
August 1978

This document describes the FORTRAN language elements supported by

VAX-11 FORTRAN IV-PLUS. Itis intended to be used as a reference

manual in preparing FORTRAN source programs. It is not a tutorial

document, nor does it present information on the FORTRAN user’s in-

terface to the VAX/VMS operating system,

. VAX-11 FORTRAN IV-PLUS

Language Reference Manual

Order No. AA-DO34A-TE

SUPERSESSION/UPDATE INFORMATION: This is a new document for this release.

OPERATING SYSTEM AND VERSION: VAX/VMS V01

SOFTWARE VERSION: VAX-11 FORTRAN IV-PLUS 01

To order additional copies of this document, contact the Software Distribution

Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, August 1978

The information in this document is subject to change without notice

and should not be construed as a commitment by Digital Equipment

Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license

and may only be used or copied in accordance with the terms of such

license.
’

No responsibility is assumed for the use or reliability of software on

equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright C) 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this

document requests the user's critical evaluation to assist us in pre-

paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS

DEC DECtape OMNIBUS

PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS

COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET~-8

DDT LAB-8 TYPESET-11

DECCOMM DECSYSTEM-20 TMS-11

ASSIST-11 RTS-8 ITPS-10

VAX VMS SBI

DECnet IAS

CONTENTS

Page

PREFACE ix

CHAPTER 1 INTRODUCTION TO VAX-1ll FORTRAN IV-PLUS 1-1

1.1 LANGUAGE OVERVIEW 1-1

1.2 ELEMENTS OF FORTRAN PROGRAMS 1-3

1.2.1 Statements 1-3

1.2.2 Comments 1-3

1.2.3 FORTRAN Character Set 1-4

1.3 FORMATTING A FORTRAN LINE 1-5

1.3.1 Character-per-Column Formatting 1-5

1.3.2 Tab-Character Formatting 1-6

1.3.3 Statement Label Field 1-7

1.3.3.1 Comment Indicator 1-7

1.3.3.2 Debugging Statement Indicator 1-7

1.3.4 Continuation Field 1-7

1.3.5 Statement Field 1-8

1.3.6 Sequence Number Field 1-8

1.4 PROGRAM UNIT STRUCTURE 1-8

1.5 INCLUDE STATEMENT 1-9

CHAPTER 2 FORTRAN STATEMENT COMPONENTS 2-1

2.1 SYMBOLIC NAMES 2-2

2.2 DATA TYPES 2-3

2.3 CONSTANTS 2-4

2.3.1 Integer Constants 2-5

2.3.2 Real Constants 2-6

2.3.3 Double Precision Constants 2-7

2.3.4 Complex Constants 2-7

2.3.5 Octal and Hexadecimal Constants 2-8

2.3.6 Logical Constants 2-10

2.3.7 Character Constants 2-10

2.3.8 Hollerith Constants 2-11

2.4 VARIABLES 2-12

2.4.1 Data Type Specification 2-12

2.4.2 Data Type by Implication 2-13

2.5 ARRAYS 2-13

2.5.1 Array Declarators 2-14

2.5.2 Subscripts 2-15

2.5.3 Array Storage 2-15

2.5.4 Data Type of an Array 2-16

2.5.5 Array References Without Subscripts 2-16

2.5.6 Adjustable Arrays 2-17

2.6 CHARACTER SUBSTRINGS 2-17

2.7 EXPRESSIONS 2-18

2.7.1 Arithmetic Expressions 2-18

2.7.1.1 Use of Parentheses 2-20

2.7.1.2 Data Type of an Arithmetic Expression 2-21

2.7.2 Character Expressions 2-22

2.7.3 Relational Expressions 2-23

2.7.4 Logical Expressions 2-24

iii

CONTENTS (Cont.)

Page

CHAPTER 3 ASSIGNMENT STATEMENTS 3-1

3.1 ARITHMETIC ASSIGNMENT STATEMENT 3-1

3.2 LOGICAL ASSIGNMENT STATEMENT 3-3

3.3 CHARACTER ASSIGNMENT STATEMENT 3-4

3.4 ASSIGN STATEMENT 3-5

CHAPTER 4 CONTROL STATEMENTS 4-1

4.1 GO TO STATEMENTS 4-2

4.1.1 Unconditional GO TO Statement 4-2

4,1.2 Computed GO TO Statement 4-2

4.1.3 Assigned GO TO Statement 4-3

4.2 IF STATEMENTS 4-4

4,2.1 Arithmetic IF Statement 4-4

4.2.2 Logical IF Statement 4-5

4.2.3 Block IF Statements 4-5

4.2.3.1 Statement Blocks 4-8

4,.2.3.2 Block IF Examples 4-8

4.2.3.3 Nested Block IF Constructs 4-10

4.3 DO STATEMENT 4-12

4,.3.1 DO Iteration Control 4-13

4,3.2 Nested DO Loops 4-14

4.3.3 Control Transfers in DO Loops 4-15

4,.3.4 Extended Range 4-15

4.4 CONTINUE STATEMENT 4-17

4.5 CALL STATEMENT 4-18

4.6 RETURN STATEMENT 4-19

4.7 PAUSE STATEMENT 4-21

4.8 STOP STATEMENT 4-22

4.9 END STATEMENT 4-23

CHAPTER 5 SPECIFICATION STATEMENTS 5-1

5.1 IMPLICIT STATEMENT 5-2

5.2 TYPE DECLARATION STATEMENTS 5-3

5.2.1 Numeric Type Declaration Statements 5-3

5.2.2 Character Type Declaration Statements 5-4

5.3 DIMENSION STATEMENT 5-5

5.4 COMMON STATEMENT 5-6

5.5 EQUIVALENCE STATEMENT 5-8

5.5.1 Making Arrays Equivalent 5-8

5.5.2 Making Substrings Equivalent 5-10

5.5.3 EQUIVALENCE and COMMON Interaction 5-13

5.6 EXTERNAL STATEMENT 5-14

5.7 DATA STATEMENT 5-16

5.8 PARAMETER STATEMENT 5-18

5.9 PROGRAM STATEMENT 5~-19

5.10 BLOCK DATA STATEMENT 5-20

CHAPTER 6 SUBPROGRAMS 6-1

6.1 SUBPROGRAM ARGUMENTS 6~1

6.1.1 Actual Argument and Dummy Argument

, Association 6-1

6.1.1.1 Adjustable Arrays 6-2

6.1.1.2 Passed Length Character Arguments 6~3

iv

CHAPTER

CHAPTER

o)
l

[i.
—l

.

.

N
N

w
1
=

N
w

N

.

A
N
A
N

O

O

W
W
W
W
R
N
R
N
N
N
N
N
N
N
N
N
N

.
L]

R

B

W

N
N

N
N

*
.

*
L[]

.
L]

[}

[3

°
w
h
H

N

=

N . w 1
~

~
J

N

N
N

.

=

e

e

.

A
L
T
U
I
U
T

D

W

N

H

N
N

N

N
S
N
S

N
N

N
N

e
©®

&
o

L]

e
&

e
&

s
@

L]

L]

N
O
O
A
O
N
O
U
T
O
T
U
T
d

R

W
W
W
N
N
D
N

¢
o

L]

[]

L)

L)

L[]

.
L]

N

N

=

N

=

N

N

=

[0
0]

0

0
0

0
0

0
o

L)

o W

N

CONTENTS (Cont.)

Character and Hollerith Constants as

Actual Arguments

Alternate Return Arguments

Built-In Functions

Argument List Built-In Functions

$LOC Built-In Function

USER-WRITTEN SUBPROGRAMS

Arithmetic Statement Functions

Function Subprograms

Numeric Functions

Character Functions

Function Reference

Subroutine Subprograms

ENTRY Statement

ENTRY in Function Subprograms

ENTRY in Subroutine Subprograms

FORTRAN LIBRARY FUNCTIONS

Processor-Defined Function References

Generic Function References

Processor-Defined and Generic Function

Usage

Character Library Functions

INPUT/OUTPUT STATEMENTS

I/0 STATEMENT COMPONENTS

Logical Unit Numbers

Direct Access Record Numbers

Format Specifiers

Input/Output Records

Input/Output Lists

Simple Lists

Implied DO Lists

Transferring Control on End-of-File or

Error Conditions

FORMATTED SEQUENTIAL INPUT/OUTPUT

Formatted Sequential Input Statements

Formatted Sequential Output Statements

LIST-DIRECTED SEQUENTIAL INPUT/OUTPUT

List-Directed Input Statements

List~Directed Output Statements

UNFORMATTED SEQUENTIAL INPUT/OUTPUT

Unformatted Sequential Input Statement

Unformatted Sequential Output Statement

FORMATTED DIRECT ACCESS INPUT/OUTPUT

Formatted Direct Access Input Statement

Formatted Direct Access Output Statement

UNFORMATTED DIRECT ACCESS INPUT/OUTPUT

Unformatted Direct Access Input Statement

Unformatted Direct Access Output Statement

ENCODE AND DECODE STATEMENTS

FORMAT STATEMENTS

FIELD DESCRIPTORS

I Field Descriptor

O Field Descriptor

Z Field Descriptor

Page

i

H
E
H
E
O
O
N
N
O
U
T
O
Os

o

N
I

T

o

A
N U

1

o >
N

O

6-15

A

O
Y
O

1

M N

O

6~17

o
)
W

)
]

[
D
N

=
0

D '_
.l

J

H
H
E
O
N
N
S
O

B
_
W
W
w
w
d
h
D
N
D
N
D
N

N
N
N
N
N
N
N
N

1

CONTENTS (Cont.)

Page

8.1.4 F Field Descriptor 8-5

8.1.5 E Field Descriptor 8-6

8.1.6 D Field Descriptor 8-7

8.1.7 G Field Descriptor 8-8

8.1.8 L Field Descriptor 8-9

8.1.9 A Field Descriptor 8-10

8.1.10 H Field Descriptor 8-11

8.1.10.1 Character Constants 8-11

8.1.11 X Field Descriptor 8-12

8.1.12 T Field Descriptor 8-12

8.1.13 Q Field Descriptor 8-13

8.1.14 Dollar Sign Descriptor 8-13

8.1.15 Colon Descriptor 8-14

8.1.16 Complex Data Editing 8-14

8.1.17 Scale Factor 8-14

8.1.18 Repeat Counts and Group Repeat Counts 8-16

8.1.19 Variable Format Expressions 8-17

8.1.20 Default Field Descriptors 8-18

8.2 CARRIAGE CONTROL 8-18

8.3 FORMAT SPECIFICATION SEPARATORS 8-19

8.4 EXTERNAL FIELD SEPARATORS 8-20

8.5 RUN--TIME FORMAT 8-21

8.6 FORMAT CONTROL INTERACTION WITH INPUT/OUTPUT
LISTS 8-22

8.7 SUMMARY OF RULES FOR FORMAT STATEMENTS 8-23

8.7.1 General Rules 8-23

8.7.2 Input Rules 8-24

8.7.3 Output Rules 8-24

CHAPTER 9 AUXILIARY INPUT/OUTPUT STATEMENTS 9-1

OPEN STATEMENT

ACCESS Keyword

ASSOCIATEVARIABLE Keyword

BLOCKSIZE Keyword

BUFFERCOUNT Keyword

CARRIAGECONTROL Keyword

DISPOSE Keyword

ERR Keyword

EXTENDSIZE Keyword

FORM Keyword

]
[]

[]

[
.

.
L]

.
[

.
L]

*
L]

*
L]

L[]

.
*

.
L[]

N
N
F
R
H
H
R
E
H
R
E
R
F
R
H
E
B
O
O
0
O
N
O
0
S

W
N

P
P
O
V
V
V
O
O
V
V
O
O
V
Y
O
Y

F
H
W
O
W
V
W
V
O
O
O
L
I
I
I
J
N
0
N9.1

9.1

9.1

9.1

9.1

9.1

9.1

9.1

9.1

9.1

9.1.10 INITIALSIZE Keyword -

9.1.11 MAXREC Keyword -

9.1.12 NAME Keyword -

9.1.13 NOSPANBLOCKS Keyword -10

9.1.14 ORGANIZATION Keyword -10

9.1.15 READONLY Keyword -10

9.1.16 RECORDSIZE Keyword 9-10

9.1.17 RECORDTYPE Keyword 9-11

9.1.18 SHARED Keyword 9-12

9.1.19 TYPE Keyword 9-12

9.1.20 UNIT Keyword 9-12

9.1.21 USEROPEN Keyword 9-12

9.2 CLOSE STATEMENT 9-13

9.3 REWIND STATEMENT 9-14
9.4 BACKSPACE STATEMENT 9-15

9.5 FIND STATEMENT 9-16

9.6 ENDFILE STATEMENT 9-17
9.7 DEFINE FILE STATEMENT 9-18

vi

CONTENTS (Cont.)

Page

APPENDIX A CHARACTER SETS A-1

~ A.l FORTRAN CHARACTER SET A-1
A.2 ASCII CHARACTER SET A-2
A.3 RADIX~-50 CONSTANTS AND CHARACTER SET A-2

APPENDIX B FORTRAN LANGUAGE SUMMARY B-1

B.1 EXPRESSION OPERATORS | B-1
B.2 STATEMENTS B-2
B.3 LIBRARY FUNCTIONS Bfl7

INDEX
Index-1

FIGURES

FIGURE 1-1 FORTRAN Coding Form 1-5
1-2 Line Formatting Example 1-6
1-3 Required Order of Statements and ILines 1-8
2-1 Array Storage 2-16
4-1 Examples of Block IF Constructs 4-7
4-2 Nested DO Loops 4-14
4-3 Control Transfers and Extended Range 4-16
5-1 Equivalence of Array Storage 5-9
5-2 Equivalence of Arrays with Nonunity Lower

Bounds 5-10
5-3 Equivalence of Substrings 5-11
5-4 Equivalence of Character Arrays 5-12
6-1 Multiple Functions in a Function Subprogram 6-15
6-2 Multiple Function Name Usage 6-20
8-1 Variable Format Expression Example 8-17

TABLES

TABLE 2-1 Entities Identified by Symbolic Names 2-3
2-2 Data Type Storage Requirements 2-4
2-3 Allowed Combinations for Exponentiation (2-19
3-1 Conversion Rules for Assignment Statements 3-2
6-1 Argument List Built-In Functions and

Defaults 6-6
6-2 Types of User-Written Subprograms 6-7
6-3 Generic Function Name Summary 6-18
7-1 List-Directed Output Formats 7-14
8-1 Effect of Data Magnitude on G Format

Conversions 8
Default Field Descriptor Values 8
Carriage Control Characters 8
Summary of FORMAT Codes 8-25

9

A

B

OPEN Statement Keyword Values

ASCII Character Set

Generic and Processor-Defined Functions

w
n
s
?
c
n
a
a
m
s

W

N

vii

PREFACE

MANUAL OBJECTIVES

This manual describes the elements of VAX-11 FORTRAN IV-PLUS. The
manual is designed for reference, rather than as a tutorial document.

The user interface to VAX-11 FORTRAN IV-PLUS 1is described in the
companion manual to this document, the VAX-11 FORTRAN IV-PLUS User's
Guide.

INTENDED AUDIENCE

This manual is intended for use as a reference document. Therefore,
readers should have a basic understanding of the FORTRAN language in
order to derive maximum benefit from the manual. Some knowledge of
the VAX/VMS operating system is helpful, but not necessary. For
information concerning VAX/VMS refer to the documents listed below
under "ASSOCIATED DOCUMENTS."

STRUCTURE OF THIS DOCUMENT

This manual contains nine chapters and two appendixes.

® Chapter 1 consists of general information concerning FORTRAN,
and introduces basic facts needed prior to writing FORTRAN
programs.

e Chapter 2 describes the components of FORTRAN statements, such
as symbols, constants, variables, etc.

e Chapter 3 describes assignment statements, which are used to
define values used in the program.

e Chapter 4 deals with control statements, used to transfer
control from one point in the program to another.

e Chapter 5 describes specification statements, which are used
to define characteristics of symbols used in the program, such
as data type, array dimensions, etc.

e Chapter 6 discusses subprograms; both user-written and those
supplied with VAX-11 FORTRAN IV-PLUS.

e Chapter 7 covers the topic of FORTRAN input/output.

® Chapter 8 describes the FORMAT statements used in conjunction
with formatted I/O statements.

ix

Chapter 9 contains information on auxiliary I/0 statements,

such as OPEN, CLOSE, and DEFINE FILE.

Appendix A summarizes the character sets supported by VAX-11

FORTRAN IV-PLUS.

Appendix B summarizes the language elements of VAX-11 FORTRAN

IV-PLUS.

ASSOCIATED DOCUMENTS

The following documents are of interest to VAX-11 FORTRAN IV-PLUS

programmers:

For a

VAX/VMS Primer

VAX-11 FORTRAN IV-PLUS User's Guide

VAX/VMS Command Language User's Guide

complete 1list of all VAX-1ll documents, including brief

descriptions of each, see the VAX-1ll Information Directory.

CONVENTIONS USED IN THIS DOCUMENT

The following syntactic conventions are used in this manual:

Uppercase words and letters used in examples indicate that you

should type the word or letter as shown

Lowercase words and letters used in format examples indicate

that you are to substitute a word or value of your choice

Brackets ([]) indicate optional elements

Braces ({}) are used to enclose lists from which one element is

to be chosen

Ellipses (...) indicate that the preceding item(s) can be

repeated one or more times

In addition, the following notations are used to denote special

nonprinting characters:

Tab character TAB

Space character A

or

(in terminal dialog examples)

CHAPTER 1

INTRODUCTION TO VAX-11 FORTRAN IV-PLUS

1.1 LANGUAGE OVERVIEW

VAX-11 FORTRAN IV—PLUSl is based on American National Standard (ANS)
FORTRAN X3.9-1966, and includes the following enhancements to ANS

FORTRAN:

e The CHARACTER data type provides a means of manipulating

character data. Character constants, variables, arrays,

functions, and expressions using the concatenation operator

and substring references are provided.

e Block IF statements provide a way to conditionally execute a

block of statements. The block IF statements are IF THEN,

ELSE IF THEN, ELSE, and END IF.

@ Any arithmetic expression can be used as an array subscript.

If the expression 1is not of type integer it is converted to

integer type.

® Mixed-mode expressions can contain elements of any data type,

including complex.

e The following data types have been added:

LOGICAL*1

LOGICAL*2

INTEGER*2

CHARACTER

e The IMPLICIT statement redefines the implied data type of

symbolic names.

e The following input/output (4}0) statements have been added:

ACCEPT

TYPE Device-oriented I/0O

PRINT

READ (u'r)

WRITE (u'r) Unformatted direct-access I1/0

FIND (u'r)

READ (u'r,fmt)

WRITE (u'r,fmt) Formatted direct-access I/0

1 VvAX-11 FORTRAN IV-PLUS is referred to simply as FORTRAN throughout

the rest of this manual.

INTRODUCTION TO VAX-11 FORTRAN IV-PLUS

OPEN

CLOSE File control and attribute

DEFINE FILE specification

ENCODE Formatted data conversion
DECODE in memory

The specifications END=s and/or ERR=s can be included in any

READ or WRITE statement to transfer control to the specified
statement when an end-of-file or error condition occurs.

List-directed I/0 can be used to perform formatted I/O without
a format specification.

Constants and expressions are permitted in the I/0O 1lists of

WRITE, TYPE, and PRINT statements.

PARAMETER statements can be used to assign symbolic names to
constant values.

Generic-function selection by argument data type 1s provided
for many FORTRAN-supplied functions.

A DO statement control variable can be a real or double

precision variable. Any arithmetic expression can be used as

the initial value, increment, or limit parameter 1in the DO

statement, or as the control parameter in the computed GO TO

statement.

The DO statement increment parameter can have a negative
value.

For readability, you can optionally use commas in DO
statements. For example:

Do 5, I=1,10

Lower bounds for array dimensions can be specified 1in all
array declarators.

ENTRY statements can be used in SUBROUTINE and FUNCTION

subprograms to define multiple , entry points 1in a single

program unit.

A PROGRAM statement can be used in a main program.

The INCLUDE statement incorporates FORTRAN source text from a

separate file into a FORTRAN program.

You can include an explanatory comment on the same line as any
FORTRAN statement. Begin comments with exclamation points

(1.

You can include debugging statements in a program by placing
the letter D in column 1. These statements are compiled only
when you specify the associated compiler command qualifier;
otherwise, they are treated as comments.

The statement label list in an assigned GO TO statement is
optional.

8,

INTRODUCTION TO VAX-1ll FORTRAN IV-PLUS

e Octal and hexadecimal constants can be used in place of any

numeric constants.

e Symbolic names can be up to 15 characters long and consist of

letters, digits, dollar signs ($), and underline characters

().

VAX-11 FORTRAN IV-PLUS is also a compatible superset of PDP-11 FORTRAN

IV-PLUS. This means you can compile existing PDP-11 FORTRAN source

programs, as well as new programs that incorporate features available

in VAX-11l FORTRAN IV-PLUS.

1.2 ELEMENTS OF FORTRAN PROGRAMS

FORTRAN programs consist of FORTRAN statements and optional comments.

The statements are organized into program units. A program unit is a

sequence of statements that define a computing procedure and is

terminated by an END statement. A program unit can be either a main

program or a subprogram. An executable program consists of one main

program and, optionally, one or more subprograms.

1.2.1 Statements

Statements are grouped 1into two general classes: executable and

nonexecutable. Executable statements describe the action of the

program. Nonexecutable statements describe data arrangement and

characteristics, and provide editing and data-conversion information.

Statements are divided into physical sections called lines. A line is

a string of up to 80 characters. If a statement is too long to fit on

one line, you can continue it on one or more additional lines, called

continuation lines. A continuation 1line 1is identified by a

continuation character in the sixth column of that line. (For further

information on continuation characters, see Section 1.3.4.)

You can identify a statement with a statement 1label so that other

statements can refer to it, either for the information it contains or

to transfer control to it. A statement label takes the form of an

integer number 1in the first five columns of a statement's initial

line.

1.2.2 Comments

Comments do not affect program processing in any way. They are merely

a documentation aid to the programmer. You can use them freely to

describe the actions of the program, to identify program sections and

processes, and to provide greater ease in reading the source program

listing. The letter C in the first column of a source line identifies

that line as a comment. In addition, if you place an ex¢lamation

point (!) in column 1 or in the statement portion of a source 1line,

the rest of that line is treated as a comment.

INTRODUCTION TO VAX-11 FORTRAN IV-PLUS

1.2.3 FORTRAN Character Set

The FORTRAN character set consists of:

1. All uppercase and lowercase letters (A through Z, a through

z)

2. The numerals 0 through 9

3. The special characters listed below

Character Name

A or (me) Space or tab

= Equal sign

+ Plus sign

- Minus sign

* Asterisk

/ Slash

(Left parenthesis

) Right parenthesis

’ Comma

. Period

! Apostrophe

" Quotation mark

$ Dollar sign

Underline

Exclamation point

: Colon

< Left angle bracket

> Right angle bracket

% Percent sign

& Amper sand

Other printable ASCII characters can appear in a FORTRAN statement
only as part of a character or Hollerith constant (see Appendix A for
a list of printable characters). Any printable character can appear

in a comment.

Except in character and Hollerith constants, the compiler makes no
distinction between uppercase and lowercase letters.

INTRODUCTION TO VAX-11 FORTRAN IV-PLUS

1.3 FORMATTING A FORTRAN LINE

Each FORTRAN line has four fields, as follows:

e Statement label field

e Continuation indicator field

®© Statement field

® Sequence number field.

There are two ways to format a FORTRAN line: 1) on a
character-per-column basis or 2) by using the tab character. You can
use character-per-column formatting when punching cards, using a

coding form, or entering lines from a terminal using a text editor.

You can use tab-character formatting only when you are entering lines

at a terminal using a text editor.

1.3.1 Character-per-Column Formatting

As shown in Figure 1-1, a FORTRAN line 1is divided 1into fields for

statement labels, continuation indicators, statement text, and

sequence numbers. Each column represents a single character.

Sections 1.3.3 through 1.3.6 describe the use of each field.

FORTRAN CODER DATE PAGE

CODING FORM PROBLEM

C Convmer

& FORTRAN STATEMENT IDENTIFICATION
STATEMENT [

N UM R .

1234 506§78910012131415161718192021222324252627282930313233343536373839404 424344454647 484950 515253 54555657 5859 6061626364 6556676869707 72|7376 7576777879 80

C s THI1S, PROGRAM CALCULATES PRIME NUMBERS FROM 11 TO 50 . . @ @ @ .., ettt

(210 TR RS NN P IR R X P A NT
....... + e

J.=1 . - ettt
+———+ —t e +

4, I L A R TN D

= N NN ———

A= 1/A +

L=1/4 .
B=A-L

st BF (B 5, 10, 5 — — .

S LF (J. LT SGRT, ((FLOAT, (l))) GQ TO. ‘4...........................

TYPE 105 1

10 CONTINUE — — . s N ——s et

1,05 FORMAT (I4 'IS PRlME")

. MND

e bttt PNSN SN
L e e B e e e L s e o e LA S B o S B S A e e o T e o o T o P S " A+

AAAAAAAAAAAAAAAAAAAAAAAAAA VST U U S SR 1 W S . | 4 I U Y WU W A U NS D W W U AT W I ¢ 4 '
T L t T LANRLANAGHE S S SIS BN Sl A Sa e g 1+ T T 1 La 4 T +7T 1 T

o n o S S 4 + bbbt Attt At bbbt
+ e

o B B S e S S Attt oottt 4ttt -ttt 4

yes e gy T e W i DN
1234 35016[789101012131415161718192021222324252627282970 31323334 133637307940 41 4243444540 47484950 315233 343356 57 39390061 626164 836687680970 1N 71 7174737877 787980

PG-3 DIGITAL EQUIPMENT CORPORATION : MAYNARD, MASSACHUSETTS

Figure 1-1 FORTRAN Coding Form

INTRODUCTION TO VAX-11] FORTRAN IV-PLUS

To enter an item in a field, enter it in the column(s) in the <coding

form, as listed below:

Field Column (s)

Statement label 1 through 5

Continuation indicator 6

Statement 7 through 72

Sequence number 73 through 80

1.3.2 Tab-Character Formatting

‘You can use tab-character formatting to specify the statement label
field, the continuation indicator field, and the statement field. You

cannot specify a sequence number field with tab-character formatting.

Figure 1-2 illustrates FORTRAN lines with tab-character formatting and

the equivalent lines with character-per-column formatting.

Format Using TAB Character Character-per-Column Format

112 3 4 51617 8 9 10|11 12 13 14 15|16 17 18 19 20

C @a® FIRST VALUE C FIIIRISIT VAL JUIE

10@B | = J + 5xK + 110 | = J + 51+ K +

1 L+M 1 L]|+IM

@B IVAL = 1+2 I {V[AlL = I {+1]2

Figure 1-2 Line Formatting Example.

The statement label field consists of the characters that you type

before the first tab character. The statement label field cannot have

more than 5 characters.

After you type the first tab character, you can type either the

continuation indicator field or the statement field.

To enter the continuation indicator field, type any digit after the

first tab. If you enter the continuation indicator field, the

statement field consists of all the characters after the digit to the

end of the line.

To enter the statement field without a continuation indicatorK field,

type the statement immediately after the first tab. Note that no

FORTRAN statement starts with a digit.

1-6

INTRODUCTION TO VAX-11l FORTRAN IV-PLUS

Many text editors and terminals advance the terminal print carriage to

a predefined print position when you type the TAB key. However, this

action is not related to the FORTRAN compiler's interpretation of the

tab character described above.

You can use the space character to improve the legibility of a FORTRAN

statement. The compiler ignores all spaces 1in a statement field

except those within a character or Hollerith constant. For example,

GO TO and GOTO are equivalent. The compiler treats the tab character

in a statement field the same as a space. 1In the source listing that

the compiler produces, the tab causes the character that follows to be

printed at the next tab stop (located at columns 9, 17, 25, 33, etc.).

1.3.3 Statement Label Field

A statement label or statement number consists of one to five decimal

digits in the statement 1label field of a statement's initial line.

Spaces and leading zeros are ignored. An all-zero statement label is

illegal.

Any statement that another statement refers to must have a label. No

two statements within a program unit can have the same label.

You can use two special indicators -- the comment indicator and the

debugging statement indicator -- in the first column of the label

field. These indicators are described below.

The statement label field of a continuation line must be blank.

1.3.3.1 Comment Indicator - You can use the letter C in column 1 to

indicate that the line is a comment. The compiler prints that line in

the source program listing, then ignores the line.

1.3.3.2 Debugging Statement Indicator - You can use the letter D in

column 1 to designate debugging statements. The initial line of the

debugging statement can contain a statement label in the remaining

columns of the 1label field. 1If a debugging statement is continued

onto more than one line, every continuation line must contain a D in

column 1 as well as a continuation indicator.

[4

The compiler treats the debugging statement either as source text to

be compiled or as a comment, depending on the setting of the D_LINES

compiler command qualifier. If you specify D LINES, debugging

statements are compiled as a part of the source program; if you do

not specify D LINES, debugging statements are treated as comments.

1.3.4 Continuation Field

A continuation indicator is any character, except zero or space, in

column 6 of a FORTRAN line or any digit, except zero, after the first

tab. A statement can be divided into distinct lines at any point.

The compiler considers the characters after the continuation character

as the characters following the last character of the previous 1line,

as if no break occurred at that point. If a continuation indicator is

zero, then the compiler considers the 1line an 1initial 1line of a

FORTRAN statement.

INTRODUCTION TO VAX-11l FORTRAN IV-PLUS

Comment lines cannot be continued. Comment lines can occur between a

statement's initial line and its continuation line(s), or between

successive continuation lines.

1.3.5 Statement Field

The text of a FORTRAN statement is placed in the statement field.
2 A aWa OIRD Q-Nno la A - A N d E A -‘ ln

character and Hollerith constants), you can space the text in any way

desired for maximum legibility.

NOTE

If a 1line extends beyond character

position 72, the text following position
70 1 1
72 is ignored and no warning message 1s

printed.

1.3.6 Sequence Number Field

A sequence number or other identifying information can appear in

columns 73 through 80 of any line in a FORTRAN program. The compiler

ignores the characters in this field.

1.4 PROGRAM UNIT STRUCTURE

Figure 1-3 shows the order of statements in a FORTRAN program unit.

In this figure, vertical lines separate statement types that can be

interspersed. For example, DATA statements can be interspersed with

executable statements. Horizontal lines indicate statement types that

cannot be interspersed. For example, type declaration statements

cannot be interspersed with executable statements.

PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA Statements

IMPLICIT

Statements .

PARAMETER

Other Statements

Comment Specification

Li Statements
a'r':ss FORMAT

INCLUDE and
Statements ENTRY Statement Function

Statements DATA Definitions
Statements

Executable

Statements

END Line

Figure 1-3 Required Order of Statements and Lines

1-8

INTRODUCTION TO VAX-11 FORTRAN IV-PLUS

1.5 INCLUDE STATEMENT

The INCLUDE statement specifies that the contents of a designated file

are to be incorporated in the FORTRAN compilation directly following

the INCLUDE statement. The INCLUDE statement is described in this

chapter rather than with the other FORTRAN statements because it has

no effect on program execution, except to direct the compiler to read

FORTRAN statements from a file.

The INCLUDE statement has the form:

INCLUDE 'file specification[/[NO]JLIST]'

file specification

Is a character constant that specifies the file to be included in

the compilation. This file specification must be acceptable to

the operating system. (See the VAX-11 FORTRAN IV-PLUS User's

Guide for the form of a file specification.)

The /LIST qualifier indicates that the statements in the specified

file are to be listed in the compilation source listing. An asterisk

(*) precedes each statement listed. The /NOLIST gqualifier indicates

that the included statements are not to be listed in the compilation

source listing. The default is /LIST; that is, the compiler assumes

/LIST if you do not specify a qualifier.

When the compiler encounters an INCLUDE statement, it stops reading

statements from the current file and reads the statements in the

included file. When it reaches the end of the included file, the

compiler resumes compilation with the next statement after the INCLUDE

statement.

An INCLUDE statement can be contained in an included file.

An included file cannot begin with a continuation line. Each FORTRAN

statement must be completely contained within a single file.

The INCLUDE statement can appear anywhere that a comment line can

appear, as shown in Figure 1-3. Any FORTRAN statement can appear in

an included file. However, the included statements, when combined

with the other statements in the compilation, must satisfy the

statement ordering restrictions described in Section 1.4.

In the following example, the file COMMON.FOR defines the size of the

blank COMMON block and the size of the arrays X, Y, and Z.

Main Program File File COMMON.FOR

INCLUDE 'COMMON.FOR' PARAMETER M = 100

DIMENSION Z (M) COMMON X (M),Y (M)

CALL CUBE

DO 5, 1I=1,M

5 Z(I) X(I)+SQRT(Y(I))it

SUBROUTINE CUBE

INCLUDE 'COMMON.FOR'

DO 10, I=1,M

10 X(I) = Y(I)**3

RETURN

END

CHAPTER 2

FORTRAN STATEMENT COMPONENTS

The basic components of FORTRAN statements are:

Constants —- fixed, self-describing values.

Variables -- symbolic names that represent stored values.

Arrays -- groups of values that are stored contiguously and

can be referred to individually or collectively. Individual

values are called array elements.

Expressions -- single constants, variables, array elements, or

function references; or, combinations of these components

plus certain other elements, called operators, that specify

computations to be performed on the values of these components

to obtain a single result.

Function references —-- names of functions, optionally followed

by 1lists of arguments. A function reference performs the

computation indicated by the function definition. The

resulting value is used in place of the function reference.

variables, arrays, and functions have symbolic names. A symbolic name
is a string of characters that identify entities in the progr

am.

Constants, variables, arrays, expressions, and functions can have the
following data types:

Logical

Integer

Real

Double precision

Complex

Character

The following sections detail the basic components of FORTRAN, with

the exception of function references, which are described in Chapter

6.

FORTRAN STATEMENT COMPONENTS

2.1 SYMBOLIC NAMES

Symbolic names are used to identify entities within a FORTRAN program
unit. These entities are listed in Table 2-1.

A symbolic name is a string of letters, digits, and the dollar sign
(S$) and underline (_) special characters. The first character in a
symbolic name must be a letter. The symbolic name can contain a
maximum of 15 characters.

Examples of valid and invalid symbolic names are:

Valid Invalid

NUMBER 5Q (begins with a numeral)
K9 B.4 (contains a special character
X other than _ or §)
FIND_IT SFREQ (begins with a §)

-« P R vy

By convention, symbolic names containing a dollar sign ($)- are
reserved for wuse in DIGITAL-supplied software components. To avoid
name conflicts, you should not define any symbolic names in vyour
program that contain a dollar sign.

Symbolic names must be unique within a program unit. That 1s, you
cannot use the same symbolic name to identify two or more entities in
the same program unit. Furthermore, in an executable program
consisting of two or more program units, the symbolic names of the
following entities must be unique within the entire program:

® Processor-defined functions

® Function subprograms

® Subroutine subprograms

e Common blocks

® Main programs

e Block data subprograms

® Function entries

® Subroutine entries

That is, if your program contains a function named BTU, you cannot use
BTU as the symbolic name of any other subprogram, entry, or common
block in the program, even if the name appears in a different program
unit.

Each entity with "yes" under "Typed" in Table 2-1 has a data type.
Sections 2.4.1 and 2.4.2 discuss how to specify the data type of a
name.

Within a subprogram, you can also use symbolic names as dummy
arguments. A dummy argument can represent a variable, array, array
element, constant, expression, or subprogram.

FORTRAN STATEMENT COMPONENTS

Table 2-1

Entities Identified by Symbolic Names

Entity Typed

Variables yes

Arrays yes

Arithmetic statement functions yes

Processor-defined functions yes

Function subprograms yes

Subroutine subprograms no

Common blocks no

Main programs no

Block data subprograms no

Function entries yes

Subroutine entries no

Parameter constants yes

2.2 DATA TYPES

Each basic component represents data of one of several types. The

data type of a component can be inherent in its construction, implied

by convention, or explicitly declared. The data types available in

FORTRAN, and their definitions, are:

e Integer -- a whole number

@ Real -- a decimal number; that is, a whole number, a decimal

fraction, or a combination of the two

e Double precision -- similar to real, but with more than twice
the degree of accuracy in its representation

e Complex -- a pair of real values that represent a complex

number ; the first value represents the real part of that

number, the second represents the imaginary part

e Logical -- the logical value, true or false

@ Character -- a sequence of characters

An important attribute of each data type 1is the amount of memory

required to represent a value of that type. Variations on the basic

types affect either the accuracy of the represented value or the

allowed range of values.

ANS FORTRAN specifies that a "numeric storage unit" is the amount of

storage needed to represent a real, integer, or logical value. Double

precision and complex values occupy two numeric storage units. In

VAX-11 FORTRAN IV-PLUS, a numeric storage unit corresponds to 4 bytes

of memory.

ANS FORTRAN specifies that a "character storage unit" is the amount of

storage needed to represent one character value. 1In VAX-11l FORTRAN

IV-PLUS, a character storage unit corresponds to 1 byte of memory.

VAX-11 FORTRAN IV-PLUS provides additional data types for optimum

selection of performance and memory requirements. Table 2-2 lists the

data types available, the names associated with each data type, and

the amount of storage required (in bytes). The form *n appended to a

data type name is called a data type length specifier.

FORTRAN STATEMENT COMPONENTS

Table 2-2

Data Type Storage Requirements

Data Type Storage Requirements

(in bytes)

BYTE 12 5
LOGICAL 2 or 4

LOGICAL*1 18
LOGICAL*2 2

LOGICAL*4 4

INTEGER 2 or 4P
INTEGER*2 2

INTEGER*4 4 \

REAL 4

REAL¥*4 4

REAL*8 8

DOUBLE PRECISION 8

COMPLEX 8

COMPLEX*8 8

CHARACTER*1len len®
CHARACTER*(*)

@ fThe l-byte storage area can contain the logical values true

or false, a single character, or integers in the range -128

to +127.

b gither 2 or 4 bytes are allocated depending on the compiler
command qualifier specified. The default allocation is 4

bytes.

€ The value.of len is the number of characters specified. The

value of 1len can be in the range 1 to 32767. Passed length

format -- *(*) -- applies only to dummy arguments or

character functions, and indicates that the length of the

actual arqument or function is used (see Chapter 6).

The following sections contain additional descriptions of these data

types and their representations.

2.3 CONSTANTS

A constant represents a fixed value and can be a numeric value, a

logical value, or a character string.

Octal, hexadecimal, and Hollerith constants have no data type. They

assume the data type of the context in which they appear (see Sections

2.3.5 and 2.3.8).

FORTRAN STATEMENT COMPONENTS

2.3.1 Integer Constants

An integer constant is a whole number with no decimal point. It can

have a leading sign and is interpreted as a decimal number.

An integer constant has the form:

snn

An optional sign.

nn

A string of numeric characters.

Leading zeros, if any, are ignored.

A minus sign must appear before a negative integer constant. A plus

sign 1is optional before a positive constant (an unsigned constant is

assumed to be positive).

Except for a 1leading algebraic sign, an integer constant cannot

contain any character other than the numerals 0 through 9.

The absolute value of an integer constant cannot be greater than
2147483647.

Examples of valid and invalid integer constants are:

Valid Invalid

0 99999999999 (too large)
-127 3.14 (decimal point and

+32123 32,767 comma not allowed)

If the value of the constant is within the range -32768 to +32767, it

represents a 2-byte signed quantity and is treated as INTEGER*2 data
type. If the value is outside that range, it represents a 4-byte
signed quantity and is treated as INTEGER*4 data type.

Integer constants can also be specified in octal form.

The octal form of an integer constant is:

llnn

nn

A string of digits in the range 0 to 7.

Examples of valid and invalid octal integer constants are:

Valid Invalid

"107 "108 (contains a digit outside the allowed
range)

"177777 "1377. (contains a decimal point)
"17777" (contains a trailing quotation mark)

FORTRAN STATEMENT COMPONENTS

2.3.2 Real Constants

A real constant can be any one of the following:

e A basic real constant

® A basic real constant followed by a decimal exponent

e An integer constant followed by a decimal exponent

A basic real constant is a string of decimal digits, in any of the

following forms:

S.nn

snn.nn

snn.

s

An optional sign

nn

A string of numeric characters (decimal digits).

The decimal point can appear anywhere in the string. The number of

digits 1is not 1limited, but typically only the leftmost 7 digits are

significant. Leading zeros (zeros to the left of the first nonzero

digit) are ignored in counting the leftmost 7 digits. Thus, in the

constant 0.00001234567, all the nonzero digits, and none of the

zeroes, are significant.

A decimal exponent has the form:

Esnn

An optional sign.

nn

An integer constant.

The exponent represents a power of 10 by which the preceding real or

integer constant 1is to be multiplied (for example, 1.0E6 represents

the value 1.0 * 10 ** 6),.

A real constant occupies 4 bytes of VAX-1l storage and is interpreted

as a real number with a degree of precision of, typically, 7 decimal

digits.

A minus sign must appear between the letter E and a negative exponent.

A plus sign is optional for a positive exponent.

Except for algebraic signs, a decimal point, and the 1letter E (if

used), a real constant cannot contain any character other than the

numerals 0 through 9.

If the letter E appears 1in a real constant, an integer constant

exponent field must follow. The exponent field cannot be omitted, but

it can be zero.

The magnitude of a non-zero real constant cannot be smaller than

approximately 0.29E-38 or greater than approximately 1.7E38.

FORTRAN STATEMENT COMPONENTS

Examples of valid and invalid real constants are:

vValid Invalid

3.14159 1,234,567 (commas not allowed)

621712. 325E-45 (too small)

-.00127 -47.E47 (too large)

+5.0E3 100 (decimal point missing)

2E-3 $25.00 (special character

not allowed)

2.3.3 Double Precision Constants

A double precision constant is a basic real constant or an integer

constant followed by a decimal exponent of the form:

Dsnn

An optional sign.

nn

An integer constant.

The number of digits that precede the exponent is not 1limited, but

typically only the leftmost 16 digits are significant.

A double precision constant occupies 8 bytes of VAX-11l storage and is

interpreted as a real number with a degree of precision that is

typically 16 significant digits.

A minus sign must appear before a negative double precision constant.

A plus sign 1is optional before a positive constant. Similarly, a

minus sign must appear between the letter D and a negative exponent;

a plus sign is optional for a positive exponent.

The exponent field following the letter D cannot be omitted, but it

can be zero.

The magnitude of a non-zero double precision constant cannot be less

than approximately 0.29D-38 or greater than approximately 1.7D38.

Examples of valid and invalid double precision constants are:

Valid Invalid

1234567890D+5 1234567890D45 (too large)

+2.7182815.846182D00 1234567890.0D-89 (too small)

-72.5D-15 +2.7182812846182 (no Dsnn present;

1DO this is a valid
single precision

constant)

2.3.4 Complex Constants

A complex constant is a pair of real constants separated by a comma

and enclosed in parentheses. The first real constant represents the

real part of that number and the second real constant represents the

imaginary part.

FORTRAN STATEMENT COMPONENTS

A complex constant has the form:

(rc,rc)

rc

A real constant.

The parentheses and comma are part of the constant and are required.
See Section 2.3.2 for the rules for forming real constants.

A complex constant occupies 8 bytes of VAX-1ll storage and is

interpreted as a complex number.

Examples of valid and invalid complex constants are:

Valid Invalid

(1.70391,-1.70391) (1,2) (integers are not allowed)
(+12739E3,0.) (1.23,) (second real constant is

missing)

(1.0,1.000) (double precision

constants are not allowed)

2.3.5 Octal and Hexadecimal Constants

Octal and hexadecimal constants are alternative ways to represent

numeric constants. They can be used wherever numeric constants are

allowed.

An octal constant is a string of octal digits enclosed by apostrophes

and followed by the alphabetic character O. An octal constant has the

form:

1 tclczc3...cn 0]

A digit in the range 0 to 7.

A hexadecimal constant is a string of hexadecimal digits and letters
enclosed by apostrophes and followed by the alphabetic character X. A

hexadecimal constant has the form:

'e.c.c....c 'X
n123

o]

A digit in the range 0 to 9 or a letter in the range A to F or a
to f.

Leading zeros are ignored in octal and hexadecimal constants. Octal

constants must be in the range '0'0 to '37777777777'0, and hexadecimal

constants must be in the range '0'X to 'FFFFFFFF'X.

Examples of valid and invalid octal constants are:

Valid Invalid

'07737'0 '7782'0 (invalid character)
'1'0 7772'0 (no initial apostrophe)

'0737" (no O after second apostrophe)

FORTRAN STATEMENT COMPONENTS

Examples of valid and invalid hexadecimal constants are:

Valid Invalid

'AF9730'X '999.'X (invalid character)

'FFABC'X 'FI9X (no apostrophe before
the X)

Octal and hexadecimal constants are typeless numeric constants. They

assume data types based on the way they are used, and thus are not

converted before use.

) When the constant is used with a binary operator, including

the assignment operator, the data type of the constant is the

data type of the other operand. For example:

Data Type Length of

Statement of Constant Constant

INTEGER*2 ICOUNT

REAL*8 DOUBLE

RAPHA = '99AF2'X REAL*4 4

JCOUNT = ICOUNT + '777'0 INTEGER*2 2

DOUBLE = 'FFF99A'X REAL*8 8

IF(N.EQ.'123'0) GO TO 10 INTEGER*4 4

) When a specific data type 1is required, generally integer,

that type is assumed for the constant. For example:

Data Type Length of

Statement of Constant Constant

Y(IX)=Y('15'0)+3. INTEGER*4 4

° When the constant is used as an actual argument, no data type

is assumed. For example:

Data Type Length of

Statement of Constant Constant

CALL APAC('34BC2'X) none 4

) When the constant is used in any other context, INTEGER%*4

data type is assumed. For example:

Data Type Length of

Statement of Constant Constant

IF('AF77'X) 1,2,3 INTEGER* 4 4

I = '"7777'0 - 'A39'X INTEGER*4 4

J = .NOT.'73777'0 INTEGER*4 4

An octal or hexadecimal constant actually specifies 4 bytes of data.

When the data type implies that the length of the constant is more

than 4 bytes, the leftmost digits have a value of 0. When the data

type implies that the length of the constant is less than 4 bytes, the

constant is truncated on the left. Table 2-2 (in Section 2.2) lists

the number of bytes that each data type requires.

FORTRAN STATEMENT COMPONENTS

2.3.6 Logical Constants

A logical constant specifies a logical value, true or false. Thus,
only the following two logical constants are possible:

.TRUE.

.FALSE,

The delimiting periods are a required part of each constant.

2.3.7 Character Constants

A character constant 1is a string of printable ASCII characters
enclosed by apostrophes.

A character constant has the form:

t !

A printable character.

Both delimiting apostrophes must be present.

The value of a character constant is the string of characters between
the delimiting apostrophes. The value does not include the delimiting
apostrophes, but does include all spaces or tabs within the
apostrophes.

Within a character constant, the apostrophe character is represented
by two consecutive apostrophes (with no space or other character
between them).

The length of the character constant is the number of characters
between the apostrophes, except that two consecutive apostrophes
represent a single apostrophe. The length of a character constant
must be in the range 1 to 255.

Examples of valid and invalid character constants are:

Valid Invalid

'WHAT?' 'HEADINGS (no trailing

apostrophe)
'TODAY''S DATE IS: ' '! (character constant

must contain at least

1 character) ,
'HE SAID, "HELLO"' "NOW OR NEVER" (quotation marks

cannot be used in

place of apostrophes)

If a character constant appears in a numeric context (for example, as
the expression on the right side of an arithmetic assignment
statement), it is considered a Hollerith constant. See Section 2.3.8.

FORTRAN STATEMENT COMPONENTS

2.3.8 Hollerith Constants

A Hollerith constant is a string of printable characters preceded by a
character count and the letter H.

A Hollerith constanfi has the form:

nHc. ¢c.Cc....C
n1273

n

An unsigned, nonzero integer constant stating the number of

characters in the string (including spaces and tabs).

C

A printable character.

The maximum number of characters is 255.

Hollerith constants are stored as byte strings, 1 character per byte.

Hollerith constants have no data type. They assume a numeric data
type according to the context in which they are used. Hollerith

constants cannot assume a character data type; they cannot be used
where a character value is expected.

Examples of valid and invalid Hollerith constants are:

Valid Invalid

16HTODAY'S DATE 1IS: 3HABCD (wrong number of characters)

1HB

When Hollerith constants are used in numeric expressions, they assume
data types according to the following rules.

° When the constant is used with a binary operator, including

the assignment operator, the data type of the constant is the

data type of the other operand. For example:

Data Type Length of

Statement of Constant Constant

INTEGER*2 ICOUNT

REAL*8 DOUBLE

RALPHA = 4HABCD REAL*4 4

JCOUNT = ICOUNT + 2HXY INTEGER*2 2

DOUBLE = 8HABCDEFGH REAL*8 8

IF(N.EQ.1HZ) GO TO 10 INTEGER*4 4

) When a specific data type 1is required, generally integer,

that type is assumed for the constant. For example:

Data Type Length of

Statement of Constant Constant

Y (IX)=Y(1HA)+3. INTEGER*4 4

) When the constant is used as an actual argument, no data type

is assumed. For example:

Data Type Length of

Statement of Constant Constant

CALL APAC (9HABCDEFGHI) none 9

FORTRAN STATEMENT COMPONENTS

® When the constant is used in any other context, INTEGER*4

data type is assumed. For example:

Data Type Length of

Statement of Constant Constant

IF (2HAB) 1,2,3 INTEGER*4 4

I= 1HC-1HA INTEGER*4 4

J= .NOT. 1HB INTEGER*4 4

When the length of the constant is less than the length implied by the

data type, spaces are appended to the constant on the right. When the

length of the constant is greater than the length implied by the data

type, the constant is truncated on the right.

Table 2-2 (in Section 2.2) lists the number of characters required for

each data type. Each character occupies 1 byte of storage.

2.4 VARIABLES

A variable is a symbolic name associated with a storage location. The

value of the variable is the value currently stored in that location;

that value can be changed by assigning a new value to the variable.

(See Section 2.1 for the form of a symbolic name.)

Variables are classified by data type, just as constants are. The

data type of a variable indicates the type of data it represents, its

precision, and itc¢ storage requirements. When data of any type |is

assigned to a variable, it is converted, if necessary, to the data

type of the variable. You can establish the data type of a variable

by type declaration statements, IMPLICIT statements, or predefined

typing rules.

Two or more variables are associated with each other when each is

associated with the same storage location. They are partially

associated, when part (but not all) of the storage associated with one

variable is the same as part or all of the storage associated with

another variable. Association and partial association occur when you

use the COMMON statements, EQUIVALENCE statements, or actual arguments

and dummy arguments in subprogram references.

A variable is considered defined if the storage associated with it

contains data of the same type as the name. A variable can be defined

before program execution by a DATA statement or during execution by an

assignment or input statement.

1f variables of different data types are associated (or partially

associated) with the same storage location, and the value of one

variable is defined (for example, by assignment), the value of the

other variable becomes undefined.

2.4.1 Data Type Specification

Type declaration statements (see Section 5.2) specify that given

variables are to represent specified data types. For example:

COMPLEX VARI1

DOUBLE PRECISION VAR2

FORTRAN STATEMENT COMPONENTS

These statements indicate that the variable VARl is to be associated

with an 8-byte storage location that is to contain complex data, and

that the variable VARZ2 is to be associated with an 8-byte double

precision storage cation.

The IMPLICIT statement (see Section 5.1) has a broader scope. It

states that, 1in the absence of an explicit type declaration, any

variable with a name that begins with a 'specified letter, or any

letter within a specified range, 1is to represent a specified data

type.

You can explicitly specify the data type of a variable only once. An

explicit data type specification takes precedence over the type

implied by an IMPLICIT statement.

Character type declaration statements (see Sections 5.1 and 5.2.2)

specify that given variables are to represent character values with

the length specified. For example:

CHARACTER*72 INLINE

CHARACTER NAME*12, NUMBER*9

These statements indicate that the variables INLINE, NAME, and NUMBER

are to be associated with storage locations containing character data

of lengths 72, 12, and 9, respectively.

Passed length character arguments are used within a single subprogram

to process character strings of different lengths. The passed length

character argument has a length specification of (*). For example:

CHARACTER*(*) CHARDUMMY

The passed length character argument assumes the length of the actual

argument (see Chapter 6).

2.4.2 Data Type by Implication

In the absence of either IMPLICIT statements or explicit type

statements, all variables with names beginning with I, J, K, L, M, or

N are assumed to be integer variables. Variables with names beginning

with any other letter are assumed to be real variables. For example:

Real Variables Integer Variables

ALPHA JCOUNT

BETA ITEM

TOTAL NTOTAL

2.5 ARRAYS

An array 1is a group of contiguous storage locations associated with a

single symbolic name, the array name. The 1individual storage

locations, called array elements, are referred to by a subscript

appended to the array name. Section 2.5.2 discusses subscripts.

An array can have from one to seven dimensions. For example, a column

of figures 1is a one-dimensional array. A table of more than one

column of figures is a two-dimensional array. To refer to a specific

FORTRAN STATEMENT COMPONENTS

value in this array, you must specify both its row number and its
column number. A table of figures that covers several pages 1is a

three-dimensional array. To locate a value in this array, you must

specify the row number, column number, and a page number.

The following FORTRAN statements establish arrays:

e Type declaration statements (see Section 5.2)

e The DIMENSION statement (see Section 5.3)

® The COMMON statement (see Section 5.4)

These statements contain array declarators (see Section 2.5.1) that
define the name of the array, the number of dimensions in the array,

and the number of elements in each dimension.

An element of an array is considered defined if the storage associated
with it contains data of the same data type as the array name (see

Section 2.5.4). An array element or an entire array can be defined

before program execution by a DATA statement. An array element can be

defined during program execution by an assignment or input statement;

and an entire array can be defined during program execution by an

input statement. '

2.5.1 Array Declarators

An array declarator specifies the symbolic name that identifies an
array within a program wunit and indicates the properties of that
array.

An array declarator has the form:

a (d[,d]l ...)

a

The symbolic name of the array, that 1is, the array name.

(Section 2.1 gives the form of a symbolic name.)

d

A dimension declarator; 4 can specify both a lower bound and an

upper bound as follows:

[d1l:]du

dl

The lower bound of the dimension.

du

The upper bound of the dimension.

The number of dimension declarators indicates the number of dimensions

in the array. The number of dimensions can range from one to seven.

The value of the lower bound dimension declarator can be negative,

zero, or positive. The value of the upper bound dimension declarator

must be greater than or equal to the corresponding 1lower bound

dimension declarator. The number of elements in the dimension 1is
du-dl+1l. If a lower bound is not specified, it is assumed to be 1,
and the value of the upper bound specifies the number of elements in
that dimension. For example, a dimension declarator of 50 indicates
that the dimension contains 50 elements.

FORTRAN STATEMENT COMPONENTS

Each dimension bound is an integer arithmetic expression in which:

e Each operand 1is an integer constant, an integer dummy

argument, or an integer variable in a COMMON block

e Each operator is a +, -, *, /, or ** operator

Note that array references and function references are not allowed in

dimension bounds expressions.

Dimension bounds that are not constant expressions can be used in a
subprogram to define adjustable arrays. You can use adjustable arrays

within a single subprogram to process arrays with different dimension
bounds by specifying the bounds as well as the array name as

subprogram arguments. See Section 6.1.1.1 for more information on
adjustable arrays. Dimension bounds that are not constant expressions
are not permitted in a main program.

The number of elements in an array is equal to the product of the

number of elements in each dimension.

An array name can appear in only one array declarator within a program
unit.

2.5.2 Subscripts

A subscript qualifies an array name. A subscript 1is a 1list of

expressions, called subscript expressions, enclosed in parentheses,

that determine which element in the array 1is referred to. The

subscript is appended to the array name it qualifies.

A subscript has the form:

(s[,s]...)

A subscript expression.

A subscripted array reference must contain one subscript expression
for each dimension defined for that array (one for each dimension

declarator).

Each subscript can be any valid arithmetic expression. If the value
of a subscript is not of type integer, it is converted to an integer
value by truncation of any fractional part before use.

2.5.3 Array Storage

As discussed earlier in this section, you can think of the dimensions

of an array as rows, columns, and levels or planes. However, FORTRAN

always stores an array in memory as a linear sequence of values. A
one-dimensional array is stored with its first element in the first
storage location and its last element in the last storage location of
the sequence. A multidimensional array is stored so that the leftmost

subscripts vary most rapidly. This is called the "order of subscript
progression." For example, Figure 2-1 shows array storage in one, two,

and three dimensions.

FORTRAN STATEMENT COMPONENTS

1-Dimensional Array BRC (6)

F[BRC(H l 2|BRC(2)[BIBRC(3)I 4IB'RC(4)| sl BRC (5) | GlBRC(G)J

Memory Positions

2-Dimensional Array BAN (3,4)

=
Y BAN (1,1) BAN (1,2)] 7 { BAN (1,3) |10 | BAN (1,4)

BAN (2,4)-BAN (2,1)

4

5 |BAN (2,2)| 8| BAN (2,3} |1

BAN (3,1){ 6 |BAN (3,2}| 9| BAN (3,3)| 12| BAN (3,4)

—
lW

N

Memory Positions

3-Dimensional Array BOS (3,3,3)

19 | BOS (1,1,3) | 22 BOS (1,2,3) | 26 | BOS (1,3,3)

20 | BOS (2,1,3) | 23|B0OS (2,2,3) | 26 | BOS (2,3,3)

BOS (3,3,3)
10 | BOS (1,1,2) { 13|B0S (1,2,2) | 16 | BOS (1,3,2)

11 | BOS(2,1,2) | 14|B0S (2,2,2) | 17 | BOS (2,3,2)

18 | BOS (3,3,2)
1]180S(1,1,1)| 4 |BOS (1,2,1)| 7 | BOS {1,3,1)

,BOS (2,1,1) | 5 | BOS (2,2,1) | 8 | BOS (2,3,1)

BOS (3,1,1) BOS (3,2,1) BOS (3,3,1)

Memory Positions

Figure 2-1 Array Storage

2.5.4 Data Type of an Array

The data type of an array is specified the same way as the data type

of a wvariable. That 1is, the data type of an array is specified

implicitly by the initial letter of the name, or explicitly by a type

declaration statement.

All the values in an array have the same data type. Any value

assigned to an array element 1is converted to the data type of the

array. If an array is named in a DOUBLE PRECISION statement, for

example, the compiler allocates an 8-byte storage location for each

element of the array. When a value of any type 1s assigned to any

element of that array, it is converted to double precision.

2.5.5 Array References Without Subscripts

In the following types of statement, you can specify an array name

without a subscript, to indicate that the entire array is to be used

(or defined):

e Type declaration statements

e COMMON statement

e DATA statement

FORTRAN STATEMENT COMPONENTS

e EQUIVALENCE statement

e FUNCTION statement

e SUBROUTINE statement

@ ENTRY statement

e Input/output statements

You can also use unsubscripted array names as actual arguments 1in

references to external procedures. The use of unsubscripted array

names in all other types of statements is not permitted.

2.5.6 Adjustable Arrays

Adjustable arrays allow subprograms to manipulate arrays of variable

dimensions. To wuse an adjustable array in a subprogram, you specify

the array bounds, as well as its name, as subprogram arguments. See

Chapter 6 for more information.

2.6 CHARACTER SUBSTRINGS

A character substring is a contiguous segment of a character variable

or character array element.

A character substring reference has one of the following forms:

v(lel]:[e2])

a(s[,sl...) (lel]:[e2])

v

A character variable name.

a

A character array name.

S .

A subscript expression.

el

A numeric expression that specifies the leftmost character

position of the substring.

e2

A numeric expression that specifies the rightmost character

position of the substring.

Character positions within a character variable or array element are

numbered from left to right, beginning at 1. For example, LABEL(2:7)

specifies the substring beginning with the second character position

and ending with the seventh <character position of the character

variable LABEL. If the CHARACTER*8 variable LABEL has a value of

XVERSUSY, then the substring LABEL(2:7) has a value of VERSUS.

FORTRAN STATEMENT COMPONENTS

If the value of the numeric expression el or e2 1is not of type

integer, it 1is converted to an integer value by truncation of any

fractional part before use.

The value of the numeric expressions, el and e2, must be such that:

1 LE. el .LE. e2 .LE. 1len

where len is the length of the character variable or array element.

If el is omitted, FORTRAN assumes that el equals 1. If e2 is omitted,
FORTRAN assumes that e2 equals len.

For example, NAMES(1,3)(:7) specifies the substring starting with the
first character position and ending with the seventh character

position of the character array element NAMES(1,3).

2.7 EXPRESSIONS

An expression represents a single value. It can be a single basic

component, such as a constant or variable, or a combination of basic

components with one or more operators. Operators specify computations

to be performed, using the values of the basic components, to obtain a
single value.

Expressions are classified as arithmetic, character, relational, or
logical. Arithmetic expressions produce numeric values; character

expressions produce character values; and relational and 1logical
expressions produce logical values.

2.7.1 Arithmetic Expressions

Arithmetic expressions are formed with arithmetic elements and
arithmetic operators. The evaluation of such an expression yields a

single numeric value.

An arithmetic element can be any of the following:

) A numeric constant

° A numeric variable

) A numeric array element

) An arithmetic expression enclosed in parentheses

® An arithmetic function reference

The term "numeric," as used above, can also be interpreted to include
logical data, 'since logical data is treated as integer data when used

in an arithmetic context.

FORTRAN STATEMENT COMPONENTS

Arithmetic operators specify a computation to be performed using the

values of arithmetic elements. They produce a numeric value as a

result. The operators and their meanings are:

Operator Function

** Exponentiation

* Multiplication

/ Division

+ Addition and unary plus

- Subtraction and unary minus

These operators are called binary operators, because each is used with

two elements. The plus (+) and minus (-) symbols are also unary

operators when written immediately preceding an arithmetic element to

denote a positive or negative value.

Any arithmetic operator can be used with any valid arithmetic element,

except as noted in Table 2-3.

A variable or array element must have a defined value before it can be

used in an arithmetic expression.

Table 2-3 shows the allowed combinations and result data types of base

and exponent data types for the exponentiation operator.

Table 2-3

Allowed Combinations for Exponentiation

Exponent

Base

Integer Real Double Complex

Integer Integer No No No

Real Real Real Double No

Double Double Double | Double No

Complex Complex No No No

Note: A negative element can be exponentiated

only by an integer element; and an element with a

zero value cannot be exponentiated by another

zero-value element.

In any valid exponentiation, the result has the same data type as the

base element, except in the case of a real base and a double precision

exponent. The result in this case is double precision.

FORTRAN STATEMENT COMPONENTS

Arithmetic expressions are evaluated in an order determined by a

precedence associated with each operator. The precedence of the

operators is:

Operator Precedence

*x First

* and / Second

+ and - Third

When two or more operators of egual precedence (such as + and -)

appear, they can be evaluated in any order, as long as the order of

evaluation is algebraically equivalent to a left-to-right order of

evaluation. Exponentiation, however, is evaluated from right to left.

For example, A**B**C is evaluated as A** (B**C); B**C is evaluated

first, then A is raised to the resulting power.

2.7.1.1 Use of Parentheses - You can use parentheses to force a

particular order of evaluation. When part of an expression is

enclosed in parentheses, that part 1is evaluated first, and the

resulting value is wused in the evaluation of the remainder of the

expression. In the following examples, the numbers below the

operators indicate the order of the evaluations.

4 3 6 / 2 7

N
>
+

(4+3)
4

((4+3) * 2

T

1 2

As shown in the third and fourth examples above, expressions within

parentheses are evaluated according to the normal order of precedence,

unless you override the order by using parentheses within parentheses.

Nonessential parentheses, as in the following expression, do not

affect expression evaluation.

4 + (3*2) - (6/2)

The use of parentheses to specify the evaluation order 1is often

important in high-accuracy numerical computations. In such

computations, evaluation orders that are algebraically equivalent

might not be computationally eguivalent when processed by a computer.

FORTRAN STATEMENT COMPONENTS

2.7.1.2 Data Type of an Arithmetic Expression - If every element in

an arithmetic expression is of the same data type, the value produced

by the expression is also of that data type. If elements of different

data types are combined in an expression, the evaluation of that

expression and the data type of the resulting value depend on a rank

associated with each data type. The rank assigned to each data type

is as follows:

Data Type Rank

Logical 1 (Low)

Integer*2 2

Integer*4 3

Real 4

Double precision 5

Complex 6 (High)

The data type of the value produced by an operation on two arithmetic

elements of different data types 1is the data type of the

highest-ranked element in the operation. For example, the data type

of the wvalue resulting from an operation on an integer and a real

element is real.

The data type of an expres:tion is the data type of the result of the

last operation in that exrression. The data type of an expression is

determined as follows:

) Integer operations -- Integer operations are performed only

on integer elements. (Logical entities used in an arithmetic

context are treated as integers.) In integer arithmetic, any

fraction that can result from division is truncated, not

rounded. For example:

1/3 + 1/3 + 1/3

The value of this expression is 0, not 1.

® Real operations -- Real operations are performed only on real

elements or combinations of real, integer and logical

elements. Any integer elements present are converted to real

data type by giving each a fractional part equal to 0. The

expression is then evaluated using real arithmetic. Note,

however, that in the statement Y = (I/J)*X, an integer

division operation is performed on I and J and a real

multiplication is performed on that result and X.

) Double precision operations -- Any real or integer element in

a double precision operation is converted to double precision

data type by making the existing element the most significant

portion of a double precision datum. The least significant

portion is 0. The expression is then evaluated in double

precision arithmetic.

FORTRAN STATEMENT COMPONENTS

° Converting a real element to a double precision element does

not increase its accuracy. For example, the real number

0.3333333

is converted to

0.3333333000000000D0

not to

0.3333333333333333D0

) Complex operations -- In an operation that contains any

complex element, integer elements are converted to real data

type, as previously described. Double precision elements are

converted to real data type by rounding the least significant

portion. The real element thus obtained is designated as the

real part of a complex number; the imaginary part is 0. The

expression is then evaluated using complex arithmetic and the

resulting value is of complex data type.

2.7.2 Character Expressions

Character expressions consist of character elements and character

operators. The evaluation of a character expression yields a single

value of character data type.

A character element can be any one of the following:

o A character constant

° A character variable

° A character array element

° A character substring

° A character expression enclosed in parentheses

) A character function reference

The only character operator is the concatenation operator (//).

A character expression is a sequence of one or more character elements
separated by the concatenation operator.

A character expression has the form:

character element [//character element]...

The value of a character expression is a character string formed by
successive left-to-right concatenations of the values of the elements

of the character expression. The length of a character expression is

the sum of the lengths of the character elements. For example, the

value of the character expression 'AB'//'CDE' is 'ABCDE', which has a

length of 5.

Parentheses do not affect the value of a character expression. For

example, the following character expressions are equivalent.

('ABC'//'DE') //'F!
"ABC'///('DE'//"F')

FORTRAN STATEMENT COMPONENTS

Each of these character expressions has the value 'ABCDEF'.

If a character element in a character expression contains spaces, the

spaces are included in the value of the character expression. For

example, 'ABCA'//'DAE'//'FA' has a value of 'ABCADAEFA'.

The order in which the character elements of a character expression

are evaluated 1is determined by the compiler even if parentheses are

present.

2.7.3 Relational Expressions

A relational expression consists of two arithmetic expressions or two

character expressions, separated by a relational operator. The value

of the expression is either true or false, depending on whether or not

the stated relationship exists.

A relational operator tests for a relationship between two arithmetic

expressions or between two character expressions. These operators

are:

Operator Relationship

.LT. Less than

.LE. Less than or equal to

.EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

The delimiting periods are a required part of each operator.

Complex expressions can be related only by the .EQ. and .NE.

operators. Complex entities are equal if their corresponding real and

imaginary parts are both equal.

In an arithmetic relational expression, the arithmetic expressions are

first evaluated to obtain their values. These values are then

compared to determine whether the relationship stated by the operator

exists. For example:;

APPLE+PEACH .GT. PEAR+ORANGE

This expression states the relationship, "The sum of the real

variables APPLE and PEACH 1is greater than the sum of the real

variables PEAR and ORANGE." If tiat relationship exists, the value of

the expression is true; if not, the value of the expression is false.

FORTRAN STATEMENT COMPONENTS

In a character relational expression, the character expressions are

first evaluated to obtain their values. These values are then

compared to determine whether the relationship stated by the operator

exists. In character relational expressions "less than" means

"precedes in the ASCII collating seqguence," and "greater than" means

"follows in the ASCII collating sequence." For example:

'AB'//'22Z"' .LT. 'CCCCC!

This expression states that 'ABZZZ' is less than 'CCCCC'. That

relationship does exist, so the value of the expression is true. 1If

the relationship stated does not exist, the value of the expression 1is

false.

If the two character expressions in a relational expression are not

the same length, the shorter one is padded on the right with spaces

until the lengths are equal. For example:

'ABC' .EQ. 'ABCAAA'

'AB' .LT. 'C!

The first relational expression has a value of true even though the

lengths of the expressions are not equal, and the second has a value

of true even though 'AB' is longer than 'C'.

All relational operators have the same precedence. Arithmetic and

character operators have a higher precedence than relational

operators.

You can use parentheses, as in any other arithmetic expression, to

alter the order of evaluation of the arithmetic expressions in a

relational expression. However, arithmetic and character operators

are evaluated before relational operators so you need not enclose the

entire arithmetic or character expression in parentheses.

Two numeric expressions of different data types can be compared by a

relational expression. 1In this case, the value of the expression with

the lower-ranked data type is converted to the higher-ranked data type

before the comparison is made. .

2.7.4 Logical Expressions

A logical expression can be a single logical element, or a combination

of logical elements and 1logical operators. A logical expression

yields a single logical value, true or false.

A logical element can be any of the following:

® An integer or logical constant

° An integer or logical variable

® An integer or logical array element

® A relational expression

) A logical expression enclosed in parentheses

) An integer or logical function reference

FORTRAN STATEMENT COMPONENTS

The logical operators are:

Operator Example Meaning

.AND. A .AND. B Logical conjunction: the expression is true

if, and only if, both A and B are true.

.OR. A .OR. B Logical disjunction (inclusive OR): the

expression is true 1if either A or B, or

both, is true.

. XOR. A .XOR. B Logical exclusive OR: the expression is

true if A 1is true and B is false, or vice
versa; but the expression is false if both

elements have the same value.

.EQV. A .EQV. B Logical equivalence: the expression is true

if, and only if, both A and B have the same
logical value, whether true or false.

.NOT. .NOT. A Logical negation: the expression 1is true

if, and only if, A is false.

The delimiting periods of logical operators are required.

When a logical operator operates on logical elements, the resulting

data type 1is logical. When a logical operator operates on integer
elements, the logical operation is carried out bit-by-bit on the
corresponding bits of the internal (binary) representation of the
integer elements. The resulting data type is integer. When a logical
operator combines integer and 1logical values, the logical value is
first converted to an integer value, then the operation is carried out
as for two integer elements. The resulting data type is integer.

A logical expression is evaluated according to an order of precedence
assigned to its operators. Some logical expressions can be evaluated
before all their subexpressions are evaluated. For example, if A is
.FALSE., the expression A .AND. (F(X,Y) .GT. 2.0) .AND. B is
-FALSE.. The value of the expression can be determined by testing A

without evaluating F(X,Y). Thus, the function subprogram F may not be
called, and side-effects resulting from the call, for example changing
variables in COMMON, cannot occur.

The following list summarizes all the operators that can appear in a
logical expression, in the order in which they are evaluated:

Operator Precedence

* % First (Highest)

*,/ Second

ty=4// Third

Relational

Operators Fourth

.NOT. Fifth

.AND. Sixth

.OR. Seventh

.XOR. , .EQV. Eighth

FORTRAN STATEMENT COMPONENTS

Operators of equal rank are evaluated from left to right. For

example:

A*B+C*ABC .EQ. X*Y+DM/ZZ .AND. .NOT. K*B .GT. TT

The sequence in which this logical expression is evaluated is:

(((A*B)+(C*ABC)).EQ.((X*Y)+(DM/ZZ))).AND.(.NOT.((K*B).GT.TT))

As in arithmetic expressions, you can use parentheses to alter the

normal sequence of evaluation. .

Two logical operators cannot appear consecutively, unless the second

operator is .NOT..

CHAPTER 3

ASSIGNMENT STATEMENTS

Assignment statements define the value of a variable, array element,
or character substring. They do this by evaluating an expression and

assigning the resulting value to the variable, array element, or
character substring.

The four assignment statements are:

) Arithmetic assignment statement

) Logical assignment statement

© Character assignment statement

] ASSIGN statement

3.1 ARITHMETIC ASSIGNMENT STATEMENT

The arithmetic assignment statement assigns the value of the

expression on the right of the equal sign to the numeric variable or

array element on the left of the equal sign.

The arithmetic assignment statement has the form:

v = e

v

A numeric variable or array element.

e

An expression.

The equal sign does not mean "is equal to," as in mathematics. It
means "is replaced by." For example:

KOUNT = KOUNT + 1

This statement means, "replace the current value of the integer

variable KOUNT with the sum of that current value and the integer

constant 1."

Although the symbolic name on the left of the equal sign can be

undefined, values must have been previously assigned to all symbolic

references in the expression on the right of the equal sign.

The expression must yield a value that conforms to the requirements of

the wvariable or array element to which it is to be assigned. For

example, a real expression that produces a value greater than 32767 is

invalid 1if

variable.

If the variable or array element on the left of the equal sign has the
type as the expression on the right, the statement assigns

If the data types are different, the value of the

is converted to the data type of the entity on the left of
Table 3-1 summarizes the

same data

the value directly.

expression

the

the equal sign before it is assigned.

conversion rules for assignment statements.

ASSIGNMENT STATEMENTS

Table 3-1

entity on the left of the equal sign is an INTEGER*2

-

Conversion Rules for Assignment Statements

Expression

(E)
Vari- Integer,

able or Logical,

Array or Double

Element Octal Constant Real Precision Complex

TM)

Integer Assign Eto V Truncate E to Truncate E to Truncate real part

or integer and as- integer and as- ofE to integer

Logical signto 'V sign toV and assign to V;
imaginary part

of E is not used

Real Append fraction AssignEtoV Assign MS* por- Assign real part

(.0) to E and tion of E to V; of E to V;imag-

assign to'V LS* portion of inary part of E
E is rounded is not used

Double Append fraction Assign E to MS* AssignEtoV Assign real part

Precision (.0) to E and as- portion of V; of E to MS* por-

sign to MS* por- LS* portion of tion of V; LS*

tion ofV; LS* Vis0 portion ofV is

portion of Vis 0 zero, imaginary
part of E is not

used

Complex Append fraction Assign E to Assign MS* por- Assign EtoV

(.0) to E and as- real part of V; tion of E to real

sign to real part imaginary part part of V; LS*

of V; imaginary of Vis 0.0 portion of E is

part of Vis 0.0 rounded; imagi-

nary part of V

is 0.0

* MS = most significant (high order); LS = least significant (low order)

ASSIGNMENT STATEMENTS

Examples of valid and invalid assignment statements are:

valid

BETA = =1./(2.*X)+A*A/(4.%*(X*X))

PI = 3.14159

SUM = SUM+1.

Invalid

3.14 = A-B (entity on the left must be a

variable or array element)

-J = I*%*4 (entity on the left must not be

signed)

ALPHA = ((X+6)*B*B/(X-Y) (left and right parentheses do not-

balance)

ICOUNT = 'A'//'B' (expression on right must not be of

character data type, if the entity on

the left is not of character data type)

3.2 LOGICAL ASSIGNMENT STATEMENT

The logical assignment statement assigns the value of the logical

expression on the right of the equal sign to the variable or array

element on the left of the equal sign. See Table 3-1 for conversion

rules.

The logical assignment statement has the form:

vV = e

A logical variable or array element.

A logical expression.

The variable or array element on the left of the equal sign must be of

logical data type. 1Its value can be undefined.

Values, either numeric or logical, must have been previously assigned

to all symbolic references that appear 1in the expression. The

expression must yield a logical value.

Examples of logical assignment statements are:

PAGEND = .FALSE.

]PRNTOK LINE .LE. 132 .AND. .NOT. PAGEND

ABIG = A .GT. B .AND. A .GT. C .AND. A .GT. D

ASSIGNMENT STATEMENTS

3.3 CHARACTER ASSIGNMENT STATEMENT

The character assignment statement assigns the value of the character

expression on the right of the equal sign to the character variable,

array element, or substring on the left of the equal sign.

The character assignment statement has the form:

vV = e

A character variable, array element, or substring.

A character expression.

If the length of the character expression is greater than the 1length

of the character variable, array element, or substring, the character

expression is truncated on the right.

If the length of the character expression is less than the 1length of

the character variable, array element, or substring, the character

expression is filled on the right with spaces.

Although the symbolic name on the 1left of the egqual sign can be

undefined, values must have been previously assigned to all symbolic

references in the expression.

The expression must be of character data type. You cannot assign a

numeric value to a character variable, array element, or substring.

Note that assigning a value to a character substring does not affect

character positions in the character variable or array element that

are not included in the substring. If a character position outside of

the substring has a value previously assigned, it remains unchanged,

and if the character position is undefined, it remains undefined.

Examples of valid and invalid character assignment statements follow.
Note that all variables and arrays in the examples are of character

data type.

valid

FILE = 'PROG2'

REVOL (1) = 'MAR'//'CIA'

LOCA(3:8) = 'PLANTS'

TEXT(I,J+1) (2:N-1) = NAME//X

Invalid

'ABC' = CHARS (element on left must be a character variable,
array element, or substring reference)

CHARS = 25 (expression on right must be of character data

type)

ASSIGNMENT STATEMENTS

ASSIGN

3.4 ASSIGN STATEMENT

The ASSIGN statement assigns a statement label value to an integer

variable. The variable can then be used to specify a transfer

destination in a subsequent assigned GO TO statement (see Section

4.1.3) L4

The ASSIGN statement has the form:

ASSIGN s TO v

The label of an executable statement in the same program unit as

the ASSIGN statement.

An integer variable.

The ASSIGN statement assigns the statement number to the variable. It

is similar to an arithmetic assignment statement, with one exception:

the variable becomes defined for use as a statement label reference

and becomes undefined as an integer variable.

The ASSIGN statement must be executed before the assigned GO TO

statement(s) in which the assigned variable is to be used. The ASSIGN

statement and the assigned GO TO statement(s) must occur in the same

program unit.

For example:

ASSIGN 100 TO NUMBER

This statement associates the variable NUMBER with the statement label

100. Arithmetic operations on the variable, as in the following

statement then become invalid, since a statement label cannot be

altered.

NUMBER = NUMBER+1

The next statement dissociates NUMBER from statement 100, assigns it

an integer value 10, and returns it to its status as an integer

variable.

NUMBER = 10

The variable NUMBER can no longer be used in an assigned GO TO

statement.

Examples of ASSIGN statements are:

ASSIGN 10 TO NSTART

ASSIGN 99999 TO KSTOP

ASSIGN 250 TO ERROR (ERROR must have been defined as an
integer variable)

CHAPTER 4

CONTROL STATEMENTS

Statements are normally executed in the order in which they are

written. However, you may interrupt normal program flow to transfer

control to another section of the program or to a subprogram.

Transfer of control from a given point in the program may occur every

time that point is reached in the program flow; or it may be based on

a decision made at that point.

You use the FORTRAN control statements to transfer control to a point

within the same program unit or to another program unit. These

statements also govern iterative processing, suspension of program

execution, and program termination.

The control statements are:

@ GO TO statements —-- transfer control within a program unit

e IF statements —-- conditionally transfer control, or

conditionally execute a statement

e IF THEN, ELSE IF THEN, ELSE, and END IF

statements -- conditionally execute blocks of statements

e DO statement -- specifies iterative processing

e CONTINUE statement -- transfers control to the next executable

statement

e CALL statement —-- invokes a subroutine subprogram

e RETURN statement —-- returns control from a subprogram to the

calling program unit

e PAUSE statement -- temporarily suspends program execution

e STOP statement —-- terminates program execution

e END statement -- marks the end of a program unit

The following sections describe these statements, giving their forms

and examples of use.

CONTROL STATEMENTS

GO TO

4.1 GO TO STATEMENTS

GO TO statements transfer control within a program unit. Control is

transferred either to the same statement every time GO TO is executed,
or to one of a set of statements, based on the value of an expression.

The three types of GO TO statement are:

® Unconditional GO TO statement

® Computed GO TO statement

® Assigned GO TO statement

4.1.1 Unconditional GO TO Statement

The unconditional GO TO statement transfers control to the same
statement every time it is executed.

The unconditional GO TO statement has the form:

GO TO s

The label of an executable statement in the same program unit as

the GO TO statement.

The unconditional GO TO statement transfers control to the statement
identified by the specified 1label. The 1label must identify an
executable statement in the same program unit as the GO TO statement.

Examples of GO TO statements are:

GO TO 7734

GO TO 99999

4.1.2 Computed GO TO Statement

The computed GO TO statement transfers control to a statement based on

the value of an expression within the statement.

GO TO (slist)[,] e

slist

A list of one or more labels of executable statements separated
by commas. The list of labels is called the transfer list.

An arithmetic expression in the range 1 to n (where n is the
number of statement labels in the transfer list).

The computed GO TO statement evaluates the expression e and, if
necessary, converts the resulting value to integer data type. Control

is transferred to the statement label in position e in the transfer
list. For example, if the list contains (30,20,30,40), and the value
of e is 2, control is transferred to statement 20.

CONTROL STATEMENTS

If the value of e is less than 1, or greater than the number of labels

in the transfer list, control is transferred to the first executable

statement after the computed GO TO.

Examples of computed GO TO statements are:

GO TO (12,24,36),INDEX

GO TO (320,330,340,350,360), SITU(J,K)+1

4.1.3 Assigned GO TO Statement

The assigned GO TO statement transfers control to a statement label

that 1is represented by a variable. The relationship between the

variable and a specific statement label must be -established by an

ASSIGN statement. Thus, the transfer destination can be changed,

depending on the most recently executed ASSIGN statement.

The assigned GO TO statement has the form:

GO TO v[[,](slist)]

An integer variable.

slist

A list of one or more labels of executable statements' separated

by commas; slist does not affect statement execution and can be

omitted.

The assigned GO TO statement transfers control to the statement whose

label was most recently assigned to the variable v.

The variable v must be integer data type and must have been assigned a

statement label value by an ASSIGN statement (not an arithmetic

assignment statement) before the GO TO statement is executed.

The assigned GO TO statement and its associated ASSIGN statement(s)

must exist in the same program unit. Statements to which control is

transferred must be executable statements in the same program unit.

Examples of assigned GO TO statements are:

ASSIGN 200 TO IGO

GO TO IGO

Equivalent to GO TO 200.

ASSIGN 450 TO IBEG

GO TO IBEG, (300,450,1000,25)

Equivalent to GO TO 450.

CONTROL STATEMENTS

IF

4.2 1IF STATEMENTS

IF statements conditionally transfer control, or conditionally execute
a statement or block of statements. The three types of IF statements
are:

e Arithmetic IF statement

e Logical IF statement

® Block IF statements (IF THEN, ELSE IF THEN, ELSE, END IF)

For each type, the decision to transfer control or to execute the
statement or block of statements is based on the evaluation of an
expression within the IF statement.

4,2.1 Arithmetic IF Statement

The arithmetic IF statement transfers control to one of three
statements, based on the value of an arithmetic expression.

The arithmetic IF statement has the form:

IF (e) sl, s2, s3

e

An arithmetic expression.

sl,s2,s3

Labels of executable statements in the same program unit.

All three labels (sl,s2,s3) are required; however, they need not
refer to three different statements. You can use one or two labels to
refer to the statement immediately after the IF statement.

The arithmetic IF statement first evaluates the expression (e) in
parentheses. It then transfers control to one of the three statement
labels in the transfer list, as follows:

If the value is: Control passes to:

Less than 0 Label sl

Equal to 0 Label s2

Greater than 0 Label s3

Examples of arithmetic IF statements follow.

IF (THETA-CHI) 50,50,100

This statement transfers control to statement 50 if the real variable
THETA is less than or equal to the real variable CHI. Control passes
to statement 100 only if THETA is greater than CHI.

IF (NUMBER/Z*Z—NUMBER) 20,40,20

This statement transfers control to statement 40 if the value of the
integer variable NUMBER is even; it transfers control to statement 20
if the value is odd.

CONTROL STATEMENTS

4.2.2 Logical IF Statement

A logical 1IF statement conditionally executes a single FORTRAN

statement. The decision to execute the statement is based on the

value of a logical expression within the logical IF statement.

The logical IF statement has the form:

IF (e) st

A logical expression.

st

A complete FORTRAN statement. The statement can be any

executable statement except a DO statement, a block IF statement,

an END statement, or another logical IF statement.

The logical IF statement first evaluates the logical expression (e).

If the value of the expression is true, the statement (st) is

executed. If the value of the expression is false, control transfers

to the next executable statement after the logical IF. The statement

(st) is not executed.

Examples of logical IF statements are:

IF (J .GT. 4 .OR. J .LT. 1) GO TO 250

IF (REF(J,K) .NE. HOLD) REF(J,K) = REF (J,K) *(-1.5D0)

IF (ENDRUN) CALL EXIT

4.2.3 Block IF Statements

Block IF statements conditionally execute blocks (or groups) of

statements.

The four block IF statements are:

IF THEN

ELSE IF THEN

ELSE

END IF

CONTROL STATEMENTS

These statements are used in block 1IF constructs. The block 1IF
construct has the form:

IF (e) THEN

block

ELSE IF (e) THEN

block

ELSE

block

END IF

A logical expression.

block

A sequence of zero or more complete FORTRAN statements. This

sequence is called a statement block.

Figure 4-1 describes the flow of control for four examples of block IF
constructs.

CONTROL STATEMENTS

Flow of Control.,

4-7

Construct

False

IF (e) THEN

block True
END IF

Ex\ecute

block

Y

Test False

e

IF (e) THEN

block True

ELSE v

blocks

END IF Execute Execute

block 4 block,

Y

IF (eq) THEN

block4

ELSE IF (e5) THEN

blocksy

END IF
Execute Execute

' block 4 blockoy

Y

IF (eq) THEN False _

block4

ELSE iF (ep) THEN

block,

ELSE IF (e3) THEN

b|OCk3

ELSE Execute Execute Execute Execute

blockg block4 block, blocks blockg

END IF L

\ ‘

Figure 4-1 Examples of Block IF Constructs

CONTROL STATEMENTS

Each block IF statement except the END IF statement has an associated

statement block. The statement block consists of all the statements

following the block IF statement up to (but not including) the next

block 1IF statement in the block IF construct. The statement block is

conditionally executed based on the values of logical expressions in

the preceding block IF statements.

The IF THEN statement begins a block IF construct. The block

following it is executed if the value of the logical expression in the

IF THEN statement is true.

The ELSE IF THEN statement is an optional statement that specifies a

statement block to be executed if the value of the logical expression

in the ELSE IF THEN statement is true and no preceding statement block

in the block IF construct was executed. A block IF construct can

contain any number of ELSE IF THEN statements.

The ELSE statement specifies a statement block to be executed if no

preceding statement block in the block IF construct was executed.

No block IF statement can follow the ELSE statement except the END IF

statement. The ELSE statement is optional.

The END IF statement terminates the block IF construct. The END IF

statement is required.

After the last statement in a statement block is executed, control

passes to the next executable statement following the END 1IF

statement. Consequently, only one statement block in a block IF

construct may be executed each time the IF THEN statement is executed.

The ELSE IF THEN and ELSE statements cannot have statement labels.

The END IF statement can have a statement label, but control can only

be transferred to its label from within the block IF construct.

Section 4.2.3.1 describes restrictions on statements 1in a statement

block. Section 4.2.3.2 describes examples of block IF constructs.

Section 4.2.3.3 describes nested block IF constructs.

4.2.3.1 Statement Blocks - A statement block can contain any

executable FORTRAN statement. You <can transfer control out of a

statement block but control cannot be transferred back into the block.

Note that you cannot transfer control from one statement block %o

another.

DO loops cannot overlap statement blocks. When a statement block

contains a DO statement, it must also contain the DO loop's terminal

statement, and vice versa. If you use DO loops with statement blocks,

each loop must be wholly contained within one statement block.

4.2.3.2 Block IF Examples - The simplest block IF construct consists

of the IF THEN and END IF statements; this construct conditionally

executes one statement block.

Form Example

IF (e) THEN IF (ABS(ADJU).GE.1.0E-6) THEN

block TOTERR=TOTERR+ABS (ADJU)

QUEST=ADJU/FNDVAL

END IF END IF

CONTROL STATEMENTS

The statement block consists of all the statements between the IF THEN

and the END IF statements.

The IF THEN statement first evaluates the 1logical expression (e),

ABS (ADJU) .GE.1.0E-6. If the value of e is true, the statement block

is executed. If the value of e is false, control transfers to the

next executable statement the block is

not executed.

after the END IF statement;

The following example contains a block IF construct with an ELSE IF

THEN statement.

Form Example

IF (el) THEN IF (A. GT. B) THEN

blockl D =B

F=A-2B

ELSE IF (e2) THEN ELSE IF (A .GT. B/2.) THEN

block2 D = B/2.
F=A - B/2.

END IF END IF

Blockl consists of all the statements between the IF THEN and the ELSE

IF THEN statements; block2 consists of all the statements between the

ELSE IF THEN and the END IF statements.

If A is greater than B, blockl

If A is not greater than B but

executed.

If A is not greater than B and

blockl nor block2 is executed;

executable statement after the

is executed.

A is greater than B/2, block2 Iis

A is not greater than B/2, neither

control transfers directly to the next

END IF statement.

The following example contains a block IF construct with an ELSE

statement.

Form Example

IF (e) THEN IF (NAME .LT. 'N') THEN

blockl IFRONT = IFRONT + 1

FRLET (IFRONT)=NAME (1:2)

ELSE ELSE

block2 IBACK=IBACK + 1

END IF END IF

Blockl consists of all the statements between the IF THEN and ELSE

statements; block2 consists of all the statements between the ELSE

and the END IF statements.

If the value of the character variable NAME is less than 'N', blockl

is executed.

If the value of NAME is greater than or egual to 'N', block2 is

executed.

The following example contains a block IF construct with several ELSE

IF THEN statements and an ELSE statement.

CONTROL STATEMENTS

Form Example

IF (el) THEN IF (A .GT. B) THEN

blockl D =2B

F=A-B

ELSE IF (e2) THEN ELSE IF (A .GT. C) THEN

block?2 D =2¢C

F=A-2¢C

ELSE IF (e3) THEN ELSE IF (A .GT. Z) THEN

block3 D =12

F=A -1

ELSE ELSE

block4 D = 0.0

F = A

END IF END IF

There are four statement blocks in this example. Each consists of all
the statements between the block IF statements listed below.

Block Delimiting Block IF Statements

blockl IF THEN and first ELSE IF THEN

block2 First ELSE IF THEN and second ELSE

IF THEN

block3 Second ELSE IF THEN and ELSE

block4 ELSE and END IF

If A is greater than B, blockl is executed.

If A is not greater than B but is greater than C, block2 is executed.

If A is not greater than B or C but is greater than 2%, block3 is
executed.

If A is not greater than B, C, or %, block4 is executed.

4.2.3.3 Nested Block IF Constructs - A block IF construct can be
included 1in a statement block of another block IF construct. But the
nested block IF construct must be completely contained within a

statement ‘-block; it must not overlap statement blocks.

The following example contains a nested block IF construct.

Form Example

IF (e) THEN IF (A .LT. 100) THEN

INRAN=INRAN + 1

IF (e) THEN IF (ABS (A-AVG) .LE. 5.) THEN
blockl blocka INAVG = INAVG + 1

ELSE ELSE

blockb OUTAVG = OUTAVG + 1

END IF END IF

ELSE ELSE

block?2 OUTRAN = OUTRAN + 1
END IF END IF

CONTROL STATEMENTS

If A is less than 100, blockl is executed. Blockl contains a nested

block IF construct. If the absolute value of A minus AVG is less than

or equal to 5, blocka is executed. If the absolute value of A minus
AVG is greater than 5, blockb is executed.

If A is greater than or equal to 100, block2 is executed; the nested
IF construct is not executed because it is not in block2.

CONTROL STATEMENTS

DO

4.3 DO STATEMENT

The DO statement specifies 1iterative processing. That 1is, the

statements 1in its range are executed repeatedly a specified number of

times.

The DO statement has the form:

DO s|,] v=el,e2[,e3]

s

The label of an executable statement. The statement must

physically follow in the same program unit.

\'

An integer, real, or double precision variable.

el,e2,e3

Arithmetic expressions.

The variable v is the control variable; and el, e2, and e3 are the

initial, terminal, and increment parameters, respectively. If you

omit the increment parameter, a default increment value of 1 is used.

The terminal statement of a DO loop is identified by the label that

appears in the DO statement. The terminal statement must not be one

of the following statements:

e GO TO statement

e Arithmetic IF statement

® Any block IF statement, except ENDIF

®¢ END statement

e RETURN statement

e DO statement

The range of the DO statement includes all the statements that follow

the DO statement, up to and including the terminal statement.

The DO statement first evaluates the expressions el, e2, and e3 to

determine values for the initial, terminal, and increment parameters.

The initial, terminal, and increment parameters are converted, before

use, to the data type of the control variable, if necessary. The

value of the initial parameter is assigned to the control variable.

The executable statements in the range of the DO loop are then

executed repeatedly.

If the increment parameter (e3) is positive, the terminal parameter

(e2) must be greater than or equal to the initial parameter (el).

Conversely, if e3 is negative, el must be less than or equal to e2.

The increment parameter (e3) cannot be zero.

CONTROL STATEMENTS

The number of executions of the DO range, called the iteration count,
is given by:

e2 - el

el

where [X] (the value of the expression) represents the largest integer

whose magnitude does not exceed the magnitude of X and whose sign is

the same as the sign of X.

If the iteration count is zero or negative, the loop is executed once.

4.3.1 DO Iteration Control

After each iteration of the DO range, the following steps are

executed:

1. The value of the increment parameter is algebraically added

to the control variable.

2. The iteration count is decremented.

3. If the iteration <count 1is greater than zero, control
transfers to the first executable statement after the DO

statement for another iteration of the range.

4. If the iteration count is zero, execution of the DO statement

terminates.

Note that if the data type of the control variable is real or double

precision, the number of iterations of the DO range might not be what

is expected, because of rounding errors.

You can also terminate execution of a DO statement by using a

statement within the range that. transfers control outside the loop.

The control variable of the DO statement remains defined with its

current value.

When execution of a DO loop terminates, if other DO 1loops share its

terminal statement, control transfers outward to the next most

enclosing DO loop in the DO nesting structure (Section 4.3.2). If no

other DO loop shares the terminal statement, or if this DO statement
is outermost, control transfers to the first executable statement
after the terminal statement.

You cannot alter the value of the control variable within the range of

the DO statement. However, you can use the control variable for

reference as a variable within the range.

You can modify the initial, terminating, and increment parameters

within the loop without affecting the iteration count.

The range of a DO statement can contain other DO statements, as long

as these nested DO 1loops meet certain requirements. Section 4.3.2

describes these requirements.

You can transfer control out of a DO loop, but not into a loop from

elsewhere 1in the program. Exceptions to this rule are described in

Sections 4.3.3 and 4.3.4.)

CONTROL STATEMENTS

Examples of DO iteration control follow.

DO 100 K=1,50,2

This statement specifies 25 iterations; K=49 during the final

iteration.

DO 350 J=50,-2,-2

This statement specifies 27 iterations; J=-2 during the final

iteration.)

DO 25 IVAR=1,5

This statement specifies 5 iterations; IVAR=5 during the final

iteration.

DO NUMBER=5,40,4

This is an invalid statement; the statement label is missing.

DO 40 M=2.10

This is an invalid DO statement; it contains a decimal point instead

of a comma. This example illustrates a common typing error. It is

the valid arithmetic assignment statement:

DO40M = 2.10

4.3.2 Nested DO Loops

A DO loop can contain one or more complete DO loops. The range of an

inner nested DO loop must lie completely within the range of the next

outer loop. Nested loops can share a terminal statement.

Figure 4-2 illustrates nested loops.

Correctly Nested Incorrectly Nested

DO Loops DO Loops

B DO 45 K=1,10 B DO 15 K=1,10

B Dé 35 L=2,50,2 B Dé 25 L=1,20

| 35 CONTINUE "15 CONTINUE

B DO 45 M=1,20 DO 30 M=1,15

| L 45 CONTINUE

- 25 CONTINUE

| 30 CONTINUE

Figure 4-2 Nested DO Loops

CONTROL STATEMENTS

4.3.3 Control Transfers in DO Loops

Within a nested DC loop, you can transfer control from an inner loop
to an outer loop. However, a transfer from an outer loop to an inner
loop is not permitted.

If two or more nested DO loops share the same terminal statement, you
can transfer control to that statement only from within the range of
the innermost loop. Any other transfer to that statement constitutes
a transfer from an outer loop to an inner loop, because the shared
statement is part of the range of the innermost loop.

4.3.4 Extended Range

A DO locp has an extended range if it contains a control statement
that transfers control out of the loop and if, after execution of one
or more statements, another control statement returns control back
into the loop. Thus, the range of the loop is extended to include all
executable statements between the destination statement of the first
transfer and the statement that returns control to the loop.

The following rules govern the use of a DO statement extended range:

l. A transfer into the range of a DO statement is permitted
only if the transfer is made from the extended range of that
DO statement.

2. The extended range of a DO statement must not change the
control variable of the DO statement.

CONTROL STATEMENTS

control
Figure 4-3 illustrates valid and invalid extended range

transfers.

valid Invalid

Control Transfers Control Transfers

B DO 35 K=1,10 GO TO 20

DO 15 L=2,20 i DO 50 K=1,10

GO TO 20 20 A=B+C

15 CONTINUE DO 35 L=2,20

20 A=B+C 30 D=E/F

B DO 35 M=1,15 35 CONTINUE

GO TO 50 GO TO 40

DO 30 X=A*D DO 45 M=1,15

Loop . .

L _35 CONTINUE 40 X=A*D

. 45 CONTINUE

50 D=E/F .

Extended . L 50 CONTINUE

Range . .

GO TO 30 GO TO 30

Figure 4-3 Control Transfers and Extended Range

CONTROL STATEMENTS

CONTINUE

4.4 CONTINUE STATEMENT

The CONTINUE statement transfers control to the next executable
statement. It 1is wused primarily as the terminal statement of a DO
loop when that loop would otherwise end illegally with a GO TO,
arithmetic IF, or other prohibited control statement.

The CONTINUE statement has the form:

CONTINUE

CONTROL STATEMENTS

CALL

4.5 CALL STATEMENT

The CALL statement executes a SUBROUTINE subprogram or other external

procedure. It can also specify an argument list for the subroutine.

(See Chapter 6 for greater detail on the definition and use of

subroutines.)

The CALL statement has the form:

CALL s[([all,[al]l...)]

s

The name of a subroutine subprogram or other external procedure;

or a dummy argument associated with a subroutine subprogram or

other external procedure.

a

An actual argument. (Section 6.1 describes actual arguments.)

If you specify an argument list, the CALL statement associates the

values in the 1list with the dummy arguments in the subroutine. It

then transfers control to the first executable statement of the

subroutine.

The arguments in the CALL statement must agree in number, order, and

data type with the dummy arguments in the subroutine. They can be

variables, arrays, array elements, substring references, constants,

expressions, Hollerith constants, alternate return specifiers, or

subprogram names. An unsubscripted array name in the argument list

refers to the entire array.

Examples of CALL statements are:

CALL CURVE (BASE,3.14159+X,Y,LIMIT,R(LT+2))

CALL PNTOUT (A,N,'ABCD')

CALL EXIT

CALL MULT (A,B,*10,*20,C)

The last example illustrates the use of statement label
identifiers in CALL statement argument lists. The asterisk

indicates that *10 and *20 are statement label identifiers.

Label identifiers prefixed by asterisks (or ampersands (&)) are

called alternate return specifiers. See Section 4.6.

CONTROL STATEMENTS

RETURN

4.6 RETURN STATEMENT

The RETURN statement is used to transfer control from a subprogram to

the program that called the subprogram. It has the form:

RETURN [1i]

The optional argument is used to indicate an alternate return from the

subprogram. It can be specified only in subroutine subprograms. When

specified, the value of i indicates that the ith alternate return in

the actual argument 1list 1is to be taken. (See the second example

below.) The value of i can be any integer constant or expression, for

example, 2 or I+J.

When a RETURN statement is executed in a function, control is returned

to the calling program, at the statement that contains the function

reference (see Chapter 6). When a RETURN statement is executed in a

subroutine, control is returned either to the first executable

statement following the CALL statement that initiated the subroutine,

or to the statement 1label that was specified as the ith alternate

return in the CALL argument list.

You can use RETURN statements only in subprogram units. You cannot

use the RETURN i form in function subprograms.

RETURN statement examples:

SUBROUTINE CONVRT (N,ALPH,DATA,PRNT,K)

DIMENSION DATA (N), PRNT(N)

IF (N .GE. 10) THEN

DATA (K+2) = N-(N/10)*N

N = N/10

DATA (K+1l) = N

PRNT (K+2) = ALPH(DATA (K+2)+1)

PRNT (K+1) = ALPH(DATA (K+1)+1)

ELSE

PRNT (K+2) = ALPH(N+1)

END IF

RETURN

END

In this example, control is returned to the calling program at the

first executable statement following the CALL CONVRT statement.

SUBROUTINE CHECK (X,Y,*,*,C)

50 IF(Z) 60, 70, 80

60 RETURN

70 RETURN 1

80 RETURN 2

END

This example shows how alternate returns can be included in a

subroutine. If the value computed for Z is less than 0, a normal

return is taken, and the <calling program continues at the first

executable statement following CALL CHECK. If Z equals 0, however,

the first alternate return (RETURN 1) is taken; and if Z is greater

than 0, the second alternate return (RETURN 2) is taken. Control is

CONTROL STATEMENTS

returned to the statement specified as the first or second alternate

return argument in the CALL statement argument list. For example,

CALL CHECK(A,B,&10,&20,C)

Thus, RETURN 1 transfers control to statement label 10, and RETURN 2

transfers control to statement label 20. Note that if a subroutine

includes an alternate return that specifies a value either 1less than

or greater than the number of alternate return arguments, control is

returned to the next executable statement after the CALL statement.

That is, the alternate returns are ignored. Therefore, you should

ensure that the value of i is within the range of alternate return

arguments.

CONTROL STATEMENTS

PAUSE

4.7 PAUSE STATEMENT

The PAUSE statement temporarily suspends program execution and

displays a message on the terminal to permit you to take some action.

The PAUSE statement has the form:

PAUSE [disp]

disp

A character constant or a decimal digit string of 1 to 5 digits.

The disp argument is optional. The effect of a PAUSE statement

depends on how your program is being executed. If it is running as a

batch job or detached process, the contents of disp are written to the

system output file but the program is not suspended.

If the program is running in interactive mode, the contents of disp

are displayed at your terminal, followed by the prompt sequence,

indicating that the program is suspended, and you should enter a

command. For example, if the following statement is executed in

interactive mode:

PAUSE 'ERRONEOUS RESULT DETECTED'

You will see the following display at the terminal:

ERRONEOUS RESULT DETECTED

$

If you do not specify a value for disp, you will receive the following

message:

FORTRAN PAUSE

You can respond by typing one of the following commands:

CONTINUE - execution resumes at the next executable statement

STOP - eXxecution is terminated

DEBUG - execution resumes under control of the DEBUG

program.

CONTROL STATEMENTS

STOP

4.8 STOP STATEMENT

The STOP statement terminates program execution.

The STOP statement has the form:

STOP [disp]

disp

A character constant or a decimal digit string of 1 to 5 digits.

The disp argument is optional. 1If you specify it, the STOP statement

displays the contents of disp at your terminal, terminates program

execution, and returns control to the operating system.

Examples of STOP statements are:

STOP 98

STOP 'END OF RUN'

CONTROL STATEMENTS

END

4.9 END STATEMENT

The END statement marks the end of a program unit. It must be the

last source line of every program unit.

The END statement has the form:

END

In a main program, if control reaches the END statement, program

execution terminates. In a subprogram, a RETURN statement 1is
implicitly executed.

CHAPTER 5

SPECIFICATION STATEMENTS

Specification statements are nonexecutable statements that 1let you

allocate and initialize variables and arrays, and define other

characteristics of the symbolic names used in the program.

The specification statements are:

e IMPLICIT statement —-- overrides the implied data type of

symbolic names

e Type declaration statement -- explicitly defines the data type

of specified symbolic names

e DIMENSION statement -- defines the number of dimensions in an

array and the number of elements in each dimension

e COMMON statement -- defines one or more contiguous areas of

storage

e EQUIVALENCE statement -- associates two or more entities with
the same storage location

e EXTERNAL statement -- defines the specified symbolic names as
external procedure names

e DATA statement -- assigns initial values to variables, arrays,

and array elements before program execution

e PARAMETER statement -- assigns a symbolic name to a constant

value

e PROGRAM statement -- assigns a symbolic name to a main program
unit

e BLOCK DATA statement -- establishes and defines common blocks
and assigns initial values to entities contained in those

common blocks

The following sections detail these statements, giving their forms,
and examples of use.

SPECIFICATION STATEMENTS

IMPLICIT | e

5.1 IMPLICIT STATEMENT

By default, all names beginning with the 1letters I through N are

assumed to be integer data, and all names beginning with any other

letter are assumed to be real. The IMPLICIT statement overrides

implied data typing of symbolic names.

The IMPLICIT statement has the form:

IMPLICIT typ(al,al...){[,typ(al,al...)]...

typ
One of the data type specifiers. (See Chapter 2, Table 2-2.)

An alphabetic specification in either of the general forms: ¢ or

cl-c2, where ¢ 1is an alphabetic <character. The latter form

specifies a range of letters, from ¢l through <¢2, which must

occur in alphabetical order.

When you specify typ as CHARACTER*len, len specifies the 1length for

character data type. Len 1is an unsigned integer constant or an

integer constant expression enclosed in parentheses, and must be in

the range 1 through 32767.

The IMPLICIT statement assigns the specified data type to all symbolic

names that begin with any specified 1letter, or any letter in a

specified range, and which have no explicit data type declaration.

For example:

IMPLICIT INTEGER (I,J,K,L,M,N)

IMPLICIT REAL (A-H, 0O-1%)

These statements represent the default in the absence of any data type

specifications.

You cannot label IMPLICIT statements.

Examples of IMPLICIT statements are:

IMPLICIT DOUBLE PRECISION (D)

IMPLICIT COMPLEX (S,Y), LOGICAL*1 (L,A-C)

IMPLICIT CHARACTER*32 (T-V)

IMPLICIT CHARACTER*2 (W)

SPECIFICATION STATEMENTS

Type Declaration

5.2 TYPE DECLARATION STATEMENTS

Type declaration statements explicitly define the data type of

specified symbolic names. There are two forms of type declaration

statements: numeric type declarations, and character type

declarations.

The following rules apply to type declaration statements:

e Type declaration statements must precede all executable

statements

@ You can declare the data type of a symbolic name only once.

@ You cannot label type declaration statements.

5.2.1 Numeric Type Declaration Statements

Numeric type declaration statements have the form:

typ vi,vil...

typ
Any data type specifier except CHARACTER.

The symbolic name of a variable, array, statement function or

function subprogram, or an array declarator.

You can use a numeric data type declaration statement to define arrays

by including array declarators (see Section 2.5.1) in the 1list.

A symbolic name can be followed by a data type length specifier of the

form *s, where s is one of the acceptable lengths for the data type

being declared. Such a specification overrides the length attribute

that the statement implies, and assigns a new length to the specified

item. If you specify both a data type length specifier and an array

declarator, the data type length specifier goes first.

Examples of numeric type declaration statements are:

INTEGER COUNT, MATRIX(4,4), SUM

REAL MAN,IABS

LOGICAL SWITCH

INTEGER*2 I, J, K, M12*4, Q, IVEC*4(10)

REAL*8 WX1, WXZ, WX3*4, WX5, WX6*8

SPECIFICATION STATEMENTS

5.2.2 Character Type Declaration Statements

Character type declaration statements have the form:

CHARACTER([*1len] v([*len][,v[*1len]]...

The symbolic name of a variable, array, function subprogram, or

an array declarator.

len

An unsigned integer constant, an integer constant expression

enclosed 1in parentheses, or an asterisk enclosed in parentheses.

The value of len specifies the 1length of the character data

elements.

If you specify CHARACTER*len, len is the default length specification

for that 1list. If an item in that 1list does not have a length

specification, the item's length is len. But if an item does have a

length specification, it overrides the default length specified in

CHARACTER*1len.

A length specification of asterisk (for example, CHARACTER*(*))

specifies a passed length. Only a dummy argument or function name can

have this length specification (see Chapter 6).

If you do not specify a length, a length of 1 is assumed. The length

specification must be in the range 1 to 32767. Note that a length

specification of 0 1is invalid. You can wuse a character type

declaration statement to define arrays by including array declarators

(see Section 2.5.1) in the 1list. If you specify both an array

declarator and a length, the array declarator goes first.

Examples of character type declaration statements follow.

CHARACTER*32 NAMES(100), SOCSEC(100)*9, NAMETY

This statement specifies an array NAMES comprising 100 32-character
elements, an array SOCSEC comprising 100 9-character elements, and a
variable NAMETY, 32 characters long.

PARAMETER LENGTH=4

CHARACTER* (4+LENGTH) LAST, FIRST

This statement specifies two 8-~character variables, LAST and FIRST.

(The PARAMETER statement is described in Section 5.8.)

SUBROUTINE S1 (BUBBLE)

. CHARACTER LETTER(26), BUBBLE * (*)

This statement specifies an array LETTER comprising 26 one-character
elements and a dummy argument BUBBLE, which has a passed length (it is
defined by the calling program).

CHARACTER*16 BIGCHR* (30000%*2) ,QUEST* (5*INT (A))

This statement is invalid; the value specified for BIGCHR is too

large and the 1length specifier for QUEST is not an integer constant

expression.

SPECIFICATION STATEMENTS

DIMENSION

5.3 DIMENSION STATEMENT

The DIMENSION statement defines the number of dimensions in an array

and the number of elements in each dimension.

The DIMENSION statement has the form:

DIMENSION a(d)[,a(d)]...

a(d)
An array declarator (see Section 2.5.1).

a

The symbolic name of an array.

d

A dimension declarator.

The DIMENSION statement allocates a number of storage elements to eac
h

array named in the statement. One storage element is assigned to each

array element in each dimension. The length of each storage element

is determined by the data type of the array. The total number of

storage elements assigned to an array is equal to the product of all

dimension declarators in the array declarator for that array. For

example:

DIMENSION ARRAY (4,4), MATRIX(5,5,5)

This statement defines ARRAY as having 16 real elements of 4 Dbytes

each, and defines MATRIX as having 125 integer elements of 4 bytes

each.

The VIRTUAL statement has the same form and effect as the DIMENSION

statement. It is provided for compatibility with other versions of
FORTRAN.

For further information on arrays and on storing array elements, see

Section 2.5.

You can also use array declarators 1in type declaration and COMMON

statements. However, in each program unit, you can use an array name

in only one array declarator.

You cannot label DIMENSION statements.

Examples of DIMENSION statements are:

DIMENSION BUD(12,24,10)

DIMENSION X(5,5,5),Y(4,85),2(100)

DIMENSION MARK (4,4,4,4)

SPECIFICATION STATEMENTS

COMMON

5.4 COMMON STATEMENT

A COMMON statement defines one or more contiguous areas (blocks) of
storage. A symbolic name identifies each block; however, you can
omit a symbolic name for one block in a program unit. This block is
the blank common block. COMMON statements also define the order of
variables and arrays in each common block.

The COMMON statement has the form:

COMMON [/[cbl/] nlist[[,]/[cb]l/ nlist]...

cb

A symbolic name, called a common block name. cb can be blank.
If the first cb is blank, you can omit the first pair of slashes.

nlist

A list of variable names, array names, and array declarators
separated by commas.

A common block name can be the same as a variable or array hame.
However, it cannot have the same name as a function, subroutine, or
entry in the executable program.

When you declare common blocks of the same name in different program
units, these blocks all share the same storage area when the program
units are combined into an executable program.

You can have only one blank common block in an executable program, but
you can have several named common blocks.

The entities in nlist must be either all of numeric data type or all
of character data type. A common block cannot contain both numeric
and character data.

Entities are assigned storage in common blocks on a one-for-one basis.
Thus, the entities assigned by a COMMON statement in one program unit
should agree in data type with entities placed in a common block by
another program unit. For example, if one program unit contains the
statement:

COMMON CENTS

and another program unit contains the statement:

INTEGER*2 MONEY

COMMON MONEY

When these program units are combined into an executable program,
incorrect results may occur, because the 2-byte integer variable MONEY
is made to correspond to the high-order 2 bytes of the real variable
CENTS.

SPECIFICATION STATEMENTS

An example of the COMMON statement follows.

Main Program Subprogram

COMMON HEAT,X/BLK1/KILO,Q SUBROUTINE FIGURE

. COMMON /BLK1/LIMA,R/ /ALFA,BET

CALL FIGURE .

. RETURN

. END

The COMMON statement in the main program puts HEAT and X in the blank

common block, and puts KILO and Q in a named common block, BLK1l. The

COMMON statement in the subroutine makes ALFA and BET correspond to

HEAT and X in the blank common block, and makes LIMA and R correspond

to KILO and Q in BLKI1.

You can use array declarators in the COMMON statement to define

arrays.

SPECIFICATION STATEMENTS

EQUIVALENCE

5.5 EQUIVALENCE STATEMENT

The EQUIVALENCE statement partially or totally associates two or more

entities in the same program unit with the same storage location.

The EQUIVALENCE statement has the form:

EQUIVALENCE (nlist) [,(nlist)]...

nlist

A list of variables, array elements, arrays, and character

substring references, separated by commas. You must specify at

least two of these entities in each list.

The EQUIVALENCE statement allocates all of the entities in one

parenthesized list beginning at the same storage location.

In an EQUIVALENCE statement, each expression in a subscript or a

substring reference must be an integer constant expression.

The entities in nlist must be either of numeric data type or of

character data type. You cannot make numeric entities and character

entities equivalent.

You can equivalence variables of different numeric data types. If you

do, multiple components of one data type can share storage with a

single component of a higher-ranked data type. For example, if you

make an integer variable equivalent to a complex variable, the integer

variable shares storage with the real part of the complex variable.

Examples of EQUIVALENCE statements follow.

DOUBLE PRECISION DVAR

INTEGER*2 IARR(4)

EQUIVALENCE (DVAR,IARR(1))

This EQUIVALENCE statement makes the four elements of the integer

array IARR occupy the same storage as the double-precision variable

DVAR.

CHARACTER KEY*16, STAR*10

EQUIVALENCE (KEY,STAR)

This EQUIVALENCE statement makes the first character of the character

variables KEY and STAR share the same storage location. The character
variable STAR is equivalent to the substring KEY (1:10).

5.5.1 Making Arrays Equivalent

When you make an element of one array eguivalent to an element of

another array, the EQUIVALENCE statement also sets equivalences

between the corresponding elements of the two arrays. Thus, 1f the

first elements of two equal-sized arrays are made eguivalent, both
arrays share the same storage space. If the third element of a

seven-element array is made equivalent to the first element of another

array, the last five elements of the first array overlap the first

five elements of the second array.

SPECIFICATION STATEMENTS

You must not attempt to use the EQUIVALENCE statement to assign the

same storage location to two or more elements of the same array. You

also must not attempt to assign memory locations in a way that is

inconsistent with the normal linear storage of array elements. For

example, you cannot make the first element of one array equivalent to

the first element of another array, and then attempt to set an

equivalence between the second element of the first array and the

sixth element of the other array.

For example:

DIMENSION TABLE (2,2), TRIPLE (2,2,2)

EQUIVALENCE (TABLE(2,2), TRIPLE(1,2,2))

As a result of these statements, the entire array TABLE shares part of

the storage space allocated to array TRIPLE. Figure 5-1 shows how

these statements align the arrays.

Array TRIPLE Array TABLE

Array Element Array Element

Element Number Element Number

TRIPLE(1,1,1) 1

TRIPLE(2,1,1) 2

TRIPLE(1,2,1) 3

TRIPLE(2,2,1) 4 TABLE (1,1) 1

TRIPLE(1,1,2) 5 TABLE (2,1) 2

TRIPLE(2,1,2) 6 TABLE (1,2) 3

TRIPLE(1,2,2) 7 TABLE (2,2) 4

TRIPLE(2,2,2) 8

Figure 5-1 Equivalence of Array Storage

The following statements also align the two arrays as shown in Figure

5-1:

EQUIVALENCE (TABLE,TRIPLE(2,2,1))

EQUIVALENCE (TRIPLE(1,1,2), TABLE(2,1))

Similarly, you can make arrays equivalent with nonunity lower bounds.

For example, an array defined as A(2:3,4) is a sequence of eight

values. A reference to A(2,2) refers to the third element 1in the

sequence. To make array A(2:3,4) share storage with array B(2:4,4),

you can use the statement:

EQUIVALENCE (A(3,4), B(2,4))

The entire array A shares part of the storage space allocated to array

B. Figure 5-2 shows how these statements align the arrays.

SPECIFICATION STATEMENTS

Array B Array A

Array Element Array Element

Element Number Element Number

B(2,1) 1

B(3,1) 2

B(4,1) 3 A(2,1) 1

B(2,2) 4 A(3,1) 2

B(3,2) 5 A(2,2) 3

B(4,2) 6 A(3,2) 4

B(2,3) 7 A(2,3) 5

B(3,3) 8 A(3,3) 6

B(4,3) 9 A(2,4) 7

B(2,4) 10 A(3,4) 8

B(3,4) 11

B(4,4) 12

Figure 5-2 Equivalence of Arrays with Nonunity Lower Bounds

The following statements also align the arrays as shown in Figure 5-2:

EQUIVALENCE (A,B(4,1))

EQUIVALENCE (B(3,2), A(2,2))

In the EQUIVALENCE statement only, you can identify an array element

with a single subscript (that is, the linear element number), even

though the array was defined as a multidimensional array. For

example, the following statements align the two arrays as shown in

Figure 5-1:

DIMENSION TABLE (2,2), TRIPLE (2,2,2)

EQUIVALENCE (TABLE(4), TRIPLE(7))

5.5.2 Making Substrings Equivalent

When you make one character substring equivalent to another character

substring, the EQUIVALENCE statement also sets equivalences between

the other corresponding characters in the character entities.

For example:

CHARACTER NAME*16 ID*9

EQUIVALENCE (NAME(10:13), ID(2:5))

SPECIFICATION STATEMENTS

As a result of these statements, the character variables NAME and 1ID

share space as illustrated in Figure 5-3.

NAME

Character

Position

ID

Character

Position

Q
i
o
i
v
N
|
l
o
O
i
|
d
I
W
I
N
|
—

— o

— -
—

-
d

N

- L
N

—
_

(4
3}

e
y

D

-
—

w

Q
N
P

W
I
N
|
—

Figure 5-3 Equivalence of Substrings

The following statement also aligns the arrays as shown in Figure 5-3:

EQUIVALENCE (NAME(9:9),ID(1:1))

If the character substring references are array elements, the

EQUIVALENCE statement sets equivalences between the other

corresponding characters in the complete arrays.

Character elements of arrays can overlap at any character position.

For example:

CHARACTER FIELDS®100)*4, STAR(5)*5

EQUIVALENCE (FIELDS(1l) (2:4), STAR(2) (3:5))

As a result of these statements, the character arrays FIELDS and STAR

share storage space as shown in Figure 5-4.

SPECIFICATION STATEMENTS

STAR

Character

Position Subscript

1 1

2

3

FIELDS 4

Character 5

Subscript Position 1 2

1 1 2

2 3

3 4

4 5

2 1 1 3

2 2

3 3

4 4

3 1 5

2 1 4

3 2

4 3

4 1 4

2 5

3 1 5

4 2

5 1 3

2 4

3 5

4

6 1

2

3

4

7 1

2

A/ N\

100 1 ¢

2

3

4

Figure 5-4 Equivalence of Character Arrays

You cannot use the EQUIVALENCE statement to assign the same storage
location to two or more substrings that start at different character
positions in the same character variable or character array.

You also cannot use the EQUIVALENCE statement to assign memory
locations in a way that is inconsistent with the normal linear storage

of character variables and arrays.

SPECIFICATION STATEMENTS

5.5.3 EQUIVALENCE and COMMON Interaction

When you make components equivalent to entities
extended beyondblock, the common block

boundaries.

previously established common

can

block.

But it can only extend beyond the 1

stored

ast

in

it

element

You cannot extend the common

first

a common

s original

of

block in such-a way as to place the extended portion before the

elemént of the existing common block.

valid and invalid extensions of the common block:

the

The following examples show

Vvalid

DIMENSION A(4) ,B(6) A(l) | A(2) | A(3) | A(4)

COMMON A

EQUIVALENCE (A(2),B(1l)) B(1l) B(2) B(3) B(4) B(5) B(6)

N '\ _J
NS T

Existing Extended

Common Portion

Invalid

DIMENSION A (4) ,B(6) A(l) | A(2) | A(3) | A(4)

COMMON A

EQUIVALENCE (A(2),B(3)) B(1) | B(2) | B(3) | B(4) | B(5) | B(6)

\\/_J\ ~" J\\/'_J
Extended Existing Common Extended

Portion Portion

If you assign two components to common blocks, you cannot make them

equivalent to each other. Note also that character data can be

equivalenced only with character data.

SPECIFICATION STATEMENTS

EXTERNAL

5.6 EXTERNAL STATEMENT

The EXTERNAL statement lets you use external procedure names as actual

arguments to other subprograms.

An external procedure can be a user-supplied function or subroutine
subprogram or a FORTRAN library function.

The EXTERNAL statement has the form:

EXTERNAL [*]v [,[*]v]...

The symbolic name of a subprogram or the name of a dummy argument
associated with a subprogram name.

The EXTERNAL statement declares that each name in the 1list is an
external procedure name. Such a name can then appear as an actual
argument to a subprogram; the subprogram can use the associated dummy

argument name in a function reference or CALL statement.

If an asterisk (*) precedes a name in the list, the name identifies a
user-supplied function or subprogram, not a FORTRAN library function.
Use the asterisk only when a user-supplied function or subprogram has
the same name as a FORTRAN library function. (See Section 6.3 for
additional information on FORTRAN library functions.)

Note, however, that a complete function reference used as an argument
(such as, CALL SUBR(A,SQRT(B),C)) represents a value, not a subprogram
name. The function name need not be defined in an EXTERNAL statement.

An example of the EXTERNAL statement follows.

Main Program Subprograms

EXTERNAL SIN,COS,*TAN,SINDEG SUBROUTINE TRIG (X,F,Y)
. Y = F(X)

. RETURN

CALL TRIG (ANGLE,SIN,SINE) END

CALL TRIG (ANGLE,COS,COSINE)

FUNCTION TAN (X)

CALL TRIG (ANGLE,TAN,TANGNT) TAN = SIN(X) / COS(X)

. RETURN

. END

CALL TRIG (ANGLED,SINDEG,SINE)

. FUNCTION SINDEG (X)

. SINDEG = SIN (X*3.14159/180)

. RETURN

END

(

SPECIFICATION STATEMENTS

The CALL statements pass the name of a function to the subroutine

TRIG. The function reference F(X) subsequently invokes the function

in the second statement of TRIG. Depending on which CALL statement

invoked TRIG, the second statement 1is equivalent +to one of the

following:

Y = SIN(X)

Y = COS(X)

Y = TAN(X)

Y = SINDEG (X)

The functions SIN and COS are examples of trigonometric functions

supplied in the FORTRAN library. The function TAN is also supplied in

the library. But the asterisk in the EXTERNAL statement specifies

that the user-supplied function be wused, instead of the library

function. The function SINDEG is also a user-supplied function.

Because no library function has the same name, no asterisk is

required.

SPECIFICATION STATEMENTS

DATA

5.7 DATA STATEMENT

The DATA statement assigns 1initial values to variables and array

elements before program execution.

The DATA statement has the form:

DATA nlist/clist/[[,]lnlist/clist/]...

nlist

A list of one or more variable names, array names, array element

names or character substring names, separated by commas.

Subscript expressions and expressions in substring references

must be integer constant expressions.

clist

A list of constants; clist constants have one of the following

forms:

value

n * value

Used when you specify clist as n * value. Specifies the number

of times the same value is to be assigned to successive entities

in the associated nlist. The value of n is a nonzero, unsigned

integer constant or the symbolic name of an integer constant.

The DATA statement assigns the constant values in each <c¢list to the

entities 1in the preceding nlist. Values are assigned one by one in

order as they appear, from left to right.

The number of constants must correspond exactly to the number of

entities in the preceding nlist.

When an unsubscripted array name appears in a DATA statement, values

are assigned to every element of that array. The associated constant

list must therefore contain enough values to f£ill the array. Array

elements are filled in the order of subscript progression.

If both the constant value in the clist and the entity in the nlist

have numeric data types, the conversion is based on the following

rules:

® The constant value is converted, if necessary, to the data

type of the variable being initialized.

®¢ When an octal or hexadecimal constant is assigned to a

variable or array element that is longer than 4 bytes, the

leftmost digits are initialized to zero. 1If the variable or

array element is less than 4 bytes, the constant is truncated

on the left.

e When a Hollerith or character constant 1is assigned to a

numeric variable or numeric array element, the number of

characters that can be assigned depends on the data type of

the component (see Table 2-2). If the Hollerith or character

constant contains fewer characters than the capacity of the

variable or array element, the constant is extended on the

right with spaces. If the constant contains more characters

than can be stored, the constant is truncated on the right.

5-16

SPECIFICATION STATEMENTS

If the constant value in the clist and the entity in the nlist are

both character data type, the conversion is based on the following

rules: ‘

e If the constant contains fewer bytes than the length of the

entity, the rightmost character positions of the entity are

initialized with spaces.

e If the constant contains more bytes than the length of the

entity, the character constant is truncated on the right.

If the constant value is numeric data type and the entity in the nlist

is character data type, the constant and the entity must conform to

these restrictions: :

@ The character entity must have a length of 1 character.

e The constant must be an integer, octal, or hexadecimal

constant and must have a value in the range 0 through 255.

When the constant and the entity conform to these restrictions, the

entity 1is initialized with the character that has the ASCII code

specified by the constant. This permits a character entity to Dbe

initialized to any 8-bit ASCII code.

An example of the DATA statement follows.

INTEGER A (10)

CHARACTER BELL,TAB,LF,FF, STARS*6

DATA A,STARS / 10%0, '****!

DATA BELL,TAB,LF,FF /7,9,10,12/

The DATA statements assign 0 to all ten elements of array A, and 4

asterisks followed by 2 spaces to the character variable STARS. ASCII

control character codes are assigned to the character variables BELL,

TAB, LF, FF.

SPECIFICATION STATEMENTS

PARAMETER

5.8 PARAMETER STATEMENT

The PARAMETER statement assigns a symbolic name to a constant.

The PARAMETER statement has the form:

PARAMETER p=c [,p=c] ...

A symbolic name.

A constant, the symbolic name of a constant, or a compile~time
constant expression.

Each symbolic name (p) becomes a constant and is defined as the value
of the constant or constant expression (c); c can be any valid
FORTRAN constant.

A compile-time constant expression is an arithmetic expression in
which:

e Each operand is a constant, the symbolic name of a constant,
or a compile-time constant expression.

® Each operand is of integer, real or double precision data
type.

® Each operator is a +,-,*,/, or ** operator. The ** operator
is valid only if the exponent is of type integer.

Once a symbolic name is defined as a constant, it can appear in any
position in which a constant is allowed. The effect is the same as if
the constant were written there instead of the symbolic name.

The symbolic name of a constant cannot appear as part of another
constant. But it can appear as a real or imaginary part of a complex

constant.

You can use a symbolic name in a PARAMETER statement only to identify
the symbolic name's corresponding constant in that program unit. Such
a name can be defined only once in PARAMETER statements within the
same program unit.

The symbolic name of a constant assumes the data type of its
corresponding constant expression. The initial 1letter rof the
constant's name does not affect its data type. You cannot specify the
data type of a parameter constant in a type declaration statement.

Examples

PARAMETER PI=3.1415927, DPI=3.141592653589793238D0

PARAMETER PIOV2=PI/2, DPIOV2=DPI/2

PARAMETER FLAG=.TRUE., LONGNAME='A STRING OF 25 CHARACTERS'

SPECIFICATION STATEMENTS

PROGRAM

5.9 PROGRAM STATEMENT

The PROGRAM statement assigns a symbolic name to a main program unit.

The PROGRAM statement has the form:

PROGRAM nam

nam

A symbolic name.

The PROGRAM statement is optional. If you use it, it must be the

first statement in the main program. The symbolic name must not be

the name of any entity within the main program. It also must not be

the same as the name of any subprogram, entry, or common block in the

same executable program.

SPECIFICATION STATEMENTS

BLOCK DATA

5.10 BLOCK DATA STATEMENT

The BLOCK DATA statement, followed by a series of specification

statements, assigns initial values to entities in named common blocks

and, at the same time, establishes and defines these blocks.

The BLOCK DATA statement has the form:

BLOCK DATA [nam]

nam

A symbolic name.

You can use type declaration, IMPLICIT, DIMENSION, COMMON,

EQUIVALENCE, and DATA statements following a BLOCK DATA statement.

The specification statements that follow the BLOCK DATA statement

establish and define common blocks, assign variables and arrays to

these blocks, and assign initial values to the variables and arrays.

A BLOCK DATA statement must not have a statement label.

A BLOCK DATA statement and 1its associated specification statements

comprise a special kind of program unit. The last statement in a

BLOCK DATA program unit is an END statement.

A BLOCK DATA program unit must not contain any executable statements.

—If you use a BLOCK DATA statement to initialize any entity in a

labeled common block, you must provide a complete set of specification

stateients to establish the entire block, even though some of the
entities 1in the block do not appear in a DATA statement. You can use

the same BLOCK DATA program unit to define initial values for more

than one common block.

An example of a BLOCK DATA program unit follows.

BLOCK DATA BLKDAT

INTEGER S,X

LOGICAL T,W

DOUBLE PRECISION U

DIMENSION R(3)

COMMON /AREAl/R,S,T,U/AREA2/W,X,Y

DATA R/1.0,2*%2.0/,T/.FALSE./,U/0.214537D-7/,W/.TRUE./,Y/3.5/

END

CHAPTER 6

SUBPROGRAMS

Subprograms are program units that can be invoked from another

program, usually to perform some commonly-used computation on behalf

of the other program.

Subprograms are either user-written, or supplied as part of the VAX-1ll1

FORTRAN IV-PLUS system. User-written subprograms include:

@ Arithmetic statement functions

e Functions

e Subroutines

Subprograms supplied with the FORTRAN system include:

® Processor-defined functions

® Generic functions

e Character functions

Generally the program that invokes the subprogram passes values, known

as actual arguments, to the subprogram, which wuses the actual

arguments to compute the results.

6.1 SUBPROGRAM ARGUMENTS

Subprogram arguments are either dummy arguments or actual arguments.

Dummy arguments are specified when you define the subprogram. Actual

arguments are specified when you invoke the subprogram, and are

associated with the corresponding dummy arguments when control is

transferred to the subprogram. This means that each dummy argument

takes on the value of the corresponding actual argument; and any

value assigned to the dummy argument is also assigned to the

corresponding actual argument.

6.1.1 Actual Argument and Dummy Argument Association

There must be agreement between actual arguments and dummy arguments.

Actual arguments must agree in order, number and data type with the

dummy arguments with which they are associated. Actual arguments can

be constants, variables, expressions, arrays, array elements,

character substrings, alternate return specifiers, or subprogram

names. The dummy arguments specified in subprogram definitions,

representing corresponding actual arguments, appear as unsubscripted

variable names.

SUBPROGRAMS

Although dummy arguments are not actual variables, arrays, or
subprograms, each dummy argument may be declared as though it were a
variable, array, or subprogram.

A dummy argument declared as an array can be associated only with an
actual argument that is an array or array element of the same data
type. If a dummy argument is an array, it must be no larger than the
array that is the actual argument. You can use adjustable arrays (see
Section 6.1.1.1) to process different sized arrays in a single
subprogram.

The length of a dummy argument of type character must not be greater
than the 1length of its associated actual argument. Note that if the
character dummy argument's length is specified as *(*), the length
used 1is exactly the length of the associated actual argument. (This
is known as a passed length character argument. See Section 6.1.1.2.)

Section 6.1.1.3 describes the use of character constants and Hollerith
constants as actual arguments.

Section 6.1.1.4 describes alternate return arguments.

6.1.1.1 Adjustable Arrays - Adjustable arrays are dummy arguments in
subprograms. The dimensions of an adjustable array are determined in
the reference to the subprogram. The array declarator (see Section
2.5.1) for an adjustable array can contain integer variables that are
dummy arguments or variables in a common block.

When the subprogram is entered, each dummy argument used in the array
declarator must be associated with an actual argument and each
variable in a common block used in an array declarator must have a
defined value. The dimension declarator is evaluated using the values
of the actual arguments, variables in common blocks, and constants
specified in the array declarator.

The size of the adjustable array must be less than or equal to the
size of the array that is its corresponding actual argument.

The function in the following example computes the sum of the elements
of a two-dimensional array. Note the use of the dummy arguments M and
N to control the iteration.

FUNCTION SUM(A,M,N)

DIMENSION A(M,N)

SUM = 0.0

DO 10 J =1

DO 10 I =1

10 SUM = SUM +

RETURN

END

'N

M

A(I,J)

The following statements are sample calls on SUM:

DIMENSION A1(10,35), A2(3,56)
SUM1 = SUM(A1,10,35)
SUM2 = SUM(A2,3,56)

SUM3 = SUM(A1,10,10)

SUBPROGRAMS

The upper and lower dimension bound values are determined once each
time a subprogram is entered. These values do not change during the
execution of that subprogram even if the values of variables contained
in the array declaration are changed. For example:

DIMENSION ARRAY (11,5)

CALL SUB (ARRAY,L,M)

END

SUBROUTINE SUB(X,I,J)

DIMENSION X(-I/2:1/2,3J)

J =1

I =2

END

In this example, the adjustable array X is declared as X(-4:4,5) on
entry to subroutine SUB. The assignments to I and J do not affect
that declaration.

An adjustable array is undefined if a dummy argument array 1is not
currently associated with an actual argument array, or if any of the
variables in the adjustable array declarator are not currently
associated with an actual argument or are not in a common block. Note
that argument association is not retained between one reference to a
subprogram and the next reference to that subprogram. For example:

SUBROUTINE S(A,I,J)

DIMENSION A(I)

A(I) =4

RETURN

ENTRY S1 (I,A,K,L)

! A(I) = A(I) + 1

RETURN

END

In this example, B is a real array with 10 elements:

DIMENSION B (10)

The following statement sets B(2)=3:

CALL S(B,2,3)

The next statement increments B (5) by 1:

CALL S1(5,B,3,2)

6.1.1.2 Passed Length Character Arguments - A passed length character
argument must be a dummy argument. A passed length character argument
has the length of the actual argument.

For a passed length character string, use an asterisk enclosed in
parentheses as the length specification (see Section 6.2.2.2).

When control transfers to a subprogram, each passed length character
dummy argument must be associated with a character actual argument.
The length of the dummy argument is the length of the actual argument.

SUBPROGRAMS

A character array dummy argument can have passed length. The length

of each element in the dummy argument is the length of the elements in

the actual argument. The passed length and the array declarator

together determine the size of the passed length character array. A

passed length character array can also be an adjustable array.

The following example of a function subprogram uses a passed length
character argument. The function finds the position of the character

with the highest ASCII code value; 1t uses the length of the passed

length character argument to control the iteration. (Note that the

processor—-defined function LEN is used to determine the length of the

argument. See Section 6.3.4 for a description of the LEN function.)

INTEGER FUNCTION ICMAX (CVAR)

CHARACTER*(*) CVAR

ICMAX = 1

DO 10 I = 1, LEN(CVAR)

10 IF (CVAR(I:I) .GT. CVAR (ICMAX:ICMAX)) ICMAX=I

RETURN

END

The length of the dummy argument is determined each time control

transfers to the function. The length of the actual argument can be

the length of a character variable, array element, substring, or

expression. Each of the following function references specifies a

different length for the dummy argument.

CHARACTER VAR*10, CARRAY (3,5)*20

I1 = ICMAX(VAR)

I2 = ICMAX(CARRAY (2,2))

I3 = ICMAX(VAR(3:8))

I4 = ICMAX(CARRAY(1,3) (5:15)) .

I5 = ICMAX (VAR(3:4)//CARRAY(3,5)

6.1.1.3 Character and Hollerith Constants as Actual Arguments -Actual
arguments and their corresponding dummy arguments must agree in data

type. If the actual argument is a Hollerith constant (for example,
4HABCD), the dummy argument must be of numeric data type. In VAX-11

FORTRAN IV-PLUS, if an actual argument is a character constant (for

example, 'ABCD'), the corresponding dummy argument can have either
numeric or character data type. If the dummy argument has a numeric

data type, the character constant '"ABCD' is, in effect, converted to a

Hollerith constant by the FORTRAN compiler and the linker.

An exception to this occurs when the function or subroutine name 1is
itself a dummy argument. It is not possible to determine at compile

time or link time whether a character constant or Hollerith constant

is required. In this case, a character constant actual argument can

only correspond to a character dummy argument. For example:

SUBROUTINE S (CHARSUB,HOLLSUB,A,B)

EXTERNAL CHARSUB,HOLLSUB

CALL CHARSUB(A, 'STRING')

CALL HOLLSUB(B, 6HSTRING)

SUBPROGRAMS

In this example, the subroutine names CHARSUB and HOLLSUB are
themselves dummy arguments of the subroutine S. Therefore, the actual
argument 'STRING' in the «call to CHARSUB must correspond to a
character dummy argument, while the actual argument 6HSTRING in the

call to HOLLSUB must correspond to a Hollerith dummy argument.

6.1.1.4 Alternate Return Arguments - To specify an alternate return

argument in a dummy argument list, place asterisks in the list. For

example:

SUBROUTINE MINN(A,B,*,*,C)

The actual argument list passed in the CALL must include alternate

return arguments in the corresponding positions. These arguments have

the form:

*label

or

&label

You can use either an asterisk or an ampersand to indicate an
alternate return argument in an actual argument list. The value you
specify for label must be the label of a statement in the program that
issued the CALL.

6.1.2 Built-In Functions

Built-in functions perform utility operations that are useful in
communicating with subprograms written in languages other than
FORTRAN. There are two kinds of built-in functions:

e Argument list built-in functions

® 23LOC built-in function

6.1.2.1 Argument List Built-In Functions - To call subprograms
written in languages other than FORTRAN (such as system services), you
may need to pass the actual arguments in a different form than FORTRAN
uses. You can use three built-in functions -- $%VAL, $REF, and $DESCR

-- in the argument list of a CALL statement or function reference to

change the form of the argument.

You must not use these built-in functions to invoke a FORTRAN library

procedure or a user-supplied subprogram written in FORTRAN.

The three argument 1list built-in functions specify the way the
argument should be passed to the subprogram. You can use these
functions only in the actual argument list of a CALL statement or
function reference. You cannot use them in any other context.

SUBPROGRAMS

The argument list built-in functions are:

Function Effect

$VAL (a) Pass the argument as a 32-bit value.

$REF (a) Pass the argument by reference.

$DESCR(a) Pass the argument by descriptor.

In these functions, a is an actual argument.

See the VAX-11 FORTRAN IV-PLUS User's Guide for more information on

argument-passing mechanisms.

Table 6-1 lists the FORTRAN argument-passing defaults and the allowed

uses of %VAL, %REF, and %DESCR.

Table 6-1

Argument List Built-In Functions and Defaults

Actual Argument

Data Type Default Functions Allowed

VAL $REF $DESCR

Expressions

LOGICAL REF Yes Yes Yes

INTEGER REF Yes Yes Yes

REAL*4 REF Yes Yes Yes

REAL*8 REF No Yes Yes

COMPLEX REF No Yes Yes

CHARACTER DESCR No Yes Yes

Hollerith REF No No No

Array Name

Numeric REF No Yes Yes

CHARACTER DESCR No Yes Yes

Procedure Name

Numeric REF No Yes Yes

CHARACTER DESCR No Yes Yes

SUBPROGRAMS

6.1.2.2 $LOC Built-In Function - The 3%LOC built-in function computes

the internal address of a storage element. It has the form:

$LOC (v)

A variable name, array element name, array name, character

substring name, or external procedure name.

The %LOC built-in function produces an INTEGER*4 value that represents

the 1location of 1its argument. It can be used as an element in an

arithmetic expression.

See the VAX-11l FORTRAN IV-PLUS User's Guide for more information on
the %LOC built-in function.

6.2 USER-WRITTEN SUBPROGRAMS

A user-written subprogram is a FORTRAN statement or group of FORTRAN

statements that perform a computing procedure. A computing procedure
can be either a series of arithmetic operations or a seriesof FORTRAN

statements. You can use subprograms to perform a computing procedure

in several places in your program, and thus avoid having to duplicate

the series of operations or statements in each place.

There are three types of subprograms. Table 6-2 lists each type of

subprogram, the statements needed to define it, and the method of

transferring control to the subprogram. .

Table 6-2

Types of User-Written Subprograms

Control Transfer

Subprogram Defining Statements Method

Arithmetic statement Arithmetic statement | Function reference

function function definition

Function FUNCTION Function reference

ENTRY

RETURN

Subroutine SUBROUTINE CALL statement

ENTRY

RETURN

A function reference is used in an expression and consists of the

function name and the function arguments. A function reference

returns a value that is used in evaluating the expression in which it

appears.

Function and subroutine subprograms can change the values of their

arguments; the calling program can use the changed values.

A subprogram can refer to other subprograms; but it cannot, either

directly or indirectly, refer to itself.

SUBPROGRAMS

6.2.1 Arithmetic Statement Functions

An arithmetic statement function is a computing procedure defined by a
single statement. Its definition statement is similar in form to an

assignment statement. If you refer to the arithmetic statement

function, the computation is performed. The resulting value is made

available to the expression that contains the arithmetic statement

function reference.

The arithmetic statement function definition statement has the form:

£ ([pl,p)...]1)=e

The name of the arithmetic statement function.

A dummy argument.

An expression.

The expression (e) is an arithmetic or logical expression that defines

the computation to be performed.

An arithmetic statement function reference has the form:

£ (Ipl,pl...1)

The name of the function.

p
An actual argument.

When an arithmetic statement function reference appears in an

expression, the values of the actual arguments are associated with the

dummy arguments in the arithmetic statement function definition. The

expression in the definition is then evaluated. The resulting value

is used to complete the evaluation of the expression containing the

function reference.

The data type of an arithmetic statement function is determined either
implicitly by the initial letter of the function name, or explicitly

in a type declaration statement. The data type can be any of the

numeric data types, but cannot be character data type.

Dummy arguments in a statement function indicate only the number,
order, and data type of the actual arguments. You can use the names
of the dummy arguments to represent other entities elsewhere in the
program unit. Note that, except for data type, declarative
information associated with an entity is not associated with the dummy
arguments in the arithmetic statement function. That is, declaring an

entity to be an array or to be in a common block does not affect a

dummy argument with the same name.

You cannot use the name of the arithmetic statement function to

represent any other entity within the same program unit.

The expression in an arithmetic statement function definition can

contain function references. If a reference to another arithmetic

statement function appears in the expression, you must have previously
defined that function in the same program unit.

SUBPROGRAMS

Any reference to an arithmetic statement function must appear in the

same program unit as the definition of that function.

An arithmetic statement function reference must appear as, or be part

of, an expression. You cannot use the reference as the left side of

an assignment statement.

Actual arguments must agree in number, order, and data type with their

corresponding dummy arguments.

Examples of arithmetic statement function definitions follow.

VOLUME (RADIUS) = 4.189*RADIUS**3

SINH(X) = (EXP(X)-EXP(-X))*0.5

The following is an invalid definition. You cannot use a constant as

a dummy argument.

AVG(A,B,C,3.) = (A+B+C)/3.

Examples of arithmetic statement function references follow.

This is the definition:

AVG(A,B,C) = (A+B+C)/3.

These are the references:

GRADE = AVG(TEST1,TESTZ2,XLAB)

IF (AVG(P,D,Q).LT.AVG(X,Y,Z)) GO TO 300

FINAL = AVG(TEST3,TEST4,LAB2)

The last of these three references is invalid, because the data type

of the third argument does not agree with the dummy argument.

6.2.2 Function Subprograms

A function subprogram is a program unit consisting of a FUNCTION

statement followed by a series of statements that define a computing

procedure. You use a function reference to transfer control to a

function subprogram, and a RETURN statement to return control to the

calling program unit.

A function subprogram returns a single value to the <calling program

unit by assigning that value to the function's name. The function's

name determines the data type of the value returned.

SUBPROGRAMS

6.2.2.1 Numeric Functions - The FUNCTION statement has the form:

[typ] FUNCTION nam[*m] [([p[,p]...]1)]

typ
One of the numeric data type specifiers.

nam

The name of the function.

m

Unsigned, nonzero integer constant specifying the length of the

data type.

P
A dummy argument.

6.2.2.2 Character Functions - The CHARACTER FUNCTION statement has

the form:

CHARACTER[*n] FUNCTION nam [([p[,p]...1)]

Unsigned, nonzero integer constant, or (*) indicating a passed

length function name. If you specify CHARACTER*(*), the function

assumes the length declared for it in the program unit that
invokes it. A passed length character function can have
different lengths when it is invoked by different program units.
If n 1is an integer constant, the value of n must agree with the
length of the function specified in the program unit that invokes
the function. If you do not specify n, a length of 1 is assumed.

nam

The name of the function.

A dummy argument.

6.2.2.3 Function Reference - A function reference that transfers
control to a function subprogram has the form:

nam ([pl[,pl...])

nam

The symbolic name of the function.

p
An actual argument.

When control transfers to a function subprogram, the values of the

actual arguments (if any) in the function reference are associated

with the dummy arguments (if any) in the FUNCTION statement. The

statements in the subprogram are then executed. A value must be

assigned to the name of the function. Finally, a RETURN statement is

executed in that function and returns control to the calling program
unit. The value assigned to the function's name is now available to

the expression containing the function reference, and is used to

complete the evaluation of that expression.

SUBPROGRAMS

The data type of a function name can be specified explicitly in the

FUNCTION statement or in a type declaration statement, or implicitly.

The function name defined in the function subprogram must have the

same data type as the function name in the calling program unit.

The FUNCTION statement must be the first statement of a function

subprogram. It must not have a statement 1label. A function

subprogram cannot contain a SUBROUTINE statement, a BLOCK DATA

statement, or another FUNCTION statement. ENTRY statements can be

included, to provide multiple entry points to the subprogram. (See

Section 6.2.4.)

Examples of function subprograms follow.

FUNCTION ROOT (A)

X =1.0

2 EX = EXP (X)

EMINX = 1./EX

ROOT = ((EX+EMINX)*.5+COS(X)-A)/((EX - EMINX)*.5-SIN(X))

IF (ABS(X-ROOT) .LT.1E-6) RETURN

X = ROOT

GO TO 2

END

The function in this example uses the Newton-Raphson iteration method

to obtain the root of the function:

F(X) = cosh(X) + cos(X) - A =0

The value of A is passed as an argument. The iteration formula for

this root is:

Xi+l = Xi -

cosh (Xi)+cos(Xi)-A

sinh (Xi)-sin(Xi)

This is calculated repeatedly until the difference between Xi and Xi+l

is 1less than 1.0E-6. The function uses the FORTRAN library functions

EXP, SIN, COS, and ABS (see Section 6.3).

The following example is a passed length character function. It

returns the value of its argument, repeated to fill the length of the

function.

CHARACTER*(*) FUNCTION REPEAT (CARG)

CHARACTER*1 CARG

DO 10 I=1, LEN(REPEAT)

10 REPEAT (I:I) = CARG

RETURN

END

Within any given program unit all references to a passed 1length

character function must have the same length. In the following

example, the REPEAT function has a length of 1000.

CHARACTER*1000 REPEAT, MANYAS, MANYZS

MANYAS = REPEAT('A')

MANYZS = REPEAT('Z2')

SUBPROGRAMS

However, another program unit within the executing program can specify
a different length. 1In the following example, the REPEAT function has

a length of 2.

CHARACTER HOLD*6, REPEAT*2

HOLD = REPEAT('A') // REPEAT('B') // REPEAT('C')

6.2.3 Subroutine Subprograms

A subroutine subprogram is a program unit consisting of a SUBROUTINE

statement followed by a series of statements that define a computing

procedure. You use a CALL statement to transfer control to a

subroutine subprogram, and a RETURN statement to return control to the

calling program unit.

The SUBROUTINE statement has the form:

SUBROUTINE nam [([pl[,p]l..-]1)]

nam

The name of the subroutine.

p .
A dummy argument. You can specify a dummy argument as an

alternate return argument by placing an asterisk in the argument
list.

Section 4.5 describes the CALL statement.

When control transfers to the subroutine, the values of the

actual arguments (if any) in the CALL statement are associated
with the corresponding dummy arguments (if any) in the SUBROUTINE

statement. The statements in the subprogram are then executed.

The SUBROUTINE statement must be the first statement of a
subroutine. It must not have a statement label.

A subroutine subprogram cannot contain a FUNCTION statement, a

BLOCK DATA statement, or another SUBROUTINE statement. ENTRY

statements are allowed, to specify multiple entry points in the

subroutine. (See Section 6.2.4.)

Examples:

The subroutine in the following example computes the volume of a

regular polyhedron, given the number of faces and the length of

one edge. It uses the computed GO TO statement to determine
whether the polyhedron 1is a tetrahedron, cube, octahedron,

dodecahedron, or icosahedron. The GO TO statement also transfers

control to the proper procedure for calculating the volume. If

the number of faces is not 4, 6, 8, 12, or 20, the subroutine
displays an error message on the user's terminal.

SUBPROGRAMS

Main Program

COMMON NFACES,EDGE,VOLUME

ACCEPT *, NFACES,EDGE

CALL PLYVOL

TYPE *, 'VOLUME=',6 VOLUME

STOP

END

Subroutine

SUBROUTINE PLYVOL

COMMON NFACES ,EDGE,VOLUME

CUBED = EDGE**3

corTo (6,6,6,1,6,2,6,3,6,6,6,4,6,6,6,6,6,6,6,5),NFACES

GOTO 6

1 VOLUME = CUBED * 0.11785

RETURN

2 VOLUME = CUBED

RETURN

3 VOLUME = CUBED * 0.47140

RETURN

4 VOLUME = CUBED * 7.66312

RETURN

5 VOLUME = CUBED * 2.18170

RETURN

6 TYPE 100, NFACES

100 FORMAT(' NO REGULAR POLYHEDRON HAS ',I3,'FACES.'/)

VOLUME=0.0

RETURN

END

The following example illustrates the wuse of alternate return

specifiers to determine where control is transferred on completion of

the subroutine. The SUBROUTINE statement argument list contains two

dummy alternate return arguments, corresponding to the actual

arguments *10 and *20 in the CALL statement argument list. The RETURN

taken depends on the value of Z, as computed in the subroutine. Thus,

if 2 is less than 0, the normal return 1is taken; if equal to O,

return 1is to statement label 10 in the main program; if more than 0,

return is to statement label 20 in the main program.

Main Program Subroutine

CALL CHECK (A,B,*10,%*20,C) SUBROUTINE CHECK (X,Y,*,*,Q)

TYPE *, 'VALUE LESS THAN ZERO' .

GO TO 30 .

10 TYPE *, 'VALUE EQUALS ZERO'

GO TO 30 50 IF(z) 60,70,80

20 TYPE *, 'VALUE MORE THAN ZERO' 60 RETURN

30 CONTINUE 70 RETURN 1

. 80 RETURN 2

. END

SUBPROGRAMS

ENTRY

6.2.4 ENTRY Statement

The ENTRY statement provides multiple entry points within a
subprogram. It is not executable and can appear within a function or
subroutine program after the FUNCTION or SUBROUTINE statement.
Execution of a subprogram referred to by an entry name begins with the
first executable statement after the ENTRY statement.

The ENTRY statement has the form:

ENTRY nam [([p[,p]...]1)]

nam

The entry name.

p
A dummy argument.

Use the CALL statement to refer to entry names within subroutine

subprograms. Use function references to refer to entry names within
function subprograms.

An entry name within a function subprogram can appear in a type

declaration statement.

You can specify an entry name in an EXTERNAL statement and use it as
an actual argument; you cannot use it as a dummy argument.

You cannot use entry names in executable statements that physically

precede the appearance of the entry name in an ENTRY statement.

You can include alternate return arguments in ENTRY statements by
placing asterisks in the dummy argument list. ENTRY statements that
specify alternate return arguments can be used only in subroutine
subprograms.

You can use dummy arguments in ENTRY statements that differ in order,

number, type, and name from the dummy arguments you use in the
FUNCTION, SUBROUTINE, and other ENTRY statements in the same
subprogram. However, each reference to a function, subroutine, or
entry must use an actual argument list that agrees in order, number,

and type with the dummy argument list in the corresponding FUNCTION,

SUBROUTINE, or ENTRY statement.

A dummy argument can be referred to only in executable statements that
follow the first SUBROUTINE, FUNCTION, or ENTRY statement im which the

dummy argument is specified. A dummy argument is undefined if it is
not currently associated with an actual argument. There 1is no
retention of argument association from one reference of a subprogram
to the next.

You cannot use an ENTRY statement within a block IF construct or a DO

loop.

SUBPROGRAMS

6.2.4.1 ENTRY in Function Subprograms - All entry names within a

function subprogram are associated with the name of the function

subprogram. Therefore, defining any entry name or the name of the

function subprogram defines all the associated names of the same data

type; all associated names that are of different data types become

undefiped. The function and entry names need not be of the same data

type, but they all must be either numeric data type or character data

type. At the execution of a RETURN statement or the implied return at

the end of the subprogram, the name used to refer to the function

subprogram must be defined.

If the function is of character data type, the entry name must also be

of character data type and must have the same length specification as

the function. Note that the length specified must also agree with the

length specified in the program unit referring to the entry name. If

an asterisk enclosed in parentheses is used to specify the length of

the entry name, the entry name has a passed length (see Section

6.1.1.2).

Figure 6-1 illustrates a function subprogram that computes the

hyperbolic functions sinh, cosh, and tanh.

REAL FUNCTION TANH (X)

C

C STATEMENT FUNCTION TO COMPUTE TWICE SINH

C

TSINH(Y) = EXP(Y) - EXP (-Y)

C

C STATEMENT FUNCTION TO COMPUTE TWICE COSH

C

TCOSH(Y) = EXP(Y) + EXP(-Y)

C

C COMPUTE TANH

C .

TANH = TSINH(X) / TCOSH (X)

RETURN

C

C COMPUTE SINH

C

ENTRY SINH (X)

SINH = TSINH(X) / 2.0

RETURN

C

C COMPUTE COSH

C

ENTRY COSH (X)

COSH = TCOSH(X) / 2.0

RETURN

END

Figure 6-1 Multiple Functions in a Function Subprogram

SUBPROGRAMS

6.2.4.2 ENTRY in Subroutine Subprograms - To refer to an entry point
name in a subroutine, issue a CALL statement that includes the entry
point name defined in the ENTRY statement. For example:

Main Program

CALL SUBA(A,B,C)

Subroutine

SUBROUTINE SUB (X,Y,Z)

ENTRY SUBA(Q,R,S)

In this example, the CALL is to an entry point (SUBA) within the
subroutine (SUB). Execution begins with the first statement following
ENTRY SUBA (Q,R,S), using the actual arguments (A,B,C) passed in the
CALL statement. Note that alternate returns can be specified in ENTRY
statements. For example:

SUBROUTINE SUB (K,*,*)

ENTRY SUBC (J,K,*,*,X)

RETURN 1

RETURN 2

END

If you issue a CALL to entry point SUBC, you must include actual
alternate return arguments. For example:

CALL SUBC(M,N,*100,*200,P)

In this case, RETURN 1 transfers control to statement label 100, and
RETURN 2 transfers control to statement label 200, in the calling
program.

SUBPROGRAMS

6.3 FORTRAN LIBRARY FUNCTIONS

FORTRAN library functions are provided to perform commonly used
mathematical computations.

The FORTRAN library functions are listed in Appendix B. Function
references to FORTRAN library functions are written in the same way

function references to user-defined functions are written. For

example:

R = 3.14159 * ABS(X-1)

As a result of this reference, the absolute value of X-1 is ca
lculated

and multiplied by the constant 3.14159; the result is assigned to the
variable R.

Appendix B gives the data type of each library function and of the
actual arguments. Section 6.3.4 also describes the character

functions.

6.3.1 Processor-Defined Function References

The FORTRAN library function names are called processor—-defined
function , names. Note that the processor-defined functions include
both the Intrinsic Functions and the Basic External Functions

defined
in ANS FORTRAN.

Normally, a name in the table of processor-defined function names

refers to the FORTRAN library function with that name. However, the
name can refer to a user-defined function under any of the following
conditions:

e The name appears in a type declaration statement specifyi
ng a

different data type than shown in the table.

e The name is prefixed with an asterisk and appears in an
EXTERNAL statement.

e The name is used in a function reference with arguments of a
different data type than shown in the table._

Except when they are used in an EXTERNAL statement and are pre
fixed by

an asterisk, processor-defined function names are local to
the program

unit that refers to them. Thus, they can be used for other purposes

in other program units. In addition, the data type of a
processor-defined function does not change if you use an IMPLICIT

statement to change the implied data type rules.

Use of a processor-defined function name in an EXTERNAL state
ment with

an asterisk prefix specifies that the name refers to a function or
subroutine that you will provide as an external subp

rogram.

6.3.2 Generic Function References

Generic function references provide a way of calling some of the
FORTRAN mathematical functions such that the selection of the actual
library routine used is based on the data type of the argumen

t in the
function reference. For example, 1if X is a real variable, the

function reference SIN(X) refers to the real valued sine function.
But if D is a double precision variable, the function refer

ence SIN (D)
refers to the double precision sine function. You need not write
DSIN(D).

6-17

Generic function selection
reference.

SUBPROGRAMS

occurs independeritly for each function
Thus, you could use both the function references in the

example above, SIN(X) and SIN(D), in the same program unit.

Table 6-3 lists the generic function names. These names can be used
only with the argument data types shown in the table.

You cannot use the names in Table 6-3 for generic function selection
if you use them in a program unit in any of the following ways:

® In a type declaration statement

® As the name of an arithmetic statement function

°

Using a generic name in an EXTERNAL statement does not affect
function

As a dummy argument name, common block name, variable or array
name

generic
selection for function references. When you use a generic

function name in an actual argument list as the name of a function to
be passed, no

argument list on which to base a
according to the

generic function selection occurs, as there is no
selection. The name 1is treated

rules for nongeneric FORTRAN functions described
above in Section 6.3.1.

Generic function names are local to the program unit that refers to
them. Thus, they can be used for other purposes in other programs.

Table 6-3

Generic Function Name Summary

Data Type of Data Type of
Generic Name Argument Result

ABS Integer Integer

Real Real

Double Double
Complex Real

AINT, ANINT Real Real

Double Double

INT, NINT Real Integer

Double Integer

SNGL Integer Real

Double Real

DBLE Integer Double

Real Double

MOD, MAX, MIN, SIGN, DIM Integer Integer

Real Real

Double Double

EXP, LOG, SIN, COS, SQRT Real Real

Double Double

Complex Complex

LOG10, TAN, ATAN, ATAN2, ASIN, Real Real
ACOS, SINH, COSH, TANH Double Double

6.3.3

Figure 6-2 shows the use of processor-defined

names.

SUBPROGRAMS

Processor-Defined and Generic Function Usage

and generic function

In this figure, a single executable program uses the name SIN

in four distinct ways:

As the name of an arithmetic statement function

As a generic function name

As a processor-defined function name

As a user-defined function

Using the name in these four ways emphasizes the local

properties of the name.

In Figure 6-2, the parenthetical notes are keyed to the

follow the figure.

and global

notes that

SUBPROGRAMS

Q
O
O
0

10

100

O
O
0

10

COMPARE WAYS OF COMPUTING SINE.

PROGRAM SINES

PARAMETER PI = 3.141592653589793238D0

REAL*8 X

COMMON V (3) R

DEFINE SIN AS A STATEMENT FUNCTION (Note 1)

SIN(X) = COS(PI/2-X)

DO 10 X = -PI, PI, 2*PI/100

CALL COMPUT (X)

REFERENCE THE STATEMENT FUNCTION SIN (Note 2)

WRITE (6,100) X,V, SIN(X)

FORMAT (5F10.7)

END

SUBROUTINE COMPUT (Y)

REAL*8 Y

MAKE PROCESSOR-DEFINED FUNCTION SIN EXTERNAL (Note 3)

EXTERNAL SIN

COMMON V (3)

GENERIC REFERENCE TO DOUBLE PRECISION SINE (Note 4)

V(l) = SIN(Y)

PROCESSOR-DEFINED FUNCTION SINE AS ACTUAL ARGUMENT. (Note 5)

CALL SUB(Y,SIN)

END

SUBROUTINE SUB(A,S)

DECLARE SIN AS NAME OF USER FUNCTION. (Note 6)

EXTERNAL *SIN

DECLARE SIN AS TYPE REAL*8 (Note 7)

REAL*8 A, SIN

COMMON V (3)

EVALUATE PROCESSOR-DEFINED FUNCTION SIN (Note 8)

V{(2) = S(A)

EVALUATE USER DEFINED SIN FUNCTION. (Note 9)

V(3) = SIN(A)

END

DEFINE THE USER SIN FUNCTION. (Note 10)

REAL*8 FUNCTION SIN(X)

INTEGER FACTOR

SIN = X - X**3/FACTOR(3) + X**5/FACTOR(5)

1 - X**7/FACTOR(7)

END

INTEGER FUNCTION FACTOR(N)

FACTOR =1

DO 10 I=N, 1, -1

FACTOR = FACTOR * I

END

Figure 6-2 Multiple Function Name Usage

SUBPROGRAMS

NOTES

1 An arithmetic statement function named SIN is defined in

terms of the generic function name COS. Since the argument

of COS is double precision, the double precision cosine

function will be evaluated.

2 The arithmetic statement function SIN is called.

3 The name SIN is declared external so that the single

precision, processor—-defined sine function can be passed as

an actual argument at 5.

4 The generic function name SIN is used to refer to the double

precision sine function.

5 The single precision, processor—-defined sine function is used

as an actual argument.

) The name SIN is declared a user-defined function name.

7 The type of SIN is declared double precision.

8 The single precision sine function passed at 5 is evaluated.

9 The user-defined SIN function is evaluated.

10 The user—-defined SIN function is defined as a simple Taylor

series using a user-defined function FACTOR to compute the

factorial function.

6.3.4 Character Library Functions

Character library functions are functions that take character

arguments or return character values. There are four character

functions provided with FORTRAN:

e LEN

The LEN function returns the length of a character expression.

The LEN function has the form:

LEN (c)

o]

A character expression. The value returned indicates how

many bytes there are in the expression.

® INDEX
-

The INDEX function searches for a substring (c2). in a

specified character string (cl), and, if it finds the

substring, it returns the substring's starting position. If

c2 occurs more than once in cl, the starting position of the

first occurrence is returned. If c2 does not occur in cl, the

value zero is returned. The INDEX function has the form:

INDEX (cl, c2)

SUBPROGRAMS

cl

A character expression specifying the string

searched for the substring specified by c2.

c2

A character expression specifying the substring for which

the starting location is to be determined.

¢ ICHAR

The ICHAR function converts a character expression

equivalent ASCII code and returns the ASCII value. ICHAR has

the form:

ICHAR (c)

The character to be converted to an ASCII code. If c

longer than 1 byte, only the value of the first byte is

returned. The remainder are ignored.

e CHAR

The CHAR function converts an ASCII integer value

character value, and returns the character value. CHAR has

the form:

CHAR (1)

An integer expression.

Examples illustrating the LEN and INDEX functions follow.

LEN Function Example:

SUBROUTINE REVERSE(S)

CHARACTER T, S*(¥*)

J = LEN(S)

IF (J .GT. 1) THEN

DO 10 I=1, J/2

T = S(I:1I)

S(I:I) = S(J:J)

S(Jd:J) =T

J = J-1

10 CONTINUE

ENDIF

RETURN

END

SUBPROGRAMS

INDEX Function Example:

10

100

SUBROUTINE FIND SUBSTRINGS(SUB, S)

CHARACTER*(*) SUB,S

CHARACTER*132 MARKS

I =1

K=1

MARKS = ' !

J = INDEX(S(I:), SUB)

IF (J .NE. 0) THEN

I =1+ (J-1)

MARKS (I:I) = '#'

K=1

I = I+l

IF (I .LE. LEN(S)) GO TO 10

ENDIF

WRITE(7,100) S, MARKS(:K)

FORMAT(2(/1X, A))

END

CHAPTER 7

INPUT/OUTPUT STATEMENTS

FORTRAN programs use READ and ACCEPT statements for input; and
WRITE, TYPE, and PRINT statements for output. Some forms of these

statements are used with format specifiers that control the

translation and editing of the data to and from internal (binary) form

and external character (readable) form.

Each READ or WRITE statement refers to the logflcal unit to or from
which data is to be transferred. A logical unit can be connected to a

device or file by the OPEN statement (see Section 9.1).

The ACCEPT, TYPE, and PRINT statements do not refer to logical units;
rather, they transfer data between the program and an implicit logical

unit. The ACCEPT and TYPE statements are normally connected to the

default input or output device and the PRINT statement is normally

connected to the default output device.

Input/ouytput (I/0) statements are grouped into the following

categoriies:

@ Formatted Sequential I/0O -- transmits character data using

format specifiers to control translation of data from internal

(binary) form to character (readable) form on output, and vice

versa oninput.

@ List-Directed Sequential I/0 -- transmits character data. The

data type of the I/O list elements controls the translation of

data to internal form on input and to character form on

output.

e Unformatted Sequential I/0 -- transmits data in internal form

without translation.

@ Formatted Direct Access I/0 -- transmits character data to and

from direct access files using format specifiers to control

translation of data from internal form to character form on

output, and vice versa on input.

e Unformatted Direct Access I/0 -- transmits binary data without

translation to and from direct access files.

e Internal I/0 -- ENCODE and DECODE statements translate and

transfer data between variables and arrays in the FORTRAN

program.

These categories of I/0 statements are described 1in Sections 7.2

through 7.7.

Section 7.1 below describes the general components of I/0 statements.

INPUT/OUTPUT STATEMENTS

7.1 I/0 STATEMENT COMPONENTS

The following sections describe logical unit numbers, direct access
record numbers, format specifiers, I/O lists, and transfer of control
if an error or end-of-file condition occurs.

7.1.1 Logical Unit Numbers

I/0 statements use logical unit numbers to refer to files and I/0
devices. A logical unit number is an integer expression with a value
in the range 0 through 99. It is converted, if necessary, to integer
data type before use.

You can use an OPEN statement (see Chapter 9) to connect a file or I/O
device to a 1logical wunit. Chapter 3 of the VAX-11 FORTRAN IV-PLUS

User's Guide describes other ways to connect a file or I/O device to a

logical unit. !

Some I/O statements do not contain an explicit 1logical unit number.
Instead, these statements use a system-specific, implicit logical unit
number. ‘The VAX-11 FORTRAN IV-PLUS User's Guide describes the use of
implicit logical unit numbers in greater detail.

7.1.2 Direct Access Record Numbers

When using direct access I/0, you must indicate which record is to be
read or written. To do so, you specify a direct access record number,
which is a numeric expression. If necessary, the record number is
converted to integer data type before it is used. The value of a

direct access record number must be greater than or equal to 1, and

less than or equal to the number of records defined for the file.

For a more general discussion of record numbers, refer to Chapter 3 of
the VAX-11 FORTRAN IV-~PLUS User's Guide.

7.1.3 Format Specifiers

Format specifiers are used in formatted I/O statements and can be any
of the following:

e A label of a FORMAT statement

° character variable name

character array name

character substring reference

A

A

® A character array element

A

A numeric array name which contains a value that can be
interpreted as a format

Chapter 8 describes FORMAT statements.

In sequential I/O statements, you can use an asterisk instead of a
format specifier to denote 1list-directed formatting. Section 7.3

describes list-directed 1/0.

INPUT/OUTPUT STATEMENTS

7.1.4 Input/Output Records

I/0 statements transfer all data in terms of records. The amount of

data that one record can contain, and the way records are separated,

depend on how the data is transferred.

In unformatted I/0, the I/0 statement specifies the amount of data to

be transferred. In formatted 1I/0, the 1I/0 statement and 1its

associated format specifier jointly determine the amount of data to be

transferred.

Executing an input or output statement initiates transfer of a new

record. If an input statement requires only part of a record, the

remainder of the record is ignored. ©Normally, the data transferred by

an I/0 statement constitutes one record. However, formatted

sequential I/0 statements can transfer more than one record.

|
!

7'1F5 Input/Output Lists

!

The I/0 list in an input or output statement contains the names of

variables, arrays, array elements, and character substrings whose

values are to be transferred. The I/0 list in an output statement can

also contain constants and expressions.

An I/0 list has the form:

s[,s]...

A simple list or an implied DO list.

The I/0 statement assigns input values to, or transfers values from,

the 1list elements in the order in which they appear, from left to

right.

7.1.5.1 Simple Lists - A simple I/O list element can be a single

variable, array, array element, character substring reference,

constant, or expression. A simple I/O 1list consists of either a

simple I/O 1list element or a group of two or more simple I/0 list

elements separated by commas and enclosed in parentheses.

When you use an unsubscripted array name in an I/O 1list, a READ or

ACCEPT statement reads enough data to fill every element of the array;

a WRITE, TYPE, or PRINT statement writes all the values in the array.

Data transfer begins with the initial element of the array and

proceeds in the order of subscript progression, with the leftmost

subscript varying most rapidly. For example, the following defines a

two-dimensional array:

DIMENSION ARRAY (3,3)

If the name ARRAY, with no subscripts, appears in a READ statement,

that statement assigns values from the input record(s) to

ARRAY (1,1), ARRAY(2,1), ARRAY(3,1), ARRAY(l,2), and so on, through

ARRAY (3,3).

INPUT/OUTPUT STATEMENTS

In a READ or ACCEPT statement, variables in the I/0 list can be used

in array subscripts or substring references later in the list. For

example:

READ (1,1250) J,K,ARRAY (J,K)

1250 FORMAT (Il,X,Il,X,F6.2)

The input record contains the following values:

1,3,721.73

When the READ statement is executed, the first input value is assigned

to J and the second to K, thereby establishing the actual subscript

values for ARRAY (J,K). Then the value 721.73 1is assigned to

ARRAY (1,3). Variables that are to be used as subscripts in this way

must appear before (to the left of) their use in the array subscript.

An output statement I/O0O 1list <can <contain any valid expression.

However, this expression must not attempt any further I/0 operations

on the same logical unit. For example, an output statement I/0 1list

expression cannot refer to a function subprogram that performs I/0 on

the same logical unit.

An input statement I/O list cannot contain an expression, except as a

subscript expression 1in an array reference or as an expression in a

substring reference.

7.1.5.2 1Implied DO Lists - Implied DO lists are used to: specify

iteration within an I/0 list; transfer part of an array; or transfer

array elements in a sequence different than the order of subscript

progression. This type of list element functions as though it were a

part of an I/0 statement in a DO loop; it uses the control variable

of the implied DO statement to specify the value(s) to be transferred

during each iteration of the loop.

An implied DO list has the form:

(list,i=el,e2[,e3])

list

An I/0 list.

An integer, real, or double precision variable.

el,e2,e3

Arithmetic expressions.

The variable i, and the parameters el, e2, and e3 have the same forms

and the same functions that they have in the DO statement (see Section

4.3). The list can refer to the variable i (which 1is the control

variable) as 1long as it does not change the value of i. The list

specifies the range of the implied DO list. For example:

WRITE (3,200) (A,B,C, I=1,3)

WRITE (6,15) L,M,(I,(J,P(I),0Q(I,d),d=1,L),I=1,M)

READ (1,75) (((ARRAY(M,N,I), I=2,8), N=2,8), M=2,8)

INPUT/OUTPUT STATEMENTS

The first control variable definition is equivalent to the innermost

DO loop of a set of nested loops, and therefore varies most rapidly.

For example:

WRITE (6,150) ((FORM(K,L), L=1,10), K=1,10,2)

150 FORMAT (F10.2)

This statement 1is similar to:

DO 50 K=1,10,2

DO 50 L=1,10

WRITE (6,150) FORM(K,L)

150 FORMAT (Fl10.2)

50 CONTINUE

Because the inner DO loop is executed ten times for each iteration of
the outer 1loop, the second subscript, L, advances from 1 through 10

for each increment of the first subscript. This is the reverse of the

order of subscript progression. In addition, K is incremented by 2,

so only the odd-numbered rows of the array are output.

The entire list of the implied DO 1list is transmitted before the

control variable is incremented. For example:

READ (5,999) (p(I), (Q(I1,J), J=1,10), I=1,5)

This statement assigns input values to the elements of arrays P and Q

in the order:

P(l), Q(1,1), Qo(1,2), ...

P(2), Q(2,1), Q(2,2), ...

P(5), Q(5,1), Q(5,2), ... , Q(5,10)

When processing multidimensional arrays, you can use a combination of

fixed subscripts and subscripts that vary according to an implied DO

list. For example:

READ (3,5555) (BOX(1,J), J=1,10)

This statement assigns input values to BOX(1l,1) through BOX(1l,10),

then terminates without affecting any other element of the array.

The value of the control variable can also be output directly. For

example:

WRITE (6,1111) (I, I=1,20)

This statement simply prints the integers 1 through 20.

INPUT/OUTPUT STATEMENTS

7.1.6 Transferring Control on End-of-File or Error Conditions

Any READ or WRITE statement can specify that control is to transfer to

another statement if the I/0 statement encounters an end-of-file or
error condition. The specifications have the following forms,
respectively, for end-of-file and error conditions:

END=s '

ERR=s

—

The label of an executable statement to which control is to

transfer.

A sequential READ or WRITE statement can contain either or both the
above specifications, in any order. The specification(s) must follow
the unit number, record number, and/or format specification.

An end-of-file condition occurs when no more records exist in a
sequential file, or when an end-file record produced by the ENDFILE
statement is encountered. If a READ statement encounters an
end-of-file condition duringan I/0 operation, it transfers control to
the statement named in the END=s specification. If no END=s
specification is present, an error condition occurs.

If a READ or WRITE statement encounters an error condition during an

I/0 operation, it transfers control to the statement whose label

appears in the ERR=s specification. If no ERR=s specification is
present, the I/O error terminates program execution.

The statement label in the END=s or ERR=s specification must refer to
an executable statement within the same program unit as the I/0

statement.

An END= specification in a WRITE statement or a direct access READ
statement is ignored. If you attempt to read or write a record using
a record number dgreater than the maximum specified for the 1logical
unit, an error condition occurs.

The VAX-11 FORTRAN IV-PLUS User's Guide describes system subroutines
that you can use to control error processing. These subroutines can
also obtain information from the I/0O system on the type of error that
occurred.

Examples of I/0 statements follow.

READ (8,END=550) (MATRIX(K),K=1,100)

This statement transfers control to statement 550 when an end-of-file
condition occurs on logical unit 8.

WRITE (6,50,ERR=390)

This statement transfers control to statement 390 when an error

occurs., :

READ (1,FORM,ERR=150,END=200) ARRAY

This statement transfers control to statement 150 when an error occurs
and to statement 200 when the end-of-file condition occurs.

7-6

INPUT/OUTPUT STATEMENTS

7.2 FORMATTED SEQUENTIAL INPUT/OUTPUT

Formatted sequential I/O statements are used with format specifiers to

translate output data from internal (binary) form to external

character (readable) form; and to translate input data from external

to internal form.

READ

ACCEPT

7.2.1 Formatted Sequential Input Statements

A formatted sequential READ statement transfers data from the

specified logical unit. If a formatted sequential READ statement does

not have a logical unit number, it uses an implicit logical unit.

The formatted sequential ACCEPT statement is similar to a formatted

sequential READ statement except that it always uses an implicit

logical unit number.

Formatted sequential input statements have the forms:

READ (u,f[,END=S][,ERR=s])[list]

READ £f£[,list]

ACCEPT f[,list]

u

A logical unit number.

f

A format specifier.

s

The label of an executable statement.

list

An I/0 list.

A statement of the following form causes data to be read from a

system-defined logical unit:

READ 200, ALPHA,BETA,GAMMA

Characters transferred by formatted sequential statements are

translated to the internal form specified by the format specifier.

The resulting values are assigned to the elements of the I/0 list,

If the number of list elements is less than the number of input record

fields, the excess portion of the record is ignored.

Usually a single formatted record is transferred by the execution of a

formatted sequential input statement. However, the format specifier

can specify that more than one record is to be read during execution

of a single input statement. :

If the FORMAT statement associated with a formatted input statement

contains a Hollerith or character constant, input data is read and

stored directly into the format specification.

INPUT/OUTPUT STATEMENTS

If no I/0 list is present, data transfer occurs only betveen the
record and the format specifier. For example:

READ (5,100)

100 FORMAT (l5HADATAAGOESAHERE)

These statements read 15 characters from the next record on logical
unit 5. If the 15 characters are:

REVIEW SECTIONS

The FORMAT statement becomes:

100 FORMAT (lS5HREVIEWASECTIONS)

Examples of formatted sequential input statements follow.

READ (1,300) ARRAY

300 FORMAT (20F8.2)

These statements read a record from logical unit 1, and assign fields
to ARRAY.

READ (5,50) CHARV

50 FORMAT (AZ25)

These statements read a record from logical wunit 5, and assign a
character field to character variable CHARV.

READ 100, ICOUNT,ALPHA,BETA

100 FORMAT (I5, F8.2, F5.1)

These statements read a record from an implicit logical wunit, and
assign fields to integer variable ICOUNT and real variables ALPHA and
BETA.

CHARACTER*10 CHARAR(5)

ACCEPT 200, CHARAR

200 FORMAT (5A10)

These statements read a record from an implicit logical wunit, and
assign fields to the character array CHARAR.

WRITE

TYPE

PRINT

7.2.2 Formatted Sequential Output Statements

The formatted sequential WRITE statement transfers data to the
specified logical unit.

The formatted sequential TYPE and PRINT statements are similar to the
formatted sequential WRITE statement, except that output is directed
to an implicit logical unit.

INPUT/OUTPUT STATEMENTS

The formatted sequential output statements have the form:

WRITE (u,f[,ERR=s]) [list]

TYPE f[,list]

PRINT f[,list]

u

A logical unit number.

f

A format specifier.

s

The label of an executable statement.

list

An I/O0 list.

The I/0 list specifies a sequence of values that are converted to

characters and positioned as specified by the format specifier. If no

I/0 list is present, data transfer occurs only between the format

specifier and the record.

The data transferred by a formatted sequential output statement

normally constitutes one formatted record. However, the format

specifier can specify that additional records are to be written during

execution of a single output statement.

Numeric data output under format control is rounded during the
conversion to external format. (If such data is subsequently input

for additional calculations, loss of precision may result. To avoid

loss of precision, use unformatted output.)

The records transmitted by a formatted WRITE statement must not exceed

the 1length that the specified device can accept. For example, a line

printer typically cannot print a record longer than 132 characters.

Examples of formatted sequential output statements follow.

WRITE (6, 650)

650 FORMAT ('AHELLOATHERE')

These statements write the contents of the FORMAT statement to logical

unit 6.

CHARACTER*16 NAME,JOB

PRINT 400, NAME, JOB

400 FORMAT ('NAME=',A,'JOB=',A)

These statements write one record consisting of four fields.

WRITE (1,95) AYE,BEE,CEE

95 FORMAT (3F8.5)

These statements write one record, consisting of three fields, to

logical unit 1.

INPUT/OUTPUT STATEMENTS

WRITE (1,950) AYE,BEE,CEE

950 FORMAT (F8.5)

These statements write three separate records, consisting of one field
each, to logical unit 1.

In the last example, format control reaches the rightmost parenthesis
of the FORMAT statement before all elements of the I/0 1list are
output. Each time this occurs, the current record is terminated and a
new record is initiated. Thus, three separate records are written.

INPUT/OUTPUT STATEMENTS

7.3 LIST-DIRECTED SEQUENTIAL INPUT/OUTPUT

List-directed sequential I/O statements provide a way to obtain simple

formatted sequential input or output without using FORMAT statements.

On input, values are read from the logical unit, converted to internal

form, and assigned to the elements of the.I/0O list. On output, values

in the I/0 list are converted to character form and written in a fixed

format according to the data type of the value. The I/0 list is

required.

Records written by list-directed output statements can be input by

list-directed input statements if they contain only numeric and

logical values.

Both formatted and list-directed sequential I/O statements can refer

to the same 1logical unit. All operations permitted for formatted

sequential I/0 are permitted for 1list-directed I1/0. However,

backspacing over list-directed records 1leaves the file position

undefined. When files are read that contain both formatted and

list-directed records, the user program should ensure that each record

is read with the same kind of formatting that was used to write it.

READ

ACCEPT

7.3.1 List-Directed Input Statements

A list-directed READ statement transfers data from the specified

logical wunit, translates data from external to internal form, and

assigns the input values to the .elements of the I/0 list in the order

in which they appear, from left to right. If a list-directed READ

statement does not have a logical unit number, it uses an implicit

logical unit number.

The list-directed ACCEPT statement is similar to a list-directed READ

statement except that it always uses an implicit logical unit number.

The list-directed input statements have the forms:

READ (u,*[,END=s][,ERR=s]) list

READ *,list

ACCEPT *,list

u

A logical unit number.

*

Indicates list-directed formatting.

s

The label of an executable statement.

list

An I/0 list.

INPUT/OUTPUT STATEMENTS

The external record contains a sequence of values and value

separators. A value can be:

e A constant

e A null value

e A repetition of constants in the form r*c

e A repetition of null values in the form r*

The following paragraphs describe these values.

Each input constant has the form of the corresponding FORTRAN

constant. A complex constant has the form of a pair of real or

integer constants separated by a comma and enclosed in parentheses.

Spaces can occur between the opening parenthesis and the first

constant, before and after the separating comma, and between the

second constant and the closing parenthesis. A logical constant is

either T (true) or F (false). A character constant 1is delimited by

apostrophes; any apostrophe in the character constant is represented

by two consecutive apostrophes. Hollerith, octal, and hexadecimal

constants are not permitted.

A null value is specified by two consecutive commas with no

intervening constant. Spaces can occur between the commas. A null

value specifies that the corresponding list element remains unchanged.

A null value cannot be used for either part of a complex constant, but

can represent an entire complex constant.

The form r*c indicates r occurrences of ¢ where r 1is a nonzero,

unsigned integer constant and ¢ is a constant. Spaces are not

permitted except within the constant c as specified above.

The form r* indicates r occurrences of a null value where r is an

unsigned integer constant.

A value separator can be:

@ One or more spaces or tabs

e A comma, with or without surrounding spaces or tabs

e A slash, with or without surrounding spaces or

tabs -- terminates processing on the input statement and

record; all remaining I/0 list elements are unchanged

When any of the above appear in a character constant, they are

considered part of the constant, not value separators.

The end of a record is equivalent to a space character except when it

occurs in a character constant. In this case, the end of the record

is ignored and the character constant 1is continued with the next

record. That is, the last character in the previous record is

followed immediately by the first character of the next record.

Spaces at'the beginning of a record are ignored unless they are part

of a character constant continued from the previous record. 1In this

case, the spaces at the beginning of the record are considered part of

the constant.

Input constants can be any of the following data types: integer,

real, double precision, logical, complex, and character. The data

type of the constant determines the data type of the value and the

translation from external to internal form.

7-12

INPUT/OUTPUT STATEMENTS

A numeric list element can correspond only to a numeric constant, and

a character list element can correspond only to a character constant.

If the data types of a numeric 1list element and its corresponding

numeric constant do not match, conversion is performed according to

the rules for arithmetic assignment (see Table 3-1).

Each input statement will read one or more records as required to

satisfy the I/O list. If a slash separator occurs or the I/0 list is

exhausted before all the values in a record are used, the remainder of

the record is ignored.

An example of list-directed input statements follows.

The program unit consists of:

CHARACTER*14 C

DOUBLE PRECISION T

COMPLEX D,E

LOGICAL L,M

READ (1,*) I,R,D,E,L,M,J,K,S,T,C,A,B

The record read contains:

4 6.3 (3.4,4.2), (3, 2) , T,F,,3*14.6 ,'ABC,DEF/GHI''JK'/

The following values are assigned to the I/O list elements:

I/0 List

Element Value

4

6.3

(3.4,4.2)

(3.0,2.0)

.TRUE.

.FALSE.

14

14.6

14.6D0

ABC,DEF/GHI'JKO
R
I

O
W
H

A, B, and J will be unchanged.

WRITE

TYPE

PRINT

7.3.2 List-Directed Output Statements

The list-directed WRITE statement transfers the elements in the 1I/0
list to the specified wunit, translating and editing each value

according to the data type of the value.

The list-directed TYPE and PRINT statements are similar to the

list-directed WRITE statement, except that output is directed to an

implicit logical unit.

INPUT/OUTPUT STATEMENTS

The list—-directed output statements have the forms:

WRITE (u,*[,ERR=s]) list

TYPE *,list

PRINT *,list

u

A logical unit number.

*

Indicates list-directed formatting.

s

The label of an executable statement.

list

An I/0 list.

Except for character constants, the output values have the same forms

as the input constant values described above in Section 7.3.1.

Character constants are transferred without delimiting apostrophes;

each internal apostrophe 1is represented by only one apostrophe.

Consequently, records containing list-directed character output can be
printed but cannot be used for list-directed input.

Table 7-1 lists the default output formats for each data type.

Table 7-1

List-Directed Output Formats

Data Type Output Format

LOGICAL*1 I5

LOGICAL*2 L2

LOGICAL*4 L2

INTEGER*2 17

INTEGER*4 I12

REAL* 4’ 1PG15.7

REAL*8 1PG25.16

COMPLEX*8 1X,'(',1pG14.7, ',', 1PG1l4.7,")"

CHARACTER 1X,An (n is the length of the

character expression)

The list-directed output statements do not produce octal values, null

values, slash separators, or repeated forms of values. Each output

record begins with a space for carriage control. Each output

statement writes one or more complete records. Each output value is
contained within a single record, except for character constants that

are longer than a record.

An example of list-directed output statements follows.

PRINT *,'THEAARRAYAZAIS',Z

TYPE *, 'THEAANSWERAIS', (I,XX(I),I=1,10)

If a

This

INPUT/OUTPUT STATEMENTS

program unit consists of:

DIMENSION A(5)

DATA A/5%*3.4/

WRITE (1,*) 'ARRAYAVALUESAFOLLOW'

WRITE (1,*) A,5

program unit writes the following records:

ARRAYAVALUESAFOLLOW

AAA3.400000AAAAAAA3.400000AAAAAAA3.400000AAAAAAA3.400000

AAA3.400000AAAAAAAAAAS

INPUT/OUTPUT STATEMENTS

7.4 UNFORMATTED SEQUENTIAL INPUT/OUTPUT

Unformatted sequential I/0 transfers data in internal (binary) format.-.

That 1is, no conversion or editing takes place. Unformatted I/O is

generally used when data output by a program will be subsequently

input by the same (or a similar) program. Unformatted I/0 saves

execution time by eliminating the data translation process, preserves

greater precision in the external data, and usually conserves file

storage space.

READ

7.4.1 Unformatted Sequential Input Statement

The unformatted sequential READ statement inputs one unformatted

record from the specified logical unit, and assigns the untranslated

fields of the record to the I/0 list elements in the order in which

they appear, from left to right. The data type of each element

determines the amount of data that element receives.

The unformatted sequential READ statement has the form:

READ (ul,END=s][,ERR=s])[list]

u

A logical unit number.

s

The label of an executable statement.)

list

An I/0 list.

An unformatted sequential READ statement reads exactly one record. 1If

the I/0 list does not use all the values in the record (that is, there

are more values in the record than elements in the 1list), the

remainder of the record is discarded. If the number of list elements

is greater than the number of values in the record, an error occurs.

If an unformatted sequential READ statement contains no I/O 1list, it

skips over one full record, positioning the file to read the following

record on the next execution of a READ statement.

The unformatted sequential READ statement can only be used to read

records created by unformatted sequential WRITE statements.

Examples of unformatted sequential input statements follow.

READ (1) FIELDl, FIELD2

This statement reads one record from logical unit 1 and assigns values

to variables FIELD1 and FIELD2.

READ (8)

This statement advances logical unit 8 one record.

INPUT/OUTPUT STATEMENTS

7.4.2 Unformatted Sequential Output Statement

The unformatted sequential WRITE statement transfers the

WRITE

untranslated

values of the elements in the I/O list to the specified logical unit.
That is, one unformatted record is output.

The unformatted sequential WRITE statement has the form:

WRITE (u[,ERR=s]) [list]

u

A logical unit number.

S

The label of an executable statement.

list

An I/0 list.

If an unformatted WRITE statement contains no I/0

record is output to the specified unit.

list, one

Examples of unformatted sequential output statements follow.

WRITE (1) (LIST(K) ,K=1,5)

This statement outputs the contents of elements 1 through 5 of

LIST to logical unit 1.

WRITE (4)

This statement writes a null record on logical unit 4.

null

array

INPUT/OUTPUT STATEMENTS

7.5 FORMATTED DIRECT ACCESS INPUT/OUTPUT

Formatted direct access I/0 transfers character data to and from a

file on a direct access device. The OPEN statement (see Section 9.1)

establishes the attributes of the direct access file. Each READ or

WRITE statement contains a direct access record number.

READ

7.5.1 Formatted Direct Access Input Statement

The formatted direct access READ statement transfers the specified

record from the direct access file currently connected to the

specified unit. The <characters in the record are translated to

internal form according to the format specifier. The resulting values

are assigned to the elements of the I/0 list.

The formatted direct access READ statement has the form:

READ (u'r,f[,ERR=s])[list]

u

A logical unit number.

r

The direct access record number.

£

A format specifier.

s

The label of an executable statement.

list

An I/0 list.

If the I/0 list and format specify more characters than a record

contains, or specify additional records, an error occurs.

INPUT/OUTPUT STATEMENTS

WRITE

7.5.2 Formatted Direct Access Output Statement

The formatted direct access WRITE statement transfers the specified

record to the direct access file currently connected to the unit. The

list specifies a sequence of values that are translated to characters

and positioned as specified by the format specifier.

The formatted direct access WRITE statement has the form:

WRITE (u'r,f[,ERR=s])[list]

u

A logical unit number.

r

The direct access record number.

f

A format specifier.

S

The label of an executable statement.

list

An I/0 list.

If the values specified by the list and format do not fill the record,

the unused portion of the record is filled with space characters.

If the I/0 list and format specify more characters than can fit into

the record, or specify additional records, an error occurs.

INPUT/OUTPUT STATEMENTS

7.6 UNFORMATTED DIRECT ACCESS INPUT/OUTPUT

Unformatted direct access I/0 transfers data in internal (binary) form
to and from a direct access file. The OPEN or DEFINE FILE statement

(see Sections 9.1 and 9.7) establishes the attributes of the file.

Each direct access READ or WRITE statement contains a direct access

record number.

READ

7.6.1 Unformatted Direct Access Input Statement

The unformatted direct access READ statement transfers the specified

record from the direct access file currently connected to the

specified unit, and assigns the untranslated fields of the record to

the I/0 list elements.

The unformatted direct access READ statement has the form:

READ (u'r[,ERR=s]) [list]

u

A logical unit number.

r

The direct access record number.

s

The label of an executable statement.

list

An I/0 list.

If the I/0 list does not use all the fields in the record (that is,

there are more fields in the record than elements in the list), the

remainder of the record is discarded. 1If the number of list elements

is greater than the number of record fields, an error occurs.

Examples of unformatted direct access input statements follow.

READ (1'10) LIST(1l),LIST(8)

This statement reads record 10 of a file on 1logical wunit 1, and

assigns two integer values to specified elements of array LIST.

READ (4'58) (RHO(N) ,N=1,5)

This statement reads record 58 of a file on logical wunit 4, and

assigns five real values to array RHO.

INPUT/OUTPUT STATEMENTS

WRITE

7.6.2 Unformatted Direct Access Output Statement

The unformatted direct access WRITE statement transfers the

untranslated values of the elements in the I/0 list to the specified

record of the direct access file currently connected to the specified

unit.

The unformatted direct access WRITE statement has the form:

WRITE (u'r[,ERR=s]) [list]

u

A logical unit number.

r

The direct access record number.

s

An executable statement 1label.

list

An I/0 list.

If the values specified by the list do not fill the record, the unused

portion of the record is filled with zeros.

If the list specifies more data than can fit into the record, an error

occurs.

Examples of unformatted direct access output statements follow.

WRITE (2'35) (NUM(K) ,K=1,10)

This statement outputs ten integer values to record 35 of the file

connected to logical unit 2.

WRITE (3'J) ARRAY

This statement outputs the entire contents of ARRAY to the record

indicated by the value of J in the file connected to logical unit 3.

INPUT/OUTPUT STATEMENTS

ENCODE

DECODE

7.7 ENCODE AND DECODE STATEMENTS

The ENCODE and DECODE statements transfer data according to format
specifiers, translating the data from internal to character form, and
vice versa. ‘Unlike conventional formatted 1I/0 statements, however,
these data transfers take place entirely between variables or arrays
in the FORTRAN program.

The ENCODE and DECODE statements have the forms:

ENCODE (c,f,b[,ERR=s]) [list]

DECODE (c,f,b[,ERR=s8])[1list]

c

An integer expression. 1In the ENCODE statement, ¢ is the number
of characters (bytes) to be translated to character form. 1In the

DECODE statement, ¢ is the number of characters to be translated

to internal form.

f

A format specifier. If more than one record is specified, an

error occurs.

b

The name of an array, array element, variable, or character

substring reference. In the ENCODE statement, b receives the

characters after translation to external form. In the DECODE

statement, b contains the characters to be translated to internal
form.

s

The label of an executable statement.

list

An I/0O list. 1In the ENCODE statement, the I/O list contains the

data to be translated to character form. In the DECODE

statement, the 1list receives the data after translation to
internal form.

The ENCODE statement translates the list elements to character form

according to the format specifier, and stores the characters in b,
similar to a WRITE statement. If fewer than ¢ characters are
transmitted, the remaining character positions are filled with spaces.

The DECODE statement translates the character data in b to internal
(binary) form according to the format specifier, and stores the
elements in the list, similar to a READ statement.

If b is an array, its elements are processed in the order of subscript
progression.

The number of characters that the ENCODE or DECODE statement can

process depends on the data type of b in that statement. For example,

an INTEGER*2 array can contain 2 <characters per element, so the

maximum number of characters is twice the number of elements in that

array. A character variable or character array element can contain
characters equal in number to 1its 1length. A character array can

INPUT/OUTPUT STATEMENTS

contain characters equal in number to the length of each element times
the number of elements.

The interaction between the format specifier and the I/0 list 1is the

same as for a formatted I/0 statement.

An example of the ENCODE and DECODE statements follows.

DIMENSION K (3)

CHARACTER*12 A, B

DATA A /'123456789012'/

DECODE (12,100,A) K

100 FORMAT (3I4)

ENCODE (12,100,B) K(3), K(2), K(1)

The DECODE statement translates the 12 characters in A to integer form
(specified by statement 100), and stores them in array K, as follows:

K(1) = 1234

K(2) = 5678

K(3) = 9012

The ENCODE statement translates the values (K(3), K(2), and K(1l) to

character form and stores the characters in the character variable B

as follows:

B = '901256781234"

CHAPTER 8

FORMAT STATEMENTS

FORMAT statements are nonexecutable statements used with formatted I/O
statements and with ENCODE and DECODE statements. A FORMAT statement

describes the format in which data is to be transferred, and what data
conversion and editing are required to achieve that format.

FORMAT statements have the form:

FORMAT (qlf s f.s_ ... fnqn)
11 22

q :
Zero or more slash (/) record terminators.

f

A field descriptor or a group of field descriptors enclosed in
parentheses.

S

A field separator.

The entire list of field descriptors and field separators, including
the parentheses, is called the format specification. The list must be
enclosed in parentheses.

A field descriptor in a format specification has the form:

[r]lcw][.d]

r

The repeat count for the field descriptor. If you omit r, it |is

assumed to be 1.

c

A format code (I1,0,%2,F,E,D,G,L,A,H,X,T,P,Q,S$, Or :).

w

The external field width.

d

The number of characters to the right of the decimal point.

The terms r, w, and d must all be unsigned integer constants; r and w

must be less than or equal to 32767, and 4 must be less than or equal

to 255. The r term is optional; however, you cannot use it in some
field descriptors (see Section 8.1.18). Thed term is required in

some field descriptors and is invalid in others. You are not allowed

to use PARAMETER constants for the terms r, w, or d.

FORMAT STATEMENTS

The field descriptors are:

® Integer -- Iw, Ow, Zw

e Logical -- Lw

® Real, double precision, and complex -- Fw.d, Ew.d, Dw.d, Gw.d

e Character -- Aw

e Editing, and character and Hollerith constants -- nH, ‘'...',
nX, TTMn, nP, Q, $, : (n is a number of characters or character

positions)

. Section 8.1 describes each field descriptor in detail.

The first character in an output record generally contains carriage
control information: see Section 8.2 for more information.

The field separators are comma and slash. A slash is alsoc a record
terminator. Sections 8.3 and 8.4 describe in detail the functions of
the field separators.

You can create a format during program execution by using a run-time
format instead of a FORMAT statement. Section 8.5 describes run-time

formats.

During data transfers, the format specification is scanned from left
to right. Data conversion is performed by correlating the elements in
the I/0 list with the corresponding field descriptors. In H field
descriptors and character constants, data transfer takes place
entirely between the field descriptor and the external record.
Section 8.6 describes 1in detail the interaction between the format
specifier and the I/0 list.

Section 8.7 summarizes the rules for writing FORMAT statements.

8.1 FIELD DESCRIPTORS

A field descriptor describes the size and format of a data item or of
several data items; each data item in the external medium is called
an external field.

The following sections describe each of the field descrlptors in
detail. The field descriptors ignore leading spaces in the external
field, but treat embedded and trailing spaces as zeros.

8.1.1 I Field Descriptor

The I field descriptor transfers decimal integer values. It has the

Iw

The corresponding I/0 list element must be of either integer or
logical data type.

FORMAT STATEMENTS

In an input statement, the I field descriptor transfers w characters

from the external field and assigns them, as a decimal value, to the

corresponding I/0 list element as an integer value. The external data

must have the form of an integer constant; 1t cannot contain a

decimal point or exponent fields.

If the value of the external field exceeds the range of the

corresponding list element, an error occurs. If the first nonblank

character of the external field is a minus sign, the field is treated

as a negative value. 1If the first nonblank character is a plus sign,

or if no sign appears in the field, the field is treated as a positive
value. An all-blank field 1is treated as a value of zero. Blanks

following the first non-blank character are treated as zeros.

Input Example:

Format External Field Internal Representation

14 2788 2788

I3 -26 -26

I9 AAAAAA312 312

14 2AA8 2008

In an output statement, the I field descriptor transfers the value of
the corresponding I/0 1list element, right justified, to an external
field w characters long. If the value does not fill the field,

leading spaces are inserted; if the value exceeds the field width,

the entire field is filled with asterisks. If the value of the 1list

element is negative, the field will have a minus sign as its leftmost,

nonblank character. The term w must therefore be 1large enough to

provide for a minus sign, when necessary. Plus signs, however, are

suppressed.

Output Example:

Format Internal Value External Representation

I3 284 284

14 -284 -284

I5 174 AA174
12 3244 **

I3 -473 *kk

17 29.812 Not permitted: error

8.1.2 O Field Descriptor

The O field descriptor transfers octal values. It has the form:

Ow

The corresponding I/0 list element must be of either integer or
logical data type.

In an input statement, the O field descriptor transfers w characters
from the external field and assigns them as an octal value to the

corresponding I/0 list element. The external field can contain only

the numerals 0 through 7; it cannot contain a sign, a decimal point,

or an exponent field. An all-blank field is treated as a value of

zero. Blanks following the first non-blank character are treated as

zeros. If the value of the external field exceeds the range of the

corresponding list element, an error occurs.

FORMAT STATEMENTS

Input Example:

Internal

Format External Field Octal Representation

05 32767 32767

04 16234 1623

06 13AAAA 130000

03 97A Not permitted: error

In an output statement, the O field descriptor transfers the octal

value of the «corresponding I/0 list element, right justified, to an

external field w characters long. No signs are output; a negative

value is transmitted in its octal (2's complement) form. If the value

does not fill the field, leading spaces are inserted; if the value

exceeds the field width, the entire field is filled with asterisks.

Output Example:

Format Internal (Decimal) Value External Representation

06 32767 ATT7777

06 -32767 100001

02 14261 * %

04 27 AA33

05 13.52 Not permitted: error

8.1.3 2 Field Descriptor

The 7 field descriptor transfers hexadecimal values. It has the form:

Zw

The corresponding I/0 list element must be of either integer or

logical data type.

In an input statement, the Z field descriptor transfers w characters

from the external field and assigns them as a hexadecimal value to the

corresponding I/O list element. The external field can contain only

the numerals 0 through 9 and the letters A through F; it cannot

contain a sign, a decimal point, or an exponent field. An all-blank

field 1is treated as a value of zero. Blanks following the first

non-blank character are treated as zeros. If the value of the

external field exceeds the range of the corresponding list element, an

error occurs.

Input Example:

Internal

Format External Field Hexadecimal Representation

z3 A94 A94

Z5 A23DEF A23DE

z7 9AFAAAA 9AF0000

Z5 95.AF2 Not permitted: error

In an output statement, the Z field descriptor transfers the

hexadecimal value of the corresponding I/0 1list element, right

justified, to an external field w characters 1long. No signs are

output; a negative wvalue 1is transmitted in its hexadecimal (2's

complement) form. If the value does not fill the field, 1leading

spaces are inserted; if the value exceeds the field width, the entire

field is filled with asterisks.

FORMAT STATEMENTS

Output Example:

Format Internal (Decimal) Value External Representation

z4 32767 7FFF

z5 -32767 A8001

Z2 16 10

z3 25.2 Not permitted: error

§.1.4 F Field Descriptor

The F field descriptor transfers real or double precision values. It

has the form:

Fw.d

The corresponding I/0 list element must be of either real or double

precision data type; or it must be either the real or the imaginary

part of a complex data type.

In an input statement, the F field descriptor transfers w characters

from the external field, and assigns them, as a real or double

precision value, to the corresponding I/O list element. If the first

nonblank character of the external field is a minus sign, the field is

treated as a negative value. If the first nonblank character is a

plus sign, or if no sign appears in the field, the field is treated as

a positive value. An all-blank field is treated as a value of =zero.

In all F field descriptors, w must be greater than or equal to d+l.

If the field contains neither a decimal point nor an exponent, it is

treated as a real number of w digits, in which the rightmost 4 digits

are to the right of the decimal point. If the field contains an

explicit decimal point, the location of that decimal point overrides

the location specified by the field descriptor. If the field contains

an exponent (as described in Section 2.3.2 for real constants or

Section 2.3.3 for double precision constants), that exponent is used

to establish the magnitude of the value before it is assigned to the

list element.

Input Example:

Format External Field Internal Representation

F8.5 123456789 123.45678

F8.5 -1234.567 -1234.56

F8.5 24.77E+2 2477.0

F5.2 1234567.89 123.45

In an output statement, the F field descriptor transfers the value of

the corresponding I/0 list element, rounded to d decimal positions and

right justified, to an external field w characters long. If the value

does not fill the field, leading spaces are inserted; if the value

exceeds the field width, the entire field is filled with asterisks.

The term w must be large enough to include a minus sign (when

necessary; plus signs are suppressed), at least one digit to the left

of the decimal point, the decimal point, and d digits to the right of

the decimal. Therefore, w must be greater than or equal to d+3.

FORMAT STATEMENTS

Output Example:

Format Internal Value External Representation

F8.5 2.3547188 A2.35472

F9.3 8789.7361 A8789.736

F2.1 51.44 * &

F10.4 -23.24352 AA-23.2435

F5.2 325.013 kkkkk

F5.2 -.2 -0.20

8.1.5 E Field Descriptor

The E field descriptor transfers real or double precision values in
exponential form. It has the form:

Ew.d

The corresponding I/0 list element must be of either real or double
precision data type; or it must be either the real or the imaginary
part of a complex data type.

In an input statement, the E field descriptor transfers w characters
from the external field and assigns them as a real or double precision
value to the corresponding I/0O list element. This is exactly the same
way that the F field descriptor interprets and assigns data.

Input Example:

Format External Field Internal Representation

E9.3 734.432E3 734432.0
El2.4 AA1022.43E-6 1022.43E-6
E15.3 52.3759663AAAAA 52,.3759663
E12.5 210.5271D+10 210.5271E10

Note that, in the last example, the E field descriptor treats the D
exponent field indicator as an E indicator if the I/0 list element is
single precision.

In an output statement, the E field descriptor transfers the value of
the corresponding I/0 list element, rounded to d decimal digits, and
right justified, to an external field w characters long. If the value
does not fill (the field, leading spaces are inserted; if the value
exceeds the field width, the entire field is filled with asterisks.

When you use the E field descriptor, data output is transferred in a

standard form. This form consists of a minus sign if the value is

negative (plus signs are suppressed), a zero, a decimal point, d

digits to the right of the decimal points, and a 4-character exponent.
The exponent has one of the following two forms:

E+nn

E-nn

nn

A 2-digit integer constant.

The d digits to the right of the decimal point represent the entire
value, scaled to a decimal fraction.

8-6

FORMAT STATEMENTS

The term w must be 1large enough to include a minus sign (when

necessary; plus signs are suppressed), a zero, a decimal point, d

digits, and an exponent. Therefore, w must be greater than or equal

to d+7.

Output Example:

Format Internal Value External Representation

E9.2 475867.222 A0 .48E+06

E12.5 475867.222 A0.47587E+06

E12.3 0.00069 AAAO.690E-03

E10.3 -0.5555 -0.556E+00

E5.3 56.12 *kkok ok

8.1.6 D Field Descriptor

The D field descriptor transfers real or double precision values in
exponential form. It has the form:

Dw.d

The corresponding I/O list element must be of either real or double

precision data type; or it must be either the real or the imaginary

part of a complex data type.

In an input statement, the D field descriptor transfers w characters

from the external field, and assigns them as a double precision value

to the corresponding I/O list element. This is the same way that the

F field descriptor interprets and assigns data.

Input Example:

Format External Field Internal Representation

D10.2 12345AAAAA 12345000.0D0

D10.2 AA123 .45AA 123.45D0

D15.3 367.4981763D+04 3.674981763D+06

In an output statement, the D field descriptor has the same effect as
the E field descriptor, except that the D exponent field indicator is

used in place of the E indicator.

Output Example:

Format Internal Value External Representation

D14.3 0.0363 AAAAA0.363D-01

D23.12 5413.87625793 AAAAAQ.541387625793D+04
D9.6 1.2 kkkkkkkkk

FORMAT STATEMENTS

8.1.7 G Field Descriptor

The G field descriptor transfers real or double precision values in a
form that, in effect, combines the F and E field descriptors. It has
the form:

Gw.d

The corresponding I/0 list element must be of either real or double
precision data type; or it must be either the real or the imaginary
part of a complex data type.

In an input statement, the G field descriptor transfers w characters
from the external field, and assigns them as a real or double
precision value to the corresponding I/0 list element. This 1is the
same way the F field descriptor interprets and assigns data.

In an output statement, the G field descriptor transfers the value of
the corresponding I/0 list element, rounded to d decimal positions and
right justified, to an external field w characters long. The form in
which the value is written is a function of the magnitude of the
value, as described in Table 8-1.

Table 8-1

Effect of Data Magnitude on G Format Conversions

Data Magnitude Effective Conversion

m< 0.1 Ew.d

0.1 <m<«< 1.0 F(w-4).d, 'AAAA'

1.0 <m < 10.0 F(w=4).(d-1), 'AAAA!

10d-2 < m < 104-1 F(w=4).1, 'AAAA!

10d-1 < m < 10d F(w=4).0, 'AAAA!

m > 10d Ew.d

The 'AAAA' field descriptor, which is, in effect, inserted by the G
field descriptor for values within its range, specifies that four
spaces are to follow the numeric data representation.

-

necessary; plus signs are suppressed), at least one digit to the left
of the decimal point, the decimal point, d digits to the right of the
decimal point, and (for values outside the effective range of the G
field descriptor) a 4-character exponent. Therefore, w must be
greater than or equal to 4 plus 7.

FORMAT STATEMENTS

Output Example:

Format Internal Value ~ External Representation

Gl13.6 0.01234567 A0.123457E-01

Gl3.6 -0.12345678 -0.123457AAAA

Gl3.6 1.23456789 AA1.23457AAAA

Gl3.6 12.34567890 AA12.3457AAAA

Gl3.6 123.45678901 AA123.457AAAA

G13.6 -1234.56789012 A-1234.57AAAA

G1l3.6 12345.67890123 AA12345.7AAAA

Gl3.6 123456.78901234 AA123457.AAAA

Gl3.6 -1234567.89012345 -0.123457E+07

Compare the above example with the following example, which shows the

same values output using an equivalent F field descriptor.

Format Internal Value External Representation

F13.6 0.01234567 AAAAAD.012346
F13.6 ~0.12345678 AAAA-0.123457

F13.6 1.23456789 AAAAAL. 234568

F13.6 12.34567890 AAAAL2.345679

F13.6 123.45678901 AAA123.456789

F13.6 -1234.56789012 A-1234.567890

F13.6 12345.67890123 A12345.678901

F13.6 123456.78901234 123456.789012

F13.6 ~1234567.89012345 gk ke dkod ek ok ok ok

8.1.8 L Field Descriptor

The L field descriptor transfers logical data. It has the form:

Lw

The corresponding I/O list element must be of either integer or

logical data type.

In an input statement, the L field descriptor transfers w characters

from the external field. 1If the first nonblank character of the field

is the letter T, the value .TRUE. 1is assigned to the corresponding

I/0 list element. If the first nonblank character of the field is the

letter F, or if the entire field 1is blank, the value .FALSE. is

assigned. Any other value in the external field produces an error.

In an output statement, the L field descriptor transfers either the

letter T (if the value of the corresponding I/0 list element is

.TRUE.), or the letter F (if the value 1is .FALSE.) to an external

field w characters 1long. The letter T or F is in the rightmost

position of the field, preceded by w-1 spaces.

Output Example:

Format Internal Value External Representation

L5 .TRUE. AAAAT

Ll .FALSE. F

FORMAT STATEMENTS

8.1.9 A Field Descriptor

The A field descriptor transfers character or Hollerith values. It
has the form:

Aw

The corresponding I/O list element can be of any data type. If it is
of character data type, character data is transmitted. If it is of
any other data type, Hollerith data is transmitted.

The value of w must be less than or equal to 32767.

In an input statement, the A field descriptor transfers w characters
from the external record and assigns them to the corresponding I/0
list element. The maximum number of characters that can be stored
depends on the size of the I/O list element. For character I/0 list
elements, the size is the length of the character variable, character
substring reference, or character array element. For numeric I/0 list
elements, the size depends on the data type, as follows:

I/0 List Maximum Number
Element of Characters

BYTE

LOGICAL*1

LOGICAL*2

LOGICAL*4

INTEGER*2

INTEGER*4

REAL

REAL*8

DOUBLE PRECISION

COMPLEX 0

0
O

C
O

>

o
>

D
N

N

If w is greater than the maximum number of characters that can be
stored in the corresponding I/0 1list element, only the rightmost
characters are assigned to that element. The leftmost excess
characters are ignored. If w is less than the number of characters
that can be stored, w characters are assigned to the 1list element,
left justified, and trailing spaces are added to fill the element.

Input Example:

Format External Field Internal Representation

A6 PAGEA# # (CHARACTER*1)
A6 PAGEA# EA# (CHARACTER*3)
A6 PAGEA# PAGEA# (CHARACTER*6)
A6 PAGEA# PAGEA#AA (CHARACTER*8)
A6 PAGEA# # (LOGICAL*1)
A® PAGEA# A# (INTEGER*2)

Ab PAGEA# GEA# (REAL)
A6 PAGEA# PAGEA#AA (DOUBLE PRECISION)

In an output statement, the A field descriptor transfers the contents
of the corresponding I/0 1list element to an external field w
characters long. If w is greater than the 1list element, the data
appears in the field, right justified, with leading spaces. If w is
less than the 1list element, only the leftmost w characters are
transferred.

8-10

" FORMAT STATEMENTS

Output Example:

Format Internal Value External Representation

A5 OHMS AOHMS

A5 VOLTSAAAA VOLTS

A5 AMPERESA AMPER

If you omit w in an A field descriptor, a default value is supplied.

If the I/0 list element is of character data type, the default value

is the length of the I/O0 list element. If the I/0 list element is of

numeric data type, the default value is the maximum number of

characters that can be stored in a variable of that data type.

8.1.10 H Field Descriptor

The H field descriptor transfers data between the external record and

the H field descriptor itself. It has the form of a Hollerith

constant:
4

anlczc3 e cn

The number of characters to be transferred.

An ASCII character.

In an input statement, the H field descriptor transfers n characters

from the external field to the field descriptor. The first character

appears immediately after the letter H. Any characters in the field

descriptor before input are replaced by the input characters.

In an output statement, the H field descriptor transfers n characters

following the letter H from the field descriptor to the external

field.

An example of H field descriptor usage follows.

TYPE 100

100 FORMAT (41HAENTERAPROGRAMATITLE, AUPATOA20ACHARACTERS)
ACCEPT 200

200 FORMAT (20HAATITLEAGOESAHEREAAA)

The TYPE statement transfers the characters from the H field

descriptor in statement 100 to the wuser's terminal. The ACCEPT

statement accepts the response from the keyboard, placing the input

data in the H field descriptor in statement 200. The new characters’

replace the words TITLE GOES HERE. If the user enters less than 20

characters, the remainder of the H field descriptor is filled with

spaces to the right.

8.1.10.1 Character Constants - You can use a character constant

instead of an H field descriptor. Both types of format specifier

function identically.

In a character constant, the apostrophe is written as two apostrophes.

For example:

50 FORMAT ('TODAY''SADATEAIS:A',I1I2,'/',12,'/',12)

A pair of apostrophes used this way is considered a single character.

8-11

FORMAT STATEMENTS

8.1.11 X Field Descriptor

The X field descriptor is a positional specifier. It has the form:

nX

The term n specifies how many character positions are to be passed

over. The value of n must be greater than or equal to 1.

In an input statement, the X field descriptor specifies that the next

n characters in the input record are to be skipped.

In an output statement, the X field descriptor transfers n spaces to

the external record. For example:

WRITE (6,90) NPAGE
90 FORMAT (13H1PAGEANUMBERA,I2,16X,23HGRAPHICAANALYSIS,ACONT.)

The WRITE statement prints a record similar to:

PAGE NUMBER nn GRAPHIC ANALYSIS, CONT.

The term nn is the current value of the variable NPAGE. The numeral 1

in the first H field descriptor is not printed, but is used to advance

the printer paper to the top of a new page. Section 8.2 describes

printer carriage control.

8.1.12 T Field Descriptor

The T field descriptor is a tabulation specifier. It has the form:

Tn

The term n indicates the character position of the external record.
The value of n must be greater than or equal to 1, but not greater

than the number of characters allowed in the external record.

In an input statement, the T field descriptor positions the external

record to its nth character position. For example, a READ statement

inputs a record containing:

ABCAAAXYZ

This record is under the control of the FORMAT statement:

10 FORMAT (T7,A3,T1,A3)

On execution, the READ statement would input the characters XYz first,

then the characters ABC.

In an output statement to devices other than the 1line printer or

terminal, the T field descriptor specifies that subsequent data

transfer is to begin at the nth character position of the external

record. On output to a printer, data transfer begins at position

(n-1). The first position of a printed record is reserved for a

carriage control character, which is never printed (see Section 8.2).

For example:

PRINT 25

25 FORMAT (T51, 'COLUMNA2',T21," 'COLUMNAl"')

FORMAT STATEMENTS

These statements would print the following line:

Position 20 Position 50

COLUMN 1 COLUMN 2

8.1.13 Q Field Descriptor

The Q field descriptor obtains the number of characters in the input
record remaining to be transferred during a READ operation. It has
the form:

Q

The corresponding I/O list element must be of integer or logical data

type.

For example:

READ (4,1000) XRAY,KK,NCHRS, (ICHR(I),I=1,NCHRS)

1000 FORMAT (E15.7,14,Q,80Al)

These input statements read two fields into the variables XRAY and KK.
The number of characters remaining in the record is stored in NCHRS
and exactly that many characters are read into the array ICHR. By

placing the Q descriptor first in the format specification, you can

determine the actual length of the input record.

In an output statement, the Q field descriptor has no effect except

that the corresponding I/0 list element is skipped.

8.1.14 Dollar Sign Descriptor

The dollar sign character ($) in a format specification modifies the
carriage control specified by the first character of the record. 1In
an output statement, the $ descriptor suppresses the carriage return
if the first character of the record is a space or a plus sign. 1In an

input statement, the $ descriptor is ignored. The $ descriptor is
intended primarily for interactive I/0; it leaves the terminal print
position at the end of the text (rather than returning it to the left

margin) so that a typed response will follow the output on the same

line.

Thus, the statements:

TYPE 100

100 FORMAT ('AENTERARADIUSAVALUEA',S)

ACCEPT 200

200 FORMAT (F6.2)

produce a message on the terminal in the form:

ENTERARADIUSAVALUE

Your response (for example, 12.) can then go on the same line, as:

ENTER RADIUS VALUE 12.

FORMAT STATEMENTS

8.1.15 Colon Descriptor

The colon character (:) in a format specification terminates format

control if no more items are in the I/O list. The : descriptor has

no effect if I/0 list items remain. For example:

PRINT 1,3

PRINT 2,4

1 FORMAT ('AI="',I2, 'AJ=',I2)
2 FORMAT ('AK=",I2,:,"'AL=",12)

These statements print the following two lines:

I=A3Ad=

K=A4

Section 8.6 describes format control in detail.

8.1.16 Complex Data Editing-

A complex value is an ordered pair of real values. Therefore, input
or output of a complex value is governed by two real field

descriptors, using any combination of the forms Fw.d, Ew.d, Dw.d, or

Gw.d.

In an input statement, the two successive fields are read and assigned
to a complex I/0 1list element as its real and imaginary parts,
respectively.

Input Example:

Format External Field Internal Representation

F8.5,F8.5 1234567812345.67 123.45678, 12345.67

E9.1,F9.3 734.432E8123456789 734.432E8, 12345.678

In an output statement, the two parts of a complex value are

transferred under the control of repeated or successive field

descriptors. The two parts are transferred consecutively, without

punctuation or spacing, unless the format specifier states otherwise.

Output Example:

Format Internal Value External Representation

2F8.5 2.3547188, 3.456732 A2,35472 3.45673

E9.2,'A,A" ,E5.3 47587.222, 56.123 AO.48E+06A, A*****

8.1.17 Scale Factor

The scale factor lets you alter, during input or output, the 1location

of the decimal point in real and double precision values, and in the
two parts of complex values.

The scale factor has the form:

npP

A signed or unsigned integer constant in the range -127 through
+127. It specifies the number of positions, to the left or

right, that the decimal point is to move.

8-14

FORMAT STATEMENTS

A scale factor can appear anywhere in a format specification, but must

precede the field descriptors that are to be associated with it. For

example:

nPFw.d nPEw.d nPDw.d nPGw.d

On input, the scale factor in any of the above field descriptors

multiplies the data by 10**-n and assigns it to the corresponding I/0

list element. For example, a 2P scale factor multiplies an input

value by .01, moving the decimal point two places to the left. A -2P

scale factor multiplies an input value by 100, moving the decimal

point two places to the right. However, if the external field

contains an explicit exponent, the scale factor has no effect.

Input Exauple:

Form;t External Field Internal Representation

3PE10.5 AAA37.614 .037614

3PE10.5 AA37.614E2 3761.4

-3PE10.5 AAAA37.614 37614.0

On output, the effect of the scale factor depends on the type of field

descriptor associated with it. For the F field descriptor, the value

of the I/0 list element is multiplied by 10**n before transfer to the

external record. Thus, a positive scale factor moves the decimal

point to the right; a negative scale factor moves the decimal point

to the left.

For the E or D field descriptor, the basic real constant part of the

I/0 list element is multiplied by 10**n, and n is subtracted from the

exponent. Thus, a positive scale factor moves the decimal point to

the right and decreases the exponent; a negative scale factor moves

the decimal point to the left and increases the exponent.

Output Example:

Format Internal Value External Representation

1PE12.3 -270.139 AA-2.701E+02

1PE12.2 -270.139 AAA-2.70E+02

-1PE12.2 -270.139 AAA-0.03E+04

The effect of the scale factor for the G field descriptor is suspended

if the magnitude of the data to be output is within the effective

range of the descriptor, because the G field descriptor supplies 1its

own scaling function. The G field descriptor functions as an E field

descriptor if the magnitude of the data value is outside its range.

In this case, the scale factor has the same effect as for the E field

- descriptor.

On input, and on output under F field descriptor control, a scale

factor actually alters the magnitude of the data. On output, a scale

factor under E, D, or G field descriptor control merely alters the

form in which the data is transferred. 1In addition, on input, a

positive scale factor moves the decimal point to the 1left and a

negative scale factor moves the decimal point to the right; and, on

output, the effect is the reverse.

8-15

FORMAT STATEMENTS

If you do not specify a scale factor with a field descriptor, a
default scale factor of 0 1is assumed. Once you specify a scale

factor, however, it applies to all subsequent real and double

precision field descriptors in the same FORMAT statement, unless
another scale factor appears. For example:

DIMENSION A(6)

DO 10 I =1,6

10 A(I) = 25.

TYPE 100,A

100 FORMAT(' ',F8.2,2PF8.2,F8.2)

produces:

25.00 2500.00 2500.00 2500.00 2500.00 2500.00

If a second scale factor appears in the FORMAT statement, it takes
control from the first scale factor.

Format reversion has no effect on the scale factor (see Section 8.6).
A scale factor of 0 can only be reinstated by an explicit OP
specification.

8.1.18 Repeat Counts and Group Repeat Counts

You can apply most field descriptors (except H, T, P, or X) to a
number of successive data fields by preceding that field descriptor
with an unsigned integer constant specifying the number of
repetitions. This constant is called a repeat count. For example,
the following two statements are equivalent:

20 FORMAT (E12.4,E12.4,E12.4,15,15,1I5,1I5)

20 FORMAT (3E12.4,415)

Similarly, you can apply a group of field descriptors repeatedly to
data fields by enclosing these field descriptors in parentheses and
preceding them with an unsigned integer constant. The integer
constant 1is called a group repeat count. For example, the following
two statements are equivalent:

50 FORMAT (218,3(F8.3,E15.7))

50 FORMAT (I8,f8,F8.3,E15.7,F8.3,E15.7,F8.3,E15.7)

1 2 3

An H or X field descriptor, which could not otherwise be repeated, can
be enclosed in parentheses and treated as a group repeat
specification. Thus, it could be repeated a desired number of times.

If you do not specify a group repeat count, a default count of 1 is
assumed.

Section 8.6 discusses how to use parentheses when the number of values
to be formatted is greater than the number of format specifications.

FORMAT STATEMENTS

8.1.19 Variable Format Expressions

You can use an expression in a FORMAT statement wherever you can use

an integer (except as the specification of the number of characters in
the H field) by enclosing it in angle brackets. For example:

FORMAT (I<J+1>)

This statement performs an I (integer) data transfer with a field

width one greater than the value of J at the time the format is

scanned. The expression is re-evaluated each time it is encountered

in the normal format scan. If the expression is not of integer data
type it is converted to integer data type before use. You can use any

valid FORTRAN expression, including function calls and references to
dummy arguments.

Figure 8-1 shows an example of a variable format expression.

The value of a variable format expression must obey the restrictions
on magnitude applying to its use in the format, or an error occurs.

DIMENSION A(5)

DO 10 I =1,10

WRITE (6,100) I

100 FORMAT (I<MAX(I,5)>)

10 CONTINUE

DO 201 =1,5

WRITE (6,101) (A(I),J=1,I)

101 FORMAT (<KI>F10.<I-1>)

20 CONTINUE

END

On execution, these statements produce the following output:

1

2

3

4

5

6

7

8

9

10

1.

2.0 2.0

3.00 3.00 3.00

4.000 4.000 4.000 4.000

5.0000 5.0000 5.0000 5.0000 5.0000

Figure 8-1 Variable Format Expression Example

FORMAT STATEMENTS

8.1.20 Default Field Descriptors

If you write the field descriptors 1, O, %2, L, F, E, D, G, or A
without specifying a field width value, default values for w and d are
supplied based on the data type of the I/0 list element.

Table 8-2 lists the default values for w and d.

Table 8-2

Default Field Descriptor Values

Field Descriptor List Element w d

I, O, 2 INTEGER*2 7
I, 0, 2 INTEGER*4 12
L LOGICAL 2

F, E, G, D REAL, COMPLEX 15 7
F, E, G, D DOUBLE PRECISION 25 16
A LOGICAL*1 1
A LOGICAL*2,INTEGER*2 2
A LOGICAL*4,INTEGER*4 4
A REAL, COMPLEX 4
A - DOUBLE PRECISION 8
A CHARACTER*n n

Note that for the A field descriptor, the default is the actual length
of the corresponding I/0 list element.

8.2 CARRIAGE CONTROL

The first character of every record transferred to a printer is not
printed. Instead, it is interpreted as a carriage control character.
The FORTRAN I/0 system recognizes certain characters as carriage
control characters. Table 8-3 1lists these characters and their
effects.

Table 8-3

Carriage Control Characters

Character Zffect

A (space) Advances one line

0 (zero) Advances two lines

1 (one) Advances to top of

next page

+ (plus) Does not advance

(allows overprinting)

$ (dollar sign) Advances one line before printing
and suppresses carriage

return at the end of the

record

8-18

FORMAT STATEMENTS

Any character other than those listed in Table 8-3 is treated as a
space, and 1is deleted from the print 1line. Note that if you
accidentally omit the carriage control character, the first character
of the record is not printed.

8.3 FORMAT SPECIFICATION SEPARATORS

Field descriptors in a format specification are generally separated by
commas. You can also use the slash (/) record terminator to separate
field descriptors. A slash terminates input or output of the current
record, and initiates a new record. For example:

WRITE (6,40) K,L,M,N,O,P

40 FORMAT (306/16,2F8.4)

This statement is equivalent to:

WRITE (6,40) K,L,M

40 FORMAT (306)

WRITE (6,50) N,O,P

50 FORMAT (I6,2F8.4)

You can use multiple slashes to bypass input records or to output
blank records. If n consecutive slashes appear between two field
descriptors, (n-1) records are skipped on input, or (n-1) blank
records are output. The first slash terminates the current record;
the second slash terminates the first skipped or blank record, and so
on.

However, n slashes at the beginning or end of a format specification
result in n skipped or blank records. This is because the opening and
closing parentheses of the format specification are themselves a
record initiator and terminator, respectively. For example:

WRITE (6,99)

99 FORMAT ('1',T51, 'HEADINGALINE'//T51,'SUBHEADINGALINE'//)

The above statements produce the following output:

Column 50, top of page

HEADING LINE

(blank line)

SUBHEADING LINE

(blank line)

(blank line)

FORMAT STATEMENTS

8.4 EXTERNAL FIELD SEPARATORS

A field descriptor such as Fw.d specifies that an input statement is

to read w characters from the external record. If the data field in
the external record contains less than w characters, the input

statement would read characters from the next data field in the

external record, unless the short field is padded with leading zeros

or spaces. When the field descriptor is numeric, you can avoid

padding the input field by using a comma to terminate the field. The

comma overrides the field descriptor's field width specification.

This is called short field termination, and 1is particularly useful

when you are entering data from a terminal keyboard. You can use it

with the I, O, 2, F, E, D, G, and L field descriptors. For example:

READ (5,100) I,J,A,B

100 FORMAT (2I6,2F10.2)

The above statements read the following record:

1,-2,1.0,35

On execution, the following assignments occur:

I =1

J = -2

A =1.0

B = 0.35

Note that the physical end of the record also serves as a field

terminator; and that the d part of a w.d specification is not

affected by an external field separator.

You can use a comma to terminate only fields less than w characters

long. If a comma follows a field of w characters or more, the comma

is considered part of the next field.

Two successive commas, or a comma after a field of exactly w

characters, constitutes a null (zero-length) field. Depending on the

field descriptor specified, the resulting value assigned is 0, 0.0,

0.D0, or .FALSE..

You cannot use a comma to terminate a field that is controlled by an

A, H, or character constant field descriptor. However, if the record

reaches its physical end before w characters are read, short field

termination occurs and the characters that were input are assigned

successfully. Trailing spaces are appended to fill the corresponding

I/0 list element or the field descriptor.

FORMAT STATEMENTS

8.5 RUN-TIME FORMAT

You can store format specifications in character variables, character

arrays, character array elements, character substrings, or numeric

arrays. Such a format specification is called a run-time format, and

can be constructed or altered during program execution.

A run-time format in an array has the same form as a FORMAT statement,

without the word FORMAT and the statement label. The opening and

closing parentheses are required. Variable format expressions are not

permitted.

In the following example, the DATA statement assigns a left

parenthesis to the character variable FORCHR, and assigns a right

parenthesis and three field descriptors to four character variables

for 1later |use. The proper field descriptors are then selected for

inclusion in the format specification. The selection is based on the

magnitude of the individual elements of the array TABLE. A right

parenthesis is then added to the format specification just before the

WRITE statement uses it. Thus, the format specification changes with

each iteration of the DO loop.

REAL TABLE (10,5)

CHARACTER*5 FORCHR(0:5), RPAR*1, FBIG,FMED,FSML

DATA FORCHR(0) ,RPAR/'(',')'/

DATA FBIG,FMED,FSML/'F8.2,','F9.4,','F9.6,"'/

DO 20 I=1,10

DO 18 J=1,5

IF (TABLE(I,J) .GE. 100.) THEN

FORCHR(J) =FBIG

ELSE IF (TABLE(I,J) .GT. 0.l1) THEN

FORCHR(J) =FMED

ELSE

FORCHR(J) =FSML

END IF

18 CONTINUE

FORCHR(5) (5:5)=RPAR

WRITE (6,FORCHR) (TABLE(I,J), J=1,5)

20 CONTINUE

END

NOTE

Format specifications stored in arrays

are recompiled at run time each time

they are used. If a Hollerith or

character run-time format is used in a

READ statement to read data into the

format itself, that data is not copied

back into the original array. Thus, it

will not be available subsequently for

using that array as a run-time format

specification.

FORMAT STATEMENTS

8.6 FORMAT CONTROL INTERACTION WITH INPUT/OUTPUT LISTS

Format control begins with execution of a formatted I/O statement.

The action format control takes depends on information provided

jointly by the next element of the I/O list (if one exists) and the

next field descriptor of the format specification. Both the I/O list

and the format specification are interpreted irom 1left to right,

except when repeat counts are specified.

If the I/0 statement contains an I/O list, you must specify at 1least

one I, O, %2, F, E, D, G, L, A, or Q field descriptor in the format

specification. An error occurs if these conditions are not met.

On execution, a formatted input statement reads one record from the

specified unit and initiates format control. Thereafter, additional

records can be read as indicated by the format specification. Format

control requires that a new record be input when a slash occurs in the

format specification, or when the 1last closing parenthesis of the

format specification is reached and I/0 list elements remain to be

filled. Any remaining characters in the current record are discarded

when the new record is read.

On execution, a formatted output statement transmits a record to the

specified unit as format control terminates. Records can also be

written during format control if a slash appears in the format

specification or if the last closing parenthesis is reached and more

I/0 list elements remain to be transferred.

The I, O, 2, F, E, D, G, L, A, and Q field descriptors each correspond

to one element in the I/O list. No list element corresponds to an H,

X, P, T, or character constant field descriptor. In H and character

constant field descriptors, data transfer occurs directly between the

external record and the format specification.

When format control encounters an I, O, %2, F, E, b, G, L, A, or Q

field descriptor, it determines whether a corresponding element exists

in the I/0 list. If one does, format control transfers data

(translated, as appropriate, to or from external format) between the

record and the 1list element, then proceeds to the next £field

descriptor (unless the current one is to repeat). If no corresponding

list element remains, format control terminates. .

When the last closing parenthesis of the format specification is

reached, format control determines whether more I/O list elements are

to be processed. If not, format control terminates. However, 1if

additional list elements remain, part or all of the format

specification is reused in a process called format reversion.

In format reversion, the current record is terminated, a new one is

initiated, and format control reverts to the group repeat

specification whose opening parenthesis matches the next-to-last

closing parenthesis of the format specification. If the format does

not contain a group repeat specification, format control returns to

the initial opening parenthesis of the format specification. Format

control continues from that point.

FORMAT STATEMENTS

8.7 SUMMARY OF RULES FOR FORMAT STATEMENTS

The following sections summarize the rules for constructing and using
the format specifications and their components, and for constructing
external fields and records. Table 8-4 summarizes the FORMAT codes.

8.7.1 General Rules

1‘

2.

A FORMAT statement must always be labeled.

In a field descriptor such as rIw or nX, the terms r, w, and

n must be unsigned integer constants greater than zero.

(They cannot be names assigned to constants in PARAMETER

statements.) You can omit the repeat count and field width

specification.

In a field descriptor such as Fw.d, the term d must be an
unsigned 1integer constant. You must specify 4 in F, E, D,

and G field descriptors even if it is zero; and the field
width specification (w) must be greater than or equal to d.
The decimal point is also required. You must either specify
both w and d, or omit them both.

In a field descriptor such as nHclc2 ... cn, exactly n
characters must follow the H format code. You can use any

printing ASCII character in this field descriptor.

In a scale factor of the form nP, n must be a signed or

unsigned integer constant in the range -127 through 127

inclusive. The scale factor affects the F, E, D, and G field

descriptors only. Once you specify a scale factor, it

applies to all subsequent real or double precision field
descriptors in that format specification until another scale
factor appears. You must explicitly specify OP to reinstate
a scale factor of zero. Format reversion does not affect the
scale factor.

No repeat count is permitted in H, X, T or character constant
field descriptors unless these descriptors are enclosed in
parentheses and treated as a group repeat specification.

If the associated I/O statement contains an I/0 1list, the
format specification must contain at least one field

descriptor. However, this descriptor cannot be H, X, P, T,

or a character constant.

A format specification in a variable, a character substring

reference, an array element, or an array must be constructed

the same as a format specification in a FORMAT statement,
including the opening and closing parentheses.

8-23

8.7.2

l.

FORMAT STATEMENTS

Input Rules

A minus sign must precede a negative value in an external
input field; a plus sign 1is optional before a positive
value.

On input, an external field under I field descriptor control
must be an integer constant. It cannot contain a decimal
point or an exponent. An external field under O field

descriptor control must contain only the numerals 0 through

7. An external field input under Z field descriptor control

must contain only the numerals 0 through 9 and the letters A

through F. An external field under O or Z field descriptor

control must not contain a sign, a decimal point, or an

exponent. You cannot use octal and hexadecimal constants in
the form '777'0 or 'AF9'X in external records.

On input, an external field under F, E, D, or G field

descriptor control must be an integer constant or a real or

double precision constant. It can contain a decimal point
and/or an E or D exponent field.

If an external field contains a decimal point, the actual
size of the fractional part of the field, as indicated by

that decimal point, overrides the d specification of the
corresponding real or double precision field descriptor.

If an external field contains an exponent, the scale factor

(if any) of the corresponding field descriptor is inoperative

for the conversion of that field.

The field width specification must be 1large enough to

accommodate both the numeric character string of the external

field and any other characters that are allowed (algebraic
sign, decimal point, and/or exponent).

A comma is the only character you can use as an external
field separator. It terminates input of fields (for

noncharacter data types) that are shorter than the number of

characters expected. It also designates null (zero-length)

fields.

8.7.3 Output Rules

1. A format specification cannot specify more output characters

than the external record can contain. For example, a line
printer record cannot contain more than 133 characters

including the carriage control character.

The field width specification (w) must be large enough to
accommodate all characters that the data transfer can

generate, including an algebraic sign, decimal point, and
exponent. For example, the field width specification in an E
field descriptor should be 1large enough to contain d4+7

characters.

The first character of a record output to a line printer or
terminal is wused for carriage control; it is not printed.

The first character of such a record should be a space, 0,1,
$, or +. Any other character is treated as a space and

deleted from the record.

8-24

FORMAT STATEMENTS

Table 8-4

Summary of FORMAT Codes

Code Form Effect

I Iw Transfers decimal integer values

0 Oow Transfers octal integer values

Z Zw Transfers hexadecimal integer values

F Fw.d Transfers real or double precision values

E Ew.d Transfers real or double precision values

(E exponent field indicator)

D Dw.d Transfers real or double precision values

(D exponent field indicator)

G Gw.d Transfers real or double precision values:

on input, acts 1like F code; on output,

acts like E code or F code.

L Lw Transfers logical data: on input, transfers

characters; on output, transfers T or F

A Aw Transfers character or Hollerith values

H nHc...cC Transfers data between an external record
or -’ and the H field descriptor, or character

'c...c! constant

X nX Specifies that n characters are to be
skipped (on input) or that n spaces are to

be transmitted (on output)

T Tn Tabulation specifier

Q Q Obtains the number of characters remaining

to be transferred in an input record.

$ $ suppresses carriage return during

interactive I/0.

: : Terminates format control if the I/0 1list

is exhausted.

CHAPTER 9

AUXILIARY INPUT/OUTPUT STATEMENTS

The auxiliary input/output statements perform file management

functions. These statements are:

OPEN -- associates FORTRAN logical wunits with files. OPEN

establishes a connection between a logical unit and a file or

device, and declares the attributes required for read and

write operations.

CLOSE -- terminates the connection between a logical unit and

a file or device.

REWIND, BACKSPACE, and FIND -- perform file positioning

functions.

ENDFILE -- writes a special form of record that causes an

end-of-file condition (and END= transfer) when an input

statement reads the record.

DEFINE FILE -- describes an unformatted, direct access file

and associates the file with a logical unit number.

AUXILIARY INPUT/OUTPUT STATEMENTS

OPEN

9.1 OPEN STATEMENT

An OPEN statement either connects an existing file to a logical unit,

or creates a new file and connects it to a logical unit. 1In addition,

OPEN can specify file attributes that control file creation and/or

subsequent processing.

The OPEN statement has the form:

OPEN (par | ,par]...)

par

A keyword specification in one of the following forms:

key

key = value

key

A keyword, as described below.

value

Depends on the keyword, as described below.

Keywords are divided into several categories based on function:

® Keywords that identify the unit and file:

UNIT - logical unit number to be used

NAME - file name specification for the file

TYPE - file existence status at OPEN

DISPOSE - file existence status after CLOSE

® Keywords that describe the file processing to be performed:

ACCESS — FORTRAN access method to be used

ORGANIZATION - logical file structure

READONLY - write protection

® Keywords that describe the records in the file:

BLOCKSIZE - physical block size

CARRIAGECONTROL - printer control type

FORM - type of FORTRAN record formatting

RECORDSIZE - logical record length

RECORDTYPE - logical record format

® Keywords that describe file storage allocation when a file is

created:

INITIALSIZE - initial file allocation

EXTENDSIZE - file allocation increment size

® Keywords that provide additional capability for direct access

I/0:

ASSOCIATEVARIABLE - the next record number value

MAXREC - maximum direct access record number

AUXILIARY INPUT/OUTPUT STATEMENTS

e Optional keywords that provide improved performance or special

capabilities.

processing:

BUFFERCOUNT

NOSPANBLOCKS

SHARED

USEROPEN

ERR

Table 9-1 lists the

These options are generally transparent to I/O

number of I/0 buffers to use

records are not to be split across

physical blocks

other programs can simultaneously access

the file

user program option to provide additional

OPEN capability

statement to which control transfers if an

error occurs during execution of the OPEN

statement

values accepted for each keyword.

AUXILIARY INPUT/OUTPUT STATEMENTS

Table 9-1

OPEN Statement Keyword Values

Keyword Values¥* Function Default

ACCESS 'SEQUENTIAL' Access method 'SEQUENTIAL"

'DIRECT'

'APPEND'

ASSOCIATEVARIABLE \'4 Next direct

access record

BLOCKSIZE e Physical block System default

size

BUFFERCOUNT e Number of I/0 System default

buffers

CARRIAGECONTROL 'FORTRAN' Print control 'FORTRAN'

'LIST' (formatted)
'NONE' 'NONE'

(unformatted)

DISPOSE 'SAVE' or 'KEEP' | File disposi- 'SAVE'

DISP '"PRINT' tion

'DELETE' at close

ERR] Error transfer

label

EXTENDSIZE e File allocation |Volume or sys-

increment tem default

FORM 'FORMATTED' Format type Depends on

'UNFORMATTED' access method

INITIALSIZE e File allocation

MAXREC e Direct access

record limit

NAME c File name

specification

NOSPANBLOCKS - Records do not

span blocks

ORGANIZATION 'SEQUENTIAL’ File structure 'SEQUENTIAL'

'RELATIVE'

*NOTES:

¢ is a character expression, numeric array name, numeric
variable name, or numeric array element name
is a numeric expression

is an external function

is a statement label

is an integer variable name<
S
0
T
O

(continued on next page)

AUXILIARY INPUT/OUTPUT STATEMENTS

Table 9-1 (Cont.)

OPEN Statement Keyword Values

Keyword Values* Function Default

READONLY - Write protec-
tion

RECORDSIZE e Record length As specified at
file creation

RECORDTYPE 'FIXED' Record Direct access -

"VARIABLE' structure 'FIXED'. Format~-

"SEGMENTED' ted seq. access
- 'VARIABLE'. Un-

formatted seq.

access -

'SEGMENTED'

SHARED - File sharing
allowed

TYPE ‘OLD' File status 'NEW'
'NEW' at open

'*SCRATCH'

"UNKNOWN'

UNIT e Logical unit
number

USEROPEN P User program

option

*NOTES:

is a character expression, numeric array name, numeric

variable name, or numeric array element name

is a numeric expression

is an external function

is a statement label

is an integer variable nameS
0

O

Keyword specifications can appear in any order. In most cases, they

are optional; and, if not present, default values are provided.

The following examples illustrate four uses of the OPEN statement:

OPEN (UNIT=1, ERR=100)

This statement creates a new sequential formatted file on unit 1 with

the default file name FOROO01.DAT.

OPEN (UNIT=3, TYPE='SCRATCH', ACCESS='DIRECT',

INITIALSIZE=50, RECORDSIZE=64)

This statement creates a 50-block direct access file for temporary

storage. The file is deleted at program termination.

AUXILIARY INPUT/OUTPUT STATEMENTS

OPEN (UNIT=I, NAME='MTAQ:MYDATA.DAT', BLOCKSIZE=8192,
TYPE='NEW', ERR=14, RECORDSIZE=1024, RECORDTYPE='FIXED')

This statement creates a file on magnetic tape with a large block size
for efficient processing.

OPEN (UNIT=I, NAME='MTAO:MYDATA.DAT', READONLY, TYPE='OLD',
RECORDSIZE=1024, RECORDTYPE='FIXED', BLOCKSIZE=8192)

This statement opens the file created in the previous example for
input.

CHARACTER*40 FILENAME

OPEN (UNIT=1,NAME=FILENAME,TYPE='OLD')

This statement opens an existing file, using the name specified by the
character variable FILENAME.

Sections 9.1.1 through 9.1.21 describe the keywords in detail. As
used in these sections, a numeric expression can be any integer, real,
or double precision expression. The value of the expression is
converted to integer data type before it is wused in the OPEN
statement.

9.1.1 ACCESS Keyword

This keyword has the form:

ACCESS = acc

acc ,

The character constant 'DIRECT', 'SEQUENTIAL', or 'APPEND'.

ACCESS specifies whether the file is direct or sequential access. If
you specify 'DIRECT', the file is accessed directly. If you specify
'SEQUENTIAL', the file is accessed sequentially. 'APPEND' implies
sequential access and positioning after the last record of the file.
The default is 'SEQUENTIAL'.

9.1.2 ASSOCIATEVARIABLE Keyword

This keyword has the form:

ASSOCIATEVARIABLE = asv

asv

An integer variable.

ASSOCIATEVARIABLE specifies the integer variable (asv) that, after
each direct access 1I/0 operation, contains the record number of the
next sequential record in the file. This specifier is ignored for a
sequential access file.

AUXILIARY INPUT/OUTPUT STATEMENTS

9.1.3 BLOCKSIZE Keyword

This keyword has the format:

BLOCKSIZE = bks

bks

A numeric expression.

BLOCKSIZE specifies the physical I/0 transfer size (in bytes) for the
file. The default is the system default for the device. See the
VAX-11] FORTRAN IV-PLUS User's‘Guide for more information.

9.1.4 BUFFERCOUNT Keyword

This keyword has the form:

BUFFERCOUNT = bc

bc

A numeric expression.

BUFFERCOUNT specifies the number of buffers to be associated with the
logical wunit for multibuffered 1I/0. The size of each buffer is
determined by the BLOCKSIZE keyword. If you do not specify
BUFFERCOUNT, or if you specify zero, the system default is assumed.

9.1.5 CARRIAGECONTROL Keyword

This keyword has the form:

CARRIAGECONTROL = ccC

cc

The character constant 'FORTRAN', 'L,IST', or 'NONE'.

CARRIAGECONTROL determines the kind of carriage control processing
 to

be used when printing a file. The default for formatted files is
'FORTRAN'; for unformatted files, the default is '"NONE'. 'FORTRAN'

specifies normal FORTRAN interpretation of the first character;

'LIST' specifies single spacing between records; and 'NONE' specifies
no implied carriage control.

9.1.6 DISPOSE Keyword

This keyword has two forms:

DISPOSE = dis

DISP = dis

dis

The character constant 'SAVE', '"KEEP', 'PRINT', or 'DELETE’.

z

AUXILIARY INPUT/OUTPUT STATEMENTS

DISPOSE determines the disposition of the file connected to the unit
when the unit is closed. If you specify 'SAVE' or 'KEEP', the file is
retained after the unit is closed; this is the default value. If you
specify 'PRINT', the file is submitted to the system line printer
spooler and is not deleted. If you specify 'DELETE', the file is
deleted. A read-only file cannot be printed or deleted. A scratch
file cannot be saved or printed.

9.1.7 ERR Keyword

This keyword has the form:

ERR= s

Label of an executable statement.

ERR transfers control to the executable statement specified by s when
an error occurs. ERR applies only to the OPEN statement in which it
is specified, and not to subsequent I/0 operations on the unit. If an
error occurs, no file is opened or created.

9.1.8 EXTENDSIZE Keyword

This keyword has the form:

EXTENDSIZE = es

es

A numeric expression.

EXTENDSIZE specifies the number of blocks by which to extend a disk
file when additional file storage is allocated. If you do not specify
EXTENDSIZE, or if you specify zero, the system default for the device
is used.

9.1.9 FORM Keyword

This keyword has the form:

FORM = ft

ft

The character constant 'FORMATTED' or 'UNFORMATTED' .

FORM specifies whether the file being opened is to be read and written
using formatted or unformatted READ or WRITE statements. For
sequential access files, 'FORMATTED' is the default. For direct
access files, 'UNFORMATTED' is the default.

AUXILIARY INPUT/OUTPUT STATEMENTS

9.1.10 INITIALSIZE Keyword

This keyword has the form:

INITIALSIZE = insz

insz

A numeric expression.

INITIALSIZE specifies the number of blocks in the 1initial allocation

of space for a new file on a disk. If you do not specify INITIALSIZE,

or if you specify zero, no initial allocation is made.

9.1.11 MAXREC Keyword

This keyword has the form:

MAXREC = mr

mr

A numeric expression.

MAXREC specifies the maximum number of records permitted in a direct

access file. The default is no maximum number of records. This

specifier is ignored for a sequential access file.

9.1.12 NAME Keyword

This keyword has the form:

NAME = fln

fln

A character expression, numeric array name, numeric variable

name, or numeric array element name.

NAME specifies the name of the file to be connected to the unit. The

name can be any file specification accepted by the operating system.

The VAX-1ll FORTRAN IV-PLUS User's Guide describes default file name

conventipns.

If the file name is stored in a numeric variable, numeric array, or

numeric array element, the name must consist of ASCII characters

terminated by an ASCII null character (zero byte). However, if it |is

stored in a character variable, array, or array element, it must not

contain a zero byte.

AUXILIARY INPUT/OUTPUT STATEMENTS

9.1.13 NOSPANBLOCKS Keyword

This keyword has the form:

NOSPANBLOCKS

NOSPANBLOCKS specifies that records are not to «cross disk block

boundaries. If any record exceeds the size of a physical block, an

error occurs.

9.1.14 ORGANIZATION Keyword

This keyword has the form:

ORGANIZATION = org

org

The character constant 'SEQUENTIAL' or 'RELATIVE'.

ORGANIZATION specifies the internal organization of the file. When

you create a file, the default is 'SEQUENTIAL'. When you access an

existing file, the default is the organization of that file. If you

specify ORGANIZATION for an existing file, org must have the same

value as that of the existing file.

The internal organization of a file does not limit the access allowed

a file. Specifically, both sequential and direct access are allowed

on files with either sequential or relative organization. However,

you must specify fixed length records for direct access, sequential

organization files.

See the VAX-11 FORTRAN IV-PLUS User's Guide for more information on

internal file organization.

9.1.15 READONLY Keyword

This keyword has the form:

READONLY

READONLY specifies that an existing file can be read, but prohibits

writing to that file.

9.1.16 RECORDSIZE Keyword

This keyword has the form:

RECORDSIZE = rl

rl

A numeric expression.

RECORDSIZE specifies the logical record length. If the file contains

fixed 1length records, RECORDSIZE specifies the size of each record.

If the file contains variable length records, RECORDSIZE specifies the

maximum length for any record. If the records are formatted, the

length is the number of characters; if the records are unformatted,

the 1length is the number of numeric storage units (4 bytes). If the

9-10

AUXILIARY INPUT/OUTPUT STATEMENTS

file exists and rl does not agree with the actual 1length of the

record, an error occurs. If you omit this specifier for old files,

the actual record length specified when the file was created is

assumed. You must specify RECORDSIZE when you create files with fixed

length records or with relative organization.

9.1.17 RECORDTYPE Keyword

This keyword has the form:

RECORDTYPE = typ

typ
The character constant 'FIXED', 'VARIABLE', or 'SEGMENTED'.

RECORDTYPE specifies whether the file has fixed 1length records,

variable 1length records, or segmented records. When you create a

file, the defaults are:

File Type Default Record Type

Relative organization 'FIXED®

Direct access files 'FIXED'

Formatted sequential 'VARIABLE'

access files

Unformatted sequential 'SEGMENTED'

access files

Segmented records consists of one or more variable 1length records.

Using segmented records allows a FORTRAN 1logical record to span

several physical records. Only sequential access, unformatted files

with sequential organization can use segmented records. You cannot

specify 'SEGMENTED' for any other file type.

If you do not specify RECORDTYPE when accessing an existing file, the

record type of the file is used. An exception to this is sequential

access, unformatted files with sequential organization: these files

have a default of 'SEGMENTED'.

If you specify RECORDTYPE, typ must match the record type of the

existing file.

In fixed length record files, if an output statement does not specify

a full record, the record is filled with spaces (for a formatted file)

or zeros (for an unformatted file).

9-11

AUXILIARY IRPUT/OUTPUT STATEMENTS

9.1.18 SHARED Keyword

This keyword has the form:

SHARED

SHARED specifies that the file is to be opened for shared access by

more than one program executing simultaneously.

See the VAX~11l FORTRAN 1IV-PLUS User's Guide for additional information

on this keyword.

9.1.19 TYPE Keyword

This keyword has the form:

TYPE = typ

typ
The character constant 'OLD', 'NEW', 'SCRATCH', or 'UNKNOWN'.

TYPE specifies the status of file to be opened. If you specify 'OLD',

the file must already exist. If you specify 'NEW', a new file is

created. If you specify 'SCRATCH', a new file is created and it is

deleted when the file 1is closed. If you specify 'UNKNOWN', the

processor will first try 'OLD'; if the file 1is not found, the

processor will use 'NEW', thereby creating a new file. The default is

'NEW'.

9.1.20 UNIT Keyword

This keyword has the form:

UNIT = u

A numeric expression.

UNIT specifies the logical unit to which a file is to be connected.

The unit specification must appear in the list. Another file cannot

be connected to the logical unit when the OPEN statement is executed.

9.1.21 USEROPEN Keyword

The keyword has the form:

USEROPEN = p

p
An external function name.

The USEROPEN keyword specifies a user-written external function that

controls the opening of the file. Knowledgeable users can employ

additional features of the operating system which are not directly

available from FORTRAN, while retaining the convenience of writing

programs in FORTRAN. See the VAX-11l Common Run-Time Procedure Library

Reference Manual for more information on USEROPEN.

AUXILIARY INPUT/OUTPUT STATEMENTS

CLOSE

9.2 CLOSE STATEMENT

The CLOSE statement disconnects a file from a unit. It has the form:

DISPOSE

CLOSE (UNIT=u|{, = p| [,ERR=s])

DISP

u

A logical unit number.

p [[] » . .
A character constant that determines the disposition of the file.
Its values are 'SAVE', 'KEEP', 'DELETE', and 'PRINT'.

s

The label of an executable statement.

If you specify either 'SAVE' or 'KEEP', the file is retained after the

unit 1is closed. If you specify 'PRINT', the file is submitted to the
line printer spooler and is not deleted. If you specify 'DELETE', the
file is deleted. For scratch files, the default is 'DELETE'; for all

other files, the default is 'SAVE'. The disposition specified in a
CLOSE statement supersedes the disposition specified in the OPEN
statement, except that a file opened as a scratch file cannot be saved
or printed, nor can a file opened for read-only access be printed or
deleted.

For example:

CLOSE (UNIT=1,DISPOSE='PRINT')

This statement closes the file on unit 1 and submits the file for
printing.

CLOSE (UNIT=J,DISPOSE="DELETE',ERR=99)

This statement closes the file on unit J and deletes it.

AUXILIARY INPUT/OUTPUT STATEMENTS

REWIND

9.3 REWIND STATEMENT

The REWIND statement repositions a currently open sequential file at

the beginning of the file. It has the form:

REWIND u

A logical unit number.

The unit number must refer to an open file on disk or magnetic tape.

For example:

REWIND 3

This statement repositions 1logical wunit 3 to the beginning of

currently open file.

You must not issue a REWIND statement for a file that is open for

direct access.

9-14

AUXILIARY INPUT/OUTPUT STATEMENTS

BACKSPACE

9.4 BACKSPACE STATEMENT

The BACKSPACE statement repositions a currently open sequential file

at the beginning of the preceding record. When the next I/O statement

for the unit executes, that record is available for processing.

The BACKSPACE statement has the form:

BACKSPACE u

A logical unit number.

The unit number must refer to an open file on disk or magnetic tape.

For example:

BACKSPACE 4

This statement repositions the open file on 1logical wunit 4 to the

beginning of the preceding record. ‘

You must not issue a BACKSPACE statement for a file that is open for

'DIRECT' or 'APPEND' access.

AUXILIARY INPUT/OUTPUT STATEMENTS

FIND

9.5 FIND STATEMENT

The FIND statement positions a direct access file on a specified unit
to a particular record and sets the associated variable of the file to
that record number. No data transfer takes place.

The FIND statement has the form:

FIND (u'r)

A logical unit number.

The direct access record number.

The unit number must refer to an open direct access file.

The record number cannot be less than 1 or greater than the number of
records defined for the file.

For example:

FIND (1'1l)

This statement positions logical unit 1 to the first record of the
file; the file's associated variable is set to 1.

FIND (4'INDX)

This statement positions the file to the record identified by the
content of INDX; the file's associated variable is set to the value
of INDX.

9-16

AUXILIARY INPUT/OUTPUT STATEMENTS

ENDFILE

9.6 ENDFILE STATEMENT

The ENDFILE statement writes an end-file record to the specified unit.
It has the form:

ENDFILE u

A logical unit number.

An end-file record can be written only to sequentially accessed,

sequentially organized files containing variable length records.

For example:

ENDFILE 2

This statement outputs an end-file record to logical unit 2.

9-17

AUXILIARY INPUT/OUTPUT STATEMENTS

DEFINE FILE

9.7 DEFINE FILE STATEMENT

The DEFINE FILE statement describes direct access files that are
associated with a 1logical wunit number. (See Section 9.1 for a
preferred way to do this.) The DEFINE FILE statement establishes the
size and structure of the direct access file.

The DEFINE FILE statement has the form:

DEFINE FILE u (m,n,U,asv) [,u(m,n,U,asv)] ...

u

A logical unit number.

m

A numeric expression that specifies the number of records in the
file.

n

A numeric expression that specifies the length, in 16-bit words
(2 bytes), of each record.

U

Specifies that the file is unformatted (binary); this 1is the
only acceptable entry in this position.

asv

An integer variable, called the associated variable of the file.
At the end of each direct access I/0 operation, the record number
of the next higher numbered record in the file is assigned to v.

DEFINE FILE specifies that a file containing m fixed length records of
n 1l6-bit words each exists, or is to exist, on logical unit u. The
records in the file are numbered sequentially from 1 through m.

DEFINE FILE must be executed before the first direct access I/0
statement that refers to the specified file.

DEFINE FILE also establishes the integer wvariable asv as the
associated variable of the file. At the end of each direct access I/0
operation, the FORTRAN I/O system places in asv the record number of
the record immediately following the one just read or written. Since
the associated variable always points to the next sequential record in
the file (unless it 1is redefined by an assignment, input, or FIND
statement), direct access I/O statements can perform sequential
processing of the file, by using the associated variable of the file
as the record number specifier.

For example:

DEFINE FILE 3 (1000,48,U,NREC)

This statement specifies that logical unit 3 is to be connected to a
file of 1000 fixed 1length records; each record is 48 16-bit words
long. The records are numbered sequentially from 1 through 1000, and
are unformatted. After each direct access I/0 operation on this file,
the integer variable NREC will contain the record number of the record
immediately following the record just processed.

APPENDIX A

CHARACTER SETS

A.1l FORTRAN CHARACTER SET

The FORTRAN character set consists of:

1. The letters A through Z and a through z

2. The numerals 0 through 9

3. The following special characters:

Character Name Character Name

A Space or tab ! Apostrophe

= Equal sign " Quotation mark

+ Plus sign $ Dollar sign

- Minus sign _ Underline

* Asterisk ! Exclamation point

/ Slash : Colon

(Left parenthesis < Left angle bracket

) Right parenthesis > Right angle bracket

’ Comma % Percent sign

. Period & Ampersand

Other printing characters can appear in a FORTRAN statement only as

part of a Hollerith or character constant. Any printing character can

appear in a comment. Printing characters are characters whose ASCII

codes are in the range 20 through 7D. See Table A-1.

CHARACTER SETS

A.2 ASCII CHARACTER SET

Table A-1 is a table representing the ASCII character set. At the top
of the table are hexadecimal digits (0 to 7), and to the left of the
table are hexadecimal digits (0 to F). To determine the hexadecimal
value of an ASCII character, use the hexadecimal digit that
corresponds to the row in the "units" position, and use the
hexadecimal digit that corresponds to the column in the "16's"
position. For example, the value of the character representing the
equal sign is 3D.

Table A-1

ASCII Character Set

Columns

0 1 2 3 4 5 6 7

0 NUL DLE SP 0 @ P \ P
1 SOH DCl1 ! 1 A Q a q
2 STX DC2 " 2 B R b r
3 ETX DC3 # 3 C S c S
4 EOT DC4 § 4 D T d t
5 ENQ NAK % 5 E U e u
6 ACK SYN & 6 F A4 f A
7 BEL ETB ' 7 G W g w
8 BS CAN (8 H X h X
9 HT EM) 9 I Y i y
A LF SUB * : J y/ j z
B VT ESC + ; K [k {
C FF FS , < L \ 1 l
D CR GS = M] m }
E SO RS . > N - n ~
F sI Us / ? 0 _ 0 DEL

NUL Null DLE Data Link Escape
SOH Start of Heading DC1l Device Control 1
STX Start of Text DC2 Device Control 2
ETX End of Text DC3 Device Control 3
EOT End of Transmission DC4 Device Control 4
ENQ Enquiry NAK Negative Acknowledge
ACK Acknowledge SYN Synchronous Idle
BEL Bell ETB End of Transmission Block
BS Backspace CAN Cancel
HT Horizontal Tabulation EM End of Medium
LF Line Feed SUB Substitute
VT Vertical Tab ESC Escape
FF Form Feed FS File Separator
CR Carriage Return GS Group Separator
SO Shift Out RS Record Separator
SI Shift In Us Unit Separato
Sp Space DEL Delete

A.3

Radix-50 is a special character data re
characters can be encoded and packed
character set is a subset of the ASCII character set.
for compatibility with PDP-11 FORTRAN.

RADIX-50 CONSTANTS AND CHARACTER SET

presentation in which up

into 16 bits.

It is

to 3

The Radix-50

provided

CHARACTER SETS

The Radix-50 characters and their corresponding code values are:

AESCII Octal Radix-50 Value

Character Equivalent (Octal)

Space 40 0

A -2 101 - 132 1 - 32

$ 44 33

. 56 34

(Unassigned) 35

0 -9 60 - 71 36 - 47

Radix-50 values are stored, up to 3 characters per word, by packing

them into single numeric values according to the formula:

((i * 50 + j) * 50 + k)

where i, j, and k represent the code values of 3 Radix-50 characters.

Thus, the maximum Radix-50 value is:

47*50*50 + 47*50 + 47 = 174777

A Radix-50 constant has the form:

chlcz...cn

n
An unsigned, nonzero integer constant that states the number of

characters to follow.

<
A character from the Radix-50 character set.

The maximum number of characters is 12. The character count mnmust

include any spaces that appear in the character string (the space

character is a valid Radix-50 character). You can use Radix-50

constants only in DATA statements.

Examples of valid and invalid Radix-50 constants are:

valid Invalid

4RABCD 4RDKO: (colon is not a Radix~-50
character)

6RATOAAA

when a Radix-50 constant is assigned to a numeric variable or array

element, the number of bytes that can be assigned depends on the data

type of the component (see Table 2-2). If the Radix-50 constant

contains fewer bytes than the length of the component, ASCII null

characters (zero bytes) are appended on the right. If the constant

contains more bytes than the length of the component, the rightmost

characters are not used.

APPENDIX B

FORTRAN LANGUAGE SUMMARY

B.1 EXPRESSION OPERATORS

The following lists the expression operators

order of descending precedence:

each data type in

Data Type Operator Operation Operates upon:

Arithmetic * % Exponentiation Arithmetic or logical
expressions

*,/ Multiplication,

division

+,- Addition, subtraction,

unary plus and minus

Character // Concatenation Character expressions

Relational .GT. Greater than Arithmetic, logical,
or character

.GE. Greater than or expressions (all

equal to relational operators

have equal priority)

.LT. Less than

.LE. Less than or

equal to

LEQ. Equal to

.NE. Not equal to

FORTRAN LANGUAGE SUMMARY

Data Type Operator Operation Operates upon:

Logical .NOT. .NOT.A is true if and Logical or integer
only if A is false expressions

+AND. A.AND.B is true if

and only if A and B

are both true

.OR. A.OR.B is true if

either A or B or

both are true

.EQV. A.EQV.B is true if and .EQV. and .XOR.
only if A and B have equal
are both true or A priority

and B are both false

.XOR. A.XOR.B is true if and

only if A is true and

B is false or B is

true and A is false

B.2 STATEMENTS

The following summarizes the statements available in the VAX-11
FORTRAN IV-PLUS language, including the general form of each
statement. The statements are listed alphabetically for ease of
reference. The "Manual Section" column indicates the section of the
manual that describes each statement in detail.

Manual
Form Effect Section

ACCEPT See READ, Formatted Sequential 7.2.1
See READ, List-Directed 7.3.1

Arithmetic/Logical/Character Assignment 3.1, 3.2, 3.3

v=e

v A variable name, an array element name,
or a character substring name

e An expression

Assigns the value of the arithmetic,
logical, or character expression to the
variable.

FORTRAN LANGUAGE SUMMARY

Arithmetic Statement Function 6.2.1

f(lpl,pl...]1)=e

£ A symbolic name

P A symbolic name

e An expression

Creates a user~defined function having the

variables p as dummy arguments. When

referred to the expression is evaluated

using the actual arguments in the function

call.

ASSIGN s TO v 3.4

s Label of an executable statement

v An integer variable name

Associates the statement label s with the

integer variable v for later use in an

assigned GO TO statement.

BACKSPACE u 9.4

u An integer expression

Backspaces the currently open file on

logical unit u one record.

BLOCK DATA [nam] 5.10

nam A symbolic name

Specifies the subprogram that follows as a

BLOCK DATA subprogram.

CaLL f[([a]l[,[al}l...)] 4.5
6.2

£ A subprogram name or entry point

a An expression, an array name, a procedure name,

or an alternate return specifier. An alternate

return specifier is *s or &s, where s is

the label of an executable statement.

Calls the subroutine subprogram with the

name specified by f, passing the actual

arguments a to replace the dummy

arguments in the subroutine definition.

FORTRAN LANGUAGE SUMMARY

P One of the following forms:

UNIT = e

DISPOSE = 'SAVE'

DISPOSE = 'KEEP'

DISPOSE = 'DELETE'

DISPOSE = ‘'PRINT'

ERR = s

e An integer expression

s Label of an executable statement

Closes the specified file. DISPOSE can

be abbreviated DISP.

COMMON [/[cb]/] nlist [[,]1/[cb]l/nlist]... 5.4

cb A common block name

nlist A list of one or more variable names,

array names, or array declarators

separated by commas

Reserves one or more blocks of storage

space under the name specified to contain

the variables associated with that block

name.

CONTINUE 4.4

Causes no processing.

DATA nlist/clist/[[,] nlist/clist/]... 5.7

nlist A list of one or more variable names,

array names, array elemeit names, or

character substring names separated by

commas. Subscript expressions and

substring expressions must be constant.

clist A list of one or more constants separated

by commas, each optionally preceded by j*,

where j is a nonzero, unsigned integer

constant.

Initially stores elements of clist

in the corresponding elements of

nlist.

FORTRAN LANGUAGE SUMMARY

DECODE (c,f,b[,ERR=s]) [list] 7.7

c An integer expression

£ A format specifier

b A variable name, array name, array

element name, or character substring name

s A label of an executable statement

list An I/0 list.

Reads ¢ characters from buffer b and

assigns values to the elements in the

list converted according to format

specification f.

DEFINE FILE u(m,n,U,v)[,u(m,n,U,v)]... 9.7

u An integer expression

m An integer expression

n An integer expression

v An integer variable name

Defines the record structure of a

direct access file where u is the logical

unit number, m is the number of fixed

length records in the file, n is the

length in words of a single record, U is

a fixed argument, and v is the associated

variable.

DIMENSION a(d)[,a(d)]... 5.3

a(d) An array declarator

Specifies storage space requirements for

arrays.

FORTRAN LANGUAGE SUMMARY

DO s [,] v = el,e2[,e3] 4.3

s The label of an executable statement

v A variable name

ei,e2,e3 Numeric expressions

Executes the DO loop by performing the ‘following steps:

l. Set v =el

2. Execute all statements through

statement number s

3. Evaluate v = v+e3

4. Repeat steps 2 through 3 for the following

iterations:

MAX (1, INT((e2 - el)/e3) + 1)

ELSE 4.2.3

Defines a block of statements to be

executed if logical expressions in

previous IF THEN and ELSE IF THEN

statements have values of false.

See IF THEN.

ELSE IF (e) THEN ‘ 4.2.3

e A logical expression

Defines a block of statements to be

executed if logical expressions in

previous IF THEN and ELSE IF THEN

statements have values of false, and

the logical expression e has a value

of true. See IF THEN.

ENCODF (c,f,b[,ERR=s]i[list] 7.7

c An integer expression

£ A format specifier

b A variable name, array name, array

element name, or substring name

s A label of an executable statement

list An I/0 list

Writes c characters into buffer b which

contains the values of the elements of

the list, converted according to format

specification f.

FORTRAN LANGUAGE SUMMARY

END 4.9

Delimits a program unit.

ENDFILE u 9.6

u An integer variable or constant

Writes an end-file record on logical
unit u.

END IF 4.2.3

Terminates block IF construct. See IF
THEN.

END=s,ERR=s 7.1.6

9.1.7

s A label of an executable statement

Transfers control on end-of-file or error
condition. This is an optional element

in each type of I/0 statement and allows
the program to transfer to statement

number s when an end-of-file (END=) or

error (ERR=) condition occurs.

ENTRY nam [([pl[,p]l...1)] 6.2.4

nam A subprogram name

P A symbolic name

Defines an alternative entry point within
a subroutine or function subprogram.

EQUIVALENCE (nlist)[, (nlist)]... 5.5

nlist A list of two or more variable names,

array names, array element names, or

character substring names separated by
commas. Subscript expressions and

substring expressions must be constants.

Assigns each of the names in nlist

the same storage location.

FORTRAN LANGUAGE SUMMARY

EXTERNAL ([*]v[,[*]v]... 5.6

v A subprogram name

Defines the names specified as

user-defined subprograms.

FIND (u'r) 9.5

u An integer expression

r An integer expression

Positions the file on logical unit u

to record r and sets the associated

variable to record number r.

FORMAT (field specification,...) 8.1 - 8.7

Describes the format in which one or

more records are to be transmitted; a

statement label must be present.

[typ] FUNCTION nam[*n] [([p[,pl...]1)] 6.2.2

typ A data type specifier

nam A symbolic name

*n A data type length specifier

p A symbol name

Begins a function subprogram, indicating
the program name and any dummy argument

names (p). An optional type specification

can be included.

GO TO s 4.1.1

s A label of an executable statement

Transfers control to statement number s.

FORTRAN LANGUAGE SUMMARY.

GO TO (slist)|[,] e 4.1.2

slist A list of one or more statement

labels separated by commas

An integer expression

Transfers control to the statement

specified by the value of e (if e=1,

control transfers to the first statement

label; if e=2, control transfers

to the second statement label, etc.).

If e is less than 1 or greater than the
number of statement labels present, no

transfer takes place.

GO TO v [[,](slist)] 4.1.3

v

slist

An integer variable name

A list of one or more statement
labels separated by commas

Transfers controi to the statément*most
recently associated with v by an ASSIGN

statement.

IF (e) sl,s2,s3 4.2.1

e

S

IF (e) st

st

An expression

A label of an executable statement

Transfers control to statement si

depending on the value of e (if e is

less than zero, control transfers to
sl; 1f e equals zero, control transfers

to s2; if e is greater than zero, control
transfers to s3).

An expression

Any executable statement except a DO or

logical IF

Executes the statement if the logical

expression has a value of true.

FORTRAN LANGUAGE SUMMARY

IF (el) THEN 4.2.3

block

ELSE IF (e2) THEN

block

ELSE

block

END IF

el,e2 Logical expressions

block A series of zero or more FORTRAN

statements.

Defines blocks of statements and

conditionally executes them. If the

logical expression in the IF

THEN statement has a value of true,

the first block is executed and control

transfers to the first executable

statement after the END IF statement.

If the logical expression has a value

of false, the process is repeated

for the next ELSE IF THEN

statement. If all logical

expressions have values of false,

the ELSE block is executed.

If there is no ELSE block,

control transfers to the next

executable statement following END IF.

IMPLICIT typ (al,al...)[,typ(al,al...)]... 5.1

typ A data type specifier

a Either a single letter, or two letters

in alphabetical order separated by

a hyphen (i.e., X-Y)

The element a represents a single (or a

range of) letter(s) whose presence as the

initial letter of a variable specifies

the variable to be of that data type.

INCLUDE 'file specification’ 1.5

'file specification’

A character constant

Includes the source statements in the

compilation from the file specified.

FORTRAN LANGUAGE SUMMARY

OPEN (par[,par]...)

par

key

value

{

A keyword specification in one of the following
forms:

key

key = value

A keyword, as described below.

Depends on the keyword, as described

below.

Keyword

ACCESS

ASSOCIATEVARIABLE

BLOCKSIZE

BUFFERCOUNT

CARRIAGECONTROL

DISPOSE}
DISP

ERR

EXTENDSIZE

FORM

INITIALSIZE

MAXREC

NAME

NOSPANBLOCKS

ORGANIZATION

R&\DONLY
RECORDSIZE

RECORDTYPE

SHARED

TYPE

UNIT

USEROPEN

Values

'SEQUENTIAL'

'DIRECT'

'APPEND'

v

e

e

'FORTRAN'

'LIST'

'NONE'

'SAVE' or

'PRINT'

'DELETE"

s

e

'FORMATTED'

'UNFORMATTED'

e

e

c

'SEQUENTIAL"'

'RELATIVE'

'KEEP'

e

'FIXED'

'VARIABLE'

' SEGMENTED'

'OLD’

'NEW'

'SCRATCH'

' UNKNOWN'

e

p

A character expression, numeric array

name, numeric variable name, numeric array
element name, or Hollerith constant

A numeric expression

A program unit name

A statement label

An integer variable name

Opens a file on the specified logical unit

according to the parameters specified by
the keywords.

FORTRAN LANGUAGE SUMMARY

PARAMETER p=c [,p=c]... 5.8

A symbolic name

A constant or compile-time constant expression

Defines a symbolic name for a constant.

PAUSE [disp] 4.7

disp A decimal digit string containing 1 to 5
digits or a character constant

Suspends program execution and prints the
display, if one is specified.

PRINT See WRITE, Formatted Sequential 7.2.2
See WRITE, List-Directed 7.3.2

PROGRAM nam 5.9

nam A symbolic name.

Specifies a name for the main program.

READ (u,f[,END=s][,ERR=s])[list] 7.2.1

READ f[,list]

ACCEPT f[,list] .
u An integer expression

f

s

list

A format specifier

A label of an executable statement

An I/0 list

Reads one or more logical records from

unit u and assigns values to the elements

in the list. The records are converted

according to the format specifier (f).

FORTRAN LANGUAGE SUMMARY

READ (u'r,f[,ERR=s])[list] 7.5.1

u An integer expression

r An integer expression

£ A format specifier

s A label of an executable statement

list An I/0 list

Reads record r from unit u and assigns

values to the elements in the list.

The record is converted according to f.

READ (u[,END=s] [,ERR=s]) [1list] 7.4.1

u An integer expression

s A label of an executable statement

list An I/0 list

Reads one unformatted record from

unit u, and assigns values to the

elements in the list.

READ(u'r [,ERR=s]) [list] 7.6.1

u An integer expression

r An integer expression

s A label of an executable statement

list An I/0 list

Reads record r from unit u, and assigns

values to the elements in the list.

"FORTRAN LANGUAGE SUMMARY

READ (u,*[,END=s][,ERR=s])list 7.3.1

READ *,list

ACCEPT *,list

RETURN [i]

REWI

STOP [displ

u

*

S

list

ND u

u

disp

An integer expression

Denotes list-directed formatting

A label of an executable statement

An I/0 list

Reads one or more logical records

from unit u and assigns values to

the elements in the list. The

records are converted according to the

data type of the list element.

4.6

Returns control to the calling program
from the current subprogram. The optional

argument is an integer value that
indicates which alternate return

is to be taken.

9.3

An integer expression

Repositions logical unit u to the
beginning of the currently opened file.

A decimal digit string containing 1 to 5

digits or a character constant

Terminates program execution and prints

the display, if one is specified.

SUBROUTINE nam{ ([p[,p]l...])] 6.2.3

TYPE

nam

p

A symbolic name

A symbolic name

Begins a subroutine subprogram, indicating

the program name and any dummy argument

names (p).

See WRITE, Formatted Sequential 7.2.2

See WRITE, List-Directed 7.3.2

FORTRAN LANGUAGE SUMMARY

Type Declaration 5.2

typ vi,v]...

typ One of the following data type specifiers:

BYTE

LOGICAL

LOGICAL*1

LOGICAL*2

LOGICAL*4

INTEGER

INTEGER*2

INTEGER*4

REAL

REAL*4

REAL*8

DOUBLE PRECISION

COMPLEX

COMPLEX*8

CHARACTER*1len

CHARACTER®*(*)

A variable name, array name,

function or function entry name, or

an array declarator. The name can

optionally be followed by a data

type length specifier (*n).

For character entities, the length

specifier can be *len or *(¥*),.

The symbolic names (v) are assigned the

specified data type.

VIRTUAL a{(d)[,a(d)]... 5.3

Equivalent to the DIMENSION statement.

WRITE (u,f[,ERR=s])[1list] 7.2.2

PRINT f[,list]

TYPE f£f[,list]

list

An integer expression

A format specifier

A label of an executable statement

An I/0 list

Writes one or more logical records to unit

u, containing the values of the elements

in the list. The records are converted

according to f.

FORTRAN LANGUAGE SUMMARY

WRITE (u'r,f[,ERR=s]) [list] 7.5.2

u An integer expression

r An integer expression

f A format specifier

s A label of an executable statement

list An I/0 list

Writes the values of the elements of the

list to record r on unit u. The record is

converted according to £.

WRITE (ul[,ERR=s])[list] 7.4.2

u An integer expression

s A label of an executable statement label

list An I/0 list

Writes one unformatted record to unit u
containing the values of the elements in
the list.

WRITE (u'r[,ERR=s]) [list] 7.6.2

u An integer expression

r An integer expression

S A label of an executable statement label

list An I/0 list

Writes record r to unit u containing the

values of the elements in the list.

FORTRAN LANGUAGE SUMMARY

WRITE (u,*[,ERR=s])1list 7.3.2

PRINT *,list

TYPE *,list

u An integer expression

* Denotes list-directed formatting

s A label of an executable statement

list An I/0 list

Writes one or more logical records to unit

u containing the values of the elements in

the list. The records are converted

according to the data type of the list

aelement.

B.3 LIBRARY FUNCTIONS

Table B-1 lists the VAX-11 FORTRAN IV-PLUS generic functions and

processor-defined functions (listed in the column headed "PDF Name").

Superscripts in the table refer to notes, which follow the table.

FORTRAN LANGUAGE SUMMARY

Table B-1 Generic and Processor-Defined Functions

Number of | Generic | PDF Type of Type of

Functions Arguments | Name | Name Argument Result

Square Root’ 1 SQRT | SQRT Real Real
DSQRT Double Double

al” CSQRT Complex Complex

Natural Logarithm? 1 LOG ALOG Real Real

DLOG Double Double

log. a CLOG Complex Complex

Common Logarithm? 1 LOG10 | ALOG10 | Real Real

DLOG10 | Double Double

logyea

Exponential 1 EXP EXP Real Real

e? DEXP Double Double
CEXP Complex Complex

Sine® 1 SIN SIN Real Real
DSIN Double Double

» Sina CSIN Complex Complex

Cosine® 1 CcOS coS Real Real
DCOS Double Double

Cos a CCOS Complex Complex

Tangent? 1 TAN TAN Real Real
DTAN Double Double

Tana

Arc Sine*S 1 ASIN ASIN Real Real
DASIN Double Double

Arc Sin a

Arc Cosine*® 1 ACOS | ACOS Real Real
DACOS Double Double

Arc Cos a

Arc Tangent’ 1 ATAN | ATAN Real Real
DATAN Double Double

Arc Tana

FORTRAN LANGUAGE SUMMARY

Table B-1 (Cont.) Generic and Processor-Defined Functions

Number of | Generic | PDF Type of Type of

Functions Arguments; Name | Name Argument Result

Arc TangentTM$ 2 ATAN2 | ATAN2 Real Real
DATAN2 | Double Double

Arc Tan a,/a;

Hyperbolic Sine 1 SINH SINH Real Real
DSINH Double Double

Sinh a

Hyperbolic Cosine 1 COSH COSH Real Real
DCOSH Double Double

Cosh a

Hyperbolic Tangent 1 TANH | TANH Real Real
DTANH Double Double

Tanh a

Absolute value’ 1 ABS ABS Real Real
DABS Double Double

lal CABS Complex Real

HHABS Integer*2 Integer*2

JIABS Integer*4 Integer*4

N IABS 1HABS Integer*2 Integer*2

JIABS Integer*4 Integer*4

Truncation® 1 INT HNT Real Integer*2
JINT Real Integer*4

[a] IIDINT Double Integer*2
JIDINT Double integer*4

IDINT | HIDINT Double Integer*2

JIDINT Double Integer*4

AINT AINT Real Real

DINT Double Double

Nearest Integer® 1 NINT ININT Real Integer*2

JNINT Real Integer*4

[a+.5*sign(a)] IIDNNT Double Integer*2

JIDNNT Double Integer*4

IDNINT| IIDNNT Double integer*2

JIDNNT Double Integer*4

ANINT | ANINT Real Real

DNINT Double Double

FORTRAN LANGUAGE SUMMARY

Table B-1 (Cont.) Generic and Processor-Defined Functions

Number of | Generic | PDF Type of Type of

Functions Arguments | Name |Name Argument Result

Fix® 1 IFIX HFIX Real Integer*2

JIFIX Real Integer*4

(real-to-integer conversion)

Float’ 1 FLOAT {FLOATI Integer*2 Real
FLOATJ Integer*4 Real

(integer-to-real conversion)

Double Precision Float® 1 DFLOAT{DFLOTI Integer*2 Double

DFLOTJ Integer*4 Double

(integer-to-double conversion)

Conversion to® Single 1 SNGL — Real Real

Precision SNGL Double Real

FLOATI Integer*2 Real

FLOATJ | Integer*4 Real

Conversion to? 1 DBLE |DBLE Real Double

Double Precision - Double Double

DFLOTI Integer*2 Double

DFLOTJ | Integer*4 Double

Real Part of Complex 1 - REAL Complex Real

Imaginary Part of Complex 1 — AIMAG Complex Real

Complex From Two Reals 2 - CMPLX Real Complex

Complex Conjugate 1 - CONJG Complex Complex

(if a=(X,Y)

CONJG (a)=(X,-Y)

Double product of Reals 2 - DPROD Real Double

a; *a,

FORTRAN LANGUAGE SUMMARY

Table B-1 (Cont.) Generic and Processor-Defined Functions

Number of | Generic | PDF Type of Type of

Functions Arguments | Name |Name Argument Result

Maximum n MAX AMAX1 Real Real
DMAX1 Double Double

max{a, ,a;,...a,) IMAXO Integer*2 Integer*2
JMAXO0 integer*4 Integer*4

(returns the maximum value MAX0 |IMAXO Integer*2 Integer*2

from among the argument JMAXO Integer*4 Integer*4

list; there must be at least

two arguments) MAX1 |IMAX1 Real Integer*2
JMAX1 Real Integer*4

AMAXO |AIMAXO | Integer*2 Real

AJMAXO0 | Integer*4 Real

Minimum n MIN AMINT1 Real Real
DMIN1 Double Double

minf{a, ,az, - - .an) IMINO integer*2 Integer*2
JMINO Integer*4 Integer*4

(returns the minimum value MINO IMINO Integer*2 Integer*2

among the argument list; JMINO Integer*4 Integer*4

there must be at least two

arguments) MIN1 IMIN1 Real Integer*2
JMIN1 Real Integer*4

AMINO | AIMINO Integer*2 Real

AJMINO Integer*4 Real

Positive Difference 2 DIM DIM Real Real
DDIM Double Double

a, —(min(a, ,a,)) {IDIM Integer*2 Integer*2
JIDIM Integer*4 Integer*4

(returns the first argument IDIM HDIM Integer*2 Integer*2

minus the minimum of the JIDIM integer*4 integer*4

two arguments)

Remainder 2 MOD AMOD Real Real
DMOD Double ‘Double

a, —a, *[a, /a,] iIMOD Integer*2 Integer*2

(returns the remainder JMOD Integer*4 Integer*4

when the first argument

is divided by the second)

Transfer of Sign 2 SIGN SIGN Real Real
DSIGN Double Double

la,|*Sign a, IISIGN Integer*2 Integer*2
JISIGN Integer*4 Integer*4

ISIGN | HSIGN Integer*2 Integer*2

JISIGN Integer*4 Integer*4

FORTRAN LANGUAGE SUMMARY

Table B-1 (Cont.) Generic and Processor-Defined Functions

. Number of | Generic| PDF Type of Type of
Functions Arguments| Name | Name Argument Result

Bitwise AND 2 IAND IIAND Integer*2 Integer*2
(performs a legical AND on JIAND Integer*4 Integer*4
corresponding bits) (

Bitwise OR 2 IOR IHHOR Integer*2 Integer*2
(performs an inclusive OR on JIOR integer*4 Integer*4
corresponding bits)

Bitwise Exclusive OR 2 IEOR HHEOR Integer*2 Integer*2
(performs an exclusive OR on JIEOR Integer*4 Integer*4
corresponding bits)

Bitwise Complement 1 NOT INOT Integer*2 Integer*2
(complements each bit) JNOT Integer*4 Integer*4

:Bitwise Shift 2 ISHFT | ISHFT Integer*2 Integer*2

JISHFT Integer*4 Integer*4
(a; logically shifted left

a, bits)

Random number!® 1 - RAN Integer*4 Real
(returns the next number

from a sequence of pseudo-

random numbers of uniform

distribution over the range

Oto 1)

Length!! 1 - LEN Character Integer*4

(returns length of the

character expression)

Index*! 2 - INDEX Character Integer*4

(returns the position of the

substring c, in the character

expression ¢,)

Character'? 1 - CHAR Logical* 1 Character

Integer*2
(returns a character that has Integer*4
the ASCII value specified

by the argument)

[3

FORTRAN LANGUAGE SUMMARY

Table B-1 (Cont.) Generic and Processor-Defined Functions

Number of | Generic | PDF Type of Type of

Functions Arguments| Name | Name Argument Result

ASCII Value® 1 - ICHAR Character Integer*4

(returns the ASCII value of

the argument; the argument

must be a character expres-

sion that has a length of 1)

Notes for Table B-1

! The argument of SQRT and DSQRT must be greater than or equal to zero. The result of CSQRT

is the principal value with the real part greater than or equal to zero. When the real part is zero, the

result is the principal value with the imaginary part greater than or equal to zero.

2 The argument of ALOG, DLOG, ALOG10, and DLOG10 must be greater than zero. The argument

of CLOG must not be (0., 0.).

3 The argument of SIN, DSIN, COS, DCOS, DCOS, TAN, and DTAN must be in radians. The argu-

ment is treated modulo 2*pi.

4 The absolute value of the argument of ASIN, DASIN, ACOS, and DACOS must be less than or

equal to 1.

5 The result of ASIN, DASIN, ACOS, DACOS, ATAN, DATAN, ATAN2, and DATAN2 is in

radians.

¢ The result of ATAN2 and DATAN2 is zero or positive when a, is less than or equal to zero. The

result is undefined if both arguments are zero.

7 The absolute value of a complex number, (X,Y), is the real value:

(X2 +Y2)1 2

8 [x] is defined as the largest integer whose magnitude does not exceed the magnitude of x and

whose sign is the same as that of x. For example [5.7] equals 5. and [-5.7] equals -5.

% Functions that cause conversion of one data type to another type provide the same effect as the

implied conversion in assignment statements.The function SNGL with a real argument and the func-

tion DBLE with a double precision argument return the value of the argument without conversion.

10 The argument for this function must be an integer variable or integer array element. The

argument should initially be set to 0. The RAN function stores a value in the argument that

it later uses to calculate the next random number. Resetting the argument to O regenerates the

sequence. Alternate starting values generate different random number sequences.

11 See Cnapter 6 for additional information on character functions.

B-23

A

A field descriptor, 8-10

ACCEPT statement, 7-1, 7-3,

7-4, 7-7, 7-11, B-2,

B-12, B-14

ACCESS keyword, 9-2, 9-6

Actual argument, 4-18, 6-1

character constants as, 6-4

Hollerith constants as, 6-4

Actual, dummy arguments,

agreement between, 6-1

Adjustable arrays, 2-17, 6-2

Agreement between actual,

dummy arguments, 6-1

Alternate return, 4-19, 6-14

Alternate return arguments,

6-5

Argument,

actual, 4-18, 6-1

dummy, 4-18, 6-1

Argument list, 4-18

Argument list built-in

functions, 6-5

Arguments,

character constants as

actual, 6-4

passed length character,

6-3, 6-10, 6-11

subprogram, 6-1

Arguments, actual,

Hollerith constants as,

6-4

Arguments with ENTRY state-

ment,

dummy, 6-14

Arithmetic assignment

statement, 3-1, B-3

Arithmetic expression, 2-18

data type of, 2-21

Arithmetic IF statement,

4-4, 4-12

Arithmetic operators, 2-18

Arithmetic statement function,

6-1, 6-7, 6-8, B-3

Array, 2-1, 2-13

assigning values to an,

5-1, 5-16

Array declarators, 2-14

Array dimensions, 5-5

Array element,

assigning values to an,

5-1, 5-16

Array equivalence, 5-8

INDEX

Array reference without

subscripts, 2-16

Array storage, 2-15

Arrays,

adjustable, 2-17, 6-2

data type of, 2-16

format specifications in,

8-20

ASCII character set, A-2

ASSIGN statement, 3-5

Assigned GO TO statement, 4-3

Assigning symbolic names to a

constant, 5-1, 5-18

Assigning symbolic names to

main program, 5-1, 5-19

Assigning values to an array,

5-1

Assigning values to an array

element, 5-1, 5-16

Assigning values to a

variable, 5-1, 5-16

Assignment statement, 3-1, B-2

character, 3-4

conversion of, 3-2

logical, 3-3

ASSOCIATEVARIABLE keyword,

9-2, 9-6

Asterisk, 5-4, 5-14, 6-14,

6-17, 7-2, 7-11

Auxiliary I/O statements, 9-1

BACKSPACE statement, 9-1,

9-15, B-3

Binary operators, 2-19

Block, common, 2-2, 5-6

named, 5-6

unnamed, 5-6

Block data, 2-2

BLOCK DATA statement, 5-1,

5-20, 6-12, B-3

Block IF,

nested, 4-10

Block IF statement, 4-5, 4-8,

4-12

Blocks,

statement, 4-8

BLOCKSIZE keyword, 9-2, 9-7

BUFFERCOUNT keyword, 9-3, 9-

Built-in functions, 6-5

=

Index-1

C

CALL statement, 4-1, 4-18,

5-14, 6-7, B-3

Carriage control, 8-2, 8-13,

8-18, 9-7

CARRIAGECONTROL keyword,

9-2, 9-7

CHAR function, 6-22

Character arguments,

passed length, 6-3, 6-10

6-11

Character assignment state-

ment, 3-4

Character constant, 2-10

Character constant field

, descriptor, 7-7, 8-11

Character constant in

Hollerith field

descriptor, 8-2

Character constants as

actual arguments, 6-4

Character data,

transferring, 8-10

Character expression, 2-22

Character field descriptor,

8-2

Character functions, 6-10

CHARACTER FUNCTION statement,

6-10

Character library functions,

6-21

Character set, 1-4, A-1, A-2

ASCII, A-2

Character substrings, 2-17

Character type declaration

statements, 5-4

CLOSE statement, 9-1, 9-13,

B-4

Colon descriptor, 8-14

Comments, 1-3

indicator, 1-7

Common block, 2-2, 5-6

defining, 5-1, 5-6, 5-20

named, 5-6

unnamed, 5-6

COMMON statement, 2-16, 5-1,

5-6, 5-13, B-4

Complex constant, 2-7

Complex data editing, 8-14

Complex field descriptor, 8-2

Computed GO TO statement,

4-2

Connecting files to logical

units, 9-2

Constant, 2-1, 2-4

assigning symbolic names

to a, 5-1, 5-18

character, 2-10

(Cont).

Constant (Cont.),

complex, 2-7

double precision, 2-7

hexadecimal, 2-8

integer, 2-5

logical, 2-10

octal, 2-8

real, 2-6 ~

Constant field descriptor,

character, 7-7, 8-11

Constant, Hollerith, 2-11,

2-17

Constant in Hollerith field

descriptor,

character, 8-2

Constants as actual arguments,

character, 6-4

Constants, Hollerith,

as actual arguments, 6-4

Continuation field, 1-7

CONTINUE statement, 4-1, 4-17,

B-4

Control statements, 4-1

Conversion of assignment

statement, 3-2

Creating a file, 9-2

D

D field descriptor, 8-7

Data editing,

complex, 8-14

DATA statement, 2-16, 5-l,

5-16, B~-4

Data transfer, 7-1

character, 8-10

decimal, 8-2

double precision, 8-5 to 8-8

hexadecimal, 8-4

Hollerith, 8-10

logical, 8-9

octal, 8-3

real, 8-5 to 8-8

to format specification,

7-7, -8-11

Data type, 2-1, 2-3

Data type by implication, 2-13

Data type declaration, 2-12

Data type of arithmetic

expression, 2-21

Data type of arrays, 2-16

Data type rank, 2-21

Debugging statement, 1-7

Decimal values,

transferring, 8-2

Declarators, array, 2-14

DECODE statement, 7-1, 7-22,

8-1, B-5

Index-2

INDEX (Cont.)

Default field descriptors,

8-18

DEFINE FILE statement, 9-1,

9-18, B-5

Defining common blocks, 5-1,

5-6, 5-20

$DESCR function, 6-6

Descriptor,

colon, 8-14

dollar sign, 8-13

Dimension bound, 2-14

Dimension declarator, 2-14

DIMENSION statement, 5-1,

5-5, B-5 :

Dimensions, array, 5-5

Direct access file,

unformatted, 92-1, 9-18

Direct access 1/0, 7-1, 7-2,

9~-2, 9-9

formatted, 7-1, 7-18

unformatted, 7-1, 7-20

Direct access record numbers,

7-2, 9-2, 9-6

Display, 4-21, 4-22

DISPOSE keyword, 9-2, 9-7

DO iteration control, 4-13

DO list,

implied, 7-3, 7-4

DO loop extended range, 4-15

DO loops,

nested, 4-14

DO statement, 4-1, 4-12, B-6

Dollar sign descriptor, 8-13

Double precision constant,

2-7

Double precision field

descriptor, 8-2

Double precision values,

transferring, 8-5, 8-6, 8-7,

8-8

Dummy argument, 4-18, 6-1

Dummy arguments with ENTRY

statement, 6-14

E field descriptor, 8-6

Editing,

complex data, 8-14

Editing field descriptor;

8-2, 8-12

ELSE statement, 4-1, 4-5, B-6

ELSE IF THEN statement, 4-1,

4-5, B~-6

ENCODE statement, 7-1, 7-22,

8-1, B-6

END statement, 4-1, 4-12,

4-23, B-7

ENDFILE statement, 7-6, 9-1,

9-17, B-7

END IF statement, 4-1, 4-5,

B-7

End-of-file, 7-6

transfer on, 7-6, B-7

END=, 7-6, 7-7, 7-11, 9-1,

B-7

ENTRY in subroutines, 6-16

ENTRY statement, 2-17, 6-7,

6-12, 6-14, B-7

dummy arguments with, 6-14

ENTRY statement in functions

6-15

Equivalence,

array, 5-8

substring, 5-10

EQUIVALENCE statement, 2-17,

5-1, 5-8, B-7

ERR keyword, 9-3, 9-8

ERR=, 7-6, 7-7, 7-9, 7-11,

B-7

Error, I1I/0,

transfer on, 7-6, B-7

Evaluation,

order of, 2-20, 2-25

Exponential form, 8-6, 8-7

Exponentiation, 2-19

Expression, 2-1, 2-18

arithmetic, 2-18

character, 2-22

data type of arithmetic,

2-21

logical, 2-24

relational, 2-23

variable format, 8-17

Expression operators, B-1

Extended range,

DO loop, 4-15

EXTENDSIZE keyword, 9-2, 9-8

External field separators,

8~-20

External procedure, 4-18, 5-1,

5-14

EXTERNAL statement, 5-1, 5-14,

6-14, 6-17, B-8

F'

F field descriptor, 8-5

Field,

continuation, 1-7

Field descriptor, 8-2

A, 8-10

character, 8-2

character constant, 7-7,

8-11

character constant in

Hollerith, 8-2

complex, 8-2

D, 8-7

default, 8-18

Index-3

INDEX

Field descriptor (Cont.),

double precision, 8-2

E, 8-6

editing, 8-2, 8-12

F, 8-5

G, 8-8

H, 8-11

Hollerith, 8-2, 8-11

I, 8-2

integer, 8-2

L, 8-9

logical, 8-2

o, 8-3

Q, 8-13

real, 8-2

T, 8-12

X, 8-12

Z, 8-4

Field separators,

external, 8-20

File,

creating a, 9-2

unformatted direct access,

9-1, 9-18

File access,

simultaneous, 9-

File allocation, 9

9-9

File positioning, 9-1, 9-14,

9-15, 9-16

Files,

connecting to logical units,

9-2

FIND statement, 9-1, 9-16, B-8

FORM keyword, 9-2, 9-8

Format,

run-time, 8-2, 8-21

Format codes, 8~25

Format of data item, 8-2

Format expressions,

variable, 8-17

Format specification, 8-1

transferring data to, 7-7,

8-11

Format specification

separators, 8-19

Format specifications in

arrays, 8-20

Format specifiers, 7-2, 7-7,

7-9

FORMAT statement, 7-2, 7-7,

8-1, B-8

repeat count in, 8-16

rules for, 8-23

Formatted direct access 1/0,

7-1, 7-18 ,

Formatted 1/0, 7-1, 7-2, 8-1

Formatted sequential I/0,

7-1, 7-7

Formatting FORTRAN lines,

1-5

3, 9-12

-2, 9-8,

(Cont.)

FORTRAN library functions,

6-1, 6-11, 6-17, B-17

Function, 2-1, 4-19, 6-1,

6-7, 6-9

argument list built-in,

6-5

arithmetic statement, 6-1,

6-7, 6-8, B-3

CHAR, 6-22

character, 6-10

character library, 6-21

$DESCR, 6-6

ENTRY statement in, 6-15

FORTRAN library, 6-1, 6-11,

6-17, B-17

generic, 6-17, 6-19, B-17

ICHAR, 6-22

INDEX, 6-21

LEN, 6-21

$LOC, 6-7

numeric, 6-10

processor-defined, 2-2,

6-17, 6-19, B-17

$REF, 6-6

$VAL, 6-6

Function reference, 6-7, 6-10

FUNCTION statement, 2-17, 6-7

6-9, 6-10, 6-12, B-8

G

G field descriptor, 8-8

Generic functions, 6-17,

6-19, B-17

GO TO statement, 4-1, 4-2,

4-12, B-9

assigned, 4-3

computed, 4-2

unconditional, 4-2

H

H field descriptor, 8-11

Hexadecimal constant, 2-8

Hexadecimal values,

transferring, 8-4

Hollerith constant, 2-11, 7-7

as actual arguments,

6-4

Hollerith data,

transferring, 8-10

Hollerith field descriptor,

8-2, 8-11

character constant in, 8-2

I field descriptor, 8-2

ICHAR function, 6-22

IF,

nested block, 4-10

Index-4

IF statement, 4-1, 4-4, B-9

arithmetic, 4-4, 4-12

logical, 4-5

IF THEN statement, 4-1, 4-5,

B-10

IMPLICIT statement, 5-1, 5-2,

6-17, B-10 s

Implied DO list, 7-3, 7-4

INCLUDE statement, 1-9, B-10

INDEX function, 6-21

INITIALSIZE keyword, 9-2,

9-9

Input/output lists, 7-3, 7-7,

7-9, 7-11, 7-16, 8-22

Input/output statements,

2-17, 7-1

Integer constant, 2-5

Integer field descriptor, 8-2

Internal 1/0, 7-1, 7-22

I1/0,

direct access,

unformatted, 7-1, 7-20

formatted, 7-1, 7-2, 8-1

formatted direct access,

7-1, 7-18

formatted sequential, 7-1,

7-7

internal, 7-1, 7-22

list-directed sequential,

7-1, 7-11

unformatted, 7-1, 7-3

unformatted sequential,

7-1, 7-16

I/0 error,

transfer on, 7-6, B-7

I/0 statements,

auxiliary, 9-1

K

Keywords, OPEN statement,

9-2, 9-4 ‘

ACCESS, 9-2, 9-6

ASSOCIATEVARIABLE, 9-2, 9-6

BLOCKSIZE, 9-2, 9-7

BUFFERCOUNT, 9-3, 9-7

CARRIAGECONTROL, 9-2, 9-7

DISPOSE, 9-2, 9-7

ERR, 9-3, 9-8

EXTENDSIZE, 9-2, 9-8

FORM, 9-2, 9-8

INITIALSIZE, 9-2, 9-9

MAXREC, 9-2, 9-9

NAME, 9-2, 9-9

NOSPANBLOCKS, 9-3, 9-10

ORGANIZATION, 9-2, 9-10

READONLY, 9-2, 9-10

RECORDSIZE,-.9-2, 9-10

RECORDTYPE, 9-2, 9-11

INDEX (Cont.)

Keywords, OPEN statement

(Cont.),

SHARED, 9-3, 9-12

TYPE, 9-2, 9-12

UNIT, 9-2, 9-12

USEROPEN, 9-3, 9-12

L

L field descriptor, 8-9

Label field, statement, 1-7.

LEN function, 6-21

Library functions,

character, 6-21

FORTRAN, 6-1, 6-11, 6-17,

B-17

List, argument, 4-18

List-directed sequential I/O,

7-1, 7-11

Lists,

input/output, 7-3, 7-7, 7-9,

7-11, 7-16, 8-22

$LOC function, 6-7

Logical assignment statement,

3-3

Logical constant, 2-10

Logical data,

transferring, 8-9

Logical expression, 2-24:

Logical field descriptor, 8-2

Logical IF statement, 4-5

Logical operators, 2-25

Logical unit, 7-1

connecting files to, 9-2

Logical unit numbers, 7-2

Main program,

assigning symbolic names

to, 5-1, 5-19

MAXREC keyword, 9-2, 9-9

Name,

symbolic, 2-1, 2-2

NAME keyword, 9-2, 9-9

Named common block, 5-6

Nested block IF, 4-10

Nested DO loops, 4-14

NOSPANBLOCKS keyword, 9-3

9-10

Numeric functions, 6-10

Numeric type declaration

statements, 5-3

Index-5

(o)

O field descriptor, 8-3

Octal constant, 2-8

Octal values,

transferring, 8-3

OPEN statement, 7-2, 9-1,

B-11

keywords, 9-2, 9-4

Operators,

arithmetic, 2-18

binary, 2-19

expression, B-1l

logical, 2-25

relational, 2-23

unary, 2-19

Order of evaluation, 2-20,

2-25

9-10

P

PARAMETER statement, 5-1,

5-18, B-12

Parenthages, 2~20

Passed length character

arguments, 6-3, 6-10,

6-11

Passed length specification,

5-4

PAUSE statement, 4-1, 4-21,

B-12

Positional specifier, 8-12

PRINT statement, 7-1, 7-3,

7-8, 7-13, B-12, B-15,

B-17

Procedure,

external, 4-18, 5-1, 5-14

Processor-defined function,

2-2, 6-17, 6-19, B-17

PROGRAM statement, 5-1, 5-19,

B-12 ’

Q

Q field descriptor, 8-13

Radix~-50, A-2

READ statement, 7-1, 7-3,

7-4, 7-6, 7-7, 7-11,

7-16, 7-18, 7-20, B-12

READONLY keyword, 9-2, 9-10

Real constant, 2-6

Real field descriptor, 8-2

INDEX (Cont.)

Real values,

transferring, 8-5, 8-6, 8-7,

8-8

Record numbers,

direct access, 7-2, 9-2, 9-6

Records, 7-3

RECORDSIZE keyword, 9-2, 9-10

RECORDTYPE keyword, 9-2, 9-11

$REF function, 6-6

Relational expression, 2-23

Relational operators, 2-23

Repeat count in FORMAT

statements, 8-16

Return,

alternate, 4-19, 6-14

Return arguments, alternate,

6-5

RETURN statement, 4-1, 4-12,

4-19, 6-7, 6~-9, 6-10,

B-14

REWIND statement, 9-1, 9-14,

B-14

Rules for FORMAT statements,

8-23

Run-time format, 8-2, 8-21

S

Scale factor, 8-14

Sequence number, 1-8

Sequential I/0,

formatted, 7-1, 7-7

list-directed, 7-1, 7-11
unformatted, 7-1, 7-16

SHARED keyword, 9-3, 9-12

Simultaneous file access,

9-2, 9-12

Specification,

format, 8-1

passed length, 5-4

Specification separators,

format, 8-19

Specification statements,

5-1

Specifications,

format,

in arrays, 8-20

Specifier,

format, 7-2, 7-7, 7-9

positional, 8-12

tabulation, 8-12

Statement,

ACCEPT, 7-1, 7-3, 7-4, 7-7,

7-11, B-2, B-12, B-14

arithmetic IF, 4-4, 4-12

ASSIGN, 3-5

assignment, 3-1, B-2

auxiliary 1I/0, 9-1

BACKSPACE, 9-1, 9-15, B-3

Index-6

Statement (Cont.),

BLOCK DATA, 5-1,

B-3

block IF, 4-5, 4-8,

CALL, 4-1, 4-18, 5-14,

B-3

character assignment, 3-4

CHARACTER FUNCTION, 6-10

CLOSE, 9-1, 9-13, B-4

COMMON, 2-16, 5-1, 5-6,

5-13, B-4

computed GO TO, 4-2

CONTINUE, 4-1, 4-17, B-4

DATA, 2-16, 5-1, 5-16, B-4

debugging, 1-7

5-20, 6-12

4-12

6-7 ’

DECODE, 7-1, 7-22, 8-1,

B-5

DEFINE FILE, 9-1, 9-18,

B-5

DIMENSION, 5-1, 5-5, B-5

DO, 4-1, 4-12, B-6

ELSE, 4-1, 4-5, B-6

ELSE IF THEN, 4-1, 4-5, B-6

ENCODE, 7-1, 7-22, 8-1, B-6

END,

ENDFILE statement,

9-1, 9-17, B-7

END IF, 4-1, 4-5, B-7

ENTRY, 2-17, 6-7, 6-12,

6-14, B-7

in functions, 6-15

EQUIVALENCE, 2-17, 5-1, 5-8

B-7

EXTERNAL, 5-1, 5-14,

6-17, B-8

FIND, 9-1, 9-16, B-8

FORMAT, 7-2, 7-7, 8-1, B-8

FUNCTION, 2-17, 6-7, 6-9,

6-10, 6-12, B-8

GO TO, 4-1, 4-2,

IF, 4-1, 4-4, B-9

IF THEN, 4-1, 4-5, B-10

IMPLICIT, 5~1, 5-2, 6-17,

B-10

INCLUDE, 1-9, B-10

logical assignment, 3-3

logical IF, 4-5

OPEN, 7-2, 9-1, B-1l1

PARAMETER, 5-1, 5-18, B-12

PAUSE, 4-1, 4-21, B-12

PRINT, 7-1, 7-3, 7-8,

B-12, B-15, B-17

PROGRAM, 5-1, 5-19, B-12

READ, 7-1, 7-3, 7-4, 7-6,

7-7, 7-11, 7-16, 7-18,

7-20, B-12

RETURN, 4-1, 4-12, 4-19,

6-7, 6-9, 6-10, B-14

REWIND, 9-1, 9-14, B-14

sTOP, 4-1, 4-22, B-14

4-1, 4-12, 4-23, B-7

7-6,

6-14,

4-12, B-9

7-13,

INDEX (Cont.)

Statement (Cont.),

' SUBROUTINE, 2-17, 6-7, 6-12,

B-14

TYPE, 7-1, 7-3, 7-8, 7-13,

B-14

type declaration, 5-1, 5-3,

B-15

VIRTUAL, 5-5, B-15

WRITE, 7-1, 7-3, 7-6, 7-8,

7-13, 7-17, 7-19, 7-21,

B-15

Statement blocks, 4-8

Statement keywords,

Statement label field, 1-7

Statements,

character type declaration,

5-4

control, 4-1

conversion of assignment,

3-2

FORMAT,

repeat count in, 8-16

input/output, 2-17, 7-1

numeric type declaration,

5-3

rules for FORMAT, 8-23

specification, 5-1

STOP statement, 4-1, 4-22,

B-14

Storage,

array, 2-15

Subprogram arguments, 6-1

Subprograms, 6-1

user-written, 6-~7

Subroutine, 2-2, 4-18, 4-19,

6-1, 6-7, 6-12

SUBROUTINE statement, 2-17,

6-7, 6-12, B-14

Subroutines,

ENTRY IN, 6-16

Subscript, 2-15

array reference without,

2-16

Substring equivalence, 5-10

Substrings,

character, 2-17

Symbolic name, 2-1, 2-2

Symbolic names to constants,
assigning, 5-1, 5-18

Symbolic names to main

program,

assigning, 5-1,

4

5-19

T

T field descriptor, 8-12

Tabulation specifier, 8-12

Transfer on end-of-file, 7-6, B-7

Index-7

Transfer on I/0 error, 7-6,

B-7

Transferring character data,

8-10

Transferring data to format

specification, 7-7, 8-11

Transferring decimal values,

8-2

Transferring double precision

values, 8-5, 8-6, 8-7,

8-8

Transferring hexadecimal

values, 8-4

Transferring Hollerith data,

8-10

Transferring logical data,

8-9

Transferring octal wvalues,

8-3

Transferring real values,

8-5, 8-6, 8-7, 8-8

Type declaration, 2-16

Type declaration statement,

character, 5-4

numeric, 5-3

TYPE keyword,

TYPE statement,

7-13, B-14

9-2, 9-12

7-1, 7-3, 7-8

U

Unary operators, 2-19

Unconditional GO TO state-

ment, 4-2

Unformatted direct access

file, 9-1, 9-18

Unformatted direct access

I/0, 7-1, 7-20

INDEX

[4

(Cont.)

Unformatted 1/0, 7-1, 7-3

Unformatted sequential I/0,

7-1, 7-16

Unit,

logical, 7-1

UNIT keyword,

Unit numbers,

logical, 7-2

Unnamed common block, 5-6

USEROPEN keyword, 9-3, 9-12

User-written subprograms,

6-7

9-2, 9-12

'}

$VAL function, 6-6

Variable, 2-1, 2-12

assigning values to a, 5-1,

5-16

Variable format expressions,

8~-17

VIRTUAL statement, 5-5, B-15

w

WRITE statement, 7-1, 7-3,

7-6, 7-8, 7-13, 7-17,

7-19, 7-21, B-15

X

X field descriptor, 8-12

Z

Z field descriptor, 8-4

Index-8

S

S
R

G
A
M
D
S

E
E
S
D

G

G
m

D

W
A
L

A
R

W
U

A
R

G
G

S
A
S

W
e
I

A
R

S
A
N
S

W
E
D

D

W
I
S

M
W

W
E
N
e

M
R

G
m
m

I
S

G
R
S

S
W
E
N

S
G
I
S

M
R

S
I
N
R

s
w
u
s

g
 t

hi
s

li
ne

Pl
ea

se
 c
ut

 a
lo
ng

NOTE:

VAX-11 FORTRAN IV-PLUS

Language Reference Manual

AA~-DQ034A-TE

READER'S COMMENTS

This form is for document comments only. DIGITAL will

use comments submitted on this form at the company's
discretion. Problems with software should be reported

on a Software Performance Report (SPR) form. If you

require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?

Please make suggestions for improvement.

Is there sufficient documentation on associated system programs

required for use of the software described in this manual? If not,

what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Name

Organization

Street

City

[] Assembly language programmer

O

0
0
0
0

Higher-level language programmer

Occasional programmer (experienced)

User with little programming experience

Student programmer

Non-programmer interested in computer concepts and capabilities

Date

State Zip Code

or

Country

Do Not Tear - Fold Here

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS TW/A14

DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

No Postage

Necessary

if Mailed in the

United States

