
VAX-11
Symbolic Debugger
Reference Manual
Order No. AA-00268-TE

March 1980

This document describes the VAX-11 Symbolic Debugger, a program used in
locating errors in executable user images. The information in this document is
particularly pertinent to programmers using the VAX-11 MACRO assembly
language.

VAX-11
Symbolic Debugger
Reference Manual
Order No. AA-00268-TE

SUPERSESSION/UPDATE INFORMATION: This revised document supersedes the

OPERATING SYSTEM AND VERSION:

SOFTWARE VERSION:

VAX-11 Symbolic Debugger Reference Manual
(Order No. AA-D026A-TE)

VAX/VMS V02

VAX/VMS V02

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard, massachusetts

First Printing, August 1978
Revised, March 1980

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright (§) 1978, 1980 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last
document requests the user's critical evaluation
preparing future documentation.

page of this
to assist us in

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DEC US
UNIBUS
COMPUTER LABS
CO MT EX
DDT
DECCOMM
ASSIST-11
VAX
DECnet
DATATRIEVE

DECsystem-10
DECtape
DIBOL
EDU SYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20
RTS-8
VMS
!AS
TRAX

MASS BUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-11
TMS-11
ITPS-10
SB!
PDT

·-CONTENTS

Page

PREFACE vii

SUMMARY OF TECHNICAL CHANGES ix

CHAPTER

CHAPTER

CHAPTER

1

1.1
1.2
1.2.l
1.2.2
1.2.3
1.2.4
1. 2. 5
1.2.6
1. 2. 7
1. 2 .8
1.3
1. 3 .1
1. 3. 2
1. 3. 3
1. 3 .4
1.4

2

2.1
2.2
2.3
2.4

3

3.1
3.2
3.2.l
3.2.2
3.2.3
3.3
3.3.1
3.3.1.1
3.3.1.2
3.3.1.3
3.3.1.4
3.3.1.5
3.3.1.6
3.3.1.7
3.3.2
3.3.2.1
3.3.2.2

INTRODUCTION TO THE VAX-11 SYMBOLIC DEBUGGER 1-1

VAX-11 SYMBOLIC DEBUGGER FACILITIES 1-1
USING THE VAX-11 DEBUGGER 1-2

Beginning and Ending Debugging Sessions 1-2
Examining and Modifying Locations 1-2
Evaluating Expressions 1-2
Breakpoints 1-2
Tracepoints and Opcode Tracing 1-2
watchpoints 1-3
Initiating Program Execution 1-3
Log Files and Command Procedures 1-3

SYMBOLIC REFERENCES 1-3
Debugger Symbol Table 1-3
Local Symbol Definition 1-4
Scope 1-4
Pathnames 1-4

DEBUGGING IN LANGUAGES OTHER THAN VAX-11 MACRO 1-4

BEGINNING AND ENDING A DEBUGGING SESSION

INITIATING THE DEBUGGER
DEBUGGER START-UP CONDITIONS
GETTING HELP
ENDING A DEBUGGING SESSION

DEBUGGER COMMAND FORMAT AND COMPONENTS

DEBUGGER COMMAND FORMAT
SYMBOLS AND PATHNAMES

The Debugger Symbol Table
Scopes and Pathnames
Kinds of Symbols

SPECIAL CHARACTERS AND EXPRESSIONS
Evaluating Arithmetic Expressions
Plus Sign (+)
Minus Sign (-)
Multiplication Operator (*)
Division Operator (/)
Shift Operator (@)
Precedence Operators (< >)
Radix Operators (AD, ~x, and AO)
Special Characters In Address Expressions
Current Location Symbol (.)
Previous Location Symbol (A)

iii

2-1

2-1
2-3
2-3
2-4

3-1

3-1
3-3
3-3
3-4
3-fi
3-fi
3-7
3-8
3-8
3-8
3-9
3-9
3-9
3-9
3-10
3-10
3-11

CHAPTER

3.3.2.3
3.3.2.4
3.3.2.5
3.3.3
3.3.3.1
3.3.3.2
3.3.3.3
3.3.3.4
3.4
3.4.1
3.4.1.1
3.4.1.2
3.4.2

4

4.1
4 .1.1
4 .1.2
4 .1. 3
4.1.3.1
4.1.3.2
4.1.3.3
4.1.3.4

4.2
4.3
4.3.1
4.3.2
4.3.3
4.4
4.4.1
4.4.1.1
4.4.1.2
4.4.1.3
4.4.1.4
4.4.1.5
4.4.1.6
4.4.1.7
4.4.1.8
4.4.1.9
4.4.1.10
4.4.2
4.4.2.1
4.4.2.2
4.4.2.3
4.4.2.4
4.4.3
4.4.3.1
4.4.3.2
4.4.3.3
4.4.3.4
4.4.3.5
4.4.3.6
4.4.3.7
4.4.4

CONTENTS

Last value Displayed Symbol (\)
Contents Operator (@)
Range Operator (:)
Special Delimiting Characters
Input String Delimiters (' and ")
Bit Field Delimiters (<:>)
Line Continuation Operator (-
Comment Operator (!)

ENTRY AND DISPLAY MODES AND TYPES
Entry and Display Modes
Radix Modes
SYMBOLIC/NOSYMBOLIC Modes
Entry and Display Types

USING THE DEBUGGER

EXAMINING AND DEPOSITING DATA
Examining and Depositing Numeric Data
Examining and Depositing ASCII Strings
Examining and Depositing Instructions
Replacing Instructions with DEPOSIT
Depositing a Sequence of Instructions
Specifying Displacements in DEPOSIT
VAX-11 MACRO Instructions with the Same
Opcodes

EVALUATING EXPRESSIONS AND BIT FIELDS
CONTROLLING PROGRAM EXECUTION

Initiating and Continuing Execution with GO
Stepping Through Your Program
Calling Routines

INTERRUPTING EXECUTION OF YOUR PROGRAM
Breakpoints
Breakpoint Reporting at Program Stop
Continuing From a Breakpoint
Setting Breakpoints
General Breakpoint Specification
DO Command Sequence at Breakpoint
Breakpoint "After" Option
Temporary Breakpoints
Canceling Breakpoints
Showing Breakpoints
Breakpoint Examples
Tracepoints and Opcode Tracing
Setting Tracepoints
Canceling Tracing
Showing Tracing Modes
Tracing Examples
Watchpoints
Watchpoint Reporting
Continuing from a Watchpoint
Setting Watchpoints
Canceling Watchpoints
Showing Watchpoints
Watchpoint Examples
Watchpoint Restrictions
Interrupting Execution

iv

Page

3-11
3-11
3-12
3-12
3-13
3-13
3-14
3-14
3-14
3-14
3-15
3-15
3-lfi

4-1

4-1
4-2
4-4
4-4
4-5
4-6
4-6

4-6
4-7
4-9
4-9
4-9
4-11
4-12
4-12
4-13
4-13
4-13
4-14
4-14
4-15
4-15
4-15
4-Hi
4-lfi
4-17
4-18
4-19
4-19
4-19
4-20
4-20
4-21
4-21
4-21
4-22
4-22
4-23
4-23

CHAPTER

CHAPTER

5

5.1
5.2
5.3
5.4
5.5
5.5.1
5.5.2
5.o

6

CONTENTS

ADDITIONAL DEBUGGING FEATURES

SAVING A RECORD OF A DEBUGGING SESSION
USING COMMAND PROCEDURES
EXCEPTION CONDITIONS
SHOWING ACTIVE CALLS
PROCESSOR STATUS LONGWORD {PSL)

Displaying the Processor Status Longword
Altering the Processo~ Status Longword

DEBUGGING EXIT-HANDLERS

DEBUGGER COMMANDS

@file-spec
CALL
CANCEL
CANCEL ALL
CANCEL BREAK
CANCEL EXCEPTION BREAK
CANCEL MODE
CANCEL MODULE
CANCEL SCOPE
CANCEL TRACE
CANCEL TYPE/OVERRIDE
CANCEL WATCH
CTRL/C, CTRL/Y, CTRL/Z
DEFINE
DEPOSIT
EVALUATE
EXAMINE
EXIT
GO
HELP
SET
SET BREAK
SET EXCEPTION BREAK
SET LANGUAGE
SET LOG
SET MODE
SET MODULE
SET OUTPUT
SET SCOPE
SET STEP
SET TRACE
SET TYPE
SET WATCH
SHOW
SHOW BREAK
SHOW CALLS
SHOW LANGUAGE
SHOW LOG
SHOW MODE
SHOW MODULE
SHOW OUTPUT
SHOW SCOPE

v

Page

5-1

5-1
5-3
5-4
5-5
5-fi
5-6
5-'i
5-8

6-1

6-1
e:)-3
6-4
6-5
n-6
6-7
~-8

n-9
n-10
'i-11
n-12
6-13
6-14
()-15
6-17
6-20
n-22
'i-25
6-26
6-27
6-28
6-29
6-31
(,-32
n-33
6-34
6-36
6-37
11-39
6-41
6-43
6-44
6-45
11-46
6-47
6-48
e:)-49
6-50
6-51
6-52
6-53
n-54

APPENDIX A

APPENDIX B

APPENDIX C

INDEX

TABLE 2-1
3-1
3-2
3-3
3-4
4-1

5-1
B-1

SHOW STEP
SHOW TRACE
SHOW TYPE
SHOW WATCH
STEP

CONTENTS

VAX-11 SYMBOLIC DEBUGGER MESSAGES

COMPATIBILITY FEATURES

COMMAND SUMMARY

TABLES

Command Qualifiers
Summary of VAX-11 Symbolic Debugger Commands
Arithmetic Special Characters
Address Representation Characters
Delimiting Characters
Instructions Accepted and Displayed by the
Debugger for VAX-11 MACRO Instructions with
Equivalent Opcodes
PSL Low-Order Word Alteration Values
Equivalent Commands

vi

Page

fl-55
e:\-5e)
e)-57
fl-58
h-59

A-1

B-1

C-1

Index-1

2-2
3-2
3-7
3-10
3-12

4-7
5-7
B-1

PREFACE

MANUAL OBJECTIVES

This manual describes the facilities of the VAX-11 Symbolic Debugger.
This manual is primarily an aid to debugging programs written in
VAX-11 MACRO assembly language. For information on debugging programs
written in other languages, refer to the appropriate language user's
guide before reading this manual.

INTENDED AUDIENCE

This manual is intended for programmers using VAX-11 MACRO. To qet
the most out of this manual, you should have a working knowledge of
VAX-11 architecture and be familiar with the VAX/VMS operating system.
However, while not a tutorial, the manual can be used by relatively
inexperienced programmers. This manual is also intended for
programmers using other languages who need more information than is
available in the appropriate language user's guide.

STRUCTURE OF THIS DOCUMENT

This manual comprises n chapters and 3 appendixes. Chapter 1 provides
a functional overview of the VAX-11 Symbolic Debuqqer's concepts and
facilities. Chapters 2 through 5 describe how to use the debugger.
Chapter n describes the debugger commands. Appendix A contains a list
of error messages. Appendix B describes features that are included
for compatibility with previous versions of the debugger. Appendix C
provides a brief summary of commands and lists the minimum
abbreviation of each.

ASSOCIATED DOCUMENTS

To obtain supplemental information, the following documents are
recommended:

• VAX-11 Architecture Handbook

• VAX/VMS Primer

• VAX-11 MACRO Language Reference Manual

For a complete list of VAX-11 documents, see the VAX-11 Information
Directory and Index.

vii

CONVENTIONS USED IN THIS DOCUMENT

This document uses the following conventions.

Convention

Uppercase words
and letters

Lowercase words
and letters

Quotation marks
Apostrophes

{ }

DBG> EVALUATE X
00000002

CTRL/x
or
<CTRL/x>

Meaning

Uppercase words and letters, used in examples,
indicate that you should type the word or
letter ~xactly as shown.

Lowercase words and letters, used in format
examples, indicate that you are to suhstitute
a word or value of your choice.

The term quotation marks is used to refer to
double quotation marks ("). The term
apostrophe (') is used to refer to a single
quotation mark.

Square brackets indicate
item is optional (except
specifications where square
directory names).

that the enclosed
when used in file
brackets delimit

Braces are used to enclose lists from which
one element is to he chosen.

A horizontal ellipsis indicates that the
preceding item(s) can be repeated one or more
times.

A vertical ellipsis indicates that not all of
the statements in an example or f iqure are
shown.

In examples of commands you enter and system
responses, all output lines and prompting
characters that the system prints or displays
are shown in black letters. All the lines you
type are shown in red letters.

The phrase <CTRL/x> indicates that you must
press the key labeled CTRL while you simul­
taneously press another key, for example
<CTRL/C>, <CTRL/Y>, and <CTRL/Z>. In
examples, this control key sequence is shown
as Ax, for example AY, because this is how the
system echoes control key sequences.

All numeric values in the text of this manual are represented in
decimal notation unless otherwise noted. All numeric values in
examples are represented in the notation that the debugger uses. For
programs written in VAX-11 MACRO, most numbers are represented in
hexadecimal notation by the dehugqer.

Unless otherwise specified, you terminate commands hy pressing the
RETURN key.

viii

SUMMARY OF TECHNICAL CHANGES

This manual describes the VAX-11 Symbolic Debugger, Version 2. The
following are the technical changes from the previous version.

The debugger now supports log files and command procedures. The
debugger can produce log files that contain all the input commands
that you type at the terminal and all the output displayed by the
debugger. The debugger can accept input from command procedures
instead of the terminal. Log files are controlled by the SET LOG, SET
OUTPUT, SHOW OUTPUT, and SHOW LOG commands. Command procedures are
executed by the @file-spec command. Echoing of commands in command
procedures is controlled by the SET OUTPUT command.

The symbol table search rules and SET SCOPE command have been changed.
If a symbol name is unique in the symbol table, specifying the symbol
name is sufficient. By default, the debugger assumes that a symbol is
in the scope that contains the current program counter (PC). If you
have entered the SET SCOPE command, the debugger searches the scopes
in the order specified. The SET SCOPE command accepts scope names and
special scope names specifying the scope containing the current PC,
the scope containing the PC of a preceding CALL, and the scope
consisting of global symbol definitions.

The SET MODE command and the mode qualifiers have been changed. The
SET MODE BYTE, WORD, LONG, ASCII, and INSTRUCTION commands have been
replaced by the SET TYPE and the SET TYPE/OVERRIDE commands. (The SET
MODE syntax for these data types has been retained for compatibility
with the previous version.) The SET MODE GLOBAL, NOGLOBAL, SCOPE,
NOSCOPE, NOASCII, and NOINSTRUCTION commands are not supported in this
version.

The debugger now has a help facility. The HELP command displays a
brief description of each debugger command.

The previous location specifier, the circumflex (A), is no longer
dependent on the current data type. It now represents the address
that is 4 less than the current address, as represented by the period
(.) .
This version of the debugger treats symbols that are typed by a
language compiler differently from the previous version. In this
version, SET TYPE/OVERRIDE and type qualifiers override the type of
the symbols. Previously, typed symbols were always displayed as their
compiler type; mode qualifiers had no effect.

The debugger supports the new H floatingl, G floatingl, and octaworal
data types and instruction mnemonics.

1. Not all VAX-11 processors
instructions.

support

ix

these data types and

CHAPTER 1

INTRODUCTION TO THE VAX-11 SYMBOLIC DEBUGGER

One of the most difficult stages in program development is locatino
and correcting errors after you have successfully written and compiled
or assembled a source program. This stage is commonly calleo
"debugging". It occurs when you attempt to run the successfully
compiled or assembled program and receive erroneous output. Since you
have followed all the rules of the source language and have not
violated any constraints of the compiler or assembler, it is likely
that the incorrect results are caused by one or more programming
errors.

To help you find such errors, VAX/VMS provides a special program: the
Symbolic Debugger (or, simply, the debugger). The debugger lets you
control the execution of your program so you can monitor specific
locations; change the contents of locations; check the sequence of
program control; and otherwise locate and correct errors as they
occur. After you track down the mistakes, you can edit your source
program, recompile or reassemble, relink, and execute the corrected
version.

1.1 VAX-11 SYMBOLIC DEBUGGER FACILITIES

The VAX-11 Symbolic Debugger includes many features to help you:

• It is interactive. You control your program and interact with
the debugger from your terminal.

• It is symbolic. You can refer to locations by using the
symbols you created in your source program. The debugger also
displays locations as symbolic expressions.

• It supports various languages. The debugger lets you converse
in the language of your source program. You can change from
one language to another in the course of a debugging session.

• It permits a variety of data forms. You can control the way
in which the debugger accepts and displays addresses and data.
An address can be represented symbolically or as a virtual
address, in decimal, octal, or hexadecimal notation. Data can
be represented by symbols, expressions, VAX-11 MACRO
instructions, ASCII character strings, or numeric strings in
decimal, octal, or hexadecimal notation.

1-1

INTRODUCTION TO THE VAX-11 SYMBOLIC DEBUGGER

1.2 USING THE VAX-11 DEBUGGER

This section comprises brief descriptions of the functions of the
debugger, and how to use them. The remaining chapters of the manual
provide more detailed information on how these functions can be
utilized.

1.2.l Beginning and Ending Debugging Sessions

There are several methods of passing control to the VAX-11 debugger.
Generally, you specify a qualifier when you compile or assemble the
source program, to ensure that the symbols defined in the program are
accessible in a debugging session. When you link the object program,
you include a qualifier to make the debugger available to the program.

Then, when you enter the RUN command to begin executing your program,
the debugger gets control, displays its identifying message, and
prompts for a command. The prompt has the form:

DBG>

You respond to the prompt with one of the commands recognized by the
debugger. To terminate the debugging session, use the EXIT command.

See Chapter 2 for more information on beginning and ending debugging
sessions.

1.2.2 Examining and Modifying Locat1ons

When execution of your program is suspended,
contents of locations and modify them as you
might examine a location to verify that it
value. You might then change the value to
subsequent execution.

1.2.3 Evaluating Expressions

you can look at the
wish. For example, you
contains the expected
determine the effect on

You can use the debugger as a calculator to compute the value of
expressions, perform radix conversions, compute an address value, and
so on.

1.2.4 Breakpoints

A breakpoint is a place in your program where execution is suspended
so the debugger can get control and prompt for a command. Program
execution is suspended before the instruction at the breakpoint
address is executed. Thus, by setting breakpoints, you are able to
examine the status of your program at key moments of its execution.

1.2.5 Tracepoints And Opcode Tracing

Tracepoints help you follow the sequence of program execution. When
you set a tracepoint in your program, the debugger will momentarily
suspend execution at that point, display a message indicating that the

1-2

INTRODUCTION TO THE VAX-11 SYMBOLIC DEBUGGER

tracepoint was reached, and continue execution from that point.
you can determine whether the program is being executed in the
sequence.

Thus,
proper

You can trace the execution of branch and call instructions by
specifying a set of instruction opcodes you want traced.

1.2.6 Watchpoints

A watchpoint refers to a specific block of memory locations and causes
the program to stop whenever that block is modified. Thus, you can
monitor addresses to ensure that they are not beinq modified
incorrectly.

1.2.7 Initiating Program Execution

The GO command starts or continues program execution; the STEP
command also starts or continues program execution but executes only
part of your program. The STEP command can execute one or a specified
number of instructions or lines.

When you initiate your program with GO, the program exeGutes until a
breakpoint is executed, a watchpoint is modified, or the program
terminates.

1.2.8 Log Files and Command Procedures

The debugger can produce log files and can accept input from command
procedures. Log files contain all the input commands that you type at
the terminal and all the output displayed by the debuqger. You can
use log files as a record of your debugging sessions or as a way of
creating command procedures. Command procedures can be created as log
files or by using a text editor. You can use command procedures to
reproduce a debugging session several times, to continue a previous
session, or to check a series of items in a program being developed.

1.3 SYMBOLIC REFERENCES

The debugger lets you refer to locations symbolically. Thus, if you
have defined a symbol in your source program as MINIM, you can tell
the debugger to examine or modify the contents of MINIM, without
worrying about MINIM's location in the executable image.

1.3.1 Debugger Symbol Table

The debugger maintains a table that describes the symbols that may be
referenced during a debugging session. The debugger can resolve
symbolic references only to symbols described in this table. When you
initiate a debugging session (assuming you have met the conditions
needed to supply symbol information), this table describes permanent
symbols (for example, general register definitions); global symbols;
and local symbols in the module that you specify first in the LINK
command. Use the SHOW MODULE command to determine which modules'
symbols are currently in the symbol table. You can add or delete

1-3

INTRODUCTION· TO THE VAX-11 SYMBOLIC DEBUGGER

symbols by means of the SET MODULE and CANCEL MODULE commands, or by
using the DEFINE command.

1.3.2 Local Symbol Definition

To ensure that symbols local to your source program appear in the
debuggers symbol table, you must indicate to the assembler or compiler
that you want local symbol information to be available to the
debugger. You do this by specifying the appropriate qualifier in the
command line when you assemble or compile and link the program. For
VAX-11 MACRO, the qualifier is /ENABLE=DEBUG. For language compilers
and the linker, the qualifier is /DEBUG.

1.3.3 Scope

If a symbol name is unique in a program, then you only need to ref er
to the symbol name; but if two or more symbols with the same name
appear in different parts of the program and are both in the debugger
symbol table, you must differentiate between them. The debugger
allows you to specify the scope, or part of the program, in which the
symbol is defined. In VAX-11 MACRO, modules are used to specify the
scope because, within each module, symbol names must be unique.

By default, the debugger assumes that a symbol is in the scope which
contains the current program counter (PC), that is the module that is
currently being executed. However, if you have entered the SET SCOPE
command, the debugger searches the specified scopes for the symbol.

1.3.4 Pathnames

If you wish to specify a symbol that is not in the default (PC) scope,
you can specify a pathname. Pathnames have the general form of:

scope\symbol-name

For VAX-11 MACRO a pathname has the form of:

module-name\symbol-name

1.4 DEBUGGING IN LANGUAGES OTHER THAN VAX-11 MACRO

If you are programming in a language other than VAX-11 MACRO, the
debugger lets you enter symbols, expressions, and addresses in terms
that are compatible with your source language. The debugger sets the
default language to the language used in the first module specified in
the LINK command. If you want to change the language, you can use the
SET LANGUAGE command. The language affects how the debugger displays
and interprets the following:

• Expressions -- the debugger accepts expressions that are valid
in the source language.

1-4

INTRODUCTION TO THE VAX-11 SYMBOLIC DEBUGGER

• Addresses -- the debugger displays and accepts line numbers
and labels that are valid in the source program. For example,
in FORTRAN the debugger accepts %LINE 10 to specify the source
line number 10 and %LABEL 20 to specify the program label 20,
and in BASIC the debugger accepts %LINE 500.3 to specify the
third statment on line 500.

• Radixes -- the debugger uses the default radix
language.

of the

• Step Types the debugger steps according to source program
line when the language supports line numbers.

• Special Symbols -- the debugger defines certain special
symbols that can be used in expressions. Some symbols are not
available in all languages~

• Scopes and Pathnames -- the debugger uses scopes and pathnames
that are compatible with the language. For example, in VAX-11
BLISS the scope is defined as a routine and a pathname
consists of the module followed by any number of routines
followed by the symbol name.

• Typed Symbols -- the debugger uses symbol typing information
provided by the language compiler to correctly display
floating point numbers, character strings, and other data
types. You can override the symbol type if you want to.

The debugger uses the language-dependent expressions, address
specifiers, radix, step type, and special symbols based on the default
language or the language specified with SET LANGUAGE. The debugger
uses the scope, pathnames, and typed symbols compatible with the
language of the source module; setting the language does not change
the way the debugger handles scope, pathnames, and typed symbols.

This manual only documents debugging in MACRO, but notes features that
are different in other languages. See the appropriate language user's
guide for more information on debugging in your language.

1-5

CHAPTER 2

BEGINNING AND ENDING A DEBUGGING SESSION

You begin a debugging session by initiating the debugger with the DCL
RUN or DEBUG command. You end a debugging session with the debugger
EXIT or <CTRL/Z> command.

2.1 INITIATING THE DEBUGGER

To initiate the debugger, you usually follow these steps:

1. Assemble your program with the /ENABLE=DEBUG qualifier or
compile your program with the /DEBUG qualifier.

2. Link your program with the /DEBUG qualifier.

3. Run your program.

When you run your program, the debugger prints an informational
message and the DBG> prompt. You can then enter any of the debugger
commands described in Chapter 6.

Example

$ MACRO/ENABLE=DEBUG MAINPR,SUBPRl
$ LINK/DEBUG MAINPR,SUBPRl
$ RUN MAINPR

VAX-11 DEBUG V2.00

%DEBUG-I-INITAL, language is MACRO, module set to 'MAINPR'
DBG>

Table 2-1 summarizes the command qualifiers that affect debugger
initiation.

If you receive the RMS "file not found" message in response to a RUN
command, it means either that your program file could not be found or
that the debugger could not be found.

If you assemble or compile your program without the /ENABLE=DEBUG or
/DEBUG qualifier, you can still link your program with the debugger,
but you will not have access to certain symbols.

2-1

BEGINNING AND ENDING A DEBUGGING SESSION

Assembler
or

Compiler

/ENABLE=DEBUG
/DEBUG

/ENABLE=DEBUG
/DEBUG

[/DISABLE=DEBUG]
[/NODEBUG]

[/DISABLE=DEBUG]
[/NODEBUG]

[/DISABLE=DEBUG]
[/NODEBUG]

/DISABLE=TRACE
/DEBUG=NOTRACE

Table 2-1
Command Qualifiers

LINK
Command

/DEBUG

/DEBUG

/DEBUG

RUN
Command Effect

[/DEBUG]l Allows full symbolic
debugging and initiates
the debugger

/NODEBUG Allows full symbolic
debugging but defers
debugging

[/DEBUG] Allows limited symbolic
debugging (global symbols
are accessible) and
initiates the debugger

[/NODEBUG] [/DEBUG] Allows limited symbolic
debugging (few symbols
are accessible) and
initiates the debugger

[/NODEBUG] [/NODEBUG] Allows 1 i mi ted symbo 1 i c
debugging (few symbols
are accessible) and
defers debugging

/NO TRACE Inhibits the debugger
(RUN/DEBUG does not
initiate the debugger)

1. Brackets indicate that the qualifier is the default qualifier.

If you link your program without the /DEBUG qualifier, you can still
initiate the debugger by specifying the /DEBUG qualifier in the RUN
command, but you will not have access to most symbols.

You can inhibit or defer the debugger by specifying the /NODERUG
qualifier in the RUN command. In this case, your program will execute
without the debugger's getting control. You need not specify /NODERUG
in the RUN command unless you specified /DEBUG in the LINK command.

If you specify RUN/NODEBUG but later decide you want the debugger,
interrupt your program by typing CTRL/Y (echoed as "Y) and respond to
the command interpreter's prompt with the DEBUG command. For example:

"y

$ DEBUG

The debugger prints an informational message and the DBG> prompt. You
will not know what line of your program was executing when the program
was interrupted; however, you can find out by using the EXAMINF. PC
command to determine the contents of the program counter or by using
SHOW SCOPE (if the scope is set to the current PC scope).

2-2

BEGINNING AND ENDING A DEBUGGING SESSION

If you specify /NOTRACE when you link your program, you cannot
initiate the debugger without repeating the link. /NOTRACE also
inhibits the symbolic traceback of error messages.

When you run a program linked with /DEBUG, the image activator
transfers control to the system's symbolic debugger shareable image or
to the shareable image specified by the logical name LIB$DEBUG.

2.2 DEBUGGER START-UP CONDITIONS

When the debugger first gets control, it displays messages in the
following form:

VAX-11 DEBUG version number

%DEBUG-I-INITIAL, language is xxx, module set to yyy

DBG>

The first message identifies the installed version of the debugger.
The second message indicates that the debugger automatically has set
its language to the language of the first module specified in the LINK
command and has read the symbol information from that module into its
symbol table. The DBG> prompt indicates that the debugger is now
ready to process your commands.

The debugger uses the default scope defined by the currrent PC. In
VAX-11 MACRO, the default scope is the module which contains the
current PC. Note that when the debugger first gets control, the
default scope is the module that contains the transfer address.

The debugger sets default modes and step parameters based on the
language. For VAX-11 MACRO, the debugger sets the following defaults:

• MODES: symbolic, hexadecimal

• TYPE: long integer

• TYPE/OVERRIDE: none

• STEP: no system, by instruction, over routine calls

2.3 GETTING HELP

Once you have initiated the debugger you can get online help for any
debugger command. The HELP command displays information about
debugger commands, command qualifiers, and command parameters. To get
help, type HELP followed by the command. The debugger displays a
brief description of the command, the format of the command, and any
additional help information that is available for that command.

2-3

BEGINNING AND ENDING A DEBUGGING SESSION

Example

DBG>HELP SET OUTPUT

SET

OUTPUT

Controls whether the debugger displays output on the
terminal or writes it to a log file and controls whether
the debugger verifies commands in command procedure files.
SET OUTPUT controls whether a log file is beinq created;
SET LOG controls the file-specification of the log file.

Format:

SET OUTPUT option [,option •••]

Additional information available:

Parameters LOG TERMINAL VERIFY

2.4 ENDING A DEBUGGING SESSION

You end your debugging session by entering the EXIT command to the
DBG> prompt. You can also end your session by typinq CTRL/Z.

The DCL command interpreter gains control and displays its prompt
character ($). After exiting from the debugger, you cannot use the
DEBUG or the CONTINUE command to reinvoke the debugger.

2-4

CHAPTER 3

DEBUGGER COMMAND FORMAT AND COMPONENTS

All debugger commands have the same general format.
components of debugger commands are:

The basic

• Command verb, keyword, qualifiers, and parameters

• Symbols and pathnames

• Special characters and expressions

• Entry and display modes and types

The following sections describe these command components.

3.1 DEBUGGER COMMAND FORMAT

You use a set of commands to tell the debugger what to do. The
general form of a debugger command is:

cmd [keyword] [/qualifier] [param •••] [DO (command [;command •••]}] !comment

cmd
A command verb (SET, CANCEL, SHOW, etc.} indicating the general
function to be performed.

keyword
Indicates, in conjuction with command verb, the specific function
to be performed by the command (CANCEL MODULE, SET SCOPE, SHOW
LANGUAGE, etc.).

/qualifier

pa ram

Modifies the effect of the command.

Qualifies the function in some way, such as specifying a range of
locations to be monitored.

DO (command[;command •••])
A list of debugger commands to be performed. Used only with SET
BREAK commands. If you specify more than one command, separate
them with semicolons.

comment
Any text message.
exclamation mark.

The debugger ignores all text after the

You can enter more than one command on a command line by separating
the commands with semicolons (;).

3-1

DEBUGGER COMMAND FORMAT AND COMPONENTS

You can continue a command on a new line by ending the line with a
hyphen (-); the debugger will then prompt for the rest Qf the command
with an underscore (_).

Table 3-1 summarizes the debugger commands.
complete description of the commands.

See Chapter 6 for a

Command

@file-spec

£ALL

SET
fil!OW
CANCEL

DEFINE

DEPOSIT

EVALUATE

EXAMINE

EXIT

GO

HELP

.§.TEP

Table 3-1
Summary of VAX-11 Symbolic Debugger Commands

Keyword

~REAK
EXCEPTION .§.REAK
LANGUAGE
LOG
[!!ODE
MODULE
OUTPUT
SCOPE
§.TEP
TRACE
TYPE
WATCH
ALL

Function

Executes specified indirect command
file

Calls a subroutine.

Initializes (SET), displays (SHOW),
or deletes (CANCEL) the specified
elements. Not all combinations can
be used. For example, SET ALL is not
a valid command. See individual
command descriptions in Chapter 6.

Assigns an address to a symbol.

Puts data in a location in memory.

Computes the value of an expression.

Displays contents of an address or of
a range of addresses.

Terminates the debugging
returns control from
command file.

Starts or continues
execution.

session or
an indirect

program

Displays information about debugger
commands.

Executes one or a specified number of
instructions or lines of the program
and then stops.

All debugger commands, keywords, and qualifiers can be abbreviated.
The underlined portion of the command and keyword in Table 3-1 is the
minimum abbreviation.

3-2

DEBUGGER COMMAND FORMAT AND COMPONENTS

Examples

DBG>SET MODU/ALL
DBG>SET TYPE WORD; EXAMINE TABLE+l2
CALC\TABLE+l2: 22AO
DBG>SET BREAK EVALSTAR; SET WATCH SUBl\DATA
DBG>SET BREAK SUBl\REDO DO (EXAMINE/BYTE COUNT)
DBG>GO
routine start at MAIN\MAIN

3.2 SYMBOLS AND PATHNAMES

You use symbols and pathnames to reference addresses and data values
in your program. A pathname consists of a scope and a symbol name
separated by a backslash. It allows you to distinguish among· symbols
with the same name in different parts of your program.

3.2.1 The Debugger Symbol Table

Before you reference any symbol, you must ensure that the symbol is in
the debugger symbol table. You use the SET MODULE command to map
symbols from the image to the debugger symbol table.

The symbols included in the image depend on the commands used to
assemble or compile and link the image. The image always includes
program sections names, entry point names, and module names. If you
specify /DEBUG in the LINK command, the image ~lso includes the names
of all global symbols. If you specify /ENABLE=DEBUG to the assembler
or /DEBUG to the compiler and /DEBUG to the linker, then the image
includes all local and global symbols defined in the source code.

When the debugger is initiated, only the global symbols and the local
symbols from the first module in the LINK command are copied into the
debugger symbol table. You should add the symbols from the other
modules that you need to the debugger symbol table with the SET MODULE
command. The following command adds the symbols from the modules
SUBPR, CALC, and IOMOD:

DBG>SET MODULE SUBPR,CALC,IOMOD

NOTE

The name of a module is not the file
name of the module, but is the name
specified by the assembler or compiler.
In VAX-11 MACRO, the name of a module is
determined by the .TITLE directive.

If your image contains fewer than about 2,000 symbols, you can add all
the symbols in the image by entering the SET MODULE/ALL command. For
example:

DBG>SET MODULE/ALL

3-3

DEBUGGER COMMAND FORMAT AND COMPONENTS

If you want to add symbols to the debugger symbol table and they will
not fit, you must first delete some of the symbols by using the CANCEL
MODULE command. The SHOW MODULE command lists all the modules in the
image and indicates whether their local symbols are currently present
in the debugger symbol table.

NOTE

The debugger stores symbol information
for each module in one contiguous area.
Consequently, if you have added and
deleted several modules, it may be
necessary to delete modules to make room
for a large module if there is not
enough free contiguous space.

3.2.2 Scopes and Pathnames

When you refer to a symbol without a pathname the debugger assumes by
default that the symbol is in the scope (part of your program) that is
currently being executed. If the debugger cannot find the symbol in
the default scope, it searches the entire symbol table. If it finds
only one definition of the symbol in the program, it uses that
definition. If it finds more than one definition, it reports that it
cannot find a unique symbol. If it cannot find any definition of the
symbol, the debugger prints a message to that effect. When you want
to access a symbol that is not in the current scope and is not unique,
you must then change the default scope or explicitly specify the
symbol's pathname.

You can specify a scope search list with the SET SCOPE command. The
debugger searches for symbols in the scopes in the order specified in
the SET SCOPE command. The SET SCOPE command has the format:

SET SCOPE scopel[,scope2,scope3 •••]

You specify scopes by the following methods:

• Name of Scope -- The name of the scope in general consists of
the module name and block or routine names separated by
backslashes. In VAX-11 MACRO, the name of the scope consists
of the module name only. When you specify the name of a
scope, the debugger adds the symbols for the module specified
to the symbol table if they are not already included.

• 0 -- The digit 0 specifies the scope currently being executed.
In VAX-11 MACRO, this is the module containing the current PC.

• \ The special symbol backslash specifies the scope
containing the global symbols defined in the image.

• Number of Scope -- The number of the scope specifies scope by
the level of active calls. The number 0 represents the scope
currently being executed. The number 1 represents the scope
that contains the PC in the first call frame on the call frame
stack. This is the scope that contains the last executed CALL
instruction. THe number 2 represents the scope containing the
previous active CALL instruction, and so on. This method of
representing scope is not generally useful for VAX-11 MACRO.

3-4

DEBUGGER COMMAND FORMAT AND COMPONENTS

Examples

DBG>SET SCOPE MAIN,O,SUBPRl,\

After you enter this command, the debugger will search first for a
symbol definition in the scope MAIN. If it cannot find the symbol
there, it will search the scope that contains the current PC. If it
cannot find it there, it will search the scope SUBPRl. If it cannot
find it there, it will search the global symbol scope. If it cannot
find it in any of these scopes, it will search all scopes for a unique
symbol.

You can use the SHOW SCOPE command to display the current scope search
list. If you want to return to the initial default scope (scope
containing the current PC), you can use the CANCEL SCOPE command.

You can also specify the pathname of a symbol to ensure that you get
the symbol you want.

In VAX-11 MACRO, a pathname has the form:

module-name\symbol

In high-level languages, a pathname has the form:

module-name\blockl\block2\ ••• \blockn\symbol

Blockl, block2, ••• and blockn are language-dependent block or routine
names.

When you specify a pathname, the debugger ignores the current scope
search list. For example, the following command will display the
contents of the symbol COUNTER in the scope SUPR even if there are
other symbols with the name COUNTER in other scopes:

DBG> EXAMINE SUPR\COUNTER

If you reference a dynamically allocated variable when the PC is not
within the scope that defines symbol, the debugger displays a warnin~
message. This is to notify you that the symbol does not have an
address assigned exclusively to it and that its address may have
another use in the current section of your program. VAX-11 MACRO does
not have any dynamically allocated variables. All BASIC variables and
arrays except those declared in COMMON or MAP statements are
dynamically allocated. FORTRAN dummy arguments are dynamically
allocated.

The pathname for a global symbol is a backslash followed by the symbol
name.

Examples

DBG> EXAMINE \KEYVAR

NOTE

When you are using a language-dependent
address specifier, such as %LINE, the
address specifier must appear before the
entire pathname. For example:

DBG> SET BREAK %LINE SUBl\7
DBG> SET BREAK %LABEL SUBl\20

3-5

DEBUGGER COMMAND FORMAT AND COMPONENTS

3.2.3 Kinds of Symbols

You can reference these kinds of symbols:

• Your program's local symbols

• Your program's global symbols

• Permanent symbols

• Symbols you create with the DEFINE command

Symbols can specify virtual addresses or can contain data values. All
VAX-11 MACRO labels specify addresses. Either instructions or data
may be stored at that address in the image.

Most of the symbols that you use in your program are local symbols.
Local symbols can only be referenced in the source program in the
scope in which they are defined. Global symbols can be referenced
from other scopes as well. In VAX-11 MACRO, global symbols are
defined by the .ENTRY directive, the .GLOBAL directive, the double
colon (::) label definition, and the double equal sign (==) symbol
definition.

The debugger has the following permanent symbols. They can be used in
any language and they cannot be redefined.

• RO - Rll General registers 0 through 11

• AP Argument pointer

• FP Frame pointer

• SP Stack pointer

• PC Program counter

• PSL Processor status longword

You should avoid defining symbols in your source program that are the
same as the debugger's permanent symbols. If you do, you will be able
to access them only by specifying a pathname.

See Section 5.5 for more information on the processor status longword.

The DEFINE command lets you define symbols at any time during a
debugging session to supplement or override existing symbols in your
program. It is useful to define a symbol equivalent to a long
pathname that is needed to access a frequently needed address.

Examples

DBG>DEFINE ITEM4=DATA AREA\ARRAY+<4*4>

3.3 SPECIAL CHARACTERS AND EXPRESSIONS

This section describes how the debugger interprets special characters
in arithmetic expressions, in address expressions, and as delimiters
with VAX-11 MACRO as the current language. Tables 3-2, 3-3, and 3-4
summarize the arithmetic, address, and delimiting special symbols,
respectively. Some characters (such as @) appear in more than one
table because then are used in more than one way, according to
context.

3-n

DEBUGGER COMMAND FORMAT AND COMPONENTS

3.3.1 Evaluating Arithmetic Expressions

The debugger can perform integer arithmetic. In languages that
support floating point expressions, the debugger can perform floating
point arithmetic as well.

Table 3-2 lists special characters used in arithmetic expressions.

Table 3-2
Arithmetic Special Characters

Character Interpretation
!--------+----------- ---------- -----------

+

*
I

@

< >

'"'D

'"'o

'"'x

Arithmetic addition (binary) operator, or unary plus
sign

Arithmetic subtraction {binary) operator, or unary
minus sign

Arithmetic multiplication operator

Arithmetic division operator

Arithmetic shift operator

Precedence operators; do <enclosed> first

Decimal radix operator

Octal radix operator

Hexadecimal radix operator

NOTE

If you are programming in a language
other than VAX-11 MACRO, the special
symbols and expression syntax will be
different. For example, in VAX-11
MACRO, angle brackets {<>) are used to
determine operator precedence, but in
most other languages parentheses are
used. In general, an expression allowed
in the source program will be accepted
by the debugger with the exception of
function references and some operators,
such as the exponentation operator.

An arithmetic expression is evaluated in the context of the current
language. For VAX-11 MACRO, the debugger evaluates an expression from
left to right under the following rules of precedence:

1. Terms or expressions enclosed by angle brackets, < >, are
evaluated first. For example:

<BEGIN+<INDEX*lOO>>

The debugger evaluates nested expressions in the order of
innermost to outermost.

3-7

DEBUGGER COMMAND FORMAT AND COMPONENTS

2. Unary operators and radix operators have priority over
arithmetic (binary) operators; thus values are evaluated
according to their signs and radixes, and indirect "contents
of" operations (see Section 3.3.2) are performed before the
remaining arguments and terms are evaluated. For example, in
the expression

A+-@B

the value addressed by the contents of B is first negated and
then added to the value represented by A. Thus, A+-@B is
equivalent to A+<-<@B>>.

3. The arithmetic operations (add, subtract, multiply, divide,
and shift) have equal precedence.

Thus, the following expression

ADlOOO + ADlOOO I 2 * ADlO

results in the decimal value 10000.

However,

ADlOOO + << ADlOOO I 2 > * ADlO >

results in the decimal value 6000.

3.3.1.1 Plus Sign (+) A plus sign, as a binary operator, odds the
following argument to the preceding argument (or interim result). As
a unary operator, a plus sign means 'take the following argument as
having an unchanged value'. The debugger interprets an unsigned
argument as having a positive value.

Examples

DBG>SET BREAK BEGIN + AXlO
DBG>EVALUATE AD2000 + AXlOOO + A0777
000019CF

3.3.1.2 Minus Sign (-) - A minus sign, as a binary operator,
subtracts the following argument from the preceding argument. As a
unary operator, a minus sign means 'change the sign of the following
argument'.

Examples

DBG>CANCEL WATCH NAME - OFFSET
DBG>EXAMINE INQUEUE - 1000 - INDEX
MAIN\INQUEUE+OEDB: 01000C53

3.3.1.3 Multiplication Operator (*) - An asterisk multiplies the
preceding argument by the following argument.

Examples

DBG>EVALUATE AXSO * AD512
OOOOAOOO
DBG>DEFINE PAGE = PAGE - 256 * 4

3-8

DEBUGGER COMMAND FORMAT AND COMPONENTS

3.3.1.4 Division Operator (/) - A slash divides the preceding
argument by the following argument. Any remainder is discarded. The
debugger rejects an attempt to divide by zero.

Examples

DBG>DEFINE MODULO = <INDEX + POINTER >/ QUEUE_SIZE
DBG>SET WATCH <PAGE / 2 > * GO TO ZEBRA

3.3.1.5 Shift Operator (@) - An "at" sign (@) is the binary shift
operator. It means shift the preceding argument (or interim result)
the number of bit positions specified by the following argument. A
positive value means shift left; a negative value means shift right.
The shift is arithmetic; that is, no wraparound occurs as in a
logical shift. Shifts to the left cause loss of the contents of the
sign bit. Shifts to the right cause the contents of the sign bit to
fill the vacated bit positions.

Examples

DBG>EVALUATE OFOOOFFFO @ 4
OOOFFFOO
DBG>EVALUATE AXFOOOFFOO @ - 4
OFFOOOFFO

3.3.1.6 Precedence Operators (< >) - The debugger first evaluates
terms or expressions enclosed by angle brackets. An expression can
contain levels of nesting, with the debugger evaluating them in the
order of innermost to outermost. The maximum number of levels is
dependent on the complexity of the expression.

3.3.1.7 Radix Operators (AD, AX, and AO) - The debugger interprets
numeric arguments in the current radix mode (see Section 3.4.1),
unless you precede an argument with an explicit radix operator. A
radix operator affects only the entry that it accompanies; it has no
control over the radix in which the debugger displays a value.

The radix operators for VAX-11 MACRO are:

AD Decimal radix.

AX Hexadecimal radix.

Ao Octal radix.

No spaces or tabs are permitted between a radix operator and its
operand.

Examples

DBG>EV ADlO+ADlO
00000014
DBG>EV A077+AXFF
0000013E
DBG>EV 77+AXFF
00000176

3-9

DEBUGGER COMMAND FORMAT AND COMPONENTS

3.3.2 Special Characters In Address Expressions

This section describes the significance of special characters that can
be used to represent locations in address expressions. Table 3-3
lists the address representation characters.

Table 3-3
Address Representation Characters

~-------.------ ·-··--·-····-··---.. ·····---·-··- ... ··--- ···----·--------- ----·--·-·· ··--· '"""""··-·······e--·····

Character Interpretation
1--------+---·····-········--···------------·-"'-"-----------····---------·---------···---···-----------t

\

@

Represents the location last addressed by an EXAMINE,
DEPOSIT, SET BREAK, SET TRACE, or SET WATCH command.
This is called the "current" location.

Represents the previous location, one longword before
the last location addressed (as represented by .).
The previous location is equal to the last location
addressed minus 4. This operator is not available in
some languages.

Represents the value last displayed
EVALUAT&. The backslash is also
pathnames (see Section 3.2).

by EXAMINE or
used in forming

"Contents" operator. This operator is not available
in some languages. The at sign is also used in the
shift operator (see Section 3.3.1.5) and in executing
command procedures (see Section 5.2).

Range operator (low address:high address) for the
EXAMINE command; bit field operator for EVALUATE
command (EVALUATE value <high bit:low bit>). The
colon is also used in specifying the length of the
ASCII data type (see Section 3.4.2).

'------------'---····-·-- .-.-----------------------··· ----·------·--·--··----------------------"·----··-·-------------

3.3.2.1 Current Location Symbol (.) - A dot represents the location
last addressed by an EXAMINE, DEPOSIT, SET BREAK, SET TRACE, or SET
WATCH command. This value remains unchanged until you use one of
these commands to refer to a different location.

Examples

DBG>EXAMINE /ASCII
ERR MESSAGE\MSG 1:
DBG)DEPOSIT/ASCII:l
DBG>EXAMINE/ASCII
ERR_MESSAGE\MSG_l:

MSG 1
NEZT

• + 2
MSG 1

NEXT

IX'

The EXAMINE command sets the current location symbol to the examined
address. You can then use this symbol in the DEPOSIT command's
address expression to represent that location.

3-10

DEBUGGER COMMAND FORMAT AND COMPONENTS

3.3.2.2 Previous Location Symbol (A) - A circumflex represents the
last location addressed (by EXAMINE, DEPOSIT, SET BREAK, SET TRACE, or
SET WATCH) minus 4. This operator is only useful with a data type of
long integer, ASCII:4 (See Section 3.4.2) or other data type that is 4
bytes in length. This operator is not available in some languages.

Examples

DBG>SET MODE HEX; SET TYPE LONG
DBG>EX MAIN\TABLE
MAIN\ TABLE: 00000001
DBG>EX MAIN\TABLE+4
MAIN\TABLE+4: 00000002
DBG>DEP A = OFF
DBG>EX MAIN\TABLE
MAIN\TABLE: OOOOOOFF

3.3.2.3 Last Value Displayed Symbol (\) - A backslash can be used to
represent the value last displayed by EXAMINE or EVALUATE. When the
last EXAMINE or EVALUATE is an EXAMINE/INSTRUCTION command, the
backslash has an undefined value unless the instruction is a branch
instruction. In that case, it has the value of the address specified
in the branch instruction.

Examples

DBG>EVAL @R3 + < 2* @R4 > - 10
0000087F
DBG>EX/NOSYM \
0000087F: 000004E9
DBG>E/I MAIN+2
MAIN\MAIN+l2: BRB SUBl\SUBl
DBG>E \
SUBl\SUBl: OEFDE4800

3.3.2.4 Contents Operator (@) - The unary "contents" operator (@)
requests that the debugger evaluate the expression following it and
then extract the contents of the location addressed by the expression
value rather than use the expression value itself. This operator is
not available in some languages.

Examples

DBG>EXAMINE PC
PC: 00000448
DBG>EXAMINE/INSTRUCTION @PC
00000448: MOVB RO,LAMAIN\COUNT

The first EXAMINE reports the PC's current contents; the second
EXAMINE displays the instruction stored at the address contained in
the PC.

The command

DEPOSIT MASK = @MASK @ 4

shifts the current contents of the location MASK four bit positions to
the left. (Note that this example shows how the ~ character is used
as both a shift and a "contents of" operator.)

3-11

DEBUGGER COMMAND FORMAT AND COMPONENTS

The command

EXAMINE @R7 : @R7 +20

displays the current contents of the 21 bytes beginning with the
location addressed by the current contents of general register R7.

3.3.2.5 Range Operator (:) - A colon is used to specify an address
range for an EXAMINE command. The colon is also used as a ranqe
operator in bit field specifi~ations for an EVALUATE command (see
Section 3.3.3.2).

Examples

DBG>EX LABEL:LABEL+lO
MAIN\LABEL: OFFF28F7D
MAIN\LABEL+04: OFFFFFFFF
MAIN\LABEL+08: OB2EFFFFF
MAIN\LABEL+OC: llFFFFFD
MAIN\LABEL+lO: 000004E9
D BG > EX • : • + 4
MAIN\LABEL+lO: 000004E9
MAIN\LABEL+l4: 00000000
DBG>E/I @PC : @PC + 10
MAIN\MAIN+02: MOVAL LAMAIN\A,Rll
MAIN\MAIN+09: MOVC5 #OA,LA00000200,#20,#14,BAOD8{Rll)

3.3.3 Special Delimiting Characters

This section describes the significance of special characters that can
be used to delimit various debugger expressions. Table 3-4 lists the
delimiting characters.

Character

Table 3-4
Delimiting Characters

Interpretation
1-------··-··•·""---··-·-······· .. ··----·-- ---··--······-·-··· ·················--·-··-----------------

I

\

Precedes command qualifiers that can be
used to override current modes and types.

Separates an address expression from data
entries in a DEPOSIT command; separates a
symbol name from its definition in a DEFINE
command.

Separates elements of a symbolic pathname
{see Section 3.2).

{) Enclose DO command specifications in a SET
BREAK command, or argument list in a CALL
command •

._______________ --·-·--········-·-····-·----·-··-···••o0•··-·--···---------~--·-------~---··-

(continued on next page)

3-12

DEBUGGER COMMAND FORMAT AND COMPONENTS

Character

, (comma)

' (apostrophe)
or

" (quotation mark)

<:>

Table 3-4 (Cont.)
Delimiting Characters

Interpretation

Separates individual commands in a multiple
command line, or in a DO command sequence
associated with a SET BREAK command.

Separates multiple arguments.

Enclose ASCII string input or VAX-11 MACRO
instruction input.l

Enclose bit field
EVALUATE command.l

specification for

Hyphen as last printing character on line
signifies line continuation. The debugger
prompts with an underline as the first
character of each continued line, and
defers command execution until you enter a
line that does not end with a hyphen.I

Indicates that a comment follows.l

1. Discussed in following sections.

3.3.3.1 Input String Delimiters (' and ") - The debugger requires
that input strings in ASCII or INSTRUCTION modes be enclosed by
apostrophes or quotation marks. If you wish to enter an apostrophe
within a string, use quotation marks to delimit the string, and vice
versa. Otherwise, use matching characters of either type. Refer to
ASCII and INSTRUCTION types (Section 3.4.2) for input restrictions.

Examples

DBG>DEPOSIT/ASCII 2500="IT'S"
DBG>DEPOSIT/INSTRUCTION SHUT='MOVL #30,RO'

3.3.3.2 Bit Field Delimiters (<:>) - A colon within angle brackets
signifies a bit field specification that the EVALUATE command is to
report on. The syntax is:

EVALUATE value <high bit:low bit>

The bit positions are numbered 0 '(lowest bit) through 7 (for a byte),
0 through 15 {for a word), and 0 through 31 (for a longword).

Examples

DBG>EV 2468A<9:7>
00000005
DBG>EVALUATE @LOOP3<6:4>
00000003

3-13

DEBUGGER COMMAND FORMAT AND COMPONENTS

3.3.3.3 Line Continuation Operator () - A hyphen as the last
printing character on a line requests continuation of the command
line. The debugger echoes an underline as the prompt instead of DBG>
for each continuing line. You may continue a command line up to
approximately 500 characters, exclusive of space and horizontal tab
characters. If you continue a line that contains a comment, the
debugger considers the continuing line part of the comment and ignores
it.

Examples

DBG>EXAMINE/BYTE -
BUFFER:BUFFER+3

CALCMOD\BUFFER: 3C
CALCMOD\BUFFER+l: 48
CALCMOD\BUFFER:2 ODE
CALCMOD\BUFFER+3 OEF

3.3.3.4 Comment Operator (!) - An exclamation mark specifies the
beginning of a comment. The debugger ignores all characters after the
exclamation mark on the line. Comments are usful in debugger command
procedures (see Section 5.2). A comment can be continued on another
line by ending the line with a hyphen. The debugger ignores all
characters on the continuation lines.

Examples

DBG>EX IVAR !IVAR contains the character count
MODULE2\IVAR: 00000007

3.4 ENTRY AND DISPLAY MODES AND TYPES

The entry and display modes determine how the debugger interprets your
entries and displays output. The entry and display modes control the
current radix and whether addresses are displayed symbolically or by
virtual address. The entry and display types control the current
default data type. The following data types are supported: byte
integer, word integer, longword integer, ASCII string, or MACRO
instruction.

The SET MODE and SET TYPE commands set the modes and types. The SHOW
MODE command displays the current modes and types; the SHOW TYPE
command displays the current types.

You can override a mode or type by specifying a mode or type qualifier
on an EXAMINE, EVALUATE, or DEPOSIT command.

3.4.1 Entry and Display Modes

The entry and display modes are:

• Radix modes

Decimal
Hexadecimal
Octal

3-14

DEBUGGER COMMAND FORMAT AND COMPONENTS

• Address display modes

Symbolic
Nosymbolic

3.4.1.1 Radix Modes - The radix mode determines how numeric values
are entered and displayed. You can use the SET MODE command to
specify the radix mode.

Examples

DBG>SET MODE DECIMAL

Numeric values specified in subsequent commands will be interpreted as
decimal values and numeric displays will also be in decimal, unless
you override the current radix mode by including a radix mode
qualifier with the command. A radix mode qualifier controls the radix
for all numbers entered in the command and displayed by the command.
You can override the current radix mode or a radix mode qualifier for
a number entered in a command by using a radix operator.

Examples

DBG>EVALUATE/HEX 15+15
0000002A
DBG>SET MODE DECIMAL
DBG>EV ~Xl5 + AX15
42

Note that the resultant value is displayed in the current radix mode
(in this example, decimal). See Section 3.3.1.7 for information on
radix operators.

In DECIMAL mode, the debugger interprets entries and displays
information in the decimal radix. In VAX-11 MACRO, you can use the
radix operator AD to identify individual entry arguments as decimal
when the current radix mode is set to another radix. Decimal values
are signed; in all other radix modes, negative numbers are in 2's
complement form.

In HEXADECIMAL mode, the debugger interprets entries and displays
information in the hexadecimal radix. In VAX-11 MACRO, you can use
the radix operator AX to identify individual entry arguments as
hexadecimal when the current radix mode is set to another radix.

If the leftmost character of an entry is alphabetic, you must include
a leading zero or use the hexadecimal radix operator to differentiate
hexadecimal constants from symbols.

In OCTAL mode, the debugger interprets entries and displays
information in the octal radix. In VAX-11 MACRO, you can use the
radix operator ~o to identify individual entry arguments as octal when
the current radix mode is set to another radix.

3.4.1.2 SYMBOLIC/NOSYMBOLIC Modes - SYMBOLIC and NOSYMBOLIC modes
control how the debugger displays addresses. If the current mode is
SYMBOLIC, the debugger displays addresses symbolically when possible.
If the current mode is NOSYMBOLIC, the debugger displays addresses as
numbers in the current radix mode. You can enter locations
symbolically or numerically regardless of which mode is set.

3-15

DEBUGGER COMMAND FORMAT AND COMPONENTS

In SYMBOLIC modes, the debugger translates an address value into a
pathname as follows.

1. The debugger first compares the value with its permanent
symbol definitions, then with the symbol definitions, if any,
that you created with the DEFINE command. If it locates an
exact match (no offset permitted), the debugger reports the
found symbol as the pathname.

2. If step l fails, the debugger compares the value with the
global and local symbol definitions. A global symbol
definition is sought only if no local definition is found.
If an exact match is found, the debugger reports the symbol
as the pathname.

3. If no exact match can be found, the debugger searches all
symbol definitions for the one that is nearest to, yet less
in value than, the value to be translated, and expresses the
initial value as that pathname plus the necessary offset.
The debugger rejects a global symbol definition as the
nearest to the value unless the difference between the symbol
and the value is less than 100 (hexadecimal).

4. If the debugger does not find a suitable definition by means
of steps 1, 2, or 3, it reports the address value as a
virtual address in the current radix mode. Probable causes
of the virtual address display rather than a pathname are
either that the respective module's symbol information is not
present in the debugger symbol table or the address is beyond
the bounds of the program.

In NOSYMBOLIC mode, the debugger reports the address value as a
virtual address in the current radix mode.

3.4.2 Entry and Display Types

The entry and display types control the format and length of data.
The types are:

• Byte integer

• Word integer

• Long integer

• ASCII[:length]

• Instruction

When the data type is byte integer, word integer, or long integer, the
debugger displays data as integers in the current or specified radix
mode. The length of the integer is a byte for byte integer, a word (2
bytes) for word integer, and a longword (4 bytes) for long integer.

If the data type is ASCII, the debugger displays values as ASCII
strings. You can specify the length of the ASCII data type by
following ASCII with a colon and a number in current radix. The
number specifies the number of characters in the ASCII data type. If
you do not specify a length, the debugger assumes a length of 4. When
the data type is ASCII, the debugger accepts ASCII strinqs enclosed in
quotation marks or apostrophes.

3-ln

DEBUGGER COMMAND FORMAT AND COMPONENTS

If the data type is instruction, the debugger attempts to decode
values into instruction opcodes and operands. The length of the
instruction is variable and depends on the opcode and the addressing
modes used in the instruction. When the data type is instruction, you
can enter VAX-11 MACRO instructions enclosed in quotation marks or
apostrophes.

Some language compilers specify in the symbol table the data type of a
symbol. The debugger by default displays these symbols in the type
specified by the language compiler. In addition to the integer and
ASCII data types, some languages allow floating point, double
precision, character, and decimal string data types. VAX-11 MACRO
does not provide the debugger with any data type information.

There are three ways to specify a data type:

• SET TYPE command

• SET TYPE/OVERRIDE command

• Type command qualifiers

The SET TYPE command controls the type for all data displayed except
for data with a compiler-specified type or when a type command
qualifier is specified. The initial default for the SET TYPE command
is long integer.

The SET TYPE/OVERRIDE command controls the type for all data displayed
except when a type command qualifier is specified. This command
overrides any compiler-specified type. The initial default for the
SET TYPE/OVERRIDE command is none; that is, compiler-specified types
are not overriden. Note that if you abbreviate the OVERRIDE
qualifier, you must specify at least OVERR.

Type command qualifiers control the type of all data displayed by the
command. Type qualifiers override types specif~ed by the SET TYPE and
SET TYPE/OVERRIDE commands, and by compilers.

The SET TYPE and SET TYPE/OVERRIDE commands have the form:

SET TYPE specifier
SET TYPE/OVERRIDE specifier

The specifier can be one of the following data types:

e BYTE
• WORD
• LONG
e ASCII:length
e INSTRUCTION

where length is the number of characters (the length of the ASCII data
type}.

3-17

DEBUGGER COMMAND FORMAT AND COMPONENTS

Examples

DBG>EX MAIN
MAIN\MAIN: OEFDE483C
DBG>SET TYPE WORD
DBG>EX MAIN
MAIN\MAIN: 483C
DBG>EX X
MAIN\X: 1.000000
DBG>SET TYPE/OVERR WORD
DBG>EX X
MA IN\ X : 4 0 8 0
DBG>E/BYT X
MAIN\X: 80

3-18

CHAPTER 4

USING THE DEBUGGER

During a debugging session, you can examine and change data stored in
your program, execute your program, and set breakpoints, tracepoints,
and watchpoints to interrupt the execution of your program. Thus, you
can determine where and how the errors are occurring.

4.1 EXAMINING AND DEPOSITING DATA

You use the EXAMINE and DEPOSIT commands to examine and modify data
stored in your program. The EXAMINE command displays the contents of
selected memory locations and registers.

The command format is:

EXAMINE [/qualifier] address [:address] [,address [:address]] •••

You can specify a mode and a type qualifier to override the current
defaults as described in Section 3.4.

You can use EXAMINE to display any combination of the following:

• A single location

• Multiple locations

• A range of contiguous locations

• Multiple ranges of locations

If you specify more than one address and separate them with commas,
the contents of the locations specified are displayed. However, if
you use a colon to separate a pair of addresses, then all addresses
within that range are displayed. For example

DBG>EXAMINE/WORD TABLE, 1040
CALC\TABLE: 0468
00001040: OEF40

DBG>EXAMINE/WORD TABLE:TABLE +14
CALC\TABLE: 0468
CALC\TABLE+02: 0000
CALC\TABLE+04: 08C2
CALC\TABLE+On: OD7EF
CALC\TABLE+08: OFFF3
CALC\TABLE+OA: OAEFF
CALC\TABLE+OC: 00004
CALC\TABLE+OE: 04AE
CALC\TABLE+lO: 9850

4-1

USING THE DEBUGGER

CALC\TABLE+l2: 22AO
CALC\TABLE+l4: OD450

To specify multiple ranges, use a command such as:

DBG>EXAMINE/WORD 1028:102E,103A:l040
00001028: 0468
0000102A: 03A2
0000102C: 08C2
0000102E: OD05E
0000103A: 9850
0000103C: 22AO
0000103E: OD450
00001040: OEF40

When you specify a range, you must specify the low address first.
When you specify more than one individual location, you may do so in
any order.

If you examine one location by specifying an address and then wish to
examine the next contiguous location, you need not specify the next
address. An EXAMINE command with no address specification displays
the contents of the next address after last address examined or
deposited.

DBG>SET TYPE WORD
DBG>EXAMINE STAR\CODE
STAR\CODE: 0468
DBG>EXAMINE
STAR\CODE+2: 0000

The DEPOSIT command lets you alter the contents of memory locations
and registers. The command format is:

DEPOSIT[/qualifier, •••] address-expression=data[,data] •••

With the DEPOSIT command, you can enter data in one location or in
several sequential locations beginning with a specified location.

The following sections describe how to examine and deposit numeric
data, ASCII string data, and instructions.

4.1.1 Examining and Depositing Numeric Data .

The following examples illustrate the use of the EXAMINE command to
display the contents of a range of locations as hexadecimal data in
the data types LONG, WORD, and BYTE, respectively.

DBG>SET MODE HEXADECIMAL , NOSYMBOLIC
DBG>SET TYPE/OVERR LONG
DBG>EXAMINE 4000:4004
00004000: OD0500ADO
00004004: 01D05000
DBG>EXAMINE/WORD 4000:400n
00004000: OADO
00004002: OD050
00004004: 5000
00004006: OlDO
DBG>EXAMINE/BYTE 4000:4007
00004000: ODO
00004001: OA
00004002: 50

4-2

USING THE DEBUGGER

00004003: ODO
00004004: 00
00004005: 50
00004006: ODO
00004007: 01

The following examples illustrate the entry of a hexadecimal value in
a byte, a word, and a longword, respectively.

The suggested method is to first display the current contents of the
location. For example:

DBG>EXAMINE STAR\DATAl
STAR\DATAl: OD0500ADO

The byte of data is deposited and verified by:

DBG>DEPOSIT/BYTE STAR\DATAl = OFF
DBG>EXAMINE
STAR\DATAl: OD0500AFF

The word of data is deposited and verified by:

DBG>DEPOSIT/WORD STAR\DATAl = OFFFF
DBG>E •
STAR\DATAl: OD050FFFF

The longword of data is deposited and verified by:

DBG>D STAR\DATAl = AXFFFFFFFF
DBG>E •
STAR\DATAl: OFFFFFFFF

The following example illustrates the entry and verification of data
in an intermediate byte of a longword that initially contains
77777777.

DBG>E
00004000:
DBG>D/BYTE
DBG>E
00004000:

4000
77777777

4002 =
4000
77FF7777

OFF

If a symbol has a compiler-specified type, you can examine or deposit
data without specifying a type unless you want to use a type different
from the compiler-specified type. In the following example, XVALUE
has a compiler-specified type of floating point.

DBG>SET MODE HEXADECIMAL
DBG>SET TYPE BYTE
DBG>E XVALUE
MAIN\XVALUE: 14.50000
DBG>E/BYTE XVALUE
MAIN\XVALUE: n8
DBG>DEP XVALUE=-3.2
DBG>E •
MAIN\XVALUE: -3.200000

4-3

USING THE DEBUGGER

4.1.2 Examining and Depositing ASCII Strings

You can examine and deposit ASCII string data by setting the default
type to ASCII or by using the ASCII type qualifier. You can specify
the length of the string by specifying ASCII:length, where length
specifies the length of the ASCII string. If you do not specify a
length, the debugger assumes a length of 4. Note that the debugger
evaluates the number in the current radix mode.

The following example shows how to examine ASCII data.

Example

DBG>SET TYPE ASCII:8
DBG>EXAMINE TXT AREA
SUBl\TXT AREA: This is
DBG >EXAMINE
SUBl\TXT AREA+8: ASCII da
DBG>EXAMINE/ASCII:l2 TXT AREA
SUBl\TXT AREA: This is ASCII data

When you enter ASCII data, you must enclose each string with either
apostrophes or quotation marks. This provision lets you include
literal apostrophes or quotation marks within a string. For example,

DBG>DEPOSIT /ASC:8 WINK = "HI THERE"
DBG>DEPOSIT /ASC THINK "IT'S"
DBG>DEPOSIT /ASC PLINK '"l"'

The delimiter at the string's end must match the delimiter at the
beginning, and must not appear within the string.

Nonprinting ASCII characters (carriage return, line feed, horizontal
tab, etc.) must be entered as numeric equivalents. For example, you
can enter a carriage-return, line-feed combination between strings as
follows.

DBG>DEPOSIT/ASCII:lO TXT="abcdefghijklmnop"
DBG>DEP/BYT TXT+lO=OD,OA
DBG>DEPOSIT/ASCII:OF TXT+l2="Start new line"
DBG>E/AS:21 TXT
MAIN\TXT: abcdefghijklmnop
Start new line

4.1.3 Examining and Depositing Instructions

When you set the type to INSTRUCTION or use the INSTRUCTION type
qualifier, the debugger can decode and display the instructions in
your program and can encode and deposit the instructions you enter.
This allows you to examine the instructions in your program and modify
them. You can also use the debugger to assemble and execute short
sequences of instructions to learn about the VAX-11 instruction set.

The follow~ng example illustrates how the EXAMINE command displays the
contents of several locations as VAX-11 MACRO instructions:

DBG>EXAMINE/INSTRUCTION SOR'l'\BEGIN+l2 : TEST SEQ
SORT\BEGIN+l2: ADDL3 #10,R2,R4
SORT\TEST_SEQ: CMPB (RO) [R2], (RO) [R4]

PC relative displacements are evaluated and
(SYMBOLIC mode) or as virtual addresses

4-4

displayed
(NOSYMBOLIC

symbolically
mode). The

USING THE DEBUGGER

storage requirements of VAX-11 MACRO instructions vary according to
the instruction type, and number and complexity (addressing mode) of
operands.

An instruction string entry must be enclosed with quotation marks or
apostrophes:

DBG>DEP/INS INCRS = 'ADDL3 #5,R3,R4'.

The debugger interprets numeric values in the current radix mode.

Symbols can be included in instructions
symbolic expressions must not contain
displayed symbol (see Section 3.3.2.3).

being
the

deposited. However,
backslash last value

If the debugger cannot interpret your entry as an instruction, it
reports that it cannot encode the instruction. If it cannot translate
the current contents of a location as an instruction, the debugger
reports that it cannot decode the instruction.

4.1.3.1 Replacing Instructions with DEPOSIT - When entering an
instruction, you must verify that the size of the instruction you are
entering is less than or equal to the number of bytes you intend to
overwrite. The debugger neither guards against spillover into
subsequent bytes, nor pads memory left vacant when you replace an
instruction with another instruction that requires less storage.
While you should not deposit more than can be accommodated, you can
use the NOP instruction to fill bytes that are unoccupied after you
complete the deposit of an instruction or instructions.

You should examine the location to be changed, and those following it,
before and after the deposit to verify that the contents are correct.
The following example illustrates the change of the instruction in
location SORT\BEGIN+l2 from an ADDL3 #10,R2,R4 to an ADDL2 #10,R2,
which occupies one less byte.

DBG>E/I BEGIN+l2
SORT\BEGIN+l2: ADDL3 #10,R2,R4
DBG>E/I
SORT\TEST SEQ: CMPB (RO) [R2], (RO) [R4]
DBG>D/I BEGIN+l2='ADDL2 #10,R2'
DBG>E/I
SORT\BEGIN+l4: EMODF @(Rl)+, (RO) [R2], (RO) [R4] ,#0400C7FF,@W"Dl57(R6)

The debugger typically translates a leftover byte and subsequent bytes
as parts of some meaningless instruction. If you continue examining
locations as instructions, the deb~gger eventually reports that it
cannot decode the instruction, because it determines that the data in
the given bytes does not translate into a VAX-11 instruction. To
ensure that the instruction executes correctly, you must enter one NOP
instruction per leftover byte.

DBG>EXAMINE/INSTRUCTION BEGIN+l2
SORT\BEGIN+l2: ADDL2 #10, R2
DBG>EXAMINE/INSTRUCTION
SORT\BEGIN+l4: EMODF @(Rl)+, (RO) [R2], (RO) [R4] ,#0400C7FF,@W"'Dl57 (Rfi)
DBG>DEPOSIT/INSTRUCTION .='NOP'

4-5

USING THE DEBUGGER

Examination of the locations above reveals
instruction sequence is intact:

DBG>EXAMINE/INSTRUCTION BEGIN+l2:TEST SEQ
SORT\BEGIN+l2: ADDL2 #10,R2
SORT\BEGIN+l4: NOP
SORT\TEST_SEQ: CMPB (RO) [R2], (RO) [R4]

that the desired

4.1.3.2 Depositing a Sequence of Instructions - The DEPOSIT command
can accept an instruction sequence for entry hut, as for any other
command, you must reenter the entire command if you make an error.

The following command sequence is a suggested method that allows you
to enter a series of instructions by separate DEPOSIT commands without
having to compute the actual address in each case.

SET TYPE INSTRUCTION

DEPOSIT address-expression=' instruction n'

EXAMINE

DEPOSIT 'instruction n+l'

EXAMINE

DEPOSIT • = 'instruction n+2'

The DEPOSIT command causes the EXAMINE command with no address
specification to display the contents of the address after the
instruction. The EXAMINE command sets the current location symbol
(dot) to the location where the next instruction should start. It
also attempts to decode the contents of that location. Because the
location may not be the start of an instruction, the debugger may not
be able to decode the instruction or may display a meaningless
instruction.

4.1.3.3 Specifying Displacements in DEPOSIT.- The debugger will not
use a default displacement length for the displacement or displacement
deferred addressing modes. You must specify a BA, WA, or LA
displacement specifier (specifying byte, word, and longword
displacements, respectively). If you do not specify the displacement,
the debugger displays a warning message and does not deposit the
instruction. The debugger uses a default longword displacement for
the relative and relative deferred addressing modes but does allow you
to specify an alternate displacement. For example:

DBG>DEP/INs susl\ROUT2+20 = 'MOVL BA4(R5), Rn'
DBG>DEP/I SUB2\FINDIT+OA = 'CLRL WA2FF(R4) I

4.1.3.4 VAX-11 MACRO Instructions with the Same Opcodes - In VAX-11
MACRO, different instructions can generate the same opcode. For
example, MOVAL and MOVAF both generate the hexadecimal opcode DE. The
debugger, however, accepts and displays only one instruction for any
of the opcodes that can be produced by multiple instructions. For
example, if you use MOVAF in your source program, the debugger
displays MOVAL.

4-n

USING THE DEBUGGER

Table 4-1 lists the instructions that have the same opcodes, lists the
instruction accepted and displayed by the debugger, and lists the
hexadecimal opcodes.

Table 4-1
Instructions Accepted and Displayed by the

Debugger for VAX-11 MACRO Instructions with Equivalent Opcodes

Instructions with
Equivalent Opcodes

BCC
BGEQU

BCS
BLSSU

BEQL
BEQLU

BNEQ
BNEQU

CLRD
CLRG
CLRQ

CLRF
CLRL

CLRH
CLRO

MOVAD
MOVAG
MOVAQ

MOVAF
MOVAL

MOVAH
MOVAO

PU SHAD
PU SHAG
PUS HAQ

PUSHAF
PUS HAL

PU SHAH
PU SHAO

Instructions Accepted and
Displayed by the
Debugger

BGEQU

BLSSU

BEQL

BNEQ

CLRQ

CLRL

CLRO

MOVAQ

MOVAL

MOVAO

PUS HAQ

PUS HAL

PU SHAO

4.2 EVALUATING EXPRESSIONS AND BIT FIELDS

Opcode

lE

lF

13

12

7C

D4

7CFD

7E

DE

7EFD

7F

DF

7FFD

The EVALUATE command lets you use the debugger as a calculator,
expression analyzer, radix converter, hit field examiner, and literal
verifier.

4-7

USING THE DEBUGGER

The EVALUATE command interprets an input expression, reduces the
expression to a value, and displays the value in the current modes.
The command format is:

EVALUATE [/qualifier] [•••] expression [, •••]

The evaluations of multiple input expressions are displayed in a list,
which is ordered to match the input order.

The EVALUATE command analyzes an expression in the context of the
current language. The rules of precedence applicable to VAX-11 MACRO
are described in Section 3.3. If you set the language to one that
supports floating-point numbers, the debugger evaluates floating-point
numbers. You should separate each floating-point number with a space.

Examples

DBG>EVAL OA*<4+<3*8>>
00000118
DBG>EVAL @SUBl\D
OOOOOOlF
DBG>EVAL @SUBl\D * 3
00000050
DBG>EVAL/DEC 10-1
9
DBG>SET LANG BASIC
DBG>EV 3.02 * 2.4 I 0.02

362.4000
DBG>EVAL x, x I 2.5

1.000000
0.4000000

You can use EVALUATE to display the current contents of specified bits
in a location. Note that the debugger does not allow you to evaluate
bit fields in some languages. The syntax is:

EVALUATE value <high bit:low bit>

You specify the bounds of a bit field by decimal integers, regardless
of the current radix mode (unless you use radix operators, for example
<ftXOF:ftXO>). Bit positions are from 0 (least significant) through 31
(most significant). The debugger extracts the contents of the bit
positions, right justifies them in a longword, and reports the
contents in the current radix mode. The current length mode is
ignored.

The following method is recommended for evaluating bit fields of a
location when the language is set to VAX-11 MACRO.

EVALUATE @address-expression<high-bit:low-bit>

Exampl~s:

DBG >EX/WORD MAIN
MAIN\MAIN: 483C
DBG>EVAL @MAIN<l5:0>
0000483C
DBG>EVAL @MAIN<8:0>
0000003C
DBG>EVAL @MAIN<n:4>
00000003

4-8

USING THE DEBUGGER

4.3 CONTROLLING PROGRAM EXECUTION

This section describes how you start or continue your program with GO,
STEP or CALL. Section 4.4 describes how to interrupt your program at
predetermined points or under certain conditions by means of
breakpoints, tracepoints, watchpoints, and the CTRL/Y or CTRL/C
command.

4.3.1 Initiating and Continuing Execution with GO

The GO command tells the debugger to let your program run, beginning
either at the transfer address, at a starting address you specify, or
from a location at which the debugger stopped it. Program execution
continues until an exception condition (such as a breakpoint) causes
the debugger to gain control, or the program runs to completion (refer
to Section 5.3 for information about exception conditions).

The command format is:

GO [address-expression]

The first GO command without an address starts the program at its
transfer address. Note that the debugger responds with the message

start at mod\rtn

or the message

routine start at mod\rtn

These messages display the names of the module, mod, and of the
routine, rtn, where execution starts.

If "routine" is included in the message, execution started at the
beginning of a routine and "mod\rtn" is 2 less than the actual PC
value (because of the routine entry mask).

If you enter a GO command subsequent to program suspension (at a
breakpoint, for instance) and do not specify an address, execution
resumes from the point at which it was suspended (for example, at the
instruction at the breakpoint's address).

If you specify an address with GO, that address replaces the current
contents of the program counter (PC) and execution starts at or
continues from the new location. Your program's behavior can be
unpredictable if you initiate execution at any address other than its
transfer address, or if you attempt to restart your program at its
transfer address or any other address.

4.3.2 Stepping Through Your Program

The STEP command lets you specify the number of instructions (VAX-11
MACRO) or lines (line-oriented language compilers only) that your
program can execute before the debugger regains control. The basic
command format is:

STEP [decimal-integer]

4-9

USING THE DEBUGGER

If you do not include a decimal integer (0 through 32767) or if you
specify a value of 1, the debugger executes the next instruction (or
statement) and stops the program. (A step value of zero will be
accepted, but no step will be performed.) Although you can specify
large step counts, the recommended practice is to set a breakpoint at
the desired location and use GO to run to the specified location.

If an exception condition stops your program before the specified
number of instructions or statements are executed, the debugger resets
the step counter to zero, as though the specified number of steps had
been completed.

The STEP command also has modes that determine how the debugger
interprets the step increment. The following sections describe the
functions of these modes and how you can express them at command level
or set them as default conditions for stepping.

The STEP modes are:

LINE or INSTRUCTION
INTO or OVER
SYSTEM or NOSYSTEM

You can express these modes at command level as follows:

STEP [/qualifier[•••]] [decimal-integer]

where a slash (/) must precede each step mode. A step mode expressed
at command level overrides its counterpart at the default level (see
SET STEP, below).

The STEP modes exert the following control over program stepping:

INSTRUCTION

LINE

INTO

OVER

NOSY STEM

SYSTEM

Step in increments of instructions (the only valid
increment for VAX-11 MACRO).

Step in increments of lines for line-oriented
languages, such as FORTRAN and BASIC (ignored for
VAX-11 MACRO).

Step into a routine called by a call-type
instruction (CALLS, CALLG, JSB, BSBB, BSBW).

Step over routines called by call instructions;
that is, the call instruction, all routine
instructions (or lines), and the corresponding RET
instruction are treated as one step.

Decrement the step count only for steps executed
in nonsystem space; the debugger ignores
instruction/line steps executed in system space.

Decrement the step count for instructions (or
lines) that are executed in system space as well
as process space. Note this mode allows you to
step through code in system space that is
executing in user mode. (For a definition of
system space, see the VAX-11 Software Handbook.)

4-10

USING THE DEBUGGER

For VAX-11 MACRO, the initial STEP modes are:

INSTRUCTION, OVER, and NOSYSTEM.

You can change the default modes for STEP at any time with the SET
STEP command.

SET STEP mode[,mode •••]

Multiple mode entries must be separated by commas.

The SHOW STEP command reports the current STEP modes. For example:

SHOW STEP
step type: nosystem, by line, over routine calls

NOTE

In VAX-11 BASIC STEP/LINE executes a
BASIC statement which may be on a line
by itself, may be continued onto several
lines, or may be one of several
statements on the same line.

4.3.3 Calling Routines

The CALL command executes a call directly to any routine in your
program's address space, whether or not your program actually includes
a call to that routine.

The command format is:

CALL name [(argument-list)]

where name is the routine's symbolic name or its virtual address.
Arguments in the optional argument list must be separated by commas;
these arguments are actual arguments to be passed to the called
routine. The debugger assumes that the called routine conforms to the
VAX-11 procedure calling standard (refer to the VAX-11 Architecture
Handbook for details).

You can thus easily access any routine in your program for debugging
purposes. you can also debug unrelated routines by linking them with
a dummy main module. The dummy module need only provide a transfer
address for the image. You need not be concerned with coding call
statements and argument lists. You can express them with the CALL
command.

A difference between calling a procedure and executing it with the GO
or STEP commands is the way the debugger treats the general registers
(RO through Rll). The debugger saves the current values in the
registers before it calls the procedure. When the procedure executes
a RET instruction, the debugger displays the value in RO and then
restores the general registers to values they had before you entered
the CALL command.

4-11

USING THE DEBUGGER

4.4 INTERRUPTING EXECUTION OF YOUR PROGRAM

You can interrupt the execution of your program in five ways:

• By setting breakpoints -- The debugger interrupts execution of
your program before the instruction at the breakpoint and then
prompts you for a debugger command. You can set breakpoints
at various points in your program and then observe and change
the context of your program while it is suspended at that
point.

• By setting tracepoints -- The debugger temporarily interrupts
execution of your program before the instruction at the
tracepoint, displays a message on the terminal, and then
continues execution of your program. You can set tracepoints
at various points in your program and then observe the flow of
control in your program.

• By setting opcode tracing -- The debugger temporarily
interrupts execution of your program before the specified
control transfer opcode is executed. You can set opcode
tracing and then observe the flow of control in your program.
Opcode tracing allows you to follow the flow of control
without having to set specific tracepoints.

• By setting watchpoints -- The debugger interrupts execution of
your program after an instruction writes data at a watchpoint,
and then it prompts you for a debugger command. You can set
watchpoints at various data areas in your program and then
observe and change the context of your program after your
program has written to the data area. Watchpoints allow you
to determine the section of your program that is incorrectly
modifying data.

• By typing CTRL/Y -- The system stops execution of your program
whenever you type CTRL/Y on the terminal. If you enter the
DCL DEBUG command, the debugger gets control and prompts you
for a debugger command. The CTRL/Y key command allows you to
observe and change the context of your program when it is
executing an infinite loop and there are no breakpoints set
within the loop.

Breakpoints, tracepoints, and watchpoints are set with the SET
BREAKPOINT, SET TRACEPOINT, and SET WATCHPOINT commands, respectively.
Once set, they can be canceled with the CANCEL BREAKPOINT, CANCEL
TRACEPOINT, CANCEL WATCHPOINT, and CANCEL ALL commands. You can
determine what breakpoints, tracepoints, and watchpoints have been set
by the SHOW BREAKPOINT, SHOW TRACEPOINT, and SHOW WATCHPOINT commands.

4.4.1 Breakpoints

Without breakpoints, your program might run to completion, exit
prematurely, or enter an infinite loop, depending on the type of
errors it contains. Your observations during testing would be limited
to an analysis of data produced, if any, and possibly a general
register dump if your program exited prematurely because it violated
system restrictions.

4-12

USING THE DEBUGGER

A breakpoint can be specified with several options. They include:

• The option to specify a sequence of commands that the debugger
executes automatically each time your program stops at the
associated breakpoint.

• The option to ignore a breakpoint until it
encountered a specified number of times.

has been

• The option to specify a temporary (or one-time) breakpoint.
The debugger automatically cancels the breakpoint after your
program stops at the breakpoint location.

4.4.1.1 Breakpoint Reporting at Program Stop - When your program is
suspended at a breakpoint, the debugger usually reports the location
by:

break at location

where the location is given symbolically (SYMBOLIC mode) or as a
virtual address in the current radix mode (NOSYMBOLIC mode). For
example, a breakpoint occurrence could be reported as:

break at SORT\INSEQ

where SORT\INSEQ is the pathname that uniquely identifies the location
labeled by local symbol INSEQ in the object module named SORT. In
NOSYMBOLIC mode, the location would be reported by:

break at 00000846

The debugger sometimes displays the report as:

routine break at location

Note that in this case the value shown is 2 less than the actual PC
contents (because of the entry mask). This is the case whenever
symbolic information is available indicating that a location or symbol
is an entry point or the beginning of a routine.

4.4.1.2 Continuing From a Breakpoint - To continue your program
a breakpoint, you enter either a GO command or a STEP command.
debugger usually reports the resumption of program execution by:

start pc is location

from
The

where "location" is agaih given as a pathname, or as a virtual
address. If the report is displayed as "routine start pc is
location", the value of "location" is actually 2 less than the
contents of the PC (because of the entry mask), and "location" is an
entry point.

4.4.1.3 Setting Breakpoints - Breakpoints are set at an address.
Once set, a breakpoint remains active until you cancel it or terminate
the debugging session. No breakpoints are set when you begin the
session.

4-13

USING THE DEBUGGER

The debugger's breakpoint table stores the information relating to
each breakpoint. This table can accommodate many breakpoints. If the
debugger reports a full table, simply cancel one or more breakpoints,
tracepoints, or watchpoints to clear sufficient table space for the
new entry.

The debugger does not protect current breakpoints, tracepoints, and
watchpoints against overwriting by a new request. The debugger simply
replaces the previous breakpoint, tracepoint, or watchpoint
specification with the new breakpoint without warning. This condition
works to your advantage when you want to modify a breakpoint
specification. Instead of having to cancel a breakpoint and then
specify the new conditions for the breakpoint, you just enter the new
specification for the same location.

4.4.1.4 General Breakpoint Specification - You set a breakpoint at
the address of the first byte of an instruction (your program stops at
the breakpoint before executing the instruction). The debugger
accepts the address specification without verifying that it represents
the first byte of the instruction's storage. Run-time errors usually
result if a breakpoint is set in the middle of an instruction.

The general command format for specifying a breakpoint is:

SET BREAK address-expression [DO (command-list)]

To verify the breakpoint, you can use the SHOW BREAK command.

4.4.1.5 DO Command Sequence at Breakpoint - When specifying a
breakpoint, you can include a sequence of commands that the debugger
executes whenever your program stops at the breakpoint. The DO
command sequence format is

DO(command[;command •••])

The command list can include any complete debugger command. The
parentheses are required regardless of the number of commands
specified. The semicolon is not necessary if you include one command.
For DO sequences that comprise more than one command, you may want to
use line continuation (a hyphen as the last character before carriage
return), abbreviated keywords, or command procedures (see Section
5. 2) •

The debugger does not evaluate a DO command sequence for proper syntax
or context until your program stops at the breakpoint.

Note that a symbol that appears in a DO command sequence need not be
defined at the time you enter the SET BREAK command, because the
debugger defers evaluating symbols until the breakpoint is
encountered. You can define the symbol at any point prior to that
time.

You can nest SET BREAK commands within DO command sequences. For
example:

DBG>SET B LOOP DO (E/BYTE BUF:BUF+~XlO;SET B LOOP2 -
DO (E/WORD BUFX+4))

4-14

USING THE DEBUGGER

The sequence above shows one level of SET BREAK DO nesting. You can
extend this nesting to any level, as long as you ensure that the
initiating and terminating parentheses match.

All command sequences are executed in the context in effect when the
breakpoint occurs.

To cancel or alter the DO command sequence, enter a new SET BREAK
command with the desired content. If you cancel a breakpoint, any
associated DO command sequence is also canceled.

4.4.1.6 Breakpoint •After• Option - If your program is to stop only
on or after the nth pass through a breakpoint location, as in an
iteration or conditional program loop, specify the breakpoint as
follows:

SET BREAK/AFTER:n address-expression

where n is a decimal integer in the range 1 through 32767.

NOTE

If you set a breakpoint with /AFTER:n,
the debugger interrupts execution before
the instruction is executed for the nth
time, that is after it has been executed
n-1 times.

Once an "after" breakpoint has stopped your program, it will continue
to stop your program each time it is encountered until you cancel it
(that is, the breakpoint functions as if the count is 1). You can
include the "after" option in any breakpoint specification.

The SHOW BREAK command (see below) displays an "after" count for a
breakpoint only if it is other than l; that is, the debugger must see
the location some more times before the breakpoint takes effect.

4.4.1.7 Temporary Breakpoints - A temporary (or one-time) breakpoint
stops your program once and then is canceled automatically. You
specify such a breakpoint by:

SET BREAK/AFTER:O address-expression [DO (command)]

The breakpoint status report produced by SHOW BREAK (see below) lists
a temporary breakpoint (by displaying /AFTER:O) until the debugger
executes it.

4.4.1.8 Canceling Breakpoints - You cancel a breakpoint when you no
longer want it to stop your program. All breakpoints are
automatically canceled when you end the current debugging session.

To cancel a specific breakpoint, type:

CANCEL BREAK address-expression

4-15

USING THE DEBUGGER

When canceling a breakpoint, you cannot identify DO command sequences
or options that were previously established for the breakpoint. An
address expression of the correct value is sufficient information.

If the debugger cannot find a specified breakpoint, it displays the
NOSUCHBPT, no such breakpoint message.

To cancel all breakpoints, type:

CANCEL BREAK/ALL

4.4.1.9
and a
typing:

Showing Breakpoints - You can display the current breakpoints
description of any breakpoint actions that were specified, by

SHOW BREAK

The debugger responds with:

breakpoint/after:n at location
breakpoint at location do-command-sequence

The debugger identifies the breakpoint locations by pathnames
(SYMBOLIC mode) or by virtual address (NOSYMBOLIC mode) in the current
radix mode (decimal, hexadecimal, or octal).

If the debugger does not find any breakpoints, it displays the
NOBREAKS, no breakpoints are set message.

4.4.1.10 Breakpoint Examples - The following examples illustrate use
of the SET, CANCEL, and SHOW BREAK commands.

DBG>SET BREAK TERMINAL IO\BEGIN+30

Sets a breakpoint at the location 30 bytes after the location
identified by the pathname TERMINAL IO\BEGIN (the debugger interprets
the value 30 in the current radix mode).

DBG>SET BREAK/AFTER:6 SORT\SEQCHK

Sets a breakpoint at the location identified by the pathname
SORT\SEQCHK. The debugger does not stop your program until the sixth
pass through this location.

DBG>SET BREAK SORT\INSEQ DO (EXAMINE/ASCII:9 @R7)

Sets a breakpoint at the location identified by the pathname
SORT\INSEQ. The debugger executes the DO command sequence after the
program stops at this breakpoint. The sequence tells the debugger to
report as ASCII characters the contents of the nine bytes beginning
with the location that is addressed by the contents of general
register R7.

DBG>SET BREAK AX7249

4-16

USING THE DEBUGGER

Sets a breakpoint at virtual address 7249 {hexadecimal).

DBG>CANCEL BREAK TERMINAL IO\BEGIN
DBG>CANCEL BREAK SORT\SEQCHK
DBG>CANCEL BREAK ftX7249

The debugger cancels the specified breakpoints.

DBG>CANCEL BREAK/ALL

The debugger cancels all breakpoints.

In SYMBOLIC mode {the initialized condition):

DBG>SHOW BREAK
routine breakpoint at SORT\INSEQ do{set scope inseq)
breakpoint /after:4 at SORT\SEQCHK

The debugger reports the current breakpoint locations and associated
DO sequences.

In NOSYMBOLIC mode:

DBG>SHOW BREAK
routine breakpoint at 0000846 do {set scope inseq)
breakpoint/after:4 at 000082A

The debugger reports the breakpoint locations as virtual addresses in
the current radix mode {in this case hexadecimal).

4.4.2 Tracepoints and Opcode Tracing

Tracing is the process of observing the sequence in which a program is
executed. By using the SET TRACE command, you can monitor the order
in which your program executes its instructions or statements. The
debugger lets you know whether unanticipated control transfers are
occurring as your program is running. There are two basic forms of
tracing: tracepoints, and opcode tracing.

A tracepoint is similar to a breakpoint. When your program reaches a
tracepoint, it momentarily suspends execution and reports the
tracepoint. It then automatically resumes execution. Thus you can
see if your program is reaching specified locations in the correct
sequence. The debugger uses the breakpoint table to store information
about tracepoints.

Opcode tracing is when the debugger reports the occurrence of each
instruction of a specified type, such as call instructions and branch
instructions.

You can specify tracing at the following locations:

• At the first byte of specified instruction locations {that is,
set tracepoints). The debugger treats tracepoints in a
similar way as it treats breakpoints with DO{GO) command
sequences.

• At all instructions that call
{includes all CALLG, CALLS,
instructions).

4-17

subroutines in your program
RET, JSB, BSBW, BSBB, and RSB

USING THE DEBUGGER

• At all branch instructions in your program (includes all
branches and JMP; excludes subroutine-type instructions).

• At both instructions that call subroutines
instructions.

and branch

At a tracepoint, the debugger reports the location and then allows
your program to proceed automatically. The report has the form:

trace at location : instruction

where location is given symbolically or as a virtual
instruction is the instruction at the location shown.
tracepoint occurrence could be reported as:

trace at SORT\INSEQ : CMPB (RO) [R2], (RO) [R4]

address, and
For example, a

where SORT\INSEQ is the pathname that represents the location
addressed by the program counter and CMPB (RO) [R2], (RO) [R4] is the
instruction at that location. In NOSYMBOLIC mode, the location would
be reported by:

trace at 00000846 CMPB (RO) [R2], (RO) [R4]

If the message is displayed as:

routine trace at location : instruction

the value of location is actually 2 less than the current PC, and
location is an entry point or the beginning of a routine.

4.4.2.1 Setting Tracepoints - Once set, a tracepoint remains until
you either cancel it or terminate the debugging session. No
tracepoints are set when you begin the debugging session.

You set a tracepoint by specifying a command in the form:

SET TRACE address-expression

You must be sure that address-expression is the first byte of an
instruction (The debugger does not verify the validity of
address-expression.) If any tracepoint, breakpoint, or watchpoint was
set previously at the specified address, the debugger replaces it with
the new tracepoint.

To ensure that the tracepoint is at the start of an instruction, you
can use the "current location" symbol, as follows:

EXAMINE/INSTRUCTION •

The debugger displays the instruction on which the tracepoint is set.

To trace all instructions that call subroutines, type:

SET TRACE/CALL

To trace all branch instructions, type:

SET TRACE/BRANCH

4-18

USING THE DEBUGGER

To trace both forms of control transfer instructions, simply enter
both forms of SET TRACE commands in either order. You cannot specify
both qualifiers in one SET TRACE command.

To trace both forms of control transfer instructions, type:

SET TRACE/BRANCH
SET TRACE/CALL

4.4.2.2 Canceling Tracing - You can cancel a tracepoint when you no
longer want to monitor a program location. You can also disable one
or both forms of opcode tracing. All tracing is automatically
canceled when you end the current debugging session.

To cancel a specific tracepoint, type:

CANCEL TRACE address-expression

To cancel tracing of instructions that call subroutine, type:

CANCEL TRACE/CALL

To cancel tracing of branch instruction, type:

CANCEL TRACE/BRANCH

To cancel all tracepoints and opcode tracing, type:

CANCEL TRACE/ALL

4.4.2.3 Showing Tracing Modes - You can determine where tracepoints
are set, and the form of tracing in effect by using the command:

SHOW TRACE

The debugger responds with:

tracepoint at location
tracepoint at location
tracing /CALL instructions: list-of-opcodes
tracing /BRANCH instructions: list-of-opcodes

The debugger identifies the tracepoint locations by pathnames or by
numeric virtual address in the current radix mode.

If the debugger does not find tracepoints set, and no opcode tracing
is in effect, it displays the NOTRACES, no tracepoints are set, no
opcode tracing message.

4.4.2.4 Tracing Examples - The following examples illustrate the SET,
CANCEL, and SHOW TRACE commands.

DBG>SET TRACE TERMINAL IO\BEGIN+30

Sets a tracepoint at the location 30 bytes after
identified by the pathname. TERMINAL IO\BEGIN
interprets the value 30 in the current radix mode).

DBG>SET TRACE AX7249

4-19

the
(the

location
debugger

USING THE DEBUGGER

Sets a tracepoint at virtual address 7249 (hexadecimal).

DBG>CANCEL TRACE TERMINAL IO\BEGIN
DBG>CANCEL TRACE SORT\SEQCHK
DBG>CANCEL TRACE ~X7249

The debugger cancels the specified tracepoints.

DBG>CANCEL TRACE/ALL

The debugger cancels all tracepoints and opcode tracing.

In SYMBOLIC mode (the initialized condition) the debugger reports the
current tracepoint locations. For example:

DBG>SHOW TRACE
tracepoint at SORT\INSEQ
tracepoint at SORT\SEQCHK

In NOSYMBOLIC mode the debugger reports the tracepoint locations as
virtual addresses in the current radix mode (in this case
hexadecimal). For example:

DBG>SHOW TRACE
tracepoint at 0000846
tracepoint at 000082A

4.4.3 Watchpoints

Watchpoints are selected program locations you monitor to determine
when instructions have modified these locations. This section
describes watchpoints and the use of the commands SET WATCH, SHOW
WATCH, and CANCEL WATCH, to establish, report the status of, and
delete watchpoints.

If an instruction modifies a watchpoint location, the debugger stops
your program after the instruction completes execution. The debugger
then reports the watchpoint location, the location of the instruction,
and both the previous and the current contents of the location being
monitored.

The number of bytes monitored at a watchpoint depends on whether the
location has a data type. For example, if the location is a double
precision FORTRAN variable, eight bytes are monitored. However, if no
data type is associated with the location (as in VAX-11 MACRO), four
bytes are monitored. The current default data type is ignored.

4.4.3.1 Watchpoint Reporting - When your program writes into a
watchpoint location, the debugger stops the program and reports the
following:

write to location! at PC location2
old value = value!
new value = value2

Where locationl indicates the location that was modified, location2
indicates the location of the instruction that did the writing, and
value! and value2 are the old and new values, respectively.

4-20

USING THE DEBUGGER

The debugger reports the locations either symbolically or as virtual
addresses; it reports the old (previous) value and the new (current)
value in hexadecimal radix mode.

For example, a watchpoint modification could be reported as:

write to TERMINAL IO\OUTLENGTH at PC TERMINAL IO\MAIN CODE+51
old value -000008A2 - -
new value = 00000000

where TERMINAL IO\OUTLENGTH is the pathname that identifies the
location labeled OUTLENGTH in module TERMINAL IO, and
TERMINAL IO\MAIN CODE+51 is the pathname plus offset that identifies
the location of .the trapped instruction.

In NOSYMBOLIC mode, the locations are displayed as virtual addresses.
For example:

write to 00000432 at PC 000006A2
old value = 000008A2
new value 00000000

Note that values are displayed in hexadecimal notation.

4.4.3.2 Continuing from a Watchpoint - To continue your program
a watchpoint, enter either a GO command or a STEP command.
debugger reports the resumption of program execution by:

start at location

from
The

where location is given either as a pathname or as a virtual address.

4.4.3.3 Setting Watchpoints - You specify a watchpoint request by:

SET WATCH address-expression

Once set, a watchpoint remains active until you either cancel it or
terminate the debugging session. No watchpoints are set when you
initialize the debugging session. If any watchpoint, breakpoint, or
tracepoint was set previously at the specified address, the debugger
replaces it with the new watchpoint.

4.4.3.4 Canceling Watchpoints - You can cancel a watchpoint when you
no longer want to monitor the specified location(s). All watchpoints
are automatically canceled when you end the current debugging session.

To cancel a specific watchpoint, type:

CANCEL WATCH address-expression

where address-expression specifies the lower bound of a watched range.
If you specify CANCEL WATCH/ALL, all watchpoints are canceled.

If the debugger cannot find the specified watchpoint, it displays the
NOSUCHWPT, no such watchpoint message.

4-21

USING THE DEBUGGER

4.4.3.5 Showing Watchpoints - You can determine where current
watchpoints are set by typing:

SHOW WATCH

The debugger responds with:

watchpoint at location for nnn bytes
watchpoint at location for nnn bytes

The debugger identifies the watchpoint locations by pathnames
(SYMBOLIC mode on) or by numeric virtual address (NOSYMBOLIC mode on)
in the current radix mode. The value nnn, in decimal, indicates how
many bytes are monitored by the associated watchpoint.

4.4.3.6 Watchpoint Examples - The following examples illustrate the
SET, CANCEL, and SHOW WATCH commands.

DBG>SET WATCH TERMINAL IO\DATAl

The debugger watches the location identified by the
TERMINAL IO\DATAl.

DBG>SET WATCH AX7249

The debugger watches virtual address 7249 (hexadecimal).

DBG>CANCEL WATCH TERMINAL IO\DATAl
DBG>CANCEL WATCH SORT\TABLE
DBG>CANCEL WATCH AX7249

The debugger cancels the specified watchpoints.

With SYMBOLIC MODE on (the initialized condition):

DBG>SHOW WATCH
watchpoint at SORT\TABLE for 4.
watchpoint at SORT\INTVAR for 2.

bytes
bytes

pathname,

The debugger reports the current watchµoint locations by pathnames.

With NOSYMBOLIC mode on:

DBG>SHOW WATCH
watchpoint at 0000846 for 4.
watchpoint at 000082A for 2.

bytes
bytes

The debugger reports the watchpoint locations as numeric virtual
addresses. The addresses are displayed according to the current radix
mode.

4-22

USING THE DEBUGGER

4.4.3.7 Watchpoint Restrictions - When you set a watchpoint, the
entire page containing the watchpoint location is protected. When an
instruction attempts to write to any location on that page, an
exception is generated. The debugger handles the exception and
restarts the instruction. If the instruction writes to the watched
location(s), the debugger interrupts execution and reports the old and
new contents, and the location of the instruction that caused the
change.

If a system service needs to write to a location on a protected page,
it will return failure status. This is because the system service
checks to see if user mode code has write access to the page. It
cannot tell that the debugger has set the page protection and will
allow write access after generating the exception. Therefore, you
should not set watchpoints on pages that contain locations that may be
modified by system software -- for example, I/O status blocks subject
to modification by Record Management Services.

You cannot set a watchpoint on a dynamically allocated variable.
variables and arrays in VAX-11 BASIC are dynamically allocated.
arguments in VAX-11 FORTRAN are also dynamically allocated.

4.4.4 Interrupting Execution

Most
Dummy

You can interrupt execution of your program or the debugger by typing
CTRL/Y (echoed at the terminal as AY). VAX/VMS stops your program and
displays the command interpreter prompt ($). To return control to the
debugger, you must type the command DEBUG.

The debugger in turn displays its prompt, DBG>. You can also continue
execution of your program (or the debugger) from the location at which
you interrupted it by responding with the command CONTINUE rather than
DEBUG.

Typing any VAX/VMS command other than DEBUG or CONTINUE will generally
cause your program to exit immediately.

4-23

CHAPTER 5

ADDITIONAL DEBUGGING FEATURES

You can save a record of your debugging session in a log file, execute
commands from a file, interrupt your program when an exception is
encountered, show the procedures that have been called, access the
processor status longword (PSL), and debug exit handlers.

5.1 SAVING A RECORD OF A DEBUGGING SESSION

The debugger can create a log file that provides a record of your
debugging session. When the debugger creates a log file, it writes to
the log file the commands that you enter at the terminal and its
responses to these commands. Log files can be used as debugger
command procedures (see Section 5.2).

The SET OUTPUT command controls the debugger's output configuration.
The SET LOG command is used to specify the name of the log file. The
SHOW OUTPUT and SHOW LOG commands display the current status of the
debugger output configuration and log files.

The SET OUTPUT command controls whether output is written to a log
file, whether output is displayed on the terminal, and whether
commands executed from a command procedure or DO command sequence are
echoed.

If you want to create a log file and continue to have the debugger
display information on the terminal, enter the command:

DBG>SET OUTPUT LOG

When output is set to LOG, the debugger creates a log file if one does
not exist. By default the debugger creates a log file with the file
specification DEBUG.LOG with a version number equal to the highest
existing version number plus one. You use the SET LOG command to
specify a different name for the log file. When the output is set to
LOG, the debugger writes all commands that you enter on the terminal
and its responses to these commands to the log file. The debugger
writes the same thing to the log file that it would to the terminal
except that it does not write the DBG> prompt and it precedes each of
its responses with an exclamation mark (the debugger comment
character). This allows the log file to be used without changes as a
debugger command procedure.

5-1

ADDITIONAL DEBUGGING FEATURES

When you create a log file, you may want to enter commands to preserve
the output in the log file. If you are generating a large amount of
output, it would be time consuming to display it on the terminal as
well. To create a log file and suppress output on the terminal, enter
the command:

DBG>SET OUTPUT LOG,NOTERMINAL

When the output configuration is set to NOTERMINAL, the debugger does
not display its responses on the terminal except for informational,
warning, and error messages. Note that if you set the output to NOLOG
and NOTERMINAL, the debugger displays a warning message indicating
that output is being lost.

If the output configuration is set to VERIFY, the debugger echoes
commands executed from a command procedure or a DO command sequence.
If the output is set to TERMINAL, these commands are displayed on the
terminal. If the output is set to LOG, these commands are written
into the log file (preceded by an exclamation mark).

If you do not want to use the default log file specification,
DEBUG.LOG, you can enter the SET LOG command. If you specify a
version number in the SET LOG command and that version already exists,
the debugger appends the new log file to the existing log file. The
SET LOG command has the format:

SET LOG file-spec

When you specify the file specification in SET LOG, you must enclose
it in quotation marks if the first character is not an alphabetic or
numeric character. If the output is set to NOLOG when you enter the
SET LOG command, the debugger saves the file specification until the
output is set to LOG. Then the debugger creates the specified log
file. If the output is set to LOG when you enter the SET LOG command
(the debugger is currently writing to a log file), the debugger closes
the existing log file and creates a new one with the specified name.

Examples

DBG>SHOW OUTPUT
output: noverify, terminal, not logging to DEBUG.LOG
DBG>SET LOG COMPTEST
DBG>SET OUTPUT LOG
DBG>SHOW OUTPUT
output: noverify, terminal, logging to DBl:[PROJ.START]COMPTEST.LOG;l
DBG>SET MODULE/ALL
DBG>SET BREAK SUBl
DBG>GO
routine start at MAIN\MAIN
routine break at SUBl\SUBl
DBG>EX X
SUBl\X: 1
DBG>SET OUTPUT NOTERMINAL
DBG>EX/WORD MAIN
DBG>E/I
DBG>E/I
DBG>SET OUT TERM
DBG>GO
routine start at SUBl\SUBl
%DEBUG-I-EXITSTATUS, is '%SYSTEM-S-NORMAL, normal successful completio
DBG>EXIT

5-2

ADDITIONAL DEBUGGING FEATURES

This debugging session creates the file COMPTEST.LOG, which contains
the following text.

SHOW OUTPUT
!output: noverify, terminal, logging to DBl: [PROJ.STARTlCOMPTEST.LOG;l
SET MODULE/ALL
SET BREAK SUBl
GO
!routine start at MAIN\MAIN
!routine break at SUBl\SUBl
EX X
!SUBl\X: 1
SET OUTPUT NOTERMINAL
EX/WORD MAIN
!MAIN\MAIN: 18492
E/I
!MAIN\MAIN+02: MOVAL L~MAIN\A,Rll
E/I
!MAIN\MAIN+09 : MOVC5 #OA,L~00000200,#20,#14,B~OD8(Rll)
SET OUT TERM
GO
!routine start at SUBl\SUBl
!%DEBUG-I-EXITSTATUS, is '%SYSTEM-S-NORMAL, normal successful completion'
EXIT

5.2 USING COMMAND PROCEDURES

A command procedure is a file that contains a series of debugging
commands; the @file-spec command instructs the debugger to accept
commands from a command procedure. If you have a series of debugger
commands that you want to enter in more than one debugging session,
you can put them in a command procedure.

You can create a command procedure by using an editor or by creating a
log file. The debugger executes the commands that are in the file.
The debugger ignores any line that starts with an exclamation mark
(!). When the debugger finds an EXIT command in the command procedure
or when it gets to the end of the file, it stops accepting commands
from the file. If the @file-spec command was entered at the terminal,
the debugger accepts the next command from the terminal. If the
@file-spec command was in another command procedure, the debugger
executes the next command in that procedure. If the @file-spec
command was in a DO command sequence, the debugger executes the next
command in the sequence.

By default, the debugger does not display commands read from a command
procedure on the terminal or write them in the loq file. The SET
OUTPUT VERIFY command causes the debugger to display this information
on the terminal and write it to the log file (if the output is set to
LOG.

5-3

ADDITIONAL DEBUGGING FEATURES

Examples

The following is a command procedure, MAIN.COM, that has been created
with an editor.

! Command Procedure to set
SET MODU/ALL
SET BR SUBl

GO
E/WORD SUBl
E/I
E/I
CALL SUB2(X)
EXIT

MAIN.COM

up breakpoints in MAIN and SUBl
Make sure all the modules are in
Set up breakpoint at SUBl routine
entry
Start the program
Display entry mask
Display first two instructions of
SU Bl
Call SUB2

The following is a debugging session that executes the command
procedure.

DBG>SET OUT VER
DBG>@MAIN
%DEBUG-I-VERIFYICF, entering indirect command file "MAIN"

! Command Procedure to set up breakpoints in MAIN and SUBl
SET MODU/ALL ! Make sure all the modules are in
SET BR SUBl Set up breakpoint at SUBl routine

entry
GO Start the program
routine start at MAIN\MAIN
routine break at SUBl\SUBl

E/WORD SUBl
SUBl\SUBl: 4800

E/I

! Display entry mask

! Display first two instructions of
SUB1\SUB1+02: MOVAL
E/I

L "'SUBl \Y ,Rll
SU Bl

SUB1\SUB1+09: INCL
CALL SUB2(X)

routine start at SUB2\SUB2
value returned is 7FFFOA48

EXIT

(rlB "'4 (AP)
Call SUB2

%DEBUG-I-VERIFYICF, exiting indirect command file "MAIN"
DBG>

5.3 EXCEPTION CONDITIONS

Exception conditions are conditions that interrupt the execution of
your program. In the context of the debugger, there are two kinds of
exception conditions: exception conditions caused by the debugger and
external exception conditions. The debugger uses exception conditions
to interrupt your program's execution. External exception conditions
are caused by your program; these conditions would occur even if you
had not initiated the debugger.

This section describes the debugger's response to external exception
conditions. It does not describe the cause and effect of external
exception conditions, nor does it describe how to write handler
routines for them. See the VAX/VMS System Services Reference Manual
and the VAX-11 Run-Time Library R~ference Manual for this informatio·n:

5-4

ADDITIONAL DEBUGGING FEATURES

The SET EXCEPTION BREAK command causes the debugger to treat an
external exception condition as a breakpoint. If you enter SET
EXCEPTION BREAK, the debugger will not execute any exception handlers
that you have defined in your program. When an exception condition is
encountered, the debugger gets control and then prompts you for a
command.

If you have not entered a SET EXCEPTION BREAK command or have entered
a CANCEL EXCEPTION BREAK command, the following sequence occurs after
an exception condition is encountered: (1) the debugger gets control
and transfers control to the exception handlers; (2) if you have
defined an exception handler in your program, it is executed; (3) if
you have not specified an exception handler or if it resignals the
exception, the VMS exception handler is executed and it displays a
message and then returns control to the debugger (if possible) which
prompts you for a command. Note that if your program's execution
handler continues execution, the debugger does not get control until
the program terminates or is interrupted by the debugger (for example,
at a breakpoint).

5.4 SHOWING ACTIVE CALLS

The SHOW CALLS command reports various information concerning the
current nested procedure calls. The SHOW CALLS command displays
information in the same format as the traceback handler, which
displays information on the nested procedure calls when the image has
been run without the debugger and an error has been detected. The
command format is:

SHOW CALLS [decimal-integer]

You have the option of requesting that all call levels be reported
(the default) or that the debugger report on a specified number of
call levels. The call count can be any decimal integer in the range 0
through 32767. If the call count exceeds the number of calls
currently active, it is ignored. If you specify O, the command is
.accepted, but no output results.

Normally, the debugger responds to the SHOW CALLS command with the
following report:

module name routine name line relative PC absolute PC

The first line in the report refers to the routine currently being
executed. The remaining lines report all (or the requested number) of
call levels in the order of most recent call through first call. For
VAX-11 MACRO, the report presents the following information:

module name

routine name

line

The module in which the call occurred. If the debugger
symbol table does not include symbol information for
the module in which the call occurred, the module name
remains blank.

The routine or program section name in which the call
occurred.

Used only for line-oriented languages to identify the
line number of the call. Left blank for VAX-11 MACRO.

5-5

ADDITIONAL DEBUGGING FEATURES

relative PC The address of the call relative to the symbol
expressed under ROUTINE NAME. The debugger displays
the relative address in hexadecimal radix mode,
regardless of the current radix mode.

absolute PC The virtual address of the call in hexadecimal radix
mode, regardless of the current radix mode.

If there are no active call frames, the debugger responds to SHOW
CALLS with an error message. This indicates that the stack has been
corrupted or that the user program has terminated.

Examples

DBG>SHOW CALLS
module name

SUB2

routine name

SUB2
SU Bl
MAIN

5.5 PROCESSOR STATUS LONGWORD (PSL)

line

5
10

relative PC

00000002
00000014
0000002C

absolute PC

0000085A
00000854
0000082C

This section describes how to display the current contents of the
processor status longword (PSL), and how to alter its contents. For a
detailed description of the PSL, see the VAX-11 Architecture Handbook.

5.5.1 Displaying the Processor Status Longword

To display the current contents of the processor status longword
(PSL) , type:

DBG >EXAMINE PSL

The debugger responds with:

PSL: CMP TP FPD IS CURMOD PRVMOD IPL DV FU IV T N z v c
n n n n mode mode lv n n n n n n n n

where "n" is O or 1. The interrupt priority level, lv, is displayed
as a hexadecimal value, O through lF. Mode is expressed as KERN,
EXEC, SUPR, or USER.

You can display the current contents of the PSL as. a hexadecimal value
by specifying:

DBG>EXAMINE/NOSYMBOLIC/HEXADECIMAL PSL

5.5.2 Altering the Processor Status Longword

You can alter the PSL's low-order word. However, you cannot alter the
the PSL's high-order word, regardless of the privileges allocated to
your account. If you attempt to modify the high-order word you will
get a system reserved operand fault error message when your program is
executed. The following conditions are in the PSL's high-order word:

• CMP - compatibility mode
• TP - trace pending

5-n

ADDITIONAL DEBUGGING FEATURES

• FPD - first part done
• IS - interrupt stack
• CURMOD - current mode
• PRVMOD - previous mode
• IPL - interrupt priority level

You cannot alter the
depositing a value.

PSL symbolically, but you can alter it
To alter the PSL, enter the following command:

DEP/HEX/WORD PSL = expression

by

where "expression" is the sum of the key numbers selected from Table
5-1 according to the bits that you want set. If you want a bit set,
include the key number in the expression. If you want a bit clear, do
not include the key number in the expression. The /WORD qualifier
ensures that only the low-order word of the PSL is altered and that
the high-order word remains unchanged. Note that setting the trace
trap condition code may cause a T-bit pending trap.

Table 5-1
PSL Low-Order Word Alteration Values

Bit Key Key Number Description
(Hex)

--
15 0 (Must be zero)

14 0 (Must be zero)

13 0 (Must be zero)

12 0 (Must be zero)

11 0 (Must be zexo)

10 0 (Must be zero)

9 0 (Must be zero)

8 0 (Must be zero)

7 DV 80 Decimal overflow trap enable

6 FU 40 Floating underflow trap enable

5 IV 20 Integer overflow trap enable

4 T 10 Trace trap condition code

3 N 8 Negative condition code

2 z 4 Zero condition code

1 v 2 Overflow condition code

0 c 1 Carry condition code

5-7

ADDITIONAL DEBUGGING FEATURES

5.6 DEBUGGING EXIT HANDLERS

Exit handlers are invoked when your program terminates. This section
describes the way the debugger interacts with any exit handlers that
are declared in your program. It does not describe how to write exit
handlers. See the VAX/VMS System Services Reference Manu9l for this
information.

The debugger declares its own exit handler but its handler is executed
after any user-declared exit handlers. When your program terminates,
the system executes any exit handlers that are declared in your
program. If any breakpoints are set in the user-declared handler,
execution is interrupted and the debugger displays its prompt. Thus
you can debug your exit handler in the same way that you can debug any
routine in your program.

When you enter the EXIT or CTRL/Z command to the debugger prompt, the
system also executes any exit handlers declared in your program, but
the debugger will not get control even if you have set breakpoints.
When you enter the EXIT or CTRL/Z command the debugger removes all
breakpoints, tracepoints, opcode tracing, and watchpoints.
Consequently, if you want to debug exit handlers, your program must
terminate; you cannot debug them by entering the EXIT or CTRL/Z
command.

5-8

CHAPTER 6

DEBUGGER COMMANDS

This chapter contains descriptions of all the debugger commands. The
commands are arranged in alphabetical order. Appendix C, a brief
command summary, specifies the minimum abbreviation for each command,
keyword, and qualifier.

@file-spec

Description

Instructs the debugger to begin taking commands from the
indicated file. Command procedures, also called indirect command
files, can be invoked wherever any other DEBUG command can be
given. Any valid debugger command can occur in a command
procedure.

The command procedure can contain any debugger command, includinq
another @file-spec command. When the debugger executes an EXIT
command in a command procedure or reaches the end of the file, it
returns control to the command stream that invoked the command
procedure. A command stream can be the terminal, a previous
command procedure, or a DO command sequence in a SET BREAK
command. If you enter SET OUTPUT VERIFY, all commands read from
a command procedure are echoed on the terminal.

Format

@file-spec

Command Parameters

file-specification

Specifies the command procedure to be executed.
type is COM. Do not use quotation marks
file-spec.

Command Qualifiers

None.

fi-1

The default file
to delimit the

DEBUGGER COMMANDS

Examples

DBG>SET OUT VER
DBG>@MAIN
%DEBUG-I-VERIFYICF, entering indirect command file "MAIN"

Command Procedure to set up breakpoints in MAIN and SUB!
SET MODU/ALL Make sure all the modules are in
SET BR SUBl Set up breakpoint at SUBl routine

entry
GO
routine start at MAIN\MAIN
routine break at SUBl\SUBl

Start the program

E/WORD SUBl Display entry mask
SUBl\SUBl: 4800

E/I ! Display first instruction
SUB1\SUB1+02: MOVAL L~SUBl\Y,Rll

EXIT
%DEBUG-I-VERIFYICF, exiting indirect command file "MAIN"

6-2

DEBUGGER COMMANDS

CALL

Description

Calls the specified procedure. You can specify the procedure's
name or virtual address. If the procedure requires an argument
list, you must specify it in the CALL command.

The debugger assumes that the called procedure conforms to the
VAX-11 procedure calling standard (see the VAX-11 Architecture
Handbook). You can call a procedure and debug it independently
of the rest of the program. When the debugger encounters a RET
instruction in the procedure, it displays the values returned by
the procedure (value returned in RO). The debugger then restores
the values stored in the registers before the CALL command.

Format

CALL name [(argument-list)]

Command Parameters

name

Specifies the name or the virtual address of the procedure to be
called. The virtual address can only be expressed as a number;
it cannot be an address expression.

argument-list

The arguments required by the procedure.

Command Qualifiers

None.

Examples

DBG> CALL SUBl(X)
routine start at SUBl
value returned is 7FFF07DC

6-3

DEBUGGER COMMANDS

CANCEL

Description

Cancels breakpoints, tracepoints, and watchpoints, and restores
scope and user-set entry/display modes and types to their default
values. The item canceled depends on the keyword specified in
the command.

See the individual command descriptions following for more
information.

Format

CANCEL keyword [/qualifier] [parameters]

Command Qualifiers

Depends on keyword

Command Parameters

keyword

Specifies the item to be canceled. Keyword can be ALL, BREAK,
EXCEPTION BREAK, MODE, MODULE, SCOPE, TRACE, TYPE, or WATCH.

parameters

Depends on the keyword specified.

Command Qualifiers

Depends on the keyword specified.

~-4

DEBUGGER COMMANDS

CANCEL ALL

Description

Cancels all breakpoints, tracepoints, watchpoints, and restores
scope and user-set entry/display modes and types to their default
values.

CANCEL ALL does not affect the modules included in the debugger
symbol table or the current language.

Format

CANCEL ALL

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG>CAN ALL

'1-5

DEBUGGER COMMANDS

CANCEL BREAK

Description

Cancels specified breakpoint or all breakpoints.

You must either include an address-expression or the /ALL
qualf ier in the CANCEL BREAK command.

You can also cancel all breakpoints with the CANCEL ALL command.

Format

CANCEL BREAK [/qualifier] [address-expression]

Command Qualifiers

/ALL

Command Parameters

address-expression

Specifies the address of the breakpoint to be canceled.

Command Qualifiers

/ALL

Specifies that all breakpoints are to be canceled.

Examples

DBG>CAN BRE MAIN\LOOP+lO
DBG>CAN BRE/ALL

DEBUGGER COMMANDS

CANCEL EXCEPTION BREAK

Description

Cancels the request that the debugger treat external exception
conditions as breakpoints.

When the debugger encounters an external exception condition, it
executes your program's condition handler if it exists.
Otherwise, the debugger allows VAX/VMS to handle the exception.

CANCEL EXCEPTION BREAK cancels the effects of SET EXCEPTION BREAK
and causes the debugger to respond to an exception condition
either by executing your program's condition handler or by
returning control to VAX/VMS.

Format

CANCEL EXCEPTION BREAK

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG>CAN EXC BRE

o-7

DEBUGGER COMMANDS

CANCEL MODE

Description

Cancels all modes and types and sets them to the default values
for the current language.

The CANCEL MODE command sets the default data type to long
integer, the override data type to none, and address display,mode
to symbolic. It sets the radix mode to the default for the
current language. For VAX-11 MACRO, its sets the default radix
to hexadecimal.

Format

CANCEL MODE

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG>CANCEL MODE

n-s

DEBUGGER COMMANDS

CANCEL MODULE

Description

Deletes symbols of specified modules or all modules from the
debugger symbol table. The CANCEL MODULE command is used when
the symbol table is full and it is necessary to delete some
modules in order to add others.

You can delete one module, a list of modules, or all modules.
The minimum abbreviation of MODULE is MODU.

Format

CANCEL MODULE [/qualifier] module [,module •••]

Command Qualifiers

/ALL

Command Parameters

module

Specifies the name of the module to be deleted from the symbol
table.

Command Qualifiers

/ALL

Specifies that all modules are to be deleted from symbol table.

Examples

DBG>CAN MODU SUBl
DBG>CAN MODU/ALL

6-9

DEBUGGER COMMANDS

CANCEL SCOPE

Description

Resets scope to its default value (PC scoping).

The CANCEL SCOPE command deletes any scope search list that you
have specified with SET SCOPE. After you have entered CANCEL
SCOPE, the debugger searches for symbols in the scope that
contains the current PC. CANCEL SCOPE is equivalent to SET SCOPE
o.

Format

CANCEL SCOPE

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG>CAN SCO

6-10

DEBUGGER COMMANDS

CANCEL TRACE

Description

Cancels a tracepoint set at a specified address, opcode tracing
at branch instructions, opcode tracing at call instructions, or
all tracepoints and all opcode tracing.

If you specify an address-expression, the tracepoint at that
address is cancelled. If you specify /BRANCH or /CALL, opcode
tracing on branch instructions or call instructions is canceled.
If you specify /ALL, all tracepoints and opcode tracing are
canceled.

You can also cancel all tracepoints with the CANCEL ALL command.

Format

CANCEL TRACE [/qualifier] [address-expression]

Command Qualifiers

/ALL
/BRANCH
/CALL

Command Parameters

address-expression

Specifies the address of the tracepoint to be canceled.

Command Qualifiers

/ALL

Cancels all tracepoints and all opcode tracing.

/BRANCH

Cancels opcode tracing on branch instructions.

/CALL

Cancels opcode tracing on call instructions.

Examples

DBG>CAN TRA MAIN\LOOP+lO
DBG>CAN TRA/CALL
DBG>CAN TRA/ALL

6-11

DEBUGGER COMMANDS

CANCEL TYPE/OVERRIDE

Description

Cancels the current override type and sets the override type to
"none".

After you enter CANCEL TYPE/OVERRIDE, symbols are displayed in
their compiler-specified data type {if they have one) unless you
specify a type qualifier in the EXAMINE, EVALUATE, or DEPOSIT
command. Symbols that do not have a compiler-specified data type
are displayed in the default data type specified in the last SET
TYPE command. The CANCEL TYPE command must be specified with the
/OVERRIDE command qualifier.

Format

CANCEL TYPE/OVERRIDE

Command Parameters

None.

Command Qualifiers

/OVERRIDE

Must be specified. The minimum abbreviation is /OVERR.

Examples

DBG>CAN TYPE/OVERR

n-12

DEBUGGER COMMANDS

CANCEL WATCH

Description

Cancels watchpoint set at specified address or cancels all
watchpoints.

If you specify an address-expression, the watchpoint at that
address is cancelled. If you specify /ALL, all watchpoints are
canceled.

You can also cancel all watchpoints with the CANCEL ALL command.

Format

CANCEL WATCH [/qualifier] [address-expression]

Command Qualifiers

/ALL

Command Parameters

address-expression

Specifies the address of the watchpoint to be canceled.

Command Qualifiers

/ALL

Specifies that all watchpoints should be canceled.

Examples

DBG>CAN WAT SUB2\D
DBG>CAN WAT/ALL

n-13

DEBUGGER COMMANDS

CTRL/C, CTRL/Y, CTRL/Z

Description

The CTRL/C and CTRL/Y key commands interrupt execution of the
program and return control to VAX/VMS. The CTRL/Z key command is
equivalent to the EXIT command.

After you interrupt execution of your program with CTRL/C or
CTRL/Y, you can return control to the debugger by entering the
DEBUG command. This is useful if you have inhibited initiation
of the. debugger with RUN/NODEBUG command or if you have entered
the GO command and your program is executing an infinite loop
that does not contain a breakpoint. If you enter any DCL command
other than DEBUG or CONTINUE after you have typed CTRL/C or
CTRL/Y, the program you are debugging is terminated.

You can type the CTRL/Z command at your terminal instead of
entering the EXIT command.

The CTRL/C and CTRL/Y key commands are echoed on the terminal as
AY. The CTRL/Z key command is echoed as AZ.

Format

<CTRL/C>
<CTRL/Y>
<CTRL/Z>

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG>
"y

$ DEBUG
DBG> AZ
$

6-14

DEBUGGER COMMANDS

DEFINE

Description

Defines symbol(s) and assigns them specified address(es). You
can use these symbols to reference an address in the image.

The DEFINE command lets you define symbols during a debugging
session. You can, for example, create explicit symbols for
unlabeled locations or for locations with long pathnames. The
debugger always searches symbols defined in the debugging session
first. Consequently, symbols you define with the debugger have
precedence over symbols in your program with the same name. To
refer to the symbol in your program in a subsequent command, you
must specify the pathname with the symbol.

Once you have defined a symbol, you cannot explicitly cancel its
definition, but you can redefine it by specifying a different
value with the DEFINE command.

You cannot define a pathname, that is, scope\symbol, but can only
define symbol names.

You can use the EVALUATE command to find out the current value of
a symbol.

Format

DEFINE symbol=expression [,symbol=expression •••]

Command Parameters

symbol

Specifies the name of the symbol to be defined. The following
rules must be followed when defining a symbol name:

• Symbols can be composed of alphanumeric characters (A-Z and
0-9), underscores () , dollar signs ($), and periods (.).
Periods cannot be used in some languages. The debugger
interprets lowercase alphabetics to be uppercase. Thus
"LOOP" and "loop" are the same to the debugger.

• The first character must not be a number (0-9) or a period
(.) .

• The symbol must be no more than 31 characters long.

•
In addition, by DIGITAL convention:

The dollar sign is reserved for
This convention ensures that
conflict with a DIGITAL-defined

names defined by DIGITAL.
a user-defined name will not

name.

• The period (.) should not be used because some languages,
such as FORTRAN, do not allow periods in symbol names.

6-15

DEBUGGER COMMANDS

expression

Either a virtual address or a symbolic address. The expression
must have a value between 1 and OFFFFFFFF (hexadecimal). Any
numbers in the expression are interpreted in the current radix
mode. You can use radix operators to override the current radix
mode.

Command Qualifiers

None.

Examples

DBG>DEF CHK=MAIN\LOOP+lO
DBG>DEF OLDRS=@RS, VALUE =15+30A

n-ln

DEBUGGER COMMANDS

DEPOSIT

Description

Stores ~he specified value(s) at the specified location. The
DEPOSIT command lets you alter the contents of memory locations
and registers. If you enter more than one value, the values are
deposited at sequential memory locations starting with the
specified location. Data values can be in numeric, ASCII string,
or instruction format.

Any data already existing in the memory locations you specify
with the DEPOSIT command is lost. The size of the data being
stored is dependent on the data type specified in a command
qualifier, the compiler-specified data type, or the current
default data type. The size of the data for each data type is:

Format

Data Type

ASCII [:length]
Instruction

Byte
Word
Long

Size (in Bytes)

length (defaults to 4)
Variable dependent on the opcode and
operands
1
2
4

DEPOSIT [/qualifier] address-expression data [,data •••]

Command Qualifiers

/ASCII:length
/BYTE
/DECIMAL
/HEXADECIMAL
/INSTRUCTION
/LONG
/OCTAL
/WORD

Command Parameters

address-expression

Specifies the location in which to deposit the data. Any numbers
in the address expression are interpreted in the radix mode
specified in a qualifier or, if there is no radix qualifier, in
the current radix mode. The address-expression can be one of the
debugger's permanently defined symbols: RO - Rll, AP, FP, SP,
PC, and PSL. The debugger will allow you to modify FP, SP, PC,
or PSL, but a modification of these registers may cause a fatal
error.

6-17

data

DEBUGGER COMMANDS

Specifies the data to be deposited. If more than one data item
is specified, then the data is deposited in sequential locations
starting at the specified address. The data is interpreted
according to the radix mode qualifier and type qualifier
specified in the command. If no radix mode qualifier or type
qualifier is specified, then the data is interpreted according to
the current radix mode and type. If the data is ASCII string
data or INSTRUCTION data, then each data item must be enclosed in
quotation marks or apostrophes.

Command Qualifiers

/ASCII:length

/BYTE

Specifies that the data is ASCII strings enclosed in quotation
marks or apostrophes. The length specifies the number of bytes
of ASCII data to be deposited for each data item. It is
interpreted in the radix specified in a command qualifier that
precedes the /ASCII qualifier or in the current radix mode. If
length is omitted, the debugger assumes a length of 4.

Specifies that the data type is byte integer. For each data item
specified the debugger deposits one byte of data. The data is
interpreted in the radix mode specified by a command qualifier or
in the current radix mode. Any value that cannot be stored in a
byte (greater than 255, unsigned) will be truncated.

/DECIMAL

Specifies that all numbers following the qualifier in the command
are to be specified in decimal radix.

/HEXADECIMAL

Specifies that all numbers following the qualifier in the command
are to be specified in hexadecimal radix.

/INSTRUCTION

/LONG

Specifies that the data is VAX-11 MACRO instructions enclosed in
quotation marks or apostrophes. The debugger deposits the binary
opcode and operands. The length of the instruction deposited
depends on the opcode and the addressing modes used.

Specifies that the data type is longword integer. For each data
item specified, the debugger deposits four bytes of data. The
data is interpreted in the radix mode specified by a command
qualifier or in the current radix mode.

/OCTAL

Specifies that all numbers following the qualifier in the command
are in octal radix.

6-18

/WORD

DEBUGGER COMMANDS

Specifies that the data type is word integer. For each data item
specified, the debugger deposits two bytes of data. The data is
interpreted in the radix mode specified by a command qualifier or
in the current radix mode. Any value that cannot be stored in a
word (greater than 65,535, unsigned) will be truncated.

Examples

DBG>DEP/BYTE WORK=O,l,2,3,4,5,n,7
DBG>DEP/ASCII:lO WORK+20='abcdefghijklmnop'
DBG>SET TYPE INS
DBG>DEP SUB2+2 = 'MOVL #20A,RO', 'MOVL #3,Rl'
DBG>E
SUB2\SUB2+0C: RET
DBG>DEP • = 'MULL3 RO,Rl,R2' I 'ADDL2 R2,RO' I 'RET'
DBG>CALL Sl,JB2
routine start at SUB2\SUB2
value returned is 00000828

n-19

DEBUGGER COMMANDS

EVALUATE

Description

Evaluates an expression and displays the value. Can be used as a
calculator to display the value of any expression. The EVALUATE
command can also evaluate bit fields (in VAX-11 MACRO}.

Expressions are evaluated as longword integer expressions unless
a symbol with a compiler-generated data type is specified in the
expression. In this case, the expression is evaluated according
to the rules of the current language. If a radix command
qualifier is specified, all numbers in the command are
interpreted in the specified radix and all values displayed by
the command are displayed in that radix.

When the expression contains symbols, the evaluation of the
expression depends on the current language. If the language is
VAX-11 MACRO, the debugger considers the address of a symbol to
be its value. To evaluate the data stored at that address, you
must use the indirect operator (@}. In some other languaqes,
such as FORTRAN, COBOL, and BASIC, the debugger considers the
contents of the address of a symbol to be its value. To evaluate
the address of the symbol for these languages, you must use the
/ADDRESS command qualifier.

Format

EVALUATE [/qualifier] expression [,expression •••]
EVALUATE [/qualifier] value<high-bit:low-bit>

Command Qualifiers

/ADDRESS (not in VAX-11 MACRO or VAX-11 BLISS}
/DECIMAL
/HEXADECIMAL
/OCTAL

Command Parameters

expression

Any legal expression in the current language.

value<high-bit:low-bit>

A value and a bit range
number or an expression
and low-bit values must
example, SYMB<31:16>.
MACRO.

Command Qualifiers

/ADDRESS

to be evaluated. The value can be a
enclosed in angle brackets. The high-bit
be in the range of 0 through 31, for
This feature is available only in VAX-11

Specifies that the address of the symbol rather than its contents
should be evaluated. /ADDRESS is not allowed in VAX-11 MACRO or
VAX-11 BLISS.

~-20

DEBUGGER COMMANDS

/DECIMAL

Specifies that decimal is the default radix for numbers entered
in the command and for the display of values.

/HEXADECIMAL

Specifies that hexadecimal is the default radix for numbers
entered in the command and for the display of values.

/OCTAL

Specifies that octal is the default radix for numbers entered in
the command and for the display of values.

Examples

DBG>DEP RO=WORK
DBG>DEP Rl=lO
DBG>EVAL @RO + <2*@Rl>
0000088F
DBG>EVAL @MAIN<B:O>
0000003C
DBG>EVAL @MAIN<4:3>
00000003
DBG>SET LANG FORTRAN
DBG >EV AL 100 • 3 4 * (14 • 2 + 7 • 9)

2217.514
DBG>EVAL/ADDR X
1512

0-21

DEBUGGER COMMANDS

EXAMINE

Description

Displays the current contents of specified addresses or ranges of
addresses. The contents of the addresses can be displayed in
numeric form, in ASCII string form, or decoded to VAX-11 MACRO
instruction form.

You can use the EXAMINE command to
multiple locations, a range of
combinations of these. The length
and its format depends on the type
the current type and modes.

display a single location,
contiguous locations, or any

of each data item displayed
and mode command qualifiers or

The debugger displays the address being examined, a colon, and
then the contents of the address. The address is displayed
symbolically, if possible, if the /SYMBOLIC qualfier is specified
or if the display mode is set to SYMBOLIC. If the /NOSYMBOLIC
qualifier is specified, the address is displayed as an absolute
virtual address.

An EXAMINE command with
displays the locations
deposited.

Format

no address-expressions specification
after the last location examined or

EXAMINE [/qualifier] [addr-expr [:addr-expr] [,addr-expr [:addr-exprl •• ,

Command Qualifiers

/ASCII:length
/BYTE
/DECIMAL
/HEXADECIMAL
/INSTRUCTION
/LONG
/NOSYMBOLIC
/OCTAL
/SYMBOLIC
/WORD

Command Parameters

addr-expr

Specifies the address to be examined. If a range of addresses is
specified with a colon, the first address must be less than the
second address. If a list of address expressions is specified,
they can be in any order.

'1-22

DEBUGGER COMMANDS

Command Qualifiers

/ASCII:length

/BYTE

Specifies that contents of memory should be displayed as ASCII
strings. The length specifies the number of bytes of memory to
be examined and the number of characters to be displayed. It is
interpreted in the radix specified in a command qualifier that
precedes the /ASCII qualifier or in the current radix. If length
is omitted, the debugger assumes a length of 4. The number of
characters actually displayed is limited by the maximum size of
the debugger's output line, 132 characters.

Specifies that the data type is byte integer. The contents of
each byte of memory is displayed in the radix mode specified in a
command qualifier or in the current radix mode.

/DECIMAL

Specifies that the radix is decimal. The debugger displays all
numbers and interprets all numbers in the command in decimal
radix.

/HEXADECIMAL

Specifies that the radix is hexadecimal. The debugger displays
all numbers and interprets all numbers in the command in
hexadecimal radix.

/INSTRUCTION

/LONG

Specifies that the contents of memory should be displayed as
VAX-11 MACRO instruction. The debugger attempts to decode the
address specified as an instruction. If the debugger can decode
the instruction, it displays the instructions. If the debugger
cannot decode the instruction, it displays a warning message.
The length of the instruction displayed is variable depending on
the opcode and addressing modes.

Specifies that the data type is longword integer. The contents
of each longword (4 bytes) of memory is displayed in the radix
mode specified in a command qualifier or in the current radix
mode.

/NOSYMBOLIC

Specifies that addresses should be displayed as absolute virtual
addresses. The debugger displays the addresses being examined
and any addresses in decoded instructions as absolute virtual
addresses.

/OCTAL

Speaifies that the radix is octal. The debugger displays all
numbers and interprets all numbers in the command in octal radix.

n-23

DEBUGGER COMMANDS

/SYMBOLIC

/WORD

Specifies that addresses should be displayed as symbols or
offsets from symbols. The debugger displays the addresses being
examined and any addresses in decoded instructions as symbols or
offsets from symbols.

Specifies that the data type is word integer. The contents of
each word (2 bytes) of memory is displayed in the radix mode
specified in a command qualifier or in the current radix mode.

Examples

DBG>EX/ASC WORK+20
DETAT\WORK+20: abed

DBG>E/WORD MAIN
MAIN\MAIN: 483C
DBG>E/I
MAIN\MAIN+02: MOVAL L~MAIN\A,Rll

DBG>E/DEC/WORD WORK:WORK+lO , SUBl\D
DETAT\WORKDATA: 250
DETAT\WORKDATA+2: 770
DETAT\WORKDATA+4: 1284
DETAT\WORKDATA+6: 1798
DETAT\WORKDATA+8: -1
DETAT\WORKDATA+lO: -19729
SUBl\D: 31

DBG>E/NOSYM WORKDATA
0000086F: 03020100

o-24

DEBUGGER COMMANDS

EXIT

Description

Ends the debugging session or specifies the end of the command
procedure.

When you enter the EXIT command at the terminal, the debugger
ends the session and returns control to VAX/VMS. You cannot
reenter the debugger with either the DEBUG or CONTINUE commands
but must reinitiate the debugger by running a program.

When the debugger executes an EXIT ·command in a command
procedure, the debugger returns control to the command stream
that invoked the command procedure. Note that if the command
procedure was invoked from a DO command sequence in a SET BREAK
command, the debugger gets the next command from that DO command
sequence.

When the debugger executes
sequence, It ignores any
sequence.

Format

EXIT

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG>EXIT
$

an EXIT command in a DO command
following commands in the DO command

6-25

DEBUGGER COMMANDS

GO

Description

Starts or continues program execution. The first GO command with
no address specified starts the program at its initial (transfer)
address. Succeeding GO commands continue execution from the
point where execution was suspended or at the specified address.

A GO command with an address expression replaces the ·current
contents of the program counter (PC) with the specified address
and then executes the instruction at that address. Your
program's execution can be unpredictable when you initiate
execution at an address other than your transfer address or when
you restart execution at the transfer address or at another
address.

Note that if you enter a GO command with no address expression
after your program has completed execution, the debugger tries to
execute your program with a value of 0 in the PC and displays an
error message.

Format

GO [address-expression]

Command Parameters

address-expression

Specifies the address to be executed.
continues at the specified address.

Command Qualifiers

None.

Examples

DBG>GO
routine start at MAIN\MAIN
routine break at SUBl\SUBl
DBG>GO

Execution starts or

routine start at SUBl\SUBl
%DEBUG-I-EXITSTATUS, is '%SYSTEM-S-NORMAL
DBG>GO MAIN I

normal successful completion'

routine start at MAIN\MAIN
routine break at SUBl\SUBl

o-26

DEBUGGER COMMANDS

HELP

Description

Displays a description of the command specified. You can also
get descriptions of command parameters and qualifiers.

The HELP command displays a description of debugger commands,
their format, and the parameters and qualfiers you can use with
them. You can find out the topics that have help descriptions by
entering the HELP command with no topics.

Format

HELP topic [subtopic •••]

Command Parameters

topic

Specifies the command that you want information about.

subtopic

Specifies the command keyword, qualifier, or parameter that you
want information about. If you want information about a specific
qualifier, specify the qualifier (including the initial slash) as
the subtopic. If you want information about all qualifiers or
all parameters, specify QUALIFIER or PARAMETER, respectively. If
you want all the information about a command, specify an asterisk
(*) as the subtopic.

Command Qualifiers

None.

Examples

DBG>HELP DEFINE

DEFINE

Defines symbol(s) and assigns them specified addresses(s).
You can use these symbols to reference an address in the
image.

Format:

DEFINE symbol=expression [,symbol=expression •••]

Additional information available:

Parameters

6-27

DEBUGGER COMMANDS

SET

Description

Establishes breakpoints, tracepoints, or watchpoints or sets the
language, modules, step conditions, and default modes and types.
The item set depends on the keyword specified.

See the individual command descriptions following for more
information.

Format

SET keyword [/qualifier] parameter

Command Qualifiers

Depends on keyword.

Command Parameters

keyword

Specifies the item to be set. Keyword can be BREAK, EXCEPTION
BREAK, LANGUAGE, LOG, MODE, MODULE, OUTPUT, SCOPE, STEP, TRACE,
TYPE, or WATCH.

parameters

Depends on the keyword specified.

Command Qualifiers

Depends on the keyword specified.

o-28

DEBUGGER COMMANDS

SET BREAK

Description

Establishes a breakpoint at a specified address. The debugger
stops execution of the program before the instruction at that
address is executed and prompts you for a command. You can
optionally specify a list of debugger commands to be executed at
the breakpoint.

SET BREAK command establishes breakpoints. You can optionally
establish a DO command sequence that is executed when the
breakpoint is reached. Breakpoints with DO command sequences
allow you to examine a series of locations, call a procedure to
evaluate results, or execute a command procedure.

If you do not specify the /AFTER qualifier, the debugger stops
each time the breakpoint is reached and executes the DO command
sequence (if there is one). The /AFTER qualifier allows you to
specify the number of times that you want the breakpoint to be
reached before the debugger stops execution.

Format

SET BREAK [/qualifier] address-expression [DO (cmd[;cmd •••])

Command Qualifiers

/AFTER:count

Command Parameters

address-expression

cmd

Specifies the address of the breakpoint. The address must be at
the beginning of an instruction.

Any debugger command. If you specify more than one command, you
must separate them with semicolons. The debugger executes the
commands that you specify when the breakpoint is reached.

Command Qualifiers

/AFTER: count

Specifies that the debugger should not stop execution of the
program until the breakpoint is reached the number of times
specified by count. Each time the breakpoint is reached the
debugger decrements the value specified in count. When the value
reaches 1, the debugger stops the program, executes any DO
commands, and prompts you for a command. The debugger will
continue to stop execution each time the breakpoint is reached
until you cancel it. If count has a value of O, the debugger
stops execution of the program the first time the breakpoint is
reached and then automatically cancels the breakpoint. The
debugger interprets count as a decimal number even if the current
radix mode is not decimal.

o-29

DEBUGGER COMMANDS

Examples

DBG>SET BREAK/AFTER:3 SUB2
DBG>SET BREAK MAIN+lF DO (EX SUBl\D; EVAL @R+3; GO)
DBG>SET BREAK SUBl\LOOP

6-30

DEBUGGER COMMANDS

SET EXCEPTION BREAK

Description

Requests that the debugger treat external exception conditions as
a breakpoint.

Format

SET EXCEPTION BREAK

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG>SET EXC BRE

n-31

DEBUGGER COMMANDS

SET LANGUAGE

Description

Specifies the source language to the debugger. The debugger lets
you enter symbols, expressions, and addresses in terms that are
compatible with the source language that you specify.

Tpe debugger initially sets the language to the source language
used in the first module specified in the LINK command. The SET
LANGUAGE command changes the current language. The language
affects how the debugger interprets and displays expressions,
addresses, radixes, step conditions, and special symbols. The
debugger accepts expressions that are valid in the source
language with some restrictions. The debugger accepts and
displays addresses as off sets from line numbers and labels
accepted in the source language. In FORTRAN, the debugger
interprets %LINE 10 as the address of the source line 10 and
interprets %LABEL 20 as the address of the FORTRAN label 20, and
in BASIC, the debugger interprets %LINE 500.3 as the address of
the third statement on line 500.

Format

SET LANGUAGE language-name

Command Parameters

language-name

Specifies the name of the language. Valid langunges include the
following: BASIC, BLISS, COBOL, FORTRAN, and MACRO.

Command Qualifiers

None.

Examples

DBG>SET LANG COBOL

6-32

DEBUGGER COMMANDS

SET LOG

Description

Specifies the file specification of the log file that the
debugger uses when the output is directed to the log file.

The SET LOG command controls only the name of the loq file; it
does not control whether a log file is being written. The SET
OUTPUT command does this. By default, the debugger uses the file
name DEBUG and the file type LOG. If the debugger is currently
creating a log file and you enter SET LOG, the debugger closes
the existing log file and opens the newly specified file.

If you specify a version number in the file specification and
that version of the file exists, the debugger appends the log of
the debugging session to that existing file.

Format

SET LOG file-spec

Command Parameters

file-spec

Specifies the file specification for the log file. You must
enclose the file specification in quotation marks or apostrophes
only if the file specification begins with a special symbol (such
as a square bracket).

Command Qualifier

None.

Examples

DBG>SET LOG CALC
DBG>SET LOG "[CODEPROJ]FEB29.TMP"

6-33

DEBUGGER COMMANDS

SET MODE

Description

Sets the default entry and display modes. The entry and display
modes control the current radix and whether addresses are
displayed symbolically or as absolute virtual addresses. The
default radix controls how the debugger interprets numbers that
you enter and how it displays numbers.

You can override the current radix mode by using
qualifier in a DEPOSIT, EVALUATE, or EXAMINE
specifying a radix control operator (AD, Ao, and
MACRO).

a radix mode
command or hy

Ax in VAX-11

In SYMBOLIC mode, addresses are displayed as symbols or offsets
from symbolic locations. The debugger first looks for an exact
match with a symbol created with the DEFINE command, a local
symbol, or a global symbol. If no exact match can be found, the
debugger searches for the symbol whose value is less than the
address and closest to it. If it cannot find any symbolic
definition, it displays the address as a virtual address in the
current radix mode. Probable causes of the debugger displaying a
virtual address are that the module's symbols are not included in
the debugger symbol table or that the address is outside the
program's address space.

In NOSYMBOLIC mode, addresses are displayed as virtual addresses
in the current radix mode. Note that you can always enter
symbolic addresses even when the mode is NOSYMBOLIC.

Format

SET MODE mode-keyword [,mode-keyword]

Command Parameters

mode-keyword

Specifies the entry and display mode. Mode-keyword can be
DECIMAL, HEXADECIMAL, OCTAL, NOSYMBOLIC, or SYMBOLIC.

• DECIMAL -- Sets the current radix to decimal.

• HEXADECIMAL -- Sets the current radix to hexadecimal.

• OCTAL -- Sets the current radix to octal.

• NOSYMBOLIC -- Specifies that addresses should be displayed as
absolute virtual addresses.

• SYMBOLIC -- Specifies that addresses should be displayed as
offsets from symbolic locations.

ll-34

DEBUGGER COMMANDS

Command Qualifier

None.

Examples

DBG>SET MODE DEC, NOSYM

6-35

DEBUGGER COMMANDS

SET MODULE

Description

Adds the symbols of the specified modules or of all modules to
the debugger symbol table. The debugger cannot access any local
symbols unless they are in its symbol table.

When the debugger is initiated, the symbol table contains the
symbols in the first module specified in the LINK command. For
images with less than 2,000 (approximately) symbols, you can add
all the modules to the symbol table with SET MODULE/ALL. For
images with more symbols you must add the symbols for the modules
that you need to debug. If you want to add a module and there is
no room in the symbol table, you must use the CANCEL MODULE
command to delete some modules from the symbol table. Note that
when you enter the SET SCOPE command with the name of a scope,
the module that contains that scope is added to the symbol table
if it fits.

The minimum abbreviation of MODULE is MODU.

Format

SET MODULE [/qualifier] [module-name [,module-name] •••

Command Qualifiers

/ALL

Command Parameters

module-name

Specifies the name of the module to be added to the debugger
symbol table.

Command Qualifiers

/ALL

Specifies that all modules in the image should be added to the
symbol table.

Examples

DBG>SET MODU SUBl
DBG>SET MODU/ALL

6-36

DEBUGGER COMMANDS

SET OUTPUT

Description

Controls whether the debugger displays output on the terminal or
writes it to a log file and controls whether the debugger echoes
commands in command procedures. The SET OUTPUT command controls
whether a log file is being created; SET LOG command controls
the file specification of the log file.

When the debugger
displayed on the
procedures and DO
terminal.

is initiated, all debugger responses are
terminal, no log file is created, and command
command sequences are not echoed on the

The log file contains all the commands that you enter at a
terminal and all the responses of the debugger. The log file
does not contain the DBG> prompt that the debugger displays. The
debugger's responses are preceded with an exclamation mark. If
you wish to reproduce a debugging session, you can use the log
file as a command procedure.

Format

SET OUTPUT option [,option •••]

Command Parameters

option

Specifies the mode of output. Option can be LOG, TERMINAL, or
VERIFY or the negative form of each.

• LOG Starts writing output to the log file. The log file
contains all the commands that you enter at the terminal and
all debugger responses. The debugger responses are preceded
by an exclamation mark (comment indicator) to allow you to use
the log file as a command procedure. NOLOG, the initial
setting, inhibits output to the log file.

e TERMINAL -- Starts writing output to the terminal. TERMINAL,
the initial setting, causes all debugger responses to be
displayed on the terminal. NOTERMINAL causes the debugger to
stop displaying all responses except error messages on the
terminal. The NOTERMINAL parameter is useful when you want to
write output only to a log file. If you specify SET OUTPUT
NOLOG, NOTERMINAL, the debugger displays a warning message
telling you that output is being lost.

• VERIFY -- Causes the debugger to echo commands executed from
command procedures and DO sections of SET BREAK commands. The
commands are displayed on the terminal and written to the log
file depending on the other options specified for the SET
OUTPUT command. NOVERIFY, the initial setting, causes the
debugger to not echo commands as they are executed in a
command procedure or DO command sequence.

6-37

Command Qualifiers

None.

Examples

DEBUGGER COMMANDS

DBG>SET OUT VER,LOG,NOTERM

n-38

DEBUGGER COMMANDS

SET SCOPE

Description

Specifies scopes to be searched to find a symbol. By default,
the debugger searches for symbols (that are specified without
pathnames) in the current scope (the scope that contains the
current PC). If the debugger does not find the symbol, it
searches its symbol table for a unique symbol. When you enter
SET SCOPE, the debugger modifies its search rules: it searches
the scopes in the order you specify. If it does not find the
symbol in these scopes, it then searches for a unique symbol.

SET SCOPE command allows you to modify the default symbol search.
You can specify the default scope (scope 0) in any position in
the scope list. You can also specify that global symbols be
searched in any position in the scope list by the symbol
backslash (\).

If the debugger cannot find a symbol in the scopes specified with
the SET SCOPE command, it searches all the modules in the symbol
table for a unique symbol. There is no way to suppress the
search for a unique symbol.

The debugger always searches the symbols defined with the DEFINE
command first.

Format

SET SCOPE scope [,scope •••]

Command Parameters

scope

Specifies the name of a scope, the digit o, a backslash (\), or
the number of a scope. These scopes have the following meanings:

• Name of Scope -- In general, consists of a module name and
block or routine names separated by backslashes. The simplest
case (and the only name of scope valid in VAX-11 MACRO) is a
scope consisting of a module name. When you specify a name of
scope, the debugger adds the symbols for the module specified
to the symbol table if they are not already included.

• 0 -- Specifies the current scope, the scope that contains the
current PC. The current scope is used as the default scope if
you enter the CANCEL SCOPE command. The current scope changes
as different sections of your program are executed. The digit
O is a special case of the number of the scope.

• \ -- Specifies the scope consisting of all the global symbols
defined in your image.

• Number of Scope -- Specifies scope by the level of active
calls. The number 0 represents the scope currently being
executed; the number 1 represents the scope that contained
the call to the current scope, the number 2 represents the
scope that contained the call before that.

fi-39

Command Qualifiers

None.

Examples

DEBUGGER COMMANDS

DBG>SET SCOPE MAIN,SUBl,O,\

n-4o

DEBUGGER COMMANDS

SET STEP

Description

Specifies the current default step conditions. The SET STEP
command controls the unit of the program to be executed
(INSTRUCTION or LINE), whether a called procedure or a subroutine
is treated as a series of instructions or as a single instruction
(INTO or OVER), and whether the STEP command will stop in system
space (SYSTEM, or NOSYSTEM). You can always override the current
default step condition by specifying a mode qualifier in the STEP
command.

The initial STEP conditions are dependent on the current
language. When you enter the SET LANGUAGE command the step
conditions are set to the default for the specified language.
For VAX-11 MACRO, the initial step conditions are INSTRUCTION,
OVER, and NOSYSTEM.

Format

SET STEP condition [,condition •••]

Command Parameters

condition

Specifies the default step condition.
step conditions, you can include
pairs: INSTRUCTION and LINE, INTO
NOSY STEM.

If you specify a list of
one each from the following

and OVER, and SYSTEM and

• INSTRUCTION -- Steps in increments of instructions (the only
valid increment for VAX-11 MACRO).

• LINE Steps
languages, such
MACRO).

in
as

increments of
FORTRAN and

lines
BASIC

for line-oriented
(ignored for VAX-11

• INTO -- Steps into a routine entered by a call or branch to
subroutine instruction (CALLG, CALLS, BSBB, BSBW, and JSB).

• OVER -- Treats a routine entered by a call or branch to
subroutine instruction as part of the call or branch
instruction. It is useful to step over a routine when you are
debugging one procedure and are not interested in debugging
any procedures that it calls.

• SYSTEM -- Treats instructions in system space the same as
other instructions. SYSTEM is useful when you want to step
through a system service routine. Note this condition allows
you to step through code in system space that is executing in
user mode.

• NOSYSTEM -- Ignores all instructions in system space. System
space includes the procedures called to perform system
services and input/output. The debugger does not count any
instructions or lines executed in system space.

6-41

Command Qualifiers

None.

Examples

DBG>SET STEP INS,INTO

DEBUGGER COMMANDS

6-42

DEBUGGER COMMANDS

SET TRACE

Description

Establishes a tracepoint at a specified address or establishes
opcode tracing. The debugger temporarily interrupts execution of
a program before the instruction at that address is executed. It
displays the address of the tracepoint and then continues
execution of the program. Opcode tracing is when the debugger
temporarily interrupts execution of a program whenever the
specified type of instruction is about to be executed.

SET TRACE/BRANCH and SET TRACE/CALL cause the debugger to
interrupt your program before every instruction is executed to
check if the instruction shouid be traced.

Format

SET TRACE [/qualifier] [address-expression]

Command Qualifiers

/BRANCH
/CALL

Command Parameters

address-expression

Specifies the address of the tracepoint. The address must be at
the beginning of an instruction.

Command Qualifiers

/BRANCH

/CALL

Trace all branch, jump, and case instructions in the image (see
the example for the list of branch, jump, and case instructions}.

Trace all instructions that call routines in the image (BSBB,
BSBW, CALLG, CALLS, JSB, RET, and RSB instructions).

Examples

DBG>SET TRACE MAIN+lF
DGB>SET TRACE SUB1/LOOP+09
DBG>SE TR/BRA
DBG>SE TR/CA
DBG>SHOW TRACE
tracepoint at SUB1/LOOP+09
tracepoint at MAIN/MAIN+lF
tracing /CALL instructions: CALLS, CALLG, BSBW, BSBB, JSB, RSB

and RET
tracing /BRANCH instructions: BNEQ, BEQL, BGTR, BLEQ, BGEQ,

BLSS, BGTRU, BLEQU, BVC, BVS, BGEQU, BLSSU, BRB, BRW,
JMP, BBS, BBC, BBSS, BBCS, BBSC, BBCC, BBSSI, BBCCI,
BLBS, BLBC, ACBB, ACBW, ACBL, ACBF, ACBD, AOBLEQ,
AOBLSS, SOBGEQ, SOBGTR, CASEB, CASEW and CASEL

6-43

DEBUGGER COMMANDS

SET TYPE

Description

Sets the default types for the DEPOSIT and EXAMINE commands. The
SET TYPE command sets the default type when there is no assigned
data type in the symbol table. The SET TYPE/OVERRIDE command
sets the default type for all data i terns in DEPOSIT and EXAMINE
commands.

VAX-11 MACRO does not provide any symbol type information to the
debugger. Consequently, you can use either SET TYPE or'SET
TYPE/OVERRIDE for modules written in VAX-11 MACRO.

Format

SET TYPE [/qualifier] type-keyword

Command Qualifiers

/OVERRIDE

Command Parameters

type-keyword

Specifies the default data type. Type-keyword can be
ASCII:length, BYTE, INSTRUCTION, LONG, or WORD.

• ASCII:length -- Specifies that the default data type is an
ASCII string. The number of characters in the string is
specified by length. If you do not specify length, the
debugger assumes a length of 4.

• BYTE -- Specifies that the default data type is byte integer.

• INSTRUCTION
instruction.

Specifies that the default data type is

• LONG -- Specifies that the default data type is longword
integer.

• WORD -- Specifies that the default data type is word integer.

Command Qualifiers

/OVERRIDE

Specifies that the specified data type should be used even when a
symbol has an assigned data type in the symbol table. These data
types are assigned by language compilers. The CANCEL
TYPE/OVERRIDE command cancels the effects of SET TYPE/OVERRIDE
and specifies that the debugger should use the symbols' assigned
data types. The minimum abbreviation is /OVERR.

Examples

DBG>SET TYP ASC:8
DBG>SET TYP/OVERR LONG

n-44

DEBUGGER COMMANDS

SET WATCH

Description

Establishes a watchpoint at the specified address. The debugger
stops execution of the program whenever an instruction writes to
the data to the specified address. The debugger then prompts you
for a command.

The SET WATCH command instructs the debugger to stop execution of
the program if any of a series of addresses is written to. The
debugger usually watches the four bytes beginning at the
specified address. However, if the address has an assigned data
type in the symbol table, the debugger watches the number of
bytes associated with that data type.

Whenever an instruction attempts to modify a location on the same
page as the address specified with the SET WATCH command, the
debugger gets control. The debugger allows the instruction to
execute. If the watchpoint is modified, the debugger displays
the old and new values and then prompts for a command.

You cannot set a watch point on a dynamically allocated variable
such as a BASIC variable or array element or a FORTRAN dummy
argument.

Format

SET WATCH address-expression

Command Parameters

address-expression

Specifies the address of the watchpoint.

Command Qualifiers

None.

Examples

DBG>SET WAT SUB2\TABLE+20

o-45

DEBUGGER COMMANDS

SHOW

Description

Displays the current breakpoints, calls, language, log file,
entry and display modes, modules, output setting, scope, step
conditions, tracepoints, data types, and watchpoints. The item
that is displayed depends on the keyword specified.

See the individual command descriptions following for more
information.

Format

SHOW keyword [/qualifier] [parameter]

Command Qualf iers

Depends on keyword.

Command Parameters

keyword

Specifies the item to be displayed. Keyword can be BREAK, CALLS,
LANGUAGE, LOG, MODE, MODULE, OUTPUT, SCOPE, STEP, TRACE, TYPE,
and WATCH.

parameter

Depends on the keyword specified.

Command Qualifiers

Depends on the keyword specified.

n-46

DEBUGGER COMMANDS

SHOW BREAK

Description

Displays the locations of current breakpoint~ and any /AFTER
qualifier or DO command sequences associated ~ith them.

If you entered a breakpoint with an /AFTER qualifier, the
debugger decrements the value specified each time the breakpoint
is reached. The SHOW BREAK command displays the current value,
that is the number of times the breakpoint must be reached before
the breakpoint is executed. The value is always displaye<l as a
decimal number even if the current radix mode is not decimal.

Format

SHOW BREAK

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG>SHOW BREAK
breakpoint at SUBl\LOOP
breakpoint at MAIN\MAIN+lF do (EX SUBl\D
routine breakpoint /after:2 at SUB2\SUB2

n-47

EVAL (aR3+4 GO)

DEBUGGER COMMANDS

SHOW CALLS

Description

Displays the current location in the program and the preceding
calls that were executed. The SHOW CALLS command is useful in
determining how your program reached the current position.

The SHOW CALLS command displays the same information as the
traceback display. The traceback display appears after error
messages when you have not initiated the debugger.

Format

SHOW CALLS [integer]

Command Parameters

integer

Causes the debugger to display the number of preceding calls
specified by integer. If you omit integer, the debugger displays
all preceding calls. Integer is always interpreted as a decimal
number even if the current radix mode is not decimal.

Command Qualifiers

None.

Examples

DBG>SHOW CALLS
module name
SUB2

routine name
SUB2
SU Bl
MAIN

fl-48

line

5
10

relative PC
00000002
00000014
0000002C

absolute PC
0000085A
00000854
0000082C

DEBUGGER COMMANDS

Description

Displays the current language.

Format

SHOW LANGUAGE

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG>SH LANG
language: MACRO

n-49

SHOW LANGUAGE

DEBUGGER COMMANDS

SHOW LOG

Description

Displays the name of the log file and shows whether the debugger
is writing to the log file.

Format

SHOW LOG

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG>SH LOG
not logging to DEBUG.LOG

fi-50

DEBUGGER COMMANDS

SHOW MODE

Description

Displays the current default entry and display modes and the
default types.

The SHOW MODE command displays the current default modes, current
type, and override type. If the current type or override type is
ASCII:length, the debugger displays length as a decimal numb~r
even if the current radix mode is not decimal.

Format

SHOW MODE

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG>SH MOD
modes: symbolic, hexadecimal
type: long integer
type/override: none

n-51

DEBUGGER COMMANDS

SHOW MODULE

Description

Lists the modules in the image and shows which modules have
symbols in the debugger symbol table.

The SHOW MODULE command lists the program modules by name,
indicates whether or not their symbols are currently included in
the debugger symbol table, and lists the amount of space required
to include the symbols in the table.

By default, the debugger includes the symbols in the first module
specified in the link command. You can add modules with the SET
MODULE command and you can delete modules from the symbol table
with the CANCEL MODULE command.

The debugger lists each module by name. It lists a "yes" if the
module's local symbols are included in the symbol table, a "no"
if they are not. If the modules are not all written in the same
language, the debugger lists the language each module is written
in.

If a module is not currently included in the symbol table, the
debugger lists the maximum amount of space that the symbols in
the module can require in the symbol table. Once a module is
included in the symbol table, the dehugqer lists the actual
amount of memory needed to include the symbols. The debugger
also lists the total number of modules and the amount of free
space remaining in the symbol table.

The debugger has no knowledge of any modules that it does not
list.

The minimum abbreviation of MODULE is MODU.

Format

SHOW MODULE

Command Parameters

None.

Command Qualifier

None.

Examples

DBG> SHOW MODU
module name symbols language size
FOO yes MACRO 432
MAIN no FORTRAN 280
SU Bl no FORTRAN 104
SUB2 no FORTRAN 204
total modules: 4. remaining size: (-)0720.

n-5?.

DEBUGGER COMMANDS

SHOW OUTPUT

Description

Displays the current setting of the debugger's output
configuration. Reports whether the debugger is displaying output
on the terminal, writing output to a log file, verifying command
procedures, and verifying DO command sequences.

Format

SHOW OUTPUT

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG>SH OUT
output: noverify, terminal, not logging tQ DEBUG.LOG

n-53

DEBUGGER COMMANDS

SHOW SCOPE

Description

Displays
debugger
(current
debugger
currently

Format

the list of default scopes currently used by the
to resolve symbol references. If you have included a 0

scope) or a number in the SET SCOPE command, the
also displays, if possible, the name of the scope
associated with the number.

SHOW SCOPE

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG>SH sea
scope: MAIN, SUBl, O[=SUB2) ,\

fl-54

DEBUGGER COMMANDS

SHOW STEP

Description

Displays the current default step conditions.

Format

SHOW S'fEP

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG>SH STEP
step type: no system, by instruction, over routine calls

n-55

DEBUGGER COMMANDS

SHOW TRACE

Description

Displays all current tracepoints and whether any opcode tracing
is in effect.

Format

SHOW TRACE

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG> SHOW TRACE
tracepoint at CALC\MULT
tracing /CALL instructions: CALLS, CALLG, BSBW, BSBB, JSB, RSB
and RET

()-Sf)

DEBUGGER COMMANDS

SHOW TYPE

Description

Displays the current default data type. If you specify the
/OVERRIDE qualifier, the debugger displays the current default
override data type. Note that the SHOW MODE command displays
both the current data type and the override data type.

If the data type is /ASCII:length, the debugger displays length
as a decimal number even if the current radix is not decimal.

Format

SHOW TYPE [/qualifier]

Command Qualifiers

/OVERRIDE

Command Parameters

None.

Command Qualifiers

/OVERRIDE

Displays the current override default data type.
abbreviation is /OVERR.

Examples

DBG>SH ·ry
type: long integer

6-57

The minimum

DEBUGGER COMMANDS

SHOW WATCH

Description

Displays the locations of the current watchpoints and the number
of bytes monitored by each watchpoint.

Format

SHOW WATCH

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG>SH WATCH
watchpoint at MAIN\ALPHA for 4. bytes
watchpoint at SUB2\TABLE+20 for 4. hytes

n-58

DEBUGGER COMMANDS
(

STEP

Description

Executes one or a specified number- of instructions or lines.
STEP is useful when you want to go throuqh your program a step at
a time.

The unit of increment that is executed depends on the step
conditions specified in command qualifiers or the current default
step conditions. The initial conditions are dependent on the
current language but can be changed by the SET STEP command.

Format

STEP [/qualifier] [integer]

Command Qualifiers

/INSTRUCTION
/INTO
/LINE
/OVER
/NOSY STEM
/SYSTEM

Command Parameters

integer

Specifies the number of units of the program to be executed
before the debugger interrupts execution. The debugger always
interprets the integer as a decimal number even if the current
radix mode is not decimal. If you do not specify integer, the
debugger executes one unit of the program.

Command Qualifiers

/INSTRUCTION

/INTO

/LINE

Steps in increments of instructions (the only valid increment for
VAX-11 MACRO). Displays the next instruction to be executed
after the step is completed.

Steps into a routine entered by a call or branch to subroutine
instruction (CALLG, CALLS, BSRB, BSBW, and ~SB).

Steps in increments of lines for line-oriented languages, such as
FORTRAN and BASIC (ignored for VAX-11 MACRO).

n-59

DEBUGGER COMMANDS

/NOSY STEM

/OVER

Ignores all instructions in system space.
the procedures called to perform
input/output. The debugger does not count
lines executed in system space.

System space includes
system services and

any instructions or

Treats a routine entered by a call or branch instruction as part
of the call or branch instruction. It is useful to step over a
routine when you are debugging one procedure and do not want to
debug any other procedures that it calls.

/SYSTEM

Treats instructions in system space the same as other
instructions. The /SYSTEM qualifier is useful when you want to
step through a system service routine. This qualifier allows you
to step through code in system space that is executing in user
mode.

Examples

DBG>STEP
start at MAIN\MAIN+09
stepped to MAIN\MAIN+l4: MOVC5
DBG>STEP/LINE
start at MAIN\MAIN+l4
stepped to MAIN\MAIN+lF
DBG>STEP
start at MAIN\MAIN+lF
stepped to MAIN\MAIN+24: CALLG
DBG>STEP/INTO
start at MAIN\MAIN+24
stepped to routine SUBl: MOVAL

6-60

#05,LA0000020A, #20, #14,BAOEC(Rll)

LA0000060C,Rll

APPENDIX A

VAX-11 SYMBOLIC DEBUGGER MESSAGES

If the debugger encounters an error, it displays a message on the
terminal. The general format of a debugger message is:

1

code

text

%DEBUG-l-code, text

A severity level indicator. It has a value of I for
informational messages, W for warning messages, E for error
messages, and F for fatal messages.

An abbreviation of the message text; the message description in
this appendix are alphabetized by this code.

The explanation of the message.

For example:

%DEBUG-W-DIVBYZERO, attempted to divide by zero

Listed below are the messages displayed by the debugger. Each messaqe
is accompanied by an explanation of the cause of the error and the
recommended user action to correct the error.

BADOPCODE, opcode xxx is unknown

Explanation: The opcode xxx specified in the deposit command is
unknown to the debugger. If the opcode is a valid VAX-11 MACRO
opcode, then it is an opcode that has a synonomous opcode. These
opcodes, such as MOVAF and MOVAL, generate the same instruction.
The debugger only recognizes one of them. Severity is warning.

User Action: Specify a valid opcode or specify the opcode's
synonym that the debugger accepts.

BADSCOPE, invalid pathname xxx, SCOPE not changed

Explanation: The scope xxx specified in the SET SCOPE command
contained a pathname that does not exist. Severity is warning.

User Action: Specify a valid scope.

A-1

VAX-11 SYMBOLIC DEBUGGER MESSAGES

BADSTARTPC, cannot access start PC = xxx

Explanation: Location xxx is not an accessible address
therefore cannot be executed. This is often caused when
command with no address specification is entered after
program has terminated. The debugger tries to execute
instruction at location O, which is not accessible. Severity
warning.

and
a GO

the
an
is

User Action: Specify a different address specification in the GO
command or, if the program has terminated, you can exit from the
debugger and initiate the program with the DCL RUN command.

BADWATCH, cannot watch protected address xxx

Explanation: A SET WATCH command
Note that you can not place
allocated variable because these
stack. FORTRAN dummy arguments
arrays are dynamically allocated.

specified a protected address.
a watchpoint on a dynamically
variables are stored on the

and most BASIC variables and
Severity is warning.

User Action: Do not use watchpoint on this address.

BITRANGE, bit range out of limits

Explanation: The EVALUATE command specified a bit field that is
too wide. Severity is warning.

User Action:
limit is 31;

The low limit of the bit field is 0 and the high
the maximum range is <0:31>.

BRTOOFAR, destination xxx is too far for branch operand

Explanation: The DEPOSIT command specified a hranch instruction
with a destination, xxx, too far from the current PC. Severity
is warning.

User Action: Change a BRB instruction to BRW or a BRW to JMP or
specify a closer address.

DBGBUG, internal DEBUG coding error, please report no. nnn

Explanation: An internal debugger error has been encountered.
Severity is informational.

User Action: If the error is reproducible, submit a Software
Performance Report (SPR) and if possible, enclose both a copy of
the program being debugged and a logged debuoging session that
reproduces the error.

DBGERR, internal DEBUG coding error

Explanation: An internal debugger error has been encountered.
Severity is error.

User Action: If the error is reproducible, submit a Software
Performance Report (SPR) and if possible, enclose both a copy of
the program being debugged and a logged debugging session that
reproduces the error.

A-2

VAX-11 SYMBOLIC DEBUGGER MESSAGES

DEBUGBUG, internal DEBUG coding error, please report no. nnn

Explanation: An internal dehugger error has been encountered.
Severity is error.

User Action: If the error is reproducible, submit a Software
Performance Report (SPR) and if possible, enclose both a copy of
the program being debugged and a logged debugging session that
reproduces the error.

DIVBYZERO, attempted to divide by zero

Explanation: An expression contained a division by o.
is warning.

Severity

User Action: Reformulate the expression.

EXARANGE, invalid range of addresses

Explanation: The range of addresses specified was in the wrong
order. The higher address preceded the lower address. Severity
is warning.

User Action: Reenter the command with a valid address range.

EXCEEDACT, number of access actuals supplied exceeds limit of nnn

gxplanation: There are too many access
structure reference. This structure
Severity is warning.

actuals in the BLISS
has nnn access actuals.

User Action: Specify nnn or less access actuals.

EXITSTATUS, is xxx

Explanation: The program has exited with the status xxx. See
the VAX/VMS System Services Reference Manual for more information
about the VAX/VMS exit status codes. Severity is informational.

User Action: None.

EXPSTKOVR, expression exceeds maximum nesting level

Explanation: The expression is too complex.
warning.

Severity is

User Action: Reduce the nesting of parentheses and simplify the
expression.

FRERANGE, storage package range error

Explanation: Data used to control internal storage allocation is
corrupt. Severity is error.

User Action: If DEPOSIT commands or the user program has not
modified the debugger's storage area, submit an SPR.

A-3

VAX-11 SYMBOLIC DEBUGGER MESSAGES

FRESIZE, storage package size error

Explanation: Data used to control internal storage allocation is
corrupt. Severity is error.

User Action: If DEPOSIT commands or the user program has not
modified the debugger~s storage area, submit an SPR.

IMPTERMNO, improperly terminated numeric string nnn

Explanation: Numeric string nnn with radix control did not have
a terminating apostrophe. Severity is warning.

User Action: Terminate the string with an apostrophe.

INITIAL, language is xxx, module set to yyy

Explanation: This message is displayed when the debugger is
invoked by the image activator. The language is set to xxx, and
the module to yyy. Module yyy is the first module specified in
the LINK command and language xxx is the language used in that
module. Severity is informational.

User Action: None.

INTEGER, this operation only valid on integers

Explanation: Command specified an operation with operands that
did not have integer values when integer values are required.
Severity is warning.

User Action: Use only operands that have integer values in
specified operation.

INVACCESS, structure requires nnn access actuals, mmm were supplied

Explanation: A reference to a VAX-11 BLISS
actual arguments, the structure requires
warning.

structure had nnn
mmm. Severity is

User Action: Supply correct number of actual arguments.

INVARRDSC, invalid array descriptor

Explanation: An array descriptor in the image does not have the
correct format. This can be caused by a reference to a VAX-11
BASIC array when the first line of the program has not been
executed. The array is not set up correctly until the BASIC
program initialization is done. This message can also be caused
by a user program or DEPOSIT commands altering a compiler
generated array descriptor. Severity is warning.

User Action: If the reference is to a VAX-11 BASIC array, enter
a step or GO command to ensure that the BASIC program
initialization is done and then repeat the reference. Otherwise,
if an array descriptor has not been altered, submit an SPR.

A-4

VAX-11 SYMBOLIC DEBUGGER MESSAGES

INVCHAR, invalid character

Explanation: The command contained a character that is invalid
in the command's context. Severity is warning.

User Action: Reenter command.

INVDIM, subscript error, was declared dimension (string)

Explanation: A reference to an array contained either an
incorrect number of subscripts or the value of the subscripts is
outside of the bounds of the array. The dimension of the array
was specified by string. Severity is warning.

User Action: Specify the correct number of subscripts with
values in the correct range.

INVDSTREC, invalid DST record

Explanation:
encountered.

An invalid debug
Severity is error.

symbol table record was

User Action: Submit an SPR unless the user program or a DEPOSIT
command has altered a debug symbol table record.

INVFLOAT, variable has invalid floating point format

Explanation: A floating point number has an invalid bit pattern.
Can be caused by depositing a value with a type qualifier into an
address associated with a floating point type variable. Severity
is informational.

User Action: Examine the value of the symbol with a type
qualifier to override the floating point format.

INVNUMBER, invalid numeric string 'nnn'

Explanation: The numeric string 'nnn' is invalid in the current
language. Severity is warning.

User Action: Specify the value in another numeric format or set
the language to one that accepts this type of numeric string.

INVOPR, unrecognized operator in expression

Explanation: An expression
debugger does not recognize.

contained a character
Severity is warning.

that

User Action: Reenter the command with a valid expression.

INVPATH, improperly terminated pathname beginning with xxx

the

Explanation: The.pathname beginning with xxx is not a valid
pathname. Severity is warning.

User Action: Check the pathname for errors and reenter command.

A-5

VAX-11 SYMBOLIC DEBUGGER MESSAGES

LABNOTFND, search for %label xxx using scope failed

Explanation: The label
specified pathname or
warning.

xxx could not be found
the current default scope.

using the
Severity is

User Action: Reenter the command with the correct pathname.

LASTCHANCE, stack exception handlers lost, re-initializing stack

Explanation: Error in user program caused the exception handling
mechanism to fail. Can be caused when the stack is overwritten
by the user program or by deposit commands. Severity is warning.

User Action: Identify and correct the error in the user program.

LINNOTFND, search for %line nnn using scope failed

Explanation: The line nnn specified does not exist in the
default scope(s). Note that the debugger does not search for a
unique line number but only searches the current default scope
list. Severity is warning.

User Action: Specify the scope of the line or the correct line
number.

LONGDST, too many modules - some ignored

Explanation: There are too many modules in the image for the
debugger to keep track of. The excess modules are ignored. You
cannot set the module to any of the ignored modules.

User Action: Use SHOW MODULE command to determine which modules
are included. If crucial modules were omitted, relink the image,
specifying first the modules needed for debugging.

MAXDIMSN, maximum number of subscripts is nnn

Explanation:
subscripts.

An array reference specified too few or too many
The array has nnn subscripts. Severity is warning.

User Action: Reenter the command with correct
subscripts.

MODNOTADD, no space to add module yyy

Explanation: There was no room to add the modules
the SET MODULE command to the symbol table.
informational.

number

specified
Severity

of

in
is

User Action: Use the SHOW MODULE command to show the modules
currently in the symbol table and the remaining space, and then
use the CANCEL MODULE command to free the needed space.

A-n

VAX-11 SYMBOLIC DEBUGGER MESSAGES

MULTOPR, multiple successive operators in expression

Explanation: There were two adjacent operators in expressions.
Severity is warning.

User Action: Use angle brackets or parentheses (depending on the
current language) to separate the operators or enter a valid
expression.

NEEDMORE, unexpected end of command line

Explanation: The command entered was not complete. A required
part of a command was omitted. Severity is warning.

User Action: Reenter the complete command.

NOACCESSR, no read access to virtual address nnn

Explanation: The debugger does not have read access to the
address specified. Can be caused when an EXAMINE command with no
address specification is entered at the beginning of a debugging
session. Severity is warning.

User Action: Specify an address that is within the image.

NOACCESSW, no write access to virtual address nnn

Explanation: A DEPOSIT, SET BREAK, or SET TRACE command
specified the address nnn that the debugger does not have write
access to the page. The debugger requires write access in order
to be able to set up breakpoints and tracepoints. Severity is
warning.

User Action: You cannot do the requested operation.

NOANGLE, unmatched angle brackets in expression

Explanation: An expression did not have a closing right angle
bracket. Severity is warning.

User Action: Reenter the command with a complete expression.

NOBRANCH, instruction requires branch-type operand

Explanation: A DEPOSIT command specified a branch-type
instruction that specified an illegal addressing mode as the
operand. Severity is warning.

User Action: Reenter the command using a valid branch operand in
the destination field.

NOBREAKS, no breakpoints are set

Explanation: The SHOW BREAK command was entered
breakpoints were set. Severity is informational.

User Action: None.

A-7

and no

VAX-11 SYMBOLIC DEBUGGER MESSAGES

NOCALLS, no active call frames

Explanation: The SHOW CALLS command was entered and there were
no active calls. There are no active calls after your program
has terminated. Severity is warning.

User Action: None.

NOCNVT, incompatible types, no conversion

Explanation: DEPOSIT command specified incompatible data for the
variable type. Severity is warning.

User Action: Reenter the command and either specify the correct
data type or use a type qualifier.

NODECODE, cannot decode instruction

Explanation: The address specified in the EXAMINE command is not
the beginning of a valid VAX-11 instruction. This can be caused
by specifying an address that is in the middle of an instruction
or is in a data area. Severity is warning.

User Action: Specify an address
instruction.

that contains

NODELIMTR, missing or invalid instruction operand delimiter

a valid

Explanation: A DEPOSIT command specified an invalid instruction
operand format. Severity is warning.

User Action: Reenter the command with valid operands.

NOEND, string beginning with xxx is missing end delimiter y

Explanation: A DEPOSIT command specified an ASCII or INSTRUCTION
string beginning with characters xxx that did not have a
terminating apostrophe. Severity is warning.

User Action: Reenter the command with a terminating apostrophe.

NOFREE, no free storage available

Explanation: No free storage is available for the debugger to
execute the command. Severity is error.

User Action: Free storage by using the CANCEL MODULE command and
then reenter command.

NOGLOBALS, some or all global symbols not accessible

Explanation: The image was linked with
and there are no global symbols in
message can also be caused if the image
symbols. Severity is informational.

the /NODEBUG qualifier
the symbol table. This
has too many global

User Action: Relink the image with the /DEBUG qualifier or, if
the message was caused by an overflow condition, remove some of
the global symbol definitions from the image (if possible).

A-8

VAX-11 SYMBOLIC DEBUGGER MESSAGES

NOINSTRAN, cannot translate opcode at location xxx

Explanation: The address specified in the EXAMINE command is not
the beginning of a valid VAX-11 instruction. This can he caused
by specifying an address that is in the middle of an instruction
or is in a data area~ Severity is warning.

User Action: Specify an address
instruction.

NOLABEL, routine xxx has no %label nnn

that contains a valid

Explanation: The label nnn does not exist in the scope xxx that
is specified in the pathname. Severity is warning.

User Action: Specify a valid pathname -- either change the label
or the scope.

NOLINE, routine xxx has no %line nnn

Explanation: The line nnn does not exist in the scope xxx that
is specified in the pathname. This can he caused by a source
line number that does not exist or that does not contain
executable code in the source program. Severity is warning.

User Action: Specify a valid pathname -- either change the line
number or the scope.

NOLITERAL, no literal translation exists for xxx

Explanation: The command attempted to find a literal translation
for a value. The debugger does not support this operation.
Severity is warning.

U$er Action: None.

NOLOCALS, image does not contain local symbols

Explanation: All of the modules in the image were compiled or
assembled without traceback information. There is no local
symbol information in the image. Severity is informational.

User Action: Recompile or reassemble the modules and then relink
them.

NOOPRND, missing operand in expression

Explanation: One or more operands
expression. Severity is warning.

are missing

User Action: Reenter command with complete expression.

NORSTBLD, cannot build symbol table

from an

Explanation:
because of
error.

The debugger is unable to build a symbol table
errors in the format of the image file. Severity is

User Action: Relink the image and, if the error is reproducible,
submit an SPR explaining how the image file was created.

A-9

VAX-11 SYMBOLIC DEBUGGER MESSAGES

NOSUCHBPT, no such breakpoint

Explanation: The CANCEL BREAK command specified an address that
is not the address of a breakpoint. Severity is informational.

User Action: Use the SHOW BREAK command to find the location of
the current breakpoints and then cancel any breakpoints that you
want to cancel.

NOSUCHLAN, language xxx is unknown

Explanation: The debugger does not recognize the language
specified. This message can be caused by mistyping a language
that the debugger supports or by entering a language that the
debugger does not currently support. Severity is warning.

User Action: Specify a valid language in the SET LANGUAGE
command.

NOSUCHMODU, module xxx is not in module chain

Explanation: The module xxx, specified in the SET MODULE
command, does not exist in the image. This message can be caused
when a module name has been entered incorrectly or when the image
had too many modules for the debugger to handle. Severity is
warning.

User Action: Specify a module that is in the image.

NOSUCHTPT, no such tracepoint

Explanation: The CANCEL TRACE command specified an address that
was not the address of a tracepoint. Severity is informational.

User Action: use the SHOW TRACE command to display the current
tracepoints and then cancel any that you want to cancel.

NOSUCHWPT, no such watchpoint

Explanation: The CANCEL WATCH command specified an address that
was not the address of a watchpoint. Severity is informational.

User Action: Use the SHOW WATCH command to display the current
watchpoints and then cancel any that you want to cancel.

NOSYMBOL, symbol xxx is not in the symbol table

Explanation: The symbol xxx cannot be located in the debugger's
symbol table. This can be caused when the module that defines
the symbol has not been added to the debugger's symbol table or
when a symbol name that is not in the image has been entered.
Severity is warning.

User Action:
table with
name.

Add the required module to the debugger's symbol
the SET MODULE command or specify the correct symbol

A-10

VAX-11 SYMBOLIC DEBUGGER MESSAGES

NOTALLSYM, cannot initialize symbols for default module

Explanation: The debugger could not put the symbol table
information for the first module specified in the LINK command
into the symbol table. Severity is informational.

User Action: Use the SET MODULE command to add modules to the
symbol table.

NOTASTRUCT, xxx was not declared as a structure

Explanation:
symbol xxx
warning.

A VAX-11
that was

BLISS structure
not declared a

reference
structure.

specifiecl a
Severity is

User Action: Reenter the command with a valid symbol reference.

NOTDONE, xxx not yet a supported feature

Explanation:
literal that
warning.

A DEPOSIT command specified an instruction with a
the debugger does not yet support. Severity is

User Action: None.

NOTIMPLAN, xxx is not implemented at command level

Explanation:
the debugger
warning.

The SET LANGUAGE command specified a language that
recognizes but does not yet support. Severity is

User Action: Specify a language that the debugger supports.

NOTLINBND, program is not at a line boundary

Explanation: The GO command specified an address that contains
threaded code data. The debugger cannot execute starting from
this address. Severity is warning.

User Action: Specify an address that
instructions.

contains

NOTRACES, no tracepoints are set, no opcode tracing

executable

Explanation: There are no tracepoints or opcode tracing set.
Severity is informational.

User Action: None.

NOUNIQUE, SYMBOL xxx IS NOT UNIQUE

Explanation: The symbol specified was not in a default scope and
was defined in more than one scope. Severity is warning.

User Action: Specify the scope of the symbol in a pathname or
change the default scope.

A-11

VAX-11 SYMBOLIC DEBUGGER MESSAGES

NOWATCHES, no watchpoints are set

Explanation: No watchpoints are set. Severity is informational.

User Action: None.

NOWBPT, cannot insert breakpoint

Explanation: Internal debugger error. Severity is fatal.

User Action: Submit an SPR.

NOWOPCO, cannot replace breakpoint with opcode

Explanation: Internal debugger error. Severity is fatal.

User Action: Submit an SPR.

NOWPROT, cannot set protection

Explanation: Internal debugger error. Severity is fatal.

User Action: Submit an SPR.

NUMOPRNDS, xxx instructions must have nnn operands

Explanation: A DEPOSIT command specified the xxx instruction
with an incorrect number of operands. This instruction requires
nnn operands. Severity is warning.

User Action: Reenter the command with the instruction having the
correct number of operands.

NUMTRUNC, number truncated

Explanation: The debugger truncated the numeric data because it
exceeded the length of the data type. Severity is informational.

User Action: None.

OPSYNTAX, instruction operand syntax error

Explanation: The DEPOSIT command contained an instruction with
an operand syntax error. Severity is warning.

User Action: Reenter the command with a valid instruction.

OUTPUTLOST, output being lost, both NOTERMINAL and NOLOG are in effect

Explanation: The SET OUTPUT command has set the output
conditions to NOTERMINAL and NOLOG; consequently, the output is
not displayed on the terminal or written to a log file. The
output normally displayed by the debugger will not be available.
Severity is informational.

User Action: Use the SET OUTPUT command to send output to the
terminal or to a log file.

A-12

VAX-11 SYMBOLIC DEBUGGER MESSAGES

PARSEERR, internal parsing error

Explanation: Internal debugger error. Severity is warning.

User Action: Submit an SPR.

PARSTKOVR, parse stack overflow, simplify expression

Explanation: The expression was too complex for the debugger to
evaluate. Severity is warning.

User Action: Simplify the expression.

PATHTLONG, too many qualifiers on name

Explanation: There were too many elements in a
Severity is warning.

pathname.

User Action: Reduce number of elements in pathname, if possible.

PCNOTINSCP, PC is not within the scope of the routine declaring symbol

Explanation: A dynamically allocated variable was referenced and
the variable was not defined in the scope that contains the
current PC. The value of the variable is undefined when you are
not currently executing the scope in which it is definerl. The
debugger uses a value for the variable that may have no relation
to the symbol's current value. Note that VAX-11 FORTRAN dummy
arguments and most VAX-11 BASIC variables and arrays are
dynamically allocated. Severity is informational.

User Action: Only reference a dynamically allocated variable
when you are currently executing the scope in which it is
defined.

REDEFREG, register name already defined

Explanation: DEFINE command attempted. to
name. The command is ignored because
register names. Severity is warning.

User Action: None.

RESOPCODE, opcode xxx is reserved

redefine a
you cannot

Explanation: Opcode xxx is reserved for use
Severity is warning.

by

User Action: None.

RSTERR, error in symbol table

register
redefine

DIGITAL.

Explanation: There is a format error in the symbol table.
Severity is error.

User Action: If this is not caused by a user program error or a
DEPOSIT command, submit an SPR.

A-13

VAX-11 SYMBOLIC DEBUGGER MESSAGES

SIZETRUNC, size field truncated to 32 bits

Explanation: The size entry in
specification was larger than 32.
entry to 32 and executed the command.

a VAX-11 BLISS field
The debugger set the size

Severity is informational.

User Action: None.

STEPINTO, cannot step over PC = xxx

Explanation:
and executed
informational.

The debugger was unable to step over
a step into the routine instead.

User Action: None.

STGTRUNC, string truncated

Explanation: The debugger truncated an ASCII string
exceeded the size of the ASCII data type.
informational.

User Action: None.

STMNOTFND, Line nnn.mmm not found.

the routine
Severity is

because
Severity

it
is

Explanation: The VAX-11 BASIC statement number mmm was not found
on line nnn. Severity is warning.

User Action: Reenter the command with valid line and statement
numbers.

STRUCSIZE, structure size declared as xxx units, yyy was given

Explanation: The VAX-11 BLISS structure size was declared to be
xxx units but was referenced with yyy units. Severity is
informational.

User Action: None.

SUBSTRING, invalid substring (nnn:mmm), was declared CHARACTER*ppp

Explanation:
the bounds
warning.

The substring specification (nnn:mmm) is not within
defined for the CHARACTER data type. Severity is

User Action: Specify a substring specification within the bounds
defined for the data type.

SYNTAX, command syntax error at or near xxx

Explanation: The debugger encountered a command syntax error
near the element xxx. Severity is warning.

User Action: Reenter the command.

A-14

VAX-11 SYMBOLIC DEBUGGER MESSAGES

VERIFYICF, xxx indirect command file yyy

Explanation: The debugger is verifying an indirect command file.
This message is displayed before the command file is executed and
after all the commands have been displayed. Severity is
informational.

User Action: None.

A-15

APPENDIX B

COMPATIBILITY FEATURES

This appendix describes features in the VAX-11 Symbolic Debugger,
Version 2 that provide compatihility with the VAX-11 Symbolic
Debugger, Version 1. The Version 2 debugger has a different
definition of entry and display modes than the Version 1 debugger.
Some entry and display modes in the Version 1 debugger are now
considered data types. For compatibility with the Version 1 debugger,
the Version 2 debugger accepts ASCII, BYTE, INSTRUCTION, LONG, or WORD
in a SET MODE command, but treats such commands as if they were SET
TYPE or SET TYPE/OVERRIDE commands.

Table B-1 lists the SET MODE commands accepted by the debugger and the
equivalent SET TYPE command. These SET MODE commands may not be
supported in future versions of the debugger.

Compatible
Version 1

Commands

SET MODE ASCII

SET MODE BYTE

SET MODE INSTRUCTION

SET MODE LONG

SET MODE WORD

Table B-1
Equivalent Commands

Equivalent
Version 2

Commands
-

SET TYPE/OVERRIDE ASCII: 4

SET TYPE BYTE

SET TYPE/OVERRIDE INSTRUCTION

SET TYPE LONG

SET TYPE WORD
----~-- ···- --

B-1

APPENDIX C

COMMAND SUMMARY

This appendix lists in alphabetical order each debugger command with a
format description, a list of qualifiers, a list of parameters, and a
brief description of the command's function. The boldface letters
indicate the minimum abbreviation that you must type in order for the
debugger to recognize the command name, qualifier or parameter.

:Format Function

@flle-spec Accept commands from specified command procedure.

CALL name [(argument-list)] Calls the specified procedure.

CANCEL keyword [/qualifier] [parameters] Cancels specified item.

CANCEL ALL Cancels all breakpoints, tracepoints, and watchpoints and
restores scope and entry/display modes and types to their
default values.

CANCEL BREAK [/qualifier] Cancels specified breakpoint or all breakpoint.
[address-expression]

/ALL

CANCEL EXCEPTION BREAK Cancels effects of SET EXCEPTION BREAK.

CANCEL MODE Sets all modes and types to their default value for the current
language.

CANCEL MODULE [/qualifier] module [,module ...] Cancels specified modules or all modules.
/ALL

CANCEL SCOPE Sets scope to its default value (PC scoping).

CANCEL TRACE [/qualifier] Cancels the specified tracepoint or the specified opcode trac-
[address-expression] ing or all tracepoints and opcode tracing.

/ALL
/BRANCH
/CALL

CANCEL TYPE/OVERRIDE Sets the override type to none.

CANCEL WATCH [/qualifier] Cancels the specified watchpoint or all watchpoints.
[address-expression]

/ALL

<CTRLIC> Interrupts execution of the program.

<CTRL/Y> Interrupts execution of the program.

<CTRL/Z> Equivalent to the EXIT command.

DEFINE symbol=expression [,symbol=expression ...] Defines the specified symbol(s) and assigns them the speci-
fied address(es).

C-1

COMMAND SUMMARY

Format

DEPOSIT [/qualifier] ... address-expression = data
[,data ...)

/ASCll:length
/BYTE
/DECIMAL
/HEXADECIMAL
/INSTRUCTION
/LONG
/OCTAL
/WORD

EVALUATE[/qualifier] ... expression [,expression ...)
EVALUATE(/qualifier] ... value<high-bit:low-bit>

/ADDRESS
/DECIMAL
/HEXADECIMAL
/OCTAL

EXAMINE [/qualifier] ... addr-expr[:addr-expr]
(,addr-expr(:addr-expr) ...)

I ASCII :length
/BYTE

EXIT

/DECIMAL
/HEXADECIMAL
/INSTRUCTION
/LONG
/NOSYMBOLIC
/OCTAL
/SYMBOLIC
/WORD

GO [address-expression]

HELP topic [subtopic ...)

SET keyword [/qualifier) parameter

SET BREAK[/qualifier] address-expression
[DO (cmd[;cmd ...]))

/AFTER:count

SET EXCEPTION BREAK

SET LANGUAGE language-name

SET LOG file-specification

SET MODE mode-keyword [,mode-keyword]

SET MODULE (/qualifier) [module-name
[,module-name] ...)

/ALL

SET OUTPUT option [,option ···l

SET SCOPE scope (,scope ...)

SET STEP condition [,condition ...)

SET TRACE (/qualifier] [address-expression)
/BRANCH
/CALL

SET TYPE [/qualifier] type-keyword
/OVERRIDE

Function

Stores the specified value(s) at the specified location.

Evaluates expressions or bit ranges, and displays value.
/ADDRESS is not valid in VAX-11 MACRO or VAX-11
BLISS.

Displays the contents of the specified addresses and range of
addresses.

Ends a debugging session or specifies the end of a command
procedure.

Starts or continues program execution.

Displays a description of the specified command.

Sets specified item.

Establishes a breakpoint at the specified address.

Requests that the debugger treat external exception condi­
tions as breakpoints.

Sets the current language.

Sets the file specification of the log file.

Sets the entry/display modes. Mode~keyword can be:
DECIMAL, HEXADECIMAL, OCTAL, NOSYMBOLIC, or
SYMBOLIC.

Adds the symbols in the specified modules or all modules to
the debugger symbol table.

Controls the debugger's output configuration. Option can be
LOG, NOLOG, TERMINAL, NOTERMINAL, VERIFY, or
NOVERIFY.

Specifies scopes to be searched to find a symbol.

Specifies the step conditions. Condition can be INSTRUC­
TION, LINE, INTO, OVER, SYSTEM, or NOSYSTEM.

Establishes a tracepoint at the specified address or estab­
lishes the specified opcode tracing.

Sets the default data type for the DEPOSIT and EXAMINE
commands. Type-keyword can be ASCII:length, BYTE, IN­
STRUCTION, LONG, or WORD.

C-2

COMMAND SUMMARY

Format Function

SET WATCH address-expression Establishes a watchpoint at the specified address.

SHOW keyword [/qualifier] [parameter] Displays the current value of the specified item.

SHOW BREAK Displays current breakpoints.

SHOW CALLS [integer] Displays current location and previous calls.

SHOW LANGUAGE Displays current language.

SHOW LOG Displays the name of the log file.

SHOW MODE Displays current entry/display modes and types.

SHOW MODULE Lists the modules in the image and show which are currently
included in the debugger symbol table.

SHOW OUTPUT Displays the debuggers output configuration.

SHOW SCOPE Displays the current scope search list.

SHOW STEP Displays current STEP conditions

SHOW TRACE Displays current tracepoints and opcode tracing.

SHOW TYPE Displays current default type or override type.
/OVERRIDE

SHOW WATCH Display current watchpoints.

STEP [/qualifier] [integer] Executes one or a specified number of instructions or lines.
/INSTRUCTION
/LINE
/INTO
/OVER
/NOSYSTEM
/SYSTEM

-

C-3

A

Abbreviations, command, C-1
through C-3

Active call frames, 3-4, 3-5
Active calls, showing, 5-5, 5-6
Address,

expressions, 3-10 through 3-12
range specification, 4-1, 4-2

/ADDRESS qualifier, 6-20
Addresses, symbolic display of,

3-16
/AFTER qualifier, 4-15, 6-29
Angle brackets, 3-7, 3-8
AP register, 3-6
Argument pointer, 3-6
Arithmetic,

expressions, 3-7 through 3-9
operators, 3-7 through 3-9

ASCII strings, examining and
depositing, 4-4

ASCII type, 3-16, 3-17
Assembling your program, 2-1,

2-2
At sign(@),

binary operator, 3-9
execute command procedure, 5-3,

5-4, 6-1, 6-2
unary operator, 3-11

B

Backslash,
pathname separator, 3-5
symbol, 3-11

BASIC, watchpoint restrictions
with, 4-23

Beginning a debugging session,
1-2

Bit fields,
delimiters, 3-13
evaluating, 4-8

Branch instructions, tracing,
4-17 through 4-20

Breakpoints, 1-2, 4-12 through
4-17

canceling, 6-6
setting, 6-29, 6-30

BYTE type, 3-16, 3-17

c
Call command, 4-11, 6-3
Call frames, 3-4, 3-5
Call instructions, tracing,

4-17 through 4-20

INDEX

Calling procedures, 4-11, 6-3
Calls, showing active, 5-5, 5-6
CANCEL ALL command, 6-5
CANCEL BREAK command, 4-15, 4-16,

6-6
CANCEL command, 6-4
CANCEL EXCEPTION BREAK Command,

5-5 I 6-7
CANCEL MODE command, 6-8
CANCEL MODULE command, 6-9
CANCEL SCOPE command, 6-10
CANCEL TRACE command, 4-19, 6-11
CANCEL TYPE/OVERRIDE command,

6-12
CANCEL WATCH command, 4-21, 6-13
Characters, special, 3-6 through

3-14
Circumflex symbol, 3-11
Codes, Condition, 5-6, 5-7
Colon range separator, 3-12
Command procedures, 1-3, 5-3,

5-4 I 6-1' n-2
Command sequence, DO, 4-14, 4-15
Commands,

abbreviations of, C-1 through C-3
At sign(@), 5-3, 5-4, 6-1, 6-2
CALL, 4-11, 6-3
CANCEL, 6-4
CANCEL ALL, 6-5
CANCEL BREAK, 4-15, 4-16, 6-6
CANCEL EXCEPTION BREAK, 5-5, 6-7
CANCEL MODE, 6-8
CANCEL MODULE, 6-9
CANCEL SCOPE, 6-10
CANCEL TRACE, 4-19, 6-11
CANCEL TYPE/OVERRIDE, 6-12
CANCEL WATCH, 4-21, 6-13
CANCEL WATCH, 6-13
CTRL/C, 6-14
CTRL/Y, 6-14
CTRL/Z, 2-4, 6-14
DEFINE, 3-6, 6-15, 6-16
DEPOSIT, 4-1 through 4-7,

6-17 through 6-19
EVALUATE, 4-7, 4-8, 6-20, 6-21
EXAMINE, 4-1 through 4-7, 6-22

through 6-24
EXIT, 2-4, 6-25
@file-spec, 5-3, 5-4, 6-1, 6-2
GO I 4-9 I 6-26
HELP, 2-3, 2-4, 6-27
SET, 6-28
SET BREAK, 4-14, 4-15, 6-29,

6-30
SET EXCEPTION BREAK, 5-5, 6-31
SET LANGUAGE, 1-5, 6-31
SET LOG, 5-2, 6-32
SET MODE, 3-15, 6-34, B-1

Index-1

INDEX

conunands, (Cont.)
SET MODULE, 3-3, 3-4, 6-36
SET OUTPUT, 5-1 through 5-3,

6-37
SET SCOPE, 3-4, 3-5, n-39
SET STEP, 6-41
SET TRACE, 4-18, 4-19, 6-43
SET TYPE, 3-17, n-44, B-1
SET WATCH, 4-21, 6-45
SHOW I 6-46
SHOW BREAK, 4-ln, 6-47
SHOW CALLS, 5-5, 5-6, 6-48
SHOW LANGUAGE, 6-49
SHOW LOG, 6-50
SHOW MODE, 6-51
SHOW MODULE, 6-52
SHOW OUTPUT, 6-53
SHOW SCOPE, 6-54
SHOW STEP, 4-19, 6-55
SHOW TRACE, 6-56
SHOW TYPE, 11-57
SHOW WATCH, 4-22, 6-58
STEP 4-9 through 4-11, 6-59, 11-nO
summary of, 3-2, C-1 through C-3

Comment operator, 3-14
Comments, 3-1
Compatibility features, B-1
Compiling your program, 2-1, 2-2
Condition codes, displaying and

altering, 5-6, 5-7
Conditions,

exception, 5-4, 5-5
setting step, 6-41
step, 4-10, 4-11, 6-59, 6-~o

Contents operator, 3-11
Continuing program execution,

4-9 through 4-11
Control transfer, 4-9
CTRL/C command, 6-14
CTRL/Y command, 4-23, 6-14
CTRL/Z command, 2-4, 6-14
Current location symbol, 3-10
Current scope, 3-4, 3-5

D

""D operator, 3-9
Data, examining and depositing,

4-1 through 4-7
Data types, 3-ln, 3-17
/DEBUG LINK qualifier, 2-1, 2-2
DEBUG.LOG file, 5-1
Debugger commands, format of,

3-1, 3-2
Debugging session, logging, 5-1

through 5-3
Decimal mode, 3-15
Decoding instructions, 4-4 through

4-7

Default scope, 3-4, 3-5
DEFINE command, 3-n, n-15, 6-16
Defining symbols, 3-6, ~-15, 6-1~
Deleting symbols, 6-9
DEPOSIT command, 4-1 through 4-7,

6-17 through 6-19
Depositing data, 4-1 through 4-7
Display modes, 3-15, 3-16
Display types, 3-16, 3-17
Displaying data, 4-1 through 4-17
DO command sequence, 3-1, 4-14,

4-15
Dot address symbol, 3-10
Dynanic variables, watchpoints

on, 4-23

E

Encoding instructions, 4-4 through 4-7
Ending a debugging session, 2-4
Entry modes, 3-15, 3-16
Entry types, 3-16, 3-18
Equals sign, 3-12
Error messages, A-1 through A-15
EVALUATE command, 4-7, 4-8, ~-20,

n-21
Evaluating,

bit fields, 4-8
expressions, 1-2, 4-7, 4-8

EXAMINE command, 4-1 through 4-7,
6-22 through 6-24

Examining data, 4-1 through 4-7
Examining locations, 1-2
Exception condition, 5-4, 5-5,

6-7, fi-31
Exclamation mark, 3-1, 3-14
Execute command procedure, 5-3,

5-4, .6-1, n-2
Execution,

controlling program, 4-9 through
4-11

interrupting, 4-12 through 4-23
EXIT command, 2-4, fi-25
Exit handlers, debugging, 5-8
Expressions ,

address, 3-10 through 3-12
arithmetic, 3-7 through 3-9,
evaluating, 4-7, 4-8

F

Fatal messages, A-1 through A-15
Features, compatibility, B-1
Files, command, see command

procedures
Files, log, 5-1 through 5-3
@file-spec command, 5-3, 5-4,

6-1, 6-2

Index-2

INDEX

Format of debugger commands, 3-1,
3-2

FP register, 3-6
Frame pointer, 3-6
Frames, active call, 3-4, 3-5

G

General registers, 3-n
Getting help, 2-3, 2-4
Global symbols, 3-4 through 3-n
GO command, 1-3, 4-9, n-26

H
Handlers,

exception, 5-4, 5-5
exit, 5-8

HELP command, 2-3, 2-4, 6-27
Hexadecimal mode, 3-15
Hyphen character, 3-2, 3-14

Indirect command files, see
Command Procedures

Informational messages, A-1
through A-15

Initiation
debugger, 2-1 through 2-3
program, 4-9 through 4-11

Instructions,
entering, 3-13
examining and depositing,

4-4 through 4-7
stepping by, 4-10, 4-11
tracing by 4-17 through 4-20

INSTRUCTION step condition, 4-10,
4-11, n-41, n-59

INSTRUCTION type, 3-16, 3-17
Interrupting execution, 4-12

through 4-23
INTO step condition, 4-10, 4-11,

n-41, n-59

K

Keyword, command, 3-1, 3-2

L

%LABEL, 1-5, 3-5
Language,

arithmetic expressions in
high-level, 3-7

Language, (Cont.)
debugging in other, 1-4, 1-5
pathname in high-level, 3-5
setting, 6-31

Last value displayed symbol, 3-11
%LINE, 1-5, 3-5
Line continuation character,

3-2, 3-14
LINE step condition, 4-10, 4Jll,

· n-41, 6-59
Line, stepping by, 4-10, 4-11
LINK DCL command, 2-1, 2-2
Linking your program, 2-1, 2-2
Local symbols, 1-3, 3-6
Log files, 1-3, 5-1 through 5-3

specifying name, n-32
Log, setting output to, n-37
LONG type, 3-16, 3-17

M

Message, debugger's identifying,
2-3

Messages, debugger, A-1 through
A-15

Modes,
canceling, 6-8
entry and display, 3-15, 3-16
initial default, 2-3
radix, 3-15
setting, 6-34

Modifying locations, 1-2
Modules

canceling, 6-9
names, 3-3
setting, n-36

N
Names,

module, 3-3
scope, 3-4, 3-5
symbol, 6-15, 6-16

Next address, examining the, 4-2
Numeric data, examining and

depositing, 4-1 through 4-3

0
"'o operator, 3-9
Octal mode, 3-15
Opcode tracing 1-2, 1-3, 4-17

through 4-20, 6-43
canceling, 6-11

Opcodes, table of equivalent, 4-7
Operators,

arithmetic, 3-7 through 3-9
radix, 3-7, 3-9

Index-3

INDEX

Output, setting the, 6-37
OVER step condition, 4-10, 4-11,

6-41, 6-nO
/OVERRIDE qualifier, 3-17, 6-12,

6-44
override type, canceling, 6-12

p

Parameters, command, 3-1
Parentheses, 3-12
Pathnames, 1-4, 3-3 through 3-5
PC register, 3-6
Permanent symbols, 3-6
Precedence of arithmetic

expressions, 3-7 through 3-9
Previous address symbol, 3-11
Procedures, calling, 4-11, 6-3
Procedures, command, 5-3, 5-4,

6-1, 6-2
Processor status longword, 3-6,

5-6, 5-7
Program counter, 3-6
PSL, 3-6, 5-6, 5-7

Q

Qualifiers, command, 3-1

R

Radix modes, 3-15
Radix operators, 3-7, 3-9
Range operator, 3-12
References, symbolic, 3-3, 3-4
Replacing instructions, 4-5
Routines, calling 4-11, 6-3
RUN DCL command, 2-1, 2-2
Running your program, 2-1, 2-2

s
Scope, 1-4, 3-4, 3-5

canceling, n-10
setting, 6-39

Semicolon, command separator, 3-1
SET BREAK command, 4-14, 4-15,

6-29' 6-30
SET command, 6-28
SET EXCEPTION BREAK command, 5-5,

6-31
SET LANGUAGE command, 1-5, 6-31
SET LOG command, 5-2, 6-32
SET MODE command, 3-15, 6-34, B-1
SET MODULE command, 3-3, 3-4, 6-36
SET OUTPUT command, 5-1 through

5-4, 6-37

SET SCOPE command, 3-4, 3-5, n-39
SET STEP command, 6-41
SET TRACE command, 4-18, 4-19,

6-43
SET TYPE command, 3-17, 6-44, B-1
SET WATCH command, 4-21, 6-45
Shift operator, 3-9
SHOW BREAK command, 4-16, 6-47
SHOW CALLS command, 5-5, 5-6, 6-48
SHOW command, 6-46
SHOW LANGUAGE command, n-49
SHOW LOG command, 6-50
SHOW MODE command, 6-51
SHOW MODULE command, 6-52
SHOW OUTPUT command, 6-53
SHOW SCOPE command, 6-54
SHOW STEP command, 6-55
SHOW TRACE command, 4-19, n-56
SHOW TYPE command, 6-57
SHOW WATCH command, 4-22, 6-58
Slash character, 3-12
SP register, 3-6
Special characters, '3-6 through 3-14
Stack pointer, 3-6
Start-up conditions, 2-3
STEP command, 4-9 through 4-11,

6-59, 6-60
Step conditions, 6-41, 6-59, n-60

initial default, 2-3
Stepping through program, 4-9

th rough 4-11
String input, 3-13
Strings, examining and depositing,

4-4
Summary of commands, 3-2, C-1

through C-3
Symbol names, 6-15, 6-16
Symbol table, 1-3, 3-3, 3-4, 6-52

adding symbols to, 6-36
Symbolic mode, 3-15, 3-16
Symbols, 1-3, 3-3 through 3-n

address, 3-10 through 3-12
defining, 3-n, 6-15, 6-16

SYSTEM step condition, 4-10, 4-11,
6-41, 6-60

T

Table, symbol, see symbol table
Temporary breakpoints, 4-15
Terminal, setting output to, 6-37
Traceback information, 5-5, 5-6
Trackback qualifiers, 2-2
Tracepoints, 1-2, 1-3, 4-17

through 4-20
canceling, 6-11
setting, 6-43

Tracing opcodes, 4-17 through
4-20, 6-43

Index-4

Transferring control, 4-9
Types, canceling, 6-12

entry and display, 3-ln, 3-17
initial default, 2-3
setting, 6-44

v
Verb, command, 3-1
Verify, setting output to, 6-37

INDEX

w
warning messages, A-1 through A-15
Watchpoints, 1-3, 4-20 through 4-23

canceling, n-13
setting 6-45

WORD type, 3-16, 3-17

x
"X operator, 3-9

Index-5

m c
0
0

READER'S COMMENTS

VAX-11
Symbolic Debugger

Reference Manual
AA-D02nB-TE

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

~ '.

Did you find this mahual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer

[] Other (please specify>~~~~~~~~~~~~~~~~~~~

CitY~~~~~~~~~~~~~--State~~~~~~-Zip Code~~~~~~­
or

Country

- - - Do Not Tear - Fold Here and Tape - - - - - - - - - - - -

Do Not Tear - Fold Here

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS TW/A14

DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

.··r

No Postage
Necessary

if Mai led in the
U~ited States ..

