
VAXuisx User's Guide

Order Number: AA-PC3GA-TE

Software Version:

Operating System:

VAXuisx V1 .0

VMS V5.3 or above

You must have DECwindows installed for
VAXuisx to run.

August 1990

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1990 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC
DECwindows
DECUS
DDIF

MicroVAX
PDP
UNIBUS
VAX

VAXstation
VMS

Window System, Version 11 and its derivations (X11, X Version and
X Window System) are all trademarks of the Massachusetts Institute of Technology.

This document was prepared using VAX DOCUMENT, Version 1.2

Contents

PREFACE v

CHAPTER 1 NOTES ON USING VAXUISX 1-1

1.1 RUNNING A UIS APPLICATION FROM DEBUG 1-1

1.2 SYS$WORKSTATION 1-1

1.3 BACKING STORE 1-3

1.4 COLORMAPS 1-3
1.4.1 Colormap Allocation 1-3
1.4.2 Colormap Allocation Differences 1-5
1.4.3 Colormap Segments 1-5

1.5 USER PREFERRED COLOR SETUP 1-5

1.6 DRAWING OPERATIONS 1-6
1.6.1 Writing Modes 1-6
1.6.2 Patterns 1-6
1.6.3 Line patterns 1-7

1.7 INPUT 1-7
1.7.1 Reporting Mouse Movement 1-7
1.7.2 Tablet/Digitizer 1-7

1.8 OUTPUT PRIMITIVES 1-8
1.8.1 Lines (Vector Drawings) 1-8
1.8.2 Polygons 1-8
1.8.3 Ellipses 1-9
1.8.4 Text and Fonts 1-9
1.8.5 Images 1-10

1.8.5.1 UISDC$READ_IMAGE • 1-10

1.8.6 Scrolling 1-10

iii

Contents

1.8.7 UIS$MOVE_AREA With No Backing Store
1.8.8 UIS$SET _POINTER_PATIERN

1.9 WINDOW MANAGEMENT AND USER INTERFACE
1.9.1 Handling Icons
1.9.2 Window Placement
1.9.3 Window Menu Options
1.9.4 Resizing Windows

APPENDIX A FONTS

A.1 n DPI FONTS

A.2 100 DPI FONTS

A.3 SIGHT FONTS

APPENDIX B VAXUISX LOGICAL NAMES

B.1

GLOSSARY

INDEX

TABLES
B-1

iv

VAXUISX LOGICAL NAME TABLE

1-1
1-1

1-1
1-1
1-1
1-1
1-1

A-

A-

A-

A-

B-

B-

Glossary-

B-

Preface

The VAXuisx User's Guide introduces you to the VAXuisx Runtime Library
for VMS. You can use VAXuisx to most run UIS applications on top of
DECwindows without converting, rewriting, or relinking the applications.

Note: VMS is the only operating system that is supported by VAXuisx.

Structure of This Manual
This manual includes one chapter, two appendixes and a glossary of terms.

Chapter 1

Appendix A

Appendix 8

Glossary

Related Documents

Contains notes on using VAXuisx.

Identifies VAXuisx fonts.

Lists logical names.

Defines terms that may be unfamiliar or terms used differently in
VWS than in DECwindows.

If you are working with VWS, you should consult the following documents:

• VMS Workstation Software User's Guide for information about how to
use the workstation software.

• VMS Workstation Software Graphics Programming Guide for
information about working with application programs and using
VMS Workstation Software graphics.

• VMS Workstation Software Guide to Printing Graphics for detailed
information about how to print hard copies from the VAXstation.

• VMS Workstation Software SIGHT User's Guide for detailed
information about using SIGHT.

If you want to migrate your VWS applications to DECwindows, consult the
appropriate documents:

• UIS Source Code Annotator User's Guide for information about using
the source code annotator.

• Using the UIS to DDIF Converter for information about using the UIS
to DDIF Converter.

• A Guide to Migrating VWS Applications to DECwindows for
information about migrating VWS applications to DECwindows and
for example applications.

• Using the DECwindows I Xll Server for VWS for information about
using the DECwindows/X.11 Server for VWS.

• VAXuisx User's Guide for information about using the V.A.Xuisx
Runtime Library for VMS.

v

Preface

Conventions

vi

This manual uses the following conventions in user input examples:

Conventions and Meanings

I RETURN I
The I RETURN I key is not always shown in formats and examples. Assume
that you must press the I RETURN I key after typing a command or other
input to the system, unless you are instructed otherwise.

ICTRLJXI

ICTRLI followed by a slash and a letter means that you must type the letter
while holding down the I CTRL I key. For example, I CTRLJB I means hold down
the lcTRLl key and type the letter B.

Lists
When a format item is followed by a comma and an ellipsis(, ...), you
can enter a single item or a number of items separated by commas. When
a format item is followed by a plus sign and an ellipsis (+ ...), you can
enter a single item or a number of those items connected by plus signs.
If you enter a list (more than one item), you must enclose the list in
parentheses. A single item need not be enclosed in parentheses.

Optional Items
An item enclosed in square brackets ([]) is optional.

Boxes
In examples, boxes enclose user input, such as a key .§, a key sequence
I CTRLJZ L or a parameter I PASSWORD ~

Elll~sis

A vertical ellipsis indicates that some of the format or example is not
shown.

<El
The key on the LK201 terminal keyboard that performs the DELETE
function is labeled ~.

1 Notes on Using VAXuisx

VAXuisx allows existing applications written for the VWS windowing
system to run under the DECwindows windowing system. VAXuisx
accomplishes this by providing a new run-time library that uses the
Xlib program interface for drawing and input services. UIS routines are
redirected to the new UISXSHR image. Therefore, you do not need to
relink applications or install native VWS support.

Note: To improve performance for graphic text operations, you
should install the VWS fonts. You can install the fonts by using
VMSINSTAL with the VWS media supplied with the VWS V4.3
installation kit and installing only the fonts.

To render UIS files produced by running your application with
VAXuis:x:, you should install HCUIS and the fonts supplied with
your VWS V 4.3 installation kit. You can install them by using
VMSINSTAL and selecting the installations for HCUIS and the
fonts.

You should be able to run most of your UIS applications on VMS
DECwindows using VAXuisx.

Note: In order to use VAXuisx, you must be running DECwindows.

VAXuisx is only supported on VMS. However, you can display on a
system running ULTRIX.

1.1 Running a UIS application from DEBUG
If your graphics window becomes occluded and then exposed when running
a UIS application from DEBUG, UIS repairs window damage immediately.
If the same problem occurs on VAXuisx when UISX$BACKING_STORE
is set to TRUE, the damage is not repaired until the application
is stepped once. (Stepping once allows an AST to be delivered.) If
UISX$BACKING_STORE is set to FALSE, VAXuisx does not repair the
damage at all.

1.2 SVS$WORKSTATION
A number of UIS calls require a device name parameter. For VWS, the
device name parameter must be SYS$WORKSTATION or the name of the
video device driver for the workstation. In addition, several UIS routines
assume the presence of SYS$WORKSTATION.

1-1

Notes on Using VAXuisx

1-2

VAXuisx views SYS$WORKSTATION as the destination string for a
Xll Server. This string is specified in VMS DECwindows as either a
workstation device WSAn: or an Xll NODE::SERVER.SCREEN string.
By default, VAXuisx defines SYS$WORKSTATION to point to the logical
DECW$DISPLAY. On a DECwindows workstation, DECW$DISPLAY
directs output to the workstation screen by default.

You can redefine SYS$WORKSTATION to other server destinations. The
logical can be nested to 11 levels of logical name translation. The final
value of the translated logical must be a Workstation Device WSAn:
or a valid Xll NODE::SERVER.SCREEN string. You also can create
workstation devices using the SET DISPLAY command in DCL.

While other logical names, explicit destination strings, or workstation
devices can be specified in the IDS routine calls, VAXuisx always opens a
connection to SYS$WORKSTATION. Applications should use the device
string SYS$WORKSTATION whenever possible.

The example defines a destination using the workstation device
mechanism:

$SET DISPLAY/CREATE/NODE=mynode::/SCREEN=O/TRANSPORT=DECNET
$ SHOW DISPLAY

Device: WSA7:
Node: MYNODE
Transport: DECNET
Server: 0
Screen: 0

$ DEFINE SYS$WORKSTATION WSA7:

Define a destination using Xll strings, and redirected through
multiple logical names:

$DEFINE ANOTHER LOGICAL mynode::O.O
$ DEFINE A LOGICAL ANOTHER LOGICAL
$ DEFINE SYS$WORKSTATION A=LOGICAL

This is the default VAXuisx assignment done in UISX$STARTUP.COM:

$ DEFINE SYS$WORKSTATION DECW$DISPLAY

Note: The default for SYS$WORKSTATION is set in the UISX$STARTUP
command file and is DECW$DISPLAY.

Note: In order to run VAXuisx processes detached, both
SYS$WORKSTATION and DECW$DISPLAY should be defined in
executive mode (/EXECUTIVE).

The logical name search for SYS$WORKSTATION follows the normal VMS
search path. Therefore, a process logical can override the system default
without the user needing privileges.

1.3 Backing Store

1.4 Colormaps

Notes on Using VAXuisx

The X Window System TM (X11) does not guarantee the integrity of the pixel
data in a window. VWS does guarantee it using a feature called backing
store. VAXuisx emulates backing store by maintaining an off-screen
shadow PIXMAP that is the same size as the virtual display. VAXuisx
uses the offscreen PIXMAP as an output buffer as well as bit map backup
and does all writes to the PIXMAP and copies the changed areas from
the PIXMAP into the window. When a window occludes part of another
window, VAXuisx refreshes the destroyed area by using a copy operation
from the PIXMAP to the window when that area is exposed.

Xll does not guarantee PIXMAP availability. If the PIXMAP intended
for backing store is not allocated, V AXuisx will signal a fatal error.
However, VAXuisx can be setup to signal a nonfatal error and continue
operation. In this case, a window exposure will fill the occluded area with
the background color.

Providing backing store is expensive in server resources and
communications bandwidth. To save on those costs, you can disable
backing store by using the logical UISX$BACKING_STORE.

UIS and Xll bind colormaps to the hardware differently.

1.4.1 Colormap Allocation
UIS binds all colormaps to the hardware at an offset that is an integral
multiple of the size of the virtual colormap. (The colormap size is rounded
up to a power of 2.) This method binds the first index in the virtual
colormap to a hardware map location where all the low-order bits in the
index are zero. Consequently, all the pixel values the programmer uses
have the high-order bits masked off and ORed with the base offset into the
hardware color map. This binding method is convenient for image data,
which is generally stored in a device-independent format. It also ensures
that the pixel value is within the user's virtual colormap limits after UIS
performs the ones-complement of the low-order bits.

Xll provides a number of color models and several ways of allocating
colors. Most of the ways allocate arbitrary noncontiguous index values.

VAXuisx emulates UIS virtual colormaps by using Xll routines. The
method used to emulate the colormap depends on the system in use:
pseudo-color, monochrome (bitonal), true color, or direct color.

1-3

Notes on Using VAXuisx

1-4

Note: Pseudo-color systems include intensity systems.

On pseudo-color systems, VAXuisx emulates a colormap by using the
Xll X$ALLOC_COLOR_CELLS routine to create an indirect array of
pixel values. It requests one color and num_planes planes to allocate the
smallest number of colors that entirely contains the virtual colormap.
VAXuisx then permutates the plane bits and the pixel values that are
returned into an array of pixel values. For all read and write image
functions, VAXuisx translates all the pixel values into the correct hardware
pixel values.

Note: Xll uses the formula num_colors*2num_planes to allocate the
smallest number of colors that entirely contains the virtual
color map. When V AXuisx: requests 1 Color and num_planes, 1 Color
reduces num_planes to (2num_planes).

Xll does not guarantee colormap allocation.

VAXuisx uses a different method of creating a colormap if the colormap
allocation fails or if the application uses colormap segments via the
UIS$CREATE_COLOR_MAP _SEGMENT routine. In both cases, VAXuisx
creates and uses an Xll private colormap.

Note: If VAXuisx: creates a private Xll colormap, the colors already in
the display will probably change. The change only happens when
the VAX.uisx window has keyboard focus.

On monochrome (bitonal) systems, VAXuisx creates a colormap by
maintaining an array of pixel values. The method used is similar to
the one it used for pseudo color systems. The pixel values it uses are
those for black-and-white pixels. It sets the values using the NTSC color
convention:

INTENSITY=((RED*0.30)+(GREEN*0.59)+(BL UE*0.11))

True-color systems feature a static colormap of 224 colors. The 24-bit range
is divided into eight bits each of red, green, and blue. VAXuisx uses its
pseudo color model to indirectly map 215 colors. It maps them by storing
the RGB values passed to it directly. Logical operations cannot work as
expected because VAXuisx is operating on the RGB value. Therefore, a
XOR of %xFFFFFFFF on red results in cyan regardless of the index.

The VAXstation 3520/40 features a direct-colormap. You can select this
map by defining the logical:

UISX$DIRECT_MAP TRUE

The direct colormap works the same as the pseudo-colormap for VAXuisx,
except it allows up to 215 colors instead of 256 (28).

1.4.2

1.4.3

Notes on Using VAXuisx

Colormap Allocation Differences
Because DECwindows/Xll uses a different strategy to allocate colors from
the hardware colormap than VWS, colormap allocation failure may occur
with fewer colors than under VWS. VAXuisx must allocate the entire
hardware map to satisfy a colormap request that cannot be filled from
the available colors in the DECwindows default colormap. This will cause
colors in other windows to change while the application window has input
focus. On typical 8-plane workstations, colormaps of over 64 colors can
cause this effect.

Colormap Segments
Colormap segments which use exact placement require the allocation of
a private Xll colormap. Regardless of the size of the color map being
allocated, any use of colormap segments will cause the default workstation
colors of the DECwindows screen to be modified and all windows on the
screen to change colors.

1.5 User Preferred Color Setup
VAXuisx will read the user's preferred color setup file
DECW$SM_COLOR.DAT from the directory pointed to by the logical
DECW$USER_DEFAULTS. This should make your VAXuisx windows
have the same foreground/background as your default DECterm windows.

The one requirement for this feature is that the file to be read reside in
the directory on the DECwindows CLIENT. If you run your applications
under VAXuisx from a non-workstation CLIENT, you must place a copy of
your DECW$SM_COLOR.DAT in the DECW$USER_DEFAULTS directory
on the non-workstation system. If your file is not in the directory, you will
get a default of white window background with black foreground.

The same requirement holds true for the mouse cursor. When
the cursor pattern .is changed, it will use the values from the
DECW$SM_ COLOR.DAT file to fill in the colors of the cursor, but if at
application startup time it could not read the DECW$SM_COLOR.DAT
file, you will get the default of white background and black foreground.
Depending on how you define your cursor and its cursor mask this could
make the cursor appear to be invisible in your window.

If you don't want to read the DECW$SM_COLOR.DAT file you may define
the logical UISX$CUSTOMIZE_COLORS to be false.

1-5

Notes on Using VAXuisx

1.6 Drawing Operations

1.6.1 Writing Modes

1.6.2 Patterns

1-6

UIS stores drawing attributes in internal structures called Attribute Blocks
(A'I'Bs). For information about ATBs, refer to VMS Workstation Software
Graphics Programming Guide.

VAXuisx supports all the UIS writing modes. The VAXuisx writing modes
are all combinations of the following Xll features:

• Function

• Fill style

• Background pixel

• Foreground pixel

• Drawing operation

VAXuisx's device-dependent modes may not provide identical results to the
native UIS device-dependent modes. Those modes are:

• BIS

• BISN

• BIC

• BICN

• XOR

• COPY

• COPYN

The standard UIS patterns are built into VAXuisx.

1.6.3 Line patterns

Notes on Using VAXuisx

In the VWS PLOT operation (joined vectors, drawing using UIS$PLOT,
UIS$PLOT_ARRAY, UISDC$PLOT, or UISDC$PLOT_ARRAY), at each
line endpoint the line pattern is restarted. This is difficult to reproduce
with reasonable performance characteristics and precludes the ability to
draw patterned curves. In VAXuisx line patterns continue across each
vector endpoint.

A side effect of this change is that patterned rubberband lines (XOR or
COMPLEMENT lines) which use the PLOT operation instead of the LINE
(line segments) operation will seem to shift the positions of the dashes.

1.7 Input

1.7.1

1.7.2

UIS provides input through Asynchronous System Trap (AST) routines to
the application. Xll provides input queuing events that are decoded by a
dispatch loop in the application. Xll can deliver a "doorbell" AST when a
particular event type occurs. This feature is used by VAXuisx. "When an
event occurs, the AST invokes V.AXuisx, which checks the event and takes
the proper action.

Reporting Mouse Movement

Tablet/Digitizer

In UIS, the application can request the current position of the mouse. UIS
does not send all mouse movements (or events) that occurred between
the last reported position and the current position. Xll sends all mouse
movements to the application. VAXuisx approximates how UIS reports
mouse movement. When a mouse movement occurs, VAXuisx scans the
Xll event queue for the last mouse movement event. It stores the position
the mouse stopped at as the current position and discards any earlier
positions. Then, if the application requests it, VAXuisx generates a pointer
movement AST.

UIS can map the tablet input to a window. UIS confines the cursor to
the window and the application controls the resolution of the input. Xll
cannot map tablet input to a window. Therefore, VAXuisx does not map
tablet input to a window. It always makes the tablet appear as a mouse to
the UIS application.

Note: The tablet works only as a mouse because Xll does not support
the tablet. None of the tablet functions work under VAXuisx.

1-7

Notes on Using VAXuisx

1.8 Output Primitives

1.8.1

1.8.2

UIS output primitives are:

• Lines (Vector Drawings)

• Polygons

• Ellipses

• Text

• Images

• Scrolling logic of Move Area and Move Window

UIS and VAXuisx handle output primitives differently.

Lines {Vector Drawings)

Polygons

1-8

UIS and Xll line attributes are similar. 1\vo exceptions exist. The first
exception is that Xll has attributes for join style and cap style while the
UIS does not. (Join style refers to how two wide lines come together; cap
style refers to how the end of a wide line is treated.) UIS leaves lines
joined in ragged fashion that the user must fix. VAXuisx joins lines evenly,
using Miter as its join style. In Miter style, the outer edges of the two wide
lines extend until they meet at a point. VAXuisx also uses Butt as its cap
style. With Butt style, the line is square at the endpoint, perpendicular to
the slope of the line, and does not project beyond the endpoint.

The second exception is with the line width of 1. VAXuisx uses the
algorithm for the Xll special-case line width of 0. Xll specifies that
when line width is 0, it will use whatever algorithm the hardware does
fastest. This difference between algorithms may cause lines to be off by a
pixel or two in some places.

UIS and Xll fill polygons differently. UIS fills a polygon inclusive of all
borders. Xll fills a rectangle inclusive of only the left and the upper
borders and does not draw the right and lower borders. For rectangles,
VAXuisx extends the width and height of the rectangle by one pixel to
draw the true border.

1.8.3 Ellipses

1.8.4 Text and Fonts

Notes on Using VAXuisx

UIS uses two routines to draw ellipses: UIS$CIRCLE and UIS$ELLIPSE.

UIS and Xll differ in how accurately they draw circles. UIS draws to
an accuracy of seven decimal places because it requires all angles to be
specified as a longword floating point value. Xll draws to an accuracy of
just less than two decimal places because it takes an angle as an integer
value equal to the desired angle multiplied by 64. This may result in end
points and edges for large arcs (radii) not being in exactly the same place
as they are in UIS.

VAXuisx provides the standard UIS fonts in DECwindows format.

VAXuisx outputs normal text: unrotated, unscaled, and unsheared, using
the standard Xlib text operations.

You should have font files available in both Xll and VWS formats.
VAXuisx first tries to load the VWS font into CLIENT memory and the
Xll font into Server memory. If the VWS font is not available, VAXuisx
uses the Xll font as a template for a "fake" VWS font. If the Xll font is
not available, VAXuisx draws all text as graphic text using the VWS font
bit maps. If neither font is available, VAXuisx signals an error and uses
the default font.

VAXuisx allows both VWS-style font names and DECwindows-style font
names. You can "redefine" fonts using the same mechanism as VWS. To
''redefine" a font, assign a logical name to the font name. You can redefine
VWS font names to use Xll native fonts. The standard Xll font names,
however, are illegal logical names. Using them terminates the translation
of the logical name. You can nest up to ten levels of font logical names.
You can also define the font logical names in the normal RMS logical name
table search path.

VAXuisx provides graphic text (rotated, sheared, or scaled) by
manipulating a local bit map of the text to be output and then drawing
the bit map to the screen. VAXuisx obtains the bit map information for
a font by first trying to load the VWS monochrome font (.VWS$FONT)
from SYS$FONT. If the monochrome font is not available, VAXuisx
then tries to load the VWS color font (.VWS$VAFONT). If no VWS color
font is available, VAXuisx reads the individual glyphs from the primary
workstation (SYS$WORKSTATION) through Xll.

1-9

1.8.5

1.8.6

1.8.7

1.8.8

Notes on Using VAXuisx

Images
When VAXuisx performs an Image operation, it may need to translate each
pixel byte in a multibit image from the index value into a final Xll pixel
value. It uses the pixel values generated when the virtual color map was
created.

Read Image Operations may require that all pixels be translated from Xll
color index values to the appropriate UIS color index value.

Note: Using backing store may produce a significant impact on
application performance and CPU consumption.

1.8.5.1 UISDC$READ _IMAGE

Scrolling

VAXuisx implements UISDC$READ_IMAGE by first trying to get the data
from the window backing store, if it exists, and then from the window.
This implementation has two restrictions. The first occurs if you do
not have backing store enabled (data must come from the window) and
any portion of the window is damaged or occluded. The pixel values
UISDC$READ_IMAGE returns will also reflect all damage or occlusion
currently existing for the window. The second restriction occurs when
using UISDC$READ_IMAGE on an invisible window that does not have
backing store enabled. In this situation, you will not get any valid pixel
data returned. All pixels will return a value of 0 (zero). Both of these
restrictions are caused by restrictions in Xll.

Because of these restrictions, you should always have backing store
enabled (the default setting) any time you use UISDC$READ_IMAGE.

UIS performs scrolling operations by using the UIS$MOVE_AREA and
the UIS$MOVE_ WINDOW commands. Xll performs scrolling operations
by using the X$COPY_AREA command. When VAXuisx runs on VSII
monochrome workstations in which DECwindows does not use the scanline
map, scrolling will be significantly slower then with VWS running on the
same configuration.

UIS$MOVE_AREA With No Backing Store
If backing store is disabled, UIS$MOVE_AREA will copy within the
window rather than copy from a PIXMAP to the window. If there are any
obscured areas in the portion of the window being moved, the areas will be
filled with the background color.

UIS$SET _POINTER_PATTERN

1-10

With VAXuisx, you cannot bind the cursor pattern to a region.
Consequently, using the flag UIS$M_BIND_POINTER does not effect
where the cursor can go on the display screen.

Notes on Using VAXuisx

1.9 Window Management and User Interface

1.9.1

1.9.2

Handling Icons

Window management and the user interface are different in VAXuisx and
in Xll. This section describes the differences.

UIS and DECwindows handle icons differently. With UIS, the icon is
visible only when in the icon state. UIS does not display the icon when
the application is active. The user can position the icon anywhere on the
screen.

DECwindows defines the icon by providing a PIXMAP and title to
the DECwindows window manager, which then performs the icon
management. The window manager always displays the icon. It grays
out the icon when the application window is visible. The DECwindows
window manager maintains an icon box into which it places all icons.

UISX uses the default DECwindows icon behavior. The DECwindows icon
works without any problems if a UIS application uses the default icon
action. But the icon may behave strangely if the UIS application uses any
of the special facilities for icons.

Window Placement
The full window placement logic from VWS has not yet been fully
implemented. The VAXuisx logic will not go out and find the most free
space on the window like VWS does. The following is a brief synopsis of
what VAXuisx does.

For exact placement abs_x, abs_y, VAXuisx basically follows the VWS
logic. The only difference being that if absolute position is specified along
with any of the bits for relative placement, VAXuisx ignores the relative
placement bits entirely.

The bits for relative placement: top, bottom, center, left, and right, work
such that a window will be placed 48 pixels from the left or right if so
specified and 80 pixels from the top or bottom if so specified. Otherwise,
VAXuisx will try to center the viewport between the edges. If no placement
is specified, top and center will be the placement attributes given to the
window.

The difference here, as opposed to VWS, is that VAXuisx does not evaluate
the workstation screen for optimal placement. If an area specified
CUITently has a viewport visible, VAXuisx will attempt to place the window
in a south easterly fashion as DECwindows default placement does. If the
window can fit on the screen at that point, it is placed there. If it cannot
be placed there VAXuisx will move the window either left or up depending
on which portion of the viewport would have been offscreen by using the
down and to the right approach.

1-11

1.9.3

1.9.4

Notes on Using VAXuisx

Window Menu Options
All but two window menu options, Delete and Additional Options, are
available directly from DECwindows. These functions are not available on
VAXuisx.

Resizing Windows

1-12

UIS and VAXuisx resize windows differently through the user interface.
UIS lets you cross the boundary of the outline border when resizing a
window. VAXuisx does not let you cross the boundary of the outline border.

For example, dragging the right border of the window past the left border
produces different results in UIS and in VAXuisx. In UIS, the right border
actually crosses the left border and then becomes the left border of the
new, resized window. The graphics in the old window remain on the
left-hand side of the left border.

In VAXuisx, DECwindows does not let you drag the right border of the
window across the left border. It picks up the left side of the border and
then proceeds as if you were trying to resize from the left border. The
graphics in the old window appear in the new, resized window.

A Fonts

A.1 77 DPI Fonts

This appendix lists the three types of fonts that VAXuisx comes with.

VAXuisx comes with three types of fonts: 77 DPI (dots per
inch), 100 DPI, and SIGHT fonts. VMSINSTAL places them into
SYS$SYSROOT:[SYSFONT.UISX] during installation. All three fonts
are VWS fonts that were converted to DECwindows format.

DETEKPATAAAAAAFOOOOOOOOODA.DECW$FONT
DEUISPATAAAAAAFOOOOOOOOODA.DECW$FONT
DTABER0003WKOOGG0001UZZZZ02AOOO.DECW$FONT
DTABER0003WKOOPGOOO 1 UZZZZ02AOOO .DECW$FONT
DTABEROG03CKOOGG0001UZZZZ02AOOO.DECW$FONT

DTABEROI03WKOOGG0001UZZZZ02AOOO.DECW$FONT
DTABEROI03WKOOPG0001UZZZZ02AOOO.DECW$FONT
DTABEROM03CKOOGG0001UZZZZ02AOOO.DECW$FONT
DTABEROM060KOOGG0001UZZZZ02AOOO.DECW$FONT
DTABEROR03WKOOGG0001UZZZZ02AOOO.DECW$FONT

DTABEROR03WKOOPGOOO 1 UZZZZ02AOOO.DECW$FONT
DTABEROR07SKOOGGOOO 1 UZZZZ02AOOO.DECW$FONT
DTABEROR07SKOOPG0001UZZZZ02AOOO.DECW$FONT
DTERMING03CKOOPG0001UZZZZ02AOOO.DECW$FONT
DTERMINM03CKOOPG0001UZZZZ02AOOO.DECW$FONT

DTERMINM060KOOPG0001UZZZZ02AOOO.DECW$FONT
DVWSVTOAOOKKOOGG0001UZZZZ02AOOO.DECW$FONT
DVWSVTOG03CKOOGG0001QZZZZ02AOOO.DECW$FONT
DVWSVTOG03CKOOGG0001UZZZZ02AOOO.DECW$FONT
DVWSVTOG03CKOOPG0001QZZZZ02AOOO.DECW$FONT

DVWSVTOG03CKOOPG0001UZZZZ02AOOO.DECW$FONT
DVWSVTOG05AKOOGG0001QZZZZ02AOOO.DECW$FONT
DVWSVTOG05AKOOGG0001 UZZZZ02AOOO .DECW$FONT
DVWSVTOG05AKOOPG0001QZZZZ02AOOO.DECW$FONT
DVWSVTOG05AKOOPG0001UZZZZ02AOOO.DECW$FONT

DVWSVTOI03WKOOGG0001QZZZZ02AOOO.DECW$FONT
DVWSVTOI03WKOOPG0001QZZZZ02AOOO.DECW$FONT
DVWSVTOJ05AKOOGG0001 UZZZZ02AOOO.DECW$FONT
DVWSVTOJ05AKOOPG0001 UZZZZ02AOOO.DECW$FONT
DVWSVTOK05AKOOGG0001QZZZZ02AOOO.DECW$FONT

DVWSVTOK05AKOOGG0001UZZZZ02AOOO.DECW$FONT

A-1

Fonts

A-2

DVWSVTOK05AKOOPGOOO 1 QZZZZ02AOOO .DECW$FONT
DVWSVTOK05AKOOPG0001UZZZZ02AOOO.DECW$FONT
DVWSVTON03CKOOGG-0001QZZZZ02AOOO.DECW$FONT
DVWSVTON03CKOOGG-0001UZZZZ02AOOO.DECW$FONT

DVWSVTON03CKOOPG0001QZZZZ02AOOO.DECW$FONT
DVWSVTON03CKOOPG0001UZZZZ02AOOO.DECW$FONT
DVWSVTON05AKOOGG0001UZZZZ02AOOO.DECW$FONT
DVWSVTON05AKOOPG0001UZZZZ02AOOO.DECW$FONT
DVWSVTON060KOOGG0001QZZZZ02AOOO.DECW$FONT

DVWSVTON060KOOGGOOO 1 UZZZZ02AOOO .DECW$FONT
DVWSVTON060KOOPG0001QZZZZ02AOOO.DECW$FONT
DVWSVTON060KOOPG0001UZZZZ02AOOO.DECW$FONT
DVWSVTONOAKKOOGG-0001 UZZZZ02AOOO .DECW$FONT
DVWSVTONOAKKOOPG0001UZZZZ02AOOO.DECW$FONT

DVWSVTOR03WKOOGG0001QZZZZ02AOOO.DECW$FONT
DVWSVTOR03WKOOPG0001QZZZZ02AOOO.DECW$FONT
DVWSVTOR07SKOOGG-0001QZZZZ02AOOO.DECW$FONT
DVWSVTOR07SKOOPG0001QZZZZ02AOOO.DECW$FONT
DVWSVTOV05AKOOGG0001 UZZZZ02AOOO.DECW$FONT

DVWSVTOV05AKOOPG0001UZZZZ02AOOO.DECW$FONT
DVWSVTOVOAKKOOGG-0001 UZZZZ02AOOO .DECW$FONT
DVWSVTOVOAKKOOPG0001UZZZZ02AOOO.DECW$FONT
DVWSVT1G03CKOOGG0001UZZZZ02AOOO.DECW$FONT
DVWSVT1G05AKOOGGOOO 1 UZZZZ02AOOO .DECW$FONT

DVWSVT1103WKOOGG0001 UZZZZ02AOOO.DECW$FONT
DVWSVT1J05AKOOGG0001 UZZZZ02AOOO.DECW$FONT
DVWSVT1J05AKOOPG0001UZZZZ02AOOO.DECW$FONT
DVWSVT1K05AKOOGG0001UZZZZ02AOOO.DECW$FONT

A.2 100 DPI Fonts

DETEKPATAAAAAAFOOOOOOOOODA.DECW$FONT
DEUISPATAAAAAAFOOOOOOOOODA.DECW$FONT
DWSMENU003WKOOGGOOO 1 UZZZZ02BOOO .DECW$FONT
DWSMENU003WKOOPG0001UZZZZ02BOOO.DECW$FONT
DWSMENU003WKO lGGOOO 1 UZZZZ02BOOO .DECW$FONT

RCOURIRG-03WKOOGG-0001QZZZZ02BOOO.DECW$FONT
RCOURIRG-03WKOOGGOOO 1 UZZZZ02BOOO.DECW$FONT
RCOURIRG03WKOOPG0001QZZZZ02BOOO.DECW$FONT
RCOURIRG03WKOOPGOOO 1 UZZZZ02BOOO.DECW$FONT
RCOURIRI03WKOOGG0001QZZZZ02BOOO.DECW$FONT

RCOURIRI03WKOOGG0001UZZZZ02BOOO.DECW$FONT
RCOURIRI03WKOOPG0001QZZZZ02BOOO.DECW$FONT
RCOURIRI03WKOOPG-0001 UZZZZ02BOOO.DECW$FONT
RCOURIRN03WKOOGG0001QZZZZ02BOOO.DECW$FONT
RCOURIRN03WKOOGG0001UZZZZ02BOOO.DECW$FONT

RCOURIRN03WKOOPG0001QZZZZ02BOOO.DECW$FONT
RCOURIRN03WKOOPGOOO 1 UZZZZ02BOOO .DECW$FONT
RCOURIRN07SKOOGG0001QZZZZ02BOOO.DECW$FONT
RCOURIRN07SKOOGG0001 UZZZZ02BOOO.DECW$FONT
RCOURIRN07SKOOPG0001QZZZZ02BOOO.DECW$FONT

RCOURIRN07SKOOPG0001UZZZZ02BOOO.DECW$FONT
RCOURIRR03WKOOGG0001QZZZZ02BOOO.DECW$FONT
RCOURIRR03WKOOGGOOO 1 UZZZZ02BOOO .DECW$FONT
RCOURIRR03WKOOPG0001QZZZZ02BOOO.DECW$FONT
RCOURIRR03WKOOPGOOO 1 UZZZZ02BOOO.DECW$FONT

RCOURIRR07SKOOGGOOO 1 QZZZZ02BOOO.DECW$FONT
RCOURIRR07SKOOGG0001UZZZZ02BOOO.DECW$FONT
RCOURIRR07SKOOPG0001QZZZZ02BOOO.DECW$FONT
RCOURIRR07SKOOPG0001UZZZZ02BOOO.DECW$FONT

Fonts

A-3

Fonts

A.3 SIGHT Fonts

A-4

DWYSIFPJ03CKOOGG0001UZZZZ02AOOO.DECW$FONT
DWYSIFP J03CKOOPG-OOO 1 UZZZZ02AOOO .DECW$FONT
DWYSIFPJ03CK02GG0001UZZZZ02AOOO.DECW$FONT
DWYSIFPL02SKOOGG0001UZZZZ02AOOO.DECW$FONT
DWYSINSOO 1OKOOGGOOO1 UZZZZ02AOOO.DECW$FONT

DWYSINSOO lOKOOPG-0001 UZZZZ02AOOO .DECW$FONT
DWYSINSOO lOKO lGGOOO 1 UZZZZ02AOOO.DECW$FONT
DWYSINS0028KOOGG0001UZZZZ02AOOO.DECW$FONT
DWYSINS0028KOOPG-0001UZZZZ02AOOO.DECW$FONT
DWYSINS0028K01GG0001UZZZZ02AOOO.DECW$FONT

DWYSINS002SKOOGG0001UZZZZ02AOOO.DECW$FONT
DWYSINS002SKOOPG-0001UZZZZ02AOOO.DECW$FONT
DWYSINS002SK01GG0001UZZZZ02AOOO.DECW$FONT
DWYSINS003CKOOGG0001UZZZZ02AOOO.DECW$FONT
DWYSINS003CKOOPG0001UZZZZ02AOOO.DECW$FONT

DWYSINS003CKO lGGOOO 1 UZZZZ02AOOO.DECW$FONT
DWYSINS003WKOOGG-OOO 1 UZZZZ02AOOO .DECW$FONT
DWYSINS003WKOOPG-0001UZZZZ02AOOO.DECW$FONT
DWYSINS003WKO lGG-0001 UZZZZ02AOOO .DECW$FONT
DWYSINS0050KOOGG0001UZZZZ02AOOO.DECW$FONT

DWYSINS0050KOOPG-0001UZZZZ02AOOO.DECW$FONT
DWYSINS0050K01GG0001UZZZZ02AOOO.DECW$FONT
DWYSINS0060KOOGG0001UZZZZ02AOOO.DECW$FONT
DWYSINS0060KOOPG-OOO 1 UZZZZ02AOOO .DECW$FONT
DWYSINS0060K01GG0001UZZZZ02AOOO.DECW$FONT

DWYSINSOOAOKOOGG0001UZZZZ02AOOO.DECW$FONT
DWYSINSOOAOKOOPG0001UZZZZ02AOOO.DECW$FONT
DWYSINSOOAOKO lGGOOO 1 UZZZZ02AOOO .DECW$FONT
DWYSISS0010KOOGG-0001UZZZZ02AOOO.DECW$FONT
DWYSISSOO 1 OKOOPGOOOl UZZZZ02AOOO.DECW$FONT

DWYSISS0010K02GG-0001UZZZZ02AOOO.DECW$FONT
DWYSISS0028KOOGG0001UZZZZ02AOOO.DECW$FONT
DWYSISS0028KOOPG-0001UZZZZ02AOOO.DECW$FONT
DWYSISS0028K02GG0001UZZZZ02AOOO.DECW$FONT
DWYSISS002SKOOGG-0001UZZZZ02AOOO.DECW$FONT

DWYSISS002SKOOPG-0001UZZZZ02AOOO.DECW$FONT
DWYSISS002SK02GG-0001UZZZZ02AOOO.DECW$FONT
DWYSISS003CKOOGG0001UZZZZ02AOOO.DECW$FONT
DWYSISS003CKOOPG-0001UZZZZ02AOOO.DECW$FONT
DWYSISS003CK02GG0001UZZZZ02AOOO.DECW$FONT

DWYSISS003WKOOGG0001UZZZZ02AOOO.DECW$FONT
DWYSISS003WKOOPG0001UZZZZ02AOOO.DECW$FONT

DWYSISS003WK02GG-0001UZZZZ02AOOO.DECW$FONT
DWYSISS0050KOOGG0001UZZZZ02AOOO.DECW$FONT
DWYSISS0050KOOPG-0001 UZZZZ02AOOO .DECW$FONT

DWYSISS0050K02GG0001 UZZZZ02AOOO .DECW$FONT
DWYSISS0060KOOGG-0001 UZZZZ02AOOO.DECW$FONT
DWYSISS0060KOOPG-0001 UZZZZ02AOOO.DECW$FONT
DWYSISS0060K02GG-OOO 1 UZZZZ02AOOO .DECW$FONT
DWYSISSOOAOKOOGG0001UZZZZ02AOOO.DECW$FONT
DWYSISSOOAOKOOPG-0001 UZZZZ02AOOO .DECW$FONT
DWYSISSOOAOK02GG0001UZZZZ02AOOO.DECW$FONT

Fonts

A-5

B VAXuisx Logical Names

This appendix list the VAXuisx logical names.

VAXuisx can be customized on a per-process and system
wide basis by the use of logical names. The command file
SYS$STARTUP:UISX$STARTUP.COM is executed by SYSMAN during
VMS system startup. This command file establishes the defaults by
creating the logical name table, UISX$LOGICAL_TABLE, with the default
logical name settings.

Users can copy and execute this command procedure to create a process
specific logical name table by supplying the keyword "USER" as the only
argument to this command procedure. In addition, VAXuisx establishes a
logical name search list which will allow logical names in the users default
JOB, PROCESS, GROUP and SYSTEM tables to override the settings in
the default logical name table.

~.1 VAXuisx Logical Name Table
Table B-1 describes the currently defined logical names.

Table B-1

VAXuisx Logical

UISX$FLUSH

UISX$AUTO _FLUSH

UISX$AUTO _FLUSH_ TIMER

UISX$BATCH_COUNT

UISX$WRITE_IMMEDIATE

UISX$SYNCHRONIZE

UISX$BACKING_STORE

UISX$BACKING_STORE_CAN_FAIL

UISX$MATCH_SIZE

Default

False

True

"O 0 :O :O .05"

100000

False

False

True

False

True

Explanation

Flush Xlib buffer after every graphic call.

Flush Xlib and PIXMAP buffer via timer.

VMS Delta-Time timer interval.

Defines the maximum number of output
operations that can be performed to the PIXMAP
before copying to the window. The copy can also
be done as a result of input or by the FLUSH
TIMER.

Draw all operations to window with no PIXMAP
buffering optimization.

Cause all X11 operations to be synchronous.

Creates a X11 PIXMAP which is used to
guarantee the window contents and buffer
drawing operations.

Allows the failure to create a backing store
PIXMAP as a non-fatal error.

Causes any DPI from 7 4 to 79 to be forced to
77 DPI, the DPI used by VWS for most monitors
(DECwindows reports as only 75 or 100 DPI).

B-1

VAXuisx Logical Names

Table B-1 (Cont.)

VAXulsx Logrcal

UISX$0Pl_X

UIXS$DPl_Y

UISX$CUSTOMIZE_COLORS

UISX$NO _NA_SIGNAL

UISX$NO _NYl_SIGNAL

UISX$1CON_NUMBER

UISX$1CON_32

UISX$1CON_ 16

UISX$DIRECT _MAP

UISX$MONOCHROME

UISX$REOUIRE_DEFAUL T

UISX$REOUIRE_BANNER

B-2

Default

0

0

TRUE

False

False

1

UNDEFINED

UNDEFINED

UNDEFINED

FALSE

FALSE

TRUE

Explanation

Allows the user to override the DPI setting
VAXuisx uses when converting between physical
units (typically centimeters) and pixel units. If se1
to a non-zero value this overrides the computed
of the server's screen.

Allows the user to override the DPI setting
VAXuisx uses when converting between physical
units (typically centimeters) and pixel units. If se1
to a non-zero value this overrides the computed
dots_per-inch of the servers screen.

If defined to false the user's color customization
file DECW$USER_DEFAULTS: DECW$SM_
COLOR.DAT will not be read. Not reading the
file results in th.e default color settings of white
window background with black foreground.

If defined to true UIS functions which are not
available for VAXuisx will NOT signal an error.

If defined to true UIS functions which are not yet
implemented will NOT signal an error.

Selects ,an icon from the icon fonts. The default
icon font is built into VAXuisx.

Can be used to select a font for use as the 32
x 32 pixel icon image. The font must be a fixed
pitch and 32 x 32 and in VWS format on the
CLIENT side.

Can be used to select a font for use as the 16
x 16 pixel icon image. The font must be a fixed
pitch and 16 x 16 and in VWS format on the
CLIENT side.

Can be used on any system that supports a
direct color X11 Visual Class of DirectColor.
Forces Visual Class to DirectColor.

Makes most applications believe they are being
run on a monochrome workstation.

Prevents the Workstation Data Block flagged as
the default (SYS$WORKSTATION) from being
closed.

Causes the no banner and no border attributes
on the window to be ignored. This prevents
the problem of windows which are not under
control of the DECwindows Window Manager,
and thus, cannot be moved, pushed, popped,
or manipulated in any manner from the human
interface.

Table B-1 (Cont.)

VAXuisx Logical

UISX$USE_KEYSYM

Note:

Default

FALSE

VAXuisx Logical Names

Explanation

If defined to true, the keycodes passed back to
the user from a uis$set_kb_ast will be in the
form of the default DECwindows keysym 's. This
also allows the user to use the currently mapped
DECwindows keyboard to return keycodes.

Note: Compose state cannot be entered
when this logical is true in any UISX
windows.

Using UISX$SYNCHRONIZE dramatically reduces the performance
ofVAXuisx.

When both UISX$FLUSH and UISX$SYNCHRONIZE are FALSE,
your application may appear to have not finished outputting to
the screen. The reason may be that the DECwindows/Xll Client
has not yet sent some buffered commands to DECwindows/Xll
SERVER.

Mouse movement, button events, or window movement may
cause VAXuisx to :flush the queue for the application. By setting
either UISX$FLUSH or UISX$SYNCHRONIZE to TRUE, you will
guarantee that VAXuisx sends all operations to DECwindows/Xll.

Native UIS drawing operations appear smooth. DECwindows/Xll
drawing operations may seem ''pulsing'' or "bursty." You can make
DECwindows/Xll drawing operations more smooth by :flushing
output after each call by setting UISX$FLUSH to TRUE.

B-3

Glossary

ATB: See Attribute Block.

Attribute Block (ATB): A UIS data structure that describes the appearance of any
graphic object an application program creates.

Backing Store: A term describing the way UIS preserves the contents of a window
when parts or all of it is obscured. You can have UIS do backing store in a
number of ways. The most common is by having UIS make a bit map backup of
the window or the hardware drawing commands to redraw the window. (Bit map
backup is the only mechanism that provides an upper bounds on the amount of
resources required to provide window integrity.)

Bit Map: A table describing each item in a related set if items.

Bitmap: A sequence of bytes representing a printing character.

Cap Butt: A cap style whose line is square at the endpoint (perpendicular to the
slope of the line) with no projection beyond.

Cap Not Last: A cap style whose line is square at the endpoint (perpendicular to the
slope of the line) with no projection beyond. The endpoint is not drawn for a line
width of zero.

Cap Projecting: A cap style whose line is square at the end, but whose path
continues beyond the endpoint to a distance that equals half the line width.
Cap Projecting is equivalent to a line width of zero.

Cap Round: A type of cap style whose line has a circular arc. The diameter of the
arc is equal to the width of the line, centered on the endpoint. Cap Round is
equivalent to Cap Butt for a line width of zero.

Cap Style: Defines how the endpoints of a path are drawn. Four cap styles are
available in DECwindows/Xll: Cap Not Last, Cap Butt, Cap Round, and Cap
Projecting. VAXuisx uses only Cap Butt.

Client: An Xll application. A client sends the commands to an Xll Server, which
displays them.

DECwlndows: The term for Digital's implementation of the X Window System™,
Xlib, XToolkit, Window Manager, Session Manager, User Interface Language,
and Compound Document Architecture. People within Digital use DECwindows
interchangeably for Xll and the X Window System.

Glossary-1

Glossary

Glossary-2

DECwindows Toolkit: High-level library routines that allow applications to create
and manage a 'user interface. Using the DECwindows Toolkit, routines can
create, modify, and control interface objects such as menus, scroll bars, and
buttons. The DECwindows Toolkit routines call Xlib routines to perform
fundamental input and output functions. The DECwindows Toolkit includes
Digital's implementation of the toolkit for X Window System.

Digitizer: Name for the tablet that maps its input directly into a single window
on UIS. Users normally use a digitizer when working with CAD/CAM-type
applications.

Direct-Color System: A system that decomposes the pixel color value into three
separate subfields for indexing. The first subfield indexes the RED colormap.
The second subfield indexes the BLUE colormap. And the third subfield indexes
the GREEN colormap. The user can change the values in the three colormaps
dynamically.

DOP: See Drawing Operation Packet.

Drawing Operation Packet (DOP): The low-level interface to GPX-based systems
under UIS.

Event Queue: A queue of events the application handles. Each application has a
unique event queue.

Flush: To cause the processing of items within a buffer.

In VAXuisx, to force the transmission of graphic commands from the Xlib buffer
to the DECwindows/X.11 Server for execution.

GC: See Graphics Context.

Generic Encoding: A device-independent code UIS uses for its calls. The UIS
display list uses generic encoding internally to store the UIS commands. UIS
also uses generic encoding as the on-disk structure for its output.

Glyph: The pictorial representation of a font character represented internally by a
bitmap

Graplcs Context (GC): A data structure in Xll that contains the attributes
DECwindows uses when drawing graphics primitives. An unlimited number
of GCs can be available for each physical display (depending on available
resources).

Graphic Text: Text the user can scale, rotate, and/or shear (slant). VAXuisx treats
graphic text as a graphic object because it requires special operations to cause
the changes requested.

Hardcopy UIS (HCUIS): Provides both a program interface and the user interface to
RENDER for reading and writing UIS generic encoding. HCUIS also provides
conversions from generic encoding to various output formats such as HPGL,
SIXEL, ReGIS, and PostScript.

HCUIS: See Hardcopy UIS.

Glossary

Join Bevel: A type of join style in which the corner has cap butt end point styles
with the triangular notch filled.

Join Miter: A type of join style in which the outer edges of two lines extend to meet
at an angle. (If the angle is less than 11 degrees, however, a Join Bevel join style
is used.) VAXuisx uses only Join Miter.

Join Round: A type of join style in which the corner is a circular arc whose diameter
equals the line width. Join Round is centered on the joint point.

Join Style: A term defining how corners are drawn for wide lines. Three types of
join styles are available: Join Miter, Join Round, and Join Bevel. VAXuisx uses
only the Join Miter join style.

Miter: A joint made by beveling each of two surfaces at an angle and fitting them to
form a corner.

NTSC Color Convention: The television standard conversion of RGB into chroma.

Open Software Foundation (OSF): A nonprofit organization several companies
created to provide a standard environment for applications. Digital is a founding
member of OSF.

OSF: See Open Software Foundation.

PIXMAP: A collection of bit maps, one per plane, that are available on the hardware
display.

Pseudo-Color System: A system that indexes the pixel color value to the hardware
colormap.

QAR: See Quality Assurance Report.

Quality Assurance Report (QAR): A form for people at field test sites to use for
reporting bugs they encounter during the field test.

Server: Accepts commands from Clients and displays output on a workstation, PC,
or other output device. The Xll Server also sends input from the keyboard or
mouse to the Client.

Software Problem Report (SPR): A form customers use for reporting bugs to Digital.

SPR: See Software Problem Report

True-Color System: A system with Read-only colormaps.

UIS: See User Interface Services.

User Interface Services (UIS): The runtime library interface for VWS. UIS is also
used interchangeably with VMS Workstation Software (VWS).

VMS Workstation Software (VWS): A window and graphic system for the VMS
operating system. VWS is also used interchangeably with User Interface Services
(UIS), which was the original name for VWS.

VWS: See VMS Workstation Software.

Glossary-3

Glossary

Glossary-4

Writing Mode: The attribute that assigns the mode of writing graphics or text.
Writing Mode determines how a text or graphics routine uses the writing and
background colors index to display a graphic object.

X Window System (X11): The name for a window system MIT and Project Athena
developed. It is the official name for Xll.

X11: The generic term used for the X Window System.

Xlib: The standardized, procedural interface to Xll.

XToolklt: A collection of routines that implements an object-oriented user interface
for Xll.

Index

A
ATB

See Attribute Block
Attribute Block• 1-6

B
Backing store • 1-3
Backing Store • 1-1 0
Bitonal system

See monochrome system

c
Cap style • 1-8
CLIENT • 1-9
Colormaps • 1-3
Colormap Segments• 1-5
Color models • 1-3
Cursor • 1-10

D
Direct-colormap • 1--4
Drawing operations • 1-6

E
Ellipses • 1-9
Event• 1-7
Event queue• 1-7

F
Fonts• 1-6, 1-9

G
Graphic text • 1-9

I
Icons• 1-11
IMAGE functions• 1--4
Images • 1-10
Intensity system • 1--4

J
Join style• 1-8

L
Line Patterns • 1-7
Lines• 1-S
Logical Names• 1-1
Logicals

UISX$BACKING_STORE • 1-3

M
Menu options• 1-12
Miter• 1-8
Monochrome system • 1--4
Monochrome workstations • 1-1 O
Mouse• 1-7

N
NTSC color convention • 1--4

lndex-1

Index

p
Patterns• 1-6
Polygons• 1-8
Pseudo-colormap • 1-4
Pseudo-color system• 1-4

s
Scrolling• 1-10
Server• 1-9
SYS$WORKSTATION • 1-1, 1-9

T
Tablet/digitizer• 1-7
Text•1-9
True-color system• 1-4

lndex-2

u
UIS$MOVE_AREA • 1-10
UIS$SET_POINTER_PATTERN • 1-10
UISDC$READ_IMAGE • 1-10
UJSX$BACKING_STORE • 1-3
User Preferred Color • 1-5

v
Vector drawings • 1-8
Virtual colormap • 1-4

w
Window manager• 1-11
Window placement• 1-11
Writing modes• 1-6

