
VAX Common Data Dictionary
Data Definition Language
Reference Manual

Order Number: AA-K0850-TE

August 1988

This manual describes the VAX Common Data Dictionary Data
Definition Language Utility (CDDL) and the elements of a CDDL
source file.

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear in
this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that
is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1981, 1982, 1983, 1984, 1985, 1986, 1988 by Digital Equipment
Corporation. All rights reserved.

The postpaid Reader's Comments forms at the end of this document request the
user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

ACMS PDP VAXcluster
CDD RALLY VAXinfo
DATATRIEVE Rdb/ELN VAX Information Architecture
DEC Rdb/VMS VIDA
DECnet ReGIS VMS
DEC reporter TDMS VT
DECUS TEAMDATA
MicroVAX UNIBUS

~urnuo~u TM Micro VMS VAX

How to Use This Manual

1 The VAX Common Data Dictionary

1.1 The CDD Directory Hierarchy.

1.1.1 Full Path Names . .
1.1.2 Relative Path Names

1.2 History Lists
1.3 Access Control Lists
1.4 The Data Definition Language Utility (CDDL)

2 CDDL Source File Description

2.1 ALIGNED Field Attribute Clause
2.2 ARRAY Field Attribute Clause
2.3 BLANK WHEN ZERO Field Attribute Clause
2.4 COMPUTED BY DATATRIEVE Field Attribute Clause .
2.5 CONDITION NAME Field Attribute Clause
2.6 COPY Field Description Statement
2. 7 DATATYPE Field Attribute Clause
2.8 DEFAULT_ VALUE Field Attribute Clause
2.9 DEFINE and END Statements . . .
2.10 DESCRIPI'ION Clause
2.11 EDIT_ CODE Field Attribute Clause .
2.12 EDIT _STRING Field Attribute Clause
2.13 EDIT_ WORD Field Attribute Clause .
2.14 Elementary Field Description Statement .
2.15 INITIAL_ VALUE Field Attribute Clause
2.16 JUSTIFIED RIGHT Field Attribute Clause
2.17 MISSING_ VALUE Field Attribute Clause
2.18 NAME Field Attribute Clause
2.19 OCCURS Field Attribute Clause
2.20 OCCURS ... DEPENDING Field Attribute Clause
2.21 PICTURE Field Attribute Clause
2.22 QUERY_ HEADER Field Attribute Clause . . .
2.23 QUERY_ NAME Field Attribute Clause
2.24 STRUCTURE Field Description Statement
2.25 VALID FOR DATATRIEVE IF Field Attribute Clause
2.26 VARIANTS Field Description Statement

2.26.1 VARIANTS Field Description Statement . .
2.26.2 VARIANTS OF Field Description Statement

Contents

Page

v

1-1

1-3
1-4

1-4
1-4
1-4

2-3
2-5
2-7
2-8

. 2-10

. 2-13

. 2-15

. 2-21

. 2-23

. 2-26

. 2-28

. 2-29

. 2-30

. 2-31

. 2-33

. 2-35

. 2-36

. 2-38

. 2-40

. 2-42

. 2-45

. 2-47

. 2-49

. 2-51

. 2-54

. 2-55

. 2-56

. 2-58

iii

3 The COOL Compiler Command Descriptions

3.1 CDDL Command
3-2 CDDL/RECOMPILE Command

A SOURCE.DDL: The Source File for Examples in This Manual

B COOL Syntax Skeleton

B.1 DEFINE. .. End
B.2 Field Description Statements

B.2.1
B.2.2
B.2.3
B.2.4

Elementary Field Description
STRUCTURE Field Description
COPY Field Description . .
VARIANT Field Description

B.3 General Field Attributes
B.4 Facility-Specific Field Attributes

C COOL Error Messages

D COOL Reserved Words

E Additional COOL Notes

E.1 Support of the VAX Language-Sensitive Editor (LSE) .
E.2 /DIAGNOSTICS Qualifier for CDDL Command
E.3 The CDDL ALIGNED Clause

Index

Examples

. 3-3

. 3-10

B-1
B-1

B-1
B-2
B-2
B-2

B-3
B-4

E-1
E-1
E-2

3-1 Sample CDDL Listing File . 3-8

Figures

1-1 Sample Dictionary Hierarchy . 1-2

Tables

C-1 Explanation of Severity Codes C-2

iv

How to Use This Manual

This manual describes how the VAX Common Data Dictionary software, also
referred to in this document as CDD, allows you to enter record definitions
directly into the dictionary, using the Data Definition Language Utility (CDDL).

CDD is now a subset of the VAX CDD/Plus software, also referred to in this
document as CDD/Plus. Many DIGITAL products, however, continue to function
using Version 3.4 or earlier of CDD.

Version 3.4 and earlier of CDD use the DMU format for dictionary definitions,
but not the CDO format. This manual is for dictionary users who need to use the
DMU format for dictionary definitions.

If Version 3.4 or earlier of the VAX Common Data Dictionary is installed on your
system, references in this manual to the ''VAX Common Data Dictionary,"
"Common Data Dictionary," or "CDD" refer to the VAX Common Data Dictionary
installed on your system.

If VAX CDD/Plus Version 4.0 or later is installed on your system, references in
this manual to the "VAX Common Data Dictionary," "Common Data Dictionary,"
or "CDD" refer to the DMU format dictionary.

CDD/Plus supports dictionary definitions in two distinct formats:

• DMU format includes dictionary definitions that can be created and manipu­
lated with the DMU, CDDL, and CDDV utilities, and other products that do
not support the new features of CDD/Plus.

• CDO format includes dictionary definitions that can be created and manipu­
lated with the CDO utility, the CDD/Plus call interface, and other supporting
products.

v

Intended Audience

The audience for this manual includes:

• The data administrator or system manager responsible for organizing the
directory hierarchy and creating the record definitions to be stored in the CDD

• Programming supervisors responsible for maintaining portions of the hierarchy
and the data definitions stored there

• Programmers responsible for storing new data definitions in the CDD

Before you read this manual, you should read Appendix A of the VAX CDD/Plus
User's Guide.

Operating System Information

For information on the compatibility of other software products with this version
of CDD/Plus, refer to the System Support Addendum (SSA) that comes with the
Software Product Description (SPD). You can use the SPD/SSA to verify which
versions of your operating system are compatible with this version of CDD/Plus.

This manual consists of three chapters, five appendixes, and an index.

Chapter 1

Chapter 2

Chapter 3

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

vi

Provides a brief overview of the hierarchical structure of the VAX
Common Data Dictionary and introduces the use of the Data
Definition Language Utility (CDDL).

Presents complete descriptions of the elements of a CDDL source
file.

Presents a complete description of the CDDL compiler com­
mands, including parameters and qualifiers.

Contains SOURCE.DDL, the source file for all the record
definitions used as examples in this manual.

Contains a CDDL syntax skeleton.

Documents compiler error messages.

Documents the use of CDDL reserved words.

Contains changes made with Version 3.4 of CDD that were not
described earlier.

Related Docu'ments

For up-to-date references to further information on the topics covered in this
manual, see the prefaces of the VAX CDD/Plus manuals in this documentation
set.

Conventions

This section explains the conventions for the syntax and symbols used in this
manual:

WORD

word

[]

{ }

[I I J

<RET>

An uppercase word in a syntax format is a keyword. You must
include it in the statement if the clause is used.

A lowercase word in a syntax format indicates a syntax element
that you supply.

Square brackets enclose optional clauses from which you can
choose one or none.

Braces enclose clauses from which you must choose one
alternative.

Bars in square brackets indicate that you can choose any
combination of the enclosed options, but you can use each option
only once.

This symbol indicates the RETURN key.

Unless otherwise indicated, end all user input lines in examples by
pressing the RETURN key.

<CTRL/x> This symbol tells you to press the CTRL (control) key and hold it
down while pressing a letter key.

<GOLD-x> This symbol indicates that you press the GOLD key and then a
specified letter key consecutively.

Color

A horizontal ellipsis means you can repeat the previous item.

A vertical ellipsis in an example means that information not
directly related to the example has been omitted.

Color in examples shows user input.

vii

References to Products

CDD is a member of the VAX Information Architecture, a group of products that
work with each other and with VAX languages conforming to the VAX calling
standard to provide flexible solutions for information management problems.

VAX Information Architecture documentation explaining how these products
interrelate is included with VAX CDD/Plus documentation. VAX Information
Architecture documentation is also available separately. Contact your DIGITAL
representative.

The CDD documentation to which this manual belongs often refers to products
that are part of the VAX Information Architecture by their abbreviated names:

• VAX ACMS software is referred to as ACMS.

• VAX CDD/Plus software is referred to as CDD/Plus.

• VAX CDD software is referred to as CDD.

• VAX DATATRIEVE software is referred to as DATATRIEVE.

• VAX DBMS software is referred to as VAX DBMS.

• VAX Rdb/VMS software is referred to as Rdb/VMS.

• VAX TDMS software is referred to as TDMS.

• VIDA software is referred to as VIDA.

viii

The VAX Common Data Dictionary 1

A typical information management system today includes a combination of
languages and language processors using the same data files and record
definitions to perform different tasks. With information shared by various users,
there is an obvious need to guarantee the accuracy and reliability of the data.
Database management systems meet this need by providing central storage of
and control over an organization's data.

The VAX Common Data Dictionary (CDD) performs a similar function, not for
data, but for data definitions. The CDD is a central repository for data descrip­
tions and definitions shared by VAX languages and by VAX information
management processors.

1.1 The COD Directory Hierarchy

With the CDD, you use a hierarchical directory structure to organize and arrange
your data definitions. You collect related data definitions in dictionary directories
in much the same way you use VAX/VMS directories to collect related files.
Dictionary directories can own other directories, or they can own dictionary
objects, which are the data descriptions stored in the dictionary. There are
several types of CDD dictionary objects including VAX DBMS sets and realms,
VAX DATATRIEVE domains and procedures, and VAX CDD record definitions.

The CDD also allows you to create special directories called subdictionary
directories. Subdictionary directories function exactly like dictionary directories,
but they are stored in separate physical files for security or accounting reasons.
In practice, users are unaware of whether they are accessing dictionary
directories or subdictionaries.

Figure 1-1 shows the hierarchical relationships in the sample dictionary that is
the source of all the examples in this manual.

1-1

_...
I

I\)

-I
:T
<D

<
)>
x
()
0
3
3
0
:::J

0
~
!l>

0
IT
O"
:::J
!l>
-<

ADDRESS_
RECORD; 1

EMPLOYEE_
LIST; 1

CORPORATE

PRODUCT_
INVENTORY; 1

SALARY_
RECORD; 1

Figure 1-1: Sample Dictionary Hierarchy

SALARY_
RECORD; 2

SALARY_
RANGE; 1

CDD$TOP

PRODUCTION

SALARY_
RANGE; 2

CUSTOMER_
RECORD; 1

SALES

JONES

LEADS_
RECORD; 1

SALES_
RECORD; 1

ZK-8543-HC

As you can see from the figure, one dictionary directory, CDD$TOP, owns the
entire dictionary structure. CDD$TOP is the permanently assigned name for this
root dictionary directory. Below CDD$TOP are the directories CORPORATE,
PRODUCTION, and SALES, and the PERSONNEL subdictionary. These
dictionary and subdictionary directories organize the information stored in the
CDD. You can use terms borrowed from family tree relationships to describe
CDD hierarchical relationships:

• PRODUCTION has no children and no descendants.

• The record definitions ADDRESS_RECORD;l, EMPLOYEE_LIST;l, and
PRODUCT _INVENTORY;! are the three children of CORPORATE.

• PERSONNEL's two children are directories: SERVICE and STANDARDS.
Each of these directories is the parent of two record definitions.
SALARY _RECORD;l and SALARY _RECORD;2 are children of SERVICE,
and SALARY _RANGE;l and SALARY _RANGE;2 are the children of
STANDARDS.

• SALES is the parent of both a dictionary directory, JONES, and of two
dictionary objects, CUSTOMER_RECORD;l and SALES_RECORD;l.
JONES, in turn, is the parent of LEADS_RECORD;l.

• LEADS_RECORD;l is a descendant of SALES, and SALARY _RECORD;l is a
descendant of PERSONNEL.

• PERSONNEL is an ancestor of SALARY _RECORD;l, SALARY _RECORD;2,
SALARY _RANGE;l, and SALARY _RANGE;2.

1.1.1 Full Path Names

To refer to a particular dictionary directory or object within the directory
hierarchy, you use its dictionary path name. A full path name is the string of
given names connecting CDD$TOP to the given name of the target dictionary
directory or object. You separate given names from one another with periods, just
as you do with VMS directories. The dictionary directory JONES, for example,
has the following full path name:

CDD$TOP,SALES.JONES

Because the CDD can contain multiple versions of dictionary objects, each
dictionary object has a version number associated with it. The version number is
separated from the name of the object by a semicolon. For example, the full path
name of version 2 of SALARY _RANGE is:

CDD$TOP.PERSONNEL.STANDARDS.SALARY_RANGE;z

The VAX Common Data Dictionary 1-3

You can specify the highest version of a dictionary object with an absolute
version number or with no version number at all. For example, either of the
following path names specifies the highest existing version of SALARY _RANGE,
version 2:

CDD$TOP+PERSONNEL.STANDARDS.SALARY_RANGE
CDD$TOP+PERSONNEL+STANDARDS+SALARY_RANGE;2

1.1.2 Relative Path Names

If you define the logical name CDD$DEFAULT as the path name of a particular
dictionary directory, that directory becomes your default dictionary directory.
When you have defined a default directory, you can identify a dictionary
directory or object by its relative path name, which includes only the names of
those directories connecting the default directory to the target directory or object.

If, for example, your default dictionary directory were CDD$TOP.PERSONNEL,
you could identify the dictionary object SALARY _RECORD;l with either of the
following path names:

CDD$TOP+PERSONNEL+SERVICE+SALARY_RECORD;1
SERVICE.SALARY_RECDRD;l

1.2 History Lists

The CDD's optional history list feature allows you to document any operation on
a dictionary directory or object. You can store documentary comments in the
history list of the directory or object. You can use history lists to monitor CDD
processing and to plan additions or changes to the dictionary hierarchy.

1.3 Access Control Lists

The CDD controls the security of the dictionary with access control lists
associated with each dictionary directory or object. You can grant or deny nine
CDD and four VAX DATATRIEVE access privileges to individual users or groups
of users with CDD access control lists.

1.4 The Data Definition Language Utility (COOL)

You can use the Data Definition Language Utility (CDDL) to define records and
store them in the CDD. VAX programming languages and VAX Information
Architecture products can then share these record definitions. Each language or
product translates the generic definitions stored in the CDD into language- or
product-specific definitions that it can use.

1-4 The VAX Common Data Dictionary

To enter a new data definition, or to modify an existing definition in the CDD,
you first create a CDDL source file. This source file contains full data descrip­
tions including field names, data types, and special attributes. Once the source
file is complete, you use the CDDL compiler, either interactively or in batch
mode, to insert the definitions into the CDD.

To use the CDDL compiler, you should define CDDL as a global symbol in your
login command file:

$ CDDL:==SSYSSSYSTEM:CDDL

Chapter 2 of this manual describes CDDL source file statements and clauses.
Chapter 3 describes CDDL compiler commands.

The VAX Common Data Dictionary 1-5

COOL Source File Description 2

You create a CDDL source file by using a text editor, like VAX EDT. This
chapter describes the statements and clauses you use in a CDDL source file.
When you have created the source file, you can store it in the CDD by using the
CDDL compiler. Chapter 3 describes CDDL compiler commands.

CDDL source files consist of:

• DEFINE and END statements, which you use to define CDD records

• Field description statements, which you use to describe the general structure of
records

• Field attribute clauses, which you use to describe characteristics of fields
within CDD records

Use the following syntax guidelines to help create CDDL source files:

• Each line of CDDL source can be no longer than 255 characters.

• End each field description with a period.

• You can continue field attribute clauses from one line to the next without using
a continuation character.

• Within each field attribute clause, the order of keywords is important. Refer to
the format diagrams for proper keyword order of specific clauses.

• Within each field description, you can specify field attribute classes in any
order you please.

• In elementary field descriptions, the DATATYPE clause is the only required
field attribute clause.

2-1

The following sections contain descriptions of the statements and clauses you use
to define records in the CDDL source file. These descriptions include:

• The syntax format you should use for each statement or clause

• Syntax rules to help you define records correctly

• Usage notes to show you how to use each statement or clause

• Examples to illustrate the use of each statement or clause

2-2 CDDL Source File Description

ALIGNED

2.1 ALIGNED Field Attribute Clause

Aligns a field on a specified starting boundary relative to the start of the record.

Format

ALIGNED [ON]

Usage Notes

BIT
BYTE
WORD
LONGWORD
QUADWORD
OCTAWORD

[BOUNDARY]

• To satisfy hardware requirements, some languages and language processors
have field alignment restrictions for data definitions. The ALIGNED clause
enables you to control the starting boundaries of fields you define.

• Each field, except BIT fields, begins by default on the first byte following the
last field. BIT fields begin on the bit immediately following the last field. You
can modify this starting position with the ALIGNED clause.

• The ALIGNED clause aligns fields within a record relative to the start of the
record, not relative to virtual memory locations. For example, if you specify
LONGWORD alignment for a field, that field does not necessarily begin on a
longword boundary in memory. Rather, the field begins some multiple of 32
bits beyond the start of the record. To correctly use the ALIGNED clause, you
must know the memory alignment techniques of the language you use with the
CDD.

Note

You should not use the ALIGNED clause in template records. When
CDDL stores the template record, the position of an aligned field is
fixed within the record and is not changed when the record is copied
into another record definition. Therefore, the newly created field may
not align properly in the new record definition.

COOL Source File Description 2-3

ALIGNED

Example

In the following example, a LONGWORD field (QUANTITY) follows a BYTE
field. The PRODUCT _NO field spans 64 bits, the DATE_ ORDERED field spans
64 bits, and the STATUS_ CODE field spans 8 bits. The ALIGNED clause causes
the three bytes following STATUS_ CODE to remain empty and aligns
QUANTITY exactly 160 bits beyond the start of the record.

IN_STOCK STRUCTURE+
PRODUCT_NO

DATE-ORDERED
STATLJS_CODE
QUANTITY

LOCATION

DATATYPE IS TE>(T
SIZE IS 8 CHARACTERS,
DATATYPE IS DATE+
DATATYPE IS BYTE.
DATATYPE IS LONGWORD
ALIGNED ON LONGWORD+
ARRAY 1:4
DATATYPE IS TE>(T
SIZE IS 30 CHARACTERS,

UNIT_PRICE DATATYPE IS LONGWORD SCALE -2+
END IN_STOCK STRUCTURE+

2-4 CDDL Source File Description

ARRAY

2.2 ARRAY Field Attribute Clause

Declares multidimensional arrays or one-dimensional arrays. ARRAY is most
useful when the subscript's lower bound is not equal to 1.

Format

[
ROW MAJOR]
COLUMN_ MAJOR ARRAY [n1 :] n2 [[n3 :] n4] ...

Parameters

n1, n2, n3, n4

The upper and lower bounds of the subscripts.

Syntax Rules

• Each dimension of the array is defined by a pair of signed integers.

• The first integer in each pair (nl, n3 ...) specifies the subscript's lower bound.
The default value for the lower bound is 1.

• The second integer in each pair (n2, n4 ...) specifies the subscript's upper
bound. The upper bound must be greater than or equal to the lower bound.

Usage Notes

• With ARRAY, each subscript has an upper and lower bound defined by a pair
of signed integers.

• In multidimensional arrays, ROW _MAJOR declares the rightmost subscript to
be the fastest varying. COLUMN_ MAJOR declares the leftmost subscript to
be the fastest varying.

• If neither ROW _MAJOR nor COLUMN _MAJOR is specified, the default is
ROW_MAJOR.

COOL Source File Description 2-5

ARRAY

Example

In the following example, the ARRAY clause declares 20 instances of SUPPLIER
(from 0 to 19) where each instance is four 30-character strings.

SUPP LI ER

2-6 COOL Source File Description

ARRAY 0:18 1:4
DATATYPE IS TEXT
SIZE IS 30 CHARACTERS.

BLANK WHEN ZERO

2.3 BLANK WHEN ZERO Field Attribute Clause

Sets an entire field to blanks when you assign it a zero.

Format

BLANK WHEN ZERO

Usage Note

Only VAX COBOL supports this feature. All other processors ignore it.

Example

In the following example, the field NEW is initially set to blanks when it is
accessed by the VAX COBOL compiler.

ZIP_CODE STRUCTURE.
NEW DATATYPE IS UNSIGNED NUMERIC

SIZE IS 4 DIGITS
BLANK WHEN ZERO.

OLD DATATYPE IS UNSIGNED NUMERIC
SIZE IS FIVE DIGITS.

END ZIP_CODE STRUCTURE.

CDDL Source File Description 2-7

COMPUTED BY DATATRIEVE

2.4 COMPUTED BY DATATRIEVE Field Attribute Clause

Supplies expressions used by VAX DATATRIEVE to calculate the values of
VIRTUAL fields.

Format

{
DTR }

COMPUTED BY DATATRIEVE AS quoted-string [quoted-string] ...

Parameter

quoted-string

An expression used by VAX DATATRIEVE to calculate the field's value.

Syntax Rule

The set of quoted strings must form a valid VAX DATATRIEVE virtual
expression. The CDDL compiler does not check the virtual expression for correct
syntax. It is your responsibility to provide a correct virtual expression.

Usage Notes

• You must specify a VIRTUAL FIELD DATATYPE for a field using the
COMPUTED BY DATATRIEVE clause.

• Only VAX DATATRIEVE can interpret VIRTUAL fields. Other processors
either ignore their presence or refuse to process record descriptions containing
them.

• If you are using a terminal of the VT200 family, you can use 8-bit characters in
CDDL quoted strings.

• You cannot specify an INITIAL VALUE field attribute for a virtual field.

• You cannot specify a CONDITION NAME field attribute for a virtual field.

• You cannot use a virtual field as a tag variable in the VARIANTS OF field
description statement.

2-8 CDDL Source File Description

COMPUTED BY DATATRIEVE

Example

In the following example, no storage has been allocated for TOTAL_ PRICE.
Instead, VAX DATATRIEVE uses the virtual expression "UNIT_ PRICE
QUANTITY" to calculate the value of TOTAL_PRICE at run time.

TOTAL_ PRICE DATATYPE IS VIRTUAL FIELD
COMPUTED BY DATATRIEVE AS

"UNIT_PRICE *QUANTITY",

COOL Source File Description 2-9

CONDITION NAME

2.5 CONDITION NAME Field Attribute Clause

Enables the VAX COBOL compiler to associate one or more condition names with
specific values for a field.

Format

CONDITION FOR COBOL [IS] condition-name
[COBOL NAME [IS] quoted-string]

JVALUE [IS] }
lvALUES [ARE]

{ l EXTE~NAL e1 } [THAU { EXTE~~AL e2 } J

[{mE~NAL e3} [
THAU { n4

EXTERNAL e4

Parameters

condition-name

The condition.

quoted-string

A COBOL name for the condition.

n1, n2, n3, n4

} J J ... }

Field values or ranges of field values associated with the condition name.

e1, e2, e3, e4

A quoted string containing a COBOL external name. See the VAX COBOL
Language Reference Manual for information on the legal use of external
names.

Syntax Rules

• The condition name must be a string of up to 31 characters from the set A-Z,
0-9,_ , and$. The first character in the string must be a letter from A-Z, and
the last character cannot be _ or $.

2-10 COOL Source File Description

CONDITION NAME

• Quoted strings or external names must be legal VAX COBOL names. However,
the CDDL compiler does not check for correct syntax. It is your responsibility
to provide a correct value expression.

• The values nl, n2, n3, and n4 can be fixed point numbers, floating point
numbers, quoted strings, octal numbers, or hexadecimal numbers.

• The compiler ignores commas, but you can use them to make value specifica­
tions easier to read.

Usage Notes

• Only VAX COBOL supports this feature. Other language processors ignore the
CONDITION NAME clause.

• Each CONDITION NAME clause defines one condition name. Each condition
name can represent a discrete value, a range of values, or any combination of
these.

• You can use the CONDITION NAME clause as many times as you wish within
a field description.

• The values nl, n2, n3, and n4 must be legal values as defined by the data type
declared for the field.

• The length of a literal you specify in a CONDITION NAME clause cannot
exceed the length declared for the field.

• You can specify a fixed point number as the value of any field whose valid VAX
COBOL data type is not DATE, TEXT, or UNSPECIFIED.

• You can specify a floating point number as the value of a field whose valid
VAX COBOL data type is not DATE, TEXT, or UNSPECIFIED.

• You can specify a quoted string as the value only of a field whose valid VAX
COBOL data type is DATE, TEXT, or UNSPECIFIED.

• If you are using a terminal of the VT200 family, you can use 8-bit characters in
CDDL quoted strings.

• You can specify an octal number as the value of any valid VAX COBOL data
type. In order to specify an octal number, place single quotation marks (')
around the number and precede it with %0; for example,

l.JALUE Is %0 I 1 GI

COOL Source File Description 2-11

CONDITION NAME

• You can specify a hexadecimal number as the value of any valid VAX COBOL
data type. In order to specify a hexadecimal number, place single quotation
marks (') around it and precede it with %X; for example,

t.JALUE Is ·x.x '3E'

• Value n2 must be greater than or equal to value nl in the field's collating
sequence.

• Value n4 must be greater than or equal to value n3 in the field's collating
sequence.

Example

The following example defines three valid conditions and the values where the
condition is invalid, according to the value of the field RECORD_ IDENTIFIER.

RECORD-IDENTIFIER DATATYPE IS TE){T
SIZE IS 1 CHARACTER
CONDITION FOR COBOL IS ON_HAND

COBOL NAME "ON-HAND"
l.JALUE IS "S"

CONDITION FOR COBOL BACKORDER
COBOL NAME "BACKORDER"
t.JALUE IS "B"

CONDITION FOR COBOL OUT_OF_STOCK
COBOL NAME "OUT-OF-STOCK"
t.JALUE IS 11 0"

CONDITION FOR COBOL IS INVALID
t.JALUES ARE "A" t "C" THRU "N",
"P" THRU "R" t "T" THRU "Z",

2-12 COOL Source File Description

COPY

2.6 COPY Field Description Statement

Copies the description of an existing record (called a template record) into the
description of a new field (the COPY field).

Format

[/* text *I]
field-name COPY [FROM] path-name [ALIGNED clause] .

Parameters

text

An explanation of the field.

field-name

The name of the COPY field.

path-name

The location of the template record definition within the CDD directory
hierarchy.

Syntax Rules

• You must assign a field name to a COPY field. This field name can be up to 31
characters from the set A-Z, 0-9, _, and $. The first character must be a letter
from A-Z, and the last character cannot be _ or $. If you are using a terminal
of the VT200 family, you can use alphabetic 8-bit characters in field names.
Remember that other terminals cannot reproduce 8-bit characters.

• The path name can be a full or a relative path name, and it must be the path
name of an existing CDD record description. You can specify an absolute
version number with the path name.

• The COPY field description statement must terminate with a period.

COOL Source File Description 2-13

COPY

Usage Notes

• The copy operation takes place when the new record is compiled, not when it is
copied into a program. When you modify a template record, you should
recompile any record definitions that contain COPY field descriptions copying
the modified template record.

• The COPY field description statement copies a complete record, a template
record, into a single field.

• The COPY field description statement copies the description of the template
record as the description of the COPY field. If the first subordinate field of the
template record is a BIT field, the first subordinate field of the COPY field
begins on the first bit immediately following the preceding field. Otherwise, the
COPY field begins on the first byte immediately following the preceding field.
You can modify this starting position with the ALIGNED clause (see Section
2.1).

• If you specify an absolute version number in the path name parameter, CDDL
copies the version of the template record with that version number each time
you compile the record description containing the COPY field. If you do not
specify a version number, CDDL copies the highest version of the template
record each time you compile the record description.

• In the COPY field, the field name you assign replaces the field name copied
from the field description statement of the template record.

• When the CDDL compiler compiles a record definition containing a COPY field
description, it automatically makes an entry documenting the copy operation in
the history list of the template record, whether or not you use the I AUDIT
qualifier.

Example

CDD$TOP.CORPORATE.ADDRESS_RECORD defines the standard format for
addresses. You can copy this field description into any new record requiring an
address field.

ADDRESS COPY FROM
CDD$TOP.CDRPORATE.ADDRESS_RECDRD+

2-14 CDDL Source File Description

DATATYPE

2. 7 DATA TYPE Field Attribute Clause

Declares the type and size of a field. Some valid CDD data types may not be
supported by the languages or language processors you will be using with the
CDD. It is your responsibility to make certain that the records you define are
valid for the language processors you use.

Format

DATATYPE [IS)

DATE

VIRTUAL [FIELD]

BIT [FIELD]

UNSPECIFIED

j TEXT }
(VARYING STRING

POINTER [TO path-name]

D_FLOATING
D_FLOATING COMPLEX
F_FLOATING
F _FLOATING COMPLEX
G_FLOATING
G_FLOATING COMPLEX
H_FLOATING
H_FLOATING COMPLEX

I
[UN] SIGNED BYTE)
[UN] SIGNED WORD
[UN] SIGNED LONGWORD
[UN] SIGNED QUADWORD
[UN] SIGNED OCTAWORD

PACKED DECIMAL
ZONED NUMERIC
UNSIGNED NUMERIC
LEFT SEPARATE NUMERIC
LEFT OVERPUNCHED NUMERIC
RIGHT SEPARATE NUMERIC
RIGHT OVERPUNCHED NUMERIC

[SIZE [IS]] n1

[SIZE [IS]] n1 [BYTE [S]]

[SIZE [IS]] n1 [CHARACTER [S]]

SCALE n1 BASE n2

~
[SIZE [IS]) n1 [DIGIT [S] ~

[n2 FRACTION [S]))

SCALE n3
BASE n4

[SIZE [IS]] n1 [DIGIT [S]
[n2 FRACTION [S]]]

n1sCALE n31n
LJBASE n4 Li

COOL Source File Description 2-15

DATATYPE

Syntax Rules

• DATE specifies that the field is a 64-bit VAX standard absolute date data type.

• VIRTUAL FIELD specifies that the field is a VAX DATATRIEVE virtual field.
No space is allocated for virtual fields in a record. The COMPUTED BY
DATATRIEVE clause determines the value of a virtual field at run time. A
STRUCTURE field cannot contain the VIRTUAL FIELD datatype. See
Section 2.4.

• BIT specifies that the field is a bit string. Indicate the number of bits in the
field with an unsigned integer (nl).

• UNSPECIFIED declares that the field is a sequence of 8-bit unsigned bytes.
Indicate the number of bytes in the field with an unsigned integer (nl).

• TEXT specifies that the field is a sequence of 8-bit ASCII bytes. Indicate the
number of characters in the field with an unsigned integer (nl). CDDL accepts
CHARACTER as a synonym for TEXT.

• VARYING STRING specifies that the field is a PL/I or PASCAL varying
string. Indicate the number of characters in the field with an unsigned integer
(nl). CDDL accepts VARYING TEXT as a synonym for VARYING STRING.

• POINTER specifies that the field contains the address of another field or
record definition. In PL/I, for example, POINTER fields are used to access
based variables and buffers allocated by the system. Although PL/I does not
associate POINTER fields with a specified record structure, other languages
do; the ,optional [TO path-name] lets you connect a POINTER to a structure.

• Floating point data types:

- You can specify a SCALE as an implied exponent. The signed integer (nl)
must be in the range -128 to 127. The SCALE specification indicates the
number of places to shift the decimal point when the field is evaluated.
Negative nl indicates a shift of nl places to the left, and positive nl
indicates a shift of nl places to the right.

- You can also specify the radix, or BASE, with an unsigned integer (n2). The
BASE indicates the number system to be used when the field is evaluated.
The default BASE is 10.

- D_FLOATING specifies that the field is a 64-bit floating point number with
precision to approximately 16 decimal digits.

2-16 COOL Source File Description

DATATVPE

- D _FLOATING COMPLEX specifies that the field consists of two 64-bit
floating complex numbers, one for the real component and one for the
imaginary. CDDL accepts D_FLOATING_COMPLEX as a synonym for
D_FLOATING COMPLEX.

- F _FLOATING specifies that the field is a 32-bit floating point number with
precision to approximately seven decimal digits.

- F _FLOATING COMPLEX specifies that the field consists of two 32-bit
floating complex numbers, one for the real component and one for the
imaginary. CDDL accepts FLOATING_COMPLEX, FLOATING COMPLEX,
and F _FLOATING_COMPLEX as synonyms for F _FLOATING
COMPLEX.

- G_FLOATING specifies that the field is an extended range 64-bit floating
point number with precision to approximately 15 decimal digits.

- G _FLOATING COMPLEX specifies that the field consists of two extended
range 64-bit floating complex numbers, one for the real component and one
for the imaginary. CDDL accepts G _FLOATING_ COMPLEX as a synonym
for G_FLOATING COMPLEX.

- H_FLOATING specifies that the field is an extended range 128-bit floating
point number with precision to approximately 33 decimal digits.

- H_FLOATING COMPLEX specifies that the field consists of two extended
range 128-bit floating complex numbers, one for the real component and one
for the imaginary. CDDL accepts H_FLOATING_COMPLEX as a synonym
for H_FLOATING COMPLEX.

• Fixed point data types:

- You can declare the total number of DIGITS (nl) and the number of those
digits that are FRACTIONS (n2). The number of digits must be greater than
0 and less than 32. The number of fractions must not be greater than the
number of digits. The default number of fractions is 0.

- You can specify a SCALE as an implied exponent. The signed integer (nl)
must be in the range -128 to 127. The SCALE specification indicates the
number of places to shift the decimal point when the field is evaluated.
Negative nl indicates a shift of nl places to the left, and positive nl
indicates a shift of nl places to the right.

CDDL Source File Description 2-17

DATATYPE

- You can also specify the radix, or BASE, with an unsigned integer (n2). The
BASE indicates the number system to be used when the field is evaluated.
The default BASE is 10.

- BYTE specifies that the field is an 8-bit byte. The BYTE can be SIGNED or
UNSIGNED. If there is no sign specification, UNSIGNED is the default.

- WORD specifies that the field is a 16-bit word. The field can be SIGNED or
UNSIGNED. If no sign is specified, UNSIGNED is the default.

- LONGWORD specifies that the field is a 32-bit longword. The LONGWORD
can be SIGNED or UNSIGNED. If no sign is specified, UNSIGNED is the
default.

- QUADWORD specifies that the field is a 64-bit quadword field. The field can
be SIGNED or UNSIGNED. If no sign is specified, UNSIGNED is the
default.

- OCTA WORD specifies that the field is a 128-bit octaword field. The field can
be SIGNED or UNSIGNED. If no sign is specified, UNSIGNED is the
default.

• Decimal string data types:

- You must declare the total number of DIGITS (nl) in the field. You can also
declare which of those digits are FRACTIONS (n2). The number of digits
must be greater than 0 and less than 32. The number of fractions must not
be greater than the number of digits. The default number of fractions is 0.

- You c~n specify a SCALE as an implied exponent. The signed integer (nl)
must be in the range -128 to 127. The SCALE specification indicates the
number of places to shift the decimal point when the field is evaluated.
Negative nl indicates a shift of nl places to the left, and positive nl
indicates a shift of nl places to the right.

- You can also specify the radix, or BASE, with an unsigned integer (n2). The
BASE indicates the number system to be used when the field is evaluated.
The default BASE is 10.

- PACKED DECIMAL specifies that the field is a packed decimal numeric
field. CDDL accepts PACKED NUMERIC as a synonym for PACKED
DECIMAL~

- UNSIGNED NUMERIC specifies that the field is an unsigned decimal
string. You must use the UNSIGNED keyword.

2-18 CDDL Source File Description

DATATVPE

- ZONED NUMERIC specifies that the field is a VAX ZONED NUMERIC data
type. CDDL accepts SIGNED NUMERIC as a synonym for ZONED
NUMERIC.

- LEFT SEPARATE NUMERIC specifies that the field is a left separate
signed numeric decimal string. CDDL accepts [SIGNED] NUMERIC LEFT
SEPARATE as a synonym for LEFT SEPARATE NUMERIC.

- LEFT OVERPUNCHED NUMERIC specifies that the field is a left
overpunched signed numeric decimal string. CDDL accepts [SIGNED]
NUMERIC LEFT OVERPUNCHED as a synonym for LEFT
OVERPUNCHED NUMERIC.

- RIGHT SEPARATE NUMERIC specifies that the field is a right separate
signed numeric decimal string. CDDL accepts [SIGNED] NUMERIC RIGHT
SEPARATE as a synonym for RIGHT SEPARATE NUMERIC.

- RIGHT OVERPUNCHED NUMERIC specifies that the field is a right
overpunched signed numeric decimal string. CDDL accepts [SIGNED]
NUMERIC RIGHT OVERPUNCHED as a synonym for RIGHT
OVERPUNCHED NUMERIC.

• CDDL accepts TYPE as a synonym for DATATYPE, but the compiler issues a
warning when you use TYPE.

Usage Notes

• The SCALE specification and the FRACTIONS specification have a similar
function. They both indicate how many digits in a field are to the right of the
decimal point. There are, however, two important differences:

- The number of FRACTIONS you can specify is limited to the number of
DIGITS you declare for the data type. With SCALE, there is no such
limitation.

- With SCALE, you can shift the decimal point to the right and to the left, but
with FRACTIONS, you can shift the decimal point only to the left.

• Use a positive integer in the SCALE specification to move the decimal point to
the right.

• Use a negative integer in the SCALE specification to move the decimal point to
the left.

CDDL Source File Description 2-19

DATATYPE

Example

The STRUCTURE field BACK_ ORDER contains examples of valid CDDL data
declarations.

BACK_ORDER STRUCTURE.
PRODUCT_NO DATATYPE IS TEXT

SIZE IS 8 CHARACTERS,
DATE-ORDERED DATATYPE IS DATE,
STATUS_CODE DATATYPE IS BYTE.
QUANTITY DATATYPE IS LONGWORD

ALIGNED ON LONGWORD,
SUPPLIER ARRAY l:ll

DATATYPE IS TE~n
SIZE IS 30 CHARACTERS.

UNIT_PRICE DATATYPE IS LONGWORD SCALE -2,
END BACK_ORDER STRUCTURE,

2-20 COOL Source File Description

DEFAULT_VALUE

2.8 DEFAULT_ VALUE Field Attribute Clause

Sets a default value for a field accessed by VAX DATATRIEVE.

Format

{
DTR } [IS] { fixed-point.-number }

DEFAULT_ VALUE FOR DATATRIEVE quoted-string

Parameters

fixed-point-number
quoted-string

A VAX DATATRIEVE expression that is the default value.

Syntax Rules

• The quoted string or fixed point number must be a valid VAX DATATRIEVE
expression. However, the CDDL compiler does not check for correct syntax. It
is your responsibility to provide a correct default value expression.

• If you are using a terminal of the VT200 family, you can use 8-bit characters in
CDDL quoted strings.

Usage Notes

• The DEFAULT_ VALUE clause, used with VAX DATATRIEVE, serves much
the same purpose as the INITIAL_ VALUE clause. The main difference
between the two is that the INITIAL_ VALUE clause assigns a value to a field
when the field is first allocated, usually at compile time, but the
DEFAULT_ VALUE clause assigns a value to a field each time the record is
stored without an explicit value assigned to it.

• Only VAX DATATRIEVE supports the DEFAULT_ VALUE clause. Other
language processors ignore it.

COOL Source File Description 2-21

DEFAULT_ VALUE

Example

The following example assigns a DEFAULT_ VALUE of 0 to the field
TOTAL_PRICE.

TDTAL_PRICE DATATYPE IS VIRTUAL FIELD
COMPUTED BY DATATRIEVE AS

"UNIT-PRICE * QUANTITY"
DEFAULT_VALUE FDR DATATRIEVE IS O+

2-22 COOL Source File Description

DEFINE and END

2.9 DEFINE and END Statements

The DEFINE statement begins each record definition in the source file. The END
statement terminates each record definition.

Format

DEFINE RECORD path-name

[DESCRIPTION [IS] /*text /*].

field-description-statement

END { p~th-name } [RECORD] .
given-name

Parameters

path-name

The location of the new record definition within the directory hierarchy.

text

Explanatory text describing the record definition.

field-description-statement

The field description for the entire record. This record field can be an
elementary, STRUCTURE, COPY, or VARIANTS field.

given-name

The new record definition's name.

Syntax Rules

• You must terminate the DEFINE statement and the END statement with
periods.

• The path name can be a full or a relative path specification. The last given
name in the path name is the name you assign to the new record definition.
You can specify an absolute version number with the path name.

COOL Source File Description 2-23

DEFINE and END

• The given name of the new record definition is a string of up to 31 characters
from the set A-Z, 0-9, _, and $. The first character must be a letter from A-Z,
and the last character must not be _ or $. If you are using a terminal of the
VT200 family, you can use 8-bit alphabetic characters in path names.
Remember that other terminals cannot reproduce 8-bit characters.

• Use the optional DESCRIPTION clause to include text in the CDD to
document the record definition. You must use the keyword DESCRIPTION and
the text delimiters I* and *I to insert one or more lines of text describing the
record into the DEFINE statement. See Section 2.10.

• The field description statement defines the whole record. You can use an
elementary, STRUCTURE, COPY, or VARIANTS field description statement,
but you can use only one field description statement to define a record.
STRUCTURE, COPY, and VARIANT field description statements are
themselves subdivided and defined by subordinate field description statements.
See Sections 2.6, 2.24, and 2.26.

• If you specify a path name in the END clause, it must match the path name in
the corresponding DEFINE clause.

• If you specify a given name in the END clause, it must be the given name of
the new data definition and match the final given name in the path specifica­
tion of the corresponding DEFINE clause.

Usage Notes

• If the path name contains dictionary directories that do not exist, the CDD
automatically creates them.

• You can include passwords in the DEFINE statement path name, but this is
not recommended because passwords included in the source can be displayed
with the DMU LIST/ITEM= SOURCE command. Instead, use the /PATH
qualifier with the compile command if passwords are required in the path
name. See Chapter 3.

• The only way to assign a password to a record definition is to use the DMU
SET PROTECTION or DMU SET PROTECTION/EDIT command after you
compile the source file. You cannot assign a password to a record definition by
including it in the DEFINE statement.

2-24 CDDL Source File Description

DEFINE and END

Example

The following record description defines the dictionary object
SALARY _RECORD in the sample CDD hierarchy. The field description
statement for the record is SALARY STRUCTURE.

DEFINE RECORD CDDSTOP.PERSONNEL.SERVICE.SALARY_RECORD.
SALARY STRUCTURE.

EMPLOYEE_ ID

PAY STRUCTURE.
JOB_ CLASS

I NCR _LEl.JEL

WEEKLY_SALARY

END PAY STRUCTURE.
END SALARY STRUCTURE.

END SALARY_RECORD RECORD.

DATATYPE IS UNSIGNED NUMERIC
SIZE IS 9 DIGITS.

DATATYPE IS UNSIGNED NUMERIC
SIZE IS 3 DIGITS.
DATATYPE IS UNSIGNED NUMERIC
SIZE IS 1 DIGIT.
DATATYPE IS UNSIGNED NUMERIC
SIZE IS G DIGITS 2 FRACTIONS.

CDDL Source File Description 2-25

DESCRIPTION

2.10 DESCRIPTION Clause

Inserts text documenting record and field definitions into the CDD.

Format

Within the DEFINE statement:

DESCRIPTION [IS] /* text */

Preceding field description statements:

/*text */

Syntax Rules

• You must use the keyword DESCRIPTION and the text delimiters/* and*/ to
insert one or more lines of text describing the record into the DEFINE
statement.

• You can also include text to describe individual fields within the record
definition. Use the text delimiters /*and*/ without the keyword
DESCRIPTION, and place the text immediately before the field description
statement of the field you want to document.

• If you are using a terminal of the VT200 family, you can use 8-bit characters in
CDDL descriptions.

Usage Notes

• This clause provides a convenient way to associate text with a record descrip­
tion. Proper use of this capability provides a tool for documenting the sources
of data and for describing the field structure of a record. DESCRIPTION text
can also aid in establishing record definition conventions and standards.

• You can also include comments in a CDDL source file by using the exclamation
point(!) as a comment delimiter. Using the DESCRIPTION clause is preferable
to including comment lines in the source file because DESCRIPTION text is
stored directly in the CDD. CDDL/COPY _LIST copies DESCRIPTION clauses
from template records, but does not copy comments preceded by an exclamation
point. Also, you can display record-level DESCRIPTION text with DMU's

2-26 COOL Source File Description

DESCRIPTION

list/ITEM= DESCRIPTION command. DMU's EXTRACT /RECORD command
extracts record- and field-level DESCRIPTION text but does not extract
comments preceded by an exclamation point.

Example

The following example contains DESCRIPTION text of the record definition as a
whole, and of the elementary field ID.

DEFINE RECORD CDDSTOP.CORPORATE.EMPLOYEE_LIST
DESCRIPTION /* This record contains the emPloyee master list'

and it is the source from which emploYee fields
in other record descriPtions are copied. *I•

EMPLCYEE STRUCTURE.
I* An emPloYee's ID number is his or her social
security number. */
ID DATATYPE IS UNSIGNED NUMERIC

SIZE IS 9 DIGITS.
NAME STRUCTURE.

LAST_NAME

FIRST _NAME

MIDDLE_INITIAL

END NAME STRUCTURE,
ADDRESS

DEPT_CODE

END EMPLOYEE STRUCTURE.
END EMPLOYEE_LIST RECORD.

DATATYPE IS TEXT
SIZE IS 15 CHARACTERS.
DATATYPE IS TEXT
SIZE IS 10 CHARACTERS.
DATATYPE IS TE>(T
SIZE IS 1 CHARACTER.

COPY FROM
CDDSTOP.CORPORATE.ADDRESS_RECORD.
DATATYPE IS UNSIGNED NUMERIC
SIZE IS 3 DIGITS.

CDDL Source File Description 2-27

EDIT _CODE

2.11 EDIT_ CODE Field Attribute Clause

Provides a code that VAX RPG II follows when printing a field's value.

Format

EDIT_ CODE FOR RPG [IS] quoted-string

Parameter

quoted-string

A VAX RPG II edit code or modifier.

Syntax Rules

• The quoted string must be a valid VAX RPG II edit code or modifier. However,
the CDDL compiler does not check the quoted string for correct syntax.

• If you are using a terminal of the VT200 family, you can use 8-bit characters in
CDDL quoted strings.

Usage Note

Only VAX RPG II supports the EDIT _CODE cfa.use, Other language processors
ignore it.

Example

In the following example, the edit code for the field ORDNUM is 3. Because the
attribute's value is 3, a VAX RPG II program will suppress zeros when printing
ORDNUM.

TRANSACTION STRUCTURE,
DRDNUM DATATYPE IS NUMERIC RIGHT DVERPUNCHED

SIZE IS 8 DIGITS
EDIT_CODE FDR RPG IS "3",

AMOUNT DATATYPE IS NUMERIC RIGHT DVERPUNCHED
SIZE IS 8 DIGITS 2 FRACTIONS
EDIT_WORD FDR RPG IS "$0 CR".

END TRANSACTION STRUCTURE+

2-28 CDDL Source File Description

EDIT STRING

2.12 EDIT_ STRING Field Attribute Clause

Provides a format that VAX DATATRIEVE follows when displaying a field's
value.

Format

EDIT_ STRING FOR { g~~ A TR I EVE} [IS] quoted-string.

Parameter

quoted-string

A VAX DATATRIEVE edit string.

Syntax Rules

• The edit string must be a valid VAX DATATRIEVE expression. However, the
CDDL compiler does not check the quoted string for correct syntax.

• If you are using a terminal of the VT200 family, you can use 8-bit characters in
CDDL quoted strings.

Usage Note

Only VAX DATATRIEVE supports the EDIT _STRING clause. Other language
processors ignore it.

Example

In the following example, VAX DATATRIEVE displays the TRANS_DATE field
as a series of three 2-digit numbers in the format month/day/year.

TRANSACTION STRUCTURE

TRANS_DATE

OCCURS 1 TO 99 TIMES
DEPENDING ON TRANSACTION_COUNT,
DATATYPE IS DATE
EDIT_STRING FOR DATATRIEVE
IS "MM/DD/YY",

ORDER_NUMBER DATATYPE IS UNSIGNED NUMERIC
SIZE IS 10 DIGITS,

AMOUNT DATATYPE IS UNSIGNED NUMERIC
SIZE IS 8 DIGITS 2 FRACTIONS
INITIAL VALUE IS O,

END TRANSACTION STRUCTURE,

CDDL Source File Description 2-29

EDIT _WORD

2.13 EDIT_ WORD Field Attribute Clause

Provides a format that VAX RPG II follows when printing a field's value.

Format

EDIT_ WORD FOR RPG [IS] quoted-string

Parameter

quoted-string

A VAX RPG II edit word.

Syntax Rules

• The quoted string must be a valid VAX RPG II edit word. However, the CDDL
compiler does not check the quoted string for correct syntax.

• If you are using a terminal of the VT200 family, you can use 8-bit characters in
CDDL quoted strings.

Usage Note

Only VAX RPG II supports the EDIT_ WORD clause. Other language processors
ignore it.

Example

In the following example, the EDIT_ WORD attribute in the AMOUNT field
specifies a monetary format:

TRANSACTION STRUCTURE.
ORDNUM DATATYPE IS NUMERIC RIGHT OVERPUNCHED

SIZE IS 8 DIGITS
EDIT _CODE FDR RPG IS "3",

AMOUNT DATATYPE IS NUMERIC RIGHT OVERPUNCHED
SIZE IS 8 DIGITS 2 FRACTIONS
EDIT_WORD FOR RPG IS "SO CR",

END TRANSACTION STRUCTURE,

2-30 CDDL Source File Description

Elementary

2.14 Elementary Field Description Statement

Defines the characteristics of a field that is not subdivided into other fields.

Format

[I* text *I]

{ field-~ame } field-attribute [field-attribute]

Parameters

text

Explanatory text describing the field.

field-name

The field's name.

field-attribute

The field's characteristics, including data type.

Syntax Rules

• The field name you assign can be up to 31 characters from the set A-Z, 0-9, _,
and$. The first character must be a letter from A-Z, and the last character
cannot be _ or $. If you are using a terminal of the VT200 family, you can use
8-bit alphabetic characters in field names. Remember that other terminals
cannot reproduce 8-bit characters.

• If you use an asterisk(*) instead of a field name, you create an unnamed field.

• You must include the DATATYPE clause among the selected field attributes.

• You must terminate the elementary field description statement with a period.

Usage Notes

• Unnamed fields are similar to FILLER fields in COBOL. You can use them to
format print records or to reserve space in a record for future additions.

COOL Source File Description 2-31

Elementary

• Each field, except BIT fields, begins on the first byte following the preceding
field. BIT fields begin on the bit immediately following the preceding field. You
can modify this starting position with the ALIGNED clause. See Section 2.1.

Example

NAME and ACCOUNT _NUMBER in the example below are elementary fields.

CUSTOMER STRUCTURE+
NAME

ACCOUNT_NUMBER

END CUSTOMER STRUCTURE.

DATATYPE IS TE>n
SIZE IS 30 CHARACTERS,
DATATYPE IS UNSIGNED NUMERIC
SIZE IS 7 CHARACTERS.

2-32 CDDL Source File Description

2.15 INITIAL_ VALUE Field Attribute Clause

Declares a field's value when CDDL first allocates the field.

Format

complex-number
I fixed-point-number I

floating-point-number
INITIAL_ VALUE [IS] ~ quoted-string

hex-number
I octal-number I

EXTERNAL quoted-string

Usage Notes

INITIAL_ VALUE

• The value of the literal must fit into the space allocated for the field.

• You can specify a complex number as the INITIAL_ VALUE only of a field
whose data type is F _FLOATING COMPLEX, D_FLOATING COMPLEX,
G_FLOATING COMPLEX, or H_FLOATING COMPLEX.

• You can specify a fixed point number as the INITIAL_ VALUE of any field
whose data type is not DATE, TEXT, UNSPECIFIED, VARYING STRING, or
VIRTUAL FIELD.

• You can specify a floating point number as the INITIAL_ VALUE of a field
whose data type is not DATE, TEXT, UNSPECIFIED, VARYING STRING, or
VIRTUAL FIELD.

• You can specify a quoted string as the INITIAL_ VALUE only of a field whose
data type is DATE, TEXT, UNSPECIFIED, or VARYING STRING.

• The quoted-string in the EXTERNAL subclause contains a legal VAX COBOL
external name. See the VAX COBOL Language Reference Manual for legal
EXTERNAL datatypes.

• If you are using a terminal of the VT200 family, you can use 8-bit characters in
CDDL quoted strings.

COOL Source File Description 2-33

INITIAL_ VALUE

• You can specify a hexadecimal number as the INITIAL_ VALUE of a field with
any data type except VIRTUAL FIELD. In order to specify a hexadecimal
number, place single quotation marks(') around the number and precede it
with %X; for example,

INITIAL_VALUE IS %X'3E'

• You can specify an octal number as the INITIAL_ VALUE of a field with any
data type except VIRTUAL FIELD. In order to specify an octal number, place
single quotation marks(') around the number and precede it with %0; for
example,

INITIAL_VALUE IS %0'16'

• A VIRTUAL FIELD cannot have an INITIAL_ VALUE clause.

• Language processors that do not support the INITIAL_ VALUE clause ignore
it.

• If the base is not ten and scale is not zero, you can specify initial values only in
hexadecimal or octal. Furthermore, before you translate the initial value to
hexadecimal or octal, you should multiply it by the base raised to the value of
the scale. For example, to specify an initial value of 1 for a field with base 2
and scale 5, first multiply the value by 2 raised to the fifth, yielding 32. Then
convert 32 to its hexadecimal or octal equivalent, and store that value.

Example

The following data declaration gives the field AMOUNT an INITIAL_ VALUE
of 0.

TRANSACTION STRUCTURE

TRANS_DATE
DRDER_NUMBER

AMOUNT

END TRANSACTION STRUCTURE,

OCCURS 1 TD 88 TIMES
DEPENDING ON TRANSACTION_COUNT+
DATATYPE IS DATE,
DATATYPE IS UNSIGNED NUMERIC
SIZE IS 10 DIGITS.
DATATYPE IS UNSIGNED NUMERIC
SIZE IS 8 DIGITS 2 FRACTIONS
INITIAL_VALUE IS O+

2-34 COOL Source File Description

JUSTIFIED RIGHT

2.16 JUSTIFIED RIGHT Field Attribute Clause

Truncates or fills a TEXT or UNSPECIFIED field from the left instead of from
the right.

Format

JUSTIFIED RIGHT

Usage Notes

• Only VAX COBOL supports the JUSTIFIED RIGHT clause. Other language
processors ignore it.

• Use this clause only on fields whose data type is TEXT or UNSPECIFIED.

CDDL Source File Description 2-35

MISSING_ VALUE

2.17 MISSING_ VALUE Field Attribute Clause

Specifies a value to indicate that a field has never been assigned a
meaningful value.

Format

{
DTR } [IS] { fixed-point.-number }

MISSING_ VALUE FOR DATATRIEVE quoted-string

Parameters

fixed-point-number
quoted-string

The VAX DATATRIEVE missing value.

Syntax Rules

• The quoted string or fixed point number must be a valid VAX DATATRIEVE
expression for the field. The CDDL compiler does not check for correct syntax.

• If you are using a terminal of the VT200 family, you can use 8-bit characters in
CDDL quoted strings.

Usage Notes

• Only VAX DATATRIEVE supports the MISSING_ VALUE clause. Other
language processors ignore it.

• VAX DATATRIEVE treats a field containing a MISSING_ VALUE as a special
case; for example, VAX DATATRIEVE ignores fields containing a
MISSING_ VALUE when it performs statistical operations.

2-36 CDDL Source File Description

MISSING_ VALUE

Example

The following example assigns a missing value of 0 to the field PRICE. A PRICE
of 0 indicates to VAX DATATRIEVE that the value for PRICE is missing; VAX
DATATRIEVE ignores records with PRICE equal to 0 when it performs
operations involving the PRICE field.

PRICE DATATYPE IS UNSIGNED NUMERIC
SIZE IS 8 DIGITS 2 FRACTIONS
MISSING_VALUE FOR DATATRIEVE IS O.

COOL Source File Description 2-37

NAME

2.18 NAME Field Attribute Clause

Declares a facility-specific name for a field. The specified language or language
processor then recognizes only this name when you refer to the field.

Format

NAME FOR

Parameter

quoted-string

BASIC
COBOL
PL/I
RPG

[IS] quoted-string

The facility-specific field name.

Syntax Rules

• The quoted string must be a legal name for the specified language or language
processor. The CDDL does not check the quoted string for validity or correct
syntax.

• If you are using a terminal of the VT200 family, you can use 8-bit characters in
CDDL quoted strings.

Usage Notes

• You can use this clause only if you have specified a field name in the field
declaration. You cannot specify a facility-specific name for unnamed fields.

• Once you have assigned a facility-specific name to a field, the facility no longer
recognizes the field's original name.

• Be careful when you use the NAME clause because it enables you to assign
completely different names to the same field. If you use it improperly, the
NAME clause can become a source of confusion.

• Avoid assigning dissimilar names to the same field. The NAME clause is
designed only to allow you to make field names seem native to applications
languages.

2-38 CDDL Source File Description

NAME

Example

The following example provides a VAX COBOL name and a VAX RPG II name
for the ORDER_NUMBER field. Because of the NAME clause, VAX COBOL
recognizes the field only by the name ORDER-NUMBER, and VAX RPG II
recognizes the field only by the name ORDER#.

ORDER_NUMBER DATATYPE IS UNSIGNED NUMERIC
SIZE IS 10 DIGITS
NAME FOR COBOL Is II ORDER-NUMBER II •

NAME FOR RPG IS "ORDER*""•

COOL Source File Description 2-39

OCCURS

2.19 OCCURS Field Attribute Clause

Declares fixed-length, one-dimensional arrays.

Format

OCCURS n1 [TIME[S]]
[INDEXED FOR COBOL BY quoted-string [, ...]]

Parameters

n1

The number of occurrences of the array.

quoted-string

A VAX COBOL index name.

Syntax Rules

• An unsigned integer (nl) declares the number of occurrences in
one-dimensional, fixed-length arrays. This integer is the upper bound of the
array.

• The number of occurrences must be greater than zero.

Usage Notes

• The unsigned integer (nl) is the array's upper bound; the lower bound of an
array declared with OCCURS is always 1. If you need to specify an array with
a lower bound other than 1, use the ARRAY clause.

• Only VAX COBOL supports the INpEXED FOR COBOL BY optional field
attribute clause. Other processors ignore it.

• You cannot use the INDEXED FOR COBOL BY optional field attribute clause
with Version 3.0 of VAX COBOL or any earlier version. VAX COBOL supports
INDEXED FOR COBOL BY in Version 3.1 and later.

• If you use a name as a COBOL index name, you cannot use that name as a
field name or COBOL-specific name elsewhere in the record description.

2-40 COOL Source File Description

OCCURS

Example

In the following example, the OCCURS clause is used twice to declare 20
instances of SUPPLIER where each instance is four 30-character strings. Note
that OCCURS clauses can be nested.

SUPPLIER STRUCTURE
SUPPL! ER

ENO SUPPLIER STRUCTURE.

OCCURS 20 TIMES.
OCCURS 4 TIMES
DATATYPE IS TE)<T
SIZE IS 30 CHARACTERS.

CDDL Source File Description 2-41

OCCURS ... DEPENDING

2.20 OCCURS ... DEPENDING Field Attribute Clause

Declares a variable-length, one-dimensional array.

Format

OCCURS n1 TO n2 [TIME[S]] DEPENDING [ON] field-name
[INDEXED FOR COBOL BY quoted-string [, ...]]

Parameters

n1, n2

The range for the number of occurrences.

field-name

The tag variable field, whose value determines the actual number of
occurrences.

quoted-string

A VAX COBOL index name.

Syntax Rules

• Two unsigned integers (nl and n2) specify a range for the number of occur­
rences; nl specifies the minimum number of occurrences and must be greater
than or equal to zero; n2 specifies the maximum number of occurrences and
must be greater than or equal to nl.

• The actual number of occurrences varies according to the value of the named
field.

• The field named in the DEPENDING clause must be an elementary field fixed
in the record and not part of an array. Its field description must precede the
array field description, and its value must never be less than nl nor greater
than n2. You must name the field.

2-42 COOL Source File Description

OCCURS ... DEPENDING

• You must fully qualify the field name if it is not unique within the record. A
fully qualified field name consists of an elementary field name preceded by the
field names of as many of its direct ancestors as you need to specify the
elementary field uniquely. You cannot omit the names of any of the ancestor
fields within the fully qualified name, but once the elementary field name is
identified uniquely, you can omit any remaining ancestors' field names. You
must separate each element of a fully qualified field name from the next with a
period.

Usage Notes

• The unsigned integers nl and n2 declare the range for the array's upper
bound; the lower bound of an array declared with OCCURS ... DEPENDING
is always 1. If you need to specify an array with a lower bound other than 1,
use the ARRAY clause.

• If the tag variable's name is not unique within the record, none of the
ancestors in its fully qualified name can be unnamed fields.

• Only VAX COBOL supports the INDEXED FOR COBOL BY field attribute
clause. Other processors ignore it.

• You cannot use the INDEXED FOR COBOL BY optional field attribute clause
with Version 3.0 of VAX COBOL or any earlier version. VAX COBOL supports
INDEXED FOR COBOL BY in Version 3.1 and later.

• If you use a name as a COBOL index name, you cannot use that name as a
field name or COBOL-specific name elsewhere in the record description.

COOL Source File Description 2-43

OCCURS ... DEPENDING

Example

In the following example, a variable length array defines individual transactions
within the STRUCTURE field SALES.

SALES STRUCTURE.
TRANSACTION_COUNT

TRANSACTION STRUCTURE

TRANS_DATE
ORDER_NUMBER

AMOUNT

END TRANSACTION STRUCTURE.
END SALES STRUCTURE.

DATATYPE IS UNSIGNED WORD
t.lAL ID FOR DTR IF

"TRANSACTION_COUNT > O",
OCCURS 1 TD 99 TIMES

DEPENDING ON
TRANSACTION_COUNT.

DATATYPE IS DATE,
DATATYPE IS UNSIGNED NUMERIC
SIZE IS 10 DIGITS.
DATATYPE IS UNSIGNED NUMERIC
SIZE IS 8 DIGITS 2 FRACTIONS
PICTURE FOR COBOL IS "9CG)t.199",

The fully qualified field name of TRANSACTION_ COUNT is
SALES.TRANSACTION_ COUNT.

2-44 CDDL Source File Description

PICTURE

2.21 PICTURE Field Attribute Clause

Declares a field's picture string for a specified language or language processor.

Format

PICTURE FOR

Parameter

quoted-string

COBOL
DTR
DATATRIEVE
PU

[IS] quoted-string

The picture string for the specified language or language processor.

Syntax Rules

• The quoted string must be a valid picture string for the specified language or
language processor. The CDDL compiler does not check the quoted string for
validity or correct syntax.

• If you are using a ter::"'linal of the VT200 family, you can use 8-bit characters in
CDDL quoted strings.

• The data type implicit in the quoted string must be consistent with the data
type you select with the DATATYPE clause.

Usage Notes

• Each language that requires a picture string will construct a default picture
string if you do not provide one. The default picture string provides a concise,
efficient description of the field. You should use the default picture string
whenever possible and avoid facility-specific PICTURE clauses.

• The CDDL compiler does not check picture strings for conformity with the
DATATYPE clause. In most cases, therefore, the default picture string is
probably the best option.

• You can use the EDIT_ STRING field attribute clause to provide an edited
picture string for VAX DATATRIEVE.

COOL Source File Description 2-45

PICTURE

Example

The following example contains a picture string for COBOL.

AMOUNT DATATYPE UNSIGNED NUMERIC 8 DIGITS 2 FRACTIONS
PICTURE FOR COBOL IS "9CGJl.l99".

2-46 CDDL Source File Description

QUERV_HEADER

2.22 QUERY _HEADER Field Attribute Clause

Provides a label that VAX DATATRIEVE uses as a column heading for the field
in printouts and reports.

Format

{
DTR }

QUERY _HEADER FOR DATATRIEVE [IS] quoted-string [quoted-string] ...

Parameter

quoted-string

The VAX DATATRIEVE query header.

Syntax Rules

• The quoted string must be a valid VAX DATATRIEVE query header. The
CDDL compiler does not check the quoted string for correct syntax.

• Quoted strings must be separated from each other by a space, tab, or comma.

Usage Notes

• Only VAX DATATRIEVE supports the QUERY _HEADER clause. Other
language processors ignore it.

• If you specify more than one quoted string, VAX DATATRIEVE stacks them.
Use multiple quoted strings to specify long query headers.

• If you are using a terminal of the VT200 family, you can use 8-bit characters in
CDDL quoted strings.

CDDL Source File Description 2-47

QUERV_HEADER

Example

In the following example, the QUERY_ HEADER clause specifies that VAX
DATATRIEVE use TOTAL PRICE as the column header for the field
TOTAL_ PRICE.

TOTAL_ PRICE DATATYPE IS VIRTUAL FIELD
COMPUTED BY DTR AS

"UNIT_PRICE *QUANTITY"
QUERY_HEADER FOR DTR IS "TOTAL PRICE"+

2-48 COOL Source File Description

QUERY_NAME

2.23 QUERY _NAME Field Attribute Clause

Provides VAX DATATRIEVE with an alternate reference name for a field. VAX
DATATRIEVE allows you to refer to a field either by its field name or by a
specified query name.

Format

QUERY _NAME FOR { g~~ATRIEVE} [IS] quoted-string

Parameter

quoted-string

The VAX DATATRIEVE query name.

Syntax Rule

The quoted string must be a valid VAX DATATRIEVE query name. The CDDL
compiler does not check the quoted string for correct syntax.

Usage Notes

• Only VAX DATATRIEVE supports the QUERY _NAME clause. Other
processors ignore it.

• You can specify a query name for a field only if you have specified a field name
for it in the field description statement. You cannot specify a query name for
unnamed fields.

• QUERY _NAME is different from NAME because VAX DATATRIEVE
recognizes both the query name and the original field name. With NAME, the
facility-specific name is the only name recognized by the specified language or
language processor.

• Choose a query name that is shorter and easier to remember than the actual
field name. You can then choose a field name that is descriptive of the field's
contents and purpose.

• If you are using a terminal of the VT200 family, you can use 8-bit characters in
CDDL quoted strings.

CDDL Source File Description 2-49

QUERV_NAME

Example

In the following example, the QUERY _NAME clause specifies TP as an
alternate DATATRIEVE name for the field TOTAL_PRICE.

TOTAL_ PRICE DATATYPE IS VIRTUAL FIELD
COMPUTED BY DTR AS

"UNIT-PRICE *QUANTITY"
QUERY_NAME FOR DTR IS "TP".

2-50 CDDL Source File Description

2.24 STRUCTURE Field Description Statement

Defines a field that is divided into one or more subordinate fields.

Format

[/* text *I]

{ * } STRUCTURE [field-attribute]
field-name

field-description-statement
[field-description-statement] ...

END [field-name] [STRUCTURE] .

Parameters

text

Explanatory text describing the field.

field-name

The field's given name.

field-attribute

The characteristics of the STRUCTURE field.

field-description-statement

The characteristics of a subordinate field.

Syntax Rules

STRUCTURE

• The field name you assign can be up to 31 characters from the set A-Z, 0-9, _,
and$. The first character must be a letter from A-Z, and the last character
cannot be _ or $. If you are using a terminal of the VT200 family, you can use
8-bit alphabetic characters in field names. Remember that other terminals
cannot reproduce 8-bit characters.

• If you use an asterisk(*) instead of a field-name, you create an unnamed field.

CDDL Source File Description 2-51

STRUCTURE

• If you do not specify a data type for the STRUCTURE, the CDDL assigns it the
UNSPECIFIED data type.

• Subordinate field description statements describe contiguous portions of the
field described by the STRUCTURE.

• There must be at least one subordinate field description statement. A
subordinate field can be an elementary, a STRUCTURE, a COPY, or a
VARIANTS field.

• CDDL accepts the keyword GROUP as a synonym for STRUCTURE, but the
compiler issues a warning when you use GROUP.

• You must terminate the STRUCTURE and the END statements with periods.

Usage Notes

• Unnamed fields are similar to FILLER fields in VAX COBOL. You can use
them to format print records or to reserve space in a record for future
additions.

• In a STRUCTURE field, you can use any field attribute clauses allowed in an
elementary field. However, if you use the DATATYPE field description
statement, you cannot create subordinate fields that exceed the length of the
structure field.

• A STRUCTURE field cannot contain the VIRTUAL FIELD datatype.

• Although the CDDL compiler accepts data type specifications for STRUCTURE
fields, the feature may not be supported by the language or language processor
you use with the CDD. Make sure the definitions you store in the dictionary
are valid for the processor that will use them.

• Each field, except BIT fields, begins on the first byte following the preceding
field. BIT fields begin on the bit immediately following the preceding field. You
can modify this starting position with the ALIGNED clause. See Section 2.1.

2-52 COOL Source File Description

STRUCTURE

Example

As this example shows, you can nest STRUCTURE field description statements.
The STRUCTURE field ADDRESS, for example, has a subordinate STRUCTURE
field, ZIP_ CODE.

ADDRESS STRUCTURE.
STREET

CITY

STATE

ZIP-CODE STRUCTURE.
NEW

OLD

END ZIP-CODE STRUCTURE.
END ADDRESS STRUCTURE.

DATATYPE IS TE>{T
SIZE IS 30 CHARACTERS.
DATATYPE IS TE>~T

SIZE IS 30 CHARACTERS.
DATATYPE IS TEXT
SIZE IS Z CHARACTERS.

DATATYPE IS UNSIGNED NUMERIC
SIZE IS a DIGITS
BLANK WHEN ZERO.
DATATYPE IS UNSIGNED NUMERIC
SIZE IS 5 DIGITS.

COOL Source File Description 2-53

VALID FOR DATATRIEVE IF

2.25 VALID FOR DATATRIEVE IF Field Attribute Clause

Causes VAX DATATRIEVE to validate value assignments to a field. VAX
DATATRIEVE refuses to assign a value to a field if that value is not accepted by
this validation expression.

Format

VALID FOR { g~~ATRIEVE } IF quoted-string [quoted-string] ...

Parameter

quoted-string

VAX DATATRIEVE source text forming a validation expression.

Syntax Rule

The quoted strings must form a valid VAX DATATRIEVE validation expression.
The CDDL compiler does not check the validation expression for correct syntax.

Usage Notes

• Only VAX DATATRIEVE can interpret these validation expressions. Other
language processors ignore their presence.

• If you are using a terminal of the VT200 family, you can use 8-bit characters in
CDDL quoted strings.

Example

In the following example, the VALID FOR DATATRIEVE IF clause causes VAX
DATATRIEVE to accept only positive integers for the field
TRANSACTION_ COUNT.

TRANSACTION_COUNT DATATYPE IS UNSIGNED WORD
VALID FDR DTR IF

"TRANSACTION_COUNT > O",

2-54 CDDL Source File Description

VARIANTS

2.26 VARIANTS Field Description Statement

Defines a set of two or more fields mapping the same portion of a record
definition. VARIANT fields are similar to fields defined with the REDEFINES
clause in VAX COBOL and VAX DATATRIEVE.

There are two formats for the VARIANTS field description statement:

• VARIANTS is almost identical to the REDEFINES clause. Within an
application program, you can refer to any of the VARIANT fields.

• VARIANTS OF uses the value of a tag variable at run time to determine which
of the VARIANT fields is the current VARIANT.

CDDL Source File Description 2-55

VARIANTS

2.26.1 VARIANTS Field Description Statement

Defines two or more logical views of the same portion of a record definition. The
VARIANTS statement functions like the REDEFINES clause in VAX COBOL
and VAX DATATRIEVE.

Format

VARIANTS.
VARIANT.

field-description-statement
[field-description-statement] ...

END [VARIANT] .

VARIANT.
field-description-statement
[field-description-statement] . . .

END [VARIANT].

END [VARIANTS] .

Parameters

field-description-statement

A definition of the field characteristics for each subordinate field of each
VARIANT.

Syntax Rules

• The vertical ellipsis in the format indicates that the VARIANT field description
block can be repeated.

• The VARIANTS, VARIANT, and END statements all must end with periods.

Usage Notes

• Each VARIANT begins on the same byte in the record, subject to individual
alignment options (see Sedion 2.1). The length of the longest VARIANT in the
collection determines the overall length of the VARIANTS field description.

2-56 CDDL Source File Description

VARIANTS

• Be sure that the VARIANTS collection you define conforms to the requirements
of the language or language processor that will access the record definition.

• VAX DATATRIEVE requires each VARIANT to contain a STRUCTURE field
description statement at the top of the VARIANT.

Example

The following example contains three VARIANT logical views of the same record.
In an application program, you can refer to IN_ STOCK, BACK_ ORDER, or
OUT_ OF_ STOCK depending on how you want to interpret the STOCK field.

STOCK STRUCTURE.
VARIANTS.

1.JAR I ANT.
IN_STOCK STRUCTURE.

PRODUCT_NO DATATYPE IS TEXT

DATE_ORDERED
STATLJS_CODE
QUANTITY

LOCATION

SIZE IS 8 CHARACTERS,
DATATYPE IS DATE,
DATATYPE IS BYTE,
DATATYPE IS LONGWORD
ALIGNED ON LONGWORD,
ARRAY 1:4
DATATYPE IS TD~T
SIZE IS 30 CHARACTERS,

UNIT_PRICE DATATYPE IS LONGWORD SCALE -2,
END IN_STOCK STRUCTURE,

END 1.JARIANT,
1.JAR I ANT,

BACK_ORDER STRUCTURE,
PRODUCT_NO

DATE_ORDERED
STATLJS_CODE
QUANTITY

SUPPLIER

UNIT _PRICE

DATATYPE IS TE><T
SIZE IS 8 CHARACTERS,
DATATYPE IS DATE,
DATATYPE IS BYTE,
DATATYPE IS LONGWORD
ALIGNED ON LONGWORD,
ARRAY 1:4
DATATYPE IS TEXT
SIZE IS 30 CHARACTERS,
DATATYPE IS LONGWORD
SCALE -2,

END BACK_ORDER STRUCTURE,
END 1.JAR I ANT,
I.JAR I ANT.

OUT_OF_STOCK STRUCTURE,
PRODUCT_NO DATATYPE IS TEXT

SIZE IS 8 CHARACTERS,
DATE_LAST_SOLD DATATYPE IS DATE,

END OUT_QF_STOCK STRUCTURE,
END I.JAR I ANT,

END 1.JAR I ANTS.
END STOCK STRUCTURE,

COOL Source File Description 2-57

VARIANTS OF

2.26.2 VARIANTS OF Field Description Statement

Names a tag variable whose value at run time determines which of the
VARIANT fields is the current VARIANT.

Format

VARIANTS OF field-name .

VARIANT { VALUE [IS] } n1 [THAU n2] [n3 [THAU n4]]
VALUES [ARE]

field-description-statement
[field-description-statement] ...

END [VARIANT].

{
VALUE [IS] }

VARIANT VALUES [ARE] n5 [THAU n6] [n7 [THAU n8J]

field-description-statement
[field-description-statement] ...

END [VARIANT].

END [VARIANTS].

Parameters

field-name

The tag variable field, whose value determines the selection of the current
VARIANT at run time.

n1, n2, n3, n4, n5, n6, n7, n8

Values to be compared to the value of the tag variable at run time to
determine the current VARIANT.

field-description-statement

A definition of the field characteristics for the subordinate fields of each
VARIANT.

2-58 CDDL Source File Description

VARIANTS OF

Syntax Rules

• The vertical ellipsis in the format indicates that the VARIANT field description
block can be repeated.

• The tag variable must be an elementary field fixed in the record and not part
of an array, and it must precede the VARIANTS field description statement. It
cannot be an unnamed field.

• You must fully qualify the tag variable's field name if it is not unique within
the record. A fully qualified field name consists of an elementary field name
preceded by the field names of as many of its direct ancestors as you need to
specify the elementary field uniquely. You cannot omit the names of any of the
ancestor fields within the fully qualified name, but once the elementary field
name is identified uniquely, you can omit any remaining ancestors' field
names. You must separate each element of a fully qualified field name from
the next with a period. Furthermore, if the tag variable's name is not unique
within the record, none of the ancestors in its fully qualified name can be
unnamed fields.

• You must include a tag value clause for VARIANT.

• At run time, the values (nl, n2, n3, n4, ...) you specify are compared to the
value of the tag variable to determine the current VARIANT.

• Tag value specifications must conforin to the following conditions:

- The tag values nl, n2, n3, n4, ... must be legal values as defined by the tag
variable's data type. For example, if the tag variable is a TEXT field, the tag
values must be quoted literals.

- The values of n2, n4, n6, and n8 must be greater than or equal to the values
of nl, n3, n5, and n7 in the collating sequence of the data type.

- The range of values in one VARIANT must not overlap the range of values
in any other VARIANT.

• The compiler ignores commas, but you can use them to make tag value
specifications easier to read.

• The CDDL compiler does not check that the tag values you specify are legal. If
you specify invalid values, you will receive error messages when you refer to
the VARIANT field in an application.

COOL Source File Description 2-59

VARIANTS OF

Usage Notes

• The tag value clause specifies a distinct value or set of values for the tag
variable in each VARIANT of a VARIANTS field collection. The tag variable
can then be used at run time to find the current VARIANT.

• Languages that do not support tag variables ignore the tag value clause. For
more information on language support of CDD record definitions, refer to the
documentation for the language you are using.

• Each variant begins on the same byte in the record, subject to individual
alignment options (see Section 2.1). The length of the longest VARIANT in the
collection determines the overall length of the VARIANTS field description.

• Be sure that the VARIANT collection you define conforms to the requirements
of the language or language processor that will access the record definition.

• VAX DATATRIEVE requires each VARIANT to contain a STRUCTURE field
description statement at the top of the VARIANT.

2-60 CDDL Source File Description

VARIANTS OF

Example

In the following example, RECORD_ IDENTIFIER is the tag variable. The value
of RECORD_ IDENTIFIER at run time determines which VARIANT is current
according to the translation table in the descriptive text.

STOCK STRUCTURE,
I* RECORD-IDENTIFIER deterMines field type:

S --> In-stocK record.
B --> BacK-order record.
0 --> Out-of-stock record. *I

RECORD_IDENTIFIER DATATYPE IS TEXT
SIZE IS 1 CHARACTER,

VARIANTS OF RECORD_IDENTIFIER,
lJARIANT t.JALUE IS 11 S 11

,

IN_STOCK STRUCTURE,
PRODUCT_NO

DATE_ORDERED
STATLJS_CODE
QUANTITY

LOCATION

DATATYPE IS TEXT
SIZE IS 8 CHARACTERS,
DATATYPE IS DATE,
DATATYPE IS BYTE,
DATATYPE IS LONGWORD
ALIGNED ON LONGWORD,
ARRAY l:L!
DATATYPE IS TEXT
SIZE IS 30 CHARACTERS+

UNIT_PRICE DATATYPE IS LONGWORD SCALE -2,
END IN_STOCK STRUCTURE,

END l.JAR I ANT I

l.JAR I ANT l.JALUE Is II B II.
BACK_ORDER STRUCTURE,

PRODUCT_NO DATATYPE IS TEXT
SIZE IS 8 CHARACTERS,

DATE_ORDERED DATATYPE IS DATE,
STATUS_CODE DATATYPE IS BYTE,
QUANTITY DATATYPE IS LONGWORD

ALIGNED ON LONGWORD,
SUPPLIER ARRAY l:LI

DATATYPE IS TE>{T
SIZE IS 30 CHARACTERS,

UNIT_PRICE DATATYPE IS LONGWORD
SCALE -2,

END BACK_ORDER STRUCTURE+
END l.JAR I ANT,

l.JARIANT l.JALUE IS "0" I

OUT_OF_STOCK STRUCTURE,
PRODUCT_NO DATATYPE IS TEXT

SIZE IS 8 CHARACTERS,
DATE_LAST_SOLD DATATYPE IS DATE,

END OUT_OF_STOCK STRUCTURE.
END l.JAR I ANT I

END l.JAR I ANTS I

END STOCK STRUCTURE,

CDDL Source File Description 2-61

The CDDL Compiler Command Descriptions 3

After you create a source file containing record definitions and data descriptions,
use the CDDL compiler to place those definitions into the CDD. There are two
command formats:

• The CDDL command, which compiles source files

• The CDDL/RECOMPILE command, which locates existing CDD record
definitions and recompiles them

Both command formats allow you to create history list entries and listings of the
source text.

Note

Before you begin storing definitions in the CDD, your system manager
or data administrator should carefully plan, create, and protect your
CDD directory hierarchy. See the VAX CDD!Plus User's Guide,
Appendix A, for information about planning, creating, protecting, and
maintaining the CDD directory hierarchy.

The following sections contain complete descriptions of CDDL commands,
parameters, and qualifiers. These descriptions include:

• The syntax format you should use for each command

• The parameters of each command

• Command qualifiers that modify the functions of each command

• Restrictions on the ways you can use commands

3-1

• Usage notes to show you how to use each command

• Required privileges for each command

• Examples from the sample dictionary (Figure 1-1) to illustrate the use of each
command

3-2 The COOL Compiler Command Descriptions

COOL

3.1 COOL Command

Compiles source files and places record definitions in the CDD.

Format

COOL file-specification

Qualifiers

/[NO] ACL
I AUDIT [= (quoted-string

[, quoted-string] ...)]
I AUDIT = file-specification
/NOAUDIT
/[NO]COPY _LIST
/[NO]DIAGNOSTICS
/LISTING[= file-specification]
/NOLI STING
/PATH = path-name
/[NO]REPLACE
/[NO]VERSION
/V2

Parameter

file-specification

Defaults

/ACL

/NOAUDIT
/NOCOPY _LIST
I NO DIAGNOSTIC
/LISTING

/PATH = CDD$DEFAULT
/NOREPLACE
/NOVERSION

The CDDL source file you want to compile. Each source file contains one or
more CDD record definitions.

The file specification is a standard VMS file specification. The defau~t file
type is .DDL.

Qualifiers

/ACL

Creates an access control list for each record definition in the source file. The
contents of the access control list created vary, depending on the qualifiers
used and whether the target directory already contains one or more versions
of the record definition.

The COOL Compiler Command Descriptions 3-3

CDDL

• If the directory in which CDDL stores the record definition does not
already contain a record definition with the same name, CDDL creates the
default access control list, which grants you, the creator, the following
privileges: CONTROL, LOCAL_DELETE, DTR-"-EXTEND/EXECUTE,
HISTORY, DTR_MODIFY, DTR_READ, SEE, UPDATE, and
DTR_WRITE.

• If the directory contains one or more versions of a record definition with
the same name as the definition CDDL is compiling and you use the
/REPLACE qualifier, CDDL copies the contents of the access control list of
the replaced version into the access control list of the new version.

• If the directory contains one or more versions of a record definition with
the same name as the definition CDDL is compiling and you use the
/VERSION qualifier, CDDL copies the contents of the access control list of
the highest existing version into the access control list of the new version.

/NOACL

Prevents the creation of an access control list.

I AUDIT [= (quoted-string [, quoted-string]. ..)]
I AUDIT = file-specification

Creates a history list entry auditing the creation of each record definition.

You can include explanatory text in the history list entries in two ways:

• By including quoted strings. Enclose each quoted string in double quotation
marks, and enclose the series of strings in parentheses. The parentheses
are optional if you specify only one quoted string.

• By specifying a file whose contents are to be included in the history list
entry. The file specification is a standard VMS file specification, and the
default file type is .DAT.

You can include no more than 64 input strings in a history list entry. The
compiler ignores any excess.

If you are using a terminal of the VT200 family, you can use 8-bit characters in
CDDL quoted strings.

/NOAUDIT

Prevents the creation of a history list en~ry.

3-4 The COOL Compiler Command Descriptions

CDDL

/COPY _LIST

Expands in the listing file all template records included in a record descrip­
tion. The CDDL compiler creates CDDL source text from all template records
and inserts that source text into the listing file. In the listing, the CDDL
compiler inserts a "T" as the first character of each line that is part of an
expanded template record.

/NOCOPY _LIST

Prevents the expansion of template records in the listing file.

/DIAGNOSTICS

Creates a diagnostics file that lists errors occurring during compilation. This
qualifier is designed for use with the VAX Language-Sensitive Editor (LSE),
and the diagnostics file is reserved for use by DIGITAL. LSE uses the file to
display diagnostic messages and to position the cursor where a source error
exists. The diagnostics file has the name of your source definition file and the
default extension .DIA.

/NODIAGNOSTICS

Prevents creation of the diagnostics file. The default is /NODIAGNOSTICS.

/LISTING [=file-specification]

Writes an output file containing the command line, the source text, and
CDDL messages. The file specification is a standard VMS file specification,
and the default file type is .LIS.

/NOLISTING

Prevents creation of the listing file.

I PA TH = path-name

Names a default directory from which to trace the path names in the CDDL
source files. The CDDL uses your CDD$DEFAULT .directory if you do not
specify /PATH.

/REPLACE

Deletes an existing CDD record definition and inserts a new definition in its
place. The new record definition copies the access control list and the history
list of the record definition it replaces.

/NOREPLACE

Prevents the replacement of an existing record definition.

The COOL Compiler Command Descriptions 3-5

COOL

/VERSION

Creates an additional version of an existing CDD record. If you specify an
absolute version number in the path name, the new record has that version
number. If you do not, it has a version number one higher than the highest
existing version.

If the logical name CDD$VERSION _LIMIT has been defined for your
system, group, or process, the dictionary will store only the number of
versions allowed by the quota CDD$VERSION _LIMIT specifies.

The newly created record definition copies the access control list of the
highest existing version of the record definition. If no version exists, the
newly created record definition contains the default access control list. You
can prevent the creation of any access control list by using the /NOACL
qualifier.

The newly created record definition copies the history list of the highest
existing version.

/NOVERSION

/V2

Prevents the creation of a new version of an existing record definition.

The /V2 qualifier causes the compiler to use the CDD V2.0 defaults for the
signs of the fixed point numbers. With this qualifier, BYTE, WORD, and
LONGWORD data types are unsigned by default, but QUADWORD and
OCTAWORD data types are signed.

If you do not specify the /V2 qualifier, all the fixed point data types are
unsigned by default.

Restrictions

• You cannot specify both /NOLISTING and /COPY _LIST.

• You cannot specify both /REPLACE and /VERSION.

• You cannot specify both /REPLACE and /NOACL. When you use the
/REPLACE qualifier, the new definition always copies the access control list of
the definition it replaces.

Usage Notes

• You can include passwords in the DEFINE statement path name, but this is
not recommended because passwords included in the source text can be

3-6 The COOL Compiler Command Descriptions

COOL

displayed with the DMU LIST /ITEM= SOURCE command. Instead, use the
/PATH qualifier with the compile command if passwords are required in the
path name.

• If you use any qualifiers, you must type the source file specification on the
same command line as the CDDL command. If you press RETURN before
giving the file specification, CDDL does not prompt you for it.

• If you specify the version number of a record definition in the source file and a
record definition with the same name and version number already exists, the
compilation will fail if you use the /VERSION qualifier. To correct this
problem, you can change or eliminate the version number in the source file or
use /REPLACE instead of /VERSION.

Required Privileges

• You need SEE and PASS_ THRU access to the lowest existing ancestor of the
dictionary object you are creating. You also need EXTEND unless you are
using /REPLACE.

• If you use /REPLACE with the CDDL command, you need SEE,
PASS_ THRU, UPDATE, and either LOCAL_DELETE or
GLOBAL_DELETE access to the dictionary object you are replacing.

• If you use /VERSION with the CDDL command, you need SEE, PASS_ THRU,
and UPDATE access to the highest version of the dictionary object you are
compiling. Furthermore, if you use /NOACL with /VERSION, you must have
CONTROL access to the highest existing version of the record definition.

Examples

The following command inserts the record definition contained in a file named
EMPLOYEE.DDL into the CDD. The new record definition has the default access
control list and a history list entry containing the explanation, "Initial compile".
A source file can contain any number of record definitions, but the CDDL creates
only one listing file for each source file.

$ CDDL/AUDIT="Initial co111Pile" EMPLOYEE.DDL

When the source file is compiled, CDDL creates a listing file, EMPLOYEE.LIS, in
your default VMS directory. EMPLOYEE.LIS contains the command line you
entered, the CDDL source file, and certain CDDL messages.

The CDDL Compiler Command Descriptions 3-7

CDDL

CoMMand Line: CDDL/AUDIT="Initial coMPile" EMPLOYEE,DDL
DB3:[CASADAY,CDDJEMPLOYEE+DDL;1

0001 DEFINE RECORD CDDSTOP.CORPORATE,EMPLOYEE-LIST
0002 DESCRIPTION IS
0003 I* This record contains the Master list of all
0004 eMPloYees */,
0005 EMPLOYEE STRUCTURE,
0006 I* An eMPloyee's ID nuMber is his
0007 or her social security nuMber */
0008 ID DATATYPE IS UNSIGNED NUMERIC
0009 SIZE IS 9 DIGITS,
0010 NAME STRUCTURE.
0011 LAST_NAME DATATYPE IS TEXT
0012 SIZE IS 15 CHARACTERS,
0013 FIRST_NAME DATATYPE IS TEXT
0014 SIZE IS 10 CHARACTERS,
0015 MIDDLE_INITIAL DATATYPE IS TEXT
0016 SIZE IS 1 CHARACTER,
0017 END NAME STRUCTURE.

Source File:

0018
0019
0020
0021
0022
0023
0024

ADDRESS

DEPT_CODE

COPY FROM
CDD$TOP.CORPORATE.ADDRESS-RECORD,
DATATYPE IS UNSIGNED NUMERIC
SIZE IS 3 DIGITS,

END EMPLOYEE STRUCTURE,
END EMPLOYEE_LIST RECORD,

%CDDL-S-RECORDCREt record "CDDSTOP,CORPORATE,EMPLOYEE-LIST;1• created in the COD

Example 3-1: Sample COOL Listing File

The following example demonstrates how to create an additional version of a
record definition.

The sample dictionary (Figure 1-1) contains two versions of the record definition
CDD$TOP.PERSONNEL.STANDARDS.SALARY _RANGE. The file
SALARY2.DDL contains the CDDL source file used to create
CDD$TOP.PERSONNEL.STANDARDS.SALARY _RANGE;2:

$ TYPE SALARYZ.DDL
DEFINE RECORD CDDSTOP,PERSONNEL+STANDARDS+SALARY_RANGE

DES CR I PT ION IS
I* This record stores MiniMUM salaries
for the four increMental salarY levels within
each of 150 Job classifications+ It reflects
Personnel Policy effective 1/1/BQ, *'·

SALARY_RANGE ARRAY 150t4
DATATYPE IS UNSIGNED NUMERIC
SIZE IS 8 DIGITS 2 FRACTIONS,

END SALARY_RANGE RECORD,

3-8 The COOL Compiler Command Descriptions

The following example compiles SALARY2.DDL and adds it to a directory
already containing SALARY _RANGE;l.

$ CDDL/VERSION/AUDIT SALARY2.DDL

COOL

The /VERSION qualifier causes the CDDL compiler to create a new version of
SALARY _RANGE while retaining SALARY _RANGE;l. Because the source file
does not specify the version number of the record definition, CDDL gives the new
definition a version number of 2, one higher than the highest existing version.
SALARY _RANGE;2 copies the access control list of SALARY _RANGE;l
because I ACL is the default. SALARY _RANGE;2 also copies the history list of
SALARY _RANGE;l and adds an entry documenting its creation.

The COOL Compiler Command Descriptions 3-9

COOL/RECOMPILE

3.2 COOL/RECOMPILE Command

Recompiles CDD record definitions from the source text stored in the dictionary.
Use CDDL/RECOMPILE to update record definitions containing a COPY field
description statement after you modify the template record that the field copies.
CDDL/RECOMPILE recompiles those record definitions and updates the
definitions referred to in the COPY field description statements.

Format

COOL/ RECOMPILE path-name [, path-name] ...

Qualifiers

I [NO] ACL
I AUDIT [= (quoted-string

[, quoted-string] ...)]
I AUDIT = file-specification
/NOAUDIT
I [NO] COPY _LIST
/LISTING [= file-specification]
/NOLI STING
I PATH = path-name
I [NO] VERSION
/V2

Parameter

path-name

Defaults

/AGL

/NOAUDIT
I NOCOPY _LIST
/LISTING

/PATH = CDD$DEFAULT
/NOVERSION

Specifies a record definition to be recompiled. You can use the absolute or the
relative path name.

Qualifiers

/ACL

Creates an access control list for the recompiled record definition. If you do
not use the /VERSION qualifier, the recompiled definition copies the access
control list of the version that you recompiled. If you use the /VERSION

3-10 The COOL Compiler Command Descriptions

COOL/RECOMPILE

qualifier, the recompiled definition copies the access control list of the highest
existing version of the record definition.

/NOACL

Prevents the creation of an access control list when it is used with
/VERSION. Unless you specify both /NOACL and IYERSION, you cannot
prevent the creation of an access control list.

I AUDIT [= (quoted-string [, quoted-string] ...)]
I AUDIT = file-specification

Creates a history list entry auditing the recompilation of each record
definition.

You can include explanatory text in the history list entries in two ways:

• By including quoted strings. Enclose each quoted string in double quotation
marks, and enclose the series of strings in parentheses. The parentheses
are optional if you specify only one quoted string.

• By specifying a file whose contents are to be included in the history list
entry. The file specification is a standard VMS file specification, and the
default file type is .DAT. You can include no more than 64 input strings in
a history list entry. The compiler ignores any excess.

If you are using a terminal of the VT200 family, you can use 8-bit characters
in CDDL quoted strings.

/NOAUDIT

Prevents the creation of a history list entry documenting the recompilation.

/COPY _LIST

Expands in the listing file all template records included in a record descrip­
tion. The CDDL compiler creates CDDL source text from all template records
and inserts that source text into the listing file. In the listing, the CDDL
compiler inserts a "T" as the first character of each line that is part of an
expanded template record.

I NOCOPY _LIST

Prevents the expansion of template records in the listing file.

/LISTING [=file-specification]

Writes an output file containing the source text of the record definition and
CDDL messages. The file specification is a standard VMS file specification,

The COOL Compiler Command Descriptions 3-11

COOL/RECOMPILE

and the default file type is .LIS. /LISTING is the default; however, if you do
not use /LISTING to explicitly name the listing file, CDDL creates a file
called .LIS.

/NOLI STING

Prevents creation of the listing file.

I PA TH = path-name

Names a default directory from which to trace the path names in the CDDL
source files. The CDDL uses your CDD$DEFAULT directory if you do not
specify /PATH.

/VERSION

Recompiles an existing record definition and creates an additional version of
it. CDDL/RECOMPILE/VERSION recompiles the record you specify in the
path name parameter, but does not replace it. Instead, it creates an
additional version of the record definition with a version number one greater
than the highest existing version.

/NOVERSION

/V2

Prevents the creation of an additional version of the recompiled definition.

Causes the compiler to use the CDD V2.0 defaults for the signs of the fixed
point numbers. With this qualifier, BYTE, WORD, and LONGWORD data
types are unsigned by default, but QUADWORD and OCTA WORD data types
are signed.

If you do not specify the /V2 qualifier, all the fixed point data types are
unsigned by default.

Restrictions

• You cannot specify both /NOLISTING and /COPY _LIST.

• You must specify /VERSION if you specify /NOACL. Unless you are creating
an additional version, the recompiled definition always copies the access
control list of the definition it replaces.

3-12 The COOL Compiler Command Descriptions

COOL/RECOMPILE

Usage Notes

• You can recompile CDD record definitions only if the CDDL compiler created
the record definition. Source text created by other processors may be unavail­
able or incompatible with CDDL syntax.

• The CDDL compiler accepts password specifications for the given names of new
record definitions, but passwords included in the source can be displayed with
the DMU LIST/ITEM=SOURCE command.

Required Privileges

• You need PASS_ THRU and EXTEND access to the parent of the object you
are recompiling. You also need SEE and PASS_ THRU access to the object. If
you are not using /VERSION, you need UPDATE and either
LOCAL_DELETE or GLOBAL_DELETE access to the object.

• If you use /VERSION with the CDDL/RECOMPILE command, you need SEE,
PASS_ THRU, and UPDATE access to the highest version of the dictionary
object you are compiling. Furthermore, if you use /NOACL with /VERSION,
you must have CONTROL access to the highest existing version of the record.

Examples

In the following example, the field ADDRESS, which is copied from the
CORPORATE directory, is recompiled because of modifications made to the
template record, CDD$TOP.CORPORATE.ADDRESS _RECORD.

CDD$TOP.SALES.CUSTOMER_RECORD
CUSTOMER STRUCTURE.

NAME DATATYPE IS TEXT
SIZE rs 30 CHARACTERS.

ADDRESS COPY FROM
CDD$TOP,CORPORATE.ADDRESS_RECORD.

END CUSTOMER STRUCTURE,

$COOL/RECOMPILE/AUDIT CDD$TOP,SALES.CUSTOMER_RECORD

In the following example, CDD$TOP.SALES.CUSTOMER_RECORD is again
recompiled. In this case, however, the CDDL compiler creates an additional
version because the /VERSION qualifier is used. The new version contains the
same access control list and history list as the highest existing version of
CDD$TOP.SALES.CUSTOMER_RECORD.

$CDDL/RECOMPILE/VERSION/LISTING=CUSTOMER.LIS/COPY_LIST -
~CDD$TOP.SALES.CUSTOMER_RECORD

The CDDL Compiler Command Descriptions 3-13

COOL/RECOMPILE

When the above record definition is recompiled, CDDL creates a listing file,
CUSTOMER.LIS, in your default VMS directory. CUSTOMER.LIS contains the
command line you entered, the source text of the recompiled definition, and
certain CDDL messages. Because /COPY _LIST is used, the CDDL compiler
expands the definition to include source text created from the template record,
CDD$TOP.CORPORATE.ADDRESS_RECORD.

VAX COD Data Definition Language Utility Version 3.0 5-MAR-1984 11:16:33:25 Page
CoMMand Line: COOL /RECOMPILE/VERSION/COPY_LIST CDDSTOP,SALES, CUSTOMER_RECDRD
Source File:

0001 DEFINE RECORD CDDSTOP,SALES,CUSTOMER_RECDRD
0002 DESCRIPTION IS
0003 I* This record is of PriMarY use to the Marketing
0004 departMent. It contains the naMes1 addresses, and
0005 Phone nuMbers of all current custoMers. *'·
0006 CUSTOMER STRUCTURE,
0007 NAME DATATYPE IS TEXT
0008
0009
0010
0011

0012
0013
0014
0015
0016
0017
0018
0019
0020

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

ACCOUNT_NUMBER

ADDRESS

SIZE IS 30 CHARACTERS,
DATATYPE IS UNSIGNED NUMERIC
SIZE IS 7 DIGITS,

ADDRESS STRUCTURE,
STREET

CITY

STATE

DATATYPE IS TEXT
SIZE IS 30 CHARACTERS,
DATATYPE IS TEXT
SIZE IS 30 CHARACTERS,
DATATYPE IS TEXT
SIZE IS 2 CHARACTERS,

ZIP_CODE STRUCTURE,
NEW DATATYPE IS UNSIGNED NUMERIC

SIZE IS 4 DIGITS
BLANK WHEt~ ZERO I

OLD DATATYPE IS UNSIGNED NUMERIC
SIZE IS 5 DIGITS.

END ZIP_CODE STRUCTURE
END ADDRESS STRUCTURE,

CDDSTOP.CORPORATE.ADDRESS_RECORD,
TELEPHONE STRUCTURE.

AREA_CODE DATATYPE IS UNSIGNED NUMERIC
SIZE IS 3 DIGITS.

NUMBER DATATYPE IS UNSIGNED NUMERIC
SIZE IS 7 DIGITS.

END TELEPHONE STRUCTURE.
END CUSTOMER STRUCTURE.

END CUSTOMER_RECORD.

'l..CDDL-S-RECOMPl.JER, record "CDD$TOP, SALES. CUSTOMER-RECORD; 1" rec o ri1 Pi 1 e d
and "CDD$TOP+SALES.CUSTOMER_RECORD;2" created in the COD

3-14 The COOL Compiler Command Descriptions

SOURCE.DDL: The Source File for
Examples in This Manual

DEFINE RECORD CDD$TOP.CORPORATE.ADDRESS_RECORD
DESCRIPTION IS

I* This record contains the standard forMat
for addresses. It Provides the source froM which all
address fields in other record descriPtions are copied. *I•

ADDRESS STRUCTURE.
STREET DATATYPE IS TEXT

CITY

STATE

ZIP_CODE STRUCTURE.

SIZE IS 30 CHARACTERS.
DATATYPE IS TEXT
SIZE IS 30 CHARACTERS.
DATATYPE IS TE)<T
SIZE IS 2 CHARACTERS.

NEW DATATYPE IS UNSIGNED NUMERIC
SIZE IS a DIGITS
BLANK WHEN ZERO.

OLD DATATYPE IS UNSIGNED NUMERIC
SIZE IS 5 DIGITS,

END ZIP_CODE STRUCTURE.
END ADDRESS STRUCTURE,

END ADDRESS_RECORD,

DEFINE RECORD CDD$TOP,CORPORATE.EMPLOYEE_LIST
DESCRIPTION IS

I* This record contains the Master list of all
er11Pl0Yees */.

EMPLOYEE STRUCTURE,
I* An eMPloYee's ID nuMber is his
or her social security nuMber */
ID DATATYPE IS UNSIGNED NUMERIC

SIZE IS 9 DIGITS,
NAME STRUCTURE.

LAST_NAME

FIRST_NAME

DATATYPE IS TE>CT
SIZE IS 15 CHARACTERS,
DATATYPE IS TE><T
SIZE IS 10 CHARACTERS.

A

(continued on next page)

A-1

MIDDLE_INITIAL DATATYPE IS TEXT
SIZE IS 1 CHARACTER.

END NAME STRUCTURE.
ADDRESS COPY FROM

CDD$TOP.CORPORATE.ADDRESS_RECORD.
DEPT_CODE DATATYPE IS UNSIGNED NUMERIC

SIZE IS 3 DIGITS.
END EMPLOYEE STRUCTURE.

END EMPLOYEE-LIST RECORD.

DEFINE RECORD CDD$TOP.CDRPDRATE.PRODUCT_INVENTORY
DESCRIPTION IS

I* This record is the Primary location of inventory
status information. *'·

INVENTORY STRUCTURE.
STOCK STRUCTURE.

I* RECORD_IDENTIFIER determines field tYPe:
S --> In-stock record.
B --> Back-order record.
0 --> Out-of-stock record. *I

RECORD_IDENTIFIER DATATYPE IS TEXT
SIZE IS 1 CHARACTER
CONDITION FOR COBOL IS ON_HAND

COBOL NAME "ON-HAND"
t,IALUE IS "S"

CONDITION FOR COBOL BACKORDER
COBOL NAME "BACKORDER"
l,IALUE IS "B"

CONDITION FDR COBOL OUT_QF_STDCK
COBOL NAME "OUT-OF-STOCK"
1,IALUE IS "0"

CONDITION FOR COBOL IS INVALID
VALUES ARE "A"t "C" THRU "N"t
"P" THRU "R" t "T" THRU "Z".

VARIANTS OF RECORD-IDENTIFIER.
VARIANT VALUE IS "S".

IN_STOCK STRUCTURE.
PRODUCT_NO DATATYPE IS TEXT

DATE_ORDERED
STATUS_CODE
QUANTITY

SIZE IS 8 CHARACTERS.
DATATYPE IS DATE.
DATATYPE IS BYTE.
DATATYPE IS LONGWORD
ALIGNED ON LONGWORD.

LOCATION ARRAY 1:4
DATATYPE IS TEXT
SIZE IS 30 CHARACTERS.

UNIT_PRICE DATATYPE IS LONGWORD SCALE -2.
END IN_STOCK STRUCTURE.

END 1,IAR I ANT.
l,IARIANT t,IALUE IS "B" •

BACK_ORDER STRUCTURE.

A-2 SOURCE.DDL

PRODUCT_NO DATATYPE IS TEXT

DATE_ORDERED
STATUS-CODE
QUANTITY

SIZE IS 8 CHARACTERS.
DATATYPE IS DATE.
DATATYPE IS BYTE.
DATATYPE IS LONGWORD
ALIGNED ON LONGWORD.

(continued on next page)

SUPPLIER ARRAY 1:ll
DATATYPE IS TEXT

UNIT-PRICE
SIZE IS 30 CHARACTERS.
DATATYPE IS LONGWORD
SCALE -2.

END BACK_ORDER STRUCTURE.
END I.JAR I ANT•
VARIANT VALUE IS "O".

OUT_OF_STOCK STRUCTURE.
PRODUCT_NO DATATYPE IS TEXT

SIZE IS 8 CHARACTERS.
DATE_LAST_SOLD DATATYPE IS DATE.

END OUT_OF_STOCK STRUCTURE.
END 1,!AR I ANT.

END VARIANTS.
END STOCK STRUCTURE.

END INVENTORY STRUCTURE.
END PRODUCT_INVENTORY RECORD.

DEFINE RECORD CDDSTOP.PERSONNEL.STANDARDS.SALARY_RANGE
DES CR I PT ION i S

I* This record stores MiniMUM salaries
for the five increMental salary levels within
each of 200 Job classifications. *'·

SALARY-RANGE ARRAY 200t5
DATATYPE IS UNSIGNED NUMERIC
SIZE IS 8 DIGITS 2 FRACTIONS.

END SALARY-RANGE RECORD.

DEFINE RECORD CDDSTOP.PERSONNEL.SERVICE.SALARY_RECORD
DESCRIPTION IS

I* This is the record containinf salary
inforMation for all eMPloYees. It is sensitivet and access
is carefully restricted. *'•

SALARY STRUCTURE.
EMPLOYEE-ID DATATYPE IS UNSIGNED NUMERIC

SIZE IS 9 DIGITS.
PAY STRUCTURE.

JOB_CLASS DATATYPE IS UNSIGNED NUMERIC
SIZE IS 3 DIGITS.

!NCR-LEVEL DATATYPE IS UNSIGNED NUMERIC
SIZE IS 1 DIGIT.

WEEKLY_SALARY DATATYPE IS UNSIGNED NUMERIC
SIZE)S G DIGITS 2 FRACTIONS.

END PAY STRUCTURE.
END SALARY STRUCTURE.

END SALARY-RECORD RECORD.

DEFINE RECORD CDDSTOP.SALES.CUSTOMER_RECORD
DESCRIPTION IS

I* This record is of PriMary use to the
Marketinf dePartMent.
Phone nuMbers of all

CUSTOMER STRUCTURE.
NAME

ACCOUNT_NUMBER

It contains the naMest addressest and
current custoMers. *'·
DATATYPE IS TE>n
SIZE IS 30 CHARACTERS.
DATATYPE IS UNSIGNED NUMERIC
SIZE IS 7 DIGITS.

(continued on next page)

SOURCE.DDL A-3

ADDRESS COPY FROM
CDD$TOP.CORPDRATE.ADDRESS_RECORD.

TELEPHONE STRUCTURE.
AREA_CODE DATATYPE IS UNSIGNED NUMERIC

SIZE IS 3 DIGITS.
NUMBER DATATYPE IS UNSIGNED NUMERIC

SIZE IS 7 DIGITS.
END TELEPHONE STRUCTURE.

END CUSTOMER STRUCTURE.
END CUSTOMER-RECORD.

DEFINE RECORD CDD$TOP.SALES.JONES.LEADS_RECDRD
DESCRIPTION IS

I* This record is in the personal directory of
Jonest a supervisor in the Marketinl dePartMent. It contains
inforMation about Prospective custoMers and the revenues that
landinl these custoMers Milht senerate. *'·

LEADS_RECDRD STRUCTURE.
CONTACT_NAME DATATYPE IS TEXT

COMPANY

ADDRESS

SIZE IS 30 CHARACTERS.
DATATYPE IS TE><T
SIZE IS 30 CHARACTERS.
COPY FROM
CDD$TOP.CORPDRATE.ADDRESS_RECORD.

TELEPHONE STRUCTURE,
AREA_CODE DATATYPE IS UNSIGNED NUMERIC

SIZE IS 3 DIGITS.
NUMBER DATATYPE IS UNSIGNED NUMERIC

SIZE IS 7 DIGITS.
END TELEPHONE STRUCTURE.
POTENTIAL_ANN_SALES DATATYPE IS UNSIGNED NUMERIC

SIZE IS 8 DIGITS 2 FRACTIONS.
END LEADS-RECORD STRUCTURE.

END LEADS_RECORD.

DEFINE RECORD CDD$TOP.SALES.SALES_RECDRD.
SALES STRUCTURE.

CUSTOMER-NAME

ACCOUNT_NUMBER

TRANSACTION_COUNT

TRANSACTION STRUCTURE

TRANS_ DATE

ORDER _NUMBER

AMOUNT

DATATYPE IS TE><T
SIZE IS 30 CHARACTERS.
DATATYPE IS UNSIGNED NUMERIC
SIZE IS 7 DIGITS.
DATATYPE IS UNSIGNED WORD
VALID FOR DATATRIEVE IF

"TRANSACTION_COUNT > O".
OCCURS 1 TD 99 TIMES

DEPENDING ON TRANSACTION_COUNT.
DATATYPE IS DATE
EDIT_STRING FOR DATATRIEVE
IS "NN/DD/YY".
DATATYPE IS UNSIGNED NUMERIC
SIZE IS 10 DIGITS
NAME FOR COBOL IS "ORDER-NUMBER".
DATATYPE IS UNSIGNED NUMERIC
SIZE IS 8 DIGITS 2 FRACTIONS
INITIAL_VALUE IS 0
PICTURE FDR COBOL IS "9(6)1.199".

END TRANSACTION STRUCTURE.
END SALES STRUCTURE.

END SALES_RECORD RECORD.
(continued on next page)

A-4 SOURCE.DDL

DEFINE RECORD _CDD$TOP.CDD$EXAMPLES.PERSONNEL.SERVICE.SALARY-RECORD
DESCRIPTION IS

f* This is the record containins salarY
information for all employees. It is sensitiuet and access
is carefully restricted. Direct dePosit information added
5-JAN-1884.*/•

SALARY STRUCTURE.
EMPLOYEE-ID DATATYPE IS UNSIGNED NUMERIC

SIZE IS 8 DIGITS.
PAY STRUCTURE.

JOB-CLASS DATATYPE IS TEXT
SIZE IS 3 CHARACTERS,

INCR_LEVEL DATATYPE IS UNSIGNED NUMERIC
SIZE IS 1 DIGIT,

WEEKLY_SALARY DATATYPE IS UNSIGNED NUMERIC
SIZE IS G DIGITS 2 FRACTIONS,

DIRECT_DEP DATATYPE IS TEXT
SIZE IS 1 CHARACTER
t.IALI D FOR DTR IF

DIRECT_DEP=Y OR DIRECT_DEP=N,
END PAY STRUCTURE+

END SALARY STRUCTURE,
END SALARY_RECORD RECORD,

DEFINE RECORD _CDD$TOP+CDD$EXAMPLES+PERSONNEL,STANDARDS,SALARY_RANGE
DES CR I PTI ON IS

f* This record stores minimum salaries
for the four incremental salary leuels within
each of 150 Job classifications. It reflects
Personnel Policy effectiue 1/1/84, *'·

SALARY_RANGE ARRAY 150t4
DATATYPE IS UNSIGNED NUMERIC
SIZE IS 8 DIGITS 2 FRACTIONS,

END SALARY_RANGE RECORD,

SOURCE.DDL A-5

8.1 DEFINE ... END

DEFINE RECORD path-name

END

[DESCRIPTION [IS] /*text */] .

field-description-statement

[
path-name l [RECORD] .
g iven-nam:J

8.2 Field Description Statements

B.2.1 Elementary Field Description

[/* text */]

COOL Syntax Skeleton B

{field.*name} field-attribute [field-attribute]

B-1

B.2.2 STRUCTURE Field Description

[/* text */]

{field_*name} STRUCTURE [field-attribute]

field-description-statement
[field-description-statement] ...

END [field-name] [STRUCTURE] .

B.2.3 COPY Field Description

[/* text */]

field-name COPY [FROM] path-name [ALIGNED clause] .

B.2.4 VARIANT Field Description

Format 1:

VARIANTS.
VARIANT.

field-description-statement
[field-description-statement] ...

END [VARIANT].

VARIANT.
field-description-statement
[field-description-statement] ...

END [VARIANT] .

END [VARIANTS].

B-2 COOL Syntax Skeleton

Format 2:

VARIANTS OF field-name .

{
VALUE [IS] }

VARIANT VALUES [ARE] n1 [THAU n2] [n3 [THAU n4]]

field-description-statement
[field-description-statement] ...

END [VARIANT].

§VALUE [IS] }
VARIANT lVALUES [ARE] n5 [THAU n6] [n7 [THAU n8]]

field-description-statement
[field-description-statement] ...

END [VARIANT].

END [VARIANTS] .

8.3 General Field Attributes

BIT

ALIGNED [ON]

BYTE
WORD
LONGWORD
QUADWORD
OCTAWORD

[BOUNDARY]

[
ROW_MAJOR]
COLUMN_MAJOR ARRAY [n1 :] n2 [[n3 :] n4] ...

OCCURS n1 [TIME [S]]
[INDEXED FOR COBOL BY quoted-string [, ...]]

OCCURS n1 TO n2 [TIME [S]] DEPENDING [ON] field-name
[INDEXED FOR COBOL BY quoted-string [, ...]]

complex-number
fixed-point-number

INITIAL_VALUE [IS] floating-point-number
quoted-string
hex-number
octal-number

CDDL Syntax Skeleton B-3

DATATYPE [IS]

DATE

VIRTUAL [FIELD]

BIT [FIELD]

UNSPECIFIED

j TEXT }
l VARYING STRING

POINTER [TO path-name]

D_FLOATING
D_FLOATING COMPLEX
F_FLOATING
F _FLOATING COMPLEX
G_FLOATING
G_FLOATING COMPLEX
H_FLOATING
H_FLOATING COMPLEX

I
[UN] SIGNED BYTE l
[UN] SIGNED WORD
[UN] SIGNED LONGWORD
[UN] SIGNED QUADWORD
[UN] SIGNED OCTAWORD

PACKED DECIMAL
ZONED NUMERIC
UNSIGNED NUMERIC
LEFT SEPARATE NUMERIC
LEFT OVERPUNCHED NUMERIC
RIGHT SEPARATE NUMERIC
RIGHT OVERPUNCHED NUMERIC

[SIZE [IS]] n1

[SIZE [IS]] n1 [BYTE [S]]

[SIZE [IS]] n1 [CHARACTER [S]]

SCALE n1 BASE n2

~
[SIZE [IS]] n1 [DIGIT [S] ~

[n2 FRACTION [S]]]

SCALE n3
BASE n4

[SIZE [IS]] n1 [DIGIT [S]
[n2 FRACTION [S]]]

n1sCALE n3n
LJBASE n4 LI

B.4 Facility-Specific Field Attributes

BLANK WHEN ZERO

COMPUTED BY {
OTA }
DATATRIEVE

AS quoted-string [quoted-string] ...

CONDITION FOR COBOL [IS] condition-name

[COBOL NAME [IS] quoted-string]

{VALUE [IS] } n1 [THAU n2] [n3 [THAU n4]] ...
VALUES [ARE]

B-4 COOL Syntax Skeleton

DEFAULT_ VALUE FOR { DTR } [IS] {fixed-point-number}
DATATRIEVE quoted-string

EDIT _CODE FOR RPG [IS] quoted-string

EDIT _STRING FOR { g~~ATRIEVE} [IS] quoted-string

EDIT _WORD FOR RPG [IS] quoted-string

JUSTIFIED RIGHT

SS G 0 j DTR } fixed-point-number
Ml IN _VALUE F R t DATATRIEVE [IS] quoted-string

NAME FOR

PICTURE FOR

BASIC
COBOL
PUI
RPG

[IS] quoted-string

COBOL
DTR
DATATRIEVE
PUI

[IS] quoted-string

QUERY _HEADER FOR t g~~ATRIEVE l [IS] quoted-string [quoted-string]. ..

QUERY _NAME FOR t g~~ATRIEVE l [IS] quoted-string

VALID FOR t g~~ATRIEVE } IF quoted-string [quoted-string]. ..

COOL Syntax Skeleton B-5

CDDL Error Messages c

This appendix lists the error messages generated by the CDDL compiler. After
each message, there is an explanation of the message and of the action you
should take to correct the problem.

For example, if you specify a negative number as the number of DIGITS in a
DATATYPE clause, you receive the following message:

%CDDL-E-ILLNDDIG, illesal nuMber of dilits

A CDDL error message contains the following elements:

• The facility name preceded by a percent sign(%) or a hyphen(-) and followed
by a hyphen (-), such as %CDDL- or -CDDL-.

• The severity code followed by a hyphen (-). Table C-1 lists severity codes in
order of increasing severity.

C-1

Table C-1: Explanation of Severity Codes

Code Severity Explanation

s Success Indicates that your command has executed successfully.

I Information Reports on actions taken by the software.

w Warning Indicates error conditions for which the compiler can take
corrective action. You should check to make sure that this action
has produced the results you want; the record definition placed
in the dictionary may not be correct.

E Error Indicates conditions that are not fatal, but also are not correct-
able by the compiler. CDDL continues syntactic and semantic
checking to detect as many errors as possible, but records with
errors are not stored in the CDD. Therefore, you must correct
any errors and compile any faulty record definitions again.

F Fatal Indicates that the compiler cannot continue syntactic checking
and cannot store any definitions in the CDD. You must correct
the error and compile the record definition again.

• The diagnostic error message name followed by a comma(,). This name
identifies the message. In the following list of error messages, the messages are
alphabetized by diagnostic error message name.

• The diagnostic error message. The message is a brief description of the
problem. Error messages may contain string substitutions identifying the
particular file names or path names in question. These string substitutions are
indicated by angle brackets (< >) within a message. For example:

unexpected <token> deleted

If you received this message, CDDL would substitute the actual token for
<token>.

Normally, you can correct CDDL errors by checking the source file and compiling
again. IF YOU RECEIVE A FATAL ERROR INDICATING AN INTERNAL
CDDL PROBLEM, OR IF YOU RECEIVE A CDD OR UTILITIES ERROR
MESSAGE THAT IS NOT DOCUMENTED, you should immediately notify your
system manager or the person responsible for maintaining the dictionary. If your
facility has a service contract with DIGITAL, your system manager should
submit a Software Performance Report (SPR) on the forms provided by DIGITAL.
Be sure to include a VMS BACKUP copy of the dictionary file and a listing of the
source file and commands that produced the error.

C-2 CDDL Error Messages

ABBREV, found <keyword> abbreviated as <abbreviation>

Explanation: CDDL issues this message when you abbreviate a keyword.

User Action: None.

ALLF AILED, none of the defined records was created

Explanation: CDDL could not compile any of the record definitions in the
source file.

User Action: Refer to the other messages generated by the compiler for specific
errors.

APPROXV AL, converted value is approximately <number>

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for a record description and CDD
calculated an approximate value for a field's literal value within
the record.

User Action: None.

ATTMLTDEF, field attribute conflicts with earlier declaration

Explanation: You have defined a field attribute more than once (for example,
by assigning two query names to one field).

User Action: Correct the error and compile the record definition again.

ATTNOTDEF, DATATYPE clause not specified

Explanation: You have omitted a DATATYPE clause from an elementary field
description statement.

User Action: Specify a data type and compile the record definition again.

AUDITF AIL, error occurred while creating audit entry

Explanation: The COPY field description statement automatically adds an
entry to the history list of template records as they are copied. If
the audit fails, the compiler issues this message. The record
definition, however, is stored in the CDD.

User Action: None.

CDDL Error Messages C-3

BADALIGN, illegal length of alignment filler field

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for an invalid record description.

User Action: Use the instructions at beginning of error message list in this
appendix.

BADCHAR, illegal character

Explanation: The parser has encountered an illegal character in the source file.
If no other error messages appear, the parser has ignored the bad
character and compiled the record definition successfully.

User Action: If the record compilation was unsuccessful, refer to the documen­
tation for the accompanying error messages for explanation and
suggested action.

BADCLAUSE, clause may prompt diagnostics when compiled with CDDL

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for a record description and the operation
generated a clause that might cause the CDDL compiler to issue
error messages.

User Action: None.

BADCPYLST, unable to expand copied template record source in listing

Explanation: CDDL tried unsuccessfully to expand a template record in the
listing file.

User Action: Check to make sure that the template record has not been deleted
from the CDD.

BADDATTIM, invalid date/time value

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for a record containing an invalid VMS
absolute date and time value.

User Action: None.

C-4 COOL Error Messages

BADDIMENS, dimension lower bound must be less than upper bound

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for an invalid record description.

User Action: Use the instructions at beginning of error message list in this
appendix.

BADEXTVAL, illegal CONDITION FOR COBOL VALUES- external
values ignored.

Explanation: You used DMD/EXTRACT or CDDL/COPY _LIST to generate
CDDL source for a record containing an illegal EXTERNAL value.

User Action: Correct the EXTERNAL value, recompile the record definition,
and reenter DMD/EXTRACT or CDDL/COPY _LIST.

HADFIELD, syntax error in field name

Explanation: You have entered a field name incorrectly.

User Action: Correct the error and compile the record definition again.

BADFORMAT, does not conform to record description protocol version 4

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for a record that does not conform to
version 4 of the CDD record description protocol.

User Action: Use the instructions at beginning of error message list in this
appendix.

BADFRACTS, FRACTIONS clause conflicts with DIGITS clause

Explanation: You have specified a number of FRACTIONS greater than the
number of DIGITS.

User Action: Correct the error and compile the record definition again.

COOL Error Messages C-5

BADIDENT, illegal identifier

Explanation: The parser encountered an apparent identifier such as a keyword
or a path name, but the identifier was not legal. If no other error
messages appear, the parser has ignored the illegal identifier and
compiled the record definition successfully.

User Action: If the record compilation was unsuccessful, refer to the documen­
tation for the accompanying error messages for explanation and
suggested action.

BADLENGTH, length for structure is inconsistent with prior declaration

Explanation: You have given a STRUCTURE field an explicit data type and
length, but that length is less than the total length of the
STRUCTURE's subfields.

User Action: Correct the error and compile the record definition again.

BADOCCURS, maximum number of occurrences must be greater than 0

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for an invalid record description.

User Action: Use the instructions at beginning of error message list in this
appendix.

BADOVRLAY, VARIANTS field does not have an OVERLAY data type

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for an invalid record description.

User Action: Use the instructions at beginning of error message list in this
appendix.

BADPROTCL, <quoted string> is not a legal dictionary object

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for an invalid record description.

User Action: Use the instructions at beginning of error message list in this
appendix.

C-6 CDDL Error Messages

BADTAGV AR, illegal tag variable

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for an invalid record description.

User Action: Use the instructions at beginning of error message list in this
appendix.

BASEGTRI, base must be greater than 1

Explanation: You have illegally specified a number with a base of 0 or 1.

User Action: Correct the error and compile the record definition again.

BASENOTI O, scale factor not applied to non-decimal values

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for a record description containing literal
values for fields with a base other than ten. The CDD did not
apply any scaling factor to these fields.

User Action: None.

CANTTRANS, unsupported language feature in record <given name>

Explanation: You used DMU EXTRACT /RECORD or CDDL/COPY _LIST to
generate CDDL source for an invalid record description.

User Action: Use the instructions at beginning of error message list in this
appendix.

CDDERROR, error encountered while creating record

Explanation: Another CDD message identifying the problem always follows this
message.

User Action: Refer to the documentation for the accompanying error message
for explanation and user action.

CDDOBJERR, CDD error at object <given name>

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for an invalid record description.

User Action: Use the instructions at beginning of error message list in this
appendix.

COOL Error Messages C-7

COBINDEX, index for COBOL illegal in this context - value ignored

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for a record description containing an
invalid attribute value. The CDD substituted a default value for
the incorrect attribute value.

User Action: None.

COMPBYDTR, COMPUTED BY DTR clause allowed only on VIRTUAL
fields

Explanation: You have illegally included the COMPUTED BY clause in the
description of a field with a data type other than VIRTUAL
FIELD.

User Action: Correct the error and compile the record definition again.

COMPLEX, value conversion error on complex data type

Explanation: CDDL could not convert an INITIAL VALUE specification to a
complex number.

User Action: Check your INITIAL VALUE specification and make sure you
have specified it correctly.

CONVERR, value conversion error

Explanation: CDDL could not convert a value.

User Action: Check your value specification and make sure you have specified
it correctly.

COPYERROR, error encountered while copying record <quoted string>

Explanation: CDDL was unable to copy a template record. An accompanying
message explains the problem.

User Action: If the accompanying message is a CDDL message, read the
explanation of that message elsewhere in this appendix. If it is a
CDD message, see Appendix D of the VAX Common Data
Dictionary Utilities Reference Manual. If it is a system message,
see the VMS documentation set.

C-8 COOL Error Messages

COPYNOLIS, the /COPY _LIST qualifier conflicts with /NOLISTING
qualifier

Explanation: You specified /COPY _LIST and /NOLISTING on the same
CDDL command line.

User Action: Choose either /COPY _LIST or /NOLISTING and compile the
record definition again.

COPYNONAM, error encountered while copying record

Explanation: CDDL was unable to copy a template record. An accompanying
message explains the problem.

User Action: If the accompanying message is a CDDL message, read the
explanation of that message elsewhere in this appendix. If it is a
CDD message, see Appendix D of the VAX Common Data
Dictionary Utilities Reference Manual. If it is a system message,
see the VMS documentation set.

DEFNOTSET, error encountered while setting default directory

Explanation: An error occurred when CDD tried to set CDD$DEFAULT.

User Action: Check your definition of CDD$DEF AULT; it is illegal or points to
an inaccessible directory or subdictionary.

DEFV ALUE, default value substituted for invalid CDD attribute value

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for a record description containing an
invalid attribute value. The CDD substituted a default value for
the incorrect attribute value.

User Action: None.

DEPENDING, depending item illegal in this context-value ignored

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for an invalid record description.

User Action: Use the instructions at beginning of error message list in this
appendix.

COOL Error Messages C-9

DELETETOK, unexpected <token> deleted

Explanation: The CDDL has deleted a superfluous keyword or token.

User Action: None.

DEPINARRY, field named in DEPENDING clause is within an array

Explanation: You have illegally defined the field that governs the number of
occurrences in an OCCURS ... DEPENDING clause as part of an
array.

User Action: Edit the source file to define this field as an elementary field, not
as part of an array. Then compile the record definition again.

DEPNOTBEF, depending item not found before field definition

Explanation: You must define the field governing the number of occurrences in
an OCCURS ... DEPENDING clause in the record before you
declare the array.

User Action: Correct the error and compile the record definition again.

DEPNOTELM, depending item is not an elementary field

Explanation: You· have illegally defined the field governing the number of
occurrences in an OCCURS ... DEPENDING clause as part of an
array or a structure field.

User Action: Correct the error and compile the record definition again.

DEPNOTFND, field named in DEPENDING clause not found

Explanation: You have referred to a nonexistent field in an
OCCURS ... DEPENDING clause.

User Action: Edit the source file to define the field governing the number of
occurrences as an elementary field, not as part of an array. Then
compile the record definition again.

C-1 O COOL Error Messages

DEPNOTUNQ, depending item field name is not unique

Explanation: The specification for the field governing the number of occur­
rences in an OCCURS ... DEPENDING clause matches more than
one field.

User Action: Edit the source file to make the specification unique, perhaps by
fully qualifying the field name. Then compile the record definition
again.

DSCNOTTRM, DESCRIPTION clause not terminated before EOF

Explanation: You have omitted the *f terminator from a DESCRIPTION IS
clause, and the parser has read the entire source file looking
for it.

User Action: Edit the file and insert *f at the appropriate place. Then compile
the source file again.

DTYPEKWRD, use keyword DATATYPE rather than TYPE

Explanation: You used TYPE instead of DATATYPE to specify a data type.
CDDL compiled the definition successfully, but warns that
DATATYPE is the preferred keyword.

User Action: None.

DUPNAME, field name is not unique

Explanation: Two or more fields within the same STRUCTURE have the same
field name. This is a legal CDDL construction, but it may cause
problems. Some language compilers, for example, do not allow
name duplication within a STRUCTURE.

User Action: Consider giving each field within the STRUCTURE a unique
name.

ELEMFIELD, tag variable must be an elementary field

Explanation: You used DMU EXTRACT /RECORD or CDDL/ COPY_ LIST to
generate CDDL source for a record description containing a tag
variable that is not an elementary field.

User Action: Use the instructions at beginning of error message list in this
appendix.

CDDL Error Messages C-11

EMPTYREC, a record must contain a field description

Explanation: You have defined a record that does not contain a field descrip­
tion. Every record definition must contain at least one field
description.

User Action: Add at least one field description to the record definition and
compile it again.

EMPTYSTRC, a structure must contain at least one sub-field description

Explanation: You have used a STRUCTURE field description statement but
have not included a subordinate field description. Legal subordi­
nate fields include elementary, STRUCTURE, COPY, and
VARIANTS fields.

User Action: Add a subordinate field description to your STRUCTURE field
description and compile the record definition again.

EXTRANATT, extraneous CDD attribute encountered - value ignored

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for an invalid record description.

User Action: Use the instructions at beginning of error message list in this
appendix.

EXTTAGVAL, a tag value cannot be expressed as a COBOL EXTERNAL
value

Explanation: You have illegally used a COBOL EXTERNAL quoted string as a
tag value.

User Action: Re-enter a legal tag value.

FL TV ALIMP, decimal representation of floating point value is imprecise

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for a record description containing a
floating point value. When converting the floating point value to
its decimal equivalent, the CDD generated only an approximate
value.

User Action: None.

C-12 CDDL Error Messages

HEXCONERR, conversion error - value could not be converted to hex

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for an invalid record description.

User Action: Use the instructions at beginning of error message list in this
appendix.

IGNORETAG, unable to use tag variable - tag values ignored

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for an invalid record description.

User Action: Use the instructions at beginning of error message list in this
appendix.

ILLBOUND, lower bound cannot exceed upper bound

Explanation: You have specified an array with a lower bound greater than the
upper bound.

User Action: Correct the error and compile the record definition again.

ILLCOBCND, illegal COBOL condition in template record

Explanation: You have tried to copy into a record a template record with illegal
COBOL condition attributes.

User Action: Correct the attributes, recompile the definition, and copy the
template record again.

ILLDTYPE, illegal or unsupported data type - code is <number>

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for an invalid record description.

User Action: Use the instructions at beginning of error message list in this
appendix.

ILLEXTV AL, duplicate INITIAL_ VALUE clauses - all but one ignored

Explanation: You used DMD/EXTRACT or CDDL/COPY _LIST to generate
CDDL source for a record containing duplicate INITIAL_ VALUE
clauses. The EXTERNAL clause was ignored.

User Action: None.

CDDL Error Messages C-13

ILLFQNAME, illegal fully qualified name

Explanation: You have illegally included a password in a fully qualified name.

User Action: Correct the syntax and try again.

ILLHEXOCT, illegal hex or octal number

Explanation: The parser encountered an apparent hexadecimal or octal number
because of the prefix (%X or %0), but a legal hexadecimal or octal
string did not follow. If no other error message appears, the
parser has ignored the illegal number and attempted to compile
the record definition.

User Action: If the record compilation was unsuccessful, refer to the documen­
tation for the accompanying error messages for explanation and
suggested action.

ILLINDXNM, index name defined elsewhere in record definition

Explanation: You specified the same string value as a COBOL index name and
as a field name or COBOL-specific field name in a record
definition. You must use a unique string value for COBOL index
names.

User Action: Correct the error and compile the record definition again.

ILLINTV AL, if scale is not 0 and base is not 10, value must be expressed
in hex or octal

Explanation: You have entered an illegal initial value. If you have used a scale
other than 0 and a base other than 10, you must identify the
initial value as either an octal or hexadecimal number.

User Action: Correct the error and compile the record definition again.

ILLLITERL, does not conform to record description protocol version 4

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for an invalid record description.

User Action: Use the instructions at beginning of error message list in this
appendix.

C-14 CDDL Error Messages

ILLMINMAX, minimum cannot exceed maximum number of occurrences

Explanation: In an OCCURS ... DEPENDING clause, you have specified a
minimum number of occurrences greater than the maximum
number.

User Action: Correct the error and compile the record definition again.

ILLNAMCHR, a field name contains a character other than A-Z, 0-9, $,
or_

Explanation: You have used an illegal character in a field name. A field name
can contain only letters, integers, $, or _.

User Action: Correct the error and compile the record definition again.

ILLNAMSIZ, a field name's length is 0 or greater than 31

Explanation: The number of characters in a field name must be greater than 0
but less than 32.

User Action: Correct the error and compile the record definition again.

ILLNCHAR, illegal character found in numeric input

Explanation: During initial value, tag value, or condition value conversion, the
parser encountered an illegal character, such as a period.

User Action: Correct the error and compile the record definition again.

ILLNODIG, illegal number of digits

Explanation: You have specified an illegal number of DIGITS. DIGITS
specifications must be greater than 0 but less than 32.

User Action: Correct the error and compile the record definition again.

ILLNUMBER, illegal number

Explanation: You have entered an illegal number (for example, 2E with no
scale specified). If no other error message appears, the parser has
ignored the illegal number and compiled the record definition
successfully.

User Action: If the record compilation was unsuccessful, refer to the documen­
tation for the accompanying error messages for explanation and
suggested action.

COOL Error Messages C-15

ILLOCCURS, number of occurrences must be greater than zero

Explanation: In an OCCURS clause, you have specified a number of occur­
rences less than or equal to 0.

User Action: Correct the error and compile the record definition again.

ILLOVPNCH, illegal overpunched character

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for an invalid record description.

User Action: Use the instructions at beginning of error message list in this
appendix.

ILLQUOSTR, illegal quoted string

Explanation: The parser has encountered an illegal string in the source file.
Make sure, for example, that all open quotations are subsequently
closed and that quoted strings do not exceed a single line of
CDDL source text.

User Action: Correct the error and compile the record definition again.

ILLREL VER, CDDL does not support relative version numbers

Explanation: You specified a relative version in a path name used by CDDL,
but CDDL recognizes only absolute version numbers. To specify a
version other than the highest to CDDL, you must use an
absolute version number.

User Action: Correct the error and compile the record definition again.

ILLSCALE, illegal scale value

Explanation: You have specified an illegal SCALE. SCALE specifications
cannot be greater than 127 nor less than -128.

User Action: Correct the error and compile the record definition again.

ILLVERNUM, version number cannot be used on a directory name

Explanation: You specified a version number with a directory's given name.
Because CDD does not support multiple versions of dictionary
directories, you cannot use a version number with directories.

User Action: Correct the error and compile the record definition again.

C-16 COOL Error Messages

ILL VFSTRC, STRUCTUREs cannot have the virtual field datatype

Explanation: You have tried to specify a virtual field data type in a
STRUCTURE field description statement.

User Action: Modify and recompile the record definition.

ILLVIRFLD, STRUCTUREs cannot be VIRTUAL FIELDS -
UNSPECIFIED assumed

Explanation: You used DMU EXTRACT /RECORD or CDDL/COPY _LIST to
generate CDDL source for an invalid record description.

User Action: Use the instructions at beginning of error message list in this
appendix.

INSERTDOT, inserted "." at the end of the previous line

Explanation: CDDL has inserted a missing period at the end of a source line.

User Action: None.

INSERTTOK, inserted <token> before <token>

Explanation: CDDL has inserted a missing source token.

User Action: None.

INSMATCH, <keyword> inserted to match <keyword> inserted earlier

Explanation: You omitted a keyword. CDDL has inserted it.

User Action: None.

INTERROR, internal CDDL error

Explanation: This message indicates a problem with the compiler.

User Action: Use the instructions at beginning of error message list in this
appendix.

INVISTCHR, the first character of a field name is not A-Z

Explanation: You have begun the name of a field with an illegal character. A
field name must begin with a letter.

User Action: Correct your error and compile the record definition again.

CDDL Error Messages C-17

INVALLIT, invalid literal - length is zero

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for an invalid record description.

User Action: Use the instructions at beginning of error message list in this
appendix.

INV ALREC, record to be copied is invalid

Explanation: You have tried to copy an incomplete template record definition.

User Action: Examine the template, supply the missing attributes, and compile
the record definition again. Then you can copy the complete
template record definition with the COPY field description
statement.

INVBITLEN, invalid length for bit field

Explanation: The legal range for the length of a field with the BIT data type is
from 1 to 65,535 bits. You have specified a BIT field outside of
this range.

User Action: Correct the error and compile the record definition again.

INVDATTIM, invalid date/time string - value set to 17-NOV-1858 00:00

Explanation: You have specified an invalid quoted string as an INITIAL,
CONDITION, or TAG value whose data type is defined as DATE.
When a quoted string is invalid, CDDL sets the date or time field
to binary zero. The field then yields the Smithsonian base date
and time, 17-NOV-1858 00:00.

User Action: Correct the error and compile the record definition again.

INVFLDLEN, field's length is invalid

Explanation: You have specified an invalid length for a field. Text, unspecified,
and varying string fields must have a length greater than 0 but
less than 65,536 characters.

User Action: Correct the error and compile the record definition again.

C-18 CDDL Error Messages

INVLENGTH, field length is not multiple of 8 bits - extra bits ignored

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for an invalid record description. The
generated CDDL source may not accurately reflect the record
description.

User Action: Examine the source text of the record description to ensure the
correctness of the generated CDDL source.

INVLSTCHR, the last character of a field name is not A-Z or 0-9

Explanation: You have ended a field name with an illegal character. A field
name must end with a letter or an integer.

User Action: Correct the error and compile the record definition again.

JUSTIFIED, JUSTIFIED RIGHT clause allowed only with TEXT or
UNSPECIFIED fields

Explanation: You have attempted to use the JUSTIFIED RIGHT clause in the
description of a field whose data type is something other than
TEXT or UNSPECIFIED.

User Action: Correct the error and compile the record definition again.

KEYWDREPL, replaced <keyword> with <keyword>

Explanation: You have used an incorrect keyword, and CDDL has replaced it
with the correct one.

User Action: None.

LANGNAMES, language specific names cannot be used with unnamed
fields

Explanation: You have attempted to specify a language-specific name for an
unnamed field. Only named fields can have language-specific
names.

User Action: Correct the error and compile the record definition again.

COOL Error Messages C-19

LINETRUNC, output buffer overflow - line truncated

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for a record description, and a line of the
generated source exceeds 255 characters.

User Action: Examine the source text of the record description to learn what
should be in the truncated line.

MLTJUSTRT, JUSTIFIED RIGHT clause specified more than once

Explanation: You have specified JUSTIFIED RIGHT more than once for a
single field.

User Action: Correct the error and compile the record definition again.

MULTARRAY, array clause specified more than once

Explanation: You have specified more than one OCCURS ... DEPENDING,
ARRAY, or OCCURS clause for a single field.

User Action: Correct the error and compile the record definition again.

MULTBLANK, BLANK WHEN ZERO clause specified more than once

Explanation: You have defined a single field as BLANK WHEN ZERO more
than once.

User Action: Correct the error and compile the record definition again.

MULTDTYPE, DATATYPE clause specified more than once

Explanation: You have specified more than one data type clause for a single
field.

User Action: Correct the error and compile the record definition again.

MULTSCALE, SCALE clause conflicts with earlier declaration

Explanation: Within a single DATATYPE clause you have specified SCALE
more than once, or you have specified both SCALE and
FRACTIONS and their values are inconsistent.

User Action: Correct the error and compile the record definition again.

C-20 COOL Error Messages

MUL TV ALIS, VALUE IS clause specified more than once

Explanation: You have illegally specified more than one VALUE IS or VALUES
ARE clause within one VARIANT field description.

User Action: Correct the error and compile the record definition again.

NEWVERCRE, new version <given name> created in the CDD

Explanation: You created an additional version of a dictionary object.

User Action: None.

NODEPITEM, depending item fieldname does not exist within the record

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for an invalid record description.

User Action: Use the instructions at beginning of error message list in this
appendix.

NODTYPATT, field's data type attribute is missing

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for an invalid record description.

User Action: Use the instructions at beginning of error message list in this
appendix.

NOLENGATT, field's length attribute is missing

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for an invalid record description.

User Action: Use the instructions at beginning of error message list in this
appendix.

NOMATCH, name mismatch in "END" statement

Explanation: The name you specified in the END statement does not match the
name you specified in the DEFINE or STRUCTURE statement.

User Action: Correct the error and compile the record definition again.

CDDL Error Messages C-21

NOROOTATI, does not conform to record description protocol version 4

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for an invalid record description.

User Action: Use the instructions at beginning of error message list in this
appendix.

NOTCDDL, record <quoted string> not created by CDDL, cannot be
recompiled

Explanation: You have tried to recompile a definition created by a facility (such
as VAX DATATRIEVE) other than CDDL. CDDL does not
support this operation.

User Action: None.

NOTCDDREC, object is not a record

Explanation: With the COPY field description statement, you can copy
dictionary objects only if the CDD type is CDD$RECORD. You
tried to use COPY with another type.

User Action: None.

NOTCOMPLX, complex literal must be used with complex data type

Explanation: You have incorrectly attempted to specify a complex number as
the initial, tag, or condition value of a field whose data type is not
one of the FLOATING COMPLEX data types.

User Action: Correct the error and compile the record definition again.

NOTFIXED, fixed point literal not allowed in this context

Explanation: You have specified a fixed point number as the initial, tag, or
condition value of a field whose data type cannot be expressed as
a fixed point number.

User Action: Edit the source file to change the initial, tag, or condition value or
to define a compatible data type. Then compile the record
definition again.

C-22 CDDL Error Messages

NOTFLOAT, floating point literal not allowed in this context

Explanation: You have specified a floating point number as the initial, tag, or
condition value of a field whose data type cannot be expressed as
a floating point number.

User Action: Edit the source file to change the initial, tag, or condition value or
to define a compatible data type. Then compile the record
definition again.

NOTRECDEF, object <given name> is not a record definition

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for a dictionary object that is not a
CDD$RECORD.

User Action: Be sure the path name you specify identifies a CDD record
description and enter the command again.

NOTRECORD, object <quoted string> is not a record

Explanation: The CDDL/RECOMPILE command allows you to recompile
objects only if the type of the object is CDD$RECORD. You have
tried to use the CDDL/RECOMPILE command with another type.

User Action: None.

NOTREPLCE, object to be replaced is not a record

Explanation: The /RE.t>LACE qualifier to the compile command allows you to
replace dictionary objects only if the type is CDD$RECORD. You
tried to use /REPLACE with another type.

User Action: None.

NOTSTRING, string literal not allowed in this context

Explanation: You have specified an ASCII string as the initial, tag, or condition
value of a field whose data type cannot be expressed as an ASCII
string.

User Action: Edit the source file to change the initial, tag, or condition value or
to specify a compatible data type. Then compile the record
definition again.

CDDL Error Messages C-23

NUMCONERR, conversion error - number could not be converted to
decimal

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for a record description containing a value
the CDD could not convert to a decimal equivalent.

User Action: None.

OBJEXTUVS, another version already exists - record not created

Explanation: You tried to create a record definition with the same path name
as an already existing dictionary object, but you did not specify
/VERSION.

User Action: Choose a different given name, or use the /VERSION qualifier.

OBJEX'IVNS, object already exists - not superseded

Explanation: You tried to create a record definition with the same path name
and version number as an already existing dictionary object.

User Action: Choose a different given name or version number for the object.

OVERFLOW, value conversion overflow

Explanation: You have specified a numeric value that is too large for the
defined field.

User Action: Specify a smaller value, or redefine the length of the field and
recompile the record.

PSSWDSYN, syntax error in password specification

Explanation: You supplied an invalid password specification. Passwords contain
from 1 to 64 printable ASCII characters, including space and tab,
but excluding open parenthesis[(], close parenthesis[)], and
period[.].

User Action: Correct the syntax and compile the record definition again.

C-24 CDDL Error Messages

QUERYNAME, QUERYNAME clause cannot be used for unnamed fields

Explanation: You have attempted to specify a VAX DATATRIEVE
QUERY_ NAME for an unnamed field. You can specify query
names only for named fields.

User Action: Correct the error and compile the record definition again.

RECNOTCRE, error in record definition - record not created

Explanation: The record defined in the source file record was not created
because of an error or errors.

User Action: Use the specific error messages you received to edit the source
file.

RECNOTFND, record to be replaced not found

Explanation: The /REPLACE qualifier to the COMPILE command allows you
to replace existing record definitions. This warning indicates that
you tried to replace a record definition that does not exist. The
new definition, however, has been stored in the CDD.

User Action: None.

RECOMPACL, /VERSION qualifier must be specified to use /[NOJACL
qualifier

Explanation: In order to use either I ACL or /NOACL with
CDDL/RECOMPILE, you must use the version qualifier.
Otherwise, the newly created record definition copies the access
control list of the definition it replaces.

User Action: If you want the newly created object to have no access control list,
use the /VERSION qualifier.

RECOMPERR, error encountered while recompiling record <quoted
string>

Explanation: An error occurred when CDDL was trying to recompile a record.
This message is followed by another that explains the problem.

User Action: Refer to the documentation for the accompanying error message
for explanation and suggested action.

COOL Error Messages C-25

RECOMPVER, record <given name> recompiled and <given name>
created in the CDD

Explanation: CDDL recompiled an existing record description, creating an
additional version of it.

User Action: None.

RECORDCRE, record <given name> created in the CDD

Explanation: CDDL created a record description and inserted it in the
dictionary.

User Action: None.

REL VERNUM, relative version number on path name is being ignored

Explanation: You included a relative version number as part of a path name,
but CDDL recognizes only absolute version numbers. CDDL
created the record definition with version number one higher than
the previous highest.

User Action: If you want the version number you specified, you can change it
with the DMU RENAME command.

REPLACACL, the /[NO]ACL qualifier conflicts with the /REPLACE
qualifier

Explanation: When you use CDDL/REPLACE, the new object always copies the
access control list of the object it replaces. You cannot specify
I ACL or /NOACL with CDDL/REPLACE.

User Action: Reenter the command without the /NOACL qualifier.

RMSERROR, RMS error in file <quoted string>

Explanation: This message is followed by an RMS message explaining why
CDDL was unable to open, close, read, or write a file.

User Action: Refer to the VAX /VMS System Message and Recovery Procedures
Manual.

C-26 COOL Error Messages

SOMEF AIL, some of the defined records were not created

Explanation: Some of the records defined in your source file were not compiled
because of an error or errors.

User Action: Remove the successful definitions from the file, correct errors in
those remaining, and compile the file again.

SPELLCORR, identifier <keyword> replaced with <keyword> by the
spelling corrector

Explanation: You have misspelled a keyword, but CDDL has corrected the
spelling.

User Action: None.

STRCONERR, conversion error - string could not be converted to text

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for a record description containing an
invalid VMS absolute date and time value. The CDD displays
the value in hexadecimal, not as an ASCII date and time
specification.

User Action: None.

STRMERGED, merged <string> and <string> to form <keyword>

Explanation: You have left a space in the middle of a keyword, and CDDL has
joined the two portions.

User Action: None.

STRUCKWRD, use keyword STRUCTURE rather than GROUP

Explanation: You used GROUP instead of STRUCTURE to specify a structure
field. The CDDL compiled the definition successfully, but warns
that STRUCTURE is the preferred keyword.

User Action: None.

COOL Error Messages C-27

SYNTAX, syntax error near <quoted string>

Explanation: You have a syntax error in the CDDL command line. An
accompanying message explains the problem.

User Action: Refer to the documentation for the accompanying error message
for explanation and suggested action.

TAGINARRY, field named in tag variable clause is within an array

Explanation: You have incorrectly defined the tag variable as part of an array.

User Action: Edit the source file to make sure the tag variable is defined as an
elementary field that is not part of an array. Then compile the
record definition again.

TAGNOTALL, VALUE IS clause requires tag variable clause

Explanation: You have not specified a tag variable in the VARIANTS state­
ment, but you have specified a tag value for one of the variants.

User Action: Edit the source file to make usage of the tag variable and the tag
value consistent. Then, compile the record definition again.

TAGNOTBEF, tag variable not found before field definition

Explanation: You must define the tag variable field in the record before you
include the VARIANTS OF statement.

User Action: Correct the error and compile the record definition again.

TAGNOTELM, tag variable is not an elementary field

Explanation: You have either defined the tag variable as part of an array or
you have defined it as a field that is not elementary. The tag
variable field must be elementary and cannot be part of an array.

User Action: Correct the error and compile the record definition again.

TAGNOTFND, field named in tag variable clause not found

Explanation: You have referred to a nonexistent field in a tag variable clause.

User Action: Edit the source file to make sure the tag variable is defined as an
elementary field, not as part of an array. Then compile the record
definition again.

C-28 COOL Error Messages

TAGNOTUNQ, tag variable field name is not unique

Explanation: Your tag variable specification matches more than one field in the
record.

User Action: Edit the source file to make the specification unique, perhaps by
fully qualifying the field name. Then compile the record definition
again.

TAGREQUIR, tag variable clause required

Explanation: If you specify a tag variable with a VARIANTS OF statement,
each variant must declare a value or values with the VALUE IS
or VALUES ARE clauses. You have omitted one or more of these
tag value clauses.

User Action: Correct the error and compile the record definition again.

TOOFEWPAR, too few or missing parameter

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for a dictionary object that is not a
CDD$RECORD.

User Action: Be sure the path name you specify identifies a CDD record
description and enter the command again.

TOOMANP AR, too many or conflicting parameters

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for a dictionary object that is not a
CDD$RECORD.

User Action: Be sure the path name you specify identifies a CDD record
description and enter the command again.

TOOMANV AL, no more than two values permitted in a range

Explanation: You used DMU EXTRACT/RECORD or CDDL/COBY _LIST to
generate CDDL source for an invalid record description.

User Action: Use the instructions at beginning of error message list in this
appendix.

CDDL Error Messages C-29

TRUNCATIO, value conversion truncation error

Explanation: The value you specified for an initial, tag, or condition value was
too large to fit in the field as defined.

User Action: Specify a smaller value, or redefine the field and recompile the
record.

UNDERFLOW, value conversion underflow

Explanation: The value you specified for an initial, tag, or condition value was
too small to fit in the field as defined.

User Action: Specify a different value, or redefine the field and recompile the
record.

UNEXPTOK, found <token> when expecting one of <token>

Explanation: CDDL is unable to determine what you were defining when it
encountered a syntax error.

User Action: Correct the error and compile the record definition again.

UNPRINTCH, text string contains one or more unprintable characters

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for a record description containing an
unprintable text string. The CDD displays the string's hexadeci­
mal equivalent.

User Action: None.

UNSPROTCL, object <object name> does not conform to record
description protocol version 4

Explanation: This object does not conform to the protocol used to describe CDD
record definitions.

User Action: Use the instructions at beginning of error message list in this
appendix.

C-30 CDDL Error Messages

V ALCONERR, conversion error - value could not be converted

Explanation: You used DMU EXTRACT/RECORD or CDDL/COPY _LIST to
generate CDDL source for an invalid record description.

User Action: Use the instructions at beginning of error message list in this
appendix.

VALUEOVFL, value overflow, value set to zero

Explanation: An integer you specified in the source file is too large to fit into a
32-bit longword. CDDL converts all integers to longwords.

User Action: None.

VAL TRUNC, overflow occurred during conversion - value truncated

Explanation: You have specified a value that is too large for the defined field.
The hexadecimal or octal number has been truncated.

User Action: None.

VERREPLAC, the /VERSION qualifier conflicts with the /REPLACE
qualifier

Explanation: You specified /VERSION and /REPLACE on the same CDDL
command line.

User Action: Correct the error and enter the command again.

VIRTFIELD, VIRTUAL field cannot have INITIAL or CONDITION value
clauses

Explanation: You have assigned an initial or condition value to a VIRTUAL
FIELD. Virtual fields take up no space in the record and cannot
store values. They are valid only when used with the
COMPUTED BY DATATRIEVE clause.

User Action: Correct the error and compile the record definition again.

COOL Error Messages C-31

COOL Reserved Words D

Certain CDDL keywords are reserved. You cannot use CDDL reserved words in
field names or a path name within a CDDL source file. CDDL reserved words
are:

END
FROM
GROUP
IS
ON
RECORD
SIZE
STRUCTURE
VARIANTS

Although you cannot use these reserved words as path names in CDDL source
files, you can use them as given names within path names. For example, the
following statements are legal within CDDL source files because they use CDDL
reserved words only as parts of longer path names:

DEFINE RECORD CDDSTOP.TEST.STRUCTURE.

END PAYROLL.SIZE.RECORD.

COPY FROM ON.ON.ON.

The following statements are illegal within CDDL source files because they use
CDDL reserved words as the entire path name:

DEFINE RECORD FROM.

END SIZE.

COPY FROM ON.

D-1

Additional CDDL Notes E

E.1 Support of the VAX Language-Sensitive Editors (LSE)

Version 3.3 and later of CDD supports the VAX Language-Sensitive Editor (LSE).
If the VAX Language-Sensitive Editor is installed on your system, you can use
this feature to help write, compile, and debug CDDL definitions. The CDDL
Language-Sensitive Editor provides templates and menus to walk you through
CDDL options and syntax. It is especially useful for users unfamiliar with CDDL.

To invoke the Language-Sensitive Editor, type LSE at the DCL prompt. The
following· command, for example, creates a file ADDRESS.CDDL and displays a
CDDL record definition template to guide you through the process of describing a
CDDL record:

$ LSE ADDRESS.COOL

When LSE compiles your source definition, it expects a file type of .CDDL. The
CDDL compiler now recognizes both file types .CDDL and .DDL.

E.2 /DIAGNOSTICS Qualifier for COOL Command

The /DIAGNOSTICS qualifier with the CDDL command creates a diagnostics file
that lists errors occurring during compilation. /DIAGNOSTICS is designed for
use from the LSE environment. /DIAGNOSTICS lists errors in a file that has the
default name of your definition file and the extension .DIA. The diagnostic file is
reserved for use by DIGITAL. LSE uses the diagnostic file to display diagnostic
messages and to position the cursor on the line and column where a source error
exists.

You cannot use /DIAGNOSTICS with CDDL/RECOMPILE.

For complete information on using LSE, see the VAX Language-Sensitive Editor
User's Guide.

E-1

E.3 The CDDL ALIGNED Clause

Be careful when you use the CDDL ALIGNED clause.

• You should not use the ALIGNED clause in template records. When CDDL
stores the template record, the position of an aligned field is fixed within the
record and is not changed when the record is copied into another record
definition. Therefore, the newly created field may not align properly in the new
record definition.

• Records created with the ALIGNED clause using previous versions of CDDL
may not have aligned fields properly. CDD Version 3.1 corrected this alignment
problem. However, if you recompile the records using the ALIGNED clause,
data already stored will no longer match the recompiled data definition.

E-2 Additional COOL Notes

In this index, a page number followed by
a "t" indicates a table reference. A page
number followed by an "e" indicates an
example reference. A page number
followed by an "f' indicates a figure
reference.

A
Access control lists, 1-4
Access privileges, 1-4
I ACL qualifier

with /VERSION, 3-10
with CDDL, 3-3

ALIGNED field attribute, 2-3
ARRAY field attribute, 2-5
Arrays

ARRAY field attribute, 2-5
OCCURS ... DEPENDING field

attribute, 2-42 to 2-44
OCCURS field attribute, 2-40

I AUDIT qualifier
with CDDL, 3-4

B

with CDDL/RECOMPILE, 3-11
with COPY field descriptions, 2-14

BASE specification in DATATYPE
clause, 2-16, 2-18

BASIC-specific field attributes
See Field attribute clauses

BIT data type, 2-16
BLANK WHEN ZERO field attribute, 2-7

BYTE data type, 2-18

c
CDD$DEFAULT, 1-4
CDD$TOP, 1-3
CDD$VERSION _ LIMI'l', 3-6
CDDL command, 3-3 to 3-7

I ACL qualifier, 3-3
I AUDIT qualifier, 3-4
/DIAGNOSTICS qualifier, 3-5
/LISTING qualifier, 3-5
/PATH qualifier, 3-5
/REPLACE qualifier, 3-5
/V2 qualifier, 3-6
/VERSION qualifier, 3-6

CDDL compiler, 3-1
CDDL data types, 2-16 to 2-19

decimal string, 2-18
fixed point, 2-17
floating point, 2-16 to 2-17

CDDL source files

Index

examples source file, A-1 to A-6
CDDL/RECOMPILE command, 3-10 to

3-14
Compiler, CDDL, 3-1
COMPUTED BY DATATRIEVE field

attribute, 2-8
CONDITION NAME field attribute, 2-10
COPY field

in COPY field descriptions, 2-13
COPY field description statements, 2-13

to 2-14

lndex-1

D
D _FLOATING COMPLEX data type,

2-17
D _FLOATING data type, 2-16
Data types

CDDL, 2-16 to 2-19
decimal string, 2-18
fixed point, 2-17
floating point, 2-16 to 2-17

DATATRIEVE-specific field attributes
See Field attribute clauses

DATATYPE field attribute, 2-15
DATE data type, 2-16
Decimal string data types, 2-18
Default dictionary directories, 1-4
DEFAULT_ VALUE field attribute, 2-21
DEFINE

CDDL source file statement, 2-23 to
2-25

DESCRIPTION
CDDL clause, 2-26 to 2-27

/DIAGNOSTICS qualifier
with CDDL, 3-5

Dictionary directories, 1-1, 1-3
default, 1-4
root, 1-3

Dictionary objects, 1-1
Dictionary path names, 1-3

full, 1-3
relative, 1-4

Dictionary types, 1-1
DIGITS specification

in DATATYPE clause, 2-17, 2-18
Directories

default dictionary, 1-4
dictionary, 1-1, 1-3
root dictionary, 1-3

Directory hierarchy, 1-1, 1-3
sample, 1-2

E
EDIT_ CODE field attribute, 2-28
EDIT_ STRING field attribute, 2-29
EDIT_ WORD field attribute clause, 2-30
Eightbit characters

in field names, 2-1
Elementary field description statements,

2-31 to 2-32

lndex-2

END

F

CDDL source file statement, 2-23 to
2-25

F _FLOATING COMPLEX data type,
2-17

F _FLOATING data type, 2-17
Field attribute clauses

ALIGNED, 2-3
ARRAY, 2-5
BLANK WHEN ZERO, 2-7
COMPUTED BY DATATRIEVE, 2-8
CONDITION NAME, 2-10
DATATYPE, 2-15
DEFAULT_ VALUE, 2-21
EDIT_ CODE, 2-28
EDIT_ WORD, 2-30
EDITSTRING, 2-29
INITIAL_ VALUE, 2-33 to 2-34
JUSTIFIED RIGHT, 2-35
MISSING_ VALUE, 2-36
NAME, 2-38
OCCURS, 2-40
OCCURS ... DEPENDING, 2-42 to

2-44
PICTURE, 2-45
QUERY_ HEADER, 2-4 7
QUERY _NAME, 2-49
VALID FOR DATATRIEVE IF, 2-54
with VAX BASIC, 2-38
with VAX COBOL, 2-7, 2-10, 2-35, 2-38,

2-45
with VAX DATATRIEVE, 2-8, 2-21,

2-29, 2-36, 2-45, 2-47, 2-49, 2-54
with VAX PL/I, 2-38, 2-45

Field description statements
COPY, 2-13 to 2-14
elementary, 2-31 to 2-32
STRUCTURE, 2-51to2-53
VARIANTS, 2-55 to 2-61

Fixed point data types, 2-1 7
Floating point data types, 2-16
FRACTIONS specification

in DATATYPE clause, 2-17, 2-18, 2-19
Full dictionary path names, 1-3
Fully qualified field names, 2-43, 2-59

G
G _FLOATING COMPLEX data type,

2-17
G_FLOATING data type, 2-17

H
H_FLOATING COMPLEX data type,

2-17
H_FLOATING data type, 2-17
Hexadecimal numbers

specifying, 2-12, 2-34
Hierarchy, directory, 1-3
History lists, 1-4

INITIAL_ VALUE field attribute, 2-33 to
2-34

J
JUSTIFIED RIGHT field attribute, 2-35

L
LEFT OVERPUNCHED NUMERIC data

type, 2-19
LEFT SEPARATE NUMERIC data type,

2-19
/LISTING qualifier

with CDDL, 3-5
with CDDL/RECOMPILE, 3-11

Literals
specifying hexadecimal and octal, 2-12,

2-34
LONGWORD data type, 2-18

M
MISSING_ VALUE field attribute, 2-36

N
NAME field attribute, 2-38

0
Objects

dictionary, 1-1
OCCURS . . . DEPENDING field

attribute, 2-42 to 2-44
OCCURS field attribute, 2-40

Octal numbers
specifying, 2-12, 2-34

OCTAWORD data type, 2-18

p

PACKED DECIMAL data type, 2-18
Path names, 1-3

full, 1-3
relative, 1-4

/PATH qualifier
with CDDL, 3-5
with CDDL/RECOMPILE, 3-12

PICTURE field attribute, 2-45
PL/I-specific field attributes

See Field attribute clauses
POINTER data type, 2-16
Privileges, access, 1-4

Q
QUADWORD data type, 2-18
QUERY_ HEADER field attribute, 2-4 7
QUERY_ NAME field attribute, 2-49

R
Redefines

See VARIANTS field description
statements

Relative dictionary path names, 1-4
Relative path names, 1-4
/REPLACE qualifier

with CDDL, 3-5
RIGHT OVERPUNCHED NUMERIC data

type, 2-19
RIGHT SEPARATE NUMERIC data type,

2-19
Root dictionary directory, 1-3
RPG

EDIT_ CODE FOR, 2-28
EDIT_ WORD FOR, 2-30

RPG II-specific field attributes
See Field attribute clauses
See field attribute clauses

s
SCALE specification

in DATATYPE clause, 2-16, 2-17, 2-18
to 2-19

lndex-3

SIGNED NUMERIC data type
See ZONED NUMEE.IC data type

STRUCTURE field description state­
ments, 2-51to2-53

Subdictionaries, 1-1

T
Tag value clause

with VARIANTS field descriptions, 2-59
Tag variable, 2-58 to 2-61

with VARIANTS field descriptions, 2-58
Template record

in COPY field descriptions, 2-13
TEXT data type, 2-16
Types, dictionary, 1-1

u
Unnamed fields

in elementary field descriptions, 2-31
in STRUCTURE field description

statements, 2-52
UNSIGNED NUMERIC data type, 2-18

lndex-4

UNSPECIFIED data type, 2-16

v
/V2 qualifier

with CDDL, 3-6
with CDDL/RECOMPILE, 3-12

VALID FOR DATATRIEVE IF field
attribute, 2-54

VARIANTS field description statements,
2-55 to 2-61

VARYING STRING data type, 2-16
/VERSION qualifier

with CDDL, 3-6
with CDDL/RECOMPILE, 3-12

Versions
maximum number of, 3-6

VIRTUAL FIELD data type, 2-16
with COMPUTED BY

DATATRIEVE, 2-8

w
WORD data type, 2-18

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040
before placing your electrpnic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using
a 1200- or 2400-baud modem. If you need assistance using the Electronic Store,
call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

lnternal1

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local DIGITAL subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local DIGITAL subsidiary or
approved distributor

SOC Order Processing - WMO/E15
or
Software Distribution Center
Digital Equipment Corporation
Westminster, Massachusetts 01473

1For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments VAX Common Data Dictionary
Data Definition Language

Reference Manual
AA-K0850-TE

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more /less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Additional comments or suggestions to improve this manual:

Good

D
D
D
D
D
D
D
D

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Dept.

Phone

Fair Poor

D D
D D
D D
D D
D D
D D
D D
D D

Date

Do Not Tear· Fold Here and Tape

--------------i----------------~2~;~---
1n the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 •• 1.1 ••• 1.11 •• 1

I
I
I
I
I
I

Do Not Tear - Fold Here --

Reader's Comments VAX Common Data Dictionary
Data Definition Language

Reference Manual
AA-K0850-TE

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more /less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Additional comments or suggestions to improve this manual:

Good

D
D
D
D
D
D
D
D

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Dept.

Phone

Fair Poor

D D
D D
D D
D D
D D
D D
D D
D D

Date

Do Not Tear - Fold Here and Tape

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

I II 11111II1 II 111 1 II 11 .. 1.11. 1 .. 1.1 .. 1 •• 1. 1 ••• 1.11 •• 1

No Postage
Necessary
if Mailed

in the
United States

- Do Not Tear - Fold Here --

I
I
I
I
I
I
1~
1.5
I~
l"CI
I~
10
I Cl
I~
I .S
1<
1:;
IU
I
I

Reader's Survey VAX Common Data Dictionary
Data Definition Language

Reference Manual
AA-K085D-TE

1. How useful are the following methods for finding information in this manual?

Most Very Moderately Not Very Not at All
Table of contents D D D D D
Divider pages (if applicable) D D D D D
Index (circle: book or master) D D D D D

. Other (specify) D D D D D

2. What feature do you most want to see improved in this manual? Why?

3. How helpful are these sources when you use the software this manual describes?

Most Very Moderately Not Very Not at All
Handbook or user's guide D D D D D
Introduction or overview D D D D D
Reference manual D D D D D
Quick reference guide D D D D D
Online help D D D D D
Online tutorial (if available) D D D D D
Other: colleague, telephone support D D D D D
services (specify)

4. What business tasks are you using the software described by this manual to solve (for
example: billing, funds transfer, report writing)?

5. Please estimate, if you can, how long the following VAX Information Architecture
products have been used at your site:

VAXACMS __ _ VAX COD/Plus __ _ VAX DATATRIEVE __ _

VAX Data Distributor ---- VAX DBMS ___ _ VAX RALLY __ _
VAX Rdb/VMS __ _ VAXSQL __ _ VAX TEAMDATA __ _
VAXTDMS __ _ VIDA with IDMS/R __ _

6. This release of VAX Information Architecture documentation uses a 7x9 format for
quick reference guides. Do you prefer such books in a 7x9 or a 4x8 pocket guide
format? -------------------------------

Thank you for your assistance.

May we contact you at work for further information? D Yes D No

Name

Company

Mailing Address

Dept.

Phone

Date

Do Not Tear - Fold Here and Tape

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK02-2/N53
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 • 11.11 11 1.11.1 .. 1.1 .. 1 •• 1.1 ••• 1.11 .. 1

No Postage
Necessary
if Mailed

in the
United States

- Do Not Tear - Fold Here --

,. ,.
It
!

