives are
described in the VAX-11 MACRO Language Reference Manual. This chapter
provides an introduction to the assembler.

1.1 DEVELOPING A VAX-1l MACRO PROGRAM

You write a VAX-11 MACRO program as a sequence of assembly language
statements in the following format:

label: operator operand(s) ; comments

The operator and operand are either 1) instructions selected from the
VAX-11/780 instruction set and data needed by the instructions or 2)
assembler directives (instructions to the assembler to guide the
assembly process). The statement label, which is optional, identifies
the statement line so that you can refer to the instructions or data
on that 1line from other parts of the program. Comments, which are
optional, explain what operations are being performed.

You use tabs and spaces to make the program more readable. When vyou
have finished creating the program as a complete, edited file, you
submit it as input to the VAX-11 MACRO language assembler. The VAX-11
MACRO language assembler processes (assembles) the 1language
statements, converting them to an internal machine language code
(object code). The object code is next processed by the linker, which
combines your program units, making the program suitable for
execution. Figure 1-1 illustrates the development of an executable
VAX-11 MACRO program.

To develop a VAX-11l MACRO program you must follow the four steps
illustrated in Figure 1-1. The commands associated with these steps
are:

$ EDIT
$ MACRO
$ LINK
$ RUN

Chapter 2 of this manual describes the MACRO command. The VAX/VMS
Command Language User's Guide describes the EDIT, LINK, and RUN
commands.

INTRODUCTION

$ EDIT NAME.MAR

Use the file type of MAR to NAME.MAR
indicate the source file Create the .)
contains a VAX-11 MACRO source program macro libraries

program.

$ MACRO NAME
The MACRO command

assumes the file type of an -

input file is MAR (.MLB for
macro libraries). Assemble the NAME.OBJ
D ———————
source program (NAME. LIS)

If you use the /LIST
qualifier, the assembler

object libraries

creates a listing file. debugger
$ LINK NAME
The L/INK command assumes
ihe Tile type of an fnput fle Link the NAME.EXE
s ©5 { or object object module {(NAME.MAP)
libraries).

If you use the /MAP qualifier,
the linker creates a map file.

$ RUN NAME Aun th
The RUN command assumes un the
the file type of an image is ex'“fcmable
EXE. image

Figure 1-1 Developing a VAX-11 MACRO Program

VAX-11 MACRO allows you to use a modular approach to your program.
You can create an entire program as a series of smaller independent
subprograms or modules. Each module consists of a number of routines.
A routine is a sequence of code that performs one procedure.

Modular programming facilitates program creation, debugging,
maintenance, and enhancement as follows:

e You can write and test each routine independently of other
routines. Then you can test the module consisting of these
routines independently of other modules.

e Different programmers can develop and maintain different
modules.

e Changing a program requires changing and testing only the
module in which the change occurs.

VAX-11 MACRO assembles each module separately. Then the linker Jjoins
them all into a complete program.

INTRODUCTION

1.2 VAX-11] MACRO ASSEMBLER

The VAX-11 MACRO assembler accepts information in one format (that is,
your source program) and translates it into another format (that is,
an object module). The assembler interprets and processes the
assembly language statements, one at a time, and generates one or more
computer instructions or data items. Because you originally use the
editor to create a VAX-1l MACRO program in ASCII format, your program
must be translated into a machine format that the computer can use.
The VAX-11] MACRO assembler performs this translation, producing as
output a new version of the program in object format, called an object
module,. You can request the VAX-11 MACRO assembler to produce a
listing of the source program at the same time. Figure 1-2
illustrates the role of the assembler.

MACRO
LIBRARIES
)
SOURCE R OBJECT
PROGRAM = ASSEMBLE "1 MobpuLE
LISTING
(OPTIONAL)

Figure 1-2 Function of a VAX-11 MACRO Assembler

During assembly processing, the VAX-11 MACRO assembler:

® Accounts for all instructions used within the source program
and determines their relative positions within the program
unit; it does this by means of a storage location counter

® Keeps track of all user-defined symbols and their respective
values in a symbol table

e Converts assembly language mnemonics, user-defined symbols,
and data values into their respective machine language (object
code) equivalents

During processing, the assembler converts each program language
statement into numerical data (the object code) and assigns the data a
relative storage location. As the assembler translates and assigns
each statement, it updates the wvalue of the location counter

INTRODUCTION

accordingly. The linker converts the relative storage locations
assigned by the assembler to virtual storage locations in the
computer's memory. Each location has an associated number called its
address.

A VAX-11 MACRO assembly 1listing shows the addresses of memory
locations and their contents as hexadecimal numbers. The hexadecimal
numbers represent the machine language code that makes up the object
module. See Section 2.2 for more information on the listing file.

1.3 USER~-DEFINED SYMBOLS

User—-defined symbols are symbolic names that you can use to:
e Identify the location of a routine
e Identify the location of data
® Represent a value

A symbol that identifies a location in memory is called a label. You
can use labels to refer to locations without knowing exactly where
they will be in memory.

You also can use a symbol to replace a constant used in several places
in vyour program. This allows you to change the value referred to in
several locations by simply redefining the symbol as a different
value.

A symbol can be internal to one module; that is, the symbol 1is only
referred to in the module in which it is defined. An internal symbol
is also called a local symbol.

A symbol that is referred to in modules other than the one in which it
is defined 1is called a global symbol. Global symbols are the key to
modular programming. Global symbols provide communication between
modules, You use a double colon (::) to define a global symbol used
as a label and a double equal sign (==) to define a global symbol used
to represent a value.

The assembler replaces each reference to a 1local symbol with the
symbol's address or value. However, the assembler does not know the
address of a global symbol defined in a different module. Therefore,
it indicates to the linker that the symbol is global. The linker
replaces each global symbol reference with the symbol's address or
value.

As the assembler processes your module, it builds a symbol table. The
symbol table contains all symbols used in the module with each
symbol's address or value (when known). The symbol table is printed
in the 1listing file (see Section 2.2.3). The assembler does not
usually write the complete symbol table to the object module; instead
it writes a symbol table that contains only global symbols. The
linker uses the global symbol tables to resolve global symbol
references. The VAX-11 Symbolic Debugger (see Section 1.7) also uses
the object module symbol table. Consequently, you may want to include
local symbols in the object module symbol table. To include a
specific local symbol, you must specify it in the .DEBUG directive.
To include all local symbols, you must specify the /ENABLE=DEBUG
qualifier in the MACRO command or .ENABLE DEBUG in the source file.

INTRODUCTION

There are two specialized kinds of global symbols: weak and universal
symbols. Weak symbols do not have to be resolved by the linker (see
the description of the .WEAK directive in the VAX-11 MACRO Language
Reference Manual). Universal symbols are used in shareable images
(see the description of wuniversal symbols in the VAX-11] Linker
Reference Manual).

Local labels are temporary labels (consisting of a number followed by
a dollar sign) that you can use to refer to locations between symbolic
labels (see the VAX-11 MACRO Language Reference Manual). Local labels
are not symbols; local 1labels can be reused in the same object
module. Consequently, local labels are not included 1in the symbol
table and are not available to the linker or debugger.

1.4 MACROS

Macros are a very useful feature of the VAX-11 MACRO assembly
language. A macro 1is any sequence of coding instructions that you
want to recur in your program. You first define the macro and give it
a name. Then, you can call the macro from any other part of your
program by simply entering the macro name in the operator field of a
statement 1line. You must define a macro before you can refer to it.
The assembler directives that define macros are described in Chapter 6
of the VAX-11 MACRO Language Reference Manual.

Every time the assembler encounters the macro name, it inserts the
code contained in the macro definition. This is called expanding a
macro.

You can also define macros that contain conditional assembly
directives. Each time the macro 1is expanded, the conditions are
checked. Thus, you can generate several different code sequences from
one macro.

In addition to using macros that you define, you can use system macros
provided by the VAX/VMS operating system. These system macros perform
useful functions such as calling system services. The VAX/VMS System
Services Reference Manual describes how you can use system macros to
call system services to perform, for example, file and record
handling, process control, and memory management services.

Macros can be defined in a macro library. The system macros, for
example, are defined in the system macro library. A macro library is
a library consisting entirely of macro definitions. You can refer to
macros in libraries in the same way that you refer to macros in your
object modules. You must specify the name of the macro library in the
MACRO command (with the /LIBRARY qualifier). You do not have to
specify the name of the default library, the system macro library.

1.5 PROGRAM SECTIONS

You can segment your object module into a series of program sections.
Using program sections allows you to write more modular programs, have
increased error protection, and control the order in which vyour
routines are stored in virtual memory. The assembler writes program
section information into the object module, and the linker uses this
information in creating an executable program image.

INTRODUCTION

You specify the start of a program section and describe its attributes
by using the .PSECT directive (see the VAX-11 MACRO Language Reference
Manual). Within each module the assembler maintains several location
counters —-- one for each program section,

You can continue a previously defined program section by using a
second .PSECT directive that specifies the same name as the .PSECT
directive that defined the original program section.

Because the assembler does not know where each program section goes,
all references between sections are relative to the base of the
section. The linker resolves these references at link time.

You can use program sections to perform any of the following:

® Separate your object module into smaller sections of code.
Each program section should contain a complete routine. This
can increase the modularity of your program, making it easier
to debug, maintain, and enhance.

e Allow different modules to gain access to the same data
locations. (This is done in FORTRAN by using the COMMON
statement.) If you specify the same program section name with
the overlay (OVR) attribute in different modules, each program
section shares the same virtual memory.

e Separate areas where you intend to write information from
areas where you do not intend to write information. For
example, if your program erroneously writes to an area with
the no-write (NOWRT) attribute, a memory access violation
occurs. Separating such areas in your program into program
sections makes debugging your program easier because the
program sections act as additional protection from miscoded
instructions or logic errors.

e Identify sections of your object module to the debugger. The
debugger uses the program section name to identify a location
and to identify the section of the program being examined.
Consequently, you should always specify names for all program
sections. Do not use the default program sections that the
assembler creates when you do not specify .PSECT or when you
specify .PSECT with no program section name.

® Produce shareable program sections to use in shareable images.
One copy of a shareable image on disk and in physical memory
can be used by many processes at the same time. Several
processes can gain access to the data in a shareable image.
In addition, large programs that are used in many processes
can be made into shareable images to improve system
performance. See the VAX~1ll Linker Reference Manual for more
information on shareable images.

® Control the order in which program sections are stored in
virtual memory; this can improve the performance of programs
larger than your working set, Making frequently accessed
program sections contiguous with each other in virtual memory
increases the probability of having a frequently accessed
program section in your working set.

The linker separates all program sections into groups with similar

attributes. Within these groups the 1linker stores the program
sections alphabetically by name.

1-6

INTRODUCTION

Program sections with the same name and the overlay attribute are
stored starting at the same address 1in virtual memory. Program
sections with the same name and the concatenate attribute are
concatenated in the order that they are specified to the linker.

The attributes you specify in the ,PSECT directive describe but do not
control the contents of the program section; you must ensure that the
program section actually has those attributes. For example, you
should not include instructions to be executed in a program section
with the NOEXE (not executable) attribute.

1.6 LINKING MACRO PROGRAMS

The object module produced by the MACRO command may in itself be
incomplete. It may need to be joined, or linked, with other object
modules or library files to form a complete functioning program. The
link operation:

e Joins together the object modules that use symbols with the
object modules that define them

e Relocates individual object modules as necessary and assigns
virtual memory addresses

e Produces an executable image and an optional map, as shown in

Figure 1-3
OBJECT
LIBRARIES
OBJECT N LN _ |EXECUTABLE
MODULE(S) > K MODULE

MAP
(OPTIONAL)

Figure 1-3 Link Functions

INTRODUCTION

The link operation, in addition to joining object modules togethers
assigns virtual memory addresses to the relative addresses calculated
by the VAX-11 MACRO assembler, Because the memory addresses of one
object module must be relocated to accommodate the addresses used in
another object module, the 1link operation serves to resolve all
address changes. The result of the link operation is an image with
all module links resolved and all virtual memory addresses and storage
information assigned. The image, then, is a picture of what your
program looks like just before execution. .

An executable image is one that you can run on the system. Unless
your program contains logic errors that prevent it from running
properly (errors that the system cannot always detect), running the
executable 1image of vyour program should produce the results you
intended. However, if logic errors exist within your program, running
the program will produce either erroneous results or none at all. 1If
this is the case, you must study the source program, debug 1it, edit
it, then perform the assembly and link operations again.

You can also link VAX-1l MACRO modules with subprograms written 1in
other native mode 1languages, such as VAX-11 FORTRAN IV-PLUS. This
capability gives you both the flexibility of assembly language
programming and the ease of programming in a high-level language. For
example, you can write a subprogram to perform data acquisition in
VAX-11 MACRO and other subprograms to perform data analysis or file
input/output in VAX-11 FORTRAN IV-PLUS.

In addition, the linker allows you to use object library files. These
are files that contain already written, debugged, and 1linked
subprograms and subroutines, Because you gain access to object
library files at link time, their routines can be used by your program
as needed.

1.6.1 Resolving Symbolic and Library References

The linker reads through all the object modules that you indicate as
input to the LINK command. It gathers and evaluates information
provided by the assembler that is necessary for program linking. For
each input module, this information includes the object code,
information needed for relocation, the relative address of the first

instruction, the global symbols used, and the length of each program
section.

One of the 1linker's functions is to resolve all global symbol
references and library references in the joined routines.

During translation, the assembler notes which symbols in the object
module are global. During 1linking, the linker keeps track of the
global references and definitions found in all the object modules, and
as linking proceeds, makes the appropriate correlations and modifies
instructions or data as necessary. After linking, the linker outputs
a list of all symbolic references that were not resolved (undefined
globals) either because of a programming error or because some
necessary object modules were not included in the LINK command.

References to library files also involve the use of global symbols.
You gain access to the routines in a library by naming a routine as a
global symbol in the source code of your program. You then link vyour
program with the appropriate library file and the linker resolves the
library references just as it does for any global symbol.

INTRODUCTION

1.6.2 Program Relocation and Address Assignment

A second important function of the linker is to "fix" relative memory
addresses so that they are wvirtual. The object module represents
translated source instructions that have been assigned memory
addresses relative to a base address of 0.

The linker assigns a base address to the 1image and fixes the base
address of each program section.

1.7 DEBUGGING MACRO PROGRAMS

Debugging is the process of finding and correcting errors in
executable programs; that 1is, in programs that have been assembled
and linked without diagnostic messages, but that produce invalid
results. (For information about diagnostic messages produced‘by
VAX-11 MACRO, see Section 2.1.3 and Appendix A.)

The debugger provided with the VAX/VMS system is a symbolic debugger;
it can refer to instructions and data by symbolic names. However, it
can only gain access to the names that are included in the symbol
table 1in the object module. By default, the debugger can gain access
to global symbol and program section names. If you want to debug with
local symbol names, you must speecify the /ENABLE=DEBUG qualifier in
the MACRO command or include .ENABLE DEBUG in the source code.

See the VAX-11 Symbolic Debugger Reference Manual for more information
on debugging VAX-11 MACRO programs.

CHAPTER 2

USING VAX-11] MACRO

The MACRO command invokes the VAX-11 MACRO assembler. The assembler
reads your source program; checks it for syntax errors; produces an
object module; and, optionally produces a listing file. Section 2.1
describes the format of the MACRO command and Section 2.2 describes
the listing file.

2.1 THE MACRO COMMAND
Format
$ MACRO[/qualifiers] file-spec-list[/qualifiers]
Parameters
/qualifiers

Command or file qualifiers that indicate special actions to be
performed by the assembler (see Section 2.1.2).

file-spec-list

A file specification or list of file specifications that specify
the source and macro library input files to be assembled into
object modules (see Section 2.1.1). If the file specifications
are separated by plus signs (+), the files are concatenated and
assembled into one object module. If the file specifications are
separated by commas (,), the files are assembled separately into
individual object modules. The default file type 1is MAR for
source files and MLB for macro library files.

The assembler reads your source files in the order in which vyou
specify thenm. You can request the assembler to perform several
assemblies with one command. The assembler, by default, produces an
object module with the same file name as your first input file. You
can use the /OBJECT qualifier to specify the file name of the object
module. You can suppress the production of the object module by using
the /NOOBJECT qualifier.

In interactive mode, the assembler does not, by default, produce a
listing file; you must use the /LIST qualifier to specify a listing
file. 1In batch mode, the assembler, by default, produces a 1listing
file with the same file name as the first input file. You can use the
/LIST qualifier to specify the file name of the listing file.

USING VAX-11 MACRO

Examples
1. $ MACRO PART1+PART2+PART3
The assembler concatenates the source files PART1, PART2, and
PART3 and assembles them into one object module with a name of
PART1. No listing file is created.
2. $ MACRO/LIST APROG,BPROG,CPROG

The assembler independently assembles the three source files
APROG, BPROG, and CPROG into object modules and listing files.

3. $ MACRO MYPROG/LIST+MLIB/LIBRARY

The assembler uses the macro library MLIB to assemble the source
file MYPROG and creates an output object module and listing files
with the file name MYPROG.

The following sections describe the file specifications, command and
file qualifiers, and how the assembler handles errors.

2,1.1 File Specifications

A file specification indicates the input file to be processed, or the
output file to be produced.

Format
device:[directory]filename.filetype;version

Parameters

device

The physical device on which a file 1is stored or 1is to be
written.

[directory]

The name of the directory under which the file is cataloged. The
square brackets are required.

filename
The name of the file; filename can be up to 9 characters long.
filetype

The type of the file, describing the kind of data in the file;
filetype can be up to 3 characters long.

version
The version number of the file. Versions are identified by a

decimal number, which is incremented each time a new version of
the file is created.

USING VAX-11] MACRO

You need not explicitly state all elements of a file specification
each time vyou assemble a program. The only part of the file
specification that is always required is the file name. If you omit
any other part of the file specification, a default value is used.
Table 2-1 summarizes the default values.

Table 2-1
File Specification Defaults

Optional

Element Default
device User's current default device

directory User's current default directory

filetype Depends on usage:

Source input file MAR
Macro library file MLB
Object module OBJ
Listing file LIS

version Input: highest existing version
Output: highest existing version plus 1

You can also specify a 1logical name rather than a complete file
specification. See the VAX/VMS Command Language User's Guide for more
information on logical names.

2.1.2 Qualifiers
Qualifiers specify that the assembler should perform the specified
actions. Qualifiers can be used as either command qualifiers or file
qualifiers. A command qualifier affects all the assemblies specified
in the MACRO command. A file qualifier affects only the assembly that
it qualifies,
All MACRO qualifiers except the /LIBRARY qualifier can be either
command qualifiers or file qualifiers. The /LIBRARY qualifier can
only be a file qualifier.
A qualifier can have one of the following formats:

/qualifier

/qualifier=function

/qualifier=(functionl, function2, ..., functionn)

USING VAX-11 MACRO

Table 2-2 lists the MACRO qualifiers, their possible functions, and
their default functions. Note that some values have a long form and a
short form. You can use either form; the effect is the same. Square
brackets around the equal sign in the table indicate that the
qualifier can appear with or without functions.

Table 2-2
VAX-11 MACRO Command Qualifiers

Functions Negative
 os a
Qualifier Form Default
Long Form Short Form

#_—:——-———_ﬂ# — v —

/CROSS[=] |ALL - /NOCROSS /NOCROSS
DIRECTIVES DIR
MACROS MAC
OPCODES OoPC
REGISTERS REG
SYMBOLS SYM

/DISABLE= | ABSOLUTE AMA /ENABLE= /DISABLE=
DEBUG DBG (AMA,DBG,LSB,SUP,FPT)
GLOBAL GBL
SUPPRESSION SuP
TRACEBACK TBK
TRUNCATION FPT

/ENABLE= ABSOLUTE AMA /DISABLE= /ENABLE=(GBL, TBK)

. DEBUG DBG
GLOBAL GBL
SUPPRESSION SUP
TRACEBACK TBK
TRUNCATION FPT

/LIBRARY - - - Not a library

/LIST[=] file-spec - /NOLIST /NOLIST (interactive

mode)
/LIST (batch mode)

/OBJECT[=]]|file-spec - /NOOBJECT | /OBJECT

/SHOW[=] BINARY MEB /NOSHOW[=] | /SHOW=(MC,CND,MD)
CALLS MC
CONDITIONALS CND
DEFINITIONS MD
EXPANSIONS ME

The following sections describe the VAX-11 MACRO command qualifiers in
detail.

USING VAX-1l MACRO

2.1.2.1 The /CROSS and /NOCROSS Qualifiers - The /CROSS. and /NOCROSS
qualifiers control whether a cross-reference listing is included in
the listing file. If you specify the /CR0OSS qualifier, the 1listing
file includes a cross-reference 1listing. Note that if you enter a
MACRO command with the /CROSS qualifier interactively, you must also
specify the /LIST qualifier. The /NOCROSS qualifier is the default;
you need not specify it to have the cross-reference listing excluded.

Table 2-3 lists the functions that vyou can specify in a /CROSS
qualifier. You can specify either the long form or the short form of
the functions. 1If you specify the /CROSS qualifier with no functions,
it 1is equivalent to /CR0OSS=(MAC,SYM). See Section 2.2.5 for a
description of the format of the <cross-reference 1listing. See the
VAX-11 MACRO Language Reference Manual for a description of the .CROSS
and .NOCROSS directives.

Table 2-3
/CROSS Qualifier Functions
Long Form Short Form Meaning
ALL - Includes directives, macros, opcodes,

registers, and symbols in the
cross-reference listing

DIRECTIVES DIR Includes directives in the
cross-reference listing

MACROS MAC Includes macros in the cross~reference
listing

OPCODES OPC Includes opcodes in the

cross-reference listing

REGISTERS REG Includes register references in the
cross-reference listing

SYMBOLS SYM Includes user-defined symbols in the
cross-reference listing

2.1.2.2 The /ENABLE and /DISABLE Qualifiers - The /ENABLE and
/DISABLE qualifiers have the same effect as the .ENABLE and .DISABLE
assembler directives, respectively. They control the way that the
assembler interprets vyour source program. The /ENABLE and /DISABLE
qualifiers override any .ENABLE or .DISABLE directives in the source
program. See the VAX-1ll MACRO Language Reference Manual for more
information on the .ENABLE and .DISABLE directives.

Table 2-4 lists the functions that you can specify in an /ENABLE or
/DISABLE qualifier. You can specify either the long form or the short
form of the functions. If you specify more than one function, you
must enclose the function list in parentheses. If you use an /ENABLE
or /DISABLE qualifier, you must specify at least one function in the
qualifier.

USING VAX-11 MACRO

Table 2-4
/ENABLE and /DISABLE Qualifier Functions

Short Form
| e e e e 2

ABSOLUTE AMA

Long Form Default Meaning

e e e e e e |
When ABSOLUTE is enabled,
all PC relative addressing

modes are assembled as
absolute addressing modes

/DISABLE

DEBUG

DBG

/DISABLE

When DEBUG is
local symbols
in the symbol
object module

enabled, all
are included
table in the
for use by

the debugger

GLOBAL GBL /ENABLE When GLOBAL is enabled,
all undefined symbols are
considered to be external
symbols; when GLOBAL is
disabled, any undefined
symbol that is not listed
in a .EXTERNAL directive
causes an assembly error
SUPPRESSION S30) 4 /DISABLE When SUPPRESSION is
enabled, all symbols that
are defined but not
referred to are not listed
in the symbol table; when
SUPPRESSION is disabled,
all symbols that are
defined are listed in the
symbol table

TRACEBACK TBK /ENABLE When TRACEBACK is enabled,
MACRO includes the program
section names and lengths,
module names, and routine
names in the object module
for use by the debugger;
when TRACEBACK is
disabled, MACRO excludes
this information and, in
addition, does not make
any local symbol
information available to
the debugger

TRUNCATION FPT /DISABLE When TRUNCATION is
enabled, floating-point
numbers are truncated;
when TRUNCATION is
disabled, floating-point
numbers are rounded

2.1.2.3 The /LIBRARY Qualifier - The /LIBRARY qualifier
that the associated input file contains a macro library.
qualifier affects only the input file that it qualifies.

indicates
The /LIBRARY

USING VAX-11 MACRO

2.1.2.4 The /LIST and /NOLIST Qualifiers - The /LIST and /NOLIST
qualifiers control whether an output listing file is created. 1If you
specify the /NOLIST qualifier, no listing file is created. If you
specify the /LIST qualifier, a listing file is created. The /LIST
qualifier determines the file specification of the output 1listing
file.

If you enter the MACRO command interactively, the assembler does not,
by default, create a listing file. 1If you execute the MACRO command
in batch mode, however, the assembler does create a listing file by
default.,

If you specify the /LIST qualifier with a file specification, the
assembler uses that file specification for the output listing file.

If you specify the /LIST qualifier without a file specification, the
default file name depends on whether /LIST is used as a command
qualifier or as a file qualifier. If /LIST is used as a command
qualifier, the default file name is the name of the first input source
file. If /LIST is used as a file qualifier, the default file name is
the name of the file that /LIST qualifies.

2,1.2.5 The /OBJECT and /NOOBJECT Qualifiers - The /OBJECT and
/NOOBJECT qualifiers control whether an object module is created. The
/OBJECT qualifier is the default; you need not specify it to have an
object module created. If you specify the /NOOBJECT qualifier, no
object module is created.

If you do not specify either the /OBJECT or the /NOOBJECT qualifier,
the assembler creates an object module with the same file name as the
first input file.

If you specify the /OBJECT qualifier with a file specification, the
assembler uses that file specification for the output object file.

If you specify the /OBJECT qualifier without a file specification, the
default file name depends on whether /OBJECT is used as a command
qualifier or as a file qualifier. If /OBJECT is used as a command
qualifier, the default file name is the name of the first input file.
If /OBJECT is used as a file qualifier, the default file name is the
name of the file that /OBJECT qualifies.

2.1.2.6 The /SHOW and /NOSHOW Qualifiers - The /SHOW and /NOSHOW
qualifiers have the same effect as the .SHOW and .NOSHOW assembler
directives, respectively. They control what 1lines appear in the
listing. Note that if you enter a MACRO command with a /SHOW or
/NOSHOW qualifier interactively, you must also specify the /LIST
qualifier. The /SHOW and /NOSHOW qualifiers have different effects
depending on whether you specify them with or without functions.

If you specify /SHOW or /NOSHOW with functions, the qualifier controls
the 1listing of source lines that are in conditional assembly blocks,
macros, or repeat blocks. The /SHOW and /NOSHOW qualifiers override
any .SHOW or .NOSHOW directives that are in the source program. Table
2-5 describes the /SHOW and /NOSHOW functions. You can specify either
the 1long form or the short form of the functions. If you use more
than one function, you must enclose the function list in parentheses.

USING VAX-11 MACRO

Specifying either the /SHOW or /NOSHOW qualifier with no function is
equivalent to starting your source file with an extra .SHOW or .NOSHOW
directive, respectively. The listing count is incremented by a /SHOW
qualifier and 1is decremented by a /NOSHOW qualifier. The listing

count controls whether all source lines are listed. If the 1listing
count is positive, all source lines are listed (including lines in
conditional assembly blocks, macros, and repeat blocks). If the

listing count is negative, no lines are listed. 1If the listing count
is 0, all lines except lines in conditional blocks, macros, and repeat
blocks are 1listed: these 1lines are listed depending on the values
specified in .SHOW and .NOSHOW directives.

Table 2-5
/SHOW and /NOSHOW Qualifier Functions

Long Form Short Form Default Function

BINARY MEB /NOSHOW Lists macro expansions and
repeat block expansions
that generate binary code;
BINARY is a subset of
EXPANSIONS

CALLS MC /SHOW Lists macro calls and
repeat block specifiers

CONDITIONALS CND /SHOW Lists unsatisfied
conditional code
associated with the
conditional assembly
directives

DEFINITIONS MD /SHOW Lists macro and repeat
range definitions that
appear in an input source
file

EXPANSIONS ME /NOSHOW Lists macro and repeat
range expansions

2.1.3 Diagnostic Messages

If the assembler encounters an error during assembly, it displays a
diagnostic message. The assembler displays the message on the
terminal (for interactive jobs) or in the batch log file (for batch
jobs) and in the listing file.

Appendix A describes the VAX-11 MACRO diagnostic messages.

USING VAX-11l MACRO

There are two levels of severity: error and warning. Object modules
created with an error message cannot be linked into an image file.
Object modules created with a warning message can be linked into an
image file although the linker will display a diagnostic message.

The assembler displays diagnostic messages in the following format:

$MACRO-1-code, text

1
A severity code indicator. It has a value of E for an error or a
value of W for a warning.

code
An abbreviation of the message text.

text

The explanation of the message.
For example:
$MACRO-E-ILLMASKBITS, Reserved bits set in ENTRY mask

The assembler displays on the terminal or batch log file the following
information: .

e The line from the listing that would precede the error message
if there were a listing file. This line is often the source
line that contains the error, but sometimes it is only the
binary expansion of the source line.

e The error message itself.

If the assembler has detected any errors during the assembly process,
it displays a diagnostic summary when the assembly is completed. It
displays this summary on the terminal or batch log file and 1listing
file. The summary contains the total number of errors and warnings
with the line number and page number (enclosed in parentheses) of
each. The assembler also displays at the end of the error summary a
list of the file specifications in the MACRO command (see Section
2.2.6).

An example of a diagnostic summary follows.

$ MACRO/LIST PROG

There were 6 errors and 1 warnings, on lines:

100 (1) 1100 (1) 400 (2) 200 (3) 800 (3) 1200 (3)
400 (5)

/LIST PROG
$

2-9

USING VAX-11] MACRO

2.2 LISTING FILE FORMAT
The listing file produced by VAX-11 MACRO has the following six parts.
e Table of contents (optional) and page headings
® Source statements and hexadecimal code
e Symbol table
e Program section synopsis
e Cross-reference listing (optional)
® Assembly summary

The following sections describe these six parts. Section 2.2.7
contains an example of a listing.

2.2.1 Table of Contents and Page Headings
If the source module contains any optional .SUBTITLE directives,
VAX-11 MACRO prints a table of contents before the assembly listing.
The table of contents lists all the subtitles specified in .SUBTITLE
directives. The subtitle 1is listed with the source page number and
the line number of the .SUBTITLE directive.
VAX-11] MACRO prints a new page in the listing file when it encounters
a .PAGE directive in the source, when it encounters a new page in the
source file, or when the existing page of the listing is filled. On
the top of each page in the listing, VAX-11] MACRO prints two header
lines. The first 1line of the header contains the following
information:

e Title of the module specified in the .TITLE directive

e Comment after the title of the module in the .TITLE directive

e Date

e Time of day

e Assembler version identification

e Listing page number
The second line of the header contains the following information:

e The identifying information specified in the .IDENT directive
(often used to specify a version number)

® Subtitle of the section of the module specified in the
.SUBTITLE directive

® Source file creation date and time
® Source file specification

® Source page number

USING VAX-11 MACRO

2.2.2 Source Statements and Hexadecimal Code
This section is the main part of the listing: it contains the source
lines of the module and the hexadecimal code generated. Each line of
code contains the following information:

e The source line, including comments

e The line number from the editor or, if the file has no 1line
numbers, the sequence number of the line

e The location counter

e The hexadecimal code
The hexadecimal code is printed with the lowest address on the right.
The hexadecimal code listed for an instruction contains, from right to
left:

e The opcode

e The addressing mode for the first operand (if any)

e The addressing mode for the second operand (if any)

e The addressing mode for the third operand (if any)
The binary code for data storage is listed from right to 1left. The

number of data items that are listed on one line depends on the size
of the data type as follows:

Data Type Number of Items per Line
Byte 12

Word 7

Longword 4

Quadword 1

ASCII 12 (characters)
Pacged decimal 24 (digits)

string

If an expression contains an externally defined symbol, the assembler
lists the wvalue of the expression followed by an apostrophe. The
assembler evaluates the expression by assigning a value of 0 to the
externally defined symbol. The apostrophe indicates that the linker
will complete the evaluation of the expression.

VAX-11 MACRO also prints the diagnostic messages in this section of
the 1listing. It prints each diagnostic message immediately after the
line at which the error was detected. See Section 2.1.3 for a
description of the diagnostic message format and Appendix A for a list
of the VAX-11 MACRO diagnostic messages.

USING VAX-11 MACRO

2.2.3 Symbol Table

The symbol table lists all symbols, except permanent symbols, that are
defined or referred to in the module. The symbols are listed
alphabetically, in three columns. The symbol's value (when known) is
listed next to the symbol. 1If the symbol is assigned a value by a
direct assignment statement or a directive (such as the .NARG
directive), the symbol is separated from the value by an equal sign.
If the symbol is defined externally (the value is unknown), the value
is listed as a string of asterisks. The following letters are used in
the symbol table to describe special attributes of symbols.

Letter Meaning

D The symbol is a local symbol that will be
made available to the debugger.

G The symbol is globally defined in a module.

R The symbol is relocatable.

W The symbol is a weak global symbol (specified
in a .WEAK directive).

X The symbol is defined externally.

u The symbol is not defined (produced when

.DISABLE GLOBAL has been specified and
undefined symbol is not specified in
.EXTERNAL) .

If a symbol is defined externally or as a relocatable value, the
number of the program section in which it appears first is printed.
See Section 2.2.4 for information about program section numbers.

2.2.4 Program Section Synopsis

The program section synopsis lists the program sections, their size,
their attributes, and their alignment. The program sections are
listed in the order in which they are defined in the program. Each
program section is assigned a number based on the order in which it is
defined in the program: this number is printed after the size of the
program section.

2.2.5 Cross-Reference Listing
The assembler lists the cross references separately for the following
groups: symbols, macros, directives, opcodes, and registers. Within
each group each item is listed alphabetically. For each item, the
following information is listed:

e Symbol name

e Value

e Line number and page number of the symbol's definition

e Line number and page number of each reference to the symbol

USING VAX-11 MACRO

You control which groups are cross referenced by specifying values in
the /CROSS qualifier. You can exclude certain symbols from the
cross~-reference listing by using the .CR0SS and .NOCROSS directives.

2.2.6 Assembly Summary

The assembly summary contains internal assembler performance
indicators, a diagnostic summary, and the qualifiers and file
specifications in the MACRO command.

The internal assembler performance indicators include the page faults,
CPU time, and elapsed time for the different stages of the assembly.
In addition, the indicators include the working set 1limit and the
number of symbols, source lines, object records, and macros and the
memory required to process these.

If the assembler detected any errors in the module, it prints the same
diagnostic summary in the listing that it displays on the terminal.
If no errors occurred, the assembler prints the following message in
the assembly summary:

There were no errors or warnings.

The last line in the 1listing file shows the qualifiers and file
specifications entered in the MACRO command.

2,2.7 Assembly Listing Example

The following pages show an example of a typical assembly listing.

USING VAX-11] MACRO

0

abed

62°C20A O10BW TI=XVA

S3U93U0D JO STqel

YPITTIT1T 6L6T-NYL=EL

JUT0od AI3Ud 3anpadoild 0071 (2)
SUOTITUT3IIP OI0BW (0CE 49

$3U23U0D 30 3Tqel
5139WYlITIe STAWFS Op O3 BUTINOY = J1¥D

2-14

USING VAX-11 MACRO

(Z 30 T 3}T1ed) SPOD TBWTIOSPEXSH puR SIUSWOILRIS D0INOS

009S 0000
00SS 0000
3asvd WAN3* 00¥S 0000
sbae junod 03 pasn Taqel Te207 ¢ ¢X¥YW 00ES 0000
H dgnNd* 00ZS 0000
ISTT 328330 ¢ 3asve-43 GY4OM™Q3INDIS* 00IS 0000
ISTT 39s330 4n 398 o} ¢ <1SI1dSIa>‘ad dd1° 000S 0000
sbie 3JUnod 03 pash [agel Tedo0n ¢ idsvd 006% 0000
uoTIdnIISuy ase) ¢ 008Y 0000
T=<Z/<ASVE=XYHD>, IA0OWN LINKIT DHS 3dAL,3SVO 00LY 0000
XVhe ‘4SVHE ‘ #.S=HAORN 0¥ =LINIT'M=IJXL LSINASIA JYS‘ASYD OdDUYN" 009%v 0000
== 00SY 0000
$ 00y 0000
buoT=r] ‘(3TNEI3P) PIOM=M ‘31AQay ddAdL { 00EY 0000
J032919s aul 30 anTeA Isey LINIT { 00Z% 0000
Ssjuawade1dsip 30 3ISI1 4911ds1a $ 001% 0000
1030919s ase) oHs ¢ 000% 0000
{ 0068 0000
39a13yM $ 008E 0000
{ o0LE 0000
JAOWN‘LIWIT‘A4AL’ISITASIA’ Dus asvd $ 009€ (0000
{ 00SE 0000
*UOTIONIISUT FSYD @SN 03 OJIdew IUTIaq $ 00bE 0000
++4¢ 00£E 0000
SUOTJITUTFIP OIDEHN 3131518118 ° 00Z€ 0000
001€ 0000
S3J0U3l133al aATIelal=)d ¢ 000€ 0000
Uo sju’duwadeidsyIp plom asn ¢ Gd0OM LNIWIDVIASIQ LIAVIIQ” 006¢ 0000
0082 0000
19bbngep ¢ 00LZ 0000
9yl 0] aTaeTieAR STOQquWAS ajew ¢ INYHa JA19vnN3* 009Z 0000
00SZ 0000
-=! 00¥Z 0000
! 00€Z 0000
(dv)91 UT pautezuod 2 00ZZ 0000
SS3IpPe 3Yl 3@ PaI0oIS ITNSAI 3Y3l PUB PIINJIXI ST UCTILIAAO a8yl {0012 0000
¢ 0002 0000
31ndinn ¢ 006F 0000
{ 0081 0000
3TNSa1 3O SS3IIPPY (dv)9t { 00LT 0000
UOTSTATP=¢ ‘UOTIRDITTIATIITNUSZ {0097 0000
‘uctioeziqns=] ‘UOTITPPE=0 = XIPUT l103RI3dQ (dv) ey $ 00ST 0000
13b33UT pPuUODBS (dv)s { 00¥T 0000
13623UT 3ISITA dv)v $ 00€T 0000
¢ 0021 0000
$INdNI ¢ 0011 0000
{ 0001 0000
*3Insad 8yl suInlax { 006 0000
pue uollelado 273I2wWaUlTie palsanbal Yl sandaxa ‘sindug ¢ 008 0000
Se X3puyl 101ei1ddo UP pup SI3HIJUT OMI S3IA3IJD® SUTINOI STYL $ o0L 0000
¢ 009 0000
$NOILAINDSHEd TYNCIIINNG ¢ 00S 0000
++2 000 0000
00€ 0000
. /10/ LN3Q1° 002 0000
JTi1suylTIe ardwis Op 03} IUTINOY =)ivd 3ITLIL* 007 0000
(§3] 8dVYW°DTYD(HSOr]t4d 6Z2TT3TT 6L6T~NVYL=EZ 10

' abeqd 6C°C0A OIOBR TT=XVA PPITTITT 6L61=-NVL-EL STIduyITIe ITAWTS OPp 03 AUTINOY = i} o}

2-15

USING VAX-11 MACRO

(Z 30 ¢

welpold DUTTTIED 03 UIn3ay
2InIye3 a3edjpul

X3puy 103e13do

TeO3TTIT 10 ‘0 AQ UCTISTATP
‘mOT313A0 103 0 UINIIY
welbold bulTIed 03 UINI3Y
P8JINdd0 MOTJIISA0 UY

juationtb ayj ajerndred (g)
0 AQ UOTSTATP PTOAY
0 ST IOSTATP 3T 338ud (¢£)
weibold HUTTIPD 03 uInlayg
P3IINIOJ0 MOTIIDA0 UY

31onpoid ayl ajerndTed (2)
welbold bUFTTed 03 uiniyay
Pa110220 MOTIISA0 UY

92U21333TP 3Ul wiod (1)
weIlbold HBUTTIED 03 UINiIay
PaIINOO0 MOT3IIIA0 Uy

uns 3ul Ijerndie)d (o)
X3pul J03e13d0 TeballT
ue palT3jToads aurInol BUTITE)

3UT3INOJI uoTIENTERA® 031 YdledsId
X2pUT J03e13d0 SUTERIUOD Py
JjuswnNDI® PUODIIS SUTRPIUOD £y
jusunble 3ISITFI SUTEIUOD ZY

AST1 Juswnble wol3F Jusunbie 339
= 43QSSS$ UT pautiep s1
TYWHON™SSS ‘SS3d0ons 104

juyod X¥IN3 Sutanoyd

0¥ U] sSnlels syl pue JusunbIR Y3INOoF IY3 UT ITNSSX ayl uanizal pue
UOTIRTNDTED 8Yy) WJIOFJIdd ‘ISTT JuUawnbie ayl woajd sjuawhbie ayi 339
juyod A13Ud 31npadold

Z) 8IdVW° DTYD(HSOL) s T€A
6Z°Z0A 0l1d€W [Tl=XVA

z abeqd

3I10d)

e sa en oa ta Su ou

- oa on o 0n

CESETAFTN

LINETrN

oL Su ea on 0u B4 Su oo on su Sa e

9pO) TeWTIDSPEXSH pPUR S3USWSIRIS

ana* 00LE
L3d 009¢€
0d‘0# TAOK 00S€E
00V €
00€E€
(dv)91® Td10 $dd43 00Z2¢
L3y 0071¢
b= SAd 000¢€
(dv)ote‘Zu’‘ty €1A1Q 0062
dd3d 1048 0082
[3] TLSL SAIQ 00LZ
13y 0092
e SAY 00s¢
(d¥)9te‘cd‘2y ETINN $10W 00vZ
L3d 00¢€2
dyd SAd 0022
(d¥)918‘Zy‘td £1dNns sdns 0012
L3 0002
k| SAH 0061
(dv)9te‘egd’cy €1qav taqv 008t
00LY
R add 0091
<AIQ’TInK’ 608 aay> 00St
-‘vy 3svd 0oVl
by’ (dvdet TAOW 00€1T
€4’ (dv)8 TAOW 002t
0011
¢d’ (dv) b TAOKW 0001
006
0Y ‘' IVWUONTSSS# "IMZAUW 008
<PH'EUZUSWLOTIVD AHINZ® oot
{009
{ 00S
¢ 00%
! 00€
IYMON‘IX3‘3q00™0d 1D3Sd* 002
A11ILeNs* 00t

6CTT2TT 6L6T=NVL=ET
PPETTSTT 6L6T=NVI=-ET

20an0s
2900
avoo %0
8%00 0@
8400
800
sb00 ¥a
¥900 ¥0
Zvoo ar
0900
agoo L2
d4€00 €1
6€00 Sa
8600 V0
9£00 al
$€00
1€00 SO
0€00 V0
4200 at
2200
6200 €D
8200 bo
9200 a1
$200
1200 1D
1200
4100 11
£100
€100
4000 0@
8000 00
g000
L000 0d
L00O
z000 Of
0000 .,J100
0000
0000
0000
0000
00000000
0000

3ujod Aijua 3inpadold
dT38uWylTIe ITAUTS Op 03 BUFIN0Y =

00

o8

10
ol:|
€S
80
€S

ao
ol |
(4]

st
og
[3]
at
od
zs
ye
o
o

ov

48,0000

0t

ot

0%

01

0t

20
80

144

0s

s

€S

(4]

€S

14°]
€S

[4°]

0s

2-16

USING VAX-11 MACRO

)
€

abed

sTsdouks uoT3l09g weaboig pue ofqel TOoquis

ALXY LYMON QY
ALR9 1Ym ay

ax3
X3

YHSON 101
YHSON 101

dlXd LYMON (40N 3IX3ION HHSON 121

8 LUYW* DTIVDLHSO) S T80

6Z°C0A OIDBN TT=XVA

134
T34
SdY

NOD asn JI40N
NOD usn OIdON
NOD ushn OIdON

$83nqTI33V

Y
{ SIsSdouAs 3d3sgd

trracransrcscncnead

6Z2TTI3TT 6L6T=NVL=ET
PYITI3TT 6L61-NVL=ET

(*z) 2o
*1t) 10
(°0) oo
*ON 103Sd

(*9¢L) J%000000
(@]) 00000000
(o) 00000000
Uuot3edoT1Y
¢0 a Hd 62000000
(4 X kR kkk
20 Q@ ¥ 1€000000
¢0 a ¥ S¥000000
20 4 ¥ 68000000
¢0 Q 9549 00000000
¢0 a ¥ 12000000

DJ39WYITI® ITAUTS OD 03 SUTINOY =~

340270y
° dAnNv1Ee
° Sdv °

dueu 1)J3sd

ans
TYWHONTSSS
nw
- ¢-c)
AlQ
JT¥0
aav

81qel toquis

JTv¥D

2-17

USING VAX-11 MACRO

BUTISTT 9OUSIDINY-SS0ID

(2) 00S1
) 008=#
2) 0061
2) 000€=#
z) 008Z=#% 2) 00Se=# 2) 00ZZ=% (2) 0061=# 2) 009T=4%
) 0057
) 00s1
* e CSEONINZ AN

Y L L L LT Y Y

{ 9oUalazay $s0ID Toquis |

jecccnesresnnmensananaannd

6Z2IT2TT 6L61=-NVYL=E2
PHLTITSTT 6L61~NVL=EC

) 82dVW°DTIVD[HSOL) 218
¥ 9bed 6Z°20A 0JO®BW TT=XVA

2) 0012
2) [+]0] X4
(2) 00ze
(2) ooLe
) 00L
) 0087
NOILINIJZG

-

d=62000000
UX=00000000
d=1€000000

d=S¥000000
H=6€000000
d=00000000
d=12000000

anIva

ST3awulTie aTdwys Op 031 IJUTIN0Y =

ans
TYNYONTS$SS
TNW

dy3
Al
o2} fo]
aqv

T09WXS

30ual133ad1 S$S01D

JT¥D

2-18

USING VAX-11 MACRO

)
S

abed

Axeummsg ATquessy pue (°3uo)) BUTISTT ©0USIDIDY-SSOID

82dVA*DTYD(HSOr) 2 18a
6Z°Z0A OIDPW TT=XVA

JTY) SSO¥I/1SIT/

*sSbutulem IO SJOIJd OU aI3am 313yl

*o1dew | AUTFAP 03 pasn sem AJowauw [en3ita 30 abed |
“Z ssed UT $plodal 393[do ST BuUTonpPold ‘] sseg U] peal 91am SauTT 93INOS pg
‘stoquis TeJ0T Z Pue [Ed0T=-UOU [PIOY 03 PaleJOTTe adeds a71qe3} [OquAS 3O sabed (] alam aIlaul
*9p0d> 33eTPIaWIIIUT BUI IIIINQG 03 pash 3Iam AIowaw Ten3ATA 3o (sabed p) SalAq Zpsl

*sabed (GT sem ITWIl 219S DUTNIOM a3yl

€8°20200200 0€°10200200 60¢ STe303 UN1 IJTAWISSY
€1°00200:00 80°002:00:00 €2 Indino 90UlI3III-SS0ID
10°00200200 20°00200200 4 Ind3no sTsdouds 308sd
00°00200:00 10°00300:00 € indino atyel jogquag
95°00:00200 0€°00200300 L8 Z ssed
00°00200300 00°00300200 4 310s 3artqel foquig
12°10200200 29°00200200 191 I sseg
1L°00300200 22°00200200 (44 butssadozd puvwwo)
S1°00200300 $0°00200:00 9 uotleziier3tul
dwil pasderd duWIL Ndd siine3y abed aseyd
+l!lll|lllll0l'lllllltJll.v
{ SIO3EDJPUT BduBWIOI I |
B T Y T iy §
2) 00%1 1) 009% 1 3svd
®°*SHUINIAYIAAY NOILINIA3U 4218 0dOYW

jearccncmretcnncacncacanead

i 90U3JI938Yy SS0IXD soroey |

teseramccrccncecescannannt

6CTT3TT 6L61-NVL-EZ
PPITITT 6L61=NVL=ET

ST33wy3Tie aTduwfs Op 03 IUFINOY =

82U 719331 SS0ID
JIVO

2-19

CHAPTER 3

WRITING POSITION-INDEPENDENT CODE

An object module produced by VAX-11 MACRO is relocatable; that is, it
can be 1linked anywhere 1in wvirtual memory. The 1linker modifies
relocatable addresses so that they reflect the wvirtual memory
locations in which the module will run. Once linked, the image can
only be moved in virtual memory if the source code follows the
restrictions described in this chapter. Source code that follows
these restrictions, and thus can be moved in virtual memory, is called
"position-independent code." Source code that does not follow these
restrictions is called "position-dependent code." 1Images linked from
position-dependent code will run correctly only at one virtual memory
location.

Position independence is important if you are creating a shareable
image. To use a shareable 1image, you must relink it with object
modules. If the shareable image is position independent, the 1linker
can place it anywhere in virtual memory. If the shareable image is
position dependent, the linker must place it at a fixed wvirtual
address., You cannot link object modules with two position-dependent,
shareable images that share a virtual address.

The linker does not use the position-independent code (PIC) program
section attribute to determine whether a shareable image is position
independent. The linker assumes that when it is linking a shareable
image, the shareable image is position independent unless the source
code contains a .ADDRESS assembler directive or unless a base address
was specified in the LINK command. Consequently, if you are linking a
shareable image that is position dependent, specify a base address in
the LINK command or use a .ADDRESS directive in the source code.
Otherwise, the 1linker will assume that the image is position
independent and the shareable image will not execute correctly. See
the VAX-11 Linker Reference Manual for more information on 1linking
shareable images.

Position independence depends on the addressing modes used in the
source code and the way addresses are stored in the program. The
remainder of this chapter assumes that you are familiar with the
addressing modes described in Chapter 4 of the VAX-11 MACRO Language
Reference Manual.

The following addressing modes involve only register references and
are always position independent if the register's value is set by an
instruction that is itself position independent.

WRITING POSITION-INDEPENDENT CODE

Format Mode

Rn Register

(Rn) Register deferred
(Rn)+ Autoincrement

@(Rn)+ Autoincrement deferred
-(Rn) Autodecrement

The displacement addressing modes are position independent if the
expression specifying the displacement is absolute and if the
register's value is set by an instruction that is position independent
itself. The displacement addressing modes are listed below.

Format Mode
dis(Rn) Displacement
@dis(Rn) Displacement deferred

Relative and relative deferred addressing modes are position
independent if the address expression 1is relocatable. Absolute
addressing mode is position independent if the address expression is
absolute (for example, an address in the system space). Because the
linker converts general addressing mode to relative if the expression
is relocatable and converts it to absolute 1if the expression is
absolute, using general addressing mode ensures that the code is
position independent. Table 3-1 summarizes the position independence
or dependence of relative and absolute modes.

Table 3-1
Relative and Absolute Addressing Modes

Position Independence/Dependence
Relocatable Absolute
Mode Address Expression Address Expression
—— — —

Relative Position independent Position dependent
Relative Position independent Position dependent
Deferred

Absolute Position dependent Position independent
General Position independent Position independent

The index addressing modes are position independent if the base mode
is position independent and if the index register contains an absolute
number (not an address).

In addition, to ensure position independence, you must make sure that
no addresses are stored as data. For example, if you have a table of
pointers, the code will be position dependent. But if you replace the
table of pointers with a table of displacements from a relocatable
address, then the code can be position independent.

WRITING POSITION-INDEPENDENT CODE

The remainder of this chapter presents four examples showing the use
of the different addressing modes to write position-independent code.

Example 1

MOVL #TABADDR, RO
MOVAB TABADDR,RO
MOVAB I0C$GL_DEVLIST,RO
MOVL #I0CSGL_DEVLIST,RO

POSITION-DEPENDENT CODE
POSITION-INDEPENDENT CODE
POSITION-DEPENDENT CODE
POSITION-INDEPENDENT CODE

~ we we wo

This example demonstrates the use of relative and absolute modes in
writing position-independent code. All the instructions in this
example move an address to RO. The address TABADDR is a relocatable
address; the address IOCSGL DEVLIST is absolute. If the address is
relocatable, relative mode is position-independent and absolute mode
is not. But, if the address 1is absolute, absolute mode is
position-independent and relative mode is not.

Example 2

CHARS: ,ASCII \ABCDEFGHIJKLMNOPQRSTUVWXYZ\

PUT OFFSET OF LETTER E IN R3.
POSITION-DEPENDENT CODE

PUT ADDRESS OF CHARS IN R3.
POSITION-INDEPENDENT CODE
PUT OFFSET OF LETTER E IN R3.
POSITION-INDEPENDENT CODE

MOVL #4,R3

MOVB CHARS (R3) ,RO
MOVAB CHARS,R3
MOVB 4(R3),R0O
MOVL #4,R3

MOVB CHARS[R3],R0

N we N we wo we

This example demonstrates the use of displacement and index modes in
writing position-independent code. The address CHARS is a relocatable
address. Compare the first addressing mode, which is position
dependent, with the two following equivalent addressing modes, which
are position independent.

WRITING POSITION-INDEPENDENT CODE

Example 3

; SETTING UP A STRING DESCRIPTOR IN A POSITION-DEPENDENT WAY
.ALIGN LONG

DESCRIP:
. LONG EOSTR-STR ; LENGTH OF STRING.
.ADDRESS STR ; CODE IS POSITION DEPENDENT
STR: .ASCII \AN ASCII STRING\ ; THE STRING
EOSTR: ; THE END OF STRING
; TO ACCESS THIS DESCRIPTOR
MOVAB DESCRIP,R2 ; GET ADDRESS OF DESCRIPTOR

’
; SETTING UP A STRING DESCRIPTOR IN A POSITION-INDEPENDENT WAY
; BY CREATING THE STRING DESCRIPTOR ON THE STACK

POSITION-INDEPENDENT REFERENCE
TO GET ADDRESS OF STRING ON THE
STACK

PUSH LENGTH OF STRING ON STACK
GET ADDRESS OF DESCRIPTOR

PUSHAB STR

PUSHL #EOSTR-STR
MOVL SP,R2

we we we wo wo

i
; SETTING UP A LIST HEAD IN A POSITION-DEPENDENT WAY
QHEADA: ,ADDRESS QHEADA THIS IS POSITION DEPENDENT

.ADDRESS QHEADA

~e we

’
; SETTING UP A LIST HEAD IN A POSITION-INDEPENDENT WAY BY USING

; EXECUTABLE INSTRUCTIONS TO STORE ADDRESSES

QHEADB: .BLKA 2 ; RESERVE 2 LONGWORDS FOR ADDRESS
STORAGE

-~ -

; SOURCE CODE TO STORE ADDRESSES
MOVAB QHEADB,RO
MOVL RO, (RO)

GET THE ADDRESS OF THE LIST HEAD.
STORE THE FIRST ADDRESS (THE
FORWARD LINK).

STORE THE SECOND ADDRESS (THE
BACKWARD LINK).

MOVAL (RO) +, (RO)

.. we w5 We we

This example demonstrates a way to avoid having absolute virtual
addresses stored as data. Both string descriptors used in the VAX-1l
procedure calling standard and the list head for the INSQUE and REMQUE
instructions require absolute virtual addresses. To make code
position independent, the addresses must be stored by executable
instructions rather than as data in the source code.

WRITING POSITION-INDEPENDENT CODE

Example 4

; CREATING A POSITION-DEPENDENT DISPATCH TABLE

DISPATBL: ; LIST OF
«ADDRESS ROUTINO ; ABSOLUTE VIRTUAL
.ADDRESS ROUTIN1 ; ADDRESSES
.ADDRESS ROUTIN2 ; CAUSING CODE TO BE
.ADDRESS ROUTIN3 ; POSITION DEPENDENT

; ROUTIN2 IS ENTERED BY THE FOLLOWING INSTRUCTIONS

MOVL #<2*4> ,R3 ; GET OFFSET OF ADDRESS
; OF ROUTIN2
JSB @DISPATBL[R3] ; ENTER ROUTIN2

CREATING AN EQUIVALENT OFFSET LIST USING THE CASE INSTRUCTION
; SOURCE CODE IS POSITION INDEPENDENT

o we weo

DISPAT: CASEB R3,#0,#3 ; CASE INSTRUCTION
108: «SIGNED_WORD ROUTINO-10$; LIST OF OFFSETS
«SIGNED_WORD ROUTIN1-10$; FROM PC.

«SIGNED WORD ROUTIN2-10$; CODE IS

1’

.SIGNED:WORD ROUTIN3-10$ POSITION INDEPENDENT.
; ROUTINZ2 IS ENTERED BY THE FOLLOWING INSTRUCTIONS

MOVL #2,R3 ; GET OFFSET OF ROUTIN2 IN
LIST OF OFFSETS
ENTER ROUTIN2 USING CASE
INSTRUCTION.

BSBB DISPAT

e we we N

This example demonstrates another way to avoid storing absolute
virtual addresses as data. The dispatch table is a list of entry
points to routines. This is a frequently used way to enter one of a
series of routines, but the code is position dependent. The same
functionality can usually be provided in a position-independent way by
using the CASE instruction, which transfers control to a routine based
on an offset to the PC.

APPENDIX A

DIAGNOSTIC MESSAGES

If the assembler encounters an error during an assembly, it displays a
diagnostic message on the terminal or batch log file and in the
listing file (if there is one). The general format of VAX-11l MACRO
diagnostic messages is:

3$MACRO-1-code, text

1
A severity level indicator. It has a value of E for an error or
a value of W for a warning.

code
An abbreviation of the message text; the message descriptions in
this appendix are alphabetized by this code.

text

The explanation of the message.
For example:
¥MACRO-E-ILLMASKBITS, Reserved bits set in ENTRY mask

Some input and output diagnostic messages are followed by an RMS error
message.

Listed below are the diagnostic messages displayed by the VAX-11 MACRO
assembler. Each message is accompanied by an explanation of the cause
of the error and recommended user action to correct the error.

ADRLSTSYNX, Address list syntax error

Explanation: The address 1list 1in the .ADDRESS directive
contained a syntax error.

User Action: Correct the syntax.

Severity: Error

ALIGNXCEED, Alignment exceeds PSECT alignment

Explanation: The .ALIGN directive specified an alignment larger
than the program section alignment. For example, the .PSECT
directive specified byte alignment (the default) and the .ALIGN
directive specified a longword alignment. This message can also
be caused by-a .PSECT directive with an illegal alignment.

DIAGNOSTIC MESSAGES

User Action: Correct conflicting alignments. The .PSECT
directive should specify the largest alignment required in the
program section,

Severity: Error

ARGTOOLONG, Argument too long
Explanation: An argument was more than 512 characters long.
User Action: Reduce the length of the argument.

Severity: Error

ASCTOOLONG, ACSII string too long
Explanation: The string in an .ASCIC directive was longer than
255 characters or the string in an .ASCID directive was more than
65535 characters.,
User Action: Reduce the length of the string.

Severity: Error

ASGNMNTSYNX, Assignment syntax error

Explanation: A direct assignment statement contained a syntax
error.

User Action: Correct the syntax.

Severity: Error

BADENTRY, Bad format for .ENTRY statement

Explanation: The .ENTRY directive did not specify an entry point
name and an entry mask.

User Action: Correct the ,ENTRY directive syntax.

Severity: Error

BADLEXARG, Illegal lexical function argument
Explanation: The argument to a macro string operator was
invalid. String arguments can be macro arguments or strings
delimited by angle brackets or the circumflex delimiters. Symbol
arguments can be absolute symbols or decimal integers.
User Action: Correct the argument syntax.

Severity: Error

DIAGNOSTIC MESSAGES

BADLEXFORM, Illegal format for lexical function
Explanation: The macro string operator contained a syntax error.
User Action: Correct the macro string operator syntax.

Severity: Error

BADLOGICPC, Internal logic error detected at PC XXxXxx

Explanation: There was an internal error in the VAX-11 MACRO
assembler; XxXxXX indicates the value of the PC at the time the
error was detected. The assembler does not produce an object
module or listing file.

User Action: Retry the assembly. If the error is reproducible,
notify your system manager to submit a Software Problem Report
(SPR). The address displayed with the error message and the
source program should be included in the SPR.

Severity: Error

BADVALUE, xxxxx is an invalid keyword value
Explanation: A command qualifier had an 1illegal value; XXXXX
indicates the value specified in the command. The assembler does
not produce an object module or a listing file.
User Action: Reenter the command with the correct syntax.

Severity: Error

BLKDIRSYNX, Block directive syntax error

Explanation: A conditional block or a repeat block directive
contained a syntax error.

User Action: Correct the directive syntax.

Severity: Error

BRDESTRANGE, Branch destination out of range

Explanation: The address specified in the branch instruction was
too far away from the current PC. Branch instructions with byte
displacements have a range of from -128 bytes to +127 bytes from
the current PC. Branch instruction with word displacements have
a range of from -32768 bytes to +32767 bytes from the current PC.

User Action: - Use a branch instruction with a word displacement
instead of one with a byte displacement; use a jump (JIMP)
instruction instead of a branch instruction; or change the
program logic so that the branch destination is closer to the
branch instruction.

Severity: Error

DIAGNOSTIC MESSAGES

CANTFINDMAC, Can't locate macro in macro libraries

Explanation: A macro name specified in a .MCALL directive

not defined in the macro libraries searched.

was

User Action: Specify, in the MACRO command, the macro library

that defines the macro.

Severity: Error

CLOSEIN, Error closing file-spec as input

Explanation: The assembler encountered an I/0 error when closing
an input source or macro library file; file-spec is the file

specification of the file being closed.

User Action: Retry the operation or make a new copy of the
and retry the operation with the copy.

Severity: Error

CLOSEOUT, Error closing file-spec as output

file

Explanation: The assembler encountered an I/0 error when closing

an output object or listing file; file-spec 1is the
specification of the file being closed.

file

User Action: Retry the operation. If the error is reproducible,

notify your system manager.

Severity: Error

DATALSTSYNX, Data list syntax error

Explanation: The data list in the directive contained a

syntax

error. For example, the directive ,LONG 3,,5 contains a data

list syntax error because there is no data item between the

commas,
User Action: Correct the syntax of the data list.

Severity: Error

DATATRUNC, Data truncation error

Explanation: The specified value did not fit in the given
type. The assembler truncated the value so that it fit.

User Action: Reduce the value or the number of characters in

ASCII string or change the data type.

Severity: Warning

DIRSYNX, Directive syntax error
Explanation: The directive contained a syntax error.
User Action: Correct the syntax of the directive.

Severity: Error

two

data

an

DIAGNOSTIC MESSAGES

DIVBYZERO, Division by zero error
Explanation: An expression contained a division by 0.
User Action: Change the values in the expression.

Severity: Warning

EMSKNOTABS, Entry mask not absolute

Explanation: The entry mask expression was not absolute
contained undefined symbols.

User Action: Change the values in the expression.

Severity: Error

ENDWRNGMAC, Statement ends wrong MACRO

or

Explanation: The .ENDM directive specified a different name than

its corresponding .MACRO directive.

User Action: Correct the name in the .ENDM directive to ensure
that the .ENDM directive and .MACRO directive correspond as

required.

Severity: Error

EXPOVR32, Expression overflowed 32-bits

Explanation: The value of the expression could not be stored

in

a longword (32 bits). The assembler truncated the value to 32

bits.
User Action: Change the values in the expression.

Severity: Warning

FLTPNTSYNX, Floating point syntax error

Explanation: A floating-point constant contained a syntax error.

User Action: Correct the syntax of the constant.

Severity: Warning

GENERR, Generated ERROR: XXXXX message

Explanation: A .ERROR directive was assembled; XXXXx is

the

value of the expression specified in the directive; and message

is the text specified in the directive.
User Action: Follow the instructions in the message.

Severity: Error

DIAGNOSTIC MESSAGES

GENWRN, Generated WARNING: XXXXX message

Explanation: A .WARN directive was assembled; XXXXX 1s

the

value of the expression specified in the directive; and message

is the text specified in the directive.
User Action: Follow the instructions in the message.

Severity: Warning

IFDIRSYNX, IF directive syntax error

Explanation: A conditional assembly directive contained a syntax

error,
User Action: Correct the syntax of the directive.

Severity: Error

IFEXPRNTABS, IF expression not absolute

Explanation: The expression in a .IF directive was not
absolute expression or contained undefined symbols.

User Action: Change the values in the expression.

Severity: Error

IFLEVLXCED, IF nesting level exceeded

Explanation: The assembler encountered more than 31 levels
nested conditional assembly blocks.

User Action: Restructure the program to decrease nesting
conditional assembly blocks.

Severity: Error

ILLARGDESC, Illegal operand argument descriptor

Explanation: The operand descriptor in an .OPDEF directive
invalid.

User Action: Use one of the valid operand descriptors.

Severity: Error

ILLASCARG, Illegal ASCII argument

Explanation: The argument to an ,ASCIX directive did not

an

of

of

was

have

enclosing delimiters or an expression was not enclosed in angle

brackets.
User Action: Correct the syntax of the argument.

Severity: Error

DIAGNOSTIC MESSAGES

ILLBRDEST, Illegal branch destination

Explanation: The destination of a branch instruction was not an
address, for example, BRB 10(R9).

User Action: Change the destination of the branch instruction or
use a jump (JMP) instruction.

Severity: Error

ILLCHR, Illegal character

Explanation: The source line contained a character that was
illegal in its context.

User Action: Delete the illegal character.

Severity: Error

ILLDFLTARG, Illegal argument for .DEFAULT directive

Explanation: A .DEFAULT directive did not specify DISPLACEMENT
or the displacement specified was not BYTE, WORD, or LONGWORD.

User Action: Correct the .DEFAULT directive.

Severity: Error

ILLEXPR, Illegal expression
Explanation: A radix unary operator was not followed by a
number, or left and right angle brackets did not match in an
expression.
User Action: Correct the syntax of the expression.

Severity: Error

ILLIFCOND, Illegal IF condition
Explanation: The condition specified in a conditional assembly
was not a valid condition, or there were no symbols after a
DIFFERENT or IDENTICAL condition.

User Action: Correct the syntax of the conditional assembly
directive.

Severity: Error

ILLINDXREG, Invalid index register
Explanation: The base mode changed the value of the register and
the index register was the same as the register in the base mode;
the base mode was literal or immediate mode; or PC was used as
the index register.
User Action: Correct the addressing mode.

Severity: Error

DIAGNOSTIC MESSAGES

ILLMACARGNM, Illegal MACRO argument name

Explanation: The name in the .MACRO directive contained an
illegal character.

User Action: Delete the illegal character.

Severity: Error

ILLMACNAM, Illegal MACRO name

Explanation: No macro name was specified in the .MACRO
directive.

User Action: Specify the macro name in the .MACRO directive.

Severity: Error

ILLMASKBITS, Reserved bits set in ENTRY mask
Explanation: The register save mask in an .ENTRY or .MASK
directive specified RO, Rl, AP, or PC registers (corresponding to
bits 0, 1, 12, and 13).
User Action: Remove these registers from the register save mask.

Severity: Error

ILLMODE, Illegal mode

Explanation: An invalid addressing mode for the instruction was
specified.

User Action: Specify a legal addressing mode.

Severity: Error

ILLOPDEF, Illegal format for .OPDEF
Explanation: The .OPDEF directive had incorrect syntax.
User Action: Correct the .OPDEF directive syntax.

Severity: Error

ILLOPDEFVAL, Illegal value for opcode definition

Explanation: The value specified in the .OPDEF directive did not
fit in two bytes.

User Action: Correct the value in the directive.

Severity: Error

DIAGNOSTIC MESSAGES

ILLREGHERE, This register may not be used here

Explanation: This register cannot be used here, for example,
PUSHL (PC).

User Action: Use another register.

Severity: Error

ILLREGNUM, Illegal register number

Explanation: A register name was not in the range RO through R12
or was not the AP, FP, SP, OR PC register name.

User Action: Correct the illegal register name.

Severity: Error

ILLSYMLEN, Symbol exceeds 15 characters

Explanation: The symbol name was longer than 15 characters. The
assembler truncated the name to 15 characters.

User Action: Truncate the name to 15 characters.

Severity: Warning

INSVIRMEM, Insufficient virtual memory

Explanation: The module being assembled has too many symbols and:
macro definitions for the virtual memory available or a macro
definition called itself (a recursive definition). The assembler
terminated the assembly.

User Action: Increase the virtual memory available by contacting
the system manager; reduce the level of macro nesting; split
the module into several smaller modules; or eliminate the
recursive macro definition.

Severity: Error

INVALIGN, Invalid alignment

Explanation: No integer or keyword followed the .ALIGN
directive.

User Action: Correct the syntax of the .ALIGN directive.

Severity: Error

LINETOOLONG, Line too long

Explanation: ' A source line in a macro definition was longer than
500 characters.

User Action: Restructure the source code so that the line is
shorter.

Severity: Error

DIAGNOSTIC MESSAGES

MACLBFMTERR, Macro library format error
Explanation: A format error occurred in the macro library.
User Action: Retry the assembly and, if the error still occurs,

use the LIBRARY command (see the VAX/VMS Command Language User's
Guide) to re-create the library from the source code.

Severity: Error

MAYNOTINDEX, This mode may not be indexed

Explanation: The base mode was register, immediate, or 1literal
mode.

User Action: Change the addressing mode.

Severity: Error

MCHINSTSYNX, Machine instruction syntax error

Explanation: A syntax error occurred in an instruction, for
example, MOVL, A.

User Action: Correct the instruction syntax.

Severity: Error

MISSINGEND, Missing .END statement

Explanation: There was no .END directive at the end of the
module. The assembler inserted an .END directive after the last
line.

User Action: 1Insert a .END directive.

Severity: Warning

MSGCMAIIF, Missing comma in ,IIF statement

Explanation: The condition was not separated from the statement
in an .IIF directive.

User Action: 1Insert a comma in the directive.

Severity: Error

MULDEFLBL, Multiple definition of label
Explanation: The same label was defined twice in the module.

User Action: Delete the second label definition or change one of
the labels to a different symbol name.

Severity: Error

A-10

DIAGNOSTIC MESSAGES

NOFORMALARG, No formal argument for .IRP/.IRPC

Explanation: There were no formal arguments in an .IRP or .IRPC

directive.
User Action: Correct the syntax of .IRP or .IRPC directive.

Severity: Error

NOTDECSTRNG, Illegal character in decimal string

Explanation: A decimal string contained a character other
the digits 0 through 9 and a leading plus or minus sign.

User Action: Correct the syntax of the decimal string.

Severity: Error

NOTENABLOPT, Not a legal ENABLE option

Explanation: An argument to a .ENABLE or .DISABLE directive
not a legal option.

than

was

User Action: Delete the option or replace it with a 1legal

option.

Severity: Error

NOTENUFOPR, Not enough operands supplied

Explanation: The instruction requires more operands than
specified in the statement.

User Action: Add the operands or change the instruction.

Severity: Error

NOTINANIF, Statement outside condition body

Explanation: A .IF FALSE, .IF_TRUE, .IF_TRUE_FALSE, .IFF, .

were

IFT,

or LIFTF subconditional directive was not in a conditional

assembly block.

User Action: Replace the subconditional directive with

conditional directive or delete the subconditional directive.

Severity: Error

NOTINMACRO, Statement not in MACRO body

a

Explanation: The .NARG directive was not in a macro definition

or expansion.

User Action: Delete or move the 1line containing the .NARG

directive.

Severity: Error

A-11

DIAGNOSTIC MESSAGES

NOTLGLISTOP, Not a legal listing option

Explanation: The argument to a .SHOW, .NOSHOW, .LIST, or .NLIST
directive was not a legal option.

User Action: Delete the illegal option or replace it with a
legal option.

Severity: Error

NOTPSECTOPT, Not a valid PSECT option

Explanation: The attribute specified in the .PSECT directive was
invalid.

User Action: Delete the invalid attribute or replace it with a
valid one.

Severity: Error

OPENIN, Error opening file~-spec as input
Explanation: The assembler encountered an I/O error when opening
an input source or macro library file; file-spec is the file
specification of the file being opened. This message is produced
when the file cannot be found.

User Action: Retry the assembly or make a new copy of the inputL
file and then retry the assembly.

Severity: Error

OPENOUT, Error opening file-spec as output
Explanation: The assembler encountered an I/0 error when opening
an output object module or listing file; file-spec is the file
specification of the file being opened. This message is produced
when the device is write locked or is not mounted.

User Action: Retry the assembly and, if the error is
reproducible, notify your system manager.

Severity: Error

OPRNDSYNX, Operand syntax error
Explanation: An operand contained a syntax error.
User Action: Correct the operand syntax.

Severity: Error

DIAGNOSTIC MESSAGES

PACKTOOLONG, Packed decimal string too long

Explanation: The numeric string in a .PACKED directive had more
than 31 digits.

User Action: Reduce the length of the decimal string.

Severity: Error

PSECOPCNFLC, Conflicting PSECT options
Explanation: The values specified in a .PSECT directive
conflicted with each other or were not the same as the values
specified in a preceding .PSECT directive that specified the same
program section name.

User Action: Correct the conflicting values in the .PSECT
directive(s).

Severity: Error

PSECTBUFOVF, PSECT context buffer overflow
Explanation: The .SAVE _PSECT directive attempted to save a
program section context when the program section context buffer
was filled. A maximum of 31 program section contexts can be
saved in the buffer.
User Action: Reduce the amount of program section nesting.

Severity: Error

PSECTBUFUND, PSECT context buffer underflow
Explanation: The .RESTORE_PSECT directive attempted to restore a
program section context when the program section context buffer
was empty.

User Action: Ensure that each .RESTORE_PSECT directive
corresponds to a .SAVE_PSECT directive.

Severity: Error

READERR, error reading file-spec
Explanation: The assembler encountered an I/0 error when reading
an input source or macro library file; file-spec is the file
specification of the file being read.

User Action: Retry the assembly, or create a new copy of the
input file and then retry the assembly.

Severity: Error

A-13

DIAGNOSTIC MESSAGES

REGOPSYNX, Register operand syntax error
Explanation: The addressing mode syntax contained an error.
User Action: Correct the addressing mode syntax.

Severity: Error

RMSERROR, RMS service error

Explanation: The assembler encountered an error during a VAX-1ll
RMS operation.

User Action: Retry the operation; consult the VAX-1ll Record
Management Services Reference Manual for more information.

Severity: Error

RPTCNTNTABS, Repeat count not absolute
Explanation: The repeat count in a .BYTE, .WORD, .LONG,
.SIGNED BYTE, or .SIGNED_WORD directive contained an undefined
symbol or was a relative expression.

User Action: Replace the expression with an absolute expression
that does not contain any undefined symbols.

Severity: Error

SYMDCLEXTRN, Symbol declared external
Explanation: A label definition or direct assignment statement
specified a symbol that was previously declared external in a
.EXTERNAL directive,

User Action: Delete the external declaration or change the name
of the internal symbol.

Severity: Error

SYMDEFINMOD, Symbol is defined in module

Explanation: A .EXTERNAL directive specified a 1label that was
previously defined in the module.

User Action: Delete the external declaration or rename the
internal symbol.

Severity: Error

SYMNOTABS, Symbol is not absolute

Explanation: The argument in a macro string operator was a
relative symbol or was undefined.

User Action: Ensure that symbol is defined as an absolute
symbol.

Severity: Error

A-14

SYMOUTPHASE,

DIAGNOSTIC MESSAGES

Symbol out of phase

Explanation: A label definition specified a 1label that was

defined

later in the module; or a local 1label definition

specified a local label that was defined later in the same 1local
label block.

User Action: Ensure that the label is defined only once 1in the

module

or that the local label is defined only once in the local

label block.

Severity: Error

TEXT, No input file given

Explanation: The macro command did not contain any source files;
it contained only macro library files.

User Action: Specify a source file in the command line.

Severity: Error

TOOMNYARGS, Too many arguments in MACRO call

Explanation: The macro call contained more arguments than were
specified in the .MACRO directive in the macro definition.

User Action: Ensure that the macro call corresponds to the macro
definition,

Severity: Error

TOOMNYOPRND,

Too many operands for instruction

Explanation: Too many operands were specified for the
instruction.

User Action: Reduce the number of operands.

Severity: Error

TOOMNYPSECT,

Too many PSECTs declared

Explanation: More than 255 user-defined program sections were
declared.

User Action: Reduce the number of program sections,

Severity: Error

A-15

DIAGNOSTIC MESSAGES

UNDEFSYMBOL, Undefined symbol
Explanation: A local label was referred to but not defined in a
local 1label block; or, if GLOBAL was disabled, a symbol was
referred to but not defined in the module or specified in a
.EXTERNAL directive.

User Action: Define the local label or symbol, or specify the
symbol in a .EXTERNAL directive.

Severity: Error

UNDEFXFRADR, Undefined transfer address
Explanation: The .END directive specified a transfer address
that was not defined in the module or specified in a .EXTERNAL
directive.

User Action: Define the transfer address or delete it from the
.END directive.

Severity: Error

UNPROQUAL, Unprocessed qualifiers
Explanation: Either the /SHOW or the /CROSS qualifier was
specified without the /LIST qualifier. The assembler does not
process the source file or produce an object module.
User Action: Reenter the command with the /LIST qualifier.

Severity: Error

UNRECSTMT, Unrecognized statement
Explanation: The operator was not an opcode, directive,
user~defined opcode, previously defined macro, or macro in a
library.

User Action: Change the operator to a valid opcode, directive,
or macro; or define the macro.

Severity: Error

UNTERMARG, Unterminated argument

Explanation: The string argument was missing a delimiter or the
macro argument was missing an angle bracket.

User Action: Add the delimiter or angle bracket.

Severity: Error

A-16

DIAGNOSTIC MESSAGES

UNTERMCOND, Unterminated conditional
Explanation: A conditional assembly block was not terminated by
a .ENDC directive. The assembler inserted a .ENDC directive
before the .END directive.
User Action: Add the .ENDC directive.

Severity: Error

WRITEERR, Error writing file-spec
Explanation: The assembler encountered an I/0 error when writing
to the output object module or listing file; file-spec is the
file specification of the file being written.

User Action: Retry the assembly. If the error is reproducible,
notify your system manager.

Severity: Error

A-17

INDEX

A

Absolute addressing mode, 2-6
Addressing modes, 3-1, 3-2
controlling, 2~6
position-independent, 3-1
through 3-5
Assembler, role of, 1-3
Assembly summary, 2-13

Binary code, 2-11

C

Changes from VAX-11 MACRO V1, vii
Code,
hexadecimal, 2-11
position-independent, 3-1
through 3-5
Command format, 2-1
Common data areas, 1-6
Compatibility mode, vii
Conditional blocks, controlling
listing of, 2-7, 2-8
Controlling the listing file, 2-7,
2-8
Cross reference listing, 2-5, 2-12,
2-13
/CROSS qualifier, 2-5

D

Data, sharing, 1-6

Debugging programs, 1-4, 1-9, 2-6

Default file specifications, 2-3

Developing a program, 1-1, 1-2

Diagnostic messages, A-1 through
A-17

/DISABLE qualifier, 2-5, 2-6

E

/ENABLE qualifier, 2-5, 2-6
Errors, 2-8, 2-9, A-1

Executable image, producing a, 1-7
External symbols, 2-6

F

File specifications, 2-2, 2-3
Floating point numbers, 2-6
Format of statements, 1-1

G

Global symbols, 1-4, 1-5, 2-6

H

Hexadecimal code, 2-11

Identifying a location, 1-4
Image, shareable, 3-1
Internal symbols, 1-4

L

Labels, 1-4

Library, macro, vii, 1-5, 2-6

/LIBRARY qualifier, 2-6

Linking, '
object modules, 1-7, 1-8
programs, 1-7, 1-8

/LIST qualifier, 2-7

Listing file, 2-10 through 2-19
controlling the, 2-7, 2-8
creating the, 2-1, 2-7

Local symbols, 1-4

Locations, identifying, 1-4

MACRO command, 2-1 through 2-8
Macro libraries, vii, 1-5
Macros, 1-5

controlling listing of, 2-7, 2-8
Messages,

diagnostic, 2-8, 2-9, A-1 through

A-17

Modular programming, 1-2

N

Native mode, vii

/NOLIST qualifier, 2-7
/NOOBJECT qualifier, 2-7
/NOSHOW qualifier, 2-7, 2-8

(0

Object modules,
creating, 2-1, 2-7
linking, 1-7, 1-8

/OBJECT qualifier, 2-7

Index-1

INDEX

P

Page headings, listing, 2-10
PIC attribute, 3-1
Position-independent code,
3-1 through 3-5
Program,
debugging, 1-4, 1-9, 2-6
developing, 1-1, 1-2
linking, 1-7, 1-8
modular, 1-2
sections, 1-5 through 1-7
segmenting, 1-5, 1-6

Q

Qualifiers, 2-3 through 2-8

R

Read-only program sections, 1-6

Repeat blocks, controlling listing
of, 2-7, 2-8

Rounding floating point numbers,
2-5’ 2—6

S

Sections, program, 1-5 through 1-7
Segmenting your program, 1-5, 1-6
Services, system, 1-5

Shareable image, 3-1
Sharing data, 1-6
/SHOW qualifier, 2-7, 2-8
Source statements, 2-11
Specifications, file, 2-2
Statement format, 1l-1
Statements, source, 2-11
Suppressing listing of
unreferenced symbols, 2-6
Symbol table, 1-4, 2-12
Symbols, 1-4, 1-5, 2-6
System services, 1-5

T

Table, symbol, 1-4, 2-12

Technical changes, vii

Traceback, 2-6

I'runcating floating point numbers,
2-6

U

Undefined symbols, 2-6
Universal symbols, 1-5
User-defined symbols, 1-4, 1-5

w

Weak symbols, 1-5
Write protecting program sections,
1-6

Index-2

Please cut along this line,

VAX-11 MACRO
User's Guide
AA-DO33B-TE

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance

Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

oooogo

Other (please specify)

Name Date

Organization

Street

City. State Zip Code

or
Conntres

— — DoNotTear-Fold Hereand Tape — — — — — — — — — — — = — — — — — — — —|

|
No Postage
Necessary |
if Mailed in the
United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS TW/A14
DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

- Do Not Tear-FoldHere @ @ @ — — — = — — — — — — — — — — — — —_ - = -

