Introduction to
RMS-11

Order No. AA-0001A-TC

digital equipment corporation - maynard. massachusetts

First Printing, January 1977

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility .
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Al%
Copyright C) 1977 by Digital Equipment Corporation
-,
The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.
The following are trademarks of Digital Equipment Corporation: -_—,
DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX .
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10
DECCOMM DECsystem-20 TYPESET-11 _

12/77-14

CONTENTS

Page
PREFACE v
CHAPTER 1 INTRODUCTION 1-1
1.1 RMS~-11 OVERVIEW 1-1
1.2 PRESENTATION OF INFORMATION IN THIS MANUAL 1-2
CHAPTER 2 RMS-11 FILE ORGANIZATIONS AND ACCESS MODES 2-1
2.1 RMS-11 FILE ORGANIZATIONS 2-2
2.1.1 The Sequential File Organization 2=2
2.1.2 The Relative File Organization 2-2
2.1.3 The Indexed File Organization 2-3
2.2 RMS-11 ACCESS MODES 2-6
2.2.1 Sequential Access Mode 2-6
2.2.1.1 Sequential Access to Sequential Files 2-6
2.2.1.2 Sequential Access to Relative Files 2-7
2.2.1.3 Sequential Access to Indexed Files 2-7
2.,2.2 Random Access Mode 2-8
2.2.2.1 Random Access in Relative Files 2-8
2.2.2,2 Random Access to Indexed Files 2-8
2.2.3 Record's File Address (RFA) Access Mode 2-8
2.2.4 Dynamic Access 2-9
2.3 SAMPLE USES OF RMS~11 FILE ORGANIZATIONS 2-9
2.3.1 Sample Sequential File 2-9
2.3.2 Sample Relative File 2-10
2.3.3 Sample Indexed File 2-10
CHAPTER 3 FILE ATTRIBUTES 3-1
3.1 STORAGE MEDIA 3-1
3.2 FILE AND PROTECTION SPECIFICATIONS 3-1
3.3 FORMAT AND SIZE OF RECORDS 3-2
3.3.1 RMS-11 Record Formats 3-2
3.3.1.1 Fixed Length Record Format 3-3
3.3.1.2 Variable-Length Record Format 3-3
3.3.1.3 Variable-with-Fixed-Control Record Format 3-3
3.3.1.4 Stream Format Records 3-4
3.3.2 Size of Records 3-4
3.4 SIZE OF RMS-11l FILES 3-5
3.5 BUCKETS IN RELATIVE AND INDEXED FILES 3~-6
3.6 KEY DEFINITIONS FOR INDEXED FILES 3-7
CHAPTER 4 PROGRAM OPERATIONS ON RMS-11 FILES 4-1
4.1 RECORD OPERATIONS ON RMS-11 FILES 4-1
4.1.1 Sequential File Organization Record
Operations 4=-2
4,1.2 Relative File Organization Record
Operations 4-2

iidi

CONTENTS (Cont.) -~

Page
4.,1.3 Indexed File Qrganization Record

Operations 4-2

4,2 BLOCK I/0 4-4

CHAPTER 5 THE RMS-11 RUNTIME ENVIRONMENT 5-1

5.1 THE FILE PROCESSING ENVIRONMENT 5-1

5.1.1 File Sharing 5-1

5.1.1.1 File Organizations and File Sharing 5-2

5.1.1.2 Program Sharing Information 5=2

5.1.1.3 Bucket Locking 5-2

5.1.2 Buffer Handling 5-2

5.2 THE RECORD PROCESSING ENVIRONMENT 5-3

5.2.1 Record Access Streams 5-4
5.2.,2 Synchronous and Asynchronous Record “‘5
Operations 5-4 '

5.2.3 Record Transfer Modes 5-5

5.2.3.1 Move Mode Record Transfers 5=5

5.2.3.2 Locate Mode Record Transfers 5=-5

INDEX Index-1

FIGURES

FIGURE 2=-1 Personnel and Product Records 2-1

2=-2 Sequential File Organization 2-2

2-3 Relative File Organization 2-3

2-4 Single Key Indexed File Organization 2-4

2-5 Multi-key Indexed File Organization 2-5

3-1 Virtual Blocks and Extents 3-6

TABLES

TABLE 2-1 Permissible Combinations of Access Modes "Hﬁ
and File Organizations 2-6 ’

3-1 Record Formats and File Organizations 3-3

4-1 Record Operations and File Organizations 4=2

iv

PREFACE

This manual describes the concepts and facilities of Record Management
Services for the PDP-11 (RMS-11).

RMS-11 is supported on a number of PDP-11 operating systems. The
indexed file organization and associated facilities are extended
features available with the RMS-11K product. The COBOL-11,
BASIC-PLUS-2, and MACRO-11 languages provide access to RMS-11
features. This manual, therefore, is intended for users with varying
operating system and language backgrounds. Since certain capabilities
are available only to MACRO-11 programmers, you should consult the
reference manual and wuser's guide associated with a particular
language processor for detailed information on the use of RMS-11.

CHAPTER 1

INTRODUCTION

1.1 RMS-~-11 OVERVIEW

Record Management Services for the PDP-11 (RMS-11) is a set of
general-purpose file~handling <capabilities. In combination with a
host operating system, it provides you with efficient and flexible
facilities for data storage, retrieval, and modification. When
writing programs in BASIC~-PLUS-2, COBOL-11, or MACRO-11, vyou can
select processing methods from among RMS-11l's file structuring and
accessing techniques that are best suited to a specific application.

To understand how RMS-11 provides this flexibility, you need to be
aware of four RMS-11 concepts:

1. File organizations and access modes
2. File attributes

3. Program operations on RMS-11 files
4. The runtime environment

The manner in which RMS-11 builds a file is called its organization.
RMS~11 provides three file organizations -- sequential, relative, and
indexed. The organization of a file establishes the techniques you
can use to retrieve and store data in the file. These techniques are
known as access modes. The access modes that RMS-11 supports are 1)
sequential, 2) random, and 3) record's file address (RFA).

You can use an application program or an RMS-11 utility, when vyou
create an RMS-11 file, to specify the organization and characteristics
of the file. These characteristics are known as the attributes of the
file. Among the attributes you specify are storage medium, file and
protection specifications, record format and size, and file allocation
information.

After RMS-11 creates a file according to the file attributes you
specify, application programs can store, retrieve, and modify data in
it. These program operations can occur at the 1logical or physical
level. At the 1logical 1level, an RMS-11 file is a collection of
individual records. The record is the unit of information to which
RMS-11 provides access. At the physical level, a file is a collection
of units called virtual blocks. When bypassing the record processing
capabilities of RMS-11, programs access these virtual blocks through a
technique known as block I/0.

During runtime, RMS-11 and the host operating system provide an
environment for wuser programs that permits file sharing and reduces
the number of buffers required. When a program accesses files at the
logical level, RMS-11 additionally supports 1) multiple access streams

1-1

INTRODUCTION

to a single file, 2) synchronous or asynchronous record operations,
and 3) move and locate record transfer modes.

1.2 PRESENTATION OF INFORMATION IN THIS MANUAL

The presentation of information in this manual corresponds to these
four RMS-11 concepts.

Chapter 2 describes the logical structure, or organization, of RMS-11
files and the access modes available with each file organization.

Chapter 3 details file attributes and their role in creating an RMS-11
file.

Chapter 4 summarizes program operations, at both the 1logical and
physical level, that permit the retrieval, storage, and modification
of data in files.

Chapter 5 is an overview of the runtime environment within which user
programs process RMS-11 files.

CHAPTER 2

RMS-11 FILE ORGANIZATIONS AND ACCESS MODES

This chapter describes the logical structure and accessing
capabilities of RMS-11 files.

A file 1is a collection of related information. Application
requirements establish the nature of this information. For example, a
company might maintain personnel information (employee names,

addresses, job titles, and so forth) in one file and product
information (part numbers, prices, specifications, and so forth) in a
second, separate file. Within each of these files, the information is
divided into records. In the personnel file, it would be logical for
all the information on a single employee to constitute a single record
and for the number of records in the file to equal the number of
employees. Similarly, each record in the product information file
would represent a description of a single product. Again, the number
of records in the file reflects the requirements of a particular
application -- in this case, a central registry of products sold by a
company.

Each record in the personnel and product files would be subdivided
into discrete pieces of information known as data fields. The user
would define the number, location within the record, and logical
interpretation of these data fields. Programmers at the company's
data processing installation would write applications that always
interpret a particular data field in records of the personnel file as
the name of an employee. Likewise, they would interpret another data
field, in records of the product file, as a part number. Figure 2-1
illustrates records that might occur in a personnel and a product
file.

Data Fields: Name Address Badge No. Department Title coo
T T
JONES { MAIN ST, USA ’ 1452 PAYROLL CLERK oo
! {
N PERSONNEL RECORD
Data Fields: Part No. Description Price In Stock Specification
T T T
219 : WIDGET : $1.86 ; 1430 3x2""'x1"
! . .
~— PRODUCT RECORD /

Figure 2-1 Personnel and Product Records

Thus, you can completely control the grouping of data fields into
records and records into files. The relationship among data fields
and records is known to you and is embedded in the 1logic of your

2-1

RMS-11 FILE ORGANIZATIONS AND ACCESS MODES

programs. In contrast, RMS-11 does not require or employ an awareness
of logical relationships among information in the files. Rather,
RMS-11 processes records as single units of data. Your programs
either build records and pass them to RMS-11 for storage in a file or
issue regquests for records while RMS-11 performs the necessary
operations to retrieve the records from a file.

The purpose of RMS-11, then, is to ensure that every record written
into a file can be subsequently retrieved and passed to a requesting
program as a single 1logical wunit of data. The structure, or
organization, of a file establishes the manner in which RMS-11 stores
and retrieves records. The way a program requests the storage or
retrieval of records is known as the access mode. The access mode
that can be used depends on the organization of a file. The sections
of this chapter, therefore, describe:

e RMS-11 file organizations

® RMS-11 access modes

e Sample uses of RMS-11 file organizations.

2.1 RMS-11 FILE ORGANIZATIONS

When creating a file, you have a choice of three file organizations:
l. Seguential
2. Relative

3. Indexed

2.1.1 The Sequential File Organization

In the sequential file organization (see Figure 2-2), records appear
in physical sequence. Each record, except the first, has another
record preceding it, and each record, except the last, has another
record following it. The physical order in which records appear is
always identical to the order in which the records were originally
written to the file by an application program.

End of File

Record | Record| Record | Record| Record| Record| « ¢ ¢ « |Record|Record

Figure 2-2 Sequential File Organization

2.1.2 The Relative File Organization

When you select the relative organization, RMS-11 structures a file as
a series of fixed-size record cells. Cell size is based on the size
you specify as the maximum permitted length for a record in the file.
RMS-11 considers these <cells as successively numbered from 1 (the
first) to n (the last). A cell's number represents 1its 1location
relative to the beginning of the file.

2-2

RMS-11 FILE ORGANIZATIONS AND ACCESS MODES

Each cell in a relative file can contain a single record. There is no
requirement, however, that every cell contain a record. Empty cells
can be interspersed among cells containing records.

Since cell numbers in a relative file are unique, you can use them to
identify both a cell and the record, if any, occupying that cell.
Thus, record number 1 occupies the first cell in the file, record
number 17 occupies the seventeenth cell, and so forth. When you use a
cell number to identify a record, it is also known as a relative
record number. Figure 2-3 depicts the structure of a relatively
organized file.

Cell No.: 1 2 3 4 5 999 1000
Rec1ord Rec;rd ENMPTY Recgrd BTy « o e R(;r;(;d ENPTY

Figure 2-3 Relative File Organization

2.1.3 " The Indexed File Organization'

Unlike the physical ordering of records in a sequential file or the
relative positioning of records in a relative file, the location of
records in the indexed file organization is transparent to your
program. RMS-11 completely controls the placement of records in an
indexed file. The presence of keys in the records of the file governs
this placement.

A key is a character string present in every record of an indexed
file. The location and length of this character string is identical
in all records. When creating an 1indexed file, you decide which
character string in the file's records is to be a key. By selecting
such a character string, you indicate to RMS-11 that the contents
(i.e., key value) of that string in any particular record written to
the file can be used by a program to identify that record for
subsequent retrieval.

You must define at least one key for an indexed file. This mandatory
key 1is the primary key of the file. Optionally, you can define
additional keys (i.e., alternate keys). Each alternate key represents
an additional character string in records of the file. The key value
in any one of these additional strings can also be used as a means of
identifying the record for retrieval.

As programs write records into an indexed file, RMS-11 1locates the
values contained in the primary and alternate keys. From the values
in keys within records, RMS-11 builds a tree-structured table known as
an index. An index consists of a series of entries. Each entry
contains a key value copied from a record that a program wrote into
the file. With each key value is a pointer to the location in the
file of the record from which the value was copied. RMS-11 builds and
maintains a separate index for each key you define for the file. Each
index is stored in the file. Thus, every 1indexed file contains at

least one 1index -- the primary key index. When you define, alternate
keys, RMS-11 builds and stores an additional index for each alternate
key. Figure 2-4 shows the general structure of an indexed file that

1. The indexed file organization is supported by the RMS-11K product.

2-3

RMS-11 FILE ORGANIZATIONS AND ACCESS MODES

has been defined with only a single key. Figure 2-5 depicts an
indexed file defined with two keys -- a primary key and one alternate
key. A,

KEY DEFINITION

PRIMARY INDEX (Employee Name)———-—\

ABLE [e e ool JoNES fwis s e sMITH .

T

ABLE ELM AV 24379 ¢t JONES

T T
| |

MAIN ST : 19724 | ¢+ * * | swiTH lHOLTRD | 35888
1 1

Y -

\ DATA RECORDS

Figure 2-4 Single Key Indexed File Organization

RMS-11 FILE ORGANIZATIONS AND ACCESS MODES

uotjezTURHIO OTTJ pPoOXopul Koy-IITNW G-z 2Inbrg

SAH0O03Y viva

- ™
i | i i i
IXVAN) " ay L70H HLIAS s vei6l _ ISNIVIN | S3Nor s 6LEYC | AVIWI3 | 3789V
I _ ! ! !
- ———
- —_—
\ - =
/ \\\ \l\\\\\\\
\ — >
=
— AT
= \L/
\\‘\\ - / ¥ 5 T
166Gy | 6Leve fe-- oeo| vELBL EELLL [o e NYIW LH..,;.@.,

169GY

000Le

(Jequinp 8bpegq)
X3ANi ILYNYILTY

(awep 8sAo|dwz)
X3ANI AdVIAIHd

SNOILINIZIA AT

RMS-11 FILE ORGANIZATIONS AND ACCESS MODES

2.2 RMS-11 ACCESS MODES
The various methods of retrieving and storing records in a file are
called access modes. While you must choose the organization of a file
at the time you create it, you can use a different access mode to
process records within the file each time you open it. Additionally,
your program can change access mode during the processing of a file.
RMS-11 provides three record access modes:

1. Sequential

2. Random

3. Record's file address (RFA)
RMS-11 permits only certain combinations of file organization and

access mode. Table 2-1 lists these combinations.

Table 2-1
Permissible Combinations of
Access Modes and File Organizations

File Organization Access Mode

Sequential Random RFA

Record # | Key Value

Sequential Yes No No Yes
Relative Yes Yes No Yes
Indexed Yes No Yes Yes

!pisk files only.

The following subsections describe RMS-11 access modes and the
capability of changing access mode during program execution. .

2.2.1 Sequential Access Mode

You can use sequential access mode to access all RMS-11 files,
Sequential access means that records are retrieved or written in a
particular sequence. The organization of the file established this
sequence.

2.2.1.1 Sequential Access to Sequential Files - In a sequentially
organized file, physical adjacency establishes the order in which
records are retrieved when you use the sequential access mode. To
read a particular record in a file, say the fifteenth record, a
program must open the file and access the first fourteen records
before accessing the desired record. Thus, each record 1in a
sequential file can be retrieved only by first accessing all records
that physically precede it. Similarly, once a program has retrieved
the fifteenth record, it can read all the remaining records (from the

2-6

RMS~11 FILE ORGANIZATIONS AND ACCESS MODES

sixteeqth on) in physical seguence. It cannot, however, read any
preceding record without closing and reopening the file and beginning
again with the first record.

When writing new records to a seguential file 1in sequential access
mode, a program must first request that RMS-11 position the file
immediately following the last record. Thereafter, each sequential
write operation the program issues causes a record to be written
following the previous record.

2.2.1.2 Sequential Access to Relative Files - During the sequential
access of records in the relative file organization, the contents of
the record cells in the file establish the order in which a program
processes records. RMS-11 has the ability to recognize whether
successively numbered record cells are empty or contain records.

When a program issues read requests in sequential access mode for a
relative file, RMS-11 ignores empty record cells and searches
successive cells for the first one containing a record. If, for
example, a relative file contains records only in cells 3, 13, and 47,
successive sequential read requests cause RMS-11 to return relative
record number 3, then relative record number 13, and finally relative
record number 47.

When a program adds new records in sequential access mode to a
relative file, the order in which RMS-11 writes the records depends on
ascending relative cell numbers. Each write request causes RMS-11 to
place a record in the cell whose relative number is one higher than
the relative number of the previous request -- as long as that cell
does not already contain a record. If the cell already contains a
record, RMS-11 rejects the write operation. Thus, RMS-11 allows a
program to write new records only into empty cells in the file.

2.2.1.3 Sequential Access to Indexed Files - In an indexed file, the
presence of one or more indexes permits RMS-11 to determine the order
in which to process records in sequential access mode. The entries in
an 1index are arranged in ascending order by key values. Thus, an
index represents a logical ordering of the records in the file. If
you have defined more than one key for the file, each separate index
associated with a key represents a different logical ordering of the
records in the file. A program, then, can use the sequential access
mode to retrieve records in the order represented by any index.

When reading records in sequential access mode from an indexed file, a
program initially specifies a key (e.g., primary key, first alternate
key, second alternate key, etc.) to RMS-11l. Thereafter, RMS-11 uses
the index associated with that specified key to retrieve records in
the sequence represented by the entries in the index. Each successive
record RMS-11 returns in response to a program read request contains a
value in the specified key field that is equal to or greater than that
of the previous record returned.

In contrast to a sequential read request, sequential write requests to
an indexed file do not require the initial key specification. Rather,
RMS-11 uses the stored definition of the primary key field to 1locate
the primary key value in each record to be written to the file. When
a program issues a series of sequential write requests, RMS-11
verifies that each successive record contains a key value in the
primary key field that is equal to or greater than that of the
preceding record.

RMS-11 FILE ORGANIZATIONS AND ACCESS MODES

2.2.2 Random Access Mode

In random access mode, the program, rather than the organization of
the file, establishes the order in which records are processed. Each
program reguest for access to a record operates independently of the
previous record accessed. Associated with each réquest in random mode
is an identification of the particular record of interest. Successive
requests in random mode can identify and access records anywhere in
the file.

You cannot use random access mode with sequentially organized files.
Both the relative and indexed file organizations, however, permit
random access to records. The subsections that follow describe the
use of random access with these organizations. Each organization
provides a distinct way programs can identify records for access.

2.2.2.1 Random Access in Relative Files - Programs can read or write
records in a relative file by specifying relative record numbers.
RMS-11 interprets each such number as the corresponding cell in the
file. A program, therefore, can read records at random by
successively requesting, for example, record number 47, record number
11, record number 31, and so forth. If no record exists in a
specified cell, RMS-11 returns a nonexistence indicator to the
requesting program. Similarly,* a program can store records in a
relative file by identifying the cell in the file that a record is to
occupy. If a program attempts to write a new record in a cell already
containing a record, RMS-1l returns a record-already-exists indicator
to the program.

2.2.2.2 Random Access to Indexed Files - The indexed file
organization also permits random access of records. However, for
indexed files, a key value, rather than a relative record number,
identifies the record.

Each program read request in random access mode specifies a key value
and the index (e.g., primary index, first alternate index, second
alternate index, etc.) RMS-11 must search. When RMS-11 finds the key
value in the specified index, it reads the record the index entry
points to and passes the record to the user program.

In contrast to read requests, which require a program-specified key
value, program requests to write records randomly in an indexed file
do not require the separate specification of a key value. All key
values (primary and, if any, alternate key values) are in the record
itself. When you open an indexed file, RMS-11 retrieves all key
definitions stored in the file. Thus, RMS-11 knows the location and
length of each key field in a record. Before writing a record into
the file, RMS-11 examines the values contained in the key fields and
creates new entries in the indexes. In this way, RMS-11 ensures that
the record can be retrieved by any of its key values. Thus, the
process by which RMS-11 adds new records to the file is precisely the
process it uses to construct the original index or indexes.

2.2.3 Record's File Address (RFA) Access Mode
You can use record's file address (RFA) access mode with any file

organization as long as the file resides on a disk device. This
access mode is further limited to retrieval operations only. Similar

2-8

RMS-11 FILE ORGANIZATIONS AND ACCESS MODES

to random access mode, however, RFA access allows a specific record to
be identified for retrieval. :

As the term record's file address indicates, every record within a
file has a unigque address. The actual format of this address depends
on the organization of the file. In all instances, however, only
RMS-11 can interpret this format.

The most important feature of RFA access is that the address (RFA) of
any record remains constant while the record exists in the file.
After every successful read or write operation, RMS-11 returns the RFA
of the subject record to your program. Your program can then save
this RFA to use again to retrieve the same record. It is not required
that this RFA be wused only during the current execution of your
program. RFAs can be saved and used at any subsequent point in time.

2.2.4 Dynamic Access

Dynamic access is not strictly an access mode. Rather, it 1is the
capability to switch from one access mode to another while processing
a file. There is no limitation on the number of times such switching
can occur. The only limitation is that the file organization (or, in
the case of RFA access, the device containing the file) must support
the access mode selected.

As an example, you can use dynamic access effectively immediately
following a random or RFA access mode operation. When your program
accesses a record in one of these modes, RMS-11 establishes a new
current position in the file. Your program can then switch to
sequential access mode. By using the randomly accessed record (rather
than the beginning of the file) as the starting point, your program
can retrieve succeeding records in the sequence established by the
file's organization.

2.3 SAMPLE USES OF RMS-11 FILE ORGANIZATIONS

You choose a file organization according to your application's need to
access records in a particular way. The following subsections suggest
three situations in which a needed access mode determines the
selection of the sequential, relative, or indexed file organization.

2.3.1 Sample Sequential File

Consider a particular requirement of a mail-order company as an
example of the wuse of the sequential file organization. Such a
company might maintain its master list of customer names and addresses
as individual records in a sequential file. This means of organizing
information would be efficient for a mass mailing application. A
program would access each record in the file in turn and print its
contents on a separate mailing label. The program would read the
entire file since each record is of egual interest. However, the same
file organization would not be efficient if the program needed to
access the address of a single individual. In this case, each
individual record would have to be read and examined until the correct
one was found.

RMS-11 FILE ORGANIZATIONS AND ACCESS MODES

2.3.2 Sample Relative File

A company might choose to maintain product information records in a
relative file. The file would be organized so that each cell number
(and, therefore, relative record number) would correspond with the
unique part number associated with a particular product. This
structure would allow easy access to any individual product record in
the file if the part number associated with that product were known.
Unlike records in a sequential file, there would be no need to access
any record in the relative file other than the record of interest.

2.3.3 Sample Indexed File

In creating a file to contain personnel information, a company might
select the 1indexed organization. The employee badge number field
might be selected as the primary key. This field, rather than the
employee name field, is a suitable primary key because badge numbers
within a company are unique, whereas two employees could have the same
name . Access to the personnel record of any individual, then, would
require only the badge number. The record RMS-11 would return to the
application program would contain the specified value in the badge
number field. As in the relative file organization, access to a
particular record in an indexed file does not require that any other
records be accessed first.

CHAPTER 3

FILE ATTRIBUTES

You can use either an application program (written in COBOL-11,
BASIC-PLU5-2, or MACRO-11) or the RMS-11 utility called DEFINE (refer
to the RMS5-11 Utilities User's Guide) to create a file. Each RMS-11
file has certain logical and physical characteristics, known as
attributes. Through the source language statements of an application
program or the command line invoking the DEFINE utility, you describe
these attributes to RMS-11. With this attribute information, RMS-11
begins the structuring of the file on a storage medium.

The most important attribute of any RMS-11 file is its organization.
You «can tailor a file for use in a particular application by making
the proper selection of this and other required or optional
attributes. In addition to file organization, you can choose from
among the following attributes:

. The storage medium on which the file resides

° The file and protection specification of the file

° The format and size of records

™ The size of the file

° The size of a particular storage structure, known as the
bucket, within relative and indexed files

° The definition of keys for indexed files.

3.1 STORAGE MEDIA

Your selection of a storage medium on which RMS-11 builds a file is
related to the organization of the file. You can create permanent
sequential files on disk devices or ANSI magnetic tape volumes.
Transient files can be written on devices such as line printers and
terminals.

Unlike sequential files, relative and indexed files are restricted to
a particular medium. These files can reside only on disk devices.

3.2 FILE AND PROTECTION SPECIFICATIONS

The name you assign to a new file enables RMS-11 to subsequently find
the file on the storage medium. You follow the conventions for file
specifications of the host operating system. Such conventions may
differ among the systems supporting RMS-11.

3-1

FILE ATTRIBUTES

RMS-11 also allows you to assign a protection specification to a file
at the time you create it; again, the format of this specification is
the format used by the host operating system. Potential users of the
file are classified according to membership in the following classes:

1. System - privileged users as determined by a particular
installation (This class 1is not recognized on
RSTS/E systems, where privileged users have
unlimited access to files.)

2. Owner - the account under which the file is created
3. Group - users with the same project identifier as the owner
4, World - users 1in general.

Within each class, you may explicitly elect to deny any or all of the
following types of access:

e Read access
e Write access

e Other types of access as determined by the host operating
system.

Exact descriptions of membership in class and types of access

supported are described in manuals pertaining to the host operating
system.

3.3 FORMAT AND SIZE OF RECORDS

When creating a file, you must provide format and maximum size
specifications for the records the file will contain. The specified
format establishes how each record physically appears in the file on a
storage medium. The size specification allows RMS-11 to subsequently

verify that records written into the file do not exceed the length
specified when you created the file.

3.3.1 RMS-11 Record Formats
RMS-11 supports four record formats:
1. Fixed
2. Variable
3. Variable-with-fixed-control (VFC)
4. Stream
Similar to the selection of a storage medium, the choice of a format

for the records of a file depends on a file's organization. Table 3-1
shows the allowed combinations of record format and file organization.

FILE ATTRIBUTES

Table 3-1
Record Formats and File Organizations

File Organization Record Format

Fixed Variable VFC Stream
Sequential Yes Yes Yes disk only
Relative Yes Yes Yes No
Indexed Yes Yes No No

3.3.1.1 Fixed Length Record Format - The term fixed length record
format refers to records of a file that are all equal in size. Each
record, then, occupies an identical amount of space in the file.

3.3.1.2 Variable-Length Record Format - In variable~length record
format, records 1in a file can be either equal or unequal in length.
To allow retrieval of variable-length records from a file, RMS-11
prefixes a count field to each record it writes. The count field
describes the length (in bytes) of the record. RMS-11 removes this
count field before it passes a record to your program.

RMS-11 produces two types of count fields, depending on the storage
medium on which the file resides:

1. Variable-length records in files on disk devices have a
l-word (2-byte) binary count field preceding the data field
portion of each record. The specified size excludes the
count field.

2. Variable-length records on ANSI magnetic tapes have
4-character decimal count fields preceding the data portion
of each record. The specified size includes the count field.
In the context of ANSI tapes, this record format is known as
D format.

3.3.1.3 Variable-with-Fixed-Control Record Format - From your point
of wview, variable-with-fixed-control (VFC) records consist of two
distinct parts, the fixed control area and the user data record. The
size of the fixed «control area is identical for all records of the
file. The contents of each fixed control area are completely under
the control of your program and can be used for any purpose. As an
example, you might use fixed control areas to store the identifier
(e.g., relative record number or RFA) of related records.

The second part of a VFC record is similar to a variable-length
record. In other words, it is a user data record, variable in length,
and composed of individual data fields.

The two parts of a VFC record correspond to the way your program
writes and reads such records. Prior to an output operation, your
program builds a VFC record in two locations. It builds the fixed
control area in a 1location separate from the user data part of the
record. When writing the record to the file, RMS-11 fetches both the

3-3

FILE ATTRIBUTES

fixed control area and the user data part of the record from their
respective program locations. RMS-11 then prefixes the user data part
of the record with the fixed control area, prefixes the result with a
count field that describes the total size of both parts, and writes
the record to the file.

On input operations, RMS-11 reverses the preceding procedure. It uses
the count field to locate the entire VFC record in the file. RMS-11
removes this count field. Then, it removes the fixed control area
from the record and stores it in one program location while storing
the remaining part in a second location.

3.3.1.4 Stream Format Records - Records in stream format can be
variable in size. However, no count field precedes each record.
Instead, RMS-11 considers the entire file a stream of contiguous ASCII
characters. Each record in the file is delimited by one of the
following:

1. Form feed (FF)
2. Vertical tab (VT)
3. Line feed (LF)

4. Carriage return immediately followed by line feed (CR-LF)

NOTE

Stream format records are supported for
file interchange with non-RMS-11
application programs. Since this format
is highly inefficient, it should be used
only when such interchange is a concern.

On output operations, RMS-11 examines the last character of the record
constructed by a program. If this character is an LF, VT, or FF,
RMS-11 leaves the record unaltered and writes it to the file. If the
last character 1is not LF, VT or FF, RMS-11 appends a carriage return
(CR) character followed by a line feed (LF) character to the record
before writing it to the file.

On input operations, RMS-11 scans the stream of ASCII characters,
removing NUL characters and searching for the first occurrence of an
FF, VT, LF, or CR-LF combination. . If the character that terminates
the scan is an FF, VT, or LF (not preceded by CR), RMS-11 passes the
entire string, including the terminating character, to the program.
If, however, the scan encounters a CR-LF combination, RMS-11 removes
these two characters and passes the preceding string as a record to
the program. Each successive input operation causes the scan to
resume at the character following the 1last FF, VI, LF, or CR-LF
combination encountered.

3.3.2 Size of Records

You must provide RMS-11 with record size information along with the
selected record format. RMS-11's use of this information depends on
the record format chosen.

FILE ATTRIBUTES

When you choose fixed format records, you must indicate the actual
size of each record in the file. This size specification becomes part
of the information stored and maintained by RMS-11 for the file.
Thereafter, 1if a program attempts to write a record whose length
differs from this specified size, RMS-11 will reject the operation.

When creating a file with variable-length format records, you can
specify a maximum record size greater than zero or, for sequential and
indexed files only, a maximum record size equal to zero. If the
specified size 1is greater than zero, RMS-11 interprets the value as
the size of the largest record that can be written into the file.
Subsequently, each record that a program actually writes must be less
than or egual to this value or RMS-11 rejects the operation. When you
specify a record size of zero for a sequential or indexed file, RMS-11
neither checks nor enforces a maximum record size.

VFC format records require two size specifications. The first size
specification identifies the length of the fixed control area of all
records in the file. The second size specification represents the
maximum length of the data portion of the VFC records. RMS-11 handles
this second size specification in a manner similar to its handling of
the size specification for variable format records. RMS-11 interprets
a nonzero value as the size of the largest data portion of a VFC
record that a program can write into the file. When, however, this
second size specification is zero, RMS-11 neither checks nor enforces
a maximum record size.

Finally, for stream format records, RMS-11 permits you to specify the
same record size information as for variable format records. That is,
a nonzero value represents the maximum permitted size of any record
written in the file while a 2zero value suppresses RMS-11's size
checking.

3.4 SIZE OF RMS-11 FILES

The size of an RMS-11 file is expressed as an integral number of
virtual blocks. Virtual blocks are physical storage structures. That
is, each virtual block in a file is a unit of data whose size depends
on the physical medium on which the file resides. For example, the
size of virtual blocks in files on disk devices is 512 bytes.
Operating system convention has established this size; you cannot
alter it. On magnetic tape, a virtual block 1is the information
written between two interrecord gaps. When wusing ANSI-labeled
magnetic tapes, you can specify the size of wvirtual blocks within
files.

The operating system assigns ascending numbers to a file's virtual
blocks. This numbering scheme allows a file to appear to you, and to
RMS-11 itself, as a series of adjacent virtual blocks. In reality,
however, the successive numbering of virtual blocks and the physical
placement of these blocks on a storage medium need not necessarily
correspond. For example, virtual blocks 167 and 168 in a file,
although adjacent in terms of the numbering scheme applied to virtual
blocks, need not necessarily occupy adjacent physical locations. Once
again, the physical medium on which the file resides determines the
handling of virtual blocks.

On magnetic tapes, successively numbered virtual blocks actually
occupy successive physical locations. Virtual blocks from one file
are never intermixed with wvirtual blocks from another. On disk
devices, however, the situation can be quite different. Files on disk
can reside in one or more discrete areas known as extents (see Figure

3-5

FILE ATTRIBUTES

3-1). Within a single file extent, successively numbered virtual
blocks occupy successive physical locations. If a file consists of
more than one extent, however, extents of other files or unused space
can be interspersed among the extents of the first file.

w STORAGE
DEVICE
N

FILE ° [] [] [® °
Virtual
Block No. 1 2 3 N

Figure 3-1 Virtual Blocks and Extents

When a file consists of only one extent, it 1is «called a contiguous
file since all successive virtual blocks of the file correspond to
successive contiquous physical locations. When creating a file, you
can regquest that RMS-11 allocate the file contiguously. The default
action is that RMS-11 allocates contiguously as much. of the file as
possible.

The virtual blocks of a file contain the records your programs write
into the file. Depending on the size of records, a virtual block can
contain one record, more than one record, or a portion of a record.
When a particular record is larger than the size of a virtual block,
it is stored in as many successively numbered virtual blocks as needed
to contain the entire record. In this instance, the record is said to
cross or span block boundaries.

When creating an RMS-11 file, you can specify an initial allocation

size. If no file size information is given, RMS-11 allocates the
minimum amount of storage needed to contain the defined attributes of
the file. If you do specify an initial allocation size, RMS-11

obtains the specified number of virtual blocks for the file. However,
this initial size specification does not represent a permanent limit
on the size of the file. RMS-11 automatically extends any file
whenever the presently allocated space is insufficient to satisfy a
program request for storage of data.

3.5 BUCKETS IN RELATIVE AND INDEXED FILES

RMS-11 uses a storage structure known as a bucket for building and
maintaining relative and 1indexed files. Unlike virtual blocks, a
bucket can never contain a portion of a record. That is, RMS-11 never
permits records to span bucket boundaries.

3-6

FILE ATTRIBUTES

You define the size of buckets in a file at the time you create the
file. Buckets can consist of from 1 to 32' virtual blocks. When
selecting a bucket size, you must consider file organization, record
format, record size, and the internal information RMS-11 maintains in
each bucket. Within these constraints, a large bucket size will serve
to increase sequential mode processing of a file since fewer actual
I/0 transfers are required to access records. Minimizing bucket size,
on the other hand, means that less I/O buffer space is required to
support file processing.

3.6 KEY DEFINITIONS FOR INDEXED FILES

To define a key for an indexed file, you must specify the position and
length of character data in the records of the file. You must define
at least one key--the primary key--for an indexed file. Additionally,
up to 254 alternate keys can be defined. Each such key, primary and
alternate, represents from 1 to 255 characters in each record of the
file.

When identifying the position and the length of keys to RMS-11, vyou
can define simple or segmented keys. A simple key is a single,
contiguous string of characters in the record. 1In other words, it is
a single data field. A segmented key, however, can consist of from
two to eight data fields within records. These data fields need not
be contiqguous. When processing records that contain segmented keys,
RMS-11 treats the separate data fields (segments) as a logically
contiguous character string.

When defining keys at file creation time, you can specify two
characteristics for each key:

1. Duplicate key values are allowed.
2. Key value can change.

When you specify that duplicate key values are allowed, you indicate
that more than one record in the file can have the same value in a
given key. Such records, therefore, have the same record identifier.
The capability to allow duplicate key values further distinguishes
indexed files from relative files. In relative files, the record
identifier, representing a relative record number, is always unique.

The personnel file can serve as an example of the use of duplicate
keys. At file creation time, the creator of the file could define the
department name field as an alternate key. As programs wrote records
into the file, the alternate index for the department name key field
would contain multiple entries for each key value (e.g., PAYROLL,
SALES, ADMINISTRATION) since departments are composed of more than one
employee. When such duplication occurs, RMS-11 stores the records so
that they can be retrieved in first-in/first-out (FIFO) order.

Using the preceding personnel file, an application could be written to
list the names of employees in any particular department. A single
execution of the application could list the names of all employees
working, for example, in the department called SALES. By randomly
accessing the file by alternate key and the key wvalue SALES, the
application would obtain the first record written into the file
containing this wvalue. Then, the application could switch to

1. The maximum bucket size on the RSTS/E operating system is 15
virtual blocks.

FILE ATTRIBUTES

sequential access and successively obtain records with the same value,
SALES, in the alternate key field. Part of the 1logic of the
application would be to determine the point at which a sequentially
accessed record no longer contained the value SALES in the alternate
key field. The program could then switch back to random access mode
and access the first record containing a different value (e.g.,
PAYROLL) in the department name key field.

The second key characteristic (key value can change) indicates that
records can be read and then written back into the file with a
modified value in the key. When such modification occurs, RMS-11
automatically updates the appropriate index to reflect the new key
value. You can specify this characteristic only for alternate Kkeys.
Further, when specifying this characteristic, you must also specify
that duplicate key values are allowed.

If the sample personnel file were created with the department name
field as an alternate Key, the <creator of the file would need to
specify that Kkey values can change. This specification would allow a
program to access a record in the file and change the contents of a
department name data field to reflect the transfer of an employee from
one department to another.

You can also declare the converse of either of these two Kkey
characteristics. That is, you can specify for a given key that
duplicate key values are not allowed or that key values cannot change.
When duplicate key values are not allowed, RMS-1ll rejects any program
request to write a record containing a value in the key that is
already present 1in another record. Similarly, when the key value
cannot change, RMS-11 does not allow a program to write a record back
into the file with a modified value in the key.

CHAPTER 4

PROGRAM OPERATIONS ON RMS-11 FILES

After RMS-11 creates a file according to your description of file
attributes, your program can access the file and store and retrieve
data. When your program accesses the file as a 1logical structure
(i.e., a sequential, relative, or indexed file), it uses access modes
to perform record operations that add, retrieve, update, and delete
records. The organization of the file determines the types of record
operations permitted. If you choose to bypass the record accessing
capabilities of RMS-11, your program can access the file as a physical
structure. As a physical structure, RMS-11 considers the file simply
an array of virtual blocks. To process a file at the physical level,
programs use a type of access known as block I/O.

The two sections that follow describe, respectively, record operations
and block I/O.

4.1 RECORD OPERATIONS ON RMS-11 FILES

The organization of a file, defined when you create the file,
determines the types of operations that your program can perform on
records. Depending on file organization, RMS-11 permits your program
to perform the following record operations:

. Read a record. RMS-11 returns an existing record within the
file to your program.

) Write a record. RMS-11 adds a new record that your program
constructs to the file. The new record cannot replace an
already existing record.

° Find a record. RMS-11 locates an existing record in the
file. It does not return the record to your program, but
establishes a new current position in the file.

° Delete a record. RMS-11 removes an existing record from the
file.

) Update a record. Your program modifies the contents of a
record read from the file. RMS-11 writes the modified record
into the file, replacing the old record.

Table 4-1 shows the cominbations of record operations and file

organizations that RMS-11 permits. The subsections that follow
discuss record operations in the context of each file organization.

4-1

PROGRAM OPERATIONS ON RMS-11 FILES

Table 4-1
Record Operations and File Organizations
File Organization Record Operation
Read Write Find Delete Update
Sequential Yes Yes Yes No Yes'
Relative Yes Yes Yes Yes Yes
Indexed Yes Yes Yes Yes Yes

!pisk files only.

4.1.1 Sequential File Organization Record Operations

In the sequential file organization, your program can read existing
records from ¢the file using sequential or RFA access modes. New
records can be added only to the end of the file and only through the
use of sequential access mode. The find operation is supported in
both sequential and RFA access mode. In sequential access mode your
program can use a find operation to skip records. In RFA access mode,
your program can use the find operation to establish a random starting
point in the file for sequential read operations. The sequential file
organization does not support the delete operation since the structure
of the file requires that records be adjacent in and across virtual
blocks. Your program can, however, update existing records in disk
files as long as the modification of a record does not alter its size.

4.1.2 Relative File Organization Record Operations

The relative file organization permits your program greater
flexibility in performing record operations than the sequential
organization. Your program can read existing records from the file
using segquential, random, or RFA access mode. New records can be
sequentially or randomly written so long as the intended record cell
does not already contain a record. Similarly, any access mode can be
used to perform a find operation. After a record has been found or
read, RMS-11 permits the delete operation. Once a record has been
deleted, the record cell is available for a new record. Lastly, your
program can update records in the file. If the format of the records
is variable, update operations can modify record 1length up to the
maximum size specified when the file was created.

4.1.3 1Indexed File Organization Record Operations

The indexed file organization provides the greatest flexibility in
performing record operations. Your program can read existing records
from the file in sequential, RFA, or random access mode. When reading
records in random access mode, your program can choose one of four

PROGRAM OPERATIONS ON RMS-11 FILES

types of matches that RMS-11 must perform using the program-provided
key value. The four types of matches are:

1. Exact key match

2. Approximate key match

3. Generic key match

4. Approximate and generic key match
Exact key match requires that the contents of the key in the record
retrieved precisely match the key value specified in the program read
operation.
The approximate match facility allows your program to select either of
the following two relationships between the &key of the record
retrieved and the key value specified by your program:

. Equal to or greater than

® Greater than
The advantage of this kind of match is that if the requested key value
does not exist 1in any record of the file, RMS-11 returns the record
that contains the next higher key value. This allows your program to
retrieve records without knowing an exact key value.
Generic key match means that the program need specify only an initial

portion of the key value. RMS-11l returns to your program the first
occurrence of a record whose key contains a value beginning with those

characters. This capability is useful in applications where a series
of records must be retrieved according to the contents of only a part
of the key field. In an indexed inventory file, for example, a

company might designate its part numbers in such a way that the first
three digits represent the vendor from whom the part is purchased. In
order to retrieve the record associated with a particular part, the
program would normally supply the entire part number. Generic
selection permits the retrieval of the first record representing parts
purchased from a specific vendor.

The final type of key match combines both the generic and approximate
facilities. Your program specifies only an initial portion of the key
value, as with generic match. Additionally, your program specifies
that the key data field of the record retrieved must be either:

® Equal to or greater than the program-supplied value
° Greater than the program-supplied value

In addition to versatile read operations, RMS-11 allows any number of
new records to be written into an indexed file. It rejects a write
operation only if the value contained in a key of the record violates
a user-defined key characteristic (e.g., duplicate key values not
permitted).

The find operation, similar to the read operation, can be performed in
sequential, RFA, or random access mode. When finding records in
random access mode, your program can specify any one of the four types
of key matches provided for read operations.

In addition to read, write, and find operations, your program can

delete any record in an indexed file and update any record. The only
restriction RMS-11 applies during an update operation is that the

4-3

PROGRAM OPERATIONS ON RMS-11 FILES

contents of the modified record must not violate any user-defined key
characteristic (e.g., key values cannot change or duplicate key values
not permitted).

4.2 BLOCK I/0

Block I/0 allows your program to bypass entirely the record processing
capabilities of RMS-11. Rather than performing record operations
through the use of supported access modes, your program can process a
file as a physical structure consisting solely of virtual blocks.

Using block I/0, your program reads or writes multiple virtual blocks
by identifying a starting wvirtual block number in the file.
Regardless of the organization of the file, RMS-1ll accesses the
identified block or blocks on behalf of your program.

Since RMS-11 files, particularly relative and indexed files, contain
internal information meaningful only to RMS-11 itself, DIGITAL does
not recommend that yvou modify a file using block I/O. The presence of
the block 1I/0 facility, however, does permit you to create your own
file structures. You must, however, maintain the resultant structures
using specialized programs. You cannot access these structures
through the use of RMS-11 record access modes and record operations.

CHAPTER 5

THE RMS-11 RUNTIME ENVIRONMENT

The environment within which your program processes RMS-11 files at
runtime consists of two 1levels, the file processing level and the
record processing level. At the file processing level, RMS-11 and the
host operating system provide an environment that permits concurrently
executing programs to share access to the same file. RMS-11
ascertains the amount of sharing permissible from information provided
by the programs themselves. Additionally, at the file processing
level, RMS-11 provides facilities that allow programs to minimize
buffer space requirements for file processing. At the record
processing level, RMS-11 allows your program to access records in a
file through one or more record access streams. Each record access
stream represents an independent and simultaneously active series of
record operations directed toward the file. Within each stream, your
program can perform record operations synchronously or asynchronously.
That is, RMS-11 allows vyour program to choose between receiving
control only after a record operation request has been satisfied
(synchronous operation) or receiving control possibly before the
request has been satisfied (asynchronous operation). Lastly, for both
synchronous and asynchronous record operations, RMS-11 provides two
record transfer modes, move mode and locate mode. Move mode causes
RMS~-11 to copy a record from an I/O buffer into a program-provided
location. Locate mode allows your program to address records directly
in an I/0 buffer.

The two sections of this chapter describe, respectively, the file
processing and record processing runtime environment.

5.1 THE FILE PROCESSING ENVIRONMENT

RMS-11 provides two major facilities at the file processing level,
file sharing and buffer handling.

5.1.1 File Sharing

Timely access to critical files requires that more than one
concurrently executing program be allowed to process the same file at
the same time. Therefore, RMS-11 allows executing programs to share
files rather than requiring them to process files serially. The
manner in which a file can be shared depends on the organization of
the file. Program provided information further establishes the degree
of sharing of a particular file. RMS-11 coordinates the sharing of a

THE RMS-11 RUNTIME ENVIRONMENT

relative or indexed file through a bucket locking mechanism. The
following paragraphs, therefore, describe:

. File organizations and file sharing
° Program sharing information

° Bucket locking

5.1.1.1 File Organizations and File Sharing - With the exception of
magnetic tape files, which cannot be shared, every RMS-11 file can be
shared by any number of programs that are reading, but not writing,
the file. Sequential files on disk can be shared by multiple readers
and a single writer. Relative and indexed files, however, can be
shared by multiple readers and multiple writers. Your program can
read or write records in a relative or indexed file while other
programs are similarly reading or writing records in the file. Thus,
the information in such files can be changing while programs are
accessing them.

5.1.1.2 Program Sharing Information - While a file's organization
establishes whether it can be shared for reading with a single writer
or for multiple readers and writers, your program specifies whether
such sharing actually occurs at runtime. You control the sharing of a
file through information your program provides RMS-11 when it opens
the file. First, vyour program must declare what operations (e.g.,
read, write, delete, update) it intends to perform on the file.
Second, your program must specify whether other programs can read the
file or both read and write the file concurrently with your program.

The combination of these two types of information allows RMS-11 to
determine if multiple user programs can access a file at the same
time. Whenever your program's sharing information is compatible with
the corresponding information another program provides, both programs
can access the file concurrently.

5.1.1.3 Bucket Locking - RMS-11 uses a bucket locking facility to
control operations to a relative or indexed file that is being
accessed by one or more writers. The purpose of this facility 1is to
ensure that a program can add, delete, or modify a record in a file
without another program simultaneously accessing the same record.

When your program opens an indexed or relative file with the declared
intention of writing or updating records, RMS-11 locks any bucket
accessed by your program. This locking prevents another program from
accessing any record in the bucket until your program releases it.
The lock remains in effect until your program accesses another bucket.
RMS-11 then unlocks the first bucket and locks the second. The first
bucket is then available for access by another concurrently executing
program.

5.1.2 Buffer Handling
To your program, record processing under RMS-11 appears as the

movement of records directly between a file and the program itself.
Transparently to your program, however, RMS-11 reads or writes virtual

5-2

THE RMS-11 RUNTIME ENVIRONMENT

blocks or buckets of a file into or from internal memory areas known
as I/0 buffers. Records within these buffers are then made available
to your program. :

The storage structures transferred between a file and I/0 buffers
depend on the organization of the file. When your program processes
sequential files, RMS-11 reads and writes virtual blocks. For
relative and indexed files, RMS-11 reads and writes buckets. Thus,
the storage element RMS-11 uses to structure the file is the unit of
transfer between the file and memory when RMS-11 accesses the file in
response to your program's record operation request.

In addition to buffers that contain virtual blocks or buckets, RMS-11
requires a set of internal control structures to support file
processing. The combination of these buffers and control structures
is known as the space pool. RMS-11 maintains a separate space pool
for each executing program. Rather than allocating space solely on
the basis of the total number of files processed, RMS-11 provides
facilities to ensure that a space pool is large enough to accommodate
only the requirements of the largest number of files that can be open
simultaneously. Using these facilities, your program provides
information that allows RMS-11 to calculate the minimum size
requirements of the space pool.

In providing size requirements for the I/O buffer portion of the space
pool, you can choose one of two options:

1. A completely centralized space pool
2. Private I/O buffers for one or more files

In a completely centralized space pool, all I/0 buffers as well as the
internal control structures required for file processing are
inaccessible to your program. RMS-11 totally manages the space within
the pool and allocates portions, as needed, as buffer space and
control structures for open files.

Unlike a completely centralized space pool, private I/O buffers allow
your program some measure of control over I/O buffer space. You can
allocate private I/0 buffers on a per-file basis by explicitly
specifying the address and total size of the buffers to be used for a
particular file. While the file is open, RMS-11 manages this buffer
space and your program must not access it. However, when the file is
closed, the private I/O buffer space is available for use by your
program.

The major advantage of private I/0 buffers is that they avoid
fragmenting a completely centralized space pool. That is, since
particular files have varying buffer requirements based on their
organization, a centralized space pool could have sufficient space
available for the opening of an additional file but the space could be
noncontiguous. When such a situation arises, your program can not
open the desired file. Such fragmentation cannot occur in a private
I/0 buffer pool since there 1is no mixture of differing space
requirements.

5.2 THE RECORD PROCESSING ENVIRONMENT

After opening a file, your program can access records in the file
through the RMS-11 record processing environment. This environment
provides three facilities:

THE RMS-11 RUNTIME ENVIRONMENT

1. Record access streams
2. Synchronous or asynchronous record operations

3. Move or locate record transfer modes

5.2.1 Record Access Streams

In the record processing environment, your program accesses records in
a file through a record access stream. A record access stream is a
serial sequence of record operation requests. For example, your
program can issue a read request for a particular record, receive the
record from RMS-11, modify the contents of the record, and then issue
an update request that causes RMS-11 to write the record back into the
file. The sequence of read and update record operation requests can
then be performed for a different record, or other record operations
can be performed -- again in a serial fashion. Thus, within a record
access stream, there is at most one record being processed at any
point in time. However, for relative and indexed files, RMS-11
permits your program to establish multiple record access streams for
record operations to the same file. The presence of such multiple
record access streams allows your program to process in parallel more
than one record of a file. Each stream represents an independent and
concurrently active seqguence of record operations. Further, when such
streams update records in the file, RMS-11 employs the same bucket
locking mechanism among streams that it uses to control the sharing of
a file among separate programs.

As an example of multiple record access streams, your program could
open an indexed file and establish two record access streams to the
file. Your program could use one record access stream to access
records in the file in random access mode through the primary index.
At the same time, your program could use the second record access
stream to access records sequentially in the order specified by an
alternate index. When your program accesses a record through either
stream, RMS-11 automatically uses its bucket locking mechanism to
ensure that both streams do not attempt to write the same record at
the same time.

5.2.2 Synchronous and Asynchronous Record Operations!

Within each record access stream, your program can perform any record
operation either synchronously or asynchronously. When a record
operation is performed synchronously, RMS-11 returns control to your
program only after the record operation request has been satisfied
(e.g., a record has been read and passed to your program) . When a
record operation is performed asynchronously, RMS-11 can return
control to your program before the record ‘operation request has been
satisfied. Your program, then, can utilize the time required for the
physical transfer between the file and memory of the block or bucket
containing the record to perform other computations. However, your
program cannot issue a second record operation through the same stream
until the first record operation has completed. To ascertain when a
record operation has actually been performed, your program can issue a
wait reqguest and regain control when the record operation is complete.

1. The RSTS/E operating system supports synchronous record operations
only.

THE RMS-11 RUNTIME ENVIRONMENT

5.2.3 Record Transfer Modes

In addition to specifying synchronous or asynchronous operations for
each request in a record access stream, your program can utilize
either of two record transfer modes to gain access to each record in
memory. The following subsections describe these two modes, move mode
and locate mode.

5.2.3.1 Move Mode Record Transfers - RMS-11 permits move mode record
operations for all file organizations and record operations. Move
mode requires that an individual record be copied between the I/0
buffer and your program. For read operations, RMS-11 reads a block or
bucket into an I/O buffer, finds the desired record within the buffer,
and moves the record to a program-specified location.

Before a write or update operation in move mode, your program builds
or modifies a record in its own work space. Then, your program issues
a write or update record operation request and RMS-11 moves the record
to an I/0 buffer.

5.2.3.2 Locate Mode Record Transfers - RMS-11 supports locate mode
record transfer for read operations to all file organizations.
However, it permits locate mode on write operations for sequential
files only.

Locate mode reduces the amount of data movement, thereby saving
processing time. This mode enables your program to access records
directly in an I/O buffer. Therefore, there is normally no need for
RMS-11 to copy records from the I/0 buffer to your program. To allow
the program to access a record in the I/O buffer, RMS-11 provides the
program with the address and size of the record in the I/O buffer.

Access modes,
definition,
dynamic, 2-9
file organizations and, 2-6
random, 2-8

2-6

to indexed files, 2-8
to relative files, 2-8
RFA, 2-8
sequential, 2-6
to indexed files, 2-7
to relative files, 2-7
to sequential files, 2-6
Access stream, record, 5-4

asynchronous record opera-
tions in, 5-4
bucket locking in, 5-4
synchronous record opera-
tions in, 5-4
Alternate key,
definition, 2-3
duplicates allowed charac-
teristic of, 3=7
index, _
building, 2-3
used in random read
operation, 2-8
key values can change charac-
teristic of, 3-8
used in sequential access
to indexed file, 2-7
ANSI magnetic tapes,
sequential files on, 3-1
size of virtual blocks on,
3-5
variable-~length format records
on, 3-3
Attributes, file, 3-1
buckets in relative and
indexed files, 3-6
definition, 3-1
file specification, 3-1
format of records, 3-3
fixed length record format,
3-3
stream record format,
variable-length record
format, 3-3
variable-with~fixed-control
record format, 3-3
key definitions for indexed
files, 3-7
duplicate key values
allowed, 3-7
key values can change,
3-8

3-4

INDEX

Attributes, file (Cont.),
protection specification,
3-1
size of RMS~11 files,
storage media, 3-1

3-5

BASIC-PLUS-2, 3-1
Block 1I/0, 4-4
Blocks, virtual,
buckets and, 3-7
defined, 3-5
extents and, 3-6
file allocation and,
I/0 buffers and, 5-3
move mode record transfers
and, 5-5
numbering of, 3-5
on disk devices, 3-6
on magnetic tapes, 3-5
reading in block I/0,
records and, 3-6
size of, 3-5
writing in block
Buckets, 3-6
I/0 buffers and,
locking of, 5-2,
move mode record
and, 5-5
size of, 3-7
Buffers, I/0, 5-2
central space pool and,
locate mode and, 5-5
move mode and, 5-5
private, 5-2

3-6

4-4

I/0, 4-4
5-3
5-4
transfers

5-2

Carriage return 4
Cells, record,
contents of,
empty, 2-3
numbering of, 2-2
role in sequential access,

r 3=
2=2
2-3

2-7
writing new records into,
2-7, 2-8, 4-2

Character strings,
as keys of records in in-
dexed files, 2-3
defining position and length
of key, 3-7

Index-1

INDEX (CONT.)

Characteristics, key,
duplicates allowed, 3-7
duplicates not allowed, 3-8
key values can change, 3-8
key values cannot change,

3-8
COBOL~-11, 3-1 .
Control structures, internal,
5-3

Count field,
variable-length record, 3-3
VFC record, 3-4

CR, 3-4

Data field,
definition, 2-1
segmented key, 3-7
simple key, 3-7

DEFINE utility, 3-1

Delete operation,

indexed file organization, 4-2
relative file organization, 4-2

Environment, runtime, 5-1
file processing, 5-1
record processing, 5-3

Extents,
contiguous, 3-6
defined, 3-6
virtual blocks and, 3-6

FF, 3-4
File,
attributes, 3-1
automatic extension of, 3-6
definition, 2-1
extents, 3-6
organizations, 2-2
private I/0 buffers for,
5-3
protection specification,
3-1
sharing, 5-2
size of, 3-5
specification, 3-1
File organization,
combinations of access modes
and, 2-6

combinations of record formats

and, 3-3

combinations of record opera-
tions and, 4-2

definition, 2-2

File organization (Cont.),
file sharing and, 5-2
indexed, 2-3
relative, 2-2
sequential, 2-2

File processing environment,

5-1
buffer handling, 5-2
file sharing, 5-1

File sharing, 5-1
bucket locking, 5-2
file organizations and, 5-2

indexed files, 5-2
relative files, 5-2
sequential files, 5-2
program information, 5-2
Fixed control area, 3-3
Fixed length format records,
3-3
size of, 3-5
Form feed, 3-4
Formats, record, 3-2

I/0 buffers, 5-2
central space pool and, 5-2
locate mode and, 5-5
move mode and, 5-5
private, 5-2
Index,
alternate key, 2-3
ascending order of, 2-7
building of, 2-3
creating new entries in, 2-8
definition, 2-3
entries, 2-3
primary key, 2-3
Indexed file organization, 2-3
Indexed files,
bucket locking and, 5-2
random access to records
in, 2-8
record operations, 4-2
sample use of, 2-10
sequential access to, 2-7
sharing of, 5-2
storage medium, 3-1
Internal control structures,
5-3

Key,
alternate, 2-3
character string, 2-3
defining index file, 3-7
definition, 2-3

Index-2

INDEX

Key (Cont.),

duplicates allowed charac-
teristic, 3-7

duplicates not allowed
characteristic, 3-8

key values can change charac-
teristic, 3-8

key values cannot change
characteristic, 3-8

primary, 2-3

segmented, 3-7

simple, 3-7

Key values,

can change characteristic,
3-8

cannot change character-
istic, 3-8

definition, 2-3

duplicates allowed character-
istic, 3-7

duplicates not allowed
characteristic, 3-8

matching,
approximate, 4-3
approximate and generic,

4-3

exact, 4-3
generic, 4-3

random mode read opera-
tions and, 2-8

sequential mode write
operations and, 2-7

LF, 3-4

Line feed, 3-4

Locate mode record transfers,
5-5

Locking, bucket, 5-2, 5-4

MACRO-11, 3~-1
Magnetic tapes, ANSI,
sequential files on, 3-1
size of virtual blocks on,
3-5
variable-length format
records on, 3-3
Media, storage, 3-1
Modes,
access, 2-6 to 2-9
record transfer, 5-5
Move mode record transfers,
5-5

(CONT.)

Operations, record,
asynchronous, 5-4
combinations of file organi-
zation and, 4-2

delete, 4-1

find, 4-1

indexed file organization,
4-2

read, 4-1

record access streams and,
5-4

relative file organization,
4-2

sequential file organization,
4-2

synchronous, 5-4

update, 4-1

write, 4-1

Organization, file,

combinations of access
modes and, 2-6

combinations of record formats
and, 3-3

combinations of record opera-
tions and, 4-2

definition, 2-2

file sharing and, 5-2

indexed, 2-3

relative, 2-2

sequential, 2-2

Pool, space, 5-3

Primary key, 2-3, 2-7

Private I/O buffers, 5-3
Program sharing information, 5-2

Random access mode, 2-8
indexed file organization
record operations and, 4-2
relative file organization
record operations and, 4-2
to indexed files, 2-8
to relative files, 2-8
Read operation,
indexed file organization,
2-7, 2-8, 4-2
locate mode, 5-5
move mode, 5-5
relative file organization,
2-7, 2-8, 4-2
sequential file organization,
2-6, 4-2

Index—-3

INDEX (CONT.)

Record,
cells, 2-2
data fields in, 2-1
defined, 2-1
duplicates, 3-7
formats, 3-1
keys in, 2-3
operations on files, 4-1
relative number, 2-3
size, 3-4
transfer modes, 5-5
virtual blocks and, 3-6
Record access stream, 5-4
asynchronous record opera-
tions in, 5-4
bucket locking in, 5-4
synchronous record operations
in, 5-4
Record formats,
combinations of file organi-
zation and, 3-3
fixed length, 3-3
variable-length, 3-3
variable-with-fixed-control
(VFC), 3-3
stream, 3-4
Record operations,
asynchronous, 5-4

combinations of file organiza-

tion and, 4-2
delete, 4-1
find, 4-1
indexed file organization,
4-2
read, 4-1
relative file organization,
4-2
sequential file organization,
4-2
synchronous, 5-4
update, 4-1
write, 4-1
Record processing environ-
ment, 5-3
record access streams, 5-4
record transfer modes, 5-5
synchronous and asynchronous
record operations, 5-4
Record transfer modes,
move mode, 5-5
locate mode, 5-5
Relative file organization,
2-2
Relative files,
bucket locking and, 5-2
cells, 2-2
random access to, 2-8
record numbers, 2-3
record operations, 4-2

Relative files (Cont.),
sample use of, 2-10
sequential access to, 2-7
sharing of, 5-2
storage medium, 3-1

RFA access mode, 2-8
indexed file organization,

4-2

relative file organization, 4-2

sequential file organiza-
tion, 4-2
Runtime environment, 5-1
file processing level, 5-1
record processing level,
5=-3

Segmented keys, 3-7
Sequential access mode, 2-6
indexed file organization
record operations and, 4-2
relative file organization
record operations and, 4-2
sequential file organization
record operations and, 4-2
to indexed files, 2-7
to relative files, 2-7
to sequential files, 2-6
Sequential file organization,
2=2
Sequential files,
record operations, 4-2
sample use of, 2-9
sequential access to, 2-6
sharing, 5-2
storage medium, 3-1
Sharing, file, 5-1
bucket locking, 5-2
file organizations and, 5-2
indexed files, 5-2
relative files, 5-2
sequential files, 5-2
program information, 5-2
Simple keys, 3-7
Size,
bucket, 3-7
file, 3-5
record, 3-4
virtual block, 3-5
Space pool, 5-3
Specification, file, 3-1
Specification, file protection,
3-1
Storage media, 3-1
Stream, record access, 5-4
asynchronous record opera-
tions in, 5-4
bucket locking in, 5-4

Index-4

INDEX (CONT.)

Stream, record access (Cont.),
synchronous record operations
in, 5-4
Stream format records, 3-4
size of, 3-5
Structures, internal control,
5-3

Update operation,

indexed file organization,
4-3

move mode, 5-5

relative file organization,
4-2

sequential file organization,
4-2

Variable~length format records,
3-3
size of, 3-5
Variable-with-fixed-control
(VFC) format records, 3-3
size of, 3-5
Vertical tab, 3-4
VFC format records,
size of, 3-5

3-3

Virtual blocks,

VT,

Wait request,

buckets and, 3-7

defined, 3-5

extents and, 3-6

file allocation and,

I/0 buffers and, 5-3

move mode record transfers
and, 5-5

numbering of, 3-5

on disk devices, 3-6

on magnetic tapes, 3-5

reading in block I/0, 4-4

records and, 3-6

size of, 3-5

writing in block I/0O, 4-4

3-4

3-6

5-4

Write operation,

Index-5

indexed file organization,
2-3, 2-7, 2-8, 4-2

locate mode, 5-5

move mode, 5-5

relative file organization, 2-7,
2-8, 4-2

sequential file organization,
2=-2, 2-7, 4-=2

Introduction To RMS-11
AA-0001A-TC

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer

Higher-level language programmer

Occasional programmer (experienced)

User with little programming experience

Student programmer

Non-programmer interested in computer concepts and capabilities

000000

Name Date

Organization

Street

City State Zip Code
or
Country

Fold Here

Do Not Teur - Fold Here and Staple
FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS. s
BUSINESS REPLY MAIL]
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES R 4
A
Postage will be paid by:

dlilglitlall

Software Documentation
146 Main Street ML5-5/E39
Maynard, Massachusetts 01754

B e e S S e

