August 1978
This manual describes how to compile, link, debug, and execute programs
written in the VAX-11 FORTRAN IV-PLUS language, using the facilities of the
VAX/VMS operating system. |t also contains other information of interest to

FORTRAN programmers, such as: error processing, programming efficiency,
compatibility with PDP-11 FORTRAN, and FORTRAN input/output.

VAX-11 FORTRAN IV-PLUS
User’s Guide
Order No. AA-DO35A-TE

SUPERSESSION/UPDATE INFORMATION: This is a new document for this release.

OPERATING SYSTEM AND VERSION: VAX/VMS VO1

SOFTWARE VERSION: VAX-11 FORTRAN IV-PLUS V01

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, August 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright C) 1978 by Digital Equipment Corporation

The postage~prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS

- COMPUTER LABS ~ FOCAL ~~ ~— — —~RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI

DECnet IAS

PREFACE

CHAPTER

CHAPTER

CONTENTS

1 USING VAX-11l FORTRAN IV-PLUS

CREATING AND EXECUTING A PROGRAM
File Specifications
Qualifiers

COMPILATION
Specifying Output Files
FORTRAN Qualifiers
CHECK Qualifier
CONTINUATIONS Qualifier
DEBUG Qualifier
D_LINES Qualifier
I4 Qualifier
LIST Qualifier
MACHINE_CODE Qualifier
OBJECT Qualifier
OPTIMIZE Qualifier
WARNINGS Qualifier
WORK_FILES Qualifier

LINKING
Linker Command Qualifiers
Image File Qualifiers
Map File Qualifiers
Debugging and Traceback Qualifiers
Linker Input File Qualifiers
/LIBRARY Qualifier
/INCLUDE Qualifier

EXECUTION

FINDING AND CORRECTING ERRORS
Error-Related Command Qualifiers
SHOW CALLS Command

SAMPLE TERMINAL SESSION

COMPILER LISTING FORMAT
Source Listing Section
Machine Code Listing Section
Storage Map Section
Other Listing Information

e o o o s o o o
[SESESH NN NN SN SN SRS SN SR SE [\SN
o o o o s s e e e o

HFHOWOJOAUTB WD

SO o e e e
NN
. . . . L]
wN =
o

. o

N =

e« e & & o s 8 8 8 e e a O e * s e & & & e o & o s o o

NN NN AR WWWWWWWWNNNNNONNNNNNNONNMDDODNNNDNDND R

FHHERRRERRPHRRRRRERRRRRERRHRPRRHERERRRR R
.
N

« s e o o s o o
> W N

N

DEBUGGING FORTRAN PROGRAMS

OVERVIEW OF THE VAX-1l SYMBOLIC DEBUGGER
Sample Debugging Terminal Session
Debugger Command Syntax
Debugger Symbol Table

PREPARING TO DEBUG A PROGRAM
SET, SHOW LANGUAGE Command
SET, SHOW, CANCEL MODULE Commands
SET, SHOW, CANCEL SCOPE Commands

wN

NN NON
o ¢ o+ o o o o o
NSRS SN e ol el o

e o
wN -

iii

g
V]
Q
1]

[N
"

FREFRERHEFERHEPERRRFER R

[

HFHRPWOWYWWOWWYWWOWODJOUTUL &N

e
HoOOO

|

(=]

[
N

1-13
1-14
1-14
1-14
1-14
1-14
1-15
1-15
1-17
1-17
1-18
1-19
1-19
"1-21
1-23

N

NN NDNON

| I O T I B |
AT > WH L

CONTENTS (Cont.)

Page
.3 CONTROLLING PROGRAM EXECUTION 2-7
.3.1 SET, SHOW, CANCEL BREAK Commands 2-8
.3.2 SET, SHOW, CANCEL TRACE Commands 2-9
.3.3 SET, SHOW, CANCEL WATCH Commands 2-9
.3.4 SHOW CALLS Command 2-10
.3.5 GO, STEP Commands 2-11
.3.6 CTRL/Y Command 2-12
.3.7 EXIT Command 2-12
.4 EXAMINING AND MODIFYING LOCATIONS 2-12
.4.1 EXAMINE Command 2-13
.4.2 DEPOSIT Command 2-13
.4.3 EVALUATE Command 2-14
.5 SPECIFYING ADDRESSES 2-14
.5.1 Lines, Labels, and Absolute Addresses 2-14
.5.2 Specifying Scope 2-15
.5.3 Previous, Current, and Next Locations 2-15
.5.4 Defining Addresses Symbolically 2-16
.6 CALLING SUBROUTINES FROM THE DEBUGGER 2-16
.7 DEBUGGER COMMAND QUALIFIERS 2-17
.8 NUMERIC DATA TYPES 2-17
.9 EFFECTS OF OPTIMIZATION ON DEBUGGING 2-18
.9.1 Use of Condition Codes 2-18
.9.2 Register Binding 2-18
.9.3 Control Flow 2-19
.9.4 Effects of /NOOPTIMIZE and /OPTIMIZE 2-19
CHAPTER FORTRAN INPUT/OUTPUT 3-1

FILE SPECIFICATION
LOGICAL NAMES

FORTRAN Logical Names

Implied FORTRAN Logical Unit Numbers

OPEN Statement NAME Keyword

Assigning Files to Logical Units

Assigning Logical Names with MOUNT Commands
‘'FILE CHARACTERISTICS

File Organization

Sequential Organization

Relative Organization

Access to Records

Sequential Access

Direct Access
RECORD STRUCTURE

Fixed Length Records

Variable Length Records

Segmented Records
OPEN STATEMENT KEYWORDS

o o o o o
* o
| B I N N I Y N N B |

e 2 o ¢ o o

“ .
N = N =

W N NN G W

o o o

oo

i
HHEFEFRFHREFOYOWOWOOOOIJ~II~JOO0WU D WWN
HHOO

WWWWWWWwWwwwWwWwwwwwwwwwwwwwwwwww W DD NNDNNNNNDNNNNNNDNDNDNDNDNDNDNDNODN
wwwwu\wwuuwwcf:wwuwwuuwwwww

.5.1 BLOCKSIZE Keyword

5.2 BUFFERCOUNT Keyword -
.5.3 INITIALSIZE and EXTENDSIZE Keywords -
.5.4 ORGANIZATION Keyword -
.5.5 READONLY Keyword -
.5.6 RECORDSIZE Keyword 3-11
.5.7 RECORDTYPE Keyword 3-12
.5.8 SHARED Keyword 3-13
5.9 USEROPEN Keyword 3-13
. AUXILIARY I/O OPERATIONS 3-14

iv

CONTENTS (Cont.)

Page
3.7 LOCAL INTERPROCESS COMMUNICATION: MAILBOXES 3-14
3.7.1 Creating a Mailbox 3-14
3.7.2 Sending and Receiving Data Using Mailboxes 3-15
3.8 COMMUNICATING WITH REMOTE COMPUTERS: NETWORKS 3-15
CHAPTER 4 USING CHARACTER DATA 4-1
4.1 CHARACTER SUBSTRINGS 4-1
4,2 BUILDING CHARACTER STRINGS 4-2
4.3 CHARACTER CONSTANTS 4-3
4.4 DECLARING CHARACTER DATA 4-3
4.5 INITIALIZING CHARACTER VARIABLES 4-4
4.6 PASSED LENGTH CHARACTER ARGUMENTS 4-4
4.7 CHARACTER DATA EXAMPLES 4-5
4.8 CHARACTER LIBRARY FUNCTIONS 4-7
4.8.1 CHAR Function 4-7
4.8.2 ICHAR Function 4-8
4.8.3 INDEX Function 4-8
4.8.4 LEN Function 4-8
4.9 CHARACTER I/0 4-8
CHAPTER 5 FORTRAN CALL CONVENTIONS 5-1
5.1 PROCEDURE CALLS 5-1
5.2 VAX-1l1l PROCEDURE CALLING STANDARD 5-1
5.2.1 Argument Lists 5-2
5.2.2 Argument Passing Mechanisms 5-2
5.2.3 Argument List Built-In Functions 5«2
5.2.3.1 $ VAL 5-3
5.2.3.2 $REF 5-3
5.2.3.3 $DESCR 5-3
5.2.3.4 Examples of $VAL, %REF, %DESCR 5-3
i 5.2.4 Function Return Values 5-4
5.2.5 $LOC Built-In Function 5~4
5.3 CALLING VAX/VMS SYSTEM SERVICES 5-4
5.3.1 Calling System Services by Function
Reference 5-5
5.3.2 Calling System Services as Subroutines 5-5
5.3.3 Passing Arguments to System Services 5-6
5.3.3.1 Input and Output Address Arguments 5-6
5.3.3.2 Defaults for Optional Arguments 5=7
5.3.3.3 Passing Character Arguments 5-7
5.4 MACHINE CODE EXAMPLES 5-8
5.4.1 "~ Argument Passing Examples 5-8
5.4.2 Argument List Built-In Function Examples 5-9
5.4.3 Character Functions 5-11
CHAPTER 6 ERROR PROCESSING AND CONDITION HANDLERS 6-1
6.1 RUN-TIME LIBRARY DEFAULT ERROR PROCESSING 6-2
6.1.1 Using ERR= and END= Transfers 6=-2
6.1.2 Run-Time Library Error Processing Control 6-3
6.1.3 Using the ERRSNS Subroutine 6-5
6.2 OVERVIEW OF THE VAX-11 CONDITION HANDLING
FACILITY 6-6
6.2.1 Definitions 6-6
6.2.2 Condition Signals 6-7

CONTENTS (Cont.)

S H O

[}
HEHROO

Page
6.2.3 Handler Responses 6-8
6.3 USER-WRITTEN CONDITION HANDLERS 6-9
6.3.1 Establishing and Removing Handlers 6-9
6.3.2 FORTRAN Condition Handlers 6-9
6.3.3 Handler Function Return Values 6-1
6.3.4 Condition Values and Symbols 6-1
6.3.5 Floating Overflow, Zero Divide Exceptions 6-1
6.4 CONDITION HANDLER EXAMPLES 6-1
CHAPTER 7 FORTRAN SYSTEM ENVIRONMENT 7-1
7.1 PROGRAM SECTION USAGE 7-1
7.2 STORAGE ALLOCATION AND FIXED-POINT DATA TYPES 7-2
7.2.1 Integer Data Types Supported 7-3
7.2.1.1 Relationship of INTEGER*2 and INTEGER*4
Values 7-3
7.2.1.2 Integer Constant Typing 7-4
7.2.1.3 Integer-Valued Processor-Defined Functions 7-4
7.2.2 Byte (LOGICAL*1l) Data Type 7-4
7.3 FUNCTIONS SUPPLIED WITH VAX~1ll FORTRAN 7-5
7.3.1 Generic Functions 7-5
7.3.2 Use of the EXTERNAL Statement 7-5
7.4 ITERATION COUNT MODEL FOR DO LOOPS 7-6
7.4.1 Cautions Concerning Program Interchange 7-6
7.4.2 Iteration Count Computation 7-6
7.5 ENTRY STATEMENT ARGUMENTS 7-7
7.6 FLOATING POINT DATA REPRESENTATION 7-8
7.6.1 Single Precision Floating Point Data 7-9
7.6.2 Double Precision Floating Point Data 7-9
7.6.3 Floating Point Data Characteristics 7-1
7.6.3.1 Reserved Operand Faults 7-1
7.6.3.2 Representation of 0.0 7=-1
7.6.3.3 Sign Bit Tests 7-
CHAPTER 8 PROGRAMMING CONSIDERATIONS 8-1
8.1 CREATING EFFICIENT SOURCE PROGRAMS 8~-1
8.1.1 PARAMETER Statement 8-1
8.1.2 INCLUDE Statement 8-2
8.1.3 Allocating Variables in Common Blocks 8-3
8.1.4 Conditional Branching 8-3
8.2 COMPILER OPTIMIZATIONS 8-3
8.2.1 Characteristics of Optimized Programs 8-4
8.2.2 Compile-Time Operations on Constants 8-5
8.2.3 Source Program Blocks . 8-6
8.2.4 Eliminating Common Subexpressions 8-7
8.2.5 ~Removing Invariant Computations from Loops 8-8
8.2.6 Compiler Optimization Example 8-8
8.3 FORTRAN I/0 SYSTEM CHARACTERISTICS 8-1
APPENDIX A FORTRAN DATA REPRESENTATION A-]
A.l INTEGER*2 FORMAT A-1
A.2 INTEGER*4 FORMAT A-1
A.3 FLOATING-POINT FORMATS A-1
A.3.1 Real Format (4-Byte Floating Point) A-2
A.3.2 Double Precision Format (8-Byte Floating
Point) A-3

vi

o

CONTENTS (Cont.)

Page
A.3.3 Complex Format A-3
A.4 LOGICAL*1 FORMAT A-4
A.5 CHARACTER FORMAT A-4
A.6 HOLLERITH FORMAT A-4
A.7 LOGICAL FORMAT A-5
APPENDIX B DIAGNOSTIC MESSAGES B-1
B.1l DIAGNOSTIC MESSAGES OVERVIEW B-1
B.2 DIAGNOSTIC MESSAGES FROM THE COMPILER B-1
B.2.1 Source Program Diagnostic Messages B-~1
B.2.2 Compiler-Fatal Diagnostic Messages B-17
B.2.3 Compiler Limits B-19
B.3 RUN-TIME DIAGNOSTIC MESSAGES B-20
B.3.1 Run-Time Library Diagnostic Message
Presentation B-20
B.3.2 Run-Time Library Diagnostic Messages B-20
APPENDIX C SYSTEM SUBROUTINES c-1
c.1 SYSTEM SUBROUTINE SUMMARY c-1
c.2 DATE . c-1
c.3 IDATE C=2
c.4 ERRSNS Cc-2
C.5 EXIT Cc-3
C.6 SECNDS c-3
c.7 TIME Cc-4
APPENDIX D COMPATIBILITY D-1
D.1 COMPATIBILITY: OVERVIEW D-1
D.2 LANGUAGE DIFFERENCES D~-1
D.2.1 Logical Tests D~1
D.2.2 Floating Point Results D-2
D.2.3 Character and Hollerith Constants D-2
D.2.4 Logical Unit Numbers D-3
D.2.5 Assigned GO TO Label List D-3
D.2.6 DISPOSE='PRINT' Specification D~3
D.3 RUN-TIME SUPPORT DIFFERENCES D-3
D.3.1 Run-Time Library Error Numbers D-4
D.3.2 Error Handling and Reporting D-5
D.3.2.1 Continuing After Errors D-5
D.3.2.2 I/0 Errors with ERR= Specified D-5
D.3.2.3 OPEN/CLOSE Statement Errors D~5
D.3.3 OPEN Statement Keywords D-5
D.4 UTILITY SUBROUTINES D-5
D.4.1 ASSIGN Subroutine D-6
D.4.2 CLOSE Subroutine D-7
D.4.3 ERRSET Subroutine D-7
D.4.4 ERRTST Subroutine D-8
D.4.5 FDBSET Subroutine D-9
D.4.6 IRAD50 Subroutine D-10
D.4.7 RADS50 Function D-11
D.4.8 RAN Function D-11
D.4.9 RANDU Subroutine D-12
D.4.10 R50ASC Subroutine D-12
D.4.11 USEREX Subroutine D-13

vii

CONTENTS (Cont.)

Page

INDEX Index~1

FIGURES

FIGURE Program Development Process

Traceback List

Source Listing Section

Machine Code Listing Section

Storage Map Listing

Sample FORTRAN Program: CIRCLE

Sample Debugging Terminal Dialog

Character Data Program Example

Output Generated by Example Program

RELAX Source Program

RELAX Machine Code (Optimized)

Sample Diagnostic Messages (Terminal Format)
Sample Diagnostic Messages (Listing Format)

NO VWO

]
ow

wtﬂa:ma>purhéwpapappa
NHEFRENFDROBWND -

mlﬂa:wﬁsbﬁéwtthHFAH
WNOWONANKFNNEEN

TABLES

TABLE File Specification Defaults
FORTRAN Command Qualifiers

Linker Qualifiers

/DEBUG and /TRACEBACK Qualifiers
Debugger Commands and Keywords
Debugger Command Qualifiers
Predefined System Logical Names
Implicit FORTRAN Logical Units
RECORDSIZE Limits

Function Return Values

Variable Data Type Requirements
Summary of FORTRAN Run-Time Errors
Condition Handler Function Return Values
PSECT Names and Attributes

PSECT Attributes

Source Program Diagnostic Messages
Compiler-Fatal Diagnostic Messages
Compiler Limits

Run~-Time Diagnostic Messages
Default Logical Unit Numbers

UL |
[
wn =

~

[}
WNOHHEBWNHEDBOABRHBWHDFR9IW

[\

o

|
=0 o

|
HEaEWNMNHNEFENNFRENMNFEFWNENDEWNDE

Utﬂu’mtﬂ~4\Jm<h?leHUJwtohJHP*F‘H
c1w|nu3w~q~40\m(ru1w(»u)wroku4de

viii

PREFACE

MANUAL OBJECTIVES

The VAX-11 FORTRAN IV-PLUS User's Guide 1is intended for wuse 1in
developing new FORTRAN programs, and compiling and executing existing
FORTRAN programs on VAX/VMS systems. FORTRAN IV-PLUS language
elements supported on VAX-11 are described in the VAX-11 FORTRAN
IV-PLUS Language Reference Manual.

INTENDED AUDIENCE

This manual is designed for programmers who have a working knowledge
of FORTRAN. Detailed knowledge of VAX/VMS 1is helpful but not
essential; familiarity with the VAX/VMS Primer is recommended. Some
sections of this book, however, (condition handling, for instance)
require more extensive understanding of the operating system. In such
sections, you are directed to the appropriate manual(s) for the
required additional information.

STRUCTURE OF THIS DOCUMENT
This manual is organized as follows:

e Chapter 1 contains the information needed to compile, link,
and execute a FORTRAN program.

® Chapter 2 covers the debugging process; use of the VAX-11
Symbolic Debugger is described.

e Chapter 3 provides information about FORTRAN input/output,
including details on the use of 1logical names, file
conventions, record structure, and use of certain OPEN
statement keywords.

® Chapter 4 discusses character data, and includes examples of
how character data can be manipulated.

® Chapter 5 discusses the conventions followed in calling
procedures, especially the argument-passing conventions.

e Chapter 6 describes error processing; in particular, the
condition handling facility and how to use it. This chapter
is intended for users with in-depth knowledge of VAX/VMS.

e Chapter 7 describes the relationship between VAX-11 FORTRAN
IV-PLUS and the VAX-1ll system, with particular emphasis on
program section usage, data types, functions, DO 1loops, and
floating point data representation.

ix

Chapter 8 covers programming considerations relevant to
typical FORTRAN applications.

Appendixes A through D summarize internal data representation,
diagnostic messages, system-supplied functions, and
compatibility between VAX-11l FORTRAN and PDP-11 FORTRAN.

ASSOCIATED DOCUMENTS

The following documents are relevant to VAX-11 FORTRAN 1IV-PLUS
programming:

VAX/VMS Primer

VAX-11 FORTRAN IV-PLUS Language Reference Manual

VAX/VMS Command Language User's Guide

VAX-11 Common Run-Time Procedure Library Reference Manual

VAX-11 Linker Reference Manual

VAX-11 Symbolic Debugger Reference Manual

VAX/VMS System Services Reference Manual

VAX-11/780 Architecture Handbook

For a complete list of VAX-11 software documents, see the VAX-11
Information Directory.

CONVENTIONS USED IN THIS DOCUMENT

The following conventions are observed in this manual, as in the other
VAX-11 documents:

Uppercase words and letters, used in examples, indicate that
you should type the word or letter exactly as shown

Lowercase words and letters, used in format examples, indicate
that you are to substitute a word or value of your choice

Brackets ([]) indicate optional elements

Braces ({ }) are used to enclose lists from which one element
is to be chosen

Ellipses (...) indicate that the preceding item(s) <can be
repeated one or more times

CHAPTER 1

USING VAX-11 FORTRAN IV-PLUS

VAX-11 FORTRAN IV-PLUS is based on American National Standard FORTRAN
X3.9-1966. It is also a compatible superset of PDP-11 FORTRAN
IV-PLUS. VAX-11 FORTRAN IV-PLUS provides the following extensions:

e Symbolic names up to 15 characters, including the wunderline
and dollar sign characters

® FORTRAN 77 character data type

e FORTRAN 77 block IF constructs

® Relative file organization

® Standard CALL facility

e Hexadecimal constants and field descriptors

e Symbolic debugging facility

° IncreasedAfile manipulation facilities
Because VAX-11 FORTRAN IV-PLUS is a compatible superset of PDP-11
FORTRAN, you can execute existing PDP-11 FORTRAN programs on VAX-11
hardware. (Note that throughout the rest of this manual, unless

explicitly stated otherwise, VAX-1l1l FORTRAN IV-PLUS will usually be
referred to simply as FORTRAN.)

1.1 CREATING AND EXECUTING A PROGRAM

Figure 1-1 shows how a program proceeds from inception to execution.
You specify the steps shown in Figure 1l-1 by entering commands to the
VAX-11l system. As shown, the commands are:

$ EDIT file-spec

$ FORTRAN file-spec
$ LINK file-spec

$ RUN file-spec

With each command, you include information that further defines what
you want the system to do. Of prime importance 1is the file
specification, indicating the file to be processed. You can also
specify qualifiers that modify the processing performed by the system.

1-1

USING VAX-1l FORTRAN IV-PLUS

COMMANDS INPUT/OUTPUT FILES

$ EDIT AVERAGE.FOR
Use the file type of FOR to
indicate the file contains a
VAX-11 FORTRAN IV-PLUS
program.

AVERAGE.FOR

Create a
source program

W \\\\\\\\.

$ FORTRAN AVERAGE

The FORTRAN command -
assumes the file type of an
input file is FOR. Compile the AVERAGE.OBJ
—_—
source program (AVERAGE.LIS)
{If you use the /LIST ~
qualifier, the compiler libraries

creates a listing file.)

$ LINK AVERAGE
The L/INK command assumes

the file type of an input file .
is 08J. Link the

object module

AVERAGE.EXE
({AVERAGE.MAP)

(If you use the /MAP qualifier
the linker creates a map file.)

.

$ RUN AVERAGE

The RUN command assumes Run the
the file type of an image is exgcutable
EXE. image

Figure 1-1 Program Development Process

1.1.1 File Specifications

A file specification indicates the input file to be processed, or the
output file to be produced. File specifications have the form:

node::device: [directory]filename.filetype.version

node
Specifies a network node name. This is applicable only to
systems that support VAX-11l DECnet.

device
Identifies the device on which a file is stored or is to be
written. : S S

directory
Identifies the name of the directory under which the file is
cataloged, on the device specified. (You can delimit the
directory name with either square brackets, as shown, or angle
brackets < >).

filename

Identifies the file by its name; filename can be up to 9
characters long.

USING VAX-11l FORTRAN IV-PLUS

filetype
Describes the kind of data in the file; filetype can be up to 3
characters long.

version
Defines which version of the file is desired. Versions are
identified by a decimal number, which is incremented by 1 each
time a new version of a file is created. Either a semicolon or a
period can be used to separate filetype and version.

You need not explicitly state all elements of a file specification
each time you compile, link, or execute a program. The only part of
the file specification that is usually required is the file name. If
you omit any other part of the file specification, a default value is
used. Table 1-1 summarizes the default values.

Table 1-1
File Specification Defaults
Optional Default
Element Value
node Local network node
device User's current default device
directory User's current default directory
filetype Depends on usage:
Input to compiler FOR
Output from compiler OBJ
Input to linker OBJ
Output from linker EXE
Input to RUN command EXE
Compiler source listing LIS
Linker map listing MAP
Input to executing program DAT
Output from executing program DAT
version Input: highest existing version
Output: highest existing version,
plus 1

If you request compilation of a FORTRAN program, and you specify only
a file name, the compiler can process the source program if it finds a
file with the specified file name that:

@ Is stored on the default device

@ Is cataloged under the default directory name

e Has a file type of FOR

If more than one file meets these conditions, the compiler chooses the
one with the highest version number.

USING VAX-11 FORTRAN IV-PLUS

For example, assume that your default device is DBAO, your default
directory is SMITH, and you supply the following file specification to
the compiler:

CIRCLE

The compiler will search device DBAO, in directory SMITH, seeking the
highest version of CIRCLE.FOR. If you do not specify an output file,
the compiler will generate the file CIRCLE.OBJ, store it on device
DBAO in directory SMITH, and assign it a version number 1 higher than
any other version of CIRCLE.OBJ currently cataloged in directory SMITH
on DBAO.

1.1.2 Qualifiers

Qualifiers specify special actions to be performed, and can be either
command qualifiers or file qualifiers. Qualifiers have the form:

/qualifier

Many qualifiers have a corresponding negative form that negates the
action that the qualifier specifies. The negative form is
/NOqualifier. For example, the qualifier /LIST tells the compiler to
produce a listing file; /NOLIST tells the compiler not to produce a
listing file.

Defaults have been established for each qualifier, based on the
actions that are appropriate in most cases. Sections 1.2.2 and 1.3,
which describe each command's qualifiers, contain tables indicating
the defaults.

You can specify qualifiers so that either all files included 1in the
command are affected, or only certain files are affected. If the
qualifier immediately follows the command name, it applies to all
files.

For example:
$ FORTRAN/LIST ABC,XYZ,RST

If you specify the above, you will receive listing files for ABC, XYZ,
and RST.

If you include a qualifier as part of a file specification, it will
(with certain exceptions) affect only the file with which it is
associated. For example:

$ FORTRAN/LIST ABC,XYZ/NOLIST,RST

As a result of this command, listing files are created for ABC and
RST, but not for XYZ. : : - -) ’)

Qualifiers included with file specifications that are part of a
concatenated 1list of input files are exceptions to this rule. See
Example 5 in Section 1.2.1, below.

USING VAX-11 FORTRAN IV-PLUS

1.2 COMPILATION

To compile a source program, use the FORTRAN command. The format of
the FORTRAN command is:

$ FORTRAN [/qualifiers] file-spec-list[/qualifiers]

/qualifiers
Codes indicating special actions to be performed by the compiler.

file-spec-list
Specification of the source file(s) containing the program to be
compiled. You can specify more than one source file. If source
file specifications are separated by commas, the programs are
compiled separately. If source file specifications are separated
by plus signs, the files are concatenated and compiled as one
program.,

In interactive mode, you can also enter the file specification on a
separate line by typing a carriage return after § FORTRAN. The system
responds with the prompt:

$§_File:

Type the file specification immediately after the $_File: prompt.

1.2.1 Specifying Output Files

The output produced by the compiler includes object files and 1listing
files. You can control the production of these files by using the
appropriate qualifiers with the FORTRAN command. If you do not
specify otherwise, the <compiler generates an object file. In
interactive mode, the compiler generates no listing file, by default.
In interactive mode, vyou must use the /LIST qualifier to generate a
listing file. 1In batch mode, however, just the opposite is true: by
default, the compiler will produce a listing file. To suppress the
listing file, you must specify the /NOLIST qualifier.

buring the early stages of program development, you may £find it
helpful to suppress the production of object files until your source
program compiles without errors. Use the /NOOBJECT qualifier. If you
do not specify /NOOBJECT, the <compiler generates object files as
follows:

e If you specify one source file, one object file is generated

e If you specify multiple source files, separated by plus signs,
the source files are concatenated and compiled, and one object
file is generated

@ If you specify multiple source files, separated by commas, each
source file 1is compiled separately, and an object file is
generated for each source file

e You can use both plus signs and commas in the same command 1line
to produce different combinations of concatenated and separate
object files (see Example 4 below)

To produce an object file with an explicit file specification, vyou
must wuse the /OBJECT qualifier, in the form /OBJECT=file-spec (see
Section 1.2.2.8). Otherwise, the object file will have the name of
its corresponding source file, and a file type of OBJ. By default,

USING VAX~11l FORTRAN IV-PLUS

the object file produced from concatenated source files has the name
of the first source file. All other file specification attributes
(node, device, directory, and version) will assume the default
attributes.

Examples:
l. $ FORTRAN/LIST AAA,BBB,CCC

Source files AAA.FOR, BBB.FOR, and CCC.FOR are compiled as
separate . files, producing object files named AAA.OBJ,
BBB.OBJ, and CCC.OBJ; and 1listing files named AAA.LIS,
BBB.LIS, and CCC.LIS. ’

2. $ FORTRAN XXX+YYY+Z2Z

Source files XXX.FOR, YYY.FOR, and ZZ%Z.FOR are concatenated
and compiled as one file, producing an object file named
XXX.0BJ.

3. $ FORTRAN/OBJECT=SQUARE
$_FILE: CIRCLE

The source file CIRCLE.FOR is compiled, producing an object
file named SQUARE.OBJ, but no listing file. (This example
applies to interactive mode only.)

4, $ FORTRAN AAA+BBB,CCC/LIST

Two object files are produced: AAA.OBJ (comprising AAA.FOR
and BBB.FOR), and CCC.OBJ (comprising CCC.FOR). One listing
file is produced: CCC.LIS.

5. $ FORTRAN ABC+CIRC/NOOBJECT+XYZ

When you include a qualifier in a list of files that are to
be concatenated, the qualifier affects all files in the list.
Thus, in the command shown, you will completely suppress the
object file. That 1is, source files ABC.FOR, CIRC.FOR, and
XYZ.FOR will be concatenated and compiled, but no object file
will be produced.

1.2.2 FORTRAN Qualifiers
in many cases, the simplest form of the FORTRAN command is sufficient

for file processing. In some cases, however, you will need to use the
FORTRAN qualifiers that specify special processing.

A FORTRAN qualifier has the form:

/aal=y] S . L

where aa is the qualifier's name, and y represents a qualifier wvalue.
Note that many qualifiers accept no value; the purpose of these
qualifiers is simply to activate or deactivate a particular form of
processing.

To specify a list of qualifier values, enclose them in parentheses.
For example:

/CHECK= (BOUNDS ,OVERFLOW)

USING VAX-11 FORTRAN IV-PLUS

Table 1-2 lists the qualifiers you can use with the FORTRAN command.
Sections 1.2.2.1 through 1.2.2.11 describe each qualifier in detail.

Table 1-2

FORTRAN Command Qualifiers

/MACHINE_CODE

/NOMACHINE_CODE

Qualifier Negative Form Default
) [NO] BOUNDS /NOCHECK /CHECK=OVERFLOW
/CHECK=}) [NO]OVERFLOW
ALL
NONE
/CONTINUATIONS=n None /CONTINUATIONS=19
[NO] SYMBOLS /NODEBUG /DEBUG=TRACEBACK
/DEBUG=) [NO] TRACEBACK
ALL
 NONE
/D_LINES /NOD_LINES /NOD_LINES
/14 /NOI4 /14
/LIST[=file-spec] /NOLIST /NOLIST (interactive)

/LIST (batch)

/NOMACHINE_ CODE

/OBJECT [=file-spec] /NOOBJECT /OBJECT
/OPTIMIZE /NOOPTIMIZE /OPTIMIZE
/WARNINGS /NOWARNINGS /WARNINGS
/WORK_FILES=n None /WORK_FILES=2

1.2.2.1 CHECK Qualifier - At run
code
It has the form:

compiler to
indicated.

produce

/CHECK =([NO]BOUNDS
[NO]OVERFLOW

ALL
NONE

BOUNDS

Array references are checked to ensure that they are
Note, however, that array
dummy

array address
bound checking is

1. For example:

DIMENSION A(1l)

OVERFLOW

BYTE, INTEGER*2, and
arithmetic overflow.

boundaries

INTEGER*4

time,

specified.

not performed for
arguments, and for which the last dimension bound is specified as

this
to check your program for the conditions

calculations are

qualifier causes

within

arrays that are

checked for

USING VAX-11 FORTRAN IV-PLUS
ALL
Both OVERFLOW and BOUNDS checks are performed.

NONE
Neither check is performed.

The default is /CHECK=OVERFLOW. Note that /CHECK is the equivalent of
/CHECK=ALL, and /NOCHECK is the equivalent of /CHECK=NONE.

If you specify /CHECK=BOUNDS or /CHECK=OVERFLOW, the other check is
implicitly canceled.

1.2,2.2 CONTINUATIONS Qualifier - This qualifier specifies the number
of continuation lines allowed in the source program. It has the form:

/CONTINUATIONS=n

You can specify a value from 0 to 99 for n. If you omit
/CONTINUATIONS, the default value is 19.

1.2.2.3 DEBUG Qualifier - This qualifier specifies that the compiler
is to provide information for use by the VAX-11 Symbolic Debugger and
the run-time error traceback mechanism. It has the form:

/DEBUG =([NO] SYMBOLS

[NO] TRACEBACK
ALL
NONE
SYMBOLS
The compiler provides the debugger with local symbol definitions
for user—defined variables, arrays (including dimension

information), and labels of executable statements.

TRACEBACK
The compiler provides an address correlation table so the
debugger and the run-time error traceback mechanism can translate
absolute addresses into source program routine names and
compiler-generated line numbers.

ALL
The compiler provides both local symbol definitions and an
address correlation table.

NONE
The compiler provides no debugging information.

The default is /DEBUG=TRACEBACK. Note that /DEBUG is the equivalent
of /DEBUG=ALL, and /NODEBUG is the equivalent of /DEBUG=NONE. .If you
'specify either /DEBUG=TRACEBACK or /DEBUG=SYMBOLS, the other is
implicitly canceled.

For more information on debugging and traceback, see Section 1.5 and
Chapter 2.

USING VAX-11 FORTRAN IV-PLUS

1.2.2.4 D_LINES Qualifier - This qualifier specifies that lines with
a D in colUmn 1 are to be compiled. It has the form:
/D_LINES

The default is /NOD_LINES, which means that lines with a D in column 1
are treated as comments.

1.2.2.5 I4 Qualifier - This qualifier controls how Ehe compiler
interprets INTEGER and LOGICAL declarations for which a length is not
specified. It has the form:

/14,

The default is /I4, which causes the compiler to interpret INTEGER and
LOGICAL declarations as INTEGER*4 and LOGICAL*4, If you specify
/NOI4, the compiler interprets them as INTEGER*2 and LOGICAL*2.

1.2.2.6 LIST Qualifier - This qualifier produces a source listing
file. It has the form:

/LIST[=file-spec]

You can include a file specification for the listing file. If you do
not, it defaults to the name of the first source file, and a file type
of LIS. .

The compiler does not produce a listing file in interactive mode
unless you include the /LIST qualifier. In batch mode, the compiler
produces a listing file by default. 1In either case, the listing file
is not automatically printed. You must use the PRINT command to
obtain a line printer copy of the listing file.

See Section 1.7 for a sample listing.

1.2.2.7 MACHINE CODE Qualifier - This qualifier specifies that the

listing file 1is to include a listing of the object code generated by
the compiler. It has the form:

/MACHINE_CODE
This qualifier is ignored if no listing file is being generated.

The default is /NOMACHINE_ CODE.

1.2.2.8 OBJECT Qualifier - This qualifier can be used when you want
to specify the name of the object file. It has the form:

/OBJECT [=file-spec]
The default is /OBJECT. The negative form, /NOOBJECT, can be used to
suppress object code; for example, when you only want to test the

source program for compilation errors.

If you omit the file specification, the object file defaults to the
name of the first source file, and a file type of OBJ.

USING VAX-1ll FORTRAN IV-PLUS

1.2.2.9 OPTIMIZE Qualifier - This qualifier tells the compiler to
produce optimized code. It has the form:

/OPTIMIZE

The default is /OPTIMIZE. The negative form (/NOOPTIMIZE) should be
used to ensure that the debugger has sufficient information to help
you locate errors in your source program (see Section 2.9).

1.2.2.10 WARNINGS Qualifier - This qualifier specifies whether the
compiler is to generate diagnostic messages in response to
warning-level (W) errors. It has the form:

/WARNINGS

The compiler generates warning (W) diagnostic messages by default. A
warning diagnostic message indicates that the compiler has detected
acceptable but nonstandard syntax, or has performed some corrective
action; in either case, unexpected results may occur. To suppress W
diagnostic messages, specify the negative form of this qualifier
(/NOWARNINGS). The default is /WARNINGS.

Appendix B discusses compiler diagnostic messages.

1.2.2.11 WORK_FILES Qualifier - This qualifier changes the number of
work files used by the compiler. It has the form:

/WORK_FILES=n
The value specified for n can be 1, 2, or 3.

Note that while a value of 1 may increase the speed of compilation, it
restricts the size of programs that can be compiled. A value of 3
allows larger programs to be compiled, but may slow compilation. The
default is /WORK_FILES=2.

1.3 LINKING

Before a compiled program can be executed, you must link the object
file to produce an executable image file. Linking resolves all
references in the object code, and establishes absolute addresses for
symbolic locations. To link an object module, issue the LINK command,
in the following general form:

$ LINK[/command-qualifiers] file-spec[/file~qualifiers]...

/command=qualifiers
Specify output file options.

file-spec
Specifies the input object file to be linked.

/file~qualifiers
Specify input file options.

USING VAX-11 FORTRAN IV-PLUS

In interactive mode you can issue the LINK command with no
accompanying file specification. The system responds with the prompt:

$_File:

The file specification must be typed on the same line as the prompt.
If there are too many file specifications to fit on one line, you can
continue the line by typing a hyphen (-) as the last character of the
line, and continuing on the next line.

You can enter multiple file specifications separated from each other
by commas or plus signs. When used with the LINK command, the comma
has the same effect as the plus sign: no matter which is used, a
single executable image is created from the input files specified. If
no output file is specified, the linker produces an executable image
with the same name as the first object module, and a file type of EXE.
Table 1-3 lists the linker qualifiers of particular interest to
FORTRAN users. See the VAX-11 Linker Reference Manual for details on
the linker.

Table 1-3
Linker Qualifiers

Command Qualifiers Negative Form Default
/EXECUTE [=file-spec] /NOEXECUTE /EXECUTE
/SHAREABLE [=file-spec] /NOSHAREABLE None
/MAP[=file-spec] /NOMAP /NOMAP (interactive)

/MAP (batch)
/BRIEF None Not applicable
/FULL None Not applicable
/CROSS_REFERENCE /NOCROSS_REFERENCE /NOCROSS_REFERENCE
/DEBUG /NODEBUG /NODEBUG
/TRACEBACK /NOTRACEBACK /TRACEBACK
Input File Qualifiers
/LIBRARY
/INCLUDE=module-name (S)

1.3.1 Linker Command Qualifiers
You can specify qualifiers for the LINK command to modify the output

of the linker. You can also define whether the debugging or the
traceback facility is to be included.

1-11

USING VAX-11l FORTRAN IV-PLUS

Linker output consists of an image file and, optionally, a map file.
The following qualifiers control the 1image file generated by the
linker:
/EXECUTE=file~-spec
/NOEXECUTE
/SHAREABLE=file-spec
These qualifiers are described in Section 1.3.1.1.
Map file qualifiers include:
/MAP [=file-spec]
/BRIEF
/FULL
/CROSS_REFERENCE
These qualifiers are described in Section 1.3.1.2.
The debugger and traceback qualifiers are:

/DEBUG
/TRACEBACK

These qualifiers are described in Section 1.3.1.3.

1.3.1.1 Image File Qualifiers - Image file qualifiers include:

/EXECUTE
/SHAREABLE

If you do not specify an image file qualifier, the default is
/EXECUTE; the linker produces an executable image. To suppress
production of an image, specify the negative form, as:

/NOEXECUTE
For example:

$ LINK/NOEXECUTE CIRCLE
The file CIRCLE.OBJ 1is 1linked, but no image is generated. The
/NOEXECUTE qualifier is wuseful if you want to verify the results of
linking an object file, without actually producing the image.

To designate a file specification for an executable image, use the
/EXECUTE qualifier in the form:

/EXECUTE=file-spec
For example:
$ LINK/EXECUTE=TEST CIRCLE

The file CIRCLE.OBJ is linked, and the executable image generated is
named TEST.EXE.

USING VAX-11 FORTRAN IV-PLUS

A shareable image is one that can be used in a number of different
applications. It may be a private 1image you use for your own
applications, or it may be installed in the system by the system
manager for use by all users. To create a shareable image, specify
the /SHAREABLE qualifier. For example:

$ LINK/SHAREABLE CIRCLE
To include a shareable image as input to the linker, you must wuse an

options file, and specify the /OPTIONS qualifier in the LINK command.
Refer to the VAX-11 Linker Reference Manual for details.

If you specify /NOSHAREABLE, the effect is similar to /NOEXECUTE. The
linker processes the object code and the input as though it were going
to produce a shareable image, but in fact no image is generated.

1.3.1.2 Map File Qualifiers - The map file qualifiers tell the linker
whether a map file is to be generated, and, if so, the information it
is to include. Map file qualifiers include:

/MAP

/BRIEF

/FULL
/CROSS_REFERENCE

The map qualifiers are specified as follows:

/MAP [=file-spec] /BRIEF [/CROSS_REFERENCE]
/FULL

The linker uses defaults to generate or suppress a map file. In

interactive mode, the default is to suppress the map; 1in batch mode,

the default is to generate the map.

If no file specification is included with /MAP, the map file has the
name of the first input file, and a file type of MAP. It is stored on
the default device, in the default directory.

The qualifiers /BRIEF and /FULL define the amount of information
included in the map file, as follows:

e /BRIEF produces a summary of the image's characteristics, and
a list of contributing modules.

e /FULL produces a summary of the image's characteristics and a
list of contributing modules (as produced by /BRIEF); plus a
list of global symbols and values, in symbol name order; and
a summary of characteristics of image sections in the linked
image.

By default, if neither /BRIEF nor /FULL is specified, the map file
contains a summary of the image's <characteristics and a list of
contributing modules (as produced by /BRIEF), plus a list of global
symbols and values, in symbol name order.

The /CROSS_REFERENCE qualifier can be used with either the default or
/FULL map qualifiers, to request cross reference information for
global symbols. This cross reference information indicates the object

USING VAX-1l1l FORTRAN IV-PLUS

modules that define and/or refer to global symbols encountered during
linking. The default is /NOCROSS_REFERENCE.

1.3.1.3 Debugging and Traceback Qualifiers - The /DEBUG qualifier
indicates that the VAX/VMS debugger (see Chapter 2) is to be included
in the executable image. The default is /NODEBUG.

When the /TRACEBACK qualifier 1is specified, error messages are
accompanied by a symbolic traceback showing the sequence of calls that
transferred control to the program unit in which the error occurred.
If you specify /NOTRACEBACK, this information is not produced. The
default is /TRACEBACK. If you specify /DEBUG, the traceback
capability is automatically included, and the /TRACEBACK qualifier is
ignored. Figure 1-2 illustrates a typical traceback 1list. (See
Section 1.5.1.)

1.3.2 Linker Input File Qualifiers

File qualifiers affect the input file specification. Input files can
be object files; shareable files previously 1linked; or library
files.

1.3.2.1 /LIBRARY Qualifier - The /LIBRARY qualifier has the form:
/LIBRARY

This qualifier specifies that the input file is an object-module
library that is to be searched to resolve undefined symbols referenced
in other input modules. The default file type is OLB.

1.3.2.2 /INCLUDE Qualifier - The /INCLUDE qualifier has the form:
/INCLUDE=module-name (s)

The qualifier specifies that the input file is an object-module
library, and that the modules named are the only modules in that
library that are to be explicitly included as input. At least one
module name is required. To specify more than one, enclose the module
names in parentheses, and separate them with commas. The default file
type 1is OLB. The /LIBRARY qualifier can also be used with the same
file specification, to indicate that the same library is also to be
searched for unresolved references.

1.4 EXECUTION
The RUN command initiates execution of your program. It has the form:
$ RUN[/DEBUG] file-spec

The file name must be specified; default values are applied if you
omit optional elements of the file specification. The default file
type is EXE. The /DEBUG qualifier allows you to use the debugger,
even though you omitted this qualifier from the FORTRAN and LINK
commands. See Section 1.5 for details.

USING VAX-1ll FORTRAN IV-PLUS

1.5 FINDING AND CORRECTING ERRORS

Both the compiler and the Run-Time Library include facilities for
detecting and reporting errors. VAX/VMS also provides the debugger,
to help you locate and correct errors. In addition to the debugger,
there 1is a traceback facility that can also be used to track down
errors that occur during program execution.

1.5.1 Error-Related Command Qualifiers

At each step in compiling, linking, and executing your program, you
can specify command qualifiers that affect how errors are processed.
At compile time, you can use the /DEBUG qualifier to ensure that
symbolic information is created for use by the debugger. At link time
you can also specify the /DEBUG qualifier to make the symbolic
information available to the debugger. The same qualifier can be
specified with the RUN command, to invoke the debugger.

Table 1-4 summarizes the /DEBUG and /TRACEBACK qualifiers.

Table 1-4
/DEBUG and /TRACEBACK Qualifiers

Qualifier Command Effect Default

/DEBUG FORTRAN The FORTRAN compiler /DEBUG=
creates symbolic data (NOSYMBOLS,
needed by the TRACEBACK)
debugger.

/DEBUG LINK Symbolic data created /NODEBUG

by FORTRAN compiler is
passed to the debugger.

/TRACEBACK LINK Traceback information /TRACEBACK
is passed to the debugger.
Traceback will be produced.

/DEBUG RUN Invokes the debugger. The
DBG> prompt will be displayed.
Not needed if $ LINK/DEBUG
was specified.

/NODEBUG RUN If /DEBUG was specified in
the LINK command, RUN/NODEBUG
suppresses the DBG> prompt.

If you use none of these qualifiers at any point in the
compile~link-execute sequence, and an execution error occurs, you will
receive a traceback list by default. However, you will not be able to
invoke the debugger.

To perform symbolic debugging, you must use the /DEBUG qualifier with
both the FORTRAN command and the LINK command. It then becomes
unnecessary to specify it with the RUN command. If you omit /DEBUG
from either the FORTRAN or LINK command, you can use it with the RUN
command, to invoke the debugger. However, any debugging you perform
must then be done by specifying addresses in absolute form, rather
than symbolically.

USING VAX-11 FORTRAN IV-PLUS

If you linked your program with the debugger, but wish to execute the
program without intervention by the debugger, specify

RUN/NODEBUG program

If you specify LINK/NOTRACEBACK, you will receive no traceback in the
event of error. An example of a source program and a traceback is
shown in Figure 1-2.

0001 I=1

0002 CONTINUE

0003 J=2

0004 CONTINUE

0005 K=3

0006 CALL SUB1

0007 CONTINUE

0008 END

0001 SUBROUTINE SUB1

0002 I=1

0003 J=2

0004 CALL SUB2

0005 END

0001 SUBROUTINE SUB2

0002 COMPLEX W

0003 COMPLEX 2

0004 DATA W/(0.,0.)/

0005 Z = LOG (W)

0006 END

$MTH-F-LOGZERNEG, logarithm of zero or negative value
user PC 00000449
$TRACE-F-TRACEBACK, symbolic stack dump follows
module name routine name line relative PC absolute PC
0000074cC 0000074cC
0000081cC 0000081C

SUB2 5 00000011 00000449
SUB1 4 00000017 00000437
T1$MAIN 6 0000001B 0000041B

Figure 1-2 Traceback List

The traceback is interpreted as follows:

When the error condition is detected, you receive the appropriate
message, followed by the traceback information. 1In this example, a
message is displayed by the Run-Time Library, indicating the nature of
the error, and the address at which the error occurred (user PC).
This is followed by the traceback information, which is presented in
inverse order to the calls. Note that values may be produced for
relative and absolute PC, with no corresponding values for routine

name and line. These PC values reflect procedure calls internal to
the Run-Time Library.

USING VAX-11 FORTRAN IV-PLUS

Of particular interest to you are the values listed wunder “"routine
name" and "line", the first of which shows what routine or subprogram
called the Run~-Time Library, which subsequently reported the error.
The value given for "line" corresponds to the compiler-generated line
number in the source program listing (not to be confused with
editor-generated 1line numbers). Using this information, you can
usually isolate the error in a short time.

If you specify either LINK/DEBUG, or RUN/DEBUG, the debugger assumes
control of execution. If an error occurs, you do not receive a
traceback list. To display traceback information, you <can use the
debugger command SHOW CALLS, as described in Section 1.5.2.

1.5.2 SHOW CALLS Command

When an error occurs in a program that is executing under the control
of the debugger, no traceback 1list 1is produced. To generate a
traceback list, use the SHOW CALLS command, which has the form:

DBG>SHOW CALLS

1.6 SAMPLE TERMINAL SESSION

A typical dialog between you and the system might appear as follows:

Username: SMITH
Password: (Your password is not displayed)

WELCOME TO VAX/VMS RELEASE 1

$ EDIT CIRCLE.FOR
Input:DBA2: [SMITH]CIRCLE.FOR
00100
(enter source program)
*E (mer) (terminate edit session and write file to disk)
[DBA2: [SMITH]CIRCLE.FOR;1]
$ FORTRAN/NOOPTIMIZE/LIST/DEBUG CIRCLE

$ LINK/DEBUG CIRCLE

$ RUN CIRCLE

USING VAX-1l1l FORTRAN IV-PLUS

1.7 COMPILER LISTING FORMAT

The listing produced by the compiler consists
sections, as follows:

° Source listing section
° Machine code listing section (optional)

° Storage map section

of two

or

three

Sections 1.7.1 through 1.7.3 describe the compiler listing sections in

detail.

USING VAX-1ll FORTRAN IV-PLUS

1.7.1 Source Listing Section

The source listing section shows the source program as it appears in
the input file with the addition of sequential line numbers generated
by the compiler. Figure 1-3 shows a sample source listing section.

Note that line numbers are generated only for statements that are
compiled; comment lines are not numbered, nor are lines with D in
column 1 unless you specified /D_LINES.

Compiler-generated line numbers appear in the left margin. You can
use them for debugging by using the RLINE specification in debugger
commands (see Chapter 2). If the editor you use to create the .source
file generates 1line numbers, these numbers will also appear in the
source listing. In this case, the editor-generated 1line numbers
appear in the left margin, and the compiler-generated line numbers are
shifted to the right. The SLINE specification applies to the
compiler-generated line numbers, not the editor-generated 1line
numbers. .

Compile-time and run-time error messages that contain 1line numbers
refer to the compiler-generated 1line numbers in the source listing
section. See Appendix B for a summary of error messages.

7001 SUBROUTINE RELAX2(EPS)

0002 PARAMETER Ms4d, Ns62

eo93 DIMENSION X(@gM, 23N}

[.I.1. 1] COMMON X

o0es LOGICAL DONE

2006 1 DONE = ,TRUE,

-I.L.}} 00 19 J = 1,N=1

o008 DO 190 I 8 {,Me}

eee9 XNEW 8 (XCIogpJ)eXCIet,J)eXCI,duideX(I,Je8)) /7 &
esio IF (ABS(XNEWeX(I,J)) ,GT, EPS) DONE = ,FALSE,
o211 18 X(I,J) = XNEW

2812 1F (,NOT, DONE) GO YO ¢

2013 RETURN

2014 END

Figure 1-3 Source Listing Section

1.7.2 Machine Code Listing Section

The machine code listing section provides a symbolic represen;a;ion of
the compiler-generated object code. This representation is similar to
a VAX-11] MACRO assembly listing for the generated code and data.

The machine code listing section is optional. To include it in the
listing file, you must specify:

$ FORTRAN/LIST/MACHINE_CODE

Figure 1-4 shows a sample machine code listing\section.

USING VAX-11l FORTRAN IV-PLUS

+TITLE RELAX2

+IDENT o1
4000 +PSECT SBLANK
g000 X3
o000 «PSECT scODE
0002 RELAX23
sege +«WORD *MeIV,RS,R6,RT7,R8,R9,R10,R11>
goee2 MOVAL SLOCAL, R1Y
3 0006
2009 L1
20a9 MNEGL #1, DONE(R1Y)
) aea?
eeac MOVL 1, R7
1113 MOVAL $BLANK, RS
2816 LSIANES
) 0208
2016 MOVL #1{, RO
9019 MULL3 #41, R7, R6
@910 LSIAGGS
1 00R9
@910 ADDL3 R9, R6&, R1OQ
0021 ADDF3 X+4(RS) (R10), Xe4(R5)[R102], Re
0229 ADDF2 X=164(RS) [R1A]), RO
@02F ADDF2 X+164(RS) [R10]), R®
893S MULF3 #“X3F80, RO, RS
; 0m1o
203D SUBF3 X(RS)[R1®], R8, R
20u2 BICwW2 #*"X80m@, RA
0047 CMPF RA, SEPS(AP)
0948 BLEQ LS1APY
2040 CLRL DONE(R1Y)
QOUF LSIAP]:
) 00114
1114 MOVF R8, X(RS)([Ri0]
2083 AOBLEQ #39, R9, LSIAGG
08S7 AQOBLEQ #%9, R7, LSIANE
(-I'21:] MOVL R7, J(R11)
POSF MOVF R8, XNEW(R1})
PA63 MOVL R9, I(Ri4)
1} 2912
2067 8L8C DONE(R11), i
BGR6A RET
+END

Figure 1-4 Machine Code Listing Section

The first line of the machine code listing contains a .TITLE assembler
directive, indicating the program unit to which the machine code
corresponds. For a main program, the title is either as declared in a
PROGRAM statement, or filename$MAIN, if you did not specify a PROGRAM
statement. For subprograms, the title is the name of the subroutine
or function. For a BLOCK DATA subprogram, the title is either the
name declared in the BLOCK DATA statement, or filename$DATA, if vyou
did not specify a name in the BLOCK DATA statement.

The lines following .TITLE provide information such as the contents of
storage initialized for FORMAT statements, DATA statements, constants,
and subprogram argument call lists. Machine instructions are
represented by VAX-11 MACRO mnemonics and syntax. Compiler-generated
line numbers corresponding to generated code lines are listed at the
right margin before the machine code generated for the line.

The VAX-11 general registers (0 through 12) are represented by RO
through R12. When register 12 is used as the argument pointer, it is
represented by AP; the frame pointer (register 13) is FP; the stack
pointer (register 14) is SP, and the program counter (register 15) is

USING VAX-1l FORTRAN IV-PLUS
PC. Note that the relative PC for each instruction or data item is
listed at the left margin, in hexadecimal.
Variables and arrays defined in the source program are shown in the
machine code listing as they were defined in the source. Offsets from
variables and arrays are shown in decimal.
FORTRAN source labels referred to in the source program are shown in
the machine code listing with a dot (.) prefix. For example, if the
source program refers to label 300, the label appears in the machine
code listing as .300. Labels that appear in the source program, but
that are not referred to or are deleted during compiler optimization,
are ignored and do not appear in the machine code listing, unless you
specified /NOOPTIMIZE.
The compiler may generate labels for its own use. These labels appear
as LS$xxxx, where the value of xxxx is unique for each such label in a
program unit.
Integer constants are shown as signed integer values; real, double
precision, and complex constants are shown as unsigned hexadecimal
values preceded by “X.
Addresses are represented by the program section name plus the

hexadecimal offset within that program section. Changes from one
program section to another are indicated by PSECT lines.

1.7.3 Storage Map Section

The storage map section of the compiler 1listing summarizes the
following information:

° Program sections
) Entry points
° Statement functions
® Variables
@ Arrays
) Labels
° Functions and subroutines
° Total memory allocated
Figure 1-5 shows a sample storage map section.

A summary section heading is not printed if no entries were generated
for that section.

USING VAX-1l FORTRAN IV-PLUS

PROGRAM SECTIONS

Newe Bytes Attributes
@ $CODE 107 PIC CON REL LCL SHR EXE RD NOWRT LONG
2 SLoCAL 16 PIC CON REL LCL NOSHR NOEXE RD WRY LONG
3 SBLANK 10004 PIC OVR REL GBL SHR NOEXE RD WRT LONG

ENTRY POJINTS

Address Type Name

0-00090400 RELAX2
VARIABLES
Address Type Nanrme Address Type Name Address Type Name
2~00000008 Lwd DONE APega020040 w4 EPS 2=pneoaned Ixd I
2=00000804 Ix4 J 2°0000m3aC Rwy XNEW
ARRAYS
Address Type Name Bytes Dimensfons
3=po0geene Rwd X 1onad (D140, 0360)
LABELS
Address Lebe! Address Labe)
0=00000009 1 [} 10

Tota! Space Allocated = 10127 Bytes

COMPILER OPTIONS

/CHECK =(NOBOUNDS, OVERFLOW)
/DEBUG=(NOSYMBOLS, TRACEBACK)
/OPTIMIZE /WARNINGS /14 /NOD,LINES

Figure 1-5 Storage Map Listing

Sizes are printed as a number of bytes, expressed in decimal. Data
addresses are specified as an offset from the start of a program
section, expressed in hexadecimal. The symbol AP can appear instead
of a program section; in this case, the address refers to a dummy
argument, expressed as the offset from the argument pointer (AP).
Indirection is indicated by an at sign (@) following an address field.
In this case, the address specified by the program section (or AP)
plus the offset points to the address of the data, not to the data
itself.

The program section summary describes each program section (PSECT)
generated by the compiler. The descriptions include:

° PSECT number (used by most of the other summaries)
° Name
) Size

® Attributes

USING VAX-11 FORTRAN IV-PLUS

Chapter 7 describes PSECT usage and attributes.

The entry point summary lists all entry points and their addresses.
If the program unit is a function, the declared data type of the entry
point is also included.

The statement function summary lists the entry point address and data
type of each statement function.

The variable summary lists all simple variables, with the data type
and address of each.

The array summary is similar to the variable summary. 1In addition to
data type and address, it gives the total array size and dimensions.
If the array is an adjustable array, the size 1is shown as double
asterisks (**), and each adjustable dimension bound is shown as a
single asterisk (*).

The label summary lists all user-defined statement labels. FORMAT
statement labels are suffixed with an apostrophe. If the label
address field contains double asterisks (**), then the label was not
used or referred to by the compiled code.

The functions and subroutines summary lists all external routine
references made by the source program.

Following the summaries, the compiler prints the total memory
allocated for all program sections compiled, in the form:

Total Space Allocated = nnn Bytes

1.7.4 Other Listing Information

The final entries on the compiler listing are the compiler qualifiers
in effect for that compilation. For example:

COMPILER OPTIONS
/CHECK= (NOBOUNDS ,OVERFLOW)

/DEBUG= (NOSYMBOLS ,TRACEBACK)
/OPTIMIZE /WARNINGS /I4 /NOD_LINES

CHAPTER 2

DEBUGGING FORTRAN PROGRAMS

Debugging is the process of finding and correcting errors in
executable programs; that is, in programs that have been compiled and
linked without diagnostic messages, but that produce invalid results.

This chapter shows you how to use the VAX-11 Symbolic Debugger to
debug FORTRAN programs.

2.1 OVERVIEW OF THE VAX-1ll SYMBOLIC DEBUGGER

The VAX-11l Symbolic Debugger Reference Manual describes the VAX-11
debugger in detail. This section provides an overview of the
debugger, showing a sample debugging session and introducing the
debugger command syntax and symbol table.

2.1.1 Sample Debugging Terminal Session

Figure 2-1 illustrates a program that requires debugging. The program
has been compiled and linked without diagnostic messages from either
the compiler or the linker. (Appendix B summarizes compiler
diagnostic messages.) However, the program produces erroneous results
because of the missing asterisk in the exponentiation operator
(RADIUS*2 should be RADIUS**2), This error is so obvious that you
hardly need the services of the debugger to find it. However, for
purposes of illustration, this example will deal with the error as
though it were shrouded in obscurity.

C PROGRAM TO FIND THE AREA
C OF A CIRCLE
0001 PROGRAM CIRCLE
0002 TYPE 5
0003 5 FORMAT (' enter radius value ')
0004 ACCEPT 10,RADIUS
0005 10 FORMAT (F6.2)
0006 PI = 3.1415927
0007 AREA = PI*RADIUS*2
0008 TYPE 15,AREA
0009 15 FORMAT (' area of circle equals ',F10.3)
0010 STOP .
0011 END

Figure 2-1 Sample FORTRAN Program: CIRCLE

2-1

DEBUGGING FORTRAN PROGRAMS

The key to debugging is to find out what happens at critical points in
your program. To do this, you need a way to stop execution at
selected locations, and look at the contents of these locations to see
if they contain the correct values. Points at which execution is
stopped are called breakpoints. The SET BREAK command lets vyou
specify where you want to stop the program.

To look at the contents of a location, use the EXAMINE command. To
resume execution, use either the GO or STEP command. All DEBUG
commands relevant to FORTRAN are discussed in subsequent sections of
this chapter.

Figure 2-2 is an example of typical terminal dialog for a debugging
session. The circled numbers (for example, ") are keyed to notes
that follow the figure and explain the dialog.

% FORTRAN/LIST/NOOFTIMIZE/DERUG CIRCLE "
$ LINK/DEBUG CIRCLE
$ RUN CIRCLE

DEBUG Version 0.5-1 28 Arril 1978

ZDEBUG-I-INITIALy landuage is FORTRANy score and module set to CIRCLE G’
DBG>SET BREAK XZLINE 7 é ’
DRG>-GO

routine start rpc is CIRCLENCIRCLE

enter radius value

24,

break at rc = CIRCLE\CIRCLE %lire 7 (@
NBG-EXAMINE PI 6

CIRCLENFI? 3.141593

DEGXEXAMINE RADIUS

CIRCLE\RADIUS? 24,00000

DBG=EXAMINE AREA

CIRCLENAREA? 0.0000000

DEG>GO

start rc is CIRCLENCIRCLE Xline 7

area of circle eauazls 150,796

FORTRAN STOF

ZDERUG-I-EXITSTATUSy is ‘XSYSTEM-S—-NORMALs normal successful comrletion”’ ‘D
DBGHEXIT

$

Figure 2-2 Sample Debugging Terminal Dialog

" Invoke the FORTRAN compiler, specifying the gqualifiers shown.
You should include the /NOOPTIMIZE qualifier if you intend to use
symbolic debugging (see Section 2.9).

Link your program, including the debugger.

In response to the RUN command, the debugger displays its
identification, indicating that your program will be executed
under the debugger's control.- Following the identification
message, the debugger displays an INITIAL message, telling you
the mode settings it has assumed for the language, scope, and
module. The debugger derives the mode settings from the first
module specified in the LINK command. If this message does not
appear, or if the settings assumed are not appropriate, use the
SET LANGUAGE, SET SCOPE, and SET MODULE commands, as described in
Sections 2.2.1, 2.2.2, and 2.2.3.

DEBUGGING FORTRAN PROGRAMS

Place a breakpoint at an appropriate point in the program. This
point should be one at which you will be able to examine key
variables. Note: Breakpoints suspend execution just before the
point specified.

Begin program execution. The debugger displays the 1line number
at which execution starts.

The debugger announces that it has suspended execution at the
specified breakpoint.

Check the variable PI to make sure the correct value 1is stored
there. The debugger displays the contents of PI, showing that
its scope is in module CIRCLE.

Check the variable RADIUS. The debugger shows that the specified
value has been properly stored.

Examine the variable AREA to make sure its contents are zero.

Resume execution. The debugger displays a message indicating the
point of program resumption.

Successful completion of the program is indicated by this
message. However, as you can see, the result is incorrect.

ﬂa Exit from the debugger.

By examining the variables PI, RADIUS, and AREA as the program is
executing, you can determine that the correct values are being stored.
It follows, then, that the error is probably in the expression of the
formula for computing the area. To correct the problem, you must edit
and recompile the source program, with the exponentiation operator
properly specified in the formula expression.

2.1.2 Debugger Command Syntax

Debugger commands resemble other VAX/VMS commands. The general form
is:

DBG>command [keyword] [operand [,operand] ...]

command
Specifies the command name.

keyword
Specifies the qualifiers for SET, SHOW, CANCEL commands.

operand
Specifies the object of the command. The operand may consist of
constants, names of variables or array elements, or expressions.

The command, keyword, and operand fields are separated by one or more
spaces.

The debugger can process integer, real, double precision, and 1logical
expressions, but not complex or character expressions.

DEBUGGING FORTRAN PROGRAMS

The FORTRAN operators supported by the debugger are listed below, in
decreasing order of precedence.

*,/
+,-

.NOT.

.AND.

.OR.

.XOR., .EQV.

The debugger does not support exponentiation, concatenation, or
relational operators.

The debugger evaluates expressions in the same way as FORTRAN.
However, the syntax of expressions is slightly different. Spaces are
used to separate elements of debugger commands, and are significant to
the debugger; therefore, variable names and multicharacter operators
(such as .OR.) must contain no embedded spaces.

The debugger accepts constants in the same form used for FORTRAN, with
the following exceptions: Hollerith, Radix~50, and octal integer
constants (for example "777) are not accepted by the debugger.

Debugger commands observe standard VAX/VMS conventions for abbreviated
forms.

Table 2-1 lists the debugger commands and keywords discussed in this
chapter, and shows their full and abbreviated forms. Abbreviations
are in parentheses next to the full form.

Table 2-1
Debugger Commands and Keywords

Command

Names Keywords
SET (SE) LANGUAGE (LA)
SHOW (SH) MODULE (MODU)
CANCEL (CAN) SCOPE (SC)
EXAMINE (E) BREAK (B)
EVALUATE (EV) TRACE (T)
DEPOSIT (D) WATCH (W)
DEFINE (DEF)
EXIT (EXI)
STEP (S)
GO (G)
CALL (CA)

2.1.3 Debugger Symbol Table

The debugger maintains a table of symbols defined by the program with
which it 1is 1linked. This table provides the name of each symbol
defined in the program, its data type, and its address. The table
also provides dimension bound information for arrays, and length
information for character data.

The debugger's active symbol table provides room for approximately
2000 symbols. Thus, you should pay heed to the number of symbols
defined in the programs you are debugging. If your program contains
more than one program unit, use the SET MODULE command to be sure the

DEBUGGING FORTRAN PROGRAMS

symbol table contains symbols from the program units you wish to
debug. Use the CANCEL MODULE command to remove symbols defined in
program units that no longer need debugging. The SET MODULE and
CANCEL MODULE commands are defined in Section 2.2.2,

2.2 PREPARING TO DEBUG A PROGRAM

The following sections describe the commands used to establish the
proper environment for debugging FORTRAN programs. These commands
are:

SET LANGUAGE
SHOW LANGUAGE

SET MODULE

SHOW MODULE
CANCEL MODULE

SET SCOPE
SHOW SCOPE
CANCEL SCOPE

These commands can be used if the initial settings assumed by the
debugger are not appropriate.

2.2.1 SET, SHOW LANGUAGE Command
The SET LANGUAGE command tells the debugger that the debugging dialog
is to be conducted according to the conventions of the specified
language. For example, if you specify SET LANGUAGE FORTRAN, the
debugger will accept and display numeric values in decimal radix.
The command has the form:

SET LANGUAGE language

language
Specifies the language to be used.

To determine which language is currently in effect, wuse the SHOW
LANGUAGE command. This command has the form:

SHOW LANGUAGE

The debugger responds by displaying the 1language in effect. For
example:

DBG>SHOW LANGUAGE
language: FORTRAN

DEBUGGING FORTRAN PROGRAMS

2.2.2 SET, SHOW, CANCEL MODULE Commands

The MODULE commands let you control the contents of the debugger's
active symbol table when the program you want to debug consists of
multiple program units. These commands perform the following
functions:

® SET MODULE places the symbols defined in the specified program
unit into the active symbol table. The debugger initializes
the active symbol table to include all global symbols, and
local symbols of the first program unit specified in the LINK
command.

e SHOW MODULE displays the names of all program' units whose
symbols are potentially available. "Yes" means the symbols
for that module are set; "no" means they are not set.

e CANCEL MODULE removes the specified program unit's symbols
from the active symbol table.

The SET MODULE command has the form:

SET MODULE program-unit [,program-unit] ...}
/ALL

program—-unit
Specifies the name of the program unit whose symbols are to be
included in the active symbol table.

/ALL
Requests the debugger to set the symbols of all known modules.
If there 1is insufficient space, the debugger displays an error
message.

The SHOW MODULE command has the form:
SHOW MODULE

This command takes no parameters. The debugger responds by displaying
the names of the modules 1linked with the debugger, indicating the
modules whose symbols are included in the image, and their sizes.
Only those module names marked "Yes" have their symbols in the active
symbol table.

The CANCEL MODULE command has the form:

CANCEL MODULE {program-unit [,program-unit] ...}
/ALL

program-unit
Specifies the name of the program unit for which symbols are to
be removed.

/ALL
Specifies that all information is to be purged from the active
symbol table.

2.2.3 SET, SHOW, CANCEL SCOPE Commands
The SCOPE commands let you control the default used to resolve

references to symbols. When you use a command such as EXAMINE, you
can either specify or omit the name of the module in which the symbol

2-6

DEBUGGING FORTRAN PROGRAMS

is defined. If you omit the name, the debugger uses a default. If it
cannot find the symbol in the default scope, the debugger creates a
scope, based on the current value of the PC. This indicates the
module or routine in which your program stopped. If that fails, the
debugger attempts to find an unambiguous symbol in the remaining
program units. A message is displayed if the debugger cannot resolve
the reference.
The SCOPE commands perform the following functions:
® SET SCOPE defines the specified program unit to be the default
® SHOW SCOPE displays the current default program unit name

® CANCEL SCOPE revokes the default program unit named previously
in a SET SCOPE command

The SET SCOPE command has the form:
SET SCOPE program-unit

program-unit
Specifies the name of the program unit to be used as the default.

For example:
SET SCOPE MAXI /

The SHOW SCOPE command has the form:
SHOW SCOPE

This command takes no parameters. The symbol displayed indicates the
current scope.

The CANCEL SCOPE command has the form:
CANCEL SCOPE

This command takes no parameters. Scope becomes <null>.

2.3 CONTROLLING PROGRAM EXECUTION

To see what happens during execution of your program, you must be able
to suspend and resume the program at specific points. The following
commands are available for these purposes:

SET BREAK SHOW CALLS
SHOW BREAK
CANCEL BREAK GO
STEP
SET TRACE
SHOW TRACE CTRL/Y
CANCEL TRACE
EXIT
SET WATCH
SHOW WATCH

CANCEL WATCH

DEBUGGING FORTRAN PROGRAMS

2.3.1 SET, SHOW, CANCEL BREAK Commands

The BREAK commands let you select specified 1locations for program
suspension, so you can examine and/or modify 'variables or arrays in
the program. The BREAK commands perform the following functions.

e SET BREAK defines an address or 1line number at which to
suspend execution

e SHOW BREAK displays all breakpoints currently set in the
program

e CANCEL BREAK removes selected breakpoints
The SET BREAK command has the form:
SET BREAK[/AFTER:n] address [DO(debugger command(s))]
address .
Specifies the address at which the breakpoint is to occur. Note

that execution 1is suspended just before the specified address.
Section 2.5 describes how addresses are specified.

DO (debugger command(s))
Requests that the debugger perform the specified commands, if
any, when the breakpoint is reached.

For example:
SET BREAK S$LINE 100 DO (EXAMINE TOTAL; EXAMINE AREA)

The result is that the variables TOTAL and AREA are examined when the
breakpoint at line 100 is reached.

You can use the /AFTER qualifier to control when a breakpoint takes
effect. Thus, if you set a breakpoint on a line that is in the range
of a DO loop, and you want the breakpoint to be effective the third
time through the loop, then specify the /AFTER switch as shown in the
following example:

DBG>SET BREAK/AFTER:3 %LINE 20
Note that if you use the /AFTER qualifier, the breakpoint is reported
the nth time it is encountered, and every time it is encountered
thereafter.
The SHOW BREAK command has the form:

SHOW BREAK

This command takes no parameters. The debugger responds by displaying
the location of breakpoints. .

The CANCEL BREAK command has the form:

CANCEL BREAK address [,address...]
/ALL

address
Removes the breakpoint(s) at the specified address(es).

/ALL
Removes all breakpoints in the program.

DEBUGGING FORTRAN PROGRAMS

2.3.2 SET, SHOW, CANCEL TRACE Commands

The TRACE commands let you set, examine, and remove tracepoints 1in
your program. A tracepoint 1is similar to a breakpoint in that it
suspends program execution, and displays the address at the point of
suspension. However, program execution resumes immediately. Thus,
tracepoints let you follow the sequence of program execution to ensure
that execution is being carried out in the proper order.

Note that tracepoints and breakpoints are mutually exclusive. That
is, 1if you set a tracepoint at the same location as a current
breakpoint, the breakpoint will be canceled, and vice versa.

The TRACE commands perform the following functions:

e SET TRACE establishes points within the program at which
execution is momentarily suspended

® SHOW TRACE displays the locations in the program at which
tracepoints are currently set

e CANCEL TRACE removes one or more tracepoints currently set in
the program

The SET TRACE command has the form:
SET TRACE address

address
Specifies the address at which the tracepoint is to occur.

The SHOW TRACE command has the form:
SHOW TRACE

This command takes no parameters.

The CANCEL TRACE command has the form:

CANCEL TRACE address [,address ...]}
/ALL

address
Removes the tracepoint(s) at the specified address(es).

/ALL
Removes all tracepoints in the program.

2.3.3 SET, SHOW, CANCEL WATCH Commands

The WATCH commands let you monitor specified 1locations to determine
when attempts are made to modify their contents, and take the
appropriate actions. These locations are called watchpoints. When an
attempt is made to change a watchpoint, the debugger halts program
execution, displays the address of the instruction, and prompts for a
command. Watchpoints are monitored continuously. Thus, you can
determine whether locations are being modified inadvertently during
program execution.

DEBUGGING FORTRAN PROGRAMS

The WATCH commands perform the following functions:
® SET WATCH defines the location(s) to be monitored
e SHOW WATCH displays the locations currently being monitored
e CANCEL WATCH disables monitoring of specified locations
The SET WATCH command has fhe form:
SET WATCH var
var
Specifies the location to be monitored. You can monitor scalar
variables and array elements.
For example:

SET WATCH AREA

Note that watchpoints, tracepoints, and breakpoints are mutually
exclusive.

The SHOW WATCH command has the form:

SHOW WATCH
This command takes no parameters. All watchpoints are displayed.
The CANCEL WATCH command has the form:

CANCEL WATCH (var }
/ALL

var
Specifies the location for which monitoring is to be disabled.

/ALL
Removes all watchpoints from the program.

For example:

CANCEL WATCH AREA

2.3.4 SHOW CALLS Command

This command can be used to produce a traceback of calls, and is
particularly useful when you have returned to the debugger following a
CTRL/Y command. It has the form:

SHOW CALLS [n]

The debugger displays a traceback list, showing the sequence of calls
leading to the current module. If you include a value for n, the n
most recent calls are displayed. The form of the traceback 1list is
described in Section 1.5.

2-10

DEBUGGING FORTRAN PROGRAMS

2.3.5 GO, STEP Commands
These commands let you initiate and resume program execution.

e GO initiates execution at a specified location, and continues
to conclusion or to the next breakpoint

e STEP initiates execution from the current 1location, and
continues for a specified number of statements

The form of the GO command is:
GO [address]

address
Specifies the address at which program execution is to begin.

The address parameter is optional; if you omit it, execution starts
at the current location.

NOTE

You must not restart a program from the
beginning unless you first exit from the
debugger. Unspecified results will be
produced.

The form of the STEP command is:
STEP[/qualifiers] [n]

The value specified for n determines the number of statements to be
executed. If you specify 0, or omit n, a default of 1 is assumed.
Note, however, that if you issue a STEP command while your program is
stopped in a module whose symbols are not set in the active symbol
table, then n instructions (not statements) will be executed.

You can specify the following gqualifiers for the STEP command:

/[NO] SYSTEM
/OVER
/INTO
/LINE
/INSTRUCTION

/ [NO] SYSTEM

If you specify /SYSTEM, you are telling the
debugger to count steps wherever they occur,
including system address space. The default is
/NOSYSTEM.

/OVER - Tells the debugger to ignore calls to subprograms
as it steps through the program. That is, it is
to step over the call. This is the default.

/INTO - Tells the debugger to recognize calls to
subprograms as it steps through the program. That
is, it is requested to step into the subprogram.

/LINE - Tells the debugger to step through the program on
a line-by-line basis (default for FORTRAN).

/INSTRUCTION

Tells the debugger to step through the program on
an instruction-by-instruction basis (default for
VAX-11 MACRO).

2-11

DEBUGGING FORTRAN PROGRAMS

You can specify these qualifiers each time you issue a STEP command,
or you can use a SET STEP command, as shown in the following example:

SET STEP INSTRUCTION, INTO, SYSTEM

This command specifies that all defaults applicable to FORTRAN
programs are to be overridden. When you subsequently issue a STEP
command with no qualifiers, these qualifiers are assumed to be in
effect. You can, however, supersede them by including a gqualifier
with a STEP command. Thus,

STEP/LINE 10

tells the debugger to execute 10 lines, regardless of the SET STEP
command.

It is advisable to use STEP to execute only a few instructions at a
time. To execute many instructions, and then stop, use a SET BREAK
command to set a breakpoint, and then issue a GO command.

2.3.6 CTRL/Y Command

You can use the CTRL/Y command at any time to return to the system
command level. This command is issued when you press the CTRL key and
the Y key at the same time. The $ prompt will be displayed on the
terminal. To return to the debugger, type DEBUG. You can use the
CTRL/Y command if your program loops or otherwise fails to stop at a
breakpoint. To £find out where you were at the instant CTRL/Y was
executed, use the SHOW CALLS command after you return to the debugger.
See Section 2.3.4.

2.3.7 EXIT Command

The EXIT command lets you exit from the debugger when you are ready to
terminate a debugging session. It has the form:

EXIT

This command takes no parameters. You must use the EXIT command when
your program terminates to return to system command level.

2.4 EXAMINING AND MODIFYING LOCATIONS

Once you have set breakpoints and begun program execution, the next
step 1is to see whether correct values are being generated and,
possibly, to change the contents of locations as execution proceeds.
You may also want to calculate the value of an expression that appears
in your program. The debugger provides the following commands for
these purposes:

EXAMINE
DEPOSIT

EVALUATE

DEBUGGING FORTRAN PROGRAMS

2.4.1 EXAMINE Command

The EXAMINE command lets you look at the contents of specified
locations. It has the form:

EXAMINE [address[:address]]

address
Specifies the address whose contents are to be examined; it 1is
usually given symbolically as a variable name or array element
name.

Examples:

EXAMINE IZZY

The contents of variable IZZY are displayed.
EXAMINE IARR(I)

The contents of the Ith element in array IARR are displayed.
EXAMINE IARR(1l) :IARR(10)

The contents of the first through tenth elements of the array IARR are
examined.

You can also specify that the contents of an absolute address be
displayed. For example:

EXAMINE 600

The contents of absolute address 600 are displayed.

2.4.2 DEPOSIT Command

The DEPOSIT command 1lets you change the contents of specified
locations. It has the form:

DEPOSIT address=value|,value ...]

address
Specifies the address into which the value is to be deposited.

value
Specifies the value to be deposited.

You can change the contents of a specific 1location, or of several
consecutive locations, as shown in the following examples.

DEPOSIT 1722Y¥=100
This command places the decimal value 100 into the variable I172%Y.
DEPOSIT IARR(1)=100,150,200

This command places the decimal values 100, 150, and 200 into elements
1, 2, and 3 of array IARR.

DEBUGGING FORTRAN PROGRAMS

2.4.3 EVALUATE Command

The EVALUATE command lets you use the debugger as a calculator, to
determine the value of expressions. It has the form: -

EVALUATE expression

expression
Specifies the expression whose value is to be determined.

For example:
EVALUATE PI*RADIUS

The value of this expression will be displayed. You can also use the
EVALUATE command to determine addresses, as follows:

EVALUATE /ADDRESS expression

For example:
EVALUATE/ADDRESS I

This calculates the address of the variable I, in decimal.
EVALUATE /ADDRESS A (J)

This calculates the address of the Jth element of array A.

You can also use EVALUATE to perform address arithmetic, such as
computing an offset or array element address. For example:

EVALUATE /ADDRESS I+4

2.5 SPECIFYING ADDRESSES

The debugger allows you to express addresses in symbolic form. Thus,
to examine a location, you need only refer to it by its symbolic name.
You don't have to concern yourself with its 1location in memory
(unless, of course, you omitted the /DEBUG qualifier from the FORTRAN
and LINK commands). Simply specify the variable, array element, or
function name in the debugger command.

You also need to tell the debugger where to set breakpoints,
watchpoints, and tracepoints. The following sections describe how to
specify line numbers, statement labels, and absolute addresses.

2.5.1 Lines, Labels, and Absolute Addresses

Addresses can be specified by 1line number, statement 1label, or
absolute value. To specify a line number or a statement label, use
either a $LINE prefix or a $LABEL prefix, respectively. For example:

SET BREAK 3%LINE 6

This command sets a breakpoint at 1line 6, corresponding to the
compiler-generated 1line numbers shown in the listing. Note that the
debugger does not recognize all 1line numbers, in particular those
associated with non-executable statements. If you specify such a line
number, the debugger responds with a message indicating that no such

DEBUGGING FORTRAN PROGRAMS

line exists. Simply retry the command, specifying the line number of
an executable statement. To specify a statement label, specify a
command such as:

SET BREAK 3%LABEL 7

This command sets a breakpoint at statement label 7 in the module
identified by the current scope (see Section 2.2.3).

To specify an absolute address, do not use a prefix. For example:
SET BREAK 700
You can also enter absolute addresses in symbolic form. To do so, you

must have defined them symbolically, by means of the DEFINE command
(see Section 2.5.4).

2.5.2 Specifying Scope

If the program you are debugging consists of more than one program
unit, you must be sure that your symbol references are unambiguous.
For example, if your main program calls a subroutine, and the symbols
from both program units are in the debugger's symbol table, you must
distinguish between duplicate symbols.

For example, assume that you want to set a breakpoint in the
subroutine, and you issue the following command:

SET BREAK $LINE 10
Because you do not specify a program unit name in this command, the
debugger uses a default to decide which line 10 you mean. If you used
a SET SCOPE command, the debugger uses the program unit specified in
the SET SCOPE command (see Section 2.2.3). To override this default,
you must specify a command in the following general form:

SET BREAK $LINE program-unit\1l0
For example:

SET BREAK %LINE ARGO\1l0

This command specifically calls for a breakpoint to be set at line 10
in the program unit named ARGO.

Unambiguous references are also required when you specify variables.
If there are duplicate variable names (for instance, X) you should
specify which X you want, as in the following example:

EXAMINE SUB3\X

2.5.3 Previous, Current, and Next Locations

The debugger provides a quick method for referring to any of three
locations:

e The previous location
e The current location

e The location at the next higher address (next location)

2-15

DEBUGGING FORTRAN PROGRAMS

To specify the previous location, type an up-arrow (%) or circumflex
(). For example:

EXAMINE
This command displays the contents of the previous location.
To specify the current location, type a dot (.). For example:

DEPOSIT .=100
This command puts a decimal value of 100 in the current location.
This method is most useful after you have looked at a location and
decided to change it; or when you want to verify that a DEPOSIT

command has been executed as expected.

To specify the next higher location, simply omit the address value
entirely. For example:

EXAMINE

The next location's contents will be displayed.

2.5.4 Defining Addresses Symbolically
You may occasionally need to access absolute addresses. To help you
do so, the debugger provides the DEFINE command, which creates a
symbolic reference for an absolute address. Then you can refer to the
address by its symbolic name, rather than by its absolute value. The
DEFINE command has the form:

DEFINE name=address
For example:

DEFINE TOP=1036

Subsequent references to this address can be made using the symbol
TOP. For example:

DEPOSIT TOP=256

The contents of address 1036 will be changed to 256.

2.6 CALLING SUBROUTINES FROM THE DEBUGGER
The CALL command lets you call a subroutine from the debugger. 1It has
the form:

CALL s[(a, «..)]

Specifies the subroutine name.

Specifies one or more actual arguments.

2-16

DEBUGGING FORTRAN PROGRAMS

On return from the subroutine, control returns to the debugger, at the
point at which the CALL command was issued. The context (general
registers, etc.) that existed at the time of the CALL 1is also
restored.

When calling FORTRAN routines, you must adhere to the FORTRAN calling
conventions described in Chapter 5.

2.7 DEBUGGER COMMAND QUALIFIERS

Qualifiers can be used to modify some debugging commands. The general
form in which qualifiers are specified is:

command/qualifier

Qualifiers change the defaults the debugger uses in processing
commands. For example, when you deposit a value, the debugger uses
decimal radix by default. You can override the default by specifying
either /HEX or /OCT. Table 2-2 summarizes the command qualifiers of
particular significance in FORTRAN debugging.

Table 2-2
Debugger Command Qualifiers

Qualifier Function Commands
/ADDRESS Indicates that an EVALUATE

address value is

desired
/HEX Override the EVALUATE
/0CT default radix DEPOSIT

(decimal)

Refer to the VAX-11 Symbolic Debugger Reference Manual for more
information on qualifiers.

2.8 NUMERIC DATA TYPES

The debugger supports all numeric data types used in VAX-11 FORTRAN
IV-PLUS, except complex. (Complex values can be deposited and
examined, however.) Furthermore, if you attempt to deposit a numeric
value into a variable or array element that does not have a matching
data type, the value is converted to the data type of the variable or
array element.

To deposit a complex value, specify it in two parts as:
real part, imaginary part

For example:
DEPOSIT CPLX=3.4,-4.7

When you examine a complex variable or array element, the data is
displayed as a complex constant, as (real part, imaginary part).

DEBUGGING FORTRAN PROGRAMS

When you deposit real numbers, you must specify a decimal point. To
distinguish single precision and double precision numbers, use E and
D, respectively. For example:

Number Data Type

24,1 Single precision (default)
24.1E0 Single precision

24.1D0 Double precision

241E0 Invalid (no decimal point)

2.9 EFFECTS OF OPTIMIZATION ON DEBUGGING

+atiid Bailiiier w ¥you <Ccompilie a
FORTRAN program that may need to be debugged This qualifier is
necessary because the VAX-11 FORTRAN IV-PLUS compiler performs
optimizations by default; and, while highly desirable for bug-free
programs, optimization is liable to create difficulty in finding and
eliminating bugs from programs in the development stage.

You should include the /NOOPTIMIZE gqualifier when you compi
.

The compiler uses the following optimization techniques:
e Using central processor condition codes
® Binding frequently-used variables to registers

e Assuming that the flow of control proceeds in a certain
sequence, based on source code

These techniques and some of the implications for debugging are
described below.

2.9.1 Use of Condition Codes

This optimization technique takes advantage of the way in which the
central processor's condition codes are set. For example, consider
the following source code:

X=X+ 2,5
IF (X .LT. 0) GO TO 20

Rather than test the new value of X to determine whether to branch,
the optimized object code bases its decision on the condition code
settings after 2.5 is added to X. Thus, if you attempt to set a
breakpoint at the second line, and deposit a different value into X,
you will not achieve the intended result, because the condition codes
no longer reflect the value of X. In other words, the decision to
branch is being made without regard to the new value of the variable.

2.9.2 Register Binding

This technique is used to reduce the number of memory references or
load-and-store instructions needed. The values of frequently-used
variables are kept in general registers, and the registers are used,
rather than the variables. Therefore, if you deposit a new value in a

2-18

DEBUGGING FORTRAN PROGRAMS

variable that has been bound to a register, the new value will have no
effect. Moreover, if you examine the variable, the current value
(which is kept in the register) may not be displayed.

2.9.3 Control Flow

The compiler assumes that statements will be executed in the sequence
in which they appear in source code, if there are no intervening
labels. Optimization of such code sequences will not let you use the
"GO address" version of the GO command.

2.9.4 Effects of /NOOPTIMIZE and /OPTIMIZE

The /NOOPTIMIZE qualifier tells the compiler not to assume that
condition codes are valid; not to keep the values of variables in
general registers; and not to optimize across statement boundaries.
In short, the object program directly reflects the source program.
When /NOOPTIMIZE is in effect, you can issue any of the debugging
commands.

When /OPTIMIZE is in effect, you should not use the GO address
command. However, you can set and clear breakpoints and examine
COMMON variables. If you need to debug a program that was compiled
with /OPTIMIZE in effect, you may need a compiler listing of the
generated machine code. Thus, if you do not suppress optimization,
you should specify /LIST and /MACHINE_CODE in the FORTRAN command .

2-19

CHAPTER 3

FORTRAN INPUT/OUTPUT

This chapter describes FORTRAN input/output (I/0) as implemented for
VAX-11 FORTRAN IV-PLUS. 1In particular, it provides information about
FORTRAN IV-PLUS I/O in relation to VAX-1ll Record Management Services
(RMS). The topics covered include:

e VAX/VMS file specifications (Section 3.1)

e Logical names as used in FORTRAN (Section 3.2)
® FORTRAN file characteristics (Section 3.3)

e FORTRAN record formats (Section 3.4)

e OPEN statement features (Section 3.5)

e Auxiliary I/O operations (Section 3.6)

e Local interprocess communication by means of mailboxes
(Section 3.7)

e Remote communication by means of DECnet-VAX (Section 3.8)

The FORTRAN I/O statements are: READ, WRITE, ACCEPT, PRINT, and TYPE.
The device or file to or from which data is transferred is designated
by a logical unit number, specified or implied as part of the 1I/0
statement. Logical unit numbers are integers from 0 to 99.

For example:
READ (2,100) I,X,Y

This statement specifies that data is to be entered from the device or
file corresponding to logical unit 2, in the format specified by the
FORMAT statement labeled 100.

The association between the 1logical unit number and the physical
device or file occurs at execution time. You can change this
association at execution time, if necessary, to match the needs of the
program and the available resources. You need not change the logical
unit numbers specified in the program. Thus, FORTRAN programs are
inherently device independent.

You can use standard FORTRAN I/0 statements to communicate between
processes on either the same computer or different computers.
Mailboxes permit interprocess communication on the same computer.
DECnet network facilities are used for interprocess communication on
different computers. DECnet can also be used to process files on
different computers.

FORTRAN INPUT/OUTPUT

3.1 FILE SPECIFICATION
A complete VAX/VMS file specification has the form:
node::device: [directory]filename.filetype.version
For example:
BOSTON: :DBAO: [SMITH] TEST.DAT.2

node
BOSTON

device
DBAO (unit 0 of disk DBA)

directory

SMITH (the file name is cataloged in the disk directory named
SMITH)

filename
TEST

filetype
DAT

version number
2

If you omit elements of the file specification, the system supplies
default values, as follows. If you omit the node, the local computer
is used; if you omit the device or directory, the current user
default is used; if you omit the file name, the system supplies
FOROnn, where nn is the logical unit number; if you omit the file
type, the system supplies DAT; and if you omit the version number,
the system supplies either the highest current version number (for
input) or the highest current version number plus 1 (for output).

For example, suppose your default device is DBAO: and your default
directory is SMITH, and you specify:

READ (8,100)
The default file specification is:
DBAQO: [SMITH]FOR008.DAT.n

The value of n equals the highest current version number of
FOR008.DAT.

Then, suppose you specify:
WRITE (9,200)

The default file specification is:
DBAOQ: [SMITH]FOR009.DAT.m

Where m is 1 greater than the highest existing version number of
FOR009.DAT.

FORTRAN INPUT/OUTPUT

3.2 LOGICAL NAMES

The VAX/VMS operating system provides the logical name mechanism as a
means of associating 1logical wunits with file specifications. A
logical name is an alphanumeric string, up to 15 characters long, that
is specified instead of a file specification.

The operating system provides a number of predefined logical names,
already associated with particular file specifications. Table 3-1
lists the logical names of special interest to FORTRAN users.

Table 3-1
Predefined System Logical Names

Name Meaning Default
SYSSDISK Default device and directory As specified by the
user
SYSSINPUT Default input stream User's terminal

(interactive); batch
command file (batch)

SYSSOUTPUT Default output stream User's terminal
(interactive); batch
log file (batch)

You can create a logical name dynamically, and associate it with a
file specification by means of the VAX/VMS ASSIGN command. Thus,
before program execution, you can associate the logical names in your
program with the file specification appropriate to your needs.

For example:

$ ASSIGN DBAQ:[SMITH]TEST.DAT.2 LOGNAM
This command creates the logical name LOGNAM and associates it with
the file specification DBAO: [SMITH]TEST.DAT.2. This will be the file
specification used when the logical name LOGNAM is encountered during
program execution.
Logical names provide great flexibility because they can be associated

not only with a complete file specification, but with a device, a
device and a directory, or even another logical name.

3.2.1 FORTRAN Logical Names

Usually, FORTRAN I/O is performed by associating a logical unit number

with a device or file. The VAX/VMS logical name concept allows one

more level of association: a user-specified 1logical name can be

associated with a logical unit number.

VAX-11 FORTRAN IV-PLUS provides predefined logical names, in the form:
FOROnn

The value of nn corresponds to the logical unit number. By default,
each FORTRAN logical name is associated with a file named FOROnn.DAT,

3-3

FORTRAN INPUT/OUTPUT

which is assumed to be located on your default disk, under your
default directory. For example:

WRITE (17,200)

If you enter this statement, without including an explicit file
specification, the data will be written to your default disk, to a
file named FOR017.DAT, under your default directory.

You can change the file specification associated with a FORTRAN
logical wunit number by using the ASSIGN command to change the file
associated with the corresponding FORTRAN logical name. For example:

$ ASSIGN DBAO:[SMITH]TEST.DAT.2 FOR0O17

This command associates the FORTRAN logical name FOR017 (and therefore
logical wunit 17) with file TEST.DAT.2 on device DBAO, in directory
SMITH.

You can also associate the FORTRAN logical names with any of the
predefined system logical names. Two examples follow.

l. § ASSIGN SYSSINPUT FOR005

This command associates logical unit 5 with the default input
device (for example, the batch input stream).

2. § ASSIGN SYS$OUTPUT FOR006

This command associates 1logical unit 6 with the default
output device (for example, the batch output stream).

Many VAX-1ll systems provide system-wide default logical name
assignments for logical wunits 5 and 6 as shown in the preceding
example.

3.2.2 1Implied FORTRAN Logical Unit Numbers

The READ, ACCEPT, PRINT, and TYPE statements do not include an
explicit 1logical unit number. Each of these FORTRAN statements uses
an implicit logical unit number and 1logical name. Each of these
logical names 1is, in turn, associated with one of the system's
predefined 1logical names, by default. Table 3-2 shows these
relationships.

Table 3-2
Implicit FORTRAN Logical Units
FORTRAN System
Statement Logical Name Logical Name
READ f,list FOR$SREAD SYSS$INPUT
ACCEPT f,list FORSACCEPT SYSSINPUT
PRINT £,1list FORSPRINT SYSSOUTPUT
TYPE f,list FORSTYPE SYS$OUTPUT

FORTRAN INPUT/OUTPUT

As with any other FORTRAN logical name, you can change the file
specifications associated with these FORTRAN logical names by means of
the ASSIGN command. For example:

$ASSIGN DBAO:[SMITH]TEST.DAT.2 FORSREAD

Following execution of this command, the READ statement's logical name
(FORSREAD) will refer to the file TEST.DAT.2, on device DBAO, in
directory SMITH.

3.2.3 OPEN Statement NAME Keyword

You can use the NAME keyword of the OPEN statement to specify the
particular file to be opened on a logical unit. (Section 3.5
describes the OPEN statement in greater detail.) For example:

OPEN (UNIT=4, NAME='DBA(Q:[SMITH]TEST.DAT.2', TYPE='OLD')

In this example, the file TEST.DAT.2, on device DBAO:, in directory
SMITH, is opened on logical unit 4. Neither the default file
specification (FOR004.DAT) nor the FORTRAN logical name FOR004 is
used. The value of the NAME keyword can be a character constant,
variable, or expression.

You can also specify a logical name as the value of the NAME keyword,
if the 1logical name 1is associated with a file specification. For
example:

$ASSIGN DBAO:[SMITH]TEST.DAT LOGNAM

This command assigns the logical name LOGNAM to the file specification
DBAO: [SMITH]TEST .DAT. The logical name can then be used in an OPEN
statement, as follows:

OPEN (UNIT=19 ,NAME='LOGNAM',TYPE='OLD')

When an I/0 statement refers to logical unit 19, the system uses the
file specification associated with logical name LOGNAM.

If the value specified for the NAME keyword has no associated file
specification, it is regarded as a true file name rather than as a
logical name. That is, if LOGNAM had not been previously associated
with the file specification DBAO: [SMITH]TEST.DAT by means of an ASSIGN
command, then the following statement would indicate that a file named
LOGNAM.DAT is located on the default device, in the default directory:

OPEN (UNIT=19 ,NAME='LOGNAM',TYPE='OLD")
A logical name specified in an OPEN statement must not contain

brackets or periods. The system treats any name containing these
punctuation marks as a file specification, not as a logical name.

FORTRAN INPUT/OUTPUT

3.2.4 Assigning Files to Logical Units
You can assign files to logical units in any of three ways:
1. By using default logical names; two examples follow.
READ (7,100)

Logical unit FOR007 is associated with the file FOR007.DAT by

default.
TYPE 100
Logical unit FORSTYPE is associated with SYS$SOUTPUT by
default.
2. By specifying a logical name in an OPEN statement. For
example:

OPEN (UNIT=7,NAME='LOGNAM')

3. By supplying a file specification in an OPEN statement. For
example:

OPEN (UNIT=7,NAME='LOGNAM.DAT')

You use the ASSIGN command to change the association of logical names
and file specifications.

A logical name used with the NAME keyword of the OPEN statement must
be associated with a file specification, and the character expression
specified for the NAME keyword must contain no punctuation marks.
Otherwise, the logical name will be treated as a true file
specification.

Use the VAX/VMS SHOW LOGICAL command to determine the current
associations of logical names and file specifications.

To remove the association of a logical name and a file specification,
use the DEASSIGN command, in the form:

S$SDEASSIGN logical-name

3.2.5 Assigning Logical Names with MOUNT Commands

You can specify a logical name as a parameter of the MOUNT command.
The MOUNT command has the form:

$ MOUNT device-name,... [volume-label,...] [logical-name[:]]
If your program refers to devices by means of logical names, you can
change the association between the device name and the logical name
when you mount the device. For example:

$ MOUNT MT: TAPE2 MYTAPE

FORTRAN INPUT/OUTPUT

This command associates the logical name MYTAPE with device name MT
and volume label TAPE2. Whenever your program refers to logical name
MYTAPE, access will be to the volume 1labeled TAPE2 mounted on the
default magnetic tape unit. If you subsequently mount a different
tape to be referenced by the logical name MYTAPE, you can change the
logical name association when you issue the MOUNT command. For
example:

$ MOUNT MT: TAPE7 MYTAPE

3.3 FILE CHARACTERISTICS

A clear distinction must be made between the way in which files are
organized and the manner in which records are accessed.

The term "file organization" applies to the way records are physically
arranged on a storage device. "Record access" refers to the method
used to read records from or write records to a file, regardless of
its organization. A file's organization is specified when the file is
created, and cannot be changed. Record access is specified each time
the file is opened, and can be different each time.

3.3.1 File Organization

VAX-11 FORTRAN IV-PLUS supports two file organizations:
® Sequential
e Relative

The organization of a file is specified by means of a keyword in the
OPEN statement, as described in Section 3.5.4.

3.3.1.1 Sequential Organization - The default file organization is
sequential.

Sequential files consist of records arranged in the sequence in which
they are written to the file (the first record written is the first
record in the file, the second record written is the second record in
the file, etc.). As a result, records can be added only at the end of
the file. Sequential file organization is permitted on all devices
supported by the VAX-11 FORTRAN system.

3.3.1.2 Relative Organization - Relative files are permitted only on
disk devices. A relative file consists of numbered positions, called
cells. These cells are of fixed, equal 1length, and are numbered
consecutively from 1 to n, where 1 is the first cell, and n is the
last available cell in the file.

This arrangement lets you place records into the file according to
cell number; the cell number becomes the record's relative record
number; that is, its location relative to the beginning of the £file.
As a result, you can retrieve records directly by specifying their
relative record number, because the actual location of the record is
easily calculated relative to the beginning of the file. You can add
records to, or delete them from, the file regardless of their

FORTRAN INPUT/OUTPUT

location, as long as you keep track of the relative record numbers of
the records.

3.3.2 Access to Records
Records can be accessed in two ways:

® Sequential access

e Direct access

The access mode chosen is unrelated to the file organization. You can
access records in both relative and sequential files sequentially or
directly (with certain restrictions, described below).

3.3.2.1 sSequential Access - If you select sequential access mode,
records are written to or read from the file, starting at the
beginning and continuing through the file one record after another.

Sequential access to a file means that a particular record can be
retrieved only when all the records preceding it have been read.
Writing records by means of sequential access varies according to the
file organization. New records can be written only at the end of a
sequentially organized file. For a relative organization file,
however, a new record can be written at any point, replacing the
existing record in that cell. For example, if two records are read,
and then a record is written, the new record occupies cell 3 of the
file.

3.3.2.2 Direct Access - If you select direct access mode, you
determine the order in which records are read or written. Each READ
or WRITE statement must include the relative record number indicating
the record to be read or written.
You can access relative files directly, and you can also directly
access a sequential file if it contains fixed length records and
resides on disk. Because direct access uses cell numbers to find
records, you can issue successive READ or WRITE statements requesting
records that either precede or follow previously requested records.
For example:

READ (12'24) - read record 24 in file 12

READ (12'20) - read record 20 in file 12

3.4 RECORD STRUCTURE

Records are stored in one of three formats:
1. Fixed length
2. Variable length

3. Segmented

FORTRAN INPUT/OUTPUT

Fixed length and variable length formats can be used with sequential
or relative file organization. Segmented format is unique to FORTRAN,
and can be used only with sequential file organization, and only for
unformatted sequential access. You should not use segmented records
for files that will be read by programs written in languages other
than FORTRAN.)

3.4.1 Fixed Length Records

When you specify fixed length records (see Section 3.5.7), you are
specifying that all records in the file contain the same number of
bytes. When you create a file that 1is to «contain fixed length
records, you must specify the record size (see Section 3.5.6). A
sequentially organized file opened for direct access must contain
fixed 1length records, to allow the record number to be computed
correctly. Note that in a relative organization file each fixed
length record contains an extra byte, the deleted-record control byte.

3.4.2 Variable Length Records

Variable length records can contain any number of bytes, up to a
specified maximum. Variable length records are prefixed by a count
field, indicating the number of bytes in the record. The count field
comprises two bytes on a disk device, and four bytes on magnetic tape.
The value stored in the count field indicates the number of data bytes
in the record. Variable length records in relative files are actually
stored in fixed length cells, the size of which must be specified by
means of the RECORDSIZE keyword of the OPEN statement (see Section
3.5.6). This value specifies the largest record that can be stored in
the file. Each variable 1length record in a relative file contains
three extra bytes, two for the count field and one for deleted record
control.

The count field of a variable length record is available when you read
the record; issue a READ statement with a Q format descriptor. You
can then use the count field information to determine how many bytes
should be in an I/0 list.

3.4.3 Segmented Records

A segmented record is a single logical record consisting of one or
more variable length records. Each variable length record constitutes
a segment. The length of a segmented record is arbitrary. Segmented
records are useful when you want to write exceptionally long records,
and are especially appropriate to sequentially organized files.
Unformatted sequential records written to sequentially organized files
are, by default, stored as segmented records.

Because there is no set limit on the size of a segmented record, each
variable 1length record in the segmented record contains control
information to indicate that it is one of the following:

® The first segment in the segmented record

® The last segment in the segmented record

e The only segment in the segmented record

® None of the above

FORTRAN INPUT/OUTPUT

This control information is contained in the first two bytes of each
segment of a segmented record. Thus, when you wish to access an
unformatted sequential file that contains fixed 1length or variable
length records, you must specify RECORDTYPE='FIXED' or 'VARIABLE' (as
appropriate) when you open the file. Otherwise the first two bytes of
each record will be misinterpreted as control information, and errors
will probably result.

3.5 OPEN STATEMENT KEYWORDS

The following sections supplement the OPEN statement description that
appears in the VAX-11 FORTRAN IV-PLUS Language Reference Manual. 1In
particular, implementation-dependent and/or system-dependent aspects
of certain OPEN statement keywords are described as affected by the
VAX-11 Record Management Services (RMS) implementation. For more
information refer to the VAX-1l1 Record Management Services Reference
Manual.

3.5.1 BLOCKSIZE Keyword

The BLOCKSIZE keyword specifies the physical I/O transfer size for the
file. It has the form:

BLOCKSIZE = bks

For magnetic tape files, the value of bks specifies the physical
record size in the range 18 to 32767 bytes. The default value is 2048
bytes. '

For sequential disk files, the value of bks 1is rounded up to an
integral number of 512-byte blocks and used to specify RMS multiblock
transfers. The number of blocks transferred can be 1 to 127. The
default value is 2048 bytes.

For relative files, the value of bks is rounded up to an integral
number of 512-byte blocks and used to specify the RMS bucket size, in
the range 1 to 32 blocks. The default is the smallest value capable
of holding a single record.

3.5.2 BUFFERCOUNT Keyword

The BUFFERCOUNT keyword specifies the number of memory buffers to use.
It has the form:

BUFFERCOUNT = bc

The range of values for bc is from 1 to 255. The size of each buffer
is determined by the BLOCKSIZE keyword. Thus, if BUFFERCOUNT=3 and
BLOCKSIZE=2048, the total number of bytes allocated for buffers is
3*2048, or 6144. The default is two buffers for sequential files and
one buffer for relative files.

3.5.3 INITIALSIZE and EXTENDSIZE Keywords
The INITIALSIZE keyword specifies the initial storage allocation for a

disk file, and the EXTENDSIZE keyword specifies the amount by which a
disk file is extended each time more space is needed for the file.

3-10

FORTRAN INPUT/OUTPUT

INITIALSIZE is effective only at the time the file 1is created. If
EXTENDSIZE is specified when the file is created, the value specified
is the default value used to allocate additional storage for the file.
If you specify EXTENDSIZE when you open an existing file, the value
you specify supersedes any EXTENDSIZE value specified when the file
was created, and remains in effect until you close the file. Unless
specifically overridden, the default EXTENDSIZE value is in effect on
subsequent openings of the file.

The system attempts to allocate contiguous space for INITIALSIZE. If
not enough contiguous space 1is available, noncontiguous space is
allocated.

3.5.4 ORGANIZATION Keyword

The ORGANIZATION keyword specifies file organization. It has the
form:

ORGANIZATION ={'RELATIVE' }
'SEQUENTIAL'

The default file organization is sequential.

When an existing file is opened, the actual organization of the file
is used.

The relative file organization is applicable mainly when creating
files to be used in non-FORTRAN applications, or when reading relative
files created by programs written in languages other than FORTRAN.

3.5.5 READONLY Keyword

The READONLY keyword specifies that write operations are not allowed
on the file being opened. The FORTRAN I/O system's default file
access privileges are read-write, which can cause run-time I/O errors
if the file protection does not permit write access. The READONLY
keyword has no effect on the protection specified for a file. Its
main purpose is to allow a file to be read simultaneously by two or
more programs. Thus, if you wish to open a file for the purpose of
reading the file, but do not want to prevent others from being able to
read the same file while you have it open, specify the READONLY
keyword.

3.5.6 RECORDSIZE Keyword

The RECORDSIZE keyword specifies how much data can be contained in a
record. It has the form: :

RECORDSIZE = rl
The value specified for rl indicates the length of the logical records
in the file. For files that contain fixed length records, rl

specifies the size of each record; for files that contain variable
length records, rl specifies the maximum length for any record.

3-11

FORTRAN INPUT/OUTPUT

The value of rl does not include the two segment control bytes (if
present), or the bytes that RMS requires for maintaining record length
and deleted-record control information (two or four for sequential
organization, and one or three for relative organization).

The value of rl is interpreted as either bytes or longwords, depending
on whether the records are formatted (bytes) or unformatted
(longwords, that is, 4-byte units). Table 3-3 summarizes the maximum
values that can be specified for rl, based on file organization and
record format.

Table 3-3
RECORDSIZE Limits
File Organization Record Format
Formatted Unformatted
(bytes) (longwords)
| Sequential 32766 8191
Sequential and 9999%* 2499%*
variable length records
on ANSI magnetic tape
Relative 16380 4095

* Limit imposed by 4-byte ASCII count field.

If you are opening an existing file containing fixed length records or
that has relative organization, and you specify a value for RECORDSIZE
that is different from the actual length of the records in the file,
an error occurs, If you omit RECORDSIZE when opening an existing
file, the record length specified when the file was created is used by
default.

You must specify RECORDSIZE when you create a file that is to contain
fixed length records or that has relative organization.

3.5.7 RECORDTYPE Keyword

The RECORDTYPE keyword specifies the structure of records in a file.
It has the form:

'FIXED')
RECORDTYPE = | 'VARIABLE'
'SEGMENTED"*
This keyword is particularly useful when you want to override the
default record structure used to create a file. The default record
structure is:
FIXED - direct access, sequential, and relative
VARIABLE - formatted sequential

SEGMENTED - unformatted sequential

3-12

FORTRAN INPUT/OUTPUT

The default used when accessing an existing file is the record
structure of the file, except for unformatted sequential files
containing fixed or variable length records. 1In this case, you must
explicitly override the default (SEGMENTED) by specifying the
appropriate RECORDTYPE value in the OPEN statement. You cannot use an
unformatted READ statement to access an unformatted sequentially
organized file that contains fixed length or variable length records,
unless you specify the corresponding RECORDTYPE value in your OPEN
statement. Files containing segmented records can be accessed only by
unformatted sequential FORTRAN I/O statements.

3.5.8 SHARED Keyword

The SHARED keyword specifies that the file can be accessed by more
than one program at a time, or by the same program on more than one
logical unit. The forms of sharing permitted depend on the
organization of the file.

For sequential files, both read and write sharing are permitted.
Because RMS does not prevent two or more programs from accessing the
same file simultaneously, however, user programs that share write
access to a file must provide interprocess communication and
coordination to ensure reliable performance. Otherwise, problems may
develop. For example, if twoc programs write to a shared file that
contains records that cross block boundaries, records containing data
written by two different programs can result. This can happen if the
co-operating programs do not coordinate their read, modify, and
rewrite sequerices, which are otherwise asynchronously and
independently performed.

Furthermore, RMS usually tries to minimize disk activity by postponing
a rewrite in case a subsequent read or write can be performed using
the program's buffer image. Thus, the file's disk image may be out of
date for arbitrary time intervals. This problem can occur for both
sequential and direct access I1/0.

You can encounter a similar problem involving the logical end-of-file
on disk. When a file is extended, the logical end-of-file in the disk
image is not updated until the file is closed. This means that if a
file 1is open and program A is adding new records to it, and program B
opens the same file before program A has closed the file, program B
cannot read the new records even after program A finishes and closes
the file. Program B can read the new records only by closing and
reopening the file. Only then will the file's disk image reflect the
updated end-of-file,.

Relative files permit no write sharing. For shared reading to occur,
all programs that open the file must specify the READONLY keyword.

3.5.9 USEROPEN Keyword

The USEROPEN keyword provides access to RMS features not directly.
supported by the FORTRAN I/O system. That is, this keyword allows
access to RMS capabilities, while retaining the ease and convenience
of FORTRAN programming. The USEROPEN keyword 1is intended for
experienced users.

For the interface specification for a USEROPEN routine, see the VAX-11
Common Run-Time Procedure Library Reference Manual.

FORTRAN INPUT/OUTPUT

3.6 AUXILIARY I/0 OPERATIONS

This section describes implications of the following I/O statements:

FIND
BACKSPACE
ENDFILE

A FIND statement is similar to a direct access READ statement with no
I/0 1list, and can result in an existing file being opened. An
associated variable will be set to the specified record number.

A BACKSPACE statement cannot be performed on a file that is opened for
append access, because of the manner in which backspacing is done. A
backspace operation requires that the current record count be
available to the FORTRAN I/0 system, because backspacing from record n
is done by rewinding to the start of the file and then performing n-1
successive reads to reach the previous record. If the file is open
for append access, the current record count is not available to the
FORTRAN I/0 system.

The ENDFILE statement writes an end-file record. The following
convention has been adopted, since RMS does not support the embedded
end-file concept: an end-file record is a l-byte record that contains
the hexadecimal code 1A (CTRL/Z). An end-file record can be written
only to sequentially organized files that are accessed as formatted
sequential or unformatted segmented sequential. End-file records
should not be written in files that will be read by programs written
in a language other than FORTRAN.

3.7 LOCAL INTERPROCESS COMMUNICATION: MAILBOXES

It is often useful to exchange data between processes; for example,
to synchronize execution, or to send messages.

A mailbox is a record-oriented pseudo I/0 device that allows data to
be passed from one process to another. Mailboxes are created by the
Create Mailbox system service. The following sections describe how to
create mailboxes and how to send and receive data using mailboxes.

3.7.1 Creating a Mailbox
Use the Create Mailbox system service to create a mailbox, as follows:

INTEGER*2 ICHAN
INTEGER*4 SYSSCREMBX
MAILBX= SYS$CREMBX(,ICHAN, , , , ,'MAILBOX')

The INTEGER*2 variable ICHAN is used to store the number of the
mailbox, which 1is returned by the Create Mailbox and Assign Channel
system services. This argument is required by the Create Mailbox
systems service, so you must specify an INTEGER*2 variable such as
ICHAN. However, all subsequent references to the mailbox are by
logical name.

For more information about calling system services, see Chapter 5.
For more information about the arguments supplied to the Create
Mailbox system service, see the VAX/VMS System Services Reference
Manual.

FORTRAN INPUT/OUTPUT

3.7.2 Sending and Receiving Data Using Mailboxes

Sending or receiving data to or from a mailbox is no different £from
other forms of FORTRAN 1I1/0. The mailbox 1is simply treated as a
record-oriented I/O device.

Use FORTRAN formatted sequential I/O statements to send and receive
messages. Use WRITE statements to send data and READ statements to
receive data.

Data transmission by means of mailboxes is performed synchronously, so
that communicating processes can be synchronized. That is, a program
that writes a message to a mailbox waits until the message 1is read,
and a program that reads messages from a mailbox waits until a message
is written. When the writing program closes the mailbox, an
end-of-file condition is returned to the reading program.

The sample program below reads messages from a mailbox known by the
logical name MAILBOX. The messages comprise file names, which the
program reads. The program then prints the file associated with the
file names.

CHARACTER FILNAM*64,TEXT*133
OPEN (UNIT = 1, NAME = 'MAILBOX', TYPE = 'OLD')

1 READ (1,100,END=12)FILNAM
100 FORMAT (A)
OPEN (UNIT = 2, NAME = FILNAM, TYPE = 'OLD')
OPEN (UNIT = 3, NAME = 'SYSSOUTPUT')
2 READ(2,100, END = 10) TEXT
WRITE (3,100) TEXT
GO TO 2
10 CLOSE (UNIT = 2)
CLOSE (UNIT = 3)
GO TO 1
12 END

3.8 COMMUNICATING WITH REMOTE COMPUTERS: NETWORKS

If your system supports DECnet-VAX facilities, and your computer is
one of the nodes in a DECnet-VAX network, you can communicate with
other nodes in the network by means of standard FORTRAN 1/0
statements. These statements let you exchange data with a program at
the remote computer (task-to-task communication), and to access files
at the remote computer (resource sharing).

Both task-to-task communication and file access between systems are
transparent. That 1is, there is no apparent difference between these
intersystem exchanges, and 1local interprocess and file access
exchanges.

To invoke network communication, specify a node name as the first
element of a file specification. For example:

BOSTON: :DBAO: [SMITH] TEST.DAT.2
For remote task-to-task communication, you must use a special form of
file specification: you must use TASK_ in place of the device name,
and use the task name in place of the file name. For example:

BOSTON: : TASK_ :UPDATE

FORTRAN INPUT/OUTPUT

The following example shows how messages can be sent to and received
from a remote program by means of standard FORTRAN I/O statements.

OPEN (UNIT=7,NAME='BOSTON::TASK :UNA',ERR=200)
READ (7,100) IARRAY -
100 FORMAT (2018)
CALL STATS (IARRAY)
WRITE (7,100)IARRAY
200 CLOSE (UNIT=7)
END

The effect of these statements is to establish a 1link with a job
(task) named UNA at the node BOSTON, and receive data from the logical
unit (7) associated with the remote program. The data is stored in a
20-element array, and a call is issued to the subroutine STATS, which
processes the data. The results are then sent back to BOSTON, and the
link is broken.

The following example shows how a remote file can be updated by means
of standard FORTRAN I/0 statements.

CHARACTER*64 DATA
OPEN (UNIT = 2, NAME = 'DENVER::MASTER.DAT',
1 ACCESS = 'DIRECT', TYPE = 'OLD')

1 READ(1,100,END = 2) IREC, DATA
100 FORMAT(I10, A&)

WRITE (2'IREC) DATA

GOTO 1

2 CLOSE (UNIT = 1)
CLOSE (UNIT = 2)
END

This program reads local data describing transactions, and writes the
new records into the remote file.

If you use logical names in your program, you can equate the 1logical
names with either 1local or remote files. Thus, if your program
normally accesses a remote file, and the remote node becomes
unavailable, you can bring the volume set containing the file to the
local site. You can then mount the volume set, and assign the
appropriate logical name. For example:

Remote Access
$ ASSIGN REM::APPLIC_SET:file-name LOGIC
Local Access

$ MOUNT device-name APPLIC_SET
$ ASSIGN APPLIC_SET:file-name LOGIC

The MOUNT and ASSIGN commands are described in detail in the VAX/VMS
Command Language User's Guide.

DECnet facilities are described fully in the DECnet-VAX Reference
Manual.

3-16

CHAPTER 4

USING CHARACTER DATA

The FORTRAN character data type allows you to easily manipulate
alphanumeric data. You can use character data in the form of
character variables, arrays, constants, and expressions. A character
operator (//) is available to form character strings by concatenating
the character elements in a character expression. See Section 4.2.

4.1 CHARACTER SUBSTRINGS

You can select certain segments (substrings) from a character variable
or array element by specifying the variable name, followed by
delimiter values indicating the leftmost and/or rightmost characters
in the substring. For example, if the character string NAME
contained:

ROBERTAWILLIAMABOBAJACKSON

and you wished to extract the substring BOB, you would specify the
following:

NAME (16:18)
If you omit the first value, you are indicating that the first
character of the substring is the first character in the variable.
For example, if you specify

NAME (:18)
the resulting substring is

ROBERTAWILLIAMABOB

If you omit the second value, you are specifying the rightmost
character to be the last character in the variable. For example:

NAME (16:)
encompasses BOBAJACKSON

USING CHARACTER DATA

4.2 BUILDING CHARACTER STRINGS

It is sometimes useful to create strings from two or more separate
strings. This 1is done by means of the concatenation operator; the
double slash (//). For example, you might wish to create a variable
called NAME, consisting of the following strings:

FIRSTNAME
MIDDLENAME

NICKNAME
LASTNAME

To do so, define each as a character variable of a specified 1length.
For example:

CHARACTER*42 NAME
CHARACTER*12 FIRSTNAME ,MIDDLENAME , LASTNAME
CHARACTER*6 NICKNAME
Concatenation is accomplished as follows:
NAME = FIRSTNAME//MIDDLENAME//NICKNAME//LASTNAME

Thus, if the strings contained the values:

FIRSTNAME = 'ROBERT'
MIDDLENAME = 'WILLIAM'
NICKNAME = 'BOB'
LASTNAME = 'JACKSON'

which are stored individually as

ROBERTAAAAAA
WILLIAMAAAAA
BOBAAA

JACKSONAAAAA

then, when concatenated and stored in NAME, they become the string:
ROBERTAAAAAAWILLIAMAAAAABOBAAAJACKSONAAAAA

Applying the substring extraction facility, you can get the stored
nickname by specifying:

NAME (25:30)

which picks up the 6-character NICKNAME substring (including trailing
blanks). Thus BOBAAA is retrieved as the substring.

USING CHARACTER DATA

4.3 CHARACTER CONSTANTS
strings of alphanumeric characters enclosed in apostrophes are
character constants. You can assign a character value to a character
variable in much the same way as you would assign a numeric value to a
real or integer variable. For example:

XYZ = 'ABC'
As a result of this statement, the characters ABC are stored in
location XYZ%Z. Note that if XYZ's length is less than three bytes, the
character string will be truncated on the right. Thus 1if you
specified

CHARACTER*2 XYZ

XYz = 'ABC'

The result is AB. If, on the other hand, the variable is longer than
the constant, it is padded on the right with blanks. For example:

CHARACTER*6 XYZ

XYZ = ‘ABC'
results in

ABCAAA

being stored in XYz. If the previous contents of XYZ were CBSNBC, the
result would still be ABCAAA: the previous contents are overwritten.

You can give character constants symbolic names by using the PARAMETER
statement. For example:

PARAMETER TITLE = 'THE METAMORPHOSIS'

The symbolic name TITLE can then be used anywhere a character constant
is allowed.

Note that an apostrophe can be included as part of the constant. To
do so, specify two consecutive apostrophes. For example:

PARAMETER TITLE = 'FINNEGAN''S WAKE'

results in the character constant FINNEGAN'S WAKE.

4.4 DECLARING CHARACTER DATA

To declare variables or arrays as character type, use the CHARACTER
type declaration statement, as shown in the following example:

CHARACTER*10 TEAM(12) ,PLAYER
This statement defines a 12-element character array (TEAM), each

element of which is 10 bytes long; and a character variable (PLAYER) ,
which is also 10 bytes long.

USING CHARACTER DATA

You can specify different 1lengths for variables in a CHARACTER
statement by including a length value for specific variables. For
example:

CHARACTER*6 NAME ,AGE*2,DEPT

In this example, NAME and DEPT are defined to be 6-byte variables,
while AGE is defined to be a 2-byte variable.

4.5 INITIALIZING CHARACTER VARIABLES

Use the DATA statement to preset the value of a character variable.
For example:

CHARACTER*10 NAME,TEAM(5)
DATA NAME/' '/,TEAM/'SMITH',b'JONES',

L} 1] 1] 1 1 1
DOE','BROWN', 'GREEN'/

Note that NAME will contain 10 blanks, while each array element in
TEAM will contain the corresponding character value, right-padded with
blanks.

To initialize an array so that each of its elements contains the same
value, use a DATA statement of the following type:

CHARACTER*5 TEAM(10)
DATA TEAM/10*'WHITE'/

The result is a l1l0-element array in which each element contains WHITE.

4.6 PASSED LENGTH CHARACTER ARGUMENTS

Subprograms that manipulate character data can be written to accept
character actual arguments of any length by specifying the length of
the dummy argument as passed length. To indicate a passed length
dummy argument, use an asterisk (*) as follows:

SUBROUTINE REVERSE (S)
CHARACTER* (*) S

The passed length notation indicates that the 1length of the actual
argument is used when processing the dummy argument string. This
length can change from one invocation of the subprogram to the next.
For example:

CHARACTER A*20,B*53

CALL REVERSE (A)
CALL REVERSE (B)

In the first call to REVERSE, the length of S will be 20; in the
second call, its length will be 53.

The FORTRAN function LEN can be used to determine the actual length of
the string (see Section 4.8.4).

4-4

USING CHARACTER DATA

4.7 CHARACTER DATA EXAMPLES

An example of character data usage is shown below. The example
(Figure 4-1) 1is a program that manipulates the 1letters of the
alphabet. The results are shown in Figure 4-2.

(2 X2 KaXaXals)

99

10

100

98

19

100

USING CHARACTER DATA

CHAREXMPL ,FOR
CHARACTER DATA TYPE EXAMPLE PROGRAM FOR VAX PORTRAN IVePLUS

CHAMACTER C, ALPHABET#26
DATA ALPHABET/’ABCDEFGMIJKLMNOPQRSTUVWXYZ?/

WRITE(T7,99)
FORMAT(’1 CHARACTER EXAMPLE PROGRAM OUTPUT*/)

D0 100 I=i,26

WRITE(T7,10) ALPHABETY
FORMAT(iX, A)

ALPHABET = ALPMABET(21) /7 ALPHABET(!1Y)
CONTINUE

CALL REVERSECALPMABET)
WRTTE(?,10) ALPNARKT?

CALL REVERSE(CALPHABET(1113))
WRITE(7,108) ALPHABET

CALL FIND,SUBSTRINGS(®UVN’, ALPHABET)
CALL FIND,SUBSTRINGS(’A’, *DAJHDHAJDAMDJAUE CEUEBCUEIAWSANOLG’)

WRITE(7,98)
FORMAT(’@ END OF CHARACTER EXAMPLE PROGRAM OUTPUT’)

siop
END

SUBROUT INE REVERSE(S)
CHARACTER T, Sa(w)

J & LEN(S)
IF (J (6T, 1) THEN
DO 10 1=y, J/2
T s S(I1I)
$C(111) = $¢J1))
S(JtJ) & 7
J w Jef
CONTINUE
ENDIF

RETURN
END

SUBROUTINE FIND_SUBSTRINGS(SUB, 8)
CHARACTERw(») 8UB,S
CHARACTER®132 MARKS

1 s
K=
MARKS = ¢ *

J = INDEX(S(11), 8UB)
IF ¢J ,NE, B) THEN
I 81 ¢ (Jel)
MARKS(ItI) = *#°
K=l
I = J¢f
IF (1 ,LE, LEN(S)) GO TO 10
ENDIF

WRITE(7,1008) 8, MARKS(1K)
FORMAT(2C/1X, A))
END

Figure 4-1 Character Data Program Example

Figure 4-2

USING CHARACTER DATA

CHARACTER EXAMPLF PROGRAM QUTPUT

ABCDEFGHIJKLMNOPQRSTUVWXYZ
BCDEFGHIJKLMNOPARSTUVWXYZA
COEFGHIJKLMNOPRRSTUVWXYZAB
DEFGHIJKLMNOPQRSTUVWXYZABC
EFGHIJKLMNOPGRSTUVWXYZABCD
FGHIJKLMNOPQRSTUVWXYZABCDE
GHIJKLMNOPQRSTUVWXYZABCDEF
HIJKLMNOPQRSTUVWXYZABCDEFG
IJKLMNOPQRSTUVWXYZABCDEFGH
JKLMNOPQRSTUVWXYZABCREFGHI
KLMNOPQRSTUVWXYZABCUEFGHIJ
LMNOPQRSTUVWXYZABCDEFGHIJK
MNOPQRSTUVWXYZABCPEFGHIJKL
NOPQRSTUVWXYZABCDEFGHIJKLM
OPQRSTUVWXYZABCDEFGHIJKLMN
PGRSTUVWXYZABCDEFGHIJKLMNO
QRSTUVWXYZABCDEFGHIJKLMNOP
RSTUVWXYZABCREFGMIJXLMNOPQ
STUVWNXYZABCDEFGHIJKLMNOPQR
TUVWXYZABCDEFGHIJXKL"NOPGRS
UVWXYZABCDEFGHIJKLMNOPQRST
VWXYZABCDEFGHIJKLMNUPQRSTU
WXYZABCDEFGHIJKLMNQPQRSTUV
XYZABCDEFGHIJKLMNOPGRSTUVW
YZABCDEFGHIJKLMNOPQRHSTUVWX
ZABCPDEFGHIJKLMNOPARSTUVIWXY
ZYXWVYUTSROPONMLKJIHGFEDCBA
NOPQRSTUVWXYZMLKJIHGFEDCBA

NOPQRSTUVWXYZMLKJIHGFENCBA
1]

DAJHOMAJDAHDJAUE CEUEBCUEIAWSAWQLGR

. M] L

¥

END OF CHARACTER EXAMPLE PROGRAM QUTPUT

4.8 CHARACTER LIBRARY FUNCTIONS

Output Generated by Example Program

The VAX-11 FORTRAN IV-PLUS system provides four character functions:

CHAR
ICHAR
INDEX
LEN

4.8.1 CHAR Function

The CHAR function returns a l-byte character value equivalent

integer ASCII value passed as its argument.

CHAR(1)

It has the form:

An integer expression eq<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>