
January 198'3

Introduction to
VAX-11 FMS
AA-L318A-TE

This manual introduces the VAX-11 FMS Forms Management System.
Examples from the Sample Application program show how to create
and run an FMS application.

This manual is part of the VAX-11 FMS document set that supersedes
the VAX-11 FMS Version 1 document set.

Operating System: VAX/VMS Version 3.2

Software: VAX-11 FMS Version 2.0

To order additional copies of this document, contact the Software Distribution Center,
Digital Equipment Corporation, Northboro, Massachusetts 01532

digital equipment corporation · maynard, massachusetts

First Printing, January 1983

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this docu
ment.

The software described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by DIGITAL or its affiliated companies.

©Digital Equipment Corporation 1983.
All Rights Reserved.

Printed in U.S.A.

A postage-paid READER'S COMMENTS form is included on the last page of this
document. Your comments will assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

~omoomo™
DEC MASSBUS UNIBUS
DEC mate PDP VAX
DECsystem-10 P/OS VMS
DECSYSTEM-20 Professional VT
DEC US Rainbow Work Processor
DEC writer RSTS
DIBOL RSX

M21500

Contents
Page

Preface vii

Chapter 1 Overview of FMS

1.1 FMS Components

1.1.1 Form Editor
1.1.2 Form Language Translator.
1.1.3 Form Librarian ..
1.1.4 Form Driver
1.1.5 Sample Application
1.1.6 Form Tester
1.1. 7 Form Application Aids .

1.2 FMS Application Development.
1.3 Reading Path for the FMS Document Set.

Chapter 2 Running the Sample Application Program

2.1 Setting Up Your Terminal
2.2 Starting the Sample Application .
2.3 Printing SAMPCH.DAT .

Chapter 3 Creating Forms

.1-2

.1-2

.1-3

.1-3

.1-3

.1-3

.1-4

.1-4

.1-4
1-10

.2-1

.2-2
2-10

3.1 Setting Up Your Terminal. 3-1
3.2 Examining Two Forms from the Sample Application . . 3-2

3.2.1 MENU Form. 3-2
3.2.2 DEPOSIT Form 3-4

3.3 Creating MENU and DEPOSIT . 3-5

3.3.1 Creating MENU. 3-7

3.3.1.1 Assigning Form Attributes: The Form Phase . . 3-9
3.3.1.2 Laying Out the Form: The Layout Phase . . . 3-10
3.3.1.3 Assigning Field Attributes: The Assign Phase 3-15
3.3.1.4 Testing a Form: The Test Phase 3-17
3.3.1.5 Saving a Form: The Exit Phase. 3-17

iii

3.3.2 Creating DEPOSIT 3-17

3.3.2.1 Assigning Form Attributes: The Form Phase . 3-19
3.3.2.2 Laying Out the Form: The Layout Phase . . . 3-19
3.3.2.3 Assigning Field Attributes to DEPOSIT:

The Assign Phase 3-22
3.3.2.4 Alternative Method of Assigning Field Attributes. 3-23
3.3.2.5 Testing a Form: The Test Phase 3-23
3.3.2.6 Saving a Form: The Exit Phase. 3-24

3.4 Creating a Help Form

3.4.1 Creating HELP_MENU
3.4.2 Associating HELP _MENU with MENU

3-24

3-24
3-25

Chapter 4 Creating a Form Library

4.1 Create a Library File
4.2 Obtain a Library Directory Listing.
4.3 Interpret a Form Description.
4.4 Obtain a Form Image

.4-1

.4-3

.4-3

.4-5

~ Chapter 5 Writing an Application

5.1 Form Driver Concepts

5.1.1 Form Driver Calls

.5-1

.5-2

5.1.1.1 Functional Division of Calls . 5-2
5.1.1.2 Form Driver Calls Used in the Subset Application . 5-3

5.1.2 String Handling . . . 5-4

5.2 Sample Application Subset.

5.2.1 The Main Program.
5.2.2 Subset Subroutines
5.2.3 Preparing the Main Program.

5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.2.9

5.2.3.l Initializing Calls . .
5.2.3.2 Coding the Body of the Main Module .
5.2.3.3 Closing Calls.

Coding the INACCT Subroutine .
Coding the MENU Subroutine . .
Coding the WRITCH Subroutine .
Coding the MAKDEP Subroutine
Coding Subroutines VUEREG and VUEACT .
Coding Subroutine GETST A

.5-4

.5-5

.5-6

.5-6

.5-6

.5-9
5-10

5-11
5-11
5-15
5-16
5-18
5-19

Chapter 6 Compiling, Linking, and Running an Application

iv

6.1 Compiling the Subset
6.2 Linking the Subset
6.3 Running the Subset .

.6-2

.6-2

.6-2

Chapter 7 Programming Features

7.1 Indexing

7.1.1
7.1.2
7.1.3

Create REGISTER
Assign Indexing Attributes.
Manipulate Indexed Fields in the VUEREG Subroutine

7.2 Scrolling

7.2.1
7.2.2
7.2.3

Complete the Check Register Form, REGISTER
Insert REGISTER in SUBSET.FLB
Writing the Statements that Support Scrolling .

7.3 Named Data.
7.4 User Action Routines

7.4.1
7.4.2
7.4.3
7.4.4

Field Completion UARs
Help UARs
Function Key U ARs . .
Creating a Sample UAR .

Chapter 8 Advice to New Users

8.1 Good Form Design .

8.1.1 Sorting Information
8.1.2 Providing a Ti tie.
8.1.3 Writing Good Captions.
8.1.4 Using Check Boxes
8.1.5 Using Reverse Video Screen Characteristics
8.1.6 Providing Instructions .

8.2 Use of the Video Screen .

8.2.1 How to Present Data.
8.2.2 Screen Layout .
8.2.3 Communication with the Operator .
8.2.4 Recovery Procedures .

8.3 FMS Field Attributes

Appendix Subset Application Listing

Glossary

Index

.7-1

.7-3

. 7-3

. 7-4

.7-5

. 7-6

.7-8

.7-8

7-17
7-21

7-22
7-22
7-22
7-22

.8-1

.8-2

. 8-2

.8-3

.8-3

.8-4

.8-4

.8-5

.8-5

. 8-7

. 8-7

.8-8

.8-8

v

Figures

Tables

vi

1-1 Form Development Cycle
1-2 Source Application Development Cycle.
1-3 UAR Development Cycle
1-4 Linking of an FMS Application
1-5 FMS Document Reading Path
3-1 Form Editor Keys
3-2 Form Editor Menu
3-3 Form Attributes Questionnaire.
3-4 Layout Phase Status Line . . .
3-5 First Assign Phase Question . .
3-6 Second Assign Phase Questionnaire
3-7 Display Only Attribute
3-8 Menu Help Form
4-1 FMS Application Development Cycle.
5-1 Role of the Form Driver in an Application Program
5-2 Attaching a Terminal . . .
5-3 Attaching a Workspace ..
5-4 Opening a Library Channel
5-5 Displaying a Form
5-6 Requesting Operator Input to a Field.
6-1 FMS Application Development Cycle.
7-1 Flowchart for the VUEREG Subroutine
7-2 Mapping a Window to a Scrolled Area .
7-3 Flowchart for the SCRFWD Subroutine
7-4 Flowchart for the SCRBAK Subroutine.
7-5 Data with Corresponding Names and Indexes
7-6 Assigning Named Data
7-7 Assigning Named Data
7-8 Assigning User Action Routines
7-9 Assigning User Action Routines
8-1 Sample Payroll Data.

.1-7

.1-8

.1-9
1-10

. 1-11

. .3-7
.3-8
.3-9
3-10
3-15
3-16
3-22
3-25
.4-2
.5-2
.5-7
.5-8
.5-9
5-12
5-13
.6-1
.7-9
7-10
7-14
7-16
7-18
7-19
7-20
7-23
7-24
.8-2

3-1 Layout Phase Status Line Information 3-10

Preface

The Introduction to FMS gives an overview of the Forms Management Sys
tem and provides exercises for using many of the features of FMS. After
reading this manual, you should be able to use the rest of the FMS docu
mentation and the FMS software easily.

This manual does the following:

• Introduces FMS and describes its components

• Walks you through the Sample Application, a program provided in the
FMS kit to demonstrate most of the FMS features

• Shows you how to create a subset of the Sample Application

• Describes some of the more advanced features of FMS and shows you how
to use them

•Gives hints on designing good forms

Chapter Summary

Chapter 1, Overview of FMS, introduces FMS and gives a general descrip
tion of its components. The chapter tells how to use this manual and also
provides a reading path for the FMS document set.

Chapter 2, Running the Sample Application Program, gives you an oppor
tunity to see an FMS application. Specific capabilities of FMS are pointed
out as you run the Sample Application.

Chapter 3, Creating Forms, is an exercise in designing, creating, and test
ing two forms used in the Sample Application.

Chapter 4, Creating a Form Library, describes how to create a library for
the forms that you created in Chapter 3 and how to obtain and use form
descriptions of those forms.

Chapter 5, Writing an Application, is an exercise in coding a subset of the
Sample Application. The exercise uses the two forms you created in Chap
ter 3. In Chapter 5, you use the Form Driver.

vii

viii

Chapter 6, Compiling, Linking, and Running an Application, describes how
to compile, link, and run the subset application created in Chapter 5. The
steps outlined here are described in general terms so that you can apply
them to your FMS applications.

Chapter 7, Programming Features, describes some of the more advanced
features of FMS, such as scrolling, Named Data, indexing, and user action
routines.

Chapter 8, Advice to New Users, describes a successful form and explains
how to incorporate good form design into your forms.

The Glossary defines FMS terms used throughout the FMS document set.

Intended Audience

This manual is directed to two groups of readers:

•Those who want a general overview of FMS Version 2

• Those who have had experience with FMS Version 1 software and wish to
learn about FMS Version 2

Readers should be familiar with BASIC and DCL.

Documentation Conventions

Uppercase letters

Brackets []

Red print

CTRL/x

GOLDx

In commands and examples, indicate that the user
types the i tern exactly as shown.

Indicate that the item is optional.

Indicates what the user types.

Indicates that you simultaneously press the key la
beled CTRL and another key.

Indicates that you press the PFl key before you press
the second key.

Unless specified otherwise, you terminate commands by pressing the
RETURN key.

Chapter 1
Overview of FMS

We are all familiar with forms in our everyday lives - tax forms, employ
ment forms, insurance forms, and so on. Most of these forms contain the
same two types of information. First, the forms have information already
printed on them - titles, headings, descriptions of items to be filled in,
and instructions. Second, the forms have blank spaces for the information
to be filled in by the user of the form.

Video forms created with DIGITAL's V AX-11 FMS Forms Management
System look very similar to the paper forms described above. Like paper
forms, video forms contain information that never changes; this back
ground text is protected against modification by both the program and the
terminal user. The areas of the form that can be changed - by the appli
cation program, by the terminal user, or by both - are known as fields.
On the surface, then, video forms are like paper forms.

When we look further, however, we find that V AX-11 FMS adds many
properties to video forms that have no counterpart in paper forms. The
interactive nature of FMS allows data entered by the operator to be vali
dated as it is entered to ensure that letters are not typed where numbers
are required, that required fields are not left blank, and so on. Further
more, FMS provides techniques for additional validation and processing of
entered data to be done by the application program. Therefore, the terminal
user will see a single smooth interaction with the computer system, with all
errors being caught at the earliest possible moment. Other features that
FMS presents to the terminal user include the scrolling of portions of the
form to show more lines of information than can fit on the screen at once,
the display of help information whenever the operator presses the HELP
key, and a variety of visual effects ranging from double-high, double-wide
characters to forms overlaid on other forms.

Forms as Seen by the Programmer

To the application developer, forms contain much more than background
text and fields. Some attributes, such as the name of a help form, pertain to

1-1

the entire form; other attributes, such as right justification, pertain to indi
vidual fields. Another part of the form definition allows the application
developer to specify that the cursor should move from field to field in a
sequence other than the normal left-to-right, top-to-bottom sequence; Fi
nally, the programmer can specify the names of subroutines either to be
automatically invoked by FMS upon completion of fields or when function
keys are depressed or to supplement the standard FMS handling of help
requests. In addition to the parameters that can be stored with the form
and passed to these subroutines, FMS provides additional parameter stor
age for other parameters that can be read by the program from the form
description during program execution.

FMS provides support for the following languages:

• VAX-11 BASIC

• V AX-11 BLISS

• VAX-11 C

• VAX-11 COBOL

• VAX-11 FORTRAN

• VAX-11 PASCAL

• VAX-11 PL/I

1.1 FMS Components

To create forms and to write and run a program, you use the following
components:

• Form Editor

•Form Language Translator

•Form Librarian

•Form Driver

• Form Tester

• Form Application Aids

1.1.1 Form Editor

The Form Editor lets you design, modify, test, and store forms. When you
use the Form Editor, you design and modify forms interactively; your
screen always shows the current state of the form you are working on. You
can use special keypad and keyboard functions to specify video display
characteristics such as boldface type or reverse video for different parts of
the form. To help operators, you can include on-line help - short explana
tions· about parts of the form and about the whole form.

1-2 Overview of FMS

When designing forms, you assign names to the forms and to data that will
be entered or displayed when the application runs. The V AX-11 FMS Utili
ties Reference Manual describes the Form Editor in detail.

1.1.2 Form Language Translator

The Form Language Translator converts form descriptions that you have
created with a text editor, using Form Language statements, into binary
forms. The Form Language has all the capabilities of the Form Editor, but
lets you create forms on any terminal, video or hard copy. If you prefer a
language-like method of preparing forms, you can use the Form Language.
The Form Translator can also convert form descriptions produced by the
Form Application Aids into binary forms. The VAX-11 FMS Utilities Ref
erence Manual describes the Form Language and Form Language Transla
tor in detail.

1.1.3 Form Librarian

The Form Librarian allows you to create library files in which you can
insert, extract, or delete forms. For more information on the Form Librar
ian, see the VAX-11 FMS Utilities Reference Manual.

1.1.4 Form Driver

The Form Driver is a set of subroutines that your program uses to access
the forms that you created with the Form Editor or with the Form Lan
guage. FMS applications access forms by means of Form Driver calls that
you include in the source program. All Form Driver calls refer to specific
forms and data within forms by names that you assign during form editing.
When the FMS application runs, the Form Driver does the following:

•Attaches the operator's terminal and establishes I/O channels to the ap-
propriate form library and the terminal

• Displays forms and accepts operator input

•Refers to data specifications contained in the form to check that the oper
ator input is valid

• Responds to operator requests for help by displaying help text associated
with the form being processed

• Displays or erases data in the forms

The VAX-11 FMS Form Driver Reference Manual describes the Form
Driver and its calls in detail.

1.1.5 Sample Application

The Sample Application (SAMP) is a demonstration program in the FMS
distribution kit. The Sample Application shows most of the features FMS
provides and is a learning tool. All the examples and exercises in this

Overview of FMS 1-3

manual are taken from the Sample Application. You will run the Sample
Application in Chapter 2. The forms you create in Chapter 3, Creating
Forms, are from the Sample Application. In Chapter 5, you will write a
subset of the Sample Application, using the forms that you created earlier.

1.1.6 Form Tester

The Form Tester lets you test a form without first having to put the form in
a library or write an application program. The Form Tester uses the Form
Driver to display your form and to perform 1/0 operations. When using the
Form Tester, you see the form as it will appear when the application runs.
You can enter data into fields and check the validation of the data entered.

1.1. 7 Form Application Aids

The Form Application Aids allows you to do the following:

•Convert binary forms to object modules for use as memory-resident forms

• Provide form descriptions

• Create vector modules for user action routines

• Create COBOL data definition files and DAT ATRIEVE domain definition
files

Using the Form Application Aids, you can produce four types of form de
scriptions:

•Form Language statements that are suitable for translation into binary
forms

•Form images either with or without escape sequences

•Field data structure descriptions that are compatible with COBOL and
DATATRIEVE applications that use FMS

• Brief summaries of form data

1.2 FMS Application Development
The development of an FMS application involves three processes:

• Creating forms and form libraries

•Writing the application's source program

•Writing the application's user action routine(s)

This section discusses each process, showing how and where each compo
nent of FMS is involved with the development of the entire application.

1-4 Overview of FMS

Before beginning work on these processes, you must plan the application.
This step, often the most important, deserves a great deal of attention. You
must first analyze the task that the FMS application is to perform and
determine what types of data the application will be working with. When
you plan your FMS application, it helps to know what kinds of data the
operator is expected to enter at the terminal. Next, plan your forms based
on that data. You can then prepare the source code to handle the forms that
you will need for your application. Keep in mind the operator's skills and
the computer system on which the application will be running. You can
provide on-line help for the operator as he or she runs the application.

The sections that follow provide details on each step of the FMS application
development cycle.

Create Forms and Form Libraries

Using the Form Editor, lay out the forms. Because the Form Editor is
interactive, you can plan your forms and modify them as you create them.
Sketching them beforehand is unnecessary. Arrange the text and video
features of the forms so that the forms are orderly and pleasing to the eye.
When you are done laying out the forms, you can test the forms to verify
that only the desired types of data will be accepted.

If you are creating forms with the Form Language, use a text editor to
enter the statements that make up the form, called a source form descrip
tion. Use the Form Translator to convert the source form description into a
binary form description, which is suitable for inserting into a Form Library
or for linking with the application's object module as a memory-resident
form. You can use the Form Tester to test this binary form description. The
Form Tester displays the form as if it were being displayed by the applica
tion on the screen during run time. You can try entering data into the form
to verify that it accepts and displays data as intended. Source form descrip
tions, binary form descriptions, and memory-resident forms are discussed
in detail later in this manual.

Store Forms in a Form Library

After you have created and tested your forms, use the Form Librarian to
store them in a library file. During run time, the application program
accesses forms from the form library unless you have made the forms mem
ory resident.

Create a User Action Routine Vector Module

If your application has user action routines (UARs), use the Form Applica
tion Aids to create a UAR vector module. UAR vector modules are dis
cussed in Chapter 7.

Overview of FMS 1-5

Create Memory-Resident Forms

If you want to use memory-resident forms in your application, use the Form
Application Aids to convert the forms in your form library into memory
resident format. Note that you do not need to create memory-resident forms
directly from the form library. That is, you can create a memory-resident
form immediately after it has been created by the Form Editor or the Form
Translator. However, all memory-resident forms used in an application can
be linked only as a single file. So if you want to make several forms mem
ory resident, create them directly from the form library.

Obtain a Directory of the Form Library

You can use the Form Application Aids to list the contents of a form library
file. This listing shows all the forms in a form library.

Obtain a Form Description

You can use the Form Application Aids to get a form description in source
code. Form descriptions are particularly useful as hard-copy reference for
forms. Form descriptions are discussed in Chapter 4. (Note that the source
form description can be input to the Form Translator to create a binary
form, suitable for insertion into a form library or for use as a memory
resident form.)

Obtain COBOL Data Definition and DATATRIEVE
Domain Definition Files

You can use the Form Application Aids to create a COBOL data declaration
file for the forms in your form library if your application is written in
V AX-11 COBOL. The COBOL data declaration file can be compiled with
the source file for your application. Some editing to this file may be neces
sary.

Figure 1-1 is a flowchart that shows the development of forms and
libraries.

Write the Application's Source Program

Referring to the form descriptions produced by the Form Application Aids,
write the source code for your application, using a text editor. Refer to the
form descriptions for the correct names of the forms and fields in the form.
Include Form Driver calls in your source program to display forms and to
perform 110 transfers among the terminal, the form library, and the appli
cation.

1-6 Overview of FMS

Create directory
listing

T

I

Directory
listing

Create forms
(Form Editor)

Binary forms

Store forms
in a library

Create COBOL
data definition

Start

Create form
description
(text editor)

Create source form
description

Translate

Test forms

Make forms

memory resident

Create UAR
vector module

UAR vector
module

ML0-042-82

Figure 1-1: Form Development Cycle

Overview of FMS 1-7

Compile the Application

Compile the application's source program to produce an object module. If
your application is written in V AX-11 COBOL, compile the COBOL data
definition file with your source program.

Figure 1-2 shows the steps in the development of the main program of an
FMS application.

Start

Create
source file

Source file

Compile

ML0-043-82

Figure 1-2: Source Application Development Cycle

1-8 Overview of FMS

Write User Action Routines

Using a text editor, write any user action routines that your application
uses. UARs can exist in files by themselves or in the same file as the main
program. Typically, application-specific UARs exist in the same file as the
main program. General-purpose UARs are often compiled separately and
are kept in object libraries.

Note that if you use UARs in your application, you must create a UAR
vector module. Vector modules are described in Chapter 7.

Figure 1-3 shows the steps in the development of UARs.

Start

Create UAR
source file

UAR
source file

Compile

UAR object
module

ML0-044-82

Figure 1-3: UAR Development Cycle

Overview of FMS 1-9

Link the Application

You link the following modules:

•Main program object module

• User action routine object module

• User action routine vector module

•Any memory-resident forms

• Form Driver

Figure 1-4 is a flowchart that shows the linking of an FMS application.

Memory
resident
forms

- -
UAR vector
module

Form library

--
Link

Run

ML0-045-82

Figure 1-4: Linking of an FMS Application

1.3 Reading Path for the FMS Document Set
The V AX-11 FMS document set includes the following manuals:

• VAX-11 FMS Installation Guide and Release Notes

• VAX-11 FMS Mini-Reference

• Introduction to VAX-11 FMS

• VAX-11 FMS Utilities Reference Manual

• VAX-11 FMS Form Driver Reference Manual

• VAX-11 FMS Language Interface Manual

1-10 Overview of FMS

UAR object
module

-

Figure 1-5 shows the reading path for this manual set. The manuals are
described below.

Installation Guide

and Release Notes

Introduction
to FMS

-----------,

FMS Utilities
Reference Manual

FMS Form Driver
Reference Manual

FMS Language
Interface Manual

Figure 1-5: FMS Document Reading Path

I

FMS Mini
Reference

ML0-046-82

V AX-11 FMS Installation Guide and Release Notes contains installation
procedures for FMS on VAX/VMS, a description of the Installation Verifi
cation Procedure, and information not included elsewhere in the document
set. This manual describes the Form Upgrade Utility, which converts Ver
sion 1 forms and libraries to Version 2 forms and libraries.

This manual is intended for the person responsible for installing FMS and
for upgrading any applications to Version 2.

VAX-11 FMS Mini-Reference provides concise reference material for the
contents of the other manuals. This manual also contains a diagram of the
Form Editor keypad and a synopsis of compiling, linking, and running FMS
applications.

This manual is intended for all users of FMS.

Introduction to VAX-11 FMS introduces Version 2 of FMS and its utilities.
The reader gains experience in creating forms, writing an FMS application,
and using the Form Librarian, the Form Editor, and the Form Driver. This
manual also contains a glossary of FMS terms.

This manual is intended for all users of FMS.

Overview of FMS 1-11

VAX-11 FMS Utilities Reference Manual describes the following FMS utili
ties:

• Form Editor

•Form Language Translator

• Form Librarian

• Form Application Aids

• Form Tester

The manual includes examples of how to use these utilities.

This manual is intended for the application programmer and the person
responsible for creating and maintaining forms and libraries.

VAX-11 FMS Form Driver Reference Manual describes the function of the
Form Driver and the Form Driver calls and explains how to use them.
Programming techniques are discussed to help you with your FMS applica
tions.

This manual is intended for the application programmer.

VAX-11 FMS Language Interface Manual describes the FMS interface to
the languages that FMS supports. A chapter is provided for each language
that FMS supports, with examples in that language taken from the Sample
Application. The Sample Application presented at the end of each chapter
is written in the language of that chapter.

This manual is intended for the application programmer.

1-12 Overview of FMS

Chapter 2
Running the Sample Application Program

As you read this chapter, you will:

• Run the Sample Application program, a checking
1
account program

•See what the FMS features allow you to do

•Get a feel for being an operator as you work with FMS forms

Before continuing, check with your system manager to make sure that the
FMS distribution kit has been installed on your system.

2.1 Setting Up Your Terminal

You can run FMS programs on any VTlOO or VTlOO-compatible terminal.
Before running the Sample Application, do the following:

1. Type the following command at the terminal on which you plan to run
the Form Editor:

$ SET TERM I NALi INQUIRE

In response, the VMS system identifies the terminal you are using.

2. To see what the operating system knows about your terminal, type the
following command:

$ SHOW TERMINAL

In response, the system displays a list of your terminal's characteris
tics. Check to see that the list includes either the ANSI-CRT or the
VT52 characteristic.

3. Check to see if the list obtained from the SHOW TERMINAL command
includes the advanced video characteristic. If so indicated, your termi
nal has the advanced video option (AVO). If your terminal does not

2-1

have AVO, the Sample Application as it appears on your screen will
differ from what is shown in this manual. Specifically, a terminal with
out AVO:

•Can show reverse video or underlining, but not both

•Can display a maximum of 14 lines when set to a 132-column screen
width

Terminals with A VO can display the blink and bold attributes and 24
lines when set to a 132-column screen width.

2.2 Starting the Sample Application

To start the Sample Application, enter the following commands:

$ RUN FMS$EXAMPLES:SAMP

The Sample Application displays the following image:

WelcoMe to the FHS V2

SaMple Application PrograM <SAHP>

YOUR PERSONAL CHECKING ACCOUNT

For instructions, press HELP Cthe PF2 ke~).
To continue, press RETURN.

What you see is a form. This form identifies the application. You are told to
press the PF2 key for on-line help and the RETURN key to continue. The
HELP key is on the keypad to the right of the keyboard.

2-2 Running the Sample Application Program

Press HELP. The following image appears.

Help for the FHS V2 SaMple Application PrograM

The FtlS SaMple Application prograM <SAHP> serves two purposes:

1. It tests the ForM Driver and is part of the Installation Verifi
cation Proc~re.

2. It shows how to use FHS. The Sa"f'le Application is available in
each language supported b9 FllS, and the docullentation cites
Man9 exaMples that are fro• SAHP.

The application does not clai• to shou the be51 was of doing ev!J'9thinf •
Rather, it shows wa9s that things .till be done with FllS.

As 9ou run the rest of SMP, 9ou can get help b9 pressing the PF2 k19, which
will be referred to as the HELP kes. Repeated pressing of the kes provides
additional help until the .essage is displ119ed, •No help available.• If 9ou
press HELP now, 9ou will see an explanation of the ke!s used in FltS.

For .are help, press 1£LP.
To continue, press RETllll.

This image is a help form. This help form describes the Sample Application
and tells how to get help while the program is running. If you press HELP
again, you will see another form that gives general instructions for enter
ing data into forms and for moving the cursor from field to field. This
second help form also tells you that you can press keypad period at any
time to abort any procedure. If you press HELP again, a message appears
at the bottom of the screen, saying that no more help is available. If you
press HELP again, the first help form you saw appears. An FMS form can
have any number of help forms associated with it. You will learn how to
create help forms in Chapter 3.

After you have seen all the help available with this form, press RETURN.
The first form you saw, entitled Welcome to the FMS V2 Sample Applica
tion Program, will appear again. Press RETURN again. The following form
appears.

Running the Sample Application Program 2-3

Checkin Account Menu

Choose option <1-5>: ~

Exit

2 Write a check

3 Hake a deposit

4 View the check register

5 Show account data

For help, press HELP.
To continue, press ke~pad 1-5.

This form is a menu, a form from which you can select actions that the
application can perform. The title of this form, Checking Account Menu, is
in double-size characters and in reverse video. The second line of this form,
Choose option (1-5):, is in double-wide characters.

The cursor is located next to the caption Choose option (1-5):. The cursor is
located in a field. In an FMS form, fields are used to display data or to
accept and display data input by an operator. In the field shown above, the
number 2 already appears. This number is the default for this field. If you
do not specify a number, FMS will choose option 2.

Press HELP. The following message appears at the bottom of the screen:

Enter one of the nu1r1bers 1, z, 3, 4, or 5

This help line gives you assistance for the field in which the cursor is
positioned.

Press HELP again. The help form that appears describes the menu's op
tions. If you press HELP again, the second help form associated with the
first form you saw appears. After you have examined the help forms associ
ated with the menu, return to the menu by pressing RETURN.

Before entering an option number, type an alphabetic character. When you
do, the terminal beeps, and a message is displayed on the bottom line of the
screen. As the Sample Application displays a form, the Form Driver checks
to see if input to a field is valid. If you try to enter an alphabetic character

2-4 Running the Sample Application Program

into a field that can accept only numbers, the Form Driver indicates that
the input is invalid by signaling you with a beep and by displaying the
following message:

N1.11r1e ric req1.1i red

Now type a 2-digit number. When you do, a message is displayed on the
bottom line, indicating that the field is full. The Form Driver can also limit
the number of characters that can be entered in a field.

Select option 2, Write a check, by pressing keypad 2. (You can also press
keyboard 2, followed by RETURN, to select option 2. If you receive the
Fieldfull message, press DELETE; then type 2, followed by RETURN.) The
following form appears:

Katherine H. S•ith
1 Hng Hil 1 Rd.
TOllnSend, AK 99999

Pt19 to I
ltl!lll

(800)555-1212

FIRST llATUM. BAIK

WRITE A CHECK

NuMber _Jl

Date: 17-SEP-82

A•ount: $1..-.11

Account 532

Current Balance: $ 361.30

The name and address on this form, in addition to other account data, were
provided by an account data file supplied with the Sample Application. The
cursor is located next to the caption Pay to. Before filling in this field, press
HELP to see what help is available.

The help form associated with this form tells you that you can fill in fields
and that you can move the cursor forward to the next field by pressing TAB
and backward to a previous field by pressing BACKSPACE. The help form
also tells you that when you are satisfied with the entries you have made,
you can press RETURN to enter the check into the check register. You can
abort the check-writing process by pressing keypad period, which returns
you to the menu.

Running the Sample Application Program 2-5

(Note that the help form specifies that the keypad period key has been
assigned a special function in the Sample Application. Assigning functions
to keypad keys is a feature available to your FMS applications.)

The Pay to field has the Response Required attribute. Before you finish
filling in this field, press LINEFEED. Doing so deletes the contents of the
field. You can move the cursor left or right within the field by pressing
CHARBCK or CHARFWD, respectively. After filling in the Pay to field,
press RETURN. The Form Driver signals you by beeping and displays the
following message on the bottom line of the screen:

In Put rec:wi red

The cursor is now positioned in the next field, Amount. If you press RE
TURN, the terminal beeps, and a message is displayed at the bottom of the
screen, indicating that input is required.

Note that the cursor is positioned to the right of the Amount field. As you
enter numbers in this field, they appear to the left of the cursor and are
pushed to the left as you continue to type numbers. This field is right
justified; that is, the operator can enter numbers as in a calculator or an
electronic cash register.

Now enter an alphabetic character into this field. The following message
appears at the bottom of the screen:

Nu111eric rec:i•.tired

Only numbers can be entered in this field. Fill in the next field, Memo, and
press RETURN. Note that the current balance figure, shown below the
check, is updated and that the following message appears at the bottom of
the screen:

Your check has been written and sent to the payee's account.
To return to Menut Press ~gre~d E~!iQ1•
To Print check into file 11 SAMPCH.DAT 11 t Press !S.~r.E.!!9. ~!.!..Q•
To write another checkt Press B~IY~M·

Now press RETURN or ENTER. Make out another check. This time, how
ever, make it out in an amount greater than the current balance. When you
press RETURN, a message appears at the bottom of the screen, saying that
you attempted to write a check that exceeds the current balance. Enter an
appropriate amount and press RETURN.

You can write another check if you wish, or you can return to the main
menu by pressing keypad period.

2-6 Running the Sample Application Program

When you return to the menu, select option 3, Make a deposit, by pressing
keypad 3. The following form appears on the screen:

HAKE A DEPOSIT

Date: 17-SEP-82

Current Balance $ 361.30

Deposit $~

llew Balance $

Take a moment to examine the form and read the available help. Now
enter a deposit. Note that the cursor is positioned on the decimal point in
this field. As you enter numbers, they are pushed to the left of the decimal
point. This field has the Fixed Decimal attribute. If you type a period and
then enter more numbers, they appear to the right of the decimal point.

After you fill in the memo and press RETURN, a message appears, saying
that the deposit has been made.

Running the Sample Application Program 2-7

When you are through examining the Make a Deposit form, return to the
menu and select option 4, View the check register, by pressing keypad 4.
The following form appears on the screen:

CHECK REGISTER - THE ACCOUNT HISTORY

Chk. Deposit Check New
No. Date Check Pa~ee or Deposit "e~o lllount Alount Ba lance

15-"AR-82 Interest on National Coal bond 500.00 I 500.00
1 15-"AR-82 Jack Dewar I 10.00 490.00
2 30-JUN-82 Louise Phipps I 20.00 470.00
3 14-JUL-82 Townsend Fabrics I 250.00 220.00
4 30-JUL-82 Channel 42 I 50.00 170.00

31-AUG-82 Pa~check 300.00 I 470.00

This Session: starting Balance: $ 361.30
Total Deposits: $ • 0
Total Checks: $ • 0
Current Balance: $ 361.30

To scroll through the check register, press UPARROW or IOllNARROW.
To return to the ~enu, press RETURN.

I

This form shows the FMS scrolling feature. Scrolling enables you to display
more lines than can fit on one screen. Look at the list in the check register.
Each item in the list records information on a check written or a deposit
made. Note the message at the bottom of the form:

To scroll throu9'h the checK re9'istert Press UPARROW and DOWNARROW+
To return to the Menut Press RETURN.

Now press DOWNLINE to scroll forward. The list of register items scrolls
up one item. That is, the item that was at the top of the list has disap
peared, and a new item has appeared at the bottom of the list.

Press DOWNLINE several times to scroll to the last item in the check
register. When the last item is reached, the following message appears on
the bottom of the screen:

Last line of re9'ister

Press UPLINE to get to the top of the check register. When you reach the
top, a message appears, saying that the top of the check register has been
reached. (Chapter 7 describes how scrolling was implemented in the Sam
ple Application.)

2-8 Running the Sample Application Program

When you are through examining the check register, return to the menu
and select option 5, Show Account Data, by pressing keypad 5. The follow
ing form appears on the screen:

ACCOUNT DATA
ACC(UIT NU"BER: .. Account opened: f'*f1;0:fl

MME Last: First: Katherine "idd1e:••••I

ADDRESS Street: :H:q~1l:Rd.

State: r;13 Zip: 11111J

H01te: ••z•&•M Business: ll=M•IL-J.Wllll

Enter secret password to change the account data: I

To record new account data and return to the Menu, press RETURN.
To return to the Menu without changing the data, press ke~rad period,

This form requests a password to change the account data. Press HELP.
The help line provides the password. Before entering the password, press
HELP again to see a description of this form. The Sample Application re
quires that you enter the password in uppercase letters, as indicated in the
help line.

You can alter any of the data in the fields of this form, but these modifica
tions are not permanent, as explained in the help form. When you run the
Sample Application again, this form will look the same as when you first
ran the program. (This is how SAMP was designed; FMS does not restrict
you from making permanent changes to any data base.)

The password is an example of the FMS No Echo attribute. You can include
this feature in your applications to provide a measure of protection. When
ever an operator enters data into a field with the No Echo attribute, the
data goes to the application program, but does not appear on the screen.

When you are through examining the Account Data form, you can return to
the menu and exit by pressing keypad 1, or you can reexamine some of the
forms.

Running the Sample Application Program 2-9

2.3 Printing SAMPCH.DAT

When you ran the Sample Application and wrote a check, you had the
option of sending a check to the data file SAMPCH.DAT for subsequent
printing. In this section, you will get a hard-copy listing of that data file.
When you specify that you want a check sent to SAMPCH.DAT, the Sample
Application sends SAMPCH.DAT to your main directory.

To obtain a hard-copy listing of SAMPCH.DAT, type the following com
mand:

$ PRINT SAMPCH+DAT

The following is a sample listing of SAMPCH.DAT:

+---+
I Katherine M. Smith Number 8

1 Hos Hi 11 l'<•L
Townsend, AK 88888

(800)555-1212

Pay to L. Martin

Memo Roofins SUPPiies

FIRST NATIONAL BANK

Date: 28-SEP-82

AMGUnt: $**45.85

Account 532
+---+

2-10 Running the Sample Application Program

Chapter 3
Creating Forms

As you read this chapter, you will:

•Learn how to set your terminal to run the Form Editor

• Examine two forms from the Sample Application

• Create two forms that appear in the Sample Application

• Create a help form

3.1 Setting Up Your Terminal

You can use the Form Editor on a VTlOO or a VTlOO-compatible terminal.
Before running the Form Editor, do the following:

1. Type the following command:

$SET TERMINAL/INQUIRE

In response, the VMS system identifies the terminal you are using.

2. To see what the operating system knows about your terminal, type the
following command:

$ SHOW TERMINAL

In response, the system displays a list of your terminal's characteris
tics. Check to see that the list includes the DEC-CRT characteristic.

3. Check to see ifthe list obtained from the SHOW TERMINAL command
includes the advanced video characteristic. If so indicated, your termi
nal has the advanced video option (AVO). If your terminal does not
have A VO, the Form Editor as it appears on your screen will differ from
what is shown in this manual. Specifically, a terminal without AVO:

•Can show reverse video or underlining, but not both

•Display a maximum of 14 lines when set to a 132-column screen
width

Terminals with A VO can display the blink and bold attributes and 24
lines when set to a 132-column screen width.

3-1

3.2 Examining Two Forms from the Sample Application

In Chapter 2, you ran the Sample Application from the FMS distribution
kit. In this chapter, you will look more closely at two of the forms in that
application program.

First, rerun part of the Sample Application so that you can see the two
forms again. As in Chapter 2, run the Sample Application by typing the
following commands:

$ RUN FMS$EXAMPLES:SAMP

You will first examine the forms and then create them yourself.

3.2.1 MENU Form

After you see the form entitled Welcome to the FMS V2 Sample Application
Program, press RETURN. The menu, entitled Checking Account Menu,
appears. We will call this form MENU.

In the MENU form shown below, the numbers above and to the left of the
form are line and column indicators for the exact positions of fields and the
background text.

10

12

20

22 @

3-2 Creating Forms

20 30 40 50 60 70

Checkin Account Menu

Choose opt ion < 1-5 >: ~ ... @

1 Exit

2 Write a check

© 3 Hake a deposit

4 View the check register

5 Show account data

For help, press HELP.

80

To continue, press ke~pad 1-5.

MENU has the following design features:

1. The form appears with white background and dark text. The form ap
pears in reverse video.

2. The title,@, is centered at the top and has double-size characters. The
title is in reverse video.

3. This form's only field,@, appears two lines below the title and is under
lined. When this form appears on the screen, a 2 is already in the field;
the 2 is the default value for this field. This field, along with its caption,
Choose Option (1-5): is centered on line 7 and has double-wide charac
ters. The caption is background text that identifies the field; that is, the
field can be referred to as the Choose option field.

4. More background text,@, starts in column 27 in lines 9, 11, 13, 15, and
17.

5. The boxed background text in the bottom right of the form gives in
structions to the operator.

Consider the purpose of MENU. The operator uses this form as a menu for
selecting an action listed in the background,©. The operator types the
number of the action to be taken. Only numbers in the range 1 to 5 are
accepted. If the operator types a number outside that range or a nonnu
meric character, the Form Driver does not accept it, beeping the terminal
and displaying an error message at the bottom of the screen.

Press HELP. A message appears at the bottom of the screen,@. When you
create this form, you will provide the help text that appears at the bottom
of this form.

Creating Forms 3-3

3.2.2 DEPOSIT Form

After you have examined MENU on the screen, press keypad 3. The form
entitled Make a Deposit appears. We will call this form DEPOSIT. The
DEPOSIT form is shown below.

@ HAKE A DEPOSIT

Date: 24-SEP-82 ...-- 1

Current Balance S 361.30 2

Deposit S~ 3

New Balance S 4

lteleo: .. 5

DEPOSIT has the following design features:

1. The form appears with a white screen background and dark text, as in
MENU.

2. The title, ®, is centered at the top of the screen and is in uppercase bold.
The title starts in column 32.

3. Field 1, with its caption, is to the right on the form. The caption Date: is
in column 49 on line 3.

4. Fields 2, 3, and 4, with their captions, appear below the title. These
fields begin in column 42 on lines 5, 7, and 9. The captions Current
Balance, Deposit, and New Balance begin in column 22 on lines 5, 7,
and 9.

5. Field 5 is underlined. The field's caption, Memo, begins in line 12, col
umn 22. Field 5 spans columns 28' to 62, occupying 35 character spaces.

3-4 Creating Forms

RETURN

DELETE

LINEFEED

TAB

ALL PHASES

Terminates display of current form

(in Layout, moves cursor to next line)

Deletes previous character

Deletes field contents (in Layout, moves

cursor down one line in same column)

Moves cursor to next field (in Layout,

moves cursor to next fixed tab stop)

BACKSPACE Moves cursor to previous field (in Layout,

moves cursor to previous character
position)

GOLD Q

GOLD R

CTRL/R

GOLDn

GOLD D

GOLD T

GOLDS

GOLD W

CTRL/U

Reverses current error signaling mode

Restores original field values (except
in Layout)

Refreshes the screen

LAYOUT PHASE ONLY

Repeats a key or operation n times

Creates a date field

Creates a time field

Makes current I ine double size

Makes current line double wide

Deletes to beginning of line

GOLD C

GOLD t

GOLD{.

ORDER PHASE ONLY

Restores conventional field

access order

TEST PHASE ONLY

DELLI NE

UNDELLIN

DRAW

Exits to previous field from scrolled

area

Exits to next field from scrolled area

ML0-047-82

Figure 3-1: Form Editor Keys

When the instructions in this chapter tell you to press a specific key - for
example, DELLINE - press the key labeled DELLINE. When you are
instructed to press GOLD UNDELLINE, press the GOLD key and then the
UNDELLINE key.

3.3.1 Creating MENU

MENU has only one field; in the Sample Application, the field accepts only
a number from 1 to 5. When you create MENU, however, this field will
accept any integer in the range 0 to 9. To restrict the integers that will be
accepted requires programming procedures that are described later in this
manual.

The first step in creating MENU is to type the following:

$ FMS/EDIT

FMS responds by displaying the following prompt:

_File:

Creating Forms 3-7

Type the name of the form you wish to create, which initially exists as a
file:

_File: MENU

MENU is the name of the file containing the form. By default, FMS assigns
a :FRM file type.

As an alternative to the commands shown above, you can type the following
command on one line:

$ FMS I ED IT MENU

FMS responds by clearing the screen and then displaying the Form Editor
menu, shown in Figure 3-2.

ForM Editor Henu

Phase Choice:

For111 Assign forM attributes
Lasout Create or Modif~ a forM
Assign Assign field attributes
Data Enter Malled Data iteMs
Order Hodif~ field access order
Test Test the forM with the ForM Driver
Exit End this editor session

For• NaMe: HENU
Input. File: New forM being created

Figure 3-2: Form Editor Menu

You use this menu to select an action to perform. You type in the name of
the phase you wish to enter.

First, you assign characteristics that apply to the entire form you are about
to create. The Form phase accomplishes this. To enter the Form phase, type
FORM; then press RETURN or ENTER.

3-8 Creating Forms

Although DEPOSIT has five fields, the operator can enter data only into
fields 3 and 5. The remaining three fields are display only. As the Sample
Application runs, it displays data in those three fields. However, when you
lay out the fields, you are not concerned whether fields are display only.

Note the attributes of each field in DEPOSIT:

1. Field 1 is a date field. When the Sample Application runs, the system
date is automatically inserted.

2. Field 2 has space for six digits: four to the left of the decimal point and
two to the right. The decimal point is a field marker. Because this field
is display only, it has no corresponding help text.

3. Field 3 is arranged like field 2; the operator can enter only numbers in
this field. Note that this field is fixed decimal. That is, as the operator
fills in this field, the numbers are placed from right to left. After the
operator types a decimal point, the remaining numbers are automati
cally inserted to the right of the decimal point. The help text for this
field is "Enter amount of deposit." If the operator fails to enter an
amount in this field and attempts to tab to the next field, the following
message appears at the bottom of the screen:

In Put rec:iui red

Thus, the Deposlt field has the Response Required attribute.

4. Field 4 has space for six digits. Because this field is display only, it has
no corresponding help text.

5. Field 5 is underlined. Any printable character can be entered in this
memo field. The help text supplied is "Enter origin of deposit."

You use the Form Editor to assign these special characteristics to each field
in DEPOSIT. The procedure for doing this is provided later in this chapter.

After you have examined DEPOSIT, press RETURN or ENTER to get back
to the main menu. You can either exit from the Sample Application or look
again at MENU or DEPOSIT.

3.3 Creating MENU and DEPOSIT

In this section, you will create MENU and DEPOSIT. You will do the
following for each form:

• Assign a name

• Lay out the background text and fields

•Assign special attributes to each field

•Test to verify that the visual characteristics work properly and that the
fields accept data as intended

Creating Forms 3-5

Using the Form Editor

The Form Editor, like the Sample Application, is a program that uses forms
for a variety of purposes. When you start the Form Editor, a menu appears
on the screen, prompting you for a specific action to take, such as assigning
attributes to a form you wish to create or laying out the form. This chapter
does not explain how to use every feature of the Form Editor; rather, it tells
how to use those features you need to create the two forms from the Sample
Application. For complete details on assigning attributes, see the V AX-11
FMS Utilities Reference Manual.

As you use the Form Editor, you make extensive use of the keypad to the
right of the terminal's keyboard and the arrow keys above the keyboard.
You use the keypad for the following operations:

1. Moving the cursor. For example, you can move the cursor up or down
any number of lines and from side to side. Using two keypad keys, you
can also instantly move the cursor to the top left of the screen or to the
bottom right.

2. Deleting characters. You can delete individual characters, entire char
acter strings, and whole lines.

3. Changing editing modes. The modes are described later.

4. Creating special video characteristics. You can make any character or
character string have special video qualities, such as blinking, holding,
or underlining. You can make characters double size or double wide,
and you can draw lines and boxes on the screen.

5. Inserting any amount of text into a special buffer and "pasting" it else
where on the screen.

6. Centering text on a line.

NOTE

You should have the keypad stickup for the Form Editor,
which is provided with the FMS distribution kit, before con
tinuing with this chapter.

Figure 3-1 shows the Form Editor keys.

Each keypad key has one or two uses. For example, the key in the top right
is labeled DELLINE and UNDELLINE. If you press this key while laying
out a form, the Form Editor deletes all the characters on the line the cursor
is in. You have performed the function shown at the top of the key.

To perform the functions shown at the bottom of the keys, you first press
the PFl, or GOLD, key and then the key labeled with the operation. Press
ing GOLD and any other key having two labels executes the function
named at the bottom of the second key. For example, if you press GOLD
and then the DELLINE/UNDELLINE key, you restore the last line deleted
by the DELLINE function.

3-6 Creating Forms

updated as you move the cursor. Referring to this status data, you can
always keep track of the exact line and column in which the cursor is
located.

Checkin Account Menu

Choose option <1-5>: ~

1 Exit

2 Write a ~

3 "ake a dl!posit

4 View the check register

5 Show acmant data

For help, press ~.
To continue, press kespad t-5.

As you follow the procedures in this exercise, you are instructed to make
deliberate errors. You will then be directed to go back over your work and
to make the necessary corrections. In this way, you get an opportunity to
learn more about the Form Editor.

When the cursor is at the beginning of line 2, press GOLD S to indicate that
you want that line to have double-size characters. As you press GOLD S,
the cursor instantly doubles in size, and the line counter at the bottom of
the screen indicates that you are in line 3. The double-size characters you
are about to type will occupy lines 2 and 3. By checking the cursor size, you
can always determine whether the line contains normal-size characters.
Press GOLDS again; the cursor returns to its original size. Pressing GOLD
S yet again returns you to double-size mode, as indicated by the size of the
cursor. In double-size characters, type the title as shown here:

ChecKin~ AccKount Menu

Note the deliberate misspelling of Account. Later you will go back and
correct this error. If you make any other errors as you type, use the DE
LETE key to make corrections. Before proceeding, press GOLDS to change
character size.

Creating Forms 3-11

Center the Title

Next, use the Form Editor CENTER function to center the title. To use the
CENTER function, make sure that the cursor is located on line 3, the line
you wish to center. Press CENTER.

After you have centered the title, move the cursor down to the beginning of
line 7. You can move the cursor to the beginning of line 7 in two different
ways:

1. Press RETURN four times.

2. Press DOWNLINE four times; then press CHARBCK until the cursor is
at the beginning of the line.

When the cursor is at the beginning of line 7, press GOLD W to make this
line have double-wide characters. As with GOLDS, you can change back
and forth between character size each time you press GOLD W. You can
also check the cursor size to determine which character size mode you are
in. Type in the following text in double-wide characters:

Choose DPtion Cl-a>:

Now place the cursor at the beginning of line 7 and press CENTER to
center the text you just typed.

Next, move the cursor down to line 9, column 27, and type in the following
text:

1 Exit

Type in the remaining options for MENU. Then move the cursor down to
line 21, column 50, to type in the instructions:

For helPt Press HELP+
To continue, Press keypad 1-5+

Draw a Box

You now want to enclose the text in a box. Move the cursor to line 20,
column 49. This character position is immediately to the left of and above
the instructions. To use the DRAW function to create a box, follow the
procedure given here:

1. With the cursor in line 20, column 49, press SELECT.

2. Press CHARFWD until the cursor is in column 80.

3. Press DOWNLINE to move the cursor down three lines to line 23. Note
that the entire area of instructions is in reverse video. The reverse
video indicates the screen area that is in a buffer known as the select
range - the screen area that is subject to a Form Editor function you
choose.

3-12 Creating Forms

3.3.1.1 Assigning Form Attributes: The Form Phase - You are now in the
Form phase. The Form Attributes questionnaire appears on the screen (see
Figure 3-3). This form contains several fields, but now you need be con
cerned only with the screen background field.

Assign ForM Attributes

For• NaMe: 1.11HE.u.N_u ________ _

Help For• Na•e: ----------

Screen Background: ~
1. As Is
2. Black.
3. White

Screen Area to Clear
First Line 1..
Last Line .23

Screen Width: 1 Screen Character Set: 1
1. As Is 1. As Is 4. RULE
2. BO Colu•ns 2. US 5. SET1
3. 132 Colutms 3. UK 6. SET2

Field Highlighting
X No Highlighting
_ Blink _ Reverse
_ Bold _ Underline

Do !IOU want to specif~ user action routines for this for•? <YIN> K

Do sou want to assign initial field attributes? <YIN> M

Figure 3-3: Form Attributes Questionnaire

When the Form Editor first displays this form on the screen, note where the
cursor is positioned. The Form Editor has already assigned the name
MENU to this form; to keep this default form name, press TAB.

Press TAB again to move the cursor to the field captioned Screen Back
ground:. If the cursor goes past this field, use the BACKSPACE key to back
up. Type 3 to indicate that MENU is to have a white background. You are
now finished with your work in the Form phase.

To get back to the menu, press GOLD MENU. The Form Editor responds by
clearing the screen and displaying the menu. You are now ready to enter
the Layout phase.

Creating Forms 3-9

3.3.1.2 Laying Out the Form: The Layout Phase - In the Layout phase, you
type in the background text and fields that make up a form. To enter the
Layout phase, type LAYOUT and then press RETURN.

As you enter the Layout phase, the screen is cleared, and the Layout phase
status line appears at the bottom of the screen. This line, shown in Figure
3-4, provides information about the Form Editor as it is operating. Table
3-1 describes the information given in the status line.

l Cursor 151 \iDi Line Ill ColuMn Ill Hodes 151 1!f] J
Figure 3-4: Layout Phase Status Line

Table 3-1: Layout Phase Status Line Information

Item

Cursor

TXT or FLD

NOR or SCR

LINE (1-23)

Meaning

The character type at the cursor position can be either text
(TXT) or field (FLD).

Indicates whether the line on which the cursor is positioned is
normal (NOR) or scrolled (SCR).

Indicates the line number.

COLUMN (1-132) Indicates the column.

Modes

TXT or FLD

OVS or INS

Field Name

Indicates the mode that selects whether background text
(TXT) or fields (FLD) are entered.

Indicates how characters are entered on the screen. Character
entry mode can be either Overstrike (OVS) or Insert (INS).

Displays the name of the current field. If you do not assign a
field name, the Form Editor provides a default field name of
F$nnnn.

Type the Background Text for MENU

Type in the background text for MENU. Position each character in the
exact column and line as described.

Start with the title. Noting that the title begins on line 2, move the cursor
to the beginning of line 2. To move the cursor down, you can press either
DOWNLINE, found at the top right of your terminal's keyboard, or RE
TURN. The line field in the status line at the bottom of the screen is

3-10 Creating Forms

4. Press DRAW.

If you make an error in the placement of the lines, you can put the lines
back in a select range and press GOLD UNDRAW.

NOTE

When you create a select range, FMS works more quickly if
you move the cursor horizontally before moving it vertically.

When you have typed in all the background text for MENU, you are ready
to create the field.

Create a Field for MENU

The one field in MENU follows the caption Choose Option (1-5):. Move the
cursor a space beyond the colon. As the cursor enters line 7, it instantly
changes to double-wide size.

With the cursor in place, you are ready to create the field. Put the Form
Editor into Field mode by pressing GOLD FIELD. The Form Editor indi
cates that it is in Field mode by displaying FLD in the status line at the
bottom of the screen in the Modes field.

Type the following:

9

The character 9 is a field-validation character. This character is a symbol
that tells the Form Driver to accept only an integer in this field during run
time. If the operator attempts to enter a nonnumeric character in this field,
the Form Driver will reject it, causing the terminal to beep and the screen
to display a message.

After you have entered the 9, return to Text mode by pressing TEXT. The
Form Editor indicates that it is in Text mode by displaying TXT in the
status line at the bottom of the screen in the Modes field.

Correct MENU

Now review your work. Go back and correct the spelling errors that you
intentionally entered.

1. Correct the misspelling in the title.

2. Correct the caption for the Choose option field.

As you correct your form, you will be experimenting with two of the Form
Editor's operating modes: Insert mode and Overstrike mode. These two
operating modes refer to the way in which the Form Editor places charac
ters on the screen.

Creating Forms 3-13

• Insert Mode

To begin correcting MENU, press GOLD INSERT to put the Form Editor
into Insert mode. Then press GOLD TOP to position the cursor at the top
left of the screen. Next, use the CHARFWD and DOWNLINE keys to
move the cursor to the kin Acckount. Press DELCHAR.

r Checking Acckount Menu l
When you press DELCHAR, all the text to the right of the cursor moves
over one column to the left to fill in the space vacated by the deleted k.

• Overstrike Mode

To correct the next error in MENU, the text that accompanies this form's
field, press OVERSTRIKE to put the Form Editor into Overstrike mode.
Move the cursor to 4 in Choose option (1-4):. You can move the cursor
either by using the arrow keys or by pressing RETURN and CHARFWD
until the cursor is in position. When the cursor is in position, type 5. The
new number replaces 4 in the column. The rest of the characters on line 3
are unaffected.

Assign Video Attributes for MENU

You are now ready to assign video attributes to your form. Video
attributes - blink, bold, reverse, and underline - are assigned through
a keypad key.

Two video attributes are in MENU:

1. The title, Checking Account Menu, is in reverse video.

2. The field, next to Choose Option (1-5):, is underlined.

To make the title bold, do the following:

1. Position the cursor in the character location immediately preceding the
C in Checking.

2. Press SELECT.

3. Move the cursor to the character position immediately following the u
in Menu.

4. Press VIDEO on the keypad. The Form Editor responds by displaying
the VIDEO: prompt at the bottom of the screen.

3-14 Creating Forms

5. Type BOLD in response to the prompt:

t.J IDEO: BOLD

6. Press ENTER. The Form Editor responds by holding the title and
repeating the VIDEO: prompt at the bottom of the screen.

7. Type SA VE to save the video attributes just assigned:

VIDEO: SAVE

8. Press ENTER.

To underline the field, do the following:

1. Move the cursor to the 9 in the field.

2. Press VIDEO.

3. Type UNDERLINE in response to the prompt at the bottom of the
screen:

VIDEO: UNDERLINE

4. Press ENTER. An underline appears under the 9, and the VIDEO:
prompt appears again at the bottom of the screen.

5. Type SA VE to save the video attributes just assigned:

\l I DEO: SAt.lE

6. Press ENTER.

You have now completed your work in the Layout phase. The next step is to
assign field attributes. For MENU, the only field attributes you assign are
Field Name and Response Required. You do this in the Assign phase.

To exit from the Layout phase and return to the Form Editor menu, press
GOLD MENU. Pressing GOLD MENU at any time during Layout returns
you to the menu.

3.3.1.3 Assigning Field Attributes: The Assign Phase- You are now ready to
assign other attributes to the field in MENU. To enter the Assign phase,
type ASSIGN and then press RETURN. The Form Editor responds by dis
playing a question below the menu (see Figure 3-5).

Assign attributes to: I
1. All fields
2. New or Modified fields
3. Specific field

Figure 3-5: First Assign Phase Question

Creating Forms 3-15

Press RETURN if you want to assign attributes to a new field, the default
choice. The screen is cleared, and MENU appears, along with a question
naire at the bottom, as shown in Figure 3-6.

Checkin Account Menu
Choose Option <1-5>: ~

Exit

2 Write a check

3 "ake a deposit

Assign Field Attributes
Field Na.-e: ::ioo[jl..,...00...,.0...._1 ________ ,.. ® Index Value_

_ Autotab
_ No Echo
_ Displa~ Onl~

Default Value:

Help Text:

_ Right Justif~
_ Fixed Deci.-al
_Zero Fill
_ Zero Suppress

_ Uppercase
_ "ust Fil 1

of' _

_ Response Required · Clear Character _
_ Supervisor Onl~ UARs? <Y,N> K

Figure 3-6: Second Assign Phase Questionnaire

When the Form Editor displays this questionnaire on the screen, the cursor
is positioned at@, in the Name field. In the MENU form, the field is
highlighted in reverse video to tell you which field is being assigned attri
butes. MENU has only one field, but if there were more than one field, you
would need to know which field you were working on.

Note that F$0001 appears as the field name. This default field name is
assigned if you do not specify a name.

Type OPTION for the field name. Then press TAB to move the cursor
through the list to the blank captioned Response Required. Type X. Assign
ing this attribute means that when MENU is displayed during run time,
the operator must enter a value in this field.

Move the cursor down to the field captioned Default value:. Type 2. The
number you type in this field is the value that the Form Driver displays
when the form first appears on the screen. That is, when the Sample Appli
cation displays MENU on the screen, the default value is automatically
displayed. If the operator does not supply another number in this field, the
Form Driver automatically performs this action.

3-16 Creating Forms

Press TAB to move the cursor to the field captioned Help text:. Here you
enter the single-line help message that the operator can see by pressing
HELP as the Sample Application is running. The help message for this
field is:

Enter one of the n1.11r1bers 1 t Zt 3t llt or 5

After you type in the help message, press GOLD MENU to return to the
menu.

3.3.1.4 Testing a Form: The Test Phase - The Test phase lets you see how
MENU would be displayed if it were being displayed by the Sample Appli
cation. Type TEST and then press RETURN to enter the Test phase. Check
the following:

1. Make sure that the visual characteristics are as you intended. Check
the positions of the title, the background text, and the field.

2. Press HELP. Check to make sure that the help message appears cor
rectly.

3. Enter an alphabetic character. Check to make sure that the correct
error message appears.

When you are satisfied that MENU is correct, press RETURN or ENTER to
return to the menu.

3.3.1.5 Saving a Form: The Exit Phase - After you return to the menu, type
EXIT and then press RETURN. The Form Editor responds by displaying
the following:

Do you wish to save this forM? Y

Press RETURN if you wish to save the form you just created. If you type N
and then press RETURN, the Form Editor deletes the form you just cre
ated.

3.3.2 Creating DEPOSIT

You create DEPOSIT just as you created MENU. The following steps sum
marize the procedure:

1. Invoke the Form Editor and type DEPOSIT as the name of the form you
wish to create.

2. When the menu appears on the screen, type FORM to enter the Form
phase. In the Form phase, specify a white screen background. Return to
the menu.

Creating Forms 3-17

3. Type LAYOUT to enter the Layout phase.

• In Layout, type in the background text, as planned.

• Create the four fields.

•Correct any errors, such as spelling, that may appear on the screen.

• Assign video attributes to the background text and to the fields, using
the VIDEO key.

• Return to the menu.

4. Type ASSIGN to enter the Assign phase.

• Assign field names, help text, and default values for each field.
\

•Return to the menu.

5. Type TEST to enter the Test phase. Try out your form.

6. When you are satisfied with your form, type EXIT and indicate that
you want to save your form.

Review the design for DEPOSIT. Note the special video characteristics.

HAKE A DEPOSIT

Date: 24-SEP-82

Current Balance $ 361.30

Deposit $~

New Balance $

.. 3-18 Creating Forms

To invoke the Form Editor, type the following:

$ FMS/EDIT DEPOSIT

When you press RETURN, the Form Editor clears the screen and displays
the menu.

3.3.2.1 Assigning Form Attributes: The Form Phase - With the menu on the
screen, type FORM and then press RETURN. The Form Editor responds by
displaying the Form Attributes questionnaire. Press TAB to move the cur
sor to the Screen Background field. Type 3 to assign a white screen back
ground to DEPOSIT. You are now finished with your work in the Form
phase.

Assign ForM Attributes

For11e taee:,DE eo .. s ... u.__ ______ _
Help For11e Na11ee: ----------

Screen Background: .II
1. Its Is
2. Black
3. lllite

Screen Width: 1
1. As Is
2 I BO Co I UllflS

3. 132 Colu11ns

Press GOLD MENU to return to the menu.

Screen Character Set: 1
1. As Is 4. RULE
2. US 5. SETl
3. UK 6. SET2

3.3.2.2 Laying Out the Form: The Layout Phase - You are now ready to begin
laying out DEPOSIT. Type LAYOUT to enter the Layout phase.

Type the Background Text for DEPOSIT

Type in the background text for DEPOSIT as shown in the SAMP form in
Section 3.2.2. Note that the dollar sign ($) for the Current Balance, Deposit,
and New Balance fields is background text. The dollar sign is not part of the
field. Position the cursor in the column 49, where the Date field begins.
Type in the following caption:

Date:

Create a Date Field

When you have finished typing in the background text for DEPOSIT, you
are ready to create the fields. The first field you create is the Date field.

Creating Forms 3-19

With the cursor in column 55, press GOLD D. The Form Editor responds by
displaying a list of date formats at the bottom of the screen:

Date choice: - 1 (Month day, Year) 2 C dd-1tl1Tl1Tl-YY) 3 C1tl1tl/dd/yy) 4< dd-MITl-YY)

Type 2 and then press RETURN to select the second format.

Create Other Fields

After you have finished creating the Date field, move the cursor to create
the next field, Current Balance, which begins in column 42, line 5. This
field must be able to contain up to six digits, with a decimal point(.) as a
field marker between the first four digits and the last two.

Since each position in this field is to contain only integers in the range 0 to
9, type 9s, as follows:

8888.88

Move the cursor down to the next field, Deposit, and create that field ex
actly as you created the Current Balance field. Do the same for the New
Balance field.

The last field you create in DEPOSIT is captioned Memo:. To create this
field, move the cursor to line 12, column 28. Since this field extends to
column 62, it contains 35 characters. Therefore, this field should be defined
by 35 consecutive Xs. The X is a field-definition character that tells the
Form Driver to permit any displayable character to be entered into the
field. You can type in each X individually, or you can use the REPEAT
function to enter the 35 Xs more easily.

Use the REPEAT Function

The REPEAT function simplifies the task of typing in field-definition char
acters for large fields. To use the REPEAT function, do the following:

1. Press GOLD.

2. Using the numeric keys on your terminal's keyboard, type the number
35. Note that as soon as you type 3, the following prompt appears at the
bottom of the screen:

RePeat: 3

3. Type 5, then X. The field now has 35 Xs.

Now that you have created the fields for DEPOSIT, return to Text mode by
pressing TEXT. The Form Editor updates the Modes field in the phase
status line.

3-20 Creating Forms

Creating Video Attributes for DEPOSIT

You are n9W ready to assign video characteristics to your form. Two charac
teristics are used in DEPOSIT:

1. The title, MAKE A DEPOSIT, is in bold.

2. The Memo field is underlined.

To make the title bold, do the following:

1. Move the cursor to Min MAKE by pressing either the arrow keys or
GOLD TOP, followed by CHARFWD several times.

2. Press SELECT.

3. Move the cursor to the Tin DEPOSIT.

4. Press VIDEO. The Form Editor responds by displaying the VIDEO:
prompt at the bottom of the screen.

5. Type BOLD.

lJ IDEO: BOLD

6. Press ENTER. The Form Editor responds by holding the title and
repeating the VIDEO: prompt.

7. Type SAVE to save the video attributes just assigned:

t.J I DEO: SAt.JE

8. Press ENTER.

To underline the Memo field, do the following:

1. Move the cursor to any character location in the field.

2. Press VIDEO. The Form Editor responds by displaying the VIDEO:
prompt at the bottom of the screen.

3. Type UNDERLINE.

lJIDEO: UNDERLINE

4. Press ENTER. The Form Editor responds by underlining the Memo
field and by showing the VIDEO: prompt again.

5. Type SAVE to save the video attribute just assigned:

lJ I DEO: SAt.JE

6. Press ENTER.

You are now ready to assign attributes to the fields in DEPOSIT.

Return to the menu by pressing GOLD MENU. The Form Editor clears the
screen and displays the menu.

Creating Forms 3-21
\~ _)

3.3.2.3 Assigning Field Attributes to DEPOSIT: The Assign Phase - You as
sign attributes to the fields in DEPOSIT while in the Assign phase. Type
ASSIGN and then press RETURN. The Form Editor responds by displaying
a question at the bottom of the screen (see Figure 3-5).

Press RETURN, indicating that you want to assign attributes to the new
fields you have created.

The screen is cleared, and DEPOSIT is displayed on the top half of the
screen. (The Assign phase questionnaire (see Figure 3-7) is on the lower
half of the screen.)

Note that the Date field in DEPOSIT is in reverse video. This helps you
identify the field to which you are assigning attributes.

When you create the Date field, the Form Editor automatically assigned the
Display Only attribute. When DEPOSIT is displayed during run time, the
date is displayed and the operator cannot access that field. So the only
attribute you need to assign to the Date field is the name, DATE. Press
LINEFEED to delete the default field name. Type DATE and then press
RETURN to assign attributes to the next field.

Assign Field Attributes
Field Natte: .-QllM.--------- Index Value __

of __
_ Autotab
_ No Echo
_ Displas Only

Default Value:

Help Text:

_ Right Justify
l Fixed Deci•al
I Zero Fill
: Zero Suppress

_ Uppercase
_ Hust Fill
_ Response Required Clear Character _
_Supervisor Only UARs? <Y,N) H

Figure 3--7: Display Only Attribute

The Form Editor again displays the Assign phase questionnaire. This time
the reverse video highlighting is in the Current Balance field. The Form
Editor has also supplied a default name, F$0002, for this field.

To enter a name for the Current Balance field, first delete the default name
by pressing LINEFEED. Then type the name CURBAL.

Next, press TAB to move the cursor to the blank captioned Display Only.
Type X. The cursor then moves automatically to the next blank, Right
Justify. Type X. In the fields captioned Zero Fill and Zero Suppress, type X.
The Zero Fill attribute causes the Form Driver to pad with zeros all values
returned to the application program. The Zero Suppress attribute causes
the Form Driver to provide blanks in place of leading zeros when the cur
rent balance figure is displayed during run time.

3-22 Creating Forms

Finally, type 0 in the blank captioned Clear Character. The 0 causes the
Form Driver to put Os in each unused data position in the field. When you
assign the Zero Suppress attribute, FMS requires you to also use the Zero
Fill attribute and to specify a Clear Character. After you have assigned
these attributes, press RETURN to move to the next field, Deposit.

After typing the name DEPOSIT, press TAB until the cursor is positioned
next to the blank captioned Fixed Decimal. Type X.

Next, put an X by the Zero Fill and Response Required attributes.

Move the cursor to the blank captioned Clear Character. Type 0.

Since the Deposit field will be filled in by the operator, you should provide a
help text line. To do this, press TAB to move the cursor to the Help Text
field. Type the following line:

Enter aMount of deposit

Press RETURN to assign attributes to the next field, New Balance. Assign
the following attributes to this field: the name NEWBAL and the Display
Only and Right Justify attributes.

Finally, you assign attributes to the Memo field. Assign the name MEMO
and the Response Required attribute. You must also type the following help
text line:

Enter the orifin of deposit

You have now finished assigning field attributes to the Deposit field. Press
GOLD MENU to return to the menu.

3.3.2.4 Alternative Method of Assigning Field Attributes - You have been
assigning field attributes to forms from the Assign phase. The Form Editor
offers an alternative to this means of assigning field attributes. After you
have created a field and the cursor is still in that field, press GOLD
FLDATR. The Form Editor responds by displaying the Assign phase ques
tionnaire on the lower half of the screen. You can immediately assign field
attributes. When you complete that questionnaire, you are still in the Lay
out phase and can continue laying out the form.

You can try this method by returning to the Layout phase for either form
you created. Move the cursor to any field on the screen and press GOLD
FLDATR. You return to the Form Editor menu by pressing GOLD MENU.

3.3.2.5 Testing a Form: The Test Phase - Type TEST and then press RE
TURN to enter the Test phase. The Form Editor displays DEPOSIT as if it
were being displayed by the Sample Application. As you test this form,
check the following:

1. Make sure that the visual characteristics are as you intended. Check
the position of the title, the background text, and the fields.

Creating Forms 3-23

2. Press HELP. Check to make sure that the help message appears cor
rectly for each field.

3. Enter invalid data into the fields. Check to make sure that the correct
error messages appear.

When you are satisfied that DEPOSIT is correct, press RETURN or ENTER
to return to the menu.

If you discover that you need to modify DEPOSIT, reenter any phase -
Form, Layout, or Assign - and make the corrections. You will then want
to enter the Test phase again.

3.3.2.6 Saving a Form: The Exit Phase - After you return to the menu, type
EXIT and then press RETURN. The Form Editor responds by displaying
the following question:

Do YOU wish to save this forM? Y

Press RETURN if you wish to save the form you just created. If you type N
and then press RETURN, the Form Editor deletes the form you just cre
ated.

3.4 Creating a Help Form

This section describes how to create a help form. When you ran the Sample
Application, you saw the help form associated with the menu (see Figure
3-8).

You will create the help form for MENU and will connect it with MENU.

To create a help form, you follow the same steps as you did to create MENU
and DEPOSIT. The only difference between those forms and a help form is
that a help form cannot contain any fields, except for time and date fields.
Help forms only display text. The Form Driver ignores any other fields that
may be in the help form.

The first step is to invoke the Form Editor and to create the form entitled
HMENU.

3.4.1 Creating HELP _MENU

Type the following command to invoke the Form Editor and to specify
HMENU as the form you wish to create:

$ FMS/EDIT HMENU

FMS responds by clearing the screen and then displaying the Form Editor
menu. Select the Form phase.

3-24 Creating Forms

Help for SAHP Henu

SAHP siMulates soMe functions of electronic banking. In this application
9ou can Make deposits and write checks at 9our terainal.

Your account at this bank has alread!I been set up. You have llade several
deposits and have written sa.e checks. When SAIF starts, 9ou are able to
request the followins functions h9 twing the nwlber and then pressin!f
RETlRI. You can stop SAtf> h9 t9ping 1 or h9 pressins kespad period.

1 1111 To leave SAIP and return to operating s9ste11 level.

2 61 N You are asked to fill in p119ee, illllmlt, and IBID inforaation.

3 lit:1&44CIQQ You are asked to fill in the ilMJUlll and IBID infanation.

4

5

You can revieu checks and deposits llade in the past.

You can see the data associated with 9our acccm1t.

For More help, press 1£LP.
To continue, press RETtlll.

Figure 3-8: Menu Help Form

When in the Form phase, assign the name HELP _MENU to this help form.
Give this form a white screen background.

Return to the Form Editor menu and select the Layout phase.

When in Layout, type in the text as shown in Figure 3-8. Assign the appro
priate video attributes.

When you have finished the Layout phase, return to the menu and exit.
You do not need to use the Assign .Phase unless your help form has a time
or a date field. If you were to create fields in a help form, the Form Driver
would ignore them during run time.

The next step to take in creating the help form is to associate it with the
menu form. To do this, you need to edit MENU with the Form Editor again.

3.4.2 Associating HELP_MENU with MENU

Invoke the Form Editor and specify MENU as the form you wish to modify.

$ FMS/EDIT MENU

FMS responds by clearing the screen and then displaying the Form Editor
menu. Select the Form phase.

Creating Forms 3-25

When in the Form phase, move the cursor to the field captioned Help Form
Name. Type the name of the help form you just created, HELP _MENU.

Assign ForM Attributes

For1111 Nalte: wME.uNU--___,~-----
Help For1111 Na1111e: ... HE_L ... PJl-N 11-------

HELP _MENU is now associated with MENU. Press GOLD MENU to re
turn to the menu and to exit, saving the form.

3-26 Creating Forms

Chapter 4
Creating a Form Library

As you read this chapter, you will:

• Create a library file

•Store MENU, DEPOSIT, and HMENU in the library

• Get a directory listing of the library

• Examine a form description of MENU

Figure 4-1 shows the steps in the FMS application development cycle. The
shaded portions are covered in this chapter.

4.1 Create a Library File

To create a library for the forms you just created, invoke the Form Librar
ian and specify SUBSET .FLB as the form library file you wish to create:

$ FMS/LIBRARY/CREATE SUBSET.FLB

FMS responds by printing the -Files: prompt. Enter the following com
mand:

_Files: MENUtDEPOSITtHMENU

4-1

Start

Create forms
(Form Editor)

Create CO BO L
data definition

ML(}048-82

Figure 4-1: FMS Application Development Cycle

4-2 Creating a Form Library

4.2 Obtain a Library Directory Listing

Once you have stored the three forms in SUBSET.FLB, get a directory
listing of that library file by specifying /DIRECTORY in the FMS command
line. Use the following command line to obtain a directory listing of
SUBSET.FLB.

$ FMS/DIRECTORY SUBSET

FMS then displays the following directory listing:

ForM Librarian V2+0
21-SEP-1882 10:08

Library USER:[SMITHJSUBSET.FLB;1 t created: 21-SEP-1882 10:08

Date and tiMe of last Modification: 21-SEP-1882 10:08

MENU
DEPOSIT
HELP_MENU

4.3 Interpret a Form Description

To obtain a form description of MENU.FRM, type the following command:

$ FMS/DESCRIPTION SUBSET/FORM_NAME=MENU/OUTPUT=MENU

The command above produces the form description MENU.FLG, shown in
this section. For easier reference, we will discuss the form description in
sections. Form descriptions are useful as hard-copy references of forms. For
more information on form descriptions, see the V AX-11 FMS Utilities Ref
erence Manual.

A form description is a set of Form Language statements that describe a
form. The following section of MENU .FLG consists of statements that de
scribe the form attributes of MENU.

FMS ForM DescriPtion APPlication Aid
Version 2.0

FORM NAME='MENU'
HELP_FORM='HMENU'
AREA_TQ_CLEAR=1:23
WIDTH=80
BACKGROUND=WHITE
DBLWID=7
DBLSIZ=2

Creating a Form Library 4-3

The next section of MENU.FLG consists of statements that describe the
background text in MENU - the location and video attributes of each bit
of background text.

TEXT (218) 'Checkin~ Account Menu'
BOLD

TEXT (7 t 1) I Choose option (1-5): '

TEXT C9t27> '1 Exit'

TEXT (11 t27) '2 Write a check'
;

TEXT (13t27) '3 Make a deposit'
;

TE)<T (15t27) 'll View the check re~ister'

TEXT (17t27) '5 Sho1,.1 account data'
;

TEXT C20tll8) 'lqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqk'
CHARACTER_SET=RULE
;

TEXT C21tll9> 'x'
CHARACTER_SET=RULE
;

TEXT C21150) 'For helPt Press HELP.'
;

TEXT (21 t 80) Ix I

CHARACTER-SET=RULE
;

TEXT C22tll8> 'x'
CHARACTER_SET=RULE
;

TEXT <22150) 'To continue t Press keypad 1-5.'
;

TEXT C22t80) 'x'
CHARACTER_SET=RULE
;

TEXT C23tll9) 'MqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqJ'
CHARACTER-SET=RULE

The last section of the form description describes the field in MENU - the
position of the field on the screen and the field attributes.

ATTRIBUTE-DEFAULTS FIELD
CLEAR_CHARACTER=' I

NOAUTOTAB BLANK_FILL NOBLINKING NOBOLD NOREVERSE
NOUNDERLINE NODISPLAY_ONLY ECHO NOFIXED_DECIMAL
LEFT_JUSTIFIED NOSUPERVISOR_ONLY NOSUPPRESS NOUPPERCASE

FIELD NAME='OPTION' C7t1)
PICTURE='8'
HELP='Enter one of the nu1T1bers 1t 2t 3t llt or 5'
DEFAULT='2'
RESPONSE-REQUIRED UNDERLINE

END_OF_FORM NAME='MENU' ;

4-4 Creating a Form Library

4.4 Obtain a Form Image

The last section of this chapter tells how to obtain a form image and how to
interpret it.

To obtain an image of the form MENU, enter the following command:

$ FMS/DESCRIPTION/IMAGE SUBSET/FORM_NAME=MENU/OUTPUT=MENU

FMS produces the file MENU.LIS shown below.

1 I
21
:31
41
51
GI
71
81
81

101
11 I
121
131
141
151
161
171
181
181
201
::-~ 1 I
22!
231

Forlll: MENU

1 2 3 4 5 6 7 8
12345678801234567890123456788012345678801234567880123456788012345878801234567880

CHECKING ACCOUNT MENU

Choose option (1-51: 2

1 Exit

2 Write a checK

3 MaKe a dePosit

4 View the checK resister

5 Show account data

I 1
12
13
14
15
18
17
iB
!8
110
I 11
112
113
114
115
116
117
118
I 18

+--+120
!For help, Press HELP (PF2). 1121
ITo continue, tl'Pe a nuf!lber (1-5) and Press RETURN.1122
+-----------·---------------------------------------+123

12345678801234567880123458788012345678801234567880123456788012345678801234567880
1 2 3 4 5 6 7 8

This image shows how MENU appears on the screen. The title, CHECK
ING ACCOUNT MENU, and the line Choose Option are not shown in
double-size and double-wide characters, because of the limitations of a line
printer. The image shows the location of background text a.,nd fields that
are in normal-size characters. When working with hard-copy listings of
forms, it is useful to attach copies of the form image to the form descrip
tions.

Creating a Form Library 4-5

Chapter 5
Writing an Application

As you read this chapter, you will:

• Learn about some basic Form Driver concepts

• Write a subset of the Sample Application, using the three forms you cre
ated in Chapter 3

•Learn about some basic Form Driver calls and incorporate them in the
subset application

5.1 Form Driver Concepts

The Form Driver consists of subroutines that provide services to make it
easy for an application to display forms and to transfer data between the
terminal and the Form Driver. The Form Driver services are invoked by
Form Driver calls in the application. The Form Driver routines accomplish
the following tasks:

•Establish communication links among the Form Driver, the application,
the terminal, and the form library

• Display the forms on the screen

• Accept operator input into the fields of the form

•Determine whether the operator input is valid

• Send the operator input back to the application

• Move the cursor from one field to another

•Display messages and help for the operator

You implement Form Driver services by including Form Driver calls in the
source program. You then compile and link the application program with
the Form Driver routines. During run time, the Form Driver routines are

5-1

invoked in much the same way as routines available from any object pro
gram library.

As shown in Figure 5-1, the Form Driver is a part of the application pro
gram. Form Driver calls set up all the 1/0 channels and work areas that
you specify.

rMA1N MEMoRv
I
I
I
I Application

I
I
I
L

-----------,

Form
Driver

I
I
I

I
I
I

_J.

ML0-049-82

Figure 5-1: Role of the Form Driver in an Application Program

In this section, you will learn about the categories of Form Driver calls. In
the programming exercises in this chapter, you will use the calls that are
demonstrated in the Sample Application. Finally, you will learn how the
Form Driver performs string handling. Understanding string handling is
important when adapting your programming language to FMS.

5.1.1 Form Driver Calls

Form Driver calls are implemented in the application program in much the
same way as any other subroutine calls. The format of the calls depends on
the program language used. This ~ection briefly describes the kinds of calls
and lists the calls used in the subset application.

5.1.1.1 Functional Division of Calls - Because the Form Driver provides a
number of services, the calls can be divided into the following categories:

• Control calls

• Field-level calls

• Form-level calls

• Utility calls

The services that the calls provide are listed under each category.

5-2 Writing an Application

Control Calls

•Establish communication lines with the terminal and the form library

• Establish work areas for forms and the terminal

•Manipulate files and work areas

• Detach communication paths previously established

Field-Level Calls

• Request operator input to a field

• Alter characteristics of a field

• Send data to a field

• Return a description of a field

•Return a field's context, name, and other data

Form-Level Calls

• Clear the terminal screen

• Display a form

• Return all field values in one step

• Send values to all fields in one step

Utility Calls

• Cancel a call

• Send a message to the terminal

• Return a line from the terminal

• Return Named Data from a form

•Return status after the last call executed

5.1.1.2 Form Driver Calls Used in the Subset Application - In this chapter,
you will practice using Form Driver calls. After completing this chapter,
you can turn to the Form Driver Reference Manual to write your own FMS
applications.

In the call descriptions in this chapter, some arguments for some of the
calls have been omitted for the sake of simplicity. The Form Driver Refer
ence Manual provides complete descriptions of each call.

Writing an Application ~

The following calls are used in the exercises:

FDV$ATERM
FDV$AWKSP
FDV$CDISP
FDV$DTERM
FDV$GET
FDV$LCLOS
FDV$LOPEN
FDV$PUT
FDV$PUTL
FDV$STAT
FDV$WAIT

Attach terminal
Attach form workspace
Clear screen and display form
Detach terminal
Get value for specified field
Close form library
Open form library
Output value to specified field
Output line to screen
Return status from the last call
Wait for operator

5.1.2 String Handling

This section describes how the Form Driver manipulates data that it gets
from the operator. Your application accesses data from forms in a variety of
ways and can do the following:

• Use the Form Driver FDV$GET call to request operator input to a spe
cific field and return that data in a variable to the application and the
Form Driver workspace.

•Use the Form Driver FDV$GETAL call to request input from all the
fields in which the operator can provide input - readable fields - on
the form and put that data in the Form Driver workspace. Your applica
tion can then access the workspace to return individual field values.

• Get operator input to all readable fields in a form and store the contents
of all fields, both readable and nonreadable, as a single string in the
application's data base. This is done with the FDV$GETAL call, specify
ing the variables to which all field values are to be returned.

This chapter shows how to implement some of the Form Driver's string
handling capabilities that appear in the Sample Application. How an appli
cation handles strings depends on the language used, however. For specifics
on how to handle strings in a given language, see the VAX-11 FMS Lan
guage Interface Manual.

5.2 Sample Application Subset

This section describes the main program and subroutines of the subset
application that you will code in this chapter. The subset is made up of the
following program sections:

• A main program

• A subroutine that displays and services the MENU form

•A subroutine that executes the DEPOSIT form

5-4 Writing an Application

You will also insert dummy subroutines, called stubs, whose primary pur
pose is to appear where they do in the Sample Application but without any
particular function. You will provide stubs where the subset application
performs the following tasks:

• Initialize account data

• Process the check-writing form

• Process the deposit form

•Show the account data

• Show the check register

Instead of performing the tasks shown above, the stubs, when called during
run time, will display a message on the screen, indicating that their func
tion is not implemented yet. Providing these stubs in the subset application
enables you to run the subset and to test all the options available in the
menu.

NOTE

To make efficient use ofVAX-11 BASIC, each subroutine in
the subset application is invoked as a function, as in the
Sample Application.

The subset application does not use the keypad. Therefore, when you run
the subset application, you will need to indicate menu choices by using the
numeric keyboard.

5.2.1 The Main Program

The main program of the subset application does the following:

1. Sets up a general work area for the program.

2. Sets up a terminal control area for the Form Driver.

3. Attaches the terminal to the Form Driver.

4. Attaches the workspace to the terminal.

5. Establishes a communication line between the form library and the
Form Driver.

6. Calls a subroutine, INACCT, that reads account data from a data file.
Since this subroutine will not be coded in this chapter, it will return to
the main program only arbitrary account figures.

7. Calls a subroutine, MENU, that processes all menu requests.

8. Performs a general cleanup.

9. Exits.

Writing an Application 5-5

5.2.2 Subset Subroutines

Following are descriptions of the subroutines that you will include in the
subset from the Sample Application.

INACCT Returns account data to the main program. In this subset,
INACCT returns only the summary figures for the checking account: start
ing balance, total checks written, total deposits made, and current balance.

MENU Accepts operator input from the menu form and branches control
to the appropriate subroutine to service the action requested. Control al
ways returns to this subroutine until the operator exits. Then this subrou
tine returns control to the main program. This subroutine uses the form
MENU that you created in Chapter 3.

WRITCH Performs the check-writing procedure in the Sample Applica
tion. In the subset, this subroutine is a stub and displays a message indicat
ing that the subroutine is not implemented. The WRITCH subroutine then
returns control to the MENU subroutine.

MAKDEP Instructs the operator to enter a deposit and a memo of the
deposit. This is the second subroutine for which you created a form in
Chapter 3. This subroutine makes use of the keypad; if the operator presses
keypad period, the Form Driver displays the MENU form and returns con
trol to subroutine MENU.

VUEREG Permits the operator to view the check register for the check
ing account. In the subset, this subroutine displays a message and returns
control to subroutine MENU.

VUEACT Permits the operator to view the account data. This subroutine
is not implemented in this subset. Therefore, when the operator chooses
this option, VUEACT displays a message that this subroutine is not imple
mented.

GETSTA Checks the status of the Form Driver after the last call exe
cuted. This subroutine displays an error message if the results of the last
Form Driver call executed produced an error. The final statement of the
application is at the end of this subroutine.

5.2.3 Preparing the Main Program

Before you continue with this section, create a file in which you can enter
the statements given in this chapter. Use the name SUBSET.BAS for this
file. As you are instructed to enter statements, enter them as shown in
SUBSET.BAS.

5.2.3.1 Initializing Calls - The first instructions in the subset's main pro
gram are the initializing calls. These calls set up the Form Driver, the form
library, the workspace, the terminal control area, and the appropriate com
munication links among those components.

5-6 Writing an Application

You use the initial Form Driver calls to do the following:

•Attach the terminal to the Form Driver

•Attach a workspace for the Form Driver

• Open the form library containing the forms the application will use

In this section, you will write the statements that use these calls and see
how the calls work. Descriptions of the calls used in the subset are in
dented. The statements you enter into the source file for SUBSET .BAS
appear in red type. Note that the complete subset program appears in the
Appendix.

Attaching the Terminal- FDV$ATERM

Before an FMS application and a terminal can communicate, the ter
minal must be identified. A terminal control area, an area in memory
used by the Form Driver, must also be established for that terminal.

The FDV$ATERM call identifies the terminal and establishes a termi
nal control area (see Figure 5-2). The FDV$ATERM call has the fol
lowing format:

FDV$ATERM (tea, size, channel)

The argument tea represents an area in memory set aside by the ap
plication program for the terminal control area, size represents the
size, in bytes, of the TCA, and channel represents the 1/0 channel.

fMAIN MEMORY - - - -

I
-------,

I

I
I
I
I
I

Application

CALL
FDV$ATERM

L __ ,_

Form Driver

A TERM

I
I

Figure 5-2: Attaching a Terminal

ML0-050-82

Enter the following statements into SUBSET.BAS to set up a general work
area and a terminal workspace and to attach the terminal:

130 DIM WORKSPACE% (3) ! General workspace
140 DIM TCA% (3) ! TerMinal control area
1 oao CALL FDl,1$ATERM (TCA% () t 12% t 2%)

The value 3 in the DIM statements for WORKSPACE% and TCA% repre
sents a 12-byte area in memory. VAX-11 BASIC interprets the value 3 to

Writing an Application 5-7

represent three 4-byte words, or 12 bytes. In the FDV$ATERM call, the
argument 12% represents the size, in bytes, of the TCA, and 2% represents
the I/O channel number.

Attaching the Workspace- FDV$AWKSP

To display a form on a terminal screen, your program must put a form
description in a workspace and call the form from that workspace.

The Form Driver call that attaches a workspace to a terminal is
FDV$A WKSP (see Figure 5-3). The FDV$A WKSP call has the follow
ing format:

FDV$A WKSP (wksp, size)

The argument wksp represents the a.rea in memory set aside for the
workspace, and size represents the size, in bytes, of the workspace.

JM°AINMEMORY- - - - - - -

I
- - ---,

I
I I

I
I
I

Application
CALL
FDV$AWKSP

L ______ ,
I
I
I
I

I
L _

Form Driver
AWKSP

Workspace

I

I
____ ...J

Figure 5-3: Attaching a Workspace

ML0-051-82

Enter the following statement to attach a workspace size of 2000 bytes to
the terminal:

1042 CALL FDl.J$AWKSP (WORKSPACE'X. () t 2000%) \ C=FN + GETSTA

The accuracy of the initial estimate of the workspace size is not critical, but
applications run slightly faster when the size is larger than the workspace
requirements of the largest form in the application. To determine the size,
in bytes, of each form in a library, use the FMS/LIBRARY/FULL command.

In the statement above, C = FN.GETSTA calls the FMS status-checking
function, which is described later. It is good programming practice to check
the FMS status after Form Driver calls that can affect subsequent
processing - attaching, opening, or displaying operations.

5-8 Writing an Application

Opening a Library Chanl)el - FDV$LOPEN

Forms are used to transfer data between the application program and
the terminal screen. Forms may be memory resident - linked with
the application program - or stored in a form library. To retrieve a
form stored in a library, the library must be opened, and an 1/0 chan
nel connecting the library and the Form Driver must be established.

The FDV$LOPEN call establishes an 110 channel between the Form
Driver and the form library (see Figure 5-4). The FDV$LOPEN call
has the following format:

FDV$LOPEN (filspc, channel)

The argument filspc represents the name of the library file that you
wish to open, and channel represents the 1/0 channel that connects
the library file to the Form Driver.

lMAIN MEMORY - - - - - - I
I I

I
I
I
L

Application
CALL
FDV$LOPEN

I
I
I
I
L_

Form Driver
LOP EN

Workspace

I

_J

Figure ~: Opening a Library Channel

ML0-052-82

Enter the following statement to open the library SUBSET.FLB and to
specify an 1/0 channel to be used between the library and the Form Driver:

1050 CALL FDl.1$LO PEN (I SUBSET I t 1 %) \ C=FN. GETSTA

The GETSTA function call appears again at the end of the statement.

5.2.3.2 Coding the Body of the Main Module - You will now enter the state
ments for coding the body of the subset main module. In the subset, the
body consists of two statements: a call to the subroutine INACCT and a call
to the subroutine MENU. INACCT initializes the account information. In
this subset, INACCT establishes a current balance for the checking account
and returns control to the main module. MENU processes all menu re
quests.

Writing an Application 5-9

Enter the following statements:

1115 C = FN.INACCT
1170 C FN.MENU

Initialize account inforMation
Process all Menu requests

When the operator exits from the menu, control returns to the main pro
gram, and the closeout procedure statements are processed.

5.2.3.3 Closing Calls - At the end of the main module, several statements
execute the closing procedure for the FMS components. These statements
close the I/O links opened in the main module, detach the terminal and
workspace(s), and perform a general cleanup.

The closing procedure calls are as follows:

FDV$LCLOS
FDV$DWKSP
FDV$DTERM

Close form library
Detach form workspace
Detach terminal

Closing the Form Library - FDV$LCLOS

The FDV$LCLOS call closes the I/O channel established between the
library file and the Form Driver. FDV$LCLOS has the following
format:

FDV$LCLOS

This call has no arguments.

Detaching the Form Workspace - FDV$DWKSP

The FDV$DWKSP call detaches the workspace from the application
program. FDV$DWKSP has the following format:

FDV$DWKSP (wksp)

The argument wksp represents the area of memory set aside for the
Form Driver workspace.

Detaching the Terminal - FDV$DTERM

The FDV$DTERM call detaches the operator's terminal from the ap
plication program. This call also cleans up the terminal and makes it
usable for other programs. FDV$DTERM has the following format:

FDV$DTERM (tea)

The argument tea represents the area of memory set aside for the
terminal control area.

5-10 Writing an Application

Enter the following statements to execute the FMS closing procedure:

1200
1208
1215
1220

CALL FDl.l$LCLOS
CALL FOl.l$DWKSP
CALL FDl.l$0TERM
GOTO 15888

WORKSPACEi.'. <) >

TCA'X. < > >

The last line, GOTO 15999, transfers control to the end statement of the
subset.

5.2.4 Coding the INACCT Subroutine

The IN ACCT subroutine returns to the main program the following arbi
trary figures:

SBALANCE%
TOTPAY%
TOTDEP%
BALANCE%

The starting balance: $503. 7 5
The total amount written in checks: $213.45
The total amount of deposits made: $1123.23
The current balance: $1413.53

Each variable is initially assigned a numeric value. Later in this chapter,
you will see how these numbers are converted into strings that are output
to the appropriate forms in the subset application. The INACCT subroutine
has no Form Driver calls.

Enter the following statements, which make up the body of the INACCT
subroutine.

4000 DEF FN.INACCT
4005 SBALANCE% = 50375
4010 TOTPAY% = 21345
4015 TOTDEP% = 112323
4020 BALANCE% = 141353
4080 FNEND

5.2.5 Coding the MENU Subroutine

The MENU subroutine does the following:

1. Accepts input from the menu form and branches control to the appropri
ate routine

2. Continues accepting input until the operator enters 1 (Exit)

Before entering the code for this subroutine, become familiar with the Form
Driver calls used in this subroutine.

Writing an Application 5-11

Clearing the Screen and Displaying a Form - FDV$CDISP

The FDV$CDISP call clears the terminal screen and displays a speci
fied form. In the MENU subroutine, FDV$CDISP displays the menu
form that you created in Chapter 3.

When processing the FDV$CDISP call, the Form Driver retrieves the
specified form from.the library, places. a description of that form in the
workspace, clears the terminal screen, and displays the form on the
terminal screen (see Figure 5-5).

r----
1 MAIN MEMORY

I
I
I
I

Application
CALL
FDV$CDISP

Form Driver
CDISP

L __ _

...-1r-----~ Workspace

L ___ _

I
I

_ _J

Figure 5-5: Displaying a Form

The FDV$CDISP call has the following format:

FDV$CDISP (frmnam)

ML0-053-82

The argument frmnam represents the name of the form that the Form
Driver is to display on the screen.

In the subset, the corresponding statement for this call is as follows:

CALL FDV$CDISP ('MENU')

You will be instructed later to enter this statement.

5-12 Writing an Application

Requesting Operator Input to a Field - FDV$GET

The FDV$GET call requests the operator's input to a specified field. In
the MENU subroutine, the GET call is used to request the operator's
choice of checking account procedure to enter ..

When processing the FDV$GET call, the Form Driver reads the opera
tor's input to a specified field, copies that input to a variable name
specified in the GET call statement, and sends that variable to the
application (see Figure 5-6).

jMAiNMEMORY

L_

Application
CALL FDV$GET

CD

I
I
I
L

Form Driver
GET

©

Workspace

ML0-054-82

Figure ~= Requesting Operator Input to a Field

The Form Driver uses the following procedure when executing the
FDV$GET call:

1. The application issues the FDV$GET call for a value.

2. The Form Driver requests the value from the operator.

3. The Form Driver retrieves the value.

4. The Form Driver copies the value into the workspace and into the
application program.

Writing an Application 5-13

The FDV$GET call has the following format:

FDV$GET (fldval, fldtrm, fldnam)

The argument fldval represents the variable into which the input to
the specific field is copied, fldtrm represents the code for the field
terminator key struck, and fldnam represents the name of the field
from which the input is being retrieved.

The subset application call that requests operator input to the menu
has the following format:

CALL FDV$GET (OPTION$, TERMINATOR%, 'OPTION')

Displaying a Line on the Terminal Screen - FDV$PUTL

The FDV$PUTL call displays a message on a specified line on the
terminal screen. In the MENU subroutine, the FDV$PUTL call is used
to display a message indicating invalid input by the operator into the
OPTION field.

The FDV$PUTL call has the following format:

FDV$PUTL (text [,line])

The argument text represents the character string to be displayed on
the screen, and line represents the number of the line on which the
character string is to be displayed. If line is not supplied, the Form
Driver displays the character string on the bottom line of the screen.

If the operator attempts to enter an invalid number, the message "IN
VALID CHOICE" is displayed by the following call:

CALL FDV$PUTL ('INVALID CHOICE')

Coding the Body of the MENU Subroutine

The MENU subroutine uses a loop to continue displaying the menu after
processing an operator choice. A computed GOTO dispatches to the subrou
tine which processes the operator's request.

Enter the following statements, which make up the body of the MENU
subroutine.

5000 DEF FN.MENU
5005 Menu choices:
5010 ! 1 => Exit
5015 2 => Write chec~\s

5020 3 => MaKe a deposit
5025 a => 1.i i e1, . .1 re~ister

5030 5 => 1.1 i e1111 account data

As required in VAX-11 BASIC, the following statement pre-extends the
variable OPTION$, which is to contain the operator menu choice:

85040 OPTIONS = I I

5-14 Writing an Application

The following statements make up a computed GOTO loop to dispatch to
the appropriate subroutine. Calls to the status check function appear after
the FDV$CDISP and FDV$GET calls.

5045 WHILE 1 = 1
5050 CALL FDV$CDISP ('MENU I) \ C=FN+GETSTA
5070 CALL FDV$GET < OPTION$t TERMINATOR%t 'OPTION' l \ C=FN.GETSTA
5075 ON VAL < OPTION$ > GOTO 5082t 5080t 5100t 5110t 5120

The remaining statements of MENU branch control to the subroutine(s)
processing the operator's menu request. After a subroutine has been exe
cuted, control resumes at statement 5130, which branches back to the be
ginning of the computed GOTO loop.

5081 0Ption 1: Exit
5082 FNEXIT
5085 0Ption 2: Write checks
5080 C=FN.WRITCH \ GOTO 5130
5085 0Ption 3: Make a deposit
5100 C=FN.MAKDEP \ GOTO 5130
5105 0Ption 4: View re~ister

5110 C=FN.VUEREG \ GOTO 5130
5115 0Ption 5: View account data
5120 C=FN.VUEACT \ GOTO 5130
5130 NEH
5140 FNEND

5.2.6 Coding the WRITCH Subroutine

The WRITCH subroutine does the following:

1. Displays the following message on the bottom of the screen:

Write a check - not irT1Ple1T1ented Yet

2. Waits for the operator to press ENTER or RETURN

-3. Returns to the main menu

WRITCH uses two Form Driver calls: FDV$PUTL and FDV$WAIT. Here
we will discuss only the FDV$W AIT call.

Waiting for Operator Input - FDV$WAIT

The FDV$WAIT call causes the Form Driver to wait until the operator
signals to proceed. This call is particularly useful for pausing until the
operator reads a message. The FDV$W AIT call has the following
format:

FDV$W AIT ([fldtrm])

The argument fldtrm is the variable to which the Form Driver returns
the terminator code of the key struck to end the wait condition. If you
do not supply an argument with the WAIT call, the Form Driver will
not return the terminator the operator entered.

Writing an Application 5-15

Coding the Body of WRITCH

The WRITCH subroutine uses the FDV$PUTL call to display the following
message on the bottom of the screen:

Write a check - not implemented Yet

Enter· the following statements to make up the WRITCH subroutine:

11000 DEF FN.WRITCH
11005 CALL FDVSPUTL ('Write a check - not iMPlemented Yet')
11010 CALL FDVSWAIT
11015 FNEND

5.2. 7 Coding the MAKDEP Subroutine

The MAKDEP subroutine does the following:

1. Displays the DEPOSIT form, which you created in Chapter 3

2. Writes the checking account's current balance in the Current Balance
field

3. Requests the operator's input for the deposit and the deposit memo

4. Adds the deposit to the current balance and updates the Current Bal
ance field

5. Displays, once the deposit has been entered, the following message on
the bottom of the screen:

Deposit made t Press RETURN or ENTER to continue

The MAKDEP subroutine uses the following Form Driver calls, which we
have already presented:

FDV$CDISP

FDV$GET

FDV$PUTL

FDV$WAIT

Clears the screen and displays the DEPOSIT form

Gets the operator's input for the Enter Deposit and Memo
fields

Displays a message on the bottom line of the screen, say
ing that the deposit has been made

Waits for the operator to signal for the Form Driver to
continue after the deposit message has been displayed

The MAKDEP subroutine also uses the FDV$PUT call to display the cur
rent balance, determined previously by the INACCT subroutine or by pre
vious calls to MAKDEP, in the Current Balance field.

Output Value to a Speeified Field - FDV$PUT

The FDV$PUT call displays a value in a specified field. In the
MAKDEP subroutine, the FDV$PUT call is used to display the date

5-16 Writing an Application

and the current balance in the Date and Current Balance fields, respec
tively.

The FDV$PUT call has the following format:

CALL FDV$PUT (fldval, fldnam [,fldidx])

The argument fldval represents the variable to be displayed, fldnam
represents the field in which the variable is to be displayed, and fldidx
represents the index value of the field represented by fldnam. (The
argument fldidx is used only if the field is indexed, described in Chap
ter 7.)

The statement that displays the current balance in the subset applica
tion follows:

CALL FDl.l$PUT (STR$ (BALANCEX.) t I CURBAL I)

(Note that the BASIC STR$ function is used in this statement, de
scribed later.)

BASIC Functions in the MAKDEP Subroutine

The BASIC functions STR$, SP ACE$, and VAL are described here for those
who are not familiar with V AX-11 BASIC. These functions are used in
MAKDEP to perform the following operations:

STR$ Converts a numeric value to a string value. For example, the
current balance, represented by the variable CURBAL, ini
tially has the numeric value 50375. The STR$ function converts
the number 50375 to the string '50375'. The Form Driver deals
only with character strings, not with numbers, for values of
fields.

SP ACE$ Creates a string of space characters, as many as specified.

VAL Extracts the numeric value from a string. For example, the
VAL function can extract the value 50375 from the string
'50375' for subsequent arithmetic operations. This function does
the reverse of the STR$ function.

Coding the Body of MAKDEP

Statements 12000 to 12065 display the form DEPOSIT and send the cur
rent balance to that form. Calls to the FMS status-checking function appear
at the end of these statements.

12000 DEF FN.MAKDEP
12050 CALL FDl.l$CDISP t 'DEPOSIT') \ C=FN+GETSTA
12085 CALL FDl.l$ PUT (STR$ (BALANCE'X,) t 'CURBAL') \ C=FN. GETSTA

Statements 12125 and 12130 define two variables: DEP.AMT$, which rep
resents the amount of the deposit made; and DEP.MEMO$, which repre
sents the deposit memo.Jn these statements, the SPACE$ function is used

Writing an Application 5-17

to pre-extend DEP.AMT$ and DEP.MEMO$. These string variables must
be at least as long as the return values expected. Thus, BASIC string varia;.
bles must be pre-extended to that length before being passed by the Form
Driver. The SPACE$ function pre-extends strings by giving them a specific
number of spaces.

12125 DEP.AMT$ = SPACE$CG)
12130 DEP.MEMO$ = SPACE$C35)

Statements 12135 and 12140 use the FDV$GET call to request the operator
to enter data into the fields DEPOSIT and MEMO and then to return those
values to variables DEP.AMT$ and DEP.MEMO$.

12135 CALL FDV$GET < DEP.AMT$t TERMINATOR%t 'DEPOSIT')
12140 CALL FDV$GET < DEP.MEMO$t TERMINATOR%t 'MEMO')

Statement 12155 updates the checking account's current balance, repre
sented by the variable BALANCE%.

12155 BALANCE% = BALANCE% + VAL < DEP.AMT$)

Statement 12160 uses the FDV$PUT call to display the updated current
balance in the field NEWBAL and then to call the FMS status checking
function.

12180 CALL FDV$PUTC STR$C BALANCE%) , 'NEWBAL') \ C=FN.GETSTA

Statement 12165 uses the FDV$PUTL call to display a message that the
deposit has been made.

12185 CALL FDV$PUTL< 'Deposit made - Press RETURN or ENTER to continue')

Statement 12170 uses the FDV$W AIT call to pause and wait for the opera
tor to press RETURN to continue. Statement 12175 ends the subroutine.

12170 CALL FDV$WAIT
12175 FNEND

5.2.8 Coding Subroutines VUEREG and VUEACT

These two subroutines are stubs in the subset. They display the message
that the subroutines are not implemented and then return to the menu, as
in the functions of subroutine WRITCH. The statements for both
subroutines follow:

13000
13005
13010
13015
14000
14005
14010
14015

DEF FN. t.JUEREG
CALL FDV$PUTL ('View resister not iMPleMented Yet')
CALL FDl.J$WA IT
FNEND
DEF FN. t.JUEACT
CALL FDV$PUTL ('View account not iMPleMented Yet')
CALL FDl.J$WA IT
FNEND

5-18 Writing an Application

5.2.9 Coding Subroutine GETSTA

GETST A, a subroutine called frequently throughout the subset, checks the
current FMS status and diagnoses any errors. Providing a status-checking
subroutine in your FMS applications is good programming practice. If an
error condition exists, this subroutine prints a code for the specific error
condition. (See the VAX-11 FMS Form Driver Reference Manual for a list
of the codes.)

The GETSTA subroutine does the following:

1. Issues the FDV$STAT call.

2. If the status code is greater than 0, the last call was successful, so
control returns to the statement following the call to GETSTA. If the
status code is equal to or less than 0, the FDV$DTERM call is executed,
and codes are printed for both the FMS and the RMS (Record Manage
ment System) status. RMS returns any file or system operation error
codes to the Form Driver. For more details on RMS, see the V AX-11
FMS Form Driver Reference Manual.

3. Terminates the subset application. The END statement, number 15999,
is the last statement in the program. Control always passes to this
statement. If the previous Form Driver call does not yield an error,
control always branches back to the statement following the GETSTA
function call before the END statement is reached.

The GETSTA subroutine uses two Form Driver calls: FDV$STAT and
FDV$DTERM.

Returning the Status from the Last Call- FDV$STAT

The FDV$STAT call returns the status for the last Form Driver call
executed. The FDV$STAT call has the following format:

FDV$ST AT (status [,iostat])

The argument status represents a numeric code for the last Form
Driver call executed, and iostat represents a numeric RMS status code
for detailed information when the STATUS value is -4 or -18.

Detaching the Terminal - FDV$DTERM

At the end of an application, the FDV$DTERM call is used to detach
the operator's terminal from the application program. The call also
cleans up the terminal for use by other programs. The FDV$DTERM
call has the following format:

FDV$DTERM (tea)

The argument tea represents the area of memory set aside for the
Form Driver workspace.

Writing an Application 5-19

Coding the Body of GETSTA

Statement 15025 uses the FDV$STAT call to return the FMS and RMS
status codes after the last call executed. The FMS status code is represented
by FMSSTATUS%, and the ·RMS status code is represented by
RMSSTATUS%.

15000 DEF FN.GETSTA
15025 CALL FDVSSTAT C FMSSTATUS%t RMSSTATUS% >

Statement 15030 returns control to the statement following the GETSTA
call should FMSSTATUS% reveal no error conditions. Otherwise, control
passes to statement 15730, which uses the FDV$DTERM call to detach the
terminal.

15030 IF FMSSTATUS% > 0 THEN FNEXIT
15730 CALL FDVSDTERM C TCA% >

Statements 15735 to 15745 print the error codes in FMSSTATUS% and
RMSSTATUS%. Statement 15747 contains the STOP instruction, and
statement 15750 ends the status-checking function.

15735
15740
15745
15747
15750
15999

PR I NT II FOi.i ERROR. II

PRINT 1111 t 11 FMS STATUS: II tFMSSTATUS'X.
PRINT 1111 t 11 RMS STATUS: II tRMSSTATUS'X.
STOP
FNEND
END

NOTE

Although FMS supports the standard VMS Run-Time Li
brary error-reporting procedures, the procedure used for indi
cating an error condition in the Sample Application and the
subset application does not conform to the VMS conventions.
For more details on error-reporting procedures, see the
VAX-11 FMS Form Driver Reference Manual.

You have now entered all the statements for the subset application. Chap
ter 6 tells you how to compile, link, and run this program.

5-20 Writing an Application

Chapter 6
Compiling, Linking, and Running an Application

As you read this chapter, you will learn how to create an executable image
of the Sample Application subset that you prepared in Chapter 5. Figure
6-1 shows the steps in the FMS application development cycle that are
covered in this chapter.

Form library

Link

Executable
image

Run

ML0-055-82

Figure 6-1: FMS Application Development Cycle

6-1

6.1 Compiling the Subset

To compile the subset application, type the following command:

$ BASIC SUBSET/LIST

If you want to create the subset application in a language other than
V AX-11 BASIC, consult the VAX-11 FMS Language Interface Manual.

6.2 Linking the Subset

Before you begin this step, check with your system manager to verify that
the Form Driver library has been installed in the VMS system library. If
this has been done, type the following command to link the subset object
module:

$ LINK SUBSET

By default, VMS scans the system library to link the appropriate Form
Driver library modules with the subset object module.

6.3 Running the Subset

To run the subset, type the following command:

$ RUN SUBSET

6-2 Compiling, Linking, and Running an Application

Chapter 7
Programming Features

FMS can simplify your programming and can make forms more attractive
and more useful. Four such features of FMS are discussed in this chapter:

•Indexing

•Scrolling

•Named Data

• User action routines

This chapter describes these features in detail and lets you see how they
are used in the Sample Application subset. In this chapter, you will create a
subroutine, named VUEREG, for the subset and a check register form,
REGISTER, in. which you will incorporate these features. You can then
rebuild the subset application and verify that each feature performs
correctly.

The VAX-11 FMS Form Driver Reference Manual describes other program
ming features that FMS offers.

7.1 Indexing

Indexing simplifies creating and accessing fields that are identical. Indexed
fields have the same name and attributes and are distinguished by indexes,
much like an array. Your application can access these indexed fields in any
order. Indexing also simplifies the procedure of assigning attributes to
identical fields.

In the exercise that follows, you will learn about indexing by implementing
it in the check register form, REGISTER. You will first be guided through
the creation of REGISTER. You will then index the four fields in
REGISTER.

The following image is the REGISTER form from SAMP, the form in which
you can see a register of the checks written and deposits made.

7-1

CHECK REGISTER - THE ACCOUNT HISTORY

Chk.
No. Date

15-HM-82
1 15-HAR-82
2 30-Jllt-82
3 14-JlL-82
4 30-Jll.-82

31-AUG-82

Deposit Check New
Check Pa~ee or Deposit Helff> AIH>unt AIMMmt Balance

Interest on Nat iona I Coa 1 bond 500.00
Jack Dewar I

Louise Phipps I

Townsend Fabrics I

Channel 42 I

Pasched 300.00

This Session: starting Balance: $ 361.30
Total Deposits: $ • 0
Total Checks: $ • 0
Current Balance: $ 361.30

I 500.00
10.00 490.00
20.00 470.00

250.00 220.00
50.00 170.00 . 470.00

To scroll through the check register, press IFARROI or IOIWIDI.
To return to the 11tenu, press RETURN.

As you look at the form, note the following:

I

1. The title, CHECK REGISTER - THE ACCOUNT HISTORY, is cen
tered on line 2 and is in double-wide characters.

2. The column heads for the scrolled area are located as follows:

Chk. No. Chk., line 5, column 2; No., line 6, column 2

Date Line 6, column 8

Check Payee Line 6, column 17

Deposit Amount Deposit, line 5, column 54; Amount, line 6, column
54

Check Amount Check, line 5, column 63; Amount, line 6, column 63

New Balance New, line 5, column 72; Balance, line 6, column 72

3. Horizontal lines, created by the DRAW function, extend from columns 1
to 79 on lines 7 and 14. Vertical lines extend from columns 1, 6, 16, 53,
62, 71, and 79 to the two horizontal lines.

4. The scrolled area has six lines. You will create this scrolled area in
Section 7.2.

5. Below the scrolled area is a summary of the check register figures. This
Session: begins in line 15, column 22. Starting Balance: begins in col
umn 37. The field begins in column 56 and contains six characters and
a decimal field-marker character. The field-validation character used in
this field is 9, indicating that only numerals are to be accepted in this

7-2 Programming Features

field. This field's attributes are Display Only, Right Justified, Zero Fill,
Zero Suppress, and a zero (0) Clear Character.

6. The remaining summaries - Total Deposits, Total Checks, and Cur
rent Balance: - appear directly below, and the fields are identical to
the field next to Starting Balance:. These summary fields are display
only and will, along with the Starting Balance field, be indexed.

7. The background text at the bottom of the screen is in a box that occu
pies lines 20 to 23, from columns 14 to 80.

7.1.1 Create REGISTER

Invoke the Form Editor. and create the form REGISTER, following the
same steps you used in Chapter 3.

1. From the menu, go to the Form phase. Assign a white screen back
ground.

2. Go back to the menu and then go to the Layout phase. Now create the
form according to the design just discussed. Leave the scrolled area
blank for now. You will draw in the lines after you have created the
scrolled area.

3. In the Assign phase, you assign indexing attributes to the summary
fields in the middle of the form. The procedure for assigning these at
tributes follows.

7.1.2 Assign Indexing Attributes

Note that the four fields have identical attributes. Follow the steps below to
index these fields:

1. As you assign attributes to the Starting Balance field, assign the name
SUMMARY.

2. In the field next to Index Value, type 1, indicating the first in a set of
indexed fields. Note that 1 appears in the blank below Index Value,
captioned of. This blank shows how many fields are in the set of in
dexed fields.

3. Assign the Display Only, Right Justified, Zero Fill, Zero Suppress, and
zero (0) Clear Character attributes.

4. Press RETURN to assign attributes to the next field.

5. For the field's name, again type SUMMARY. Assign the same attrib
utes you assigned to the first field you created. Note that after you
press TAB when you assign the field name, the Index Value and Index
Count blanks are automatically updated. Both blanks contain the value
2. If you do not assign the same attributes that you assigned to the first
field you created, the Form Editor signals you with an error if you press
RETURN.

6. Repeat steps 4 and 5 until all four fields are indexed.

Programming Features 7-3

7. Return to the menu and type EXIT.

FMS provides an alternative to the procedure listed above:

1. While in the Layout phase, create the first field to be indexed.

2. Move the cursor into the field you just laid out and press GOLD
FLDATR.

3. Assign the name, SUMMARY.

4. In the field next to Index Value, type 1.

Assign the Display Only, Right Justified, Zero Fill, Zero Suppress, and
zero (0) Clear Character attributes.

5. Duplicate the field you just created four times, using the following pro
cedure:

•Move the cursor to a character position in the Summary field, SUM
MARY.

•Press CUT.

• Press GOLD PASTE to replace the field you just cut.

•Move the cursor to the location where you want to place the second
indexed field: line 16, column 56.

•Press GOLD PASTE.

• Repeat the previous two steps until all four fields have been pasted
into their appropriate locations. The Form Editor automatically up
dates their index values and assigns the same attributes assigned to
the first field in the indexed set.

6. Return to the menu and exit.

When you are finished with the Layout, Form, and Assign phases of creat
ing REGISTER, exit from the Form Editor.

7.1.3 Manipulate Indexed Fields in the VUEREG Subroutine

In this section, you will write the statements required to manipulate the
indexed fields. The statements in VUEREG do the following:

1. Display the check register form, REGISTER, that you just created

2. Use the FDV$PUT call to assign numeric values to the four indexed
fields

NOTE

Make sure that you delete statements 13005, 13010, and
13015 that you have already entered for the VUEREG sub
routine. During run time, those statements display a mes
sage indicating that VUEREG is not implemented.

7-4 Programming Features

In the VUEREG subroutine, the values to be sent to the indexed fields have
been established in the main body of the program. These values are the
following arbitrary figures:

SBALANCE%
TOTPAY%
TOTDEP%
BALANCE%

The starting balance: $503.75
The total amount written in checks: $213.45
The total amount of deposits made: $1123.23
The current balance

The statements you are about to write use the BASIC STR$ function to
make character strings of the values to be sent to the indexed fields.

Using an editor, type the following statements to display REGISTER and to
assign values to the indexed summary fields:

13047
13050
13055
13080
13085

CALL FDl.l$CD Is p (I REG I STER I)

CALL FDl.J$ PUT (STR$ (SBALANCE'.Y..) t I SUMMARY I t 1 '.Y..)

CALL FDl.l$PUT (STR$ (TOTDEP'.Y..) t I SUMMARY I t 21..)
CALL FD~l$PUT (STR$ (TOTPAY'.Y..) t 'SUMMARY It 3%)
CALL FDt.1$ PUT < STR$ < BALANCE% > t 'SUMMARY' t a ·x. >

In the sections that follow in this chapter, you will be adding statements
and features to VUEREG and to REGISTER.

7.2 Scrolling

In Chapter 2, you saw how the check register form, REGISTER, in the
Sample Application program used scrolling. Scrolling lets you display and
edit a list of data that is too long to fit on the screen at one time.

The area of the form that displays the list of checks written is the scrolled
area. When REGISTER first appears on the screen, the cursor is on the
bottom line of the scrolled area. If you press DOWNLINE once, the list
scrolls forward one line. The line that was at the.top of the list disappears
from the screen, and a new line appears at the bottom of the list. The cursor
is still on the bottom line of the window.

If you press DOWNLINE several times, you reach the last item in the list.
When the cursor reaches the end of the list, the following message appears
at the bottom of the screen:

Last line of re~ister

If you press UPLINE, the cursor moves up the list. Not until it reaches the
top of the list does the list begin to scroll.

When a list of data appears in the scrolled area on a form, the Form Driver
is aware only of the lines that appear on the screen. The application is
responsible for moving the list of data as necessary.

The application must keep track of pointers to the following items to exe
cute scrolling:

•The last item in the list of data

•The item that appears at the top of the scrolled area

• The bottom line in the scrolled area

Programming Features 7-5

Two Form Driver calls are used in the Sample Application to support scroll
ing:

FDV$PFT
FDV$PUTSC

Process field terminator
Output data to current line of scrolled area

You will now create the scrolled area in REGISTER and write the subrou
tine in the Sample Application that executes the scrolling.

7 .2.1 Complete the Check Register Form, REGISTER

Before you continue with this exercise, make sure that you have completed
the exercises in Chapter 3 and the indexing exercise in Section 7.1.3.

First, examine the design of the scrolled area in the REGISTER form:

CNr.. Deposit Check New
No. Date Check Pasee or Deposit He..a tt..ount A•ount Balance

15-llAR-82 Interest on National Coal bond 500.00 I 500.00
1 15-MR-82 Jack l!Yar I 10.00 490.00
2 30-Jlll-82 Louise Phipps I 20.00 470.00

-3 14-Jll.-82 Townsend Fabrics I 250.00 220.00
4 30-Jll.-82 Channel 42 I 50.00 170.00

31-AUG-82 Pas check 300.00 I 470.00 I

Note the characteristics of the scrolled area:

1. The scrolled area has six lines, and each line has six visible fields. Each
field is display only.

2. The first field, NUMBER, begins in line 8, column 2, and can have up to
four characters.

3. The second field, DATE, begins in column 7, but does not use the Date
function. Instead, this field has the following field picture: XX-XXX
XX. If you were to use the Date function to create a field picture for this
field, the Form Driver would display only the current date in this field,
not the date representing the day of the transaction.

4. The third field, PA YMEM, has 35 characters, starting in column 17 and
extending to column 51.

5. The fourth field, DEPOSIT, starts in column 54 and has six characters
and a period field-marker character. This field has the Display Only,
Right Justified, Zero Fill, Zero Suppress, and zero (0) Clear Character
attributes.

7-6 Programming Features

6. The fifth field, AMTPAY, starts in column 63 and has the same charac
teristics as DEPOSIT. This field has the Display Only, Right Justified,
Zero Fill, Zero Suppress, and zero (0) Clear Character attributes.

7. The sixth field, BALANCE·, starts in column 72 and is identical to the
DEPOSIT field. This field has the Display Only, Right Justified, Zero
Fill, Zero Suppress, and zero (0) Clear Character attributes.

A seventh field exists in this form. Unlike the other fields, thjs field, lo
cated in column 80, is a dummy field. Scrolled lines should have at least
one readable field - a field that is not display only - if you wish to place
the cursor in each scrolled line. You can do this by placing a dummy field in
each scrolled line. Each scrolled line, therefore, has this seventh field,
named FAKE. It has the No Echo attribute and is never used by the appli
cation. FAKE provides only a means of placing the cursor in a scrolled line
and of receiving a terminator for input.

All fields in the scrolled area use only the X field-validation character.
Since all these fields, except FAKE, are display only, the X field-validation
character is all that is necessary. FAKE also uses X; thus, during run time,
the subset application ignores any characters that may be entered.

When the Sample Application runs and REGISTER appears on the screen,
the cursor is in this dummy field. The dummy field is the field from which
the Form Driver retrieves the field terminator to begin scrolling.

To add a scrolled area to REGISTER, invoke the Form Editor and do the
following:

1. Type LAYOUT to enter the Layout phase. Move the cursor to line 8.

2. Press GOLD FIELD.

3. Type in the field-validation characters for the field NUMBER, as noted
in this form's design.

4. Lay out the remaining six fields, all with the X field-validation charac
ter. Remember that the field FAKE does not have a column head and
that it consists of a single X field-validation character.

5. Press SCROLL.

6. Press DOWNLINE. Note that the last line you laid out is replicated.

7. Press DOWNLINE four more times until you have the six lines for the
scrolled area.

8. Press ENDSCROLL.

9. With the cursor in any line of the scrolled area, try to change one of the
fields. Note that the change is replicated in each line in the scrolled
area. It is thus easy for you to edit the lines in the scrolled area.

10. When you are done with the scrolled area, draw in the lines around and
through the scrolled area, as described in ~ection 1.1.

Programming Features 7-7

11. Exit from the Layout phase by pressing GOLD MENU to return to the
menu.

12. Type ASSIGN to enter the Assign phase.

13. When in the Assign phase, note that you assign attributes to the fields
in only one line of the scrolled area. Since all lines in the scrolled area
must be identical, it is not necessary to assign attributes to the fields in
every line in the scrolled area.

14. Press GOLD MENU to return to the menu and exit.

7.2.2 Insert REGISTER in SUBSET.FLB

You must now place REGISTER in the form library, SUBSET.FLB. To do
this, use the following command:

$ FMS/LIBRARY/INSERT SUBSET

The Form Librarian responds with the following prompt:

_lnPut Files:

Type the name of the form you just created, REGISTER.

7.2.3 Writing the Statements that Support Scrolling

In this section, you will write the statements required to support scrolling
in the check register form, REGISTER. Before examining the scrolling
statements, look at the flow of control for the VUEREG subroutine (see
Figure 7-1). The form REGISTER is called and displayed by the SAMP
subroutine VUEREG.

7-8 Programming Features

VUE REG

Display
REGIST.FRM

Display
- starting balance
- total deposits
- total checks
- current balance

Display first
6 lines of
REGARRAY$

Get input from
FAKE$, the
dummy field

Exit

Scroll
forward

Scroll
backward

Get input
from FAKE$

ML0-056-82

Figure 7-1: Flowchart for the VUEREG Subroutine

Programming Features 7-9

The data to be scrolled is in an array, REGARRAY$. The application pro
gram, not the Form Driver, must keep track of which lines in REGARR
A Y$ are in the scrolled area. The lines in REGARRA Y$ that are mapped to
the scrolled area appear in a window (see Figure 7-2). The process of scroll
ing can be thought of as mapping this window to the scrolled area on the
terminal.

Data List

Item 1

Item 2

Item 3

Item 4

Item 5

Item 6

Item 7

Item 8

Item 9

Item 10

Item n

Scrolled Area

Item 4

Item 5

Item 6

Item 7

Item 8

Item 9

rrrr
r- r r r
r-r r i-

i=-r~r

ML0-057-82

Figure 7-2: Mapping a Window to a Scrolled Area

NOTE

In the Sample Application, REGARRA Y$ is in a data file and
must go through a series of processes before it can be scrolled
on to a terminal screen. In the subset application, we will
simplify REGARRA Y$'s data structure by assigning it 10
specific items in subroutine INACCT. Before continuing with
this exercise, edit SUBSET.BAS and add the following state
ments to INACCT that make up REGARRA Y$. Use the DIM
statement at the beginning of SUBSET.BAS to assign the
array REGARRA Y$ a size of 10 bytes.

Edit SUBSET.BAS and make the following statement the first statement of
the program:

100 DIM REGARRAY$ (10)

Add the following statements to IN ACCT to compose make up array REG
ARRA Y$. (The numbers above the statements show the exact column posi
tions of the data.)

9 26 69 76 82
I I I I I

4025 REGAR RAYS (1) . 15MARB2Interest on National Coal borid 050000 50000'
4030 REGARRA'iS(2) . 115MARB2Jack Dewar 1000 49000'
4035 REGARRA YS (3) . 230JUNB2Louise Phipps 2000 47000'
4040 PEGARRAYS(4) . 314JULB2Townsend Fabrics 25000 22000•
4045 REGARRAYS(5) . 430JULB2Channel 42 5000 17000'
4050 REGARRAYS(6) , 31AUGB2Paycheck 030000 47000'
4055 FIEGARRAY$(7) . 512SEPB2four-star Auto 1543 45457'
4060 REGARRAYSCB) . 6 40CTB2Mary Johnson 4450 41007,
4065 REGARRA'iS(9) . 7 1FEBB3Cory Advertising Agency 5002 36005'
4070 FIEGARRAYSC10 -· 04FEB83Pegasus Eauestrian Center 000125 36130'
4075 LAS'lREGNUM\= 0

7-10 Programming Features

To perform scrolling, VUEREG maps a section of REGARRA Y$ to the
scrolled area.

Display REGISTER

The first five lines of the VUEREG subroutine do the following:

•Declare integer constants for the keypad keys ENTER, DOWNLINE, and
UPLINE.

•Issue the CDISP call to display the REGISTER form.

•Display the summary balance figures. (These statements appear in the
exercise on indexing, but are repeated here.)

The first statement of VUEREG declares integer constants that represent
the keypad keys the operator can press while REGISTER is displayed.

13000 DEF FN.VUEREG
13001 DECLARE INTEGER CONSTANT

FDV$K_FT_NTR Ot
FDVSK_FT_SFW St
FDt.JSK_FT _SBK = 8

RETURN or ENTER
DOWNLINE (scroll forward)
UPLINE (scroll backward)

NOTE

V AX-11 BASIC requires you to declare in the main program
the integer constants representing each keypad field termi
nator. Some other languages that FMS supports permit you
to use include or require files that contain these integer con
stants.

Enter the following lines to perform the initial display and setup of REGIS
TER. Note that the FDV$PUT call uses indexing to display the summary
figures.

13047 CALL FDl.l$CDISP ('REGISTER I)

13050 CALL FDl.JSPUT (STRS (SBALANCE'.Y..) t I SUMMARY I t 1 'X.)
13055 CALL FDl.l$PUT (STR$(TOTDEP'.Y..) t 'SUMMARY It 2'.Y..)
13060 CALL FDl.l$PUT (STRS (TOTPAY'X,) t I SUMMARY I , 3'X,)
13065 CALL FDVSPUT (STRS(BALANCE%) t 'SUMMARY' t 4%)

NOTE

If you have completed the section on indexing, you do not
need to enter the statements above.

The subroutine sets the variable NSCROL% to represent the number of
lines in the scrolled area (6).

13085 NSCROL% = 6%

Initialize Two Scrolling Pointers

The next two statements establish pointers to two lines:

• A subscript in REGARRA Y$ corresponds to the top line in the scrolled
area - MINWINDOW%. MINWINDOW% is initialized to 1.

Programming Features 7-11

• A subscript in REGARRA Y$ corresponds to the line the cursor is
on - CURLINE%. CURLINE% is also initialized to 1.

13135 MINWINDOW%
13140 CURLINE% = 1

Output a Data Line into the Scrolled Area - FDV$PUTSC

The FDV$PUTSC call sends the current line of the window to the
scrolled area on the screen. The first line from REGARRA Y$, the reg
ister array in the Sample Application, is sent to the first line in the
scrolled area, using the FDV$PUTSC call. When the FDV$PUTSC call
is issued, the entire line to be output is referenced by a single field
name. This field can be any field in the line. The field also identifies
which scrolled area to use, since a form can have more than one
scrolled area. In this example, the line to be scrolled is referenced by
the field NUMBER, the first field in each line in REGARRA Y$.

The FDV$PUTSC call has the following format:

FDV$PUTSC (fldnam, fldval)

The argument fldnam represents a field name in the line to be
scrolled, and fldval represents a variable name containing the value of
the line to be scrolled.

Enter the following statement appearing in VUEREG to send the first line
in REGARRA Y$ to the scrolled area on the screen:

13145 CALL FDt.J$ PUTSC ('NUMBER' t REGAR RAY$ (1))

Output the Remaining Lines in the Scrolled Area

The subsequent statements in VUEREG occupy the remaining five lines in
the scrolled area of the form REGISTER. Note the use of the variables
MINWINDOW% and CURLINE%. Two additional variables are used in
these statements:

MAXWINDOW% A subscript of REGARRA Y$ that corresponds to the
bottom line of the scrolled area

LASTREGNUM% A subscript of the last item in REGARRA Y$ ·

Altering the Current Line - FDV$PFT

This section of the subroutine uses the FDV$PFT call to increment the
current line to the next line to be sent to the scrolled area.

The FDV$PFT call has the following format:

FDV$PFT ([fldtrm,] [fldnam,] [fldval,] [nfldnam,] [,nfldidx])

7-12 Programming Features

The argument fldtrm represents the field terminator to be processed;
fldnam is a field that identifies the scrolled area. The argument
fldval represents the field values to be displayed if the screen is
scrolled during the processing of the field terminator. The argument
nfldnam represents the current field name after the call has been
processed, and nfldidx represents the index of the the current field.

Enter the following statements to send the first six lines of REGARRA Y%
to the scrolled area in REGISTER. Note that the PFT call is used here to
update the current line for the Form Driver and that the variable CUR
LINE% is incremented simultaneously for the application source code. The
PUTSC call then sends the current line to the scro1led area.

13150 WHILE (CURLINE% < LASTREGNUM% AND CURLINE% < NSCROL%)
13155 CURLINE% = CURLINE% + 1
13180 CALL FDVSPFT < FDVSK_FT_SFWt 'NUMBER')
13185 CALL FDl.l$ PUTSC ('NUMBER' t REGARRAYS (CUR LI NE%))
13170 ND{T
13171 MAXWINDOW% = CURLINE%

Scrolling Forward and Backward

The rest of the subroutine does the scrolling by performing the following
flow of control:

1. If the operator presses ENTER or RETURN, control returns to the
menu.

2. If the operator presses DOWNLINE, the scrolled area scrolls forward.

3. If the operator presses UPLINE, the scrolled area scrolls backward.

4. If the operator presses any other key, the subroutine does nothing.

The subroutine uses the FDV$GET call to get the operator input from the
field FAKE$. The scrolling operation needs only the field terminator, not
any particular value, from FAKE$.. If the operator presses DOWNLINE,
this routine branches to the SCRFWD subroutine. If the operator presses
UPLINE, this routine branches to the SCRBAK subroutine.

Enter the following statements, which make up the final section of
VUE REG:

13215
13220
13225
13235
13245
13250
13255

CALL FDVSGET < FAKESt TERMINATOR%t 'FAKE')
WHILE NOT <TERMINATOR% = FDV$K_FT_NTR>

IF TERMINATOR% = FDV$K_FT_SFW THEN C=FN.SCRFWD
IF TERMINATOR% = FDV$K_FT_SBK THEN C=FN.SCRBAK
CALL FDVSGET < FAKESt TERMINATOR%t 'FAKE')

NE}<T
FNEND

Programming Features 7-13

The Scroll Forward Subroutine - SCRFWD

Figure 7-3 shows the flow of control in the SCRFWD subroutine.

Yes

Print
"Last line"

SCRFWD

No

Increment
MINWINDOW%
and
MAXWINDOW%

Scroll lines
forward

Display new line

in bottom of
window

Increment
pointer to
current line

Move cursor
down one line

ML0-058-82

Figure 7-3: Flowchart for the SCRFWD Subroutine

7-14 Programming Features

In summary, the SCRFWD subroutine works as follows:

1. Check to see if the current line is pointing to the last line in the check
register. If it is, print "Last line of register" at the bottom of the screen
and go back to the body of VUEREG. If not, proceed with the subrou
tine.

2. If the cursor is not at the last line of the window, move the cursor down,
increment CURLINE%, and return to VUEREG. If the cursor is at the
last line of the window:

• Increment MINWINDOW% and MAXWINDOW%

•Scroll the lines in the window up one position and display a new line
at the bottom of the window

• Increment CURLINE%

• Return to VUEREG

Enter the following statements for the SCRFWD subroutine. Note the use
of the FDV$PFT call. If scrolling occurs, FDV$PFT updates the current line
and sends the new data line to the scrolled area. This special use of the
FDV$PFT call makes a FDV$PUTSC call unnecessary in this routine.

13500 DEF FN.SCRFWD
13540 IF CURLINE% = LASTREGNUM% THEN

CALL FDV$PUTL < 'Last line of re9ister')
FNEXIT

13580 IF CURLINE% <> MAXWINDDW% THEN
CALL FDV$PFT < FDV$K_FT_SFWt 'NUMBER' l

ELSE
MINWINDOW% = MINWINDOW% + 1
MAXWINDOW% = MAXWINDOW% + 1
CALL FDV$PFT < FDV$K_FT_SFWt 'NUMBER' t REGARRAY$ < MAXWINDOW% l)

13585 CURLINE% = CURLINE% + 1
13580 FNEND

Programming Features 7-15

Scroll Backward Subroutine - SCRBAK

The SCRBAK subroutine does the opposite of SCRFWD. Figure 7-4 shows
the flow of control in the SCRBAK subroutine.

Yes

Print
"Top line"

SCRBAK

No

Decrement
MINWINDOW%
and
MAXWINDOW%

Scroll lines
backward

Display new line
in top of window

Decrement
pointer to
current line

Move cursor
up on.e line

ML0-059-82

Figure 7-4: Flowchart for the SCRBAK Subroutine

7-16 Programming Features

The SCRBAK subroutine works as follows:

1. Check to see if the cursor is at the top line in the REGARRAY$. If so,
display the following message at the bottom of the screen and return to
VUE REG:

First line of resister

2. If the cursor is not at the first line in the window, move it up. If the
cursor is at the first line of the window, move the window back one line
and write the new first line to the first line of the scrolled area. (This
action can be executed in one step by the FDV$PFT call.)

3. Move the current line pointer, represented by CURLINE%, back one
line.

Enter the following statements for the SCRBAK subroutine:

13700 DEF FN.SCRBAK
13740 IF CURLINE% = 1 THEN

CALL FDVSPUTL ('First line of register')
FNE)< IT

13780 IF CURLINE% <> MINWINDOW% THEN
CALL FDVSPFT < FDV$K_FT_SBK t 'NUMBER')

ELSE
MINWINDOW% = MINWINDOW% - 1
MAXWINDOW% = MAXWINDOW% - 1
CALL FDVSPFT (FDV$K_FT_SBK t 'NUMBER' t REGARRAY$ &
(MINWINDOW/.,))

13785 CURLINE% = CURLINE% - 1
13780 FNEND

You have now completed the programming to implement scrolling in the
subset application. Rebuild the subset application and verify that VUEREG
performs correctly.

7 .3 Named Data

Named Data provides a convenient way for you, the application program
mer, to store program parameters with the form instead of coding them into
the program. By using Named Data, you can add forms and change existing
forms without having to change the application program.

Programming Features 7-17

Named Data is data that is associated with a form but does not appear on
the operator's screen. Named Data exists in the workspace with the form.
You associate Named Data to a form during the Form Editor Data phase.
The data can be any string up to 80 characters and can be referenced by
either name or index. In Figure 7-5, for example, an application could
access NSTRING$ by referencing either V ALl, the name, or 1 %, the index.

INDEX NAME DATA

1 VAL1 NSTRING
2 VAL2 PSTRING
3 VAL3 XSTRING
4 OPTION EXIT

ML0-060-82

Figure 7-5: Data with Corresponding Names and Indexes

Two calls retrieve Named Data from forms: FDV$RETDN and
FDV$RETDI.

FDV$RETDN

The FDV$RETDN call has the following format:

FDV$RETDN (nmdnam, nmdval [,nmdidx])

The argument nmdnam represents the name by which the data is
referenced, nmdval represents a variable into which the Named Data
is stored, and nmdidx represents the index of the data that is being
returned.

The following example retrieves from a form the value PSTRING$ by the
name VAL2:

CALL FDV$RETDN (I t.JAL2 I , PSTR I NG$)

FDV$RETDI

The FDV$RETDI call works the same way as the FDV$RETDN' call
except that the data is referenced by index. The FDV$RETDI call has
the following format:

FDV$RETDI (nmdidx, nmdval [,nmdnam])

The argument nmdidx represents the index for the data to be re
trieved, nmdval represents the variable into which the data is stored,
and nmdnam represents the name for the data to be retrieved.

The following example returns the value PSTRING$ referenced by the
index 2:

CALL FDV$RETDI (2%t PSTRING$ >

7-18 Programming Features

You will now add Named Data to the check register form REGISTER. You
will then modify the subroutine VUEREG to incorporate the use of Named
Data.

The,subroutine VUEREG uses Named Data to determine how many lines
are in the scrolled area in REGISTER and then sets up the scrolled area
accordingly. It is possible to change the size of the scrolled area in REGIS
TER and to support scrolling for that form without changing the scrolling
statements in the subroutine.

In this exercise, you will change the size of the scrolled area from six to five
lines. Next, you will change the program to make the program pick up the
size of the scrolled area from the form. Thus, later changes to the size of the
scrolled area will not require changes to the program.

Modify REGISTER

Extract REGISTER from the library SUBSET.FLB and then edit REGIS
TER. You can do this in the single following command:

$ FMS/EDIT SUBSET/FORM_NAME=REGISTER

The screen clears and the Form Editor menu appears. Type DAT A to enter
the Data phase and press RETURN. A questionnaire appears on the screen
(see Figure 7-6).

Na11ed Data

lm:m ~------------------------------

2 ~ --------------------------~--

3 ~ -------------------------------

4 ~ -------------------------------

5 zm:m -------------------------------

Figure 7-6: Assigning Named Data

Programming Features 7-19

The numbers 1 to 5 are numbers for the items. Each item has a space for a
name and a value. The cursor. is in the name blank for the first Named
Data item. Type the name Window and then press TAB. With the cursor on
the second line, type 5 and press RETURN (see Figure 7-7).

1 Jm:m WINDOW ____________________ ~-

51-----------------~------------~--

Figure 7-7: Assigning Named Data

The menu appears on the screen. Type LAYOUT to enter the Layout phase.

Press RETURN. REGISTER appears on the screen. Do the following:

1. Move the cursor to the last line in the scrolled area.

2. Press GOLD UNSCROL.

3. Press GOLD INSERT.

4. Press GOLD DELEOL.

5. Press GOLD MENU.

6. Type EXIT.

Now update the form library SUBSET.FLB so that it contains the modified
form, REGISTER. Do this with the following command:

$ FMS/LIBRARY/REPLACE SUBSET/FORM_NAME=REGISTER REGISTER

Modify the VUEREG Subroutine

In VUEREG, the size of the scrolled area is established by the variable
NSCROL%, which you assigned the value 6 during the exercise on scroll
ing. Using Named Data, you will retrieve a value for NSCROL% from the
Named Data section in REGISTER. Since the value you supplied in the
Named Data section was 5, NSCROL% will be assigned that value.

Now you will edit VUEREG so that it uses the FDV$RETDI call to retrieve
the value 5 and stores it in the variable NSCROL%. Using an editor, mod
ify VUEREG as follows:

1. Where NSCROL% previously was assigned the value 6, you first ini
tialize NSCROL$ to represent a blank. (VAX-11 BASIC requires you to
pre-extend all string variables. In this' case, you must create a single
space for NSCROL$ so that it can later be ·set to represent a string
value.)

7-20 Programming Features

2. Add the FDV$RETDI call to retrieve the value 5, which was set up to
be referenced by the index 1 when you modified the register form, REG
ISTER. The value 5 will be stored in NSCROL$.

3. Use the BASIC VAL function to give NSCROL% the numeric value 5.

Using an editor, go to the following line in VUEREG:

13085 NSCROL% = 8%

Delete that line and insert the following lines:

13085 .NSCROL$ = I I

13080 CALL FDV$RETDI (1%t NSCROL$ >

13085 NSCROL% = VAL < NSCROL$ >

Compile and link the subset one more time to test REGISTER and to see if
the scrolled area has five lines.

7.4 User Action Routines

User action routines, or UARs, permit you to write routines that can be
executed when the operator does one of the following:

• Completes a field

• Requests help

• Presses a special key

There are three types of U ARs:

• Field completion

• Help

• Function key

UARs are called directly by the Form Driver. With UARs an application
program can execute a procedure while the Form Driver has control of the
processing. In this way, a UAR supplements the Form Driver.

A UAR is like any other subroutine except that it has no formal parameters
associated with it. You associate a UAR with a form or a field during the
Form Editor Assign phase. When you assign a UAR to a form or a field, you
can specify a string of up to 80 characters to that UAR. The string acts as a
parameter.

A UAR can exist in a file by itself, or it can be included in the main
program source file. Typically, U ARs that can be used in a variety of appli
cations, called general-purpose UARs, are maintained in UAR libraries.
UARs that are application-specific are commonly included with the main
program. UARs can be compiled separately from the main program and
need be bound with the FMS application only at link time. For more infor
mation on UAR libraries, see the VAX-11 FMS Form Driver Reference
Manual.

Programming Features 7-21

7 .4.1 Field Completion UARs

A field completion UAR is executed when a specific field in a form is com
pleted by any FMS terminator other than BACKSPACE, the terminator
that moves the cursor to the previous field. In the Sample Application, for
example, a field completion UAR is used in the WRITE A CHECK form.
When the operator enters the amount of the check and presses TAB, a UAR
verifies that the check amount does not exceed the current balance. If the
operator writes a check for more money than is in the account, the terminal
beeps, and the video attributes for the Current Balance field change to bold
and blinking.

If input to a field ends with the BACKSPACE terminator or with any
function key that is returned to the application program, the field comple
tion UAR is not called. Thus, the operator can always leave a field without
having that field's associated UAR executed.

Another UAR in the Sample Application verifies that the operator enters a
number in the range 1 to 5 for the choice in the menu. If the operator enters
a number outside that range or a character, a message appears at the
bottom of the screen, telling the operator to enter a number in the valid
range.

7.4.2 Help UARs

You can use help UARs to provide an application-specific help facility. A
pre-help UAR is activated when the operator presses HELP. Instead of
processing a usual help request, the Form Driver passes control to the pre
help UAR. Pre-help UARs let the application take control of all help pro
cessing, field or form. Help UARs can also be useful in gathering statistics
on how often help is requested for particular fields. Using help UARs, an
application can provide more sophisticated on-line help.

A post-help UAR is called after any other Form Driver help processing.
That is, after all help, field and form, has been given and just before the
Form Driver is ready to display the "No Help Available" message, the Form
Driver calls the post-help UAR.

7.4.3 Function Key UARs

You can use a function key UAR to perform a procedure when the operator
types a specific key. In the Sample Application, for example, a function key
UAR appears with the menu to make keypad keys 1 to 5 act like numeric
keys and to verify that the operator has pressed no keys other than keypad
1, 2, 3, 4, 5, and keypad period.

7 .4.4 Creating a Sample UAR

In this section, you will create a field completion UAR to verify input to a
field. This UAR, entitled VALIDl, is associated with the menu in the Sam-

7-22 Programming Features

ple Application. V ALIDl checks to see if the input to the menu falls within
the valid range 1to5. If the input is outside that range, VALIDl displays a
message at the bottom of the screen and accepts another number. If the
input is valid, control returns to the application.

This exercise has five steps:

1. Modify the form MENU to associate the UAR V ALIDl with the Option
field.

2. Update the library file SUBSET.FLB so that it contains the modified
menu form.

3. Write the programming statements that make up VALIDl.

4. Create a UAR vector module.

5. Use VALIDl to compile, link, and run the subset application.

Modify the Menu Form

Extract MENU from the library SUBSET.FLB and edit it, using the follow
ing command:

$ FMS/EDIT SUBSET/FORM_NAME=MENU

UARs are associated with a field during the Assign phase, so type ASSIGN
to enter the Assign phase.

When the Form Editor displays the first Assign phase questionnaire on the
screen, type 3 to indicate that you wish to modify a specific field. When the
Form Editor asks which field to modify, type OPTION.

After the Form Editor displays the Assign phase questionnaire, press TAB
until the cursor is in the field next to UARs? Type Y. (See Figure 7-8.)

_ Autotab
_ No Echo
_ Displa9 Onl9

_ Right Justif'9
_ Fixed Deci111al
_ Zero Fill
_ Zero Suppress

_ Uppercase
_ ttust Fill
_ Response Required Clear Character _
_ Supervisor Onl9 UARs? (Y,N> I

Figure 7-8: Assigning User Action Routines

The Form Editor responds by clearing the lower half of the screen and
displaying a blank for naming U ARs and for providing data strings for each

Programming Features 7-23

UAR. Since VALIDl is the UAR you wish to associate with this form, type
VALIDl next to UAR Name: (see Figure 7-9).

Checkin Account Menu
Choose Option <1-5>: ~

Exit

2 Write a daeck

3 "ake a deposit

Field Co•pletion User Action Routines

Field 9'a1e: OPTION

1 llttRNa.e:~Y~-I-D~tl...,_----------~
Associated Data:

2 llttRNau: ________________ ~
Associated Data:

Figure 7-9: Assigning User Action Routines

Press TAB to move the cursor to the Associated Data field. Type the
following:

123as

The string 12345 contains valid character for the Option field. You will see
how this string is manipulated in the statements that make up VALIDl.

Press GOLD MENU to return to the Form Editor menu. Then type EXIT.

Update SUBSET.FLB

Update the library file SUBSET.FLB so that it contains the modified form
MENU. Type the following command:

$ FMS/LIBRARY/REPLACE SUBSET/FDRM_NAME=MENU MENU

Having associated a UAR with a form, you are now ready to write the
statements that make up the body of the UAR.

Write the Statements for V ALIDl

The subroutine VALIDl can be compiled independently of the subset appli
cation. Since V ALIDl is a general-purpose UAR, create it as an individual
file, naming it VALIDl.BAS. After it is compiled, you can store it in a UAR

7-24 Programming Features

object library for future use. Details on creating and using UAR object
libraries are supplied in the VAX-11 FMS Form Driver Reference Manual.

Note that V ALIDl, like many other UARs in the Sample Application, is a
general-purpose UAR. That is, you can use it in any FMS application to
perform field validation of a single-character field without having to
change the UAR. The only modification that must be made to use VALIDl
is in the Form Editor Assign phase when you specify the associated data
string.

The first statement in VALIDl establishes the codes the Form Driver uses
to determine the results of the UAR upon completion.

Enter the following statements.

16005 FUNCTION INTEGER VALID1
16088 DECLARE INTEGER CONSTANT &

FDV$K_UVAL_SUC = 1000t !Field coMPletion success &
FDV$K_LJVAL_FAIL = 1001 !Field coMPletion failure

The next four statements in V ALIDl pre-extend the string variables into
which FMS will return special values. Note that pre-extending string vari
ables is a requirement of the VAX-11 BASIC language, not necessarily of
other languages. The four string variables used in V ALIDl are listed and
described below.

FRMNAM$

UARVAL$

FLDNAME$

FVALUE$

The name of the form in which the single-character field
is used. In the Sample Application, the form is MENU.

A string that contains all the valid entries into the field in
the menu. In the Sample Application, this string is 12345.

The name of the single-character field.

The single-character value the operator has entered into
the field.

Enter the following statements, which use the BASIC SP ACE$ function to
pre-extend the string variables.

16086
16087
16088
16088

FRMNAMS = SPACE$(31)
UARVALS = SPACE$(80)
FLDNAMES = SPACESC31)
FVALUES = SPACE$(1)

The next statement uses the FDV$RETCX call to return the current con
text of the Form Driver to VALIDl. The FDV$RETCX call returns the
following values to VALIDl:

TCA % Address of the terminal control area
WKSP% Address of the workspace
FRMNAM$ Name of the current form
UARVAL$ Character string associated with this UAR
CURPOS% Cursor position within the current field
FLDTRM% Field terminator used
INSOVR% Character input mode (Insert or Overstrike)
HELPNUM% Number of times HELP has been pressed for the current

field (nonzero only in a help UAR)

Programming Features 7-25

Although V ALIDl returns all these values with the FDV$RETCX call,
only UARV AL$, the variable that represents the UAR's associated data, is
used. The remaining values are ignored by this UAR.

Enter the following statement to return special information to the UAR:

181QO CALL FDVSRETCX (TCA%t WKSP%t FRMNAMSt UARVALSt &
CURPOS%t FLDTRM%t INSOVR%t HELPNUM%)

Enter the following statement to retrieve the current field name and index.

181Q5 CALL FDVSRETFN (FLDNAMESt FINDEX%)

Using the name and index just retrieved by the FDV$RETFN call, the next
statement uses the FDV$RET call to retrieve the value that the operator
has entered into that field.

Enter the following statement:

18150 CALL FDVSRET (FVALUESt FLDNAMESt FINDEX%)

After issuing the FDV$RETCX, FDV$RETFN, and FDV$RET calls,
VALIDl checks to see if the operator input, represented by FVALUE$,
occurs in the string UARVAL$. VALIDl uses the VAX-11 BASIC function
POS to do this.

Enter the following statements:

18185 IF POS(UARVALSt FVALUESt 1) > 0 THEN
VALID1 = FDV$K_UVAL_SLJC !Success

ELSE
CALL FDVSPUTL('Ille~al value')
VALID1 = FDV$K_LJVAL_FAIL

18210 FUNCTIONEND

Create a UAR Vector Module

The UAR vector module is a file, existing in object file format, that provides
the necessary information to the linker to associate V ALIDl to the menu
form, MENU. When you create the UAR vector module, assign it the name
SUBSTVCTR, using the following command:

$ FMS/VECTOR SUBSET/OUTPUT=SUBSTVCTR

This command causes FMS to scan SUBSET .FLB for any occurrences of
UARs. When FMS finds VALIDl, FMS sets up a data structure that en
ables VALIDl to be called at the appropriate time.

7-26 Programming Features

Compile, Link, and Run

Using VALIDl to execute the subset application, first compile the UAR,
using the following command:

$BASIC 1.JALIDl

To link the subset application with VALIDl, you must include the name of
the UAR vector module, SUBSTVCTR. Type the following command:

$ LINK SUBSETtVALID1 tSUBSTVCTR

After the subset is linked, run the application and verify that VALIDl
performs correctly. When the SUBSET menu appears on the screen, type a
number outside_the range 1 to 5. When you press RETURN, the following
message should be displayed at the bottom of the screen:

Ille9'al 1Jal1.1e

A field completion UAR returns one of the three values listed below to the
Form Driver each time the operator enters a value into the field with which
the UAR is associated (in this case, the Option field in MENU).

FDV$K_ UV AL_SUC The. value entered by the operator was valid. The
Form Driver should now call any additional
UARs for this field. If the operator input is also
found valid by any additional UARs, the operator
input for this field is accepted.

FDV$K_UVAL_END The value entered by the operator was valid. The
Form Driver should not call any additional UARs
for this field but should accept the operator input

. immediately.

FDV$K_UV AL_F AIL The value entered by the operator was invalid.
The Form Driver should signal the operator and
request that input be reentered.

When you run the subset application, V ALIDl checks to see if your input to
the menu is valid. If it is, V ALIDl returns FDV$K_UV AL_SUC to the
Form Driver, stating that the value entered was valid. Otherwise, VALIDl
displays the "Illegal value" message and returns FDV$K_UVAL_FAIL,
telling the Form Driver to signal the operator and request that another
value be entered.

Programming Features 7-27

Chapter 8
Advice to New Users

This chapter presents information that you may find useful when designing
forms. Section 8.1 discusses elements of good form design. The text provides
many helpful hints and techniques to use when designing forms.

Section 8.2 explains how to use the video screen as a human interface. The
primary goal of creating a good human interface in forms is to lower the
operator error rate. Following the guidelines presented in this chapter can
help you achieve this goal.

Although this chapter provides many techniques and guidelines, this infor
mation is not the final word on form design. This chapter merely offers
advice.

8.1 Good Form Design

The many books available on form design can give you good ideas for your
FMS applications. Many of the ideas on preparing paper forms can be ap
plied to video forms. This section highlights principles of designing success
ful forms. Good form design consists of two goals:

•To make forms that are easy to use

• To lower the operator's input error rate

When designing forms, keep in mind the following:

• Sort the information you wish to gather

•Provide a good title for the form

• Select good captions

• Use check boxes

• Use reverse video as a visual aid

• Make the form self-instructing

The sections that follow discuss these techniques in detail.

8-1

8.1.1 Sorting Information

Before you sit down at the terminal to design a form, write down all the
information that you wish to gather and to display in the forms. This infor
mation can be grouped into the following categories:

• Key information (name, address, identification number, and so forth)

• Instructions

• Tables, lists, and supplemental data

Next, approximate the length of each item appearing on the form. This list
should tell how long the caption and the desired response should be. For
example, an address usually requires three lines of about 40 characters
each.

The key information should appear in a conspicuous place on the
forms - at the top center or top left, for example. Since such information
is often used to identify a form, it needs to be readily visible.

Decide which instructions to include on the form and which to put in help
forms. Generally, self-instructing forms are more successful than those re
quiring separate instructions.

Group information in sections of a form or on a separate forms. Use lines
and boxes to separate groups of information that appears on the same form.
Figure 8-1 shows a rough grouping of all the information required for a
series of forms for a payroll application.

Employee Data

Home Address
Home Phone
Badge Number
Social Security
Date of Hire
Dependents

Emergency Contact
Name
Address
Phone Number

Department Information
Name
Number
Location

Salary Information

Wage Class
Salary Group
Current Salary
Deductions

Supervisor Information
Name
Phone Number

Job Information
Title
Number
Description

Figure 8-1: Sample Payroll Data

8.1.2 Providing a Title

ML0-061-82

A title should be as descriptive as possible of the purpose of the form. The
location of the form title is a matter of personal choice. Top center is the
usual position, although top left is also common. If a company name and
address appear on the form, place them below the title. Highlight the title
with a video attribute, such as bold or reverse, or use double-size or double
wide characters.

Avoid using the word form in a title; it adds little to meaning.

8-2 Advice to New Users

8.1.3 Writing Good Captions

When making up a form, use care in writing captions. Good captions can
help to minimize data entry errors. It is important that captions and other
words on a form be easy to understand. The few words you use in a caption
must leave no doubt as to the desired response. Good captions result in:

• Better answers, in less time

• Less need for instructions and help

• Easier maintenance of the form

For example, in a date field, specify which date the operator is to enter:
today's date, effective date, termination date, delivery date, and so forth.

8.1.4 Using Check Boxes

Captions and check boxes can be set up to provide multiple-choice and
yes/no sections on your forms. Using check boxes, or single-character fields,
simplifies data entry and reduces the data entry error rate by providing
answers from which the operator can select an appropriate response.

When you have determined which answers are to have check boxes, you can
then decide how to arrange them. The following are several ways to ar
range the answers for a question on marital status.

Marital status

Marital status

Marital status

Marital status

Single d Married D Single, head of household D
Married, but spouse filing separately D

Single D
Married D
Single, head of household D
Married, but spouse filing separately D

D Single
D Single, head of household
D Married
D Married, but spouse filing separately

D Single D Single, head
of household

D Married D Married, but spouse
filing separately

The last two examples are easier to read and respond to than are the first
two.

With multiple-choice questions, check boxes should appear before the re
sponses. Indicate which character the operator should enter in the check
box, such as an X. With yes/no formats, check boxes should appear after the
responses, as follows:

Married D
Employed D
U.S. citizen D
Head of household D

Advice to New Users 8-3

8.1.5 Using Reverse Video Screen Characteristics

Reversing the screen characteristics can help to guide the operator's eyes
across a form. Reverse video can:

• Separate sections of the form

• Highlight sections of the form

• Separate captions from fields

• Give the illusion of a colored background

•Give the form a pleasing appearance

Note that VTlOO terminals with the advanced video option provide three
intensities with which to work: bold, light, and reverse video.

8.1.6 Providing Instructions

Designing a form carefully reduces the need for lengthy instructions on
how to fill it out. The only instructions necessary should say ''Fill out Form
XYZ." If more instructions are necessary, make them easy to understand.

Just as with captions, instructions should be easy to understand. Make sure
that you explain the proper use of the form and describe its purpose clearly.
Be careful not to overexplain simple items.

Keep in mind that many operators do not read instructions carefully. For
that reason, you should format and word instructions so that they can be
scanned easily. In the example below, the instructions in list form are
easier to follow than are those in paragraph form.

Read the box at the top left of the screen before completing your answers.
Answer all questions. Indicate yes or no responses where applicable. Press
HELP if necessary.

1. Read the box at the top left of the screen before completing your
answers.

2. Answer all questions.

3. Indicate yes or no responses where applicable.

4. Press HELP if necessary.

Instructions are most effective when they are close to the field or section to
which they refer. If the captions are well chosen, few individual fields will
need much explanation.

S-4 Advice to New Users

8.2 Use of the Video Screen

You must take special considerations into account when designing forms
for video display. This section presents techniques used in some of the more
successful video displays. Specifically, this section discusses:

• Data presentation

• Screen layout

• Form content

•Recovery procedures

8.2.1 How to Present Data

The section presents hints on presenting nonverbal information on a
screen. Nonverbal information includes :mostly numerical information,
such as telephone numbers, part numbers, storage dumps, and so on. This
section provides guidelines on presenting the following types of data:

•Lengthy alphanumeric strings

• Ordered data

•Data lists

•Punctuated data

Lengthy Alphanumeric Strings

Break down strings of alphanumeric characters into groups of three or four
characters.

Before
125ACA6740B45COO
5628CJVTH4838TND
ABBA34568794FV10

After
125A CA67 40B4 5COO
5628 CJVT H483 8TND
ABBA 3456 8794 FVlO

The FMS field-marker character for placing blanks in a field picture is B.

Ordered Data

Organize data so that it can be easily read and identified. In the example
that follows, the numbers are arranged by size, from left to right across the
screen.

Before
12.4 15.34 3.1415
2.2 23.67 4.5 7.9
34.2 82.1 12.34

2.2
7.9

15.34
82.1

After
3.1415

12.34
23.67

4.5
12.4
34.2

Advice to New Users 8-5

Data Lists

When possible, list the data vertically. Use numbered lists only when you
are listing items that can be selected. Do not use letters to alphabetize lists.
Begin numbered lists with 1, not 0. As shown in the example below, names
or words should be left justified; numeric lists should be right justified.

1. Magtape
2. Cassette
3. Diskette
4. Cartridge

When listing numbers with decimal points, the decimal points should align.

234.13
34214.45

2.02
103.89

With FMS you can use left- or right-justified fields to make the alignment
easy.

Indent subordinate items in vertical lists.

MENU
WRITE A CHECK
MAKE A DEPOSIT
VIEW CHECK REGISTER
EXIT

WRITECHECK
DEPOSIT

When providing items from which the reader is to make a selection, ar
range the items in alphabetical order if the list has more than seven items.
If the list has seven or fewer items, put the more probable choices at the top
of the list.

Choose a language
BASIC
FORTRAN
COBOL
PASCAL
APL
LISP
ALGOL

Punctuated Data

A void unnecessary punctuation. Use periods after item selection numbers
and sentences. Abbreviations, mnemonics, and acronyms should not in
clude periods. Avoid using quotes to highlight words. A void hyphenating
words.

8-6 Advice to New Users

8.2.2 Screen Layout

This section presents guidelines on organizing groups of data on a video
screen.

One goal of organizing information on a screen is to provide a structure
that the operator can identify. When an operator can identify a specific
structure or a pattern in a set of forms, the forms are generally easier to
understand and work with.

Be consistent in your presentation of forms. One section of the form may
always be used for instructions. Another section might be reserved for the
title, and another section might contain fields for operator input. Establish
a meaningful structure, to a form, and use that structure in subsequent
forms in the same application.

You can use reverse video in portions of a form or set off sections with lines.
Do not break the screen up into too many small sections, however, or the
form will be cluttered and confusing.

Use the following guidelines when formatting your information:

• Separate paragraphs by at least one blank line.

•When listing descriptions, advantages, alternatives, and so on, start each
point on a new line. Put bullets (lowercase o) or hyphens before each point
to make the list visually appealing.

With the Sample Application, you can
• Write checks
• Make deposits
• View the check register
• View the account data

Experiment with the special graphics availaple in the RULE character
set for different types of bullets.

•In numbered lists, separate the number from the item by at least one
space.

• Limit the user's choice to seven items for any one field.

8.2.3 Communication with the Operator

Feedback is critical in any type of communication. In an interactive video
session, timely feedback is essential for the operator to feel confident with
the application. An operator can become very frustrated with a program
that fails to provide feedback about whether the program has been accept
ing any input. To assure the operator that input has been accepted as
intended, make sure that your application provides meaningful, informa
tive messages. This section discusses two ways of providing operator feed
back: highlighting and messages.

Advice to New Users 8-7

Highlighting

Highlighting the field into which the operator is entering input is an effec
tive way of showing which portion of the form is being worked on. FMS
provides several attributes that can be used to highlight sections of forms.
These attributes are discussed in Section 8.3.

Messages

Messages can prompt for more information, tell the operator what else to
do, and diagnose an error condition. Messages should-be concise and clear,
stating only what the operator needs to know to continue. Also, messages
should be positive rather than negative. For example, instead of saying
"Illegal value," the message should say "Value must be in range 1 to 5."

8.2.4 Recovery Procedures

From an operator's viewpoint, being able to correct an error without having
to go back to the beginning is most desirable in any application. Although
feedback is necessary for operator recovery from an error, it is not always
sufficient. Error messages try to tell how to recover from an error condition,
but they cannot always direct the operator to the spot where the error
occurred.

Recovery procedures should detect an error condition as soon as possible.
User action routines that check for correct input and return operators to
locations where errors occurred provide an effective means of recovery.
When preparing your application programs, try to incorporate as many
thorough recovery techniques as possible.

8.3 FMS Field Attributes

The FMS field attributes are listed below.

Autotab

Clear Character

Display Only

Fixed Decimal

8-8 Advice to New Users

The Form Driver is to consider a field complete when
the operator types the last character in the current
field. Depending on the Form Driver call issued by
the application program, the cursor moves immedi
ately to the next field without requiring the operator
to press a field terminator key.

A character that appears in unfilled data positions in
a field. A blank is the default.

A field can display data, but the terminal operator
cannot enter data.

A field is all signed or all unsigned numeric and has
a single decimal point (.) or a comma (,) as a field
marker character.

Must Fill Each character position in a field must be filled if
any character is en'tered. This attribute is particu
larly useful with data such as telephone numbers
and identification numbers, in which only a specific
number of digits entered is meaningful.

No Echo Input from the operator is not displayed on the
screen. This attribute is most frequently used to keep
passwords private.

Response Required The operator must enter valid data into the field.

Right Justify The data entered is to be aligned at the right; the
remainder of the field may be filled with leading ze
ros or spaces.

Supervisor Only

Uppercase

Zero Fill

Zero Suppress

A field is considered to be display only when this
attribute is enabled for a terminal. Enabling and dis
abling supervisor-only mode is done by the applica
tion at run time.

All alphabetic characters entered in a field are dis
played as uppercase characters and are also returned
to the application as such.

The field positions that do not contain data are re
turned to the program as zeros.

The leading zeros of a value entered in a right-justi
fied or a fixed-decimal field are to be replaced with
blanks.

Advice to New Users 8-9

Appendix
Subset Application Listing

130
140
1040
1042
1050
1100

DIM WORKSPACE%
DIM TCA% C 3 >
CALL FDIJ$ATERM
CALL FDIJ$AWKSP
CALL FDIJ$LOPEN

1110 MAIN MODULE

3)

TCA% <> t 12%t 2% >
WORKSPACEX. C) t 2000i..) \C=FN. GETSTA
'SUBSET' t 1%) \C=FN.GETSTA

1115 C = FN+INACCT !INITIALIZE ACCOUNT DATA
1170 C = FN.MENU PROCESS MENU REQUESTS
1180
1190 !CLOSING PROCEDURE
1200 CALL FDIJ$LCLOS
1208 CALL FDIJ$DWKSPC WORKSPACE% () >
1215 CALL FDIJ$DTERMC TCA%C) >
1220 GOTO 15999
1230

DEF FN.INACCT
SBALANCE% = 50375
TOTPAY% = 21345
TOTDE P% = 112323
BALANCE% = 141353

4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4080
4085
4070
4075
4080
4085

REGARRAY$C1)=' 15MAR82Interest on National Coal bond 050000
REGARRAY$C2>=' 115MAR82JacK Dewar

5000
5005
5010
5015
5020
5025
5030
5040
5045

REGARRAY$(3)=' 230JUN82Louise PhiPPS
REGARRAY$C4>=' 314JUL82Townsend Fabrics
REGARRAY$C5)=' 430JUL82Channel 42
REGARRAY$C8>=' 31AUG82PaYchecK
REGARRAY$C7)=' 512SEP82Four-Star Auto
REGARRAY$(8)=' 8 40CT82Mary Johnson
REGARRAY$(9)=' 7 1FEB83Cory Advertisin~ A~encY
REGARRAY$C10)=' 04FEB83Pe~asus Equestrian Center
LASTREGNUM'X.= 10
FNEND

DEF FN+MENU
!MENU CHOICES

1 => E}<IT
! 2 => WRITE A CHECK
! 3 => MAKE A DEPOSIT
! 4 => VIEW tHECK REGISTER
! 5 => SHOW ACCOUNT DATA
OPTION$ = I I

WHILE 1 = 1

030000

000125

50000'
1000 49000'
2000 47000'

25000 22000'
5000 17000'

47000'
1543 45457'
4450 41007'
5002 38005'

38130'

A-1

5050
5070
5075
5081
5082
5085
5080
spas
5100
5105
5110
5115
5120
5130
5140
5150
11000
11005
11010
11015
11020
12000
12050
12065
12125
12130
12135
12140
12155
12160
12165
12170
12175
12180
13000
13001

13047
13050
13055
13060
13065
13085
13080
13085
13135
13140
13145
13150
13155
13160
13165
13170
13171
13215
13220
13225
13235
13245
13250
13255
13315

CALL FDV$CDISP< 'MENU') \C=FN.GETSTA
CALL FDV$GET< OPTION$1 TERMINATOR%t 'OPTION' \C=FN.GETSTA
ON VAL< OPTION$ > GOTO 50821 50801 51001 51101 5120
! OPTION 1: EXIT
FNEXIT

! OPTION 2: WRITE CHECKS
C = FN.WRITCH \GOTO 5130

! OPTION 3: MAKE A DEPOSIT
C = FN.MAKDEP \GOTO 5130

! OPTION LI: VIEW CHECK REGISTER
C = FN.VUEREG \GOTO 5130

! OPTION 5: VIEW ACCOUNT DATA
C = FN.VUEACT \GOTO 5130

NEXT
FNEND

DEF FN.WRITCH
CALL FDV$PUTL< 'Write a checK - not implemented Yet')
CALL FDV$WAIT
FNEND

DEF FN.MAKDEP
CALL FDV$CDISPC 'DEPOSIT') \C!::FN.GETSTA
CALL FDV$PUT< STR$(BALANCE% > t 'CURBAL' > \C=FN.GETSTA
DEP.AMT$ = SPACE$(6)
DEP.MEMO$ = SPACE$(35)
CALL FDV$GET< DEP.AMT$1 TERMINATOR%t 'DEPOSIT' >
CALL FDV$GET< DEP.MEM0$1 TERMINATOR%, 'MEMO' >
BALANCE% = BALANCE% + VAL< DEP.AMT$)
CALL FDV$PUT< STR$(BALANCE% > t 'NEWBAL' > \C=FN.GETSTA
CALL FDV$PUTL< 'Deposit made - Press RETURN or ENTER to continue'
CALL FDV$WAIT
FNEND

DEF FN.VUEREG
DECLARE INTEGER CONSTANT &
FDV$K_FT_NTR = Ot &
FDV$K_FT_SFW = 81 &
FDV$K_FT_SBK = 8

CALL FDV$CD I SP (I REG I STER I)

CALL FDV$PUT (STR$ (SBA LANCE%) t 'SUMMARY' t 1 %)
CALL FDV$PUT (STR$ < TOTDEP%) t 'SUMMARY', 2% >
CALL FDV$PUT (STR$ (TOT PAY%) t 'SUMMARY', 3%)
CALL FDV$PUT (STR$ (BALANCE%) , I SUMMARY I , ll'X.)
NSCROL$ = I I

CALL FDV$RETDI (1%1 NSCROL$
NSCROL% = VAL C NSCROL$ >
MINWINDOW% = 1
CURL I NE'X. = 1
CALL FDV$PUTSC C 'NUMBER', REGARRAY$ < 1))
WHILE < CURLINE% < LASTREGNUM% AND CURLINE% < NSCROL%

CURLINE% = CURLINE% + 1
CALL FDV$PFT< FDV$K_FT_SFW1 'NUMBER' >
CALL FDV$PUTSC< 'NUMBER' t REGARRAY$(CURLINE%) >

NEXT
MAXWINDOW% = CURLINE%
CALL FDV$GET< FAKE$1 TERMINATOR%, 'FAKE'
WHILE NOT <TERMINATOR% = FDV$_FT_NTR>

IF TERMINATOR% = FDV$K_FT_SFW THEN C = FN.SCRFWD
IF TERMINATOR% = FDV$K_FT-SBK THEN C FN.SCRBAK
CALL FDV$GET< FAKE$1 TERMINATOR%, 'FAKE')

NEXT
FNEND

A-2 Subset Application Listing

13500 DEF FN.SCRFWD
13540 IF CURLINE% = LASTREGNUM% THEN

CALL FDV$PUTL< 'Last line of re~ister'

FNEXIT
13580 IF CURLINE% <> MAXWINDOW% THEN

ELSE
CALL FDV$PFT< FDV$K_FT_SFWt 'NUMBER')

MINWINDOW% = MINWINDOW% + 1
MAXWINDOW% = MAXWINDOW% + 1
CALL FDV$PFT< FDV$K_FT_SFWt 'NUMBER', REGARRAY$(MAXWINDOW% >)

13585 CURLINE% = CURLINE% + 1
13580 FNEND
13585
13700 DEF FN.SCRBAK
13740 IF CURLINE% = 1 THEN

CALL FDV$PUTL< 'First line of re~ister'
FNEXIT

13780 IF CURLINE% <> MINWINDOW% THEN

ELSE
CALL FDV$PFT< FDV$K_FT_SBK, 'NUMBER' >

MINWINDOW% = MINWINDOW% - 1
MAXWINDOW% = MAXWINDOW% - 1
CALL FDV$PFT< FDV$K_FT_SBK, 'NUMBER', REGARRAY$(MINWINDOW%))

13785 CURLINE% = CURLINE% - 1
13780 FNEND·
13785
14000 DEF FN.VUEACT
14005 CALL FDV$PUTL< 'View account not implemented Yet' >
14010 CALL FDV$WAIT
14015 FNEND
14020
15000 DEF FN.GETSTA
15025 CALL FDV$STAT< FMSSTAT%t RMSSTAT%
15030 IF FMSSTAT% > 0 THEN FNEXIT
15730 CALL FDV$DTERM< TCA%<> >
15735 PRINT 11 FDV ERROR. 11

15740 PRINT 1111 t 11 FMS STATUS: II tFMSSTAT%
15745 PRINT 1111 t 11 RMS STATUS: II tRMSSTAT%
15747 STOP
15750 FNEND
15888 END

The following listing is for the user action routine VALIDl, which can exist as a
separate file or in the same file as the subset application.

18005
18088

18088
18087
18088
18088
18140 CALL

18145
18150
18185

18210

FUNCTION INTEGER VALID1
DECLARE INTEGER CONSTANT &
FDV$K_UVAL_SUC = 1000, !Field completion success &
FDV$K_UVAL_FAIL = 1001 !Field completion failure
FRMNAM$ = SPACE$C31)
UARVAL$ = SPACE$C80)
FLDNAME$ = SPACE$C31)
FVALUE$ = SPACE$C1>

FDV$RETCXCTCA%tWKSP%tFRMNAM$tUARVAL$,CURPOS%tFLDTRM%t &
INSOVR%tHELPNUM%>
CALL FDV$RETFN < FLDNAME$, FINDEX%)
CALL FDV$RET < FVALUE$, FLDNAME$, FINDEX%
IF POS< UARVAL$, FVALUE$, 1) > 0 THEN

VALID1 = FDV$K_UVAL_suc !Success
ELSE

CALL FDV$PUTL< 'II'le~al value')
VALID1 = FDV$K_UVAL_FAIL

FUNCTIONEND

Subset Application Listing A-3

Glossary

Action Routine.

See User Action Routine.

Application Program

A program that performs work specific to the needs of a particular group of people.
An application program can be any program that is not part of the operating
system.

Argument

In FMS, a variable or a value passed in a call to the Form Driver to specify the
action of the call or to specify a variable to receive the results of an operation.

Assign Phase

In the Form Editor, a phase in which attributes, such as Must Fill or Response
Required, are assigned to fields within a form.

Attach Terminal

To assign a terminal for the exclusive use by the application program. Contrast
with Detach Terminal.

Attributes

Characteristics assigned to fields and forms. Must Fill, Response Required, Right
Justified, and No Echo are attributes.

Autotab Attribute

A field attribute indicating that the Form Driver is to consider a field complete
when the operator types the last character in the current field. Depending on the
Form Driver call the application program issues, the cursor moves immediately to
the next field without requiring the operator to press a field terminator key.

Glossary-I

Background Text
On a form, the displayed portion that cannot be modified by the operator. Contrast
with Field Characters.

Binary Form
A file containing a single form description in binary format. A binary form's de
fault file type is .FRM. See Form Description.

Blank Fill Attribute

A field attribute specifying that field values returned to the application program
are to contain ASCII spaces. Contrast with Zero Fill; see also Pad.

Caption
Background text, associated with a field, that identifies the field.

Character
A single letter, digit, or symbol used to represent information.

Character Set
A set of 94 graphics corresponding to the printable characters.

Clear Character
A character appearing in empty data positions in a field. A blank is the default.
An underscore (-) most closely duplicates the appearance of a paper form.

Cursor Position
The place on the screen where the next character typed on a terminal keyboard
will be displayed, indicated by the location of the cursor.

Data Phase
In the Form Editor, a phase in which Named Data items are associated with a
form. See Named Data.

Data Positions
Alterable character positions - within fields, the locations where an operator can
type data or an application program can display information; within a field, the
positions denoted by field-validation characters, not by field-marker characters.

Default
The value of an argument, field, or part of a command line assumed by a program
if a specific value is not supplied by the user. For example, the default file type for
a form library is .FLB.

Glossary-2

Detach Terminal

To free an attached terminal. Contrast with Attach Terminal.

Display Only Attribute

A field attribute indicating that the application program can display-a value on
the screen for a particular field, but that the terminal operator cannot enter data
there.

End of Line

In the Form Editor, the rightmost screen position on a given horizontal line; not
the rightmost character in a string of text.

End of Text

In the Form Editor Layout phase, the rightmost character in a string of text.

Exit Phase

Field

In the Form Editor, a phase in which the current form may be saved and the Form
Editor terminated.

On a form, a variable portion that can be modified by the operator and/or the
application program; a field can contain field-marker characters, which cannot be
modified. A field is defined by a contiguous string of field-marker and field-valida
tion characters and cannot exceed one line in length.

Field Attributes

Characteristics - such as Must Fill, Right Justified, and No Echo - assigned to
fields.

Field-Marker Characters

Characters that are displayed within a field but that cannot be modified by the
operator. These characters are used for clarity and readability of data in a field.
Examples of field-marker characters are the hyphen (-) and the slash (/). These
characters are not returned to the program as input by means of the FDV$GET
call or written as output by means of the FDV$PUT call. See Field-Validation
Characters.

Field Mode

In the Form Editor Layout phase, the mode that lets you create and modify fields
in a form. Only field-validation characters or field-marker characters can be en
tered in Field mode. Contrast with Text Mode.

Glossary-3

Field Name

A field attribute identifying each field within a form. Names are 1to31 characters
long; the first character must be alphabetic. (The only nonalphabetic and nonnu
meric characters allowed are the dollar sign($) and underscore(-).)

Field Picture

The appearance of a field as specified by its field characters. The picture describes
both the valid contents of a field and its screen format.

Field Terminator Code

A value that represents a key that can be struck to complete input to a field.

Field Terminator Key

A key pressed by the operator to signal the completion of data entry to a field or a
form. ENTER, RETURN, and TAB are field terminator keys; others can be defined
by the application programmer.

Field-Validation Characters

Characters that define data positions within a field and that describe valid input
for that position. The field-validation characters and the valid input associated
with each are:

A Alphabetic
C Alphanumeric
N Signed numeri~
X Any character
9 Numeric

See also Field-Marker Characters.

Field Value

The contents of a field, excluding field-marker characters, as known by the Form
Driver. Field values are stored as ASCII characters.

Fill Character

A character to be stored in the unfilled data positions of a field. The fill character
is replaced by the clear character when the field is displayed. See Zero Fill and
Blank Fill.

Fixed-Decimal Attribute

A field attribute indicating that a field is signed or unsigned numeric and has a
period (.) or comma (,) as a field-marker character indicating the position of the
decimal point.

Glossary-4

Form

A collection of structured information displayed on the screen. At most, an FMS
form consists of one screen of information. More than one form can be displayed on
a screen at once.

Form Application Aids
The multifunction FMS component that does the following:

• Converts binary form files to form descriptions

• Creates COBOL data declaration files

• Converts binary forms to object modules for use as memory-resident forms

• Provides form descriptions and library file directory listings

• Creates vector modules for user action routines

Form Attributes
Characteristics assigned to an entire form. Examples of form attributes are First
Line to Clear, Last Line to Clear, screen background, and screen width.

Form Description
A collection of Form Language statements that define the attributes and informa
tion needed to create a form. A form description can be produced either by the
/DESCRIPTION command, using an existing form for input, or with a text editor.
The form description is suitable for translation into a binary form by means of the
Form Language Translator.

Form Driver
A set of subroutines that interact with an application program to display forms on
video terminals and to accept data entered by operators.

Form Editor
The FMS utility you use to create and modify forms through interactive sessions
at a video terminal and during which the forms are displayed on the screen.

Form Language
The grammar for defining forms as an alternative method to using the Form
Editor. Also the name of the language in which the forms are defined.

Form Librarian
The FMS component that creates and manipulates form libraries.

Glossary-5

Form Library

A file containing an organized collection of one or more form descriptions in binary
format. Its default file type is .FLB.

Forms Management System (FMS)

A set of software tools to simplify the development and maintenance of application
programs involving formatted screen 1/0 to video terminals.

Form Snapshot

A representation of the current screen image; it is produced by the Form Driver at
the request of a running application program, for subsequent printing. A form
snapshot consists of background text, clear characters, field-marker characters,
and any information displayed by the program or data entered by the operator.

Form Tester

The FMS component that provides a means of testing a form without first having
to write an application program or put the form in a library.

Form Upgrade Utility

The FMS component that converts FMS Version 1 form descriptions into Version 2
form descriptions. This utility can convert one form file to another form file or one
form library to another form library.

Hanging Cursor Position

The place on the screen occupied by the cursor when it is one character position to
the right of the end of a field. This is the initial position of the cursor for a right
justified field.

Help User Action Routine

A user-written routine activated when the operator presses HELP. A Help user
action routine can be activated before or after help text or help forms ar~
processed.

Home Position

The upper left corner of the screen.

Indexed Field

In a form, a field with multiple occurrences, all having the same name and being
accessed by index value in addition to name. Indexed fields do not have to appear
in a vertical or a horizontal direction.

Glossary-6

Insert Mode
An input mode that causes typed characters to be placed at the current cursor
location. Insert mode moves the cursor to the right, shifting other characters on
the line or field to the right also. This mode is used by the Form Editor in Layout
phase and by the Form Driver for field input. In the Form Driver, the mode that is
the default for right-justified fields. Contrast with Overstrike Mode.

Keypad Application Mode
A mode in which keys on the terminal's keypad generate special control sequences
that can be used by application software. Contrast with Keypad Numeric Mode.

Keypad Numeric Mode
A mode in which keys on the terminal's keypad generate the ASCII codes for the
symbols printed on standard keycaps; the ENTER key generates the same code as
the RETURN key on the main keyboard. In this mode, application software cannot
distinguish between numeric characters typed on the main keyboard and numeric
characters typed on the auxiliary keypad. Contrast with Keypad Application
Mode.

Left-Justified Attribute

Line

A field attribute specifying that the data entered is to be aligned with the leftmost
data position; the remainder of the field may be filled with trailing zeros or spaces.
See Zero Fill, Blank Fill, and Fill Character.

The length from the leftmost position on the screen to the rightmost position on
the screen along a given horizontal. The length of a line is fixed by the terminal
hardware and is not related to the length of any character string that occupies
part or all of the line. A line on a VTlOO-compatible terminal can be 80 or 132
characters long.

Named Data
An ordered collection of constant information useful to the application program
and associated with a specific form but not displayed on the screen. The Named
Data for a form consists of constants, each of which can be accessed during run
time by name or by its index.

No Echo
A field attribute indicating that any valid character typed by an operator or sen·
by an application program will not appear on the screen. The attribute is mos
frequently used to keep passwords private.

Glossary-7

Order Phase
In the Form Editor, a phase in which the order that fields are to be accessed by the
Form Driver is established.

Operator
The video terminal user who interacts with an FMS application program.

Overstrike Mode

Pad

In the Form Editor Layout phase, the mode that causes a character typed on the
keyboard to replace the character at the current cursor position on the screen.
Overstrike mode moves the cursor to the right but does not cause other characters
on the line to be shifted to the right.

In the Form Driver, the mode that is the default for left-justified fields. Contrast
with Insert Mode.

To fill the empty data positions in a field with one or more occurrences of a charac
ter. See Fill Character, Blank Fill, and Zero Fill.

Right-Justified Attribute
A field attribute specifying that the data entered is to be aligned with the right
most data position; the remainder of the field may be filled with leading zeros or
spaces. Note that data returned from a right-justified field to the application also
appears right justified; the data may also have leading zeros or spaces. See Zero
Fill, Blank Fill, and Fill Character.

Screen
The display surface of a video terminal.

Screen Refresh

Scroll

To rewrite the information displayed on a video terminal by pressing CTRL/R.
Screen refreshing restores to the screen information that may have been inter
rupted or distorted by a message or by noise on a communication line.

To move upward or downward the lines of information that are displayed on the
screen. See Scrolled Area.

Scrolled Area
On a form, an area consisting of identically formatted lines that can move upward
or downward without affecting the remainder of the form and whose position on
the screen is fixed.

Glossary-8

Select Range

An area that defines the extent of a video attribute assignment or other operation
performed with the Form Editor in its Layout phase.

Status Code

A numeric value returned to the application program, indicating the success or
failure of a Form Driver call.

Supervisor Only Attribute

A field attribute indicating that the field is considered to be display only when this
attribute is enabled for a terminal. The application program enables and disables
supervisor-only mode at run time.

Terminal Control Area

An area in memory set aside for a terminal to be used in an FMS application.

Test Phase

A Form Editor phase in which a form is displayed on the screen as it would appear
in an application program. _During the Test phase, data can be entered into fields
to verify that the fields accept data as intended.

Text Mode

In the Form Editor Layout phase, the mode that allows creation· and modification
of backgrou~d text in a form. Contrast with Field Mode.

User Action Routine

A routine associated with a particular field or form and that is invoked by FMS
when the operator completes a field or a form by pressing a terminator key or by
requesting help.

Video Attributes

Characteristics assigned to areas of a form, indicating which video features are to
be activated. Examples of video attributes are bold, blink, reverse, and underline.

Workspace

An area in memory used by the Form Driver when it accesses a form; the work
space maintains context from one Form Driver call to the next for the same form.
The workspace was called the impure area in earlier versions of FMS.

Zero Fill Attribute

A field attribute specifying that field values returned to the application program
are to be padded with zeros. Contrast with Blank Fill Attribute.

Glossary-9

Index

Advanced video option, 2-1, 3-1
Alphanumeric strings, presenting in a

form, 8-5
ANSl_CRT, 2-1
Application development cyde, 1-4 to

1-10
Application program

compiling, 1-8
linking, 1-10
writing, 1-6

Applications
compiling, 6-2
linking, 6-2
running, 6-2

Assign phase, 3-15
Attributes

assigning field, 3-15, 3-22
assigning form, 3-9, 3-19
assigning indexing, 7-3
autotab, 8-8
Clear Character, 8-8
Display Only, 8-8
Fixed Decimal, 8-8
FMS field, 8-8
Must Fill, 8-9
No Echo, 8-9
Response Required, 3-16, 8-9
Right Justify, 8-9
Supervisor Only, 8-9
Uppercase, 8-9
Zero Fill, 8-9
Zero Suppress, 8-9

Autotab attribute, 8-8
AVO, 2-1, 3-1

BASIC, DCL command, 6-2
Bold video attribute, assigning, 3-21

Captions, writing, 8-3
CENTER function, Form Editor, 3-12
Character size, changing, 3-11
Character width, changing, 3-12
Check boxes, providing, 8-3
Clear Character attribute, 3-23, 8-8
COBOL data definition file, 1-4, 1-6
Communication with operator, advice on,

8-7
Compiling an application, 1-8
/CREATE qualifier, using, 4-1
Current context, returning, 7-25

Data
assigning Named, 7-18
punctuating in a form, 8-6

Data lists, presenting in a form, 8-6
Data presentation, 8-5
DATATRIEVE domain definition file,

1-4, 1-6 ,
DATE function, Form Editor, 3-20
DEC_CRT, 3-1
Default field name, 3-16
Default field value, assigning, 3-16
DEPOSIT form, 2-7, 3-4, 3-17

description of, 3-4

Index-I

Directory, obtaining of Form Library, 1-6,
4-3

Display Only attribute, 3-22, 8-8
Double-size characters, 3-3, 3-11

example of, 2-4
Double-wide characters, 3-3, 3-12

example of, 2-4
DRAW function, Form Editor, 3-12

Errors, recovering from in forms, 8-8
Error status, returning from previous call,

5-19
Exit phase, 3-17, 3-24

FAA. See Form Application Aids
FDV$ATERM call, 5-7
FDV$A WKSP call, 5-8
FDV$CDISP call, 5-12
FDV$DTERM call, 5-10, 5-19
FDV$DWKSP call, 5-10
FDV$GETAL call, 5-4
FDV$GET call, 5-4, 5-13"
FDV$LCLOS call, 5-10
FDV$LOPEN call, 5~9
FDV$PFT call, 7-12
FDV$PUT call, 5-16, 7-5
FDV$PUTL call, 5-14
FDV$PUTSC call, 7-12
FDV$RETCX call, 7-25
FDV$RETDI call, 7-18
FDV$RETDN call, 7-18
FDV$STAT call, 5-19
FDV$W AIT call, 5-15
FDV. See Form Driver
FED. See Form Editor
Field

creating, 3-13
example of, 2-4
output value to a, 5-16
requesting input for, 5-13

Field attributes
assigning, 3-15, 3-22, 3-23
autotab, 8-8
Clear Character, 3-23, 8-8
Display Only, 3-22, 8-8
Fixed Decimal, 3-23, 8-8
FMS, 8-8
Must Fill, 8-9
No Echo, 8-9
Response Required, 3-16, 8-9
Right Justify, 3-22, 8-9
Supervisor Only, 8-9
Uppercase, 8-9

Index-2

Zero Fill, 3-22, 8-9
Zero Suppress, 3-22, 8-9

Fields, indexing, 7-1
Field value, assigning default, 3-16
Fixed Decimal attribute, 3-23, 8-8

example of, 2-7
FLB. See Form Librarian
FMS/DESCRIPTION, DCL command,

4-3,4-5
FMS/EDIT, DCL command, 3-7, 3-19,

3-24, 7-19, 7-23
FMS/LIBRARY, DCL command, 4-1,

7-8, 7-20
FMSNECTOR, DCL command, 7-26
FMS Application, linking, 1-10
FMS application development, 1-4 to

1-10
FMS documentation, reading path, 1-10,

1-11
FMS utilities, 1-2
Form

displaying on a screen, 5-12
laying out. See Layout phase

Form Application Aids, 1-4, 1-5 to 1-6
Form attributes, assigning, 3-9, 3-19
Form description, 1-6, 4-3

interpreting, 4-3
obtaining, 4-3
translating to form, 1-3

Form Driver, 1-3, 5-1
control calls, 5-3
FDV$ATERM call, 5-7
FDV$A WKSP call, 5-8
FDV$CDISP call, 5-12
FDV$DTERM call, 5-10, 5-19
FDV$DWKSP call, 5-10
FDV$GETAL call, 5-4
FDV$GET call, 5-4, 5-13
FDV$LCLOS call, 5-10
FDV$LOPEN call, 5-9
FDV$PFT call, 7-12
FDV$PUT call, 5-16, 7-5
FDV$PUTL call, 5-14
FDV$PUTSC call, 7-12
FDV$RETCX call, 7-25
FDV$RETDI call, 7-18
FDV$RETDN call, 7-18
FDV$STAT call, 5-19
FDV$WAIT call, 5-15
field-level calls, 5-3
form-level calls, 5-3
functional division of calls, 5-2
string handling, 5-4
utility calls, 5-3

Form Editor, 1-2, 1-5, 3-6
Assign phase, 3-15
bold video attribute, 3-21
CENTER function, 3-12
DATE function, 3-20
double-size character function, 3-11
double-wide character function, 3-12
DRAW function, 3-12
Exit phase, 3-17, 3-24
Form phase, 3-19
Insert mode, 3-14
Layout phase, 3-19
Overstrike mode, 3-14
REPEAT function, 3-20
starting, 3-7, 3-19, 3-24
Test phase, 3-17, 3-23
underline video attribute, 3-15
using, 3-6
VIDEO function, 3-14

Form Editor menu, 3-8
Form image, obtaining, 4-5
Form Language Translator, 1-3, 1-5
Form Librarian, 1-3, 1-5

using, 4-1
Form libraries, obtaining directory listing

of, 1-6
Form Library, 1-5
Form phase, 3-9, 3-19
Forms

advice on designing, 8-1
creating, 1-5
laying out, 3~19
providing titles for, 8-2
storing in a library, 1-5
testing, 3-1 7

Form Tester, 1-4, 1-5
Form Translator. See. Form Language

Translator

GETSTA subroutine, 5-19
description of, 5-6

Help, obtaining on-line, 2-2
Help form, 2-3
Help forms, creating, 3-24
Help text, assigning, 3-17
Highlighting, using in forms, 8-8

/IMAGE qualifier, using, 4-5
INACCT subroutine, 5-11, 7-10

description of, 5-6
Indexing attribute, assigning, 7-3
Indexing fields, 7-1
Information, sorting, 8-2

Input
requesting from operator, 5-13
waiting for, 5-15

Insert mode, Form Editor, 3-14
/INSERT qualifier, 7-8
Instructions, providing, 8-4

Keypad stickup, 3-6

Languages, list of supported, 1-2
Layout phase, 3-10, 3-19
Library

closing, 5-10
opening, 5-9

Library. See also Form Librarian
Library file

creating, 4-1
obtaining a directory listing, 4-3

Line, displaying on screen, 5-14
Line draw function, using Form Editor,

3-12
LINK, DCL command, 6-2
Listing, subset application, A-1

MAKDEP subroutine, 5-16
description of, 5-6

Memory-resident forms, 1-6
MENU form, 2-4, 3-2, 7-23

description of, 3-2
MENU subroutine, 5-11, 5-14

description of, 5-6
Message, displaying on screen, 5-14
Messages, presenting in forms, 8-8
Must Fill attribute, 8-9

Named Data, 7-17
returning by index, 7-18
returning by name, 7-18

No Echo attribute, 8-9
example of, 2-9

Ordered data, presenting in a form, 8-5
Overstrike mode, Form Editor, 3-14

REGARRA Y$, 7-10
REGISTER form, 2-8, 7-2, 7-6, 7-19
REPEAT function, Form Editor, 3-20
/REPLACE qualifier, 7-20
Response Required attribute, 3-5, 8-9

assigning, 3-16
example of, 2-6

Reverse video, 3-3
Right Justify attribute, 3-22, 8-9
RUN, DCL command, 6-2

Index-3

SAMP, 1-3
listing of, A-1
See also Sample Application

SAMPCH.DAT, 2-10
Sample Application, 1-3 to 1-4, 2-1 to

2-10
starting, 2-2

SCRBAK subroutine, 7-16
Screen layout, advice on, 8-7
SCRFWD subroutine, 7-14
Scrolled area

altering current line, 7-12
creating with Form Editor, 7-7
output a data line to, 7-12

Scrolling, 7-5
example of, 2-8

Scrolling backward, example of, 7-16
Scrolling forward, example of, 7-14
SET TERMINAL/INQUIRE, DCL

command, 2-1, 3-1
SHOW TERMINAL, DCL command,

2-1,3-1
Source program, writing, 1-6
SPACE$, VAX-11 BASIC function, 5-17
Status line, 3-10

returning from previous call, 5-19
See also Layout phase status line

STR$, V AX-11 BASIC function, 5-17
SUBSET.BAS, 5-6

See also Sample Application subset
program, 5-6

Subset application listing, A-1
Subset program, 5-4

description of, 5-4
See also SUBSET .BAS

Supervisor Only attribute, 8-9
Supported languages, 1-2

Terminal
attaching, 5-7
detaching, 5-10, 5:-19
setting up, 2-1, 3-1

Terminal control area, 5-7
Tester. See Form Tester
Test phase, 3-17, 3-23

lndex-4

Titles, providing for forms, 8-2
Translator. See Form Language

Translator

UARs, 1-5, 7-21
compiling, 1-9
compiling, linking, and running, 7-27
creating a sample, 7-22
field completion, 7-22
function key, 7-22
help, 7-22
writing, 1-9

UAR vector module, 1-5, 1-9
creating, 7-26

Underline, Form Editor video attribute,
3-15

Uppercase attribute, 8-9
User Action Routines, 1-5

See also U ARs
Utilities, list of FMS, 1-2

VAL, VAX-11 BASIC function, 5-17
VALIDl UAR, 7-23

compiling, linki:ag, and running, 7-27
Video, reverse, 8-4
Video attributes

assigning, 3-14, 3-21
assigning bold, 3-21
assigning underline, 3-15

VIDEO function, Form Editor~ 3-14
Video screen, advice on using: 8-5
VT52, 2-1
VUEACT subroutine, 5-18

description of, 5-6
VUEREG subroutine, 5-18, 7--4, 7-20

description of, 5-6

Workspace, 5-8
attaching, 5-8
detaching, 5-10

WRITCH subroutine, 5-15
description of, 5-6

Zero Fill attribute, 3-22, 8-9
Zero Suppress attribute, 3-22, 8-9

From

Chicago

San Francisco

Alaska, Hawaii

New Hampshire

Rest of U.S.A.,
Puerto Rico*

HOW TO ORDER
ADDITIONAL DOCUMENTATION

Call

312-640-5612
8:15 A.M. to 5:00 P.M. CT

408-734-4915
8:15 A.M. to 5:00 P.M. PT

603-884-6660
8:30 A.M. to 6:00 P.M. ET

or 408-734-4915
8:15 A.M. to 5:00 P.M. PT

603-884-6660
8:30 A.M. to 6:00 P.M. ET

1-800-258-1710
8:30 A.M. to 6:00 P.M. ET

Write

Digital Equipment Corporation
Accessories & Supplies Center
1050 East Remington Road
Schaumburg, IL 60195

Digital Equipment Corporation
Accessories & Supplies Center
632 Caribbean Drive
Sunnyvale, CA 94086

Digital Equipment Corporation
Accessories & Supplies Center
P.O. Box CS2008
Nashua, NH 03061

*Prepaid orders from Puerto Rico must be placed with the local DIGITAL subsidiary (call 809-754-7575)

Canada
British Columbia

Ottawa-Hull

Elsewhere

Elsewhere

1-800-267-6146
8:00 A.M. to 5:00 P.M. ET

613-234-7726
8:00 A.M. to 5:00 P.M. ET

112-800-267-6146
8:00 A.M. to 5:00 P.M. ET

Digital Equipment of Canada Ltd
940 Belfast Road
Ottawa, Ontario K1 G 4C2
Attn: A&SG Business Manager

Digital Equipment Corporation
A&SG Business Manager*

*c/o DIGITAL's local subsidiary or approved distributor

