
VMS

VMS 1/0 Users Reference Manual: Part II

Order Number AA-LA85A-TE

VMS 1/0 User's Reference
Manual: Part II

Order Number: AA-LA85A-TE

April 1988

This document contains the information necessary to interface directly
with the communications 1/0 device drivers supplied as part of the VMS
operating system. Several examples of programming techniques are
included. This document does not contain information on 1/0 operations
using VAX Record Management Services.

Revision/Update Information: This document supersedes the VMS
1/0 User's Reference Manual: Part II,
Version 4.4.

Software Version: VMS Version 5.0

digital equipment corporation
maynard, massachusetts

April 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL Thin Wire
DEC/CMS EduSystem UNIBUS
DEC/MMS IAS VAX
DECnet MASSBUS VAXcluster
DECsystem-10 PDP VMS
DECSYSTEM-20 PDT VT
DECUS RSTS

~D~UD~DTM DECwriter RSX

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA & PUERTO Rico* CANADA INTERNATIONAL

·zK4514

Digital Equipment Corporation Digital Equipment
P.O. Box CS2008 of Canada Ltd.

Digital Equipment Corporation
PSG Business Manager

Nashua, New Hampshire 100 Herzberg Road
03061 Kanata, Ontario K2K 2A6

Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire, Alaska, and Hawaii call 603-884-6660.
In Canada call 800-267-6215.
*

c/o Digital's local subsidiary
or approved distributor

Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).
Internal orders should be placed through the Software Distribution Center (SOC), Digital Equipment
Corporation, Westminster, Massachusetts 01473.

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format the
text, generate a table of contents and index, and paginate the entire document.
Writers can print the document on the terminal or line printer, or they can use
DIGITAL-supported devices, such as the LN03 laser printer and PostScript®
printers (PrintServer 40 or LN03R ScriptPrinter), to produce a typeset-quality
copy containing integrated graphics.

® PostScript is a trademark of Adobe Systems, Inc.

Contents

PREFACE xv

NEW AND CHANGED FEATURES xix

CHAPTER 1 DMC11/DMR11 INTERFACE DRIVER 1-1

1.1 SUPPORTED DMC11 SYNCHRONOUS LINE INTERFACES 1-1
1.1.1 DIGITAL Data Communications Message Protocol

(DDCMP) 1-1

1.2 DRIVER FEATURES AND CAPABILITIES 1-2
1.2.1 Mailbox Usage 1-2
1.2.2 Quotas 1-3
1.2.3 Power Failure 1-3

1.3 DEVICE INFORMATION 1-3

1.4 DMC11 FUNCTION CODES 1-5
1.4.1 Read 1-5
1.4.2 Write 1-6
1.4.3 Set Mode 1-6
1.4.3. 1 Set Mode and Set Characteristics • 1-7
1.4.3.2 Enable Attention AST • 1-7
1.4.3.3 Set Mode and Shut Down Unit • 1-8
1.4.3.4 Set Mode and Start Unit • 1-8

1.5 1/0 STATUS BLOCK 1-9

1.6 PROGRAMMING EXAMPLE 1-10

v

Contents

CHAPTER 2 DMP11 AND DMF32 INTERFACE DRIVERS 2-1

2.1 SUPPORTED DEVICES 2-1

2.2 DRIVER FEATURES AND CAPABILITIES 2-1
2.2.1 Character-Oriented Protocols and HDLC Bit Stuff Mode 2-3
2.2.2 Quotas 2-3
2.2.3 Power Failure 2-3

2.3 DEVICE INFORMATION 2-3

2.4 DMP11 AND DMF32 FUNCTION CODES 2-6
2.4.1 Read 2-7
2.4.2 Write 2-8
2.4.3 Set Mode and Set Characteristics 2-9
2.4.3.1 Set Controller Mode • 2-9
2.4.3.2 Additional Features of the DMF32 Driver• 2-12
2.4.3.3 Framing Routine Interface for Character-Oriented

Protocols• 2-13
2.4.3.4 Use of the DMF32 Driver Transmitter Interface in

Character-Oriented Mode • 2-14
2.4.3.5 The 10$_CLEAN Function • 2-15
2.4.3.6 Set Tributary Mode • 2-15
2.4.3.7 Shutdown Controller• 2-18
2.4.3.8 Shutdown Tributary • 2-18
2.4.3.9 Enable Attention AST• 2-19
2.4.4 Sense Mode 2-19
2.4.4.1 Read Internal Counters • 2-20
2.4.5 Diagnostic Support 2-23
2.4.5.1 Set Line Unit Modem Status • 2-24
2.4.5.2 Read Line Unit Modem Status • 2-24
2.4.5.3 Read Device Status Slot • 2-25

2.5 1/0 STATUS BLOCK 2-25

2.6 PROGRAMMING EXAMPLE 2-26

vi

Contents

CHAPTER 3 DR11-W AND DRV11-WA INTERFACE DRIVER 3-1

3.1 SUPPORTED DEVICES 3-1
3.1.1 Device Differences 3-3
3.1.2 DRV11-WA Installation 3-3
3.1.2.1 Type of Addressing • 3-3
3.1.2.2 Device Address and Interrupt Vector Address Selection • 3-3
3.1.3 DR11-W and DRV11-WA Transfer Modes 3-4
3.1.4 DR11-W and DRV11-WA Control and Status Register

Functions 3-5
3.1.5 Data Registers 3-6
3.1.6 Error Reporting 3-6
3.1.7 Link Mode of Operation 3-6

3.2 DEVICE INFORMATION 3-8

3.3 DR11-W AND DRV11-WA FUNCTION CODES 3-9
3.3.1 Read 3-13
3.3.2 Write 3-13
3.3.3 Set Mode and Set Characteristics 3-13
3.3.3.1 Set Mode Function Modifiers • 3-14

3.4 1/0 STATUS BLOCK 3-15

3.5 PROGRAMMING EXAMPLE 3-16

CHAPTER4 DR32 INTERFACE DRIVER 4-1

4.1 SUPPORTED DEVICE 4-1
4.1.1 DR32 Device Interconnect 4-2

4.2 DR32 FEATURES AND CAPABILITIES 4-2
4.2.1 Command and Data Chaining 4-2
4.2.2 Far-End DR Device-Initiated Transfers 4-3
4.2.3 Power Failure 4-3
4.2.4 Interrupts 4-3

4.3 DEVICE INFORMATION 4-3

vii

Contents

4.4 PROGRAMMING INTERFACE 4-4
4.4.1 DR32-Application Program Interface 4-5
4.4.2 Queue Processing 4-5
4.4.2.1 Initiating Command Sequences• 4-7
4.4.2.2 Device-Initiated Command Sequences • 4-7
4.4.3 Command Packets 4-7
4.4.3.1 Length of Device Message Field • 4-9
4.4.3.2 Length of Log Area Field • 4-10
4.4.3.3 Device Control Code Field • 4-1 0
4.4.3.4 Control Select Field • 4-1 3
4.4.3.5 Suppress Length Error Field • 4-14
4.4.3.6 Interrupt Control Field • 4-15
4.4.3.7 Byte Count Field • 4-1 5
4.4.3.8 Virtual Address of Buffer Field • 4-1 5
4.4.3.9 Residual Memory Byte Count Field• 4-16
4.4.3.10 Residual DOI Byte Count Field • 4-1 6
4.4.3.11 DR32 Status Longword (DSL) • 4-1 6
4.4.3.12 Device Message Field • 4-18
4.4.3.13 Log Area Field • 4-1 9
4.4.4 DR32 Microcode Loader 4-19
4.4.5 DR32 Function Codes 4-20
4.4.5.1 Load Microcode • 4-20
4.4.5.2 Start Data Transfer • 4-20
4.4.6 High-Level Language Interface 4-23
4.4.6.1 XF$SETUP • 4-24
4.4.6.2 XF$ST ARTDEV • 4-26
4.4.6.3 XF$FREESET • 4-27
4.4.6.4 XF$PKTBLD • 4-28
4.4.6.5 XF$GETPKT • 4-31
4.4.6.6 XF$CLEANUP • 4-33
4.4.7 User Program-DR32 Synchronization 4-33
4.4.7.1 Event Flags • 4-33
4.4.7.2 AST Routines • 4-33
4.4.7.3 Action Routines • 4-34

4.5 1/0 STATUS BLOCK 4-34

4.6 PROGRAMMING HINTS 4-37
4.6.1 Command Packet Prefetch 4-38
4.6.2 Action Routines 4-39
4.6.3 Error Checking 4-39
4.6.4 Queue Retry Macro 4-39
4.6.5 Diagnostic Functions 4-39
4.6.6 The NOP Command Packet 4-40
4.6.7 Interrupt Control Field 4-40

viii

4.7
4.7.1
4.7.2

CHAPTER 5

5.1

5.2
5.2.1
5.2.2

5.3

5.4
5.4.1
5.4.2
5.4.3
5.4.3.1
5.4.3.2
5.4.3.3
5.4.3.4
5.4.3.5
5.4.4
5.4.4.1

5.5

CHAPTER 6

6.1
6.1.1
6.1.2
6.1.2.1
6.1.2.2
6.1.2.3
6.1.2.4

6.1.3

PROGRAMMING EXAMPLES
DR32 High-Level Language Program
DR32 Queue 1/0 Functions Program

ASYNCHRONOUS DDCMP INTERFACE DRIVER

SUPPORTED DEVICES

DRIVER FEATURES AND CAPABILITIES
Quotas
Power Failure

DEVICE INFORMATION

ASYNCHRONOUS DDCMP FUNCTION CODES
Read
Write
Set Mode and Set Characteristics

Set Controller Mode • 5-6
Set Tributary Mode • 5-8
Shutdown Controller • 5-9
Shutdown Tributary • 5-9
Enable Attention AST• 5-9

Sense Mode
Read Internal Counters• 5-10

1/0 STATUS BLOCK

ETHERNET/802 DEVICE DRIVERS

ETHERNET/802 CHARACTERISTICS
Driver Initialization and Operation
Ethernet Addresses

Format of Ethernet Addresses • 6-2
Ethernet Address Classifications • 6-4
Selecting an Ethernet Physical Address • 6-4
DIGIT AL Ethernet Physical and Multicast Address
Values• 6-4

IEEE 802 Support

Contents

4-40
4-40
4-47

5-1

5-1

5-1
5-1
5-1

5-2

5-4
5-5
5-5
5-6

5-10

5-14

6-1

6-1
6-2
6-2

6-5

ix

Contents

6.2 PACKET FORMATS 6-6
6.2.1 Ethernet Packet Format 6-6
6.2.1.1 Ethernet Protocol Types • 6-7
6.2.1.2 Ethernet Packet Padding • 6-8
6.2.1.3 Protocol Type Sharing• 6-9
6.2.2 IEEE 802 Packet Format 6-10
6.2.2.1 Class I Service Packet Format • 6-1 0
6.2.2.2 User-Supplied Service Packet Format • 6-11
6.2.2.3 Service Access Point (SAP) Use and Restrictions • 6-12
6.2.3 IEEE 802 Extended Packet Format 6-13

6.3 DEVICE INFORMATION 6-14

6.4 ETHERNET/802 FUNCTION CODES 6-16
6.4.1 Read 6-17
6.4.2 Write 6-19
6.4.3 Set Mode and Set Characteristics 6-21
6.4.3.1 Set Controller Mode • 6-22
6.4.3.2 Set Mode Parameters for Packet Formats • 6-34
6.4.3.3 Set Mode Parameter Validation • 6-35
6.4.3.4 Shutdown Controller • 6-36
6.4.3.5 Enable Attention AST• 6-36
6.4.4 Sense Mode and Sense Characteristics 6-37

6.5 1/0 STATUS BLOCK 6-39

6.6 APPLICATION PROGRAMMING NOTES 6-40
6.6.1 Promiscuous Mode 6-40
6.6.2 Ethernet Programming Example 6-41
6.6.3 IEEE 802 Programming Example 6-47

APPENDIX A 1/0 FUNCTION CODES A-1

A.1 DMC11 /DMR11 INTERFACE DRIVER A-1

A.2 DMP11 AND DMF32 INTERFACE DRIVERS A-2

A.3 DR11-W/DRV11-WA INTERFACE DRIVER A-3

A.4 DR32 INTERFACE DRIVER A-4

x

A.5

A.6

INDEX

EXAMPLES
1-1

2-1

3-1

4-1

4-2

6-1

6-2

FIGURES
1-1

1-2

1-3

1-4

2-1

2-2

2-3

2-4

2-5

2-6

2-7

3-1

3-2

3-3

4-1

4-2

4-3

4-4

4-5

ASYNCHRONOUS DDCMP DUP11 INTERFACE DRIVER

ETHERNET/802 DEVICE DRIVERS

DMC11/DMR11 Program Example

DMP11 /DMF32 Program Example

DR11-W/DRV11-WA Program Example
(XAMESSAGE.MAR)

DR32 High-Level Language Program Example

DR32 Queue 1/0 Functions Program Example

Ethernet Program Example

IEEE 802 Programming Example

Mailbox Message Format

DVl$_DEVDEPEN D Returns

P1 Characteristics Block

IOSB Contents

Typical DMP11 /DMF32 Multipoint Configuration

DVl$_DEVDEPEND Returns

P1 Characteristics Buffer (Set Controller)

P2 Extended Characteristics Buffer (Set Controller)

P1 Characteristics Buffer (Set Tributary)

P2 Extended Characteristics Buffer (Sense Mode)

IOSB Contents

Typical DR11-W/DRV11-WA Device Configurations

P1 Characteristics Buffer

IOSB Contents - Read and Write Functions

Basic DR32 Configuration

Command Block (Queue Headers)

DR32 Command Packet Queue Flow

DR32 Command Packet

Data Transfer Command Table

Contents

A-4

A-6

1-11

2-27

3-19

4-41

4-47

6-42

6-47

1-3

1-4

1-7

1-10

2-2

2-4

2-10

2-11

2-16

2-21

2-26

3-2

3-14

3-15

4-1

4-6

4-8

4-9

4-21

xi

Contents

4-6 Action Routine Synchronization 4-3S

4-7 1/0 Functions IOSB Contents 4-36

S-1 DVl$_DEVDEPEND Returns S-2

S-2 P2 Characteristics Buffer (Set Controller) S-7

S-3 P2 Extended Characteristics Buffer (Sensemode) S-12

S-4 IOSB Contents S-1S

6-1 Typical Ethernet Configuration 6-3

6-2 Ethernet Packet Format 6-7

6-3 Class I Service Packet Format 6-10

6-4 User-Supplied Service Packet Format 6-12

6-S DSAP and SSAP Format 6-13

6-6 IEEE 802 Extended Packet Format 6-14

6-7 DVl$_DEVDEPEND Returns 6-1S

6-8 Read Function PS Buffer 6-18

6-9 Write Function PS Buffer 6-20

6-10 P2 Extended Characteristics Buffer 6-22

6-11 Sense Mode P1 Characteristics Buffer 6-38

6-12 Sense Mode P2 Extended Characteristics Buffer 6-39

6-13 IOSB Contents 6-40

TABLES
1-1 Supported DMC11 Options 1-1

1-2 DMC11/DMR11 Device Characteristics 1-4

1-3 DMC11 /DMR11 Unit Characteristics 1-4

1-4 DMC11 /DMR11 Unit and Line Status 1-S

1-S DMC11 /DMR11 Error Summary Bits 1-S

2-1 DMP11 and DMF32 Device Characteristics 2-4

2-2 DMP11 and DMF32 Unit Characteristics 2-4

2-3 DMP11 and DMF32 Unit and Line Status 2-S

2-4 Error Summary Bits 2-S

2-S DMP11 and DMF32 Errors 2-S

2-6 DMP11 and DMF32 1/0 Functions 2-6

2-7 DMP11 and DMF32 Characteristics 2-10

2-8 P2 Extended Characteristics Values 2-11

2-9 P2 Extended Characteristics Values (DMF32 Driver) 2-12

2-10 P2 Extended Characteristics Values 2-16

2-11 DDCMP Controller Counter Parameter IDs 2-22

2-12 LAPB Controller Counter Parameter I Os 2-22

xii

Contents

2-13 Tributary Counter Parameter I Os 2-22

3-1 Control and Status Register FNCT and STATUS Bits
(Link Mode) 3-7

3-2 DR11-W and DRV11-WA Device-Independent
Characteristics 3-8

3-3 DR 11-W and DRV11-WA Device-Dependent
Characteristics 3-9

3-4 DR11-W Function Codes 3-9

3-5 El R and CSR Bit Assignments 3-16

3-6 XAMESSAGE Program Flow 3-18

4-1 DR32 Device Characteristics 4-4

4-2 Device Control Code Descriptions 4-11

4-3 DR32 Status Longword (DSL) Status Bits 4-17

4-4 VMS Procedures for the DR32 4-23

4-5 Device-Dependent IOSB Returns for 1/0 Functions 4-36

5-1 Device Characteristics 5-2

5-2 Asynchronous DDCMP Unit and Line Status 5-3

5-3 Error Summary Bits 5-3

5-4 Asynchronous DDCMP Errors 5-3

5-5 Asynchronous DDCMP 1/0 Functions 5-4

5-6 P2 Characteristics Values (Set Controller) 5-7

5-7 P2 Characteristics Values (Set Tributary) 5-8

5-8 Controller Counter Parameter I Os 5-13

5-9 Tributary Counter Parameter I Os 5-13

6-1 Supported Communication Devices 6-1

6-2 Ethernet Controller Device Characteristics 6-15

6-3 Ethernet Controller Unit and Line Status 6-15

6-4 Error Summary Bits 6-16

6-5 Ethernet/802 1/0 Functions 6-16

6-6 P2 Extended Characteristics Values 6-23

6-7 Set Mode Parameters for Packet Formats 6-35

6-8 Rules for Promiscuous Mode Operation 6-41

xiii

Preface

Manual Objectives
This manual provides the information necessary to interface directly with
1/0 device drivers supplied as part of the VMS operating system. It is not
the objective of this manual to provide information on all aspects of VMS
input/output (1/0) operations.

Intended Audience
This manual is intended for system programmers who want to save time
and space by using 1/0 devices directly. If you do not require such detailed
knowledge of the 1/0 drivers, use the device-independent services described
in the VMS Record Management Services Manual. Readers are expected to have
some experience with VAX MACRO or another high-level assembly language.

Document Structure
This manual is organized into six chapters and one appendix, as follows:

• Chapters 1 through 6 describe the use of communications device drivers
supported by VMS.

Chapter 1 discusses the DMCl 1/DMRl 1 interface driver.

Chapter 2 discusses the DMPl 1 and DMF32 interface drivers.

Chapter 3 discusses the DRll-W and DRVll-WA interface drivers.

Chapter 4 discusses the DR32 interface driver.

Chapter 5 discusses the Asynchronous DDCMP interface driver.

Chapter 6 discusses the Ethernet/802 device drivers.

• The appendix summarizes the function codes, arguments, and function
modifiers used by these drivers.

Associated Documents
For additional information, refer to the following documents:

• VMS System Services Reference Manual

• VAX Software Handbook

• PDP-11 Peripherals Handbook

• VAX FORTRAN User's Guide

• Guide to VMS Programming Resources

• VMS Record Management Services Manual

• VMS Networking Manual

• VAX-11 2780/3780 Protocol Emulator User's Guide

xv

Preface

Conventions

xvi

• VMS System Messages and Recovery Procedures Reference Volume

• VMS Device Support Manual

Convention

CTRL/C

$SHOW TIME
05-JUN-1988 11 :55:22

$ TYPE MYFILE.DAT

input-file, ...

[logical-name]

quotation marks
apostrophes

Meaning

In examples, a key name (usually abbreviated)
shown within a box indicates that you press
a key on the keyboard; in text, a key name is
not enclosed in a box. In this example, the key
is the RETURN key. (Note that the RETURN
key is not usually shown in syntax statements
or in all examples; however, assume that you
must press the RETURN key after entering a
command or responding to a prompt.)

A key combination, shown in uppercase with a
slash separating two key names, indicates that
you hold down the first key while you press the
second key. For example, the key combination
CTRL/C indicates that you hold down the key
labeled CTRL while you press the key labeled C.
In examples, a key combination is enclosed in a
box.

In examples, system output (what the system
displays) is shown in black. User input (what
you enter) is shown in red.

In examples, a vertical series of periods, or
ellipsis, means either that not all the data that
the system would display in response to a
command is shown or that not all the data a
user would enter is shown.

In examples, a horizontal ellipsis indicates
that additional parameters, values, or other
information can be entered, that preceding
items can be repeated one or more times, or
that optional arguments in a statement have
been omitted.

Brackets indicate that the enclosed item is
optional. (Brackets are not, however, optional
in the syntax of a directory name in a file
specification or in the syntax of a substring
specification in an assignment statement.)

The term quotation marks is used to refer
to double quotation marks (") . The term
apostrophe (·) is used to refer to a single
quotation mark.

Convention

numbers

Preface

Meaning

Hyphens in coding examples indicate that
additional arguments to the request are provided
on the line that follows. For example:

CMDOFAB: $FAB fac=put,fnm=sys$output: ,-
mrs=132,rat=cr,rfm=var

CMDORAB: $RAB ubf=cmdbuf ,usz=cmdbsz,-
fab=cmdofab

Unless otherwise noted, all numbers in the
text are assumed to be decimal. Nondecimal
radixes-binary, octal, or hexadecimal-are
explicitly indicated in the coding examples.

xvii

New and Changed Features

This revision of the VMS 1/0 User's Reference Manual: Part II reflects the
technical changes since VMS Version 4.4. The following chapters contain
new or changed information:

• Chapter 2 describes the DMPll and DMF32 interface drivers only.
Discussion of the asynchronous DDCMP interface driver has been moved
to Chapter 5.

• Chapter 5 describes the asynchronous DDCMP interface driver. The
DUPl 1 interface driver, which had been described in this chapter, is no
longer supported.

• Chapter 6 describes the Ethernet/802 device drivers, that is, the drivers
for the DEUNA, DEQNA, DELUA, DEBNA, DESVA, and DELQA.

xix

1 DMC11 /DMR11 Interface Driver

This chapter describes the use of the VMS DMCl 1 synchronous
communications line interface driver. (The DMRl 1 synchronous
communications line interface uses the same driver in DMC compatibility
mode; references to the DMCl 1 driver also imply the use of the DMRl 1
driver operating in DMCl 1 compatibility mode.) The DMCl 1 provides a
direct-memory-access (DMA) interface between two computer systems using
the DIGITAL Data Communications Message Protocol (see Section 1.1.1).
The DMCl 1 supports DMA data transfers of up to 16K bytes at rates of up
to 1 million baud for local operation over coaxial cable and 56,000 baud
for remote operation using modems. Both full- and half-duplex modes are
supported.

The DMCll is a message-oriented communications line interface used
primarily to link two separate but cooperating computer systems.

1.1 Supported DMC11 Synchronous Line Interfaces

1.1.1

Table 1-1 lists the DMCll options supported by the VMS operating system.

Table 1-1 Supported DMC11 Options

Type Use

DMC11-AR with DMC11-FA
DMC 11-AR with DMC 11-DA

Remote DMC11 and EIA or V35/DDS line
unit

DMC11-AL with DMC11-MD
DMC11-AL with DMC11-MA

Local DMC 11 and 1 M bps or 56 bps

DIGITAL Data Communications Message Protocol (DDCMP)
To ensure reliable data transmission, the DIGITAL Data Communications
Message Protocol (DDCMP) has been implemented, using a high-speed
microprocessor. For remote operations, a DMCll can communicate with a
different type of synchronous interface (or even a different type of computer),
provided the remote system has implemented DDCMP.

DDCMP detects errors on the communication line interconnecting the systems
using a 16-bit cyclic redundancy check (CRC). Errors are corrected, when
necessary, by automatic message retransmission. Sequence numbers in
message headers ensure that messages are delivered in the proper order with
no omissions or duplications.

The DDCMP specification (Order No. AA-Kl 75A-TC) provides more detailed
information on DDCMP.

1-1

DMC11 /DMR11 Interface Driver
1 .2 Driver Features and Capabilities

1.2 Driver Features and Capabilities

1.2.1 Mailbox Usage

1-2

DMCl 1 driver capabilities include the following:

• A nonprivileged QIO interface to the DMCl 1 (allows use of the DMCl 1
as a raw-data channel)

• Unit attention conditions transmitted through attention ASTs and mailbox
messages

• Both full- and half-duplex operation

• Interface design common to all communications devices supported by the
VMS operating system

• Error logging of all DMCll microprocessor and line unit errors

• Online diagnostics

• Separate transmit and receive quotas

• Assignment of several read buffers to the device

The following sections describe mailbox usage and I/O quotas.

The device owner process can associate a mailbox with a DMCll by using
the Assign 1/0 Channel ($ASSIGN) system service. (See the VMS System
Services Reference Manual.) The mailbox is used to receive messages that
signal attention conditions about the unit. As illustrated in Figure 1-1, these
messages have the following content and format:

• Message type. This can be any one of the following:

MSG$_)(M_DATAVL-Data is available.

MSG$_)(M_SHUTDN-The unit has been shut down.

MSG$_)(M_ATTN-A disconnect, timeout, or data check occurred.

The $MSGDEF macro is used to define message types.

• Physical unit number of the DMCl 1

• Size (count) of the ASCII device name string

• Device name string

1.2.2 Quotas

1.2.3 Power Failure

DMC11 /DMR11 Interface Driver
1 .2 Driver Features and Capabilities

Figure 1-1 Mailbox Message Format

31 16 15 8 7 0

unit 1 type

l count

device name

ZK-699-82

Transmit operations are considered direct 1/0 operations and are limited by
the process's direct 1/0 quota.

The quotas for the receive buffer free list (see Section 1.4.3.4) are the process's
buffered 1/0 count and buffered 1/0 byte limit. After startup, the transient
byte count and the buffered 1/0 byte limit are adjusted.

When a system power failure occurs, no DMCl 1 recovery is possible. The
device is in a fatal error state and is shut down.

1.3 Device Information
You can obtain information on DMCll/DMRll device characteristics by
using the Get Device/Volume Information ($GETDVI) system service. (See
the VMS System Services Reference Manual.)

$GETDVI returns DMCll/DMRll device characteristics when you specify
the item code DVl$_DEVCHAR. Table 1-2 lists these characteristics, which
are defined by the $DEVDEF macro.

DVl$_DEVTYPE and DVl$_DEVCLASS return the device type and class
names, which are defined by the $DCDEF macro. The device type for the
DMCl 1 is DT$_DMC11; the device type for the DMRl 1 is DT$_ DMRl 1
(only after the device has been started once). The device class for the DMCl 1
is DC$_SCOM.

DVl$_DEVBUFSIZ returns the maximum message size. The maximum
message size is the maximum send or receive message size for the unit.
Messages greater than 512 bytes on modem-controlled lines are more prone
to transmission errors and therefore may require more retransmissions.

1-3

DMC11 /DMR11 Interface Driver
1 .3 Device Information

1-4

Table 1-2 DMC11/DMR11 Device Characteristics

Characteristic 1

DEV$M_NET

DEV$M_ODV

DEV$M_IDV

Meaning

Dynamic Bit (Conditionally Set)

Network device

Static Bits (Always Set)

Output device

Input device

1 Defined by the $DEVDEF macro

DVl$_DEVDEPEND returns the DMCll/DMRll unit characteristics bits, the
unit and line status bits, and the error summary bits in a longword field, as
shown in Figure 1-2.

Figure 1-2 DVl$_DEVDEPEND Returns

31 24 23 16 15 8 7 0

not used error unit and line unit
summary status characteri sties

ZK-5930-HC

The unit characteristics bits govern the DDCMP operating mode. They are
defined by the $XMDEF macro and can be read or set. Table 1-3 lists the
unit characteristics values and their meanings.

Table 1-3 DMC11 /DMR11 Unit Characteristics

Characteristic

XM$M_CHR_MOP

XM$M_CHR_SLA VE

XM$M_CHR_HDPLX

XM$M_CHR_LOOPB

XM$M_CHR_MBX

Meaning1

DDCMP maintenance mode.

DDCMP half-duplex slave station mode.

DDCMP half-duplex mode.

DDCMP loopback mode.

The status of the mailbox associated with the unit.
If this bit is set, the mailbox is enabled to receive
messages signaling unsolicited data. (This bit can also
be changed as a subfunction of read or write functions.)

1 Section 1 . 1 . 1 describes DDCMP

The status bits show the status of. the unit and the line. The values are
defined by the $XMDEF macro. They can be read, set, or cleared as indicated.
Table 1-4 lists the status values and their meanings.

DMC11 /DMR11 Interface Driver
1 . 3 Device Information

Table 1-4 DMC11 /DMR11 Unit and Line Status

Status

XM$M_STS_ACTIVE

XM$M_STS_ TIMO

XM$M_STS_ORUN

XM$M_STS_DCHK

XM$M_STS_DISC

Meaning

Protocol is active. This bit is set when
10$_SETMODE!IO$_STARTUP is complete and
is cleared when the unit is shut down (read only).

Timeout. If set, indicates that the receiving computer
is unresponsive (read or clear).

Data overrun. If set, indicates that a message was
received but lost because there is no receive buffer
(read or clear).

Data check. If set, indicates that a retransmission
threshold has been exceeded (read or clear).

Disconnect. If set, indicates that the data set ready
(DSR) modem line went from on to off (read or clear).

The error summary bits are set only when the driver must shut down the
DMCl 1 interface because a fatal error occurred. These are read-only bits
that are cleared by any of the 10$_SETMODE functions (see Section 1.4.3).
The XM$M_STS_ACTIVE status bit is clear if any error summary bit is set.
Table 1-5 lists the error summary bit values and their meanings.

Table 1-5 DMC11/DMR11 Error Summary Bits

Error Summary Bit

XM$M_ERR_MAINT

XM$M_ERR_ST ART

XM$M_ERR_LOST

XM$M_ERR_FATAL

Meaning

DDCMP maintenance message was received.

DDCMP ST ART message was received.

Data was lost when a message was received that
was longer than the specified maximum message
size.

An unexpected hardware or software error occurred.

1 .4 DMC11 Function Codes

1.4.1 Read

The basic DMCl 1 function codes are read, write, and set mode. All three
functions take function modifiers.

The VMS operating system provides the following read function codes:

• 10$__READLBLK-Read logical block

• 10$_READPBLK-Read physical block

• 10$__READVBLK-Read virtual block

Received messages are multibuffered in system dynamic memory and then
copied to the user's address space when the read operation is performed.

1-5

1.4.2

1.4.3

DMC11 /DMR11 Interface Driver
1.4 DMC11 Function Codes

Write

Set Mode

1-6

The read functions take the following two device/function-dependent
arguments:

• P 1-The starting virtual address of the buffer that is to receive data

• P2-The size of the receive buffer in bytes

The read functions can take the following function modifiers:

• 10$M_DSABLMBX-Disables use of the associated mailbox for
unsolicited data notification

• 10$M_NOW-Completes the read operation immediately if no message
is available

The VMS operating system provides the following write function codes:

• 10$_WRITELBLK-Write logical block

• 10$_WRITEPBLK-Write physical block

• 10$_WRITEVBLK-Write virtual block

Transmitted messages are sent directly from the requesting process's buffer.

The write functions take the following device- or function-dependent
arguments:

• Pl-The starting virtual address of the buffer containing the data to be
transmitted

• P2-The size of the buffer in bytes

The message size specified by P2 cannot be larger than the maximum send
message size for the unit (see Section 1.3). If a message larger than the
maximum size is sent, a status of SS$_DATAOVERUN is returned in the 1/0
status block.

The write functions can take the following function modifier:

• 10$M_ENABLMBX-Enable use of the associated mailbox

Set mode operations are used to perform protocol, operational, and program
and driver interface operations with the DMCl 1. The VMS operating system
defines the following types of set mode functions:

• Set mode

• Set characteristics

• Enable attention AST

• Set mode and shut down unit

• Set mode and start unit

1.4.3.1

1.4.3.2

DMC11 /DMR11 Interface Driver
1 .4 DMC11 Function Codes

Set Mode and Set Characteristics
The set mode and set characteristics functions set device characteristics such
as maximum message size. The VMS operating system provides the following
function codes:

• IO$_SETMODE-Set mode (no I/O privilege required)

• IO$_SETCHAR-Set characteristics (requires physical I/O privilege)

These two functions take the following device- or function-dependent
argument:

• Pl-The virtual address of the quadword characteristics buffer block
if the characteristics are to be set. If this argument is zero, only the
unit status and characteristics are returned in the I/O status block (see
Section 1.5). Figure 1-3 shows the Pl characteristics block.

Figure 1-3 P1 Characteristics Block

31 24 23 16 15 8 7 0

maximum message size type class

TPI error summary status characteristics

ZK-701-82

In the buffer designated by Pl the device class is DC$_SCOM. Section 1.3
describes the device types. The maximum message size describes the
maximum send or receive message size.

The second longword contains device- or function-dependent characteristics:
unit characteristics, status, error summary bits, and transmit pipeline count
(TPI). Any of the characteristics values and some of the status values can be
set or cleared (see Tables 1-3, 1-4, and 1-5).

If the unit is active (XM$M_STS_ACTIVE is set), the action of a set mode or
set characteristics function with a characteristics buffer is to clear the status
bits or the error summary bits. If the unit is not active, the status bits or the
error summary bits can be cleared, and the maximum message size, type,
device class, unit characteristics, and transmit pipeline count can be changed.

Enable Attention AST
The enable attention AST function enables an AST to be queued when an
attention condition occurs on the unit. An AST is queued when the driver
sets or clears either an error summary bit or any of the unit status bits, or
when a message is available and there is no waiting read request. The enable
attention AST function is legal at any time, regardless of the condition of the
unit status bits.

1-7

DMC11 /DMR11 Interface Driver
1.4 DMC11 Function Codes

1.4.3.3

1.4.3.4

1-8

The VMS operating system provides the following function codes:

• 10$_SETMODE!IO$M_ATTNAST-Enable attention AST

• 10$_SETCHAR!IO$M_ATTNAST-Enable attention AST

Enable attention AST enables an AST to be queued one time only. After
the AST occurs, it must be explicitly reenabled by the function before the
AST can occur again. The function code is also used to disable the AST. The
function is subject to AST quotas.

The enable attention AST functions take the following device- or function­
dependent arguments:

• Pl-Address of AST service routine or 0 for disable

• P2-Ignored

• P3-Access mode to deliver AST

The AST service routine is called with an argument list. The first argument
is the current value of the device- or function-dependent characteristics
longword shown in Figure 1-3. The access mode specified by P3 is
maximized with the .requester's access mode. (See the VMS System Services
Reference Manual for an explanation of this concept.)

Set Mode and Shut Down Unit
The set mode and shut down unit function stops the operation on an
active unit (XM$M_STS_ACTIVE must be set) and then resets the unit
characteristics.

The VMS operating system provides the following function codes:

• 10$_SETMODE!IO$M_SHUTDOWN-Shut down. unit

• 10$_SETCHAR!IO$M_SHUTDOWN-Shut down unit

These functions take the following device- or function-dependent argument:

• Pl-The virtual address of the quadword characteristics block
(Figure 1-3) if modes are to be set after shutdown. Pl is 0 if modes
are not to be set after shutdown.

Both functions stop the DMCll microprocessor and release all outstanding
message blocks; any messages that have not been read are lost. The
characteristics are reset after shutdown. Except for the sending of attention
ASTs and mailbox messages, these functions act the same as the driver does
when shutdown occurs because of a fatal error.

Set Mode and Start Unit
The set mode and start unit function sets the characteristics and starts the
protocol on the associated unit. The VMS operating system provides the
following function codes:

• 10$_SETMODE!IO$M_STARTUP-Start unit

• 10$_SETCHAR!IO$M_STARTUP-Start unit

1.5 1/0 Status Block

DMC11 /DMR11 Interface Driver
1.4 DMC11 Function Codes

These functions take the following device- or function-dependent arguments:

• Pl-The virtual address of the quadword characteristics block
(Figure 1-3) if the characteristics are to be set. Characteristics are set
before the device is started.

• P2-Ignored.

• P3-The number of preallocated receive-message blocks to ensure the
availability of buffers to receive messages.

The total quota taken from the process's buffered IjO byte count quota is the
DMCl 1 work space plus the number of receive-message buffers specified by
P3 times the maximum message size. For example, if six 200-byte buffers are
required, the total quota taken is 1456 bytes:

256 (DMC11 work space)
+ 1200 (number of buffers X buff er size)

1456 (total quota taken)

This quota is returned to the process when shutdown occurs.

Receive-message blocks are used by the driver to receive messages that
arrive independent of read request timing. When a message arrives, it is
matched with any outstanding read requests. If there are no outstanding read
requests, the message is queued, and an attention AST or mailbox message
is generated. (10$_SETMODE!IO$M_ATTNAST or 10$_SETCHAR!IO$M_
ATTNAST must be set to enable an attention AST; 10$M_ENABLMBX must
be used to enable a mailbox message.)

When read, the receive-message block is returned to the receive-message
"free list" defined by P3. If the "free list" is empty, no receive messages are
possible. In this case, a data lost condition can be generated if a message
arrives. This nonfatal condition is reported by device-dependent data and an
attention AST.

The I/O status block (IOSB) usage for all DMCl 1 functions is shown in
Figure 1-4. Appendix A lists the status returns for these functions. (The
VMS System Messages and Recovery Procedures Reference Volume provides
explanations and suggested user actions for these returns.)

1-9

DMC11 /DMR11 Interface Driver
1.5 1/0 Status Block

Figure 1-4 IOSB Contents

+2 IOSB

transfer size status

device-dependent characteristics

+4

ZK-702-82

In Figure 1-4, the transfer size at IOSB+2 is the actual number of bytes
transferred. Table 1-3 lists the device-dependent characteristics returned at
IOSB+4. These characteristics can also be obtained by using the Get
Device/Volume Information ($GETDVI) system service (see Section 1.3).

1 .6 Programming Example

1-10

The following sample program (Example 1-1) shows the typical use of QIO
functions, such as transmitting and receiving data and checking for errors, in
DMCll/DMRll driver operations.

DMC11 /DMR11 Interface Driver
1.6 Programming Example

Example 1-1 DMC11 /DMR11 Program Example

.TITLE EXAMPLE - DMC11/DMR11 Device Driver Sample Program

. IDENT 'XOO'

$IODEF
$XMDEF

Define I/0 functions and modes
Define driver status flags

Macro definitions

L:

CMDOFAB:

CMDORAB:

CMDBUF::

.macro
store
movl
movw
$put
blbs
$exit_s

type string,?L
<string>
#$$.tmpx,cmdorab+rab$l_rbf
#$$.tmpx1,cmdorab+rab$w_rsz
rab=cmdorab
rO,L

.endm type

.macro store string.pre

.save

.psect $$$DEV
$$.tmpx=.
pre
.ascii %string%
$$.tmpx1=.-$$.tmpx
.restore
.endm store

$FAB fac=put,fnm=sys$output: ,- Output FAB
mrs=132,rat=cr,rfm=var
$RAB ubf=cmdbuf ,usz=cmdbsz,- Output RAB
fab=cmdofab
.BLKB 256 Command buffer

CMDBSZ=
FAOBUFDSC:

.-CMDBUF Buffer size

.LONG CMDBSZ,CMDBUF FAD buffer

FAOLEN:

P2BUF::

.BLKL 1
descriptor
FAO output buffer
length

.BLKL 50 P2 buffer

.-P2BUF P2 buffer size P2BUFSZ=
P2BUFDSC: .LONG P2BUFSZ,P2BUF P2 buffer descriptor
P1BUF::
P1BUFSZ=
CHNL::
IOSB::
DEVDSC:
QIOREQDSC:
QIOREQ:

QIOREQSZ=

XMTBUFLEN=512

XMTBUF:

RCVBUF:

.BLKQ 1 P1 buffer

.-P1BUF P1 buffer size

.BLKL 1 Channel number

.BLKQ 1 I/O status block

.ASCID 'DEV' Device to assign

.LONG QIOREQSZ,QIOREQ QIO request status

.ASCII 'QIO completion status = !XL'

.ASCII 'IOSB1 = !XL, IOSB2 = !XL'

. -QIOREQ

.REPEAT XMTBUFLEN

.BYTE -x93

.ENDR

.BLKB XMTBUFLEN

Size of QIO status
report
Size of transmit
buff er

Transmit data

Example 1-1 Cont'd. on next page

1-11

DMC11 /DMR11 Interface Driver
1 .6 Programming Example

1-12

Example 1-1 (Cont.) DMC11 /DMR11 Program Example

This is the start of the program section.

START:: .WORD 0
$OPEN FAB=CMDOFAB
BLBC RO.EXIT
$CONNECT RAB=CMDORAB
BLBC RO.EXIT
BRB CONT

EXIT: $EXIT_S

CONT: TYPE <DMC11/DMR11 Test Program>
TYPE <>

Open output

Connect to output

Continue
Exit program

$ASSIGN_S DEVNAM=DEVDSC,CHAN=CHNL Assign unit
BLBC RO.EXIT Exit on error

Initialize and start controller

MOVZBL #XM$M_CHR_LOOPB,P1BUF+4

MOVW #XMTBUFLEN,P1BUF+2
CLRL P2BUFDSC

BSBW !NIT

Set P1 flags -
Loop back
Set P1 buff er size
Set zero length P2
buff er
Issue QIO

Loopback data

10$:

20$:

30$:

MOVZWL #100,R9 Loop device 100
times

BSBW
BSBW
MOVAB

MOVAB

MOVZWL

CMPB
BNEQ
SOBGTR
SOBGTR
BRW

TYPE
BRW

XMIT
RECV
XMTBUF,R1

RCVBUF,R2

#XMTBUFLEN,R3

(R1)+,(R2)+
30$
R3,20$
R9, 10$
EXIT

Issue transmit
Issue receive
Get address of xmit
data
Get address of
received data
Get number of bytes
to verify
Check data

Exit

<*** Loopback buff er comparison error ***>
EXIT ; Exit

Initialize controller QIO

!NIT: TYPE <*** Initialize controller QIO ***> ;
$QIOW_S chan=chnl,func=#io$_setchar!io$m_startup,­

p1=p1buf ,p2=#p2bufdsc,iosb=iosb,p3=#5
BRW QIO_STATUS

Example 1-1 Cont'd. on next page

DMC11 /DMR11 Interface Driver
1.6 Programming Example

Example 1-1 (Cont.) DMC11 /DMR11 Program Example

Xmi t data QIO

XMIT: TYPE
$QIO_S

BRW

<*** Transmit buff er QIO ***> ;
chan=chnl,func=#io$writevblk,p1=xmtbuf ,­
p2=#xmtbuflen,iosb=iosb
QIO_XMTST

Receive data QIO

RECV: TYPE
$QIOW_S

.BRB

.ENABL
QIO_STATUS:

BLBC
QIO_XMTST:

BLBC

RSB

10$: MOVZWL
PUSHL
PUSHL

PUS HAQ

PUSHAW

PUS HAQ

CALLS
MOVAB

MOVW

$PUT
BRW
.DSABL

.END

<*** Receive buffer QIO ***> ;
chan=chnl,efn=#2,func=#io$_readvblk,­
p1=rcvbuf ,p2=#xmtbuflen,iosb=iosb
qio_status
LSB

IOSB,10$

R0, 10$

IOSB,R1
R1
RO

FAOBUFDSC

FAOLEN

QIOREQDSC

#5,©#SYS$FAO
CMDBUF,CMDORAB+RAB$L_RBF

FAOLEN,CMDORAB+RAB$W_RSZ

CMDORAB
EXIT
LSB

START

Check status of QIO
Br if error on QIO
Check status of XMIT
Br if error on
request
Else, return to
caller

Get I/0 status block
Push I/0 status block
Push system service
status
Push address of FAD
buff er descriptor
Push address of
output length
Push address of
input string
Get error message
Get output buff er
address
Get output buff er
length
Print error text
Exit

1-13

2 DMP11 and DMF32 Interface Drivers

This chapter describes the use of the VMS DMPll multipoint communications
line interface and DMF32 synchronous line interface drivers.

2.1 Supported Devices
The DMPl 1 multipoint communications line interface is a direct-memory­
access (DMA) device that uses the DIGITAL Data Communications Message
Protocol (DDCMP) to provide direct communication between a VAX processor
and DDCMP-compatible devices, such as other DMPlls and some terminals
(for example, the VT62). Up to 32 devices can be connected to the DMPl 1
through a single, multidrop, DDCMP-compatible line.

The logical connection between the DMPl 1 and a connected device is called
a tributary. In multipoint configurations, the DMPl 1 functions as a multipoint
control station, and the devices on the DDCMP line are located at tributary
addresses. A controller operating in tributary mode on this line is called a
tributary station.

In point-to-point configurations, one DMPl 1 is connected to one other
controller. Controllers in this mode are called point-to-point stations.

The DMF32 synchronous line interface is a DMA communications device that
uses a software implementation of DDCMP to provide an interface between
a VAX processor and other DDCMP-compatible devices, such as a DMPll or
DMCl l. The DMF32 supports both full- and half-duplex modes as well as
tributary mode on a multidrop DDCMP-compatible line.

In a multipoint configuration, the DMF32 operates in tributary mode and is
located at a tributary address on the DDCMP line.

In point-to-point configurations, one DMF32 is connected to a single other
controller. Controllers in this mode are called point-to-point stations.

Figure 2-1 shows a typical ,DMPl 1 /DMF32 multipoint configuration.

2.2 Driver Features and Capabilities
The DMPll and DMF32 drivers provide the following capabilities:

• Multipoint operating mode in which the DMPl l functions as a control
station connected to from 1 to 32 devices and tributary stations (not for
the DMF32 driver)

• Multipoint operating mode in which the DMPl 1 or DMF32 functions as a
tributary station

• Point-to-point operating mode in which the DMPl 1 or DMF32 is
connected to a single other controller also operating in point-to-point
mode

2-1

DMP11 and DMF32 Interface Drivers
2.2 Driver Features and Capabilities

2-2

Figure 2-1 Typical DMP11 /DMF32 Multipoint Configuration

VAX-11
PROCESSOR

UNIBUS

DMP11

DMP11

UNIBUS

PDP-11
PROCESSOR

UNIBUS
ADAPTER

terminal

DDCMP line

VAX-11
PROCESSOR

DMP11
or

DMF32

UNIBUS

UNIBUS
ADAPTER

terminal

ZK-703-82

• DMCll-compatible operating mode in which the DMPll is connected
to either a DMCl l, a DMRl l, another synchronous line interface using
DDCMP, or another DMPll running in DMCll-compatible mode (not
for the DMF32 driver)

• Support for using the DMF32 in high-level data link control (HDLC) bit
stuff mode

• Support for using a general character-oriented protocol over the DMF32

• A nonprivileged QIO interface to the DMPl 1 and DMF32 for using these
devices as raw-data channels

• Tributary attention conditions transmitted through attention ASTs

• Full- and half-duplex operation

• Interface design common to all communications devices supported by the
VMS operating system

2.2.1

2.2.2

2.2.3

•
•

DMP11 and DMF32 Interface Drivers
2.2 Driver Features and Capabilities

Separate transmit and receive queues

Assignment of multiple read and write buffers to the device

Character-Oriented Protocols and HDLC Bit Stuff Mode

Quotas

Power Failure

The DMF32 synchronous line unit supports character-oriented protocols and
the high-level data link control (HDLC) bit stuff mode. The DMF32 driver
can transmit and receive a framed message and also provide some modem
control. General protocol handling for the character-oriented protocols is
supported at the DMF32 driver level. However, the DMF32 driver provides
an interface to the higher-level protocol so that receive messages are framed
by the rules of the protocol. For HDLC mode, you can transmit and receive
frame messages in full-duplex mode only.

Sections 2.4.3.2 through 2.4.3.5 describe these features of the DMF32 driver
in greater detail.

Transmit operations are direct (DMPl 1) or buffered (DMF32) 1/0 operations
and are limited by the process's direct or buffered 1/0 quota.

The quotas for the receive buffer free list (see Section 2.4.3.1) are the process's
buffered 1/0 quota and buffered 1/0 byte count quota.

If a system power failure occurs, no DMPl 1 or DMF32 recovery is possible.
The driver is in a fatal error state and shuts down.

2.3 Device Information
You can obtain information on DMPl 1 or DMF32 characteristics by using the
Get Device/Volume Information ($GETDVI) system service. (See the VMS
System Services Reference Manual.) $GETDVI returns device characteristics
when you specify the item code DVl$_DEVCHAR. Table 2-1 lists these
characteristics, which are defined by the $DEVDEF macro.

DVl$_DEVCLASS returns the device class, which is DC$_SCOM.
DVl$_DEFTYPE returns the device type, which is DT$_DMP11 for the
DMPl l and DT$_DMF32 for the DMF32. The $DCDEF macro defines the
device class and device type names.

DVl$_DEVBUFSIZ returns the maximum message size. The maximum
message size is the maximum send or receive message size for the unit.
Messages greater than 512 bytes on modem-controlled lines are more prone
to transmission errors.

2-3

DMP11 and DMF32 Interface Drivers
2.3 Device Information

2-4

Table 2-1 DMP11 and DMF32 Device Characteristics

Characteristic 1

DEV$M_NET

DEV$M_AVL

DEV$M_ODV

DEV$M_IDV

DEV$M_SHR2

Meaning

Static Bits {Always Set)

Network device. Set for terminal port if it is a network
device.

Available device. Set when unit control block (UCB) is
initialized.

Output device.

Input device.

Shareable device.

1 Defined by the $DEVDEF macro

2 0nly for DMP11

DVl$_DEVDEPEND returns the unit characteristics bits, the unit and line
status bits, the error summary bits, and the specific errors in a longword field,
as shown in Figure 2-2.

Figure 2-2 DVl$_DEVDEPEND Returns

31 24 23 16 15 8 7 0

error error unit and line unit
summary status characteristics

ZK-5931-HC

Unit characteristics bits govern the DDCMP operating mode. They are
defined by the $XMDEF macro and can be set by a set mode function (see
Section 2.4.3.1) or can be read by a sense mode function (see Section 2.4.4).
Table 2-2 lists the unit characteristics values and their meanings.

Table 2-2 DMP11 and DMF32 Unit Characteristics

Characteristic

XM$M_CHR_MQP

XM$M_CHR_LOOPB

XM$M_CHR_HDPLX

XM$M_CHR_CTRL 1

XM$M_CHR_ TRIS

XM$M_CHR_DMC 1

1 Only for DMP 11

Meaning

Specifies DDCMP maintenance mode

Specifies loopback mode

Specifies half-duplex operation

Specifies control station

Specifies tributary station

Specifies DMC 11-compatible mode

The status bits show the status of the unit and the line. These bits can only
be set or cleared when the controller and tributary are not active.

DMP11 and DMF32 Interface Drivers
2. 3 Device Information

Table 2-3 lists the status values and their meanings. The values are defined
by the $XMDEF macro.

Table 2-3 DMP11 and DMF32 Unit and Line Status

Status

XM$M_STS_ACTIVE

XM$M_STS_DISC

XM$M_STS_RUNNING 1

XM$M_STS_BUFFAIL

1 Only for DMP 11

Meaning

DDCMP protocol is active.

Modem line went from on to off. This bit will be
returned in the field IRP$L_IOST2 if the driver has
had a timeout while waiting for the CTS signal to be
present on the device.

Tributary is responding.

Receive buffer allocation failed.

The error summary bits are set when an error occurs. If the error is fatal, the
DMPl 1 or DMF32 is shut down. Table 2-4 lists the error summary bit values
and their meanings.

Table 2-4 Error Summary Bits

Error Summary Bit 1 Meaning

DDCMP maintenance message received

DDCMP start message received

XM$M_ERR_MAINT

XM$M_ERR_ST ART

XM$M_ERR_FAT AL

XM$M_ERR_ TRIB

XM$M_ERR_LOST

Hardware or software error occurred on controller

Hardware or software error occurred on tributary

Data lost when a received message was longer than
the specified maximum message size

XM$M_ERR_ THRESH Receive, transmit, or select threshold errors

1Read-only

Table 2-5 lists the errors that can be specified. These errors are mapped to
the indicated codes.

Table 2-5 DMP11 and DMF32 Errors

Value1

(octal) Meaning Code Set

2 Receive threshold error XM$M_ERR_ THRESH

4 Transmit threshold error XM$M_ERR_ THRESH

6 Select threshold error XM$M_ERR_ THRESH

10 Start received in run state XM$M_ERR_ST ART

12 Maintenance received in run state XM$M_ERR_MAINT

1 Not provided on the DMF32

2-5

DMP11 and DMF32 Interface Drivers
2.3 Device Information

Table 2-5 (Cont.) DMP11 and DMF32 Errors

Value1

(octal)

14

16

22

24

26

30

32

100-276

300

302

304

306

310

Meaning Code Set

Maintenance received in halt state (none)

Start received in maintenance state XM$M_ERR_ST ART

Dead tributary XM$M_STS_RUNNING2

(cleared)

Running tributary XM$M_STS_RUNNING2

Babbling tributary

Streaming tributary

Ring detection

Internal procedure (software)
errors

Buffer too small

Nonexistent memory

Modem disconnected

Queue overrun

Carrier lost on modem

(set)

XM$M_ERR_ TRIB

XM$M_ERR_ TRIB

(none)

XM$M_ERR_ TRIB

XM$M_ERR_LOST

XM$M_ERR_FAT AL

XM$M_STS_DISC and

XM$M_ERR_FAT AL

XM$M_ERR_FATAL2

XM$M_ERR_FATAL

1 Not provided on the DMF32

2 Not supported for the DMF32

2.4 DMP11 and DMF32 Function Codes

2-6

The DMPl 1 and DMF32 drivers can perform logical, virtual, and physical 1/0
operations. The basic functions are read, write, set mode, set characteristics,
and sense mode. Table 2-6 lists these functions and their function codes.
The sections that follow describe these functions in greater detail.

Table 2-6 DMP11 and DMF32 1/0 Functions

Function Code and
Arguments Type1 Modifiers

10$_READLBLK P 1,P2 L 10$M_NOW

10$_READVBLK P 1,P2 v 10$M_NOW

10$_READPBLK P 1 ,- p 10$M_NOW
P2,[P6]

10$_ WRITELBLK L
P1,P2

Function

Read logical block.

Read virtual block.

Read physical block.

Write logical block.

1 V = virtual, L = logical, P = physical (There is no functional difference in these operations.)

2.4.1 Read

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

Table 2-6 (Cont.) DMP11 and DMF32 1/0 Functions

Function Code and
Arguments Type1 Modifiers Function

10$_WRITEVBLK v Write virtual block.
P1,P2

10$_WRITEPBLK P1,- p Write physical
P2,[P6] block.

10$_CLEAN L Complete
outstanding
requests (character-
oriented protocols),
and abort
outstanding
transmits (bit stuff
mode).

10$_SETMODE P 1,- L 10$M_CTRL Set DMP11
[P2],P3 10$M_SHUTDOWN and DMF32

10$M_ST ARTUP characteristics
10$M_ATTNAST and controller state
10$M_SET_MODEM2 for subsequent

operations.

10$_SETCHAR P 1 ,- p 10$M_CTRL Set DMP11
[P2],P3,[P6] 10$M_SHUTDOWN and DMF32

10$M_ST ARTUP characteristics
10$M_ATTNAST and controller state
10$M_SET_MODEM2 for subsequent

operations.

10$_SENSEMODE L 10$M_CTRL Sense controller
P1,P2 10$M_RD_MEM2 or tributary

10$M_RD_MODEM characteristics
10$M_RD_CQUNTS and return them in
10$M_CLR_COUNTS specified buffers.

1 V = virtual, L = logical, P = physical (There is no functional difference in these operations.)

20nly for DMP 11

Although the DMPl 1 and DMF32 drivers do not differentiate among logical,
virtual, and physical IjO functions (all are treated identically), you must have
the required privilege to issue a request.

Read functions provide for the direct transfer of data into the user process's
virtual memory address space. The VMS operating system provides the
following function codes:

• 10$_READLBLK-Read logical block

• 10$_READVBLK-Read virtual block

• 10$_READPBLK-Read physical block

2-7

2.4.2

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

Write

2-8

Received messages are multibuffered in system dynamic memory and then
copied to the user's buffer.

The read functions take the following device- or function-dependent
arguments:

• Pl-The starting virtual address of the buffer that is to receive data.

• P2-The size of the receive buffer in bytes.

• P6-The address of a diagnostic buffer; only for physical 1/0 functions
(optional). See Section 2.4.5.

The message size specified by P2 cannot be larger than the maximum receive­
message size for the unit (see Section 2.3). If a message larger than the
maximum size is received, a status of SS$_DATAOVERUN is returned in the
1/0 status block.

The read functions can take the following function modifier:

• 10$M_NOW-Complete the read operation immediately with a received
message. (If no message is currently available, return a status of
SS$_ENDOFFILE in the 1/0 status block.)

Write functions provide for the direct transfer of data from the user process's
virtual memory address space. The VMS operating system provides the
following function codes:

• 10$_WRITELBLK-Write logical block

• IO$_WRITEVBLK-Write virtual block

• IO$_WRITEPBLK-Write physical block

Transmitted DMPll messages are sent directly from the requesting process's
buffer. DMF32 messages are copied into a system buffer before they are
transmitted.

The write functions take the following device- or function-dependent
arguments:

• Pl-The starting virtual address of the buffer containing the data to be
transmitted.

• P2-The size of the buffer in bytes.

• P6-The address of a diagnostic buffer; only for physical I/O functions
(optional). See Section 2.4.5.

The message size specified by P2 cannot be larger than the maximum send­
message size for the unit (see Section 2.3).

The write functions take no function modifiers.

2.4.3

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

Set Mode and Set Characteristics

2.4.3.1

Set mode operations are used to perform protocol, operational, and
program/ driver interface operations with the DMPl 1 or DMF32 drivers. The
VMS operating system defines the following types of set mode functions:

• Set mode

• Set characteristics

• Set controller mode

• Set tributary mode

• Enable attention AST

• Shutdown controller

• Shutdown tributary

Used without function modifiers, set mode and set characteristics functions
can modify an existing tributary. Used with certain function modifiers,
they can perform DMPl 1 or DMF32 operations such as starting a tributary
and requesting an attention AST. The VMS operating system provides the
following function codes:

• 10$_SETMODE-Set mode (no IJO privilege required)

• 10$_SETCHAR-Set characteristics (requires physical 1/0 privilege)

The other five types of set mode functions, which use the two function codes
with certain function modifiers, are described in the sections that follow.

To use the 10$_SETMODE and 10$_SETCHAR functions, you must assign
the appropriate unit control block (UCB) with the Assign 1/0 Channel
($ASSIGN) system service.

Set Controller Mode
The set controller mode function sets the DMPl 1 or DMF32 controller state
and activates the controller. The following combinations of function code and
modifier are provided:

• 10$_SETMODE!IO$M_CTRL-Set controller characteristics

• 10$_SETCHAR!IO$M_CTRL-Set controller characteristics

• 10$_SETMODE!IO$M_CTRL!I0$M_STARTUP-Set controller
characteristics and start the controller

• 10$_SETCHAR!IO$M_CTRL!I0$M_STARTUP-Set controller
characteristics and start the controller

If the function modifier 10$M_STARTUP is specified, the controller is started
and the modem is enabled. If 10$M_STARTUP is not specified, the specified
characteristics are simply modified.

These codes take the following device- or function-dependent arguments:

• Pl-The virtual address of a quadword characteristics buffer.

• P2-The address of a descriptor for an extended characteristics buffer
(optional).

2-9

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

2-10

• P3-The number of preallocated receive-message blocks to allocate
(referred to as the size of the "common receive pool"). (See the
NMA$C_PCLl_BFN parameter ID in Table 2-8.)

Figure 2-3 shows the format of the Pl characteristics buffer. The maximum
message size in the first longword specifies the maximum allowable transmit
and receive-message length.

Table 2-7 lists the DMPll and DMF32 characteristics that can be set in the
second longword. The $XMDEF macro defines these values.

The P2 buffer consists of a series of six-byte entries. The first word contains
the parameter identifier (ID), and the longword that follows it contains one
of the values that can be associated with the parameter ID. Figure 2-4 shows
the format for this buffer.

If both Pl and P2 characteristics are specified, the P2 characteristics supersede
the Pl characteristics. For example, if Pl specifies XM$M_CHR_CTRL and
P2 specifies NMA$C_PCLl_PRO with a value of NMA$C_LINPR_ TRIB
(that is, a tributary), the device is started as a tributary.

Figure 2-3 P1 Characteristics Buffer (Set Controller)

+2 0

maximum message size not used

not used characteristics

Table 2-7 DMP11 and DMF32 Characteristics

Characteristic

XM$M_CHR_LOOPB

XM$M_CHR_HDPLX

XM$M_CHR_CTRL 1

XM$M_CHR_ TRIB

XM$M_CHR_DMC 1

1 Only for DMP 11

Meaning

Sets loopback mode

Sets half-duplex operation

Specifies control station

Specifies tributary station

Specifies DMC 11-compatible mode

ZK-705-82

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

Figure 2-4 P2 Extended Characteristics Buffer (Set Controller)

parameter id

longword value

parameter id

longword value

l
etc.

ZK-706-82

Table 2-8 lists the parameter IDs and values that can be specified in the P2
buffer. The $NMADEF macro defines these values.

Section 2.4.3.2 lists the parameter IDs allowed for the character-oriented and
HDLC bit stuff modes of operation.

Table 2-8 P2 Extended Characteristics Values

Parameter ID

NMA$C_PCLl_PRO

NMA$C_PCLl _DUP

1 Only for DMP 11

20nly for DMF32

Meaning

Protocol mode. The following values can be
specified:

Value

NMA$C_LINPR_PQI

NMA$C_LINPR_CON 1

NMA$C_LINPR_ TRI

NMA$C_LINPR_DMC 1

NMA$C_LINPR_LAPB2

NMA$C_LINPR_BSY2

Meaning

DDCMP point-to-point
(default)

DDCMP control station

DDCMP tributary

DDCMP DMC mode

HLDC bit stuff mode

General character­
oriented protocol mode

Duplex mode. The following values can be specified:

Value

NMA$C_DPX_FUL

NMA$C_DPX_HAL

Meaning

Full-duplex (default)

Half-duplex

2-11

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

2.4.3.2

2-12

Table 2-8 (Cont.) P2 Extended Characteristics Values

Parameter ID

NMA$C_PCLl _CQN

NMA$C_PCLl _BFN

NMA$C_PCLl _BUS

NMA$C_PCLl _NMS

NMA$C_PCLl _SL T 1
•
3

NMA$C_PCLLDDT1
•
3

NMA$C_PCLl _DL T 1
•
3

NMA$C_PCLl _SRT 1
•
3

1 Only for DMP 11

Meaning

Controller mode. The following values can be
specified:

Value

NMA$C_LINCN _NOR

NMA$C_LINCN _LQO

Meaning

Normal (default)

Loopback

Number of receive buffers to preallocate. Must be
provided here or as P3 argument.

Maximum allowable transmit and receive message
length (default= 512 bytes).

Number of sync characters to precede message.

Number of milliseconds (msec) in the period of
incrementing tributary priorities and the transmit delay
(min= 50; default= 50).

Number of msec in the period of polling dead
tributaries (default = 10000).

Number of msec between polls (default= 0).

Timer value used by control station and half-duplex
point-to-point to establish that a tributary is streaming
(default = 6000).

3 A global polling parameter. All timer values must be specified in milliseconds.

Additional Features of the DMF32 Driver
The character-oriented protocols and the HDLC bit stuff mode do not have
the concept of line and circuit. Therefore, only $QIO requests that include the
function modifier 10$M_CTRL are allowed. The VMS operating system does
not acknowledge characteristics set in the Pl buffer for character-oriented and
HDLC bit stuff modes of operation. You must have CMKRNL privilege to
run the DMF32 in character-oriented mode. Only the parameters listed in
Table 2-9 are relevant to the character-oriented and HDLC bit stuff modes of
operation.

Table 2-9 P2 Extended Characteristics Values (DMF32 Driver)

Parameter ID

NMA$C_PCLl _PRO

Meaning

Must be set to NMA$C_LINPR_BSY to specify
character-oriented mode of operation, or to NMA$C_
LINPR_LAPB to specify HDLC bit stuff mode.

2.4.3.3

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

Table 2-9 (Cont.) P2 Extended Characteristics Values (DMF32
Driver)

Parameter ID Meaning

NMA$C_PCLl_DUP Requests full- or half-duplex mode of operation. (HDLC
bit stuff mode supports full-duplex mode only.) If half­
duplex mode is specified, the DMF32 driver sets the
request to send (RTS) signal, waits for the clear to send
(CTS) signal at the beginning of the transmit, and then
drops RTS at the end of the transmit. The full-duplex
mode value is NMA$C_DPX_FUL; the half-duplex mode
value is NMA$C_DPX _HAL.

NMA$C_PCLl_BFN The number of buffers the device can allocate for use
as receive buffers. This value must be greater than 1.
Default is 4.

NMA$C_PCLl _BUS

NMA$C_PCLl _CON

NMA$C_PCLl_SYC1

NMA$C_PCLl_NMS1

NMA$C_PCLl _BPC 1

NMA$C_PCLl_FRA 1

NMA$C_PCLl_STI 11

NMA$C_PCLl_STl2 1

NMA$C_PCLl_MCL 1

NMA$C_PCLI_ TMO 1

The size of the buffers to be allocated.

The state the controller is set to. If NMA$C_LINCN_
NOR is specified, the device operates normally. If
NMA$C_LINCN_LOO is specified, the device operates in
internal loopback mode. Default is normal operation.

The sync character used by device. Defaults to 32
hexadecimal.

The number of sync characters to precede a transmit.
Defaults to 8.

The number of bits per character (5 ,6, 7, or 8). Defaults
to 8.

The address of the protocol framing routine (in nonpaged
pool). This parameter must be specified.

These two parameters contain the initial value for the
quadword of framing routine state information.

Determines whether modem signals should be turned
off when a DEASSIGN operation is performed. The
DMF32 driver always clears the modem signals on
the last DEASSIGN. However, on all other DEASSIGN
operations, the modem signals are cleared only if the
value of NMA$C_PCLLMCL is 0. If the value NMA$C_
ST ATE_ON is specified, the data terminal ready (DTR)
signal is dropped when DEASSIGN is performed. If the
value NMA$C_ST A TE_OFF is specified, DTR is not
dropped until the last DEASSIGN.

Specifies the timeout (in seconds) when waiting for CTS
during transmit operations.

1 Character-oriented mode only

Framing Routine Interface for Character-Oriented Protocols
In general, the character-oriented protocols each has its own rule for framing
receive messages. To provide support for each protocol's special framing rule,
the DMF32 driver has been extended to provide support for calling a special
framing routine from the DMF32 driver's processing of receive messages.
This routine is defined by the higher-level software using the DMF32 driver
and is loaded by that same software into nonpaged pool. The address of this

2-13

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

2.4.3.4

2-14

routine is passed to the driver when the device is started up. The purpose of
the framing routine is to tell the driver how to frame each byte of the received
data message and to tell the driver that the received message is complete and
ready to be posted.

The address of the framing routine is kept in the DMF32 driver's internal
buffer. The internal buffer also contains a quadword that is used by the
framing routine for holding state information while it is framing the receive
message. The framing routine is called by the driver at FORK IPL through a
JSB instruction. The input and the output to the framing routine is described
in the following tables.

Input Contents

RO Address of quadword of state information.

R 1 bits 0-7 Character to examine. The high-order bit is set if this is the
first character of a new frame.

Output Contents

RO Status information for the DMF32 driver. The following bits are
defined:

Value

XG$V_BUFFER_CHAR

XG$V_BUFFER_IN_PREV_POS

XG$V_COMPLETE_READ

Meaning

If clear, buffer the character in
the next position. If set, use bit
XG$V_BUFFER_IN_PREV_POS.

If clear, ignore the character. If
set, buffer the character in the
previous position; do not update
the buffer pointer.

If clear, ignore. If set, return
the framed buffer to user (buffer
character if required).

After the DMF32 driver has completed a framed receive data message, the
driver resets the quadword of state information to the value passed when the
device is started up. This means that the driver resets error information along
with success information.

Use of the DMF32 Driver Transmitter Interface in Character-Oriented
Mode
For write requests made through the QIO interface, the P4 parameter contains
the address of a quadword buffer to be used to update the field in the DMF32
driver's internal buffer, which contains the state information for the framing
routine. If this parameter is 0, the state information is not updated.

If the DMF32 driver has had a timeout error while waiting for the CTS signal
to be present on the device, the bit XM$M_STS_DISC is returned in the field
IRP$L _IOST2.

2.4.3.5

2.4.3.6

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

The 10$_CLEAN Function
The clean function either completes or aborts outstanding device requests.
The VMS operating system provides the following function code:

• IO$_CLEAN

For character-oriented protocols, a clean function request results in the
completion of all outstanding IjO requests pending on the device. For
HDLC bit stuff mode, a clean function request results in the aborting of all
outstanding transmit operations on the device. In both cases the status return
is SS$_ABORT. Note that the modem registers are not cleared.

The clean function is not supported in DDCMP mode of operation.

Set Tributary Mode
The set tributary mode function either starts a tributary or modifies an existing
one. The driver creates a circuit data block for a particular unit of the DMPl l
device with the specified tributary address. The set tributary function must be
performed before any communication can occur with the attached unit.

Because the DMF32 driver deals with only one tributary, the set tributary
function starts both the tributary and the protocol. The data block describing
the tributary has already been created.

The VMS operating system provides the following combinations of function
code and modifier:

• 10$_SETMODE-Modify tributary characteristics

• IO$_SETCHAR-Modify tributary characteristics

• 10$_SETMODE!IO$M_STARTUP-Start tributary

• 10$_SETCHAR!IO$M_STARTUP-Start tributary

These codes take the following device- or function-dependent arguments:

• Pl-The virtual address of a quadword characteristics buffer (optional)

• P2-The address of a descriptor for an extended characteristics buffer
(optional)

Figure 2-5 shows the format of the Pl characteristics buffer. The following
characteristic can be set in the second longword:

• XM$V_CHR_MOP-Set tributary to DDCMP maintenance mode

2-15

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

2-16

Figure 2-5 P1 Characteristics Buffer (Set Tributary)

+2 0

not used

+4
not used characteristics

ZK-707-82

The P2 buffer consists of a series of six-byte entries. The first longword
contains the parameter identifier (ID), and the next longword contains one of
the values that can be associated with the parameter ID. Figure 2-4 shows
the format for this buffer.

Table 2-10 lists the parameter IDs and values that can be specified in the P2
buffer.

Table 2-10 P2 Extended Characteristics Values

Parameter ID

NMA$C_PCCI _TRI

NMA$C_PCCl_MRB 1

NMA$C_PCCl _MST 1

1 Only for the DMP 11

Meaning

Tributary address. Because the maximum physical
address that the DMP 11 or DMF32 can recognize
is 255, only the first byte is actually used. For
the DMP 11 , this parameter must be set before the
tributary is started, unless the controller was set to
run in point-to-point or DMC-compatible mode. For
the DMF32, the tributary address always defaults
to 1 . Accepted values are 1 to 255.

Maximum number of buffers allocated from common
pool for receive messages; 255 indicates unlimited
number (default is unlimited). Accepted values are 1
to 255.

Maintenance state. The following values can be
specified:

Value

NMA$C_ST A TE_ON

NMA$C_ST A TE_OFF

Meaning

On

Off (default)

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

Table 2-10 (Cont.) P2 Extended Characteristics Values

Parameter ID Meaning

NMA$C_PCCl_PQL 1
•
2 Latch polling state. The following values can be

specified:

NMA$C_PCCl_ TRT 1
•
2

NMA$C_PCCl_ACB 1
•
2

NMA$C_PCCl_ACl 1
•
2

NMA$C_PCCl_IAB 1•
2

NMA$C_PCCUAI 1
•
2

NM A$C_PCCl _DYB 1
•
2

NM A$C_PCCl _DYi 1
•
2

NMA$C_PCCUA T 1
•
2

NMA$C_PCCl_DYT1
•
2

NMA$C_PCCl_DTH 1
•
2

NMA$C_PCCl_MTR2

NMA$C_PCCl _BBT 1
•
2

NMA$C_PCCl_RTT2

1 Only for the DMP 11

Value

NMA$C_CIRPST_AUT

NMA$C_CIRPST_ACT

NMA$C_CIRPST_INA

NMA$C_CIRPST_DIE

NMA$C_CIRPST_DED

Meaning

Automatic (default)

Active

Inactive

Dying

Dead

Transmit delay timer (default= 0).

Initial poll priority for active state of tributary
(default = 255).

Rate of priority incrementing for active state of
tributary (default = 0).

Initial poll priority for inactive state of tributary
(default = 0).

Rate of priority incrementing for inactive state of
tributary (default = 64).

Initial poll priority for dying state of tributary
(default = 0).

Rate of priority incrementing for dying state of
tributary (default = 16).

Number of no data message responses before
changing state to inactive (default = 8).

Number of no responses before changing state to
dying (default= 2).

Number of no responses before changing state to
dead (default= 16).

Maximum number of abutting data messages that
will be transmitted before deselecting the tributary
(default= 4).

Timer value for tributary to indicate maximum amount
of time for a selected tributary to transmit. If this
value is exceeded, the tributary is babbling
(default= 6000).

Retransmit timer for full-duplex point-to-point mode
and selection timer for multipoint control and half­
duplex point-to-point mode (default = 3000).

2 A tributary-specific polling parameter (All timer values must be specified in milliseconds.)

If both Pl and P2 characteristics are specified, the P2 characteristics supersede
the Pl characteristics. For example, if Pl specifies XM$M_CHR_MOP and

2-17

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

2.4.3.7

2.4.3.8

2-18

P2 specifies NMA$C_PCCl_MST with a value of NMA$C_STATE_OFF, the
tributary is in the normal DDCMP or data mode.

On receipt of the QIO request, the DMPl 1 driver verifies that a tributary
address has been specified and determines whether this address is currently
in use. If the address is in use, the tributary is not restarted. However,
modifications to the tributary state or polling parameters are performed. If
the tributary does not already exist, a new tributary is started.

On receipt of the QIO request to a DMF32, the driver modifies the tributary
parameters and starts the protocol. The tributary state and the protocol
state are equal. The driver does not verify that a tributary address has been
provided. If an address has not been provided, it defaults to 1.

Shutdown Controller
The shutdown controller function shuts down the controller and disables
the modem line. On completion of a shutdown controller request, all
tributaries have been halted (including those tributaries not explicitly halted),
all tributary buffers returned, and the controller reinitialized. For the DMF32,
this function halts the tributary, the protocol, and the line. The controller
cannot be used again until another 10$-SETMODE!IO$M_CTRL!IO$M_
STARTUP or 10$_SETCHAR!IO$M_CTRL!IO$M_STARTUP request has
been issued (see Section 2.4.3.1).

The VMS operating system provides the following combinations of function
code and modifier:

• 10$_SETMODE!IO$M_CTRL!IO$M_SHUTDOWN-Shutdown
controller

• 10$_SETCHAR!I0$M_CTRL!IO$M_SHUTDOWN-Shutdown
controller

The shutdown controller function takes no device- or function-dependent
arguments.

Shutdown Tributary
The shutdown tributary function halts, but does not delete, the specified
tributary. On completion of a shutdown tributary request, the tributary is
halted, all buffers are returned, and all pending 1/0 requests and received
messages are aborted. Although the tributary cannot be used again until
another 10$_SETMODE!IO$M_STARTUP or 10$_SETCHAR!IO$M_
STARTUP request has been issued (see Section 2.4.3.6), all previously defined
tributary parameters remain set (applicable only to the DMPll). For the
DMF32, this function halts the tributary and the protocol. The attached
device cannot be used until the tributary is restarted.

The VMS operating system provides the following combinations of function
code and modifier:

• 10$_SETMODE!IO$M_SHUTDOWN-Shutdown tributary

• 10$_SETCHAR!IO$M_SHUTDOWN-Shutdown tributary

The shutdown tributary function takes no device- or function-dependent
arguments.

2.4.3.9

2.4.4 Sense Mode

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

Enable Attention AST
The enable attention AST function requests that an attention AST be delivered
to the requesting process when a status change occurs on the specified
tributary. An AST is queued when the driver sets or clears either an error
summary bit or any of the unit status bits (see Tables 2-3 and 2-4), or when
a message is available and there is no waiting read request. The enable
attention AST function is legal at any time, regardless of the condition of the
unit status bits.

The VMS operating system provides the following combinations of function
code and modifier:

• IO$_SETMODE!IO$M_ATTNAST-Enable attention AST

• 10$_SETCHAR!IO$M_ATTNAST-Enable attention AST

These codes take the following device- or function-dependent arguments:

• Pl-The address of an AST service routine or 0 for disable

• P2-Ignored

• P3-Access mode to deliver AST

The enable attention AST function enables an attention AST to be delivered
to the requesting process once only. After the AST occurs, it must be
explicitly reenabled by the function before the AST can occur again. The
function is also subject to AST quotas.

The AST service routine is called with an argument list. The first argument
is the current value of the second longword of the 1/0 status block (see
Section 2.5). The access mode specified by P3 is maximized with the
requester's access mode.

The sense mode function returns the controller or tributary characteristics in
the specified buffers.

The VMS operating system provides the following function codes:

• 10$_SENSEMODE!IO$M_CTRL-Read controller characteristics

• 10$_SENSEMODE-Read tributary characteristics

These codes take the following device- or function-dependent arguments:

• Pl-The address of a two-longword buffer into which the device
characteristics are stored (optional). (Figure 2-3 shows the characteristics
buffer for controllers; Figure 2-5 shows the characteristics buffer for
tributaries.)

• P2-The address of a descriptor for a buffer into which the extended
characteristics buffer is stored (optional). (Figure 2-4 shows the format of
the extended characteristics buffer.)

2-19

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

2.4.4.1

2-20

All characteristics that fit into the buffer specified by P2 are returned.
However, if all the characteristics cannot be stored in the buffer, the 1/0
status block returns the status SS$_BUFFEROVF. The second word of the
1/0 status block returns the size (in bytes) of the extended characteristics
buffer returned by P2 (see Section 2.5).

Read Internal Counters
The read internal counters (10$M_RD_COUNTS) subfunction reads the
DDCMP internal counters. The VMS operating system provides the following
combinations of function codes and modifiers:

• 10$_SENSEMODE!IO$M_RD_CQUNTS-Read tributary counters
(DDCMP only).

• 10$_SENSEMODE!IO$M_CLR_COUNTS-Clears tributary counters
(DDCMP only).

• 10$_SENSEMODE!IO$M_RD_COUNTS!IO$M_CLR_COUNTS-Read
and then clear tributary counters (DDCMP only).

• 10$_SENSEMODE!IO$M_CTRL!IO$M_RD_CQUNTS-Read controller
counters (DDCMP and LAPB only).

• 10$_SENSEMODE!IO$M_CTRL!IO$M_CLR_CQUNTS-Clear
controller counters (DDCMP and LAPB only).

• 10$_SENSEMODE!IO$M_CTRL!IO$M_RD_COUNTS!IO$M_CLR_
COUNTS-Read and then clear controller counters (DDCMP and LAPB
only).

These codes take the following device- or function dependent arguments:

• Pl-Ignored.

• P2-The address of a buffer descriptor into which the counters will be
returned (Figure 2-6 shows the format of the buffer). Table 2-11 lists the
parameter ids that can be returned for DDCMP controllers, Table 2-12
lists parameter ids that can be returned for LAPB controllers, and
Table 2-13 lists the parameter ids that can be returned for tributaries.

All counters that fit into the buffer specified by P2 are returned. However, if
all the counters cannot be stored in the buffer, the 1/0 status block returns
the status SS$_BUFFEROVF. The second word of the 1/0 status block
returns the size, in bytes, of the extended characteristics buffer returned (see
Section 2.5).

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

Figure 2-6 P2 Extended Characteristics Buffer (Sense Mode)

Longword Counter

15 13 12 11 0

1 0 0 I 0 l parameter ID

longword of

value

Word Counter

15 13 12 11 0

parameter ID

word of value

Byte Counter

15 13 12 11 8 7 0

parameter ID

Bitmap Counter

15 13 12 11 8 7 0

0 I 1 I I

0 parameter ID

byte of value l bitmap

ZK-5780-HC

2-21

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

2-22

Table 2-11 DDCMP Controller Counter Parameter IDs

Parameter ID Meaning

NMA$C_CTLIN _LPE

NMA$C_CTLIN_RPE

Number of local station errors bitmap counter.

Value Meaning

1

2

4

8

Receive overrun SNAK set.

Receive overrun SNAK not set.

Transmitter underrun.

Message format error.

Number of remote station errors bitmap counter.

Value

1

2

4

8

Meaning

NAKs received due to receiver overrun.

NAKs received due to message format
error.

SNAK set message format error.

Streaming tributary.

Table 2-12 LAPB Controller Counter Parameter IDs

Parameter ID Meaning

NMA$C_CTCIR_DEI Data errors inbound.

Table 2-13 Tributary Counter Parameter IDs

Parameter ID

NMA$C_CTCIR_BRC

NMA$C_CTCIR_BSN

NMA$C_CTCIR_DBR

NMA$C_CTCIR_DBS

NMA$C_CTCIR_SIE

NMA$C_CTCIR_RBE

Meaning

Number of bytes received by this station.

Number of bytes transmitted by station.

Number of messages received by this station.

Number of messages transmitted by this station.

Number of selection intervals elapsed.

Remote buffer error bitmap counters.

Value

1

2

Meaning

Remote buffer unavailable.

Remote buffer too small.

2.4.5

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

Table 2-13 (Cont.) Tributary Counter Parameter IDs

Parameter ID

NMA$C_CTCIR_LBE

NMA$C_CTCIR_SL T

NMA$C_CTCIR_RRT

NMA$C_CTCIR_LRT

NMA$C_CTCIR_DEI

NMA$C_CTCIR_DEO

Diagnostic Support

Meaning

Local buffer error bitmap counters.

Value

1

2

Meaning

Local buffer unavailable.

Local buffer too small.

Selection timeout bitmap counters.

Value

1

2

Meaning

No attempt to respond was made.

Attempt was made, but timeout still
occurs.

Number of SACK settings when REP received.

Number of SREP settings.

Data error inbound bitmap counters.

Value

1

2

4

Meaning

NAK transmitted header CRC error.

NAK transmitted data CRC error.

NAK transmitted REP response.

Data error outbound bitmap counters.

Value

2

4

Meaning

NAK received header CRC error.

NAK received data CRC error.

NAK received REP response.

The DMPl 1 and DMF32 drivers provide special capabilities for diagnostic
support. The sections that follow describe these capabilities.

If a diagnostic buffer (P6) is specified with a physical IJO request, the
eight one-byte device registers are dumped into it on completion of the
request. (The DMF32 returns five one-word device registers.) The DMP11
Technical Manual and the DMF32 Technical Manual specify the contents of
these registers. The P6 buffer does not return error counters.

2-23

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

2.4.5.1

2.4.5.2

2-24

Set Line Unit Modem Status
The set line unit modem status function sets the DMPl l's line unit modem
register. It is not supported for the DMF32. The VMS operating system
provides the following combinations of function code and modifier:

• IO$_SETMODE!IO$M_SET_MODEM-Set line unit modem status

• IO$_SETCHAR!IO$M_SET_MODEM-Set line unit modem status

These codes take the following device- or function-dependent argument:

• Pl-The address of a longword buffer that contains new modem status.
One or more of the symbolic offsets listed in the following table can be
set in the buff er.

Offset

XM$V_MDM_STNDBY

XM$V_MDM_MAINT2

XM$V_MDM_MAINT 1

XM$V_MDM_FREO

XM$V_MDM_RDY

XM$V_MDM_POLL

Meaning

Select standby used with EIA modems

Maintenance mode 2 for remote loopback

Maintenance mode 1 for local loopback

Select frequency

Data terminal ready to receive or transmit data

Select polling modem mode

Read Line Unit Modem Status
The read line unit modem status function reads the DMPll's line unit modem
register. The VMS operating system provides the following combinations of
function code and modifier:

• IO$_SENSEMODE!IO$M_RD_MODEM-Read line unit modem status

• IO$_SENSEMODE!IO$M_CTRL!IO$M_RD_MODEM-Read line unit
modem status (DMF32)

These codes take the following device- or function-dependent argument:

• Pl-The address of a longword buffer into which the line unit's modem
status is stored. One or more of the bits listed in the following table can
be set in the buffer.

2.4.5.3

2.5 1/0 Status Block

DMP11 and DMF32 Interface Drivers
2.4 DMP11 and DMF32 Function Codes

Bit

XM$V_MDM_CARRDET 1

XM$V_MDM_MSTNDBY

XM$V_MDM_CTS 1

XM$V_MDM_DSR 1

XM$V_MDM_HDX

XM$V_MDM_RTS 1

XM$V_MDM_DTR 1

XM$V_MDM_RING 1

XM$V_MDM_MODTEST

XM$V_MDM_SIGOUAL

XM$V_MDM_SIGRATE

1 Only for the DMF32

Read Device Status Slot

Meaning

Receiver is active (Carrier Detect)

STANDBY indication from modem

Data can be transmitted (CTS)

Modem is in service (DSR)

Line unit is set to half-duplex mode

Request to send data from USART (RTS)

Line unit is available and online (DTR)

Modem has just been dialed up (RING)

Modem is in TEST MODE

SIGNAL QUALITY from modem interface

SIGNAL RA TE from modem interface

The read device status slot function reads a particular one-word memory
location in a global or specified tributary status slot in the DMPl 1 controller.
It is not supported for the DMF32. The VMS operating system provides the
following combinations of function code and modifier:

• 10$_SENSEMODE!IO$M_RD_MEM!IO$M_CTRL-Read global status
slot

• 10$_SENSEMODE!IO$M_RD_MEM-Read tributary status slot

These codes take the following device- or function-dependent arguments:

• Pl-The address of a longword buffer where the status slot information
is stored

• P2-The tributary status slot address (0-31)

The I/O status block (IOSB) for all DMPl 1 and DMF32 functions is shown in
Figure 2-7. Appendix A lists the completion status returns for these functions.
(The VMS System Messages and Recovery Procedures Reference Volume provides
explanations and suggested user actions for these returns.)

2-25

DMP11 and DMF32 Interface Drivers
2.5 1/0 Status Block

Figure 2-7 IOSB Contents

+2 0

transfer size completion status

error error status characteristics
number* summary

+4

* only for DMP11
ZK-708-82

The first longword of the IOSB returns, in addition to the completion status,
either the size (in bytes) of the data transfer or the size (in bytes) of the
extended characteristics buffer returned by a sense mode function. The
second longword returns the unit characteristics listed in Table 2-2; the line
status bits listed in Table 2-3; the error summary bits listed in Table 2-4; and,
for the DMPll, the total number of errors accrued.

2.6 Programming Example

2-26

The following sample program (Example 2-1) shows the typical use of
QIO functions in DMPl 1 and DMF32 driver operations such as starting the
controller and tributary, and transmitting and receiving data.

To run this sample program on the first DMPl 1 in the system, enter the
initial DCL command, ASSIGN XDAO: DEV.

DMP11 and DMF32 Interface Drivers
2.6 Programming Example

Example 2-1 DMP11 /DMF32 Program Example

$ ASSIGN XDAO: DEV
.TITLE EXAMPLE - DMP11/DMF32 Device Driver Sample Program
.IDENT 'XOO'
$IODEF
$NMADEF
$XMDEF

Define I/O functions and modes
Define Network Management symbols
Define driver status flags

Macro definitions

1:

CMDOFAB:

CMDORAB:

CMDBUF::
CMDBSZ=

.macro
store
movl
movw
$put
blbs
$exit_s

type string,?l
<string>
#$$.tmpx,cmdorab+rab$l_rbf
#$$.tmpx1,cmdorab+rab$w_rsz
rab=cmdorab
r0,1

.endm type

.macro store

.save

.psect $$$dev
$$.tmpx=.
pre

string.pre

.ascii %string%
$$.tmpx1=.-$$.tmpx
.restore
.endm store

$FAB fac=put,fnm=sys$output: ,-
mrs=132,rat=cr,rfm=var

$RAB ubf=cmdbuf ,usz=cmdbsz,-
f ab=cmdof ab

.BLKB 256

.-CMDBUF
FAOBUFDSC: .LONG CMDBSZ,CMDBUF

FAOLEN: .BLKL 1

P2BUF:: .BLKL 50
P2BUFSZ= .-P2BUF
P2BUFDSC: .LONG P2BUFSZ,P2BUF
P1BUF:: .BLKQ 1

Example 2-1 Cont'd. on next page

; Output FAB

Output RAB

Command buff er
Buff er size
FAD buff er
descriptor
FAD output buff er
length
P2 buff er
P2 buff er size
P2 buff er descriptor
P1 buff er

2-27

DMP11 and DMF32 Interface Drivers
2.6 Programming Example

2-28

Example 2-1 (Cont.) DMP11 /DMF32 Program Example

PlBUFSZ=
CHNL::
IOSB::
DEVDSC:
QIOREQDSC:
QIOREQ:

QIOREQSZ=

XMTBUFLEN=512

XMTBUF:

RCVBUF:

.-PlBUF Pl buffer size

.BLKL 1 Channel number

.BLKL 1 I/0 status block

.ASCID 'DEV' Device to assign

.LONG QIOREQSZ,QIOREQ QIO request status

.ASCII 'QIO completion status = !XL'

.ASCII 'IOSBl = !XL, IOSB2 = !XL'

.-QIOREQ Size of QIO status
report

.REPEAT XMTBUFLEN

.BYTE AX93

.ENDR

.BLKB XMTBUFLEN

Size of transmit
buff er

Transmit data

This is the start of the program section

START:: .WORD
$OPEN
BLBC
$CONNECT
BLBC
BRB

EXIT: $EXIT_S

0
FAB=CMDOFAB
RO.EXIT
RAB=CMDORAB
RO.EXIT
CONT

Open output

Connect to output

Continue
Exit program

CONT: TYPE <DMP11/DMF32 Test Program>
TYPE <>
$ASSIGN_S DEVNAM=DEVDSC,CHAN=CHNL Assign unit

Exit on error BLBC RO.EXIT

Initialize and start controller

MOVZWL

MOVW
CLRL

BSBW

#XM$M_CHR_LOOPB!XM$M_CHR_DMC,P1BUF+4 ; Set Pl flags,
loopback and DMC
compatible

#XMTBUFLEN,P1BUF+2 Set Pi buffer size
P2BUFDSC Set zero length P2

buff er
!NIT Issue QIO

Establish and start tributary

CLRQ
MOVAB

MOVW
MOVZBL

PlBUF
P2BUF,R7

#NMA$C_PCCI_TRI,(R7)+
#1,(R7)+

Example 2-1 Cont'd. on next page

Reset Pl buff er
Get address of P2
buff er
Set parameter code
Store trib address

DMP11 and DMF32 Interface Drivers
2.6 Programming Example

Example 2-1 (Cont.) DMP11/DMF32 Program Example

MOVZBL #6,P2BUFDSC Store length of P2
buff er

BSBW ESTAB Issue QIO

Loopback data

MOVZWL #100,R9 Loop device 100
times

10$: BSBW XMIT Issue transmit
BSBW RECV Issue receive
MOVAB XMTBUF,R1 Get address of

transmit data
MOVAB RCVBUF,R2 Get address of

received data
MOVZWL #XMTBUFLEN,R3 Get number of bytes

to verify
20$: CMPB (R1)+,(R2)+ Check data

BNEQ 30$
SOBGTR R3,20$
SOBGTR R9, 10$
BRW EXIT Exit

30$ TYPE <*** Loopback buff er comparison error ***>
BRW EXIT ; Exit

Initialize controller QIO

INIT: TYPE
$QIO_S

BRW

<*** Initialize controller QIO ***>
chan=chnl,func=#io$_setchar!io$m_ctrl!io$m_startup,­
p1=p1buf ,p2=#p2bufdsc, iosb=iosb,p3=#5
QIO_STATUS

Start tributary QIO

ESTAB: TYPE
$QIO_S

BRW

<*** Startup tributary QIO ***>
chan=chnl,func=#io$_setchar!io$m_startup,­
p1=p1buf ,p2=#p2bufdsc,iosb=iosb
QIO_STATUS

Transmit data QIO

XMIT: TYPE
$QIO_S

BRW

<*** Transmit buffer QIO ***>
chan=chnl,func=#io$_writevblk,p1=xmtbuf ,­
p2=#xmtbuflen,iosh=iosb
QIO_XMTST

Receive data QIO

RECV: TYPE
$QIO_S

.BRB

.ENABL
QIO_STATUS:

BLBC
QIO_XMTST:

BLBC

<*** Receive buffer QIO ***>
chan=chnl,efn=#2,func=#io$_readvblk,p1=rcvbuf ,­
p2=#xmtbuflen,iosb=iosb
qio_status
LSB

IOSB, 10$

R0,10$

Check status of QIO
Br if error on QIO
Check status of XMIT
Br if error on

Example 2-1 Cont'd. on next page

2-29

DMP11 and DMF32 Interface Drivers
2.6 Programming Example

Example 2-1 (Cont.) DMP11/DMF32 Program Example

RSB request, else return
to caller

10$ MOVZWL IOSB,R1 Get I/O status block
PUSHL R1 Push I/O status block
PUSHL RO Push system service

status
PUS HAQ FAOBUFDSC Push address of FAD

buff er descriptor
PUSHAW FAOLEN Push address of

output length
PUS HAQ QIOREQDSC Push address of

input string
CALLS #5,©#SYS$FAO Get error message
MOVAB CMDBUF,CMDORAB+RAB$L_RBF Get output buff er

address
MOVW FAOLEN,CMDORAB+RAB$W_RSZ Get output buff er

length
$PUT CMDORAB Print error test
BRW EXIT Exit
.DSABL LSB

.END START

2-30

3 DR11-W and DRV11-WA Interface Driver

This chapter describes the use of the DRll-W interface driver (XADRIVER).
(The DRVll-WA uses the same driver; thus, unless otherwise stated,
references to the DRl 1-W also apply to the DRVl 1-WA.)

3.1 Supported Devices
The DRll-W is a general-purpose, 16-bit, parallel, direct-memory-access
(OMA) data interface. It is capable of being used either as an interface
between memory and a user device or as an interprocessor link (non-DECnet)
between two systems.

Because user devices of different or unknown capability can be connected to
the interface that the XADRIVER presents, the VMS-supplied device driver
might be either insufficient or significantly inefficient for the application. For
this reason, VMS provides limited support for the DRll-W and
DRVll-WA when connected to foreign devices, and provides the source code
for XADRIVER in the VMS distribution kit as a template adding additional
functionality.

Note that the driver is not supported if modifications are made to the source
program. DIGITAL strongly recommends that any modifications to device
drivers be attempted only by those who are extremely familiar with the
internal operation of the operating system. For additional information, refer
to the DR11-W Direct Memory Interface Module User's Guide, the DRV11-WA
General Purpose DMA Interface User's Guide, and the VMS Device Support
Manual.

The DRVll-WA is similar to the DRll-W. However, it operates as an
interface device that uses the 22-bit Q-BUS rather than the UNIBUS. Unless
otherwise indicated, the DRVll-WA driver performs the same QIO functions
as the DRll-W driver; descriptions of DRll-W features also apply to the
DRVll-WA. The DRVll-WA driver is supported for the MicroVAX II, but
not the Micro VAX I.

Note: Etch Revision Level E boards must be configured to be compatible with
earlier versions of the DRVll-WA by installing jumpers W2, W3, and W6.
These restrictions do not apply to the DR11-W.

You can link a DRll-W to another DRll-W, a DRVll-WA to another
DRVll-WA, or a DRll-W to a DRVll-WA. The VMS operating system
does not support interprocessor links. You must write the code for any
interprocessor communications operations.

Figure 3-1 shows two typical applications of the DRll-W and DRVll-WA.

The driver (XADRIVER) allows general access to the features provided by
the DRll-W and DRVll-WA devices. Function codes and modifiers are
provided to control, and to transfer data between, the user device and the
VMS operating system.

3-1

DR11-W and DRV11-WA Interface Driver
3.1 Supported Devices

Figure 3-1 Typical DR11-W/DRV11-WA Device Configurations

rvAX=11- - -- -. - -- ----- -- - -1

MEMORY

a:
LU
l­o.
<(
0
<(

Cf)
::)
CD z
::)

DR-11W

I
I
I
I
I
I

L------------------1
a. Data Interface

r~~l-1 ---------------

MEMORY

Cf)
::)
CD a DRV-11-WA

L------------------~
b. Processor Link

3-2

USER
DEVICE

, - OTHERCOMPUTER - 1
SYSTEM

DR-11W

______ ..

ZK-709-82

3.1.1

3.1.2

DR11-W and DRV11-WA Interface Driver
3.1 Supported Devices

Device Differences
The following differences between the DRll-W and the DRVll-WA affect
the user at the QIO interface level; the referenced sections contain additional
information about these differences:

• Unsolicited interrupts-The DRVll-WA driver does not acknowledge
unsolicited interrupts (see Section 3.3).

• IO$M_WORD function modifier-The DRVll-WA driver does not
perform word mode transfers (see Section 3.3).

• CSR error bit-The DRVll-WA driver detects some, but not all,
hardware errors detected by the DRl 1-W driver (see Section 3.1.6).

• Error information register (EIR)-The DRVll-WA does not have an EIR
(see Section 3.1.6).

• IO$M_RESET function modifier-The DRVll-WA cannot be reset in the
same way as the DRll-W (see Section 3.3).

• IO$M_DATAPATH function modifier-The IO$M_DATAPATH function
modifier is ignored for the DRVll-WA driver (see Section 3.3.3.1).

DRV11-WA Installation

3.1.2.1

3.1.2.2

In addition to the two installation considerations described in this section,
follow the instructions in the hardware documentation when installing the
DRVll-WA.

Type of Addressing
Bit 10 of the vector address selection switch is not used as part of the vector;
it selects 18- or 22-bit addressing. Set the device to 22-bit addressing.

Device Address and Interrupt Vector Address Selection
Because the DRVll-WA is designed to be compatible with the DRll-B, the
hardware documentation instructs you to set the device address and the
interrupt vector address to those reserved for the DRll-B. However, the
DRVll-WA is treated as much as possible like a DRll-W. Set the device
address and interrupt vector address to those reserved for the DRll-W. (Set
the device address to rank 19 and the interrupt vector address to rank 40,
both in floating address space.) Use the VMS System Generation Utility
CONFIGURE command to calculate exact addresses.

If you want to set up the device at the DRll-B address as described in the
hardware documentation, configure the device using the following commands:

$run sys$system:sysgen
load sys$system:xadriver
connect xaaO /adap=ub0/csr=%o772410/vector=%o124
exit

3-3

3.1.3

DR11-W and DRV11-WA Interface Driver
3.1 Supported Devices

DR11-W and DRV11-WA Transfer Modes

3-4

The DRll-W transfers data in block mode and in word mode. (Word mode
transfers are not supported with the DRVll-WA.) In block mode, all transfers
are provided by the DMA facility. Each QIO request moves a single buffer
of data between the user device and physical memory. One interrupt is
generated on completion of the transfer. The transfer rate and transfer
direction are controlled by the user device.

In block mode, the two types of UNIBUS or Q-BUS transfers are single cycle
and burst. During single-cycle transfers the bus is arbitrated for each word
(two bytes) of information exchanged. Both the DRl 1-W and the DRVl 1-WA
have a single cycle mode supported by VMS.

Burst transfers result in the exchange of multiple words without arbitration
of the bus. Two classes of burst mode transfers are possible, depending on
the position of a switch on the module. On the DRll-W, the VMS operating
system only permits the use of dual cycle mode (class 1) in which two words
are transferred for each arbitration of the UNIBUS. On the DRVll-WA, the
VMS operating system only permits the use of the 4-cycle mode in which
four words are transferred for each arbitration of the Q-BUS. Use burst
mode transfers with caution. They can provide greater performance, but
can prevent use of the bus by other devices for what might be unacceptable
periods. Both the DRl 1-W and the DRVl 1-WA also have an N-cycle burst
mode that cannot be used on VMS systems. On DRVll-WA boards prior
to CS Revision Level Band Etch Revision Level D, N-cycle is the only form
of burst mode available, and there is no burst mode selection switch on the
module.

In word mode, a single QIO request transfers a buffer of data, with an
interrupt requested for each word. Word mode is usually used to exchange
control information between the application program and the user device.
Once the proper control information has been accepted, a block-mode transfer
can be started to exchange data.

In both block- and word-mode transfers, the transfer size is indicated by the
byte count value specified in the P2 argument. The DRll-W and
DRVll-WA transfer information between main memory and the user device
in one-word (two-byte) units; transfers are counted on a word-by-word basis.
However, the VMS operating system counts information one byte at a time.
Consequently, if the desired DRl 1-W or DRVl 1-WA transfer is 100 words,
the P2 argument must specify 200 (bytes) for the transfer count value. If an
odd number of bytes is specified for the transfer count, the driver rejects the
QIO request.

Transfers to and from memory typically occur from sequentially increasing
addresses. The user device can inhibit the increment to the next address.

During block mode transfers, the user device controls the transfer direction
through signals exchanged with the driver. Neither the VMS operating
system nor the application program has any control over the transfer
direction. Consequently, a read or write request to the driver by the
application program should be by convention, according to the intended
action. An effect of this, regardless of whether a read or write QIO function
is specified, is that the application program's data buffer is always checked for
modify access (rather than read or write access) during block-mode transfers.
In word mode, the transfer direction is controlled explicitly by the device
driver.

3.1.4

DR11-W and DRV11-WA Interface Driver
3.1 Supported Devices

Note: The meaning of the terms read and write can be misunderstood
when discussing data transfers. This manual uses these terms for the
application procedure running under the VMS operating system. A read
operation involves the transfer of information from the user device to
VAX memory. A write operation involves the transfer of information
from VAX memory to the user device. Receive and input are synonymous
with read operations; transmit and output are synonymous with write
operations.

DR 11-W and DRV11-WA Control and Status Register Functions
For each buffer of data transferred, the DRll-W or DRVll-WA driver allows
for the exchange of an additional six bits of information: the function (FNCT)
and status (STATUS) bits, which are included in the control and status register
(CSR). These bits are accessible to an application process through the device
driver QIO interface. The FNCT bits are labeled FNCT 1, FNCT 2, and
FNCT 3. The STATUS bits are labeled STATUS A, STATUS B, and STATUS
c.
The user device interfaced to the DRll-W or DRVll-WA interprets the value
of the three FNCT bits. The QIO request that initiates the transfer specifies
the IO$M_SETFNCT modifier to indicate a change in the value for the FNCT
bits. The P4 argument of the request specifies this value. P4 bits 0 through 2
correspond to FNCT bits 1,2,3, respectively. Bits 3 through 31 are not used.
If required, the FNCT bits must be set for each request. The FNCT bits set in
the CSR are passed directly to the user device.

The DRl 1-W and DRVll-WA STATUS bits are available in bits 9 through
11 of the CSR, which correspond to STATUS bits C,B,A, respectively. On
completion of all transfers, the STATUS bits are returned from the user device
through the DRll-W or DRVll-WA to the IOSB. Neither the VMS operating
system nor the DRll-W / DRVll-WA modifies these bits in any way. Thus,
both FNCT and STATUS fields are defined solely by the user device. Except
when used as an interprocessor link, the DRll-W or DRVll-WA takes no
special action based on the state of these fields, and the FNCT bits remain set
until explicitly changed with the IO$M_ SETFNCT function modifier.

The DRll-W and DRVll-WA CSR STATUS bits should not be confused
with the status values returned in the I/O status block.

The function modifier IO$M_CYCLE sets the CSR CYCLE bit for the transfer
specified by the QIO request. In block mode, the CYCLE bit initiates the
transfer of the first word of data. In word mode, IO$M_CYCLE has no effect.

Section 3.1. 7 describes the special meaning given to the FNCT and STATUS
bits by the DRll-W or DRVll-WA hardware and device driver when used
as an interprocessor link.

3-5

3.1.5

3.1.6

3.1.7

DR11-W and DRV11-WA Interface Driver
3.1 Supported Devices

Data Registers
Two registers are used to transfer information to and from the user device.
The input data register (IDR) contains the last data value transferred into
the DRll-W or DRVll-WA from the user device. The output data register
(ODR) contains the last value transferred from the DRll-W or DRVll-WA to
the user device. During block mode operations, these registers are controlled
automatically and require no explicit action on the part of the application
program. During word-mode write operations, the DRll-W driver loads
the ODR with each successive data word; each word is then available to the
user device. During word-mode read operations, the driver reads the IDR
and stores the value in memory. Interrupts from the DRl 1-W synchronize
reading and writing the IDR and ODR when in word mode.

Error Reporting
The error information register (EIR) is used for reporting certain error
conditions to the application program at the completion of each request.
As the result of a user device action, the device sets the ATTN bit in the
CSR. The CSR ERROR bit is also set at this time. If ERROR is set during a
block-mode transfer, the transfer is aborted. Table 3-5 in Section 3.4 lists the
EIR and CSR bit assignments for the I/O status block.

The DRVll-WA detects some, but not all, types of errors detected by the
DRl 1-W. Specifically, the error bit in the CSR (bit 15) for the DRVl 1-WA
signals attention interrupts, nonexistent memory errors, and power failures
at the remote device, but does not signal multicycle request errors or parity
errors. The DRVl 1-WA does not have an EIR. The driver always returns
zeros in place of the EIR in the fourth word of the IOSB when an I/O
operation is completed.

Link Mode of Operation

3-6

The XADRIVER driver can control two DRll-Ws, two DRVl 1-WAs, or a
DRll-W and a DRVll-WA connected as interprocessor links between two
computer systems.

Note: The DRV11-WA to DRV11-WA link mode of operation is not possible
with earlier board versions. DIGITAL does not support the DRV11-WA
to DRVll-WA link mode of operation.

Control switches on the DRll-W and DRVll-WA modules are set to place
the hardware in the link mode configuration. You must set these switches
and use either the set mode or the set characteristics function to instruct the
driver to function in link mode.

In link operations, two cooperating processes exchange data through the
devices, which function as a memory-to-memory interface. This feature
requires that the two processes agree on, and establish a basis for describing,
the direction of the data transfer, the message sizes, and arbitrating use of the
link.

In link operations, the FNCT and STATUS bits are given special meaning
by the DRll-W or DRVll-WA hardware and the device driver. Proper
operation of the DRll-W or DRVll-WA as an interprocessor link depends
on the correct use of these bits. The driver does not enforce correct use of
the FNCT and STATUS bits. When issuing a QIO request to the DRll-W or

DR11-W and DRV11-WA Interface Driver
3. 1 Supported Devices

DRVl 1-WA in link mode with 10$M_SETFNCT specified, the correct values
and sequence of FNCT bits must be provided by the application image.
Table 3-1 lists the FNCT and STATUS bits and what actions occur when
the DRl 1-W or DRVl 1-WA is in link mode. (Table 3-5 lists the CSR bit
assignments.)

Table 3-1 Control and Status Register FNCT and STATUS Bits
(Link Mode)

Bit Function

FNCT 1 Indicates whether the DR 11-W or DRV 11-WA at this end of the
link is to transmit or receive data. If FNCT 1 is 0, the DR 11-W
or DRV 11-WA transmits data from memory to the associated
DR 11-W or ORV 11-WA at the other end of the link. If FNCT
1 is 1, the DR 11-W or DRV 11-W A receives data from the
associated DR 11-W or DRV 11-W A and stores it in memory.
(Note that two DRV11-WAs cannot be linked together.) For
proper operation, one system must set FNCT 1 to 1 (for receive)
and the associated system must set FNCT 1 to 0 (for transmit).

FNCT 2 Interrupts the remote processor. For proper operation, the driver
must be set to operate as a link. When a set mode or set
characteristics function is used to instruct the driver to perform
a link operation, the driver does not leave FNCT 2 set. Instead,
the driver sets and then immediately clears the bit to provide a
pulse, rather than a level, to the associated system.

FNCT 3 Indicates whether the nonprocessor request (NPR) transfers that
follow occur as single-cycle or burst-mode transfers. If FNCT 3
is 0, burst transfers are performed. If FNCT 3 is 1, single-cycle
transfers are performed. Note that burst-mode transfers can
occupy the UNIBUS or Q-BUS for long periods, to the exclusion
of other devices on the same bus.

ST A TUS A Returns the value of FNCT 3 set in the associated computer
system. When an interrupt is returned from the associated
computer denoting the need to exchange a message,
ST A TUS A indicates whether the request that follows is to be
set up for single-cycle or for burst operation.

STATUS B Returns the value of FNCT 2 set in the associated system.
Because the DR 11-W driver, when configured as a link, never
leaves FNCT 2 set, ST A TUS B is never read as a 1 . When
ST A TUS B is set, ATTENTION and, in turn ERROR, are set in the
DR 11-W or ORV 11-W A. When the driver handles the resulting
interrupt, it attempts to clear ATTENTION. If ATTENTION cannot
be cleared, it indicates that the condition causing it was a level,
held true by the associated system. Since ATTENTION can be
set by conditions other than FNCT 2, for example, the error
ACLO in the associated system, treating FNCT 2 as a pulse
allows the receiving DR 11-W to differentiate between an error
and a normal processor interrupt request.

ST A TUS C · Returns the value of the FNCT 1 bit sent by the associated
computer. ST A TUS C indicates whether the DMA transfer that
follows is a transmit or a receive operation.

3-7

DR11-W and DRV11-WA Interface Driver
3.1 Supported Devices

If a DRll-W in link configuration sets one or more of the three CSR FNCT
bits, the other DRl 1-W will perform one or more of the following actions:

• Request an interrupt

• Specify the intended transfer direction for a block-mode transfer that
follows

• Declare whether the transfer is to take place in burst or single-cycle
operation

In each case, the value written into the FNCT bits of the first DRll-W is
available and is read from the STATUS bits of the other DRll-W.

Since either process can initiate the data transfer, arbitration for the use of
the link is automatic. If both processes want to write or both want to read, a
timeout occurs. A timeout also occurs if either process neglects to specify the
agreed-upon transfer direction or message size. Each process should specify
a different timeout period or a different time before re-requesting the link
after a timeout. These actions, which preclude a lockup of the link, are not
enforced by the driver.

If an attention interrupt is generated, it indicates that either the DRl 1-W or
DRVll-WA associated with the other system is initiating a transfer or that
the other DRll-W or DRVll-WA is going off line because of a power failure.
The DRl 1-W driver's ability to clear ATTENTION (see description of
STATUS B in Table 3-1) allows a data transfer to be distinguished from a
hardware error. If an error occurs and ATTENTION can be cleared,
SS$_DRVERR is returned as the status. If ATTENTION cannot be cleared,
SS$_CTRLERR is returned.

3.2 Device Information

3-8

You obtain information on DRll-W or DRVll-WA characteristics by using
the Get Device/Volume Information ($GETDVI) system service. (See the
VMS System Services Reference Manual.)

$GETDVI returns DRll-W- or DRVll-WA-specific characteristics when you
specify the item codes DVI$_DEVCHAR and DVI$_DEVDEPEND.
Tables 3-2 and 3-3 list these characteristics. The $DEVDEF macro defines
the device-independent characteristics; the $XADEF macro defines the device­
dependent characteristics.

DVI$_DEVTYPE and DVI$_DEVCLASS return the device type and device
class names, which are defined by the $DCDEF macro. The device type for
the DRll-W is DT$_DR11W; the device type for the DRVll-WA is
DT$_)(A_DRV11WA. The device class for both the DRll-W and DRVll­
WA is DC$-REALTIME. DVI$_DEVBUFSIZ returns the default buffer size,
which is 65,535.

Table 3-2 DR11-W and DRV11-WA Device-Independent
Characteristics

Characteristic 1 Meaning

Dynamic Bits (Conditionally Set)

DEV$M_AVL Device is online and available.

1 Defined by the $DEVDEF macro.

DR11-W and DRV11-WA Interface Driver
3. 2 Device Information

Table 3-2 (Cont.) DR11-W and DRV11-WA Device-Independent
Characteristics

Characteristic 1

DEV$M_ELG

DEV$M_IDV

DEV$M_QDV

DEV$M_RTM

Meaning

Dynamic Bits (Conditionally Set)

Error logging is enabled for this device.

Static Bits (Always Set)

Input device.

Output device.

Real-time device.

1 Defined by the $DEVDEF macro.

Table 3-3 DR11-W and DRV11-WA Device-Dependent
Characteristics

Value 1 Meaning

XA$M_DAT APA TH Describes which UNIBUS adapter data path is in use.
0 = direct data path; 1 = buffered data path. The initial
state of this bit is 0. (Not applicable to the ORV 11-W A.)

XA$M_LINK Describes whether the DR11-W or DRV11-WA is used
as a link or as a user device interface. 0 =user device
interface; 1 = link. The initial state of this bit is 0.

1 Defined by the $XADEF macro.

3.3 DR11-W and DRV11-WA Function Codes
The XADRIVER can perform logical, virtual, and physical 1/0 operations.
The basic 1/0 functions are read, write, set mode, and set characteristics.
Table 3-4 lists these functions and their function codes. The following
sections describe these functions in greater detail.

Table 3-4 DR11-W Function Codes

Function Code and
Arguments

10$_READLBLK P 1,P2,­
P3 ,P4,P5

Function
Type 1 Modifiers

L 10$M_SETFNCT
10$M_WORD2

10$M_TIMED
10$M_CYCLE
10$M_RESET

Function

Read logical block.

1 V = virtual, L = logical, P = physical (There is no functional difference in these operations.)

2Not applicable to the DRV11-WA

3-9

DR11-W and DRV11-WA Interface Driver
3.3 DR11-W and DRV11-WA Function Codes

3-10

Table 3-4 (Cont.) DR11-W Function Codes

Function Code and Function
Arguments Type1 Modifiers Function

10$_READVBLK P 1,P2,- v 10$M_SETFNCT Read virtual block.
P3,P4,P5 10$M_WORD2

10$M_TIMED
10$M_CYCLE
10$M_RESET

10$_READPBLK P 1,P2,- p 10$M_SETFNCT Read physical
P3,P4,P5 10$M_WORD2 block.

10$M_TIMED
10$M_CYCLE
10$M_RESET

10$_WRITELBLK P1 ,P2,- L 10$M_SETFNCT Write logical
P3,P4,P5 10$M_WORD2 block.

10$M_TIMED
10$M_CYCLE
10$M_RESET

10$_WRITEVBLK P1 ,P2,- v 10$M_SETFNCT Write virtual
P3,P4,P5 10$M_WORD2 block.

10$M_TIMED
10$M_CYCLE
10$M_RESET

10$_WRITEPBLK P1 ,P2,- p 10$M_SETFNCT Write physical
P3,P4,P5 10$M_WORD2 block.

10$M_TIMED
10$M_CYCLE
10$M_RESET

10$_SETMODE P1 ,P3 L 10$M_ATTNAST Set DR11-W
or DRV11-WA
characteristics
for subsequent
operations.

10$_SETCHAR P 1,P3 p 10$M_A TTNAST Set DR11-W
10$M_DATAPATH or DRV11-WA

characteristics
for subsequent
operations.

1 V = virtual, L = logical, P = physical (There is no functional difference in these operations.)

2Not applicable to the DRV11-WA

Although the XADRIVER does not differentiate among logical, virtual, and
physical 1/0 functions (all are treated identically), you must have the required
privilege to issue a request.

The read and write functions take the following device- or function-dependent
arguments:

• Pl-The starting virtual address of the buffer that is to receive data for
a read operation, or the virtual address of the buffer that is to send data
to the DRll-W for a write operation. Modify access to the buffer, rather

DR11-W and DRV11-WA Interface Driver
3.3 DR11-W and DRV11-WA Function Codes

than read or write access, is checked for all block-mode read and write
requests.

• P2-The size of the data buffer in bytes (the transfer count). Since the
DRl 1-W performs word transfers, the transfer count must be an even
value. The maximum transfer size is 6S ,S34 bytes. If a larger number is
specified, the high-order bits of this field are ignored.

• P3-The timeout period for this request (in seconds). The value specified
must be equal to or greater than 2. IO$M_TIMED must be specified. The
default timeout value for each request is 10 seconds.

• P4-The value of the DRl 1-W command and status register (CSR)
function (FNCT) bits to be set. If I0$M_SETFNCT is specified, the
low-order three bits of P4 (2:0) are written to the CSR FNCT bits 3:1
(respectively) at the time of the transfer.

• PS-The value (low two bytes) to be loaded into the DRl 1-W output
data register (ODR). IO$M_SETFNCT must be specified and the transfer
count (P2) must be 0.

If a direct data path (DDP) is used (see Section 3.3.3.1), the address specified
by the Pl argument must be word-aligned. However, if a buffered data
path (BDP) is used, byte alignment is allowed. All transfers through the
BDP, which is only available on the UNIBUS, must occur from sequential,
increasing addresses. If the user device interfaced to the DRl 1-W cannot
conform to this requirement, the DDP must be used.

The transfer count specified by the P2 argument must be an even number of
bytes. If an odd number is specified, an error (SS$_BADP ARAM) is returned
in the I/O status block (IOSB). If the transfer count is 0, the driver will
transfer no data. However, if IO$M_SETFNCT is specified and P2 is 0, the
driver will set the FNCT bits in the DRl 1-W CSR, load the low two bytes
specified in PS into the DRll-W ODR, and return the current CSR status bit
values in the IOSB.

The read and write functions can take the following function modifiers:

• IO$M_SETFNCT-Sets the FNCT bits in the DRl 1-W CSR before the
data transfer is initiated. The low-order three bits of the P4 argument
specify the FNCT bits. The user device that interfaces with the DRl 1-W
or DRVl 1-WA receives the FNCT bits directly, and their value is
interpreted entirely by the device.

Additionally, if the transfer count (P2) is 0, load the value specified in PS
into the device ODR.

If a link operation is specified in the device-dependent characteristics
(XA$M_LINK = 1), FNCT 2 will not be left set (that is, it will be set and
immediately cleared) in the device CSR.

• IO$M_WQRD-Performs the data transfer in word mode rather than in
DMA block mode (not applicable to the DRVll-WA). In word mode an
interrupt occurs for each word transferred. This allows the exchange of a
small amount of data to establish the parameters for a block-mode data
transfer that follows.

3-11

DR11-W and DRV11-WA Interface Driver
3.3 DR11-W and DRV11-WA Function Codes

3-12

If I0$M_WORD is included in a write request, the first word in a
user's buffer is loaded into the DRll-W ODR. The driver then waits for
an interrupt before proceeding to load the next word or complete the
request. If IO$M_WORD is included in a read request, the driver waits
for an interrupt and then reads a word from the DRll-W IDR and stores
it in the user's buffer.

Interrupts are initiated when either the user device or, when in link
operation, the associated DRl 1-W sets ATTENTION.

If the DRll-W or DRVll-WA receives an unsolicited interrupt, no read
or write request is posted. If the next request is for a word-mode read,
the driver returns the word read from the DRll-W IDR and stores it in
the first word of the user's buffer. In this case the driver does not wait for
an interrupt.

The DRVll-WA does not respond to unsolicited interrupts from a remote
device; the DRVll-WA only acknowledges interrupts when a DMA
transfer is outstanding. Consequently, word-mode transfers are not
possible on a DRVll-WA because the device does not acknowledge
the interrupt that occurs when the I/O operation is completed; the QIO
waits indefinitely or times out. (In some cases, you can work around this
problem by causing the remote device to generate an interrupt, which
makes the local DRVll-WA complete the I/O operation with an
SS$_0PINCOMPL status.)

• IO$M_ TIMED-Uses the timeout value in the P3 argument rather than
the default timeout value of 10 seconds.

• IO$M_CYCLE-Sets the cycle bit in the DRll-W or DRVll-WA CSR
for this request. In block mode, this initiates the first NPR cycle. For
user devices, the application of the cycle bit is dependent on the specific
device. In word mode, IO$M_CYCLE is ignored. In link operations, only
the transmitting DRll-W or DRVll-WA must set CYCLE and then only
after the companion DRll-W has its receive request initiated.

• I0$M_RESET-Performs a device reset to the DRll-W before any 1/0
operation is initiated. This function does not affect any other device on
the system.

The DRVll-WA can be reset only by initializing the Q-BUS and all other
devices attached to the Q-BUS. Therefore, when the
I0$M_RESET function modifier is used to reset the DRVll-WA, the
XADRIVER simulates a reset by setting the word count register (WCR)
to indicate one word left to be transferred and setting the CYCLE bit to
complete the transfer. If the driver is not performing a transfer at the
time of a reset, the reset is a NOOP.

On completion of each read or write request, including those requests with
a zero transfer count, the current value of the DRll-W or DRVll-WA CSR
and DRll-W EIR is returned in the I/O status block.

3.3.1

3.3.2

3.3.3

Read

Write

DR11-W and DRV11-WA Interface Driver
3.3 DR11-W and DRV11-WA Function Codes

Read functions provide for the direct transfer of data from the user device
that interfaces with the DRll-W or DRVll-WA into the user process's virtual
memory address space. The VMS operating system provides the following
function codes:

• 10$_READLBLK-Read logical block

• 10$_READVBLK-Read virtual block

• 10$_READPBLK-Read physical block

Five function-dependent arguments and five function modifiers are used with
these codes. These arguments and modifiers are described at the beginning of
Section 3.3.

Write functions provide for the direct transfer of data to the user device that
interfaces with the DRl 1-W or DRVl 1-WA from the user process's virtual
memory address space. The VMS operating system provides the following
function codes:

• 10$_WRITELBLK-Write logical block

• 10$_WRITEVBLK-Write virtual block

• IO$_WRITEPBLK-Write physical block

Five function-dependent arguments and five function modifiers are used with
these codes. These arguments and modifiers are described at the beginning of
Section 3.3.

Set Mode and Set Characteristics
Set mode operations affect the operation and characteristics of the associated
DRll-W or DRVll-WA. The VMS operating system defines two types of
set mode functions: set mode and set characteristics. These functions allow
the user process to set or change the device characteristics. The following
function codes are provided:

• IO$_SETMODE-Set mode (no 1/0 privilege required)

• IO$_SETCHAR-Set characteristics (requires physical 1/0 privilege)

These functions take the following device- or function-dependent arguments:

• Pl-The virtual address of a quadword characteristics buffer. If the
function modifier 10$M_ATTNAST is specified, Pl is the address of
the AST service routine. In this case, if Pl is 0, all attention ASTs are
disabled.

• P3-The access mode to deliver the AST (maximized with the requester's
access mode). If IO$M_ATTNAST is not specified, P3 is ignored.

3-13

DR11-W and DRV11-WA Interface Driver
3.3 DR11-W and DRV11-WA Function Codes

3.3.3.1

3-14

Figure 3-2 shows the quadword Pl characteristics buffer for 10$_SETMODE
and 10$-SETCHAR.

Figure 3-2 P1 Characteristics Buffer

31 16 15 8 7 0

not used I type l class

device characteristics

ZK-712-82

Table 3-3 lists the device characteristics for the set mode and set
characteristics functions. The device class value is DC$_REALTIME. The
device type value is DT$_DR11W or DT$_)(A_DRV11WA. These values are
defined by the $DCDEF macro.

Set Mode Function Modifiers
The 10$_SETMODE and 10$_SETCHAR function codes can take the
following function modifier:

• 10$M_ATTNAST-Enable attention AST

This function modifier allows the user process to queue an attention AST for
delivery when an asynchronous or unsolicited condition is detected by the
DRll-W or DRVll-WA driver. Unlike ASTs for other QIO functions, use of
this function modifier does not increment the 1/0 count for the requesting
process or lock pages in memory for 1/0 buffers. Each AST is charged against
the user's AST limit.

Attention ASTs are delivered when any of the following occur:

• Any block- or word-mode data transfer request is completed.

• An unsolicited interrupt from the DRll-W occurs. (The DRVll-WA does
not respond to unsolicited interrupts.)

• An attention AST is queued and a previous unsolicited interrupt has not
been acknowledged.

• A device timeout occurs.

The Cancel 1/0 on Channel ($CANCEL) system service is used to flush
attention ASTs for a specific channel.

The enable attention AST function modifier enables an attention AST to be
delivered to the requesting process once only. After the AST occurs, it must
be explicitly reenabled by the function modifier before the AST can occur
again. This function modifier does not update the device characteristics.

When the AST is delivered, the AST parameter contains the contents of the
DRll-W or DRVll-WA CSR in the low two bytes and the value read from
the DRll-W or DRVll-WA IDR in the high two bytes.

DR11-W and DRV11-WA Interface Driver
3.3 DR11-W and DRV11-WA Function Codes

In addition to 10$M_ATTNAST, the 10$_SETCHAR function code can take
the following function modifier:

• IO$M_DATAP ATH-Use the data path specified by XA$M_DATAP ATH
in the Pl characteristics buffer

The 10$M_DATAP ATH function modifier allows the user to specify either
the direct data path (DDP) or a buffered data path (BDP) for block-mode
transfers through the UNIBUS adapter.

The device-specific characteristic XA$M_DATAP ATH is used to switch
between use of the DDP and the BDP. If XA$M_DATAP ATH is set, the BDP
is used; if clear, the DDP is used. Regardless of the value of
XA$M_DATAPATH, the choice of data path has no effect unless the function
modifier IO$M_DATAPATH is also specified, which requires physical 1/0
privilege.

Note: Use caution when specifying data transfers through the BOP. The user
device has access to several hardware functions: CO and Cl, inhibit word
count increment, and inhibit bus address increment. If these signals are
used out of context of the expected UNIBUS adapter constraints for BDPs,
the result is unpredictable.

3.4 1/0 Status Block

Unlike the UNIBUS, the Q-BUS does not provide a choice between a direct
data path and a buffered data path; the 10$M_DATAPATH function modifier
is ignored for the DRVll-WA.

The 1/0 status block (IOSB) for DRll-W or DRVll-WA read and write
functions is shown in Figure 3-3. On completion of each read or write
request, the 1/0 status block is filled with system and DRl 1-W or DRVll­
WA status information.

Figure 3-3 IOSB Contents - Read and Write Functions

+2 IOSB

byte count status

DR11-W EIR DR11-W CSR

ZK-713-82

The first longword of the 1/0 status block contains 1/0 status returns and the
byte count. Appendix A lists the status returns for read and write functions.
(The VMS System Messages and Recovery Procedures Reference Volume provides
explanations and suggested user actions for these returns.) The byte count is
the actual number of bytes transferred by the request. If the request ends in
an error, the byte count might differ from the requested number of bytes. If
a power failure, timeout, or the Cancel 1/0 on Channel ($CANCEL) system
service stops the request, the value in the byte count field is not valid.

3-15

DR11-W and DRV11-WA Interface Driver
3.4 1/0 Status Block

The third and fourth words of the 1/0 status block contain the values of
the DRll-W CSR and EIR on completion of the request. (The DRVll-WA
has a CSR but not an EIR; the driver always returns zeros in the fourth
word of the IOSB when an 1/0 operation is completed.) Table 3-5 lists the
bit assignments for these two words. The DR11-W User's Manual provides
additional information on the EIR and CSR.

Table 3-5 El R and CSR Bit Assignments

Word Bit Function

EIR 0 Register flag

1-7 (not applicable)

8 N-cycle burst

9 Burst timeout (sets ERROR)

10 PARITY (sets ERROR)

11 ACLO (sets ERROR)

12 Multicycle request (sets ERROR)

13 ATTENTION (sets ERROR)

14 Nonexistent memory (sets ERROR)

15 ERROR (generates interrupt when set)

CSR o. GO

1 FNCT 1

2 FNCT 2

3 FNCT 3

4 Extended bus address 16

5 Extended bus address 17

6 Interrupt enable

7 READY

8 CYCLE

9 STATUS C

10 STATUS B

11 STATUS A

12 Maintenance mode

13 ATTENTION (sets ERROR)

14 Nonexistent memory (sets ERROR)

15 ERROR (generates interrupt when set)

3.5 Programming Example

3-16

A sample program residing in the SYS$EXAMPLES directory demonstrates
how to perform transfers across a DRll-W to DRVll-WA or a DRll-W to
DRll-W interprocessor link. The sample program includes the following
modules:

DR11-W and DRV11-WA Interface Driver
3.5 Programming Example

• XALINK.MAR-Places the device in link mode

• XAMESSAGE.MAR-Performs the actual transfer of data

• XATEST.FOR-Solicits parameters for the transfer from the user and calls
the XALINK.MAR and XAMESSAGE.MAR modules

• XATEST.COM-Compiles and links the sample program

Example 3-1, which consists of the module XAMESSAGE.MAR, shows
how an actual memory-to-memory link might be implemented using
the XADRIVER. All actions are invoked through the $QIO interface by a
nonprivileged image.

Note: XAMESSAGE.MAR is a demonstration program, not an application. The
program may not work in all circumstances. See the template warning at
the beginning of Example 3-1.

XAMESSAGE.MAR includes the following features:

• Either system can function as the transmitter or the receiver. For any
given exchange, one system must be the transmitter and one must be the
receiver.

• Either the transmitter or the receiver can call XAMESSAGE first, which is
made possible by the driver's ability to keep track of unsolicited attention
interrupts. XAMESSAGE uses this feature for the following reasons:

To synchronize the DMA exchange

To ensure that the receiver issues the block-mode read request first

To ensure that the transmitter sets the CYCLE bit to initiate the first
NPR transfer

• If either the transmitter or receiver specifies unequal transfer sizes or does
not match the transfer direction, either a timeout occurs or one of the
procedures returns an error. The caller must resolve these discrepancies.

Table 3-6 lists the main flow of the program. Note that paths for transmit
and receive and for DRll-W and DRVll-WA are combined in the same
module (XAMESSAGE).

The three parts of Table 3-6 describe the operation of XAMESSAGE in three
different device configurations:

• A DRVll-WA transmitting a message to a DRll-W

• A DRll-W transmitting a message to a DRVll-WA

• A DRll-W transmitting a message to another DRll-W

The two right-hand columns describe the action taken by each device
involved in the transfer. The leftmost column contains the name of the
routine in XAMESSAGE that performs the respective action: MAIN refers to
the main routine for XAMESSAGE, AST_GO refers to the AST routine by that
name, AST_COM refers to the AST routine called AST_ COMPLETION, and
ASYNC means that the action occurs asynchronously and is not controlled
directly by any code in XAMESSAGE.

3-17

DR11-W and DRV11-WA Interface Driver
3.5 Programming Example

Table 3-6 XAMESSAGE Program Flow

DRV11-WA (Transmitter) to DR11-W (Receiver)

XAMESSAGE DRV11-WA (Transmitter) DR11-W (Receiver)

MAIN 1. Issue block mode read 1. Enable attention AST.
request.

AST_GO 2. Execute attention AST
as a result of interrupt
from transmitter.

AST_GO 3. Issue block mode read
request.

AST_GQ 4. Complete block mode
read request prematurely
as a result of the
interrupt at the beginning
of the receiver's read
request.

AST_GQ 5. Issue block mode write
request.

ASYNC 6. Perform DMA transfer. 6. Perform DMA transfer.

AST_COM 7. Execute completion AST, 7. Execute completion
and check for errors. AST, and check for

errors.

DR11-W (Transmitter) to DRV11-WA (Receiver)

XAMESSAGE DRV11-WA (Receiver) DR11-W (Transmitter)

MAIN 1. Issue block mode read. 1. Enable attention AST.

AST_GQ 2. Execute attention AST
as a result of interrupt
from receiver.

AST_GQ 3. Issue block mode write
request.

ASYNC 4. Perform DMA transfer. 4. Perform OMA transfer.

AST_COM 5. Execute completion AST, 5. Execute completion
and check for errors. AST, and check for

errors.

3-18

DR11-W and DRV11-WA Interface Driver
3.5 Programming Example

Table 3-6 (Cont.) XAMESSAGE Program Flow

DR11-W (Transmitter) to DR11-W (Receiver)

XAMESSAGE DR11-W (Receiver) DR11-W (Transmitter)

MAIN 1. Enable attention AST. 1. Enable attention AST.

MAIN 2. Momentarily set the
FNCT2 bit via a 0-length
transfer to interrupt the
receiver.

AST_GO 3. Execute attention AST
as a result of interrupt
from transmitter.

AST_GO 4. Issue block mode read
request.

AST_GO 5. Execute attention AST
as a result of interrupt
from receiver.

AST_GO 6. Issue block mode write
request.

ASYNC 7. Perform OMA transfer. 7. Perform OMA transfer.

AST_COM 8. Execute completion AST, 8. Execute completion
and check for errors. AST, and check for

errors.

Example 3-1 DR11-W/DRV11-WA Program Example (XAMESSAGE.MAR)

.TITLE XAMESSAGE

.!DENT 'V04-001'

;**
;* *
;* DIGITAL ASSUMES NO RESPONSIBILITY TO SUPPORT THE SOFTWARE DESCRIBED *
;* IN THIS MODULE, NOR TO ANSWER INQUIRIES ABOUT IT. *
;* *
;* THIS SOFTWARE MODULE IS PART OF A TEMPLATE WHICH MAY REQUIRE CUSTOMER *
;* MODIFICATIONS TO WORK IN ALL CIRCUMSTANCES. *
;* *
;**

;++

ABSTRACT:

This module allows you to connect a DR11--W to a DRV11--WA; or
a DR11--W to another DR11--W in an interprocessor link and to
perform data transfers from one processor to the other.

Example 3-1 Cont'd. on next page

3-19

DR11-W and DRV11-WA Interface Driver
3.5 Programming Example

Example 3-1 {Cont.) DR11-W/DRV11-WA Program Example {XAMESSAGE.MAR)

.SBTTL LOCAL DEFINITIONS AND STORAGE
;++

XAMESSAGE ROUTINE

CALLING SEQUENCE:

CALL (BUFFER_ADDRESS,BUFFER_SIZE,TRANSFER_DIRECTION,CHANNEL,­
EVENT_FLAG,TIME_OUT,STATUS_ADDRESS,LOCAL_DEVICE,REMOTE_DEVICE)

$SSDEF

BUFFER_ADDRESS = ADDRESS OF DATA BUFFER TO TRANSFER
BUFFER_SIZE = SIZE IN BYTES OF DATA BUFFER TO TRANSFER.

NOTE THAT RECEIVER AND TRANSMITTER MUST AGREE ON THE
SIZE OF THE TRANSFER.

TRANSFER_DIRECTION = DIRECTION FOR DATA TO GO
0 = TRANSMIT
1 = RECEIVE

CHANNEL = CHANNEL ASSIGNED TO DEVICE (DR11--W OR DRV1:--WA)
EVENT_FLAG = EVENT FLAG TO SET WHEN TRANSFER COMPLETE
TIME_OUT = I/O TIME-OUT VALUE IN SECONDS
STATUS_ADDRESS = ADDRESS OF 20 BYTE ARRAY TO RECEIVE

FINAL STATUS - ONLY FILLED IN IF USER'S PARAMETERS ARE
ALL VALID.

IOSB - 8 BYTES
I/O STATUS BLOCK FROM QUEUE I/0 REQUEST

ERROR - 4 BYTES - NOT USED - FOR COMPATIBILITY
WITH OLD VERSIONS OF THIS MODULE.

STATE - 4 BYTES
THIS FIELD TRACKS WHICH QIO WAS THE LATEST
ONE TO BE PERFORMED.
01 - LAST QIO WAS ONE IN THE MAIN ROUTINE.
02 - LAST QIO WAS ONE IN AST_GO.

SSRV_STS - 4 BYTES
VALUE OF RO RETURNED FROM THE LAST SYSTEM
SERVICE EXECUTED.

LOCAL_DEVICE = TYPE OF DEVICE AT LOCAL END OF LINK.
DR11_W = 1
DRV11_WA = 2

REMOTE_DEVICE = TYPE OF DEVICE AT REMOTE END OF LINK.
DR11_W = 1
DRV11_WA = 2

; PARAMETER OFFSETS.
BUFFER_P = 4
BUF_SIZE_P = 8
DIRECTION_P = 12
CHAN_P = 16
EFN_P = 20
TIME_P = 24
STS_ADDR_P = 28
LCL_DEVICE_P = 32
REM_DEVICE_P = 36

.PSECT XADATA,LONG

Example 3-1 Cont'd. on next page

3-20

DR11-W and DRV11-WA Interface Driver
3.5 Programming Example

Example 3-1 (Cont.) DR11-W/DRV11-WA Program Example (XAMESSAGE.MAR)

; SAVED PARAMETER VALUES.
BUFFER: . LONG 0

0
0
0
0
0
0

SAVED BUFFER ADDRESS
SAVED BUFFER SIZE
DIRECTION OF TRANSFER

BUF_SIZE: .LONG
DIRECTION: .LONG
CHAN: .LONG SAVED CHANNEL ASSIGNED TO DR11--W

SAVED EVENT FLAG NUMBER EFN: .LONG
TIME: .LONG SAVED TIME-OUT VALUE
STS_ADDR: .LONG ADDRESS OF CALLERS STATUS VARIABLE

; DEFINE DEVICE TYPES AT BOTH ENDS OF INTERPROCESSOR LINK.

DR11_W = 1
DRV11_WA = 2
LCL_DEVICE:
REM_DEVICE:

AST:

.BLKL

.BLKL

.BLKL

1
1

1

TYPE OF DEVICE ON THIS SYSTEM.
TYPE OF DEVICE AT OTHER

END OF LINK.

; NOTE - ORDER IS ASSUMED FOR NEXT FOUR VARIABLES
IOSB:
ERROR:
STATE:
SSRV_STS:

.PAGE

.SBTTL

.PSECT

.ENTRY

.QUAD

.LONG

.LONG

.LONG

0
0
0
0

QIO IOSB
; ERROR VALUE PARAMETER
; STATE VARIABLE
; SYSTEM SERVICE STATUS

VALIDATE AND SAVE CALLER'S PARAMETERS
XACODE,NOWRT

XAMESSAGE,-M<R2,R3,R4,R5>

VALIDATE AND SAVE CALLER'S PARAMETERS

10$:

20$:

25$:

30$:

35$:

CLRQ
CLRL
CLRL
CMPW
BEQL
BRW
MOVL
MOVL
BNEQ
BRW
MOVZBL
CMPL
BLEQU
BRW
MOVL
MOVL
BEQL
MOVL
BNEQ
MOVZBL
MOVL
BEQL
CLRL
MOVZBL
CMPL
BEQLU
CMPL
BNEQU
MOVZBL

w-IoSB CLEAR IOSB
w-ERROR CLEAR ERROR FIELD
w-ssRV_STS CLEAR SYS SERVICE RETURN STATUS.
(AP),#9 MUST HAVE 9 PARAMETERS
10$ BR IF OKAY
BADPARAM BR TO SIGNAL ERROR
BUFFER_P(AP),W-BUFFER ; GET BUFFER ADDRESS
©BUF_SIZE_P(AP),W-BUF_SIZE; GET BUFFER SIZE
20$; BR IF OKAY
BADPARAM ; TRANSFER SIZE IS NON ZERO -- ILLEGAL
©DIRECTION_P(AP),W-DIRECTION; GET TRANSFER DIRECTION FLAG
w-DIRECTION,#2 THE ONLY LEGAL VALUES ARE 0,1
25$ BR IF OKAY
BADPARAM ELSE BR TO SIGNAL ERROR
©CHAN_P(AP),w-cHAN FETCH CHANNEL
©EFN_P(AP),W-EFN AND EVENT FLAG
BADPARAM MUST SPECIFY EVENT FLAG
©TIME_P(AP),W-TIME FETCH TIME-OUT VALUE
30$ IF NONZERO, USE IT.
#5,W-TIME ELSE USE SOME "REASONABLE" VALUE
STS_ADDR_P(AP),w-sTS_ADDR GET ADDRESS OF STATUS ARRAY
BADPARAM IF NOT SPECIFIED, ERROR
©w-sTS_ADDR ; INITIALIZE STATUS VALUE
©LCL_DEVICE_P(AP),W-LCL_DEVICE; GET LOCAL DEVICE TYPE
#DRV11_WA,W-LCL_DEVICE ; IS LOCAL DEVICE A DRV11--WA?
35$; BRANCH IF SO.
#DR11_w,w-LCL_DEVICE ; IS LOCAL DEVICE A DR11--W?
BADPARAM ; ERROR IF IT'S NOT EITHER.
©REM_DEVICE_P(AP),W-REM_DEVICE ; GET REMOTE DEVICE TYPE

Example 3-1 Cont'd. on next page

3-21

DR11-W and DRV11-WA Interface Driver
3.5 Programming Example

Example 3-1 (Cont.) DR11-W/DRV11-WA Program Example (XAMESSAGE.MAR)

50$:

100$:

CMPL
BEQLU
CMPL
BNEQU
$CLREF_S
BLBS
RET
CMPL

BEQL
BRW

BADPARAM:
MOVZWL
RET

.PAGE

.SBTTL

DRV11_WA_START:

#DRV11_WA,W-REM_DEVICE
50$
#DR11_w,w-REM_DEVICE
BADPARAM
EFN=EFN
R0,100$

#DRV11_WA,W-LCL_DEVICE

DRV11_WA_START
DR11_W_START

#SS$_BADPARAM,RO

START MESSAGE PROCESSOR

IS REMOTE DEVICE A DRV11--WA?
BRANCH IF SO.
IS REMOTE DEVICE A DR11--W?
ERROR IF IT'S NOT EITHER.
MAKE SURE EFN IS CLEAR
BR IF NO SYS SERVICE ERROR

DISPATCH BASED ON LOCAL
DEVICE TYPE

LOCAL DEVICE IS DRV11--WA
LOCAL DEVICE IS DR11--W

ELSE RETURN ERROR.

BLBC w-DIRECTION,10$
THE LOCAL DEVICE IS A DRV11--WA
BRANCH IF IT'S A TRANSMIT

OPERATION
MOVAL w-AsT_COMPLETION,w-AST AST_COMPLETION IS THE AST FOR

RECEIVE
BRB

10$: MOVAL

20$: MOVL

$QIO_S

BRW
DR11_W_START:

MOVL

$QIO_S

BLBC
BLBS

CMPL
BNEQU
$QIO_S

MAIN_EXIT:
MOVL

20$
w-AsT_Go,w-AST

#01,w-sTATE

AST_GO IS THE AST FOR TRANSMIT
OPERATION

STATE = 1 => LAST QIO WAS IN MAIN
ROUTINE.

CHAN=W-CHAN,- ; BLOCK MODE READ - EVEN IF IT'S
FUNC=#<IO$_READLBLK!IO$M_TIMED!IO$M_SETFNCT>,- ; TRANSMIT
IOSB=W-IOSB,-
ASTADR=©W-AST,­
P1=©W-BUFFER,­
P2=W-BUF_SIZE,­
P3=W-TIME,­
P4=#7
MAIN_EXIT

#01, w-sTATE

ADDRESS OF CALLER'S DATA BUFFER
LENGTH OF DATA BUFFER
TIMEOUT VALUE
INTERRUPT+READ
EXIT MAIN ROUTINE.
LOCAL DEVICE IS DR11--W
STATE = 1 => LAST QIO WAS IN MAIN

ROUTINE.
CHAN=w-cHAN,- ; QIO TO ENABLE AST'S
FUNC=#<IO$_SETMODE!IO$M_ATTNAST>,­
IOSB=W-IOSB,-
P1=W-AST_GO
RO,MAIN_EXIT
w-DIRECTION,MAIN_EXIT

BRANCH ON ERROR - ALL DONE.
BRANCH IF THIS IS A RECEIVE

OPERATION
#DR11_w,w-REM_DEVICE IS REMOTE DEVICE A DR11--W?
MAIN_EXIT BRANCH IF NOT.
CHAN=w-cHAN,- ; PERFORM 0-LENGTH QIO. THIS
FUNC=#<IO$_WRITELBLK!IO$M_SETFNCT>,- ; SERVES TO SET THE
IOSB=W-IOSB,- FNCT BITS (CONTAINED IN P4),
P1=©W-BUFFER,- IN THE CSR, INTERRUPTING THE

P2=#0,­
P4=#2

Ro.w-sSRV_STS

REMOTE DR11--W.

SAVE QIO STATUS RETURN

Example 3-1 Cont'd. on next page

3-22

DR11-W and DRV11-WA Interface Driver
3.5 Programming Example

Example 3-1 (Cont.) DR11-W/DRV11-WA Program Example (XAMESSAGE.MAR)

10$:

MOVC3 #20,WAIOSB,©WASTS_ADDR
BLBS WASSRV_STS,10$
$SETEF_S EFN=WAEFN

MOVL WASSRV_STS,RO
RET

.PAGE

RETURN STATUS TO THE USER
IF SUCCESS, DON'T SET EVFLAG YET
IF ERROR, SET EVENT FLAG

-- ALL DONE.
RESTORE RO STATUS RETURN.

.SBTTL AST_GO - AST WHICH INITIATES THE QIO TO PERFORM ACTUAL TRANSFER .

. ENTRY AST_GO,AM<R2,R3,R4,R5>

This AST is called to perform the $QIO which begins the actual transfer
of user data. (Hence the name AST_GO.)

BLBS WADIRECTION,AST_RECEIVE ; BRANCH IF RECEIVE OPERATION

On a DR11--W, this AST is delivered as a result of an interrupt from the
remote device, so no status checking is necessary. On a DRV11--WA, this AST
is delivered as a result of an intentionally premature I/O completion, so
we expect the status return to be SS$_0PINCOMPL.

AST_XMIT:
CMPL
BNEQ
CMPW
BEQL
BRW

20$: MOVL

$QIO_S

BLBS
BRW

40$: RET

#DRV11_WA,WALCL_DEVICE
20$
WAIOSB,#SS$_0PINCOMPL
20$
IO_DONE
#02,WASTATE

IS LOCAL DEVICE A DRV11--WA?
BRANCH IF NOT.
STATUS SHOULD BE SS$_0PINCOMPL.
BR IF EXPECTED STATUS
ELSE ERROR
STATE = 2 => LAST QIO WAS IN

AST_GO.
CHAN=WACHAN,- ; BLOCK MODE WRITE
FUNC=#<IO$_WRITELBLK!IO$M_TIMED!IO$M_SETFNCT!IO$M_CYCLE>,­
IOSB=WAIOSB,-
ASTADR=WAAST_COMPLETION,­
P1=©WABUFFER,­
P2=WABUF_SIZE,­
P3=WATIME,-
P4=#4
R0,40$
IO_DONE

ADDRESS OF CALLER'S DATA BUFFER
LENGTH OF BUFFER
TIMEOUT VALUE
FNCT BITS FOR CSR
RETURN IF QIO STARTED OK
ALL DONE IF ERROR OCCURRED.
DISMISS THIS AST, AND

WAIT FOR AST_COMPLETION

AST_RECEIVE is only used by the DR11--W, since the DRV11--WA initiates
the actual data transfer from the main routine when it is the receiver.

AST_RECEIVE:
MOVL #02,WASTATE ; STATE = 2 => LAST QIO WAS IN

AST_GO.
$QIO_S CHAN=WACHAN,- ; BLOCK MODE READ

FUNC=#<IO$_READLBLK!IO$M_TIMED!IO$M_SETFNCT>,­
IOSB=WAIOSB,-
ASTADR=WAAST_COMPLETION,- ADDRESS OF AST FOR I/O COMPLETION
P1=©WABUFFER,- ADDRESS OF CALLER'S DATA BUFFER
P2=WABUF_SIZE,- LENGTH OF DATA BUFFER
P3=WATIME,- TIMEOUT VALUE
P4=#7 INTERRUPT+READ

BLBS R0,10$ RETURN IF QIO STARTED OK

Example 3-1 Cont'd. on next page

3-23

DR11-W and DRV11-WA Interface Driver
3.5 Programming Example

Example 3-1 (Cont.) DR11-W/DRV11-WA Program Example (XAMESSAGE.MAR)

10$:
BRW
RET

.PAGE

. SBTTL

.ENTRY

IO_DONE ; ON ERROR, WE'RE ALL DONE.

AST_COMPLETION - COMPLETION ROUTINE FOR I/O TRANSFER .
AST_COMPLETION,-M<R2,R3,R4,R5>

This AST is called when the actual transfer of data is complete. Note that
the status value in the IOSB must be checked by the caller when we're done.
IO_DONE is also called when an error occurs and the handshaking sequence
must be terminated.

IO_DONE:
MOVC3 #20,w-Iosa.©w-sTs_ADDR
$SETEF_S EFN=W-EFN
MOVZBL #SS$_NORMAL,RO
RET
.END

3-24

RETURN STATUS TO THE USER
SET THE CALLER'S EVENT FLAG
SIGNAL SUCCESSFUL AST COMPLETION.

4 DR32 Interface Driver

4.1 Supported Device

This chapter describes the use of the VMS DR32 interface driver.

The DR32 is an interface adapter that connects the internal memory bus of a
VAX processor to a user-accessible bus called the DR32 device interconnect
(DDI). Two DR32s can be connected to form a VAX processor-to-processor
link (non-DECnet). Figure 4-1 shows the relationship of the DR32 to a VMS
system and the DR32 device interconnect (DDI).

As a general-purpose data port, the DR32 is capable of moving continuous
streams of data to or from memory at high speed. Data from a user device to
disk storage must go through an intermediate buffer in physical memory.

Figure 4-1 Basic DR32 Configuration

, ------ --oR="°DEv1CE _________ I

I
I
I

MASSBUS

UNIBUS

MEMORY

VAX-11
PROCESSOR

MBA

UBA
OR
UBI

I
I
I

t------i I
I
I
I
I

t------i

t----1 DR32 --
t----1

SBI OR
CMI

I---

L---------------------~

DR-32 DEVICE
INTERCONNECT (FAR END)

(DOI) DR-DEVICE

ZK-714-82

4-1

4.1.1

DR32 Interface Driver
4.1 Supported Device

DR32 Device Interconnect
The DR32 device interconnect (DDI) is a bidirectional path for the transfer of
data and control signals. Control signals sent over the DDI are asynchronous
and interlocked; data transfers are synchronized with clock signals. Any
connection to the DDI is called a DR device. The DDI provides a point-to­
point connection between two DR devices, one of which must be a VAX
processor. The DR device connected to the external end of the DDI is called
the far-end DR device.

4.2 DR32 Features and Capabilities

4.2.1

The DR32 driver provides the following features and capabilities:

• 32-bit parallel data transfers

• High bandwidth (6 megabytes/second on the DDI with a VAX-11/780
or 3.12 megabytes/second on a VAX-11/750)

• Word or byte alignment of data

• Half-duplex operation

• Hardware-supported (1/0 driver-independent) memory mapping

• Separate control and data interconnects

• Command and data chaining

• Direct software link between the DR32 and the user process

• Synchronization of the user program with DR32 data transfers

• Transfers initiated by an external device

The following sections describe command and data chaining, data transfers,
power failure, and interrupts.

Command and Data Chaining

4-2

Command chaining is the execution of commands without software
intervention for each command. Commands are chained in the sense that
they follow each other on a queue. After a QIO function starts the DR32,
any number of DR32 commands can be executed during that QIO operation.
This process continues until either the transfer is halted (a command packet
is fetched that specifies a halt command) or an error occurs. (Section 4.4.3
describes command packets.)

Command packets can specify data chaining. In data chaining, a number of
physical memory buffers appear as one large buffer to the far-end DR device.
Data chaining is completely transparent to this device; transfers are seen as a
continuous stream of data. Chained buffers can be of arbitrary byte alignment
and length. The length of a transfer appears to the far-end DR device as the
total of all the byte counts in the chain, and since chains in the DR32 can be
of unlimited length, the device interprets the byte count as potentially infinite.

4.2.2

4.2.3

4.2.4

DR32 Interface Driver
4.2 DR32 Features and Capabilities

Far-End DR Device-Initiated Transfers

Power Failure

Interrupts

For the far-end DR device, the DR32 provides the capability of initiating
data transfers to memory (initiating random access mode). This mode is
used when two DR-32s are connected to form a processor-to-processor
link. Random access consists of data transfers to or from memory without
notification of the VAX processor. Random access can be discontinued either
by specifying a command packet with random access disabled or by an abort
operation from either the controlling process or the far-end DR device.

If power fails on the DR32 interface but not on the system, the DR32 driver
aborts the active data transfer and returns the status code SS$_pQWERFAIL
in the 1/0 status block. If a system power failure occurs, the DR32 driver
completes the active data transfer when power is recovered and returns the
status code SS$_PQWERFAIL.

The DR32 interface can interrupt the DR32 driver for any of the following
reasons:

• An abort has occurred. The QIO operation is completed.

• A DR32 power-down or power-up sequence has occurred.

• An unsolicited control message has been sent to the DR32. If this
command packet's interrupt control field is properly set up, a packet
AST interrupt occurs. The interrupt occurs after the command packet
obtained from the free queue (FREEQ) is placed on the termination queue
(TERMQ).

• The DR32 enters the halt state. The QIO operation is completed.

• A command packet that specifies an unconditional interrupt has been
placed onto TERMQ. The result is a packet AST.

• A command packet with the "interrupt when TERMQ empty" bit set was
placed on an empty TERMQ. The result is a packet AST.

4.3 Device Information
You can obtain information on DR32 characteristics by using the Get
Device/Volume Information ($GETDVI) system service. (See the VMS System
Services Reference Manual.)

$GETDVI returns DR32 characteristics when you specify the item code
DVl$_DEVCHAR. Table 4-1 lists these characteristics, which are defined by
the $DEVDEF macro.

DVl$_DEVTYPE and DVl$_DEVCLASS return the device type and class
names, which are defined by the $DCDEF macro. The device type is
DT$_DR780 for the DR780 and DT$_DR750 for the DR750. The device class
for the DR32 is DC$_REALTIME. DVl$_DEVDEPEND returns a longword

4-3

DR32 Interface Driver
4.3 Device Information

field in which the low-order byte contains the last data rate value loaded into
the DR32 data rate register.

Table 4-1 DR32 Device Characteristics

Characteristic 1

DEV$M_AVL

DEV$M_IDV

DEV$M_ODV

DEV$M_RTM

Meaning

Dynamic Bit (Conditionally Set)

Device is available.

Static Bits (Always Set)

Input device.

Output device.

Real-time device.

1 Defined by the $DEVDEF macro.

4.4 Programming Interface

4-4

The DR32 interface is supported by a device driver, a high-level language
procedure library of support routines, and a program for microcode loading.

After issuing an 10$_STARTDATA request to the DR32 driver, application
programs communicate directly with the DR32 interface by inserting
command packets onto queues. This direct link between the application
program and the DR32 interface provides faster communication by avoiding
the necessity of going through the 1/0 driver.

Two interfaces are provided for accessing the DR32: a QIO interface and
a support routine interface. The QIO interface requires that the application
program build command packets and insert them onto the DR32 queues.
The support routine interface, on the other hand, provides procedures for
these functions and, in addition, performs housekeeping functions, such as
maintaining command memory.

The support routine interface was designed to be called from high-level
languages, such as FORTRAN, where the data manipulation required by the
QIO interface might be awkward. Note, however, that the user of the support
routines interface must be as knowledgeable about the DR32 and the meaning
of the fields in the command packets as the user of the QIO interface.

4.4.1

4.4.2

DR32-Application Program Interface

DR32 Interface Driver
4.4 Programming Interface

Application programs interface with the DR32 through two memory areas.
These areas are called the command block and the buffer block. The addresses
and sizes of the blocks are determined by the application program and are
passed to the DR32 driver as arguments to the 10$_STARTDATA function,
which starts the DR32 (see Section 4.4.5.2).

Both blocks are locked into memory while the DR32 is active. The buffer
block defines the area of memory that is accessible to the DR32 for
the transfer of data between the far-end DR device and the DR32. The
command block contains the headers for the three queues that provide the
communication path between the DR32 and the application program, and
space in which to build command packets.

The interface between the DR32 and the application program contains three
queues: the input queue (INPTQ), the termination queue (TERMQ), and the
free queue (FREEQ). Information is transferred between the DR32 and the
far-end DR device through command packets. The three queue structures
control the flow of command packets to and from the DR32. The application
program builds a command packet and inserts it onto INPTQ. The DR32
removes the packet, executes the specified command, enters some status
information, and then inserts the packet onto TERMQ. Unsolicited input from
the far-end DR device is placed in packets removed from FREEQ and inserted
onto TERMQ.

The INPTQ, TERMQ, and FREEQ headers are located in the first six
longwords of the command block. Since the queues are self-relative­
meaning they use the VMS self-relative queue instructions (INSQHI, INSQTI,
REMQHI, and REMQTI)-the headers must be quadword-aligned. The
application program must initialize all queue headers. Figure 4-2 shows the
position of the queue headers in the command block. Section 4.4.2 describes
queue processing in greater detail.

Queue Processing
Three queue structures control the flow of command packets to and from the
DR32:

• Input queue (INPTQ)

• Termination queue (TERMQ)

• Free queue (FREEQ)

The DR32 removes command packets from the heads of FREEQ and INPTQ
and inserts command packets onto the tail of TERMQ. For command
sequences initiated by the application program, the DR32 removes command
packets from the head of INPTQ, processes them, and returns them to the tail
of TERMQ. Queue processing is performed by the DR32 with the equivalent
of the INSQTI and REMQHI instructions. To remove a packet from INPTQ,
the DR32 executes the equivalent of REMQHI HDR, CMDPTR where
CMDPTR is a DR32 register used as a pointer to the current command packet
and HDR specifies the INPTQ header. To insert a packet onto TERMQ, the
DR32 executes the equivalent of INSQTI CMDPTR, HDR. The user process

4-5

DR32 Interface Driver
4.4 Programming Interface

4-6

Figure 4-2 Command Block {Queue Headers)

input queue forward link (INPTQ head) 0

input queue backward link (INPTQ tail) 4

termination queue forward link (TERMQ head) 8

termination queue backward link (TERMQ tail) 12

free queue forward link (FREEQ head) 16

free queue backward link (FREEQ tail) 20

command packet space

ZK-716-82

performs similar operations with the queues, inserting packets onto the head
or tail of INPTQ and normally removing packets from the head of TERMQ.

If any of the queues are currently being accessed by the DR32, the program's
interlocked queue instructions will fail for either of the following reasons:

• The DR32 is currently removing a packet from INPTQ or FREEQ, or
inserting a packet onto TERMQ, and the operation will be completed
shortly.

• The DR32 detects an error condition, such as an unaligned queue, that
prevents it from completing the queue operation. In this case, the transfer
is aborted and the 1/0 status block contains the error that caused the
abort.

To distinguish between these two conditions, the application program must
include a queue retry mechanism that retries the queue operation a reasonable
number of times (for example, 25) before determining that an error condition
exists. An example of a queue retry mechanism is shown in the program
example (Program B in Section 4.7).

If the DR32 discerns that any of the queues are interlocked, it retries the
operation until it completes or the DR32 is aborted.

4.4.3

4.4.2.1

4.4.2.2

Initiating Command Sequences

DR32 Interface Driver
4.4 Programming Interface

If a command packet is inserted onto an empty INPTQ, the application
program must notify the DR32 of this event. This is done by setting bit 0, the
GO bit, in a DR32 register. The IO$_STARTDATA function returns the GO
bit's address to the application program. After notification by the GO bit that
there are command packets on its INPTQ, the DR32 continues to process the
packets until INPTQ is empty.

The GO bit can be safely set at any time. While processing command packets,
the DR32 ignores the GO bit. If the GO bit is set when the DR32 is idle, the
DR32 will attempt to remove a command packet from INPTQ. If INPTQ is
empty at this time, the DR32 clears the GO bit and returns to the idle state.

Device-Initiated Command Sequences
If the DR device that interfaces the far-end of the DDI is capable of
transmitting unsolicited control messages, messages of this type can be
transmitted to the local DR32. These messages are not synchronized to
the application program command flow. Therefore, the DR32 uses a third
queue, FREEQ, to handle unsolicited messages. Normally, the application
program inserts a number of empty command packets onto FREEQ to allow
the external device to transmit control messages.

If a control message is received from the far-end DR device, the DR32
removes an empty command packet from the head of FREEQ, fills the
device message field of this packet with the control message and, when the
transmission is completed, inserts the packet onto the tail of TERMQ. (The
device message field in this command packet must be large enough for the
entire message or a length error will occur.) The application program then
removes the packet from TERMQ. If the command packet is from FREEQ, the
XF$M_PKT_FREQPK bit in the DR32 status longword is set.

Command Packets
To provide for direct communication between the controlling process and the
DR32, the DR32 fetches commands from user-constructed command packets
located in physical memory. Command packets contain commands for the
DR32, such as the direction of transfer, and messages to be sent to the far-end
DR device. The DR32 is simply the conveyer of these messages; it does not
examine or add to their content. The controlling process builds command
packets and manipulates the three queues, using the four VAX self-relative
queue instructions. Figure 4-3 shows the DR32 queue flow. Figure 4-4
shows the contents of a DR32 command packet.

4-7

DR32 Interface Driver
4.4 Programming Interface

Figure 4-3 DR32 Command Packet Queue Flow

rDI

unsolicited control messages
DR32

REMQHI HDR,CMDPTR ,-----,
INSQTI CMDPTR,HDR

~ _t I
HEAD TAIL I HEAD

I
FREE INPUT I TERMINATION

QUEUE QUEUE I QUEUE
(FREEQ) (INPTQ)

I
(TERMQ)

I
TAIL HEAD TAIL I • p

r_J

I
I
1 CONTROLLING

~

PROCESS

ZK-717-82

4-8

4.4.3.1

DR32 Interface Driver
4.4 Programming Interface

Figure 4-4 DR32 Command Packet

31 30 29 28 27 26 24 23 20 19 16 15 87

self-relative forward link

self-relative backward link

interrupt J len I control l l I . l l .
1 1 1

0 0 O* 0 O O O device control code** length of log area length of device message
con ro err se ect

byte count 12

virtual address of buffer 16

residual memory byte count 20

residual DDI byte count 24

DR32 status longword 28

,.J

1
*Bits 31:24 =Packet Control Byte

**Bits 23: 16 =Command Control Byte

32

DR-device messa e ,.,J

I log area

ZK-718-82

Length of Device Message Field
The length of device message field describes the length of the DR device
message in bytes. The message length must be less than 256 bytes. Note,
however, that the length of device message field itself must always be an
integral number of quadwords long. For example, if the application program
requires a five-byte device message, it must write a 5 in the length of device
message field, but allocate eight bytes for the device message field itself. In
this case, the last three bytes of the field are ignored by the DR32 when
transmitting a message, or written as zeros when receiving a message.

4-9

DR32 Interface Driver
4.4 Programming Interface

4.4.3.2

4.4.3.3

4-10

DR32 status longword (DSL)

3 I 2 I 1 0

(ignored or all O's) 4

log area

The symbolic offset for the length of device message field is
XF$B_PKT_MSGLEN.

Length of Log Area Field

:XF$B_PKT _DEV MSG

ZK-719-82

The length of log area field describes the length of the log area in bytes. The
length specified must be less than 256 bytes. Note, however, that the length
of log area field itself must be an integral number of quadwords long. For
example, if the application program requires a five-byte log area field, it must
write a 5 in the length of log area field but allocate eight bytes for the log
area field itself. In this case, the last three bytes of the field are written as
zeros when receiving a log message (log messages are always received). The
symbolic offset for the length of log area field is XF$B_PKT_LOGLEN.

Device Control Code Field
The device control field describes the function performed by the DR32. The
field occupies the lower half of the command control byte (bits 16
through 23). The VMS operating system defines the following values:

Symbol Value Function

XF$K_PKT _RD 0 Read device

XF$K_PKT_RDCHN Read device chained

XF$K_PKT _ WRT 2 Write device

XF$K_PKT_WRTCHN 3 Write device chained

XF$K_PKT _ WRTCM 4 Write device control message

5 (reserved)

XF$K_PKT _SETTST 6 Set self-test

XF$K_PKT _CLRTST 7 Clear self-test

XF$K_PKT_NOP 8 No operation

XF$K_PKT_DIAGRI 9 Diagnostic read internal

XF$K_PKT_DIAGWI 10 Diagnostic write internal

XF$K_PKT_DIAGRD 11 Diagnostic read DOI

Symbol Value

XF$K_PKT_DIAGWC 12

XF$K_PKT _SETRND 13

XF$K_PKT _CLRRND 14

XF$K_PKT_HAL T 15

DR32 Interface Driver
4.4 Programming Interface

Function

Diagnostic write control message

Set random enable

Clear random enable

Set halt

Table 4-2 describes the functions performed by the different device control
codes.

Table 4-2 Device Control Code Descriptions

Function Meaning

Read device Specifies a data transfer from the far-end DR
device to the DR32. The control select field (see
Section 4.4.3.4) describes the information to be
transferred prior to the initiation of the data transfer.

Read device Specifies a data transfer from the far-end DR device
chained to the DR32. The DR32 chains data to the buffer

specified in the next command packet in INPTQ.

Write device and
write device
chained

Write device
control message

Set self-test

Clear self-test

No operation

A command packet that specifies the read device
chained function must be followed by a command
packet that specifies either the read device chained
function or the read device function. All other device
control codes cause an abort. If a read device
chained function is specified, the chain continues.
However, if a read device function is specified, that
command packet is the last packet in the chain.

Specify data transfers from the DR32 to the far-end
DR device. Otherwise, they are similar to read device
and read device chained functions.

Specifies the transfer of a control message to the
far-end DR device. This message is contained in the
device message field of this command packet. The
write device control message function directs the
controlling DR32 to ignore the byte count and virtual
address fields in this command packet.

Directs the DR32 to set an internal self-test flag and
to set a disable signal on the DOI. This signal informs
the far-end DR device that the DR32 is in self-test
mode. While in self-test mode, the DR32 can no
longer communicate with the far-end DR device.

Directs the DR32 to clear the internal self-test flag
set by the set self-test function and to return to the
normal mode of operation.

This function explicitly does nothing.

4-11

DR32 Interface Driver
4.4 Programming Interface

4-12

Table 4-2 (Cont.)

Function

Diagnostic read
internal

Diagnostic write
internal

Diagnostic read
DDI

Device Control Code Descriptions

Meaning

Directs the DR32 to fill the memory buffer, which
is described by the virtual address and byte count
specified in the current command packet, with the
data that is stored in the DR32 data silo. The buffer
is filled in a cyclical manner. For example, on the
DR780 every 128-byte section of the buffer receives
the silo data. The amount of data stored in the buffer
equals the DDI byte count minus the SBI byte count.
The DDI byte count is equal to the original byte count.

No data transmission takes place on the DDI for this
function.

On the DR780, the diagnostic read internal function
destroys the first four bytes in the silo before storing
the data in the buffer.

Together with the diagnostic read internal function,
used to test the DR32 read and write capability. The
diagnostic write internal function directs the DR32
to store data, which is contained in the memory
buffer described by the current command packet,
in the DR32 data silo, a FIFO-type buffer. No data
transmission takes place on the DDI for this function.
The diagnostic write internal function terminates when
either of the following conditions occurs:

• The memory buffer is empty (the SBI byte count
is 0).

• An abort has occurred.

When the function terminates, the amount of data
in the silo equals the DDI byte count minus the SBI
memory byte count. (Sections 4.4.3.9 and 4.4.3. 10
describe these values.)

Tests transmissions over the data portion of the
DDI. The DR32 must be in the self-test mode or an
abort occurs. On the DR780, the diagnostic read DDI
function transmits the contents of DR32 data silo
locations 0 to 127 over the DDI and returns the data
to the same locations. If data transmission is normal
(without errors), the residual memory count is equal
to the original byte count, the residual DDI count is 0,
and the contents of the silo remain unchanged.

4.4.3.4

Table 4-2 (Cont.)

Function

Diagnostic write
control message

Set random enable
and clear random
enable

Set halt

DR32 Interface Driver
4.4 Programming Interface

Device Control Code Descriptions

Meaning

Tests transmissions over the control portion of the
DOI. The DR32 must be in self-test mode or an
abort occurs. The diagnostic write control message
function directs the DR32 to remove the command
packet on FREEQ and check the length of message
field. Then the first byte of the message in the
command packet on INPTQ is transmitted and read
back on the control portion of the DOI. This byte is
then written into the message space of the packet
from FREEQ. The updated packet from FREEQ is
inserted onto TERMQ and is followed by the packet
from INPTQ.

Directs the DR32 to accept read and write commands
sent by the far-end DR device. Range-checking is
performed to verify that all addresses specified by
the far-end DR device for access are within the buffer
block. Far-end DR device-initiated transfers to or from
the VAX memory are conducted without notification
of the VAX processor or the application program.

The clear random enable function directs the DR32 to
reject far-end DR device-initiated transfers.

Random access mode must be enabled when the
DR32 is used in a processor-to-processor link.

Places the DR32 in a halt state. The set halt function
always generates a packet interrupt regardless
of the value in the interrupt control field (see
Section 4.4.3.6). If an AST routine was requested on
completion of the QIO function (see
Sections 4.4.5.2 and 4.4.6.2), the routine is called
after the command packet containing the set halt
function has been processed by the DR32.

The following symbolic offsets are defined for the device control code field:

Symbol

XF$B_PKT _CMDCTL

XF$V_PKT _FUNC

XF$S_PKT_FUNC

Control Select Field

Meaning

Byte offset from the beginning of the command packet

Bit offset from XF$B_PKT _CMDCTL

Size of the device control code bit field

This field describes the part of the command packet that will be transmitted to
the far-end DR device. The control select field is examined only for the read
device, read device chained, write device, and write device chained functions;

4-13

DR32 Interface Driver
4.4 Programming Interface

4.4.3.5

4-14

for all others, it is ignored. The VMS operating system defines the following
values:

Symbol

XF$K_PKT _NOTRAN

XF$K_PKT _CB

XF$K_PKT_CBDM

XF$K_PKT _CBDMBC

Value Function

0 No transmission. Nothing is transmitted over
the control portion of the DOI. However,

2

3

if the command packet specifies a data
transfer, data can be transmitted over the
data portion of the DOI. The primary use of
this code is during data chaining.

Command control byte (bits 23: 16) only.
This code directs the DR32 to transmit the
contents of the command control byte, which
includes the device control code field, to
the far-end DR device. This code is used
primarily at the start of data chain or nondata
chain commands.

Command control byte and device message.
This code directs the DR32 to transmit
the command control byte, and then the
device message. It is used primarily when
an interface requires more than one byte of
command.

Command control byte, device message,
and byte count. This code directs the DR32
to transmit the command control byte, the
byte count, and the device message (in that
order). It is used primarily during processor­
to-processor link operations. In this case the
device message must be exactly four bytes
in length and contain the virtual address of
the buffer in the far-end processor's memory.

The following symbolic offsets are defined for the control select field:

Symbol

XF$B_PKT_PKTCTL

XF$V_PKT_CISEL

XF$S_PKT _CISEL

Meaning

Byte offset from the beginning of the command packet

Bit offset from XF$B_PKT_PKTCTL

Size of control select bit field

Suppress Length Error Field
The suppress length error field function prevents the DR32 from aborting if
the data transfer on the DDI is terminated by the far-end DR device before
the DDI byte counter has reached zero.

The following symbolic offsets are defined for the suppress length error field:

4.4.3.6

4.4.3.7

4.4.3.8

Symbol

XF$B_PKT_PKTCTL

XF$V_PKT_SLNERR

XF$S_PKT_SLNERR

Interrupt Control Field

Meaning

DR32 Interface Driver
4.4 Programming Interface

Byte offset from the beginning of the command packet

Bit offset from XF$B_PKT_PKTCTL

Size of the suppress length error bit field

The interrupt control field determines the conditions under which an interrupt
is generated, on a packet-by-packet basis, when the DR32 places this
command packet onto TERMQ. Depending on the conditions specified in
the IO$_STARTDATA call, the interrupt can set an event flag or call an AST
routine.

Symbol Value Function

XF$K_PKT_UNCOND 0 Interrupt unconditionally

XF$K_PKT _ TMOMT 1

XF$K_PKT_NOINT 2,3

Interrupt only if TERMQ was previously empty

No interrupt

If the set halt function is active, the interrupt control field is ignored. The
set halt function unconditionally causes a packet interrupt. The following
symbolic offsets are defined for the interrupt control field:

Symbol

XF$B_PKT_PKTCTL

XF$V_PKT _INTCTL

XF$S_PKT _INTCTL

Byte Count Field

Meaning

Byte offset from the beginning of the command packet

Bit offset from XF$B_PKT _PKTCTL

Size of the interrupt control bit field

The byte count field specifies the size in bytes of the data buffer for this data
transfer. Together with the virtual address of buffer field, this field describes
the buffer in the buffer block that the DR32 will read from or write to.

The following symbolic offset is defined for the byte count field:

Symbol Meaning

XF$B_PKT _BFRSIZ Byte offset from the beginning of the command packet

Virtual Address of Buffer Field
The virtual address of buffer field specifies the virtual address of the data
buffer for this data transfer. Together with the byte count field, this field
describes the buffer in the buffer block that the DR32 will read from or write
to.

The following symbolic offset is defined for the virtual address of buffer field:

Symbol Meaning

XF$B_PKT_BFRADR Byte offset from the beginning of the command packet

4-15

DR32 Interface Driver
4.4 Programming Interface

4.4.3.9

4.4.3.10

4.4.3.11

4-16

Residual Memory Byte Count Field
After completion of a read device, read device chained, write device,
write device chained, diagnostic read internal, diagnostic write internal,
or diagnostic read DDI function specified in this command packet, the DR32
places the packet onto TERMQ for return to the controlling process. At that
time, this field will contain a byte count. The difference between the count
specified in the byte count field and the count in this field is the number of
bytes transferred to or from physical memory, depending on the direction of
transfer.

The following symbolic offset is defined for the residual memory byte count
field:

Symbol Meaning

XF$L _PKT _RMBCNT Byte offset from the beginning of the command packet

(See also the descriptions of the diagnostic read internal and diagnostic write
internal functions in Table 4-2.)

Residual DOI Byte Count Field
After completion of a read device, read device chained, write device,
write device chained, diagnostic read internal, diagnostic write internal,
or diagnostic read DDI function specified in this command packet, the DR32
places the packet onto TERMQ for return to the controlling process. At this
time, the residual DDI byte count field contains a byte count. The difference
between the count specified in the byte count field and the count in this field
is the number of bytes transferred to or from the far-end DR device over the
DDI, depending on the direction of transfer.

The following symbolic offset is defined for the residual DDI byte count field:

Symbol Meaning

XF$L_PKT_RDBCNT Byte offset from the beginning of the command packet

(See also the descriptions of the diagnostic read internal and diagnostic write
internal functions in Table 4-2.)

DR32 Status Longword (DSL)
The DR32 stores the final status for a command packet in the DR32 status
longword before inserting the packet onto TERMQ. The longword contains
two distinct status fields:

31 24 23 16 15 0

0 DOI status 16 bits of status

ZK-720-82

DR32 Interface Driver
4.4 Programming Interface

Table 4-3 lists the names for the status bits returned in the DR32 status
longword.

Table 4-3 DR32 Status Longword (DSL) Status Bits

Name

XF$V_PKT_SUCCESS
XF$M_PKT_SUCCESS

XF$V_PKT_CMDSTD
XF$M_PKT_CMDSTD

XF$V_PKT_INVPTE
XF$M_PKT_INVPTE

XF$V_PKT _FREQPK
XF$M_PKT_FREQPK

XF$V_PKT_DDIDIS
XF$M_PKT_DDIDIS

XF$V_PKT _SLFTST
XF$M_PKT_SLFTST

XF$V_PKT _RNGERR
XF$M _PKT _RNGERR

XF$V_PKT _UNQERR
XF$M_PKT_UNQERR

XF$V_PKT _INVPKT
XF$M_PKT_INVPKT

XF$V_PKT_FREQMT
XF$M_PKT_FREQMT

XF$V_PKT _RNDENB
XF$M _PKT _RNDENB

Meaning

1 6 Status Bits

If set, the command was performed successfully. If
not set, one of the following bits must be set:

XF$M_PKT_INVPTE
XF$M_PKT_RNGERR
XF$M_PKT_UNGERR
XF$M_PKT _INVPKT
XF$M_PKT_FREQMT
XF$M_PKT_DDIDIS
XF$M_PKT_INVDDI
XF$M_PKT_LENERR
XF$M_PKT_DRVABT
XF$M_PKT_PARERR
XF$M_PKT_DDIERR

If set, the command specified in this packet was
started.

If set, the DR32 accessed an invalid page table entry.

If set, this command packet was removed from
FREEQ.

If set, the far-end DR device is disabled.

If set, the DR32 is in self-test mode.

If set, a range error occurred; that is, a user-provided
address was outside the command block or buffer
block.

If set, a queue element was not aligned on a
quadword boundary.

If set, this packet was not a valid DR32 command
packet.

If set, a message was received from the far-end DR
device and FREEQ was empty.

If set, random access mode is enabled.

4-17

DR32 Interface Driver
4.4 Programming Interface

4.4.3~12

4-18

Table 4-3 (Cont.) DR32 Status Longword (DSL) Status Bits

Name Meaning

XF$V_PKT _INVDDI
XF$M_PKT_INVDDI

XF$V_PKT _LENERR
XF$M _PKT _LENERR

XF$V_PKT_DRVABT
XF$M_PKT_DRV ABT

XF$V_PKT _PARERR
XF$M _PKT _P ARERR

XF$V_PKT_DDISTS
XF$S_PKT _DDISTS

XF$V_PKT_NEXREG
XF$M _PKT _NEXREG

XF$V_PKT_LOG
XF$M_PKT _LOG

XF$V_PKT _DDIERR
XF$M _PKT _DDIERR

Device Message Field

1 6 Status Bits

If set, a protocol error occurred on the DOI.

If set, the far-end DR device terminated the data
transfer before the required number of bytes was
sent; or a message was received from the far-end DR
device, and the device message field in the command
packet at the head of FREEQ was not large enough to
hold it.

The 1/0 driver aborted the transfer. Usually the result
of a Cancel 1/0 on Channel ($CANCEL) system service
request.

A parity error occurred on the data or control portion
of the DOI.

DOI Status

DOI status. This field is the one-byte DOI register 0
of the far-end DR device. The following three bits are
offsets to this field.

An attempt was made to access a nonexistent
register in the far-end DR device.

The far-end DR device registers are stored in the log
area.

An error occurred on the far-end DR device.

The device message field contains control information to be sent to the far­
end DR device. It is used when more than one byte of command is required.
The number of bytes in the device message is specified in the length of device
message field (see Section 4.4.3.1). (The number of bytes allocated for the
length of device message field must be rounded up to an integral number of
quadwords.)

If the far-end DR device is a DR32 connected to another processor, a device
message can be sent only if the function specified in the device control code
field of this command packet is a read device, read device chained, write
device, write device chained, or write device control message.

In the case of a write device control message, the data in the device message
field is treated as unsolicited input and is written into the device message field
of a command packet taken from the far-end DR32's FREEQ.

In the case of a read or write (either chained or unchained) function, the only
message allowed is the address of the buffer in the far-end processor that
either contains or will receive the data to be transferred. This device message
must be exactly four bytes in length. In this case the device message is not
stored in the command packet from the far-end DR32' s FREEQ, but is used
by the far-end DR32 to perform the data transfer.

4.4.4

4.4.3.13

DR32 Interface Driver
4.4 Programming Interface

The device message field is also used in command packets placed on FREEQ
to convey unsolicited control messages from the far-end DR device.

The symbolic offset for the device message field is XF$B_PKT_DEVMSG.

Log Area Field
The log area field receives the return status and other information from the
far-end DR device's DDI registers. Logging must be initiated by the far-end
DR device. The presence of a log area does not automatically cause logging
to occur.

If the DR32 is connected in a processor-to-processor configuration, the log
area field is not used.

DR32 Microcode Loader
The DR32 microcode loader program XFLOADER must be executed prior
to using the DR32. Running XFLOADER requires CMKRNL and LOG__IO
privileges. Typically, a command to run XFLOADER is placed in the site­
specific system startup file. XFLOADER locates the file containing the DR32
microcode in the following manner:

1 XFLOADER attempts to open a file using the logical name XFc$WCS,
where "c" is the DR32 controller designator. For example, to load
microcode on device XFAO, XFLOADER attempts to open a file with
the logical name XFA$WCS.

2 If the opening procedure described in step 1 fails, XFLOADER
attempts to open the file SYS$SYSTEM:XF780.ULD for a DR780, or
SYS$SYSTEM:XF750.ULD for a DR750. This file specification describes
the default location and filename for the DR32 microcode.

By default, XFLOADER attempts to load microcode into all DR32s on a
system. To limit microcode loading to a subset of DR32s, define the logical
name XF$DEVNAM using the device names of the DR32s as the equivalence
names. XFLOADER searches for the translation using the LNM$FILE_DEV
search list. For example, the following command tells XFLOADER to load
microcode only in the first and third DR32s on the system:

$ DEFINE/SYSTEM XF$DEVNAM XFAO,XFCO

After loading microcode into all specified DR32s, XFLOADER either exits or
hibernates, according to the following:

• If XFLOADER was run with an ordinary RUN command (that is, RUN
XFLOADER), it exits after loading microcode.

• If XFLOADER was run as a separate process, as with the following
command, it hibernates after loading microcode:

RUN/UIC=[1,1]/PROCESS=XFLOADER SYS$SYSTEM:XFLOADER

In this case, XFLOADER automatically reloads microcode into the DR32s
after a power recovery.

XFLOADER performs a load microcode QIO to the DR32 driver.

4-19

4.4.5

DR32 Interface Driver
4.4 Programming Interface

DR32 Function Codes

4.4.5.1

4.4.5.2

4-20

The DR32 I/O functions are load microcode and start data transfer.
Normally, the controlling process stops data transfers with a set halt
command packet. However, the Cancel I/O on Channel ($CANCEL) system
service can be used to abort data transfers and complete the I/O operation.

Load Microcode
The load microcode function resets the DR32 and loads an image of DR32
microcode. It also sets the DR32 data rate to the last specified value. Physical
If O privilege is required. The VMS operating system defines the following
function code:

• I0$_LOADMCODE-Load microcode

The load microcode function takes the following device- or function­
dependent arguments:

• Pl-The starting virtual address of the microcode image that is to be
loaded into the DR32

• P2-The number of bytes to be loaded (maximum of 5120 for the DR780)

If any data transfer requests are active when a load microcode request is
issued, the load request is rejected and SS$_DEVACTIVE is returned in the
I/O status block.

The microcode is verified by addressing each microword and checking for a
parity error. (The microcode is not compared to the buffer image.) If there
are no parity errors, the microcode was loaded successfully and the driver sets
the microcode valid bit in one of the DR32 registers. If there is a parity error,
SS$_P ARITY is returned in the I/O status block. (The valid bit is cleared by
the reset operation.)

In addition to SS$_P ARITY, three other status codes can be returned in the
I/O status block: SS$_NORMAL, SS$_DEVACTIVE, and SS$_POWERFAIL.

Start Data Transfer
The start data transfer function specifies a command table that holds
the parameters required to start the DR32. In addition to several other
parameters, the command table contains the size and address of the command
and buffer blocks, and the address of a command packet AST routine. No
user privilege is required. The VMS operating system defines the following
function code:

• I0$_STARTDATA-Start data transfer

The start data transfer function takes the following function modifier:

• IO$M_SETEVF-Set event flag

If IO$M_SETEVF is included with the function code, the specified event
flag is set when a command packet interrupt occurs and when the start data
transfer QIO is completed. If IO$M_SETEVF is not specified, the event flag
is set only when the QIO is completed.

IO$M_SETEVF should not be used with the $QIOW macro, because the
$QIOW will return after the event flag is set the first time.

DR32 Interface Driver
4.4 Programming Interface

The start data transfer function takes the following device- or function­
dependent arguments:

• Pl-The starting virtual address of the data transfer command table in
the user's process

• P2-The length in bytes (always 32) of the data transfer command table
(the symbolic name is XF$K_CMT_LENGTH)

The format of the data transfer command table is shown in Figure 4-5 (offsets
are shown in parentheses).

Figure 4-5 Data Transfer Command Table

0

command block size (XF$L_CMT _CBLKSZ)

4

command block address (XF$L_CMT _CBLKAD)

8

buffer block size (XF$L_CMT _BBLKSIZ)

12

buffer block address (XF$L_CMT _BBLKAD)

16

command packet AST routine address (XF$L_CMT_PASTAD)

20

command packet AST parameter (XF$L_CMT _PASTPM)

I flags l data rate
(XF$B_CMT _FLAGS) (XF$B_CMT _RATE)

24

28
address of the location to store the GO bit address

(XF$L_CMT _GBITAD)

ZK-721-82

Because the command block contains the queue headers for INPTQ, TERMQ,
and FREEQ, its address in the second longword must be quadword-aligned.

The command packet AST routine specified in the fifth longword is called
whenever the DR32 signals a command packet interrupt. A command
packet AST should be distinguished from a QIO AST (astadrs argument). A
command packet interrupt occurs whenever the DR32 completes a function
and returns a packet that specifies an interrupt (see Section 4.4.3.6) by
inserting it onto TERMQ. The astadrs argument address is called when the
QIO is completed. If either the command packet AST address or the astadrs

4-21

DR32 Interface Driver
4.4 Programming Interface

4-22

address is zero, the respective AST is not delivered. If the command packet
specifies the set halt function, a command packet interrupt occurs regardless
of the state of the packet interrupt bits.

The seventh longword contains the data rate byte and a flags byte. The data
rate byte controls the DR32 clock rate. The data rate value is considered to be
an unsigned integer.

For the DR780, the relationship between the value of the data rate byte and
the actual data rate is given by the following formula:

Data rate (in megabytes/ sec) =
256

(l ;od b)
- va ue o ata rate yte

For example, a data rate value of 236 corresponds to an actual data rate of
2.0 megabytes/second.

For the DR750, use the following formula:

(. I) 12.50
Data rate in megabytes sec = 256 (l f d b) - va ue o ata rate yte

For example, a data rate value of 236 corresponds to an actual data rate of
0.625 megabytes/second.

The maximum data rate byte values are 250 megabytes/second for the DR780
and 252 megabytes/second for the DR750.

The parameter XFMAXRATE set during system generation limits the
maximum data rate that can be set. This parameter limits the maximum
data rate because very high data rates on certain configurations can cause a
processor timeout. If you attempt to set the data rate higher than the rate
allowed by XFMAXRATE, the error status SS$_BADPARAM is returned in
the 1/0 status block.

The VMS operating system defines the following flag bit values:

XF$V_CMT _SETRTE

XF$V_CMT _DIPEAB

If set, XF$B_CMT_RATE specifies the data rate. If
clear, the data rate established by a previous $10_
ST ARTDAT A function is used. The 10$_LOADMCODE
function sets the data rate to the last value used. If the
data rate has not been previously set, a value of 0 is
used.

If set, parity errors on the data portion of the DOI do
not cause device aborts. If clear, a parity error results
in a device abort.

The eighth longword contains the address of a location to store the address
of the GO bit. This bit must be set whenever the application program inserts
a command packet onto an empty INPTQ. The GO bit register is mapped in
system memory space and the address is returned to the user.

The 10$-STARTDATA function locks the command and buffer blocks
into memory and starts the DR32. Whenever the DR32 interrupts with a
command packet interrupt, the driver queues a packet AST (if an AST address
is specified) and, if 10$M_SETEVF is specified, sets the event flag. The QIO
remains active until one of the following events occur:

4.4.6

DR32 Interface Driver
4.4 Programming Interface

• A set halt command packet is processed by the DR32.

• The data transfer aborts.

• A Cancel 1/0 on Channel ($CANCEL) system service is issued on this
channel.

If an abort occurs, the second longword of the 1/0 status block contains
additional bits that identify the cause of the abort (see Section 4.5).

The start data transfer function can return the following twelve error codes in
the IjO status block:

SS$_ABORT SS$_BUFNOT ALIGN SS$_CANCEL

SS$_CTRLERR

SS$_1NSFMEM

SS$_NQRMAL

High-Level Language Interface

SS$_DEVREQERR

SS$_1VBUFLEN

SS$_PARITY

SS$_EXQUOT A

SS$_MCNOTV AUD

SS$_POWERFAIL

The VMS operating system supports a set of program-callable procedures that
provide access to the DR32. The formats of these calls are given here for VAX
FORTRAN users; VAX MACRO users must set up a standard VMS argument
block and issue the standard procedure CALL. (Optionally, VAX MACRO
users can access the DR32 directly by issuing an 10$_STARTDATA function,
building command packets, and inserting them onto INPTQ.) Users of other
high-level languages can also specify the proper subroutine or procedure
invocation.

Six high-level language procedures are provided by the VMS operating
system for the DR32. They are contained in the default system library,
STARLET.OLB. Table 4-4 lists these procedures. Procedure arguments are
either input or output arguments, that is, arguments supplied by the user or
arguments that will contain information stored by the procedure. Except for
those that are indicated as output arguments, all arguments in the following
call descriptions are input arguments. By default, all procedure arguments are
integer variables unless otherwise indicated.

The VMS high-level language support routines for the DR32 do the following:

• Issue 1/0 requests

• Allocate and manage the command memory

• Build command packets, insert them onto INPTQ, and set the GO bit

• Remove command packets from TERMQ and return the information they
contain to the controlling process

• Use action routines for program-DR32 synchronization

Table 4-4 VMS Procedures for the DR32

Subroutine

XF$SETUP

XF$ST ARTDEV

Function

Defines command and buffer areas and initializes queues

Issues an 1/0 request that starts the DR32

4-23

DR32 Interface Driver
4.4 Programming Interface

4.4.6.1

4-24

Table 4-4 (Cont.) VMS Procedures for the DR32

Subroutine

XF$FREESET

XF$PKTBLD

XF$GETPKT

XF$CLEANUP

Function

Releases command packets onto FREEQ

Builds command packets and releases them onto INPTO

Removes a command packet from TERMQ

Deassigns the device channel and deallocates the command
area

The VMS operating system also provides a FORTRAN parameter file,
SYS$LIBRARY:XFDEF.FOR, that can be included in FORTRAN programs.
This file defines many of (but not all) the symbolic names with the XF$ prefix
described in this chapter. For example, SYS$LIBRARY:XFDEF.FOR contains
symbolic definitions for function codes (that is, device control codes), interrupt
control codes, command control codes, and masks for error bits set in the 1/0
status block and the DR32 status longword. To include these definitions in a
FORTRAN program, insert the following statement in the source code:

INCLUDE 'SYS$LIBRARY:XFDEF.FOR'

XF$SETUP
The XF$SETUP subroutine defines memory space for the command and buffer
areas, and initializes INPTQ, TERMQ, and FREEQ. The call to XF$SETUP
must be made prior to any calls to other DR32 support routines.

The format of the XF$SETUP call is as follows:

CALL XF$SETU P(contxt,barray, bufsiz,numbuf ,[idevmsg],
[idevsiz],[ilogmsg],[ilogsiz],[cmdsiz],
[status])

Argument descriptions are as follows:

contxt

barray

bufsiz

A 30-longword user-supplied array that is maintained by
the support routines and is used to contain context and
status information concerning the current data transfer (see
Section 4.4.6.5). The contxt array provides a common storage
area that all support routines share. For increased performance,
contxt should be longword-aligned.

Specifies the starting virtual address of an array of buffers that, in
the case of an output operation, contain information for transfer
by the DR32, or in the case of an input operation, will contain
information transferred by the DR32. For example, if barray is
declared INTEGER*2 BARRAY (l,J), I is the size of each data buffer
in words and J is the number of buffers. The lower bound on
both indexes is assumed to be 1 . All buffers in the array must be
contiguous to each other and of fixed size.

Specifies the size in bytes of each buffer in the array. All buffers
are the same size. If the barray argument is declared as stated in
the preceding paragraph, bufsiz = 1*2. The bufsiz argument length
is one longword.

numbuf

idevmsg

idevsiz

ilogmsg

ilogsiz

cmdsiz

DR32 Interface Driver
4.4 Programming Interface

Specifies the number of buffers in the array. If the barray
argument is declared as in the preceding paragraph, numbuf =

J. The area of memory described by the barray, bufsiz, and
numbuf arguments is used as the buffer block for DR32 data
transfers. The numbuf argument length is one longword.

Specifies an array, declared by the application program, that is
used to store an unsolicited input device message from the far­
end DR device. The DR32 stores unsolicited input in the device
message field of a command packet from FREEQ and places that
packet onto TERMO. When XF$GETPKT removes such a packet
from TERMO, it copies the device message field into the idevmsg
array. The calling program is then notified that information has
been stored in the idevmsg array. The idevmsg argument is
optional; the argument must be given if any unsolicited input is
anticipated.

Specifies the size in bytes of the idevmsg array. The maximum
size of a device message is 256 bytes. The idevsiz argument is
optional; if idevmsg is specified, idevsiz must be specified. The
idevsiz argument length is one word.

Specifies an array, declared by the application program, that
is used to store log information from the far-end DR device
contained in the log area field of the command packet. Log
information is hardware-dependent data that is returned by the
far-end DR device. The XF$SETUP routine stores the address
and size of the ilogmsg array; the log information is stored in the
ilogmsg array by the XF$GETPKT routine. The ilogmsg argument
is optional; the argument must be given if any log information is
anticipated.

Specifies the size in bytes of the ilogmsg array. The maximum
size of a log message is 256 bytes. The ilogsiz argument is
optional. However, if ilogmsg is specified, ilogsiz must be
specified. The ilogsiz argument length is one word.

Specifies the amount of memory space to be allocated from which
command packets are to be built. Consider the following factors
when deciding how much memory to allocate for this purpose:

1 The number of command packets that the application program
will be using.

2 The device message and log area fields in command packets
are rounded up to quadword boundaries.

3 The size of the command packet itself is rounded up to an
eight-byte boundary.

4 cmdsiz will be rounded up to a page boundary.

The cmdsiz argument is optional; argument length is one
longword. If defaulted, the allocated space is equal to the
following, which is rounded up to a full page:

(numbuf)*(32+idevsiz+ilogsiz)*(3)

Memory space for command packets is obtained by calling
LIB$GET_VM.

4-25

DR32 Interface Driver
4.4 Programming Interface

4.4.6.2

4-26

status This output argument receives the VMS success or failure code of
the XF$SETUP call:
SS$_NORMAL Normal successful completion

SS$_BADP ARAM Invalid input argument

Error returns can be found in LIB$GET_VM.

The status argument is optional; argument length is one
longword.

XF$STARTDEV
The XF$STARTDEV subroutine issues the 1/0 request that starts the DR32
data transfer.

The format of the XF$STARTDEV call is as follows:

CALL XF$ST ARTDEV (contxt,devnam,[pktast],[astparm],[efn],­
[modes],[datart],[status])

Argument descriptions are as follows:

contxt

devnam

pktast

astparm

ef n

Specifies the array that contains context and status information
(see Section 4.4.6.1).

Specifies the device name (logical name or actual device name) of
the DR32. All letters in the resultant string must be capitalized
and the device name must terminate with a colon, for example,
XFAO:. The devnam datatype is character string.

Specifies the address of an AST routine that is called each time a
command packet that specifies an interrupt in its interrupt control
field is returned by the DR32, that is, placed onto TERMQ (see
Section 4.4.7.2). This AST routine is also called on completion of
the 1/0 request. Normally, the AST routine would call XF$GETPKT
to remove command packets from TERMQ until TERMQ is empty.
The pktast argument is optional.

Specifies a longword parameter that is included in the call to the
pktast-specified AST routine. The format used to call the AST
routine is:

CALL pktast(astparm)

The astparm argument is optional; argument length is one
longword. If astparm is not specified, pktast is called with no
parameter.

If the event flag must be determined by the application program,
efn specifies the number of the event flag that is set when a
packet interrupt is delivered. Otherwise, it is not necessary to
include this argument in an XF$ST ARTDEV call. If defaulted, efn
is 21. The efn argument length is one word.

The event flag (either the default or the event flag specified by this
argument) is set for every packet interrupt, and also when the 010
completes.

4.4.6.3

modes

data rt

status

DR32 Interface Driver
4.4 Programming Interface

Specifies the mode of operation. The VMS operating system
defines the following value:

2 = parity errors on the data portion of the DOI that do not cause
the device to abort.

If defaulted, modes is 0 (a parity error causes the device to abort).

Specifies the data rate. The data rate controls the speed at which
the transfer takes place. The data rate is considered to be an
unsigned integer in the range 0 to 255. The relationship between
the specified data rate value and the actual data rate for the
DR780 and the DR750 is shown in Section 4.4.5.2.

If datart is defaulted, the previously set data rate is used. The
datart argument length is one byte.

This output argument receives the VMS success or failure code of
the XF$ST ARTDEV call:
SS$_NORMAL

SS$_BADPARAM

Normal successful completion

Required parameter defaulted

Error returns can be obtained by issuing the Create 1/0 on Channel
($CREA TE) and Queue 1/0 Request ($010) system services.

The status argument is optional; argument length is one
longword.

XF$FREESET
The XF$FREESET subroutine releases command packets onto FREEQ. These
packets are then available to the DR780 to store any unsolicited input from
the far-end DR device. If unsolicited input from the far-end DR device is
expected, the XF$FREESET call should be made before the XF$STARTDEV
call is issued.

Idevsiz, the argument that specifies the size of the idevmsg array in the
call to XF$SETUP, defines the size of the device message field in command
packets inserted onto FREEQ. This occurs because unsolicited device messages
are copied from the device message field of the command packet to the
idevmsg array.

Note that the XF$FREESET subroutine may occasionally disable ASTs for a
very short period.

The format of the XF$FREESET call is as follows:

CALL XF$FREESET (contxt,[numpkt],[intctrl],[action],­
[actparm],[status])

Argument descriptions are as follows:

contxt

numpkt

Specifies the array that contains context and status information
(see Section 4.4.6. 1).

Specifies the number of command packets to be released onto
FREEQ. The numpkt argument is optional; argument length is one
word. If defaulted, numpkt is 1.

4-27

DR32 Interface Driver
4.4 Programming Interface

4.4.6.4

4-28

intctrl

action

actparm

status

XF$PKTBLD

Specifies the conditions under which an AST is delivered (and the
event flag set) when the DR32 places this command packet (or
packets) on TERMQ (see Section 4.4.6.2). The VMS operating
system defines the following values:

0 = unconditional AST delivery and event flag set
1 = AST delivery and event flag set only if TERMQ is empty
2 = no AST interrupt or event flag set

The intctrl argument is optional; argument length is one word. If
defaulted, intctrl is 0.

Specifies the address of a routine that is called when any
command packet built by this call to XF$FREESET is removed
from TERMQ by XF$GETPKT (see Section 4.4. 7 .3). The action
argument is optional.

A longword parameter that is passed to the action routine when
the action routine is called (see Section 4.4. 7 .3). The actparm
argument is optional.

This output argument receives the VMS success or failure code of
the XF$FREESET call:
SS$_NORMAL

SS$_8ADOUEUEHDR

SS$_1NSFMEM

SHR$_NQCMDMEM

Normal successful completion

FREEO interlock timeout

Insufficient memory to build
command packets

Command memory not allocated
(usually because the data transfer
has stopped and XF$CLEANUP has
been called, or because XF$SETUP
has not been called)

The XF$PKTBLD subroutine builds command packets and releases them onto
INPTQ.

Note that the XF$PKTBLD subroutine may occasionally disable ASTs for a
very short period.

The format of the XF$PKTBLD call is as follows:

CALL XF$PKTBLD(contxt, func,[index),[size),
[devmsg),[devsiz),[logsiz),[modes),
[action),[actparm),[status])

Argument descriptions are as follows:

contxt

tune

Specifies the array that contains context and status information
(see Section 4.4.6.1).

Specifies the device control code. Device control codes describe
the function the DR32 is to perform. The tune argument length
is one word. The VMS operating system defines the following
values (Table 4-2 describes the functions in greater detail):

index

size

devmsg

devsiz

Symbol

XF$K_PKT _RD

XF$K_PKT _RDCHN

XF$K_PKT_WRT

XF$K_PKT_WRTCHN

XF$K_PKT_WRTCM

XF$K_PKT_SETTST

XF$K_PKT _CLRTST

XF$K_PKT_NQP

XF$K_PKT_DIAGRI

XF$K_PKT _DIAGWI

XF$K_PKT _DIAGRD

XF$K_PKT_DIAGWC

XF$K_PKT_SETRND

XF$K_PKT _CLRRND

XF$K_PKT _HALT

DR32 Interface Driver
4.4 Programming Interface

Value Function

0 Read device

1 Read device chained

2 Write device

3 Write device chained

4 Write device control message

5 (reserved)

6 Set self-test

7 Clear self-test

8 No operation

9 Diagnostic read internal

10 Diagnostic write internal

11 Diagnostic read DOI

12 Diagnostic write control
message

13 Set random enable

14 Clear random enable

15 Set halt

Specifies the index of a data buffer specified by the barray
argument (see Section 4.4.6.1). The specific index value given
means that elements barray (1,index) through barray (size,index)
will be transferred (one buffer full of data). The index argument
is optional and is only used when the function specifies a data
transfer (a read device, read device chained, write device, or write
device chained function). The index argument length is one word.

Specifies a byte count to be transferred. This argument is optional
and is only used when the function specifies a data transfer. If
defaulted, the number of bytes to be transferred is assumed to be
the size of the buffer (specified by the bufsiz argument in the call
to XF$SETUP). If the size argument is given, the specified number
of bytes of data barray (1,index) through barray (size,index) will
be transferred. If size is defaulted and the function specifies a
data transfer, barray (1,index) through barray (bufsiz,index) will be
transferred. The size argument length is one longword.

Specifies a variable that contains the device message to be sent
to the far-end DR device. Provides additional control of the far­
end DR device (see Section 4.4.3.12). The devmsg argument is
optional.

Specifies the size in bytes of the devmsg variable. If the modes
argument specifies that a device message is to be sent over the
control portion of the DOI, devsiz specifies the number of bytes
of devmsg that will be sent to the far-end DR device.

4-29

DR32 Interface Driver
4.4 Programming Interface

logsiz

modes

action

actparm

4-30

Specifies the size of the log message expected from the far-end
DR device. The logsiz argument is optional, argument length is
one word. If defaulted, logsiz is 0.

Provides additional control of the transaction. The VMS operating
system defines the following values:

Value

+8

+16

+24

Meaning

Only the function code is sent over the control portion
of the DOI to the far-end DR device. Only for read
device, read device chained, write device, and write
device chained functions.

The function code and the device message are sent
over the control portion of the DOI to the far-end DR
device. Only for read device, read device chained,
write device, and write device chained functions.

The function code, the device message, and the
buffer size are sent over the control portion of the
DOI to the far-end DR device. Only for read device,
read device chained, write device, and write device
chained functions.

If none of the preceding three values is selected,
nothing is transmitted over the control portion of the
DOI to the far-end DR device.

+32 Length errors are suppressed. If not selected, a
length error results in an abort.

+64 An AST should be delivered (and an event flag set)
when this command packet is inserted onto TERMQ,
provided TERMQ is empty.

+ 128 No AST is delivered or event flag set for this
command packet.

If both +64 and + 128 are selected, + 128 takes
precedence.

If neither of the preceding two values is selected,
AST s are delivered and the event flag is set
unconditionally (whenever this command packet is
placed onto TERMQ).

+256 Insert this command packet at the head of INPTQ. If
not selected, insert the packet at the tail of INPTQ.

The modes argument default value is 0.

Specifies the address of a routine that is called when XF$GETPKT
removes this command packet from TERMQ. This occurs after the
DR32 has completed the command specified in the packet (see
Section 4.4. 7 .3). The action argument length is one longword.

A longword parameter that is passed to the action routine when
the action routine is called (see Section 4.4. 7 .3). The actparm
argument is optional.

4.4.6.5

status

XF$GETPKT

DR32 Interface Driver
4.4 Programming Interface

This output argument receives the VMS success or failure code of
the XF$PKTBLD call:

SS$_NQRMAL Normal successful completion

SS$_BADPARAM

SS$_BADQUEUEHDR

SS$_1NSFMEM

SHR$_NOCMDMEM

Input parameter error

INPTQ interlock timeout

Insufficient memory to build command
packets

Command memory not allocated
(usually because the data transfer
has stopped and XF$CLEANUP has
been called, or because XF$SETUP has
not been called)

The XF$GETPKT subroutine removes a command packet from TERMQ.

Note that the XF$GETPKT subroutine may occasionally disable ASTs for a
very short period.

The format of the XF$GETPKT call is as follows:

CALL XF$GETPKT(contxt,[waitflg],[func],[index],­
[devflag],[logflag],[status])

Argument descriptions are as follows:

contxt Specifies the array that contains the context and status information
(see Section 4.4.6.1). On return from XF$GETPKT, the first eight
longwords of the contxt array are filled with the status of the data
transfer:

:CONTXT

~ 1/0 status block ---4

4

control information 8

byte count 12

virtual address of buffer

residual memory byte count 20

residual DOI byte count 24

DR32 status longword (DSL) 28

ZK-722-82

4-31

DR32 Interface Driver
4.4 Programming Interface

waitflg

func

index

devflag

logflag

status

4-32

The first two longwords are the 1/0 status block. The next six
longwords are copied directly from bytes 8 through 31 of the
command packet.

This context and status information is returned by the DR32 as
status in each command packet. With the exception of the 1/0
status block, the information is copied by XF$GETPKT into the
contxt array whenever XF$GETPKT removes a command packet
from TERMO.

The 1/0 status block is stored only after the data transfer has
halted and it contains the final status of the transfer. Section 4.5
describes the 1/0 status block.

(See Section 4.4.2 for a description of the remaining fields.)

Specifies the consequences of an attempt by XF$GETPKT to
remove a command packet from an empty TERMO. If waitflg is
0 (default), XF$GETPKT waits for the event flag to be set and
then removes a packet from TERMO. If waitflg is 1, XF$GETPKT
returns immediately with a failure status. Normally, waitflg is
set to 1 (.TRUE.) for AST synchronization and set to 0 (.FALSE.)
for event flag synchronization (see Section 4.4.7). The waitflg
argument is optional.

This output argument receives the device control code specified in
this command packet (see Section 4.4.6.4). The func argument is
optional; argument length is one word.

If the current command packet specified a data transfer, this
output argument receives the buffer index specified when this
command packet was built by XF$PKTBLD (see Section 4.4.6.4).
The index argument is optional; argument length is one word.

If set to .TRUE. (255), this output argument indicates that a device
message was stored in the idevmsg array, which is described in
the XF$SETUP call (see Section 4.4.6. 1). The devflag argument
is optional; argument length is one byte.

If set to .TRUE. (255), this output argument indicates that a log
message was stored in the ilogmsg array, which is described in
the XF$SETUP call (see Section 4.4.6. 1). The logflag argument is
optional; argument length is one byte.

This output argument receives the status of the XF$GETPKT call:

SS$_NORMAL Normal successful completion

SS$_BADOUEUEHDR TERMO interlock timeout

SHR$_QEMPTY

SHR$_HAL TED

SHR$_NOCMDMEM

TERMO empty but transfer still in
progress; only returned if waitflg is
.TRUE

TERMQ empty, transfer complete,
and 1/0 status block contains final
status; XF$CLEANUP called automatically
(Subsequent calls to XF$GETPKT return
SHR$_NOCMDMEM .)

Command memory not allocated; usually
indicates either:
1 XF$SETUP not called
2 XF$CLEANUP called

4.4.7

4.4.6.6

DR32 Interface Driver
4.4 Programming Interface

XF$CLEANUP
The XF$CLEANUP subroutine deassigns the channel and deallocates the
command area allocated by XF$SETUP. If XF$GETPKT detects a TERMQ
empty condition and the transfer has halted, it will automatically call
XF$CLEANUP. However, if the transfer either terminates in an
SS$_CTRLERR or SS$_BADQUEHDR error, or is intentionally terminated,
XF$GETPKT might not detect these conditions and XF$CLEANUP should be
called explicitly.

The format of the XF$CLEANUP call is as follows:

CALL XF$CLEANUP(contxt,[status])

Argument descriptions are as follows:

contxt

status

Specifies the array that contains context and status information
(see Section 4.4.6.1).

This output argument receives the status of the XF$CLEANUP call:
SS$_NORMAL Normal successful completion

SHR$_NOCMDMEM The command memory not allocated;
there are error returns from LIB$FREE_ VM
and $DASSIGN

User Program-DR32 Synchronization

4.4.7.1

4.4.7.2

Synchronization of high-level language application programs with the DR32
can be achieved in the following ways:

• Event flags

• AST routines

• Action routines

Event Flags
Event flags are synchronized by calling the XF$GETPKT routine (see
Section 4.4.6.5) with the waitflg argument set to 0 (default). The pktast
argument in the XF$STARTDEV routine (see Section 4.4.6.2) is normally set
to its default value. If the XF$GETPKT routine is called and the termination
queue is empty, the routine waits until the DR32 places a command packet
on the queue and sets the event flag. The packet is then removed from the
queue and returned to the caller.

AST Routines
If a call to the XF$STARTDEV routine includes the pktast argument, the
specified AST routine is called each time an AST is delivered. AST delivery
can be controlled on a packet-by-packet basis by using the intctrl argument in
the XF$FREESET routine and by specifying appropriate values in the modes
argument of the XF$PKTBLD routine (see Sections 4.4.6.3 and 4.4.6.4). For a
particular command packet, ASTs can be delivered as follows:

• Unconditionally when the packet is placed onto TERMQ

• Only if TERMQ is empty when the packet is placed on it

• Not at all (that is, there is no AST when the packet is placed on TERMQ)

4-33

DR32 Interface Driver
4.4 Programming Interface

4.4.7.3

4.5 1/0 Status Block

4-34

There is no guarantee that an AST will be delivered for every command
packet, even when the astctrl argument indicates unconditional AST delivery.
In particular, if packet interrupts are closely spaced, several packets can be
placed onto TERMQ even though only one AST is delivered. Therefore,
the AST routine should continue to call the XF$GETPKT routine until all
command packets are removed from TERMQ.

Action Routines
The action argument specified in the XF$FREESET and XF$PKTBLD
routines (see Sections 4.4.6.3 and 4.4.6.4) can be used for a more automated
synchronization of the program with the DR32. Routines specified by action
arguments can be used for both event flag and AST routine synchronization.

The address of the action routine is included in the command packet. This
routine is automatically called by the XF$GETPKT routine when it removes
that packet from TERMQ. This allows you to define, at the time the command
packet is built, how it will be handled once it is removed from TERMQ. In
addition to specifying different action routines for different types of command
packets, you can also specify an action routine parameter (actparm) to further
identify the command packet or the action to be taken when the command is
completed. Figure 4-6 shows the use of action-specified routines for program
synchronization.

An important difference between AST routine and action routine use is the
number of times the respective routines are specified. Command packet AST
routines are specified only once, in an XF$STARTDEV call; a single AST
routine is implied. Action routines, however, are specified in each command
packet. This allows a different action routine to be designed for each type of
command packet.

Routines specified by the action argument are supplied by the user. The
format of the calling interface is as follows:

CALL action-routine (contxt,actparm,devflag,logflag,func,index,status)

With the exception of actparm, all arguments are the same as those described
for the XF$GETPKT routine. In effect, the action routine receives the same
information XF$GETPKT optionally returns to its calling program, along
with the actparm argument that was specified when the packet was built. If
these variables are to be passed as inputs to the action routine, they must be
supplied as output variables in the call to the XF$GETPKT routine.

The I/O status block for the load microcode and start data transfer QIO
functions is shown in Figure 4-7. The I/O status block used in the first two
longwords of the contxt array for high-level language calls also has the same
format.

DR32 Interface Driver
4.5 1/0 Status Block

Figure 4-6 Action Routine Synchronization

APPLICATION
PROGRAM

CALL
XF$GETPKT

APPLICATION
PROGRAM

XF$GETPKT

REMOVE PACKET
FROM TERMO
CALL ACTION

ACTION Routines with Event Flag Synchronization

AST ROUTINE

CALL
XF$GETPKT

ACTION

PACKET­
SPECIFIC

PROCEDURE

XF$GETPKT

REMOVE PACKET
FROM TERMQ
CALL ACTION

ACTION Routines with AST Routine Synchronization

ACTION

PACKET­
SPECIFIC

PROCEDURE

ZK-723-82

4-35

DR32 Interface Driver
4.5 1/0 Status Block

4-36

Figure 4-7 1/0 Functions IOSB Contents

31 27 26 24 23 16 15 0

0 status

5

l l status 0 DOI status 16 status bits
bits

ZK-724-82

VMS status values are returned in the first longword. Appendix A lists these
values. (The VMS System Messages and Recovery Procedures Reference Volume
provides explanations and user actions for these returns.) If
SS$_CTRLERR, SS$_DEVREQERR, or SS$_P ARITY is returned in the status
word, the second longword contains additional returns (device-dependent
data). Table 4-5 lists these returns.

The 1/0 status block for an 1/0 function is returned after the function
completes. Status is not stored on the completion of every command packet,
because any number of packets can pass between the application program
and the DR32 when a single QIO executes.

Table 4-5 Device-Dependent 1058 Returns for 1/0 Functions

Symbolic Name Meaning

16 Status Bits

XF$V_PKT_SUCCESS The command was performed successfully.

XF$V_IQS_CMDSTD The command specified in the command packet started.

XF$V_IQS_INVPTE An invalid page table entry.

XF$V_IQS_FREOPK This command packet came from FREEQ.

XF$V_IQS_DDIDIS The far-end DR device is disabled.

XF$V_IOS_SLFTST The DR32 is in self-test mode.

XF$V_IQS_RNGERR The user-provided address is outside the command
block range or the buffer block range.

XF$V_IOS_UNQERR A queue element was not aligned on a quadword
boundary.

XF$V_IQS_INVPKT A packet was not a valid DR32 command packet.

XF$V_IQS_FREQMT A message was received from the far-end DR device
and FREEQ was empty.

XF$V_IOS_RNDENB Random access mode is enabled.

XF$V_IQS_INVDDI A protocol error occurred on the DOI.

DR32 Interface Driver
4.5 1/0 Status Block

Table 4-5 (Cont.) Device-Dependent IOSB Returns for 1/0 Functions

Symbolic Name

XF$V_IQS_LENERR

XF$V_IQS_DRV ABT

XF$V_PKT _PARERR

XF$V_IQS_DDISTS

XF$V_IQS_NEXREG

XF$V_IQS_LOG

XF$V_IQS_DDIERR

XF$V_IQS_BUSERR

XF$V_IQS_RDSERR

XF$V_IQS_ WCSPE

XF$V_IQS_CIPE

XF$V_IQS_DIPE

4.6 Programming Hints

Meaning

1 6 Status Bits

The far-end DR device terminated the data transfer
before the required number of bytes was sent, or a
message was received from the far-end DR device and
the device message field in the command packet at the
head of FREEQ was not large enough to hold it.

The 1/0 driver aborted the DR32 function.

A parity error occurred on the data or control portion of
the DDI.

DOI Status

The one-byte status register 0 for the far-end DR device.
XFV_IQS_NEXREG, XFV_IQS_LQG, and XF$V_IQS_
DDIERR are returns from this register.

An attempt was made to access a nonexistent register
on the far-end DR device.

The far-end DR device registers are stored in the log
area.

An error occurred on the far-end DR device.

5 Status Bits

An error on the processor's internal CPU memory bus
occurred.

A noncorrectable memory error occurred (read) data
substitute.

Writable control store (WCS) parity error.

Control interconnect parity error. A parity error occurred
on the control portion of the DDI.

Data interconnect parity error. A parity error occurred
on the data portion of the DDI.

This section contains information on important programming considerations
relevant to users of the DR32 driver.

4-37

4.6.1

DR32 Interface Driver
4.6 Programming Hints

Command Packet Prefetch

4-38

The DR32 has the capability of prefetching command packets from INPTQ.
While executing the command specified in one packet, the DR32 can prefetch
the next packet, decode it, and be ready to execute the specified command
at the first opportunity. When the command is executed depends on which
command is specified. For example, if two read device or write device
command packets are on INPTQ, the DR32 fetches the first packet, decodes
the command, verifies that the transfer is legal, and starts the data transfer.
While the transfer is taking place, the DR32 prefetches the next read device
or write device command packet, decodes it, and verifies the transfer legality.
The second transfer begins as soon as the first transfer is completed.

If the two command packets on INPTQ are read device (or write device) and
write device control message, in that order, the DR32 prefetches the second
packet and immediately executes the command, because control messages
can be overlapped with data transfers. The DR32 then prefetches the next
command packet. In an extreme case, the DR32 can send several control
messages over the control portion of the DDI while a single data transfer
takes place on the data portion of the DDI.

The prefetch capability and the overlapping of control and data transfers
can cause unexpected results when programming the DR32. For instance,
if the application program calls for a data transfer to the far-end DR device
followed by notification of the far-end DR device that data is present, the
program cannot simply insert a write device command packet and then a
write control message command packet onto INPTQ-the control message
might arrive before the data transfer completes.

A better way to synchronize the data transfer with notification of data arrival
is to request an interrupt in the interrupt control field of the data transfer
command packet. Then, when the data transfer command packet is removed
from TERMQ, the application program can insert a write control message
command packet onto INPTQ to notify the far-end DR device that the data
transfer has completed.

Another consequence of command packet prefetching occurs, for example,
when two write device command packets are inserted onto INPTQ. While
the first data transfer takes place, the second command packet is prefetched
and decoded. If an unusual event occurs and the application program must
send an immediate control message to the far-end DR device, the application
program might insert a write device control message packet onto INPTQ.
However, this packet is not sent immediately because the second write device
command packet has already been prefetched; the control message is sent
after the second data transfer starts.

If the application program must send a control message with minimum delay,
use one of the following techniques:

• Insert only one data transfer function onto INPTQ at a time. If this is
done, a second transfer function will not be prefetched and a control
message can be sent at any time.

• Use smaller buffers or a faster data rate to reduce the time necessary to
complete a given command packet.

• Issue a Cancel I/O on Channel ($CANCEL) system service call followed
by another I0$_STARTDATA function.

4.6.2

4.6.3

4.6.4

4.6.5

Action Routines

Error Checking

DR32 Interface Driver
4.6 Programming Hints

Action routines provide a useful DR32 programming technique. They can be
used in application programs written in either assembly language or a high­
level language. When a command packet is built, the address of a routine to
be executed when the packet is removed from TERMQ is appended to the end
of the packet. Then, rather than having to determine what action to perform
for a particular packet when it is removed from TERMQ, the specified action
routine is called.

Bits 0 through 23 in the second longword of the IjO status block correspond
to the same bits in the DR32 status longword (DSL). Although the 1/0 status
block is written only after the QIO function completes, the DSL is stored
in every command packet. However, because there is no command packet
in which to store a DSL for certain error conditions, such as FREEQ empty,
some errors are reported only in the 1/0 status block. To check for an error
under these conditions, examine the DSL in each packet for success or failure
only. Then, if a failure occurs, the specific error can be determined from the
1/0 status block. The 1/0 status block should also be checked to verify that
the QIO has not completed prior to a wait for the insertion of additional
command packets onto TERMQ. In this way, the application program can
detect asynchronous errors for which there is no command packet available.

Queue Retry Macro
When an interlocked queue instruction is included in the application program,
the code should perform a retry if the queue is locked. However, the code
should not execute an indefinite number of retries. Consequently, all retry
loops should contain a maximum retry count. The macro programming
example.provided in Section 4.7 contains a useful queue retry macro.

Diagnostic Functions
The diagnostic functions listed in Table 4-2 can be used to test the DR32
without the presence of a far-end DR device. For the DR780, perform the
following test sequence:

1 Insert a set self-test command packet onto INPTQ.

2 Insert a diagnostic write internal command packet that specifies a 128-
byte buffer onto INPTQ. This packet copies 128 bytes from memory into
the DR780 internal data silo.

3 Insert a diagnostic read DDI command packet onto INPTQ. This packet
transmits the 128 bytes of data from the silo over the DDI and returns it
to the silo.

4 Insert a diagnostic read internal command packet that specifies another
128-byte buffer in memory onto INPTQ. This packet copies 128 bytes of
data from the silo into memory.

4-39

4.6.6

4.6.7

DR32 Interface Driver
4.6 Programming Hints

5 Compare the two memory buffers for equality. Note that on the DR780,
the diagnostic read internal function destroys the first four bytes in the
silo before storing the data in memory. Therefore, compare only the last
124 bytes of the two buffers.

6 Insert a clear self-test command packet onto INPTQ.

The NOP Command Packet
It is often useful to insert a NOP command packet onto INPTQ to test the
state of the DOI disable bit (XF$M_PKT_DDIDIS in the DSL). By checking
this bit before initiating a data transfer, an application program can determine
whether the far-end DR device is ready to accept data.

Interrupt Control Field
As described in Section 4.4.3.6, the interrupt control field determines the
conditions under which an interrupt is generated: unconditionally, if TERMQ
was empty, or never. The following are general applications of this field:

• If a program performs five data transfers and requires notification of
completion only after all five have completed, the first four command
packets should specify no interrupt, and the fifth command packet should
specify an unconditional interrupt.

• If a program performs a continuous series of data transfers, each
command packet can specify an interrupt only if TERMQ was empty.
Then, every time an event flag or AST notifies the program that a
command packet was inserted onto TERMQ, the program removes
and processes packets on TERMQ until it is empty.

• Command packets that specify no interrupt should never be mixed with
command packets that specify an interrupt if TERMQ was empty.

4.7 Programming Examples

4.7.1

The programming examples in the following two sections use DR32 high-level
language procedures and DR32 Queue 1/0 functions.

DR32 High-Level Language Program

4-40

The following program (Example 4-1) is an example of how the DR32 high­
level language procedures perform a data transfer from a far-end DR device.
The program reads a specified number of data buffers from an undefined
far-end DR device, which is assumed to be a data source, into the VAX
memory. The number of buffers is controlled by the NUMBUF parameter.
The program contains examples of the read data chained function code and
DR32 application program synchronization using AST routines and action
routines.

DR32 Interface Driver
4. 7 Programming Examples

Example 4-1 DR32 High-Level Language Program Example

c
c
c

DR32 HIGH-LEVEL LANGUAGE PROGRAM

INCLUDE 'XFDEF.FOR' ;DEFINE XF CONSTANTS
!SIZE OF EACH BUFFER
!NUMBER OF BUFFERS IN
!RING

PARAMETER BUFSIZ = 1024
PARAMETER NUMBUF = 8

PARAMETER

PARAMETER

INTEGER*2
INTEGER*2

INTEGER*2

INTEGER*2

INTEGER*4
INTEGER*4

INTEGER*4
INTEGER*4

EXTERNAL
EXTERNAL

EXTERNAL

ILOGSIZ = 4

EFN = 0

!SIZE OF INPUT LOG
!ARRAY
!EVENT FLAG SYNCHRON­
! IZING MAIN LEVEL WITH
!AST ROUTINE

BUFARRAY(BUFSIZ,NUMBUF)
INDEX

!THE RING OF BUFFERS
!REFERS TO BUFFER
!IN BUFARRAY

COUNT

DATART

!COUNTS NUMBER OF
!BUFFERS FILLED
!DR32 CLOCK RATE

CONTXT(30) !CONTEXT ARRAY USED BY SUPPORT
ILOGMSG(ILOGSIZ) !LOG MESSAGES FROM DEVICE

!STORED HERE
STATUS !RETURNS FROM SUBROUTINES
DEVMSG !far-end DR device CODE

ASTRTN
AST$PROCBUF

AST$HALT

!AST ROUTINE
!ACTION ROUTINE TO HANDLE
!COMPLETION OF READ DATA
!COMMAND PACKET

!ACTION ROUTINE TO HANDLE
!COMPLETION OF A HALT
!COMMAND PACKET

COMMON /MAIN_AST/ CONTXT, INDEX
COMMON /MAIN_ACTION/ BUFARRAY, ILOGMSG, COUNT
EXTERNAL SS$_NORMAL !SUCCESS STATUS RETURN

c
C THE CALL TO THE SETUP ROUTINE
c

CALL XF$SETUP (CONTXT,BUFARRAY,BUFSIZ*2,NUMBUF,, ,ILOGMSG,
1 ILOGSIZ*4,,STATUS)
IF (STATUS .NE. %LOC(SS$_NORMAL)) CALL LIB$STOP(%VAL(STATUS))

c
C PRELOAD THE INPUT QUEUE BEFORE STARTING THE DR32 IN ORDER TO AVOID
C A DELAY IN THE DATA TRANSFER
c
c

c
C BUILD COMMAND PACKETS
c

Example 4-1 Cont'd. on next page

4-41

DR32 Interface Driver
4. 7 Programming Examples

4-42

Example 4-1 (Cont.) DR32 High-Level Language Program Example

C BUILD THE COMMAND PACKET THAT WILL INSTRUCT THE far-end DR device
C TO START SAMPLING. ARBITRARILY ASSUME THAT THE far-end DR device
C WILL RECOGNIZE THIS DEVICE MESSAGE. INSERT THIS PACKET ON THE
C INPUT QUEUE (INPTQ).
c

DEVMSG = 25

CALL XF$PKTBLD
1 CONTXT,
1 XF$K_PKT_WRTCM,

1
1 DEVMSG,

1 4,
1 ILOGSIZ*4

1 XF$K_PKT_UNCOND

1 + XF$K_PKT_CBDM
1 + XF$K_PKT_INSTL

!SIGNAL far-end DR device
! "GO"

!THE CONTEXT ARRAY
!WRITE CONTROL MESSAGE
!FUNCTION
!NO INDEX OR SIZE
!SIGNAL "GO"

!SIZE OF DEVMSG IN BYTES
!SPACE FOR INPUT LOG
!MESSAGE
!MODES: UNCONDITIONAL

INTERRUPT
SEND FUNC AND DEVMSG
INSERT PACKET AT INPTQ
TAIL

1 !NO ACTION ROUTINE OR ACTPARM
1 STATUS)
IF (STATUS .NE. %LOC(SS$_NORMAL)) CALL LIB$STOP(%VAL(STATUS))

c
C IN A LOOP, BUILD THE COMMAND PACKETS THAT WILL PERFORM THE CHAINED
C READ TO INITIALLY FILL THE BUFFERS
c

DO 10 INDEX= 1, NUMBUF !FOR ALL BUFFERS DO
CALL XF$PKTBLD(

1 CONTXT, !THE CONTEXT ARRAY
1 XF$K_PKT_RDCHN, !READ DATA CHAINED
1 INDEX, !IDENTIFIES BUFFER
1 !NO SIZE, DEVMSG, OR DEVSIZ
1 ILOGSIZ*4, !SPACE FOR INPUT LOG MESSAGE
1 XF$K_PKT_UNCOND !MODES: UNCONDITIONAL

INTERRUPT
1 + XF$K_PKT_CB SEND FUNCTION CODE
1 + XF$K_PKT_INSTL, INSERT PACKET AT INPTQ

TAIL
1 AST$PROCBUF, ! ACTION ROUTINE
1 !NO ACTPARM
1 STATUS)
IF (STATUS .NE. %LOC(SS$_NORMAL)) CALL LIB$STOP(%VAL(STATUS))

10 CONTINUE

c
C THE INPUT QUEUE IS LOADED
c

c
C START THE DR32
c

Example 4-1 Cont'd. on next page

DR32 Interface Driver
4. 7 Programming Examples

Example 4-1 (Cont.) DR32 High-Level Language Program Example

DATART = 0
COUNT = 0

!DATA TRANSFER RATE
!NUMBER OF BUFFERS THAT HAVE
!BEEN FILLED

CALL SYS$CLREF (%VAL(EFN)) !CLEAR EVENT FLAG BEFORE START

CALL XF$STARTDEV (CONTXT,'XFAO: ',ASTRTN, ,, ,DATART,STATUS)
IF (STATUS .NE. %LOC(SS$_NORMAL)) CALL LIB$STOP(%VAL(STATUS))

c
C FROM THIS POINT, ROUTINES AT THE AST LEVEL ASSUME CONTROL. WAIT
C FOR THEM TO SIGNAL COMPLETION OF THE SAMPLING SWEEP.
c

CALL SYS$WAITFR (%VAL(EFN))

STOP
END

c
C AST ROUTINES
c

SUBROUTINE ASTRTN (ASTPARM)

INCLUDE 'XFDEF.FOR/NOLIST'
INTEGER*2 ASTPARM !UNUSED PARAMETER

!CONTEXT ARRAY INTEGER*4
INTEGER*4

CONTXT(30)
STATUS !FOR CALL TO XF$GETPKT

c

LOGICAL*!
LOGICAL*!

WAITFLG
LOG FLAG

COMMON /MAIN_AST/ CONTXT, INDEX

EXTERNAL SS$_NORMAL

!INPUT TO XF$GETPKT
!INPUT TO XF$GETPKT

C CALL XF$GETPKT IN A LOOP UNTIL TERMQ IS EMPTY. XF$GETPKT WILL CALL
C THE APPROPRIATE ACTION ROUTINE FOR EACH COMMAND PACKET.
c

WAITFLG = .TRUE.
LOGFLAG = .TRUE.

!DO NOT WAIT FOR EVENT FLAG
!REQUEST NOTIFICATION IF LOG
!MESSAGE IS IN PACKET

10 CALL XF$GETPKT (CONTXT,WAITFLG, ,INDEX,,LOGFLAG,STATUS)
IF (STATUS .EQ. %LOC(SS$_NORMAL)) !PACKET FROM TERMQ
1 GOTO 10
IF (STATUS .EQ. SHR$_QEMPTY) !TERMQ EMPTY - TRANSFER
1 GOTO 20 !STILL IN PROGRESS
IF (STATUS .EQ. SHR$_HALTED .OR. STATUS .EQ. SHR$_NOCMDMEM)
1 GOTO 20 !TRANSFER COMPLETE. NO MORE

!COMMAND PACKETS. ASTS MAY
!STILL BE DELIVERED

CALL LIB$STOP (%VAL(STATUS)) !ERROR IN XF$GETPKT

20 RETURN
END

Example 4-1 Cont'd. on next page

4-43

DR32 Interface Driver
4. 7 Programming Examples

4-44

Example 4-1 (Cont.) DR32 High-Level Language Program Example

c
C ACTION ROUTINE
c

c

SUBROUTINE
1

AST$PROCBUF (CONTXT,ACTPARM,DEVFLAG,LOGFLAG,
FUNC,INDEX,STATUS)

C THIS IS THE ACTION ROUTINE CALLED BY XF$GETPKT WHEN IT REMOVES A
C COMMAND PACKET FROM TERMQ. THIS PACKET HAS JUST COMPLETED A READ
C DATA OPERATION FROM THE BUFFER SPECIFIED BY INDEX. THE BUFFER IS
C PROCESSED, AND IF MORE DATA IS REQUIRED, THAT IS, BUFCOUNT .LE.
C MAXCOUNT), ANOTHER PACKET IS BUILT. THE BUFFER IN THIS PACKET IS
C THEN REFILLED AND THE PACKET IS INSERTED ONTO INPTQ.
C IF BUFCOUNT .GT. MAXCOUNT, THE SAMPLING SWEEP IS FINISHED AND A
C HALT PACKET IS INSERTED ONTO INPTQ.
c

INCLUDE
PARAMETER
PARAMETER
PARAMETER
PARAMETER

INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

LOGICAL*!
LOGICAL*!

'XFDEF.FOR/NOLIST'
MAXCOUNT = 10 !NUMBER OF BUFFERS IN SWEEP
ILOGSIZ = 4 !SIZE OF INPUT LOG MESSAGE ARRAY
BUFSIZ = 1024 !SIZE OF EACH BUFFER (IN WORDS)
NUMBUF = 8 !NUMBER OF BUFFERS

INDEX !REFERS TO A BUFFER IN BUFARRAY
FUNC !FUNCTION CODE FROM PACKET
BUFCOUNT !COUNTS NUMBER OF BUFFERS FILLED
BUFARRAY(BUFSIZ,NUMBUF) !THE ARRAY OF BUFFERS
ACTPARM !ACTION PARAMETER (NOT USED)
STATUS !STATUS OF XF$GETPKT (NOT USED)
STAT !STATUS OF CALL TO XF$PKTBLD
CONTXT(30) !CONTEXT ARRAY USED BY SUPPORT
ILOGMSG(ILOGSIZ)!STORES LOG MESSAGES FROM DEVICE

DEVFLAG
LOG FLAG

!NOT USED IN THIS EXAMPLE
!SIGNALS LOG MESSAGE PRESENT

COMMON /MAIN_ACTION/ BUFARRAY,ILOGMSG,BUFCOUNT

EXTERNAL SS$_NORMAL
EXTERNAL AST$HALT

c
C PROCESS THE BUFFER
c

DO 10 I = 1, BUFSIZ

c
C AT THIS POINT INSERT THE CODE TO PROCESS ELEMENT (I.INDEX) OF
C BUFARRAY
c

10 CONTINUE

Example 4-1 Cont'd. on next page

DR32 Interface Driver
4. 7 Programming Examples

Example 4-1 (Cont.) DR32 High-Level Language Program Example

c
C AT THIS POINT INSERT THE CODE TO LOOK AT THE LOG MESSAGE
c

c
C IS THIS THE LAST BUFFER IN THE SWEEP?
c
BUFCOUNT = BUFCOUNT + 1

IF (BUFCOUNT .LT. MAXCOUNT)

CALL FAKE$PKTBLD (
1 CONTXT,
1 XF$K_PKT_RDCHN,
1 INDEX,
1
1
1

1
1
1

ILOGSIZ*4,
XF$K_PKT_UNCOND

+ XF$K_PKT_CB
+ XF$K_PKT_INSTL,

1 STAT)

THEN !BUILD A PACKET TO
!REFILL THE BUFFER
!NEED INTERVENING ROUTINE
!THE CONTEXT ARRAY
!READ DATA CHAINED
!BUFFER INDEX
!NO SIZE, DEVMSG, OR DEVSIZ
!SPACE FOR LOG MESSAGE
!MODES: UNCONDITIONAL

INTERRUPT
SEND CONTROL BYTE
INSERT AT TAIL

!ACTION GIVEN IN FAKE$PKTBLD

IF (STAT .NE. %LOC(SS$_NORMAL)) CALL LIB$STOP (%VAL(STAT))
ELSE IF (BUFCOUNT .EQ. MAXCOUNT) THEN !END OF CHAIN

CALL FAKE$PKTBLD (!NEED INTERVENING ROUTINE
1
1
1
1
1
1

CONTXT, !THE CONTEXT ARRAY
XF$K_PKT_RD, !READ DATA FUNCTION
INDEX, !BUFFER INDEX

1
1
1

ILOGSIZ*4,
XF$K_PKT_UNCOND

+ XF$K_PKT_CB
+ XF$K_PKT_INSTL,

!NO SIZE, DEVMSG, OR DEVSIZ
!SPACE FOR LOG MESSAGE
!MODES: UNCONDITIONAL

INTERRUPT
SEND CONTROL BYTE
INSET AT TAIL

!ACTION GIVEN IN FAKE$PKTBLD
1 STAT)
IF (STAT .NE.
ELSE

%LOC(SS$_NORMAL)) CALL LIB$STOP (%VAL(STAT))
!BUILD A HALT PACKET

1
1
1
1
1

CALL XF$PKTBLD
CONTXT,
XF$K_PKT_HALT,

ILOGSIZ*1.
AST$HALT,

1 •
1 STAT)

!THE CONTEXT ARRAY
!ALL DONE
!DEFAULT VALUES
!SPACE FOR INPUT LOG MESSAGE
! ACTION ROUTINE
!NO ACTPARM

IF (STAT .NE. %LOC(SS$_NORMAL)) CALL LIB$STOP (%VAL(STAT))

END IF

RETURN
END

Example 4-1 Cont'd. on next page

4-45

DR32 Interface Driver
4. 7 Programming Examples

4-46

Example 4-1 (Cont.) DR32 High-Level Language Program Example

c
C PASS ADDRESS OF ACTION ROUTINE TO COMMAND PACKET
c

SUBROUTINE FAKE$PKTBLD(A,B,C,D,E,F,G,H,I,J,K)

c
C AST$PROCBUF CALLS THIS SUBROUTINE IN ORDER TO PASS THE ADDRESS OF
C AST$PROCBUF TO XF$PKTBLD. (AST$PROCBUF CANNOT REFER TO ITSELF
C WITHIN THE SCOPE OF AST$PROCBUF)
c

EXTERNAL AST$PROCBUF

CALL XF$PKTBLD (A,B,C,D,E,F,G,H,AST$PROCBUF,J,K)

RETURN
END

c
C HALT ACTION ROUTINE
c

SUBROUTINE

c

AST$HALT (CONTXT,ACTPARM,DEVFLAG,LOGFLAG,
FUNC,INDEX,STATUS)

C THIS IS THE ACTION ROUTINE CALLED BY XF$GETPKT WHEN IT REMOVES A
C HALT PACKET FROM TERMQ. THIS ROUTINE PRINTS STATUS INFORMATION,
C CALLS XF$CLEANUP TO PERFORM FINAL HOUSEKEEPING FUNCTIONS, AND SETS
C THE EVENT FLAG THAT SIGNALS THE TRANSFER IS COMPLETE.
c

c
c
c

c

PARAMETER EFN = 0

INTEGER*2 FUNC !NOT USED
INTEGER*2 INDEX !NOT USED

INTEGER*4 ACTPARM !NOT USED
INTEGER*4 STATUS !NOT USED
INTEGER*4 STAT !RETURN FROM XF$CLEANUP
INTEGER*4 CONTXT(30) !CONTEXT ARRAY USED BY SUPPORT

LOGICAL*1 DEVFLAG !NOT USED
LOGICAL*1 LOG FLAG !SIGNALS LOG MESSAGE

EXTERNAL SS$_NORMAL !SUCCESS STATUS RETURN

PRINT FINAL STATUS

PRINT *· 'FINAL STATUS IN I/O STATUS BLOCK'
PRINT*· CONTXT(1), CONTXT(2)

C CLEAN UP
c

CALL XF$CLEANUP (CONTXT,STAT)
IF (STAT .NE. %LOC(SS$_NORMAL)) CALL LIB$STOP (%VAL(STAT))

CALL SYS$SETEF (%VAL(EFN))

RETURN
END

4.7.2

DR32 Interface Driver
4. 7 Programming Examples

DR32 Queue 1/0 Functions Program
The following sample program (Example 4-2) uses Queue 1/0 functions to
send a device message to the far-end DR device and then waits for a message
returned in a command packet on FREEQ. The returned message is copied
into another command packet, and that packet writes a data buffer to the
far-end DR device.

Example 4-2 DR32 Queue 1/0 Functions Program Example

**

DR32 QUEUE I/O FUNCTIONS PROGRAM

**
.TITLE DR32 PROGRAMMING EXAMPLE
.IDENT /01/

DEFINE SYMBOLS

$XFDEF

QRETRY - THIS MACRO EXECUTES AN INTERLOCKED QUEUE INSTRUCTION AND
RETRIES THE INSTRUCTION UP TO 25 TIMES IF THE QUEUE IS
LOCKED.

INPUTS:

OPCODE= OPCODE NAME: INSQHI,INSQTI,REMQHI,REMQTI
OPERAND! = FIRST OPERAND FOR OPCODE
OPERAND2 = SECOND OPERAND FOR OPCODE
SUCCESS = LABEL TO BRANCH TO IF OPERATION SUCCEEDS
ERROR = LABEL TO BRANCH TO IF OPERATION FAILS

OUTPUTS:

RO = DESTROYED

C-BIT = CLEAR IF OPERATION SUCCEEDED
SET IF OPERATION FAILED - QUEUE LOCKED
(MUST BE CHECKED BEFORE V-BIT OR Z-BIT)

REMQTI OR REMQHI:

V-BIT = CLEAR IF AN ENTRY REMOVED FROM QUEUE; SET
IF NO ENTRY REMOVED FROM QUEUE.

INSQTI OR INSQHI:

Example 4-2 Cont'd. on next page

4-47

DR32 Interface Driver
4. 7 Programming Examples

4-48

Example 4-2 (Cont.) DR32 Queue 1/0 Functions Program Example

LOOP:

OK:

Z-BIT = CLEAR IF ENTRY IS NOT FIRST IN QUEUE; SET
IF ENTRY IS FIRST IN QUEUE .

. MACRO QRETRY OPCODE,OPERAND1,0PERAND2,SUCCESS,ERROR,?LOOP,
?OK

CLRL RO

OPCODE
.IF
BCC
.IFF
BCC
.ENDC
AOBLSS
.IF
BRW
.ENDC

OPERAND1,0PERAND2
NB SUCCESS
SUCCESS

OK

#25,RO,LOOP
NB ERROR
ERROR

.ENDM QRETRY

ALLOCATE STORAGE FOR DATA STRUCTURES

.PSECT DATA.QUAD
CMDBLK: COMMAND BLOCK

INPTQ: .BLKQ 1 INPUT QUEUE
TERMQ: .BLKQ 1 TERMINATION QUEUE
FREEQ: .BLKQ 1 FREE QUEUE
MSGPKT: THIS PACKET SENDS A 12-BYTE

DEVICE MESSAGE
.BLKQ 1 QUEUE LINKS
.BYTE 12 LENGTH OF DEVICE MESSAGE
.BYTE 0 LENGTH OF LOG AREA
.BYTE XF$K_PKT_WRTCM COMMAND = WRITE CONTROL

MESSAGE
.BYTE XF$K_PKT_NOINT©- PACKET CONTROL = NO

INTERRUPT
XF$V_PKT_INTCTL

.BLKL 1 BYTE COUNT

.BLKL 1 BUFFER ADDRESS

.BLKL 2 RESIDUAL MEMORY AND DDI BYTE
COUNTS

.BLKL 1 DR32 STATUS LONGWORD

.LONG 11111,22222,33333 DEVICE MESSAGE

.LONG 0 EXTEND DEVICE MESSAGE TO
QUADWORD LENGTH

.ALIGN QUAD

Example 4-2 Cont'd. on next page

DR32 Interface Driver
4. 7 Programming Examples

Example 4-2 (Cont.) DR32 Queue 1/0 Functions Program Example

WRTPKT:

WDVMSG:

HLTPKT:

FREPKT:

.BLKQ

.BYTE

.BYTE

.BYTE

.BYTE

.LONG

.LONG

.BLKL

.BLKL

.BLKQ

.ALIGN

.BLKQ

.BYTE
,BLKL

1
4
0
XF$K_pKT_WRT
<XF$K_PKT_CBDMBC@-

XF$V_PKT_CISEL>!-

<XF$K_PKT_NOINT@­
XF$V_PKT_INTCTL>
1000
WRTBFR
2

1

1

QUAD

1
O,O,XF$K_PKT_HALT,O
5

.ALIGN QUAD

.BLKQ 1

.BYTE 4,0,0,0

.BLKL 4

.BLKL 1

.BLKQ 1
CMDBLKSIZ=.-CMDBLK

BFRBLK:

WRTBFR: .BLKB 1000

BFRBLKSIZ=.-BFRBLK

CMDTBL: .LONG CMDBLKSIZ
.LONG CMDBLK
.LONG BFRBLKSIZ
.LONG BFRBLK
.LONG PKTAST
.LONG 0
.BYTE 236,XF$M_CMT_SETRTE,O,O
.LONG GOBITADR

GOBITADR:
.BLKL 1

XFIOSB: .BLKL 2

XFNAMEDSC:
.LONG XFNAMESIZ
.LONG XFNAME

XFCHAN: .BLKW 1

Example 4-2 Cont'd. on next page

THIS PACKET DOES A WRITE
DEVICE
QUEUE LINKS
LENGTH OF DEVICE MESSAGE
LENGTH OF LOG AREA
COMMAND = WRITE
PACKET CONTROL = SEND
COMMAND BYTE,
DEVICE MESSAGE, AND BYTE
COUNT
AND NO INTERRUPT

BYTE COUNT
BUFFER ADDRESS
RESIDUAL MEMORY AND DDI BYTE
COUNTS
DR32 STATUS LONGWORD

SPACE FOR DEVICE MESSAGE

THIS PACKET HALTS THE DR32
QUEUE LINKS
COMMAND = HALT
UNUSED FIELDS IN THIS PACKET

PACKET FOR FREE QUEUE
QUEUE LINKS
LENGTH OF DEVICE MESSAGE
FIELD
UNUSED FIELDS IN THIS PACKET
DR32 STATUS LONGWORD
SPACE FOR DEVICE MESSAGE

BUFFER BLOCK

COMMAND BLOCK SIZE
COMMAND BLOCK ADDRESS
BUFFER BLOCK SIZE
BUFFER BLOCK ADDRESS
PACKET AST ADDRESS
PACKET AST PARAMETER
DATA RATE (2.0 MBYTES/SEC)
ADDRESS TO STORE THE GO
BIT ADDRESS

I/O STATUS BLOCK

NAME DESCRIPTOR

CHANNEL NUMBER

4-49

DR32 Interface Driver
4. 7 Programming Examples

4-50

Example 4-2 (Cont.) DR32 Queue 1/0 Functions Program Example

XFNAME: .ASCII /XFAO/
XFNAMESIZE=.-XFNAME

**

PROGRAM STARTING POINT

**

10$:

.PSECT CODE,NOWRT

.ENTRY DREXAMPLE,M<R2,R3>

$ASSIGN_S DEVNAM = XFNAMEDSC,-

BLBS
BRW
MOVAB
CLRQ
CLRQ
CLRQ

CHAN = XFCHAN
R0, 10$
ERROR
CMDBLK,R2
(R2)+
(R2)+
(R2)

ASSIGN A CHANNEL TO DR32

SUCCESSFUL ASSIGN

INITIALIZE INPTQ
INITIALIZE TERMQ
INITIALIZE FREEQ

INSERT COMMAND PACKET ONTO FREEQ FOR RETURN MESSAGE

QRETRY ERROR=BADQUEUE,­
INSQTI FREPKT,FREEQ

START DEVICE

$QIO_S FUNC = #IO$_STARTDATA,­
CHAN = XFCHAN,-
IOSB = XF IOSB , -
EFN = #1,-
P1 = CMDTBL,-
P2 = #XF$K_CMT_LENGTH

BLBC RO.ERROR

SEND MESSAGE TO far-end DR device

QRETRY ERROR=BADQUEUE,­
INSQTI MSGPKT,INPTQ
MOVL #1,©GOBITADR
$WAITFR_S #1

CHECK FOR SUCCESSFUL COMPLETION

MOVZWL XFIOSB,RO
BEQL BAD QUEUE

BLBC RO.ERROR
RET

BADQUEUE:
MOVZWL #SS$_BADQUEUEHDR,RO

Example 4-2 Cont'd. on next page

SET GO BIT
WAIT UNTIL QIO COMPLETES

I/0 NOT DONE YET - BAD QUEUE
ERROR IN AST ROUTINE
ERROR
SUCCESSFUL COMPLETION

DR32 Interface Driver
4. 7 Programming Examples

Example 4-2 (Cont.) DR32 Queue 1/0 Functions Program Example

AN ERROR HAS OCCURRED. NORMALLY, YOU MIGHT PERFORM MORE
EXTENSIVE ERROR CHECKING AT THIS POINT. IN PARTICULAR, IF THE ERROR
IS SS$_CTRLERR, SS$_DEVREQERR, OR SS$_PARITY, THE SECOND LONGWORD
OF THE I/0 STATUS BLOCK CAN PROVIDE ADDITIONAL INFORMATION. IN THIS
EXAMPLE, THE PROGRAM EXITS WITH THE ERROR STATUS IN RO.

COMMAND PACKET AST ROUTINE

PKTAST: .WORD
NXTPKT: QRETRY

REMQHI
BVC
RET

10$: BLBC
BBC

0
ERROR=70$,­
TERMQ,R1
10$

XF$L_PKT_DSL(R1) ,50$
#XF$V_PKT_FREQPK,­
XF$L_PKT_DSL(R1) ,50$

GET NEXT PACKET FROM QUEUE

PACKET OBTAINED FROM QUEUE
QUEUE IS EMPTY
RETURN IF PACKET ERROR
RETURN IF PACKET NOT FROM
FREEQ

COMMAND PACKET OBTAINED FROM FREEQ. COPY DEVICE MESSAGE AND QUEUE
WRITE PACKET.

XF$B_PKT_DEVMSG(R1),WDVMSG
ERROR=70$,-
WRTPKT ,INPTQ
ERROR=70$,-
HLTPKT,INPTQ

MOVL
QRETRY
INSQTI
QRETRY
INSQTI
MOVL #1,@GOBITADR SET GO BIT

50$: RET

BAD QUEUE ERROR IN AST ROUTINE - WAKE UP MAIN LEVEL. QIO MAY
OR MAY NOT HAVE COMPLETED.

70$: $SETEF_S #1
RET

.END DREXAMPLE

WAKE UP MAIN LEVEL

4-51

5 Asynchronous DDCMP Interface Driver

This chapter describes the use of the VMS Asynchronous DDCMP interface
driver.

5.1 Supported Devices
Asynchronous DDCMP is supported for DECnet-VAX using software
DDCMP over terminal ports. This enables all VMS-supported terminal
devices to provide a DDCMP interface between two VAX processors using
terminal ports. Asynchronous DDCMP supports full-duplex, point-to-point
lines.

5.2 Driver Features and Capabilities

5.2.1 Quotas

Power Failure

The asynchronous DDCMP driver provides the following capabilities:

• Point-to-point operating mode in which the asynchronous DDCMP port
is connected to a single other controller also operating in point-to-point
mode

• A nonprivileged QIO interface to the asynchronous DDCMP for using
this device as a raw-data channel

• Full duplex operation

• Interface design common to all communications devices supported by the
VMS operating system

• Separate transmit and receive queues

• Assignment of multiple read and write buffers to the device

Transmit operations are buffered and I/O operations and are limited by the
process's buffered I/O quota.

The quotas for the receive buffer free list are the process's buff~red I/O quota
and buffered IfO byte count quota.

If a system power failure occurs, no asynchronous DDCMP recovery is
possible. The driver is in a fatal error state and shuts down.

5-1

Asynchronous DDCMP Interface Driver
5. 3 Device Information

5.3 Device Information

5-2

You can obtain information on asynchronous DDCMP characteristics by using
the Get Device/Volume Information ($GETDVI) system service. (See the
VMS System Services Reference Manual.)

$GETDVI returns device characteristics when you specify the item code
DVl$_DEVCHAR. Table 5-1 lists these characteristics, which are defined by
the $DEVDEF macro.

DVl$_DEVCLASS returns the device class, which is DC$_SCOM.
DVl$_DEFTYPE returns the device type, which is the terminal ports device
type. The $DCDEF macro defines the device class and device type names.

DVl$_DEVBUFSIZ returns the maximum message size. The maximum
message size is the maximum send or receive message size for the unit.
Messages greater than 512 bytes on modem-controlled lines are more prone
to transmission errors.

Table 5-1 Device Characteristics

Characteristic 1

DEV$M_NET

Meaning

Static Bits (Always Set)

Network device. Set for terminal port if it is a
network device.

DEV$M_AVL Available device. Set when unit control block (UCB) is
initialized.

DEV$M_ODV

DEV$M_IDV

Output device.

Input device.

1 Defined by the $DEVDEF macro

DVl$_DEVDEPEND returns the unit characteristics bits, the unit and line
status bits, the error summary bits, and the specific errors in a longword field
as shown in Figure 5-1.

Figure 5-1 DVl$_DEVDEPEND Returns

31 24 23 16 15 8 7 0

error error unit and line unit
summary status characteristics

ZK·5931·HC

Unit characteristics bits govern the DDCMP operating mode. They are
defined by the $XMDEF macro and can be set by a set mode function (see
Section 5.4.3.1) or can be read by a sense mode function (see Section 5.4.4).

The status bits show the status of the unit and the line. These bits can only
be set or cleared when the controller and tributary are not active.

Asynchronous DDCMP Interface Driver
5. 3 Device Information

Table 5-2 lists the status values and their meanings. The values are defined
by the $XMDEF macro.

Table 5-2 Asynchronous DDCMP Unit and Line Status

Status Meaning

DDCMP protocol is active. XM$M_STS_ACTIVE

XM$M_STS_DISC Modem line went from on to off. This bit will be
returned in the field IRP$L_IOST2 if the driver has
had a timeout while waiting for the CTS signal to be
present on the device.

XM$M_STS_BUFFAIL Receive buffer allocation failed.

The error summary bits are set when an error occurs. They are read-only bits.
If the error is fatal, the asynchronous DDCMP for that port is shut down.
Table 5-3 lists the error summary bit values and their meanings.

Table 5-3 Error Summary Bits

Error Summary Bit Meaning

DDCMP maintenance message received

DDCMP start message received

XM$M_ERR_MAINT

XM$M_ERR_ST ART

XM$M_ERR_FATAL

XM$M_ERR_ TRIB

XM$M_ERR_LOST

Hardware or software error occurred on controller

Hardware or software error occurred on tributary

Data lost when a received message was longer than
the specified maximum message size

XM$M_ERR_ THRESH Receive, transmit, or select threshold errors

Table 5-4 lists the errors that can be specified. These errors are mapped to
the indicated codes.

Table 5-4 Asynchronous DDCMP Errors

Value
(octal) Meaning Code Set

2 Receive threshold error XM$M_ERR_ THRESH

4 Transmit threshold error XM$M_ERR_ THRESH

6 Select threshold error XM$M_ERR_ THRESH

10 Start received in run state XM$M_ERR_ST ART

12 Maintenance received in run state XM$M_ERR_MAINT

14 Maintenance received in halt state (none)

16 Start received in maintenance state XM$M_ERR_ST ART

100-276 Internal procedure (software) XM$M_ERR_ TRIB
errors

300 Buffer too small XM$M_ERR_LQST

302 Nonexistent memory XM$M_ERR_FATAL

304 Modem disconnected XM$M_STS_DISC

5-3

Asynchronous DDCMP Interface Driver
5. 3 Device Information

5.4 Asynchronous DDCMP Function Codes

5-4

The asynchronous DDCMP driver can perform logical, virtual, and
physical 1/0 operations. The basic functions are read, write, set mode,
set characteristics, and sense mode. Table 5-5 lists these functions and their
function codes. The sections that follow describe these functions in greater
detail.

Table 5-5 Asynchronous DDCMP 1/0 Functions

Function Code and
Arguments

10$_READLBLK P 1,­
P2

10$_READVBLK P1 ,­
P2

10$_READPBLK P 1 ,­
P2

10$_ WRITELBLK
P1,P2

10$_ WRITEVBLK
P1,P2

10$_ WRITEPBLK
P1,P2

10$_SETMODE P1 ,­
[P2],P3

10$_SETCHAR P 1,­
[P2],P3

10$_SENSEMODE
P1,P2

Type 1 Modifiers

L 10$M_NQW

V 10$M_NOW

P 10$M_NQW

L

v

p

L 10$M_CTRL

p

L

10$M_SHUTDOWN
10$M_ST ARTUP
10$M_A TTNAST

10$M_CTRL
10$M_SHUTDOWN
10$M_ST ARTUP
10$M_A TTNAST

10$M_CTRL
10$M_CLR_COUNTS
10$M_RD_COUNTS

Function

Read logical block.

Read virtual block.

Read physical block.

Write logical block.

Write virtual block.

Write physical
block.

Set asynchronous
DDCMP
characteristics
and controller state
for subsequent
operations.

Set asynchronous
DDCMP
characteristics
and controller state
for subsequent
operations.

Sense controller
or tributary
characteristics
and return them in
specified buffers.

1 V = virtual, L = logical, P = physical (There is no functional difference in these operations.)

5.4.1 Read

5.4.2 Write

Asynchronous DDCMP Interface Driver
5.4 Asynchronous DDCMP Function Codes

Although the asynchronous DDCMP driver does not differentiate among
logical, virtual, and physical 1/0 functions (all are treated identically), you
must have the required privilege to issue a request. (Logical 1/0 functions
require no 1/0 privilege.)

Read functions provide for the direct transfer of data into the user process's
virtual memory address space. The VMS operating system provides the
following function codes:

• 10$_READLBLK-Read logical block

• 10$_READVBLK-Read virtual block

• 10$_READPBLK-Read physical block

Received messages are multibuffered in system dynamic memory and then
copied to the user's buff er.

The read functions take the following device- or function-dependent
arguments:

• Pl-The starting virtual address of the buffer that is to receive data

• P2-The size of the receive buffer in bytes

The message size specified by P2 cannot be larger than the maximum receive­
message size for the unit (see Section 5.3). If a message larger than the
maximum size is received, a status of SS$_DATAOVERUN is returned in the
1/0 status block.

The read functions can take the following function modifier:

• 10$M_NOW-Complete the read operation immediately with a received
message. (If no message is currently available, return a status of
SS$_ENDOFFILE in the 1/0 status block.)

Write functions provide for the direct transfer of data from the user process's
virtual memory address space. The VMS operating system provides the
following function codes:

• 10$_WRITELBLK-Write logical block

• 10$_WRITEVBLK-Write virtual block

• 10$_WRITEPBLK-Write physical block

Asynchronous DDCMP messages are copied into a system buffer before they
are transmitted.

The write functions take the following device- or function-dependent
arguments:

• Pl-The starting virtual address of the buffer containing the data to be
transmitted

• P2-The size of the buffer in bytes

5-5

5.4.3

Asynchronous DDCMP Interface Driver
5.4 Asynchronous DDCMP Function Codes

The message size specified by P2 cannot be larger than the maximum send­
message size for the unit (see Section 5.3).

The write functions take no function modifiers.

Set Mode and Set Characteristics

5.4.3.1

5-6

Set mode operations are used to perform protocol, operational, and program
and driver interface operations with the asynchronous DDCMP driver. The
VMS operating system defines the following types of set mode functions:

• Set mode

• Set characteristics

• Set controller mode

• Set tributary mode

• Enable attention AST

• Shutdown controller

• Shutdown tributary

Used without function modifiers, set mode and set characteristics functions
can modify an existing tributary. Used with certain function modifiers, they
can perform asynchronous DDCMP operations such as starting a tributary
and requesting an attention AST. The VMS operating system provides the
following function codes:

• I0$_SETMODE-Set mode (no I/O privilege required)

• IO$_SETCHAR-Set characteristics (requires physical I/O privilege)

The other five types of set mode functions, which use the two function codes
with certain function modifiers, are described in the sections that follow.

To use the IO$_SETMODE and IO$_SETCHAR functions, assign the
appropriate unit control block (UCB) with the Assign I/O Channel
($ASSIGN) system service.

Set Controller Mode
The set controller mode function sets the asynchronous DDCMP controller
state and activates the controller. The first occurrence of an IO$_SETMODE
function creates a buffer for the driver to use. (Part of the buffer created by
IO$_SETMODE!IO$M_CTRL!IO$M_STARTUP is allocated for the protocol
operation to use.) The following combinations of function code and modifier
are provided:

• IO$_SETMODE!IO$M_CTRL-Set controller characteristics

• IO$_SETCHAR!IO$M_CTRL-Set controller characteristics

• IO$_SETMODE!I0$M_CTRL!I0$M_STARTUP-Set controller
characteristics and start the controller

Asynchronous DDCMP Interface Driver
5.4 Asynchronous DDCMP Function Codes

• IO$_SETCHAR!IO$M_CTRL!IO$M_STARTUP-Set controller
characteristics and start the controller

If the function modifier IO$M_STARTUP is specified, the controller is started
and the modem is enabled. If IO$M_STARTUP is not specified, the specified
characteristics are simply modified.

These codes take the following device- or function-dependent argument:

• P2-The address of a descriptor for a characteristics buffer (optional)

The P2 buffer consists of a series of six-byte entries. The first word contains
the parameter identifier (ID), and the longword that follows contains one of
the values that can be associated with the parameter ID. Figure 5-2 shows
the format for this buffer.

Figure 5-2 P2 Characteristics Buffer (Set Controller)

parameter id

longword value

parameter id

longword value

I
etc.

ZK-706-82

Table 5-6 lists the parameter IDs and values that can be specified in the P2
buffer. The $NMADEF macro defines these values.

Table 5-6 P2 Characteristics Values (Set Controller)

Parameter ID

NMA$C_PCLl_PRO

NMA$C_PCLl _DUP

Meaning

Protocol mode. Only the following value can be
specified:

Value Meaning

NMA$C_LINPR_POI DDCMP point-to-point
(default)

Duplex mode. Only the following value can be
specified:

Value Meaning

NMA$C_DPX_FUL Full-duplex (default)

5-7

Asynchronous DDCMP Interface Driver
5.4 Asynchronous DDCMP Function Codes

5.4.3.2

5-8

Table 5-6 (Cont.) P2 Characteristics Values (Set Controller)

Parameter ID

NMA$C_PCLl _CQN

NMA$C_PCLl _BFN

NMA$C_PCLl _BUS

Set Tributary Mode

Meaning

Controller mode. Only the following value can be
specified:

Value Meaning

NMA$C_LINCN_NOR Normal (default)

Number of receive buffers to preallocate.

Maximum allowable transmit and receive message
length (default = 512 bytes).

The set tributary mode function either starts a tributary or modifies an existing
one. This function must be performed before any communication can occur
with the attached unit.

Because the asynchronous DDCMP driver deals with only one tributary, the
set tributary function starts both the tributary and the protocol. The data
block that describes the tributary has already been created.

The VMS operating system provides the following combinations of function
code and modifier:

• 10$_SETMODE-Modify tributary characteristics

• 10$_SETCHAR-Modify tributary characteristics

• 10$_SETMODE!IO$M_STARTUP-Start tributary

• 10$_SETCHAR!IO$M_STARTUP-Start tributary

These codes take the following device- or function-dependent argument:

• P2-The address of a descriptor for a characteristics buffer (optional)

The P2 buffer consists of a series of six-byte entries. The first longword
contains the parameter identifier (ID), and the longword that follows contains
one of the values that can be associated with the parameter ID. Figure 5-2
shows the format for this buffer.

Table 5-7 lists the parameter IDs and values that can be specified in the P2
buffer.

Table 5-7 P2 Characteristics Values (Set Tributary)

Parameter ID

NMA$C_PCCl_ TRT 1

NMA$C_PCCl_RTT1

Meaning

Transmit delay timer (default= 0).

Retransmit timer for full-duplex point-to-point mode
and selection timer for multipoint control and half­
duplex point-to-point mode (default= 3000).

1 A global polling parameter. All timer values must be specified in milliseconds.

5.4.3.3

5.4.3.4

5.4.3.5

Asynchronous DDCMP Interface Driver
5.4 Asynchronous DDCMP Function Codes

On receipt of the QIO request for asynchronous DDCMP, the driver modifies
the tributary parameters and starts the protocol. The tributary state and the
protocol state are equal. The driver does not verify that a tributary address
has been provided. If an address has not been provided, it defaults to 1.

Shutdown Controller
The shutdown controller function shuts down the controller and disables
the modem line. On completion of a shutdown controller request, all
tributaries have been halted (including those tributaries not explicitly halted),
all tributary buffers returned, and the controller reinitialized. This function
halts the tributary, the protocol, and the line. The controller cannot be
used again until another 10$_SETMODE!IO$M_CTRL!IO$M_STARTUP or
10$_SETCHAR!IO$M_CTRL!IO$M_STARTUP request has been issued (see
Section 5.4.3.1).

The VMS operating system provides the following combinations of function
code and modifier:

• 10$_SETMODE!IO$M_CTRL!IO$M_SHUTDOWN-Shutdown
controller

• 10$_SETCHAR!I0$M_CTRL!IO$M_SHUTDOWN-Shutdown
controller

The shutdown controller function takes no device- or function-dependent
arguments.

Shutdown Tributary
The shutdown tributary function halts, but does not delete, the specified
tributary. On completion of a shutdown tributary request, the tributary and
the protocol are halted, all buffers are returned, and all pending 1/0 requests
and received messages are aborted. Neither the tributary nor the attached
device can be used again until another 10$_SETMODE!IO$M_STARTUP
or 10$_SETCHAR!IO$M_STARTUP request has been issued (see Section
5.4.3.2).

The VMS operating system provides the following combinations of function
code and modifier:

• 10$_SETMODE!IO$M_SHUTDOWN-Shutdown tributary

• 10$_SETCHAR!I0$M_SHUTDOWN-Shutdown tributary

The shutdown tributary function takes no device- or function-dependent
arguments.

Enable Attention AST
The enable attention AST function requests that an attention AST be delivered
to the requesting process when a status change occurs on the specified
tributary. An AST is queued when the driver sets or clears either an error
summary bit or any of the unit status bits (see Tables 5-2 and 5-3), or when
a message is available and there is no waiting read request. The enable
attention AST function is legal at any time, regardless of the condition of the
unit status bits.

The VMS operating system provides the following combinations of function
code and modifier:

• 10$_SETMODE!IO$M_ATTNAST-Enable attention AST

• 10$_SETCHAR!I0$M_ATTNAST-Enable attention AST
5-9

5.4.4

Asynchronous DDCMP Interface Driver
5.4 Asynchronous DDCMP Function Codes

Sense Mode

5.4.4.1

5-10

These codes take the following device- or function-dependent arguments:

• Pl-The address of an AST service routine or 0 for disable

• P2-lgnored

• P3-Access mode to deliver AST

The enable attention AST function enables an attention AST to be delivered
to the requesting process once only. After the AST occurs, it must be
explicitly reenabled by the function before the AST can occur again. The
function is also subject to AST quotas.

The AST service routine is called with an argument list. The first argument
is the current value of the second longword of the 1/0 status block (see
Section 5.5). The access mode specified by P3 is maximized with the
requester's access mode.

The sense mode function returns the controller or tributary characteristics in
the specified buffers.

The VMS operating system provides the following function codes:

• 10$_SENSEMODE!IO$M_CTRL-Read controller characteristics

• 10$-SENSEMODE-Read tributary characteristics

These codes take the following device- or function-dependent argument:

• P2-The address of a descriptor for a buffer into which the characteristics
buffer is stored (optional). (Figure 5-2 shows the format of the
characteristics buffer.)

All characteristics that fit into the buffer specified by P2 are returned.
However, if all the characteristics cannot be stored in the buffer, the 1/0
status block returns the status SS$_BUFFEROVF. The second word of the 1/0
status block returns the size (in bytes) of the characteristics buffer returned by
P2 (see Section 5.5).

Read Internal Counters
The read internal counters (10$M_RD_COUNTS} subfunction reads the
DDCMP internal counters. The VMS operating system provides the following
combinations of function codes and modifiers:

• 10$_SENSEMODE!IO$M_RD_COUNTS-Read tributary counters.

• 10$_SENSEMODE!IO$M_CLR_COUNTS-Clear tributary counters.

• 10$_SENSEMODE!IO$M_RD_COUNTS!IO$M_CLR_COUNTS-Read
and then clear tributary counters.

• 10$_SENSEMODE!IO$M_CTRL!IO$M_RD_COUNTS-Read controller
counters.

• 10$_SENSEMODE!IO$M_CTRL!IO$M_CLR_COUNTS-Clear
controller counters.

Asynchronous DDCMP Interface Driver
5.4 Asynchronous DDCMP Function Codes

• 10$_SENSEMODE!IO$M_CTRL!IO$M_RD_couNTS!IO$M_CLR_
COUNTS-Read and then clear controller counters.

These codes take the following device- or function dependent arguments:

• Pl-Ignored.

• P2-The address of a buffer descriptor into which the counters will be
returned. Figure 5-3 shows the format of the buffer. Table 5-8 lists the
parameter ids that can be returned for asynchronous DDCMP. Table 5-9
lists the parameter ids that can be returned for tributaries.

All counters that fit into the buffer specified by P2 are returned. However, if
all the counters cannot be stored in the buffer, the 1/0 status block returns
the status SS$_BUFFEROVF. The second word of the 1/0 status block
returns the size, in bytes, of the extended characteristics buffer returned (see
Section 5.5).

5-11

Asynchronous DDCMP Interface Driver
5.4 Asynchronous DDCMP Function Codes

figure 5-3 P2 Extended Characteristics Buffer (Sensemode)

Longword Counter

15 13 12 11

1 0 0 l 0 l parameter ID

longword of

value

Word Counter

15 13 12 11

parameter ID

word of value

Byte Counter

15 13 12 11 8 7

parameter ID

Bitmap Counter

15 13 12 11 8 7

0 0 l 1 l parameter ID

byte of value I bitmap

5-12

0

0

0

0

ZK-5780-HC

Asynchronous DDCMP Interface Driver
5.4 Asynchronous DDCMP Function Codes

Table 5-8 Controller Counter Parameter IDs

Parameter ID

NMA$C_CTLIN _LPE

NMA$C_CTLIN _RPE

Meaning

Number of local station errors bitmap counter.

Value Meaning

2

4

8

Receive overrun SNAK set.

Receive overrun SNAK not set.

Transmitter underrun.

Message format error.

Number of remote station errors bitmap counter.

Value

1

2

4

8

Meaning

NAKs received due to receiver overrun.

NAKs received due to message format
error.

SNAK set message format error.

Streaming tributary.

Table 5-9 Tributary Counter Parameter IDs

Parameter ID

NMA$C_CTCIR_BRC

NMA$C_CTCIR_BSN

NMA$C_CTCIR_DBR

NMA$C_CTCIR_DBS

NMA$C_CTCIR_SIE

NMA$C_CTCIR_RBE

NMA$C_CTCIR_LBE

Meaning

Number of bytes received by this station.

Number of bytes transmitted by station.

Number of messages received by this station.

Number of messages transmitted by this station.

Number of selection intervals elapsed.

Remote buffer error bitmap counters.

Value

1

2

Meaning

Remote buffer unavailable.

Remote buffer too small.

Local buffer error bitmap counters.

Value

1

2

Meaning

Local buffer unavailable.

Local buffer too small.

5-13

Asynchronous DDCMP Interface Driver
5.4 Asynchronous DDCMP Function Codes

5.5 1/0 Status Block

5-14

Table 5-9 (Cont.) Tributary Counter Parameter IDs

Parameter ID

NMA$C_CTCIR_SL T

NMA$C_CTCIR_RRT

NMA$C_CTCIR_LRT

NMA$C_CTCIR_DEI

NMA$C_CTCIR_DEO

Meaning

Selection timeout bitmap counters.

Value

1

2

Meaning

No attempt to respond was made.

Attempt was made, but timeout still
occurs.

Number of SACK settings when REP received.

Number of SREP settings.

Data error inbound bitmap counters.

Value

1

2

4

Meaning

NAK transmitted header CRC error.

NAK transmitted data CRC error.

NAK transmitted REP response.

Data error outbound bitmap counters.

Value

1

2

4

Meaning

NAK received header CRC error.

NAK received data CRC error.

NAK received REP response.

The 1/0 status block (IOSB) for all asynchronous DDCMP functions is
shown in Figure 5-4. Appendix A lists the completion status returns for
these functions. (The VMS System Messages and Recovery Procedures Reference
Volume provides explanations and suggested user actions for these returns.)

Asynchronous DDCMP Interface Driver
5.5 1/0 Status Block

Figure 5-4 IOSB Contents

+2 0

transfer size completion status

error error status characteristics
number * summary

+4

* only for DMP11
ZK-708-82

In addition to the completion status, the first longword of the IOSB returns
either the size (in bytes) of the data transfer or the size (in bytes) of the
characteristics buffer returned by a sense mode function. The second
longword returns the line status bits listed in Table 5-2 and the error
summary bits listed in Table 5-3.

5-15

6 Ethernet/802 Device Drivers

This chapter describes the QIO interface of the communication devices listed
in Table 6-1.

Table 6-1 Supported Communication Devices

Device Driver

DIGIT AL Ethernet UNIBUS Network Adapter (DEUNA)

DIGIT AL Ethernet 0-BUS Network Adapter (DEON A)

DIGIT AL Ethernet LSI UNIBUS Adapter (DELUA)

DIGIT AL Ethernet Bl-Bus Network Adapter (DEBNA)

DESVA

DIGIT AL Ethernet LSI 0-BUS Adapter (DE LOA)

XEDRIVER

XODRIVER

XEDRIVER

ETDRIVER

ESDRIVER

XODRIVER

All drivers support Ethernet and Institution for Electrical and Electronic
Engineers (IEEE) 802 standards, except where otherwise indicated.
Section 6.1.3 describes the specific IEEE 802 features supported by the
drivers.

6. 1 Ethernet/802 Characteristics
The Ethernet/802 controllers are direct-memory-access (DMA) devices
that, along with additional external hardware, implement the Ethernet
specification. A single Ethernet/802 controller, which is a piece of peripheral
equipment of the system bus, communicates with the local system and
with remote systems implementing the Ethernet or IEEE specifications. The
Ethernet specification is described in The Ethernet-Data Link Layer and Physical
Layer Specification (Number AA-K759B-TK).

The Ethernet/802 controllers use a single multi-access channel with carrier
sense and collision detection (CSMA/CD) to provide direct communication
between a VAX processor and the Ethernet. The Ethernet is that group
of DIGITAL products that implement Intel® , Xerox® , and DIGITAL
intercompany Ethernet specifications. A port in an Ethernet configuration
consists of a protocol type, a Service Access Point (SAP), or a protocol
identifier and a controller. There are as many ports on an Ethernet/802
controller as there are protocol types, SAPs, and protocol identifiers. Each
port is independent of other ports running on the same Ethernet/802
controller.

® Intel is a trademark of the Intel Corporation.
® Xerox is a registered trademark of the Xerox Corporation.

6-1

6.1.1

6.1.2

Ethernet/802 Device Drivers
6.1 Ethernet/802 Characteristics

Application programs use the Ethernet/802 driver's QIO interface to perform
I/O operations to and from other nodes on the Ethernet. This chapter
describes the QIO interface. Figure 6-1 shows the relationship of the
Ethernet/802 controllers (except the DESVA) to the processor and the user
application program. The DESVA uses Thin Wire to connect to the Ethernet.

Driver Initialization and Operation
DIGITAL recommends that you perform the following sequence to initialize
and start a port on an Ethernet/802 device driver:

1 Assign an I/O channel to XEcO (for DEUNA and DELUA), XQcO (for
DEQNA and DELQA), ETcO (for DEBNA), or EScO (for DESVA) with the
Assign I/O Channel ($ASSIGN) system service, where c is the controller
through which the data transfer will occur. $ASSIGN creates a new unit
control block (UCB) to which the channel for the port is assigned.

2 Start up the port with the set mode function and start up function
modifier (see Section 6.4.3.1). You must supply the required P2 buffer
parameters.

3 Perform read, write, and sense mode operations as desired.

4 Shut down the port with the set mode function and shut down function
modifier (see Section 6.4.3.4).

5 Deassign the I/O channel with the Deassign I/O Channel ($DASSGN)
system service.

Sections 6.6.2 and 6.6.3 provide sample programs.

Ethernet Addresses

6.1.2.1

6-2

The Ethernet is a medium for creating a network; it is not a network by itself.
The Ethernet/802 controller and the local system constitute a node. Nodes
on Ethernet lines are identified by unique Ethernet addresses. A message
can be sent to one, several, or all nodes on an Ethernet line simultaneously,
depending on the Ethernet address used. You do not have to specify the
Ethernet address of your own node to communicate with other nodes on the
same Ethernet. However, you do need to know the Ethernet address of the
node with which you want to communicate.

Format of Ethernet Addresses
An Ethernet address is 48 bits in length. Ethernet addresses are represented
by the Ethernet standard as six pairs of hexadecimal digits (six bytes),
separated by hyphens (for example, AA-01-23-45-67-FF). The bytes are
displayed from left to right in the order in which they are transmitted; bits
within each byte are transmitted from right to left. In the example, byte AA is
transmitted first; byte FF is transmitted last. (See the description of NMA$C_
PCLl_PHA in Table 6-6 for the internal representation of addresses.)

Ethernet/802 Device Drivers
6.1 Ethernet/802 Characteristics

Figure 6-1 Typical Ethernet Configuration

~---:__T_ra_n...,sc_e_iv_e_r ~-..-~
NOTE: The DESVA uses Ethernet - 1,024

User

thinwire to connect transceiver transceivers in
to the Ethernet. cable parallel

~ ~~

Port Port
1 2

~

DEUNA, DEONA, DELUA,
or DEBNA

UNIBUS, Q-BUS, or Bl-BUS

CPU

a. Hardware Interface

Application
program

~

Port
3

~

DEUNA, DELUA,
DEONA, DEBNA,
or DESV A Driver

DEUNA, DELUA,
DEONA, DEBNA,

or DESVA

b. Software Interface

Port . . .
4

'~

Port
64K

'~

ZK-1129-82

6-3

Ethernet/802 Device Drivers
6.1 Ethernet/802 Characteristics

6.1.2.2

6.1.2.3

6.1.2.4

6-4

Upon application, Xerox Corporation assigns a block of addresses to a
producer of Ethernet interfaces. Thus, every manufacturer has a unique
set of addresses to use. Normally, one address out of the assigned block of
physical addresses is permanently associated with each controller (usually in
read-only memory). This address is known as the Ethernet hardware address
of the controller. Each individual controller has a unique Ethernet hardware
address.

Ethernet Address Classifications
An Ethernet address can be a physical address of a single node or a multicast
address, depending on the value of the low-order bit of the first byte of the
address (this bit is transmitted first). Following are the two types of node
addresses:

• Physical address-The unique address of a single node on an Ethernet.
The least significant bit of the first byte of an Ethernet physical address
is 0. (For example, in physical address AA-00-03-00-FC-OO, byte AA in
binary is 1010 1010, and the value of the low-order bit is 0.)

• Multicast address-A multidestination address of one or more nodes on
a given Ethernet. The least significant bit of the first byte of a multicast
address is 1. (For example, in the multicast address AB-22-22-22-22-22,
byte AB in binary is 1010 1011, and the value of the low-order bit is 1.)

Contrary to the Ethernet specification and the IEEE 802.3 standard, the
broadcast address (FF-FF-FF-FF-FF-FF) must be enabled as a multicast address
in order to receive messages addressed to it.

Selecting an Ethernet Physical Address
DIGITAL's interface to the Ethernet/802 controllers allows you to set the
physical address of the controller. All users of the controller must agree on
this address. The first user of the controller chooses the physical address;
any additional users of the controller must specify either the same physical
address or no physical address. When all channels to the controller are shut
down, the next user to start a channel chooses the physical address. The
contoller's physical address is always chosen on the first successful startup
when there are no active channels. If the address is not chosen at this time,
the controller's hardware address is used as the physical address.

DIGITAL Ethernet Physical and Multicast Address Values
DIGITAL physical addresses are in the range AA-00-00-00-00-00 through
AA-00-04-FF-FF-FF. The following are DIGITAL multicast addresses assigned
for use in cross-company communications:

Value

FF-FF-FF-FF-FF-FF

CF-00-00-00-00-00

Meaning

Broadcast

Loopback assistance

6.1.3 IEEE 802 Support

Ethernet/802 Device Drivers
6.1 Ethernet/802 Characteristics

The following DIGITAL multicast addresses are assigned to be received by
other DIGITAL nodes on the same Ethernet:

Value

AB-00-00-01-00-00

AB-00-00-02-00-00

AB-00-00-03-00-00

AB-00-00-04-00-00

09-00-2B-02-00-00

AB-00-00-05-00-00
through

AB-00-03-FF-FF-FF

AB-00-03-00-00-00

AB-00-04-00-00-00
through

AB-00-04-00-FF-FF

AB-00-04-01-00-00
through

AB-00-04-01-FF-FF

AB-00-04-02-00-00
through

AB-00-04-FF-FF-FF

09-00-2B-O 1-00-00

09-00-2B-O 1-00-01

Meaning

Dump/load assistance

Remote console

Level 1 and Level 2 routers

All end nodes

Level 2 routers

Reserved for future use

LAT

For use by DIGIT AL customers for their own
applications

Local area V AXcluster

Reserved for future use

DIGIT AL Bridge management

DIGIT AL Bridge hello multicast

The Ethernet/802 drivers support the following IEEE 802 features:

• IEEE 802.2 packet format and IEEE 802.3 packet format

• IEEE 802.2 Class I service including the UI, XID, and TEST commands
and the XID and TEST responses

(Class II service must be provided by the user.)

• Six-byte destination and source address fields

The IEEE 802.3 Standard states that the size of the destination and source
addresses may be two or six bytes, as decided by the manufacturer.
DIGITAL's Ethernet/802 drivers and controllers do not support two-byte
address fields.

• Physical layer identified as type lOBASES (10 megabits/second baseband
medium with maximum segment length of 500 meters)

Contrary to the IEEE 802.2 standard, the Global DSAP (FF) must be enabled
as a Group SAP in order to receive messages with the Global DSAP in the
destination SAP field.

6-5

Ethernet/802 Device Drivers
6.2 Packet Formats

6.2 Packet Formats

6.2.1

DIGITAL's Ethernet/802 controllers can transmit and receive both Ethernet
and 802.2/802.3 packets. Each channel on a controller is able to transmit
and receive either Ethernet or 802 packets. Ethernet and 802 channels can be
assigned on the same controller at the same time.

At the time each channel on the controller is started, one of three packet
formats can be specified: Ethernet (default), standard 802 (referred to as 802
packet format), and extended 802. If no format is specified, the default format
is used.

Each channel on the controller must be unique on that controller. For each
packet format, there is a parameter that distinguishes the channel from all
other channels with the same packet format. For Ethernet packet format
channels, the 2-byte protocol type parameter defines the channel. For 802
packet format channels, the 1-byte SAP defines the channel. For extended
802 format channels, the 5-byte protocol identifier defines the channel.

Sections 6.2.1, 6.2.2, and 6.2.3 describe the three packet formats and
characteristics unique to each format.

Ethernet Packet Format

6-6

The Ethernet packet format is determined by whether the channel has
padding on or padding off. Ethernet packet padding is described in
Section 6.2.1.2. Figure 6-2 shows the two formats.

The field definitions for the Ethernet packet are as follows:

• DA-Destination address

• SA-Source address

• Protocol type-16-bit protocol field

• LENGTH-Length of user data (excluding padding) when padding is on

• DATA-User-supplied data

• PAD-Sufficient padding to make the data, header, and CRC equal 64
bytes

• CRC-Cyclic Redundancy Check value

6.2.1.1

Ethernet/802 Device Drivers
6.2 Packet Formats

Figure 6-2 Ethernet Packet Format

Padding OFF

DA

SA

I protocol type
JL

r

data
L --,

PAD (optional)
JL

CRC

Size of
field
(bytes)

6

6

Ethernet Protocol Types

Padding ON

DA

SA

protocol type

length
JL

data
JL ,

PAD (optional)

--, r

CRC

Size of
field
(bytes)

6

6

2

4

Length

ZK·5790-HC

Every Ethernet frame has a 2-byte protocol type field. This field is used
to allow multiple users of Ethernet at a single station. Protocol types are
independent of addresses; Xerox Corporation is also responsible for assigning
unique protocol designations to interested parties. Whenever an Ethernet user
at a particular station turns on an Ethernet channel, that user must specify the
protocol type to be used on that channel. Messages sent over that channel
always have the protocol type attached to them by the device driver, and
messages received with that protocol type are delivered to the starter of that
channel. DIGITAL' s protocol types are in the ranges 60-00 through 60-09 and
80-38 through 80-42. Valid protocol types are in the range 05-DD through
FF-FF.

Following is the cross-company protocol type:

Value Meaning

90-00 Loopback assistance

6-7

Ethernet/802 Device Drivers
6.2 Packet Formats

6.2.1.2

6-8

DIGITAL's protocol types are as follows:

Value

60-00

60-01

60-02

60-03

60-04

60-05

60-06

60-07

60-08

60-09

80-38

80-39
through
80-42

Meaning

Reserved for DIGIT AL

Dump/load assistance

Remote console

DECnet

LAT

Diagnostics

For use by DIGIT AL customers for their own applications

Local area V AXcluster

Reserved for DIGIT AL

Reserved for DIGIT AL

DIGIT AL Bridge

Reserved for DIGIT AL

Ethernet Packet Padding
This section describes the PAD (padding) parameter (NMA$c_rcuJAD),
which is used only in the Ethernet packet format.

All packets on the line must be at least 64 bytes in length. For Ethernet
packets, this includes the Ethernet header, the user data, and the CRC. If the
user data, CRC, and Ethernet header together are less than 64 bytes, null
padding bytes are inserted between the user data and the CRC to make a
64-byte packet. This packet padding cannot be turned off.

The PAD parameter allows the Ethernet/802 drivers to place a packet-size
field in the packet between the standard Ethernet header and the user data.
If padding is on (NMA$C_STATE_ON is specified), the packet format is
changed slightly, as shown in Figure 6-2.

If the PAD parameter is off (NMA$C_STATE_QFF is specified), Ethernet
packets have the following characteristics:

• Packets transmitted are padded with null bytes as needed.

• Packets transmitted do not include the size field.

• The length of user data in the packets received is always between 46 and
1500 bytes. For example, if a 10-byte packet is transmitted, it is received
as 46 bytes because the driver cannot determine the amount of user data
in the packet-only the amount of user data plus padded null bytes.

6.2.1.3

Ethernet/802 Device Drivers
6.2 Packet Formats

If the PAD parameter is on (NMA$C_STATE_ON is specified), Ethernet
packets have the following characteristics:

• Packets transmitted are padded with null bytes as needed.

• Packets transmitted include the size field.

• The length of user data in the packets received is always between 0 and
1498 bytes. The driver uses the size field to determine the amount of user
data in the packet.

Protocol Type Sharing
Protocol types are usually nonshareable. The problems inherent in sharing a
protocol type include the multiplexing and demultiplexing of messages to and
from remote nodes, and the ability to change the characteristics of a protocol
type. However, the protocol access parameter (NMA$C_pCLJ__ACC) allows
a protocol type to be opened in either of two shareable modes: shared-default
(NMA$C__ACC_SHR) and shared-with-destination (NMA$C__ACC_LIM).
The Ethernet/802 drivers also provide the nonshareable exclusive mode
(NMA$C__ACC_EXC). (See Table 6-6.) The following paragraphs describe
the rules and requirements for each mode:

• The exclusive mode is the default if no access mode is supplied as a P2
buffer parameter. This mode of operation does not allow the protocol to
be shared by other users. Any attempt to start up another protocol of the
same type results in an error status of SS$_BADP ARAM.

• The shared-with-destination mode is a protocol type/destination address
pairing that allows multiple users to share a protocol type and to
communicate with a different node.

For a given shared protocol type, there can be many "shared-with­
destination" users; each user communicates with a different destination
address. Any attempt to start up a channel with a destination address
that is in use results in an error status of SS$_BADP ARAM.

When a "shared-with-destination" user passes the set mode P2 buffer,
the buffer must contain a destination address in the NMA$C_PCLl_DES
parameter. This destination address is used as the destination address in
all messages transmitted, and the user receives messages only from this
address.

The "shared-with-destination" user is not allowed to enable multicast
addresses. Any attempt to do so results in an error status of SS$_
BADPARAM. A "shared-with-destination" user can only transmit to
multicast addresses and the user's "shared-with-destination" address.

• The shared-default mode is the default user of a shared protocol type.
There can be only one such user for each shared protocol type. It is not
required that a "shared-default" user exist if a protocol type is shared, but
there can be no more than one such user per shared protocol type.

The "shared-default" user receives all messages for the shared protocol
type, not for any of the "shared-with-destination" users. The "shared­
default" user also receives all messages matching both the shared protocol
type and any multicast address enabled by the "shared-default" user.

The "shared-default" user can only transmit to multicast addresses and
physical addresses that are not enabled by any of the "shared-with­
destination" users sharing the same protocol type.

6-9

6.2.2

Ethernet/802 Device Drivers
6.2 Packet Formats

If there is no "shared-default" user of a protocol type, incoming messages
from nodes not among the "shared-with-destination" users for that
protocol type are ignored.

IEEE 802 Packet Format

6.2.2.1

6-10

The IEEE 802 packet formats accepted for a channel depend on the service
enabled on that channel.

Class I Service Packet Format
For Class I service, only three packet formats are transmitted and received:
UI, XID, and TEST. Figure 6-3 shows the format of these packets.

Figure 6-3 Class I Service Packet Format

DA

SA

1 length

DSAP

SSAP

u
.L

I

data

l CRC

Size of
field
(bytes)

6

6

2

4

Length

ZK-4798-85

The field definitions for the Class I service packet are as follows:

• DA-Destination address

• SA-Source address

• LENGTH-Length of the 802.3 frame (excluding padding)

• DSAP-Destination service access point (SAP)

• SSAP-Source SAP

• U-Unnumbered control field command/response

6.2.2.2

Ethernet/802 Device Drivers
6.2 Packet Formats

• DATA-User-supplied data plus padding

• CRC-Cyclic Redundancy Check value

The unnumbered control field (U), which is always one byte in length, is
passed by the P4 argument of the write QIO and can be one of the following
binary values:

• UI command (00000011)

This is the unnumbered information command. It is the method used
to transmit data from one user to another and is the most widely used
control field value.

The UI command can be specified by using NMA$C_CTL VL _UI.

• XID command (lOlpllll)

This is the exchange identification command. It is used to convey
information about the port. The "p" bit is the poll bit and may be either 0
or 1. This command can be specified by using NMA$C_CTL VL _xm for
a "O" poll bit or NMA$C_CTLVL_xm_p for a "1" poll bit.

• XID response (10lf1111)

The XID response is a response to an XID command. The "f" bit is the
final bit and will match the poll bit from the XID command.

• TEST command (lllpOOll)

The TEST command is used to test a connection. The "p" bit is the poll
bit and may be either 0 or 1. This command can be specified by using
NMA$C_CTLVL_TEST for a "O" poll bit or NMA$C_CTLVL_TEST_P
for a "1" poll bit.

• TEST response (111£0011)

The TEST response is a response to a TEST command. The "f" bit is the
final bit and will match the poll bit from the TEST command.

See the IEEE 802.2 standard for more information on these control field
values and response messages.

User-Supplied Service Packet Format
Figure 6-4 shows the packet format for user-supplied service.

The field definitions for the user-supplied service packet are as follows:

• DA-Destination address

• SA-Source address

• LENGTH-Length of the 802.3 frame (excluding padding)

• DSAP-Destination SAP

• SSAP-Source SAP

• CTL-Control field

• DATA-User-supplied data plus padding

• CRC-Cyclic Redundancy Check value

6-11

Ethernet/802 Device Drivers
6.2 Packet Formats

6.2.2.3

6-12

Figure 6-4 User-Supplied Service Packet Format

DA

SA

1 length

DSAP

SSAP

CTL
L
I

data
L

l CRC

Size of
field
(bytes)

6

6

2

1-2

4

Length

ZK-4799-85

The user provides the control field values, which are documented in the IEEE
802.2 Standard. The user-supplied packet format is the generic packet format
as specified in the IEEE 802.2 Standard. Class I packets (see Section 6.2.2.1)
are a subset of this generic packet format. Therefore, if the control field value
of the user-supplied packet is UI, XID, or TEST, the packet is the same as
a Class I packet. Note that Class II packets, as defined in the IEEE 802.2
Standard, include the UI, XID, and TEST command/response formats.

Service Access Point (SAP) Use and Restrictions
The IEEE 802.2 Standard places restrictions on both user SAPs and SAPs
used as source SAPs (SSAP). All SAPs are eight bits long. Figure 6-5 shows
the format of DSAPs and SSAPs.

6.2.3

Ethernet/802 Device Drivers
6.2 Packet Formats

Figure 6-5 DSAP and SSAP Format

7 0 7

DSAP DD DD DD D l/G SSAP SSS SSS S C/R

ZK-4800-85

Definition of the least significant bit depends on whether the SAP is a
source SAP (SSAP) or a destination SAP (DSAP). For a DSAP field, the least
significant bit distinguishes group SAPs (bit 0 = 1) from individual SAPs
(bit 0 = 0). For an SSAP field, the least significant bit distinguishes commands
(bit 0 = 0) from responses (bit 0 = 1). Because these two bits are located
at the same bit position within the SAP field, a group SAP cannot be used
as an SSAP. If this were allowed, a group SAP would be interpreted as an
individual SAP with the command/response bit set to l, thus implying a
response.

The IEEE 802.2 Standard reserves for its own definition all SAP addresses
with the second least significant bit set to 1. It is suggested that you use
these SAP values for their intended purposes, as defined in the IEEE 802.2
Standard.

Up to four group SAPs can be enabled on each 802 channel. The group
SAPs enabled on a controller do not have to be unique for each channel; for
example, two 802 format channels can have the same group SAP enabled.
This allows a single packet coming into the controller to be duplicated and
passed to each channel on the controller that has the group SAP enabled­
assuming the packet has a DSAP value that is a group SAP. If the received
packet has an individual SAP for a DSAP, the packet goes to at most one
channel.

IEEE 802 Extended Packet Format
The 802 extended packet format is shown in Figure 6-6.

The field definitions for the 802 extended packet are as follows:

• DA-Destination address

• SA-Source address

• LENGTH-Length of the 802.3 frame (excluding padding)

• DSAP-Destination service access point (SAP) (always the SNAP SAP)

• SSAP-Source SAP (always the SNAP SAP)

• DI-Control field value is always unnumbered information

6-13

Ethernet/802 Device Drivers
6.2 Packet Formats

Figure 6-6 IEEE 802 Extended Packet Format

DA

SA

length

DSAP

SSAP

UI

PIO
L
I

data

l CRC

Size of

field

(bytes)

6

6

2

5

4

• PID-Channel's 5-byte protocol identifier

• DATA-User.;supplied data plus padding

• CRC-Cyclic Redundancy Check value

Length

ZK-5791-HC

The SNAP SAP value is a special SAP value reserved for 802 extended
format packets. The SNAP SAP value distinguishes an 802 packet from an
802 extended packet. The only valid control field value for 802 extended
packets is UI (unnumbered information).

6.3 Device Information

6-14

You can obtain information on controller characteristics by using the Get
Device/Volume Information ($GETDVI) system service. (See the VMS System
Services Reference Manual.)

$GETDVI returns controller characteristics when you specify the item code
DVl$_DEVCHAR. Table 6-2 lists these characteristics, which are defined by
the $DEVDEF macro.

Ethernet/802 Device Drivers
6. 3 Device Information

Table 6-2 Ethernet Controller Device Characteristics

Characteristic

DEV$M_AVL

DEV$M_IDV

DEV$M_NET

DEV$M_QDV

Meaning

Static Bits (Always Set)

Device is available

Input device

Network device

Output device

DVI$_DEVTYPE and DVI$_DEVCLASS return the device type and device
class names, which are defined by the $DCDEF macro. The device type is
DT$_DEUNA for the DEUNA, DT$_DEQNA for the DEQNA, DT$_)(Q _
DELQA for the DELQA, DT$_DELUA for the DELUA, DT$_ES_LANCE for
the DESVA, and DT$_ET_DEBNA for the DEBNA. The device class for all
Ethernet controllers is DC$_SCOM.

DVI$_DEVBUFSIZ returns the maximum message size. The maximum send
or receive message size depends on the packet format and whether padding
(NMA$C_PCLI_P AD) is enabled (see Sections 6.4.1 and 6.4.2).

DVI$_DEVDEPEND returns the unit and line status bits and the error
summary bits in a longword field as shown in Figure 6-7.

Figure 6-7 DVl$_DEVDEPEND Returns

31 24 23 16 15 8 7

not used error unit and line not used
summary status

0

ZK-5932-HC

Table 6-3 lists the status values and their meanings. These values are defined
by the $XMDEF macro. XM$M_STS_ACTIVE is set when the channel is
started. XM$M_STS_BUFFAIL and XM$M_STS_TIMO are dynamically set
and cleared by the Ethernet/802 driver.

Table 6-3 Ethernet Controller Unit and Line Status

Status

XM$M_STS_ACTIVE

XM$M_STS_BUFFAIL

XM$M_STS_ TIMO

Meaning

Channel is active.

Attempt to allocate a system receive buffer failed.

Timeout occurred.

The error summary bits are set when an error occurs. They are read-only bits.
If an error is fatal, the Ethernet port is shut down. Table 6-4 lists the error
summary bit values and their meanings.

6-15

Ethernet/802 Device Drivers
6.3 Device Information

Table 6-4 Error Summary Bits

Error Summary Bit

XM$M_ERR_FAT AL

Meaning

Hardware or software error occurred on controller
port.

6.4 Ethernet/802 Function Codes

6-16

The Ethernet/802 drivers can perform logical, virtual, and physical 1/0
operations. The basic functions are read, write, set mode, set characteristics,
sense mode, and sense characteristics. Table 6-5 lists these functions and
their codes. The following sections describe these functions in greater detail.

Table 6-5 Ethernet/802 1/0 Functions

Function Code and
Arguments

10$_READLBLK P 1 ,P2,­
[P5]

10$_READVBLK P 1,P2,­
[P5]

10$_READPBLK P 1,P2,­
[P5]

10$_WRITELBLK P1 ,P2,­
[P4],P5

10$_WRITEVBLK P1 ,P2,­
[P4],P5

10$_WRITEPBLK P1,P2,­
[P4],P5

10$_SETMODE P 1,[P2],­
p32

10$_SETCHAR P 1,[P2],­
p32

10$_SENSEMODE [P 1],­
[P2]

Function
Type 1 Modifiers

L 10$M_NOW

V 10$M_NOW

P 10$M_NOW

L 10$M_RESPONSE

V 10$M _RESPONSE

P 10$M_RESPONSE

L 10$M_CTRL
10$M_ST ARTUP
10$M_SHUTDOWN
10$M_A TTNAST

P 10$M_CTRL
10$M_ST ARTUP
10$M_SHUTDOWN
10$M_A TTNAST

L 10$M_CTRL

Function

Read logical block.

Read virtual block.

Read physical
block.

Write logical
block.

Write virtual block.

Write physical
block.

Set controller
characteristics and
controller state
for subsequent
operations.

Set controller
characteristics and
controller state
for subsequent
operations.

Sense controller
characteristics and
return them in
specified buffers.

1 V = virtual. L = logical, P = physical (There is no functional difference in these operations.)

2 The P 1 and P3 arguments are only for attention AST QIOs.

6.4.1 Read

Ethernet/802 Device Drivers
6.4 Ethernet/802 Function Codes

Table 6-5 (Cont.) Ethernet/802 1/0 Functions

Function Code and
Arguments

10$_SENSECHAR [P 1],­
[P2]

Function
Type 1 Modifiers

P 10$M_CTRL

Function

Sense controller
characteristics and
return them in
specified buffers.

1V =virtual, L = logical, P = physical (There is no functional difference in these operations.)

Although the Ethernet/802 device drivers do not differentiate among logical,
virtual, and physical If O functions (all are treated identically), you must have
the required privilege to issue the request. (Logical 1/0 functions require no
1/0 privilege.)

Read functions provide for the direct transfer of data from another port on
the Ethernet into the user process's virtual memory address space. The VMS
operating system provides the following function codes:

• 10$_READLBLK-Read logical block

• 10$_READVBLK-Read virtual block

• 10$_READPBLK-Read physical block

Received messages are multibuffered in system-dynamic memory and then
copied to the user's buffer when a read operation is performed.

The read functions take the following device- or function-dependent
arguments:

• Pl-The starting virtual address of the buffer that is to receive data.

• P2-The size of the receive buffer in bytes.

• PS-The address of a buffer where the Ethernet/802 driver returns packet
header information. This is an optional parameter. The information
returned depends on the packet format enabled with the set mode QlO.
The size of the buffer must be 14 bytes for an Ethernet format packet, 16
bytes for an IEEE 802 format packet, and 20 bytes for an 802 extended
format packet. Note that the information returned is not the entire packet
header but the header information less any length or size fields. The
lOSB, if specified, is where the packet length information is returned.

If promiscuous mode (NMA$c_rcu_PRM; see Table 6-6) is enabled,
the PS buffer must be 20 bytes.

Figure 6-8 shows the format of the three buffers.

The Pl and P2 arguments must always be specified; the PS argument is
optional. However, if PS is not specified, you will be unable to determine the
source of the received message.

6-17

Ethernet/802 Device Drivers
6.4 Ethernet/802 Function Codes

Figure 6-8 Read Function P5 Buffer

Ethernet Format:

IEEE 802 Format:

SSAP

802 Extended Format:

SSAP

6-18

6-byte destination
address (physical or

multicast)

6-byte source address
(physical)

2-byte protocol type

6-byte destination
address (physical or

multicast)

6-byte source address
(physical)

1- or 2-byte CTL field

6-byte destination
address (physical or

multicast)

6-byte source address
(physical)

DSAP

DSAP

1-byte CTL field

5-byte protocol identifier

0

2

4

8

10

0

2

4

6

8

10

0

2

4

6

8

10

12

14

16

18

ZK·1126-82

6.4.2 Write

Ethernet/802 Device Drivers
6.4 Ethernet/802 Function Codes

If the size of the user data in a receive message is larger than the value of the
NMA$C_PCLl_BUS parameter, the message is not given to the user, even if
there is sufficient space in the user's receive buffer.

If the size of the user data in a receive message is larger than the size specified
in P2 (and less than or equal to the value of the NMA$c_pcu_BUS
parameter), the Pl buffer is filled and SS$_DATAOVERUN is returned in
the 1/0 status block.

The following user data sizes are the maximum that can be received:

Ethernet format without padding - 1500 bytes
Ethernet format with padding - 1498 bytes
802 format with a 1-byte CTL field - 1497 bytes
802 format with a 2-byte CTL field - 1496 bytes
802 extended format - 1492 bytes

For 802 format packets, the PS buffer always contains the DSAP and SSAP
in the bytes at offset 12 and 13. The next one or two bytes (offsets 14 and
15) following the SSAP contain the control field value. For Class I service,
the control field value is always one byte in length and will always be placed
in the byte at offset 14 of this buffer. For user-supplied service, you have to
determine the length of the control field value according to the IEEE 802.2
Standard.

The read functions can take the following function modifier:

• 10$M_NOW-Complete the read operation immediately with a received
message (if no message is currently available, return a status of
SS$_ENDOFFILE in the 1/0 status block).

Write functions provide for the direct transfer of data from the user process's
virtual memory address space to another port on the Ethernet. The VMS
operating system provides the following function codes:

• 10$_WRITELBLK-Write logical block

• 10$_WRITEVBLK-Write virtual block

• 10$_WRITEPBLK-Write physical block

Transmitted messages are copied from the requesting process's buffer. to a
system buffer for transmission.

The write function takes the following device- or function-dependent
arguments:

• Pl-The starting virtual address of the buffer containing the data to be
transmitted.

• P2-The size of the buffer in bytes.

• P4-The address of a quadword descriptor that point's to a buffer that
contains the DSAP and CTL field values (optional). (See Section 6.2.2.3.)
The first longword of the descriptor is the buffer length; the second

6-19

Ethernet/802 Device Drivers
6.4 Ethernet/802 Function Codes

6-20

longword is the address of the buffer. This argument is used only for
channels with the 802 packet format. The format of the buffer is:

23 87 0

CTL DSAP

ZK-4801-85

• PS-The address of a six-byte buffer that contains the destination address
(either physical or multicast).

If the device is in promiscuous mode (NMA$C_PCLLPRM; see Table
6-6), you must pass a larger buffer with additional information positioned
after the destination address. For Ethernet packet format, the buffer must
be 8 bytes with the 2-byte protocol type following the destination address.
For 802 packet format, the buffer must be 7 bytes with the 1-byte source
SAP following the destination address. For 802 extended packet format,
the buffer must be 11 bytes with the S-byte protocol identifier following
the destination address. The individual Source SAP cannot be a group
SAP or the SNAP SAP. Figure 6-9 shows the format of the PS buffer.

Figure 6-9 Write Function PS Buffer

r

6-byte destination
address (physical or

multicast)

2-byte protocol type, 1-byte source SAP,
or 5-byte protocol identifier*

*Only if the channel is in promiscious mode

The maximum message sizes specified by P2 are as follows:

Ethernet format without padding - lSOO bytes
Ethernet format with padding - 1498 bytes
802 format with a 1-byte CTL field - 1497 bytes
802 format with a 2-byte CTL field - 1496 bytes
802 extended format - 1492 bytes

2

4

r
ZK-1211-82

If P2 specifies a message size larger than that allowed, the 1/0 status block
returns the status SS$_IVBUFLEN.

6.4.3

Ethernet/802 Device Drivers
6.4 Ethernet/802 Function Codes

If the P4 buffer is specified, it must be at least three bytes long. The first byte
is always the DSAP; the next two bytes are used to determine the CTL field
value. The DSAP value cannot be the SNAP SAP.

The CTL field value is either a one-byte or two-byte value. If the two least
significant bits of the low-order byte of the CTL field contain the bit values
11, just the low order byte of the CTL field is used as the CTL field value.
Otherwise, both bytes of the CTL field are used as the CTL field value.

Even if the driver only uses the low-order byte of the CTL field, you still must
pass at least a three-byte buffer. In this case, the driver uses the low-order
byte of the CTL field and ignores the high-order byte.

If Class I service is enabled, only one-byte CTL field values can be passed.
If user-supplied service is enabled, then both one- and two-byte CTL field
values are valid. If Class I service is enabled, the CTL field value must be one
of the three command values: UI, XID, or TEST.

You can receive packets for the SAP enabled with the IQ$_SETMODE or
10$_SETCHAR QI Os and can transmit packets destined for a different SAP.
This would be similar to an Ethernet channel receiving packets for one
protocol type and transmitting packets with a different protocol type (which
is not possible with the current Ethernet $QIO interface). It is expected that
most 802 format applications will only want to process receive packets from
a source SAP that matches the SAP enabled on their channel. To do this, the
read function (see Section 6.4.1) has been enhanced to return the source SAP
to you. To verify that the source SAP of an incoming packet matches the
SAP enabled on the channel, you need only match the source SAP returned
by the read function with the SAP enabled on the channel.

The write functions can take the following function modifier:

• 10$M_RESPONSE-Transmit a response packet (sets the low-order bit
in the SSAP field). Allows users with user-supplied service enabled to
respond to certain 802 format command packets. 10$M_RESPONSE can
only be specified when you have the 802 packet format enabled. 802
packet format channels with Class I service enabled result in an error if
you attempt to transmit a response message with a CTL field value of UL

Set Mode and Set Characteristics
Set mode operations are used to perform mode, operational, and
program/driver interface operations with the controller. The VMS operating
system defines the following types of set mode functions:

• Start up Ethernet port or set controller mode

• Enable attention AST

• Shut down Ethernet port

The set mode functions perform controller operations, such as starting a
controller port and requesting an attention AST, which are described in the
sections that follow. The VMS operating system provides the following
function codes:

• 10$_SETMODE-Set mode (no 1/0 privilege required)

• 10$_SETCHAR-Set characteristics (requires physical 1/0 privilege)

6-21

Ethernet/802 Device Drivers
6.4 Ethernet/802 Function Codes

6.4.3.1

6-22

Set Controller Mode
The set controller mode function sets the Ethernet/802 controller state and
characteristics, and activates the controller port. The following combinations
of function code and modifier are provided:

• 10$_SETMODE!IO$M_CTRL-Set controller characteristics

• 10$_SETCHAR!IO$M_CTRL-Set controller characteristics

• 10$_SETMODE!IO$M_CTRL!IO$M_STARTUP-Set controller
characteristics and start the controller port

• 10$_SETCHAR!IO$M_CTRL!IO$M_STARTUP-Set controller
characteristics and start the controller port

If the function modifier 10$M_STARTUP is specified, the Ethernet/802 port
is started. If 10$M_STARTUP is not specified, the specified characteristics are
simply modified.

This function takes the following device- or function-dependent argument:

• P2-The address of a quadword descriptor for an extended characteristics
buffer. The first longword of the descriptor is the buffer length; the
second longword is the address of the buffer. The P2 argument is
optional.

The P2 buffer consists of a series of six-byte or counted string entries. The
first word of each entry contains the parameter identifier (ID) followed
by either a longword that contains one of the (binary) values that can be
associated with the parameter ID or a counted string. Counted strings consist
of a word that contains the size of the character string followed by the
character string. Figure 6-10 shows the format for this buffer.

Figure 6-10 P2 Extended Characteristics Buffer

parameter id

longword value or counted string

parameter id

longword value or counted string

etc.

ZK-1177-82

Ethernet/802 Device Drivers
6.4 Ethernet/802 Function Codes

Table 6-6 is an alphabetic listing of the parameter IDs and values that can
be specified in the P2 buffer. These parameter IDs are applicable to all
Ethernet/802 controllers, except where otherwise noted. The $NMADEF
macro defines these values. The $NMADEF macro is included in the macro
library SYS$LIBRARY:LIB.MLB. (Table 6-7 lists the parameters that can be
used with each of the packet formats, and indicates which are required, which
are optional, and which generate the SS$_BADP ARAM error.)

If the status SS$_BADP ARAM is returned in the first word of the 1/0 status
block, the second longword contains the parameter ID of the parameter in
error.

Table 6-6 P2 Extended Characteristics Values

Parameter ID

NMA$C_PCLl_ACC

NMA$C_PCLl _BFN

NMA$C_PCLl _BSZ

Meaning

Protocol access mode. This optional parameter
determines the access mode for the protocol type.
NMA$C_PCLl_ACC is valid only for channels using
Ethernet packet format. One of the following values
can be specified:

NMA$C_ACC_EXC - Exclusive mode (default)
NMA$C_ACC_SHR - Shared-default user mode
NMA$C_ACC_LIM - Shared-with-destination
mode

Section 6.2.1.3 provides a description of protocol
type sharing.

NMA$C_PCLl_ACC is passed as a longword value.

Number of receive buffers to preallocate
(default = 1). This optional parameter is specified on
a per-port basis.

NMA$C_PCLl_BFN is passed as a longword value.

NMA$C_PCLl_BFN represents the number of receive
messages the Ethernet/802 driver will hold for a
channel when the channel has no read QIOs posted
to the driver.

Device buffer size. This optional parameter is used by
the first user of the device to set the hardware buffer
size. If the device is already running, this parameter
is not used to set the hardware buffer size. Normally,
the buffer size should not be changed from the default
value (1 500).

The NMA$C_PCLl_BSZ parameter affects all users of
the controller. It is passed as a longword value.

6-23

Ethernet/802 Device Drivers
6.4 Ethernet/802 Function Codes

6-24

Table 6-6 (Cont.) P2 Extended Characteristics Values

Parameter ID Meaning

NMA$C_PCLl_BUS Maximum allowable channel receive buffer size,

NMA$C_PCLl _CON 1

that is, message length (default= 512 bytes). This
optional parameter is specified on a per-port basis. It
is passed as a longword value.

Any message received for this port that is larger than
this parameter value is not used to complete a read
OIO.

If data chaining (NMA$C_PCLl_DCH) is OFF for this
port, this value cannot be larger than the device buffer
size being used by the device. If data chaining is ON
for this port, this value cannot be larger than twice
the device buffer size being used by the device.

Controller mode. This optional parameter determines
whether transmit packets are to be looped back at
the controller. One of the following values can be
specified:

NMA$C_LINCN_NOR - Normal mode (default)
NMA$C_LINCN _LOO - Loopback mode

The only messages looped back are those acceptable
to the controller as receive messages, that is, those
messages that possess at least one of the following
characteristics:

• Matching physical address (see Section 6.1.2)

• Matching multicast address (see Section 6. 1 .2)

• Promiscuous mode (NMA$C_PCLl_PRM) is in the
ON state

• Destination address is a multicast address and all
multicasts are enabled (NMA$C_PCLl_MLT is in
the ON state)

NMA$C_PCLl_CON affects all channels on a single
controller. It is passed as a longword value.

1 If the Ethernet/802 controller is active and you do not specify this parameter, the
parameter defaults to the current setting. If the Ethernet/802 controller is not active, this
parameter defaults to the default value indicated.

Ethernet/802 Device Drivers
6.4 Ethernet/802 Function Codes

Table 6-6 (Cont.) P2 Extended Characteristics Values

Parameter ID Meaning

NMA$C_PCLl_CRC1

For the DELUA, DEBNA, and DESVA, the following
list shows the maximum amount of user data that can
be looped:

Ethernet format without padding-18 bytes
Ethernet format with padding-16 bytes
802 format with 1-byte CTL field-15 bytes
802 format with 2-byte CTL field-14 bytes
802 extended format-10 bytes

When the DEUNA is in loopback mode the driver
always enables echo mode (NMA$C_PCLl_EKO is in
the ON state).

CRC generation state for transmitted messages
(optional). One of the following values can be
specified:

NMA$C_ST A TE_ON - Controller generates a
CRC (default).
NMA$C_ST A TE_OFF - Controller does not
generate a CRC.

NMA$C_PCLl _CRC affects all channels on a single
controller. There is no effect on checking a receive
message's CRC (it is always checked). NMA$C_
PCLl_CRC is passed as a longword value.

If NMA$C_PCLl_CRC is turned off, all users of the
controller must supply the 4-byte CRC value for all
messages transmitted. The CRC is passed at the end
of the P1 transmit buffer; the additional 4 bytes are
included in the size of the P 1 buffer. The CRC value
is not checked for correctness.

For the DEONA and the DELQA, the NMA$C_PCLI_
CRC parameter cannot be turned off.

1 If the Ethernet/802 controller is active and you do not specify this parameter, the
parameter defaults to the current setting. If the Ethernet/802 controller is not active, this
parameter defaults to the default value indicated.

6-25

Ethernet/802 Device Drivers
6.4 Ethernet/802 Function Codes

6-26

Table 6-6 (Cont.) P2 Extended Characteristics Values

Parameter ID Meaning

NMA$C_PCLl_DCH Data chaining state (optional). One of the following

NMA$C_PCLl _DES

values can be specified:

NMA$C_ST ATE_ON - Allows data chaining on
received messages
NMA$C_STATE_OFF - Does not allow data
chaining (default)

NMA$C_PCLl_DCH affects single channels on a
single controller. It is passed as a longword value.

Data chaining allows the driver to receive packets in
more than one receive buffer, but only if the receive
buffer size is less than the maximum size. If the
NMA$C_PCLl_BSZ parameter is left at its default
value of 1500, there is no reason to enable data
chaining. The user process is never aware that a data
chaining operation was required in the driver.

Shared protocol destination address. Passed as
a counted string that consists of a modifier word
(NMA$C_LINMC_SET or NMA$C_LINMC_CLR)
followed by a 6-byte (48-bit) physical destination
address. The size of the counted string must always
be 8. NMA$C_PCLl_DES only has meaning when
protocol access (NMA$C_PCLl_ACC) is defined as
shared-with-destination mode (NMA$C_ACC_LIM).
The destination address specified must be a physical
address-not a multicast address-and it must be
unique among all channels sharing the same protocol
type. NMA$C_PCLl_DES is required when the access
mode is defined as "shared-with-destination."

NMA$C_PCLl_DES should not be specified on a
channel where the 802 or 802E packet format is
selected (NMA$C_PCLl _FMT is set to NMA$C_
LINFM_802 or NMA$C_LINFM_802E). For 802
packet format the concept of shared protocol type is
handled by using group SAPs.

Section 6.2.1.3 provides a description of protocol
type sharing.

Ethernet/802 Device Drivers
6.4 Ethernet/802 Function Codes

Table 6-6 (Cont.) P2 Extended Characteristics Values

Parameter ID Meaning

NMA$C_PCLl_EK01 Echo mode. Applicable only to the DEUNA device
driver.

NMA$C_PCLl _FMT

If echo mode is on, transmitted messages are
returned to the sender. This optional parameter
controls the condition of the half-duplex bit in the
DEUNA mode register. One of the following values
can be specified:

NMA$C_ST ATE_ON - Echoes transmit
messages
NMA$C_ST A TE_OFF - Does not echo transmit
messages (default)

If NMA$C_ST ATE_ON is specified, the only
transmitted messages echoed are those acceptable
to the DEUNA as receive messages, that is, those
messages that have at least one of the following
characteristics:

• Matching physical address (see Section 6.1.2)

• Matching multicast address (see Section 6.1.2)

• Promiscuous mode (NMA$C_PCLl _PRM) is in the
ON state

• Destination address is a multicast address and all
multicasts are enabled (NMA$C_PCLl_MLT is in
the ON state)

If the DEUNA is placed in loopback mode (NMA$C_
LINCN_LOO is specified in the NMA$C_PCLl_CON
parameter), the driver enables echo mode.

NMA$C_PCLLEKO affects all channels on a single
controller. It is passed as a longword value.

Packet format. This optional parameter specifies
the packet format as either Ethernet, IEEE 802, or
802 extended. This characteristic is passed as a
longword value and affects single channels on a
single controller. One of the following values can be
specified:

NMA$C_LINFM_ETH - Ethernet packet format
(default)
NMA$C_LINFM_802 - 802 packet format
NMA$C_LINFM_802E - 802 extended packet
format

1 If the Ethernet/802 controller is active and you do not specify this parameter, the
parameter defaults to the current setting. If the Ethernet/802 controller is not active, this
parameter defaults to the default value indicated.

6-27

Ethernet/802 Device Drivers
6.4 Ethernet/802 Function Codes

6-28

Table 6-6 (Cont.) P2 Extended Characteristics Values

Parameter ID Meaning

NMA$C_PCLl _GSP

NMA$C_PCLl _ILP 1

NMAC_PCLl_PTY, NMAC_PCLl_ACC, and
NMA$C_PCLl_DES should only be specified on
those channels where the Ethernet packet format
(NMA$C_LINFM_ETH) is selected.

NMAC_PCLl_SRV, NMAC_PCLl_SAP, and
NMA$C_PCLl_GSP should only be specified on
those channels where the 802 packet format
(NMA$C_LINFM_802) is selected.

NMA$C_PCLl_PID should only be specified on those
channels where the 802 extended packet format
(NMA$C_LINFM_802E) is selected.

Group SAP. This is an optional parameter if the 802
packet format is selected (NMA$C_PCLl_FMT is
set to NMA$C_LINFM_802). If the Ethernet or 802
extended packet format is selected,
NMA$C_PCLl_GSP cannot be specified. Group SAPs
can be shared among multiple channels on the same
controller. If the 802 packet format is selected,
NMA$C_PCLl_GSP defines up to four 802 group
SAPs that are to be enabled for matching incoming
packets to complete read operations on this channel.
By default, no group SAPs are enabled.

NMA$C_PCLl_GSP is passed as a longword value
and is read as four 8-bit unsigned integers. Each
integer must be either a group SAP or zero. To
enable a single group SAP on a channel, you need
only specify the group· SAP value to be enabled in
one of the four integers and place a value of zero in
the three remaining integers. To disable group SAPs
on the channel, you need only place a value of zero in
all four integers.

If this characteristic is correctly specified, any group
SAPs that were previously enabled on the channel are
now replaced by the SAPs specified by the current
10$_SETMODE or 10$_SETCHAR function.

Internal loopback mode. This optional parameter
places the DELUA, DEBNA, or DESV A in internal
loopback mode (not for the DEUNA, DEQNA, or
DELQA devices). One of the following values can be
specified:

NMA$C_ST A TE_QN - Internal loopback mode
NMA$C_ST A TE_QFF - Not in internal loopback
mode (default)

1 If the Ethernet/802 controller is active and you do not specify this parameter, the
parameter defaults to the current setting. If the Ethernet/802 controller is not active, this
parameter defaults to the default value indicated.

Ethernet/802 Device Drivers
6.4 Ethernet/802 Function Codes

Table 6-6 (Cont.) P2 Extended Characteristics Values

Parameter ID Meaning

NMA$C_PCLl _MCA

If NMA$C_ST ATE_ON is specified, the
NMA$C_PCLl_CQN parameter must be in loopback
(NMA$C_LINCN_LQO) mode.

When the controller is in loopback mode (generally
for testing), it can loop packets in external loopback
or internal loopback. This parameter places the
controller in one of these loopback modes.
NMA$C_PCLl_ILP is passed as a longword value and
affects all channels on the controller.

Multicast address (optional). Passed as a counted
string that consists of a modifier word followed by a
list of 6-byte (48-bit) multicast addresses. The value
specified in the modifier word determines whether the
addresses are set or cleared. If NMA$C_LINMC_CAL
is specified, all multicast addresses in the list are
ignored.

The following mode values can be specified in the
low byte of the modifier word:

NMA$C_LINMC_SET - Set the multicast
addresses.
NMA$C_LINMC_CLR - Clear the multicast
addresses.
NMA$C_LINMC_CAL - Clear all multicast
addresses.

The driver filters all multicast addresses on a per­
channel basis. Therefore, only messages received
with the controller's physical address or the multicast
addresses enabled on the channel are used to
complete the user's read operations.

Note that the DEUNA, DELUA, DEQNA, and DELQA
devices support a limited number of multicast
addresses. If this limit is exceeded, the Ethernet
driver enables the "accept all multicast" feature on the
controller and all multicast packets on the Ethernet
must be filtered by the Ethernet driver. This may
cause a minor performance loss.

NMA$C_PCLl_MCA is specified on a per-channel
basis.

6-29

Ethernet/802 Device Drivers
6.4 Ethernet/802 Function Codes

6-30

Table 6-6 (Cont.) P2 Extended Characteristics Values

Parameter ID Meaning

NMA$C_PCLl_ML T Multicast address state. This optional parameter
instructs the controller hardware whether to accept all
multicast addresses. One of the following values can
be specified:

NMA$C_PCLl _PAD

NMA$C_ST A TE_ON - Accept all multicast
addresses.
NMA$C_STATE_OFF - Do not accept all
multicast addresses (default).

NMA$C_PCLl _ML T can be enabled on more than one
channel. It only affects those channels on which it is
enabled.

NMA$C_PCLl_ML Tallows you to receive all multicast
address packets that also match the channel's
protocol type, SAP, or protocol identifier.

Generally, you enable only your individual set of
multicast addresses using the
NMA$C_PCLl_MCA parameter, and leave the
NMA$C_PCLl_MLT parameter in the off state.

There could be a minor performance loss when the
NMA$C_PCLl_ML T parameter is in the ON state
because the Ethernet/802 driver has to process all
multicast addresses on the Ethernet line; the number
of multicast addresses on the line determines the
amount of processing required.

The NMA$C_PCLl_MLT parameter is passed as a
longword value.

Use message size field on transmit and receive
messages (optional). One of the following values can
be specified:

NMA$C_ST ATE_ON - Insert message size field
(default)
NMA$C_ST A TE_OFF - No size field

Ethernet/802 Device Drivers
6.4 Ethernet/802 Function Codes

Table 6-6 (Cont.} P2 Extended Characteristics Values

Parameter ID Meaning

NMA$C_PCLl _PHA 1

NMA$C_PCLl _PAD affects only the protocol type
that issued the set mode request. It is passed as a
longword value.

If padding is enabled on Ethernet format packets, the
driver adds a 2-byte count field to the transmitted
data. This allows short packets (packets fewer than
46 bytes long) to be received with the proper length
returned by the driver. The minimum Ethernet packet
is 46 bytes of user data. If fewer than 46 bytes
were sent, the hardware would pad the data and the
receiver would always receive packets greater than
45 bytes. When padding is enabled, the maximum
message size for transmit or receive operations
is 1498 bytes. See Section 6.2.1.2 for additional
information.

NMA$C_PCLl_PAD should be specified only on a
channel where the Ethernet packet format is selected
(NMA$C_PCLl_FMT is set to NMA$C_LINFM_ETH).

Note that NMA$C_PCLl_PAD is not the padding
described in the DEUNA User's Guide.

Physical port address (optional). It is passed as
a counted string that consists of a modifier word
followed by the 48-bit physical address. If the
request is to clear the physical port address or to
set the physical port address to the DECnet default
address, the physical address (if present) is not read.

One of the following mode values can be specified in
the low byte of the modifier word:

NMA$C_LINMC_SET - Set the string value.
NMA$C_LINMC_CLR - Clear the physical
address.
NMA$C_LINMC_SDF - Set the physical port
address to the DECnet default address. The
DECnet default address is constructed by
appending the low-order word of the SYSGEN
parameter SCSSYSTEMID to the constant DECnet
header (AA-00-04-00). If SCSSYSTEMID is zero,
and NMA$C_LINMC_SDF is specified,
NMA$C_PCLl_PHA is ignored.

The default is the current address set by a previous
set mode function on this controller, or the hardware
address if no address was defined by a previous set
mode function.

1 If the Ethernet/802 controller is active and you do not specify this parameter, the
parameter defaults to the current setting. If the Ethernet/802 controller is not active, this
parameter defaults to the default value indicated.

6-31

Ethernet/802 Device Drivers
6.4 Ethernet/802 Function Codes

Table 6-6 (Cont.) P2 Extended Characteristics Values

6-32

Parameter ID Meaning

NMA$C_PCLl _PID

NMA$C_PCLl _PRM

NMA$C_PCLl _PTY

The physical address must be passed as a 6-byte
(48-bit) quantity. The first byte is the least significant
byte. A return value of -1 on a sense mode request
implies that a physical address is not defined.

The NMA$C_PCLl_PHA parameter affects all
protocol types on a single controller.

Protocol identifier. This parameter is required for, and
valid only on, channels that use 802 extended format
packets. NMA$C_PCLl_PID is passed as a counted
5-byte string, which is the unique protocol identifier
required for each 802 extended format user.

All protocol idientifiers specified on a controller must
be unique on that controller. Therefore, the protocol
identifier specified using the NMA$C_PCLl_PID
parameter will be checked for uniqueness on the
controller.

Promiscuous mode (optional). One of the following
values can be specified:

NMA$C_ST A TE_ON - Promiscuous mode
enabled
NMA$C_ST A TE_OFF - Promiscuous mode
disabled (default)

Only one channel on each controller can be
active with promiscuous mode enabled. Enabling
promiscuous mode requires PHY_IO privilege.

The NMA$C_PCLLPRM parameter is passed as a
longword value.

DIGIT AL does not recommend promiscuous mode for
normal usage.

See Section 6.6.1 for additional information.

Protocol type. This value is read as a 16-bit unsigned
integer and must be different from other protocol
types running on the same controller except when the
protocol type is being shared. For Ethernet format
channels, this required parameter is specified on a
per-UCB basis; there is a UCB associated with every
protocol type.

Valid protocol types are in the range 05-DD through
FF-FF.

NMA$C_PCLl_PTY should only be specified on a
channel where the Ethernet packet format is selected
(NMA$C_PCLl_FMT is set to NMA$C_LINFM_ETH).

NMA$C_PCLl_PTY is passed as a longword value.
However, only the low-order word is used.

Ethernet/802 Device Drivers
6.4 Ethernet/802 Function Codes

Table 6-6 (Cont.) P2 Extended Characteristics Values

Parameter ID Meaning

NMA$C_PCLl_RES Restart. This optional parameter allows the user to
enable the automatic channel restart feature of the
Ethernet drivers. One of the following values can be
specified:

NMA$C_PCLl_SAP

NMA$C_LINRES_DIS - Disable automatic
restart (default)
NMA$C_LINRES_ENA - Enable automatic
restart

The VMS Ethernet drivers shut down all users of a
controller if there is a fatal error on the controller or if
the Ethernet driver determines that the controller has
stopped functioning. All outstanding 1/0 operations
on the Ethernet driver are completed with either an
SS$_ABORT or SS$_ TIMEOUT status.

All channels that have the NMA$C_PCLl _RES
parameter enabled (set to NMA$C_LINRES_ENA)
have the channel automatically restarted by the
Ethernet driver approximately 3 seconds after it has
been shut down due to a fatal error. If the user issues
read or write OIOs to the channel during the time the
channel is shut down, the Ethernet driver completes
the OIOs with an SS$_0PINCOMPL status.

All channels that have the automatic restart feature
disabled must be restarted by the application program
when the channel is shut down by the Ethernet driver.
The application program must wait approximately 5
seconds to allow the Ethernet driver to stabilize.

Note that it is unusual to have fatal errors on an
Ethernet controller or to have an Ethernet driver
detect that an Ethernet controller has stopped
functioning. Having the ability to automatically restart
a user's channel makes the program easier to design
because the program does not have to take into
account the possibility of the Ethernet driver shutting
down the channel permanently.

802 format SAP. This parameter is required if the
802 packet format is selected (NMA$C_PCLl_FMT
is set to NMA$C_LINFM_802). NMA$C_PCLI_
SAP defines an 802 SAP and is read as an eight-bit
unsigned integer. The least significant bit of the SAP
must be zero and the SAP cannot be the NULL SAP
(all eight bits equal zero) or the SNAP SAP.

6-33

Ethernet/802 Device Drivers
6.4 Ethernet/802 Function Codes

6.4.3.2

6-34

Table 6-6 (Cont.) P2 Extended Characteristics Values

Parameter ID

NMA$C_PCLl _SRV

Meaning

NMA$C_PCLl_SAP is passed as a longword value.
However, only the low-order byte is used.

The SAP specified by NMA$C_PCLl_SAP is the SAP
used to match incoming packets to complete read
requests. It is used as the source SAP (SSAP) in all
transmissions (write OIOs). Because it is illegal to
transmit using a group SAP as the source SAP, the
SAP specified by this NMA$C_PCLl _SAP cannot be
a group SAP. NMA$C_PCLl_GSP describes how to
set up group SAPs on a channel.

All individual SAPs specified on a controller must
be unique on that controller. Therefore, the SAP
specified using the NMA$C_PCLl_SAP parameter is
checked for uniqueness on the controller.

The Ethernet concept of a shared protocol type is
accomplished on an 802 channel by setting up a
group SAP on the channels that need to share a SAP.
Group SAPs can be shared among multiple channels
on the same controller.

Channel service. This optional parameter specifies the
service supplied by the driver for the channel. It can
only be specified if the 802 pac_ket format is selected
(NMA$C_PCLl_FMT is set to NMA$C_LINFM_802).
This characteristic is passed as a longword value.
One of the following values can be specified:

NMA$C_LINSR_USR - User-supplied service
(default)
NMA$C_LINSR_CLI - Class I service

See Section 6.2.2.1 for a description of Class I
service and Section 6.2.2.2 for a description of
user-supplied service.

Set Mode Parameters for Packet Formats
Table 6-7 summarizes the use of the set mode parameters for the Ethernet,
802, and 802 extended (802E) packet formats.

6.4.3.3

Ethernet/802 Device Drivers
6.4 Ethernet/802 Function Codes

Table 6-7 Set Mode Parameters for Packet Formats

Parameter ID Ethernet IEEE 802 802E

FMT DEF REQ REQ

PTY REQ E E

SAP E REQ E

PIO E E REQ

ACC OPT E E

DES OPT E E

PAD OPT E E

SRV E OPT E

GSP E OPT E

BFN,BSZ, OPT OPT OPT
BUS,CON,
CRC,DCH,
EKO,ILP,
MCA,MLT,
PHA,PRM,
RES

Legend:

DEF-Default. If not specified, this is the default parameter for this
packet format.
REQ-Required. This parameter must be specified for this packet format.
OPT-Optional. This parameter is optional for this packet format; it may
be specified.
E-Error. This parameter cannot be specified for this packet format. If
the parameter is specified, it generates an SS$_BADP ARAM error.

Set Mode Parameter Validation
When starting an Ethernet/802 channel, the Ethernet/802 driver checks that
the mode of the new channel is compatible with the mode of the
Ethernet/802 channels started previously. There are two sets of compatibility
checks: one for channels running in shared mode and one for all channels.

The following parameters must match for all channels on the same controller:

NMA$C_PCLI_CON
NMA$C_PCLI_CRC
NMA$C_PCLI_EKO
NMA$C_PCLI_ILP
NMA$C_PCLLPHA

The following parameters must match for all "shared-default" and "shared­
with-destination" users of the same protocol type:

NMA$C_PCLI_BFN
NMA$C_PCLI_BUS
NMA$C_PCLI_DCH
NMA$C_PCLI_ML T
NMA$C_PCLI_P AD
NMA$C_PCLI_PTY
NMA$C_PCLI_RES

6-35

Ethernet/802 Device Drivers
6.4 Ethernet/802 Function Codes

6.4.3.4

6.4.3.5

6-36

Once a channel is started, only the following parameters can be changed:

NMA$c_pcu_GSP
NMA$c_pcu_MCA

Shutdown Controller
The shutdown controller function shuts down the Ethernet port. On
completion of a shutdown request all buffers are returned. This port
cannot be used again until another startup request has been issued (see
Section 6.4.3.1).

The following combinations of function code and modifier are provided:

• 10$_SETMODE!IO$M_CTRL!IO$M_SHUTDOWN-Shut down port

• 10$_SETCHAR!IO$M_CTRL!IO$M_SHUTDOWN-Shut down port

The shutdown controller function takes no device- or function-dependent
arguments.

The driver aborts all pending 1/0 requests for the port on receipt of the
shutdown controller request.

Enable Attention AST
This function requests that an attention AST be delivered to the requesting
process when a status change occurs on the assigned channel. An AST is
queued when a message is available and there is no waiting read request.
The enable attention AST function is legal at any time, regardless of the
condition of the unit status bits.

The following combinations of function code and modifier are provided:

• 10$_SETMODE!IO$M_ATTNAST-Enable attention AST

• 10$_SETCHAR!IO$M_ATTNAST-Enable attention AST

This function takes the following device- or function-dependent arguments:

• Pl-The address of an AST service routine or 0 for disable

• P2-lgnored

• P3-Access mode to deliver AST

The enable attention AST function enables an attention AST to be delivered
to the requesting process once only. After the AST occurs, it must be
explicitly reenabled by the function before the AST can occur again. The
function is subject to AST quotas.

The AST service routine is called with an argument list. The first argument
is the current value of the second longword of the 1/0 status block (see
Section 6.5). The access mode specified by P3 is maximized with the
requester's access block.

6.4.4

Ethernet/802 Device Drivers
6.4 Ethernet/802 Function Codes

Sense Mode and Sense Characteristics
The sense mode function returns the controller and channel characteristics in
the specified buffers. These characteristics include the device characteristics
described in Section 6.3 and, with the exceptions noted below, the extended
characteristics listed in Table 6-6.

The following combinations of function code and modifier are provided:

• 10$_SENSEMODE!IO$M_CTRL-Read characteristics

• 10$_SENSECHAR!IO$M_CTRL-Read characteristics

These functions take the following device- or function-dependent arguments:

• Pl-The address of a two-longword buffer where the device
characteristics are stored. (Figure 6-11 shows the format for, and
Section 6.3 describes the contents of, the Pl buffer.) The Pl argument is
optional.

• P2-The address of a quadword descriptor where the extended
characteristics buffer is stored. The first longword of the descriptor is
the buffer length; the second longword is the address of the buffer. The
P2 argument is optional.

The P2 buffer is not read by the Ethernet/802 driver. The driver stores
the channel's parameters in the buffer, which contains multiple entries.
The format of each entry depends on whether a longword or a counted
string is returned, as shown in Figure 6-12. The parameter ID for the
buffer contains a string indicator bit (bit 12) that describes whether the
data item is a string or a longword.

Except for the following differences, P2 returns the same extended
characteristics as those listed in Table 6-6:

• All parameters that are valid for the enabled packet format are returned
(see Table 6-7).

• The sense-mode P2 buffer does not return the modifier word for the
NMAC_pcLJ_pHA, NMAC_pcu_MCA, and NMA$C_PCLl_DES
parameter IDs.

6-37

Ethernet/802 Device Drivers
6.4 Ethernet/802 Function Codes

6-38

• The NMA$C_PCLI_DES parameter is only returned on Ethernet
channels whose access mode is set to "shared with destination."

• In addition to the parameter IDs listed in Table 6-6, the sense-mode P2
buffer returns the following parameter IDs:

Parameter ID

NMA$C_PCLl_HWA

NMA$C_PCLl _MBS

Meaning

Hardware address. Describes the value for the hardware
address. The hardware address is the default physical
address when no physical address has been specified
and there are no active users on the controller.
NMA$C_PCLl_HWA is returned in the same format
as NMA$C_PCLl_PHA.

Maximum buffer size. Describes the maximum size
buffer that can be transmitted or received on the
channel, based on the channel's current parameter
values. The following list shows the possible values that
can be returned:

NMA$C_PCLLFMT
Value

NMA$C_LINFM _ETH
(padding is OFF)

NMA$C_LINFM _ETH
(padding is ON)

NMA$C_LINFM _802

NMA$C_LINFM_802E

NMA$C_PCLl _MBS
Value

1500

1498

1497

1492

Figure 6-11 Sense Mode P1 Characteristics Buffer

31 24 23 16 15 8 7 0

maximum message size type class

error
not used summary status not used

ZK-1178-82

Currently, the minimum size that should be used for the P2 buffer is 130
bytes. This assumes that no multicast addresses are enabled. If multicast
addresses are enabled, add 6 bytes for each multicast address.

Note: The minimum size of the P2 buffer might change with the addition of
new functionality.

All characteristics that fit into the buffer specified by P2 are returned.
However, if all the characteristics cannot be stored in the buffer, the I/O
status block returns the status SS$_BUFFEROVF. The second word of the
I/O status block returns the size (in bytes) of the extended characteristics
buffer returned by P2 (see Section 6.5).

6.5 1/0 Status Block

Ethernet/802 Device Drivers
6.4 Ethernet/802 Function Codes

Figure 6-12 Sense Mode P2 Extended Characteristics Buffer

LONGWORD PARAMETER:

15 14 13 12 11 0

0 * 0 PARAMETER ID

LONGWORD OF
t--- -VALUE

* NOT USED

STRING PARAMETER:

15 14 13 12 11 0

0 * 1 PARAMETER ID

WORD OF STRING COUNT

STRING

* NOT USED ZK-1210-82

The 1/0 status block (IOSB) for all Ethernet/802 driver functions is shown
in Figure 6-13. Appendix A lists the completion status returns for these
functions. (The VMS System Messages and Recovery Procedures Reference
Volume provides explanations and suggested user actions for these returns.)

6-39

Ethernet/802 Device Drivers
6.5 1/0 Status Block

Figure 6-13 IOSB Contents

transfer size

not I error

used summary

+2

byte of value

0

completion status

l not
status used

+4

ZK-1179-82

The first longword of the IOSB returns, in addition to the completion status,
either the size (in bytes) of the data transfer or the size (in bytes) of the
extended characteristics buffer (P2) returned by a sense mode function. The
second longword returns the unit and line status bits listed in Table 6-3 and
the error summary bits listed in Table 6-4.

6.6 Application Programming Notes

6.6.1

This section contains information to assist you in writing application programs
that use the Ethernet/802 device drivers. Section 6.6.1 discusses the
additional rules required for application programs that you intend to run
in promiscuous mode. Sections 6.6.2 and 6.6.3 provide Ethernet and 802
sample programs.

Promiscuous Mode

6-40

The Ethernet/802 drivers allow only one channel per controller to start with
promiscuous mode enabled (NMA$C_PCLJ_pRM specified as
NMA$C_STATE_ON). Any channel running in promiscuous mode usually
places an additional load on the CPU because the Ethernet/802 driver
processes every packet on the Ethernet line for the promiscuous user. If there
is no promiscuous channel on a controller, the controller performs most of the
filtering required for the packets on the Ethernet line.

Table 6-8 details additional rules for channels running in promis~uous mode.

6.6.2

Ethernet/802 Device Drivers
6.6 Application Programming Notes

Table 6-8 Rules for Promiscuous Mode Operation

1/0 Function

10$_SETMODE
10$_SETCHAR

10$_WRITE

10$_READ

Rule

It is not necessary to specify a unique identifier (a protocol
type, SAP, or protocol identifier parameter ID) in the P2 buffer.

The channel cannot be running in shared mode.

The user can only transmit packets in the packet format
previously enabled with a set mode 010. The unique identifier
for the packet format must be included in the PS buffer
following the destination address (see Section 6.4.2).

The Ethernet/802 driver completes the promiscuous user's
read requests with Ethernet, IEEE 802, and 802 extended
packets. Because any packet format can be used to complete
a read request, the PS parameter (if specified) must be 20
bytes in length.

All Ethernet format packets are processed as if they have
no size word specified after the protocol type. Therefore,
Ethernet packets are always returned with 46 to 1 SOO bytes
of data. If the Ethernet packet contains a size word, it is
returned as part of the user data in the first word of the P 1
buffer.

The promiscuous user should use the information returned
in the PS buffer to determine the packet format. If the
application program first filled the PS buffer with zeros, the
program should be able to determine the format of the packet
received by scanning the PS buffer after a read request is
completed.

Ethernet Programming Example
The following sample program (Example 6-1) shows the typical use of QIO
functions in driver operations such as establishing the protocol type, starting
the channel, and transmitting and receiving data. This program does not
illustrate DECnet operations because it is intended to show only basic QIO
functions. The program sends a LOOPBACK packet and waits for the packet
to be looped back.

6-41

Ethernet/802 Device Drivers
6.6 Application Programming Notes

Example 6-1 Ethernet Program Example

.TITLE EXAMPLE

.!DENT /X01/
ETHERNET SAMPLE TEST PROGRAM

This Ethernet test program will send a LOOPBACK message to another system
and wait for a response. Since LOOPBACK forwarding is handled by the
controller or the driver at the other node, you should always get a response
as long as the other node exists.

Note that this test will try to use the device defined by the logical
ETH as the Ethernet device. If this does not work, then it will try
to use one of the currently known Ethernet devices. To use a device
other than one of XEAO, XQAO, ESAO, or ETAO, define ETH to be the
device you would like to run this test on.

Note that if you have service enabled on a DECnet circuit enabled on the
Ethernet controller you wish to test, this program will get a fatal error
when trying to start its channel. This is expected because DECnet will
start its own channel for the LOOPBACK protocol.

.LIBRARY

$IODEF
$NMADEF

"SYS$LIBRARY:LIB.MLB"

Local definitions

RCVBUFLEN = 512
XMTBUFLEN = 20

Define I/O functions and modifiers
; Define Network Management parameters

; Size of receive buffer
; Size of transmit buff er

Setmode parameter buffer. For Ethernet, you are required to state only the
unique protocol type value. However, you will also state the packet format.
Since the LOOPBACK protocol does not include a LENGTH word following the
protocol type, you have to explicitly turn OFF padding since the default is
ON.

SETPARM:
.WORD

.WORD

.WORD

NMA$C_PCLI_FMT
.LONG NMA$C_LINFM_ETH
NMA$C_PCLI_PTY
.LONG AX0090
NMA$C_PCLI_PAD
.LONG NMA$C_STATE_OFF

SETPARMLEN

SETPARMDSC:

.-SETPARM

.LONG

.ADDRESS
SETPARMLEN
SETPARM

Packet format

Our Protocol type

Padding

Sensemode parameter buffer. This will be used to get our node's physical
address to put into the loopback message.

SENSEBUF:
.BLKB 150

SENSELEN=.-SENSEBUF
SENSEDSC:

.LONG

.ADDRESS
SENSELEN
SENSEBUF

; P2 transmit data buffer

Example 6-1 Cont'd. on next page

6-42

Ethernet/802 Device Drivers
6.6 Application Programming Notes

Example 6-1 {Cont.) Ethernet Program Example

XMTBUF:

FORW:

.WORD 00

.WORD 02

.BLKB 6

.WORD 01

.WORD 00

XMTBUFLEN = .-XMTBUF

P5 transmit destination address

Skip count
Forward request
You will put our address here
Reply request

Set this value to be a node on your Ethernet that supports LOOPBACK.

XMTP5:

; P2 receive data buffer

RCVBUF:
.BLKB RCVBUFLEN

; P5 receive header buffer

RCVP5:
RCVDA: .BLKB 6
RCVSA: .BLKB 6
RCVPTY: .BLKB 2

; Messages used to display status of this program.

GMSG:
BMSG:
LMSG:
EMSG:
DMSG:

.ASCID

.ASCID

.ASCID

.ASCID

.ASCID

"Successful test"
"Received packet was not what was expected"
"Packet lost or node not responding"
"Error occurred while running test"
"No Ethernet device found - please define ETH correctly"

; Miscellaneous data structures

TRY: .WORD

IOSB: .BLKQ
ETHDSC1: .ASCID
ETHDSC2: . ASCID
ETHDSC3 : . ASCID
ETHDSC4 : . ASCID
ETHDSC5 : . ASCID
ETHCHAN : . BLKL

0

1
'ETH'
'ESAO'
'XQAO'
'ETAO'
'XEAO'
1

Number of times you have tried
the READ QIO (start at 0)
I/O status block
Units to use for test

; Returned Ethernet channel number

;***

; Start of code

;***
.ENTRY START,-M<>

Assign a channel to the Ethernet device. If ETH does not work, try each
of the currently known Ethernet devices.

Example 6-1 Cont'd. on next page

6-43

Ethernet/802 Device Drivers
6.6 Application Programming Notes

Example 6-1 (Cont.) Ethernet Program Example

ASSIGN!:
$ASSIGN_S DEVNAM=ETHDSC1,CHAN=ETHCHAN
BLBS RO,ASSIGN_OK1
CMPW RO,#SS$_NOSUCHDEV
BNEQ ASSIGN_ERROR

ASSIGN2:
$ASSIGN_S DEVNAM=ETHDSC2,CHAN=ETHCHAN
BLBS RO,ASSIGN_OK1
CMPW RO,#SS$_NOSUCHDEV
BEQL ASSIGN3

ASSIGN_ERROR:
BRW ERROR

ASSIGN_OK1:
BRW ASSIGN_OK

ASSIGN3:
$ASSIGN_S DEVNAM=ETHDSC3,CHAN=ETHCHAN
BLBS RO,ASSIGN_OK
CMPW RO,#SS$_NOSUCHDEV
BNEQ ASSIGN_ERROR

ASSIGN4:
$ASSIGN_S DEVNAM=ETHDSC4,CHAN=ETHCHAN
BLBS RO,ASSIGN_OK
CMPW RO,#SS$_NOSUCHDEV
BNEQ ASSIGN_ERROR

ASSIGN5:
$ASSIGN_S DEVNAM=ETHDSC5,CHAN=ETHCHAN
BLBS RO,ASSIGN_OK
CMPW RO,#SS$_NOSUCHDEV
BNEQ ASSIGN_ERROR

You could not find an Ethernet device to assign a channel to.

PUSHAB DMSG
BRW EXIT

ASSIGN_OK:

Set up the channel's characteristics.

$QIOW_S FUNC=#<IO$_SETMODE!IO$M_CTRL!IO$M_STARTUP>,­
CHAN=ETHCHAN,IOSB=IOSB,-
P2=#SETPARMDSC

BLBS RO,STARTUP_REQ_OK
BRW ERROR

STARTUP~REQ_OK:

MOVZWL IOSB,RO
BLBS RO,STARTUP_IO_OK
BRW ERROR

STARTUP_IO_OK:

Now issue the SENSEMODE QIO so that you can get our physical address and
; put it in the LOOPBACK message you are about to transmit.

Example 6-1 Cont'd. on next page

6-44

Ethernet/802 Device Drivers
6.6 Application Programming Notes

Example 6-1 (Cont.) Ethernet Program Example

$QIOW_S FUNC=#<IO$_SENSEMODE!IO$M_CTRL>,­
CHAN=ETHCHAN,IOSB=IOSB,­
P2=#SENSEDSC

BLBS RO,SENSE_REQ_OK
BRW ERROR

SENSE_REQ_OK:

MOVZWL IOSB,RO
BLBS RO,SENSE_IO_OK
BRW ERROR

SENSE_IO_OK:

Now you have to locate the PHA parameter in the SENSEMODE buff er and copy
it into our LOOPBACK transmit message. You will scan the return buffer
for a string parameter. If you find a string parameter, you will check if
it's the PHA parameter.

MOVAB SENSEBUF,RO

10$: BBS #AXC,(R0),20$

Skip over the longword parameter.

ADDL
BRB

#6,RO
10$

Start at beginning of buff er

If this is a string parameter,
goto 20$

; Skip 2-byte type and 4-byte value
; Check next parameter

; This is a string parameter. Check if it's the PHA parameter.

20$: BICW
CMPW
BEQL

#AXFOOO, (RO)
#NMA$C_PCLI_PHA, (RO)
30$

Skip over this string parameter.

ADDL #2,RO
MOVZWL (RO)+,R1

ADDL R1,RO
BRB 10$

Clear flag bits in type field
Is this the PHA parameter?
If EQL, yes

Skip 2-byte type
Convert string size to longword
and skip it
Skip string
Check next parameter

You have located the PHA parameter. Move it into the LOOPBACK transmit
buffer.

30$: MOVL
MOVW

4(RO) ,FORW
8(RO) ,FORW+4

Now transmit our TEST message.

Move 1st four bytes
Move last two bytes

$QIOW_S FUNC=#IO$_WRITEVBLK,CHAN=ETHCHAN,IOSB=IOSB,­
P1=XMTBUF,P2=#XMTBUFLEN,P5=#XMTP5

BLBS RO,XMIT_REQ_OK
BRW ERROR

XMIT_REQ_OK:

MOVZWL IOSB,RO
BLBS RO,XMIT_IO_OK
BRW ERROR

Example 6-1 Cont'd. on next page

6-45

Ethernet/802 Device Drivers
6.6 Application Programming Notes

Example 6-1 (Cont.) Ethernet Program Example

XMIT _IO_OK:

Now try to receive the response. You will use the NOW function modifier
on the READ so that you don't hang here waiting forever if there is no
response. You will attempt to receive the message 1000 times. If there
is no response by then, you will declare the response lost.

RECV:
$QIOW_S FUNC=#IO$_READVBLK!IO$M_NOW,CHAN=ETHCHAN,IOSB=IOSB,­

P1=RCVBUF,P2=#RCVBUFLEN,P5=#RCVP5
BLBS RO,RECV_REQ_OK
BRW ERROR

RECV_REQ_OK:

MOVZWL
BLBS
CMPW
BEQL
lRW

IOSB,RO
RO,RECV_IO_OK
RO,#SS$_ENDOFFILE
10$

ERROR

Was there just no message available?
Branch if so to try again

; If you are able to post 1000 reads and not receive the response packet, then
; you will assume the packet is lost.

10$: CMPW
BGTR
INCW
BRB

RECV_IO_OK:

TRY,#1000
LOST
TRY
RECV

Have you tried enough?
If GTR, yes, so message is lost
Try again

You received a message. Check that the Source Address matches the place we
; sent the message.

CMPL XMTP5,RCVSA
BNEQ RECV_BAD
CMPW XMTP5+4,RCVSA+4
BEQL RECV_OK

There was something wrong with the message received.

RECV_BAD:
PUSHAB BMSG
BRB EXIT

The test went fine. Print a success message.

RECV_OK:
PUSHAB GMSG
BRB EXIT

; You lost the message. Print a message stating so.

LOST:
PUSHAB LMSG
BRB EXIT

; There was an error while running the test. Print a message stating so.

ERROR:
PUSHAB EMSG
BRB EXIT

Example 6-1 Cont'd. on next page

6-46

6.6.3

Ethernet/802 Device Drivers
6.6 Application Programming Notes

Example 6-1 (Cont.) Ethernet Program Example

The test is done. You will call LIB$PUT_OUTPUT to display the status of
this test. The message that will be displayed has its descriptor on the
stack. That descriptor will be used by the LIB$PUT_OUTPUT routine.

EXIT:
CALLS #1,G-LIB$PUT_OUTPUT
$EXIT_S

.END START

IEEE 802 Programming Example
The following sample program (Example 6-2) shows how to initialize an
IEEE 802 channel and how to send and receive packets on that channel. This
program sends a TEST packet and waits for the TEST response.

Example 6-2 IEEE 802 Programming Example

.TITLE EXAMPLE

.!DENT /X01/
802 SAMPLE TEST PROGRAM

This 802 test program will send a TEST message to another system and
wait for a response. Since you will be sending the message to the
MAC Sublayer on the other node, you should always get a response as
long as the other node exists.

Note that this test will try to use the device defined by the logical
ETH as the Ethernet device. If this does not work, then it will try
to use one of the currently known Ethernet devices. To use a device
other than one of XEAO, XQAO, ESAO, or ETAO, define ETH to be the
device you would like to run this test on.

.LIBRARY

$IODEF
$NMADEF

"SYS$LIBRARY:LIB.MLB"

Local definitions

RCVBUFLEN = 512
XMTBUFLEN = 20

Define I/0 functions and modifiers
; Define Network Management parameters

; Size of receive buffer
; Size of transmit buffer

Setmode parameter buffer. For 802, you are required to state the packet
format and our unique SAP value.

SETPARM:
.WORD NMA$C_PCLI_FMT Packet format

.LONG NMA$C_LINFM_802
.WORD NMA$C_PCLI_SAP Our individual SAP address

.LONG 2

SETPARMLEN = .-SETPARM

SETPARMDSC:
.LONG
.ADDRESS

SETPARMLEN
SETPARM

P2 transmit data buffer

Example 6-2 Cont'd. on next page

6-47

Ethernet/802 Device Drivers
6.6 Application Programming Notes

Example 6-2 (Cont.) IEEE 802 Programming Example

XMTBUF:
.BYTE 00,01,02,03,04,05,06,07,08,09
.BYTE 10,11,12,13,14,15,16,17,18,19

P4 transmit DSAP and CTL field values

XMTP4:
.BYTE 0

.WORD NMA$C_CTLVL_TEST

P4 transmit descriptor

XMTP4DSC:
.LONG
.ADDRESS

3
XMTP4

P5 transmit destination address

DSAP for transmit is the MAC
Sublayer SAP (zero)
The CTL field value is TEST

P4 is always 3 bytes in size
Address of buff er

Set this value to be a node on your Ethernet that supports 802 packet
format.

XMTP5:

; P2 receive data buffer

RCVBUF:
.BLKB RCVBUFLEN

; P5 receive header buffer

RCVP5:
RCVDA: .BLKB 6
RCVSA: .BLKB 6
RCVDSAP: .BLKB 1
RCVSSAP: .BLKB 1
RCVCTL: .BLKB 2

; Messages used to display status of this program.

GMSG: .ASCID "Successful test"
BMSG: .ASCID "Received packet was not what was expected"
LMSG: .ASCID "Packet lost or node not responding"
EMSG: .ASCID "Error occurred while running test"
DMSG: .ASCID "No Ethernet device found - please define ETH correctly"

; Miscellaneous data structures

TRY: .WORD

IOSB: . BLKQ
ETHDSC1: .ASCID
ETHDSC2 : . ASCID
ETHDSC3: . ASCID
ETHDSC4 : . ASCID
ETHDSC5 : . ASCID
ETHCHAN : . BLKL

0

1
'ETH'
'ESAO'
'XQAO'
'ETAO'
'XEAO'
1

Example 6-2 Cont'd. on next page

6-48

Number of times you have tried
the READ QIO (start at 0)
I/O status block
Units to use for test

Returned Ethernet channel number

Ethernet/802 Device Drivers
6.6 Application Programming Notes

Example 6-2 (Cont.) IEEE 802 Programming Example

;***

; Start of code

;***
.ENTRY START.~M<>

Assign a channel to the Ethernet device. If ETH does not work, try each
of the currently known Ethernet devices.

ASSIGN1:
$ASSIGN_S DEVNAM=ETHDSC1,CHAN=ETHCHAN
BLBS RO,ASSIGN_OK1
CMPW RO,#SS$_NOSUCHDEV
BNEQ ASSIGN_ERROR

ASSIGN2:
$ASSIGN_S DEVNAM=ETHDSC2,CHAN=ETHCHAN
BLBS RO,ASSIGN_OK1
CMPW RO,#SS$_NOSUCHDEV
BEQL ASSIGN3

ASSIGN_ERROR:
BRW ERROR

ASSIGN_OK1:
BRW ASSIGN_OK

ASSIGN3:
$ASSIGN_S DEVNAM=ETHDSC3,CHAN=ETHCHAN
BLBS RO,ASSIGN_OK
CMPW RO,#SS$_NOSUCHDEV
BNEQ ASSIGN_ERROR

ASSIGN4:
$ASSIGN_S DEVNAM=ETHDSC4,CHAN=ETHCHAN
BLBS RO,ASSIGN_OK
CMPW RO,#SS$_NOSUCHDEV
BNEQ ASSIGN_ERROR

ASSIGN5:
$ASSIGN_S DEVNAM=ETHDSC5,CHAN=ETHCHAN
BLBS RO,ASSIGN_OK
CMPW RO,#SS$_NOSUCHDEV
BNEQ ASSIGN_ERROR

You could not find an Ethernet device to assign a channel to.

PUSHAB DMSG
BRW EXIT

ASSIGN_OK:

Set up the channel's characteristics.

$QIOW_S FUNC=#<IO$_SETMODE!IO$M_CTRL!IO$M_STARTUP>,­
CHAN=ETHCHAN,IOSB=IOSB,-
P2=#SETPARMDSC

BLBS RO,STARTUP_REQ_OK
BRW ERROR

STARTUP_REQ_OK:

Example 6-2 Cont'd. on next page

6-49

Ethernet/802 Device Drivers
6.6 Application Programming Notes

Example 6-2 (Cont.) IEEE 802 Programming Example

MOVZWL IOSB,RO
BLBS RO,STARTUP_IO_OK
BRW ERROR

STARTUP_IO_OK:

Now transmit our TEST message.

$QIOW_S FUNC=#IO$_WRITEVBLK,CHAN=ETHCHAN,IOSB=IOSB,­
P1=XMTBUF,P2=#XMTBUFLEN,P4=#XMTP4DSC,P5=#XMTP5

BLBS RO,XMIT_REQ_OK
BRW ERROR

XMIT_REQ_OK:

MOVZWL IOSB,RO
BLBS RO,XMIT_IO_OK
BRW ERROR

XMIT_IO_OK:

Now try to receive the response. You will use the NOW function modifier
on the READ so that you don't hang here waiting forever if there is no
response. You will attempt to receive the message 1000 times. If there
is no response by then, you will declare the response lost.

RECV:
$QIOW_S FUNC=#IO$_READVBLK!IO$M_NOW,CHAN=ETHCHAN,IOSB=IOSB,­

P1=RCVBUF,P2=#RCVBUFLEN,P5=#RCVP5
BLBS RO,RECV_REQ_OK
BRW ERROR

RECV_REQ_OK:

MOVZWL
BLBS
CMPW
BEQL
BRW

IOSB,RO
RO,RECV_IO_OK
RO,#SS$_ENDOFFILE
10$
ERROR

Was there just no message available?
Branch if so to try again

; If you are able to post 1000 reads and not receive the response packet, then
; you will assume the packet is lost.

10$: CMPW
BGTR
INCW
BRB

RECV_IO_OK:

TRY,#1000
LOST
TRY
RECV

Have you tried enough?
If GTR, yes, so message is lost
Try again

You received a message. Check that the Source Address matches the place we
sent the message.

CMPL XMTP5,RCVSA
BNEQ RECV_BAD
CMPW XMTP5+4,RCVSA+4
BNEQ RECV_BAD

Check that the data received was the correct size.

CMPW #XMTBUFLEN,IOSB+2
BNEQ RECV_BAD

Check that the data received matches the data you sent.

Example 6-2 Cont'd. on next page

6-50

Ethernet/802 Device Drivers
6.6 Application Programming Notes

Example 6-2 (Cont.) IEEE 802 Programming Example

10$:

MOVZBL
MOVAB
MOVAB
CMPB
BNEQ
SO BG TR
BRB

#XMTBUFLEN,RO
XMTBUF,R1
RCVBUF,R2
(R1)+, (R2)+
RECV_BAD
RO, 10$
RECV_OK ; All bytes matched

There was something wrong with the message received.

RECV_BAD:
PUSHAB BMSG
BRB EXIT

The test went fine. Print a success message.

RECV_OK:
PUSHAB GMSG
BRB EXIT

You lost the message. Print a message stating so.

LOST:
PUSHAB LMSG
BRB EXIT

There was an error while running the test. Print a message stating so.

ERROR:
PUSHAB EMSG
BRB EXIT

The test is done. You will call LIB$PUT_OUTPUT to display the status of
this test. The message that will be displayed has its descriptor on the
stack. That descriptor will be used by the LIB$PUT_OUTPUT routine.

EXIT:
CALLS #1,G~LIB$PUT_OUTPUT

$EXIT_S

.END START

6-51

A 1/0 Function Codes

This appendix lists the function codes and function modifiers defined in the
$10DEF macro. The arguments for these functions are also listed.

A.1 DMC11 /DMR11 Interface Driver

Functions

10$_READLBLK
10$_READVBLK
10$_READPBLK

10$_ WRITELBLK
10$_ WRITEVBLK
10$_ WRITEPBLK

10$_SETMODE
10$_SETCHAR

10$_SETMODE!IO$M_ATTNAST
10$_SETMODE!IO$M_A TTNAST

10$_SETMODE!IO$M_
SHUTDOWN
10$_SETCHAR!IO$M_
SHUTDOWN

10$_SETMODE!IO$M_ST ARTUP
10$_SETCHAR!IO$M_ST ARTUP

Arguments

P 1 - buffer address
P2 - message size

P 1 - buffer address
P2 - message size

P 1 - characteristics
buffer address

P 1 - AST service
routine address
P2 - (ignored)
P3 - AST access
mode

P 1 - characteristics
block address

P 1 - characteristics
block address
P2 - (ignored)
P3 - receive
message blocks

1 Only for 10$_ WRITELBLK and 10$_ WRITEPBLK

010 Status Returns

Modifiers

10$M_DSABLMBX
10$M_NOW

10$M_ENABLMBX 1

SS$_ABORT

SS$_DEV ACTIVE

SS$_NORMAL

SS$_BADPARAM

SS$_DEVOFFLINE

SS$_DA T AOVERUN

SS$_ENDOFFILE

A-1

1/0 Function Codes
A.2 DMP11 and DMF32 Interface Drivers

A.2 DMP11 and DMF32 Interface Drivers

A-2

Functions

10$_READLBLK[!IO$M _NOW]
10$_READVBLK[! 10$M _NOW]
10$_READPBLK[!IO$M_NQW]
10$_ WRITELBLK
10$_ WRITEVBLK
10$_ WRITEPBLK

10$_SETMODE
10$_SETCHAR
10$_SETMODE!IO$M _CTRL
10$_SETCHAR! 10$M _CTRL
10$_SETMODE ! 10$M _CTRL! 10$M _ST ART UP
10$_SETCHAR! 10$M _CTRL! 10$M _STARTUP
10$_SETMODE!IO$M_ST ARTUP
10$_SETCHAR!IO$M_ST ARTUP
10$_SETMODE! 10$M_SHUTDOWN
10$_SETCHAR!IO$M_SHUTDOWN
10$_SETMODE! 10$M_CTRL! 10$M_SHUTDOWN
10$_SETCHAR! 10$M _CTRL!IO$M_SHUTDOWN

10$_SETMODE! 10$M_A TTNAST
10$_SETCHAR! 10$M _A TTNAST

10$_SETMODE!IO$M_SET _MODEM 1

10$_SETCHAR!IO$M_SET_MODEM1

10$_SENSEMODE!IO$M_RD_MQDEM
10$_SENSEMODE!IO$M_CTRL

!10$M_RD_MODEM1

10$_SENSEMODE
10$_SENSEMODE ! 10$M _CTRL

10$_SENSEMODE ! 10$M _RD_COUNTS2

10$_SENSEMODE ! 10$M _CLR_CQUNTS2

10$_SENSEMODE!IO$M_RD_CQUNTS
! 10$M _CLR_COUNTS2

10$_SENSEMODE ! 10$M _CTRL
! 10$M _RD_COUNTS3

10$_SENSEMODE ! 10$M _CTRL
! 10$M _CLR_CQUNTS3

IQ$_SENSEMODE ! 10$M _CTRL
! 10$M_RD_COUNTS
! 10$M _CLR_COUNTS3

1 Only for DMP 11

20nly for DDCMP

30nly for DDCMP and LAPB

Arguments

P 1- buffer address
P2 - buffer size
P6 - diagnostic buffer
address (optional)

P 1 - characteristics buffer
address (optional)
P2 - extended characteristics
buffer descriptor address
(optional)
P3 - receive message blocks
(optional)
P6 - diagnostic buffer
address (optional)

P 1 - AST service routine
address
P2 - (ignored)
P3 - access mode to deliver
AST

P 1 - modem status buffer
address

P 1 - characteristics buffer
address (optional)
P2 - extended characteristics
buffer descriptor address
(optional)

P 1 - (ignored)
P2 - counter buffer
descriptor address

Functions

10$_SENSEMODE!IO$M_RD_MEM 1

10$_SENSEMODE!IO$M_RD_MEM
!10$M_CTRL 1

10$_CLEAN

1 Only for DMP 11

QIO Status Returns

SS$_ABORT

SS$_CANCEL

SS$_DEVINACT

SS$_NORMAL

SS$_BADPARAM

SS$_DEV ACTIVE

SS$_DEVOFFLINE

A.3 DR11-W/DRV11-WA Interface Driver

Functions

10$_READLBLK
10$_READVBLK
10$_READPBLK
10$_ WRITELBLK
10$_ WRITEVBLK
10$_ WRITEPBLK

10$_SETMODE
10$_SETCHAR

Arguments

P 1 - buffer address
P2 - buffer size
P3 - timeout period
P4 - CSR value
P5 - ODR value

P 1 - characteristics buffer
address
P3 - access mode

1 Not applicable to ORV 11-W A

20nly for 10$_SETCHAR

QIO Status Returns

SS$_BADPARAM

SS$_DEV ACTIVE

SS$_NOPRIV

SS$_PARITY

SS$_CANCEL

SS$_DRVERR

SS$_NORMAL

SS$_ TIMEOUT

1/0 Function Codes

Arguments

P 1 - status slot buffer
address
P2 - tributary status slot
address

(none)

SS$_BUFFEROVF

SS$_DEVICEFULL

SS$_ENDOFFILE

Modifiers

10$M_SETFNCT
10$M_WORD1

10$M_TIMED
10$M_CYCLE
10$M_RESET

10$M_ATTNAST
10$M_DA T APA TH2

SS$_CTRLERR

SS$_EXOUOT A

SS$_0PINCOMPL

A-3

1/0 Function Codes
A.4 DR32 Interface Driver

A.4 DR32 Interface Driver
Functions

10$_LQADMCODE

10$_ST ARTDA TA

High-Level Language

XF$SETUP

XF$ST ARTDEV

XF$FREESET

XF$PKTBLD

XF$GETPKT

XF$CLEANUP

QIO Status Returns

SS$_ABORT

SS$_BUFNOT ALIGN

SS$_DEV ACTIVE

SS$_1NSFMEM

SS$_NQRMAL

Arguments Modifiers

P 1 - starting address of
microcode to be loaded
P2 - load byte count

P 1 - starting address of data 10$M_SETEVF
transfer command table
P2 - length of the data
transfer command table

Function

Defines command and buffer areas; initializes
queues

Issues a request that starts the DR32

Releases command packets onto FREEQ

Builds command packets; releases them onto
INPTQ

Removes a command packet from TERMQ

Deassigns the device channel and deallocates the
command area

SS$_BADPARAM SS$_BADOUEHDR

SS$_CANCEL SS$_CTRLERR

SS$_DEVREQERR SS$_EXQUOT A

SS$_1VBUFLEN SS$_MCNOTV AUD

SS$_PARITY SS$_POWERFAIL

A.5 Asynchronous DDCMP DUP11 Interface Driver

A-4

Functions

10$_READLBLK[I 10$M _NOW]
10$_READVBLK[! 10$M_NQW]
10$_READPBLK[l 10$M_NOW]
10$_ WRITELBLK
10$_ WRITEVBLK
10$_ WRITEPBLK

Arguments

P 1 - buffer address
P2 - buffer size

1/0 Function Codes
A.5 Asynchronous DDCMP DUP11 Interface Driver

Functions

10$_SETMODE
10$_SETCHAR
10$_SETMODE!IO$M_ST ARTUP
10$_SETCHAR!IO$M_ST ARTUP
10$_SETMODE!IO$M_CTRL
10$_SETCHAR! 10$M _CTRL
10$_SETMODE! 10$M_CTRL! 10$M_ST ARTUP
10$_SETCHAR!IO$M_CTRL!IO$M_ST ARTUP
10$_SETMODE! 10$M_SHUTDOWN
10$_SETCHAR! 10$M_SHUTDOWN
10$_SETMODE!IO$M_CTRL! 10$M_SHUTDOWN
10$_SETCHAR!IO$M_CTRL!IO$M_SHUTDOWN

10$_SETMODE! 10$M_A TTNAST
10$_SETCHAR!IO$M_ATTNAST

10$_SENSEMODE
10$_SENSEMODE! 10$M_CTRL
10$_SENSEMODE! 10$M_RO_COUNTS
10$_SENSEMODE!IO$M_CLR_COUNTS
10$_SENSEMODE! 10$M_RO_COUNTS

!10$M_CLR_CQUNTS
10$_SENSEMODE! 10$M _CTRL

! 10$M_RD_COUNTS
10$_SENSEMODE ! 10$M _CTRL

! 10$M_CLR_CQUNTS

010 Status Returns

SS$_ABORT

SS$_CANCEL

SS$_DEVINACT

SS$_NORMAL

SS$_BADPARAM

SS$_DEV ACTIVE

SS$_DEVOFFLINE

Arguments

P2 - buffer descriptor
address (optional)

P 1 - AST service routine
address
P2 - (ignored)
P3 - access mode to deliver
AST

P 1 - (ignored)
P2 - buffer descriptor
address

SS$_BUFFEROVF

SS$_DEVICEFULL

SS$_ENDOFFILE

A-5

1/0 Function Codes
A. 6 Ethernet/802 Device Drivers

A.6 Ethernet/802 Device Drivers

Functions

10$_READLBLK
10$_READVBLK
10$_READPBLK
10$_ WRITELBLK
10$_ WRITEVBLK
10$_ WRITEPBLK

10$_SETMODE
10$_SETCHAR

10$_SETMODE
10$_SETCHAR

10$_SENSEMODE
10$_SENSECHAR

1 Only for read functions
20nly for write functions

Arguments

P 1 - buff er address
P2 - buffer size
P4 - 802 format fields
(optional)3

P5 - destination address
(optional)3

P2 - extended characteristics
buffer (optional)4

P 1 - AST service address
P3 - access mode to deliver
AST

P 1 - device characteristics
buffer (optional)
P2 - extended characteristics
buffer (optional)

3See text for complete contents

Modifiers

10$M_NOW1

10$M_RESPONSE2

10$M_CTRL
10$M_ST ARTUP
10$M _SHUTDOWN

10$M_ATTNAST

10$M_CTRL

4Use only with 10$M_CTRL alone or with IQ$_STARTUP, that is, the set controller mode

010 Status Returns

SS$_ABORT SS$_ACCVIO SS$_BADPARAM

SS$_BUFFEROVF SS$_COMMHARD SS$_CTRLERR

SS$_DA TA CHECK SS$_DA T AOVERUN SS$_DEV ACTIVE

SS$_DEV ALLOC SS$_DEVINACT SS$_0EVOFFLINE

SS$_DEVREOERR SS$_DISCONNECT SS$_0UPUNIT

SS$_ENDOFFILE SS$_EXOUOT A SS$_1NSFMEM

SS$_1NSFMAPREG SS$_1VBUFLEN SS$_MEDOFL

SS$_NOPRIV SS$_NORMAL SS$_QPINCOMPL

SS$_ TIMEOUT SS$_ TOOMUCHDA TA

A-6

Index

A
Argument

list• A-1 to A-6
Asynchronous DDCMP driver• 5-1

AST service routine address• 5-10
attention AST • 5-10
characteristics • 5-7 to 5-8

controller• 5-7, 5-10
device• 5-2
extended• 5-8
modifying• 5-7
tributary• 5-10

controller
mode•5-8
starting• 5-6

controller counter parameter IDs• 5-11
device characteristics• 5-2
driver

capabilities• 5-1
duplex modes• 5-7
enable attention AST • 5-9
enable modem• 5-7
errors• 5-3
error summary bits• 5-3
extended characteristics • 5-8
full duplex mode• 5-1
function codes• 5-4, A-4
function modifiers• 5-5, 5-6, 5-8 to 5-10
1/0 functions•5-5, 5-6, 5-10
1/0 status block• 5-14
message size• 5-2, 5-5, 5-6
modem

disabling line• 5-9
modifying characteristics• 5-7
parameter ID• 5-7
point-to-point

configuration• 5-1
privilege • 5-5
protocol • 5-7

starting• 5-8
stopping• 5-9

quotas• 5-1
read function• 5-5
read internal counters• 5-10
sense mode function• 5-10

Asynchronous DDCMP driver (cont'd.)

set controller mode • 5-6
characteristics• 5-7 to 5-8
message size • 5-8
P2 buffer• 5-7
parameter ID• 5-7

set mode function • 5-6
set tributary mode• 5-8

extended characteristics• 5-8
P2 buffer• 5-8

shutdown controller mode• 5-9
shutdown tributary mode• 5-9
starting

controller• 5-7
protocol • 5-8
tributary• 5-8

status returns• A-5
stopping

controller• 5-9
modem line• 5-9
protocol • 5-9
tributary• 5-9

supported device• 5-1
SYS$GETDVI • 5-2
tributary

starting• 5-8
stopping• 5-9

tributary counter parameter IDs• 5-13
unit and line status• 5-3
write function • 5-5

Attention AST
asynchronous DDCMP driver• 5-9
DMC11/DMR11 driver• 1-7
DMP 11 /DMF32 driver• 2-19
DR11-W/DRV11-WA driver•3-14
Ethernet/802 drivers• 6-36

c
Characteristic

See Device characteristics
Command chaining• 4-2
Command packet• 4-4
CSR (control and status register) • 3-5

bit assignment• 3-16

lndex-1

Index

D
Data chaining• 4-2, 6-26
Data transfer mode • 3-4
Data transfers

meaning of terms read and write• 3-5
DDCMP (DIGIT AL Data Communications

Message Protocol)• 1-1, 2-1
DDI (DR32 device interconnect) • 4-2

status returns• 4-37
DEBNA driver

See Ethernet/802 driver
DELQA driver

See Ethernet/802 driver
DELUA driver

See Ethernet/802 driver
DEONA driver

See Ethernet/802 driver
DESV A driver

See Ethernet/802 driver
DEUNA driver

See Ethernet/802 driver
Device characteristics

asynchronous DDCMP driver• 5-2
DMC 11/DMR11 driver• 1-3
DMP11 /DMF32 driver• 2-3
DR11-W/DRV11-WA driver•3-8
DR32 driver• 4-3
Ethernet/802 drivers• 6-14

DMC 11/DMR11 driver
attention AST • 1-9

enabling• 1-7
data

message size • 1-3, 1-6, 1-9
DDCMP (DIGIT AL Data Communications

Message Protocol) • 1-1
device characteristics• 1-3, 1-8
driver• 1-1

capabilities• 1-2
error summary bits• 1-5
function codes• 1-5, A-1
function modifiers• 1-6, 1-8
1/0 functions• 1-5 to 1-7
1/0 status block• 1-9
mailbox

disabling• 1-6
enabling• 1-6
message • 1-9

lndex-2

format• 1-2
type• 1-2

DMC 11/DMR11 driver
mailbox (cont'd.)

usage• 1-2
programming example• 1-10
quota• 1-3, 1-9
read function• 1-5
receive-message blocks• 1-8, 1-9
set characteristics function• 1-7
set mode and shut down unit• 1-8
set mode and start unit• 1-8
set mode function • 1-6, 1-7
start unit• 1-8
status returns• A-1
supported DMC 11 options• 1-1
SYS$GETDVI • 1-3
unit and line status• 1-4
unit characteristics• 1-4
write function• 1-6

DMP 11 /DMF32 driver
AST service routine address• 2-19
attention AST• 2-19
characteristics

controller•2-9, 2-19
device•2-3
extended•2-11 to 2-12, 2-16 to 2-17
modifying• 2-9
tributary•2-16, 2-19

character-oriented protocol• 2-3, 2-13
controller

mode•2-12
starting• 2-9

DDCMP (DIGIT AL Data Communications
Message Protocol)• 2-1

DDCMP controller counter parameter IDs• 2-22
device characteristics• 2-3
diagnostic support• 2-23

read device status slot• 2-25
read line unit modem status• 2-24
set line unit modem status• 2-24

DMC 11-compatible operating mode• 2-1
DMF32 driver• 2-1

control• 2-12
transmitter interface• 2-14

DMP11 driver•2-1
driver capabilities• 2-1
duplex modes• 2-1, 2-2, 2-11, 2-12
enable attention AST• 2-19
enable modem• 2-9
errors• 2-5
error summary bits• 2-5
extended characteristics• 2-11 to 2-12,

2-16 to 2-17

DMP11 /DMF32 driver (cont'd.)

framing routine interface• 2-13
function codes• 2-6, A-2
function modifiers• 2-8 to 2-9, 2-15,

2-18to 2-19,2-24to 2-25
HDLC bit stuff mode•2-3, 2-12, 2-15
1/0 functions•2-7 to 2-9, 2-15, 2-19
1/0 status block• 2-25
LAPS controller counter parameter IDs• 2-22
message size•2-3, 2-8, 2-10
modem

disabling line• 2-18
status• 2-24

modifying characteristics• 2-9
multipoint

configuration• 2-1
control station• 2-1

parameter 10•2-10, 2-11, 2-12
point-to-point

configuration• 2-1
station• 2-1

polling time•2-12, 2-17
privilege• 2-7
programming example• 2-26
protocol•2-1, 2-3, 2-11, 2-12, 2-13

starting• 2-15
stopping• 2-18

quotas• 2-3
read device status slot• 2-25
read function• 2-7
read internal counters• 2-20
read line unit modem status• 2-24
sense mode function• 2-19
set controller mode• 2-9

characteristics• 2-10
extended characteristics• 2-11 to 2-12
message size•2-10, 2-12, 2-13
P 1 buffer• 2-10
P2 buffer• 2-11
parameter ID• 2-10
receive message blocks• 2-10

set line unit modem status• 2-23, 2-24
set mode function• 2-9
set tributary mode• 2-15

characteristics• 2-16
extended characteristics• 2-16 to 2-17
P1 buffer• 2-16
P2 buffer• 2-16
parameter ID• 2-16

shutdown controller mode• 2-18
shutdown tributary mode• 2-18

DMP11/DMF32 driver (cont'd.)

starting
controller• 2-9
protocol• 2-15
tributary• 2-15

status, DMF32 driver• 2-14
status returns• A-3
stopping

controller• 2-18
modem line• 2-18
protocol• 2-18
tributary• 2-18

supported devices• 2-1
sync characters•2-12, 2-13
SYS$GETDVI • 2-3
timeout• 2-13
tributary• 2-1

address•2-1, 2-18
mode•2-1
starting• 2-15
station• 2-1
stopping• 2-18

tributary counter parameter IDs• 2-22
unit and line status• 2-5
unit characteristics• 2-4
write function• 2-8

DR11-W /DRV11-WA driver
attention AST• 3-14
BOP (buffered data path) • 3-11 , 3-15
block mode• 3-4, 3-11, 3-15
CSR (control and status register)

ATTN bit• 3-6, 3-11
bit assignment• 3-1 6
CYCLE bit• 3-5, 3-11
ERROR bit• 3-6

Index

FNCT and ST A TUS bits • 3-5, 3-7, 3-11 ,
3-14

function • 3-5
data registers• 3-6
data transfer mode• 3-4
data transfers

read and write• 3-5
through BOP• 3-15

DDP (direct data path)• 3-11, 3-15
device characteristics • 3-8
driver• 3-1
EIR (error information register) • 3-6

bit assignment• 3-16
enable attention AST• 3-14
error reporting• 3-6
function codes• 3-9, A-3

lndex-3

Index

DR 11-W /ORV 11-W A driver (cont'd.)

function modifiers• 3-7, 3-11 to 3-12,
3-14 to 3-15

hardware errors• 3-7, 3-8
1/0 functions• 3-13
1/0 status block• 3-15

byte count• 3-15
IDR (input data register)• 3-6, 3-11, 3-14
interrupts•3-4, 3-6, 3-7, 3-8, 3-11, 3-14
link mode•3-6, 3-7, 3-11
NPR transfers•3-7
ODR (output data register)• 3-6, 3-11
programming example• 3-16
read function• 3-13
set characteristics function• 3-13
set mode function• 3-13
SS$_BADPARAM • 3-11
status returns• A-3
SYS$CANCEL•3-14,3-15
SYS$GETDVI • 3-8
transfer mode • 3-4
wo~mode•3-4,3-11

write function• 3-13
DR32 driver

action routines• 4-23, 4-28, 4-30, 4-34,
4-39

AST routine•4-15, 4-20, 4-21, 4-26, 4-33
buffer block• 4-5, 4-13, 4-15, 4-21, 4-22,

4-25,4-36
byte count field• 4-15
command block• 4-5, 4-21, 4-22, 4-36
command chaining• 4-2, 4-14, 4-29
command control• 4-14
command packets• 4-2, 4-4 to 4-7,

4-25to 4-28, 4-31,4-33to 4-40
command sequences

device-initiated• 4-7
intiating • 4-7

control (command) messages• 4-3, 4-7,
4-11,4-12, 4-18,4-29,4-38

control select field • 4-13
data chaining• 4-2, 4-14, 4-29
data rate• 4-4, 4-20, 4-22, 4-27
data transfer command table• 4-21
data transfers•4-2, 4-3, 4-5, 4-11, 4-13,

4-14to 4-16, 4-20, 4-25, 4-26,
4-29, 4-38

DOI (DR32 device interconnect) • 4-2
device

characteristics• 4-3
control code•4-10, 4-28

lndex-4

DR32 driver
device (cont'd.)

message• 4-7, 4-9, 4-11, 4-14, 4-18,
4-25,4-27,4-29, 4-32

diagnostic tests• 4-10 to 4-13, 4-29, 4-39
DR device definition • 4-2
DSL (DR32 status longword)• 4-9, 4-16,

4-24,4-39
error checking• 4-39
eventflags•4-15, 4-20, 4-22, 4-26, 4-28,

4-30,4-32,4-33, 4-40
far-end DR device•4-2, 4-3, 4-5, 4-7, 4-11,

4-13,4-18,4-27
FREEQ (free queue)•4-5, 4-13, 4-18, 4-24,

4-27,4-36
function codes• A-4
function modifier• 4-20
GO bit•4-7, 4-22
high-level language interface• 4-4, 4-23

support routines• 4-23
synchronization • 4-33

1/0 function codes• 4-20
1/0 status block• 4-23, 4-32, 4-34, 4-39
INPTQ (input queue)•4-5, 4-11, 4-13, 4-22,

4-24,4-28,4-30,4-38
INSOTI instruction• 4-5
interrupt

See also DR32, action routines
See also DR32, event flags
AST• 4-3, 4-28, 4-30, 4-32, 4-33,

4-34,4-40
command packet•4-13, 4-20, 4-21,

4-22,4-26,4-28,4-33,4-38
reasons • 4-3

interrupt control argument
(XF$FREESET) • 4-28

interrupt control field• 4-1 5, 4-26, 4-40
length of device message field • 4-9
length of log area field• 4-1 O
load microcode function

(10$_LOADMCODE) • 4-20
log area field• 4-19
log message• 4-30, 4-32
microcode loader (XFLOADER) • 4-19
NOP command packet• 4-40
pref etch command packets• 4-38
programming

examples• 4-40
hints•4-37
interface• 4-4

queue
headers• 4-5, 4-21

DR32 driver
queue (cont'd.)

processing• 4-5
retry•4-6, 4-39, 4-47

random access• 4-3, 4-13
REMOHI instruction• 4-5
residual DOI byte count field• 4-16
residual memory byte count field• 4-16
start data transfer function (10$_ST ARTDA TA)

•4-4,4-7,4-20
status returns• 4-32, A-4

DOI status• 4-37
device-dependent• 4-36

suppress length error field • 4-14
symbolic definitions• 4-24
SYS$GETDVI • 4-3
termination queue (TERMO) • 4-3, 4-5, 4-13
TERMO (termination queue)• 4-15 to 4-16,

4-21, 4-24, 4-30, 4-31, 4-33, 4-40
VAX FORTRAN programming• 4-23, 4-24
VAX MACRO programming• 4-23
virtual address of buffer field• 4-15
XF$CLEANUP • 4-33
XF$FREESET • 4-27
XF$GETPKT • 4-31
XF$PKTBLD • 4-28
XF$STARTDEV•4-26
XFSETUP•4-24

Driver
asynchronous DDCMP • 5-1
DMC 11/DMR11 • 1-1
DMP 11/DMF32•2-1
DR11-W/DRV11-WA•3-1
DR32 •4-1
Ethernet/802 • 6-1

ORV 11-WA driver
See DR11-W/DRV11-WA driver

E
EIR (error information register) • 3-6

bit assignment • 3-16

Enable attention AST function
asynchronous DDCMP driver• 5-9
DMC11/DMR11 driver• 1-7
DMP 11 /DMF32 driver• 2-19
DR11-W/DRV11-WA driver•3-14
Ethernet/802 drivers• 6-36

Ethernet

device drivers• 6-1
Ethernet/802 driver

function codes• A-6
status returns• A-6

Ethernet/802 drivers
address

destination• 6-1 7, 6-20
Ethernet• 6-2 to 6-5
hardware• 6-38
loopback assistance • 6-4
multicast• 6-4, 6-17, 6-29, 6-30
node•6-2

Index

physical• 6-2, 6-4, 6-17, 6-31, 6-38
port• 6-31
shared protocol destination• 6-26
source• 6-17

AST access mode• 6-36
AST service routine address • 6-36
attention AST• 6-36
buffer

hardware• 6-23
receive• 6-17, 6-23

channel assignment• 6-2
characteristics

device• 6-14, 6-37
extended• 6-23 to 6-34, 6-38

controller mode• 6-24
CRC generation• 6-25
data chaining• 6-26
device characteristics• 6-14, 6-37

See also Ethernet/802, extended
characteristics

drivers• 6-1
initializing• 6-2
operating• 6-2

driver service (802 format) • 6-34
echo mode (DEUNA only)• 6-27
error summary bits• 6-15
Ethernet• 6-1, 6-2, 6-7
Ethernet packet format • 6-6
Ethernet packet padding • 6-8
Ethernet programming example• 6-41
exclusive mode • 6-9
extended characteristics• 6-23 to 6-34, 6-37
function codes • 6-16
function modifiers•6-19, 6-21, 6-22,

6-36to 6-37
hardware buffer size• 6-23
hardware interface• 6-2
1/0 functions•6-17, 6-19, 6-21, 6-37

lndex-5

Index

Ethernet/802 drivers (cont'd.)

1/0 status block• 6-39
IEEE 802

Class I service packet format• 6-10, 6-27
driver service parameter• 6-34
extended packet format• 6-13, 6-2 7
802 format SAP parameter• 6-33
group SAP parameter• 6-28
read function • 6-1 7
SAP use and restrictions• 6-1 2
support• 6-5
user-supplied service packet format• 6-11 ,

6-27
write function• 6-19

IEEE 802 programming example• 6-4 7
internal loopback mode (DELUA only)• 6-29
loopback mode• 6-24
message size• 6-15, 6-17, 6-19, 6-20,

6-24
modify characteristics• 6-22
multicast address state• 6-30
packet format • 6-6

Class I service• 6-10
Ethernet • 6-6
extended 802 • 6-13
IEEE 802 • 6-10
set mode parameters• 6-34
SNAP SAP value• 6-14
user-supplied service• 6-11

padding
message size • 6-1 5, 6-1 9
transmit messages• 6-30

parameter ID• 6-22
packet format• 6-34

parameter validation• 6-35
port• 6-1

address• 6-23
start• 6-22

privilege • 6-1 7
programming example• 6-4 1 , 6-4 7
programming notes• 6-40
promiscuous mode• 6-32, 6-40

rules for• 6-4 1
protocol type• 6-1, 6-17, 6-20, 6-32

access mode• 6-23
cross-company• 6-7
DIGIT AL• 6-7
Ethernet • 6-7
sharing • 6-9

read function • 6-17
restart• 6-33
sense mode function• 6-37

lndex-6

Ethernet/802 drivers (cont'd.)

Service Access Point (SAP) • 6-12
set controller mode• 6-22

extended characteristics• 6-23 to 6-34
P2 buffer• 6-22
parameter ID• 6-22
protocol type sharing• 6-9

set mode function• 6-2 1
shared default mode • 6-9
shared with destination mode• 6-9
shutdown controller mode• 6-36
shutdown port• 6-36
software interface• 6-2
supported devices• 6-1
SYS$ASSIGN • 6-2
SYS$DASSGN•6-2
SYS$GETDVI • 6-14
transmit/receive buffer size• 6-23
unit and line status• 6-15
write function• 6-19

F
Function code• A-1 to A-6

10$_LOADMCODE • 4-20
10$_READLBLK•1-5,2-7,3-13, 5-5,6-17
10$_READPBLK•1-5,2-7,3-13,5-5,6-17
10$_READVBLK•1-5,2-7,3-13,5-5,6-17
10$_SENSEMODE•2-19,5-10,6-37
10$_SETCHAR• 1-7, 2-9, 3-13, 5-6, 6-21
10$_SETMODE• 1-7, 2-9, 3-13, 5-6, 6-21
10$_STARTDATA•4-4,4-7,4-20
IQ$_WRITELBLK• 1-6, 2-8, 3-13, 5-5, 6-19
10$_WRITEPBLK• 1-6, 2-8, 3-13, 5-5, 6-19
10$_WRITEVBLK• 1-6, 2-8, 3-13, 5-5, 6-19

Function modifier• A-1 to A-6
10$M_ATTNAST• 1-8, 2-19, 3-14, 5-10,

6-36
10$M_CLR_COUNTS • 2-20, 5-11
10$M_CTRL•2-9, 2-18 to 2-20, 2-25, 5-6,

5-9to 5-11,6-22, 6-36,6-37
10$M_CYCLE•3-5, 3-11
10$M_DAT APA TH• 3-15
10$M_DSABLMBX • 1-6
10$M_ENABLMBX • 1-6
10$M_NOW• 1-6, 2-8, 5-5, 6-19
10$M_RD_COUNTS•2-20, 5-11
10$M_RD_MEM • 2-25
10$M_RD_MQDEM • 2-24
10$M_RESET • 3-12

Function modifier (cont'd.)

10$M_RESPONSE • 6-21
10$M_SETEVF • 4-20, 4-22
10$M_SETFNCT • 3-5, 3-11
10$M_SET_MODEM • 2-24
10$M_SHUTDOWN• 1-8, 2-18, 5-9, 6-36
10$M_STARTUP• 1-8, 2-9, 2-15, 5-6, 5-8,

6-22
10$M_ TIMED• 3-11
10$M_WORD•3-11

Function modifiers

I

for DR11-W/DRV11-WA driver•3-11, 4-20
for asynchronous DDCMP driver• 5-5
for DMC 11/DMR11 driver• 1-6
for DMP 11 /DMF32 driver• 2-8
for Ethernet/802 driver• 6-19

1/0 driver
Ethernet/802 drivers• 6-1

1/0 function

See also Function code
See also Function modifier
a~umen~•A-1w A-6
codes• A-1 to A-6
modifiers• A-1 to A-6

1/0 functions

see also Function modifiers
for DR 11-W /DRV 11-WA driver• 3-9
for asynchronous DDCMP driver• 5-4
for DMC 11/DMR11 driver• 1-5
for DMP11 /DMF32 driver• 2-6
for DR32 driver• 4-20
for Ethernet/802 driver• 6-16

1/0 status block
asynchronous DDCMP driver• 5-14
DMC 11/DMR11 driver• 1-9
DMP11 /DMF32 driver• 2-25
DR11-WDRV11-WA driver• 3-15
DR32 driver• 4-34
Ethernet/802 drivers• 6-39

M
Mailbox message format• 1-3

p
Protocol

DMC 11/DMR11 driver• 1-1, 1-8
DMP 11 /DMF32 driver• 2-1

a
Quota

buffered 1/0• 1-3, 2-3, 5-1

Index

buffered 1/0 byte count• 1-3, 1-9, 2-3, 5-1
direct 1/0• 1-3, 2-3

s
SHR$_HAL TED• 4-32
SHR$_NOCMDMEM • 4-28, 4-31, 4-32, 4-33
SHR$_QEMPTY • 4-32
SS$_ABORT•2-15, 4-23, 6-33, A-1, A-3,

A-4,A-5,A-6
SS$_ACCVIO • A-6
SS$_BADPARAM•3-11, 4-22, 4-26, 4-27,

4-31,6-9,6-23,6-35,A-1,A-3,A-4,
A-5,A-6

SS$_BADOUEHDR•4-33,A-4
SS$_BADQUEUEHDR•4-28,4-31,4-32
SS$_BUFFEROVF•2-20, 5-10, 5-11, 6-38,

A-3,A-5,A-6
SS$_BUFNOTALIGN • 4-23, A-4
SS$_CANCEL•4-23,A-3, A-4,A-5
SS$_COMMHARD • A-6
SS$_CTRLERR • 3-8, 4-23, 4-33, 4-36, A-3,

A-4,A-6
SS$_DATACHECK•A-6
SS$_DATAOVERUN•1-6,2-8,5-5,6-19,A-1,

A-6
SS$_DEVACTIVE•4-20, A-1, A-3, A-4, A-5,

A-6
SS$_DEV ALLOC • A-6
SS$_DEVICEFULL • A-3, A-5
SS$_DEVINACT. A-3 I A-5, A-6
SS$_DEVOFFLINE•A-1,A-3,A-5,A-6
SS$_DEVREOERR•4-23,4-36,A-4,A-6
SS$_DISCONNECT • A-6
SS$_DRVERR•3-8,A-3
SS$_DUPUNIT • A-6
SS$_ENDOFFILE•2-8, 5-5, 6-19, A-1, A-6

lndex-7

Index

SS$_ENDOFFLINE • A-3, A-5
SS$_EXOUOTA•4-23,A-3,A-4,A-6
SS$_1NSFMAPREG • A-6
SS$_1NSFMEM•4-23, 4-28, 4-31, A-4, A-6
SS$_1VBUFLEN • 4-23, 6-21, A-4, A-6
SS$_MCNOTVALID • 4-23, A-4
SS$_MEDOFL • A-6
SS$_NOPRIV • A-3, A-6
SS$_NQRMAL•4-23, A-1, A-3, A-4, A-5,

A-6
SS$_0PINCOMPL•3-12, 6-33, A-3, A-6
SS$_PARITY • 4-20, 4-23, 4-36, A-3, A-4
SS$_POVVERFAIL•4-3,4-20,4-23,A-4
SS$_TIMEOUT•6-33, A-3, A-6
SS$_TOOMUCHDATA•A-6
SYS$ASSIGN • 2-9, 5-6, 6-2
SYS$DASSGN•6-2
SYS$GETDVI

asynchronous DDCMP driver• 5-2
DMC 11/DMR11 device• 1-3
DMP 11/DMF11 device• 2-3
DR 11-VV /ORV 11-VV A device• 3-8
DR32 device• 4-3
Ethernet/802 drivers• 6-14

x
XFMAXRA TE• 4-22

lndex-8

Reader's Comments VMS 1/0 User's Reference
Manual: Part II
AA-LA85A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more /less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

-- Do Not Tear - Fold Here and Tape ------------------~

1111
______________ _

No Postage

~amaamn™ ~:::j~=~y

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 •• 1.1 ••• 1.11 .. 1

in the
United States

·- Do Not Tear - Fold Here --

I

I
I
I
I
I
I

Reader's Comments VMS 1/0 User's Reference
Manual: Part II
AA-LA85A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

--;;~t~;;:d Here and Ta~ ------------------~1nr-------;~~~~~---
in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 •• 1.1 ••• 1.11 .. 1

-- Do Not Tear - Fold Here ---

I
I
I
I
I
I

,,
I
I
I
I
I
I
I
I
I
I

