
VAXuisx Release Notes

Order Number: AA-PC3EA-TE

Software Version:

Operating System:

VAXuisx V1 .0

VMS V5.3 or above

You must have DECwindows installed in
order for VAXuisx to run.

August 1990

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1990 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC
DECwindows
DEC US
DDIF

MicroVAX
PDP
VAX

VAXstation
VMS

The X Windows System, Version 11 and its derivations (X11,
X Version 11, and X Window System are trademarks of the Massachusetts Institute of
Technology.

This document was prepared using VAX DOCUMENT, Version 1 .2

Contents

PREFACE vii

CHAPTER 1 CHANGES AND RESTRICTIONS 1-1

1.1 UIS FEATURES NOT IMPLEMENTED IN VAXUISX 1-1

1.2 UISX$STARTUP SHOULD NOT BE RUN ON VWS SYSTEMS 1-1

1.3 SYS$WORKSTATION 1-2

1.4 LINKING UIS APPLICATIONS WITH UISXSHR 1-3

1.5 VMS V5.1 AND V5.2 ARE NOT SUPPORTED 1-4

1.6 FONTS AFTER INSTALLATION 1-4

1.7 RUNNING VAXUISX APPLICTIONS DETACHED 1-4

1.8 TABLET SUPPORT 1-5

1.9 UISX$SYNCHRONIZE 1-5

1.10 SHARED COLOR MAPS AND ATTRIBUTES 1-5

1.11 KEYBOARD RESTRICTIONS 1-5

1.12 UIS WINDOW OPTIONS MENU 1-6

1.13 WINDOW PLACEMENT 1-6

1.14 BORDERLESS AND BANNERLESS WINDOWS 1-7

Ill

Contents

1.15 UIS$PRESENT • NEW, OPTIONAL PARAMETER 1-7

1.16 UIS$CREATE_ TERMINAL 1-7

1.17 FILLED AND UNFILLED CIRCLE EDGES 1-7

1.18 RESIZE FROM AST 1-8

1.19 UIS$GET_WS_COLOR AND UIS$GET_WS_INTENSITV 1-8

1.20 RENDERING UIS FILES 1-8

1.21 LINKING C PROGRAMS 1-8

CHAPTER 2 PERFORMANCE 2-1

2.1 BACKING STORE PERFORMANCE 2-1

2.2 USING FLUSH AND AUTO FLUSH 2-1

2.3 USING UISX$SVNCHRONIZE 2-2

2.4 DRAWING WIDE LINES 2-2

2.5 MAKING FREQUENT CHANGES TO ATTRIBUTE BLOCKS 2-2

2.6 USING PATTERNED FILL STYLES 2-2

2.7 GRAPHICS TEXT 2-2

2.8 - WRITING MODES 2-3

2.9 IMAGE PERFORMANCE 2-4

Iv

APPENDIX A UNSUPPORTED ROUTINES

TABLES
2-1

Contents

A-1

2-3

v

Preface

This manual provides supplemental information about Vl.O of the
VAXuisx Runtime Library for VMS (VAXuisx). If you have not already
done so, please read the Read Me First information included with your
documentation.

This manual is for graphics programmers and users who should know
about VAXuisx performance and restrictions. All users should read this
document before using the VAXuisx Runtime Library for VMS.

The manual is divided into two chapters: one on restrictions and another
on performance issues.

Related Documents
If you are working with VWS, you should consult the following documents:

• VMS Workstation Software User's Guide for information about how to
use the workstation software.

• VMS Workstation Software Graphics Programming Guide for
information about working with application programs and using
VMS Workstation Software graphics.

• VMS Workstation Software Guide to Printing Graphics for detailed
information about how to print hard copies from your system.

• VMS Workstation Software SIGHT User's Guide for detailed
information about using SIGHT.

If you want to migrate your VWS applications to DECwindows, consult the
appropriate documents:

• UIS Source Code Annotator User's Guide for information about using
the source code annotator.

• Using the UIS to DDIF Converter for information about converting UIS
to DDIF.

• A Guide to Migrating VWS Applications to DECwindows for
information about migrating VWS applications to DECwindows and
for an example application.

• Using the DECwindows/Xll Server for VWS for information about
using the DECwindows/Xll Server for VWS.

• VAXuisx User~r; Guide for information about using the VAXuisx
Runtime Library for VMS.

vii

Preface

Conventions

viii

This manual uses the following conventions in user input examples:

Conventions and Meantnga

I RETURN I
The I RETURN I key is not always shown in formats and examples. Assume
that you must press the I RETURN I key after typing a command or other
input to the systetll, unless you -are instructed otherwise.

ICTRL/XI

ICTRLI followed by a slash and a lett~r means that you must type the letter
while holding down the lhTIL I key. For example, I CTRL/B I means hold down
the lCTRLj key and type t e etter B. ·

Lists
When a form.at item is followed by a cotnma and an ellipsis(, ...), you
can enter a single item or a number of items separated by commas. When
a format item is followed by a plus sign and an ellipsis(+ ...), you can
enter a single item or a number of those items connected by plus signs.
If yoq enter a list (more than one item), you must enclose the list in
parentheses. A single item need not be enclosed in parentheses.

Optional Items
An item encfosed in square brackets ([]) is optional.

Boxes
In examples, boxes enclose user in ut, such as a key~' a key sequence
I CTRLJZ L or a parameter PASSWORD

A vertic~l ellipsis indicates that some of the format or example is not
shown.

Q]

The key on the LK201 terminal keyboard that performs the DELETE
function is labeled QJ.

1 Changes and Restrictions

VAXuisx has some restrictions other than those imposed by UIS which
may apply to your application. This chapter describes those restrictions.

1.1 UIS Features Not Implemented in VAXuisx
VAXuisx does not implement all the UIS features. For example, UIS
provides a tablet/digitizer that can map to a window. UIS confines the
cursor to a particular window and the application controls the aspect ratio
and the resolution of the input. Xll has no mechanism for mapping tablet
input to a window. VAXuisx does not emulate the UIS tablet/digitizer, but
always treats the tablet as if it were a mouse.

Some UIS features, such as shared color maps, may be implemented in
later versions of VAXuisx. Other features will never be implemented in
VAXuisL Those features that are not implemented for this version of
VAXuisx include:

• DOPs

• The VWS QIO interface

• Digitizer/tablet support

• Sound key click

• Shared colormaps

• The VWS Display Manager

• Specific VWS utilities such as Color Print Screen

• The VWS terminal emulators

• Kernel Mode access and process permanent UIS structures

• The VWS look and feel

1.2 UISX$STARTUP Should Not Be Run on VWS Systems
VAXuisx uses a startup file named UISX$STARTUP.COM. This command
procedure should not be run on a system running native VWS. If it is,
some very strange behavior may result.

This file is run at system startup time. When the file runs, it checks the
SYSGEN parameter WINDOW _SYSTEM. If this parameter is set to 0 (no
windowing system) or 1 (DECwindows), the command file will continue. If
this parameter is set to 2 (VWS), it will exit.

1-1

Changes and Restrictions

If this check is ever modified and the command procedure run on a VWS
workstation, VWS applications will not run. The reason for this is the fact
that VAXuisx defines UISSHR (the UIS shared image) to be UISXSHR (the
VAXuisx shared image). This definition is what enables VWS applications
to be run without recompiling and relinking.

Note: Using the SET DISPLAY method to create a workstation device
in order to point SYS$WORKSTATION towards may lead to the
following VAXuisx error message if DECNET is shut down after
VAXuisx has run its startup file.

"UISX-E-OPEN_ERROR, error opening display"

This is due to the fact that, by default when a SET DISPLAY is
done to create a workstation device the default transport used is
DECNET, and unless DECNET has not been started or your system
startup files have the DECW$IGNORE_DECNET logical defined to be
TRUE, then SET DISPLAY uses the default DECNET transport in the
UISX$STARTUP. COM procedure.

In order to check which workstation device VAXuisx is using and which
transport is being used and to ensure that you use the LOCAL transport
when DECNET is shut off follow these steps:

$ SHOW LOGICAL/TABLE=UISX$LOGICAL_TABLE SYS$WOR.KSTATION

"SYS$WOR.KSTATION" = "_WSA2:"

$ SHOW DISPLAY WSA2:

DEVICE: WSA2: [exec]
NODE: 0
TRANSPORT: DECNET
SERVER: 0
SCREEN: 0

$ SET DISPLAY _WSA2:/TRANSPORT=LOCAL

This will reset your transport to use the LOCAL transport and will allow
your application to continue to work under VAXuisx.

1.3 SVS$WORKSTATION

1-2

Depending on where your application is being run from, you have a few
options as to how to define this logical. By default on systems with the
SYSGEN parameter WINDOW_SYSTEM set to either 0 or 2, VAXuisx
will use the logical DECW$DISPLAY in order to point to the workstation
device. On systems currently running DECwindows, VAXuisx will actually
create a display on which to run the application.

There are three ways in which you can run your application under
VAXuisx to a DECwindows server:

• Define the SYS$WORKSTATION logical to point at the logical
DECW$DISPLAY. Note that the DECW$DISPLAY logical is defined
only in the JOB logical name table, which means applications run in
detached mode will parse the DECW$DISPLAY logical.

Changes and Restrictions

• Define the SYS$WORKSTATION logical to point at display which you
can create by using the DCL command SET DISPLAY /CREATE. This
will create a DECwindows WSA device which you can define your
SYS$WORKSTATION logical in the UISX$LOGICAL_TABLE to point
to.

• Define the SYS$WORKSTATION logical to point at the string
node::server.screen.

Node = DECNET node in which the graphics output can be
displayed
Server = Server number for that node
Screen = Screen for the server

There are examples of each possible way to define your
SYS$WORKSTATION logical in the UISX$STARTUP.COM file. If you
do decide to redefine the SYS$WORKSTATION logical in any other form
than the default make sure to use the /TABLE=UISX$LOGICAL_TABLE
in your definition command as follows:

DEFINE /SYSTEM /TABLE=UISX$LOGICAL_TABLE SYS$WORKSTATION

or

DEFINE /PROCESS /TABLE=UISX$LOGICAL_TABLE SYS$WORKSTATION

1.4 Linking UIS Applications with UISXSHR
If you link a UIS application program on a system running VAXuisx,
the program may have problems running on other systems. This is
because VAXuisx redefines the UIS shareable library (UISSHR) as
SYS$SHARE:UISXSHR.EXE, which requires the DECwindows shareable
for image activation.

When a UIS program is linked, it links in symbols from UISSHR.
UISXSHR.EXE includes symbols from the DECwindows shareable library
(DECW$DWTLIBSHR.EXE). When the program is run, it will attempt to
resolve all symbols, including those defined in DECW$DWTLIBSHR.EXE.
If the image file is copied to a system without DECwindows, or with
a different version of the DECW$DWTLIBSHR shareable library, the
program will not run because it cannot be resolved correctly.

To avoid this problem, LINK your UIS application programs against the
stub UIS shareable image (SYS$SHARE:UISSHR.EXE):

$!
$ LINK program, SYS$INPUT /OPTIONS

SYS$SHARE:UISSHR /SHARE
$!

1-3

Changes and Restrictions

1.5 VMS V5.1 and V5.2 are Not Supported
Due to problems with VMS DECwindows Version 1 (VMS V5.l and V5.2)
VAXuisx is supported only by VMS Version 5.3 and later. When run using
earlier versions of VMS DECwindows as either client or server, programs
may randomly exit without reason, or with XLIB FATAL 1/0 errors. This
usually happens in applications which execute at AST level for significant
amounts of time while doing interactive operations using the mouse.

1.6 Fonts after Installation
You may need to restart your DECwindows server after installation of
VAXuisx to pick up the new fonts. The server may be restarted without
rebooting your system by entering:

$@SYS$MANAGER:DECW$STARTUP RESTART

from a suitably privileged account. The fonts should be reloaded by logging
out from the session and logging back in, but it has been found that this is
not always the case.

1.7 Running VAXuisx Applictions Detached

1-4

If a VAXuisx application is run as a detached process with an error log file
specified, (ie. RUN/DETACHED/ERROR=ERROR_FILE.LOG FOO.EXE),
a log file will be created if the logical UISX$CUSTOMIZE_COLORS is set
to TRUE, it's default value, whether or not an error occurs. This behavior
is due to a problem in the DECwindows Resource Manager. VAXuisx uses
the Resource Manager to obtain the default window's colors chosen by the
user.

There are several possible ways to work around this problem. If the logical
UISX$CUSTOMIZE_COLORS is set to FALSE, VAXuisx will not call the
DECwindows Resource Manager and the error file will not be created.
Note that this logical must be defined in EXECUTIVE mode in either the
group or the system logical name table for the detached process to pick it
up.

$ DEFINE/SYSTEM/EXECUTIVE_MODE UISX$CUSTOMIZE_COLORS FALSE
or

$ DEFINE/GROUP/EXECUTIVE_MODE UISX$CUSTOMIZE_COLORS FALSE

The draw back from using this method is that it will disable VAXuisx from
inheriting the user selected DECwindows window colors.

If you are concerned with the amount of disk space which will be
consumed, with this error log file, you may limit this by setting a version
limit on the error file.

$ SET FILE/VERSION_LIMIT=3 ERROR_FILE.LOG

When the process is run and the error file is currently at its version limit,
(three copies already exist), the older version, (the one with the lowest
version number), will be purged and a new file will be created.

1.8 Tablet Support

Changes and Restrictions

If you are using this method, you should be aware of any log files which
contain relevant data that you need to retain. To prevent lose of these files
you must be very careful to rename the needed files to file names which
will not be automatically purged.

If you do not want this error log file to ever be created, whether an error
occurs or not, you can create an empty error log file with a version number
of 32767.

$ CREATE ERROR FILE.LOG;32767
CTRL-Z $ -

This is the highest version number allowed by VMS, thus pro hi bi ting the
create of a new file.

The tablet works only as a mouse because the X Window System™ does
not support the tablet in digitizing mode. None of the tablet functions
work under VAXuisx. Calls to UIS$GET_TB_INFO will always return
FALSE, indicating that no tablet is available.

1.9 UISX$SYNCHRONIZE

1.10

Using UISX$SYNCHRONIZE for interactive applications that use ASTs
intensively is not recommended and can cause server deadlocks, Xlib 1/0
errors and server hangs.

Shared Color Maps and Attributes
Shared Color Maps are not implemented in Version 1.0. All colormap
attributes are ignored.

1.11 Keyboard Restrictions
Because VAXuisx is layered on top of DECwindows and is running under
the control of the DECwindows Session and Window Managers, the .EIJ
through~ functions keys do not have their VWS definitions. These keys
perform the functions assigned to them by DECwindows.

The fallback mouse keys do not work using the VWS mechanism described
in the following table. Instead DECwindows provides mouse emulation by
pressing ICTRLI ~at which point the~ light will be turned on and the
keys in the table will operate as if I CTRUShift I were also depressed.

1-5

1.12

1.13

Changes and Restrictions

Key Sequence

CTRUShift I~

CTRUShift 11 Prev Screen I

CTRUShift 11 Next Screen I

CTRUShift 1111

CTRUShift I ffi
CTRUShift I B
CTRUShift I El

Key Code

Select mouse button

Middle mouse button

Right mouse button

Move mouse up one pixel

Move mouse down one pixel

Move mouse left one pixel

Move mouse right one pixel

UIS Window Options Menu
Under VAXuisx there will be no MENU icon in the upper left hand
corner of each window for a window options menu. This is due to the
inability of VMS DECwindows to allow applications to customize windows
in this manner. For VAXuisx, most of the options are replaced by the
DECwindows Window Manager. Following is a list of options available
through the VWS MENU icon in the window options menu, and its
DECwindows replacement, if one exists:

Push Behind -> Use the icon in the VAXuisx banner for push
Pop in Front -> Press button in banner of window to pop
Delete -> There is no equivalent
Change the Size -> Use the resize icon in the VAXuisx banner
Shrink to Icon -> Use the shrink icon in the VAXuisx banner
Additional Options -> There is no equivalent
Exit from this Menu -> No need for equivalent

Window Placement

1-6

The full window placement logic from VWS has not been fully
implemented. The VAXuisx logic will not go out and find the most free
space on the window like VWS does. The following is a brief synopsis of
what VAXuisx does.

For exact placement abs_x, and abs_y, VAXuisx basically follows the VWS
logic. The only difference being that if absolute position is specified along
with any of the bits for relative placement, VAXuisx ignores the relative
placement bits entirely.

The bits for relative placement: top, bottom, center, left, and right, work
such that the first window created in the region will be placed 48 pixels
from the left or right if so specified and 80 pixels from the top or bottom if
so specified. Otherwise, VAXuisx will try to center the viewport as best as
possible between the edges. If no placement is specified, top and centered
will be the placement attributes given to the window. The difference here
as opposed to VWS is that VAXuisx does not evaluate the workstation
screen for optimal placement. Rather, if an area specified currently has
a viewport visible, an attempt will be made to place the window in a
southeasterly fashion as the DECwindows default placement does. If the
window will fit on the screen at that point, it is placed there. If it cannot
be, an attempt is made to move the window either west or north dependin!

1.14

1.15

1.16

1.17

Changes and Restrictions

on which portion of the viewport would have been offscreen by using the
southeasterly approach.

Borderless and Bannerless Windows
By default, all windows created by VA.Xuisx will have borders
and banners, regardless of the attributes requested in the
UIS$CREATE_ WINDOW routine. This behavior is controlled by the
logical UISX$REQUIRE_BANNER.

If this logical is defined to be FALSE, which is not the default, VA.Xuisx
will create DECwindows windows which do not have a banner. In this
case, the window is not under the control of the DECwindows Window
Manager. Any windows not under control of the window manager are
incapable of being manipulated from the user interface. That is, they may
not be moved, pushed, popped, resized, etc. by the user utilizing the mouse
or tablet.

UIS$PRESENT - New, Optional Parameter
VAXuisx has added a new, optional parameter at the end of the parameter
list for UIS$PRESENT. This parameter returns TRUE (1) if the program
is running from VAXuisx. It returns FALSE (0) if the program is running
from native UIS. For more information on this routine and ~ts new format,
refer to the VWS Release Notes.

UIS$CREATE_ TERMINAL
You cannot create a TK-type terminal under VAXuisx. Trying to create one
through the use of the routine UIS$CREATE_TERMINAL causes a fatal
error in your program. VAXuisx also displays the following error message:

%UISX-F-NOTK, Cannot create a TK terminal device

You must specify WT as the TERMTYPE argument. However, instead
of creating a WT-type terminal, UIS$CREATE_TERMINAL creates a
DECterm terminal. UIS$CREATE_TERMINAL currently ignores the
terminal and placement attributes (DECwindows terminal emulator).

When VAXuisx is run on a non-workstation, the psuedo-terminal
drivers must be loaded and the terminal controller process
must be started on the client system. You may need to use the
CREATE!rERMINAL/CONTROLLER DCL command.

Filled and Unfilled Circle Edges
Filled and unfilled circles may not overlap exactly. Some of the edge
pixels are considered inside the circle and some are considered outside.
This is usually not a problem unless the edge of a circle is drawn by an
application prior to drawing the filled portion of the same circle. This
difference is the result of the way Xll implements circles.

1-7

1.18

Changes and Restrictions

Resize from AST
VAXuisx does not currently handle UIS$RESIZE_ WINDOW correctly
when called with null parameters from a resize AST. The world coordinate
system is not scaled to the new window but remains unchanged.

1.19 UIS$GET_WS_COLOR and UIS$GET_WS_INTENSITY
If UIS$GET_ WS_COLOR or UIS$GET_ WS_INTENSITY are not explicitly
passed a WD_ID (that is, asking for a realized color), VAXuisx uses
SYS$WORKSTATION.

1.20 Rendering UIS Files
'lb render UIS files produced by running your application with VAXuisx,
you should install HCUIS and the VWS fonts supplied with the VWS
4.3 installation kit. For installation instructions, refer to the Installation
Guide for VWS Software and Migration 1bols.

1.21 Linking C Programs

1-8

You cannot link C programs with the logical LNK$LIBRARY defined
as VAXCRTL when using VAXuisx. Attempting to do this will result in
repeated occurrences of Multiply Defined Symbol errors. 'lb alleviate this
problem, deassign the logical LNK$LIBRARY.

2 Performance

Thls chapter discusses some of the performance differences that exist
between UIS and VAXuisx.

2.1 Backing Store Performance
VWS guarantees the integrity of all windows by maintaining a bitmap
backup (backing store) of each window. Therefore, VWS applications
do not need to be concerned with maintaining the contents of their
windows. Thls is almost as great as having no backing store. This
feature can be defeated (DEFINE UISX$WRITE_IMMEDIATE TRUE),
and all operations are done immediately to both the PIXMAP and
the window. This option will cause performance to be at least 50%
less for most output. The number of operations that are written
to the PIXMAP for each copy from PIXMAP to window can be set
(DEFINE UISX$BATCH_COUNT integer_value) and can be used to limit
the number of batched operations. Large values allow better performance,
small values (including 0 or 1) allow lower performance but smoother
drawing operations.

Backing store can be completely disabled,
(DEFINE UISX$BACKING_STORE FALSE), which will cause operations
to be written only to the window and no off screen PIXMAP can be
allocated. This provides the best possible performance, but the contents of
windows can be lost by occlusion or when the widdow is in the icon state.

2.2 Using FLUSH and AUTO FLUSH
By default, a timer event is generated which causes any operations
not copied to the screen from the PIXMAP and any operations in
the Xlib drawing buffer to be flushed. This feature is called Auto­
Flush. It can be disabled (DEFINE UISX$AUTO_FLUSH FALSE)
which will disable the timer. The timer interval can be set
(DEFINE UISX$AUTO_FLUSH_TIMER "delta_time") to a VMS delta­
time value. Small time values provide smoother output, large time values
provide higher throughput.

In addition to Auto-Flush, the Xll output buffers can be flushed after
each output operation (DEFINE UISX$FLUSH TRUE). This will cause a
performance decrease of a variable amount and is generally not nee.ded
but can be useful for debugging.

2-1

Performance

2.3 Using UISX$SVNCHRONIZE
UISX$SYNCHRONIZE dramatically affects the performance of VAX.uisx.
This feature is useful only for limited reasons, mostly for debugging.

For further information on UISX$FLUSH and UISX$SYNCHRONIZE,
refer to Appendix B, "Logical Names", in the VAXuisx User's Guide.

2.4 Drawing Wide Lines
When you use VAXuisx, there will be a significant performance difference
between thin lines (lines that are one pixel wide) and wide lines (lines
that are wider than one pixel). The difference occurs because VAX.uisx
special cases thin lines and allows Xll to draw them using whatever line
algorithm is implemented for the graphics hardware. Wide lines must use
the line algorithm specified by Xll and thus cannot take advantage of the
graphics hardware accelerators.

2.5 Making Frequent Changes to Attribute Blocks
If your application frequently changes values within an attribute block,
you will experience a significant degradation in drawing performance.
For example, the degradation will occur if your application changes an
attribute, draws a single object, an changes attribute, draws a single
object, and so on. This is an Xll behavior with changing graphic
attributes.

2.6 Using Patterned Fill Styles

2.7 Graphics Text

2-2

Use of solid fill styles (foreground or background) will yield a better
performance than with the use of other fill styles. This is due to the
method that must be used to implement these fill styles in VAX.uisx. For
solid patterns, XU provides an optimized code path which is used by
VAX.uisx. For non-solid patterns, VAX.uisx must build an Xll PIXMAP
and use it in the fill operation.

Graphics text is any text which is sloped, slanted, rotated, scaled, or
has spacing other than the default. Xll does not allow any of this
manipulation of characters. Therefore, implementation of graphics text
in VAX.uisx requires creating an Xll image which contains the string and
copying this string to the VAX.uisx window and, if enabled, the backing
store PIXMAP.

The image is compiled by performing the appropriate geometric operation
on each bit that forms the letter, for each character in the string and
writing the result to the image. This operation is very expensive. As
a result, performance of graphics text is slower than that of normal,
non-graphics text.

2.8 Writing Modes

Performance

The petformance rate of graphics text depends on whkh type of character
manipulation you are using. Below is a list of the types of graphics text
listed from the best performance to the worst performance. Remember
that combining any of these characteristics will petform, at best, at the
rate of the slower of the types. It is likely that performance will be
somewhere below the worst performer.

Graphics Text Type (listed best to worst petformer)

Non-default spacing
Slanted text
Rotated text
Scaled text
Sloped text

Many of the UIS writing modes are not directly available in Xll. In order
to get the expected result for these writing modes VAXuisx must use a
combination of writing mode, foreground color, background color, plane
mask, and fill pattern. It is also at time necessary to draw the object
multiple times to achieve the proper output. Because of this, some UIS
writing modes are slower than others when using VAXuisx.

Performance of writing modes also depends on whether the output
primitive is text or graphics. Refer to Table 2-1 which lists the various
writing modes and indicates which ones result in a significant performance
degradation for both text and graphics output.

Table 2-1

Writing Mode

Erase

Erase Negate

Overlay

Overlay Negate

Replace

Replace Negate

Complement

Transparent

Bit Clear

Bit Clear Negate

Bit Set

Bit Set Negate

Copy

Copy Negate

Text

x

x

x
x
x

Graphics

x

x
x
x
x

2-3

Performance

2.9 Image Performance

2-4

Image performance in VAXuisx is significantly slower than in native UIS.
This performance degradation is due to the conversion that must take
place in order to move image data from the UIS image format to Xll
image format. 1b do this, each pixel must be moved individually with any
pixel replication and color translation occurring during the move. The
pixel replication and color translation do not require significant amounts
of overhead, but going through the image one pixel at a time is a time
consuming operation.

A Unsupported Routines

VAXuisx does not support some routines found in the VWS User Interface
Services (UIS). This appendix lists the routines VAXuisx does not support,
the severity of the error VAXuisx returns, and an explanation of the error.

Routine Severity Exp la nation

UIS$CREATE_ TB Error Create tablet data block

UIS$DELETE_ TB Error Delete tablet data block

UIS$DISABLE_ TB Warning Disable as the active digitizer

UIS$ENABLE_ TB Warning Enable as the active digitizer

UIS$GET _ TB_POSITION Error Get tablet position

UIS$SET _ADDOPT _AST Informational Specify additional options

UIS$SETUP Error Invokes the Workstation Options
Menu.

UIS$SOUND _CLICK Informational Sound key click

UISDC$ALLOCATE_DOP Fatal Error Allocate a DOP

UISDC$EXECUTE_DOP _ASYNCH Fatal Error Execute DOP immediately, but do
not wait for completion

UISDC$EXECUTE_DOP _SYNCH Fatal Error Execute DOP immediately and
wait for execution

UISDC$LOAD_BITMAP Fatal Error Load a bitmap as a font

UISDC$QUEUE_DOP Fatal Error Queue DOP for execution

A-1

