
January 1979

This manual describes how to use the VAX-11 native mode SORT utility. The

manual is intended for all users.

VAX-11

SORT

User’'s Guide

Order No. AA-D113A-TE

SUPERSESSION/UPDATE INFORMATION: This is a new document for this release.

OPERATING SYSTEM AND VERSION: ‘ VAX/VMX V01.5

SOFTWARE VERSION: VAX/VMS V01.5

To order additional copies of this document, contact the Software Distribution

Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts



First Printing, January 1979

The information in this document is subject to change without notice and

should not be construed as a commitment by Digital Equipment Corporation.

Digital Equipment Corporatlon assumes no respon31b1hty for anyerrors that

"~ may appear in this documerit.-

The software described in this document is furnished under a license, and

may only be used or copied it in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip-

ment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1979 Digital Equipment Corporation

The postage-paid READER’S COMMENTS form on the last page of this

document requests your critical evaluation to assist us in preparing future

documentation.

The following are trademarks of Digital Equipment Corporation:

DEC FOCAL

DECnet IAS

DECsystem-10 MASSBUS

DECSYSTEM-20 PDP

DECtape RSX

DECUS UNIBUS

DIBOL VAX

DIGITAL VMS

6/79-14



Contents

Preface

Chapter 1

Chapter 2

Chapter 3

Page

v

Introduction

1.1 Sort Types . . . . . . . o e e e e e e e e e e e e e e e 1-1

1.2 Inputand Output . . . . . . . . . . . ... .. .. 1-2

1.3 Statistics . . . . . . . e e e e e e e e e e e e e e 1-2

1.4 Functions Supported. . . . . . . . . . . . ... ..o 1-2

Running SORT in Interactive and Batch Mode

21 The SORT Command . . . . . . . . . . . . v v v .. 2-1

2.2 Interactive Sessions . . . . . . . . . . 00 e e e e e e e e e 2-5

221 ASampleSort. . . . . . . . . . ... ..o 2-6

2.2.2 Selecting the Sort Type . . . . . . . . . .. .. ... ... 2-7

2.2.3 SORT Statistics . . . . . . . . . . . v v v v v v v 2-12

224 Samples. . . . . . . ..o L. 2-12

2.3 BatchSessions. . . . . . . . . . . . ... 000 e e e 2-17

2.4 The SORT Command Description . . . . . . . . .. .. ... ... 2-17

2.4.1 Command Name Qualifiers. . . . . . . . .. . ... . ... 2-17

2.4.2 Input-File-Specification Qualifiers . . . . . . . . . .. ... 2-20

2.4.3 Output-File-Specification Qualifiers. . . . . . . . . . . . .. 2-21

2.5 Specification File . . . . . . . .. ... 0000000 2-23

2.5.1 Specification File Records . . . . . . . . ... . ... ... 2-24

2.5.2 Specification File Record Formats . . . . . . . . . . . . .. 2-25

2.6 SettinguptheKeys . . . . . . . . . . . . ..o 2-31

2.7 Setting up the Work Files . . . . . . . . . . . .. ... ... ... 2-35

Calling SORT from User Programs

3.1 FileI/O Interface . . . . . . . . . . . . . ... ... ... 3-1

3.2 Record /O Interface . . . . . . . ... . ... ... .. ...... 3-2

3.3 Programming Considerations . . . . . . . . . . . ... . ... ... 3-2

3.3.1 Key Comparisons . . . . . . . . . .. ... ... 3-4

3.4 Subroutines (Parameters, Definitions, and Valid Returns) . . . . . . . 3-5

341 SORSINIT_SORT. . . . . . . . . oo i .. 3-6
342 SORSPASS_FILES . . . . . . . . .. . .. ... ..... 3-9

343 SORSRELEASE_REC. . . .. . . ... ... .. ..... 3-11

344 SOR$SORT_MERGE. . . .. .. ... .. .. ... ... 3-12

345 SORSRETURN_REC . . . .. . ... ... ... ..... 3-13

34.6 SORSEND_SORT . .. . .. . .. . . ... ... ... 3-14

3.5 Sample MACRO Program . . . . . .. . . .. .. ... ...... 3-15

3.6 Sample COBOL-74/VAX Program . . . . . . . . . . . . ... ... 3-17

3.7 Sample FORTRAN IV PLUS Program . . . . . . . .. . ... ... 3-20

Ll



Chapter 4 Error Conditions

Chapter 5

Glossary

4.1 Command Interpreter Error Messages. . . . . . . . . . . . . . .. .. 4-2

42 SORT Error Messages . . . . . . . . . v v v v v v v v i i i i 4-2

43 RMSErrorCodes . . . . . . . . . . . . . . . 4-8

Improving SORT Efficiency

5.1 Functional Description. . . . . . . . . . . .. ... .. ... ... 5-1

5.1.1 Sorting Processes . . . . . . . . . .. ... ... .. ... 5-3

51.11 Record Sort. . . . . . . ... ... ... .. ... 5-3

5112 TagSort . . . . . . . . . ... .. .. ...... 5-3

5113 AddressSort . . . . . . . ... ... ... .... 5-5

5114 IndexSort . . . . . . . . ... . ... ... ... 5-6

5.1.2 Internal Organization . . . . .. . ... ... ... .... 5-7

5.1.3 Buffer Allocation and Work Areas. . . . . . . . . . . . . .. 5-10

5.1.4 Dynamic Memory Usage . . . . . . . . . . . . . ... ... 5-10

5.1.5, 1/O Comsiderations. . . . . . . . . .. ... . ... .... 5-11

5.2 Tuning Procedure . . . . . . . . . . ... ... ... ... ..., 5-11

5.2.1 User Performance Considerations . . . . . . . . . .. . ... 5-11

5.2.2 System Manager Performance Considerations . . . . . . . . . 5-14

Appendix A Octal/Hexadecimal/Decimal Conversion

Appendix B Character Set ASCIl Collating Sequence

Appendix C Data Types

Appendix D Data Structures and Basic Concepts

Index

Figures

P
R
 
P
R

>
 
N n 3 o o 1) N Q 5 0
]

-
+

) e'
-
o w
0 a
4
) w
0 o |-
1
o = C-
F

o
] o f
i

[\
')

l\
'.

)[
l\

’)
(\

:)
l\

')
l\

')
O
 
-
3

O

v

SORT’s Four Sorting Processes . . . . . . . . . . .. . ...
File Organization /O Flow . . . . . . . . . .. . .. .. . .

Interactive Session Sample #1 . . . . . . . . . . . . . . ..

Interactive Session Sample #2 . . . . . . . . .. ... ...

SORT Specification Form . . . . . . . . . . . . . . .. ..
Setting Upthe Keys. . . . . . . .. ... ... ......

Recognizing Data Types and Signed Numbers. . . . . . . . .

Specifying Work Files . . . . . . . . . . . ... ... ...



3-1 Subroutine Set Summary . . . . . . . .. o.e 3-3
5-1 VAX-11 SORT Architecture, Main Functional Components . . . . . . 5-2

5-2 Sample Record Types . . . . . . . . . . . . . . .. .. ... ... 5-4

5-3 Sample Address Sort Qutput File. . . . . . . . . . . . . ... ... 5-6

5-4 Sample Index Sort Output File. . . . . . . . . . ... ... .... 5-7

5-5 VAX-11 SORT Operating Phases. . . . . . .. . .. .. ... ... 5-9

5-6 SORT Dynamic Memory Usage. . . . . . . . . . . . . ... .... 5-10

Tables

2-1 SORT Command Summary . . . . . . . . . . . .. . ... ... 2-3

2-2 File I/O Considerations. . . . . . . . .. . ... .. .. ...... 2-11

2-3 Fixed Position SORT Specification Summary . . . . . . . . . . . .. 2-28

5-1 Sorted OQutput File. . . . . . . . . . .. ... ... ... ..... 5-5

Commercial Engineering Publications typeset this manual using DIGITAL’s

TMS-11 System.

784all





Preface

Intended Audience

This manual is written for the full range of VAX/VMS system users, from

beginners to the most advanced level: system operator, applications pro-

grammer, system manager, or software developer. Emphasis is on the how to

use information, and detailed descriptions of SORT internals are kept to a

minimum.

You can use SORT as an interactive utility (Chapter 2), or as a set of

subroutines, callable from VAX-11 programming languages (Chapter 3).

New users or those with simple sort requirements, can learn how to use SORT

by reading Chapters 1 and 2. To use SORT efficiently or for more than simple

sorts, read also Chapters 3 and 5.

Vil



Structure of this Document

Chapter 1 introduces the VAX-11 SORT program and describes its environ-

ment, features, and requirements, and explains user requisites.

Chapter 2 explains how the SORT command is used to run VAX-11 SORT

interactively or in batch mode.

Chapter 3 explains how to call SORT routines from user programs, and de-

scribes how to use subroutine parameters.

Chapter 4 provides complete lists of SORT error messages and recovery proce-

dures.

Chapter 5 provides information and programming techniques for improving

VAX-11 SORT efficiency.

The Glossary defines terms used in this manual.

Appendixes A, B and C consist of helpful programming aids such as: code

conversion charts, character sets, and data types used by VAX-11 SORT.

Appendix D summarizes basic concepts.

Finally, page references to key terms appear in the index.

Associated Documents

Vil

The following documents are relevant to VAX-11 SORT users:

e PDP-11 SORT Reference Manual

e VAX/VMS Primer

e VAX/VMS Summary Description

e VAX/VMS Command Language User’s Guide

e VAX/VMS System Messages and Recovery Procedures Manual

¢ Introduction to VAX-11 Record Management Service

e VAX-11 Record Management Services User’s Guide

e VAX-11 Record Management Services Reference Manual

e VAX-11 Software Installation Guide

e VAX/VMS System Services Reference Manual

e VAX-11 Common Run-Time Procedure Library Reference Manual

e VAX-11/780 Architecture Handbook

e VAX-11/780 Processor Handbook

e VAX-11/780 Software Handbook

e VAX-11/780 Technical Summary



Symbology

You will encounter the followin,c';r symbols, colors, and special graphics in this
manual.

dollar sign

$

Return

RET

Square Brackets

ll

Braces

t

n

Underscore

Hyphen

Comma

’

Circumflex

Uppercase Letters

ABC

Lowercase Letters

abc

Red print

Shading

The system prompt; indicates that the VAX/VMS com-

mand interpreter is ready for command input. The next

$ prompt indicates successful completion of command

processing, and the system’s readiness to accept an-

other command.

In addition, the $ must appear in the first character

position of a command to be executed in an indirect

command file.

Indicates RETURN or ESC key entry required. Press-

ing this key after entering a full command line ends the

command input and begins processing.

When using the prompted command format, or

is required after each command segment.

Used in manual text to indicate qualifiers; not entered.

Used in command syntax to indicate enclosed portion is

optional.

Used in manual text to indicate input options where

one in the vertical list must be selected; not entered.

Used in this manual text to indicate variable data input

(typically some number value); not entered.

Indicates an entered underscore character.

Indicates line continuation.

Commas are entered to separate listed subqualifiers.

Represents the CTRL key on many terminals. Nor-

mally entered simultaneously with the alphabetic char-

acter that immediately follows.

For example, "C is the same as CTRL/C.

Indicates command inputs that must be entered as

shown.

Used in text to describe the command syntax; not

entered.

Indicates characters you type at the terminal. All sys-

tem printouts appear in black print.

Used to highlight that portion of an example that is

being described in text.

Ix





Chapter 1

Introduction

VAX-11 SORT rearranges and reformats records in any VAX-11 record man-

agement service (VAX-11 RMS) file organization. SORT consists of two func-

tional parts: a control program called the utility, and a callable subroutine

package. The utility can be used in an interactive terminal session or in batch

mode using the VAX/VMS DIGITAL command language (DCL) SORT com-

mand. The callable subroutines are invoked by the SORT utility. Users can

write control programs in most VAX-11 languages using these callable

subroutines.

You can invoke SORT interactively by entering a SORT command with quali-

fiers and input/output parameters. The command specifies one of four sort

types and the sorting keys. During program execution, SORT indicates all

errors. At the completion of each session, SORT prints a statistical summary.

1.1 Sort Types

The four sort types (or sorting processes) are:

* Record Sort

e Tag Sort

e Address Sort

¢ Index Sort

Record Sort produces a reordered data file sorted by specified key fields (that

is, entire records are reordered). This sort uses any VAX/VMS input device

and can process any valid VAX-11 RMS format. Record, a relatively slow

sort, is the default process.

Tag Sort produces the same kind of output file as record sort by sorting only

the record keys. Tag sort then randomly reaccesses the input file to create a

resequenced output file according to those record keys. This method conserves

temporary storage, but can only accept input files residing on disk.

1-1



Address Sort produces an address file. That is, a reordered address file, on

disk only, of record’s file addresses (RFAs). The address file, sorted by record

keys, can be used by programs as an index to read the original file in the

desired sequence. This is the fastest of the four sorting processes.

Index Sort produces an address file containing the key field of each data record

and a pointer (RFA) to its location in the input file. The address file can be

used by programs to randomly access data from the original file in the desired

sequence. Like address sort, this is a high-speed process.

For more information on sort types, see Chapter 2.

1.2 Input and Output

As input, SORT accepts sequential, relative or indexed-sequential data files

containing records of fixed, variable, or variable with fixed-length control

(VFC) format. Character, binary, or decimal data types, and files from disk,

magnetic tape, card reader or terminals are accepted.

As output, SORT produces sequential, relative or indexed-sequential data

files. These files can be of fixed, variable or VFC format and output to disk,

magnetic tape, printer or terminal. In addition, SORT outputs address files

(on disk only) for sequential access by programs.

1.3 Statistics

SORT prints statistics at the end of each session. These statistics include:

e Elapsed execution time

® Number of records read, sorted, and output

¢ The longest record length

For more information on statistics and how they can be useful, see Section

2.2.3 and Chapter 5.

1.4 Functions Supported by VAX-11 SORT

1-2

1. Sort types: record, tag, address, index.

2. File organizations as input and output: sequential, relative, indexed-

sequential. All VAX-11 RMS file types are supported.

3. Record format for input and output: fixed, variable, and VFC. All

VAX-11 RMS record formats are supported. .

4. All VAX/VMS devices are supported for input and output.

5. Multivolume support as provided by VAX-11 RMS.

Introduction



10.

11.

12.

13.

14.

Callable subroutine package. VAX-11 programmingr languages producing
native mode code are supported. Included are:

VAX-11 COBOL-74

VAX-11 FORTRAN IV-PLUS

VAX-11 MACRO

VAX-11 BLISS

Controlled by command string or specification file.

Free field and fixed position specification file formats.

Data Types:

® Character data is ASCII representation

¢ Binary data is VAX representation

® Packed decimal data is VAX representation

® Zoned data is VAX representation

® Decimal data supports:

— leading separate sign

— leading overpunched sign

— trailing separate sign

— trailing overpunched sign

Ascending/descending output based on each key field.

Output file blocking and allocation size.

Sort statistics provided at completion.

ASCII collating sequence for character keys.

RSX SORT-11 utility option.

Introduction 1-3





Chapter 2

Running SORT in Interactive and Batch Mode

This Chapter explains how to use the SORT command to sort files interac-

tively or in batch mode.

2.1 The SORT Command

The SORT command consists of three parts: the command name, the input

file specification parameter, and the output file specification parameter, in

that order. Each part must be separated by one or more spaces or tabs, and is

invoked by terminating with when the command is entered as a continu-

ous command string.

This section describes how sorts are performed using the SORT command

without the specification file qualifier. The specification file is a more sophis-

ticated method of controlling SORT, and therefore is described later in Sec-

tion 2.5. The specification file is a command qualifier and should not be

confused with the file specifications for the input and output files.

Format: ?

]

‘-i'»/SDR'TEqualif‘iers]‘/inPut-file—specif‘icatim‘:[m4alif‘iers}
\output-fi1e~5Pecification[ql.lalif‘ierail/

1

© Command Name (SORT)

SORT is the command name that invokes the VAX-11 SORT utility. Com-

mand name qualifiers specify the sort process, describe the sorting key(s),

specify the number of work files, indicate the specification file if a sort other

than a standard sort is to be performed, and finally indicate whether the

VAX-11 SORT utility or the RSX SORT-11 utility is to be invoked.



® Input File Specification Parameter

This parameter specifies the physical location of the input file (see Appendix

D for additional file specification information). Input file qualifiers define the

input file attributes such as record format and file size.

® Output File Specification Parameter

This parameter specifies the physical location of the sorted output file (see

Appendix D for additional file specification information).

Output file qualifiers define the output file attributes such as record format,

record size, block size, file organization, allocation quantity, contiguous allo-

cation, overlay existing file, and bucket size.

The VAX/VMS command interpreter will prompt you for input and output

file specifications if they are not entered in the first command string. The

following is an example of prompted format:

$] SORT/KEY=(POSITION=1,5I7E=80) @) {<-€——command with qualifiers
$.File: 10080 -<f—— input-file-specification

$_Duteuts TEST.TMP — output-file-specification

The following example shows how the SORT command is structured:

SORT Command

Command

Name Command Parameters

$ hevword inrput-file-spec outpPut-file-srec

|
Command Qualifiers File Qualifiers

(/keyword/keyword/keyword) (/keyword/keyword/keyword)

Subqualifiers

(=n) or (=(keyword, keyword))

Values

(=n)

Notes: 1. keywords may be truncated and are unique.

2. n indicates variable data input (typically some number value).

Table 2-1 summarizes all the SORT command qualifiers, subqualifiers, and

input values. The complete details on qualifiers and input values are dis-

cussed in Section 2.4.

2-2 Running SORT in Interactive and Batch Mode



Table 2-1: SORT Command Summary

Notation Used:

¢ Underlined upper-case characters indicates the minimum entry required.

e Brackets [ ] indicate enclosed portion is optional.

e If several enclosed words are listed vertically, only one may be used.

¢ Qualifiers, subqualifiers and values that must be specified are shown without brackets.

¢ Braces {} indicate a selection must be made from the vertical list.

¢ Defaults are shown in bold type.

Command Subqualifiers

Qualifiers and Values Notes

$ SORT

RECORD

/PROCESS= TAG

ADDRESS

INDEX

L -

/KEY= ( [NUMBER:[;—lO]] /KEY: is not required if specified in a spec-
ification file.

,POSITION=(1-16383]

1, 2, or 4 for BINARY data type

1-31 for DECIMAL data type

1-255 for CHARACTER data type

SIZE=

F,CHARACTER
JBINARY

ZONED

DECIMAL

|PACKED_DECIMAL|

-,LEADING._SIGN TRAILING_SIGN is default if data type
L, TRAILING_SIGN is DECIMAL.

[ SEPARATE__SIGN OVERPUNCHED_SIGN is default if
_,OVERPUNCHED__SIGN data type is DECIMAL.

[ ASCENDING)
| ,DESCENDING)

[/WORK_FILES-(0,2-10]]

[/_S_PECIFICATION[=file-specification]] SYSSINPUT is default file name.

[/Rsx11] VAX-11 SORT is default. /RSX11 requires
PDP-11 SORT command switches. Refer

to the PDP-11 SORT Reference Manual.

(continued on next page)

Running SORT in Interactive and Batch Mode 2-3



Table 2-1: SORT Command Summary (continued)

Subqualifiers

and Values

Input File

Qualifiers

input-file-specification

[/FORMAT= (RECORD__SIZE=[1-16383]]

[FILE_SIZE-[1-4294967295]) ]

__ DAT is default file-type.

Notes

See Appendix D for file-specifications.

RECORD__SIZE is not normally

specified.

FILE__SIZE is not normally specified.

Output File Subqualifiers

Qualifiers and Values

output-file-specification

(FIXED=[1-16383]

[/FORMAT] = |(VARIABLE-[1-16383]
(CONTROLLED=([1-16383]

[S1ZE=(1-255]

[LBLOCK__SIZE=[18-32767])]

/SEQUENTIAL

/RELATIVE

/INDEXED__SEQUENTIAL

[ /ALLOCATION=[1-42949672951]

[/conTIGUOUS]

[/ovERLAY]

[/BUCKET__SIZE~(1-32]]

Notes

See Appendix D for file specifications. The

default output file type is the same as in-

put file type.

FIXED record format is default if sort pro-

cess is index or address.

Used for VFC records only. Default value is

2 if CONTROLLED is specified and SIZE

is not.

For magnetic tape files only.

Default is the input file organization if sort

process is record or tag, otherwise

/SEQUENTIAL is default. If

/INDEXED__SEQUENTIAL is specified,

/OVERLAY must be specified.

Required if /CONTIGUOUS is specified.

The default value is determined by the

number of records sorted.

/NOCONTIGUOUS is default.

/CONTIGUOUS is invalid if

/ALLOCATION is not specified.

/NOOVERLAY is default. /OVERLAY is

required if INDEXED SEQUENTIAL out-

put file organization is specified.

Default value is the same as the

input file value if the input and output file

organizations are the same, otherwise

default is 1. ‘

2-4 Running SORT in Interactive and Batch Mode



2.2 Interactive Sessions

To invoke SORT in interactive mode simply enter the SORT command. Any

errors in the command are immediately reported at your terminal (see Chap-

ter 4, Error Conditions). At the end of a successful run, SORT prints the

statistics message (see Section 2.2.3).

SORT accepts two kinds of command formats: a keyboard-oriented command

string containing all the command qualifiers (excluding /SPECIFICATION),

or a keyboard-oriented command string containing the /SPECIFICATION

qualifier pointing to a specification file containing the command qualifiers.

For example:

$ SORT/KEY=(POSITION=1:8IZE=10) input-file-specification

putput~file-specification @ET

or:

% SORT/SPECIFICATION=file~-srecification

inPut-file-specification output-file-specification GRET

The use of the specification file is the more involved method and therefore

explained in Section 2.5.

In order to specify a sorting sequence, you must select key fields within the

data itself. Remember, SORT reorders the entire file. The information pro-

vided in Section 2.6 can help you to set up the key fields (keys).

You can extract key information from a file and store it in a reordered format

for future use in accessing data in your original file in the order of your

reordered file. In addition, the contents of your sorted file can be entire

records, key fields with record pointers, or record indices relative to the posi-

tion of each record within the file. Your intentions for the sorted output file

usage, together with input and output file organizations, determine what sort

process to use. The information provided in Section 2.2.2 can help you to

choose the correct sorting process.

Because SORT is designed to process all RMS file organizations, you also

must consider how to direct the sorting process you have chosen, so that your

output file organization will be usable on your peripheral device. The informa-

tion provided in Section 2.2.2 and Table 2-2 compares file organizations and

sorting processes.

If your sorting task requires more than two work files, Section 2.7 can help you

to set up additional work files. Most sorts will normally use the default num-

ber of work files.

Finally, you must specify input and output file specifications. Appendix D

reviews the standard VAX/VMS file-specification information, and file speci-

fication qualifiers are summarized in Table 2-1, and described in detail in

Section 2.4.

Running SORT in Interactive and Batch Mode 2-5



2-6

The format of the commandis: =~

2.2.1 A Sample Sort

Users can invoke the SORT command by simply providing the required key

position and size for a single key and the file name of a single input file

located on the user’s default disk.

$ SORT/KEY=(POSITION=[1-163831+5I7E=[1-2551)

inPut-file-specification output-file-specification G@ET

This means:

* A record sorting process is performed on the specified input file

¢ The input file key data type must be character

® The input file must reside on the user’s default disk

* All the records in the input file are reordered in the output file in ascending

alphabetic order

* Input file type DAT is assigned, and output file type DAT is assigned

e SORT assigns two work files for temporary storage

* Output file organization is the same as the input file organization

* Output file record format is the same as input records format

¢ Qutput file bucket size is the same as input file bucket size

® SORT statistics are printed at the terminal that executed the sort

An abbreviated representation of the preceding command example is:

$ SORT/K=(PD=1,51I=80) INPUT QUTPUT G

Description:

If you specify the key position and size, and character data type by default;

this sort reads the single input file specified (on the user’s default disk), sets

up two work files on the user’s default disk, and performs a record sort.

This process creates an output file named OUTPUT.DAT having the same

file organization as the input file. All the records in INPUT.DAT are reor-

dered in ascending alphabetic order in the output file. The alphabetic order is

determined by the contents of the 80-character key field (SI=80) starting in

position one (PO=1) of each record.

NOTE:

A quick test can be run at your terminal by using

SYSSOUTPUT as the output-file-specification. This technique

displays the sorted output file before the sort statistics are

printed.

Running SORT in Interactive and Batch Mode



Finally, upon completion of the run the sort statistics are printed at the

terminal that executed the sort.

2.2.2 Selecting the Sort Type

SORT offers a choice of four processes: record, tag, address, and index. You

specify the sort process by using the proper qualifier in the command or in the

specification file code. Each process has its particular input requirements,

processing methods, device requirements, and resultant output files.

SORT provides four sorting techniques:

e RECORD (/PROCESS=RECORD, or SORTR if specification file)

Record sort produces a reordered data file sorted by specified key fields

(that is, entire records are reordered). This sort can be used on any accept-

able input device, and can process any valid VAX-11 RMS format. Record,

a relatively slow sort, is the default process.

e TAG (/PROCESS=TAG, or SORTT if specification file)

Tag sort produces the same kind of reordered data file as record sort by

sorting only the record keys. This method conserves temporary storage, but

can only accept input files residing on disk. Tag sort is faster than record

sort, if the key size is much smaller than the record size and the file size is

small so that the reaccessing process is short.

e ADDRESS (/PROCESS=ADDRESS, or SORTA if specification file)

Address sort produces an address file without reordering the input file. That

is, a reordered address file (on disk only) of record’s file addresses (RFAs).

The address file, sorted by record keys, can later be used as an index* to

read the original file in the desired sequence. Any number of address files

may be created for the same data base. A customer master file, for instance,

may be referenced by either customer-number index or sales-territory index

for different reports. This is the fastest of the four sorting processes.

¢ INDEX (/PROCESS=INDEX, or SORTI if specification file)

Index sort produces an address file containing the key field of each data

record and a pointer (RFA) to its location in the input file. The address file

can be used by programs to randomly access data from the original file in

the desired sequence. Like Address sort, this is a high speed process.

Figure 2-1 summarizes these options to help you determine which process is

best for your sorting application. Chapter 5 provides additional information

regarding sorting processes where performance considerations are important.

* Not indexed by VAX-11 RMS.

Running SORT in Interactive and Batch Mode 2-7



Figure 2-1: SORT’s Four Sorting Processes

Input Data File

A

(Disk,Magtape,Cards, Terminal)

RECORD Sort

This is the

default process.

(Stowest Process) - -~ - -

Entire Output Data File
Records of Reordered Records

' Sorted by Keys.

D

Tesrtnporary Disk only, c
orage . :

(Work Files) | 2710 Files. i

(Disk,ANS| Magtape,

Keys + RFA’s Printer,Terminal)
only.

TAG Sort
(Faster than Record sort

if Key Size is smaller than

record and file size is small.)

Uses less temporary

storage than Record sort.

ADDRESS Sort Output Address File
(Fastest of Reordered Record's File
Process) Address (RFA) Records
Ustes minimum (fixed 6-byte records).

emporary —
storage. RFA in blnary

RFA in binary

—®1 RFA in binary
RFA in binary

(Disk Only)

, For later use to access the original

gr?lys + RFA’s File when this particular sequence
y. is desired.

Input Data File

A

B

C

D

(Disk Only)

Temporar .
Storlj'age y Disk only,

(Work Files) 2-10 Files.

Keys + RFA’s Output Address File

Only. of Record’s File Address (RFA)
Records (fixed 6-byte records)

plus Key Fields.

RFA in binary + Key

RFA in binary + Key

RFA in binary + Key

RFA in binary + Key

(Disk or ANSI Magtape)

For later use to randomly access the
£ MK-00018-00 

original File in the desired sequence.
F-MK- -

INDEX Sort —
(A fast process if Key

Size is less than Record.)

2-8 Running SORT in Interactive and Batch Mode



File I/0 Considerations

Input and output file organizations are another important factor in determin-

ing which sort type to use. Figure 2-2 shows how the I/O flows through SORT,

and Table 2-2 list all possible I/O combinations and shows the default output

file organizations.

Inputs to VAX-11 SORT can be files of sequential, relative, or indexed organiza-

tion containing records of fixed, variable, or VFC format from disk, magnetic

tape, card reader, or terminals.

Input parameters to the sort program are either provided by RMS after proc-

essing the input file header records, or specified in the command in the form

of input-file-specification qualifiers (that is, /FORMAT ...).

Outputs from VAX-11 SORT are files of records reordered by key fields and are

created in sequential, relative, or indexed organization. These files may con-

tain record types of fixed, variable, or VFC format. Output files can be written

to disk, magnetic tape, printer, or terminals.

Sorted output address files of 6-byte RFAs in binary coded records are output

to disk only for sequential access by programs. These output address files are

intended for software use as indices into input files, and cannot be output to

printers or terminals without further processing.

Output parameters to the sort program are specified in the command in the

form of output-file-specification qualifiers (that is, /FORMAT ...).

Running SORT in Interactive and Batch Mode 2-9



Figure 2-2: File Organization1/0 Flow

INPUT e e e ouTPUT

SEQUENTIAL

DATA FILE

&)SEQUENTIAL SORT 8 SEQUENTIAL
DATA FILE O INDEX ADDRESS FILE

> of ADDRES

RELATIVE

DATA FILE

G
RELATIVE o o35
DATA FILE agc

5 apNDEx SEQUENTIAL

RESs ADDRESS FILE

'950
@)

INDEXED-SEQUENTIAL 20, 9 INDEXED
DATA FILE O & DATA FILE

‘YO p
4,0,9 O&“

et
SEQUENTIAL

ADDRESS FILE

NOTES:

1. RECORD & TAG produce reordered data files of the same organization as input

by default.

2. INDEX produces reordered address files of RFA's plus keys in sequential file

organization.

3. ADDRESS produces reordered address files of RFA’s only in sequential file

organization.

F-MK-00019-00

2-10 Running SORT in Interactive and Batch Mode



Table 2-2: File I/O Considerations

Type of

Input File

Sort

Process

Output File

Organization

Specified Results

Sequential

Data File

Record

Sequential

Relative

Indexed-Seq

Reordered sequential data file.

Reordered file of data records.

Populates (overlays) an already existing Indexed-

Sequential output file with reordered data records.

Tag

Sequential

Relative

Indexed-Seq

Same as for record.

Address

Sequential

Relative

Indexed-Seq

Sequential address file of RFAs.

Index

Sequential

Relative

Indexed-Seq

Sequential address file of RFAs with keys.

Relative

Data File .

Record

Sequential

Relative

Indexed-Seq

Tag

Sequential

Relative

Indexed-Seq

Address

Sequential

Relative

Indexed-Seq

Index

Sequential

Relative

Indexed-Seq

Same as above for each process.

Indexed-

Sequential

Data File

Record

Sequential

Relative

Indexed-Seq

Tag

Sequential

Relative

Indexed-Seq

Address

Sequential

Relative

Indexed-Seq

Index

Sequential

Relative

Indexed-Seq

Same as above for each process.

Note: The default output file organization is shown in italic type.

Running SORT in Interactive and Batch Mode 2-11



2.2.3 SORT Statistics

Statistics are automatically printed at the completion of each sort session.

These consist of: elapsed execution time, the number of records read, sorted,

and output; the longest record length; the multiblock count used and the

multibuffer count used for input and output; the merge order; the number of

merge passes; the working set size used; the numberof initial runs; and the

virtual memory used for the sort tree.

In addition, SORT statistics include statistics kept by VAX/VMS for the

number of buffered and direct I/O operations, CPU time, and the number of

page faults. Figure 2-3 illustrates a typical SORT statistics printout of a

single sequential input file (filename R100SQ.DAT) that is 10,000 records in

length, and each record is 80 characters long. The sorting is done on an 80

character key starting at position 1 of each record. The output filename is

TEST.TMP and is output in the same format as the input file by default.

The command string that caused the sample printout in Figure 2-3 was:

$ SORT/KEY=(P0DS=1,81ZE=80) @€

. File: R1005Q

$_0utput:TEST.TMP

The statistics can be used to help tune the parameters you specify for a

specific sort, such as the best working set quota size to use (see Chapter 5,

Section 5.2.2.5).

Figure 2-3: Sample Sort Statistics Printout

SORT STATISTICS:

RECORDS READ: 10000 LONGEST RECORD LENGTH: 80

RECORDS SORTED: 10000 INPUT MULTI BLOCK COUNT: 11

RECORDS OUTPUT: 10000 OUTPUT MULTI BLOCK COUNT: 20

MAXIMUM WORKING SET USED: 128@ INPUT MULTI BUFFER COUNT: 2

VIRTUAL MEMORY ADDED: 236032@ DUTPUT MULTI BUFFER COUNT: 2

DIRECT I0 COUNT: 227 NUMBER OF INITIAL RUNS: 38

BUFFERED IO COUNT: Z3 ORDER OF THE MERGE: 7

PAGE FAULTS: 13596 NUMBER OF MERGE PASSES: I

ELAPSED TIME: 00:02:26,97© CPU TIME: 5055@

3

Notes: @ Maximum working set used is in blocks.

® Virtual memory added is in bytes.

© Elapsed time is the total sort run time from start to end in hrs: min: sec.

1/100secs. .

O CPU time is the data processing time less 1/0 time in 1/100secs. (that is, 5055

is 50 seconds and 55/100th’s seconds.)

2.2.4 Samples

Figure 2-4 shows a step-by-step session for an interactive sort on a single key.

Figure 2-5 shows how an interactive sort would appear when sorting on two

keys.

2-12 Running SORT in Interactive and Batch Mode



Figure 2-4: Interactive Session Sample #1

Step 1: Observe the input file you want to sort to determine where the key fields are

located and their size.

To sort this input file named BOATS.LST in alphabetic order by manufacturer you must

specify a single key field starting at character position 2 and having a key field size of 10

characters.

MANUFACTURER

NORTHERN

CHALLENGER

OLYMPIC

EASTWARD

AMERICAN

LINDSEY

WINDPOMWER

CAPE DORY

VENTURE

SALT

AMERICAN

HUNTER

TANZER

ALBIN

GRAMPIAN

CHRIS-CRAF

ISLANDER

COLUMBIA

MODEL

37

41

ADVENTURE

HO

26-MS

39

IMPULSE

TYPHOON

e arard
S alA

19

26

27

28

BALLAD

2-34

CARIBBEAN

36

a1

RIG

KETCH

KETCH

KETCH

M/S

M/S

M/5

5L00P

5L0O0P

SLOOP

SLOOP

SLOOP

SLOOP

S5LO0OP

S5LO0OP

SLOOP

SL.00P

SLOOP

5L00P

/KEY=(POSITION=2,SIZE=10)

LENGTH

37

41

42

24

26

39

16

19

29

26

27

28

30

34

33

36

a1

WEIGHT

14,000

26 +700

244250

72000

5:300

144+300

630

148900

2000

2600

4,000

B 3OO0

6,800

72706

11800

18000

13430

20,700

BEAM

11

13

13

08

08

12

07

(]

07

07

0g

09

10

10

10

11

i1

11

PRICE

$50,000

$51,228

$80,500

$15,800

$18.,885

$35,800

£3:300

$d,295

£3+3564

$0 390

%9 ,885

14,988

$17+3500

$27 300

29675

$37 850

$31,730

48,490

Step 2: Enter the following SORT command to sert the input file named BOATS. LST and

create an output file named BOATS.ALB:

$ SORT/KEY=(P08=2:8I1ZE=10) BOATS.LST BOATS.ALB

Running SORT in Interactive and Batch Mode 2-13



2-14

~ Step 3: Observe this printoutwhen SORT has completed.

RECORDS READ:

RECORDS

RECORDS

MAXIMUM

VIRTUAL

SORTED:

OUTPUT:

WORKING SET USED:

MEMORY

18

18

18

ADDED

DIRECT I0 COUNT: 2

BUFFERED IO COUNT:

PAGE FAULTS:

ELAPSED TIME:

$

Step 4: Examine your newly sorted output file named BOATS.ALB. Notice that the re-

17

146

Q00020

SO0RT STATISTICS:

200

404992

.87

cords are now in alphabetical order.

MANUFACTURER

ALBIN

AMERICAN

AMERICAN

CAPE DORY

CHALLENGER

CHRIS-CRAF

COLUMBIA

EASTWARD

GRAMPIAN

HUNTER

ISLANDER

LINDSEY

NORTHERN

OLYMPIC

SALT

TANZER

VENTURE

WINDPOKWER

MODEL

BALLAD

26

26-MS

TYPHOON

41

CARIBBEAN

41

HO

2-34

27

36

39

37

ADVENTURE

18

28
R
P

IMPULSE

RIG

SLOOP

SLOO0OP

M/5

SLOOP

KETCH

SLOO0P

SLOO0OP

M/5

SLOOP

SLOOP

SLOO0OP

M/S

KETCH

KETCH

S5LO0P

S5LO0P

S5LO0OP

SLOOP

LONGEST RECORD LENGTH:

INPUT MULTI BLOCK COUNT:

OUTPUT MULTI BLOCK COUNT:

INPUT MULTI BUFFER

OUTPUT MULTI BUFFER

NUMBER

ORDER

NUMBER

CPU TIME:

LENGTH

30

26

26

19

41

33

41

24

34

27

36

39

37

42

23

=8
iy
Loy

16

Running SORT in Interactive and Batch Mode

COUNT=

OF INITIAL RUNS: O

OF THE MERGE: 0

OF MERGE PASSES: O

34

WEIGHT

7276

4000

34300

1,800

261700

18,000

20700

7000

11,800

B8+300

134430

14,300

14,000

244230

26800

B +800

2000

830

BEAM

10

08

08

086

13

11

11

09

10

08

i1

12

11

13

07

10

07

07

PRICE

$27 4300

%9 ,885

$18,895

$4,285

$51 228

$37 830

$48.,480

$15,8900

$28:675

$14,9899

$31+730

$35 800

$50 000

$80 500

$6 580

$17 300

$3.:564

$3,500

37

20

COUNT:

32

o
£

2
2



Figure 2-5: Interactive Session Sample #2

Step 1: Observe the input file you want to sort to determine where the key fields are

located and their size.

To sort this input file named BOATS.LST in ASCII alphanumeric order first by beam, and

then by price, you must specify two keys. The first key (or primary key) field starts at

character position 47 and has a size of 2. The second key starts at character position 51

and has a size of 7.

MANUFACTURER

NORTHERN

CHALLENGER

OLYMPIC

EASTHWARD

AMERICAN

LINDSEY

WINDPOWER

CAPE DORY

VENTURE

SALT

AMERICAN

HUNTER

TANZER

ALBIN

GRAMPIAN

CHRIS-CRAF

ISLANDER

COLUMBIA

MODEL

37

a1

ADVENTURE

HO

26-M8

39

IMPULSE

TYPHOON
jelrded
Wosr Keve onn

19

26

27

28

BALLAD

2-34

CARIBBEAN

36

41

RIG

KETCH

KETCH

KETCH

M/S

M/S

M/S

SLOOP

SL00P

SLOOP

SLOOP

SLO0OP

sLOOP

SLO0OP

S5LO0P

SLOOP

SLOOP

SL00P

SLOOP

LENGTH

37

41

42

24

26

39

16

19

23

26

27

28

30

34

35

36

41

/KEY=(POS=47,SIZE=2)

/KEY=(POS=51,S1ZE=7)

WEIGHT BEAM

14,000 11

26700 13

24,230 13

7000 08

5300 08

14,500 12

630 07

1800 0B

24000 07

24600 07

43000 08

B+300 08

6 +800 10

7276 10

11,800 10

18,000 11

13450 11

20,700 11

PRICE

50,000

51,228

£80 300

£15,800

£18,895

$33 +900

$3 300

%4 4+,295

$3+35064

$6 390

$9,895

$14,9989

$17+500

$27 500

$289+673

$37 +830

$31 4730

$48 480

Step 2: Enter the following SORT command to sort the input file named BOATS.LST and

create an output file named BOATS.BEM:

$ SORT/KEY=(POS=47,8IZ2E=2)/KEY=(P05=53181lE=7)

BOATS.LST BOATS.BEM

Running SORT in Interactive and Batch Mode 2-15



2-16

Stiep73 Oibéerv’efithis b'rintout' when SORT haéfiébfrfialreted;

SORT STATISTICS:

LONGEST RECORD LENGTH: 57

INPUT MULTI BLOCK COUNT: 20

OUTPUT MULTI BLOCK COUNT: 17

INPUT MULTI BUFFER COUNT: 2

RECORDS READ: 18

RECORDS SORTED: 18

RECORDS ODUTPUT: 18

MAXIMUM WORKING SET USED: 200

VIRTUAL MEMORY ADDED: 202240 OUTPUT MULTI BUFFER COUNT: 2

DIRECT I0 COUNT: 2 NUMBER OF INITIAL RUNS: ©

BUFFERED IO COUNT: 17 ORDER OF THE MERGE: 0

PAGE FAULTS: 142 NUMBER OF MERGE PASSES: O

ELAPSED TIME: 00:00:01,85 CPU TIME: 435

$

Step 4: Examine your newly sorted output file named BOATS.BEM. Notice that the

records are now in order first by beam width, and second by price.

Running SORT in Interactive and Batch Mode

MANUFACTURER MODEL RIG LENGTH WEIGHT BEAM PRICE

CAPE DORY TYPHOON SLOOP 19 1,900 0BG $4 4,295
WINDPOWER IMPULSE S5LO0P 16 630 07 $34+300
VENTURE 222 SLO0OP 22 22000 07 $3,564
SALT 19 5LO0P 25 21600 07 $6 580

AMERICAN 26 SLOOP 26 4,000 08 $9,885
AMERICAN 26-M8 M/S 26 2300 08 418,885

HUNTER 27 sLo0pP 27 6300 09 414,999

EASTWARD HO M/S 24 74000 09 $15,900
TANZER 28 SLOO0OP 28 6+800 10 $17,500

ALBIN BALLAD SLOOP 30 74276 10 %27,300
GRAMPIAN 2-34 SLOOP 34 11800 10 $29,675
ISLANDER 36 SLO0OP 36 13430 11 431,730

CHRIS-CRAF CARIBBEAN SLOOP 33 18,000 11 $37,850

COLUMBIA 41 SLOOP 41 20,700 11 448,490

NORTHERN 37 KETCH 37 14+000 11 450,000

LINDSEY 39 M/8 39 14,300 12 $35,900

CHALLENGER 41 KETCH a1 264700 13 $51.228

OLYMPIC ADVENTURE KETCH 42 24,250 13 $80,300



2.3 Batch Sessions

To run the same sort as shown in Figure 2-4 using batch mode, perform the
following steps:

Step 1: Create a command file named BOATS1.COM as follows:

$ PRINT BOATS.LST

$ SORT/KEY=(P0S=2,SIZE=10) BOATS.LST BOATS.ALB

$ PRINT BOATS.ALB

Step 2: Enter this command:

$ SUBMIT BOATS1.COM

Observe this response:

Job n entered on asueue SYSHBATCH

Step 3: Observe that the input file, output file, sort statistics, and batch

statistics are all printed on the system printer.

2.4 The SORT Command Description

NOTE:

Review the SYMBOLOGY in the front of this manual before

continuing.

Format:

$ S0RTLaualifiers] inPut-file-specificationlaualifiers]

output-file-specificationlaualifiersl @D

2.4.1 Command Name Qualifiers

Abbreviated Example:

$ SDRTUP%QEESSfihXEEV#(n}/HB&KMFILESflfifSPEEIFIfifi?iflfl=fi]
input-file-specificationlaualifiers]

outPput~-file-specificationlaualifiers] @ED)

'RECORD|
TAG

/PROCESS= ADDRESS
INDEX

Indicates the type of sort to bedperformed. /PROCESS=RECORD is the
default.

Running SORT in Interactive and Batch Mode 2-17



2-18

/KEY=

This qualifier must be specified unless defined in a specification file. It de-

fines a sorting key, and may appear several times in a single command string

in order to specify several sort keys (up to 10).

NOTE:

The /KEY subqualifiers group must be enclosed in parentheses.

( [NUMBER=n]

n specifies the precedence of the sort key being defined, where 1 is the

primary sort key, 2 is the secondary sort key, and so on. If this option is

not specified on the first /KEY qualifier, NUMBER=1 is assumed. If

this option is not specified on subsequent /KEY qualifiers, the default

NUMBER value is the NUMBER value of the previous key plus 1.

Legal values are 1 - 10.

,POSITION=n

n specifies the position of the key within each record, where the first

character of the record is 1. This subqualifier input must be specified.

,SIZE=n

n specifies the length of the sort key in either characters, bytes, or

digits, depending on the key field data type. This subqualifier input

must be specified. If the sort key data type is CHARACTER, key size

must be less than or equal to 255 characters. If the data type is binary,

key size must be 1, 2, or 4 bytes. If the data type is any of the decimal

types, key size must be less than or equal to 31 digits. The total of all

key field sizes must be less than or equal to 255 bytes. See Section 2.6

for additional key size information.

'CHARACTER ]
'BINARY

'ZONED

'DECIMAL

PACKED_ DECIMAL |

This subqualifier indicates the type of data appearing in the sort key

field. See Section 2.6 for data type descriptions. CHARACTER is the

default.

Running SORT in Interactive and Batch Mode



, LEADING__SIGN

, TRAILING_SIGN

This subqualifier indicates whether the sign of a decimal data type key

appears at the beginning or end of the key. If the key data type is

DECIMAL and this option is not specifed, TRAILING__SIGN is the

- default. See Section 2.6 for key descriptions.

,OVERPUNCHED__SIGN

,SEPARATE__SIGN

This subqualifier indicates whether the sign of a decimal data type key

is superimposed on the decimal value or is separate from the decimal

value. If the key data type is DECIMAL and this option is not speci-

fied, OVERPUNCHED__SIGN is the default. See Section 2.6 for key

descriptions.

,ASCENDING )

,DESCENDING

Indicates whether the key is to be sorted into ascending or descending

order. ASCENDING is the default value.

[ /WORK__FILES=n]

n specifies the number of temporary work files to be used during the sort.

Values of 0, or from 2 to 10 may be used. Default value is 2. 0 specifies no work

files because data will fit in real memory. See Section 2.7 for additional
information.

[ / SPECIFICATION[=fi1e-specification]]
Specifies the name of a file which contains SORT specification statements. If
this qualifier is not specified, a standard sort is performed. See Section 2.5

and Appendix D for additional information. SYS$INPUT is the default value.

[ /RSX11]

Indicates that SORT-11 (/RSX11) is to be invoked. The SORT-11 command

format and switches are not described in this manual. Refer to the PDP-11

SORT Reference Manual when using the /RSX11 qualifier. VAX-11 SORT is

the default value.

Running SORT in Interactive and Batch Mode 2-19



2-20

NOTE:

Only the minimal unique abbreviated form of qualifier and

parameter inputs are required, but all four character abbrevia-

tions are accepted (for example, enter SPE= for

SPECIFICATION=SYS$INPUT).

An abbreviated example is:

$ SORT/KEY=(NUM=1,P08=12,81ZE=2DECI)/SPE=

input-file-specificationlaualifiers]

putput-file~specificationfauvalifiers] RED

The actual example including defaults is:

$SORT/PROCESS=RECORD/KEY=-

(NUMBER=1POSITION=12+8I7E=2DECIMAL »TRAILING_SIGN s~

OVERPUNCHED_SIGNASCENDING) /WORK.FILES=2-

/SPECIFICATION=SYS$INPUT -

input-file-specificationlaualifiers]

putPut-file-specificationlaualifiersl @ED

2.4.2 Input-File-Specification Qualifiers

Defines input file attributes.

Format:

% SORTLaunalifiersl inPut~fi1e~specification~

UFfiRfiflTfi(RECflRDwSEZE=n:FiLEmSIEE=n1J
putput-file-specificationlaualifiersl GED

NOTE:

If the input file name does not contain a file type, the default

file type becomes DAT.

If only one FORMAT subqualifier is specified, the parentheses

() can be omitted.

[ /FORMAT=(RECORD__SIZE=n ]

This input should be used only to override the record size input normally

retrieved from RMS. Omitting RECORD__SIZE indicates that the file record

format is to be obtained from the file header or label. n specifies the longest

record length (LRL) in bytes. The LRL input is optional, but should be

specified if the input file is not on disk or is inaccurate. The longest record

length allowed is 16,383 bytes (not including control bytes). For additional

information on determining the LRL, refer to the $FAB MRS parameter in

the VAX-11 Record Management Services Reference Manual. Note, stream

format is not supported because VAX-11 RMS does not support it.

Running SORT in Interactive and Batch Mode



[FILE__SIZE=n)]

This input should only be used to supply the file size normally pro-

vided by RMS when the input file is not on disk. This input is used to

determine the size of the work files based on input file size. n specifies

the input file size in blocks. Default is 1000 if file size cannot be

obtained from RMS and is not specified by the user. Maximum file

size is 4,294,967,295 blocks.

2.4.3 Output-File-Specification Qualifiers

Defines output file attributes.

Format:

$ S0RTLaualifiers] input~-file-specificationlauvalifiersl

putrut-file-specification-

FFORMAT = (CONTROLLEDn 1B IZE=n »BLOCK. . BIZE=n}

FINDEXED.SEQUENTIAL/RLLOCATION=u /CONTIGUOUS/QVERL AY]

XBUCKETWSIEEM*:]

NOTE:

If the output file name does not contain a file type, the output

file type becomes the same as the input file type.

If only one FORMAT option is specified, parentheses () may be

omitted.

[/FORMAT=]

(FIXED=n

(VARIABLE=n

(CONTROLLED=n

Indicates the output file record format. n specifies the longest record

length (LRL) of the output records in bytes, and is optional. The

longest record length allowed is 16,383 bytes (less any control bytes).

Default is input file record format if record or tag sort, and FIXED if

index or address sort. For additional information on determining the

LRL, refer to the $FAB MRS parameter in the VAX-11 Record Man-

agement Services Reference Manual.

[SIZE=n]

This input applies to CONTROLLED records only. That is, variable

with fixed-length controlled (VFC) records. n specifies the size in bytes

of the fixed portion of controlled records. Maximum fixed control area

size is 255 bytes. If CONTROLLED is specified, and SIZE is not,

default is two bytes.

Running SORT in Interactive and Batch Mode 2-21



2-22

[BLOCK_SIZE=n J]

This input applies to magnetic tape files only. n specifies the block

length in bytes of the output file. Default value is the block size of the

input tape file, or that which was established at tape mounting time.

Block length must be in the range of 18 to 65,535 bytes.

NOTE:

To ensure for correct data interchange with other DIGITAL

systems, you should specify a block size less than or equal to

512 bytes. To ensure compatibilty with most non-DIGITAL

systems, the block size should be less than or equal to 2048

bytes.

/SEQUENTIAL

/RELATIVE

/INDEXED__SEQUENTIAL

Indicates the organization of the output file. If INDEXED__SEQUENTIAL

is specified, the output file must already exist and must be empty; therefore,

/JOVERLAY must be specified. Default is the input file organization if a

record or tag sort (/PROCESS= RECORD or /PROCESS=TAG) is performed.

Otherwise, /SEQUENTIAL is default.

[ /ALLOCATION=n]

n specifies the number of 512-byte blocks of disk space to be allocated for the

output file. The default value is whatever the output requires based on the

number of records sorted. Blocks allocated must be in the range of 1 to

4,294,967, 295.

[ /CONTIGUOUS]

Indicates contiguous allocation of blocks for output file. Default is /NOCON-

TIGUOUS. This qualifier is invalid if /ALLOCATION is not specified, or if

/ALLOCATION value is insufficient for total output and the file must be

extended.

[ /OVERLAY]

/OVERLAY indicates that an existing file which has the same name as the
output file should be overwritten with the SORT output. /OVERLAY requires

that the existing file must be empty. Default is /NOOVERLAY.

[ /BUCKET__SIZE=n]

n specifies the RMS bucket size (that is, the number of 512-byte blocks per

bucket) for the output file. If the output file has the same organization as the

input file, the default value is the same as input file bucket size. The maxi-

mum number of blocks per bucket is 32. If the output file organization is

different from the input file organization, the default value is 1.

Running SORT in Interactive and Batch Mode



2.5 Specification File

Use of the /SPECIFICATION qualifier in the SORT command allows SORT

to be controlled by SORT specification statements. These statements are

contained in the header record and field records of a specification file, and

provide a means for expanding the range of sorting features.

Having sort processes controlled by specification files enables dynamic pro-

gram control of specification file statements, and therefore dynamic control of

subsequent sort processes using the same specification file modified. Also,

specification file libraries can be maintained for often-used sorts.

The command string for a typical standard sort using a specification file

would look like this:

% SORT/SPECIFICATIONL=¢pecification filel

input-file-specification output-file-speci1fication @

There are several methods of entering the /SPECIFICATION qualifier. If you

allow the predetermined specification file statements to control the sort,

SORT will run automatically with no further operator prompts.

Example:

% SORT/SPECIFICATIONL=file~-srecification

of the predetermined specification filel

input-file-specification

putput-file-specification @ET

However, if you use the default specification file (that is, =SYSSINPUT, and

providing your terminal is set to be the input device), SORT will prompt you

for the specification file values.

Example:

$ SORT/SPECIFICATION

input~-file-specification

putput~-file~-specification @ET

PLEASE ENTER SPECIFICATION FILE RECORDS.

-enter the specification file header record values @D

~enter the specification file field record valuwes for

the 1st Key field

>
 

-
 

-
 

>

.enter the specification file field record values for

the last Key field

Running SORT in Interactive and Batch Mode 2-23



If you allow SORT to prompt you for the input and output files as well as the

specification file values, then the SORT command will be input in the follow-

ing sequence:

$ SORT/SPECIFICATION

~file: inPut-file~-specification @ET

- JOUTPUT: output~file~specification @ET

PLEASE ENTER SPECIFICATION FILE RECORDS.

-enter the specification file header record values R

~enter the specification file field record values for

the 1st Kev field

-
 

-
 

>
 

-

~enter the specification file field record values for

the last Kev field

2.5.1 Specification File Records

The specification file records can have either of two formats; fixed position

field format (SORT-11), and logical position field format (VAX-11 SORT).

NOTE:

Since omit/include and alternate collating sequences are not

supported, ALTSEQ records and record type records are in-

valid and cause errors. Only header and field specification re-

cords are processed.

Fixed Position Field Format (SORT-11)

In order to allow ease of conversion from SORT-11 V2 use to VAX-11 SORT,

the existing fixed-position-fields format of SORT-11 is accepted.

Free Field Format (VAX-11 SORT)

To allow some flexibility for new users, fields may be separated by commas,

and records may be variable length up to 132 characters. Blanks are ignored

unless they are embedded within a field, such as 1 00, in which case an error is

generated. Continuation lines are supported as in DCL. The individual fields,

their length, meaning and order are identical to SORT-11.

Comments in this format are placed at the end of the line by placing an

exclamation point (!) immediately before the comment. The format for a

VAX-11 SORT header record would look like:

Pade numbersline numbersHssort tvepestotal Kevy fTield size;

sorting orderscollating seauencesoutrut Kevisirecord lendth

fcomment

2-24 Running SORT in Interactive and Batch Mode



A specific example would be:

121l H» 2108137 lheader for record sort ascending -
orders Kevy field size 10,

2.5.2 Specification File Record Formats

Two record types and two record formats exist for specification files. The two

record types are header records and field specification records. Each record

type may contain either fixed position fields to support SORT-11 compatible

files, or free fields for VAX-11 SORT.

2.5.2.1 For SORT-11 Type Files (fixed position fields) — A DIGITAL SORT

specification form is available for use when setting up fixed position fields (see

Figure 2-6).

Figure 2-6: SORT Specification Form

EQUIPMENT

flflfiflflfl SOoRPoRATION SORT SPECIFICATIONS 12 75 7 7778 29 80
Date

s 

Program

[ Page Identfication

HEADER SPECIFICATION

D
E
C
 
7
-
(
3
0
2
)
-
1
1
3
3
A
-
R
1
1
7
2

[Mode of Processing x SORTR,T

a w

L SORTR < Rine T Tota Slnls

SORTT Lengthot |§] NoTusen [3I5 Kl 2:;:::‘(: Comments
é SORTA Key Fields § 8 5 s| engm (Program 18enufication)

SORTI & ={z|2
q 18

3 4 slelr 8 9 10 01 12}:3 04 15 16 17|u8{19 20 21 222524 23] 26|2/[28] 29 30 31 s2f33 34 35 36 3/ 38 39 40 41 42 43 44 45 46 47 48 49 50 5) 52 53 54 55 56 57 58 59 6061 62 63 64 65 66 67 68 69 70 71 72 J3 74

ofof Isfo[r][ [{[TTITTTTT]] ERENERERRREREEEENEENERERERRENEREEERRENREEEN
- RECORD TYPE SPECIFICATION

Factor 1 Factor 2
Q EQ

Line | NE

ol<l®

=8l GT Constant c
EMEE GE -— — — — F-———— omments

E g N Field Location LT Field Location |
clo %) Record Name
3 rom To From

3 4 5 7 112 4 15 18 22 28 29 30 31 32 33 34 35 36 313 IR X a7lsg 0 st 57 5 64 65 66 67 68 69 70 1172 13 14

01 J

—4 L 144 444 4 -

0}2
. 1+ -+ - . -

ofa ]

[B R J

05
-

0|6

N o
FIELD SPECIFICATION

Forced

Line =] p—r—
w % Field Location s r:

MEN M E
z|z|a O s NOT USED =7 Comments
BN ol 51 ¢
= k4 slaf =15 olele Field Name |

[ From To K3 8138

3 4 stef7]af9 a0 t112f13 1815 16f17fief1s]2021 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39|40 41 42 43 44 4504647 48 43 50 51 52 5354 55 56 57 S8 59 60 61 62 63 64 65 66 67 68 69 70 71 j2 73 74

ol7 F

o8 F
I W O A N -

[ ] F

10| |*

1| |F fl

12 F .
TN g fi -+ 144 i L4 L [ 4+

13| |F |

117 + r T T
1|af |F !

Running SORT in Interactive and Batch Mode = 2-25



The format of each type of SORT-11 specification record is fixed. The SORT

specification form is based on card columns, as shown in Figure 2-6. The

following entries are common to both types of specification file lines.

Column Entry Notes

1-2 Page number Required only when different types of records are to be
described. A separate page, numbered in ascending sequence,
should be used for each record type and its corresponding Field

Specifications. Only the first page has a header specification.

3-5 Line number Specifies line sequence. If column 5 is blank, 0 is assumed.

Thus a digit entry in this column can be used to identify later

line insertions.

6 Specification Type H for Header, or F for Field

In the following material, unless otherwise stated, these criteria apply:

¢ Numeric data is decimal.

e Either leading zeroes or leading blanks are acceptable in right-justified

entries. ‘

o All field position definition records begin at column 1.

Table 2-3 summarizes all fixed position SORT specification entries.

Header Record:

The first record in a specification file must be the header. The header tells the

SORT program what kind of sorting process to use, key field size, sorting

order, and output record size.

Format:

Field

Position

1-2

3-5

6

7-12

13-17

18

19-25

26

217

28

29-32

33-132

Function

Page number

Line number

Header record ID

Sorting process

Total key field size

Sorting order

(not used)

(not used)

(not used)

(not used)

Output record length

(not used by SORT, may be

used for comments)

2-26 Running SORT in Interactive and Batch Mode

Legal Values

Any number or blanks

Any number or blanks

H

SORT R,LLA,T or blanks

Any number or blanks

A, D, or blank

Blanks (anything-ignored)

Blank (anything-ignored)

Blank (anything-ignored)

Anything-ignored

Any number or blanks

Anything-ignored



Notes and Comments on Header Specification Entries:

Columns Explanations and Legal Entries

7-12 Type of SORT (must be left-justified)

Legal values: SORTR or blanks - Record sort

SORTT - Tag sort

SORTA - Address sort

SORTI - Index sort

13-17 Total of all key field sizes

Legal values: 1-255

Must be equal to the total size in bytes of the largest record

key on the file and right-justified.

18 Normal sort order sequence

Legal values: A or blank - ascending

D - descending

This field may be qualified by N or O entered in column 7 of the field

specification.

29-32 Output Record Length (for SORTR and SORTT only)

Legal values: A decimal number (right-justified) equal to the number of

bytes in the largest output record.

To determine this number, add the sizes of the key fields in the field specifi-

cations for the largest record in the file. If neither SORTT nor SORTR are to

be run at this time, an entry in this field is not needed.

Field Specification Records:

The field specification records follow the header record and specify key fields

(up to ten).

NOTE:

Data fields are not supported since each entire record in a file is

written to the output file for SORTR and SORTT. For SORTA

or SORTI, output files contain only pointers and possibly some

restricted-format key data.

Format:

Field

Position Function Legal Values

1-5 Page/Line number See Header Specification

6 Field record ID F

7 Key field order NorO

8 Key field type B,C,D,I.J,K,P,Z

9-12 First byte of field Any number or blanks

13-16 Last byte of field Any number or blanks

17-19 (not used) Anything-ignored

20-80 (not used - available Anything-ignored

for comments)

Running SORT in Interactive and Batch Mode 2-27



2-28

Notes and Comments on Field Specification Entries:

Columns

7

9-12

13-16

Explanations and Legal Entries

Key Field Order - specifies keys and their sort sequence (this entry can satisfy
the column 18 entry for the Header Specification).

Legal values: N - normal sort sequence -

O - opposite sort sequence

Key field data type codes:

B - Binary (two’s complement binary)

C - Character (8-bit ASCII coded alphanumeric characters). This is the de-

fault data type.

D - Decimal data with sign trailing and overpunched.

I- Same as D, but with the sign leading and separate, so that the first byte of

the field is a + or -.

J - Same as I, but with the sign trailing and separate.

K - Same as D, but with the sign leading and overpunched

P - Packed-decimal format.

Z - Zoned ASCII format.

Field location (location of the first byte of a multi-byte key field).

Legal values: A decimal number (right-justified) specifying the first byte of

a key field.

Blanks can be used to specify a one-byte key field.

Field location (location of the last, or only, byte of a key field).

Legal values: A decimal number (right-justified) specifying the last byte,

or the only byte, in a key field.

Table 2-3: Fixed Position SORT Specification Summary

Header Specifications

Column Entry Explanation

6 H Header specification

7-12 SORTR Record sort

SORTT Tag sort

SORTA Address sort

SORTI Index sort

13-17 1-255 Decimal number specifying the total length of all key

fields listed in the Field Specifications (must be the

maximum for SORTR).

18 A or blank, Sort processing sequence: ascending or descending.

D

29-32 Decimal number This entry specifies the number of bytes for the largest

(SORTR or SORTT | record.

only) 1-16,383.

(continued on next page)

Running SORT in Interactive and Batch Mode



Table 2-3: Fixed Position SORT Specification Summary (continued)

Field Specifications

Column Entry Explanation

6

7

9-12

13-16

17-19

20-80

|

P

B

Decimal number

1-16,383

Decimal number

1-16,383

(not used)

Anything

Field specification

Normal - Key field sequenced as indicated in column

18 of Header Specification.

Opposite — Key field sequenced opposite to column 18

of Header Specification.

Character type data (8-bit ASCII alphanumeric data

in key field).

Zoned ASCII.

Digit - use digit value or convert to binary for FOR-

TRAN IV numbers.

Same as D, but with sign leading and separate (that is,

the first byte of the field is a + or -).

Same as D, but with sign trailing and separate (that is,

the last byte of the field is + or -).

Same as D, but with sign leading overpunched (that is,

the sign is superimposed on the first byte of the field).

Packed-decimal data type.

Binary data type - the key field is in two’s complement

binary notation.

Location of the first byte of the key field.

Location of the last (or only) byte in the key field.

All values are ignored.

Comments.

Sample Fixed Position Specification File:

The following sample shows a header record and field record. Together they

specify an index sort process on a character key of four bytes starting in

position 10 of the record, and the output file is to be sorted in descending

order.

column numbers 1234567 11 33 46

Header Record HEORTI HEADER INDEX SORT ALL DEFAULT

Field Record FOCO0100013 FIELD SPEC ALPHA KEY

NOTE:

This sample specification file performs the same sorting process

as the sample shown for free field position format.

Running SORT in Interactive and Batch Mode 2-29



2.5.2.2 For VAX-11 SORT (free fields, that is fields separated by commas): —

Free fields are formatted in the same sequence as the fixed position fields

described previously; however, instead of identifying fields with column num-

bers, commas are used. If you wish to enter blanks or use the default value,

- you must follow the entry with a comma.

‘Header records and field specification records are used in the same manner

here as they are for the fixed position field records described previously, and

2-30

the same explanations and legal entries also apply (see Table 2-3).

Header Records:

Field

Position Function Legal Values

1 Page number Any number, or blank, or comma,

2 Line number Any number, or blank, or comma,

3 Header record ID H,

4 Sorting process SORT R,LLA,T, or blank, or comma

5 Total key field size Any number, or blank, or comma,

6 Sorting order A, D, or blank, or comma,

7 Collating sequence Anything, or comma,

8 Output key Anything, or comma,

9 Record length Any number, or blank, or comma,

10 Comment ! anything, or blank

Field Specification Records:

Field

Position Function Legal Values

1 Page number See Header

2 Line number See Header

3 Field record ID F,

4 Key sorting order N, O, or blank, or comma,

5 Key data type B,C,D,I,J,K,P,Z, or blank, or comma,

6 start position of key Any number, or blank, or comma,

7 ending position of key Any number, or blank, or comma,

8§ — Anything-ignored, or comma,

9 comment ! Anything-ignored

Running SORT in Interactive and Batch Mode



Sample Free Field Position Specification File:

The following sample shows a header record and field record. Together they

specify an index sort process on a character key of four bytes starting in

position 10 of the record, and the output file is to be sorted in descending

order.

Header Record |++HsSORTI++++s! HEADER INDEX SORT ALL DEFAULT EXCEPT

TYPE

Field Record |++F+0:Cs10+13++!FIELD SPEC ALPHA KEY 4 BYTES POS 10

OPPOSITE ORDER

NOTE:

This sample specification file performs the same sorting process

as the sample shown for fixed position format.

2.6 Setting Up the Keys

When entering the SORT command qualifier /KEY, you must specify

/KEY=(subqualifiers and values) for each key field by which the records are

to be sorted. The total size of all key fields must be less than or equal to 255

bytes, and the maximum number of key fields allowed is ten.

Before entering the key subqualifiers and values into the SORT command

string, perform the following steps (1 through 6). See Section 2.4.1 for /KEY=

specification information. Figure 2-7 provides a flowchart for quick reference

when setting up keys.

Step 1

Each sort key is assigned a precedence number. You may choose to use either

the default system or the key numbering system. First decide what your key

fields will be and in what order you want them sorted. Make notes of their

sequence for use when assigning the precedence number to each. Note, if you

intend to enter the sort keys into the command string in the order of preced-

ence you have chosen for your sorting operation, then the NUMBER=

subqualifier is not necessary. Instead, the default feature will automatically

assign the first key entered as key number 1 and each subsequent key the next

higher number.

Example:
Primary Q-MK-00020-00

K 2nd. Key 3rd. K .
Key NUMBER=n is ey 2nd. Key 3rd Key dthKey
not required $ SORT/KEY=( )/KEY=( )/KEY=( )/KEY=( )

(default) /

RECORD | Key Key Key Key

Key NUMBER-=n is \ \ \ \
required for
random order $ SORT/KEY=(NUMBER=2,)/KEY=(NUMBER=1 ,)/KEY-(NUMBER—.4 )JYKEY=(NUMBER=3,)
w W

sort.

2nd.Key Primary Key 4th. Key 3rd. Key

Running SORT in Interactive and Batch Mode 2-31



2-32

Figure 2-7: Setting Up the Keys

Make sure to enter keys

into the SORT command

string in the correct

order or precedence if

default key numbering

is used.

NO

(default)

- START

DATA TYPE

IS:

STEP 1

ASSIGN Make notes of key number

KEY assignment, starting position,

NUMBERS and key field size for each key.

CHARACTER BINARYDECIMAL IARACT {

SPECIFY
PACKED\_ vES BINARY

DECIMAL

? g
SPECIFY

PACKED

DECIMAL

L
YES

SPECIFY

DECIMAL

STEP 3

SPECIFY
LEADING or

TRAILING SIGN*

Y

STEP 4

SPECIFY

OVERPUNCHED*
or SEPARATE SIGN

I

R

SPECIFY

ZONED

R o

A

STEP 5

SPECIFY START
POS and SIZE

for each key

Y
6

SPECIFY

ASCEND"* or
DESCEND ORDER

'
Enter these key specifications

for each key into the SORT

command string.

Running SORT in Interactive and Batch Mode

NOTE: Data type determines the

unit of key field size.

NOTE: Total size of all key fields

must be less than or equal

to 255 bytes.

*indicates default parameter.

F-MK-00021-00



Step 2

Before you can enter key size in Step 5, you must first determine what the

data type of each key field is. Figure 2-8 shows a summary of the data types

supported. See Appendix C for specific descriptions of the date types.

Example:

For decimal data type, specify DECIMAL in the command string. For exam-

ple: $ SORT/KEY=(P0OS=1,SIZE=10,DECIMAL).

Figure 2-8: Recognizing Data Types and Signed Numbers

1. CHARACTER — 8-bit ASCIi coded alphanumeric characters.

2. BINARY — (for example, 01010101)

Packed-Decimal String

POSITIVE NUMBER NEGATIVE NUMBER
Odd # Evenit Odd # Even #

54321+ is 4321+ is 54321- is 4321- is
54321A 04321A 54321D 04321D

1 L Last byte in string
First byte in string

3. DECIMAL — s-bit ASCII coded decimal digits 0-9

Leading Numeric String (Most significant byte is signed 12345)

SIGNED NUMBER UNSIGNED NUMBER
+ or -12345 12345

~~~ Separate Numeric Format Overpunched Format N\,

+12345 +12345 is A2345

ex 2B or 20 Hex 41

-12345 -12345 is J2345

ex 2D Hex 4A

Tralling Numeric String (Least significant digit is signed 54321)

SIGNED NUMBER UNSIGNED NUMBER
54321+ or - 54321

/Separate Numeric Format Zoned Numeric Format Overpunched Format\

54321+ 54321+ Is 54321 54321+ is 5432A

Hex 2B or 20 Hex 31 Hex 41

54321- 54321- is 5432q 54321~ is 5432J

7 Hex 2D\ 7/ Hex 71\ /Hex 4AN\
F-MK-00023-00

Running SORT in Interactive Batch Mode 2-33



2-34

80-Character

Step 3

If data type is decimal, specify the position of the sign. If data type is not

decimal, proceed to Step 5.

Examples:

1.7 For 7+12345 or —127345, épécify the 6ptional keyword LEADING__SIGN in
the command string. For example:

$ SORT/KEY=(P05=1,812E=10,DECIMAL + LEAD)

2. For trailing sign numbers (that is, 12345+ or 12345-), the optional key-

word TRAILING__SIGN is not required (TRAILING__SIGN is default).

Step 4

For decimal data types, specify if the sign is overpunched (superimposed) or

separate from the decimal value.

Examples:

1. For separate sign (that is, +12345 or -12345), specify the optional keyword

SEPARATE__SIGN in the command string. For example:

$ SORT/KEY=(P0S8=1,+81ZE=10,DECIMAL yLEAD +SEPA)

2. For overpunched sign (that is, 5432A or 5432J), the optional keyword

OVERPUNCHED__SIGN is not required (OVERPUNCHED__SIGN is

default).

Step 5

You must specify the starting position (first character in the key field) and the

size for each key. The first character of the record is 1.

Example: (in this example, key NUMBER= is default, data type is

CHARACTER).

$ SORT/KEY=(POS=1,SI1ZE=10 }/KEY=(POS=22,SIZE=8 )/KEY=(POS=42,SIZE=6 )/KEY=(POS=64,SIZE=16 )

[ [ ]
KeRecord Key Key Key y

1 10 22 29 42 48 64 79 80

Positions 10-ch. 8-ch. 7—-ch. 16-ch.
key key key key

Q-MK-00022-00

Running SORT in Interactive and Batch Mode



NOTE:

Key field size can represent either the number of bytes, or

digits depending on the data type. The chart below describes

which unit of key field size to use:

Data Type Size Indicates

Character Number of characters (bytes) must be less than or equal to
255.

Binary Number of bytes must be either 1, 2, or 4.

1 byte for decimal values in the range of -128 to 127.

2 bytes for decimal values in the range of -32,768 to

32,767.

4 bytes for decimal values in the range of -2,147,483,648 to

2,147,483,647.

Decimal Number of digits in the string must be less than or equal to 31.

The number of bytes in the key field for character, binary, zoned numeric,

and overpunched is identical to the number of characters or digits. The size of

leading separate or trailing separate fields is equal to the number of digits

plus one. The size of packed-decimal fields is equal to (number of digits/2)+1.

See Appendix C for additional information.

Step 6

Specify for each key, whether that key is to be sorted into ascending or

descending order. Ascending order is default.

Example:

To sort the first key in ascending order and the second key in descending

order, enter the key parameters into the command string as follows:

$ SORT/KEY=(P0OS=1,8IZE=10)/KEY=(P0S=22,5I7E=8DESCENDING?

Now that you have performed Steps 1 through 6 to assemble specifications for

each key, you are ready to enter these key specifications into the SORT

command string. :

2.7 Setting Up the Work Files

SORT automatically assigns two work files to your SYS$DISK device if you

choose to use the default. The size of these two work files (SORTWORKO and

SORTWORK]1) is determined by SORT from the size of your input file.

(Note; if no assignment is done, work files are created on SYS$DISK).

Running SORT in Interactive Batch Mode 2-35



2-36

To assign your work files to a device other than the device your directory is on,

type:

$ ASSICGN (device): SORTWORKO

% ASSICGN (device): SORTWORKL

L]

L 4

+

$ ASSIGN (device): SORTWORKS

Example: $ ASSIGN DB3: SORTWORK1

Figure 2-9 illustrates how logical names are assigned to physical devices.

Figure 2-9: Specifying Work Files.

WORK FILE # Logical Name

SORTWORKO Y

SORTWORK1

SORTWORK2

SORTWORKS e , , , ianed
SORTWORK4 A specific physical device code is assignhed to a

SORTWORKS p specific logical name using the ASSIGN, or DE-

SORTWORKG FINE commands.

SORTWORK?7 A
SORTWORKS

SORTWORKSYS
N
 
A
W
M

Physical Device Codes

DB: RP04, RP05, RP06 Disk

DM: RKO06 Disk

Example: ASSIGN DBAO: SORTWORKO

Unit 0

Default is AO

Controller A

RPO06 Disk

Running SORT in Interactive and Batch Mode



Chapter 3 |

Calling SORT from User Programs

You can use SORT as a set of callable subroutines from your programming

language. There are two functional interfaces to choose from; the file I/0

interface and the record I/0 interface. Both I/O interfaces share the same set

of six subroutines, and the same calls are used from all languages.

This SORT subroutine package consists of six external function calls. Each

call causes a phase of the SORT program to be performed, and returns a

status (32-bit) value indicating either success or the failure type of the phase.

Calls and associated parameters conform to the VAX-11 standard calling

interface. The calls are:

Subroutine Name Function

1. SORSINIT__SORT Initialize scratch files, work area, sorting parameters

2. SOR$PASS__FILES Pass a file name to SORT

3. SORSRELEASE.__REC Pass a record to SORT

4. SOR$SORT__MERGE Initiate sorting and intermediate merging of records

5. SOR$RETURN_REC Initiate final merge pass and receive output record from

SORT

6. SORSEND_SORT Allow clean up of files and work area to complete the

sort operation

3.1 File I/O Interface

The file I/O interface enables you to specify an input file and an output file to

SORT. SORT then reads the data from the input file and sorts it into the

output file.

3-1



For the file I/O interface, use the following four calls in the order listed:

Call Function

SOR$PASS__FILES Pass file specifications

- -‘SORSINIT_SORT - - Initialize work areas

SOR$SORT_MERGE Sort records

SORSEND_SORT Clean up work areas

3.2 Record 1/O Interface

The record I/0O interface enables you to pass individual data records to SORT.

SORT orders them, then returns each record in correct order, individually.

For the record I/O interface, use the following five calls in the order listed:

Call Function

1. SORSINIT_SORT Intialize work areas

2. SORS$RELEASE_REC Pass an input record

3. SOR$SORT__MERGE Sort records

4. SOR$SRETURN_REC Receive a sorted output record

5. SORSEND__SORT Clean up work areas

NOTE:

Calls 2 and 4 are each repeated for as many times as there are records to be

sorted.

3.3 Programming Considerations

3-2

Any program can use either SORT subroutine package interface, providing

the language used produces VAX-11 native mode code and supports the fol-

lowing features.

¢ 32-bit integers

¢ Longword addresses

e Call by string descriptors

e Call by reference

e Either CALLS or CALLG (that is, VAX/VMS standard calling sequence)

e External function calls (each SORT subroutine returns a 32-bit status code)

Calling SORT from User Programs



Additional information regarding the VAX/VMS calling standards can be

found in Appendix C of the VAX-11 Common Run-Time Procedure Library

Reference Manual. SORT follows the Modular Procedure Standards and uses

the common Run-Time Library routines to allocate memory and event flags.

However, SORT is not re-entrant.

The SORT subroutines are a part of the standard VMS library, therefore to

use the package a user only has to code the appropriate calls into his program,

compile or assemble and link. During the linking process the appropriate

SORT routines will automatically be linked with the user’s program.

Figure 3-1 summarizes the callable subroutine set.

Figure 3-1: Subroutine Set Summary

NOTE:

Use the subroutine calls in the order shown.

Call Function

1. SOR$PASS__FILES Open the input file and cfeate the output file.

2. SORSINIT__SORT Set up the key comparison buffer and validate key

information.

Ge_t memory for sorting initial phase, input and output

buffers, and set up to read input.

Create work files and initialize the sort.

3. SOR$RELEASE__REC Get record from user and build key.

4. SOR$SORT_MERGE Insert record by key into sort tree.

If sort tree is full, continue; if not, get another record.

Output records to work files as a number of strings of

sorted records.

Output and input until no more records and all records

are output.

Read in strings from work file and merge them until

there are ten or less left in work files.

5. SOR$RETURN__REC Set up to output records to user.

Do final merge pass to output records (not work files)

to user.

6. SORS$END_SORT Return memory, close output and input files, and de-

lete work files.

Calling SORT from User Programs 3-3



3-4

3.3.1 Key Comparisons

Both Interfaces

When using either interface, you have the choice of allowing SORT to do key

comparison to determine the correct order of any two records, or of writing a

routineof your own that SORT can callto do the key comparisons.

The advantage of writing your own routine is that you may know a great deal

more about the nature of the key data and therefore write a routine specifi-

cally tailored to that particular data. Because SORT does not know anything

about the key data in advance of receiving it, SORT’s key comparison routine

must be general in order to handle all types of data. A routine tailored to a

particular data type or set can therefore be much more efficient, both in space

and performance.

If you want to use the SORT key comparison routine, you must provide the

key definitions in the SORSINIT__SORT call. Or, if you want to use your key

comparison routine with SORT, you must pass the address of your routine’s

entry point (with parameters) to SORT in the SORSINIT__SORT call. See

Section 3.4.3, Definitions, for details. Users can write a program that uses any

key data type.

For debugging purposes, it should be noted that the key comparison routine

may not necessarily be called each time a call is made to SORT. This situa-

tion can occur with the following calls:

SOR$RELEASE..REC

SOR$SORT_MERGE

SOR$RETURN_REC

Record 1/0 Interface Only

For record I/O interface, you must set up the key data area before passing the

record to SORT if SORT is to do the comparisons.

The key field must be set up with each key physically next to the one before it,

in order of precedence from left to right.

For example:

If the key definitions looked like this:

Key 1 - Character, Ascending, Pos 1, Size 4.

Key 2 - Binary, Descending, Pos 15, Size 2.

Key 3 - Packed, Ascending, Pos 30, Size 4.

Then, the key area in the user’s program should look like this:

ABCD45634D,

/.keyl keg; k§y3

SORT will handle ascending/descending considerations as long as SORT is

doing the key comparisons. The user does not have to modify the key data in

any way.

Calling SORT from User Programs



In addition the entire key area must physically preceed and be adjacent to the

record. For example:

(KEYAREA) ABCD45634D

(RECORD) ABCDEFGHIJKLMN45........

When passing the record to SORT, the record descriptor must describe the

entire string including the key area. Therefore, the length of the string is (total

key length plus record length) and the address is the address of the first byte

of the key area.

For record I/O the only valid key types are 1, 2, and 4; character, binary, and

packed decimal. However, the instruction set provides a set of decimal in-

structions that allow conversion from all of the other decimal formats to

packed. Therefore, when you build the key area from your record data you can

convert the other decimal types to packed, and by doing so, sort on any of the

nine valid key data types that the file I/O interface accepts.

When SORT returns the record it will strip off the key data. The length

returned will be the length of the record alone and the first byte of the output

buffer will contain the first byte of the record, not the key.

If you are passing the address of your own key comparison routine to SORT

and you do not wish to set up the key field preceding the record, you may

specify a 0 value as the total key size in the call to SORSINIT__SORT. You

then pass just the record to SORT. When SORT calls your key comparison

routine the addresses of the two keys will be the addresses of the first byte of

each record.

3.4 Subroutines (Parameters, Definitions, and Valid Returns)

Each call requires several user supplied parameters. Parameters, parameter

definitions, and valid returns are provided in the following paragraphs for

each call. Both symbolic and hexadecimal values are provided for the re-

turned messages as an aid when debugging.

All user program value parameters must be passed to SORT using "call by

reference" (that is, the address of the value in the user’s data area is passed to

the SORT routine, not the value itself).

All file specifications and records are passed to SORT using string descriptors.

A descriptor is a 2-longword structure of format.

For example:

flags word length of string = 2 words = 1 longword

address of string = 1 longword

The address of the descriptor is passed to SORT.

To omit an optional parameter, either leave it null or pass a 0 address in the

argument list; do not pass the address of a data item with a 0 value. In general

the meaning of a parameter and its legal values are identical to the equivalent

parameter in the command line to the utility.

Calling SORT from User Programs 3-5



3-6

3.4.1 SORSINIT_SORT

Function: Initialize scratch files, work area, and sorting parameters.

Parameters: Each of the following parameters is numbered to match its defi-

nition which follows.

Key buffer address @

Longest record length (LRL) ©

File size ©

Number of work files

Sort type ©

Total key size @

N
S
 
o
 
e
 
D

Comparison routine address @

Notes: © Mandatory for the file I/O interface and for the record I/O interface

only if SORT is to do the key compares.

® Mandatory for the record I/0 interface.

© Needed for the record I/O interface and input from unit record or

magnetic tape devices in order for SORT to be efficient, but is not

required.

O Valid only for the file I/0 interface.

® Mandatory only if parameter 1 is not present and the user program

is to do the key compares.

Definitions:

1. Set up the key buffer in your user data area. The key buffer describes the

definition of the keys to be sorted on, and has the following format:

key type one word = 1-9 for file I/O interface, and 1, 2, or 4

for record I/O interface

key order one word = O or 1

start position one word = 1 to (max record size)

length one word = 1-255 (depends on key type)

Up to ten of these blocks can be specified in the order of key precedence.

Calling SORT from User Programs



The key buffer must be preceded by a word specifying the number of keys
specified in the following blocks. For example:

2 = number of keys

1 = key type (character)

Key 1 0 = key order (ascending)

10 = start position in record

40 = length of key

4 = key type (packed-decimal)

Key 2 0 = key order (ascending)

60 = start position in record

10 = length of key in number of digits

Key Types: 1 = Character 6 = Decimal leading overpunched

2 = Binary 7 = Decimal leading separate

3 = Zoned 8 = Decimal trailing overpunched

4 = Packed-decimal 9 = Decimal trailing separate

5 = not used

Key Order: 0 = Ascending 1 = Descending

When passing the address of the key buffer, pass the address of the word

with the number of keys.

Longest record length (LRL) is a decimal number (one word in length)

indicating the longest record length in bytes not including key size.

File size (one longword in length) is the value for the input file size in

blocks.

Number of work files (one byte in length) is the value of 2 - 10 or 0.

Sort type (one byte in length) is the value of 1 - 4 as listed:

1 = Record sort 3 = Index sort

2 = Tag sort 4 = Address sort

Total key size (one byte in length) is the value of 1 - 255.

Address of the user generated key comparison routine. You have the op-

tion of performing your own key comparisons, and not supplying a key

definition to SORT. SORT calls your routine at the specified address, and

with the following parameters:

1) address of key 1

2) address of key 2

SORT expects the following return value:

-1 if key 1 is less than key 2.

0 if key 1 is equal to key 2.

1 if key 1 is greater than key 2.

NOTE

Keys must not be modified in any way.

Calling SORT from User Programs 3-7



3-8

Valid Returns:

Symbolic

SOR$.__SORT__ON

SOR$__MISS__KEY

SOR$...BAD__TYPE

SOR$_BAD__LRL

SOR$_LRL_MISS

SOR$_BAD__FILE

SOR$_WORK__DEV

SOR$_VM_FAIL

SOR$_WS__FAIL

SOR$_NUM_KEY

SOR$_KEY__LEN

SS$_NORMAL

All RMS error codes

Hex Value

1C802C

1C8004

1C806C

1C8084

1C8074

1C808C

1C800C

1C801C

1C8024

1C803C

1C80AC

1

Calling SORT from User Programs

Meaning

A sort is already in progress or this call is in

the wrong sequence.

Nor key definitioh specified.

An invalid sort process was specified.

An invalid LRL was specified.

No LRL was specified and is required.

An invalid file size.

Work file device not random access device or

not local node.

SORT failed to get needed virtual memory.

SORT failed to get needed working set size.

Invalid number of keys specified (must be

1-10).

Invalid key length specified.

Success

See Chapter 4.



3.4.2 SORSPASS__FILES

Function: Pass a file specification to SORT.

Parameters: Each of the following parameters is numbered to match its defi-

nition which follows.

©
 
®
 
N
 
>
 
o
 
s
 
©
 
o

Input file descriptor ]
0

Output file descriptor

Output file organizaton

Output file record format

Output file bucket size

Output file block size (2]

Output file maximum record size

Output file allocation

Output file file options

Notes: All output file parameters are specified as for VAX-11 RMS.

@ These parameters are mandatory.

® These parameters are optional.

Definitions:

1. Input file descriptor is the string descriptor for the string in ASCII of the

input file specification.

Output file descriptor is the string descriptor for the string in ASCII of the

output file specification.

Value of output file organization (one byte in length):

FAB$C__SEQ

FAB$C_REL

FAB$C_IDX

Value of record format for output (one byte in length):

FAB$C_FIX

FAB$C_VAR

FAB$C_VFC

Calling SORT from User Programs 3-9



3-10

Value for bucket size (one byte in length) is 1 - 32.

Value for block size (one word in length) is 18 - 32,767.

Value for maximum record size (one word in length) is 1 - 16,383.

®
 

N
 
>
 
o

Value for output file allocation (one longword in length) is 1 to the maxi-

‘mum RMS file size. ' ’

9. Value for output file file options (one longword in length) is: see the $FAB

FOP parameters in the VAX-11 Record Management Services Reference

Manual.

Valid Returns:

Symbolic Hex Value Meaning

SS$_NORMAL 1 Success

SOR$_SORT_ON 1C802C A sort is already in progress or this call is in

the wrong sequence.

SOR$_VAR__FIX 1C8064 Cannot change variable records to fixed

records.

SOR$__INCONSIS 1C805C Inconsistent data for file.

SOR$._OPENIN 1C109C Cannot open input file.

SOR$_OPENOUT 1C10A4 Cannot open output file.

All RMS error codes See Chapter 4.

Calling SORT from User Programs



3.4.3 SORSRELEASE__REC

Function: Pass a record to SORT.

Parameters: Each of the following parameters is numbered to match its defi-

nition which follows.

1. Record descriptor

Notes: Parameter 1 is mandatory.

Definitions:

1. Record descriptor is the address of the descriptor for the key and record

being input to SORT. The length of the record must include the total key

length plus the total record length. Also, the key field must physically

immediately precede and adjoin the record, and the descriptor must point

to the beginning of the key.

Valid Returns:

Symbolic Hex Value Meaning

SS$_NORMAL 1 Success

SOR$_SORT_ON 1C802C A sort is already in progress or this call is in

the wrong sequence.

SOR$__BAD__LRL 1C8084 Record length is longer than LRL specified.

SOR$_BAD_ADR 1C8094 Invalid descriptor address passed.

SOR$__KEY_LEN 1C80AC Invalid key length specified.

SOR$_EXTEND 1C80A4 Failed to extend work file.

SOR$_MAP 1C809C Internal sort map error.

SOR$.__NO_WRK 1C8014 Cannot do sort in memory, need work files.

Calling SORT from User Programs 3-11



3-12

3.4.4 SOR$SORT_MERGE

Function: Initiate sorting and intermediate merging of records.

Parameters: None.

Valid Returns:

Symbolic

SS$_NORMAL

SOR$_SORT_ON

SOR$_EXTEND

SOR$_NO_WRK

SOR$_MAP

SOR$_READERR

SOR$_WRITEERR

SOR$_BADFIELD

Hex Value

1C802C

1C80A4

1C8014

1C809C

1C10B4

1C10D4

1C101C

Calling SORT from User Programs

Meaning

Success

A sort is already in progress or this call is in

the wrong sequence.

Failed to extend work file.

Cannot do sort in memory, need work files.

Internal sort map error.

Cannot read a specified input file record.

Cannot write a specified output file record.

Bad data in key field.



3.4.5 SORSRETURN_REC

Function: Initiate final merge pass and receive output record from SORT.

Parameters: Each of the following parameters is numbered to match its defi-
nition which follows.

1. Record descriptor ®

2. Record size

Notes: @ This parameter is mandatory.

Definitions:

1. Record descriptor for the output area that SORT is to place the output

record into.

2. The location (one word in length) in which SORT is to place the actual

size of the record returned.

Valid Returns:

Symbolic Hex Value Meaning

SOR$_MAP 1C809C Internal sort map error.

SOR$_EXTEND 1C80A4 Failed to extend work file.

SS$_NORMAL 1 Success, a record has been returned.

SS$__ENDOFFILE 870 Success, no more records to return.

Calling SORT from User Programs 3-13



3.4.6 SORSEND_SORT

Function: Allow clean up of files and work area to complete the sort opera-

tion.

Parameters: None

Definitions: None

Valid Returns:

Symbolic Hex Value Meaning

SS$__NORMAL 1 Success

SOR$__CLEAN_.UP 1C80B4 Failed to delete work files and reinitialize

work areas and data areas.

3-14 Calling SORT from User Programs



3.5 Sample MACRO Program

+TITLE TESTSUB

+IDENT x01.01

PACKAGE.,

INTERFACE.

DATA AREA

V
S
 
M
R
 
A
B
R
 
B
B
 
B
 
A
B
E
 
W
A
E
 
A
R
 
I
S
 
W
B
E
 
S
5

FILENAMEIN:

FILENAMEOUT:

IN_FAB:

IN_RAB:

DUT.FAB:

OUT.RAB:

FILEIN:

FILEQUT:

KEYBUF:

KEYTYPE:

KEYORD:

KEYPOS:

KEYSIZ:

INLRL:

WRKFILE:

NUMWRK=

TAGSRT:

KEYAREA:

RECORDBUF=

RECDESC:

THIS IS8 A SAMPLE MACRO

PROGRAM WHICH CALLS

THE SORT SUBROUTINE

THERE IS AN

EXAMPLE USING EACH

+ASCII /RO10SW.DAT/

+ABCITI /TEST.TMP/

+BLKB 2

+BLKB 80

+BLKB 68

+BLKB 80

+BLKB 68

+ LONG 10

+ADDRESS FILENAMEIN

+ LONG 8

+ADDRESS FILENAMEOUT

+WORD 1

+WORD 1

+WORD 0

+WORD 1

+WORD 10

+WORD 80

+ LONG 300,

+BYTE 4

+BYTE 2

+BLKB 2

+BLKB 10

+BLKB 80

+ LONG 80

+ADDRESS KEYAREA

LONG

A
R
 
A
R
E
 
A
E
R
 
A
R
 
A
R
E
 
V
R
 
W
R
E
 
N
S

+EXTRN

i

FILEIO::

+ENTRY

PUSHAB

PUSHAB

CALLS

BLBC

PUSHAB

PUSHAB

FIRST THE FILE I/0 INTERFACE.

INTO THE FILE ‘TEST.TMP’

STARTING POSITION 1.

DO A TAG SORT ON THE FILE

USING 4 WORK FILES.

s INPUT FILENAME

$OUTPUT FILENAME

iRMS DATA BLOCKS

$INPUT FILE NAME DESCRIPTOR

$OUTPUT FILE NAME DESCRIPTOR

JKEY DEFINITION BUFFER

SINPUT RECORD LONGEST LENGTH

iWORK FILE SIZE

iNUMBER OF WORK FILES

iTAG SORT

iKEY BUFFER

iRECORD BUFFER

iRECORD DESCRIPTOR

'RO10SQ.DAT

KEY IS CHARACTER. 10 BYTES

SOR$PASBS.FILES»SOR$INIT_SORT»SOR$SORT _MERGE »SOR$END_S0RT »~

SOR$RELEASE.REC »SOR$RETURN_REC

"MIR21R3 R4 sREsRE+1R7=

FILEOUT

FILEIN

#2,50R$PASS_FILES

ROZ2%

TAGSRT

NUMWRK

iSAVE REGISTERS

iDEFAULT ALL OUTPUT OPTIONS

iPUSH FILENAME DESCRIPTOR ADDRESS

iPASS FILENAMES TO SORT

iTEST FOR ERROR

iPUSH SORT TYPE

iPUSH NUMBER OF WORK FILES

Calling SORT from User Programs 3-15



A
N
E
 
B
B
 
A
E
E
 
N
N
 
N
 
o
E
S
 
W

1%

2%

3%:

d%:

B

3-16

CLRQ

PUSHAB

CALLS

BLBC

CALLS

BLBC

CALLS

BLBC

CHARACTER»

300 BLOCKS.,

CALLS

BLBC

PUSHAB

PUSHAB

PUSHAB

CALLS

BLBC

MOVZWL

CALLS

BLBC

MOUC3

PUSHAB

CALLS

BLBC

SOBGTR

CALLS

BLBC

PUSHAB

PUSHAB

CALLS

CMPL

BEQL

BLBC

CALLS

BRE

CALLS

BLBC

CALLS

MOUL

RET

CLRL

RET

+END

-{SP)

KEYBUF

#5 ,S0RSINIT.SORT

RO»2%

#0 ,50R$SORT _MERGE

RO 2%

#0,50R$END_SORT

RO 2%

NOW TRY THE RECORD 1/0 INTERFACE.

10 BYTES LONG.

#0,0PEN_INPUT

RO2%

WRKFILE

INLRL

KEYBUF

#3 sSORSINIT_SORT

RO2%

#1000 ,R6

#0 GET_RECORD

RO 2%

#10 RECORDBUF »KEYAREA

RECDESC

#1 ;S0R$RELEASE..REC

RO 2%

RG 1%

#0 ,S0R$SORT.MERGE

RO B$

INLRL

RECDESC

#2 ,80R$RETURN.REC

ROSES$_ENDOFFILE

a%

ROES

#0 ,PUT_RECORD

3%

#0 sSORSEND _SORT

ROBS

#0,CLOSE_FILE

#1 RO

RO

Calling SORT from. User Programs

RECORDS ARE

STARTING IN POSITION 1.

sDEFAULT LRL AND WORK FILE SIZE

iPUSH KEY BUFFER ADDRESS

SINITIALIZE THE SORT

iTEST FOR ERROR

SLET SORT DO COMPARES

ISTART SORTING

iTEST FOR ERROR

"§D0 CLEAN UP

sTEST FOR ERROR

80 BYTES LONG. KEY IS8

WORK FILE SIZE IS

SOPEN USER INPUT AND QUTPUT FILE

STEST FOR ERROR

iDEFAULT SORT TYPE AND WORK FILES

iPUSH WORK FILE SIZE

iPUSH LRL

sPUSH KEY BUFFER ADDRESS

JINITIALIZE THE SORT

iTEST FOR ERROR

iSET UP LOOP INDEX

iGET RECORD FROM MY

JTEST FOR ERROR

iSET UP KEY IN KEY BUFFER

iSORT DOES COMPARES

iPUSH RECORD DESCRIPTOR

iGIVE RECORD TO SORT

ITEST FOR ERROR

FILE

iSORT DOES COMPARES

iNO MORE RECORDS TO GIVE

iPUSH RECORD SIZE LOCATION

iPUSH RECORD DESCRIPTOR

iGET RECORD BACK

iGOTTEN ALL RECORDS

IYES

iERROR

JPUT RECORD INTO OUTPUT

IFINISH UP

iTEST FOR ERROR

iCLOSE UP FILES

SINDICATE SUCCESS

FINDICATE FAILURE



3.6 Sample COBOL-74/VAX Program

IDENTIFICATION DIVISION.

PROGRAM-ID. TSTSORT.

*

* THIS IS5 A SAMPLE COBOL-74/VAX PROGRAM THAT CALLS THE NATIVE

# SORT SUBROUTINE PACKAGE USING THE RECORD I/O INTERFACE. IT

* REQUESTS A RECORD SORT USING A 5 BYTE CHARACTER KEY.

*

ENVIRONMENT DIVISION,

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT FILE-IN

ASSICGN TO "8Y".

SELECT FILE-OQUT

ASSIGN TO "SY".

DATA DIVISION.,

*

* ASSIGN FILE DEVICES

* AND NAMES AND DEFINE INPUT AND OUTPUT RECORD

*

FILE SECTION.,

FD FILE-IN

YALUE OF ID IS "SORTIN.DAT"

LABEL RECORDS ARE STANDARD.

01 IN-REC.

05 IN-1 PIC X(89).,

05 IN-2Z PIC X(3).

05 IN-3 PIC X(B).

FD FILE-OUT

VALUE OF ID IS "SORTOU.DAT"

LABEL RECORDS ARE STANDARD.

01 QUT-REC PIC X(20).,

*

* SET UP DATA FOR SORT SUBROUTINE PARAMETERS.

*

WORKING-STORAGE SECTION,

77 END-OF-FILE-SH PIC X VALUE "O".,

88 END-OF-FILE VALUE "1",

77 SHOW-STAT PIC 9(89).

*

*# LONGEST RECORD LENGTH, WORK FILE SIZE

AREAS.,

* AND RETURN STATUS VALUES,

*

77 LRL PIC 99 VALUE 20 COMP.

77 FILE-SIZ PIC 9(8) VALUE 1 COMP.

01 SBORT-STATUS PIC 89(8) COMP VALUE 0,

88 S5-NORMAL VALUE 1.

88 S5-ENDOFFILE VALUE 2160,

*

* KEY BUFFER INDICATING ONE 5 BYTE CHARACTER KEY STARTING IN

*# POSITION 10 OF EACH RECORD., ASCENDING ORDER.

*

01 KEY-BUFFER.

03 KEY-NUMBER PIC 89(4) YALUE 1 COMP.

05 KEY-TYPE PIC 9(4) COMP VALUE 1.

053 KEY-ORDER PIC 9(4) COMP VALUE 0.

05 KEY-START PIC 9(4) COMP VALUE 10,

03 KEY-LENGTH PIC 9(4) COMP VALUE 3.

*

* AREA FOR KEY AND RECORD.

*

Calling SORT from User Programs 3-17



01 WK-REC-ALL.

05. WK-KEY1 PIC X(3).

05 WK-REC.

10 WK-1 PIC X(89).

10 WK-2 PIC X(35).

10 WK-3 PIC X(B).

PROCEDURE DIVISION,

*

*

*

*

*
 

%
k
 

Xk
 
%
k

*
 

Kk
 
K

*
*

*

*

*

MAIN-LOGIC.

OPEN THE INPUT AND OUTPUT FILES. THEN INITIALIZE THE SORT

SPECIFYING THE KEY DEFINITION, THE LRL AND WORK FILE SIZE.

OPEN INPUT FILE-IN

OUTPUT FILE-OUT.

CALL "SORS$INIT.SORT" USING KEY-BUFFER LRL FILE-SIZ

GIVING SORT-8TATUS.

IF NOT SS-NORMAL

MOVE SORT-STATUS TO SHOW-STAT

DISPLAY "FAILURE DURING SOR$INIT, STATUS WAS "SHOW-STAT

PERFORM ABORT-JOB.

READ RECORDS FROM FILE

EXTRACT THE KEY AND THEN HAND EACH TO SORT.

PERFORM RELEASE-RECS UNTIL END-OF-FILE.

END OF FILE CALL SORT TO FINISH SORTING RECORDS,

CALL "SOR$SORT.MERGE" GIVING SORT-STATUS.,

IF NOT SS5-NORMAL

MOVE SORT-STATUS TO SHOW-STAT

DISPLAY "FAILURE DURING SOR$MERGE, STATUS WAS " SHOW-STAT

PERFORM ABORT-JOB.

MOVE "O" TO END-OF-FILE-SHW.

REQUEST RECORDS BACK FROM SORT UNTIL ALL RECEIVED.

PERFORM RETURN-RECS UNTIL END-OF-FILE.

CALL SORT TO CLEAN UP WORK AREAS.

CALL "SOR$END_SORT" GIVING SORT-STATUS.

IF NOT SS-NORMAL

MOVE SORT-STATUS TO SHOW-STAT

DISPLAY "FAILURE DURING SOR$END: STATUS WAS " SHOW-STAT

PERFORM ABORT-JOB.,

CLOSE FILES.,

CLOSE FILE-IN

FILE-OUT.

STOP RUN.

READ RECORDS AND BUILD KEY.

RELEASE-RECS.,

READ FILE-IN

AT END

MOVE "1" TO END-OF-FILE-SHW.

IF NOT END-OF-FILE '

MOVE IN-REC TO WK-REC

MOVE IN-Z2 TO WK-KEY1

CALL "SOR$RELEASE.REC" USING BY DESCRIPTOR WK-REC-ALL

GIVING SORT-STATUS.

3-18 Calling SORT from User Programs



IF NOT SS-NORMAL

MOVE SORT-STATUS TO SHOW-STAT

DISPLAY "FAILURE DURING SOR$RELEASE, STATUS WAS " SHOW-STAT

PERFORM ABORT-JO0B.

*

*# RECEIVE RECORDS AND WRITE THEM OUT.

*

RETURN-RECS.,

CALL "SOR$RETURN.REC" USING BY DESCRIPTOR WK-REC

BY REFERENCE LRL

GIVING SORT-STATUS.

IF SS-ENDOFFILE

MOVE "1" TO END-OF-FILE-SW.

IF NOT END-OF-FILE

MOVE SPACES TO OUT-REC

MOVE WK-REC TO OUT-REC

WRITE OUT-REC.

ABORT-~JOB.

DISPLAY "ABNORMAL END OF JoOB".

CLOSE FILE-IN

FILE-OUT.

STOP RUN.

Calling SORT from User Programs 3-19



3.7 Sample FORTRAN IV PLUS Program
o
o
O
o
o
o
O
o
o
O
o
o
O
O
n

a
o
o
o
a
o
n

(9
 I
 

B 
a
o
o
O
o
n
 

a
o
O
o
o
o
o
o
n

o
0
0
0

10

3-20

PROGRAM CALLSORT

THIS ISA SAMPLE FORTRAN IV PLUS PROGRAM THAT CALLS THE
NATIVE SORT SUBROUTINE PACKAGE USING THE FILE I/0 INTERFACE.

THIS PROGRAM REQUESTS AN INDEX SORT OF FILE ‘RO10S0.DAT’

INTD THE FILE ‘TEST.TMP‘, THE KEY IS AN 80 BYTE CHARACTER

ASCENDING KEY STARTING IN POSITION ONE OF EACH RECORD.

DEFINE EXTERNAL FUNCTIONS AND DATA

CHARACTER*10 INPUTNAME FPINPUT FILE NAME

CHARACTER*8 OUTPUTNAME 'OUTPUT FILE NAME

INTEGER*2 KEYBUF(5) 'KEY DEFINITION BUFFER

INTEGER*2 NUMWRK 'NUMBER OF WORK FILES

INTEGER*2 ISRTTYP !SORT PROCESS

INTEGER*4 SOR$PASS_FILES I80RT FUNCTION NAMES

INTEGER*4 SOR$INIT_SORT

INTEGER*4 SOR$SORT_MERGE

INTEGER*4 SOR$END._SORT

INTEGER*4 ISTATUS 'STORAGE FOR SORT FUNCTION VALUE

INITIALIZE DATA - FIRST THE FILENAMES THEN THE KEY BUFFER FOR
ONE BO BYTE CHARACTER KEY STARTING POSITION 1, 3 WORK FILES
AND AN INDEX SORT PROCESS

DATA INPUTNAME OUTPUTNAME/ ‘RO108G.DAT’»'TEST.TMP '/

DATA KEYBUF sNUMWRK »ISRTTYP/1,1,0,1,80,3,3/

CALL THE SORT EACH CALL IS A FUNCTION

PASS SORT THE FILENAMES

ISTATUS = SOR$PASS_FILES(INPUTNAME OUTPUTNAME)

IF (+NOT. ISTATUS) GOTO 10

INITIALIZE WORK AREAS AND KEYS

ISTATUS = SOR$INIT_SORT(KEYBUF»» syNUMWRK s ISRTTYP)

IF (+NOT. ISTATUS) GOTO 10

SORT THE RECORDS

ISTATUS = SOR$SORT.MERGE( )

IF (.NOT. ISTATUS) GOTO 10

CLEAN UP WORK AREAS AND FILES

ISTATUS = SOR$END_SORT()

IF (+NOT. ISTATUS) GOTO 10

STOP ‘SORT SUCCESSFUL

STOP ‘SORT UNSUCCESSFUL

END

Calling SORT from User Programs



Chapter 4

Error Conditions

You can encounter error conditions at three operating levels: first with the

VAX/VMS DCL command interpreter, next with the SORT error messages,

and last with VAX-11 RMS messages.

SORT handles two basic types of errors; fatal and warning. Fatal errors (se- -

verity level F) cause SORT to halt processing; warning errors (severity level

W) cause a warning message to be output and allow sort processing to pro-

ceed. Errors in both these categories are grouped into three classes:

e Errors caused by I/O or other system failures.

¢ Errors caused by misinformation passed to SORT as a parameter of a su-

broutine call.

e Errors caused by invalid data in a key field.

For the SORT utility, errors of all types and classes are signaled to the sys-

tem; this signal causes a message to be output. Execution is either stopped or

continued based on the severity of the error. Execution can be resumed only if

the severity level is W (that is, code = 0).

In summary, only invalid data errors and a few RMS errors cause warning

error messages. System or I/O failures and bad subroutine parameters are

fatal. For additional information regarding error condition handling, refer to

the VAX/VMS System Services Reference Manual.



4.1 Command Interpreter Error Messages

In interactive mode, when you enter a command line incorrectly, the com-
mand interpreter issues a descriptive error message telling you what was
wrong. For example, if you specify more than one parameter for a command

that accepts a single parameter, you receive the message:

ADCL-W-MAXPARAMs maximum Parameter count exceeded

You must then retype the command line.

Other error messages may occur during execution of a command. These mes-
sages can indicate such errors as a nonexistent file or a conflict in qualifiers.

Not all messages from the system indicate errors; other messages are informa-

tive, or merely warn you of a particular condition.

The VAX/VMS system messages have the general format:

Descriptive comment.

Shorthand code for the message text.

Severity Level:

S = Success

W = Warning

E = Error

F = Fatal

Mnemonic for the operating system program

issuing the message.

Example:

ASORT-W-CLOSEOUTs error closing outeput (output file-cpec-
ification)

Because these messages are descriptive, you can usually understand what you
need to do differently when you issue the command again. But, if you do not,
the VAX/VMS Messages and Recovery Procedures Manual lists all the possi-
ble command interpreter error messages and describes what you can do to
correct a command interpreter error.

4.2 SORT Error Messages

4-2

The following VAX-11 SORT error messages are listed in alphabetic order.
All SORT error messages have the same format as command interpreter mes-
sages, that is:

AWo0RT-{severity level)-(code)s(text).

Error Conditions



The following descriptions of error messages observe the following

conventions:

e Only the (code), (text) part of the message is shown in the following list.

e (filespec) indicates a file specification. For example:

DB1:[153,10/TEST.TMP;3

e (number) indicates the user entered numeric value.

e LRL means the longest record length (specified in bytes).

BAD._.ADRs invalid descriptor address specified.

You passed the subroutine package an address for a descriptor, and the

descriptor was invalid format. Character string descriptors in VAX consist

of two longwords. The first word of the first longword contains the charac-

ter string length in bytes. The second longword contains the address of the

string.

User Action: See Section 3.4 and check character string format.

BADFIELD: (filespecs or field text that is invalid) field in-

valid at (number).,

Bad data in key field or command. In this message, (number) indicates

the record number of the record containing bad data in hex.

User Action: Check key field data type and the starting positions and

lengths (See Section 2.6, Setting Up the Keys).

BAD_FILE,s file size invalid,

You specified a negative file size or a zero file size. File size must be

greater than zero.
e [

User Action: Specify a file size greater than zero.

BAD_KEYs invalid Key specification.

Either the key field size, position, data type, or order is incorrect within

the key definition. Positions start at one and cannot be greater than the

maximum record size. Size must be less than or equal to 255 for character

data, 1, 2, or 4 for binary data, and less than or equal to 31 for decimal.

User Action: See Section 2.6, Setting Up the Keys, and check the com-

mand string key specifications.

Error Conditions 4-3



4-4

BAD.LEN, outrut record lendth less than 18 bvtes for mastare.,

Magnetic tape requires record lengths to be at least 18 bytes and no

greater than 4096 bytes.

User Action: See Section 2.4.3, and check your output file block size

parameters.

BAD_LRLs inpPut file (filesrec).

Record size dreater than specified LRL.,

In reading the input file, SORT encountered a record longer than the

specified LRL. The record will be truncated to the LRL and sorted.

User Action: Re-execute SORT with a larger LRL.

BAD_.SPECs invalid specification file record,

FIELD:(record specification).

An incorrect field was. specified in the specification file record. (record

specification) indicates bad record contents.

User Action: See descriptions of specification file record formats (Section

2.5.2) and change field specifications.

BAD.TYPE,» invalid sort Process.

You passed the subroutine package a sort type code of less than 1 or

greater than 4 if file I/O or not equal to 1 if record I/O, or an invalid key

word in command /PROCESS. Legal values are 1-4 for file I/0, nothing

for record I/0, and RECORD, TAG, INDEX, or ADDRESS for command

/PROCESS parameter.

User Action: Specify a different sorting process.

CLEAN_UPs failed to reinitialize work area and files.

SORT was unable to deallocate the extra virtual memory, deassign work

file channels, or readjust working set size. For the SORT utility, this is a

warning of little importance. For the SORT subroutine packages, this

could mean a failure to be able to recall SORT from the same program

- until it has exited. This is an internal error.

User Action: Exit from the user program before re-executing SORT.

CLOSEINs error closing (filespec) as inrput.

An error occurred closing an inpat file. This message is usually accompa-
nied by an RMS message indicating the reason for the failure.

User Action: Take corrective action based on the associated message.

Error Conditions



CLOSEQUTs error closing (filespec) as output.

An error occurred closing an output file. This message is usually accompa-
nied by an RMS message indicating the reason for the failure.

User Action: Take corrective action based on the accompanying message.

ATENDs failed to extend work file.

SORT failed to extend a user’s temporary work file. Either the device is

full, or the user does not have extend privilege.

User Action: See Section 2.7 and reassign work files to a different

device with more space, and make sure you have extend privilege on that

directory.

INCONSIS, inconsistent data in file (filespec),

If you specified /OVERLAY plus other output file qualifiers, SORT will
verify that the information in the existing file matches the information
you provided. If it does not, this error message is reported. Unless you

specifically want a verification, /OVERLAY should be used without other

qualifiers.

User Action: Check the command string output file qualifiers (See Section
2.4.3). *

IND_OUR+ indexed seauential output reauires overlay auali-

fier,

You specified indexed output file organization and did not specify /OVER-
LAY.

User Action: You must create.the indexed file first with RMS DEFINE
utility (or other). The primary key of the file should be the same as the
sort key for efficiency but is not required to be. Then you must specify
/OVERLAY in the SORT command string.

KEY.LEN: HKey lendth invalid, Key number {(number)s size

{(number).,

The key size is incorrect for the data type, or the total key size is greater
than 255.

User action: See Section 2.6, Setting Up the Keys, and specify correct key
field size. Size must be less than or equal to 255 for character data, 1, 2, or
4 for binary data, and less than or equal to 31 for decimal. Also, only
ascending or descending order is allowed.

Error Conditions 4-5



4-6

LRL.MISSs LRL must be specified.,

If record I/O interface subroutine package is selected, the longest record

length (LRL) must be passed to SORT in the call.

User Action: See Section 3.4, and specify LRL.

MAP:; failed to marp work file.

This is an internal SORT failure.

User Action: Verify that the system parameter "maximum process sec-

tions" has been set up at 10. If it has, then report this failure to a special-

ist. Otherwise, set that system parameter to 10.

MISS_KEY» Key specification missing.,

SORT did not find any key definition in either the command line or

specification file, or in the parameters to the subroutine package.

User Action: You must input at least one key definition in one of these

three areas.

NO_WRK» need work files cannot do SORT in memory.

You specified /WORK-FILES=0 indicating the data would fit in memory,

but the data was too large.

User Action: Either increase the working set quota, or allow SORT to use

two or more work files.

NUM_KEY: too many Kevs specified,

Up to ten key definitions are allowed. Either too many have been speci-

fied, or the NUMBER value is wrong.

User Action: See Section 2.6, Setting Up the Keys, and check your com-

mand string key field specifications.

ONE_IN: only one inrput file allowed,

SORT will take only one input file at a time.

User Action: You can concatenate files of the same organization and

record format using COPY, and then sort.

OPENIN: error orening (filespec) as input

An input file cannot be opened. This message is usually accompanied by

an RMS message indicating the reason for the failure.

User Action: Take corrective action based on the associated message.

Error Conditions



OPENOUT» error orPening (filesrpec) as outrut

An output file cannot be opened. This message is usually accompanied by

an RMS message indicating the reason for the failure.

User Action: Take corrective action based on the associated message.

READERR» error reading (filespec)

An input file record specified cannot be read. This message is usually

accompanied by an RMS message indicating the reason for the failure.

User Action: Take corrective action based on the associated message.

SORT.ON,s sort alreadyin Prodress.,

You tried to call the SORT subroutine package with calls in the wrong

order, or to recall it before it finished running the previous sort.

User Action: Reorder the subroutine calls and then re-execute SORT.

VAR.FIX:s cannot chande variable lendth records into fixed

lendth,

You specified variable length input records and requested fixed length

output.

User Action:Output records must be variable or controlled in this case.

UM_FAILs failed to det required virtual memory (nnumber?).,

SORT could not get the amount of virtual memory required for the sort.

(number) indicates the number of bytes needed.

User Action: If the SORT utility is being run, decrease the working set

quota; if either SORT subroutine package is being run, either decrease the

quota or return some memory to the system inside the user’s program

before calling SORT.

WORK_DEVs workK file (filesprec)

device specified not random accessor not local.

Work files must be specified for random access devices that are local to the

CPU the sort is being performed on (that is, not on node in a network).

Random access devices are disk devices.

User Action: See Section 2.7, Setting Up the Work Files, and specify the

correct device.

Error Conditions 4-7



WRITEERR: error writing (filesrec)

An output file record cannot be written. This message is usually accompa-

nied by an RMS message indicating the reason for the failure.

User Action: Take corrective action based on the associated message.

WS_FAIL, failed to get required working set srpace (number).,

SORT could not set the required amount of real memory space. A mini-

mum 75 page working set is needed. (number) indicates number of pages

available.

User Action: Increase the working set quota.

4.3 VAX-11 RMS Error Codes

Listed below, in alphabetic order, are the VAX-11 RMS completion status

codes. This list includes both symbolic and hexadecimal codes for error mes-

sages and success messages. These RMS codes are returned to your program

by the operating system.

All VAX-11 RMS error messages have the same format as command inter-

preter messages, that is:

“RMS-(severity level)-(code)s{text).

For additional information refer to the VAX-11 Record Management Services

Reference Manual.

Valid Returns for Error Messages:

Symbolic Hex Value Meaning

RMS$__ACC 0001C002 File access error.

RMS$_ACT 0001825A File activity precludes operation.

RMSS$__AID 000183F4 Bad area identification number field in allocation XAB.

RMS$_ALN 000183FC Invalid alignment boundary type in allocation XAB.

RMS$__ALQ 00018404 Incorrect allocation quantity in allocation XAB; the

value either exceeds the maximum allowed, or is equal

to zero for the extend service.

RMS$__ANI 0001840C Records in a magnetic tape file are not ANSI D format.

RMS$_AOP 00018414 Invalid allocation option in allocation XAB.

RMS$_ATR 0001COCC Read error on file header.

RMS$__ATW 0001COD4 Write error on file header.

RMS$__BKS 0001841C Invalid bucket size in FAB.

4-8 Error Conditions



Symbolic

RMS$_BKZ

RMS$__BLN

RMS$_BOF

RMS$_BUG.__DDI

RMS$_CCR

RMS$_CDA

RMS$_CHN

RMS$_COD

RMS$_CRE

RMS$_CUR

RMS$_DAC

RMS$__DEL

RMS$_DEV

RMS$_DIR

RMS$_DME

RMS$__DNA

RMS$__DNF

RMS$__DNR

RMS$__DPE

RMS$__DVI

RMS$_ENT

RMS$_ENV

RMS$_EOF

RMS$_ESA

RMS$__ESL

RMS$_ESS

RMS$__EXP

RMS$__EXT

RMS$_FAB

Hex Value

00018424

0001842C

00018198

0001843C

00018494

0001COE4

0001COEC

000184AC

0001C00A

000184B4

0001C012

00018262

000184C4

000184CC

000184D4

000184DC

0001826A

00018272

0001C0O3A

000184F4

0001CO01A

00018724

0001827A

000184FC

00018714

00018504

000182C2

0001C022

0001850C

Meaning

Invalid bucket size in the allocation XAB for relative

file.

Invalid value in block length field.

File is already at beginning of the file (backspace opera-

tion).

Invalid default directory. Internal VAX-11 RMS error;

no recovery possible - contact a software specialist.

Cannot connect RAB (only one record stream permitted

for sequential files).

Cannot deliver AST.

Channel assignment failure.

Invalid type code in XAB.

File create error.

No current record; operation not immediately preceded

by a successful get or find service.

File deaccess error during a close service.

Record accessed by RFA record access mode has been

deleted.

Bad device or inappropriate device type for operation.

Error in directory name.

Dynamic memory exhausted; occurs only if the related

I/O segment in the control region is full and the file is

either a direct access process permanent file, or the user

has disallowed the use of the program region for I/O

buffers to VAX-11 RMS. :

Error detected in the default file specification string.

Directory not found.

Device not ready.

Device positioning error; applies only to magnetic tape.

Invalid device identification in NAM block.

Error during file enter service.

Environment error; the code necessary to support the

file organization or facility was not selected at system

generation.

End of file.

Invalid expanded string area in NAM block.

Invalid expanded string length in NAM block.

Expanded string area too short.

File expiration date not yet reached.

File extend error.

Invalid FAB; block indentifier field incorrect.

Error Conditions 4-9



Symbolic

RMS$_FAC

RMS$_FEX

RMS$__FLK

RMS$__FNA

RMS$_FND

RMS$_FNF

RMS$_FNM

RMS$_FOP

RMS$__FSZ

RMS$_FUL

RMS$__IFA

RMS$__IFI

RMS$_IMX

RMS$_IOP

RMS$__IRC

RMS$_ISI

RMS$__KBF

RMS$_KEY

RMS$_KSZ

RMS$_LNE

RMS$_MBC

RMS$_MKD

RMS$_MRN

RMS$_MRS

RMS$_NAM

RMS$_NEF

RMS$_NMF

RMS$_NOD

RMS$_ORG

RMS$__PBF

Error Conditions

Hex Value

00018514

00018282

'0001828A

00018524

0001C02A

00018292

0001852C

0001853C

00018534

00018544

0001C124

00018564

0001856C

00018574

0001857C

00018584

0001858C

00018594

000185A4

000185BC

00018734

0001C032

000185CC

000185D4

000185DC

000185E4

000182CA

000185F4

0001860C

00018614

Meaning

Operation not allowed by the value set in the file access

field of the FAB.

File already exists.

Tile is locked and therefore not available.

Invalid file specification string address in FAB.

Files-11 find function failed.

File not found.

Syntax error in file name.

Invalid file processing options.

Invalid fixed control area size in FAB (equal to 1 for

print files).

Device full; cannot create or extend file.

Illegal file attributes; file header corrupted.

Invalid internal file identifier in FAB; must be zero.

More than one XAB of the same type is present for the

file.

Illegal operation attempted:

1. block I/O when not block I/O access.

2. record I/O when block I/O access.

3. rewind of process permanent file.

4. inappropriate device type or file organization.

Illegal record in sequential file; invalid count field.

Invalid internal stream identifier in RAB.

Invalid key buffer address; not in access limits.

Invalid record key for random operation to a relative

file.

Key size not equal to 4 (relative file).

Logical name error; resulted in duplicates.

Invalid multi-block count; must not be greater than

127.

Files-11 ACP could not mark file for deletion.

Illegal value for maximum record number.

Illegal value for maximum record size.

Invalid NAM block.

Attempt to use the put service to a sequential file when

not positioned to end of file.

No more files for a search operation.

Node name error.

Illegal file organization.

Invalid prompt buffer address.



Symbolic

RMS$__PLG

RMS$__PLV

RMS$__PRV

RMS$__QUO

RMS$_RAB

RMS$_RAC

RMS$_RAT

RMS$__RBF

RMS$_RER

RMS$_REX

RMS$_RFA

RMS$_RFM

RMS$_RHB

RMS$_RLF

RMS$_RLK

RMS$_RMV

RMS$_RNF

RMS$_RNL

RMS$__RPL

RMS$_RSA

RMS$__RSL

RMS$_RSS

RMS$_RST

RMS$_RSZ

RMS$_RTB

RMS$__SHR

RMS$__SQ0

RMS$_SYN

RMS$_SYS

RMS$_TMO

RMS$_TYP

RMS$_UBF

RMS$__USZ

RMS$_VER

Hex Value

0001861C

0001872C

0001829A

00018634

0001863C

00018644

0001864C

00018654

0001COF4

000182A2

0001865C

00018664

0001866C

00018674

000182AA

0001COFC

000182B2

000181A0

0001C104

0001868C

0001873C

00018694

0001869C

000186A4

000181A8

000186B4

000186C4

000186D4

0001C10C

000181B0

000186E4

000186EC

000186F4

000186FC

Meaning

Error in file prologue; file is corrupted.

Prologue version unsupported.

Privilege violation; access denied.

Error in quoted string.

Not a valid RAB; block identifier field incorrect.

Illegal value in record access mode field of RAB.

Record attributes invalid in FAB.

Invalid record address.

File read error.

Record already exists; in a random access mode opera-

tion to a relative file, a record was found in the target

record cell.

Invalid record’s file address contained in RAB.

Illegal record format.

Invalid record header buffer.

Invalid related file.

Record locked by another task.

Files-11 remove function failed.

Record not found.

Record not locked.

Error while reading prologue.

Record stream active; an attempt was made to issue a

record operation request in an asynchronous environ-

ment to a record stream that has a request outstanding.

Resultant string length field of NAM block invalid.

Resultant string area size field of NAM block is too

small.

Invalid resultant string area.

Illegal record size.

Record too large for user buffer.

Invalid value in the file sharing field of FAB.

Operation not sequential.

Syntax error in file specification.

Error in system QIO directive.

Time-out period expired.

Error in file type.

Invalid user record area address.

Invalid user record area size.

Error in version number.

Error Conditions 4-11



4-12

Symbolic

RMS$_WER

RMS$_WLK

RMS$_WPL

RMS$_WSF

RMS$_XAB

Hex Value

0001C114

000182BA

0001C11C

0001871C

0001870C

Meaning

File processor write error.

Device is not write-locked.

Error while writing prologue.

7 Working set full.

Not a valid XAB.

Valid Returns for Success Messages:

RMS$_CONTROLC

RMS$_CONTROLO

RMS$__.CONTROLY

RMS$__CREATED

RMS$_KFF

RMS$_NORMAL

RMS$__OK__ALK

RMS$_OK_DEL

RMS$_OK_RLK

RMS$__OK_RNF

RMS$_PENDING

RMS$_SUC

RMS$_SUPERSEDE

Error Conditions

00010651

00010609

00010611

00010619

00018031

00010001

00018039

00018041

00018021

00018049

00018009

00010001

00010631

Operation completed under Control C.

Operation completed under Control O.

Operation completed under Control Y.

File was created; not opened; used in conjunction with

the CIF option.

Known file found.

Operation successful (synonym for RMS$__SUC).

Record already locked.

Deleted record accessed correctly.

Record locked but read anyway; locked set RLK bit in

ROP field.

Non-existent record accessed correctly.

Asynchronous operation not yet completed.

Operation successful (synonym for RMS$_NORMAL).

Created file superseded an existing version.



Chapter 5

Improving SORT Efficiency

Users who have special sorting requirements such as very large files, storage

media contraints, and processing time restrictions can modify SORT’s behav-

ior for optimum performance. Your ability to improve SORT’s performance

depends on your understanding of SORT’s operational characteristics de-

scribed in this chapter.

This chapter discusses:

e How the SORT program functions in each phase of operation, and what

sequence of events occur during a sort run

e How a user can improve SORT’s efficiency through the use of tuning

procedures

5.1 Functional Description

The SORT program consists of two basic parts: a control program called the

utility and a callable subroutine package (see Figure 5-1). The utility directs

the overall processing. The callable subroutine package serves as a collection

of subroutines that the utility uses during its processing. You can write your

own control program to take advantage of SORT’s callable subroutines (see

Chapter 3).

There are eight phases of operation in the SORT utility. These are described

in more detail in Section 5.1.2. A sort run breaks down into three tasks.

First, SORT reads the command string and the specification file, if present,

decodes them, and then stores the qualifier values and parameters. Any errors

in the command string or specification file are reported at this point.

5-1



Figure 5-1: VAX-11 SORT Architecture, Main Functional Components

CALLABLE
UTILILTY SUBROUTINE PACKAGE

IDENTIFICATION AND

VERSION MODULE SORTING ROUTINES

STATISTICS HANDLER WORK AREA MANAGER

SPECIFICATION FILE

DECODER

COMMAND

INTERPRETER

INTERFACE

KEY PROCESSING

ROUTINES

COMMAND

STRING

VAX-11 SORT

VAX/VMS OPERATING SYSTEM

DCL

COMMAND COMMAND
-

INTERPRETER

USER

F-MK-00024-00

5-2 Improving SORT Efficiency



Second, SORT begins the pre-sort operation. The control program calls

routines to open and read the input file and establish the keys. Then the

SORT subroutine package is called to begin the initial sorting process. At this

point, the amount of available internal storage space becomes important to

the efficiency of the sort. If that space is not sufficient to hold all the records,

SORT builds strings of sorted records and transfers them to work files on

temporary storage devices (disk). The SORT program normally provides for a

default of two work files. A qualifier in the command string can increase the

number of work files used.

Third, SORT rebuilds the intermediate work files into a merged file. If the

process is tag sort, another subroutine reads the records in the proper

sequence. The records are then written in the output file. If there are no work

files to merge because main memory was sufficient to hold all the records, the

" sorted records are written directly into the output file. After the last record is

written, the control program cleans up the work files and exits; SORT is then

ready to accept another job.

5.1.1 Sorting Processes

All four sorting processes can sort records of fixed or variable length, VFC, or

any valid VAX-11 RMS. Stream format is not supported. The size of the

records on a fixed-length format file is determined when the file is created.

The first word of a variable-length format record contains the size of the

record in bytes. This first word is used by the file system and is transparent to

SORT.

5.1.1.1 Record Sort — Record sort outputs all data records in a specified

sorted sequence. Each record is kept intact throughout the entire sorting

process. Since this process moves the whole record, it is relatively slow and

may require considerable main memory or external storage work space for

large files.

5.1.1.2 Tag Sort — Tag sort produces the same kind of output file as record

sort, but it only handles record pointers and key fields. Since this process

moves a smaller amount of data than record sort, it may perform a faster sort

than record sort. The input file must be randomly re-accessed to create the

entire output file, which may be a lengthy process for large files.

Input Data Files

A record is usually divided into several logical areas called data fields. The

data in each field may or may not be relevant to SORT. Each field may be

interpreted as a record identifier, key data, or general data related to the

Improving SORT Efficiency 5-3



logical content of the record and not relevant to the sorting process. SORT

uses record identifiers to distinguish the various types of records in a file.

SORT uses the key fields in each record to reorder an input file. Any other

data field in a record may be retained in the output file or ignored by SORT.

Figure 5-2 shows three different types of input records, each with a different
format. The record identifiers are the letters in position 1: S means sales
record, O means order record, and R means restock record. In this case, the
keys chosen for sorting the sales record types are the "item number code" in
positions 2 to 7, and the "number of items sold" in positions 8 to 13. The "total
amount of sale" is an example of a data field not relevant to the sorting

process.

If you request a sort in ascending order on the sales records as shown in Figure
5-2, the sort is based on the item number code first and then on the number of
each item sold within that item number. In order of decreasing significance,
the keys are:

1. Item number

2. Number of items sold

Figure 5-2: Sample Record Types

RECORD

IDENTIFIER

KEY FIELD KEY FIELD DATA FIELD

> 1’ 2 31 4 5 ¢ ; 10 11 12 1‘3 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

SALES s|t{T|E|MINfo|o|ula|N|TIvIu|cfplr|i|c|ef[T|o|TIL|s|alL|e|c|u|s|T|n|o|jo|r|o|D|a]|TRECORD

ITEM NUMBER UNIT PRICE TOTAL CUSTOMER DATE
NUMBER OF ITEMS CODE PER AMOUNT NO. OF

CODE SOLD UNIT OF SALE CODE SALE

! 2 3 4 S5 6 7 8 9 12 ¢ 12 13 4 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

ORoER, ol t|T|e|m{ofe[s|c|r|1|p|i|T|e[m|Nn|o|p|r[i|c]|Ela|ulain]|T|Y|o|r|D|{N]|0O

DE SCRIPTION ITEM PRICE NUMBER PURCHASE
OF NO OF OF ITEMS ORDER

ITEM CODE ITEM ORDERED NO.

O 1 2 3 4 5 6 7 8 9 Mot 'toa n qg 2 B 19 20 21 22 23 24 25 26 27 28 29 30 3 32

RESTOLK R 1| Tle{minfo|u|c|clo]|s|T|rp|Rr|E|O|R[D[R|Q|U|A|[N|T|Y|R|O|R]|D|N]|O

— v A A v A — A v A v s

ITEM UNIT COST MINIMUM PRESENT REORDER
NO. CODE PER STOCK AMT. NUMBER
CODE UNIT QUANTITY OF STOCK

11-1520

L

5-4 Improving SORT Efficiency



Output Data Files

The output file contains all sales records in the order shown in Table 5-1.

Table 5-1: Sorted Output File

Major Key: Item Number Minor Key: Quantity

Lowest item no.

Lowest item no.

Highest item no.

Highest item no.

Next higher item no.

Next higher item no.

Lowest quantity

Next higher quantity

Highest quantity

Lowest quantity

Next higher quantity

Highest quantity

Lowest quantity

Next higher quantity

Highest quantity

5.1.1.3 Address Sort — Address sort produces address files, which consist of

record’s file addresses (RFAs), beginning at 1, and written in binary words.

These files can be used as a special index file to access randomly the data in

the original file. It is possible to maintain only one data file, but several

different index files as needed. Like tag sort, this process uses the minimum

amount of data necessary in the sorting process. Once the input phase is

completed, the input file is not read again. This means that address sort is the

fastest sorting method of the four SORT types.

Do not transfer an address index file to a device that cannot

NOTE:

handle binary data, such as a printer or terminal.

Improving SORT Efficiency 5-5



5-6

The address sort produces an output file consisting of record indices. Each

record index occupies one 6-byte record in the output file. Assume that you

are sorting a file consisting of six records using the address sort process. If the

sequence of record indices corresponding to the sorted records is 5,1, 6,3,4,2

then the output file can be represented as shown in Figure 5-3.

Figure 5-3: Sample Address Sort Output File

Record’s File Address (RFA)

Block Number

LOW HIGH BYTE-IN-BLOCK

RECORD (2 bytes (2 bytes (2 bytes

NUMBER 16 bits) 16 bits) 16 bits)

1 000001 000000 000162

2 000001 000000 000000

3 000001 000000 000236

4 000001 000000 000042

5 000001 000000 000132

6 000001 000000 000026

| ] | I |

Number of Contiguous

Bytes per Block

Number of Blocks per File

Note:

Byte and Block numbers are shown here in hexadecimal, they are written to the actual output

file in binary.

5.1.1.4 Index Sort — Index sort produces an address file consisting of records

file addresses (RFAs) in binary, and key fields in original form. This makes it

slightly slower than address sort. During processing this sort handles only the

RFAs and two forms of the key fields. One form is used for sorting and the

other is left as it was in the original data.

Index sort produces an output file consisting of record indices plus keys in

original form. Each record in the output file consists of a 6-byte record index

plus the key field.

NOTE:

Do not transfer an index sort output file to a device that cannot

handle binary data, such as a printer or terminal.

Improving SORT Efficiency



Assume that you are sorting a file consisting of six records using Index sort

process, and you are using a key size of four characters (bytes). The sequence

of record indices corresponding to the sorted record, is 5,1,6,3,4,2 as shown in

Figure 5-4.

Figure 5-4: Sample Index Sort Output File

Record’s File Address (RFA)

Block Number

LOW HIGH BYTE-IN-BLOCK

RECORD | (2 bytes (2 bytes (2 bytes

NUMBER 16 bits) 16 bits) 16 bits) KEY IN ORIGINAL FORM

1 000001000000 000162 A B C D

2 000001]000000 000000 A B C D

3 000001}000000 000236 A B C D

4 000001000000 000042 A B C D

5 000001000000 000132 A B C D

6 0000011000000 000026 A B C D

Notes:

1. ABCD represents the sorting keys in original format.

2. Byte and Block numbers are shown here in hexadecimal, they are written to the actual

output file in binary.

5.1.2 Internal Organization

SORT operates in eight phases (phase 0 through 7). Figure 5-5 summarizes

these phases.

Phase Function

0 Decode command line and specification file

1 Initialize SORT

Get records

Sort records

Initialize merge

Merge records

Output records

End SORT3
 
O
 

v
 

=
 
W
 
N

Improving SORT Efficiency



5-8

The VAX/VMS command interpreter calls the SORT utility at its main entry

point and Phase 0 is initiated. The initial process statistics are acquired from

the system and stored in a table. SORT calls the command interpreter to

parse and validate the command line. Then SORT validates this information

and stores it in various tables and buffers. If a specification file is present it is

opened, the records are read, the information validated and stored in various

tables and buffers, and the file is closed. Any errors up to this point are
reported by signaling the command interpreter. SORT opens the input file,

and creates the output file.

SORT begins Phase 1. The sorting process is initialized by filling in the key

comparison information, allocating the space needed for input and output

buffers and the sort tree, creating the work files and initializing the sort tree.

Phase 2 begins the sort proper. SORT either reads records from the input file,

or receives them from the caller.

At Phase 3, SORT builds the key from the record and inserts each record into

the tree by key. This process repeats until the sort tree is full or there are no

more records. SORT then outputs the records to the work files as a variable

number of strings each of which is a set of sorted records. Each time a record

is output from the tree a new one is input until there are no more records. The

rest of the records in the tree are output and that ends the initial sorting phase

(phases 1 through 3).

Phase 4 starts SORT’s internal merging operation. The memory is redivided

at this point for the merge phase into one to ten input buffers and one output

buffer, depending on the number of initial strings. A different string is read

into each input buffer and the records are merged together into one string and

output to a work file. This process is repeated until the total number of strings

is less than ten.

Phase 5 performs the final merge pass and outputs the remaining string of

records, which is the final sorted file, to either the output file or the caller.

Phase 6 closes the input and output files, closes and deletes the work files, and

returns the memory.

Phase 7 acquires the final statistics and prints them, then exits SORT back to

the VAX/VMS command interpreter. .

Notes:

1. Phases 0 and 7 are part of the utility only.

2. The last part of phase 0 (opening the input file and creating the output

file) and phase 6 are used only by the file I/O subroutine package and the

utility.

3. Phases 1 through 5 are used by the utility and both the file I/O and record

I/O subroutine packages.

Improving SORT Efficiency



4. Errors during phases 1 through 6 are signaled to the VAX/VMS command

interpreter if the utility is running, or returned as a status code to the
caller if the subroutine package is running.

5. All signaled errors produce messages at the command interpreter level

(see Chapter 4).

Figure 5-5: VAX-11 SORT Operating Phases

PHASE 0

DCL SORT Command (via VAX/VMS command interpreter).

Entry point to SORT.

Get initial process statistics.

Call command line processor to decode command line.

If it was specified, call specification file decoder.

Open the input file and create the output file.

PHASE 1

Set up the key comparison buffer and validate key information.

Get memory for sorting initial phase, input and output buffers, and set up to read input.

Create work files and initialize the sort.

PHASE 2

Read or get record from user and build key.

PHASE 3

Insert record by key into sort tree.

Is sort tree full? (YES, continue /NO, go back to phase 2)

Output records to work files as a number of strings of sorted records.

Output and Input until end of file and all records are output.

PHASE 4

Read in strings from work file and merge them until there are 10 or fewer strings left in the

work files.

PHASE 5

Set up to output records to user or output file.

Do final merge pass outputting records to user files, not work files.

PHASE 6

Delete work files, return memory, close output and input files.

PHASE 7

Print statistics and exit.

Improving SORT Efficiency 5-9



5-10

5.1.3 Buffer Allocation and Work Areas

The SORT utility and subroutine package are initially linked with a mini-

mum of space allocated. When SORT is initialized, the work area manager

assigns as much virtual memory as the process needs, and adjusts the working

set size to the process maximum. This allows SORT to minimize page faults

during the sorting, and maximize the order of the merge. At the end of the sort

operation the limits are restored to the size they were at the entry to SORT,

returning the additional virtual memory to the system. SORT requires a

minimum of 75 pages of memory for the working set.

The VAX/VMS memory management system service, create and map section,

allows a user to specify that a particular span of virtual addresses in the

program should be read from and written into a particular set of virtual blocks

within a file on disk, when referenced or paged-out by the entry of another

page. The actual I/O to and from the disk is all handled by the pager. SORT

maps the individual virtual addresses representing the work area onto specific

blocks within a work file. When a particular buffer is then referenced within

the work area, the pager automatically brings the correct blocks from the work

file into real memory, and writes the existing blocks back to the correct place

in the file.

5.1.4 Dynamic Memory Usage

Figure 5-6 shows the total address space used by SORT during each of its

eight phases of operation.

Figure 5-6: SORT Dynamic Memory Usage

.. fMrm—m——————e eme e1
= User Limit. r Unused 1 r Output {
= User Quota that must I Portion of | __ BufferI

be greater than or | Codeand ! |7 Tinput Bufter |
equal to 75 pages of I Data. | I 410 I
real memory. | | 'iuiaiand whaieriage

TAS= Total Address Space. | | | { |
VM= Virtual Memory. | I | |

WS= Working Set. | I | |

: Output I | I
| Buffer | l |

TAS=WS+(=B) ! l | ; Same as
VM(=3+B=3*WS) R} ! | {VM= Phases 1,2,3

| vm-gws(-g) | |Buffers(=3*WS=B)=
[

|
Tree=1/2WS Input Buffer
Input Buffer= #1

Dc?d?f_an((ij ) 1/4WS Code and
ata (fixe D fixed

Portion of Code Code and ata (fixed)
and Data needed Data
for Phases 1-3WS=A S¢ WS=A

TAS=A WS-8 WS=8 TAS=A
Phases —» 0 1,2,3 4,5

Improving SORT Efficiency

SORT RUN

6,7 |

>

H-MK-00025-00



5.1.5 1/0 Considerations

The input and output files I/O and the specification file I/O are all performed
under the control of VAX-11 RMS record I/O facilities. Multi-buffering is
used together with read ahead on unit record devices to optimize the I/0
operations. The work files are processed by the VAX/VMS memory manage-
ment system service, create and map section.

Various devices can be used for input and output files. Figure 2-1 shows which
devices are allowed for each of the four sorting techniques. Use Figure 2-1 to
match the sorting process with the devices that best suit your processing
environment. Data may be stored in binary, ASCII, decimal, packed or zoned.

5.2 Tuning Procedure

All generalized sorts consider several factors such as: the memory environ-
ment (large, small, virtual memory capability or not); the I/O devices to be
used for work files and their characteristics (speed, arm movement, seek time,
public or private units); type of files and data most likely to be sorted (large or
small files, large or small records and keys, random or ordered partially,
characters or numbers).

The algorithm must be very good for the cases occurring most often, and
reasonable on all other cases. VAX-11 SORT is designed for an environment
of: fairly large files, virtual memory capability, random access disk devices,
public and private, larger random character data files, medium size records
and keys.

There are three components of a sort that account for the majority of the
processing time:

® The number of key comparisons per record per sort.

* The number of merge passes needed to complete the sort.

* The amount of time spent waiting for and/or doing I/O to work files.

5.2.1 User Performance Considerations

This section discusses how you can determine the most efficient values for the

following SORT performance parameters.

* Working set quota

® Work file devices

e Number of work files

® Type of sort (process)

¢ File size

Improving SORT Efficiency 5-11



5-12

¢ Record size

e Key size

* System load

e ,S,yst,Qm, process parameters

5.2.1.1 Working Set Quota — For SORT to work efficiently the most import-

ant parameter is the working set quota (or size) the user decides to choose.

The optimum working set quota is the smallest one for which the data can be

sorted in memory, that is with 0 merge passes.

To compute the appropriate working set quota size, perform the following

procedure:

Step 1. For any sort, take the size of the key fields added together in bytes.

Step 2. Then add 20.

Step 3. If the sorting process is record sort, add the number of bytes in the

longest record; otherwise add 6. Then multiply by the number of

records in the file. This is the total amount of data you have in

bytes.

Step 4. Divide that number by 512 to get the amount in blocks.

Step 5. Multiply by 2 to get the size of the working set quota you should

start with.

For most larger files the number computed will be much to large to actually

use as a quota. In such cases, the largest reasonable size based on the system

load and scheduling considerations is the correct size to use. An individual

user’s authorized quota is generally the largest reasonable size for the

particular system.

For example:

To sort a 1000 record file with 80-byte records and a total key field size of

80 bytes using the record process, compute the following:

1000 X (80+20+80) = 180,000 bytes of data

180,000/512 = 352 blocks of data

352 X 2 = 704 block working set quota

Answer: start with a working set quota of 700.

However, if the same type of a file contained 40,000 records, the total amount

of data would be 14,063 blocks. For most systems a quota of 28,000 blocks

(pages), or even 14,063 is unacceptable. Here the largest reasonable quota

should be used; for example 1024 pages.

Improving SORT Efficiency



5.2.1.2 Work File Devices — Another important parameter is where the work
files are placed. The fuller the disk and the more activity on the disk contain-
ing the work files, the less efficient SORT will be. The optimum configuration
would be to have each work file, and the input and output file all on separate
empty disks which are only being used by SORT during the sorting process.
However, this is seldom possible, so the next best configuration is to place
work files on available disks having the lowest activity. See Section 2.7 , Set-
ting up the Work Files.

5.2.1.3 Number of Work Files — Because SORT does not depend on the-num-

ber of work files used to determine the order of the merge like SORT-11, the
advantage of using more than the default number of work files is limited.
There are two reasons for using more than the default of two work files: 1) to
spread the work files between more than two disks and/or 2) to have each
individual file be a smaller size in order to fit onto a smaller or fuller disk.

If you are using three or four disks, it will help the sort performance to use
three or four work files, one on each disk as discussed above. For example, if
you have a 100,000 block file to sort, using two work files would create two
150,000 block files. But, using four work files would create four 75,000 block
files that could be placed on disks with less free space.

5.2.1.4 Type of Sort — Although the type of sort used is often dictated more

by functionality required than performance there are significant differences
between the sorts.

Address sort is the fastest and uses the least temporary disk space.

Index sort is only slightly slower than address sort but uses more tempory
storage.

Tag sort uses the same temporary storage as address sort, but is significantly
slower. For large records with small keys it is faster than record sort in smaller
memory sizes if the file is not large.

Record sort uses a larger amount of temporary storage and is the slowest.

5.2.1.5 Using SORT’s Statistics — Analyze the sort statistics (Section 2.2.3) to
determine how to improve the sort’s performance. The number of records in,
out, sorted if not all equal indicates that there were input or output errors, or
that there are null records in the file (that is, the number of records read was
greater than the number sorted or the number output). This condition can
also be caused by some records containing invalid data in the key fields (if less
than ten records are in error SORT will continue, otherwise SORT will stop
executing).

Longest record length value is obtained from either RMS or the user and can
be used to make sure the RMS value is correct.

Improving SORT Efficiency 5-13



5-14

The multi block and buffer counts indicate the amount of I/O optimization on

the input and output file. The larger the working set quota the more optimiza-

tion possible. No optimization would show all these counts as 1. This should

not occur unless the file is huge compared to the working set quota. If it does,

raise the quota if possible.

The order of the merge is the numberr, less one, of merge buffers that the
working set is divided into for the merge phase.

Number of merge passes and the number of initial runs shows you how close

the data is to fitting in memory. The higher these numbers are, particularly

the number of passes, the longer SORT takes and the further away the work-

ing set size is from containing the data.

Virtual memory added is the amount of virtual memory SORT used for the

data.

Elapsed time is the total wall clock time in hours, minutes, seconds, and 1/100

seconds from start to end for the sort run.

The total of the two 1/O counts are the number of disk hits to get and write data

and these will be higher if the multi block and buffer counts are lower. The

lower the better.

CPU time is the time spent actually processing data minus all I/O time. The

closer to the elapsed time the better optimization you are seeing in I/O.

Page faults are also a good indication of how well the data did or did not fit

into memory. The higher the number of page faults, the less efficient the sort

is.

5.2.2 System Manager Performance Considerations

The system manager can determine the following SORT performance parame-

ter values based on the overall system usage: number of users, types of process

most commonly run, and the amount of real memory available.

e System per process working set quota (WSMAX)

¢ System per process virtual page count (VIRTUALPAGECNT)

e System per process section count (PROCSECTCNT)

o System modified page writer cluster factor (MPW_WRTCLUSTER)

The values recommended are based solely on sort considerations; it is up to

the system manager to integrate other system considerations with these in

determining the appropriate final values.

Improving SORT Efficiency



5.2.2.1 Working Set Quota — The maximum for this value should be set to the

largest size any sort job would ever require. For very large files, working sets of
500 to 1000 pages are not at all unreasonable, provided the system has enough
physical memory to accommodate them. Individual maximums, to prevent
users from monopolizing real memory, can be set on a per user basis by using
the authorization file. For information on how to determine an appropriate
working set for a particular sort job see Section 5.2.1.1. The general rule is, the
smaller the working set, relative to the files to be sorted, the slower the sort.

5.2.2.2 -Virtual Page Count — For this parameter the current value as well as

the maximum value should be set to a minimum of 3 to 4 times the value of
the working set quota maximum. When SORT initially starts executing it will
request 2 and 1/2 to 3 times the working set quota of virtual memory from the
system. If this value is too low SORT will be unable to run in certain cases.

5.2.2.3 Process Section Count — For working set quota maximums of 500 or

less this parameter may stay at a minimum level. However, for working set
quotas greater than 500 to 1000 a current value of 10 or greater is necessary. If
this parameter is set too low, SORT will be unable to run in larger working
sets due to internal mapping failures. The value should be increased as the
working set quota maximum increases.

5.2.2.4 Modified Page Writer Cluster Factor — The value of this parameter will

never cause SORT to fail, however it can cause a large difference in perform-

ance. For any larger sorts (that is, using working sets of 250 pages or greater)
the larger this parameter, the better. Values of 64 and up are not too large. Be
sure to adjust MPW__HILIM and MPW__LOLIMIT accordingly. For more
information refer to the SYSGEN procedures in the VAX-11 Software Instal-
lation Guide.

Improving SORT Efficiency 5-15





Glossary

Alphanumeric Characters

The entire set of 128 ASCII characters (see Appendix B).

ASCIlI Character Set

The set of 128 eight-bit American Standard Code for Information Interchange charac-

ters (see Appendix B).

Batch

A mode of processing in which all commands to be executed by the operating system

and, optionally, data to be used as input to the commands are placed in a file or

punched onto cards and submitted to the system for execution.

BLISS

A high-level system implementation programming language. VAX-11 SORT is writ-

ten in BLISS.

Block

The smallest addressable unit of data that the specified device can transfer in an 1/0

operation (512 contiguous bytes for most disk devices).

Bucket

See File Bucket.

Buffer

A temporary data storage area in a process address space used when performing input

or output operations.

Byte

The smallest addressable unit of information; eight bits. For example, an ASCII

character requires a single byte (see Appendix C for further definitions).

Call v

The operation of invoking a procedure.

Caller

The procedure that invoked this procedure by a Call. At the time of procedure

invocation, the invoking procedure is said to be the caller, and the invoked procedure

is the callee. Contrast with User.

Glossary-1



Character

The smallest addressable unit of usable data (byte). It is also a single letter, numeral,

punctuation mark, or other symbol (such as $ or %), and is represented within the

computer as a unique combination of bits. Typically, a character code consists of

eight bits.

Character String Descriptor

A quadword data structure used for describing character data (strings). The first

word of the quadword contains the length of the character string. The second word

can contain type information. The remaining longword contains the address of the

string.

CPU

The Central Processor Unit portion of a computer system.

Collating Sequence

The order into which characters are sorted based upon numeric values assigned to

each.

Command

An instruction, generally an English word, typed by the user at a terminal or in-

cluded in a command. file, which requests the software monitoring a terminal or

reading a command file to perform some well-defined activity. For example, typing

the SORT command request the system to invoke the SORT utility.

Command File

A file containing command strings. See also Command Procedure.

Command Interpreter

Procedure-based system code that executes in supervisor mode in the context of a
process to receive, syntax check, and parse commands typed by the user at a terminal

or submitted in a command file.

Command Parameter

The positional operand of a command delimited by spaces, such as a file specifica-

tion, option, or constant.

Command Procedure

A file containing commands and data that the command interpreter can accept in
lieu of the user typing the commands individually on a terminal.

Glossary-2



Command String

A line (or set of continued lines), normally terminated by typing the carriage return

key, containing a command and, optionally, information modifying the command. A

complete command string consists of a command, its qualifiers, if any, and its

parameters (file specifications, for example), if any, and their qualifiers, if any.

Compatibility Mode

A mode of execution that enables the central processor to execute non-privileged

PDP-11 instructions. The operating system supports compatibility mode execution

by providing an RSX-11M programming environment for an RSX-11M task image.

The operating system compatibility mode procedures reside in control region of the

process executing a compatibility mode image. The procedures intercept calls to the

RSX-11M executive and convert them to the appropriate operating system func-

tions.

Contiguous Blocks

Physically adjacent and/or consecutively numbered blocks of data.

Data File Record

A record containing user data.

Data Structure

Any table, list, array, queue, or tree whose format and access conventions are well

defined for reference by one or more images.

Data Type

In general, the way in which bits are grouped and interpreted. In reference to the

processor instructions, the data type of an operand identifies the size of the operand

and the significance of the bits in the operand. Operand data types include: byte,

word, longword, and quad-word integer, floating and double floating, character

string, packed decimal string, and variable-length bit field (see Appendix C).

DCL

Digital Command Language (DCL) is a set of English- like statements that a user

types to initiate and control system operations.

Default

An assumed value supplied to the system when a command qualifier does not specifi-

cally override the normal command function; fields in a file specification that the

system fills in when the specification is not complete.

Descriptor

See Character String Descriptor.

Glossary-3



Device

The general name for any physical terminus or link connected to the processor that is
capable of receiving, storing, or transmitting data. Card readers, line printers, and
terminals are examples of record-oriented devices. Magnetic tape devices and disk
devices are examples of mass storage devices. Terminal line interfaces and interpro-
cessor links are examples .of communications devices.

Directory

A file used to locate files on a volume that contains a list of file names (including
extension and version number) and their unique internal identifications.

Directory Name

The field in a file specification that identifies the directory file in which a file is
listed. The directory name is enclosed in brackets ([] or <>).

Field

A logically distinguishable area within a record. Usually a logical unit of data.

File

A logically related collection of data on a volume such as disk or magnetic tape. A file
can be referenced by a name assigned by the user. A file normally consists of one or
more logical records.

File Bucket 
:

Within the RMS Relative File organization, a bucket is a storage structure of one to
32 blocks of data.

File Header

A block in the index file describing a file on a FILES-11 disk structure. The file
header identifies the locations of the file’s extents. There is a file header for every file
on the disk.

File Organization

The particular file structure used to record the data constituting a file on a mass
storage medium. RMS file organizations are: Sequential, Relative, and Indexed.

File Prologue

The first block in a relative or indexed file which contains header information for the
file.

File Specification

A unique name for a file on a mass storage medium. It identifies the node, the device,
the directory name, the file name, and the version number under which a file is stored
(see Appendix D for additional information).

Glossary—4



File Structure

The way in which the blocks forming a file are distributed on a disk or magnetic tape

to provide a physical accessing technique suitable for the way the data in the file is
processed.

File System

A method of recording, cataloging, and accessing files on a volume.

File Type

The field in a file specification that is preceded by a period or dot(.) and consists of a

zero-to three-character type identification. By convention, the type identifies a gen-

eric class of files that have the same use or characteristics, such as ASCII text files,

binary object files, etc.

Files-11

The standard physical disk structure used by VAX-11 RMS.

Filespec

File Specification that uniquely identifies a file by physical location (see Appendix

D).

File, Input

See Input File.

File, Output

See Output File.

File, Work

See Work File.

Fixed Control Area

An area associated with a variable length record available for controlling or assisting

record access operations. Typical uses include line numbers and printer format con-

trol information.

Fixed Position Field

An area associated with character position (or column numbers). Used in SORT-11

Specification Files.

Fixed Length Record Format

A file format in which all records have the same length.

Glossary-5



Format

The arrangement of any record or file; the order in which fields reside in a record.

Free Fields

Logically positioned fields separated by commas. Contrast with fixed position fields.

Home Block

A block in the index file that contains the volume identification, such as volume label

and protection.

Image

A file consisting of procedures and data that have been bound together by the linker.

There are three types of images: Executable, Shareable, and System.

Indexed File Organization

A file organization in which a file contains records and a primary key index (and

optionally one or more alternate key indices) used to process the records sequentially

by index or randomly by index.

Index File

The file on a Files-11 volume that contains the access information for all files on the

volume and enables the operating system to identify and access the volume.

Index File Bit Map

A table in the index file of a Files-11 volume that indicates which file headers are in

use.

Index File Record

A record of file system data that is invisible to the user.

Input File

The file containing the records you wish to sort.

Key, Key Field

The data field containing the values chosen from a record to control the sort (see

section 2.6).

Key, Major

The most important field in the total key. If you were sorting a list by department,

salary and name, department would be the major key.

Glossary-6



Key, Minor

The least significant field in the total key. In the preceding example name is the

minor key.

Library

A collection of commonly used files.

Line

In this document, a line generally refers to a line in the SORT specifications form or a

record in the specification file.

Logical Name

A user-specified name for any portion or all of a file specification. For example, the

logical name INPUT can be assigned to a terminal device from which a program

reads data entered by a user. Logical name assignments are maintained in logical

name tables for each process, each group, and the system. A logical name can be

created and assigned a value permanently or dynamically.

Longword

Four contiguous bytes (32 bits) starting on an addressable byte boundary (see Appen-

dix C).

LRL

Longest Record Length (LRL) specified in bytes.

Merge

A process by which two or more ordered groups of records are put together record-by-
record into a single identically ordered group.

Native Mode

The processor’s execution mode, in which the programmed instructions are inter-

preted as byte-aligned, variable length instructions that operate on byte, word, long-

word, quadword integer, floating and double floating, character string, packed deci-

mal, and variable length bit field data. The instruction execution mode other than

compatibility mode. ‘

Node

An individual computer system in a network.

Output File

The file created by running SORT. The output file may be either a data file or an

address file.

Glossary-7



Page

1). A set of 512 contiguous byte locations used as the unit of memory mapping and

protection. 2). The data between the beginning of file and a page marker, between

two markers, or between a marker and the end of a file.

Page Fault

An exception generated by a reference to a page which is not mapped into a working

set.

Pager

A set of kernel mode procedures that executes as the result of a page fault. The pager

makes the page for which the fault occurred available in physical memory so that the

image can continue execution. The pager and the image activator provide part of the

operating system’s memory management functions.

Paging

The action of bringing pages of an executing process into physical memory when

referenced. When a process executes, all of its pages are said to reside in virtual

memory. Only the actively used pages, however, need_to reside in physical memory.

In this system, a process is paged only when it references more pages than it is

allowed to have in its working set. When a process refers to a page not in its working

set, a page fault occurs. This causes the operating system’s pager to read in the

referenced page fault if it is on disk (and optionally, other related pages depending on

a cluster factor), replacing the least recently faulted pages as needed. This system

only pages a process against itself.

Packed Decimal

A method for compact storage of numeric data; two digits are stored in each 8-bit

byte and the sign resides in the last byte of the low-order digit.

Parse

To break down into individual parts from a whole.

Physical Memory

The memory modules contained within the CPU. Also called main memory.

Procedure

A routine that follows the VAX-11 calling sequence standard. A procedure may
return values via the argument list and/or the standard value return registers. Con-

trast with routine.

Process

The basic entity scheduled by the system software that provides the context in which

an image executes. A process consists of an address space and both hardware and

software context.

Glossary-8



Program

A program is the basic entity that is executed by the processor. Each program con-

sists of a set of procedures and its execution represents a distinct activity that is

potentially concurrent with others in the system.

Prologue

See File Prologue.

Quadword

Eight contiguous bytes (64 bits) starting on an addressable byte boundary. See Ap-

pendix C.

Qualifier

A portion of a command string that modifies a command verb or command parame-

ter by selecting one of several options. A qualifier, if present, follows the command

verb or parameter to which it applies and is in the format: "/qualifier=option". For

example, in the command string "PRINT filename/ COPIES=3", the COPIES quali-

fier indicates that the user wants three copies of a given file printed.

Random access by record’s file address

The retrieval of a record by its unique address, which is provided to the program by

RMS. The method of access can be used to randomly access a sequentially organized

file containing variable length records.

Random access by relative record number

The retrieval or storage of a record by specifying its position relative to the beginning

of the file.

Real Memory

See Physical Memory.

Record

The unit of information in a file; a group of related fields treated as a logical unit.

Record Cell .

A fixed length area in a relatively organized file that is used to contain one record.

Record Management Services (RMS)

A set of system procedures in the operating system that are called by programs to

process files and records within files. RMS allows programs to issue GET and PUT

requests at the record level (record I/0) as well as read and write blocks (block I/0).

RMS is an integral part of the system software. RMS procedures run in executive

mode. :

Glossary-9



Record-oriented Device

A device such as a terminal, line printer, or card reader, on which the largest unit of

data that a program can access is the device’s physical record.

Record’s File Address (RFA)

The unique address of a record in a file that allows records to be accessed randomly

regardless of file organization.

Record, Data File

See Data File Record.

Record, Field Specification

See Section 2.5.2

Record, Header

See Section 2.5.2

Record, Index File

See Index File Record.

Relative File Organization

A file organization in which the file contains fixed length record cells. Each cell is

assigned a consecutive number that represents its position relative to the beginning of

the file. Records within each cell can be the same length or smaller than the cell.

Relative file organization permits sequential record access, random record access by

record number, and random record access by record’s file address.

RMS

See Record Management Services (RMS).

Routine

A sequence of instructions that performs a well defined action. It may have multiple

entry points. For example, the SIN routine has SIN and COS entry points. A routine

that follows the VAX-11 calling sequence standard is termed a procedure.

Sequential File Organization

A file organization in which records appear in the order in which they were originally

written. The records can be fixed length or variable length. Although one does not

speak of record cells with sequentially organized files, for purposes of comparison

with relatively organized files one can say that the record itself is the same as its

record cell, and its record number is the same as its relative cell number. Sequential

file organization permits sequential record access and random record access by

record’s file address. Sequential file organization with fixed length records also per-

mits random access by relative record number.

Glossary-10



SORT Utility

A processing program that can be used to sort records by keys into a prescribed

sequence. To segregate items into groups according to some definite rules.

Sort Tree

A data structure used to keep order of records by sort.

Subroutine

A procedure that does not return a known value in the value registers. If values are

returned, they are returned via the argument list. By convention, the function "value"

is unpredictable.

System Device

The device on which the Executive resides.

Terminal

The general name for those peripheral devices that have keyboards and video screen

or printers. Under program control, a terminal enables people to type commands and

data on a keyboard and receive messages on a video screen or printer. Examples of

terminals are the LA36 DECwriter (hard-copy terminal) and the VT52 video display

terminal (soft-copy terminal).

Unit Record Device

See Record-oriented Device.

User

The person who is directly using the computer, either via terminal or batch input.

Contrast with Caller.

Variable-length Record

A record format in which records need not be the same length.

Variable with fixed-length control (VFC) record

A record format in which records of variable length contain an additional fixed-length

control area. The control area may be used to contain file line numbers and/or print

format control characters.

Virtual Address

A 32-bit integer identifying a byte "location" in virtual address space. The memory

management hardware translates a virtual address to a physical address. The term

virtual address may also refer to the address used to identify a virtual block on a mass

storage device.

Glossary-11



Virtual Memory

The set of storage locations in physical memory and on disk that are referred to by

virtual addresses. From the programmer’s viewpoint, the secondary storage locations

appear to be locations in physical memory. The size of virtual memory in any system

depends on the amount of physical memory available and the amount of disk storage

used for non-resident virtual memory.

Volume

A mass storage medium such as a disk pack or reel of magnetic tape.

Wild card

The asterisk character when used as a substitute parameter in file specification

indicates "all" for a given field.

Word

Two contiguous bytes (16 bits) starting on an addressable byte boundary (see Appen-

dix C).

Work File

A collection of sorted records created during the processing cycle and released after

the sort is finished. (Sometimes called Scratch Files.)

Working Set

The set of pages in process address space to which an executing process can refer

without incurring a page fault. The working set must be resident in memory for the

process to execute. The remaining pages of that process, if any, are either in memory

and not in the process working set or they are on secondary storage.

Zoned Numeric Format

A specific ASCII coded decimal data type where the number sign and the least

significant digit are combined into a single hexadecimal code (see Appendix C).

Glossary-12



Appendix A

Octal/Hexadecimal/Decimal Conversion

A.1 Octal/Decimal Conversion

To convert a number from octal to decimal, locate in each column of the table
the decimal equivalent for the octal digit in that position. Add the decimal
equivalents to obtain the decimal number.

To convert a decimal number to octal:

1. locate the largest decimal value in the table that will fit into the decimal
number to be converted,

2. note its octal equivalent and column position,

3. find the decimal remainder.

Repeat the process on each remainder. When the remainder is 0, all digits will
have been generated.

8 8t 8 82 8! 8"

0 0 0 0 0 0 0

1 32,768 4,096 512 64 8 1

2 65,536 8,192 1,024 128 16 2

3 98,304 12,228 1,536 192 24 3

4 31,072 16,384 2,048 256 32 4

5 163,840 20,480 2,560 320 40 5

6 169,608 24,576 3,072 384 48 6

7 229,376 28,672 3,584 448 56 7



A.2 Powers of 2 and 16

Powers of 2 Powers of 16

2**n n 16**n n

256 8 1 0

512 9 16 1

1024 10 256 2

2048 11 4096 3

4096 12 65536 4

8192 13 1048576 5

16384 14 16777216 6

32768 15 268435456 7

65536 16 4294967296 8

131072 17 68719476736 9

262144 18 1099511627776 10

524288 19 17592186044416 11

1048576 20 281474976710656 12

2094304 21 4503599627370496 13

4194304 22 72057594037927936 14

8388608 23 1152921504606846976 15

16777216 24

A.3 Hexadecimal to Decimal Conversion

For each integer position of the hexadecimal value, locate the corresponding

column integer and record its decimal equivalent in the conversion table A.5.

Add the decimal equivalent to obtain the decimal value.

Example:

DOSOOADO (16) = 10D

DOOOOOOO = 3,489,660 ,928

SO0000 = 5,242,880

ADD = 24560

Do = 208

DOSOOADO = 3,494:904,3706

A.4 Decimal to Hexadecimal Conversion

1. Locate in the conversion table A.5 the largest decimal value that does not

exceed the decimal number to be converted.

2. Record the hexadecimal equivalent followed by the number of zeros (0)

that corresponds to the integer column minus one.

3. Subtract the table decimal value from the decimal number to be

converted.

4. Repeat steps 1-3 until the subtraction balance equals zero (0). Add the

hexadecimal equivalents to obtain the hexadecimal value.

A-2 Octal/Hexadecimal/Decimal Conversion



Example:

22466 (10) = P(16)

20,480 = 5000 22,466

1,782 = 700 ~-20,480

192 = Y

2 = 2 1,886

------ B e - 1,782

22+4066 = 2702 e

194

- 192

A.5 Hexadecimal Integer Columns

HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 268,435,456 1 16,777,216 1 1,048,576 1 65,536 1 4,096 1 256 1 6 1 1

2 536,870,912 2 33,554,432 2 2,097,152 2 131,072 2 8,192 2 512 2 32 2 2

3 805,306,368 3 50,331,648 3 3,145,728 3 196,608 3 12,288 3 768 3 48 3 3

4 1,073,741,824 4 67,108,864 4 4,194,304 4 262,144 4 16,384 4 1,024 4 64 4 4

5 1,342,177,280 5 83,886,080 5 5,242,880 5 327680 5 20,480 5 1,280 5 8 5 5

6 1,610,612,736 6 100,663,296 6 6,291,456 6 393,216 6 24576 6 1,536 6 9% 6 6

7 1,879,048,192 7 117,440,512 7 7,340,032 7 458,752 7 28672 7 1,792 7 112 7 7

8 2,147,483643 8 134,217,728 8 8,338,608 8 524,288 8 32,768 8 2,048 8 128 8 8

9 2,415,919,104 9 150,994,944 9 9,437,184 9 589,824 9 36,864 9 2,304 9 144 9 9

A 2684354560 A 167,772,160 A 10,485,760 A 655,360 A 40,960 A 2,560 A 160 A 10

B 2,952790,016 B 184,549,376 B 11,534,336 B 720,896 B 45056 B 2916 B 176 B 11

C 3,221,225472 C 201,326,592 C 12,582,912 C 786,432 C 49,152 C 3,012 C 192 C 12

D 3,489,660,928 D 218,103,808 D 13,631,488 D 851,968 D 53,248 D 3328 D 208 D 13

E 3,758,096,38¢ E 234,881,024 E 14,680,064 E 917,504 E 57,344 E 3584 E 224 E 14

F 4,026531,840 F 251,658,240 F 15,728,640 F 983,040 F 61,440 F 3,840 F 240 F 15

\ / \ / \ / /
\V4 NV \V 4 A4

BYTE BYTE BYTE BYTE

AN / \
4 N

\ WORD WORD /

V

LONGWORD

Octal/Hexadecimal/Decimal Conversion





Appendix B

The ASCII Character Set Collating Sequence

ASCII ASCII

ASCII Hexadecimal 8-Bit ASCII Hexadecimal 8-Bit

Character Number Octal Decimal Character Number Octal Decimal

NUL 00 000 0 FS 1C 034 28

SOH 01 001 1 GS 1D 035 29

STX 02 002 2 RS 1E 036 30

ETX 03 003 3 US 1F 037 31

EOT 04 004 4 SP 20 040 32

ENQ 05 005 5 ! 21 041 33

ACK 06 006 6 " 22 042 34

BEL 07 007 7 23 043 35

BS 08 010 8 24 044 36

HT 09 011 9 % 25 045 37

LF 0A 012 10 & 26 046 38

VT 0B 013 11 27 047 39

FF 0C 014 12 ( 28 050 40

CR 0D 015 13 ) 29 051 41

SO OE 016 14 * 2A 052 42

SI OF 017 15 + 2B 053 43

DLE 10 020 16 , 2C 054 44

DC1 11 021 17 o 2D 055 45

DC2 12 022 18 2E 056 46

DC3 13 023 29 / 2F 057 47

DC4 14 024 20 0 30 060 48

NAK 15 025 21 1 31 061 49

SYN 16 026 22 2 32 062 50

ETB 17 027 23 3 33 063 51

CAN 18 030 24 4 34 064 52

EM 19 031 25 5 35 065 53

SUB 1A 032 26 6 36 066 54

ESC 1B 033 27 7 37 067 55

(continued on next page)

B-1



ASCII ASCII

ASCII Hexadecimal 8-Bit ASCIT Hexadecimal 8-Bit

Character Number Octal Decimal |] Character Number Octal Decimal

8 38 070 56 \ 5C 134 92

9 39 071 57 ] 5D 135 93

3A 072 58 A 5E 136 94

: 3B 073 59 —_ 5F 137 95

< 3C 074 60 60 140 96

= 3D 075 61 61 141 97

> 3E 076 62 62 142 98

? 3F 077 63 c 63 143 99

@ 40 100 64 d 64 144 100

A 41 101 65 e 65 145 101

B 42 102 66 f 66 146 102

C 43 103 67 g 67 147 103

D 44 104 68 68 150 104

E 45 105 69 i 69 151 105

F 46 106 70 j 6A 152 106

G 47 107 71 k 6B 153 107

H 48 110 72 | 6C 154 108

I 49 111 73 m 6D 155 109

J 4A 112 74 n 6E 156 110

K 4B 113 75 0 6F 157 111

L 4C 114 76 p 70 160 112

M 4D 115 77 q 71 161 113

N 4E 116 78 r 72 162 114

0] 4F 117 79 s 73 163 115

P 50 120 80 t 74 164 116

Q 51 121 81 u 75 165 117

R 52 122 82 v 76 166 118

S 53 123 83 w 77 167 119

T 54 124 84 X 78 170 120

U 55 125 85 y 79 171 121

\Y 56 126 86 A TA 172 122

w 57 127 87 { 7B 173 123

X 58 130 88 I 7C 174 124

Y 59 131 89 } 7D 175 125

Z 5A 132 90 - TE 176 126

[ 5B 133 91 DEL 7F 177 127

B-2 Characters Set ASCII Collating Sequence



Appendix C

Data Types

C.1 Byte

C.2 Word

The data type refers to the way in which bits are grouped and interpreted. In

reference to the processor instructions, the data type of an operand identifies

the size of the operand and the significance of the bits in the operand. Data

types applicable to SORT and its associated VAX/VMS programs are: sepa-

rated into three classes; character, binary, and decimal. These classes can be

subdivided into data types of different sizes and formats such as; byte, word,

longword, quadword, floating, double floating, character string, packed deci-

mal string, and variable-length bit field.

A byte is 8 contiguous bits starting on an addressable byte boundary. The bits

are numbered from the right 0 through 7:

7 0

A byte is specified by its address A. When interpreted arithmetically, a byte is

a twos complement integer with bits of increasing significance going 0 through

6 and bit 7 the sign bit. The value of the integer is in the range -128 through

127. For the purposes of addition, subtraction, and comparison, VAX-11 in-

structions also provide direct support for the interpretation of a byte as an

unsigned integer with bits of increasing significance going 0 through 7. The

value of the unsigned integer is in the range 0 through 255.

A word is 2 contiguous bytes starting on an arbitrary byte boundary. The bits

are numbered from the right 0 through 15:

1

5 0

A word is specified by its address A, the address of the byte containing bit 0.

When interpreted arithmetically, a word is a twos complement integer with

bits of increasing significance going 0 through 14 and bit 15 the sign bit. The

value of the integer is in the range -32,768 through 32,767. For the purposes of



C.3 Longword

addition, subtraction and comparison, VAX-11 instructions also provide di-

rect support for the interpretation of a word as an unsigned integer with bits of

1ncreas1ng significance going 0 through 15. The value of the unsigned 1ntegeris

in the range 0 through 65,535.

"«-

A longwordis 4 contiguous bytes starting on an arbitrary byte boundary. The
bits are numbered from the right 0 through 31:

3

1 - 0

A longword is specified by its address A, the address of the type containing bit
0. When interpreted arithmetically, a longword is a twos complement integer
with bits of increasing significance going 0 through 30 and bit 31 the sign bit.
The value of the integer is in the range -2,147,483,648 through 2,147,483,647.
For the purposes of addition, subtraction, and comparison, VAX-11 instruc-
tions also provide direct support for the interpretation of a longword as an

unsigned integer with bits of increasing significance going 0 through 31. The

value of the unsigned integer is in the range 0 through 4,294,967,295.

Note that the longword format is different from the longword format defined
by the PDP-11 FP-11. In that format, bits of increasing significance go from
16 through 31 and 0 through 14. Bit 15 is the sign bit. Most DIGITAL software
andin particular PDP-11 FORTRAN and COBOL use the VAX-11 longword
format.

C.4 Quadword

C-2

A quadword is 8 contiguous bytes starting on an arbitrary byte boundary. The

bits are numbered from the right 0 through 63:

3

1 0

:A

:A+4

6 3

3 2

A quadword is specified by its address A, the address of the byte containing

bit 0. When interpreted arithmetically, a quadword is a twos complement
integer with bits of increasing significance going 0 through 62 and bit 63 the

sign bit. The value of the integer is in the range -2**63 to 2**63-1. The quad-

word data type is not fully supported by VAX-11 instructions.

Data Types



C.5 Floating

A floating datum is 4 contiguous bytes starting on an arbitrary byte boundary.

The bits are labelled from the right 0 through 31.

3 111

1 654 76 0

fraction S exp fraction A

A floating datum is specified by its address A, the address of the byte contain-

ing bit 0. The form of a floating datum is sign magnitude with bit 15 the sign

‘bit, bits 14:7 an excess 128 binary exponent, and bits 6:0 and 31:16 a normal-

ized 24-bit fraction with the redundant most significant fraction bit not repre-

sented. Within the fraction, bits of increasing significance go from 16 through

31 and 0 through 6. The 8-bit exponent field encodes the values 0 through 255.

An exponent value of 0 together with a sign bit of 0, is taken to indicate that
the floating datum has a value of 0. Exponent values of 1 through 255 indicate

true binary exponents of -127 through +127. An exponent value of 0, together

with a sign bit of 1, is taken as reserved. Floating point instructions processing

a reserved operand take a reserved operand fault (See Chapter 4 and 6). The

value of a floating datum is in the approximate range .29*10**-38 through

1.7*10**38. The precision of a floating datum is approximately one part in

2**23, that is, typically 7 decimal digits.

C.6 Double Floating

A double floating datum is 8 contiguous bytes starting on an arbitrary byte

boundary. The bits are labelled from the right 0 through 63:

3 111

1 654 76 0

fraction S exp fraction :A

fraction fraction :A+4

6- 44 3
3 87 2

A double floating datum is specified by its address A, the address of the byte

containing bit 0. The form of a double floating datum is identical to a floating

datum except for an additional 32 low significance fraction bits. Within the

fraction, bits of increasing significance go 48 through 63, 32 through 47, 16

through 31, and O through 6. The exponent conventions, and approximate

range of values is the same for double floating as floating. The precision of a

double floating datum is approximately one part in 2**55, that is, typically 16

decimal digits.

Data Types C-3



C.7 Variable Length Bit Field

C-4

A variable bit field is 0 to 32 contiguous bits located arbitrarily with respect to

byte boundaries. A variable bit field is specified by 3 attributes: the address A

of a byte, a bit position P which is the starting location of the field with

respect to bit 0 of the byte at A, and a size S of the field. The specification of a

bit field is indicated by the following where the field is the shaded area.

The position is in the range -2**31 through 2**31-1 and is conveniently

viewed as a signed 29-bit offset and a 3-bit bit-within-byte (BWB) field:

byte offset bwb

The sign extended 29-bit byte offset is added to the address A and the result-

ing address specifies the byte in which the field begins. The 3-bit bit-within-

byte field encodes the starting position (0 through 7) of the field within that

byte. The VAX-11 field instructions provide direct support for the interpreta-

tion of a field as a signed or unsigned integer. When interpreted as a signed

integer, it is twos complement with bits of increasing significance going 0

through S-2; bit S-1 is the sign bit. When interpreted as an unsigned integer,

bits of increasing significance go from 0 to S-1. A field of size 0 has a value

identically equal to O.

A variable bit field may be contained in 1 to 5 bytes. From a memory manage-
ment point of view, only the minimum number of bytes necessary to contain

the field is actually referenced.

Data Types



C.8 Character String

A character string is a contiguous sequence of bytes in memory. A character

string is specified by 2 attributes: the address A of the first byte of the string,

and the length L of the string in bytes. Thus the format of a character string

182

7 0

7 0

:A+L-1

The address of a string specifies the first character of a string. Thus "XYZ" is

represented:

"Xll

llYlI

lIZIl

A

:A+1

:A+2

The length L of a string is in the range 0 through 65,535.

C.9 Trailing Numeric String

A trailing numeric string is a contiguous sequence of bytes in memory. The

string is specified by 2 attributes: the address A of the first byte (most signifi-

cant digit) of the string, and the length L of the string in bytes.

All bytes of a trailing numeric string, except the least significant digit byte,

must contain an ASCII decimal digit character (0-9). The representation for

the high order digits is:

digit decimal

0 48

1 49

2 50

3 51

4 52

5 53

6 54

7 55

8 56

9 57

hex

30

31

32

33

34

35

36

37

38

39

ASCII

character

W
 
O
 
-
0
 
U
t
 
W
K
 
M
O

Data Types C-5



The highest addressed byte of a trailing numeric string represents an encoding

of both the least significant digit and the sign of the numeric string. The VAX

numeric string instructions support any encoding; however, there are 3 pre-

ferred encodings used by DIGITAL software. These are (1) unsigned numeric

in which there is no sign and the least significant digit contains an ASCII

decimal digit character, (2) zoned numeric, and (3) overpunched numeric.

Because the overpunch format has been used by compilers of many manufac-

turers over many years, and because various card encodings are used, several

variations in overpunch format have evolved. Typically, these alternate forms

are accepted on input. The valid representations of the digit and sign in each

of the later two formats is:

Representation of Least Significant Digit and Sign

Zoned Numeric Format Overpunch Format

ASCII ASCII char

digit decimal hex char decimal hex norm alt.

0 48 30 0 123 7B { [?

1 49 31 1 65 41 A a

2 50 32 2 66 42 B b

3 51 33 3 67 43 C c

4 52 34 4 68 44 D d

5 53 35 5 69 45 E e

6 54 36 6 70 46 F f

7 55 37 7 71 47 G g

8 56 38 8 72 48 H h

9 57 39 9 73 49 I i

-0 112 70 p 125 7D } IR

-1 113 71 q 74 4A J j

-2 114 72 r- 75 4B K k

-3 115 73 s 76 4C L 1

-4 116 74 t 77 4D M m

-5 117 75 u 78 4E N n

-6 118 76 \ 79 4F 0 0

=7 119 77 w 80 50 P p

-8 120 78 X 81 51 Q q

-9 121 79 y 82 52 R r

The length L of a trailing numeric string must be in the range 0 to 31 (0 to 31

digits). The value of a 0 length string is identically 0. The address A of the

string specifies the byte of the string containing the most significant digit.

Digits of decreasing significance are assigned to increasing addresses. Thus

"123" is represented:

Zoned Format or Unsigned Overpunch Format

7 4 3 0 7 4 3 0

3 1 A 3 1 A

3 2 ‘A+1 3 2 A+

3 3 :A+2 4 3 :A+2

C-6 Data Types



and "-123" is represented:

Zoned Format Overpunch Format

7 43 0 7 43 0

3 1 A 3 1 A

3 2 A+ 3 . 2

7 3 :A+2 4 C :A+2

C.10 Leading Separate Numeric String

A leading separate numeric string is a contiguous sequence of bytes in mem-

ory. A leading separate numeric string is specified by 2 attributes: the address

A of the first byte (containing the sign character), and a length L, which is the

length of the string in digits and NOT the length of the string in bytes. The

number of bytes in a leading separate numeric string is L+1.

The sign of a separate leading numeric string is stored in a separate byte.

Valid sign bytes are:

Sign decimal hex ASCII character

+ 43 2B +

+ 32 20 <blank>

- 45 2D -

The preferred representation for "+" is ASCII "+". All subsequent bytes con-

tain an ASCII digit character:

digit decimal hex ASCII character

0 48 30 0

1 49 31 1

2 50 32 2

3 51 33 3

4 52 34 4

5 53 35 5

6 54 36 6

7 55 37 7

8 56 38 8

9 57 39 9

The length L of a leading separate numeric string must bein the range 0 to 31

(0 to 31 digits). The value of a 0 length string is identically 0.

Data Types C-7



The address A of the string specifies the byte of the string containing the sign.

Digits of decreasing significance are assigned to bytes of increasing addresses.

Thus "+123" is:

7 43 0

2 B A

3 1 :A+1

3 2 :A+2

3 3 :A+3

and "-123" is:

7 43 0

2 D A

3 1

3 2

3 3

C.11 Packed Decimal String

A packed decimal string is a contiguous sequence of bytes in memory. A

packed decimal string is specified by 2 attributes: the address A of the first

byte of the string and a length L which is the number of digits in the string

and NOT the length of the string in bytes. The bytes of a packed decimal

string are divided into 2 4-bit fields (nibbles) which must contain decimal

digits except the low nibble (bits 3:0) of the last (highest addressed) byte

which must contain a sign. The representation for the digits and sign is:

digit or sign decimal hex

0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9

+ 10,12,14, or 15 ACE, or F

- 11.0r 13 B,orD

C-8 Data Types



The preferred sign representation is 12 for "+" and 13 for "-". The length L is

the number of digits in the packed decimal string (not counting the sign) and

must be in the range 0 through 31. When the number of digits is odd, the

digits and the sign fit in L/2 (integer part only) + 1 bytes. When the number of

digits is even, it is required that an extra "0" digit appear in the high nibble

(bits 7:4) of the first byte of the string. Again the length in bytes of the string

is L/2 + 1.

The address A of the string specifies the byte of the string containing the most

significant digit in its high nibble. Digits of decreasing significance are as-

signed to increasing byte addresses and from high nibble to low nibble within

a byte. Thus "+123" has length 3 and is represented:

7 43 0

1 2 A

3 12 :A+1

and "-12" has length 2 and is represented:

7 43 0

2 13 :A+1

Data Types C-9





Appendix D

Data Structures and Basic Concepts

D.1 Data

This Appendix provides beginning users with additional information regard-
ing the following topics:

* VAX-11 RMS data files, records, and structures

* File specification parameters

® Programming languages

Files, Records, and Structures

D.1.1 Data Hierarchy

Four level data hierarchy (character, field, record, file) is shown in Figure D.1:

Figure D.1: Data Hierarchy

E character
/

i /
[ /

| Adams, John J. | field
| -’

-

Adams| 638-36-1006 / J $175| record
, 

g
— —

——
—

——| -
—-

—

AdamsIAnderson Ash] / Zim file

A file is a collection of related information. For example, a file might contain a
company’s personnel information (employee names, addresses, and job titles).
Within this file, the information is divided into records. All the information on
a single employee might constitute a single record. Each record in the person-
nel file would be subdivided into discrete pieces of information known as
fields. By specifying key fields (Keys) in a particular order, you can sort entire
records into any order. Using VAX-11 SORT you can retrieve records in
ascending or descending order by ordered key fields (that is, create sorted
data files); and you can create sorted address files for random record retrieval
by user programs.



D.1.2 Record Types

VAX-11 SORT processes three different types of records: Fixed, Variable, and

Variable with fixed-length control (VFC). Figure D.2 summarizes these record

types.

Figure D.2: Record Types (fixed, variable, VFC)

FIXED LENGTH 32-BYTE RECORDS

N

0

D

A

T

A

\——- RECORD 1* RECORD 3* —/

*NOTE: VAX-11 RMS considers all 32 bytes to be used, even though they may not contain

useful information in the eyes of the user.

VARIABLE LENGTH RECORDS ON MAGTAPE VARIABLE LENGTH RECORDS ON DISK'

4-Byte Count Fields 2-Byte Count Fields

i ]

I 24 ! 24
: bytes : bytes

[ [

\ / \ J\. 4 /. /\. /
RECORD 1 RECORD 2 RECORD 3 RECORD 1 RECORD 2 RECORD 3

VARIABLE WITH FIXED-LENGTH CONTROL RECORD (VFC)

Count | Fixed control area

field portion

\ RECORD 1 ——/

Data portion

F-MK-00026-00

D-2 Data Structures and Basic Concepts



D.1.3 VAX-11 RMS File Organizations

1. Sequential Files (see Figure D.3) Sequential files may contain the follow-

ing record types:

a. Fixed Length Records

b. Variable Length Records

c. Variable with Fixed-length Control (VFC) Records

The order of the records in a sequential file is determined by the order in

which the records were originally written to the file. The first record in the

file is the first record read; the second record next, and so on.Sequential

files are the only files permitted for magnetic tape and unit record devices.

They are also permitted for disk.

Relative Files — Records may be any type (that is, fixed, variable, or VFC)

as long as the maximum record length is specified. Each record is

numbered 1 to n relative to the beginning of file (as shown in Figure D.4).

A relative file consists of record areas (cells) that are identified by relative

record numbers. The first record area in the file is record number 1, the

second is 2, and so on. Empty or null records are permitted. Relative files

can reside only on disk.

Relative file considerations:

® Most efficient random access in terms of speed and storage space over-

head.

¢ Addresses of records (relative record numbers) must be known to process

file randomly.

¢ Requires storage space to contain all record positions from record num-

ber one to highest record number stored in file.

® Records can span blocks, but cannot span buckets.

e Can be write shared.

Indexed Files - Contain one -or more indices, as well as data records.

Records can be of any type (that is, fixed, variable, or VFC) as long as the

maximum record length is specified. To retrieve information, you ask for

the proper record by primary or alternate key. The system looks up the

key in the appropriate index and retrieves the record using the record

pointer associated with the key. Indexed files can reside only on disk.

The location of records in the indexed file organization is transparent to

the program. RMS completely controls the placement of records in an

indexed file. The presence of keys in the records of the file governs this

placement.

Data Structures and Basic Concepts D-3



D-4

A key is a field present in every record of an indexed file. The location and

length of this field are identical in all records. When creating an indexed

file, the user decides which field or fields in the file’s records are to be a

key. Selecting such fields indicates to RMS that the contents (that is, key

value) of those fields in any particular record written to the file can be

used by a program to identify that record for subsequent retrieval.

At least one key must be defined for an indexed file: the primary key.

Optionally, additional keys or alternate keys can be defined. An alternate

key value can also be used as a means of identifying a record for retrieval.

As programs write into an indexed file, RMS builds a tree-structured table

known as an index. An index consists of a series of entries containing a key

value copied from a record that a program wrote into the file. Stored with

each key value is a pointer to the location in the file of the record from

which the value was copied. RMS builds and maintains a separate index

for each key defined for the file. Each index is stored in the file. Thus,

every indexed file contains at least one index, the primary key index.

Figure D.5 shows an RMS indexed file organization with a primary key.

When alternate keys are defined, RMS builds and stores an additional

index for each alternate key.

Index file considerations: ‘

e Multi-key indexed sequential capability.

e Most flexible in terms of how a record is accessed.

e A record is addressed by the contents of a field in the record (the key

field).

e Records can be retrieved sequentially in a collated order by key field.

e Requires the most storage overhead (that is, the RMS index tree

structure).

¢ Index records consist of block numbers, byte-in-block numbers and key.

e Can be write shared.

All VAX-11 RMS files have two additional blocks in the directory. These

additional blocks contain information relating the type of RMS file and the

record length.

Data Structures and Basic Concepts



Figure D.3: Sequential Files

END OF FILE

r

RECORD | RECORD | RECORD | RECORD | RECORD | RECORD RE(:‘,ORD RECORD

Q-MK-00027-00

Figure D.4: Relative Files

CELL NO.

ey 1 2 3 4 5 999 1000

% 7 7

RECORD | RECORD % % RECORD 7 /% RECORD // %
1 2 4 Y 999 2

- — BUCKET * - >|

*A bucket is a storage structure of 1 to 32 blocks.

Q-MK-00028-00

Figure D.5: Indexed Files

KEY

DEFINITION

v PRIMARY INDEX (EMPLOYEE NAME)—————

ABLE JONES SMITH

\ i

ABLE ELM AV 24379 JONES | MAIN ST | 19724 SMITH |HOLT RD] 35888

\ DATA RECORDS j
Q-MK-00029-00

Data Structures and Basic Concepts D-5



D.2 Input and Output File Specification

node-name:

An input or output file specification uniquely identifies a file by indicating its

physical location and a directory in which it is cataloged, as well as providing

a unique filename for that particular file within the directory. However, it is

not necessary to supply the physical location and directory for the file, since

“the system uses the defaults set up during the log-in procedure when these

components are omitted from a file specification.

This section is only a summary. For a full description of defaults, wild cards,

logical names, and subdirectories, see the VAX/VMS Command Language

User’s Guide.

The format of a file specification representing a physical file or device is:

tdevice-namesfdirectorvy]lfilename.file-typreifile-version

Node-name:: The individual computer system (or node) name within a net-

work consists of 1-6 alphanumeric characters.

Example: BOSTON::

Device-name: The device name consists of three components: device type

[controller] [unit-number]:

The maximum length of the device type and controller specifi-

cation is 15 characters. The maximum unit number is 65535.

The default value for controller is A, and the default value for

unit is 0.

Physical device names are:

Mnemonic Device

CR Card Reader

DB RP04, RP05, RP06 Disk

DM RKO06 Disk

DR RMO03 Disk

DX Floppy Disk

LP Line Printer

MB Mailbox

MT TE16 Magnetic Tape

NET Network Communication Device

TT Interactive Terminal

XM DMC-11

Example: DB: is actually device name DBAO: by default.

[directory] The directory name or names must be inclosed in either

square brackets ([]) or angle brackets (<>). A directory with-

out a directory name (for example, [ ]) is not valid. The direc-

tory types are:

e A 1- to 9-alphanumeric character string

e A two-part number in the format of a user identification

code (UIC)

D-6 Data Structures and Basic Concepts



¢ As subdirectories, in the format of name.name.name where

each name can consist of up to 9 alphanumberic characters;

each name represents a diretory level.

Filename. The file name is limited to nine ASCII characters.

File type The file type is limited to three ASCII characters. Some com-

monly used file types are:

File type

B2S

CMD

COM

COB

DAT*

DIF

DIR

DMP

EXE

FOR

- LIB

LIS

LOG

LST

MAC

MAP

MAR

MLB

OBJ

ODL

OLB

OPT

STB

TSK

Contents

Input source file for the PDP-11 BASIC-PLUS-2/VAX com-

piler

Compatibility mode indirect command file

Command procedure file to be executed with the @ (Execute

Procedure) command, or to be submitted for batch execution

with the SUBMIT command

Input file containing source statements for the PDP-11

COBOL-74/VAX compiler

Input or output data file

Output listing created by the DIFFERENCES command

Directory file

Output listing created by the DUMP command

Executable program image

Input file containing source statements for the VAX-11

FORTRAN-IV-PLUS compiler

Library file

Listing file created by a language compiler or assembler;

default input file type for PRINT and TYPE commands

Batch job output file

Compatibility mode listing file

MACRO-11 source file

Memory allocation map created by the linker

VAX -11 MACRO source file

Macro library

Object file created by a language compiler or assembler

Overlay description file

Object module library

Options file for input to the LINK command

Symbol table file created by the linker

Compatibility mode task image

;File-version The file version number is automatically updated by the sys-

tem each time the file is changed. Commands may optionally

use a period to delimit the file version number, but the docu-

mentation will use a semicolon.

* indicates default file type for input files. Default file type for output files is whatever the

input file type is.

Data Structures and Basic Concepts D-7



D.3 Programming Languages Supported

D-8

The following compilers produce native mode programs that can use VAX-11

SORT:

e VAX-11 FORTRAN IV-PLUS

e VAX-11 MACRO

e VAX-11 BLISS

e VAX-11 COBOL-74

VAX-11 FORTRAN IV-PLUS

FORTRAN IV-PLUS is an especially complete version of the leading lan-

guage for scientific and engineering computation. It is a high-performance

superset of the American National Standard Institute’s (ANSI) 1966 FOR-

TRAN. It also implements many of the anticipated features of the forthcom-

ing ANSI standard.

FORTRAN IV-PLUS supports character data types, an IF-THEN-ELSE

statement, long variable names, and the standard CALL facility for calling

system services.

The FORTRAN IV-PLUS compiler first optimizes user source code, then

translates it to take advantage of the VAX-11 instruction set, which can

compile whole FORTRAN IV-PLUS statements into single instructions. An

interactive symbolic debugger allows source-level debugging of FORTRAN

IV-PLUS programs.

VAX-11 MACRO

The VAX-11 MACRO assembly language allows the programmer to write

32-bit machine language instructions for special efficiency. The symbolic de-

bugger can also be used with VAX-11 MACRO.

VAX-11 BLISS

BLISS is a medium level language designed for building system software;

such as compilers, real-time processors, and utilities.

VAX-11 COBOL-74

The VAX-11 COBOL-74 language is based on the 1974 ANSI standard.

Data Structures and Basic Concepts



Index

Address files, 2-8, 2-11

Address sort, 1-1, 2-8, 5-5

sample output, 5-6

selection of, 2-7

ASCII character set collating sequence, B-1

Batch sessions, 2-17

BLISS, D-8

Bucket, D-5

Buffer allocation and work areas, 5-10

Byte, C-1

Call by reference, 3-6

Calling SORT subroutines, 3-1

Character, D-1

Character string, C-5

COBOL-74, D-8

Command, 1-1, 2-2

description, 2-17

summary, 2-3

Command description,

command name qualifiers, 2-18

input-file-specification qualifiers, 2-20

output-file-specification qualifiers, 2-21

Command format,

continuous command string, 2-1

using system prompts, 2-1

~Command qualifier,

/KEY, 2-18

/PROCESS, 2-17

/RSX11, 2-19

/SPECIFICATION, 2-19

/WORK__FILES, 2-19

Command structure,

command name, 2-1

command parameters, 2-2

command qualifiers, 2-2

file qualifiers, 2-2

input-file-specification, 2-2

keywords, 2-2

output-file-specification, 2-2

subqualifiers, 2-2

values, 2-2

Command summary, 2-3

CPU time, 5-14

Data files, 2-11

input, 5-3

output, 54

Data hierarchy, D-1

Data types, C-1

byte, C-1

character string, C-5

double floating, C-3

floating, C-3

leading separate numeric string, C-7

longword, C-2

packed decimal string, C-8

quadword, C-2

trailing numeric string, C-5

variable length bit field, C-4

word, C-1

Decimal to hexadecimal conversion, A-2

Decimal/Octal conversion, A-1

Descriptor, 3-5

Device name, D-6

DIGITAL command language (DCL), 1-1

Directory, D-6

Double floating datum, C-3

Dynamic memory usage, 5-10

Efficiency, 5-1

Elapsed time, 5-14

Error conditions,

fatal, 4-1

warning, 4-1

Error messages, 4-1

SORT, 4-2

VAX-11 RMS, 4-8

VAX/VMS DCL command interpreter, 4-2

Fields, D-1

File,

I/O considerations, 2-9

I/O interface, 3-1

name, D-7

size, 3-6

type, D-7

version, D-7

File organizations,

I/0 flow, 2-10

indexed, D-3

indexed-sequential data files, 2-11

relative, D-3

relative data files, 2-11

Sequential, D-3

sequential address file, 2-11

sequential data files, 2-11

File specification format, D-6

Index-1



Files, D-1

Fixed length record sample, D-2

Floating datum, C-3

FORTRAN IV PLUS, D-8

Functionality, 1-2

Hexadecimal integer columns, A-3

Hexadecimal to decimal conversion, A-2

I/O considerations, 2-8, 2-9, 5-11

I/O counts, 5-14

Index sort, 1-1, 2-8, 5-6

sample output, 5-7

selection of, 2-7

Indexed files sample, D-5

Indexed-sequential data files, 2-11

Input and output, 1-2

Input and output file specification, D-6

Input buffer, 5-10

Input data files, 5-3

Input file,

descriptor, 3-9

Input file format specifications,

file size, 2-21

record size, 2-20

Input file qualifiers,

/FORMAT, 2-20

Input record,

sample, 5-4

types, 5-4

Inputs to VAX-11 SORT, 2-8, 2-9

Interactive mode, 2-1

Interactive samples, 2-12

Interactive sessions, 2-5

sample __#1, 2-13

sample __#2, 2-15

Invoking SORT, 2-5

Key, 2-31

Key area, 3-5

Key buffer,

address, 3-6

specifications, 3-6

Key comparison routine address, 3-6, 3-7

Key comparisons,

SORT"s routine, 3-4

user’s routine, 3-4

Key specifications,

ascending/descending, 2-19

data type, 2-18

leading/trailing sign, 2-19

number, 2-18

overpunched/separate sign, 2-19

position, 2-18

size, 2-18

Index-2

Keys,

ascending or descending order, 2-35

assigning a precedence number, 2-31

binary, 2-33

character, 2-33

data type, 2-32

decimal, 2-33

multiple, 2-34

NUMBER=n, 2-31

POSITION=n, 2-34

quick reference flowchart, 2-31

setting up, 2-31

signed numbers, 2-33

size restrictions, 2-35

SIZE=n, 2-34

Keywords, 2-2

Languages, D-8

Leading separate numeric string, C-7

Longest record length, 3-6, 5-13

Longword, C-2

MACRO, D-8

Mapping, 5-10

Multi-block and buffer counts, 5-14

Node name, D-6

Number of,

work files, 3-6

initial runs, 5-14

merge passes, 5-14

Octal/Decimal conversion, A-1

Order of the merge, 5-14

Output buffer, 5-10

Output data files, 5-4

sample, 5-5

Output file,

allocation, 3-9

bucket size, 3-9

descriptor, 3-9

file options, 3-9

maximum record size, 3-9

organization, 3-9

record format, 3-9

Output file format specifications,

block size, 2-22

record size, 2-21

record type, 2-21

Output file qualifiers,

/ALLOCATION, 2-22

/BUCKET_SIZE, 2-22

/CONTIGUOUS, 2-22

/FORMAT, 2-21

/INDEXED__SEQUENTIAL, 2-22



Output file qualifiers (Cont.)

/OVERLAY, 2-22

/RELATIVE, 2-22

/SEQUENTIAL, 2-22

Output record placement, 3-13

Outputs from VAX-11 SORT, 2-9

Overpunch format, C-6

Packed decimal string, C-8

Page faults, 5-10, 5-14

Paged-out, 5-10

Pager, 5-10

Parameters, 2-2

Phases of operation, 5-7

Powers of 2 and 16, A-2

Programming languages supported,

BLISS, D-8

COBOL-74, D-8

FORTRAN 1V PLUS, D-8

MACRO, D-8

Quadword, C-2

Qualifiers, 2-2, 2-3

Real memory, 5-10

Record descriptor, 3-11, 3-13

Record I/0 interface, 3-2

Record sort, 1-1, 2-8, 5-3

selection of, 2-7

Record types,

Fixed, D-2

Variable, D-2

Variable with fixed-length control (VFC), D-2

Records, D-1

Relative data files, 2-11

Relative files sample, D-5

RMS,

completion status codes, 4-8

data files, D-1

data structures, D-1

file organizations, D-3

records, D-1

Running SORT, 2-1

Sample programs,

COBOL-74/VAX, 3-17

FORTRAN IV PLUS, 3-20

MACRO, 3-15

Sequential,

address files, 2-11

data files, 2-11

files sample, D-5

SORT,

architecture, 5-2

definition of, 1-1

SORT (Cont.)

functional description, 5-1

internal organization, 5-7

Sort,

improving efficiency, 5-1

sample, 2-6

tree, 5-10

tuning, 5-1

type, 3-6

types, 1-1

Sort types,

address, 1-1, 2-7, 5-6

index, 1-1, 2-7, 5-

record, 1-1, 2-7, 5-3

selection of, 2-7

specification of, 2-17

tag, 1-1, 2-7, 5-3

SORT"’s four sorting processes, 2-8

Sorting processes, 2-8

functional descriptions, 5-3

See sort types, 1-1

Sorting sequence, 2-5

Specification file, 2-23

fixed position field,

format (SORT-11), 2-24

field record specfications, 2-27

header record specifications, 2-26

sample, 2-29

summary, 2-28

free field,

format (VAX-11 SORT), 2-24

field record specifications, 2-30

header record specifications, 2-30

sample, 2-31

methods of entering, 2-23

record formats for fixed position fields, 2-25

record formats for SORT-11 type files, 2-25

records, 2-24

VAX-11 SORT, 2-30

Specification form, 2-25

Statistics, 1-2

example of, 2-12

String descriptors, 3-6

Subqualifiers, 2-2, 2-3

Subroutines, 3-1

calls, 3-1

interfaces, 3-1

package, 1-1

parameters, definitions, and valid returns, 3-5

programming considerations, 3-2

set summary, 3-3

SOR$END__SORT, 3-14

SORSINIT_SORT, 3-6

SOR$PASS__FILES, 3-9

Index-3



Subroutines (Cont.)

SORSRELEASE__REC, 3-11

SORSRETURN__REC, 3-13

SOR$SORT__MERGE, 3-12

Tag sort, 1-1, 2-8, 5-3

selection of, 2-7

Temporary storage, 2-8

Total key size, 3-6

Trailing numeric string, C-5

Tuning procedure, 5-11

system manager performance

considerations, 5-14

user performance considerations, 5-11

Tuning procedure parameters,

modified page writer cluster factor, 5-15

number of work files, 5-13

process section count, 5-15

type of sort, 5-13

using SORT’S statistics, 5-13

virtual page count, 5-15

work file devices, 5-13

working set quota, 5-12, 5-15

Index-4

Utility, 1-1

Values, 2-2, 2-3

Variable length bit field, C-4

Variable length record samples, D-2

VAX-11 SORT,

definition of, 1-1

VAX/VMS calling standards, 3-2

VFC records, D-2

sample, D-2

Virtual memory, 5-10

Virtual memory added, 5-14

VMS library, 3-2

Word, C-1

Work files, 2-8

default, 2-35

logical name of, 2-35

physical device codes, 2-35

setting up, 2-35

Working set, 5-10

Zoned numeric format, C-6



VAX-11

SORT

User’s Guide

READER’S COMMENTS Order No. AA-D113A-TE

[OTE: This form is for document comments only. DIGITAL will use comments submitted on this form at\ the
company’s discretion. If you require a written reply and are eligible to receive one under Software

Performance Report (SPR) service, submit your comments on an SPR form.

lid you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

)id you find errors in this manual? If so, specify the error and the page number.

lease indicate the type of user/reader that you most nearly represent.

00 Assembly language programmer

O Higher-level language programmer

O Occasional programmer (experienced)

0O User with little programming experience

00 Student programmer

O Other (please specify)

ame Date

rganization

reet

ity State Zip Code

or

Country



= == == = ==[)o Not Tear - Fold Here and Tape — — — — — — — — 0 — — — 0 — — = — — — — —

No Postage

flfl Enan vatos

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN: Commercial Engineering Publications MK1-2/H3

DIGITAL EQUIPMENT CORPORATION

CONTINENTAL BOULEVARD

MERRIMACK N.H. 03054

3
 
<

1
3
2
8 @ o

3
‘
0
-
0 ®
 
=

e — = — Do Not Tear - Fold Here and Tape — — — — — —— — o — — — — — —_— — — —


