
(

Q'4 -Cb3Io XJ ~ f (5
, I '

DECnet-VAXmate
Programmer's Reference Manual
Order No. AA-GV34A-TH

September 1986

This manual details the software requirements and design consider­
ations necessary for creating DECnet-V AXmate network applications.

Supersession/Update Information: This is a new manual.

Operating System and Version: V AXmate MS-DOS V3.1 0

Software Version: DECnet-VAXmate V1.0

~amaDmD

AA-GV34A-TH
First Printing, September 1986

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used or
copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied
by Digital or its affiliated companies.

Copyright © 1986 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.
The postage-prepaid Reader's Comments form on the last page of this document requests the
user's critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC PDP VAX
DECmate P/OS VAXcluster
DECnet Professional VAXmate
DECUS Rainbow VMS
DECwriter RSTS VT
DIBOL RSX Work Processor
~DmDama RT

MASSBUS UNIBUS

MS™, XENIX™, MS-DOS™, MS_NETTM, and MS-Windows™ are trademarks of Microsoft
Corporation.
IBM is a registered trademark of International Business Machines Corporation.
PC/XT and Personal Computer AT are trademarks of the International Business Machines
Corporation.

This manual was produced by Networks and Communications Publications.

/
i

~ ..

/ "
/

1

(

2

(

Contents

Preface

Introduction to Network Programming

1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.1.6
1.1.7
1.2
1.2.1
1.2.2
1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.4

Concepts ... 1-4
Client and Server Tasks ... 1-4
Sockets. .. 1-4
Blocking and Nonblocking I/O Operations 1-6
Node Names and Addresses. .. 1-6
Network Object Numbers and Task Names 1-6
Access Control Information. .. 1-6
Optional User Data .. 1-6
Forms of Task-to-Task Communication. .. 1-7
Transparent Communication. .. 1-7
Nontransparent Communication 1-8
Task-to-Task Communication Functions 1-9
Establishing a Logical Link .. 1-9
Sending Normal Data Messages 1-12
Receiving Normal Data Messages 1-12
Out-of-BandMessages ... 1-13
Terminating Network Activity and Closing the Logical Link. 1-13
Transparent File Access. .. 1-14

Transparent File Access Operations

2.1 Introduction to Transparent File Access 2-1
2.2 Initiating Transparent File Access. .. 2-2
2.2.1 Remote File Name ... 2-2
2.2.2 Access Control Information ... 2-3
2.3 File Characteristics .. 2-3
2.3.1 FileAttributes ... 2-3
2.4 Performing Data Conversions 2-4
2.5 Converting Remote Input Files 2-5
2.5.1 Binary Image Files .. 2-5

Contents-1

3

Contents-2

2.5.2
2.6
2.6.1
2.6.2
2.7
2.7.1
2.7.2
2.8
2.9
2.9.1

2.9.2
2.9.3
2.10
2.11
2.11.1
2.11.2
2.11.3
2.11.4
2.11.5
2.11.6
2.11.7
2.11.8
2.11.9

ASCII Files .. 2-5
Converting Remote Output Files. .. 2-6
ASCII Files .. 2-6
Image Files. .. 2-6
Using Network File Specifications for Network Access. 2-7
Node Specification. .. 2-7
File Name Specifications. .. 2-8
Passing User Parameters .. 2-8
Using the Transparent Network Task Control Utility. 2-8
Displaying Network Status of the Transparent File
Access Utility ... 2-8
On-Line Help ... 2-10
Deinstalling TF A .. 2-10
TFA Programming Considerations 2-11
MS-DOS Function Requests 2-11
Close .. 2-12
Create ... 2-13
Delete ... 2-15
Find First Matching File ... 2-16
Find Next Matching File ... 2-18
Load and Execute a Program 2-20
Open .. 2-21
Read ... 2-23
Write .. 2-25

Transparent Task-to-Task Communication

3.1 Transparent Task-to-Task Communication 3-1
3.2 Transparent Communication Functions 3-1
3.2.1 Initiating a Logical Link Connection 3-2
3.2.2 Handshaking Sequence for a Client Task 3-2
3.2.3 Handshaking Sequence for a Server Task 3-2
3.2.4 Exchanging Data Messages over a Logical Link. .. 3-2
3.2.5 Terminating the Logical Link 3-3
3.3 Creating a Transparent Communication Task 3-3
3.4 Network Task Specifications 3-3
3.4.1 Node Specifications ... 3-4
3.4.2 Task Specifications .. 3-5
3.5 MS-DOS Intercept Routine ... 3-5
3.6 Using the Transparent Network Task Control Utility 3-6
3.6.1 Displaying Status ofthe Transparent Task-to-Task Utility 3-6
3.6.2 On-Line Help .. 3-7
3.6.3 DeinstallingTTT .. 3-7
3.7 TTT Programming Considerations. .. 3-8
3.8 MS-DOS Function Requests for Transparent

Task-to-Task Communication 3-8

/
\,,-

\
'~

()
4

(

5

3.8.1
3.8.2
3.8.3
3.8.4

Close ... 3-9
Create/Open ... 3-10
Read ... 3-12
Write .. 3-13

CLanguage

4.1

4.1.1
4.2
4.3
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7
4.4.8
4.4.9
4.4.10
4.4.11
4.4.12
4.4.13
4.4.14
4.4.15
4.4.16
4.4.17

Creating the DECnet-V AXmate Programming
Interface Library .. 4-1
DECnet-V AXmate Programming Considerations. 4-2
How to Read the Socket Interface Call Descriptions. 4-3
Understanding a SYNTAX Section 4-4
Socket Function Calls. .. 4-5
Example Socket Interface Calling Sequence 4-6
accept ... 4-7
bind ... 4-9
connect .. 4-11
getpeername .. 4-13
getsockname .. ' 4-15
listen. .. 4-17
recv .. 4-19
sclose .. 4-22
select. .. 4-24
send .. 4-27
setsockopt and getsockopt. .. 4-30
shutdown .. 4-34
sioctl ... 4-35
socket .. 4-37
sread ... 4-39
swrite .. 4-41

DECnet Utility Functions

5.1

5.1.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.2.9
5.2.10

Creating the DECnet-VAXmate Programming
Interface Library. .. 5-1
DECnet-V AXmate Programming Considerations. 5-2
DECnet Utility Function Calls 5-4
bcmp .. 5-5
bcopy ... 5-6
bzero .. 5-7
dnet~ddr .. 5-8
dnet-conn .. 5-9
dnet-eof .. 5-13
dnet-getacc ... 5-14
dnet-getalias .. 5-16
dnet-htoa ... 5-17
dnet-installed ... 5-18

Contents-3

5.2.11
5.2.12
5.2.13
5.2.14
5.2.15
5.2.16
5.2.17

dnet--..ntoa ... 5-19
dneLpath. ; ... 5-20
getnodeadd .. 5-23
getnodeent ... 5-24
getnodename .. 5-26
nerror .. 5-27
perror ... 5-28

6 Assembly Language

6.1 DECnet-V AXmate Network Process 6-1
6.2 DECnet Network Process Installation Check 6-1
6.3 Using the 1/0 Control Block .. 6-3
6.3.1 I/O Control Block Structure ... 6-4
6.4 Using the Callback 1/0 Control Block. .. 6-5
6.4.1 Callback 1/0 Control Block Structure. .. 6-6
6.5 Synchronous 1/0 and Asynchronous 1/0 6-7
6.5.1 Using a Callback Routine ...•. 6-8
6.5.2 Setting the ioJags Field .. 6-8
6.6 Using Socket Numbers with DECnet Network Process

6.7
6.7.1
6.7.2
6.7.3
6.7.4
6.7.5
6.7.6
6.7.7
6.7.8
6.7.9
6.7.10
6.7.11
6.7.12
6.7.13
6.7.14
6.7.15
6.7.16
6.7.17
6.7.18
6.7.19
6.7.20

Interface Calls. .. 6-8
Network Process Interface Calls. .. 6-9
ABORT .. 6-11
ACCEPT ... 6-13
ATTACH ... 6-19
BIND .. 6-22
CANCEL. ... 6-25
CONNECT ... 6-27
DETACH ... 6-32
DISCONNECT ... 6-34
LISTEN ... 6-36
LOCALINFO ... 6-38
PEERADDR .. 6-40
RCVD .. 6-42
RCVOOB ... 6-48
SELECT ... 6-53
SEND ... 6-58
SENDOOB ... 6-63
SETSOCKOPT and GETSOCKOPT 6-68
SHUTDOWN ... 6-74
SIOCTL .. 6-76
SOCKADDR .. 6-79

A Socket Definitions

A.l Communications Domain .. A-I
A.2 DECnetLayers .. A-I

Contents-4

A.3 DECnet Objects ... A-2
A.4 DEC net Options .. A-3

(: A.5
A.6
A.7

Flag Options .. A-4
Logical Link States .. A-5
Maximum Number ofIncoming Connection Requests A-5

A.S Socket Interface Options ... A-6
A.9 Socket Types .. A-6
A.10 Defined Software Modules .. A-7

B Defined Data Structures and Data Members

B.1 Access Control Information Data Structure B-2
B.2 Attach Data Structure ... B-2
B.3 DECnet Node Address Data Structure B-3
B.4 Listen Data Structure .. B-3
B.5 Local Node Information Data Structure B-4
B.6 Logical Link Information Data Structure B-4
B.7 Optional User Data Structure , B-5
B.S Select Data Structure. .. B-5
B.9 Shutdown Data Structure ... B-6
B.10 Socket Address Data Structure B-6
B.11 Socket I/O Status Data Structure B-7
B. 12 Socket Option Data Structure. .. B-7
B.13 User Access Control Information Data Structure B-S
B.14 User Defined Callback Routine Data Structure. .. B-S
B.15 User Defined Data Buffer Structure B-S

c Summary of Error Completion Codes

D Summary of Extended Error Codes

E Data Access Protocol (DAP) Error messages

E.1 Overview ... E-1
E.1.1 Maccode Field. .. E-1
E.1.2 Miccode Field ... E-3

F Transparent File Access Error Messages

G Transporting DECnet-VAXmate Programs

Contents-5

H

Figures

Tables

Contents-6

DECnet-VAXmate Programming Examples

H.l
H.2
H.3

1-1
1-2

1-3
1-4
1-5
1-6
1-7
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
3-1
3-2
3-3
3-4
6-1
6-2
6-3
6-4

2-1
2-2
2-3
3-1

4-1
5-1
6-1
6-2
6-3

Example Client Task Program H-l
Example Client Transparent Task-to-Task Program H-6
Example Server Task Program H-9

Personal Computers in an Ethernet LAN. .. 1-3
Sockets: Basic Building Blocks for DECnet-VAXmate
Intertask Communication ... 1-5
Transparent Task-to-Task Communication. .. 1-8
Establishing a DECnet Logical Link 1-11
Sending Data Messages over a DECnet Logical Link. 1-12
Receiving Data Messages Over a DECnet Logical Link 1-13
Closing Down the DECnet Logical Link Connection 1-14
Close Function Call .. 2-12
Create Function Call .. 2-13
Delete Function Call .. 2-15
Find First Matching File Function Call 2-16
Find Next Matching File Function Call 2-18
Load and Execute a Program Function Call 2-20
Open Function Call .. 2-21
Read Function Call .. 2-23
Write Function Call ... 2-25
Close Function Request .. 3-9
Create/Open Function Request 3-10
Read Function Request .. 3-12
Write Function Request ... 3-13
MS-DOS Interrupt Function Call 35H, Get Interrupt Vector 6-2
Interrupt Function Call6EH, IOCB Request 6-3
An IOCB Data Structure. .. 6-5
A CIOCB Data Structure .. 6-6

Remote Input File Transfers .. 2-4
Remote Output File Transfers 2-5
MS-DOS Function Requests for Transparent File Access 2-11
MS-DOS Function Requests for Transparent Intertask
Communication. .. 3-3
Socket Interface Calls .. 4-5
DECnet Utility Function Calls 5-4
IOCB Header Data Members. .. 6-4
IOCB Parameter List Members. .. 6-4
Assembly Language Network Process Interface Calls 6-10

./

(

D-l
D-2
E-l
E-2

E-3

E-4

Extended Error Messages - Unable to Make a Connection D-l
Extended Error Messages - Disconnecting a Logical Link D-3
DAP Maccode Field Values .. E-2
DAP Miccode Values for Use with Maccode
Values of 2, 10, 11 .. E-3
DAP Miccode Values for Use with Maccode
Values 0, 1,4,5,6,7 ... E-I0
DAP Miccode Values for Use with Maccode Value 12 E-21

Contents-7

i·".
I
~/

(

Preface

DECnet-VAXmate Vl.O is a software communications product that enables individual
personal computer systems to communicate with one another and with other com­
puter systems, in a DECnet network.

Manual Objectives

The DECnet-V AXmate Programmer's Reference Manual discusses software require­
ments for creating DECnet - V AXmate applications. It provides detailed information on
the use of C and MS-DOS system calls supported by DECnet-VAXmate. It discusses
software considerations when developing DECnet-VAXmate applications in C or
assembly programming languages.

It also assumes that you are familiar with the DECnet and the MS-DOS environments.

Intended Audience

This manual is designed for application developers who are responsible for creating
DECnet-V AXmate applications.

Structure of the Manual

This manual consists of 6 chapters and 8 appendixes.

• Chapter 1 presents an overview of the DECnet-VAXmate programming environ­
ment. It discusses the features of DEC net task-to-task communication.

• Chapter 2 describes standard MS-DOS function calls used for transparent file
access.

• Chapter 3 discusses standard MS-DOS function calls used for transparent task-to­
task communication.

Preface-1

• Chapter 4 details the use of C language for nontransparent task-to-task communica­
tion. The socket interface calls are described in alphabetical order. Each descrip­
tion includes the call's syntax, argument(s) and associated error/completion status
codes.

• Chapter 5 discusses socket interface utilities including those that access network­
related databases.

• Chapter 6 discusses the use of assembly language for nontransparent task-to-task
communication. It details the network process function calls supported by DEC­
net-V AXmate. They are described in a manner similar to the calls in Chapter 4.

• Appendix A lists common definitions for the socket network interface.

• Appendix B details the format of the data structures used with the socket interface
and assembly language network process interface calls.

• Appendix C lists error completion codes for DECnet-VAXmate task-to-task com­
munications and transparent file access operations.

• Appendix D summarizes the DECnet system error messages.

• Appendix E lists DAP error messages that provide extended error information to
transparent file access operations.

• Appendix F summarizes extended error messages for transparent file access opera­
tions.

• Appendix G lists specific socket interface and assembly language network process
interface calls which cannot be transported to a DECnet-UL TRIX system.

• Appendix H contains C programming examples using socket interface function
calls.

Preface-2

(

Graphic Conventions Used in This Manual

Convention

bold

Monospaced
type

italics

#include
< file.h >

Meaning

Words in boldface are considered to be literal and are typed exactly
as shown. The call name is always shown as literal.

Monospaced type indicates examples of system output or user input.
System output is in black; user input is in red .

Italics in commands and examples indicate that either the system
supplies or you should supply a value.

~ indicates that you should hold down the CONTROL key
while you press the x key, where x represents a specific key.

Indicates that you should press the specified key.

When #include appears in a SYNTAX section, it indicates an include
or header file. This type of file contains a collection of def'mitions
commonly used throughout a program. You must include this file
whenever it is required by a specific function call.

Associated Documents

You should have the following documents available for reference:

• DECnet-VAXmate Installation Guide

• DECnet-VAXmate Getting Started

• DECnet-V AXmate User's Guide

• DECnet-V AXmate Mini-Reference Guide

• DECnet-VAXmate Release Notes

• The installation guide and introductory manuals for your computer

Introduction

DECnet is the name given to a family of software and hardware communications prod­
ucts that provide a network interface for Digital operating systems. The relationships
between the various network components are governed by a set of standards called the
Digital Network Architecture (DNA).

DECnet enables mUltiple computer systems to participate in communications and
resource sharing within a specific network. The individual computer systems, called
nodes, are connected by physical communications paths. Tasks that run on different
nodes and exchange data are connected by logical links. Logical links are temporary
software information paths established between two communicating tasks in a DECnet
network.

Preface-3

DECnet-VAXmate is a nonrouting implementation of the Phase IV Digital Network
Architecture. The DECnet-V AXmate software includes the following features:

• Task-to-task communication between a VAXmate system and any Phase III system
connected to a DECnet router, or any other Phase IV system.

• Limited network management and maintenance functions.

• Transport facilities that permit programs to access remote files.

• Virtual disk and printer, and remote terminal capabilities.

• Mail utility that lets you send messages and text files to other nodes in the network.

• File access, for other users in the network, to the files local to your personal com­
puter.

Preface-4

(

1
Introduction to Network Programming

DECnet-V AXmate allows V AXmate personal computers to participate as end nodes in
DECnet computer networks. DECnet-VAXmate nodes can connect directly either to
an Ethernet local area network or to an adjacent routing node. The DECnet-VAXmate
software product offers the following set of functions:

• Task-to-task communication. Task-to-task communication is a feature common
to all DECnet implementations. It allows tasks or application programs to commu­
nicate with each other. 'Cooperating tasks on different nodes issue DECnet calls
which enable them to exchange data over a logical link.

•

DEC net-V AXmate allows you to create C and assembly language programs that use
nontransparent task-to-task communication functions. A set of DEC net utility
functions enables you to access the network node database and manipulate the
data.

DECnet-VAXmate supports the DECnet-ULTRIX task-to-task network communi­
cations interface. Any DECnet-VAXmate C program, using compatible DECnet­
UL TRIX network interface calls, can be transported to DECnet-UL TRIX systems.
(See Appendix G for possible exceptions.)

A simpler programming interface allows DECnet-V AXmate tasks to exchange data
with a remote network program. To perform transparent operations, tasks use
standard MS-DOS 110 system calls.

Network resource access. DECnet-VAXmate offers a set of utilities that allows a
user to access network resources. Using a DECnet-V AXmate utility, you can trans­
fer files between a V AXmate and another node in the network. Transparent file
access is also available to a DECnet-VAXmate task by adding network location
information to an MS-DOS path name string. Accessing remote DEC net files is
accomplished with standard MS-DOS I/O system function requests.

1-1

With DECnet-VAXmate, users can establish a virtual terminal connection to a
multi-user remote DECnet system. (The remote system must provide similar sup-
port.) This feature allows for sharing of resources and application development ".
tools of larger DECnet systems.

DECnet-V AXmate provides the ability to access remote network devices. A utility
program allows you to share remote printers and disks as if they were directly con­
nected to your personal computer.

• Network management. Limited network management is available with DECnet­
V AXmate. This feature serves three primary functions: to configure a DECnet­
V AXmate node, display statistical and error information, and test the operation of
the network connection.

Figure 1-1 shows personal computers running DECnet-V AXmate in an Ethernet local
area network.

1-2 DECnet-VAXmate Programmer's Refe

(' "
~ .. j

(

(,

PC RB100t

VAX-11/750 r---------~MODEM

LEGEND

DEUNA

PRO 380

DECNA

ETHERNET COAXIAL CABLE

RB100+ PC

DECnet
ROUTER
SERVER

DEUNA DECNA

PDP-11/73 PRO 350

RB100+ PC

Asynchronous Line

---z-- Asynchronous Telephone Line

Figure 1-1 : Personal Computers in an Ethernet LAN

Introduction to Network Programming

LKG-0471

1-3

1.1 Concepts

Before you can create a DECnet-VAXmate application, you need to understand the fol- ;-'-\
lowing programming concepts: \. . . j

• Client and server tasks. Client and server tasks communicate through sockets.
These tasks exchange data over logical links.

• Sockets. Sockets are the basic building blocks for DECnet-VAXmate task-to-task
communication. They are created by tasks for sending and receiving data. They
contain information about the status of the logical link connection.

1.1.1 Client and Server Tasks

DECnet-VAXmate communication requires cooperation between two programs or
tasks. For the purposes of defining the DECnet-VAXmate programming interface, a
distinction is made between the client task, which initiates a connect request, and the
server task, which waits for and accepts or rejects the connection.

A client task is the program which initiates a connect request with another task. A
server task is the program which waits for and accepts or rejects the pending connect
request.

Once a logical link is established, the client and server tasks have a peer-to-peer rela­
tionship. The operations performed on their respective sockets are symmetrical. Either
task can act as the source or receiving task and can send and receive data, or terminate
the logical link at any time.

1.1.2 Sockets

The basic building block for DECnet-VAXmate communication is the socket: an
addressable endpoint of communications within a program or task. A task uses the
socket to send and receive data to and from a similar socket in another task. Figure 1-2
illustrates the use of sockets within DECnet-VAXmate tasks.

DECnet-VAXmate supports stream sockets and sequenced packet sockets. Stream
sockets cause bytes to accumulate until internal DECnet buffers are full. The receiving
task does not know how many bytes were sent in each write operation. Sequenced
sockets cause bytes to be sent immediately. The receiving task receives those bytes in
one "record".

A DECnet-VAXmate program can detect any potential problems by polling the
socket's status or by receiving error status in response to network requests.

1-4 DECnet-VAXmate Programmer's Reference Manual

(

(

NODE A

SERVER TASK DECnet
A I PROG1 Ed L...-Jrr-.....

NODE C

B

DECnet

LEGEND:

q
Socket

I Program

A Logical link between

B Logical link between

C Logical link between

B

programs

programs

programs

CLIENT TASK

PPROG31

PROGl and PROG3 (using sockets)

PROG6 and PROG4 (using sockets)

PROG6 and PROG4 (using sockets)

TW0222

Figure 1-2: Sockets: Basic Building Blocks for DECnet-VAXmate Intertask
Communication

Introduction to Network Programming 1-5

1.1.3 Blocking and Nonblocking 1/0 Operations

DECnet-VAXmate allows tasks to send and receive data without waiting for the com­
pletion of the operation. This mode of operation is called nonblocking 1/0. When
nonblocking is set, socket operations return to the calling program after the operation
has been started, but not necessarily completed. Some operations must be restarted. On
the other hand, the default mode for socket operations is blocking 1/0. When blocking
I/O is set, DECnet-VAXmate does not return control to the calling program until the
operation has been completed.

1.1.4 Node Names and Addresses

Each system in a DECnet network has a unique node name and address. A node name
can have 1 to 6 alphanumeric characters with at least one alphabetic character. A node
address is a binary number which consists of an area number and a node number. An
area consists of a group of interrelated nodes. Multiple areas are typically used only in
large networks. When initiating a connection with a remote node, you must identify
that node with a name or address.

1.1.5 Network Object Numbers and Task Names

Client tasks can specify the server task that they want to communicate with by using
network object numbers and task names. Network object numbers range from 1 to 255.
Numbers 1 to 127 are assigned to generic network servers. Numbers 128 through 255
are available for user-written tasks. When a user specifies a task name, the object num­
ber must be zero.

The server task must be installed as a network task on the remote node. In the context
of DECnet-VAXmate, the server task declares his network object number and task
name with the bind function call.

1.1.6 Access Control Information

Access control information contains arguments that define your access rights at the
remote node. It consists of three character strings: user ID, password, and account
number. Access control verification is performed according to the conventions of the
destination system. For some systems, the access information is the log-in data used by
the client program.

1.1.7 Optional User Data

DECnet-V AXmate allows up to 16 bytes of optional user data to be exchanged between
tasks when connecting to or disconnecting from logical links.

1-6 DECnet-VAXmate Programmer's Reference Manual

/
/'

(
1.2 Forms of Task-to-Task Communication

DECnet-V AXmate supports two forms of task-to-task communication: transparent and
nontransparent. Transparent communication provides a subset of the functions used
by a program to exchange data with other network programs. Nontransparent commu­
nication allows you to use the full range of DECnet-VAXmate task-to-task communica­
tion.

1.2.1 Transparent Communication

DECnet-VAXmate transparent communication provides C and assembly language
tasks with the basic functions to communicate over the network. These tasks perform
standard MS-DOS system 110 operations. This form of 1/0 lets you move data with lit­
tle concern for the underlying DEC net interface.

The DECnet-VAXmate transparent functions include the initiation and establishment
of a logical link, the orderly exchange of messages between both tasks, and the con­
trolled termination of the communication process. Chapter 3 discusses the MS-DOS
function requests that support transparent task-to-task communication.

Figure 1-3 shows the series of events that occurs during transparent task-to-task com­
munication.

Introduction to Network Programming 1-7

TW0201

Figure 1-3: Transparent Task-to-Task Communication

1.2.2 Nontransparent Communication

DECnet-VAXmate nontransparent communication provides the same functions as
DECnet-VAXmate transparent communication plus additional system and I/O func­
tions. For example, you can use network protocol features such as optional user data
on connects antl disconnects and out-of-band messages.

DECnet-VAXmate allows you to create C and assembly language programs that use
nontransparent communication functions. A C program should use the socket interface
calls to perform DECnet functions. These calls are detailed in Chapter 4 of this manual.
A set of DEC net utility functions is also provided with DECnet-VAXmate. These func­
tions are used for accessing the network node database and manipulating the data. The
DECnet utility functions are detailed in Chapter 5 of this manual.

An assembly language program uses the MS-DOS interrupt function request 6EH to
request network process access. Information regarding I/O operations is passed with
this MS-DOS interrupt function request. The information is contained in an I/O Con-

1-8 DECnet-VAXmate Programmer's Reference Manual

/

trol Block (IOCB) data structure. Chapter 6 details how to create a DECnet-VAXmate
program using the Assembly language network process interface calls. It also details the

(set of calls used for assembly language programs.

(

1.3 Task-to-Task Communication Functions

This section describes the functions that the client and server tasks request to commu­
nicate with each other. Illustrations that appear in this section use the socket interface
calls to show task-to-task communication capabilities.

1.3.1 Establishing a Logical Link

The creation of a logical link is a cooperative venture. Two tasks must agree to commu­
nicate before you can have an established logical link. The process of establishing a log­
icallink is detailed in Figure 1-4. A logical link connection is required before data can
be exchanged between two tasks.

To begin the process, the server task creates a socket supported by DECnet. When this
socket is first created, it has no assigned name or number. An object name or number is
assigned to the socket. The name or number is required for use in future listening oper­
ations. The socket declares itself as a server which is available for client connections.

In turn, the client task must create a socket supported by DECnet. The client task can
set up access control information and/or optional connect data. (See Sections 1.1.6 and
1.1.7 for an explanation of each.) The system returns an integer value called a socket
number. Subsequent DECnet-VAXmate function calls on this socket will reference the
associated socket number. At this point, the client task requests a logical link connec­
tion to another task. Any optional user data and/or access control information is sent
along with the connection request.

The server task can define how it accepts or rejects an incoming connection request.
There are two options:

• The server task can immediately accept the connection request. In this case, any
optional user data and/or optional access control information is not used by the
task. A logical link has successfully been established between the two tasks.
Another socket is also created for the server task. Using the new socket, the server
task can exchange data with the client task .. The original socket remains open for
the server task to listen for other incoming connection requests.

• For nontransparent communication only, the server task can defer making a deci­
sion about accepting or rejecting the incoming connection request. When the
deferred option is set, the server task can examine any optional user data and/or
optional access control information. It can then send optional user data with an
acceptance or rejection message to the client task. The client task then retrieves the
optional user data and/or status message.

Introduction to Network Programming 1-9

If the connection fails, another attempt can be made at establishing a logical link. If
the connection is successful, the logical link is established and another socket is
created for the server task. Using the new socket, the server task can exchange data i-'\
:ith thhe ~lient t:u'k. The original socket remains open for the server task to listen ~ __ ,/
J.or ot er lOcomlOg connection requests.

(

~ /
1-10 DECnet-VAXmate Programmer's Reference Manual

(

(

(

CLIENT TASK

PROG3

",I S",O",C",K;::.ET,,----,II SETSOCKOPT 1 A-+o-.....
SET OPTIONAL
ACCESS CONTROL
DATA

"'I S"'E=TS"'O""C"'K""O"'P=T 1 CONNECT
SET OPTIONAL
USER DATA

LEGEND

IGETSOCKOpTi
GET CONNECT ACCEPTANCE
STATUS AND OPTIONAL
USER DATA

SOCKET

DECne! LOGICAL
LINK ESTABLISHED

D PROGRAM

SERVER TASK

PROG1

JSOCKET j BIND

j LISTEN

I SETSOCKOPT I I ACCEPT I
t2l

SET DEFERRED
ACCEPT OPTION

~' I GETSOCKOPT I IGETSOCKOPTI
GET OPTIONAL GET OPTIONAL
ACCESS CONTROL USER DATA
DATA

I SETSOCKOPT I
SET OPTIONAL
USER DATA

SETSOCKOPT
SET CONNECT
ACCEPTANCE

NEW SOCKET

FUNCTION CALL

TW0223

Figure 1-4: Establishing a DECnet Logical Link

Introduction to Network Programming 1-11

1.3.2 Sending Normal Data Messages

Either task can send normal data to its peer. It must specify the socket used for transmit­
ting the message, the buffer containing the outgoing message, and the buffer size. If the
socket is set to blocking I/O, and no buffer space is available to hold the outgoing mes­
sage, the transmission is blocked until resources are freed up. If the socket is set to
nonblocking I/O, an appropriate error message is returned to the user.

When the asynchronous form of the SEND call is used, control returns to the calling
program immediately after the DEC net network process records the request. The net­
work process may complete the request immediately or wait for a later time. To check
to see if the data was sent, you can either use a callback routine or poll for status. Sec­
tion 6.7.15 details the asynchronous form of the SEND call.

Figure 1-5 shows normal data being sent over a logical link.

CLIENT TASK

PROG3

DECne! LOGICAL
LINK

PROG1

SERVER TASK

SEND

Figure 1-5: Sending Data Messages over a DEenet Logical Link

1.3.3 Receiving Normal Data Messages

TW0230

Either task can receive normal data from its peer. It must specify the socket used for
receiving the message, the address of the buffer which will store the incoming message,
and the buffer size. If the socket is set to blocking I/O, and no messages are received, the
task waits for a message to arrive. If the socket is set to nonblocking I/O, and no data is
ready to be received, an appropriate error message is returned to the user.

When the asynchronous form of the RCVD call is used, control returns to the calling
program immediately after the DECnet network process records the request. The net­
work process may complete the request immediately or wait for a later time. To check
to see if the data was received, you can either use a callback routine or poll for status.
Section 6.7.12 details the asynchronous form ofthe RCVD call.

Figure 1-6 shows data being received over a logical link.

1-12 DECnet-VAXmate Programmer's Reference Manual

(

CLIENT TASK

PROG3

IRECV

DECne! LOGICAL
LINK

PROG1

SERVER TASK

Figure 1-6: Receiving Data Messages Over a DECnet Logical Link

1.3.4 Out-of-Band Messages

TW0229

Out-of-band messages are unsolicited, high priority messages sent between non­
transparent communication tasks over a logical link. An out-of-band message usually
informs the receiving task of an unusual or abnormal event in the sending task. The
valid range for the message size is 1 to 16 bytes.

Out-of-band messages are always sent ahead of outstanding normal messages. Unless
certain error conditions exist, an out-of-band message is always sent even if the socket
is set to blocking or nonblocking I/O.

1.3.5 Terminating Network Activity and Closing the Logical Link

The process of terminating network activity can begin with either the client or server
task. To initiate close down for nontransparent communication, either task can send
up to 16 bytes of optional disconnect data to the other task. The optional disconnect
data is sent with an abort or disconnect option.

Figure 1-7 provides an example of ho~ sockets are deactivated and the logical link
connection is broken. The close-down steps, as depicted in Figure 1-7, include:

• The server task sets up optional disconnect data.

• The server task deactivates its socket used for exchanging data.

• The server task can also deactivate the original socket on which it listened for
incoming connection requests.

• The client task retrieves any optional disconnect data. At some point in time, the
task should also deactivate its original socket.

• The logical link connection is broken.

Hence, the sockets are reclaimed as network resources which are made available for
future assignment to this task or another task.

Introduction to Network Programming 1-13

CLIENT TASK

PROG3

--pC},oJ' - . <. -
IGETSOCKOPTI ISClOSE
GET OPTIONAL DEACTIVATE
DISCONNECT SOCKET
DATA -.......

PROG1

--,.. , , , ,
, I

--\;

SERVER TASK

ISETSOCKOPTI
SET OPTIONAL
DISCONNECT
DATA

I SClOSE I
DEACTIVATE SOCKET
USED FOR DATA
EXCHANGE

ISClOSE
DEACTIVATE SOCKET
USED FOR ISSUING
ACCEPT CALL

TW0228

Figure 1-7: Closing Down the DEenet Logical Link Connection

1.4 Transparent File Access

Using DECnet, programs in one node can transparently access a file in another node.
Transparent file access enables user programs to perform standard MS-DOS system I/O
operations. This form of I/O allows you to move data with little concern for the under­
lying DECnet interface.

To perform transparent access operations on remote files, use the MS-DOS function
requests detailed in Chapter 2.

1-14 DECnet-VAXmate Programmer's Reference Manual

(

(

(

2
Transparent File Access Operations

Using DECnet, a program in one node can transparently access a file in another node.
Transparent file access enables user programs to perform standard MS-DOS system I/O
operations. This form of I/O allows you to move data with little concern for the under­
lying DECnet interface.

Transparent file access functions allow you to access files on a rmote node. You can
open and close a file, create or delete a file, and read from or write records to a file on a
remote node. Transparent file access also allows you to submit a batchjob to a remote
node and search a directory on a remote node for a specific file or files.

NOTE

The V AXmate MS-NET software provides transparent access to files
on remote nodes differently than the Transparent File Access (TFA)
utility described in this chapter. See the V AXmate Technical Reference
Manual for more information about TFA and the MS-NET networking
environment.

2.1 Introduction to Transparent File Access

In the context of transparent file access, the program that requests remote file access is
called the client program. At the remote node, the DECnet system program that
receives the request is called the server program. For DECnet-VAXmate, the client pro­
gram is a user-written program. The server program is a form of the File Access Listener
(FAL). FAL receives remote file access requests from the network. FAL completes con­
nections initiated by remote accessing user programs and translates th~m into calls to
the file system at the remote node. FAL then sends or receives the resulting file data
back to the accessing program. At the client node, special routines reformat the data to
make it conform to local or remote file structures (depending upon I/O direction).

2-1

Before accessing any remote fIles, you must install the Transparent File Access (TFA)
utility. TFA can be installed at every boot time (see the DECnet-V AXmate Installation
Guide for installation details) or installed by typing the following start-up command
line:

E> TFA me:o
The system responds with one of the following messages:

DECnet - TFA Version 1.1 instal led -

or

DECnet - TFA Version 1.1 has already been instal led -

Once the utility is installed, you can request network access by including a subset of
MS-DOS system calls in your program. (Refer to Table 2-3.) These calls activate Trans­
parent File Access Routines (TFARs). The TFARs build, send, receive and interpret
DECnet fIle access messages. These messages are defined by the Data Access Protocol
(DAP). DAP messages control the execution of remote fIle access and outline proce­
dures to accomplish specific fIle operations.

A user program does not handle remote fIle access operations directly. DECnet­
V AXmate includes system software that sends and receives DAP messages on behalf of
user programs. DAP-speaking TFARs at the local node exchange DAP messages with
the DAP-speaking server FAL at the target node.

2.2 Initiating Transparent File Access

Transparent fIle access operations require an extended handshake sequence being per­
formed at the beginning of the operation. This extended handshake occurs when the
user program issues an initial fIle access call (for example, open, create, delete, submit,
and so forth) to a remote fIle. The handshake sequence includes the TFARs setting up
the logical link connection and exchanging fIle access messages to initialize the DAP
environment for pending fIle operations.

The initial access to the remote fIle passes the following information to TFARs in the
local fIle system:

• Remote fIle name string

• Access control information

2.2.1 Remote File Name

The fIle name string specifies the remote node name and the fIle on that node to be
accessed. It includes the device, directory, fIle name, extension, and version number of
the remote fIle. Since the remote fIle system actually carries out the requested fIle oper­
ation, you must be familiar with the conventions used for identifying fIles at the remote
node.

2-2 DECnet-VAXmate Programmer's Reference Manual
./

(

(

(

2.2.2 Access Control Information

Access control information provides access rights to the remote system. It consists of a
user identification name, a password associated with the user identification, and addi­
tional accounting information required by the remote system. To supply access control
information, you must follow the syntax detailed in Section 2.7.1 of this chapter.

2.3 File Characteristics

A file has specific characteristics that determine how the file is transferred between
local and remote systems.

The following sections discuss the effects of file characteristics on remote input and
remote output files. A remote input file is a file located on a remote DECnet host that is
read by an MS-DOS system. A remote output file is a file located on a remote DECnet
host that is written to by an MS-DOS system.

2.3.1 File Attributes

File attributes for remote input files are determined by the remote file and the remote
file system. For example, an ASCII file cannot be redefined as an image file.

File attributes for remote output files are determined by the format of the local file and
the type of remote file system.

The set of file attributes are:

• File organization. DECnet-VAXmate supports sequential files only. A sequential
file has records arranged one after the other. The first record written is the first
record in the file, and the record written most recently is the last record in the file.

• Data type. A remote file can have either an ASCII or an image data type. Depending
on the file's record attribute, record format, and the remote file system type, DEC­
net-V AXmate can reformat ASCII data. On the other hand, DECnet-V AXmate can­
not convert image data type files.

• Record format. This particular file attribute indicates how records are formatted
within the file. A record can have one of the following formats:

Undefined records have no declared formats.

Stream records consist of a continuous series of ASCII characters delimited by car­
riage return/line feed pairs.

Fixed-length records are identical in size.

Variable-length records can be different lengths, up to a maximum size that you
specify. The maximum size is fixed at file-creation time and cannot be changed for
the life of the file.

Transparent File Access Operations 2-3

Variable-with-fixed-control (VFC) records include a fixed-length control field that
precedes the variable-length data portion. This format allows you to construct
records with additional data that labels the contents of variable-length portion of
the record.

• Record attributes. This characteristic indicates how data is formatted within a
record. Record attributes (RATs) include implied carriage return/line feed pairs,
embedded carriage control, FORTRAN carriage control, print file carriage control,
line sequence ASCII, block, and MACY11.

• Fixed size. If the record format of the remote input file is VFC, this characteristic
defines the size of each fixed length header.

• Maximum record size. If the record format is fixed, maximum record size (MRS)
defines the length of each record. For ftxed-Iength records, the default size is 128
bytes. For variable-length records, MRS declares the maximum record size. There is
no default size.

2.4 Performing Data Conversions

To read or write files successfully on other nodes, data must be formatted according to
the conventions of the respective file system. A system running MS-DOS supports
stream formatted files. Remote DECnet hosts running heterogeneous operating sys­
tems can support stream and nonstream file systems: variable-length, fixed-length and
VFC records.

The following tables summarize file structure interdependencies when you read or
write files on remote systems.

Table 2-1: Remote Input File Transfers

File
Type

Image

ASCII

ASCII

ASCII

ASCII

2-4

Remote System
Type

Not applicable

Stream

Nonstream

Nonstream

Nonstream

Record Attributes

Ignored

Ignored

Implied CR/LF pair

FORTRAN, Print,
LSA carriage
control.

Null, Embedded,
block, MACYl1

Processing Mode

No conversion.

No conversion with embedded
carriage control.

CR/LF pair appended to each record.

Conversion of carriage control done.

No conversion.

DECnet-VAXmate Programmer's Reference Manual

/

(

(

Table 2-2: Remote Output File Transfers

File Remote System
Type Type Record Attributes Processing Mode

ASCII Stream None No conversion. Records determined
byLFs.

ASCII Nonstream Variable, implied New line and CR characters are
CR/LF dropped. Records determined by LFs.

Image Stream None No conversion.

Image Nonstream Fixed: record No conversion. Last record is padded
size = 128 bytes. if necessary.

The following sections detail how the TF ARs handle data conversions for remote input
and output files.

2.5 Converting Remote Input Files

During remote file input, a file located on a remote DECnet host is transferred to an
MS-DOS system. Local handling of the remote file is determined by its attributes and
the type of remote file system.

2.5.1 Binary Image Files

No record to stream conversion is performed on a binary image file. The file is passed
to the calling task one record at a time. The size of each record is set by the record attri­
butes and the maximum record size of the remote input file. If the remote file system
does not support record attributes (for example, stream), the size is set to 128 bytes.

The remote file's record format (RFM) and record attributes (RATs) are ignored in this
type of file transfer.

2.5.2 ASCII Files

No data interpretation is performed on an ASCII file coming from a stream file system.
For ASCII files being copied from a nonstream file system, data handling is determined
by the remote file system, the remote file's record format and record attributes.

A nonstream file system can support variable-length, fixed-length, variable-with-fixed­
control (VFC) record formats, and stream record formats. It also supports a number of
record attributes. The TFARs perform data conversion on ASCII files depending on the
record attributes of the remote file. The following section describes how TFARs inter­
pret data based on the remote file's record attributes:

• RAT = Implied LF/CR. No conversion of embedded carriage control characters. A
CR/LF pair is appended to each record.

Transparent File Access Operations 2-5

• RAT = FTN, PRN. FORTRAN (FTN) and Print (PRN) carriage control characters
are converted appropriately to stream me systems.

• RAT = NULL, Embedded carriage control, Block, MACY11. No data is inserted
between records.

2.6 Converting Remote Output Files

Remote output mes are transferred from the local system to a remote DECnet host. By
default, mes are transferred in ASCII mode. The me's record format and record attri­
butes are determined by the remote me system. A logical record consists of data up to
and including a CR/LF pair. The TFARs send a me as image if the first logical record is
not terminated by either a CR/LF or a LF ICR pair.

2.6.1 ASCII Files

If the local me is transferred to a remote stream me system, the logical records are
passed with no data conv~rsion being performed. The me structure defaults are:

Record
Format

Stream

Record
Attribute

NONE

If the me is copied to a nonstream me system, delimiting CR/LF pairs are dropped from
the logical records before they are sent. The me structure defaults are:

Record
Format

Record
Attribute

Variable Implied CRILF
length

2.6.2 Image Files

If the remote output me is an image me, the records are passed with the following
default me structure:

Recoro
Format

Fixed-length

Record
Attribute

NONE

Maximum Record
Size (bytes)

128

Since the default data type for a remote output me is ASCII, the TFARs initially create
an ASCII me on the remote node. If the first logical record is not terminated by a CR/LF
or a LF/CR pair, the TFARs will issue a DAP access message complete (purge) message.
In this case, the TFARs create a new image me on the remote node. This particular me is
then sent using the data handling defaults for an image me transfer.

2-6 DECnet-VAXmate Programmer's Reference Manual

,/ '\

/
(

"'. /

(
2.7 Using Network File Specifications for Network Access

MS-DOS system calls requesting network access must pass a specifically formatted net­
work file specification string. The TFARs intercept these calls, recognize the network
access request and perform the DAP functions necessary to complete the specified net­
work operation.

The network file specification consists of a node specification string, optional access
control information, and a file name specification string.

To request network access, use the network file specification string as shown below:

\ \j\node\userid\password\account\ Vile-specification

2.7.1 Node Specification

A node specification identifies the remote system where file access operations will take
place. The node specification string is preceded by two backslashes, the letter f and
another backslash. The optional access control string follows the node information.
Each element is separated by a single backslash character.

If no access control information is supplied, then the default access control informa­
tion set with NCP is used. If there is no default access information, only the node name
is used by the TFAR subroutines for processing.

The node specification string uses one of the following formats:

(1. To access the remote node with access control information:

f

\ \j\.node\userid\password\account\ \

2. To access the remote node without optional access control data:

\ \j\.node\ \

where:

f
node

userid

password

specifies that a data file will be accessed for this TFA transaction.

specifies either the name or address of the remote node. A node name
has a maximum of 6 alphanumeric characters with at least one alpha­
betic character. A node address is a numeric string including the area
number in the range of 1 to 63, and the node number in the range of 1
to 1023.

identifies a user name or log-in ID on the remote system. The user
name and password set the user's privileges for accessing the remote
task. A user name has a maximum of 39 alphabetic characters.

defines a user's password which is associated with user. A user's pass­
word has a maximum of 39 alphabetic characters.

Transparent File Access Operations 2-7

account identifies a billing account number which is used with the user name
and password information on some systems. An account number has
a maximum of 39 characters. If the account information is not
required, you can omit it from the string.

2.7.2 File Name Specifications

The file name specification string identifies the remote file to be accessed. File specifi­
cation strings cannot contain spaces, semi-colons, left (<) or right (>) angle brackets.
File names must conform to the conventions of the target node. Any unspecified ele­
ments default to the target system's conventions. Refer to the appropriate program­
mer's reference manual for more details.

2.8 Passing User Parameters

Whenever an I/O file operation is invoked, system control is transferred to the TFARs.
Users pass parameters to and receive results from the TFARs by way of the MS-DOS
function requests. The parameters are loaded into or returned to one or more 8086/
8088 registers. The contents of each register is defined by the specific MS-DOS func­
tion call.

The TFAR subroutines check to see if the proposed I/O operation is a network sup­
ported call. Network access is signaled by the string \ \f\ which begins the network
file specification string. (See Section 2.7.)

The TFARs parse the network file specification string. If a function call returns a han­
dle, the TFARs save the handle (and related file specification data) in a database for sub­
sequent calls requiring network access over the same path. Once the requested DAP
operation is completed, control is returned to the system and the TFARs.

2.9 Using the Transparent Network Task Control Utility

The Transparent Network Task (TNT) Control utility, Version 1.1, reports the status of
the Transparent File Access (TFA) utility as well as the Transparent Task-to-Task (TTT)
utility. It features an on-line help routine which lists supported TNT commands. TNT
returns DAP messages and other extended error information for assisting in fault isola­
tion. Using TNT, you can deinstall TFA (and/or TTT) from memory.

This section deals only with the use of TNT for transparent file access operations.
Chapter 3 discusses TNT and its role in transparent task-to-task communication.

2.9.1 Displaying Network Status of the Transparent File Access Utility

To display the status ofTFA, you run TNT. The system responds with a start-up mes­
sage and one or more network status message(s).

2-8 DECnet-VAXmate Programmer's Reference Manual

/

(

(- \

All errors returned by the Transparent File Access utility are standard MS-DOS error
messages. However, the Transparent Network Task Control utility provides extended
error support to transparent file access operations. DAP and other extended error mes­
sages, returned by this utility, can help you locate problem areas. See Appendixes C, E
and F for a complete list of these error messages.

NOTE

When you run TNT, the status of the Transparent Task-to-Task utility
is also reported.

To invoke TNT, type the following command:

E> TNT ll3:EtJ

The system responds with a start-up message:

Transparent Network Task Control Vi.l

and one or more of the following status message(s):

DECnet TFA is not instal led.

DECnet TFA has no errors to report.

DECnet TFA Errors are:
remote-file-specification: e.xtended-error-message

or

DECnet TTT is not instal led.

DECnet TTT has no errors to report.

DECnet TTT Errors are:
remote-file-specification : extended-error-message

where

extended-error-message returns an error code from one of the following groups of
error messages:

• Error codes contained in the external variable ermo - Appendix C.

• DAP error messages (maccode/miccode in octal) - Appendix E.

• Transparent File Access Routines error messages - Appendix F.

Transparent File Access Operations 2-9

2.9.2 On-line Help

On-line help provides you with a list of supported TNT commands. To obtain help,
type:

E> TNT HELP (RET I

The system responds with the following help text:

Transparent Network Task Control Vl.l
Transparent Network Task commands are:

TNT
TNT HELP
TNT TTT OFF
TNT TFA OFF

Display status of both TTT and TFA.
Display this text.
Remove TTT from memory.
Remove TFA from memory.

If you mistype a command, TNT responds with an error message and the list of sup­
ported TNT commands:

Transparent Network Task Control Vl.l
Transparent Network Task command error.
Transparent Network Task commands are:

TNT
TNT HELP
TNT TTT OFF
TNT TFA OFF

2.9.3 Deinstalling TFA

Display status of both TTT and TFA.
Display this text.
Remove TTT from memory.
Remove TFA from memory.

You can remove TFA from memory. Enter the following command line:

E> TNT TFA OFF (BEIJ

The system responds with the following text:

Transparent Network Task Control Vl.l
The task was removed successfully.

If TF A could not be removed, one of the following messages is displayed:

Transparent Network Task Control Vl.l
TFA cannot be removed because it is not installed or is not installed
last.

or if MS-DOS failed on the remove call,

Transparent Network Task Control Vl.l
The task could not be removed.

2-10

NOTE

TFA traps MS-DOS interrupt function call21H as do other software
applications. If you want to remove TFA from memory, it must be the
last task installed which intercepts interrupt 21H. Otherwise, you
should remove any tasks installed after TFA that also trap 21H, or
reboot your system to remove TFA.

DECnet-VAXmate Programmer's Reference Manual

/~\

(
I
\
"-

(

(

(

2.10 TFA Programming Considerations

There are specific MS-DOS function requests that support DECnet-VAXmate transpar­
ent file access operations. Table 2-3 provides you with a summary of these calls. When
creating TFA applications, you should note the following:

• Some user programs may not accept the TFA network specification string.

• You should not use unsupported MS-DOS function requests to perform transpar­
ent file access operations.

• If you issue a ~ while TFA is active, network operation may be blocked. To
clear this condition, run the TNT utility.

2.11 MS-DOS Function Requests

The following table summarizes the MS-DOS function requests used for transparent
file access operations. Call descriptions appear in Sections 2. 11.1 through 2.11.9.

Table 2-3:

Hexadecimal
Value

3CH

3DH

3EH

3FH

40H

41H

4BH

4EH

4FH

MS-DOS Function Requests for Transparent File Access

Function

Create a file.

Open a file.

Close a file handle.

Read from a file/device.

Write to a file/device.

Delete a file from a
specified directory.

Load and execute a
program.

Find first matching file.

Find next matching file.

Network Access

Initiate a logical link request to create a
remote file.

Initiate a logical link request to open a
remote file.

Close a remote file and terminate a logical
link connection.

Read data from a remote file.

Write data to a remote file.

Delete a file from a remote directory.

Submit a remote command file to be
executed.

Search for the first remote file that
matches the specified file characteristics.

Find the next file entry that matches the
name specified on the previous find first
call.

Transparent File Access Operations 2-11

2.11.1 Close

NAME ~ ~

Close - close a remote file, terminate a logical link connection and deactivate the han- ~.
dIe used for data exchange.

+ •.....••. - - - - - - _ .•....•..•...•••.••.•..•.•.• +
I On i 8086/8088 Register contents
: Entry I
+ .•••.... + •.••.••..••.•••••••.•.••••••••.•.•• +
I AH I 3EH
+ ••••••• _+ ••••••••••••••••••••••••••••••••••• +

I BX ! Handle for logical link access.
+ ..•.•..• + ..••••••••••••.••..•••••••••••••.•• +

+ •••••••••••••••••••••••.•••••••••••••••••••• +
I On I 8086/8088 Register Contents
I Return I
+ •••••••• + ••••••••••.•••.•••..••• _ ••••••••••• +
I AX I No errors (if carry bit is clear) I
I I I
I I Error code (if carry bit is set) I
+ •. - - _. - .+. _ •.. _ ... _ _ - - - - _ .. - - _ .. +

Figure 2-1: Close Function Call

DESCRIPTION

The Close function closes the remote file, terminates the logical link connection, and
deactivates the handle used for data exchange.

On entry, the BX register contains the 16-bit handle value returned by the open or cre­
ate 110 operation. If the close operation completes successfully, no error is returned in
the AX register. If an error condition occurs, the appropriate error code is returned in
the AX register.

The following error code can occur:

Hexadecimal
Value Meaning

6 An invalid handle value was detected.

2-12

NOTE

If you issue the Close call with a handle equal to -1, the TFARs will
interpret the call as a request to abort any active Find Matching File
operations.

DECnet-VAXmate Programmer's Reference Manual

(
2.11.2 Create

NAME

Create - initiate a logical link request to create a remote file.

+ --+
I On I 8086/8088 Register contents I

I Entry I I

+ - - - - - - - -+ -+
I AH I 3CH I

+ - - - - - - - -+- --+
I DS:DX I Address of remote file I

I I specification string_ I

+ - - - - - - - - + -+

+ -+
I On I 8086/8088 Register contents I

I Return I I

+- - - - - - - -+- --+
I AX I Handle for logical link access I

I I (if carry bit is clear) I

I I Error code (if carry bit is set) I

+- - - - - - - -+- --+

Figure 2-2: Create Function Call

(~ DESCRIPTION

(

The Create function call enables a source task to initiate a logical link request to create a
remote file. When the request is made, the file is opened for write operations. On
entry, DS:DX contains the address of the remote file specification string. Any optional
access control information is passed as part of the string to the target task.

On return, the AX register contains an error code or a 16-bit handle associated with the
source task. The returned handle value must be used for subsequent read and write 110
operations.

The TF ARs exchange a series of DAP messages with the remote FAL in order to initialize
the DAP environment and define the requested network access. Each link initialization
involves an exchange of DAP configuration, attributes, and access messages. The con­
figuration messages include information regarding the operating and file systems of the
source and target systems, and the buffer size. The attributes messages supply informa­
tion about the file to be accessed. Undefined file attributes are set to default values
determined by the remote file system. The access message establishes the type of access
to the remote file.

Transparent File Access Operations 2-13

If you are unable to initiate a logical link connection, an error code is returned in the
AX register. The following set of error codes can occur:

Hexadecimal
Value

2

3

4

5

2-14

Meaning

The network process may not be loaded. The node name to node
address mapping is not found in the database file. The target task on
the outgoing connection is not available. The network is unreach­
able.

The target task was not found.

There are too many active logical link connections.

The remote object rejected the request.

DECnet-VAXmate Programmer's Reference Manual

\

J
/

(

(

2.11.3 Delete

NAME

Delete - delete a remote file from a specified directory.

+- --+
I On I 8086/8088 Register contents I
I Entry I I
+- - - - - - - -+- --+
I AH I 41H I
+- - - - - - - -+- --+
I DS:DX I Address of network file I

I I specification string I

+- - - - - - - -+- --+

+- --+
I On I 8086/8088 Register contents I

I Return I I

+- - - - - -- -+- - - - - - - - - - - - - - - - - -- - - - - - - - -- - - - - - --+
I AX I Error code (if carry bit is set) I

+- - - - - - - -+- --+

Figure 2-3: Delete Function Call

DESCRIPTION

The Delete function call deletes a remote file from a specified directory.

On entry, DS:DX contains the address of the remote file specification string. Any
optional access control information is passed as part of the string to the target task.

If an error condition occurs, the error code is returned in the AX register. The follow­
ing set of error codes can occur:

Hexadecimal
Value

2

5

Meaning

The network process may not be loaded. The node name to node
address mapping is not found in the database file. The target task on
the outgoing connection is not available. The network is not reach­
able.

The remote object rejected the request.

Transparent File Access Operations 2-15

2.11.4

NAME

Find First Matching File

Find First Matching File - search for the first remote file that matches the specified file
characteristics.

+- --+
, On , 8086/8088 Register contents ,
,Entry , ,
+- - - -- - - -+- --+
, AH ,4EH ,
+- - - - - - - -+- --+
'DS:DX ,Pointer to remote directory ,
, , specification string ,
+- - - - - - - -+- --+

+- --+
, On ,8086/8088 Register Contents ,
, Return , ,
+- - - - - - - -+- --+

AX , Error codes (if carry bit is set) , , ,
current, File name, creation date, ,
DMA 'file size and creation time (if ,
data 'carry bit is clear) ,
block , ,

+- - - - - - - -+- --+

Figure 2-4: Find First Matching File Function Call

DESCRIPTION

The Find First Matching File function searches for the first file that matches the direc­
tory specification set by the user. If a directory specification is given without a file
specification or includes wildcards, the first matching file is returned. On entry, the
DS:DX register contains the address of the network file specification string.

If a file is found that matches the specification string, the carry bit is cleared and the
information is returned into the current DMA data block as follows:

• Filename bytes 30-42

• Creation time bytes 22-23

• Creation date bytes 24-25

• File size bytes 26-29 (26-27 low, 28-29 high)

The DMA is a portion of memory that is allocated for passing data between processes.
The user can obtain a pointer to this area by issuing an MS-DOS Get Disk Transfer
Address function ca112FH.

2-16 DECnet-VAXmate Programmer's Reference Manual

(

(

If only one matching file is found, the carry bit is not set and an 18 is returned in the AX
register. If no matching file is found, the carry bit is set, and an error code of 2 is
returned in the AX register.

The following set of error codes can occur:

Hexadecimal
Value Meaning

2 The network process may not be loaded. The node name to node
address mapping is not found in the database file. The target task on
the outgoing connection is not available. The network is unreach­
able.

18 There are no matching files.

Transparent File Access Operations 2-17

2.11.5

NAME

Find Next Matching File

Find Next Matching File - find the next file entry that matches the name specified on \ .. ~j/
the previous find first call.

+- --+
I On I 8086/8088 Register Contents
I Entry I
+- - - - - - - -+- - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - --+
I AH I 4FH
+ - - - - - - - - + --+
I currentl must point to a data block
I DMA I returned by the previous Find !
I addressj First Matching File function call I

+- - - - - - - -+- --+

+ --+
I On I 8086/8088 Register Contents
I Return I
+ - - - - - - - -+- --+
I AX I error codes; if carry bit is set
+ - - - - - - - -+ -+

Figure 2-5: Find Next Matching File Function Call

DESCRIPTION

This function call finds the next matching entry in a directory_On entry, the current
DMA address must point to a data block returned by the previous Find First Matching
File function call.

If a file is found that matches the specification string, the information is returned into
the current DMA data block as follows:

• Filename

• Creation time

• Creation date

• File size

bytes 30-42

bytes 22-23

bytes 24-25

bytes 26-29 (26-27 low, 28-29 high)

The DMA is a portion of memory that is allocated for passing data between processes.
The user can obtain a pointer to this area by issuing an MS-DOS Get Disk Transfer
Address function call 2FH.

When a matching file is found, and it is the last matching file in the directory, an error
code 18 is returned in the AX register and the carry bit is cleared. Likewise, if no match­
ing file is found, the carry bit is set and an error code 18 is returned in the AX register.

2-18 DECnet-VAXmate Programmer's Reference Manual

The following error code can occur:

(Hexadecimal
Value Meaning

18 There are no more files.

(-

Transparent File Access Operations 2-19

2.11.6 Load and Execute a Program

NAME

Load and Execute a Program - submit a remote command file.

+- --+
I On I 8086/8088 Register Contents I
I Entry I I
+- - - - - - - -+- --+
I AH I 4BH I
+--------+-----------------------------------+
I DS:DX I pointer to remote file I
I I specification string I
+- - - - - - - -+- --+

+ --+
I On I 8086/8088 Register Contents I
I Return I I
+ - - - - - - - -+ -+
I AX I error code; if carry bit is set I
+- - - - - - - -+- --+

Figure 2-6: Load and Execute a Program Function Call

DESCRIPTION

This function call allows an existing remote file to be submitted as a batch or command
file for remote execution. (The remote file is not deleted after completion ofthis call.)
On entry, the DS:DX register contains the address of the network file specification
string. This string points to the name of the remote file to be loaded and executed. The
ES:BX register points to a parameter block defining the command file's environment.
These registers are ignored for remote command file submission.

If the load and execute is unsuccessful, the carry bit is set and the error reason is
returned in the AX register. The following error code can occur:

Hexadecimal
Value Meaning

2 The network process may not be loaded. The node name to node
address mapping is not found in the database file. The target task on
the outgoing connection is not available. The network is unreach­
able.

2-20 DECnet-VAXmate Programmer's Reference Manual

/

(

2.11.7 Open

NAME

Open - initiate a logical link request to open a remote file.

+ --+
I On I 8086/8088 Register Contents I

I Bntry I I

+- - - - - - - -+- --+
I AH I 3DH I

+- - - - - - - -+- --+
I DS:DX I Address of remote file I

I I specification string I

+- - - - - - - -+- --+
I AL I Access mode I
+- - - - - - - -+- --+

+- --+
I On I 8086/8088 Register Contents I

I Return I I

+- - - - - - - -+- --+
I AX I Handle for logical link access I
I I (if carry bit is clear) I

I I I
I I error code (if carry bit is set) I

+- - - - - - - -+- --+

(Figure 2-7: Open Function Call

DESCRIPTION

The Open call enables a task to initiate a logical link request to open a remote file. On
entry, DS:DX contains the address of the remote file specification string. If you include
wildcards as part of the specification string, only one file is opened.

Any optional access control information is passed as part ofthe string to the target task.

The access mode is defined in AL and consists of one of the following values:

• 0 open file for reading

• 1 open file for writing

• 2 open file for reading and writing

If the Open call completes successfully, a 16-bit handle is returned in the AX register.
The handle value must be used for subsequent read and write I/O operations.

If an error condition occurs, the carry bit is set and an error code is returned in the AX
register.

Transparent File Access Operations 2-21

The following set of error codes can occur:

Hexadecimal
Value Meaning

3 The target task was not found.

4 There are too many active logical link connections.

5 Network access was denied.

2-22 DECnet-VAXmate Programmer's Reference Manual

j

/

(

2.11.8 Read

NAME

Read - receive data from a remote file.
+- --+
I On I 8086/8088 Register Contents I

I Entry I I

+- - - - - - - -+- --+
I AH I 3FH I

+- - - - - - - -+- --+
I DS:DX I Address of network message buffer I
+- - - - - - - -+- --+
I ex I Size of network message buffer I

+- - - - - - - -+- --+
I BX I Handle for logical link access I
+- - - - - - - -+- --+

+- --+
I On I 8086/8088 Register Contents I

I Return I I

+- - - - - - - -+- --+
I AX I Number of bytes received over the I

I I logical link (if carry bit is I

I I clear) I

I I I
I I Error codes (if carry bit is set) I
+- - - - - - - -+- --+

Figure 2-8: Read Function Call

DESCRIPTION

The Read function call allows the target task to read data from a remote file.

On entry, the BX register contains the 16-bit handle value. The ex register contains the
number of bytes to be received. DS:DX contains the address of the network message
buffer.

On return, the AX register contains the number of bytes successfully received by the
target task. If the carry bit is clear and AX = 0, an end-of-file status is indicated. A single
read function returns a maximum of one logical record.

If the buffer is too small for one logical record, no error occurs. The next read con­
tinues to return bytes until the entire logical record has been read.

If an error condition occurs, the carry bit is set, and an error code is returned in the AX
register.

Transparent File Access Operations 2-23

The following set of error codes can occur:

Hexadecimal
Value Meaning

5

6

2-24

The logical link was disconnected.

An invalid handle was detected.

DECnet-VAXmate Programmer's Reference Manual

/"
I

(

(

2.11.9 Write

NAME

Write - write data to a remote file.

+- --+
I On I 8086/8088 Register contents I

I Entry I I

+- - - - - - - -+- --+
I AH I 40H I

+- - - - - - - -+- --+
I DS:DX I Address of network message buffer I

+- - - - - - - -+- --+
I CX I Size of network message buffer I

+- - - - - - - -+- --+
I BX I Handle for logical link access I

+- - - - - - - -+- --+

+- --+
I On I 8086/8088 Register Contents I

I Return I I

+- - - - - - - -+- --+
AX I Number of bytes sent over the I

I logical link (if carry bit is I
I clear) I
I I
I Error codes (if carry bit is set) I

+- - - - - - - -+- --+

Figure 2-9: Write Function Call

DESCRIPTION

The Write function call allows the source task to write data to a remote file.

On entry, the BX register contains the 16-bit handle value. The ex register contains the
number of bytes to be sent. DS:DX contains the address of the network message buffer.

On return, the AX register contains the number of bytes successfully sent by the source
task.

If an error condition occurs, the carry bit is set and an error code is returned in the AX
register.

The following set of error codes can occur:

Hexadecimal
Value

5

6

Meaning

Network access was denied.

An invalid handle was detected.

Transparent File Access Operations 2-25

(' '\
I

~j

/
I

/

(

(

3
Transparent Task-to-Task Communication

DECnet-V AXmate supports transparent task-to-task communication for high level lan­
guage and assembly language programs. DECnet-VAXmate supports DOS Version 2.0
XENIX-compatible I/O handle calls starting with function request 2FH. Using specific
calls, a task can perform standard I/O operations and communicate with another task
over the network.

3.1 Transparent Task-to-Task Communication

Transparent communication provides the basic functions necessary for tasks to com­
municate over the network. These functions include the initiation, acceptance, and
establishment of a logicallinkj the orderly exchange of messages between DECnet
tasksj and the controlled termination of the communication process.

When accessing the network transparently, you use no DECnet-specific calls to per­
form these functions. Instead, you use normal I/O statements provided by the applica­
ble high level language. An assembly language task uses a subset of the MS-DOS func­
tion requests to perform the same communication activities.

3.2 Transparent Communication Functions

This section describes the functions that the client and server tasks use to communicate
ork.

3-1

3.2.1 Initiating a Logical Link Connection

Transparent communication can only take place after a logical link is established (~''\

between two cooperating tasks. You establish the logical link by issuing a client task \,j
call that requests a logical link connection. The request is sent to the server task on the
remote node.

The interaction that takes place prior to establishing a logical link is termed a
handshaking sequence. Using transparent task-to-task communication, an MS-DOS
program can act as either a client or a server.

3.2.2 Handshaking Sequence for a Client Task

To initiate the logical link request transparently, a client task performs a file create or
open operation. This task supplies the following information:

• The identification of the server node. Every node in the network has a unique
identifier that distinguishes it from other nodes in the network. Transparent com­
munication uses a node specification string to indicate the name of the server node.
(See Section 3.4.1.)

• The identification of the server task. Client tasks specify the server task that they
want to communicate with by using a network task specification string. This string
uses network object numbers and task names. Network object numbers range from
1 to 255. Numbers 1 to 127 are assigned to generic network servers. Numbers 128
to 255 are available for user-written tasks.

When a user specifies a task name, the object number is zero.

High level language client tasks can use standard file opening statements to request a
logical link connection to the remote task. An assembly language client task uses the
MS-DOS Create or Open function request to perform the same operation.

3.2.3 Handshaking Sequence for a Server Task

A high level language server task performs a file create or open operation to accept the
logical link connection request. If SYS$NET is specified as the node name, the task is
always a server task. An assembly language server task can accept the logical link
request with either the MS-DOS Create or Open function request.

3.2.4 Exchanging Data Messages over a Logical Link

Once the logical link is established, either task can send and receive data messages. A
coordinated set of write and read operations enables the exchange of data over the logi­
cal link. For high level language tasks, standard read and write calls are used for data
exchange. An assembly language task uses the MS-DOS Read and Write function
requests. The handle returned by the previous Create and Open function requests must
be specified in all Read and Write function requests.

3-2 DECnet-VAXmate Programmer's Reference Manual

(

3.2.5 Terminating the Logical Link

The termination of a logical link signals the end of the communication process between
two tasks. When network activity is no longer required, either high level language task
can issue a file closing statement to break the link. Likewise, either assembly language
tasks can issue the MS-DOS Close function request to terminate the connection. This
particular MS-DOS call closes the logical link and deactivates the original handle used
for data exchange.

3.3 Creating a Transparent Communication Task

Before creating a transparent communication task, you must install the Transparent
Task-to-Task (TTT) utility. To install this utility, type the following start-up command
line:

E> TTT (RET)

The system responds with either:

DECnet - TTT Version 1.1 instal led

or

DECnet - TTT Version 1.1 has already been instal led

Once the utility is installed, a high level language task can invoke standard 110 function
calls. An assembly language task can use the following MS-DOS function requests.

Table 3-1 : MS-DOS Function Requests for Transparent Intertask

Function

Create/Open

Close

Read

Write

Communication

Network Access

Initiate a logical link request. Accept a logical link request.

Terminate a logical link connection.

Receive data over a logical link.

Send data over a logical link.

Whether you are running a high level or assembly language task, network access
requires the use of specially formatted task names. These task names are implemented
as network task specification strings. The strings must be specified with all create and
open file operation calls.

3.4 Network Task Specifications

The network task specifications consist of a node specification string with optional
access control information and a target task specification string. Access control infor­
mation contains arguments that define your access rights at the remote node. The con­
trol string contains three fields: user name, password, and account number. Access
control verification is performed according to the conventions of the remote node.

Transparent Task-to-Task Communication 3-3

The target task can be identified as either a named or numbered object. Named objects
are user-written tasks which are referenced by a name during a connect request and an
accept request. The object number for such tasks is O. Numbered objects are tasks
which are referenced by a number. The object numbers range from 1 to 255. Numbers
1 to 127 are reserved for DECnet-specific tasks. Numbers 128 to 255 are available for
user-written tasks.

You can access the target task by its object name or number. The network task specifi­
cation string uses one of the following formats:

1. To access the target task by object name with access control information

\ \ t\node\userid\password\account\ \object·name

2. To access the target task by object name without access control information

\ \t\node\ \object-name

3. To access the target task by object number with access control information

\ \t\node\user\password\account\ \#object-number

4. To access the target task by object number without access control information

\ \t\node\ \#object-number

5. To establish a server task by object name

\ \t\SYS$NE'J\. \object-name

6. To establish a server task by object number

\ \t\SYS$NE'J\. \#object-number

3.4.1 Node Specifications

A node specification for a client task names the remote node and supplies optional
access control data. The node specification string is preceded by two backslashes, the
letter t and another backslash. The optional access control string follows the node
information. Each element is separated by a backslash.

The node specification string takes the following format:

\ \t\node\user\password\account\ \

or

\ \t\node\ \

where:

t

node

3-4

specifies that a program will be accessed for this TTT transaction.

specifies either the name or address of the remote node. A node name
has a maximum of 6 alphanumeric characters with at least one alpha­
betic character. A node address is a numeric string including the area
number in the range of 1 to 63, and the node number in the range of 1
to 1023.

DECnet-VAXmate Programmer's Reference Manual

(

(-

(

userid

password

account

identifies a user name or log-in ID on the remote system. The user
name and password set the user's privileges for accessing the remote
task. A user name has a maximum of 39 alphabetic characters.

defines a user's password which is associated with user. A user's pass­
word has a maximum of 39 alphabetic characters.

identifies a billing account number which is used with the user name
and password information on some systems. An account number has
a maximum of 39 characters. If the account information is not
required, you can omit it from the string.

A node specification string for a server task is always \ \t\SYS$NE1'\ \.

3.4.2 Task Specifications

For a client task, the task specification identifies the cooperating task on the remote
system. The server task specification identifies the server task. The task can be speci­
fied as a named or a numbered object.

The task specification string is expressed in one of the following formats:

object-name

or

#object-number

where:

object-name specifies the task as a named object. User-written tasks are usually
addressed as object type 0 plus a name. Digital-specific tasks can be
addressed by object name. The object name has a maximum of 16
characters.

object-number specifies the task as a numbered object. The valid range is 1 to 255.

3.5 MS-DOS Intercept Routine
Whenever an I/O file operation call is invoked, system control is transferred to the MS­
DOS task-to-task intercept routine. Network access is signaled by the string \ \t\
which begins the network task specification string. (See Section 3.4 for formats.) The
MS-DOS intercept routine checks to see if the proposed I/O operation is a network sup­
ported call.

The intercept routine parses the network task specification string. It stores away the
socket numbers for the handles used with the open and create I/O calls. These values
must be specified with subsequent read, write and close operations. Before one of
these calls can complete, the intercept routine must verify the current status of the net­
work handles.

Transparent Task-to-Task Communication 3-5

3.6 Using the Transparent Network Task Control Utility

The Transparent Network Task (TNT) Control utility, Version 1.1, reports the status of / . '\
the Transparent Task-to-Task (TTT) utility as well as the Transparent File Access (TFA)

. utility. It features an on-line help routine which lists supported TNT commands. TNT
returns extended error information for assisting in fault isolation. Using TNT, you can
deinstall TTT (and/or TFA) from memory.

This section deals only with the use of TNT for transparent task-to-task communica­
tion. Chapter 2 discusses TNT and its role in transparent file access operations.

3.6.1 Displaying Status of the Transparent Task-to-Task Utility

To display the status ofTTT, you run TNT. The system responds with a start-up mes­
sage and one or more status message(s).

All errors returned by the Transparent Task-to-Task utility are standard MS-DOS error
messages. However, the Transparent Network Task Control utility provides extended
error support to transparent task-to-task communication. Extended error messages,
returned by this utility, can help you locate problem areas.

NOTE

When you run TNT, the status of the Transparent File Access utility is
also reported.

To invoke TNT, type the following command:
E> TNT IRET I

The system responds with a start-up message:

Transparent Network Task Control VI.I

and one or more of the following status message(s):

DECnet TTT is not instal led.

DECnet TTT has no errors to report.

DECnet TTT Errors are:
remote-file-specification: extended-error-message

or

DECnet TFA is not instal led.

DECnet TFA has no errors to report.

DECnet TFA Errors are:
remote-file-specificatton : extended-error-message

3-6 DECnet-VAXmate Programmer's Reference Manual

/

(
where

extended-error-message is a message contained in the external variable ermo. See
Appendix C for a list of ermo messages.

3.6.2 On-line Help

On-line help provides you with a list of supported TNT commands. To obtain help,
type:

E> TNT HELP (RET)

The system responds with the following help text:

Transparent Network Task Control VI.I
Transparent Network Task commands are:

TNT
TNT HELP
TNT TTT OFF
TNT TFA OFF

Display status of both TTT and TFA.
Display this text.
Remove TTT from memory.
Remove TFA from memory.

If you mistype a command, TNT responds with an error message and the list of sup­
ported TNT commands:

Transparent Network Task Control VI.I
Transparent Network Task command error.
Transparent Network Task commands are:

TNT
TNT HELP
TNT TTT OFF
TNT TFA OFF

3.6.3 Deinstalling TTT

Display status of both TTT and TFA.
Display this text.
Remove TTT from memory.
Remove TFA from memory.

You can remove TTT from memory. Enter the following command line:

E> TNT TTT OFF (RET)

The system responds with the following text:

Transparent Network Task Control VI.I
The task was removed successfully.

Transparent Task-to-Task Communication 3-7

If TTT could not be removed, one of the following messages is displayed:

Transparent Network Task Control VI.I
TTT cannot be removed because it is not installed or is not installed
last.

or if MS-DOS failed on the remove call,

Transparent Network Task Control VI.I
The task could not be removed.

NOTE

TTT traps MS-DOS interrupt function call 21H as do other software
applications. If you want to remove TTT from memory, it must be the
last task installed which intercepts interrupt 21H. Otherwise, you
must remove any tasks installed after TTT that also trap 21H, or reboot
your system to remove TTT.

3.7 TTT Programming Considerations

There are specific MS-DOS function requests that support DECnet-V AXmate transpar­
ent task-to-task communication. Table 3-1 provides you with a summary of these calls.
When creating TTT applications, you should note the following:

• Some user programs may not accept the TTT network specification string.

• You should not use unsupported MS-DOS function calls to perform transparent
task-to-task communication.

• If you issue a ~ while TTT is active, network operation may be blocked. To
clear this condition, run the TNT utility.

3.8 MS-DOS Function Requests for Transparent Task-to-Task
Communication

The following sections describe the MS-DOS function requests and provide specific
guidelines. A drawing of the 8086/8088 registers shows their contents before and after
each function request.

The function requests are discussed in alphabetical order.

3-8 DECnet-VAXmate Programmer's Reference Manual

(

3.8.1 Close

NAME

Close - terminate a logical link connection and deactivate the original handle.

+- --+
I On I 8086/8088 Register Contents I

I Entry I I

+- - - - - - - -+- --+
I AH I 3EH I

+- - - - - - - -+- --+
I ax I Handle for logical link access I
+- - - - - - - -+- --+

+ --+
I On I 8086/8088 Register Contents I

I Return I I

+ - - - - - - - -+- --+
I AX I No errors (if carry bit is clear) I

I I I
I I Error code (if carry bit is set) I

I I I

+- - - - - - - -+- --+

Figure 3-1: Close Function Request

DESCRIPTION

The Close function request terminates the logical link connection and deactivates the
handle used for data exchange. Either task can issue the Close call.

On entry, the BX register contains the 16-bit handle value returned by the open or cre­
ate I/O operation. If the close operation completes successfully and the carry bit is
clear, no error is returned in the AX register. If an error condition occurs and the carry
bit is set, the appropriate error code is returned in the AX register.

The following error code can occur:

Hexadecimal
Value Meaning

6 An invalid handle value was detected.

Transparent Task-to-Task Communication 3-9

3.8.2

NAME

Create/Open

Create/Open - initiate or accept a logical link connection request.

+- --+
I On I 8086/8088 Register contents I

I Entry I I

+- - - - - - - -+- --+
I AH I 3CH or 3DH I

+- - - - - - - -+- --+
I DS:DX I Address of network task I

I I specification string I

+ - - - - - - - - + -+
I AL I 0 I

+- - - - - - - -+- --+

+ -+
I On I 8086/8088 Register Contents I

I Return I I

+- - - - - - - -+- --+
I AX I Handle for logical link access I

I I (if carry bit is clear) I

I I I
I I Error codes (if carry bit is set) I
+ - - - - - - - -+ -+.

Figure 3-2: Create/Open Function Request

DESCRIPTION

In the context of DEC net-V AXmate, the Create and Open calls perform the same func­
tions. Either call can initiate and/or accept a logical link connection. However, if SYS$
NET is specified as the node name in the network task specification, and supplied with
either call, the function is only interpreted as the task accepting a logical link connec­
tion.

• To initiate a logical link connection. The Create or Open call enables a source task
to initiate a logical link connection. On entry, DS:DX contains the address of the
network task specification string. Any optional access control information is
passed as part of the string to the target task.

On return, the AX register contains an error code or a 16-bit handle associated with
the source task. The returned handle value must be used for subsequent read and
write I/O operations.

• To accept a logical link connection. The Create or Open call accepts a logical link
request from another network task. The 16-bit handle value is returned in the AX
register. This handle must be used for subsequent read and write operations. On
entry, DS:DX contains the address of the network task specification string. /' "

3-10 DECnet-VAXmate Programmer's Reference Manual

If you are unable to initiate a logical link connection, an error code is returned in the
AX register. To obtain extended error information, run the TNT utility.

(The following error code can occur:

Hexadecimal
Value

2

Meaning

The network process may not be loaded. The node name to node
address mapping is not found in the database file. The target task on
the outgoing connection is not available. The network is unreach­
able. Too many files are currently open. There is an error in the path
specification string.

The target task was not found.

There are too many active logical link connections.

The remote object rejected the request.

If you are unable to accept a logical link connection, an error code is returned in the AX
register. To obtain extended error information, run the TNT utility.

The following error code can occur:

Hexadecimal
Value

2

Meaning

The target task was not found.

Network access was denied.

Transparent Task-to-Task Communication 3-11

3.8.3 Read

~E ~

Read - receive data over a logical link connection.
+ -+
I On I 8086/8088 Register contents I

I Entry I I

+- - - - - - - -+- --+
I AH I 3FH I

+ - - - - - - - -+ -+
I DS:DX I Address of network message buffer I

+- - - - - - - -+- - - - - - - - - - - - - - - _ .. - - - - - - - - - - - - - - - - --+
I cx I Size of network message buffer I
+--------+-----------------------------------+
I BX I Handle for logical link access I

+- - - - - - - -+- --+

+- --+
I On I 8086/8088 Register contents I

I Return I 1
+- - - - - - - -+- --+
1 AX I Number of bytes received over the 1
I I logical link (carry bit 1
1 I is clear) 1
+- - - - - - - -+- --I

Figure 3-3: Read Function Request

DESCRIPTION

The Read function request allows the target task to receive data sent over the logical
link.

On entry, the BX register contains the 16-bit handle value. The ex register contains the
number of bytes to be received. DS:DX contains the address of the network message
buffer.

On return, the AX register contains the number of bytes successfully received by the
target task. If an error condition occurs, zero bytes are returned. To obtain extended
error information, run the TNT utility. See Appendix D for a list of extended error mes­
sages.

3-12 DECnet-VAXmate Programmer's Reference Manual

(,

3.8.4 Write

NAME

Write - send data over a logical link connection.
+ --+
I On I 8086/8088 Register Contents I

I Entry I I

+- - - - - - - -+- --+
I AH I 408 I

+- - - - - - - -+- --+
I DS:DX I Address of network message buffer I

+- - - - - - - -+- - - - - - - - - - - - - - - - - -. - - - - - - - - - - - - - - --+
I ex I Size of network message buffer I

+- - - - - - - -+- --+
I BX I Handle for logical link access I

+- - - - - - - -+- --+

+- •• +
I On I 8086/8088 Register Contents I

I Return I I

+- - - - - - - -+- - - - - - - - - - - - - - - - -. - - - - - - - - - - - - - - - -.+
AX I Number of bytes sent over the I

I logical link (if carry bit I
I is clear) I
I I
I Error codes (if carry bit is set) I

+ - - - - - - - -+- - - - - - - - - - - - - - - - -. - - - - - - - - - - - - - - - --+

Figure 3-4: Write Function Request

DESCRIPTION

The Write function request allows the source task to send data over the logical link.

On entry, the BX register contains the 16-bit handle value. The ex register contains the
number of bytes to be sent. DS:DX contains the address of the network message buffer.

On return, the AX register contains the number of bytes successfully sent by the source
task. If an error condition occurs, the error code is returned in the AX register. To
obtain extended error information, run the TNT utility.

The following error code can occur:

Hexadecimal
Value Meaning

5 Network access was denied.

Transparent Task-to-Task Communication 3-13

(

(

4
C Language

DECnet-V AXmate includes C language source files which are used to create a linkable
library for DECnet-VAXmate applications. This library provides compatibility with
the network socket interface supported by DECnet-UL TRIX.

4.1 Creating the DECnet-VAXmate Programming Interface Library

The file DNETLIB.SRC contains three types of files: the .C files (C language sources),
the .H files (header files that contain definitions for the network interface) and the
.ASM files (assembly language sources). You should refer to the appropriate installation
guide for a complete list of these files.

In order to interface to the DECnet-VAXmate network process, you should create a
library against which to link your DECnet-VAXmate program(s).

Use the following procedure to create a DECnet-VAXmate programming interface
library:

1. The Break Source utility, BREAKSRC, allows you to break the source file,
DNETLIB.SRC, into separate source files for compilation and assemblies.
BREAKSRC is supplied with the DECnet-VAXmate distribution kit. When you run
the DECnet-VAXmate Installation Procedure (DIP), you can select to have the
DNETLIB.SRC file split into separate files. The BREAKSRC utility will then be run
automatically for you. For instructions on how to run DIP, refer to the appropriate
installation guide.

4-1

To use BREAKSRC manually, follow this format:

BREAKSRC < inpuLJile_spec > < output_device: \path >

For example:

BREAKSRC A:DNETLIB.SRC C:\DECNET\SRC\

2. Use your C language compiler to compile each C language source module. Use your
assembler to assemble each assembly source module.

3. After you produce an object module for each source module, build a library against
which to link your DECnet-VAXmate applications programs.

4.1.1 DECnet-VAXmate Programming Considerations

The following programming considerations should be noted when writing and devel­
oping your DECnet-VAXmate applications:

1. Using the External Variable ermo - Most DECnet-VAXmate programming inter­
face functions use the external variable ermo as a place to return error detail. It is
assumed that ermo has been defined externally to the programming interface as an
into It may already be defined in your C language run-time library; if not, your
applications program should define it.

Appendix C lists the error codes returned by DECnet-VAXmate in ermo.

2. Checking Software Compatibility - When creating DECnet-VAXmate applica­
tions, make sure that you resolve any C language compiler incompatibilities before
compiling the C language source modules such as long variable names or certain
type definitions.

3. If your C compiler does not do so by default, you should compile the sources so
that all data structures are stored without extra space (packed) for alignment of
members on "int" boundaries.

4. Using Assembly Source Modules - There are assembly source modules included in
DNETLIB.SRC. Before you can successfully call these functions from sources com­
piled by your C language compiler, you should fulfill any assembly-format require­
ments such as segment names. (Refer to the header file, begin.h, on the distribution
kit as an example of specific C language compiler segment naming requirements.)

5. Using Specific Macros - There are references to the macros/functions such as
toupper and islower in some of the C language source modules. It is assumed that
your C language compiler has provided a standard macro/function for them. If not,
you can simply provide your own macros/functions.

6. If you are not using a C compiler that supports the signal handling function (for
example, ~ trapping), then you will need either to provide your own signal
function or to comment out from the code in dnet_conn any references to the sig­
nalO function and the reference to the include file, < signal.h > .

4-2 DECnet-VAXmate Programmer's Reference Manual

I

\'-.- /

(

(

The ~ trapping, provided in dnet_conn, allows you to abort a utility which
appears to be waiting indefinitely for connections to complete. (This applies only
to utilities that use dnet_conn for making connections.) The connect function in
dnet_conn is invoked in a nonblocking socket mode.

If ~ trapping code is commented out from dnet_conn, there is the potential
problem of leaving hung sockets and running out of system resources, should users
decide to ~ in the middle of nonblocking connection request attempts.

7. If you are using a compiler that does not define the following variables: int day­
light, long timezone and char *tzname[2J, either comment these external declara­
tions out of the header file < time.h > or define them in your C program code.

8. The DECnet-VAXmate programming interface library was based on a 2-segment
model: one code segment and one data segment.

4.2

CAUTION

If a program terminates with any active logical links (sockets), the links
remain active. In this way, another program can start and use the same
links.

If the logical links are not needed, you must issue an sclose function
call before a program is terminated with an EXIT, ~ or ~. If
too many links are left active, an error message, indicating that no
more buffers are available or that there are insufficient network
resources, is reported. This causes the network to become unusable.
To completely deactivate any logical links, run the Network Control
Program (NCP) and issue the SET KNOWN LINKS command with
STATE OFF. (See the DECnet-VAXmate User's Guide for more infor­
mation on this command.)

How to Read the Socket Interface Call Descriptions

The socket interface calls are presented as separate entries in this manual. They are
documented in a consistent manner. Each call is described under the following head­
ings:

NAME

SYNTAX

DESCRIPTION

DIAGNOSTICS

C Language

gives the exact name and a brief description of its function.

shows the complete syntax. Possible call options and the type of
expected argument(s) are indicated.

provides more detail on what the call does, and how its action is
modified by the options.

gives explanations of error messages that may be produced.

4-3

4.3 Understanding a SYNTAX Section

Each socket interface call documented in this chapter has a SYNTAX entry. It shows ,/ \
how a call is defined. The SYNTAX entry consists of several components. .J

The SYNTAX section for the bind call illustrates these components:

int
int
struct

bind(s, name, namelen}
s, namelen;
sockaddr_dn * name;

The first line represents the function call and a list of input arguments. Each function
call should do one specific task. Data may be passed to the called function by way of
arguments. The input arguments follow the function name. They are separated by
commas and surrounded by parentheses.

The next set oflines lists. the formal arguments and their respective data types (char,
int, or structure).

Using the bind call example, * name declares name to be a pointer to the structure type
sockaddr _dn. This structure contains several modifiable fields.

4-4 DECnet-VAXmate Programmer's Reference Manual

/'

(

(

(

4.4 Socket Function Calls

The following sections describe the socket interface function calls for C programs.
They also provide you with specific guidelines. Some of the socket interface calls use
specific data structures. Appendix B details how each data structure is formatted.

The socket interface calls are summarized in the table below:

Table 4-1: Socket Interface Calls

Socket Call

accept

bind

connect

getpeername

getsockname

getsockopt

listen

recv

sclose

select

send

setsockopt

shutdown

sioctl

socket

sread

swrite

C Language

Description

Accept an incoming connection request on a socket, and return a socket
number.

Assign an object name or number to a socket.

Initiate a connection request on a socket.

Get the name of a connected peer on a socket.

Get the current name for the specified socket.

Get options associated with sockets.

Listen for pending connections on a socket.

Receive data and out-of-band messages on a socket.

Terminate a logical link connection and deactivate a socket.

Check the 1/0 status of the network sockets.

Send data and out-of-band messages on a socket.

Set options associated with sockets.

Shutdown part or all of a full duplex logical link connection.

Control the operations of sockets.

Create an endpoint for communication and return a socket number.

Read data on a socket.

Write data to a socket.

4-5

4.4.1 Example Socket Interface Calling Sequence

The following program segments illustrate the socket interface calls used by DECnet­
VAXmate client and server tasks.

Socket ca I Is issued by a cl ient task:

s = socket (...) /* get a DECnet socket */
setsockopt(s •• DSO~ONDATA ..) /* set up optional data */
setsockopt(s •• DSO~ONACCESS ••) /* set up access */

/* control information */
connect(s •...) /* initiate connection to */

/* the server task */
getsockopt(s .• DSO~ONDATA •.) /* get returned status and */

/* optional data */
send(s •...) /* send data (or wr i te) */
recv(s •...) /* receive data (or read) */
setsockopt(s •• DSO-DI SDATA) /* set up optional */

/* data for disconnect */
sclose(s) /* terminate connection */

Socket ca I Is issued by a server task:

s = socket(...) /* get a DECnet socket */
b i nd(s •...) /* bind a name to the socket */
listen(s) /* make the socket avai lable */

/* for cl ient connections */
setsockopt(s •• DSO-ACCMODE. /* accept mode. */

ACC-DEFER.) /* deferred/immediate */
ns = accept (s) /* await connect(s) on the */

/* new socket. ns */
getsockopt(ns •• DSO~ONACCESS ••)/* get access */

/* control information */
getsockopt(ns .• DSO~ONDATA ..) /* get optional connect data */
setsockopt(ns •. DSO~ONDATA •.) /* set up optional data */
setsockopt(ns •. DSO~ONACCEPT ••)/* f i na I I y accept the */

/* connection request */
recv(ns) /* receive data (or read) */
send(ns •...) /* send data (or wr i te) */
setsockopt(ns .• DSO-DISDATA .•) /* set up optional */

/* disconnect data */
sclose(ns) /* terminate connection */
sclose(s) /* terminate DECnet path */

4-6 DECnet-VAXmate Programmer's Reference Manual

\

\

" .-/

(

(

4.4.2 accept

NAME

accept - accept an incoming connection request on a socket and return a socket num­
ber.

SYNTAX

#include <types.h>
#include < socket.h >
#include < dn.h >

int
int
struct

accept(s, sorcblk, sorclen)
s, *sorclen;
sockaddr_dn *sorcblk;

DESCRIPTION

The accept call extracts the first connection request on the queue of pending connec­
tions, creates a new socket with a new number having the same properties of the origi­
nallistening socket. The original socket remains opened.

If the socket is set to nonblocking I/O, and there are no queued connection requests,
io---.Status will return a -1 and errno will contain EWOULBLOCK.

There are two modes of accepting an incoming connection. They are immediate and
deferred modes. These modes of acceptance are set by using the setsockopt call. When
immediate mode is in effect, the connection is established immediately. The deferred
mode indicates that the server task completes the accept call without fully completing
the connection to the client task. In this case, the server task can examine the access
control or optional data before it decides to accept or reject the connection request.
The server task can then issue the setsockopt call with the appropriate reject or accept
option.

Input Arguments

s

sorcblk

sorclen

C Language

specifies the number for a socket which was created with the socket call,
bound to a name or number by the bind call, and was set to listen for
connects by the listen call.

is a value result argument. It specifies an address of a structure sorcblk of
the data type sockaddr _dn. This argument will be filled in with the
information of the entity requesting the connection.

is a value result argument. It specifies the address of an into The value of
sorclen should initially contain the size of the sorcblk.

4-7

Return Arguments

sorclen specifies the actual length of the returned data in bytes.

sorcblk specifies the socket address data structure, sockaddr --.dn. A user
retrieves data from the fields filled in by this function call. (See Appen-
dix B on how sockaddr--.dn is formatted.)

The following data fields are filled in by this function call:

sdn-Jamily is the address family AF_DECnet.

sdn_objnum is the object number for the client task. It can be a number 0 to
255. It is set to 0 only when the object name is used.

sdn_objnamel is the size of the object name.

sdn_objname is the object name of the client task. It can be up to a 16-element
array of char. It is used only when sdn_objnum equals o.

sdn-..add is the node address structure for the client task. (See Appendix B
on how dn_naddr is formatted.)

Return Value

If the call succeeds, it returns a nonnegative integer called a socket number. This num­
ber will be used for communications over a logical link connection. If an error occurs,
the call returns a -1. When an error condition exists, the external variable ermo will
contain error detail. See the DIAGNOSTICS section for a full description of the error
messages.

DIAGNOSTICS

[EBADF]

[ECONNABORTED]

[ENETUNREACH]

[ENFILE]

[EWOULDBLOCK]

4-8

The argument s does not contain a valid socket number.

The client task disconnected before the q,ccept call com­
pleted.

The network is unreachable. The network process is not
installed.

There are no more available sockets.

The socket is marked for nonblocking and no connec­
tions are waiting to be accepted.

DECnet-VAXmate Programmer's Reference Manual

(

(

4.4.3 bind

NAME

bind - assign an object name or number to a socket.

SYNTAX

#include <types.h>
#include < socket.h >
#include < dn.h >

int
int
struct

bind(s, name, namelen)
s,namelen;
sockaddr_dn *name;

DESCRIPTION

The bind call assigns an object name or number to a socket. When a socket is first cre­
ated with the socket call, it exists in a name space but has no assigned name or number.
The bind call is used primarily by server tasks. The object name is required before a
server task can listen for incoming connection requests using the listen call. It can also
be used by client tasks to identify themselves to server tasks. See also the accept (Sec­
tion 4.4.2), connect (see Section 4.4 .4), getpeername (Section 4.4.5), andgetsockname
(Section 4.4.6) calls.

NOTE

V AXIVMS proxy access by user name is made possible if the client task
uses the bind call specifying his user name as the object name. Refer to
the SO~EUSEADDR option for the setsockopt call (Section 4.4.12) if
you want to make more than one proxy connection with the same
name.

Input Arguments

s

name

specifies the number for a socket which has been created with the socket
call.

specifies the address of the structure name of data type sockaddr -"'n. A
user fills in the data for each field. (See Appendix B on how sockaddr _dn is
formatted.)

The following data fields can be modified:

sdn-family

sdn-f/ags

specifies the address family as AF _DECnet.

specifies the object flag option. It must be set to O.

defines the object number for the server task. It can be a number
o to 255. It is set to 0 only when the object name is used.

sdn_objnamel is the size of the object name.

C Language 4-9

sdn_objname defines the object name of the server or client task. It can be up
to a 16-element array of char. It is used only when
sdn_objnum equals O.

sdn_add specifies the node address structure for the server task. This
data member is ignored.

namelen specifies the size of the name structure.

Return Value

If the bind is successful, a 0 value is returned. An unsuccessful bind returns a value of -
I. When an error condition exists, the external variable ermo will contain error detail.

DIAGNOSTICS

[EADDRINUSE]

[EBADF]

[EINVAL]

[ENETUNREACH]

4-10

The specified name or number is already used by another
socket.

The argument s does not contain a valid socket number.

The socket s is already bound to a name or number.

The network is unreachable. The network process is not
installed.

DECnet-VAXmate Programmer's Reference Manual

(

4.4.4 connect

NAME

connect - initiate a connection request on a socket.

SYNTAX

#include <types.h>
#include <socket.h>
#include < dn.h >

int
int
struct

connect(s, destblk, destlen)
s, destlenj
sockaddr_dn, *destblkj

DESCRIPTION

The connect call issues a connection request to another socket. The other socket is
specified by destblk which is a pointer to the destblk data structure.

Optional data as well as access control information may be passed with this function
call. This data must be previously set by the setsockopt call. If subsequent connect calls
are issued on the same socket, a task must reissue the setsockopt call to set up new
optional user data and/or access control information.

Input Arguments

s

destblk

specifies the number for the socket which has been created with the
socket call. This socket number is used for establishing a connection
between the user tasks. It is also used with subsequent send and receive
function calls.

specifies the address of the structure destblk of the data type
sockaddr_dn. A user fills in the data for each field. (See Appendix B on
how sockaddr ~n is formatted.)

The following data fields can be modified:

sdn-family specifies the address family as AF_DECnet.

sdn-f/ags specifies the object flag option. It must be set to o.
sdn_objnum defines the object number for the server task. It can be a number

Oto 255.

sdn_objnamel is the size of the object name.

sdn_objname defines the object name of the server task. It can be up to a 16-ele­
ment array of char. It is used only when sdn_objnum equals o.

sdn~dd specifies the node address structure for the server task. (See
Appendix B on how dn_naddr is formatted.)

destlen specifies the size of the destination block structure.

C Language 4-11

Return Value

If the call succeeds, it returns a value of o. Otherwise, the call returns a value of -1.
When an error condition exists, the external variable errno will contain error detail. If
the socket is set to nonblocking I/O (see also sioctl, Section 4.4 .14), and you issue a con­
nect, the function returns a -1, and the error message, EINPROGRESS.

DIAGNOSTICS

[EAFNOSUPPORT]

[EBADF]

[EBUSY]

[ECONNABORTED]

[ECONNREFUSED]

[ECONNRESET]

[EHOSTUNREACH]

[EINPROGRESS]

[ENETDOWN]

[ENETUNREACH]

[ERANGE]

[ESRCH]

[ETIMEDOUT]

[ETOOMANYREFS]

4-12

Addresses in the specified address family cannot be used
with this particular socket.

The argument s does not contain a valid socket number.

The socket is not in idle state. The socket is in the process
of being connected or disconnected; it is currently a con­
nected or listening socket.

The peer task has disconnected and the connection was
aborted.

The attempt to connect was forcefully rejected.

The remote task has failed.

The remote node is unreachable.

The connection request is now in progress.

The network is down. The Executor name and address
may not have been set and/or the Executor state may not
have been set ON.

The network is unreachable. The network process is not
installed.

The object number of the server task is invalid. The valid
range is 0 to 255.

The server object does not exist on the remote node.

Connection establishment was timed out before a con­
nection was established.

The remote node has accepted the maximum number of
connection requests.

DECnet-VAXmate Programmer's Reference Manual

(

(

4.4.5 getpeername

NAME

getpeername - get the name of a connected peer on a socket.

SYNTAX

#include < types.h >
#include <socket.h>
#include < dn.h >

int
int
struct

getpeername{s, destblk,destlen)
s, *destlen;
sockaddr_dn *destblk;

DESCRIPTION

The getpeername call returns information about the peer socket connected to the spec­
ified socket. This information is the same information returned by the accept call. It
may be used by a client or server task anytime after a connection has been established
between two tasks or peers.

Input Arguments

s

destblk

destlen

specifies the number for a socket which has been created by the socket or
the accept call.

specifies the address of the destblk structure of the data type
sockaddr ----.fin. This argument will be filled in with peer information
returned by getpeername.

is a value result argument. It specifies the address of an into The value of
destlen should be initialized to the size of the destblk.

Return Arguments

destlen specifies the actual size of the destination block (in bytes).

destblk specifies the socket address data structure, sockaddr _dn. A user retrieves
data from the fields filled in by this function call. (See Appendix B on how
sockaddr _dn is formatted.)

The following data fields can be filled in by this function call:

sdn-/amily is the address family AF_DECnet.

sdn_objnum is the object number for the peer task. It can be a number 0 to
255.

sdn_objnamel is the size of the object name.

sdn_objname is the object name of the peer task. It can be up to a 16-element
array of char. It is only used when sdn_objnum equals o.

C Language 4-13

sdn~dd

Return Value

is the address structure for the peer node. (See Appendix Bon
how dn_naddr is formatted.)

If the call succeeds, a value of 0 is returned. If an error occurs, the call returns a-I.
When an error condition exists, the external variable errno will contain error detail.
See the DIAGNOSTICS section for a full description of the error messages.

DIAGNOSTICS

[EBADF]

[ENETUNREACH]

[ENOTCONN]

4-14

The argument s does not contain a valid socket number.

The network is unreachable. The network process is not
installed.

The socket s is not connected, it has no peer.

DECnet-VAXmate Programmer's Reference Manual

(

(

(-

4.4.6 getsockname

NAME

getsockname - get the current object name or number for the specified socket.

SYNTAX

#Include <types.h>
#include < socket.h >
#include < dn.h >

int
int
struct

getsockname(s, destblk, destlen)
s, * destlen;
sockaddr_dn *destblk;

DESCRIPTION

The getsockname call returns the bound object name or number of the specified
socket.

Input Arguments

s

destblk

destlen

specifies the number for a socket which has been created by the socket or
the accept call.

specifies the address of a structure of the data type sockaddr -An. This
argument will be filled in with local task information returned by
getsockname.

is a value result argument. It specifies the address of an into The value of
destlen should be initialized to the size of the destblk.

Return Arguments

destlen specifies the actual size of the destination block (in bytes).

destblk specifies the socket address data structure, sockaddr-An. A user retrieves
data from the fields filled in by this function call. (See Appendix B on how
sockaddr-An is formatted.)

The following data fields can be filled in by this function call:

sdn-Jamily is the address family AF~ECnet.

sdn_objnum is the object number for the local task. It can be a number 0 to
255.

sdn_objnamel is the size of the object name.

sdn_objname is the object name ofthe local task. It can be up to a 16-element
array of char. It is only used when sdn_objnum equals o.

sdn-1ldd

C Language

is the address structure for the local node. (See Appendix Bon
how dn--...naddris formatted.)

4-15

RetumValue

If the call succeeds, a value of 0 is returned. If an error occurs, the call returns a-I.
When an error condition exists, the external variable ermo will contain error detail. (\.
See the DIAGNOSTICS section for a full description of the error messages.

DIAGNOSTICS

[EBADFJ

[ENETUNREACH)

4-16

The argument s does not contain a valid socket number.

The network is unreachable. The network process is not
installed.

DECnet-VAXmate Programmer's Reference Manual

(

(

4.4.7 listen

NAME

listen - listen for pending connections on a socket.

SYNTAX

int listen(s, backlog)
int s;
int backlog;

DESCRIPTION

The listen call declares your socket as a server which is available for client connections.
The server uses the bound name or number in order to listen for incoming client con­
nections. This call must be issued before an incoming connection can be accepted or
rejected. See also the accept (Section 4.4.2), the bind (Section 4.4.3) and the select (Sec­
tion 4.4.10) calls.

If you detach a listening socket while the socket is receiving client connections, then all
links associated with the listening socket immediately abort and all outstanding data is
lost.

Input Arguments

s

backlog

specifies the number for a socket which has been created with the socket
call and bound to a name or number by the bind call.

defines the maximum number of unaccepted incoming connects which
are allowed on this particular socket. The maximum allowable number is
5. If a connection request arrives when the queue is full, the client task
will receive an error with an indication of ECONNREFUSED.

Return Value

If the call succeeds, a value of 0 is returned. If an error occurs, the call returns a-I.
When an error condition exists, the external variable errno will contain error detail.
See the DIAGNOSTICS section for a full description of the error messages.

CLanguage 4-17

DIAGNOSTICS

[EBADF]

[ECONNREFUSED]

[ENETUNREACH]

The argument s does not contain a valid socket number.

The connection request was rejected.
,

The network is unreachable. The network process is not
installed.

[EOPNOTSUPP] The socket type does not support the listen operation.

4-18

NOTE

You may issue a listen(s, 0) call while already processing data over a
previously accepted connected socket. If this is done, subsequent
incoming connection requests will be rejected by the network process.
When communications are completed over the currently connected
socket, the listen(s, backlog) call should be reissued to allow for subse­
quent acceptance of incoming connection requests.

DECnet-VAXmate Programmer's Reference Manual

(

(

4.4.8 recy

NAME

recv - receive data or out-of-band messages on a socket.

SYNTAX

#include < socket.h >

int recv(s, buffer, buflen, flags)
int s, buflen, flags;
char * buffer;

DESCRIPTION

The recv call is used to receive data from your peer. See also the sread call (Section
4.4.16).

If no messages are available at the socket, the recv call waits for a message to arrive
unless the socket is nonblocking. (See sioctl, Section 4.4 .14.) In this case, a status of -1
is returned with the external variable ermo set to EWOULDBLOCK.

If the link is disconnected, queued data can still be received on the socket. However, if
you shut down the socket or detach it, queued data cannot be received. When the logi­
cal link is not in a connected state, and all data has been read, the recv call returns zero
bytes.

The select call may be used to determine when more data has arrived. (See Section
4.4.10.)

Out-of-band messages are delivered to a receiving task ahead of normal data messages.
These messages can be received by specifying MSG_OOB as the flag argument.

Input Arguments

s

buffer

buflen

flags

specifies the number for a socket returned by the socket or the accept call.

specifies the address of a buffer which will contain the received message.

specifies the size of the message buffer.

set to 0 indicates that the task will receive normal messages. If set to
MSG_OOB, the task will receive out-of-band messages. Only one out-of-
band message can be outstanding at any time. You can also set the flags
argument to MSG..JEEK to read the next pending message without
removing it from the receive queue.

Output Argument

buffer specifies the buffer which contains the received message.

C Language 4-19

Return Value

If the call succeeds, the number of received characters is returned.

If the call returns a zero, you have either received a zero length message or the logical
link has been disconnected. To determine the state of the logical link, use the
getsockopt function call with the DSOJINKINFO option (see Section 4.4.12), or the
DECnet utility function, dnet_eof(see Chapter 5). If the link has been disconnected,
then all subsequent receives will return zero bytes.

If an error occurs, a value of -1 is returned. Additional error detail will be specified in
the external variable errno. See the DIAGNOSTICS section for a full description ofthe
error messages.

DIAGNOSTICS

When receiving normal data, the following set of error messages can occur:

Blocking 1/0

Message

[EBADF]

[ENETUNREACH]

Nonblocking 1/0

Message

[EBADF]

[ENETUNREACH]

[EWOULDBLOCK]

Description

The argument s does not contain a valid socket number.

The network is unreachable. The network process is not
installed.

Description

The argument s does not contain a valid socket number.

The network is unreachable. The network process is not
installed.

The receive operation would block because there is cur­
rently no data to receive.

When receiving out-of-band data, the following set of error messages can occur:

Blocking 1/0

Message

[EBADF]

[ENETUNREACH]

[EWOULDBLOCK]

4-20

Description

The argument s does not contain a valid socket number.

The network is unreachable. The network process is not
installed.

The receive operation would block because there is cur­
rently no data to receive.

DECnet-VAXmate Programmer's Reference Manual

(

(

Nonblocklng 1/0

Message

[EBADFJ

[ENETUNREACH]

[EWOULDBLOCK]

C Language

Description

The argument s does not contain a valid socket number.

The network is unreachable. The network process is not
installed.

The receive operation would block because there is cur­
rently no data to receive.

4-21

4.4.9 sclose

NAME

sclose - terminate a logical link connection and deactivate a socket.

SYNTAX

int sclose(s)
int s;

DESCRIPTION
The sclose call terminates an outstanding connection over the socket referenced by s. It
also deactivates the socket.

NOTE
Before you can terminate a connection over a socket with the option
SO~EEPALIVE set, you must first issue a setsockopt call with
SO~EEPALIVE turned off. To turn off SO~EEPALIVE, you must
precede SO~EEPALIVE with a tilde C), as in, -SO~EPALIVE.
(-SO~EEP ALIVE is the default condition.)

You then issue the sclose call. The logical links (if any) are discon­
nected, and the socket and associated sockets (if any) are deallocated.
However, if you issue sclose without turning off SO~EEPALIVE, the
sockets remain allocated, and the links (if any) stay active.

The effect of sclose on unsent data queued for a remote task depends on the linger
option set with the setsockopt function call. (See Section 4.4 .12.) If SOJINGER is set,
control is returned to the task, but the link is not disconnected until the unqueued data
is sent. If SO~ONTLINGER is set, control is returned to the task, and any unqueued
data is lost.

NOTE
The DECnet-VAXmate function call sclose is not compatible with
DECnet-UL TRIX systems. See Appendix G for information o'n how to
transport DECnet-V AXmate programs that use sclose.

Input Argument

s specifies the number for a socket which was returned by the socket or the
accept call.

Return Value

If the call succeeds, a value of 0 is returned. If an error occurs, a value of -1 is returned.
Additional error detail will be specified in the external variable ermo. See the DIAG­
NOSTICS section for a full description of the error messages.

4-22 DECnet-VAXmate Programmer's Reference Manual

\

(

(

C'IAGNOSTICS

[EBADF]

[ENETUNREACH]

C Language

The argument s does not contain a valid socket number,

The network is unreachable, The network process is not
installed.

4-23

4.4.10 select

NAME

select - check the 1/0 status of the network sockets.

SYNTAX

#include < time.h >

int
int
unsigned long
struct

DESCRIPTION

select(nfds, readfds, wrltefds, exceptfds, timeout)
nfds;
*readfds, *writefds, *exceptfds;
timeval *timeout;

The select call checks the network sockets specified by the bit masks read/ds, write/ds,
and exceptfds, respectively, to see if they are ready for reading, writing, or have any
outstanding out-of-band messages. The select call does not tell you if the logical link
connection has been broken.

You should use the select call to help manage your accept, send, recv, swrite, and sread
calls.

The read/ds, write/ds, and exceptfds 110 descriptors are long words which contain bit
masks. Each bit in a mask represents one socket number. For example, socket "3" is the
fourth bit or has a hex value of 8.

NOTE

The select call can only check socket numbers in the range 0 to 31.

To specify the bit for any socket number, use the value returned by the socket or the
accept call, as " 1 < < s" .

Input Arguments

n/ds

read/ds

4-24

specifies the highest socket number to be checked. The bits from
(1 < < 0) to (1 < < (nfds-l» are examined.

specifies the socket numbers to be examined for read ready. For lis­
tening sockets, a read ready condition indicates that an incoming
connection request can be read and either accepted or rejected. For
sequenced sockets, there is a complete message to be read. For stream
sockets, there is some data to be read. If a socket disconnects or
aborts, a read ready condition will always occur.

NOTE

To prevent a program from hanging on a stream
socket, issue the sioctl call with the FIONREAD func­
tion argument (see Section 4.4.14), and then read

DECnet-VAXmate Programmer's Reference Manual

\

~ .. /

(

(

write/ds

exceptfds

timeout

timeval

tv~ec

only those numbers of bytes returned by the call.
You should also perform socket operations in
nonblocking I/O mode.

This descriptor can be given as a null pointer if of no
interest.

specifies the socket numbers to be examined for write ready. A write
ready condition exists when the logical link is available. This descrip­
tor can be passed as a null pointer if of no interest.

specifies the socket numbers to be examined for out-of-band data
ready. There is a pending out-of-band message to receive. This
descriptor can be given as a null pointer if of no interest.

NOTE

The bit mask exceptfds is presently not supported by
DECnet-UL TRIX.

specifies a pointer to a data structure of type timeval. If this pointer is
null, then the select call will wait until an event occurs. If the pointer
is non-null, and the time value is greater than zero, then the select call
will return either after n seconds have expired or when an event
occurs, whichever one comes first. If the pointer is non-null and the
time value is zero, then the select call will return after an immediate
poll.

specifies the amount oftime to wait. The data members are:

specifies the time in seconds.

this data member is ignored.

Output Arguments

reatL../ds

excepL../ds

CLanguage

If a socket is read ready, the bit is returned "on", and read-/ds
returns the socket numbers (as bit masks) to be examined. If the
socket is not read ready, the bit is cleared.

If a socket is write ready, the bit is returned "on", and write-/ds
returns the socket numbers (as bit masks) to be examined. If the
socket is not write ready, the bit is cleared.

If the socket is out-of-band data ready, the bit is returned "on", and
except-/ds returns the socket numbers (as bit masks) to be exam­
ined. If the socket is not out-of-band data ready, the bit is cleared.

4-25

Return Value

The value returned by the select call is the number of bits set in all the masks. The bit ./\
masks contain the set bits that correspond to the sockets in which events have
occurred. If the time period expires, a value of 0 is returned.

If an error occurs, a value of -1 is returned. Additional error detail will be contained in
the external variable errno. See the DIAGNOSTICS section for a full description of the
error messages.

DIAGNOSTICS

[EBADF]

[ENETUNREACH]

4-26

One of the specified bit masks is an invalid descriptor.

The network is unreachable. The network process is not
installed.

DECnet-VAXmate Programmer's Reference Manual

('

4.4.11 send

NAME

send - send data or out-of-band messages on a socket.

SYNTAX

#include < socket.h >

int send(s, buffer, buflen, flags)
int s, buflen, flags;
char * buffer;

DESCRIPTION

The send call is used to transmit data to your peer. The client task uses the socket num­
ber returned by the socket call. The server task uses the socket number returned by the
accept call.

If you cannot get enough buffer space while building the outgoing message on a block­
ing socket, the message is blocked. You must wait until current transmissions are fin­
ished. For a nonblocking socket, the error message, EWOULDBLOCK, is returned. If a
socket disconnects, any outstanding data to be sent is discarded.

The flag option, MSG_OOB, can be set to indicate that out-of-band data will be sent to
your peer socket. An out-of-band message is a high priority message that you can send
to your peer. This message bypasses any normal messages waiting to be received. An
out-of-band message must be received by your peer before another message can be
sent.

The select call can be used to determine if it is possible to send more data. (See Section
4.4.10.)

Input Arguments

s

buffer

buflen

flags

specifies the n1,lmber for a socket returned by the socket or the accept call.

specifies the address of the buffer which contains the outgoing message.

specifies the size of the outgOing message.

can be set to 0 to indicate normal messages. It can be set to MSG_OOB for
out-of-band messages.

Return Value

If the call succeeds, the number of characters sent is returned. If an error occurs, a value
of -1 is returned. Additional error detail will be specified in the external variable errno.
See the DIAGNOSTICS section for a full description of the error messages.

C Language 4-27

DIAGNOSTICS

When sending normal data, the following set of error messages can occur:

Blocking 1/0

Message

[EBADF]

[EMSGSIZE]

[ENETUNREACH]

[ENOTCONN]

[EPIPE]

Nonblocking 110

Message

[EBADF]

[EMSGSIZE]

[ENETUNREACH]

[ENOTCONN]

[EPIPE]

[EWOULDBLOCK]

Description

The argument s does not contain a valid socket number.

The size of the outgoing message is more than 2048
bytes.

The network is unreachable. The network process is not
installed.

The send call did not complete and the link was discon­
nected.

The link has been disconnected, aborted, or shut down.
No further messages can be sent.

Description

The argument s does not contain a valid socket number.

The size of the outgoing message is more than 2048
bytes.

The network is unreachable. The network process is not
installed.

The send call did not complete and the link was discon­
nected.

The link has been disconnected, aborted, or shut down.
No further messages can be sent.

The outbound quota was full, and the message could not
be sent. Try again later.

When sending out-of-band data, the following set of error messages can occur:

Blocking 1/0

Message

[EALREADY]

[EBADF]

[EMSGSIZE]

4-28

Description

The out-of-band message could not be sent. A similar
transmission request is still in progress.

The argument s does not contain a valid socket number.

The size of the outgoing message is more than 16 bytes.

DECnet-VAXmate Programmer's Reference Manual

......- ./

/

[ENETUNREACH]

([ENOTCONN]

[EPIPE]

Nonblocking 1/0

Message

[EALREADY]

[EBADF]

[EMSGSIZE]

[ENETUNREACH]

[ENOTCONN]

[EPIPE]

~~

(

f-
C Language

The network is unreachable. The network process is not
installed.

The send call did not complete and the link was discon­
nected.

The link has been disconnected, aborted, or shut down.
No further messages can be sent.

Description

The out-of-band message could not be sent. A similar
transmission request is still in progress.

The argument s does not contain a valid socket number.

The size of the outgoing message is more than 16 bytes.

The network is unreachable. The network process is not
installed.

The send call did not complete and the link was discon­
nected.

The link has been disconnected, aborted, or shut down.
No further messages can be sent.

4-29

4.4.12 setsockopt and getsockopt

NAME

setsockopt and getsockopt - set and get the options associated with sockets.

SYNTAX

'Include <types.h>
'include <socket.h>
'Include <dn.h>

int setsockopt(s, level, optname, optval, optlen)
int s, level, optname, optlen;
char *optval;

int getsockopt(s,level, optname, optval, optlen)
int s, level optname, *optlen;
char * optval;

DESCRIPTION

The setsockopt and getsockopt calls manipulate various options associated with a
socket. Options exist at multiple levels and you must specify the level number for the
desired operation.

At the socket level (SOL-SOCKET), the options include:

• SO_KEEPALIVE. If this option is set on a socket, any links and sockets associated
with this socket will remain active, despite any attempts to disconnect them.

NOTE

Before you can terminate a connection over a socket with the
option SO--KEEP ALIVE set, you must rust issue a setsockopt call
with SO--KEEPALIVE turned off. To turn off SO-KEEPALIVE,
you must precede SO-KEEP ALIVE with a tilde (-), as in,
-SO--KEEP ALIVE. (-SO--KEEP ALIVE is the default condition.)

You then issue the sclose call. The logical links (if any) are discon­
nected, and the socket and associated sockets (if any) are
deallocated. However, if you issue sclose without turning off
SO--KEEP ALIVE, the sockets remain allocated, and the links (if
any) stay active.

• SO_LINGER. SO_LINGER controls the actions taken when unsent messages are
queued on a socket and the sclose call is issued. If SO-LINGER is set, the connec­
tion is maintained until the outstanding messages have been sent. This is the default
condition.

4-30 DECnet-VAXmate Programmer's Reference Manual

/

\,- -

/
I
\

"

(

(

• SO_DONTLINGER. SO-DONTLINGER also controls the actions of unsent mes­
sages. If SO-DONTLINGER is set, and the sclose call is issued, any outstanding
messages queued to be sent will be lost. The connection is then terminated.

• SO_REUSEADDR. SO~EUSEADDR allows the reuse of a name already bound
to a socket. For most situations, a name is bound to a socket only once. However,
this option enables you to reuse the same name. This particular option must only
be used for outgoing connection requests. It cannot be used for incoming connec­
tions.

At the DECnet level (DNPROTO~SP), socket options may specify the way in which a
connection request is accepted or rejected, may be used to set up optional user data
and/or access control information, or may be used to obtain current link state informa­
tion. The following socket options can be specified:

• DSO~CCEPTMODE. The accept option mode is used at the DECnet level for
processing accept calls. A socket must be bound (see Section 4.4.3) before specify­
ing this option. There are two values which can be supplied for this option. They
are immediate mode, ACC--IMMED, and deferred mode, ACC-DEFER.

ACC_IMMED. ACC--IMMED mode is the default condition for this option.
When immediate mode is in effect, control is immediately returned to the
server task following an accept call with the connection request accepted. The
access control information and/or optional data is ignored by the server task.

ACC_DEFER. ACC_DEFER mode enables the server task to complete the
accept call without fully completing the connection to the client task. In this
case, the server task can examine the access control or optional data before it
decides to accept or reject the connection request. The server task can then
issue the setsockopt call with the appropriate reject or accept option.

• DSO_CONACCEPT. DSO_CONACCEPT allows the server task to accept the
pending connection on the socket returned by the accept call. The original listen­
ing socket was set to deferred accept mode. Any optional data previously set by
DSO_CONDAT A will also be sent.

• DSO_CONREJECT. DSO_CONREJECT allows the server task to reject the pend­
ing connection on the socket returned by the accept call. The original listening
socket was set to deferred accept mode. Any optional data previously set by
DSO_DISDATA will also be sent. The reject reason is the value passed with this
option.

• DSO_CONDATA. DSO_CONDATA allows up to 16 bytes of optional user data to
be set by the setsockopt call. It can be sent as a result of the connect or the accept
(with the deferred option) calls. The optional data is passed in a structure of type
optdata-"-n. (See Appendix B on how optdata-"-n is formatted.) The data is read
by the task issuing the getsockopt call with this option.

C Language 4-31

• DSO_DISDATA. DSO~ISDATA allows up to 16 bytes of optional data to be set
by the setsockopt call. It can be sent as a result of the sclose call. The optional data is
passed in a structure of type optdata--1in. (See Appendix B on how optdata--1in is
formatted.) The data is read by the task issuing the getsockopt call with this option.,,_ j

• DSO_CONACCESS. DSO_CONACCESS allows access control information to be
passed by the user task. This information is set with the setsockopt call. The access
data is sent to the server task. It is passed with the connect call in a structure of type
accessdata--1in. (See Appendix B on how accessdata--1in is formatted.) The
access data is read by the task issuing the getsockopt call with this option.

• DSO_LlNKINFO. DSO-LINKINFO determines the state of the logical link con­
nection.

When the getsockopt call is issued with this option, the state of the logical link is
returned in a logical link information data structure, linkinJo--1in. (See Appendix
B on how linkinJo--1in is formatted.)

Input Arguments

s

level

optname

specifies the number for a socket returned by the socket or the accept
call.

specifies the level at which options are manipulated. The level is
either SOI __ SOCKET or DNPROTO~SP. (See Appendix A for
details.)

specifies options to be interpreted at the level specified. For example,
SO_LINGER at the SOLSOCKET level.

optval, optlen specify access option values used with the setsockopt and the
getsockopt calls. The interpretation of each argument is function
dependent as shown here:

setsockopt call

optval

optlen

specifies the address for a buffer which contains information for set­
ting option values.

specifies the size of the option value buffer.

getsockopt call

optval

optlen

4-32

specifies the address of a buffer which will contain the returned value
for the requested option(s).

is a value result parameter. It specifies the address of an into The value
of optlen should initially contain the size of the buffer pointed to by
optval. On return, it will contain the actual size ofthe returned value.

DECnet-VAXmate Programmer's Reference Manual

/

Output Arguments (for getsockopt only)

optval specifies the buffer which contains the returned value for the
requested socket option(s).

opt/en specifies the actual size of the returned value.

Return Values

If the call completes successfully, a value of 0 is returned. An unsuccessful call returns a
value of -1. When an errol' condition exists, the external variable errno will contain
error details. See the DIAGNOSTICS section for a full description of the error messages.

DIAGNOSTICS

[EACCES]

[EBADF]

[ECONNABORTED]

[EDOM]

[ENETUNREACH]

[ENOBUFS]

[ENOPROTOOPT]

[EOPNOTSUPP]

C Language

Unable to disconnect the socket.

The argument s does not contain a valid socket number.

The accept connect did not complete. The peer task dis­
connected and the connection was aborted.

The acceptance mode is not valid.

Th~ network is unreachable. The network process is not
installed.

There are no avaUable buffers for optional access control
and/or user data.

NQ access control Information was supplied with the
connection request.

The option is unknown.

4-33

4.4.13 shutdown

NAME

shutdown - shutdown all or part of a full duplex logical link.

SYNTAX

int shutdown(s, how)
int s, how;

DESCRIPTION

The shutdown call causes all or part of a full duplex connection on the original socket
to be shut down.

Input Arguments

s specifies the number for a socket returned by the socket or the accept call.

how specifies the type of shutdown. The how argument can be set to:

o which disallows further receives or reads.

1 which disallows further sends or writes.

2 which disallows further sends (or writes) and receives (or reads).

Return Value

If the shutdown call completes successfully, a value of 0 is returned. If an error occurs,
a value of -1 is returned. Additional error detail will be contained in the external vari­
able errno. See the DIAGNOSTICS section for a full description of the error messages.

DIAGNOSTICS

[EBADF]

[ENETUNREACH]

[ENOTCONN]

4-34

The argument s does not contain a valid socket number.

The network is unreachable. The network process is not
installed.

The specified socket is not connected.

DECnet-VAXmate Programmer's Reference Manual

, ' , /
\,--_/

/

\. '- -

(

(

(-

4.4.14 sioctl

NAME

sioctl- control the operations of sockets.

SYNTAX

#include < sioctl.h >

int sioctl(s, request, argp)
int s, request;
char *argp; (or int *argp)

DESCRIPTION

The sioctl call controls the operations of sockets. The call indicates whether an argu­
ment is an input or output argument and the size ofthe specific argument in bytes.

NOTE

The DECnet-VAXmate func;:tion call sioctl is not compatible with
DECnet-UL TRIX systems. See Appendix G for information on how to
transport DECnet-V AXma.te programs that use sioctl.

Input Arguments

s

request

specifies the number for a socket returned by the socket or the accept call.

specifies the I/O control function to be used. The control levels are:

FIONREAD returns the total byte count of all messages waiting to be read.
The argument argp points to an into

FIONBIO sets or dears blocking or nonblocking I/O operation. The argu­
ment argp points to a byte that contains a value of 0 or 1. For blocking I/O,
argp should point to a value O. For nonblocking I/O, argp should point to a
value of 1.

FIORENUM renumbers an assigned !locket number to another number. In
this way, the original socket number is made available again. The valid
range for socket numbers is 0 to 31. The argument argp points to an into

NOTE

The select function call c;:annot accept socket numbers that
exceed this range. (See Section 4.4.10 for details.) If you
specify a number that is already in use, an error message,
EEXIST, is returned.

argp specifies the address of the argument list.

C Language 4-35

Output Argument

argp specifies the results of the socket operations.

Return Value

If the call completes successfully, a value of 0 is returned with the following additional
message:

For FIONREAD, argp returns the total byte count of all messages waiting to be
read.

If an error occurs, a value of -1 is returned. Additional error detail will be contained in
the external variable ermo. See the DIAGNOSTICS section for a full description of the
error messages.

DIAGNOSTICS

[EBADF]

[EEXIST]

[ENETUNREACH]

[EOPNOTSUPP]

4-36

The argument s does not contain a valid socket number.

The socket number is already in use.

The network is unreachable. The network process is not
installed.

The socket type does not support the socket I/O opera­
tion.

DECnet-VAXmate Programmer's Reference Manual

'",- -

(

(

4.4.15 socket

NAME

socket - create an endpoint for communication and return a socket number.

SYNTAX

#include <types.h>
#include < socket.h >
#include < dn.h >

int socket(domain, type, protocol)
int domain, type, protocol;

DESCRIPTION

The socket call creates a socket and returns It socket number. A socket is an addressable
endpoint of communications within a task, It can be used to transfer data to or from a
similar socket in another task. Subsequent function calls on this socket will refer to the
associated socket number.

Input Arguments

domain

type

specifies the communications environment as AF--DECnet.

specifies the type of communication for the socket. For example,
SOCK-STREAM. (See Appendix A for a list of defined socket types.)

SOCK-STREAM causes bytes to accumulate until internal DECnet buffers
are full. The receiving task does not know now many bytes were sent in
each write operation.

NOTE
To prevent It program from hanging on a stream socket,
issue the stactl call with tne FIONREAO function argu­
ment (see Section 4.4.14), and then read only those num­
bers of bytes returned by the call. You should also perform
socket operations in nonblocking 110 mode.

SOCK-SEQPACKET causes bytes to be sent immediately. The receiving
task receives thQse bytes in one "record".

protocol specifies a particular DEC net protocol to be used with the socket. (See
Appendix A for a list of supported DEC net layers.)

Return Value

If the call completes successfully, the socket number is returned. This number is used
by subsequent system calls on this socket. If an error occurs, a value of -1 is returned.
Additional error detail will be CQntained in the external variable errno. See the DIAG­
NOSTICS section for a full description of the error messages.

C Language 4-37

DIAGNOSTICS

[EAFNOSUPPORT]

[EM FILE]

[ENETUNREACH]

[ENOBUFS]

[EPROTONOSUPPORT]

[ESOCKTNOSUPPORT]

4-38

The specified domain is not supported in this version of
the system.

Too many open sockets.

The network is unreachable. The network process is not
installed.

No buffer space is available. The socket cannot be cre­
ated.

The specified protocol is not supported.

The specified socket type is not supported in this address
family.

DECnet-VAXmate Programmer's Reference Manual

(

(

4.4.16 sread

NAME

sread - read data from a socket.

DESCRIPTION

The sread call is used to read data from your peer. If no messages are available at the
socket, the sread call waits for a message to arrive unless the socket is nonblocking. In
this case, a status of -1 is returned with the external variable errno set to
EWOULDBLOCK.

If the socket becomes disconnected, queued data can still be received from the broken
logical link. However, if you shut down the socket or detach it, queued data cannot be
received. When the logical link is not in a connected state, and all data has been read,
the sread call returns zero bytes.

The select call can be used to determine if more data has arrived. (See Section 4.4.10.)

NOTE

The DECnet-VAXmate function call sread is not compatible with
DECnet-UL TRIX systems. See Appendix G for information on how to
transport DECnet-VAXmate programs that use sread.

The sread call performs the same function as the recv call (see Section
4.4.8) with one exception - you cannot set any flags.

SYNTAX

int sread(s, buffer, buflen)
int s, buflen;
char * buffer;

Input Arguments

s

buffer

specifies the number for a socket returned by the socket or the accept call.

specifies the address of the buffer which will contain the received message.

buflen specifies the size of the message buffer.

Output Argument

buffer specifies the buffer which contains the received message.

C Language 4-39

Return Value

If the call succeeds, the number of read characters is returned. (/. "

If the call returns a zero, you have either received a zero length message or the logical \ ___ ./
link has been disconnected. To determine the state of the logical link, use the
getsockopt function call with the DSOJINKINFO option (see Section 4.4 .12), or the
DEC net utility function, dnet_eof(see Chapter 5). If the link has been disconnected,
then all subsequent receives will return zero bytes.

If an error occurs, a value of -1 is returned. Additional error detail will be specified in
the external variable errno. See the DIAGNOSTICS section for a full description of the
error messages.

DIAGNOSTICS

When reading normal data, the following set of error messages can occur:

Blocking 110

Message

[EBADF]

[ENETUNREACH]

Nonblocking 1/0

Message

[EBADF]

[ENETUNREACH]

[EWOULDBLOCK]

4-40

Description

The argument s does not contain a valid socket number.

The network is unreachable. The network process is not
installed.

Description

The argument s does not contain a valid socket number.

The network is unreachable. The network process is not
installed.

The receive operation would block because there is cur­
rently no data to receive.

DECnet-VAXmate Programmer's Reference Manual

-"-. -

(

·4.4.17 swrite

NAME

swrite - write data to a socket.

SYNTAX

int swrite(s, buffer, buflen)
int s, buflen;
char * buffer;

DESCRIPTION

The swrite call is used to write data to your peer.

If no message space is available at the socket to hold the message to be transmitted, then
the swrite call will normally block. If the socket has been placed in nonblocking 110
mode, the message will not be sent, and the function will complete with the error
EWOULDBLOCK.

The select call can be used to determine if more data may be sent over the socket. (See
Section 4.4. 10.)

NOTE

The DECnet-VAXmate function call swrite is not compatible with
DECnet-UL TRIX systems. See Appendix G for information on how to
transport DECnet-V AXmate programs that use swrite.

Input Arguments

s

buffer

buflen

specifies the number for a socket returned by the socket or the accept call.

specifies the address of the buffer which contains the outgoing message.

specifies the size of the message.

Return Value

If the call succeeds, the number of sent characters is returned. If an error occurs, a value
of -1 is returned. Additional error detail will be specified in the external variable ermo.
See the DIAGNOSTICS section for a full description of the error messages.

C Language 4-41

DIAGNOSTICS

When sending normal data, the following set of error messages can occur:

Blocking 1/0

Message

[EBADF]

[EMSGSIZE]

[ENETUNREACH]

[ENOTCONN]

[EPIPE]

Nonblocking 1/0

Message

[EBADF]

[EMSGSIZE]

[ENETUNREACH]

[ENOTCONN]

[EPIPE]

[EWOULDBLOCK]

4-42

Description

The argument s does not contain a valid socket number.

The size of the outgoing message is more than 2048
bytes.

The network is unreachable. The network process is not
installed.

The swrite call did not complete and the link was discon­
nected.

The link has been disconnected, aborted, or shut down.
No further messages can be sent.

Description

The argument s does not contain a valid socket number.

The size of the outgoing message is more than 2048
bytes.

The network is unreachable. The network process is not
installed.

The swrite call did not complete and the link was discon­
nected.

The link has been disconnected, aborted, or shut down.
No further messages can be sent.

The outbound quota was full, and the message could not
be sent.

DECnet-VAXmate Programmer's Reference Manual

/

(

5
DECnet Utility Functions

DECnet-V AXmate includes C language source files which are used to create a linkable
library for DECnet-VAXmate applications. This library provides compatibility with
the network socket interface supported by DECnet-UL TRIX.

The DECnet utility functions are contained in the C language source files. Some of
these routines are used for accessing the network node database and manipulating the
data.

Some of the DECnet utility functions include the DECnet header file < dnetdb.h > .
This file provides DECnet definitions used with standard C functions.

5.1 Creating the DECnet-VAXmate Programming Interface Library

The file DNETLIB.SRC contains three types of files: the .C files (C language sources),
the .R files (header files that contain definitions for the network interface) and the
.ASM files (assembly language sources). You should refer to the appropriate installation
guide for a complete list of these files.

In order to interface to the DECnet-VAXmate network process, you should create a
library against which to link your DECnet-VAXmate program(s).

Use the following procedure to create a DECnet-VAXmate programming interface
library:

1. The Break Source utility, BREAKSRC, allows you to break the source file,
DNETLIB.SRC, into separate source files for compilation and assemblies.
BREAKSRC is supplied with the DECnet-VAXmate distribution kit. When you run
the DECnet-VAXmate Installation Procedure (DIP), you can select to have the
DNETLIB.SRC file split into separate files. The BREAKSRC utility will then be run
automatically for you. For instructions on how to run DIP, refer to the appropriate
installation guide.

5-1

To run BREAKSRC, use the following format:

BREAKSRC < inputJile_spec > < output_device: \path >

For example:

BREAKSRC A:DNETLIB.SRC C: \DECNET\SRC\

2. Use your C language compiler to compile each C language source module. Use your
assembler to assemble each assembly source module.

3. After you produce an object module for each source module, build a library against
which to link your DECnet-V AXmate applications programs.

5.1.1 DECnet-VAXmate Programming Considerations

The following programming considerations should be noted when writing and devel­
oping your DECnet-V AXmate applications:

1. Using the External Variable errno - Most DECnet-VAXmate programming inter­
face functions use the external variable errno as a place to return error detail. It is
assumed that errno has been defined externally to the programming interface as an
into It may already be defined in your C language run-time library; if not, your
applications program should define it.

2. Checking Software Compatibility - When creating DECnet-VAXmate applica­
tions, make sure that you resolve any C language compiler incompatibilities before
compiling the C language source modules such as long variable names or certain
type definitions.

3. If your C compiler does not do so by default, you should compile the sources so
that all data structures are stored without extra space (packed) for alignment of
members on "int" boundaries.

4. Using Assembly Source Modules - There are assembly source modules included in
DNETLIB.SRC. Before you can successfully call these functions from sources com­
piled by your C language compiler, you should fulfill any assembly-format require­
ments such as segment names. (Refer to the header file, begin.b, on the distribution
kit as an example of specific C language compiler segment naming requirements.)

5. Using Specific Macros - There are references to the macros/functions such as
toupper and islower in some of the C language source modules. It is assumed that
your C language compiler has provided a standard macro/function for them. If not,
you can simply provide your own macros/functions.

6. If you are not using a C compiler that supports the signal handling function (for
example, ~ trapping), then you will need either to provide your own signal
function or to comment out from the code in dnet_conn any references to the sig­
nalO function and the reference to the include file, < signal.h > .

5-2 DECnet-VAXmate Programmer's Reference Manual

(

(

The ~ trapping, provided in dnet_conn, allows you to abort a utility which
appears to be waiting indefinitely for connections to complete. (This applies only
to utilities that use dnet_conn for making connections.) The connect function in
dnet_conn is invoked in a nonblocking socket mode.

If ~ trapping code is commented out from dnet_conn, there is the potential
problem of leaving hung sockets and running out of system resources, should users
decide to ~ in the middle of nonblocking connection request attempts.

7. If you are using a compiler that does not define the following variables: int day­
light, long timezone and char *tzname[2J, either comment these external declara­
tions out of the header file < time.h > or define them in your C program code.

8. The DECnet-VAXmate programming interface library was based on a 2-segment
model: one code segment and one data segment.

9. Using Specific DECnet Function Calls - If you develop code that uses
dnet-lSetacc, dnet_installed and dnet-path function calls, you will be unable to
transport that code to a DECnet-UL TRIX system. These function calls are not valid
on DECnet-UL TRIX systems.

CAUTION

If a program terminates with any active logical links (sockets), the links
remain active. In this way, another program can start and use the same
links.

If the logical links are not needed, you must issue the sclose function
call before a program is terminated with an EXIT, ~ or~. If
too many links are left active, an error message, indicating that no
more buffers are available or that there are insufficient network
resources, is reported. This causes the network to become unusable.
To completely deactivate any logical links, run the Network Control
Program (NCP) and issue the SET KNOWN LINKS command with
STATE OFF. (See the DECnet-VAXmate User's Guide for more infor­
mation on this command.)

DEenet Utility Functions 5-3

5.2 OECnet Utility Function Calls

The following sections describe the DEC net utility function calls for C programs. The
calls are summarized in the table below:

Table 5-1: DECnet Utility Function Calls

DECnet Call Description

bcmp Compare byte strings.

bcopy Copy n. bytes from one specific string to another string.

bzero Zero n bytes in a specific string.

dne~ddr Convert an ASCII node address string to binary and return a pointer to a
dnnaddr data structure.

dneLconn Connect to the specified target network object on a remote node and send
along access control information and/or optional data.

dneLeof Test the current state of the connection.

dneL-getacc Search the incoming access database file, DECACC.DAT, for access control
information that is associated with a given user name. The access control
information set by the NCP command SET ACCESS is stored in the database
file, DECACC.DAT.

dneL-getalias Return default access control information by node name.

dneL.htoa

dneL-installed

dneLJ1toa

dneL..path

getnodeadd

getnodeent

getnodename

nerror

perror

5-4

Search the node database. If the node name is found, a pointer to the DEC­
net ASCII node name string is returned. Otherwise, a pointer to the DEC­
net ASCII node address string is returned. If the function fails to return a
valid node name or address string, a pointer to the string "?unknown?" is
returned.

Perfor~ an installation check on the specific software module.

Specify a pointer to the dnnaddr data structure which contains the binary
node address. If the function completes successfully, a pointer to the ASCII
string representation of the DECnet node address is returned.

Return a modified file name which contains the DECnet database device
and path name prefixed to the file name.

Return the address of your local DECnet-DOS node.

Access the network node database and return complete node information
given only a node address or node name.

Return the ASCII string representation of your local DECnet-DOS node.

Produce DEC net error messages and output the ASCII text string to stdout.

Produce an UL TRIX error message appropriate to the last detected system
error, and output the ASCII text string to stdout.

DECnet-VAXmate Programmer's Reference Manual

{

(

5.2.1 bcmp

NAME

bcmp - compare byte strings.

SYNTAX

int bcmp(s1, s2, n)

char
int

*s1, *s2;
n;

DESCRIPTION

hemp compares byte strings to see if they are matching character strings. It is assumed
that the strings are of equal length.

Input Arguments

s1 specifies the address of the first character string.

s2 specifies the address of the second character string.

n is the length of the strings.

Return Value

If a match is found, the value of 0 is returned. Otherwise, a nonzero value is returned.

DEenet Utility Functions 5-5

5.2.2 bcopy

NAME

bcopy - copy n bytes from one specific string to another string.

SYNTAX

Int bcopy(s1, s2, n)

char *s1, *s2;
int n;

DESCRIPTION

bcopy copies n bytes from one specific string to another string.

Input Arguments

sl is the character pointer to the source string.

s2 is the character pointer to the destination string.

n specifies the number of bytes to be copied.

Return Value

The number of bytes copied from the source string to the destination string is returned.

5-6 DECnet-VAXmate Programmer's Reference Manual

(
5.2.3 bzero

NAME

bzero - zeroes n bytes in a specified string.

SYNTAX

int bzero(s1 , n)

char *s1;
int n;

DESCRIPTION

bzero zeroes n bytes in a specified string.

Input Arguments

*s1 is the character pointer to the specified string.

n specifies the number of bytes to be zeroed.

Return Value

The number of bytes zeroed in the specified string is returned.

DEC net Utility Functions 5-7

5.2.4 dneLaddr

NAME ~

dne1-addr - convert an ASCII node address string to binary and return a pointer to a j

dn-fladdr data structure.

SYNTAX

struct dn_naddr *dneLaddr(cp)

char *cp;

DESCRIPTION

In area based networks, a DECnet node address includes an area number and a node
number. The function call dnet-tUldr converts an ASCII node address string to binary
and returns a pointer to a dn-fladdr data structure. This information is required for
the sockaddr --tin data structure. (See Appendix B on how these data structures are for­
matted.)

Input Argument

cp is the character pointer to the ASCII node address string. The DECnet node
address is specified as a. n

where

a is the area number

n is the node number

Return Argument

dn-fladdr specifies the node address data structure. A user retrieves data from
the fields filled in by this function call. The fields are:

a-1en

a---..add

specifies the length of the returned node address.

specifies the node address.

If the call succeeds, a pointer to a dn_naddr data structure is returned. Otherwise, a
null value is returned.

5-8

NOTE

If you plan to call this function again before you are finished using the
data, you must copy the data into a local buffer.

DECnet-VAXmate Programmer's Reference Manual

(
5.2.5 dneLconn

NAME

dnet_conn - connect to the specified target network object on a remote node and
send along access control and/or optional user data.

SYNTAX

int dneLconn(node, object, socLtype, ouLdata, ouLlen, i"-data, In_len)

char
char
int
u_char
int

*node;
* object;
socLtype;
* ouLdata, * in_data,
ouLlen, *in_len;

DESCRIPTION

dnet_conn establishes a connection to the specified target DECnet object on a remote
node. If no access control information is supplied as part of the node input argument,
the default access control information (if found in the access control database) will be
sent. Optional data can also be passed with the function.

dnet_conn supports password prompting based on the input node specification
string. You are asked to supply a password whenever:

• The password field in the node specification is either a question mark (?) or an
asterisk (*).

• The user field is present but the password field is missing.

The following example node specifications will cause prompting for passwords:

dnet-.eonn("boston/revere", ...)
dnet--.Conn("boston/revere/?", ...)
dnet--.Conn("boston/revere/*", ...)

dnet_conn supports outgoing proxy log-in access. Outgoing proxy allows the local
node to initiate proxy log-in access to the remote node, but does not allow proxy log-in
access from the remote node to the local node. Before you are permitted to use proxy
log-in, the following must take place:

• Proxy log-in access must be supported at the remote node.

• The Executor (local) node must have a user name set up in its node database. This
user name is passed in outgoing connection requests and may be used for proxy
log-in access. To set up access control information, refer to the discussion of the
NCP utility in the DECnet-V AXmate User's Guide.

If access control information is not explicitly supplied with an input node name,
dnet_conn will check the node database for implicit access control information. If
implicit access control does not exist, proxy login will take place with the Executor
node's user name and passed in the outgoing connection request.

DECnet Utility Functions 5-9

The following examples show the use of proxy log-in access with the dnet~onn func­
tion call:

/

The Executor (local) node has set up TASHA as the user name in the local node's data- \,_ j
base. The remote node BOSTON is stored as an entry in the local node's database with-
out any access control information.

1. No proxy, null access control information is explicitly specified:

dnet_conn ("BOSTON/ /" , ...)

2. Proxy will be passed, no explicit access control information, no implicit access
control information for node BOSTON in the database:

dnet_conn ("BOSTON" , ...)

The Executor (local) node has set up TASHA as the user name. The remote node
BOSTON is stored as an entry in the local node's database with TASHA as the user
name/access control information.

1. No proxy, null access control information is explicitly specified:

dnet--.J;onn ("BOSTON/ /" , . . .)

2. No proxy, the implicit access control information for node BOSTON will be used:

dnet--.J;onn ("BOSTON" , . . .)

A target task can return a 1- to 16-byte optional data message when it accepts or rejects
the connection request.

When a program which uses dnet_conn fails to complete a connection request, nerror \, ._ /'
can subsequently be called in order to display the DECnet error message.

Input Arguments

node specifies the address of the string which contains the remote node name
or address and any access control information. Node names are always
converted to uppercase before being processed by this function. Access
control information is passed as supplied with regard to case.

5-10

To pass access control information, the node string can take one of the
following formats:

, 'node--1lame/user/password/account"

or

"area.node--1lumber/user/password/account" To pass null access
control information, the node string can take one of the following for­
mats:

"node_name//"

or

"area. node--1lumber//"

DECnet-VAXmate Programmer's Reference Manual

(

(-

object specifies the address of the string which contains the specified target
DECnet object. The object string can be specified in one of the following
ways:

1. To access a target object by supplying an object name. You should
note that the object name is passed as supplied, with regard to case.

, 'target_objecL_.J1ame"

2. To access a target object by object number.

"#target_object~umber' ,

sock_type is 0 when creating a sequenced socket packet and 1 when creating a
stream socket.

out-1'1ata specifies the address of the outgoing optional user data buffer. If not
required, supply a null pointer.

out-Ien specifies the size of the optional outgoing message. The message length
can be up to 16 bytes. If not required, supply a null value.

in-.data specifies the address of the buffer which will store the optional incom­
ing message. If not required, supply a null pointer.

in-Ien

Return Value

specifies the address of the location in which the value will be stored. It
should initially contain the size of the buffer pointed to by in-1'1ata. On
return, it will contain the actual size of the optional incoming message.
If not required, supply a null pointer.

If the function completes successfully, the socket number is returned. If an error
occurs, a value of -1 is returned. Additional error detail will be contained in the exter­
nal variable ermo. See the DIAGNOSTICS section for a full description of the error
messages.

DEenet Utility Functions 5-11

DIAGNOSTICS

[E2BIG]

[EACCES]

[EADDRNOTAVAIL]

[EDESTADDRREQ]

[ENAMETOOLONG]

[ENETUNREACH]

[ESRCH]

An argument is too long.

Access control information was rejected.

The node name is undefmed.

A specific destination address is required.

The node name is invalid.

The network is unreachable. The network process is not
installed.

The object is unknown.

NOTE

Additional errors may be returned by the socket, setsockopt, and the
connect function calls which are called from within dnet_conn.

5-12 DECnet-VAXmate Programmer's Reference Manual

(

5.2.6 dneLeof

NAME

dneL-eof - test the current state ofthe connection.

SYNTAX

int dneLeof(sock)

int sock;

DESCRIPTION

dnet_eof tests the current state of the connection.

Input Argument

sock specifies the socket whose connection is to be checked.

Return Value

If the connection is determined to be active (either a running or a connecting state), a
value of 0 is returned. If the connection is inactive, a value of 1 is returned.

NOTE

If a bad socket number is supplied with dnet_eoj, a value of 1 is
returned. However, this value is not a true indication of an invalid
socket number.

DECnet Utility Functions 5-13

5.2.7 dneLgetacc

NAME

dneL-getacc - searches the incoming access database for access control information
that is associated with a given user name.

SYNTAX

struct dneLaccent * dneLgetacc(nacc)
struct dneLaccent * nacc;

DESCRIPTION

dnet-.getacc searches the incoming access database file, DECACC.DAT, for access
control information that is associated with a given user name. The access control infor­
mation set by the NCP command SET ACCESS is stored in the database file,
DECACC.DAT.

NOTE

If you develop code that uses dnet-.getacc, you will be unable to
transport that code to a DECnet-UL TRIX system. This call is not valid
on DECnet-UL TRIX systems.

Input Argument

nacc is a character pointer to an access control information block containing the
user name to be matched. The string consists of 1 to 39 alphabetic charac­
ters. This string must be identical to the user string set up by the NCP com­
mand SET ACCESS. (Use the NCP command SHOW KNOWN ACCESS to
display the string.) Refer to the DECnet-VAXmate User's Guide on using
these commands.

Return Argument

nacc specifies the access control information block data structure
dnet-f;l,ccent. A user retrieves information filled in by this function call.
(See Appendix B on how dnet_accent is formatted.)

The following data fields can be filled in by this function call:

acc---status

acc-pass

5-14

is used internally by this function call.

specifies the type of privilege associated with a user name. The
four access types are: 0 for no access rights, 1 for read only access,
2 for write only access, and 3 for read and write access.

specifies the user name. It consists of a 1- to 39-alphabetic charac­
ter string terminated by a null character.

specifies the password associated with a user name. It consists of a
1- to 39-alphabetic character string terminated by a null character.

DECnet-VAXmate Programmer's Reference Manual

/"-

(

(-

If there is a match, a character pointer to the access control information block associ­
ated with the user string is returned. The access type is always returned along with any
user and password information.

A value of 0 is returned if there is no match or if the DECnet database path cannot be
found for DECACC.DAT using the functiondnet-4Jatb. (See Section 5.2.12.)

NOTE

If you plan to use this function again before you are finished using the
data, you must copy the data into a local structure.

DECnet Utility Functions 5-15

5.2.8 dneLgetalias

NAME
dneL-getalias - returns default access control information by node name.

SYNTAX

char * dneLgetalias(node)
char *nodej

DESCRIPTION
dnet~etalias retrieves any default access control information associated with a spe­
cific node.

Input Argument

node is a character pointer to a node name. The node name is forced to upper-
case and then processed by the function.

Return Argument

If the node has default access control information associated with it, the node name fol­
lowed by the access data is retrieved. The extended node name string is returned as
node_name/user/password/account. This data was set up in the permanent data­
bases, DECNODE.DAT and DECALIAS.DAT, using the Network Control Program
(NCP).

If no access control data can be found, a null pointer is returned.

5-16

NOTE
If you plan to call this function again before you are finished using the
data, you must copy the data into a local buffer.

DECnet-VAXmate Programmer's Reference Manual

(

(

(

5.2.9 dneLhtoa

NAME

dneL-htoa - search the node database. If the node name is found, a pointer to the
DECnet ASCII node name string is returned. Otherwise, a pointer to the DECnet ASCII
node address string is returned. If the function fails, a pointer to the string
"?unknown?" is returned.

SYNTAX

char
struct

* dneLhtoa(add)
dn_naddr *add;

DESCRIPTION

dneL . ..htoa searches the node database. If the node name is found, a pointer to the
DECnet ASCII node name string is returned. If the node name is not found, a pointer to
the DEC net ASCII node address string is returned.

Input Argument

add specifies a pointer to a structure of the type dn---.naddr, which contains
the node address. The format is area. number. (Refer to Appendix B on
how the dn---.naddr data structure is formatted.)

Return Value

If the node name is found, a pointer to the DECnet ASCII node name string is returned.
Otherwise, a pointer to the DECnet ASCII node address string is returned.

If the function call fails to return a valid node name or address string, a pointer to the
string "?unknown?" is returned.

NOTE

If you plan to call this function again before you are finished using the
data, you must copy the data into a local structure.

DECnet Utility Functions 5-17

5.2.10

NAME

dneLinstalied

dnet~nstalled - perform an installation check on a specific software module.

SYNTAX

int dneLinstalled(vector, tla)
short vector;
char *tla;

DESCRIPTION

dnet_installed performs an installation check on a specific software module. You sup­
ply the interrupt vector number and the 3-letter acronym for the software module.

If the software module is installed, the 2-byte software version number is returned. The
low byte is the major version number. The high byte is the minor version number. Oth­
erwise, a value of -1 is returned.

NOTE

If you develop code that uses dnet_installed, you will be unable to
transport that code to a DECnet-UL TRIX system. This function call is
not valid on DECnet-UL TRIX systems.

Input Arguments

vector specifies the interrupt vector number for the software module. Appendix
A lists the interrupt vector numbers for the defined software modules.

tla is the 3-letter acronym for the software module. The acronym is passed as
supplied, with regard to case. For example, DNP is the acronym for the
DECnet Network Process. It must be passed as uppercase. See Appendix A
for a list of defined software modules.

Return Value

If the installation check successfully completes, the 2-byte software version number is
returned. Otherwise, a value of -1 is returned.

5-18 DECnet-VAXmate Programmer's Reference Manual

/\

/

(

(

(

5.2.11 dneLntoa

NAME

dnet-ntoa - convert a DECnet node address from binary form to ASCII form.

SYNTAX

char
struct

* dneLntoa(add)
dn_naddr *add;

DESCRIPTION

dnet-fl,toa converts a DECnet node address from binary form to ASCII form.

Input Argument

add specifies a pointer to a structure of the type dn_naddr, which contains the
binary node address. (See Appendix B on how the dn-fl,addr data structure
is formatted.)

Return Value

If the function completes successfully, a pointer to the ASCII string representation of
the DECnet node address is returned. The format is area. number.

If the function call fails to return a valid node name or address string, a pointer to the
string "?unknown?" is returned.

NOTE

If you plan to call this function again before you are finished using the
data, you must copy the data into a local structure.

DEenet Utility Functions 5-19

5.2.12 dnet_path

NAME ~

dnet_path - return a modified file name that contains the DECnet database device
and path name prefixed to the specified input file name.

SYNTAX

char *dneLpath{file_name)
char * file_name;

DESCRIPTION

Given a character string pointer to a file name, dnet-patb returns a modified file name
that contains the DECnet database device and path name prefixed to the specified input
file. It is recommended that all user-created DECnet-VAXmate database files be located
in the same DECnet directory.

For example:

Call:

new---.f i I e---.I1ame dnet-pat h ("NCPHELP. BIN") ;

Returns:

new---.fi le---.I1ame = "c:\decnet\NCPHELP.BIN"

The DECnet database device and path name should be specified as input arguments to
the DLL and/or DNP command lines in your AUTOEXEC.BAT file. To do this, edit your
AUTOEXEC.BAT file using EDLIN or a similar text editor.

IMPORTANT

The dnet-patb function call differs from Version 1.0. You can no lon­
ger set the DECnet database device and path names using the NCP com­
mand SET EXECUTOR. However, you can still display the database
path specification. To do this, issue the NCP command SHOW EXECU­
TOR CHARACTERISTICS. For information on using this command,
refer to the DECnet-VAXmate User's Guide.

If you develop code that uses dnet-patb, you will be unable to trans­
port that code to a DECnet-UL TRIX system. This function call is not
valid on DECnet-ULTRIX systems.

When the system is rebooted, DNP and/or DLL will use its command line argument or
default to the current device: \decnet as the path specification.

To change the DECnet database path, you will need to specify a new path specification
as command line input the next time that DLL and/or DNP are installed.

DECnet-VAXmate Version 1.0 supports Ethernet and asynchronous DDCMP configu­
rations. The following examples illustrate acceptable ways for specifying the DECnet
database path.

5-20 DECnet-VAXmate Programmer's Reference Manual

/ ,

(

('

If you have an Ethernet setup.

Example 1: The Scheduler (SCH), Data Link layer (DLL) and DECnet Network Process
(DNP) files are to be installed. The DLL and DNP command lines include a defined DEC­
net database path. The DLL path is used.

SCH
DLL c:\decnet\vll
DNP c:\decnet\vll

Example 2: SCH, DLL and DNP files are to be installed. Only the DLL command line
includes a defined DEC net database path. A database path is not defined for DNP. The
database path set for DLL will also be used by DNP.

SCH
DLL c:\decnet\vll
DNP

Example 3: SCH, DLL and DNP files are to be installed. The DLL and DNP command
lines do not include defined database paths. For this setup, the default DECnet database
path (current device:\decnet) set for DLL will also be used by DNP.

SCH
DLL
DNP

If you have an asynchronous DDCMP setup.

Example 1: SCH and DNPDCP files are to be installed. The DNPDCP command line
includes a defined DECnet database path. The DLL file is not required for asynchronous
operations.

SCH
DNPDCP c:\decnet\vll

Example 2: SCH, and DNPDCP files are to be installed. A DEC net database path is not
specified for DNPDCP. Therefore, the default database path (current drive:\decnet)
will be used by DNPDCP .

SCH
DNPDCP

DECnet Utility Functions 5-21

Return Value

If the call completes successfully, a pointer to a modified file name that contains the /~

DECnet database device and path name prefixed to the file is returned.

/

,/ ,

5-22 DECnet-VAXmate Programmer's Reference Manual

(

(

(

·5.2.13 getnodeadd

NAME

getnodeadd - return the address of your local DECnet-V AXmate node.

SYNTAX

struct dn_naddr * getnodeadd();

DESCRIPTION

getnodeadd returns a pointer to a dn_naddr data structure which contains the DEC­
net node address ofthe local DECnet-VAXmate node.

Return Argument

specifies the node address data structure. A user retrieves data from
the fields filled in by this function call. The fields are:

specifies the length of the returned DECnet-VAXmate node address.

specifies the DECnet-VAXmate node address.

If the call succeeds, a pointer to a dn-.naddr data structure is returned. If an error
occurs, a null value is returned.

NOTE

The dn_naddr data structure will be reused by additional calls. To
keep this information, you must copy the data into a local structure.

DEenet Utility Functions 5-23

5.2.14 getnodeent

NAME

getnodeent, getnodebyaddr, getnodebyname, setnodeent, endnodeent - access the
network node database and return complete node information given only a node
address or node name.

SYNTAX

#include <dnetdb.h>

struct

struct
char

nodeent * getnodeent()

nodeent *getnodebyname(name)
*name;

struct nodeent *getnodebyaddr(addr, len, type)
char *addr;
int len, type;

setnodeent(stayopen)

int stayopen;

endnodeent()

DESCRIPTION

These functions access the network node database and return complete node informa-

/'

tion given only a node address or node name. Each getnodeent, getnodebyname and /
getnodebyaddr function returns a pointer to a single static nodeent structure. This
structure contains the broken out fields of an entry in the network node database.

getnodeent returns a pointer to the next entry of the database.

setnodeent positions you at the beginning of the database. If the stayopen flag is set to
nonzero, the node database is not closed after each call to getnodeent (either directly,
or indirectly through one of the other "getnode" calls).

endnodeent closes the database file.

getnodebyname and getnodebyaddr sequentially search from the beginning of the
database until a matching node name or node address is found or until the end of the
database is encountered. Node names are stored in the network node database as
uppercase. Therefore, comparisons of node name strings to node names stored in the
database are forced to be uppercase. Node addresses are always arranged in ascending
numeric order.

5-24 DECnet-VAXmate Programmer's Reference Manual

(

(

Input Arguments

name specifies the address of the buffer containing the DECnet node name
string.

addr specifies the address of the buffer containing the DECnet node address

len

type

string.

is the length of the node's address string in bytes.

is the address type AF_DECnet.

stayopen specifies a call dependent argument. If set to nonzero, the network node
database is kept open for subsequent "getnode" calls.

Return Value

If the function, other than setnodeent and endnodeent, completes successfully, the
address for the nodeent structure is returned.

nodeent specifies the node address database structure. A user retrieves data
from the fields filled in by this function call. The following data fields
can be modified:

*n--'1ame points to a string which is the name of the DECnet node.

n--1lddrtype specifies the address type AF_DECnet.

n--1lddr specifies the DECnet network address for the node.

If an error or an EOF occurs, a null pointer is returned.

If setnodeent completes successfully, a value of 0 is returned. Otherwise, a value of -1
is returned.

NOTE

The nodeent structure will be reused by additional calls. To keep this
information, you must copy the data into a local structure.

DECnet Utility Functions 5-25

5.2.15 getnodename

NAME

getnodename - return the DECnet node name of your local DECnet-V AXmate node.

SYNTAX

char * getnodename();

DESCRIPTION

getnodename returns the ASCII string representation of your local DECnet-VAXmate
node name.

Return Value

If the function call is successful, your local DECnet node name is returned. Otherwise,
a null pointer is returned.

5-26 DECnet-VAXmate Programmer's Reference Manual
\", -

5.2.16 nerror

NAME

nerror - produce DECnet system error messages.

SYNTAX

nerror(s)

char *s;

DESCRIPTION

nerror produces DECnet error messages by mapping standard ermo values to their
equivalent DECnet error messages. First the characters pointed to by s are output to
stdout, followed by a colon, and then the resulting DECnet error text. The error num­
ber is taken from the external variable, ermo, which is set when an error occurs.

If a program makes a call to dnet_conn which fails, nerror should be subsequently
called in order to display the DECnet error text.

Input Argument

*s is the character pointer to the ASCII text string to be displayed before the
DEC net error text is displayed.

Output Argument

The characters pointed to by s are output to stdout, followed by the colon, and then the
resulting DECnet error text. You should refer to Section 5.2.5 for the list of DECnet
error messages returned by dnet_conn.

NOTE

This call is not UL TRIX compatible. For the UL TRIX call, the log is out­
put to stderr.

DEenet Utility Functions 5-27

5.2.17 perror

NAME / '\

perror - produce a standard UL TRIX error message appropriate to the last detected j

system error.

SYNTAX

perror(cp)

char *cp;

DESCRIPTION

perror produces a standard UL TRIX error message appropriate to the last detected sys­
tem error. First the character string is output, followed by a colon, and then the sta~
dard UL TRIX error message indexed by errno.

For example,

perror("Last error was ")

Input Argument

*cp is the character pointer to the ASCII text string to be displayed before the
UL TRIX error text is displayed.

5-28

NOTE

The log from perror is output to stdout. This call is not
UL TRIX compatible. For the UL TRIX call, the log is output
tostderr.

DECnet-VAXmate Programmer's Reference Manual

/
"'-- ...

(

6
Assembly Language

Application programs written in assembly language can establish logical links and
exchange data over the network. Nontransparent task-to-task communication requires
specific network process interface calls. The implementation of these programming
calls is discussed in this chapter.

(6.1 DECnet-VAXmate Network Process

The DECnet-VAXmate network process is a terminate and stay resident task which is
loaded into memory. It remains in memory once it is run. The DECnet-VAXmate net­
work process supports blocking and nonblocking synchronous and asynchronous 110.

6.2 DECnet Network Process Installation Check

Before accessing the DECnet network process, you should check to see if the network
process has been installed. You must first issue the MS-DOS interrupt function call35H
(Get Interrupt Vector) with the DNP vector number as input. This function call returns
a pointer to the DNP interrupt entry point.

On entry, the AH register contains the hexadecimal code, 35H. The AL register con­
tains a hexadecimal interrupt number. For example, 6EH is the interrupt number for
the DECnet network process. On return, the ES:BX register contains the CS:IP inter­
rupt vector for the specified interrupt.

6-1

The interrupt function call 35H is described here:

+.- - - - -- - - -- - - - - - - - - - -- -- - -- - - --- - - - -- - - -- - ---+
I On I 8086/8088 Register Contents I

I Bntry I I

+--------+-----------------------------------+
I AH I 35H (hexadecimal function code) I

I I I
+- -------+- ----------------------------------+
I AL I 6E (interrupt vector number for I

I I the DECnet network process) I

+- -------+- ----------------------------------+

+- --+
I On I 8086/8088 Register Contents I

I Return I I
+- -------+- ----------------------------------+
I ES:BX I pointer to the interrupt I
I I handling routine I

+- -------+- ---- --- --------------------- ------+
Figure 6-1: MS-DOS Interrupt Function Call 35H, Get Interrupt Vector

Using the interrupt vector that identifies the DECnet network process (DNP) module,
you can examine the contents of the five bytes that precede the DNP entry point. Use
the following procedure:

• Check the first 3 bytes for the 3-letter acronym for the software module. In this
case, the acronym is DNP.

• Examine the 2-byte software version number. The 10 byte is the major version
number, and the high byte is the minor version number.

The installation check procedure is described here:

In Memory
+---------------+
I major version I
+---------------+
I minor version I
+---------------+

Returned by GET INTERRUPT VECTOR I D I
+---------------+

+----------+ I N I
+- - - - - - - - - - - - - --+
I p I

I segment I
+----------+

entry +---------------+
-----------------> DNP:I code I

I offset I
+----------+

point +---------------+

6-2 DECnet-VAXmate Programmer's Reference Manual

(

6.3 Using the 1/0 Control Block

All I/O to the network process is handled by way of DECnet-VAXmate network pro­
cess interface calls. A data structure called the I/O Control Block (IOCB) transfers data
to or from the network process. The address of the 10CB data structure is passed
directly to the network process.

To issue a network process interface call, you must first create an 10CB for that call.
Refer to the individual call descriptions (Sections 6.7.1 to 6.7.20) on how to set up the
10CB. To pass information to the DECnet network process, you must issue the inter­
rupt function ca1l6EH. Use this call for the following 110 requests to the network pro­
cess:

• Set up data in an 10CB.

• Move the address ofthe 10CB into the DS:DX register.

• Move the DEC net network process code, DE, into the AH register.

• Move a value of 1 into the AL register as the function code for an 10CB. function
request.

• Issue the interrupt function call6EH.

On return, status information is returned in the 10CB for the network process interface
call addressed by this interrupt function. If the call 6EH completes successfully, the
IOCB's data member, io--.Status, returns a value of O. You should refer to the individ­
ual call descriptions for details on any returned data.

In all I/O modes, if the call6EH is unsuccessful, io--.Status returns a -1 value. In asyn­
chronous mode, if the call does not complete, a value of -2 is returned. Another 10CB
data member, io_errno returns additional error detail. See Appendix C for a list of
error conditions.

The function call6EH is described here:
+- --+
I On I 8086/8088 Register contents I

I Entry I I

+- - - - - - - -+- --+
I AH I DE (DECnet network process I

I I hexadecimal code) I

+- - - - - - - -+- _. - - _. - - _. - - --+
I DS:DX I IOCB address I

+- - - - - - - -+- --+
I AL I 1 (IOCB Function request) I

+- - - - - - - -+- - - - - - - - - _ •• --+

Figure 6-2: Interrupt Function Call 6EH, IOCB Request

Assembly Language 6-3

6.3.1 110 Control Block Structure

The I/O Control Block consists of a header substructure and a parameter list. The mem­
bers ofthe IOCB header are listed in the following table:

Table 6-1: IOCB Header Data Members

Member Size Data Contents

io-/code 1 byte network process call specific function code (see Section
6.7)

io---socket 2 bytes socket number

io-flags 2 bytes fiagoption

io---status 2 bytes returned status value

io_errno 2 bytes returned error value

io-psize 2 bytes parameter list size or buffer size

The IOCB parameter list depends on the particular network process interface call. It
may contain one of the following members:

Table 6-2: IOCB Parameter List Members

Member Size Data Contents

attach-tin 12 bytes socket creation data

io_buffer 4 bytes data buffer offset

listen-tin 2 bytes maximum number of incoming connects

localin/o-tin 20 bytes local node information

select-tin 16 bytes socket I/O descriptors

shutdown-tin 2 bytes type of logical link shutdown

sioctl-tin 8 bytes socket I/O control

sockaddr -tin 26 bytes socket definitions

sockopt-tin 12 bytes socket options

6-4 DECnet-VAXmate Programmer's Reference Manual

(

The members of an IOCB data structure are illustrated here:
Bytes Data Fields: Input or Output

+-------+
I I
+-------+
I 10 I
+-------+
I hi I
+-------+
I 10 I
+-------+

hi I
+-------+

10 I
+-------+

hi I
+-------+

10 I
+-------+
I hi I
+-------+
I 10 I
+-------+
I hi I
+-------+

I
+-------+
I I
I I
I I
I I
I I
+-------+

< --+
Function code (io_fcode) I

Socket (io.socket)
I
V

Flags (io.flags)
I

V

status (io.status)
I
V

Errno (io.errno)
I
V

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Parameter size (io.psize) <--------+
I
V

< _. --+
I
I

Data structure(s) I
I
I

< --+

Figure 6-3: An IOCB Data Structure

6.4 Using the Callback 1/0 Control Block

IOCB
HEADER

IOCB
PARAMETER

LIST

To request a callback routine when specific calls complete, you must set up a data
structure called the Callback I/O <;:ontrol Block (CIOCB). The address of the CIOCB
data structure is passed directly to the DECnet network process. To issue a DECnet­
V AXmate call with a callback routine, you must first create a CIOCB for that call. Refer
to individual call descriptions on how to set up the CIOCB. To pass information to the
DECnet network process, issue the interrupt function call6EH. (Refer to Section 6.3
for a description of the function calI6EH.)
• Set up data in a CIOCB.
• Move the address of the CIOCB into the DS:DX register.
• Move the DECnet network process code, DE, into the AH register.
• Move a value of 1 into the AL register as the function code for a CIOCB function

(. request.

Assembly Language 6-5

6.4.1 Callback 1/0 Control Block Structure

The Callback I/O Control Block consists of a header substructure, a parameter list, and
the address of the callback routine. The CIOCB uses the same header substructure and
parameter list as the 10CB. Their data members are listed in Tables 6-1 and 6-2. The
additional data member is the address of the callback routine which requires 4 bytes.

Its location along with the other members of the CIOCB are illustrated here:

Bytes Data Fields: Input or Output

+- - - - - - -+ < --+
I I Function code (io_fcode) I
+-------+ I
I 10 I Socket (io_socket) I
+-------+ I I
I hi I V I
+-------+ I
I 10 I Flags (io_flags)
+-------+ I
I hi I V
+-------+
I 10 I status (io_status)
+-------+ I
I hi I V
+-------+
I 10 I Errno (io_errno)
+-------+ I
I hi I V
+-------+
I 10 I Parameter size (io_psize) (--------+
+-------+ I
I hi I V
+-------+
I I (----------------------------------+
+-------+ I
I I I
I I Data structure(s) I
I I I
I I I
I I (----------------------------------+
+- - - - - - -+ (- --+
I 10 I Offset I
+-------+ I I
I hi I v I
+-------+ io callback I
I 10 Segment I
+-------+ I I
I hi v I
+- - - - - - -+ (- --+
Figure 6-4: A CIOCB Data Structure

CIOCB
HEADER

CIOCB
PARAMETER

LIST

CALLBACK
ADDRESS

6-6 DECnet-VAXmate Programmer's Reference Manual

6.5 Synchronous 1/0 and Asynchronous 1/0

DECnet-VAXmate supports three ways of handling network 110: blocking synchro­
nous, nonblocking synchronous, and asynchronous 110. Each method is independent
ofthe others.

When a DEC net-VAXmate call is issued in blocking synchronous mode, the software
issuing the call does not regain control until the call completes or has failed. When
nonblocking synchronous 110 is set, socket operations return to the calling program
after the operation has been started, but not necessarily completed. Some operations
must be restarted. If on the other hand, the operation can be performed immediately, it
will either complete or fail. Should it fail, an error reason such as EWOULDBLOCK or
ENOBUFS will be reported.

When asynchronous 110 is used, control returns to the calling program immediately
after the DECnet network process records the call request. The network process may
complete the request immediately or wait for a later time. There are two ways for you
to check the status of an asynchronous DECnet-VAXmate call: use a callback routine
and/or poll for status.

When using asynchronous 110, the calling program can request that a routine be called
upon completion. This routine is referred to as the callback routine. Callback routines
can only be implemented with the asynchronous form of a function call. Asynchronous
callbacks are valid for the following seven calls. It is also valid to issue these calls asyn­
chronously without a callback as well as synchronously. The calls are:

(.. • ACCEPT (Section 6.7.2)

• CONNECT (Section 6.7.6)

• RCVD (Section 6.7.12)

• RCVOOB (Section 6.7.13)

• SELECT (Section 6.7.14)

• SEND (Section 6.7.15)

• SENDOOB (Section 6.7.16)

NOTE

Information pertaining to the asynchronous form of function calls is
indicated by the caption For Asynchronous Mode.

The function calls not appearing in this list can be issued asynchro­
nously without a callback routine. Due to the way that the network
process handles these calls, they will still complete immediately.

If your program does not implement callback routines, you should poll for status. To
do this, examine the io-.Status field in the IOCB. A value of either -2,0 or -1 may be
returned. A value of -2 indicates pending or no change in status. When the call success­
fully completes, a value of 0 is returned in the io-.Status field. For some calls, you will

(. be able to retrieve data from a data structure which is filled in by the call.

Assembly Language 6-7

If the call is unsuccessful, io..-Status returns a value of -1. Additional error reason will
be contained in the io_errno field. The error messages are listed in the DIAGNOSTICS
section under each call description.

You can use callbacks and also poll for status. When you do this, the following status
values can be returned:

Status Value

-2

o
-1

Meaning

No change in status. The callback routine has not been called.

The call has completed. The callback routine was already called.

The callback was already called, but there was an error in completing the
call.

6.5.1 Using a Callback Routine

When you write a program that uses a callback routine, follow these guidelines:

• There is a valid stack, but not the user's stack.

• The address of the 10CB is in the DS:DX register.

• The address of the 10CB is on the stack.

• You preserve all registers except for the AX, BC, CX and DX registers.

• You must be sure to do a far return.

• When you implement callback routines, you cannot do any MS-DOS function calls
or synchronous network 1/0 inside the callback routine. You can still do asynchro­
nous network I/O.

6.5.2 Setting the io-11ags Field

You can set more than one bit in the io-flags field which is included in the I/O Control
Block. Bits for asynchronous I/O and callback routines can be used in conjunction with
other bits for "peeking" at messages and for sending and receiving a multi-part mes­
sage. How these bits are used with a specific function call appears in the individual call
descriptions. Additional information about these flag options appears in Appendix A.

6.6 Using Socket Numbers with DECnet Network Process Interface
Calls

The network process uses socket numbers to identify a particular I/O session. A socket
number must be assigned by the user before proceeding with further network I/O. To
assign a socket number, issue the ATTACH function call. (See Section 6.7.3 for a call
description.) The assigned socket number is then used in the 10CB for subsequent net­
work calls. The DETACH function call instructs DNP to deallocate any network
resources associated with the attached socket and to make the socket and resources
available again for network I/O.

6-8 DECnet-VAXmate Programmer's Reference Manual

(

(

6.7 Network Process Interface Calls

The following sections describe the synchronous form of the network process inter­
face calls used for assembly language programs. An IOCB is passed to the network pro­
cess with each call. Each IOCB contains a header and a parameter list. The members of
the IOCB header are detailed with each call. For some calls, the IOCB also includes a
data structure or a buffer address. The type of data structure is determined by the spe­
cific call. The members of the data structures are detailed in a similar manner.

Information pertaining to the asynchronous form of certain function calls is indicated
by the caption For Asynchronous Mode. Refer to Section 6.5 for a list of function calls
that have an asynchronous and a synchronous form.

The assembly language network process interface calls are summarized in the follow­
ing table:

Assembly Language 6-9

Table 6-3: Assembly Language Network Process Interface Calls

Decimal / \.

Value Function Description

10 ABORT Disconnect all logical links (if any) and detach the sockets
that do not have the option SO-KEEPALIVE set.

S ACCEPT Accept an incoming connection request on a socket, and
return a socket number.

0 ATTACH Create a socket and attach a socket number.

2 BIND Assign an object name or number to a socket.

4 CONNECT Initiate a connection request on a socket.

1 DETACH Disconnect all associated active logical links, and detach the
specified socket and any associated sockets, only if the
option SO-KEEPALIVE is not set.

6 DISCONNECT Disconnect from the peer socket, and terminate the logical
link connection.

26 GETSOCKOPT Get the options associated with sockets.

3 LISTEN Listen for pending connections on a socket.

22 LOCALINFO Retrieve network information for the local node.

16 PEERADDR Retrieve information about your peer socket.

S RCVD Receive data on a specified socket. "-

13 RCVOOB Receive out-of-band messages on a specified socket.

23 SELECT Check the I/O status of the network sockets.

9 SEND Send data on a specified socket.

14 SENDOOB Send out-of-band messages on a specified socket.

25 SETSOCKOPT Set options associated with sockets.

7 SHUTDOWN Shut down part or all of a full duplex logical link connection.

24 SIOCTL Control the operations of open sockets.

15 SOCKADDR Retrieve information set by the BIND call for the specified
socket.

\--- ..
6-10 DECnet-VAXmate Programmer's Reference Manual

(

6.7.1 ABORT

NAME

ABORT - disconnect all logical links (if any) and detach sockets that do not have the
option SO_KEEP ALIVE set.

IOCB Data Members

Bytes Data Fields: Input or Output

+ - - - - - - -+ < --+
I I io_fcode: ABORT (10)
+-------+

10 I io_socket: 0 (not used)
+-------+ I

hi V
+-------+

10 io_flags: 0 (not used)
+-------+ I

hi I V
+-------+

10 I io_status: (not used)
+-------+ I

hi I V
+-------+
I 10 I io_errno: (not used)
+-------+ I
I hi I V
+-------+

10 I io_psize: (not used) <------------+
+-------+ I

hi V
+-------+

I < --+
+-------+ I

+-------+

I
Data structure: none I

I
I

< --+

Assembly Language

IOCB
HEADER

IOCB
PARAMETER

LIST

6-11

DESCRIPTION

The ABORT call disconnects all logical links (if any) and detaches the sockets that do
not have the option SO~EEPALIVE set. Refer to Section 6.7.17 for a discussion of
SO~EEPALIVE.

NOTE

Before you can terminate a connection over a socket with the option
SO~EEP ALIVE set, you must first issue a SETSOCKOPT call with
SO~EEPALIVE turned off. To turn off SO~EEPALIVE, you must
precede SO~EEPALIVE with the NOT operator. (NOT
SO~EPALIVE is the default condition.)

You are then able to issue the ABORT call. The logical links (if any) are
disconnected, and the socket is detached. However, if you issue
ABORT without turning off SO~EEP ALIVE, the socket remains
attached, and the links (if any) stay active.

Input Data

io-/code

io--..Socket

io-flags

io-psize

Output Data

specifies ABORT as the function code. It has a decimal value of 10.

specifies the socket number created by the ACCEPT or the ATTACH
call. It is not used with the ABORT call. All logical links are discon­
nected by the ABORT call.

defines specific flag options. You must set this data member to O. It is
not used with the ABORT call.

specifies the size of a data structure. This data member is not used
with the ABORT call.

There is no output data for the ABORT call.

6-12 DECnet-VAXmate Programmer's Reference Manual

(

6.7.2 ACCEPT

NAME

ACCEPT - accept an incoming connection request on a socket and return a socket num­
ber.

IOCB Data Members

Bytes Data Fields: Input or Output

+- - - - - - -+ <- --+
I io_fcode: ACCEPT (5) I

+-------+ I
10 io_socket: socket number I

+-------+ I I
hi I V I

+-------+ I
10 I io_flags: 0 (not used)

+-------+ I
I hi I V IOCB
+-------+ HEADER

10 I io_status: 0 for success,
+-------+ I or -1 if unsuccessful
I hi I V
+-------+

10 I io_eccno: error detail,
+-------+ I if status: -1
I hi I V
+-------+

10 I io_psize: 26 bytes <--------------+
+-------+ I

hi V
+-------+

I < --+
+-------+ I

I IOCB
Data structures: attach_dn I PARAMETER

(input) I LIST
sockaddc_dn I
(output) I

+- - - - - - -+ < --+

Assembly Language 6-13

CIOCB Data Members - For Asynchronous Mode

Bytes Data Fields: Input or· output

+- - - - - - -+ < --+
I I io_fcode: ACCEPT (5)
+-------+
I 10 I io.socket: socket number
+-------+ I

hi I V
+-------+
I 10 I
+-------+

hi
+-------+

(asynchronous)
(callback)

I 10 I io.status: 0 for success,
+-------+ I -1 if unsuccessful,
I hi I V -2 for pending status
+-------+

10 I io errno: error detail,
+-------+ I if status: -1
I hi I V
+-------+

10 io.psize: 26 bytes <--------------+
+------.+ I

hi I V
+-------+

I < --+
+-------+ I
I I I

Data structures: attach.dn I
(input) I
sockaddr.dn I
(output) I

< - _ ... - - - - - - - - - - _. - - - - - - - - - - - - - - --+
+- - - - - - -+ < --+
I 10 I offset I
+-------+ I I
I hi I v I
+-------+ io callback I
I 10 I segment I
+-------+ I I

hi I v I
+- - - - - - -+ < - - - - - - - - - - - - - - ~ - - - - - - - - - - - - - - - - --+

DESCRIPTION

CIOCB
HEADER

CIOCB
PARAMETER

LIST

CALLBACK
ADDRESS

The A CCEPT call extracts the first connection request on the queue of pending connec­
tions and creates a new socket with a new number having the same properties as the
original listening socket. The original socket remains open.

6-14 DECnet-VAXmate Programmer's Reference Manual

(

(

If the socket is set to nonblocking 110 and there are no queued connection requests,
io-.Status will return a -1, and ermo will contain EWOULDBLOCK.

There can be two modes of accepting an incoming connection. They are immediate
and deferred modes. These modes of acceptance are set using the SETSOCKOPT call.
When immediate mode is in effect, the acceptance of the connection request takes
place immediately. The deferred mode indicates that the server task completes the
ACCEPT call without fully completing the connection to the client task. In this case,
the server task can examine the access control or optional user data before it decides to
accept or reject the connection request. The server task must then issue the
SETSOCKOPT call with the appropriate reject or accept option.

DESCRIPTION - For Asynchronous Mode

The ACCEPT call extracts the first connection request on the queue of pending connec­
tions and creates a new socket with a new number having the same properties as the
original listening socket. The original socket remains open. When the asynchronous
form of the ACCEPT call is used, it is possible that the call may not complete. If so,
there are two ways for you to check the status of the call:

• A callback routine (if implemented) will be called upon completion of the call.

• If there is no callback routine, you should poll for status. To do this, examine the
io-.Status field. A value of -2, 0 or -1 may be returned. A value of -2 indicates
pending (no change) status. When the ACCEPT call successfully completes, a value
of 0 is returned in the io-.Status field. In addition, you can retrieve data from the
sockaddr ~n data structure which is filled in by the ACCEPT call.

If the call is unsuccessful, io-.Status returns a value of -1. The error reason will
also be contained in io_ermo. For a description of these error messages, see the
DIAGNOSTICS section.

There can be two modes of accepting an incoming connection. They are immediate
and deferred modes. These modes of acceptance are set using the SETSOCKOPT call.
When immediate mode is in effect, the acceptance of the connection request takes
place immediately. The deferred mode indicates that the server task completes the
ACCEPT call without fully completing the connection to the client task.

In this case, the server task can examine the access control or optional user data before
it decides to accept or reject the connection request. The server task can then issue the
SETSOCKOPT call with the appropriate reject or accept option.

Input Data

io-fcode

io-.Socket

specifies ACCEPT as the function code. It has a decimal value of 5.

specifies the socket number to be assigned. If 0 is specified, the network
process assigns a socket number for you. If a nonzero value is specified,
the network process assigns that value. The assigned socket number,
returned to io-.Socket, is used in subsequent send and receive calls. If
the value is already in use, an error message, EBADF, is returned in
io_errno.

Assembly Language 6-15

io-flags defines specific flag options. You must set this data member to O. It is
not used with the synchronous form of the ACCEPT call.

For Asynchronous Mode: You can set io-flags to MSG-ASYNC and
MSG_CALLBACK. MSG-ASYNC processes the asynchronous 1/0 form
of the ACCEPT function call. MSG_CALLBACK allows the network to
issue a callback routine when the A CCEPT call completes. The hexadec­
imal value for each flag option is listed in Appendix A.

iO-/Jsize specifies the larger size of the 2 data structures, attach-tJn and
sockaddr-tJn (26 bytes). The 2 data structures overlay each other:
attach-tJn is used for input and sockaddr _dn is used for output.

attach-tJn specifies the attach function data structure. The structure contains the
following data fields:

att~ocket

att-tJomain

att-/Jrotocol

defines the number for a socket which was created with the
ATTACH call, bound to a name by the BIND call, and set to lis-
ten for incoming connections by the LISTEN call.

specifies the communications domain as AF _DECnet.

specifies the socket type (for example, SOCK-.STREAM). See
Appendix A for a list of defined socket types.

specifies the DEC net option for the socket (for example,
DNPROTO~SP). See Appendix A for details.

specifies the socket recovery period. This data member is not
used with the ATTACH call.

ati~upreq specifies the support requirements. This data member is not
used with the ATTACH call.

io_callback For Asynchronous Mode: If the MSG_CALLBACK bit is
set in io-flags, then io_callback specifies the 4 byte
address of the function to be called by the network process
when the function completes. (See Appendix B on how the
data type exptr is formatted.)

Output Data

io~tatus

6-16

o upon successful completion. If an error occurs, io~tatus returns a
-1. The io_errno field will also contain additional error detail.

For Asynchronous Mode: If the call's status is still pending, a value
of -2 is returned. The io~tatus field will return a 0 upon successful
completion. If an error occurs, io~tatus will return a -1. The
io_errno field will also contain additional error detail.

DECnet-VAXmate Programmer's Reference Manual

(

(

(

io_errno additional error detail if io---status returns a -1. (See the DIAGNOS­
TICS section for a list of error conditions.)

sockaddr --fin specifies the socket address data structure. A user retrieves data from
the fields filled in by this function call. (See Appendix B on how
sockaddr--fin is formatted.)

For Asynchronous Mode: A user cannot retrieve data from the
socket address data structure until io---status has changed from a
pending condition (-2) to successful completion (0).

The following data fields are filled in by this function call:

sdn-family is the address family AF~ECnet.

sdn_objnum is the object number for the client node. It can be a number 0 to
255.

sdn_objnamel is the size of the object name.

sdn_objname is the object name of the client network task. It can be up to a
16-byte array. It is used only when sdn_objnum equals O.

sdn.--add is the node address structure for the client task. (See Appendix B
on how dn---"addr is formatted.)

Data Structure Type Summary

sdn-family 2 bytes

sdn_objnum 1 byte

sdn_objnamel 2 bytes

sdn_objname 16-byte array

sdn.--add 4 bytes

att---socket 2 bytes-

att--fiomain 2 bytes

att_type 2 bytes

att-protocol 2 bytes

att---srp 2 bytes

att---supreq 2 bytes

Assembly Language 6-17

DIAGNOSTICS

[EBADF]

[ECONNABORTED]

[EEXIST]

[EMFILE]

[EWOULDBLOCK]

6-18

The argument io--.Socket does not contain a valid socket
number.

The client task disconnected before the ACCEPT call
completed.

The socket number is already in use.

There are no more available sockets.

The socket is marked for nonblocking and no connec­
tions are waiting to be accepted.

EWOULDBLOCK is not a valid error message for the
asynchronous form of the ACCEPT call.

DECnet-VAXmate Programmer's Reference Manual

)

" \...... . /'

(

(

6.7.3 ATTACH

NAME

A TT ACH - create a socket and attach a socket number.

IOCB Data Members

Bytes Data Fields: Input or Output

+- - - - - - -+ (- --+
I I io_code: ATTACH (0)
+-------+

10 io socket: socket number
+-------+ I

hi I V
+-------+
I 10 I io_flags: 0 (not used)
+-------+ I

hi V
+-------+

10 io_status: 0 for success,
+-------+ I or -1 if unsuccessful
I hi I V
+-------+
I 10 I io_errno: error detail,
+-------+ I if status: -1
I hi I V
+-------+
I 10 io_psize: 12 bytes (--------------+
+-------+ I
I hi V
+-------+

(- --+
+-------+ I
I I

+-------+

Data structure: attach_dn I
I
I

(- --+

DESCRIPTION

The ATTACH call creates a socket and attaches a socket number.

Assembly Language

IOCB
HEADER

IOCB
PARAMETER

LIST

6-19

Input Data

io-fcode

io..--Socket

specifies ATTACH as the function code. It has a decimal value of O.

specifies the socket number to be assigned. If 0 is specified, the net­
work process assigns a socket number for you, and returns this num-
ber to io..--Socket. If a nonzero value is specified, the network process
assigns that value. The assigned socket number is used in subsequent
network calls.

io-flags defines specific flag options. You must set this data member to O. It is
not used with the ATTACH call.

io-psize specifies the size of the data structure attacb--.tin as 12 bytes.

attacb--.tin specifies the attach function data structure. The structure contains
the following data fields:

att..--Socket specifies the socket number. This data field is ignored by the
ATTACH call.

att--.tiomain specifies the communications domain as AF~ECnet.

att_type specifies the socket type (for example, SOCK-STREAM). See
Appendix A for a list of defined socket types.

att-protocol specifies the DECnet option for the socket (for example,
DNPROTO~SP). See Appendix A for details.

att..--Srp

att..--Supreq

Output Data

io..--Status

specifies the socket recovery period. This data member is not
used with the ATTACH call.

specifies the support requirements. This data member is not
used with the ATTACH call.

o upon successful completion. If an error occurs, io..--Status returns a
-1. The io_ermo field will also contain additional error detail.

additional error detail if io..--Status returns a -1. (See the DIAGNOS­
TICS section for a list of error conditions.)

Data Structure Type Summary

att..--Socket 2 bytes

att--.tiomain 2-bytes

att_type 2 bytes

att-protocol 2 bytes

att..--Srp 2 bytes

att..--Supreq 2 bytes

6-20 DECnet-VAXmate Programmer's Reference Manual

(

(

DIAGNOSTICS

[EEXIST]

[EINVAL]

[EMFILE]

[ENOBUFS]

Assembly Language

The socket number is already in use.

The argument io~ocket does not contain a valid socket
number . (You cannot assign -lor -2 as socket numbers.)

There are no more available sockets.

No buffer space is available. The socket cannot be cre­
ated. There are no more available logical links.

6-21

6.7.4 BIND

NAME

BIND - assign an object name or number to a socket.

IOCB Data Members

Bytes Data Fields: Input or Output

+- - - - - - -+ < --+
I I io_fcode: BIND (2) I
+-------+ I
I 10 io_socket: socket number I
+-------+ I I
I hi V I
+-------+ I
I 10 10_flags: 0 (not used) I
+-------+ I I
I hi I V I IOCB
+-------+ I HEADER
I 10 I io_status: 0 for success, I
+-------+ I or -1 if unsuccessful I

hi V I
+-------+ I
I 10 io_errno: error detail, I
+-------+ I if status: -1 I
I hi V I
+-------+ I

10 io_psize: 26 bytes <----------------+
+-------+ I
I hi I V
+-------+
I I <-----------------------------------+
+-------+ I
I I

+-------+

Data structure: sockaddr_dn I
I
I

< --+

DESCRIPTION

IOCB
PARAMETER

LIST

The BIND call assigns an object name or number to a socket. When a socket is first cre­
ated with the ATTACH call, it exists in a name space but has no assigned name. The
BIND call is used primarily by server tasks. The object name is required before a server
task can listen for incoming connection requests using the LISTEN call. It can also be
used by client tasks to identify themselves to server tasks. See also ACCEPT (Section
6.7.2), CONNECT (Section 6.7.6), PEERADDR (Section 6.7.11) and SOCKADDR (Sec­
tion 6.7.20).

6-22 DECnet-VAXmate Programmer's Reference Manual

f

(

(

NOTE

The VAXIVMS proxy access by user name is made possible, if the client
task uses the BIND call specifying a user name as the object name. You
should refer to the SO~EUSEADDR option of the SETSOCKOPT call
if you wish to make more than one proxy connection with the same
name.

Input Data

io-fcode specifies BIND as the function code. It has a decimal value of 2.

io---socket specifies the number for a socket which has been created by the
ATTACH call.

io-flags defines specific flag options. You must set this data member to O. It is
not used with the BIND call.

io-psize specifies the size of the data structure sockaddr --.an as 26 bytes.

sockaddr --.an specifies the socket address data structure. A user fills in the data for
each field. The same data members must be used with the ACCEPT
call.

The following data fields can be modified:

sdn-family

sdn-flags

sdn_objnum

specifies the address family as AF_DECnet.

specifies the object flag option. It must be set to O.

defines the object number for this network task. It can be a num­
ber from 0 to 255.

sdn_objnamel is the size of the object name.

sdn_objname defines the object name of this network task. It can be up to a
16-byte array. It is used only when sdn_objnum equals O.

sdn-.add specifies the node address structure for this network task. This
data member is ignored.

Output Data

io---status returns a 0 upon successful completion. If an error occurs, io---status
returns a-I. io_errno will also contain additional error detail.

returns additional error detail if io---status returns a -1. (See the
DIAGNOSTICS section for a list of error conditions.)

Assembly Language 6-23

Data Structure Type Summary

sdn-family

sdn-f/ags

sdn_objnum

sdn_objnamel

sdn_objname

sdn-..add

DIAGNOSTICS

[EADDRINUSE]

[EBADF]

[EINVAL)

6-24

2 bytes

1 byte

1 byte

2 bytes

16-byte array

4 bytes

The specified name is already used by another socket.

The argument io---socket does not contain a valid socket
number.

An invalid len~th for the object name was specified.

DECnet-VAXmate Programmer's Reference Manual

/

\-

/

6.7.5 CANCEL

NAME

CANCEL - cancel a previous asynchronous function call request.

IOCB Data Members

Bytes Data Fields: Input or Output

+- - - - - - -+ < --+
I io_fcode: CANCEL (20)
+-------+
I 10 io_socket: socket number,
+-------+ I except to cancel SELECT, socket
I hi I V number must equal O.
+-------+

10 io_flags: 0 (not used)
+-------+ I
I hi V
+-------+
I 10 io_status: 0 for success,
+-------+ I or -1 if unsuccessful
I hi I V
+ +
I 10 io_errno: error detail,
+ + I if status: -1
I hi V
+-------+

10 io_psize: 4 bytes <.---------------+
+-------+ I
I hi V
+-------+
I
+-------+
I I

+-------+

< - - - - - - - - - - - -. - - - - - - - - - -. - - - •• - - - - --+
I
I

Data structure: io buffer I
I
I

< - - - - - - - - - - - - -. - - - - - - - - - -."." - - - - - --+

DESCRIPTION

IOCB
HEADER

IOCB
PARAMETER

LIST

The CANCEL call allows a network process to cancel a previous asynchronous I/O
request. This function call is used with the asynchronous form oftheACCEPT, RCVD,
RCVOOB, SELECT and SEND function calls. To cancel a previous function request, you
must specify the socket number for that call. If you want to cancel a SELECT call, the
socket number must be set to O. Otherwise, the call will not be cancelled.

Assembly Language 6-25

There are two return values for any cancel operation:

• When a function call is cancelled, the CANCEL function always returns success. It
does not matter whether the previous request existed, was already completed, or
was still in progress.

• To determine if the previous request was found and successfully cancelled, you
must examine io_errno for that particular call. An error code of EINTR will indi­
cate successful cancellation. (See the DIAGNOSTICS section for each applicable
function call.)

Input Data

io---socket

io-flags

io-psize

Output Data

io---status

specifies CANCEL as the function code. It has a decimal value of 20.

specifies the socket number that must match the socket number for
the call to be cancelled.

defines specific flag options. You must set this data member to o. It is
not used with the CANCEL call.

specifies the size of a data structure. This data member is not used
with the CANCEL call.

returns a 0 upon successful completion.

specifies additional error detail. This data member is not used with ,/
the CANCEL function.

/

6-26 DECnet-VAXmate Programmer's Reference Manual

(

(

6.7.6 CONNECT

NAME
CONNECT - initiate a connection request on a socket.

IOCB Data Members

Bytes Data Fields: Input or Output

+- - - - - - -+ (- --+
I io_fcode: CONNECT (4) I

+-------+ I
10 io socket: socket number I

+-------+ I I
I hi I V I
+-------+ I
I 10 I io_flags: 0 (not used) I
+-------+ I I
I hi I V I IOCB
+-------+ I HEADER
I 10 I io status: 0 for success, I
+-------+ I or -1 if unsuccessful I
I hi I V I
+-------+ I

10 io errno: error detail, I
+~------+ I if status: -1 I
I hi V I
+-------+ I
I 10 I io_psize: 26 bytes (----------------+
+-------+ I

hi I V
+-------+
I I (-----------------------------------+
+-------+ I
I I I

+-------+

Data structure: sockaddc_dn I
I
I

(- --+

Assembly Language

IOCB
PARAMETER

LIST

6-27

CIOCB Data Members - For Asynchronous Mode

Bytes Data Fields: Input or Output

+- - - - - - -+ < --+
I I io_fcode: CONNECT (4)
+-------+

10 io_socket: socket num~~r
+-------+ I

hi V
+-------+

10 io_flags: (asynchronous)
+-------+ I (callback)

hi V
+-------+

10 io_status: 0 for success,
+-------+ I -1 if unsuccessful,
I hi V -2 for pending status
+-------+

10 io_errno: error detail,
+-------+ I if status: -1

hi V
+-------+

10 io_psize: 26 bytes <--------------+
+-------+ I

hi V
+-------+

I < --+
+-------+ I

CIOCB
HEADER

I CIOCB
Data structure: sockaddr_dn I PARAMETER

I LIST
I

< --+
+ - - - - - - -+ < --+
I 10 offset I
+-------+ I I

hi v I
+-------+ io callback I

10 segment I
+-------+ I I

hi v I
+- - - -- - -+ <- - - - - -- - - --- - -- ---- -- - - - - - - - - -- --+

DESCRIPTION

CALLBACK
ADDRESS

The CONNECT call issues a connection request to another socket. Optional data as well
as access control information (if any) are passed to the peer task as a result of this func­
tion call. This data must be previously set by the SETSOCKOPT call. If subsequent
CONNECT calls are issued on the same socket, a task must reissue the SETSOCKOPT
call to set up new optional data and/or access control information.

6-28 DECnet-VAXmate Programmer's Reference Manual

(.'\

\.

(
\
'-,

(

NOTE

Subsequent connection requests cannot be made on the same socket
until it has been disconnected.

If nonblocking I/O mode is set and the CONNECT call is issued, the call returns immedi­
ately with an error status, ElNPROGRESS.

DESCRIPTION - For Asynchronous Mode

The CONNECT call issues a connection request to another socket. Optional data as well
as access control information (if any) are passed to the peer task as a result of this func­
tion call. This data must be previously set by the SETSOCKOPT call. If subsequent
CONNECT calls are issued on the same socket, a task must reissue the SETSOCKOPT
call to set up new optional data and/or access control information.

When the asynchronous form of the CONNECT call is used, it is possible that the call
may not complete. If so, there are two ways for you to check the status ofthe call:

•
•

A callback routine (if implemented) will be called upon completion of the call .

If there is no callback routine, you should poll for status. To do this, examine the
io~tatus field. A value of -2, 0 or -1 may be returned. A value of -2 indicates
pending (no change) status. When the CONNECT call successfully completes, a
value of 0 is returned in the io~tatus field.

If the call is unsuccessful, io~tatus returns a value of -1. Additional error detail
will also be contained in io_ermo. For a description of these error messages, see
the DIAGNOSTICS section.

Input Data

io-/code

io~ocket

io-flags

io-psize

specifies CONNECTas the function code. It has a decimal value of 4.

specifies the number for the socket which has been created by the
ATTACH call. This socket number is used for establishing a connec­
tion between the user tasks. It is also used with subsequent send and
receive function calls.

defines specific flag options. You must set this data member to O. It is
not used with the synchronous form of the CONNECT call.

For Asynchronous Mode: You can set io-flags to MSG-ASYNC
and MSG_CALLBACK. MSG-ASYNC processes the asynchronous
I/O form of the CONNECT function call. MSG_CALLBACK allows
the network to issue a callback routine when the CONNECT call com­
pletes. The hexadecimal value for each flag option is listed in Appen­
dixA.

specifies the size of the data structure sockaddr -.dn as 26 bytes.

Assembly Language 6-29

sockaddr ~n specifies the socket address data structure. A user fills in the data for
each field. (See Appendix B on how sockaddr ~n is formatted.)

The following data fields can be modified:

sdn-family

sdn-flags

sdn_objnum

specifies the address family as AF~ECnet.

specifies the object flag option. It must be set to O.

defines the object number for the server task. It can be a number
from 0 to 255.

sdn_objnamel

sdn_objname

is the size ofthe object name.

defines the object name of the server network task. It can be up
to a 16-byte array. It is only used when sdn_objnum equals O.

sdn~dd

Output Data

io-status

specifies the node address structure for the server task. (See
Appendix B on how dn_naddr is formatted.)

For Asynchronous Mode: If the MSG_CALLBACK bit is
set in io-flags, then io_callback specifies the 4 byte
address of the function to be called by the network process
when the function completes. (See Appendix B on how the
data type exptr is formatted.)

returns a 0 upon successful completion. If an error occurs, io-status
returns a -1. The io_errno field will also contain additional error
detail.

If the socket is set to nonblocking I/O, and you issue a CONNECT, the
function returns a value of -1 and the error message, EINPROGRESS.

For Asynchronous Mode: If the call's status is still pending, a value of
-2 is returned. The io-status field will return a 0 upon successful com­
pletion. If an error occurs, io-status will return a-I. io_errno will
also contain additional error detail.

returns additional error detail if io-status returns a -1. (See the DIAG­
NOSTICS section for a list of error conditions.)

Data Structure Type Summary

sdn-family 2 bytes

sdn-flags 1 byte

sdn_objnum 1 byte

sdn_objnamel 2 bytes

sdn_objname 16-byte array

sdn~dd 4 bytes

6-30 DECnet-VAXmate Programmer's Reference Manual

\,

/

(

(-

DIAGNOSTICS

[EAFNOSUPPORT]

[EBADF]

[EBUSY]

[ECONNABORTED]

[ECONNREFUSED]

[ECONNRESET]

[EHOSTUNREACH]

[EINPROGRESS]

[EINVAL]

[ENETDOWN]

[ENETUNREACH]

[ERANGE]

[ESRCH]

[ETIMEDOUT]

[ETOOMANYREFS]

Assembly Language

Addresses in the specified address family cannot be used
with this particular socket.

The argument io-.Socket does not contain a valid socket
number.

The socket is not in idle state. The socket is in the process
of being connected or disconnected; the socket is a con­
nected or listening socket.

The peer task has disconnected and the connection was
aborted.

The attempt to connect was forcefully rejected.

The remote task has failed.

The remote node is unreachable.

The connection request is now in progress.

The object name of the server task is too long.

The network is down.

The network cannot be reached from this host.

The object number of the server task is invalid. The valid
range is from 0 to 255.

The server object does not exist on the remote node.

Connection establishment was timed out before a con­
nection was established.

The remote node has accepted the maximum number of
connection requests.

6-31

6.7.7 DETACH

NAME

DETACH - disconnect all associated active logical links, and detach the specified
socket and any associated sockets, only if the option SO--KEEPALIVE is not set.

IOCB Data Members
Bytes Data Fields: Input or Output

+ ••••••• + < •.••...........••.••••••.• - .•••••. +

I io fcode: DETACH (1) I . I + •.•..•. +
I 10 I io.socket: socket number I
+ •••.••• +
I hi I
+ .•••••• +

I
V

I 10 I io.flags: 0 (not used)
+ ..•• ---+ I
I hi I V
+-------+
I 10 I io.status: 0 for success,
+-------+ I or -1 if unsuccessful
I hi I V
+-------+
I 10 I io.errno: error detail,
+-------+ I if status: -1
I hi I V
+.------+
I 10 I io.psize: not used <-------.--.- .. +
+ .. -- ... + I

hi V
+ .•••••• +
I I < .•.••• -••....•.••..•••.• - .. +
+ + I

+ •.•••.• +

I
Data structure: none I

I
I

< ..••........•. " •.••..•••.•...•••.• +

DESCRIPTION

IOCB
HEADER

IOCB
PARAMETER

LIST

The DETACH call disconnects all associated active logical links, and detaches the speci·
fied socket if it does not have the option SO_KEEP ALIVE set.

6-32 DECnet-VAXmate Programmer's Reference Manual

(

(

(

NOTE

Before you can terminate a connection over a socket with the option
SO~EEP ALIVE set, you must first issue a SETSOCKOPT call with
SO_KEEPALIVE turned off. To turn off SO~EEPALIVE, you must
precede SO~EEPALIVE with the NOT operator. (NOT
SO~EEPALIVE is the default condition.)

You are then able to issue the DETACH call. The logical links (if any)
are disconnected, and the socket is detached. However, if you issue
DETACH without turning off SO~EEPALIVE, the socket remains
attached, and the links (if any) stay active.

Input Data

io-fcode

io---socket

io-flags

io-psize

Output Data

io---status

io_errno

DIAGNOSTICS

[EBADF]

specifies DETACH as the function code. It has a decimal value of 1.

specifies the socket number created by the ACCEPTor ATTACH call.

defines specific flag options. You must set this data member to O.1t is
not used with the DETACH call.

specifies the size of a data structure. This data member is not used
with the DETACH call.

returns a 0 upon successful completion. If an error occurs, io---status
returns a -1. The io_errno field will also contain additional error
detail.

returns additional error detail if io---status returns a -1. (See the
DIAGNOSTICS section for a possible error condition.)

The argument io---socket does not contain a valid socket number.

Assembly Language 6-33

6.7.8 DISCONNECT

NAME

DISCONNECT - disconnect socket from the peer socket, and terminate the logical link
connection.

IOCB Data Members

Bytes Data Fields: Input or Output

+ - - - - - - - + < -+
I io_fcode: DISCONNECT (6)
+-------+
I 10 io_socket: socket number
+-------+ I
I hi I V
+-------+

10 io_flags: 0 (not used)
+-------+ I
I hi I V
+-------+
I 10 I io_status: 0 for success,
+-------+ I or -1 if unsuccessful
I hi V
+-------+
I 10 io_errno: error detail,
+-------+ if status: -1
I hi I V
+-------+
I 10 io_psize: not used <--------------+
+-------+ I
I hi V
+-------+
I I <----------------------------------+
+-------+ I

+-------+

I
Data structure: none I

I
I

< --+

DESCRIPTION

IOCB
HEADER

IOCB
PARAMETER

LIST

The DISCONNECT call disconnects the socket from the peer socket, and terminates the
logical link.

6-34 DECnet-VAXmate Programmer's Reference Manual

(

"'- /

(

(

NOTE

Before you can terminate a connection over a socket set with the
option SO~EEP ALIVE, you must first issue a SETSOCKOPT call with
the SO~EEPALIVE option turned off. That is, precede the
SO_KEEP ALIVE with the NOT operator. Then issue the DISCON­
NECT function call, and the connection will then be completely bro­
ken.

The effect of DISCONNECT on unsent data queued for a remote task depends on the
linger option set with the SETSOCKOPT function call. (See Section 6.7.17.) If
SO_LINGER is set, control is returned to the task, but the link is not disconnected until
the unqueued data is sent. If SO_DONTLINGER is set, control is returned to the task,
and any unqueued data is lost.

Input Data

io-fcode

io--.Socket

io-flags

io-psize

Output Data

io--.Status

DIAGNOSTICS

[EBADF]

specifies DISCONNECT as the function code. It has a decimal value of
6.

specifies the socket number created by the A CCEPT or ATTACH call.

defines specific flag options. You must set this data member to O. It is
not used with the DISCONNECT call.

specifies the size of a data structure. This data member is not used
with the DISCONNECT call.

returns a 0 upon successful completion. If an error occurs, io--.Status
returns a -1. The iO_(!1"rno field will also contain additional error
detail.

returns additional error detail if io--.Status returns a -1. (See the
DIAGNOSTICS section for a possible error condition.)

The argument "io--.Socket does not contain a valid socket number.

Assembly Language 6-35

6.7.9 LISTEN

NAME

LISTEN -listen for pending connections on a socket.

IOCB Data Members

Bytes
+-------+
I I
+-------+
I 10 I
+-------+
I hi I
+-------+
I 10 I
+-------+

Data Fields: Input or Output

< --+
io fcode: LISTEN (3) I

- I
io_socket: socket number I

I I
V I

io_flags: 0 (not used)
I

I

I hi I V IOCB
+-------+
I 10 I
+-------+
I hi I
+-------+
I 10 I
+-------+
I hi I
+-------+
I 10 I
+-------+
I hi I
+-------+
I I
+- .. -----+

+-------+

io_status: 0 for success,
I or -1 if unsuccessful

V

io_errno: error detail,
I if status: -1
V

io_psize: 2 bytes
I

<---------------+

V

< --+
I
I

Data structure: listen_dn I
I
I

< --+

HEADER

IOCB
PARAMETER

LIST

DESCRIPTION

The LISTEN call declares your socket as a server which is available for client connec­
tions. The server must use a bound name or number in order to listen for incoming cli­
ent connections. This call must be issued before an incoming connection can be
accepted or rejected. See also the ACCEPT (Section 6.7.2) and the SELECT (Section
6.7.14) calls.

If you detach a listening socket while the socket is receiving client connections, then all
links associated with the listening socket immediately abort and all outstanding data is
lost.

6-36 DECnet-VAXmate Programmer's Reference Manual

(

C

(

Input Data

io~code

io-.Socket

io-flags

io-psize

listen_dn

Output Data

io-.Status

specifies LISTEN as the function code. It has a decimal value of 3.

specifies a number for a socket which has been created by the
ATTACH call and bound to a name by the BIND call.

defines specific flag options. You must set this data member to o. It is
not used with the LISTEN call.

specifies the size of the data structure listen-.dn as 2 bytes.

specifies the listen data structure. (See Appendix B on how listen-.dn
is formatted.) The structure contains the following data field:

defines the total maximum number of unaccepted incoming
connects which are allowed on this particular socket. The maxi­
mum allowable number of incoming connects is S. If a connec­
tion request arrives when the queue is full, the client task will
receive an error with an indication of ECONNREFUSED.

returns a 0 upon successful completion. If an error occurs, io-.Status
returns a -1. The io_errno field will also contain additional error
detail.

io_errno returns additional error detail if io-.Status returns a -1. (See the
DIAGNOSTICS section for a list of error conditions.)

Data Structure Type Summary

lsn_backlog

DIAGNOSTICS

[EBADF]

[EOPNOTSUPP]

2 bytes

Assembly Language

The argument io-.Socket does not contain a valid socket
number.

The specified socket type does not support the listen
operation.

6-37

6.7.10 LOCALINFO

NAME ./

LOCALINFO - retrieve network information for the local node.

IOCB Data Members

Bytes

+-------.+
I I
+-------+
I 10 I
+-------+
I hi I
+-------+
I 10 I
+-------+
I hi I
+-------+
I 10 I
+-------+
I hi I
+-------+

10 I
+-------+

hi I
+-------+

10
+-------+
I hi I
+-------+
I I
+-------+

I

+-------+

Data Fields: Input or Output

< --+
io_fcode: LOCAL INFO (22)

io_socket: not used
I

V

io_flags: 0 (not used)
I

V

io_status: 0 for success,
I or -1 if unsuccessful

V

io_eccno: error detail,
I if status: -1
V

io_psize: 20 bytes <---------------+
I

V

< --+
I
I

Data structure: localinfo_dn I
I
I

< --+

DESCRIPTION

IOCB
HEADER

IOCB
PARAMETER

LIST

The LOCAL/NFO call retrieves network information for the local node. It returns the
software version number for the network process, the local node name and address,
and the maximum possible segment buffer size which can be used on a logical link. It
also returns the number of sockets available for data exchange and the current DECnet
database device and path.

6-38 DECnet-VAXmate Programmer's Reference Manual

(

(

Input Data

io-Jeode

io~oeket

io-flags

specifies LOCAL/NFO as the function code. It has a decimal value of 22.

specifies the socket number. It is not used with the LOCAL/NFO call.

defines specific flag options. You must set this data member to O. It is
not used with the LOCAL/NFO call.

io-psize

Output Data

specifies the size of the data structure loealin/o.-dn as 20 bytes.

io~tatus returns a 0 upon successful completion. If an error occurs, io~tatus
returns a -1. The io_ermo field will also contain additional error
detail.

returns additional error detail if io~tatus returns a -1. (See Appendix
C for a list of error conditions.)

loealin/o.-dn specifies the local node information data structure. A user retrieves data
from the fields filled in by this function call. (See Appendix B on how
loealin/o.-dn is formatted.)

The following data fields can be filled in by this function call:

lei_version

lel-.nodename

lcl_nodeaddr

le/~egsize

Icl~oekets

is the software version number for the network process.

is the node name for the local node.

is the node address for the local node.

is the buffer segment size to be used on the logical link.

is the number of sockets available for data exchange.

lcl.-deenet.-deviee is the DECnet database device.

lel_deenet-4Jatb specifies the address of the buffer that contains the DECnet
database path specification which includes the device name.

Data Structure Type Summary

lei_version 3-byte array

lcl_nodename 7 -byte array

lcl-.nodeaddr 2 bytes

lel~egsize 2 bytes

Icl~oekets 1 byte

lcl.-deenet_deviee 1 byte

lel_deenet-patb 4 bytes

Assembly Language 6-39

6.7.11 PEERADDR

NAME r-~

PEERADDR - get information about your peer socket.

IOCB Data Members
Bytes

+-------+
I

+-------+
10

+-------+
I hi I
+-------+
I 10 I
+-------+
I hi I
+-------+
I 10 I
+-------+
I hi I
+-------+

10 I
+-------+
I hi I
+-------+
I 10
+-------+

hi I
+-------+

Data Fields: Input or Output

< --+
io fcode: PEERADDR (16) I

. I
io.socket: socket number I

I I
V I

io.flags: 0 (not used)
I
V

io_status: 0 for success,
I or -1 if unsuccessful
V

io.errno: error detail,
I if status: -1
V

I
I
I
I
I
I
I
I
I
I
I
I
I

io.psize: 26 bytes <----------------+
I
V

I < --+
+-------+ I
I I I

+-------+

Data structure: sockaddr.dn I
I
I

< --+

DESCRIPTION

The PEERADDR call returns information about your peer socket.

Input Data

IOCB
HEADER

IOCB
PARAMETER

LIST

io-/code specifies PEERADDR as the function code. It has a decimal value of
16.

io-.Socket

6-40

specifies the number for the socket which has been created by the
ACCEPT or ATTACH call.

DECnet-VAXmate Programmer's Reference Manual
\

(

(

io-flags defines specific flag options. You must set this data member to O. It is
not used with the PEERADDR call.

io-psize

Output Data

specifies the size of the data structure sockaddr --tin as 26 bytes.

io~tatus returns a 0 upon successful completion. If an error occurs, io~tatus
returns a -1. The io_errno field will also contain additional error
detail.

io_errno returns additional error detail if io~tatus returns a -1. (See the
DIAGNOSTICS section for a possible error condition.)

sockaddr --tin specifies the socket address data structure. A user retrieves data from
the fields filled in by this function call. (See Appendix B on how
sockaddr_dn is formatted.)

The following data fields can be filled in by this function call:

is the address family AF_DECnet. sdn-family

sdn_objnum is the object number for the peer task. It can be a number from 0
to 255.

sdn_objnamel is the size of the object name for the peer task.

sdn_objname is the name of the peer network task. It can be up to a 16-ele­
ment array. It is only used when sdn_objnum equals o.

sdn~dd is the node address structure for the peer task. (See Appendix B
on how dn-fladdr is formatted.)

Data Structure Type Summary

sdn-family 2 bytes

sdn_objnum 1 byte

sdn_objnamel 2 bytes

sdn_objname 16-byte array

sdn_add 4 bytes

DIAGNOSTICS

[EBADF] The argument io~ocket does not contain a valid socket number.

Assembly Language 6-41

6.7.12 RCVD

NAME

RCVD - receive data on a specified socket.

IOCB Data Members

Bytes Data Fields: Input or Output

+- - - - - - -+ <- --+
1 1 io_fcode: RCVD (8)
+-------+
1 10 1 io_socket: socket number
+-------+ 1

hi V
+-------+
1 10 1
+-------+
1 hi 1
+-------+
1 10
+-------+
1 hi 1

+-------+
1 10 1

+-------+
1 hi 1
+-------+

(peek message)
(NEOM)

io_status: -1 if unsuccessful,
1 0 - received message, zero
V length or logical link down,

1 if partial message received
io_errno: error detail,

1 if status: -1
V

1 10 1 io_psize: user defined <-----------+
+-------+ 1 size of io_buffer (input)
1 hi 1 V number of bytes received (output)
+-------+
I- 1 <-----------------------------------+
+-------+ 1

1 1 1

+-------+

Data structure: io buffer 1

1

1
< --+

IOCB
HEADER

IOCB
PARAMETER

LIST

6-42 DECnet-VAXmate Programmer's Reference Manual

(

CIOCB Data Members - For Asynchronous Mode
Bytes Data Fields: Input or Output

+- - - - - - -+ < --+
io fcode: RCVD (8) I

+-------+ - I
10 I io_socket: socket number

+-------+ I
I hi I V
+-------+

10
+-------+

hi I
+-------+

10
+-------+
I hi I
I I
+-------+

10
+-------+

hi
+-------+

10
+-------+
I hi
+-------+

+-------+
I

V

(peek message)
(asynchronous)
(callback)
(NEOM)

io_status: -1 if unsuccessful
I 0 - received message, zero
V length message or logical link

down, -2 if pending, 1 if
partial message received

io_errno: error detail,
I if status: -1
V

io_psize: user defined <---------+
I size of io_buffer (input)
V number of bytes received (ouput)

< --+
I
I

Data structure: io buffer I
I
I

< --+
+- - - - - - -+ < --+

10 offset I
+-------+ I I

hi v I
+-------+ io callback I

10 segment I
+-------+ I I

hi v I
+- - - - - - -+ < --+

DESCRIPTION

CIoce
HEADER

CIOCB
PARAMETER

LIST

CALLBACK
ADDRESS

The RCVD call is used to receive data from your peer. If no messages are available at the
socket, the RCVD call waits for a message to arrive unless the socket is nonblocking. In
this case, a status of -1 is returned with the field io_errno set to EWOULDBLOCK.

Assembly Language 6-43

If the socket becomes disconnected, queued data can still be received from the broken
logical link. However, if you shut down the socket or detach it, queued data cannot be
received. When the logical link is not in a connected state, and all data has been read,"
the RCVD call returns zero bytes.

For sequenced sockets, you can read a single message with mUltiple calls into multiple
buffers. (See Appendix A for a description of socket types.) To do this, set the io-flags
field to MSG-.NEOM (not end of message).

NOTE

MSG-.NEOM is not a valid option for stream sockets. Stream mode
destroys all record boundaries.

For example, you want to receive a 300 byte message but you only specified a receive
buffer of 100 bytes. Normally, the RCVD call would flush the rest ofthe message (after
you read the first 100 bytes) and return a status of O. Setting io-flags to MSG-.NEOM
indicates that the caller does not want the remaining unread data to be flushed. If the
user did not receive the entire message, io--status returns a value of 1. MSG-.NEOM
allows you to issue another RCVD call and read the remaining 200 bytes ofthe buffer.

In addition to flagging the RCVD call with MSG-.NEOM, you can also set the flags
option to MSG-YEEK. This option enables you to "peek" or read the next pending
message without removing it from the receive queue. When the RCVD call is flagged
with MSG-YEEK and MSG-.NEOM, mUltiple RCVD calls can be made to peek at the
entire message. You cannot peek at more than one message.

The SELECT call may be used to determine when more data has arrived. (See Section '''.. /
6.7.14.)

DESCRIPTION - For Asynchronous Mode

The RCVD call is used to receive data from your peer. If the socket becomes discon­
nected, queued data can still be received from the broken logical link. However, if you
shut down the socket or detach it, queued data cannot be received. When the logical
link is not in a connected state, and all data has been read, the RCVD call returns zero
bytes.

When the asynchronous form of the RCVD call is used, it is possible that the call may
not complete. If so, there are two ways for you to check the status of the call:

• If the asynchronous form of the RCVD call is used, you can also specify that a call­
back routine be used. The message option, MSG_CALLBACK, allows the network
to issue a callback routine when the RCVD call completes.

• If there is no callback routine, you should poll for status. To do this, examine the
io--status field. A value of -2,0, -lor 1 may be returned. A value of -2 indicates
pending (no change) status. If a value of 0 is returned, you need to see how the call
was completed: If the message was received, the number of bytes sent by your peer
is returned in io-psize. Otherwise, a zero length message was received or the logi-
cal link has been disconnected. ("

\.._/
6-44 DECnet-VAXmate Programmer's Reference Manual

(

(~

A value of 1 indicates that a partial message was received.

If the call is unsuccessful, io--status returns a value of -1. The error reason will be
contained in io_ermo. For a description of error messages, see the DIAGNOSTICS
section.

For sequenced sockets, you can read a single message with mUltiple calls into multiple
buffers. To do this, set the io-flags field to MSG~EOM (not end of message).

NOTE

MSG~EOM is not a valid option for stream sockets. Stream mode
destroys all record boundaries.

For example, you want to receive a 300 byte message, but you only specified a receive
buffer of 100 bytes. Normally, the RCVD call would flush the rest of the message (after
you read the first 100 bytes) and return a status of o. Setting io-flags to MSG~EOM
indicates that the caller does not want the remaining unread data to be flushed. If the
user did not receive the entire message, io--status returns a value of 1. MSG_NEOM
allows you to issue another RCVD call and read the remaining 200 bytes of the buffer.

In addition to flagging the RCVD call with MSG_NEOM, you can also set the flags
option to MSG~EEK. This option enables you to "peek" or read the next pending
message without removing it from the receive queue. When the RCVD call is flagged
with.MSG_PEEK and MSG~EOM, mUltiple RCVD calls can be made to peek at the
entire message. You cannot peek at more than one message.

The SELECT call may be used to determine when more data has arrived. (See Section
6.7.14.)

Input Data

io-/code

io--socket

to-flags

specifies RCVD as the function code. It has a decimal value of 8.

specifies the number for a socket created by the ACCEPT or ATTA CH
call.

defines specific flag options. You can set this field to 0 for reading
normal messages. To read the next pending message without remov­
ing it from the receive queue, set the io-flags field to MSG_PEEK.
To receive a single message having multiple parts, set the io-flags
field to MSG~EOM. The hexadecimal value for each flag option is
listed in Appendix A.

For Asynchronous Mode: You can set this data member to
MSG-ASYNC and MSG_CALLBACK for implementing asynchro­
nous callback routines. MSG-ASYNC processes the asynchronous
I/O form of the RCVD function call. MSG_CALLBACK allows the
network to issue a callback routine when the RCVD call completes.
In addition to asynchronous callbacks, you can set the io-flags to
MSG~EEK and/or MSG~EOM. MSG~EEK allows you to read

Assembly Language 6-45

the next pending message without removing it from the receive
queue. MSG~EOM allows you to receive a single message in multi-
ple parts. The hexadecimal value for each flag option is listed in / -",

AppendixA.

io-psize specifies the size of the user defined buffer.

to_buffer specifies the address for the buffer which contains the incoming mes-
sage. (Refer to Appendix B on how io_buffer is formatted.)

io_callback For Asynchronous Mode: If the MSG_CALLBACK bit is set in
io-f/ags, then io_callback specifies the 4 byte address of the func-
tion to be called by the network process when the function com-
pletes. (See Appendix B on how the data type exptr is formatted.)

Output Data

io_buffer is the address for the buffer which will contain the incoming mes-
sage. (Refer to Appendix B on how io_buffer is formatted.)

io-pstze specifies the number of transferred bytes upon successful comple-
tion.

io-..Status If status returns a 0, the message was received. (Check io-psize for
the number of transferred bytes.) Otherwise, you have received a
zero length message, or the logical link has been disconnected. To
determine the state of the logical link, use the GETSOCKOPT func-

\
tion call with the DSOJINKINFO option (See Section 6.7.17). If the
link has been disconnected, then all subsequent receives will return
zero bytes.

If an error occurs, io-..Status returns a -1. The io_errno field will
also contain additional error detail.

For Asynchronous Mode: If the call's status is still pending, a value
of -2 is returned. If status returns a 0, the message was received.
(Check io-psize for the number of transferred bytes.) Otherwise,
you have received a zero length message, or the logical link has been
disconnected. To determine the state of the logical link, use the
GETSOCKOPT function call with the DSOJINKINFO option (See
Section 6.7.17). If the link has been disconnected, then all subsequent
receives will return zero bytes.

If an error occurs, io-..Status returns a -1. The io_errno field will
also contain additional error detail.

io_errno returns additional error detail if io-..Status returns a -1. (See the
DIAGNOSTICS section for a list of error conditions.)

If you receive a zero length message, io_errno will return a 1.
/ " I

6-46 DECnet-VAXmate Programmer's Reference Manual

(....

(

Data Structure Type Summary

io_buffer

io_callback

DIAGNOSTICS

4 bytes

4 bytes

When receiving normal data, the following set of error messages can occur:

Blocking I/O

Message

[EBADFJ

Nonblocking 1/0

[EBADFJ

[EWOULDBLOCKJ

Assembly Language

Description

The argument io~ocket does not contain a valid socket
number.

The argument io~ocket does not contain a valid socket
number.

The receive operation would block because there is cur­
rently no data to receive.

EWOULDBLOCK is not a valid error message for the
asynchronous form of the RCVD call.

6-47

6.7.13 RCVOOB

NAME

RCVOOB - receive out-of-band messages on a specified socket.

IOCB Data Members

Bytes Data Fields: Input or Output

+- - - - - - -+ <- --+
I io.fcode: RCVOOB (13)
+-------+
I 10 io.socket: socket number
+-------+ I

hi V
+-------+
I 10 I io.flags: (peek message)
+-------+ I
I hi V
+-------+
I 10
+-------+
I hi I
+-------+
I 10
+-------+
I hi I
+-------+

io_errno:
I

V

-1 if unsuccessful,
o - received message,
zero length message or
logical link down

error detail,
if status: -1

I 10 I io_psize: user defined <-----------+
+-------+ I size of io.buffer (input)
I hi I V number of bytes received (output)
+-------+
r I <-----------------------------------+
+-------+ I
I I

+-------+

Data structure: io buffer I
I
I

< --+

IOCB
HEADER

IOCB
PARAMETER

LIST

6-48 DECnet-VAXmate Programmer's Reference Manual

(

CIOCB Data Members - For Asynchronous Mode

+-------+ < --+
I I io_fcode: RCVOOB (13) I
+-------+ I
I 10 I io_socket: socket number I
+-------+ I I
I hi I V I
+-------+ I

10 io_flags: (peek message) I
+-------+ I (asynchronous)

hi V (callback) CIOCB
+-------+
I 10
+-------+
I I
I hi I
I I
I I
+-------+

io_status: -2 for pending
I status,
I -1 if unsuccessful,
V 0 if received

message, zero length message
or logical link down

I 10 I io_errno: error detail,
+-------+ I if status: -1
I hi I V
+-------+
I 10 io.psize: user defined (---------+
+-------+ I size of io.buffer (input)
I hi V number of bytes received (output)
+_ _-+

< --+
+-------+ I
I I

Data structure: io buffer I
I
I

< --+
+- - - - - - -+ < --+
I 10 offset I
+-------+ I I
I hi I v I

+-------+ io callback I
I 10 I segment I

+-------+ I I
I hi I v I

+- - - - - - -+ < --+

Assembly Language

HEADER

CIoce
PARAMETER

LIST

CALLBACK
ADDRESS

6-49

DESCRIPTION

The RCVOOB call is used to receive out-of-band data from another socket. Out-of-band /
messages are delivered to a receiving task ahead of normal messages. If the socket is set "j
to nonblocking 1/0, and there is no data to receive, a status of -1 is returned with the
field io_errrto set to EWOULDBLOCK.

NOTE

This occurs whether or not the socket is in blocking or nonblocking
mode.

If the socket becomes disconnected, queued data can still be received from the broken
logical link. However, if you shut down the socket or detach it, queued data cannot be
received. When the logical link is not in a connected state, and all data has been read,
the RCVOOB call will not return.

The SELECT call may be used to determine when more data has arrived. (See Section
6.7.14.)

DESCRIPTION - For Asynchronous Mode

The RCVOOB call is used to receive out-of-band data from another socket. Out-of-band
messages are delivered to a receiving task ahead of normal messages.

When the asynchronous form of the RCVOOB call is used, it is possible that the call
may not complete. If so, there are two ways for you to check the status of the call:

• If the asynchronous form of the RCVOOB call is used, you can also specify that a
callback routine be used. The message option, MSG_CALLBACK, allows the net­
work to issue a callback routine when the RCVOOB call completes.

• If there is no callback routine, you can poll for status. To do this, examine the
io---status field. A value of -2,0, or -1 may be returned. A value of -2 indicates
pending (no change) status. If status returns a 0, the message was received. (Check
io-psize for the number of transferred bytes.) Otherwise, you have received a
zero length message, or the logical link has been disconnected.

If the call is unsuccessful, io---status returns a value of -1. Additional error detail
will also be contained in io_errrto. For a deSCription of these error messages, see
the DIAGNOSTICS section.

If the socket becomes disconnected, queued data can still be received from the broken
logical link. However, if you shut down the socket or detach it, queued data cannot be
received. When the logical link is not in a connected state, and all data has been read,
the RCVOOB call will return but the function will not complete. The SELECT call may
be used to determine when more data has arrived. (See Section 6.7.14.)

6-50 DECnet-VAXmate Programmer's Reference Manual

(

(

Input Data

io~code

io---socket

io~ags

io-psize

io_buffer

Output Data

io_buffer

io-psize

io---status

specifies RCVOOB as the function code. It has a decimal value of 13.

specifies the number for a socket which has been created by the
ACCEPT or CONNECT call.

defines specific flag options. You can set this field to MSG_PEEK to
read the next pending message without removing it from the receive
queue. The hexadecimal value for each flag option is listed in Appen­
dixA.

For Asynchronous Mode: You can set this data member to
MSG--ASYNC and MSG_CALLBACK for implementing asynchro­
nous callback routines. MSG--ASYNC processes the asynchronous
I/O form of the RCVOOB function call. MSG_CALLBACK allows the
network to issue a callback routine when the RCVOOB call com­
pletes. In addition to asynchronous callbacks, you can set the
io~ags to MSG_PEEK which allows you to read the next pending
message without removing it from the receive queue. The hexadeci­
mal value for each flag option is listed in Appendix A.

specifies the size of the user defined buffer.

specifies the address for the buffer which contains the incoming out­
of-band message. (Refer to Appendix B on how io_buffer is format­
ted.)

For Asynchronous Mode: If the MSG_CALLBACK bit is set in
io~ags, then io_callback specifies the 4 byte address of the func­
tion to be called by the network process when the function com­
pletes. (See Appendix B on how the data type exptris formatted.)

is the address for the buffer which will contain the incoming out-of­
band message. (Refer to Appendix B on how io_buffer is formatted.)

specifies the number of transferred bytes upon successful comple­
tion.

If status returns a 0, the message was received. (Check io-psize for
the number of transferred bytes.) Otherwise, you have received a
zero length message, or the logical link has been disconnected. To
determine the state of the logical link, use the GETSOCKOPT func­
tion call with the DSO-LINKINFO option (See Section 6.7.17). If the
link has been disconnected, then all subsequent receives will return
zero bytes.

Assembly Language 6-51

If an error occurs, io-status returns a -1. The io_errno field will
also contain additional error detail.

For Asynchronous Mode: If the call's status is still pending, a value
of -2 is returned. If status returns a 0, the message was received.
(Check to-psize for the number of transferred bytes.) Otherwise,
you have received a zero length message, or the logical link has been
disconnected. To determine the state of the logical link, use the
GETSOCKOPT function call with the DSOJINKlNFO option (See
Section 6.7.17). If the link has been disconnected, then all subsequent
receives will return zero bytes.

If an error occurs, io-status returns a -1. The to_errno field will
also contain additional error detail.

returns additional error detail if io-status returns a -1. (See the
DIAGNOSTICS section for a list of error conditions.)

If you receive a zero length message, to_errno will return a 1.

Data Structure Type Summary

to_buffer

to_callback

DIAGNOSTICS

4 bytes

4 bytes

When receiving out-of-band data, the following set of error messages can occur:

Blocking 1/0

Message

[EBADFJ

[EWOULDBLOCKJ

Nonblocklng 1/0

Message

[EBADFJ

[EWOULDBLOCK]

6-52

Description

The argument io-socket does not contain a valid socket
number.

The receive operation would block because there is cur­
rently no data to receive.

EWOULDBLOCK is not a valid error message for the
asynchronous form of the RCVOOB call.

Description

The argument io-socket does not contain a valid socket
number.

The receive operation would block because there is cur­
rently no data to receive.

EWOULDBLOCK is not a valid error message for the
asynchronous form of the RCVOOB call. (',

DECnet-VAXmate Programmer's Reference Manual

(

(-

6.7.14 SELECT

NAME

SELECT - check the I/O status ofthe network sockets.

IOCB Data Members

Bytes Data Fields: Input or Output

+- - - - - - -+ (- --+
io_fcode: SELECT (23) I

+-------+ I
10 io_socket: 0 (not used) I

+-------+ I I
hi V I

+-------+ I
I 10 io_flags: 0 (not used)
+-------+ I

hi V IOCB
+-------+ HEADER
I 10 io_status: number of
+-------+ I descriptors, or
I hi V -1 if unsuccessful
+-------+
I 10 io_errno: error detail,
+-------+ I if status: -1
I hi V
+-------+
I 10 io_psize: 16 bytes (---------------+
+-------+ I

hi V
+-------+

(- --+
+-------+ I
I I

+-------+

Data structure: select_dn I
I
I

(- --+

Assembly Language

IOCB
PARAMETER

LIST

6-53

CIOCB Data Members - For Asynchronous Mode

Bytes Data Fields: Input or Output

+- - - - - - -+ < --+
I I io_fcode: SELECT (23)
+-------+
I 10 I io_socket: 0 (not used)
+-------+ I
I hi I V
+-------+
I 10 I
+-------+
I hi I
+-------+
I 10 I
+-------+
I hi I
I I
+-------+

(asynchronous)
(callback)

number of
descriptors, or
-1 if unsuccessful,
-2 for pending status

I 10 I io_errno: error detail,
+-------+ I if status: -1
I hi I V
+-------+

10 I io_psize: 16 bytes
I

<---------+
+-------+
I hi I
+-------+
I I
+-------+
I I

V

< --+
I
I

Data structure: select_dn I
I
I

< --+
+- - - - - - -+ < --+

10 I offset I
+-------+ I I
I hi I v I
+-------+ io callback I
I 10 I segment I
+-------+ I I
I hi I v I
+- - - - - - -+ < --+

DESCRIPTION

CIOCB
HEADER

CIOCB
PARAMETER

LIST

CALLBACK
ADDRESS

The SELECT call checks the network sockets specified by the bit masks in the data
structure select..--dn to see if they are ready for reading or writing, or if they have any
outstanding out-of-band messages.

6-54 DECnet-VAXmate Programmer's Reference Manual

.. /

(

(

The SELECT call does not tell you if the logical link has been broken. You should use
the SELECT call to help manage your ACCEPT, SEND, SENDOOB, RCVD and RCVOOB
calls.

The I/O descriptors are long words which contain bit masks. Each bit in a mask repre­
sents one socket number. For example, socket "3" is the fourth bit or has a hex value
ofS.

NOTE

The SELECT call can only check socket numbers in the range 0 to 31.

To specify the bit for any socket number, use the value created by the ATTACH or the
ACCEPT call, as "1 < <s".

DESCRIPTION - For Asynchronous Mode

The SELECT call checks the network sockets specified by the bit masks in the data
structure select-tln to see if they are ready for reading or writing, or if they have any
outstanding out-of-band messages.

The SELECT call does not tell you if the logical link has been broken. You should use
the SELECT call to help manage your ACCEPT, SEND, SENDOOB, RCVD and RCVOOB
calls.

The SELECT call examines the network sockets until the call time out (see seL...seconds)
or status is returned. If you specify mUltiple sockets to be examined, and one socket
becomes detached, the SELECT call will return with the error message, EBADF. You
must reissue the SELECT call in order to examine the remaining sockets.

The I/O descriptors are long words which contain bit masks. Each bit in a mask repre­
sents one socket number. For example, socket "3" is the fourth bit or has a hex value
ofS.

NOTE

The SELECT call can only check socket numbers in the range 0 to 31.

To specify the bit for any socket number, use the value created by the ATTACH or the
ACCEPT call, as "1 < <s".

Input Data

io-/code

io-..Socket

io--flags

specifies SELECT as the function code. It has a decimal value of 23.

specifies the socket number. This field is set to O.

defines specific flag options. You must set this data member to O. It is
not used with the synchronous form of the SELECT call.

For Asynchronous Mode: You can set this data member to
MSG--ASYNC and MSG_CALLBACK. MSG--ASYNC processes the
asynchronous 1/0 form of the SELECT function call.
MSG_CALLBACK allows the network to issue a callback routine
when the SELECT call completes.

Assembly Language 6-55

iO-/Jsize

select--fln

seL.nfds

seL . ..read

sel_write

sel_except

sel--secontis

6-56

specifies the size of the data structure select--fln as 16 bytes.

specifies the select data structure which is used for examining bit
masks. The user fills in data for each field. (See Appendix B on how
select--fln is formatted.)

The structure contains the following data fields:

specifies the highest socket number to be checked. The bits
from (1 < <0) to (1 < < (nfds-l» are examined.

specifies the socket numbers (as bit masks) to be examined for
read ready. For listening sockets, a read ready condition indi-
cates that an incoming connection request can be read and
either accepted or rejected. For sequenced sockets, there is a
complete message to be read. For stream sockets, there is some
data to be read. If a socket disconnects or aborts, a read ready
condition will always occur.

This descriptor can be given as a zero value if of no interest.

specifies the socket numbers (as bit masks) to be examined for
write ready. A write ready condition exists when the logical
link is available. This descriptor can be given as a zero value if of
no interest.

specifies the socket numbers (as bit masks) to be examined for
out-of-band data ready. There is a pending out-of-band data
message to receive. This descriptor can be given as a zero value
if of no interest.

defines the maximum interval to wait for a descriptor selection
to be completed. If the time value is set to -1, the SELECT call
will wait until an event occurs. If the time value equals 0, then
the SELECT call will return after an immediate poll. If the time
value is greater than zero, the SELECT call will return either
after n seconds have expired, or when an event occurs, which­
ever one comes first.

For Asynchronous Mode: If the MSG_CALLBACK bit is set in
io-flags, then io_callback specifies the 4 byte address of the
function to be called by the network process when the function
completes. (See Appendix B on how the data type exptr is for­
matted.)

DECnet-VAXmate Programmer's Reference Manual

(

\ /

"
, ... j

(

(

(

Output Data

io-..Status

If a socket is read ready, the bit is returned "on", and seLJ'ead
returns the socket numbers (as bit masks) to be examined. If the
socket is not read ready, the bit is cleared.

If a socket is write ready, the bit is returned "on", and sel_write
returns the socket numbers (as bit masks) to be examined. If the
socket is not write ready, the bit is cleared.

If the socket is out-of-band data ready, the bit is returned "on", and
sel_exceptreturns the socket numbers (as bit masks) to be examined.
If the socket is not out-of-band data ready, the bit is cleared.

For Asynchronous Mode: The number of sockets to be examined for
read ready, write ready, or out-of-band data ready, are not returned
until io-..Status has changed from a pending condition (-2) and the
call has successfully completed.

returns the number of descriptors to be examined upon successful
completion. If an error occurs, io-..Status returns a -1. The
io_errno field will also contain additional error detail.

For Asynchronous Mode: If the call's status is still pending, a value
of -2 is returned. The io-..Status field will return the number of
descriptors upon successful completion. If an error occurs,
io-..Status will return a -1. The io_errno field will also contain addi­
tional error detail.

io_errno returns additional error detail if io-..Status returns a -1. (See the
DIAGNOSTICS section for a possible error condition.)

Data Structure Type Summary

seLftdjs 2 bytes

sel_read 4 bytes

sel_write 4 bytes

sel_except 4 bytes

sel-..Seconds 2 bytes

DIAGNOSTICS

[EBADF] One of the specified bit masks is an invalid descriptor.

Assembly Language 6-57

6.7.15 SEND

NAME

SEND - send data on a specified socket.

IOCB Data Members

Bytes Data Fields: Input or Output

+- - - - - - -+ < --+
io_fcode: SEND (9) I

+-------+ I
I 10 io_socket: socket number I
+-------+ I I

hi V I
+-------+ I
I 10 I io_flags: NEOM I
+-------+ I NBOM I
I hi I V I IOCB
+-------+ I HEADER
I 10 I io_status: 0 if successful I
+-------+ I -1 if unsuccessful I
I hi I V I
+-------+ I
I 10 io_errno: error detail, I
+-------+ I if status: -1 I
I hi V I
+-------+ I
I 10 io_psize: user defined <-----------+
+-------+ I size of io_buffer (input)
I hi V number of bytes sent (output)
+-------+

< --+
+-------+ I
I I

+-------+

Data structure: io buffer I
I
I

< --+

IOCB
PARAMETER

LIST

6-58 DECnet-VAXmate Programmer's Reference Manual

\

(

CIOCB Data Members - For Asynchronous Mode
Bytes Data Fields: Input or output

+-------+ < --+
I I io -fcode: SEND (9) I
+-------+ I

10 I io - socket: socket nu~ber I
+-------+ I I

hi I V I
+-------+ I

10 I io Jlags: (asynchronous) I
+-------+ I (callback) I
I hi I V (NEOM) , (NBOM) I
+-------+ I

10 io status: 0 if successful I
+-------+ I -1 if unsuccessful I

hi V -2 for pending status I
I

+-------+ I
I 10 I io errno: error detail, I
+-------+ I if status: -1 I
I hi I V I
+-------+ I
I 10 I io_psize: user defined <---------+
+-------+ I size of io buffer (input)
I hi I V number of bytes sent (output)
+-------+
I I < --+
+-------+ I

I
Data structure: io buffer I -

I
I

< --+
+- - - - - - -+ < --+
I 10 I offset I
+-------+ I I
I hi I v I
+-------+ io callback I

10 segment I
+-------+ I I
I hi v I
+- - - - - - -+ < --+

DESCRIPTION

CIOCB
HEADER

CIOCB
PARAMETER

LIST

CALLBACK
ADDRESS

The SEND call is used to transmit data to your peer. The client task uses the socket
number returned by the ATTACH call. The server task uses the socket number returned
by the A CCEPT call.

Assembly Language 6-59

If you cannot get enough buffer space on a blocking socket, the call is blocked. You
must wait until current transmissions are finished. If the socket is set to nonblocking,
the call returns with -1 in io-.-Status, and the error value EWOULDBLOCK in
io_errno. If a socket disconnects, any outstanding data to be sent is discarded. .)

For sequenced sockets, you can send a mUlti-part message as if it is a single message. To
do this, you should flag the SEND call with the required message options, NEOM (not
end of message) and NBOM (not beginning of message).

NOTE

NEOM and NBOM are not valid options for stream sockets. Stream
mode destroys all record boundaries.

The following example describes how to send a 3-part message and have the SEND call
treat it as one message. The io-flags are set as follows:

• First buffer (io-flags = NEOM)

• Second buffer (io-flags = NEOM and NBOM)

• Third buffer (io-flags = NBOM)

At the receive end, the three-part message would be reconstructed and treated as a sin­
gle message.

DESCRIPTION - For Asynchronous Mode

The SEND call is used to transmit data to your peer. The client task uses the socket
number returned by the ATTACH call. The server task uses the socket number returned
by the A CCEPT call.

When the asynchronous form of the SEND call is used, it is possible that the call may
not complete. If so, there are two ways for you to check the status of the call:

• If the asynchronous form of the SEND call is used, you can also specify that a call­
back routine be used. The message option, MSG_CALLBACK, allows the network
to issue a callback routine when the SEND call completes.

• If there is no callback routine, you can poll for status. To do this, examine the
io-.-Status field. A value of -2,0, or -1 may be returned. A value of -2 indicates
pending (no change) status. If a value of 0 is returned, and the SEND call has com­
pleted, the number of bytes transferred to your peer is returned in io-psize.

If the call is unsuccessful, io-.-Status returns a value of -1. Error detail will be con­
tained in io_errno. For a description of these error messages, see the DIAGNOS­
TICS section.

For sequenced sockets, you can, send a multi-part message as if it were a single message.
To do this, you should flag the SEND call with the required message options, NEOM
(not end of message) and NBOM (not beginning of message).

6-60· DECnet-VAXmate Programmer's Reference Manual

/ "

(

(

(-

NOTE

NEOM and NBOM are not valid options for stream sockets. Stream
mode destroys all record boundaries.

The following example describes how to send a 3-part message and have the SEND call
treat it as one message. The io--flags are set as follows:

• First buffer (io--flags = NEOM)

• Second buffer (io--flags = NEOM and NBOM)

• Third buffer (io--flags = NBOM)

At the receive end, the three-part message would be reconstructed and treated as a sin­
gle message.

Input Data

io-/code

io--.Socket

io--flags

io-psize

io_buffer

specifies SEND as the function code. It has a decimal value of9.

specifies the number for a socket created by the ACCEPT or the CON­
NECTcal1.

defines specific bit options. For sequenced sockets, you can send a
multi-part message as if it were a single message. To do this, the SEND
call is flagged with the message options, MSG-.NEOM and
MSG-.NBOM. When the message is received, it would be recon­
structed and treated as a single message.

The hexadecimal value for each option is listed in Appendix A.

For Asynchronous Mode: You can set io--flags to one or more of
the following bits: MSG--ASYNC processes the asynchronous I/O
form of the SEND function call. MSG_CALLBACK allows the net­
work to issue a callback routine when the SEND call completes. For
sequenced sockets, you can send a multi-part message as if it were a
single message. To do this, the SEND call is flagged with the message
options, MSG-.NEOM and MSG-.NBOM. When the message is
received, it would be reconstructed and treated as a single message.

The hexadecimal value for each option is listed in Appendix A.

specifies the size of the user defined buffer.

specifies the address of the buffer which contains the outgoing mes­
sage. (Refer to Appendix B on how io_buffer is formatted.)

For Asynchronous Mode: If the MSG_CALLBACK bit is set in
io--flags, then io_callback specifies the 4 byte address of the func­
tion to be called by the network process when the function com­
pletes. (See Appendix B on how the data type exptr is formatted.)

Assembly Language 6-61

Output Data

io-psize specifies the number of transferred bytes upon successful completion. /

io--.Status Upon successful completion, a value of 0 is returned. The number of bytes j

transferred to your peer is returned in io-psize. If an error occurs,
io--.Status returns a -1. The io_errno field will also contain additional
error detail.

For Asynchronous Mode: If the call's status is still pending, a value of-2
is returned. Upon successful completion, a value of 0 is returned. The num­
ber of bytes transferred to your peer is returned in io-psize. If an error
occurs, io--.Status returns a -1. The io_errno field will also contain addi­
tional error detail.

io_errno returns error detail if io--.Status returns a -1. (See the DIAGNOSTICS sec-
tion for a list of error conditions.)

Data Structure Type Summary

io_buffer 4 bytes

DIAGNOSTICS

When sending normal data, the following set of error messages can occur:

Blocking 1/0

Message

[EBADF]

[EMSGSIZE]

[ENOTCONN]

[EPIPE]

Nonblocking 1/0

Message

[EBADF]

[EMSGSIZE]

[ENOTCONN]

[EPIPE]

[EWOULDBLOCK]

Description

The argument io--.Socket does not contain a valid socket number.

The size of the outgoing message is more than 2048 bytes.

The SEND call did not complete and the link was disconnected.

The link has been disconnected, aborted, or shut down. No fur­
ther messages can be sent.

Description

The argument io--.Socket does not contain a valid socket number.

The size of the outgoing message is more than 2048 bytes.

The SEND call did not complete and the link was disconnected.

The link has been disconnected, aborted, or shut down. No fur­
ther messages can be sent.

The outbound quota was full, and the message could not be sent.

EWOULDBLOCK is not a valid error message for the asynchro-

/ '\

\

'"

nous form of the SEND call. ,I.

6-62 DECnet-VAXmate Programmer's Reference Manual

(

6.7.16 SENDOOB

NAME

SENDOOB - send out-of-band messages on a specified socket.

IOCB Data Members

Bytes Data Fields: Input or Output

+- - - - - - -+ < --+
I I io_fcode: SENDOOB (14)
+-------+

10 io_socket: socket number
+-------+ I
I hi V
+-------+

10 io_flags: 0 (not used)
+-------+ I

hi V
+-------+
I 10 I io_status: 0 if successful,
+-------+ I -1 if unsuccessful

hi V
+-------+

10 io_errno: error detail,
+-------+ I if status: -1
I hi I V
+-------+
I 10 I io_psize: user defined <-----------+
+-------+ I size of io_buffer (input)
I hi I V number of bytes sent (output)
+-------+

< -+
+-------+ I

+-------+

I
Data structure: io buffer I

I
I

< --+

Assembly Language

IOCB
HEADER

IOCB
PARAMETER

LIST

6-63

CIOCB Data Members - For Asynchronous Mode
Bytes Data Fields: Input or Output

+-------+ <. - - - - - . - .. _. _ .. - _. _. - - - - - - - - - - - --+
I I
+--- .. _-+

io fcode: SENDOOB (14) I
- I

I 10 I io_socket: socket number I
+--_._--+ I I

hi I V I
+--- .. --+ I
I 10 I io_flags: (asynchronous) I
+---.---+ I (callback) I
I hi I V CIOCB
+---.---+
I 10 I
+---.---+
I hi I
I I
+--_ .. _-+

io_status: 0 if successful,
I -1 if unsuccessful,
V -2 for pending status

10 io_errno: error detail,
+- •.. ---+ I if status: -1
I hi V
+---.---+
I 10 I io_psize: user defined < .. --.----+
+-- .. ---+ I size of io_buffer (input)
I hi V number of bytes sent (output)
+_._._--+
I I < .. ------.-- ... --- ----.-------+
+---.---+ I
I I I

Data structure: io buffer I
I
I

< --+
+ - - - - - - - + < - - • --+

10 offset ~
+----.--+ I I

hi v io callback I
+-------+ I
I 10 segment I
+-------+ I I
I hi v I
+- - - - - - -+ < --+

DESCRIPTION

HEADER

CIOCB
PARAMETER

LIST

CALLBACK
ADDRESS

The SENDOOB call is used to send out-of-band data to your peer. An out-of-band mes­
sage is a high priority message that you can send to your peer. Out-of-band messages
are sent to a receiving task ahead of normal messages. If a socket disconnects, anyout­
standing data to be sent is lost.

6-64 DECnet-VAXmate Programmer's Reference Manual

(

DESCRIPTION - For Asynchronous Mode

The SENDOOB call is used to send out-of-band data to your peer. An out-of-band mes­
sage is a high priority message that you can send to your peer. Out-of-band messages
are sent to a receiving task ahead of normal messages. If a socket disconnects, anyout­
standing data to be sent is lost.

For the asynchronous form of the SENDOOB call, you can only have 1 active out-of­
band message and 1 pending out-of-band message.

When the asynchronous form of the SENDOOB call is used, it is possible that the call
may not complete. If so, there are two ways for you to check the status of the call:

• If the asynchronous form of the SENDOOB call is used, you can also specify that a
callback routine be used. The message option, MSG_CALLBACK, allows the net­
work to issue a callback routine when the SENDOOB call completes.

• If there is no callback routine, you can poll for status. To do this, examine the
io---status field. A value of -2,0, or -1 may be returned. A value of -2 indicates
pending (no change) status. If a value of 0 is returned, and the SEND call has com­
pleted, the number of bytes transferred to your peer is returned in io-psize.

If the call is unsuccessful, io---status returns a value of -1. Additional error detail
will also be contained in io_ermo. For a description of these error messages, see
the DIAGNOSTICS section.

Input Data

io--/code

io---socket

io-flags

io-psize

io_buffer

specifies SENDOOB as the function code. It has a decimal value of 14.

specifies the number for a socket created by the ACCEPT or CON­
NECTcall.

defines specific bit options. You must set this data member to O. It is
not used with the synchronous form of the SENDOOB call.

For Asynchronous Mode: You can set to-flags to MSG.-A,SYNC
and MSG_CALLBACK. MSG.-A,SYNC processes the asynchronous
I/O form of the SENDOOB function call. MSG_CALLBACK allows
the network to issue a callback routine when the SENDOOB call com­
pletes.

The hexadecimal value of each flag option is listed in Appendix A.

specifies the size of the user defined buffer.

specifies the address of the buffer which contains the outgoing out­
of-band message. (Refer to Appendix B on how to_buffer is format­
ted.)

For Asynchronous Mode: If the MSG_CALLBACK bit is set in
io-flags, then to_callback specifies the 4-byte address of the func­
tion to be called by the network process when the function com­
pletes. (See Appendix B on how the data type exptr is formatted.)

Assembly Language 6-65

Output Data

io-psize specifies the number of transferred bytes upon successful completion.

io--..Status Upon successful completion, a value of 0 is returned. The number of
bytes transferred to your peer is returned in io-psize. If an error occurs,
io--..Status returns a -1. The io_ermo field will also contain additional
error detail.

For Asynchronous Mode: If the call's status is still pending, a value of-2
is returned. Upon successful completion, a value of 0 is returned. The
number of bytes transferred to your peer is returned in io-psize. If an
error occurs, io--..Status returns a -1. The to_ermo field will also con­
tain additional error detail.

io_ermo returns error detail if io--..Status returns a -1. (See the DIAGNOSTICS sec­
tion for a list of error conditions.)

Data Structure Type Summary

to_buffer

to_callback

DIAGNOSTICS

4 bytes

4 bytes

When sending out-of-band data, the following set of error messages can occur:

Blocking 1/0

Message

[EALREADY]

[EBADF]

[EMSGSIZE]

[ENOTCONN]

[EPIPE]

6-66

Description

The out-of-band message could not be sent. A similar
transmission request is still in progress.

The argument io--..Socket does not contain a valid socket
number.

The size of the outgoing message is more than 16 bytes.

The SEND call did not complete and the link was discon­
nected.

The link has been disconnected, aborted, or shut down.
No further messages can be sent.

DECnet-VAXmate Programmer's Reference Manual

(

Nonblocking 1/0

Message

[EALREADY]

[EBADF]

[EMSGSIZE]

[ENOTCONN]

[EPIPE]

Assembly Language

Description

The out-of-band message could not be sent. A similar
transmission request is still in progress.

The argument io......socket does not contain a valid socket
number.

The size ofthe outgoing message is more than 16 bytes.

The SEND call did not complete and the link was discon­
nected.

The link has been disconnected, aborted, or shut down.
No further messages can be sent.

6-67

6.7.17 SETSOCKOPT and GETSOCKOPT

NAME

SETSOCKOPT and GETSOCKOPT - set and get the options associated with sockets.

IOCB Data Members

Bytes Data Fields: Input or Output

+-------+ (--------_ ••••••••••••.••••••••. _ ••• +
I I io.fcode: SETSOCKOPT (25)
+•.. +

10 I io.socket: socket number
+ ••••••• + I

hi I V
+ ...••.. +
I 10 I io.flags: 0 (not used)
+ .•.•.•. + I

hi I V
+ ••••••• +

10 I io.status: 0 for success,
+ .•••••• + I or -1 if unsuccessful
I hi I V
+ ..•.•.. +

10 I io.errno: error detail,
+ ••••••• + I if status: -1

hi V
+ .••••.. +
! 10 ! io.psize: 8 bytes (................ +
+ ••••••. + I
I hi I V
+ ••••••• +

I (••••••••••••••••••••••••••••• - ••••• +
+ .•••••. + I
I I I

+ ••.•••• +

Data structure: sockopt.dn I
I
I

(•••••••••••••••••••••••••••.••••••• +

IOCB
HEADER

IOCB
PARAMETER

LIST

6-68 DECnet-VAXmate Programmer's Reference Manual

(

(

IOCB Data Members

Bytes Data Fields: Input or Output

+- - - - - - -+ < --+
I I io_fcode: GETSOCKOPT (26)
+-------+
I 10 I io_socket: socket number
+-------+ I

hi I V
+-------+
I 10 I io_flags: 0 (not used)
+-------+ I
I hi I V
+-------+
I 10 I io_status: 0 for success,
+-------+ I or -1 if unsuccessful
I hi V
+-------+
I 10 I io_errno: error detail,
+-------+ I if status: -1
I hi V
+-------+

10 io_psize: 8 bytes <----------------+
+-------+ I

hi V
+-------+
I < --+
+-------+ I
I I

+-------+

Data structure: sockopt_dn I
I
I

< -+

DESCRIPTION

IOCB
HEADER

IOCB
PARAMETER

LIST

The SETSOCKOPT and GETSOCKOPT calls manipulate various options associated
with a socket. Options exist at multiple levels; therefore you must specify the level
number for the desired operation.

NOTE

In the following discussion, references are made to symbolic values.
See Appendix A for details.

Assembly Language 6-69

At the socket level (SOL-SOCKET), the options include:

• SO_KEEPALIVE. If this option is set on a socket, any links and sockets associated
with this socket will remain active, despite any attempts to disconnect them.

NOTE

Before you can terminate a connection over a socket with the
option SO-KEEP ALIVE set, you must first issue a SETSOCKOPT
call with SO-KEEP ALIVE turned off.

You then issue either the ABORT, DETACH, or DISCONNECT
call. The logical links (if any) are disconnected, and the socket and
associated sockets (if any) are aborted or only disconnected. How­
ever, if you issue either call without turning offSO-KEEPALIVE,
the socket remains attached, and the links (if any) stay active.

• SO_LINGER. SO_LINGER controls the actions taken when unsent messages are
queued on a socket and a DISCONNECT call is issued. If SO_LINGER is set, the
connection is maintained until the outstanding messages have been sent. This is the
default condition.

• SO_DONTLINGER. SO-DONTLINGER also controls the actions of unsent mes­
sages. If SO-DONTLINGER is set, and the DISCONNECT call is issued, any out­
standing messages queued to be sent will be lost. The connection is then termi­
nated.

• SO_REUSEADDR. SO-REUSEADDR allows the reuse of a name already bound
tO:l soekt"t For most sitn:ltions :I n:lmp is honncl to :I soekpt onlv onet" HOUTt"vpr

-- - -----------------,------------.------------------- ----J --------- .. -0--1

this option enables you to reuse the same name. This particular option must only
be used for outgoing connection requests. It cannot be used for incoming connec­
tions.

V AXNMS proxy access by user name is made possible if the client task uses the
BIND call specifying the user name as the object name. If you wish to make more
than one proxy connection with the same user name, you must use the
SO-REUSEADDR option.

At the DECnet level (DNPROTO_NSP), socket options may specify the way in which a
connection request is accepted or rejected, may be used to set up optional user data
and/or access control information, and may be used to obtain current link state infor­
mation. The following socket options can be specified:

• DSOJCCEPTMODE. The accept option mode is used at the DECnet level for
processing ACCEPT calls. A socket must be bound (see BIND, Section 6.7.4) before
specifying this option. There are two values which can be supplied for this option.
They are immediate mode, ACC~MMED, and deferred mode, ACC_DEFER.

6-70

ACC_IMMED. ACC~MMED mode is the default condition for this option.
When immediate mode is in effect, control is immediately returned to the

DECnet-VAXmate Programmer's Reference Manual

(

(

server task following an ACCEPT call with the connection request accepted.
The access control information and/or optional user data is ignored by the
server task.

ACC_DEFER. ACC_DEFER mode indicates that the server task completes
the A CCEPT call without fully completing the connection to the client task. In
this case, the server task can examine the optional access control or user data
before it decides to accept or reject the connection request. The server task can
then issue the SETSOCKOPT call with the appropriate reject or accept option.

• DSO_CONACCEPT. DSO_CONACCEPT allows the server task to accept the
pending connection on the socket returned by the ACCEPT call. The original lis­
tening socket was set to deferred accept mode. Any optional user data previously
set by DSO_CONDAT A will also be sent.

• DSO_CONREJECT. DSO_CONREJECT allows the server task to reject the pend­
ing connection on the socket returned by the ACCEPT call. The original listening
socket was set to deferred accept mode. Any optional user data previously set by
DSO_DISDATA will also be sent. The reject reason is the value passed with this
option.

• DSO_CONDATA. DSO_CONDATA allows up to 16 bytes of optional user data to
be set by the SETSOCKOPT call. It can be sent as a result of the CONNECT or the
ACCEPT (with the deferred option) calls. The optional data is passed in a structure
of type optdata_dn. (See Appendix B on how optdata_dn is formatted.) The
data is read by the task issuing the GETSOCKOPT call with this option.

• DSO_DISDATA. DSO~ISDATA allows up to 16 bytes of optional data to be set
by the SETSOCKOPT call. It can be sent as a result of the DISCONNECT call. The
optional data is passed in a structure of type optdata-.dn. (See Appendix B on how
optdata_dn is formatted.) The data is read by the task issuing the GETSOCKOPT
call with this option.

• DSO_CONACCESS. DSO_CONACCESS allows access control information to be
passed by the user task. This information is set with the SETSOCKOPT call. The
access data is sent to the server task. It is passed with the CONNECT call in a struc­
ture of type accessdata-.dn. (See Appendix B on how accessdata_dn is format­
ted.) The access data is read by the task issuing the GETSOCKOPT call with this
option.

• DSO_LINKINFO. DSO_LINKINFO determines the state of the logical link con­
nection.

When GETSOCKOPT call is issued with this option, the state of the logical link is
returned in a logical link information data structure, linkinJo-.dn. (See Appendix
B on how linkinJo_dn is formatted.)

Assembly Language 6-71

Input Data

io-!code

io---socket

io-flags

io-psize

sockopt..-dn

sop.-level

specifies SETSOCKOPTas the function code. It has a decimal value of
25. This data member also specifies GETSOCKOPTas the function
code. It has a decimal value of 26.

specifies the number for a socket created by the ACCEPT and/or
deferred-mode ACCEPT or ATTACH call.

defines specific flag options. You must set this data member to O. It is
not used with the SETSOCKOPT or the GETSOCKOPT call.

specifies the size of the data structure sockopt..-dn as 8 bytes.

specifies the socket option data structure. (See Appendix B on how
sockopt..-dn is formatted.)

The structure contains the following data fields:

specifies the level at which options are manipulated.

If the level is set to SOL-SOCKET, then sop_optval and
sop_optlen are ignored. If the level is set to DNPROTO~SP,
then the rest of the data structure can contain either access con­
trol or optional user data, or access mode information.

sop_optname specifies options to be interpreted.

. sop_optval,
sop_optlen

When the socket level is set to DNPROTO_NSP,
sop_optname can be set to one of 6 specific options (for exam­
ple, DSO_CONDA T A). St:t: Appt:nilix A for a iist of the specific
options.

specify access option values used with the SETSOCKOPT and
the GETSOCKOPT calls. The interpretation of each argument is
function dependent as shown here:

SETSOCKOPTcall

6-72

specifies the pointer to a buffer which contains information for
setting access option values.

specifies the size of the option value buffer.

GETSOCKOPTcall

specifies the pointer to a buffer which will contain the returned
value for the requested option(s).

is a value result parameter. It should initially contain the size of
the buffer pointed to by sop_optval. On return, it will contain
the actual size of the returned value.

DECnet-VAXmate Programmer's Reference Manual
/

(

(

Output Data

io..-status returns a 0 upon successful completion. If an error occurs, io..-status
returns a -1. The io_errno field will also contain additional error
detail.

returns error detail if io..-status returns a -1. (See the DIAGNOSTICS
section for a list of error conditions.)

GETSOCKOPTcall

specifies the pointer to a buffer which contains the returned value for
the requested socket option(s).

is a value result parameter. On return, it contains the actual size of the
returned value for the buffer pointed to by sop_optval.

Data Structure Type Summary

sop-1evel

sop_optname

sop_optval

op_optlen

sndJow

DIAGNOSTICS

[EACCES]

[EBADF]

2 bytes

2 bytes

4 bytes

4 bytes

2 bytes

[ECONNABORTED]

[ED OM]

[ENOBUFS]

[ENOPROTOOPT]

[EOPNOTSUPP]

Assembly Language

Unable to disconnect the socket.

The argument io..-socket does not contain a valid socket
number.

The accept connect did not complete. The peer task dis­
connected and the connection was aborted.

The acceptance mode is not valid.

There are no available buffers for optional access control
and/or user data.

There was no access control information supplied with
the connection request.

The option is unknown.

6-73

6.7.18 SHUTDOWN

NAME

SHUTDOWN - shut down all or part of a full duplex logical link.

IOCB Data Members

Bytes Data Fields: Input or Output

+-------+ (-----------------------------------+
I I io_fcode: SHUTDOWN (7) I
+-------+ I

10 io_socket: socket to be I
+-------+ I shut down I
I hi V I
+-------+ I
I 10 io_flags: 0 (not used)
+-------+ I

hi V loeB
+-------+ HEADER
I 10 io_status: 0 for success,
+-------+ I or -1 if unsuccessful

hi V
+-------+
I 10 I io_errno: error detail,
+-------+ I if status: -1
I hi I V
+-------+
I 10 io_psize: 2 bytes (----------------+
+-------+ I
I hi V
+-------+
I (- --+
+-------+ I
I I

+-------+

Data structure: shutdown_dn I
I
I

< - - - - - - - - - - - - - ~ --+

DESCRIPTION

IOCB
PARAMETER

LIST

The SHUTDOWN call causes all or part of a full duplex connection on the original
socket to be shut down.

Input Data

io-fcode

io-...Socket

6-74

specifies SHUTDO WN as the function code. It has a decimal value of
7.

specifies the socket number.

DECnet-VAXmate Programmer's Reference Manual

io-flags

iO-/Jsize

defines specific flag options. You must set this data member to O. It
is not used with the SHUTDOWN call.

specifies the size of the data structure sbutdown-.dn as 2 bytes.

sbutdown-.dn specifies the type of shutdown. (See Appendix B on how
sbutdown-.dn is formatted.)

sndJow

Output Data

io-status

DIAGNOSTICS

[EBADF]

[ENOTCONN]

The structure contains the following data field:

specifies the type of shutdown. This argument can be set to:

o which disallows further receives.

1 which disallows further sends.

2 which disallows further sends and receives.

returns a 0 upon successful completion. If an error occurs, io-status
returns a -1. The iO_eN7lo field will also contain additional error
detail.

returns error detail if io-status returns a -1. (See the DIAGNOSTICS
section for a list of error conditions.)

The argument io-socket does not contain a valid
descriptor.

The specified socket is not connected.

Assembly Language 6-75

6.7.19 SIOCTL

NAME

SIOCTL - control the operations of open sockets.

IOCB Data Members

Bytes Data Fields: Input or Output

+ - - - - - - -+ < --+
I I io_fcode: SIOCTL (24)
+-------+
I 10 I io_socket: socket number
+-------+ I
I hi I V
+-------+

10 I io_flags: 0 (not used)
+-------+ I
I hi I V
+-------+
I 10 I io_status: 0 for success,
+-------+ I or -1 if unsuccessful
I hi I V
+-------+

10 I io_errno: error detail,
+-------+ I if status: -1

hi V
+-------+

10 I io psize: 8 bytes <----------------+
+-------+ I

hi I V
+-------+

I < --+
+-------+ I

+-------+

I
Data structure: sioctl_dn I

I
I

< - "- +

DESCRIPTION

IOCB
HEADER

IOCB
PARAMETER

LIST

The SIOCTL call controls the operations of open sockets. The call indicates whether an
argument is an input or output argument and the size ofthe specific argument in bytes.

Input Data

io-Jcode

iO...Jocket

6-76

specifies SIOCTL as the function code. It has a decimal value of 24.

specifies the socket number.

DECnet-VAXmate Programmer's Reference Manual

/"

(

(./

io-flags

io-psize

sioctL...dn

sio-.-S

argp

Output Data

io-.-Status

defines specific flag options. You must set this data member to O. It is
not used with the SIOCTL call.

specifies the size of the data structure sioctl~n as 8 bytes.

specifies the socket 110 control function data structure. (See Appen­
dix B on how sioctl~n is formatted.)

The structure contains the following data fields:

This data field is ignored.

specifies the 110 control function to be used. The control levels
include:

FIONREAD returns the total byte count of all messages waiting
to be read. The argp field points to a word.

FIONBIO sets/clears blocking or nonblocking 110 operation.
argp points to a byte that contains a value of 0 or 1. For blocking
110, argp should point to a value of O. For nonblocking 110,
argp should point to a value of 1.

FIORENUM renumbers an assigned socket number to another
number. In this way, the original socket number is made avail­
able again. The valid range for socket numbers is 0 to 31. argp
points to a word.

The SELECT function call cannot accept socket numbers that
exceed this range. (See Section 6.7.14 for details.)

If you specify a socket number that is already in use, an error
message, EEXIST, is returned.

specifies the address of the argument list.

returns a 0 upon successful completion. When the call is successful,
argp (only if it is FIONREAD) returns the total byte count of all mes­
sages waiting to be read.

If an error occurs, io-.-Status returns a -1. The io_errno field will
also contain error detail.

returns error detail if io-.-Status returns a -1. (See the DIAGNOSTICS
section for a list of error conditions.)

Assembly Language 6-77

Data Structure Type Summary

sio-.S

sio_request

argp

DIAGNOSTICS

[EBADF]

[EOPNOTSUPP]

6-78

2 bytes

2 bytes

4 bytes

The argument io-.Socket does not contain a valid socket
number.

The socket type does not support the socket I/O opera­
tion.

DECnet-VAXmate Programmer's Reference Manual

/
I

(
6.7.20 SOCKADDR

NAME

SOCKADDR - retrieve socket information set by the BIND call.

IOCB Data Members

Bytes Data Fields: Input or Output

+-------+ < --+
I I
+-------+

10 I
+-------+

hi I
+-------+

io_fcode: SOCKADDR (15)

io socket: socket number
I
V

10 I io_flags: 0 (not used)
+-------+ I

hi I V
+-------+

10 io_status: 0 for success,
+-------+ I or -1 if unsuccessful
I hi I V
+-------+
I 10 I io_errno: error detail,
+-------+ I if status: -1
I hi I V
+-------+

10
+-------+

io_psize: 26 bytes <----------------+
I

hi I V
+-------+

< --+
+-------+ I

+-------+

I
Data structure: sockaddr_dn I

I
I

< --+

DESCRIPTION

IOCB
HEADER

IOCB
PARAlItETER

LIST

The SOCKADDR call returns socket information set by the BIND call. If no BIND call
was ever executed, undefined results are returned in output data fields.

Input Data

io-fcode

io--.Socket

specifies SOCKADDR as the function code. It has a decimal value of 15.

specifies the number for a socket which was bound to a name by the
BIND call.

Assembly Language 6-79

io-/lags defines specific flag options. You must set this data member to O. It is
not used with the SOCKADDR call.

io-psize

Output Data

specifies the size of the data structure sockaddr -tln as 26 bytes.

io-...Status returns a 0 upon successful completion. If an error occurs, io-...Status
returns a -1. The io_errno field will also contain error detail.

io_errno returns error detail if io-...Status returns a -1. (See the DIAGNOSTICS
section for a list of error conditions.)

sockaddr -tln specifies the socket address data structure. A user retrieves data from
the fields filled in by this function call. (See Appendix B on how
sockaddr -tln is formatted.)

The following data fields can be filled in by this function call:

sdn-/amily is the address family AF~ECnet.

sdn_objnum is the object number for the local task. It can be a number from 0
to 255.

sdn_objnamel is the size of the object name.

sdn_objname is the object name of the local task. It can be up to a 16-byte
array. It is only used when sdn_objnum equals O.

sdn---'ldd specifies the address structure for the local node. (See Appendix
n nn h".~7' ~I"\,..J",.AA~ A_;,;:o ~_"-",,,""..coA \
~ _ _"" .:....., ____ , __ , .. AU ... va..LAI. ... "" ,

Data Structure Type Summary

sdn-/amily 2 bytes

sdn-/lags 1 byte

sdn_objnum 1 byte

sdn_objnamel 2 bytes

sdn_objname 16-byte array

sdn---'ldd 4 bytes

DIAGNOSTICS

[EBADF) The argument io-...Socket does not contain a valid socket number.

6-80 DECnet-VAXmate Programmer's Reference Manual

/ "\

(~

A
Socket Definitions

The following definitions are related to socket types, option flags, and other related
socket definitions. The symbols that appear in this appendix are defined in the DECnet
header files.

A.1 Communications Domain

DECnet-VAXmate supports the following communications domain:

Decimal
Value Domain

1 AF-DECnet

A.2DECnet Layers

Description

Enables multiple computer systems to participate in commu­
nications and resource sharing within a DECnet network.

The symbol is defined in the < socket.h > header file.

The following DECnet layers are supported by DECnet-VAXmate:

Hexadecimal/
Decimal Value

Oxffff

1

Layer

SOL-SOCKET

DNPROTO~SP

Description

Specifies the socket session interface layer.

Specifies the DECnet layer. How a connection re­
quest is accepted/rejected, optional access control
and/or user data, or link state can be specified. (See
Appendix B for a list of defined data structures.)

These symbols are defined in the < socket.h >
header file.

A-1

A.3 DECnet Objects

Certain DECnet object numbers are used as arguments to the dnet_conn call. The fol-
lowing are ASCII strings: "'-. j

Object ASCII String

DNOBJJAL

DNOBJ~ICE

DNOBJ_TERM

DNOBJ-MIRROR

DNOBJ_EVR

DNOBJ-MAIL11

DNOBJ~HONE

DNOBJ_CTERM

DNOBJ_DTR

17 (File Access Listener)

#19 (Network Information and Control Exchange)

#23 (Network command terminal handler - host side)

#25 (Loopback mirror - MIR)

#26 (Event receiver - EVR)

#27 (Personal message utility)

#29 (phone utility)

#42 (Command terminal operations)

#63 (DECnet test receiver tool- DTR)

The following are decimal numbers:

Decimal
Value Object Process Type

17 DNOBJECT_FAL File Access Listener

i9 iJNUHJlil.;l'~lCli Network Intormation and Control lixchange

23 DNOBJECT~TERM Network command terminal handler - host side

25 DNOBJECT-MIRROR Loopback mirror (MIR)

26 DNOBJECTJVR Event receiver (EVR)

27 DNOBJECT-MAILII Personal message utility

29 DNOBJECT-YHONE Phone utility

42 DNOBJECT_CTERM Command terminal operations

63 DNOBJECT_DTR DEC net test receiver tool (DTR)

These symbols are defined in the <dn.h> header file.

A-2 DECnet-VAXmate Programmer's Reference Manual

(

(-

(

A.4 DECnet Options

At the DECnet layer (DNPROTO~SP), socket options can define how a connection
request is accepted/rejected, specify optional user data and/or access control informa­
tion, or obtain current link state information. The following options can be used to
specify or retrieve data with the setsockopt andgetsockopt function calls:

Decimal
Value Option

1

2 DSO--DISDAT A

3

4 DSO-ACCEPTMODE

o ACC-1:MMED

1

Socket Definitions

Description

Allows up to 16 bytes of optional user data to be
set by the setsockopt call. The optional data is
passed in the optdata---t1n data structure. The
user task reads the data by issuing the getsockopt
call with the connect option. The call returns a
connect status.

Allows up to 16 bytes of optional user data to be
set by the setsockopt call. The optional data is
passed in the optclata---t1n data structure. The
user task reads the data by issuing the getsockopt
call with the disconnect option. The call returns
a disconnect status.

Allows access control information to be set by
the setsockopt call. The access control informa­
tion is passed in the accessdata---t1n data struc­
ture. The user task reads the data by issuing the
getsockopt call. The information is processed
once the task issues the accept call.

Defines the way in which a user task accepts a
pending accept call. A socket must issue a bind
call before this option is valid. The acceptance
mode can be specified as follows:

Specifies the default condition. The accept call is
immediately completed.

Allows the server task to complete the accept call
without fully completing the connection to the
client task. The server task can examine the
source address, access control and/or optional
user data before accepting or rejecting the pend­
ing connection.

A-3

Decimal
Value

5

6

7

7

A.5

Option

DSO_CONACCEPT

DSOJINKINFO

DSO~X

Description

Allows the server task to accept the pending con­
nection on the socket previously set to the
deferred accept mode (ACC~EFER). Any
optional user data previously set by
DSO_CONDAT A will also be sent.

Allows the server task to reject the pending con­
nection on the socket previously set to the
deferred accept mode (ACC~EFER). Any
optional user data previously set by
DSO~ISDATA will also be sent.

Allows the user task to retrieve the state of the
logical link connection. There are four sup­
ported link states. (See Section A.6.)

The link state is returned in the linkinJo---.dn
data structure. It is retrieved with the getsockopt
call.

Specifies the allowable number of defined socket
options.

These symbols are defined in the < dn.h >
header file.

The following bits can be set in the io-flags field which is induded in the IOCB and/or
CIOCB:

Hexadecimal
Value

Ox!

Ox2

Ox8

A-4

Message

MSG_OOB

MSG~EEK

MSG-ASYNC

Description

Process out-of-band messages with the send and recv
calls.

The symbol is defined in the < socket.h > header file.

Read the next pending message without removing the
message from the receive queue. The symbol is
defined in the < socket.h > header file.

Process the asynchronous I/O form of DECnet func­
tion calls.

The symbol is defined in the < socket.h > header file.

DECnet-VAXmate Programmer's Reference Manual

(

(

(-

Hexadecimal
Value Message

OxlO MSG_CALLBACK

Ox20 MSG.-NEOM

Ox40 MSG.-NBOM

A.6 Logical Link States

Description

Allows the network to issue a callback routine when a
specific function call completes.

The symbol is defined in the < socket.h > header file.

For sequenced sockets, use MSG.-NEOM with the
option MSG.-NBOM to send a mUlti-part message as
if it were a single message. To receive a single mes­
sage in multiple parts, flag the receive call with
MSG.-NEOM.

The symbol is defined in the < socket.h > header file.

For sequenced sockets, flag the send call with
MSG.-NBOM and MSG.-NEOM to send a multi-part
message as if it were a single message. MSG.-NBOM
cannot be used for receive operations.

The symbol is defined in the < socket.h > header file.

The following logical link states are supported by DECnet-VAXmate.

Decimal
Value State Description

0 LLJNACTIVE The logical link is inactive.

1 LL-CONNECTING The logical link is connecting.

2 LL-RUNNING The logical link is running.

3 LL~ISCONNECTING The logical link is disconnecting.

The symbols are defined in the < dn.h > header file.

A.7 Maximum Number of Incoming Connection Requests

The maximum number of incoming connection requests is specified as follows:

Hexadecimal
Description Value

Ox5

Message

SOMAXCONN Defines the maximum number of incoming connection
requests which are allowed on the specified socket.

The symbol is defined in the < socket.h > header file.

Socket Definitions A-5

A.S Socket Interface Options

At the socket level (SOL-SOCKET), the following options exist:

Hexadecimal
Value

Ox04

Ox08

Ox80

Flag

SO--REUSEADDR

SO--KEEPALIVE

SO--LINGER

SO~ONTLINGER

Description

Allows the reuse of a bound socket name. This
option must only be used for outgoing connection
requests.

If this option is set on a socket, any links and
sockets associated with this socket remain active,
despite any attempts to abort, detach and/or dis­
connect them. The effects of ABORT, DETACH,
and DISCONNECT functions are only realized
after SO-KEEPALIVE is turned off.

Controls the actions taken when unsent messages
are queued on a socket and the sclose (or the DIS­
CONNEC1) call is issued. If SO--LINGER is set,
the connection is maintained until the outstand­
ing messages have been sent.

Controls the actions of unsent messages. If
SO~ONTLINGER is set, and the sclose (or the
DISCONNEC1) call is issued, any outstanding
messages queued to be sent will be lost. The con­
nection is then terminated.

The symbols are deftned in the < socket.h> header me.

A.9 Socket Types

DECnet-V AXmate supports the following socket types:

Decimal
Value Type Description

1 SOC~TREAM

5 SOC~EQPACKET

Stream sockets cause bytes to accumulate until
internal DECnet buffers are full. The receiving
task does not know how many bytes were sent
in each write operation.

Sequenced sockets cause bytes to be sent imme­
diately. The receiving task receives those bytes
in one "record".

The symbols are defined in the < socket.h > header me.

A-6 DECnet-VAXmate Programmer's Reference Manual

(

A.10 Defined Software Modules

The following software modules are supported by DECnet-VAXmate. They have
defined three letter acronym (da) strings.

Module
Name TLAString Description

DNMODJES SES MS-NET to DECnet Session Interface

DNMOD_LAT LAT LATdriver

DNMOD~DV PDV Port driver

DNMOD_SCH SCH Real-Time Scheduler

DNMOD-1)LL DLL Data Link Layer

DNMOD-1)NP DNP DECnet Network Process

The following interrupt vectors have been defined for these DECnet-VAXmate soft­
ware modules:

Vector Number
(Hex) Symbol Description

Ox2a DNMODULLSES MS-NET to DECnet Session interface

Ox6a DNMODULLLAT LATdriver

Ox6b DNMODUL~DV Port Driver

Ox6c DNMODULEJCH Real-Time Scheduler

Ox6d DNMODULE_DLL Data Link Layer

Ox6e DNMODULE-1)NP DECnet Network Process

The symbols are defined in the <dn.h> header file.

Socket Definitions A-7

/

(

(..

B
Defined Data Structures and Data Members

The following data structures can be used with specific socket interface and assembly
language network driver interface calls. Guidelines for specifying a data structure are
detailed with the appropriate function calL The symbols that appear in this appendix
are defined in the DECnet header files.

If data type exptr is used as an address (or a long pointer), it takes the following format.
It is defined in the < types.h > header file.

Bytes

+------+
10 I

+------+ offset
I hi I
+------+

10 I
+------+ segment

hi I
+------+

8-1

B.1 Access Control Information Data Structure

The accesstiata-fin data structure contains the following data members:

Data
Type Size Member Description

unsigned 2 bytes acc-.accl Defines the length of the account string.
short

unsigned 40-byte array acc-.acc Specifies the account string.
char

unsigned 2 bytes acc-passl Defines the length of the password string.
short

unsigned 40-byte array acc-pass Specifies the password string.
char

unsigned 2 bytes acc_usert Defines the length of the user ID string.
short

unsigned 40-byte array acc-"Ser Specifies the user ID string.
char

The symbols are defined in the <dn.h> header file.

B.2 Attach Data Structure

The attach-fin data structure contains the following data members:

Data
Type Size Member Description

int

unsigned
short

unsigned
short

unsigned
short

unsigned
short

unsigned
short

2 bytes

2 bytes

2 bytes

2 bytes

2 bytes

2 bytes

atL . .socket Specifies the number of the socket. If nonzero,
the other data structure members are ignored.

atL..domain Specifies the communications domain for the
socket as AF-DECnet.

att-type Specifies the socket type for the socket. For
example, SOCK-STREAM. (See Appendix A
for a list of defined socket types.)

att-protocol Specifies the protocol for the socket. For exam­
ple, DNPROTO--.NSP. (See Appendix A for a
list of defined protocol interfaces.)

atL_srp Specifies the socket recovery period.

att-.Supreq Specifies the support requirements.

The symbols are defined in the < dnmsdos.h > header file.

B-2 DECnet-VAXmate Programmer's Reference Manual

(-

(

(-

B.3 DECnet Node Address Data Structure

The dn---11addr data structure contains the following data members:

Type Size

unsigned 2 bytes
short

unsigned 2-byte
char array

Data
Member Description

a_len Specifies the length of the DEC net
node address.

a-.addrIDN~AXADDLJ Specifies the DECnet Phase IV node
address for the user task. When
a-.addrIDN~AXADDLJ is used
as a 16-bit unsigned integer, bits
0-9 are the node number, and bits
10-15 are the area number.

The symbols are defined in the <dn.h> header file.

B.4 Listen Data Structure

The listen---.dn data structure contains the following data member:

Type Size Data Description
Member

int 2 bytes lsnJacklog Defines the maximum number of unaccepted
incoming connects which are allowed on this
particular socket.

The symbol is defined in the < dnmsdos.h > header file.

Defined Data Structures and Data Members 8-3

8.5 Local Node Information Data Structure
The localinfo-tln data structure contains the following data members:

Data
Type Size Member Description

unsigned
char

unsigned
char

unsigned
short

unsigned
short

unsigned
char

unsigned
char

exptr

3-byte
array

7-byte
array

2 bytes

2 bytes

1 byte

1 byte

4 bytes

lei_version

lcl-"odename

lcl-"odeaddr

leL~egsize

lcl--soekets

Specifies the software version number for
the network process.

Specifies the node name for the local node.
It is terminated by a null character.

Specifies the DECnet Phase IV node address
for the local node. The node address is for­
matted as a 16-bit unsigned integer, where
bits 0-9 are the node number and bits 10-15
are the area number.

Specifies the minimum buffer segment size
used on the logical link. This number should
match the value defined with the NCP com­
mand, DEFINE EXECUTOR SEGMENT
BUFFER SIZE. (Refer to the DECnet­
V AXmate User's Guide for more details.)

Specifies the number of sockets available for
data exchange.

lel..-tlecneL . ..deviee Specifies the DECnet database device name.

lel..-tleeneL.patb Specifies the address of a buffer that con­
tains the DECnet database path specification
string which includes the device name.

The symbols are defined in the <dnmsdos.h> header file.

8.6 Logical Link Information Data Structure
The linkinfo-tln data structure contains the following data members:

Type Size Data Description
Member

unsigned
short

unsigned
char

2 bytes

1 byte

idn--segsize

idn-'inkstate

Specifies the buffer segment size in use on
the logical link.

Specifies the state of the logical link. (See
Appendix A for a list of logical link states.)

The symbols are defmed in the < dn.h > header file.

8-4 DECnet-VAXmate Programmer's Reference Manual

\.

" \
/

'" - /

B.7 Optional User Data Structure

The optdata_dn data structure contains the following data members:

Data
Type Size Member Description

unsigned 2 bytes opt--status Specifies an extended status value returned
short by function call. A list of the extended error

codes appears in Appendix D.

unsigned 2 bytes opt_optl Is the size of the optional user data.
short

unsigned 16-byte opt-tJata Specifies the optional user data.
char array

The symbols are defined in the <dn.h> header file.

B.8 Select Data Structure

The select--fin data structure contains the following data members:

Data
Type Size Member Description

unsigned 2 bytes seL . ..n/ds Specifies the highest socket number to be

(short checked.

field32 4 bytes sel--,"ead Specifies the socket numbers to be examined
for read ready or incoming connections.

field32 4 bytes sel_write Specifies the socket numbers to be examined
for write ready.

field32 4 bytes sel_except Specifies the socket numbers to be examined
for exception or out-of-band data ready.

unsigned 2 bytes sel--seconds Specifies the time to wait for the socket
short selection to complete.

NOTE

The field32 data member is the same as unsigned long for type.

The symbols are defined in the < dnmsdos.h > header file.

Defined Data Structures and Data Members 8-5

B.9 Shutdown Data Structure

The sbutdown-tln data structure contains the following data member:

Data
Type Size Member Description

int 2 bytes sndJow Specifies the type of shutdown. The argument
can be set to:

o which disallows further receives.

1 which disallows further sends.

2 which disallows further sends and receives.

The symbol is defined in the < dnmsdos.h > header file.

B.10 Socket Address Data Structure

The sockaddr -tin data structure contains the following data members:

Type Size Data Description
Member

unsigned 2 bytes sdn-!amily Specifies the communications domain as
short AF-1)ECnet.

unsigned 1 byte sdn-flags Specifies the object flag option. It must be
char set to zero, if not used.

unsigned i hyte scin_objnum Defines the object number for the socket.
char

unsigned 2 bytes sdn_objnamel Is the size ofthe node's object name.
short

char 16-byte sdn_objname Defines the name of the network task.
array

struct 4 bytes sdn...JUld Specifies the node address data structure.
(See the description of the dn-.naddr data
structure in this appendix.)

The symbols are defined in the < dn.h > header file.

8-6 DECnet-VAXmate Programmer's Reference Manual

"
,

/

/

8.11 Socket 1/0 Status Data Structure

The sioctL.dn data structure contains the following data members:

Data
Type Size Member Description

int 2 bytes sio--.-S This data member is not used by the ATTACH
call.

int 2 bytes sio_request Specifies the 110 control level to be used. (See
Section 4.4.14 for details.)

exptr 4 bytes' argp Specifies the address of the argument list.

The symbols are defined in the < dnmsdos.h > header file.

8.12 Socket Option Data Structure

The sockopt_dn data structure contains the following data members:

Data
Type Size Member Description

int 2 bytes sop..-level Specifies the layer at which options are manipu-
lated.

If the level is set to SOL-SOCKET, then the rest

(of the data structure is ignored. If the level is set
to DNPROTO~SP, then the rest of the data
structure can contain either access control and!
or optional data; or acceptance mode informa-
tion.

int 2 bytes sop_optname Specifies options to be passed for interpretation.

When the socket level is set to DNPROTO~SP,
sop_optname can be set to one of 7 specific
options. For example, DSO_CONDAT A. (See
Appendix A for a list of the specific options.)

exptr 4 bytes sop_optval Specifies an address for the buffer which con-
tains either access control or optional user data.
(See Section 4.4.12 for the relationship between
sop_optname and sop_optval arguments.)

Specifies an address for the buffer which con-
tains acceptance mode information.

exptr 4 bytes sop_optlen Specifies the size of the option value buffer used
as a parameter for the setsockopt call.

It is also a value result parameter for the
getsockopt call.

(~ The symbols are defined in the < dnmsdos.h > header file.

Defined Data Structures and Data Members B-7

B.13 User Access Control Information Data Structure

The dnet--'lccent data structure contains the following data members:

Data
Type Size Member Description

char 1 byte acc~tatus Is used internally by this function call.

char 1 byte accJype Specifies the type of privilege associated with the
user name or password. The four access types
are: 0 for no access rights, 1 for read only access,
2 for write only access, and 3 for read and write
access.

char 40-byte acc_user Specifies the user name. It consists of a 1- to 39-
array alphabetic character string terminated by a null

character.

char 40-byte acc-pass Specifies the password associated with a user
array name. It consists of a 1- to 39-alphabetic charac-

ter string terminated by a null character.

These symbols are defined in the < dnetdb.h > header file.

B.14 User Defined Callback Routine Data Structure

The to_callback member of the CIOCB has the following format:

Type Size

exptr 4 bytes

Data
Member Description

Specifies the address for the callback routine
which will be returned when a function call com­
pletes.

You should refer to Chapter 6 of this manual for more details on the CIOCB data struc­
ture.

B.15 User Defined Data Buffer Structure

The io_buffer member of the IOCB(CIOCB) data structure has the following format:

Type Size

exptr 4 bytes

Data
Member Description

Specifies the address for the buffer which con­
tains user defined data.

You should refer to Chapter 6 of this manual for more details on the IOCB and CIOCB
data structures.

8-8 DECnet-VAXmate Programmer's Reference Manual

\
..

/ '

(

(

f

C
Summary of Error Completion Codes

This appendix lists the error completion codes returned by DECnet-VAXmate in
errno. They provide extended error information to transparent file access, transparent
task-to-task operations, and nontransparent task-to-task communication.

These error codes are a subset of the error codes contained in the external variable
errno. The following descriptions are standard ULTRIX definitions. You should refer
to specific DECnet-V AXmate calls for a network definition of the error codes.

Decimal
Mnemonic Value Description

ESRCH 3 No such process

E2BIG 7 Argument list too long

EBADF 9 Bad file number

EACCES 13 Permission was denied

EFAULT 14 Bad address

EBUSY 16 Mount device busy

EEXIST 17 File exists

EINVAL 22 Invalid argument

EMFILE 24 Too many open files

ENOSPC 28 No space left on device

EPIPE 32 Broken pipe

(continued on next page)

C-1

Decimal
Mnemonic Value Description

Math software

EDOM 33 Argument too large

ERANGE 34 Result too large

Nonblocking and Interrupt 1/0

EWOULDBLOCK 35 Operation would block

EINPROGRESS 36 Operation now in progress

EALREADY 37 Operation already in progress

Argument errors

ENOTSOCK 38 Socket operation on nonsocket

EDESTADDRREQ 39 Destination address required

EMSGSIZE 40 Message too long

ENOPROTOOPT 42 Protocol not available

EPROTONOSUPPORT 43 Protocol not supported

ESOCKTNOSUPPORT 44 Socket type not supported

EOPNOTSUPP 45 Operation not supported on socket ,

EAFNOSUPPORT 47 Address family not supported by protocol
family ""

EADDRINUSE 48 Address already in use

EADDNOTAVAIL 49 Cannot assign requested address

Operational errors

ENETDOWN 50 Network is down

ENETUNREACH 51 Network is unreachable

ECONNABORTED 53 Software caused connection abort

ECONNRESET 54 Connection reset by peer

ENOBUFS 55 No buffer space available

EISCONN 56 Socket is already connected

ENOTCONN 57 Socket is not connected

ETOOMANYREFS 59 Too many references: cannot splice

ETIMEDOUT 60 Connection timed out

(continued on next page) I
(

/

C-2 DECnet-VAXmate Programmer's Reference Manual

Decimal
Mnemonic Value Description

(Operational errors (cont.)

ECONNREFUSED 61 Connection refused

ENAMETOOLONG 63 File name too long

EHOSTDOWN 64 Host is down

EHOSTUNREACH 65 No route to host

Summary of Error Completion Codes C-3

/
(

", /

D
Summary of Extended Error Codes

DECnet-VAXmate supports extended error support to certain socket operations.,
When you write a program which uses the getsockopt function call, extended error
codes can be returned in opt--..Status, a data member of optdata_dn. This can occur
following an attempted connection request or after disconnecting a logical link.

Table D-l lists extended error codes which can be returned following an attempted
connection. It lists the error messages found in dermo.b, the decimal value for each
message, their equivalent error message that dnet_conn returns in ermo, and the
error reason.

Table 0-1: Extended Error Messages - Unable to Make a Connection

Decimal
Error Code

o

1

2

derrno.h
Mnemonic

EREJBYOBJ

EINSSNETRES

EUNRNODNAM

dneLconn
Inerrno

ECONNREFUSED

ENOSPC

EADDRNOTAVAIL

Reason

Connect failed.
Connection rejected
by object.

Connect failed.
Insufficient network
resources.

Connect failed.
Unrecognized node
name.

(continued on next page)

0-1

Table D-1 (cont.): Extended Error Messages - Unable to Make a Connection

Decimal derrno.h dneLconn
Error Code Mnemonic Inerrno Reason \ ,

"- /

3 EREMNODESHUT ENETDOWN Connect failed.
Remote node shut-
tingdown.

4 EUNROBJ ESRCH Connect failed.
Unrecognized object.

5 EINVOBJNAM EINVAL Connect failed.
Invalid object name
format.

6 EOBJBUSY ETOOMANYREFS Connect failed.
Object too busy.

10 EINVNODNAM ENAMETOOLONG Connect failed.
Invalid node name
format.

11 ELOCNODESHUT EHOSTDOWN Connect failed.
Local node shutting
down.

32 ENODERESOURCES ENOSPC Connect failed.
No node resources
for new logical link.

..:,/

33 EUSERESOURCES ENOSPC Connect failed.
No user resources for
new logical link.

34 EACCONREJ ECONNABORTED Connect failed.
Access control re-
jected.

36 EBADACCOUNT ECONNABORTED Connect failed.
Bad account informa-
tion.

38 ENORESPOBJ ETIMEDOUT Connect failed.
No response from
object.

39 ENODUNREACH ENETUNREACH Connect failed.
Node unreachable.

43 ECONNTOOBIG ECONNABORTED Connect failed.
Connect image data
field too long.

(

~
0-2 DECnet-VAXmate Programmer's Reference Manual

(-

(

(

Table D-2lists extended error codes which can be returned following a disconnection.
It lists the error messages found in dermo.h, the decimal value for each message and
the error reason.

Table 0-2: Extended Error Messages - Disconnecting a Logical Link

Decimal
Error Code

o
8

9

38

39

41

42

derrno.h
Mnemonic

EREJBYOBJ

EABTBYNMGT

EUSERABORT

ENORESPOBJ

ENODUNREACH

ENOLINK

ECOMPLETE

Summary of Extended Error Codes

Reason

The end user disconnected a running logical link.

The logical link was disconnected by a third party.

The remote end user has aborted the link.

The end user or node at the other end of the link
has crashed or failed.

The connection has been lost due to a local
timeout.

The connection has been lost due to a protocol
failure, no such link found at remote.

No error, a local end user initiated disconnection
has completed.

D-3

(

(

E
Data Access Protocol (DAP) Error Messages

The Network Task Error log utility provides extended error support to transparent file
access operations. This appendix lists DAP error messages that can be returned by this
utility. The Network File Transfer utility may also return some of these error messages.

E.1 Overview

The DAP messages return status from the remote file system or from the operation of
the cooperating process using DAP. The 2-byte status field (16 bits) is divided into two
fields:

• Maccode (bits 12-15):

• Miccode (bits 0-11):

E.1.1 Maccode Field

Contains the error type code (see Table E-1 in Section
E.1.1).

Contains the specified error reason code (see Tables E-2,
E-3, and E-4, depending on error type, as described in
Section E.1.2).

The value returned in the maccode field describes the functional type of the error that
has occurred. The specific reason for the error is given in the miccode field. Miccode
values correlating to each maccode value listed in Table E-1 are found in the table ref­
erenced in the last column of Table E-1.

E-1

TableE-1: DAP Maccode Field Values

Field
~"\

Value Mlccode \c.,

(Octal) Error Type Meaning Table

0 Pending The operation is in progress. E-3

1 Successful Returns information that indicates E-3
success.

2 Unsupported This implementation of DAP does E-2
not support the specified request.

3 Reserved

4 File open Errors that occur before a file is E-3
successfully opened.

5 Transfer Errors that occur after a file is E-3
error opened and before it is closed.

6 Transfer For operations on open files, E-3
warning indicates that the operation

completed, but not with
complete success.

7 Access Errors associated with terminating E-3
tertnination access to a file. '\

10 Fortnat Error in parsing a message. Format E-2 '.
" /'

is not correct.

11 Invalid Field of message is invalid (that is, E-2
bits that are meant to be mutually
exclusive are set, an undefined
bit is set, a field value is out of
range, or an illegal string is in a field.)

12 Sync DAP message received out of E-4
synchronization.

13-15 Reserved

16-17 User-defined status maccodes

E-2 DECnet-VAXmate Programmer's Reference Manual

E.1.2 Miccode Field

The value returned in this field identifies the specific reason for the error type defined
in the maccode field (see Section E.l.l). Miccode field values are defined in three differ­
ent tables, each table associated with certain maccode values, as outlined below:

• TableE-2:

• TableE-3:

• TableE-4:

For use with maccode values 2, 10, 11

For use with maccode values 0, 1,4,5,6,7

For use with maccode value 12

Table E-2 follows. The DAP message type number (column 1) is specified in bits 6-11,
and the DAP message field number (column 2) is specified in bits 0-5. The field where
the error is located is described in the third column.

Table E-2: DAP Miccode Values for Use with Maccode Values of 2, 10, 11

Type
Number
(bits 6-11)

Field
Number
(bits 0-5)

Miscellaneous message errors

00 00
10

(Configuration message errors

01 00
10
11
12
13
14
20
21
22
23
24
25
26
27
30

Field Description

Unspecified DAP message error
DAP message type field (TYPE) error

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
BITCNT field (BITCNT)
Buffer size field (BUFSIZ)
Operating system type field (OSTYPE)
File system type field (FILESYS)
DAP version number (VERNUM)
ECO version number field (ECONUM)
USER protocol version number field (USRNUM)
DEC software release number field (DECVER)
User software release number field (USRVER)
System capabilities field (SYSCAP)

(continued on next page)

Data Access Protocol (DAP) Error Messages E-3

Table E-2 (cont.): DAP Miccode Values for Use with Maccode Values of 2, 10, 11

Type
Number
(bits 6-11)

Field
Number
(bits 0-5)

Attributes message errors

02 00
10
11
12
13
14
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37
40
41
42
43
44
45

E-4

Field Description

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN 256)
Bit count field (BITCNT)
Attributes menu field (ATTMENU)
Data type field (DAT ATYPE)
Field organization field (ORG)
Record format field (RFM)
Record attributes field (RAT)
Block size field (BLS)
Maximum record size field (MRS)
Allocation quantity field (ALQ)
Bucket size field (BKS)
Fixed control area size field (FSZ)
Maximum record number field (MRN)
Run-time system field (RUNSYS)
Default extension quantity field (DEQ)
File options field (FOP)
Byte size field (BSZ)
Device characteristics field (DEV)
Spooling device characteristics field (SDC); reserved
Longest record length field (LRL)
Highest virtual block allocated field (HBK)
End-of-file block field (EBK)
First free byte field (FFB)
Starting LBN for contiguous file field (SBN)

(continued on next page)

DECnet-VAXmate Programmer's Reference Manual

(
I

\ /

" , / , '

(

(

Table E-2 (cont.): DAP Miccode Values for Use with Maccode Values of 2, 10, 11

Type
Number
(bits 6-11)

Field
Number
(bits 0-5)

Access message errors

03 00
10
11
12
13
14
20
21
22
23
24
25
26

Control message errors

04 00
10
11
12
13
14
20
21
22
23
24
25
26
27
30

Field Description

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
Access function field (ACCFUNC)
Access options field (ACCOPT)
File specification field (FILESPEC)
File access field (FAC)
File-sharing field (SHR)
Display attributes request field (DISPLAY)
File password field (PASSWORD)

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
Control function field (CTLFUNC)
Control menu field (CTLMENU)
Record access field (RAC)
Key field (KEY)
Key of reference field (KRF)
Record options field (ROP)
Hash code field (HSH); reserved for future use
Display attributes request field (DISPLAY)
Block count (BLKCNT)

(continued on next page)

Data Access Protocol (DAP) Error Messages E-5

Table E-2 (cont.): DAP Miccode Values for Use with Maccode Values of 2, 10, 11

Type
Number
(bits &-11)

Field
Number
(bits 0-5)

Continue message errors

05 00
10
11
12
13
14
20

Acknowledge message errors

06 00
10
11
12
13
14
15

Access complete message errors

07

E-6

00
10
11
12
13
14
20
21
22

Field Description

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
Continue transfer function field (CONFUNC)

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
System-specific field (SYSPEC)

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
Access complete function field (CMPFUNC)
File options field (FOP)
Checksum field (CHECK)

(continued on next page)

DECnet-VAXmate Programmer's Reference Manual

('

,(

(

Table E-2 (cont.): DAP Miccode Values for Use with Maccode Values of 2, 10, 11

Type Field
Number Number
(bits 6-11) (bits 0-5)

Key definition message errors

12 00
10
11
12
13
14
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37
40
41
42
43
44
45

Field Description

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
Key definition menu field (KEYMENU)
Key option flags field (FLG)
Data bucket fill quantity field (DFL)
Index bucket fill quantity field (IFL)
Key segment repeat count field (SEGCNT)
Key segment position field (POS)
Key segment size field (SIZ)
Key of reference field (REF)
Key name field (KNM)
Null key character field (NUL)
Index area number field (IAN)
Lowest level area number field (LAN)
Data level area number field (DAN)
Key data type field (DTP)
Root VBN for this key field (RVB)
Hash algorithm value field (HAL)
First data bucket VBN field (DVB)
Data bucket size field (DBS)
Index bucket size field (IBS)
Level of root bucket field (L VL)
Total key size field (TKS)
Minimum record size field (MRL)

(continued on next page)

Data Access Protocol (DAP) Error Messages E-7

Table E-2 (cont.): OAP Mlccode Values for Use with Maccode Values of 2, 10, 11

Type Field I \
\ !

Number Number , /

(bits 6-11) (bits 0-5) Field Description

Allocation message errors

13 00 Unknown field
10 DAP message flags field (FLAGS)
11 Data stream identification field (STREAMID)
12 Length field (LENGTH)
13 Length extension field (LEN256)
14 Bit count field (BITCNT)
20 Allocation menu field (ALLMENU)
21 Relative volume number field (VOL)
22 Alignment options field (ALN)
23 Allocation options field (AOP)
24 Starting location field (LOC)
25 Related file identification field (RFI)
26 Allocation quantity field (ALQ)
27 Area identification field (AID)
30 Bucket size field (BKZ)
31 Default extension quantity field (DEQ)

Summary message errors
"

14 00 Unknown field \,

10 DAP message flags field (FLAGS)
11 Data stream identification field (STREAMID)
12 Length field (LENGTH)
13 Length extension field (LEN256)
14 Bit count field (BITCNT)
20 Summary menu field (SUMENU)
21 Number of keys field (NOK)
22 Number of areas field (NOA)
23 Number of record descriptors field (NOR)
24 Prologue version number (PVN)

(continued on next page)

E-8 DECnet-VAXmate Programmer's Reference Manual

(

(

Table E-2 (cont.): DAP Miccode Values for Use with Maccode Values of 2, 10, 11

Type
Number
(bits 6-11)

Field
Number
(bits 0-5)

Date and time message errors

15 00
10
11
12
13
14
20
21
22
23
24
25
26
27

Protection message errors

16 00
10
11
12
13
14
20
21
22
23
24
25

Name message errors

17 00
10
11
12
13
14
20
21

Field Description

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
Date and time menu field (DATMENU)
Creation date and time field (CDT)
Last update date and time field (RDT)
Deletion date and time field (EDT)
Revision number field (RVN)
Backup date and time field (BDT)
Physical creation date and time field (PDT)
Accessed date and time field (ADT)

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
Protection menu field (PROTMENU)
File owner field (OWNER)
System protection field (PROTSYS)
Owner protection field (PROTOWN)
Group protection field (PROTGRP)
World protection field (PROWLD)

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
Name type field (NAMETYPE)
Name field (NAMESPEC)

(continued on next page)

Data Access Protocol (DAP) Error Messages E-9

Table E-2 (cont.): DAP Miccode Values for Use with Maccode Values of 2, 10, 11

Type
Number
(bits 6-11)

Field
Number
(bits 0-5) Field Description

Access control list message errors (reserved for future use)

20 00
10
11
12
13
14
15
20
21

Unknown field
DAP message flags field (FLAGS)
Data stream identification field (STREAMID)
Length field (LENGTH)
Length extension field (LEN256)
Bit count field (BITCNT)
System-specific field (SYSPEC)
Access control list repeat count field (ACLCNT)
Access control list entry field (ACL)

Table E-3 follows. The error code number (column 1) is contained in bits 0-11. For
corresponding RMS or FCS status codes, refer to the appropriate DECnet or RMS docu­
mentation for each remote system.

Table E-3: DAP Miccode Values for Use with Maccode Values 0, 1, 4, 5; 6, 7

Error Code Error Description·
(bits 0-11)

o
1

2

3

4

5

6

7

10

11

12

13

14

E-10

Unspecified error

Operation aborted

FII-ACP could not access file

File activity precludes operation

Bad area ID

Alignment options error

Allocation quantity too large or 0 value

Not ANSI D format

Allocation options error

Invalid (that is, synchronous) operation at AST level

Attribute read error

Attribute write error

Bucket size too large

(continued on next page)

DECnet-VAXmateProgrammer's Reference Manual

\ /

,.--/

Table E-3 (cont.): DAP Miccode Values for Use with Maccode Values 0, 1, 4, 5, 6, 7

Error Code
(bits 0-11)

15

16

17

20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

37

40

41

42

43

44

45

46

Error Description

Bucket size too large

BLN length error

Beginning of file detected

Private pool address

Private pool size

Internal RMS error condition detected

CannotconnectRAB

SUPDATE changed a key without having attribute ofXBSCHG set

Bucket format check-byte failure

RSTS/E close function failed

Invalid or unsupported COD field

FII-ACP could not create file (STV - system error code)

No current record (operation not preceded by get/find)

F ll-ACP deaccess error during close

Data area number invalid

RFA-accessed record was deleted

Bad device, or inappropriate device type

Error in directory name

Dynamic memory exhausted

Directory not found

Device not ready

Device has positioning error

DTP field invalid

Duplicate key detected; XBSDUP not set

F ll-ACP enter function failed

Operation not selected in ORG$ macro

(continued on next page)

Data Access Protocol (DAP) Error Messages E-11

Table E-3 (cont.): DAP Miccode Values for Use with Maccode Values 0, 1,4, 5, 6, 7

Error Code
(bits 0-11)

47

50

51

52

53

54

55

56

57

60

61

62

63

64

65

66

67

70

71

72

73

74

75

76

77

100

E-12

Error Description

End of file

Expanded string area too short

File expiration date not yet reached

File extend failure

Not a valid FAB (BID does not = FBSBID)

Illegal FAC for record operation, or FBSPUT not set for create

File already exists

Invalid file ID

Invalid flag-bits combination

File is locked by other user

F11-ACP find function failed

File not found

Error in file name

Invalid file options

Device/file full

Index area number invalid

Invalid IFI value or unopened file

Maximum NUM (254) areas/key XABS exceeded

S INIT macro never issued

Operation illegal or invalid for file organization

Illegal record encountered (with sequential files only)

Invalid lSI value on unconnected RAB

Bad key buffer address (KBF = 0)

Invalid key field (KEY = 0 or negative)

Invalid key of reference (SGET/SFIND)

Key size too large

(continued on next page)

DECnet-VAXmate Programmer's Reference Manual

(

(

(

Table E-3 (cont.): DAP Miccode Values for Use with Maccode Values 0, 1, 4, 5, 6, 7

Error Code
(bits 0-11)

101

102

103

104

105

106

107

110

111

112

113

114

115

116

117

120

121

122

123

124

125

126

127

130

131

Error Description

Lowest level index area number invalid

Not ANSI-labeled tape

Logical channel busy

Logical channel number too large

Logical extend error; prior extend still valid

LOC field invalid

Buffer-mapping error

FI1-ACP could not mark file for deletion

MRN value = negative or relative key> MRN

MRS value = 0 for fixed length records and/or relative files

NAM block address invalid (NAM = 0 or is not accessible)

Not positioned to EOF (with sequential files only)

Cannot allocate internal index descriptor

Indexed file; primary key defined

RSTS/E open function failed

XABs not in correct order

Invalid file organization value

Error in file's prologue (reconstruct file)

POS field invalid (POS > MRS; STY = XAB indicator)

Bad file date field retrieved

Privilege violation (OS denies access)

Not a valid RAB (BID does not = RBSBID)

Illegal RAC value

Illegal record attributes

Invalid record buffer address (either odd or not word aligned ifBLK-IO)

(continued on next page)

Data Access Protocol (DAP) Error Messages E-13

Table E-3 (cont.): DAP Miccode Values for Use with Maccode Values 0, 1, 4, 5, 6, 7

Error Code
(bits 0-11)

132

133

134

135

136

137

140

141

142

143

144

145

146

147

150

151

152

153

154

155

156

157

160

161

162

E-14

Error Description

File read error

Record already exists

BadRFA value(RFA=O)

Invalid record format

Target bucket locked by another stream

FII-ACP remove function failed

Record not found

Record not locked

Invalid record options

Error while reading prologue

Invalid RRV record encountered

RAB stream currently active

Bad record size (RSZ > MRS or NOT = MRS if fixed length records)

Record too big for user's buffer

Primary key out of sequence (RAC = RBSSEQ for SPUT)

SHR field invalid for file (cannot share sequential files)

SIZ field invalid

Stack too big for save area

System directive error

Index tree error

Error in file type extension on FNS is too big

Invalid user buffer address (0, odd, or not word aligned if BLK-IO)

Invalid user buffer size (USZ = 0)

Error in version number

Invalid volume number

(continued on next page)

DECnet-VAXmate Programmer's Reference Manual

Table E-3 (cant.): DAP Miccode Values for Use with Maccode Values 0, 1,4,5,6, 7

Error Code
(bits 0-11)

163

164

165

166

167

170

171

172

173

174

175

176

177

200

201

202

203

204

205

206

207

210

211

212

213

Error Description

File write error (STV = system error code)

Device is write locked

Error while writing prologue

Not a valid XAB (@XAB = odd; STY = XAB indicator)

Default directory invalid

Cannot access argument list

Cannot close file

Cannot deliver AST

Channel assignment failure (STV = system error code)

Terminal output ignored due to ~

Terminal input aborted due to @BQY)

Default file name string address error

Invalid device ID field

Expanded string address error

File name string address error

FSZ field invalid

Invalid argument list

Known file found

Logical name error

Node name error

Operation successful

Inserted record had duplicate key

Index update error occurred; record inserted

Record locked, but read anyway

Record inserted in primary key is okay; may not be accessible by secondary
keys orRFA

(continued on next page)

Data Access Protocol (DAP) Error Messages E-15

Table E-3 (cont): DAP Miccode Values for Use with Maccode Values 0, 1, 4, 5, 6, 7

,~ -',

Error Code)
'- /

(bits 0-11) Error Description

214 File was created, but not opened

215 Bad prompt buffer address

216 Asynchronous operation pending completion

217 Quoted string error

220 Record header buffer invalid

221 Invalid related file

222 Invalid resultant string size

223 Invalid resultant string address

224 Operation not sequential

225 Operation successful

226 .Created file superseded existing version

227 File name syntax error

230 Timeout period expired

231 FB$BLK record attribute not supported ,

232 Bad byte size

233 Cannot disconnect RAB

234 Cannot getJFN for file

235 Cannot open file

236 BadJFN value

237 Cannot position to end of file

240 Cannot truncate file

241 File currently in an undefined state; access is denied

242 File must be opened for exclusive access

243 Directory full

244 Handler not in system

(continued on next page)

" E-16 DECnet-VAXmate Programmer's Reference Manual

f
Table E-3 (cont.): DAP Miccode Values for Use with Maccode Values 0, 1,4,5,6, 7

Error Code
(bits 0-11)

245

246

247

250

251

252

253

254

255

256

257

260

261

262

263

264

265

266

267

270

271

272

273

274

275

Error Description

Fatal hardware error

Attempt to write beyond EOF

Hardware option not present

Device not attached

Device already attached

Device not attachable

Shareable resource in use

Illegal overlay request

Block check or CRC error

Caller's nodes exhausted

Index file full

File header full

Accessed for write

File header checksum failure

Attribute control list error

File already accessed on LUN

Bad tape format

Illegal operation on file descriptor block

Rename; two different devices

Rename; new file name already in use

Cannot rename old file system

File already open

Parity error on device

End of volume detected

Data overrun

Data Access Protocol (DAP) Error Messages

(continued on next page)

E-17

Table E-3 (cont.): DAP Miccode Values for Use with Maccode Values 0, 1,4, 5, 6, 7

Error Code
(bits 0-11)

276

277

300

301

302

303

304

305

306

307

310

311

312

313

314

315

316

317

320

321

322

323

324

325

326

E-18

Error Description

Bad block on device

End of tape detected

No buffer space for file

File exceeds allocated space; no blocks left

Specified task not installed

Unlock error

No file accessed on LUN

Send/receive failure

Spool or submit command file failure

No more files

DAP file transfer checksum error

Quota exceeded

Internal network error condition detected

Terminal input aborted due to ~

Data bucket fill size > bucket size in XAB

Invalid expanded string length

Illegal bucket format

Bucket size of LAN does not = IAN in XAB

Index not initialized

Illegal file ~ttributes (corrupt file header)

Index bucket fill size > bucket size in XAB

Key name buffer not readable or writeable in XAB

Index bucket will not hold two keys for key of reference

Multibuffer count invalid (negative value)

Network operation failed at remote node

(continued on next page)

DECnet-VAXmate Programmer's Reference Manual

(

(

Table E-3 (cont.): DAP Miccode Values for Use with Maccode Values 0, 1,4,5,6, 7

Error Code
(bits 0-11)

327

330

331

332

333

334

335

336

337

340

341

342

343

344

345

346

347

350

351

352

353

354

355

Error Description

Record is already locked

Deleted record successfully accessed

Retrieved record exceeds specified key value

Key XAB not filled in

Nonexistent record successfully accessed

Unsupported prologue version

Illegal key of reference in XAB

Invalid resultant string length

Error updating RRVs; some paths to data may be lost

Data types other than string limited to one segment in XAB

Reserved

Operation not supported over network

Error on write behind

Invalid wildcard operation

Working set full (cannot lock buffers in working set)

Directory listing: error in reading volume set name, directory name, or file
name

Directory listing: error in reading file attributes

Directory listing: protection violation in trying to read the volume set,
directory, or file name

Directory listing: protection violation in trying to read file attributes

Directory listing: file attributes do not exist

Directory listing: unable to recover directory list after continue transfer
(skip)

Sharing not enabled

Sharing page count exceeded

(continued on next page)

Data Access Protocol (DAP) Error Messages E-19

E-20 DECnet-VAXmate Programmer's Reference Manual

TableE-4: DAP Miccode Values for Use with Maccode Value 12

(- Type
Number
(bits 0-11) Message Type

0 Unknown message type

1 Configuration message

2 Attributes message

3 Access message

4 Control message

5 Continue transfer message

6 Acknowledge message

7 Access complete message

10 Data message

11 Status message

12 Key definition attributes extension message

13 Allocation attributes extension message

14 Summary attributes extension message

(15 Date and time attributes extension message

16 Protection attributes extension message

17 Name message

20 Access control list extended attributes message

(
Data Access Protocol (DAP) Error Messages E-21

/

)

F
Transparent File Access Error Messages

This appendix summarizes extended error messages for transparent file access opera­
tions. The following messages are displayed by the TNT utility.

Extended Error Message

Cannot get a handle to the network driver.

(Too many logical links already in use. The maximum number is 4.

Error in node specification.

The node name specification was not found in DECPARM.DAT.

Unable to transmit user buffer.

Invalid DAP message type received.

Unsupported DAP flag field received.

Invalid DAP message format received.

Unexpected DAP message received.

Unsupported DAP data type.

Unsupported file organization. DECnet-VAXmate supports sequential file organiza­
tion.

Remote system DAP buffer size is less than 128 bytes.

The file to be accessed is not open.

Error - unknown error.

F-1

The maximum record size has exceeded 128 bytes.

The buffer size for the records contained in the remote input file is too small.

Error in closing file.

F-2 DECnet-VAXmate Programmer's Reference Manual

/ -".,

I

(

f

G
Transporting DECnet-VAXmate Programs

If you develop code to be transported to a DECnet-UL TRIX or any other system that
supports the socket interface library, it is recommended that you use these suggestions:

• The select function has a feature specific only to DECnet-VAXmate. The bit mask
exceptfds is presently not supported by DECnet-ULTRIX. As a result, you cannot
transport code that includes the exception bit mask.

• Include a special prefix and compatibility mode header file in your DECnet­
VAXmate program.

• Define certain function call names depending upon which system compilation is to
take place. For DECnet-V AXmate programs, the socket function calls - ioctl, read,
write and close must be prefixed with an "s".

An example compatibility header file is shown below:

#ifdef MSDOS

#detine ioctl(s, t, a) sioctl(s, t, a)

#define read(s, buf, len) sread(s, buf, len)

#define write(s, buf, len) swrite(s, buf, len)

#define close(s) sclose(s)

#endif

-~--~ .~----------

/*
/*

/*
/*
/*
/*
/*
/*
/*

control */
socket i/o*/

read from */
a socket */
write to */
a socket */
close a */
socket */
MSDOS */

G-1

/

\.

(

(

H
DECnet-VAXmate Programming Examples

H.1 Example Client Task Program

The following networking program uses the DECnet-VAXmate socket interface. In
this example, the client task tries to connect to a task on a remote node;tries to send
data and waits 30 seconds for any incoming data before timing out or until the peer task
decides to close down the link.

1*
* Include standard headers.
*1

#include <stdio.h>

1*
* User defined symbols for conditional compi lation.
*1

#include "dnprefix.h"

1*
* Include some network interface headers.
*1

#include "types.h" 1* Type definitions, abstract data types.
*/
#include "time.h" 1* Time data structures.
*/
#include "dn.h" 1* Network data structures and

1* definitions.
*1
*/
#include
*/
#include
*1

"socket.h" 1* Socket interface layer definitions.

"sioctl.h" 1* Socket liD control functions.

(continued on next page)

H-1

#include "errno.h" /* Global user error definitions returned
*/

/* in 'errno'.

/*
* Conditional ize for DECnet-ULTRIX compatibi I ity.
*/

#ifndef MSDOS
#define sclose(s) close(s)
#define sioctl(s,f,a) ioctl(s,f,a)
#endif

#define SEQUENCED-PACKET 0
#define STREAM I

/*
* Version string.
*/

static char version[]

/*
* Main I ine code.
*/

main(argc, argv)

int argc;
char *argv[];

/*
* Local
*/

data.

t imeva I tmv;

"VI.OI";

st ruct
char
u-..ehar
u-..ehar
u-..ehar
field32
int

*node, *object;
optional-send[16];
optional-receive[16];
data.-buffer[IO];
readfds, writefds;
rec-1 en;

int
int
int
int
int
int
char

/*

sock-iype;
sock;
loop;
count;
len;
indO;
bio[l];

* Make sure there are a val id number of input arguments.
*/

if (argc < 3)
{

printf("Usage: test <node name or address>\
<#objnum or objnam>\n");

ex i t (1) ;

(continued on next page)

H-2 DECnet-VAXmate Programmer's Reference Manual

'" -

(" -.. /

/*
* Display our current version.
*/
printf("\t\tSample - %s\n", &version [0]);

/*
* Set up optional data to send with connect.
*/

strcpy(&opt ional....send[O] , "hello");

/*
* Attempt to connect to the object on the remote node.
*/
rec~en = sizeof(optional-Ieceive);
node = *++argv;
object = *++argv;
sock-1ype = SEQUENCED-PACKET;
printf("connecting to node \"%5\", object \"%s\"\n",

node, object);
if «sock = dnet-conn(node, object, sock-1ype,

&optional....send[O] ,

}

strlen("hello") ,
&optional-Ieceive[O], &rec~en» < 0)

nerror("dnet-conn");
ex i t (1) ;

printf("connect complete with node \"%s\",\
object \"%s\"\n", node, object);

/*
* Check for returned optional data.
*/

if (rec~en)
{

/*

puts("optional data received:");
for (indO = 0; indO < rec~en; indO++)
{

pr i ntf(" %d", opt iona I-Iecei vee indO]);
}
put 5 ('''') ;

* Fi I I a data buffer with dummy data.
*/

for (loop = 0; loop < sizeof(data-Duffer); loop++)
{

data-Duffer[loop] = loop;

/*
* Try to send a dummy data buffer 10 times
* to target object as long as I ink is sti II active.
*/

loop = 10;
wh i Ie (I oop--)

(.~ (continued on next page)

DECnet-VAXmate Programming Examples H-3

H-4

if (dnet-Bof(sock) == 1)
{

printf("1 ink is down.\n");
sclose(sock);
exit(l);

if «count = send(sock, &data-Duffer[O),
sizeof(data-Duffer), 0» < 0)

}

perror("write") ;
sclose(sock);
exit(l);

printf("data successfully sent to %s\n", node);

/*
* Now set the socket to nonblocking mode.
*/

bio[O) = 1;
sioctl (sock, FIONBIO, &bio[O);

/*
* Clean out the data buffer.
*/

bzero(&data-Duffer[O), sizeof(data-Duffer»;

/*
* Continue to receive data from target object unti I
.. disconnected.
*/

wh i Ie (1)

/*
* Check if I ink is sti I I active.
*/

if (dnet-Bof(sock) == 1)
{

printf("link is down.\n");
sclose(sock);
exit(1) ;

* Now check to see if the socket has data avai lable
* to read and timeout after 30 seconds.
*/

readfds = 1 « sock;
tmv.tv-sec = 30;
if «indO = select(sock + 1, &readfds, 0, 0, &tmv» < 0)
{

perror("select");
}
else
{

(continued on next page)

DECnet-VAXmate Programmer's Reference Manual

'-

(-

(

(-

/*

if (indO == 0)
{

printf("receive wait timed out.\n");
sclose(sock) ;
ex i t (1) ;

if «count = recv(sock, &data-Duffer[O],
sizeof(data-Duffer), 0» < 0)

}

if (errno != EWOULDBLOCK)
{

}
else

perror("read");
break;

continue;

printf("data received (%d bytes):\n", count);
for (i ndO = 0; indO < count; i ndO++)
{

printf(" %d", datLbuffer[indO]);
}
puts("") ;

* Finish up. Make the socket I inger on close to al low
* things to get cleaned.
*/

if (setsockopt(sock, SOL~OCKET, SO-LINGER, 0, 0) < 0)
{

perror("setsockopt");

/*
• Close the socket and exit program.
*/

sclose(sock) ;
exit(O);

DECnet-VAXmate Programming Examples H-5

H.2 Example Client Transparent Task-to-Task Program

The following program illustrates transparent task-to-task communication. It describes
the functions that the client task uses to communicate over the network.

*
* Sample cl ient program written in C that shows Transparent
* Task-to-Task using DECnet-VAXmate.
*
* When running this program, the command I ine argument should
* look I ike a network task specification. See the fol lowing
* examples as wei I as examples cited in the documentation:
* For example:
* * \\t\pcdos\\#lOO(to connect by object number)
* \\t\pcdos\smith\xxxxx\\TIMESRV(to connect by object name)
*
* After getting a handle (for example, by connecting to a
* remote object), an attempt is made to write/send some data to
* the object and then close the handle.
* * 0 AI I C include fi les and external functions are
* distributed with the DECnet-VAXmate kit in the fi Ie
* DNETLIB.SRC.
*
* 0 When attempts to run this program fai I, run the uti lity
* TNT.EXE shipped with the DECnet-VAXmate kit to examine
* DECnet errors.
*
*/

#include
#include
#include
#include

<stdio.h>
"types.h"
"scbdef.h"
"errno.h"

static char buf[lOO];

/*
* Function(s) included in DNETLIB.SRC
*/

extern int hopen();
extern int hwrite(), h9'ose();

main(argc, argv)

int argc;

c h a r * a r gv [] ;

i nt i;
i nt j;
int len;
int h = 0;

(continued on next page)

H-6 DECnet-VAXmate Programmer's Reference Manual

"\

/

(

if (argc < 2)
{

printf("Usage: ttttst <TTTJletworkJaskJtring>\n");
printf("\n example:\n");
pr i nt f ("\t ttttst \\ \ \t\\pygmy\\\ \<#objecL.number>\n");
printf("\t or\n"); .
printf("\t ttttst \\\\t\\pygmy\\\\<objecLname>\n");
exit(l) ;

/*
* Fi II a dummy data buffer.
*/

for (i = 0; i < sizeof(buf); i++)
bu f [i] = i;

/*
* Open fi Ie (access remote network object).
*/

h = hopen(argv[l], SCBC-HOPEN);
if (h == ERROR)
{

}

perror("\nopen");
printf("\n (run TNT.EXE to examine network error)");
exit(l);

printf("\nopen succeeded handle: %u (connected to object)",
h) ;

/*
* Write to fi Ie (send data to remote object).
*/

if (hwrite(h, &buf[O], sizeof(buf» != sizeof(buf»
{

perror("\nwrite");
printf("\n (run TNT.EXE to examine network error)");

}
.e I se

printf("\nwrite succeeded (sent data to object)");

/*
* Read from fi Ie handle (receive data from object, if any).
*/

len = hread(h, &buf[O], sizeof(buf»;
if (I en < 0)
{

}
else
{

perror("\nread");
printf("\n (run TNT.EXE to examine network error)");

printf("\nread %u byte(s) (received from object)\n",
len) ;

for (i = j = 0; < len; i++, j++)
{

if(j>9)
{

printf("\n");
j = 0;

(continued on next page)

DECnet-VAXmate Programming Examples H-7

H-8

}
printf(" %4u", buf[i]);

}
/*
* Close fi Ie handle (disconnect I ink).
*/

hclose(h);

printf("\nfinished.");
exit(O);

DECnet-VAXmate Programmer's Reference Manual

(. ".
i
\ j

(
H.3 Example Server Task Program

The following networking program uses the DECnet-VAXmate socket interface. The
example describes the activities of a DECnet-VAXmate server task.

/*

* Program - MIRROR
*
* Copyright (C) 1985, AI I Rights Reserved, by
* Digital Equipment Corporation, Maynard, Mass.
*
.. This software is furnished under a I icense and may be used
.. and copied only in accordance with the terms of such license
* and with the inclusion of the above copyright notice. This
* software or any other copies thereof may not be provided or
* otherwise made avai lable to any other person. No title to
* and ownership of the software is hereby transferred . ..
* The information in this software is subject to change without
* notice and should not be construed as a commitment by
* Digital Equipment Corporation.
*
.. Digital assumes no responsibi I ity for the use or rei iabi I ity
.. of its software on equipment which is not suppl ied
* by Digital.
*
*
* MODULE DESCRIPTION:
*
* Program MIRROR ..
* DECnet-VAXmate, mirror server, DECnet object 25
*
* Networks & Communications Software Engineering
*
.. IDENT HISTORY: ..
* Vl.DO 20-Nov-85 .. DECnet-VAXmate, Version 1.1

nclude <stdio.h>
nclude "types.h"
nelude "dnmsdos.h"
nelude "cln.h"
nclude "soeket.h"
nelude "t ime. h"
nelude "errno.h"
nclude "scbdef.h"

#define MAX-BUF~IZE 2048 /* maximum loop data buffer */

struct sockaddr-Dn sockaddr;
struct optdata-Dn opt;
char buff[MAX-BUF~IZE];
int Isock = -1;

int sock = -1;
char mode[l];
char msg-yersion[] = "MIRROR

/* accept connect data structure */
/* optional data buffer */
/* data buffer */
/ .. incoming connections on */
/* I istening socket */
/* data communications socket */
/* accept mode */
listening (VI. 1)";

DECnet-VAXmate Programming Examples

(continued on next page)

H-9

/*
* Sample DECnet-VAXmate server task. This task wi I I bind itself
* as DECnet object number 25, the standard DECnet object
* reserved for a mirror task. When started, the mirror is the
* only running task. To terminate, the user may
* press any key.

*/
main(argc, argv)
int argc;
char **argv;
{

extern char *malloc();
extern char *dnet-Dtoa();
i nt I en;
int nfds;
unsigned long read;
struct timeval tmv;

/*
* Set up I istening socket for incoming connect requests.
*/

if «Isock = socket (AF-DECnet, SOCK-SEQPACKET, 0» < 0)
mir-Bxit("socket failed", errno);

/*
* Bind task to DECnet object 25.
*/

bzero(&sockaddr, sizeof(sockaddr»;
sockaddr.sdn-1ami Iy = AF-DECnet;
sockaddr.sdn-objnum = 25;
if (bind(lsock, &sockaddr, sizeof(sockaddr» < 0)

mir-Bxit("bind failed", errno);

/*
* Set up I istening socket to I isten for incoming connect
* requests. AI low for up to 5 pending incoming
* connect requests.
*/

if (I isten(lsock, 5) < 0)
mir-Bxit("listen failed", errno);

/*
* Listen for incoming connect requests unti I
* there is keyboard input.
*/

wh i i e (1)
{

/*

/*

* Display mirror version message.
*/
printf("\n%s", msg-yersion);

* Poll I istening socket for incoming connect request.
*/

wh i I e(1)
{

i f (m i r jeyboa rd-i nput (»

H-10

(continued on next page)

DECnet-VAXmate Programmer's Reference Manual

(

(

(

/*

mi r-Bxit(NULL, 0);
bzero(&tmv, sizeof(tmv»;
read = 1 « Isock;
nfds = Isock + 1;
if (select(nfds, &read, 0, 0, &tmv) > 0)
{

if (read & (1 « Isock»
break;

* Issue a deferred accept on the connect request - send
* some optional data along with it.
*/

mode[O) = ACC-DEFER;
if (setsockopt(lsock, DNPROTO~SP, DSO-ACCEPTMODE,

&mode[O) , sizeof(mode» < 0)

mir-Bxit("set accept mode", 1);

len = sizeof(sockaddr);
if «sock = accept(lsock, &sockaddr, &Ien» < 0)

mir-Bxit("accept failed", errno);

/*
* Set up outgoing optional data - maximum mirror
* data buffer size.
*/

bzero(&opt, sizeof(opt»;
opt.opt-Dptl = sizeof(unsigned short);
*(unsigned short *)&opt.opt-Data[O) = MAX-BUF~IZE;
if (setsockopt(sock, DNPROTO~SP, DSO~ONDATA, &opt,

sizeof(opt» < 0)

mir-Bxit("set socket option - optional data",
errno);

if (setsockopt(sock, DNPROTO~SP, DSO~ONACCEPT,
0, 0) < 0)

mi r-Bxit("set connect accept", 1);

/*
* Display peer information.
*/

printf("\n");
printf("\nLoop connect request from node: %s",

dnet-Dtoa(&sockaddr.sdn~dd» ;

if (sockaddr.sdn-Dbjnum == 0)
printf("\nRequesting object name: %s",

&sockaddr.sdn-Dbjname[O) ;
else

printf("\nRequesting object number: %d",
sockaddr.sdn-Dbjnum);

printf("\n") ;
(continued on next page)

DECnet-VAXmate Programming Examples H-11

/*
.. Loop data whi Ie I ink is sti I I active and other end is
.. sti I I sending data.
*/

whi le(!dnet-Bof(sock»
{

/*

len = MAX-BUF~IZE;
len = sread(sock, buff, &Ien);
if (len == 0)
{

}
else
{

if (dnet-Bof(sock»
mir-Bxit(NULL, 0);

if (I en < 0)
mir-Bxit("sread", 1);

}
if (buff [0] != 0)
{

}
else
{

}

buff[O] = -1;
I en = 1;

buff[O] = 1;

if (swrite(sock, buff, len) < 0)
mir-Bxit("swrite", 1);

.. Finished with current data socket, close it up . .. /
if (sock != -1)

sclose(sock);

i nt mi r jeyboa rd~ nput ()
{

SCB scb;

scb.AH = SCBC~KSTAT;
msdos(&scb);
if (scb.AL)

return(l) ;
return(O);

mir-Bxit(sp, err)
char *sp;
int err;
{

if (sp != NULL)
{

st rcpy(buff, "\nmi rror - ");
strcat(buff, sp);

(continued on next page)

DECnet-VAXmate Programmer's Reference Manual H-12

/ " .

./

(

perror(buff) ;

if (Isock != -1)
sclose(lsock) ;

if (sock !=-1)
sclose(sock) ;

exit(err);

DECnet-VAXmate Programming Examples H-13

/

(

(

A

ABORT,6-11
ACCEPT,6-13

and MSG-ASYNC flag, 6-16
and MSG_CALLBACK flag, 6-16
asynchronous mode described,

6-15
accept, 4-7

Accepting connection requests, 1-9,
4-7,6-15

with SYS$NET as node name, 3-10
Access control information

and outgoing proxy logins, 5-9
and remote file access, 2-3
components, 2-7
defining access rights, 1-6
passed with CONNECT call,

6-28
passed with connect call, 4-11
verifying access rights, 1-6,3-2

ASCII files, 2-3
converting remote input files,

2-5
converting remote output files,

2-6
Asynchronous configurations

installing DNPDCP and DLL, 5-21
specifying DECnet database path,

5-21

Asynchronous 110
and ACCEPT, 6-15
and callbacks, 6-7
and CONNECT, 6-29
and RCVD, 6-44
and RCVOOB, 6-50
and SELECT, 6-55
and SEND, 6-60
and SENDOOB, 6-65
defined,6-7
receiving messages, 1-12
sending messages, 1-12

ATTACH,6-19

B

bcmp, 5-5
comparing byte strings, 5-5

bcopy, 5-6
copying byte strings, 5-6

BIND,6-22
bind,4-9
Blocking 110

defined, 1-6

Index

error messages when receiving
normal data, 4-20, 4-40, 6-47

error messages when receiving
out-of-band data, 4-20, 6-52

error messages when sending
normal data, 4-28, 4-42, 6-62

error messages when sending
out-of-band data, 4-28, 6-66

Index-1

Blocking I/O (Cont.)
receiving normal data, 1-12
sending normal data, 1-12

Blocking synchronous I/O
defined,6-7

Break Source utility
creating programming interface

library, 5-1
BREAKSRC

see Break Source utility
Buffers

blocking 110, 4-27, 6-60
nonblockingl/O, 4-27, 6-60
sending messages, 4-27, 6-60

bzero, 5-7
zeroing out bytes, 5-7

c
Clanguage

programming considerations, 4-2
Callback 110 Control Block

members of, 6-6
setting up, 6-5

Callback routines
and asynchronous 110, 6-7
defined,6-7
guidelines for using, 6-8

CANCEL,6-25
cancel previous asynchronous

function request, 6-25
CIOCB

see Callback 110 Control Block
Client task

defined, 1-4
Close, 2-12, 3-9
Closing the logical link, 1-13
CONNECT,6-27

and MSG--ASYNC flag, 6-29
and MSG_CALLBACK flag, 6-29
asynchronous mode described,

6-29
connect, 4-11
Connection requests

and access control information, 1-9
and CONNECT call, 6-28, 6-29
and connect call, 4-11
and optional user data, 1-9
deferred accept/reject mode, 1-9

Index-2

immediate accept mode, 1-9
using dneL-conn, 5-9

Create, 2-13, 3-10
Creating a logical link, 1-9,3-2

handshaking sequence, 3-2

D

DAP
see Data Access Protocol

DAP error messages
see Appendix E

Data
normal,I-12
optional user, 1-6
reading data from peer socket, 4-39
receiving, 1-12,4-19,6-43
receiving out-of-band, 4-19, 6-50
sending, 1-12,4-27,6-59,6-60
sending out-of-band, 4-27,6-64,

6-65
writing data to peer socket, 4-41

Data Access Protocol, 2-2
Data conversions, 2-4

file structure interdependencies,
2-4 to 2-5

for remote input files, 2-5
for remote output files, 2-6

Data Link Layer, 5-21
Data structures

access control information, B-2
attach data, B-2
DECnet node address, B-3
listen data, B-3
local node information, B-4
logical link information, B-4
optional user data, B-5
select data, B-5
shutdown data, B-6
socket address, B-6
socket 110 status, B-7
socket options, B-7
user access control information, B-8
user defined buffer, B-8
user defined callback routine, B-8

DECnet areas, 1-6
DECnet database path

installing DNP, 5-21
installing DNP and DLL, 5-21

f
DECnet database path (Cont.)

locating with dnet_path, 5-20
specifying, 5-20
specifying for asynchronous setups,

5-21
specifying for Ethernet setups, 5-21

DECnet Network Process, 5-21
DEC net objects

see Appendix A
DEC net utility function calls

summary, 5-4
DECnet utility functions, 5-1

bcmp,5-5
bcopy,5-6
bzero,5-7
dneL-addr, 5-8
dnet_conn, 5-9
dneL-eof, 5-13
dneL-getacc,5-14
dneL-getalias,5-16
dneL-htoa, 5-17
dneL-installed,5-18
dnet--11toa, 5-19
dneL-path, 5-20
getnodeadd,5-23
getnodebyaddr, 5-24
getnodebyname, 5-24
getnodeent, 5-24
getnodename, 5-26
nerror, 5-27
perror, 5-28
require dnetdb.h header file,

5-1
DECnet-DOS

and XENIX-compatible 1/0
handle calls, 3-1

DEC net-V AXmate
client task programming example,

H-l toH-5
compatible with DECnet-ULTRIX,

1-1
defining socket interface calls for

DECnet-ULTRIX, G-l
features, 1-1
header files, H-l
network I/O types, 6-7
prevent program hangs by issuing

sioctl, 4-24

DEcnet-VAXmate (Cont.)
programming considerations,

2-11,3-8,4-2,5-2
server task programming example,

H-9 to H-13
transparent task-to-task programming

example, H-6 to H-8
transporting programs to other

systems, G-l
DECnet-VAXmate Network Process

defined, 6-1
installation check, 6-1
installing, 6-1

Delete, 2-15
DETACH, 6-32
DISCONNECT, 6-34
DLL

see Data Link Layer
dneL-addr, 5-8
dneL-conn, 5-9

and outgOing proxy logins, 5-9
and password prompting, 5-9
calling nerror to display error

message, 5-27
dnet_eof,5-13
dneL-getacc, 5-14

retrieving access control information,
5-14

dnet.-getalias, 5-16
dnetjtoa, 5-17
dneL-installed, 5-18

perform installation check with, 5-18
dnet--11toa,5-19
dnet_path, 5-20

locating DECnet-V AXmate database
files, 5-20

DNP
see DECnet Network Process

E

Error messages
using nerror, 5-27
usingperror,5-28

Ethernet configurations
installingDNP,5-21
specifying DECnet database path, 5-21

Extended error reasons
see Appendix D

Index-3

F

FAL
see File Access Listener

File Access Listener, 2-1
File characteristics

ASCII and image data types, 2-3
effects on file transfers, 2-3
file organization, 2-3
fixed size, 2-4
maximum record size, 2-4
record attributes, 2-4
record formats, 2-3

Files
remote input, 2-3
remote output, 2-3

Find first matching file, 2-16
Find next matching file, 2-18
Flags

G

MSG-ASYNC, 6-16, 6-29,
6-45,6-51,6-55,6-61,6-65

MSG_CALLBACK, 6-16, 6-29,
6-45,6-51,6-55,6-61,6-65

MSG~BOM, 6-61
MSG~EOM, 6-45, 6-61
MSG_OOB, 4-19, 4-27
MSG--PEEK,4-19,6-45

getnodeadd, 5-23
getnodebyaddr, 5-24
getnodebyname, 5-24
getnodeent, 5-24
getnodename, 5-26
getpeername, 4-13
getsockname, 4-15
GETSOCKOPT,6-68
getsockopt, 4-30

H

Handles
returned by create and open

function requests, 3-10
used by close function request, 3-9

Header files, H-l, H-9
dn.h, H-l, H-9
dnetdb.h, 5-1
dnmsdos.h, H-9

Index-4

Header files (Cont.)
ermo.h, H-l, H-9
scbdef.h, H-9
sioctl.h, H-l
socket.h, H-l, H-9
stdio.h, H-9
time.h, H-l, H-9
types.h, H-l, H-9

110 Control Block
guidelines for using, 6-3
members of, 6-4

110 control block
and data transfers, 6-3

I/O operations
blocking, 1-6
nonblocking, 1-6

I/O status
and callbacks, 6-7
checking network sockets, 4-24
polling for, 6-7

Image files, 2-3
converting remote input files, 2-5
converting remote output files, 2-6

10CB
see 110 Control Block

L

Libraries
creating a programming interface

library, 4-1, 5-1
DNETLlB.SRC, 4-1
running Break Source utility, 5-1

LISTEN, 6-36
listen, 4-17
Listening for incoming client

connections, 4-17, 6-36
Load and execute a program, 2-20
LOCALINFO, 6-38
Logical link

creating, 1-9
exchanging data, 3-2
rejecting, 1-10
states, A-5
terminating activity on, 1-13, 3-3,

4-22
testing state of, 5-13

(

Logical link (Cont.)

M

using SHUTDOWN call, 6-74
using shutdown call, 4-34

MS-DOS function requests
and TFARs, 2-8

N

close, 2-12, 3-9
create, 2-13, 3-10
delete, 2-15
find first matching file, 2-16
find next matching file, 2-18
load and execute a program, 2-20
open, 2-21,3-10
read, 2-23, 3-12
write, 2-25, 3-13

Named objects, 3-4
and BIND call, 6-22
and bind call, 4-9
assigning to sockets, 4-9

nerror, 5-27
called when dneLconn fails to

make connection, 5-27
log output to stdout, 5-27

Network access
examining network task strings, 3-5
intercepting requests for, 3-5

Network file specifications
file name strings, 2-8
node specifications, 2-7
requesting network access, 2-7
string format, 2-7

Network node database
accessing information, 5-24

Network object number, 1-6
range of, 1-6

Network process interface calls
ABORT,6-11
ACCEPT,6-13
ATTACH,6-19
BIND,6-22
CANCEL, 6-25
CONNECT,6-27
DETACH,6-32
DISCONNECT,6-34
GETSOCKOPT,6-68

Network process interface calls (Cont.)
LISTEN,6-36
LOCALINFO, 6-38
PEERADDR, 6-40
RCVD,6-42
RCVOOB, 6-48
SELECT,6-53
SEND,6-58
SENDOOB, 6-63

Network process interface calls (Cont.)
SETSOCKOPT, 6-68
SHUTDOWN,6-74
SIOCTL, 6-76
SOCKADDR, 6-79

Network process interface calls
summary, 6-10

Network task name
defined with bind call 1-6

Network task specificati~ns, 3-3
format of, 3-4

Node address, 1-6
converting binary to DECnet ASCII

string, 5-17
converting DECnet ASCII string to

binary, 5-8
D ECnet ASCII string, 5-19

Node information
retrieving, 5-16

Node name, 1-6
searching with dneLhtoa, 5-17

Node names
specifying as SYS$NET, 3-10

Node specifications, 2-7, 3-4
and access control data, 2-7
format of, 2-7, 3-4
format using dneLconn, 5-10

Nonblocking 1/0
defined, 1-6
error messages when receiving

normal data, 4-20, 4-40
error messages when receiving

out-of-band data, 4-21
error messages when sending

normal data, 4-28, 4-42, 6-62
error messages when sending

out-of-band data, 4-29, 6-67
receiving normal data, 1-12
sending normal data, 1-12

Index-5

Nonblocking synchronous 110
defined,6-7

Nontransparent communication
network process interface calls, 6-1
using socket interface calls, 4-5

Nontransparent task-to-task
communication, 1-8

socket interface calls, 1-8
Numbered objects, 3-4

and BIND call, 6-22
and bind call, 4-9

o
On-line help

displaying TNT commands,
2-10,3-7

Open, 2-21, 3-10
Optional user data

closing the logical link, 1-13
passed with CONNECT call,

6-28,6-29
passed with connect call, 4-11
size of, 1-6
when disconnecting logical link,

1-6
when requesting logical link, 1-6

Out-of-bandmessages, 1-13
and blocking 110, 1-13
and nonblocking 110, 1-13
and send call, 4-27
checked by SELECT call, 6-54,

6-55
checked by select call, 4-24
receiving, 4-19
size of, 1-13
using MSG_OOB flag, 4-19, 4-27

Outgoing proxy logins
defined,5-9
passed with dneLconn, 5-9

p

Passwords
and dneLconn, 5-9

Peeking at message
using RCVD and MSG~EEK flag,

6-44
using RCVOOB and MSG~EEK flag,

6-51

Index-6

Peer sockets
retrieving name with getpeername,

4-13
retrieving name with PEERADDR,

6-40
PEERADDR, 6-40
perror, 5-28

log output to stdout, 5-28

R

RCVD,6-42
and MSG-ASYNC flag, 6-45
and MSG_CALLBACK flag, 6-45
and MSG~EOM flag, 6-45
and MSG~EEK flag, 6-45
asynchronous mode described, 6-44

RCVOOB, 6-48
asynchronous mode described, 6-50

Read, 2-23, 3-12
Real-time Scheduler, 5-21
Receiving data

read multi-part message set with
MSG~EOM flag, 6-44

using RCVD, 6-43
using recv or sread call, 4-19

Record formats
fixed length, 2-3
stream, 2-3
undefined, 2-3
variable length, 2-3
variable-with-fixed length control,

2-4
recv, 4-19
Rejecting connection requests, 1-9
Remote file access

node name string, 2-2

s
SCH

see Real-time Scheduler
sclose, 4-22, G-l
SELECT,6-53

and MSG-ASYNC flag, 6-55
and MSG_CALLBACK flag, 6-55
asynchronous mode described, 6-55
checking 110 status of sockets, 6-54, 6-55
managing ACCEPT, SEND, SENDOOB,
RCVD and RCVOOB calls, 6-55 /'

f

(

select, 4-24
checking I/O status of sockets, 4-24

SEND,6-58
and MSG-ASYNC flag, 6-61
and MSG_CALLBACK flag, 6-61
and MSG~BOM flag, 6-61
and MSG_NEOM flag, 6-61
asynchronous mode described, 6-60

send,4-27
Sending data

mUlti-part message set with
MSG~EOM and MSG~BOM
flags, 6-60

using SEND call, 6-59, 6-60
using send or swrite call, 4-27

SENDOOB, 6-63
and MSG-ASYNC flag, 6-65
and MSG_CALLBACK flag, 6-65
asynchronous mode described,

6-65
Sequential files, 2-3
Server task

and bind call, 4-9
defined, 1-4
using BIND call, 6-22

SETSOCKOPT, 6-68
setsockopt, 4-30
SHUTDOWN, 6-74
shutdown, 4-34
SIOCTL,6-76
siocd, 4-35, G-l

prevent program hangs on stream
sockets, 4-24

SOCKADDR, 6-79
socket, 4-37
Socket interface

sample calling sequence, 4-6
Socket interface calls, 4-5

accept, 4-7
bind,4-9
connect, 4-11
getpeername, 4-13
getsockname, 4-15
getsockopt, 4-30
listen, 4-17
recv, 4-19
selose, 4-22
select, 4-24
send,4-27
setsockopt, 4-30

Socket interface calls (Cont.)
shutdown, 4-34
siocd, 4-35
socket, 4-37
sread,4-39
swrite, 4-41
used by C programs, 1-8,4-5

Socket interface calls summary, 4-5
Socket names

retrieving name with getsockname, 4-15
retrieving name with SOCKADDR, 6-79
used for listening operations, 1-9,4-9

Socket numbers, 1-9,4-17,4-27
and accept call, 4-7
checked by SELECT call, 6-54, 6-55
checked by select call, 4-24
range of, 4-24, 6-55
renumbering with SIOCTL call, 6-77
renumbering with siocd call, 4-35
returned by ACCEPT call, 6-14
returned by socket call, 4-37
used for listening operations, 4-9
using with network process interface

calls, 6-8
Socket options, 4-30 to 4-32,6-69 to 6-71

retrieving with GETSOCKOPT, 6-69
retrieving with getsockopt, 4-30
setting with SETSOCKOPT, 6-69
setting with setsockopt, 4-30

Socket types
see Appendix A

Sockets
assigning names, 1-9
controlling 1/0 operations of, 4-35,

6-76
creating, 1-9,4-37,6-14
deactivating, 1-13
deactivating with selose call, 4-22
defined, 1-4
detaching, 6-11
exchanging data, 1-4
peer, 4-13, 6-40
sequenced, 1-4
stream, 1-4

sread, 4-39, G-l
stdout

nerror log output to, 5-27
perror log output to, 5-28

swrite, 4-41, G-l

Index-7

T

Target task
accessing by object name, 3-4
accessing by object number, 3-4
defined as named object, 3-4
defined as numbered object, 3-4

Target task specifications
format of, 3-5
format using dnet_conn, 5-11

Terminating logical link
using DETACH call, 6-32
using sclose call, 4-22

Terminating logical links
using ABORT, 6-11

TFA
see Transparent File Access utility

TFARs
see Transparent File Access Routines

TNT
see Transparent Network Test utility

Transparent communication, 1-7
access control data, 3-2
and assembly language, 3-1
and high levellanguages, 3-1
capabilities, 1-7, 3-1
creating a logical link, 3-2
exchanging data, 3-2
handshaking sequence, 3-2
terminating activity on link, 3-3
using MS-DOS function requests, 3-3

Transparent communication function
requests

close, 3-9
create, 3-10
open, 3-10
read, 3-12
write, 3-13

Transparent communication function
requests summary, 3-3

Transparent file access, 2-1
error messages, F-l to F-2
initiating, 2-2
using MS-DOS function requests, 2-2

Transparent file access error messages
see Appendix F

Transparent file access function requests
summary, 2-11

Index-8

Transparent file access functions
close, 2-12
create, 2-13
delete, 2-15
find first matching file, 2-16
find next matching file, 2-18
load and execute a program, 2-20
open, 2-21
read, 2-23
write, 2-25

Transparent File Access Routines
accessing remote files, 2-2

Transparent File Access utility
deinstalling with TNT, 2-10
displaying network status of, 2-8
installing, 2-2
programming considerations, 2-11
traps MS-DOS interrupt 21H, 2-10

Transparent Network Task utility
extended error support, 3-6
invoking, 3-6
on-line help, 3-7
returns DAP messages, 2-8

Transparent Network Test utility, 2-8
invoking, 2-9
on-line help, 2-10

Transparent Task-to-Task utility
deinstalling with TNT, 3-7
displaying network status of, 3-6
installing, 3-3
programming considerations, 3-8
traps MS-DOS interrupt 21 H, 3-8

Transporting DECnet-VAXmate programs
and socket interface calls, G-l
compatibility header file, G-l

TTT
see Transparent Task-to-Task utility

u
VL TRIX error completion codes, C-l to C-3

w
Write, 2-25, 3-13

8086/8088 registers
and MS-DOS function requests, 3-8

(

(

(

HOW TO ORDER ADDITIONAL DOCUMENTATION

I. DIRECT TELEPHONE ORDERS I

In Continental USA
and Puerto Rico
caIiSOO-25S-1710

In Canada
call SOO-267-6146

In New Hampshire
Alaska or Hawaii
call 603-SS4-6660

ELECTRONIC ORDERS (U.S. ONLY)

Dial SOO-DEC-DEMO with any VT1 00 or VT200
compatible terminal and a 1200 baud modem.
If you need assistance. call SOO-DEC-INFO.

DIRECT MAIL ORDERS (U.S. and Puerto Rico*)

DIGITAL EQUIPMENT CORPORATION
P.O. Box CS200S

Nashua, New Hampshire 03061

DIRECT MAIL ORDERS (Canada) I

DIGITAL EQUIPMENT OF CANADA LTD.
940 Belfast Road

Ottawa. Ontario. Canada K1 G 4C2
Attn: A&SG Business Manager

INTERNATIONAL]

DIGITAL
EQUIPMENT CORPORATION

A&SG Business Manager
c/o Digital's local subsidiary

or approved distributor

Internal orders should be placed through the Software Distribution Center (SOC).
Digital Equipment Corporation, Northboro, Massachusetts 01532

* Any prepaid order from Puerto Rico must be placed
with the Local Digital Subsidiary:

S09-754-7575

(/

(

READER'S COMMENTS

DECnet-VAXmate
Programmer's Reference Manual

AA-GV34A-TH

What do you think of this manual? Your comments and suggestions will help us to improve
the quality and usefulness of our publications.

Please rate this manual:
Poor Excellent

Accuracy 1 2 3 4 5
Readability 1 2 3 4 5
Examples 1 2 3 4 5
Organization 2 3 4 5
Completeness 2 3 4 5

Did you find errors in this manual? If so, please specify the error(s) and page number(s).

General comments:

Suggestions for improvement:

Name Date

Title Department

Company Street

City State/Country Zip Code

DO NOT CUT FOLD HERE AND TAPE

111111

BUSINESS REPLY LABEL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

Networks and
Communications Publications
550 King Street
Littleton, MA 01460-1289

DO NOT CUT FOLD HERE

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

•

~
0(")
0C: :-1
::r:o or-:0
oZ 0c;,

C o
:::t
rn c
C
Z
rn

