PDP-11 MACRO-11
Language Reference Manual
AA-V027A-TC

March 1983

This document describes how to use the MACRO-11 relocatable as-
sembler to develop PDP—11 assembly language programs. Although no
prior knowledge of MACRO-11 is required, the user should be familiar
with the PDP-11 processor addressing modes and instruction set. This
manual presents detailed descriptions of MACRO-11’s features, includ-
ing source and command string control of assembly and listing func-
tions, directives for conditional assembly and program sectioning, and
user-defined and system macro libraries. The chapters on operating
procedures previously were found in two separate manuals (the
PDP-11 MACRO-11 Language Reference Manual and the /AS/RSX
MACRO-11 Reference Manual). This manual should be used with a
system-specific user’'s guide as well as a Linker or a Task Builder man-
ual.

- This manual supersedes previous editions, Order Numbers
AA-5075B-TC, published 1980, AA-5075A~TC, published 1977, and
DEC-11-OIMRA-B-D, published 1976.

Operating System: VAX/VMS Version 3
RSTS/E Version 8
RSX-11M Version 4
RSX-11M-PLUS Version 2

Software: MACRO-11 Version 5

To order additional documents from within DIGITAL, contact the Software Distribution
Center, Northboro, Massachusetts 01532.

To order additional documents from outside DIGITAL, refer to the instructions at the back
of this document.

digital equipment corporation - maynard, massachusetts

First Printing, August 1977
Revised, January 1980
Updated, December 1981
Revised, March 1983

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this docu-
ment.

The software described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by DIGITAL or its affiliated companies.

© Digital Equipment Corporation 1977, 1980, 1981, 1983.
All Rights Reserved.

A postage-paid READER’S COMMENTS form is included on the last page of this
document. Your comments will assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

£020020™

DEC MASSBUS UNIBUS
DECmate PDP VAX
DECsystem-10 P/OS -+ VMS
DECSYSTEM-20 Professional VT

DECUS Rainbow Work Processor
DECwriter RSTS

DIBOL RSX

M19400

PREFACE

PART I

CHAPTER

CHAPTER

PART TII

CHAPTER

CHAPTER

CHAPTER

CONTENTS

MACRO-11: ASSEMBLY AND FORMATTING

1 THE MACRO-11 ASSEMBLER
1.1 ASSEMBLY PASS 1

1.2 ASSEMBLY PASS 2

2 SOURCE PROGRAM FORMAT
2.1 PROGRAMMING STANDARDS AND CONVENTIONS
2.2 STATEMENT FORMAT

2.2.1 Label Field

2.2.2 Operator Field

2.2.3 Operand Field

2.2.4 Comment Field

2.3 FORMAT CONTROL

PROGRAMMING IN MACRO-11 ASSEMBLY LANGUAGE

3 SYMBOLS AND EXPRESSIONS

w
.
—

CHARACTER SET
Separating and Delimiting Characters

¥
ft
—

3.1.2 Illegal Characters
3.1.3 Unary and Binary Operators
. MACRO-11 SYMBOLS
2.1 Permanent Symbols
.2.2 User-Defined and Macro Symbols

DIRECT ASSIGNMENT STATEMENTS
REGISTER SYMBOLS

LOCAL SYMBOLS

CURRENT LOCATION COUNTER
NUMBERS

TERMS

EXPRESSIONS

WWwwwwwwwww
. .
WO IS W NN

fi=N

RELOCATION AND LINKING

w

ADDRESSING MODES

REGISTER MODE

REGISTER DEFERRED MODE
AUTOINCREMENT MODE
AUTOINCREMENT DEFERRED MODE
AUTODECREMENT MODE
AUTODECREMENT DEFERRED MODE
INDEX MODE

INDEX DEFERRED MODE
IMMEDIATE MODE

oty oot an
s e e
W oo~ w N -

iii

Page

ix

WWWwWwwwWwwwwww
|
00D N S WWH

[©2 O RO G G V2 IO Y]
1
AYUT WU S S W NN

PART III

CHAPTER

5.10
5.11
5.12
5.13
5.14

MACRO-11

6

L “ s . .
. ¢« s 8 e
U B W N~

.
.

DADAANHIANA NN
. s e e e s . N .
NOBD DD b b b s b b b
. e s s . .
N =

P
W N D WN -

.
]
.
—

(=) Je) E6) Wen IS Siv) ol o) I o) BV) WA NG le) WEe) |
.

B D DWW W W W W W Ww
.

.
N

o) JNe
D P
.
NN
.
—

. o« e
« e

0
BN

DA ND

» e e . »
.
N W N =
.
w

« o .
HOWWOWWYWOOXINNN DD I~I oo,
.

= .

NAAANNANNTIIDIANAN N
.

.
W N =

o}
.

6.10.1
6.10.2

ABSOLUTE MODE

RELATIVE MODE

RELATIVE DEFERRED MODE

BRANCH INSTRUCTION ADDRESSING
USING TRAP INSTRUCTIONS

DIRECTIVES
GENERAL ASSEMBLER DIRECTIVES

LISTING CONTROL DIRECTIVES
.LIST and .NLIST Directives
.TITLE Directive
.SBTTL Directive
.IDENT Directive
.PAGE Directive/Page Ejection
.REM Directive/Begin Remark Lines
FUNCTION DIRECTIVES
.ENABL and .DSABL Directives
Cross—-Reference Directives: .CROSS
and .NOCROSS
DATA STORAGE DIRECTIVES
.BYTE Directive
.WORD Directive
ASCII Conversion Characters
.ASCII Directive
.ASCIZ Directive
.RADS5@ Directive
Temporary Radix-50 Control Operator
.PACKED Directive
RADIX AND NUMERIC CONTROL FACILITIES
Radix Control and Unary Control Operators
.RADIX Directive
Temporary Radix Control Operators
Numeric Directives and Unary Control
Operators
Floating-Point Storage Directives
Temporary Numeric Control Operators:
“C and °F
LOCATION COUNTER CONTROL DIRECTIVES
.EVEN Directive
.0DD Directive
.BLKB and .BLKW Directives
.LIMIT Directive
TERMINATING DIRECTIVE: .END DIRECTIVE
PROGRAM SECTIONING DIRECTIVES
.PSECT Directive
Creating Program Sections
Code or Data Sharing
Memory Allocation Considerations
.ASECT and .CSECT Directives
.SAVE Directive
.RESTORE Directive
SYMBOL CONTROL DIRECTIVES
.GLOBL Directive
.WEAK Directive
CONDITIONAL ASSEMBLY DIRECTIVES
Conditional Assembly Block Directives
Subconditional Assembly Block Directives
Immediate Conditional Assembly Directive
FILE CONTROL DIRECTIVES
.LIBRARY Directive
.INCLUDE Directive

iv

6-36
6-37
6-38
5-38
6-38
6-39
6-40.
65-4¢
5-41
6-45
6-47
6-47
6-48
5-49
6-49
6-51
6-51
6-52
5-53
5-53
5-56
6-59
6-60
6-60
6-61

CHAPTER 7 MACRO DIRECTIVES 7-1
7.1 DEFINING MACROS 7-1
7.1.1 .MACRO Directive 7-1
7.1.2 .ENDM Directive 7-2
7.1.3 .MEXIT Directive 7-3
7.1.4 MACRO Definition Formatting 7-4
7.2 CALLING MACROS 7-4
7.3 ARGUMENTS IN MACRO DEFINITIONS AND MACRO

CALLS 7-4
7.3.1 Macro Nesting 7-46
7.3.2 Special Characters in Macro Arguments 7-7
7.3.3 Passing Numeric Arguments as Symbols 7-7
7.3.4 Number of Arguments in Macro Calls 7-8
7.3.5 Creating Local Symbols Automatically 7-8
7.3.6 Keyword Arguments 7-190
7.3.7 Concatenation of Macro Arguments 7-11
7.4 MACRO ATTRIBUTE DIRECTIVES: .NARG, .NCHR, AND

.NTYPE 7-12
7.4.1 .NARG Directive 7-12
7.4.2 .NCHR Directive 7-13
7.4.3 .NTYPE Directive 7-14
7.5 . ERROR AND .PRINT DIRECTIVES 7-16
7.6 INDEFINITE REPEAT BLOCK DIRECTIVES: .IRP AND

. IRPC 7-17
7.6.1 .IRP Directive 7-17
7.6.2 .IRPC Directive 7-18
7.7 REPEAT BLOCK DIRECTIVE: .REPT, .ENDR 7-20
7.8 MACRO LIBRARY DIRECTIVE: .MCALL 7-20
7.9 MACRO DELETION DIRECTIVE: .MDELETE 7-21

PART IV OPERATING PROCEDURES

CHAPTER 8 IAS/RSX-11M/RSX-11M-PLUS OPERATING PROCEDURES 8-1
8.1 RSX-11IM/RSX-11M-PLUS OPERATING PROCEDURES 8-1
8.1.1 Initiating MACRO-11 Under RSX-11M/

RSX-11M-PLUS 8-2
8.1.1.1 Method 1 - Direct MACRO-11 Call 8-2
8.1.1.2 Method 2 - Single Assembly 8-2
8.1.1.3 Method 3 - Install, Run Immediately, and

Remove On Exit 8-2
8.1.1.4 Method 4 - Using the Indirect Command

Processor

8-3

8.1.2 Default File Specifications 8-3
8.1.3 MCR Command String Format 8-4
8.1.4 DCL Operating Procedures 8-8
8.1.5 MACRO-11 Command String Examples 8-13
8.2 IAS MACRO-11 OPERATING PROCEDURES 8-14
8.2.1 Initiating MACRO-11 Under IAS 8-14
8.2.2 IAS Command String 8-14
8.2.3 IAS Indirect Command Files 8-16
8.2.4 IAS Command String Examples 8-16
8.3 CROSS-REFERENCE PROCESSOR (CREF) 8-17
8.4 IAS/RSX-11M/RSX-11M-PLUS FILE SPECIFICATION 8-19

8.5 MACRO-11 ERROR MESSAGES UNDER IAS/RSX-11M/

RSX-11M-PLUS 8-20

CHAPTER 9 RSTS/RT-11 OPERATING PROCEDURES 9-1

9.1 MACRO-11 UNDER RSTS 9-1

9.1.1 RT-11 Through RSTS 9-1

9.1.2 RSX Through RSTS

9.2 INITTATING MACRO-11 UNDER RT-11

9.3 RT-11 COMMAND STRING

9.4 FILE SPECIFICATION OPTIONS

9.5 CROSS-REFERENCE (CREF) TABLE GENERATION
OPTION

9.5.1 Obtaining a Cross-Reference Table

9.5.2 Handling Cross-Reference Table Files

9.5.23 MACRO-11 Error Messages Under RT-11

APPENDIX A MACRO-11 CHARACTER SETS

1 ASCII CHARACTER SET
2 RADIX-54 CHARACTER SET

APPENDI X

w

MACRO-11 ASSEMBLY LANGUAGE AND ASSEMBLER
DIRECTIVES

SPECIAL CHARACTERS
SUMMARY OF ADDRESS MODE SYNTAX
ASSEMBLER DIRECTIVES

o mw
N

APPENDIX PERMANENT SYMBOL TABLE (PST)

@]

OP CODES
MACRO-11 DIRECTIVES

a0
N =

APPENDIX

o}

ERROR MESSAGES

APPENDIX ' SAMPLE CODING STANDARD

m

LINE FORMAT
COMMENTS
NAMING STANDARDS
Registers
General Purpose Registers
‘Hardware Registers
Device Registers
Processor Priority
Symbols
Symbol Examples
Local Symbols
Global Symbols
Macro Names
General Symbols
PROGRAM MODULES
The Module Preface
The Module
Module Example
Modularity
.1 Calling Conventions (Inter-Module/
Intra-Module)
2 Exiting
3 Success/Failure Indication
4 Module Checking Routines
CODE FORMAT
Program Flow
Common Exits
Code with Interrupts Inhibited
Code in System State
INSTRUCTION USAGE
Forbidden Instructions
Conditional Branches
PROGRAM SOURCE FILES

.
.
.

w N =

P Y
. . . .
o+ s .

Db W N =

.
. .

WP WwWwWWwNE -
.

B D DD R WWWWWWwWwWw WwWwwwwNn -
.

ool oo lcEololoBoNoloBoBoNoNoNo i)
.
IS WN

o e
D=

MMM mm e e
.

.
PN B S NG, IC INC N0 [, Q-
.
=W N

vi

FHoOomEHmE@EmERODE@DEDEO@OE@EDEmER
O~1 UL U E DB WWNNNNNDDNN -

E.8 PDP-11 VERSION NUMBER STANDARD E-14

E.8.1 Displaying the Version Identifier E-15

E.8.2 Use of the Version Number in the Program E-15
APPENDIX F ALLOCATING VIRTUAL MEMORY F-1

F.1 GENERAL HINTS AND SPACE-SAVING GUIDELINES F-1
F.2 MACRO DEFINITIONS AND EXPANSIONS F-2
F.3 F

. OPERATIONAL TECHNIQUES -3
APPENDIX G WRITING POSITION-INDEPENDENT CODE G-1
G.1 INTRODUCTION TO POSITION-INDEPENDENT CODE G-1
G.2 EXAMPLES G-2
APPENDIX H SAMPLE ASSEMBLY AND CROSS-REFERENCE LISTING H-1
APPENDIX I OBSOLETE MACRO-11 DIRECTIVES, SYNTAX, AND
COMMAND LINE OPTIONS I-1
I.1 OBSOLETE DIRECTIVES AND SYNTAX I-1
1.2 OBSOLETE COMMAND LINE OPTION I-1
APPENDIX‘ J RELEASE NOTES J-1
J.1 CHANGES -- ALL VERSIONS OF MACRO-11 J-1
J.2 CHANGES -- MACRO-11/RSX VERSION ONLY J-3
J.3 CHANGES -- MACRO-11/RT VERSION ONLY J-3
FIGURES
FIGURE 3-1 Assembly Listing Showing Local Symbol Block 3-12
3-2 Sample Assembly Results 3-13
6-1 Example of Line Printer Assembly Listing 6-5
6-2 Example of Teleprinter Assembly Listing 6-=7
6-3 Listing Produced with Listing Control
Directives 6-13
6-4 Assembly Listing Table of Contents 6-16
6-5 Example of .ENABL and .DSABL Directives 6-21
6-6 Example of .BLKB and .BLKW Directives 6-39
6-7 Example of .SAVE and .RESTORE Directives 6-50
7-1 Example of .NARG Directive 7-13
7-2 Example of .NCHR Directive 7-14
7-3 Example of .NTYPE Directive in Macro
Definition 7-15
7-4 Example of .IRP and .IRPC Directives 7-19
8-1 Sample CREF Listing 8-19
G-1 Example of Position-Dependent Code G-3
G-2 Example of Position-Independent Code G-3
TABLES
TABLE 3-1 Special Characters Used in MACRO-11 3-1
3-2 Legal Separating Characters 3-3
3-3 Legal Argument Delimiters 3-4
3-4 Legal Unary Operators 3-4
3-5 Legal Binary Operators 3-5
5-1 Addressing Modes 5-1

vii

5-2 Symbols Used in Chapter 5 5-2
6-1 Directives in Chapter 6 A-1
6-2 Symbolic Arguments of Listing Control

Directives 6-10
5-3 Symbolic Arguments of Function Control

Directives 6-19
-4 Symbolic Arguments of .PSECT Directive 6-41
6-5 Program Section Default Values 6-48
6-6 Legal Condition Tests for Conditional

Assembly Directives 5-54
6-7 Subconditional Assembly Block Directives 6-57
8-1 File Specification Default Values 8-4
8-2 MACRO-11 File Specification Switches 8-6
8-3 DCL Command Qualifiers 8-8
8-4 DCL Parameter Qualifiers 8-13
9-1 Default File Specification Values 9-3
9-2 File Specification Options 9-4
9-3 /C Option Arguments 9-6
I-1 01d and New Directives and Syntax I-1

viii

PREFACE

6.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS

This manual is intended to enable users to develop programs coded in
the MACRO-11 assembly language.

No prior knowledge of the MACRO-11 Relocatable Assembler 1is assumed,
but the reader should be familiar with the PDP-11 processors and
related terminology, as presented in the PDP-11 Processor Handbooks.
The reader is also encouraged to become familiar with the linking
process, as presented in the applicable system manual (see Section
#.3), because 1linking is necessary for the development of executable
programs.

If a terminal is available to the reader, he/she is advised to try
some of the examples in the manual or to write a few simple programs
that illustrate the concepts covered. Even experienced programmers
find that working with a simple program helps them to understand a
confusing feature of a new language.

The examples in this manual were done on an RT-11 system, MACRO-11
may also be wused on IAS/RSX-11M, RSX-11M-PLUS and RSTS systems (see
Part IV for information about operating procedures).

It can be assumed that all references to RSX-11IM also apply to

RSX-11M-PLUS with the exception of those in Chapter 8, which deals
with each system individually.

@.2 STRUCTURE OF THE DOCUMENT

This manual has four parts and eight appendices.

Part I introduces MACRO-11.
Chapter 1 lists the key features of MACRO-11.
Chapter 2 identifies the advantages of following programming
standards and conventions and describes the format used in coding

MACRO-11 source programs.

Part II presents general information essential to programming with the
MACRO-11 assembly language.

Chapter 3 lists the character set and describes the symbols,

terms, and expressions that form the -elements of MACRO-11
instructions.

ix

Chapter 4 describes the output of MACRO-11 and presents concepts
essential to the proper relocation and linking of object modules,

Chapter 5 describes how data stored in memory can be accessed and
manipulated using the addressing modes recognized by the PDP-11
hardware.

Part III describes the MACRO-11 directives that control the processing
of source statements during assembly.

Chapter 6 discusses directives wused for generalized MACRO-11
functions,

Chapter 7 discusses directives used 1in the definition and
expansion of macros.

Part IV presents the operating procedures for assembling MACRO-11
programs.

Chapter 8 covers the IAS, RSX-11M, and RSX-11M-PLUS systems.
Chapter 9 covers the RSTS/RT-11 systems.

Appendix A lists the ASCII and Radix-5@ character sets wused in
MACRO-11 programs.

Appendix B lists the special characters recognized by MACRO-11,
summarizes the syntax of the various addressing modes used in PDP-11
processors, and briefly describes the MACRO-11 directives in
alphabetical order.

Appendix C lists alphabetically the permanent symbols that have been
defined for use with MACRO-11.

Appendix D lists alphabetically the error codes produced by MACRO-11
to identify various types of errors detected during the assembly
process.

Appendix E contains a coding standard that is recommended practice 1in
preparing MACRO-11 programs.

Appendix F discusses several methods of conserving dynamic memory
space for users of small systems who may experience difficulty in
assembling MACRO-11 programs.

Appendix G is a discussion of position-independent code (PIC).
Appendix H contains an assembly and cross-reference listing.

Appendix I contains obsolete MACRO-11 directives, syntax, and command
line options,. .
Appendix J describes the differences from the last release of
MACRO-11.

#.3 ASSOCIATED DOCUMENTS

For descriptions of documents associated with this manual, refer to
the applicable documentation directory listed below:

IAS Documentation Directory

RSX~-11M-PLUS Information Directory and Index

RSX-11M/RSX~-11S Information Directory and Index

Guide to RT-11 Documentation

RSTS/E Documentation Directory

8.4 DOCUMENT CONVENTIONS

The color red is used in command string examples to indicate user
type~in.

The symbols defined below are used throughout this manual.

Symbol Definition
[] Brackets 1indicate that the enclosed argument is

optional.

.o Ellipsis indicates optional continuation of an argument
list in the form of the last specified argument.

UPPER-CASE Upper-case characters indicate elements of the language

CHARACTERS that must be used exactly as shown.

lower-case Lower-case characters indicate elements of the language

characters that are supplied by the programmer.

(n) In some instances the symbol (n) is used following a
number to indicate the radix. For example, 180(8)

indicates that 1080 is an octal value, while 100(18)
indicates a decimal value.

xXi

C€HAPTER 1

THE MACRO-11 ASSEMBLER

MACRO-11 provides the following features:
l. Source and command string control of assembly functions
2. Device and filename specifications for input and output files
3. Error listing on command output device

4. Alphabetized, formatted symbol table listing; optional
cross-reference listing of symbols

5. Relocateble object modules

6. Global symbols for linking object modules
7. Conditional assembly directives

8. Program sectioning directives

9. VUser-defined macros and macro libraries
1%. Comprehensive system macro library

11. Extensive source and command string control of listing
' functions.

MACRO-11 assembles one or more ASCII source files containing MACRO-11
statements into @& single relocatable binary object file. The output
of MACRO-11 consists of a binary object file and a file containing the
table of contents, the assembly listing, and the symbol table. An
optional cross-reference listing of symbols and macros is available.
A sample assembly listing is provided in Appendix H.

1.1 ASSEMBLY PASS 1

During pass 1, MACRO-11 locates and reads all required macros from
libraries, builds symbol tables and program section tables for the
program, and performs a rudimentary assembly of each source statement.

In the first step of assembly pass 1, MACRO-11 initializes all the
impure data areas (areas containing both code and data) that will be
used internally for the assembly process. These areas include all
dynamic storage and buffer areas used as file storage regions.

THE MACRO-11 ASSEMBLER

MACRO-11 then calls a system subroutine which transfers a command line
into memory. This command 1line contains the specifications of all
files to be used during assembly. After scanning the command line for
proper syntax, MACRO-11 initializes the specified output files. These
files are opened to determine if valid output file specifications have
been passed in the command line.

MACRO-11 now initiates a routine which retrieves source lines from the
input file. If no input file is open, as is the case at the beginning
of assembly, MACRO-11 opens the next input file specified 1in the
command line and starts assembling the source statements. MACRO-11
first determines the length of the instructions, then assembles them
according to length as one word, two words, or three words.

At the end of assembly pass 1, MACRO-11 reopens the output files
described above. Such information as the object module name, the
program version number, and the global symbol directory (GSD) for each
program section are output to the object file to be used later in
linking the object modules. After writing out the GSD for a given
program section, MACRO-11 scans through the symbol tables to find all
the global symbols that are bound to that particular program section.
MACRO-11 then writes out GSD records to the object file for these
symbols. This process is done for each program section.

1.2 ASSEMBLY PASS 2

On pass 2 MACRO-11 writes the object records to the output file while
generating both the assembly listing and the symbol table listing for
the program. A cross~reference listing may also be generated.

Basically, assembly pass 2 consists of the same steps performed in
assembly pass 1, except that all source statements containing
MACRO-11-detected errors are flagged with an error code as the
assembly listing file is created. The object file that is created as
the final consequence of pass 2 contains all the object records,
together with relocation records that hold the information necessary
for linking the object file.

The information in the object file, when passed to the Task Builder or
Linker, enables the global symbols in the object modules to be
associated with absolute or virtual memory addresses, thereby forming
an executable body of code. :

The user may wish to become familiar with the macro object file format
and description. This information 1is presented in the applicable
system manual (see Section #.3 in the Preface).

CHAPTER 2

SOURCE PROGRAM FORMAT

2.1 PROGRAMMING STANDARDS AND CONVENTIONS

Programming standards and conventions allow code written by a person
{(or group) to be easily understood by other people. These standards
also make the program easier to:

Plan
Comprehend
Test
Modify
Convert

The actual standard used must meet local user requirements. A sample
coding standard 1is provided in Appendix E. Used by DIGITAL and its
users, this coding example simplifies both communications and the
continuing task of software maintenance and improvement.

2.2 STATEMENT FORMAT

A source program is composed of assembly-language statements. Each
statement must be completed on one line. Although a line may contain
132 characters (a longer line causes an error (L) 1in the assembly
listing), a line of 8@ characters 1is recommended because of
constraints imposed by listing format and terminal line size. Blank
lines, although legal, have no significance in the source program.

A MACRO-11 statement may have as many as four fields. These fields
are identified by their order within the statement and/or by the
separating characters between the fields. The general format of a
MACRO-11 statement is:

(Label:] Operator Operand [;Comment (s)]
The label and comment fields are optional. The operator and operand
fields are interdependent; in other words, when both fields are

present in a source statement, each field is evaluated by MACRO-11 in
the context of the other,

A statement may contain an operator and no operand, but the reverse is
not true. A statement containing an operand with no operator is
illegal and is interpreted by MACRO-11 during assembly as an implicit
-WORD directive (see Section A.3.2).

MACRO-11 interprets and processes source program statements one by
one, Each statement causes MACRN-11 either to perform a specified
assembly process or to generate one or more binary instructions or
data words,

SOURCE PROGRAM FORMAT

2.2.1 Label Field

A label is a user—-defined symbol which is assigned the wvalue of the
current location counter and entered into the user-defined symbol
table. The current location counter is used by MACRO-11 to assign
memory addresses to the source program statements as they are
encountered during the assembly process. Thus, a label is a means of
symbolically referring to a specific statement.

When a program section is absolute, the value of the current location
counter is absolute; 1its value references an absolute virtual memory
address (such as location 108). Similarly, when a program section is
relocatable, the value of the current location counter is relocatable;
a relocation bias calculated at link time is added to the apparent
value of the current location counter to establish its effective
absolute virtual address at execution time. (For a discussion of
program sections and their attributes, see Section 6.7.)

If present, a label must be the first field in a source statement and
must be terminated by a colon (:). For example, if the value of the
current location counter is absolute 18((8), the statement:

ABCD: MOV A,B

assigns the value 18#(8) to the label ABCD. If the 1location counter
value were relocatable, the final value of ABCD would be 1f#(8)+K,
where K represents the relocation bias of the program section, as
calculated by the Task Builder or Linker at link time.

More than one label may appear within a single label field. Each
label so specified is assigned the same address value. For example,
if the value of the current location counter is 18¢(8), the multiple
labels in the following statement are each assigned the value 188(8):

ABC: $DD: A7.7: MOV A,B

Multiple labels may also appear on successive lines. For example, the
statements

ABC:
$DD:
A7.7: MOV A,B

likewise cause the same value to be assigned to all three labels.
This second method of assigning multiple labels is preferred because
positioning the fields consistently within the source program makes
the program easier to read (see Section 2.3).

A double colon (::) defines the 1label as a global stbol. For
example, the statement

ABCD:: MOV A,B

establishes the label ABCD as a global symbol. The distinguishing
attribute of a global symbol is that it can be referenced from within
an object module other than the module in which the symbol is defined
(see Section 6.8) or by independently assembled object modules.
References to this label in other modules are resolved when the
modules are linked as a composite executable image.

SOURCE PROGRAM FORMAT

The legal characters for defining labels are:

A through Z
g through 9
. (Period)
$ (Dollar Sign)

NOTE

By convention, the dollar sign ($) and
period (.) are reserved for wuse in
defining DIGITAL system software
symbols. Therefore these characters
should not be used in defining labels in
MACRO-11 source programs.

A label may be any length; however, only the first six characters are
significant and, therefore, must be unique among all the labels in the
Source program. An error code (M) 1is generated in the assembly
listing if the first six characters in two or more labels are the
same.,

A symbol used as a label must not be redefined within the source
program., If the symbol 1is redefined, a label with a multiple
definition results, causing MACRO-11 to generate an error code (M) in
the assembly 1listing. Furthermore, any statement in the source
program which references a multi-defined label generates an error code
(D) in the assembly listing.

2.2.2 Operator Field

The operator field specifies the action to be performed. It may
consist of an instruction mnemonic (op code), an assembler directive,
or a macro call. Chapters 6 and 7 describe these three types of
operators.

When the operator is an instruction mnemonic, a machine instruction is
generated and MACRO-11 evaluates the addresses of the operands which
follow. When the operator is a directive MACRO-11 performs certain
Ccontrol actions or processing operations during the assembly of the
Source program. When the operator is a macro call, MACRO-11 inserts
the code generated by the macro expansion.

Leading and trailing spaces or tabs in the operator field have no
significance; such characters serve only to separate the operator
field from the preceding and following fields.

An operator 1is terminated by a space, tab, or any non-RADS#
character*, as in the following examples:

MOV A,B ;The space terminates the operator MOV.
MOV A,B ;The tab terminates the operator MOV.
MOVEA,B ;The @ character terminates the operator MOV,

* Appendix A.2 contains a table of Radix-58 characters.

2-3

SOURCE PROGRAM FORMAT

Although the statements above are all equivalent 1in function, the
second statement is the recommended form because it conforms to
MACRO-11 coding conventions.

2.2.3 Operand Field

When the operator is an instruction mnemonic (op <code), the operand
field contains program variables that are to be evaluated/manipulated
by the operator. The operand field may also supply arguments to
MACRO-11 directives and macro calls, as described in Chapters 6 and 7,
respectively.

Operands may be expressions or symbols, depending on the operator.
Multiple expressions used in the operand field of a MACRO-11 statement
must be separated by a comma; multiple symbols similarly used may be
delimited by any legal separator (a comma, tab, and/or space). An
operand should be preceded by an operator field; 1if it 1is not, the
statement 1is treated by MACRO-11 as an implicit ,WORD directive (see
Section 6.3.2).

When the operator field conteins an op code, associated operands are
always expressions, as shown in the following statement:

MOV RO ,A+2 (R1)

On the other hand, when the operator field contains a MACRO-11
directive or a macro call, associated operands are normally symbols,
as shown in the following statement:

.MACRO ALPHA SYM1,SYM2

Refer to the description of each MACRO-11 directive (Chapter 7) to
determine the type and number of operands required in issuing the
directive.

The operand field is terminated by a semicolon when the field |is
followed by a comment. For example, in the following statement:

LABEL: MOV A,B ;Comment field

the tab between MOV and A terminates the operator field and defines
the beginning of the operand field; a comma separates the operands A
and B; and a semicolon terminates the operand field and defines the
beginning of the comment field. When no comment field follows, the
operand field is terminated by the end of the source line.

2.2.4 Comment Field

The comment field normally begins in column 33 and extends through the
end of the line. This field is optional and may contain any ASCII
characters except null, RUBOUT, carriage-return, line-feed,
vertical-tab or form-feed. All other characters appearing in the
comment field, even special characters reserved for use in MACRO-11,
are checked only for ASCII legality and then included in the assembly
listing as they appear in the source text.

SOURCE PROGRAM FORMAT

All comment fields must begin with a semicolon (:). When lengthy
comments extend beyond the end of the source line (column 80), the
comment may be resumed in a following line. Such a line must contain
a leading semicolon, and it is suggested that the body of the comment
be continued in the same columnar position in which the comment began.
A comment 1line can also be included as an entirely separate line
within the code body.

Comments do not affect assembly processing or program execution.

However, comments are necessary in source listings for later analysis,
debugging, or documentation purposes.

2.3 FORMAT CONTROL
Horizontal formatting of the source program is controlled by the space
and tab characters. These characters have no effect on the assembly
process unless they are embedded within a symbol, number, or ASCII
text string, or unless they are used as the operator field terminator.
Thus, the space and tab characters can be used to provide an orderly
and readable source progran.
DIGITAL's standard source line format is shown below:

Label - begins in column 1

Operator - begins in column 9

Operands - begin in column 17

Comments - begin in column 33.
These formatting conventions are not mandatory; free-field coding is
permissible. However, note the increase readability after formatting
in the example below:

REGTST:BIT#MASK,VALUE ; COMPARES BITS IN OPERANDS.

1 9 17 33 (columns)

REGTST: BIT #MASK,VALUE ;Compares bits in operands.
Page formatting and assembly listing considerations are discussed 1in
Chapter 6 in the context of MACRO-11 directives that may be specified

to accomplish desired formatting operations. Appendix E contains a
sample coding standard.

CHAPTER 3

SYMBOLS AND EXPRESSIONS

This chapter describes the components of MACRO-11 instructions: the
character set, the conventions observed in constructing symbols, and
the use of numbers, operators, terms and expressions.

3.1 CHARACTER SET
The following characters are legal in MACRO-11 source programs:

1. The letters A through Z. Both upper- and lower-case letters
are acceptable, although, upon input, lower-case letters are
converted to upper-case (see Section 6.2.1, .ENABL LC).

2. The digits @ through 9.

3. The characters . (period) and $ (dollar sign). These
characters are reserved for use as Digital Equipment
Corporation system program symbols.

4. The special characters listed in Table 3-1.

Table 3-1
Special Characters Used in MACRO-11

Character Designation Function
: Colon Label terminator.
: Double colon Label terminator; defines the

label as a global label.

Equal sign Direct assignment operator and
macro keyword indicator.

== Double equal Direct assignment operator;
sign defines the symbol as a global

symbol,
=: Equal sign colon Direct assignment operator;
macro keyword indicator;

causes error (M) in listing if
an attempt is made to change
the value of the symbol.

{(continued on next page)

SYMBOLS AND EXPRESSIONS

Table 3-1

(Cont.)

Special Characters Used in MACRO-11

Character Designation Function
== Double equal Direct assignment operator;
sign colon defines the symbol as a global
symbol; causes error (M) in
listing if an attempt is made
to change the wvalue of the
symbol.

% Percent sign Register term indicator.

Tab Item or field terminator.
Space Item or field terminator.

Number sign Immediate expression
indicator.

@ At sign Deferred addressing indicator.

(Left parenthesis Initial register indicator.

) Right parenthesis Terminal register indicator.

. Period Current location counter.

’ Comma Operand field separator.

: Semicolon Comment field indicator.

< Left angle Initial argument or expression

bracket indicator.

> Right angle Terminal argument or

bracket expression indicator.

+ Plus sign Arithmetic addition operator
or autoincrement indicator.

- Minus sign Arithmetic subtraction
operator or autodecrement
indicator.

* Asterisk Arithmetic multiplication
operator.

/ Slash Arithmetic division operator.

& Ampersand Logical AND operator.

Exclamation point

Double quote

Logical inclusive OR operator.

Double ASCII character
indicator.

(continued on next page)

SYMBOLS AND EXPRESSIONS

Table 3-1 (Cont.)
Special Characters Used in MACRO-11

Character Designation Function

Single quote Single ASCII character
indicator; or concatenation
indicator.

- Up arrow or Universal unary operator or
circumflex argument indicator.
\ Backslash Macro call numeric argument

indicator.

3.1.1 Separating and Delimiting Characters
Legal separating characters and legal argument delimiters are defined

in Tables 3-2 and 3-3 respectively.

Table 3-2
Legal Separating Characters

Character Definition Usage
Space One or more spaces A space is a 1legal separator
and/or tabs between instruction fields and

between symbolic arguments
within the operand field.
Spaces within expressions are
ignored (see Section 3.9).

’ Comma A comma is a legal separator
between symbolic arguments
within the operand field.
Multiple expressions wused in
the operand field must be
separated by a comma.

3.1.2 1Illegal Characters
A character is illegal for one of two reasons:

1. TIf a character is not an element of the recognized MACRO-11
character set, it is replaced in the listing by a question
mark, and an error code (I) 1is printed in the assembly
listing. The exception to this is an embedded null which,
when detected, terminates the scan of the current line.

2. If a legal MACRO-11 character is used in a source statement
with 1illegal or questionable syntax, an error code (Q) is
printed in the assembly listing.

SYMBOLS AND EXPRESSIONS

Table 3-3
Legal Argument Delimiters

Character Definition Usage
<ono Paired angle Paired angle brackets may be
brackets used anywhere in a program to
enclose an expression for

treatment as a single term.
Paired angle brackets are also

used to enclose

a macro

argument, particularly when

that argument contains
separating characters (see
Section 7.3).

“X..X Up-arrow (unary This construction is
operator) con- equivalent 1in function to the
struction, where paired angle brackets
the up-arrow is described above and is
followed by an generally used only where the
argument that is argument itself contains angle
bracketed by any brackets.

paired printing
characters (x).

3.1.3 Unary and Binary Operators

Legal MACRO-11 unary operators are described in Table
operators are used 1in connection with single terms
operands) to indicate an action to be performed on that
assembly. Because a term preceded by a unary operator

3-4. Unary
(arguments or
term during
is considered

to contain that operator, a term so specified can be used alone or as

an element of an expression.

Table 3-4
Legal Unary Operators

Unary
Operator Explanation Example Effect
+ Plus sign +A Produces the positive
value of A.
- Minus sign -A Produces the negative
(2's complement)

value of A,

(continued on next page)

SYMBOLS AND EXPRESSIONS

Table 3-4 {Cont.)
Legal Unary Operators

Unary

Operator Explanation Example Effect

- Up-arrow, universal “c24 Produces the 1's
unary operator. complement value of
(This usage is 24(8).
described in
detail in “D127 Interprets 127 as a
Section 6.4.) decimal number.

“F3.0 Interprets 3.0 as a
l-word,
floating-point
number.

034 Interprets 34 as an

octal number.

“Bl114#0111 Interprets 1100890111
as a binary number.

"RABC Evaluates ABC in
Radix-5¢ form.

Unary operators can be used adjacent to each other or in constructions
involving multiple terms, as shown below:

-"D5¢ (Equivalent to -<"D58#>)
“C"012 (Equivalent to "C<"012>)

Legal MACRO-11 binary operators are described 1in Table 3-5. In
contrast to unary operators, binary operators specify actions to be
performed on multiple items or terms within an expression.

Table 3-5
Legal Binary Operators

Binary

Operator Explanation Example

+ Addition A+B

- Subtraction A-B

* Multiplication A*B (signed 16-bit
product returned)

/ Division A/B (signed 16-bit
quotient returned)

& Logical AND A&B

! Logical inclusive OR AlB

SYMBOLS AND EXPRESSIONS

All binary operators have equal priority. Terms enclosed by angle
brackets are evaluated first, and remaining operations are performed
from left to right, as shown in the examples below:

.WORD 1+2*3 ;Equals 11(8).
.WORD 1+<2*3> ;Equals 7(8).

3.2 MACRO-11 SYMBOLS

MACRO-11 maintains a symbol table for each of the three symbol types
that may be defined in a MACRO-11 source program: the Permanent
Symbol Table (PST), the User Symbol Table (UST), and the Macro Symbol
Table (MST). The PST contains all the permanent symbols defined
within (and thus automatically recognized by) MACRO-11 and is part of
the MACRO-11 image. The UST (for user-defined symbols) and MST (for
macro symbols) are constructed as the source program is assembled.

3.2.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (see Appendix
C) and MACRO-11 directives (see Chapters 6 and 7 and Appendix B).
These symbols are a permanent part of the MACRO-11 image and need not
be defined before being used in the operator field of a MACRO-11
source statement {see Section 2.2.2).

3.2.2 User-Defined and Macro Symbols

User-defined symbols are those symbols that are equated to a specific
value through a direct assignment statement (see Section 3.3), appear
as labels (see Section 2.2.1), or act as dummy arguments (see Section
7.1.1). These symbols are added to the User Symbol Table as they are
encountered during assembly.

Macro symbols are those symbols used as macro names (see Section 7.1).
They are added to the Macro Symbol Table as they are encountered
during assembly.

The following rules govern the creation of user-defined and macro
symbols:)

1. Symbols can be composed of alphanumeric characters, dollar
signs ($), and periods (.) only (see Note below).

2. The first character of a symbol must not be a number (except
in the case of local symbols; see Section 3.5).

3. The first six characters of a symbol must be unique. A
symbol can be written with more than six legal characters,
but the seventh and subsequent characters are checked only
for ASCII 1legality and are not otherwise evaluated or
recognized by MACRO-11.

4., Spaces, tabs, and illegal characters must not be embedded
within a symbol. The legal MACRO-11 character set is defined
in Section 3.1.

SYMBOLS AND EXPRESSIONS

NOTE

The dollar sign ($) and period (.)
characters are reserved for use in
defining Digital Equipment Corporation
system software symbols. For example,
READS is a file-processing system macro.
The wuser 1s cautioned not to employ
these characters in constructing
user—-defined symbols or macro symbols in
order to avoid possible conflicts with
existing or future Digital Equipment
Corporation system software symbols.

The value of a symbol depends upon its use in the program. A symbol
in the operator field may be any one of the three symbol types
described above; permanent, user-defined, or macro. To determine the
value of an operator-field symbol, MACRO-11 searches the symbol tables

in the following order:

1. Macro Symbol Table

2. Permanent Symbol Table

3. User-Defined Symbol Table
This search order allows permanent symbols to be used as macro
symbols. But the user must keep in mind the sequence in which the
search for symbols 1is performed 1in order to avoid incorrect
interpretation of the symbol's use.
When a symbol appears in the operand field, the search order is:

1. User-Defined Symbol Table

2. Permanent Symbol Table
Depending on their use in the source program, user-defined symbols
have either a 1local (internal) attribute or a global (external)
attribute.
Normally, MACRO-11 treats all user-defined symbols as local, that is,
their definition is 1limited to the module 1in which they appear.
However, symbols can be explicitly declared to be global symbols
through one of three methods:

1. Use of the .GLOBL directive (see Section 6.8.1).

2. Use of the double colon (::) in defining a label (see Section
2.2.1).

3. Use of the double equal sign (==) or double equal colon sign
==:) in a direct assignment statement (see Section 3.3).

All symbols within a module that remain undefined at the end of
assembly are treated as default global references.

SYMBOLS AND EXPRESSIONS

NOTE

Undefined symbols at the end of assembly
are assigned a value of @ and placed
into the user-defined symbol table as
undefined default global references. If
the .DSABL GBL directive is in effect,
however, (see Section 6.2.1) the
statement containing the undefined
symbol is flagged with an error code (U)
in the assembly listing.

Global symbols provide linkages between independently-assembled object
modules within the task image. A global symbol defined as a label,
for example, may serve as an entry-point address to another section of
code within the image. Such symbols are referenced from other source
modules in order to transfer «control throughout execution. These
global symbols are resolved at link time, ensuring that the resulting
image is a logically coherent and complete body of code.

3.3 DIRECT ASSIGNMENT STATEMENTS
The general format for a direct assignment statement is:
symbol=expression
or
symbol==expression

where: expression - can have only one level of forward reference
(see 5. Dbelow).

— cannot contain an undefined global reference.
The colon format for a direct assignment statement is:
symbol=:expression
or
symbol==:expression

where: expression - can have only one level of forward reference
(see 5. Dbelow).

- cannot contain an undefined global reference.
All the direct assignment statements above allow the user to equate a

symbol with a specific value. After the symbol has been defined it is
entered into the User-Defined Symbol Table. 1If the general format is

used (= or ==) the value of the symbol may be changed in subsequent
direct assignment statements. If, however, the colon format is u§ed
=: or ==:) any attempt to change the value of the symbol will

generate an error (M) in the assembly listing.
A direct assignment statement embodying either the double equal (==

sign or the double equal colon (==:) sign, as shown above, defines the
symbol as global (see Section 6.8.1).

3-8

SYMBOLS AND EXPRESSIONS

The following examples illustrate the coding of direct assignment
statements.

Example 1:

A=10 ;Direct assignment

B==30 ;Global assignment)
A=15 ;Legal reassignment

L=:5 ;Equal colon assignment

M==:A+2 ;Double equal colon assignment

;M becomes equal to 17

L=4 ;Illegal reassignment
iM error is generated

Ekample 2:

C:

D=, ;The symbol D is equated to ., and
E: MOV #1,ABLE ;the labels C and E are assigned a

;value that is equal to the location
;of the MOV instruction.

The code in the second example above would not usually be used and is
shown only to illustrate the performance of MACRO-11 in such
situations. See Section 3.6 for a description of the period (.) as
the current location counter symbol.

The following conventions apply to the coding of direct assignment
sStatements:

1. An equal sign (=), double equal sign (==), equal colon sign
=:) or double equal colon sign (==:) must separate the
symbol from the expression defining the symbol's value.
Spaces preceding and/or following the direct assignment
operators, although permissible, have no significance in the
resulting value.

2. The symbol being assigned in a direct assignment statement is
placed in the label field.

3. Only one symbol can be defined in a single direct assignment
statement,

4. A direct assignment statement may be followed only by a
comment field.

5. 0Only one level of forward referencing is allowed. The
following example would cause an error code (U) in the
assembly listing on the line containing the illegal forward
reference:

X=Y (Illegal forward reference)
Y=2 (Legal forward reference)
zZ=1

SYMBOLS AND EXPRESSIONS

Although one level of forward referencing is allowed for local
symbols, no forward referencing 1is allowed for global symbols. In
other words, the expression being assigned to a global symbol <can
contain only previously defined symbols. A forward reference in a
direct assignment statement defining a global symbol will cause an
error code (A) to be generated in the assembly listing.

3.4 REGISTER SYMBOLS

The eight general registers of the PDP-11 processor are numbered @

through 7 and can be expressed in the source program in the following
manner :

30
31

-

87

where % indicates a reference to a register rather than a location.
The digit specifying the register can be replaced by any legal,
absolute term that can be evaluated during the first assembly pass.

The register definitions listed below are the normal default values
and remain wvalid for all register references within the source
program.

RA=%0 ;Register # definition.
R1=%1 ;Register 1 definition.
R2=%2 ;Register 2 definition.
R3=%3 ;Register 3 definition.
R4=%4 ;Register 4 definition.
R5=%5 ;Register 5 definition.
SP=%6 ;Stack pointer definition.
PC=%7 ;Program counter definition.

Registers 6 and 7 are given special names because of their unique
system functions. The symbolic default names assigned to the
registers, as listed above, are the conventional names used in all
DIGITAL-supplied PDP-11 system programs. For this reason, you are
advised to follow these conventions.

A register symbol may be defined 1in a direct assignment statement
appearing in the program. The defining expression of a register
symbol must be a legal, absolute value between @ and 7, inclusive, or
an error code (R) will appear in the assembly listing. Although you
can reassign the standard register symbols through the wuse of the
.DSABL REG directive (see Section 6.2.1), this practice 1is not
recommended. An attempt to redefine a default register symbol without
first specifying the .DSABL REG directive to override the normal
register definitions causes that assignment statement to be flagged
with an error code (R) in the assembly listing. All non-standard
register symbols must be defined before they are referenced in the
source program.,

SYMBOLS AND EXPRESSIONS

The % character may be used with any 1legal term or expression to
specify a register. For example, the statement

CLR $3+1

is equivalent in function to the statement
CLR %4

and clears the contents of register 4.

In contrast, the statement
CLR 4

clears the contents of virtual memory location 4.

3.5 LOCAL SYMBOLS

Local symbols are specially formatted symbols used as labels within a
block of <coding that has been delimited as a local symbol block.
Local symbols are of the form n$, where n is a decimal integer from 1
to 65535, inclusive. Examples of local symbols are:

1s
27%
598
1948

A local symbol block is delimited in one of three ways:

1. The range of a local symbol block usually consists of those
statements between two normally-constructed symbolic labels
(see Figure 3-1). Note that a statement of the form:

ALPHA=EXPRESSION

is a direct assignment statement (see Secticn 3.3) but does
not create a label and thus does not delimit the range of a
local symbol block.

2. The range of a local symbol block is normally terminated upon
encountering a .PSECT, .CSECT, .ASECT, or .RESTORE directive
in the source program (see Figure 3-1).

3. The range of a 1local symbol block 1is delimited through
MACRO-11 directives, as follows:

Starting delimiter: .ENABL LSB (see Section 6.2.1)

SYMBOLS AND EXPRESSIONS

Ending delimiter: .ENABL LSB

or
one of the following:

Symbolic label (see Section 2.2.1)
.PSECT (see Section 6.7.1)

.CSECT (see Section 6.7.2)

.ASECT (see Section 6.7.2)
.RESTORE (see Section 6.7.4)

encountered after a .DSABL LSB (see
Section 6.2.1).

Local symbols provide a convenient means of generating 1labels for
branch instructions and other such references within local symbol
blocks. Using local symbols reduces the possibility of symbols with
multiple definitions appearing within a user program. 1In addition,
the use of local symbols differentiates entry-point labels from local
labels, since 1local symbols cannot be referenced from outside their
respective local symbol blocks. Thus, local symbols of the same name
can appear in other 1local symbol blocks without conflict. Local
symbols do not appear in cross-reference 1listings and require less
symbol table space than other types of symbols. Their wuse is
recommended.

When defining local symbols, use the range from 1$ to 29999% first.
Local symbols within the range 30006¢$ through 655355, inclusive, can
be generated automatically as a feature of MACRO-11. Such 1local
symbols are useful in the expansion of macros during assembly (see
Section 7.3.5).

Be sure to avoid multiple definitions of local symbols within the same
local symbol block. For example, if the local symbol 18$ is defined
two or more times within the same local symbol block, each symbol
represents a different address value. Such a multi-defined symbol
causes an error code (P) to be generated in the assembly listing.

For examples of local symbols and local symbol blocks as they appear
in a source program, see Figure 3-1.

1 it
2 3 Simrle illustration of local sumbols$ the second block is delimited
3 i by the label XCTPAS,
4 -
5
6 000000 012700 XCTPRG! MOV $IMPURE RO fPoint to imrure asreas
0000006
7 000004 005020 1is: CLR (RO)+ jClear a word
8 0000086 020027 CMP RO+ $#IMPURT iTest if at tor of area
0000006
? 000012 001374 BNE 13 ilIterate if riot
ig iFall in to rerform rass initialization
12 000014 012700 XCTFAS:! MOV $IMPPASsRO iPoint to rass storasde area
0000006
13 000220 005020 188 CLR (RO + iClear the areas
14 0.1i%22 020027 CMP ROs #IMPPAT iTest it at tor of area
0000006
15 000026 001374 BNE is ilIterate of not
16 000030 000207 RTS PC iReturn if so

Figure 3-1 Assembly Listing Showing Local Symbol Block

SYMBOLS AND EXPRESSIONS

3.6 CURRENT LOCATION COUNTER

The period (.) is the symbol for the current location counter. When
‘used in the operand field of an instruction, the period represents the
-address of the first word of the instruction, as shown in the first
example below, When wused 1in the operand field of a MACRO-11
directive, it represents the address of the current byte or word, as
shown in the second example below.

A MOV #.,R0O ;The period (.) refers to the address
;of the MOV instruction.

{(The function of the number sign (#) is explained in Section 5.9.)

SAL=0
.WORD 177535, .+4 ,SAL ;The operand .+4 in the .WORD
;directive represents a value
;that is stored as the second
;of three words during
;assembly.
Assume that the current value of the location counter is 5#4. During
assembly, MACRO-11 reserves storage in response to the .WORD directive
(see Section 6.3.2), beginning with location 5¢00. The operands

accompanying the .WORD directive determine the values so stored. The
value 177535 is thus stored in location 58@. The value represented by
.+4 1is stored in location 5#2; this value is derived as the current
value of the location counter (which is now 582), plus the absolute
value 4, thereby depositing the value 586 in location 502. Finally,
the value of SAL, previously equated to @, is deposited 1in 1location
5p04.

Figure 3-2 illustrates the result of the example.

LOCATION CONTENTS
509 177535
502 586
504 g .

Figure 3-2 Sample Assembly Results

At the beginning of each assembly pass, MACRO-11 resets the location
counter. Normally, consecutive memory locations are assigned to each
byte of object data generated. However, the value of the 1location
counter can be changed through a direct assignment statement of the
following form:

.=expression
The current 1location counter symbol (.) 1is either absolute or

relocatable, depending on the attribute of the current program
section.

SYMBOLS AND EXPRESSIONS

The attribute of the current location counter can be changed only
through the program sectioning directives (.PSECT, .ASECT, .CSECT and
.RESTORE), as described in Section 6.7. Therefore, assigning to the
counter an expression having an attribute different than that of the
current program section will generate an error code (A) 1in the
assembly listing.

Furthermore, an expression assigned to the counter may not contain a
forward reference (a reference to a symbol that is not previously
defined). The user must also be sure that the expression assigned
will not force the counter into another program section, even if both
sections involved have the same relocatability. Either of these
conditions causes MACRO-11 to generate incorrect object file code, and
may cause statements following the error to be flagged with an error
code (P) in the assembly listing.

The following coding illustrates the wuse of the current 1location
counter:

.ASECT
.=500 ;Set location counter to
;absolute 50@(octal).
FIRST: MOV .+10,COUNT ;The label "FIRST" has the value

;580 (octal) .

.+18 equals 51¢@(octal). The

contents of the location

51@ (octal) will be deposited

in the location "COUNT".

.=520 ;The assembly location counter
;now has a value of
;absolute 528 (octal).

SECOND: MOV ., INDEX ;The label "SECOND" has the
;value 520 (octal).
; The contents of location
;520 (octal), that is, the binary
;code for the instruction
;itself, will be deposited in the
; location "INDEX".

~e e Ne o we

.PSECT
=.4+20 ;Set location counter to
;relocatable 2 of the
;unnamed program section.
THIRD: .WORD A ;The label "THIRD" has the
;value of relocatable 24.

Storage areas may be reserved in the program by advancing the location
counter. For example, if the current value of the location counter is
19008, each of the following statements:

=440
or
.BLKB 490
or
.BLKW 20
reserves 49(8) bytes of storage space 1in the source program. The

.BLKB and .BLKW directives, however, are the preferred ways to reserve
storage space (see Section 6.5.3).

SYMBOLS AND EXPRESSIONS

3.7 NUMBERS

MACRO-11 assumes that all numbers in the source program are to be
interpreted 1in octal radix, unless otherwise specified. An exception
to this assumption is that operands associated with Floating Point
Processor instructions and Floating Point Data directives are treated
as decimal (see Section 6.4.2). This default radix can be altered
with the .(RADIX directive (see Section 6.4.1.1). Also, individual
numbers can be designated as decimal, binary, or octal numbers through
temporary radix control operators (see Section 6.4.1.2).

For every statement in the source program that contains a digit that
is not in the «current radix, an error code (N) is generated in the
assembly listing. However, MACRO-11 continues with the scan of the
statement and evaluates each such number encountered as a decimal
value.

Negative numbers must be preceded by a minus sign; MACRO-11
translates such numbers into two's complement form. Positive numbers
may (but need not) be preceded by a plus sign.

A number containing more than 16 significant bits (greater than
177777(8)), is truncated from the left and flagged with an error code
(T) in the assembly listing.

Numbers are always considered to be absolute values; therefore, they
are never relocatable.

Single-word floating-point numbers may be generated with the °F
operator (see Section 6.4.2.2) and are stored in the following format:

15 14 6 4]
Sign 8-bit 7-bit
Bit Exponent Mantissa

Refer to the appropriate PDP-1l Processor Handbook for details of the
floating-point number format.

3.8 TERMS

A term is a component of an expression and may be one: of the
following:

1. A number, as defined in Section 3.7, whose 16-bit wvalue 1is
used.

2. A symbol, as defined in Section 3.2, Symbols are evaluated
as follows:

A. A period (.) specified in an expression causes the value
of the current location counter to be used.

B. A defined symbol is located in the User-Defined Symbol
Table (UST) and its value is used.

C. A permanent symbol's basic wvalue 1is wused, with zero
substituted for the addressing modes. (Appendix C lists
all op codes and their values.)

SYMBOLS AND EXPRESSIONS

D. An undefined symbol is assigned a value of =zero and
inserted in the User-Defined Symbol Table as an undefined
default global reference. If the .DSABL GBL directive
(see Section 6.2.1) 1is in effect, the automatic global
reference default function of MACRO-11 is inhibited, and
the statement containing the undefined symbol is flagged
with an error code (U) in the assembly listing.

3. A single quote followed by a single ASCII character, or a
double quote followed by two ASCII characters. This type of
expression construction is explained in detail in Section
6.3.3.

4. An expression enclosed 1in angle brackets (<>). Any
expression so enclosed is evaluated and reduced to a single
term before the remainder of the expression in which it
appears 1is evaluated. Angle brackets, for example, may be
used to alter the left-to-right evaluation of expressions (as
in A*B+C versus A*<B+C>), or to apply a unary operator to an
entire expression (as in -<A+B>).*

5. A unary operator followed by a symbol or number.

3.9 EXPRESSIONS

Expressions are combinations of terms joined together by binary
operators (see Table 3-5). Expressions reduce to a 16-bit value. The

evaluation of an expression 1includes the determination of its
attributes. A resultant expression value may be any one of four types
(as described later in this section): relocatable, absolute,

external, or complex relocatable.

Expressions are evaluated from left to right with no operator
hierarchy rules, except that unary operators take precedence over
binary operators. A term preceded by a unary operator is considered
to <contain that operator. (Terms are evaluated, where necessary,
before their use in expressions.) Multiple unary operators are valid
and are treated as follows:*

-+-A
is equivalent to:

~<+<-A>>

* The maximum depth of an expression is governed by the MACRO-11
assembler's expression stack space. If an expression exceeds the
assembler's maximum expression depth, the statement is marked with an
(E) error, and processing continues.

3-16

SYMBOLS AND EXPRESSIONS

A missing term, expression, or external symbol is interpreted as a
zero. A missing or illegal operator terminates the expression
analysis, causing error codes (A) and/or (Q), to be generated in the
assembly 1listing, depending on the context of the expression itself.
For example, the expression:

A+ B 177777
is evaluated as
A+ B

because the first non-blank character following the symbol B is not a
legal binary operator, an expression separator (a comma), or an
operand field terminator (a semicolon or the end of the source line),

NOTE

Spaces within expressions can serve as
delimiters only between symbols, In

other words, the expressions
A+ B
and
A+B

are the same, but the symbeols
B17
and
B 17

are not (B 17 is not a single symbol).

At assembly time the value of an external (global) expression is equal
to the wvalue of the absolute part of that expression. For example,
the expression EXTERN+A, where "EXTERN" is an external symbol, has a
value at assembly time that 1is equal to the value of the internal
(local) symbol A. This expression, however, when evaluated at 1link
time takes on the resolved value of the symbol EXTERN, plus the value
of symbol A,

Expressions, when evaluated by MACRO-11, are one of four types:
relocatable, absolute, external, or complex relocatable. The
following distinctions are important:

1. An expression is relocatable if its value is fixed relative
to the base address of the program section in which it
appears; it will have an offset value added at 1link time.
Terms that contain labels defined in relocatable program
sections will have a relocatable value; similarly, a period
(.) 1in a relocatable program section, representing the value
of the current location counter, will also have a relocatable
value.

SYMBOLS AND EXPRESSIONS

2. An expression 1is absolute if 1its wvalue is fixed. An
expression whose terms are numbers and ASCII conversion
characters will reduce to an absolute value. A relocatable

expression or term minus a relocatable term, where both
elements being evaluated belong to the same program section,
is an absolute expression. This is because every term in a
program section has the same relocation bias. When one term
is subtracted from another, the resulting bias is zero.
MACRO-11 can then treat the expression as absolute and reduce
it to a single term upon completion of the expression scan.
Terms that contain labels defined in an absolute section will
also have an absolute value.

3. An expression is external (or global) if it contains a single
global reference (plus or minus an absolute expression value)
that is not defined within the current program. Thus, an
external expression 1is only partially defined following
assembly and must be resolved at link time.

4. An expression is complex relocatable if any one of the
following conditions applies:

- It contains a global reference and a relocatable symbol.
- It contains more than one global reference.

- It contains relocatable terms belonging to different
program sections.

- The value resulting from the expression has more than one
level of relocation. For example, if the relocatable
symbols TAGl and TAG2, associated with the same program
section, are specified 1in the expression TAG1+TAG2, two
levels of relocation will be introduced, since each symbol
is evaluated in terms of the relocation bias in effect for
the program section.

- An operation other than addition 1is specified on an
undefined global symbol.

- An operation other than addition, subtraction, negation, or
complementation is specified for a relocatable value.

The evaluation of relocatable, external, and complex relocatable
expressions 1is completed at link time. The maximum number of terms
that can be specified in a complex expression 1is 1limited by the
maximum size of the object record. The maximum number of terms is 20
(decimal).

CHAPTER 4

RELOCATION AND LINKING

The output of MACRO-11 is an object module that must be processed or
linked before it can be loaded and executed. Essentially, linking
fixes (makes absolute) the values of relocatable or external symbols
in the object module, thus transforming the object module, or several
object modules, into an executable image,

To allow the value of an expression to be fixed at link time, MACRO-11
outputs certain instructions in the object file, together with other
required parameters. For relocatable expressions in the object
module, the base of the associated relocatable program section is
added to the value of the relocatable expression provided by MACRO-11.
For external expression values, the value of the external term in the
expression (since the external symbol must be defined in one of the
other object modules being 1linked together) is determined and then
added to the absolute portion of the external expression, as provided
by MACRO-11,

All instructions that require modification at link time are flagged in
the assembly 1listing, as illustrated in the example below. The
apostrophe (') following the octal expansion of the instruction
indicates that simple relocation is required; the letter G indicates
that the value of an external symbol must be added to the absolute
portion of an expression; and the letter C indicates that complex
relocation analysis at link time is required in order to fix the value
of the expression.

EXAMPLE:
35865 CLR RELOC (R5) ;Assuming that the value of the
goondg!’ ;symbol "RELOC", 40, is relocatable
;the relocation bias
;will be added to this value.
#35865 CLR EXTERN (R5) ;The value of the symbol "EXTERN" is
02000 0G ;assembled as zero and is

;resolved at link time.

RELOCATION AND LINKING

905065 CLR EXTERN+6 (R5) ;The value of the symbol "EXTERN"
0000A6G ;1s resolved at link time
;and added to
;jthe absolute portion (+6) of
;the expression.

#05665 CLR ~<EXTERN+RELOC> (R5) ;This expression is complex

gr0aeacC ;relocatable because it requires
;the negation of an expression
;that contains a global "EXTERN"
;reference and a relocatable term.

For a complete description of object records output by MACRO-11, refer
to the applicable system manual (see Section #.3 in the Preface).

CHAPTER 5

ADDRESSING MODES

To understand how the address modes operate and how they assemble, the
action of the program counter must be understood. The key rule to
remember is:

"whenever the processor implicitly uses the program counter
(PC) to fetch a word from memory, the program counter is
automatically incremented by 2 after the fetch operation is
completed."”

The PC always contains the address of the next word to be fetched.
This word will be either the address of the next instruction to be
executed, or the second or third word of the current instruction.

Table 5-1 lists the address modes, and Table 5-2 1lists the symbols
used in this chapter to describe the address modes. FEach mode of
address in the chapter is illustrated using either the single operand

instruction CLR or the double operand instruction MOV.

Table 5-1

Addressing Modes

Section

Mode Form Reference
Register mode* R 5.1
Register deferred mode* @R or (ER) 5.2
Autoincrement mode* (ER)+ 5.3
Autoincrement deferred mode* @ (ER)+ 5.4
Autodecrement mode* - (ER) 5.5
Autodecrement deferred mode* @-(ER) 5.6
Index mode** E (ER) 5.7
Index deferred mode** @E (ER) 5.8
Immediate mode** $E 5.9
Absolute mode** @#E 5.1@
Relative mode** E 5.11
Relative deferred mode** @E 5.12
Branch Address 5.13

*

* %

Adds one word to the instruction length for each occurrence of

operand of this form.

Does not increase the length of an instruction.

an

ADDRESSING MODES

Table 5-2
Symbols Used in Chapter 5

Symbol Explanation
E Any expression, as defined in Chapter 3.
R A register expression; in other words, any

"expression containing a term preceded by a percent
sign (%) or a symbol previously equated to such a
term, as shown below:

RO=%0 ;General register #.
R1=R@+1 ;General register 1.
R2=1+%1 ;General register 2.

This symbol may also represent any of the normal
default register definitions (see Section 3.4).

ER A register expression or an absolute expression in
the range @ to 7, inclusive.

5.1 REGISTER MODE
Format:
R

The register itself (R) contains the operand to be manipulated by the
instruction.

Example:

CLR R3 ;Clears register 3.

5.2 REGISTER DEFERRED MODE
Format:

@R or (ER)

The register (R) contains the address of the operand to be manipulated
by the instruction.

Examples:

CLR @Rr1 ;All these instructions clear
CLR (R1) ;the word at the address
CLR (1) ;contained in register 1.

ADDRESSING MODES

5.3 AUTOINCREMENT MODE
Format:

(ER) +

The contents of the register (ER) are incremented immediately

being used as the address of the operand

Examples:

(see Note below).

CLR (RO) + ;Each instruction clears
CLR (R4) + ;the word at the address

CLR (R2)+ ;contained in
;register and

the specified
increments

;that register's contents

s by two.

NOTE

Certain special instruction/address mode
combinations, which are rarely or never

used, do not operate the

same on all

PDP-11 processors, as described below.

In the autoincrement mode,

both the JMP

and JSR instructions autoincrement the

register before its use on

the PDP-11/47%

but not on the PDP-11/45 or 11/14.

In double operand instructions having

the addressing form
Rn,-(Rn), where the
destination registers are

Rn, (Rn)+ or
source and
the same, the

source operand 1is evaluated as the
autoincremented or autodecremented

value, but the destination

register, at

the time it is used, still contains the
originally intended effective address.
In the following example, as executed on

the PDP-11/48, Register
contains 10@(8):

originally

MOV RO, (RO)+ ;The quantity 162 is moved
;to location 100.

MOV RO ,-(R@) ;The quantity 76 is moved
;to location 144.

The use of these forms

should be

avoided, since they are not compatible

with the entire family
processors.

of PDP-11

An error code (Z) is printed in the
assembly 1listing with each instruction

which is not compatible

among all

members of the PDP-11 family.

after

ADDRESSING MODES

5.4 AUTOINCREMENT DEFERRED MODE
Format:

@ (FER) +
The register (ER) contains a pointer to the address of the operand.
The contents of the register are incremented after being used as
pointer.
Example:

CLR @(R3)+ ;The contents of register 3 point

;to the address of a word to be

;cleared before the contents of the
;jregister are incremented by two.

5.5 AUTODECREMENT MODE
Format:
- (ER)

The contents of the register (ER) are decremented before being used as
the address of the operand (see Note in Section 5.3).

Examples:
CLR -(R@) ;Decrement the contents of the speci-
;fied register (6, 3, or 2) by two
CLR -(R3) ;before using its contents
CLR -(R2) ;as the address of the word to be

;cleared.

5.6 AUTODECREMENT DEFERRED MODE
Format:
@-(ER)

The contents of the register (ER) are decremented before being used as
a pointer to the address of the operand.

Example:

CLR @- (R2) ;Decrement the contents of
;register 2 by two before
;using its contents as a pointer
;to the address of the word to be
;cleared.

ADDRESSING MODES

5.7 INDEX MODE
Format:
E(ER)

An expression (E), plus the contents of a register (ER), vyields the
effective address of the operand. 1In other words, the value E is the
offset of the instruction, and the contents of register ER form the

base. (The wvalue of the expression (E) is stored as the second or
third word of the instruction.)

Examples:

CLR X+2(R1) ;The effective address of the word
;to be cleared is X+2, plus the
;contents of register 1.

MOV RO ,-2(R3) ;The effective address of the
;destination location is -2, plus
;the contents of register 3.

5.8 INDEX DEFERRED MODE
Format:

@E (ER)

An expression (E), plus the contents of a register (ER), vields a
pointer to the address of the operand. As in index mode above, the
value E is the offset of the instruction, and the contents of register
ER form the base. (The value of the expression (E) is stored as the
second or third word of the instruction.)

Example:

CLR @114 (R4) ;I1f register 4 contains 1¢#, this
;value, plus the offset 114, yields
;the pointer 214. 1If location 214
;contains the address 200¢, location
;2000 would be cleared.

NOTE

The expression @ (ER) may be used, but it
will be assembled as if it were written
@O (ER), and a word will be used to store
the @.

ADDRESSING MODES

5.9 IMMEDIATE MODE
Format:
$E

Immediate mode allows the operand itself (E) to be stored as the
second or third word of the instruction. The number sign (#) is an
addressing mode indicator. Appearing in the operand field this
character specifies the 1immediate addressing mode, 1indicating to
MACRO-11 that the operand itself immediately follows the 1instruction
word. This mode is assembled as an autoincrement of the PC.

Examples:

MOV #100,R7 ;Move the value 100 into register 4.
MOV #X,R0A ;Move the value of symbol X into
;register 4.

The operation of this mode can be shown through the first example,
MOV #100,R8, which assembles as two words:

Location 26: @0 1 2 7 @ @
Location 22: @ ¢ 0 1 @ @
Location 24: Next instruction

The source operand (the value 10@8) is assembled immediately following
the instruction word. Upon execution of the instruction, the
processor fetches the first word (MOV) and increments the PC by 2 so
that it ©points to the second word, location 22, which contains the
source operand.

After the next fetch and increment cycle, the source operand (180) is
moved into register @, leaving the PC pointing to location 24 (the
next instruction).

5.1¢ ABSOLUTE MODE
Format:
Q4E

Absolute mode is the equivalent of immediate mode deferred. The
address expression @#E specifies an absolute address which is stored
as the second or third word of the instruction. In other words, the
value immediately following the instruction word 1is taken as the
absolute address of the operand. Absolute mode 1is assembled as an
autoincrement deferred of the PC.

Examples:
MOV Q#12¢,RA ;Move the contents of absolute
;location 104 into register R#O.
CLR Q#X ;Clear the contents of the location

;whose address is specified by
;the symbol X.

ADDRESSING MODES

The operation of this mode can be shown through the first example,
MOV @#142,R2, which assembles as two words:

Location 2@: @1 3 7 @ @
Location 22: ¢ @0 &1 @0 9
Location 24: Next instruction

The absolute address 10f is assembled immediately following the
instruction word. Upon execution of the instruction, the processor
fetches the first word (MOV) and increments the PC by 2 so that it
points to the second word, location 22, which contains the absolute
address of the source operand. After the next fetch and increment
cycle, the contents of absolute address 100 (the source operand) are
moved into register @, leaving the PC pointing to location 24 (the
next instruction).

5.11 RELATIVE MODE
Format:
E

Relative mode is the normal mode for memory references within vyour
program. It is assembled as index mode, using the PC as the index
register. The offset for the address calculation is assembled as the
second or third word of the instruction. This value is added to the
contents of the PC to yield the address of the source operand.

Examples:
CLR 100 ;Clear absolute location 160
MOV RO,Y ;Move the contents of register 0

;to location Y

The operation of relative mode <can be shown with the statement
MOV 12¢,R3, which assembles as two words:

Location 20: @8 1 6 7 # 3
Location 22: 0 0 ¢ & 5 4
Location 24: NEXT INSTRUCTION

The offset, the constant 54, is assembled immediately following the
instruction word. Upon execution of the instruction, the processor
fetches the first word (MOV) and increments the PC by 2 so that It
points to the second word, location 22, containing the value 54.
After the next fetch and increment cycle, the processor calculates the
effective address of the source operand by taking the contents of
location 22 (the offset) and adding it to the current value of the PC,
which now points to location 24 (the next instruction). Thus, the
source operand address is the result of the calculation
OFFSET+PC = 54+24 = 10¢(8), causing the contents of location 1@ to be
moved into register 3.

ADDRESSING MODES

The index mode statement:
MOV 190-.-4(PC) ,R3

is equivalent to the relative mode statement:
MOV 188 ,R3

100-.-4 is the offset for the 1index mode statement. The current
location <counter (.) holds the address of the first word of the
instruction (2@, in this case) and the PC has to move down 4 bytes to
reach location 24 (the next instruction). So, the offset could be
written as 180-20-4 or 54(8).

Therefore, for the index mode, the offset (54(8)) added to the
PC(24(8)) yields the effective address (54 + 24 = 140 (8)) of the
operand.

Thus, both statements move the contents of location 188 into register
3.

NOTE

The addressing form @#E differs from
form E in that the second or third word
of the instruction contains the absolute
address of the operand, rather than the
relative distance between the operand
and the PC (see Section 5.14). Thus,
the instruction CLR @100 clears

absolute location 108, even 1if the
instruction is moved from the point at
which it was assembled. See the

description of the .ENABL AMA function
in Section 6.2.1, which causes all
relative mode addresses to be assembled
as absolute mode addresses.

5.12 RELATIVE DEFERRED MODE
Format:
QE

The relative deferred mode is similar in operation to the relative
mode above, except that the expression E is used as a pointer to the
address of the operand. 1In other words, the operand following the
instruction word is added to the contents of the PC to yield a pointer
to the address of the operand.

Example:

MOV @x,R@ ;Relative to the current value of
;the PC, move the contents of the
;location whose address is pointed
;to by location X into register 4.

ADDRESSING MODES

5.13 BRANCH INSTRUCTION ADDRESSING

The branch instructions are l-word instructions. The high-order byte
contains the operator, and the low-order byte contains an 8-bit signed
offset (seven bits, plus sign), which specifies the branch address
relative to the current value of the PC. The hardware calculates the
branch address as follows:

1. Extends the sign of the offset through bits 8-15.

2. Multiplies the result by 2, creating a byte offset rather
than a word offset.

3. Adds the result to the current value of the PC to form the
effective branch address.

MACRO-11 performs the reverse operation to form the word offset from
the specified address.

Word offset = (E-~-PC)/2 truncated to eight bits.

When the offset is added to the PC, the PC is moved to the next word
(PC=.+2). Hence the -2 in the following calculation.

Word offset = (E-.-2)/2 truncated to eight bits.

The following conditions generate an error code (A) in the assembly
listing:

1. Branching from one program section to another

2. Branching to a location that is defined as an external
(global) symbol

3. Specifying a branch address that is out of range, meaning
that the branch offset is a value that does not lie within
the range -128(18) to +127(18@).

5.14 USING TRAP INSTRUCTIONS

Since the EMT and TRAP instructions do not use the low-order byte of
the instruction word, information is transferred to the trap handlers
in the low-order byte. If the EMT or TRAP instruction is followed by
an expression, the value of the expression is stored in the low-order
byte of the word. Expressions greater than 377(8) are truncated to
eight bits, and an error code (T) 1is generated in the assembly
listing.

For more information on traps see the PDP-11 PpProcessor Handbook and
the applicable system manual (see Section f.3 in the Preface).

CHAPTER 6

GENERAL ASSEMBLER DIRECTIVES

A MACRO-11 directive is placed in the operator field of a source line.
Only one directive 1is allowed per source line. Each directive may
have a blank operand field or one or more operands. Legal operands
differ with each directive.

General assembler directives are divided into the following
categories:

1. Listing control
2. Function control

3. Data storage

4. Radix and numeric control

5. Location counter control

6. Terminator

7. Program sectioning and boundaries
8. Symbol control

9. Conditional assembly
14. File control

Each is described in its own section of this chapter (see Table 6-1

for an alphabetical listing of the directives and the associated
section reference).

Table 6-1
Directives in Chapter Six
Section

Directive Function Reference
.ASCII Stores delimited string as a sequence 6.3.4

of the 8-bit ASCII code of their

characters.
.ASCIZ Same as .ASCII except the string 1is 6.3.5

followed by a zero byte.

(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 6-1 (Cont.)
Directives in Chapter Six

Section

Directive Function Reference

.ASECT Similar to .PSECT. 6.7.2

.BLKB Allocates bytes of data storage. 6.5.3

. BLKW Allocates words of data storage. 6.5.3

.BYTE Stores successive bytes of data. 6.3.1

.CROSS Enables cross reference. 6.2.2

.CSECT Similar to .PSECT. 6.7.2

.DSABL Disables specified assembler 6.2.1
functions.

. ENABL Enables specified assembler functions. 65.2.1

. END Indicates end of source input. 6.6

. ENDC Indicates end of conditional assembly 6.9.1
block.

. EVEN Ensures that current value of the 6.5.1
location counter is even.

.FLT2 Generates 2 words of storage for each 6.4.2.1
floating-point number argument.

.FLTA4 Generates 4 words of storage for each 6.4.2.1
floating-point number argument.

.GLOBL Defines listed symbols as global. 6.8.1

.IDENT Provides additional means of labeling 6.1.4
an object module,

JIF Assembles block if specified condi- 6.9.1
tions are met.

.IFF Assembles block 1if condition tests 6.9.2
false.

LIFT Assembles block if condition tests 5.9.2
true.

.IFTF Assembles block regardless of whether 6.9.2
condition tests true or false.

.IIF Permits writing a one line conditional 6.9.3
assembly block.

. INCLUDE. Includes another MACRO-11] source file. 6.10.2

.LIBRARY Adds file to MACRO-11 library search 6.10.1

list.

(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table A-1 (Cont.)
Directives in Chapter Six

Section
Directive Function Reference
.LIMIT Allocates two words for storage. At 6.5.4
link time puts the lowest address of
the 1load image in the first of the
saved words and the address of the
first free word following the image
in the second.
LLIST Increments listing count or 1lists 6.1.1
certain types of code.
.NLIST Decrements listing count or suppresses 6.1.1
certain types of code.
.NOCROSS Disables cross reference. 6.2.2
.0DD Ensures that the current value of the 6.5.2
location counter is odd.
.PACKED Generates packed decimal data, two 6.3.8
digits per byte.
.PAGE Starts a new listing page. 6.1.5
.PSECT Declares names for program sections 6.7.1
and establishes their attributes.
.RAD5S0 Generates data in Radix-50 packed 6.3.6
format.
.RADIX Changes radices throughout or in 6.4.1.1
portions of the source program.
.REM Delimits a section of comments. 6.1.6
.RESTORE Retrieves a previously .SAVEd program 6.7.4
section.
.SAVE Places the current program section on 6.7.3
top of the program section context
stack.
.SBTTL Produces a table of contents 6.1.3
immediately preceding the assembly
listing and puts subheadings on each
page in the listing.
.TITLE Assigns a name to the object module 6.1.2
and puts headings on each page of
the assembly listing.
.WEAK Defines listed symbols as WEAK. 6.8.2
.WORD Generates successive words of data in 6.3.2

the object module.

GENERAL ASSEMBLER DIRECTIVES

6.1 LISTING CONTROL DIRECTIVES

Listing control directives control the content, format, and pagination
of all line printer (see Figure 6-1) and teleprinter (see Figure 6-2)
assembly listing output. On the first line of each page, MACRO-11
prints the following (from left to right):

1. Title of the object module, as established through the .TITLE
directive (see Section 6.1.2).

2. Assembler version identification.

3. Day of the week.

4. Date.

5. Time of day.

6. Page number.
The second line of each assembly listing page contains the subtitle
text specified 1in the last-encountered .SBTTL directive (see Section

6.1.3).

In the 1line printer format (Figure 6-1) binary extensions for
statements generating more than one word are listed horizontally.

In the teleprinter format (Figure 6-2) binary extensions for
statements generating more than one word are listed vertically. There
is no explicit truncation of output to 8@ characters by the assembler.

GENERAL ASSEMBLER DIRECTIVES

butr3sTT ATqWassy 193ulid 9url Jo o1durexd

FIXIS

puUNOy [OQWRS OU JT Z 935§
JB91STEAJ }{J4OM 3403S3Y¢

JeYD Yuelq UOU 8 0} UBIS MONS

$3R 41 [OQWAS 40 Ppua 0% Ysnl s

ou J1 ulese 09¢

4844Nq [OQWAS 4O Pud 38 4T 353L4

424D BUIMOTTO4 3204

184UT04 3dueape +sdeyd Mol ayYyq UT ppe }snfé

11 3523 pue dey
Jeyd J4apJdao MmO 195 MONS

anoqe se (1 aIpueHs
Jeyd sayjoue 3294

4840 USTY 3y3 peoTd
XapuyY puom ayeys

304 T FIX3I4

0SaYY 03 del¢

385 7 YJTIM HOU ST FEIXI4

0Y ¢ 10dUAS
T4+ (dS)

$C
(SM)ZT74110
$1
v+10dWASE ¢ TY

+(TY) ‘0N
$£
0¥ (S¥)Z41L3

(TY) 1 (0Y)Zq108Y
0y
$L

OM(SM)ZTILLD

(TY) 4 (0N THLOGRY
oY
$E

oy (SY¥)C81LD
$v

2132QeydIe 404 J1eyd IS4T) sS3L¢ JUV L1044 (5¥)41LD

4T 4312 MONS
1844Nnq [OQWAS }jO PU3 32 UTOJS
UeDSAd JO 8SED Ul JBjUI0d UBRDS BABGH
43351534 Y4OM aAegé

(T -

(T¥) -
THéVHT109WASE
93dWAS INJYHD
(d8)-¢TY

‘paJalTeun ST J13}UT04 LIS 3sed

10QERS OU JT 488 Z pue J4ea(d 43J4nq [0JQERS
JUe[Q-UOL 3Xau je 3a8S JAJUT04 LUEIS UYjIM 3AeaT]

NyN13y
NOW
NOW

dNL3S
194
g181
3Ng
dHD

YH2139
qav
374

gan0ou
¥YHI139
aqy
sy
ERL:
N0

YHI139
AQW
sy
Ig

anou
- D34
a119
¥12
4710
AOW
AOKW

G0W:

STy} WI

*10qQWRsS JO PuUd 3sed JBYD
*TOQWAS QGIYY © 440 ueds
WHASL139

1-9 2anbtg
9000000
1 24
1L 3
,C92000
Iv00000
HE ¥4
,29¢000
,€09000
,E9C000
,E9%000
HE ¢ C92000

tWASL39

A em am ‘B am am

iuaas

-+

0v0000 ,000000

9¥00000
9000000 9000000

£02000
004910
109210

0L£200
594501
LPETO0
LETQZO

10090
TIv£00
005911

110990
00£900
12v£00
005911

TT0910
00£9200
I£¥£00
005911
PERXTOO0
LES9ET
1¥0500
Tv0500
104210
L9L910
vT0T0

092000
¥S2000
€52000
2v2000
¥r2000
0¥ 2000
?€£2000
€E2000
922000
¥ZT000
222000
212000
212000
202000
¥0Z2000
€0C000
?L1000
<L1000
2921000
¥?1000
921000
951000
¥51000
2¢ 1000
¥r1000
c¥1000
?£1000
0£1000
9C1000

“ONMTewoONCO

GENERAL ASSEMBLER DIRECTIVES

butastT1 ATqwessy 193utid auIlT jo ordwexdy

£42poQe ¢ L00¢900¢S5004¥004L004Z004T00¢002
ZAX$ 00Z400C“00Z¢00C“00Z“ZLOTL0¢0L0
MANLSYDDE LZ0PZ0CZ04HZO0LZ04ZTOTZ00Z0
ONHINCTIHS LT0“PTO“STOVPIOETIOCIO TTIO*OTO
9430249V ¢ L00‘004S00¢¥004L00¢Z004T00¢002
68¢ 00Z400Z400Z“00C400Z400Z4LV049¥0
LPSVECTO! SPO‘VYO“EVOTYOCTVOCOVO04LE09E0
* 00Z4¥E0400T¢00Z4002400240024008
C0Zf00T 00T EL0“00Z00C“00Z4000
00Z400Z400Z400Z400C“00T400C¢00C
00C400T400C¢00Z00C“00Z400EZ¢002
00Z400C¢00C€00Z¢00Z400Z4002400C
00Z“00C400Z¢00C400Z40024002¢002
X34

$

LT P AR L ST PTG

‘haAlBsad S9TQ 440 £0S0AVY 30U MAYY O L1 41 éadeds
anteA 0GIYY BUTIPUOLSALI0D 385 0% 3nTeA [IJSY 314

3LAg?
JlAaq
31A9°
Jirg’
EFPY: 8
3LA9°
EFPY:)
EFOY: O
3LAq
3LAd
3lAq:
EFUY:
3148
LISITIN®

uayy o
L 43t
Z14119

(*3uod)

1274110

03 41
xapug
arqey

-

-9 2anbtg

n em am I am

co00
Zg0
2zo
<10
200
00<
ovo
00C
002
00c
00c
00c
o0c

100
120
10
110
100
Lv0
80
00c
002
00<
002
002
¢oc

o0&
0£0
020
010
00
2v0
?£0
00c
000
00¢
002
002
002

CEr000
cIv000
20v000
ZL£000
29£000
€52000
creE000
CEL000
ecg000
Z1£000
202000
cL2000
292000

L5
25
o5
va
£5

<h

134
05
134
8¢
r44
ot
21 4
144
£v

134

0¥

8%

6-6

GENERAL ASSEMBLER DIRECTIVES

burast1 ATquessy i1s3jutideral jo ordwexd -9 21nbrg

(TY) “(0M)CHLOSY
0y
$£

asoge Sse 31 ITpUeH4 oM (SY)ETTLLD
J8Yd 4ayjoue 43gi

4243 YSTY ay3 PeoTe (1Y) ¢ (OM) TALOSY
XapuT pJOom 2yels 0y

30U 4T TxI $%

OGN 0% <2i¢ OM(SMIZIELLD

385 7 YPIM 30U 4T JIXI4 st

Jryaqeydre Jog Jeyo 3sSdTy S8l JIVLI$4(SY)THLLD

(TN -

3T Jea[d mMON¢ (Ty) -

4844Ng [OQWAS 4O PuUd 3& JUTO4S T4v+TI0IWASS
UEDSaJ JO 8SED UT J4I}JUIOd UBDS DASGH 9IAWAS ¢ LNJNHD
183STIFad 4JOM aAaegs (dS) -4 1N

*pasalTeEUN ST J433UT04 ULIS ased sSIYg
10QWRS OU 4T 39S 7 pue JUEATI J3J4NQ [OQEAS °*TOGMARS 4O PpuU3d S84 JEUD
AURTQ-UOU }XdU 38 135 13JUT0Z UEIS UYJIM 3Ae3T *TOgqUAS OGOYY £ 340

qav
sy
g

gA0R
4HJ139

AQHW
sy
E Rk

dn0u

b3g

4114

412
4712

AOW

AOW

NOW: IWASLIS

_LH

i

m em en 4B am em

-

/209000
110990
00£900
T2#£00

+E92000
0059711

/2?7000
10910
00£900
TEvL00

+E92000
005911
eV 100
0¥0000

+000000
LESPET
I¥0500
I¥0500

9%00000
104210

9000000

9000000
L9L910
?¢10T10

P0E000
¥02000
202000

941000
<L1000

791000
$¥21000
291000

251000
¥51000

2¥1000
v¥1000
Z¥ 1000

L1000

CET000
921000

—“NMTHDOoND O

GENERAL ASSEMBLER DIRECTIVES

butistT ATqusssvy 1s9juradetal jJo ordwexd (*3Uo0)d) z-9 2inbrd

X31 LSIIN® vy
£Y
~4 T
*paALBsSal S3TQ 42Y3Q 40SOYY 30U uay3 O 17 T adeds uayy 0 DI 41 ¢ v
anteA 0GIYY FUIPUO4S3IL0D 385 03 aniea IIJSY 3TQ £ YJTIM xapul ¢ oY
zaL1D @19e] ¢ 4%
+4 8¢
28
1TX3¢ NMMLIY LOZ000 09Z000 9%

9000000
puUNOy TOQWRS OU 4T 7 33G4 04 ¢ 10dWAS NOM 004910 ¥SZ000 &€
4293STEaY 4OM 210%SaYS TH4(dS) AOM t$% T09ZT0 ZSZ000 bE
d8Yd fUET UOU 2 0} UBIS MON{ AN13S t1$g 9¥T000 £F
$Z 194 0ZEE00 %2000 2§

/TITO00
S8R 4T TOQWAS 40 puUa 0} UsShTd¢ (54)274110 4151 S9.80T 0FZ000 If
ou 41 urese og¢ $7 3Ng LVEI00 9ET000 OF

9% 00000
1844MQ [OQUSS 4O puU3 48 ST 4Sals V+I0GHASE TY 4W3 LZTOZ0 TEZ000 68
484D FUTMOTTOS 3384 ¥H3139 XY 9TZ000 82
43}juT0< 3ouEApPE §18yd MOT Byjz T ppe 3Snfé T 40N aay 120090 ¥Z2000 cE
$£ ERT TI4L£00 22000 9T

,Z9TO00

31T 3583 pue Leys OY¥4(SY)Z1d1L1d JAON 005%91IT 912000 K&
Lm:u._mn,_ozoﬂ.«wmzoz“ .mIo.ruw mﬂwooocm

GENERAL ASSEMBLER DIRECTIVES

LIST |
NLIST

6.1.1 L.LIST and .NLIST Directives

Formats:

.LIST

LLIST arg
.NLIST
.NLIST arg

where: arg represents one or more of the optional symbolic
arguments defined in Table 6-2,

As indicated above, the listing control directives may be used without
arguments, in which case the 1listing directives alter the listing
level count. The listing level count is initialized to zero. At each
occurrence of a .LIST directive, the 1listing 1level count is
incremented; at each occurrence of an .NLIST directive, the listing
level <count 1is decremented. When the level count is negative, the
listing 1is suppressed (unless the line contains an error).
Conversely, when the level count is greater than zero, the listing is
generated regardless of the context of the line, Finally, when the
count is zero, the line is either listed or suppressed, depending on
the listing controls currently in effect for the program. The
following macro definition employs the .LIST and .NLIST directives to
selectively list portions of the macro body when the macro is
expanded:

.MACRO LTEST ;List test
; A-this line should list ;Listing level count is g.

.NLIST ;Listing level count is -1.
; B-this line should not list

.NLIST ;Listing level count is -2,
; C-this line should not list

.LIST ;Listing level count is -1.
; D-this line should not list

LLIST ;Listing level count is 4.
; E-this line should list ;Listing level count is @.
; F-this line should 1list ;Listing level count is @.
; G-this line should list ;Listing level count is 4.

. ENDM

LLIST ME ;List macro expansion.

LTEST ;Call the macro
; A-this line should 1list ;Listing level count is g.
; E-this line should list ;Listing level count is 4.
; F-this line should list ;Listing level count is @.
; G-this line should list ;Listing level count is ¢.

Note that the lines following line E will 1list because the 1listing
level count remains @. If a L.(LIST directive 1is placed at the
beginning of a program, all macro expansions will be listed unless a
.NLIST directive is encountered.

GENERAL ASSEMBLER DIRECTIVES

An important purpose of the level count is to allow macro expansions
to be listed selectively and yet exit with the listing level count
restored to the value existing prior to the macro call.

When used with arguments, the listing directives do not alter the
listing level count. However, the .LIST and .NLIST directives can be
used to override current listing control, as shown 1in the example
below:

.MACRO XX
.LIST ;List next line.
X=,
.NLIST ;Do not list remainder of macro
. ;expansion.
. ENDM
.NLIST ME ;Do not list macro expansions.
XX
X=.

The symbolic arguments allowed for use with the listing directives are
described in Table 6-2. These arguments can be used singly or in
combination with each other. 1If multiple arguments are specified in a
listing directive, each argument must be separated by & comma, tab, or
space. For any argument not specifically included 1in the control
statement, the associated default assumption (List or No list) is
applicable throughout the source program. The default assumptions for
the listing control directives also appear in Table 6-2.

Table 5-2
Symbolic Arguments of Listing Control Directives

Argument Default Function

SEQ* List Controls the listing of the sequential
numbers assigned to the source lines.
If this number field 1is suppressed
through an .NLIST SEQ directive,
MACRO-11 generates a tab, effectively
allocating blank space for the field.
Thus, the positional relationships of
the other fields in the listing remain
undisturbed. During the assembly
process, MACRO-11 examines each source
line for possible error conditions.
For any line in error, the error code
is printed preceding the number field.

* If the .NLIST arguments SEQ, LOC, BIN, and SRC are in effect at
the same time, that is, if all four significant fields in the
listing are to be suppressed, the printing of the resulting blank
line is inhibited.

(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 6-2 (Cont,)
Symbolic Arguments of Listing Control Directives

Argument Default Function

MACRO-11 does not assign line numbers
to files that have had such numbers
assigned by other programs (an editor
program, for instance).

LoCc* List Controls the listing of the current
location counter field. Normally,
this field is not suppressed.

However, 1if it is suppressed through
the .NLIST LOC directive, MACRO-11
does not generate a tab, nor does it
allocate space for the field, as |is
the <case with the SEQ field described
above. Thus, the suppression of the
current location counter (LOC) field

effectively left-justifies all
subsequent fields (while ©preserving
positional relationships) to the

position normally occupied by the
counter's field.

BIN* List Controls the 1listing of generated
binary code. If this field is
suppressed through an .NLIST BIN
directive, 1left-justification of the
source code field occurs in the same
manner described above for the LOC

field.
BEX List Controls the listing of binary
extensions (the 1locations and binary

contents beyond those that will fit on
the source statement line). This is a
subset of the BIN argument.

SRC* List Controls the listing of source lines.

COM List Controls the 1listing of comments.
This 1is a subset of the SRC argument.
The (NLIST COM directive reduces
listing time and space when comments
are not desired.

MD List Controls the listing of macro
definitions and repeat range
expansions.

MC List Controls the listing of macro calls
and repeat range expansions.

* If the .NLIST arguments SEQ, LOC, BIN, and SRC are in effect at
the same time, that is, 1{if all four significant fields in the
listing are to be suppressed, the printing of the resulting blank
line is inhibited.

{(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 6-2 (Cont.)
Symbolic Arguments of Listing Control Directives

Argument Default Function

ME No list Controls the listing of macro
expansions.

MEB No list Controls the listing of macro
expansion binary code. A ,LIST MEB
directive 1lists only those macro
expansion statements that generate

binary code. This is a subset of the
ME argument.

CND List Controls the 1listing of unsatisfied
conditional coding and associated .IF
and .ENDC directives 1in the source
program. A .NLIST CND directive lists
only satisfied conditional coding.

LD No list Controls the listing of all 1listing
directives having no arguments, in
other words, the directives that alter
the listing level count.

TOC List Controls the listing of the table of
contents during assembly pass 1 (see
Section 6.1.3 describing the .SBTTL
directive). This argument does not
affect the printing of the full
assembly 1listing during assembly pass
2.

SYM List Controls the 1listing of the symbol
table resulting from the assembly of
the source program.

TTM No list Controls the 1listing output format.
The default 1is set to line printer
formet. PFigure 6~1 illustrates the
line printer output format. Figure
6-2 illustrates the teleprinter output .
format.

Any argument specified in a .LIST/.NLIST directive other than those
listed in Table 6-2 causes the directive to be flagged with an error
code (A) in the assembly listing.

The listing control options can also be specified at assembly time
through switches 1included in the command string to MACRO-11 (see
Section 8.1.3 and/or the appropriate system manual). The use of these
switches overrides all corresponding listing control (.LIST or .NLIST)
directives specified in the source program.

Figure 6-3 shows a listing, produced 1in 1line printer format,
reflecting the use of the .LIST and .NLIST directives in the source
program and the effects such directives have on the assembly listing
output.

CONTROL BLOCK FIELDS
DAT BLOCK SUMMARY

6.2 DAT BLOCK SUMMARY

This section summarizes the DAT block and its fields. Table 6-2
summarizes the entire block, giving the offset, offset symbol, size,
and a brief description for each field; for a field that has mask or
code symbols, the table also gives the value, symbol, and a brief
description for each mask or code.

Table 6-2: DAT Block Summary

Offset Field
Of fset Symbol Size Description

000 0$COD 1 byte DAT block identifier code
000003 XBSDAT DAT block identifier
001 O$BLN 1 byte DAT block length (bytes)
000046 XBSDTL DAT block length (bytes)

002 O$NXT
004 OS$SRVN
006 O$RDT
016 0$CDT
026 OSEDT
036 0S$BDT

word Next XAB address
word Reserved

words File revision date
words File creation date
words Reserved

words Reserved

G O N QPN

CONTROL BLOCK FIELDS
DAT BLOCK SUMMARY '

6.2.1 BLN Field in DAT Block (XB$DTL Code)

USE Contains the length of the DAT block.

INIT None

SIZE 1 byte

ACCESS SFETCH dst ,BLN,reg ;BLN field to l-byte dst

SCOMPARE src,BLN,reg ;1-byte src with BLN field

6-14

CONTROL BLOCK FIELDS
DAT BLOCK SUMMARY

6.2.2 CDT Field in DAT Block

USE

INIT

SIZE

ACCESS

OUTPOT

Contains the binary creation date for the file. The time
value is a binary number in l100-nanosecond units offset
from the system base date and time, which is 00:00
o'clock, November 17, 1858 (the Smithsonian base date and
time for the astronomical calendar).

None

4 words

SFETCH dst,CDT,reg ;CDT field to 4-word dst
OPEN File creation date

CORTROL BLOCK FIELDS
DAT BLOCK SUMMARY

6.2.3 COD Field in DAT Block (XBSDAT Code)

USE Contains the identifier for the DAT block.

INIT None

SIZE 1 byte

ACCESS SFETCH dst,COD,reg ;COD field to l-byte dst

$COMPARE src,COD,reg ;1-byte src with COD field

GENERAL ASSEMBLER DIRECTIVES

repres
be
equal sign (=),
semicolon (;),

in Section
not match,
used, the
code (A)

6.3.4).

LIDENT d

In addition to the name assigned t
directive (see Section 6.1.3), the
l1abel the object module with the prog

An example of the .IDENT directive is
.IDENT /V01.88/

The character string 1s converted

included in the global symbol dire

character string also appears in the

and the Librarian directory listings.

Wwhen more than one

ent delimiting characters.
any paired printing
the left angle
as long as the delimiting characte
not contained within th

or if an illegal

o the object module with the
.IDENT directive allows the user to

.IDENT directive is en

These delimiters may
characters, other than the
bracket (<), or the
r is
e text string itself (see Note
1f the delimiting characters do
delimiting character is
irective is flagged with an error

in the assembly listing.

.TITLE
ram version number.

shown below:

to Radix-5# representation and
ctory of the object module. This
link map produced at link time

countered in a given program,

the last such directive encountered establishes the character string
which forms part of the object module identification.

The RT-~11 linker allows only one _IDENT string in a progranm. The
linker uses the first .IDENT directive encountered during the first
pass to establish the character string that will be identified with
all of the object modules.

The RSX-11M task builder allows an _IDENT string for each module in
the program. The TASK Builder uses the first .IDENT directive in each

module to establish the character str
that module. Like the RT-11 Linker,
.IDENT directives encountered on the

5.1.5 .PAGE Directive/Page Ejection

Format:
. PAGE

The .PAGE directive is used wit
page eject at desired points i
arguments and causes a skip
encountered.
line sequence counter to be ¢
appear in the listing.

n the
to th

leared.

when used within a macro definition
during the assembly of the macro
operation is per formed as the macro i
the page number is also incremented.

I

hin the source

It also causes the page num

definition.

ing that will be identified with
the RSX-11M Task Builder uses the
first pass.

.PAGE

program to perform a
listing. This directive takes no
e top of the next page when
ber to be incremented and the

The .PAGE directive does not

the .PAGE directive 1is ignored
Rather, the page eject

tself is expanded. In this case,

GENERAL ASSEMBLER DIRECTIVES

Page ejection is accomplished in three other ways:

1. After reaching a count of 58 lines in the 1listing, MACRO-11
automatically performs a page eject to skip over page

perforations on line ©printer paper and to formulate
teleprinter output into pages. The page number 1is not
changed.

2. A page eject is performed when a form-feed character is
encountered. If the form-feed character appears within a
macro definition, a page eject occurs during the assembly of
the macro definition, but not during the expansion of the
macro itself. A page eject resulting from the use of the
form-feed character causes the page number to be incremented
and the line sequence counter to be cleared.

3. A page eject is performed when encountering a new Source
file. In this case the page number is incremented and the
line sequence count is reset.

.REM

6.1.6 LREM Directive/Begin Remark Lines

Format:
.REM comment-character

where: comment-character represents a character that marks the
end of the comment block when the
character reoccurs.

The .REM directive allows a programmer to insert a block of comments
into a MACRO-11 source program without having to precede the comment
lines with the comment character (;). The text between the specified
delimiting characters 1is treated as comments. The comments may span
any number of lines. For example:

. TITLE Remark example

.REM &

Al]l the text that resides here is interpreted by MACRO-11

to be comment lines until another ampersand character is
found. Any character may be used in place of the ampersand.&
CLR PC

. END

6.2 FUNCTION DIRECTIVES

The following function directives are included in a source program to
invoke or inhibit certain MACRO-11 functions and operations incidental
to the assembly process itself.

GENERAL ASSEMBLER DIRECTIVES

.ENABL
.DSABL

6.2.1 LENABL and .DSABL Directives

Formats:

.ENABL arg
.DSABL arg

where: arg represents one or more of the optional symbolic
arguments defined in Table 6-3.

Specifying any argument in an .ENABL/.DSABL directive other than those
listed in Table 6-3 causes that directive to be flagged with an error
code (A) in the assembly listing.

Table 6-3
Symbolic Arguments of Function Control Directives

Argument Default Function

ABS Disable Enabling this function produces absolute
binary output in FILES-11 format. To
convert this output to Formatted Binary
format (as required by the Absolute
Loader), use the FLX utility.

AMA Disable Enabling this function causes all relative
addresses (address mode 67) to be assembled
as absolute addresses (address mode 37).
This function is useful during the
debugging phase of program development.

CDR Disable Enabling this function causes source
columns from 73 to the end of the line, to
be treated as a comment. The most common
use of this feature is to permit sequence
numbers in card columns 73-84.

CRF Enable Disabling this function inhibits the
generation of cross-reference output. This
function only has meaning if
cross-reference output generation is

specified in the command string.

FPT Disable Enabling this function causes floating-
point truncation; disabling this function
causes floating-point rounding.

LC Enable Disabling this function causes MACRO-11 to
convert all ASCII input to upper-case
before processing it.

(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 6-3 (Cont.)

Symbolic Arguments of Function Control Directives

Argument

Default

Function

LCM

LSB

MCL

PNC

Disable

Disable

Disable

Enable

This argument, if enabled, causes the
MACRO-11 <conditional assembly directives
.IF IDN and .IF DIF to be alphabetically
case sensitive. By default, these
directives are not case sensitive,.

This argument permits the enabling or
disabling of a local symbol block.
Although a local symbol block is normally
established by encountering a new symbolic
label, a .PSECT directive or a .RESTORE
directive in the source program, an .ENABL
LSB directive establishes a new local
symbol block which is not terminated until
(1) another .ENABL LSB is encountered, or
(2) another symbolic label, .PSECT
directive or .RESTORE directive is
encountered following a paired .DSABL LSB
directive.

The basic function of this directive with
regard to .PSECTS 1is 1limited to those
instances where it is desirable to leave a
program section temporarily to store data,
followed by a return to the original
program section. This temporary dismissal
of the current program section may also be
accomplished through the .SAVE and .RESTORE
directives (see Sections 6.7.3 and 6.7.4).

Attempts to define 1local symbols in an
alternate ©program section are flagged with
an error code (P) in the assembly listing.

An example of the .ENABL LSB and .DSABL LSB
directives, as typically used in a source
program, is shown in Figure 6-5.

This argument, if enabled, causes MACRO-11
to search all known macro libraries for a
macro definition that matches any undefined
symbols appearing in the opcode field of a
MACRO-11 statement. By default, this
option 1is disabled. If MACRO-11 finds an
unknown symbol in the opcode field, it
either declares a (U) undefined symbol
error, or declares the symbol an external
symbol, depending on the .(ENABL/.DSABL
option setting of GBL (described below).

Disabling this function inhibits binary
output until an (ENABL PNC statement is
encountered within the same module.

(continued on next page)

GENERAL ASSEMBLER DIRECTIVES

Table 6-3 (Cont.)
Symbolic Arguments of Function Control Directives

Argument Default Function

REG Enable When specified, the .DSABL REG directive
inhibits the normal MACRO-11 default
register definitions; if not disabled, the
default definitions listed below remain in
effect.

RO=%0
R1=%1
R2=%2
R3=%3
R4=%4
R5=%5
SP=%6
PC=%7

The .ENABL REG statement may be used as the
logical complement of the .DSABL REG
directive. The use of these directives,
however, is not recommended. For logical
consistency, use the normal default
register definitions listed above.

GBL Enable This argument, if disabled, causes MACRO-11
' to mark all undefined references in
assembly pass 2 with a (U) error in the
assembly listing. The default for this
option is enabled, which causes MACRO-11 to
treat all undefined symbol references as
global, allowing the 1linker to resolve
them.

LENABL/.DSABL MACRO V05.00 Saturday 08-Jjan-83 10:26 Pase 1

1 .TITLE LJENABL/.DSABL

2

3 it

4 3 ILLUSTRATE .ENABL/.DSABL LC

S i

P

7 +ENARL LC $STORE MACRO IN LOWER CASE

8

9 +MACRC TEXT $ss

10 LASCII /This ¢$$ a lower case strins/

11 +ENDNM

12

13 JLIST ME

14 +NLIST BEX

15

146 000000 TEXT is ilnvoke macro in lower case
000000 124 150 151 JASCII /This is a lower case strind/

17

18 +OSARBL LC iNow disable lower case

19

20 000033 TEXT WAS iRE-INVOKE MACRO IN UPPER CASE
000033 124 110 111 JASCII /THIS WAS A LOWER CASE STRING/

21

22 000001 JEND

Figure 6-5 Example of .ENABL and .DSABL Directives

GENERAL ASSEMBLER DIRECTIVES

.CROSS
.NOCROSS

6.2.2 Cross-Reference Directives: .CROSS and .NOCROSS

Formats:
.CROSS
.CROSS syml,sym2,...symn
. NOCROSS
.NOCROSS syml,sym2,...symn
where: syml, represents legal symbolic names. When multiple
sym2,... symbols are specified, they are separated by any
symn legal separator (comma, space, and/or tab).

The .CROSS and the .NOCROSS directives control which symbols are
included in the cross-reference listing produced by the MACRO-11
assembler. These directives have an effect only if the /C[R] or the
/CROSS qualifier was used in the command 1line to select the
cross~reference capability.

By default, the cross-reference listing includes the definition and
all the references to every user symbol in the module. The
cross-reference listing can be disabled for all symbols or for a
specified list of symbols.

When the .NOCR0OSS directive 1is used without a symbol 1list, the
cross-reference 1listing of all the symbols in the module is disabled.
The cross-reference listing of all the symbols 1in the module 1is
reenabled when the .(CR0SS directive is used without a symbol list.
Any symbol definition or reference that appears after a .NOCROSS
directive that 1is wused without a symbol list and before the next
.CROSS directive that is used without a symbol list, is excluded from
the cross-reference listing.

The .NOCROSS directive, used with a symbol 1list, disables the
cross-reference 1listing for the 1listed symbols. When the .CROSS
directive is used with a symbol list, the cross-reference 1listing of
the listed symbols is reenabled.

In the following example, the definition of LABEL1 and the reference
to LOC1 and LOC2 are not included in the cross-reference listing.

Example:

.NOCROSS ;Stop cross reference
LABEL1: MOV LOC1,LOC2 ;Copy data

.CROSS ;Reenable cross reference

In the next example, the definition of LABEL2 and the reference to
LOC2 are included in the cross reference, but the reference to LOCl is
not included.

Example:
.NOCROSS LOC1 ;Do not cross reference LOC1
LABEL2: MOV LOC1,L0OC2 ;Copy data
.CROSS LOC1 ;Reenable cross reference
;of LOCL.

6-22

GENERAL ASSEMBLER DIRECTIVES

The .CROSS directive, used without a symbol list, cannot be' used to
reenable the <cross-reference listing of a symbol specified in the
symbol 1list of a .NOCROSS directive. In addition, if the
cross-reference 1listing of all the symbols in a module is disabled,
the .CROSS directive used with a symbol list will have no effect until
the <cross-reference listing is reenabled by the .CR0OSS directive used
without a symbol list.

The .CROSS directive, with no symbol list, is equivalent to the .ENABL
CRF directive, and the .NOCROSS directive, with no symbol list, is
equivalent to the .DSABL CRF directive.

6.3 DATA STORAGE DIRECTIVES

A wide range of data and data types can be generated with the
directives, ASCII conversion characters, and radix-control operators
described in the following sections.

.BYTE

h.3.1 .BYTE Directive

Format:

.BYTE exp ;Stores the binary value of the
;expression in the next byte.

+.BYTE expl,exp2,expn ;Stores the binary values of the list
;of expressions in successive bytes.

where: exp, represent expressions that must be reduced to 8 bits
expl, of data or less. Each expression will be read as a
. 16-bit word expression, the high-order byte to be
. truncated. The high-order byte must be either all
. Zeros, or a truncation (T) error results.
expn Multiple expressions must be separated by commas.

The .BYTE directive is used to generate successive bytes of binary
data in the object module.

Example:

SAM=5
.=410
.BYTE “D48,5AM ;The value 060 (octal equivalent of 48
;decimal) is stored in location 4190.
;The value g@5 is stored in location
;411.

The construction "D in the first operand of the .BYTE directive above
illustrates the use of a temporary radix-control operator. The
function of such special unary operators 1is described 1in Section
6.4.1.2,

GENERAL ASSEMBLER DIRECTIVES

At link time, it is likely that a relocatable expression will result
in a value having more than eight bits, in which case the task builder
or linker issues a truncation (T) error for the object module 1in
question. For example, the following statements «create such a
possibility:

.BYTE 23 ;Stores octal 23 in next byte.
A:
.BYTE A ;Relocatable value A will probably
;cause truncation error.

If an expression following the .BYTE directive 1is null, it is
interpreted as a zero:

=420
.BYTE - ;Zeros are stored in bytes 420, 421,
:422, and 423.

Note that in the above example, four bytes of storage result from the
.BYTE directive. The three commas in the operand field represent an
implicit declaration of four null values, each separated from the
other by a comma. Hence, four bytes, each containing a value of zero
(@), are reserved in the object module.

.WORD

6.3.2 L.WORD Directive

Formats:

.WORD exp ;Stores the binary equivalent of the
;expression in the next word.

.WORD expl,exp2,expn ;Stores the binary equivalents of the
;1list of expressions in successive

;words.
where: exp, represent expressions that must reduce to 16 bits of
expl, data or less. Multiple expressions must be separated
. by commas.
expn

The .WORD directive is used to generate successive words of data in
the object module.

Example:

SAL=0
.=500
.WORD 177535, .+4,SAL ;Stores the values 177535, 506, and
;8 in words 504, 582, and 584,
;respectively.

GENERAL ASSEMBLER DIRECTIVES

If an expression following the .WORD directive contains a null value,
it is interpreted as a zero, as shown in the following example:

.=500
.WORD .5, ;Stores the values @, 5, and @ in
;location 508, 502, and 5p4,
;jrespectively.

A statement with a blank operator field (one that contains a symbol
other than a macro «call, an instruction mnemonic, a MACRO-11
directive, or a semicolon) is interpreted during assembly as an
implicit .WORD directive, as shown in the example below:

.=44¢
LABEL: 10¢,LABEL ;Stores the value 1@ in location 449
;and the value 440 in location 442.

NOTE

You should not wuse this technique to
generate .WORD directives because it may
not be included in future PDP-11
assemblers.

6.3.3 ASCII Conversion Characters

The single quote (') and the double quote ") characters are unary
operators that can appear in any MACRO-11 expression. Used in
MACRO-11 expressions, these characters cause a 16-bit expression value
to be generated.

When the single quote i1s used, MACRO-11 takes the next character in
the expression and converts it from its 7-bit ASCII value to a 16-bit
expression value. The high-order byte of the resulting expression
value 1is always zero (d). The 16-bit wvalue 1is then used as an
absolute term within the expression. For example, the statement:

MOV 4'A,R0

moves the following 16-bit expression value into register §:

00000000f01000001

LBinary Value of ASCII A

Thus the expression 'A results in a value of 141(8).

The single quote (') character must not be followed by a
carriage-return, null, RUBOUT, line-feed, or form-feed character; if
it is, an error code (A) is generated in the assembly listing.

GENERAL ASSEMBLER DIRECTIVES

When the double quote is used, MACRO-11 takes the next two characters
in the expression oand converts them to a 16-bit binary expression
value from their 7-bit ASCII values. This 16-bit value is then used
as an absolute term within the expression. For example, the
statement:

MOV #"AB,R0

moves the following 14-bit expression value into register @:

01000010)01000001

t—-Binary Value of ASCII A

Binary Value of ASCII B

Thus the expression "AB results in a value of #411¢1(8).

The double quote (") character, like the single quote (') character,
must not be followed by a carriage-return, null, RUBOUT, line-feed, or
form-feed character; if it is, an error code (A) is generated in the
assembly listing,.

The ASCII character set is listed in Appendix A.l.

-ASClII

6.3.4 LASCII Directive

Format:
.ASCII /string 1/.../string n/

where: string is a string of printable ASCII characters. The
vertical-tab, null, 1line-feed, RUBOUT, and all other
non-printable ASCII characters, except carriage-return
and form-feed, cause an error code (I) if used in an
.ASCII string. The <carriage-return and form-feed
characters are flagged with an error code (A) because
these characters end the scan of the line, preventing
MACRO-11 from detecting the matching delimiter at the
end of the character string.

/ / represent delimiting characters. These delimiters may
be any paired printing characters, other than the
equal sign (=), the left angle bracket (<), or the
semicolon (;) (see Note at end of section), as long as
the delimiting character is not contained within the
text string itself. TIf the delimiting characters do
not match, or if an illegal delimiting character Iis
used, the .ASCII directive is flagged with an error
code (A) in the assembly listing.

GENERAL ASSEMBLER DIRECTIVES

The .ASCII directive translates character strings into their 7-bit

ASCII equivalents and stores them in the object module. A
non-printing character can be expressed only by enclosing its
equivalent octal wvalue within angle brackets. Each set of angle

brackets so used represents a single character. For example, 1in the
following statement:

LASCII <15>/ABC/<A+2>/DEF/<5><4>

the expressions <15>, <A+2>, <5>, and <4> represent the values of
non-printing characters. Each bracketed expression must reduce to
eight bits of absolute data or less.

Angle brackets can be embedded between delimiting characters in the
character string, but angle brackets so used do not take on their
usual significance as delimiters for non-printing characters. For
example, the statement:

.ASCII /ABC<expression>DEF/

contains a single ASCII character string, and performs no evaluation
of the embedded, bracketed expression. This use of the angle brackets
is shown in the third example of the .ASCII directive below:

.ASCII /HELLO/ ;Stores the binary representation
;0f the letters HELLO in five
;consecutive bytes.

.ASCII /ABC/<15><12>/DEF/ ;Stores the binary representation
;of the characters A,B,C,carriage
;jreturn,line feed,D,E,F in eight
;consecutive bytes.

LASCII /A<15>B/ ;Stores the binary representation
;of the characters A, <, 1, 5, >,
;and B in six consecutive bytes.

NOTE

The semicolon (;) and equal sign (=) can
be used as delimiting characters in the
string, but care must be exercised in so
doing because of their significance as a
comment indicator and assignment
operator, respectively, as illustrated
in the examples below:

.ASCII ;ABC;/DEF/ iStores the binary
;representation of
;the characters
iA, B, C, D, E, and
;F in six
;consecutive bytes;
;not recommended
;practice.

6-27

GENERAL ASSEMBLER DIRECTIVES

.ASCII /ABC/;DEF; ;Stores the binary
;representations of
;the characters A,
;B, and C in three
;consecutive bytes;
;the characters D,
;E, F, and ; are
;treated as a
;jcomment.

.ASCII /ABC/=DEF= ;Stores the binary
;representation of
;the characters A,
;B, ¢, D, E, and
;F in six
;consecutive bytes;
;not recommended
;practice.

An equal sign is treated as an
assignment operator when it appears as
the first character in the ASCII string,
as illustrated by the following example:

.ASCII =DEF= ; The direct
;assignment
;operation
; JASCII=DEF 1is
;performed, and a
;syntax error (Q)
;1s generated upon
;encountering the

;second = sign.
6.3.5 JASCIZ Directive -ASCIZ
Format:
.ASCIZ /string 1/.../string n/
where: string is a string of printable ASCII characters. The

vertical-tab, null, line-feed, RUBOUT, and all other
non-printable ASCII characters, except carriage-return
and form-feed, <cause an error code (I) if used in an
.ASCIZ string. The carriage-return and form-feed
characters are flagged with an error code (A) because
they end the scan of the 1line, preventing MACRO-11
from detecting the matching delimiter.

GENERAL ASSEMBLER DIRECTIVES

/ / represent delimiting characters. These delimiters may
be any paired printing characters, other than the
equal sign (=), the left angle bracket (<), or the
semicolon (;) (see Note in Section 6.3.4), as long as
the delimiting character is not contained within the
text string itself, If the delimiting characters do
not match or if an 1illegal delimiting character is
used, the .ASCIZ directive is flagged with an error
code (A) in the assembly listing.

The .ASCIZ directive is similar to the .ASCII directive described
above, except that a zero byte is automatically inserted as the final
character of the string. Thus, when a list or text string has been
created with an .ASCIZ directive, a search for the null character in
the last byte can effectively determine the end of the string, as
reflected by the coding below:

CR=15
LF=12
HELLO: LASCIZ <CR>XLF>/MACRO-11 V@5.@808/<CR>XLF> ;Introductory message
. EVEN
MOV #HELLO,R1 ;Get address of message.
MOV #LINBUF ,R2 ;Get address of output buffer.
19%: MOVB (R1)+, (R2)+ ;Move a byte to output buffer.
BNE 198 ;If not null, move another byte.

.RAD50

6.3.6 .RADS@ Directive

Format:
.RADS®# /string 1/.../string n/

where: string represents a series of characters to be packed. The
string must consist of the characters A through Z, @
through 9, dollar sign ($), period (.) and space ().
An illegal printing character causes an error flag (Q)
to be printed in the assembly listing.

If fewer than three characters are to be packed, the
string is packed left-justified within the word, and
trailing spaces are assumed.

GENERAL ASSEMBLER DIRECTIVES

As with the .ASCII directive (described in Section
6.3.4), the vertical-tab, null, line-feed, RUBOUT, and
all other non-printing characters, except
carriage-return and form-feed, cause an error code (I)
if used in a .RAD58 string. The carriage-return - and
form-feed characters result in an error code (A)
because these characters end the scan of the 1line,
preventing MACRO-11 from detecting the matching
delimiter.

/ / represent delimiting characters. These delimiters may
be any paired printing characters, other than the
equal sign (=), the left angle bracket (<), or the
semicolon (;) (see Note in Section 6.3.4), provided
that the delimiting character is not contained within
the text string itself. If the delimiting characters
do not match or if an illegal delimiting character is
used, the .(RAD5@ directive is flagged with an error
code (A) in the assembly listing.

The .RAD50 directive allows the user to generate data in Radix-50
packed format. Radix-50 form allows three characters to be packed
into sixteen bits (one word); therefore, any 6-character symbol can
be stored in two consecutive words. Examples of .RAD5@ directives are
shown below:

.RADSG /ABC/ ;Packs ABC into one word.
.RADS59 /AB/ ; Packs AB (SPACE) into one word.
.RADS@ /ABCD/ ; Packs ABC into first word and

:D (SPACE) (SPACE) into second word.
.RAD5S0 /ABCDEF/ ; Packs ABC into first word, DEF into

;second word.

Each character 1s translated into its Radix-5¢ equivalent, as
indicated in the following table:

Character Radix-50 Octal Equivalent
(space) 4]

A-Z 1-32

$ 33

. 34
(undefined) 35

g-9 36-47

The Radix-50 equivalents for characters 1 through 3 (C1,C2,C3) are
combined as follows:

Radix-50 Value = ((C1*50)+C2)*50+C3
For example:
Radix-5@ Value of ABC = ((1*50)+2)*50+3 = 3223(8)

Refer to Appendix A.2 for a table of Radix-50 equivalents.

6-30

GENERAL ASSEMBLER DIRECTIVES

Angle brackets (<>) must be used in the .RAD5¢ directive whenever
special codes are to be inserted in the text string, as shown in the
example below:

.RAD5# /AB/<35> ;Stores 2255 in one word.

CHR1=1
CHR2=2
CHR3=3

.RAD50 <CHR1><CHR2><CHR3> ;Equivalent to .RAD5¢ /ABC/.

6.3.7 Temporary Radix-50 Control Operator
Format:
“"Rccce

where: ccc represents a maximum of three characters to be
converted to a 16-bit Radix-5@ value. If more than
three characters are specified, any following the
third character are ignored. 1If fewer than three are
specified, it is assumed that the trailing characters
are blanks.

The "R operator specifies that an argument 1is to be converted to
Radix-58 format. This allows up to three characters to be stored in
one word. The following example shows how the "R operator might be
used to pack a 3-character file type specifier (MAC) into a single
16-bit word.

MOV #"RMAC,FILEXT ;Store RADS5J MAC as file extension

The number sign (#) is used to indicate immediate data (data to be
assembled directly into object code). "R specifies that the
characters MAC are to be converted to Radix-5@. This value is then
stored in location FILEXT.

.PACKED

h.3.8 L.PACKED Directive

Format:
.PACKED decimal-string{,symbol]

where: decimal-string represents a decimal number from @ to
31(19) digits long. Each digit must be in
the range ¢ to 9. The number may have a
sign, but it is not required and is not
counted as a digit.

symbol is assigned a value -equivalent to the
number of decimal digits in the string.

GENERAL ASSEMBLER DIRECTIVES

The .PACKED directive generates packed decimal data, 2 digits per
byte. Arithmetic and operational properties of packed decimals are

similar to those of numeric strings. Below 1is an example of the
.PACKED directive.

.PACKED -12,PACK ; PACK gets value of 2

.PACKED +504 ;500 is packed

.PACKED ¢ ;0 1is packed

.PACKED -0 ,SUM ;SUM gets value of 1

.PACKED 1234E6 ;Illegal packed decimal number

;E6 will be treated as a variable
;and given a value of 4

6.4 RADIX AND NUMERIC CONTROL FACILITIES
6.4.1 Radix Control and Unary Control Operators

Any numeric or expression value in a MACRO-11 source program is read
as an octal value by default. Occasionally, however, an alternate
radix would be useful. By using the MACRO-11 facilities described
below, a programmer may declare a radix to affect a term or an entire
program depending on his needs.

NOTE

When two or more unary operators appear
together, modifying the same term, the
operators are applied to the term from
right to left.

6.4.1.1 .RADIX Directive RADIX
Format:

.RADIX n
where: n represents one of the three radices: 2, 8 and ld.

Any value other than null or one of the three
acceptable radices will cause an error code (A) in the
assembly listing. If the argument n is not specified,
the octal default radix is assumed. The argument (n)
is always read as a decimal value.

Numbers used in a MACRO-11 source program are initially considered to
be octal values; however, with the .RADIX directive you can declare
alternate radices applicable throughout the source program or within
specific portions of the program. '

GENERAL ASSEMBLER DIRECTIVES

Any alternate radix declared in the source program through the ,RADIX
directive remains in effect until altered by the occurrence of another
such directive, for example:

.RADIX 10 ;Begins a section of code having a
;decimal radix.

.RADIX ;jReverts to octal radix.

In general, macro definitions should not contain or rely on radix
settings established with the .RADIX directive. Rather, temporary
radix control operators should be used within a macro definition.
Where a ©possible radix conflict exists within a macro definition or
source program, it is recommended that the user specify numeric or
expression values using the temporary radix control operators
described below.

6.4.1.2 Temporary Radix Control Operators
Formats:

"D"number" ("number" is evaluated as a decimal number)
“0"number" ("number" is evaluated as an octal number)
"B"number" ("number" is evaluated as a binary number)

These three unary operators allow the user to establish an alternate
radix for a single term. An alternate is useful because after you
have specified a radix for a section of code or have decided to use
the default octal radix, you may discover a number of cases where an
alternate radix is more convenient or desirable (particularly within
macro definitions). Creating a mask word (used to check bit status),
for example, might best be accomplished through the use of a binary
radix.

Thus an alternate radix can be declared temporarily to meet a
localized requirement in the source program, The temporary radix
control operator may be used any time regardless of the radix in
effect or other radix declarations within the program., Because the
operator affects only the term immediately following it, it may be
used anywhere a numeric wvalue 1is legal. The term (or expression)
associated with the temporary radix control operator will be evaluated
during assembly as a 16-bit entity.

The expressions below are representative of the methods of specifying
temporary radix control operators:

“D123 Decimal Radix
“0 47 Octal Radix
"B 040001131 Binary Radix
“0<A+13> Octal Radix

The up-arrow and the radix control operator may not be separated, but
the radix control operator and the following term or expression can be
separated by spaces or tabs for legibility or formatting purposes. A
multi-element term or expression that is to be interpreted in an
alternate radix should be enclosed within angle brackets, as shown in
the last of the four temporary radix control expressions above.

GENERAL ASSEMBLER DIRECTIVES

The following example also illustrates the use of angle brackets to
delimit an expression that is to be interpreted in an alternate radix.
When using the temporary radix control operator only numeric values
are affected. Any symbols used with the operator will be evaluated
with respect to the radix in effect at their declaration.

.RADIX 10

A=10
.WORD “O<KA+10>*10

When the temporary radix expression in the .WORD directive above is
evaluated, it yields the following equivalent statement:

.WORD 1890

MACRO-11 also allows a temporary radix change to decimal by specifying
a number, immediately followed by a decimal point (.), as shown below:

106. Equivalent to 144(8)
1376. Equivalent to 25404 (8)
128. Equivalent to 206(8)

The above expression forms are equivalent in function to:

“Dlag
"D1376
“D128

6.4.2 Numeric Directives and Unary Control Operators

Two storage directives and two numeric control operators are available
to simplify the use of the floating-point hardware on the PDP-11.
These facilities allow floating-point data to be created in the
program, and numeric values to be complemented or treated as
floating-point numbers.

A floating-point number is represented by a string of decimal digits.
The string (which can be a single digit in length) may contain an
optional decimal point and may be followed by an optional exponent
indicator in the form of the letter E and a signed decimal integer
exponent. The number may not cont