
VAX-11
Gulde to Creating

Modular Library Procedures
Order No. AA-H500B-TE

Aprll 1980

This document describes how to design and code procedures for insertion in an
object module library or a sharable image. It includes the modular programming
standard and recommendations for modular programming in any language.

VAX-11
Gulde to Creating

Modular Library Procedures
Order No. AA-HSOOB-TE

OPERATING SYSTEM AND VERSION: VAXNMS V2.0

SOFTWARE VERSION: VAXNMS V2.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard, massachusetts

First Printing, February 1979
Revised, April 1980

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip­
ment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1979, 1980 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in preparing
future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DEC US
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-11
VAX
DECnet

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
IND AC
LAB-8
DECSYSTEM-20
RTS-8
VMS
IAS

MAS SB US
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-11
TMS-11
ITPS-10
SBI

Contents

Preface

Chapter 1 Introduction

1.1 Using Libraries with VAXNMS

1.1.1 DIGITAL-Supplied Libraries
1.1.2 User-Created Object Module Libraries .
1.1.3 User-Created Sharable Images.
1.1.4 Linking Programs to Run-Time Libraries ..

1.2 Designing and Coding Modular Procedures ...

1.2.1 Advantages of Modular Programming ..
1.2.2 Modular Programming Standard Parts.
1.2.3 Storage
1.2.4 Naming Rules and Recommendations .
1.2.5 Process-Wide Resource Allocation . .
1.2.6 Use of System Services
1.2. 7 Signaling and Condition Handling . .
1.2.8 AST-Reentrant Procedures
1.2.9 Position-Independent Code .
1.2.10 Transfer Vectors

1.3 Creating and Modifying Libraries . . .

1.3.1
1.3.2
1.3.3

Creating and Updating Object Libraries . .
Creating Sharable Images . . .
Updating Sharable Images

Chapter 2 Designing Modular Procedure Interfaces

2.1
2.2

2.3

Checklist of Design and Coding Steps.
Procedure Names

2.2.1 Facility Names.
2.2.2 Condition Value Symbols . .
2.2.3 Creating Your Own Facilities

Explicit Parameters

2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7

Parameter Characteristics . . .
Library Facility Passing Mechanisms
Parameter Passing Mechanisms . .
String Descriptors
Optional Parameters
Order of Parameters
Error and Condition Values ..

2.4 Implicit Parameters

2.4.1 Implicit Parameters Allocated by the Calling Program .
2.4.2 Implicit Parameters Allocated by the Called Procedure ..

Page

ix

. . 1-3

. 1-3

. 1-4

. 1-5

. 1-6

. . 1-8

. 1-8
. . 1-9
.. 1-9
. . 1-9
.. 1-10
. . 1-10
.. 1-10
.. 1-10

. 1-11
. . 1-11

1-11

.. 1-11

.. 1-11

.. 1-12

. . 2-1
. 2-3

.. 2-4
. 2-4

.. 2-5

. 2-5

.. 2-5

.. 2-8

.. 2-8
. 2-8
. 2-9
. 2-10
. 2-10

.. 2-11

. 2-11
. . 2-12

2.5 How to Avoid Implicit Parameters . 2-14

2-14
2-14
2-15

2.5.1
2.5.2
2.5.3

Combining Procedures .. .
User Action Routine .. .
Designating Responsibility to the Calling Program .

2.5.3.1 Calling Program Allocates Procedure Storage 2-16
2.5.3.2 Calling Program Passes Pointer. 2-17
2.5.3.3 Calling Program Passes a Process-Wide Identifier 2-18

2.6 Control of Human Readable Output 2-18
2. 7 Timer and Resource Allocation Procedures 2-19

2.7.1
2.7.2

SHOW Entry Point.
STAT Entry Point

2.8 Documentation of Procedures and Modules .

2.8.1
2.8.2

How to Write a Module Description .
How to Write a Procedure Description ..

2-20
2-20

2-21

2-21
2-24

Chapter 3 Using Storage

3.1 Types of Storage . 3-1

3.1.1 Static Storage 3-1
3.1.2 Stack Storage 3-2
3.1.3 Heap Storage. .. 3-3
3.1.4 Storage Use Summary 3-5

3.2 Choosing a Storage Type 3-5
3.3 Using Static Storage. .. 3-6

3.3.1 Allocating Process-Wide Identifiers 3-6
3.3.2 Caller Passes the Address of Storage . 3-7
3.3.3 Pushing Down the Contents of Static Storage 3-8
3.3.4 In Procedures Not Needing To Retain Results . 3-9

3.4 Using Stack Storage 3-9

3.4.1 Using Stack Storage in MACRO. 3-10
3.4.2 Using Stack Storage in BLISS. .. 3-11
3.4.3 Using Stack Storage in BASIC 3-11
3.4.4 Using Stack Storage in PASCAL 3-11

3.5 Using Heap Storage 3-12

3.5.1 Allocate Heap Storage in BLISS. 3-12

Chapter 4 Coding Modular Procedures

4.1 Structured Programming .. 4-1

4.1.1 Levels of Abstraction . 4-1
4.1.2 Grouping Procedures . 4-3

4.2 Coding Rules and Recommendations . 4-4

4.2.1 Relocatable Modules (Standard). . 4-4
4.2.2 File Names (Recommended) and Module Names (Standard) 4-4
4.2.3 PSECT Names (Standard) 4-4
4.2.4 Parameter Definition Files (Recommended) 4-5

w

Chapter 5

4.2.5 Symbols Versus Numbers (Recommended).
4.2.6 Line Length (Recommended)
4.2.7 Uppercase and Lowercase (Recommended).
4.2.8 Optional Spaces (Recommended)
4.2.9 Block Comments (Recommended) .
4.2.10 Branch and Jump Instructions (Recommended)

4.3 Initializing Modular Procedures.

4.3.1 Initializing Storage Areas .
4.3.2 Initializing Static Storage .
4.3.3 Testing and Setting First-Time Flag .
4.3.4 Adding a Dispatch Address to PSECT LIB$INITIALIZE .

4.4 Allocating Resources.

4.4.1 Using Storage with Resource-Allocating Procedures.
4.4.2 Allocating Identification Numbers .
4.4.3 Process-Wide Resources .

4.5 Passing Strings as Parameters

4.5.1 Accepting Input String Parameters
4.5.2 Returning Output String Parameters.
4.5.3 Passing String Parameters to Other Procedures.

4.6 Using VAXNMS System Services

4.6.1 Event Flag Services.
4.6.2 Asynchronous System Trap (AST) Services
4.6.3 Logical Name System Services
4.6.4 1/0 System Services
4.6.5 Process Control Services
4.6.6 Timer and Time Conversion System Services.
4.6.7 Condition Handling System Services.
4.6.8 Memory Management System Services.
4.6.9 Change Mode System Services
4.6.10 Error Messages .
4.6.11 Formatted ASCII Output .
4.6.12 RMS System Services.
4.6.13 Modular Procedure Notes.

4.7 Invoking Optional User Action Routines.

Slgnallng and Condition Handling

5.1 Condition Values
5.2 Returning a Condition Value as a Function Value .

5.2.1 Returning and Checking an Error Status. .
5.2.2 Condition Values
5.2.3 Defining Condition Value Symbols.
5.2.4 Using Global Condition Values in a Calling Program .

5.3 Signaling Error Conditions

5.3.1 Signal Exception Condition
5.3.2 Stop Execution Via Signaling .

5.4 Internal Signaling
5.5 Creating a Procedure Activation Environment ..

.4-6

.4-6

.4-6

.4-6

.4-7

.4-7

.4-7

.4-9

.4-9

.4-10

.4-12

.4-12

.4-13

.4-13

.4-14

.4-16

. 4-16

.4-16

.4-18

.4-19

.4-19

.4-19

.4-19

.4-19

.4-20

.4-21

.4-21

. 4-21

. 4-21

. 4-22

. 4-22

. 4-22

. 4-23

. 4-24

.. 5-1
.5-2

.. 5-2
.5-4
. 5-5
. 5-7

. 5-11

.. 5-11
. 5-11

. 5-11
. . 5-12

v

Chapter 6 Coding Modular AST -Reentrant Procedures

6.1 AST Interrupts in a Process

6.1.1 Using AST Routines
6.1.2 Interrupting a Non-AST reentrant Procedure.

6.2 Writing AST-Reentrant Modular Procedures
6.3 Eliminating Race Conditions During Concurrent Access .

6.3.1 Performing all Accesses in One Instruction.
6.3.2 Using "Test And Set" Instructions.
6.3.3 Keeping a Call-In-Progress Count .
6.3.4 Disabling AST Interrupts .

6.4 Performing 1/0 at the AST Level

Chapter 7 Bulldlng Modular Procedure Libraries

7.1 Building the Default System Object Library

7.1.1 Adding to the System Default Object Library
7 .1.2 Accessing the Default System Object Library. .

7 .2 Building a User-Created Object Module Library .

7.2.1 Accessing a User-Created Object Library ..

7 .3 Building a User-Created Sharable Image

7.3.1
7.3.2
7.3.3

Creating Sharable Images
Building and Installing a User-Created Sharable Image . .
Accessing a User-Created Sharable Image

7.4 Creating and Using Transfer Vectors

7.4.1
7.4.2

Building Transfer Vectors .
Using Transfer Vectors

Appendix A VAX-11 Modular Programming Standard

A.1 Scope of Applicability
A.2 Facility-Independent Part of the Standard
A.3 Facility-Specific Part of the Standard. . .
A.4 * AST-Reentrant Procedures (Optional) ..
A.5 * Sharable Images (Optional)
A.6 * Upwards Compatible Sharable Images (Optional). .
A.7 Modular Programming Recommendations (Optional) ..
A.8 Change History

Appendix B Naming Conventions

vi

B.1 Public Symbol Patterns
B.2 Object Data Types. .
B.3 Facility Prefix Table . .

6-2

6-2
6-3

6-3
6-4

6-4
6-5
6-6
6-7

6-7

7-1

7-1
7-2

7-3

7-4

7-4

7-5
7-6
7-7

7-8

7-8
7-8

A-2
A-2
A-7
A-9
A-10
A-10
A-11
A-13

B-1
B-4
B-5

Appendix C Notation for Describing Procedure Parameters

C.1 Routine Interface Types,
C.2 Notation for Describing Procedure Parameters ..

C.2.1 Procedure Parameter Characteristics ..
C.2.2 Optional Parameters and Default Values ..
C.2.3 Repeated Parameters
C.2.4 Examples
C.2.5 Summary Chart of Notation.

Figures

Tables

1-1
1-2
1-3
1-4
1-5
1-6
2-1
2-2
2-3
2-4
2-5
2-6
3-1
3-2
4-1
4-2
4-3
7-1
7-2
7-3
7-4

2-1
2-2
2-3
3-1
4-1
4-2

Developing a Program that Calls Library Procedures
DIGITAL Supplied Libraries.
Creating an Object Module Library . . .
Creating a Sharable Linage
Linking Programs to Run-Time Libraries ..
Executing an Image that Calls Library Procedures
How Implicit Inputs Can Violate Modularity . .
Designating Storage Responsibility to the Caller
MACRO Module Description Template . . .
BLISS Module Description Template. . . .
MACRO Procedure Description Template. .
BLISS Procedure Description Template ...
Use of Storage Tapes
Allocating Heap Storage in BLISS . .
Levels of Abstraction
Possible Procedure Groupings
Methods oflni tializing.
Adding a User-Created Procedure to the Default Object Library .
Development of a User-Created Object Module Library
Creating a Sharable Image
Accessing a User Created Sharable Image

Procedure Parameters Characteristics.
Parameter Passing Mechanisms Used by Library Facilities.
String-Passing Techniques Used by Library Facilities .
Summary of Storage Use by Language
Methods of Allocating Resources
Procedure's Action for Strings Passed by Calling Program .

Commercial Engineering Publications typeset this manual using DIGITAL's
TMS-11 Text Management System.

. C-1

. C-2

C-3
. C-6
. C-7
. C-7
. C-7

1-2
1-3
1-4
1-5
1-6
1-7
2-12
2-15
2-21
2-22
2-25
2-26
3-4
3-13
4-2
4-3
4-8
7-2
7-3
7-6
7-7

2-6
2-7
2-8
3-5
4-15
4-18

vii

Preface

Document Objectives

A procedure is modular if it follows rules and principles that permit it to be
successfully linked with other procedures following the same rules and princi­
ples. The VAX-11 Guide to Creating Modular Library Procedures amasses
these rules and principles into the modular programming standard. Following
this standard will lead to more reliable programs, and reduce checkout time
and maintenance effort.

This manual is a tutorial guide to designing and coding modular procedures
written in VAX-11 MACRO, BLISS-32, VAX-11 BASIC, VAX-11
FORTRAN or VAX-11 PASCAL. You can use these procedures for general
programming or for inclusion in a procedure library. The libraries include the
system default object library, user-created object libraries, and user-created
sharable images.

The guide includes required and optional modular programming techniques,
recommended style, and a description of how to install modular procedures in
DIGITAL-supplied and user-created libraries.

Intended Audience

This manual is intended for advanced system and applications programmers
who are already familiar with V AXNMS system concepts. Readers should be
familiar with the V AXNMS operating system and proficient in a language
supported by VAXNMS.

Document Structure

All chapters in this manual are tutorial.

• Chapter 1 is an overview of modular programming and of libraries. It ex­
plains the options you have in creating your own procedures and libraries
and how to determine the type of library you should create.

• Chapter 2 explains how to design and document the interface between a
modular procedure and its calling program.

ix

• Chapter 3 describes how procedures use storage and how to maintain modu­
larity while using different types of storage.

• Chapter 4 describes specific modular coding techniques in VAX-11
MACRO, BLISS-32, VAX-11 BASIC, VAX-11 FORTRAN and VAX-11
PASCAL. This includes required and optional parts of the standard for
initialization, resource allocation, passing strings, use of system services and
invoking user action routines.

• Chapter 5 describes how to signal and return error conditions from modular
procedures.

• Chapter 6 describes programming techniques that allow asynchronous sys­
tem traps (ASTs) to occur without conflicting with executing modular
procedures.

• Chapter 7 describes how to insert or replace a procedure in the system
default object library, and how to create and link with either a user-created
object library or a user-created sharable image.

The appendixes provide useful background information:

• Appendix A is the VAX-11 Modular Programming Standard, consisting of
required, optional, and recommended rules and principles. Required rules
must be followed. Optional rules must be followed or documented in the
procedure documentation as not being followed. Recommendations are
suggestions for programming style, but are not necessary for procedures to
be modular.

• Appendix B presents the notation for describing procedure parameters.

• Appendix C details the VAX/VMS naming conventions.

Associated Documents

The following documents are associated with this manual:

• VAX-11 Run-Time Library Reference Manual

• VAX/VMS System Services Reference Manual

• VAX-11 Linker Reference Manual

• VAX-11 BASIC User's Guide

• VAX-11 BASIC Language Reference Manual

• VAX-11 FORTRAN User's Guide

• VAX-11 FORTRAN Language Reference Manual

• VAX-11 PASCAL User's Guide

x

• VAX-11 PASCAL Language Reference Manual

• VAX-11 MACRO User's Guide

• VAX-11 MACRO Language Reference Manual

• VAX-11 BLISS-32 User's Guide

• VAX-11 BLISS-32 Language Guide

For a complete list of all VAX-11 documents, including brief descriptions of
each, see the VAX-11 Information Directory.

Conventions

Unless otherwise noted, all numeric values are decimal.

Unless otherwise specified, all commands end with a carriage return.

Lowercase characters indicate variable information; uppercase characters in­
dicate literal information, which you must enter exactly as shown.

Brackets ([]) in procedure descriptions indicate optional arguments. An equal
sign after an optional parameter indicates the default value.

Ellipses (...) indicate parameters that can be repeated one or more times.

Unless otherwise specified, the term:

•MACRO means VAX-11 MACRO

• BLISS means BLISS-32

• BASIC means VAX-11 BASIC

•FORTRAN means VAX-11 FORTRAN

• PASCAL means VAX-11 PASCAL

• Run-Time Library means V AX-11 Common Run-Time Procedure Library

• Linker means V AX-11 Linker

In diagrams, the following conventions are used:

-------1 ... control path

-----,...data path

• -- • ___....interface

xi

Summary of Technlcal Changes

xii

This manual documents the VAX-11 Guide to Creating Modular Procedures
Version 2.0. This section summarizes the technical changes from Version 1.5.

The following languages have been added:

• VAX-11 BASIC

• VAX-11 PASCAL

The following facilities have been added:

• BAS$ - VAX-11 BASIC specific support procedures

• PAS$ - VAX-11 PASCAL specific support procedures

• STR$ - String support procedures

The following have been added to the list of acceptable datatypes:

• bpv Bound Procedure Value

• cit COBOL intermediate temporary

• de D-floating complex

• dsc Descriptor (used by descriptors)

• g Double Precision G-floating

• gc G-floating complex

• h Quadruple precision H-floating

• he H-floating complex

• 0 Octaword integer (signed)

•OU Octa word logical (unsigned)

The following have been added to the list of acceptable parameter forms:

• nca Non-contiguous array

• sd scalar decimal descriptor

In addition, the VAX-11 Modular Programming Standard, Appendix A, un­
derwent a major revision. Most of the original rules and principles have been
revised to make them more easily understood. There are now 62 rules or
recommendations in the standard.

All chapters and appendices have been revised to bring this manual up to the
VAX/VMS V2.0 level.

Chapter 1
Introduction

A procedure is a set of related instructions that performs a task. Typically, a
procedure is invoked by executing a VAX-11 CALLS or CALLG instruction.
Each language defines a procedure differently; for example, in:

• MACRO, a procedure begins with .ENTRY and ends with RET

• BLISS, a procedure is declared as a ROUTINE with the default linkage

• BASIC, a procedure is a main program, subprogram, or function

• FORTRAN, a procedure is a main program, subroutine, or function

• PASCAL, a procedure is declared as a procedure or function

A procedure is modular if it follows rules and principles that permit it to be
successfully linked together in arbitrary ways with other procedures that fol­
low the same rules and principles. You can use modular procedures for general
programming or for inclusion in procedure libraries. Libraries are merely a
way of collecting procedures for ease of access by calling programs.

NOTE

Much of this manual refers to libraries of procedures. However,
the discussion also applies to general programming.

The V AX-11 Linker resolves references to external procedure names by
searching any user library specified in the LINK command followed by the
default system libraries. A program can then call library procedures at run
time.

Figure 1-1 shows the development of a program that calls one or more proce­
dures in a library. Depending on the options you select when writing modular
procedures, you can control linker access to your procedures and, subse­
quently, the way procedures appear at run time. For example, procedures
within a sharable image save memory and disk space, because all user pro­
cesses access a single copy.

1-1

Figure 1-1: Developing a Program that Calls Library Procedures

SHARABLE
IMAGE

1-2 Introduction

INTERACTIVE INPUT

EDITOR

LANGUAGE
TRANSLATOR

OR
ASSEMBLER

FI LE NAM. LIS

LINKER

FILENAM.MAP

SOURCE
MODULE($)

OBJECT
MODULE($)

FI LEN AM.OBJ

FILENAM.EXE

RUN FILENAM.EXE

r---1
I SHARABLE I

IMAGE
L ___ J

CALLED
OBJECT

MODULES

EXECUTABLE
IMAGE

OBJECT
MODULE

LIBRARIES

PROGRAM
OUTPUT

Edit Time

Program is
entered & edited

Compile Time

Edited pro"am
is translated into
an object file

Link Time

The appropriate
library entry points
ere made known
to the object module
to form an executable
image

Run Time

With the executable
image aware of the
proper addresses of
the relevant library
procedures in its
virtual address
space, the
image
can call library
procedures at
run time

1.1 Using Libraries with VAXNMS

Procedures can be grouped in libraries in one of two ways:

• As an object module library. A call to a procedure in an object module
library causes the linker to copy and link the module containing the proce­
dure into the calling program's object file. The module and the program
then become a single executable image.

• As a sharable image. A call to a procedure in a sharable image causes the
linker to reserve space for the entire contents of the sharable image in the
program's executable image. The sharable image is not (usually) copied into
the executable image. Instead, it is mapped into the process address space
at run time.

Sections 1.1.1 through 1.1.4 describe the default system libraries and recom­
mendations for creating object module libraries and sharable images.

1.1.1 DIGITAL-Supplied Libraries

The VAX-11 Common Run-Time Procedure Library, supplied by DIGITAL,
consists of modular procedures that provide support for components of the
V AXNMS system. The Run-Time Library includes procedures that support
the language compilers, as well as those that are generally useful to programs.
Procedures from the Run-Time Library exist in two forms:

• The default system object module library, STARLET.OLB, contains all
procedures.

• The default system sharable image, VMSRTL.EXE, contains a subset of
the VAX-11 Common Run-Time Procedure Library made sharable to save
memory.

Figure 1-2 shows the V AXNMS libraries, including the default system object
module library, STARLET.OLB, and the sharable image, VMSRTL.EXE.

Figure 1-2: DIGITAL-Supplied Libraries

SYSTEM
SERVICES
SUPPORT

RMS
SUPPORT

GLOBAL
SYMBOLS

CUSTOMER-SUPPLIED
OBJECT MODULES

RUN-TIME
LIBRARY
OBJECT

MODULES

SYSTEM DEFAULT OBJECT LIBRARY
SYS$ LIBRARY: STARLET.OLB

SYSTEM DEFAULT
SHAREABLE

IMAGE LIBRARY

(SHAREABLE SUBSET OF
RUN-TIME LIBRARY LINKED

AS AN IMAGE)

VAX-11 COMMON RUN-TIME
PROCEDURE LIBRARY

Introduction 1-3

The linker automatically searches both of these libraries for unresolved refer­
ences to global symbols as a result of the LINK command. First, the linker
searches VMSRTL.EXE, a sharable subset of STARLET.OLE. If the linker
resolves a reference with this sharable image, it reserves space for (as opposed
to copying) the entire sharable image at the end of the executable program
image being created.

After searching VMSRTL.EXE, the linker searches the default object library,
STARLET.OLB, for any remaining unresolved references. If the linker finds
one, it copies the pertinent module into the executable image. At run-time the
sharable image is mapped into the end of the process address space if the
linker had reserved space for it.

1.1.2 User-Created Object Module Libraries

A user-created object module library consists of procedures you can write in
any programming language. You can create an object library from object files
using the LIBRARY command (see the VAX/VMS Command Language
User's Guide). The default file type for object module library files is OLB. For
object files, it is OBJ. Figure 1-3 shows the development of a user-created
object library.

Figure 1-3: Creating an Object Module Library

USER OBJECT
MODULE

A.OBJ

1-4 Introduction

USER OBJECT
MODULE

B.OBJ

LIBRARIAN

USER-CREATED
OBJECT MODULE

LIBRARY

MYLIB.OLB

USER OBJECT
MODULE

$LIBRARY/CREATE MYLIB A,B,C
[,obj-module.OBJ ...]

You can either explicitly or implicitly include library modules in the program
being created:

• Implicit inclusion occurs when a file specified in the LINK command con­
tains an object module that refers to a global symbol defined in the library
that the linker searches.

• Explicit inclusion occurs when you name a module with the /INCLUDE
qualifier after the library name in the LINK command.

The linker follows these conventions in using object libraries:

• The linker processes all input files, including libraries, in the sequence in
which you name them.

• If you specify both the /LIBRARY and /INCLUDE qualifiers after a library
file specification, the linker includes the named module first and then, if
necessary, searches the library.

• The linker searches the default system library for unresolved references
after it has processed all named input files, including user libraries.

The VAX-11 Linker Reference Manual provides more information on the
linker's use of libraries.

1.1.3 User-Created Sharable Images

Figure 1-4 shows the development of a user-created sharable image.

Figure 1-4: Creating a Sharable Image

The linker can)
accept either of
these forms
to create a
sharable-image

USER-CREATED
OBJECT MODULE

LIBRARY

LINKER $LINK/SHARABLE image-specs

USER-CREATED
SHARABLE

IMAGE

Introduction 1-5

A user-created sharable image can consist of a subset of a user-created object
library. It contains modular procedures usually written in position-independ­
ent code; the procedures should be used frequently enough to warrant being
shared among processes. You can specify the user-created sharable image as
input to the linker by using the /OPTIONS qualifier after the name of the
options file in the LINK command. The VAX-11 Linker Reference Manual
details the benefits and uses of sharable images.

1.1.4 Linking Programs to Run-Time Libraries

Figure 1-5 shows how each type of Run-Time Library is linked to a program
object module to form an executable image.

Figure 1-5: Linking Programs to Run-Time Libraries

$LINK PROGRAM, LIBOPT/OPTIONS, MYLIB/LIBRARY

where file LIBOPT. OPT contains the command:
MYSHR/SHAREABLE

When the link command shown is given, these events occur:

1. PROGRAM.OBJ is linked into the image.

2. MYSHR.EXE, the user-created sharable image specified indirectly with
the options file LIBOPT.OPT, is unconditionally included. References (if
any) are resolved and address space is allocated.

3. MYLIB.OLB, the user-created object library specified in the LINK com­
mand, is searched. If references are resolved, the VAX-11 Linker includes
a copy of the modules resolving those references in the image.

1-6 Introduction

4. VMSRTL.EXE, the default sharable image, is automatically included if
and only ff it resolves any remaining unresolved references.

NOTE

You can use the /NOSYSSHR qualifier to request the
linker to omit the search of the default sharable image.

5. STARLET.OLB, the default object library, is automatically searched if
any unresolved references remain. If references are resolved, the VAX-11
Linker includes a copy of the modules in the image that resolve those
references.

NOTE

You can use the /NOSYSLIB qualifier to request the
VAX-11 Linker to omit the search of both the default shar­
able image and the default object module library.

The resulting executable image can be executed in a user process by using the
RUN command. This is shown in Figure 1-6.

Figure 1-6: Executing an Image that Calls Library Procedures
USER PROCESS

PROGRAM. OBJ

USER-CREATED
SHARABLE IMAGE

ANOTHER USER PROCESS

PROGRAM1. OBJ

r------,

r------, MYSHR. EXE

I I

I

L------.J

OBJECT MODULES
FROM

ST AR LET.OLB
AND

MYLIB.OLB

r------, r------,
I
I

I I

L------.J
PROGRAM. EXE

TRANSFER VECTORS

SHARABLE SUBSET
OF VAX-11

COMMON RUN-TIME
PROCEDURE LIBRARY

VMSRTL. EXE

I I

L------.J

OBJECT MODULES
FROM

STARLET. OLB

r------, r------,

L-------'
PROGRAM1. EXE

Note that copies of the modules taken from STARLET.OLB and
MYLIB.OLB are bound with each image that links with the object libraries;
in contrast, the sharable modules in VMSRTL.EXE and MYSHR.EXE reside
in individual image files shared between processes at run-time.

Introduction 1-7

1.2 Designing and Coding Modular Procedures

To ensure that your procedures are compatible with all other procedures and
programs executing on V AXNMS, you should follow the programming tech­
niques and recommendations described in this manual.

The modular programming standard specifies:

• A subset of the VAX-11 Procedure Calling Standard to be used, and

• Additional techniques and recommendations for modular programming

The standard is used by DIGITAL to develop V AXNMS library software.

Any modular procedure can be placed in an object library, a sharable image,
or both.

Any procedure placed in a sharable image should also be placed in an object
module library. Then, if you want, a particular module can be extracted. Also,
if a very large program is close to your system's virtual memory limit, you can
include only called modules from the object library rather than allocate vir­
tual memory for the entire sharable image.

1.2.1 Advantages of Modular Programming

The modular programming "standard" described in this manual offers several
advantages over writing a complex program as a single source module. How­
ever, there is much more to modular programming than breaking a program
into procedures. Each procedure must observe a number of rules and princi­
ples to be modular, that is, to be able to be combined in arbitrary ways with
other procedures following the same rules and principles to form programs.
Thess following the same rules and principles to form programs. These rules
and principles are collected in the form of a standard in Appendix A.

If you follow all the required elements of the standard, you will gain the
following advantages:

• You can use any modular procedure in any program.

• You can add a modular procedure to a library at any time.

• You need not rewrite common algorithms every time a new program needs
them.

• You can divide a complex program into simpler procedures to reduce devel-
opment time, reduce complexity, and increase reliability.

• You can replace a procedure without modifying the calling program.

• You can control process-wide resource allocation.

• You can use different programming languages to write different procedures
for a program.

1-8 Introduction

Following the optional elements of the standard specified in this manual
yields these additional advantages:

• Sharable library procedures can save memory and link time.

• AST-reentrant procedures can be called by AST-level procedures.

• Modular procedures that conform to all coding recommendations are simi­
lar in format and therefore are easier to use and maintain.

• Structured programming recommendations let your procedures work to­
gether in a logical pattern.

1.2.2 Modular Programming Standard Parts

Appendix A lists the elements of the modular programming standard ex­
plained in this manual. There are three parts to the standard:

• Required elements.

• Optional elements that you must follow or document your intent not to
follow.

• Recommendations that make it easier for your modules to be used by
others. However, not following the recommendations does not affect
modularity.

The following sections describe major aspects of the modular programming
standard.

1.2.3 Storage

Most procedures use some type of storage to retain information either during a
single procedure activation or between successive activations. The types of
storage are:

• Static

• Stack

•Heap

While any modular procedure can use any of the three types, there are certain
principles that should be followed. These principles are explained in
Chapter 3.

1.2.4 Naming Rules and Recommendations

This manual describes naming rules for procedures, modules, and program
sections (PSECTS). It also explains the naming recommendations for file
names. (See Sections 2.2 and 4.2.)

Introduction 1-9

1.2.5 Process-Wide Resource Allocation

Process-wide resources can be allocated as needed to any procedure in a
process. They include:

• Virtual memory

• Logical unit numbers

• Event flags

• Dynamic strings

Moreover, you can create additional resources. Modular procedures follow the
standard of allocating resources by calling a resource-allocating procedure
(they do not allocate the resource directly themselves). This prevents conflicts
that could occur if two procedures were to allocate the same resource. The
available resources and allocation methods are described in Section 4.4.

1.2.6 Use of System Services

Modular procedures can use system services that conform to the modular
programming standard. Section 4.6 lists all system services and indicates
those that modular procedures can use.

1.2. 7 Slgnallng and Condition Handling

Modular procedures adhere to rules to indicate errors. For example, modular
procedures either return a condition value or call system-signaling procedures
to output error messages. Chapter 5 describes the programming rules for
signaling and condition handling and techniques of signaling between related
procedures.

1.2.8 AST-Reentrant Procedures

V AXNMS provides a mechanism to interrupt image execution in response to
an external asynchronous event. When the event occurs, a user-supplied asyn­
chronous system trap (AST) routine is called.

An AST-reentrant procedure can be interrupted and reexecuted before
resuming execution at the point of the interrupt. Thus, it can be called from
AST-level and/or non-AST-level routines. Most modular procedures are
AST-reentrant. Chapter 6 des<!ribes how to write AST-reentrant modular
procedures.

1-10 Introduction

1.2.9 Position-Independent Code

Position-independent code executes correctly no matter where it is placed in
the virtual address space after it is linked. To be modular, a sharable image
must contain position-independent code. However, it can have non-position­
independent data.

The VAX-11 Linker Reference Manual discusses position-independent code
in detail.

1.2.1 O Transfer Vectors

Transfer vectors eliminate the need to relink images that call procedures in a
sharable image every time a new version of the sharable image is installed.
You can add transfer vectors to procedures in a sharable image at any time, as
Chapter 7 explains.

1.3 Creating and Modifying Libraries

You can add procedures to the default system object library
(STARLET.OLB). You can modify procedures in your own object library or
your own sharable image. (See Chapter 7 for more detail.)

1.3.1 Creating and Updating Object Libraries

You can create or add modules to an object module library, including the
default system object library (STARLET.OLB), with the LIBRARY
command.

This command can also replace a module in an object library.

1.3.2 Creating Sharable Images

You create a sharable image to optimize storage space and access time. These
images contain code that many users can share. Specific advantages are:

• Conservation of disk storage space

• Reduction of paging 1/0

• Conservation of memory at run time

• Reduction in link time, since a shared library is pre-linked

If your sharable image is written in position-independent code and you have
provided transfer vectors, you can eliminate the need to relink all images that
called the old version when you install a new version.

Introduction 1-11

Observe these rules-of-thumb when deciding whether to create a sharable
image:

• The combined code of all procedures in the planned sharable image should
be at least lOK bytes.

• The number of potential simultaneous users for these procedures should be
three or more.

1.3.3 Updating Sharable Images

To add or modify code in a sharable image, you must reinstall the entire
image. You can update any user-created sharable image.

You cannot add or modify the system default sharable image VMSRTL.EXE.
However, you can make a user-created sharable image that contains
VMSRTL.EXE, and substitute it for VMSRTL.EXE. However, all user and
system programs must then be relinked.

1-12 Introduction

Chapter 2
Designing Modular Procedure Interfaces

If the interface between each procedure and its caller is modular, then any
procedure can fit together with any other group of procedures in a program. If
you follow the design techniques described in this chapter, your procedures
will operate successfully with other modular procedures.

The following design aspects are discussed:

• Checklist of design and coding steps

• Explicit parameter types and passing mechanisms

• Implicit parameters

• Documentation of procedure functions

• Control of human readable output

• Timer and resource allocation procedures

This chapter contains required rules and principles that must be followed to
ensure modularity, optional rules and principles that require documentation
if not followed, and recommendations that are suggested to ensure uniformity
and ease of use.

2.1 Checkllst of Design and Coding Steps

The following checklist should help you:

• Design the interface between the procedure and its caller

• Design modular procedures

• Code procedures

2-1

The section numbers indicate where you can find detailed information.

1. Select procedure name(s) and facility name (see Section 2.2).

2. Define a procedure's explicit parameters (see Section 2.3).

Choose these characteristics for each explicit parameter (see Sections
2.3.1 and 2.3.2):

- Access Type

- Data Type

- Passing Mechanism

- Parameter Form

Place the parameters in the calling sequence in the correct order (see
Section 2.3.6).

3. Decide whether and how the procedure will retain information from one
activation to another (see Section 2.4).

4. Determine how procedures will indicate error and success conditions (see
Section 2.3.7 and Chapter 5).

5. Provide optional action routines if your procedure produces human read­
able output to a character imaging device (see Section 2.6).

6. Provide statistic and status entry points for any resource allocation proce­
dure (see Section 2. 7).

7. Write documentation for procedures and modules (see Section 2.8):

- Write module descriptions

- Write procedure descriptions

8. Decide how each procedure will utilize storage. Determine the type
of storage to be used and steps required to maintain modularity (see
Chapter 3).

9. Consider structured programming recommendations (see Section 4.1).

Decide:

- The number of procedures involved

- How they interact with each other

- How they are arranged in modules

- Whether they are potentially sharable

10. Check Appendix A for the complete list of required, optional and recom­
mended elements of the modular programming standard before coding
procedures.

2-2 Designing Modular Procedure Interfaces

11. Determine what resources your procedure will need. If a resource alloca­
tion procedure does not exist for the resources you need, write one and add
it to STARLET.OLB (see Section 4.4).

12. Code each procedure to handle error conditions (see Chapter 5).

13. Decide whether to make procedures AST-reentrant (see Chapter 6).

14. Follow coding rules and recommendations while writing code (see Section
4.1). Be sure to follow the standard in these areas:

- Initialization (if needed) (see Section 4.3)

- Use of system services (if needed) (see Section 4.6)

- Passing string parameters (if needed) (see Section 4.5)

15. While fixing bugs in your procedures, be sure to maintain modularity.

16. Add debugged procedures to an object module library and/or install as a
sharable image, as required (see Chapter 7).

2.2 Procedure Names

Entry point naming standards follow the VAX-11 global symbol-naming
standards. A global symbol takes the general form:

fac$symbol
fac_symbol

(DIGITAL-supplied)
(user-created)

where:

fac
is, typically, a 3-character facility name.

symbol
is a 1 ton-character symbol, such that the entire global symbol does not
exceed 15 characters.

NOTE

Until all DIGITAL-supported VAX languages provide 31-char­
acter symbols, library procedures should limit global names to
15 characters.

A symbol generally consists of a verb followed by the object. Together, verb
and object describe the procedure's action, such as LIB$GET_VM (Get Vir­
tual Memory). The facility name and the character symbol are separated by a
single dollar sign if the procedure is DIGITAL-supplied, and by an underscore
if the procedure is user-created. This convention avoids conflict between
DIGITAL and user procedure names.

Some global procedures are not intended to be part of the modular interface
and are only internally available within a set of procedures. These procedures'

Designing Modular Procedure Interfaces 2-3

names are differentiated by a double dollar sign if they are DIGITAL-sup­
plied, and by a triple underscore if they are user-created. Note that three
underscores are used to differentiate user-created internal global entry point
names from user-created condition value symbols with two underscores.

Entry point names of procedures called only from inside the same module
need not include the facility name, provided the entry point names are not
global symbols.

2.2.1 Faclllty Names

The DIGITAL-defined facility names are registered in a DIGITAL-main­
tained, system-wide registry. These facility names are used in the VAX-11
Run-Time Library:

LIB General purpose

MTH Mathematics

STR Strings

OTS Language-independent support

BAS BASIC Support

FOR FORTRAN Support

PAS PASCAL Support

For language support, the facility name is generally the same as the default
file type for the language. Appendix B contains other available facility names.

You can also create your own facility names if none of the DIGIT AL-defined
ones are appropriate.

2.2.2 Condition Value Symbols

Condition value symbols symbolically define unique, system-wide, 32-bit con­
dition values. These values are used in return status codes, signal argument
lists, and as message identifiers. Condition value symbols have the general
form:

fac$_symbol (DIGITAL-supplied)
fac _ _symbol (user-created)

2-4 Designing Modular Procedure Interfaces

A unique, 12-bit facility number is assigned to each facility name for the
facility number field in a condition value.

2.2.3 Creating Your Own Facllltles

You can create your own facilities by defining a unique facility name and
facility number. Bit 27 (STS$V _CUST_J)EF) of a condition value indicates
whether that value is user- or DIGITAL-supplied. This bit must be 1 if the
facility number is user-created.

2.3 Expllclt Parameters

Explicit parameters are a procedure's primary interface with the outside
world. Therefore, rules for parameter types and passing mechanisms must be
carefully followed to maintain a modular interface.

2.3.1 Parameter Characteristics

Every parameter has these characteristics:

Characteristic

Access type
Data type
Passing mechanism

Parameter form

Example

read, write, modify, ...
longword, floating, ASCII text, ...
by immediate value, by reference, by
descriptor
scalar, array, ...

Table 2-1 lists the possible alternatives for each characteristic. Appendix C
describes each alternative in detail. This list is complete for all characteristics
allowed by the VAX-11 Procedure Calling Standard.

The letter abbreviations to the left of each characteristic are shorthand nota­
tions used in program documentation to record the characteristics of each
parameter. The complete parameter description is:

<name>.<access type><datatype>.<passing mechanism><parameter form>

For example, the calling sequence of LIB$GET-1NPUT is:

ret-status. wlc. v = LIB$GET-1NPUT (get-str. wt.dx [,prompt-str.rt.dx
[,outlen. ww.r]])

Designing Modular Procedure Interfaces 2-5

Table 2-1: Procedure Parameter Characteristics

<access type> <data type>

c Call after stack unwind a Virtual address

f Function call (before return) arb 8-bit relative virtual address
j JMP (after unwind) access arl 32-bit relative virtual address

m Modify access arw 16-bit relative virtual address

r Read-only access b Byte integer (signed)

s Call without stack unwinding bpv Bound procedure value

w Write-only access bu Byte logical (unsigned)

c Single character

cit COBOL intermediate temporary
<parameter form>

Character pointer cp

d Double precision D-floating
- Scalar

D-floating complex de
a Array reference or descriptor

dsc Descriptor (used by descriptors)
d Dynamic string descriptor

f Single precision F-floating
nca Non-contiguous array descriptor

fc F-Floating complex
p Procedure reference or descriptor

Double precision G-floating
Fixed length string descriptor

g
s

G-floating complex
sd scalar decimal descriptor

gc

h Quadruple precision H-floating
x Class type in descriptor

he H-floating complex

1 Longword integer (signed)

<passing mechanism> le Longword return status

lu Longword logical (unsigned)

d By descriptor nu Num. string, unsigned

r By reference nl Num. string, lt. separate sign

v By immediate value nlo Num. string, lt. overpunched sign

nr Num. string, rt. separate sign

nro Num. string, rt. overpunched sign

nz Num. string, zoned sign

0 Octaword integer (signed)

OU Octa word logical (unsigned)

p Packed decimal string

q Quadword integer (signed)

qu Quadword integer (unsigned)

t Text (character) string

u Smallest addressable storage unit

v Bit (variable bit field)

w Word integer (signed)

WU Word logical (unsigned)

x Data type in descriptor

z Unspecified

zi Sequence of instruction

zem Procedure entry mask

2-6 Designing Modular Procedure Interfaces

The notation xy .z means that the argument is only passed to a user-supplied
procedure, and so can have any access type (x), data type (y) and passing
mechanism (z).

2.3.2 Library Faclllty Passing Mechanisms

Library facilities usually have a distinct interface style for passing
mechanisms and data forms. If you use one of the facilities that has already
established a technique, you should follow their guidelines. For example, the
calling program passes all input scalars to LIB facility procedures by refer­
ence. Table 2-2 summarizes the passing mechanisms used with each data
form for the library facilities shown.

Table 2-2: Parameter Passing Mechanisms Used by Library Facilities

Immediate
Data Forms Value Reference Descriptor

Scalars
Input OTS,lan* LIB,MTH -
Output - LIB,OTS,lan -

Arrays
Input - LIB, OTS,lan Ian
Output - LIB,OTS,lan Ian

Strings
Input - - LIB,OTS,lan
Output
Fixed length - - LIB,OTS,STR
Dynamic - -

*where lan is a language-specific facility.

2.3.3 Parameter Passing Mechanisms

The procedures designed to be called explicitly from higher level languages
should minimize the need for language extensions in the calling program.
Therefore, LIB, MTH, and STR accept atomic data types by reference rather
than by immediate value, and strings by descriptor rather than by reference.
Passing atomic data types differs from calling techniques for VMS System
Services: System Services accept atomic data type input parameters by im­
mediate value, not by reference.

2.3.4 String Descriptors

The calling program passes all strings by descriptor to every library facility.
The descriptor for the string(s) must have a length and pointer (see Section
C.8 in the VAX-11 Run-Time Procedure Library Reference Manual for a

Designing Modular Procedure Interfaces 2-7

complete description). Table 2-3 lists the string-passing techniques used for
the library facilities shown (See Section 4.5 for passing strings as output
parameters).

Table 2-3: String-Passing Techniques Used by Library Facilities

~-='·--~·~-----~---...,,

String Type String Descriptor Fields Facility

Class Length Pointer
...... ...,

Input Parameter to Procedures

Input String Passed by Ignored Read Read LIB,OTS
Descriptor STR,lan*

Output Parameter from Procedures (class assumed by called procedure)

Output String Passed by Ignored Read Read Ian
Descriptor (fixed-length)

Output String Passed by Ignored Always Can be LIB, OTS
Descriptor (dynamic) Written Written STR

Output Parameter from Procedures (class specified by calling program)

Output String (unspecified) Read Read Read LIB,OTS
(DSC$K_CLASS_Z) STR

Output String (fixed-length) Read Read Read LIB,OTS
(DSC$K_CLASS_S) STR

Output String (dynamic) Read Always Can Be LIB, OTS
(DSC$K_CLASS_D) Written Written STR

,,,,....,,.,
. """"'~~· -~·-,,.,.....-""'""·~'""

*where lan is a language-specific facility.

2.3.5 Optional Parameters

An optional parameter is one that the calling program can omit. The calling
program indicates the omission by passing argument list entries containing
zero. For a trailing optional parameter, the calling program can pass a short­
ened list or a zero argument list entry.

NOTE

VMS System Services, unlike the Run-Time Library, cannot
accept a shortened argument list. Omitted arguments must
always be indicated with a zero argument list entry.

For parameters passed by immediate value, there is no distinc­
tion between passing a zero value and passing a zero argument
list entry.

2-8 Designing Modular Procedure Interfaces

2.3.6 Order of Parameters

Procedures in the VAX-11 Run-Time Procedure Library follow a consistent
pattern for positioning parameters. Procedure designers should group parame­
ters in this left-to-right order:

1. Required input parameters (read access)

2. Required input-output parameters (modify access)

3. Required output parameters (write access)

4. Optional input parameters (read access)

5. Optional input-output parameters (modify access)

6. Optional output parameters (write access)

Note that optional parameters follow required parameters. Omitting optional
parameters shortens the parameter list.

Required parameters are accessed in a left-to-right order. The only exceptions
are functions in which the function value exceeds 64 bits, such as strings or
quadruple precision H-floating, and so cannot be returned in RO/Rl. In this
case, the calling program uses the first parameter to specify where the func­
tion value is to be stored and the other parameters are shifted right one
position. (See the VAX-11 Procedure Calling Standard.)

2.3. 7 Error and Condition Values

A procedure can indicate errors to its caller by either returning a condition
value as a completion code or signaling the error. It is recommended that,
whenever possible, modular procedures return a completion code as a function
value. Then, when an error occurs, the completion code indicates the error to
the caller of the procedure. At that point, the caller can choose a recovery
path. For a description of signaling, see Chapter 5 in this manual and Chapter
6 of the VAX-11 Run-Time Library Reference Manual. It is harder for the
calling program to recover from an error that is signaled than from one re­
turned as a function status.

Procedures in the following facilities handle errors in specific ways:

LIB

MTH

OTS
STR
BAS
FOR
PAS

Always returns completion code.

Always signals errors (function value is the mathematical value re­
turned).

Returns completion code when a check of the code will not impose an
excessive speed or space penalty on the caller; otherwise, it signals
the error.

NOTE

BAS procedures always signal VO errors.

Designing Modular Procedure Interfaces 2-9

2.4 lmpllclt Parameters

In addition to explicit parameters, there can be parameters that are not speci­
fied in the parameter list. These implicit parameters provide additional infor­
mation to your procedure from static storage locations. There are two types:

• Implicit parameters allocated by the calling program

• Implicit parameters allocated by your procedure

When deciding whether your procedure will have implicit parameters, you
should consider the advantages and disadvantages discussed in the following
sections. It is easier to maintain modularity by not using them. If your proce­
dure must retain information from previous activations and you want to avoid
using implicit parameters, read Section 2.5. If you must use implicit parame­
ters, read the rest of this section and the discussion of static storage in
Chapter 3.

2.4.1 lmpllclt Parameters Allocated by the Calling Program

There are two types of implicit parameters the calling program can allocate:

• Statically allocated variables in a named PSECT (for example, COM and
MAP in BASIC, COMMON in FORTRAN or variables declared in the
outer block of a procedure or program in PASCAL)

• Statically allocated global variables (for example, symbols defined with a
double colon:: in MACRO, and GLOBAL variables in BLISS)

There are several disadvantages to using implicit inputs allocated by the
calling program:

• Two programmers can use the same PSECT name or global variable for
different quantities. This error will be undetected.

• The calling program is no longer independent of the called procedure, as a
change in one could inadvertently affect the other.

• In BASIC and FORTRAN, the calling program has to declare all of
COMMON regardless of the number of implicit inputs actually needed.

• If your procedures are put in a sharable image, they cannot be called from
outside the shared image, since the shared image could not reference im­
plicit parameters that are outside of the image.

Because of these disadvantages, using implicit parameters allocated by the
calling program violates the modular programming standard.

2-10 Designing Modular Procedure Interfaces

2.4.2 lmpllclt Parameters Allocated by the Called Procedure

There is one type of implicit parameter allocated by the called procedure:
local static storage. The procedure declares static storage using .BYTE
through .QUAD in MACRO, OWN in BLISS, and all variables in FORTRAN.
BASIC and PASCAL do not have the notion of static storage that satisfies
modular programming requirements.

Implicit inputs retained in local static storage usually keep track of resources
(by resource allocating procedures) and shorten the explicit parameter list.
However, the use of implicit inputs by nonresource-allocating procedures can
lead to unexpected results. Assume that procedure A is to leave information
for a companion procedure B. Thus, B has both explicit inputs (from its
caller) and implicit inputs (from A's storage). Next, consider that a calling
program calls A, then calls procedure X, and finally calls B. For the calling
program to get correct results from B, it must know that X (and any proce­
dures that X calls) did not make a call to A (such a call would change the
implicit inputs A leaves for B).

The following FORTRAN example of LIB_GET_STRING reads a string
from the terminal; LIB_GET_STR._LEN, a companion procedure, returns
the length of the string last read by LIB_GET_STRING.

C Procedure to Read Strins froM TerMinal
FUNCTION LIB_GET_STRING <LEN>
INTEGER*4 LENGTH ! Place to reMeMber lensth
CHARACTER*<*> LIB_GET_STRING
READ 100t LENGTHt LIB_GET_STRING

100 FORMAT (Qt A> ! Set LENGTH to lensth of line inPut
RETURN

C Procedure to Return Lensth of Strins Last Read
ENTRY LIB_GET_STR_LEN
LEN = LENGTH ! LENGTH is iMPlicit inPut ParaMeter
RETURN
END

This calling program could get unexpected results if procedure X also happens
to call LIB_GET_STRING. Instead of getting the length of the string read
in statement 1000, statement. 2000 uses the length of the string read in
procedure X.

CHARACTER*GO NAME
1000 NAME= LIB-GET-STRING ()

CALL X < ••• >
2000 ••• =NAME <l:LIB-GET_STR_LEN<>>

Figure 2-1 illustrates this situation pictorially.

Designing Modular Procedure Interfaces 2-11

Figure 2-1: How Implicit Inputs Can Violate Modularity

STATIC
STORAGE

IMPLICIT OUTPUT- '

GET-STRING

I
I
I

---t RET I
PROCEDURE I

- _, I
(I

IMPLICIT INPUT

CALL GET_STR_LEN ------ GET_STR.LEN

CALLING PROGRAM RET

This call could affect implicit
input to GET_STR.LEN in
an undetected way.

CALL GET_STR ING

x

RET

PROCEDURE

INTERFACE
PROCEDURE

INTERFACE

----- CONTROL PATH

----- DATA PATH

.,....___

The use of such implicit parameters violates the modular programming stand­
ard since one of the objectives of modular programming is to permit proce­
dures to be combined arbitrarily without the need to understand the internal
workings of each. The aforementioned problem will also occur if X is rewritten
to include a call to A. A calling program that assumes the old version of X
thus would not get correct results on its call to B.

Furthermore, the same problems can occur with any nonresource-allocating
procedure that leaves results for itself as future implicit parameters.

The following section describes how to avoid the problems of implicit input
parameters allocated by the calling program or the called procedure.

2-12 Designing Modular Procedure Interfaces

2.5 How to Avoid lmpllclt Parameters

There are four ways to write nonresource-allocating procedures that avoid the
implicit parameter problems described in Section 2.4:

• When one procedure obtains results from another, combine the two proce­
dures into a single call (see Section 2.5.1).

• Provide a single call that calls an action routine supplied by the calling
program part way through your procedure's execution (see Section 2.5.2).

• Designate responsibility for retaining information from a procedure activa­
tion to the calling program. This is done with an explicit parameter (see
Section 2.5.2).

• Specify your interface to consist of a sequence of calls to different proce­
dures. The first call should save the contents of any still active implicit
parameters on a push down stack in heap storage. The last call should
restore the old implicit parameters. Thus, static storage is made available to
your sequence of procedures for implicit inputs to be passed between them
(see Section 3.3.1).

2.5.1 Combining Procedures

Often nonresource-allocating procedures that leave results for one another can
be combined into a single procedure that returns all information explicitly in
a single call. Consider the Section 2.4.2 example of the companion procedures
LIB_GET_STRING and LIB_GET_STR__LEN.

Changing LIB_GET_STRING and LJB_GET_STR__LEN to a single pro­
cedure, Procedure X can no longer modify LIB_GET _STRING's storage
before the length can be returned.

C Procedure to Read Strins f roM TerMinal
FUNCTION LIB_GET_STRING <LEN>
CHARACTER*<*> LIB-GET-STRING
READ 100, LEN, LIB_GET_STRING

100 FORMAT (Q, A> !Set LENGTH to lensth of line inPut
RETURN
END

This calling program obtains both the string and its length in a single call,
thereby preventing procedure X from causing unexpected side effects.

CHARACTER*GO NAME
1000 NAME = LIB_GET_STRING <NAME_LEN>

!set NAME-LEN to lensth of NAME
CALL X < •••)

2000 ••• =NAME <l:NAME-LEN>

2.5.2 User Action Routine

Instead of providing two procedures, another way to combine several proce­
dures into one call is to let the calling program to gain control at a critical
point in your procedure's execution. To do this, you must specify an action

Designing Modular Procedure Interfaces 2-13

routine parameter in your procedure that will be called in the. middle of your
procedure's execution. Thus, your procedure can execute twice: before and
after the action routine with no implicit inputs. BASIC and FORTRAN
OPEN statements use this technique by permitting the user to supply a
USEROPEN action routine.

To keep the calling program from having to provide implicit inputs for its
action routine, your procedure should also provide another parameter that is
passed along to the action routine. The calling sequence to your procedure is
thus:

CALL my-proc (... ,action-routine.flc.rp ,user-arg.xy.z)

The calling sequence for the action routine is:

CALL action-routine (. .. ,user-arg.xy.z)

See Section 4.7 for an example of the code to invoke a user action routine.

NOTE

The argument data type and argument passing mechanism
provided by the calling program are immaterial to your proce­
dure. Your procedure copies the 32-bit argument list entry, as
is, to the action routine.

One problem with the action routine mechanism is that FORTRAN and
PASCAL pass procedures as parameters using different mechanisms. In
FORTRAN, the arg list entry contains the address of the entry mask of the
action routine. In PASCAL, the arg list entry contains the address of the entry
mask of the action routine and an environmental pointer.

The VAX-11 Procedure Calling Standard defines Entry Mask (ZEM) and
Bound Procedure Value (BPV) data types. However, PASCAL has a language
extension to permit the BPV data type to be passed by immediate value,
making it identical to ZEM.

A second problem is that your procedure cannot be written in BASIC. How­
ever, the calling program can pass a reference to an external symbol that
could be an action routine thus achieving the effect of the ZEM data type.

Often it is convenient for your caller's program to specify your procedure such
that the action routine parameter and/or user-arg parameter is optional. How­
ever, testing for optional parameters can only be done in MACRO or BLISS.

2.5.3 Designating Responslblllty to the Calling Program

You can give the calling program responsibility for retaining information from
one procedure activation to another. You do this in three ways:

• Require the calling program to allocate the necessary storage needed by
your procedure. Then have it pass the storage address as an explicit param­
eter on all calls to your procedure (see Section 2.5.3.1).

2-14 Designing Modular Procedure Interfaces

• Require the calling program to allocate a longword and pass its andress to
your procedure as an explicit parameter. On the first call, your procedure
will dynamically allocate storage (by calling LIB$GET_ VM) and store its
address in the caller's longword. On subsequent calls, your procedure will
use information left in the storage area from previous calls (see Section
2.5.3.2).

• Require the calling program to pass a process-wide identifying value to all
calls to your procedure. The process-wide identifier indicates which infor­
mation from previous procedure activations is to be used as implicit inputs
(see Section 2.5.3.3).

Figure 2-2 shows a--calling program with responsibility for explicitly indicating
the storage to be used by the called procedure. The following sections show
the three ways to do this.

Figure 2-2: Designating Storage Responsibility to the Caller

STORAGE
FOR

CALLING
PROGRAM --r--_- ----------''i

......

\

READ

CALL READ (K) -----

RET

PROCEDURE

I

------,---
- - ""

I
I

I

STORAGE FOR
x

II
II
II
I

:L

CALL X --+-----''---------+---....__-~ X

GET

CALL GET (K) ----

CALLING PROGRAM

____DATA

= = = = :> PATHS

RET

PROCEDURE

INTERFACE

... CONTROL
==::>PATHS

CALL READ (L)

RET

PROCEDURE

INTERFACE

By giving the caller responsibility for
storage, you can separate information
stored on each procedure activation
and prevent undetected conflicts.

2.5.3.1 Calllng Program Allocates Procedure Storage - In this method, the
calling program allocates all storage needed and passes its address as an
explicit parameter on each call. For example, the library procedure
MTH$RANDOM requires that the calling program allocate storage for the
longword seed and to pass its address on each call. The calling sequence is:

value.wf.v = MTH$RANDOM (seed.ml.r)

Designing Modular Procedure Interfaces 2-15

MTH$RANDOM takes the seed as input and computes the next random
number sequence from the current seed value. MTH$RANDOM returns a
random number between 0 and 1 and updates the longword seed passed by the
calling program to generate a different value on the next call (the code is
shown in Section 3.3.2).

The disadvantage of this method is that you cannot increase the amount of
storage needed by your procedure without requiring all calling programs to be
rewritten. Thus, you should use this method only when you are confident that
your procedure will not be revised in the future to use additional storage.

The next two sections describe interface techniques that permit storage size to
change without affecting the interface with the calling program.

2.5.3.2 Calllng Program Passes Pointer - In this method, the calling program
allocates only a longword pointer for the dynamic heap storage to be allocated
by your procedure; it passes the address of the longword as an explicit param­
eter. 'Phere are two interface techniques to indicate that storage is to be
initialized:

• Provide a single entry point. A zero value in the longword instructs your
procedure to allocate and initialize dynamic heap storage.

• Provide an alternate entry point that stores the address of the allocated
storage in the longword. On subsequent calls, the nonzero value instructs
your procedure to use that value as the storage address of information from
previous calls.

Regardless of the method used to indicate storage allocation and initializa­
tion, you must also provide a way to indicate storage deallocation. You can do
this with either a separate parameter or separate entry point.

For example, the procedure LIB$INIT _TIMER, which gets times and counts
from the operating system, uses a parameter to determine where these values
are to be stored. The calling sequence is:

ret-status.wlc.v = LIB$INIT_TIMER ([handle.ml.r])

handle
Optional address of a longword whose contents specify where the values of
times and counts are stored.

If missing, they are stored in static storage, thereby making this call not
AST-reentrant.

If zero, a block of dynamic heap storage is allocated by a call to
LIB$GET_VM; the values are placed in that block, and the address of
the block returned in "handle".

If nonzero, it is considered to be the address of a storage block previously
allocated by a call to LIB$INIT_TIMER; the block is reused, and fresh
times and counts are stored in it.

2-16 Designing Modular Procedure Interfaces

Entry point LIB$FREE_ TIMER deallocates the block of dynamic heap stor­
age allocated by a previous call to LIB$INIT _TIMER. The calling sequence
IS:

ret-status.wlc.v = LIB$FREE_TIMER (handle.ml.r)

handle
The address of a longword whose contents specify a block of dynamic heap
storage where times and counts have been stored. That storage is returned
to free storage by calling LIB$FREE_ VM.

The LIB$ and STR$ string procedures that handle dynamic strings also use
this method. They require that the calling program allocate space for the
dynamic string descriptor (two longwords) and pass its address on each call.
The second longword contains a pointer to heap storage.

2.5.3.3 Calling Program Passes a Process-Wide Identifier - In this method,
the calling program passes a process-wide identifying value to identify im­
plicit results produced on previous calls which will be implicit inputs on this
call. Any calling program can use the process-wide identifier. Examples of
process-wide identifiers include BASIC/FORTRAN logical unit numbers and
VMS System Services 1/0 channel numbers.

Process-wide identifiers are a resource. Modular programming techniques re­
quire that all resources allocated by a procedure be allocated by calling a
resource-allocating procedure. This prevents conflicts, since a single proce­
dure can keep track of multiple allocations to more than one procedure or
procedure activation. Therefore, if you use this method, you will also have to
write a resource-allocating procedure to control the resource. You should add
this procedure to the default system object library STARLET.OLB so that all
programmers can use it.

The library procedures LIB$GET_LUN and LIB$FREE_LUN allocate and
deallocate BASIC/FORTRAN logical unit numbers outside the range nor­
mally specified in user programs, that is, outside the range 0 to 99. An exam­
ple of a resource-allocating procedure that allocates identifying numbers is
given in Section 4.4.2.

2.6 Control of Human Readable Output

A modular procedure allows its caller to control human readable output sent
to the terminal, queued to a line printer, or written to a file. You do this by
providing an optional parameter that the calling program can use to specify
an action routine.

If the calling program specifies an action routine, your procedure calls the
action routine with each record (line) of output information (instead of out­
putting it directly to a file or device). The action routine is repeatedly called
with the address of a string descriptor for each record. Each record should not
exceed 80 characters so it can be printed on most terminals. It begins with a
space (FORTRAN convention) and contains no ASCII carriage return (CR) or
line feed (LF) characters. Thus, the line can be written into a file having CR,
FTN, or PRN record attributes.

Designing Modular Procedure Interfaces 2-17

The user-supplied action routine can output each record to any output device
and return a failure or success status to your procedure. If an error status is
returned, your procedure stops calling the action routine and returns the same
error status to the original calling program.

To help your caller write a single, multi-purpose action routine, your proce­
dure should also provide an additional optional parameter which, if present, is
passed to the action routine as a second argument. Then the calling program
can pass information to the action routine that applies to each call.

For example, you could create a procedure LIB_SNAP _SHOT that outputs
a memory dump to the output device LPAO unless the calling program sup­
plied an action routine. The calling sequence is:

ret-status = LIB_SNAP _SHOT (low-adr, high-adr [,user-act-rout
[, user-arg]])

LIB_SNAP_SHOT can be called from FORTRAN as follows to output the
information on file DUMPOUT.DAT instead of device LPAO:

E>nERNAL PROC
OPEN <UNIT=10t FILE= 'DUMPOUT'>

IF <.NOT. Ll8_SNAP_SHOT <At 8(100) t PROC)) GO TO 9999

END
FUNCTION PROC <RECORD>
CHARACTER*<*> RECORD
INTEGER*4 PROC
PROC = 0 Assuroe Error
WRITE (10t *t ERR=100) RECORD
PROC = 1 Success

100 RETURN
END

or as follows to output the dump on the controlling output device instead of
LPAO: .

IF (+NOT+Ll8_SNAP_SHOT <At 8<100> t Ll8$PUT_OUTPUT> >

See Section 4.7 for an example of the code to invoke a user action routine. See
also Section 2.5.2 for a discussion of the considerations of using action
routines in BASIC, FORTRAN, and PASCAL.

2. 7 Timer and Resource Allocation Procedures

All timer and resource allocation procedures should make statistics available
for performance evaluation and debugging. These procedures are coded with
two additional entry points:

LIB$SHOW_name or LIB_SHOW_name
LIB$STAT_name or LIB_STAT_name

2-18 Designing Modular Procedure Interfaces

2.7.1 SHOW Entry Point

A SHOW entry point provides formatted strings containing the information
you want. It should follow the conventions for providing human readable
output (see Section 2.6). The calling sequence is:

ret-status.wlc.v = LIB$SHOW_name ([code.rl.r [,action-routine.flc.rp
[, user-arg .xx.xJ]])

where:

code
is an optional code (of the form LIB$K_code) designating the statistic
you want. A separate code is defined for each statistic available; the codes
are the same for the SHOW and STAT entry points. Codes start at one for
each procedure. The specification of each procedure should list the codes
used. If omitted or zero, all statistics are provided.

action-routine
is an optional address of an action routine. If omitted, statistics are output
to SYS$0UTPUT.

user-arg
is an optional user parameter to be passed to the action routine. If omit­
ted, a shortened list is passed to the action routine. The user-arg, if pres­
ent, is copied to the parameter list passed to the action routine. That is,
the 32-bit arg list entry passed by the calling program is copied to the
arglst entry passed to the action routine. Thus, the access type, data type,
parameter form, and passing mechanism can be arbitrary, as agreed be­
tween the calling program and the action routine.

The optional action routine should have the form:

status.wlc.v =ACTION-ROUTINE (string.rt.dx [,user-arg.xx.x])

See Section 4.7 for an example of the code to invoke a user action routine.

2.7.2 STAT Entry Point

A STAT entry point returns the information you want as binary results. The
calling sequence is as follows:

ret-status.wlc.v = LIB$STAT_name (code.rl.r, value.wl.r)

where:

code
is a code designating the statistic you want. A separate code is defined for
each statistic available; the codes are the same for the SHOW and ST AT
entry points. Codes start at 1.

value
is the value of the returned statistic.

Designing Modular Procedure Interfaces 2-19

2.8 Documentation of Procedures and Modules

You must document your procedures so you and others can be sure of their
objective. Typically, each module contains only one procedure.

2.8.1 How to Write a Module Description

You should place a description containing the following information at the
front of each module:

Title:

Gives the module name followed by a one-line functional description.

Version:

Gives the version and a three-digit edit number. Generally 1-001 is the
original version.

Facility:

Gives a description of the library facility, such as general utility library
(LIB).

Abstract:

Gives a short, three to six-line functional description of the module.

Environment:

Lists any special environmental assumptions that the module can make.
These include assumptions made at both compilation and execution time
that could affect either the hardware or software environments.

For execution time, describe situations that the module assumes or op­
tional elements of the V AX-11 modular programming standard that your
module does not follow. Usually, you should write:

Runs at any access mode - AST reentrant.

Author:

Include your name and the creation date of the module.

Modified by:

Include the modification number, name of modifying programmer, modifi­
cation date, and a list of the modifications.

This concludes the preface. End with a page delimiter.

2-20 Designing Modular Procedure Interfaces

Figure 2-3 shows a sample MACRO module description.

Figure 2-3: MACRO Module Description Template

.TITLE LIB$TEMPLATE - SamPle module

.!DENT /1-001/ ; File: LIBTEMPLA.MAR
; Edit: AAA1001

;++
FACILITY: General Utility Library

ABSTRACT:

This is a sample module. It is used as a temPlate for
codins MACRO modules for the VAX-11 Run-Time Library.

ENVIRONMENT: Runs at anY access modet AST Reentrant

AUTHOR: Ada A. Ausustat CREATION DATE: 01-JAN-1980

MODIFIED BY:

1-001 Orisinal. AAA 01-JAN-1980

.SBTTL DECLARATIONS

LIBRARY MACRO CALLS:

$SSDEF SS$_ S>'ITlbO 1 S

EXTERNAL DECLARATIONS:

.DSABL GBL ; Force all external symbols to be declared

.EXTRN LI8$_INVARG ; Invalid arsument

.EXTRN LI6$SIG_TO_RET ; Convert sisnals to return status

MACROS:

NONE

EQUATED SYMBOLS:

NONE

OWN STORAGE:

.PSECT _LI6$DATA PICt USRt CONt RELt LCLt NOSHRt -
NOEXEt RDt WRTt LONG

NONE

PSECT DECLARATIONS:

.PSECT _LI6$CODE PICt USRt CONt RELt LCLt SHRt -
EXEt RDt NOWRTt LONG

Designing Modular Procedure Interfaces 2-21

Figure 2-4 shows a sample BLISS module description.

Figure 2-4: BLISS Module Description Template

%TITLE 'LI6$TEMPLATE - SaMPle Module'
MODULE LIB$TEMPLATE (SaMPle Module

IOENT = '1-001' File: LIBTEMPLA.632
> = Edit: AAA1001

BEGIN

++
FACILITY:

ABSTRACT:

General Utility Library

This is a saMPle Module. It is used as a teMPlate for
codins BLISS Modules for the VAX-11 Run-Tiroe Library.

ENVIRONMENT: Runs at any access mode - AST reentrant

AUTHOR: Ada A. Ausustat CREATION DATE: 01-Jan-1880

MODIFIED BY:

1-001 - Orisinal. AAA 01-Jan-1880
!--

%SBTTL 'Declarations'

SWITCHES:

SWITCHES ADDRESSING-MODE <EXTERNAL = GENERAL,
NONEXTERNAL = WORD-RELATIVE>;

LINKAGES:

NONE

TABLE OF CONTENTS:

FORWARD ROUTINE
LI 8$TEMPLATE;

INCLUDE FILES:

LIBRARY 'RTLSTARLE';

REQUIRE 'RTLIN:RTLPSECT';

2-22 Designing Modular Procedure Interfaces

Sa1T1Ple routine

SYstem symbols, tYPicallY from
SYS$LIBRARY:STARLET.L32
Define PSECT declarations macros

(continued on next page)

Figure 2-4: BLISS Module Description Template (Cont.)

MACROS:

NONE

EQUATED SYMBOLS:

NONE

FIELDS:

NONE

PSECTS:

DECLARE_PSECTS <LIB>;

OWN STORAGE:

NONE

EXTERNAL REFERENCES:

E>{TERNAL ROUT I NE
LI B$S I G_ TQ_RET;

D{TERNAL LITERAL
LI BL I Nl.IARG;

Declare PSECTs for LIB$ facility

Convert sisnals to return status

Condition value SYMbols
Invalid arsur11ent

2.8.2 How to Write a Procedure Description

You should place a procedure description at the beginning of each procedure
in a module.

Always list each of the following topics regardless of their actual presence. For
example, if a procedure has no implicit inputs, write:

Ir11Plicit Inputs:

NONE

Functional Description:

The functional description describes a module's purpose and completely
documents its interfaces.

The description should include the basis for any critical algorithms used,
including literature references, where applicable. It should also explain
why a particular algorithm was chosen.

Designing Modular Procedure Interfaces 2-23

Calling Sequence:

A calling sequence to a procedure is described by: (1) a return status,
value parameter, or CALL instruction, followed by (2) the procedure
name, followed by (3) the parameters used by the procedure.

Parameters should be listed in the order they will be written in a higher­
level language. Each parameter characteristic should also be included,
using the procedure parameter notation described in Section 2.3.1.

Examples:

ret-status.wlc.v = LIB$GET-1NPUT (get-str.wt.dx [,prompt-str.rt.dx
[,outlen.ww.r]])

string-len.wlu.v = LIB$LEN (string.rt.dx)

CALL LIB$CRC_TABLE (poly.rlu.r, table.wl.ra)

The calling sequence description includes the instruction for calling the
routine and the parameter list, which is typically a list of registers or
parameters. In MACRO, each parameter is symbolically defined as the
offset relative to the argument pointer, AP.

Formal Parameters:

List any explicit input, input-output, or output parameters including a
qualifying description. You should list the parameters in calling sequence
order.

Implicit Inputs:

List any inputs from storage, internal or external to the module, that are
not specified in the parameter list. Note: usually NONE. See Section 2.4.

Implicit Outputs:

List any outputs to internal or external storage that are not specified in
the parameter list.

Completion Status: (or Routine Value:)

List the success or failure condition value symbols that could be returned
as completion codes in RO. If your procedure returns a function value other
than a condition value in RO, change the heading to Routine Value.

Side Effects:

Describe any functional side effects not evident from a procedure's calling
sequence. This includes changes in storage allocation, process status, file
operations, and conditions that are signaled. In general, document any­
thing out of the ordinary that the procedure does to the environment. If a
side effect modifies local or global storage locations, document it in the
implicit output description instead.

2-24 Designing Modular Procedure Interfaces

Figure 2-5 shows a sample MACRO procedure description.

Figure 2-5: MACRO Procedure Description Template

.SBTTL LIB$TEMPLATE - SaMPle routine
;++

;+

FUNCTIONAL DESCRIPTION:

This routine is an exaMPle for codins Procedures
in MACRO. It has no coMPUtational function.

CALLING SEQUENCE:

ret_status.wlc.v LIB$TEMPLATE (ParaMeter.rl.r>

FORMAL PARAMETERS:

PARAMETER Lonsword inPut ParaMeter

IMPLICIT INPUTS:

NONE

IMPLICIT OUTPUTS:

NONE

COMPLETION STATUS: <or ROUTINE 1.JALUE: >

SS$_NORMAL
LIB$_INl.IARG

NorMal successful coMPletion
In1.1al id arsu1r1ent

SIDE EFFECTS:

NONE

.ENTRY
MDI.JAB
TSTB
BGTRU
MOl.lL
RET

LIB$TEMPLATEt AM<It.J>
GALIB$SIG_TO_RETt <FP>
<AP>
1$
#LIB$_INl.lARGt RO

Entry Point
Return sisnals
ArsuMent Present?
MaYbe.
Not invalid arsuMent.
Return

; CoMe here if the arsuMent count is at least 1.

1$: MOlJL
RET

.END

#SS$_NORMALt RO Indicate success
End of routine

End of Module

Designing Modular Procedure Interfaces 2-25

Figure 2-6 shows a sample BLISS procedure description.

Figure 2-6: BLISS Procedure Description Template

%SBTTL 'LIB$TEMPLATE - Sample
ROUTINE LIB$TEMPLATE

PARAMETER
) =

++
FUNCTIONAL DESCRIPTION:

routine'
! Sa1T1Ple routine
! Sample Parameter

This routine is an example for codins Procedures
in BLISS. It has no computational function.

CALLING SEQUENCE:

ret_status.wlc.u = LIB$TEMPLATE (parameter.rl.r)

FORMAL PARAMETERS:

PARAMETER Lonsword inPut Parameter

I M PLI C IT I NP UT S :

NONE

IMPLICfT OUTPUTS:

NONE

COMPLETION STATUS: <or ROUTINE VALUE:)

SSLNORMAL
LI BL I NVARG

Normal successful completion
ln1Jalid arsurTlent

SIDE EFFECTS:

ELUDOM

NONE

BEGIN

BUILT IN
ACTUALCOUNT;

MAP

Sa1T1Ple builtin

PARAMETER BLOCK [a t BYTE J ; SaMPle MAP

LOCAL
LOCALtJAR I ABLE;

ENABLE
Ll6$SIG_TO_RET;

Sample local declaration

SamPle enable declaration

IF CACTUALCOUNT () LSSU 1) THEN RETURN CLIB$1NVARG);

RETURN CSS$NORMAL);
ENO;

END

End of routine Ll8$TEMPLATE

End of module Ll8$TEMPLATE

2-26 Designing Modular Procedure Interfaces

Chapter 3
Using Storage

3.1 Types of Storage

There are three types of storage: static, stack, and heap. The three forms of
storage differ in the method and duration of allocation.

3.1.1 Static Storage

Statically allocated storage is allocated by the linker in one place for the
duration of the program's execution. The storage's initial contents are speci­
fied in the source program. On calls to a procedure after initialization, the
static storage will have the same allocation and the contents left from the
previous call.

The following forms of static storage are available in the indicated languages:

•MACRO

These statements (1) allocate or (2) allocate and initialize the static storage
amount indicated:

Allocate Amount

.BLKB 1 Byte

.BLKW 1 Word

.BLKL 1 Longword

.BLKQ 1 Quadword

.BLKO 1 Octaword

•BLISS

OWN Storage
GLOBAL Storage

Allocate and
initialize (to 10)

.BYTE 10
.WORD 10
.LONG 10
.QUAD 10
.OCTA 10

In the following BLISS example, A is initialized to 0 and B to 10.

OWN
A: LONG ,
6: LONG INITIAL< 10>;

3-1

• BASIC ,

All COMMON and MAP data storage is statically allocated.

•FORTRAN

All FORTRAN data storage is statically allocated. It is declared as local
variables or arrays or as COMMON. Static storage can be initialized using
the DAT A statement.

In the following FORTRAN procedure, variables A, B, C, FUNC, array D,
and string E are all statically allocated. Furthermore, variable A is initial­
ized to 10 at compile time, while other variables are initialized to 0. X, Y,
and Z are not statically allocated:

FUNCTION FUNC<X ,y ,z)
INTEGER*ll A ,B ,D(100)
DATA A/ 10/
CHARACTER* 10 E
CHARACTER*<*) }{

FUNC = C

RETURN
END

Note that variable A is not reinitialized to 10 on subsequent calls to FUNC.
Instead, the value of A and all other statically allocated variables retain the
values left from the previous call. The SA VE statement must be used to
ensure value retention across calls.

•PASCAL

All program or module level storage is statically allocated.

3.1.2 Stack Storage

Dynamically allocated stack storage is allocated by a procedure as needed on
the process stack at run time. It is automatically deallocated when the proce­
dure returns control to its caller.

•MACRO

Stack storage is allocated by decrementing the stack pointer (SP) by the
number of bytes (n) of storage required:

SUBL2 •<n+3)/ll,SP

•BLISS

Stack storage can be allocated as follows:

STACK LOCAL A: LONG;

3-2 Using Storage

•BASIC

Local variables declared in a BASIC program (except virtual arrays and
variables in COM or MAP) are allocated on the stack.

•FORTRAN

Stack storage cannot be allocated by FORTRAN users.

•PASCAL

Stack storage is allocated automatically for all PROCEDURE and
FUNCTION local variables.

3.1.3 Heap Storage

Dynamically allocated heap storage is allocated at run time to a procedure
activation as needed from a process-wide pool. Heap storage is allocated by
calling LIB$G ET_ VM or the System Service $EXPREG. Heap storage is
deallocated - that is, returned to the process-wide pool - by calling
LIB$FREE_ VM. The system service $CNTREG cannot be used to deallocate
heap storage. (See Section 4.6.)

•MACRO

Heap storage can be allocated with a call to LIB$GET_ VM. (See Section
5.1 in the VAX-11 Run-Time Library Reference Manual.)

•BLISS

Heap storage can be allocated as follows:

EXTERNAL PROCEDURE LI 6$GET _t.JM:
(GENERAL> ;
IF LI6$GET_tJM (LJPLIT (100) t ADR>
THEN

ADDRESSING_ MODE

success, ADR set to address al located

•BASIC

Heap storage can be allocated, but it must then be passed BY REF to
another procedure as an array parameter. BASIC dynamic strings automat­
ically use heap storage.

•FORTRAN

Heap storage can be allocated, but it must then be passed to another proce­
dure as an array parameter. (See Section 5.1 in the VAX-11 Run-Time
Library Reference Manual.)

•PASCAL

Heap storage can be allocated by calling NEW and deallocated by calling
DISPOSE.

Figure 3-1 shows how the different types of storage are used.

Using Storage 3-3

~
I
~

c::
rtJ

er
aq

00
g
Pi
g)

~

STATIC
STORAGE

1
I READ/WRITE

CALL
PROCEDURE

RET

Static storage is used
when a result must
be retained for
a future procedure
activation.

STACK
STORAGE

I READ/WRITE

CALL
PROCEDURE

RET

Stack storage is used
wnen results are
needed only for
the current procedure
activation.

It is deallocated
when the procedure
returns to its
caller.

HEAP
STORAGE

I READ/WRITE

CALL
PROCEDURE

RET

Heap storage is
used when the
amount of storage
varies from
call to call.
Storage is deallocated
before control
returns to the
caller (by calling
LIB$FREE_ VM.)

POINTER HEAP
STORAGE

I
I
\ ---....

,,.0-

STATIC I
STORAGE

I

)

I READ/WRITE

CALL
PROCEDURE

RET

Heap storage is
also used when the
amount of storage
needed varies and
when results must
be retained for a
future procedure
act;vation.

It is deallocated by calling
LIB$FREE_ VM.

~ ""'.
~
~

~
I

""""'

0
flJ
~

~
00.
~

Si =
~
t}
'= ~
fJ'.I

3.1.4 Storage Use Summary

Table 3-1 summarizes storage available to the programmer in various lan­
guage procedures.

Table 3-1: Summary of Storage Use by Language

Language Storage Type

Static Stack Heap

MACRO Block Storage Decrementing By Calling LIB$GET_ VM
Stack Pointer

BLISS OWN and STACK LOCAL By Calling LIB$GET_VM
GLOBAL

BASIC All COMMON and Local Variables Dynamic Strings
MAP Data Storage

FORTRAN All Data Storage Not Applicable By calling LIB$GET _ VM

PASCAL All Program or PROCEDURE and By Calling NEW
Module Level FUNCTION Local

3.2 Choosing a Storage Type

A procedure activation combines procedure-implementing instructions and
the stack frame storage allocated when the procedure is called and deallo­
cated when the procedure returns. Two procedure activations can exist at the
same time if:

• The procedure is called by an AST-level routine while it is executing
(AST-reentrant)

• The procedure is called by a condition handler while it is executing
(re-entrant)

• The procedure is called by itself or by another procedure that it has called
(recursive)

If a procedure's results must be saved for a subsequent activation, the proce­
dure must use static storage or provide a mechanism for the caller to retain
storage to access those results.

If no procedure-activation's results need be retained for subsequent activa­
tions, the procedure can use static, stack or heap storage.

Stack storage is always recommended. It is easily allocated, and it performs
well in a paging system such as VMS.

Using Storage 3-5

Heap storage allocation is slower than stack storage. Heap storage requires
explicit deallocation. Jt is recommended for use instead of stack storage when
a variable or large amounts of information must be retained after your proce­
dure returns to its caller.

Avoid static storage wherever possible. It can cause unwanted side effects if
used for implicit parameters (see Section 2.4.2), and when used, it is difficult
to make your procedure re-entrant or AST-reentrant (see Chapter 6).

3.3 Using Static Storage

There are three classes of procedures that use static storage:

• Process-wide resource-allocating procedures (see Section 4.4)

• Nonresource-allocating procedures that retain information from previous
activations in order to shorten the explicit parameter list (see Section 3.3.1
through 3.3.3)

• Procedures that do not make use of retained information from previous
activations (see Section 3.3.4)

When you cannot avoid using static storage, you can maintain modularity by
using one of the following four techniques.

3.3.1 Allocating Process-Wide Identifiers

Your procedure allocates heap storage and returns the address of the allocated
storage as a process-wide identifier to the calling program.

Each set of related calls uses the same identifier, while each set of unrelated
calls uses different identifiers.

You must make sure that the modular procedure rather than its caller allo­
cates and deallocates the identifier values. To avoid using static storage, this
identifier can be the actual address of heap storage.

Format

ret-status.wlc.v = LIB$INIT_BLOCK (handle.wl.r)

Example (BLISS)

ROUTINE LIB$INIT_BLOCKCHANDLE>=
BEGIN
EXTERNAL ROUTINE LIB$GET_VM;
LITERAL BLOCKSIZE = 16; Block size in bYtes
RETURN CL I B$GET _VM C 'X.REF C BLOCKS I ZE > '.HANDLE> > ;
END;

3-6 Using Storage

Example (FORTRAN)

FUNCTION LI6$INIT_6LOCK <HANDLE>
INTEGER*a LI6$INIT-6LOCK, HANDLE, LI6$GET_VM
LIB$INIT_BLOCK = LIBSGET-VM <16t HANDLE>
RETURN
END

3.3.2 Caller Passes the Address of Storage

Allow the caller of the procedure to allocate and pass the address of the (static
or dynamic) storage area to be used. In the following example, the Math
library random number generator (MTH$RANDOM) uses this method to
produce the seed.

Format

ran_num.wf.v = MTH$RANDOM (seed.mlu.r)

Example (MACRO)

;+

;+

SEED = a forMal ars list offset
.ENTRY MTH$RANDOMt 0 no resisters savedt clear IV

If this were to be Placed as an inline expansion,
EMUL SEED• •88068,•1 ,Ro should replace the next two
instructions: this would Prevent possible
inteser overflow traPPins.

MULL2
INCL

•890691 @SEED<AP>
@SEED<AP>

Update seed with MultiPlier
Increment seed to Protect
asainst strande seeds

; The next instructions convert the seed from unsidned inteder
; to floatins Point in the rande o.o to 1.0 exclusive.
; -

EXTZV •8, •2a, @SEED< AP> , RO
Get the most sisnif icant bit

CIJTLF RO,RO

;+

of the seed in the rande
0 to <2**24)-1.
Convert to f loatins without
roundins. The result is
Positive and in the rande
o.o to <2.0**24>-1.0

; If this were to be Placed as an inline expansion, then
; MULF •"X00003aao,Ro could rePlace the next two instruction•.

BEQL
SU6W

10$: RET

.END

10$
•2a@7t RO

If zero, already correct.
DIVF •"F2.0**24
The result is now in the
rande o.o to 1.0 exclusive.

Using Storage 3-7

The following FORTRAN calling program allocates the needed static storage
and passes it to MTH$RANDOM:

INTEGER*ll
REAL*ll
RAN_VAL =

RAN_SEED
RAN_VALt MTH$RANDOM
MTH$RANDOM <RAN_SEED>

RAN_ VAL is set to a random floating point value.

3.3.3 Pushing Down the Contents of Static Storage

Specify the interface with the calling program to consist of a sequence of calls.
The first call should include saving the contents of any still active implicit
parameters on a push down stack in heap storage, not on the process stack;
the last call should include restoring the old implicit parameters. Thus, static
storage is made available to your sequence of procedures for implicit inputs to
be passed between them.

To use this technique, write an initialization procedure in the module that,
among other things, automatically pushes the information stored in static
storage onto a simulated software stack maintained in heap storage; it will
remain there during current and future procedure activations. Then, write a
termination procedure that automatically pops information back into static
storage.

When using this method, the calling program is to call the initialization and
termination procedures at the beginning and ending of the sequence of calls to
your module. Additionally, the calling program must establish a condition
handler that will call the termination procedure (so the data will be popped
back into static storage) in case a stack unwind occurs.

For example, BASIC and FORTRAN language-support procedures push down
the contents of static storage for the current 1/0 statement whenever an 1/0
statement is initiated. Thus, 1/0 statements consist of a sequence of calls of
the form:

1. 1/0 statement initialization procedure

This procedure sets up the 1/0 system by initializing its static storage for
the specific 1/0 requested, and flags the logical unit to be active. If the
specified unit has not already been explicitly opened, a default open can
be performed, with buffers and control blocks dynamically allocated. If an
1/0 statement is already being processed, the static storage used by that
1/0 statement is "pushed down."

2. Data element transmission procedure(s)

Each data element transmission procedure copies one data element
from/to the user program to/from the 1/0 buffer for the logical unit. The
logical unit is an implicit input.

3-8 Using Storage

3. 1/0 statement termination procedure

This procedure completes the current 1/0 statement. The logical unit
number is an implicit input. If an I/0 statement had been pushed down, it
is now popped back into static storage, this restores it as the current 1/0
statement.

For example, the BASIC statement:

PRINT ti:Z t I'X. tIFUNCCJ'X.) tB

is compiled as:

MOIJL #Zt -<SP>
CALLS •1, 6AS$PRINT

PUSHL Ii..< R 11 >
CALLS •1 t 6AS$0UT_I_lJ_C
PUSHAL J%CR11)
CALLS ti: 1 , I FUNC
PUSHL RO
CALLS •1, BAS$0UT_I_lJ_C
MOlJF BCR11>, -CSP>
CALLS •1, 6AS$0UT_F_lJ_B
CALLS ti:Ot 6AS$IO_ENO

Unit Nu1r1ber
Initialize PRINT
sequential unforMatted
lJalue of I'X,
Trans1r1it inteser
Address of Ji..
Call function IFUNC
Push function value
TransMit by iMMediate value
tJalue of 6
TransMit f loatins
End of the I/O list

If function IFUNC performed 1/0, the PRINT statement would be pushed
down and popped back before control returns from IFUNC.

3.3.4 In Procedures not Needing to Retain Results

You can maintain modularity in procedures that use static storage and do not
need to retain values after control is returned to its caller. To do this write
each variable before reading it. In FORTRAN, this is done by assigning an
expression to each variable before using that variable in another expression.
For example, the following FORTRAN code is modular even though static
storage is used exclusively:

FU NC TI ON <A>
INTEGER D
O=A
G=O+A

In this example, the static variables D and G are initialized to expressions
consisting solely of variables passed as explicit input parameters.

3.4 Using Stack Storage

You can use stack storage to maintain modularity and avoid the special con­
siderations necessary for static storage. If your procedures are written in

Using Storage 3-9

MACRO, BLISS, BASIC or PASCAL, you should use stack storage exclu­
sively when your procedure does not need to retain values from its previous
activations. Note that stack storage is not available in FORTRAN.

Specific advantages of using stack storage are:

• Data is automatically hidden from source code outside the procedure.

• Program performance is improved since the same pages of memory are used
by many different procedures.

• Procedures are automatically AST-reentrant.

• Unintended interaction between successive activations of the same proce­
dure is avoided.

• Stack storage is automatically deallocated on procedure return.

3.4.1 Using Stack Storage In MACRO

In MACRO, allocate stack storage by subtracting the number of bytes re­
quired from the stack pointer (SP) provided on entry. For efficient operation,
you should allocate stack space in multiples of four bytes to keep the stack
aligned on a longword boundary. The CALLS and CALLG instructions auto­
matically align the stack at procedure entry time.

The following MACRO procedure concatenates two source strings and returns
the result as a single fixed-length string. No restrictions are placed on the
overlapping of source and destination strings; therefore, a temporary stack
storage technique is used.

In the example, these steps occur:

1. Add the source lengths to the stack pointer SP.

2. Copy first string to stack.

3. Copy second string to stack.

4. Copy stack to result.

3-10 Using Storage

The calling sequence is:

CALL LIB_CONC (result.wt.ds, srcl.rt.dx, src2.rt.dx)

RESULT a Ars list offset for result
Ars list offset for source1
Ars list offset for source2

SRC1 = 8
SRC2

.ENTRY
MOl,IZWL
MOIJZWL
ADDL
SUBL
MDI.IQ
MQl.IC3
MDI.IQ
MOl.IC3
MDI.IQ
MOl.IC5
RET

= 12

LIB_CONCt AM<R2tR3tR4tR5tRG>
@SRC1<AP> t RG RG = lensth of source1 in bytes
@SRC2<AP> t RO RO = lensth of source2 in b}·tes
ROt RB RG = total lensth
RGt SP Allocate space for SRC1 and SRC2
@SRC1CAP> t RO RO <15:0> = lent R1 adr of SRC1
ROt <R1> t <SP> Mo1.1e SRC1 to stack
@SRC2<AP> t RO RO <15:0> = lent R1 adr of SRC2
ROt <R1> t <R3> Mo1.1e SRC2 to stac~:.

@RESULT<AP> t RO RO = len of result t R1 = adr of result
RGt <SP> t AA' 't ROt <R1>; COPY teMPorarY back to result

Returnt deallocatins stack storase

3.4.2 Using Stack Storage In BLISS

When using stack storage in BLISS, define each variable in the innermost
nested block. This keeps the amount of code that affects the variable to a
minimum, making it easier to understand and maintain the procedure.

The following BLISS example computes the area of a rectangle, using stack
storage to hold the result:

ROUTINE COMPUTE_AREA <HEIGHTt WIDTH>=
BEGIN

STACK LOCAL AREA;
AREA = .HEIGHT * .WIDTH;
RETURN • AREA;
END;

3.4.3 Using Stack Storage In BASIC.

All variables, strings, and arrays are allocated in the stack in BASIC, except
for COMMON (COM or MAP). Thus, it is very easy to use stack storage in
BASIC.

The following BASIC example computes the area of a rectangle, using stack
storage to hold the result:

100 FUNCTION INTEGER COMPUTE_AREA <HEIGHT%t WIDTH%>
200 AREA% = HEIGHT% * WIDTH%
300 COMPUTE-AREA = AREA%
400 FUNCTIONEND

3.4.4 Using Stack Storage In PASCAL

All local variables and arrays are allocated in the stack in PASCAL. Thus, it
is very easy to use stack storage in PASCAL.

Using Storage 3-11

The following PASCAL example computes the area of a rectangle, using stack
storage to hold the .result:

FUNCTION COMPUTE-AREA <HEIGHT
WIDTH

VAR AREA : INTEGER;

BEGIN
AREA := HEIGHT * WIDTH;
COMPUTE-AREA := AREA;
ENO;

3.5 Using Heap Storage

INTEGER;
INTEGER> INTEGER;

You can use heap storage to dynamically allocate arbitrary amounts of stor­
age. Heap storage is useful for retaining variable amounts of information from
one procedure activation to another.

If your procedure does not explicitly deallocate the heap storage (by calling
LIB$FREE_VM) before returning to its caller, your procedure must either:

• Retain the address of the heap storage in static storage so that it can be
deallocated later, or

• Return the address (and also the responsibility for deallocation) to the caller

This lets you use or deallocate the storage on a later activation. (See
Section 2.5.)

3.5.1 Allocate Heap Storage In BLISS

This example allocates a buffer from heap storage:

!+
! STRING_PTR is OWN storase which holds a Pointer to
! a dYnaMicallY allocated buffer of 80 bYtes.
!-

OWN STRING_PTR;
LI BSGELVM <'%REF< 80) , STRING_ PTR > ;

The following BLISS example illustrates the use of heap storage to pass infor­
mation between calls without using static storage. Instead, the responsibility
for deallocation of heap storage belongs to the calling program.

3-12 Using Storage

Figure 3-2: Allocating Heap Storage in BLISS

ROUTINE RANSUB (SEED1 DATA1 NUM_VALS)

++
FUNCTIONAL DESCRIPTION:

CoMPute a randoM nuMber by usins a consruential Senerator
but reorderins its outputs randoMlY to avoid correlation
between successive results.

FORMAL PARAMETERS:

SEED.1111, r The address of a lonsword containins the
seed. If the seed is o, then the data blocK
Pointed to bY DATA is assuMed to be dYnaMic
and is deallocated (by call ins LIB$FREE_VM>,

DATA.Ml.r The address of a lonsword that contains a
Pointer to the address of the data blocK
needed for reorderins the outputs. If the
Pointer is zero 1 the blocK is allocated.

NUM_lJALS. rl. r The nurriber of 1.ialues over 1,,1hich to
reorder the outPuts of the basic senerator.

IMPLICIT INPUTS:

None

IMPLICIT OUTPUTS:

None

ROUTINE t,JALUE:

A randoM nuMber froM o.o UP to but not includins 1.0.
In the "final" call1 the 1.ialue 1.0 is returned.

COMPLETION CODES:

None

SIDE EFFECTS:

Can allocate or deallocate virtual MeMory,

!--

BEGIN

LOCAL

RAN 1 , 'InteriM randoM nuMber

RETURN_l,IALUE; !RandoM nuMber returned

BUILT IN

Cl.'TLF; !Convert inteser (lonS) to floatins

IF (,,.DATA EQL 01

THEN

I+

!You Must set UP the data blocK that reMeMbers old values for

(continued on next page)

Using Storage 3-13

3-14

Figure 3-2: Allocating Heap Storage in BLISS (Cont.)

'scatterins Purposes. The data blocK is formatted as follows:

I (l Lensthr for LIB$_FREE_VM
' 4 Current seed for the main random number senerator
1 8 Current seed for the auxiliary seneratorr which

'-
'+

scatters the outputs of the main senerator
12-end Numbers Produced recentlY by the main seneratorr

for scatterins PurPoses.

BEGIN

! If You cannot set enoush virtual memory,
! use the followins alSorithm.
!-

I+

IF (NOT (LIB$GET_VM (%REF((,,NUM_VALS + 3)*4>, .DATA>>>
THEN RETURN (MTH$RANDDM (,SEED>>;

' If You Set the memorYr YOU must initialize it.
'-

IF (,,SEED EQL O>
THEN .SEED= 1; !Don't be confused bY funnY seed

•• DATA ,,NUM_VALSi !Amount to free
•• DATA+ 4 (,,SEED>; !Seed for main senerator
•• DATA + 8 = (,.SEED>*(, .SEEDl; !Seed for scatter ins function

!+
! Store values from the main senerator in the remainder of
1 the data block. ,_

INCR COUNTER FROM 3 TD ,,NUM_VALS + 3 DD
(•• DATA) + (~COUNTER*4> = MTH$RANDOM (,.DATA+ 4);

I+

END;

IF < •• SEED EQL O>
THEN

!of initialization

This is the "final" call to the rando111 n•.tmber senerator.
1 Return the data blocK to free storase and return to the caller with
1 value 1.0, which is invalid under all other circumstan~es.
'-

BEGIN
I+
1 Give the user back the latest seed so he can run this Procedure
' asain without Settins the same sequence of random numbers.
'-

.SEED= ,(•• DATA+ 4>;
I+
1 Return the data block to free storase.
'-

LIB$FREE_t,IM ('X.REF (((,,.DATA> + 3>*4>, .DATA>;
I+
1 Set the data's Pointer to zeror so another call can initialize
1 the data block asain.
!-

.DATA = o;
!+
! Return the value 1.0.
'-

Using Storage

CVTLF C%REF Cl>, RETURN_VALUEl;
RETURN C,RETURN_VALUE>;
END;

(continued on next page)

Figure 3-2: Allocating Heap Storage in BLISS (Cont.)

+

I+

Cl.JTLF ('X.REF (1) , RETURN_lJALUE) ;
RETURN (.RETURN_VALUEl;
ENDi

Compute a random number from o.o to 1,0, usins scatterins, and
return it.

First compute a random, 24-bit inteser to index into
the random number table. Use the same alsorithm as the
main senerator, but with a different (usually) seed.

,,DATA+ 8 = ,(,,DATA+ 8) * 8909;
, .DATA+ 8 = ,(,,DATA +8) + li
RAN1 =(,(.,DATA+ 8){81 24>);

! Reduce the 24-bit random number modulo the table size
1 and add the offset for the random numbers.
'-

RAN1 = (,RANl MOD ,,,DATA)+ 3;
!+
1 Get a value from the table and replace it with a new value.
I_

RETURN_l,lALUE = , ((, +DATAl + (+RAN1 * 4) l;
(•• DATA) + (• RAN 1 * 4) = MTH$RANDOM ((•• DATA) + 4) ;

I+

1 Return to the caller of the random number senerator
1 the value from the table.
'-

RETURN (.RETURN_VALUE);
END; ! of RANSUB

Using Storage 3-15

Chapter 4
Coding Modular Procedures

This chapter describes how to code modular procedures and make existing
procedures modular in MACRO, BLISS, BASIC, FORTRAN and PASCAL.
These areas are discussed:

• Structured programming recommendations

• Coding rules and recommendations

• Procedure initialization

• Resource allocation

• Use of system services

• Invoking optional user action routines

Chapter 5 explains signaling and condition handling.

If you want your procedure to be AST reentrant, refer to Chapter 6 for
additional coding techniques.

4.1 Structured Programming

Constructing good software depends on how well you organize the software
project into conceptual layers. Program writing should start with the outer­
most abstract form and move inward toward successively greater detail.

Before coding individual procedures, consider how they might be grouped into
modules. If you have a number of procedures that access common data or
control blocks, try to organize them into separate levels, with each level hav­
ing responsibility for different parts of the data structure.

4.1.1 Levels of Abstraction

If you are writing a large number of related procedures that call one another or
access common data blocks, try to achieve an understandable relationship

4-1

0

among them. You can do this by organizing procedures to minimize interac­
tion with each other and with the data structure:

• Organize procedures into levels of abstraction.

• Make sure each level needs to make calls only to the next level.

• Restrict read/write access at each level to nonoverlapping subsets of the
data.

For example, Figure 4-1 shows the BASIC and FORTRAN record 1/0 state­
ment processing procedures. These are implemented in the following three
levels:

• User program interface (UPI)

• User program data formatting (UDF)

• Record processing and VAX-11 RMS interface (REC)

Figure 4-1: Levels of Abstraction ·

PROCEDURE
TYPE C

PROCEDURE
TYPE C

PROCEDURE
TYPE C

LEVELC: RMSINTERFACE

ALL CALLS

0 PROCEDURE
TYPE B

PROCEDURE
TYPE B

LEVEL B: USER PROGRAM
DATA FORMATTING

PROCEDURE
TYPE A

PROCEDURE
TYPE A

PROCEDURE LEVEL A: USER PROGRAM

MAIN PROGRAM

TYPE A INTERFACE

MODULAR
- - - -- INTERFACE

All calls are made in one direction: to the next innermost level. Procedures at
different levels should also be in different modules.

4-2 Coding Modular Procedures

4.1.2 Grouping Procedures

Each module should contain a single procedure. Occasionally, you may find it
convenient to place more than one procedure in a single module if a procedure
is called only by other procedures in that module. Grouping procedures in a
module is also recommended if two or more procedures:

• Share the same static storage or

• Have similar calling sequences, perform similar functions, and share a sig­
nificant amount of common code

The VAX-11 Linker always brings the entire module containing a called
procedure into the image if any of its entry points are referenced. Thus,
placing each procedure in a separate module reduces image size. It also in­
creases the flexibility afforded a user of a procedures library because you can
supply your own version of one procedure while using other procedures from
the library. If many procedures have been grouped in a single module, the
linker must link all of them or none.

Figure 4-2 shows possible groupings of procedures.

Figure 4-2: Possible Procedure Groupings

CALL
_rl
\J

CALL

l r CALL ..!_

L I
I

I
I
I

I
I
I

I
I JI CALL ..1-

I _j
I
I

CALL l ;I
I '\J I

INTERFACE

MODULE

STATIC
STORAGE

(OPTIONAL!
,...._ _

- ~EAD/WRITE 1 READ/WRITE -.... __::-:,,,.

r--1
MODULAR MODULAR

PROCEDURE PROCEDURE
(OPTIONAL)

RET RET

MODULE
I
I

STATIC I STATIC

STORAGE STORAGE

!OPTIONAL) (OPTIONAL)
I
I RET

1 READ/WRITE I I READ/WRITE

I ;I CALL

MODULAR - MODULAR

PROCEDURE PROCEDURE

RET I _
RET

I

MODULE
I

STATIC
STORAGE

(OPTIONAL)

RET
PROCEDURE 1 READ/WRITE (OPTIONAL)

RET
CALL

MODULAR
~ r----<

PROCEDURE

RET

~PROCEDURE
IOPTIONALI

CALL~ RET

MODULAR
PROCEDURE
IOPTIONALI

RET

Although these proce v not be modular. the
dures may

module is
terface

~
modular across the in

1

Coding Modular Procedures 4-3

4.2 Coding Rules and Recommendations

Coding rules and recommendations help maintain modularity and produce
consistent, readable software. You should choose simple rules. DIGITAL uses
the following coding rules and recommendations for all modular procedures.
You must follow the sections marked "standard". You may choose to follow
sections marked "recommended" for procedures to be uniform and, therefore,
easier to learn and remember how to use.

4.2.1 Relocatable Modules (Standard)

Most modules are, by default, relocatable during linking. The compiler or
translator makes it appear to the linker that each module starts at location 0.
The linker relocates each module to make it fit with the other modules being
linked to form an executable image. A nonrelocatable module is a module
with absolute storage allocation. It does not adhere to the modular standard
since each absolute assignment might c'onflict with a similar assignment in
another module.

4.2.2 Fiie Names (Recommended) and Module Names (Standard)

File names are derived from procedure names. If a module contains a single
procedure, the file name consists of the first nine characters of the procedure
name without the dollar signs and underscores. If the module contains more
than one procedure, a more general file name is used, composed of the facility
prefix and the first noun common to all procedure names in the module. File
name extensions are the standard default extensions for the source language.

Module names are identical to file names except for the dollar sign
(DIGITAL-supplied) or underscore (user-supplied) inserted after the facility
code. Module names do not have extensions.

For example, the MTH$EXP procedure is contained in module MTH$EXP
and the file MTHEXP.MAR. The LIB$GET_VM and LIB$FREE_VM pro­
cedures are contained in the module LIB$VM and the file LIBVM.B32.

4.2.3 PSECT Names (Standard)

The code and data sections of a customer library procedure have two separate
PSECTs, named __fac_CQDE and __fac____DATA, where fac is the facility
name. DIGITAL uses __fac$CODE and __fac$DATA PSECT names.

Position-independent constant data is in the __fac_CODE PSECT
(__fac$CODE for DIGITAL) to shorten the references. For example,
__LJB$CODE and __LIB$DATA are the only two PSECT names used by
LIB$ procedures. The collating sequence for leading underscores causes the
linker to place all library procedures after the user program in the executable
image. Therefore, a library procedure will not be placed between two user
modules. This prevents it from adversely affecting byte or word displacement

4-4 Coding Modular Procedures

addressing that the user program contains. The declarations are:

•MACRO

.PSECT _fac_CODE PICtUSRtCONtRELtLCLtSHRtEXEtRDtNOWRT

.PSECT _fac_DATA PICtUSRtCONtRELtLCLtNOSHRtNOEXEtRDtWRT

•BLISS

PSECT
CODE = _fa c _CODE <READ, NOWR ITE, E><ECUTE , SHARE , PI C ,

CONCATENATE, ADDRESS I NG_MODE < WORD_RELAT I t,JE) > ,
PLI T = _ f ac_CODE <READ, NOWR ITE, E}<ECUTE, SHARE, PI C,

CONCATENATE t ADDRESS I NG_MODE <WORD-REL AT I t,JE) > ,
OWN = _ f ac _DATA <READ, WRITE, NOE><ECUTE, NOSHARE, PI C,

CONCATENATE, ADDRESS I NG_MODE < LONG_RELAT I t.JE >) ,
GLOBAL = _ f ac_DATA <READ, WR I TE, NOE}·(ECUTE, NOSHARE, PI C,

CONCATENATE, ADDRESSING_MODE <LONG_RELATIVE> >;

• BASIC and FORTRAN

You do not have control over PSECT names, except named program
COMMON. Note, however, that program COMMON replaces the PSECT
attribute CONCATENATE with OVERLAY. Therefore, storage that you
allocate using COMMON might overlay that allocated by a procedure writ­
ten by someone else. Such a conflict between the two modules would be
possible and would go undetected. Therefore, use of COMMON violates the
modular programming standard.

•PASCAL

You do not have control over PSECT names.

4.2.4 Parameter Definition Flies (Recommended)

In some programs, it may be necessary to make identical parameter declara­
tions in several modules. In MACRO, BLISS, BASIC, FORTRAN and
PASCAL, such declarations are centralized in one place.

•MACRO

An auxiliary source file or macro library can be specified in the command
line.

•BLISS

Your source program can contain a REQUIRE or LIBRARY declaration
that specifies a file to be included at the point of the declaration.

•BASIC

An auxiliary source file can be APPENDed to your main source program
prior to compilation.

•FORTRAN

Your source program can contain an INCLUDE statement that specifies a
file to be included at the point of the statement.

Coding Modular Procedures 4-5

•PASCAL

Your source program can contain an %INCLUDE directive that specifies a
file to be included at the point of the statement.

You should use this technique to declare the symbolic offsets in a control
block accessed from several modules.

4.2.5 Symbols versus Numbers (Recommended)

Symbols, not numbers, should be used as much as possible. This improves
understanding and provides more information for cross-reference listings.

•MACRO

The use of local numeric labels is encouraged within a logical unit of code
that fits on a single listing page.

•BLISS

The defined transportable symbols are used for hardware defined quanti­
ties. For example, the size of a general value is %BPVAL (bits per value)
instead of 32, and the length of a general value is %UPVAL (addressable
units per value) instead of 4.

4.2.6 Line Length (Recommended)

The maximum line length for source code in each language follows. Line
lengths are shown for actual source code (not including sequence numbers).

Language

MACRO
BLISS
BASIC
FORTRAN
PASCAL

Maximum Line Length

80
124
512
72

(no limit)

4.2. 7 Uppercase and Lowercase (Recommended)

Uppercase should be used for all source code except comments. Upper- and
lowercase should be used for all comments. Comments that are complete
sentences should start with a capital letter and end with a period.

4.2.8 Optional Spaces (Recommended)

A single space must always follow a comma and precede and follow an equal
sign (=). A single space must precede a left parentheses or a left square
bracket (except in MACRO), but not a left angle bracket. A space also follows
an exclamation mark or semicolon to separate a comment from the source
code. Plus and minus symbols (+ and -) are surrounded by spaces in
expressions.

4-6 Coding Modular Procedures

4.2.9 Block Comments (Recommended)

You can comment on blocks of statements by writing one or more lines pre­
ceding the block. Comments start in column 1, independent of the indenta­
tion of the code. The first comment line contains a single plus sign (+); the
last comment line contains a single minus sign (-). Block comments do not
need to be set of by additional blank lines since the two flag lines (starting
with + and -) serve that purpose. Comment delimiters are followed by one
space, except when followed by the first + and the last -, as shown in this
MACRO example:

MDI.IL ROt TABLE Store current ch a r. adr. in
Code table

;+
; This is a bloc~~ co1r1111ent in MACRO.
; -
10$: MQl,IL TABLEt RO RO = current character

address

4.2.10 Branch and Jump Instructions (Recommended)

•MACRO

You should arrange code so branch and jump instructions refer to labels
located forward in the program listing (except for loops and first-time ini­
tialization). This greatly improves the readability and understandability of
the program as you read forward through the listing. When you encounter a
label, you would have already read all of the code that could transfer to the
label.

Initialization of dynamically allocated stack and heap data only involves
writing the data after each allocation before reading it.

4.3 lnltlallzlng Modular Procedures

Some modular procedures must initialize themselves before they can execute
correctly. Examples of initialization are:

• Storing in static storage a value that can only be determined at run time

• Declaring an exit handler using the $DCLEXH system service

• Allocating a process-wide resource once

• Opening a process-permanent file the first time,in case a logical name was
used and the file was not already opened

• Other languages

GO TO instructions should follow similar conventions.

Coding Modular Procedures 4-7

You must perform initialization carefully to avoid violating modularity
principles:

• You must perform initialization so it does not affect the calling program.
Therefore, you cannot perform initialization by providing an entry point
that must be called before any other entry point is called: this would force
the calling program to provide an initialization entry point to its caller, and
so forth. Also you would not be able to replace a module that does not have
an initialization call with one that does without rewriting your calling
programs.

• If your procedure uses LIB$INITIALIZE, you must preserve a modular
environment that does not conflict with the environment set by any other
procedure using LIB$INITIALIZE.

Figure 4-3 shows five ways your procedures can perform initialization. The
use of each method is explained in the following sections.

Figure 4-3: Methods of Initializing

Method

Initialization Call LIBSINITIALIZE Set a First Initialize Each Initialize Each
Needed Initialize at Before Main Time Flag Time it is Time Procedure

Compile/Link Time Program (At Run Time) Allocated Is Called
(At Run Time) (At Run Time) (At Run Time)

Of Static Storage: • • •
-

Of Stack Storage: •
Of Heap Storage: •
To Allocate Resources: • •

_,

To Set Up • • $EXIT Handler:

To Open a Process- • • Permanent File:

To Set Up a Handler • Before the Main Program:

4-8 Coding Modular Procedures

4.3.1 lnltlallzlng Storage Areas

For a procedure to produce predictable results, all statically and dynamically
allocated areas must be initialized to known values before they are read.

The initialization of static storage need happen only one time in each image
activation. Thus, the known values can be specified:

• At compile time by using a data initializing statement

• At link time by using a data allocation statement

• At run time on the first call to the procedure

4.3.2 lnltlallzlng Static Storage

If your procedure has static storage, you usually initialize it to zero. You can
do this: (1) explicitly with a data initialization statement or (2) implicitly
with the linker.

To save disk space, the linker does not include data pages initialized to zero in
the .EXE file. In addition, 1/0 is eliminated since data pages are allocated
upon your first access after the image is activated.

The following examples show initialization of a longword, DAT, in static
storage at compile or link time.

STATEMENT

•MACRO

DAT:
DAT:
DAT:

.BLKB 1

.LONG 0

.LONG 100

•BLISS

OWN DAT;
OWN DAT INITIAL(O);
OWN DAT INITIAL(lOO);

•FORTRAN

INTEGER*4 DAT
DATA DAT /0/
DATA DAT /100/

INITIALIZED VALUE

NOTE

0
0
100

0
0
100

0
0
100

BASIC does not have static storage within a module, only com­
mon static storage.

PASCAL has static storage at Module level. However, you can­
not initialize it at compile time.

Coding Modular Procedures 4-9

4.3.3 Testing and Setting First-Time Flag

Occasionally, your procedure requires initialization that can be performed
only at runtime, the first time your procedure is called. Examples are:

• Initializing static storage to a valtie that can only be determined at run
time.

• Establishing an EXIT handler

• Allocating a resource

• Opening a process permanent file

To do first-time initialization, your procedure tests and then sets to one a
statically allocated first time flag each time it is called. This flag is initialized
to zero at compile or link time. Setting and testing the flag with the VAX
instruction BBSS (Branch on Bit Set and Set) insures that initialization is
executed exactly once.

However, if the procedure is to be AST-reentrant, it must follow these steps:

1. Test the first-time flag.

2. If it is set, initialization is complete.

3. Otherwise, disable ASTs, remember previous state of AST enable, and
retest the flag.

4. If the flag is now set, initialization was performed by an AST that went off
between the first test and the AST disable; enable ASTs if remembered
state of ASTs was enable - initialization is complete.

5. Otherwise, perform the initialization.

6. Set the flag.

7. Enable AS Ts if remembered state of AS Ts was enable - initialization is
complete.

NOTE

ASTs should only be enabled (Step 4 or Step 7) if they were
enabled before Step 3. The $SETAST system service, used to
disable ASTs, indicates whether ASTs were enabled when the
procedure was called.

For example, your procedure can use the VAX instructions INSQUE and
REMQUE to maintain a set of queues whose headers are in static storage.
However, to maintain a position-independent data region, the address in the
queue header can be initialized only at run time. The STR$COPY procedures
use this technique to initialize dynamic string storage to a set of empty
queues. Each allocation of dynamic string storage is performed by first trying
to remove a pre-allocated block from the appropriate queue.

4-10 Coding Modular Procedures

!+

The following BLISS fragment shows the code for opening a process perma­
nent file on the first call. The code could be part of a GET routine.

LOCAL
RET_STATUSt RMS status

FAB

MAP

FAB $FAB_DECLt
RAB : $RAB-DECL; RAB

GET-STRING : REF BLOCK [8t BYTEJ t ! Strins desc.
PROMPT-STRING : REF BLOCK [8t BYTEJ t ! Strins desc.
GET_ISI : REF VECTOR [1 t WORDt UNSIGNEDJ; ! Place in

! static storase to reroerober ISI

! Enable a handler to return strins sisnals as error
! codes to the caller.
!-

!+

ENABLE
LI B$S I G_ TQ_RET;
IF <.GET-ISI [OJ EQL 0)
THEN

! First call' initialize FAB
!-

!+

BEGIN
$FAB_INIT <FAB = FA6t FAC = GETt

FNA = .DEVICE-NAMEt
FNS = .DEVICE-NAME-LEN>;

Fi le access: GET
File naroe: DEVICE-NAME
File na1,1e size

! Open DEVICE_NAMEt reroerober RMS internal streaM identifier
!-

RET_STATUS = $OPEN <FAB = FAB>; ! Fab adr = FAB
!+
! If the OPEN failst return the RMS status code.
!-

IF < NOT .RET_STATUS> THEN RETURN <.RET-STATUS>;

$RAB-INIT <FAB = FA6t RAB = RAB>;
RET_STATUS = $CONNECT <RAB = RAB>; ! Connect RAB to file

!+
! If the CONNECT failst return the RMS status code.
!-

!+

IF (NOT .RET_STATUS> THEN RETURN <.RET_STATUS>;

GET-ISI [OJ = .RAB [RAB$W_ISIJ;
END

! Re1t1err1ber ISI

! File already oPent Just initialize RAB
! includins ISI returned froM first $OPEN
!-

!+

ELSE
BEGIN
$RAB-INIT <FAB = FA6t RAB = RAB>;
RAB [RA6$W_ISIJ = .GET_ISI [QJ;
END;

! Continue setup and Set strind
!-

Another example of performing first-time initialization transparent to the
caller is to establish an EXIT handler to perform once some cleanup operation
when the image exits. Again, this is done by testing and then setting a first­
time flag. If the flag is clear, the Declare EXIT Handler system service
($DCLEXH) is called to establish the exit handler.

Coding Modular Procedures 4-11

4.3.4 Adding a Dispatch Address to PSECT LIB$1NITIALIZE

To use this method, your module generates one or more longwords that con­
tain one or more addresses of procedures to be called by the system before the
main program is called. Your module must declare these longwords to be part
of the overlayed PSECT LIB$INITIALIZE. (Examples of this method are
shown in Appendix E of the VAX-11 Run-Time Library Reference Manual.)

Note that a module in a sharable image cannot use this method because
the PSECT contribution would be to the shared image, not to the user
program image. Furthermore, if this method were used, a modular procedure
could not establish a condition handler before a main program (using
LIB$INITIALIZE) to alter how signaled errors are handled, when the han­
dling conflicts with a condition handler that might be established by another
procedure before the main program.

4.4 Allocating Resources

A resource is a part of the hardware or software system that can be allocated
and deallocated. It is therefore either in use or free for use. For reliable opera­
tion, each instance of a resource must be allocated to only one owner at a
time. All potential owners must agree beforehand on the technique for allocat­
ing each resource.

There are process-wide resources and system-wide resources. System-wide
resources, such as disk memory and physical memory, are allocated on behalf
of a process by the operating system. The following discussion is limited to
process-wide resources.

Process-wide resources are allocated on behalf of a procedure activation exe­
cuting within a single process by one of two methods:

• A single allocator is used by all procedures in the image to allocate (and/or
deallocate) the resource.

• A standard discipline is agreed on so many allocators can make nonconflict­
ing allocations.

Examples of the single allocator approach are when:

• The linker allocates relocatable virtual addresses among competing proce­
dures in an image.

• The $ASSIGN system service assigns 1/0 channel numbers to competing
procedures in a single process for each procedure that needs a separate
channel.

•The library procedures LIB$GET_VM and LIB$FREE_VM allocate and
deallocate virtual memory to requesting procedures in an image (see
Chapter 5 of the VAX-11 Run-Time Library Reference Manual for the
process-wide resource allocating procedures provided by the system).

4-12 Coding Modular Procedures

Examples of the multiple-allocator approach are when:

• Each procedure allocates and deallocates its own stack storage using regis­
ters FP and SP to maintain discipline

• Each procedure allocates registers from the pool of process registers (R2 to
Rll) after saving the contents of these registers on the process stack using
the entry mask mechanism

4.4.1 Using Storage with Resource-Allocating Procedures

A resource-allocating procedure must use some static storage to keep track of
allocated and deallocated resources. Therefore, all resource-allocating proce­
dures should follow the special considerations needed by AST-reentrant pro­
cedures with static storage (see Chapter 6).

You cannot use BASIC and PASCAL to write modular resource allocating
procedures because:

• BASIC does not use static storage in a module.

• PASCAL uses static storage at the module level, but the module-level dec­
larations must match those in the main program.

4.4.2 Allocating Identification Numbers

The following MACRO procedure LIB_GET--1NUM allocates identifying
numbers that can be used to identify a resource:

TAB: .WORD 0 BitlTlaP for f lass
.ENTRY LI B_GET _I NUM, "·M< >
FFC # 1 f # 10 f TAB, RO Find first free id. no.
BEQ 20$ Branch if none free
BB88 RO, TABt 10$ Indicate id. no. in use

10$: MOVL RO t @4CAP> Return id. no. found
MOVL #l, RO Indicate success
RET

20$: CLRL @4CAP> Return 0
CLRL RO Indicate failure
RET
.END

To make this procedure AST-reentrant, move the label 10$ from the MOVL
instruction to the FFC instruction. (See Section 6.3.2.)

Coding Modular Procedures 4-13

The equivalent FORTRAN module contains procedures to allocate and deal­
locate identifying numbers:

10

FUNCTION LIB_GET_INUM <INUM>
INTEGER*a INUM, INUM_TABLE<100>
LIB_GET _INUM = 1
DO 10 I=1 t100

IF<INUM_TABLE<I> .EQ. 0) THEN
INUM_TABLE <I> = 1
INUM = I-1
RETURN

END IF
CONTINUE
LIB-GET _INUM = 0
RETURN

C Deallocate identifYins nurober

ENTRY LIB_FREE_INUM

IF <I NUM_ TABLE< I NUM+ 1 > • EQ.
INUM_TABLE<INUM+1> = 0
LIB_FREE-INUM = 1

ELSE IF
LIB-FREE-INUM 0

END IF
RETURN
END

THEN

Assurr1e success

Flas unit as in use

return id no.

Indicate failure

Flas unit as free
Indicate success

Indicate already free

LIB_GET_INUM can be called from a FORTRAN program in the following
way:

IF .NOT. <LIB_GET_INUM<I>> THEN GO TO error
= I

4.4.3 Process-Wide Resources

Table 4-2 shows process-wide resources and their single allocator or discipline
for multiple allocators.

VAX/VMS does not provide resource allocation procedures or allocation disci­
pline for the following resources:

• Logical Names

• Process Nam es

• Event flag cluster numbers 2 and 3

However, if a library resource allocation procedure does not exist, you can
write your own, as indicated by the examples in Section 4.4.2.

4-14 Coding Modular Procedures

Table 4-1: Methods of Allocating Resources

RO, R1

R2:Rl5

PSL

Resource

Virtual memory

Static storage
for nonresource allocation
procedures

Process-wide
identifiers for
static storage

Dynamic string memory

VMS event flags

BASIC/FORTRAN
logical unit numbers
(channel numbers)

Condition codes
(message IDs)

GlQbal Symbols

Allocation Method

Not a shared resource.

Preserved using stack frame discipline. (See
Appendix C.)

Preserved using stack frame discipline.

Allocated statically by linker.

Allocated dynamically by either $EXPPRG or
LIB$GET_VM.

Deallocated dynamically only by LIB$FREE_ VM.

Procedure to push old contents onto a stack in heap
storage and another to pop old contents back.

Caller allocates storage.

Procedure to assign process-wide identifiers.

Written only by calling LIB$, OTS$, or STR$ string
procedures. (See Chapter 5 of the VAX-11 Run­
Time Library Reference Manual.)

Process local event flags 32-63 allocated by calling
LIB$GET_EF. Process local event flags 1-23 and .
32-63 can be reserved by calling '
LIB$RESERVE_EF. All can be freed by calling '
LIB$FREE_EF.

Process logical unit numbers 100-119 allocated by
calling LIB$GET-LUN and freed by calling
LIB$FREE_LUN.

Bits 27:16 contain the facility number. Bit 27 is 0 for
those signed out by DIGITAL, and 1 for those
signed out by customers. Each allocator must en­
sure uniqueness in bits 15:3. Also, the symbols for
the completion status codes and signaled conditions
are contained in a separate source file for each
facility.

DIGITAL-assigned symbols available to users con­
tain a single "$". Within DIGITAL, a facility prefix
identifies a person responsible for allocating unique
symbols. Global symbols not available to users con­
tain two dollar signs. User-defined symbols should
contain a _ instead of a $ to avoid conflict with
DIGITAL symbols.

Coding Modular Procedures 4-15

4.5 Passing Strings as Parameters

This section describes the techniques your procedures can use to accept and
return fixed-length and dynamic string parameters.

For both string types, the calling program either: (1) allocates the string's
descriptor and passes its address or (2) passes the address of a descriptor that
had been passed to it (by its caller).

The descriptor contains:

• A 16-bit string length in bytes (DSC$W _LENGTH)

• An 8-bit data type code (DSC$B___DTYPE)

• An 8-bit descriptor class code (DSC$B_CLASS) and

• A 32-bit address of the first byte of the string (DSC$A_POINTER)

The calling program indicates the descriptor class in the DSC$B_CLASS
field. A fixed-length descriptor cannot be modified by the called procedure.
However, the called procedure (using dynamic string-allocating library proce­
dures) can modify the length and address field of a dynamic string descriptor.
The following section describes input and output parameters in detail.

4.5.1 Accepting Input String Parameters

Procedures accept both fixed-length and dynamic string descriptors as input
parameters in the same way: the string length, string address, and data type
fields are in the same place in both classes of descriptor. Thus, a procedure
can accept either class of string. Modular procedures can read strings by any
of the following methods:

• Accessing the length and address field indirectly through the parameter list

• Copying the address of the string descriptor

• Copying the contents of the string descriptor (see Section 4.5.3 about setting
the class field in the copied descriptor, if it is to be passed to other
procedures)

4.5.2 Returning Output String Parameters

This section describes the semantics of returning fixed-length or dynamic
strings as output parameters or as a function value.

The semantics for returning a fixed-length string are:

• The called procedure does not modify the string descriptor passed by the
calling program.

• The called procedure writes the string starting at the address specified in
the descriptor (DSC$A_POINTER). If the actual string length indicated in
the descriptor (DSC$W _LENGTH) is not the correct size, the called proce­
dure fills the string with trailing ASCII spaces or truncates it on the right.

4-16 Coding Modular Procedures

• If truncation occurs, the called procedure can return either: (1) the success
condition value STR$_TRU or LIB$STRTRU or (2) an error condition
value as a completion status in RO depending upon the application.

The semantics for returning a dynamic string are:

• The called procedure can modify the string descriptor passed by the calling
program only:

- if the descriptor class code is dynamic (DSC$K_CLASS__D) and

- by calling the dynamic string allocation procedures (STR$GET1__DX,
STR$COPY__DX, or STR$COPY__R).

• Using the dynamic descriptor passed by the calling program, the called
procedure can use either of these methods:

- Create the entire string to be returned and pass it to STR$COPY__DX,
or STR$COPY__R to be copied using the dynamic descriptor as the
destination, or

- Allocate the total amount of string space needed (by calling
STR$GET1__DX using the descriptor passed by the calling program)
and fill the dynamically allocated area piece-by-piece using the modified
contents of the descriptor.

• If the resource-allocating string procedure exhausts the virtual memory for
your process, your procedure should also indicate the error to the calling
program by either: (1) returning the error condition value in RO (LIB$
convention) or (2) signaling the error condition (STR$ convention).

• The called procedure cannot make a copy of the dynamic string descriptor
since its contents can change whenever the string is written. Therefore, each
dynamic string must have one and only one dynamic string descriptor
pointing to it.

The calling program can always pass either: (1) a fixed-length string or (2) a
dynamic string, as indicated in the DSC$B_CLASS field in the descriptor
(fixed length is DSC$K_CLASS_S = 1 or DSC$K_CLASS_Z = O;
dynamic is DSC$K_CLASS__D = 2).

Your procedure interface specification can indicate that your procedure will
return an output string parameter (or function value) by using either: (1) the
semantics indicated by the calling program in the descriptor (preferred) or (2)
fixed-length string semantics.

A modular procedure cannot expect or require a calling program to pass a
dynamic string. However, if you are using:

• The preceding method 1, your procedure can always call the library proce­
dure, since it performs the semantics indicated in the descriptor. -

Coding Modular Procedures 4-17

• The preceding method 2, before calling STR$GET1_J)X, your procedure
must check the class code in the string descriptor (DSC$B_CLASS)
and perform fixed-length semantics explicitly if the class code is
DSC$K_CLASS_S = 1 or DSC$K_CLASS_Z = 0.

The following table shows the action your procedure takes for all combina­
tions of interface specification and descriptor class passed by the calling
program:

Table 4-2: Procedure's Action for Strings Passed by Calling Program

Interface Specification for Output String

String passed by Fixed-length semantics Semantics specified by calling
calling program (-.wt.ds) program (-.wt.dx)

(ignore DSC$B_CLASS) (observe DSC$B_CLASS)
- c--""''""'--"'-'- ,,._,..,_,.,..,_,.,_.,_..,.._....,""""'_ ... _,~

Fixed-length Space fill or Space fill or
(DSC$B_CLASS=0,1) truncate using truncate using

DSC$W-1ENGTH and DSC$W-1ENGTH and
DSC$.A_POINTER DSC$.A_POINTER

Dynamic Space fill or Use library
(DSC$B_CLASS=2) truncate using dynamic string

DSC$W-1ENGTH and procedures
DSC$.A_POINTER

4.5.3 Passing String Parameters to Other Procedures

The following restrictions apply to string parameters passed from the calling
program to your procedure, and then from your procedure to another
procedure:

• If you have specified that your procedure (and any it calls) only accesses the
string as an input parameter, your procedure can pass the address of either
(1) the original descriptor (preferred) or (2) a copy of the descriptor.

• If you have specified that your procedure (and any it calls) accesses the
parameter as an output parameter using fixed-length semantics (wt.ds),
your procedure can pass the address of either:

- The original descriptor (to any procedure accessing it), or

- A copy of the descriptor in which the class code field has been forced to
fixed-length (DSC$K_CLASS_S = 1) to any procedure accessing it as
output using the semantics specified by the calling program (wt.dx).

• If you have specified that your procedure (or any it calls) accesses the
parameter as an output parameter using the semantics specified by the
calling program, your procedure must pass the address of the original de­
scriptor: a dynamic string must have one and only one descriptor pointing
to it.

4-18 Coding Modular Procedures

• If you do not know the semantics used by a procedure that your procedure
calls, you should assume the most general case and pass the address of the
original descriptor, not a copy.

4.6 Using VAXNMS System Services

The following sections list the V AXNMS system services by categories. Pro­
cedures that call nonmodular system services are nonmodular themselves.
Procedures using nonmodular system services should list them in the SIDE
EFFECTS section of the procedure description.

NOTE

The first column in each section indicates whether the service
is modular; the numbers in parentheses refer to explanatory
notes in Section 4.6.13.

4.6.1 Event Flag Services

no(16)
no(16)
no(16)
yes(l)
yes(l)
yes
yes(l)
yes(l)
yes(l)

$ASCEFC
$DACEFC
$DLCEFC
$SETEF
$CLREF
$READEF
$WAITFR
$WFLOR
$WFLAND

Associate Common Event Flag Cluster
Disassociate Common Event Flag Cluster
Delete Common Event Flag Cluster
Set Event Flag
Clear Event Flag
Read Event Flag
Wait For Single Event Flag
Wait For Logical OR of Event Flag
Wait For Logical AND of Event Flag

4.6.2 Asynchronous System Trap (AST) Services

yes(15) $SETAST
yes $DCLAST
yes $SETPRA
no(5,2) $CLRAST

Set AST Enable
Declare AST
Set Power Recovery AST
Clear AST Enable

4.6.3 Logical Name System Services

VMS stores logical names in process-wide storage. Therefore, they cause the
same modularity problems as other static storage.

no(2,13)
no(3,13)
yes

$CRELOG
$DELLOG
$TRNLOG

Create Logical Name
Delete Logical Name
Translate Logical Name

4.6.4 1/0 System Services

yes
yes(3)

$ASSIGN
$DASSGN

Assign VO Channel
Deassign I/O Channel

Coding Modular Procedures 4-19

yes(l) $QIO Queue 1/0 Request
yes(l) $QIOW Queue 1/0 Request and Wait For Event Flag
yes(l) $INPUT Queue Input Request and Wait For Event Flag
yes(l) $OUTPUT Queue Output Request and Wait For Event Fli
yes $ALLOC Allocate Device
yes(3) $DALLOC Deallocate Device
yes $GETCHN Get 1/0 Channel Interface
yes $GETDEV Get 1/0 Device Information
yes $GETCHN Get 1/0 Channel Information
no(3) $CANCEL Cancel 1/0 on Channel
no(2,13) $CREMBX Create Mailbox and Assign Channel
yes(3) $DELMBX Delete Mailbox
no $BRDCST Send Message to All Terminals
yes $SNDACC Send Message to Accounting Manager
yes $SNDSMB Send Message to Symbiont Manager
yes $SNDERR Send Message to Error Logger
yes $SNDOPR Send Message to Operator

NOTE

The first column in each section indicates whether the service
is modular; the numbers in parentheses refer to explanatory
notes in Section 4.6.13.

4.6.5 Process Control Services

When using the process control services, you must specify the process name
parameter as zero; otherwise, a resource allocation procedure is needed to
assign different values.

yes(4) $CREPRC Create Process
yes(3,4) $DELPRC Delete Process
yes(3,4) $SUSPND Suspend Process
yes(3,4) $RESUME Resume Process
yes $HIBER Hibernate
yes(3) $WAKE Wakeup
yes(3,4) $SC HD WK Schedule Wakeup
yes(3,4) $CANWAK Cancel Wakeup
no(5) $EXIT Exit
yes(3) $FORCEX Force Exit
yes $DCLEXH Declare Exit Handler
yes $CANEXH Cancel Exit Handler
no(3,4) $SETPRN Set Process Name
yes(3) $SETPRI Set Priority
no(2) $SETRWM Set Resource Wait Mode
yes(4) $GETJPI Get Job/Process Information
yes(3) $SETPRV Set Privileges

4-20 Coding Modular Procedures

4.6.6 Timer and Time Conversion System Services

yes
yes
yes
yes
yes(l)
yes(l)
no(2)

$GETTIM
$NUMTIM
$ASCTIM
$BINTIM
$SETIMR
$CANTIM
$SETIME

Get Time
Convert Binary Time to Numeric Time
Convert Binary Time to ASCII String
Convert ASCU String to Binary time
Set Timer
Cancel Timer Request
Set System Time

4.6. 7 Condition Handling System Services

no(2)
no(2)
yes
no(8)

$SETEXV
$SETSFM
$UNWIND
$DCLCMH

Set Exception Vector
Set System Service Failure Exception Mode
Unwind Call Stack
Declare Change Mode or Compatibility Mode Handler

NOTE

The first column in each section indicates whether the service
is modular; the numbers in parentheses refer to explanatory
notes in Section 4.6.13.

4.6.8 Memory Management System Services

yes(ll)
no(6)
yes(17)
yes(17)
yes(7,18)
no(7)
yes(7,18)
yes(3)
no(5)
no(5)
yes
no(8)
no(8)
no(8)
yes(l 7)
no(5)

$EXPREG
$CNTREG
$CRETVA
$DELTVA
$CRMPSC
$UPDSEC
$MGBLSC
$DGBLSC
$LKWSET
$ULWSET
$PURGWS
$LCKPAG
$ULKPAG
$ADJWSL
$SETPRT
$SETS WM

Expand Program/Control Region
Contract Program/Control Region
Create Virtual Address Space
Delete Virtual Address Space
Create and Map Global Section
Update Global Section File on Disk
Map Global Section
Delete Global Section
Lock Pages in Working Set
Unlock Pages from Working Set
Purge Working Set
Lock Page in Memory
Unlock Page from Memory
Adjust Working Set Limit
Set Protection on Pages
Set Process Swap Mode

4.6.9 Change Mode System Services

no(8)
no(8)
no(8)

$CMEXEC
$CMKRNL
$ADJSTK

Change Mode to Executive Mode
Change Mode to Kernel Mode
Adjust Outer Mode Stack Pointer

Coding Modular Procedures 4-21

4.6.10 Error Messages

The error message identification (32-bit condition code) has an allocation
discipline in which bits 26: 16 are assigned by DIGITAL as facility codes. Each .
facility is administered by someone who ensures uniqueness of bits 15:3. How­
ever, for correct modularity, all modular procedures must use LIB$SIGNAL
(or LIB$STOP) error handling rather than outputting an error message them­
selves. Only the catch-all handler can use the following system services.

yes $GETMSG
yes(lO, 12) $PUTMSG

Get Message
Put Message

NOTE

The first column in each section indicates whether the service
is modular; the numbers in parentheses refer to explanatory
notes in Section 4.6.13.

4.6.11 Formatted ASCII Output

yes
yes

$FAQ
$FAOL

Formatted ASCII Output
Formatted ASCII Output with List Parameter

4.6.12 RMS System Services

In the following calls, the file name is passed as an explicit parameter or is
derived from an explicit parameter passed to a modular procedure from a
nonmodular procedure or from a user. Otherwise, the file name can conflict
with one that already exists. Do not use the RMS optional success and error
action routines; they depend on AST interrupts being enabled even for syn­
chronous 1/0. This dependency is not appropriate for modular procedures.

yes(3)
yes
yes(9)
yes(3)
yes(3)
yes
yes(3)
yes
yes
yes(3)
yes(3)

NOTE

In principle, a modular procedure could: (1) save, and enable
ASTs using $SETAST (see note 15 in Section 4.6.13), (2) do
synchronous RMS I/0 with action routines and (3) restore the
AST enables. However, the extra overhead would probably not
be worth the trouble.

$CLOSE CLOSE file
$CONNECT CONNECT 1/0 stream
$CREATE CREATE file
$DELETE DELETE record
$DISCONNECT DISCONNECT 1/0 stream
$DISPLAY DISPLAY information
$ERASE ERASE file
$EXTEND EXTEND file
$FIND FIND record
$FLUSH Write out all modified I/O Buffers
$FREE Unlock all previously locked records

4-22 Coding Modular Procedures

yes(14) $GET GET record
yes $NXTVOL Magnetic tape processing continues to next volume
yes(9) $OPEN Open File
yes(14) $PUT Write a new record to a file
yes $READ Retrieve a specified number of bytes from a file
yes(3) $RELEASE Unlock a record pointed to by RFA field
yes $REWIND Position first record of a file
yes $SPACE Space forward or backward in a file
yes $TRUNCATE Truncate a sequential file
yes $UPDATE Update an Existing Record
yes(3) $WAIT Determine completion of asynchronous operation
yes $WRITE Write specified number of bytes to a file

4.6.13 Modular Procedure Notes

1. This service has a process-wide resource (event flag) as an input parame­
ter. Process local event flags must be allocated by calling the library
procedures LIB$GET_EF and LIB$FREE_EF to ensure allocation of a
unique event flag.

2. This service changes process-wide static storage of VMS from the default
expected by modular procedures. Thus, use by more than one procedure
could cause a conflict. Further problems result if an AST interrupt occurs
while static storage is in a nondefault state.

3. A module can only deallocate or operate upon items (for example, pro­
cesses, memory, devices, global sections) that are known to have been
allocated by it.

4. No process name can be specified since there would have to be a group­
wide allocator to allocate a unique process name within the group.

5. This service could adversely affect the execution of other modular/reen­
trant procedures in the process.

6. You cannot use $CNTREG to contract the program or control region be­
cause you would violate the standard of not relying on a particular value of
an implicit input to a procedure. Some other procedure might have ex­
panded the region after you had expanded it.

7. These services need a system-wide, group-wide, or process-wide allocation
procedure or discipline.

8. These services could adversely affect the execution of user-written proce­
dures that are not modular/reentrant because they are also using these
system services.

9. File names must be passed as explicit arguments or derived from explicit
arguments passed to a modular procedure from a nonmodular procedure
or from a user via SYS$INPUT.

10. Use LIB$SIGNAL instead. This lets the caller write application-specific
error messages.

Coding Modular Procedures 4-23

11. If LIB$FREE_ VM deallocates space in the program region,
LIB$GET_VM must be called to reuse the deallocated space. (See Chap­
ter 5 of the VAX-11 Run-Time Library Ref ere nee Manual.)

12. Modular procedures should provide an optional action routine parameter
so that the calling program can control human-readable output.

13. This service needs a logical name allocation procedure.

14. To be AST reentrant when using $GET and $PUT, check for record
stream active error (RMS$_RSA). If the error is encountered, call $WAIT
and try again. (See Section 6.4.)

15. To use $SETAST in a modular procedure, you must save the old setting
and restore it before returning to the calling program. You must also
establish a condition handler to restore the setting in case of a stack
unwind.

16. For modularity, this service requires a resource-allocating procedure to
allocate event flag cluster numbers 2 and 3, which are not provided for in
the VAX-11 Run-Time Library.

17. This service applies only to pages that were statically or dynamically
allocated to your procedure.

18. $CRMPSC and $MGBLSC apply only with the SEC$M_EXPREG flag
that creates or maps a global section into the first available space set.

4. 7 Invoking Optional User Action Routines

An optional user action routine is a useful way to let the calling program gain
control at a critical point in your procedure's algorithm.

There are two VAX-11 data types used to represent a procedure to be passed
as a parameter. The first, and simplest, is used by FORTRAN and is expected
by the Run-Time Library, RMS, and VMS System Services. It is called Entry
Mask (ZEM). The second is used by PASCAL and other languages where a
particular procedure activation must be specified: the procedure might do up­
level addressing of a variable defined in a syntactically outer block and hence,
allocated in another frame. It is called Bound Procedure Value (BPV).

For ZEM passed by reference, the argument list entry contains the address of
the procedure entry mask to be called. For BPV passed by reference, the
argument list entry contains the address of two longwords. The first longword
contains the address of the procedure and the second contains the environ­
ment pointer to be loaded into Rl before the procedure is called. The VAX-11
Procedure Calling Standard explicitly permits a BPV data type to be passed
by immediate value, in which case the second longword is omitted entirely,
and the first longword (address of entry mask) is placed in the argument list
entry making it identical to ZEM passed by reference.

To provide a user-action routine interface for your procedure, you must first

4-24 Coding Modular Procedures

decide whether to use the ZEM or BPV data type. Since higher-level lan­
guages that support BPV by default, must provide the language extension to
force immediate value, ZEM is more language-independent. However, ZEM
is more awkward for calling programs written in languages like PASCAL.

To make it easy for the calling program to pass information to its action
routine your procedure should supply an optional user-arg parameter that the
calling program can pass to its action routine. Your procedure merely copies
the argument list entry of the user-arg, if present, to the argument list it
passes to the action routine. This achieves the same effect as up-level
addressing.

Often it is convenient to specify a default action if the optional action routine
is not supplied by the calling program.

To provide a user action routine, your procedure should have the following
calling sequence:

CALL myproc (. .. [,action-routine.fzemlc.r[, user-arg.xy .z]])

or

CALL myproc (... [,action-routine.fbpvlc.r[,user-arg.xy.z]])

The user action routine has the calling sequence:

status.wlc.v = action-routine (... [,user-arg.xy.z])

where your procedure copies the 32-bit arg list entry passed by the calling
program to the argument list provided to the action routine. Thus, the calling
program and its action routine can communicate using any data type, access
type, passing mechanism, or arg form.

The following code fragment shows how to test for the presence of an optional
user action routine and pass it a line of text and the optional user arg. If no
user action routine is supplied, LIB$PUT _OUTPUT is called as the default
action routine.

• • • = a
ACTION_ROUTINE = 8
USER_ARG = 12

.ENTRY MYPROC AM< ••• >

For1r1al
ForMal 2 action routine
ForMal 3 - user ars

MOVAQ
CMPB

Test no.

•••,RO ; RO= adr. of strins descr. for line
CAP>, #(ACTION_RQUTINE/ll)

of caller ParaMeters
BLSSU
TSTL

30$; Branch if no action routine sPecif ied
ACTION-ROUTINE CAP>

Test for 0 action routine adr.
BEQU 30$; Branch if no action routine specified

; CLIB$ convention>
CMPB CAP>, #(USER_ARG/ll)

Test no. of caller ParaMeters
BLSSU 20$; Branch if no optional user-ars Par.

(continued on next page)

Coding Modular Procedures 4-25

;+
; Call user action routine CZEM> with oPtional user-ars Parameter

PUSHL
PUSHL
CALLS

USER-ARG<AP> ; 2nd Par = user-ars list entrY
RO ; 1st Par = adr. of strins descr.
•2, @ACTION_ROUTINE<AP>

Call user action routine
BRB 40$; Join coMmon code

;+
; Call user action routine <ZEM> without optional user-ars Paramete1

20$: PUSHL
CALLS

RO ; 1st Par = adr. of strins descr.
•1, @ACTION_ROUTINECAP>

; Call user action routine
BRB 40$

;+
; Call Ll8$PUT_OUTPUT - caller did not suPPlY user action routine.

30$: PUSHL RO 1st Par = adr. of strins descr.
CALLS #1, Ll8$PUT_OUTPUT

; OutPut line to SYS$0UTPUT
40$: BLBC Ro,... Test for error status

To call a BPV user action routine replace the two CALLS instructions with
the following, where n is 2 and 1, respectively.

MDI.IQ
@ACTION_ROUTINECAP>
; RO= adr of Procedure,

; Rl = environment value

CALLS
•n, <RO>
; Call user suPPlied action routine

4-26 Coding Modular Procedures

Chapter 5
Signaling and Condition Handling

A modular procedure should not print error or informational messages either:
(1) directly on an output device or (2) by calling the $PUTMSG system
service.
Instead, a modular procedure uses either of these techniques:

• It returns a condition value as a function value (preferred). (See
Section 5.2.)

• It signals a condition value by calling LIB$SIGNAL or LIB$STOP when a
failure occurs. The absence of a signal indicates success. (See Section 5.3 of
this manual and Section 6.6 of the VAX-11 Run-Time Library Reference
Manual.)

Otherwise, the calling program is unable to control or change all effects of
your procedure, thereby precluding use of it in certain situations. For exam­
ple, an applications program used by a nonprogramming clerk should output
an applications-specific message (such as "Please start over"), not a systems
programming-oriented message (such as "MRS, maximum record size
invalid").

5.1 Condition Values

A condition value is a 32-bit quantity. Success or failure is indicated in bit 0
as a 1 or 0. Besides indicating success or failure of your program, the condition
value can provide this information:

• Severity of the failure

• Error identification

• Associated message text

• Facility detecting the error

• Control of error message printing

5-1

5.2 Returning a Condition Value as a Function Value

These structured programming advantages are inherent in returning a condi­
tion value as a function value:

• All execution paths are confined to syntactic blocks that have a single entry
and a single exit point from the calling program's viewpoint.

• Error contingencies are considered when the calling program is written,
thereby increasing program reliability.

• The action of the calling program is clearly indicated when errors occur.

Your procedure can be called as a main program, and the condition value will
be returned to the command language interpreter.

The following sections describe how a procedure can return a condition value
and how a calling program can check it for success or failure.

5.2.1 Returning and Checking an Error Status

•MACRO

;+

The following example shows the simplest way to return success or failure
from a MACRO procedure (see Section 5.2.2 for the preferred way, using
condition value symbols that indicate the specific reason for an error):

• ENTRY PROC, M< ••• >

; Success return
; -

;+

MOlJL
RET

RCH RO = 1 - success

; Failure return

CLRL
RET

RO RO = 0 - failure

This example shows how a MACRO calling program can check for success or
failure in a called procedure (whether called procedure returns 0 or 1 or uses
a symbolic condition value):

• EHTRN PROC
CALLG ARGLST , PROC ; ca 11 Procedure
BLBC RO, 10$; branch on error

•BLISS

The following example shows a simple way to return success or failure from
a BLISS procedure (see Section 5.2.2 for the preferred way, using condition
value symbols that indicate the specific reason for an error):

5-2 Signaling and Condition Handling

GLOBAL ROUTINE PROC (}{ tY tZ > =
BEGIN

IF ••• THEN RETURN 1 ELSE RETURN 0 ;
END ;

This example shows how a BLISS calling program can check for success or
failure in a called procedure (whether called procedure returns 0 or 1 or uses
a symbolic condition value):

E}<TERNAL ROUT I NE PROC;
IF PROC (AtBtC)
THEN

success
ELSE

failure

•BASIC

The following example shows a simple way to return success or failure from
a BASIC procedure (see Section 5.2.2 for the preferred way, using condition
value symbols that indicate the specific reason for an error):

100 FUNCTION INTEGER PROCO{ tY tZ>

200 IF (• • • > THEN
PROC = 1 'X.

ELSE
PROC = O'X.

300 FUNCT I ONE ND

This example shows how a BASIC calling program can check for a success or
failure status (whether the called procedure returns 0 or 1 or uses a symbolic
condition value):

100 EXTERNAL INTEGER FUNCTION PROC
200 IF (PROC (AtBtC> and 1'X.> THEN

success
ELSE

failure

•FORTRAN

The following example shows a simple way to return success or failure from
a FORTRAN procedure (see Section 5.2.2 for the preferred way, using con­
dition value symbols that indicate the specific reason for an error):

FUNCTION PROC (X t Y t Z >
I NTEGER*ll PROC

(continued on next page)

Signaling and Condition Handling 5-3

IFC •••)THEN
PROC = 1

ELSE
PROC = 0

END IF
RETURN
END

This example shows how a FORTRAN calling program can check for a
success or failure status (whether the called procedure returns 0 or 1 or uses
a symbolic condition value):

E}<TERNAL PROC
I NTEGER*4 PROC

IF < PROC <A ,5 tC) > THEN
success

ELSE
failure

END IF

•PASCAL

The following example shows a simple way to return success or failure from
a PASCAL procedure:

FUN CT I ON PROC < }{: ••• , Y: ••• , Z: •••) : INTEGER;

IFC •••)THEN
PROC = 1

ELSE
PROC = 0

END;
RETURN;
END;

This example shows how a PASCAL calling program can check for success
or failure status (whether the called procedure returns 0 or 1 or uses a
symbolic condition value):

E}<TERNAL PROC < M: • • • , N: ••• , 0: •••) : INTEGER;
IF ODD PROC <A , B , C > THEN success ;

5.2.2 Condition Values

The format of the condition value is:
where:

condition identification (STS$V _COND-1D)
Identifies the condition uniquely on a system-wide basis.

5-4 Signaling and Condition Handling

facility (STS$V_FAC_NO)
Identifies the software component generating the condition value. Bit 27 is
set for customer facilities and clear for DIGITAL facilities.

message number (STS$V_MSG_NQ)
A status identification, that is, a description of the hardware exception
that occurred or a software-defined value. Message numbers with bit 15
set are specific to a single facility. Message numbers with bit 15 clear are
system-wide and hence reserved to DIGITAL.

severity (STS$V _SEVERITY)
Indicates the severity code: bit 0 is set for success (logical true) and is
clear for failure (logical false); bits 1 and 2 distinguish degrees of success
or failure. Taken together the bits 0 through 2 define the severity of the
error as follows:

cntrl

STS$K-WARNING
STS$K_SUCCESS
STS$K_ERROR
STS$K-1NF
STS$K_SEVERE

0 =warning
1 =success
2 =error
3 =information
4 = severe-error

Four control bits. Bit 28 is set to inhibit printing the message associated
with the condition value by the $EXIT system service. It should be set in
the condition value returned by a procedure as a function value if the
procedure has also signaled the condition. Bits 29 thru 31 must be zero;
they are reserved for DIGITAL.

A list of facility numbers and codes is found in Appendix B of this manual. To
distinguish your condition values from those used by DIGITAL, you should
set bits 15 (STS$V_FAC_SP) 27 (STS$V_CUST-DEF) to 1.

5.2.3 Defining Condition Value Symbols

To make condition value symbols available to calling programs in a conven­
ient manner, you should assign a unique global symbol to each distinct error
your procedure detects. The global symbols should have the form:

fac$_error-name (DIGITAL-supplied)
fac __ error-name (User-supplied)

You can also define success condition values in order to indicate various forms
of success. For example, the system service $SETEF (Set Event Flag) returns
SS$_ W ASCLR or SS$_ W ASSET to indicate whether the event flag was
previously clear or set.

If you place your procedures in a user-created or DIGITAL-supplied library,
you can include the global symbol definitions there as well so they are avail­
able to any module making an external declaration.

Signaling and Condition Handling 5-5

To uniquely define condition value symbols so neither the name nor the value
can duplicate those defined by another user or by DIGITAL, you must:

1. Choose an existing facility name or create one. If you create one, you must
register it with someone at your installation responsible for the uniqueness
of such symbols. This person will assign a unique 12-bit number to be
used in the STS$V_FAC_NO field (bit 27 must be set for non-DIGITAL
facilities).

2. Place all symbol definitions for a given facility in a single source file.

3. Define values for each symbol such that each value is unique in bits 14
through 3.

4. Make sure that bits 27 and 15 are set to prevent conflict with DIGITAL­
supplied software.

5. Set bits 27 through 16 to the correct facility number.

The following examples describe how to define these global condition value
symbols:

LIB __ NOSUCHFILE - no such file
LIB __ NOSUCHDEV - no such device
LIB __ NOSUCHDIR - no such directory

•MACRO

Assume the LIB facility has facility number 24, which is placed in a field
ending at bit 16. Bits 27 and 15 are set to 1.

LIB __ FAC = <2l1@1G> + <1@27> + <1@15>; define facilit}'
SEVERE = a ; severity = severe
LIB--NDSUCHFILE -- LIB __ FAC + SEVERE + 1@3
LI6 __ NOSUCHDEV -- LIB __ FAC + SEVERE + 2@3
LI6 __ NOSUCHDIR -- LIB __ FAC + SEVERE + 3@3

•BLISS

GLOBAL LITERAL

•BASIC

LIB--FAC = 2l1A18 + 1A27 + 1A15t
SEVERE = a
LIB __ NQSUCHFILE = LI6 __ FAC + SEVERE + 1A3t
LIB __ NQSUCHDEV = LIB __ FAC +SEVERE + 2A3t
LIB __ NOSUCHDIR = LIB __ FAC + SEVERE + 3A3;

Global symbols can be defined in MACRO for use by a BASIC program or
procedure.

•FORTRAN

Global symbols can be defined in MACRO for use by a FORTRAN program
or procedure.

5-6 Signaling and Condition Handling

•PASCAL

Global symbols can be defined in MACRO for use by a PASCAL program or
procedure.

5.2.4 Using Global Condition Values In a Calling Program

A calling program can identify a condition value returned by a procedure and
take action for each specific value returned. When identifying a condition
value, the calling program should ignore bits 31through28 and bits 2 through
0 since they are supplemental to the identification of the error. In some cases,
the condition value may have been signaled before being returned as a func­
tion value. Therefore, these bits may differ from the values defined symboli­
cally. If the facility-specific bit (bit 15) is 0, then the facility number field
(bits 27 through 16) should also be ignored.

The library procedure LIB$MATCH_COND uses this algorithm for match­
ing condition values. This procedure is described in Chapter 6 of the VAX-11
Run-Time Library Reference Manual.

The format for LIB$MATCH_COND is:

index= LIB$MATCH_COND (condition-value, cond-value-i ...)

condition-value
Address of longword containing the condition value to be matched.

cond-value-i
Address of longword containing the condition value to be compared with
condition-value.

index
0, if no match is found; i for a match between the first and (i+l)st
parameter.

The following sections show examples that use the condition values previously
described in a program to branch to different instructions on each different
condition value. Examples are in MACRO, BLISS, BASIC, FORTRAN and
PASCAL both with (preferred) and without the use ofLIB$MATCH_COND.

•MACRO

CALLG
BLBS
CMPL
BEQL
CMPL
BEQL
CMPL
BEQL

LIB_PROC, LIB __ NOSUCHFIL, LIB __ NOSUCHDEl,J,
LIB __ NOSUCHDIR
ARGLST t LIB_ PROC
ROt 10$; Branch if success
RO t #LI B __ NOSUCHF IL
20$; Branch if no such file
ROt •LIB __ NOSUCHDEV
30$; Branch if no such device
RO, •LI B __ NOSUCHD IR
40$; Branch if no such directon'

; Here if a1H other error

Signaling and Condition Handling 5-7

By using LIB$MATCH_COND, the preceding example changes to this:

.EXTRN LIB_PROC t LI6$MATCH_COND t LIB __ NOSUCHFIL t

LIB __ NOSUCHDEVt LIB __ NOSUCHDIR
ARGLST t LI B_PROC CALLG

BLBS
PUSHAL
PUSHAL
PUSHAL
PUSHL
CALLS

RO t 10$; Branch if s•.tccess
#LIB __ NOSUCHDIR
#LI 5 __ NOSUCHDEt.1
#LIB __ NOSUCHFIL
RO
#4t LIB$MATCH_COND

15$: CASEB RO t # 1 t #3
20-15 No such file
30-15 No such de1.iice
40-40 No such directory

Here if an>' other error

•BLISS

The following BLISS example also branches upon identification of a partic­
ular condition value:

E}<TERNAL ROUT I NE LIB_ PROC: ADDRESS I NG_MODE <GENERAL> :
E}<TERNAL LITERAL LI B __ NOSUCHF IL t LI 5 __ NOSUCHDEt.1 t

LI B __ NOSUCHD IR:

ROUT I NE •••
BEGIN
LOCAL CONO_t,IAL;
COND_t,IAL = LIILPROC (. + +)

IF NOT + COND_t.JAL
THEN

SELECTONE
SET

+ COND_t,IAL OF

[LIB __ NOSUCHFILJ:
[LIB __ NOSUCHDEVJ:
[LIB __ NOSUCHDIRJ:
[OTHERWISEJ:
TES;

•••
•••
• + •

•••

By using LIB$MATCH_COND, the preceding example changes to this:

E>{TERNAL ROUT I NE
LIB_PROC: ADDRESSING_MODE <GENERAL> t

LIB$MATCH_COND: ADDRESSING_MODE <GENERAL);
E}<TERNAL LITERAL

LIB __ NOSUCHFILt LIB __ NOSUCHDEVt LIB __ NOSUCHDIR;

ROUTINE•••
BEGIN
LOCAL COND_VAL;
COND_t.JAL = LIB-PROC <.,. >

IF NOT • COND_VAL
THEN

5-8 Signaling and Condition Handling

CASE LI 6$MATCH-COND <. COND_t.JAL t
'Y..REF<LIB __ NOSUCHFIL> t

'Y..REF<LIB--NOSUCHDEV>,
'X.REF <LI B __ NOSUCHD IR)) FROM 1 TO 3 OF

•BASIC

SET
[1]:

[2]:
•••
•••

[3] : •••

[OUTRANGEJ:
TES;

•••

The following example illustrates using condition values to branch to sev­
eral different statements in BASIC:

100 E}nERNAL INTEGER FUN CT I ON LI 6_ PROC
200 E}<TERNAL INTEGER CONSTANT LI B __ NOSUCHF IL t LI B __ NOSUCHDEV t

LI B __ NOSUCHD IR
300 DECLARE INTEGER COND_tJAL
llOO COND_ VAL = LI 6_ PROC < •••)
500 IF <COND_tJAL AND 17..) <> 17.. THEN

IF COND_tJAL = LI B __ NOSUCHF IL THEN

•••
ELSE IF COND_VAL = LI 6 __ NOSUCHD IR THEN

•••
ELSE IF COND_t.JAL = LIB __ NOSUCHOEt.J THEN

•••
ELSE

•••
GOO •••

This example does the same thing in BASIC using LIB$MATCH_COND:

100 E}-{TERNAL INTEGER FUNCTION LI B_PROC t LI 6$MATCH_COND
200 E}-{TERNAL INTEGER LI B __ NOSUCHF IL t LI B __ NOSUCHDEt.J t

LIB __ NOSUCHDIR
300 DECLARE INTEGER COND_VAL
llOO COND_t.JAL = LIB. PROC < ••• >

500 IF C CON_tJAL AND 1 i.. > < > 1 i.. THEN
ON LIB$MATCH_COND<LIB __ NOSUCHFFILt LIB __ NOSUCHDEVt

LI 6 __ NOSUCHD IR>

1000
2000
3000

•••
•••
•••

•FORTRAN

GOTO 1000 t 2000 t 3000

The following example illustrates using condition values to branch to sev­
eral different statements in FORTRAN:

EXTERNAL LI 6_ PROC , LI 6 __ NOSUCHF IL , LI B __ NOSUCHDEV,
1LIB __ NOSUCHDIR
INTEGER*ll LIB_PROC, CONO_t.JAL

(continued on next page)

Signaling and Condition Handling 5-9

COND_VAL = LI B_PROC < ••• >
IF C • NOT. CONQ_lJAL) THEN

IF C COND_lJAL • EQ. 'X.LOC C LI 6 __ NOSUCHF IL> > THEN

•••
ELSE IF C COND_VAL • EQ. 'X.LOC CL I 5 __ NQSUCHDEl.1 > > THEN ...
ELSE IF C COND-VAL • EQ. 'X.LOC C LI 6 __ NOSUCHD IR> > THEN

•••
ELSE

•••
END IF

The following example does the same thing in FORTRAN using
LIB$MATCIL.COND:

E>nERNAL LI 6_ PROC t LI 6$MATCH_COND
DnERNAL LI 6 __ NOSUCHF IL t LI 6 __ SUCHDElJ t LI 6 __ NOSUCHD IR
I NTEGER*4 LI B_PROC t LI 6$MATCH_COND t CONO_VAL

CONQ_lJAL = LI B_PROC C ••• >
IF C .NOT. CONO_VAL>

1 GOTO 20 t 30 t 40 LI 6$MATCH_CQND C COND_ lJAL t

ZLIB __ NOSUCHFILt LIB __ NOSUCHDEVt LIB __ NOSUCHDIR>

•PASCAL

The following example illustrates using condition values to branch to sev­
eral different statements in PASCAL:

CONST
%INCLUDE 'SYS$LIBRARY

CASE LI B_PROC C ••• > OF

END;

LIB __ NQSUCHFIL •••
LI B __ NOSUCHDElJ
LI B __ NQSUCHD IR
OTHERWISE : •••

•••
•••

SIGDEF.PAS'

{No such file}
{No such detJice}
{No such directon•}
{No match}

The following example does the same thing in PASCAL using
LIB$MATCIL.COND:

FUNCTION LI 6$MATCH_COND CA tB tC tD INTEGER> INTEGER;
EXTERN;

CONST
%INCLUDE 'SYS$LIBRARY : SIGDEF.PAS'

COND_VAL : = LIB-PROC C • •• >

CASE LI 6$MATCH_COND C COND_VAL t LI 6 __ NOSUCHF IL t

LIB __ NOSUCHDEVt LIB __ NOSUCHDIR> OF
0 •••
1 •••
2 •••
3 •••
END;

5-10 Signaling and Condition Handling

{No rTlatch}
{No such file}
{No such device}
{No such directon•}

5.3 Slgnallng Error Conditions

5.3.1 Slgnal Exception Condition

LIB$SIGNAL is called whenever it is necessary to indicate an exception con­
dition or display a message rather than return a status code to the calling
program. LIB$SIGNAL scans the stack frame-by-frame starting with the
most recent frame calling each established handler.

The format is:

CALL LIB$SIGNAL (condition-value [,parameters ...])

condition-value
A standard signal name designating a VAX-11 system-wide 32-bit condi­
tion value {passed by immediate value).

parameters
Optional additional FAO (formatted ASCII output) parameters for
message (passed by immediate value).See Chapter 7 of the VAX-11
Run-Time Library Reference Manual or the description of $PUTMSG
system service in the VMS System Service Reference Manual for the
interpretations of the F AO parameters.

5.3.2 Stop Execution via Signaling

LIB$STOP is called whenever it is necessary to indicate an exception condi­
tion or display a message when it is impossible to continue execution or return
a status code to the calling program. LIB$STOP scans the stack frame-by­
frame, starting with the most recent frame calling each established handler.
LIB$STOP guarantees that control does not return to the caller. The format
is:

CALL LIB$STOP (condition-value [,parameters ...])

The LIB$STOP parameters are identical to those described in Section 5.3.1
for LIB$SIGNAL.

The VAX-11 Run-Time Library Reference Manual discusses LIB$SIGNAL
and LIB$STOP in more detail.

5.4 Internal Slgnallng

Because you can choose to organize procedures in levels of abstraction (see
Section 4.1), some procedures might not be available to the calling program
across the modular interface. You could use internal signaling between proce­
dures that are at different levels.

To use internal signaling, the procedures that can be called across the modu­
lar interface must establish a condition handler. Whenever any of your proce­
dures detect an error, they might call a central error-signaling procedure and

Signaling and Condition Handling 5-11

pass the error number as a parameter to be used in a 32-bit condition value
(bits 14 through 3). This error-signaling procedure would convert the error
number to a 32-bit condition value by:

• Shifting the error number left by 3 bits

• Inserting a severity code (usually severe = 4)

• Setting the facility number field (bits 26 to 16)

• Setting bits 27 and 15

The error-signaling procedure then adds any extra arguments and signals the
error by calling LIB$SIGNAL or LIB$STOP. For example, the FORTRAN
support library procedure FOR$$SIGNAL adds the current logical unit num­
ber and file name to the argument list, followed by the VAX-11 RMS condi­
tion value and status value from the current FAB or RAB. The $$ indicates
that FOR$$SIGNAL is an internal interface and is not part of the interface to
user programs.

Your specific condition handler is then entered. It can decide how to proceed
from this point. Usually, it unwinds to the caller of the establisher (which is
the program calling across the modular interface) of the handler. The signaled
condition value is the value returned to the calling program that called the
establisher (outermost layer). You can make LIB$SIG_TO_RET the spe­
cific error condition handler. LIB$SIG_ TO_RET can also be called from
your handler.

For example, the condition handler established by the FORTRAN support
procedures inserts the program counter (PC) of the calling program into the
signal argument list and either: (1) resignals or (2) unwinds to the ERR=
address if ERR= is specified by the calling program as an optional argument.

The internal signaling procedure FOR$$SIGNAL does not know the PC of the
calling program. However, it is easy for the handler to find it, since the
handler is passed the address of the stack frame of the establisher (which
contains the PC of the calling program).

5.5 Creating a Procedure Activation Environment

You can use the V AXNMS error-signaling mechanism to create a special
per-procedure activation environment. This is needed to implement most
higher-level languages. In such cases, the compiled code for each procedure
activation establishes a language-specific condition handler. The address of
the handler (stored in longword zero of the stack frame) can also serve as a
way to identify in which language the procedure was written. This is useful for
language support procedures that need to know the layout of the stack frame.

Such a handler takes appropriate language-specific action on software errors
signaled by mathematics (MTH), string (STR) or language support (BLI,
BAS, FOR, PAS) procedures, or by hardware errors. By using such a per­
activation mechanism, procedures of different languages can call one another,
each with its own environment.

5-12 Signaling and Condition Handling

Note that the main program is also a procedure and follows the same per­
proced ure activation technique. Furthermore, the code generated by the main
program must not call a language initialization routine, since the main pro­
gram might call procedures written in any language. Alternately, a subroutine
written in a particular language cannot depend on the main program being
written in the same language. Hence, the subroutine cannot depend on a
particular main program initialization code having been called.

Signaling and Condition Handling 5-13

Chapter 6
Coding Modular AST-Reentrant Procedures

This chapter describes coding techniques for modular procedures that use the
VAXNMS AST (asynchronous system trap) interrupt mechanism them­
selves, or permit calling programs to use it. A procedure is AST-reentrant if it:

• Can be interrupted between any two instructions, permitting it or any re­
lated procedure to be called (reentered)

• Executes correctly when continued

This chapter describes:

• How to code AST-reentrant procedures

• How to code I/O that may or may not be at the AST level

All modular procedures should be AST-reentrant so they can be called from
any program. If your procedure is not AST-reentrant or calls any procedure
that is not, your program documentation should relate this to warn others
against using your procedure.

NOTE

Do not confuse the term AST-reentrant with reentrant, which
refers to a more restrictive set of conditions encountered when
static storage is shared between processes. In such a situation,
there can be more than two threads of concurrent execution,
and each thread can alternately progress toward an end. The
restrictions become even more severe if the processes can be
executing simultaneously on several processors.

Since most modular procedures share code (and not data) be­
tween processes, not all of the techniques described in this
chapter are applicable to reentrant procedures on single or mul­
tiprocessor configurations that share data between processes.
All of the techniques in this chapter assume that data is stati­
cally allocated per-process.

6-1

6.1 AST Interrupts in a Process

Some V AXNMS system services let an event interrupt a process. Since the
interrupt occurs out of sequence with respect to process execution, the inter­
rupt mechanism is called an asynchronous system trap (AST). An AST inter­
rupt transfers control to a user-specified routine that services the event. The
AST routine can call other procedures, including library procedures. The AST
routine and any procedures it calls are said to be executing at AST level.

While at AST level, a process cannot be re-interrupted at the same access
mode. The process runs to completion at the AST level before the non-AST
level procedure resumes and can execute another instruction. Hence, a pro­
cess is either executing at AST level or at non-AST level, and thus consists of
two "threads of execution," one thread at each level.

NOTE

The AST level cannot stall or use "busy wait" to avoid being
called before the non-AST level is out of a critical section of
code.

When the AST routine finishes servicing the event, it returns control to its
caller (VMS). This automatically continues execution of the interrupted pro­
cedure at the point of interruption.

For example, you could call the Set Timer system service ($SETIMR) that
would specify the address of an AST level procedure to be executed when a
specified time elapses. When the requested time occurs, the system 'delivers'
an AST interrupt by stopping the currently executing procedure and calling
the specified AST routine. Another example of an AST event is typing
CTRL/C on the terminal.

For information on the implementation of AST interrupts by system services,
see the VAX/VMS System Service Reference Manual.

6.1.1 Using AST Routines

To use AST interrupts, you must write an AST routine to take control at AST
level. An AST routine must follow these guidelines:

• It must be separate from the currently executing procedure.

• It must not modify data or instructions used by the interrupted procedure or
its callers.

• It is called with a CALLG instruction.

• If it modifies any registers other than RO and Rl, it must set bits in the
entry mask to save the contents of the registers.

• If it calls any other procedures, they must all be AST-reentrant.

• It must return to its caller with a RET instruction.

6-2 Coding Modular AST-Reentrant Procedures

6.1.2 Interrupting a Non-AST Reentrant Procedure

If an AST interrupt occurs during the execution of a non-AST reentrant
procedure, you can get unpredictable results from either the AST level proce­
dure or the interrupted procedure.

BASIC procedures can be made AST-reentrant since local variables are allo­
cated on the stack. Avoid use of static storage by not using COMMON (COM)
and built-in functions that have static storage. These include STATUS,
CTRLC, RCTRLC, DET, FIELD, NUM, NUM2, ON ERROR GO TO,
RESUME, and RECOUNT .. You should also avoid the SYS functions
ASSIGN, DEASSIGN, message send and receive.

A non-trivial FORTRAN procedure cannot be made AST-reentrant. Hence,
FORTRAN procedures can be called only at the AST level or the non-AST
level, but not both.

PASCAL procedures can be made AST-reentrant since local variables are
allocated on the stack. Avoid use of static storage by not declaring variables at
the program or module level.

6.2 Writing AST-Reentrant Modular Procedures

You must observe the following rules when writing AST-reentrant procedures:

• Only AST-reentrant procedures can be called at both the AST and the non­
AST level. Since an AST interrupt can arrive at any time, AST-reentrant
procedures must be written so that an AST interrupt can occur between any
two instructions without interfering with the correct operation at either the
AST or non-AST levels. If a single instruction is interruptable, an AST
interr.upt can also occur within that instruction. (For more information, see
the VAX-11 Architecture Handbook.)

• An AST-reentrant procedure cannot call any non-AST reentrant
procedures.

• If both an AST level and a non-AST level procedure concurrently access a
data base in static storage, each procedure must make sure that race condi­
tion interference does not occur. (See Section 6.3.)

NOTE

The term race condition refers to a situation where two inde­
pendently executing threads of execution can access the same
data in a conflicting manner. For example, a race condition
exists if a single instance of a process-wide resource can be
allocated to different procedures at both the AST and non­
AST level.

Coding Modular AST-Reentrant Procedures 6-3

• If 1/0 at the AST level is performed, you should avoid simultaneous 1/0 of
the same data base from both AST and non-AST level procedures. (See
Section 6.4.)

A procedure that has no static storage and calls no other procedures is auto­
matically AST-reentrant. A procedure that has no static storage and only
calls other AST-reentrant procedures is also AST-reentrant. Hence,
AST-reentrant procedures should use stack and/or heap storage.

A procedure with static storage can be AST-reentrant, although this is diffi­
cult to program since you could be changing statically allocated data when
the interrupt occurs.

6.3 Ellmlnatlng Race Conditions During Concurrent Access

There are a number of ways for your procedure to eliminate race condition
interference when accessing and modifying data in its static storage:

• Perform all accessing or modification in a single uninterruptable
instruction.

• Detect concurrency of data base access using "test and set" instructions at
data base entry and exit.

• Keep a call-in-progress count that is incremented when your procedure is
called and decremented when it returns. The count is used as an index into
separate allocated areas.

• Disable AST interrupts upon entry and restore the enable state on exit.

The following sections describe these methods.

6.3.1 Performing all Accesses In One Instruction

For some applications, all data modification in static storage can be per­
formed in a single uninterruptable instruction. For example, you can use
queue instructions at the beginning and end of your procedure to control
resource allocation.

The remove queue instruction removes a control block (containing an instance
of a process-wide resource) from the free list of available resources, making
the resource available to the program. The insert queue instruction places the
control block back in the free list when the program no longer needs the
resource.

The queue headers are allocated in static storage. The control blocks them­
selves can be in static storage (if a specific number of resources are needed) or
in dynamic heap storage (if a variable number of resources are needed).

For example, STR$COPY allocates and deallocates string space in heap stor­
age. A fixed number of queue headers are allocated in static storage - one
queue for each string length.

6-4 Coding Modular AST-Reentrant Procedures

The following example illustrates an AST-reentrant procedure that uses
queue instructions to control allocation of quadword blocks:

FLAG:
Q_HED

TRY:

10$:

;+

.PSECT

.LONG

.LONG

.PSECT

.ENTRY
BBC
REMQUE
Bl.JS
RET

BSBB
BRB

_LIB-DATA PICtUSRtCONtRELtLCLtNOSHRtNOEXEtRDtWRT
0 ; First-time flas
OtO
_LIB-CODE PICtUSRtCONtRELtLCLtSHRtEXEtRDtNOWRT
LIB_GET _>{ t ···M< >
FLAGt FIRST Branch on 1st call onlY
@Q_HEDt RO RO = address of 9ueue
10$ Branch if eMPtY and fill

FILL
TRY

Fi 11 91.teues
Tn· asain

; Here on first call only

FIRST:

20$:

FILL:

$SETAST
BBSS
MDI.JAL
MOl.IAL
BSBB
CMPL
BNEQ
$SETAST
BRB

#0
FLAGt 20$
Q_HED t Q_HED
Q_HED t Q_HED+ll
FILL
#SS$_WASSETt RO
TRY
#1
TRY

Disable ASTst RO=old settins
Branch if already set
Ma~\e 9ueue er11Pt}'
Bae~\ Pointer too
Fi 11 9ueues
Were ASTs enabled before?
Not lea1.ie disabledt retn·
Yest enable ASTs
Try asain

Set sPace for 10 9uadwords bY callins LIB$GET_l.IM
and insert in 9ueue usins INSQUE
RSB

NOTE

The above example could be recoded using REMQHI and
INSQHI and avoid the need to have a first time flag. This is
because an empty queue is represented as zero entries for the
interlocked, self-relative, queue instructions.

In some applications, the static storage is divided into two or more sections;
each section in a queue.

You can use a single queue instruction at the beginning of your procedure to
remove one section, and another can be used at the end to insert the section
back in the queue.

While a section is removed from the queue, your procedure can modify data in
it. If an AST-interrupt occurs while the section is removed, a different section
of data is used instead, thus avoiding conflicts with the interrupted procedure.

6.3.2 Using "Test and Set" Instructions

To detect concurrent access of static storage at both AST and non-AST levels,
you should add the following steps to your procedures:

• Place a branch on bit set and then set instruction BBSS immediately before
each of your procedures accesses static storage.

Coding Modular AST-Reentrant Procedures 6-5

• Access and/or modify static storage.

• Place a branch on bit clear and then clear instruction BBCC immediately
after each of your procedures has completed access to static storage.

The BBSS instruction detects that concurrency is about to take place before
static storage has been accessed. There are two alternate techniques for re­
solving concurrency conflicts detected by the BBSS and BBCC instructions:

• Use separate, statically allocated areas at the AST and non-AST levels.
When the BBSS instruction detects concurrency at the beginning, use the
second allocated area. Note that this technique does not work if an excep­
tion condition occurs between execution of the BBSS instruction and the
BBCC instruction or if your procedure has not established a condition han­
dler. This is because a condition handler established by the calling program
might also simultaneously call your procedure.

• Reexecute your procedure if concurrency is detected at the end. When the
BBCC instruction detects this concurrency, branch back to the beginning of
your procedure and try again.

The following example illustrates the latter technique. This MACRO proce­
dure, LIB_GET -1NUM, allocates and deallocates identifying numbers:

• TITLE
TAB:

1 (1$:

20$:

LIB_GET_INUM - Allocate and deallocate id. nos • 1 - 1 (I
.WORD (I BitMaP for f lass
.ENTRY LIB_GET_INUMt ~M<>

FFC #1 t #10tTABt RO
BEQ 20$
BBSS RO t TAB t 10$
MOVL ROt @Q<AP>
MQl,IL # 1 t RO
RET
CLRL
CLRL
RET
.END

@Q(AP)
RO

Find first free idt no.
Branch if none free
Indicate id. no. in
Return id. no. found
Indicate success

Return 0
Indicate failure

use

6.3.3 Keeping a Call-In-Progress Count

If the data base is to be kept separate between each call, you can keep track of
when your procedure is called by using a call-in-progress count. Before data
base access, the count is incremented and used to index into a table of ad­
dresses for the separate data bases. You should check for a count that exceeds
the table length. After the data base has been accessed, the count is
decremented.

This technique has an advantage over the BBxx technique because it can
handle more than two levels of reentrance. However, it is less reliable, since
an exception can cause the count never to be decremented, leading to an
eventual procedure malfunction. You can avoid this by establishing a condi­
tion handler in your procedure.

6-6 Coding Modular AST-Reentrant Procedures

6.3.4 Dlsabllng AST Interrupts

Sometimes the only way to avoid race conditions is to disable AST interrupts
during the access to static storage and restore the state of the AST enable at
the end. However, this technique could adversely affect performance of real­
time programs using AST interrupts. Therefore, you should avoid it whenever
you can use any technique described in Sections 6.3.1 to 6.3.3.

Try to minimize the number of instructions during which the AST interrupts
are disabled. Before disabling AST interrupts, establish a condition handler
to restore the AST level in case an exception or stack unwind occurs.

The following BLISS example disables ASTs and then restores the state of the
enable before returning to its caller:

GLOBAL

!+

STR$$l)_ IN IT INITIAL ((I)

BEGIN
LOCAL

AST_STATUS;

! Disable ASTs so we can test STR$$V_INIT. We Must not PerMit an
! AST after We start to initialize the queues.
!-

!+

AST_STATUS = $SETAST<ENBFLG = 0)
IF <NOT .STR$$V_INIT)
THEN

BEGIN

! We Must do the initialization.
!-

!+
! Mark the initialization as COMPiete.
!-

!+

BLOCK [8TR$$lLINIT ,o ,o d ,(I] = 1;
END;

! If ASTs were enabled when we entered, re-enable theM.
!-

IF <.AST_STATUS EQL SS$_WASSET) THEN $SETAST <ENBFLG 1);
RETURN;
END;

6.4 Performing 1/0 at the AST Level

If your procedure performs I/O using VAX-11 RMS system services, there are
several coding techniques you must observe for your procedure to be
AST-reentrant:

• When opening process permanent files such as SYS$INPUT,
SYS$0UTPUT, SYS$COMMAND, or SYS$ERROR, check for the VAX-11

Coding Modular AST-Reentrant Procedures 6-7

RMS error status RMS$_ACT (Active) after each $CREATE or $OPEN
service. This error. indicates that a record operation had already started for
the process permanent file. It does not occur for nonprocess permanent files,
and the open service follows the constraints of shared access to the file that
may have been imposed by a previous open service. If the error occurs,
perform a $WAIT using the same file access block (FAB). When control
returns to your procedure, try the $CREATE or $OPEN service again. Re­
peat this sequence until it succeeds.

• When performing record I/0 to any type of file, check for the RMS error
status RMS$_RSA (record stream active) after each $GET and $PUT
service. This error indicates that a record operation had already been
started for the file. H the error occurs, perform a $WAIT using the same
record block (RAB). When control returns to your procedure, try the $GET
or $PUT service again. Repeat this procedure until it succeeds.

The BASIC and FORTRAN VO support procedures use this technique to
perform VO at AST and non-AST level. The V AXNMS Put Message
system service ($PUTMSG) also uses this technique so an error message
signaled at AST level will be output on SYS$0UTPUT even though the
non-AST level is also calling $PUT.

• Avoid storing data in a record access block (RAB) that VAX-11 RMS could
still be accessing. Your procedure can do this in two ways:

- Allocating the RAB on the stack so AST and non-AST level have sepa­
rate RABs.

- Allocating the RAB in static storage along with a busy bit. The busy bit
is tested and set using a BBSS instruction before the RAB is accessed. If
the RAB is already busy, your procedure executes a $WAIT using that
RAB.

For synchronous I/0 (that is always completed before returning control to
your procedure) you can use either of the techniques previously described.
However, the first is more reliable, since it has no static storage and hence
cannot behave erroneously if an exception were signaled.

For asynchronous VO (when control is returned to your procedure before 1/0 is
completed), you must use the second technique.

6-.8 Coding Modular AST-Reentrant Procedures

Chapter 7
Building Modular Procedure Libraries

Modular procedure libraries consist of compiled and assembled object code
associated with a calling program at link time. References to procedures in
these libraries are resolved when the linker searches the user libraries speci­
fied in the LINK command or the default system libraries. The program can
then call library procedures at run time.

You can create a modular procedure library by following the guidelines of this
chapter. You can place procedures in either an object module library or a
sharable image. Before starting, make sure the modular procedures conform
to the rules listed in Appendix A.

7 .1 Building the Default System Object Library

You can also place procedures in the default system object library
STARLET.OLE. However, you must have the privileges of a system manager
to do this.

7 .1.1 Adding to the System Default Object Library

With the privileges of the system manager, you can use the following com­
mand to add procedures to STARLET.OLB. The general form is:

$LIBRARY/REPLACE SYS$LIBRARY:STARLET file-spec[, ...]

To use any of the LIBRARY command qualifiers with this command, see the
VAX/VMS Command Language User's Guide.

Figure 7-1 shows the installation of a user-created procedure in
STARLET.OLB. In this example, LIB_CONV_TIM is a sample procedure
that converts system time to a specific format and is contained in a module
LIBCONVTl.OBJ. The following command adds the module to the system
default library STARLET.OLE:

$ LIBRARY/REPLACE SYS$LIBRARY:STARLET.OLB LIBCONVTI

7-1

After this command, the updated STARLET.OLB contains the new proce­
dure LIB_CONV--.TIM.

Figure 7-1: Adding a User-Created Procedure to the Default Object
Library

STARLET.OLB

DEFAULT OBJECT
LIBRARY

(CURRENT VERSION)

LIB_CONV_ TIM

LIBCONVTl.OBJ

ENTRY POINT

LIBRARIAN

STARLET.OLB

UPDATED
DEFAULT OBJECT

LIBRARY

ANY NEW
USER-CR EA TED

OBJECT MODULE

7 .1.2 Accessing the Default System Object Library

Accessing procedures in STARLET.OLB requires no special LINK command.
STARLET.OLB is automatically searched during any LINK command after
the default system sharable image is searched, and if any unresolved strong
references remain. If references are found in STARLET.OLB, the linker in­
cludes the modules containing the references in the executable image.

The linker can be instructed not to search the system default libraries by
using the following qualifiers in the LINK command:

/NOSYSLIB - System will not search STARLET.OLB or
VMSRTL.EXE.

/NOSYSSHR - System will not search the sharable subset of
STARLET.OLB, VMSRTL.EXE.

More detailed information on the LIBRARY and LINK commands is in the
VAX/VMS Command Language User's Guide.

7-2 Building Modular Procedure Libraries

7 .2 Building a User-Created Object Module Library

GRAPHICS
LIBRARY

PROCEDURl:

GRA_SPHERE

A user-created object module library consists of procedures you write in any
VAX-supported programming language.

You can create an object library from object files using the LIBRARY com­
mand. Figure 7-2 shows the development of a theoretical user-created library
of graphics procedures, called GRAPHICS.

Figure 7-2:

GRAPHICS
LIBRARY

PROCEDURE

GRA_OBLSPH

GRAPHICS LIBRARY
MODULE

Development of a User-Created Object Module Library

GRAPHICS GRAPHICS
LIBRARY LIBRARY

PROCEDURE PROCEDURE

G RA_SPH_SEC GRA_CUBE

GRAPHICS LIBRARY
MODULE

GRACUBE.OBJ

LIBRARIAN

GRAPHICS.OLB

NON
MODULAR -- PROCEDURE
USED BY

GRA_CUBE

GRAPHICS
LIBRARY

PROCEDURE

GRA_CONE

GRAPHICS LIBRARY
MODULE

GRACONE.OBJ

$LIBRARY/CREATE GRAPHICS GRASPHERE,
GRACUBE, GRACONE

The library facility code used is GRA. The modular procedures envisioned
produce mathematical representations of circles, cylinders, squares, and other
geometric shapes. For example, the module GRASPHERE.OBJ might con­
tain several related procedures that create spheres (GRA_SPHERE), oblate
spheroids (GRA_OBL_SPH), and spherical sections (GRA_SPH_SEC)
grouped because they share similar code. The module GRACUBE.OBJ could
contain both a procedure that generates cube shapes and a nonmodular proce­
dure that it calls. (Note, however, that the module GRACUBE.OBJ is still
modular.)

The LIBRARY command for building a user-created object library has the
following general form:

$ LIBRARY /CREATE library-name file-spec[, ... J

Building Modular Procedure Libraries 7-3

The following example shows the creation of the user-created object library
GRAPHICS.OLB that contains the modules GRASPHERE.OBJ and
GRACUBE.OBJ. (.OBJ and .OLB are the default file types for object mod­
ules and object libraries, respectively, and are included here for clarity only.)

$LIBRARY/CREATE GRAPHICS.OL6 GRASPHERE.OBJtGRACU6E.OBJ

After this command is given, GRAPHICS is ready to be linked with an appli­
cation program.

7 .2.1 Accessing a User-Created Object Library

You can include library modules in the calling program's executable image
either implicitly or explicitly:

• The /LIBRARY qualifier causes the linker to search the library specified
and implicitly includes modules containing definitions of symbols to which
there are outstanding references.

• The /INCLUDE qualifier simplifies the linker's search since it instructs the
linker to explicitly include a specified module in the image.

• Default User-defined libraries.

Any object library specified in an application program's LINK command is
linked to that program if references to procedures in that library are encoun­
tered. A simple form of the LINK command is:

$ LINK application-program, user-created-library/LIBRARY

Any module in an object module library explicitly specified in an application
program's LINK command is included in the executable image being created.
A simple form is:

$LINK application-program, user-library/INCLUDE = (object-module, ...)

7.3 Building a User-Created Sharable Image

Placing procedures in a sharable image can reduce memory requirements and
improve system performance if a number of application programs share the
same set of procedures. However, the entire sharable image must be rebuilt
any time a modification is made to it.

A sharable image can be built from either position-independent or nonposi­
tion-independent code.

The linker and image activator treat sharable images as follows:

1. The linker allocates position-dependent sharable images.

2. Position-independent sharable images are allocated and at higher
addresses.

7-4 Building Modular Procedure Libraries

Therefore, the size of each sharable image section must remain identical from
one update to the next unless it is the last sharable image in the PO address
space; in this case, it is free to grow.

7 .3.1 Creating Sharable Images

•BASIC

You can create a sharable image containing BASIC procedures. BASIC
generates position-independent code, except for arrays in Common (COM)
which are passed as parameters to other procedures or built-in functions. An
array descriptor so generated is not position-independent.

- If new versions of the image are larger than old versions, rebuilding
sharable images requires relinking all programs bound with the old one.

- If a user-created sharable image has VMSRTL.EXE linked to it at crea­
tion, and you specify that user image last, you can install a new version
of VMSRTL.EXE without relinking.

- Transfer vectors can be used with BASIC-sharable libraries if all images
are approximately the same size and padded with extra space between
them. Transfer vectors let a sharable image be relinked without relinking
all programs that called the old version.

•FORTRAN

You can create a sharable image containing FORTRAN procedures. How­
ever, because FORTRAN data PSECTS are not position-independent,
FORTRAN procedures are also not position-independent. Therefore
FORTRAN sharable images have the following restrictions:

- To use multiple, sharable, nonposition-independent images, the address
space must be manually assigned to each image.

- If new versions of the image are larger than old versions, rebuilding
sharable images requires relinking all programs bound with the old one.

- If a user-created sharable image has VMSRTL.EXE linked to it at crea­
tion, and you specify that user image last, you can install a new version
of VMSRTL.EXE without relinking.

- Transfer vectors can be used with FORTRAN-sharable libraries if all
images are approximately .the same size and padded with extra space
between them. Transfer vectors let a sharable image be relinked without
relinking all programs that called the old version.

•PASCAL

You can create a sharable image containing PASCAL procedures because
PASCAL generates position-independent code. (See the VAX-11 PASCAL
Language Ref ere nee Manual.)

Building Modular Procedure Libraries 7-5

7 .3.2 Bulldlng and lnstalllng a User-Created Sharable Image

Figure 7-3 shows the transformation of the user-created library GRAPHICS
from an object module library to a sharable image. To do this, you must
create a command procedure (MAKESHAR.COM in Figure 7-3) to build the
sharable image. For example:

$ LINK/SHAREABLE=GRAPHICS/MAP/FULL-
GRAPH I CS/ INCLUDE= (GR A_ SPHERE t •••) t MAKES HAR /OPT IONS

where:

• /SHAREABLE instructs the linker to build a sharable image called
GRAPHICS.EXE.

• /MAP/FULL produces a detailed map of the image in (default)
GRAPHICS.MAP.

• /INCLUDE specifies the list of objects to be taken from GRAPHICS.OLB
for inclusion in this sharable image.

• MAKESHAR.OPT is an optional input file that provides additional infor­
mation to the linker. Such information controls memory allocation and
symbol tables. (See the VAX-11 Linker Reference Manual.)

You can optionally install your sharable image as a permanent global section.
To do this, refer to the VAX/VMS System Manager's Guide.

Figure 7-3: Creating a Sharable Image

Library of {
Concatenated
Object Modules
Intended For
Sharing

USER-CREATED
OBJECT MODULE

LIBRARY

GRAPHICS.MAP

MAKESHAR.COM

LINKER

USER-CREATED
SHARABLE IMAGE

7-6 Building Modular Procedure Libraries

I Command Procedure
Containing $LINK Command

I
Optional Options File
To Control:

• Memory Allocation
• Universal Symbols

7 .3.3 Accessing a User-Created Sharable Image

You cannot run sharable images. They are incorporated in applications pro­
grams in a subsequent LINK operation. Figure 7-4 shows how an application
program CARTOON .FOR might access the user-created sharable image
GRAPHICS.EXE. To access a user-created sharable image, you must perform
the following steps:

1. Create an OPTIONS file to specify the sharable image as an input to the
linker. With this specification, it is also possible to request the linker to
take a private copy of the content of the sharable image. Normally, during
the linking of a sharable image into a user application program, the linker
merely creates mapping information.

In this example, the file NOWSHARE.OPT would contain:

GRAPHICS.EXE/SHAREABLE(=COPYJ

2. Link an application program with the user-created sharable image usi.ng
the following command:

$ LINK application-program, options-file/OPTIONS

which in this example would be:

$ LINK CARTOON. OBJ tNOWSHARE. OPT /OPTIONS

This command produces CARTOON .EXE, the application program's exe­
cutable image that can call GRAPHICS.EXE at runtime. (Note that
.EXE, .OBJ, and .OPT are the default file types when /OPTIONS is used,
and are included here for clarity only.)

Figure 7-4: Accessing a User-Created Sharable Image

APPLICATION
PROGRAM

CARTOON.OBJ

CARTOON.MAP~r-~~~--t

USER-CREATED
SHARABLE IMAGE

LINKER

.....__ _ ___._ CARTOON.EXE

NOWSHARE.OPT

Building Modular Procedure Libraries 7-7

7 .4 Creating and Using Transfer Vectors

A transfer vector is a labeled virtual memory location that contains an ad­
dress of, or a displacement to, a second location in virtual memory. This
second location is the start of the instruction stream that is of actual interest.
In the use of sharable images, transfer vectors are normally displacements
rather than actual virtual addresses (for reasons of position independence).
There are two reasons for doing this:

• Transfer vectors make it easy to modify and enhance the contents of the
sharable image.

• Transfer vectors let you avoid relinking other programs bound to the shara­
ble image.

7 .4.1 Bulldlng Transfer Vectors

Transfer vectors must be written in MACRO; however, they can be used with
procedures written in any language. The CALLS or CALLG instruction trans­
fer vector has the form:

.TRANSFER fac_SYMbol

.MASK fac_SYMbol
JMP fac_SYMbol+2

Besin transfer vector to librarY
entry Pointt fac_sYMbol
Store resister save Mask
Branch to routine at instruction
beyond the resister save Mask

The JSB instruction transfer vector has the form:

+TRANSFER fac_SYMbol::
JMP fac_sYMbol ; Branch to JSB routine

In these examples, fac_symbol is the procedure's entry point name. For more
information on how transfer vectors work, see the VAX-11 Linker Reference
Manual.

7 .4.2 Using Transfer Vectors

The linker automatically uses transfer vectors if they are present. Regardless
of the procedures' languages, code the transfer vectors as shown in Section
7.4.1. Then assemble the program containing the transfer vectors. The result­
ing object module is used as input to the Linker. For example, the sharable
image GRAPHICS, shown in Section 7 .3.2, might be produced with the fol­
lowing command:

$ LINK/SHAREABLE=GRAPHICS/MAP/FULL TRANSVECt­
GRA PH I CS I INCLUDE=< •• •) , MAK ES HARE I 0 PT IONS

where TRANSVEC is the object module containing transfer vectors to all
routines in the sharable image.

More detailed information about transfer vectors is in the V AX-11 Linker
Reference Manual.

7-8 Building Modular Procedure Libraries

Appendix A
VAX-11 Modular Programming Standard

4 Jan 80 - Version 2.0

This appendix is the VAX-11 standard for writing modular procedures in any
language, including MACRO and BLISS. This standard is the minimum nec­
essary to interface your software at the callable procedure level with software
written by others, and vice versa.

The standard contains required, optional, and recommended elements. Op­
tional elements are indicated by asterisks (*) . Non-conformance to optional
elements must be indicated in the procedure's documentation. Recommenda­
tions are described in Section A-7. Non-conformance to recommendations
need not be documented since modularity is not affected. Each element of the
standard is described in greater detail in other sections of this manual, indi­
cated by parenthesized references.

Most of this standard was derived by asking: "What general agreements are
necessary between programmers to permit procedures to execute as expected
when combined in arbitrary ways to form a program?"

This means that a procedure not following this standard could cause another
modular procedure in the program image to execute incorrectly, or vice versa.

The arbitrary ways of combining procedures are:

• Your procedure calls other procedures.

• Other procedures call your procedure.

• A calling 'program calls either of the above.

Therefore, any modular procedure can be added to a collection of modular
procedures without conflicting with them or those that might be added in the
future.

A-1

A.1 Scope of Appllcablllty

The required, optional, and recommended elements of this standard apply to
library procedures and are recommended for other types of software, including
utilities and application programs. Each programming language implemented
on VAX lets you write your procedures to explicitly or implicitly follow the
required elements of the standard for important language features. Therefore,
compiler generated code for main programs and externally available su­
broutines and functions let you follow required elements of the standard.
Furthermore, the language support procedures conform to the required, op­
tional, and recommended elements, except as noted in Section A.3.

This standard applies to procedures that interface to a calling program; it
does not apply to intra-module or inter-module calls that do not interface to
the calling program as long as the entire set of procedures follows the
standard.

A.2 Faclllty-lndependent Part of the Standard

The following required and optional elements of the standard pertain to all
facilities, whether in a library or not:

1. Calls to procedures follow the VAX-11 Procedure Calling Standard. (See
Appendix C of the VAX-11 Run-Time Library Reference Manual.) Some
elements of this standard restrict procedures to a subset of the VAX-11
Procedure Calling Standard to increase the ability for procedures to call
one another.

2. A procedure does not accept data from or return data to the calling pro­
gram using implicit overlaid PSECTs (COMMON in BASIC and
FORTRAN, program or module level data in PASCAL) or implicit global
data areas. Instead, all parameters accepted from or returned to the call­
ing program use the argument list and function value registers (RO and
RO/Rl). (See Section 2.4.1 and the VAX-11 Procedure Calling Standard.)

3. Modules must be relocatable. (See Section 4.2.1.)

4. Procedure entry point names contain at most 15 characters having the
following forms: fac$name for DIGITAL-supplied procedures, and
fac_name for user-supplied procedures, where fac can be LIB, MTH,
OTS, STR, BLI, BAS, COB, FOR, PAS, or any other language abbrevia­
tion (and file type) or facility name.

Global entry point names not intended for use by the calling program have
two dollar signs($$) or three underlines(___), respectively. The three
underlines are needed to avoid conflict with user-defined condition value
symbols that have two underlines. If alternate JSB entry points are pro­
vided, the name ends in _Rn (or just n if name would exceed 15 charac­
ters), where n indicates the highest register modified or used as an input
parameter.

A-2 V AX-11 Modular Programming Standard

NOTE

The limit of 15 characters will be increased to 31 after all
VAX-supported language processors provide 31-character
symbols and module names.

5. Generally each module contains a single procedure available to a calling
program. This permits the greatest flexibility in linking procedures to
form programs. Procedures can be grouped into a single module if they:
(1) share the same static storage or (2) have a similar calling sequence,
perform similar functions, and share a significant amount of code. (See
Section 4.1.2.)

6. The form for module names is the same as that for procedure entry point
names to avoid conflict when inserted into a library by the LIBRARY
command. Modules containing one procedure have the same name as that
procedure. Modules containing more than one procedure have a name
formed from a combination or common subset of the entry point names.
(See Section 4.2.2.)

7. Position-independent references (in a module) to writable data PSECTs
use longword relative addressing. This is done so the VAX-11 Linker can
correctly allocate the data PSECT anywhere with respect to the
code PSECT no matter how many code modules are included. (See
Section 4.2.3.)

8. External references use general-mode addressing so any of the referenced
procedures can be put in a sharable image without requiring changes to
the calling program.

9. A procedure does not print error or informational messages either directly
or by calling the $PUTMSG system service. Instead, it either returns a
condition value in RO as a function value, or calls LIB$SIGNAL or
LIB$STOP, directly or indirectly, to output all messages. (See
Sections 5.2, 5.3, and A.3.)

10. If an error condition associated with a file is signaled, the expanded or
resultant file name is included as one of the FAQ arguments in the signal
argument list. (See Section 5.3.)

11. If a procedure requires initialization once for each image activation, it is
done without the caller's knowledge by: (1) initializing at compile time or
(2) initializing at link time or (3) testing and setting a statically allocated
first-time flag on each call or (4) adding a dispatch address to PSECT
LIB$INITIALIZE. (See Section 4.3.)

Using LIB$INITIALIZE is not recommended since your procedure cannot
be placed in a sharable image. Furthermore, a procedure must not use
LIB$INITIALIZE to establish a condition handler before the main pro­
gram is called if its action might conflict with that of other condition
handlers established before the main program.

VAX-11 Modular Programming Standard A-3

12. If a procedure uses a process-wide resource, it calls the appropriate
resource allocating library procedure or system service to allocate the re­
source to avoid conflict with allocations made to other procedures. To
conserve resources, a procedure that requests resource allocation:

• Calls the deallocation procedure before returning to the calling program,
or

• Remembers the allocation in static storage and calls the deallocation
procedure later, or

• Passes the responsibility for deallocation back to the calling program, or

• Allocates a fixed number of the resources independent of the number of
times it is called

There are currently resource allocating and deallocating library proce­
dures for:

• Virtual memory in the program region

• BASIC/FORTRAN logical unit numbers

• Process-local event flags

• Dynamic string memory

(See Section 4.4 in this manual and Chapter 5 of the VAX-11 Run-Time
Library Reference Manual.)

13. For each input and output string parameter (or string function value) the
calling program either: (1) allocates a descriptor, or (2) passes along the
address of a descriptor that had been passed to it. A procedure accesses a
formal string parameter passed to it by:

• Accessing the string's descriptor indirectly using the argument pointer
(AP), or

• Copying the address of the string descriptor, or

• Copying the entire descriptor and changing the descriptor class code (in
the copy only) to be fixed length (DSC$B_CLASS = 1), since there can
only be one dynamic string descriptor per string (least preferred)

NOTE

The term "formal parameter" refers to the parameter's
name as it is known to the called procedure, as opposed to
either its actual value or its name as it is known to the
calling program.

The two semantics for writing formal string parameters are:

• Fixed-length string semantics: The formal string is written with space
filling or truncation on the right using the starting address and length

A-4 VAX-11 Modular Programming Standard

specified in the descriptor passed by the calling program. Thus, the
entire area described by the string is written. The descriptor is not
modified.

• Dynamic string semantics: The formal string is either written by passing
the address of the formal string descriptor and the string to be copied to

- STR$COPY_DX,
- STR$COPY_R,
- LIB$SCOPY_DXDX,
- LIB$SCOPY__R_DX,
- OTS$SCOPY_DXDX,
- OTS$SCOPY__R_DX,

or allocated by calling

- STR$GET1_DX,
- LIB$SGET1_DD,
- or OTS$SGET1_DD

and written in pieces. Only the length and address of the descriptor is
modified by any of the preceding dynamic string resource allocation
procedures.

The two methods that you can choose for a procedure's interface specifica­
tion to return a string as an output string parameter (or function value)
are:

• Use fixed-length semantics (regardless of the class code in the descriptor
passed by the calling program).

• Use the semantics indicated in the descriptor passed by the calling
program. If DSC$B_CLASS contains DSC$K_CLASS_S=l or
DSC$K_CLASS_Z=0, use fixed-length string semantics. In contrast,
if D8C$B_CLASS contains DSC$K_CLASS_D=2, use dynamic
string semantics. (preferred)

With either semantics, a procedure also provides an optional, unsigned
word output that indicates the length of the string in bytes, not including
any space filling. If the string is truncated, the returned length reflects the
truncation. Thus, the output parameter can always be used by the calling
program to extract the significant data. (See Section 4.5.)

14. A procedure cannot require its caller to pass a dynamic string descriptor.
(See Section 4.5.)

15. Some procedure interface specifications retain state information from one
call to the next, even though the procedures are not resource allocating.
The interface specification uses one of the following techniques to permit
sequences of calls from independent parts of a program. These techniques
either eliminate the use of static storage or overcome its limitations (in
order of decreasing preference) :

• The interface specification consists of a sequence of calls to a set of one
or more procedures - the first procedure allocates and returns (as an

VAX-11 Modular Programming Standard A-5

output parameter to the calling program): (1) the address of heap stor­
age or (2) some other process-wide identifying value. This parameter is
passed to the other procedures explicitly by the calling program, and the
last procedure deallocates any heap storage or process-wide identifying
value. (See Sections 2.5.3.2, 2.5.3.3, and 3.3.1.)

• The procedure's caller allocates all storage and passes the address on
each call. (See Sections 2.5.3.1 and 3.3.2.) ·

• The interface specification consists of a single call, where the calling
program passes the address of one or more action routines and argu­
ments to be passed to them. The procedure calls the action routine(s)
during its execution. Results are retained by the procedure across calls
to the action routine(s). (No static storage used. See Section 2.5.2.)

• The interface specification consists of a sequence of calls to a set of one
or more procedures. The first procedure, among other things,saves the
contents of any still active static storage on a push down stack in heap
storage, and the last procedure, among other things, restores the old
contents of static storage. Thus, static storage is made available for
implicit parameters to be passed from one procedure to the next in the
sequence of calls (unknown to the calling program). However, if
an exception can occur anywhere in the sequence, the calling program
must establish a condition handler that calls the last procedure in the event
of a stack unwind (to restore the old contents of static storage). (See
Section 3.3.3.)

16. A procedure does not assume that the implicit outputs of procedures that
it calls will remain unchanged if subsequently used as implicit inputs to
those procedures or companion procedures. For example, your procedures
cannot call SYS$CNTREG to contract the program region by the amount
expanded previously by a call to SYS$EXPREG, since an intervening call
to SYS$EXPREG might have been made by another procedure. Simi­
larly, your procedure cannot make two calls to SYS$EXPREG and expect
to have the second program region expansion allocated contiguously to the
first. (See Sections 2.4.2 and 4.6.8)

17. * A procedure executes in any V AX-11 access mode and at any address.
(You should not assume that address bit 31 is always 0.)

18. * A procedure does not depend on AST interrupts being enabled to exe­
cute correctly if there are other coding methods available. Therefore when
doing synchronous VAX-11 RMS 1/0, RMS completion routines are not
used. (See Section 4.6.12.)

19. A procedure provides an interface to its callers that allows the callers to
follow all required elements of this standard.

20. A procedure does not call other procedures or system services if the
resulting combination violates this standard from the calling program's
viewpoint. A procedure can call other procedures or system services that
do not follow optional elements of this standard. However, if the resulting

A-6 VAX-11 Modular Programming Standard

combination (as seen from the calling program) does not follow the op­
tional elements, the calling procedure must indicate such non-confor­
mance in its documentation. (See Section 4.6.)

21. A procedure makes no assumptions about its environment other than
those of this standard. In particular, to operate as specified, a procedure
neither makes assumptions about nor places requirements on the so-called
main program.

A.3 Faclllty-Speclflc Part of the Standard

The following elements apply to procedures that are part of a specific library
facility. The following facility names represent library facilities:

LIB
MTH
STR
OTS
BAS
FOR
PAS

General Utility and Resource Allocation Procedures
Mathematics Procedures
String Procedures
Language-independent Support Procedures
BASIC-specific Support Procedures
FORTRAN-specific Support Procedures
PASCAL-specific Support Procedures

22. For MACRO procedures, the PSECT declarations for library c·ode and
data, respectively, are:

+PSECT _fac$CODE PICtUSRtCONtRELtLCLtSHRtEXEtRDtNOWRT

.PSECT _fac$DATA PICtUSR,CONtRELtLCLtNOSHRtNOEXEtRDtWRT

For BLISS procedures, the code and PUT declaration is:

_ f ac$CODE READ, NOWR ITE, E}<ECUTE, SHARE, PI C, CONCATENATE,
ADDRESSING_MODE <GENERAL>

and the OWN and GLOBAL (not available to caller) is:

_fac$DATA READt WRITE, NOEXECUTEt NOSHAREt PICt CONCATENATE,
ADDRESSING-MODE <LONG_RELATIVE>

The linker sorts the leading underline last so library modules cannot cause
truncation errors due to byte or word displacement addressing performed
by the user program.

NOTE

For user PSECTS, replace "$" with "-" in the preceding
specifications; (see Section 4.2.3).

23. A procedure's caller, at its option, can indicate omitted trailing optional
parameters either by passing argument list entries that contain zero or by
passing a shortened argument list.

24. When a new version of a procedure replaces an existing library procedure,
all added parameters are made optional to maintain upward compatibil­
ity. (See Section 2.3.4.)

VAX-11 Modular Programming Standard A-7

General Utility Procedures (LIB)

25. LIB procedures follow the facility-independent part of this standard
described in Section A.2.

26. LIB procedures pass arrays and strings by descriptor and input scalars by
reference. LIB procedures can pass parameters by immediate value if the
procedure provides a service for BLISS and MACRO programmers that is
generally supplied as part of higher-level languages. For output string
parameters (and string function values), LIB procedures use the seman­
tics indicated in the descriptor passed by the calling program and return
the string length as an optional output parameter. (See element 13 and
Sections 2.3.2, 2.3.3, and 4.5.)

27. * The storage for input and output parameters can overlap at the option
of the calling program. Therefore, a procedure is programmed to behave
the same regardless of whether there is overlap.

28. LIB procedures return error conditions to the caller using completion
codes returned in RO as a function value rather than signaling. The condi­
tion value SS$_NORMAL (value of 1) is returned to indicate unqualified
success. If LIB procedures call MTH, STR or other procedures that signal,
the LIB procedures set up a handler, such as LIB$SIG_TO_RET, to
convert any software signals to return status. (See Section 2.3.6 and
Chapter 5.)

Mathematical Procedures (MTH)

29. MTH procedures follow the facility-independent part of this standard
described in Section A.2.

30. MTH procedures pass input scalars by reference. (See Section 2.3.2.)

31. * The storage for input and output parameters can overlap at the option
of the calling program. Therefore, a procedure is programmed to behave
the same regardless of whether there is overlap.

32. MTH procedures signal errors since the function value (RO) is used to
return a mathematical value. (See Section 2.3.6 and Chapter 5.)

String Procedures (STR)

33. STR procedures signal those errors that are programming errors, such as
invalid descriptor, or environment errors that are very difficult to recover,
such as exhausting virtual memory. Remaining errors are returned as
function values.

Language-Independent Support Procedures (OTS)

34. Language-independent support procedures follow the higher-level,
language-specific support procedure elements of this standard. (See
elements 36-41.)

35. Language-independent support procedures return output string parame­
ters (and string function values) using the semantics indicated in
the descriptor passed by the calling program. (See element 13 and
Section 4.5.2.)

A-8 V AX-11 Modular Programming Standard

Higher-Level Language-Specific Support Procedures (BAS, FOR, PAS)

36. Higher-level language-specific support procedures are programmed so,
combined with the language-specific program unit, they follow the facil­
ity-independent part of this standard as seen from a program calling the
program unit, except where prevented by the semantics of a language
standard.

37. The standard CALL linkage is recommended, especially for large
procedures that perform significant computation. However, JSB and other
non-standard linkages can be used with no corresponding standard CALL
entry point, since most language-specific support routines are not in­
tended to be called explicitly by users. To ensure compatibility between
compiler generated code and JSB entry points, each JSB entry point
name ends in _Rn where n indicates the highest register modified or used
as an input parameter. To ensure that all registers will be correctly re­
stored when an unwind occurs, the compiler-generated code must save at
least R2 thru Rn in its entry mask and the JSB code support routines
cannot save, reference, or modify Rn+l thru Rll. (See Section 2.2.)

38. If a particular functional capability already exists in a LIB, MTH, OTS,
or STR facility, then those procedures should be called by other language­
specific procedures rather than implementing their own algorithms.

39. Higher-level language support procedures pass input scalars by immediate
value if they are 32 bits or less, input scalars by reference if they exceed 32
bits, output scalars by reference, input and output arrays by reference or
by descriptor, and input and output strings by descriptor. (See Sections
2.3.2 and 4.5.)

40. If a higher-level language statement does not indicate an error action, the
error is signaled. Otherwise, higher-level language support procedures re­
turn a completion code to the caller on an error, where a compiled code
check of RO would not be an excessive speed or space penalty. However,
when the penalty is excessive, the procedure can retain the error transfer
address in the first of a series of calls, and transfer directly to it on an error
after removing the stack frame. (See Section 2.3.6 and Chapter 5.)

41. For 1/0 errors that are signaled, the user PC is included as one of the FAQ
parameters so the user PC can be included in the message. Thus, the PC
can be included even if traceback is disabled. (See Section 5.4.)

A.4 * AST-Reentrant Procedures (Optional)

The following elements are required for all AST-reentrant procedures. To be
AST-reentrant, a procedure must execute correctly while allowing any proce­
dure (including itself) to be called between any two instructions. The other
procedure can be an AST-level procedure, a condition handler, or another
AST-reentrant procedure (see Chapter 6). A procedure that uses no static
storage and calls only AST-reentrant procedures is automatically AST-reen­
trant. (See element 15 for ways to eliminate the use of static storage.)

VAX-11 Modular Programming Standard A-9

42. * A procedure that uses static storage uses one of the following methods
(or equivalent) to be called from AST and non-AST levels (in order of
decreasing preference):

• Perform access and modification of the data base in a single uninter­
ruptable instruction. (See Section 6.3.1.)

• Detect concurrency of data base access with "test and set" instructions
at each access of the data base. (See Section 6~3.2.)

• Keep a call-in-progress count incremented upon entry to the procedure
and decremented upon return. The count is used as an index into sepa­
rately allocated areas. (See Section 6.3.3.)

• Disable AST interrupts on entry to the procedure and restore the state
of the AST enables on return. The procedure must also establish a
condition handler that restores the state of the AST enables in case an
exception condition or stack unwind occurs. Since this technique could
affect the real time response of the calling program, it must be docu­
mented if used. Furthermore, the length of time that ASTs are disabled
should be minimized. (See Section 6.3.4.)

43. * If a procedure performs I/0 from the AST level by calling V AX-11 RMS
$GET and $PUT system services, it must check for the record stream
active error status (RMS$_RSA). If the error is encountered, the proce­
dure issues the $WAIT system service and then retries the $GET or $PUT
system service. (See Section 6.4.)

A.5 * Sharable Images (Optional)
A procedure that adheres to the following elements can be included in a
sharable image at any time.

44. * A procedure's code is position-independent. All references to relocata­
ble data use PC relative addressing mode (n(PC)). All references to abso­
lute locations such as VMS System Service entry points, use absolute
addressing mode (@(PC)+). (See Section 1.2.9)

45. The data need not be position-independent. However, for improved per­
formance, data should be initialized to zero at compile or link time to
avoid either position-independent constants or position-dependent ad­
dresses. (See Section 4.3.1.)

46. A procedure cannot use LIB$INITIALIZE to initialize data, since a shara­
ble image cannot make a PSECT contribution to a user program at link
time. (See Section 4.3.4.)

A.6 * Upwards Compatible Sharable Images (Optional)

To be compatible with all future versions of the sharable image, sharable
image procedures follow these additional rules:

47. A procedure's entry points are vectored using a separate MACRO module
containing TRANSFER declarations. (See Section 7.4.)

A-10 VAX-11 Modular Programming Standard

48. A procedure's code and data is position-independent. Because VMS can
provide a demand-zero page when the page is first accessed, initializing
the data to zero is recommended.

A. 7 Modular Programming Recommendations (Optional)

The following elements are recommended in the hope that modular proce­
dures will be similar in form and format and thereby more usable by others.
These recommendations deal with matters of style. Therefore, nonconfor­
mance to them will not affect modularity and need not be documented.

49. The order of required parameters should be the same as that of the
VAX-11 hardware instructions, namely, read, modify, and write. Optional
parameters follow in the same order. However, (according to the V AX-11
Procedure Calling Standard) if a function value cannot be represented in
64 bits, the first parameter specifies where to store the function value, and
all other parameters are shifted one position to the right. (See Section
2.3.5.)

50. A procedure should not have static storage unless it: (1) is a process-wide,
resource-allocating procedure, or (2) must retain results for implicit inputs
on subsequent activations. Most of the techniques in element 15 avoid
static storage. If a procedure cannot eliminate static storage and does not
need to retain information from one procedure activation to the next, it
writes each static storage location before the first read access to it. (See
Section 2.5 and Chapter 3.)

51. If a procedure produces human-readable text and outputs it to a file or
device by default, it provides the caller with the option of specifying a
parameter that consists of an action routine to accept the text instead (see
Section 2.6). The procedure calls the action routine with each line of text
as a string containing a leading space (in case of FORTRAN carriage
control) and no ASCII CR, LF, VT, or FF. Thus, the string can be put in
three of the four types of record attribute files (CR, FTN, or PRN). The
string is passed by descriptor and should not exceed 80 characters so it can
be printed on most terminals. The action routine returns a condition value
that is either: success (the procedure continues), or failure (the procedure
stops further calls to the action routine). (See Sections 2.6 and 4.7.)

52. A procedure that allocates process-wide resources provides an entry
point that shows the state of the resource for debugging and performance
statistics). If such an entry point produces human readable output to a file
or device, it must also conform to element 51. (See Sections 2. 7, 4.4,
and 4.7.)

53. Timing procedures and resource allocation procedures should make statis­
tics available for performance evaluation and debugging. (See Section
2.7.) Such procedures should provide two entry points that accept an
input parameter code (1, ... ,n) indicating the desired statistic and return a

VAX-11 Modular Programming Standard A-11

completion status in RO:

fac$SHOW _name* * P~ovides formatted strings according to element
51. A zero input parameter code requests all
available statistics and can produce one or more
calls to the action routines, each of which passes a
single line. If the calling program does not supply
the optional action routine parameter, the
string(s) are output to SYS$0UTPUT.

fac$STAT _name * * Returns the binary value of the statistic you
want.

* * (User versions use_ instead of$)

54. The recommended format for prompt strh1gs is: an English word or words
followed by a colon(:), one space, and no CRLF. (RSX utilities use> with
no trailing spaces.)

55. Procedures should follow structured programming guidelines. This in­
cludes placing a minimum number of procedures - typically one - in a
module, and arranging procedures in levels of abstraction. Related proce­
dures, such as those that access the same static storage, should be in the
same module. (See Section 4.1.)

56. Procedures should be placed in a module that is documented with a mod­
ule description. Every procedure should be documented with a procedure
description. (See Section 2.8 for the template.)

57. File names should be identical to the first nine characters of the module
name, with$ and_ characters omitted. (See Section 4.2.2.)

58. When symbol definitions are to be coordinated between more than one
module, (such as control blocks, procedure parameter values, and comple­
tion status codes), the definitions should be centralized in one place. The
preferred method is for procedures to make external declarations to obtain
the symbolic value. Then, a source module can be compiled or assembled
independently from any other source files. When the use of external sym­
bols is not practical or possible, procedures should use these techniques
(see Section 4.2.4):

• MACRO:
• BLISS:
• BASIC:
• FORTRAN:
• PASCAL:

Macro Ii brary file
REQUIRE or LIBRARY file
APPEND file
INCLUDE file
INCLUDE file

59. Procedure name formats contain a verb followed by the object of
the action: for example, LIB$GET_VM and LIB$FREE_VM. (See
Section 2.2.)

60. JSB calling sequences should be avoided because they are not available to
most languages. When a procedure uses a JSB entry point, it should also
provide an equivalent CALL entry point.

A-12 VAX-11 Modular Programming Standard

61. Instructions and statements are upper-case, while comments are in upper­
and lower-case. A space follows every comma, semicolon, and exclamation
point. A space precedes a left parenthesis or square bracket (except in
MACRO), but not a left angle bracket. Block comments start in column 1
and have the following form (use ; or ! depending on the language):

;+
; Put one or more lines of block comment here

62. Use symbols rather than numbers in the body of the procedure. In
MACRO, procedures use numeric labels (n$) in logical blocks of code that
fit on the same listing page. (See Section 4.2.5.)

A.8 Change History

The following changes have been made to the VAX-11 Modular Programming
Standard from the previous version of the VAX-11 Guide to Creating Modu­
lar Library Procedures (AA-H500-A-TE, February 1979).

1. Added Element 5; when procedures can be grouped in a single module.

2. Added Element 10; error condition associated with a file.

3. Added new paragraph to Element 13; the optional, string length
parameter.

4. Expanded Element 21; a procedure and its environment.

5. Added Element 25; LIB$ procedures follow the facility-independent part
of this standard.

6. Moved Element 27 from Section A-2.

7. Expanded Element 28; error condition handling in LIB$ procedures.

8. Added Element 29; MTH$ procedures follow the facility-independent part
of this standard.

9. Moved Element 31 from Section A-2.

10. Added Element 33; error handling in STR$ procedures.

11. Added Element 36; high-level language-specific support procedures follow
the facility-independent part of this standard except where prevented by
individual language semantics.

12. Added Element 37; using JSB entry-points in high-level language-specific
support procedures.

13. Added Element 41; availability of the user PC when an 1/0 error is
signaled.

14. Expanded Element 51; SO-character limit on human-readable, output
text.

15. Expanded Element 62; using numeric labels in MACRO procedures.

VAX-11 Modular Programming Standard A;..13

Appendix B
Naming Conventions

The conventions described in this appendix were derived to aid implementors
in producing meaningful public names. Public names are all names known to
the linker ("global") in parameter or macro definition files.

Reasons for the public naming conventions include the following:

• Using reserved names ensures that customer-written software is not invali­
dated by subsequent releases of DIGITAL products which add new symbols.

• Using definite patterns for different uses lets you judge the type of object
being referenced. For example, the form of a macro name differs from that
of an offset, which differs from that of a status code.

• Using certain codes in a pattern associates the size of an object with its
name. This increases the likelihood that the reference uses the correct
instructions.

• Using a facility code in symbol .definitions gives the reader an indication of
where the symbol is defined. Separate groups of implementors can choose
facility codes names that do not conflict with one another.

Never define local synonyms for public symbols. You should use the full
public symbol in every reference to give maximum clarity to the reader.

B.1 Public Symbol Patterns

All DIGITAL public symbols contain a dollar sign. Thus, customers and
applications developers are strongly advised to use underscores instead of
dollar signs to avoid future conflicts.

Public symbols should be constructed to convey as much information as possi­
ble about the entity they name. These are used both in a module and globally
between modules of a facility. All names that might ever be bound into a
user's program must follow the rules for public names; for internal names, you
can use a double dollar sign convention. (See the following numbers 3 and 5.)
However, DIGITAL is free to change the interface of entities identified with
more than one dollar sign.

B-1

Public names are of the following forms:

1. Service macro names are of the form:

$macroname

A trailing _S or _A distinguishes the stack and separate arglist forms.
These names are in the system macro library and represent a call to one of
many facilities. The facility name usually is not in the macro name.

2. Facility-specific public macro names are of the form:

$facility _macroname

3. System macros using local symbols or macros always use those of the
form:

$facili ty$macroname

This is the form to be used both for symbols generated by a macro and
included in calls to it, and for internal macros that are not documented.

4. Status codes and condition values are of the form:

facility$_status

5. Global entry point names are of the form:

facility$entryname

Global entry point names intended for use only in a set of related proce­
dures (but not by any calling programs outside the set) are of the form:

facility$$entryname

6. Global entry point names that have nonstandard calls (JSB entry point
names) are of the form:

facility$entryname_Rn

where values in registers RO to Rn are not preserved. The caller of such an
entry point must include at least registers R2 through Rn in its own entry
mask so a stack unwind correctly restores all registers.

7. Global variable names are of the form:

facility$Gt_ variablename

The G stands for global variable, and the t represents the type of variable,
as defined in Section B.2.

8. Addressable global arrays use the A (instead of the G) and are of the form:

facility$At_arrayname

The A stands for global array, and t represents the type of array element,
as defined in Section B.2.

B-2 Naming Conventions

9. In the assembler, public structure offset names are of the form:

structure$t_fieldname

The t represents the data type of the field, as defined in Section B.2. The
value of the public symbol is the byte offset to the start of the field in the
structure.

10. In MACRO, public structure bit field offset and single bit names are of
the form:

structure$V _fieldname

The value of the public symbol is the bit offset from the start of the
containing field (not from the start of the control block).

11. In MACRO, public structure bit field size names are of the form:

structure$S_fieldname

The value of the public symbol is the number of bits in the field.

12. In BLISS, the functions of the symbols in the previous three items are
combined into a single name used to reference an arbitrary datum. Names
are of the form:

structure$x_fieldname

where xis T for standard-sized data and xis V for arbitrary and bit fields.
The macro includes the offset, position, size, and sign extension suitable
for use in a REF BLOCK structure. Typically, this name is definable as:

MACRO

or

FIELD

structure$V _fieldname =

structure$T _fieldname,
structure$V _fieldname, !assembler meaning
structure$S_fieldname,
<sign extension> %&;

structure$V _fieldname =
[structure$T _fieldname,
structure$V _fieldname,
structure$S_fieldname,
<sign extension> %&] ;

13. Public structure mask names are of the form:

structure$M_fieldname

The value of the public symbol is a mask with bits set for each bit in the
field. This mask is not right justified; it has structure$V _fieldname zero
bits on the right.

Naming Conventions B-3

14. Public structure constant value names are of the form:

structure$K_constantname

15. PSECT names are of the form:

facility$mnemonic

and when put in a library:

_facility$mnemonic

16. Module names are of the form:

facility$mnemonic

The module is stored in a file with file name "facilitymnemonic".

17. Public structure definition macro names are of the form:

$facility _structureDEF

Invoking this macro defines all the structure$xxx symbols.

Example of usage:

IOC$IODONE Entry point of the routine IODONE in the 1/0
subsystem.

UCB$B__FORK_pRJ Offset in the UCB structure to a byte datum contain­
ing the fork priority.

UCB$L_STATUS Offset in the UCB structure to a longword datum con­
taining status bits.

CRB$M-13USY

CRB$V-13USY

Mask pattern for the busy bit in the CRB structure.

Bit offset in the CRB structure of the busy bit.

B.2 Object Data Types

The following letters are used for data types or are reserved:

Letter Data Type or Usage

A address

B byte integer

c single character

D double precision floating

E reserved to DIGITAL

F single precision floating

G general value

H integer value for counters

I reserved for integer extensions

B-4 Naming Conventions

Letter

J

K

L

M

N

0

p

Q

R

s
T

u
v
w
x
y

z

Data Type or Usage

reserved to customers for escape to other codes

constant

longword integer

field mask

numeric string (all byte forms)

reserved to DEC as an escape to other codes

packed string

quadword integer

reserved for records (structure)

field size

text (character) string

smallest unit of addressable storage

field position (assembler); field reference (BLISS)

word integer

context dependent (generic)

context dependent (generic)

unspecified or non-standard

N, P, and T strings are typically variable-length. In structures or I/0 records,
they frequently contain a byte-sized digit or character count preceding the
string. If so, the location or offset is to the count. Counted strings cannot be
passed in CALLs; instead, a string descriptor is generated.

The letters A, C, G, H, and U should be used in preference to L, B, L, W, and
B when transportability is involved. This table defines their sizes:

Letter 16-bits 32-bits 36-bits

A 16 32 18
c 8 8 7
G 16 32 36
H 16 16 18
u 8 8 36

8.3 Facility Prefix Table

The following list shows some of the facility prefixes for DIGITAL-supplied
software. This list will grow as new facility prefixes are chosen. You should not
use a new code without registering it in a common place.

Condition
Prefix Facility (27:16)

BAS BASIC support 26

BLI BLISS transportable support 20

B32 BLISS-32 support 27

(continued on next page)

Naming Conventions B-5

B.3 Facility Prefix Table (Cont.)

Condition
Prefix Facility (27: 16)

COB COBOL support 25

FOR Fortran support 24

LIB General Utility 21

MTH Math 22

OTS Language independent (Object Time System) 23

PAS PASCAL support 33

RMS RMS internals and status codes 1

SORT VAX-11 SORT 28

SS System Service Status Codes 0

STR String 36

XPO BLISS transportable 32

Individual products such as compilers also get unique facility codes formed
from the product name. They must be signed out in the registry. You should
choose facility prefixes to avoid conflict with file types.

Structure name prefixes are typically local to a facility. Refer to the individ­
ual facility documentation for its structure name prefixes. This method does
not cause problems, since these names are not global and are therefore not
known to the Linker. They become known at assembly or compile time only
by explicitly invoking the macro defining the facility structure.

NOTE

DIGITAL does not provide a registration service for the cus­
tomer facility codes.

B-6 Naming Conventions

Appendix C
Notation for Describing Procedure Parameters

This appendix describes a language-independent notation for procedure
parameters, including the type of access, the data type, the parameter passing
mechanism, and the form of the parameter.

C.1 Routine Interface Types

To achieve the VAX-11 goal of being able to mix languages in a program, all
routines are designed with certain common attributes. The data types and
mechanism passing rules are designed to maximize the ability to interface to
routines. A common notation is used to express the specification of the
interface.

The access types, data types, mechanisms, and parameter forms are defined
in the VAX-11 Run-Time Library Reference Manual. In the design of a proce­
dure interface, the data types must be specified. Four other considerations are
also important:

1. Whether the routine follows the VAX-11 procedure calling standard.

2. Whether its scalar input parameters are by immediate value or by
reference.

3. How output strings are returned; this is discussed in the next paragraph.

4. Whether the routine has a function value and whether the value is a status
code or a scalar result.

In any given facility, it is generally preferable to have only one style of these
interface choices. Other combinations can be chosen, but the prospect of user
confusion must be weighed against the possible inefficiency of forced
consistency.

There are two string semantics for returning a string to a calling program as
an output parameter or a function value:

• Fixed-length string semantics: The called procedure writes the string start­
ing at the address specified in the descriptor and blank fills or truncates on
the right. It does not modify the contents of the descriptor.

C-1

• Dynamic string semantics: The called procedure allocates the string buffer
and places both the address and the length into the dynamic descriptor by
calling library dynamic string allocating procedures.

The calling program can always pass a fixed-length or dynamic string at its
option to any procedure.

There are two choices for the interface specification of a procedure:

• Return string using fixed-length semantics (notation _,wt.ds)

• Return string using either fixed-length or dynamic semantics as specified by
the caller in the descriptor (notation -· wt.dx)

The choice depends on the environmental assumptions made in procedure
design.

The most common combinations of interface specifications are given in the
following table.

The column "Passing Scalars" shows how scalars are passed. The column
"Output Strings" shows how output strings are returned. The column "Func­
tion Value" shows what kind of function value is returned.

Function
Type of Call Instruction Passing Scalars Output Strings Value

J (non-CALL) JSB in register - -

V (immed val) CALL AP by immed val length,descr .le

F (Function) CALL AP by reference none scalar

BASIC CALL AP by reference dynamic any

COBOL CALL AP by reference fixed any

FORTRAN CALL AP by reference fixed any

PASCAL CALL AP by reference byte array any

C.2 Notation for Describing Procedure Parameters

A concise, language-independent notation describes each procedure parame­
ter. The notation is a compatible extension to the one used in the VAX-11
Architecture Handbook.

The notation specifies for each parameter:

1. A mnemonic name

2. The type of access the procedure will make (read, write, ...)

3. The data type of the parameter (longword, floating, ...)

4. The argument passing mechanism (immediate value, reference,
descriptor)

5. The form of the parameter (scalar, array, ...)

C-2 Notation for Describing Prccedure Parameters

If a parameter is an address saved for later access by another procedure, the
notation should reflect the ultimate access made by the second procedure.

C.2.1 Procedure Parameter Characteristics

Subroutines are described as:

CALL subroutine_name(parameterl, parameter2, ... , parametern)

and functions are described as:

function_value = function_name(parameterl, parameter2,
parametern)

where parameter and function_value are:

... ,

<name>.<access type><data type>.<passing mechanism><parameter
form>

where:

1. <name> is a mnemonic for the procedure formal specifier or function
value specifier.

2. <access type> is a single letter denoting the type of access that the proce­
dure will (or can) make to the argument:

r - parameter can be read only.

m - parameter can be modified, that is, read and written.

w - parameter can be written only.

j - parameter is an address to be (optionally) jumped to after stack
unwind (return). No <data type> field is given, since the argument is
a sequence of instructions, for example, FORTRAN ERR=.

c - parameter is an address of a procedure to be (optionally) CALLed
after stack unwound (return). No <data type> field is given, since the
argument is a sequence of instructions.

s - parameter is an address of a procedure subroutine to be (optionally)
CALLed without unwinding the stack. The <data type> field indi­
cates the-data type used to represent the subroutine (ZEM or BPV).

f - parameter is ,~n address of a function to be (optionally) CALLed
without unwinding the stack. The <data type> field indicates the
data type used to represent the function (ZEM or BPV). Immediately
following ZEM or BPV is the data type of the function value. For
example, func.fzeml.r indicates that the arg list entry contains the
address of a function that returns a signed longword value in RO.

a - reserved for use in the VAX-11 Architecture Handbook (address).
Not used here since the object pointed to is specified.

b - reserved for use in the VAX-11 Architecture Handbook (branch des­
tination). Not used here since a branch destination cannot be a pro­
cedure formal.

Notation for Describing Procedure Parameters C-3

v -reserved for use in the VAX-11 Architecture Handbook (variable bit
field).

3. <data type> is a letter denoting the primary data type with trailing quali­
fier letters to further identify the data type. Note that the routine must
reference only the size specified to avoid improper access violations.

Data Type Code Letters Use

Atomic Data Types

0 z Unspecified

1 v Bit (variable bit field)

2 bu Byte logical (unsigned)

2 c Single character

2 u Smallest unit for addressable storage

3 WU Word logical (unsigned)

4 lu Longword logical (unsigned)

4 a Virtual address

4 cp Character pointer

4, le Longword containing a completion code

5 qu Quadword logical (unsigned)

25 OU Octaword logical (unsigned)

6 b Byte integer (signed)

6 arb Byte containing a relative virtual address (*)

7 w Word integer (signed)

7 arw Word containing a relative virtual address (*)

8 l Longword integer (signed)

8 arl Longword containing a relative virtual address (*)

9 q Quadword Integer (signed)

26 0 Octaword integer (signed)

10 f Single-precision F-Floating

11 d Double-precision D-Floating

27 g Double-precision G-Floating

28 h Quadruple-precision H-Floating

12 fc F-Floating complex

13 de D-Floating complex

29 gc G-Floating complex

30 he H-Floating complex

31 cit COBOL intermediate temporary

(continued on next page)

C-4 Notation for Describing Procedure Parameters

Data Type Code Letters Use

String Data Types

14 t text (character) string

15 nu Numeric string, unsigned

16 nl Numeric string, left separate sign

17 nlo Numeric string, left overpunched sign

18 nr Numeric string, right separate sign

19 nro Numeric string, right overpunched sign

20 nz Numeric string, zoned sign

21 p Packed Decimal string

Miscellaneous Data Types

- x Data type indicated in descriptor

22 zi Sequence of instructions

23 zem Procedure entry mask

24 dsc Descriptor (for use in descriptors)

32 bpv Bound procedure value

* - arl, arw, and arb are self-relative addresses using the same format as the hardware
displacements. That is, the self-relative address is a signed offset in bytes with respect to
the first byte following the parameter.

4. <passing mechanism> is a single letter indicating the parameter passing
mechanism that the called routine expects:

v - immediate value, that is, call by immediate value where the contents
of the parameter list entry is itself the parameter of the indicated
data type. Note that call by immediate value parameter list entries
are always allocated as a longword. The quadword data types can be
used as values only for function values, never as a formal parameter.
Note also that the VAX-11 calling standard requires that <access
type> must be r whenever <passing mechanism> is v, except for
function values where <access type> is always wand <passing mech­
anism> is usually v.

r - reference, that is, call by reference where the contents of the parame­
ter list entry is the longword address of the argument of the indicated
data type. If the parameter is a scalar of the indicated data type or is
a label, <parameter form> must be absent. If the parameter is an
array, <parameter form> must be present.

d - descriptor, that is, call by descriptor where the contents of the pa­
rameter list entry is the longword address of a descriptor. The de­
scriptor is two or more longwords that specify further information
about the parameter; see Appendix C of the VAX-11 Run-Time Li­
brary Reference Manual. Note that when <passing mechanism> is d,
<parameter form> must be present to indicate the type of descriptor.

Notation for Describing Procedure Parameters C-5

5. <parameter form> is a letter denoting the form of the argument:

Class Code Letters Meaning

- - null means scalar of indicated data type.

4 a array reference or array descriptor, that is, call by reference or call
by descriptor, as indicated by <parameter mechanism>. For array
call by reference, the contents of the parameter list entry is the
address of an array of items of the indicated data type. The length
is fixed, implied by entries in the array (for example, a control
block), determined by another parameter, or specified by prior
agreement. For array call by descriptor, the contents of the pa-
rameter list entry is the longword address of an array descriptor
block. (See Appendix C of the VAX-11 Run-Time Library Refer-
ence Manual.)

1 s scalar or string descriptor (call by descriptor). The contents of the
parameters list entry is the longword address of a 2-longword
scalar descriptor. When the data type field (DSC$B_.DTYPE)
indicates ASCII text (DSC$K_.DTYPE_T), the descriptor con-
tains the length, data type, and address of a fixed-length string.
When the string is written, neither the length nor the address
fields in the descriptor are modified, and the string is filled
with trailing spaces or a separate parameter is updated with the
written length.

2 d dynamic string descriptor, that is, passed by descriptor, where the
contents of the parameter list entry is the longword address of a
2-longword string descriptor of the same format as that of s. How-
ever, when the string is written, both the length and address fields
may be modified. Space is allocated dynamically by routines in
the procedure library.

5 p procedure descriptor, that is, passed by descriptor, where the con-
tents of the parameter list entry is the longword address of a two
longword procedure descriptor. The descriptor contains the ad-
dress of the procedure and the data type that the procedure re-
turns if it is a function. <access type> must be c, f, j, or s.

- x either fixed-length or dynamic descriptor, as indicated by the call-
ing program in the DSC$B_CLASS field of the descriptor that it
passes to the called procedure.

9 sd scalar decimal descriptor. First two longwords are like the s de-
scriptor. The third longword contains scale factor byte, and
number of decimal digits byte.

10 nca non-contiguous array descriptor. Used when ***elements are not
allocated contiguously to one another.

C.2.2 Optional Parameters and Default Values

The caller can omit optional parameters at the end of a parameter list by
passing a shortened list. The caller can also omit optional parameters any­
where by passing a 0 value as the contents of the parameter list entry. How­
ever, a caller cannot omit a parameter that is not indicated as optional. The
called procedure is not obligated to detect such a programming error. Op­
tional parameters are enclosed in square brackets, as follows:

CALL FOR$READ_SU (unit.rb.v [,err.j.r [,end.j.r]]).

C-6 Notation for Describing P .. ·ocedure Parameters

An equal sign (=) after a parameter inside square brackets indicates the
default value if the parameter is omitted, as in the following example:

success.wlc.v = LIB$DELLOG (lognam.rt.ds [,tblflg.rb.v=O]).

NOTE

VAX/VMS system services have optional parameters, but the
list cannot be shortened. This type of optional parameter is
indicated with the comma outside of the square brackets. For
example:

success. wlc. v=SYS$DELLOG([tblflg.rl. v], [lognam.rt.dx],
[acmode.rl. v])

C.2.3 Repeated Parameters

Parameters that can be repeated one or more times are indicated using el­
lipses, for example, CALL FOR$0PEN (keywd.rw.v,info.rl.v ...). Repeated
parameters that can be omitted entirely are indicated with ellipses inside
square brackets, for example, CALL FOR$CLOSE ([logical_unit.rl.v ...]).

C.2.4 Examples

sine_of_angle.wf.v = MTH$SIN (angle_in_radians.rf.r)

CALL FOR$READ_SF (unit.rb.v, format.mbu.ra [,err.j.r [,end.j.r]])

Note that: (1) end can be omitted and that (2) err and end can both be
omitted. However, unit and format must always be present. The parameter
count byte in the parameter list specifies how many parameters are present.
Alternatively, err, end, or both could have a 0 parameter list entry.

Common combinations are:

completion code:
longword call by immediate value input arg:
address of an array of signed words for input:
address of a control block:
address of a precompiled format statement:
label to jump to:
floating input call by reference arg:
floating complex call by reference input arg:
read only character string:
output fixed-length string:
output fixed-length or dynamic string:
user action routine that returns a cond. value:

C.2.5 Summary Chart of Notation

status.wlc.v = ...
no_of_pages.rlu.v
array .rw .ra
fab.mz.ra
format.rbu.ra
error_label.j.r
angle_in_rad.rf.r
angle.rfc.r
string.rt.ds
string.wt.ds
string. wt.dx
func.fzemlc.r

<name>.<access type><data type>.<pass mech><parameter form>

Notation for Describing Procedure Parameters C-7

<access type> <data type>
.

c Call after stack unwind a Virtual address

f Function call (before return) arb 8-bit relative virtual address

j JMP (after unwind) access arl 32-bit relative virtual address

m Modify access arw 16-bit relative virtual address

r Read-only access b Byte integer (signed)

s Call without stack unwinding bpv Bound procedure value

w Write-only access bu Byte logical (unsigned)

c Single character

cit COBOL intermediate temporary

cp Character pointer

d Double precision D-floating

de D-floating complex

dsc Descriptor (used by descriptors)

f Single precision F-floating

fc F-floating complex

g Double precision G-floating

gc G-floating complex

h Quadruple precision H-floating

he H-floating complex

I Longword integer (signed)

le Longword return status

lu Longword logical (unsigned)

nu Num. string, unsigned

nl Num. string, It. separate sign

nlo Num. string, It. overpunched sign

nr Num. string, rt. separate sign

nro Num. string, rt. overpunched sign

nz Num. string, zoned sign

0 Octaword integer (signed)

OU Octaword logical (unsigned)

p Packed decimal string

q Quadword integer (signed)

qu Quadword integer (unsigned)

t Text (character) string

u Smallest addressable storage unit

v Bit (variable bit field)

w Word integer (signed)

WU Word logical (unsigned)

x Data type in descriptor

z Unspecified

zi Sequence of instruction

zem Procedure entry mask

(continued on next page)

C-8 Notation for Describing Procedure Parameters

<passing mechanism> <parameter form>

d By descriptor - Scalar

r By reference a Array reference or descriptor

v By immediate value d Dynamic string descriptor

nca Non-contiguous array desc.

p Procedure ref. or desc.

s Fixed length string descriptor

sd Scalar decimal descriptor

x Class type in descriptor

The notation xy .z means that the argument is passed only to a user-supplied
procedure, and so can have any access type (x), data type (y) and passing
mechanism (z).

Notation for Describing Procedure Parameters C-9

Index

A
Abstraction, levels of, 4-1, 4-2
Access types, 2-5

parameter, C-3
Accessing a User-Created Sharable Image,

7-7f
Action routine, 2-14. See also User

action routine
Activation of a procedure, 3-5
Adding a User-Created Procedure

to the Default Object Library, 7-2f
Allocating identification numbers, 4-13
Allocating Heap Storage in BLISS, 3-13f
Allocating resources

definition, 1-10, 4-12
Argument list, 2-8
ASCII output, formatted, 4-22
AST interrupts

description, 6-2
disabling, 6-7
for non-AST procedure, 6-3

AST level
definition, 6-2
performing 1/0 at the, 6-7

AST-reentrant procedure
coding, 6-1
definition, 6-1
description, 1-10
modular programming standard elements,

A-9
rules for writing, 6-3
using queue instructions, 6-5

AST routine
description, 6-2
guideline for using, 6-2

AST system services, 4-19
Asynchronous system trap. See

AST-reentrant procedure
Atomic data types, C-4

B
BASIC

allocating heap storage in, 3-3
allocating stack storage in, 3-3
allocating static storage in, 3-2
condition value branching, 5-9
creating sharable images, 7-5
defining condition values, 5-6

BASIC (Cont.)
parameter definition files, 4-5
PSECT names, 4-5
returning error status, 5-3
using stack storage, 3-11

BBSS and BBCC instructions, 6-6
BLISS

allocating heap storage in, 3-3,
3-13 to 3-16

allocating stack storage in, 3-2
allocating static storage in, 3-1
condition value branching, 5-8
defining condition values, 5-6
disabling ASTs, 6-7
first-time initialization, 4-11
parameter definition files, 4-5 ·
PSECT names, 4-5
returning error status, 5-2
using stack storage, 3-11

BLISS Module Description Template, 2-22f
BLISS Procedure Description Template,

2-26f
Block comments, 4-7
Bound procedure value (BPV), 2-14, 4-24
Branch and jump instructions, 4-7
Building a transfer vector, 7-8
Building sharable images, 7-8

c
Call-in-progress count, 6-6
Change mode system services, 4-21
Code, position-independent, 1-11
Coding and design, 2-1
Coding modular procedures, 1-8, 4-1

AST-reentrant, 6-1, 6-3
optional user action routines, 4-24

Coding rules and recommendations, 4-4 to
4-7

Comments, block, 4-7
Condition handling, 5-1
Condition handling system services, 4-21
Condition value

in calling program, 5-7
defining in BASIC, 5-6
defining in BLISS, 5-6
defining in FORTRAN, 5-6
defining in MACRO, 5-6

Index-1

Condition value (Cont.)
defining in PASCAL, 5-7
defining symbols, 5-5
description, 5-1
format, 5-4
returning as function value, 5-2
success, 5-5
symbols, 2-4

Conventions
in naming, B-1

Creating
and modifying libraries, 1-11
an object module library, 1-5

Creating a Sharable Image, 1-5f, 7-6f
Creating an Object Module Library, 1-4f
Creating facilities, 2-5
Creating sharable images, 1-6, 7-5

D
Data element transmission, 3-8
Data types, 2-5

atomic, C-4
bound procedure value (BPV), 4-24
miscellaneous, C-5
parameter, C-4
procedure entry mask (ZEM), 4-24
string, C-5

Deallocating storage, 2-16
Default system object library

accessing, 7-2
adding to, 7-1
building, 7-1

Default values
parameter, C-7

Definition files, parameter, 4-5
Descriptors, string, 2-7, 4-16
Designating Storage Responsibility to the

Caller, 2-15f
Designing modular procedures, 1-8

Developing a Program that Calls Library
Procedures, 1-2f

Development of a User-Created Object Module
Library, 7-3f

DIGITAL-Supplied Libraries, 1-3f
Documentation of modules, 2-20
Documentation of procedures, 2-20
Dynamic heap storage, 2-16, 3-3
Dynamic strings, 4-17

E
Environment, creating a procedure activation,

5-12

Index-2

Error and condition value
description, 1-10, 2-9
signaling, 5-10
signaling mechanism, V AXNMS, 5-12

Error messages, 4-22
Error status

checking in BASIC, 5-3
checking in BLISS, 5-2
checking in FORTRAN, 5-3
checking in MACRO, 5-2
checking in PASCAL, 5-4

Event flag system services, 4-19
Exception condition signaling, 5-11
Executing an Image that Calls Library

Procedures, 1-7f
Explicit parameters, 2-5

F

Facility
creating a, 2-5
methods of handling errors, 2-9
names, 2-4
passing mechanisms, 2-7
prefix table, B-5

Facility names
library, A-7

File names, 4-4
Files, parameter definition, 4-5
First-time flag

AST considerations, 4-10
test and set, 4-10

Fixed-length string, 4-16
Formatted ASCII output, 4-22
FORTRAN

allocate/deallocate numbers, 4-14
allocating heap storage in, 3-3
allocating stack storage in, 3-3
allocating static storage in, 3-2
condition value branching, 5-9
creating sharable images, 7-5
defining condition values, 5-6
parameter definition files, 4-5
PSECT names, 4-5
returning error status, 5-3

Function value, returning a condition value as,
5-2

G

Global condition values, usage in calling
program, 5-7

Grouping procedures, 4-3

H
Heap storage, 3-12. See also Dynamic

heap storage
allocation in BASIC, 3-3
allocation in BLISS, 3-3, 3-12
allocation in FORTRAN, 3-3
allocation in MACRO, 3-3
allocation in PASCAL, 3-3
description, 3-3
using, 3-12

Higher-level language-specific support
procedures, A-9

How Implicit Inputs Can Violate Modularity,
2-12f

Human readable output, control of, 2-17

1/0
performing at the AST level, 6-7
procedure for push-down storage, 3-8
statement initialization, 3-8
statement termination, 3-9
system services, 4-19

Identification numbers, allocating, 4-13
Identifiers

allocating process-wide, 3-6
passing process-wide, 2-17

Implicit parameters
allocated by called procedure, 2-11
allocated by calling program, 2-10
description, 2-10
how to avoid, 2-13

Initialization
first-time flag, 4-10
methods, 4-7, 4-8f
principles, 4-7
of static storage, 4-9
storage areas, 4-9

Input string parameters, 4-16
Interface, design, 2-2, C-1
Internal signaling, 5-11

L
Levels of Abstraction, 4-2f
Levels of abstraction, 4-1, 4-2
LIB-specific general utility and resource

allocation, A-8
LIB$FREE-LUN, 2-17
LIB$FREE-TIMER, 2-17
LIB$GET-LUN, 2-17
LIB$GET-VM, 3-3
LIB$INITIALIZE

LIB$INITIALIZE (Cont.)
PSECT contribution to, 4-12

LIB$INIT-BLOCK, 3-6
LIB$INIT-TIMER, 2-16
LIB$MATCH-COND, 5-7
LIB$PUT-OUTPUT, 4-25
LIB$SHOW-name, 2-19
LIB$SIGNAL, 5-11
LIB$SIG-TO-RET, 4-11
LIB$STAT-name, 2-19
LIB$STOP, 5-11
Libraries

Common Run-Time Procedure, 1-3
creating and modifying, 1-11, 1-12
definition, 1-1
DIGITAL-supplied, 1-3 to 1-4
linking to, 1-6
object module, 1-3
STARLET.OLB, 1-3
user-created, 1-4, 7-1
using with VAXNMS, 1-3 to 1-7
VMSRTL.EXE, 1-3

LIBRARY command, 7-3
Library facility

names, 2-4, A-7
passing mechanisms, 2-7

Library modules, inclusion in a program,
1-5

LIB-CONC, 3-11
LIB-GET-INUM, 4-13
LIB-GET-STRING, 2-11, 2-13
LIB-GET-STR-LEN, 2-11, 2-13
LIB-SNAP-SHOT, 2-18
Line length

maximum for source code, 4-6
Linker, 1-1

convention when using object libraries,
1-5

events in creating an executable imag~,
1-6

function in procedure grouping, 4-3
INCLUDE qualifier, 7-4
incorporating sharable images, 7-7
LIBRARY qualifier, 7-4
searching for unresolved references,

1-4
searching the system default library,

7-2
using transfer vectors, 7-8

Linking programs to libraries, 1-6
Linking Programs to Run-Time Libraries,

1-6f
Logical name system services, 4-19
Logical unit numbers, allocate/deallocate,

2-17

lndex-3

M
MACRO

allocate identifying numbers, 4-13
allocating heap storage in, 3-3
allocating stack storage in, 3-2
allocating static storage in, 3-1
condition value branching, 5-7
defining condition values, 5-6
parameter definition files, 4-5
PSECT names, 4-5
returning error status, 5-2
using BBSS, 6-6
using branch and jump, 4-7
using stack storage, 3-10

MACRO Module Description Template, 2-21f
MACRO Procedure Description Template,

2-25f
Memory management system services, 4-21
Methods of Allocating Resources, 4-15t
Methods of Initializing, 4-8f
Modular procedures

activation of, 3-5
building libraries, 7-1
coding, 4-1
combining, 2-13
data element transmission, 3-8
definition, 1-1
design and coding checklist, 2-1
documentation of, 2-20
grouping, 1-3, 4-3
1/0 statement initialization, 3-8
1/0 statement termination, 3-9
initializing, 4-7
input strings, 4-16
interface design, 2-1, 2-2
libraries, 1-1
names, 2-3
notes on using system services,

-4-23 to 4-24
output strings, 4-16
parameter characteristics, 2-5
resource-allocation, 2-17, 2-18
signaling and condition handling, 5-1
timer, 2-18

Modular programming standard
advantages of, 1-8
description, 1-8 to 1-11
parts of, 1-9

Module
documentation of a, 2-20
grouping procedures in, 4-3
names, 4-4
relocatable, 4-4

lndex-4

Module description
in Bliss, 2-22f
in MACRO, 2-21f
writing a, 2-20

MTR-specific math procedures, A-8
MTH$RANDOM, 2-16, 3-7

N
Names

condition value, 2-4
to create a facility, 2-5
facility, 2-4
file, 4-4
module, 4-4
procedure, 2-3
PSECT, 4-4
public, B-2
transfer vector, 7-8

Naming
conventions, 2-3, 2-4, B-1
public symbol patterns, B-1 to B-4
rules and recommendations, 1-9

Numbers, allocating identification, 4-13
Numbers and symbols, using, 4-6

0
Object data types, B-4
Object library

accessing a user-created, 7-4
building the default, 7-1
user-created, 1-4, 1-5, 1-11, 7-3

Optional parameters, 2-8, C-6
Optional spaces, 4-6
Order of parameters, 2-9
OTS-specific language procedures, A-8
Output, formatted ASCII, 4-22
Output string parameters, 4-16

p
Parameter

access types, C-3
characteristics, 2-5, C-3
data type, C-4
default values, C-6
explicit, 2-5
form, 2-5, C-6
implicit, 2-10
input string, 4-16
optional, 2-8, C-6
order of, 2-9
output string, 4-16
passing mechanisms, 2-7, C-5

Parameter (Cont.)
passing strings as, 4-16
passing strings to other procedures,

4-18
repeated, C-7
shorthand notation summary chart, 2-6t,

C-7
user action routine, 2-14

Parameter definition files, 4-5
Parameter form

parameter, C-6
Parameter Passing Mechanisms Used by

Library Facilities, 2-7t

PASCAL
allocating heap storage in, 3-3
allocating stack storage in, 3-3
allocating static storage in, 3-2
condition value branching, 5-1, 5-10
creating sharable images, 7-5
defining condition values, 5-7
parameter definition files, 4-6
PSECT names, 4-5
returning error status, 5-4
using stack storage, 3-11, 3-12

Passing mechanisms, 2-5, 2-7
parameter, C-5

Position-independent code, 1-11
Possible Procedure Groupings, 4-3f
Procedure. See Modular procedures
Procedure activation

creating an environment, 5-12
heap storage allocated to, 3-3

Procedure description
in BLISS, 2-26f .
in MACRO, 2-25f
writing a, 2-23 -

Procedure entry mask (ZEM), 2-14, 4-24
Procedure Parameter Characteristics, 2-6t
Procedure parameters

characteristics, C-3 to C-6
notation for describing, C-2

Procedure's Action for String Passed by Calling
Program, 4-18t

Process control system services, 4-20
Process-wide identifiers, 2-17

allocating, 3-6
Process-wide resource, 4-14

allocation, 1-10
PSECT LIB$INITIALIZE, 4-12
PSECT names, 4-4
Public names, B-2
Public symbol patterns, B-1

Q
Queue instruction

data modification in static storage,
6-4

removing items from queue, 6-4

R
Race conditions

avoiding, 6-7
eliminating, 6-4

Relocatable modules, 4-4
Repeated parameters, C-7
Resource allocation

definition, 1-10, 4-12
of identification numbers, 4-13
methods, 4-15t
multiple-allocator, 4-13
procedures, 2-17, 2-18
process-wide, 4-14
single-allocator, 4-12
and static storage, 4-13

RMS system services, 4-22
using with ASTs, 6-7

Routine interface types, C-1

s
$SETEF, system service, 5-5
$SETIMR, system service, 6-2
Sharable image

accessing a user-created, 7-7
advantages of creating, 1-11
building and installing, 7-6
creating in BASIC, 7-5
creating in FORTRAN, 7-5
creating in PASCAL, 7-5
description, 1-3
installing, 7-6
updating, 1-12
user-created, 1-5, 1-6, 7-4

SHOW entry point, 2-19
Signaling

error conditions, 5-10
exception condition, 5-11
internal, 5-10
stop execution with, 5-11

Signaling and condition handling, 1-10,
5-1

Stack storage
advantages of, 3-10
description, 3-2
use in BASIC, 3-11
use in BLISS, 3-11
use in MACRO, 3-10

Index-5

Stack storage (Cont.)
use in PASCAL, 3-11, 3-12
using, 3-10

STARLET.OLB
adding to, 7-1
library, 1-3

STAT entry point, 2-19
Static storage

data modification using queue instructions,
6-4

description, 3-1
detecting concurrent access, 6-6
initializing, 4-9
local, 2-11
pushing down the contents of, 3-8
using, without retaining results, 3-9

Storage
calling program allocates, 2-15
choosing a type, 3-5
deallocating, 2-16
designating responsibility, 2-14, 2-15
dynamic heap, 2-16
heap, 3-3
initializing static, 4-9
passing the address of, 3-'-7
stack, 3-2
static, 3-1, 3-6
types, 1-9, 3-1 to 3-5
usage summary, 3-5

STR-specific procedures, A-8
STR$COPY, 6-4
String data type, C-5
String descriptors, 2-7, 4-16
String-Passing Techniques Used by Library

Facilities, 2-8t
Strings

dynamic, 4-17
fixed-length, 4-16
passed to other procedures, 4-18
passing as parameters, 4-16

Structured programming, 4-1
Success condition values, 5-5
Symbols versus numbers, using, 4-6
System services, 4-18 to 4-24

AST, 4-19
change mode, 4-21
condition handling, 4-21
error messages, 4-22
event flag services, 4-19

Index-6

System services, (Cont.)
$EXPREG, 3-3
FAO, 4-22
1/0, 4-19, 6-7
logical name, 4-19
memory management, 4-21
process control, 4-20
RMS, 4-22
$SETEF, 5-5
$SETIMR, 6-2
timer and time conversion, 4-21
usage by procedures, 1-10, 4-18

Test and set
first-time flag, 4-10
instructions, 6-5

Timer
procedure, 2-18

T

Timer and time conversion system services,
4-21

Transfer vectors
building, 7-8
creating and using, 7-8
definition, 7-8
description, 1-11 .
using, 7-8

u
Use of Storage Types, 3-4f
User action routine

calling sequence, 2-14, 4-25
description, 2-13, 2-14, 4-24
and human readable output, 2-17, 2-18
interface, 4-25
test for presence of, 4-25

User-created
facilities, 2-5
object module library, 1-4, 7-3
sharable image, 1-5, 1-6, 7-6

v
VAX/VMS error-signaling mechanism, 5-12
VAX/VMS system services, 4-18 to 4-24
VMSRTL.EXE

sharable image, 1-3

z
ZEM. See Procedure entry mask

Reader's Comments

Note: This form is for docl,mient comments only. Digital will use comments submitted on this form at
the company's discretion. If you require a written reply and are eligible to receive one under
Software Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for

improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

D Assembly language programmer

D Higher-level language programmer

D Occasional programmer (experienced)

D User with little programming experience

D Student programmer

D Other (please specify)--------------------

Name Da~

Organization ________________________ _

City _______________ _ State
Zip Code

or
Country

- - -Do Not Tear - :Fold Here and Tape - - - - - - - - - - - - - - -

~nmaoma I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN: Commercial Engineering Publications MK1-2/ H3

DIGITAL EQUIPMENT CORPORATION

CONTINENTAL BOULEVARD

MERRIMACK N.H. 03054

No Postage

Necessary

if Mailed in the

United States

- - - Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - - - - - .

