Update Notice #1

December 1981

RSTS/E Programmer’s Utilities Manual
AD-D749A-T1

Copyright © 1981 by Digital Equipment Corporation

NEW AND CHANGED INFORMATION

This update contains changes and additions made to the
RSTS/E Programmer’s Utilities Manual for RSTS/E Version 7.1.

INSTRUCTIONS

The enclosed pages are to be placed in the RSTS/E
Programmer’s Utilities Manual as replacements for, or additions
to, current pages. The changes made on replacement pages are
indicated in the outside margin by change bars (1) for additions
and bullets (s) for deletions.

Oid Page

Title page/Copyright

iii to ix

Replace Chapter 1
(1-1 to 1-6)

2-1 and 2-2

Replace Chapter 3
(3-1 to 3-28)

Replace Chapter 5
(5-1 to 5-9)

Replace Appendix B
(B-1 to B-5)

Replace Index
(Index—1 to Index-3)

Reader’s Comment/Mailer

New Page
Title page/Copyright
iii to viii
New Chapter 1
(1-1 to 1-6)
2-1to0 2-2.1
New Chapter 3
(3-1 to 3-33)
New Chapter 5
(5-1 to 5-9)
New Appendix B
(B-1 to B-6)
New Index
(Index—1 to Index—3)
Ordering instructions
Reader’s Comment/Mailer

RSTS/E
Programmer’s Utilities Manual

Order No. AA-D749A-TC
Including AD—D749A-T1

December 1981
This document describes the RSX-based utilities available to the

RSTS/E programmer. It contains information on the MACRO Assem-
bler, Librarian, Patch, and MAKSIL utilities.

OPERATING SYSTEM AND VERSION: RSTS/E V7.1
SOFTWARE VERSION: RSTS/E V7.1

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corpora-
tion. Digital Equipmént Corporation assumes no responsibility for any
errors that may appear in this document.

The software described in this document is furnished under a license, and
may be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip-
ment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1981 Digital Equipment Corporation

The postage-paid READER'S COMMENTS form on the last page of this
document requests your critical evaluation to assist us in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC VT IAS
DECUS DECsystem—10 MASSBUS
DECnet DECSYSTEM 20 PDT

PDP DECwriter RSTS
UNIBUS DIBOL RSX

VAX EduSystem VMS

Commercial Engineering Publications typeset this manual using DIGITAL’s
TMS-11 Text Management System.

Contents

Page
Preface 7 vii
Documentation Conventions
Chapter 1 Introduction
1.1 RSTS/E Utility Command Line 1-1
1.2 RSTS/E File Specifications 1-2
1.3 Accessing Utilities and Entering Command Lines 1-3
1.3.1 Accessing Utilities 1-3
1.3.1.1 Entering the RUN Command 14
1.3.12 CCL Command Names. 14
1.3.2 Entering Command Lines 1-5
1.3.2.1 Entering the Complete Command Lines 1-5
1.3.2.2 Using Indirect Command Files. 1-5
1.3.2.3 Using Continuation Lines 1-6
Chapter 2 Using the MACRO-11 Utility Program
2.1 Invoking MACRO-11 2-2
2.2 MACRO-11 Command Line Format 2-2
2.3 MACRO-11 Input/Output File Specification Format 2-3
24 MACRO-11 Switches 2-3
2.4.1 Listing Control Switches 2-3
2.4.2 Function Control Switches. 2-5
2.4.3 Assembly Pass Switch. 2-6
244 MACRO Library File Switch 2-6
2.5 MACRO-11 Error Messages. 2-6
Chapter 3 Using the Librarian Utility Program (LBR)
31 Library Fileso 3-1
32 LBRCommandLine. 3-2
33 LBRSwitches.o 3-2
3.3.1 Compress Switch (/CO) 3-3
3.3.2 Create Switch ¢(CR) e e e e e e 3-4
3.33 DeleteSwitch(/DE) 3-5
3.3.4 Default Switch (/DF) 3-6
3.3.5 Delete Global Switch ¢/DG) 3-8
3.3.6 Entry Point Switch (EP) 3-8
337 ExtractSwitch (EX) 3-10
3.3.8 Insert Switch (/IN) for Object and Macro Libraries. 3-11
3.3.9 Insert Switch (/IN) for Universal Libraries. 3-12
3.3.10 List Switches (/LI,/LE,/FU). 3-13

il

3.3.11 Modify Header Switch (MH) 3-14

3.3.12 Replace Switch (/RP) for Object and Macro Libraries. 3-15
3.3.13 Replace Switch (/RP) for Universal Libraries. 3-18
3.3.14 Selective Search Switch (/SS) 3-20
3.3.15 SpoolSwitch (/SP). 3-20
3.3.16 Squeeze Switch (/SZ) 3-21
3.4 Combining Library Functions 3-23
3.5 LBRRestrictions 0000 3-23
3.6 LBRError Messages v v v 3-24
3.6.1 Effect of Fatal Errors on Library Files. 3-24
362 Listof LBRErrors 3-25
Chapter 4 Using the Object Module Patch Utility (PAT) Program
41 HowPAT Workso 4-2
4.2 Specifying the PAT Command Line 44
43 How PAT AppliesUpdates 44
431 TheIlnputFile. 4--4
432 TheCorrectionFile 45
4.3.3 Creating the Correction File. 4-5
4.3.4 How PAT and the Task Builder Update Object Modules4-6
4.3.41 Overlaying Linesina Module 4-6
4342 Adding a Subroutine toa Module 4-7
4.3.5 Determining and Validating the Contents of a File 4-8
44 PAT Messages« v v v e e e e e e e e e e 4-9
4.4.1 Information Messages 4-9
442 Command LineErrors. 4-10
443 File Specification Errors. 4-11
444 Input/OutputErrors. 4-12
4.4.5 Errors in File Contents or Format 4-13
4.4.6 Internal Software Exror 4-14
44.7 Storage Allocation Exror. 4-15
Chapter 5 Using the MAKSIL Utility Program
5.1 Creating a Run-Time System RTS) 5-1
5.2 Creating a Resident Library. 5-3
5.3 Operating Instructions 5-3
54 MeSsages i e e e e e e e e e e 5-5
5.4.1 Fatal Error Messages 5-5
5.4.2 Diagnostic Messages.o 5-8
5.4.3 Informational Messages 5-9
Appendix A MACRO-11 Diagnostic Error Message Summary
Appendix B Librarian Utility Program (LBR) Files and Formats
B.1 LibraryHeadero B-1
B.2 EntryPointTable. 0000000 B-1
B.3 Module Name Table. B-1
B4 ModuleHeader P B-2

w

Index

Figures

Tables

3-1
4-1
4-2
B-1
B-2
B-3
B4
B-5
B-6

5-2

MACRO Listing Before and After Running LBR with /SZ Switch. . . 3-22

Updating a Module Using PAT 4-2
Processing Steps Required to Update a Module Using PAT. | 4-3
Standard Library File Format. B-2
Universal Library File Format B-3
Contents of Library Header B-4
Format of Entry Point Table Element B-5
Format of Module Name Table Element B-5
Module Header Format B-5
File Specification Defaults. e e e e e e e e 1-2
File Extension Defaults 1-3
Conventional CCL Names for RSTS/E Accessed RSX-Based Utilities. .14
MACRO-11Switches 2-4
Valid Arguments for /LI and /NL Switches. 24
Valid Arguments for /DS and /EN Switches 2-5
LBR Switches. oo 3-2
Sample Files Used in LBR Examples 3-16
Output Library File after Execution of Example 1. 3-17
Output Library File after Execution of Example 2. 3-17
Output Library File after Execution of Example 3. 3-18
Task Builder Options for Virtual and Physical Address Range 5-2
Task Builder PAR and STACK Options for Various Sized

Run-Time Systems 5-2

Preface

This manual describes the RSX-based utility programs available to
RSTS/E users.These utility programs are:

e MACRO-11 Assembler Utility Program (MAC)

The MACRO-11 Assembler processes assembly language programs and
sub-programs and produces single relocatable binary object files. With
the MACRO-11 Assembler, you can obtain formatted listings of your
source (input) code, as well as a symbol table, and table of contents
listings.

e Librarian Utility Program (LBR)

The Librarian Utility is a library maintenance program that provides a
means for creating, modifying, updating, listing, extracting, and main-
taining library files. LBR can process Macro, object module, and univer-
sal libraries.

® Object Module Patch Utility Program (PAT)

With PAT you can modify code in a relocatable binary object (.OBJ)
Module.

e Make a Save Image Library Utility Program (MAKSIL)

MAKSIL Utility program allows you to either create a Save Image
Library file or a run-time system image file.

These programs enable you to use the system resources efficiently to create,
manipulate, and maintain files from a system command level.

This manual is made up of five chapters. Chapter 1 contains general infor-
mation on RSTS/E Programmers’ utilities; Chapters 2 through 5 contain
detailed information on use of the MACRO-11 Assembler Utility, the
Librarian Utility, the Object Module Patch Utility, and the Make a Save
Image Library Utility.

You need not read the entire manual to learn the use of a particular utility.
However, Chapter 1 contains general information that should be read be-
fore going to the chapter that describes the utility of interest.

vii

Chapter 1
Introduction

This chapter describes the following subjects:

1. The RSTS/E command line.

2. The RSTS/E file specification.

3. The use of utilities and the entering of command lines.
4

The conditions under which you can use a utility.

These subjects are common to all the programmer’s utilities described in
this manual.

1.1 RSTS/E Utility Command Line

The general utility command line format is:

outfilessssoutfile=infilesrsssinfile

where outfile and infile are file specifications for the output and input files
to be operated on by the utility. The number of file specifications you can
enter depends on the utility invoked. The maximum length of a command
line is 80 characters for all utilities except MACRO, which sometimes al-
lows up to 132 characters. (See Section 2.2.)

This general format varies for each utility. Some utilities use the entire
command line and others use abbreviated forms of the command line. These
utilities also accept indirect files containing command lines, as described in
Section 1.3.2.2.

1.2 RSTS/E File Specifications

A file specification consists of a filename that conforms to standard RSTS/E
conventions, plus switches that modify, or specialize, the command. File speci-
fications have the form:

1-2

device:lprProdectsprodrammer]filename.extension/swe. .

where all components are optional except the filename. The file specification
components are defined below:

device

[project,
programmer]

filename

extension

/sw

is the name of the device that stores the file. The device name
consists of two ASCII characters followed by an optional 1-or
2-digit decimal unit number; for example, LP or DT1. Logical
device names of up to six alphanumeric characters may also be
used.

is the account or project-programmer number (PPN) associated
with the file. The default is the PPN of the account you have
logged into. Note that RSTS/E project-programmer numbers
are similar to RSX-user identification codes (UIC).

is the name of the desired file. The filename can contain up to
six alphanumeric characters.

is the 0- to 3—character filename extension. Files having the
same name but a different function can be distinguished from
one another by the file extension; for example, LRB.TSK and
LRB.OBJ.

is a switch specification. More than one switch can be used,
each separated from the previous one by its slash (/). The
switch name is a 2— to 4—character alphanumeric code that
identifies the switch and may also indicate negation of the
switch. The permissible switches and their syntax are pre-
sented for each utility in the pertinent chapter.

You can use RSTS/E—specific switches (such as /MODE and /SIZE) only with
the MAKSIL utility.

Table 1-1 lists the default assumptions for components of a file-specification
that are not designated.

Table 1-1: File Specification Defaults
Item Default
device The device last specified (SY:, if none).

extension

switch

project-programmer | The project-programmer number last specified (the account you

have logged into, if there is no previous entry). Any PPN associ-
ated with a previously specified logical device name does not carry
through.

See Table 1-2.

Defaults for each utility described in Chapters 2 through 5.

Introduction

Following is an example of input to the MAC Assembler and defaults:

DK1:IMGL :MP1=IN1,DBO:INZ2+IN3

Device File
DK1: IMG1.0BJ
DK1: MP1.LST
SY: IN1.MAC
DBO: IN2.MAC
DBO: IN3.MAC

Table 1-2 lists the default éssumptions for missing extensions.

Table 1-2: File Extension Defaults

Utility File Type Extension File Description
MACRO-11 Input .CMD Indirect Command File
(MAO) .MAC Macro Module

. .MLB Macro Module Library
Output .OBJ | Object Module
.LST List File
Library Input .CMD Indirect Command File
(LBR) Input or Output .OBJ Object Module
Input or Output .MAC Macro Source Module
Input or Output .OLB Object Library Module
Input or Qutput .MLB | Macro Module Library
Output LST List File
Patch Input .CMD Indirect Command File
(PAT) .OBJ Object Module
Output .OBJ Object Module
MAKSIL Input .TSK Task Image
.STB Symbol Table File
.CMD Indirect Command File
Output LIB Resident Library File
.RTS Run-Time System File
.CMD Indirect Command File

1.3 Accessing Utilities and Entering Command Lines

The RSTS/E user can access an RSX utility in two ways, and after
invoking a specific utility, the user then has two choices for entering com-
mand lines. The paragraphs that follow describe the methods of accessing
utilities and entering command lines, respectively.

1.3.1 Accessing Utilities
The two ways to invoke a utility are:

1. Type the RUN command.
2. Type a CCL command.

Introduction 1-3

14

The paragraphs below describe each method.

1.3.1.1 Entering the RUN Command — In response to the system READY
prompt, you can enter the general form of the RUN command:

RUN $utility G

where utility is one of the following:

MAC.TSK — MACRO-11 Assembler Utility
LBR.TSK — Librarian Utility
PAT.TSK — Patch Object Module Utility

MAKSIL.BAC - MAKSIL Utility

For example, you can invoke the Librarian utility by typing the following:

RUN $LBR

This prompt is displayed on the terminal to indicate the Librarian utility is
ready to accept a command line:

LBR>

Note that the use of the symbol $§ indicates that the utility is stored in
account [1,2]. The system manager has the option of installing these utili-
ties in other accounts. Check with the system manager for the location of
these utilities.

1.3.1.2 CCL Command Names — If the system manager has installed CCL
commands for the programmer’s utilities, you can invoke these utilities by

using the appropriate CCL command. Table 1-3 lists a recommended set of
CCL names for the RSX utilities invoked by RSTS/E.

Table 1-3: Conventional CCL Names for RSX-Based Utilities

Utility CCL Name
MACRO-11 MAC
Librarian LBR
Patch Object Module PAT
Make Save Image Library MAKSIL

As an example, you can invoke the PAT utility by typing:

PAT @D

The utility indicates its readiness to accept a command line by displaying
the following prompt:

PAT>

Introduction

Alternatively, you can employ the following general form of the CCL
command:

PAT <command-line> GO

This form causes the Patch utility to run, process <command-line>, and
return to the the system prompt.

Some utilities can also be invoked by DCL commands. See the RSTS/E
DCL User’s Guide for more information.

1.3.2 Entering Command Lines
The two methods for entering utility command lines are:

1. Typing the complete utility command line.

2. Using an indirect command.

1.3.2.1 Entering the Complete Command Lines — You can enter the required
command line either in response to a utility’s prompt for input or as part of
the CCL command. Three examples of this method are:

1. You can employ the RUN command to invoke the utility. The utility
prompts for command line input. After execution is completed, the util-
ity reprompts for additional command input; for example: -

RUN L BRGEED
LBR>BIGLIB / IN=SMALL +MID +BIGRED

LBR>

2. You can invoke the utility by typing its CCL name. The utility prompts
for the command line. After execution is completed, the utility
reprompts for additional command input; for example:

LBREED
LBR*BIGLIB / IN=SMALL sMID ,BIGEED

LBR>

3. You can invoke the utility by typing its CCL name followed by a space
and the complete utility command line. After execution of the utility,
the system again displays the READY prompt; for example:

LBRBIGLIB/IN=SMALL sMID ,BIGRED
READY

1.3.2.2 Using Indirect Command Files — The second method of entering a
utility command line is through the use of indirect command files. When
you specify an indirect command file, the utility interprets the contents of
the file in the command specified as a series of one or more command lines.
The advantage of an indirect command file is that you can enter a com-
monly used command line sequence once and store it for subsequent use
rather than reentering the sequence.

Introduction 1-5

1-6

The @ character is the first character of the indirect command line.
Immediately following the @ character is a file specification. The format
for an indirect command is:

@device:lpProdectsprodrammer] filename.extension

You can omit certain elements of the file specification. The following
defaults are then applied:

device - SY:
[project,programmer] — Current PPN
.extension - .CMD

The following examples show the use of indirect commands.

Example 1

RUN $LBR @D
LBR >BALPHA
LBR >

Example 2

LBR BBETA.CTL G
READY

In the first example, only the filename, ALPHA, is specified. The device,
account, and extension fields are defaulted. In the second example, a
filename and extension are spécified with the device and account defaulted.

NOTE

Indirect command files are not used by the MAKSIL
program.

1.3.2.3 Using Continuation Lines — Only the MACRO utility allows you to
use continuation lines. See Chapter 2 for more information.

Introduction

Chapter 2
Using the MACRO-11 Utility Program

The RSTS/E MACRO-11 utility assembles one or more ASCII source
files containing MACRO-11 assembly language statements into a
single relocatable binary object file. For complete information about the
MACRO-11 assembly language, see the PDP—11 MACRO-11 Language
Reference Manual.

The output of a MACRO-11 assembly process can consist of the following
files:

1. Binary relocatable object file

2. Listing file with:
a. Table of Contents listing
b. Source (input) program listing
¢. Symbol table listing

You determine the desired output files to be created during assembly by
specifying them in the MACRO-11 command line, as described in Section
2.2. A set of switches, as described in Section 2.4, allows you to control the
exact form and content of each output file.

The topics covered in this chapter are:
Invoking MACRO-11

Command Line format

File specification

Switches

oLk e

Error messages

2-1

2.1 Invoking MACRO-11

Chapter 1 describes how you use the RUN and CCL commands to invoke
the MACRO-11 utility. As a review, calling MACRO-11 by RUN and CCL
respectively is done by entering:

RUN sMAC @D

or

MAC GO

and the utility prompts:
MAC >

2.2 MACRO-11 Command Line Format

2-2

In response to the prompt MAC> displayed by MACRO-11, type the output
and input file specifications in this form:

MAC>obJectslistingd=srclisrcZssesrsren

where:
object The specification for the binary relocatable object (output) file.

listing The specification for the assembly listing (output) file that con-
tains the table of contents, the assembly listing, and the symbol
table. : ‘

= separates output file specifications from input file specifications.

srcl,

scr2,... :

srcn The specifications for the ASCII source (input) files contain-
ing the MACRO-11 source program or the user-supplied macro
library files to be assembled.

MACRO-11 recognizes two output file specifications (object and listing) in
the command line. No limit is set on the number of source input files.
However, there is a limit to the length of a single command line.

1. You can have a total of 132 characters in a command line invoked with
either of the following:

RUN $MAC GD
or
MAC G

Continuation lines are allowed, as long as the total length does not
exceed 132 characters. A continuation line allows you to use hyphens to
type the elements of a command line on more than one physical line.
You can continue a line after any element in the command line. An
example of the format is:

MAC>obJectslisting=srcl .-
MAC>src2,ssrc3 -
MAC >srcd

Using the MACRO-11 Utility Program

2. You can have a total of 80 characters in a comand line that has the
format:

MAC<command-line >

The absence of an output file specification in either field means that an
output file is not produced; for example:

MAC>,LIST=S0RC1 »SORCZ GED

In this case a binary relocatable object output file is not produced and
output is a list file (LIST.LST) only. Note that the comma before LIST must
be included. However, the absence of an input file field is an error condition

and results in the error message "MAC — ILLEGAL FILENAME" to be
displayed at the user terminal (see Section 2.5).

NOTE

When a listing file is not specified, any errors encountered in
the source program are displayed at the user terminal from
which MACRO-11 was initiated. When the /NL (no list)
switch is used without an argument in the listing file specifi-
cation, the errors and symbol table are output to the specified
file.

Using the MACRO-11 Utility Program 2-2.1

Chapter 3
Using the Librarian Utility Program (LBR)

With the Librarian Utility Program (LBR) you can create, update, modify,
list, and maintain user-generated object, macro, and universal library files.
LBR files contain two directory tables: an entry point table (EPT) that
contains entry point names (global symbols), and a module name table
(MNT) that contains module names. Both the EPT and MNT are alphabeti-
cally ordered.

Object module names are derived from .TITLE directives, while entry point
names are derived from defined global symbols. Once an entry point is
located, its associated module can be directly accessed.

Macro module names are derived from .MACRO directives; macro entry
point names are not applicable to library processing.

Universal module names are derived from file names at insert time; univer-
sal entry point names are not applicable. You can use a universal library to
contain modules inserted from any kind of file.

Chapter 1 describes how to invoke the LBR utility. This chapter contains
descriptions of:

Library Files

LBR Command Line

LBR Switches

Procedures for combining Library Functions
LBR Restrictions

LBR Error Messages

SO S i A

3.1 Library Files

The library file consists of a one-block (256—word) library header, an entry
point table (each entry point has one entry point name four words long),
and a module name table (each entry has one module name four words
long). In addition, each module has an eight-word header. See Appendix B
for detailed information on the formats and contents of library files.

3-1

3.2 LBR Command Line

LBR command lines have the general format:

outfilelslistfilel=infilellsinfile2ssssrinfilenl

For a complete description of file specifications, see Section 1.2. As an alter-
native to using file specifications, you can use an indirect command file, as
described in Section 1.3.2.2. However, LBR does not accept nested indirect
command files.

3.3 LBR Switches

LBR uses switches appended to file specifications to invoke functions.
These switches are summarized in Table 3—1.

Table 3-1: LBR Switches

Switch
Option Name | Mnemonic Function
Compress /CO Compress a library file.
Create /CR Create a library file.
Delete /DE Delete a library module and all of its entry points.
Default /DF Specify the default library file type.
Delete Global /DG Delete a library module entry point.
Entry Point /EP Control (include) the entry of entry point elements in
the library entry point table.
/-EP Do not include the entry of entry point elements in the
library entry point table.
Extract /EX Extract (read) one or more modules from a library file
and write them into the specified output file.
Insert /IN Insert a module.
List /LI List module names.
/LE List module names and module entry points.
/FU List module names and full module description.
Modify Header /MH Modify a universal module header.
Replace /RP Replace a module.
/-RP Do not replace a module.
Spool /SP Spool the listing for printing.
/-SP Do not spool the listing.
Selective Search /8S Set selective search attribute in module header.
Squeeze /SZ Reduce the size of macro source.
/-SZ Do not reduce the size of macro source.

3-2 Using the Librarian Utility Program (LBR)

3.3.1 Compress Switch (/CO)

The Compress switch physically deletes all logically deleted records, moves
all free space to the end of the file, and makes the free space available for
new library module inserts. In addition, the library table specification may
be altered for the resulting library. LBR accomplishes this by creating a
new file that is a compressed copy of the old library file. In this compression
process, the actual data in the file is compressed; however, the physical
length of the file remains unchanged. The old library file is not deleted
after the new file is created (see Section 3.3.3).

The /CO switch can be appended only to the output file specification. The
format for specifying the Compress switch is:

outfile/CO:sizezseptimnt=infile

where:

outfile is the file specification for the compressed version of the input
file. The default extension is .OLB if the input file is an object
library, .MLB if the input file is a macro library, or .ULB if the
input file is a universal library. Outfile must not have the same
name as infile.

/CO is the Compress switch.

:size is the size of the new library file in 256—word blocks. If omitted,
the default size is that of the old library file.

:ept is the number of entry point table (EPT) entries to allocate. If the
value specified is not a multiple of 64, the next highest multiple
of 64 is used. If omitted, the default value is the number of EPT
entries in the old library file. This parameter is always set to zero
for macro and universal libraries. The maximum number of
entries is 4096.

‘mnt is the number of module name table (MNT) entries to allocate. If
the value specified is not a multiple of 64, the next highest multi-
ple of 64 is used. If omitted, the default value is the number of
MNTs in the old library file. The maximum number of entries is
4096.

infile specifies the library file to be compressed. The default file type is
.OLB for object libraries, .MLB for macro libraries, and .ULB for
universal libraries. The default file type is determined by the
current default file type.

For example:

LBR>LIBFIL/C0:100,:156,:70,=FILE1.0LB GO

Using the Librarian Utility Program (LBR) 3-3

34

File FILE1.OLB is compressed, and a new file, LIBFIL.OLB, is created with
the following attributes:

size = 100 blocks
ept = 192 entry points
mnt = 128 module names

NOTE

The numbers for block size, entry points, and module names
include decimal points; if omitted, the numbers are inter-
preted as octal values. All examples and discussions in this
chapter assume decimal numbers.

3.3.2 Create Switch (/CR)

The Create switch allocates a contiguous library file on a direct access
device such as a disk. It initializes the library file header, the entry point
table, and the module name table. The /CR switch can be appended only to
the output file specifier. The format for specifying the Create switch is:

outfile/CRi:sizezerptimntilibtyresinfiletypre
where:

outfile is the file specification for the library file being created. The
default file extension for libraries being created is .OLB for an
object library, .MLB for a macro library, or .ULB for a univer-
sal library.

/CR is the Create switch.

:size is the size of the library file in 256—word blocks. The default
size is 100 blocks.

:ept is the number of entry point table (EPT) entries to allocate.
The default value is 512 for object libraries. This parameter
is always forced to O for macro libraries and universal
libraries. The maximum number of entries is 4096. Once a
value is specified or defaulted, an error occurs if an Insert or
Replace operation exceeds the value.

:mnt is the number of module name table (MNT) entries to allocate.
The default value is 256. The maximum number of entries is
4096. Once a value is specified or defaulted, an error occurs if
an Insert operation exceeds the value.

:libtype specifies the type of library to be created. Acceptable values
are OBJ for object libraries, MAC for macro libraries, and UNI
for universal libraries. The default is the last value specified
or implied with the /DF switch (see Section 3.3.4), or OBJ if
/DF has not been specified.

Using the Librarian Utility Program (LBR)

iinfiletype specifies the default input file type for the created universal
library. If this value is not specified, the default input file type
for universal libraries is .UNI. This value is not defined for
object or macro libraries.

In the example below, :ept and :libtype are assigned default values, while
:size has the value 50 and :mnt has the value 160:

LBR>LIBFIL/CR:50::160 @D

If the values you specify are not multiples of 64, the EPT and MNT are
automatically expanded to the next disk block boundary. For example:

LBR>LIBFIL/CR::128.,:684,:0BJ=FILE1,FILE2,)FILE3 G

In this example, LBR performs two functions. First, LBR creates the library
file LIBFIL.OLB in the user’s account on the public structure (SY:). LIBFIL
has the following attributes:

:size = 100 blocks (default size)
:ept = 128 entry points
:mnt = 64 module names

type = OBJ

Secondly, LBR inserts object modules into LIBFIL from the input files
FILE1.OBJ, FILE2.0BJ, and FILE3.0OBJ, which reside in the user’s
account on the public structure (SY:). The Insert switch is the default
switch for input files (see Section 3.3.8).

3.3.3 Delete Switch (/DE)

The Delete switch logically deletes library modules and their associated
entry points (global symbols) from a library file. Up to 15 library modules
and their associated entry points can be deleted with one Delete switch.

When LBR begins processing the /DE switch, it displays the following
message at the user terminal:

MODULES DELETED:

As modules are logically deleted from the library file, the module name is
displayed at the user terminal.

If a specified library module is not contained in the library file, a message
is displayed, and the processing of the current command is terminated. This
message is:

LBR -- *FATAL* - NO MODULE NAMED "name”

The /DE switch can be appended only to the library file specification.

Using the Librarian Utility Program (LBR) 3-5

NOTE

When LBR deletes a module from a library file, the module is
not physically removed from the file but is marked for dele-
tion. This means that, although the module is no longer
accessible, the file space that the module occupied is not
available for use, unless the deleted module is the last mod-
ule inserted. To physically remove the module from the file
and make the freed space available for use, you must use the
/CO switch to compress the library (see Section 3.3.1).

The form for specifying the Delete switch is:

outfile/DE:modulell:module2:,. . :modulenl

where:
outfile is the file specification for the library file.
/DE is the Delete switch.

:-module is the name of the module to be deleted.

For example:

LBR>LIBFIL /DE:MOD1:MODZ2:MOD3 GED
MODULES DELETED:

MOD1

MODZ

MOD3

In this example, LBR deletes the modules MOD1, MOD2, and MOD3 and
their associated entry points from the library file SY:LIBFIL.OLB.

3.3.4 Default Switch (/DF)

The Default switch specifies the default library file extension. Acceptable
values are .OBJ for object libraries, .MAC for macro libraries, and .UNI for
universal libraries. When /DF is specified without an argument, the de-
fault value of arg is .OBJ.

Specifying a default value:

1. Sets the default extension argument for the Create switch (/CR).

2. Provides an extension default value of .MLB for macro libraries, or
JULB if a universal library is being created, or .OLB for object libraries
when opening an output (library) file, except in the cases of /CO and
/CR. When /CO is specified, the default applies to the library input
file. When /CR is specified, the default extension is .OLB if an object
library is being created, .MLB if a macro library is being created, or
.ULB if a universal library is being created. The /DF switch affects
only the name of the file to be opened; thereafter, the library header
record information is used to determine the type of library file being
processed.

3-6 Using the Librarian Utility Program (LBR)

The /DF switch can be issued alone or appended to a library file specifica-
tion. The form for specifying the Default switch is:

outfile/DF:libtvpe., ..

or

/DF:libtypre

where:
outfile is the file specification for the library file.
/DF is the Default switch.

libtype is .OBJ for object library files, .MAC for macro library files,

and .UNI for universal files.

When you specify an extension other than .OBJ, .MAC, or .ULB, the cur-
rent default library extension is set to object libraries, and the following
message is displayed:

LBR -- INUVALID LIBRARY TYPE SPECIFIED

Examples:

1.

LBR>/DF:MAC GED
LBR>LIBFIL=INFILE GD

File LIBFIL.MLB is opened for insertion.

LBR> /DF : MAC GED
LBR>LIBFIL /DF:DBJ=INFILE RED

File LIBFIL.OLB is opened for insertion.

LBR> /DF :MAC @D
LBR>LIBFIL/CR @B

Macro library LIBFIL.MLB is created.

LBR> /DF : MAC GED
LBR>LIBFIL /CR::::0BJ @D

Object library LIBFIL.OLB is created.

LBR>/DF GED
LBR>TEMP /CO=LIBFIL GED

LIBFIL.OLB is opened for compression. If LIBFIL.OLB is an object
library, the file TEMP.OLB is created to receive the compressed output.

If LIBFIL.OLB is a macro library (a nonstandard use of the extension
.OLB), the file TEMP.MLB is created.

LBR> /DF:0BJ @D
LBR>TEMP /CO=LIBFIL.MLB GED

Assuming that file LIBFIL.MLB is a macro library, the macro library
file TEMP.MLB is created to receive the compressed output.

Using the Librarian Utility Program (LBR) 3-7

3-8

3.3.5 Delete Global Switch (/DG)

The Delete Global switch deletes a specified entry point (global symbol)
from the EPT. Up to 15 entry points may be deleted with one Delete Global
switch. This switch does not affect the object module, which contains the
actual symbol definition.

When LBR begins processing the /DG switch, it displays the following
message on the user terminal:

ENTRY POINTS DELETED:

As entry points are deleted from the library file, each deleted entry point is
displayed on the user terminal. If a specified entry point is not contained in
the EPT, an error message is displayed on the user terminal, and the pro-
cessing of the current command is terminated:

LBR -- *FATAL* - NO ENTRY POINT NAMED "name"

The /DG switch can be appended only to the library file specification.
The format for specifying the Delete Global switch is:

outfile /DG:globalll:global2:,,,:d9lobalnl

where:

outfile 1is the library file specification.
/DG is the Delete Global switch.
global is the name of the entry point to be deleted.

For example:

LBR>LIBFIL /DG:GLOB1:GLOB2:GLOB3 @D
ENTRY POINTS DELETED:

GLOB1

GLOBZ2

GLOB3

In this example, the entry points GLOB1, GLOB2, and GLOB3 are deleted
from the library file named SY:LIBFIL.OLB.

3.3.6 Entry Point Switch (/EP)

The Entry Point switch includes or excludes entry point elements in a
library entry point table. This switch can be specified in three ways:

/EP Include entry points in the entry point table.
/-EP Do not include entry points in the entry point table.
/NOEP Do not include entry points in the entry point table.

Using the Librarian Utility Program (LBR)

/EP causes all entry points in a module or modules to be entered in the
library entry point table.

/-EP or /NOEP provides for a module to be included in a library while
excluding the entry points in that module from being entered in the library
entry point table.

/EP and /-EP can be applied in the same command line. For example, a
particular input file with /-EP overrides the effect of /EP in the output file.
/EP is the LBR default; if the switch is not specified, all entry points are
entered into the library entry point table. The Entry Point switch has no
effect on macro or universal libraries. The formats for specifying the Entry
Point switch are:

outfilel /EP J=infilessssinfilen
[L/-EP 1]
L /NDEP]
or
gutfile=infilel /EP Jressvinfilenl /EP 1]
[/-EP 1] [L/-EP 1
[/NOEP] [/NOEP]
or
outfilel /EP Jl=zinfilessssinfilenl/EP 1
[/-EP 1 L/-EP 1
[/NDEP] [/NDEP]
where:

outfile is the output file specification. When the entry point switch is
applied to this file specification, LBR assumes each of the input
files contains modules for which entry points are to be either
included or excluded.

infile is an input file specification. When the Entry Point switch is ap-
plied to an input file specification, LBR assumes only the input
file(s) has the entry point to be included or excluded.

/-EP is useful for including modules that contain duplicate entry point
names in the same library. /—-EP lets you enter a module in the library
without including its entry points in the library entry point table.

/-EP is also useful in the case where the Task Builder uses only module
names to search for modules in an object module library. In this case,
entries in the library entry point table are not required. /—EP can be used
to exclude entry points in the library entry point table.

Depending on whether the Entry Point switch is applied to the output
specifier or to an input specifier, it has either a global or a local effect.

When applied to the output file specifier, the Entry Point switch has a
global effect. That is, LBR either includes all entry points in the entry point
table or excludes all entry points from the entry point table.

Using the Librarian Utility Program (LBR) 3-9

3-10

When applied to an input file specifier; the Entry Point switch has a local
effect. That is, LBR either includes entry points in the entry point table or
excludes entries from the entry point table for only those modules to which
the switch is applied.

The positive and negative forms of the switch may be applied to both the
output and input file specifiers. For example, the effect of /EP applied to
the output file can be overridden by applying /-EP to a specific input file.

Entry points in an object module are not affected by the Entry Point switch;
the Entry Point switch permits you to either include or exclude entries in
the library entry point table.

3.3.7 Extract Switch (/EX)

The Extract switch reads one or more modules from a library file and
writes them into a specified output file. If more than one module is
extracted, the modules are concatenated in the output file. The extract
operation has no effect on the library file from which the modules are read;
that file remains intact. Up to eight modules may be specified in one ex-
tract operation for object and macro libraries; however, only one module
may be specified in one extract operation for a universal library.

For object and macro libraries, if no modules are specified in the command
line, all modules in the library are extracted and concatenated in the out-
put file in alphabetical order.

For universal libraries, only sequential files can be extracted to a record-
oriented device such as a terminal.

The /EX switch may be applied only to input file specifications. The format
for specifying /EX is:

outfile=infile/EXL{:modulename:. s .modulenamel
where:
outfile is the file specification for the file into which extracted

modules are to be stored. If the input modules are object
modules, the default extension for this file is .OBdJ. If the
input modules are macro definitions, the default extension
is .MAC. If the library is a universal library, the outfile
retains the infile type of the module extracted. (However,
you are allowed to extract only one universal library mod-
ule at a time.)

infile specifies the library file from which the modules are to be
extracted. The default extension for this file is .ULB, .OLB
or .MLB, depending on the current default library type.

/EX is the Extract switch.

modulename is the name of the module to be extracted from the library.

Using the Librarian Utility Program (LBR)

Consider the following examples:

LBR>DRIVER=LIBRY /EX:DXDRV:DKDRY:TTDRY @ED

The object modules DXDRV, DKDRYV, and TTDRV are concatenated and
written into the file DRIVER.OBJ.

LBR>KB:=LB:TSTMAC.SML /EX:Q10%% @D

The macro QIO$$ is displayed at the issuing terminal.

LBR>TEST..OBS=TEST /EX @D

All of the modules in the library TEST.OLB are written into the file
TEST.OBS in alphabetical order.

3.3.8 Insert Switch (/IN) for Object and Macro Libraries

The Insert switch inserts library modules into an existing library file. An
LBR command line is limited to 80 characters. Each file specified can con-
tain any number of concatenated input modules. For macro libraries with
nested macros, only first-level macro definitions are extracted from the
input files. All text outside the first-level macro definitions is ignored. The
/IN switch is the default library file option and can be appended only to the
library file specification. Note that the number of MNTs and EPTs inserted
cannot exceed the number defined for the file at its creation.

When you attempt to insert an input module that already exists in the
library file, the following message is displayed on the initiating terminal:

?LBR -- *FATAL+* DUPLICATE MODULE NAME "name" IN filename

Similarly, if you try to insert a module containing an entry point that
already exists in the EPT, the following message is displayed on the initiat-
ing terminal:

PLBR -- *FATAL%* DUPLICATE ENTRY POINT "name" IN filename
The format for specifying the Insert switch is:

outfilel /INJ=infilellsinfile2Zsssssinfilenl

where:

outfile is the file specification for the library file into which the input
modules are to be inserted. The default extension depends on the
current default (see Section 3.3.4). This extension is .QLB if the
current default is object libraries and .MLB if the current default
is macro libraries.

/IN is the Insert switch.

Using the Librarian Utility Program (LBR) 3-11

3-12

infile is the file specification for the input file containing
modules to be inserted into the library file. The default extension
is .OBJ if outfile is an object library and .MAC if outfile is a

macro library.

For example:

LBRYLIBFIL/IN=FILELl FILEZ FILE3 G

The modules contained in the files FILE1, FILE2 and FILE3, which reside
in your account on the public structure (SY:), are inserted into the library
file LIBFIL, which also resides in your account on SY:. The default exten-
sion for files FILE1, FILE2, and FILE3 is .OBJ if LIBFIL is an object
module library and .MAC if LIBFIL is a macro library.

3.3.9 Insert Switch (/IN) for Universal Libraries

The Insert switch works in basically the same way for universal libraries as
it does for object libraries and macro libraries. However, when inserting a
file into a universal library, the /IN switch is normally applied to the input
file. Furthermore, you can specify a module name and descriptive informa-
tion as switch values in the command line. In addition, LBR copies input
file attributes to the module header.

The Insert switch format for universal libraries is:

outfilezinfile/IN:name:orPior: ...

where:

outfile specifies the universal library into which the file infile is to be
inserted.

infile specifies the input file to be inserted into outfile. The default for
the file type is the value indicated at the universal library’s crea-
tion time. (See Section 3.3.2.)

/IN specifies the Insert switch.

:name optionally specifies the module name (up to six Radix—50 charac-
ters). The default is the first six characters of the input file name.

:0p specifies optional descriptive information (up to six Radix-50
characters) to be stored in the module header. If you define one or
more of the options, you must include colons to hold the place for
each of the preceding options in the specification.

For example:

LBR>RICKLB.ULB=JOE,TXT/IN:MOD1:THIS: IS5 JANZ: TEXT

In this example, LBR inserts JOE.TXT into the universal library
RICKLB.ULB as MOD1. “THIS”, “IS”, “JAN2”, and “TEXT” are stored in
the module header.

Using the Librarian Utility Program (LBR)

You can insert JOE.TXT without the Insert switch and its values. As a
result, all the information that you normally specify with switch values
assumes the defaults described in this section.

3.3.10 List Switches (/LI, /LE, /FU)

The List switches produce a printed listing of the contents of a library file.
Three switches allow you to select the type of listing desired:

/LI Produces a listing of the names of all modules in the library file.

/LE Produces a listing of the names of all modules in the library file
and their corresponding entry points.

/FU Produces a listing of the names of all modules in the library file
and give a full module description for each; that is, size, date of
insertion, and module-dependent information.

These switches can be appended only to the output file specification or the
list file specification.

The /LI switch is the default value and need not be specified when a listing
file has been specified or when /LE or /FU is included in the command.

The format for specifying List switches is:

infilelslistfilel/switchles]

where:

infile is the file specification for the library file whose content is to
be listed.

listfile is the optional listing file specification. If not specified, the
listing is displayed at the user terminal.

switch[es] is the list option or options selected.

NOTE

If listfile is specified, its default device and account (PPN) is
the same as the library file. Specify SY: if the listfile is on the
public structure, and specify your own account for listfile if
the library file is not on your account.

For example:
1. LBR:>LIBFIL /LI

In this example, a listing of the names of all the modules contained in
file SY:LIBFIL.OLB is displayed on the user terminal.

2. LBR>LIBFIL/LE

In this example, a listing of the names of all the modules and their
entry points (contained in file SY:LIBFIL.OLB) is displayed on the user
terminal.

Using the Librarian Utility Program (LBR) 3-13

3-14

3. LBR:>LIBFIL/FUGD

In this example, a listing of the names of all the modules and a full
description of each module contained in file SY:LIBFIL.OLB are dis-
played on the user terminal.

4., LBR>DK1:[200,2001LIBFIL:LP:/LE/FUGD

In this example, a listing of the names of all the modules, their entry
points, and a full description of each module for file LIBFIL, residing in
directory [200,200] on DK1:, is printed on the line printer.

3.3.11 Modify Header Switch (/MH)

The Modify Header switch pertains only to universal libraries and allows
the user to modify the optional user-specified information in the module
header.

The format of the switch is:

outfile /MH:modulezorPioPs

where:

outfile specifies an output file for the universal library. The file type
defaults to .ULB.

/MH specifies the Modify Header switch.

:module specifies the name of the module whose descriptive information is
to be modified.

:0p specifies the optional user information (up to six Radix—50
characters) to be stored in the module header. The default is null
and indicates that the corresponding information field is not to be
changed. Entering a pound sign (#) clears the corresponding
information field.

For example, the optional descriptive information for module A of
RICKLB.ULB is:

"CAROL"™ "BOB" "LONI®" "ALICE" "PHRED"
The LBR command is:
LBR>RICKLB /MH:A:BOB:CAROL:TED: : @D

The optional descriptive information for Module A in file RICKLB is
changed to:

"BOB" “*CAROL" "TED" SALICE" ¢ "

Using the Librarian Utility Program (LBR)

3.3.12 Replace Switch (/RP) for Object and Macro Libraries

The Replace switch replaces modules in an existing library file with input
modules of the same name. Note that the number of EPTs placed into the
file cannot exceed the number defined for the file at its creation. In addi-
tion, each input file can contain any number of concatenated input
modules.

For macro libraries, only first-level macro definitions are extracted from
the replacement files. LBR recognizes only uppercase characters in macro
directives.

When a match occurs on a module name, the existing module is marked for
deletion, and all of its entries are removed from the EPT. If there is also an
entry point name match, the condition is fatal and terminates the current
command with an error message (see Section 3.6.2).

As each module in the library file is replaced, a message is displayed on
the user terminal. This message contains the name of the module being
replaced:

MODULE "name" REPLACED

If the module to be replaced does not exist in the library file, LBR assumes
that the input module is to be inserted and automatically inserts it without
displaying a message.

The /RP switch can be specified in either of the following ways:

1. Global - The /RP switch is appended to the library file specification,
and all of the input files are assumed to contain modules to be replaced.

2. Local - The /RP switch is appended to an input file specification, and
only the file to which the /RP switch is appended is considered to con-
tain modules to be replaced.

Global Format:

outfile /RP=infilellsinfile2seevsinfilenl

where:

outfile is the file specification for the library file. The default extension
depends on the current default (see Section 3.3.4). If the current
default is object libraries, the extension is .OLB, and if the cur-
rent default is macro libraries, the extension is .MLB.

/RP is the Replace switch.

infile is the input file specification for the file that contains modules to
be replaced in the library file. The default type is .OBJ if outfile is
an object library or .MAC if it is a macro library.

Using the Librarian Utility Program (LBR) 3-15

3-16

You can use this format of the /RP switch to specify a list of input files
without having to append the /—RP switch to each file.

To override the global function for a particular input file that should not be
replaced, append /—RP to the desired input file specifier.

Local Format:

outfile=zinfilel /RPLyinfile2Z /RPssssvsinfilen /RP]

where:

outfile is the file specification for the library file. The local format
default is the same as the global format default described above.

infile is the input file specification for the file that contains modules to
be inserted or replaced in the output library file. The local format
default is the same as the global format default described above.

/RP is the Replace switch and, when appended to an input file specifi-
cation, constitutes the local format of the switch. This overrides
the LBR default (Insert) and instructs LBR to treat the modules
contained in the specified file as modules to be replaced.

The files used in the following four examples, and the modules contained
within each file, are listed in Table 3-2. For the examples, the pertinent
files are assumed to reside in the default directory on the default device,
and the initial state of the library file is assumed to be as listed in
Table 3-2.

Table 3-2: Sample Files Used in LBR Examples

Output
Library File Input Files

File Name | LIBFIL.OLB |FILEA.OBJ | FILED.OBJ | FILEB.OBJ | FILEC.OBJ

FILEC1 FILEA FILED1 FILEB1 FILEC1
Object FILEC2 FILEB2 FILEC2 FILED2
FILEB1 FILEB3 FILEC3
Modules FILEB2
FILEA

1. LBR>LIBFIL/RP=FILEA+FILEB,FILEC GD

MODULE "FILEA" REPLACED

MODULE “FILEB1" REPLACED
MODULE "FILEB2" REPLACED
MODULE "FILECL1" REPLACED
MODULE "FILECZ" REPLACED

In this example, the global format for the /RP switch is used. Object
modules from the input files FILEA, FILEB, and FILEC replace
modules by the same names in the library file named LIBFIL. The
resulting library file is shown in Table 3-3.

Using the Librarian Utility Program (LBR)

Table 3-3: Output Library File After Execution of Example 1

LIBFIL.OLB

FILEC1

FILEC2

* FILEC3

FILEB1

FILEB2

* FILEB3
FILEA

*These modules did not exist on the library file prior to
the execution of this example, but they did exist on the
input files. LBR, therefore, assumed that they were to be
inserted. Since LBR handled these modules as a normal
insert, no message was printed on the input terminal.

2. LBR:LIBFIL=FILEDs FILEA/RP
MODULE "FILEA" REPLACED

In this example, the local format of the /RP switch is used. The object
module FILEA from file FILEA is replaced in the library file LIBFIL.
The object modules in the file FILED are inserted in the library file.
(See Section 3.4.8.) The resulting library file is shown in Table 3—4.

Table 3—4: Output Library File After Execution of Example 2

LIBFIL.OLB

** FILED1
** FILED2
FILEC1
FILEC2
FILEB1
FILEB2
* FILEA

*This module replaced.
**These modules inserted.

3. LBR*LIBFIL/RP=FILEAFILEBFILECFILED/~RP

MODULE "FILEA" REPLACED

MODULE "FILEB1" REPLACED
MODULE "FILEBZ" REPLACED
MODULE "FILEC1" REPLACED
MODULE “"FILECZ2" REPLACED

Using the Librarian Utility Program (LBR) 3-17

In this example, the /-RP switch overrides the global format of
the command. Object modules in files FILEA, FILEB, and FILEC are
processed as modules to be replaced, and file FILED is processed as a
file that contains modules to be inserted. The resulting library file is
shown in Table 3-5.

Table 3-5: Output Library File After Execution of Example 3

LIBFIL.OLB

** FILED1
** FILED2
FILEC1
FILEC2

* FILEC3
FILEB1
FILEB2

* FILEB3
FILEA

*These modules were inserted by default.

**These modules were specified to be inserted. Had a
module of the same name been present, a fatal error
message would have been issued. See Example 4.

4. |BR:LIBFIL/RP=FILEAFILEB/-RP,FILEC

MODULE "FILEA" REPLACED
?LBR -- *FATAL* -~ DUPLICATE MODULE "FILEBL1" INFILEB.OBJ

In this example, only module FILEA from file FILEA was replaced. The
user specified that the modules in file FILEB not be replaced (/-RP),
but inserted. One of the modules contained in file FILEB duplicated an
already existing module in file LIBFIL (see Table 3-2). Therefore, LBR
issued the fatal error message and terminated the processing of the
current command.

3.3.13 Replace Switch (/RP) for Universal Libraries

Use the Replace switch for universal libraries in the same way as for macro
and object libraries. In addition, you can specify the same values for the
Replace switch as for the Insert switch for universal libraries. (See Section
3.3.9.) You can specify the /RP switch with either the infile or the outfile.

The global Replace switch format for universal libraries is:

outfile/RPiname:opPiorPs+s=infilelsinfile2sssinfilenl

3-18 Using the Librarian Utility Program (LBR)

The local Replace switch format for universal libraries is:

gutfile=infile/RP:name:orPioP.+ LsinfileZsssvinfilenl

where:

outfile specifies the universal library file.

infile specifies the input file that replaces modules in the library file.
The default for the file extension is the value indicated at the
universal library’s creation time. (See Section 3.3.2.)

/RP specifies the Replace switch.

:name optionally specifies the module name to be replaced (up to six
Radix-50 characters). The default is the first six characters of the
infile name.

:0p specifies optional descriptive information (up to six Radix—50

characters) to be stored in the module header. The default is null.
If only part of the information set is specified, all preceding colons
must be supplied.

For example:

LBR>TEXT.ULB=DEBBIE.TXT /RP::THIS:I5: JAN3:UPDATE

MODULE "DEBBIE" REPLACED

In this example, LBR replaces the DEBBIE module in the universal library
TEXT.ULB with an updated module from file DEBBIE. TXT. The date of
replacement is specified by the user optional information and inserted in
the module header. Note that the optional name is omitted.

The initial state of the library file is shown in Table 3-6. The resulting
library file is shown in Table 3-7.

Table 3 — 6: Sample Files for Universal Library Replace Example

Output
Library File| Input Files

File Name | TEXT.ULB;1 |DEBBIE.TXT

Modules

DEBBIE
BERNIE

Table 3—7: Output Library File After Execution of Universal

Library Replace Example

TEXT.ULB;1

DEBBIE *
BERNIE

*The module DEBBIE was replaced. If a different infile were specified, that file would be
become module DEBBIE and occupy the same location in TEXT.ULB.

Using the Librarian Utility Program (LBR) 3-19

3.3.14 Selective Search Switch (/SS)

The Selective Search switch sets the selective search attribute bit in the
module header of each object module inserted into an object library. The
switch has no effect when applied to modules being inserted into a macro
library. You use the switch only on input files for insertion or replacement
operations, and it affects all modules in the input file to which it is applied.

Object modules with the selective search attribute bit set are given special
treatment by the Task Builder. Global symbols defined in object modules
with the selective search attribute are included in the Task Builder’s sym-
bol table only if they are previously referenced by other modules. Therefore,
only referenced global symbols are listed with the module in the Task
Builder’s memory allocation file, thereby reducing task build time. The /SS
switch should be applied to object files whose modules contain only absolute
(not relocatable) symbol definitions. See the RSTS/E Task Builder
Reference Manual, Appendix C, for more information.

The format for the Selective Search switch is:

outfile=infilel /5S8Csinfile2/88+++.sinfilen /5851

where:

outfile is the file specification for the library file.

infile is the file specification for the input file that contains modules to
be selectively searched.

/SS is the Selective Search switch.

3.3.15 Spool Switch (SP)

The Spool switch determines whether or not the file is queued to the line
printer. If you include the Spool switch, the file is queued and printed, but
only if the spooling package is running. The default is /-SP, which means
that the file is not to be printed.

The /SP switch can be appended only to the list file specifier.

The format for the Spool switch is:

outfile,listfilel /SP] or [/-8P1

where:
outfile specifies the library file.
listfile specifies the listing file.

/SP or /-SP specifies the Spool switch.

3-20 Using the Librarian Utility Program (LBR)

Example
LBR>RICKLB /DE:SHEILA,RCKLST /SP

In this example:

1. The module SHEILA and its associated entry points are deleted from
the library file SY:RICKLB.

2. The listing of the contents of the resulting library file RICKLB is writ-
ten to the list file SY:RCKLST.LST. The file is automatically printed.

3.3.16 Squeeze Switch (/S2)

The Squeeze switch reduces the size of macro definitions by eliminating all
trailing blanks and tabs, blank lines, and comments from macro library
files. This switch has no effect on object libraries or universal libraries.

The /SZ switch can be specified in a global or local format.

1. Global format — The /SZ switch is appended to the library file specifica-
tion, and all of the input files are assumed to contain modules to be
squeezed.

2. Local format — The /SZ switch is appended to an input file specifier,
and only the file to which the /SZ switch is appended is considered to
contain modules to be squeezed.

Global Format

outfile/S8Z=infilel [sinfile@sevvrinfilenl
where:
outfile is the file specification for the library file.

/SZ is the Squeeze switch.

infile is the file specification for the input file that contains modules to
be squeezed before being inserted into the library file.

You can use this format of the /SZ switch to specify a list of input files
without having to append the /SZ switch to each file.

To override the global squeeze function for a particular input file that is to
be inserted but not squeezed, append /~SZ or /NOSZ to the desired input
file specifier.

Local Format
gputfile=infilel /8Z[sinfile2/8Zs+s++sinfilen/821
where:

outfile is the file specification for the library file.

Using the Librarian Utility Program (LBR) 3-21

infile is the file specification for the file that contains modules to be
squeezed before being inserted into the library file.

/SZ is the Squeeze switch.

LBR uses the following algorithm on each line to be squeezed and inserts
the resulting line into the library file:

1. LBR searches the line for the rightmost semicolon (;).

2. If it finds a semicolon, LBR deletes it, along with all trailing characters
in the line.

3. LBR deletes all trailing blanks and tabs in the line.

4. If the resulting line is null, nothing is transferred to the library file.

The /SZ switch scans for semicolons from right to left and deletes text from
right to left until the first semicolon is encountered. Only the rightmost
semicolon and the text to its right are deleted. If the line contains a semi-
colon embedded in meaningful (non-comment) text and you want comments
squeezed, code a dummy comment for that line. The /SZ switch uses only
this rightmost comment during squeeze processing.

Figure 3-1 shows the use of the LBR /SZ switch. A file containing input
text to be squeezed is illustrated, along with the text actually inserted into
the library file after the squeeze operation has been completed.

Figure 3—-1: MACRO Listing Before and After Running LBR with
/SZ Switch

BEFORE BEING SQUEEZED

+MACRO MOUSTR RXRY»7LBL

FH ok - - NOTE : ’ :
; BOTH ARGUMENTS MUST BE REGISTERS ;
LBL: MOVE (RX)+, (RY)+ IMOVE A CHARACTER
BNE LBL SCONTINUE UNTIL NULL SEEN
DEC RY iBACKUP OUTPUT PTR TO
NULL ;

SEND OR MOUSTR
+ ENDM

AFTER BEING SQUEEZED

+MACRO MOYUSTR RXRYs7LBL

HES) - - NOTE
3 BOTH ARGUMENTS MUST BE REGISTERS
L.BL: MOVB (RXD)+, (RY)+

BNE LBL

DEC RY

+ENDM

3-22 Using the Librarian Utility Program (LBR)

3.4 Combining Library Functions

You can request two or more library functions in the same command line.
The only exceptions are that (1) /CO cannot be requested with anything
else except /LI, /LE, or /FU and that (2) /CR and /DE cannot be specified
in the same command line.

Functions are performed in the following order:
/DF

/CR or /CO

/DE

/DG

/IN, /RP, /SS, /SZ

/LI, /LE, /FU

S o e

For example:

LBR>FILE/DE:XYZ:$A»LP: /LE/FU=MODX sMODY /RP GED

In order, LBR:

1. Deletes modules XYZ and $A.

2. Inserts all modules from MODX and MODY, replacing any duplicates
of modules in MODY.

3. Produces a listing of the resulting library file on the line printer with
full module descriptions and all entry points.

3.5 LBR Restrictions

The following restrictions apply when using LBR:

1. Limit of 65,536 words per module.
2. Limit of 65,536 blocks per library.

3. Allocate tables to maximum anticipated size. To expand table alloca-
tions, use the /CO switch to copy the entire file.

4. Three conditions result in a fatal error when using the /IN switch to
insert a module into a library:

a. The name of the inserted module matches the name of a module
already in the library. This error can be avoided by using the /RP
switch to replace one module with another module of the same
name.

Using the Librarian Utility Program (LBR) 3-23

b. The entry point name of the inserted module matches an entry point
name of a module in the library. For further information, refer to
Section 3.3.8.

c. The library cannot be extended because of the lack of disk space.
5. The use of wildcards, such as *.OBJ, where the * indicates all modules
with extension .OBJ, is not allowed.

6. There must be enough space in the library’s tables for both the modules
being replaced and their replacements, since the new modules are en-
tered before the old modules are marked for deletion.

3.6 LBR Error Messages

3-24

There are two types of LBR error messages: diagnostic and fatal.

Diagnostic error messages describe an existing condition that requires con-
sideration but does not warrant termination of the command. When a hard-
ware error is suspected, examine the system error log to determine the
device and error type. Diagnostic messages are displayed at the user
terminal in the format:

“WLBR ~-- *DIAG* - messade

Fatal error messages describe a condition that caused LBR to stop process-
ing a command. When this occurs, LBR returns to the appropriate com-
mand level. For example, if the command is entered in response to the CCL
command, that is,

LBR command

then LBR issues the fatal error message and exits. If, however, the com-
mand is entered in response to the LBR prompt, that is,

LBR:>command
LBR issues the fatal error message and reprompts.
Fatal error messages are displayed at the user terminal in the format:

?LBR -- *FATAL¥% - messade

If a fatal error occurs during the processing of an indirect command file, the
command file is closed, the fatal error message and command line in error
are displayed on the user terminal, and LBR returns to the appropriate
command level.

3.6.1 Effect of Fatal Errors on Library Files
The status of a library file after fatal errors is:

1. In general, output errors leave the library in an indeterminate state.

Using the Librarian Utility Program (LBR)

2. During the deletion process directed by the /DE switch, the library is
rewritten prior to the display of the individual module-entry-point-
deleted messages.

3. During the replacement process directed by the /RP switch, the library
is rewritten prior to the display of the individual module-replaced
messages.

4. During the insert process directed by the /IN switch, the library is
rewritten after the insertion of all modules in each individual input file.

3.6.2 List of LBR Errors

The following list of LBR error messages provides a description of the error
cause along with suggested user responses.

LBR -- BAD LIBRARY HEADER

Description: Either the file is not a library file or the file is corrupt.

Suggested User Response:

1. If the file is not a library file, reenter the command line with a proper
library file specified.

9. If the volume is corrupt, it must be reconstructed before it can be used.
LBR -- CANNOT MODIFY HEADER

Description: An attempt was made to modify the module header of a mod-
ule in an object library or macro library. No change is made to the module
header.

Suggested User Reponse: Reenter the command line, specifying a module in
a universal library.

LBR -~ COMMAND I/0 ERROR

Description: One of the following conditions may exist:

1. A problem with the physical device (for example, device hung).

2. The file is corrupt or the format is incorrect (for example, record length
exceeds 132 bytes).

Suggested User Response: Reenter the command line, using the correct
syntax.

LBR -- COMMAND SYNTAX ERROR
command line

Description: A command was entered in a format not conforming to syntax
rules.

Using the Librarian Utility Program (LBR) 3-25

3-26

Suggested User Response: Reenter the command line, using the correct
syntax.

LBR -- DUPLICATE ENTRY POINT NAME "name" IN filename

Description: An attempt was made to insert a module into a library file
when the insert module and a module in the library file have identical
entry point names.

Suggested User Response: Determine if the specified input file is the correct
file. If not, reenter the command line, specifying the correct input file. If the
input file is the correct file, you can delete the duplicate entry point from
the library and try again.

LBR ~-- DUPLICATE MODULE NAME "name" IN filename

Description: An attempt has been made to insert a module into a library
that already contains a module with the specified name, without use of the
/RP switch.

Suggested User Response: Determine if the specified input file is the correct
file. If the input file is correct, decide whether to delete the duplicate mod-
ule from the library file and insert the new one, or replace the duplicate
module by rerunning LBR with the /RP switch appended to the input file
specification.

LBR -- EPT OR MNT EXCEEDED IN filename
Description: The EPT or MNT table limit has been reached during the
execution of an Insert or Replace command.

Suggested User Response: Copy the library, increasing the table space with
the /CO switch. Reenter the command line.

LBR -- EPT OR MNT SPACE EXCEEDED IN COMPRESS

Description: An EPT or MNT table size was specified for the output library
file that is too small to contain the EPT or MNT entries used in the input
library file.

Suggested User Response: Reenter the command line with a larger EPT or
MNT table size.

LBR ~- ERROR IN LIBRARY TABLES, FILE filename

Description: The library file is corrupt or is not a library file.

Suggested User Response: If the file is corrupt, no recovery is possible and
the file must be reconstructed. If the file is not a library file, reenter the
command line with the correct library file.

LBR -~ EXACTLY ONE INPUT FILE MUST APPEAR WITH /COD

Using the Librarian Utility Program (LBR)

Description: No file or more than one input library file was specified in the
/CO command.

Suggested User Response: Reenter the command line with only one input
file.

LBR -- FATAL COMPRESS ERROR

Description: The input library file is corrupt or is not a library file.

Suggested User Response: No recovery is possible. The file in question must
be reconstructed.

LBR -- GET TIME FAILED
Description: LBR failed to execute a Get Time Parameters directive. The
error is caused by a system malfunction.

Suggested User Response: Reenter the command line. If the problem per-
sists, submit a Software Performance Report along with the related console
dialogue and any other pertinent information.

LBR -- ILLEGAL DEVICE /VOLUME
command line

Description: Device specifier entered is not a valid device name. A device
specifier consists of two ASCII characters, followed by one or two optional
digits.

Suggested User Response: Reenter the command line with the correct de-
vice syntax specified.

LBR -- ILLEGAL DIRECTORY
command line

Description: The PPN entered does not conform to syntax rules. The PPN
must have the form [n,n], where n can be one to three digits.

Suggested User Response: Reenter the command line with the correct PPN
syntax.

LLBR -- ILLEGAL FILENAME
command line

Description: One of the following was entered:

1. A file specification containing a wildcard.

2. A file specification that neither is a filename nor has an extension.

Suggested User Response: Reenter the command line correctly.

LBR -- ILLEGAL GET COMMAND LINE ERROR CODE

Using the Librarian Utility Program (LBR) 3-27

3-28

Description: The system, due to an internal failure, is unable to read a
command line.

Suggested User Response: Reenter the command line. If the problem per-
sists, submit a Software Performance Report along with the related console
dialogue and any other pertinent information.

LBR -- ILLEGAL SWITCH
command line

Description: A switch was not recognized or a legal switch was specified in
an invalid context.

Suggested User Response: Reenter the command line with the correct
switch specification.

LBR -- ILLEGAL SWITCH COMBINATION

Description: You entered switches that cannot be executed in combination.
See Section 3.4.

Suggested User Response: Reenter the command line, specifying the
switches in the proper sequence.

LBR -- INDIRECT COMMAND SYNTAX ERROR
command line

Description: An indirect file was specified in a format that does not conform
to syntax rules.

Suggest User Response: Reenter the command line with the correct syntax.

LBR -- INDIRECT FILE DEPTH EXCEEDED
command line

Description: An attempt has been made to exceed one level of indirect com-
mand files.

Suggested User Response: Rerun the job with only one level of indirect
command file.

LBR -- INDIRECT FILE OPEN FAILURE
command line

Description: The requested indirect command file does not exist. One of the
following conditions may exist: :

You tried to read a file and were denied access.
A problem exists on the physical device.
The volume is not mounted.

The specified file directory does not exist.

ok b

The specified file does not exist.

Using the Librarian Utility Program (LBR)

Suggested User Response: Determine which of the above conditions caused
the message and correct that condition. Reenter the command line.

LBR -- INPUT ERROR ON filewname

Description: The file system, while attempting to process an input file, has
detected an error. A problem exists with the physical device due to some
transient condition.

Suggested User Response: Reenter the command line.

LBR -- INSUFFICIENT DYNAMIC MEMORY TO CONTINUE

Description: Job swap max is too small for LBR.

Suggested User Response: Run LBR with a larger job swap max. (Refer to
the RSTS/E System Generation Manual for more information.)

LBR -- INVALID EPT AND/OR MNT SPECIFICATION
Description: An EPT or MNT value greater than 4096 was entered in a
/CR or /CO switch.

Suggested User Response: Reenter the command line with a valid value.

LBR -- INYVALID MODULE FORMAT: insertion module
Description: An attempt was made to insert a macro module into an object
library.

Suggested User Response: Determine if an object file should be inserted
into an object library. If so, reenter the command line with the correct
object file. If a macro library was to receive the insertion, reenter the com-
mand line with the correct macro library.

LBR -- INVALID FORMAT. INPUT FILE filename

Description: The format of the input file is not the standard format for a
macro source or object file, or the input file is corrupt.

Suggested User Response: Reenter the command line with the correct input
file.

LBR ~- INVALID OPERATION FOR OBJECT AND MACRO LIBRARIES

Description: Module header information was supplied for an object library
or macro library in an Insert or Replace command.

Suggested User Response: No action required. The command is executed as
if the information had not been supplied.

LBR -- INUALID LIBRARY TYPE SPECIFIED

Using the Librarian Utility Program (LBR) 3-29

3-30

Description: An illegal library extension in a Create (/CR) or Default (/DF)
command line. The extensions .OBJ and .MAC are the only valid specifica-
tions. See Sections 3.3.2 and 3.3 4.

Suggested User Response: Reenter the command line with .OBJ or .MAC
specified.

LBR -- INVALID NAME -- “name”

Description: A module name or entry point that contains a character that is
not in the Radix—50 character set has been specified for deletion. Radix—50
characters consist of the letters A through Z, the numbers 0 through 9, and
the special characters period (.) and dollar sign ($).

Suggested User Response: Reenter the command line with a valid name.

LBR -~ INVALID RADSO CHARACTER IN "character string"

Description:‘ A character you supplied as part of information when you used
the Insert, Replace, or Modify Header switch for a universal library is not a
Radix-50 character.

Suggested User Response: Determine which character of the corresponding
switch value is not a Radix—-50 character. Reenter a Radix—50 character in
place of the invalid character.

LBR -- I/0 ERROR INPUT FILE filename

Description: A read error has occurred on an input file. One of the following
conditions may exist:

1. A problem exists on the physical device.

2. The file is corrupt or the format is wrong (record length exceeds 132
bytes).

Suggested User Response: Determine which of the above conditions caused
the message and correct that condition. Reenter that command line.

LBR -- LIBRARY FILE SPECIFICATION MISSING

Description: A command was entered without specifying the library file.

Suggested User Response: Reenter the command line with the library file
specified.

LBR -- MARK FOR DELETE FAILURE ON LBR MWORK FILE

Description: When LBR begins processing commands, it automatically cre-
ates a work file marked for deletion. For some reason, this operation failed.

Suggested User Response: Reenter the command line.

Using the Librarian Utility Program (LBR)

LBR -- MULTIPLE MODULE EXTRACTIONS NOT PERMITTED FOR UNY MODULES

Description: An attempt was made to extract more than one module from a
universal library. The first module specified is extracted but others are
ignored.

Suggested User Response: Reenter the command line for each additional
extraction.

LBR -- MISSING QUTPUT FILE SPECIFIER

Description: The outfile specification was not included in the LBR com-
mand line.

Suggested User Response: Reenter the command line with the outfile speci-
fication included.

LBR -- NO ENTRY POINT NAMED "name"

Description: The entry point to be deleted is not in the specified library file.

Suggested User Response: Determine if the entry point is misspelled or if
the wrong library file is specified. Reenter the command line with the entry
point correctly specified.

LBR -- NO MODULE NAMED "module”

Description: The module to be deleted is not in the specified library file.

Suggested User Response: Determine if the module name is misspelled or if
~ the wrong library file is specified. Reenter the command line with the mod-
ule name correctly specified.

LBR -- OPEN FAILURE ON FILE filename

Description: The file system, while attempting to open a file, has detected
an error. One of the following conditions may exist:

You tried to read a file and were denied access.
A problem exists on the physical device.

The volume is not mounted.

The specified file directory does not exist.

The specified file does not exist.

S S o

There is insufficient contiguous space to allocate the library file (this
applies to the Compress and Create switches only).

Suggested User Response: Determine which of the above conditions caused
the message and correct that condition. Reenter that command line.

Using the Librarian Utility Program (LBR) 3-31

3-32

LLBR -- OPEN FAILURE ON LBR WORK FILE

Description: While you attempted to open the LBR work file, an error was
detected. One of the following conditions may exist:

1. The volume is full.
2. The device is write-protected.

3. A problem exists with the physical device.

Suggested User Response: Determine which of the above conditions caused
the message and correct that condition. Reenter the command line.

LBR -- OQUTPUT ERROR ON filename
Description: A write error has occurred on the output file. One of the follow-
ing conditions may exist:

1. The volume is full.

2. The device is write-protected.

3. The hardware has failed.

Suggested User Response: If the volume is full, delete all unnecessary files
and rerun LBR. If the device is write-protected, logically dismount write-

enable, logically remount, then reenter the command line. If the hardware
has failed, assign a new device and reenter the command line.

LBR -- RMS FILES CANNOT BE EXTRACTED TO RECORD ORIENTED DEVICE

Description: An attempt was made to extract to a record-oriented device
(such as a KB: or LP:) a module inserted from a non-sequential RMS file
(such as a relative or index file). This is a fatal error message.

Suggested User Response: Extract the file to a disk and then use an RMS
conversion to make an RMS sequential file.

LBR -- TOO MANY INPUT FILES

Description: Too many input file specifications were included in the LBR
command line. You are limited to 80 characters.

Suggested User Response: Reenter a command line not exceeding 80
characters.

LBR -- TOO MANY OUTPUT FILES SPECIFIED

Description: More than two output files were specified. LBR makes the
following assumptions:

1. The first output file specified is the output library file.
2. The second output file specified is the listing file.

Using the Librarian Utility Program (LBR)

Suggested User Response: No action is required. LBR ignores any remain-
ing file specifications.

LBR -- POSITIONING ERROR ON filename

Description: The device is write-locked.

Suggested User Response: If the device is write-locked, logically dismount
the device, write-enable it, logically remount it, and reenter the command
line.

LBR -- WIRTUAL STORAGE REDUIREMENTS EXCEED G5536 WORDS

Description: This error may occur with maximum size libraries in conjunc-
tion with a single command line that logically deletes a large number of
modules and entry points, and continues to replace them with an equally
large number of modules and entry points having highly dissimilar names.
Normally, this message indicates some sort of internal system error.

Suggested User Response: Rerun the job, but divide the complicated com-
mand line into several smaller command lines that do the same operations.

LBR -- WORK FILE I/0 ERROR

Description: A write error has occurred on the LBR work file. One of the
following conditions may exist:

1. The volume is full.

2. The device is write-protected.

3. The hardware has failed.

Suggested User Response: If the volume is full, delete all unnecessary files
and rerun. If the device is write-protected, logically dismount the device,
write-enable it, logically remount it, and reenter the command line. If the
hardware has failed, assign a new device and retry the command.

Using the Librarian Utility Program (LBR) 3-33

Chapter 5
Using the MAKSIL Utility Program

The MAKSIL utility program accepts as input files the generated output of
the Task Builder, a task image file (extension .TSK) and a symbol table
(extension .STB). Depending on how the program was originally coded and
how you specify the MAKSIL utility program, MAKSIL produces a format-
ted output file that can be loaded into memory as a resident library (.LIB),
a run-time system (.RTS), or a multi-user task.

When generating a run-time system, a new command file (CMD) can also
be generated. When generating the .LIB, .RTS, or a task image, you have
the option of including the symbol table (.STB) into RSTS/E Save Image
Library (SIL) format, thus allowing symbolic patching of the output file.

5.1 Creating a Run-Time System (RTS)

In order to use MAKSIL to format task builder output (task image) into a
loadable run-time system, two conditions must be met.

For the first condition:

1. The starting address of the task image (the label referenced by the
.END statement) must be within the lowest 1K of memory of the read-
only portion of the task.

2. The highest virtual address for the task must be 177774 (octal). The
word at 177774 (octal) must contain a valid, non-zero maximum job
image size entry.

The second condition requires the following step:

1. Task-build the MACRO assembled run-time system code (.OBJ), then
use MAKSIL to format the Task Builder output (TSK and .STB).
MAKSIL will print the following error message if the .TSK file is not
aligned properly:

TASK MUST BE EXTENDED BY xxxxxxxx BYTES

If the file is not properly aligned, edit the command file ((CMD) to
extend a “dummy” control section by the required number of bytes to
align the last .PSECT at the correct boundary and rerun MAKSIL. The

“edit” mode of MAKSIL can be used to automatically modify the com-
mand file (see Section 5.2).

5-1

5-2

MAKSIL may not work correctly if the Task Builder parameters are out of
range. When you task build run-time system code, specify the following
Task Builder options described in Table 5-1 to set the required virtual and
physical address range. (See the RSTS/E Task Builder Reference Manual.)

Table 5-1: Task Builder Options for Virtual and Physical Address
Range

Option Description

PAR Define virtual address base and range. PAR also implicitly specifies the larg-
est program (low-segment) area.

STACK | The partition size is a multiple of 4K words. If the run-time system is only
3K-words for example, the STACK option would be defined as
“STACK =1024" to reserve an additional 1K-words. If this is done, the run-
time system will occupy only 3K—words of physical memory when it is loaded.

EXTSCT | RSTS/E requires the task to end at virtual address 177774. The EXTSCT
option extends a control section (usually .99998) so that the vector control
section (.99999) ends correctly.

Table 5-2 defines the PAR and STACK options for various run-time system
sizes.

Table 5-2: Task Builder PAR and STACK Options for Various
Sized Run-Time Systems

Size Options

1K - 4K PAR =160000:020000*

5K - 8K PAR =140000:040000

9K - 12K PAR =120000:060000

13K — 16K PAR =100000:100000

17K - 20K PAR=060000:120000

21K ~ 24K PAR =040000:140000

25K — 28K PAR =020000:160000
1IK5K 9K 13K 17K 21K 25K | STACK =3072
2K 6K 10K 14K 18K 22K 26K | STACK =2048
3K 7K 11K 15K 19K 23K 27K | STACK=1024
4K 8K 12K 16K 20K 24K 28K | STACK =0000

*PAR =virtual address:number of bytes
The following example shows a control file for a dummy 4K word run-time
system:

FILE/-HD,,FILEFILE=FOOBLD /MP
PAR=FILE:160000:020000

STACK=0
EXTSCT=.,98988:000000

/7

Using the MAKSIL Utility Program

After task building FILE.TSK and executing MAKSIL, the command file
would be edited to change the PAR, STACK, and EXTSCT options to appro-
priate values. The task builder is then rerun to correctly build the task.

Finally, MAKSIL is rerun to build FILE.RTS.

Run-time systems are built by first specifying the size (4K,8K,etc.) and
then task building so as to include as many modules resident as will fit in
the partition (leaving sufficient patch space). Then, MAKSIL is run to
ine the EXTSCT value. Finally, the extended task is built and converted to
a run-time system.

5.2 Creating a Resident Library

MAKSIL can also produce a resident library output file. As shown in the
example below, the switch /RTS is not appended to the filename entered in
response to the first MAKSIL prompt. Note that the switch /DEBUG can
be used if required.

RUN $MAKSIL

MAKSIL V70 RSTS/E Timesharing

Resident Library name? TEST G

Task-built Resident Library input file <TEST.TSK>? TEST G
Include symbol table (Yes/No) <Yes»? Yes G

Symbol table input file ¢TEST.STB:>7 TEST GO

Task Image SIL output file <TEST.SIL>? G

TEST built in 23 K-wordss 548 svmbols in the directory
TEST.TSK renamed to TEST.TSK<104>

Ready

5.3 Operating Instructions

Following are the keyboard operating commands and responses for
MAKSIL.

Type:
RUN $MAKSIL @D

After displaying its header line, MAKSIL prompts, and the user answers:

Resident Library name? FILE/RTS @D
or
Resident Library name? FILE @D

Type the name of the resident library (FILE, for example) or the run-time
system name (FILE/RTS, as shown above). “RTS” is required if a run-time
system is to be built. The switch /RTS signals that special conditions must
be met by the .TSK file before proper conversion to a run-time system Save

Using the MAKSIL Utility Program 5-3

54

Image Library (SIL) format can be made. When the switch /RTS is not
used, MAKSIL assumes that a Resident Library file is to be created. The
switch /DEBUG can be used when creating a run-time system or a resident
library file to initiate printout of internal tables during the create process.

MAKSIL then prompts:

Task-built Resident Library input file <FILE.TSK>? GD
or
Task-built Run-Time System input file <FILE.TSK>7 GD

Type the name of the .TSK file, or press the RETURN key if the default
name is acceptable. If a run-time system is to be built, the task is checked
for correct parameters. If a resident library is requested, the next prompt is:

Include symbol table

If in Build Mode, the program checks the format of the file as a run-time
system and responds with either:

The run-time svystem is correctly alidned
or

The run-time svstem is not alidned

If in “Edit Mode”, to redefine task-builder parameters.

Edit mode (Yes/No) <Yes: 7 @B

At this point, in running MAKSIL, you have two options; to enter the edit
mode to redefine task build parameters, or the build mode to construct the
run-time system. This option is presented by the following prompt:

Task-builder command input file <FILE.CMD:>? @B

If the run-time system is correctly aligned, the program will exit.

The command file is edited to modify the EXTSCT, STACK and PAR
options to extend the task as necessary. The program then prompts:

Corrected command filename <FILE.CMD>? ®ED

If you respond with the RETURN key, the old file FILE.CMD will be
renamed to FILE.BAK. The program then reminds you to rebuild the task
and exits:

Please tasK-build adain using FILE.,CMD

If you answered “No” to the “Edit Mode” question, the program aborts if the
task is not correctly aligned. Perform the task-build. If there are no prob-
lems, the following questions are asked:

Include svymbol table (Yes /No) <Yes:? GD

Using the MAKSIL Utility Program

Typing Yes and the RETURN key or just the RETURN key, will append a
symbol table (.STB) to the run-time system. The .STB file allows you to
patch the .RTS via INIT or the on-line patching mechanism. If a symbol
table is requested, the prompt appears:

Symbol table ineput file <FILE.STB:7? G

Type the name of the .LIB or .RTS file, or press the RETURN key if the
default is acceptable. MAKSIL builds the run-time system or resident li-
brary (with symbol table if requested) into the output file and displays:

RFun-Time System output file <FILE.RTS:>? ®D
or

Recident Library output file <FILE.LIB>? GED
or

TasKk Imade SIL output file <FILE.SIL>? ®ED

Type the name of the .LIB or .RTS file, or press the RETURN Kkey if the
default is acceptable. (When task building, do not give the output file the
same name as the input file, or else the input file could be overwritten.)
MAKSIL builds the run-time system or resident library (with symbol table
if requested) into the output file and displays:

FILE built in 4K wordss 123 svmbols in the directorv

After the MAKSIL process, the task image file is renamed so that unprivi-
leged users can access the task image with the “HISEG =" or the “LIBR="
switch when task building their programs. The output from running a
multi-user task through MAKSIL is a save image library (FILE.SIL, which
is executable) and a resident library (FILE.LIB, which must be added to the
list of resident libraries in order to be shared by multiple users). Refer to
the RSTS/E Task Builder Manual for more information about building
multi-user tasks.

5.4 Messages

There are three types of messages that can be encountered while using
MAKSIL:

1. Fatal error messages(?)
2. Diagnostic messages(%)

3. Informational messages

These three types of messages, their causes, and user responses are
described in the following sections.

5.4.1 Fatal Error Messages
70DD BASE DR TRANSFER ADDRESS

Description: The .TSK file contains an incorrect transfer address or an odd
value for a base address.

Suggested User Response: Re-task build the program, and execute
MAKSIL.

Using the MAKSIL Utility Program 5-5

?GARBAGE WHEN CONVERTING "wnnnnn®" IN "command" text

Description: A conversion error has occurred.

Suggested User Response: Check the .CMD file, re-task build, and execute
MAKSIL.

?COULDN‘T FIND ALIGNMENT POINT
Description: The alignment scan could not locate the communication
vector.

Suggested User Response: Check that the task build has been performed
correctly.

?PARTITION OR STACK PARAMETER INCORRECT FOR TASK

Description: You are trying to extend the task too far.

Suggested User Response: Rebuild the task with correct “PAR=" and
“STACK =" commands.

?TASK IMAGE xxxxx.TSK CANNOT BE CONVERTED TO RUN-TIME SYSTEM ryvvv.

Description: Same as message.

Suggested User Response: Check that the task is defined correctly. Com-
mon problems include a starting address that is not in the first 1K memory
segment, a missing vector control section (.99999), or overall incorrect run-
time system design.

PERROR REOPENING SYMBOL TABLE

Description: Opening the .STB file resulted in an error after the file had
once successfully been opened.

Suggested User Response: Re-execute the MAKSIL program.

PERROR WHEN OPENING file.ext -- text

Description: An error was encountered when opening the file “file.ext”
described in error message “text”.

Suggested User Response: Type in correct filename in response to question.

?DISK FILES ONLY, PLEASE

Description: An attempt has been made to open a non-disk file for input or
output operations.

Suggested User Response: Enter only filenames that reside on the disk in
response to MAKSIL questions.

5-6 Using the MAKSIL Utility Program

PILLEGAL SYMBOL TABLE FORMAT

Description: The symbol table (.STB) file does not have the file attributes of
either formated binary or variable length records.

Suggested User Response: Either an improper symbol table file has been
specified, or the file has been corrupted. The program will build without the
symbol table. Re-run the program with a valid symbol table file to include a
symbol table.

PERROR GETTING A .GSD ENTRY

Description: In processing the symbol table (.STB) file, an error occurred
that prevents finding a valid symbol table entry.

Suggested User Response: Either an improper symbol table file has been
specified, or the file has been corrupted.

The program will build without the symbol table. Re-run the program with
a valid symbol table file to include a symbol table. .

PLONG FORMATTED-BINARY RECORD.

Description: The symbol table (.STB) file contains a formatted binary rec-
ord greater than 512 bytes.

Suggested User Response: Either an improper symbol table file has been
specified, or the file has been corrupted. The program will build without the
symbol table. Re-run the program with a valid symbol table file to include a
symbol table.

PILLEGAL FORMATTED-BINARY RECORD

Description: The symbol table (.STB) file contains a formatted record start-
ing at an odd byte boundary.

Suggested User Response: Either an improper symbol table file has been
specified, or the file has been corrupted. The program will build without the
symbol table. Re-run the program with a valid symbol table file to include a
symbol table.

?ILLEGAL YARIABLE-LENGTH RECORD

Description: The symbol table (.STB) file contains a variable length record
which either is greater than 512 bytes in length, or starts at an odd byte
boundary.

Suggested User Response: Either an improper symbol table file has been
specified, or the file has been corrupted. The program will build without the
symbol table. Re-run the program with a valid symbol table file to include a
symbol table.

Using the MAKSIL Utility Program 5-7

PADDRESSING OUTSIDE OF TASK LIMITS

Description: The program tried to access beyond the calculated end of the
.TSK file. The task image is incorrect.

Suggested User Response: Task build the program again and execute
MAKSIL.

PERRDOR GETTING BLOCK xx -- text

Description: A GET command was performed on block xx of the output file
(.RTS or .LIB), which resulted in an error, as described in error message
text.

Suggested User Response: Execute the MAKSIL program again.

PERROR PUTTING BLOCK xx -- text

Description: A PUT command was performed on block xx of the output file,
which resulted in an error, as described in the error message text.

Suggested User Response: Execute the MAKSIL program again.

PERROR GETTING FROM xxxx.STB -~ text

Description: An error occurred when performing a GET command from the
symbol table (.STB) file, as described in error message text.

Suggested User Response: Re-execute the programs.

PFATAL ERROR -- text

Description: An unexpected error has occurred.

Suggested User Response: Send a Software Performance Report along with
an appropriate listing of the error.

5.4.2 Diagnostic Messages

ZRUN-TIME SYSTEM MAXIMUM JOB SIZE (xx) EXCEEDS CALCULATED MAXIMUM OF (vvy)

5-8

Description: The maximum size of a particular job (O.SIZE) as defined in
the .TSK, is too great for the run-time system. For example, while assem-
bling a run-time system requiring 16K words, a job size of 28K words had
been defined. Since the run-time system and a job cannot exceed 32K
words, the RSTS/E Monitor adjusts the maximum job size to 16K words.

Suggested User Response: No response is required.

YMULTIPLE commands: “"first command"s "command line"

Using the MAKSIL Utility Program

Description: A PAR, STACK, or EXTSCT command appears more than
once. Only the first command, of a particular type, is used.

Suggested User Response: No response is required.
5.4.3 Informational Messages

INCORRECT FILE SIZE xxs COMPUTED=vvy

Description: The actual file size is less than that calculated from parame-
ters contained in the .TSK file.

Suggested User Response: No response is required.
THE RUN-TIME SYSTEM IS NOT ALIGNED

or

THE RUN-TIME SYSTEM IS CORRECTLY ALIGNED

Description: One of the two messages above is displayed, depending on the
outcome of the task verification phase.

Suggested User Response: No response is required.

THE COMMAND FILE IS ALREADY CORRECT.EXITING.,

Description: The edit mode was selected even though the task is correct.
This may happen if MAKSIL is run from a batch stream

Suggested User Response: No response is required.

THE TASK- BUILDER COMMANDS HAVE BEEN CHANGED AS FOLLOMWS

OLD Par NEW par
OLD stack NEW stack
QLD extsct NEW extsect

¢filename? will load in a xx K-words partition usind vy K-words
physical memory

zz (octal) bvtes mav be used for expansion.

please tasK-build adain using <filename>.CMD

Description: The above message is displayed to log the edit mode changes.

Suggested User Response: Re-task build using the edited command file.

UTILITY ADD SUPPRESSED

Description: This message is printed if the run-time system was not written
to account [0,1].

Suggested User Response: No response is required.

Using the MAKSIL Utility Program 5-9

Appendix B
Librarian Utility Program (LBR) Files and Formats

A library file consists of a library header, an entry point table, a module
name table, the library modules, and (usually) free space. The entry point
table has zero length for macro and universal libraries. See Figure B-1.

B.1 Library Header

The header section is a full block (256 words) in which the first 24 words
describe the current status of the library. Its contents are updated as the
library is modified, so LBR can access the information it needs to perform
its functions (such as Insert, Compress). The 24th word in the library
header is the default insert file extension for universal libraries and is
undefined for macro and object libraries. See Figure B-2.

B.2 Entry Point Table

The entry point table consists of 4—word elements that contain an entry
point name (words 0—1) and a pointer to the module header where the entry
point is defined (words 2-3). See Figure B-3. This table is searched when a
library module is referenced by one of its entry points. The table is
sequenced in order of ascending entry point names. The entry point table is
not used for macro or universal library files.

B.3 Module Name Table

The module name table is searched when the library module is referenced
by its module name rather than by one of its entry points. It is comprised of
4-word elements; a module name (words 0—1) and a pointer to the module
header (words 2-3). See Figure B—4. The module name table is sequenced
in order of ascending module names.

B-1

B.4 Module Header

Each module starts with a header of 8 words for object and macro modules
and 32 words for universal modules, identifying the type and status of the
module, its length (number of words), and so forth (see Figure B-5).

For object modules, the low-order bit of the attributes byte is set if the
module has the selective search attribute. (See Section 3.3.14, Selective
Search Switch (/SS). The selective search attribute reduces task build
time.) In addition, for object modules, the two words of type-dependent
information contain the module identification defined by the IDENT direc-
tive at assembly time. For macro modules, these two fields are undefined.

For universal modules, type-dependent identification is derived from the
file extension of the input file. See Figure B-7.

Universal libraries allow module header changes (optional descriptive
information) by the /MH switch.

Figure B-1: Standard Library File Format

Fixed- Library
Length Header
Records -
Entry Point
Table
Block
Boundaries
Module Name
Table J
Variable- Module 1 Header
Length
Records Module 1
Module n Header
Y Module n

Available Space

B-2 Librarian Utility Program (LBR) Files and Formats

Figure B-2:

Universal Library File Format

Fixed- Library
Length Header
Records
Entry Point
Table
Module Name
Table
Variable- Module 1 Header
Length Unused Space
Records

Module 1

Unused Space

Module 2 Header
Unused Space

Module 2

Unused Space

Module N Header
Unused Space

Module N

Available Space

NOTE

All universal module headers and the first
record of each universal module will start on

a block boundary.

Librarian Utility Program (LBR) Files and Formats

Block
Boundaries

B-3

Figure B-3: Contents of Library Header

OFFSET
WORD 0 NON ZERO ID LIBRARY TYPE
2 LBR (LIBRARIAN) VERSION
4 (.IDENT FORMAT)
6 YEAR
10 [DATE AND MONTH
12 TIME OF LAST DAY
14 Bl INSERT HOUR
16 - MINUTE
20 e SECOND
22 RESERVED SIZE EPT ENTR'S
24 EPT STARTING RELATIVE BLOCK
26 NO. EPT ENTRIES ALLOCATED
30 NO. EPT ENTRIES AVAILABLE
32 RESERVED SIZE MNT ENTR'S
34 MNT STARTING REL BLOCK
36 NO. MNT ENTRIES ALLOCATED
40 NO. MNT ENTRIES AVAILABLE
42 LOGICALLY DELETED
44 __ AVAILABLE (BYTES)
46 CONTIGUOUS SPACE
50 AVAILABLE (BYTES)
52 NEXT INSERT RELATIVE BLOCK
54 START BYTE WITHIN BLOCK
56 *UNIVERSAL DEFAULT INSERT TYPE

*Undefined for
macro and object
libraries

B4 Librarian Utility Program (LBR) Files and Formats

Figure B—4: Format of Entry Point Table Element

WORD

GLOBAL SYMBOL

NAME (RAD50)
ADDRESS OF RELATIVE BLK.
— MODULE
HEADER BYTE IN BLOCK

Figure B-5: Format of Module Name Table Element

WORD

MODULE NAME

(RAD50)
ADDRESS OF RELATIVE BLK.
—MODULE
HEADER BYTE IN BLOCK

Figure B-6: Module Header Format

OFFSET FROM

START OF

MODULE HEADER

0

2

10
12
14
16

ATTRIBUTES STATUS
SIZE OF
MODULE (BYTES)
DATE YEAR
— MODULE
INSERTED MONTH
B DAY
TYPE DEPENDENT
INFORMATION

Librarian Utility Program (LBR) Files and Formats

0=NORMAL MODULE
1=DELETED MODULE

B-5

Figure B-7: Module Header Format for Universal Libraries

OFFSET FROM
START OF
MODULE HEADER

0 ATTRIBUTES STATUS

2 SIZE OF

4 MODULE (BYTES)

6 DATE YEAR
10 MODULE MONTH
12 INSERTED DAY
14 IDENT
16
20 OPTIONAL
22 INFO 1
24 OPTIONAL
26 INFO 2
30 OPTIONAL
32 INFO 3
34 OPTIONAL
36 INFO 4
40
42 USER
44 FILE

ATTRIBUTES
76

B-6 Librarian Utility Program (LBR) Files and Formats

Index

A
ABS argument, 2-5t CND argument, 24t
Accessing utilities, 1-3 COM argument, 24t
Adding a subroutine to modules, 4-7 Combining library functions, 3-23
AMA argument, 2-5t . Command
Arguments CCL command names, 14
ABS, 2-5t examples of indirect commands, 1-6
AMA, 2-5¢t indirect commands, for entering lines, 1-5
BEX, 24t RUN, 14
BIN, 24t Command files, indirect (LBR), 3-2
CDR, 2-5t Command line
CND, 24t entering, 1-5
COM, 24t fixing errors, 4-10
for DS and EN switches, 2-5t format, 1-1
FPT, 2-5t LBR, 3-2
GBL, 2-5t MACRO-11, 2-2, 2-2.1
LC, 2-5t PAT, 44
LD, 24t Compress switch, 3-2t, 3-3
for LI and NL switches, 24t Continuation lines, 1-6
LOC, 2-4t in MACRO-11, 2-2
LSB, 2-5t Control switches
MC, 24t function of, 2-5
MD, 2-4t listing, 2-3
ME, 24t in MACRO-11, 2-3
MEB, 24t Correction file
PNC, 2-5t creating, 4-5
REG, 2-5t and CSECT names with PAT, 4-5
SEQ, 2—4t and PSECT names with PAT, 4-5
SRC, 24t used with PAT utility, 4-5
SYM, 24t Create switch, 3-2t, 3-4
TOC, 24t CSECT in PAT command line, 4-5
TTM, 2—4t
ASCII source file specification, 2-2 D
Assembly pass switch, 2—6 Default switch, 3-2t, 3—6
Defaults
B of file extensions, 1-3t

of file specifications, 1-2t
Delete Global switch, 3—2t, 3-8
Delete switch, 3—2t, 3-5
Diagnostic error messages

MACRO-11, A-1

BEX argument, 2-4t
BIN argument, 2-4t
Build mode, with MAKSIL, 54

o . MAKSIL, 5-8

CCL command names, 14

for RSX—based utilities, 1-4t E
CDR argument, 2-5t Edit mode with MAKSIL, 54
Checksum switch Entry Point switch, 3-2t, 3-8

for file contents, 48 Entry Point table, B-1

numeric value of, 4-9 format of elements, B-5f

in PAT command line, 44 and library module referencing, B-1

Index-1

Error codes for MACRO-11, A-1 to A-3

Error messages
fatal, with MAKSIL, 5-5 to 5-8
LBR, 3-24 to 3-32
MACRO-11, 2-6 to 2-9
PAT, 4-9

sample user responses to, 2-7 to 2—9

Errors, types of

command line, 4-10

in file contents, 4-13

in file format, 4-14

file specification, 4-11, 4-12

1/0, 4-12, 4-13

internal software, 4—-14

storage allocation, 4-15
Extensions, file, default, 1-3t
Extract switch, 3—2t, 3-10
EXTSCT Task Builder option, 5-2t

F
Fatal errors
effect on library files, 3-24

MAKSIL error messages, 5-5 to 5-8

File contents
determining, 4-8
validating, 4-8, 4-9
File extensions, default, 1-3t
File specification
ASCII for MACRO-11, 2-2
defaults, 1-2t
errors in, 4-11, 4-12
example of, 1-2
MACRO-11 I/0O format, 2-3
RSTS/E, 1-2
Files
errors in contents, 4-13
errors in format, 4-14
indirect command (LBR), 3-2
library, 3-1
standard library format, B-2
universal library format, B-3f
FPT argument, 25t
Function control switches, 2-5
Functions, combining library, 3-23

G
GBL argument, 2-5t

H
Header
library, contents of, B—1, B—4f
module, format of, B-2, B-5f

Index-2

|

1/0, 2-3. See also Input/Output
IDENT directive, to identify a module, B-2
Indirect command

for entering lines, 1-5

examples, 1-6
Indirect command files and LBR, 3-2
Information messages

with MAKSIL, 5-9, B4

with PAT, 4-9, 4-10
Input/Output

errors, 4-12, 4-13

MACRO-11 file specification format, 23
Insert switch, 3-2t

for object and macro libraries, 3-11

for universal libraries, 3—12
Internal software errors, 4—14

LBR, 3-1
command line, 3-2
error messages, 3—24 to 3-32
files, sample, 3—16t, 3—17t
files and formats, B-1
restrictions, list of, 3—23
LBR switches, 3—2t
Compress, 3-2t, 3-3
Create, 3—2t, 3-4
Default, 3-2t, 3-6
Delete, 3-2t, 3-5
Delete Global, 3-2t, 3-8
Entry Point, 3-2t, 3-8
Extract, 3-2t, 3-10
Insert, 32t
Insert (object and macro libraries), 3—11
Insert (universal libraries), 3—12
List, 3-2t, 3-13
Modify Header, 3—2t, 3-14
Replace, 3-2t, 3-16, 3-17
Replace (object and macro libraries), 3—15
Replace (universal libraries), 3-18, 3-19
Selective Search, 3-2t, 3-20
Spool, 3-2t, 3-20
Squeeze, 3-2t, 3-21, 3-22
LC argument, 2-5t
LD argument, 2—4t
Librarian Utility Program (LBR), 3-1
CCL name for, 1-4t
entering LBR command lines, 1-5
files and formats, B-1
to invoke, 14
Library
functions, combining, 3-23

Library (Cont.)
header, B-1

MACRO-11 library file switch, 2-6

resident, 5-3, 54
standard, file format for, B-2f
universal, file format for, B-3f
Library files, 3-1
examples, 3—16t
fatal error messages, 3—24
sample output, 3-17t, 3-18t
standard, format of, B-2f
universal, format of, B-3f
Library header, B-1
contents, B—4f
and library status, B-1
List switches, 3-2t, 3-13
LOC argument, 24t
LSB argument, 2-5t

M
MACRO-11
ASCII file specification, 2-2

assembly process output files, 2—1

CCL name for, 1-4t

command line format, 2-2, 2-2.1

continuation lines in, 2-2
diagnostic error messages, A—-1
error codes, A-1 to A-3

error messages, 2-6 to 2-9

I/0 file specification format, 2-3

library file switch, 2-6
module names and LBR, 3-1

starting with RUN and CCL, 2-2

switches, 2-3, 2—4t
utility program, 2-1

when listing file not specified, 2-2.1
MACRO listing with Squeeze switch, 3-22f
Make Save Image Library, 5-1. See also

MAKSIL
MAKSIL, 5-1
as CCL name, 14t

creating a run-time system with, 5-1

diagnostic messages, 5-8
fatal error messages, 5-5 to 5-8
information messages, B—4
operating instructions, 5-3, 54
MC argument, 24t
MD argument, 24t
ME argument, 24t
MEB argument, 24t
Messages
command line errors, 4-10
diagnostic errors, A—1

Messages (Cont.)
fatal errors and library files, 3-24

file content errors, 4-13

file format errors, 4-13, 4-14

file specification errors, 4-11

1/0 errors, 4-12, 4-13

information, 4-9, 4-10

internal software errors, 4-14

LBR error, 3—24 to 3-32

MACRO-11 errors, 2-6 to 2-9

MAKSIL diagnostic, 5-8

MAKSIL fatal errors, 5-5 to 5-8

MAKSIL informational, 5-9

PAT errors, 4-9

storage allocation error, 4-15
Modify Header switch, 3—2t, 3-14
Module

adding a subroutine to, 4-7

header, described, B-2

header, format, B-5f

name table, B-1, B-2

name table, format, B—5f

names and LBR, 3-1

object, updated with PAT, 4-6

object, updated with Task Builder, 4-6

overlaying lines in, 46
updating with PAT, 4-2f, 4-3f

N
/NL switch, in MACRO-11, 2-2.1

o

Object module names and LBR, 3-1

Object modules
patch utility, 4-1
updated with PAT, 4-6
updated with Task Builder, 46

Operating instructions for MAKSIL, 54

Output library file, 3—-17t, 3-18t
Overlaying lines in a module, 4-6

P
PAR option
Task Builder, 5-2t

for various sized run-time systems, 5-2t

PAT command line, 44
checksum switch, 44

PAT utility, 4-1
correction file, 4-5

information messages, 4-9, 4-10

input file, 44
kinds of error messages, 4-9

Index-3

PAT utility (Cont.)
starting, 1-4, 4-2
for updating a module, 4-2f, 4-3f
updating object modules, 46
using PAT to apply updates, 44
Patch Object Module, CCL name for, 1-4t
Patches, installing with PAT utility, 4-1
Physical address range, Task Builder option
for, 5-2t
PNC argument, 2-5t
PSECT in PAT command line, 4-5

R

REG argument, 2--5t
Replace switch, 3-2t, 3-16, 3-17

in object and macro libraries, 3-15

in universal libraries, 3—18
Resident library, creating, 5-3, 54
RSX-based utilities, CCL names for, 1-4t
RTS, 5-1. See also Run-time system
RUN command, entering, 14
Run-time system

creating, 5-1

PAR and STACK options, 5-2t

S
Selective Search switch, 3-2t, 3—20
SEQ argument, 24t
Software errors, internal, 4-14
Spool switch, 3-2t, 3-20
Squeeze switch, 3—-2t, 3—-21, 3-22
MACRO listing of, 3-22f
SRC argument, 2-4t
STACK option, 5-2t
Standard library file format, B-2f
STB, symbol table, 5-5
Storage allocation error, 4-15
Subroutines, added to a module, 4-7
Switches
arguments for DS and EN, 2-5t
arguments for LI and NL, 24t
assembly pass, 2-6
Checksum, 4-8, 4-9
Compress, 3—2t, 3-3
Create, 3-2t, 34
Default, 3-2t, 3—6
Delete, 3—2t, 3-5
Delete Global, 3-2t, 3-8
Entry Point, 3-2t, 3-8
Extract, 3-2t, 3-10
function control, 2-5
Insert, 3-2¢
Insert (object and macro libraries), 3—-11

Index—4

Switches (Cont.)

Insert (universal libraries), 3-12
LBR, 3-2t
List, 3-2t, 3-13
MACRO-11, 2-3, 24t
MACRO-11 library file, 2-6
Modify Header, 3-2t, 3—14
Replace, 3-2t, 3-16, 3—-17
Replace (object and macro libraries), 3-15
Replace (universal libraries), 3-18, 3-19
Selective Search, 3-2t, 3—20
Spool, 3-2t, 3-20
Squeeze, 3-2t, 3-21, 3-22
SYM argument, 24t
Symbol table, appended to run-time system,
5-5

Tables
entry point, B-1
entry point element format, B-5f
module name, B-1
symbol, appended to run-time system, 5-5
Task Builder
options, for physical address range, 5-2t
options, for virtual address range, 5-2t
options, PAR and STACK, 5-2t
processing files with, 4-7
updating object modules with, 4-6
TOC argument, 2—4t
TTM argument, 2-4t

Universal libraries
file format, B-3f
sample files, 3—-19t
Universal module names and LBR, 3-1
Updating modules with PAT, 4-1
Utilities
accessing, 1-3
command lines, entering, 14, 1-5
command lines, format, 1-1
LBR, files and formats, B-1
Librarian, 1-4, 3-1, B-1
MACRO-11, 2-1
MACRO-11 program, 2-1
MAKSIL, 14, 5-1
PAT, 1-4, 41
RSX-based, CCL names for, 1-4

v
Virtual address range, Task Builder option
for, 5-2t

HOW TO ORDER ADDITIONAL DOCUMENTATION

DIRECT TELEPHONE ORDERS

In Continental USA in Canada In New Hampshire,
and Puerto Rico call 800—-267—-6146 Alaska or Hawaii
call 800—-258-1710 call 603—-884—6660

DIRECT MAIL ORDERS (U.S. and Puerto Rico*)

DIGITAL EQUIPMENT CORPORATION
P.0O. Box CS2008
Nashua, New Hampshire 03061

DIRECT MAIL ORDERS (Canada)

DIGITAL EQUIPMENT OF CANADA LTD.
940 Belfast Road
Ottawa, Ontario, Canada K1G 4C2
Attn: A&SG Business Manager

INTERNATIONAL

DIGITAL EQUIPMENT CORPORATION
A&SG Business Manager
c/o Digital's local subsidary
or approved distributor

Internal orders should be placed through the Software Distribution Center (SDC), Digital
Equipment Corporation, Northboro, Massachusetts 01532

*Any prepaid order from Puerto Rico must be placed
with the Local Digital Subsidiary:
809-754-7575

RSTS/E
Programmer’s Utilities Manual

AA-D749A-TC
Reader’'s Comments AD—D749A—T1

Note: This form is for document comments only. Digital will use comments submitted on this form at
the company’s discretion. If you require a written reply and are eligible to receive one under
Software Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for

improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

[Assembly language programmer

(0 Higher-level language programmer

[0 Occasional programmer (experienced)

[0 User with little programming experience

[0 Student programmer

[0 Other (please specify)
Name Date
Organization
Street

Zip Code

City State R

or
Country

» — « — =Do Not Tear - Fold Hereand Tape - — — — — — — — — — — _ o L _

dlilgliltiall

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN: Commercial Engineering Publications MK1-2/ H3
DIGITAL EQUIPMENT CORPORATION

CONTINENTAL BOULEVARD

MERRIMACK N.H. 03054

~ = = — Do Not Tear - Fold Here and Tape — — — — — —— — — e — — — o

No Postage
Necessary
if Mailed in the
United States

Cut Along Dotted Line

—— e e e o - —

