dlilgliltlall

VAX-11

Record Management Services

User’'s Guide
Order No. AA-D781C-TE

March 1980

This document contains detailed information on using the capabilities of
VAX-11 Record Management Services efficiently. Typical examples are pro-
vided to illustrate programming concepts.

VAX-11
Record Management Services
User’'s Guide
Order No. AA-D781C-TE

SUPERSESSION/UPDATE INFORMATION: This document supersedes
the document of the same name,

Order No. AA-D781B-TE,
published February 1979.
OPERATING SYSTEM AND VERSION: VAX/VMS V2.0

SOFTWARE VERSION: VAX/VMS V2.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, August 1978
Revised, January 1979
Revised, March 1980

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright(:)l978, 1979, 1980 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's «critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS~-8 ITPS-10
VAX VMS SBI
DECnet IAS PDT

DATATRIEVE TRAX

PREFACE

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

w

WWWwwwwww
L] . . L]
e S =
. L] . L] L]
DWW wwN -
. . .
w N

. e

wm

Wwwwwwwww
. o o L] o o L]
BwwWwwwwino
e o ¢ e o
b W

=S

S N N N N N S N N T
. L] . L] L] .
WWWNNNN
.] . .

NN NN

. .

[-

N =

(4}

CONTENTS

FILE GUIDELINES: DETERMINE YOUR NEEDS
THE RATIONALE FOR RECORD MANAGEMENT
VAX-11 RMS STRUCTURES AND INTERFACE

USER CONTROL BLOCKS
VAX-11 RMS ROUTINES

SPECIFYING THE FILE TO BE PROCESSED

FILE SPECIFICATIONS
Network Nodes
Devices
Directories
Alphanumeric Character String Format
UIC Format
Subdirectories
File Names, File Types, and Version
Numbers
Wild Card Characters
DEFAULT FILE SPECIFICATIONS
LOGICAL NAMES
Logical Name Tables
Logical Name Translation and Recursion
Defaults for File Names
Bypassing Logical Name Translations
Default Process Logical Names
PROCESS~-PERMANENT FILES

PROCESSING FILES WITH SEQUENTIAL RECORD
ACCESS MODE

THE USE OF SEQUENTIAL FILE ORGANIZATION
Reading Records
Creating a Sequential File
Dynamically Creating a Sequential File
THE USE OF RELATIVE FILE ORGANIZATION
Reading a Relative File
Creating a Relative File
Dynamically Creating a Relative File
THE USE OF INDEXED FILE ORGANIZATION
Reading an Indexed File
Creating an Indexed File

PROCESSING FILES WITH 'RANDOM RECORD ACCESS

RANDOM ACCESS TO SEQUENTIAL FILE ORGANIZATION
Random Read of a Record

iii

WWwwwwww
AP s S W N

I
b= b = 00 O Ul
WN O

WWWWWWWww W
e
S w

iy
L Y T U N O A B |
PRHRFOOINOSEH

N N S R - N I~ T

w
I
—

G RE,
|
=

CONTENTS

Page
5.2 RELATIVE FILE ORGANIZATION 5-6
5.2.1 Random Read of a Record in the Relative
File Organization 5-6
5.3 INDEXED FILE ORGANIZATION 5-9
5.3.1 Random Read of a Record in the Indexed
File Organization 5-9
APPENDIX A PROGRAM EXAMPLES A-1
A.l SEQUENTIAL RECORD ACCESS MODE -- SEQUENTIAL
FILE ORGANIZATION A-2
A.2 RANDOM RECORD ACCESS -- RELATIVE FILE
ORGANIZATION A-6
A.3 SEQUENTIAL RECORD ACCESS MODE -- INDEXED FILE
ORGANIZATION A-10
A.4 RANDOM RECORD ACCESS MODE -- INDEXED FILE
ORGANIZATION A-14
APPENDIX B USING THE RMS FILE ANALYZER B-1
B.1l USES OF RMSANLZ B-1
B.2 OPERATING RMSANLZ B-2
INDEX Index~-1
FIGURES
FIGURE 4-1 Program to Count Records in a Sequential
File 4-3
4-2 Program to Copy a Sequential File 4-6
4-3 Program to Copy a Sequential File, Setting
the Output Control Blocks Dynamically 4-8
4-4 Creating a Relative File 4-9
4-5 Creating a Relative File Dynamically 4-10
4-6 Program to Count Records in an Indexed File 4-13
4-7 Program to Create an Indexed File by Copying
an Existing File 4-17
5-1 Random Read of a Sequential File 5-4
5-2 Random Read of a Relative File 5-7
5-3 Random Read of an Indexed File 5-12
B-1 Sample File Attribute Listing B-2
B-2 Sample Key Information Listing B-3
B-3 Sample Key Analysis Listing B-4
TABLES
TABLE 1-1 File Organizations: Advantages and
Disadvantages 1-2
2-1 Control Blocks 2-2
2-2 Macro Instructions for Run-Time Processing 2-3
3-1 Device Names 3-3
3-2 Default File Types 3-5
3-3 File Specification Defaults 3-9
3-4 Default Process Logical Names 3-13

iv

PREFACE

MANUAL OBJECTIVES

The intent of this manual is to present some of the different uses of
the VAX-11 Record Management Services (VAX-11 RMS), so you can tailor
the various components and routines to suit your record management and
record processing needs,

INTENDED AUDIENCE

This manual is intended for VAX/VMS users who want to develop a basic
understanding of how to use VAX-11 RMS I/0 routines within their
programs. VAX-11 MACRO programmers denerally use the VAX-11] RMS
routines directly within their programs. High-level 1language
programmers normally use the 1I/0 facilities of their particular
language to utilize a subset of VAX-11] RMS facilities. However, they
may also use VAX-11 RMS directly through a call facility within their
language.

This manual is aimed at VAX-11 MACRO programmers. It is assumed that
you are familiar with and understand the VAX-11l MACRO conventions for
constructing symbols and the use of numbers, operators, and
expressions.

STRUCTURE OF THIS MANUAL
The information in this document is structured as follows:

Chapter 1 provides an overview of the salient features of the data
record file organizations that can be <created, displayed, and
maintained by using VAX-11 RMS. This information will help you to
determine the type of file organization best suited to your data
record management requirements.

Chapter 2 describes the VAX-11 RMS routines and the wuser control
blocks defined within vyour ©program, which are used to communicate
between your program and the VAX-11 RMS routines.

Chapter 3 describes file specification syntax and the file
specification defaults,

Chapter 4 describes how you create and process data record files by
sequential access mode with three file organizations.

Chapter 5 describes how you create and process ,data record files by
using random access mode.

Appendix A provides additional programming examples.

Appendix B describes the RMS File Analyzer.

ASSOCIATED DOCUMENTS

A prerequisite to this manual is the Introduction to VAX-11 Record
Management Services Manual, which describes in detail the concepts of
file organization, record access modes, record formats, and other
concepts required for your understanding of VAX-11] RMS file
construction. You should have available a copy of the VAX-11 Record
Management Services Reference Manual. This document contains the
complete description of the components of VAX-11 RMS, and therefore
constitutes a source reference for the materials presented in this
user's guide.

Other manuals allied to this document are:

e VAX/VMS Primer

® VAX/VMS System Services Reference Manual

e VAX/VMS Command Language User's Guide

e VAX-11 MACRO Language Reference Manual

e VAX-11 BLISS Language Reference Manual

vi

SUMMARY OF TECHNICAL CHANGES

This manual has been revised to reflect VAX-1]1] RMS support for wild
card characters and uppercase translation of logical names.

vii

CHAPTER 1

FILE GUIDELINES: DETERMINE YOUR NEEDS

The VAX-11 Record Management Services (VAX-11] RMS) are system routines
that provide an efficient and flexible means of accessing files and
their records. The VAX-11 RMS routines speed up and simplify the task
of program development.

1.1 THE RATIONALE FOR RECORD MANAGEMENT

As a user writing application programs, you need to create programs
that will (1) accept new input, (2) read or modify data, and/or (3)
produce output in some meaningful form. These programs can be, at
times, somewhat difficult to produce, because the operations required
in handling the data can be complex. However, many of these
operations are basically the same, with only minor modifications
needed depending on the operation. Therefore, generalized routines
that encompass a wide variety of functions can be very useful to you
in dealing with your file and record management programming needs.
VAX-11 RMS provides such generalized routines.

VAX-11 RMS routines are an integral part of the operating system;
they are always there. You need not perform any special linking or
declaring of global entry points to access the routines since a simple
reference to a routine generates the appropriate call. Calls to
VAX-11] RMS routines are consistent with the VAX/VMS calling standard;
arguments are passed and results and errors are returned in the
standard VAX/VMS fashion.

Because the file organization is fixed for the life of the file, it is
very important that you decide, before you begin to write your
program, which file organization best meets your requirements. The
following questions should help you determine your file organization
requirements.

e How will the records be accessed? Will the whole file or only
selected records be processed? Will the records be accessed
randomly? Will the records be accessed by other nodes 1in a
network?

e What kind of record maintenance is needed? Must records be
updated, added, or deleted?

e What is the record format? How large are the records; are
they all the same size? What is their maximum size?

e What is the total size of the file? 1Is this size fixed or can
it be extended?

o Where will the file reside?

cards.

FILE GUIDELINES: DETERMINE YOUR NEEDS

Will the file be

terminal?

As these questions indicate, many issues affect your

choice is not clear-cut.
some of the advantages and disadvantages of the three
and indexed.

organization.

organizations:

File
Organization

Often, the

sequential, relative,

Table 1-1

Will the medium be tape, disk, or
written to a

line

choice of file
Table 1-1 lists
types of file

Organizations: Advantages and Disadvantages

Advantages

Disadvantages

random access by record
number for all
languages

Allows random record
deletion and insertion
Allows records to be
read- and write-shared

Sequential Uses disk and memory Allows sequential
efficiently: access only
minimum disk overhead, for some high-level
block-boundary crossing languages
Provides optimal usage Allows records to be
if the application added only to end of
accesses all records file
sequentially on each run
Allows sharing by
Provides flexible record multiple, concurrent
format users, but only with
user's implemented
Allows data to be stored synchronization.
on many different types (The exception is
of media, in a device- 512-byte fixed-length
independent manner records; VAX-11/RMS
manages the
Allows easy file synchronization for
extension such files).
Relative Allows sequential and Allows data to be

stored on disk only

Requires that programs
contain a record cell
for each relative
record number
allocated; therefore,
files may be

sparsely populated

Requires that record
cells be the same size

Allows record
insertion only to
empty cells (or
at the end of

the file)

(continued on next page)

printer or

File

FILE GUIDELINES: DETERMINE YOUR NEEDS

Table 1-1 (Cont.)

Organizations: Advantages and Disadvantages

File Advantages Disadvantages
Organization
Indexed Allows sequential and Allows data to be

random access by key
value for all languages

Allows random record
deletion and insertion

Allows records to be
read- and write-shared
Allows variable-length
records to change length
on update

Allows easy file
extension

stored on disk only

Requires more disk
space

Uses more of the
central processing unit
to process records.
Generally requires
mulitple disk accesses
to prrocess a record.

CHAPTER 2

VAX-11 RMS STRUCTURES AND INTERFACE

The facilities of VAX-11l Record Management Services (VAX-1l1] RMS) are
available at run time through the <calling of record management
procedures. Communication with the VAX-11l RMS routines is by means of
user control blocks defined within your program. This chapter
provides an introduction to these routines and control blocks, and the
macro instructions that facilitate their use.

2.1 USER CONTROL BLOCKS

VAX-11 RMS uses data structures called control blocks to communicate
between your program and the VAX-11 RMS routines.

The VAX-11 RMS routines also create their own internal data
structures, reflecting the information in your control blocks. These
internal data structures reside in the process control region, in what
is called the I/0 segment.

You set up fields in the control blocks to reflect exactly what
operations you want to perform, and then call the routine. The
routine uses these fields as input to perform the requested action
and, as necessary, uses these fields again to return status and other
related information. The amount of information your program exchanges
with VAX-1]1 RMS (both as input and output) depends on the nature of
your request and the file attributes,

Table 2-1 lists the control blocks that are part of vyour program
interface with VAX-11 RMS.

You must allocate space for these control blocks within your program.
You can do this either at assembly time or run time. VAX-11 RMS
provides macro instructions for the assembly-time allocation and
initialization of the control blocks, shown in the Macro Name column
of Table 2-1. At run time, you can directly manipulate the control
blocks through either the defined symbolic offsets or the "store"
macro instructions. For efficiency, and to prevent a warning message
from the assembler, align each control block on a longword boundary.

In general, you must allocate one File Access Block (FAB) for every
open file in your program, and one Record Access Block (RAB) for each
individual record stream connected to a FAB. (More than one RAB can
be connected to each FAB simultaneously.) The Extended Attribute
Blocks (XABs) and the Name Block (NAM) are optional, depending on
whether you need the information they provide and the functions they
perform.

VAX-11 RMS STRUCTURES AND INTERFACE

Table 2-1
Control Blocks
Macro
Structure Function Name

File Access Describes a file and contains $SFAB
Block (FAB) file-related information
Record Access Describes a record and contains SRAB
Block (RAB) record-related information
Extended Contain file attribute information $XABxxx 1
Attribute beyond that in the File Access
Blocks (XAB) Block
Name Block (NAM) Contains file specification SNAM

information beyond that in the

File Access Block

1. The variable xxx is a 3-character XAB-type specification.

2.2 VAX-11] RMS ROUTINES

The VAX-1l1 RMS routines execute in executive mode. VAX-11 RMS
protects 1its internal data structures and buffers from destruction by
user programs, and ensures that files will be 1left 1in an orderly
state. When vyour program exits, an I/0 rundown routine closes all
files, writing buffers and file attributes as required, even when the
exit is the result of a severe error.

VAX-11] RMS routines are integrated in a straightforward manner.
Within vyour program, vyou place a call to the appropriate routines.
Generally you make these calls with run-time macro instructions. At
run time, the expanded code of these macro instructions causes calls
to be made to the appropriate routines, which refer to the appropriate
control blocks., These calls are consistent with the VAX-11 calling
standard. You can specify the parameters with keywords; you can list
them in any order or omit the keywords entirely.

When you call a routine, you set up an argument 1list to define the
associated control block (FAB or RAB) and any optional completion
routines to be called if an error occurs.

The operations performed by VAX-11] RMS routines are classified as
either file oriented or record oriented, requiring the address of a
FAB and RAB respectively as the control block argument in a call to
any of them.

Table 2-2 summarizes the essential macro instructions for run-time
processing.

VAX-11 RMS STRUCTURES AND INTERFACE

Table 2-2
Macro Instructions for Run-Time Processing

Category Macro Name Service

et | (ot v e o
$OPEN Opens an existing file and initiates file processing
SDISPLAY Returns the attributes of a file to ruser program
SEXTEND Extends the allocated space of a file
S$CLOSE Terminates file processing and closes the file
$ERASE Deletes a file and removes its directory entry

Record SGET Retrieves a record from a file

Processing
$PUT Writes a new record to a file
$UPDATE Rewrites an cxisting record m a ;iblc“]
$DELETE Deletes a record from a relative indexed file
SFIND Locates and positions to a recor;a;‘t; retuﬂrn:ns RFA
$CONNECT Connects record stream toa file
$DISCONNECT Disconnects a record stream frk;rkn: lele o
SRELEASE Unlocks a record by its RFA
SFREE Unlocks all previously locked records
SWAIT Determines the completion of an asynchronous record

operation
SREWIND Positions to the first record of a file
e
STRUNCATE Truncates a sequential file
$FLUSH Write modified 1/0 buffers and file attributes
SNXTVOL ” m(“.‘;‘uscs processing of a magnetic tape file to continue to
the next volume of a volume set

Block 1/0 SREAD Retrieves a specified number of bytes from a file
SWRITE Writes a specified number of byt—c; ‘t:a f:;_m
$SPACE Spaces forward or backward in a file

File $ENTER ’ Enters a file name into a directory

Naming —-
$PARSE Parses a file specification
SREMOVE Removes a file name from a dir;cr::)r; N
SRENAME Assigns a new name to a file -
$SEARCH Searches a directoryrfor a file name

CHAPTER 3

SPECIFYING THE FILE TO BE PROCESSED

A file 1is a 1logically related collection of records. All the
information that the operating system reads and writes on behalf of
users' requests is defined in terms of files and records.

File processing is influenced by the hardware device that performs the
actual data transfer (reading or writing). Devices are classified as:

e Mass storage devices
® Record-oriented devices

Mass storage devices provide a way to save the contents of files on a
magnetic medium, called a volume. Files that are thus saved can be
accessed at any time and updated, modified, or reused. Disks and
tapes are mass storage devices.

Record-oriented devices read and/or write only single physical units
of data at a time, and do not provide for permanent storage of the
data. Terminals, printers, and card readers are record-oriented
devices. Printers and card readers are also called unit record
devices. In certain cases, magnetic tapes are treated as record
oriented devices.

3.1 FILE SPECIFICATIONS

File specifications provide the system with all the information it
needs to identify a unique file or device.

File specifications have one of the following formats:

e node::device:[directory]filename.type;version

e node::"foreign-file-spec"

e node::"task-spec”
You must use the punctuation marks and brackets to separate the fields
of the file specification. Either matching square brackets or angle
brackets may delimit the directory specification. The type and

version specifications may be separated by either a period (.) or a
semi-colon (;). The fields and their contents are listed below.

SPECIFYING THE FILE TO BE PROCESSED

Field Contents
node Node name and optional access control string
device Device name

directory Directory name and optional subdirectory names
filename File name

type File type
version File version number
".lL" Designates a program to communicate with on a remote

node or designates a file specification that is not to
be parsed locally.

Directory names, file names, file types, and version numbers apply
only to files on disk or tape devices. For record-oriented devices
(terminals, printers, and card readers), only the device name field of
the file specification is required; fields following it are ignored.
Blanks, tabs, and null characters are accepted but ignored in file
specifications.

You may use wild card characters in file specifications. These are
more fully discussed in Section 3.1.5. The ellipsis [...] and minus
sign [-] wild card characters can be used only in the directory name
field of a file specification. The asterisk (*) and percent sign (%)
wild card characters can be used in the following fields of a file
specification:

e Directory name

e File name

e File type

e File version number
Appendix C of the VAX-1l1l Record Management Services Reference Manual
contains a rigorous explanation of the entire syntax for file
specifications. The following sections, however, provide sufficient

information for you to have a basic understanding of how to supply
file specifications.

3.1.1 Network Nodes

Each computer system in a DECnet network is uniquely identified by a
1- through 6-alphanumeric character node name. Optionally, a node
name may be followed by an access control string enclosed in quotes
(") and the entire node specification is identified by two colons
(::). An access control string consists of a username, password, and
optional account name separated from each other by one or more spaces
and/or tabs. 1Its total 1length is 3 through 42 characters. You
include an access control string in a node specification when you want
to login at the remote node as a specific user for the file access
operation. If you omit the access control string, the default DECnet

account (if established) is used. The following are examples of node
specifications.

BOSTON::
BOSTON"COWENS CELTICS"::
BOSTON"COWENS CELTICS NBA"::

In addition, you may define a logical name for a node specification
and then wuse it in file specifications. Logical names are described
in detail in Section 3.3.

SPECIFYING THE FILE TO BE PROCESSED

For complete details on the use of node name specifications, see the
DECnet-VAX User's Guide.

3.1.2 Devices

Each physical hardware device in the system has a unique
identification, in the format:

devcu:

In this format, dev is a mnemonic for the device type, ¢ is a
controller designation and u is a unit number.

Table 3-1 lists the valid device types and their mnemonics.

The controller and unit number identify the location of the actual
device within the hardware configuration of the system. Controllers
are designated with alphabetic letters A through Z. Unit numbers are
decimal numbers from 0 through 65535.

The maximum length of the device name field, including controller and
unit number, 1is 15 characters. You must follow a device name with a
colon (:).

A complete device name specification is called a physical device name.
You can specify physical device names to indicate an input or output
device for a program. Or, you can equate a physical device name to a
logical name and use a logical name to refer to a device. Logical
names are described in detail in Section 3.3.

Table 3-1
Device Names
Mnemonic Device Type

CR Card Reader
Cs Console Storage Device
DB RP04, RP05, RP06 Disk
DD TU58, Cassette Tape
DL RLO2, Cartridge Disk
DM RK0O6, RKO7 Cartridge Disk
DR RM03, RMO5 Disk
DY RX02 Floppy Diskette
LA LPAll1-K Laboratory Peripheral Accelerator
LP Line Printer
MB Mailbox
MS TS—-11 Magnetic Tape
MT TE16, TU45, TU77 Magnetic Tape
NET Network Communications Logical Device
opP Operator's Console
RT Remote Terminal
TT Interactive Terminal
XA DR11-W General Purpose DMA Interface
XF DR32 Interface Adapter
XJ DUP11l Synchronous Communications Line
XM DMCl1ll Synchronous Communications Line

SPECIFYING THE FILE TO BE PROCESSED

3.1.3 Directories

A user file directory (UFD) is a file that lists the identifications
and locations of files on a disk device that belong to a particular
user., The UFD is listed in the volume's master file directory (MFD).
The MFD 1is the root of the volume's directory structure, and also
lists the reserved files for the volume.

Directory names apply to files on magnetic tape and disk devices.
They are expressed in one of three formats where each format requires
that you enclose the directory name in either square brackets ([and
1) or angle brackets (< and >»). The closing bracket must match the
opening bracket. The formats for specifying directory names are as
follows:

e As a l1l- through 9-alphanumeric character string representing a
UFD name.

e As a two-part number separated by a comma (,) in the format of
a user identification code (UIC).

e As a UFD name followed by one or more subdirectory names, each
preceded by a period (.). Each subdirectory name represents a
unique subdirectory level of the UFD and has the same syntax
as a UFD name.

3.1.3.1 Alphanumeric Character String Format - The <character string
used to specify a UFD can be the same as your user name or account
name, or any valid character string that you request or the system
manager assigns vyou. For example, 1if vyou specify a directory as
[010PAY] the directory 0l10PAY.DIR;1 is searched. (DIR 1is the file
type for a directory, and 1 is the version number.)

3.1.3.2 UIC Format - You can refer to a UFD in a format similar to
that for a UIC: for example, [abc,xyz], where "abc" is a group number
and "xyz" is a member number. To specify a UFD in this format,
separate the group number from the member number with a comma. If you
specify less than three characters for either "abc" or "xyz", they are
left zero-filled. Therefore, if you specify a UFD in a UIC format as
[26,1], the directory searched is 026001.DIR;1.

UIC directories have corresponding names in alphanumeric format. The
group and member numbers are each left zero-filled (if necessary).
For example:

[122001]

The directory name for the UFD specified in this command is equivalent
to the specification [122,1].

A directory in this format 1is usually owned by a user with a
corresponding UIC. However, this may not always be the case, as UIC
and directory ownership are independent.

3.1.3.3 Subdirectories - When UFDs are referenced using the character
string format, further hierarchical 1levels of directories can be
expressed as subdirectories. A subdirectory level 1is expressed by
adding a period (.) to the character string for the UFD, followed by

SPECIFYING THE FILE TO BE PROCESSED

the specification for the subdirectory. For example, [010PAY.DED] |is
the specification for the UFD named 010PAY.DIR;1 and a subdirectory of
DED.DIR;1.

The maximum number of directory levels is eight: one UFD and seven
subdirectories. (Combined with the master file directory, this is, in
effect, a 9-level hierarchy.) In the directory specification
[010PAY.DED.YTD], 010PAY is the UFD, DED is the first 1level
subdirectory, and YTD is the second level subdirectory.

There is no maximum number of different hierarchies of directories you
can create or access.

The master file directory is created when the volume 1is initialized.
Subdirectories and UFDs are created with the CREATE command using the
DIRECTORY qualifier.l

3.1.4 File Names, File Types, and Version Numbers

File names, file types, and version numbers uniquely identify files
.within directories.

A file name is a 1- through 9-alphanumeric character string that
identifies a file. When you create a file, you can assign it a file
name that is meaningful to you.

A file type is a 1- through 3-alphanumeric character string that
extends a file name. Usually, a file type name is chosen to suggest
the contents of the file.

File types must be preceded with a period (.).
The system uses a set . of standard file types, by convention, to

identify various classifications of files, and to provide default file
types in many commands. Table 3-2 is a list of file types.

Table 3-2
Default File Types

File Type Contents

ANL Output file for the ANALYZE command

BAS Input source file for the VAX-11 BASIC compiler

B2S Input source file for the PDP-11
BASIC~-PLUS-2/VAX compiler

B32 or BLI Input source file for the VAX-11 BLISS-32
compiler

CBL Input file containing source statements for the

PDP-11 COBOL-74/VAX compiler

(continued on next page)

1. See the VAX/VMS Command Language User's Guide for an explanation of
this command and any others that appear throughout this manual.

SPECIFYING THE FILE TO BE PROCESSED

Table 3-2 (Cont.)
Default File Types

File Type Contents
CMD Compatibility mode indirect command file
coB Input file containing source statements for the

VAX-11 COBOL-74 compiler

COR Input source file for the PDP-11 CORAL 66/VAX
compiler
COM Command procedure file to be executed with the @

(execute procedure) command, or to be submitted
for batch execution with the SUBMIT command

DAT Input or Qutput data file

DIF Output 1listing created by the DIFFERENCES
command

DIR Directory File

DIS Distribution list for the MAIL command

DMP Output form the DUMP command

EDT Initialization command input file for EDT

EXE Executable program image created by the linker

FOR Input file containing source statements for the

VAX-11 FORTRAN compiler

FTN Compatibility Mode FORTRAN IV PLUS source file
HLB Help text library file

HLP Help text source file

JNL Journal file output form PATCH utility

Jou Journal file/audit trail from EDT

L32 Precompiled Librrary for VAX-11 Bliss-32

LIB Input file containing VAX-11 COBOL-74 source

Statements to be copied into another file during
compilation

LIS Listing file created by a language compiler or
assembler; default input file type for PRINT
and TYPE commands

LOG Batch job output file
LST Compatibility mode listing file

MAC MACRO-11 source file

(continued on next page)

SPECIFYING THE FILE TO BE PROCESSED

Table 3-2 (Cont.,)
_ Default File Types

File Type Contents

MAI Mail message file

MAP Memory allocation map created by the 1linker,
invoked by the LINK command

MAR VAX-11 MACRO source file

MDL Maynard Definition Language (Language-
independent structure definitions)

MLB Macro library

NEW Any new source file

OBJ dbject file created by a 1language compiler or
assembler

ODL Overlay descriptor file

OLB Object module library

OLD Any old source file

OPT Options for input to the LINK command

PAR A SYSGEN parameter file

PAS Input file containing source statements for the
VAX-11 PASCAL compiler

R32 or REQ VAX-11 BLISS-32 source file required for
compilation

STB Symbol table file ereated by the linker

SYS System image

TEC TECO indirect command input file

TLB Text library

TMP Temporary file

TMx S0S temporary file ("x" is a digit)

TXT Input file for text libraries or output file for
mail command ’

UPD Update file of ~changes for a VAX-1l1] source
program; also input to the SUMSLP editor

Version numbers are decimal numbers from 1 through 32767 that

differentiate betweenh versions of a file.
file, the system saves the original version for backup and

When you update or modify a

the version number of the modified file by 1.

Version numbers must be preceded with a semicolon (;) or a period (.)

increments

SPECIFYING THE FILE TO BE PROCESSED

3.1.5 Wild Card Characters

As noted in the VAX/VMS Record Management Services Reference Manual,
wild card characters can be used in the directory name, file name,
file type, and file version number fields of a file specification,
when given to a program designed to accept them. One purpose of wild
card characters is to refer to a group of files by a more general file
specification, rather than by each of the specific file
specifications. There are four characters (or strings of characters)
that can be used as wild card characters. These are the asterisk (*),
the percent sign (%), the ellipsis (...), and the minus sign (-).

An asterisk is used to match the missing component of a file
specification with an alphanumeric character string of any length
(including the null string). A percent sign 1is wused to match any
single alphanumeric character in that particular position (the null
string does not match). The asterisk and the percent sign can be
combined in many ways. For example, the sequence:

A*E§B* B*; *

matches a group of file specifications in which the file name starts
with an "A" followed by a string of zero to "n" characters, followed
by an "E", followed by a single character, followed by a "B", followed
by a string of zero to "n" characters. The file type begins with a
"B" and is followed by a string of zero to two characters. Finally,
the wversion number in this group will be any and all versions of that
file, beginning with the highest version number.

The ellipsis and minus sign wild card characters are aids to
searching, or traversing, directory hierarchies. Both the ellipsis
and the minus sign allow you to refer to directories in a relative
positional sense, rather than by an absolute name for the first
directory or group of directories. The ellipsis enables you to select
files from all directory levels from a specified level downward. The
minus sign, on the other hand, enables you to search up the hierarchy,
rather than down. A single minus sign will send the search back up
one level from the current default directory level.

3.2 DEFAULT FILE SPECIFICATIONS

Defaults are valuable because they are easy to use, and they 1let you
enter as short a file specification as possible. The less you enter,
the less chance you have of making a syntax error, or an incorrect or
invalid specification. The default values were selected because they
conform to the most applicable and frequentlv used practices.

When you enter a file specification and omit fields in it, the system
supplies values for these fields.

The node name defaults to your local node. The device and directory
names, if omitted, default to your current default disk and directory
name. These are initially established when you log in to the systen,
based on an entry under your user name in the system authorization
file.

You can find your default disk and directory name by using the SHOW
DEFAULT command. For example:

$ SHOW DEFAULT

DBALl: [PAYO01]

SPECIFYING THE FILE TO BE PROCESSED

The response to the command indicates that the current default disk is
DBAl, and the directory name is PAYOl.

You can change the disk and directory name defaults with the SET
DEFAULT command.

System defaults also apply for fields other than the device and
directory name. Table 3-3 summarizes the defaults that apply to each
field in the file specification,

Table 3-3
File Specification Defaults

Field ‘ Defaults

node Local system

device Default device established at login, or by the
SET DEFAULT command; almost always a disk
device

If a controller designation is omitted, it
defaults to A. If a unit number is omitted, it
defaults to 0. (The ALLOCATE and SHOW DEVICES
commands, however, treat a device name that does
not contain controller and/or unit numbers as a
generic device name.)

directory Directory name established at login or by the
SET DEFAULT command, or next higher level in a
subdirectory

file name No defaults are applied to file names in input

file specifications, except for those commands
accepting multiple input file specifications,
where, for specifications other than the first,
the file name (as well as node, device,
directory, and file type) 1is often defaulted
from the previous input file specification.
Most commands default output file names based on
the file name of an input file

file type Various commands apply defaults for file types,
based on the standard file type conventions
summarized in Table 3-2

file version For input files, the system assumes the most
recent version (that is, the highest number)

For output files, the system increases the
version number by 1 for existing files, and
supplies a version number of 1 for new files

File specification defaults can be applied in other ways as well.
Chapter 8 of the VAX-~11l Record Management Services Reference Manual
describes an advanced method for applying defaults to file
specifications. This method involves the use of defaults built into
your program, the default file specification string address and size
fields of the FAB, and the related file NAM block.

3-9

SPECIFYING THE FILE TO BE PROCESSED

3.3 LOGICAL NAMES

The use of logical names is an effective technique for achieving
device independence within a program. The logical names provide a
convenient shorthand method for specifying files that you refer to
frequently.

The ASSIGN command equates a file specification to a 1logical name.
For example, assume that, external to your program code, you specify
the following:

$ ASSIGN DBAO: [PAYROLLIMASTER.DAT OLD_MASTER:
$ ASSIGN DBAl:[PAYROLL]MASTER.DAT NEW_MASTER:

The ASSIGN command equates the logical name OLD_MASTER to file
MASTER.DAT on disk device DBAO in the directory PAYROLL. The logical
name NEW MASTER equates to file MASTER.DAT on disk device DBAl in the
directory PAYROLL on that device. (This file specification is known
as the equivalence string for the logical name.) Subsequently, within
your program, you can specify these files as follows:

INFILE: $FAB FNM=<OLD_MASTER:>
OUTFILE: SFAB FNM=<NEW_MASTER:>

Alternatively, you can make the following external assignments:

$ ASSIGN INDEVICE:[PAYROLL] OLD_MASTER:
$ ASSIGN OUTDEVICE: [PAYROLL] NEW MASTER:
$ ASSIGN DBAQO: INDEVICE: -

$ ASSIGN DBAl: OUTDEVICE:

Note in the example above that logical name equivalence strings are
not always full file specifications. Furthermore, note that the use
of logical names is recursive; that is, the equivalence string for a
given logical name may contain a further 1logical name, This
assignment would require a slight modification to the program to
specify the same files., You would have to indicate the file name and
file type in the FAB file specification. For example:

INFILE: $FAB FNM=<OLD_MASTER:MASTER.DAT>
OUTFILE: SFAB FNM=<NEW_MASTER:MASTER.DAT>

Depending on the degree of flexibility you need, numerous other
alternatives are possible in assigning logical names. The best
alternative is determined according to individual circumstance.

Logical names and their equivalence name strings can each have a
maximum of 63 characters, and can be used to form all or part of a
file specification. 1If only part of a file specification is a logical
name, specify the logical name in place of the device name in
subsequent file specifications.

For example, a logical name can be assigned to a device name, as
follows:

$ ASSIGN DMAl: BACKUP

After this ASSIGN command, you can use the logical name BACKUP in
place of the device name field when referring to files on the disk.

SPECIFYING THE FILE TO BE PROCESSED

You may also create a logical name for a node name or node
specification. This is useful for reducing the length of a long node
specification and for protecting the password field of an access
control string. For example:

$ DEFINE DAVE "BOSTON""COWENS CELTICS""::"
$ TYPE DAVE::DBB2:[REPORT]JAN80 .DOC

The logical node name DAVE, defined above, has an equivalence string
of BOSTON"COWENS CELTICS":: which is substituted for the node name
DAVE in the TYPE command.

RMS does not allow the use of lowercase 1logical names in. file
specifications. If you try to use a lowercase logical name, RMS will
convert to uppercase the entire string prior to attempting translation
and will continue to do so on each successful translation thereafter.
RMS will accept and ignore the use of blanks, tabs, and null
characters in file specifications and logical name assignments. Such
characters will be ignored by RMS, unless they are enclosed in quotes.

3.3.1 Logical Name Tables

Logical names and their equivalence names are maintained in three
logical name tables:

e Process logical name table -- contains entries that are 1local
to a particular process. When you equate a file specification
to a logical name with the ASSIGN or DEFINE command, the
logical name, by default, is placed in this table.

e Group 1logical name table -- contains entries that are
qualified by a group number. These entries can be accessed
only by processes that execute within the same group number in
their UIC. To make an entry in the group logical name table,
you use the /GROUP qualifier with the ASSIGN or DEFINE
command.

e System logical name table -- contains entries that can be
accessed by any process in the system. To make any entry in
this table, use the /SYSTEM qualifier with the ASSIGN or
DEFINE command.

You must have user privileges to place entries in the group or system
logical name tables.

3.3.2 Logical Name Translation and Recursion

When the system reads a file specification, it examines the file
specification to see if the left-most component is a logical name. If
it is, the system substitutes the equivalence name in the file
specification., This is called logical name translation.

When the system translates logical names, it searches the process,
group, and system tables, in that order, and uses the first match that
it finds.

SPECIFYING THE FILE TO BE PROCESSED

When RMS translates logical names in file specifications, the logical
name translation is recursive. This means that after RMS translates a
logical name in a file specification, it repeats the process of
translating the file specification. For VAX-1ll RMS, the parse routine
will perform up to 10 1logical name translations in an effort to
identify the actual file name. For example, consider logical name
table entries made with ASSIGN commands as follows:

$ ASSIGN DBAl: DISK
$ ASSIGN DISK:WEATHER.SUM REPORT

The first ASSIGN command equates the logical name DISK to device DBAl.
The second ASSIGN command equates the logical name REPORT to the file
specification DISK:WEATHER.SUM. 1In subsequent requests for this file,
you can refer to the logical name REPORT. In translating the logical
name REPORT, the system finds the equivalence name DISK:WEATHER.SUM.
It then checks to see if the portion on the left of the colon in this
file specification is a logical name; if it is (as DISK 1is in this
example) it translates that logical name also. When the logical name
translation is complete, the translated file specification is:

DBAl :WEATHER.SUM

Note that when you assign one logical name to another 1logical name,
you must terminate the equivalence name with a colon (:) if you are
going to use the logical name in a file specification in place of a
device name. For example:

$ ASSIGN DBAl: TEST
$ ASSIGN TEST: GO

Logical node name translation is also recursive to 10 levels. The
equivalence string produced from a logical node name must be another
node specification. That is, it cannot supply other missing elements
of a file specification.

3.3.3 Defaults for File Names

When the system completes the translation of a logical name, it must
use defaults to fill in the still-unspecified fields in the file
specification.

Many system commands create output files automatically and provide
default file types for the output files. When you use a logical name
to specify the input file for a command, the command uses the 1logical
name to assign a file specification to the output file as well. Thus,
if the equivalence name contains a file name and file type, the output
file is given the same file name and file type as the input file.

For example, the LINK command creates, by default, an executable image
file that has the same file name as the input file and a default file
type of EXE. However, if you make a 1logical name assignment and
invoke the LINK command as shown below, the results are not as you
would expect:

$ ASSIGN RANDOM.OBJ TESTIT
$ LINK TESTIT

The linker translates the logical name TESTIT and 1links the file
RANDOM.OBJ. When 1t <creates the output file, it also uses the same
logical name for the output file. Because the equivalence name
includes a file type, the LINK command does not use the default file
type of EXE. The executable image is named RANDOM.OBJ and has a
version number one higher than the version number of the input file.

3-12

SPECIFYING THE FILE TO BE PROCESSED

3.3.4 Bypassing Logical Name Translations

The system always checks a file specification to see if it contains a
logical name. When you enter a device name or file specification, you’
can request that no translation is to take place. You do this by
preceding the device name or file specification with an underscore
character (). (If the file specification contains a node name, then
both the "node name and device, name may be prefixed with an
underscore.) For example, if you do not want the system to check
whether DMA2 is a logical name on an ALLOCATE command, you would enter
the following:

$ ALLOCATE _DMA2:

3.3.5 Default Process Logical Names

When you log in to the system, the system creates logical name table
entries for your process. The logical names, which all have a prefix
of SYS, are listed in Table 3-4.

Table 3-4
Default Process Logical Names
Logical Name Equivalence Name
SYSSINPUT Default input stream for the process. For an

interactive user, SYSSINPUT 1is equated to the
terminal. 1In a batch job, SYSSINPUT is equated
to the batch input stream

SYSSOUTPUT Default output stream for the process. For an
interactive user, SYSSOUTPUT is equated to the
terminal. . In a batch job, SYS$SOUTPUT is equated
to the batch job log file

SYSSERROR Default device to which the system writes
messages For an interactive user, SYS$SERROR is
equated to the terminal. In a batch Jjob,
SYSSERROR is equated to the batch job log file

SYSS$COMMAND Original SYS$INPUT device for an interactive
user or batch job

SYSS$DISK Default disk device most recently established by
the SET DEFAULT command

SYSSSYSDISK System disk used to boot VMS

SYSSLOGIN Default disk and directory established at login

SYSSNET Is defined only for the target process in DECnet
task-to-task communication., The equivalence

string for SYSSNET identifies the source process
that invoked the target process. SYSSNET, when
opened, represents the logical link over which
the target process can exchange data with its
partner. (For additional information, see the
DECnet-VAX User's Guide)

SYS$NODE Identifies the local node name on which vyour
system is running, if DECnet is installed

SPECIFYING THE FILE TO BE PROCESSED

3.4 PROCESS-PERMANENT FILES

Process-permanent files are an important feature of the VAX/VMS
operating system. They exist over the life of a process; hence the
term process permanent. In contrast, most files accessed from an
image are <closed when the image exits, and any control blocks that
describe them are deallocated.

You can use VAX-11 RMS to open or create a process-permanent file of
your own definition only in supervisor or executive mode. You set the
PPF bit in the file processing options field (FOP) of the FAB. This
allocates internal data structures, maintained by VAX-11 RMS. These
structures reside in the process control region until the end of the
process.

You cannot directly access a process-permanent file in user mode.
However, you can gain indirect access to a subset of all the available
functions of process-permanent files by use of the 1logical name
mechanism. When vyou 1log in to the system, a process-permanent file
corresponding to the process's input, output, and error message
streams 1is opened. (This means that the most commonly accessed files
need not be reopened by each image that executes in the context of a
process.) These process-permanent files have a logical name created
for them in the process logical name table (see Table 3-4). The
specific format of the names in the process 1logical name table
indicates a correspondence between the logical name and the related
process-permanent file, VAX-11 RMS recognizes these names and thus
provides easy access to the process-permanent files.

CHAPTER 4

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

The sequential record access mode is the way to retrieve or store
records by starting at a designated point in the file and continuing
to the end of the desired area. Records are accessed in the order in
which they logically appear in the file.

Section 4.1 deals with sequential access to the sequential file
organization. Section 4.2 deals with sequential access to the
relative file organization. Section 4.3 deals with sequential access
to the indexed file organization.

4.1 THE USE OF SEQUENTIAL FILE ORGANIZATION

This section explores various ways to use sequential file organization
with sequential record access mode. Some basic programming examples
will be used to illustrate this simple, flexible, and easy-to-use file
organization. Once vyou understand sequential file organization, you
can use it where it best suits your needs, and build on the techniques
described in this chapter to use this file organization to its fullest
capabilities.

4.1.1 Reading Records

This section describes a sample program that illustrates how records
are read from a sequentially organized file, Each record is a
fixed-length, 50-byte record, as follows: '

Byte Contents

0-4 - Part number

5 Discount type code

6-25 Part description

26-29 Quantity on hand

30-33 Reorder quantity

34-42 Last reorder date (dd mon vyy)
43-49 List price

The purpose of this program is to count the records that have the
character A as the fifth byte of the record (discount type code).

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

Assume that, external to the program, the following assignment will be
made:

$ ASSIGN 18SEP78 .INV INFILE:

First, you need a FAB to describe the file. You thus issue a S$FAB
macro call, using parameters to set values in the FAB fields. 1In some
cases, the fields you use for a file can have the value applied by
default, so you need not specify these fields.

For example, the file access field indicates the type of operation you
want to perform on the file. 1In this example, you want to open the
file for read access (with a SGET macro instruction). Normally, vyou
do so by setting FAC=GET on the SFAB macro instruction. However,
FAC=GET is the default when you are opening a file, so you need not
specify it. If you were going to perform some other type of operation
when you opened the file, such as delete, you must specify that
operation explicitly. In addition, defaults can change depending on
the operation (see Section 4.1.2; the default is write access when
you create a file).

In this example, the file has no special characteristics, such as file
processing options. In any case, most FAB fields used for an open
operation are only returned as output. Therefore, the only field you
need specify as input 1is the file specification. In the external
assignment, the logical name INFILE: is equated to 18SEP78.INV,
Therefore, with the FNM parameter, you can indicate the file as
follows:

INFAB: SFAB FNM=<INFILE:>

Note that the label field contains INFAB. This lets you refer to this
FAB in the SRAB macro instruction, to connect the record stream, and
define the address of the FAB for the run-time macro instructions in
your program.

Next, you need a RAB to describe the records and how you intend to
access the file. You must associate the RAB with the FAB (using the
FAB parameter) and set up a buffer area (UBF and USZ parameters).
Access to this file will be sequential, which is the default record
access mode, and therefore need not be specified. The SRAB macro
instruction would be as follows:

INRAB: SRAB FAB=INFAB,-
UBF=REC_BUFFER,~-
USZ=REC_BUFFER_SIZE

The label field contains the value INRAB, giving you a means of
referring to this RAB in your run-time macro instructions. Note also
the use of the continuation hyphen (-) to continue the instruction on
the next line,

To process this file, you need certain VAX-11 RMS run-time processing

macro instructions to perform the operations. First, because this is

an existing file, you must open it for access with a $OPEN macro

instruction and specify the FAB that describes the file, as follows:
SOPEN FAB=INFAB

Next, you must establish the record stream for this file with a
SCONNECT macro instruction indicating the RAB, as follows:

$CONNECT RAB=INRAB

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

Once you open the file and connect the record stream, you must
indicate what operations you are going to perform. In this
application, you want to retrieve records from a file. The $GET macro
instruction performs this function. This macro instruction uses the
RAB.

SGET RAB=INRAB

After you have read all the records, and processing is finished, you
must close the file with the $CLOSE macro instruction indicating the
FAB for the file, as follows:

$CLOSE FAB=INFAB

The SCLOSE macro instruction also disconnects the record stream for
all RABs. If you want to disconnect the record stream for a
particular RAB connected to a FAB (more than one RAB can be connected
to a single FAB), vyou can use the SDISCONNECT macro instruction,
specifying the RAB to disconnect.

Figure 4-1 lists the program code to count the discount type code A
records. The VAX-1l1 RMS macro instructions are shown in red. Note
that this program, in effect, produces no worthwhile result because
the program does not communicate the record count to you.

1 +TITLE COUNT = COUMTS TYPE A DISCRUNT RECORDS
2
3 3 PROGRAM TO READ INVENTORY FILE COUNTING
4 3 TYPE "A’ DISCOUNT RECORDS
53
[«PSECT DATA,LONG
7 INFAB: $FAB FNM=<INFILES>
8 INRARt S$RAB FARZINFAR, =
9 UBF=REC RUFFER,=
10 US7=REC RUFFER,S1ZE
11 REC_BUFFERS ,BLKB S@ t USER RECORD BUFFER
12 REC,BUFFER,SIZE=,= RFC_RUFFER
13 COUNT: «WORD 2 s COUNT OF TYPE *A’ RECOQORDS
14
15 3 OPEN FILE, CONNECT STREAM
16 1
17 .PSECT CODE
18 BEGING L,WOQRD I}
19 $OPEN FABZINFAR 1 OPEN INPUT FILE
2@ BLBC RALEXIT + BRANCH QN ERROR
21 SCONNECT RAB=INRAR s CONNECT STREAM
22 BLBC RA,EXIT t PBRRANCK ON ERROR
23
24 3 READ RECORDS, COUNTING TYPE ‘A’ RECORDS
25 3
26 READ:!: SGET RAB=INRAR s READ A RECQRD
27 BLAC R, DONE 3 BRANCH 0N FERROR
28] t (ERROR MAY BE EOF)
29 CMPB REC _BUFFER+5,8%A/A/ + JS DISCOUNT TYPE = *A°?
k14 BNEG READ s BRANCH IF NOT .
3 INCH COUNT 3 COUNT TYPE *A® RECORD
32 BRA READ t GN GET THE NEXT RECDRD
33
34
35 3+ ALL DONE, CLOSE FILE AND EXIT,
36
37 DONE?Q SCLNSE FARSINFAR + CLUSE THE FILE
38 EXITe SEXIT,S RN 1 EXIT WITH STATUS
39
40 +END BEGIN

Figure 4-1 Program to Count Records in a Sequential File

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

4,1.2 Creating a Sequential File

This section describes a sample program that illustrates how you can
use the sequential file organization to create a new file by copying
an existing file. The format and contents of the records in the file
are the same as those described for the example in Section 4.1.1.

Assume that, external to the program, the following assignments will
be made:

$ ASSIGN 18SEP78 .INV INFILE:
$ ASSIGN 18SEP78 .CPY OUTFILE:

Because this program uses two files, one for input and one for output,
two separate FABs are required to describe the files. For the input
file, you need only define the file specification. In the external
assignment, it was equated to INFILE:. Therefore, with the FNM
parameter, you indicate the file as follows:

INFAB: $FAB FNM=<INFILE:>

For the output file, you must also define the file specification. In
the external assignment, it was equated to OUTFILE:. Because you are
creating this file, you use the $PUT macro instruction to write
records to the new file. The default is write access when creating a
file; therefore, you need not specify FAC=PUT. When vyou create a
file, you must indicate the record format. 1In this file, the records
are fixed length, so the specification is RFM=FIX. You also must
specify the maximum record size. For fixed-length records, the
maximum record size indicates the actual length of each record in the
file. The records for this file are each 50 bytes long. You can
specify this record size either by indicating MRS=50, or by defining a
record size within your program and referring to this definition, for
example, REC SIZE=50 and MRS=REC SIZE. Defining the record size in
your program also lets you make other references to this record size
within your program, for example, in defining the size of the buffer
areas for the RAB.

As an option, you can indicate that each record is to be preceded by a
line feed and followed by a carriage return whenever the record is
output to a line printer or terminal. Set the record attributes field
with RAT=CR. The FAB for the output file is then defined as follows:

OUTFAB: $FAB FNM=<OUTFILE:>,-
RFM=FIX,-
MRS=REC_SIZE,-
RAT=CR

You must also define RABs for both files. The FAB parameter
associates a RAB with the appropriate FAB. Because the sequential
record access mode is the default, you can omit the RAC parameter.
Both files also need a buffer area. 1In fact, they both can use the
same buffer area, since you will read a record into a buffer, and then
write it from the buffer before you read another record into the
buffer. The output RAB, however, uses the RBF and RSZ parameters to
define the buffer, rather than the UBF and USZ parameters. The reason

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

is that the $PUT macro instruction does not use UBF and USZ as input;
it uses RBF and RSZ. The S$RAB macro instructions would be as follows,
with the input RAB shown first.

INRAB: S$RAB FAB=INFAB,-
UBF=REC_BUFFER, -
USZ=REC_SIZE

OUTRAB: S$RAB FAB=OUTFAB,-
RBF=REC_BUFFER, -
RSZ=REC_SIZE

The run-time processing macro calls for the input file consist of a
SOPEN, a S$CONNECT, a $GET, and a $SCLOSE. For the output file, you
must specify a SCREATE macro instruction (rather than an $OPEN), which
opens and constructs a new file. In this macro instruction, you
indicate the FAB that contains the attributes for the new file, as
follows:

$CREATE FAB=0OUTFAB

As with the input file, you must also specify the SCONNECT macro
instruction to <connect the record stream and the S$CLOSE macro
instruction to close the file. However, before the file is closed, it
must be processed. In the case of a copy operation, records must be
written to the new file. Use the $PUT macro instruction, specifying
the RAB, as follows:

$PUT RAB=0OUTRAB

Figure 4-2 lists the program code to copy a file. The VAX-11 RMS
macro instructions appear in red.

4,1.2.1 Dynamically Creating a Sequential File - The example in this
section produces results identical to the results of the program
listed in Figure 4-2. The difference between the two, however, is
that the allocation and initialization of the control blocks for the
output file (FAB and RAB) is dynamic, performed at run time rather
than at assembly time. The "store" macro instructions let you
dynamically set fields.

The values you supply with the "store" macro instructions expand into
code that affects the contents of data fields during the execution of
your program.

Figure 4-3 lists the program code for this example. Note that only
minor changes have been made to the program listed in Figure 4-2,
Lines 11 through 19 in Fiqure 4-2 have been replaced in Figure 4-3
with 1lines 12, 13, and 14 to begin the definition of the output FAB
and RAB and to provide a .ASCIC directive to specify the character
string for the file specification.

OUTFAB: SFAB
OUTRAB: SRAB FAB=0QUTFAB
OUT_FILESPEC: .ASCIC /OUTFILE:/

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

1 +TITLE COPYFILE = MAKE COPY OF INPUT FILE
2

3 3 PROGRAM TO MAKE A COPY OF THE INPUT FILE

4

S REC,SIZE=zSe@]
6 «PSECT DATA,LONG

7 INFARg S$FAB FNMa<INFILES>

8 INRAB: $RAB FAB2INFAB,=

9 UBFeREC, BUFFER,=

12 USZ=2REC,SIZ2E

11 NUTFABY $FAB FANM3<OUTFILES>, = '
12 RFMSFIX,= :
13 MRS=REC_SIZE,= !
14 RATaCR !
15 QUTRAB: $RAB FABSOUTFAR,=

16 RBF2REC _BUFFER,=

17 RSZaREC,SIZE

18]
19 '
2?2 REC, BUFFER? +BLKB REC.SIZE
21 LPSECT CODE,NOWRT
22

23 3 INITIALIZATION « OPEN INPUT AND OUTPUT FILES
24 4
25 START: L«wORD 2

26 $IPEN FARSTNFAB '
27 BLBC RE,EXITY !
28 SCREATE FAB=QUTFARA]
29 BLBC RILEXITY s
39 SCONNECT RABaINRAB H
3t BLAC RA,EXITY '
32 BCONNECT RAB=OUTRAB]
33 BLAC RP,EXITY [}
g

35 3§ COPY RECORDS

36 3

37 READS $GETY RAB2INRAB ?
38 RLABC R2,DONE '
39 3PUT RAB3QOUTRAB '
4 '
41 BLAS R@,READ]
42 EXITis BRB EXIT '

43
44 3 ALL SET = CLOSE FILES AND EXIT
us g
46 DONE: SCLOSE FAB=INFAB
47 SCLOSE FABaOUTFAB
48
49 EXITy SEXIT,S R2
5@ +END START
Figure 4-2

A S$FAB STORE macro instruction has been inserted in
the output FAB
has
is because you
parameter to provide the file specification dynamically;

28 of Figure 4-3 to initialize
values. (Note that the FNM parameter
parameters: FNA and FNS. This

the FNA and FNS

$FAB_STORE

parameters.)

FAB=OUTFAB, -
FNA=OUT FILESPEC+1,-
FNS=0UT FILESPEC,-
RFM=FIX, -

MRS=#REC SIZE,-
RAT=CR

RECORD SIZE

OQUTPUT FILE HAS FIXED
LENGTH RECORDS, S/ BYTES
IN LENGTH, WITH IMPLIED
NEw LINE CARRIAGE CONTROL

NOTE$ OUTPUT RAB USES

SAME RECORD BUFFER AS INPUT RAB

AND CONNECT STREAMS

NPEN INPUT FILE
BRANCH ON ERROR
OPEN OQUTPYT FILE
BRANCH ONn ERROK
CONNECT INPUT RAB
BRANCH ON ERROR
CONNECT OUTPUT RAB
BRANCH ON ERROR

READ A RECORD
BRANCH ON ERRQR
WRITE THE RECORD TO
THE OQUTPUT FILE
BRANCH ON SUCCESS
GET OUT ON ERROR

CLOSE INPUT FILE
CLOSE OUTPUT FILE

EXIT WITH STATUS

Program to Copy a Sequential File

lines 23

been replaced by

through
and set the needed

two

cannot use the FNM
you must use

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

The SCREATE macro instruction (line 28 in Figure 4-2) has been
replaced in Figure 4-3 with a new SCREATE macro instruction (now on
line 30). This opens and constructs the output file, indicating the
register containing the address of the FAB--RO. (Note that the
FAB_STORE macro instruction loaded the FAB address into register 0 by
default.)

$CREATE FAB=R0

A $RAB_STORE macro has been inserted in lines 34, 35, and 36 of Figure
4-3 to initialize the output RAB and set the needed values.

$RAB_STORE RAB=0OUTRAB, -
RBF=REC_BUFFER, -
RSZ=#REC_SIZE

The SCONNECT macro instruction (line 32 in Figure 4-2) has been
replaced with a new S$CONNECT macro instruction (now on line 38). This
instruction establishes the record stream for the output file,
indicating the register of the RAB--RO.

$CONNECT RAB=RO

4.2 THE USE OF RELATIVE FILE ORGANIZATION

Relative file organization is available for use on disk devices only.
This organization affords more capabilities than the sequential file
organization, but, in most cases, requires additional planning and
coding to implement (see Chapter 1).

Relative file organization uses a fixed-length cell for each record in
the file (or as a space for a record to be inserted). However, while
all the cells are fixed-length, the individual records need not be;
they can be wvariable 1length, fixed 1length, or wvariable with
fixed-length control.

The relative file organization allows random retrieval of records by
means of keys (a key in a relative file is the relative record number
assigned to each record). The fixed-length cell allows for a direct
calculation of the record's actual position.

4.2.1 Reading a Relative File

The program described in this section produces the same result as the
program listed in Figure 4-1. The program counts discount type code A
records in the file. The record contents are the same, and so are the
external assignments., The only difference 1is that the file is a
relative file.

You need not specify a file organization in the FAB for the file when
you open it because the file organization already is assigned. 1In
addition, you do not need to specify sequential file organization for
a create; since it is the default. Therefore, the program code would
be identical to the one for a sequential file (Figure 4-1).

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

1 «TITLE COPYFILEY = MAKE COPY OF INPUT FILE

2

3 1 PROGRAM TO MAKE A COPY OF THE INPUT FILE

4

5 REC_ST2E=S@Q ¢ RECORD SIZE

[+PSECT DATA,LONG

7 INFAB: $FAR FNMa<INFILE >

R INRART $RAR FABZINFAB,=

9 UBF=REC,BUFFER,=

12 USZ3REC_ SIZE

il

12 OUTFaBt $FaB s OUTPUT FILE FAB

13 NUTRAR: $RAR FAB=2QUTFAR s OUTPUT FILE RAR

14 OUT FILESPEC: +ASCIC /OUTFILES/

1S REC,RUFFER? «BLKR REC,SI2E 3 RECORD BUFFER

16 «PSECT CODE,MNOWRT :

17 .

1R 3 INITIALIZATION = OPEN INPUT AND OUTPUT FILES AND CONNECT STREAMS

19
22 START: L wORD @
21 $NPEN FABZINFAR t OPEN INPUT FILE
22 RLBC R2,EXITH 1 BRANCH ON ERROR
23 §FAR, STORE FAR=QUTFAB,= 1 INITIALIZE CQUTPUT FAH
24 FNABQUT FILESPEC+1,= t SET OUT FILE SPEC ADDRESS
25 FNS30UT FILESPEC, = 3 SET OQUT FILE SPEC LENGTH
2k PFMZFIX,= 1 SET RECORD FORMAT
27 MRS ¥REC,SIZE,= s SET MAXIMUM RECORD SIZE
28 RAT=CR g NFEW LINE CARRIAGE CONTROL
29

LY’ SCREATE FABzR? y OPEN OQUTPUT FILE

31 RLAC RA,EXITY § BRANCH ON ERROR

32 SCONNECT FARZINRAR 3 CONNECT INPUT RAB

33 BLBC RO,EXIT1 3 BRANCH ON ERROR

14 $RAB,STORE FABEQUTRAR,= s INITIALIZE OUTFUT FILE RAB
35 RBFSREC BUFFER, = t SET USER BUFFER ADDRESS
36 RSZ=¥REC,SIZE 1 SET USER RUFFER SIZE

37

38 SCONNECT RAB=RQ 1 CONNECT QUTPUT RASB

39 BLRC RG,EXITY s BRANCH ON ERROR
40

41 1 COPY RECORDS
42

43 READ: SGET RABSINRAB 3 READ A RECORD

qu BLBC RO,DONE 3 BRANCH ON ERROR

45 $PUT RAB=QUTRASB 3 WRITE THE RECORD TO

46 1 THE OUTPUT FILE
47 BLBS RO,READ 3y BRANCH ON SUCCESS

48 EXIT1s BRB EXIT g GET OUT ON ERROR
49 3
S8 3 ALL SET < CLOSE FILES AND EXIT
51
52 DONE SCLOSE FAB=INFAB 9 CLOSE INPUT FILE

53 SCLOSE FAB=mQUTFAB 9 CLOSE OUTPUT FILE
54
55 EXIT: SEXIT_ S RO 1 EXIT WITH 8TATUS
56 +END START

Figure 4-3 Program to Copy a Sequential File, Setting the
Qutput Control Blocks Dynamically

4.2.2 Creating a Relative File

When you create a file, you must specify the type of file organization
you want, either by default for sequential or by an explicit
specification for relative.

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

You indicate that you want the relative file organization assigned to
the file by specifying ORG=REL on the $FAB macro call that applies to
the file.

If you use the same example as in Section 4.,1,2 (and Figure 4-2), but
create a relative file rather than a sequential file, only the output
file $FAB macro instruction changes, as indicated by an arrow in the
portion of code shown in Figure 4-4, Everything else in the program
remains the same.

S REC_SIZ2E=58 t RECORO SIZE
6 «PSECT DATA,LONG
7 INFAB: $FAR FNMa<CINFILFt>
8 INRAB: $RAB FARSINFABR,=
9 UBF=REC, RUFFER, =
19 USZ=zREC,SIZE
11
12 OUTFAB: $FAR FNME<OUTFILES>, = t OQUTPUT FILE HAS FIXED
13 RFMzFIX,= t+ LENGTH RECORDS, 50 BYTES
14 MRSSREC ,SIZE,~ t IN LENGTH, WITH IMPLIED
15 RAT=2CR,= t NEw LINE CAPRIAGE CONTROL
16 ARGZRE|, =i
17 OUTRAB: $RAB FABzQUTFAR,=
18 RUF=REC RUFFER, =
19 RSZ=REC,SIZE
20 * NOTE: OUTPUT RAB USES
21 + SAME RECORD BUFFER AS INPUT RASB
22 REC_BUFFER: JRLX8 REC,SIZ2E
e3 +PSECT CODE,NOWRT

Figure 4-4 Creating a Relative File

4,2,2,1 Dynamically Creating a Relative File - Section 4,1.2,1
described how to dynamically specify the parameters to create a file
with the sequential file organization., Section 4.2.2 described how to
create a file with the relative file organization specified at
assembly time. By combining what was discussed about the output FAB
in both of these sections, you can specify dynamically, at run time,
the parameters to create a relative file.

At assembly time, the SFAB macro instruction included the
specification of ORG=REL (see Figure 4-4). By adding this same
specification to the SFAB STORE macro instruction (see Figure 4-3),
you specify the parameters dynamically, at run time.

Figure 4-5 lists a section of code, showing the inclusion of ORG=REL
to the SFAB_STORE macro instruction.

Appendix A contains an additional example of the use of sequential
record access mode.

4-9

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

t OQUTPUT FILE FaB
t OUTPUT FILE RAB

3 RECORD RUFFER

AND CONNECT STREAMS

OPEN INPUT FILE

BRANCH ON ERROR

INITIALIZE OQUTPUT FAB
SET
SET
SET
SET
SET
RELATIVE FILE ORGANIZATION

OUT FILE SPEC ADDRESS
OUT FILE SPEC LENGTH
RECORD FORMAT

MAXIMUM RECORD SIZE

- e v N e e ne e

OPEN QUTPUT FILE

BRANCH ON ERROR

COMNECT INPUT RAB

BRANCH ON ERROR

INITIALIZE OUTPUT FILE RAB
SET USER BUFFER ADDRESS
SET

. e e e e e e

USER BUFFER SIZE

t CONNECT QUTPUT RaB

6 +PSECT DATA,LONG

7 INFAB: S$FaB FNMS<INFILEL>

8 INRAB: $RAB FABSINFAB,=

9 URF=REC,BUFFER, =

10 USZ=REC,SIZE

11 3

12 OUTFAB: $FaB

13 OUTRAB: SRAB FABaCUTFAB

14 OUT, FILESPEC: LASCIC /OUTFILE:/
15 REC,BUFFER? +BLKB REC,SI2E

16 «PSECT CODE,NOWRT

17 .

18 7 INITIALIZATION « OPEN INPUT aAND QUTPUT FILES
19 9

27 3TART: (WORD 2

el SOPEN FAB=INFAB

22 BLBC RA,EXITY
23 $SFAB,STORE FAB3OUTFAB, =
L FNAZQUT FILESPEC+1,=
25 FNS=0UT_ FILESPEC,=
26 RFMEFIX,=
27 MRS=H#REC,SIZE, =
28 RAT=CR,=
29 ORGsREL

3p
31 SCREATE FAB=RQ
32 BLBC R2,EXITY
33 $CONNECT RAB=INRAB
34 BLBC RR,EXITH
35 $RAB, STORE RAB=NUTRAB, =
36 RBFSREC,BUFFER, =
37 RSZ=#REC_,SI2F
38
39 SCONNECT RARZR)
Figure 4-5 Creating a Relative File Dynamically

4.3 THE USE OF INDEXED FILE ORGANIZATION

Indexed file organization is
This organization affords
relative file organization.

more

use of
only by
establish.

The indexed file allows the
Their 1lengths are 1limited
maximum record size that you
may change size on an update,
maximum size. The record size may be
with an update operation.

Indexed files allow random access to either fixed- or

data records by a key value.
character string, a packed decimal

A key

This type of file organization stores the
value.

available for use on disk
capabilities than the sequential or

truly

number,
integer, or a 2- or a 4-byte unsigned binary number within the record.
records
These records can then be retrieved sequentially in ascending

devices

variable-length

or decreased

a 2- or 4-byte

by ascending

order or randomly by supplying a specific key value to retrieve.

When an indexed file is created, a key is defined by its location
At least one key,

record.
indexed

length within each

must be defined for an file.

and
called a primary key,
Optionally, additional keys

referred to as alternate keys, may be defined.

IMPLIED CARRIAGE CONTROL

only.

records.
the size of the bucket or by a
Since variable-length records
there is no need to pad records to their

increased later

variable-length
in an indexed file can be a
signed

key

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

As your program puts records into an indexed file, VAX-11 RMS uses the
values of the primary and alternate keys to build indexes. An index
is the structure which allows the records to be retrieved randomly.
Each data record is placed in the file in sorted order by primary key.
In alternate indexes, the sort sequence is established by pointers to
the actual data record. These mechanisms enable the data records to
be read sequentially in sorted order by any key.

Because VAX-11 RMS completely controls the placement of records in an
indexed file, 1location of the records in the file is transparent to
your program.

4,3.1 Reading an Indexed File

The program described in this section produces the same result as the
program listed in Figqure 4-1 and described in Section 4.1.1. The
program counts discount type code A records in the file. The record
contents are the same and so are the external assignments. The
difference is that the file is an indexed file. 1In this example, the
discount type field within the record has been defined as the first
alternate key. This will allow random access to the first record
containing discount type code A and sequential access to all
succeeding type A records. This eliminates the need to read all of
the records 1in the file and, in fact, simplifies the program logic.
Though some of the program code is identical to that for sequential
files, some is unique to indexed files (see Figure 4-6).

Assume that, external to the program, the following assignment will be
made:

$ ASSIGN 18SEP78 .INV INFILE:

First, you need a FAB to describe the file. You therefore 1issue a
$FAB macro instruction, wusing arguments to set values in the FAB
fields.

For example, the file access field indicates the type of operations
allowed when the file is opened. You want to open the file for read
access only. Normally, you do so by setting FAC=GET on the $FAB macro
instruction. However, FAC=GET is the default when you are opening a
file, so you need not specify it. If you were going to perform some
other type of operation when you opened the file, such as delete, you
would have to specify that operation explicitly.

The only field you need specify as input is the file specification.
In the -external assignment, the logical name INFILE: 1is equated to
18SEP78.INV. Therefore, with the FNM parameter, you can indicate the
file as follows:

INFAB: $FAB FNM=<INFILE:>

Note that the label field contains INFAB. This lets you refer to this
FAB in the $RAB macro instruction, to connect the record stream, and
define the address of the FAB for the run-time macro instructions in
your program,

Next, you need a RAB to describe the access to the records and to the
file. You must associate the RAB with the FAB (using the FAB
parameter) and set up a buffer area (UBF and USZ parameters). You
must also specify the buffers for the key value, and the size of the
key value (KBF and KSZ parameters). Specifying KRF=1 causes the first
alternate 1index to be used when retrieving records from the file.

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

Then you specify the record processing options ROP=LIM to compare the
key vdlue described by the KBF and KSZ fields with the value in the
record accessed on sequential get operations. When the key value in
the record exceeds that value in the key buffer on a sequential get
operation, a success code of RMS$S OK LIM will be returned. Finally,
the initial record access mode is to be by key (RAC=KEY). The $RAB
macro instruction would be as follows.

INRAB: SRAB FAB=INFAB,-
UBF=REC_BUFFER, -
USZ=REC_BUFFER_SIZE,-
KRF=1,- -
KBF=KEY_BUFF,-
KSZ=KEY_BUFF_SIZE,-
ROP=LIM,-

RAC=KEY

The label field contains the wvalue INRAB, giving you a means of
referring to this RAB in your run-time macro instructions.

Then you must set up the user buffer and the key buffer as follows:

REC_BUFFER: .BLKB 50
REC_BUFFER_SIZE=.-REC_BUFFER
KEY_BUFF: .BLKB i

KEY BUFF_SIZE=.-KEY_BUFF

To .process this file, you need certain VAX-1ll RMS run-time processing
macro instructions. First, because this is an existing file, you must
open it with a SOPEN macro instruction and specify the FAB that
describes the file, as follows:

SOPEN FAB=INFAB

Next, you must establish the record stream for this file with a
SCONNECT macro instruction indicating the RAB, as follows:

$CONNECT RAB=INRAB

Now you specify that the key you want is the first record containing
discount type code A. To position to the first record with discount
type code A, you issue a S$FIND macro instruction (with RAC=KEY set by
the SRAB macro instruction); then you change the record access mode
to sequential with the record access mode parameter option (RAC=SEQ on
the SRAB_STORE macro instruction).

Now that you have established the logical starting point in the file
(the first record with discount type A), you want to retrieve that
record and all succeeding records with discount type A, The S$GET
macro instruction performs that function. This macro instruction uses
the RAB.

$GET RAB=INRAB

When the success code RMS$ OK LIM is returned from a S$GET macro
instruction, you will have Tetrieved all records in the file with a
discount type A, The current record and any succeeding records (if
not at the end of file) will have a higher key value, such as B.
After record processing is finished, you must close the file with a
SCLOSE macro instruction, indicating the FAB for the file, as follows:

SCLOSE FAB=INFAB

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

The S$CLOSE macro instruction also disconnects the record stream for
all RABs. If you want to disconnect the record stream for a
particular RAB connected to a FAB (more than one RAB can be connected
to a single FAB), you can use the $DISCONNECT macro instruction,
specifying which RAB to disconnect.

Figure 4-6.lists the program code to count the discount type code A
records in an indexed file. The VAX-1ll RMS macro instructions are
shown in red. Note that this program, 1in effect, produces no
worthwhile result, because the program does not communicate the record
count to you; the program serves only as an example.

é «TITLE COUNT = COUNTS TYPE A DISCOUNT RECORDS
1]

3 1 PROGRAM TO READ INVENTORY FILE COUNTING

4y TYPE “A* DISCOUNT RECORDS

53

6 (PSECT DATA,LONG

7 INFABY SFAB FNMacINFILED>

8 INRABY SRAB FABEINFAB,=

9 UBFEREC,BUFFER, =

16 USZ3REC,BUFFER,SIZE,=

11 KRF2{,= ! KEY TO SEARCH ON

12 KBFRKEY BUFF,=) BUFFER T0 HOLD KEY VALUE
13 KSZ=KEY BUFF,81ZE,= y SIZE OF KEY VALUE

14 ROPa{IM, =

15 RAC=mKEY

16 REC,_BUFFER? LALKB 52

17 REC_RUFFER,S12E=,~REC, BUFFER

18 KEY,RUFF¢ BLKB

19 KEY, BUFF,SIZE=z,=KEY BUFF

20 COUNT3 L#ORD ?

21 ¢

22 3 OPEN FILE, CONNECT STREAM
23 3

24 .PSECT CODE

25 BEGIN: ,wORD 2

26 $OPEN FABzINFAB

27 BLBC RA,EXIT 1 BRANCH ON ERROR

28 SCONNECT RAB=INRAR 1 CONNECT STREAM

29 BLBC ROLEXIT 3 BRANCH ON ERROR

32 g

31 ¢ READ RECORDS, COUNTING TYPE ‘A’ RECORDS

32 ¢

33 MQova #*A/A/yKEY BUFF } SPECIFY KEY WE’RE SEARCHING FOR
3u $FIND RAB=xINRAR 3 POSITION TO FIRST TYPE *A’ REC
35 3 NOTE$ THIS 18 THE RECORD THAT
36 y WILL BE ACCESSED ON FIRST GET
37 BLBC RA,EXIT 1 BRANCH ON ERROR

38 $RAR,STORE RABuINRAR, = 3 CHANGE RECORD ACCESS MODE 70 SEQ@,
39 RAC=SEQ

4P READ! SGET RARZINRAB) READ A RECORD

al BLARC Ra,DONE 1 BRANCH ON ERROR

42 3 (ERROR MAY BE EOF)

43 CMPL R, ¥RMSS, OK, LIM y IS RETREIVED RECORD’S KEY

qu 3 > THAN KEY VALUE IN KEY BUFF
4s BEQL DONE) ALL DONE

46 INCHA COUNT 1 COUNT TYPE A’ RECORD

a7 BRB READ 1 GO GET THE NEXT RECORD

48 3 R

49 3 ALL DONE, CLOSE FILE AND EXIT,

50 3

S1 DONE: SCLOSE FABs]INFAB) CLOSE THE FILE

52 EXIT $SEXIT.S RO) EXIT WITH 8TATUS

53

54 +END BEGIN

Figure 4-6 Program to Count Records in an Indexed File

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

4.3.2 Creating an Indexed File

The sample program in this section illustrates how to <create a new
indexed file by copying an existing file of any organization. The
format and contents of the records in the file are the same as those
described in Section 4.1.1.

Assume that, external to the program, the following assignments will
be made:

$ ASSIGN 18SEP78.INV INFILE:
$ ASSIGN 18SEP78.CPY OUTFILE:

Because this program uses two files, one for input and one for output,
two separate FABs are required to describe the files. For the input
file, you need only define the file specification. In the external
assignment, it was equated to INFILE:. Therefore, with the FNM
parameter, you indicate the file as follows:

INFAB: $FAB FNM=<INFILE:>

For the output file, you must also define the file specification. In
the external assignment, it was equated to OUTFILE::. Because you are
creating this file, you wuse the S$PUT macro instruction to write
records to the new file. The default is write access when creating a
file; therefore, you need not specify FAC=PUT. When you create a
file, vyou must indicate the record format. In this file, the records
are variable length, so the specification is RFM=VAR.

You also must specify the maximum record size. For fixed-length
records, the maximum record size indicates the actual length of each
record in the file. For variable-length records, the maximum record
size specifies the size 1limit for a record being written initially
into the file, or an existing record being updated. If you do not
specify the maximum record size, it is limited only by bucket size.
In this example, the maximum record size and record size are
identical. The records for this file are each 50 bytes long. You can
specify this limit either by indicating MRS=50 or by defining a record
size within your program, for example, REC_SIZE=50 and MRS=REC_SIZE,
and referring to this definition defining the record size in vyour
program also lets you make other references to this record size within
your program, for example, in defining the size of the buffer areas
for the RAB.

You must specify that the file is an indexed file and you must specify
the initial extended attribute blocks of the chain, so the
specifications are ORG=IDX and XAB=KEYO.

As an option, you can indicate that each record is to be preceded by a
line feed and followed by a carriage return whenever the record is
output to a line printer or terminal. Set the record attributes field
with RAT=CR. The FAB for the output file is then defined as follows:

OUTFAB: $FAB FMN=<OUTFILE:>,-
RFM=VAR, -
MRS=REC_SIZE,-
ORG=IDX, -
XAB=KEYO ,-
RAT=CR

You must also define RABs for both files. The FAB parameter
associates a RAB with the appropriate FAB. Because the sequential
record access mode is the default, you can omit the RAC parameter.

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

Both files also need a buffer area. 1In fact, they both can wuse the
same buffer area, since you're going to read a record into a buffer,
and then write it from the buffer before you read another record into
the buffer. The output RAB, however, uses the RBF and RSZ parameter
to define the buffer, rather than the UBF and USZ parameters. The
reason 1is that the $PUT macro instruction does not use UBF and USZ as
input; it uses RBF and RSZ. The $RAB macro instructions would be as
follows, with the input RAB shown first.

INRAB: $RAB FAB=INFAB,-
UBF=REC_BUFFER, -
USZ=REC_SIZE

OUTRAB: S$RAB FAB=0OUTFAB,-
RBF=REC_BUFFER, -
RSZ=REC_SIZE

Since you are creating an indexed file, you must specify the primary
key and the alternate keys, if any. 1In this example the primary key
(key 0) and two alternate keys (key 1 and key 2) are defined. They
are defined by the key definition extended attribute blocks S$XABKEY
REF=0, $XABKEY REF=1, and $XABKEY REF=2 macro instructions
respectively. The position of the keys within each record and the
length of key must be specified with the POS and SIZ parameters.

In the sample program, the primary and alternate keys are simple Kkeys
(that 1is, not segmented); hence, only one position parameter value
and one size parameter value is defined for each key. Simple keys
consist of a single string of contiguous bytes. You should note that
if segmented keys are specified, the key position and key size fields
must define an equal quantity of key position values and key size
values. The key position value is the starting (byte) position of the
key within each record (with the first byte being byte 0, the second
being 1, etc.). The key size value is the length (in bytes) of the
key; 1in the sample program, the primary key is a simple key, starting
in the first byte of the record and is five bytes long; this is
defined as follows:

KEY0: S$XABKEY REF=0,-
POS=0,-
SIZ=5,-
NXT=KEY1

Note that the NXT parameter points to the next XAB in the chain, which
has a label of KEY1.

The alternate keys (key 1 and key 2) likewise are defined as being in
byte positions 6 and 7, respectively, and as being 1 and 20 bytes in
length, respectively. They are defined as follows:

KEYl: SXABKEY REF=1,-
POS=5 r-
SIiz=1,-
NXT=KEY2

and

KEY2: S$XABKEY REF=2,-
POS=6,-
SI1Z=20

Note that the NXT parameter is omitted from the XAB with a label of
KEY2; therefore the default is 0, which indicates there are no more
XABs in the chain.

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

In the sample program, the alternate keys may change wvalues (on an
update) and there may be duplicate alternate keys. Changes and
duplications can be defined by FLG=<DUP,CHG>; this 1is also the
default for alternate Kkeys and, therefore it is not necessary to
actually define this parameter.

The default for the primary key is no duplicates allowed. The primary
key is never allowed to change key value on update.

The run-time processing macro instructions for the input file consist
of a SOPEN, a SCONNECT, a SGET, and a SCLOSE. For the output file,
you must specify a $CREATE macro instruction (rather than an $OPEN),
which opens and constructs a new file. 1In this macro instruction, you
indicate the FAB that contains the attributes for the new file, as
follows:

SCREATE FAB=0OUTFAB

As with the input file, you must also specify the S$CONNECT macro
instruction to connect the record stream and the SCLOSE macro
instruction to close the file. However, before the file is closed, it
must be processed. 1In the case of a copy operation, records must be
written to the new file. Use the SPUT macro instruction, specifying
the RAB, as follows:

SPUT RAB=0OUTRAB

Figure 4-7 lists the program code to copy a file. The VAX-11 RMS
macro instructions appear in red.

s G a bt ik ek g pen pa e
OPNOTNEWNC QOB D WMN -

™ NNV NN U
O NITNE WV — T

3n

RV RV RV R RV R NV RV AV
VOBV NDTAL WU

=
.

E IR I~ - —
OBNTUVIE NN

[P XV RV BT, |
WY — D

X KT XV RY RY RV, RV
—-_ S o® o s

oo o
swN

oo
o

PROCESSING FILES WITH SEQUENTIAL RECORD ACCESS MODE

RECORD SIZE

OQUTPUT FILE HAS FIXED
LENGTH RECORDS, 50 BYTES
IN LENGTH, WITH IMPLIED
NEW LINE CARRIAGE CONTROL,
WITH INDEXED FILE ORG,,
AND A CHAIN OF XKEY XABS

NOTEs OUTPUT RAB USES

SAME RECORD BUFFER AS INPUT RAB

AND TWO ALTERNATE KEYS

AND CONNECT STREAMS

OPEN INPUT FILE
BRANCH ON ERROR
OPEN OUTPUT FILE
BRANCH ON ERROR
CONNECT INPUT RAB
BRANCH ON ERROR
CONNECT QUTPUT RAB
BRANCH ON ERROR

READ A RECORD
BRANCH ON ERROR
WRITE THE RECORD TO
THE QUTPUY FILE
BRANCH ON SUCCESS
"GET OUT ON ERROR

CLOSE INPUT FILE
CLOSE OUTPUT FILE

EXIT WITH STATUS

«TITLE COPYFILE =« MAKE COPY OF INPUT FILE
'
3 PROGRAM TO MAKE A COPY OF THE INPUT FILE
'
REC,S12E=5@ !
«PSECT DATA,LONG
INFAB: SFAB FNMa<INFILES>
INRABY SRAB FABEINFAB,=
UBFaREC _BUFFER,=
USZ=REC,SIZE
QUTFABy S$FAB FNME<OUTFILEL>, = '
RFMaVAR, = '
MRSaREC_ SIZE, = !
ORGmIDX, = !
XAB3KEYQ, = 1
RATECR !
OUTRABt $RAB FABRQUTFAB, =
RBFaREC RUFFER,= !
RSZaREC,SI1ZE ’
1
t CREATE NEW FILE WITH PRIMARY KEY=PARTH,
!
KEYd1 $XABKEY REF=Q,=
POS=Q, =
81735,
NXTaKEY]
KEY{? SXARKEY REFmy,=
P0§z25,-
SIZmy,=
NXTaKEY2
KEY21 $XABKEY REF=z2,=
POSaé, =
§1Z=220
3
REC, BUFFER}Y «BLKR REC, 812t
'
«PSECT CODE,NOWRT
’
3 INITIALIZATION e« OPEN INPUT AND OUTPUT FILES
?
STARTY LWORD @
$QPEN FABEINFAB]
RLBC R3,EXIT1 ’
SCREATE FAB20UTFASB]
BLBC RA,EXITHY !
SCONNECTY RABaINRAB]
BLAC RO,EXITY ’
SCONNECT RAB3OUTRAB !
BLBC R2,EXITY '
'
1 COPY RECORDS
1
READ1® $GET RAB®INRAB '
BLBC R®,DONE []
$PUT RABSOUTRAB ’
)
8L8s8 RQ,READ)
EXITi1 8RB ExIT !
'
y ALL SET = CLOSE FILES AND EXIT
}
DONE SCLOSE FABaINFAR !
SCLOSE FAB=OQUTFAB '
EXITa SEXIT .8 RO '
+END STARY
Figure 4-7

Program to Create an Indexed File

by Copying an Existing File

CHAPTER 5

PROCESSING FILES WITH RANDOM RECORD ACCESS

Two different modes provide random access to records:
e Random by key
e Random by record's file address

In the random by key access mode, you retrieve or store a record by
specifying a key value. 1In the random by record's file address access
mode, the retrieval or storage of the record 1is based on a unique
address returned to the user by VAX-11 RMS.

Section 5.1 deals with random access to the sequential file
organization. Section 5.2 deals with random access to the relative
file organization., Section 5.3 deals with random access to the
indexed file organization.

5.1 RANDOM ACCESS TO SEQUENTIAL FILE ORGANIZATION

The sequential file organization provides for random access to records
only if the file containing the records is on a disk device.

The sequential file organization allows random retrieval of
fixed-length records by means of keys only (a key in a sequential file
is the relative record number assigned to each record). To gain
random access to variable-length records in a sequential file, you
must use the random by record's file address mode.

5.1.1 Random Read of a Record

This section describes a sample program that accepts the key (relative
record number) from the operator, finds the requested record in a
file, and then displays the contents of the record.

Assume that the following external assignment will be made:

$ ASSIGN 18SEP78 ,INV INFILE:
You must provide this program with definitions for three files: an
output file, a file to accept the request, and an input file (where

you define that the record access mode is random, since the input file
is the one you search for the records).

PROCESSING FILES WITH RANDOM RECORD ACCESS

OUTPUT FILE

The first file that must be defined is the output file, SYS$SOUTPUT:,
which 1s a process logical name assigned for the output stream. For
an interactive user, SYSSOUTPUT is a terminal. The FAB for this file
only need provide this name, and also an optional record attribute
that induces a line feed before and a carriage return after printing
the record at the terminal.

TYPE_FAB: $FAB FNM=<SYS$OUTPUT>, -
RAT=CR

At assembly time, the S$RAB macro instruction only need associate -the
RAB with the FAB.

TYPE RAB: SRAB FAB=TYPE_FAB

The actual contents of the RAB are defined dynamically, at run time
rather than assembly time with a $RAB STORE macro instruction. The
reason for this is that the record to be output varies. On the one
hand, records from the input file are displayed (see lines 83 through
86 of Figure 5-1), while on the other hand, a number of fixed strings
are output wusing the "TYPE" macro (see lines 82, 92, and 94; the
macro definition itself appears on lines 7 through 17). Each of the
different outputs requires that the RSZ and RBF parameters be set
dynamically to indicate the record to be written.

The $RAB STORE macro instruction indicates the symbolic address of the
RAB allocated at assembly time. It must also define the location and
size of the buffer that contains the record to be printed on
SYSSOUTPUT. When displaying records read from the input file, the
location and size are at the address of INRAB (the input RAB) plus the
offset to each field (RABSL_RBF for the address and RABSW_RSZ for the
size).

$RAB_STORE RAB=TYPE_RAB,-
RBF=@ INRAB+RABSL_RBF, -
RSZ=INRAB+RABSW_RSZ

REQUEST FILE

The second file that must be defined 1is the request file, which
prompts a message to solicit information from the operator and accepts
the requested record number from the terminal. This file is
SYSSINPUT:, which 1is a process 1logical name. Note that for an
interactive process, SYSSINPUT and SYSSOUTPUT both refer to a
terminal. In this example, it would be possible to use the same file
(either SYS$SINPUT or SYSSOUTPUT) to accept requests and display
output. In so doing, however, you would lose the ability to run the
program within a batch stream. (As the program currently stands, you
could do this.)

PROMPT_FAB: $SFAB FNM=<SYSSINPUT:>

The RAB you connect to this FAB defines a buffer area and associates
the RAB with the FAB. The RAB also defines a record processing option
of ROP=PMT. This option indicates that the contents of the specified
prompt buffer (filled as part of the expansion of the "PROMPT" macro),
are to be output to the terminal operator in order to indicate what
data is being requested for output.

PROMPT_RAB: SRAB FAB=PROMPT_ FAB,-
UBF=PROMPT_BUFF, -
usz=132,-

ROP=PMT

5-2

PROCESSING FILES WITH RANDOM RECORD ACCESS

INPUT FILE

The third file that must be defined is the input file, which must
provide the file specification. The external assignment equates
18SEP78.INV to INFILE:.

INFAB: $FAB FNM=<INFILE:>

The RAB associated with this file must name 1its FAB and define a
buffer area. The record stream of this RAB will deal with records by
their relative record number, so you must set a wvalue 1in the key
buffer address field. This wvalue points to a buffer you set up to
contain the relative record number of the record you want. In the
program 1listed in Figure 5-1, the address of the buffer is KEY;
therefore you set KBF=KEY. Access to the records 1in this file |is
through the random by key mode (the relative record number is the key
for sequential files). You indicate this by setting RAC=KEY. (The
specification of KEY in this case should not be confused with KBF=KEY,
explained previously. The specification of KEY for the record access
mode 1is defined by VAX-11 RMS to indicate key value, which is the
relative record number. In KBF=KEY, the KEY specification is
user-defined.)

INRAB: $RAB FAB=INFAB, -
UBF=REC BUFFER,-
USZ=REC BUFFER SIZE,-
KBF=KEY, - -
RAC=KEY

When the three files are defined, you must use run-time macro
instructions to call the routines that act on these files.

You must open the input file (INFILE) and the request file (SYSSINPUT)
with $OPEN macro instructions. The output file for the terminal
(SYSSOUTPUT) uses a SCREATE macro instruction, since this is an output
file to be created. However, since SYS$SOUTPUT is a logical name, the
file was created for you when you logged into the system. Therefore,
this $CREATE macro instruction acts as a $OPEN macro instruction, so
you could, in fact, use the $OPEN macro instruction for SYSSOUTPUT in
this program.

Each file you open in the program must have a RAB connected to the
appropriate FAB with a S$CONNECT macro instruction.

For the input file, use a $GET macro instruction to retrieve the
record. For the output file, use a $PUT macro instruction to place
the record in SYSSOUTPUT so it can be printed at the terminal.

All open files must be closed when you finish processing. Therefore,
you must use three $CLOSE macro instructions.

Figure 5-1 lists the program code that accepts the key (relative
record number) from the operator and displays the contents of that
record on the terminal. Note that in this program, two macro
definitions appear. The first builds the string that is displayed on
the terminal. The second macro definition accepts input from
SYSSINPUT and prompts with the string specified as its argument.
Notice that both of these macro definitions make use of run-time macro
instructions (SPUT and S$GET) in their construction.

You will also note that this program is written in subroutines.
Therefore, for some files, the $SCLOSE macro instruction appears before
the SOPEN or $CREATE macro instruction.

O B ~NT U E Ny -

PROCESSING FILES WITH RANDOM RECORD ACCESS

«TITLE DISPLAY = DISPLAY SPECIFIED RECQRD
H
3 PROGRAM T0Q ACCEPT RECORD NUMBER FROM NDPERATOR AND DISPLAY
+ CORPESPONDING RECORD
H
JMACRO TYPE STRING 1 MACRO TO TYPE "STRIMGY
«SAVE 3 SAVE CURRENT PSECT
+PSECT TYPE,STRINGS, NOWRT 1 CHANGE TO TYPE STRINGS PSECT
eee THPAE, ’ NOTE ADDRESS
WASCIT \STRING\ t STORE STRING
ceoI¥PLE, =, THPS ! NOTE LENGTH
JRESTURE $ RACK TO ORIGINAL PSECT
MOVL .., THPA, TYPE, RAB4RABS|,RRF 3 SET STRING ADDRESS
MOV YeeeTMPL, TYPE,RAB4RABSW, RS2 t SET STRING LENGTH
$PyUT RARSTYPE,RAR g WRITE THE RECORD
JENNM
JMACEN PRO“PT STRING 1 MACRO TN ACCEPT INPUT
1 FROM SYSSINPUT, PROMPTING
] wITH "STRING®
«SAVE 1 SAVE CURRENT PSECT
«PSECT TYPE,_STRINGS, NOWRT 3 CHANGF TOQ TYPF STRINGS PSECT
cea TMPAS, 1 NOTE ADDRESS
JRYTE 13, 12 t CARRIAGE RETUR~, LIME FEED
WASCIT \STRINAGN 1 STORE STRING
sae T¥PLE, =, ,,T¥Fe t NOTE LENGTH
JRESTURE t BACK TN ORIGINAL PSECT
MOV BoqeTHPA, PHOMPT RABSRARS| PBF ¢ SET PROMPT BUFFER ADDRESS
mMove B,.,T"PL, PROMPT RAR+RARSK, P52 3y SET PROMPT BUFFER SIZE
$GET RAB 5 PWOMPT , RAR 1 GET THE INPUT
MOVZAL PROMPT,RAR+HRABSwW, RSZ,KR1 t GET INPUT LENGTH
MOV PROMPT ,FAK$RABRSL ,RBF,R? 3y GKET INPUT ADDRESS
.ENDN
'
JPSECT DATA,LONG
TYPE, FARY $FAR FNMECSYSAOUTPUT I, =
RAT=CR
TYPE,RAR: SRAK FABZTYPE,FAB
OROMPT ,FAE: 3FAR FNM2<SYSSINPUT 8>
SROMPT RARY SRAR FABPROMPT FAB, =
UBFEPROMPT,RUFF, =
Us2=z132,~
ROP=PMT
PROMPT BUFF3 «BLKR 132
H
INFAB: S$FABR FNMa<INFILF >
INRABS BRAR FARZINFAR, =
UBFSREC,BUFFER,=
USZ=2REC,BUFFER, SIZE,=
KBFEKEY, =
RACeKEY
REC,_BUFFERS «BLKB 59 3 USER RECORD BUFFER
REC,_BUFFER,SIZE=,=REC BUFFER
+ALIGN LONG
KEY$ «BLKL 1 y RECORD NUMBER TO RETRIEVE
1
1
7 OPEN FILE,CONNECT STREaM
«PSECT CODE,NOART
BEGINS LwORD 2
$OPEN FAB=INFAB 3 QOPEN INPUT FILE
BLBC RALEXITY 3 BRANCH ON ERROKW
SCONNECT RAB=INRAR 31 CONMNECT STREAM
RLBS RP,CONTY $ BRANCH 0N SUCCESS
EXITt:s PBRw EXIT t HRANCH ON ERROR
COMTY: BSBK INIT, TYPE 1t INITIALIZE TYPE AND PROMPT FILES
2
1 ACCEPT NUMBER NF RECORD TQ BE DISPLAYED
GET,REC NO?
PROMPT <ENTER RECOR(D NUMRER®> 3 GET RECOWD NUMBER
RLRS 2aCONT2 y HBRANCH ON SUCCESS
RRw DUNE 1t BRANCH UN ERROR
Figure 5-1 Random Read of a Sequential File

PROCESSING FILES WITH RANDOM RECORD ACCESS

~ e v me v e

CONVERT KEY TO RINARY
BRANCH IF BAD

SET RECORD NUMBER

GET RECORD FOR PART
BRANCH On ERROR

PRINT KECORD
BRANCH DN ERROR
Loop

R2 = LENGTH AND ADDRESS OF INPUT STRING

-~ v e e

e e ve e e se e

INITIALIZE OUTPUT VALUE

GO CHECK IF ANY CHARACTERS
SHIFT PARTIAL RESULT

BRANCH ON OQVERFLOW

GET BINARY VALUE FOR CHARACTER

BRANCH IF BAD

CHARACTER » 9 7

BRANCH IF BAD

ADD IN CHARACTER TO PARTIAL RESUL
ANY MORFE INPUT?

BRANCH IF MORE

SHOW SUCCESS

SHOW FATLURE

77 CONT2: BSBw CONVERT KEY

78 BL&BC R2,BAD_ KEY

79 MOV RI,KEY

an 3GET RAB=INRAR

A4 BLHBL RO,BAD,PART

82

A3 $RAB, STNRE RAB=TYPE RAR,«
LY} RRF 36 INRAR+RARSL RRF, =
as RSZ=INMRAB+PARSW, RSZ

86 §PLT RAR=zR

&7 BLARC R2JEXIT

48 RRW GET, REC,ND

Ag

99 3 REPCRT ERRORS

91 1

92 RAD,KFY: TYPE <BAD KEY VALUE!>
93 RRW GET,REC,NO

94 RBAD, PART: TYPE <RECORD NDOES NOT EXIST,>
95 BRW GET . REC.NO

9%

97

98 3 ALL DONE = CLOSE FILES AND EXIT

99

149 DONE? $CLOSE FAB=INFAB

101 $CLOSE FABEBTYPE_FAB

122 SCLOSE FABaPROMPT, FAB

123 EXIT: SEXIT,S R@
105 g++
126 ¢
137 3 SUBROUTINE TO CONVERT ASCII INPUT STRING TO BINARY
108
109 3 INPUTS! R1,
110

111 ¢ OUTPUTS: K@ = STATUS COLE
112 R3 « BINARY VALUE
113 Ri, P2, R4 DESTROYED

114 o

115 CONVERT_KEY:?
116 CLRQ R3
117 BRB 2ns
118 10%1 MULL?2 410, R3
119 BVS Ing
120 SUBB3 ¥™A/B/y (R2)4+, R4
121 BLSS Ins
122 CMPB RU,8%A/G/="A/0/
123 BGTRU Ins
124 ADDL?2 R4, R3

125 208t DECL R1

126 BGEQ 128
127 MOVL ¥y, Ry

128 RSB

129 30%: CLRL R@

130 RSB

131 34+

132

133 3 SUBROUTINE TO INITIALIZE THE TYPE AND PROMPT FILES
134 3

135 j==

136 INIT. TYPE:

137 SCREATE FAB=TYPE_FAR

138 SOPEN FABzPROMPT,FAB

139 SCONNECT RAB=TYPE_ RAB
14@ $CONNECT RAaB z PROMPT,RAB
141 RSB

142

143 +END BEGIN

Figure 5-1 (Cont.)

Random Read of a Sequential File

PROCESSING FILES WITH RANDOM RECORD ACCESS

5.2 RELATIVE FILE ORGANIZATION

Random access to the relative file organization, like any access to
the relative file organization, is available on disk devices only.

Relative file organization, unlike sequential file organization, does
not require that records be fixed-length 1in order to use random
access., Therefore, the relative file organization provides more
flexibility for random access than does the sequential file
organization. However, it does cost more in space requirements, since
all record cells are the same size, and some (or all) may not be
completely filled.

5.2.1 Random Read of a Record in the Relative File Organization

This section describes a sample program illustrated in Figure 5-2 that
builds on the program 1listed in Figure 5-1. The only difference
between the programs is that the input file in this program wuses the
relative file organization. Since it is an input file, you do not
have to indicate the file organization when you open a file and you do
not have to change the FAB to indicate the relative file organization.
(Note, however, that you do have to change the input file FAB when you
specify the S$DELETE macro instruction, See the following discussion,)

This program, besides accepting the key (relative record number) from
the operator and displaying the contents of the record on the
terminal, also queries the operator as to whether or not the record
should be deleted. Therefore, you must use a S$DELETE macro
instruction within the code that handles record deletion (lines 93
through 101 of Figure 5-2).

$DELETE RAB=INRAB

This $DELETE macro instruction points to the RAB for the input file.
The relative file organization lets you delete a record from anywhere
in the file, thereby leaving the record cell free to accept another
record. You do not have to create a new file; the input file, in
effect, is also the output file. (You cannot use the S$DELETE macro
instruction with the sequential file organization. To remove a record
from a sequential file, you must use the $TRUNCATE macro instruction,
but it 1is 1limited to removing a record, and any succeeding records,
from the end of a file. There cannot be empty space in the sequential
file organization, because it does not wuse the concept of record
cells.)

When you specify the S$DELETE macro instruction, you also must make a
change to the input file FAB to indicate, in the file access field,
that a delete operation can occur. Do this by adding FAC= to the
$FAB macro instruction. You can omit the angle brackets from DEL;
you only need them if more than one operation applies. (In reality,
more than one operation does apply to this file. For example, since
you are also going to retrieve records, you could specify
FAC=<DEL,GET>, to indicate the get operation. However, GET is implied
by DEL, so you can omit it.)

INFAB: SFAB FNM=<INFILE>,-
FAC=

Figure 5-2 lists the program code that accepts the key (relative
record number) from you and displays the contents of that record on
the terminal, with the option to delete the record.

Appendix A contains additional examples of random access to the
relative file organization.

5-6

OBNC AL LN —

O T ey
O BT E NN =

2e

NNNNNOCTOCOCTTOCCOCTUNIVIVAVIVIMIVIVIVMNVIE SRR EWWWWWRWWWWWNVDNN NN
EWN=DOBNOCITIEWNN R ODNCARTWN - QIBINICUVNEHN RODNCVREWNN - QI ODNT I E WD~

PROCESSING FILES WITH RANDOM RECORD ACCESS

MACRO TO TYPE "STRING"
SAVE CURRENT PSECT
CHANGE TO TYPE STRINGS PSECT

BACK TO ORIGINAL PSECT
SET STRING ADDRESS

SET STRING LENGTH
WRITE THE RECORD

MACRO TO ACCEPT INPUT
FROM SYSEINPUT, PROMPTING

SAVE CURRENT PSECT
CHANGE 7O TYPESTRINGS PSECT

CARRIAGE RETURN, LINE FEED

BACK TO ORIGINAL PSECT
SET PROMPT BUFFER ADDRESS
SET PROMRT BUFFER SIZE

GET INPUT LENGTH
GET INPUT ADORESS

MACRO TO BRANCH ON ERROR
BRANCH DN SUCCESS
LONG FORM OF BRANCH

«TITLE DISPLAY = DISPLAY SPECIFIED RECORD
!
3 PROGRAM TO ACCEPT RECORD NUMBER FROM OPERATOR AND DISPLAY
3 CORRESPONDING RECORD
'
'
.MACRO TYPE STRING !
«SAVE ’
JPSECT TYPE_STRINGS, NOWRT ’
ees TMPAR, 3 NOTE ADDRESS
+ASCIT \STRING\ 3 STORE STRING
ees TMPLE, =,,,TMPA 1 NOTE LENGTH
«RESTORE]
MOvL #,.0eTMPA, TYPE_RAB+RABSL_ RBF ’
MOVW HeeoTMPL, TYPE,RAB+RABSW, RSZ '
$PUT RAB=TYPE, RAB [}
+ENDM
H
+MACRO PROMPT STRING H
H
$ WITH "STRING"
«SAVE i
.PSECT TYPE_STRINGS, NOWRT H
eeo TMPAZ, 3 NOTE ADDRESS
«BYTE 13, 14 !
«ASCIT \STRING\ 3 STORE STRING
cesTMPLE, =,,.THPA g NOTE LENGTH
RESTORE ’
MOVL ¥,,,TMPA, PROMPT_ RAB+RABSL PBF
MOVB #.,.TMPL, PROMPT RAR4RARSR PSZ
$GET RAB = PROMPT, RAB 5 GET THE INPUT
MOVZWl PROMPT, RAB+RABSW,RSZ, Ri y
MOVL PROMPT RAR+PARSL ,RBF,R2 '
«ENDM
1
«MACRD ON_ERROR DEST,?L !
BLRS RO, L ?
BRW DEST H
Le
«ENDM
1)
LPSECT DATA,LONG
TYPE, FABS $FAB FNM2<SYSSQUTPUT >, =
RAT=CR
TYPE _RAB1 SRAB FAB=TYPE_ FAB
PROMPT, FAB?¢ $FAS FNMB<SYSSINPUT >
PROMPT_ RAB} $RAB FABSPROMPT FAB,=
UBFSPROMPT BUFF, =
USZs132,=
ROPaPMT
)
INFAB: SFAB FNMS<INFILES»)=
FACE
INRAB: SRAB FABSINFAB,=
UBFaREC_BUFFER, =
USZsREC_BUFFER_SIZE,~
KBFeKEY,»
RACaKEY

4

PROMPT BUFF3 «BLKB 132

REC, BUFFER? +BLKB 50

REC BUFFER, SI2E=,=REC, BUFFER
«ALIGN- LONG

KEY?$ +BLKL 1

'
1+ OPEN FILE,CONNECT STREAM
’

«PSECT CODE,NOWRT
REGINS LWORD 2

$OPEN FABEINFAR

ON_LERROR EXIT
SCONNECT RAB=INRAB
ON,ERROR EXIT

USER RECNRD BUFFER

RECORD NUMBER TO RETRIEVE

OPEN INPUT FILE
BRANCH ON ERROR
CONNECT STREAM
BRANCH ON ERROR

Figure 5-2 Random Read of a Relative File

5-7

75
76
77

79
an
81
82
a3z
84
85
86
87
88
a9
90

92
93
94
95
96
97
98
99

100

121

142

103

104

105

126

107

108

129

{10

111

112

113

114

11S

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135
136
137
138
139
142
141
142
143
144
145
146
147

PROCESSING FILES WITH RANDOM RECORD ACCESS

- e W ve ws e e wo

- e e we e e e w e e

“. e e %o ne

e e w e w8 e e

INITIALIZE TYPE AND PROMPT FILES

GET RECORD NUMRER
BRANCH ON ERROR (E,G,,
CONVERT KEY TN BINARY
BRANCH IF RAD

SET RECONC NUMBER

GET RECORD FQOR PART
RRANCH OnN ERROR

EOF)

PRINT RECORD

BRANCH ON ERROR

ASK IF RECUORD SHOULD BE OFLETEC
BRAMCH ON ERROR

ZERDQ LENGTH INPUT?

BRANCH IF YES

ANSWER START WITH °*Y°?

BRANCH IF NOT

DELETE RECORD

BRANCH ON FAILURE

LooP

INITIALIZE QUTPUT VALUE

G0 CHECK IF ANY CHARACTERS
SHIFT PARTIAL RESULT

BRANCH ON QVERFLOwW

GET RINARY VALUE FOR CHARACTER

BRANCM IF BAD

CHARACTER » 9 ?

BRANCH IF BAD

ADD IN CHARACTER TO PARTIAL RESUL
ANY MORE INPUT?

BRANCH IF MORE

$H0OW SUCCESS

SHOW FAILURE

BSBW INIT, TYPE
]
3 ACCEPTY NUMBER OF RECORD TO BE DISPLAYED
?
GET _REC,NO}
PROMPT <ENTER RECORD NUMBER1>
ON_ERROR DONE
BSBW CONVERT_ KEY
ON,ERROR BAD,KEY
MOV R3,KEY
$GET RABEINRAB
ON_ERROR BAR_PART
TYPE <RECORD IS3»>
SRAB,STORE RABSTYPE RAB,=
RBFIPINRAB+RABSL ,RBF,=
RSZ=INRAB+RABSW, RSZ
SPUT RABER2
ON_ERROR EXIT
PROMPT <DELETE RECORD (Y/N)?>
ON_ERROR DONE
TSTW R1
BEGL GETNXT
CMPB (R2),4%A/Y/
BNEQ GETNXT
SDELETE RAB=INRAB
ON_LERROR EXIT
TYPE <RECORD DELETER,.>
GETNXTS
BRW GET_REC_NO
’
3 REPORT ERRORS
'
BRAD_KEY$ TYPE <BAD KEY VALUE]!>
BRW GET_REC_NO
BAD,PART? TYPE <RECORD DOES NOT EXIST,>
BRW GET _REC_NO
!
t ALL DONE = CLOSE FILES AND EXIT
!
DONE $CLNSE FABEINFAB
$CLOSE FARETYPE ,FAR
$CLOSE FABZPROMPT, FAR
EXIT: SEXIT,S R2
Xz}
'
) SURROQUTINE TG CONVERT ASCII INPUT STRTING TO BINARY
'
1 INPUTS: Ry, F2 = LENGTH AND ACDRESS 0OF INPUT STRIMNG
!
y OUTPUTS: RA = STATUS COPE
! R3 = BINARY VALUE
s Ry, R2, RU DESTROYED
’..
CONVERT KEY?
CLRQ R3
BRB 278
1081 MULL?2 #1p, R3
BYS 308
SUBR3 #°A/0/, (R2)+, R4
BLSS 3ns
cMPB Ry, #A/Q/="A/0/
BGTRY 3es
ADDL2 R4, R3
208 DECL R1
BGEQ 1%
MOVL #1, RA
RSB
3% CLRL R2
RSA
pee
1
1 SUBROUTIME TO INITIALIZE THE TYPE AND PROMPT FILES

Figure 5-2 (Cont.)

Random Read of a Relative File

PROCESSING FILES WITH RANDOM RECORD ACCESS

148

149 pwe=

150 INIT, TYPE:

151 SCREATE FAB=TYPE,FAB

152 SOPEN FABZPROMPT, FAB

153 SCONNECT RAB=TYPE,RAB

154 $CONNECT RAB = PROMPT,RAR
155 RSB '

156

157 «END BEGIN

Figure 5-2 (Cont.) Random Read of a Relative File

5.3 INDEXED FILE ORGANIZATION

Random access to the indexed file organization, like any access to the
indexed file organization, is available on disk devices only.

In an indexed file, random access by key is independent of the record
format (either fixed or wvariable). Therefore, the indexed file
provides more flexibility for random access than does the relative or
sequential file organizations.

5.3.1 Random Read of a Record in the Indexed File Organization

This section describes a sample program, illustrated in Figure 5-3,
that builds wupon the program listed in Figure 5-1. The major
difference between the programs is that the input file in this program
uses the indexed file organization. Since it is an input file, you do
not have to indicate the file organization when you open a file.

This program, besides accepting the key (the part number) from the
operator and displaying the contents of the record on the terminal,
also modifies the discount type field of that record to contain an A,
Then this program sequentially accesses and displays any subsequent
records containing part numbers in which the first four characters
match those of the first record accessed. Therefore, you must use a
SUPDATE macro instruction within the code that handles record updating
(lines 94 through 103 of Figure 5-3).

$UPDATE RAB=INRAB
This SUPDATE macro instruction points to the RAB for the input file.
Assume that the following external assignment will be made:

$ ASSIGN 18SEP78.INV INFILE:
You must provide this program with definitions for three files: an
output file, a file to accept the request, and an input file (where
you define that the record access mode is random, since the input file
is the one you search for the records).
OUTPUT FILE
The first file that must be defined is the output file, SYS$SOUTPUT:,

which 1is a process logical name assigned for the output stream. For
an interactive user, SYSSOUTPUT is a terminal. The FAB for this file

PROCESSING FILES WITH RANDOM RECORD ACCESS

qnly has to provide this name and an optional record attribute that
induces a line feed before and a carriage return after printing the
record at the terminal.

TYPE FAB: $FAB FNM=<SYS$SOUTPUT:>,-
RAT=CR

At assembly time, the $RAB macro instruction only has to associate the
RAB with the FAB.

TYPE_RAB: $RAB FAB=TYPE_FAB

The actual contents of the RAB are defined dynamically, at run time
rather than at assembly time, with a $RAB STORE macro instruction,
The reason for this is that the record to be output varies. On one
hand, records from the input file are displayed (see lines 111 through
114 of Figure 5-3), while on the other hand, a number of fixed strings
are output wusing the "TYPE" macro (see lines 124,128, and 134; the
macro definition itself appears on lines 11 through 22)., Each of the
different outputs require that the RSZ and RBF parameters be set
dynamically to indicate the record to be written.

The $RAB STORE macro instruction (see line 111) indicates the symbolic
address ~of the RAB allocated at assembly time. It must also define
the location and size of the buffer that contains the record to be
printed on SYSSOUTPUT. When displaying records read from the input
file, the location and size are at the address of 1INRAB (the input
RAB) plus the offset to each field (RABSL RBF for the address and
RABSW_RSZ for the size). B

$RAB_STORE RAB=TYPE_RAB,-
RBF=@INRAB+RABSL_RBF,-
RSZ=INRAB+RABSW_RSZ

REQUEST FILE

The second file that must be defined is the request file, which
prompts a message to solicit information from the operator and accepts
the requested record number from the terminal. This file (see 1line
52) 1is SYSSINPUT:, which is a process logical name. Note that for an
interactive process, SYSSINPUT and SYSSOUTPUT both refer to a
terminal. In this case, it would be possible to use the same file
name (either SYS$SINPUT or SYS$SOUTPUT) to accept requests and display
output. In so doing, however, you would lose the ability to run the
program within a batch stream.

PROMPT_FAB: SFAB FNM=<SYSS$INPUT:>

The RAB you connect to this FAB defines a buffer area and associates
the RAB with the FAB. The RAB also defines a record processing option
of ROP=PMT. This option indicates that the contents of the specified
prompt buffer (filled as part of the expansion of the "PROMPT" macro)
are to be output to the terminal operator in order to indicate what
data is being requested for output.

PROMPT_RAB: $RAB FAB=PROMPT_FAB, -
UBF=PROMPT_BUFF, -
usz=132,-

ROP=PMT
INPUT FILE

The third file that must be defined is the input file (see 1line 60),
which must provide the file specification. The external assignment
equates 18SEP78.INV to INFILE:.

PROCESSING FILES WITH RANDOM RECORD ACCESS

When you specify the SUPDATE macro instruction, you also must make a
change to the input file FAB to indicate, in the file access field,
that an update operation can occur. Do this by adding FAC=<UPD> to
the SFAB macro instruction. You can omit the angle brackets from UPD;
you need them only if more than one operation applies. (In reality,
more than one operation does apply to this file. For example, since
you are also going to retrieve records, you could specify
FAC=<UPD,GET> to indicate the get operation. However, GET is implied
by UPD, so you can omit it.)

INFAB: $SFAB FNM=<INFILE:>,-
FAC=UPD

When the three files are defined, you must wuse run-time macro
instructions to call the routines that act on these files the same as
described in Section 5.1.1 for the program listed in Figure 5-1.

Each file you open in the program must have a RAB connected to the
appropriate FAB with a $CONNECT macro instruction.

For the input file, use a S$GET macro instruction to retrieve the
record. For the output file, use a $PUT macro instruction to place
the record in SYSSOUTPUT so it can be printed at the terminal.

All open files must be closed when you finish processing. Therefore,
you must use three SCLOSE macro instructions.

You switch from random to sequential access mode (see line 116, Figure
5-3) 1in order to access and display any subsequent records containing
part numbers (the primary key) in which the first four characters
match those of the first record accessed as follows:

$RAB_STORE RAB=INRAB, -
RAC=SEQ

Since you are accessing an existing indexed file, you do not have to
specify the position or size of the key. However you must specify the
key to search on., 1In this example, the primary key (key 0) is
specified by default.

Figure 5-3 lists the code for this program.

Appendix A contains additional examples of random access to an indexed
file.

O PN E AN

PROCESSING FILES WITH RANDOM RECORD ACCESS

"STRING"

CHANGE TO TYPE STRING

BACK TO ORIGINAL PSECT

MACRO TO ACCEPT INPUT

FROM SYSSINPUT, PROMPTING
CHANGE TO TYPE STRINGS PSECT
CARRIAGE RETURN,LINE FEED
BACK TO ORIGINAL PSECT

SET PROMPT BUFFER ADDRESS
SET PROMPT RUFFER SIZE

MACRO TO BRANCH ON ERROR

CONTINUE ON SUCCESS
BRANCH LONG ON ERROR

«TITLE DISPLAY = DISPLAY RELATED RECORDS
!
1 PROGRAM TO ACCEPT PART # FROM OPERATOR AND DISPLAY
1 CORRESPONDING RECORD A8 WELL A8 ALL SUBSEQUENT RECORDS THAT
t MATCH THE FIRST FOUR CHARACTERS OF THE PART NUMBER,
$ MODIFY THE OISCOUNT TYPE FIELD OF THE FIRST RECORD ACCESSED
3} TO CONTAIN AN A’
!
«MACRO TYPE STRING 3 MACRO TO TYPE
«SAVE 1 SAVE CURRENT PSECT
«PSECT TYPE,_STRINGS,NOWRT ?
.s .TMP‘-. H NOTE ADDRESS
«ASCII A\STRING\ 3 STORE STRING
sss TMPLE e, , ,TMPA 9y NOTE LENGTH
.RESTORE]
MOVL #,,,TMPA, TYPE _RAB+RABSL_RBF y SET STRING ADDRESS
MOVW ¥,,,TMPL, TYPE _RAB+RABSW, RS2 9 SET STRING LENGTH
$PUT RARBTYPE ,RAB 3 WRITE THE RECORD
JENDM
H
<MACRO PROMPT STRING]
!
t WITH "STRING"
+SAVE 3y SAVE CURRENT PSECT
JPSECT TYPE,STRINGS,NOWRT ’
ese TMPAZ, ¢ NOTE ADDRESS
.BYTE 13,19 !
«ASCII \STRING\ y STORE STRING
veaTHMPLE, ®,, , T¥PA y NOTE LENGTH
~RESTORE '
MOVL ¥,,,TMPA,PROMPT RAB+RABS| PBF !
MOove ¥,00TMPL,PROMPT RAB+RARSRB _PS2 [
$GET RAB=PROMPT RAB
MOVZWL PROMPY,RAB4RABSK,RSZ,R!
MOVL PROMPY RAB+RABSL ,RBF,R2
JENDM
’
«MACRO ON,ERROR DEST, 7L !
BLBS R@,L !
BRW DEST '
Lt
+ENDM
s
.PSECT DATA,LONG
TYPE,FABy SFAB FNME<SYSSOUTPUT 1>, =
RATaCR
TYPE, RAB: $RAB FABaTYPE . FAB
PROMPT, FABt $FAB FNMs<SYSSINPUT >
PROMPT RAB: SRAB FABRPROMPT _FAB,=
UBFEPROMPT BUFF, =
UsZsi132,-
ROPaPMY
]
1 INPUYT FILE FAB AND RAB AND XABS
!
INFABYT SFAB FNMa<INFILEL»)=
FACaUPD
'
INRABy SRAB FABaINFAB,=
UBFaREC,BUFFER, =
USZaREC_BUFFER_ SIZE,=
KBFRKEY BUFF,=
KSZaKEY, BUFF,S1ZE
!
1
PROMPT BUFF1 .BLKB 132
REC,BUFFER} .BLKB s
REC BUFFER,8IZE=z,«REC_ BUFFER

DISCOUNT, TYPESREC BUFFER4+S

Figure 5-3

Random Read of an Indexed

File

75 +ALIGN LONG

76 KEY_BUFF3 «BLKR 5

77 KEY _BUFF . SIZEm,=KEY BUFF

78 MATCH,PART,NO§ LBLKL 1

79 MATCH,FLAG! «BLKB @

802 1

81 3 OPEN FILE, CONNECT STREAM

82 1

a3 +PSECT CODE,NOWRT

84 BEGING ,WORD a

8S $0PEN FABaINFAB

86 ON,ERROR EXIT

87 $CONNECT RAB=INRAB

RB ONLERROR EXIT

B9 B8Rk INIT,TYPE

92

91 93 ACCEPT PART NUMBER OF RECORD TO BE DISPLAYED
92 1

93 GET PART,NO}

94 PROMPT <«ENTER PART NUMBERt>»
95 ON,ERROR DONE

96 MOVCS R1)(R2),4™A4/0Q/,=

97 #5,KEY, BUFF

98 $RAB,STORE RARBINRAB, =
99 RACEKEY
12@ $GET RAB= INRAB

121 ON_ERROR BAD PART

102 MOVB ¥*A/A/,DISCOUNT TYPE
103 SUPDATE RAB=sINRASB

{o4

125 ON_ERROR EXIY
106 TYPE <RECORD CHANGED TO3>
107 CLRB MATCH, FLAG

108 MOVL OINRAB+RABSL RBF,MATCH_PART NO
109

112 DISPLAY!
111 $RAB,STORE RABaTYPE RAB,=
112 RBFROINRAB+RABSL , RBF,=
113 RSZsINRAB+RABSW R8Z
114 SPUT RABmRQ

115 ONL_ERROR EXIT
116 SRAB,STORE RABEINRAB, =
117 RAC=SEQ

118 $GET RAB3R2

119 8L.8C R@,CHECK,RELATED

129 CMPL O INRABHRABS| RBF,MATCH PART NO
121 BNEQ CHECK _RELATED

122 BaS8S N1)MATCH, FLAG,DISPLAY
123

124 TYPE <RELATED RECORD(S):>
125 BRB DISPLAY

126 CHECK,RELATED:

127 8BS ¥, MATCH, FLAG,GETNEXT
128 TYPE <NO RELATED RECORDS,>
129 GETNEXTY

130 BRW GET,PART,NO

131 3 REPORT ERRORS

132
133
134
135
136
137
138
139
140
144
142
143
144
145

PROCESSING FILES WITH RANDOM RECORD ACCESS

H
BAD,PARTY

ALL OONE =

TYPE
BRW

<RECORD DOES NOT EXIST,>
GET,PART, NO

CLOSE FILES AND EXIT
$CLOSE

$CLOSE
SCLOSE

FABSINFAB
FAB=TYPE,FAR
FABRPROMPT, FAB

SEXIT,S RO

Figure 5-3 (Cont.)

- - e e

PART # OF RECORD TO RETRIEVE

FIRST 4 CHARACTERS OF THE PART #
SET TO {-IF RELATED RECORD SEEN

OPEN INPUT FILE
BRANCH ON ERROR
CONNECT STREAM
BRANCH ON ERROR
INITIALIZE TYPE AND PROMPT FILES

GET PART NUMBER
BRANCH IF DONE
MOVE PART NUMBER INTO THE

KEY BUFFER, ZERO FILLING
KEY ACCESS YO ACCESS RECORD
WITH SPECIFIED PART #

GET RECORD WITH PARTMmKEY
BRANCH IF RECORD NOY FOUND
MODIFY DISCOUNT TYPE TO ’A*
UPDATE RECORD, WITH NEW
DISCOUNT TYPE

BRANCH QN ERROR

S8AY NO RELATED RECORDS SEEN

SAVE FIRST 4 CHARACTERS OF
PART # TO MATCH

PRINT RECORD
BRANCH ON ERROR

SWITCH TO SEQUENTIAL ACCESS
GET NEXT RECORD

END OF FILE?

18 THIS A MATCH?

ALL DONE MATCHING

BRANCH IF HEADER HAS ALREADY
BEEN PRINTED

LOOP TO GET NEXT MATCH

BRANCHK IF RELATED RECORDS PRINTED

LOOP TO GET NEXT PART #

LOOP TO GET NEXT PART #

Random Read of an Indexed File

PROCESSING FILES WITH RANDOM RECORD ACCESS

146

147 3 SUBROUTINE TO INITIALIZE THE TYPE AND PROMPT FILES
148 ‘

149 j=w

150 INIT,TYPE? .

151 SCREATE FAB=TYPE_ FAB

152 SOPEN FABaPROMPT FAB

153 SCONNECT RABmTYPE RAB
154 SCONNECT RABSPROMPT, RAB
155 RSB

156

157 JEND BEGIN

Figure 5-3 (Cont.) Random Read of an Indexed File

APPENDIX A

PROGRAM EXAMPLES

This appendix contains additional program examples that you can
examine to gain a better understanding of VAX-11] RMS. They are
somewhat more detailed than the examples in Chapters 4 and 5; but you
may find that a study of their construction, in conjunction with the
VAX-11 Record Management Services Reference Manual, is quite
beneficial.

REQRDER = INDICATE REORDERED ITEMS

apanrele

[dd1d
eeeg
2000
gene
¢oee
eeee
eean
2are
agee
J0ae
aeee
e@ae
pane
3000
Qees
aeoe
2nve
eane
eaea
fene
eged
agen

goganpee

gecenaas
2pde00214
npegaead
Ave@nea9
eogeaent

gepgenict
e@eae1C2
egeeelDé
eeeen104A
202@010E
2000Q1E7
22PQ@B1EE

aeae
20ne
nesa
AR9d
vesu
WAEY
ACESL
BAEY
2128
¥178
e18C
ai18C
a18C
w18C
218C
P18C
218C
218¢C
218C
218C
21RC
21Ct
e1ce
2106
B1DA
210E
Q1E7
21EE

=y
D OO NN -

L S
OOV BN

~NoN NN
wiy—-

[AVR, V)
[V 3

VAX=11 MACRO X@,3=9

Page 1
(1)

AND SETTING THE REORDER

AND LISTING THE

MACRO TO TYPE "STRING"

SAVE CURRENT PSECT

CHANGE TO TYPE STRIMGS PSECT
NOTE ADDRESS

STORE STRING

NOTE LENGTH

BACK TO ORIGINAL PSECT

SET STRING ADDRESS

SET STRING LENGTH

KRITE THE RECORD

RECORD LENGTH
FAB FOR USE WITH TYPE “ACRO

RAB FOR USE WITH TYPE HACRO

21=JUL=1978 14136123
+TITLE REORDER = INDICATE REORDERED ITEMS
H
3 PROGRAM TO READ THE OLD INVENTORY MASTER FILE AND CREATE A
3 NEW MASTER FILE, RECOGNIZING THOSE ITEMS WITH AN ON=HAND
3 QUANTITY LESS THAN THE REORDER QUANTITY,
3 DATE IN THE NEW MASTER FILE TO TODAY’S DATE,
3 RECORD ON SYSSOUTPUT,
’
+MACRO TYPE STRING '
JSAVE '
«PSECT TYPE,_STRINGS,NOWRT]
see THPAZ, ?
«ASCII \STRING\]
.,.TMPLI.-...TMP‘ H
+RESTORE 3
Movi Hee0 TMPA, TYPE _RAB+RABSL RBF ’
MOVW #,,,TMPL, TYPE RAB+RABSW, RSZ !
$PUT RABaTYPE, RAB s
«ENDM
L]
REC,SIZE=S@ !
+PSECT DATA,LONG
TYPE FAB; $FaAB FNMa<SYSSOUTPUT >, =]
RAT=CR
TYPE, RAB: $RAB FAB3TYPE_FAB]
H
INFAB: SFAB FNMS<INFILES>
INRAR: SRAB FABSINFAB, =
UBF2REC BUFFER,=
USZ=REC_ SIZE
OCUTFAB: S$FAB FNME<CQUTFILE:>
OUTRABs $RAB FAB=QUTFAB

¢
9y DEFINE FIELDS OF RECORD

1]
PART NO,LENZS

PART,DESC,LEN®20

QTY, LEN24
DATE. LENES
PRICE, LEN27

'

REC,BUFFERS
PART NUMBER
DISCOUNT,TYPE:
PART, DESCRIPT}
QTY,ON,HAND:
REORDER,QTY:
REORDER,DATE:
LIST.PRICE}

'

.BLKB PART,NO,LEN
.BLKB 1

.BLKB PART,DESC.LEN
.BLKB OTY,LEN

WBLKB QOTY,LEN

«BLKB DATE,LEN
.BLKB PRICE,LEN

I°Vv

JAOW SSADOV Q¥0Odd TVILNINDIS

NOILVZINVDIO FTIJ TVIININOAS --

SITIWVXT WYIO0Ud

REORDER = INDICATE REORDERED ITEMS 21eJUL*1978 14336123 VAX=11 MACRO X@,3=9 Page
@1EE 53 3
1EE S4 3 BUFFER TO FORMAT PRINT RECORD
21EE SS 3
280 A1EE S6 TYPE,BUFt «ASCII / /
203P01F4 BLEF 57 TYPE_PART: +BLKB PART_NO_LEN
20 21F4 S8 «ASCIY! /7 /
22204209 J1FS S9 TYPE,DESCs +BLKB PARTY,DESC_LEN
29 2¢ 20 22 2r 0209 60 +ASCII / /
gee@p212 Q20E 61 ON_HAND1® +BLKB QTY_LEN
20 2@ 20 22 280 2212 62 JASCII / /
28200218 2217 63 REORDER?: .BLKB QTY_LEN
P0e00020 0218 64 TYPE _LEN3,=TYPE_BUF

22 @218 65 HEADING: +BYTE 8

821C 66 +ALIGN LONG

221C 67 3 BUFFER TO GET CURRENT DATE
2pap2088 221C 68 DATE_ BUF: +«LONG 11 3 LENGTH OF BUFFER
20002224° ¢220 69 «LONG TODAYS,DATE t ADDRESS OF BUFFER
202300228 @224 72 TODAYS_DATE: +BLKB 7 3 DD=MONe
Q@aea22D 02228 71 YR,_CENTURY? «BLKB 2 5 Yy
apaper2F @220 72 YEAR: «BLKB 2 P vy

20002802 T4 +PSECT CODE,NOWRT

2000 75 3

2g0e 76 3 INITIALIZATION = OPEN INPUT AND OUTPUT FILES, CONNECT STREAMS, AND

2008 77 GET TODAY’S DATE

2a00 78 3

2000 79

SATIWVXE WWUD0Ud

REORDER

38

1e
a3

ED

QenAR22B EF

8F

AF

23

P@PRO1D6EF

P00PQ224°EF

®@EAR21B°EF

A0PBR1BC’EF
20@0B1C2°EF
02@R020E"EF

= INDICATE REORDERED ITEMS

S50

Se

se
B1AF

S8

20BRP220°EF

52
Sa

S

eacz

a4
2RPBO1DATEF

e3

299cC

a9
@C2@B1DE’EF

21
3E

oS
PPANGLEF°EF
14
220@B1FS°EF
0000A1D6°EF

a0n0@

EQ

EQ
ER
31

E9

E9
(]

ER
31
29

19
31
28

E2

28
28
De

2020
"I
PoeF
2012
@12
ea12
e@12
?031
2834
eA3D
nRUA
004D
P@52
eese
2050
n069
2073
207E
207€
2088
208E
ae9R
AR9E
209€
2eso
CELY
200C
200¢C
200C
Aa0C
2@0C
QAE9
2REC
PAEF
eaFe
20FB
Q0F8
@@FD
2100
2107
a1ec
e1eC
2113
2114
2133
@152
8152
2159
215€
8168
216A

ae
a1
82
83
84
8s
86
87
88
89
99
91
92
93
94
95
96
97
98
99
120
121
142
123
104
125
106
107
128
1e9
110
111
112
113

114
115
116
117

118
119

120
121
122
123

124

‘128

START1 ,WORD
SOPEN
BL8C

$FAB,STO

SCREATE
8L8C
SCONNECT
8BS
EXITy: BRw
CONTi: SCONNECT
B8LBC

SASCTIM,

MOV W

SOPEN
8L8C
SCONNECT
BL8C

TYPE
TYPE

21=JUL=1978 14136323 VAXeii MACRO X@,3=9 Page 3)
(1

FAB3SINFAB 1 OPEN INPUT FILE
RB,EXITY 3 BRANCH ON ERROR
RE FABxOUTFAB, = 3 INITIALIZE OUTPUT FAB FROM INPUT
RFMaFABSB _RFM+INFAB,= 3 SET RECORD FORMAT
MRSSFABSW _MRS+INFAB,~ 3 SET RECORD SIZE
RATaFABSB _RAT+INFAB 3 SET RECORD ATTRIBUTE
FABaR2 3 OPEN OUTPUT FILE
RR,EXITH 3 BRANCH ON ERROR

RABEINRAB 3 CONNECT INPUT RAB
R@,CONTY 3 BRANCH ON SUCCESS
EXIT 3 BRANCH ON ERROR

RAB=QUTRAB 3 CONNECT OUTPUT RAB
RALEXITY 3 BRANCH ON ERROR
S TIMBUF=DATE BUF 1 GET CURRENT DATE
YEAR, YR, CENTURY 3 MAKE INTO "YY" FORMAT

3 (RATHER THAN ®YYYY®)

FABRTYPE_ FAB 3 OPEN REPORT FILE
R@,EXITY t BRANCH ON ERROR

RABaTYPE _RAB 1 CONNECT REPORT RAB
R@,EXIT1 3 BRANCH ON ERRQR

<L.IST OF INVENTORY ITEMS BELOW REORDER POINT>

COPY RECORDS FROM OLD MASTER TO NEW MASTER CHECKING QUANTITY

1]
’
t ON HAND VS, R
!
R

SGET
BLBS
BRw
CMPC3

EADS

1082

B8LSS
BRW

22%¢ MOVC3

B8BSS
TYPE
TYPE
REPORT_ ITEM;
MOVC3
MOovCe3

MovL

EORDER QUANTITY

RABZINRAR '
RO, 108 §
DONE

#QTY_LEN,QTY, ON_HAND,REORDER_QTY

'
208 ’
WRITE L]
#DATE _LEN,TODAYS DATE,REORDER,DATE

’
#1,HEADING,REPORT _ITEM ’

<PART # PART DESCRIPTION

y
#PART NO_LEN,PART _NUMBER, TYPE PART

READ A RECORD
BRANCH ON SUCCESS
FINISH BRANCH ON ERROR

ONeHAND LESS THAN REORDER QTY?
BRANCH IF YES
OMIT REORDER PROCESSING YF NOT

SET REORDER DATE TO TODAY’S DATE
BRANCH IF HEADING ALREADY PRINTED

ON HAND REQGRDER PT,>

BUILD REPORT RECORD

#PART,_DESC.LEN,PART DESCRIPT, TYPE DESC

QTY_ON,HAND, ON,_HAND

SATAWYXT WWIO0Ud

REORDER

00802217°EF

@22

POBBR21R°EF

= INDICATE REORDERED ITEMS

GOGPBOIDAYEF

Se
51
FFeB

21
iF

oae

E8
11
31

Ed

2175
218@
2189
2160
2193
219C
2149
Q1AC
Q1 AE
2181
2181
2181
9181
2181
218E
@1ce
eiDe2
2103
BiFe
21F2
DIFF
a2e8
2208

126
127
128
129
130
1314
132
133
134
135
136
137
138
139
140
141

142
143
144
145
146
147

21=JUL=1978 14136323

MOVL REORDER,QTY,REORDER
$RAB,STORE RABRTYPE.RAB,=
RBFaTYPE,BUF,=
RSZ=#TYPE,LEN

SPUT RAB=RO

WRITEs SPUT RABaOUTRAB

BLBS R2,READ1

BRB EXIT
READ1: BRW READ
y
t ALL SET = CLOSE FILES AND EXIT
1
DONE: SCLOSE FAB=INFAB

SCLOSE FABsOUTFAB

88s #1,HEADING, CLOSE, TYPE

TYPE <NONE>
CLOSE_TYPES

" SCLOSE FABETYPE,FAB

EXIT: SEXIT.S R@

«END 8TART

- W e

VAX={1 MACRO X@,3=9 Page

PRINT REPORT RECORD
WRITE NEW MASTER RECORD
BRANCH TO READ

BRANCH ON ERROQR

BRANCH ON SUCCESS

BRANCH IF HEADING PRINTED

INDICATE NO ITEMS REORDERED
INDICATE NO ITEMS REQRDERED

(1)

STTIWVXI WVIODOUd

DISPLAY = DISPLAY RELATED RECORDS

211
gadee
poae
geoe
2000
e0ae
aee9
eaoe
aaae
aeen
[d.1q"]
eaoe
eeas
2000
aeeoe
eoa
2009
aang
aoee
epaa
aaoo
J000
aea
@eae
paoe
aaen
eeae
de2e
2829
aeap
ague
eeep
eeen
vaoe
eeep
2000
2poe
eaae
deee
gaae
2820
2009
aeoe
eaon
G2kl 4d 1
2022
oeoe
nas5e
2094
PQE4
P0E4
00E4
20E4
0128
0128
2128
2128

DO ®NT N E N

14=JUL=1978 12153113 VAX=11 MACRO X, ,3=1} Page 1
(1)
+TITLE OISPLAY = DISPLAY RELATED RECORDS
'
s PROGRAM TO ACCEPT RECORD NUMBER FROM OPERATOR AND DISPLAY
¢ CORRESPONDING RECORD AS WELL AS ALL SUBSEQUENT RECORDS THAT
1 MATCH THE FIRST FOUR CHARACTERS OF THE PART NUMBER,
3 MODIFY THE DISCOUNT TYPE FIELD OF THE FIRST RECORD ACCESSED
3 TO CONTAIN AN “a°,
H
+MACRO TYPE STRING 3 MACRQO TO TYPE "STRING"
«SAVE 1 SAVE CURRENT PSECT
+PSECT TYPE_STRINGS, NOWRT 3 CHANGE TO TYPE STRINGS PSECT
ses TMPAR, 3 NOTE ADDRESS
+ASCII \STRING\ 3 STORE STRING
cosTMPLE, =, ,TMPA 3 NOTE LENGTH
+RESTORE 3 BACK TO ORIGINAL PSECT
MOVE #,,.TMPA, TYPE,RAB¢RABS_ RRF 3 SET STRING ADDRESS
MOVW #,,.TMPL, TYPE_RAB+RABSW_RSZ 3 SET STRING LENGTH
$PUT RABR=TYPE_RAR 3 WRITE THME RECORD
JENDM
3
«MACRO PROMPT STRING 1 MACRO TO ACCEPT INPUT
t FROM SYSSINPUT, PROMPTING
3 WITH "STRING"
+ SAVE 31 SAVE CURRENT PSECT
+PSECT TYPE_STRINGS, NOWRT 3 CHANGE TO TYPESTRINGS PSECT
eee TMPAR $ NOTE AODRESS
«8YTE 13, 1@ 7 CARRIAGE RETURN, LINE FEED
«ASCII \STRING\ 3 STORE STRING
essTMPLE, =, , THPA 1 NOTE LENGTH
+RESTORE 3 BACK TO QRIGINAL PSECY
MOVL #.0sTMPA, PROMPT_RAB+RABSL, PBF 3 SET PROMPT BUFFER ADDRESS
MOVB #,.,sTMPL, PROMPT, RAB+RABSB_ PSZ ¢ SET PROMPT BUFFER SIZE
S$GET RAB = PROMPT_RAB 3 GET THE INPUT
MOVZWL PROMPT_ RAB+RABSW_RSZ, R} 3 GET INPUT LENGTH
MOVL PROMPT RAB®RABSL RBF,R2 3 GET INPUT ADDRESS
+ENDM
'
«MACRQ ON_ERROR DEST,?L 3 MACRO TO BRANCH ON ERROR
8LBS RE,L ¢ BRANCH ON SUCCESS
BRwW DEST 3 LONG FORM OF BRANCH
Ls
<ENDM
1
+PSECT DATA,LONG
TYPE_FABg SFAB FNMR<SYSSOUTPUT >, =
RAT=CR
TYPE_RABS SRAB FABRTYPE_ FAB
PROMPT_FAB1 SFAB FNMa<SYSSINPUTI>
PROMPT RAB? $RAB FABaPROMPT FAB,=
UBFSPROMPT BUFF,=
UsZ=y132,=
ROPBPMT
L]
1
INFABT SFAB FNMSCINFILES>,=
FACm<UPD>»

NOILVZINVOY¥O ITId FAILVIIY -- SSTOOV QU0DIY WOANWVE Z°V

SATINVXT WWYOOAd

DISPLAY

BPBOA2TUEF

PPPRIRGSEF

P00BR2787EF

36
P0@R0278°EF

pO2OR2TCEF

= DISPLAY RELATED RECORDS

PpoRR240
apeeezte
22002032
2ep@0245

20008278
eoe0e27C
geees27C

2178
2178
2178
2178
2178
218C
218C
@248
a27e
az272
eare2
274
7278
a27¢
827C
827C
ee7C

20032000

20020

2209 32

2181 3
S3 oe

41 8F 90

@ABRA2TCEF 94
@VOQB1AQFF Do

50 €9
202R01A@°FF D1

29 12
21 E2

2000
eese2
2080F
2015
2222
2p28
2028
ap28
2928
aazs
é@28
2258
205E
d061
2067
AB6E
A06E
2879
20886
208C
2094
2BA1
BOAT7
aece
aecc
aeD7
ae07
2807
eeo7
ABEE
QgF7
@BFD
2108
2108
2111
2114
B11F
O11F
2121

168

114

INRABS

)
PROMPY,BUFF¢
REC_BUFFERt

14=JUL>1978 12153313

SRAB FABSINFAB,=
UBFSREC_BUFFER,~
USZSREC,BUFFER, SIZE,~
KBFsKEY,=

RAC=KEY

«BLKB 132
«BLKB Se

REC,BUFFER,SI2Ex=,»REC_BUFFER

DISCOUNT _TYPESREC_BUFFER+S
+ALIGN LONG

KEY?3 «BLKL 1

MATCH_PART_NO: ,BLKL 1

MATCH, FLAG? +BLKB [}

’
3 OPEN FILE,CONNECT STREAM

BEGIN?

4
3
?
G

DISPLAY:

GETSEG:

ET,REC,

+PSECT CODE,NOWRT

JWORD @

SOPEN FABaINFAB
ON_ERROR EXIT
SCONNECT RABRINRAB
ON_ERROR EXIT

BSBW INIT,TYPE

ACCEPT NUMBER OF RECORD TO BE DISPLAYED

NO3

PROMPT <ENTER RECORD NUMBER3$>

ON,ERROR DONE

BSBW CONVERT KEY

ON_ERROR BAD,KEY

MOVL R3,KEY

$RAB,STORE RABRINRAB,=
RACZKEY

$GET RABXINRAB

ON_ERROR BAD_PART

MOVB #*A/A/,DISCOUNT TYPE

SUPDATE RABaINRAB

ON_ERROR EXIT

TYPE <RECORD CHANGED TO3>

CLRB MATCH_FLAG

MOVL @INRAB#RABSL, RBF,MATCH,PART NO

SRAB,STORE RABaTYPE,RAB, =
RBFS®INRAB+RABSL.RBF, =
RSZSINRAB+RABSH, RSZ

$PUT RABERE

ON_ERROR EXIT

SRAB,_STORE RABRINRAB,RACSSEQ

SGET RAB=RQ

BLBC R®,CHECK, DELETED

CMPL #INRAB+RABSL _RBF ,MATCH, PART NO

BNEO CHECK, DELETED

sess #1,MATCH, FLAG, DISPLAY

VAX=11 MACRO XB,3=11

- v w e we we e e me e -~

. s s e

-~ e

Page 2

USER RECORD BUFFER

RECORD NUMBER TO RETRIEVE
FIRST 4 CHARACTERS OF PART NUMBER
SET TO 1 IF RELATED RECORD SEEN

OPEN INPUT FILE
BRANCH ON ERROR
CONNECT STREAM
BRANCH ON ERROR
INITIALIZE TYPE AND PROMPT FILES

GET RECORD NUMBER

BRANCH ON ERROR (E,G,, EOF)
CONVERT KEY TO BINARY
BRANCH IF BAD

SET RECGORD NUMBER

SPECIFY KEYED AaCCESS

GET RECORD FOR PaRT

BRANCH ON ERROR

MODIFY DISCOUNT TYPE

WRITE BACK MODIFIED RECORD
BRANCH ON ERROR

SAY NO RELATEN RECORD SEEN
SAVE PART NUMBER TO MATCH

PRINT RECORD
BRANCH ON ERROR
SWITCH TO SEQUENTIAL ACCESS

READ NEXT RECORD
BRANCH ON ERROR

DO FIRST 4 CHARACTERS
OF PART NUMBER MATCH?

BRANCH IF HEADER ALREADY PRINTED

STTIRVXT WYID0oUd

DISPLAY

2AB00Q0R°8F

@ORAR27C EF

53
a2

29

53

Sa

AE
8D

se
21

94
e1
1F

FESBD

FE6B

FEU9

11

D1
12

11
EQ

31

3t
3

= DISPLAY RELATED RECORDS

2128
8129
2148
2144
at4a
2151
2153
et72
2174
0174
ai78
a17c
2198
a198
@19E
@19€
319E
A19E
4180
(3 41"]
@10F
Q1E2
01E2
a1€2
G1E2
P1E2
Q1EF
41FC
LFI.C)
a2
8212
az2i2
a21e
v212
@212
2212
@212
212
a212
Q212
@212
2214
g216
8219
2218
021E
B21F
g2
2224
2226
0229
@228
@220

2230

2231
@233
0234

115
116
117
118
119
120
121

123

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
159
151
152
153
154
155
156
157

158
159
168
161
162
163
164
165
166
167
168

TYPE
8RB
CHECK, DELETED?
cHPL
BNEQ
TYPE
BRE
CHECK,RELATEDS
888
TYPE
GETNEXTH
BRW
?
3 REPORT ERRORS
1)
BAD KEYs
BRYW
BAD,_PART:
BRW
)
t ALL DONE
3
DONE: SCLOSE
SCLOSE
SCLOSE
EXIT: SEXIT,S
1%+

14=JUL=1978 12353113

<RELATED RECORD(S) >
DISPLAY

R@, #¥RMSS RNF
CHECK,RELATED

<DELETED RECORD SKIPPED>
GETSEQ

#1,MATCH,FLAG, GETNEXT
<NO RELATED RECORDS,>
GET,RECNO

TYPE <BAD KEY VALUEL>

GET REC,.NO

TYPE <RECORD DOES NOT EXIST,>
GET REC_NO

= CLOSE FILES AND EXIT

FABZINFAB
FABETYPE_FAB
FAB=PROMPT FAB
RE

VAXel} MACRO X2,3=11 Page 3

WAS ERROR RECORD FOUND?
BRANCH IF NOT

GO GET NEXT RECORD
BRANCH IF RELATED RECORNDS PRINTED

LOoP

SUBROUTINE TO CONVERT ASCII INPUT STRING TO BINARY

)
?
1
3 INPUTS:
’
3 OQUTPUTS: R@
H

= STATUS CODE

R3 = BINARY VALUE
’ Ri. R2, R4 DESTROYED
’.-
CONVERT _KEY3
CLRO R3
BRB 208
1081 MULL2 #18, R3
BVS 308
SUBBY #*A/8/, (R2)+, R4
8LSS 308
cHPB R4, #%A/9/¢%as0/
BGTRU 308
ADDL2 R4, R3
2881 DECL R1)
BGEQ 123
MOVL #1, RO
RSB
308 CLRL RO
RS8

[R 4J

- v v v -

Ri, R2 = LENGYH AND ADDRESS OF INPUT STRING

INITIALIZE OQUTPUT VALUE

GO CHECK IF ANY CHARACTERS
SHIFT PARTIAL RESULT

BRANCH ON OVERFLOW

GET BINARY VALUE FOR CHARACTYER

BRANCH IF BAD

CHARACTER > 9 ?

BRANCH IF BAD

ADD IN CHARACTER TO PARTIAL RESUL
ANY MORE INPUT?

BRANCH IF MORE

SHOW SUCCESS

SHOW FAILURE

SATIWNYXd WYIO0dd

DISPLAY « DISPLAY RELATED RECOPDSV

a5

n234
0234
0234
2234
8234
8234
@241
B24E
8258
2268
¥269
2269

169 1
178 3
171 3
172 ==
173 INI
174

175

176

177

178

179

180

14=JUL=1978 12153313

VAX=11 MACRO X@,3=11

SUBROUTINE TO INITIALIZE THE TYPE AND PROMPT FILES

T.TYPES

SCREATE FAB=TYPE_FAB
SOPEN FABSPROMPT _FAB

SCONNECT
SCONNECT
RSB

+END BEGIN

RAB=TYPE RAB
RAB = PROMPT, RAB

Page

4
1)

SIATINVXT WVIODOHd

0T-v

REORDER

INDICATE ITEMS TD REORDER

2oee
geee
egeea
eaga
eeea
oege
20ee
a0ea
eegn
111
eeea
28
egea
e3ee
noead
eaen
egea
=114
seoa
eoon
@aapoe
[d'd'dd
eeea
gaon
eeee
paoa
2een
20008032 MOQO0
Aenensne
aee2
©woon
aase
@994
easy
QAE4
2eE4
2REU
n128
0128
@128
2178
2178
2178
818C
218C
21BC
21BC
A1BC
21BC
@18C
218C
91FC
B1FC
21FC
21FC
B1FC
223C

L T
PN AWV RN OBV AL W

{2=DEC=1978 17327117

+TITLE REORDER =

RECORD ON 8YSSOUTPUT,

MACRO TYPE STRING
=SAVE

JPSECT TYPE,STRINGS,NOWRT

cseTMPASR,
»ASCII \STRING\
esaTMPLE =, , , TMPA
«RESTORE

MOVL #..,TMPA, TYPE RAB+RABSL RBF
MOVW .0 TMPL TYPEL RAB4RABSW RSZ

SPUT RAB=TYPE RAB
+ENDM
1
+MACRO ON,ERROR DEST,?L
BLBS RA,L
BRW DEST
Lt
+ENDM
]
REC,SIZEm=S@P
. +PSECT DATA,LONG
TYPE.FAB? SFAB FNMB<SYSSQUTPUT>, =
. RATSCR |
TYPE.RAB? SRAB FABSTYPE .FAB
s
INFAB: - S$FAB FNMS<INFILEL>
INRAR: SRAB FABuINFAB,=
UBFsREC _BUFFER,
. USZeREC,SIZE,
OUTFABt SFAB FNM2<OUTFILEL>»,=
ORGEIDX,=
. XABaKEYQ
OUTRABI 3RAB FABEQUTFAB, =
RBFaREC, BUFFER, =
RSZ=REC_ SIZE
H
[
H DESCRIPTION=ALT, KEY#2
1
KEY®: SXABKEY REF=d,=
POSed, -
8$1Zus5,=
NXTsKEY{
KEY1t SXABKEY REFmy,=
PO8eS,=
S$1Zsy,-
FLOnCDUP,CHGD> =
NXTaKEY2

KEY2: SXABKEY REFm2,e

VAX=1{ Macro VB2,23 Page

INDICATE ITEMS TO REORDER

PROGRAM TO READ THE OLD INVENTORY MASTER FILE AND CREATE A
NEW MASTER FILE, RECOGNIZING THOSE ITEMS WITH AN ONwHAND
QUANTITY LESS THAN THE REORDER QUANTITY, AND SETTING THE REODRDER

DATE IN THE NEW MASTER FILE TO TODAY®S DATE, AND LISTING THE

MACRO TO TYPE "STRING"

SAVE CURRENT PSECT

CHANGE TO TYPE STRINGS PSECT
NOTE ADDRESS

STORE STRING

NOTE LENGTH

BACK TO ORIGINAL PSECT

SET STRING ADDRESS

SET STRING LENGTH

WRITE THE RECORD

e W e e e e e

MACRO TD BRANCH ON ERROR

3 BRANCH ON SUCCESS
3 LONG FORM OF BRANCH

t RECORD LENGTH
1t FAB FNR USE WITH THE TYPE MACRO
1 RAB FOR USE WITH TYPE MACRO

XAB®S TO ORDER THE KEYS, PART#=PRIMARY, DISCOUNT TYPE=ALT, KEY#i,

1

NOILVZINVDYO JTId QIXAANI -- FAOW SSAIOV Q¥0DAY TIVIININDIAS ¢ °V

SATINYXd WVND0Odd

I1-v

REOROER

INDICATE ITEMS TO

22

22820205
aeQ00a14
232300084
PER22309
eApanea’

peeon281
22000282
20086296
00828294
2022229E
22039247
2BAAG2AE

20
P2222284

2o
223202C9
20 29 29
22020201
2P 29 2@
22082209
22720028

e

paaA2P0e8
P0RA02E4’
”00002€E8
P2MAB2ED
0OR0D2EF

REORDER

223C
©na3c
223C
e23cC
@27¢C
@e27¢C
227C
@227C
227C
g27c
@27¢C
227¢C
e27¢c
ea2rc
a27¢
2281
0282
#e9é6
2294
B829€
DAY
P#2AE
@2AE
BRAE
113
Q2AF
ueed
72285
“2C9
naco
#2Dy
2208
2209
2209
2204
a20¢cC
a20C
N2EQ
@2E4
Q2€EB
P2€ED

12=DEC=1978 17327317

POSas, -
$12m23,~
FLGm<DUP,CHG>, =
NXT=2
1
1 DEFINE FIELDS OF RECORD
: .
PART NO_ LENSS
PART, DESC,LEN=20
GTY_LENad
DATE.LENES
PRICE,LENSY
1)
REC,BUFFER] .
PART .NUMBER1 +BLKB PART NO_LEN
OISCOUNT, TYPE: ,BLKB 1 .
PART,DESCRIPT: ,BLKSB PART, DESC,LEN
QTY . ON,HAND? «BLKB QTY_LEN
REQRDER,_ GTY: «8LKB BTY,LEN
REORDER_DATE: .BLKB DATE,LEN
LIST,.PRICE: +BLKB PRICE_LEN

H
3 BUFFER TO FORMAT AND PRINT RECORD
3

TYPE.BUF1 +ASCII / /
TYPE.PART: «BLKB PART NO_LEN
<ASCII / /
TYPE.DESCe +BLKB PART ,DESC_LEN
.ASCII / /
ON, HAND ¢ .BLKB GTY.LEN
LASCII v/ /
REQRDER} .BLKB OTYLLEN
TYPE.LEN® ,=TYPE BUF
HEADINGS +.BYTE]
+ALIGN LONG
1 BUFFER TO GET CURRENT DATE

DATE.BUF} «LONG 11 .
.LONG TODAYS.DATE

TODAYS DATE: .BLKB 7

YR, CENTURY: .BLKB 2

YEAR? .BLKB 2

VAX=11 Macro Vv@2,23

LENGTH OF BUFFER
ADDRESS OF BUFFER
DDeMONe

Yy

Yy

Page

2

STATAWVXT WYIOD0¥d

ZT-v

REORDER

0B@RQ2EBYEF

BPABA296°EF

PROOREU’EF

@03A22D9°EF

2@BRB27C*EF
00000282 °EF

20000A2C0°EF
20020205 °EF

= INDICATE ITEMS TO REORDER

2@QeIR2EDEF

au
@OCR029AEF
23
a@sc
29
@AB0R29EEF

(2}
3E

2%
@O00CG2AFEF
14
00P0B2BS°EF
P00P0B296°EF
080RB29AEF

Be

29
19

31
28

E2

28

oo
09

eeed
0000
-I.L1]
0300
@00
gaea
eea2
¢eeF
eais
[42%]
201S
ee1s
a3
oguy
@47
2054
@asA
ea67
@060
2389
(L]
@aass
2298
BO9E
VoAB
@aen}
onB1
] 1o]]
OREF
QOEF
QOEF
eAEF
0REF
QQEF
aaFc
2182
2109
210E
o112
e113
G114
BL1F
o11F
n126
2127
2146
A16S
0168
a16C
2171
2178
2170
2188
2193
2193
7193

100
104
102
103
124
10%
1086
187
108
189
11e
114
112
113
114
1158
116
117
118
119
12¢
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

137
138
139

140
141

142
143
144
145

146

147
148
149
150
151

«PSECT

INITIALIZATIO
GET TODAY’S D

w e

STARTI .WORD
SOPEN
ON_ERROR
$FAB.STO

SCREATE

ON, ERROR
SCONNECT
ON,ERROR
SCONNECT
ON, ERROR
SASCTIM,
MOVW

SOPEN

ON.ERROR
SCONNECT
ON,ERROR

TYPE
TYPE

12=DEC=1978 §7p27317

CODE,NOWRT

N = OPEN INPUT AND OUTPUT FILES,
ATE

4
FABsINFAB
EXIT
RE FABmOUTFAB, =

RFMaFABSB _RFM¢ INFAB, =
MRSEFABSW.MRS+INFAB, =
RATEFABSB_RAT+INFAB
FABEOUTFAB
EXIT
RABEINRAB
EXIT,
RABSOUTRAB
EXIT
0 TIMBUF=DATE, BUF
YEAR, YR, CENTURY

FABETYPE.FAS
EXIT .
RABSTYPE, RAB
EXIT

VAX=i{ Msero V832,23 Page 3

CONNECT STREAMS, AND

OPEN INPUT FILE
BRANCH ON ERROR
INITIALIZE OUTPUT FAB FROM INPUT
SET RECORD FORMAT
SET RECORD S8IZE

SET RECORD ATTRIBUTE
CREATE OUTPUT FILE
BRANCH ON ERROR
CONNECT INPUT RAB
BRANCH ON ERROR
CONNECT OQUTPUT RAB
BRANCH ON ERROR

GET CURRENT DATE
MAKE INTO YY FORMAT
(RATHER THAN "yYYYY®)
OPEN REPORT FILE
BRANCH ON ERROR
CONNECT REPQORT RAB
BRANCH ON ERROR

<L IST OF INVENTORY ITEMS BELOW REQORDER POINT>

COPY RECORDS FROM OLD MASTER TO NEW MASTER CHECKING QUANTITY

1
H
3 ON HAND VERSU
1)
]

EAD: SGET
ON, ERRCR
cMPCs

BLSS
BRW
2083 MOVC3

S REORDER GQUANTITY

RABINRAB '
. DONE :
#QTY LEN,QTY,ON_HAND,REORDER,GTY}

208 1
WRITE 1]
#DATE_LEN, TODAYS ,DATE,REORDER DATE

READ A RECORD
BRANCH TO DONE, IF FINISHED
ON=HAND LESS THAN REORDER QTY

BRANCH IF YES
OMIT REORDER PROCESSING IF NOT

SET REORDER DATE TO TODAY®S DATE
BRANCH IF HEADING ALREADY PRINTED

ON HAND REORDER PT,>

BUILD REPORT RECORD

1
LYY #1,HEADING, REPORT, ITEM '
TYPE <PART # PART DESCRIPTION
. TYPE
REPORT, ITEM; . ’
MOVES #PART_NOJLEN,PART _NUMBER, TYPE PART
MOVC3 #PART_DESC.LEN,PARY_DESCRIPT,TYPE DESC
MOVL QTY.ON_HAND, ON.HAND
MOVL ~~ REORDER,QTY,REORDER
SRAB.STORE RABRTYPE RAB,
RBFRTYPE,BUF, =
RSZasTYPE LEN

SA'TdHVXd WY¥DOud

€T-V

REORDER

20A3A2D9EF

INDICATE ITEMS TO REORDER

FF2A

a1
1F

31

EQ -

0146
Q1AF
21BC
81ce

-01CS

#1CS
21CS
31CS
21CS
aid2
@210F
21E6
@LET7
02086
2206
213
n21C
a21c

182
153
154
155
156
187
158
159
162
161
162

163
164
165
166
167
168

12=DEC=1978 17327817

$PUT RAB=RD

WRITEs SPUT RAB=QUTRAB
ON.ERROR EXIT
BRW READ
!
3 ALL SET e CLOSE PILES AND EXIY
'8
DONE$ SCLOSE FABSINFAS
SCLOSE FAB=OUTFAB .
888 #1,HEADING, CLOSE, TYPE
TYPE <NONE>
CLOSE,TYPES .
SCLOSE FABSTYPE.FAB
EXIT: SEXIT.S RO

«END START

VAX=11 Macro V22,23 Page

PRINT REPORT RECORD
WRITE NEW MASTER RECORD
BRANCH ON ERROR

BRANCH ON SUCCESS

BRANCH IF HEADING PRINTED
INDICATE NO ITEMS REORDERED

4

SATdHVXd WWYO0dd

Pi-v

ADDTOFILE = ADD RECORDS TQ FILE

gaee
11]
naea
oeae
Aeae
2009
aagea
2eead
anoa
220@
eaee
2900
200@
Qe
vaee
aAnee
veeo
430@
ARAQ
©wRAe
Q22
¢n0e
na2G
Janae
Ll 1’
1929
2000
YRAR
Zy.ldy
“aaa
ynge
nee
vaan
202
oage
Adea
ea0n
nage
voes
a9ee
4000
a9ed
waea
1200
3300
yean
20009000
723e0
uRae
0o
nooo
neee
vesa
3894
20EY
¥oEYL
30E4

-
CWOIAUN B WN

11=DEC=1978 12132135 VAX=1} Macro V22,23 Page

.TITLE ADDTOFILE - ADD RECORDS TO FILE

e we e me e N we ws

; IT WILL UPDATE THE EXISTING RECORD.
JMACRO TYPE,STRING

~

THIS PROGRAM ADDS NEW RECORDS TO AN INDEXED FILE,
FILE INITIALLY, IF IT DOES NOT ALREADY EXIST.

CREATING THE

IN ADDITION, THE UPDATE IF (UIF) OPTION IS USED ON THE $PUT MACRO.
IN THIS EXAMPLE, THE PRIMARY KEY IS THE PART NUMBER. WHEN A RECORD
WITH A NEW PART NUMBER IS INSERTED, IT WILL SIMPLY BE PUT INTO THE
FILE. WHEN A RECORD WITH AN OLD PART NUMBER IS INSERTED, HOWEVER,

MACRC TO TYPE "STRING"

SAVE CURRENT PSECT
CHANGE TO TYPE STRING
NOTE ADDRESS

STORE STRING

NOTE LENGTH

BACK TO ORIGINAL PSECT
SET STRING ADDRESS

SET STRING LENGTH
WRITE THE RECORD

MACRO TO ACCEPT INPUT
FROM SYSSINPUT, PROMPTING
WITH "STRING"

SAVE CURRENT PSECT

CHANGE 7O TYPE STRINGS PSECT
NOTE ADDRESS

CARRIAGE RETURN,LINE FEED
STORE STRING

NOTE LENGTH

BACK TO ORIGINAL PSECT
SET PROMPT BUFFER ADDRESS
SET PROMPT BUFFER SIZE

MACRO TO BRANCH ON ERROR
BRANCH ON SUCCESS
LONG FORM OF BRANCH

+SAVE]
«PSECT TYPE_STRINGS, NOWRT '
..ITMP‘=. ,
«ASCIT A\STRING\]
esa TMPLR =, TMPA '
+RESTORE H
HOVL #,,,TMPA, TYPE _RAB+RABSL RBF ’
MOVH #,,,TMPL, TYPE _RAB+RABSW RSZ ’
$PUT RABSTYPE RAB]
JENDM
H
«MACRO PROMPT STRING H
'
3
«SAVE ’
.PSECT TYPE_STRINGS,NOWRT 1
sae TMPAS, H
«BYTE 13,10]
«ASCII A\STRING\]
eoa TMPLE =, THPA ’
+RESTORE 1
MOVL #,,TMPA,PROMPT _RAB+RABSL _ PBF 3
MOvVe B,4oTMPL,PROMPT _RAB+RABSB PSZ]
SGET RABSPROMPT RAB
MOVZWL PROMPT_RAB+RABSW_RSZ,R1
MOVL PROMPT RAB+RABS| _RBF,R2
+ENDM
H
+MACRO ON_ERROR DEST,?L ’
BL8S RO, L]
BRW DEST]
L
«ENDM
4
+PSECT DATA,LONG
4
3 FABS AND RABS FOR USE WITH TYPE AND PROMPT MACROS
3
TYPE_FAB3S $SFAB FNMR<SYSSOUTPUTI>,=
RAT=CR
TYPE_RAB!: SRAB FABSTYPE_FAB
PROMPT_FAB3 SFAB FNMa<SYSSINPUTI>
PROMPT_RABS SRAB FABSPROMPT_FAB, =
UBFePROMPT_ BUFF,=
UsZsi132,=

i

AN

—— JdOW SSIDOV QY¥0O3d WOANVY

NOILVZINVOYO FTId dIAXIANI

SATIWVXE WWIDOUd

ST~V

ADDTOFILE

ADD RECORDS TO FILE

A@a02@32

239008085
20200014
aendeged
32000299
aae@gea27

20200281
eapeaz8e
23eee29%6
22002294
3200029E
30000247
ABA022AE

20000334

4BEY
»n128
2128
2128
2128
2128
n128
n128
w128
3128
n128
0128
a128
©vy178
ni7e
@178
»1BC
¥1BC
»1BC
¥1BC
n1BC
218C
218C
21FC
¢1FC
?1FC
AyFC
@1FC
B23C
¢23C
a23C
n23C
a23C
na27c
az27¢cC
a271C
nerce
v27C
827C
227C
#27C
e27c
w27C
i
w281
2282
8296
3294
B2kt
A2A7
B2AE
B2AE
"F1-1']

58
59
6@
61

63
64
65
66
67
68
69
79
71

73
74
75
76
77
78
79
80
81

83
84
85
86
87
1]
89
90
91
92
93

9S
96

98

99
120
121
192
183
104
105
106
107
108
189
110

11*DEC=1978 1213

ROPRPMT

2138 VAXei] Mgero VB2,23 Page

H N
s INPUT FILE FAB AND RAB AND XABS

REC.SIZEXS@
INFAB: SFAB

iNRAB; $RAB

H
: DEFINE KEY XA
KEY@: SXABKEY

KEY1t $SXABKEY

KEY2: SXABKEY

.
;
.
H

DEFINE FIELDS

PART_NO_LENZS
PART_DESC_LENA2D
GTY, LEN=4
DATE,LENZ9
PRICE.LEN2Y

3
REC,BUFFER1
PART ,NUMBER}
DISCOUNT. TYPE:
PART_DESCRIPT}
QTY_ ON, HAND]
REORDER GTY3
REORDER, DATE;
LIST_PRICE:
s

+ALIGN
PROMPT_BUFF}

FNME<INFILES>,«
ORG=IDX,
RFM2VAR, =
MRSSREC,SIZE,~
RAT=CR,=
FACE<PUT,UPD>,=
XABzKEY@, =
FOP=CIF

FABZINFAB,=
RAC3KEY

BS, ONE PRIMARY

REF=0,=

POS=Q,=

§12z25,~
NXT3KEY]
REFE1,=

P0OSaS,=

$1Z=1,~
FLG2<DUP,CHG>, =
NXT3KEY2
REFs2,=

P0OS36,~
§12s28,-
FLGRCDUP,CHG>, =
NXT=z0Q

OF RECORD

.BLKB PART,NO,
LBLKB 1

«BLKB PART_DES
.BLKB QTY.LEN
.BLKB QTY_LEN
(BLKB DATE_LEN

«BLKB PRICE_LE
LONG
LBLKB 132

FILE ORGANIZATION SPECIFIED
POSSIBILITY I8 PRESENT

THAT IT MAY NOT EXIST

AND THEREFORE MAY HWAVE

TO BE CREATED

~ .. e v

KEY AND TWO ALTERNATES

LEN
CLLEN

N

2

SHTdWYXT WVIO0ud

91-V

ADDTOFILE

62
8BOQE27C"EF
62
egoeeas) ‘EF

62
00000282 EF

20e0e296EF
@a

62

B2PBV29AEF
-1']

62
(13
63

62

ADD RECORDS TO FILE

@1EF

3n2p2020a A&F
51

53

4A

51

0296°C3

3p202029 8F

Si
B29A°C3
oa
20
29

51

@334
8334
8334

aagonnan

2000

3e

oS
12
31
2¢

ec

2C

Oa
c3

19
28

0o
c3

18
31

28
2C

2C

LLTL
[.L'I-F
woer
eeeF
2@15
ag22
ee28
2028
4e28
2028
cez2s
2928
anse
A9SE
2060
2362
2065
2068
2869
Qa6F
n89C
AA%F
2040
20A6
aaD3
2009
2e0C
2a00
WAES
a11@
a116
w12l
8124
2125
127
2124
2120
3154
2160
9168
B16E
a16F
2171
8174
0174
0177
@174
@170
017E
31890
2189
B14AD
2183

112 3

11=DEC~1978 10132135

113 3 PERFORM INITIALIZATION

114 3

115

116 BEGIN:
117

118

119

120

121

122

123 ;

«PSECT CODE,NOWRT
+«WORD [4
SCREATE FABsINFAB

ON_ERROR EXIT
SCONNECT RABSINRAB
ON_ERROR EXIT

BSBW INIT.TYPE

124 3 SCLICIT DATA FIELDS INPUT

125 3

126 GETNXT3
127

128

129

13¢

134

132 1es:

133
134
135

136
137
138
139

140
141
142
143
144

145
146

147
148
149
15@

151
152 EXIT1s
153 CONTis
154

15%

156
157
158
159
160

PROMPT <PART #3>

ON_ERROR DONE
TSTL R

BNEG 108

BRW DONE

MOVCS R1,(R2),#%A/Q/,=
#PART_NO,LEN,PART NUMBER

PROMPT «DISCOUNT TYPEg>

Moves R1,(R2),8%A/ /,=

#1,DISCOUNT, TYPE
PROMPT <PART DESCRIPTION1>
ON_ERROR EXIT

MOVCS R1,(R2),#"A/ /,=

#PART _DESC, LEN,PART, DESCRIPT
PROMPT <QUANTITY ON HANDg>

ON_ERROR EXIT

MOVL #"A/ 9/,QTY, ON,HAND

SUBL3 R1,#GTY,.LEN,R3

BLSS EXITY
MOVC3 R1,(R2),QTY _ON,_HAND(R3)

PROMPT <MINIMUM REORDER QUANTITY3>

-ON_ERROR EXIT

MOVL #A/ @/,REORDER_QTY
SuBL3 R1,#QTY_LEN,R3

BGEQ CONTY
BRW EXIT

MOVC3 Ri,(R2),REORDER_GTY(R3)
MOVCS #Q,(SP),#%A/ /,;=
#DATE_LEN, (R3)
PROMPT <LIST PRICE)>
XIT

ON_ERROR £
MOVCS R1,(R2),8%A7 /,=

e ve v we e e

- e e e we W

VAX=11 Macro V82,23 Page 3

OPEN FILE IF IT EXISTS

ELSE CREATE IT

BRANCH ON ERROR

CONNECT INPUT RAB

BRANCH ON ERROR

INITIALIZE TYPE AND PROMPT FILES

GET NUMBER OF PART

BRANCH IF DONE

ANY INPUT?

CONTINUE IF YES,

ELSE QUIT

MOVE PART NUMBER TO RECORD BUFFER

ZERO FILLING
GET DISCOUNT TYPE
MOVE OISCOUNT CODE TO RECORD BUFF

(BLANK IF NULL)
GET PART DESCRIPTION

MOVE PART DESCRIPTION TO RECORD

BUFF, BLANK FILLING
GET NUMBER ON HAND

INITIALIZE BUFFER AREA
DETERMINE OFFSET IN BUFFER AREA

IF FIELD TOO SMALL, EXIT
PUT IN VALUE RIGHT ALIGNED

GET MINIMUM QUANTITY

INITIALIZE BUFFER AREA
DETERMINE OFFSET

CONTINUE IF FIELD IS 0,K,
BRANCH LONG TO EXIT

FILL IN BUFFER AREA RIGMT ALIGNED
BLANK REORDER DATE

(TAKE ADVANTAGE OF ITS

ADDRESS IN R3)

GET PRICE

MOVE PRICE TO RECORD BUFFER

STTIWYXT WYVID0Ed

LT-Y

ADDTOFILE

COPRA2ATEF

ADD RECORDS TO .FILE

2e
a7

FE4y

31

as

#1B6
2187
018D
©18D
B81BD
2180
2104
@104
4104
21E1
wiE7
21EA
01E4A
21EA

B1EA

B1F7
@204
2211
2214
2214
2214
B21A
B21A
021A
2214
V214
2227
6234
8241
Q24E
B24F

161
162
163
164
165
166
167
168
169
170
174
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

,..

INIT,TYPE:
SCREATE FABSTYPE_FAB
SOPEN FABSPROMPT_FAB
SCONNECTY RABSTYPE_RAB
SCONNECY RABSPROMPT_RAB
RSB
«END BEGIN

11=DEC=1978 10332135

#PRICE,LEN,LIST PRICE

SRAB_STORE RABEINRAB,=
RBFEREC,BUFFER, =
RSZe#REC,SIZE,=
ROPRUIF

SPUT RAB=INRAB
ON,ERROR EXIT
BRW GETNXT

ALL SET = CLOSE FILE AND EXIT

SCLOSE FABINFAB
SCLOSE FABSTYPE FAB
SCLOSE FABSPROMPT_FAB
SEXIT.S RO

VAXe1] Macro V02,23 Page 4

BLANK FILLING
SET UP RAB FOR NEW RECORD

IF PART # ALREADY EXISTS, UPDATE
RECORD WITH NEw INFORMATION
WRITE NEW RECORD

GET NEXT RECORD

H
3 SUBROUTINE TO INITIALIZE THE TYPE AND PROMPT FILES
H

STATANVXT WVIOOUd

APPENDIX B

USING THE RMS FILE ANALYZER

The RMS File Analyzer (RMSANLZ), which is not a DIGITAL-supported
utility, enables you to inspect the file attributes and index
structure of files, With the information provided, you <can analyze
characteristics of index files such as index tree depth and fill
percentages. You can also analyze file corruption problems caused by
user program errors and RMS system failures,

You can use RMSANLZ interactively or you can direct the output to a
listing file. The following list summarizes the operations you can
perform with RMSANLZ:

e Display file attributes, file header characteristics, and
prolog information

e Display key description information for any key of an indexed
file

e Display, for each index level of a key, the fill percentage,
number of buckets, number of records, number of deleted
records, number of record reference vectors (RRVs), and the
number of deleted RRVs

e Print, for each bucket on each index level of the key, the
virtual block number, the number of records and RRVs, and the
record IDs of each record

e Display, for any bucket, the bucket control information,
record control information, and key values

e Display any bucket in hexadecimal dump format

e Print detailed bucket contents of all buckets

B.l1 USES OF RMSANLZ
RMSANLZ has two uses:
e To examine the characteristics of indexed files

e To provide information on file corruption errors caused either
by application program errors or by RMS or VMS system
failures.

When examining indexed files, RMSANLZ is useful for determining the
effects of file activity, file loading, and file definition options.
For example, if file size is used in loading an indexed file, RMSANLZ
will display the actual fill percentage for further tuning in future
file loads.

USING THE RMS FILE ANALYZER

RMSANLZ can also be wuseful in determining the need for file
reorganization by displaying the number of deleted records and deleted
RRVs in the file., 1If a large fraction of the records is deleted, then
file reorganization may be advisable.

Whenever file corruption errors occur and an RMS or VMS system failure
is suspected, the complete RMSANLZ analysis of the file should be
included with the Software Performance Report (SPR).

B.2 OPERATING RMSANL2Z

The RMS File Analyzer (RMSANLZ) is executed by commands obtained from
SYSSINPUT (terminal or procedure data). The output, by default, is
sent to SYSSOUTPUT or directed to a listing file. You invoke RMSANLZ
by typing:

$ RUN SYS$SYSTEM:RMSANLZ

Control is then passed to RMSANLZ, and RMSANLZ, in turn, displays the
following prompt at your terminal:

Name of file to analyze:

You respond by typing the file specifications of the file to be
analyzed.

RMSANLZ then prompts for the file specification to be used for output:
Specify output file, default is SYSSOUTPUT:

You respond with the listing file specification, or with <RET> to
indicate SYS$OUTPUT.

RMSANLZ then displays the file attribute, file header, and file prolog
information for the file. This information is in a format similar to
a full directory 1listing, but 1is more extensive and includes
information about file area allocations. An example is shown in
Figure B-1.

_DBAO: [RMS.ANLZ]ISAM.IDX:1

Organization: Indexed with 2 defined keys

Record Format: Variable Record Attributes: Carriage return
Maximum Record Size: 200 bytes

File Protection: System:RWED Owner:RWED Group:RWE World:R
File Owner: [011,122} File ID: (7214,23,1)

Created: 24-JAN-1980 13:48:57.82

Revised: 24-JAN-1980 13:54:36.43 (3)

Expires: <none specified>

File Allocation: 72 Extension: 0

End-of-file VBN: 52 First free byte: 0

Allocation Attributes: - -

Prolog version: 1 Number of areas: 2

Area ID: O Area bucketsize: 3 Area extendsize: 21
Alignment: CYL Options: Contiguous
Current extent: Start VBN: Size: 51 Used: 21

Area ID: 1 Area bucketsize: 2 Area extendsize: 10
Alignment: None Options:
Current extent: Start VBN: 52 Size: 21 Used: 6

Figure B-1 Sample File Attribute Listing

B-2

USING THE RMS FILE ANALYZER
If the file is an indexed file, RMSANLZ then prompts for the key of
reference to be analyzed:

Specify key of reference, default is all keys:

You respond with a key-of-reference number, or with <RET> to ask
RMSANLZ to cycle through all the keys starting with the primary key.

RMSANLZ displays the key description as shown in Figure B-2 and then
prompts for the analysis operation to perform for the key:

Operation:
You respond with one of the following commands:

HELP or ? or help - Print this command summary

A (NALYZE) - Print summary of each index 1level including
fill percentage, number of buckets, records
RRVs, deleted records, and deleted RRVs

S (HOW) - Print detailed bucket contents for specified
buckets. The question "Next VBN:" asks for a
VBN number until <RET> or EOF is entered

L(IST) - Print detailed bucket contents for all buckets

D (UMP) - Print VBNs in hexadecimal dump format for

specified buckets. The question "Next VBN:"
asks for the VBN number until <RET> or EOF is

entered
E(XIT) or <RET> - Exit from this key and go to command level
Key of Reference: 0 Key Name: PART_NUM_ID

Total Key Size: 10 Minimum record length: 44
Number of Key Segments: 2 Key Data Type: String
Key Attributes: Duplicates No Changes
Key Position: 16 42
Key Size: 8 2
Area numbers: Data:0 Index:1 = Lowest index level:l
Data Bucketsize: 1536 Data fill size: 1200
Index Bucketsize: 1024 Index fill size: 600
Index Depth: 1 Root VBN: 52

Figure B-2 Sample Key Information Listing

During the ANALYZE operation, if you answer yes to the question:

See VBN, #Records, #RRVs for each bucket? Y/N
the VBNs, number of records, and number of RRVs per bucket will be
printed in addition to the summary. If you answer yes to the
question:

Want to see record IDs for each bucket? Y/N

the record IDs for each bucket for 1level 0 will be printed. The
format of the ANALYZE operation output is shown in Figure B-3,

USING THE RMS FILE ANALYZER

Level Number: 1
Level 1 Fill Percentage: 6
Number of buckets on this level: 1
Number of records on this level: 4

Level Number: 0
Bucket VBN Recs Del recs RRVs Del rrvs Fill% Rec_IDs
1 4 10 0 3 3 76

2 10 11 o . 0 2 82
1 3 4 5 6 8 9
11 12 13 2 7
3 16 2 1 0 0 23
12 3
4 7 5 1 7 1 48
6 1 2 12 1514 9
10 4 7 8 513
5 13 5 0 4 0 39
11 1 2 3 149 12
10
6 19 9 0 0 0 67

Level 0 Fill Percentages: 56

Number of buckets on this level: 6
Number of records on this level: 42
Number of RRVs on this level: 2

Number of deleted RRVs on this level: 6

Figure B-3 Sample Key Analysis Listing

The output format for the SHOW and LIST commands includes:

13

10

11

e Bucket control data including bucket type, index 1level, area

number, and free space.

e For each record in an index bucket, the record pointer and
value.

e For each record in a primary data bucket, the record size
each key value.

e For each record in a secondary data bucket, the key value
all duplicate-record pointers.

If file corruption has occurred or an invalid value is entered to
SHOW command, RMSANLZ will display:

x*%* Tnvalid Bucket VBN: n *¥%

key

and

and

the

Using the DUMP command will allow you to examine the corrupted bucket.

USING THE RMS FILE ANALYZER

If file corruption has occurred or an invalid value is entered to the
SHOW command, RMSANLZ will display:

kk Tnyalid Bucket VBN: n ****%*

Using the DUMP command will allow you to examine the corrupted bucket.

A

Assembly-time control block ini-
tialization, 2-1
ASSIGN command, 3-10

Bypassing logical name transla-
tion, 3-13

C

Calling standard of routines,
2-2
CREATE command, 3-5
Creating an indexed file, 4-10
Creating a relative file, 4-8
dynamically, 4-9
sequential record access mode,
4-8
Creating a sequential file, 4-3
dynamically, 4-5
sequential record access mode,
4-4

D

Default file types, 3-6
Default process logical names,
3-13
Defaults for logical names, 3-12
Determining file organization
requirements, 1-1
Directory,
master file directory, 3-4
subdirectory, 3-4
user file directory, 3-4

Equivalence strings,
logical names, 3-10

F

File names, 3-2, 3-5

File organization,

~ advantages and disavantages,

1-2

determining requirements, 1-1
indexed, 4-10, 5-9
relative, 4-7, 5-6
sequential, 4-1, 5-1

INDEX

File specifications, 3-1, 3-9
defaults, 3-8

File types, 3-2, 3-4
defaults, 3-5

File versions, 3-2, 3-4

G

Group logical names, 3-11

H

Hardware device,
mass storage, 3-1
record-oriented, 3-1
unique identification, 3-2

Identification of hardware de-
vices, 3-2
Indexed file organization,
random access to, 5-9
sequential access to, 4-11
I/0 segment, 2-1

L

Logical names,
defaults, 3-10
equivalence strings, 3-10
recursion, 3-9
tables, 3-11
translation, 3-11

Mass storage devices, 3-1
Master file directory,

MFD, 3-3
MFD,

master file directory, 3-3

Network node names, 3-2

P

Process control region, 2-1

Process logical names, 3-11
defaults, 3-10

Process-permanent files, 3-14

Index-1

R

Random record access mode,
indexed file organization,
5-9
relative file organization,
5-6
sequential file organization,
5-1
Reading an indexed file,
randomly, 5-9
sequentially, 4-11
Reading a relative file,
randomly, 5-6
sequential record access mode,
4-7
Reading a sequential file,
randomly, 5-1
sequential record access mode,
4-2
Record-oriented devices, 3-1
Recursion of logical names,
Relative file organization,
random access to, 5-6
sequential access to, 4-7
Run-time control block
initialization, 2-1

S

Sequential file organization,
random access to, 5-1
sequential access to, 4-1

Sequential record access mode,
indexed file organization,

3-11

4-10
relative file organization,
4-7
sequential file organization,
4-1
Subdirectory, 3-4

INDEX

System logical names, 3-11
SYSSCOMMAND, 3-13
SYS$DISK, 3-13

SYSSERROR, 3-13

SYS$INPUT, 3-13

SYSSLOGIN, 3-13

SYSSNET, 3-13

SYS$NODE, 3-14
SYS$SYSDISK, 3-13

T

Translation of logical names,
3-11
bypassing, 3-14

V)

UFD,
user file directory, 3-4
User control block initializa-

tion,
assembly time, 2-1
run time, 2-1

User control blocks, 2-1
User file directory,

UFD, 3-4

\'}

VAX-11 RMS routines
argument list, 2-2
calling standard, 2-2

w

Wild card characters,

in file specifications, 3-8

Index-2

VAX-11

Record Management Services
User's Guide

AA-D781C-TE

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance

Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
" Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please cut along this line.

Please indicate the type of reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student»programmer

Dooggao

Other (please specify)

Name Date

Organization

Street

City State Zip Code

ar

— — — Do Not Tear - Fold Here and Tape — — — — — — — — —

No Postage
Necessary
if Mailed in the

United States

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

IR 1
BUSINESS REPLY MAIL —
I
I

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS TW/A14
DIGITAL EQUIPMENT CORPORATION
1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

- DoNot Tear-FoldHee @ @ @ — — — = — — — — — — — — — — — — — o — -

