Order No. AA-K181A-TK

DECnet
DIGITAL Network Architecture

Network Management
Functional Specification

Version 2.0.0







DECnet
DIGITAL Network Architecture
(Phase lll)

Network Management
Functional Specification

Order No. AA-K181A-TK
Version 2.0.0

October 1980

This document describes the functions, structures, protocols,
algorithms, and operation of the DIGITAL Network Architec-
ture Network Management modules. It is a model for DECnet
implementations of Network Management software. Network
Management provides control and observation of DECnet net-
work functions to users and programs.

To order additional copies of this document, contact your local
Digital Equipment Corporation Sales Office.

digital equipment corporation -maynard, massachusetts



First Printing, October 1980

This material may be copied, in whole or in part, provided that the
copyright notice below in included in each copy along with an
acknowledgment that the copy describes protocols, algorithms, and
structures developed by Digital Equipment Corporation.

This material may be changed without notice by Digital Equipmgnt
Corporation, and Digital Equipment Corporation is not responsible for
any errors which may appear herein.

Copyright <:) 1980 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI
DECnet IAS PDT
DATATRIEVE TRAX



NN N
@« ® @ o 5 8 8 s 6 ® 6 8 8 6 & e % & & & 8 % & 8 &8 " 4 » & e T e 8 2 s o e & o e & e o e
e ® o e o 8 % 8 ® 8 8 @ ®8 8 e 6 u s o & e & @ e ® ® o o & « e o o o
AU e WN AU B WK =
« s e e 0 ¢ & o e
(3, 0 VSIS U WwN =

HFOOOOMOOIAARUN B E B WNRNNNN K

OWWWWWWWWWWWWWWWWWWWWWWWWWWWWWINNNNNNNNREFEEEEFEEFO WNK=OO

B WWWWWWWwWwWwwWwWwWwwWwwwwWwWwwWwwwwwwwwwwwwwwwwwwuwwwwww

CONTENTS

Page
INTRODUCTION 1
FUNCTIONAL DESCRIPTION 3
Design Scope ‘ 3
Relationship to DIGITAL Network Architecture 5
Functional Organization within DIGITAL Network
Architecture 6
NETWORK CONTROL PROGRAM (NCP) 9
Network Control Program Functions 9
Changing Parameters 9
Gathering Information 10
Down-line Loading 10
Up-line Dumping 10
Testing Line and Network 11
Zeroing Counters 11
Network Control Program Operation 11
Specifying the Executor 11
Program Invocation, Termination, and Prompting 12
Privileged Commands 12
Input Formats 12
Output Characteristics 14
Status and Error Messages 14
Network Control Program Commands 15
SET and DEFINE Commands 18
SET and DEFINE EXECUTOR NODE destination-node 19
SET and DEFINE KNOWN Entity Commands 19
SET and DEFINE LINE Commands 19
SET and DEFINE LOGGING Commands 22
SET and DEFINE NODE Commands 24
CLEAR and PURGE Commands 29
CLEAR and PURGE EXECUTOR NODE Commands 29
CLEAR and PURGE KNOWN Entity Commands 29
CLEAR and PURGE LINE Commands 29
CLEAR and PURGE LOGGING Commands 30
CLEAR and PURGE NODE Commands 30
TRIGGER Command 32
LOAD Command 32
LOAD NODE Command 32
LOAD VIA Command 33
DUMP Command 33
LOOP Command 34
LOOP LINE Command 34
LOOP NODE Command 34
SHOW QUEUE Command 35
SHOW and LIST Commands 35
Information Type Display Format 36
Counter Display Format 36
Tabular and Sentence Formats 37
Restrictions and Rules on Returns 39
ZERO Command 39
EXIT Command 40
NETWORK MANAGEMENT LAYER 44

iii



CONTENTS (Cont.)

Page
4.1 Network Management Layer Modules 44
4.1.1 Network Management Access Routines and Listener 44
4.1.2 Local Network Management Functions 44
4.1.3 Line Watcher 45
4.1.4 Line Service Functions 45
4.1.4.1 States and Substates 46
4.1.4.2 Priority Control 48
4,1.4.3 Line State Algorithms 48
4,.1.4.4 Line Handling Functions 49
4.1.5 Event Logger 50
4,1.5.1 Event Logger Components 52
4.1.5.2 Suggested Formats for Logging Data 55
4.2 Network Management Layer Operation 55
4.2.1 Down-line Load Operation 56
4.2,2 Up-line Dump Operation 60
4,2.3 Trigger Bootstrap Operation 61
4.2.4 Loop Test Operation 62
4.2.4.1 Node Level Testing 62
4.2.4.2 Data Link Testing 66
4.2.5 Change Parameter Operation 67
4.2.6 Read Information Operation 69
4.2.7 Zero Counters Operation 69
4.2.8 NICE Logical Link Handling 69
4,2.9 Algorithm for Accepting Version Numbers 70
4.2,10 Return Code Handling 70
4.3 Network Management Layer Messages 71
4.3.1 NICE Function Codes 71
4.3.2 Message and Data Type Format Notation 71
4.3.3 Request Down-line Load Message Format 73
4.3.4 Request Up-line Dump Message Format 74
4.3.5 Trigger Bootstrap Message Format 75
4.3.6 Test Message Format 75
4.3.7 Change Parameter Message Format 77
4.3.8 Read Information Message Format 77
4.3.9 Zero Counters Message Format 78
4.3.10 NICE System Specific Message Format 78
4.3.11 NICE Response Message Format 79
4.3.12 NICE Connect and Accept Data Formats 79
4.3.13 Event Message Binary Data Format 80
5.0 APPLICATION LAYER NETWORK MANAGEMENT FUNCTIONS 82
5.1 Loopback Mirror Modules 82
5.2 Loopback Mirror Operation 82
5.3 Logical Loopback Message 82
5.3.1 Connect Accept Data Format 82
5.3.2 Command Message Format 82
5.3.3 Response Message 83
APPENDIX A NETWORK MANAGEMENT ENTITIES, PARAMETERS AND
COUNTERS: FORMATS AND DATA BLOCKS 84
A. LINE Entity 87
A.l.1 Line Parameters 89
A.l.2 Line Counters 91
A,2 LOGGING Entity 94
A.3 NODE Entity 96
A.3.1 Node Parameters 98
A.3.2 Node Counters 103
APPENDIX B MEMORY IMAGE FORMATS 104

iv



APPENDIX
APPENDIX
APPENDIX
APPENDIX
F.1l

F.2

F.3

APPENDIX
APPENDIX
APPENDIX

GLOSSARY

FIGURE

N =

AU bW

~

TABLE

BWN

wWoo~Joaun

1o

12

HIQ

CONTENTS (Cont.)

MEMORY IMAGE FILE CONTENTS

NICE RETURN CODES WITH EXPLANATIONS
NCP COMMAND STATUS AND ERROR MESSAGES
EVENTS

Event Class Definitions

Event Definitions

Event Parameter Definitions

JULIAN HALF-DAY ALGORITHMS

DMC DEVICE COUNTERS

NCP COMMANDS SUPPORTING EACH NETWORK MANAGEMENT
INTERFACE

FIGURES

Network Management Relation to DNA

Network Management Layer Modules and Interfaces in a
Single Node

Event Logging Architectural Model

Down-line Load File Access Operation

Down-line Load Regquest Operation

Examples of Node Level Testing Using a Loopback Node
Name with and without the Loopback Mirror

Examples of Node Level Logical Link Loopback Test
with and without the Loopback Mirror

Physical Link Loopback Tests and Command Sequences
Effecting Them

TABLES

NCP Commands

Network Management Line States
Line State Transitions

Line Service States, Substates and Functions and
Their Relationship to Line States
DECnet Line Devices

Line Parameters

Line Counters

Logging Parameters

Node Parameters

Node Counters

Event Classes

Events

Page
105
106
111
113
113
113
115
123
125
126

135

51
59
64
65

67

16
41
46

91
92

10l
103
113
114






1.0 INTRODUCTION

This document describes the structure, functions, operation, and
protocols of Network Management. Network Management is that part of
the DIGITAL Network Architecture that models the software that enables
operators and programs to plan, control, and maintain the operation of
centralized or distributed DECnet networks. DIGITAL Network
Architecture (DNA) is the model on which DECnet network software
implementations are based. Network software is the family of software
modules, data bases, hardware components, and facilities used to tie
DIGITAL systems together 1in a network for resource sharing,
distributed computation, or remote system communication.

DNA is a layered structure. Modules in each layer perform distinct
functions. Modules within the same layer (either in the same or
different nodes) communicate using specific protocols. The protocols
specified in this document are the Network Information and Control
Exchange (NICE) protocol, the Loopback Mirror protocol, and the Event
Receiver protocol.

Modules in different layers interface using subroutine calls or a
similar system-dependent method. In this document, interface
communications between layers are referred to as calls or requests
because this is the most convenient way of describing them
functionally. An implementation need not be written as calls to
subroutines. Interfaces to other DNA layers are not specified in
detail, however, Appendix I describes which Network Management user
commands (Network Control Program) support each DNA interface.

In this document network nodes are described by function as executor,
command, host, and target. The executor is an active network node
connected to one end of a line being used for a load, dump, or line
loop test and is the node that executes requests. The command node is
the node in which the Network Management request originates. The host
is a node that provides a higher level service such as a file system.
The target is a node that is to receive a 1load, 1loop back a test
message, or generate a dump. Executor, command, and host nodes may be
three different nodes, all the same node, or any combination of two
nodes. A glossary at the end of this document defines many Network
Management terms.

This document describes commands that can be standardized across
different DECnet implementations. An implementation may use only a

subset of the commands described herein. Moreover, commands and
functions specific to one particular operating system are not
described.

This document specifies the functional requirements of Network
Management. Both algorithms and operational descriptions support this
specification. However, an implementation is not required to use the
same algorithms. It is only required to have the functions (or a
subset of them) specified.



This is one of a series of functional specifications for the DIGITAL
Network Architecture, Phase 1III. This document assumes that the
reader is familiar with computer communications and DECnet. The
primary audience for this specification consists of implementers of
DECnet systems, but it may be of interest to anyone wishing to know
details of DECnet structure. The other DNA Phase III functional
specifications are:

DNA Data Access Protocol (DAP) Functional Specification, Version
5.6.8, Order No. AA-K177A-TK

DNA Digital Data Communications Message Protocol (DDCMP)
Functional Specification, version 4.1.9, Order No.
AA-K175A-TK

DNA Maintenance Operations Protocol {MOP) Functional
Specification, version 2.1.0, Order No. AA-KI/BA-TK

DNA Network Services (NSP) Functional Specification, Version
3.2.8, Order No. AA-KI76A-TK

DNA Transport Functional Specification, Version 1.3.0, Order No.
AA-KI80A-TK

DNA Session Control Functional Specification, Version 1.0.0,
Order No. AA-KIBZA-TK '

The DNA General Description (Order No. AA-K179A-TK) provides an
overview of the network architecture and an introduction to each of
the functional specifications.




2.0 FUNCTIONAL DESCRIPTION

Network Management enables operators and programs to control and
monitor network operation. Network Management helps the manager of a
network to plan its evolution. Network Management also facilitates
detection, isolation, and resolution of <conditions that impede
effective network use.

Network Management provides user commands and capability to wuser
programs for performing the following control functions:

1. Loading remote systems. A system in one node can down-line
load a system in another node in the same network.

2. Configuring resources. A system manager can change the
network configuration and modify message traffic patterns.

3. Setting parameters. Line, node, and logging parameters (for
example, node names) can be set and changed.

4. Initiating and terminating network functions. A system
manager or operator can turn the network on or off and
perform loopback tests and other functions.

Network Management also enables the user to monitor network functions,
configurations, and states, as follows:

1. Dumping remote systems. A system in one node can up-line
dump a system to another node in the same network.

2. Examining configuration status. Information about lines and
nodes can be obtained. For example, an operator can display
the states of lines and nodes or the names of adjacent nodes.

3. Examining parameters. Line and node parameters (for example,
timer settings, line type, or node names) can be read.

4. Examining the status of network operations. An operator can
monitor network operations. For example, the operator can

find out what operations are in progress and whether any have
failed.

5. Examining performance variables. A system manager can
examine the contents of counters in lower DNA layers to
measure network performance. In addition, Network
Management’s Event Logger provides automatic logging of
significant network events.

Besides controlling and monitoring the day-to-day operation of the
network, the .functions listed above work to collect information for
future planning. These functions furnish basic operations

{(primitives) for detecting failures, isolating problems, and repairing
and restoring a network.

2.1 Design Scope

Network Management functions satisfy the following design
requirements:

l. Common interfaces. Common interfaces are provided to
operators and programs, regardless of network topology or
configuration, as much as possible without impacting the



10.

guality of existing products. There is a compromise between
the compatibility of network commands across heterogeneous
systems and the compatibility within a system between network
and other local system commands.

Subsetability. Nodes are able to support a subset of Network
Management components or functions.

Ease of use. 1Invoking and understanding Network Management
functions are easy for the operator or user programmer.

Network efficiency. Network Management is both processing
and memory efficient. It is line efficient where this does
not conflict with other goals.

Extensibility. There is accommodation for future, additional
management functions, leaving earlier functions as a
compatible subset. This specification serves as a basis for
building more sophisticated network management programs.

Heterogeneity. Network Management operates across a mixture
of network node types, communication lines, topologies, and
among different versions of Network Management software.

Robustness. The effects of errors such as operator input
errors, protocol errors, and hardware errors are minimized.

Security. Network Management supports the existing security
mechanisms in the DIGITAL Network Architecture (for example,
the access control mechanism of the Session Control layer).

Simplicity. Complex algorithms and data bases are avoided.

Functions provided elsewhere 1in the architecture are not
duplicated.

Support of diverse management policies. Network Management
covers a range between completely centralized and fully
distributed management.

The following are not within the scope of Version 2.0.8 of Network
Management:

1.

Accounting. This specification does not provide for the
recording of usage data that would be used to keep track of
individual accounts for purposes of reporting on or charging
users.

Automation. This specification does not provide for
automatic execution of complex algorithms that handle network
repair or reconfiguration. More automation can be expected
in future revisions of this specification.

Protection against malicious use. There is no foolproof
protection against malicious use or gross errors by operators
or programs.

Upward compatibility of user interfaces. The interfaces to
the user layer are not necessarily frozen with this version.
Observable data may change with the next version. Because of
this, a function such as node-up keyed to a spooler in an
implementation would not be wise.



2.2 Relationship to DIGITAL Network Architecture

DIGITAL Network Architecture (DNA), the model wupon which DECnet
implementations are based, outlines several functional layers, each
with its own specific modules, protocols, and interfaces to adjacent
layers. Network Management modules reside in the three highest
layers.

The general design of DNA is as follows in order from the highest to
the lowest layer:

1. The User layer. The User layer is the highest layer. It
supports user services and programs. The Network Control
Program (NCP) resides in this layer.

2. The Network Management layer. The Network Management layer
is the only one that has direct access to each lower layer
for control purposes. Modules in this 1layer provide user
control over, and access to, network parameters and counters.
Network Management modules also perform up-line dumping,
down-line loading, and testing functions.

3. The Network Application layer, Modules in the Network
Application layer support I/0 device and file access
functions. The Network Management module within this layer
is the Loopback Mirror, providing 1logical 1link loopback
testing.

4. The Session Control layer. The Session Control layer manages
the system-dependent aspects of logical link communication.

5. The Network Services layer. The Network Services layer
controls the creation, maintenance, and destruction of
logical 1links, wusing the Network Services Protocol and
modules.

6. The Transport layer. Modules in the Transport layer route
messages between source and destination nodes.

7. The Data Link layer. The Data Link layer manages the
communications over a physical 1link, using a data link
protocol, for example, the Digital Data Communications
Message Protocol (DDCMP).

8. The Physical Link layer. The Physical Link 1layer provides
the hardware interfaces (such as EIA RS-232-C or CCITT V.24)
to specific system devices.

Figure 1 shows the relationship of the Network Management layer to the
other DNA layers.



User Moduies

User Layer

- e e e en am em am e = = e - eew Er e em e e s e W A En s AE oe s AR Es - e

Network Management Modules Network

Management Layer

__.._t.___ e mmm o -

Network Application Modules

Network
Application Layer

___..__..__..‘_.. ___.‘__.._.._ -—— - e = = - -

[ Emme— Session Control Moduies

i Session Control Layer
—-—————-——I——-—-——q-————— -—an em en O on -G o on W@y =

!

!

e ] Network Services Modules

Network Services Layer

- ew e ar s G @ s an A e en Em an e W e AR W e G W s G o a e W W @ o -

Transport Modules

Transport Layer

Date Link Modules

Data Link Layer

e an aE EaE e oe W G G WD an EE G G W EL PR G G D P S o @k S s SR G S Ee W e .

Ph i |
ysical Link Modules Physical Link Layer

i

Horrzontal arrows show direct access for control and examination of parameters, counters, etc. Vertical and curved arrows show nterfaces
between layers for normal user operations such as file access, down-hine load, up-line dump, end-10-end looping, and togical link usage.

Figure 1 Network Management Relation to DNA

2.3 Functional Organization within DIGITAL Network Architecture
The functional components of Network Management are as follows:

User layer components

Network Control Program (NCP). The Network Control Program
enables the operator to control and observe the network from a

terminal. Section 3 specifies NCP.
Network Management layer components

Section 4 specifies the Network Management layer components

their operation. Figure 2 shows the relationship of Network

Management layer modules in a single node.

Network Management Access Routines. These routines provide

programs and NCP with generic Network Management functions, and
either convert them to Network Information and Control Exchange
(NICE) protocol messages or pass them on to the Local Network

Management Function.



Network Management Listener. The Network Management Listener
receives Network Management commands from the Network Management

level of remote nodes, via the NICE protocol. In some
implementations it also receives commands from the local Network
Management Access Routines via the NICE protocol. It passes

these requests to the Local Network Management Function.

Local Network Management Functions. These take function requests
from the Network Management Listener and the Network Management
Access Routines and convert them to system dependent calls. They
also provide interfaces to 1lower level modules directly for
control purposes.

Line Watcher. The Line Watcher is a module in a node that can
sense service regqguests on a line from a physically adjacent node.
It controls automatically-sensed down-line load or up-line dump
requests.

Line Service Punctions. These provide the Line Watcher and the
Local Network Management Functions with line services needed for
service functions that require a direct interface to the data
link layer (line 1level testing, down-line loading, up-line
dumping, triggering a remote system’s bootstrap loader and
setting the 1line state). The Line Service module maintains
internal states as well as line substates.

Event Logger. The Event Logger provides the capability of
logging significant events for operator intervention or future
reference. The process concerned with the event (for example,
the Transport module) provides the data to the Event Logger,
which can then record it.

Network Application Layer Components
Loopback Mirror. Access and service routines communicate using
the Logical Loopback Protocol to provide node level loopback on
logical links. Section 5 describes this Network Application
layer component.

Object Types

The Network Management architecture requires three separate
object types. Each has a unique object type number.

The object types and numbers are:

Type Object Type Number
Netyork Management
Listener 19
Loopback Mirror 25
Event Receiver 26




-
OO0
N | |‘\
N
U
NCP ser
Program
I Dt i Yser Layer |
System- ™
Independent
Function
R s
Line eques
Watcher
Network ~ Network
Management 'F\’lrlc;‘tecol Network :‘r':tico Network Management
commands e — - - 222 Management |- == % Management e — — — —commands
10 other Access Routines Listener from other
nodes nodes
\
Local Network Management Functions
Events to
\ 1 other nodes
-— - j«t— — — Events from
. other nodes
Line Service Event L .
Functions o 0998
Network
Management
Layer
e o an e a= -— es o on o on en o o o o» @ o= o= - o o oo W o o = o S o
1 Lower Layers
Service interface to Data System-dependent calls to
Link Layer {down:-line application layer and local
load, up-line dump, line operating system functions
tests, line state change) (file access, logical link
loopback, timer setting, etc.)
Control over lower level <8~
functions (examine line Control interface to read
state, turn on NSP, etc.) event queues
LEGEND:
NCP — Network Control Program ‘ — Vertical arrowheads indicate interfaces for function requests
NICE ~ Network Information and
Control Exchange —= — Horizontal arrowheads indicate control interfaces

Figure 2 Network Management Layer Modules
and Interfaces in a Single Node



3.0 NETWORK CONTROL PROGRAM (NCP)

This section is divided into three parts. Section 3.1 describes the

NCP functions. Section 3.2 provides rules for the operation of NCP,
including such topics as input and output formatting, access control,
and status and error messages. Section 3.3 presents a detailed

description of all the NCP commands.

3.1 Network Control Program Functions
There are two types of NCP commands:

1. Internal commands. These are directed to NCP itself and
cannot be sent to remote nodes. These are the SET and DEFINE
EXECUTOR NODE node-id, CLEAR and PURGE EXECUTOR NODE, and
SHOW QUEUE commands; the TELL prefix; and the EXIT command
(Section 3.2).

2. Commands that use the Network Management interface. These
use the Network Management Listener, via the Network
Information and Control Exchange (NICE) protocol, when sent
across logical links to remote nodes. NCP commands directed
to the local node have the option of either using the Network
Management Listener, via the Network Management Access
Routines and the NICE protocol, or of passing requests
directly to the Local Network Management Function from the
Network Management Access Routines., The method chosen is
implementation~-specific.

The NCP command language enables an operator to perform the following
network functions:

e Changing parameters (Section 3.1.1)

e Gathering information (Section 3.1.2)

e Down-line loading (Section 3.1.3)

e Up-line dumping (Section 3.1.4)

e Testing line and network (Section 3.1.5)

@ Zeroing counters (Section 3.1.6)

3.1.1 Changing Parameters - The parameters are line, node, or logging
options specifically described in Appendix A.

Some examples of changing parameters are:
e Setting a line state to ON
e Changing a node name associated with a node address
@ Setting the routing cost for a line

® Setting a node to be notified of certain logged events



Parameters may be set either as dynamic values in volatile memory
using the SET command or as permanent values in a mass-storage default
data base using the DEFINE command. The volatile data base 1is lost
when the node shuts down; the permanent data base remains from one
system initialization to the next. Parameters can be either status,
such as 1line state, or characteristics that are determined by SET,
DEFINE, CLEAR, and PURGE commands. Characteristics are static in the
sense that once set, either at system dgeneration time or by an
operator, they remain constant until cleared or reset. Status
consists of dynamic information (such as line state) that changes
automatically when functions are performed.

Permanent values take effect whenever the permanent data base |is
re-read. The timing of the values’ taking effect is
implementation-dependent. Volatile values take effect immediately.

Setting line states does not change line ownership, which is Transport
or 1its equivalent. Line states can be set, however, to control the
use of the line by its owner. To Transport, the line is either OFF or
ON. To Network Management, a line can also be in a SERVICE state, a
state which precludes normal traffic, and which temporarily prevents
Transport from using the line. The SERVICE state is used for loading,
dumping, and line testing. The ON and SERVICE states have various
substates that inform the operator what function the 1line is
performing. When states are displayed, the substates are indicated as
a tag on the end of the operator-requested state.

3.1.2 Gathering Information - The information gathered includes
characteristics, status, and counters associated with the 1line,
logging, and node entities (detailed in Appendix A). Examples of
gathering information are:

Displaying the state of a line

® Reading and then zeroing line counters

e Displaying characteristics of all reachable nodes

e Showing the status of all commands in progress at a node
Characteristics and status are described in Section 3.1.1.

Counters are error and performance statistics such as messages sent

and received, time last zeroed, and maximum number of logical links in
use.

3.1.3 Down-line Loading - Down-line 1loading 1is the process of
transferring a memory image from a file to a target system’s memory.
This requires that the executor, the node executing the command, have
direct access to the line to the target. The file may be located at
another remote node, 1in which case the executor uses its
system-specific remote file access procedures. The executor supports
or has access to a data base of defaults for a load request. Section

4.2.1 describes the down-line load operation in the Network Management
layer.

3.1.4 Up-line pumping - Up-line dumping is the process of
transferring the dump of a memory image from a target system to a
destination file. Section 4.2.2 describes the up-line dump operation.

10



3.1.5 Testing Line and Network - Testing 1line and network can be
accomplished by message looping at both the line and node levels.
Testing regquires receiving a transmitted message over a particular
path that 1is 1looped back to the local node by either hardware or
software.

Node level testing uses logical links and normal 1line usage. The
lines 1involved are in the ON state, and the Session Control, Network
Services, and Transport layers are used.

puring line level testing, the line being tested is in the SERVICE
state; normal wusage 1is precluded. Network Management accesses the
pata Link layer directly, bypassing intermediate layers. Section
4.2.4 describes line and network testing.

3.1.6 Zeroing Counters - Using NCP, an operator can set line and node
counters to zero.

3.2 Network Control Program Operation
This section describes general rules concerning the operation of NCP.

The SET, DEFINE, CLEAR, and PURGE commands must successfully act on
either all parameters entered or on none of them. One parameter per
command is all that can be expected to take effect on any system,
although a system may allow some parameters to be grouped on the same
command.

3.2.1 Specifying the Executor - Since a command does not have to be
executed at the node where it is typed, the operator must be able to
designate on what node the command is to be processed. The operator
has two options for controlling this:

1. Specifying a default executor for a set of commands
2. Naming the executor with the commad

At NCP start-up time, the default executor is the node on which NCP is
running or the node that was previously defined with the DEFINE
EXECUTOR NODE command. The default executor is changed using the SET,
DEFINE, CLEAR, or PURGE EXECUTOR NODE commands (see Sections 3.3.1.2
and 3.3.2.1).

With any command, the operator can override the default executor by
specifying which node is to execute the command. This is accomplished
by entering "TELL node-identification" as a prefix to the command.
The specified node identification applies only to the one command and
does not affect the default executor or any subsequent commands.

11



3.2.2 Program Invocation, Termination, and Prompting - The way NCP is
invoked or terminated is system-dependent. If a name is used for the
program, it must be "NCP." The EXIT command terminates NCP.

The following rules apply to the initial NCP prompt:

For an NCP that accepts only a single outstanding command, the prompt
is always the same:

NCF>

For an NCP that accepts several outstanding commands where it |is
obvious that NCP is prompting, the prompt is:

#rix

For the multiple-outstanding-command case where it is not obvious that
NCP is prompting, the prompt is:

NCF #ri.e

In any case, n is the command’'s request number, which will identify
the output for the command.

An implementation that cannot integrate the request number with the
prompt, can display the reguest number when the command is accepted.

3.2.3 Privileged Commands - Network and system planners must
determine which commands should be limited to privileged users. The
exact determination of privilege 1is an implementation~dependent
function. Privilege is generally determined in a system-specific way
according to the privileges of the local user or the access control
provided at logical link connection time.

3.2.4 Input Formats - Command input 1is in the form of arguments
delimited by tabs or blanks. Either a single or multiple tab or blank
may be used to delimit arguments.

Null command lines. Null command 1lines will result in a command
prompt being re-issued.

Node identification and access control. Nodes are identified by
address or name. The primary identification is the address (a Session
Control requirement). The keyword EXECUTOR can be substituted for
NODE executor-node-identification. If a node identification
represents a node to be connected to, access control information may
be necessary or desired. If so, the access control follows the node
identification, the maximum length of each field being 39 bytes.
Specific systems may limit the amount of access control information
they will accept. The format is:

LOOP NODE
SET EXECUTOR NODE»node-id [USER user-id] {PASSWORD password] [ACCOUNT account]
TELL

where:
LOOP NODE node-id Is an NCP command used to initiate a node

loopback test (Section 3.3.6.2). The
access control applies only to the command.

12



SET EXECUTOR NODE node-id 1Is an NCP command used to set the node
identification and access control for the
default executor node (Section 3.3.1.1).
The access control prevails until changed
by another SET EXECUTOR command or a TELL
or LOOP NODE command.

TELL node-id Is an NCP command prefix used to pass one
command and access control information to a
specific node. The access control applies
only to that one command.

[USER user-id] Is access control information that provides
the identification of the user.

[PASSWORD password] Is access control information furnishing a
password.

{ACCOUNT account] Is access control information supplying an

account identification.
For example:
TELL EBOSS USER [211,1] PASSWORD secret ACCOUNT syz CLEAR KNOWN LINES
SET EXECUTOR NODE 97 ACCOUNT :yuz

String input. String input (every argument that is not a node name,
keyword or number) is defined by the executor node and the length
limitations of the NICE protocol. For consistency from one
implementation to another, the following rules apply to NCP’'s parsing
algorithm for these types of arguments:

e Implementations will provide both a transparent and a
non-transparent technique for specifying these arguments.

e The transparent technique will act on any string of characters
enclosed 1in gquotation marks ("XXXXX"). A quote within the
string will be indicated by a double quotation mark
(llxxx" llxxll) .

¢ The non-transparent technique will act on any string of
characters that does not contain blanks or tabs. An exception
to this occurs where it is possible to recognize syntactically
that blanks or tabs are not intended as delimiters.

Keywords. Implementations must accept keywords in their entirety.
However, the user may abbreviate keywords when typing them in. The
minimum abbreviation is system-specific.

The command formats specified in this document are to be the formats
used for NCP 1input. They may be modified only in the sense that
unsupported commands or options may be left out. It is permissible to
prefix a command with an identifier such as OPR NCP. However, this
prefix should not affect the remainder of the command syntax or
semantics. Optional system-specific guide words such as TO or FOR can
be added to NCP commands if they do not interfere with defined key
words.

The NCP command language does not use a question mark as a syntactic
or semantic element. The gquestion mark is left available for use
according to operating system conventions.

An implementation may recognize locally defined names for 1lines or
accept other non-standard line identifications as string inputs.

13



3.2.5 Output Characteristcs - The output format specified in this
document 1is to be considered the basic pattern for all NCP output.
Implementations may differ as long as common information 1is readily
identifiable. The following example shows three commands and their
resultant output. User-furnished information is underlined to
distinguish it from the program output.

#23-L0A0 NODE MANILA

$24>L,0AD NODE TOKYO

$25
REQUEST #2457 LOAD FAILEDy LINE COMMUNICATION ERROR
SHOW QUEUE
REQUEST #257% SHOW QUEUE
REQUEST
NUMBER EXECUTOR COMMAND STATUS
21 6 (HNGKNG) SHOW COMFLETE
22 6 (HNGKNG)Y SET COMFLETE
23 6 (HNGKNG) LOAD IN FROGRESS
24 6 (HNGRNG)Y LOAD FAILED
25 N/A SHOW IN PROGRESS
$26-

REQUEST #23,» LOAD COMFLETE

Passwords are not displayed. Instead, an ellipsis (...) indicates
that a password 1is set. Section 3.3.8 provides details concernlng
output for requested information (SHOW and LIST commands).

3.2.6 Status and Error Messages - Status and error messages inform
the NCP wuser of the consequence of a command entry. NCP gives each
command a request number, which it displays with status and error
messages. NCP displays status or error messages when the status of
the command changes as long as the user does not begin to type a new
command. The general form of status and error messages is:

REQUEST #n; f[entity,] command status [,error-message]

where:

n Is the command’s request number.

entity Is a specific entity described in Appendix A.

command Is a command indicator.

status Is the status of the operation, one of COMPLETE,
FAILED, or NOT ACCEPTED. If it is COMPLETE, there
is no error-message. If it 1is FAILED or NOT

ACCEPTED, there is an error-message.

error-message Is the reason for a failure.

Commands that act on plural entities (for example, SET KNOWN LINES)
have a separate status message for each individual entity and one for

the entire operation. 1In this case, each entity 1is identified with
1ts own status message.

14



In an NCP that allows only one command at a time, COMPLETE messages
are not displayed, and the reguest number is not included. An example
of output for a command that has failed follows:

LOAD FAILEDy LINE COMMUNICATION ERROR

NCP prints unrecognized return codes or error details as decimal
numbers. For example:

Recuest #5% SHOW failedy Management return $-34
SET FAILEDy rarameter not asrrlicabler detail #2300

Error messages are either those from the set of NCP error messages in

Appendix E, the NICE error returns in Appendix D or implementation
specific.

3.3 Network Control Program Commands

This section describes NCP commands.

The following symbols are used in NCP command syntax descriptions:

(] Brackets indicate optional input. In most cases
these are the entity parameters and entity

parameter options for a command.

UPPER CASE Upper case letters signify actual input, that is
keywords that are part of NCP commands.

lower case Lower case letters in a command string indicate
a description of an input wvariable, not the
actual input.

spaces Spaces between variables (not keywords) in a
command string delimit parameters.

hyphens Multi-word variables are hyphenated.

{1 Braces indicate that any of the enclosed

parameters is applicable.

<: This designates keywords or messages that may be
returned on a SHOW command. This is used in
Appendix I.

All NCP commands have the following common syntax:

command entity parameter-option(s)

where:

command Specifies the operation to be performed, such
as SHOW or LOAD.

entity Specifies the entity (component) to which the
operation applies, such as LINE or KNOWN
NODES.

parameter- Qualifies the command by providing further

option(s) specific information.

15



Table 1 lists the complete set of

document.
follow in the text.

NCP

Network Management interface.

commands
Details concerning options and explanations of each command
Appendix I lists the NCP commands supporting each

specified in this

Table 1
NCP Commands
Command Entity Parameter
SET EXECUTOR NODE destination-node
{DEFINE}
LINE line~-id ALL
{KNOWN LINES } CONTROLLER controller-mode
cosT cost
COUNTER TIMER seconds
DUPLEX duplex-mode
NORMAL TIMER milliseconds
SERVICE service-control
SERVICE TIMER milliseconds
STATE line-state
TRIBUTARY tributary-address
TYPE line~type

LOGGING sink-type
KNOWN LOGGING

* (NODE node-id}
KNOWN NODES

* %

EVENT event-list
KNOWN EVENTS

[source-qual]) [sink-node]

NAME sink-name
STATE sink-state
ADDRESS node-address
ALL

BUFFER SIZE
COUNTER TIMER
CPU

DELAY FACTOR
DELAY WEIGHT
DUMP ADDRESS
DUMP COUNT

DUMP FILE

HOST
IDENTIFICATION
INACTIVITY TIMER
INCOMING TIMER
LINE

LOAD FILE
MAXIMUM ADDRESS
MAXIMUM BUFFERS
MAXIMUM COST
MAXIMUM HOPS
MAXIMUM LINES
MAXIMUM LINKS
MAXIMUM VISITS

memory-units
seconds
cpu-type
number
number
number
number
file-id
node-id
id-string
seconds
seconds
line-id
file-id
number
number
number
number
number
number
number

Legend:

* EXECUTOR may be substituted for NODE node-id.

** The node-id with the LINE parameter is a name.
it can be either a name or address.

parameters,

! Used only with NODE node-id.

With all other

le6

(continued on next page)



Table 1 (Cont.
NCP Commands

)

Command Entity

Parameter

* {NODE node-
KNOWN NODES

id}

NAME
OUTGOING TIMER
(CONT.)
ROUTING TIMER
SECONDARY DUMPER
SECONDARY LOADER
SERVICE DEVICE
SERVICE LINE
SERVICE PASSWORD
SOFTWARE
IDENTIFICATION
SOFTWARE TYPE
STATE

node-name

seconds

RETRANSMIT FACTOR number
number

file-id

file-id

device-type

line-id

password

file-id

program-type
node-state

TERTIARY LOADER file-id
TYPE node-~type
CLEAR| EXECUTOR NODE
PURGE
INE line-id ALL

L
{KNOWN LINES

COUNTER TIMER

LOGGING sink-typ
KNOWN LOGGING

}

EVENT event-list
KNOWN EVENTS
NAME

[source-qual] [sink-node]

CLEAR * INODE node-1i
PURGE KNOWN NODES

’

ALL

COUNTER TIMER
CPU

DUMP ADDRESS
DUMP COUNT
DUMP FILE

HOST
IDENTIFICATION
INCOMING TIMER
LINE

LOAD FILE

NAME

OUTGOING TIMER

SECONDARY DUMPER
SECONDARY LOADER
SERVICE DEVICE

SERVICE LINE

SERVICE PASSWORD
SOFTWARE IDENTIFICATION
SOFTWARE TYPE

TERTIARY LOADER

node-id

TRIGGER NODE
line-id

VIA

[ [SERVICE] PASSWORD password]
1{via line-id]

(continued on next page)

17




Table 1 (Cont.)
NCP Commands

Command Entity Parameter
LOAD NODE node-id} [ADDRESS node-address)
{VIA line-id (CPU cpu-type]
[ FROM load-file]
[HOST node-id]
[NAME node-name]
[SECONDARY [LOADER] file-id)
[SERVICE DEVICE device-type]
[ [SERVICE] PASSWORD password]
[ SOFTWARE
IDENTIFICATION software-id]
[SOFTWARE TYPE program-type]
[TERTIARY [LOADER] file-id)
1 [vIAa line-id]
DUMP NODE node-id [DUMP ADDRESS number]
VIA line-id [DUMP COUNT number]
[SECONDARY [DUMPER] file-id]
[SERVICE DEVICE device-type]
[ [SERVICE] PASSWORD password]
[TO dump-file]
[VIA line-id]
LOOP LINE 1 ine-id} [COUNT count]
*{NODE node-id [WITH block~-type]
! [VIA length]
SHOW QUEUE
LIST ACTIVE LOGGING EVENTS {SINK NODE node-id}
SHOW {KNOWN LOGGING } STATUS KNOWN SINKS
LOGGING sink-type CHARACTERISTICS
UMMARY
(ACTIVE LINES ) HARACTERISTICS
ACTIVE NODES COUNTERS
EXECUTOR STATUS
1KNOWN LINES Y SUMMARY
KNOWN NODES
LINE line-id
LOOP NODES
LNODE node-namq
ZERO INE line-id COUNTERS
*] NODE node-id
KNOWN LINES
NOWN NODES
EXIT

3.3.1 SET and DEFINE Commands - These commands
permanent parameters.

base;

The

4.2.5 describes the change parameter operation.

18

modify
SET command modifies the volatile data
the DEFINE command changes the permanent data

volatile

base.

and

Section




The general form of the commands

{SET

{

{

DEFINE

Entity is one of the following:

E
L

XECUTOR
INE

} entity parameter

line-identification

LOGGING sink-type

N
K
K
K

ODE
NOWN LINES
NOWN LOGGING
NOWN NODES

node-identification

is:

Parameter is one (or more, if allowed by the implementation) of the
parameter options defined for the specified entity.

3.3.1.1 SET and DEFINE EXECUTOR NODE destination-node - The SET and
DEFINE EXECUTOR NODE commands, processed by NCP, change the executor
node for subsequent commands. Access control information may be
supplied as described in Section 3.2.4.

3.3.1.2 SET and DEFINE KNOWN Entity Commands - These commands set
volatile and permanent parameters for each one of the specified

entities known to the system.

SET

DEFINE

The format is:

} KNOWN plural-entity parameter

Plural entity is one of LINES, LOGGING or NODES.

The parameters are the same as for the SET and DEFINE entity

(Secti

plural-entity ALL has no meaning.

ons 3.3.1.3,

3.3.1.4,

and 3.3.1.5).

SET KNOWN plural-entity ALL

commands
DEFINE KNOWN
loads

However,

all permanent entity parameters into the volatile data base.

3.3.1.

SET

DEFINE

3 SET and DEFINE LINE Commands - These
and permanent line parameters for the line identified.

}vLINE line-id

ALL
CONTROLLER
COsT

COUNTER TIMER
DUPLEX

NORMAL TIMER
SERVICE
SERVICE TIMER
STATE
TRIBUTARY
TYPE

19

set volatile
The format is:

commands

controller-mode
cost

seconds
duplex-mode
milliseconds
service-control
milliseconds
line-state
tributary-address
line-type



where:
line-id

ALL

CONTROLLER controller-mode

COST cost

COUNTER TIMER seconds

DUPLEX duplex-mode

NORMAL TIMER milliseconds

Is as specified in Section A.l.

With SET, puts permanent line parameters
associated with the line in the volatile
data base. With DEFINE, creates a
permanent data base entry for one line.

Sets the controller mode for the line.
The values for controller mode are as
follows:

LOOPBACK This is for software
controlled 1loopback of the
controller.

NORMAL This is for normal controller
operating mode.

The command automatically turns the 1line
OFF before setting the mode and back to
the original state after.

Sets the routing line cost. The cost is a
decimal number in the range 1 to 25. The
cost parameter is a positive integer value
associated with using a line and is used
in the Transport routing algorithm
(Transport Functional Specification).

Sets a timer whose expiration causes a
line counter logging event. Table 7 lists
the line counters. These counters
constitute the data for certain logged
events (Table 12). The line counters are
recorded as data in the event and then
zeroed. Seconds is specified as a decimal
number in the range 1-65535.

Sets the hardware duplex mode of the line.
The possible modes are:

FULL Full-duplex
HALF Half-duplex

Specifies the maximum amount of time
allowed to elapse before a retransmission
is necessary. This is used for normal
operation of the line. Timing 1is
implementation-dependent. This timer
applies to the use of the data 1link
protocol (for example, DDCMP).

20



SERVICE service-control

SERVICE TIMER milliseconds

STATE line-state

Specifies whether or not the service
operations (loading, dumping, line
loopback testing) are allowed for the
line. The service-control values are as
follows:

ENABLED The line may be put into
SERVICE state and service
functions performed.

DISABLED The line may not be put into
SERVICE state and service
functions may not be
performed.

Specifies the maximum amount of time

allowed to elapse before a receive request
completes while doing service operations
on the line. Service operations are
down-line load, up-line dump, or line loop
testing. The timer wvalue is an integer
number in the range 1-65535. This timer
applies to the use of the service protocol
{for example, MOP).

Sets the line’s operational state at
executor node.
follows:

the
The possible states are as

ON The 1line 1is available to its
owner for normal wuse, with the
exception of temporary overrides
for service functions.

OFF The 1line is

network or network-related

software. The line is
functionally non-existent.

not wused by any

SERVICE This state applies only to the
volatile data base (SET command) .
The line is available for active
service functions: load, dump,
and 1line 1loop. The 1line can
provide passive loopback - direct
line software-looped testing
({Figure 8) - if no active service
function is in progress.

CLEARED This state applies
permanent data base (DEFINE
command). A line in this state
has space reserved in system
tables but has no other databases
or parameters in volatile memory.
This state is only applicable in
systems that can implement it.

only to the

If the line is set to its existing state a
null operation (NOP) results.

21



NOTE

An implementation may choose to effect
service functions in the ON state, as
temporary overrides to normal traffic.

In this

case, error messages must

clearly indicate when a 1line 1is in a
temporary service condition.

TRIBUTARY tributary-address Sets the physical tributary address of the

TYPE line-type

line. The tributary address is a decimal
number in the range 0-255. It reflects
the bit setting of the hardware
switch-pack for the tributary.

Sets up the 1line for the data link
protocol operation together with the
DUPLEX option. Line type is one of the
following:

POINT For a point to point line
CONTROL For a multipoint control
station

TRIBUTARY For a multipoint tributary

3.3.1.4 SET and DEFINE LOGGING Commands - This set of commands is
used to control event sinks (where events are logged) and event lists
(that control which events get logged). Appendix F specifies events.

The command format is:

SET
LOGGING sink-type
DEFINE

where:

sink-type

[sink~-node]

EVENT event-list [source-qual][sink-node]
KNOWN EVENTS [source-qual} [sink-node}
NAME sink-name

STATE sink-state

Is one of CONSOLE, FILE, or MONITOR.
Determines the ultimate sink for events.
Section A.2 specifies the sink-type format.

Specifies a node that receives events. It
is of the form:

SINK NODE node-id
or
SINK EXECUTOR

This option can either precede or follow
KNOWN EVENTS or EVENT event-list. The node
identification is specified in Section A.2.
If a sink node is not supplied, the default
is executor.

22



[source-qualifier]

EVENT event-list

NAME sink-name

KNOWN EVENTS

STATE sink-state

Selects a specific entity for certain event
classes. It has the form:

LINE line-id
or
NODE node-id

This option can either precede or follow
KNOWN EVENTS or EVENT event-list.

Enables the recording of the events
specified by the event 1list. The event
list consists of event class.event type(s).
The types (Table 12) are specified in
ranges using hyphens and in 1lists using
commas. For example:

’
14
’

Wild card notation indicates all types of
events for a particular class. For
example:

3.

Establishes device or file names for sink
types CONSOLE and FILE, respectively. It
specifies a process identification for a
MONITOR.

Enables the recording of all events known
to the executor node for the specified sink
node.

Controls the operation of the sink
specified by sink type. The possible
values of sink state are:

ON The sink is available for receiving
events.

OFF The sink is not available and any
events destined for it should be
discarded.

HOLD The sink is temporarily unavailable
and events should be gueued.

The following is an example of the SET LOGGING command:

SET LOGGING CONSOLE SINK NODE MANILA EVENT 4.2 LINE KDZ-0-1.4

23



{

3.3.1.5 SET and DEFINE NODE Commands - These commands set volatile or

permanent parameters

for a node.

for the executor node or for adjacent nodes.

for the command is:

SET
NODE node-id
DEFINE

where:

node~id

ADDRESS node-address

ALL

ADDRESS

ALL

BUFFER SIZE
COUNTER TIMER
CPU

DELAY FACTOR
DELAY WEIGHT
DUMP ADDRESS
DUMP COUNT

DUMP FILE

HOST
IDENTIFICATION
INACTIVITY TIMER
INCOMING TIMER
LINE

LOAD FILE
MAXIMUM ADDRESS
MAXIMUM BUFFERS
MAXIMUM COST
MAXIMUM HOPS
MAXIMUM LINES
MAXIMUM LINKS
MAXIMUM VISITS
NAME

OUTGOING TIMER
RETRANSMIT FACTOR
ROUTING TIMER
SECONDARY DUMPER
SECONDARY LOADER
SERVICE DEVICE
SERVICE LINE
SERVICE PASSWORD

SOFTWARE
IDENTIFICATION

SOFTWARE TYPE

STATE

TERTIARY LOADER

TYPE

Specifies node

(Section A.3).

below,

node name.

Sets the address
This
any other node.

With SET
associated

this
with

the permanent data base into the
With DEFINE
permanent data base

data base.

identified.

24

name

the node identification must
EXECUTOR can be substituted
for NODE executor-

Certain parameters can be set only

See Table 9. The format

node-~address

memory-units
seconds
cpu-type
number
number
number
number
file-~id
node-id
id-string
seconds
seconds
line-id
file-id
number
number
number
number
number
number
number
node-name
seconds
number
seconds
file-id
file-id
device-type
line-id
password

software-id
program-type
node-state
file-id
node-~type

address
noted
be a

node
cases,

or

In some

node-identification.

of the executor node.

cannot be used to set the address of

moves all parameters
the node identified from
volatile
creates a
the node

it
entry for



BUFFER SIZE memory-units

COUNTER TIMER seconds

CPU cpu-type

DELAY FACTOR number

DELAY WEIGHT number

DUMP ADDRESS number

DUMP COUNT number

DUMP FILE file-id

Sets the size of the 1line buffers. The
size 1is a decimal integer in the range
1-65535. This size 1is in memory units
(Appendix C). It 1is the actual buffer
size and therefore must take into account
such things as protocol overhead. There
is one buffer size for all lines.

Sets a timer whose expiration causes a
node counter logging event. Node counters
are listed in Table 180. They constitute
data for certain logged events (Table 12).
The node counters will be recorded as data
in the event and then zeroed. Seconds is
specified as a decimal number in the range
1-65535.

Sets the default target node CPU type for
down-line 1loading the adjacent node. The
possible values are:

PDP 8

PDP 11
DECSYSTEM 18
DECSYSTEM 20
VAX

Sets the number by which to multiply one
sixteenth of the estimated round trip
delay to a node to set the retransmission
timer to that node. The round trip delay
is wused in an NSP algorithm that
determines when to retransmit a message
(NSP functional specification). The
number is decimal in the range 1-255.

Sets the weight to apply to a current
round trip delay estimate to a remote node
when updating the estimated round trip
delay to a node. The number is decimal in

the range 1-255. On some systems the
number must be 1 less than a power of 2
for computational efficiency (NSP

functional specification).

Sets the address in memory to begin an
up-line dump of the adjacent node.

Determines the default number of memory
units to wup-line dump from the adjacent
node.

Sets the identification of the file to
write to when the adjacent node is up-line
dumped. The file 1identification 1is a
string that 1is interpreted depending on
the system where the file is.

25



HOST node-id

IDENTIFICATION id-string

INACTIVITY TIMER seconds

INCOMING TIMER seconds

LINE line-id

LOAD FILE file-id

MAXIMUM ADDRESS number

MAXIMUM BUFFERS number

Sets the identification of the host node.
For the executor, this is the node from
which it requests services. For an
adjacent node, it is a parameter that the
adjacent node receives when it is
down-line loaded. If no host is
specified, the default is executor node.

Sets the text identification string for
the executor node (for example, "Research

Lab"). The identification string 1is an
arbitrary string of 1-32 characters. 1If
the string contains blanks or tabs it must
be enclosed in guotation marks ("). A
quotation mark within a quoted string is
indicated by two adjacent gquotation marks
(Il") .

Sets the maximum duration of inactivity
(no data in either direction) on a logical
link before the node checks to see if the
logical 1link still works. If no activity
occurs within the maximum number of
seconds, NSP generates artificial traffic
to test the link (NSP functional
specification). The range is 1-65535.

Sets the maximum duration between the time
a connect 1is received for a process and
the time that process accepts or rejects
it. If the connect 1is not accepted or
rejected by the user within the number of
seconds specified, Session Control rejects
it for the user. The range is 1-65535.

Defines a 1loop node and sets the
identification of the line to be used for
all traffic from the node. Loop node
identification must be a node name. No
line can be associated with more than one
node name.

Sets the identification of the file to
read from when the node 1is down-line
loaded. The file identification 1is a
string that 1is interpreted depending on
the file system of the executor.

Sets the 1largest node address and,
therefore, number of nodes that can be
known about. The number is an integer in
the range 1-65535.

Sets the total number of buffers allocated
to all lines. In other words, it tells
Transport how big its own buffer pool is.
The count number is a decimal integer in
the range #-65535.

26



MAXIMUM COST number

MAXIMUM HOPS number

MAXIMUM LINES number

MAXIMUM LINKS number

MAXIMUM VISITS number

NAME node-name

OUTGOING TIMER seconds

RETRANSMIT FACTOR number

ROUTING TIMER seconds

SECONDARY DUMPER file-id

Sets the maximum total path cost allowed
from the executor to any node. The path
cost is the sum of the line costs along a
path between two nodes (Transport
functional specification). The maximum is
a decimal number in the range 1-1023.

Sets the maximum routing hops from the
node to any other reachable node. A hop
is the 1logical distance over a line
between two adjacent nodes (Transport
functional specification). The maximum is
a decimal number in the range 1-31.

Sets the maximum number of lines that this
node can know about. The number is a
decimal in the range 1-65535.

Sets the maximum active logical link count
for the node. The count is a decimal
number in the range 1-65535.

Sets the maximum number of nodes a message
coming into this node can have visited.
If the message is not for this node and
the MAXIMUM VISITS number is exceeded, the
message is discarded. The number 1is a
decimal in the range MAXIMUM HOPS to 255.

Sets the node name to be associated with
the node identification. Only one name
can be assigned to a node address or a
line 1identification. No name can be used
more than once in the node.

Sets a time-out value for the duration
between the time a connect is requested
and the time that connect is acknowledged
by the destination node. If the connect
is not acknowledged within the number of
seconds specified, Session Control returns
an error. The range is 1-65535.

Sets the maximum number of times the
source NSP will restart the retransmission
timer when it expires. If the number is
exceeded, Session Control disconnects the
logical link for the user (NSP functional
specification). The number is decimal in
the range 1-65535.

Sets the maximum duration before a routing
update 1is forced. The routing update
produces a routing message for an adjacent
node (Transport functional specification).
Seconds is a decimal integer in the range
1-65535.

Sets the identification of the secondary
dumper file for up-line dumping the
adjacent node.

27



SECONDARY LOADER file-id

SERVICE DEVICE device-type

SERVICE LINE line-id

SERVICE PASSWORD password

SOFTWARE IDENTIFICATION
software-id

SOFTWARE TYPE program-type

STATE node-state

TERTIARY LOADER file-~id

the
down-1line

Sets the identification of
loader file, for
adjacent node.

secondary
loading the

Sets the service device type that the
adjacent node uses for service functions
when in service slave mode (see Section
4.1.4.2). The device type is one of the
standard line device mnemonics.

Establishes the line to the adjacent node
for down-line loading and up-~line dumping.
Sets the default if the VIA parameter of

either the LOAD or DUMP commands is
omitted. When down line loading a node
(Section 3.3.4), the node identification

must be that of the target node.

Sets the password required to trigger the
bootstrap mechanism on the adjacent node.
The password is a hexadecimal number in
the range O-FFFFFFFFFFFFFFFF (64 bits).

Sets the identification of the software
that is to be 1loaded when the adjacent
node 1is down-line 1loaded. Software-~id

contains up to 16 alphanumeric characters.

Sets the initial target node software
program type for down-line 1loading the
adjacent node. Program type is one of:

SECONDARY [LOADER]
TERTIARY [LOADER]
SYSTEM

Sets the operational state of the executor

node. The possible states are:

ON Allows logical links.

OFF Allows no new links,
terminates existing 1links,
and stops routing traffic
through.

SHUT Allows no new logical 1links,
does not destroy existing
logical links, and goes to
the OFF state when all
logical links are gone.

RESTRICTED Allows no new incoming
logical links from other
nodes.

Sets the identification of the tertiary

loader file,
adjacent node.

for down-line 1loading the

28



TYPE node-type Sets the type of the node as one of the
following:

ROUTING Full routing node.
NONROUTING Node with no routing
capability.

PHASE 11 Phase II node.

3.3.2 CLEAR and PURGE Commands - These commands clear parameters from
the volatile and permanent data bases. The CLEAR command affects the
volatile data base; the PURGE command affects the permanent data
base. Not all parameters can be cleared individually. A cleared or
purged parameter or entity identification is the same as one that has
not been set or defined. The general form of the command is:

CLEAR
{ entity parameter
: PURGE

The entities are the same as for the SET and DEFINE commands (Section
3.3.1).

3.3.2.1 CLEAR and PURGE EXECUTOR NODE Commands -~ The CLEAR EXECUTOR
NODE command resets the executor to the node on which NCP is running.
Note that CLEAR EXECUTOR does not return the executor to that defined
in the permanent data base. The PURGE EXECUTOR NODE command redefines
the executor in the permanent data base as the 1local node. Access
control is reset as well.

3.3.2.2 CLEAR and PURGE KNOWN Entity Commands - These commands clear
and purge parameters for all of the specified entity known to the
system. The format of the command is:

CLEAR
KNOWN plural-entity parameter
PURGE
Plural entity is one of LINES, LOGGING or NODES.
Parameter is one or possibly more of the parameters associated with

the CLEAR and PURGE entity commands (Sections 3.3.2.3, 3.3.2.4, and
3.3.2.5).

3.3.2.3 CLEAR and PURGE LINE Commands - These commands clear line
parameters from the volatile and permanent data bases. The command
format is:

CLEAR
LINE Jine-id ALL

PURGE COUNTER TIMER

29



{

{

where

ALL

COUNT

3.3.2
conju
sinks

ER TIMER

.4 CLEAR and PURGE LOGGING Commands -~ These
with the
lists.

nction
and event

Clears all parameters associated with the
line identified and the line
identification itself from the volatile or
permanent data base.

Clears the timer that controls the

periodic logging of the line’s counters.
This implies that they are no longer to be
logged.

commands, in

SET and DEFINE LOGGING commands, control event
The

same general definitions (sink-node,

sink-type, and source-qualifier) that apply to the SET LOGGING command
(Section 3.3.1.4) apply here.

CLEAR
PURGE
where

EVENT

NAME

KNOWN

3.3.2

}- LOGGING sink-type

event-list

EVENTS

EVENT event-list
KNOWN EVENTS
NAME

[source-qual] [sink-node]
[source~gual] [sink-node]

Disables the recording of the events
specified by the event list
(event-class.event~-type). Appendix F
specifies events. Section 3.3.1.4 details
the format of the event 1list. The sink
node option turns off events for the
specified sink node. If no sink node is

specified, the EXECUTOR is assumed.

Clears the sink name assigned to the sink
type. The sink then becomes the default
for the specific system, either no sink or
some system-specific standard.

Disables the recording of all events known
to the executor node for the sink node.

.5 CLEAR and PURGE NODE Commands - These commands clear volatile
{(using CLEAR) or

permanent
Node identification can be either a
except for the

LINE option

(using PURGE) parameters for the node.
node name or a node address,

where it must be a name. EXECUTOR may

substitute for NODE executor-node-identification.

CLEAR

PURGE

} NODE node-id

ALL

COUNTER TIMER
CPU

DUMP ADDRESS
DUMP COUNT
DUMP FILE

HOST
IDENTIFICATION
INCOMING TIMER
LINE

LOAD FILE

30



where:

ALL
DUMP FILE
HOST

INCOMING TIMER

LINE
IDENTIFICATION

LOAD FILE

NAME
OUTGOING TIMER

SECONDARY DUMPER
SECONDARY LOADER

SERVICE DEVICE

SERVICE LINE

SERVICE PASSWORD
SOFTWARE IDENTIFICATION

SOFTWARE TYPE

TERTIARY LOADER

NAME

OUTGOING TIMER
SECONDARY DUMPER
SECONDARY LOADER
SERVICE DEVICE

SERVICE LINE

SERVICE PASSWORD
SOFTWARE IDENTIFICATION
SOFTWARE TYPE

TERTIARY LOADER

Clears all parameters associated with the
node identified.

Clears the identification of the file to
write ,to when the node is up-line dumped.

Clears the identification of the host
node.

Clears the node’s incoming timer.

Clears the loop node entry associated with
the line.

Clears the node’s identification string.
Clears the identification of the file to
read from when the node 1is down-line
loaded.

Clears the node name for the node.

Clears the node’s outgoing timer.

Clears the identification of the secondary
dumper file.

Clears the identification of the secondary
loader file.

Clears the service device type.

Clears the identification of the 1line
associated with the node-id specified for
the purposes of down-line 1load, up-line
dump, and line loop test.

Clears the password required to trigger
the bootstrap mechanism on the node.

Clears the identification of the target’s
initial load software.

Clears the identification of the target
node software program type for down-line
loading.

Clears the identification of the tertiary
loader file.

31



3.3.3
target
of an unattended system.
node

parameter options.
trigger operation.
TRIGGER {NODE node-id

VIA line-id

3.3.4 LOAD Command - This command initiates a down-line load.

are two variations.
with this command.
node address of

Sect
the

triggered locally.
loading.

3.3.4.1
line

target
conditions for trigger are met,

LOAD NODE Command - This loads the
identified or on the line obtained from the permanent data base.
Any parameter not specified in the command line defaults

TRIGGER Command - This command triggers the

node so that the node will load itself.
This command will work only
either recognizes the trigger operation with software or has
necessary hardware in the correct state.
Parameters specified with a command override
default parameters of the same

type.

[VIA

}

ion

node.
or if the

node

bootstrap of

the

It initiates the load

if the

The format of the command is:

node has

identified on

is specified in the permanent data base at the executor node.

LOAD NODE node-id

where:

[ADDRESS node-address])

[CPU cpu-type]

[FROM locad-file]l

[HOST node-id]

target

the
Section 3.3.4 describes the
the
Section 4.2.3 describes the
[[SERVICE] PASSWORD password]
line-id]
[[SERVICE] PASSWORD password])
There

3.3.4.1 describes the parameters used
Node identification is either the node name or the
This command works only if the
target
Section 4.2.1 describes the operation of down-line

been

the

to whatever
[ADDRESS node-address]
(CPU cpu-typel
[FROM load-file]
[BOST node-id]
[NAME node-name]
[SECONDARY [LOADER] file-id]
[SERVICE DEVICE device-type]
[[SERVICE] PASSWORD password]
[ SOFTWARE
IDENTIFICATION software~id]
[SOFTWARE TYPE program-typel
[TERTIARY [LOADER] file-id]
[via line-id]
Indicates the address the target node is
to use.
Indicates the target CPU type. The

possible values are:

PDP 8

PDP 11
DECSYSTEM 10
DECSYSTEM 20
VAX

Indicates the file from which to load.

Indicates the identification of the host
to be sent to the target node.

32



[NAME node-name]
[SECONDARY [LOADER]
file-id

[SERVICE DEVICE
device-type]

[[SERVICE] PASSWORD
password]

[SOFTWARE IDENTIFICATION
software-id]

[SOFTWARE TYPE
program-type]

[TERTIARY [LOADER]
file-id]

[VIA line-id]

3.3.4.2 LOAD VIA Command - With this

loads the target over

format is:

LOAD VIA line~id [ADDRESS
[CPU
[ FROM
[HOST
[NAME

[SECONDARY
[SERVICE DEVICE
[ [SERVICE] PASSWORD

the specified
identification from the permanent data base if necessary.

Specifies the name the target node is to
use.

Provides the identification of the
secondary loader file.

Indicates the device type that the target
node will use for service functions when

it is 1in service slave mode (see Section
4.1.4.2).

Supplies the boot password for the target
node. A hexadecimal number in the range

P-FFFFFFFFFFFFFFFF.

Provides the load software identification.
Software identification 1is up to 16
alphanumeric characters.

Indicates the target node software program
type. Program-type is one of:

SECONDARY [LOADER]

TERTIARY [LOADER]
SYSTEM

Provides the identification of the
tertiary loader file.

Indicates the line to load over.

command
line,

format, the executor
obtaining the node
The command

node-address]
cpu-typel
load-file]
node-id]
node-name]
file-id]
device-type]
password]

[LOADER]

[SOFTWARE IDENTIFICATION file-id]

[SOFTWARE TYPE
[TERTIARY

3.3.5

[LOADER]

DUMP Command - This

program-type]
file-id]

command performs an up-line dump.

Parameters not supplied default to those in the permanent data base at

the executor node (see Section 3.3.1.5).

follows:

DUMP NODE node-id [[DUMP] ADDRESS
( [DUMP] COUNT

[TO

[SECONDARY [DUMPER]
{SERVICE DEVICE

There are two variations, as

number]
number]
dump-file)
file-id]
device-type]

[ [SERVICE] PASSWORD password]

(VIA

line-identification]

33



DUMP VIA line-id ((DUMP] ADDRESS number]

( [DUMP] COUNT number]

{TO dump-file]
{SECONDARY [(DUMPER] file-id]
[SERVICE DEVICE device-type]

{{SERVICE] PASSWORD password]

3.3.6 LOOP Command - This command causes test blocks to loop back
from the specified line or node. It is limited by what the Loopback
Mirror and the passive looper can handle. There are two variations,
as described in the next two sections. Section 4.2.4 describes the
loop test operation.

When a loop test fails, the error message contains added explanatory
information, in the form either

UNLOOPED COUNT = n
or
MAXIMUM LOOP DATA = n

Where the unlooped count is the number of messages not yet looped when
the test failed and maximum loop data is the maximum length that can
be requested for the loop test data.

3.3.6.1 LOOP LINE Command - The line loop performs loopback testing
on a specific line, which is unavailable for normal traffic during the
test. The optional parameters can be entered in any order.
Parameters not specified default to their values in the permanent data
base at the executor node. The command format is as follows:

LOOP LINE line-id [COUNT count]
[WITH block-type]
[LENGTH length]
where:
LOOP COUNT count Sets the block count for loop tests. Count is an

integer in the range 6 to 65535.

LOOP LENGTH length Sets the 1length of a block for 1loop tests.
Length is an integer in the range @ to 65535.

LOOP WITH block-type Sets the block-type for loop tests. The possible
values for block-type are ONES, ZEROES or MIXED.

3.3.6.2 LOOP NODE Command - A node 1loop will not interfere with
normal traffic, but will add to the network load. The parameter
options available are the same as for the line loop (Section 3.3.6.1).
The node loop can take place within one node or between two nodes. 1In
the latter case, the remote node is the one specified (Figures 6 and
7, Section 4.2.4). EXECUTOR may be substituted for NODE
executor-node-identification.

34



3.3.7 SHOW QUEUE Command - This command displays the status of the
last few commands entered at the default executor. The number of
commands displayed varies with each implementation. The executor for
commands not sent across the network is shown as N/A (not applicable).
Completed commands need not be displayed. Every command in progress
must be shown in request number order. Implementations that do not
allow multiple outstanding commands do not need this command.

An example of output follows:

REQUEST #137 SHOW QUEUE

REQUEST

NUMERER E£XECUTOR COMMAND STATUS

9 6 (HNGKNG) LOALD FAILED

10 é (HNGKNG) SHOW COMFLETE

11 10 (MANILA) LOAD IN FROGRESS
12 6 (HNGKNG) SET COMFLETE

13 N/A SHOW IN FROGRESS

3.3.8 SHOW and LIST Commands - These commands are used to display
information. The SHOW command displays information from the volatile
data base. The LIST command displays information from the permanent
data base. The general command format is either:

SHOW
entity [information-type] [qualifiers]
LIST

or:

SHOW
{information-type] entity [qualifiers]
LIST

The entities are:

ACTIVE LINES
ACTIVE LOGGING
ACTIVE NODES
EXECUTOR

KNOWN LINES
KNOWN LOGGING
KNOWN NODES

LINE line-id
LOGGING sink-type
LOOP NODES

NODE node-name

KNOWN plural entities are all those known to the system, regardless of
state. ACTIVE plural entities are a subset of KNOWN as defined in the
glossary. When displaying plural nodes, the executor display is
returned first, if it is included. Any loop nodes are returned last.

The information types are:

CHARACTERISTICS
COUNTERS

EVENTS

STATUS

SUMMARY

35



Appendix A contains definitions of the information types. The tables
in Appendix A specify the information returned for each information
type on the SHOW command. The qualifiers vary according to the
specific entity, except one that is common to all entities that have
qualifiers:

TO alternate-output

This qualifier directs the output to an alternate output file or
device (for example, a disk file or a line printer) rather than the
default terminal display. The output is text in the same format it
would have on the terminal. The format of the alternate output
specification is system-dependent.

When there is no information to display in response to a SHOW command
display the phrase "no information" in place of the data.

3.3.8.1 Information Type Display Format - All of the SHOW and LIST
command information-type options have the same general output format.
The header of that format is:

REQUEST #n; entity information-type AS OF dd-mon-yy hh-mm
For example:
REQUEST #2137 KNOWN LINES STATUS AS OF 8-JUL-79 10355
REQUEST #43# EXECUTOR NODE CHARACTERISTICS AS OF 10-SEF-79 10:56

REQUEST #4573 KNOWN NODES SUMMARY AS OF 10-SEF-79 10157

The requested information follows the header. The general format of
the information is:

entity-type = entity-id
data

If the entity type is NODE, then one of EXECUTOR, REMOTE, or LOOP must
precede it.

This information format repeats for each individual entity. A SHOW or
LIST command with no information type should default to SUMMARY.

3.3.8.2 Counter Display Format - Counters are identified by standard
type numbers as defined in Tables 7 and 10, Appendix A, Counters are

displayed in ascending order by type. The display format for counters
is:

value description[, INCLUDING:]
qualifier-1

qualifier-n
The value is the value of the counter, up to 18 digits for a 32-bit

counter. It is a decimal number with no leading zeros. Zero values
distinguish the case of no-counts from the case where a counter is not

36



kept. If the counter has overflowed, it is displayed as the overflow
value minus one, preceded by a greater-than sign. For example, an
overflowed 8-bit counter would be displayed as ">254."

The description is the standard text that goes with the counter type
as defined in Tables 7 and 18. 1If the counter type is not recognized,
the description "COUNTER #n" is used, where n 1is the counter type
number .

If the counter has an associated bit map, the word "including" |is
appended to the description, with a list of qualifiers. A qualifier
is the standard text for the bit position in the bit map. A qualifier
is displayed only 1if the corresponding bit is set. If the standard
text for the bit is not known, the qualifier "QUALIFIER #n" is used,
where n is the bit number.

For example:
REQUEST #21% LINE COUNTERS AS OF 20-FEB-79 15:29
LINE = DUF-6
532 ARRIVING FACKETS RECEIVED

416 DEFARTING FACKETS SENT
0 ARRIVING CONGESTION LOSS

400 TRANSIT FACKETS RECEIVED
353 TRANSIT FACKETS SENT
45 TRANSIT CONGESTION LOSS

52379 BYTES RECEIVED
41640 BRYTES SENT
263 DATA BLOCKS RECEIVED
423 DATA BLOCKS SENT
S DATA ERRORS INBOUND» INCLUDING:
NAK’S SENT REF RESFONSE
0o IATA ERRORS OUTEBOUNL

3.3.8.3 Tabular and Sentence Formats - Non-counter information
permits two general formats. The first is easier to scan, the second
is more extensible. The first is a tabular form, with each individual
entity fitting on one line under a global header. Using this form,
unrecognized parameter types are more clumsily handled and the amount

of information per individual entity is limited to what will fit on
" one output line. The second is a sentence form. It adapts easily to
a large number of parameters per individual entity and readily handles
unrecognized parameter types.

In either form, the order of parameter output is the same in all
implementations, even though 1in a particular implementation, some

parameters may be unrecognized. The output format for unrecognized
parameters is:

PARAMETER #n = value

where n is the decimal parameter number and value is the parameter
value, formatted according to its data type.

Appendix A describes parameter types and their output order. In the
sentence form of output, parameters that are 1logically grouped
together should appear on the same line. Appendix A details these
logical groupings.

37



The general output format of the data for tabular form is:
entity-type parameter-type parameter-type...

entity-id parameter-value parameter-value...

An example of output of the data in tabular form follows:

REQUEST #3973 KNOWN LINES STATUS AS OF 18-SEF-78 15:20

LINE STATE ADJACENT NODE
DMC-1 ON 4 (BOSTON)
DMC-3 OFF

DL-0 ON-LOADING 12

If NCP did not recognize an adjacent node parameter, the output would
specify the type number of the parameter and the value according to
the parameter data type. (See Tables 6 to 186, Appendix A, for type
numbers.)

The general output format of the data for sentence form is:

entity~type entity-id

par~-type = par-value, par-type = par-value, ...
par-type = par-value, ...

An example of output of the data for sentence form follows.
REQUEST #39% KNOWN LINES STATUS AS OF 18-SEFP-78 15:20

LINE = DMC-1

STATE = ONsy ADJACENT NOLDE = 4 (BOSTON)
LINE = DMC-3

STATE = OFF
LINE = DL-O

STATE = ONy ADJACENT NODE = 12

The output format for the logging entity differs in the event display.
For example, for the following command:

SHOW LOGGING CONSOLE SUMMARY KNOWN SINKS

38



A correct output would be

Loddindg Summary a3s of 7-MAR-79 10155

Logd4ing CONSOLE

3.3.8.4

State = ONy NAME = CO0O:

Sink rode = 15 (HALDIR)s EVENTS =
00076
Lirne KDZ-0-1.3y 3.6-7
306"13

Sinmk. node = 16 (EOQOWYN),» Events =

0.0
Line KDZ-0-1.3y 6.0-1

Restrictions and Rules on Returns - The following

restrictions and rules apply to returns on SHOW and LIST entity
information type commands.

1.

3.3.9

Node parameters. The parameters displayed for the SHOW and
LIST NODE commands depend on which node is specified. Table
8, Appendix A, indicates these restrictions. The keywords
EXECUTOR, REMOTE or LOOP must precede NODE in a display of a
node to clarify what is displayed.

Line states. The returns on the SHOW and LIST LINE STATUS
commands must show the line substate as well as the state.
Table 2, following, lists line states and substates. Table
3, following, 1lists all the possible line state transitions
and their causes.

Loop nodes. Information for a single loop node 1is returned
when requested by the 1loop node name. Information for
multiple loop nodes is returned at the end of the display for
KNOWN or ACTIVE NODES. 1t is the exclusive display for LOOP
NODES.

Counters. COUNTERS can only be displayed with the SHOW
commands, and with line or node entities.

Events. EVENTS applies only to the 1logging entity. Sink
node identification must be address and name (if a name
exists), even for the executor.

ZERO Command ~ This command causes a specified set of counters

to be set to zero. The command generates a counters zeroed event that
causes counters to be logged before they are zeroed. The counters

zeroed

are those the executor node supports for the specified entity.

The command format is:

ZERO

NODE node-id

LINE line-id [COUNTERS]
KNOWN LINES

KNOWN NODES

39



3.3.18 EBXIT Command - This command terminates an NCP session.

Table 2

Network Management Line States

State Substate Meaning
OFF none Line not usable by anything
ON running Line in normal use by owner
-STARTING Line in owner (Transport)
initialization cycle
-REFLECTING Line in use for passive (direct
line-software looped) loopback
-AUTOSERVICE Line reserved for Line Watcher
use
-AUTOLOADING Line in use by Line Watcher for
load
-AUTODUMPING Line in use by Line Watcher for
dump
-AUTOTRIGGERING Line in use by Line Watcher for
trigger
~LOADING Line in use by operator for load
-DUMPING Line in use by operator for dump
~-LOOPING Line in wuse by operator for
active line loopback
-TRIGGERING Line 1in use by operator for
trigger
SERVICE idle Line reserved by operator for
active service function
-REFLECTING Line in use for passive (direct
line-software looped) loopback
-LOADING Line in use by operator for load
-DUMPING Line in use by operator for dump
-LOOPING Line 1in use by operator for
active line loopback
-TRIGGERING Line 1in use by operator for

trigger

40




Table 3

Line State Transitions

0ld State New State Cause of Change

Any OFF Operator command, SET LINE
STATE OFF

OFF ON-STARTING Operator command, SET LINE
STATE ON

SERVICE Operator command, SET LINE

STATE SERVICE

ON ON-STARTING Data Link

restarted by
Transport (from either end)

ON-REFLECTING

Line loopback message
received from remote system

ON-AUTOSERVICE

Service request received by
Line Watcher

ON-LOADING Operator command, LOAD
ON-DUMPING Operator command, DUMP
ON-LOOPING Operator command, LOOP LINE

ON-TRIGGERING

Operator command, TRIGGER

SERVICE Operator command, SET LINE
STATE SERVICE
ON-STARTING ON Transport initialization
complete
ON-REFLECTING Line loopback message

received from remote system

ON-AUTOSERVICE

Service request received by
Line Watcher

ON-LOADING Operator command, LOAD
ON-DUMPING Operator command, DUMP
ON-LOOPING Operator command, LOOP LINE

ON-TRIGGERING

Operator command, TRIGGER

SERVICE

Operator command, SET LINE
STATE SERVICE

ON-REFLECTING

ON-STARTING

Passive line
terminated

loopback

ON-AUTOSERVICE

Service request received by
Line Watcher

41

(continued on next page)




Table 3 (Cont.)
Line State Transitions

0ld State New State Cause of Change
ON-REFLECTING ON-LOADING Operator command, LOAD
(CONT.)
ON~DUMPING Operator command, DUMP
ON~LOOPING Operator command, LOOP LINE
ON-TRIGGERING Operator command, TRIGGER
SERVICE Operator command, SET LINE
STATE SERVICE
ON-AUTOSERVICE ON-STARTING Line released by Line
Watcher
ON-AUTOLOADING Load initiated by Line
Watcher
ON-AUTODUMPING Dump initiated by Line
Watcher
ON-AUTOTRIGGERING |Trigger initiated by Line

Watcher

ON-AUTOLOADING

ON-AUTOSERVICE

Load complete

ON-AUTODUMPING

ON-AUTOSERVICE

Dump complete

ON-AUTOTRIGGERING

ON-AUTOSERVICE

Trigger complete

ON-LOADING ON~STARTING Load complete
ON-DUMPING ON-STARTING Dump complete
ON-LOOPING ON~STARTING Active line loop complete
ON-TRIGGERING ON~STARTING Trigger complete
SERVICE SERVICE-REFLECTING |[Line loopback message
received from remote system
SERVICE-LOADING Operator command, LOAD
SERVICE-DUMPING Operator command, DUMP
SERVICE-LOOPING Operator command, LOOP LINE
SERVICE-TRIGGERING |Operator command, TRIGGER
SERVICE ON-STARTING Operator command, SET LINE
STATE ON

42

{(continued on next page)




Table 3 (Cont.)
Line State Transitions

0ld State New State Cause of Change
SERVICE-REFLECTING | SERVICE Passive line loopback
complete
SERVICE-LOADING Operator command, LOAD
SERVICE-DUMPING Operator command, DUMP
SERVICE-LOOPING Operator command, LOOP LINE
SERVICE-TRIGGERING | Operator command, TRIGGER

SERVICE-LOADING SERVICE Load complete
SERVICE-DUMPING SERVICE Dump complete
SERVICE-LOOPING SERVICE Active line loop complete
SERVICE-TRIGGERING | SERVICE Trigger complete

43




4.8 NETWORK MANAGEMENT LAYER

This layer, the heart of Network Management, contains the modules and
data bases providing most of the functions requested by Network
Control Program (NCP) commands. The Network Management layer also
provides automatic event-logging and an interface to user programs for
network control and information exchange. Section 4.1 describes the
Network Management modules. Section 4.2 outlines the operation of the
functions associated with each Network Information and Control
Exchange (NICE) message, including algorithms for implementation.
Section 4.3 details the Network Management layer message formats as

well as NICE connect and accept data formats and the Event message
binary data format.

4.1 Network Management Layer Modules

This section describes the Network Management layer modules (Figure 2)
and some of the algorithms for implementing them.

4.1.1 Network Management Access Routines and Listener ~ The Network
Management Access Routines receive NICE commands from the Network
Control Program (NCP) and user programs. Network Management Access
Routines pass NICE messages to the remote or local Network Management
Listener via logical links. They also pass local function requests to
the Local Network Management Functions. The Network Management
Listener receives NICE command messages via logical 1links from the

Network Management Access Routines in the 1local node or in other
nodes.

The method used for processing Network Management functions within a
single node 1is implementation-dependent. The Network Management
Access Routines can pass all local function requests to the Local
Network Management Functions. Alternatively, the access routines can
pass NICE messages to the Network Management Listener via a 1logical
link. The latter method cannot be used for functions, such as turning
the network on, that occur before a logical link is possible.

4.1.2 Local Network Management Functions ~ The Local Network

Management Functions receive the following types of requests from
other modules:

® System-independent function requests from the local NCP via
the Network Management Access Routines.

® NICE function requests from other nodes via the Network
Management Listener.

® NICE function requests from the local node via the Network
Management Listener.

® Automatically-sensed service requests from the Line Watcher.

The Local Network Management Functions have the following interfaces
to other modules or layers:

e Line Service Functions. The Local Network Management

Functions have a control interface to the Line Service
Functions for setting and changing 1line states. The Local

44



Network Management Functions have a "user" interface to the
Line Service Functions for handling functions that are
necessary for service functions (such as up-line dumping,
down-line loading, and line level testing) to be performed.

® Control interfaces to lower layers. The Local Network
Management Functions interface with lower layers directly for
control and observation of lower level counters and
parameters. An example of such an interface is examining a
node counter.

® Function requests to 1lower 1layers and to local operating
system. The Local Network Management Functions pass such
function requests as file access, node level 1loopback, and
timer setting to the application layer or to the local
operating system in the form of system-dependent calls.

® Event logging. The Local Network Management Functions
interface with the Event Logging module in order to set event
logging parameters that control such things as which events
are logged and at what sink node they are logged.

Section 4.2 supplies algorithms for handling Network Management
function requests.

4.1.3 Line Watcher - The Line Watcher module senses data 1link level
service requests to wup-line dump or load coming on a line from an
adjacent node.

The Line Watcher senses a request by calling the Line Service
Functions. Using parameters from that message, the Line Watcher then
determines the request type and calls the Local Network Management
Functions to accomplish the request.

The algorithm for implementing the Line Watcher is as follows:

Call Line Service Functions to get l.ine Service reauest for line
IF Line Service requested

Set line state to ON-AUTOSERVICE (Local Network Management

Functions)

Determine function needed

Call Network Management Functions to rerform needed function(s)

Reset line state to ON (Local Network Management Functions)
ENDIF

Section 4.2.5 describes the algorithms for settlng and resetting 1line
states for the Line Watcher.

4.1.4 Line Service Functions - The Line Service Functions provide
Local Network Management Functions with line state changing and line
handling services. They are used for functions requiring a direct
interface to the Data Link layer. The functions that use the Line
Service Functions are:

® Down-line load (Section 4.2.1)

® Up-line dump (Section 4.2.2)

® Trigger bootstrap (Section 4.2.3)

45



® Line test (Section 4.2.4.2)
1. Active at the executor node
2. Passive at the target node (for unattended system)
® Set line state (Section 4.2.5)
The Line Service Functions provide the following services:

® Condition a node to be dumped, loaded or have a loopback
per formed. This state

test
of the target node is called service

slave mode, a mode in which the entire processor 1is taken
over. Control rests with the executor.

® Notify a higher level that active line services (load, dump)
are needed.

® Provide transmit/receive interface to higher level for active

line services.

4.1.4,1 States and Substates - To arbitrate the use of the line, Line
Service Functions maintain states and substates. Table 4, following,
shows these as well as corresponding 1line states and substates
displayed with the NCP SHOW LINE STATUS command. Table 4 also shows

related Line Service functions.

The line can go from any substate to service slave mode.

Table 4
Line Service States, Substates and Functions and
Their Relationship to Line States

Line Line Line Service

Line Line Service | Service Function in

State Substate State Substate Progress or Allowed

ON passive | idle Pass message to
higher level

ON -STARTING passive | idle Pass message to
higher level

ON -REFLECTING passive | reflecting | Passive loopback

ON ~LOADING open loading Receive and
transmit loading
messages

ON ~DUMPING open dumping Receive and
transmit dumping
messages

ON -TRIGGERING open triggering | Receive and
transmit triggering
messages

46

(Continued On Next Page)




Line Service States,

Table 4

(Cont.)
Substates and Functions and

Their Relationship to Line States

Line Line Line Service

Line Line Service | Service Punction in

State Substate State Substate Progress or Allowed

ON ~LOOPING open looping Receive and
transmit looping
messages

ON -AUTOSERVICE closed idle Pass message to
higher level

ON ~REFLECTING closed reflecting | Passive loopback

ON -AUTOLOADING open loading Receive and
transmit loading
messages

ON -AUTODUMPING open dumping Receive and
transmit dumping
messages

ON -AUTOTRIGGERING | open triggering | Receive and
transmit triggering
messages

SERVICE closed idle Pass message to
higher level

SERVICE | -REFLECTING closed reflecting | Passive loopback

SERVICE | -LOADING open loading Receive and
transmit loading
messages

SERVICE | ~DUMPING open dumping Receive and
transmit dumping
messages

SERVICE | -TRIGGERING open triggering | Receive and
transmit triggering
messages

SERVICE | -LOOPING open looping Receive and
transmit looping
messages

OFF off idle -

47




4.1.4.2 priority Control - The Line Service Functions must make sure
that higher priority functions take over, and that lower priority
functions are resumed when higher priority functions are complete.
The priorities are as follows from highest (1) to lowest (5):

1. Enter service slave mode (MOP primary mode) for passive line
loopback, receiving down-line load, sending up-line dump, and
transferring control. Control rests with the executor node.
Some implementations may require hardware support.

2. No line operation (off state). 1In some implementations, this
is the first priority.

3. Active service functions (send down-line load, trigger
bootstrap, receive up-line dump, perform active 1line
loopback).

4. Passive line loopback.

5. Normal operation (line available for use by owner).

4.1.4.3 Line State Algorithms - The algorithms that follow are a
model for implementation of the Line Service states. If these
algorithms are followed, the proper state transitions will take place.
The algorithms refer to Data Link maintenance mode. This is a Data
Link layer mode (DDCMP functional specification).

Set line state to off:

Call Data Link to halt line
Set substate to idle

Set line state to passive:

IF line state is off or closed
IF substate is not reflecting
Set substate to idle
ENDIF
ELSE
Fail
ENDIF

Set line state to closed:

IF line state is offy pPassiver Or oren

IF line state is off or rassive and substate is not reflecting
Call Data Link to set line mode to maintenance

Set substate to idle

ENDIF
ELSE

Fail
ENDIF

48



Set line state to open:

4.1.4.4

IF line state is rassive or closed

Call Data Link to set line mode to maintenance

IF substate is reflectind

Terminate rassive loorback

ENDIF

Record substate asccordind to oren rarameter
ELSE

Fail
ENDIF

NOTE

The Data Link call to set the line mode
to maintenance is a single operation
that will succeed regardless of the
state in which Data Link has the line
when the call is issued.

Line Handling Functions - The line handling services of the

Line Service Functions and the algorithms for implementing them

follow.
1.

Handling line in passive state (for entering service slave
mode, passive loopback and passing message to a higher
level):

WHILE line state is rassive

Call Dhata Link to see if line mode has dgone to maintenance
IF line mode has done to maintenance
Call bata Link to receive the service messade
IF enter service slave mode messade
Enter service slave mode
ELSE IF loor data messade
Ferform #assive loorback aldorithm
ELSE IF loored data messade
Idnore
ELSE
On reauestr rass messadge to hidgher level
ENDIF
IF line state is still rassive
Call Data Link to halt line
ENDIF
ENDIF
ENDWHILE

Handling line in closed state (for entering service slave
mode and performing passive loopback):

WHILE line state is closed
Call Data Link to receive messade
IF enter service slave mode messade
Enter service slave mode
ELSE IF loor data messade
Ferform rassive loorback aldorithm
ENDIF
ENIWHILE

49



3. Handling line in open state (for entering service slave mode,
receiving a message, and transmitting a message):

WHILE line state is oren
IF transmit reauested
Call Data Link to transmit messade
ELSE IF receive reauested
IF data overrun recorded
Return data overrun error
ELSE
Fost receive reauested
ENDIF
ENDIF
Call Data Lirk to receive messade
IF enter service slave mode messade
Enter service slave mode
ELSE
IF receive rosted
Return messade
ELSE
Record data overrun
ENDIF
ENDIF
ENIWHILE

4. Handling passive line loopback (passive at the remote or
target node):

(Initial messade already received)
Set substate to reflecting
WHILE substate is reflectind
IF loor data messade
Call Data Link to transmit loored datas messade with received da'
Call Data Link to receive 3 messade
IF timeout or start received or error or loorback terminated
Set substate to idle
ENDIF
ELSE
Set substate to idle
ENDIF
ENDWHILE

4.1.5 Event Logger - This module, diagrammed in Figure 3, following,
records events that may help maintain the system, recover from
failures, and plan for the future. Events originate in each of the
DNA layers. Appendix F describes the specified events and
corresponding event parameters. A system manager controls event
recording with the SET LOGGING EVENT event-list command (Section
3.3.1.4). The event list entered may require the Event Logger to
filter out the recording of certain events.

S0



Event
Monitor

[}

-------.------------—------- -— e
Network Management Layer
..... 8 Event
from Event Event Event (E;‘Oﬂl Monitor
Transmitters Receiver - Recorder ue Interface
------ L
Event
processed events Queue
Event Event
Event Queus C !
Processor L/-
Event Filters Event Event T
Queue Transmitter
Event to Event
Queue . . Recsivers
raw events Event Event .
Queue Transmitter
R ., G - e o --—-----------------------
Applications Layer
Event
Queue las——— raw events
- e er e on GE oree o GD P GF G W) G W G) GE G G Gp GE G G SR G G an o @ G -
Session Control Layer
E:"": raw events
—-————-—-—1.—-----————-————------
Network Services Layer
- ;‘;’"' La————raw events
eue
-----------.---------------------
Transport Layer
;::: hap——— raw events
-----------.—--------------------
Data Link Layer
g:: ———raw events
----------.---------------------
Physical Link Layer
g:: jt———raw events
Figure 3 Event Logging Architectural Model

51



DECnet Event Logging is specified to meet the following goals:

e Allow events to be logged to multiple sink nodes including the
source node.

e Allow an event to be logged to multiple logging sinks on any
sink node.

e Allow the definition of subsets of events for a sink on a node
by event type and source node.

Include the following 1logging sinks: console, file, and
monitor program,

e Allow sharing of sinks between network event logging and local
system event logging.

e Minimize processing, memory, and network communication
required to provide event logging.

® Never block progress of network functions due to event logging
performance limitations.

Minimize loss of event logging information due to resource
limitations.

® Record loss of event 1logging information due to resource
limitations.

e When required due to resource limitations, discard newer
information (which can often be regained by checking current
status) in favor of older.

Minimize impact of an overloaded sink on other sinks.

Standardize content and format of event logging information to
the extent practical, providing a means of handling system
specific information.

e Allow independent control of sinks at sink node, including

sink identification and sink state. Sink states include use

of sink, non-use of sink, and temporary unavailability of
sink.

4.1.5.1 Event Logger Components - As shown in Figure 3, the Event
Logger consists of the following components, described in this
section:

® Event queue

® Event processor

® Event transmitter

Event receiver

e Event recorder

® Event console

e Event file

e Event monitor interface
e Event monitor

52



Event queue -- There are several event queues (Figure 3). Each one
buffers events to be recorded or transmitted, and controls the filling
and emptying of the queue.

An event queue component has the following characteristics:
e It buffers events on a first-in-first-out basis.
e It fills a queue with one module; empties it with another.

e It ensures that the filling module does not see an error when
attempting to put an event on the queue.

Since event queues are not of infinite length, events must be 1lost.
The filling module must record the loss of an event as an event, not
as an error because of the third characteristic above. This event is
called an "events-lost" event. An implementation requires the
following algorithm at each event queue:

IF equeue is full
Discard the event
ELSE IF this event would fill the aueue
Discard the event
IF last event on aueue is not "events-lost®
Queue an ‘events-lost® event (which fills the aueue)
END IF
ELSE
Queue the event
ENDIF

The event gqueue component handles "events-lost" events according to
the following rules.

l. Consider such events "raw" for raw event queues and
"processed" for processed event queues.

2., Flag such events for the sink types of the lost events.
3. Time stamp such events with the time of first loss.

4. Filter such events only if all events for the gqueue are also
filtered.

Event Processor -- This component performs the following functions:

1. Scans the lower level event gueues, collecting raw event
records.

2. Modifies raw events into processed events. Raw events
contain the following fields:

EVENT CODE ENTITY IDENTIFICATION DATA

Processed events contain the following fields:

EVENT SOURCE SINK ENTITY DATE AND
CODE NODE FLAGS | NAME TIME STAMP DATA
ID

53



3. Compares the processed events with the event filters for each
defined sink node, including the executor. Following are the
characteristics of the filters used to control event logging:

® The event source node maintains all filters.

® Each event sink node has a separate set of filters at the
source node.

® Each sink node set of filters contains a set of filters
for each sink (monitor, file, or console).

e Each sink node set of filters contains a set of global
filters, one global filter for each event class. It also
contains one or more specific filters, each for a
particular entity within an event class.

@ Each filter contains one bit for each event type within
the <class. The bit reflects the event state. SET if the
event is to be recorded, CLEAR if it is not.

® The filtering algorithm sees first if there is a specific
filter that applies to the event. 1If so, the algorithm
uses the specific filter. 1If not, the algorithm uses the
global filter for the class.

e Commands from higher levels create and change filters
using the EVENTS event-list option. When the specific
filters match the global filter, the event processor
deletes specific filters.

e Although the filters are modeled in the event processor,
in some implementations, to reduce information loss or for
efficiency reasons, it may be necessary to filter raw
events before they are put into the first event queue. A
reasonable, low-overhead way to implement this 1is by
providing an event on/off switch at the low level. The
high level can turn this switch off if the event is
filtered out by all possible filters. This avoids a
complex filter data base or search at the low 1level, but
prevents flooding the low level event queue with unwanted
events.

4. Passes events not filtered out to the event recorder for the

executor or to the appropriate event queue for other sink
nodes.

Event Transmitter. Using a logical 1link, this component transmits
event records from its queue to the event receiver on its associated
sink node.

Event Receiver. This component receives event records over logical
links from event transmitters in remote event source nodes. It then
passes them to the event recorder.

Event Recorder. This module distributes events to the queues for the
various event sinks according to the sink flags in the event records.

Event Console. This is the event logging sink at which human-readable
copies of events are recorded.

Event File. This is the event logging sink at which machine-readable
copies of events are recorded. To Network Management, it is an
append-only file.

54



Event Monitor Interface. This interface makes events available to the
Network Management Functions for reading by higher levels.

Event Monitor. This user layer module is an "operator’'s helper." It
monitors incoming events by using the Network Management Access
Routines and may take action based on what it has seen. 1Its specific
responsibilities and algorithms are undefined for the near term.

4.1.5.2 Suggested Formats for Logging Data - Following are suggested
text formats for logging data. System specific variations that do not
obscure the necessary data or change standard terminology are allowed.

The date field in the output is optional if it is obvious from the
context of the logging output.

Milliseconds can be used in the event time data if it is possible to
do so. If not supported, this field will not be printed. It is
possible for two times given the same second to be logged and printed
out of order.

General format:

EVENT TYPE class.type|, event-text]

FROM NODE address|(node-name) ] OCCURRED [dd-mon-yylhh:mm:ss:[.uuu]
[entity-type[entity-name]]

[data]

For example:

Event tuyre 4.7y Facket adeind discard
From node 27 (DOODAH)» occurred 9-FEB-79 13:55:38
Facket header = 2 23 91 20

Event tgre 0.3y Automatic line service
From riode 19 (ELROND)» occurred 9-FER-79 16:09:10.009
Line KOZ-0-1,3y Service = Loady Status = Reauested

Or, on a node that does not recognize the events:

Event tuyre 4.7

From node 27y occurred 9-FEB-79 13:55:38
Farameter #2 = 2 23 91 20

Event ture 0.3
From node 19y occurred 9-FER-79 16:09:10.009
Line KOZ-0-1.3s Farameter #0 = 0y Parameter #1 = 0

4.2 Network Management Layer Operation

This section describes how Network Management operates with regard to
each general function. Each function relates to a particular NICE
message. Algorithms are given for most functions. There is also some
user information in several of the descriptions, especially that
concerning testing. Finally, there is a section explaining how NICE
handles logical links. Appendix D lists status and error messages for

NICE commands, and Section 4.3.12 explains the response message
formats.

55



4.2.1 Down-line Load Operation - The down-line capability allows the
loading of a memory image from a file to a target node. The file may
reside at the executor node or at another node. Any node can initiate
the load.

The requirements for a down-line load are as follows:

e The target node must be directly connected to the executor

node via a physical line. The executor node provides the line
level access.

e The target node must be running a minimal cooperating program
(refer to the MOP functional specification). This program may
be a primary loader from a bootstrap ROM. The down-line 1load
procedure may actually involve loading a series of programs,
each of which calls the next program until the operating
system itself is loaded. The initial program request
information determines the load file contents.

® The direct access line involved must be in the ON or SERVICE
state.

® The executor must have access to the file. The location of
the file can be either specified in the load request or looked
up by the Local Network Management Function.

Local Network Management modules are used to obtain 1local
files. Remote files are obtained via remote file access
techniques. (Refer to the DAP functional specification.)

Figure 4, following, shows local and remote file access for a
down-line load.

® The executor must have access to a node data base, which can
be either local or remote.

@ The target node must be able to recognize the trigger
operation with software or hardware or must be triggered
locally.

56



1. LOCAL FILE ACCESS

E;.GIIIO' N%

2. REMOTE FILE ACCESS

LEGEND:

MOP — Maintenance Operation Protocol
FAL — File Access Listener

Figure 4 Down-line Load File Access Operation

57




Either the target or executor node (or a remote command node) can
initiate a down-line 1load. The target node initiates the load by
triggering its boot ROM. The executor node initiates the 1load with
either a trigger command or a load request. If the executor does not
have the initial program request or the target does not respond to the
attempt to load it, the executor should trigger the target.

Once the target is triggered, it requests the down-line 1load. The
target node may be programmed to request the load over the line that
the trigger message came. Or, the target node could request the 1load
from another executor. The Line Watcher at the executor senses the
first program request from the target node (usually a request for the
secondary loader, described below). Or, if the operation was
initiated by a Network Management load request, the program request is
received as a response to that request., Figure 5, following, shows
the down-line load request operation.

58



1. TARGET-INITIATED REQUEST

Target Nog,

Executor Nog,

Local
Network

Management
Function

2. OPERATOR-INITIATED REQUEST FROM A REMOTE COMMAND NODE

gxecutor Nod,

Local

Network
Management
Function

Network
Management
Listener

Logical Link

LEGEND:

MOP - Maintenance Operation Protocol
NICE — Network Information and Control Exchange
NCP — Network Contro! Program

Figure 5 Down-line Load Regquest Operation

59




The executor proceeds with the load according to the options 1in the
initial request.

Several fields in the NICE request down-line load message may be
either furnished as overrides or defaulted to the values in the node

data base. Any information left to default is first obtained from the
data base.

The executor identifies the target node by address, name, or line.
The name and address parameters may be supplied as overrides to those
in the data bases. The address or line identification key into the
node data base. If line is used, then address is obtained from the
data base entry. If a target is identified by name, then address is

determined by normal name to address mapping and used to key into the
data base.

The address the target is to have is always sent to the target during
the down 1line load request operation. This target address is either
obtained from the node data base or supplied as an override.

The name the target is to have, if any, is either supplied with the
request as an override or obtained by normal address-to-name mapping.

Host identification follows similar rules to target identification.
The host node address must be sent to the target. If both name and
address are not supplied, address is obtained from the node data base.

Name, if any, 1is obtained by normal address-to-name mapping, if not
supplied.

The executor controls the process of loading the requested programs
until the operating system is loaded. The executor is responsible for
understanding the service protocol (for example, MOP) from and to the
target.

The first program to run in the target node, called the primary
loader, 1is typically loaded directly from its own bootstrap ROM. It
then requests, over the communications line, the next program in the
sequence. This program, the secondary 1loader, may have certain
restrictions on the way it is loaded, depending on the capabilities of
the primary loader. This process may extend through a tertiary
loader. The final program to be loaded is defined as the operating
system, although it does not necessarily have to be capable of being a
network node. Within a single down-line 1load process (possibly
including "loader 1loads") each program loaded is expected to request
another, except for the operating system, which does not.

When the down-line load has been completed (in other words, the
operating system successfully loaded) or aborted due to an error, the

executor sends the proper response back to the command node to finish
up the process.

The content of the load image file is specified in Appendix C.
The algorithm for handling the down-line load is as follows:

Call Line Service Function to oren line for load
Ferform load callindg Line Service Functiorn to transmit and receive
Call Line Service Function to close line

4.2.2 Up~line Dump Operation - The up-line dump capability of the

Network Management layer allows a system to dump its memory to a file
on a network node.

60



The requirements for such a dump correspond with those for a down-line
load:

e The syétem being dumped must be connected to a network node
(executor) by a specific physical line.

® The system being dumped must run a minimal cooperative program
that can communicate over the line with the executor. The
protocol used is implementation-dependent (refer to the MOP
specification).

If the executor determines that the program is not there, then
executor must supply the program. This 1is the secondary
dumper .

® The line used must be in the ON or SERVICE state and returned
afterwards to its original state.

® The executor must have access to the file receiving the dump.
If the file is remote, the executor transfers the data using
remote file access routines. (Refer to the DAP Functional
Specification.)

The system to be dumped can indicate that it 1is capable of being
dumped. In this case, the Line Watcher at the executor node senses
the possibility of a dump and can pass a dump request to the Local
Network Management Functions at the executor node. Alternatively, the
executor or a remote command node can initiate the dump with an NCP
DUMP command. In this case, the executor node’s Local Network
Management Functions receive the request from the Network Management
Access Routines or the Network Management Listener.

The Local Network Management Functions proceed according to the
options in the request. Any required information that has been left
to default is first obtained from the node data base. The Local
Network Management Functions then accomplish the dump using the
system-dependent service protocol (for example, MOP), and the local
operating system’s file system or network remote file transfer
facilities. If the remote system does not respond, the executor can
trigger the remote system and load a secondary dumping program.

In cases where the dump was not initiated by the target node, when the
requested memory has been dumped to a file or the dump has been
aborted, the executor sends an appropriate response back to the node
requesting the operation.

The content of the dump file is specified in Appendix C.
The algorithm for performing the up-line dump is as follows:

Call Line Service Function to oren line for dume
Ferform dums callind Line Service Function to tramsmit and receive
Call Line Service Function to close line

4.2.3 Trigger Bootstrap Operation - The trigger bootstrap capability
of the Network Management layer allows remote control of an operating
system’s restart capability. Since a system being booted is not
necessarily a fully  functional network node, the operation must be
per formed over a specific physical line (specified by a
line-identification). The node on the network side of the line is
called the executor node.

61



The NCP TRIGGER command can initiate the trigger bootstrap function
via the Network Management Listener and/or the Network Management
Access Routines. The Local Network Management Functions at the
executor node receive the request.

When the Local Network Management Functions receive a NICE trigger
bootstrap request, they proceed according to the options in the
request. Any required information which has been left to default is
obtained from the node data base.

The physical line being used must be in the ON or SERVICE state at the
executor node’s end. The executor uses the system-dependent service
protocol (for example, MOP) to perform the operation.

When the operation is complete, the executor sends its response to the
command node.

Once the target node 1is triggered, it will then 1load itself in
whatever manner its bootstrap ROM 1is programmed to operate. This
could include requesting a down-line load either from the executor

that Jjust triggered it or some other. The target node could load
itself from its own mass storage.

The algorithm for implementing the trigger bootstrap is as follows:

Call Line Service function to oren line for tridger
FPerform tridgders callind line service to transmit
Call Line Service function to close line

4.2.4 Loop Test Operation - There are two types of loop tests, node

level and 1line level. Both types are loopback tests that loop a
standard test block a specified number of times.

If either test fails, the response explains the failure. 1If the test
fails because the test message was too long, the error return is
"invalid parameter value, length" (Appendix D) and the test data field
of the error message contains the maximum length of the loop test
data, exclusive of test data overhead. If the test fails for any
.other reason, the test data field contains the number of messages that
had not been looped when the test was declared a failure.

The unlooped count need not be returned for success or for errors that
occur before 1looping can begin (for example, connect errors, command
message format, or content errors). The only exception to this is the
case that the value of the length parameter is too large, since this
requires a return of the maximum length.

4.2.4.1 Node Level Testing - There are two general categories of node
level tests (shown in Figures 6 and 7, following). Both use normal
traffic that requires logical links. Both have variations that use
the Loopback Mirror and NCP LOOP NODE commands. The difference is
that the first type uses what might be called "normal" communication,

while the second type sets up a loop node name established with the
NCP SET NODE LINE command.

62



The four ways in which node level messages travel are:
1. Local to local
2. Local to remote

3. Local to 1local 1loopback (using an operator-controlled
loopback device with a loop node defined with the line to be

used)

4. Local to remote loopback (using two connected nodes with a
loop node defined with the line to be used)

The first two ways are used for the "normal" communication tests. The
last two ways are used for the loop node name tests.

Test data can be a Loopback Mirror test message that 1is repeated a
defined number of times, a file that is transferred in any of the ways
listed above, or a message generated by a user task.

The set up commands for various types of node level tests are
described in Figures 6 and 7.

The operation of node level testing that uses Network Management
modules is as follows. The Local Network Management Functions receive
the NCP LOOP NODE command from the Network Management Listener and/or
Network Management Access Routines. If a line is involved in the
test, it must be in the ON state. if the Loopback Mirror is involved,
the message 1is passed to the Loopback Mirror Access Routines (see
Section 5). One logical link loop test uses a 1loop node with a
routing node on the remote end of the line (Figure 6). This test
returns the test data on the line chosen by the Transport algorithm at
the routing node.

63



A. Local-t0-Loopback Node Test, Single Node, using tites as test data, with » softwars B. Node Test, Single Node, using loopback mirror and tast messages, and a manually set
controlied loopback capability ioophack device
SET LINE iinead CONTROLLER LOOPBACK SET NODE FISHY LINE hne-1d
SET NODE FISHY LINE tined LOOP NODE FISHY
{Transter tile to/from FISHY}
NODE BOB NODE BOB
User
U Modutes
Network
Management
[Locat Network Management Funcuon)
Network File File Access 11
Apphcation Access Routines Listener Network Loopback Loopback
,, 77 Application Access Routines Mirror
+ vyl -
Sessian Control "’ ,:’ Session Control Ill I,"
Network 1" /7 Network 7y 2
Services 1" ‘/1’ Services I’ //”
Transport H ,', Teansport L’ I;, L
104 L
Data Link w ! " Data Link h, 7 Hardware
Physical Link W ": D-C-ce Physical Link U "
AAY M
XN \\ | X \ . m—
W \\\ Communications Hardware
\:\ [y ).7\
\t::::::;:::::% ./
P~
C. Local-to-Loopback Node Test. Two Nodes, using user task
SET NODE FISHY LINE hne.d
{invoke user task using BOB and FISHY)
NODE BOB NODE TONY
User I User
Modules [ User Task ] User Tnk—l Modutes
Network L4 Network
Management ' 1’ Management
Network ] /r Network
Application / Apphcation
Session Cantrol /’ Session Control
Network / Network
Services 1 / Services
Transport 1 Transport ,\‘
Data Link { Data Link ! ;
Physical Link \ Physical Link ! i
L
\\ \[ I |
N Communications Hardware l
\\ e e e e e s e e o ——— / (
N ————— e e - /

D. Loesi-to-Loopback Node Test, Two Nodes, uting loopback mirror and test messages

SET NODE FISHY LINE line-wd
LODP NODE FISHY

NODE BOB NODE TONY
User User
Modules NCP Modutes
Network Management
Network Access Routines Network
Man, nent Management
geman [Loc.l Network Management Funcnmﬂ
I 1
Network Loopback Loopbeck Network
Application Access Routines Mirror Application
3
Session Control ,7 ,’:” Session Control
Network [ P4l Network
Services P Services
Transport 1 1,7, Transport 'I'-:‘
T
Data Link [ Data Link : I
Physical Link “‘ 1" Physical Link {1
MRA! 1 ) in
R »on
AR XY Communications Hardware ——w
N o o v o s s e o i s o o o e |
N = e e L T T == ppompapup g !
\::== S S S e e e e s S e S e e L e e
e e —
L : -
— controt flow Loopback node name = FISHY

deta fiow

Figure 6

Examples of Node Level Testing Ysing a Loopback

Node Name with and without the Loopback Mirror

64



A. Normal Local-to-Local, using loopback mirror B. Normal Local-10-Local, using user tasks
{LOOP NODE BOB! or {LOOP EXECUTOR} {Invoke user task using BOB)
NODE BO8 NODE BOS
User
Moduies NeP
Usar
Network Management Modules I:’"’ Task l l User r‘*—l
Network Access Routines ’
Management
[Locat Network Management Function] Y ]
I
Network Loopback Loopback Netwark 1}
Application Access Routines Mirror Application "
Session Control " 1 ! Session Control 1
++ 4+
Network VA H Network \ !
Services A\ /7 Services \\ ‘,’
N .7 =
Transport ~ -—’ - Transport
Data Link 212 Link
Physical Link Physical Link
|
Communications Hardware Communications Hardware
€. Normal Local 10-Remote. using loopback mirror
LOOP NODE TONY
NODE BOB NODE TONY
User User
Modules Modutes
Network Management
Network Access Routines Network
Management M
[Local Network Management Function]
X
Network Loopback Network
Application Access Routines Application
Session Control | i Session Control / 1’
Network : 1 Network ,' /
Services Ml Services Y4
Transport i 1 Transport l/ /’
Data Link [ Data Link 7 7
Physical Link “ \ Physical Link ,’ 7
SN | e
~ Communications Hardware /
\\ T e - = - - — = = ,’
\—-————-———————————‘
D. Normal Local-to-Remote, using files 2 test data
{Transter files from BOB to TONY)
NODE 808 NODE TONY
User User
= o
Network File Access Network File Accass
Application fAoutines Application Listener
Sassion Control Y Session Control
Network i Network
Services Services
Transport Transport
Data Link Data Link 3
Physical Link Physical Link i
S I 7
~ Communications Hardware //
S~ -
~ -
~ -
~ —
—— — s e — -
Legend:
normal trathc flow
——w—w test data, using normat traffic paths
: . .
Figure 7 Examples of Node Level Logical Link Loopback Test

with and without the Loopback Mirror

65



4.2.4.2 Data Link Testing - Line level testing requires a direct
interface between the Line Service Function and the Data Link layer.
Figure 8 at the end of this section shows two types of 1line 1level
tests:

1. Direct line loopback, hardware looped

2. Direct line loopback, software looped

Line loopback requires the use of line service software (for example,
MOP), with the line to be tested in the ON or SERVICE state.

The hardware-looped option requires an operator-controlled 1loopback
controller, a modem set to 1loopback mode, a ROM with loopback
capabilities at the remote end, or some other equivalent operation.
It is recommended that the operator turn off the line, reconfigure the
hardware, and then turn the line back on. Alternatively, the operator
may leave the line in the ON state, and any resulting synchronization
problem will be logged as an error.

The algorithm for the active loop test is as follows:

Set not done
Call Line Service Functions to oren line for active loor
WHILE riot done
Call Line Service Function to transmit loorback data messade
Call Line Service Function to receive messade
IF error OR count exhausted OR messade 1s not loor data or loored data
OR received data does not match sent data
Set done
ENDIF
ENDWHILE
Call Line Service Function to close line

66



A. Direct Line Loopback, hardwars looped

[SET LINE tine-id STATE OFF]} ' o
{manually st loopback device} ‘"". in ON or SERVICE rew)

SET LINE line-+d STATE ON/SERVICE®® { ) SET LINE line-id CONTROLLER LOOPBACK
LOOP LINE line-id ‘ | LOOF LINE rime-id

Executor Node
User
Layer

. N. M
A T Listoner
Network

!Luup'mt { Locat N.Ald. ‘Fun:uom J
ayer
[ Line Servica Functions ]
[
Data ' '
Link I
Physical H :
Link 1 M
T
: ! Hardwars Loopback
1 [} Devics
] : Communications Hardware
: N ———f .
Vemcenmmm————— b
B. Direct Line Loopnack, software looped, line in ON or SERVICE suw**
Target Node
Executor Node LOOP LINE line-id {in SERVICE or ON staw)
Usar User
Layer Layer
]
Network Network
Management [ Local N. M. Functiom J :Im-pmom
Layer Y ayer
[ Line Service Functions ] [ Line Servics Functions ]
+—d Plnd
Cata Ty Deta i1
Link ! ! Link [} !
Physical iy Physcal I
Link | Y Link I |
LI || J 110
: ] Communications Hardwere : '
} “mcccececcccccc e e ca e’ |
Vececocccmanooaaae J
Legend:
*optional siternative ——= control flow N. M. = Network Menagement
**implsmentation-dependent - === daws flow

Figure 8 Physical Link Loopback Tests and Command
Sequences Effecting Them

4.2.5 Change Parameter Operation - When a NICE change parameter
request is received, the specified parameters are changed, usually by
interfacing with the local operating system. An appropriate response
is then returned to the requestor. The options of the change
parameter request indicate the desired operation (either specifying a
different value or removing the value) and the entity it relates to.
The operation can be done either for volatile or permanent parameters.

The request may contain zero or more parameters. If there are none,
the operation applies to the entire entity entry (in other words, the
NCP ALL parameter). All parameters in the message should be checked
before any are changed in the data base. If one parameter fails the
check, then the operation should fail. A single response indicates
success or failure for single-entity operations.

67



A change parameter request may apply to a group of entities. In this
case, success or failure is individual. The entire request does not
fail if a single entity request fails. An initial fail return implies
no further responses are coming. A special success return indicates
more responses will follow, one for each entity in the group.

Changing the line state requires the following capabilities:

For operator:
® Set line state to OFF
® Set line state to ON
® Set line state to SERVICE
For the Line Watcher:
® Set line state to ON-AUTOSERVICE
® Reset line state from ON-AUTOSERVICE

All of the algorithms imply recording the line state if they succeed.
The line state algorithms follow.

Set line state to OFF:

Call Transrort to set line state to off
Call Line Service Function to set line state to off

Set line state to ON:

Call Line Service Function to set line state to rpassive
IF success

Call Transrort to set line state to on
ELSE

Fail
ENDIF

Set line state to SERVICE:

Call Line Service Function to set line state to closed
IF success

Call Transrort to set line state to off
ELSE

Fail
ENDIF

Set line state to ON-AUTOSERVICE:

IF line state is ON

Perform aldorithm to set line state to service
ELSE

Fail
ENDIF

Reset line state from ON-AUTOSERVICE:

I? line state is ON-AUTOSERVICE:

Ferform alHorithm to set line state to on
ENDIF ’

68



4.2.6 Read Information Operation - When a read information request is
received, a response 1is returned, followed by the requested data in
the form of standard Network Management data blocks (Appendix A). The
data may be obtained either from within the Local Network Management
Function itself or by interfacing with the system as appropriate.

The many restrictions and special situations relating to reading
specific parameters or counters are described in Appendix A.
Additional information is in Section 3.3.8 (SHOW command).

A fail return in the first response implies no further responses are
coming. A special success return indicates the command message was
accepted and more will follow.

4.2.7 Zero Counters Operation - When a zero counters request is
received, the appropriate counters are cleared by interfacing with the
local operating system. An appropriate response is then returned to
the requestor.

If a read and zero was requested, the counters are returned as if a
read information had been requested.

A fail return on the first response implies no further responses are
coming. Success is a single return for single-entity operations. For
multiple-entity operations, success 1is a special success return
implying further responses.

4.2.8 NICE Logical Link Handling - This section describes the logical
link algorithms that Network Management uses when sending NICE
messages. The version data formats are in Section 4.3.12. The
determination that a received version number is acceptable is always
the responsibility of the higher version software, whether it is the
command source or the listener.

The recommended buffer size for NICE messages is 388 bytes.

The Network Management Listener algorithm follows:

Receive connect reaquest
(Ortionally) Determine rrivilede level based on access control
IF resources available and received version number OK
Send connect accert with version number in accert data
WHILE connected (see Noter below)
Receive command messade
IF messade received
Process command messade accordind to command and eprivilede
Send resronse messade(s)
ENDIF
ENDWHILE
ELSE
IF received version number not OK
Send connect redect with version skew reason in redJect data
ELSE
Send connect redect
ENLIF
ENDIF

69



NOTE

The algorithms used for connections is
implementation dependent. For example,
connections can be maintained
permanently, only while the executor is
set, timed-out, or one per command.

The Network Management command source algorithm follows:

Send connect reauest with version number in connect data
IF connect accerted
IF received version number OK
WHILE desired
Send command messade
Receive resronse messade(s)
ENDWHILE
ENDIF
Disconnect link
ELSE
IF connect re.Jected by listener
IF re.Ject data indicates version skew
Failure due to version skew

ELSE
Failure due to listener resources
ENDIF
ELSE
Failure due to network connect rroblem
ENDIF

ENDIF

4.2.9 Algorithm for Accepting Version Numbers - A version number
consists of three parts -- version, ECO (Engineering Change Order),
and user ECO (Section 4.3.12). In general, another version is
acceptable if it 1is greater than or equal to this version. If less

than this version, it 1is optionally acceptable as determined by
product requirements.

When comparing two version numbers, compare the second parts only if
the first parts are equal, and so on.

4.2.18 Return Code Handling - Use the following return code handling
algorithm to call the Network Management access routines:

Initiate function
IF return code = more
WHILE return code < > done
FPerform next oreration
Process success/f3ailure
ENDWHILE
ELSE
Process success/failure
ENDIF

Note that an initiate call starts the function, and an operate call

performs the function (one entity at a time in the case of plural
entities).

70



4.3 Network Management Layer Messages

This section describes the NICE and Event Logging Messages, NICE
response message format, and NICE connect and accept data format.

NICE is a command-response protocol. Because the Network Management
layer 1is built on top of the Network Services and Data Link layers,
which provide logical links that guarantee sequential and error-free
data delivery, NICE does not have to handle error recovery.

In the message descriptions that follow, any unused bits or bytes are
to be reserved and set to zero to allow compatibility with future
implementations. Conditions such as non-zero reserved areas and
unrecognized codes or unused bytes at the end of a field or message
should be treated as errors, and no operation should be performed
other than an appropriate error response.

The entire message should be parsed and checked for wvalidity before
any operation is performed.

4.3.1 NICE Punction Codes - The Phase III NICE protocol performs the
following message functions. The 1last one is for system specific
commands, not specified in this document.

Function NICE
CODE Function
15 Request down-line load
16 Request up-line dump
17 Trigger bootstrap
18 Test
19 Change parameter
29 Read information
21 Zero counters
22 System-specific function

4.3.2 Message and Data Type Format Notation - The Network Management
message format and data type descriptions use the following notation.

FIELD (LENGTH) : CODING = Description of field

where:

FIELD Is the name of the field being described
LENGTH Is the length of the field as:

l. A number meaning number of 8-bit bytes.
2. A number followed by a "B" meaning number of bits.

3. The letters "EX-n" meaning extensible field with n
being a number meaning the maximum length in 8-bit
bytes. If no number is specified the length is
limited only by the maximum NICE message.
Extensible fields are variable in length consisting
of 8-bit bytes, where the high-order bit of each
byte denotes whether the next byte is part of the
same field. The -1 means the next byte is part of
this field while a @ denotes the 1last byte.

71



CODING

where:

Extensible fields can be binary or bit map; 1if
binary, then 7 bits from each byte are concatenated
into a single binary field; if bit map, then 7
bits from each byte are used independently as
information bits. The bit definitions define the
information bits after removing extension bits and
compressing the bytes.

The letters "I-n" meaning image field with n being
a number which is the maximum length in 8-bit bytes
of the image. The image is preceded by a 1l-byte
count of the length of the remainder of the field.
Image fields are variable length and may be null
(count-@) . All 8 bits of each byte are used as
information bits. The meaning and interpretation
of each image field is defined with that specific
field.

The character "*" meaning remainder of message. A
number following the asterisk indicates the minimum
field length in bytes.

Is the representation type used.

BM

7-bit ASCII
Binary

Bit Map (where each bit or group of bits has
independent meaning)

Constant
NOTES

If length and coding are omitted, FIELD represents
a generic field with a number of subfields
specified in the descriptions.

Any bit or field which is stated to be "reserved"
shall be zero unless otherwise specified. Any bit
or field not described is reserved.

All numeric values in this document are shown in
decimal representation unless otherwise noted.

All fields are presented to the physical 1link
protocol least significant byte first. In an ASCII
field, the leftmost character is in the low-order
byte.

Bytes in this document are numbered with bit 8 the
rightmost (low-order, least-significant) bit, and
bit 7 the leftmost (high-order, most-significant)
bit. Fields and bytes of other 1lengths are
numbered similarly.

Corresponding data type format notation used in

Tables 6, 8, and Appendix F is described at the
beginning of Appendix A.

72



4.3.3 Request Down-line Load Message Format

FUNCTION | OPTION
CODE

NODE LINE PARAMETER
ENTRIES

where:

FUNCTION CODE (1)

OPTION (1) BM

NODE

LINE

PARAMETER ENTRIES

Is one of the following options:

Option bits Value/Meaning
g @ = Identify target by node-id.
1 = Identify target by line-id.

Is the target node 1identification in node-id
format (see Appendix A) as key into defaults data
base (present only if option bit 8 = 0). Plural
nodes options are not allowed.

Is the line identification in line id format (see
Appendix A). Plural 1lines options not allowed.
Present only if option bit 0 = 1.

are zero or more of PARAMETER ENTRY consisting of:

DATA DATA

ID
where:
DATA ID (2) : B Is the parameter type number
(see note below and Appendix
A).
DATA Is the parameter data

(Appendix A).

NOTE

The parameters allowed are the following
node parameters:

ADDRESS

CPU

HOST

LOAD FILE

NAME

SECONDARY LOADER
SERVICE DEVICE
SERVICE LINE (allowed only

if bit 8 = 9)

SERVICE PASSWORD
SOFTWARE IDENTIFICATION
SOFTWARE TYPE

TERTIARY LOADER

73



4.3.4 Request Up-line Dump Message Format

FUNCTION | OPTION
CODE

NODE | LINE PARAMETER

ENTRIES

where:

FUNCTION CODE (1):

OPTION (1) : BM

NODE

LINE

PARAMETER ENTRIES

B = 16
Is one of the following options:
Option bits Value/Meaning
0 @ = Identify target by node-id.
1 1 = Identify target by line-id.

Identifies the node to be dumped (present only if
option bit @ = @0). Format is defined in Section
A.3.

Specifies the line over which to dump (present
only if option bit @ = 1). Format is defined in
Section A.l.

are zero or more of PARAMETER ENTRY consisting of:

DATA DATA

ID
where:
DATA ID (2) : B Is the parameter type number
(see note below and Appendix
A)-
DATA Is the parameter data

(Appendix A).

NOTE

The parameters are selected from the

node

parameters. Only certain

parameters are allowed 1in the dump
message. They are:

DUMP ADDRESS

DUMP COUNT

DUMP FILE

SECONDARY DUMPER

SERVICE LINE (allowed only

if option bit 8 = @)

SERVICE PASSWORD

74




4.3.5 Trigger Bootstrap Message Format

FUNCTION | OPTION
CODE

NODE LINE PARAMETER

ENTRIES

where:

FUNCTION CODE (1):

OPTION (1) : BM

NODE

LINE

PARAMETER ENTRIES

B =17
Is one of the following options:
Option bits value/Meaning
0 @ = Identify target by node-id.
1 = Identify target by line-id.

Identifies the node to trigger boot on (present
only if option bit ® = 8). The format is defined
in Section A.3.

Identifies the line over which to trigger the boot
(present only if option bit # = 1). The format is
defined in Section A.1l.

are zero or more of PARAMETER ENTRY consisting of:

DATA DATA

ID
where:
DATA ID (2) : B Is the parameter type number
(see note below and Appendix
A) .
DATA Is the parameter data

(Appendix A).

NOTE

The parameters are selected from the

node

parameters. Only certain

parameters are allowed 1in the trigger
message. They are:

SERVICE LINE (allowed only

if option bit @ = 0)

SERVICE PASSWORD

4.3.6 Test Message Format

FUNCTION | OPTION
CODE

NODE | USER [ PASSWORD| ACCOUNTING| LINE | PARAMETER

ENTRIES

75



where:
FUNCTION CODE (1):

OPTION (1) : BM

For node type loop tests only

follows:

NODE

USER (I-39): A

PASSWORD (I-39): A

ACCOUNTING (I-39):A

For line tests only

LINE

PARAMETER ENTRIES

B =18

Is one of the following options:

Option bits Value/Meaning

Node type loop test
Line type loop test

0 0
1

If node type loop test:

7 2
1

Default access control
Access control included

(option @), four parameters are as

Identifies the node to loopback the test block
node-id format {(Section A.3).
are not allowed.

in
Plural node options

Is the user-id to use when connecting to node.
Present only if option bit 7 = 1.

Is the password to use when connecting to node.
Present only if option bit 7 = 1.

Is the accounting information to use when
connecting to node. Present only if option bit 7
= 1.

(option 1), one parameter is as follows:

Identifies the line to send the test on in line-id

format (Section A.l). Plural lines options not

allowed.

Are zero or more of PARAMETER ENTRY, consisting

of:

DATA ID DATA

where:

DATA ID (2) : B Is the parameter type number
(Appendix A).

DATA Is the parameter data

(Appendix A).

NOTE
The parameters are selected from the
node parameters. Only certain
parameters are allowed in the test
message. They are:
LOOP COUNT
LOOP LENGTH
LOOP WITH

76



4.3.7 Change Parameter Message Format
FUNCTION OPTION ENTITY PARAMETER
CODE ID ENTRIES
where:
FUNCTION CODE (1): B = 19
OPTION (1): BM Is one of the following options:
Bits Meaning
7 @ = Change volatile parameters.
1 = Change permanent parameters.
6 P = Set/define parameters.
1 = Clear/purge parameters.
-1 Entity type (Appendix A).
ENTITY 1D Identifies the particular entity (Appendix A).

PARAMETER ENTRIES

Are zero or more of PARAMETER ENTRY consisting

DATA 1D

DATA

where:

DATA ID (2) : B

DATA

4.3.8 Read Information Message Format

FUNCTION OPTION ENTITY
CODE ID

where:

FUNCTION CODE (1): B = 20

77

of:
Parameter type number
(Appendix A).
New value according to DATA
ID (Appendix A). Present

only if option bit 6 = 0.



OPTION (1): BM

ENTITY ID

Is one of the following options:

Bits Meaning

7 0
1

Summary

Status
Characteristics
Counters

Events

e who S
HHw

0-1 Entity type (Appendix A).

Read volatile parameter
Read permanent parameter

4-6 Information type as follows:

Identifies the particular entity (Appendix A).

4.3.9 Zero Counters Message Format

FUNCTION OPTION
CODE

ENTITY
ID

where:
FUNCTION CODE (1):

OPTION (1): BM

ENTITY ID

4.3.19 NICE System

B =21

Is one of the following options:

Bits Meaning
7 1l = Read and zero
8 = Zero only
9-1 Entity type (Appendix A).

(line or node only)

Identifies the particular entity,
(Appendix A).

Specific Message Format

FUNCTION SYSTEM REMAINDER
CODE TYPE

where:

FUNCTION CODE (1) B = 22

SYSTEM TYPE (1) : B

REMAINDER (*) : B

if required

Represents the type of operating system command to

which command is specific.

value System
1 RSTS
2 RSX family
3 TOPS-24
4 VMS

Consists of data, depending on system specific

requirements.

78



4.3.11 NICE Response Message Format

RETURN ERROR ERROR ENTITY TEST DATA
CODE DETAIL | MESSAGE ID DATA BLOCK
where:

RETURN CODE (1) : B Is one of the standard NICE return codes (Appendix
D)-

ERROR DETAIL (2) :B Is more detailed error information according to
the error code (e.g., a parameter type). Zero if
not applicable. If applicable but not available,
its value is 65,535 (all bits set). In this case
it is not printed.

ERROR MESSAGE Is a system dependent error message that may be
(I-72) : A output in addition to the standard error message.
[ENTITY 1D] Identifies a particular entity (Appendix A) if

operation 1is on plural entities, or operation is
read information or read and zero counters. If
the entity is the executor node, bit 7 of the name
length is set.

(TEST DATA] (2) : B Is the information resulting from a test operation
(Test message only). This is only required if a
test failed and if data 1is relevant. Section
4.2.4 explains contents.

[DATA BLOCK] Is one of the data blocks described in Appendix A
(for read information message or read and zero
message) .

If a response message is short terminated after any field, the
existing fields may still be interpreted according to standard format.
This means, for example, that a single byte return is to be
interpreted as a return code.

Responses to messages not noted as exceptions above are single
responses indicating return code, error detail, and error message.

A success response to a request for plural entities is indicated by a
return code of 2, followed by a separate response message for each
entity. Each of these messages contains the basic response data
(return code, error detail, and error message) and the entity id. A
return code of ~128 indicates the end of multiple responses.

4.3.12 NICE Connect and Accept Data Formats - The first three bytes
of the connect accept data are:

VERSION DEC USER
ECO ECO

where:

VERSION (1)

..

B Is the version number
DEC ECO (1) : B Is the DIGITAL ECO number

USER ECO (1) : B Is the user ECO number

79



4.3.13 Event Message Binary Data Format - This section describes
generalized binary

format

of event data.

the

It applies to messages on

logical links and, as much as possible, to files.

The buffer size for event messages is 280 bytes.

The format of an event logging message is:

FUNCTION SINK EVENT EVENT SOURCE EVENT EVENT
CODE FLAGS | CODE TIME NODE ENTITY | DATA
where:

FUNCTION CODE (1)

SINK FLAGS (1) :

EVENT CODE (2) :

EVENT TIME

BM

BM

B = 1, meaning event log

Are flags indicating which sinks are to receive a
copy of this event, one bit per sink. The bit
assignments are:
Bit Sink
e Console
1 File
2 Monitor
Identifies the specific event as follows:
Bits Meaning
0-4 Event type
6-14 Event class
Is the source node date and time of event
processing. Consists of:
JULIAN SECOND (MILLISECOND
HALF DAY
where:
JULIAN HALF DAY (2) : = Number of half days
since 1 Jan 1977 and
before 9 Nov 2021
(8-32767). For example,
the morning of Jan 1,
1977 is 0.
SECOND (2) : B = Second within current
half day (8-43199).
MILLISECOND (2) : B = Millisecond within
current second (8-999).
If not supported, high
order bit is set,

80

remainder are clear, and

field is not printed
when formatted for
output.



SOURCE NODE Identifies the source node. It consists of:

NODE NODE
ADDRESS| NAME

where:

NODE ADDRESS (2) : B = Node address (see
Section A.3).

NODE NAME (I-6) : A = Node name, @ length, if
none.

EVENT ENTITY Identifies the entity involved in the event, as

applicable. Consists of:

ENTITY | ENTITY

TYPE ID

where:

ENTITY TYPE (1) : B Represents the type of

entity, as follows:

Value Entity Type ENTITY ID Field

-1 none none
0 Line LINE ID
1 Node NODE ID
ENTITY 1D Identifies the entity.
Depends on type, defined
below.
where:
LINE ID (I-16) : A Identifies a line
entity.
NODE 1D Identifies a node

entity, same form as for
SOURCE NODE.

EVENT DATA (*) : B 1Is event specific data, zero or more data entries

as defined for NICE data blocks, parameter types
according to event class.

81



5.8 APPLICATION LAYER NETWORK MANAGEMENT FUNCTIONS

The only Network Management function specified for the application
layer is the loopback mirror.

5.1 Loopback Mirror Modules

The Loopback Mirror service tests logical links either between nodes
or within a single node. It consists of an access interface -- the
Loopback Access Routine; service routines -- the Loopback Mirror;
and a simple protocol -- the Logical Loopback Protocol.

5.2 Loopback Mirror Operation

When the Loopback Mirror accepts a connect, it returns its maximum
data size in the accept data. This is the amount of data it can
handle, not counting the function code.

When a Logical Loopback message is received, it is changed into the
appropriate response message and returned to the user (Figqure 7,

Section 4). The Loopback Mirror continues to repeat all traffic
offered. The initiator of the link disconnects it.

5.3 Logical Loopback Message
Section 4.3.2 describes message format notation.

If the function code is not valid, or the message 1is too 1long, the
failure code is returned.

5.3.1 Connect Accept Data Format

MAXIMUM DATA

where:

MAXIMUM DATA (2) : B Is the maximum 1length, in bytes, that the
Loopback Mirror can loop.

5.3.2 Command Message PFormat

FUNCTION | DATA
CODE

where:
FUNCTION CODE (1) + B =@

DATA (*) : B Is the data to loop.

82



5.3.3 Response Message

RETURN CODE DATA

where:
RETURN CODE (1) : B Indicates Success (1) or Pailure (-1).

DATA (*) : B Is the data as received, if success.

83



APPENDIX A

NETWORK MANAGEMENT ENTITIES, PARAMETERS, AND COUNTERS: FORMATS AND DATA BLOCKS

This appendix describes the formats of all entities, entity parameters
and entity counters, as well as the returns used in the NICE protocol
and Event Logging messages in response to a request for information.

There are three entities: LINE, LOGGING and NODE. The entities also

have plural forms: KNOWN and ACTIVE LINES, LOGGING and NODES, and
LOOP NODES. The glossary defines the entities.

Type Number. Each entity, parameter and counter is assigned a type
number. The entity type numbers are as follows:

Type Number Keyword
] NODE
1l LINE
2 LOGGING

The parameter and counter type numbers appear in the tables in this
appendix.

Entity 1Identification Formats. Each entity is assigned an
identification format at both NCP and Network Management layer level.
These formats also appear below in appropriate sections.

Entity Parameter and Counter Formats. Each parameter and counter 1is
assigned a format at both NCP and Network Management layer level,
described below in appropriate sections. The notation used for the
parameter formats is described in Section 4.3.2.

Parameter Display Format and Automatic Parsing Notation. Each
parameter 1is assigned a data type at Network Management layer level
that corresponds with the format of the parameter. This information

allows NCP to format and output most parameter values in a simple way,
even if NCP does not recognize the parameter type.

The notation used in the parameter tables in this appendix to describe
these data types is as follows:

Notation Data Type

C-n Coded, single field, maximum n bytes

CM-n Coded, multiple field, maximum n fields
AlI-n ASCII image field, maximum n bytes

DU-n Decimal number, unsigned, maximum n bytes
DS-n Decimal number, signed, maximum n bytes
H-n Hexadecimal number, maximum n bytes

HI-n ’ Hexadecimal image, maximum n bytes

NICE Returns. A response to a SHOW command consists of the
identification of the particular entity to which it applies and zero
or more data entries. The data entries are either parameter or

84



counter entries, depending on the information requested.
in ascending order, by type, so that they can be
output.

Entries are
easily grouped for

When an implementation recognizes the parameter type of a coded field,
the output should be the keyword(s) or other interpretation that
corresponds to the code for that parameter type. If the parameter
type is not recognized, the field should be formatted as hexadecimal.

The format of a data entry is as follows:

DATA ID (2): BM

Identifies:

Bit Meaning
15 @ = Parameter data
1 = Counter data
If bit 15 is clear, the rest of the bits are as
follows:
Bits Meaning
2-11 Parameter type, interpreted according
to entity type.
12-14 Reserved
If bit 15 is set, the rest of the bits are as
follows:
Bits Meaning
8-11 Counter type
12 § = not bit mapped
1l = bit mapped
13-14 Counter width
P = reserved
1l = 8 bits
2 = 16 bits
3 = 32 bits
DATA TYPE (1): BM Identifies data type, present only for parameter
data
Bit Meaning
7 1l = Coded, interpreted according to
PARAMETER TYPE.
@ = Not coded.
If bit 7 is set, the rest of the bits are as
follows:
Bit Meaning
6 @ = Single field. Bits #-5 are the
number of bytes in the field.
1 = Multiple field. Bits 8-5 are the
number of fields, maximum 15;
each field is preceded by a DATA
TYPE.

85



1f bit 7 is not set, the rest of the bits are as

follows:
Bit Meaning
6 1 = ASCII image field. Bits 0-5 zero.
@ = Binary number. Bits P-3 are data
length. @ implies data is image
field. Bits 4 and 5, used to
indicate how to format the binary
number for output, are:
Value Meaning
0 Unsigned Decimal Number
1 Signed Decimal Number
2 Hexadecimal .Number
3 Octal Number
BIT MAP (2): BM Is the counter qualifier bit map, included only if

data id is counter and counter is bit mapped.
DATA: B Is the data, according to data id and type.

The data required for setting a parameter or counter is the entity
identification, the DATA ID, and the DATA. The information required
for clearing a parameter or counter is the entity identification and
the DATA ID. When a parameter is displayed, the information is entity
id, DATA ID, DATA TYPE, BITMAP (if applicable) and DATA. The purpose
of the data type field 1is to provide information for an output
formatter. Thus the formatter can know how to format a parameter
value even if its parameter type is unrecognized.

A coded multiple (CM) field cannot appear as a data type for a field
within a coded multiple type parameter value.

All numbers are low byte first in binary form whether image or not.
The image option for numbers can only be used for parameters where it
is explicitly required. All number bases except hexadecimal have a
maximum length of four bytes.

Indicate counter overflow by setting all bits in the DATA field.

The following ranges are reserved for system specific counters or
parameters:

Range Reserved for
2100-2299 RSTS specific
2300-2499 RSX specific
2500-2699 TOPS-20 specific
2700-2899 VMS specific
2900-3899 Future use
3900-4095 Customer specific

86



Information Types. Each parameter is associated with one or more
information types. The parameter tables in this appendix use the
following symbols to indicate information types for each parameter.

Symbol Keyword Associated Entity
C CHARACTERISTICS All entities
S STATUS All entities
* SUMMARY All entities
EV EVENTS LOGGING

Applicability Restrictions. All node parameters and counters cannot
be displayed at every node; nor can all line counters be displayed
for every line-id. 1In the following tables, which describe the entity
parameters and counters, the following symbols note these
restrictions:

Symbol Applicability
A Adjacent node only
DN Destination node only

(includes executor)
Executor node only
Node by name only
Loop nodes
Remote nodes
(all nodes except
executor and loop nodes)
S Sink node only
ST Multipoint station
(when no tributary
number was specified
in the request line-id)
T Multipoint tributary
(when a tributary
number was specified
in the request line-id)

o zm

Setability Restrictions. Some parameters have user setability
restrictions, indicated in this appendix by the following notation:

Symbol Meaning
RO Read only
WO Write only, in the sense that it appears in a

different form in a read function. (For example,
a node name can be set, but it is read as part of
a node id.)

A.1 LINE Entity

Lines may be referred to individually or as a group. The formats for
specifying line entities symbolically are as follows:

LINE line-id
KNOWN LINES
ACTIVE LINES

A line identification consists of a device identification (dev), a
controller number (c¢), a unit number (u), if a mulitple line
controller, and a tributary number (t), if multipoint. These fields
represent the actual 1local hardware for the line. If the device is

87



not a multiplexer, the unit number is not allowed. The tributary
number is a logical tributary number and is not to be confused with
the tributary address used to poll the tributary. The tributary
number is used by Network Management to identify the tributary. The
tributary address is used by the multipoint algorithm at the Data Link
level to identify a tributary (DDCMP functional specification). If
the device is not multipoint, the tributary number is not allowed. An
omitted unit and/or tributary number in a line-identification implies
the entire controller and/or station.

A line identification consists of one to sixteen upper or lower case
alphanumeric characters. The line-identification format is as
follows:

dev-c=-u.t

Some examples:

DMC-0 (DMC, controller 8)

DMC-1 (DMC11, controller 1)

DZ-0-1 (DZ11, controller @, unit 1)

DZ-1-0 (D211, controller 1, unit @)

DV-0-9.8 (DV11, controller @, unit @, tributary 8)
DV-3-0.0 (DV1l1, controller 3, unit @, tributary 9)
DL-1.3 (DL11, controller 1, tributary 3)

"Wild cards" are permitted in line identifications. A wild card is an
asterisk (*) that replaces a controller, unit, or tributary number in
a line identification. Wild cards specify known lines in the range
indicated by their position in the line identification.

The following represent legal uses of wild cards:

Line

Identification | Meaning

DMC=-* Known DMC lines.

DZ-3-% Known units on DZ controller 3.

DZ-3-4.% Known tributaries on DZ controller 3, unit 4.
DZ=-3-% * Known units and tributaries on DZ controller 3.

The following represent illegal uses of wild cards:

*
Dz~-*-3

When represented in binary, line identification 1is one of three

choices, depending on the function it will be applied to. The format
is as follows:

LINE FORMAT (1) : B Line format type, with the following values:
Number Type
-2 Active lines
-1 Known lines
>0 Length of line-id
LINE ID : A The ASCII line identification if LINE FORMAT
> 8.

88



The complete parsing of a line identification can take place only at
the executor node. This is because the executor is the only node that
can know what device mnemonics and other 1line characteristics are
applicable to itself.

The following table contains all currently recognized DECnet 1line
devices:

Table 5§
DECnet Line Devices
Mne Multiplexer Description
**DP N DP11-DA synchronous line interface
DU N DUl1l-DA synchronous line interface
(includes DUV11)
DL N DL11-C, -E asynchronous serial line
interface
**DQ N DQl1-DA synchronous serial line interface
DA N DAll-B, -AL unibus link
DuUP N DUP11-DA synchronous line interface
DMC N DMC11-DA/AR, -MA/AL, -FA/AR interprocessor
link
DLV N DLV11-E asynchronous line interface
DMP N DMP11 multipoint interprocessor link
DTE N DTE20 interprocessor link
DV Y DV11-AA/BA synchronous link multiplexer
DZ Y DZ11-A, -B asynchronous serial line
multiplexer
KDP Y KMCl11/DUP11-DA synchronous line multiplexer
KDZ Y KMC11/D2-11-A asynchronous line multiplexer
**KL N KL8-J serial line interface
PCL Y PCL11-B multiple CPU link

A.l.1 ULine Parameters - The line entity has the following parameters:

LINE STATE (1) : B Represents the line state, as follows:

Value Keyword

ON

OFF
SERVICE
CLEARED

(VSN SR )

** not supported by Phase III DECnet

89



LINE SUBSTATE (1) :

LINE SERVICE (2) :

LINE COUNTER TIMER (2)

B

B

LINE LOOPBACK NAME (I-6)

LINE ADJACENT NODE

LINE BLOCK SIZE (2)
LINE COST (1) : B

NORMAL TIMER (2): B

B

Represents the 1line substate, with the
following values:

vValue Keyword

STARTING
REFLECTING
LOOPING
LOADING
DUMPING
TRIGGERING
AUTOSERVICE
AUTOLOADING
AUTODUMPING
AUTOTRIGGERING

VoAb WHES

Represents line service control with the
following values:

Value Keyword

0 ENABLED
1 DISABLED

B
Is the number of seconds between line counter
log events.

: A
Is the name to be associated with a line as a

result of a "SET NODE node-id LINE line-id"
command.

Identifies the node on the other end of this
line. Consists of:

NODE NODE
ADDRESS NAME

where:
NODE ADDRESS (2) : B = Adjacent node address.

NODE NAME (I-6) : A = Name, zero length for
none.

Is Transport s block size for this line.
Represents the line cost.

Is the number of milliseconds before a reply
should be received from the remote station.

90



LINE CONTROLLER (1l): B

following values:

Represents the line controller mode, with the

Value Keyword
0 NORMAL
1 LOOPBACK
LINE DUPLEX (1) : B Represents the line duplex, with the
following values:
Value Keyword
0 FULL
1 HALF
LINE TYPE (1) : B Represents the line type, with the following
values:
Value Keyword
0 POINT
1 CONTROLLER
2 TRIBUTARY
LINE SERVICE TIMER (2) : B

Is the line service timer value.

LINE TRIBUTARY (1) : B

Is the line multipoint tributary address.

Table 6 summarizes the line parameter data blocks.

Table 6

Line Parameters

Param. NICE
Type Data Inf. Set. NCP
Number Type Type Rest. Keywords
0 c-1 S* STATE
1 Cc-1 S* RO substate (not a keyword)
100 C-1 C SERVICE
119 DU~-2 C COUNTER TIMER
400 AI-6 S* RO LOOPBACK NAME
889 CM-1/2 S* RO ADJACENT NODE
DU-2 node address
AI-6 node name (optional if none)
819 DU-2 S RO BLOCK SIZE
900 pU-1 c COST
1110 Cc-1 C CONTROLLER
1111 c-1 c DUPLEX
1112 c-1 c TYPE
1120 DU-2 C SERVICE TIMER
1121 DU-2 C NORMAL TIMER
1149 DU-1 C TRIBUTARY

A.1.2 Line Counters -~ The line entity counters are listed in Table 7,

following. The definition
incremented can be found in

of
the

each
fun

91

counter and the way that it is
ctional specification for the



appropriate layer (NSP functional specification, Version 3.2;
Transport functional specification, Version 1.3; and DDCMP functional
specification, Version 4.1). Due to hardware characteristics, some
devices cannot support all counters. In general, those counters that
make sense are supported for all devices. Specific exceptions related
to the DMC are noted in Appendix H.

Line counters are specified for the following layers only:

Type Number
Layer Range
Network Management 0
Transport 800 s
Data Link 1000 °s
Table 7

Line Counters

NOTE

Wwhen a line is point-to-point, both groups (ST and T) of the line
counters are returned.

Type Bit Bit Number
Appl. | Number | Width Standard Text Standard Text

T "] 16 Seconds Since Last Zeroed

T 800 32 Arriving Packets Received

T 801 32 Departing Packets Sent

T 802 16 Arriving Congestion Loss

T 8190 32 Transit Packets Received

T 811 32 Transit Packets Sent

T 812 16 Transit Congestion Loss

T 820 8 Line Down

T 821 8 Initialization Failure

T 1000 32 Bytes Received

T 1001 32 Bytes Sent

T 1010 32 Data Blocks Received

T 1011 32 Data Blocks Sent

T 1020 8 Data Errors Inbound @ NAKs Sent
Header Block
Check error

1 NAKs Sent Data
Field Block
Check error
2 NAKs Sent REP

Response

T 1821 8 Data Errors Outbound @ NAKs Received

Header Block
Check error

1 NAKs Received
Data Field
Block Check
error

2 NAKs Received
REP Response

(continued on next page)

92



Table 7 (Cont.)
Line Counters

Appl.

Type
Number

Bit
Width

Standard Text

Bit Number
Standard Text

33

ST

ST

1038
1031
1049

1941

1050
1951

1100

1101

o ™ oo

16

Remote Reply Timeouts
Local Reply Timeouts
Remote Buffer Errors

Local Buffer Errors

Selection Intervals
Elapsed
Selection Timeouts

Remote Process Errors

Local Process Errors

NAKs Received
Buffer
Unavailable

NAKs Received
Buffer Too
Small

NAKs Sent
Buffer
Unavailable

NAKs Sent
Buffer Too
Small

No Reply to
Select
Incomplete
Reply to
Select
NAKs Received
Receive
Overrun
NAKs Sent
Header Format
Error
Selection
Address Errors
Streaming
Tributaries
NAKs Sent
Receive
Overrun
Receive
Overruns, NAK
not Sent
Transmit
Underruns
NAKs Received
Header Format
Error

93




A.2 LOGGING Entity

The logging entity identification is the sink type. Logging may be
referred to by individual sink types or by ghe sink types as a group.
The formats for specifying logging entities symbolically are as
follows:

Format Meaning

LOGGING sink-type A particular logging sink type

KNOWN LOGGING All logging sink types known to the executor
node

ACTIVE LOGGING All known sink types that are in ON or HOLD
state

A sink type is one of the following:
CONSOLE
FILE
MONITOR

When represented in binary, sink type is:

SINK TYPE (1) : B Represents the logging sink type as follows:

value Meaning
-2 Active sink types
-1 Known sink types
1 CONSOLE
2 FILE
3 MONITOR

Appendix F defines all the event classes and their associated events
and parameters (not to be confused with the logging parameters).

Line and node counters provide information for event 1logging. There

are no logging entity counters specified, just status,
characteristics, and events.

The logging sink types have the following parameters:

STATE (1) : B Represents the sink type state with the following

values:
Value Keyword
0 ON
1 OFF
2 HOLD

NAME (I-255) : A
Is the name of the 1logging sink. If not set, the
logging sink name defaults to a system-specific value.

94



SINK NODE

EVENTS

Is the sink node identification
following event parameters unt
is encountered. If not pres
executor node. The format for
is described in Section A.3. Pl
allowed. When reading parame
of:

NODE NODE
ADDRESS | NAME

where:
NODE ADDRESS (2) B Node addre

NODE NAME (I-6) : A Node name,

that applies
il another sink node id
ent, it defaults
setting this parameter
ural options
ter, sink node consists

SSs

# length for

Are the sink type events, consisting of:
ENTITY | ENTITY | EVENT EVENT
TYPE ID CLASS MASK
where:
ENTITY TYPE (1) : B Represents the entity
follows:
Value Meaning
-1 No entity
2 NODE
1 LINE
ENTITY ID Is the entity 1id according to

ENTITY TYPE,
NODE or LINE.

present only for

If ENTITY TYPE is NODE, format is
as described for sink node.

If entity type |is format

is:

LINE,

LINE ID (I-16) : A = Line id.

EVENT CLASS (2) : BM Entity class specification:

Bits Meaning

14-15 9 Single class

2 All events for
class
3 = KNOWN EVENTS
2-8 Event class if bits

14-15 equal 0 or 2.

95



EVENT MASK (1-8) : B

Event mask, bits set to
correspond to event types (Table
12, Section F.2). Low order
bytes first. High order bytes
not present imply 0 value.

Format for NCP input or output is

a list of numbers corresponding
to the bits set (Section
3.3.1.4). Only present if EVENT

CLASS is for a single class (bits
14-15 = @).

NOTE
The wild card and KNOWN EVENTS
specifications are for changing events
only. Return read events as a class and
mask.

Table 8 summarizes the logging parameters.

Table 8
Logging Parameters

NOTE

Symbols are explained at the beginning of this appendix.

NICE Info Appl. NCP
Param. Data Type Type Restr. | Keywords
0 c-1 s»® E STATE
100 AI-255 C* E NAME
200 CM-1/2 EV* S SINK NODE
DU-2 Node address
AI-6 Node name (optional if none)
201 CM-2/3/4/5 | Ev* S EVENTS
c-1 Entity type
DU=-2 Node address (if entity type
is node)
AI-6 Node name (if entity type is
node)
Al-1l6 Line id (if entity type is
line)
c-2 Event class
HI-8 Event mask (if single event
class indicated)

A.3 NODE Entity

The node entity is referred

node identification. The node

to by its keyword, NODE, followed by
identification

the

is either the node

address or node name except where limited in the command descriptions

96



(Section 3.3). Nodes, as a group, can be referred to as KNOWN or
ACTIVE (see the glossary for definitions). The possible node entities
are as follows:

NODE node-id
EXECUTOR
ACTIVE NODES
KNOWN NODES

LOOP NODES

When the executor or loop nodes are mixed in a multiple return with
remot2 nodes, return the executor first, and the loop nodes last.

A node address is a unique decimal in the range 1 to MAXIMUM ADDRESS.
Node address 1is the primary identification of a node, due to its use
in the DIGITAL Network Architecture. Transport routes messages to
node addresses only. Node names are optionally added in the Session
Control layer as a convenience for users. A node address can have
only one node name associated with it. However, implementations can
use system-specific methods to provide users with "alias" node names
(Transport Functional Specification).

A node name consists of one to six upper case alphanumeric characters
with at least one alpha character. A node name must be unique within
a node and should be unique within the network.

The format for displaying node identification is:

NODE = node-~address [ (node-name)])

For example:

NODE = 19 (ELROND)

The parentheses are only used if the node has a name. When
represented 1in binary, node identification 1is one of four choices
(limited by applicability to a particular function). All choices
begin with a format type. The input format is as follows:

NODE FORMAT (1) : B Represents the node format type, as follows:

Number Type

-3 Loop nodes, no further data
-2 Active nodes, no further data
-1 Known nodes, no further data
2 Node address
>0 Length of node name, followed by the
indicated number of ASCII

characters.

In the ENTITY ID field of a response message bit
7 set indicates the node identification is the
executor node.

NODE ADDRESS (2) : B Is the node address if NODE FORMAT = @. When
used as input, a node address of zero implies the
executor node.

NODE NAME : A Is the node name if NODE FORMAT >0.

97



The usual binary output format is as follows:

NODE NODE
ADDRESS NAME

where:

NODE ADDRESS (2) : B Is the node address. When supplied as output a
node address of @ indicates a loop node.

NODE NAME (I-6) : A 1Is the node name, @ length implies none.

A.3.1 Node Parameters - The node entity has the following parameters:

NODE STATE (1) : B Represents the executor or destination
node state with the following values:
Value Keyword Node
] ON Executor
1 OFF Executor
2 SHUT Executor
3 RESTRICTED |Executor
4 REACHABLE Destination
5 UNREACHABLE|Destination

Except for the executor node state,
this is a read only parameter.

NODE IDENTIFICATION (I-32) : A 1Is the node identification string (for

example, operating system and version
number) .

NODE MANAGEMENT VERSION Is the node Network Management
version, consisting of the following:

VERSION (1) : B Version number

ECO (1) : B Engineering Change
Order (ECO) number

USER ECO (1) : B User ECO number
NODE SERVICE LINE (I-16)

>

Is the line used to perform down-line
load and up-line dump functions.

NODE SERVICE PASSWORD (I-8) : B Is the node service password for
down~line loading and up-line dumping
the node. The length in binary form

corresponds to the length of the text
form.

NODE SERVICE DEVICE (1) : B Is the device type over which the node
handles service functions when in
service slave mode. Code as defined
in the MOP Functional Specification
and correspond to the standard Network
Management device mnemonics.

98



NODE CPU (1) : B Is the CPU type of the node for
down-line 1loading with the following

values:
Value Type
0 PDP 8
1 PDP 11
2 DECSYSTEM 10 20
3 VAX
NODE LOAD FILE (I-255) : A Is the node load file.

NODE SECONDARY LOADER (I-255) : A
Is the node secondary loader file.

NODE TERTIARY LOADER (I-255) : A
Is the node tertiary loader file.

NODE SOFTWARE TYPE (1) : B Is the target node software program
type for down-line 1loads with the
following values:

Value Program Type
"] SECONDARY LOADER
1 TERTIARY LOADER
2 SYSTEM

NODE SOFTWARE IDENTIFICATION (I-16) : A
Is the load software identification.

NODE DUMP FILE (I-255) : A Is the node dump file.

NODE SECONDARY DUMPER (I-255) : A
Is the node secondary dumper file.

NODE DUMP ADDRESS (4) : B Is the address to begin wup-line dump
of the node.

NODE DUMP COUNT (4) : B Is the number of memory units to
up-line dump from the node.

NODE HOST Is the host identification for reading
(SHOW or LIST) only.. Consists of:

NODE ADDRESS (2) : B Host node
address.

NODE NAME (I-6) : A Host node
name, zero

length if
none.
NODE HOST Is the identification of the node that
node being down-line 1loaded may use
for support functions. (Used for

changing the parameter.) Format is as
described for the node entity. Plural
options not allowed.

NODE LOOP COUNT (2) : B Is the default count for loop test.

NODE LOOP LENGTH (2) : B Is the default length for loop test.

99



NODE LOOP WITH (1) : B Is the default block type for 1loop
test with the following values:

Type Contents

] ZEROES

1 ONES

2 MIXED
NODE COUNTER TIMER (2) : B Is the number of seconds between node

counter log events.

NODE NAME (I-6) : A Is the node name.
NODE LINE (I-16) : A Is the 1line used to get to the

executor node and associated with a
loopback node-name.

NODE ADDRESS (2) : B Is the executor node address.

NODE INCOMING TIMER (2) : B Is the node incoming timer.

NODE OUTGOING TIMER (2) : B Is the node outgoing timer.

NODE ACTIVE LINKS (2) : B Is the number of 1logical 1links from
the executor to the destination node.

NODE DELAY (2) : B Is the average round ¢trip delay in
seconds to the destination node. Kept
on a remote node basis.

NODE NSP VERSION Is the node NSP version. Format same
as for Network Management version.

NODE MAXIMUM LINKS (2) : B Is the node maximum links.

NODE DELAY FACTOR (1) : B Is the node delay factor.

NODE DELAY WEIGHT (1) : B Is the node delay weight.

NODE INACTIVITY TIMER (2) : B Is the node inactivity timer.

NODE RETRANSMIT FACTOR (2) : B Is the node retransmit factor.

NODE TYPE (1) B Represents the executor node type with

the following values:

value Keyword

2 ROUTING
1 NONROUTING
2 PHASE II
NODE COST (2) : B Is the total cost over the current
path to the destination node. Kept on
a remote node basis.
NODE HOPS (1) : B Is the total number of hops over the

current path to a destination node.
Kept on a remote node basis.

NODE LINE (I-16)

>

Is the line used to get to a node
other than the executor.

100



NODE ROUTING VERSION Is the node routing version. Format
same as for Network Management

version.
NODE TYPE (1) : B Represents the adjacent node type,
with the following values:
vValue Keyword
'] ROUTING
1 NONROUTING
2 PHASE II
NODE ROUTING TIMER (2) : B Is the node routing timer value.
NODE MAXIMUM ADDRESS (2) : B Is the node maximum address.
NODE MAXIMUM LINES (2) : B Is the node maximum lines value.
NODE MAXIMUM COST (2) : B Is the node maximum cost value.
NODE MAXIMUM HOPS (1) : B Is the node maximum hops value.
NODE MAXIMUM VISITS (1) : B Is the node maximum visits value.

NODE MAXIMUM BUFFERS (2) : B Is the node maximum buffers value.

NODE BUFFER SIZE (2) : B Is the node buffer size value.

Table 9 summarizes the node parameter data blocks.

Table 9
Node Parameters

NOTE

Symbols are explained at the beginning of this appendix.

Param. NICE Inf. Appl. Set. NCP
Type Data Type Rest. Rest. Keywords
Number Type
'] Cc-1 S* E,R STATE
100 AI-32 C* E IDENTIFICATION
101 CM-3 C E RO MANAGEMENT VERSION
DU-1 version number
DU-1 ECO number
DU-1 User ECO number
110 AI-l6 C A SERVICE LINE
111 H-8 C A SERVICE PASSWORD
112 C-1 C A SERVICE DEVICE
113 (o C A CPU
120 AI-255 C A LOAD FILE
121 AI-255 C A SECONDARY LOADER
122 AI-255 C A TERTIARY LOADER
125 C-1 C A SOFTWARE TYPE
126 AI-16 C A SOFTWARE
IDENTIFICATION

(continued on next page)

101



Table 9

Node Parameters

(Cont.)

Param. NICE Inf. ApPpPl. Set. NCP
Type Data Type Rest. Rest. Keywords
Number Type
130 AI-255% C A DUMP FILE
131 AI-255 C A SECONDARY DUMPER
135 DU-4 C A DUMP ADDRESS
136 DU-4 C A DUMP COUNT
149 CM-1/2 C AE RO HOST
DU-2 Node address
AI-6 Node name (optional
if none)
141 n/a A,E WO HOST
150 pU-2 C E RO LOOP COUNT
151 DU-2 (o E RO LOOP LENGTH
152 c-1 C E RO LOOP WITH
169 DU-2 C E,R COUNTER TIMER
500 n/a n/a E,R WO NAME
501 AI-16 C* L,N LINE
502 n/a n/a E WO ADDRESS
510 DU-2 C E INCOMING TIMER
S11 DU-2 o E OUTGOING TIMER
600 DU-2 S* E,R RO ACTIVE LINKS
601 DU-2 S* R RO DELAY
700 CM-3 C E RO NSP VERSION
DU-1 Version number
DU-1 ECO number
DU-~1 User ECO number
7190 DU-2 C E MAXIMUM LINKS
720 pDU-1 C E DELAY FACTOR
721 DU-1 o E DELAY WEIGHT
722 DU-2 C E INACTIVITY TIMER
723 DU-2 C E RETRANSMIT FACTOR
819 C-1 ) A RO TYPE
829 DU~-2 S R RO COosT
821 pU-1 S R RO HOPS
822 AI-1l6 S* R RO LINE
990 CM-3 C E RO ROUTING VERSION
DU-1 Version number
DU-1 ECO number
DU-1 User ECO number
991 Cc-1 C E TYPE
91¢ DU-2 C E ROUTING TIMER
929 DU-2 C E MAXIMUM ADDRESS
921 DU-2 C E MAXIMUM LINES
922 DU-2 C E MAXIMUM COST
923 DU-1 C E MAXIMUM HOPS
924 DU-1 C E MAXIMUM VISITS
939 DU-2 C E MAXIMUM BUFFERS
931 DU-2 C E BUFFER SIZE

102




A.3.2 Node Counters - Table 18, below, lists the node counters. The
definition of each counter and the way it is to be incremented is
given in the functional specifications for the 1layer containing the
counter.

Node counters are specified for the following layers only:

Layer Type Number
Range
Network Management 2
Network Services 600°s, 700
Transport 900 °s
Table 19
Node Counters
Appl. Type Number {Bit width Standard Text
DN ] 16 Seconds Since Last Zeroed
DN 600 32 Bytes Received
DN 601 32 Bytes Sent
DN 610 32 Messages Received
DN 611 32 Messages Sent
DN 620 16 Connects Received
DN 621 16 Connects Sent
DN 630 16 Response Timeouts
DN 640 16 Received Connect Resource Errors
E 700 16 Maximum Logical Links Active
E 909 8 Aged Packet Loss
E 991 16 Node Unreachable Packet Loss
E 992 8 Node Out-of-Range Packet Loss
E 903 8 Oversized Packet Loss
E 919 8 Packet Format Error
E 929 8 Partial Routing Update Loss
E 939 8 Verification Reject

103



APPENDIX B

MEMORY IMAGE FORMATS

Since the PDP-8, PDP-1ll, VAX-1ll, and DECsystem-10, or DECSYSTEM-20
memory addressing requirements differ, different formats are required
for memory image data. In each case, it is essential to know the
number of bytes that represent the smallest individually addressable
memory location. A format summary is provided below.

PDP-8 Each three bytes represents two 12-bit words.
that is, the memory address is incremented by two
for each three bytes. Byte 1 is the low 8-bits of
memory word 1. Byte 2 is the low 8-bits of memory
word 2, and byte 3 is the high 4-bits of memory
words 1 and 2.

PDP~11 Each byte represents one memory byte. That is,
VAX-11 the memory address is incremented with each byte.

DECsystem-10 Each five bytes represents one 36-bit word. That
DECSYSTEN-20 is, the memory address is incremented by one for

each five bytes. Byte 1 is the highest 8-bits of
the word. Bytes 2 through 4 follow. The high
4-bits of byte 5 are the low 4-bits of the word.
The low 4-bits of byte 5 are discarded.

104



APPENDIX C

MEMORY IMAGE FILE CONTENTS

The files containing memory images for a down-line load or an up-line
dump have the same contents. The format may vary from one operating
system to another, but the contents are functionally the same in all

cases.

The minimum control information required is as follows:

The type of the target system (PDP-8, PDP-11, VAX-11,
DECsystem-108, or DECSYSTEM-20). This is necessary to know how
to interpret and update memory address information.

Transfer address. This 1is the startup address for the
program. This field is generally meaningless for a dump file.

The image information required is as follows:

Memory address. This is the address where image goes for a
load or comes from a dump.

Block length. Number of memory units in image block.
Memory image. This 1is the contiguous block of memory

associated with the above address. The format requirements

are as specified in Appendix B. The memory image can be of
any length.

105



APPENDIX D

NICE RETURN CODES WITH EXPLANATIONS

This appendix specifies the NICE return codes.

In all cases, the number specified is for the first byte of the return
code.

The error detail that sometimes follows the return codes is two bytes
long. Since some systems may have trouble implementing the error
details, a value of 65,535 (all 16 bits set) in the error detail field
means no error detail. In other words, in this case, no error detail
will be printed.

If a response message 1is short terminated after any field, the
existing fields may still be interpreted according to the standard
format.

A printed error message consists of the standard text for the first
byte. If the second and third bytes have a defined value, this is
followed by a comma, a blank, and the keyword(s) for the values.

Number Standard test Meaning
1 (none) Success.
2 (none) The request has been accepted,

and more responses are coming.

3 (none) Success, partial reply. More
parameters for entity in next
message. Can only be embedded
in a more/done sequence. Each
message still contains fields up
through ENTITY ID.

-1 Unrecognized function or Either the function code or
option option field requested a
capability not recognized by the

Local Network Management

Function. Also, the error code
for function codes 2-14 (Phase
11), and for system-specific
commands when the system type
matches the receiving system.

-2 Invalid message format Message too long or too short
(i.e., extra data or not enough
data), or a field improperly
formatted for data expected.

(continued on next page)

106




Number

Standard test

Meaning

Privilege violation

Oversized Management
command message

Management program error

Unrecognized parameter type

Incompatible Management
version

Unrecognized component

Invalid identification

Line communication error

Component in
wrong state

The requestor does not have the
privilege required to perform
the requested function.

A message size was too long.
The NICE message for the command
was too 1long for the Network
Management Listener to receive.

A software error occurred in the
Network Management software.
For example, a function that
could not fail did fail.
Generally indicates a Network
Management software bug.

A parameter type included in,
for example, a change parameter
message not recognized by the
Network Management Function.

The error detail is the low and
high bytes of the parameter type
number, interpreted according to
the entity involved.

The function requested cannot be
performed because the Network
Management version skew between
the command source and the
command destination is too
great.

An entity (component) was not
known to the node. The error
detail contains the entity type
number . *

The format of an entity
identification was invalid. For
example, a node name with no
alpha character, or KNOWN used
where not allowed. The error
detail contains the entity type
number . *

Error in transmit or receive on
a line. Can only occur during
direct use of the Data Link user
interface.

An entity (component) was in an
unacceptable state. For
example, a down line load
attempted over a 1line that is
OFF, or a node name to be used
for a loop node already assigned
to a node address. The error
detail contains the entity type
number . *

lo07

(continued on next page)




Number

Standard test

Meaning

-13

-14

-15

-18

File open error

Invalid file contents

Resource error

Invalid parameter value

Line protocol error

File I/0 error

A file could not be opened.

The error detail is defined as
follows:

Value Keywords

PERMANENT DATABASE
LOAD FILE

DUMP FILE
SECONDARY LOADER
TERTIARY LOADER
SECONDARY DUMPER

VbW D

The data in a file was invalid.
The error detail is defined as
for error #-13.

Some resource was not available.
For example, an operating system
resource not available.

Improper line-identification
type, load address, memory
length, etc. The error detail
is the low and high bytes of the
parameter type number ,
interpreted according to the
entity involved.

Invalid line protocol message or
operation. Can only occur
during direct line access. In
the case of a line loop test, it
indicates that an error was
detected during message
comparison that should have been
caught by the line protocol.

I/0 error in a file, such as
read error 1in system image or
loader during down-line load.

The error detail is defined as
for error §-13.

lo8

{continued on next page)




Number

Standard test

Meaning

=19

Mirror link disconnected

No room for new entry

Mirror connect failed

Parameter not applicable

A successful connect was made to
the Loopback Mirror, but the
logical link then failed.

The error detail is:

Value Standard text

"] No node name set

1 Invalid node name
format

Unrecognized node
name

Node unreachable
Network resources
Rejected by object
Invalid object name
format

[\S]

N W

7 Unrecognized object

8 Access control
rejected

9 Object too busy

10 No response from
object

11 Remote node shut
down

12 Node or object
failed

13 Disconnect by object

14 Abort by object

15 Abort by Management

16 Local node shut down

Insufficient table space for new
entry.

A connect to the Network
Management Loopback Mirror could
not be completed. The error
detail 1is the same as for error
$-19.

Parameter not applicable to
entity. For example, setting a

tributary address for a
point-to-point line or an
attempt to set a controller to
loopback mode when the
controller does not support that
function. The error detail

contains the parameter type of
the parameter that is not
applicable.

109

(continued on next page)




Number

Standard test

Meaning

-23

-24

-25

-29

-128

Parameter value too long

Hardware failure

Operation failure

System-specific Management
function not supported

Invalid parameter grouping

Bad loopback response

Parameter missing

(none)

A parameter value was too 1long
for the implementation to
handle. The error detail is the
low and high bytes of the
parameter type number,
interpreted according to the
entity involved.

The hardware associated with the
request could not perform the
function requested.

A requested operation failed,
and there 1is no more specific
error code.

Error return for system-specific
functions unless the system type
is for the system receiving the
command. May be further
explained by a system-specific
error message.

The request for changing
multiple parameters contained
some that cannot be changed with
others.

A loopback message did not match
what was expected, either
content or length.

A required parameter was not
included. The error detail is
the low and high bytes of the
parameter type number ,
interpreted according to the
entity involved.

No message printed. Done with
multiple response commands
(e.g., read information for
known lines).

*NOTE

Error codes -8, -9,

problems with the

and =11 1indicate

primary entity to
which a command applies. They may also
apply to a secondary entity, such as the
line in a LOAD NODE command.

110




APPENDIX E

NCP COMMAND STATUS AND ERROR MESSAGES

NCP has the following standard status and error messages.

Standard Text

Meaning

COMPLETE

FAILED

NOT ACCEPTED

Unrecognized

Unrecognized

Value out of

Unrecognized

Not remotely executable

Bad management response

Listener link disconnected

command

keyword

range

value

Status Messages
The command was processed successfully.

The command did not execute
successfully.

The command did not get past syntax and
semantic checking. No attempt was made
to execute it. The text of the error
message may vary as long as the meaning
is clearly the same.

Error Messages

The command typed by the user was not
recognized.

Something in the command keyword was not
recognized.

A parameter value was out of range.
This message may be followed by a comma,
a blank and the parameter keyword(s).

A parameter value was unrecognizable.
This message may be followed by a comma,
a blank and the parameter keyword(s).

NCP is functionally wunable to send a
command to a remote node.

The Network Management Access Routines
received unrecognizable information.

A successful connect was made to the
Network Management Listener, but the
logical 1link then failed. Optional
error detail is as in NICE error message
-19 (Appendix D).

(continued on next page)

111




Standard Text

Meaning

Listener connect failed

Total parameter data
too long

Oversized Management
response

Error Messages

A connect to the Network Management
Listener could not be completed. The
optional error detail 1is as in NICE
error message -21 (Appendix D).

NCP command overflows maximum NICE
message for this implementation.

NCP could not receive a NICE message
because it was too long.

112




APPENDIX F

EVENTS

F.1 Event Class Definitions

Table 11, following, defines the event classes. The event class as
shown in Table 11 is a composite of the system type and the system
specific event class.

Table 11
Event Classes
Event
Class Description
0 Network Management Layer
1 Applications Layer
2 Session Control Layer
3 Network Services Layer
4 Transport Layer
5 Data Link Layer
6 Physical Link Layer
7-31 Reserved for other common classes
32-63 RSTS System specific
64-95 RSX System specific
96-127 TOPS-20 System specific
128-159 VMS System specific
160-479 Reserved for future use
486~511 Customer specific

F.2 Event Definitions

In the following descriptions, an entity related to an event indicates
that the event can be filtered specific to that entity. Binary
logging data is formatted under the same rules as the data in NICE

data blocks (see Appendix A). Section F.3 describes the event
parameters associated with each event type.

Table 12 shows the events for each class.

113



Table 12

Events
Event Parameters
Class |Type | Entity | Standard Text and Counters ¢
] 0 none Event records lost none
] 1 node Automatic node counters Node counters
) 2 line Automatic line counters Line counters
9 3 line Automatic line service Service
Status
[ 4 line Line counters zeroed Line counters
%} 5 node Node counters zeroed Node counters
) 6 line Passive loopback Operation
(] 7 line Aborted service regquest Reason
2 1 none Local node state change Reason
0ld state
New state
2 1 none Access control reject Source node
Source process
Destination process
User
Password
Account
3 [/ none Invalid message Message
3 1 none Invalid flow control Message
Current flow control
3 2 node Data base reused NSP node counters
4 9 none Aged packet loss Packet header
4 1 line Node unreachable packet loss Packet header
4 2 line Node out-of-range packet loss Packet header
4 3 line Oversized packet loss . Packet header
4 4 line Packet format error Packet beginning
4 5 line Partial routing update loss Packet header
Highest address
4 6 line Verification reject Node
4 7 line Line down, line fault Reason
4 8 line Line down, software fault Reason
Packet header
4 9 line Line down, operator fault Reason
Packet header
Expected node
4 10 line Line up Node
4 11 line Initialization failure, Reason
line fault
4 12 line Initialization failure, Reason
software fault Packet header
4 13 line Initialization failure, Reason
operator fault Packet header
Received version
4 14 node Node reachability change Status
5 [/ line Locally initiated state change | 0ld state
New state

114

(continued on next page)



Table 12 (Cont.)
Events

Event Parameters

Class Type | Entity | Standard Text and Counters ®
5 1 line Remotely initiated state change|0ld state
New state
5 2 line Protocol restart received in none
maintenance mode
5 3 line Send error threshold Line counters,
including station
5 4 line Receive error threshold Line counters,
including station
5 5 line Select error threshold Line counters,
including station
5 6 line Block header format error Header (optional)
5 7 line Selection address error Selected tributary
Received tributary
Previous tributary
5 8 line Streaming tributary Tributary status
Received tributary
5 9 line Local buffer too small Block length
Buffer length
6 g line Data set ready transition New state
6 1 line Ring indicator transition New state
6 2 line Unexpected carrier transition New state
6 3 line Memory access error Device register
6 4 line Communications interface error | Device register
6 5 line Performance error Device register

F.3

Counters are defined in Appendix A.

Event Parameter Definitions

The following parameter types are defined for the
layer (class 8):

Network Management

Type Data Type Keywords
2 Cc-1 SERVICE
1 CM-1/2/3 STATUS
c-1 Return code
Cc-2 Error detail (optional if no error
message)
AI-72 Error message (optional)
2 C-1 OPERATION
3 C-1 REASON

115




where:

SERVICE (l1): B

STATUS

OPERATION (1)

REASON (1)

Represents the service type as follows:

Value Reyword
e LOAD
1 DUMP

Is the operation status, consisting of:

RETURN | ERROR ERROR
CODE DETAIL | MESSAGE

where:

RETURN CODE (1) : B = Standard NICE return
code, with added
interpretation:

Value Keyword
0 REQUESTED
>0 SUCCESSFUL
<8 FAILED

ERROR DETAIL (2) : B = Standard NICE error
detail.

ERROR MESSAGE(I-72) : A

= Standard NICE optional
error message.

Represents the operation performed, as follows:

value Reyword
e INITIATED
1 TERMINATED

Represents the reason aborted, as follows:

Value

Reason

WS

Receive timeout

Receive error

Line state change by higher level
Unrecognized request

Line open error

116



The following parameter types are defined for the Session Control

layer (class 2):

Type

Data Type Keywords

2
1

C-1
C-1
c-1

CM-1/2

]

CM-1/2/3/4 S

AI-16

CM-1/2/3/4 D

AI-39
Cc-1

AI-39

U

P

REASON

OLD STATE

EW STATE

OURCE NODE
node address
node name (optional if none)

OURCE PROCESS
Object type
Group code, (if specified and process
name present)
User code, (if specified and group
code present)
Process name, if specified

ESTINATION PROCESS
Same as for SOURCE PROCESS

SER

ASSWORD

ACCOUNT

where:

REASON (1) : B

OLD STATE (1)

NEW STATE (1)

Represent
follows:

s the reason for state change,

Value

Meaning

2
1

Operator command
Normal operation

Represent

s the 0ld node state, as follows:

Value

Meaning

1
2
3

ON

OFF

SHUT
RESTRICTED

Represents the new node state, coded same as

STATE.

117

as

OLD



SOURCE NODE

Is the source node identification, consisting of:

NODE NODE
ADDRESS | NAME

SOURCE PROCESS

where:

NODE ADDRESS (2) : B = Node address (see Section
Ao3) .

NODE NAME (I-6) : A = Node name, 0@ length if
none.

Is the source process identification, consisting
of:

OBJECT | GROUP | USER | PROCESS
TYPE CODE | CODE NAME

DESTINATION PROCESS

USER (I-39) : A

PASSWORD (1) : B

ACCOUNT (I-39) : A

where:

OBJECT TYPE (1): B Object type number

GROUP CODE (1): B

Group code number

USER CODE (1): B

User code number
PROCESS NAME (I-16) :A = Process name

Is the destination process identification, defined
as for SOURCE PROCESS.

Is the user identification

Is the password indicator. A value of zero
indicates a password was set. Absence of the
parameter indicates no password was set.

Is the account information

The following parameter types are defined for the Network Services

layer (class 3):

Type Data Type Keywords
] CM-4 MESSAGE
H-1 Message flags
DU~-2 Destination node address
DU-2 Source node address
HI-6 Message type dependent data
1 DU-1 CURRENT FLOW CONTROL

118



where:

MESSAGE (I-12)

CURRENT FLOW CONTROL (1)

The following parameter types are

(class 4):

B

Is the message received (NSP information
only). Consists of:
MESSAGE | DESTINATION | SOURCE | DATA

FLAGS NODE NODE
where:
MESSAGE FLAGS (1) :B = Message flags
DESTINATION NODE(2):B = Destination node

address

SOURCE NODE(2) :B

DATA(I-6) :B

Source node address

defined for the

B Is the current flow control value

= Messagde type
dependent data
Transport layer

TYype Data Type Keywords
e CM-4 PACKET HEADER
H-1 Message flags
DU-2 Destination node address
DU-2 Source node address
H-1 Forwarding data
1 HI-6 PACKET BEGINNING
2 DU-2 BIGHEST ADDRESS
3 CM-1/2 NODE
DU-2 node address
AI-6 node name (optional if none)
4 CM-1/2 EXPECTED NODE
DU-2 node address
AI-6 node name (optional if none)
5 Cc-1 REASON
6 CM-3 RECEIVED VERSION
DU-1 Version number
DU-1 ECO number
DU-1 User ECO number
7 c-1 STATUS

119



where:

PACKET HEADER Is the packet header consisting of:

MESSAGE | DESTINATION| SOURCE [FORWARDING

FLAGS NODE NODE DATA
ADDRESS ADDRESS

where:

MESSAGE FLAGS (1) :B = Message
definition
flags

DESTINATION NODE ADDRESS(2) :B = Address of
destination
node

SOURCE NODE ADDRESS (2): B = Address of

source node

FORWARDING DATA (1) :B = Message
forwarding
data

PACKET BEGINNING (6) : B 1Is the beginning of packet.

HIGHEST ADDRESS (2) : B Is the highest unreachable node address.

NODE Is the node 1identification in the same
format as SOURCE NODE in Session Control
events.

EXPECTED NODE Is the expected node identification in the

same format as SOURCE NODE 1in Session
Control events.

REASON (1) : B Is the failure reason:
Value Meaning
0 Line synchronization lost
1 Data errors
2 Unexpected packet type
3 Routing update checksum error
4 Adjacent node address change
5 Verification receive timeout
6 Version skew
7 Adjacent node address out of
range
8 Adjacent node block size too
small
9 Invalid verification seed value
10 Adjacent node listener receive
timeout
11 Adjacent node listener received
invalid data

120



RECEIVED VERSION

STATUS (1) : B

Is the received version number, consisting
of:

VERSION ECO USER
ECO

where:

VERSION (1): B Version number.

ECO (1): B ECO number.

USER ECO (1): B User ECO number.

Represents the node status, as follows:

Value Meaning
'} REACHABLE
1 UNREACHABLE

The following parameter types are defined for the Data Link layer

(class 5):

Type Data Type Keywords
("] c-1 OLD STATE
1 c-1 NEW STATE
2 HI-6 BEADER
3 DU-1 SELECTED TRIBUTARY
4 DU-1 PREVIOUS TRIBUTARY
S C-1 TRIBUTARY STATUS
6 DU-1 RECEIVED TRIBUTARY
7 DU-2 BLOCK LENGTH
8 DU-2 BUFFER LENGTH
where:
OLD STATE (l): B Represents the old DDCMP state, as follows:
Value Meaning
2 HALTED
1 ISTRT
2 ASTRT
3 RUNNING
4 MAINTENANCE
NEW STATE (1): B Represents the new DDCMP state, as defined
for OLD STATE.
HEADER (I-6): B Is the block header

SELECTED TRIBUTARY(1l): B

RECEIVED TRIBUTARY(1l): B

Is the selected tributary address

Is the received tributary address

121



PREVIOUS TRIBUTARY(l): B 1Is the previously selected tributary address

TRIBUTARY STATUS (l): B Is the tributary status, as follows:

Value Meaning
8 Streaming
1 Continued send after timeout
2 Continued send after deselect
3 Ended streaming
BLOCK LENGTH (2): B Is the received block length from header, in
bytes
BUFFER LENGTH (2): B Is the buffer length, in bytes

The following parameter types are defined for the Physical Link layer
(class 6):

Type Data Type Keywords
8 H-2 DEVICE REGISTER
1 Cc-1 NEW STATE
where:
DEVICE REGISTER(2): B Represents a single device register. When

more than one, they should be output in
standard order.

NEW STATE (l1): B Represents the new modem control state, as
follows:
Value Meaning
'] OFF
1 ON

122



APPENDIX G

JULIAN HALF-DAY ALGORITHMS

The following algorithms will convert to and from a Julian half-day in
the range 1 January 1977 through 9 November 2021 as used in the binary
format of event logging records.

The algorithms will operate correctly with 16 bit arithmetic. The
arithmetic expressions are to be evaluated using FORTRAN operator
precedence and integer arithmetic,

In all cases, the input is assumed to be correct, i.e., the day is in
the range 1 to maximum for the month, the month is in the range 1-12,
the year is in the range 1977-2821 and the Julian half-day is in the
range 0-32767.

To convert to Julian half-day:

JULIAN = (J0SSR(MONTH+2)/100-(MONTH+10)/13%2~-91
+(1-(YEAR-YEAR/4%44+3)/4) % (MONTH+10)/13+DAY-1
+(YEAR-1977)%365+(YEAR~-1977)/4)%2

To convert from Julian half-day:

HALF = JULIAN/2

TEMP1 = HALF/1461

TEMP2 = HALF-TEMP1

YEAR = TEMP2/365

IF TEMF2/1460%1460 = TEMP2 AND (HALF+1)/1460 > TEMP1
YEAR = YEAR-1

ENDIF

TEMPL = TEMP2-(YEARX3465)+1

YEAR = YEAR+1977

IF YEAR/4%4 = YEAR

TEMP2 = 1
ELSE

TEMP2 = 0
ENDIF

IF TEMP1 > S94TEMP2
DAY = DAY+2-TEMP2
ELSE
DAY = TEMP1
ENDIF
MONTH = (DAY+91)%100/3055
DAY = DAY+91-MONTHX3055/100
MONTH = MONTH-2
IF HALF%2 = JULIAN
HALF = 0O
ELSE
HALF = 1
ENDIF

123



The algorithm was certified to work using the following FORTRAN
program running in FORTRAN IV+ on RSX-11M:

INTEGER%4 COUNT
INTEGERX2 JULTES» JULIANsDAY»MONTHr YEARy JULTEMsHALF

DO 1099 COUNT=0¢327647
JULTES=COUNT
CALL UNJUL (JULTESsHALF »DAY»MONTH»YEAR)
JULTEM=JULIAN(DAY » MONTH» YEAR) +HALF
IF (JULTEM.EQ.JULTES) GOTO 1099
TYPE 10+JULTES» JULTEM»HALF s DAYy MONTH.YEAR
10 FORMAT (Xs’Error!’»617)
1099 CONTINUE
END
|
! INTEGER FUNCTION TO CONVERT DAYs MONTH AND YEAR TO JULIAN HALF-DAY
!
INTEGERX2 FUNCTION JULIANCDAYsMONTHsYEAR)
INTEGERX2 DAY s»MONTH»YEAR

JULIAN = (30SS5k(MONTH+2)/100-(MONTH+10)/13%2-91
£ +(1~-(YEAR-YEAR/4%443)/4)%(MONTH+10)/13+DAY~1
§ +(YEAR~-1977)%365+(YEAR-1977)/4)%2

RETURN

END

! SUBROUTINE TO CONVERT JULIAN HALF-DAY TO DAY, MONTH AND YEAR

SUBROUTINE UNJUL (JULIANsHALF»DAY»MONTH» YEAR)
INTEGER%X2 JULIANsHALF+»DAYsMONTHs» YEAR» TEMP1» TEMP2

HALF = JULIAN/2

TEMP1 = HALF/1461

TEMP2 = HALF-TEMP1

YEAR = TEMP2/365

IF (TEMP2/1460%1460.EQ.TEMP2.AND. (HALF+1)/1460.8T.TEMP1)
§$ YEAR = YEAR-1

TEMP1 = TEMP2~(YEARX3635)+1

YEAR=YEAR+1977

TEMP2 = O

IF (YEAR/4%4.EQ.YEAR) TEMP2 = 1}

DAY = TEMP1

IF (TEWP1.GT.S9+TEMP2) DAY = DAY+2-TEMP2

MONTH = (DAY+%1)%¥100/3055

DAY = DAY+91~-MONTH%30535/100

MONTH = MONTH-2

TEMP1 = 0

IF (HALFX2.NE.JULIAN) TEMPL = 1}

HALF = TEMP1

RETURN

END

124



APPENDIX H

DMC DEVICE COUNTERS

The following counters are the only ones applicable to the DMC device.

Number Standard Text

1000 Bytes received

1001 Bytes sent

1010 Data blocks received

1011 Data blocks sent

1020 Data errors inbound
("] NAKs sent, header block check error
1l NAKs sent, data field block check error

1021 Data errors outbound

1030 Remote reply timeouts

1831 Local reply timeouts

1041 Local buffer errors
("] NAKs sent, buffer unavailable

None of the other standard counters can be kept due to the nature of
the DMC hardware. The "Data errors outbound” counter is kept with no
bitmap. It represents the sum of all NAKs received.

Since the counters kept by the DMC firmware cannot be zeroed in the
way that driver-kept counters can, the recommended technique for
providing the zero capability is to copy the base table counters when
a zero is requested. The numbers returned when counters are requested
are then the difference between the saved counters and the current
base table.

125



APPENDIX I

NCP COMMANDS SUPPORTING EACH NETWORK MANAGEMENT INTERFACE

This appendix shows the NCP commands supporting the Network Management
interface to each of the lower DNA layers.

126



PT-31T13
adA3y-weaboad

J3AVOT XIVIIYAL
ddXL JYVYMIJIO0S

PT-2113 NOILVOIJILNIAIX
JYYMII0S
piomssed ayoMSSvd dDIAY¥AS
PT-3UTT INIT d3DIA¥3S
adA3-ao1A9p d0IA3A IOIAYIS
PT-9T13 ¥3aavo1 X¥vaNoods
p1-o2113 Y3dWNA XY¥YVYANOOJS
pTI-9113 4714 avo1l
butais NOILV¥OIJILNIAI
p1-39pou LSOH
PT-9TT3 J11I4 dwWnd
iaqunu ILNNOD duWNa
Iaqunu $S34aav dwna
adA3-ndod ndo
Spuodds YIAWIL ¥ILNNOD
TIY pT-3pou daoN
23e3S-)jUIS dLVvLS
Qweu-jyuTs IWVYN
apou-jurs Tenb-aoanos SLNIAT NMONN
apou-jutrs t(enb-adinos ISTT~-3UaA2 INIAT ONIOO0T NMONM
TIV ad&3-juts ONIDOHO0T
93e3S-3UTT dLv¥YLS
T0I3U0D-3DTAIIS d0IAY3S
Spuooas dIWII ¥IINNOD ANIT NMONJ
11V PT-2UuTT aNIT
9pou~uoTleurlsap dJdoON qo0LnNd3IX3

{

INIJdda
Lds

}

Spuewwod

dovJi93jul 13AeT Jusdwabeuely YIOMIBN VY

1SIT IO MOHS UO paulnilal 3Ix23 IO Spiomiay sapadaid uorjzelzou STYJL v

127



VIA ST uotido 3s173 u3aym

pemoyTe 30U

¥

pPTI-auTlT VIAs
pPI-3113 ¥3aavol XYvILdal
ad&3-weaboad 34Xl JIYMIIO0S
pPI-9113 NOILVOIJILNIAI
JYvML40S
piomssed gyoOMSSvYd JDIA¥3S
adA3-30149p 3OIA3A JDIAY3S
pPTI-oT113 Y3avo1 XYVYANOD3S
aweu-3apou JWVUN
p1~apou &4LSOH
37113-peol Wodda
adA3-ndo ndo PTI-3uTtT VIA
ssaippe-apou ssS3ayaav .Avﬂlwvoc moozv. avol
pPI-auUIT VIAx PT-auTty VIa
paomssed qyoMsSsSvYd 3DIAY¥3S pT-apou JAoN ¥3aOOIUL
AWVN
apou-juts Tenb-aoinos SIN3A3 NMONM A“ ONI9D01 zzozzv. anind
apou-juts Ttenb-3dinos ISTT-1U3A3d INIAJ adA3-ju1s ONIDDOT gva1o
¥3avo1 XJVINal
3dXL FYVYMLJIOS
NOIIVOIJIINIAI
JYvmMLa0s
QaoOMSSvYd 3JDIAY3S
INIT 3DIA¥3S
301IA3A IDIA¥3S
¥3avo1 XYvaN0D3S
¥3adWna XYvanNooOa3s
SYIALIAWIVA
3714 Avo1
NOILVOIJILN3QI
LSOH
3714 dWNA
INNOD dWNa
Ss3¥aav duWna
ndd
YAWIL ¥3INNOD S3AON NMONA aodnd
11V pI-9pou A mnozv. JvaTo

(*3uo0D) 2dejaajul aaie] juswabeuey YIOom3loN VY

128



Z°V uotrijossg

99g SINIAT
dHYN |SOILSIHALOVIVHO
ONIODOT IFAILOV
SMNIS NMONM ONIODDOT NMONM
4IVLS) SOLVLS PT-2pou JINIS adA3-yurs ONIOOO01
wucumnsmumacamv SNILVLS
pao1az
“3Sey 9DUTS SpPuUODIS SYIILNNOD
SANIT NMONM ISI1
muH>mmmv SOTISIYAIOVUVHD PT-auTT aNIT MOHS
yibuag HILONI'T
adk3-y001q HIIM p1-apou 34doN
3unood INNOD p1-9uly aNIT 4001
PI-9UTTl VIAs
atr13-dunp 01
piomssed aQuOMSSVYd dDIAYIS
adX3-a07149p 4OIAIA FDIAUIAS
pT-a113 ¥43dWNA XYVANOD3S
13qunu INNOD dWnag pI-autl VIA
J9qunu $839Aav dWnag p1-apou ddoN dKWNa

(*3juo)) @oe3jaajul Iake] juswsabeuel YIOMION Y

129



SYILNNOD

SIJON NMONN
pr-~apou JAaoN

SY3LINNOD

SANIT NMONJ
pY-aurl aNIT

oyaz

anand

MOHS

vaHmn
38T 2OUTS SPUODIS

SY3LNNOD

Yaavol XYVILYAL
3dAl JYVMIJIOS
NOILIVOIAILNIAI FIVMIJIOS
aqdoMsSsvd JOIAYES
dNI1 dOIA¥IS
dOIAIA IDIAY¥IS
YIavol XJYvaNoda3Ss
YIdWNA ZIVANODIS
JWYN

NOISYdA INIWIOVYNYNW
3714 avo1
NOILVOIJIINIAI
LSOH

a'11d dWna

INNOD dWnd

S$S3¥YaAav dwna

ndd

YIAWIL ¥ILNNOD

gct- (efed

SJILSI¥ALOVIVHD

pr-apou 3dON
SJAON NMONJ

S3IAON 4001

YOorLNOIXI

S3AON IFAILOV

&LSI1
MOHS

(“3uoD) soezaajul xade] juswobeury YIOMIaN ‘Y

130



m=<zumoozv SNIYLS pT-aurt aNI1
pT-3pou 4AON

SEAON 400

aLvLS SEAON FAIIOV

AWYN SNIVLS SEAON NMONX

L ¥OLNDIX3

( pT-3apou AAON

YAWIL-ONIODLNO SEAON d00"
AWYN < S3AON JAILOV

ANIT SOILSI¥ILOVEYHD SEAON NMONX

YIWIL ONIWOONI

¥oLNnoIxa

LSIT
MOHS

JAWIL ONIOOLNO

JWYN
pPT-auTty dANI1
YIWIL ONIWQONI SJIAON NMONM aoand
TIv¥ pr-apou JdoN ava1
93e3js-apou dLVLS
Spuodas YAWIL ONIOOSLNO
aweu-apou dWYN
PTI-3UTT dNIT
spuooas YIWIL ONIWOONI
ssaippe-apou SSAJYAaAv SHAON NMONX ANIJdIa
TIV pr-apou JaoN L3S

20e3193UI 134T TOIjUO) UOTSS3aS °g

131



adk3-apou

3dAL

Spuodas YAWIL ONILNOY
laqunu SLISIA WOWIXVW
aaqunu SANI'T WOWIXVHW
laqunu SdOH WNWIXVUW
aaqunu LSOO WAWIXVYHW
aaqumu SY3JAIANY WNAWIXVW
laqunu SSIYAAY HWNWIXVHW
s3jtun-Kiowaw d4Z21Is ¥3adang SIAON NMONX
TV pt-apou JA0ON
3s00 LS0D SINIT NMONM dNIJdaa
11V PT-auTy INIT 13s
aoe3jiajur i13keq jiodsueay °a
SIAON NMONM
SYIINNOD ¥0LNd3xa oyaz
Xv13a
SANIT FAILOV SALVLS
T 9190l 93S SYIINNOD
YOILOVd LIWSNWILIIY
NOISYIA dSN
SAUNIT WNWIXVW
YIWIL XLIAILOVUNI SOILSIYALOVYVHD
IHOIAM X¥13da LSIT
dO0LOVd Av13d y05L003x3a MOHS
1aqunu YOLOVA LIWSNVYLIY
aaqunu SUNIT WAWIXVH
Spuodas YIWIL ALIAILOVUNI
aaqunu LHOI3M XV1T3Q
asqunu YOLOvd Av13d dNIdaa
1V y0LNJddxX3a L3S

aoeJ193ul 13&R] SIOTAIIS NIOMIAN °*D

132



ATT?:

SINIT NMONM

)

--l

INIT1

MOHS

SYAINNOD ANIT ou3z
( pT-3apou 300N )
S3AON d001
< S3AON FAILOV
@1 atqel @3S SY3INNOD S4AON NMONY
L 4oLNOaxX3 J
3dAL ( p1-3pou 300N )
JIvis S3IAON d001
aNIT < S4AON FAILOV
SdOH sSNIvls SIAON NMONX
1502 L 40LNDAX3
NOISYIA HNILNOY
daAWIL ONIINOY
SLISIA WOWIXYW
SANIT WOWIXVH
SJdOH WOWIXVW pT-apou JdON
LS0D WOWIXVW S3AON 4001
S43IING WNWIXVH SIAON FAILOV
$SIYAAV WNAWIXYW SOILSIVALOVIVHD SIAON NMONY
d21S yadans 4OLND3X3
SINIT FAILOV
L a1qel a9 SYAINNOD SANIT zsozxv.
A T-3uTT aNIT
SANIT FAILOV
d21S v_uoamv SNLVLS S3ANIT zsozxv ISsI11
-auTT aNIT MOHS
SANIT FAILOV
amouv SOIL1SIYALOVEVHD .ﬁ SANIT NMONY 1S11

{

)

(*3u0D) @or3zaajul aake] jiodsues]

‘a

133



SIANIT NMONM
INI1

L @T1qel 938 SYIINNOD S3INIT IJAILOV
JoIAY3IS
YANIL
A9ViNgIdl SOILSIYALOVIVHD
TO0O0L04d SANIT NMONM
¥3ATIONINOD aNIT ISI1
X31dna PT-9UTT SINIT JAILOV MOHS
aound
TV pI-auty dNIT1 Jva1o
adA3-auTt 344Xl
ssaippe-Aieinqriy Xy9vInNgaIvL
SpUODISTTTIW YAWIL JFDOIANAIS
SpuUODISTITIIW YAWIL TYWYON

apow-xa1dnp
spou-13T1013U0D

X3a1dana
H3TTOILNOD
1INV

AB-S:

SINIT NMONM
INIT

A

dNIJ3q
13s

@oe31a3ul si13keT Null Ted1sdyd/Jurl ezeqd -3

134



GLOSSARY

NOTE
Terms that derive from other related
specifications (such as hops, cost,
delay, etc.) are defined in those
specifications.
active lines
Active lines are known lines in the ON or SERVICE state.

active logging

Active logging describes all known sink types that are in the ON
or HOLD state.

active nodes

All reachable nodes as perceived from the executor node are
active nodes.

adjacent node
A node removed from the executor node by a single physical line.
characteristics
Parameters that are generally static values in volatile memory br
permanent values in a permanent data base. A Network Management

information type. Characteristics can be set or defined.

cleared state

Applied to a line: a state where space is reserved for line data
bases, but none of them is present.

command node
The node where an NCP command originates.
controller
The part of a 1line identification that denotes the control

hardware for a line. For a multiline device that controller is
responsible for one or more units.

135



counters

Error and performance statistics. A Network Management
information type.

data link

A physical connection between two nodes. In the case of a
multipoint line, there can be multiple data links.

entity

LINE, LOGGING, or NODE. These are the major Network Management
keywords. Each one has several parameters with options. LINE
and NODE also have specified counters. There are also plural
entities: KNOWN and ACTIVE LINES, LOGGING, and NODES.

executor node

The node in which the active Local Network Management Function is
running (that is, the node actually executing the command); the
active network node physically connected to one end of a 1line
being used for a load, dump, or line loop test.

filter

A set of flags for an event class that indicates whether or not
each event type in that class is to be recorded.

global filter

A filter that applies to all entities within an event class.

hold state

Applied to logging. A state where the sink 1is temporarily
unavailable and events for it should be queued.

host node

The node that provides services for another node (for example,
during a down-line task load).

information type
One of CHARACTERISTICS, COUNTERS, EVENTS or SUMMARY. Used in the

SHOW command to control the type of information returned. Each

entity parameter and counter is associated with one or more
information types.

known lines

All lines addressable by Network Management in the appropriate
data base (volatile or permanent) on the executor node. They may
not all be in a usable state.

known logging

All logging sink~-types addressable by Network Management in the
appropriate data base.

136



known nodes

All nodes with address 1 to maximum address that are either
reachable or have a node name plus all names that map to a line.

line
A physical path. In the case of a multipoint 1line, each
tributary is treated as a separate line. Line is a Network
Management entity.

line identification
The device, controller, unit and/or tributary assigned to a line.

line level loopback
Testing a specific data 1link by sending a repeated message
directly to the data link layer and over a wire to a device that
returns the message to the source.

logging
Recording information from an occurrence that has potential
significance in the operation and/or maintenance of the network
in a potentially permanent form where it can be accessed by
persons and/or programs to aid them in making real-time or
long~term decisions.

logging console

A logging sink that is to receive a human-~readable record of
events, for example, a terminal or printer.

logging event type

The identification of a particular type of event, such as line
restarted or node down.

logging file

A logging sink that is to receive a machine-readable record of
events for later retrieval.

logging identification

The sink type associated with the logging entity (file, console
or monitor).

logging sink
A place that a copy of an event is to be recorded.
logging sink flags

A set of flags in an event record that indicate the sinks on
which the event is to be recorded.

logging sink node

A node to which logging information is directed.

137



logging source node

The node from which logging information comes.
logging source process

The process that recognized an event.
logical link

A connection between two nodes that is established and controlled
by the Session Control, Network Services, and Transport layers.

loopback node

A special name for a node, that is associated with a 1line for
loop testing purposes. The SET NODE LINE command sets the
loopback node name.

monitor

An event sink that is to receive a machine-readable record of
events for possible real-time decision making.

node

An implementation that supports Transport, Network Services, and
Session Control. Node is a Network Management entity.

node address

The required unique numeric identification of a specific node.

node identification

Either a node name or a node address. 1In some cases an address
must be used as a node identification. 1In some cases a name must
be used as a node identification.

node name

An optional alphanumeric identification associated with a node
address in a strict one~to-one mapping. No name may be used more
than once in a node. The node name must contain at least one
letter.

node level loopback

Testing a logical link using repeated messages that flow with
normal data traffic through the Session Control, Network
Services, and Transport layers within one node or from one node
to another and back. In some cases node level loopback involves
using a loopback node name associated with a particular line.

off state

Applied to a node: a state where it will no longer process
network traffic. Applied to a line: a state where the line is
unavailable for any kind of traffic. Applied to 1logging: a
state where the sink is not available, and any avaaiks foar it
3hould bHe discarded.

138



on state
Applied to a node: a state of normal network operation. Applied
to a line: a state of availability for normal usage. Applied to
logging: a state where a sink is available for receiving events.
physical link
An individually hardware addressable communications path.
processed event
An event after local processing, in final form.
raw event

An event as recorded by the source process, incomplete in terms
of total information required.

reachable node

A node to which the executor node’s Transport believes it has a
usable communications path.

remote node
To one node, any other network node.
restricted state

A node state where no new logical 1links from other nodes are
allowed.

service password

The password required to permit triggering of a node’s bootstrap
ROM.

service slave mode
The mode where the processor is taken over and the adjacent,
executor node is in control, typically for execution of a
bootstrap program for down-line loading or for up-line dumping.

service state
A line state where such operations as down-line load, up-line
dump, or line loopback are performed. This state allows direct
access by Network Management to the line.

shut state

A node state where existing logical links are wundisturbed, but
new ones are prevented.

sink
(see logging sink)
specific filter

A filter that applies to a specific entity within an event class
and type.

139



station

A physical termination on a line, having both a hardwarg and
software implementation, that is a controller and/or a unit and
is part of a line identification.

status

Dynamic information relating to entities, such as their state. A
Network Management information type. Also, a message indicating
whether or not an NCP command succeeded.

substate

An intermediate line state that is displayed as a tag on a line
state display.

summary

An information type meaning most useful information.

target node

The node that receives a memory image during a down-line 1load,
generates an up-line dump, or loops back a test message.

tributary

A physical termination on a multipoint line that is not a control
station. Part of the line-identification for a multipoint line.

unit

Part of a line-identification. Together with the controller
forms a station.

140



DECnet DIGITAL

Network Architecture
Network Management
Functional Specification

. AA-K181A~TK
READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please cut along this line.

Please indicate the type of reader that you most nearly represent.

Assembly language programmer
Higher~level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

ooOoaao

Other (please specify)

Name Date

Organization

Street

City State Zip Code
or
Country



w e — =—]o Not Tear - Fold Hereand Tape = — — — — ~ — — — — — = — — — —

dlilgital1 I

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE DOCUMENTATION
146 MAIN STREET ML 5-5/E39
MAYNARD, MASSACHUSETTS 01754

— — — Do Not Tear - Fold Hereand Tape — — — — — — — — = — — — —

No Postage
Necessary
it Mailed in the
United States

U USSR

Cut Along Dotted Line









