
pigital Eauipment Corporation COMPANY CONFIDENTIAL Page 1

Title: VAX-11 Software Engineering Manual -- Rev 3

Specification Status: draft

Architectural Status: under ECO control

File: SEPRR3.RNO

PDM #: not used

Date: 19-Feb-77

Superseded Specs: none

Author (s):

Typist:

L

F. Bernaby, P. Conklin, S. Gault, T. Hastings, P. Marks,
R. Murray, I. Nassi, M. Spier

Conklin

Reviewer (s): R. Brender, D. Cutler, R. Gourd, T. Hastings, I. Nassi,

Abstract:

S. Poulsen, D. Tolman

This manual presents the VAX-1l1l programming conventions and

software engineering practices as developed for, and

adopted by the Central Engineering Group. These

conventions and practices are standard within Central

Engineering; we hope that they be used by other corporate

groups as well. Designed to be the "programmer's helper®,

the manual contains the coding conventions as well as

practical data of technical, procedural, administrative and

conceptual nature that would be useful to the ssoftware

engineer.

Revision History:

Rev # Description Author Revised Date

Rev 1 Original M. Spier 14-Apr-76

Rev 2 Revised from Review P. Marks 21-Jun-~-76

Rev 3 After 6 months experience P. Conklin 19~-Feb-77



CONTENTS 19-Feb~-77 -- Rev 3 Page 990
Change History

Rev 2 to Rev 3:

l. Convert to standard RUNOFF manual chapter format.

2. Remove unwritten sections.

3. Move introductory note to preface.

4. Remove request for review from preface.

5. Note relationship to BLISS conventions.

6. Split chapter 6 into 6 and 7. Add chapters 8-11,

especially BLISS. Add the BLISS transportability guidelines.
Add Chapter 15 for diagnostics.

[End of SEPRR3.RNO]



VAX - 11

SOFTWARE ENGINEERING MANUAL

19 PEBRUARY 1977

Revision 3

DO NOT DUPLICATE

Ike Nassi

+ +

I |

l |
I |
| I

| For additional copies, contact: :

|

| l
| ML 21-4/E20 l

| I
+ +

Digital Equipment Corporation, Maynard, Massachusetts



Revision 1, April, 1976

Revision 2, June, 1976

Revision 3, February, 1977

The information in this document is subject to change

without notice and should not be construed as a

commitment by Digital Equipment Corporation. Digital

Equipment Corporation assumes no responsibility for any

errors that may appear in this document.

This draft standard does not describe any program or

product which 1is currently available from Digital
Eaquipment Corporation. Nor does Digital Equipment

Corporation commit to implement this standard in any

program or product. Digital Equipment Corporation

makes no commitment that this document accurately

describes any product it might ever make.

Digital Equipment Corporation's software is furnished

under a license and may only be used or copied in

accordance with the terms of such license.

No responsibility is assumed for the use or reliability

of software on equipment that is not supplied by

Digital or its affiliated companies.

Copyright (c) 1976, 1977 by Digital Equipment Corporation

The following are trademarks of Digital Equipment

Corporation:

CDP DIBOL KAl0 RAD-8

COMPUTER LAB DIGITAL KI1O0 RSTS

COMSYST DNC LAB-8 RSX

COMTEX EDGRIN LAB-K RT-11

DDT EDUSYSTEM MASSBUS RTM

DEC FLIP CHIP OMNIBUS SABR

DECCOMM FOCAL 0s/8 TYPESET-8

DECUS GLC-8 PDP TYPESET-10

DECsystem-10 IDAC PHA TYPESET-11

DECsystem-20 IDACS PS/8 UNIBUS

DECtape INDAC QUICKPOINT



PREFACE

Over the years, much ado has been made about coding standards 3nad
conventions. Everyone believed that conventions are good, so long as
they are not the other quy's conventions! Committees were formed, and
reformed, and left to die for 1lack of consensus. We repeatedly
refused to follow conventions that we deemed "imperfect"” and
conseaquently we followed none at all.

A great deal of this has been foolish nit-picking on the part of our
vast multitude of entrepreneurs. The time has come to stop the
foolishness and to recoanize the reasons for which code uniformity is
mandated.

Standards, conventions and uniform practices all aid us in producing

reasonably professional, maintainable products of consistent quality.
Any individual can always have a private opinion as to what is "qood",

or "right®", or "efficient®TM or "aesthetic". Any collection of
individuals invariably comes up with as many divergent opinions on the
subject as there are individuals. We should all be sufficiently
mature and sufficiently professional to be willing to compromise with
both our egos and our fellow peers; to compromise just enough to

accept objectively a set of reasonable conventions that will establish
the uniformity and consistency of all of our software products.

The Methodology qroup has compiled the conventions and practices
presented in this manual. They apply to all VAX-1ll programming. They
are based on existing PDP-11 coding practices. This manual was

reviewed by the Coding Conventions Committee consisting of Peter
Conklin, Dave Cutler, Roger Gourd, Steve Poulsen and Mike Spier.
These conventions have been broadened to the BLISS environment by

review with Ron Brender, Rich Grove, and Dave Tolman.

Transportability issues have been addressed in concert with Peter

Marks and Ike Nassi.

We want these conventions to be adopted willingly, not forced upon

people through arbitrary managerial edict. This is best accomplished

by having you formulate to vyourself exactly WHY vyou find some

convention to be objectionable; then try and propose --to yourself--

an alternate one, and reflect on whether or not the new one is really

that much superior, and why. All that we ask of you is to convince

yourself that these conventions are no less reasonable than any other

set of conventions. Then, we hope, vyou will be willing to show

sufficient professional maturity to adopt and follow these

conventions.



TREFACE 19-FEB-77 -- Rev 3 Page 4

This document is the result of integrating and reorgqanizing the BLISS

Software Engineering Manual and the VAX Assemhler Software Engineering

Manual published during the summer of 1976. New chapters have been

incorporated, covering transportability, naming conventions, and
external interface specifications. We solicit constructive criticism

and recommendations for enhancement. In particular, the last chapter

contains a list of topics we would like to address in future editions.

Please feel free to contribute toward these topics. This is

completely a home grown document. If you feel this is a desirable way

to proceed, you should feel a responsibility to review this carefully

and to contribute material you feel appropriate. The value of the

document depends directly on the quality and applicability of the

submitted material.



CONTENTS

Page

CHAPTER 1 INTRODUCTION

CHAPTER 2 HOW TO USE THIS MANUAL

CHAPTER 3 METHODOLOGICAL POLICY

CHAPTER 4 PROGRAM STRUCTURE

4.1 THE MODULE PREPACE . . . e o o o o o o o o 4-1
4.2 THE MODULE'S DECLARATIVE PART e o o o o o o o o 4-2
4.3 THE MODULE'S ACTUAL CODE . . . . & 2 v ¢ o« « . 4=3
4.3.1 The ROUTINE PREPACE . . . ©. ©. ¢ v ¢« « « o« « . 4=3
4.3.2 The Routine's Declarative Part . . . . . . . 4-3
4.3.3 The Routine's Code . . . . . ¢ ¢ v ¢ ¢« ¢ « « 4=3
4.4 MODULE TERMINATION . . © ¢ ¢ ¢ ¢ ¢ o o o o o o« 4-4
4.5 ANNOTATED SAMPLE LAYOUTS . . e o o o o o 4-4
4.6 SAMPLE LAYOUT OF THE MODULE PRBPACB e o o« o 4=-5
4.6.1 Example Of The Assembler Module Pteface e o o 4=5
4.6.2 Example Of The BLISS Module Preface . . . . . 4-6
4.7 SAMPLE LAYOUT OF THE MODULE DECLARATIONS . . . 4-7
4.7.1 Example Of The Assembler Module Declarations 4-7
4.7.2 Example Of The BLISS Module Declarations . . 4-8
4.8 SAMPLE LAYOUT OF THE ROUTINE PREFACE . . . . . 4-9
4.8.1 Example Of The Assembler Routine Preface . . 4-9
4.8.2 Example Of The BLISS Routine Preface . . . . 4-10

CHAPTER TEMPLATE

.1 MAKING A NEW ASSEMBLY LANGUAGE MODULE

.2 MAKING A NEW BASIC LANGUAGE MODULE .

.3 MAKING A NEW BLISS LANGUAGE MODULE .

.4

¢S m
c
n
f
i
u
m
c
n

b
 

)
 
D

MAKING A NEW COBOL LANGUAGE MODULE .

MAKING A NEW FORTRAN LANGUAGE MODULE e
 

o
 

o
 

o
 

o

o
 

o
 

o
 

o
 

o

e
 

o
 

o
 

o
 

oo

e
 

o
 

o
 

o
 

o

e
 

o
 

o
 

o
 

o

|

w
 
W



CONTENTS

CHAPTER

CHAPTER

6
*

—
 
O
O
~
VW
N
 
-

R
X
A
k
 
a 
X
A
k
 
a 
X
 
a 
X
A
l

e
 

o
 

o
 

o
 

o
 

o
 

o
 

o

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

6.22

6.23

6.24

6.25

6.26

6.27

6.28

6.29

6.30

~
J

=
=

 
\
O
 
o
o
 
~
J
o
O
U
 
&
 
W
i
+

L]

(
o

N
 
=
 
O

N
N
 
N
 
N
N

 
N
N
N
N
I
N
N

7.13

~
J

e p
—

>

7.15

7.16

7.17

7.18

19-Feb-77 -- Rev 3

COMMENTING CONVENTIONS

ABSTRACT . . . . .

AUTHOR . . « . . &

CALLING SEQUENC .

COMMENT . . . . . .

COMMENT: BLOCK . .

COMMENT: DOCUMENTING .

[ ]
 

[ 
[ ]
 

L]
 

L[]

COMMENT: GROUP . . .

COMMENT: LINE . . . .

COMMENT: MAINTENANCE

COMPLETION CODES . .

CONFIGURATION STATEMENT

ENVIRONMENT STATEMENT .

EXCEPTIONS . . . « « &

FACILITY STATEMENT . .

FUNCTIONAL DESCRIPTION

FUNCTION VALUE . . . .

HISTORY: MODIFICATION .

IMPLICIT INPUTS AND OUTP

LEGAL NOTICES . . . .

MODULE . « « « « =« &

MODULE: DATA SEGMENT

MODULE: FILE NAME . .

MODULE: PREFACE . . .

PARAMETERS: FORMAL .

PARAMETERS: INPUT AND

PROGRAM . . . « « .« &

ROUTINE: PREFACE . .

SIDE EFFECTS . . . .

SC
l
e
 

o 
o 

o 
o

T

[ 
[ ] 

[ ] 
[ ) 

® 
[ ] 

[ ] 
[ ] 

[ ] 
[ ] 

L J 
[ 

[ 
[ ] 

[ ) 
L] 

L J 
[ 

[ ] 
[ 

[ ] 
[ ) 

[ 
[ ]

-
3

SIGNALS . . . . .

VERSION NUMBER .

U

o 
o 

o 
o 

o 
O
 

o
 

o 
o 

o 
o

o
t

e 
o 

o 
o 

o 
F
J
e
 

s 
o 

o 
o 

o
g

 v
/

ASSEMBLER FORMATTING AND USAGE

CALL INSTRUCTIONS . . . .

CASE INSTRUCTIONS . . . .

CONDITIONAL ASSEMBLY . .

CONDITION HANDLER . . . .

DECLARATION: EQUATED SYMBO

DECLARATION: VARIABLES

DESCRIPTOR . . « « « &

EXPRESSIONS . . « « .+ &

SFORMAL MACRO . « . . .

. IDENT STATEMENT . . .

INCLUDE FILES . . . . .

INTERLOCKED INSTRUCTIONS

LABEL . . . .« .« &

LABEL: GLOBAL . .

LABEL: LOCAL . .

LS

LIBRARIES . . .

LISTING CONTROL

SLOCAL MACRO .

L] 
* 

[ J 
® 

[ 
[ ] 

L] 
[ ]
 

' 
[} 

L

[ ] 
* 

° 
[} 

L] 
L ] 

® 
[ ] 

[ ] 
[ 

[ 4 
L] 

[ ] 
[ ] 

L} 
[ ] 

| ] 
[ ] 

L J 
® 

° 
[ 4 

[ ] 
® 

] 
® 

[ ) 
[} 

[ ] 
[ ]

L] 
[ 

[ ] 
L ] 

L] 
L] 

® 
L] 

® 
[ ] 

[ ] 
® 

[ ] 
[ ) 

[ ] 
» 

| ] 
[ ] 

L] 
L ] 

L 
L 

[ ) 
[ 

[J 
[ ) 

[ ] 
] 

[ ] 
[ ]

Page 6

N
N

t 
e

]

O
N
N

 
E
W
N
N
N

]

i
t
 
e
t
 
e
t
 
e
t

o
W

W
 
W
 
N

O\
O\
O\
O\
C\
O'
\O
\C
\G
\O
\O
\

e
 A
W
 =
)

~
 
-
~

1 
v
 

[ 
TR
 

T 
O 

R 
I 

B
O

 
O
O

W
N
O
N

o
f
o

\l
f\
l\
l\
l\
l\
l\
l\
l\
l\
l\
l\
l\
l

|

) N

~
J ! -
t

o
 
e

7-14



CHAPTER

CHAPTER

7.19

7.2

7.21

7.22

7.23

7.24

7.25

71.26

7.27

7.28

7.29

7.30

7.31

7.32

7.33

71.34

7.35

7.36

7.37

7.38

7.39

7.40

7.41

7.42

7.43

7.44

7.45

LSB: .ENABL/.DSABL . .
MACROS . . . . . . . .

SOWN MACRO . . . . . .
PARAMETERS: FORMAL . .

PROCEDURE . . . . . . .

PROCEDURE: ENTRY . . .

.PSECT STATEMENT . . .

QUEUE INSTRUCTIONS . .,

RELATIVE ADDRESSING . .

ROUTINE: BODY . . . . .

ROUTINE: ENTRY: MULTIPLE

ROUTINE: NON-STANDARD

ROUTINE: ORDER . ., .

.SBTTL STATEMENT . .

STATEMENT . . . . . .

STATEMENT: BLOCK . .

STRING INSTRUCTIONS .

STRUCTURES . . . .

SYMBOL ., . . . . .

SYMBOL: EXTERNAL .

SYMBOL: GLOBAL . .

SYNCHRONIZATION: PROCE

.TITLE STATEMENT . .

UNWIND . . . . . . .

.VALIDATE DECLARATION .

VARIABLES: STACK LOCAL

.WEAK DECLARATION . ., .

S

e 
o 

{
N
e
 

¢ 
¢ 

¢ 
¢ 

o 
o 

o 
o 

o

®
 

¢
 

o 
o
 

o
 

o
 

o 
0 

o 
6
 

o
 

°
 

©
 

e
 

e
 

&

BASIC FORMATTING AND USAGE

BLISS FORMATING AND USAGE

DECLARATION . . . . . . . . .
DECLARATION: FORMAT ., . . . .
DECLARATION: FORWARD ROUTINE

DECLARATION: MACRO . . .

DECLARATION: ORDER . .

EXPRESSION . . . . . .

EXPRESSION: ASSIGNMENT

EXPRESSION: CASE . . .

EXPRESSION: BLOCK . . .

EXPRESSION: FORMAT ., .
EXPRESSION: IF/THEN/ELSE

EXPRESSION: INCR/DECR . .

EXPRESSION: SELECT . . .

EXPRESSION: WHILE/UNTIL/DO
IDENT MODULE SWITCH . . .
LABELS . . . . . .

MODULE: SWITCHES .

NAME . ., . . . .

REQUIRE FILES . . .

[
 ]

L J 
[ ] 

[ ] 
[ ] 

[} 
[] 

o 
[ ] 

[ ] 
[ ] 

[ ] 
[ ] 

[ ] 
[ ] 

[} 
[ ] P

[ ] 
[ ] 

[ ] 
[ ] 

[ ] 
[ 

[ ] 
[ ] 

[ ] 
® 

L} 
[ ] 

| ] 
[ ]
 

[ ] 
[ ) 

[} 
[ 

®

GN
O\

D\
D\

O\
D\

D%
DG

HO
\D

\D
\D

\D
UD

M
l

O
 
O
N
d
A
A
N
W
M
B
W
W
N
D
N

[ N
 
-
~
 
O

W
 
O

R
 

I 
O 

R 
N 

T 
R 

N 
]

— w
w
w

9-15

9-16



CONTENTS

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

9.20

9.21

9.22

9.23

9.24

9.25

10

11

12

12.1

12.2

12.3

13

13.1

13.2

13.2.1

13.2.2

13.2.3

13.2.4

13.2.5

14

14.1

14.1.1

14.1.2

14.2

14.2.1

14.2.2

14.2.3

14. l

14.:/

14.4.1

19-Feb-77 =-- Rev 3

ROUTINE . . . . .

ROUTINE: FORMAT . .

ROUTINE: NAME . . .

ROUTINE: ORDER . .

STRUCTURE: DECLARATIO

STRUCTURE: BLOCK . .

[
 

*
 

[]

L]
 

[ ]
 

L]
 

L]

L]
 

[] 
[ ] 

[ ] 
[ ] 

[ ]

L]
 

[}
 

® 
L ]
 

[ ]
 

[

L]
 

[ ]
 

[ 
[ ]
 

[ ]
 

[

[ ]
 

[ ]
 

[ 
[}
 

[ 
[

[ ]
 

[ )
 

L]
 

[ 
[ ]
 

[}

[ ]
 

[}
 

L]
 

[ ]
 

[ ]
 

[ ]

[ ]
 

[ 
[ )
 

® 
[}
 

[]

[ ]
 

[}
 

L ]
 

[}
 

[ ]
 

[ ]

[ ]
 

. 
* 

[ ]
 

[ ]
 

[

L]
 

[}
 

[ 
[ 

[ ]
 

.

COBOL FORMATTING AND USAGE

FORTRAN FORMATTING AND USAGE

NAMING CONVENTIONS

PUBLIC SYMBOL PATTERNS . . . . . .

OBJECT DATA TYPES . . ¢ ¢ ¢ ¢ o o

FACILITY PREFIX TABLE . . . . . . .

FUNCTIONAL AND INTERFACE SPECIFICATIONS

ROUTINE INTERFACE TYPES . . ¢« ¢ ¢ ¢ ¢ o o o

NOTATION FOR DESCRIBING PROCEDURE ARGUMENTS

Procedure Parameter Qualifiers . . . . .

Optional Arguments And Default Values .

Repeated Arguments . . ¢ « ¢ ¢ ¢ o < .

ExamplesS . ¢« « ¢ o o o o o o o o o o o

Summary Chart Of Notation . . . . . . &

L]

[

®

®

BLISS TRANSPORTABILITY GUIDLINES

INTRODUCTION . . .

Purpose And Goals

Organization . .

GENERAL STRATEGIES

Introduction

Isolation . .

Simplicity .

TOOLS . . « « =&

Literals . . « ¢« =

Predeclared Literals

User Defined Literal

MACROS . ¢ ¢ o o o o

Module Switches

Reserved Names

REQUIRE Files

ROUTINES . o

TECHNIQUES .«

Data . . . . o
o
o
c
o
o
o
m
o
o
o
o
o
o
o
o
o
o

12-2

12-6

12-7



14.4.1.1 Introduction . . . . . . . . . . . . . . . 1l4-15
14.4.1.2 Problem Genesis - . . . . . . . . . . . .. 14-15
14.4.1.3 Transoortable Declarations - . . « « o 1l4-16
14.4.2 Data: Addresses And Address Calculatlons . . 14-18
14.4.2.1 Introduction . . . . . . . . . . . . . . . 14-18
14.4.2.2 Addresses And Address Calculations - . . . 14-18
14.4.2.3 Relational Oprs And Control Expressions - 14-20
14.4.2.4 BLISS-10 Addr. Versus BLISS-36 Addr. - « . 14-21
14.4.3 Data: Character Sequences . . . . . . . . . . 14-22
14.4.3.1 Introduction . . . . . . . . . . . . . . . 14-22
14.4.3.2 Usage As Numeric Values - ., ., . ., . . . . . 14-23
14.4.3.3 Usage As Character Strings - ., . . . . . . 14-24
14.4.4 PLITs And Initialization . . . . . . . . . . 14-25%
14.4.4.1 Introduction . . . . . . . . . ¢ . . v . . 14-25
14.4.4.2 PLITs In General - . . . . . . . . . . . . 14-25
14.4.4.3 Scalar PLIT Items = . . . . v v « « o « « . 14-25
14.4.4.4 String Literal PLIT Items - . . . . . . . . 14-26
14.4.4.5 An Example Of Initialization - ., ., . . . . 14-29
14.4.4.6 Initializing Packed Data - . . . . . . . . 14-33
14.4.5 Structures And Field Selectors . . . . . . 14-39
14.4.5.1 Introduction . . . . . . ¢« + ¢ ¢ ¢« « . . . 14-39
14.4.5.2 Structures . . . ¢ ¢ ¢ ¢ ¢ e e e e e o« « . 1l4-39
14.4.5.3 FLEX VECTOR . . & & ¢ & ¢ ¢ 4 o o« o o o o . 1l4-30
14.4.5.4 Field Selectors = . . . . ¢ v v & o v o . . l4-43
14.4.5.5 GEN VECTOR . & & v 4« ¢ ¢ 4 o o o o o o v . 18-44
14.4.5.6 Summary . . . f 4 e e e e e e e e e . . . 14-47

CHAPTER 15 DIAGNOSTIC CONVENTIONS

15.1 INTRODUCTION . & & & & 4 4 4 o o o o o o o v v 15-1
15.2 DIAGNOSTIC SECTIONS . . & ¢ ¢ & & o o o o o o 4 15=-2
15.2.1 Program Header Section . . e s+ s s+ s+ & .« . 15-=3
15.2.2 Program Equates(declaratxons) e o s+ s e« e« o o 15-4
15.2.3 Program Data . . . . . ¢ ¢ ¢ v v ¢ &« o o« o . 15=5
15.2.4 Program Text . . . ¢« ¢« ¢« ¢« ¢ v ¢ ¢« o o « . . 15-6
15.2.5 Program Error Report . . . . . . . . . . . . 15-7
15.2.6 Hardware Ptable . . . . . . . . . . . . . . . 15-8
15.2.7 Software Ptable . . . . . . . . . ¢« . ¢« . . . 15-8
15.2.8 Dispatch Table . . . . . . . . ¢« . ¢« < « . . 15=-9
15.2.9 Report Code . . . ¢ ¢ ¢ ¢ ¢ ¢ & « & o o o« « . 15-9
15.2.10 Intialize Code . . . . . . ¢ ¢ v ¢ ¢« « « . . 15-10
15.2.11 Cleanup Code . . . . v ¢ ¢« v v v « &« &« « « . 15-10
15.2.12 Program Subroutines . . . . . . . . . . . . . 15-11

15.2.13 Hardware Test . .+ & ¢ ¢ ¢ ¢ & o o« o o o« « « « 15-13
15.2.14 Hardware Parameter Code . . . . . « . . . . . 15-16
15.2.15 Software Parameter Code . . . . . . « . . . . 15-16
15.3 SYMBOL CONVENTIONS © o e o e s o 4 e o o o o o 15-17
15.4 MACRO EXPANSION CONVENTIONS . . &+ v ¢ « o o « . 15-17

APPENDIX A ASSEMBLER SAMPLE



CONTENTS 19-Feb-77 -- Rev 3 Page 1l

APPENCIX B BLISS SAMPLE

APPENDIX C COMMON BLISS SAMPLE

‘fnd of Prefix]



Digital Equipment Corporation COMPANY CONFIDENTIAL

Title:

Page 1

VAX-11 Software Engineering Introduction -- Rev 3

Specification Status: draft

Architectural Status:

File:

PDM #:

Date:

SE1R3.RNO

not used

23-Feb-77

Superseded Specs: none

Author:

Typist:

Reviewer (s):

Abstract:

P. Conklin, P. Marks, M. Spier

P. Conklin

under ECO control

manual and how it is organized.

Revision History:

Rev

Rev

Rev

Rev W
 
N

Description

Original

Revised from Review

After 6 months experience

Author

M. Spier

P. Marks

P. Conklin

R. Brender, D. Cutler, R. Gourd, T. Hastings, I. Nassi,
S. Poulsen, D. Tolman

The introduction gives a chapter by chapter overview of the

Revised Date

14-Apr-76

21-Jun-76

23-Feb-77



Introduction 23-Feb-77 -- Rev 3 Page 1-990

Change History

Rev 2 to Rev 3:

1. Change to be the general contents and quide to the chapte.s.

2. Add Chapter 7.

3. Add Chapter 8.

4. Add purpose of manual.

5. Split chapter 6 into 6 through 11.

6. Add chapters 14 and 15.

7. Collect loose ends as last chapter (# 99).

[End of SE1R3.RNO]



CHAPTER 1

INTRODUCTION

23-Feb-77 -- Rev 3

This manual is concerned with software engineering practices 1in the
VAX-11 environment. It does not discuss or define the differences
between VAX-11 and other environments. Designed to be the
"programmer's helper", the manual contains the coding conventions as
well as practical data of technical, procedural, administrative and
conceptual nature that would be useful to the software engineer.

This manual has two purposes:

0 to provide the Software Engineer with information not
normally found in langquage reference manuals such as usage
notes and symbol construction rules.

0 to present recommended standards, conventions, and practices

such as commenting, formatting, and documentation.

Conventions, standards and practices can assure good, professional,
maintainable products of consistent quality. They need not encroach
on the programmer's "right" to be creative in his or her expression of
a program.

Chapter 1 is the introduction and gives a gquide to the manual's
organization. It includes a chapter by chapter overview.

Chapter 2 tells how to use this manual. It tells how to find the
exact information needed. It also gives the notations used in the
manual.

Chapter 3 is the methodological policy statements. These are the
policies which lead to the specifics of the format. They also outline
the basic structure of programs into modules. The policy statements
include the goals to be attained by following them. These policies
include the choice of language, the layout of the source text, the



Introduction 23-Feb-77 -- Rev 3 Page 1-2

separation into modules, and the sharing of code.

Chapter 4 is a program structure overview. It 1lists the source

module's textual elements, and gives examples of the parts of the

program. This pulls together in one place the details documented

later in chap<er 6.

Chapter 5 gives the standard module template files and the

instructions for wusing them. The standard template contains all of

the standard boilerplate as a convenience to save excessive retyping.

Chapter 6 details the commenting conventions. These are consistent

across all source languages. The entries are arranged alphabetically

for ease of reference. There is extensive cross-referencing to aid

retrieval. For each item, it gives the background and the rules, and

then gives templates and examples.

Chapters 7 through 11 give usage and formatting conventions for each
of our programming languages. The languages covered are assembler,

BASIC, BLISS, COBOL, and Fortran. Although there 1is occasional

redundancy between these chapters, we felt it better to minimize

retrieval difficulty at the expense of some duplication. The chapters
are layed out in the same style as Chapter 6. When a topic deserves
more than a page to describe, an outline is given here and a cross

reference is made to a fuller presentation in some other chapter.

- Chapter 12 is the naming conventions. These include the formation of
symbols reserved to Digital and the list of facility prefixes.

Chapter 13 gives details on forming external and interface

documentation. In particular, it includes details on the notation for
specifying procedure arguments.

Chapter 14 contains guidelines for the transportation of BLISS
programs across architectures.

Chapter 15 contains additional information and guidelines for writing
diagnostics programs.

The last chapter is a collection of loose ends and future sections.

The appendices give full sample programs written to this standard.

[End of Chapter 1]



Digital Equipment Corporation COMPANY CONFIDENTIAL Page 1

Title: VAX-1ll Software Engineering How to Use -- Rev 3

Specification Status: draft

Architectural Status: under ECO control

File: SE2R3.RNO

PDM #: not used

Date: 26-Feb-77

Superseded Specs: none

Author: P. Conklin, P. Marks, M. Spier

Typist: P. Conklin

Reviewer (s): R. Brender, D. Cutler, R. Gourd, T. Hastings, 1I. Nassi,
S. Poulsen, D. Tolman

Abstract: Chapter 2 gives a guide to the use of the manual and gives
its notations. It suggests ways of looking up information
in it.

Revision History:

Rev # Description Author Revised Date
Rev 1 Original M. Spier 14-Apr-76
Rev 2 Revised from Review P. Marks 21-Jun-76
Rev 3 After 6 months experience P. Conklin 26-Feb-77



How to Use this Manual 26-Feb-77 -- Rev 3 Page 2-990

Chanqge Histocry

Rev 2 to Rev 3:

1. Replace usage cross reference notation.

2. Note split of commenting and usage chapters.

[End of SE2R3.RNO]



CHAPTER 2

HOW TO USE THIS MANUAL

26-Feb-77 -- Rev 3

This manual assumes familiarity with the VAX-11 languages. Its
purpose is to serve as a guide to the precise use to which certain
language features may be put.

The introduction (chapter 1) indicates the chapters of the manual,
explaining what each chapter contains. The sts table of contents
lists individual sections within the Chapters. The index is organized
by keywords (e.g., COMMENT, ROUTINE, STATEMENT, etc.)

Suppose that you were told that your program needs better comments.
You should typically look up the concept under "C" in the chapter on
commenting. Similarly, if you were told that your useage or
formatting of some source statement was poor, you could look it up
under the statement’s name in the chapter on formatting and usage for
your language.

This will enable you immediately to retrieve the information requireda,
and have the exact amount of information that is pertinent to your
immediate needs. You may then get additional information about the
keyworded item in the other chapters. The important point is that
such additional information is not confused with the information
needed for some specific reason. The manual is deliberately not
organized for front- to back-cover sequential reading.

Keyworded data is cross referenced. The rules pertaining to keyword
"A" may require knowledge or use of keywords "B" and "C".

© Knowledge of "B" and "C": a "SEE ALSO" pointer indicates the
related item(s) which you should also understand.

0 Use of "B" or "C": the first occurrence of "B" and of "¢
within "A" is prefixed with the word "see" serving as a
reference pointer to indicate the possible need to consult
those keywords in turn.



How to Use this Manual 26-Feb-77 -- Rev 3 Page 2-2

There may be variants of a single keyworded concept. For example

LABEL and LOCAL LABEL. In this case, the keywords are ordered by the

main concept (e.g., LABEL), and any variant 1is to be retrieved by

suffixing that keyword with the qualifying key word. We use the colon

"." ag a qualification delimiter within the manual (e.g., LABEL:

LOCAL).

Finally, whenever this manual is reissued, all changes relative to the

immediately preceding version of the manual will be indicated by means

of a left margin change bar, as illustrated to the left of this entire

paragraph.

[End of Chapter 2]



Digital Equipment Corporation COMPANY CONFIDENTIAL Page 1

Title: VAX-11 Software Engineering Policy -- Rev 3

Specification Status: draft

Architectural Status: under ECO control

File:

PDM #:

Date:

SE3R3.RNO

not used

26-Feb-77

Superseded Specs: none

Author:

Typist:

P. Conklin, P. Marks, M. Spier

P. Conklin

Reviewer (s): R. Brender, D. Cutler, R. Gourd, T. Hastings, 1I. Nassi,

Abstract:

S. Poulsen, D. Tolman

Chapter 3 gives the methodological policy statements.
These include the choice of language, the layout of the
source text, the separation into modules, and the sharing
of code.

Revision History:

Rev

Rev

Rev

Rev W
I
N
=
 
= Description Author Revised Date

Original M. Spier 14-Apr-76
Revised from Review P. Marks 21-Jun-76
After 6 months experience P. Conklin 26-Feb-77



Call/return interface

Choice of language

Code sharing

Control

working set

Field support personnel

Functionality

Implementation language

system « s+ e s

Language

choice of

Modifiability

Modular programs . . .

Quality . . « « .+ .

Read code .

Readable system code

Sharing

code .

Support personnel

System code

readable

System 1mplementat10n language

Transportability .

Working set control



Methodological Policy 26-Feb-77 -- Rev 3 ' Page 3-990

Change History

Rev 2 to Rev 3:

1. Remove reference to page boundaries.

2. Allow code in application languages.

3. Document reasons for structure and for transportability.

4. Limit interface data types to call standard.

5. Remove references to self-initializing.

TM__ 3 i m] n

[End of SE3R3.RNO]



CHAPTER 3

METHODOLOGICAL POLICY

26-Feb-77 -- Rev 3

All system programs for the VAX-11 family are written 1in an
application language or one of the two official system
implementation languages:

o The VAX-11 Macro Assembler, or

o BLISS-32

Of these, BLISS is the default choice for a language. BLISS 1is
intended to replace as much assembly code as possible. The
assembler will be used as a system implementation language only
for:

0 Hardware dependent routines, such as interrupt handlers or 1/0
drivers, where extreme machine dependency coupled with high
performance requirements rule out the use of BLISS.

o Cases where functionality is needed that is not supplied by
BLISS; for example, routines which are to be. invoked in a
non-standard way.

o Routines which cannot be written in BLISS because of
ccmpilation difficulty (as distinct from functional
impossibility, or undesirability). This category includes all
routines which would have been coded in BLISS had there been
available a BLISS compiler that supports the required
technicalities (e.qg., special relocation or addressing
features). All these routines are, in principle, candidates
for future recoding in BLISS, conditions permitting.



Meth

2.

odological Policy 26-Feb-77 -- Rev 3 Page 3-2

All code will be written uniformly, according to these

conventions, in order to:

o Make system code meaningfully readable. If source code is not

properly structured, organized, and indented according to

these conventions, you have obscured the algorithm from the

reader. The code should be structured into blocks with a

limited amount of branching. This allows a graphical

reflection of the control flow. 1If the code is unstructured,

you have lost the ability to understand and modify it.

o Enable all programmers to read, understand and be able to

modify one another's code, regardless of source language.

Note that the documenting conventions are identical across all

our languages.

o Enable field support personnel (both software specialists and

hardware engineers) to read and understand VAX-11 system code.

To lower field support costs by eliminating, as much as

possible, the need for software specialists who are

knowledgeable of certain routines only, and to further the

software specialist's ability to master any system code.

o Make our software well documented: make programs both

readable and comprehensible by being able to extract technical

documentation from the source code itself. Facilitate the

work of technical writers by providing them with uniform, well

documented source code.

o Reduce the bug rate and enhance the quality and stability of

our software products. Maintain the product's initial high

quality throughout its lifetime: through cycles of bug fixes,

modifications and functional evolution.

All major bodies of code, or distinct logical sub-systems (with

the exception of speed/size sensitive executive or diagnostic

modules), will be coded as independent routines using the standard

call/return interface, to:

o Encourage and facilitate the wuse of BLISS in non-critical

sections of system software, and to

o Encourage the future recoding of assembly language routines in

BLISS, conditions permitting.

o Enhance the ability to transport non-assembly language code.

o Limit the interface data types to those specified as part of

the calling standard.



All user-level system products (lanquage processors, utilities,
library subroutines, etc.) should be designed and implemented cso
that they may be transportable between systems and/or family
architectures. Keep in mind that:

o Transportability is a major goal to which Central Engineering
is firmly committed.

o Transportability has to be designed carefully into the
product, and carefully realized by following the
transportability quidelines.

o All machine-dependent features are to be avoided as a rule.
If necessary, they should be localized to a
clearly-identifiable, non-transportable module.

The sharing of code is encouraged as much as possible. Whenever
poss1b1e, use a library service routine instead of coding your own
version of that same function. 1If such a library routine does not
yet exist, code one that is of general nature, and submit it to
the library.

All proqgrams are to be written modularly, in small self-contained
modules that are maintained as individual source files. These
modules will be assembled separately. The object code files will
be linked to form the larger software product. Modularity will
benefit us by:

o Enhancing guality: each module can be tested and debugged
separately; small modules are more easily controllable than
large bulkv proqrams.

o Isolating functionality: it becomes easier to custom tailor a
system through selective linking of exactly those modules that
are needed.

o Enhancing modifiability: the modification of a given module
will be less likely to have an undesirable side effect on some
other module's functionality.

o Working set control: the ability to rearrange the 1linking
order of modules is a most powerful tool in optimizing obroqram
behavior within a paged runtime environment.



Methodological Policy 26-Feb-77 -- Rev 3 Page 3-4

2. All modules (with the possible exception of certain core executive

or diagnostic programs) are to be written as pure, non-self

modifying and well localized code.

o Self initializing: With the exception of system startup or

bootstrap code, all routines should be self initializing. If

they depend on an initial value of some permanent allocation

(OWN) variable, initialize that variable dynamically rather

than relying on compile time or link time value settings.

o Well localized: VAX-1ll is a wvirtual memory machine. Any

piece of code may --whether originally intended to, or not--

possibly run in a demand paging environment. You should make

the greatest efforts possible to design and structure your

code in such a way that the locality of reference is kept to a

minimum. Don't promiscuously branch over a large absolute

address span. Don't make reference to widely (and wildly)

fragmented database elements within a single sequence of

instructions, and especially within the scope of a tight loop.

(End of Chapter 3]



Digital Equipment Corporation COMPANY CONFIDENTIAL Page 1

Title: VAX-1l1 Software Engineering Program Structure -- Rev 3

Specification Status: draft

Architectural Status: under ECO control

File: SE4R3.RNO

PDM #: not used

Date: 28-Feb-77

Superseded Specs: none

Author: P. Conklin, P. Marks, M. Spier

Typist: P. Conklin

Reviewer (s): R. Brender, D. Cutler, R. Gourd, T. Hastings, 1I. Nassi,
S. Poulsen, D. Tolman

Abstract: Chapter 4 overviews and then details the 1layout of a
module. It includes examples of the module and routine
prefaces.

Revision History:

Rev # Description Author Revised Date
Rev 1 Original M. Spier 14-Apr-76
Rev 2 Revised from Review P. Marks 21-Jun-76
Raoawv AfF+ar & mAanthe exXxperlence n N le N 2 om AN TM_ L - -
OV - P4 0 - 4 v Vil Liie APMTL ATIILT r CUOUIIRNL L) Lo-=rep-—//



<new page> notatior

<separator> notation

<skip> notation .

<space> notation

<tab> notation . .

Abstract . . . . .

Algorithms

critical . . .

Author

Calling sequence .

Conditional assembly

Critical algorithms

Edit history . . .

Environment statement

Facility statement .

Functional description

Ident statement .

Legal notices . .

Module preface .

Modules . . .

Notation

<{new page> . . .

{separator> . .

<skip> . « « .« .

{space> . . . .

<tab> . . . . .

Title statement .

to 4-3



Program Structure 28-Feb-77 -- Rev 3 Page 4-990

Change History

Rev 2 to Rev 3:

1.

2.

[End of

Remove the VERSION NUMBER statement.

Explain why routine owns are discouraged.

Update to use template in the example.

Define calling sequence vs. input and output parameters.

Add references to SFORMAL, etc., macros.

Change CONFIGURATION to ENVIRONMENT.

Combine abbreviated and detailed edit history.

Add weak and validation section.

Add BLISS to show similarity.

Add critical algorithms to functional description.

Use NONE for inapplicable sections, do not delete them.

Title and ident are first two lines.

Legal notices are fully éapitalized.

Edits have initials if several editors per version.

Ident examples include edit.

RLISS module head includes other module sw
[ a8 . A b e Al WS W N AN & A88N7WA 4

BLISS structure defs are together.

Add blank line after legal notices.

SE4R3.RNO]



CHAPTER 4

PROGRAM STRUCTURE

28-Feb-77 -- Rev 3

Programs are written in modules. The module is the source text that
1s assembled or compiled as a unit. Each module can be coded in any
language. The program structure and commenting conventions are
consistent across all lanquages to allow the reader to learn one
pattern independent of the writer's choice of language. Also, for
reader ease, every section and subsection must appear in its standard
position. If a section or comment is not applicable, enter the word
NONE as a separate 1line. This is done to make the reader's job as
simple and clear as possible. Each module exists as a Separate source
text file, and is structured as follows:

4.1 THE MODULE PREFACE

It provides the necessary documentation to explain the module's
functionality, use and history. It consists of the following items 1in
the exact given order. All items must be included.

O A title statement specifying the module's name. The title is
a symbol of wup to 15 characters in length. This statement
has a comment indicating the module's functionality. The
title statement, together with its comment, are reproduced as
vage headers in the listing. The title statement is always
the first line of the file.

¢ An IDENT statement indicating the module's current version
number. The ident statement is always the second line of the
file.

© The standard DEC legal notices fully capitalized for
emphasis.



Program Structure 28-Feb-77 -- Rev 3 Page 4-2

THE MODULE PREFACE

o A FACILITY statement. A module may be a dedicated part of a

larger 1linked facility, or part of several facilities, or a

general purpose library function. This statement identifies

the larger whole of which the module is part.

A short functional description of the module (a documenting

comment) including the design basis for any critical

algorithms. If the module requires an extensive functional

description, then this item is an abstract of the

description, and 1is 1identified as such by the keyword

ABSTRACT. The extensive functional description will then be

provided on the following page.

ENVIRONMENT statement. Give any special environmental

assumptions such as access modes, OTS, etc. If the module's

assembly is governed by a system wide configuration file,

then state the file(s)'s name(s). Otherwise if the module

has special conditional assembly parameters, then specify

very explicitly what they are and what values they assume

under all given conditions.

The author and date on which the module was coded.

The detailed current edit history. This item specifies the

versions, the modifier, and the last date of each version.

This item also lists the specific changes made between base

levels (during production) or releases, providing a short

functional description of each problem and its solution, as
well as appropriate reference information such as SPR

number (s), etc. The comments include the full name of the

person responsible for each version. If several people

modify the module, the initials of the others appear in each

edit line.

4.2 THE MODULE'S DECLARATIVE PART

It contains:

o

o

For BLISS, specification of the table of contents.

Specification of INCLUDE files or library definitions.

Definition of local macros.

Declaration of local equated symbols

Declaration of own storage allocations.

Specification of externals. For assembly language, only WEAK

or VALIDATION externals need be listed.



Program Structure 28-Feb-77 -- Rev 3 Page 4-3
THE MODULE'S ACTUAL CODE

4.3 THE MODULE'S ACTUAL CODE

This is in the form o or more ROUTINE(s). The module may have
no routines 1in it ( no executable code) if it is a DATA SEGMENT
MODULE. Each routine consists of the following sequence of items:

~ v~

TLV

’D
 
N

4.3.1 The ROUTINE PREFACE

O A routine statement specifying the routine's name. This
statement has a comment indicating the routine's
functionality. The routine statement, together with. its
comment, are reproduced as page headers in the listing.

O A detailed functional description of the routine.

© A list of the routine's calling sequence, input and output
parameters.

O A list of the implicit inputs and outputs, and functional
side effects, if any, of the routine's code.

4.3.2 The Routine's Declarative Par*

© Specification of 1local INCLUDE file(s), if appropriate.
Normally, such use is not recommended.

~~Declarationof local (stack frame resident) variables.

O

0 Declaration of optional equated symbols, own storage
allocation variables and macros, all of which are local to
this routine. 1In general, use of these local items is not
recommended unless it adds significant clarity. Usually,
these are better declared at the module level.

4.3.3 The Routine's Code

0 For assembly language, the routine's entry point(s).

o The routine's body.

0 The routine's return instruction.



Program Structure 28-Feb-77 -- Rev 3 Page 4-4

MODULE TERMINATION

4.4 MODULE TEFEMINATION

An end module statement terminates the module.

4.5 ANNOTATED SAMPLE LAYOUTS

The above are explained in detail in the commenting and formatting

chapters of this manual. In the following sections a sample layout of

the module format is presented. Samples are given for both assembler
and BLISS coding to show the similarity.

The following notations are wused to designate source listing
formatting:

o <new page> indicates an inserted form feed "CTRL/L" character
or an assembler .PAGE directive, to force the listing onto a
new page.

o <separator> indicates either several (normally=4) <skip>s or

a <new page>. A <separator> is indicated wherever it would
be desirable to force a new page, if the present page 1is

sufficiently full. 1If the last section only marginally fills

the present page, and the following item of text would remain

on the page, then they can both appear on the same page

separated by several blank lines.

o <skip> indicates a blank line.

o <space> indicates a single blank character.

o <tab> 1indicates a horizontal tab character.



Program Structure 28-Feb-77 -- Rev 3 Page 4-5

SAMPLE LAYOUT OF THE MODULE PREFACE

4.

4.

W
O
 
V
e
 
W
S
 
N
S
 
M
E
 
N
E
 
W
 
N
P
 
N
P
 
W
O
 
N
E
 
N
P
 
N
G
 
W
S
 
D
 
W
P
 
e
 
w
e
 
W

-

’

.

’

.

[

.

[4

.

4

’

[

4

.

’

[

4

.

[4

.

’

.

’

[

’

.

’

.

1

.

’

.

’

.

[

(3

[

.

’

.

[

.

[

.

’

.

[}

6 SAMPLE LAYOUT OF THE MODULE PREFACE

6.1 Example Of The Assembler Module Preface

.TITLE EXAMPLE - <terse functional description>

.IDENT /03-05/

COPYRIGHT (C) 1977

DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS 01754

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A SINGLE
COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE INCLUSION OF THE

ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR ANY OTHER COPIES THEREOF,
MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON

EXCEPT FOR USE ON SUCH SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE
TERMS. TITLE TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES

REMAIN IN DEC.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE

AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT

CORPORATION.

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

++ <this is a DOCUMENTING COMMENT)>

FACILITY: General Library

FUNCTIONAL DESCRIPTION: (or ABSTRACT:)

A short 3-6 line functional description of the module.

If an extensive functional description is called for,

then this should be a short abstract.

ENVIRONMENT: User Mode with OTS

AUTHOR: Charlie Brown, CREATION DATE: 4-Jul-76

MODIFIED BY:

Lucy vanPest, 17-Aug-76: VERSION 02

01 - Program Crashes if Disk Error

02 - SPR #4711: reads incorrect block after error.

Snoopy Beagle Brown, 19-Dec-76: VERSION 03

03 - SPR #5391: reads blocks backward if 50 hertz.

04 - Power fail recovery not reliable

05 - (LVP) SPR #5432: recover if ECC recoverable.
-- <end of DOCUMENTING COMMENT>

<{new page>



Program Structure 28-Feb-77 -- Rev 3 Page 4-6

SAMPLE LAYOUT OF THE MODULE PREFACE

4.6.2 Example Of The BLISS Module Preface

MODULE EXAMPLE ( ! <terse functional description>

IDENT="'03-05"

<other module switches>
) =

COPYRIGHT (C) 1977

DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS 01754

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A SINGLE

COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE INCLUSION OF THE

ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR ANY OTHER COPIES THEREOF,
MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON

EXCEPT FOR USE ON SUCH SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE

TERMS. TITLE TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES

REMAIN IN DEC.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE

AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT

CORPORATION.

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

1 +4 <this 1s a DOCUMENTING COMMENT>

FACILITY: General Library

FUNCTIONAL DESCRIPTION: (or ABSTRACT:)

A short 5-6 line functional description of the module.

If an extensive functional description is called for,

then this should be a short abstract.

ENVIRONMENT: User Mode with OTS

MODIFIED BY:

!

!

!

!

!

!

!

!

!

!

! AUTHOR: Charlie Brown, CREATION DATE: 4-Jul-76
!

!

! .

! Lucy vanPest, 17-Aug-76: VERSION 02
1

!

!

!

!

1

01 - Program Crashes if Disk Error

02 - SPR #4711: reads incorrect block after error.

Snoopy Beagle Brown, 19-Dec-76: VERSION 03

03 - SPR #5391: reads blocks backward if 50 hertz.

04 - Power fail recovery not reliable

! 05 - (LVP) SPR #5432: recover if ECC recoverable.

! == <end of DOCUMENTING COMMENT>

<new page>



Program Structure 28-Feb-77 -- Rev 3 Page 4-7

SAMPLE LAYOUT OF THE MODULE DECLARATIONS

4.7 SAMPLE LAYOUT OF THE MODULE DECLARATIONS

4.7.1 Example Of The Assembler Module Declarations

.SBTTL DECLARATIONS

; INCLUDE FILES:

<library INCLUDE files and library macros which define:

MACROs, assembly parameters, systemwide equated
cumhnleo ahla Anfa T EF1Ane N
Sympois, tabie gerlnicions>

MACROS:

e
 
w
e
 
w
e

<local macro definitions>

EQUATED SYMBOLS:

~
e
 
w
e
 
W

<equated symbol definitions>

OWN STORAGE:

-
 
w
e
 
w
e

<declaration of permanent storage allocations>

<also local storage structures, etc.>

<if many structures, give each a heading>

<see SOWN and structure macros>

WEAK AND VALIDATION DECLARATIONS:

<only include section if any declared>

<{new Dage>



Program Structure 28-Feb-77 -- Rev 3 Page 4-8

SAMPLE LAYOUT OF THE MODULE DECLARATIONS

4. 7.2 Example Of The BLISS Module Declarations

TABLE OF CONTENTS:

<forward routine declarations in order with

a summary description of each>

INCLUDE FILES:

<library REQUIRE files and library macros which define:

MACROs, assembly parameters, systemwide equated

symbols, table definitions>

MACROS:

<local macro definitions other than structure definitions>

EQUATED SYMBOLS:

<LITERAL and BIND declarations>

<when a group of structure, macro, and literal declarations

define a structure they should be grouped together here>

OWN STORAGE:

<declaration of permanent storage allocations>

<also local storage structures, etc.>

<if many structures, give each a heading>

EXTERNAL REFERENCES:

<externals with short description>

{new page>



Program Structure 28-Feb-77 -- Rev 3 Page 4-9

SAMPLE LAYOUT OF THE ROUTINE PREFACE

4.

4.

’

’

4

’

.

’

.

14

’

[

’

.

’

[

’

!

.

4

.

!

.

1

.

’

-

’

.

’

.

[

.

I

.

1

.

’

.

’

.

’

.

[

.

’

.

’

.

4

.

’

.

4

-

4

.

’

.

’

-

!

[

I

-

14

.

’

[

’

3

’

.

’

.

I

.

!

[

’

<

8 SAMPLE LAYOUT OF THE ROUTINE PREFACE

8.1 Example Of The Assembler Routine Preface

.SBTTL EXAMPLE - <short one-line description>

++ <this 1s a DOCUMENTING COMMENT>

FUNCTIONAL DESCRIPTION:

<detailed functional description of the routine>

CALLING SEQUENCE:

<instruction for calling this routine>

<include AP-list if applicable>

{(see SFORMAL macro>

INPUT PARAMETERS:

<list of explicit input parameters other than AP-list>

<typically registers or stacked arguments>

IMPLICIT INPUTS:

<list of inputs from global or own storage>

OUTPUT PARAMETERS:

<list of explicit output parameters other than AP-list>

<typically registers or stacked results>

IMPLICIT OUTPUTS:

<list of outputs in global or own storage>

COMPLETION CODES:

<list of RO completion codes>

<if standard function, change heading to FUNCTION VALUE>

<if the hardware condition codes are set,

change the heading to CONDITION CODES>

SIDE EFFECTS:

<ilist of functional side effects including environmental changes>

{exclude 1mplicit outputs of global or own storage>

<list all SIGNALs generated if any>

-- <end of DOCUMENTING COMMENT>

separatcr>



—
 
—
—
—
 
—
 
—
 
—
 
—
 
—
 
—

 
—
 
—
 
—
 
—
 
—
—
 
—
 
—
—

 
—
 

i
,
 
i
t
 

s
,
 
S
t
 
e
t
 
e
 
a
—
 
m
—

 
| 
O
o
—
 

| 
s
 
—
 
—

Program Structure 28-Feb-77 -- Rev 3 Page 4-10

SAMPLE LAYOUT OF THE ROUTINE PREFACE

4.8.2 Example Of The BLISS Routline Preface

ROUTINE EXAMPLE (arguments) = !<short one-line description>

1++ <this 1s a DOCUMENTING COMMENT>

! FUNCTIONAL DESCRIPTION:

<detailed functional description of the routine>

FORMAL PARAMETERS:

<list formal parameters and give documentation of them>

IMPLICIT INPUTS:

<list of inputs from global or own storage>

<list of outputs in global or own storage>

COMPLETION CODES:

<list of function value completion codes>

<if standard function, change heading to FUNCTION VALUE>

!

!

!

!

!

!

!

!

}

!

!

! IMPLICIT OUTPUTS:
1

!

!

!

!

!

!

!

! SIDE EFFECTS:
§

! <list of functional side effects including environmental changes>
; <exclude implicit outputs of global or own storage>

! <list all SIGNALs generated if any>

! == <end of DOCUMENTING COMMENT>

{separator>

[End of Chapter 4]



Digital Equipment Corporation COMPANY CONFIDENTIAL Page 1

Title: VAX-1ll Software Engineering Template -- Rev 3

Specification Status: draft

Architectural Status: wunder ECO control

File: SES5R3.RNO

PDM #: not used

Date: 28-Feb-77

Superseded Specs: MARS template by R. Gourd

Author: P. Conklin, P. Marks, M. Spier

Typist: P. Conklin

Reviewer (s): R. Brender, D. Cutler, R. Gourd, T. Hastings, 1I. Nassi,
S. Poulsen, D. Tolman

Abstract: Qhapter 5 presents the standard template files. It also
includes step by step instructions for editing them to form
a module in standard format.

Revision History:

Rev # Description Author Revised Date
Rev 1 Original M. Spier 14-Apr-76
Rev 2 Revised from Review P. Marks 21-Jun-76
Rev 3 After 6 months experience P. Conklin 28-Feb-77



BLISS LIB: . . .

MARS LIB: . . .

MODULE.BLI . . .

MODULE.MAR . . .



Template 28-Feb-77 -- Rev 3 Page 5-990

Change History

Rev 2 to Rev 3:

1. Add instructions from Gourd memo RSG028 Rev 2.

2. Update to latest MODULE.MAR punctuation.

3. Abstract is in one space, not one tab.

4. Add instructions for editting modifications.

5. Add configuration to the environment section.

6. Add instructions to include $FORMAL macro.

7. Add weak/validation section.

8. Add instructions for .ENTRY.

9. Document using intials in maintenance history.

10. Max source line should be 80 columns.

11. Add BLISS template.

12. Add blank after legal notices; add blank after abstract.

[End of SES5R3.RNO]



CHAPTER 5

TEMPLATE

28~-Feb-77 -- Rev 3

Included here are instructions for commencing a module of coding, a
copy of the template file which is the basis of a new module, and
instructions for filling in the template.

5.1 MAKING A NEW ASSEMBLY LANGUAGE MODULE

When you commence the writing of a program in VAX-11 assembler
language, you should work from a copy of the template file MODULE.MAR,
which contains the proper formatting for assembler programs.

\ MODULE.MAR is on the PDP-11 MIAS system under (202,1]. To commence
creation of your own module, simply type

PIP filename.MAR=DB0:[202,1)MODULE.MAR

where "filename" is your designated file name (nine characters or
less). \

MODULE.MAR is normally available under the VAX-1l1 system by copying
from the system assembler library directory

SCOPY MARS LIB:MODULE.MAR filename.MAR

where "filename" is your designated file name (nine characters or
less).

Once your copy of the module template exists you must fill in and/or
alter certain information prior to writing code.



Template 28-Feb-77 -- Rev 3 Page 5-2

EDITS TO MODULE.MAR

A copy of MODULE.MAR is shown at the end of this section. The 1line

numbers in the left margin are for reference in this tutorial; they

are not part of the file. Refer to Chapter 4, the Program Structure

Overview, for an overview of the various sections. Refer to Chapters

6 and 7 for details on each section. Refer to the Appendix for a

sample program.

line 001 Replace "TEMPLATE" with your module name and put a terse

(half line) description to the right of the hyphen (-).

line 002 Enter the version number between the two slashes.

line 025 After the colon, enter the name of the facility within

which the module resides (e.g., system library, math

library, etc.).

line 028 After this line, enter a terse (3 to 6 1lines) summary of
the functionality of the module, starting each successive

line with “;<tab>".

line 030 After the colon, describe the environment within which this

module (code) will run, e.g., at what access mode, whether

it has interrupts disabled, interrupt level, etc. Include

any conditional assembly instructions here.

line 032 Following the first colon and <space>, enter your name;

follow the second colon and <space> with the creation date

of the module.

line 036 As versions are released, copy this 1line after the

replicated 1line 037. After the <tab> which is before the

comma enter the modifier's name. After the space after the

comma enter the modification date. Update this date

everytime the file is editted. At the end of the line

enter the version number.

line 037 As edits are made after first release, copy this 1line

changing the edit number. At the end of this line describe

the edit. If the individual making the change is different

from the one responsible for this version, then put the

changer's initials in parentheses at the start of the

description of each edit.

lines 043 Make appropriate entries in each defined section (reference

047 051 Chapter 4 if you don't understand the section titles named

055 on template lines 041, 045, 049, and 053).

line 055 Follow this line with a section of weak and validation

declarations if any.



Templ

EDITS TO

line

line

line

lines

071
n7aQ
LV

087

line

line

line

line

line

line

ate

056

059

063

091

093

092

095

096

097

28-Feb-77 ~-- Rev 3 Page 5-3

MODULE.MAR

Replace "TEMPLATE EXAMPLE" with vyour routine's name and

follow the hyphen with a half line description.

Enter a sufficient description of the function(s) of this

routine, starting each successive line with ";<tabh,".

If this module 1s "called", replace "NONE" with the calling

sequence (AP-list). Otherwise give the 1nstruction for

invoking this routine.

When applicable, replace “NONE" with the information

required by the section titles named on template lines
AAAAAAAA A fl(C (\Ln N7 {\7'7 O i)
IIUINUC‘LLCU VU vuo, v, V)

If the routine 1s CALLed, define its formals by including &

SFORMAL macro here.

Replace "TEMP EXAMPLE" with your. routine's name

Preceed the semi-colon with the entry mask or first

instruction and adjust the comment appropriately. Or merge

lines 093 and 094 into a .ENTRY statement.

Commence the body of vyour routine/module, commenting

appropriately thoughout. Keep source lines to 80 columns

maximum.

Replace "TEMP XMPL EXIT" with your routine's exit 1location

label.

nd/oror

ndr
'
f
l
wepla

118

C

&~

c o
 

i 
{
]

n
 

Q
J delete the 1nappropriate return 1instruction

-k
[y§

e and the aliccee A3 135 e
r 11 a succeeaing iine.



Template 28-Feb-77 -- Rev 3 Page 5-4

LISTING OF MODULE.MAR

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

.

4

O
 
W
O
 
W
P
 
N
e
 

W
M
E
 
W
O
 
M
Y
 
W
P
 
M
G
 
W
O
 
W
E
 
W
S
 
w
s
 
“
e

e
 
M
O
 
M
Y
 
W
O
 
W
 
W
O
 
N
G
 
W
S
 
s
 
W
S
 
e
 
T
M
 
e
 
W
0
 
W
P
 
W
E
 
W
P
 
W

.TITLE TEMPLATE -

.IDENT [/ /

COPYRIGHT (C) 1977

DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS 01754

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A SINGLE

COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE INCLUSION OF THE

ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR ANY OTHER COPIES THEREOF,

MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON

EXCEPT FOR USE ON SUCH SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE

TERMS. TITLE TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES
REMAIN IN DEC.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTMTCE

AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUI1l IT

CORPORATION.

DEC ASSUMES NO RESPUNSIBILITY FOR THE USE OR RELIABILITY OF ITS

SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

++

FACILITY:

ABSTRACT:

ENVIRONMENT:

AUTHOR: , CREATION DATE:

MODIFIED BY:

, ¢ VERSION

01 -



i
 
r
—
 
—
—
 
—
 
—

 
—
—
 
—
 
—
 
—
 
—
 
—
 
—
 
—
 
—

 
t
—
—
—
—
 
o
y
 

cm
om
ir
m,

Template 28-Feb-77 -- Rev 3

LISTING OF MODULE.MAR

{page>

039
NnNAN

uagu

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

-
9
 
w
e
 
W
 

e
 

WT
Mm

e 
W
O

‘
"
 
W
 
e

e
 
e
 
W

.SBTTL DECLARATIONS

INCLUDE FILES:

MACROS:

EQUATED SYMBOLS:

OWN STORAGE:

Page 5-5



Template 28-Feb-77 -- Rev 3 Page 5-6

LISTING OF MODULE.MAR

<page>

056 .SBTTL TEMPLATE EXAMPLE -

057 P+

058 ; FUNCTIONAL DESCRIPTION:

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093 TEMP_EXAMPLE:

094 ; ENTRY POINT (OR MASK)

095

096 TEMP_ XMPL EXIT:

097 RET

098 RSB

099

100 .END

CALLING SEQUENCE:

NONE

INPUT PARAMETERS:

NONE

IMPLICIT INPUTS:

NONE

OUTPUT PARAMETERS:

NONE

IMPLICIT OUTPUTS:

NONE

COMPLETION CODES:

NONE

SIDE EFFECTS:

NONE

W
E
 

W
M
E
 
W
O
 
W
Y
 
W
E
 
N
 
N
P
 
W
E
 
W
E
 
N
P
 
W
O
 
W
O
 
N
P
 
W
O
 
W
P
 
W
G
 
W
O
 
N
G
 
N
P
 
W
E
 
W
E
 
N
9
 
W
E
 
W
S
 
e
 
N
S
 
s
 
w
e
 
W
S
 
"
 
N
 
-



Template 28-Feb-77 -- Rev 3 Page 5-7
MAKING A NEW BASIC LANGUAGE MODULE

5.2 MAKING A NEW BASIC LANGUAGE MODULE

v I 13 ~A3Details to be supplied.

5.3 MAKING A NEW BLISS LANGUAGE MODULE

When you commence the writing of a program in BLISS, you should work
from a copy of the template file MODULE.BLI, which contains the proper
formatting for BLISS programs.

\ MODULE.BLI is on the IPC PDP-10 System-F under BLI:. To commence
creation of your own module, simply type

COPY filename.BLI=BLI:MODULE.BLI

where "filename is your designated file name (six characters or less).
If the module 1is not transportable use output file type .B32 to
indicate this. \

MODULE.BLI is normally available under the VAX-11 system by copying
from the system BLISS directory

$SCOPY BLISS LIB:MODULE.BLI filename.BLI

where "filename" is your designated file name (nine characters or
less). If the module is not transportable use output file type .B32
to indicate this.

Once your copy of the module template exists you must fill in and
alter certain information prior to writing code.



Template 28-Feb-77 -- Rev 3 Page 5-8

EDITS TO MODULE.BLI

A copy of MODULE.BLI is shown at the end of this section. The 1line
numbers in the left margin are for reference in this tutuorial; they
are not part of the file. Refer to Chapter 4, the Program Structure
Overview, for an overview of the various sections. Refer to Chapters
6 and 9 for details on each section. Refer to the Appendix for a
sample program.

line 001 Replace "TEMPLATE" with your module name and put a terse
(half line) description to the right of the exclamation (!)

line 002 Enter the version number between the two apostrophes. Add

any other module switches one per line after line 002.

line 027 After the colon, enter the name of the facility within
which the module resides (e.g., system 1library, math

library, etc.).

line 030 After this line, enter a terse (3 to 6 1lines) summary of
the functionality of the module, starting each successive

line with "!<tab>".

line 032 After the colon, describe the environment within which this

module (code) will run, e.g., at what access mode, whether

it has interrupts disabled, interrupt level, etc. Include

any conditional compilation instructions here.

line 034 Following the first colon and <space>, enter your name;
follow the second colon and <space> with the creation date

of the module.

line 038 As versions are released, <copy this 1line after the
replicated 1line 039. After the <tab> which is before the

comma enter the modifier's name. After the space after the
comma enter the modification date. Update this date

everytime the file is editted. At the end of the line
enter the version number.

line 039 As edits are made after first release, copy this line

changing the edit number. At the end of this line describe

the edit. If the individual making the change is different

from the one responsible for this version, then put the

changer's initials in parentheses at the start of the

description of each edit.

line 046 Enter all routine names defined 1in this module one per

line. Terminate each except the last with a comma. Follow

each with a short summary comment (half 1line). Keep the
routines in the order of occurence in the module. 1Include
any routine attributes needed by BLISS.



Template 28-Feb-77 -- Rev 3 Page 5-9
EDITS TO MODULE.BLI

lines 051

055 059

063

line 069

line 070

line 074

line 078

lines 082

086

091

095

line 102

line 103

line 104

Make appropriate entries in each defined section (reference
Chapter 4 if you don't understand the section titles named
on template lines 049, 053, 057, and 061).

Enter all external references made by your routine here one
per line. Terminate each except the last with a comma.
Include any necessary attributes. Follow each with a terse
summary comment of its purpose (half line).

Replace "TEMP_EXAMPLE ()" with your routine's name and its
formal parameter list. Put a terse description of the
routine to the right of the exclamation (!). If the above
two edits will not fit on this line, keep the comment on
this line and place the formal parameter list on the next
line. If your routine returns a value, delete the
":NOVALUE" and enter the routine value(s) in the section
entitled "ROUTINE VALUE:" (line 091).

Enter a sufficient description of the function(s) of this
routine, starting each successive line with "!<tab>".

If this module has parameters, replace "NONE" with the list
of all parameters in order one per line. For each give a
complete description including the passing mechanism in
formal notation.

When applicable, replace ~“NONE" with the information
required by the section titles named on template lines
numberred 080, 084, 088, 089, and 093. Delete whichever
of lines 088 and 089 is not applicable.

List the routine's locals one per line. Follow each with
its attributes and a descriptive comment.

Commence the body of your routine/module, commenting
appropriately thoughout. Keep source lines to 80 columns
maximum.

Replace "TEMP_EXAMPLE" with your routine's name.



Template 28-Feb-77 -- Rev 3 Page 5-10

LISTING OF MODULE.BLI

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

MO

BE

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

DULE TEMPLATE ( !

IDENT = ' !

) =

GIN

COPYRIGHT (C) 1977

DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS 01754

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A SINGLE

COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE INCLUSION OF THE

ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR ANY OTHER COPIES THEREOF,

MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON

EXCEPT FOR USE ON SUCH SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE

TERMS. TITLE TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES

REMAIN IN DEC.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOT.i..

AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT

CCRPORATION.

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS

SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

1++

FACILITY:

ABSTRACT:

ENVIRONMENT:

AUTHOR: , CREATION DATE:

MODIFIED BY:

, ¢ VERSION

01 -



Template 28-Feb-77 -- Rev 3

LISTING OF MODULE.BLI

<page>

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

TABLE OF CONTENTS:

FORWARD ROUTINE
[

’

INCLUDE FILES:

MACROS:

EQUATED SYMBOLS:

OWN STORAGE:

EXTERNAL REFERENCES:

EXTERNAL ROUTINE

’

Page 5-11



Template 28-Feb-77 -- Rev 3 Page 5-12

LISTING OF MODULE.BLI

<page>

070 ROUTINE TEMP_EXAMPLE () :NOVALUE = !

071

072 1++ . .

073 FUNCTIONAL DESCRIPTION:

074

075

076

077

078

079

080

081

082

083

084

085

!

!

!

! FORMAL PARAMETERS:
!

!

!

!

!

!

!

!

!

086 ! NONE
]

!

!

!

1

!

!

!

!

1

!_

NONE

IMPLICIT INPUTS:

NONE

IMPLICIT OUTPUTS:

087

088

089

090

091

092

093

094

095

096

097

098

099 BEGIN

100

101 LOCAL

102 H

103

104 END; !End of TEMP EXAMPLE

<page>

105 END '!End of module

106 ELUDOM

ROUTINE VALUE:
COMPLETION CODES:

NONE

SIDE EFFECTS:

NONE



Template 28-Feb-77 =-- Rev 3

MAKING A NEW COBOL LANGUAGE MODULE

5.4 MAKING A NEW COBOL LANGUAGE MODULE

Details to be supplied.

5.5 MAKING A NEW FORTRAN LANGUAGE MODULE

Details to be supplied.

[End of Chapter 5]

Page 5-13



Digital Equipment Corporation COMPANY CONFIDENTIAL

Title:

Page 1

VAX-11 Assembler Software Eng. Commenting -- Rev 3

Specification Status: draft

Architectural Status:

File:

PDM #:

Date:

SE6R3.RNO

not used

28-Feb-77

Superseded Specs: none

Author:

Typist:

Reviewer (s):

Abstract:

P. Conklin, P. Marks, M. Spier

P. Conklin

detail. The items

under ECO control

includes references to related topics,
and the rules, and then gives templates and examples.

Revision History:

Rev

Rev

Rev

Rev W
 
N
 
b
~
 
2 Description

Original

Revised from Review

After 6 months experience

Author

M. Spier

P. Marks

P. Conklin

R. Brender, D. Cutler, R. Gourd, T. Hastings, 1I. Nassi,
S. Poulsen, D. Tolman

Chapter 6 gives each piece of the commenting conventions in
are in alphabetical order. Each item

gives the background

Revised Date

14-Apr-76

21-Jun-76

28-Feb-77



<comment delimiter> notation . .

Abstract . . . . . .

Author

Block comment

Boolean value . . .

Calling sequence . .

Code

completion . . . . . .

Comment . . . . . .« . .

block . . . . « + .+ .

documenting . .

group « « « « o+ o+ o«

line . ¢« ¢« « ¢« « « « &

maintenance . . . . .

Completion code . . .

Conditional assembly .

Configuration statement

Copyright notice

Customer version number

Data segment module . .

Directory, module . . .

Documenting comment . .

Edit in version number .

Edit number . . . . . .

Environment statement .

Error completion code .

Exception . . . . . . .

calling sequence . . .

Facility statement . . .

Fail return . . . . . .

FALSE Boolean value . .

File generation version,

File name, module . . .

File type, module . . .

Formal parameter . . . .

Function value . . . . .

Functional description .

Group comment . . . . .

History, modification

Implicit input . . . . .

Implicit output . . .

Input parameter

Interrupt

calling sequence . . .

JSB calling sequence . .

Legal notice . . . . . .

License notice . . . . .

Line comment . . . . . .

Maintenance comment .

3 Q
o
Q =
]

) 
. 

. 
[ 

. 
e
t
 
o 

[]
T
M

N

|
—

A
N

[
N
N

e
 A
W 

e

i 
[

8
]
 

=
 
>

(<
))

—

|

O
 
A
W
 

w
k
H

[ 
B

N
 
=

W
 
W
O
N
N
-

a
 
O
O
 

O
O
 

o
)

|

6-17



Maintenance number

Modification history

Modification number

Module . . . . . .

data segment

file name

preface . . .

Name, module

Notation

<comment delimiter>

Notice, legal . .

Number

edit . . . . . .

maintenance . .

modification

version . . . .

Output parameter .

Parameter

formal . . . . .

input . . . . .

output . . . . .

Patch in version number

Preface, module .

Preface, routine .

Program . . . . .

Routine preface .

Severe error completion code

Side effect . . .

Signal . . . . . .

Status return value

Success completion code

Success return . .

Support in version number

TRUE Boolean value

Update in version number

Value

function . . . .

Version number . .

Warning completion code

6-22

6-23

6-23

6-29

6-21

6-25

6-24

6~25

6-11

6-26

6-27

6-17



Commenting Conventions: 28-Feb-77 -- Rev 3 Page 6-990
Change History

Rev 2 to Rev 3:

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

Change column numbers to start with 1 instead of 0.

Change CF to FP.

Use 1lowercase English for <character names instead of

bracketting them.

Change example comments to not waste a leading space.

Add sections for Author, Calling Sequence, CASE instructions,

Comment: group, Completion codes, Condition Handler,

Conditional Assembly, Environment statement, Facility

statement, Function Value, Functional Description, Inplicit

Inputs and Outputs, Interlocked 1Instructions, Libraries,

Listing Control, $LOCAL Macro, Macros, SOWN Macro,

Parameters: Input and Output, Program, Queue Instructions,

Routine: Order, Side Effects, Signals, String Instructions,

Structures, Synchronization: Process, UNWIND, .VALIDATE
Declaration, .WEAK Declaration. Add many cross references

and sections which are there only to cross reference to

another section.

Combine abbreviated and detailed history.

Add ;++ format.

Change symbol definition mechanism from Spier to STARLET.

State when dual names might be justified.

Clarify when to renumber local labels.

Add Call by descriptor.

Clarify when <separator> can be four blank lines.

Change terminology:

Routine to Procedure (where appropriate)

Subroutine to Routine: non-standard

Definition to Declaration

Copyright to Legal Notices

Move symbol naming rules to Chapter 7. Add references to

chapter 8.

Change examples to use template formats and text.

Put configuration Statement in Environment statement.

Document that entry mask must include registers on

non-standard subroutines.



Commenting Conventions 28-Feb-77 -~ Rev 3 Page 6-991
Change History

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Change to use .ENTRY.

Change [VALUE] to Chapter 8 notation.

Move Comment to Comment: Line.

Document maintenance numbers. Don't reset them on release.

Omit license paragraph for unlicensed software. |

Add that labels should be meaningful.

Give rules for file name.

Never use lower <case 1in symbols. Freely use underline.
Choose names to suggest attributes.

Add that functional description should 1include critical
algorithms.

Note that arg list is read only.

Include typical .PSECT attributes.

Fill in the external symbols section.

Split into chapters 6-7.

Note that as matter of taste can put a space after the
comment delimiter.

Make completely language independent.

Move contents of completion codes here from naming
conventions.

Emphasize that legal notices must be on the first page.

Emphasize that no keyword is to be omitted: instead use
NONE.

Emphasize that both the blank comment 1lines and the blank
lines are mandatory.

Add support letters to version standard.

Add that numbers and letters are not skipped in version,
update, or patch.

Add update to version standard.

Add examples to version standard.



Commenting Conventions 28-Feb-77 -- Rev 3 Page 6-992

Change History

41.

42.

43.

44.

45.

46.

Remove attention grabber outdenting.

Allow for edit numbers to be facility wide if appropriate.

Completion codes have <2:0> of symbol non-zero. Test with
CMPV.

Add customer version numbers.

Move procedure to chapter 7.

Move maintenance comments to end of line.

[End of SE6R3.RNO]



CHAPTER 6

COMMENTING CONVENTIONS

28-Feb-77 -- Rev 3

This chapter contains detailed information on commenting conventions.
For ease of reference, it is organized alphabetically by topic. Each
topic includes references to related topics. Most entries also
include examples or sample templates illustrating the specific topic.

The notation <comment delimiter> is used to represent the comment
delimiter of the source language. For example, this is a semicolon
(":") in assembly language and an exclamation mark ("!") in BLISS and
Fortran.



—
 
—
 
—
 
—
—
—
 
—
—
 
—
 
—
 
—
 
S
 
m
a
—
—
 
v
o
—
 
—
 
—
—
 
—
—
 
—
 
—
 
s
t
 
o
t

Commenting Conventions 28-Feb-77 == Rev 3 Page 6-2

ABSTRACT

6.1 ABSTRACT

SEE ALSO:

Functional Description

A short three to six line functional description.

6.2 AUTHOR

This is the full name of the initial coder of the module. The full
name of each maintainer appears in the modification history. Both
appear in the module preface.

6.3 CALLING SEQUENCE

SEE ALSO:

Parameters: Formal

Parameters: Input and Output

Procedure

If this routine follows the procedure CALL standard then the «calling
sequence 1is:

CALL entry name (formal parameters)

or

value = entry name (formal parameters)

The formal parameters should be documented using the notation 1in the
Functional and Interface Specifications chapter.

If this is a non-standard routine, the method of entry should be given

as JSB, INTERRUPT, or EXCEPTION. Any parameters passed in registers

or on the stack should be given in the input parameters section. Any

parameters left on the stack or in registers should be given in the

output parameters section.



Commenting Conventions 28-Feb-77 -- Rev 3 Page 6-3
COMMENT

6.4 COMMENT

SEE ALSO:

Comment: Block

Comment: Documenting

Comment: Group

Comment: Maintenance

Statement: Block

A comment is any text embedded between a <comment delimiter> on the
left and the end of the source line on the right.

There is a grey area between the use of too many and the use of too
few comments. It is easy to say that there are never enough comments
but often there are so many comments that the program text is
obscured. In general, comment logically difficult sections of code,
structure accesses where it is not clear what is being accessed, and
routine invocations, among others. A good rule of thumb is to include
a block comment for each block statement.

Above all, strive to comment your program so that anyone can pick it
up, read the comments alone and derive a good understanding for what
the program does.

In a sense, there are two programs being written; one consisting of
code and one consisting of comments. The comment program is written
to describe the intent and algorithm of the code. That is, comments
are not simply rewordings of the code but are explanations of the
overall (gross, if you will) logical meaning of the -code.



Commenting Conventions 28-Feb-77 -- Rev 3 Page 6-4

COMMENT: BLOCK

6.5 COMMENT: BLOCK

SEE ALSO:

Comment: Group

Statement: Block

The block comment precedes a block statement, providing reference

documentation for the immediately following sequence of statements. A

block comment serves to introduce and describe the functionalityof a

logical grouping of code. It allows the reader to understand the

meaning and effect of the code that follows without having to read the

code itself. The following rules apply to block comments:

o The block comment consists of a number of page wide comment

lines: The <comment delimiter> is entered, left aligned, in

the line's first character position.

"o The first line of the block comment is a begin sentinel, o.

the form "!+" or "!++. The single form should be used for

internal documentation such as might appear 1in a program

logic manual. The double form should be used for all

functional documentation. If the routine is to be part of a

general library, the functional documentation should be in a

form suitable for publication, see Functional Description.

o The last 1line of the block comment 1is a matching end
sentinel, of the form "!- or "l---,

o The body of the block comment consists of documentary text,

separated from the <comment delimiter> by a tab.

o The block comment is immediately followed by a blank 1line;

immediately following the blank line appears the commented

block statement.

Example:

<skip>

1+

! This is a block comment.

;skip>



Commenting Conventions 28-Feb=77 «- Rev 3 Page 6-5

COMMENT: DOCUMENTING

6.6 COMMENT: DOCUMENTING

SEE ALSO:

Comment: Block

Module: Preface

Routine: Preface

The documenting comment is a special format block comment that appears
in the module preface and in the routine preface. It serves to
describe the functionality of the module and/or routine, as
functionality is to be known from the external point of view:
function is performed, what the input and output parameters are,
values are expected, what completion codes returned, and ny
relevant functional information.

0 The documenting comment consists of a number of page

that

what

wide
comment lines: the <comment delimiter> is entered in the
line's first character position.

o The first 1line of the documenting comment is a
sentinel, of the form "!++",

begin

o The last line of the documenting comment is an end sentinel,
of the form "!--",

o The documenting comment is structured by means of out-dented
keywords that are separated from the <comment delimiter> by a
single space. These keywords are part of the standard
documenting comment's structure and all of them must be
included, in the proper seauence.

o If a specified keyword is not applicable, follow it with the
word NONE rather than deleting it. This helps the reader by
being explicit about the specification.

o For the body of the documenting comment, see Module Preface,
or Routine Preface, or the Program Structure Overview
chapter.

Example:

+ +

This is an example of a documenting comment.

It may be either a module preface, or a routine
preface: in each case it has a predetermined format,
consisting of a sequence of keywords followed by
documentation information.

S
a
w
p
 
¢
a
m
 
f
u
w
 
S
a
p
 
G
 

Q
g
u
m
 
P
u
»
 
P
w
w



Commenting Conventions 28-Feb-77 -- Rev 3 Page 6-6

COMMENT: GROUP

6.7 COMMENT: GROUP

SEE ALSO:

Comment: Block

Wwhenever the attention of the reader should be called to a particular

sequence of code, a group comment should be used. This might be in

any of the following:

1. When several paths join, note the conditions which cause flow

to reach this point.

All exceptions converge at this point with:

...<register and stack status>

e
 
W
e
 
W
P
 
W
 
=

At the top of a loop.

: Loop looking for a handler to call.
.

[

When some data base has been built, such as a complex

sequence on the stack.

At this point the stack has the following format:

saved R2

number of ...
00 (SP)

04 (SP)

W
 
W
O
 

W
M
E
 
W
O
 
W
)
 
W
 
“
O

The group comment consists of a number of page wide comment

lines: the <comment delimiter> is enterred, left aligned, in

the line's first character position.

The first and last lines of the group comment are just a

<comment delimiter> and are set off from surrounding code by

a blank line before and after the group. Both the blank

comment lines and the blank lines are mandatory and help

distinguish the comments and code visually.

The body of the group comment consists of descriptive text,

separated from the <comment delimiter> by a space.

Tabular information is separated from the <comment delimiter>

by a tab.



Commenting Conventions 28-Feb-77 -- Rev 3 Page 6-7

COMMENT: LINE

6.8 COMMENT: LINE

A line comment 1is normally used to explain the meaning of the
statement being commented.

A comment is any text following a <comment delimiter>, up to the end
of the line. Each and every 1line of assembly code should be
commented.

o The comment is placed on the right hand side of a non-comment
line of text.

o All assembly language comments are aligned with the
{comment delimiter> in column 41 of the text (5 tabs from
left margin).

o The text of the comment is adjacent to the
{comment delimiter>.

o If the statement overflows into the comment field, then its
comment 1s preceded by a space, whereas normally 1t would be

preceded by as many tabs as necessary to position the comment
starting with column 41.

o If the comment is too long to be contained on a single line,
or 1f the statement was too long to be commented on the same
line, then the comment may be placed (or continued) on the
following 1line, placing the <comment delimiter> in the same
column as the first line and including a space after it.

o For commenting a multiple-line fragmented statement see
statement.

The comment's text should convey the meaning of the associated program
text (e.g., instruction MOVAL A,B should be commented "Initialize
pointer to first buffer in free area" or such, not "Move the address
of A into B".) As a rule of thumb, symbols should not appear 1in a
comment, rather say what the object is or means. If a line of code is
totally self evident to the most casual reader then it need not be
given redundant commenting text, however it must have a
<comment delimiter> (see example). If a comment applies to several
successive lines of code, indicate commonality by tagging follow-on
lines with comments of the form "!<space> . .

As a matter of taste, some coders place a single space after the

<comment delimiter>. All modifications to a module should follow the
style of the original author. The original source should not be
changed to the modifier's style because then a differences listing
would be useless.



Commenting Conventions 28-Feb-77 -- Rev 3 page 6-8

COMMENT: LINE

Example:

STATEMENT ;Compute multiple-line function

STATEMENT -

STATEMENT HERPR

OBVIOUS STATEMENT H

STATEMENT sHere we do something new
; and extend the comment to the

+ next two lines.

OBVIOUS STATEMENT :

A SOMEWHAT LONG STATEMENT +And its comment

A SOMEWHAT LONGER STATEMENT ;And its long comment
+ which continues on

+ additional line(s).

A VERY VERY VERY VERY VERY VERY LONG STATEMENT
:And its comment on next line

A FRAGMENTED - :The statement's comment

| STATEMENT



Commenting Conventions 28-Feb-77 -- Rev 3 Page 6-9

COMMENT: MAINTENANCE

6.9 COMMENT: MAINTENANCE

SEE ALSO:

Author

History: Modification

Version Number

When an existing module is modified (as distinct from "originally
coded"), each 1logical unit of modification is assigned a maintenance
number in the detailed current history section of the module preface.
Use a new number for each logical unit of modification that is being
worked on. The maintenance numbers increase by one, are decimal, and
are never reset. It is permissable after a release to bump the number
to a round number (such as the next 100s) to make room for SPR fixes
to follow the release level. Add a maintenance comment --derived from
that number-- to each line of source code that is affected. There are
two reasons for having maintenance comments:

1. The modifications may well be distributed all over the
module. The maintenance comment enables you to find all the
places where a correction of a single functional problem was
made. This is especially useful if the correction has to be
further corrected by someone other than the original modifier
and/or if it has to be understood by the software specialist
in the field.

2. All too often it happens that as we correct bug "B", we
innocently modify an instruction which was the correction for
a previous bug "A". Bug "B" is fixed at the expense of the
reappearance of bug "A" (or one of 1its relatives). If
modification of a program leads you to the modification of a
line that already has a maintenance comment, then find out
(from the detailed current history) who the modifier was,
consult that person, and exercise extreme caution 1in
effecting your modification.

In many cases the edit numbers may be assigned consistently across all
modules in a facility. In this case, the module defining the
facility's version number should have a full maintenance history and
the others should include only module specific changes.



Commenting Conventions 28-Feb-77 -- Rev 3 Page 6-10

COMMENT: MAINTENANCE

The following rules apply to maintenance comments:

o The maintenance comment consists of a <comment delimiter>

followed by a code letter, followed by a maintenance number.

o The code letter may be

A - this line was ADDED to the text

D - this 1line was DELETED. In this case, effect the

“*deletion” by commenting the 1line out. Place a

<comment delimiter> in the first character position of

the line, marking it as a candidate for future physical

deletion.

M - This line was MODIFIED.

o The maintenance comment is placed after the 1line's regular

comment at column 80

IRegqular comment !<maintenance_comment>

o If the modified line already has an existing maintenance

comment, then add the new one in front of the existing one

!Regular comment !<new_mc>!<previous_mc>

Example:

The maintenance number is assigned in the detailed current history

section of the module preface, as follows:

1 02 - SPR #4711: describe the SPR problem

The number is now used in maintenance comments for all lines of text

affected by the modification called for by SPR #4711:

MODIFIED STATEMENT IStatement's comment 1M02

ADDED STATEMENT Istatement's comment tAQ2

! DELETED STATEMENT 1Statement's comment D02

NOTE: 1If the statement is a multiple-line one, make sure to place

maintenance comments (or effect a "commenting out®TM deletion) on all

component lines of the statement.



Commenting Conventions 28-Feb-77 -- Rev 3 Page 6-11
COMPLETION CODES

6.10 COMPLETION CODES

The most reliable means for indicating a software detected exception
condition occurring in a called procedure is for the called procedure
to return a condition value as a function value and for the caller to
check the return value for TRUE or FALSE. TRUE is bit 0 set and FALSE
is bit 0 cleared. TRUE means that the requested operation was
performed successfully; FALSE means an error condition occurred; in
both cases, the rest of the value is a condition value. Thus, most
procedures are written as functions, rather than subroutines. If it
is necessary to indicate an exceptional situation without returning a
value, then generate a call to LIB$SIGNAL, see Signals.

The low order three bits, taken together, represent the severity of
the error. Severity code values are:

Warning

Success

Error

Reserved

Severe Error

7 Reservedi 
>
 
w
N
oO

5

Bits <31:16> indicate the facility, see the Naming Conventions
chapter. Bits <15:3> distinguish distinct conditions or system
messages within the facility. Bits <2:0> can vary for a given
condition depending upon environment, condition handling, etc. Status
codes are expressed in symbolic names in the format:

fac$S mnemonic

Return status values can be tested by testing the low-order bit of RO
and branching to an error checking routine if the low bit is not set,
in the assembler as follows:

BLBC RO,errlabel

The error checking routine may check for specific values. It must
always ignore <2:0> when checking for a particular condition because
<2:0> can vary depending upon the severity in the current environment.
For example in assembly language, the following instruction checks for
an illegal event flag number error condition:

CMPV #3,#29,R0, #<SS$_ILLEFC@-3>

Successful codes other than SS$ NORMAL are defined. 1In some cases, a
successful return includes information about the previous status of a
resource. For example, the return SS$ WASSET from the Set Event Flag
(SSETEF) system service indicates that the requested flag was already
set when the service was called.



Commenting Conventions 28-Feb-77 -- Rev 3 Page 6-12

CONFIGURATION STATEMENT

6.11 CONFIGURATION STATEMENT

SEE ALSO:

INCLUDE Files

Module: Preface

The configuration statement is part of the environment statement in

the module preface, and serves to indicate to the programmer how the

module is to be assembled. The module may be part of a large system

with a system-wide conditional assembly arrangement. It may also have

its own peculiar conditional assembly requirements, either alone or in

conjunction with system-wide conventions.

State the name(s) of the include file(s) <containing conditional

assembly parameters (if any). State the conditional assembly

variables affecting this module. If the variables are peculiar to

this module, state the values that they may assume, and what thesr

values mean.

Example:

ENVIRONMENT:!

!

! This module may be assembled with various parameters

! changed. This is done by supplying a special copy

! of the macro SFAC CHANGE DEF with the changed symbols in

! it as a library file. The symbols which can be changed

! are the default lines per page (DEF LINES PPAGE) which

! is normally 55, and the maximum line width (MAX LINE WIDTH)
! which is normally 132. - -
1



Commenting Conventions 28-Feb-77 -- Rev 3 Page 6-13
ENVIRONMENT STATEMENT

6.12 ENVIRONMENT STATEMENT

SEE ALSO:

nfi

E AL

Configuration Statement

This paragraph gives any special environmental assumptions which a
module may make. These include both compilation assumptions such as
configuration files and execution time such as hardware or software
environments. For compile time environments, see Confiquration
Statement.

For execution time environment describe any situations which the
module may assume. For example, it may assume that the hardware is a
single. processor, or that this module 1is always invoked with
interrupts disabled. The module might assume that it runs only in
user mode, that ASTs are disabled, or that storage allocation is
handled by the standard procedure library. 1In general, document here
anything out of the ordinary which the module assumes about its
environment.

6.13 EXCEPTIONS

SEE Signals

6.14 FACILITY STATEMENT

This section of the module preface gives the full name of the facility
of which this module is a part. See the Naming Conventions chapter
for a list of the facilities. '



e
 
e
 
e
 
e
 
—

 
—
 
—

 
—
—
 —
—
 
—
 
—
 
—
 
—
 
—
—
 
e
 

oo
ru
s 

| o
 
e
 

=
 
T
R
 
—
—
 
—

Commenting Conventions 28-Feb-77 -- Rev 3 Page 6-14

FUNCTIONAL DESCRIPTION

6.15 FUNCTIONAL DESCRIPTION

The functional description section of the module and routine prefaces

should describe the purpose of the module or routine and should

document its interfaces precisely and completely

The functional description should also include the basis for any

critical algorithms used. This should include literature references

when available. For example, specify why a particular numerical

algorithm 1is wused in the math library or why a particular way of

sorting was chosen.

The functional description appears in one of three places:

o As a self-contained short description on the first page of

the module and routine prefaces.

o As the second or more page(s) of the module and routin

prefaces. In this case an abstract appears on the first

page.

o As a separate functional specification. In this case an

abstract appears on the first page of the module and routine

prefaces and a reference to the specification is included.



Commenting Conventions 28-Feb-77 -- Rev 3 Page 6-15

FUNCTIONAL DESCRIPTION

Example:

I ++

FUNCTIONAL DESCRIPTION:

EXP(X) is computed using the following approximation technique:

If X > 88.028 then overflow

If X <= -89.416 then EXP(X)

If |X| < 2**-28 then EXP (X)

0.

1.

Otherwise,

EXP(X) = 2%*Y * 2#%%7 % O*k&y

where

integer (X*1og2(E))

frac(X*1og2(E)) * 16

integer(V) /16

frac(V)/1l6T
N

2**W = (P + W*Q) / (P - W*Q)

P and Q are first degree polynomials in W**2., The

coefficients of P and Q are drawn from Hart $1121.

Powers of 2**(1/16) are obtained from a table. All

arithmetic is done in double precision and then rounded
to single precision at the end of calculation. The relative

!

!

!

!

!

!

!

!

!

}

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! error is less than or equal to 10**-16.4.
!



Commenting Conventions 28-Feb-77 -- Rev 3 Page 6-16

FUNCTION VALUE

6.16 FUNCTION VALUE

SEE ALSO:

Completion codes

Functional and Interface Specification chapter

A function value is returned in register RO if representable in 32
bits and registers RO and Rl if representable in 64 bits. If the
function value cannot be represented in 64 bits, one of the following

mechanisms is used to return the function value:

1. If the maximum length of the function wvalue 1is known, the

calling procedure can allocate the required storage and pass

a pointer to the function value storage as the first

argument.

This method is adequate for CHARACTER functions in Fortran

and VARYING strings in PL/1.

2. The called procedure can allocate storage for the function

value and return in RO a pointer to a descriptor of the

function. value.

This method requires a heap (non-stack) storage management

mechanism.

Procedures, such as operating system CALLs, return a success/fail

value as a longword function value in RO. Success returns have bit 0
of the returned value set (Boolean true); failure returns have bit 0

clear (Boolean false). The remaining 31 bits of the value are used to

encode the particular success or failure status.



Commenting Conventions 28-Feb-77 -- Rev 3 Page 6-17

HISTORY: MODIFICATION

6.17 HISTORY: MODIFICATION

SEE ALSO:

Author

Comment: Maintenance

Module: Preface

Version Number

The detailed modification history is a section of the module preface.
An entry 1s 1logged for each logical functional modification of the
module. For example, if the module is a terminal driver, and bug
reports state that sometimes interrupt handling is incorrectly masked
and also that deleted characters are handled incorrectly, then these
will be given TWO separate log entries: one entry for the interrupt
problem, one for the delete problem.

Each log entry is assigned a maintenance number. The maintenance
numbers begin with "1" and grow by unit increments. The log entry
specifies the maintainer's name, and a description of the problem
requiring maintenance.

If a problem that was thought fixed is reopened for further fixes, or
if a modification changes hands from one programmer to another, a new

log entry (having a new maintenance number) is made.

The maintenance numbers are used to affix maintenance comments at all
the places that were modified. This way, it becomes possible for
anyone to look at a maintained piece of software (especially anyone in
the field) and reconstruct what has happened.

Periodically, at the discretion of the appropriate supervisor, old
detailed current history 1log entries may be deleted, together with
their corresponding documenting comments (and 1line§ marked for

has tha Aad - e —deletion). It 1s advised that the deletion not be made until the
software has proven itself in the field.



Commenting Conventions 28-Feb-77 -- Rev 3 Page 6-18
IMPLICIT INPUTS AND OUTPUTS

6.18 IMPLICIT INPUTS AND OUTPUTS

SEE ALSO:

Parameters: Formal

Parameters: Input and Output

Side Effects

These sections of a routine preface should include all locations in

global or own storage which are read or written by the routine. Any

locations which are addressed by parameters should not be documented

in these sections, see Parameters: Formal, and Parameters: Input and

Output.

ADDITIONAL SPECIFICS TO BE SUPPLIED



Commenting Conventions 28-Feb-77 -- Rev 3 Page 6-19
LEGAL NOTICES

6.19 LEGAL NOTICES

A standard DEC copyright statement must always appear on the first
page of every source file. It is part of the module preface. The
legal notices must be part of the original program text, so that they
will be plainly stated on any DEC program listing (regardless of
whether the listing was produced by a language processor or was
directly printed from the source).

4

o

0 The legal notices may undergo revision. Make sure that you
use the proper current version.

0 The legal notices are always in upper case to bring emphasis
to them.

0 When developing a new module, the year stated is the year of
the first release, not of the first coding.

o When modifying an existing program that has legal notices,

(1) Verify the statements' validity, and

(2) Add the year of modification to the year stated by the
existing copyright statement; DO NOT wupdate that
existing year: add the current one (if different),
separating it from the last date with a comma (",").

The legal notices are of the following form:

COPYRIGHT (C) 1977

DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS ‘01754

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A SINGLE
COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE INCLUSION OF THE
ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR ANY OTHER COPIES THEREOF,
MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON
EXCEPT FOR USE ON SUCH SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE
TERMS. TITLE TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES
REMAIN IN DEC.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

The license paragraph should be omitted from software which DEC does
not license (e.g., distributed through DECUS or not owned by DEC).



Commenting Conventions 28-Feb-77 -- Rev 3 Page 6-20

MODULE

6.20 MODULE

The module is a single body of text that is assembled as a unit. The

module 1is normally part of a larger program oOr facility that is

created by linking all of the component modules object code.

There must be some self evident 1identity Jjustifying the module's
existence. That is to say, the module 1is not just an arbitrary

concoction of code, but a self evident unit of code. Typically, the

module consists of either:

o A single function or database, or

o A collection of related functions (e.g., all conversion

routines) each of which would be too small for an independent

module.

The word "module" is used in its hardware sense: a "black box" unit

that may be attached or detached, plugged in or out. In order to have

this desirable property of a "plug-in module", the module's interface

has to be as clean as possible Use formal argument carrying calls

for all routines in the module, avoid all functional side effects. 1In

the case of non-standard interfaces, try using a "“standard"

non-standard interface (i.e., an interface that is uniform within the

program of which the module is part.)

The module should contain

THE FUNCTIONALITY,

THE WHOLE FUNCTIONALITY

AND NOTHING BUT THE FUNCTIONALITY!

Then, if it is known that a certain functionality 1is wholly and

exclusively 1localized to a given module, it becomes possible to

replace the module by a more efficient one, or selectively 1link it

into the larger program depending on the runtime requirements. The

ability to do this is more wuseful and important than any local

efficiency "hackery' that would jeopardize the module's functional

identity. When in doubt, place each routine in a separate module.

Combine a few routines primarily when doing so allows own storage to

be used rather than global storage. Never combine many routines.

6.21 MODULE: DATA SEGMENT

SPECIFICS TO BE SUPPLIED



Commenting Conventions 28-Feb~77 -- Rev 3 Page 6-21

MODULE: FILE NAME

6.22 MODULE: FILE NAME

Each module exists as a distirnct

file reflects the module's funct

of which it may be part.

source text file. The name of the
ionality and also the larger facility

The module is stored in a filename which is the non-facility part of
the name, see the Naming Conventions chapter. The file type is the
standard one for the source 1language. There is no special
significance to the file generation version (i.e., it need not match
the edit number or increase from release to release). The file |is
stored in a directory which corresponds to the facility.

6.23 MODULE: PREFACE

The module preface provides uniform documentation of the module. It
contains certain control items (TITLE and IDENT) which are needed by
the linker, as well as the standard DEC copyright statement needed for
the protection of DEC's 1legal ownership rights. Apart from these
items, the module preface contains all of the information that might
be needed in order to know what the module is and does, what the
module's history is, and how the module relates to the larger software
product of which it is a part. This documentation should include the
design basis for any critical algorithms.

The module preface 1is described and illustrated in the Program
Structure Overview chapter. All module prefaces should rigorously
adhere to the standard format, so that they can be processed
mechanically. For example, it should be possible to extract
information from the module preface in order to compile technical
documentation. This can only be achieved if the module preface is of
uniform syntactical construction. :



Commenting Conventions 28-Feb-77 -- Rev 3 Page 6-22

PARAMETERS: FORMAL

6.24 PARAMETERS: FORMAL

SEE ALSO:

Implicit Inputs and Outputs

Parameters: Input and Output

Procedure

Routine: Preface

The VAX-11 hardware has a built-in advanced call/return mechanism with
provision for automatic argument passing. The caller specifies a list
of arguments. The called procedure expects parameters which

correspond one-to-one to the caller's arguments.

The procedure's parameters will be bound with the arguments of each

caller, at the moment of call. They are known as "formal parameters”

because they have no identity (i.e., specific memory address) on their
own, but assume the identity of whatever arguments the present caller

chooses to supply.

The argument list pointer AP always points at the base of the
caller-supplied argument list.



Commenting Conventions 28-Feb-77 -- Rev 3 Page 6-23

PARAMETERS: INPUT AND OUTPUT

6.25 PARAMETERS: INPUT AND OUTPUT

SEE ALSO:

Calling Sequence

Implicit Inputs and Outputs

Parameters: Formal

These sections of a routine preface should include any parameters
passed on the stack or in registers. Any parameters whose locations
are addressed directly in own or global storage should be documented
as 1implicit inputs and outputs. Any parameters which are passed via
the CALL AP-list mechanism should be documented as formal parameters
in the calling sequence.

ADDITIONAL SPECIFICS TO BE SUPPLIED



Commenting Conventions 28-Feb-77 -- Rev 3 Page 6-24

PROGRAM

6.26 PROGRAM

SEE ALSO:

Module

Procedure

An executable program consists of one or more object modules which

have been combined and formatted in such a way to be interpretable by

an operating system and its hardware.

The following general rules govern the division of program information

into modules:

o There is exactly one module within the program, termed the

main module, where execution of the program begins.

o If need be, any storage that is referenced by more than one

module (i.e., global storage) is declared in one or more

modules whose sole purpose 1is to declare/allocate global

storage.

o Separate program operations are divided 1into modules that
contain all of the routines related to a single capability.

Examples are symbol table management, binary output

generation, and so on.

o Module size 1is kept moderate in order to facilitate

incremental modification and to keep the system resources

needed for compilation within reasonable limits.

o When in doubt, place each routine in a separate module.

o Even the main routine is CALLed by an outer environment.

Typically this environment is the command interpretter.



Commenting Conventions 28-Feb-77 -- Rev 3 Page 6-25
ROUTINE: PREFACE

6.27 ROUTINE: PREFACE

The routine preface provides uniform dccumentation of the routine, for
the following purposes:

o External functional appearance: From the external point of
view, the routine is a "large scale" instruction, performing
a high-level function. Like any other instruction, it has to
be 1invoked 1in a precisely predetermined way and be supplied
with arguments of a predetermined form and nature. The
routine preface provides exact specifications of the
anticipated argquments.

0 Runtime behavior: The routine's behavior is dependent on
both 1its input parameter value(s) and possible environmental
conditions. For example, the routine OPEN FILE is dependent
on being given a valid file name parameter, as well as on the
existence and/or protection of the specified file. It may
fail for either reason. The routine's preface specifies the
behavior of the routine in <case of functional failure:
specifies the completion codes that may be returned.

o Side effects: The routine's execution may have functional
side effects that are not evident from its invocation
interface. Such side effects are documented in the routine's
preface. This would include changes in storage allocation,
process status, file operations, and signals.

o Functional specification: The short functional specification
incorporated 1in the routine preface should be sufficiently
logical and lucid to enable the casual reader to get a fairly
accurate 1idea of what the routine does. This specification
should NOT describe HOW the algorithm operates; for that one
can read the code (an exception being certain esoteric or
elusive effects which otherwise would remain unnoticed from
reading the <code). The functional specification should
explain WHAT the routine's execution accomplishes.

The routine preface 1is described and illustrated in the Program
Structure Overview chapter. All routine prefaces should rigorously
adhere to the standard format, so that they can be processed to
compile technical documentation.

REMEMBEkK: It is the CALLed routine which specifies how it is to be
called! It 1s the CALLER'S RESPONSIBILITY to invoke the routine in
the precise manner in which it expects to be invoked! The routine
preface provides all the necessary information needed in order to
determine how a routine is to be called.



Commenting Conventions 28-Feb-77 -- Rev 3 Page 6-26

SIDE EFFECTS

6.28 SIDE EFFECTS

SEE ALSO:

Implicit Inputs and Outputs

Signals

This section of the routine preface describes any functional side
effects that are not evident from its invocation interface. This
would include changes in storage allocation, process status, file
operations, and signals. In general, document here anything out of
the ordinary which the routine does to its environment. If its effect

is to modify own or global storage locations, document them as

implicit outputs rather than as side effects.

ADDITIONAL SPECIFICS TO BE SUPPLIED



Commenting Conventions 28-Feb-77 -- Rev 3 Page 6-27

SIGNALS

6.29 SIGNALS

SEE ALSO:

Completion Codes

Condition Handler

Side Effects

UNWIND

The most reliable means for indicating a software detected exception
condition occurring in a called procedure is for the called procedure

to return a completion code as a function value and for the caller to

check this return value for TRUE or FALSE. If it is necessary to

indicate an exceptional situation without returning a value, then

generate a CALL to LIBSSIGNAL to signal the exception. See Appendix D

of the System Reference Manual for details on signalling. Current

practice 1s to wuse this for indicating the occurrence of hardware

detected exceptions and for issuing system messages.

When a language or user wishes to 1issue a signal, it calls the

standard procedure LIBSSIGNAL. This routine searches the stack for

condition handlers. By convention, the top of the stack normally

contains a handler which uses the condition value argqument to retrieve

a system message from the system message file. It then 1ssues the

message to the standard output device. The default handler then takes

the default action depending on bit <0> of the condition value. If

the bit 1s set (TRUE) then execution is continued following the call

to LIBSSIGNAL. If the bit 1is clear (FALSE) then execution 1is

terminated and the <condition value 1is available to the command

processor to control execution of the command stream.

When a language or user wishes to issue a signal and never continue,

1t calls the standard procedure LIB$STOP. This routine is identical
T W ew A e ey AP a

to LIBSSIGNAL except that execution never continues.

Thus, the rules for handling exceptional cases in a procedure are very

simple: .

1. Normally return a completion code to the <caller as an

indicator of failure.

2. If this is not possible or desirable, 1issue a message by

calling either LIBS$SSIGNAL or LIBSSTOP. Call the former if

the signalling procedure can meaningfully continue and the

latter if the signalling procedure cannot continue.

3. If the normal situation after 1issuing the message 1is to

continue execution, then the condition value should have the

low order bit set. 1If the normal situation is to terminate

after the message, then the low order bit should be clear.

In addition, the routine LIBSSIGNAL preserves all registers 1including

RO and RI. Thus, it 1is possible to insert debugging or tracing

signals in a routine without alterring its register usage.



Commenting Conventions 28-Feb-77 -- Rev 3 Page 6-28

VERSION NUMBER

6.30 VERSION NUMBER

SEE ALSO:

Comment: Maintenance

History: Modification

IDENT Statement

Module: Preface

The VAX-1ll standard version number 1is used to provide unique
identification of all pre-released, released and inhouse software. It
is used both at the module and the facility 1level. When used for
modules, the ident represents the last change made to the module. For
facilities which are always bound together such as a compiler, the
ident of the module containing the start address is also used as the
ident of the facility. The facility (start module) ident must be
changed whenever the ident of any component module changes even if the
component comes from a library.

The version number 1is a compound string constructed of the
concatenation of the following discrete items:

<support> <version> . <update> - <edit> <patch>

where:

o <support> is a single capital letter (or null) identifying

the support level of the program:

benchmark version

demonstration version

special customer version

field test version

released or frozen version

unsupported experimental versionX
X
K
<
H
H
N
N
O
W
w

Typically this letter is omitted from the module ident since
it more reflects the program as a whole than any of its
modules.



Commenting Conventions 28-Feb-77 -- Rev 3 Page 6-29
VERSION NUMBER

o <version> 1is a decimal leading Zero-suppressed number,
starting with "o and progressing by positive unit
increments. Numbers are never skipped. “0" 1s used prior to
the first release. "l" designates the first release, etc.
The version identifies the major release, or generation, or
base level of a program. It is incremented at the discretion
of the responsible supervisor whenever the software has
undergone a significant or major change. The module version
1s incremented upon the first edit after a release so that it
reflects the next release.

¢ <update> if present is a period followed by a single decimal
digit 1indicating a minor release containing internal changes
but no significant external changes. Digits are never
skipped. Null designates the major release. "1" designates
the first update, etc. <update> is cleared when <version> s
changed.

o <edit> if present is a minus sign followed by a decimal
leading zero-suppressed maintenance number, starting with "1-
and progressing by positive unit increments. Numbers may be
skipped but may never be lower than that that of a previous
edit. The edit identifies any alteration of the source code.
It 1is 1incremented on every change even if modification
history comments are not being kept. Whether <edit> 1is
cleared on release is TO BE SPECIFIED.

0 <patch> 1f present is a single capital letter identifying an
alteration to the program's binary object form. The patch
character begins with "B" and may be incremented up to "Z2",
whenever a set of patches is released. This never appears 1in
the source of a module. <patch> 1s cleared whenever
<version> or <update> is changed.

Customers making changes to DEC produced software are advised to
‘ollow similar procedures. Customer numbers should be designated by
appending a customer version and edit number to the DEC number and
putting it inside square brackets.

Examples:

PIP/X3 experiment before third release of PIP

LINK/%5,.2-329 released second update to version 5 of LINK;
edit level is 329 ‘

LOGIN/V(0.3-27 frozen version of LOGIN; part of base level 3
prior to initial release (during initial development) ;
edit level is 27

RUNOFF/V10.2-527([7-93]

seventh customer version of RUNOFF based on the
second update to the tenth DEC version:; DEC

edit level is 527; customer edit level is 93



Commenting Conventions 28-Feb~77 -- Rev 3 Page 6-30

VERSION NUMBER

[End of Chapter 6]



Digital Equipment Corporation COMPANY CONFIDENTIAL Page 1

Title: VAX-11 Software Eng. Assembler Formatting -- Rev 3

Specification Status: draft

Architectural Status: under ECO control

File:

PDM #:

Date:

SE7R3.RNO

not used

28-Feb-77

Superseded Specs: none

Author:

Typist:

P. Conklin, P. Marks, M. Spier

P. Conklin

Reviewer (s): R. Brender, D. Cutler, R. Gourd, T. Hastings, 1I. Nassi,

Abstract:

S. Poulsen, D. Tolman

Chapter7 gives each piece of the assembler formatting and
usage conventions in detail. The items are in alphabetical
order. Each item includes references to related topics,
gives the background and the rules, and then gives
templates and examples.

Revision History:

Rev

Revy

Rev

Rev W
 
N
 
b
~
 
= Description Author Revised Date

Original M. Spier 14-Apr-76
Revised from Review P. Marks 21-Jun-76
After 6 months experience P. Conklin 28-Feb-77



SFORMAL macro

in assembly language

SLOCAL macro

in assembly language

SOWN macro

in assembly language

Addressing, relative

in assembly language . .

Block statement

Body, routine

CALL instruction

in assembly language

CASE instruction

in assembly language . .

Code PSECT . . . « ¢« « .+ =«

Common PSECT .

Condition handler .

Conditional assembly . . .

Declaration

equated symbol |

in assembly language .

validate

in assembly language

variable

in assembly language

weak

in assembly language .

Descriptor, call by . . .

Entry, procedure

in assembly language .

Equated symbol declaration

in assembly language . .

Expression

in assembly language .

External symbol

in assembly language . .

Formal parameter

in assembly language . .

Global label

in assembly language

Global PSECT . . . . .

Global symbol

in assembly language .

Handler, condition . .

IDENT statement

in assembly language . .

Include files

in assembly language .

Interlocked instruction

in assembly language . .

Label

7-14, 7_20' 7-29' 7-33



global

in assembly language

in assembly language

local

in assembly language

Library

in assembly language

Listing control

in assembly language

Literal PSECT .

Local label

in assembly language

LSB, .ENABL/.DSABL

in assembly language

in assembly language

Multiple entry routine

Non-standard routine

Order of routine

Own PSECT

Parameter

formal

in assembly language

Procedure .« e e e

entry

in assembly language

Process synchronization

in assembly language

PSECT statement

in assembly language

Queue instruction S

in assembly language

Reference, call by .

Relative addressing

in assembly language

Routine

non-standard

order . . . .+ < ¢ o

Routine body . . . . . .

Routine entry, multipl

Stack local variable

in assembly language

Statement

block « o .

String instruction

in assembly language

Structure

in assembly language

Subtitle statement

Symbol

external

in assembly language

global

in assembly language



in assembly language

Symbol declaration, egquated

in assembly language

Synchronization, process

in assembly language

TITLE statement

in assembly language

Unwind

in assembly language

Validate declaration

in assembly language

Value, call by . . . .

Variable

stack local

in assembly language

Variable declaration

in assembly language

Weak declaration

in assembly language

.ENTRY directive . . .

.SBTTL statement . . .

7-33

7-14,

7-34

7-11

7-25

7-20, 7-29, 7-33



Assembler Formatting and Usage 28-Feb-77 -- Rev 3
Change History

Rev 2 to Rev 3:

1.

10.

[End of

Split from chapter 6; see chapter 6 for
history.

Correct comment column in all examples.

Add examples to .IDENT.

Add an ident comment to include files.

Add comm ments to description.

Limit source line length to 80 columns.

Local labels go to 65535.

Eliminate single exit point.

Change non-CALL to non-standard.

Move procedure here from chapter 6.

SE7R3.RNO]

Page 7-990

earlier change



CHAPTER 7

ASSEMBLER FORMATTING AND USAGE

28-Feb-77 -- Rev 3

This chapter contains detailed information on formatting standards,

and instruction usage. For ease of reference, it 1is organized

alphabetically by topic. Each topic includes references to related

topics. Most entries also include examples or sample templates

illustrating the specific topic.



Assembler Formatting and Usage 28-Feb-77 -- Rev 3 Page 7-2

CALL INSTRUCTIONS

7.1 CALL INSTRUCTIONS

SEE Procedure

7.2 CASE INSTRUCTIONS

SPECIFICS TO BE SUPPLIED



Assembler Formatting and Usage 28-Feb-77 -- Rev 3 Page 7-3

CONDITIONAL ASSEMBLY

7.3 CONDITIONAL ASSEMBLY

SEE ALSO:

Configuration Statement

In the example of the configuration statement, the normal definition

library for this compilation is assumed to contain a dummy macro named

$FAC_CHANGE_DEF which can be superseded by a user supplied one. The

default values are defined only if the symbols are not defined by the
time the macro has been expanded. This is done in the source file in

the equated symbols section:

INCLUDE FILES:

-
 

W
M
o
 
“
O

SFAC_CHANGE_DEF

EQUATED SYMBOLS:

-
 

w
W
O
 
T
M

.IIF NDF DEF_LINES_PPAGE, DEF_LINES PPAGE=55

.IIF NDF MAX LINE WIDTH, MAX LINE WIDTH=132



Assembler Formatting and Usage 28-Feb-77 -- Rev 3 Page 7-4

CONDITION HANDLER

7.4 CONDITION HANDLER

SEE ALSO:

Completion Codes

Signal

UNWIND

For the primary purpose of handling hardware detected exceptions, the

vAX-11 system supplies a mechanism for the programmer to specify a

handler function ¢to be called when an exception occurs. This

mechanism may also be used for software detected exceptions.

Each procedure activation has a condition handler potentially attached

to it via a longword 1in its stack frame. 1Initially, the longword

contains 0, indicating no handler. A handler is established by moving

the address of the handler's procedure entry point mask to the

establisher's stack frame.

In addition, the operating system provides two exception vectors at

each access mode. These vectors are available to declare handlers

which take precedence over any handlers declared at the procedure

level. These are used, for example, to allow a debugger to monitor

all exceptions, whether or not handled. Since these handlers do not

obey the procedure nesting rules, they should not be used by procedure

library code. Instead, the stack based declaration should be used.

When a condition handler gets control, it is given several arguments.

One of these indicates whether the exception occurred in “this”

handler's establisher or in a descendant of it. Another argument is

the specific condition which occurred. This is in the same form as a

completion code and bits <31:3> identify the specific condition.

For further details, see Appendix D of the System Reference Manual.

It describes in detail when the handler is called and what its formal

parameters are. In addition, the options of the handler are detailed.



Assembler Pormatting and Usage 28-Feb-77 -- Rev 3 Page 7-5

DECLARATION: EQUATED SYMBOLS

7.5 DECLARATION: EQUATED SYMBOLS

SEE ALSO:

Module: Preface

Parameters: Formal

R =g

Routine: Preface

Variables: Stack Local

Define the equated symbols in the proper place as indicated by the
module preface and the routine preface sections.

o Define the equated symbols in alphabetic order if there is n

other logical order indicated.

o If there is some indicated 1logical ordering, it may be

because of either of the following reasons:

o Equated symbol A is used in the definition of equated

symbol B, hence must have been defined prior to B.

o Equated symbols are used to define a based structure, and

have to be defined in the order dictated by the structure

definition. In this case precede the structure

definition with a block comment stating that this is a

logical structure definition, and how it is going ¢to be

used. See block comment.

o0 The equated symbols are defined one per line. The symbol is

defined 1left aligned in the first character position of the

line. The definition 1line has a comment explaining the

nature and use of the symbol.

o A local equated symbol is defined by means of the "="

operator. A global equated symbols is defined by means of

the "==" operator.

Example:

Definition of equated symbols

=
y
 
%
0
 
%
o

CARRET=13 ;Carriage return character

FORMFEED=12 :Form feed character

LINEFEED=10 :Line feed character

For an example of a structure definition, see structures.



Assembler Formatting and Usage 28-Feb-77 == Rev 3 Page 7-6

DECLARATION: VARIABLES

7.6 DECLARATION: VARIABLES

SEE:

SOWN Macro

.PSECT Statement

Structures

Variables: Stack Local

7.7 DESCRIPTOR

SEE:

Parameters: Formal

Functional and Interface Specifications chapter



Assembler Formatting and Usage 28-Feb-77 -- Rev 3 Page 7-7

EXPRESSIONS

7. 8 EXPRESSIONS

The assembler allows for assembly-time expressions. Typically vyou
will use them when accessing data structures that are relative to some
base address. An important reason for using symbols in expressions is
so that all references will appear in a cross reference listing.

7. 9

Avoid using absolute numbers in your expressions, especially
numbers that are 1liable to change in the future. Define
suitable equated symbols: you will both enhance the
readability of your code and facilitate the modification of
such numbers without having to change any of your code.

When you have recurring expressions, then further equate the
expression itself with a mnemonically meaningful symbol.

The assembler expression evaluator does not know of operator
precedence. Expressions are evaluated in a strict
left-to-right order. Make use of angle brackets "< >" (the
assembler's notation for algebraic parentheses) to resolve

any ambiguity in evaluation precedence.

SFORMAL MACRO

SEE Parameters: Formal



Assembler Formatting and Usage 28-Feb-77 -- Rev 3 Page 7-8
.IDENT STATEMENT

7.10 .IDENT STATEMENT

SEE ALSO:

Version Number

The .IDENT statement is the second statement of the module. It has,
as 1its parameter, the current version number and edit level of the
module separated by a minus ("-"). These numbers correspond to the

last entry in the module's modification history.

Example:

.IDENT /3-47/ edit 47; used in version 3

.IDENT /6.2-295/ edit 295; used in version 6.2



Assembler Formatting and Usage 28-Feb-77 -- Rev 3 Page 7-9

INCLUDE FILES

7.11 INCLUDE FILES

The purpose of INCLUDE files 1s to centralize in one place
declarations and definitions that are common to multiple modules.
Data structure declarations, macro declarations, and constant
declarations are the principal contents of INCLUDE files.

INCLUDE files are usually in the form of a macro 1library. In this

case, it contains only macro declarations. In order to include
structure declarations and constants, the appropriate definitions are

included 1in a structure definition macro. When this macro is called,

all the symbols relating to that structure become defined Refer to
mens e [Nomsmesov TAame ~rhanrntar FfAar ha £ | Y O,

iIcotc OYIilbUuUlioS
L L [a Py Ve | A N mn [ - o~ E .
tlie oYU 1 ndliii g LCUINIVEIIL1IVUIIO (Cilldpici LUL uile 10rfm Or Uf

and the macro name.

The source for INCLUDE files consist of the following:

1. A title comment

; file-name - short description

2. An ident comment

; .IDENT /6.2-295/

3. A full set of legal notices.

4., The rest of a module preface to describe the file.

5. The text of the INCLUDE file. The text conforms to the

formatting rules for declarations.

6. An end comment

¢+ file-name - LAST LINE

7.12 INTERLOCKED INSTRUCTIONS

SEE Synchronization: Process



Assembler Formatting and Usage 28-Feb-77 -- Rev 3 Page 7-10

LABEL

7.13 LABEL

SEE ALSO:

Label: Local

Procedure: Entry

Relative Addressing

Symbol

A label is a symbol which names a statement. The label 1is delimited
by a colon.

o A label should be meaningful in that it should convey some
information about the purpose of the block it precedes.

o Left align all labels in column one of the source text.

o A label should be placed on a line of its own (i.e., not on

same line as the labelled item), and be commented unless it
is a local label. The comment should explain the 1logical

meaning of the label, and under what circumstances execution

reaches the label.

o A statement may sometimes have several (synonymous) labels,

in which case they are placed on subsequent lines, and

commented individually. NOTE: This practice 1is generally

discouraged. Generally, each item in the program should have

at most a SINGLE name. Only in rare cases will a single item

justifiably require several names, such as when two distinct

functions have been combined.

o The labelled statement is placed on the immediately following

line.

Example:

A LABEL: ;Result is Negative
STATEMENT :Statement's Comment

ANOTHER_LABEL: :Used if GEN SWITCH = OFF

SYNONYMOUS LABEL: :Used if GEN SWITCH = ON

STATEMENT :Statement's Comment



Assembler Formatting and Usage = 28-Feb-77 -- Rev 3 Page 7-11

LABEL: GLOBAL

7.14 LABEL: GLOBAL

SEE ALSO:

Declaration: Equated Symbols

Symbol: Global

A global label is declared by means of the double colon "::" operator

or in an entry operator.

Example:

PRINT:: . ;Global print routine

+.WORD M<register list> ;Register save mask

or

.ENTRY PRINT, "M<register list> ;Global print routine



Assembler Formatting and Usage 28-Feb-77 -- Rev 3 Page 7-12

LABEL: LOCAL

7.15 LABEL: LOCAL

SEE ALSO:

LSB: .ENABL/.DSABL

The local label is a special purpose construct "n$:" where "n" 1is a

decimal constant. The value of an explicitly stated "n" may be in the

range of integers 1 through 65535 (decimal). Local labels have a

limited scope of reference defined by (non-local) label brackets, or
by an explicit local symbol block.

o The local label is left aligned in column one of the source
text, on the same line as its named statement.

o Local labels serve as necessary but otherwise mnemonically

meaningless statement identifiers within a block statement.

o Local labels SHOULD NOT BE USED other then for flow of

control identification within a block statement! DO NOT use

local labels throughout 1logically unrelated sequences of

statements. If need be, label block statements mnemonically

in order to force a change of scope for the following 1local

labels.

o Local labels need be unique only within their given scope; a

local label's name may be reused within a new scope.

o Always number your local 1labels sequentially, from "10§:"

upwards by increments of 10 in the order of appearance.

o When inserting a new local label between two existing ones,

give it a number within the range of the two existing labels:

insert "15$:" between "10$:" and “20$:", "17$:" Dbetween

"15$:" and "20$:".

o The numbers should be multiples of ten at first release, and

should be renumbered on any release which makes extensive

changes. They should not be renumbered in the course of

maintenance patches or updates.



Assembler Formatting and Usage

LABEL: LOCAL

Example (correct):

LABEL1:

STATEMENT

10S: STATEMENT

20S: STATEMENT

LABEL2:

10S: STATEMENT

Example (incorrect):

LABEL1l:

50S: STATEMENT

60S:

STATEMENT

30S: STATEMENT

120$: STATEMENT

28-Feb-77 -- Rev 3

;Begin local label scope

e
 

w
W
m
e
 
W
O

;Begin local label scope

-
e

;Begin local label scope

;First label not "10S:"

;Free standing local label
°

’

;Decreasing label number

;Increment larger than 10

Page 7-13



Assembler Formatting and Usage

LIBRARIES

7.16 LIBRARIES

SPECIFICS TO BE SUPPLIED

7.17 LISTING CONTROL

SPECIFICS TO BE SUPPLIED

7.18 SLOCAL MACRO

SEE Variables: Stack Local

7.19 LSB: .ENABL/.DSABL

SPECIFICS TO BE SUPPLIED

7.20 MACROS

SPECIFICS TO BE SUPPLIED

7.21 SOWN MACRO

SEE ALSO:

Structures

SPECIFICS TO BE SUPPLIED

28-Feb-77 -- Rev 3 Page 7-14



Assembler Formatting and Usage 28-Feb-77 -- Rev 3 Page 7-15

PARAMETERS: FORMAL

7.22 PARAMETERS: FORMAL

SEE ALSO:

Implicit Inputs and Outputs

Parameters: 1Input and Output

Procedure

Routine: Preface

Structures

Variables: Stack Local

The VAX-11l hardware has a built-in call/return mechanism with
provision for automatic argument passing. The caller specifies a list
of arguments. The called procedure expects parameters which
correspond one-to-one to the caller's arguments.

The procedure's parameters will be bound with the arguments of each
caller, at the moment of call. They are known as "formal parameters"
because they have no identity (i.e., specific memory address) on their
own, but assume the identity of whatever arguments the present caller
chooses to supply.

The argument list pointer AP always points at the base of the
caller-supplied argument 1list. The first argument list element is
accessed as 1*4(AP), and the Nth as N*4(AP). Rather than address
those arguments absolutely, define each procedure parameter as a
symbolically equated offset relative to AP.

The definition of symbolic formal parameters is made at the end of the
routine preface:

SFORMAL <= ;

PAR1, - ;PARl.at.mf is symbolic name
PAR2, - ;PAR2.at.mf is symbolic name

PARN> ;PARn.at.mf is symbolic name

where the .at.mf specifies the access type, the data type, the passing
mechanism, and the passing format. See the Functional and Interface
Specifications chapter for more details.



Assembler Formatting and Usage 28-Feb-77 -- Rev 3 Page 7-16
PARAMETERS: FORMAL

In the body of the procedure, you now refer to the parameters
symbolically:

o Call by reference: refer to the value of the Nth parameter
by the form @PARn(AP). Refer to the ADDRESS of the Nth
parameter by the form PARn (AP).

o Call by value: refer to the value of the Nth parameter by
the form PARn(AP). You cannot make any meaningful reference
to the parameter's address. Warning: the arqument 1list is
read only.

o Call by descriptor: the descriptor is referenced as in call
by reference. The structure typically has a more specific
referencing algorithm.

Giving the formal parameters symbolic names has the following
advantages:

o0 The code is readable. The notation @FILNAM(AP) is more
meaningful than the notation @12 (AP).

o If it so happens that the procedure's interface has to be
changed, and what wused to be the Nth argument now is the
N+Ith argument, only the parameter definitions have to be
revised; the referencing code 1itself remains unaffected.
Moreover, any such modification is made within the routine
preface's documenting comment and is thus automatically
reflected in the module's documentation.

o The symbols appear in a cross reference listing.



Assembler Formatting and Usage 28-Feb-77 -- Rev 3 Page 7-17

PROCEDURE

7.23 PROCEDURE

SEE ALSO:

Parameters: Formal

Routine: Entry: Multiple

Routine: non-standard

Routine: Order

The procedure is a body of code that is CALLed by some other body of
code, or recursively by itself, to perform a certain function. The
procedure has a certain functional behavior which may be controlled
through caller supplied arguments. To the procedure, the caller's
arguments are locally known as formal parameters; the procedure does
not have to know what the caller's arquments' exact memory address is.

VAX-11 provides one calling mechanism supported by two instructions.
The choice of the instruction 1is strictly up to the caller. The
callee always uses AP to reference arguments:

o The CALLG instruction where the arqument iist is stored in a
caller supplied area, and

o The CALLS instruction where the argument list has been pushed
onto the stack by the caller, immediately prior to the call.

In either case, the argqument list itself is read only. By convention,
it normally consists of an array of pointers to the actual argument
variables. This is NOT mandated by the machine! The argument list

may well contain the values of the arquments.

o According to these conventions, all argument lists by default
contain pointers to the argument variables (known as "call by

reference").

o If a procedure is called with argument values ("call by

value"), then this fact must be prominently displayed in the
procedure preface, in form of a specific notation (see
Parameters: Formal).

The procedure may have local variables. Such variables may be either

permanently allocated in memory (as a .BLKB, .BLKW or .BLKL

allocation) or they may be allocated on the stack (see stack 1local
variables). Stack local variables are allocated upon entry into the

procedure, and de-allocated automatically upon return from the

procedure. The wuse of stack locals results in more efficient memory
utilization, better working set behavior in the paging environment,

and allows the procedure to be called recursively. Even more

importantly, stack locals are truly local to the procedure activation
and the chance of their values getting clobbered, by some other code
that is external to the procedure, is extremely low.

The use of stack locals is recommended. Note that registers are also

in the category of stack 1local variables, assuming that they were

specified to be saved in the procedure's entry mask. In general, the



Assembler Formatting and Usage 28-Feb-77 =-- Rev 3 Page 7-18

PROCEDURE

only non-stack variables to be used by a procedure are the variables
corresponding to some permanent database that the procedure 1is
responsible for maintaining. As a rule, any variable whose value MUST

be remembered across procedure call/returns is permanently allocated;
all other variables are temporaries and should be stack resident.



Assembler Formatting and Usage 28-Feb-77 -- Rev 3 Page 7-19

PROCEDURE: ENTRY

7.24 PROCEDURE: ENTRY

SEE ALSO:

Routine: Entry: Multiple

The procedure entry consists of the procedure name label, and of the
procedure entry mask. The first word of a procedure that is called by

either CALLG or CALLS 1s interpreted by the hardware to be a

register-save mask. The mask, which is a word (=2 bytes), specifies
those registers that are to be saved by the calling mechanism. It
also specifies the integer and decimal overflow enables.

You have to specify those registers explicitly. You specify the

registers used by your procedure, so that their values will be

preserved and restored upon return.

Use the "M operator to specify the list of registers to be saved:

ROUTNAME : ;Name of the procedure

.WORD "M<R2,R3,R4,R10> ;Save four registers

or

.ENTRY GLOBAL_ROUTNAME, "M<R2,R3,R4,R10> ;Save four registers

NOTE: Whenever you modify an existing program, and decide to use a

register, carefully verify the fact that the register is specified 1in

the procedure entry's save-mask.

REMEMBER: Being overzealous in specifying "efficient" register save

masks may cause bugs which are extremely difficult to find; not

necessarily in YOUR procedure, but rather in the procedure that CALLed

you. That calling procedure may be from the library, and the bug

symptom may be extremely horrible and impossible to trace to YOUR

procedure which caused the bug by clobbering the caller's register(s).

If your procedure invokes a non-standard routine your entry mask must

specify all registers used by that routine (even if that routine does

a PUSHR). This is necessary to allow for the case of a signal or

exception being generated and a condition handler UNWINDing the stack.

(See Condtion Handler, Signal, and UNWIND.)



Assembler Formatting and Usage

.PSECT STATEMENT

7.25 ..PSECT STATEMENT

Typically, PSECTs have

Code PIC USR CON

Literals NOPIC USR CON

Own NOPIC USR CON

Global NOPIC USR CON

Common NOPIC USR OVR

the

REL

REL

REL

REL

REL

following

LCL SHR

LCL SHR

LCL NOSHR

LCL NOSHR

GBL NOSHR

28~Feb-77 -- Rev 3 Page 7-20

attributes.

EXE RD NOWRT Align (2)

NOEXE RD NOWRT Align (2)

NOEXE RD WRT Align(2)

NOEXE RD WRT Align(2)

NOEXE RD WRT Align(2)

Since the assembler defaults attributes, the following declarations

are sufficient and hence preferred:

Code .PSECT

Literals . PSECT

Own/Global .PSECT

Common .PSECT

name,PIC,SHR,NOWRT,LONG

name,SHR,NOEXE,NOWRT , LONG

name ,NOEXE,LONG

name ,OVR,GBL ,NOEXE, LONG

Subsequent references to the PSECT should give just the name with no
attributes.

7.26 QUEUE INSTRUCTIONS

SEE ALSO:

Synchronization: Process

SPECIFICS TO BE SUPPLIED



Assembler Formatting and Usage 28-Feb-77 -- Rev 3 Page 7-21
RELATIVE ADDRESSING

7.27 RELATIVE ADDRESSING

SEE ALSO:

Expressions

The assembler allows the formulation of relative addresses of the form

"SYMB+OFFSET". The assembler also allows reference to be made to its

current location counter value dot (".").

0 Under NO CIRCUMSTANCES is it allowed to make relative address
references within the executable code. Code of the form:

BR .+4 :This is a NO-NO

or,

JMP LABEL-23 ;This is a NO-NO

is ABSOLUTELY NOT TOLERATED!

o Relative addressing, including dot-relative addressing, is

useful --and sometimes necessary-- in the definition of data

structures or in the declaration of tables. See expressions,

formal parameters and stack local variables for examples.



Assembler Formatting and Usage 28-Feb-77 -- Rev 3 Page 7-22

ROUTINE: BODY

7.28 ROUTINE: BODY

SEE ALSO:

Comment: Block

Procedure

Statement: Block

The routine's body consists of the sequence of instructions
representing the function performed by that routine. The sequence
should be decomposed into major groups of instructions, where each
group performs a well defined logical operation. Each such group is
known as a block statement, and is preceded by its block comment. It
should be possible to get a fairly complete knowledge of the routine's
logic from simply reading the block comments.

Block statements appear in a logical sequence. The routine's 1logic
must naturally flow in a top-down sequence. All jumps (or branches)
must go down the page! The only exception is in the case of 1loops,
where an upwards jump is necessary.

NO SPAGHETTI-BALL CODE IS TO BE TOLERATED!

Note that most loops have their "end" test at the beginning. This |is
no exception to the above rule in that the loop label is at the top,
then the end test including the branch to the exit, then the body
followed by the branch back around the loop.

In general, a routine will not have a common exit point because a
single RSB or RET instruction performs the return. However, if there
is common code in several paths just before return, this should be
combined as one exit sequence located at the end of the routine.



Assembler Formatting and Usage 28-Feb-77 -- Rev 3 Page 7-23
ROUTINE: ENTRY: MULTIPLE

7.29 ROUTINE: ENTRY: MULTIPLE

A routine may have several entry points, for either of the following
reasons:

o Two or more outwardly different routines effectively use the
same algorithm and have an otherwise identical interface.
For example, the routines to convert a binary value into
OCTAL, DECIMAL and HEXADECIMAL character representations have
a common interface and differ only by the conversion radix.

o A single function may have two or more variants necessitating
different interfaces. Por example, both PRINT and PRINT NL
are entries to the routine that prints a 1line. The first
prints the line without a terminating <newline>, the second
prints the line and issues a <newline>.

In either case, each entry point is to be documented with a full
routine header. Define the entry point, do some setup computation
(setting a flag and/or copying the arguments in the case of
non-uniform parameters), then transfer to a common label. 1In the
following example, the mandatory routine headers were ommitted for
clarity's sake.

Example:

The binary to octal conversion entry

e
 
W
O
 
=
g

.ENTRY BIN_TO_OCT, M<register list> ;Binary to octal
MOVL #8 ,RADIX ;Set radix = 8
BR common H

{separator>

The binary to decimal conversion entry

N
y
 
w
s
 

w
p
e

-ENTRY BIN TO DEC, M<register list> ;Binary to decimal
MOVL $#10,RADIX ;Set radix = 10

BR common H

{separator>

The Binary to hexadecimal conversion entry

“
e
 
s
 
w
o

-ENTRY BIN_TO_HEX, M<register list> ;Binary to hex
MOVL #16 ,RADIX ;Set radix = 16

{separator>

COMMON : ;Common conversion code



Assembler Formatting and Usage 28-Feb-77 -- Rev 3 Page 7-24

ROUTINE: NON-STANDARD

7.30 ROUTINE: NON-STANDARD

SEE ALSO:

Procedure

Routine: Preface

The non-standard routine differs from the procedure in the fact that
it 1is 1invoked with the JSB, BSBB, or BSBW instruction and returns by
means of the RSB instruction, whereas the procedure 1is invoked with
either the CALLG or the CALLS instructions and returns by means of the
RET instruction.

The non-standard routine has no formal stack frame allocation, nor any
hardware supported argument passing mechanism. Arguments are passed
in predesignated global localities, most typically in registers or
pushed onto the stack.

Code and comment the non-standard routine according to the very same
rules 1laid down for the procedure, as exemplified in the Program
Structure Overview chapter. However:

o The non-standard routine's entry point MUST NOT consist of a
register save mask. If you have to save registers, use an
explicit PUSHR instruction.

o Unlike the RET instruction, the stack does not get cleaned
automatically, nor do saved registers get restored

automatically. Before performing the RSB instruction, adjust
the top-of-stack and perform a POPR instruction (if
necessary) to restore the explicitly saved registers (if

any).

o In the routine preface, clearly indicate that this 1is a
non-standard routine and not a procedure. Clearly specify
where the call arguments are to be found, and in what order
(especially important if they are pushed onto the stack).

These are documented 1in the INPUT PARAMETERS section.
Similarly document the output registers and stack in the
OUTPUT PARAMETERS section.



Assembler Formatting and Usage 28-Feb-77 -- Rev 3 Page 7-25

ROUTINE: ORDER

7.31 ROUTINE: ORDER

The following rules apply to the ordering of routine declarations:

o All routines appear together as a group and come after all

the declarations in a module.

o Routines are ordered by their use. That is, if routine "ATM"

calls routine "B" then routine "B" appears after "A".

o Mutually recursive routines are ordered by principal entry

first.

7.32 .SBTTL STATEMENT

Whenever you switch from one major logical text element to another,

you would normally insert a formfeed to force the new element onto a

page of its own (e.g., the module's history, declarative part, and the

routine(s)). Begin each such logical element with a .SBTTL statement

that will cause that subtitle text then to be reprinted on each

successive page of the module element.

If two consecutive logical elements will fit entirely on one page with

ample excess space, then the form feed can be replaced by four blank

lines. The .SBTTL and comments are always included.



Assembler Formatting and Usage 28-Feb-77 -- Rev 3 Page 7-26

STATEMENT

7.33 STATEMENT

SEE ALSO:

Comment

Statement: Block

The statement is a single functional step specification of the
algorithm. This definition includes functional specifications made to

the "assembler machine" as distinct from VAX-~-1ll proper (i.e.,
assembler directives as distinct from VAX-1l instructions). It also

includes higher-level instructions that were defined by means of the

MACRO facility.

The statement is of the general form:

[LABEL] : :Optional label

OPCODE [OPERAND LIST] ;0Opcode and operands

Where:

o [LABEL]) is an optional statement label.

o OPCODE is a VAX-11 Op-Code, or an assembler directive, or a

MACRO. It is placed at character position 9 (one tab stop

from the left margin).

o [OPERAND LIST] is an optional list of one or more operands,

separated by commas (","). The operand 1list begins on

character position 17 (two tab stops from left margin).

Typically, the statement requires a single line of source text, for

example:

MOVL #10,R5 sInitialize loop counter

The assembler 1listing format allows 80 column input lines. VaX-1l1

instructions, however, may be very lengthy, because:

o The instruction has a large number of operands, or because

o The operands themselves are "voluminous®.

In addition, because of the object code display constraints, a

significant portion of the object listing is dedicated to other than

the source text, whose display space is therefore limited. It 1is

therefore very possible that a single statement may not gracefully fit

on a single line of text (or even not fit at all).



Assembler Formatting and Usage 28-Feb-77 -- Rev 3 Page 7-27

STATEMENT

The statement may be broken into two or more lines of text by means of

a statement continuation mark, which is a hyphen ("-"). The mark must
be the last non-blank character preceding the comment delimiter. For
example:

EDIV BIRTHDAY_ CAKE,THREE, - ;Divide THREE by CAKE

QUOTIENT,REMAINDER ;Compute CAKE'th of THREE

In general:

o

o

The multiple line statement IS NOT a block statement.

Use vyour judgement in best applying the statement
continuation feature. It may be put to good use by providing

more extensive commenting space on an operand by operand
basis, if necessary. Alternatively, there may be good reason
to write the statement on a single 1line (assuming that it

fits) and putting the comment on the following line.

Take pride in producing the most aesthetic 1looking and
consistent source code possible. Having "Raggedy Anne" text
and undulating comments is not very pretty. Use the multiple
line statement feature to achieve the nicest looking code
possible.

Remember to comment each and every statement. In case that

the statement is self evident and needs no comment, remember

that a semicolon (";") comment delimiter is still mandatory.



Assembler Formatting and Usage 28-Feb-77 -- Rev 3 Page 7-28

STATEMENT: BLOCK

7.34 STATEMENT: BLOCK

A number of statements forming a larger logical wunit within the

program is known as a block statement. A block statement must not be

labelled with a local label (it may include local labels in addition

to its own). The block statement need not have a label; however, if

it does have local labels then it must be tagged with a label

identifying the block.

o The block statement is separated from its predecessor and

successor statements (and/or comments) by a blank line. 1Its
label(s), if it has any, is an integral part of the block

statement.

o The block statement is to be preceded by a block comment.

Example:

<skip>

Hag

; This is the statement's block comment

>

<skip>

OPTIONAL LABEL: :Label's comment

STATEMENT ;

10S$: STATEMENT ;Optional local labels

STATEMENT :

<skip>

7.35 STRING INSTRUCTIONS

SPECIFICS TO BE SUPPLIED



Assembler Formatting and Usage 28-Feb-77 -- Rev 3 Page 7-29

STRUCTURES

7.36 STRUCTURES

SEE ALSO:

SOWN Macro

Parameters: Formal

Variables: Stack Local

Structures are allocated under program control. They may appear in

the stack, as formal parameters, or at arbitrary places in memory.

They are

relative

given symbolic offsets from their base and are referenced

to some base register.

To declare structures, you have to

(1)

(2)

Example:

-
 
W
e
 
w
o

ITEM1=0

ITEM2=4

ITEM3=8

ST LNG=12

o)

Define their symbolic offset names, and to

Explicitly allocate space for them.

Definition of a 3-item based structure

; ITEM1's offset

; ITEM2's offset

;ITEM3's offset

;Length of this structure

Assuming memory area VAR to be structured, you will now

compute the address of ITEMn by using the expression

<VAR+ITEMn>.

Assuming the address of the structure to be in base register

Rl, you will access the first byte of ITEMn by specifying the

operand ITEMn(Rl).

ADDITIONAL SPECIFICS TO BE SUPPLIED about MDL, SDL, and SYSDEF macros.



Assembler Formatting and Usage 28-Feb-77 -- Rev 3 Page 7-30

SYMBOL

7.37 SYMBOL

A symbol is an alphanumeric string of up to 15 characters in length.

It consists of letters "a" through "z" and "A" through "Z", digits 0

through 9, and special characters underline ("_"), dot (".") and

currency sign ("$"). -

o The assembler does not distinguish between upper- and
lower-case alphabetic characters constituting a symbol. Thus

"symbol", "SYMBOL", "SyMbOl", "sYmBoL" etc. are all

interpreted as equivalent. To minimize reader confusion,

never use lower case in symbols. Lower case should be used

only in comments and in text strings.

o The underline character " " 1is used to separate the parts of
a compound (or qualified) name. Freely use the underline
when constructing names to improve readability and

comprehension.

o The ability of a programmer to infer various attributes of a
symbol simply by wvirtue of its name is a very desireable

characteristic.

o The currency sign "$" has been given a special significance
within the global VAX-11 software architecture.

Refer to the Naming Conventions chapter for the exact symbol

construction rules.



Assembler Formatting and Usage 28-Feb-77 -- Rev 3 Page 7-31

SYMBOL: EXTERNAL

7.38 SYMBOL: EXTERNAL

External symbols will be declared automatically by the assembler. A
declaration 1is needed only if the reference is to be weak (see .WEAK
Declaration).

7.39 SYMBOL: GLOBAL

SEE ALSO:

.VALIDATE Declaration

.WEAK Declaration

A global symbol is defined by means of the double colon "::" for label

symbols, and by means of the double equate "==" for equated symbols.

Example:

SWITCH::

.BLKW 1 ;Global variable SWITCH

TRUE== ;Global value TRUE

7.40 SYNCHRONIZATION: PROCESS

SEE ALSO:

QUEUE Instructions

SPECIFICS TO BE SUPPLIED

7.41 .TITLE STATEMENT

SEE ALSO:

Module: Preface

The .TITLE statement is the very first statement of the module. Its

operand is the module name. Any text following the module name is

used in the header of the object code listing. The text following the

module name should be a terse functional description of the module.

Example:

.TITLE FILE MGR - The STARLET file manager subsystem



Assembler Formatting and Usage 28-Feb-77 -- Rev 3 Page 7-32

UNWIND

7.42 UNWIND

SEE ALSO:

Condition Handler

Signal

If a condition handler gets control, it has several options over the

flow of control. It can resignal the condition for another handler to

take control, or it can signal a distinct condition for the same

purpose. Alternatively, it can continue from the signal. The final

option is to terminate the procedures in progress, unwind the stack,

and branch to a specific recovery address. This would be done when

the current operation is to be aborted, but the program is not to Dbe

terminated.

When an unwind is requested, each stack frame is examined in order to

restore all the saved registers and Program Status Word (PSW). Before

each stack frame is removed, it is examined to see if a «condition

handler has been established. I1f so, the handler is called first.
This allows a procedure to gain control if it is aborted or 1if any

routine below it aborts. This might be used, for example, to release

any resources such as dynamic storage which the routine might have

acquired.

7.43 .VALIDATE DECLARATION

SEE ALSO:

Symbol: External

Symbol: Global

.WEAK Declaration

This is used in addition to a global declaration for any symbol which

is made global only to validate consistency across several modules.

For example, if two modules assume that the length of a particular

structure is 47, then both might declare

.VALIDATE STR_LEN

STR_LEN==47

This would cause the LINKER to validate that both declarations are the

same. The .VALIDATE declaration should not be made if any routine

references STR LEN as an external. It is used only to mark global

definitions whose purpose is totally redundant.



Assembler Formatting and Usage 28-Feb-77 == Rev 3 Pagqe 7-33
VARIABLES: STACK LOCAL

7.44 VARIABLES: STACK LOCAL

SEE ALSO:

Exoressions

Parameters: Formal

Structures

Stack local variables are allocated at the base of the procedure's

stack frame, and given symbolic names that are offsets relative to the

orocedure's stack frame pointer FP.

\¥4 - b
|94(=}va'fi 1l

(the wor

o
L=

3 v be allocated starting with the longword following FPl1low
ing 

FI

Jay

that would be used by a PUSHL instruction).jo
 T
R
/
,]

To declare stack local variables, you have to:

(1) Define their symbolic offset names, and

(2) explicitly allocate space for them on the stack.

Symbolic definition is performed using the $LOCAL macro, as in:

Definition of stack local variables

-
y
 
W
8
 
w
o

SLOCAL <-

<I1,8>,- ;Quad variable I

J,- :Long variable J

<K,2>,~ ‘ ;Word variable K

<B,1>> :Byte variable B

The actual allocation is performed using a SUBLZ2 instruction, as in:

The routine entry point

-
 
W
0
 
w
e

ROUTNAME: ;The routine's name

.WORD “M<register list> ;Save mask

SUBL2 #SSLOCAL_SIZE,SP :Advance SP past allocation

whenever you want to reference one of the stack local variables, do so

by using its symbolic name VAR based on the contents of FP (e.qg.,

“"WAR(FP)"). Such as:

MOVB R7,B(FP) ;Store byte in local B

ADDL3 1 (FP) ,4+1(FP),J(FP) :Add both halves of I into J

Compare the allocation of these 1local variables to the structure

definition shown in the structures section. Notice the difference

that is due to the stack's backwards growth.



—
 
—
 
—

 
—
—
 
—
—
 
—
—
r
 
o
l
 
—
 
—
 
—
 
—
 
—

 
—
 
—
 
—
—

 
—

 
—
—
 
—
—

Assembler Formatting and Usage 28-Feb-77 -- Rev 3 Page 7-34

.WEAK DECLARATION

7.45 .WEAK DECLARATION

SEE ALSO:

.VALIDATE Declaration

‘The .WEAK declaration can be made on either external or global
definitions. In both cases its meaning is that the symbol should be
matched by the LINKER if defined, but that this reference or

definition should not force the loading of a library module.

When used on a global declaration, then the definition of the symbol

in this module 1is not sufficient to cause this module to be loaded

from a library. Thus, it should be used for any subordinate symbols

defined in a library module.

When used on an external, then the reference to this symbol will not

cause it to be defined by loading a library module. 1If some module
which is loaded defines the symbol, then it will be defined for this
reference. If nothing defines the symbol, it 1is automatically
satisfied as defined as 0 without any error messages. Thus, it can be

used to establish a pointer to an optional module or data base. If
the module is loaded, the pointer is defined. Otherwise the pointer
has value 0.

(End of Chapter 7]



Digital Equipment Corporation COMPANY CONFIDENTIAL

Title: VAX-11 Software Eng. BASIC Formatting -- Rev 3

Specification Status: draft

Architectural Status: under ECO control

File: SEBR3.RNO

PDM #: not used

Date: 23-Feb-77

Superseded Specs: none

Author:

Typist: P. Conklin

Reviewer (s):

Abstract: Chapter 8 gives each piece of the BASIC

Page 1

formatting and

usage conventions in detail. The items are in alphabetical

order. Each item includes references to

gives the background and the rules,

templates and examples.

Revision History:

Rev # Description Author

related topics,

and then gives

Revised Date



CHAPTER 8

BASIC FORMATTING AND USAGE

23-Feb-77 -- Rev 3

This chapter contains detailed information on formatting standards,

and 1instruction usage. For ease of reference, it 1s organized

alphabetically by topic. Each topic includes references to related

topics. Most entries also include examples or sample templates

illustrating the specific topic.

THE CONTENTS ARE TBS

[End of Chapter 8]



BASIC Formatting and Usage

Change History

Rev 2 to Rev 3:

1. Create null chapter.

[End of SEB8R3.RNO]

23-Feb-77 -- Rev 3 Page 8-990



Digital Equipment Corporation COMPANY CONFIDENTIAL Page 1

Title: VAX-1l Software Engineering BLISS Formating and usage
Specification Status: draft

Archetectural Status: under eco control

File: SE9R3.RNO

PDM: not used

Date: 21-Feb-77

Superceded specs: none

Author: P. Marks, M. Spier

Typist: G. Hesley, R. Murray

Reviewer (s): D. Cutler P. Conklin R. Gourd I. Nassi S. Poulsen

Abstract: This chapter is a collection of procedures and examples of
specific BLISS related formats and language usages. It is
organized by keywords, in alphabetical order.

Revision History:

Rev # Description Author Revised Date
Rev 1 Original P.Marks, M.Spier 2-Aug-77
Rev 2 Review P.Marks,I.Nassi 1-Jan-77
Rev 3 SEM integration R.Murray 31-Feb-77



Declaration

Declaration: format

Declaration: forward

Declaration: forward

Declaration: macro

Declaration: order

Expression

Expression: assignment

Expression: block

Expression: case

Expression: format . .

Expression: if/then/else . .

Expression: incr/decr

Expression: select .

Expression: while/until/do

Labels . . . .

N ame L J L ] [ ] L] * L ]

Require files .

Routine . . . .

Routine: format

Routine: name .

Routine: order .

Routine: preface

Structire: block

Structure: block

L

routine

* . L
 ] [

Structure: declaration . . .

c
t

O \
O l

W

|

"

O
 
O

J

[V
e

'

|V
8
]

O
 
W
O
 
W
O
W
W
O
W
Y
W
W
Y

|

D
N
 
W
O

- O

|

— ~
J

O

|

w

~

c
r |

(
o
)

W
W
O
W
W
O
W
W
Y
W
W
Y
W
O
 
v

l

=
=
 
O

 
0
0
D

W
 
W
O
 
W
W
W
O
W
W
 
O
O

}

(
G
 
U
,
 
G
 

O
,
 B
U
,
 
O
 
I
R
 
0
,

 R
 V

Y)

N
 
-
=
O

-
 

-
 

-
 

-
 

-

9-16

9-17

9-17

9-17

9-17

9-17

9-18

9~19

9-18 to 9-19



Bliss Formating and Usage 21-Feb-77 Page 9-99(
Change History

Rev 2 to Rev 3:

1. split from chapter 6 to exclude those features common to both
Bliss and Assembler.

[end of se9r3.rno]



CHAPTER 9

BLISS FORMATING AND USAGE

21-Feb-=77 -- Rev 3

The following is an explanation of some of the terms used throughout

this section.

Logical tab equivalent to four (physical) spaces.

Used for indenting BLISS source text.

Two successive logical tabs should be

typed as one physical tab.

Physical tab the ASCII TAB character (octal 11).

All standard DEC software interprets

the tab as equivalent to moving the

carriage or cursor to the next column

number which 1is one more than a

multiple of eight.

Tab used throughout this manual to mean

logical tab.

Indentation level the number of logical tabs a 1line of

text is offset to the right of the

left page margin.

Indenced offset one logical tab to the right of

the text on the preceding line.

Line The contents of one record.



Bliss Formating and Usage 21-Feb-77 Page 9-2

DECLARATION

9.1 DECLARATION

See:

Declaration: Format

Declaration: FORWARD ROUTINE

Declaration: MACRO

Declaration: Order

9.2 DECLARATION: FORMAT

Declarations are written according to the following format:

declaration-keyword(s)

declaration-item, ! Comment

declaration-item, ! Comment

declaration-item; ! Comment

The following rules apply to declaration formatting:

o Each declaration-keyword appear(s) alone on a line and starts

at the 1left margin of the block in which the declaration is

being made.

The declaration-item(s) being declared appear indented one

logical tab with respect to the declaration-keyword and on a

separate line(s).

Declaration-items are in an order meaningful to the program

organization, or in alphabetical order.

Each declaration-item has a line comment on the same line

describing, in most cases, the meaning and/or usage of the

declaration-item being declared.



Bliss Formating and Usage 21-Feb-77 Page 9-3

DECLARATION: FORWARD ROUTINE

9.3 DECLARATION: FORWARD ROUTINE

SEE ALSO:

Declaration: Format

The following rules apply to FORWARD ROUTINE declarations:

o forward ROUTINE declarations for a module are grouped
together and appear at the beginning of the module.

1l the routines to be

rence.

The FORWARD ROUTINE declaration names al

declared in the module in order of occur

Each routine name is on a separate line with a 1line comment
briefly explaining its function.

The FORWARD ROUTINE declaration serves as a table of contents

for the module.

9.4 DECLARATION: MACRO

SEE ALSO:

Decl

Expr

The follo

o)

aration: Format

ession

wing rules apply to MACRO declarations:

MACRO declarations follow the general formatting rules

outlined under DECLARATION: format.

If the body of the MACRO is composed of declarations and/or

expressions, then the body conforms to all the formatting

rules for declarations and/or expressions.

If the macro has a formal-list, then the commenting rules for

ROUTINES should be applied, in so far as describing each of

the formal parameters and commenting on the function of this

macro.



Bliss Formating and Usage 21-Feb-77 Page 9-4

DECLARATION: ORDER

9.5 DECLARATION: ORDER

SEE ALSO:

Declaration: FORMAT

Declaration: FORWARD

Declaration: MACRO

Routine

We group the BLISS declarations as follows:

1. FORWARD declarations

2. REQUIRE declarations

3. All other declarations

4. ROUTINE declarations

The first, second and fourth groups are discussed in their own

sections. The third group 1lumps all other declarations (e.g.,

STRUCTURES, LITERALS, MACROS, etc.), which have module-wide or

routine-wide scope, into one major group. :

The ordering of the different declarations within this third group 1is

important and is based on the following rules:

o Group logically related declarations together. For example,

a specific structure may be used in conjunction with certailn

macros. These declarations would then appear together as a

group.

o As much as possible, these logical groups will appear in the

order of their use within the module or routine.

o Separate the logical groups from each other by the use of

appropriate separators.

o Within a 1logical group of declarations group specific

declarations together by type. For example, all MACROS will

be defined via one or more MACRO declarations.

A word of caution: Owing to the nature of the BLISS language, it 1s

necessary to declare all variables, structures, routines, etc. before

they are used. Care should be taken so as not to use something before

it is declared. 1In any event, the compiler will complain.



Bliss Formating and Usage 21-Feb-77 Page 9-5
EXPRESSION

9.6 EXPRESSION

SEE:

Expression: Assignment

Expression: CASE

Expression: Block

Expression: Format

Expression: IF/THEN/ELSE

Expression: INCR/DECR

Expression: SELECT

Expression: WHILE/UNTIL/DO

9.7 EXPRESSION: ASSIGNMENT

Assignment expressions are usually of the form:

name = expression

The following rules apply to assignment expressions:

o

Examples

If the entire assignment expression will not fit on one line
because of its length then place the variable and the equal
sign on one line and continue the expression indented one
logical tab on the next line. '

(correct):

name = a-short-expression: ! comment

(Note the space before and after the
= sign.,)

name = a-short-expression: ! a long long

! comment

name = 
! a comment for

a-long-long-long-long-expression; ! this expression



Bliss Formating and Usage 21-Feb-77 Page 9-6

EXPRESSION: CASE

9.8 EXPRESSION: CASE

CASE expressions are set up according to the following skeletal

example:

CASE 1index

FROM low-case TO high-case OF

SET

case-label-action:

case-label-action;

case-label-action;

TES

where case-label-action 1is:

[case-label]:

! Explanatory comments

! for this case.

case-action;

or

[case-label]: case-action; ! comment

The following rules apply to CASE expressions:

o The body of the CASE expression is indented one 1logical tab
with respect to the keyword CASE.

o Each case-label-action is separated from

case-label-action by at least one blank line.
another

o The choice of format for the case-label-action 1is dependent

on the size (number of expressions) of the case-action. A

large case-action will wuse the first format;

case-action the second format.

a small

o Each of the case-actions follows the rules for expression

formatting.

o It is desirable that the case-label be a descriptive and

meaningful name that has been bound to 1its value. A

case-label then becomes a label or signal to the reader

indicating what value caused this case-action to be used.



Bliss Formating and Usage 21-Feb-77 Page 9-7
EXPRESSION: BLOCK

9.9 EXPRESSION: BLOCK

A block expression provides a means of grouping declarations and/or
expressions into a single structural entity.

The following rules apply for BLOCK expressions:

0 The block expression is separated from its predecessor and
successor expressions (and/or comments) by a blank line.

The block expression is to be preceded by a block comment.

Constituent declarations and expressions of a block are
indented to the same level as the BEGIN-END delimiters.

In a block expression, the last expression in the block is
followed by a ";" unless the value of the block expression is
actually used in an enclosing expression.



Bliss Formating and Usage 21-Feb-77 Page 9-8

EXPRESSION: FORMAT

9.10 EXPRESSION: FORMAT

Specific formatting rules apply for each kind of executable

expression. In general, the following rules apply:

o)

o

Expressions generally appear on separate lines.

Expressions are left justified to the current indentation

level.

Expressions which fit on one line may appear on one line.

Expression subparts, when indented, are indented one logical

tab to the right of the start of the expression. Specific

indentation rules are given in the appropriate sections.

Compound-expressions consisting of more than one 1line are

bounded by BEGIN-END delimiters rather than by parentheses.

In general, for arithmetic expressions:

o Place one space around the binary "+" and "-".

o Place one space before the unary "+" and "-".

o Place no spaces around the "*" and "/" operators.

o In lists, place one space before the "(" and one space

after each "," and the ")".



Bliss Formating and Usage 21-Feb-177 Page 9-9

EXPRESSION: IF/THEN/ELSE

9.11 EXPRESSION: IF/THEN/ELSE

IF expressions are written in either of two formats:

IF test THEN consequence ELSE alternative

or

IF test

THEN

consequence

ELSE

alternative;[ X R “3 - f ]

o In the first case, the entire IF expression may be placed

one line only if the IF expression fits on one line.

o Otherwise, the second format is used. The consequence

on

and

alternative expressions are indented one logical tab with

respect to the keyword IF.

If the test is a compound test then the IF expression 1is written

one of the following manners:

IF test AND test AND test

THEN

consequence

ELSE

alternative

or

IF test AND

test AND

test

THEN

consequence

ELSE

alternative

o The first format is used when the compound test can fit

one line. Otherwise, the second format is used.

in

on



Bliss Formating and Usage 21-Feb-77

EXPRESSION: INCR/DECR

9.12 EXPRESSION: INCR/DECR

INCR/DECR expressions are written according to one of the

formats:

INCR loop-index FROM first TO last BY step DO

loop-body;

or

INCR loop-index

FROM first TO last BY step DO

loop-body;

The following rules apply to INCR/DECR expressions:

Page 9-10

following

o Use the first format when the FROM-TO-BY expression will fit

on one line. Otherwise, use the second format.

o The loop-body is indented one logical tab with respect to the

keyword INCR/DECR.



Bliss Formating and Usage 21-Feb-77 Page 9-11
EXPRESSION: SELECT

9.13 EXPRESSION: SELECT

SELECT expressions are set up according to the following skeletal
example:

SELECT select-index OF

SET

select-label-action;

select-label-action;

select-label-action;

TES

where select-label-action is:

[select-label]:

! Explanatory comments

! for this select-label.

select-action

or

[select-label]: select-action; ! comment

The following rules apply to SELECT expressions:

o The body of the SELECT expression is indented one logical tab
with respect to the keyword SELECT.

0 Each of the select-label-action expressions is separated by
at least one blank line.

0 The choice of format for the select-label-actions
dependent on the size (number of expressions)
select-action. A large select-action will use the
format; a small select-action the second format.

o It is desirable that the select-label be a descriptive
meaningful name that has been bound to its value.
select-label then becomes a label or signal to the

is

of the

first

and

A

reader
indicating what condition or value caused this select-action
to be SELECTed.



Bliss Formating and Usage 21-Feb-77 Page 9-12

EXPRESSION: WHILE/UNTIL/DO

9.14 EXPRESSION: WHILE/UNTIL/DO

WHILE/UNTIL/DO expressions are written in the following manner:

WHILE test DO

loop-body;

or

DO

loop-body

WHILE test;

The following rules apply to WHILE/UNTIL/DO expressions:

o The keyword WHILE or UNTIL 1is aligned with the cutrent

indentation level.

o The loop-body is indented one logical tab with respect to the

keyword WHILE or UNTIL and follows the rules for expression

formatting.



Bliss Formating and Usage 21-Feb-77 Page 9-13

IDENT MODULE SWITCH

9.15 1IDENT MODULE SWITCH

The IDENT switch has, as 1ts parameter, the current version number of

the module. This version number corresponds to the last entry in the

module's ABBREVIATED HISTORY.

9.16 LABELS

A label is a name, hence it must conform to the rules for constructing

names. It is delimited by a colon ":".

The following rules apply to labels:

o Labels, when used, appear alone on a line. The block to

which they refer follows on the next 1line indented one

logical tab with respect to the label.

o A label is meaningful in the sense that it conveys some

information about the block it is labelling.

9.17 MODULE: SWITCHES

Module switches apoear in the module declaration and allow the

programmer to provide information about the module and to control some

aspects of the compiler's treatment of the module. Of special

importance 1s the IDENT switch (see IDENT Module Switch) and the MAIN

switch which specifies which routine is to be used to begin program

execution.

o Each module switch will appear on a 1line by itself. The

IDENT switch is first, the MAIN switch is second; any other

switches follow.



Bliss Formating and Usage 21-Feb-77 Page 9-14

MODULE: SWITCHES

Example (correct):

MODULE EXAMPLE (

IDENT ‘03!,

MAIN BEGINHERE,

RESERVE = (RO, Rl)

) =



Bliss Formating and Usage 21-Feb-77 Page 9-15

NAME

9.18 NAME

A name consists of one to fifteen characters from the sets:

1. ABCDE... XY 2

2. abcde ... xy z

3. 01 23456728239

4. underline " "

5. dollar "§"

No distinction is made between upper and lowercase letters except 1in

string literals. Thus, DateOf Birth is equivalent to dateof birth.

The following rules apply to names:

o Freely use the wunderline " " when constructing names to

improve readability and comprehension. For example:

WRITEARECORD becomes WRITEA RECORD.

The ability of a programmer to infer various attributes of a

symbol simply by virtue of 1its name is a very desirable

characteristic.

Predefined and syntactically meaningful names are to be used

only for their intended purpose.



Bliss Formating and Usage 21-Feb-177 Page 9-16
REQUIRE FILES

9.19 REQUIRE FILES

The purpose of REQUIRE files is to centralize in one place

declarations and definitions that are common to multiple modules.

Data STRUCTURE declarations, MACRO declarations, and LITERAL

declarations are the principal contents of REQUIRE files.

REQUIRE files consist of the following:

1. ! file-name - description

2. A copyright statement and disclaimer.

3. A MODULE PREFACE.

4. The text of the REQUIRE file. The text conforms to the

formatting rules for declarations.

5. ! file-name ~ LAST LINE



Bliss Formating and Usage 21-Feb-77 Page 9-17

ROUTINE

9.20 ROUTINE

SE

9.

E:

Declaration: Order

Routine: Format

Routine: Name

Routine: Order

Routine: Preface

21 ROUTINE: FORMAT

The following rules apply for ROUTINE formatting:

\
0

o The routine declaration is to start at the left margin.

o The routine body is to be indented one 1logical tab to the
right of the routine declaration.

o All other 1indentation follows the rules for declaration
and/or expression formats.

22 ROUTINE: NAME

Global routine names should follow the naming conventions stated
earlier. Local routine names may be chosen at as desired.

9.23 ROUTINE: ORDER

The following rules apply to the ordering of routine declarations:

o All routine declarations appear together as a group and

constitute the last set of declarations in a module.

o Routines are ordered by their use. That is, if routine "A"

calls routine "B" then routine "B" is declared after "A".



Bliss Formating and Usage 21-Feb-77 Page 9-18

ROUTINE: ORDER

o The ordering of routines 1is reflected 1in the FORWARD

declaration group appearing at the beginning of the module.

o Mutually recursive routines are ordered by principle entry

first.

9.24 STRUCTURE: DECLARATION

SEE:

STRUCTURE: Block

The format for the structure declaration is as follows:

STRUCTURE

structure-name [access formal list;allocation formal list]=

[structure size]

structure body:;

The following rules apply to the structure declaration:

o The structure declaration format generally conforms to that

of macros

o The structure-name is indented one logical tab.

o The structure size and structure body are 1indented another
logical tab.

o The structure body contains one expression. The format rules
regarding expressions are in force starting with the

indicated indentation level.

In the instance where the expression part of the structure body is
simple, it may be contained on one line as seen below:

STRUCTURE

BLOCK[O,P,S,E;N,UNIT = $UPVAL] =

[N*UNIT]

(BLOCK+O*UNIT)<P,S,E>;

or, may be of such complexity as to require the use of most rules for

formatting expressions.



Bliss Formating and Usage 21-Feb-77 Page 9-19

STRUCTURE: DECLARATION

STRUCTURE

VECTORICH[I;N,UNIT = $UPVAL] =

[N*UNIT]

BEGIN

LOCAL T;

T=.1;

IF . T LSS 1 OR .T GTR N

THEN

BEGIN

ERROR(.T);

T=1;

END;

VECTORICH + (.T - 1) * UNIT

END;

9.25 STRUCTURE: BLOCK

SEE:

STRUCTURE: Declaration

The structure called BLOCK is a predeclared structure which may be

used without an explicit declaration. If declared it would look as

follows:

STRUCTURE

BLOCK[O,P,S,E;N,UNIT = fUPVAL] =

[N*UNIT]

(BLOCK + O * UNIT)<P,S,E>;

Consider the following example.

OWN

X:BLOCK[2];

A = .X[0,0,16,0];

B = .X[(0,16,16,0]

c = .X[1,0,32,0]

X is defined as a two word BLOCK whose first word has two fields, each

16 bits long and whose second word is a field 32 bits long. The above

assignment statements use the BLOCK definition to access each field.



Bliss Formating and Usage 21-Feb=-77

STRUCTURE: BLOCK

NOTE

For a further explination of the
structure declaration and built-in
structures, see the chapter on Data

Structures in the BLISS Language Guide.

The BLISS programmer is strongly urged to hide the 4-tuple

access a BLOCK by using a "field macro" as follows:

MACRO

FIELD ONE = 0,0,16,0%,

FIELD_TWO = 0,16,16,0%,

FIELD THREE = 1,0,32,0%;

Thus the access to the BLOCK X becomes:

Q
O
w
 
P .X[FIELD ONE];

.X[FIELD_TWO];

.X[FIELD THREE] ;

Page 9-20

used ¢to

This achieves a greater degree of readibility and facititates future
changes to the structure of X.

[end of chapter 9]



Digital Equipment Corporation COMPANY CONFIDENTIAL

Title: VAX-1l1 Software Eng. COBOL Formatting -- Rev 3

Specification Status: draft

Architectural Status: under ECO control

File: SElOR3.RNO

PDM #: not used

Date: 23-Feb-77

Superseded Specs: none

Author: |

Typist: P. Conklin

Reviewer (s):

Abstract: Chapter 10 gives each piece of the COBOL formatting

Page 1

and
usage conventions in detail. The items are in alphabetical
order. Each item includes references to
gives the background and the rules,
templates and examples.

Revision History:

Rev # Description Author

related topics,
and then gives

Revised Date



COBOL Formatting and Usage

Change History

Rev 2 to Rev 3:

1. Create null chapter.

[End of SE10R3.RNO]

23-Feb-77 -- Rev 3 Page 10-990



CHAPTER 10

COBOL FORMATTING AND USAGE

23-Feb-77 -- Rev 3

This chapter contains detailed information on formatting standards,
and 1instruction usage. For ease of reference, it 1is organized
alphabetically by topic. Each topic includes references to related

topics. Most entries also include examples or sample templates

illustrating the specific topic.

THE CONTENTS ARE TBS

[End of Chapter 10]



Digital Equipment Corporation COMPANY CONFIDENTIAL

Title: VAX-11 Software Eng. Fortran Formatting -- Rev 3

Specification Status: draft

Afchitectural Status: under ECO control

File: SEIll1R3.RNO

PDM #: not used

Date: 23-Feb-77

Superseded Specs: none

Author:

Typist: P. Conklin

Reviewer (s):

Abstract: Chapter 11 gives each piece of the Fortran formatting

Page 1

and
usage conventions in detail. The items are in alphabetical
order. Each item includes references to re lated topics,
gives the background and the rules, and then gives
templates and examples.

Revision History:

Rev # Description Author Revised Date



Fortran Formatting and Usage 23-Feb-77 -- Rev 3 Page 11-990

Change History

Rev 2 to Rev 3:

1. Create null chapter.

[End of SE11R3.RNO]



CHAPTER 11

FORTRAN FORMATTING AND USAGE

This chapter contains detailed information on formatting standards,
and instruction usage. For ease of reference, it 1is organized
alphabetically by topic. Each topic includes references to related
topics. Most entries also include examples or sample templates
illustrating the specific topic.

THE CONTENTS ARE TBS

[End of Chapter 11]



Digital Equipment Corporation COMPANY CONFIDENTIAL

Title: VAX-11 Software Engineering Naming Conventions =-- Rev 3

Specification Status: draft

Architectural Status: under ECO control

File: SE12R3.RNO

PDM #: not used

Date: 28-Feb-77

. VAYC
L] |>4

L

£3 4> A4\ ’ ot o N A s & SaNAd

Document

Author: P. Conklin, S. Gault

Typist: P. Conklin

Reviewer (s): R. Brender, D. Cutler, R. Gourd, T. Hastings,
D. Tolman

Page 1

g Design

I. Nassi,

Abstract: Chapter 12 gives the system wide naming conventions for all
public symbols. These rules are to be followed by all DEC

software for all symbols which are global or appear in

parameter definition files. This chapter also includes the
list of all facility prefixes.

Revision History:

Rev # Description Author Revised Date
Rev 1 Original S. Gault Oct-70
Rev 2 Revised from Review S. Gault Jan-77

Rev 3 After 6 months experience P. Conklin 28-Feb-77



.PSECT name

Bit field size name

Bit name . .

BLOCK name, REF

Call

non-standard

Code, condition . .

Completion code . . .

Condition value

Constant value name

Data type . . . . . .

Definition macro name,

Entry point

global . . . . . . .

Facility prefix table

Field offset name

Global array name . .

Global entry point . .

Global variable name .

Interface style . . .

Macro name . . « « o o

Mask name e e o o

Module name e e s s

Name

private . . . . . .

public . . . . . . .

Name pattern . . . . .

Non--standard call . .

Offset name . . . . .

Pattern

NAME « « o« o o o o o

Prefix table, facility

Private name . . . . .

Public name . . . . .

REF BLOCK name . . . .

Register

SAVE v v . e e e .

LService macro name . .

Sign out . . . . . . .

Status code . . .

String . . . . . .

Structure definition macro name

Style of interface . .

Transportable

data types . . . .

structure

12-2

12-4

12-4

12-2

12-1

12-1

12-3

12-3

12-1

12-7

12-2

12-1

12-4

12-3

12-2

12-7

12-2

12-6

12-4

12-7

12-6

12-7



Naming Conventions

Change History

Rev 2 to Rev 3:

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Add table of

28-Feb-77 -- Rev 3 Page 12-990

prefixes.

Add reasons for the rules.

Add BLISS field extract macro names. Add .PSECT names. Add

non-CALL entry names. Change $C_ to $K_ for constants.

Add transportable data types of A, C, G, H, and U. Note

reservations of I and R for specific purposes, use of X and Y

for context dependent purposes, use of Z for unspecified or

nonstandard forms, use of N and P for decimal strings, and O

as a general escape valve.

Add all known facility prefixes.

Reserve data type J to customers.

Note reserved status codes<2:0>. Note that <31:16> indicate

facility. Add facility codes to section 7.3.

Change non-call routine name pattern to agree with OTS.

Change BLISS field reference mnemonics. Reserve E to DEC.

Clarify that numeric string is all byte forms.

Add argument style column to facility table.

Clarify that system macro names are general and don't have

the facility name.

Clarify that BLISS field names have offset, position, size,

and sign.

Clarify that

Clarify that

Add facility

&

Define sizes

to be good for counters

Add B32,

prefix.

FAB,

Remove CHF prefix.

assembler V symbols are within containing field.

masks are not right justified.

to structure def macros.

of transportable codes for reference. Change H
(16 to 18 bits).

10, NAM, NET, PLI, RAB, RM, GSWP, TST, XAB

Ban local synonyms for public symbols.

Move completion code description to chapter 6.



Naming Conventions 28-Feb-77 -- Rev 3 Page 12-991

Change History

21. Clarify that H is integer.

22. Clarify that the N and P count is a digit count.

23. Clarify private symbol usage.

24. Add facility codes for all procedure library facilities.

[End of SE12R3.RNO]



CHAPTER 12

NAMING CONVENTIONS

28-Feb~-77 -- Rev 3

The conventions described 1in this chapter were derived to aid

implementors in producing meaningful public names. Public names are

all names which are global (known to the linker) or which appear in

parameter

facility.

or macro definition files and libraries in more than one

These public names are all constrained to follow these rules for the

following reasons:

o)

symbol s

the reade

By using names reserved to DEC, we ensure that customer

written software will not be invalidated by subsequent

By using definite patterns for different uses, we allow the

reader to judge the type of object being referenced. For

example, the form of macro names is different from offsets,

which is different from status codes.

By using certain codes within a pattern, we associate the

size of an object with 1its name. This increases the

likelihood that the reference will use the correct

instructions.

By using a facility code in symbol definitions, we give the

reader an indication of where the symbol is defined. We also

allow separate groups of implementors to choose names which

will not conflict with one another.

Never define local synonyms for public symbols. The full public

hould be wused in every reference to give maximum clarity to

r.



Naming Conventions 28-Feb-77 -- Rev 3 Page 12-2

PUBLIC SYMBOL PATTERNS

12.1 PUBLIC SYMBCL PATTERNS

All DEC public symbols contain a currency sign. Thus, customers and

applications developers are strongly advised to use symbols without

currency signs to avoid future conflicts.

Public symbols should be constructed to convey as much information as

possible about the entity they name. Frequently, private names follow

a similar convention; the private convention then is the same as the

public one with an underline instead of the currency sign. These are

used both within a module and globally between modules of a facility

which is never in a library. All names which might ever be bound into

a user's program must follow the rules for public names; 1in the case

of undocumented names a double currency sign convention can be used

such as in 3 below.

Public names are of the following forms:

1. Service macro names are of the form:

Smacroname

A trailing S or A distinguishes the stack and separate

arglist forms. These names appear 1in the system macro

library and represet a call to one of many facilities. The

facility name usually does not appear in the macro name.

2. Facility specific public macro names are of the form:

$facility macroname

3. System macros which use local symbols or macros always use

ones of the form:

Sfacility$Smacroname

This is the form to be used for symbols generated by a macro

and used across calls to it and for internal macros which are

not documented.

4. Status codes and condition values are of the form:

facility$_status

See completion codes in the Commenting Conventions chapter.

5. Global entry point names are of the form:

facilitySentryname



Naming Conventions 28-Feb-77 -- Rev 3 Page 12-3

PUBLIC SYMBOL PATTERNS

6.

10.

Global entry point names which have non-standard calls are of
the form:

facilitySentrynameRn

where registers RO to Rn are not preserved. Note that the
caller of such an entry point must include at least registers
R2 through Rn in its own entry mask.

Global variable names are of the form:

facility$Gt variablename

The letter G stands for global variable and the t is a letter
representing the type of the variable as defined in the next
section.

Addressable global arrays use the letter A (instead of the

letter G) and are of the form:

facilitySAt arrayname

The letter A stands for global array and t 1is one of the

letters representing the type of the array element according

to the list in the next section.

In the assembler, public structure offset names are of the

form:

structure$t fieldname

The t is a letter representing the data type of the field as

defined 1in the next section. The value of the public symbol

is the byte offset to the start of the datum 1in the

structure.

In the assembler, public structure bit field offset and

single bit names are of the form:

structure$V_fieldname

The value of the public symbol is the bit offset from the

start of the containing field (not from the start of the

control block).

In the assembler, public structure bit field size names are

of the form:

structure$S fieldname

The value of the public symbol 1s the number of bits 1in the

field.



Naming Conventions 28-Feb-77 -- Rev 3 Page 12-4

PUBLIC SYMBOL PATTERNS

12.

13.

14.

15.

16.

17.

For BLISS, the functions of the symbols in the previous three

items are combined 1into a single name used to reference an

arbitrary datum. Names are of the form:

structure$x fieldname

where x is t for standard sized data and x is V for arbitrary

and bit fields. The macro includes the offset, position,

size, and sign extension suitable for use in a REF BLOCK

ctructure. Most typically, this name is definable as

MACRO

structure$V _fieldname =

structure$t fieldname,

structure$V _fieldname, !assembler meaning

strucutre$S fieldname,

<sign extension> §%;

Public structure mask names are of the form:

structure$SM fieldname

The value of the public symbol is a mask with bits set for

each bit in the field. This mask is not right justified;

rather it has structure$V fieldname zero bits on the right.

Public structure constant value names are of the form:

structure$K constantname

.PSECT names are of the form:

facilityS$mnemonic

Module names are of the form:

facilityS$mnemonic

The module is stored in a file with filename "mnemonic" in a

directory corresponding to the facility.

Public structure definition macro names are of the form:

$facility structureDEF

Invoking this macro defines all the structure$xxx symbols.

Example of usage:

IOCS$SIODONE Entry point of the routine IODONE in the 1/0 subsystem.

UCB$SB_FORKPRI Offset in the UCB structure to a byte datum containing
the fork priority.



Naming Conventions 28-Feb-77 -- Rev 3 Page 12-5

PUBLIC SYMBOL PATTERNS

UCBSL_STATUS

CRBSM BUSY

CRBS$V_BUSY

Offset in the UCB structure to a longword datum
containing status bits.

Mask pattern for the busy bit in the CRB structure.

Bit offset in the CRB structure of the busy bit.



Naming Conventions 28-Feb-77 -- Rev 3 Page 12-6

OBJECT DATA TYPES

12.2 OBJECT DATA TYPES

The following are the letters used for the various data types or are

reserved for the following purposes:

letter data type or usage

address (*)

byte integer

single character (*)

double precision floating

reserved to DEC

single precision floating

general value (%)

integer value for counters (¥)

reserved for integer extensions

reserved to customers for escape to other codes

constant

longword integer

field mask

numeric string (all byte forms)

reserved to DEC as an escape to other codes

packed string

quadword integer

reserved for records (structure)

field size

text (character) string

smallest unit of addressable storage (*)

field position (assembler); field reference (BLISS)

word integer

context dependent (generic)

context dependent (generic)

unspecified or non-standardN
K
X
Y
X
E
S
C
H
N
I
O
I
T
O
Y
O
Z
R
C
E
R
U
H
K
H
I
O
T
M
M
O
M
D
O
X
Y

N, P, and T strings are typically variable 1length. Frequently 1in
structures or I/0 records they contain a byte-sized digit or character
count preceding the string. If so, the location or offset is to the
count. Counted strings cannot be passed in CALLs. Instead, a string
descriptor is generated.

* - The letters A, C, G, H, and U should be used in preference to L,
B, L, W, and B respectively when transportability is involved.
The following table defines their sizes:

letter 16 32 36

A 16 32 18

C 8 8 7

G 16 32 36

H 16 16 18

U 8 8 36



—
 
—
—
 
—

 
—
 
—
—
 
—
 
—

 
i
 
o
—
—
 
—
 
—
 

—
—
 

—
 
—
 
—
 
—
—
 

T
 
S
—
—
—

 
——

— 
—
 
—

 
T
 
.
 
—
 
——
——
 
—

 
—
 
—
 
—
 
—
—
—
 —

 
—

 
—
 
—
 
—
 
—
 
—
 
—
 
—
 
—
 
—
—
 
—
 
—
 

ew
mm
 
——

— 
—

 
e
 
—
 
—
—
—

Naming Conventions 28-Feb-77 -- Rev 3 Page 12-7

FACILITY PREFIX TABLE

12.3 FACILITY PREFIX TABLE

Following is a list of all the facility prefixes. This list will grow

over time as new facility prefixes are chosen. No one should use a

new code without first "signing out" the prefix with the author of

this chapter. Each facility has a typical style of interface, see the

Functional and Interface Specifications chapter, and a condition

value<31:16> code.

interface condition

prefix facility type <31:16>

(see Chap 13)

~ -

BAS BASIC support library Y 26

B32 BLISS-32 support library v 27

BLI BLISS transportable support library \' 20

CH Character handling (BLISS) - -

CHF Condition Handling Facility arguments - -

CME Compatibility mode emulator J ??

COB COBOL support library \" 25

DEB Debugger \' ?2?

FAB RMS File Access Block - -

FOR Fortran support library \' 24

10 Input/Output functions - -

LIB Miscellaneous routines any 21

MTH Math library F 22

NAM RMS Name Block - -

NET Network ACP J ??

OTS Common Object Time System \" 23

PLI PL/1 support library ? ??

PR Processor Registers - -

PRV Privileges - -

PSL Program Status Longword fields - -

RAB RMS Record Access Block - -

RM RMS internals and status codes v 1

RMS Record Management System \" -

SRM System Reference Manual Misc. offsets - -

SS System Service Status Codes - 0

SYS System Services \Y -

TST Test packages any -

XAB RMS Extra information Access Block - -

Individual products such as compilers also get unique facility codes

formed from the product name. They must be signed out in the above

list. Facility prefixes should be chosen to avoid conflict with file

types.

Structure name prefixes are typically local to a facility. Refer to

the individual facility documentation for its structure name prefixes.

This does not cause problems since these names are not global, so are

not known to the 1linker. They become known at assembly or compile

time only by invoking the structure's definition macro explicitly.

[End of Chapter 12]



Digital Equipment Corporation COMPANY CONFIDENTIAL Page 1

Title: VAX-1ll Software Eng. Interface Specifications -- Rev 3

Specification Status: draft

Architectural Status: under ECO control

File: SE13R3.RNO

PDM #: not used

Date: 28-Feb-77

Superseded Specs: Partof OTS design chapter2

Author: P. Conklin, T. Hastings

Typist: P. Conklin

Reviewer (s): R. Brender, D. Cutler, R. Gourd, 1I. Nassi, M. Spier,
D. Tolman

Abstract: Chapter 13 describes the standards and conventions used by
all modules in the VAX-1ll Procedure Library, including the
Object Time System. The necessary standards are specified
to permit many different individuals to contribute modules
independently to ' the VAX-11 1library with a consistent
interface documentation. To achieve these modularity
objectives, this chapter also standardizes the way
arguments are passed, and in particular, the way in which

strings are returned. It describes a language independent
notation for procedure parameters, including the type of
access, the data type, the argument passing mechanism, and
the form of the arqument.

Revision History:

Rev # Description Author Revised Date
Rev 1 Original T. Hastings 17-Jan-77
Rev 2 Revised from Review T. Hastings - 21-Jan-77
Rev 3 Integrated with Soft Eng Manual P. Conklin 28-Feb-77



<access type> notation . . .

<arg form> notation .

<arg mechanism> notation .

<data type> notation

<name> notation

Compiler library

Default value . . .

Descriptor, call by

Form, arg

General library

Interface type . . . . . .+ .+ . .

Library

compiler .

general . . . . . . .

math . . . . . . . .

object time system . . . .

procedure . . .« « o + o o o

Math library .

Notation

<access type> . . . .

<arg form> « o .

<arg mechanism> . . .

<data type> . . . .

<name> . . .« .+ .+ .

procedure argument

Object time system . . . . . .

Optional argument . . . . . . .

Output string . . . . . . .« .

Procedure argument notation . .

Procedure library . . . . . . .

Reference, call by . . . .

Repeated argument . . .

Value, call by . . . . . . « . .

13-5

13-1

13-1

13-1

13-1

13-1

13-1

to 13-3



Functional and Interface Specs 28-Feb-77-- Rev 3 Page 13-99¢
Change History

Rev 2 to

1.

11.

12.

13.

14.

Rev 1 to

Rev 3:

Extracted procedure specification notation from OTS chapter 2
(PL2R1).

Added routine interface types including applications
languages.

Remove descriptor code numbers and redundant alphabectical
table.

Quad by-value is ok only on function values.

Note op sys option on s descriptor.

Change <data type> U to Z for compatibility.

Note length and string descriptor pair is length first.

Clarify that data type is always the ultimate use.

Allow references only to data size.

Add data types c, u, h, g.

Drop label arg form.

Add summary table.

Add data type cp. |

Allow value args to be less than longword in reference use.
(Allocation is still longword.)

Rev 2:

Add <data type> codes la, las, and lc.

Add <arg form> code d.

Add braces notation for repeated arguments.

Add = notation for default value

Add <arg form> code p.

Clarify use of <data type> with call by value <arg mechanism>
for other than 32 bits.

Change <data type> C to T for compatibility.



Functional and Interface Specs 28-Feb-77 -- Rev 3 Page 13-991

Change History

8. Change <data type> la to a for compatibility.

9. Change <data type> las to arl, arw, arb.

[End of SE13R3.RNO]



CHAPTER 13

FUNCTIONAL AND INTERFACE SPECIFICATIONS

28-Feb-77 -- Rev 3

This chapter describes the standards and conventions used by all

modules in the VAX-11 Procedure Library, including the Object Time
System. The necessary standards are specified to permit many

different 1individuals to contribute modules independently to the
VAX-11 library with a consistent interface documentation. To achieve

these modularity objectives, this chapter also standardizes the way
arguments are passed, and in particular, the way in which strings are
returned. It describes a language independent notation for procedure
parameters, including the type of access, the data type, the argument
passing mechanism, and the form of the argument.

The VAX-11] Procedure Library is a collection of routines that provide

various services to the calling program. It is made up of a number of
sub-libraries. The Math library contains all those functions that

perform the traditional Fortran mathematical functions. The common
Object Time System is a collection of resource and environment control

routines that are common to all application language environments.

Each compiler has a 1library of routines for which it implicitly
generates code. Finally, the general library contains routines that
are of general use and typically would be called explicitly by the
progr ammer.



Functional and Interface Specs 28-Feb-77 -- Rev 3 Page 13-2

ROUTINE INTERFACE TYPES

13.1 ROUTINE INTERFACE TYPES

In order to achieve the VAX-11l goal of being able to mix languages

within a program, all routines are designed with certain attributes in

common. The data types and mechanism passing rules are constrained to

maximize the ability to interface to routines. A common notatiocon is

‘used to express the specification of the interface.

The access types, data types, mechanisms, and arqument forms are

defined in the VAX-11 System Reference Manual. Section 2 of this
chapter lists them and gives the procedure interface notation for

them. In the design of a procedure interface, in addition to the data
types that must be designed, four other choices are important.

1. Whether the routine is CALLed or has a non-CALL interface.

2. Whether its scalar input arguments are by value or by

reference.

3. How output strings are returned; this is discussed 1in the

next paragraph.

4. Whether the routine has a function value and whether the

value is a status code or a scalar result.

Within any given facility, it is generally preferable to have only one

style of these interface choices. The facility table in the Naming

Conventions chapter indicates what the conventional interface 1is for

each facility. These are defined below. Other combinations can be

chosen but the prospect of user confusion must be traded off against

the possible inefficiency of forced consistency.

Output strings can be returned by one of four methods.

o The simplest is for the caller to allocate a fixed length

string buffer and pass a descriptor of it. The callee writes

the result to this buffer with blank fill.

o The next most general is for the caller to allocate a fixed

length string buffer that can hold the maximum length result.

The caller passes two arguments, one is the address of where

to write the actual length and the other is a descriptor to

the buffer. By convention, these two arguments are always

adjacent in the arqument list with the length first.

0 The third mechanism is to pass a varying string descriptor.

In this case, the caller allocates a maximum buffer and

passes a descriptor that contains fields for both the maximum

length and the actual length. The callee updates the actual

length field in the descriptor.

o The fourth method is for the caller to pass a dynamic string

descriptor. In this case the callee allocates the string

buffer and places both the address and the length 1into the



Functional and Interface Specs 28-Feb-77 -~ Rev 3 Page 13-3
ROUTINE INTERFACE TYPES

dynamic descriptor.

The choice between these methods is a function of what environmental
assumptions can be made in the design of the procedure. For the fixed
length method, no assumptions are made. The others all assume that
the calling language can support variable 1length strings or
substrings. The dual arqument form can be used without requiring
variable 1length strings, but gives most of the advantages of them to
languages that support them. The varying and dynamic schemes both
require languages that support varying length strings. Furthermore,
the dynamic method requires the support of a dynamic storage
management system.

The most common combinations of interface specifications are given in
the following table. The column "scalars" shows how scalars are
passed. The column "strings" shows how output strings are returned.
The column "function" shows what kind of function value is returned.

instr- passing output function
type of call uction scalars strings value

J (non-CALL) JSB parameter - -
V (by Value) CALL AP by value length,descr .1lc
F (Function) CALL AP by reference none scalar
Fortran CALL AP by reference fixed any
COBOL CALL AP by reference fixed none
BASIC CALL AP by reference dynamic any



Functional and Interface Specs 28-Feb-77 -- Rev 3 Page 13-4

NOTATION FOR DESCRIBING PROCEDURE ARGUMENTS

13.2 NOTATION FOR DESCRIBING PROCEDURE ARGUMENTS

A concise language-independent notation 1is wused to describe each

argument to a library procedure. It is suggested that this notation

be used for documenting all procedures in the procedure library and in
the procedure header 1itself wunder CALLING SEQUENCE or FORMAL

PARAMETERS. The notation is a compatible extension to the one used in

the VAX-11 System Reference Manual. However, the goal of the notation

is to describe the formal parameter specified by each list entry in a

language 1independent way. The System Reference Manual only describes

the immediate operand specifier, rather than the argument being

pointed to. Therefore, additional qualifiers have been added to the

System Reference Manual notation. Note that if a parameter 1is an

address which 1is saved for 1later access by another procedure, the
notation should reflect the ultimate access to be made by the second

procedure.

The notation specifies for each argument:

1. A mnemonic name

2. The type of access the procedure will make (read, write,...)

3. The data type of the argument (longword, floating,...)

4. The argument passing mechanism (value, reference, descriptor)

5. The form of the argument (scalar, array,...)

13.2.1 Procedure Parameter Qualifiers

Subroutines are described as:

CALL subroutine name(argl, arg2, ..., argn)

and functions are described as:

function_value = function_name(argl, arg2, ..., argn)

where argi and function value are:

<name>.<access type><data type>.<arg mechanism><arg form>

where:

1. <name> is a mnemonic for the procedure formal specifier or

function value specifier.



Functional and Interface Specs 28-Feb-77 == Rev 3 Page 13-5
NOTATION FOR DESCRIBING PROCEDURE ARGUMENTS

2. <access type> is a single letter denoting the type of access
that the procedure will (or may) make to the argument:

r

m

argument may be read only

argument may be modified, i.e., read and written.

argument may be written only.

argument is an address to be (optionally) JMPed to
after stack unwind (return). No <data type> field is
given since the argument is a sequence of instructions,
e.g., Fortran ERR=,

argument 1is an address of a procedure to be
(optionally) CALLed after stack unwound (return). No
<data type> field is given since the argument is a
sequence of instructions.

argument is an address of a procedure subroutine to be
(optionally) CALLed without wunwinding the stack. No
<data type> field is given since the argument is a
sequence of instructions.

argument is an address of a function to be (optionally)
CALLed without unwinding the stack. The <data type>

field indicates the data type of the function value.

reserved for wuse 1in the System Reference Manual

(address). Not wused here since the object pointed to
is specified.

reserved for use in the System Reference Manual (branch

destination). Not used here since a branch destination
cannot be a procedure formal.

reserved for use 1in the System Reference Manual

(variable bit field).



Functional and Intertace Specs 28-Feb-77 -- Rev 3 Page 13-6

NOTATION FOR DESCRIBING PROCEDURE ARGUMENTS

3. <data type> is a letter denoting the primary data type with

trailing qualifier letters to further identify the data type.

Note that the routine must reference only the size specified

to avoid improper access violations.

Letters Use

z Unspecified

\Y Bit (variable bit field)

bu Byte Logical (unsigned)

c Single character

u Smallest unit for addressable storage

wu Word Logical (unsigned)

lu Longword Logical (unsigned)

a Absolute virtual address

cp Character pointer

lc Longword containing a completion code

qu Quadword Logical (unsigned)

b Byte Integer (signed)

arb Byte containing a relative virtual address (*)

W Word Integer (signed)

h Integer value for counters

arw Word containing a relative virtual address (¥*)

1 Longword Integer (signed)

g General value

arl Longword containing a relative virtual address (*)

of Quadword Integer (signed)

f Single-Precision Floating

d Double-Precision Floating

fc Complex (Floating)

dc Double-Precision Complex

t text (character) string

nu Numeric string, unsigned

nl Numeric string, left separate sign

nlo Numeric string, left overpunched sign

nr Numeric string, right separate sign

nro Numeric string, right overpunched sign

nz Numeric string, zoned sign

p Packed decimal string

X Data type indicated in descriptor

* - arl, arw, and arb is a self-relative address wusing the

same format as the hardware displacements. That is the

self-relative address is a signed offset in bytes with

respect to the first byte following the argument.



s
 
—
 

s
,
 
e
 
—
 
—
—
 
e
 
v
 
i
 
S
t
 
s
 
s
 

=
 
s
 
e
t
 
i
t

—
 
e
 
e
 
e
 
i
t
 
C
O
A
M
S
 
-
t
 
e
y
s
 
G
e
n

e
 
e
m
m
e
 

4 
e
 
e

 
- 
e
 
e
m
e
m
s
 
a
m
m
 
—
—
—
—
 
a
m
e
m
 
o

 
o

Functional and Interface Specs 28-Feb-77 -- Rev 3 Page 13-7

NOTATION FOR DESCRIBING PROCEDURE ARGUMENTS

4. <arg mechanism> is a single letter indicating the argument

mechanism that the called routine expects:

v - value, i.e., call-by-value where the contents of the
argument 1list entry 1is 1itself the argument of the
indicated data type. Note: Call-by-value argument list
entries are always allocated as a longword. The quadword
data types can be wused as values only for function
values, never as a formal parameter. Note: the VAX-11
calling standard requires that <access type> must be r
whenever <arg mechanism> is v, except for function values
where <access type> is always w and <arg mechanism> is

usually v.

reference, i.e., call-by-reference where the contents of

the argument 1list entry is the longword address of the
argument of the indicated data type. 1If the argument is
a scalar of the indicated data type or is a label, <arg
form> must be absent. If the argument is an array, <arg
form> must be present.

descriptor, i.e., call-by-descriptor where the contents
of the argument list entry is the longword address of a

descriptor. The descriptor is two or more longwords that
specify further information about the argument, see the
System Reference Manual Appendix C. Note: when <arg
mechanism> 1s d, <arg form> must be present to indicate
the type of descriptor.

5. <arg form> is a letter denoting the form of the argument:

Null means scalar of indicated data type.

a array reference or array descriptor, i.e.,

call-by-reference or call-by-descriptor as indicated by

<arg mechanism>. For array call-by-reference the

contents of the argument list entry is the address of an
array of items of the indicated data type. The length is
fixed, 1implied by entries in the array, e.g., a control
block, determined by another argument, or specified by
prior agreement. For array call-by-descriptor, the
contents of the argument 1list entry 1is the 1longword

address of an array descriptor block see the System

Reference Manual Appendix C.

string descriptor, i.e., call-by-descriptor where the
contents of the argument 1list entry 1is the longword

address of a two longword string descriptor. The

descriptor contains the length, data type, and address of

the string. When the string 1is written neither the

length nor the address fields in the descriptor are

modified and the string is filled with trailing spaces or

a separate argument is updated with the written length.



Functional and Interface Specs 28~-Feb-77 -- Rev 3 Page 13-8

NOTATION FOR DESCRIBING PROCEDURE ARGUMENTS

v - varying string descriptor, i.e., call-by-descriptor where

the contents of the argqument list entry is the longword

address of a three 1longword string descriptor. The

descriptor contains 1length, data type, address, and

maximum length. See Appendix C of the System Reference

Manual. When the string is written, the length field of

the descriptor is also modified but the address and

maximum length fields are unaltered. '

d - dynamic string descriptor, i.e., call-by-descriptor where

the contents of the argument list entry is the longword

address of a two longword string descriptor of the same

format as s. However, when the string is written, both

the length and address fields may be modified. Space 1is

allocated dynamically by routines 1in the procedure

library and is garbage collected periodically

p - Procedure descriptor, i.e., call-by-descriptor where the

contents of the argument 1list entry 1is the longword

address of a two longword procedure descriptor. The

descriptor contains the address of the procedure and the

data type that the procedure returns if it is a function.

<access type> must be ¢, f, j, or s.

13.2.2 Optional Arguments And Default Values

Optional arguments are enclosed 1in square brackets, e.g. CALL

FORSREADSU (unit.rb.v {,err.j.rl [,end.j.rl]]). The caller may omit

optional parameters at the end of a parameter list by passing a

shortened list. The caller may omit optional parameters anywhere by

passing a 0 value as the contents of the argument list entry. A

caller may not omit a parameter that is not indicated as optional.

The called procedure is not obligated to detect such a programming

error. An equal sign (=) after an argument inside square brackets

indicates the default value if the argument is omitted. For example,

success.wlc.v = SYSSDELLOG (lognam.rt.ds [,tblflg.rb.v=0]).

13.2.3 Repeated Arguments

Arguments or pairs of arguments that may be repeated one or more times

are indicated inside braces, e.g. CALL FORSOPEN

({keywd.rw.v, info.rl.v}). Repeated arguments that may be omitted

entirely are indicated inside braces inside square brackets, e.g.

CALL FORSCLOSE ([{logical unit.rl.v}]).



Functional and Interface Specs 28-Feb-77 -- Rev 3 Page 13-9

NOTATION FOR DESCRIBING PROCEDURE ARGUMENTS

13.2.4 Examples

Cinmoe nf anale wf v = MTHSSTIN (anala in radiame +§F =1\
L LA s A ALY & VY AV Ssa sy Wy \Riid i AR LUAULAQIIOeL L1l

— - -—

CALL FORSREAD_SF (unit.rb.v, format.mbu.ra [,err.j.rl [,end.j.rl]}])

Note: That (1) end may be omitted, (2) err and end may both be
omitted. However, wunit and format must always be present. The

argument count byte in the argument list specifies how many arguments
are present. Alternatively err, end, or both could have a 0 argument
list entry in the above.

Common combinations are:

Completion code: Status.wlc.v =...
longword call-by-value input arg: no of pages.rlu.v
address of an array of signed words for input: array.rw.ra
address of a control block: fab.mz.ra

address of a precompiled format statement: format.rbu.ra
label to jump to: error label.j.r

floating input call-by-reference arg: anglein rad.rf.r

floating complex call-by-reference input arg: angle.rfc.r

read only Fortran character string: string rt.ds

BASIC character string to be written: string.wt.dd



£ 
m
e
m
 
e
 
.
 
—
—
—
a
m

i
 
e
 
e
 
—
—
 
—
 
—
 
—
—
 
—
 
—
 
—
 
—
 
—
 
—
—
 

m
—
t
—
—
 
—
—
—
 
—
 
—
 
—
 
—
 
—
—
—
 
—
 
—
 
-
 
—
—
—

A
 
—
 

e 
an

eg
m 

o
m
m
—
 
e
 
e
,
 
—
 
—

 
e
 
c
m
—
 
I
 
s
t
 
—
—
—

Functional and Interface Specs 28-Feb-77 -- Rev 3 rage i13-1u

NOTATTIOHN FOR DESCRIBING prOCLLULUKE ARGUMENTS

13.2.5 Summary <“hart Of Notation

<name>.<access type><data type>.<arg mechanism><arg form>

<access type> <data type>

r Read z Unspecified

m Modify

w Write v Bit (variable bit field)

j RET and JMP bu Byte Logical (unsigned)

¢ RET and CALL C Single character

s =zuh CALL u Smallest unit for addressable storage

f function CALL wu Word Logical (unsigned)
lu Longword Logical (unsigned)

a Absolute virtual address

cp Character Pointer

lc¢ Longword containing a completion code

gu Quadword Logical (unsigned)

b Byte Integer (signed)

arb Byte-sized relative virtual address

W Word Integer (signed)

h Integer value for counters

arw Word-sized relative virtual address

1 Longword Integer (signed)

o] General value

arl Longword-sized relative virtual address
g Quadword Integer (signed)

f Single-Precision Floating

d Double-Precision Floating

fc Complex (Floating)

dc Double-Precision Complex

t text (character) string

nu Numeric string, unsigned

nl Numeric string, left separate sign

nlo Numeric string, left overpunched sign

nr Numeric string, right separate sign

nro Numeric string, right overpunched sign

nz Numeric string, zoned sign

P Packed decimal string

X Data type indicated in descriptor

<arg mechanism> <arg form>

« Value <null> scalar

r Reterence

4 Descriptor

T
 
A
<
o

array

fixed string

varying length string

dynamic string

procedure



Functional and Interface Specs 28-Feb-77 -- Rev 3NOTATION FOR DESCRIBING PROCEDURE ARGUMENTS Fage 13-11

[End of Chapter 13]



Digital Equipment Corporation COMPANY CONFIDENTIAL

TITLE: BLISS Transportability Guidlines

Specification Status: draft

Architectural status: Under ECO Control

File: SE14F3.FNO

PDM #: not used

Date: 21-Feb-77

Superseded Specs: none

Author (s): P. Marks, R. Murray, I. Nassi

Typist; G. Hesley, R. Murray

Reviewer (s): R. Brender, D. Cutler,

-- Rev 3

P. Conklin,

S. Hawkinson, D. Tolman, R. Winslow

Abstract: Chapter 14 addresses the process of

BLISS programs. Tools and

detail.

Revision History:

Rev # Description

Rev 1 Original

Rev 2 Skipped

Rev 3 SEM Integration

Author

I. Nassi

I. Nassi

R. Murray

Page 1

T. Hastings,

writing transportable

techniques are discussed in

Revised Date

22-Dec-76

25-Jan-77

21-Feb-77



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-990
;change history

Rev 2 to Rev 3

1. Software Engineering Manual integration, this document added
as a chapter

Rev 1 to Rev 2

1. revision 2 skipped to align revision histories on all
chapters to Rev 3

[end of SE14R3.RNO]



CHAPTER 14

BLISS TRANSPORTABIBILTIY GUIDLINES

21-FEB-77 -~ Rev 3

This Chapter addresses the task of writing transportable programs. It

is shown that the writing of such code is much easier if considered

from the beginning of the project. The properties which cause a

program to loose transportablilty are explored. Techniques by which

the programmer may avoid these pitfalls are discussed.



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-2

INTRODUCTION

14.1 INTRODUCTION

14.1.1 Purpose And Goals

The purpose of this document is to facilitate the process of writing

transportable BLISS programs, that is, BLISS programs intended to be

executed on architecturally different machines. There are various

kinds of solutions to the problem of transportability, each requiring

different levels of effort. We feel free in recommending various

kinds of solutions. When program text should be rewritten, for

example, we suggest doing so. However, it is our belief that 1large

portions of programs can be written which will require absolutely no

modification in order to be functionally equivalent over differing

architectures. The levels of solutions wé see, in order of decreasing

desirability, are:

o no change is needed to program text - transportability is

perfectly straightforward.

o parameterization solves the transportability problem - the

program makes use of some features that have an analog on all

the other architectures.

o parallel definitions are required - either programs make use

of features of an architecture that do not have analogs

across all other architectures, or different, separately

transportable aspects of a program interact in

non-transportable ways.

The goal is to make transportability as painless as possible, which

means that the effort needed in transporting programs should be

minimized.

Central to the ideas presented here is the notion that

transportability is more easily accomplished if considered from the

beginning. Transporting programs after they are running becomes a

much more complex task. We suggest frequently running parallel

compilations, for instance. It is fortunate therefore, that with the

right tools and techniques, transportability is not difficult to

achieve. We would also like to point out that the first program is

the hardest. Before undertaking a large programming project, we

suggest writing and transporting a less ambitious program.

These guidelines are the result of a concentrated study of the

problems associated with transportability. We make no claim that

these guidelines are complete. We do claim that some of what 1is

contained here will be non-obvious to programmers. We have attempted

to identify those areas which, if the programmer is not forewarned,

will cause problems. We will be suggesting solutions to all

identified problems.



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-3
INTRODUCTION

Many of the problems that are discussed here have solutions that are
currently being incorporated into the BLISS lanquage, so another wav
of viewing this document is as a partial rationale for some of these
language changes, and a rationale for the definition of BLISS-16 and
BLISS-36.

14.1.2 Organization

These guidelines are organized into three sections. The section on
General Strategies discusses some high level approaches to writing
transportable BLISS software. The section on Tools describes various
features of the BLISS language that can be used in solving
transportability problems. The section on Techniques analyzes various
transportability problems and suggests solutions to them.



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-4

GENERAL STRATEGIES

14.2 GENERAL STRATEGIES

14.2.1 Introduction

This section presents certain gross or global considerations that are

important to the writing of transportable BLISS programs, namely:

o Isolation, and

o Simplicity

14.2.2 Isolation

The following maxim should be kept in mind when you are designing

and/or coding a program that is to be transported:

o If it is NON-transportable, isolate it.

You will probably encounter situations for which it is desirable to

use machine-specific constructs 1in your BLISS program. In these

cases, simply isolating the constructs will facilitate any future

movement of the program to a different machine.

In most cases, only a small percentage of the program or system will

be sensitive to the machine on which it is running. By isolating
those sections of a program or a system, the effort involved in

transporting the program will be confined mainly to these easily
identifiable, machine-specific sections.

Specifically, follow these rules:

o If machine-specific data is to Dbe allocated - place the

allocation in a separate MODULE or in a REQUIRE file.

o If machine-specific data is to be accessed - place the access

in a ROUTINE or in a MACRO and then place the ROUTINE or

MACRO in a separate MCDULE or in a REQUIRE file.

o If a machine-specific function or instruction is to be used,

isolate it by placing it too in a REQUIRE file.

o If it is impossible or impractical to isolate this part of
your program from its module, comment it heavily. Make it
very obvious to the reader that this code is
non-transportable.

The above rules are applicable in the local context of a routine or

module. In a larger or more global context (for instance, in the

design of an entire system) isolation is implemented by the technique



BLISS Transportability Guidlines 21-FEB-77 ~-- Rev 3 Page 14-5GENERAL STRATEGIES

of modularization.

By separating those parts of the System which are machine or operatingsystem dependent from the rest of the system, the task of transportingthe entire system is simplified. It becomes a matter of recoding asmall section of the total system. The major portion of the code (i1fwritten in a transportable manner) should easily make the move to anew machine with a minimum of re-coding effort.

BLISS is a language which facilitates both the design and programmingof programs and systems in a modular fashion. This feature should betaken advantage of when writing a transportable system.

14.2.3 Simplicity

A basic concept in writing transportable BLISS software is simplicity- simplicity in the use of the language.

BLISS was originally developed for the implementation of systemssoftware. As a result of this, BLISS is nearly unique amonghigh-level programming languages in that it allows ready access to themachine on which the program will be running. The programmer isallowed to have complete control over the allocation of data, forexample.

The same language features that allow access to underlying features ofthe hardware are very often used to excess. In order to identifythose features of the language causing a program to be
non-transportable, it is often the case that such features be invokedexplicitly, making the program inherently more complex. Reducing the
complexity of data allocation, for example, results in a transportablesubset of the BLISS language. This reduction of complexity is one ofthe basic themes that runs through the guidelines.

In effect, the coding of transportable programs is a simpler task
because the number of options available has been reduced. Simplicity
in the coding effort is one of the reasons for the development ofhigher-level 1languages 1like BLISS. The use of the defaults in BLISSwill result in programs which are much more easily transported.



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-6

TOOLS

14.3 TOOLS

This section on tools presents various language features that provide

a means for writing transportable programs. These features are either

intrinsic to BLISS or have been specifically designed for

transportability/software engineering uses.

The tools described here will be used throughout the companion section

on techniques.

14.3.1 Literals

Literals provide a means for associating a name with a compile-time

constant expression. In this section, we will consider some built-in

literals which will aid us in writing transportable programs. In

addition, we will discuss restrictions on user-defined literals.

14.3.2 Predeclared Literals

One of the key techniques 1in writing transportable programs is

parameterization. Literals are a primary parameterization tool. The

BLISS lanquage has a set of predeclared, machine specific literals

that can be most useful.

These literals parameterize certain architectural values of the three

machines. The values of the literals are dependent on the machine

that the program is currently being compiled for. Here are their

names and values:

Literal

Description Name 10/20 vAX-11 11

Bits per addressable unit $BPUNIT 36 8 8

Bits per address value $BPADDR 18 32 16

Bits per BLISS value $BPVAL 36 32 16

Units per BLISS value $UPVAL 1 4 2

The names beginning with '%' are the literal names that can be used.

These literal names will be used throughout the guidelines.

Bits per value is the maximum number of bits in a BLISS value. Bits
per unit 1is the number of bits in the smallest unit of storage that
can have an address. Bits per address refers to the maximum number of
bits an address value <can have. Units per value is the quotient
$BPVAL/$BPUNIT. It is the maximum number of addressable units

associated with a value.



BLISS Transportability Guidlines 21-FER=77 =-- Rev 3 Page 14-7
TOOLS

We can derive other useful values from these built-in literals, For
example:

LITERAL

HALF_VALUE = $BPVAL / 2;

defines the number of bits in half a word (half a longword on VAX-11).

14.3.2.1 User Defined Literals -

A literal is not strictly speaking a self-defining term. The wvalue
and restrictions associated with a literal are arrived at by assigning
certain semantics to its source program representation. It 1is
convenient to define the value of a literal as a function of the
characteristics of a particular architecture, which means that there
are certain architectural dependencies inherent 1in the use of
literals.

Because the size of a BLISS value determines the value and/or the
representation of a literal, there are some transportability
considerations. BLISS value (machine word) sizes are different on
each of the three machines. On VAX-11l, the size is 32 bits: on the
10/20 systems, it is 36; and the 11 value i- 16.

There are two types of BLISS literals: numeric-literals and
string-literals. The values of numeric-literals are constrained by
the machine word size. The ranges of values for a signed number, i,
are:

VAX-11: -(2**31) < i < (2%*31) - 1

10/20: -(2**35) < i < (2%*35) - ]

11: -(2**15) < i < (2%*15) - 1

ALL: = (2** ($BPVAL-1)) < i < (2**(%BPVAL-1))-1

Double precision floating ooint numbers ($D'number' in BLISS-32) are
not supported in BLISS-36 or in BLISS-16.

A numeric literal, %C'single-character', has been implemented. Its
value 1is the ASCII code correspondina to the character in quotes and
when stored, it 1is right-justified in a BLISS value (word or
longword). A more thorough discussion of its usage can be found in
the section entitled: "Data: Character Sequences".



BLISS Transportability Guidlines 21-FEB-77 =-- Rev 3 Page 14-8

TOOLS

There are two ways of using string-literals: as integer-values and as

character strings. When string-literals are used as values, they are

not transportable. This arises out of the representational

differences and from differing word sizes. The following table
illustrates these potential differences for an $%ASCII type string

literal:

vax-11 10/20 11

Maximum number of 4 5 2

characters.

Character placement. right to left to right to
left right left

This type of string literal usage and also its use as a character

string are discussed in the section entitled: "Data: Character

Sequences”.

14.3.3 MACROS

BLISS macros can be an essential tool 1in the development of

transportable programs. Because they evaluate (expand) during

compilation, it is possible to tailor a program to a specific machine.

A good example can be found in the section on structures. There, two

macros are developed which are completely transportable. The macros

can determine the number of addressable units needed for a vector of

elements, where the element size is specified in terms of bits.

There are also pre-defined machine conditionalization macros

available. These macros can be used to compile selectively only

certain declarations and/or expressions depending on which compiler is

being run.

Their definitions for the bliss-32 set are:

MACRO

$BLISS16[] = % ,

$BLISS36[] = % ,

$BLISS32([] = %REMAINING % ;

There are analogous definitions for the other machines. The net

effect is that in the BLISS-32 compiler, the arguments to $BLISS16 and

$BLISS36 will disappear, while arguments to $BLISS32 will be replaced

by the text given in the argument list.



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-9
TOOLS

14.3.4 Module Switches

A module switch and a corresponding on-off switch are provided to aid
in the writing of transportable programs. This switch, LANGUAGE, is
provided for two reasons:

o To indicate the intended transportability goals of a module
and

o To provide diagnostic checking of the use of certain language
features.

The programmer can therefore indicate the target architectures
(environments) for which a program is intended.

Diagnostic checking consists of the compiler determining whether
certain lanquage features are available for all of the intended target
environments. :

The LANGUAGE switch may be used in the module header or switches
declaration to designate which of the several BLISS processors are
intended to compile the module.

The syntax is:

LANGUAGE (language-type ,...)

where 1 LISS36, BLISS16 or BLISS32.I e ] [ 0 1)
)

¥ ¢ o C [ & c
r

[ o = O +
h

o

If no LANGUAGE switch 1is specified, the default is all three
languages, and as a consequence, only the most restricted language
facilities are made available.

Each compiler will give a warning diagnostic if its own language 1is
not in the list of language-types.

Within the scope of a lanquage switch, each compiler will give a
warni..5 diagnostic for any language construct which is not in the
intersection of the specified set of languages.



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-10

TOOLS

NOTE

As of this writing the particular

lanquage features that will be subject

to diagnosis have yet to be detailed.

However, using it now will serve to

document the program, and to make the

program immune to compiler enhancements

that restrict certain features under

certain switch settings.

Here is an example of how the LANGUAGE switch would be used:

MODULE FOO(...,LANGUAGE (BLISS36, BLISS16, BLISS32),...) =

BEGIN

BEGIN

1+

! BLISS16 no longer in effect.

SWITCHES
LANGUAGE (BLISS36, BLISS32);

Any use of language features, within

this block, which are specific to

BLISS16 will result in a diagnostic

warning.

The compilation of this section

of code by a BLISS-16 compiler will

result in a diagnostic warning.

END;

L+

! All three language settings are restored.



BLISS Transportability Guidlines

TOOLS

14.3.5 Reserved Names

represents the

using any of

results in a compiler

should not be used when writing code intended to be transportable.

*ADDRESSING MODE

*ALIGN

AND

BEGIN

BIND

BIT

*BUILTIN

BY

*BYTE

CASE

CODECOMMENT

COMPILETIME

DECR

DECRA

*DECRU

DO

ELSE

ELUDOM

ENABLE

END

EQL

EQLA

*EQLU

EQV

EXITLOOP

EXTERNAL

FIELD

FORWARD

FROM

GEQ

GEQA

*GEQU

GLOBAL

GTR

GTRA

*GTRU

______ .y

s a

IF

INCR

INCRA

*INCRU

INITIAL

INRANGE

KEYWORDMACRO

LABEL

LEAVE

LEQ

LEQA

*LEQU

LIBRARY

LINKAGE

LITERAL

LOCAL

*LONG

LSS

LSSA

*L.SSU

MACRO

MAP

MOD

MODULE

NEQ

NEQA

*NEQU

NOT

NOVALUE

OF

OR

OTHERWISE

OUTRANGE

OWN

PLIT

PRESET

*PSECT

21-FEB-77 -- Rev 3

T2 o~

115C OL

program,

user-defined name,

BLISS reserved names.

of reserved names in all three BLISS dialects.
Hence, if one is writing a transportable

names as a

diagnostic.

one should

since such use

asteriskwith an

RECORD

REF

REGISTER

REP

REQUIRE

RETURN

ROUTINE

SELECT

SELECTA

SELECTONE

SELECTONEA

*SELECTONEU

*SELECTA

SET

*SHOW

*SIGNED

STACKLOCAL

STRUCTURE

SWITCHES

TES

THEN

TO

UNDECLARE

UNTIL

UPLIT

*VOLATILE

*WEAK

WHILE

WITH

*WORD

XOR

Page 14-11



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-12

TOOLS

14.3.6 REQUIRE Files

REQUIRE files are a way of gathering machine specific declarations

and/or expressions together in one place.

In many cases, it will be either impossible or unnecessary to code a

particular BLISS construct (e.g. routines, data declarations, etc.)
in a transportable manner. Developing parallel REQUIRE files, one for

each machine, can often provide a solution to transporting these

constructs.

For example, if a certain set of routines are very machine specific,

then the solution may be to code two or three functionally equivalent

routines, one for each machine type, and segregate them each in their

own REQUIRE file.

Each BLISS compiler has a pre-defined search rule for REQUIRE file

names based on their file types. Each compiler will search first for

a file with a specific file type, then it will search for a file with

the file type '.BLI'.

The search rules for each compiler are:

Compiler 1st 2nd

BLIS36 .B36 .BLI

BLIS16 .B16 .BLI

BLIS32 .B32 .BLI

Hence, the following REQUIRE declaration:

REQUIRE

'IOPACK'; ! I/0 Package

will search for IOPACK.B36, IOPACK.B1l6 or IOPACK.B32, depending on

which compiler 1is being run. Failing that it will 1look for

IOPACK.BLI.

Inherent in these search rules is a naming convention for REQUIRE

files. If the file is transportable, give it the file type '.BLI'.
If it is specific to a particular dialect, give it the corresponding

file type (e.g. '.B36').



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-13
TOOLS

14.3.7 ROUTINES

The key to transportability is the ability to identify properties of

an environment, abstract the property by giving it a name, and then

define the semantics of the property in all applicable environments.
The closed subroutine has 1long been reqarded as the principal
abstraction mechanism in programming lanquages. With BLISS, we see
other abstraction mechanisms being used, 1like structures, macros,
literals, require files, etc., but the routine can still be easily
used as a transportability abstraction mechanism.

For instance, when designing a system of transportable modules which

uses the concept of floating point numbers and associated operations,
there will be a need to perform floating point arithmetic. The

question naturally arises as to the environment in which the
arithmetic should be done. 1If the floating point arithmetic resides

entirely in a well-defined set of routines, and no knowledge of the

various representations of floating point numbers 1is used except

through these well defined interface routines, then it becomes

possible to perform "cross-arithmetic"”, which becomes highly desirable

when writing cross-compilers, for instance. Even if the ability to

perform cross—arithmetic is not desired, isolating floating point

operations in routines is a good idea since these routines can then be

reused more easily in another project. A little thought will indicate

that the floating point routines themselves have to be transportable

if they are going to perform cross-arithmetic, but need not be

transportable if cross arithmetic is a non-goal.

The principal objection to using routines as an abstraction mechanism

is that the cost of calling a procedure is non-trivial, and that cost

is strictly program overhead. Composing this sort of abstraction in

the 1limit will produce serious performance degradation. For this

reason, a programmer should probably try not to use the routine as an

abstraction mechanism if a small amount of forethought will be

sufficient to enable the writing of a single transportable module.



BLISS Transportability Guidlines 21-FEB-77 -~ Rev 3

TECHNTQUES

14.4 TECHNIQUES

This section on techniqgues shows you how to write

programs. The section 1is organized in dictionary
construct or concept. Each sub-section contains:

o A discussion of the construct or concept.

Page 14-14

transportable

form by BLISS

o Transportability problems that its use may engender.

o Specific guidelines and restrictions on the

construct or concept.

use of the

o Examples - both transportable and non-transportable.

The examples, in all cases, attempt to use the tools described in the
TOOLS section.



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-15
TECHNIQUES

14.4.1 Data

14.4.1.1 Introduction -

This section deals with the allocation of data in a BLISS program.
For the purposes of this section we do not deal with character
sequence (string) data or address data. These types of data are
discussed in their own sections (See: "Data: Addresses and Address
Calculation" and "Data: Character Sequences"). Primarily, we discuss
the allocation of scalar data (e.g. counters, integers, pointers,
addresses, etc.) A presentation of more complex forms of data can be
found 1in the sections entitled: "Structures and Field-Selectors" and
"PLITs and Initialization". First there is a discussion of
transportability problems encountered due to differing machine
architectures. Next a discussion of the BLISS allocation-unit
attribute 1is presented. Finally, a discussion of other BLISS data
attributes that must be considered when writing transportable programs
is discussed.

14.4.1.2 Problem Genesis -

The allocation of data (via the OWN, LOCAL, GLOBAL, etc.
declarations) tends to be one of the most sensitive areas of a BLISS
program in terms of transportability. This problem of transporting
data arises chiefly from two sources:

0 The machine architectures and

o The flexibility of the BLISS language.

When we are considering writing a BLISS program that will be
transported to another machine, we are confronted with the problem of
allocating data on. (at least two) architecturely different machines.

Although we have already discussed differing word sizes, there are
further differences. On the VAX-11 machine data may be fetched in
longwords (32 bits), in words (16 bits) and in bytes (8 bits); on the
11, both words and bytes may be fetched. Only 36-bit words on the
10/20 systems may be directly fetched (i.e. without a byte pointer).

If we were writing our program in MACRO-10 or MARS we would not
consider these differences to be important - clearly, our assembly
language program was not intended to be transportable.

What decisions, however, must the BLISS programmer make in the
transportable allocation of data? Need he or she be concerned with
how many bits are going to be allocated?

These questions (and their answers) can be complicated by the other
chief source of data transportability problems, namely the BLISS
language itself.



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-16

TECHNIQULS

BLISS is different than many other higher-level languages in that it

allows ready access to machine-specific control, particularly in

storage allocation. This is fortunate for the programmer who 1s

writing highly machine-specific, efficient software. This programmer

needs much more control over exactly how many bits of data will be

used. This feature of BLISS, however, can complicate the decisions
that need to be made by the BLISS programmer who is writing a

transportakle program. Does he or she allocate scalars by bytes, or

by words, or by longwords?

14.4.1.3 Transportable Declarations -

Consider the following simple example of a data declaration 1in

BLISS-32:

OWN

PAGE _COUNTER: BYTE; ! Page counter

The programmer has allocated one byte (8 bits) for a variable named

PAGE_COUNTER. No matter what his or her intentions were in requesting

only one byte of storage, this declaration is non-transportable. The

concept of BYTE (in this context) does not exist on the 10/20 systems.

In fact, in BLISS-36 the use of the word BYTE results in an error

message.

I1f this declaration had been originally coded as:

OWN

PAGE _COUNTER; ! Page counter

then this could have been transported to any of the three machines.
The functionality (in this case, storing the number of pages) has not

been lost. We allowed the BLISS compiler to allocate storage by

default by not specifying any allocation-unit in the OWN declaration.
In all the BLISS dialects the default size for allocatioun-unit
consists of $BPVAL bits. Thus our first transportable guideline 1is:

o Do not use the allocation-unit attribute in a scalar data

declaration.

Besides the allocation-unit there are other attributes that may

present transportability problems if used. In particular, when

allocating data:



BLISS Transportability Guidlines 2]1-FEB-77 =-- Rev 3 Page 14-17
TECHNIQUES

o Do not use the following attributes:

Extension (SIGNED and UNSIGNED),

Alignment,

Volatile,

Range,

Weak

which is to say: think twice before you write a declaration.
Do you really need to specify any data attributes other than
structure attributes?

The Extension-attribute specifies whether the sign bit is to be
extended in a fetch of a scalar. This attribute is meaningful only on
VAX-11] and 1is not supported by BLISS-36 or BLISS-16. No sign
extension can be performed if the allocation unit is not specified.

The Alignment-attribute tells the compiler at what address boundary a
data segment 1is to start. It is not supported in BLISS-36 or
BLISS-16; hence, it is non-transportable. Suitalbe default
alignments are available dependent on the size of the scalar.

The Volatile-attribute notifies the compiler that code to fetch the
contents of this data segment must be generated anew for each fetch in
the BLISS program. It is not supported in BLISS-36 or BLISS-16 and
will result in a compiler diagnostic.

The Range-attribute specifies the number of bits needed to represent
the value of a 1literal that is declared global in a separately
compiled module. The STARLET linker is the only linker that currently

supports external literals.

The Weak-attribute 1is a STARLET-specific attribute and is not
supported by BLISS-36 or BLISS-16. It can not be wused in a
transportable program.

These guidelines are relatively simple, yet they should relieve the
BLISS programmer of needing to worry about how the program data will
actually be allocated by the compiler. There 1is often very 1little
reason to specify an allocation-unit or any attributes. The default
values are almost always sufficient.

In the case of scalar data, the use of the default allocation-unit

will sometimes result in the allocation of more storage than is
strictly necessary. This gain in program data size (which, in most
instances, 1is small) should be weighed against a decrease in fetching

time for a particular scalar value, and the knowledge that because of
the default alignment rules, no storage savings may, in fact, be
realized.

In the BLISS language, the default size of $BPVAL bits was chosen
(among other reasons) because this is the largest, most efficiently

accessed unit of data for a particular machine. Which is to say, the



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-18

TECHNIQUES

saving of bits does not necessarily mean a more efficient program.

There will undoubtedly be cases where it is impossible to avoid the

use of one or more of the above attributes. 1In fact, it may be

desirable to take advantage of a specific machine feature. In these

cases follow this guideline:

o Conditionalize and/or heavily comment the use of declarations

which may be non-transportable.

This guideline is the "escape-hatch", if you will, in this set of

guidelines. It should only be used sparingly and where justified. To

use it often will only result in more code that will need to be
re-written when the program has to be transported to another machine -

and that's not our goal.

14.4.2 Data: Addresses And Address Calculations

14.4.2.1 Introduction -

This section will discuss address values and calculations using

address values. First, there will be a presentation of the problems

that might occur when using an address or the result of an address

calculation as a value. A transportable solution to some of these

problems is then presented. Next, a discussion of the need for

address forms of the BLISS relational operators and control

expressions and how and when to use them will be presented. Finally,

some important differences 1in the interpretation of address values

between BLISS-10 and BLISS-36 are discussed.

14.4.2.2 Addresses And Address Calculations -

The value of an undotted variable name in BLISS 1is an address. In

most cases, this address value is used only for the simple fetching

and storing of data. When address values are used for other purposes,

we must be concerned with the portability of an address or an address

calculation. By address calculation we mean any arithmetic operations

performed on address values.

The primary reason for our concern is the different sizes (in bits) of

addressable units, addresses, and BLISS values (machine words) on the

three machines. For convenience in writing transportable programs,

these size values have been parameterized and are now predeclared

literals. A table of their values can be found 1in the section

entitled: "Literals".



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-19

TECHNIQUES

To see how these size differences can have an effect on writing

transportable programs, let's consider a common type of address

expression; namely an expression that computes an address value from

a base (a pointer or an address) and an offset. That is, some

expression of the form:

base + index ...

Now consider the following BLISS assignment expression using this form
of address calculation:

OWN

ELEMENT2;

ELEMENT2 = . (INPUT_RECORD + 1);

The intent (most likely) was to access the contents of the second

value in the data segment named INPUT RECORD and to place that value

in an area pointed to by ELEMENT2. The effect, however, is different

on each machine as we shall see.

By adding 1 to an address (in this case, INPUT_RECORD) we are

computing the address of the next addressable unit on the machine. 1In

BLISS-32 and BLISS-16 this would be the address of the next byte (8

bits), but in BLISS-36 this would be the address of the next word (36

bits). This is probably not a transportable expression because of the

different sizes of the addressable units and the resultant values.

Based on the above example, we introduce the following guideline:

o When a complex address calculation is not an intrinsic part

of the algorithm being coded, do not write it outside of a

structure declaration.

There is a way, however, of making such an address calculation

transportable. It involves the use of the values of the predeclared

literals. 1In the last example, if the index had been 4 in BLISS-32 or

2 in BLISS-16 then in each case we would have accessed the next word.

We need to calculate a multiplier that will have a value of 4 in

BLISS-32, 2 in BLISS-16 and 1 in BLISS-36. Such a multiplier already

exists as another predeclared literal. Its definition is

$BPVAL/%BPUNIT, and it is called %UPVAL.



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-20

TECHNIQUES

Using this literal in our example we would have:

ELEMENT2 =

. (INPUT_RECORD + 1 * $UPVAL);

The address expression is now tranportable.

This last example raises an interesting point. If an address
calculation of this form is used then it is very likely that the data
segment should have had a structure such as a VECTOR, BLOCK or
BLOCKVECTOR associated with it. The last example could have then been
coded as:

OWN

INPUT_RECORD:

FLEX VECTOR[RECORD SIZE,$BPVAL],

ELEMENT27

ELEMENT2 = .INPUT_RECORD[1];

The transportable structure FLEX VECTOR and a more thorough discussion

of structures can be found in the section entitled: Structures and

Field Selectors.

14.4.2.3 Relational Operators And Control Expressions -

The previous example illustrated the use of address values 1in the

context of computations. Other common uses of addresses are in

comparisons (testing for equality, etc.) and as indices in loop and

select expressions. The use of address values in these contexts

points to another set of differences found amongst the three machines.

In BLISS-32 and BLISS-16, addresses occupy a full word ($BPADDR equals

$BPVAL) and unsigned integer comparisons must be performed. However,

in BLISS-36, addresses are smaller than the machine word ('3 versus 36

bits) and signed integer operations are performed for efficiency

reasons.

It can be seen that to perform a simple relational test of address

values:

ADDRESS1 LSS ADDRESS_2



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-21
TECHNIQUES

requires two different interpretations. This expression would
evaluate correctly on the 10/20 systems. But, on the VAX-1ll and 11
machines, the following would have had to have been coded for the

comparison to have been made correctly:

... ADDRESS1 LSSU ADDRESS2 ...

Another type of relational operator, designed specifically for address
values, 1is needed. Such operators exist and are referred to as
address-relational-operators. BLISS-36, BLISS-16 and BLISS-32 have,
in fact, a full set of them (e.g. LSSA, EQLA, etc.) which support
address comparisons.

In BLISS-16 and BLISS-32, the address-relationals are equivalent to
the unsigned-relationals. In BLISS-16, the address-relationals are
equivalent to the signed-relationals. For all practical cases, a user
need not be concerned with this, since this "equivalencing" permits

" equivalent address comparisons to be performed across architectures.

In addition, there are address forms of the SELECT (SELECTA),

SELECTONE (SELECTONEA) , INCR (INCRA) and DECR (DECRA) control
expressions. The following guidelines establish a usage for these
operators and contol expressions:

o If address values are to be compared, use the address form of
the relational operators.

o If an address is used as an index 1in a SELECT, SELECTONE,
INCR or DECR expression, use the address form of these

control expressions.

A violation of either of these gquidelines can have unpredictable

results.

14.4.2.4 BLISS-10 Addresses Versus BLISS-36 Addresses -

There i3 a fundamental conceptual change from BLISS-10 to BLISS-36 1in

the defined value of a name. BLISS-10 defines the value of a data

segment name to be a byte pointer consisting of the address value in

the 1low half of a word, and position and size values of 0 and 36 in

the high half of the word. BLISS-36, however, defines the value as

simply the address in the low half and zeros in the high half. This

change was made solely for reasons of transportability, since it

allows BLISS to assign uniform semantics to an address.

The fetch and assignment operators are redefined to use only the

address part of a value. Thus the expressions:



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-22

TECHNIQUES

. X3

F(.Y) + 2;< n
n

are the same in both BLISS-10 and BLISS-36, but

Y = X;

assigns a different value to Y in BLISS-36 and in BLISS-10.

Field selectors are still available but must be thought of as extended

operands to the fetch and assignment operators, instead of as value

producing operators applied to a name. Thus the meaning of:

Y<0,18> = .X<3,7>;

is unchanged, but

Y = X<3,7>;

is invalid. Moreover, it is highly recommended that field selectors

never appear outside of a structure declaration, since bit position

and size are apt to be highly machine dependent. A more thorough

discussion can be found in the section entitled: Structures and Field

Selectors.

14.4.3 Data: Character Sequences

14.4.3.1 Introduction -

This section will discuss the use of character sequences (strings) 1in

BLISS programs. Historically, there has been no consistent method for

dealing with strings and the functions operating upon them. Ad hoc

string functions have been the rule, having been implemented by

individuals or projects to suit their particular needs. This section

will begin by looking at quoted strings in two different contexts. We

will discuss transportability problems associated with quoted st-inys,

and guidelines for their use.

Quoted strings are used in two different contexts:

o as values (integers) and

o as character strings



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-23
TECHNIQUES

14.4.3.2 Usage As Numeric Values -

The use of quoted strings as values (in assignments and comparisons)
illustrates the problem of differing representations on differing
architectures. Describing the natural translation of a string literal
for each architecture will illustrate the problem. For example,
consider the following code sequence:

OWN

CHAR FOO; ! To hold a literal

CHAR_FOO = 'FOO';

A natural interpretation for BLISS-32 to use is that one longword
would be allocated and the three characters would be assigned to
increasing byte addresses within the longword. 1In memory, the value
of CHAR_FOO would have the following representation:

CHAR _FOO: / 00 0 O F / (32)

BLISS-16 would not allow this assignment because only two ASCII

characters are allowed per string-literal. This restriction arises

from the fact that BLISS-16 works with a maximum of 16-bit values and
three 8-bit ASCII characters require 24 bits.

On the 10/20 systems a word would be allocated and the characters

would be positioned starting at the high-order end of the word. Thus

the string-literal would have the following representation in memory:

CHAR_FOO: / F O O 00 00 0 / (36)

Even if the 10/20 string-literal had been right-justified in the word,

it still would not equal the VAX-11 representation, numerically. So,

in fact, the following would not be transportable:

WRITE INTEGER( 'ABC' );

since 'ABC' is invalid syntax in BLISS-16, has the value =-33543847936

in BLISS-36, and the value 4276803 in BLISS-32.

Based on these problems with representation our first guideline is:

o Do not use string-literals as numeric values.



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-24

TECHNIQUES

In those cases where it is necessary to perform a numeric operation

(e.g. a comparison) with a character as an argument, you must use the

$C form of integer literal. This literal takes one character as |its

argument and returns as a value the integer index in the collating

sequence of the ASCII character set, so that:

$C'B' = 3X'42' = 66

The $C notation was introduced to standardize the interpretation of a

quoted string across all possible ASCII-based environments.

$C'quoted-character' can be thought of as "right-adjusting” the

character in a bit string containing $BPVAL bits.

14.4.3.3 Usage As Character Strings -

The necessity of using more than one character in a literal leads us

to the other situation in which quoted strings are used: as character

strings.

To facilitate the allocation, comparison and manipulation of character

sequences, a built-in character sequence function package has been

introduced to the BLISS language. It has been implemented in BLISS-32

and BLISS-36 and plans exist to implement it in BLISS-16.

These built-in functions provide a very complete and powerful set of

operations on characters. Our next guideline is:

o You must use the built-in function package when allocating

and operating upon character sequences. This is the only way

one can guarantee the portability of strings and string

operations.

A more detailed description of these functions can be found in the

Character Handling Functions chapter of the BLISS-VAX Language Guide,

Second Edition.



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-25

TECHNIQUES

14.4.4 PLITs And Initialization

14.4.4.1 Introduction -

This section is primarily concerned with PLITs and their uses. First,

there is general discussion of PLITs and the contexts in which they

often appear. A presentation of how scalar PLIT items should be used

follows. Next, the problems involved 1in using string literals in

PLITs and suggested guidelines for their use are presented. Finally,

the use of PLITs to initialize data segments will be illustrated by

the development of a transportable table of values.

14.4.4.2 PLITs In General -

Because BLISS values are a maximum of a machine word in 1length, any

literal that requires more than a word for its value needs a separate

mechanism, and that mechanism is the PLIT (or UPLIT). Hence, PLITs

are a means for defining references to multi-word constants. PLITs

are often used to initialize data segments (e.g. tables) and are used

to define the arguments for routine calls.

PLITs themselves are transportable; however, their constituent

elements and their machine representation are not always

transportable.

A PLIT consists of one or more values (PLIT items). PLIT items may be

strings, numeric constants, address constants or any combination of

these last three, providing that the value of each is known prior to

execution time.

14.4.4.3 Scalar PLIT Items -

The first transportability problem that might be encountered with the

vse of PLITs 1is in the specification of scalar PLIT items. As with

any other declaration of scalar items (pointers, integers, addresses,

etc.) it is possible to define them with an allocation-unit attribute.

For example, in BLISS-32, we can specify such machine specific sizes

as BYTE and LONG. Thus the following example is non-transportable

ana, i fact, will not compile on BLISS-36 or BLISS-16:

BIND

01 = PLIT BYTE(l, 2, 3, LONG -4);

This last example provides the first PLIT guideline:

o Do not use allocation-units in the specification of a PLIT or

PLIT item.



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-26

TECHNIQUES

Thus, the BIND should have been coded as follows:

BIND

This last gquideline is necessary because of the differences 1in the

sizes of words on the three machines, a feature of the architectures.

A discussion of the role of machine architectures in the

transportability of data can be found 1in the section entitled:

"Data". Further guidelines are presented 1in the section entitled:

"ITntializing Packed Data".

14.4.4.4 String Literal PLIT Items -

The next guideline is based on the representation of PLITs in memory.

Specifically the problem is encountered when scalar and string PLIT

items appear in the same PLIT.

The difficulty arises primarily from the representation of characters

on the different machines. A more thorough discussion of character

representation can be found 1in the section entitled: "Data:

Character Sequences”.

Care must be exercised when strings are to be used as items in PLITs.

For example, we may wish to specify a PLIT that consists of two

elements: a 5-character string and an address of a routine. If we

specify it as:



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-27

TECHNIQUES

BIND

CONABC = PLIT('ABCDE', ABC ROUT);

then the VAX-11 representation is as follows:

CONABC: / DCBA/ (32)

/ E/ (32)

/ address / (32)

on the 11, it would be:

CONABC: / B A/ (16)

/ D C/ (16)

/ E / (16)

/ address / (16)

and the 10/20 representation would be:

CONABC: / ABCDE/ (36)

/ address / (36)

The three PLITs are not equivalent. Three longwords are required for

the BLISS-32 representation, four words are needed for BLISS-16, and

two words are needed for the BLISS-36 representation. If we wished to

access the two elements of this PLIT by the use of an address offset,

we would have problems. For example, the second element (the address)

is accessed by the expression:

CONABC + 1

in the BLISS-36 version, but not in the BLISS-32 or BLISS-16 versions.

For the BLISS-32 version, we would need the expression:

CONABC + 8 ...



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-28

TECHNIQUES

and for BLISS-16, it would have to be:

... CONABC + 6 ...

Taking a data segment's base address and adding to it an offset (as in

this case) is particularly sensitive to transportability. A

discussion on the use of addresses can be found 1in the section

entitled: "Data: Addresses and Address Calculations".

This section on addresses suggests the use of the literal, %UPVAL, to

ensure some degree of transportability. Its value is the number of

addressable units per BLISS value (machine word). As already

discussed, in BLISS-32, the literal equals 4; 1in BLISS-16, it is 2;

and in BLISS-36, its value is 1.

Multiplying an offset by this value can, in some cases, ensure an

address calculation that will be transportable. So to access the

second element in the above PLIT, one would write:

... CONABC + 1*%UPVAL ...

But this won't work for the VAX-1l representation. An offset value of

8 is needed because the string occupies two words (BLISS values). The

situation is similar for the 11 version, where the string occupies 3

words and would need a offset value of 6 not 2.

The problem with this particular example (and, 1in general, with

strings in PLITs) 1is not in the use of a string literal but in its

position within the PLIT. Because the number of characters that will

fit in a BLISS value differs on all three machines (see the section:

Data: Character Sequences), the placement of a string in a PLIT will

very often result in different displacements for the remaining PLIT

items. '

There is a relatively simple solution to this problem:

o In a PLIT there can only be a maximum of one string literal,

and that literal must be the last item in a PLIT.

Following this guideline, the example should have been coded:

BIND

CONABC = PLIT( ABC_ROUT, 'ABCDE');



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-29

TECHNIQUES

and this expression:

CONABC + 1*3%UPVAL

would have resulted in the address of the second element in the PLIT

(in this case the string).

14.4.4.5 An Example Of Initialization -

As mentioned in the beginning of this section, PLITs are often used to

initialize data segments such as tables. A data segment allocated by

an OWN or GLOBAL declaration can be initialized by using the INITIAL

attribute. The INITIAL attribute specifies the initial values and

consists of a list of PLIT items.

A good example which shows how relatively easy it 1is to initialize

data in a transportable way is to illustrate the process one might use

to build a table of employee data. Information on each employee will

consist of three elements: an employee number, a cost center number

and the employee's name. The employee's name will be a fixed 1length,

5-character field.

For example, a 1line of the table would contain the following

information:

345 201 MARKS

Converting this line into a list of PLIT items which conform to this

section's guidelines would result in the following:

(345, 201, 'MARKS')

Notice that no allocation units were specified and that the character

string was specified last. We will now use this line to initialize a

small table of only one line. The table will have the built-in

BLOCKVECTOR structure attribute. The table declaration would look

like:

OWN

TABLE:

BLOCKVECTOR([1,3]

INITIAL(

345,

201,

'MARKS'

) s



BLISS Transportability Guidlines 21-FEB-77 =-- Rev 3 Page 14-20

TECHNIQUES

A problem, however, has developed. This definition would work well in

BLISS-36. That 1is, three words would have been allocated for TABLE.

The first word would have been initialized with the employee number;

the second word with the cost center; and the third with the name.

But the declaration would not be <correct 1in BLISS-32 or BLISS-16,

simply because not enough storage would have been allocated for all

the initial values. BLISS-32 would have required 4 longwords and the

BLISS-16, 5 words. '

The problem arises as a result of the way 1in which strings are

reprtesented and allocated on the three machines (see the section:

Data: Character Sequences). The solution is simple. We only need to

determine the number of BLISS values (words) that will be needed for

the character string on each machine. There is a function that will

give this value. It 1is named CHSALLOCATION and it is part of the

Character Sequence Function Package. It takes as an argument the

number of characters to be allocated and returns the number of words

needed to represent a string of this length. We can use this wvalue as

an allocation actual in the table definition, as follows:

OWN

TABLE:

BLOCKVECTOR[1,2 + CHSALLOCATION(S)]

INITIAL(

345,

201,

'MARKS'

) ;

The declaration is now transportable. By wusing the CHSALLOCATION

function we can be assured that enough words will be allocated on each

machine. No recoding will be necessary.

We are free to add other lines to the table and not be concerned with

the representation or allocation of the data. Here is a larger

example of the same kind of table. We won't develop it step by step,

but point out and explain some of the highlights.



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-31
TECHNIQUES

The example:

1+

!

LITERAL

1+

MACRO

Table Parameters

NO_EMPLOYEES = 2,

EMP_NAME SIZE = 25,

EMP_LINE SIZE = 2 +

CHSALLOCATION (EMP_NAME SIZE);

5

Employee Name Padding Macro

NAMEPAD (NAME) =

NAME, REP CHSALLOCATION(EMP_NAME_SIZE -

$CHARCOUNT (NAME)) OF (0) $%;

Employee Information Table

Size: NO_EMPLOYEES * EMP_LINE_ SIZE

EMP_TABLE:

BLOCKVECTOR [NO_EMPLOYEES, EMP_LINE SIZE]

INITIAL(

345,

201,

NAME_PAD ('MARKS PETER'),

207,

345,

NAME PAD('NASSI ISAAC')

) 3



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-32
TECHNIQUES

The literals serve to parameterize certain values that are subject to

change. The literal EMP LINE SIZE has as its value the number of

words needed for a table entry. The character sequence function,
CHSALLOCATION, returns the number of words needed for EMP_NAME SIZE

characters. 
- -

The macro will, based on the length of the employee name argument
(NAME), gererate zero-filled words to pad out the name field. Thus,

we are assured of the same number of words being initialized for each

employee name, no matter what its size might be. This is important

because storage is allocated according to the fixed 1length of a

character field (employee name). The actual string length may, of

course, be less than that value.

This last example was developed with the specification that the

employee name field was fixed in length (EMP_NAME SIZE). What if,

however, we wished to have the table hold variable length names? That
is, for certain reasons, we wished to allocate only enough storage to

hold the table data, not the maximum amount.

The table structure developed above won't work because it is

predicated upon the constant size of the name field. If we were to

use variable length character strings, either too much or not enough

storage would be allocated. And there would be no consistent way of

accessing the employee name (where would the next one start?). We

could, if we knew the 1length of every employee name, determine in

advance the number of words needed. But this is not a very practical

solution.

One transportable solution is to remove the character string from the

table and replace it with a pointer (a word in length) to the string.

The Character Package has a function, CH$PTR, which will construct a

pointer to a character sequence. As an added benefit, this pointer

can be used as an argqument to the functions in the Character Package.

The cost of this technique 1is the addition of an extra word (the

character sequence pointer) for each table entry.



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-33
TECHNIQUES

Here is a typical example, again based on the employee table:

1+

! Table Parameters
!-

LITERAL

NO_EMPLOYEES = 2,

EMP_LINE_SIZE = 3;

1+

! Macro to construct a CS-pointer to employee name
| -

MACRO

NAME PTR(NAME) =

CHSPTR(UPLIT( NAME )) §%&;

1+

! Employee Information Table
!

! Size: NO_EMPLOYEES by EMP_LINE_SIZE
- - -

OWN

EMP_TABLE:

BLOCKVECTOR [NO_EMPLOYEES, EMP_LINE_SIZE]

INITIAL(

345,

201,

NAME PTR('MARKS PETER'),

207,

345,

NAME PTR('NASSI ISAAC')

) :

14.4.4.6 1Initializing Packed Data -

In this section we will discuss some transportability considerations

involved in the 1initialization of packed data. By packed data, we

mean that for data values vl, v2, ..., vn with bit-positions pl, p2,

..., pn and bit-sizes of sl, s2, ..., sn, respectively, the value of



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-34

TECHNIQUES

the PLIT-item would be represented by the following expression:

vl1"pl OR v2"p2 OR ... OR vn'pn

where

max(pl, p2, ..., pn) < $BPVAL

sl + s2 + ... + sn < $%$BPVAL

and for all 1

-2**g] < yi < 2**(si - 1)

The OR operator could be replaced by the addition operator (+), but

the result would be different if, by accident, there were overlapping

values. Notice that the packing of data in a transportable manner is

dependent on the value of $BPVAL.

We will illustrate the initialization of packed data by modifying the

employee table example that was developed above. When accessing a

field within a block, it is a common practice to make each field

reference (i.e., offset, position and size) into a macro. So, for

example, the field reference macros for the original employee table

would look like:

MACRO

EMP ID

EMP_COST_CEN

EMP_NAME PTR

0,0,%BPVAL,0 §,

1,0,%BPVAL,0 %,

2,0,%BPVAL,0 %;

We can make use of these macros in developing an initialization macro.

In essence, we are making use of some already parameterized values.

This is another example of how we can use parameterization as one of

the key techniques in writing transportable code.

If we knew that the number of bits needed to represent the values of

ELMP_ID and EMP_COST_CEN would each not exceed 16, we could pack these

two fields into one BLISS value in BLISS-32 and BLISS-36. In BLISS-16

the definition of the employee table, as it now stands, would allocate

only 16 bits for each field, since $BPVAL equals 16. 1In BLISS-36, we

will <choose to use an 18-bit size for these two fields, since we know

that both DECsystem-10 and DECsystem-20 hardware have instructions

that operate efficently on half-words.

Thus, for BLISS-36 and BLISS-32 the field reference macros would 1look

like:

MACRO

EMP_ID

EMP_COST CEN

0,0,%¥BPVAL/2,0 &,

0,%BPVAL/2,%BPVAL/2,0 &,



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-35
TECHNIQUES

EMP_NAME PTR = 1,0,%BPVAL,0 %;

Based on these macros, we can now write a macro that will take as
arguments the initial values and then do the proper packing:

MACRO

SHIFT(W,P,S,E) = P %,

EMP INITIAL(ID,CC,NAME)(] =

ID*SHIFT(EMP=ID) OR ! First
CC“SHIFT(EMP_COST_CEN) P

NAME PTR ( NAME‘SHIFT(EMP_NAME_PTR)) L

! Second

The macro SHIFT simply extracts the position parameter of the field
reference macro. The initialization macro, EMP INITIAL, makes use of

this shift value in packing the words. The goal here is to require

the wuser to specify as arguments only the information needed to

initialize the table, and not to specify information that is part of

its representation.



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-36

TECHNIQUES

An example of using these macros to initialize packed data follows:
1+

! Employee Field Reference macros

MACRO

EMP ID = 0,0,%$BPVAL/2,0 %,

EMP_COST_CEN = 0,%BPVAL/2,%BPVAL/2,0 %,

EMP_NAME PTR = 1,0,%BPVAL,0 %;

MACRO

!+

! Macro to create the shift value from the

! position parameter of a field reference macro

SHIFT(W,P,S,E) = P &,

! Employee table initializing macro

! Three values are required

EMP_INITIAL(ID,CC,NAME)[] =

ID"SHIFT(EMP ID) OR

CC"SHIFT(EMP COST CEN) , ! First

NAME"SHIFT(EMP NAME PTR) %; ! Second

1+

! Employee table definition and initialization

OWN

EMP TABLE:

- BLOCKVECTOR [NO_EMPLOYEES, EMP_LINE SIZE]

INITIAL( EMP_ INITIAL(

345,

201,

'MARKS PETER’,

207,

345,

'"NASSI ISAAC'

))

What has been illustrated in the previous example is the

parameterization of certain values such as field sizes. In
transporting this program we can benefit from the localization of
certain machine values as in the field reference macros. This code is



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 ) -

TECHNIQUES age 14-37

transportable between BLISS-32 and BLISS-36. To compile this program
with the BLISS-16 compiler, we need to change the field reference
macros. The packing macros would no longer be needed, thofiéfi-—£5;§
could be used for consistency purposes. In that case, they would also
need to be changed.

As a final example of initializing packed data, we will use another
BLOCK structure that 1is defined in section 12.7.3 of the BLISS-32
Language Guide. Details as to what DCB is and how it accesses data
are discussed in the Language Guide. Here, we will only be concerned
with initializing this type of structure.

?he DCB BLOCK consists of five fields. Four of the fields are packed
into one word, their total combined size being 32 bits, and the fifth
field which is 32 bits in length occupies another word.

In this case it is possible to transport the DCB initialization very
easily between BLISS-32 and BLISS-36. The reason is that the total
number of bits required for each word does not exceed the wvalue of
¥BPVAL for each machine. Hence, in this case at least, we do not have
to modify the design of the BLOCK in any way. Typically, however, one
would design the structure for each target machine. This is most
easily accomplished by placing its definition in a REQUIRE file. We
will again make use of the field reference macros as we did in the
previous example.



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-38

TECHNIQUES

Here is the example showing a way in which it could be initialized.

Wwe have extended the structure by making it a BLOCKVECTOR. The

example:

1+

! DCB size parameters

LITERAL

DCB_NO_BLOCKS = total number of blocks,

DCB_SIZE = size of a block;

'+

! DCB Field Reference macros
!_

MACRO

DCBA = 0,0,8,0 %,

DCBB = 0,8,3,0 %,

DCB_C = 0,11,5,0 %,

DCBD = 0,16,16,0 &,

DCBE =1,0,32,0 %;

MACRO

I+

1 Macro to create the shift value from the

! position parameter of a field reference macro

SHIFT(O,P,S,E) = P %,

L+

! DCB initializing macro.

I Five values are required.

DCB_INITIALIZE(A,B,C,D,E)[] =

A“SHIFT (DCB_A) OR

B"SHIFT (DCB_B) OR

C"SHIFT (DCB_C) OR

D"SHIFT (DCB D) ,

E"SHIFT (DCB_E) §;

1+

1 DCB Blockvector definition and initialization
| P

OWN

DCB_AREA:

BLOCKVECTOR[DCB_NO BLOCKS, DCB_SIZE]

INITIAL(

DCB INITIALIZE ¢

1,2,3,4,

5,



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-39

TECHNIQUES

=
 
O

Note that this structure could be transported to BLISS-16 by making

suitable changes to the field reference macros and the packing macro.

The only consideration might be whether the 1last field, DCB E, did

require a full 32 bits. -

14.4.5 Structures And Field Selectors

14.4.5.1 1Introduction - Two BLISS constructs will be discussed 1in

this section: structures and field selectors. While the use of one

does not necessarily imply the use of the other, we will see that for

transportability reasons field selector wusage will be confined to

structure declarations. Hence, these two constructs need to be

discussed together.

We will begin with a general discussion of structures, in which it

will be shown that a certain machine specific feature of structures
can be used in a transportable manner. The best way to illustrate the

process of writing transportable structures 1is to take the reader

through the intellectual considerations that contribute to its design,

so the development of a transportable structure - FLEX VECTOR - will

be presented. At this point field selectors will be discussed.
Finally, a more general structure - GEN VECTOR - will be developed.

14.4.5.2 Structures -

Structure declarations are sensitive to transportability in that one

may specify parameters corresponding to characteristics of particular

architectures. Also, in BLISS-32, the reserved words BYTE, WORD,

LONG, SIGNED, and UNSIGNED have values of 1, 2, 4, 1 and 0

respectively when used as structure actual parameters.

We can take advantage of the ability to specify architecture-dependent

information in developing transportable structure declarations. Later

in this section we will develop a structure which will use the UNIT

parameter to gain a degree of transportability. The UNIT parameter

specifies the number of addressable allocation-units. This number

will be used in determining the amount of storage that is to be

allocated for each element of the structure.

As mentioned repeatedly in these guidelines, the prime

transportability problem is differing machine architectures. Machine

word-sizes, for example aren't the same. That is, the number of bits

per machine-word differs on all three machines. The machine word is

also the maximum size of a BLISS value. There are two other important
architectural differences: bits per address and bits per addressable
unit.



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-40

TECHNIQUES

Bits per address is the maximum size, in bits, of a memory address.

Bits per addressable-unit is the size, in bits, of the smallest

directly addressable unit in memory.

The values of machine word-size (BLISS value), bits per

addressable-unit and bits per address for the three machines have been

implemented as predeclared literals, with the names $BPVAL, $BPUNIT

and $BPADDR, respectively. A table of their values can be seen in the

section entitled: "Literals".

14.4.5.3 FLEX_VECTOR -

We can make use of these values in developing FLEX VECTOR. First

let's state the use to which this structure will be put: We wish to
define a structure that will by default allocate and access a vector

consisting of only the smallest addressable units. If the default

value given in the structure declaration is not used, we want to be

able to specify the vector element size in terms of the number of

bits. It should be noted that the existing VECTOR mechanism will not

do this.

For example, we would like to have a vector of 9-bit elements. The

first decision that has to be made is whether or not we want each

element to be exactly 9 bits, or at least 9 bits. For this example,

we choose the smallest natural unit whose size is greater than or

equal to 9 bits. Since there are no 9-bit (in length) addressable

units on any of the machines, we have a choice of 8, 16, 32 or 36-bit

units.

We can see that 9 bits will fit in the only addressable unit on the

10/20 systems - the word. On the 11 we will need two bytes or a

16-bit word and on the VAX-11l machine we will again need two bytes.

How then do we develop a structure that will do this allocation and

will also be transportable and usable on the three systems? Clearly

the structure will need some knowledge of the machine architecture.

This is where the role of parameterization comes in.

The predeclared literals have all the information we need. 1In fact we

need only one set of values - bits per addressable-unit ($BPUNIT).

This parameter will be one of the allocation formals. Oth.r formals

that we will need are the number of elements (N) and the index

parmeter (I) for accessing the vector.

We begin by showing the access and allocation formal 1list for

FLEX VECTOR:

STRUCTURE

FLEX VECTOR[ I; N, UNIT = $BPUNIT, EXT = 1 ]



BLISS Transportability Guidlines 21-FEB-77 -~ Rev 3 Page 14-41

TECHNIQUES

Notice that by setting UNIT ecual to ¥BPUNIT the default (if UNIT is

not specified) will be %BPUNIT.

Now we must develop the formula for the structure-size expression.

The expression will make wuse of the allocation formals UNIT and N:

and, in addition, the value of the parameter S$BPUNIT.

If UNIT were only allowed to assume values of integer multiples of

$BPUNIT (i.e. 1*$BPUNIT, 2*3%BPUNIT, etc.), we would only need a

structure-size expression of the following form:

Dividing the element size (UNIT) by $BPUNIT would qive the size of

each element in the vector in terms of an integer multiple. This

value would then be multiplied by the number of elements to give the

total size of the data to be allocated.

We wish, however, for the structure to be more flexible in that we

will be able to specify any size element (within certain limits). The

structure-size must be slightly more complex:

[ N * (UNIT + $BPUNIT - 1) / $BPUNIT ]

The structure-size expression now computes enough $BPUNIT's to hold

the entire vector. The reader should try some values of UNIT for

differing $BPUNIT in order to see how this expression evaluates.

This sub-expression:

(UNIT + $BPUNIT - 1) / S$BPUNIT

which we will call NO OF UNITS is very important in effecting the

transportability and flexibility of this particular structure. The

key to transporting this structure is the knowledge that it has of a

certain machine architectural parameter: bits per addressable-unit.

Th:- narticular expression makes use of this knowledge, hence, it can

adapt t¢ any machine. This sub-expression will be used twice more in

the structure-body expression.

The structure-body is an address-expression. This expression will

consist of the name of the structure (the base address) plus an offset

based on the index I. 1In addition, a field selector will be needed to

access the proper number of bits at the calculated address.

The offset is simply the expression NO_OF _UNITS multiplied by the

index 1I. (Remember that indices start at 0). The size parameter of

the field selector is the expression NO_OF UNITS multiplied by the



BLISS Transportability Guidlines 21-FER-77 -- Rev 3 Page 14-42

TECHNIQUES

size of an addressable-unit - $BPUNIT. The structure-body will look

like:

(FLEX_VECTOR +

I * ((UNIT + $BPUNIT - 1) / $BPUNIT))

<0, ((UNIT + $%BPUNIT - 1)/%BPUNIT)*%BPUNIT,BXT){

The value of the position parameter 1in the field-selector is a
constant 0 for we are always starting at an addressable boundarvy.

The following table shows the structure on the three machines for

different values of UNIT:

vaX-11

UNIT = 0 no storaqge

FLEX_VECTOR<0,0,1>

UNIT =1 to 8 [N * 1] Bytes
(FLEX_VECTOR + 1)<0,8,1>

UNIT = 9 to 16 [N * 2] Bytes
(FLEX_VECTOR + I * 2)<0,16,1>

UNIT = 17 to 32 [N * 4] Bytes
(FLEX_VECTOR + I * 4)<0,32,1>

11

UNIT = 0 to 16 same as VAX-11

10/20

UNIT = O no storage

(FLEX_VBCTOR)(0,0,I)

UNIT = 1 to 36 [ N ] Words
(FLEX_VECTOR + I)<0,36,1>

From the table above we can see that if the default value for UNIT

were set to $BPVAL, this structure would be eauivalent to a VECTOR of

longwords on VAX-11, and a VECTOR of words on the 10/20 and 11

systems.

Elements in a data seagment which has this particular structure

attribute are accessed very efficiently because they are always on

addressable boundaries. Also, they are always some multiple of an

addressable unit in length.



BLISS Transportab111ty Guidlines 21-FER-77 -- Rev 3 Page 14-43
TECHNIQUES

If we wish this structure to access elements exactly the size
specified then we need only change the size parameter of the field

selector. This expression then becomes:

... FLEX VECTOR<O, UNIT>;

This is a less efficient means of accessing data (when UNIT is not a
multiple of S$%BPUNIT) because the compiler needs to generate field

selecting instructions in the case of the VAX-1l1] and 10/20 machines

and a series of masks and shifts for the 11,

14.4.5.4 Field Selectors -

In the last structure declaration, it was necessary to make use of a

field selector. At this, we will discuss the use of field selectors

in a more general context.

The use of field selectors can be non-transportable because they make

use of the value of the machine word size. The unrestricted usage of

field selectors may cause problems in a program when it is moved to

another machine. These problems are best illustrated by the following

table of restrictions on position (p) and size (s) for the three

machines:

Machine: 10/20 11 VAX-11

0<p 0 <o

p + s < 36 p+s <16

0 < s <36 0 < s <16 0 < s < 32

p, S constant

From the table we can see that:

0 The most restrictive is the 11.

o The moderate restrictions are those of the 10/20.

0 The least restrictive is VAX-11l.

If we wished to ensure the transoortable use of field selectors, we

would have to abide by the set of restrictions imposed in BLISS-16.

These, however, are restrictions imposed by the values of p and s.

There is also a contextual restriction on the use of field selectors.

The following guideline should be followed:

o Field selectors may only appear 1in the definition of

user-defined structures.



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-44

TECHNIQUES 
A

By restricting the domain of field selectors to structures, we are 1in

fact isolating their use.

We will now develop another transportable structure which will be

affected by the table of field selector value restrictions.

14.4.5.5 GEN_VECTOR -

You have probably noticed that FLEX_VECTOR does not attempt to pack

data. Using the example of 9-bit elements, we can see that there will

be some wasting of bits - from 7 bits on the 11 and VAX-11 to 27 on

the 10/20 systems.

We can develop a variation of FLEX_VECTOR which will provide a certain

degree of packing. For example, 1in the case of 9-bit elements it

would be possible to pack at least four of them into a 10/20 word and

three into a VAX-11 1longword. Unfortunately, this vector is not

maximally transportable, but its design and the identification of its

non-transportable aspects should be very helpful.

This structure, which will be named GEN_VECTOR, will pack as many

elements as possible into a BLISS value (word) so we will make use of

the machine specific literal %BPVAL. But, since allocation 1is 1in

rerms of $BPUNIT, we will need a literal that has as a value the

number of allocation units in a BLISS value. This literal has been

predeclared for transportability reasons and has the name $UPVAL, and

is de{ined as %BPVAL/%BPUNIT.

Elements will not cross word boundaries. This constraint is in effect

hecause of the restrictions placed on the value of the position

parameter of a 10/20 and 11 field selector. For the same reason

elements can not be longer than 3%BPVAL, as given in the table of field

selector restrictions above.

As in FLEX VECTOR, the allocation expression of GEN_VECTOR will need

to calculate the number of allocation units needed by the entire

vector. This will again be based on the number of elements (N) and

the size of each element (S). But because the elements will be

packed, the expression will be slightly more complicated.

The first value we need is the number of elements that will fit 1in a

BRLISS value. The expression:

($BPVAL/S)

will compute this value. Given this, to obtain the number of BLISS

values or words needed for the entire vector, we divide this value

into N:



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-45

TECHNIQUES

(N/ ($BPVAL/S))

We now have the total number of words (in wunits of $BPVAL) needed.
However, data 1is not allocated by words on both of the machines.

Multiplying this wvalue by SUPVAL will result in the number of

allocation units needed by the vector:

((N/($BPVAL/S)) *$UPVAL)

For clarity's sake and because this expression will be used again we

will make it into a macro with N and S as parameters:

MACRO

WHOLEVAL (N,S) =

((N/(¥BPVAL/S)) *%UPVAL) %;

The name of the macro suggests that we have calculated the number of

whole words needed. 1If, in fact, N were an integral multiple of the

number of elements in a word then this macro would be sufficient for

allocation purposes.

Since we can't count on this always happening, we need another

expression to calculate the number of allocation units needed for any

remaining elements. The number of elements left over is the remainder

of the last division in this expression:

(N/ ($BPVAL/S))

The MOD function will calculate this value, as follows:

(N MOD ($BPVAL/S))

If we then multiply this value by the size of each element we will

have the total number of bits that remain to be allocated:

(N MOD (%BPVAL/S)) * S

This value will always be strictly less than $BPVAL. For the same

reasons outlined above we will make this expression into a macro with

N and S as parameters:



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-46

TECHNIQUES

MACRO

PART VAL(N,S) =

((N MOD (%BPAVAL/S)) * S)%;

Taking this value, adding a "fudge factor" and then dividing by

$BPUNIT will give us the number of allocation units needed for the

remaining bits:

(PART VAL(N,S) + %BPUNIT -1)/%BPUNIT

The total number of allocation units has been calculated and the

structure allocation expression will look 1like:

(WHOLE_VAL(N,S) +

(PART VAL(N,S) + $BPUNIT - 1)/%BPUNIT]

As it works out, the structure-body expression for GEN VECTOR will be

simple to write because of the expressions that have already been

written.

The accessing of an element in GEN _VECTOR requires that we compute an

address offset which is then added to the name of the structure. This

of fset is some number of addressable units based on the value of the

index 1I. We already have an expression which will calculate this

number of addressable units. It is the macro WHOLE VAL. Thus, the

first part of the accessing expression will look like:

GEN_VECTOR + WHOLE VAL(I,S)

Note that the macro was called with the index parameter I.

This expression will result in the structure being aligned on some

addressable boundary. But since the element may not begin at this

point (that is, the element may be located somewhere within a unit

$BPVAL bits 1in length), one more value 1s needed. That value is the

pos.tion parmeter of a field selector. The macro PART VAL will

calculate this value based on the index I:

<PART VAL(I,S),S,EXT>

The size parameter is the value S. The position parameter will be

calculated at run-time, based on the value of the index I. . Since I is

not constant, we can no longer use this structure in BLISS-16. The

position and size parameters of a field selector in BLISS-16 must be

[



BLISS Transportability Guidlines 21-FEB-77 -- Rev 3 Page 14-47
TECHNIQUES

compile-time constants. See the table of field selector restrictions
above.

This completes the definition of GEN VECTOR. The entire declaration
will look like:

STRUCTURE

GEN_VECTOR[I;N,S,EXT=1] =

[WHOLE_VAL(N,S) +

(PART VAL(N,S) + $BPUNIT - 1)/%BPUNIT]

(GEN VECTOR + WHOLE VAL(I,S))

<PART_VAL(I,S),S,EXT>;

The reader should compile this structure and see how it works in
BLISS-32 and BLISS-36.

14.4.5.6 Summary -

No claim is made that either of these two structures will solve all
the problems associated with transporting vectors. Many such problems
will have unique and different solutions. BLOCKS or BLOCKVECTORS have
not been discussed, but it is hoped that the reader will get from the
examples a feeling for the techniques 1involved in transporting
structures.

There is no easy solution to transporting data structures. One should
consider, when developing data structures, the machines that the
program or system is targeted for and make full use of the predeclared
literals such as %$BPUNIT.

This exercise in the development of transportable structures has
illustrated two points:

o0 parameterization and

o field selector usage.

By parameterizing certain machine-specific values and by taking full
advantage of the powerful STRUCTURE mechanism, we have developed two
transportable structures.

The accessing of odd (not addressable) units of data is accomplished

by the use of field selectors. The field selector should only be used

in structure declarations.



BLISS Transportability Guidlines 21-FEB-77 -- Re _

TECHNIQUELS v 3 Page 14-48

[end chapter 14}



Digital Equipment Corporation COMPANY CONFIDFNTIAL Page 1

Title: VAX-11 Software Ena. Diagnostic Conventions -- Rev 3

Specification Status: draft

Architectural Status: vuvnder ECO control

File: SEl15R3.RNO

PDM #: not used

Date: 28-Feb-77

Superseded Specs: Diagnostic Codina Conventions

Author: F. Bernaby

Typist: P. Conklin

Reviewer(s): E. Kenney

Abstract: Chapter 15 contains the diagnostic conventional extensions
to the rest of this document. It represents an effort to
produce diagnostic products in a consistent manner.

Revision History:

Rev Description Author Revised Date
Rev Original F. Bernaby Sep-76

$

1

Rev 2 skipped to maintain numbers
Rev 3 Integrated with SE manual P. Conklin 28-Feb-77



Diagnostic conventions . 15-1



Diagnostic Conventions 28-Feb-77 -- Rev 3 _

Change History Page 15-990

Rev 1 to Rev 3:

1. Just merge file.

2. Update module preface.

[End of SE15R3.RNO]



CHAPTER 15

DIAGNOSTIC CONVENTIONS

28-Feb-77 -- Rev 3

15.1 INTRODUCTION

vaX-1l1l diagnostics will be written in conformance with the conventions

expressed in this manual.

These conventions will be adc:ted to:

1. achieve clear and meaningful documentation of individual

tests.

2. reduce the need for diagnostic users to analyze test code.

3. simplify the program maintenance task.



Diagnostic Conventions 28-Feb-77 -- Rev 3 Page 15-2

DIAGNOSTIC SECTIONS

15.2 DIAGNOSTIC SECTIONS

Each diagnostic will be sub-divided into 15 sections. These sections

provide a logical way of partitioning the program,

PROGRAM HEADER

PROGRAM EQUATES

PROGRAM DATA

PROGRAM TEXT

PROGRAM ERROR REPORT

HARDWARE PTABLE

SOFTWARE PTABLE

DISPATCH TABLE

REPORT CODE

INITIALIZE CODE

CLEANUP CODE

PROGRAM SUBROUTINES

HARDWARE TEST

HARDWARE PARAMETERS

SOFTWARE PARAMETERS

provides the module nreface for vrogram

area for macro & symbol definitions

area for data used by more than one test

area for all ASCII messages

area reserved for print module

table of hardware parameters

table of software parameters

table of test addresses for test sequencing

print module for statistical reports

routine for initializing unit under test (ut)

routine for cleaning up error states in u

area for routines used by more than 1 test

actual diagnostic test code

code used by supervisor to get hardware

ptable entries

code used by supervisor to get software

ptable entries



Diagnostic Conventions 28-Feb~77 -- Rev 3 Page 15-3

DIAGNOSTIC SECTIONS

15.2.1 Program Header Section

<EXAMPLE>

W
O
 
W
O
 
W
O
 
N
S
 
W
S
 
W
E
 
V
O
 
W
P
 
N
E
 
N
I
 
W
E
 
W
S
 
W
O
 
e
 
W
E
 
W
E
 
V
e
 
"
W
 
N

W
 
W
 
N
G
 
N
 
V
E
 
W
O
 
W
G
 

V
W
G
 
W
O
 
W
O
 
W
E
 
W
O
 
W
y
 
W
O
 
N
P
 
W
 
W
 
W
 
"
¢

.TITLE SYSEXR - System exerciser

.IDENT /2-3/

COPYRIGHT (C) 1977

DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS 01754

THIS SOFTWARE 1S FURNISHED UNDER A LICENSE FOR USE ONLY ON A SINGLE

COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE INCLUSION OF THE

ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR ANY OTHER COPIES THEREOF,
MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON

EXCEPT FOR USE ON SUCH SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE

TERMS. TITLE TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES

REMAIN IN DEC.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE

AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT

CORPORATION. '

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS

SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

++

FACILITY: diagnostic exerciser

ABSTRACT:

This program will exercise the VAX-11 system. It generically

treats devices as magtape, disk, or terminals.
Up to 32 units may be selected for testing.

ENVIRONMENT: System

AUTHOR: Frank Bernaby, CREATION DATE: 16-Sep-76

MODIFIED BY:

Joe Hacker, 4-Jul-77: VERSION 2

02 - Added I/0 tests for 6250 tape drives.

03 - Brought module preface to standard form.



Diagnostic Conventions 28-Feb-77 -- Rev 3 Page 15-4

DIAGNOSTIC SECTIONS

15.2.2 Program Equates(declarations)

<EXAMPLE>

s ++

LISTING CONTROL

-
y
 
W

.NLIST MC,MD,CND

.LIST ME

+ +

MACRO LIBRARY CALLS

-
9
 
W
O
 
e

.MCALL 0QIO$S,Q0I0$C,DPBS,WTEFSC

++

INCLUDE FILES: SYSMAC.SML

e
 

w
e
¢
 
"
o

s ++

; EXTERNAL SYMBOLS: DEBUG

’

.GLOBAL DEBUG

s ++

; EQUATED SYMBOLS

;s ++

UBA REGISTER DEFINITIONS

-
y
 

w
e
o

UBA_BASE_ADDRESS=177000

UBA_CSR_OFFSET=0

UBA_FMR-OFFSET=2

UBA_IRP_OFFSET=4

UBA_IRC_OFFSET=6

UBA Sv4 UFFSET=10

UBA SVS OFFSET=12

UBA_SV6_OFFSET=14

UBA SV7 _OFFSET=16

sNO LIST MACRO'S & CONDITIONALS

s LIST MACRO EXPANSION

; ENTRY POINT OF DEBUGGER

;UBA BASE ADDRESS

; CONTROL/STATUS REGISTER

; FAILED MAP REGISTER

; MAP REGISTER POINTER

; MAP REGISTER CONTFENTS

; REQ SEND VECTOR #4

; REQ SEND VECTOR #%

; REQ SEND VECTOR = !

; REQ SEND VECTOR #7



Diagnostic Conventions 28-Feb-77 -- Rev 3 Page 15-5
DIAGNOSTIC SECTIONS

15.2.3 Program Data

<EXAMPLE>

+ +

TABLE OF UBA ADDRESS

THIS TABLE IS REFERENCED WHEN ONE OF THE UBA REGISTERS
MUST BE ADDRESSED. THE UBA REFERENCE IS AN INDIRECT
REFERENCE THROUGH THIS TABLE. EXAMPLE:

MOVW @UBACSR, RO ;READ CSR INTO RO

e
 
W
E
 
W
E
 
W
Y
 
V
E
 
N
 

W
N
E
 
W
Y
 
e
 

W
T
M

TABLE_UBA_ ADDRESSES:

UBACSR: .LONG UBA_BASE_ADDRESS+UBA_ CSR _OFFSET
UBAFMR: .LONG UBA BASE ADDRESS+UBA FMR OFFSBT

UBAIRP: .LONG UBA BASE ADDRESS+UBA IRP ._OFFPSET
UBAIRC: .LONG UBATM_BASE ADDRBSS+UBA IRC OFFSET
UBASV4: .LONG UBA BASE ADDRESS+UBA_Sv4 OFFSET
UBASV5: .LONG UBATM_BASE ADDRBSS+UBA SV5 "~_OFFSET
UBASV6: .LONG UBA BASE ADDRESS+UBA SV6 _OFFSET
UBASV7: .LONG UBA BASETM ADDRESS+UBA Sv7 OFFSET

+ +

DEVICE STATUS BUFFER

THIS AREA IS RESERVED FOR STORING DEVICE STATUS AT

THE CONCLUSION OF AN I/0 OPERATION. THIS STATUS
IS PROVIDED VIA THE QIO MECHANISM.

W
O
 
W
O
 
W
O
 
N
P
 
W
O
 
N
E
 
W
 
W
y

DEVICE STATUS: .BLKL 64 s RESERVE 64 LONG WORDS



Diagnostic Conventions 28~-Feb-77 -- Rev 3 Page 15-6

DIAGNOSTIC SECTIONS

15.2.4 Program Text

<EXAMPLE>

s ++

; QUESTIONS

’

QST1 UBA BASE: .ASCIZ

QST2 UBA_VECTOR: .ASCIZ

OST3 UBA LEVEL: .ASCIZ

QST4 RECORD LENGTH: .ASCIZ

QSTS_DATA_PATTERN: .ASCIZ

++

FORMAT STATEMENTS

-
y
 
W
O

FMT1 RKCS_DECODE: .ASCIZ

FMT2_TIMEOUT: .ASCIZ

KLEN/

FMT3_MACHINE_CHECK: .ASCII

B - .ASCIZ

FMT4 SEEK_ERROR: .ASCIZ

FMTS5 ABORT: .ASCIZ

FMT6 PROG_SUMMARY: .ASCII

- .ASCII
.ASCII

.ASCIZ

SENTER UBA BASE ADR: §

SENTER UBA VECTOR ADR: %

SENTER UBA BR LEVEL: %

SENTER RECORD LENGTH: %

SENTER DATA PATTERN: %

/SARKCS: $XWSA : SRWSN/

/SATIMEOUT WHILE REFERENCING RKO5 REGISTEI

/SAMACHINE CHECK ABORT: $XWEN3XW3A ITEMS/

/ ON STACK, PC= $XL%A SP= RXLIN/

/SASEEK BAD ERROR REGISTER: $XW8N/

/SNSNSAPROGRAM ABORTING OPERATIONSN/

/SNPROGRAM SUMMARY/

/SNWORDS TRANSFERRED: $%XL/

/SNHARD ERRORS: S$XL/

/$SOFT ERRORS: S$XL%N/



Diagnostic Conventions 28-Feb-77 -- Rev 3 Page 15-7
DIAGNOSTIC SECTIONS

15.2.5 Program Error Report

<EXAMPLE>

A2 4

-
 
w
9

MSGl_TIMEOUT: PRINT

PRINT

RSB

MSG2_MACHINE_CHK: PRINT

RSB

MSG3_DEV_STATUS: PRINT
RSB

PRINT ENTRY POINTS FOR ERROR MESSAGES

FMTZ_TIMEOUT,(R]> ;s PRINT TIMEOUT
FHTS_ABORT, ; PRINT ABORT

s EXIT

FMT3_MACHINE_CHECK,<R6,R7,(RB),R9>

FMTl_RKCS_DECODE,<R3,#BITRKCS)

s EXIT



Diagnostic Conventions 28-Feb-77 -- Rev 3 Page 15-8

DIAGNOSTIC SECTIONS

15.2.6 Hardware Ptable

<EXAMPLE>

+ +

HARDWARE PARAMETER TABLE FOR PROGRAM

THIS TABLE PROVIDES THE REQUIRED HARDWARE PARAMETERS

FOR TEST EXECUTION. THE ENTRIES ARE OBTAINED FROM EITHER

THE USER VIA GPHRD COMMANDS OR FROM THE SYSTEM

CONFIGURATION TABLE.

w
0
 
W
P
 
W
G
 
W
 
W
O
 
e
 
W
P
 
w
e
 
w
?

HARD UBA:

HARD UBA_BASE: .LONG 0 ;BASE ADDRESS OF UBA

HARD_ UBA_VECTOR: .LONG 0 ;UBA VECTOR ADDRESS
HARD UBA_LEVEL: .LONG 0 ;UBA BR LEVEL

15.2.7 Software Ptable

<EXAMPLE>

+ +

SOFTWARE PARAMETER TABLE FOR PROGRAM

THIS TABLE CONTAINS ALL THE REQUIRED SOFTWARE PARAMETERS.

THESE PARAMETERS ARE OBTAINED VIA GPSFT COMMANDS.

e
 
W
E
 
W
O
 
W
S
 
N
S
 
W
S
 
N

SOFT_UBA:

SOFT_RECORD_LENGTH: .LONG O ; RECORD LENGTH
SOPT_DATA PATTERN: .LONG 0 ; REQUIRED DATA PATTERN

SOPT_DATA_PATH: .LONG 0 ;UBA DATA PATH
SOFT_MAP_BASE: .LONG 0 ;BASE MAP REG TO USE

SOFT_MAP_LENGTH: .LONG 0 ;4# OF MAP REG TO USE



Diagnostic Conventions

DIAGNOSTIC SECTIONS

15.2.8 Dispatch Table

<EXAMPLE>

++

-
 
W
y
 
W
E
 
w
e
 
“
E
 
o

T1S0

T2S0

T3S0

TNSO

15.2.9 Report Code

CEXAMPLE>

+ +

W
G
 
W
O
 

W
M
E
 
W
E
 
W
E
 
W
y
 
W
y
 
W
=

REP1_PROG_SUMMARY:

REP2_DATA_SUMMARY:

PROGRAM DISPATCH TABLE

STATISTICAL REPORT MODULE

PRINT

RSB

PRINT

PRINT

RSB

28-Feb-77 =-- Rev 3 Page 15-9

THIS TABLE IS BUILT BY A SUPERVISOR MACRO

;" N " TEST IN TABLE

; ADDRESS OF TEST $1

; ADDRESS OF TEST #2

; ADDRESS OF TEST 43

;sADDRESS OF TEST #N

THIS PRINT MODULE PROVIDES REPORTS OF A STATISTICAL NATURE.

THE FIRST ENTRY IS INVOKED BY THE SUPERVISOR COMMAND 'REPORT'.

THE REMAINING ENTRIES ARE PROGRAM INVOKED.

FMT6 PROG_SUMMARY,<R6,R5,R7> ;s PRINT SUMMARY.

s EXIT

FMT7_DATA_SUMMARY,<R3,R4,DATA_TABLE>

FMT8 DATA_STAT

+EXIT



Diagnostic Conventions 28-Feb-77 -- Rev 3 Page 15-10

DIAGNOSTIC SECTI1ONGS

15.2.10 Intialize Code

<EXAMPLE>

+ +

FUNCTIONAL DESCRIPTION: INIT

THIS ROUTINE INITIALIZES THE TEST PROGRAM.

IT PERFORMS:

1. ALLOCATION OF UNIT(S) UNDER TEST

2. INITIAL ALLOCATION OF BUFFER SPACE

3. INITIAL MAPPING OF MEMORY SPACE

CALLING SEQUENCE: SUPERVISOR INVOKED

INPUT PARAMETERS: PTABLE

W
O
 
W
O
 
W
O
 
W
E
 
W
O
 
W
P
 
W
P
 
W
O
 
W
y
 
M
E
 
V
e
 
e
 
W
0

BGNINT : START OF CODE

ENDINT sEND OF INITIALIZE

15.2.11 Cleanup Code

<EXAMPLE>

+ +

FUNCTIONAL DESCRIPTION: CLNUP

THIS ROUTINE PERFORMS THE NECCESSARY CLEANUP BEFORE

THE TEST PROGRAM EXITS BACK TO SUPERVISOR LEVEL.

IT PERFORMS:

1. DEALLOCATION OF BUFFER SPACE

2. RESET OF UNIT UNDER TEST(UUT)

3. DEALLOCATION OF UNIT UNDER TEST

CALLING SEQUENCE: JSB CLNUP

INPUT PARAMETERS: PTABLE

W
M
E
 
W
E
 
N
 
W
G
 
N
 
W
E
 
N
G
 
M
G
 
V
e
 
V
e
 
N
 

w
m
g
 
"
 
W

BGNCLN ; START OF CLEANUP

ENDCLN ;END OF CLEANUP



- Diagnostic Conventions 28-Feb-77 -- Rev 3 Page 15-11
DIAGNOSTIC SECTIONS

15.2.12 Program Subroutines

<EXAMPLE>

.SBTTL PROGRAM SUBROUTINES

s +4+

FUNCTIONAL DESCRIPTION: $RANDOM

THIS ROUTINE GENERATES A RANDOM NUMBER THAT IS RETURNED

IN RO. THE SEED FOR THE NUMBER IS PASSED ON THE STACK.

®
e
 
W
9
 
e
 
W
e
 
W

CALLING SEQUENCE: PUSHL SEED ; PUT SEED VALUE ON STCK

CALLS #1,SRAND ;CALL ROUTINE

INPUT PARAMETERS: SEED
SEED = BASE VALUE THAT GENERATOR STARTS WITH.

®
e
 
%
o
 
w
e
 
w
e
 

%
w
o

S$RANDOM:

.WORD M<R1l,R2> ;s SAVE REG MASK
MOV 4 (AP) ,R1 ;FETCH SEED FRM STCK

MOVL R1,RO s RETURN VALUE IN RO

SRANDOM_EXIT:

RET sRETURN TO CALLER



Diagnostic Conventions 28-Feb-77 -- Rev 3 Page 15-12

DIAGNOSTIC SECTIONS

+ +

FUNCTIONAL DESCRIPTION: UBA_SETUP

THIS ROUTINE HANDLES THE SETUP OF THE UBA

TO ALLOW UNIBUS DEVICES TO TRANSFER DATA

BETWEEN SBI MEMORY AND UNIBUS MEMORY OR

UNIBUS DEVICES

w
e
 
W
e
 
W
E
 
N
P
 
W
O
 
W
y
 
"
9
 
w
o

CALLING SEQUENCE: CALLG $UBA_LIST,SUBA_SETUP

INPUT PARAMETERS: UBA_LIST

THIS LIST IS A TABLE LIKE:

s
 
w
e
 
T
 
W
e
 
W
E
 
W
E
 
w
4
 
V
I
 
W
e
 
W
 
W
9
 
W
P
 
u
¢
 
O

UBA_LIST: 5 ;NUMBER OF ARGUMENTS

UBA_BUS_ADR: .LONG 0 ;BUS ADR AT DEVICE
UBA_LENGTH: .LONG 0 s RECORD LENGTH
UBA_MAP_BASE: .LONG 0 ; STARTING MAP REG

UBA_DAT_PATH: .LONG 0 ;UBA DATA PATH
UBA_SBI_PHYSICAL: .LONG 0 ; STARTING PHYSICAL ADR

SUBA_SETUP:

.WORD "M<R1,R2,R3,R4> ; SAVE R1-R4

MOVL 4 (AP) ,R1 ;GET ADDR OF ARGUMENT LIST

SUBA_SETUP_EXIT:

RET ; EXIT



Diagnostic Conventions 28-Feb-77 -- Rev 3 Page 15-13
DIAGNOSTIC SECTIONS

15.2.13 Hardware Test

The actual harware test will go within this section of the program.

All diagnostics that run with the diagnostic supervisor will, when

neccessary, make supervisor ‘'calls' to provide a function rather than
code that function into the program.

If a routine is used by more than one test, that routine will be

placed in the program subroutine section. Linkage to that routine

will be via °'CALLS' or 'CALLG' instructions. If these routines must

pass data back to the test, the test will specify where this data will

go by supplying the needed argument(s).

This section is sub-divided by tests and subtests. The test

subdivision provides for blocking the diagnostic of into major logic

areas. While, the subtest provides a way of further subdividing each

test into smalller logic areas.

Therefore the basic organization will look like this.

BGNTST

BGNSUB

<TEST CODE FOR T1S1l>

ENDSUB

BGNSUB

<TEST CODE FOR T1S2>

ENDSUR

ENDTST

BGNTST

BGNSUB

<CODE FOR T2S1>

ENDSUB

ENDTST



Diagnostic Conrventions 28-Feb=-77 -- Rev 3 Page 15-14

CIAGMNSTIC soCCTYye

Fach test and subtest must have a snecific level of documentation.

Each test must specifv a complete test description and any assumptions
that are assumed by this test. Assumptions implies what logic is

assumed to have been successful tested when this test starts.

Each subtest must have the test description and assumptions. In
addition, the subtest must have a complete description of how the
subtest works, what errors the subtest will detect, and what the debua
procedure is for the subtest failure.

<EXAMFLE>

BGNTST

+ <
+

TEST DESCRIPTION:

THIS TEST CHECKS THE MAP REGISTERS IN THE UBA. IT PERFORMS THIS TEST

BY CHECKING THAT ALL REGISTERS HOLD ZEROS AND ONES. THEN THE TEST

WILL FLOAT A ONE THROUGH ALL REGISTERS. FINALLY, THE TEST WILL FLOAT

A ZERO THROUGH ALL REGISTERS

ASSUMPTIONS:

TEST1-TEST2

THIS TEST ASSUMES THAT THE DATA PATH FROM THE CPU TO THE UBA

HAS REEN CHECKED AND THAT REGISTER ADDRESSING WORKS CORRECTLY.

W
 
W
O
 
S
 
W
P
 
W
E
 
W
E
 
W
O
 
W
M
 
W
O
 
W
E
 
W
O
 
W
S
 
W
y
 
V
e
 
"
y

[ H

T3S0:



Diagnostic Conventions 28-Feb-77 -- Rev 3 Page 15-15

DIAGNOSTIC SECTIONS

BGNSUB

W
O
 
V
e
 
W
S
 
N
G
 
W
E
 
V
O
 

V
W
O
 
W
E
 
V
O
 
W
P
 
V
G
 
W
P
 
W
E
 
W
O
 
V
P
 
W
O
 

V
W
O
 
W
O
 
W
O
 
N
G
 
N
G
 

V
W
Y
 
V
E
 
W
O
 
V
O
 
V
O
 
V
e
 
W
O
 
V
e
 
W
 
W

W
S
 
W
E
 
W
O
 
V
e
 
N
S
 
N
 
V
e
 
N
S
 
N

+ +

TEST DESCRIPTION:

THIS SUBTEST CHECKS THAT UBM000-UBM496 WILL

HOLD AN ALL ZEROS DATA PATTERN AND AN ALL ONES DATA
PATTERN.

ASSUMPTIONS:

TEST1-TEST2

TEST STEPS:

. INIT MAP REGISTER INDEX TO ZERO(R3)

. CLEAR SELECTED MAP REGISTER-MP(R3)

. IF MP(R3) .EQOU O THEN CONTINUE ELS® REPORT ERROR

. COMPLEMENT SELECTED REGISTER-MP(R3)

. IF MP(R3) .EQU -1 THEN CONTINUE ELSE REPORT FFKOK

. OFRLECT NEXT REGISTER(UPDATE R3) ’

. IF R3 .GTR 496 THEN EXIT ELSE GOTO STEP 2

ERRORS:

l. TIMEOUT- UBA FAILED TO RESPOND

2. ZEROS DATA FAILURE

3. ONES DATA FAILURE

DEBUG:

ERROR #1-

THIS ERROR COULD MEAN POWER FAILURE. CHECK SUPPLIES

ERROR #2-

CHECK BIT(S) THAT FAILED FOR STUCK AT ONE STATE

ERROR #3-

CHECK BIT(S) THAT FAILED FOR STUCK AT ZERO STATE

T3S1:

<TEST CODE>

T3S1X:

ENDSUB



Diagnostic Conventions 28-Feb-77 -~ Rev 3 Page 15-16

DIAGNOSTIC SECTIONS

15.2.14 Hardware Parameter Code

<EXAMPLE>

+ +

THE HARDWARE PARAMETER TABLE IS BUILT FROM THE INSTRUCTIONS

IN THIS SECTION. THESE INSTRUCTIONS GET EXECUTED IF THE USER

STARTS THE PROGRAM WITHOUT SPECIFYING A CONFIGURATION TABLE.

THE SUPERVISOR WILL RECOGNIZE THIS AN DISPATCH TO THIS SECTION.

THE INPUT TO THESE REQUEST CAN COME FROM EITHER THE USER

OR A SCRIPT FILE.

INPUT IS ELICITED BY GPHRD. THIS COMMAND HAS THE POLLOWING

FORMAT:

GPHRD (TABLE OFFSET,FORMAT STATEMENT,RADIX,BYTE OFFSET,LOWER LIMIT,

UPPER LIMIT)

e
 
V
e
 
W
S
 
W
O
 
W
O
 
W
E
 
W
 
V
s
 
W
Y
 
W
E
 
W
 
W
O
 
-
 
w
O

BGNHRD ; BEGINNING OF HARDWARE CODE

HPM1: GPRMD (BASADR,QST1,0,1,177000,177170) ;GET UBA BASE ADR

HPM2: GPRMD (VCTADR,QST2,0,1,100,400) ;GET UBA VECTOR ADR

ENDHRD ; RETURN TO SUPERVISOR

15.2.15 Software Parameter Code

<EXAMPLE>

HE & g

THE SOFTWARE PARAMETER TABLE IS BUILT FROM THIS CODE IF THE

DIAGNOSTIC SUPERVISOR IS DIRECTED TO ACCEPT SOFTWARE

PARAMETERS FROM EITHER A SCRIPT FILE OR THE USER.

GPSFT COMMANDS ARE USED TO BUILD THE TABLE. THE FOMRAT

OF THE ARGUMENTS 1S THE SAME AS FOR GPHRD(SEE 8.2.14).

®
y
 
M
L
 

W
M
o
 
w
e
 
W
E
 
W
 
W
O

RGNSFT ; FETCH SO <TYARY PARAMS

SPM1: GPRMD (RCDLEN,QST4,0,1,20,2000) ;GET RECOPr, wENGTH

SPM2: GPRMD (DATPTN,QSTS5,0,1,1,17) ;GET DATA PATTERN

ENDSFT s RETURN TO SUPERVISOR



Diagnostic Conventions 28-Feb-77 -- Rev 3 Page 15-17

SYMBOL CONVENTIONS

15.3 SYMBOL CONVENTIONS

The following symbol conventions should be used for all VAX-11

diagnostics:

TnSm specifies test n subtest m

FMTn specifies format statement n

ASCn specifies ASCII string n

MSGn specifies error message n

REPn specifies statistical report n

QSTn specifies question n

ISRn specifies interrupt service routine n

SPMn software parameter n

HPMn hardware parameter n

The symbol construction should be as follows:

<prefix> <descriptive name> <optional modifier>

15.4 MACRO EXPANSION CONVENTIONS

Macros will be expanded or not expanded based on the following rules.

If a macro generates inline test code it will be expanded but not it's

call. If a macro makes a call to a subroutine the macro call is shown

but not it's expansion. Both the call and expansion can be displayed

it the program is assembled with a debug switch set.

[End of Chapter 15)



Digital Equipment Corporation COMPANY CONFIDENTIAL

Title:

Specification Status:

Architectural Status:

File: SEAR3.RNO

PDM #: not used

Date: 28-Feb-77

Superseded Specs: none

Author: P. Conklin

Typist: P. Conklin

Reviewer (s):

S. Poulsen, D.

Abstract:

Revision History:

draft

under ECO control

R. Brender, D. Cutler, R. Gourd, T. Hastings, 1.
Tolman

Appendix A contains a copy of a sample

assembly language.

Rev # Description Author

Rev 1 Original M. Spier
Rev 2 Revised from Review P. Marks

Rev 3 After 6 months experience P. Conklin

module

Page 1

VAX-11 Assembler Software Engineering Sample -- Rev 3

Nassi,

written 1in

Revised Date

14-Apr-76

21-Jun-76

28-Feb-77



Assembler Sample 28-Feb-77 -- Rev 3 Page A-990

Change History

Rev 2 to Rev 3:

1. Added example.

[End of SEAR3.RNO]



APPENDIX A

ASSEMBLER SAMPLE

28-Feb-77 =-- Rev 3

The listing on the next page shows a routine from the procedure

library. There is no suggestion that this routine actually works,
only that it follows the conventions set forth in this document. In
fact, its "facility" does not even exist. Note that it consists of
two externally callable routines and a number of internal routines.



Assembler Sample 28-Feb-77 -- Rev 3 Page A-2
e
 
W
O
 
W
O
 
W
O
 
W
S
 
W
E
 
N
E
 
N
G
 
W
O
 
W
S
 
W
P
 
W
 
W
O
 

_w
p 
W
 
W
 
N
 
S
 
o

W
O
 
W
O
 
W
G
 
W
Y
 
N
G
 
N
G
 
W
O
 
W
P
 
W
e
 
“
&
 
O

w
0
 
W
P
 
W
P
 
W
E
 
W
S
 
N
P
 
M
E
 
W
y
 
W
 
W
9
 
W
E
 
V
e
 
W
 
W
 
«
e
 
w
e
 
w
9

.TITLE CHFSSIGNAL - Condition Handling Facility SIGNAL and STOIl

.IDENT /1-3/

COPYRIGHT (C) 1977

DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS 01754

THIS SOFTWARE IS PURNISHED UNDER A LICENSE FOR USE ONLY ON A SINGLE

COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE INCLUSION OF THE

ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR ANY OTHER COPIES THEREOF,

MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON

EXCEPT FOR USE ON SUCH SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE

TERMS. TITLE TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES

REMAIN IN DEC.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE

AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT

CORPORATION.

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS

SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

++

FACILITY: Condition Handling

ABSTRACT:

The Condition Handling Facility supports the exception

handling mechanisms needed by each of the common languages.

It provides the programmer with some control over fixup,

reporting, and flow of control on errors. It provides

subsystem and application writers with the ability to

override system messages in order to give a more suitable

application oriented interface.

To understand CHF more fully, refer to its functional

specification and to the STARLET exception routine (EXCEPTION).

ENVIRONMENT: Any access mode--normally user mode

AUTHOR: Peter F. Conklin, CREATION DATE: 12-Nov-76

MODIFIED BY:

Peter F. Conklin, 5-Jan-77: VERSION 01

01 - Original, based on CHF Rev 4 spec

02 - (CVC) Updated to Rev 2 coding standards

03 - Correct code in internal handler.



Assembler Sample 28-Feb-77 -- Rev 3

.SBTTL DECLARATIONS

INCLUDE FILES:

-
e
 
W
O
 
=

SPSLDEF

SSSDEF

MACROS:

NONE

EQUATED SYMBOLS:

V
O
 
W
O
 
W
O
 
W
P
 
W
E
 
N
S
 
W

CANT_MSG_CTRL_L=40

CANT_MSG_BUF_L=40

CHFS_="X2222016

CHF$_CANT_CONT==CHFS$_+4

CHF$S_NO_HANDLER==CHF$_+8

SRMSL_HANDLER=0

SRM$W_SAVE_PSW=4

SRMSW SAVE MASK=6

SRMSLTM SAVE AP=8
SRMSL_SAVE_FP=12

SRM$L_SAVE_PC=16

Q & 4 c
n

=
3 g 2
]
o

*
s
 
w
e
 
W
S
 
=

Page A-3

;PSL definitions

;System Status code definitions

;length control string for CHFS$STOP

;length insert message for CHFSSTOP

;***Temp*** CHF facility code

;Can't continue from CHFS$SSTOP

;:No handler

;Call

;Call

;Call

;Call

;Call

;Call

frame

frame

frame

frame

frame

frame

found

handler

PSW

save mask

save AP

backward link

save PC



Assembler Sample 28-Feb-77 -- Rev 3 Page A-4

.SBTTL CHFSSTOP - Stop execution via signalling

+ +

FUNCTIONAL DESCRIPTION:

This procedure is called whenever it is impossible

to continue execution and no recovery 1is possible.

It signals the exception. If the handler(s) return

with a continue code, a message "“Can't continue”

is issued and the image is exitted. This procedure

is gquaranteed to never return.

CALLING SEQUENCE:

CALL CHFSSTOP (condition value.rlc.v, [{parameters.rz.v}])

INPUT PARAMETERS:

NONE

IMPLICIT INPUTS:

NONE

OUTPUT PARAMETERS:

NONE

IMPLICIT OUTPUTS:

NONE

COMPLETION CODES:

NONE

SIDE EFFECTS:

The process is EXITted if a handler specifies continue.

W
O
 
W
M
 
W
e
 
M
O
 
N
P
 
W
G
 
W
G
 
M
O
 
W
S
 
W
P
 
N
E
 
N
G
 
N
G
 
W
 
M
G
 

WM
I 

W
O
 
N
G
 
V
e
 
W
E
 
W
S
 
e
 
W
y
 
N
 
"
W
 

"W
y 
W
 
W
E
 

WM
E 

W
M
 
M
O
 
N
P
 
W
Y
 
N
S
 
W
E
 
W
e
 
M
 
N
G
 
W
 
w

$FORMAL <=

CONDITION VALUE- ; CONDITION VALUE.rlc.v is the condition

> ;jother argquments are parameters



Assembler Sample 28-Feb-77 -- Rev 3

.ENTRY CHF$STOP, "M<R2>
BSBB

MOVAL

PUSHAB

PUSHL

MOVL

SIGNAL

-CANT MSG_CTRL_L(SP),SP

(SP)

$CANT MSG_CTRL L

SP,R2TM

Page A-5

;Stop

;go do the signaling

;allocate room for control string
;set pointer to it

;make into string descriptor

;save a copy of descriptor

$GETERR_S CONDITION VALUE(AP),(RZ),(RZ)

MOVAL

PUSHAB

PUSHL

MOVL

PUSHL

~CANT MSG_ BUF L(SP)SP

(SP)

#CANT MSGBUF L

SP,ROTM

RO

7get error string

sallocate room for string

;get pointer to it :

smake into string descriptor

;get pointer to it

;set as arg for later

$FAOLS (R2),(R0O),(RO) ,CONDITION VALUE (AP)

PUSHL

CALLS

BRW

$CHF$_CANT_CONT

#2,LIBSOUT MESSAGE

SIG_EXIT

;format error string

;set "can't continue" code

;1ssue message, with the

; original SIGNAL's message

; as the insert

;stop with original exception

; as the code



Assembler Sample 28-Feb-77 -- Rev 3 Page A-6

.SBTTL CHFSSIGNAL - Signal Exceptional Condition

;++ 
‘

FUNCTIONAL DESCRIPTION:

This procedure is called whenever it is necessary
to indicate an exceptional condition and the procedure

can not return a status code. If a handler returns

with a continue code, CHFS$SIGNAL returns with

all registers including RO and Rl preserved. Thus,

CHFSSIGNAL can also be used to plant performance and

debugging traps in any code. If no handler is found,

or all resignal, a catch-all handler is CALLed.

CALLING SEQUENCE:

CALL CHFSSIGNAL (condition value.rlc.v, [{parameters.rz.v}])

INPUT PARAMETERS:

NONE

IMPLICIT INPUTS:

NONEw
8
 
N
E
 
W
S
 
N
S
 
W
M
 
N
G
 
W
P
 
M
G
 
M
O
 
M
G
 
W
O
 
M
O
 
N
P
 
W
 
M
G
 
e
 
M
 
W
 
s
 
W
 
W
S
 
e
 
w
p

OUTPUT PARAMETERS:

NONE

IMPLICIT OUTPUTS:

NONE

COMPLETION CODES:

NONE

SIDE EFFECTS:

If a handler unwinds, then control will not return.

A handler could also modify RO/R1 and change the

flow of control. If neither is done, then all

registers and condition codes are preserved.

W
M
E
 
M
O
 
W
O
 
W
E
 
M
Y
 
N
S
 
W
S
 
M
Y
 
W
S
 
N
P
 
N
G
 
W
S
 
U
E
 
M
E
 
N
G
 
N
G
 
N
P
 
w
e
 
W
S
 
N
y
 
T
M

.ENTRY CHFSSIGNAL,O ;51gnal

BSBB SIGNAL ;go do the signaling

RET ;return to caller



Assembler Sample 28-Feb-77 -- Rev 3 Page A-7

.SBTTL SIGNAL - Internal Routine to Signal Exceptions
EFS+

FUNCTIONAL DESCRIPTION:

This routine is used by CHFS$SSTOP and CHFS$SIGNAL to do

the actual exception signaling. It sets up the handler

arqument list. It then checks both exception vectors for

a handler. It then searches backward up the stack, frame

by frame looking for a handler. Each handler found is

called. If the handler returns failure (resignal), the

search continues. If no handler is found or if all handlers
resignal a catch-all handler is called. The catch-all

issues the standard message for the condition and then

returns success if condition-value<0> is set. If a

handler returns success (continue) the routine returns

to CHFSSTOP or CHFS$SSIGNAL with RO/R1l intact.

During the stack search, if another signal is found to

be still active, the frames up to and including the

establisher of the handler are skipped. Refer to the

section Multiply Active Signals in the functional

~specification. An active signal is defined as a routine

which is called from the system vector SYSSCALL HANDLR.

If a memory access violation is found during the stack

search, it is assumed that the stack is finished and

the routine calls the catch-all handler.

CALLING SEQUENCE:

JSB

INPUT PARAMETERS:

AP points to the arg list

IMPLICIT INPUTS:

NONE

OUTPUT PARAMETERS:

NONE

IMPLICIT OUTPUTS:

NONE

COMPLETION CODES:

W
O
 
M
O
 
W
E
 
W
O
 
N
P
 
N
S
 
W
G
 
W
O
 
W
O
 
V
G
 
W
O
 
N
S
 
W
O
 
N
P
 
V
G
 
W
O
 
W
O
 
M
O
 
M
O
 
W
O
 
N
P
 
W
O
 
W
E
 
M
O
 
W
G
 
W
P
 
W
O
 
W
O
 
N
P
 
W
 
W
G
 
W
O
 
W
E
 
W
P
 
N
P
 
W
O
 
W
E
 
N
P
 
W
O
 
W
O
 
W
O
 
W
E
 
W
E
 
W
O
 
N
I
 
W
S
 
M
Y
 
W
G
 
W
E
 
"
y
 
W

NONE



Assembler Sample 28-Feb-77 -- Rev 3 Page A-8

SIDE EFFECTS:

If a handler unwinds, then control will not return.

A handler could also modify RO/R1 and change the flow

of control. If neither is done, then all registers

are preserved.

V
e
 
W
O
 
W
O
 
N
P
 
W
e
 
O
 
N
y
 
W
 
w
9

At this point

SIGNAL:

PUSHR # "M<RO ,R1> ;save RO/R1 in mechanism vector

MOVAB W'SIGNAL_HANDLER,SRMSL_HANDLER(FP) s;establish a handler
; to catch access violations

MNEGL #3,-(SP) ;initial depth is -3
PUSHL FP svector frame = current

PUSHL $4 smechanism has 4 elements

PUSHAL (SP) ;second arg is mechanism vector

PUSHAL (AP) ;first ara is signal vector

PUSHL #2 ;two arquments to handler

the stack is all set for a call to any handler:

: 00(SP) = 2

: 04 (SP) = signal vector address

: 08 (SP) = mechanism vector address

: 12(SP) = mechanism vector length (4)

: 16 (SP) = mechanism vector frame (FP)

: 20(SP) = mechanism vector depth (-3)

: 24 (SP) = mechanism vector RO

: 28 (SP) = mechanism vector Rl

: 32(SP) = RSB return to CHFSSTOP or CHFSSIGNAL

: 36 (SP)++ RET frame to invoker

loop here looking for a handler to call

.
 
W
 
W

10S: INCL 20 (SP) ;move to next depth

BGEQ 20$ ;branch if searching stack

MOVPSL RO sget current PSL

EXTZV $PSLSV_CURMOD, #PSLSS_CURMOD,RO,RO0

sget current mode

MOVQ 8#CTLSAQ EXCVEC[RO]),R0 ;get both exception vectors

CMPB $-1,20(SP) ;see which vector this time
BEQL 408 ;sbranch if secondary

MOVL RO,R1 ;if primary, move to Rl

BRB 408 ; and branch



Assembler Sample

here if search

.
y
 
"
9
 
%
o

- 20$: BLBS

MOVL

MOVL

BEQL

D wAanld ha QV
£ \» WAL &4 N -t &

W
G
 
W
O
 

V
W
O
 
V
O
 
W
O
 
W
Y
 
N
P
 
W
e
 
W
 
W
O

CMPL

BNEQU

BSBB

MOVL

MOVL

BRB

308: MOVL

40S: TSTL

BEQL

JSB

BLBC

MOVAL

POPR

RSB

W
0
 
W
E
 
W
O
 
W
P
 
N
 
W
E
 
w
O

SIGNAL CATCH:

~ MOVAB

JSB

PUSHL

CALLS

BRB

28-Feb-77 == Rev 3

ing stack

22 (SP) ,SIGNAL_CATCH

l6 (SsP) ,RO

SRMSL SAVE FP(RO) ,16(SP)

SIGNAL_CATCH

Page A-9

;1f loop too long, give up

;get last frame examined

;get previous frame

sbranch if no more stack

Here with RO containing a frame whose predecessor might be

CHF or EXCEPTION calling to a handler. If so, the return
SSCALL HANDL+4 becaun
f Y wa r Bt me e O se both JSB to that

vector to call handlers. If so, we have the situation of
multiply active signals and need to bypass frames until this

handler's establisher is skipped. The depth parameter is

not incremented because a handler and its establisher are

considered part of the same entity.

SRMSL_SAVE_PC(R0) , #SYSSCALL_HANDL+4

308

OLD_SP

12(RO) ,RO

4(RO),16(SP)

208

@816 (spP) ,R1

R1

108

@#SYSSCALL HANDL

RO,10S$

-12(FP) ,SP

# "M<RO,R1>

B"SIG CATCH ALL,R1

@#sYSSCALL_HANDL
#CHFS_NO_HANDLER

$1,LIBSOUT MESSAGE
SIG_EXIT

;see if multiply active

sbranch if not

;adjust RO to what SP

; contained before the call

;get mechanism vector

;get establisher's frame

: as last frame

;search again

;get handler if any

;see if handler

;if no handler, loop

;CALL handler via "vector*®

;if resignal, loop

;clean up stack

;restore RO/R1

sreturn to CHFSSTOP or CHFSSIGNAL

Here when no handler is found, or if all handlers resignal.

This is either done when the stack saved FP is 0, meaning end

of the stack, or when an access violation occurs, indicating

that the stack is bad. The catch-all handler is called and

then a no-handler message is issued.

;set address of handler

;CALL handler via "“vector”

;get "no handler® code

soutput message

;go exit with condition

; value as result



Assembler Sample 28-Feb-77 -- Rev 3 Page A-10

.SBTTL SIG_CATCH_ALL - Internal Catch-all Handler

+4

FUNCTIONAL DESCRIPTION:

-
e

This handler is used in SIGNAL to catch

signals when no handler is found or all resignal.

CALLING SEQUENCE:

handled = SIG_CATCH_ALL (condition.rl.ra, mechanism.rl.ra)

INPUT PARAMETERS:

NONE

IMPLICIT INPUTS:

NONE

OUTPUT PARAMETERS:

NONE

IMPLICIT OUTPUTS:

NONE

COMPLETION CODES:

NONE

SIDE EFFECTS:

If condition_value<0> is clear, SEXIT is done.

e
 
wE
 

Wm
e 
e
 

we
 
WP
 

wW
e 

WS
 
WE
 
We
 
WP
 
WE
 
W
 
.
 
WP
 
WP
 
WE
 
WS
 
Mg
 
MO
 
w9
 
W
 
W
 
.G
 
W9
 
WO
 
WY
 
WO
 
WE
 
W0
 
We
 
wo
 
-e

-
e

SIG_CATCH_ALL:

.WORD 0 :No registers

MOVAL @4 (AP) ,AP sget condition args

CALLG (AP) ,LIBSOUT MESSAGE ;issue standard messaqge

BLBC CONDITIONVALUE (AP) ,SIG_EXIT
+if failure, go exit

RET ; otherwise, return

Here to give up and exit to the system. The condition value

argument is given as the exit status.

e
 
W
S
 
=
6
 
W

SIG_EXIT:

SEXIT_S CONDITION_VALUE(AP) sexit with condition
s+ value as the result



Assembler Sample 28-Feb-77 -~ Rev 3 Page A-11

.SBTTL OLD_SP - Internal Routine to Calculate 014 SP

;+;UNCTIONAL DESCRIPTION:
This routine is called to calculate what SP was before
a particular CALL that resulted in a specific stack
frame.

CALLING SEQUENCE:

JSB

INPUT PARAMETERS:

RO = address of stack frame in question

IMPLICIT INPUTS:

NONE

OUTPUT PARAMETERS:

RO = value of SP before CALL in question

IMPLICIT OUTPUTS:

NONE

COMPLETION CODES:

NONE

SIDE EFFECTS:

Rl is clobbered

W
O
 
W
P
 
W
O
 
W
Y
 
W
O
 
B
0
 
W
O
 
W
E
 
W
E
 
N
y
 
B
 
W
O
 
W
O
 
W
E
 
W
S
 

WM
E 

V
P
 
W
L
 
W
 
N
G
 
N
G
 
N
G
 
W
E
 
M
Y
 
W
E
 
N
y
 
W
Y
 
W
O
 
W
O
 
W
O
 
W
E
 
W
E
 
W
O
 
W
9
 
M
g
 
"
y

OLD SP:

- EXTZV #14,%#2,SRMSW_SAVE_MASK (R0) ,- (SP)

1get stack offset

EXTZV $0,#12,SRM$SW_SAVE_MASK(RO) ,R1

;get register mask
ADDL2 $20,R0 ;standard frame
ADDL2 (SP)+,R0 ;SP correction

10S$: BLBC R1,20$ ;if register bit set,
ADDL?2 $4 ,RO ; count the register

20S: ASHL $#-1,R]1,R1 :discard bit
BNEQU 10§ ;loop until all done

RSB sreturn



Assembler Sample 28-Feb-77 -- Rev 3 Page A-12

.SBTTL SIGNAL HANDLER - Internal Routine to Handle Access Violation

+ +

FUNCTIONAL DESCRIPTION:

This handler is used in SIGNAL to catch

access violations during the stack search.

If it gets an access violation exception from

this procedure it terminates the search.

CALLING SEQUENCE:

handled = SIGNAL HANDLER (condition, mechanism)

INPUT PARAMETERS:

NONE

IMPLICIT INPUTS:

NONE

OUTPUT PARAMETERS:

NONE

IMPLICIT OUTPUTS:

NONE

COMPLETION CODES:

0 if not handled

success 1f unwound

SIDE EFFECTS:

The stack is unwound and SIGNAL CATCH is branched to.

8
0
 
W
E
 

|
W
E
 
N
S
 
N
I
 
W
E
 
W
S
 
N
G
 
N
G
 
W
S
 
V
O
 
N
S
 
N
 
W
O
 
W
G
 
W
G
 
N
E
 
¢
 
M
O
 
W
P
 
W
O
 
W
 
W
G
 
W
O
 
W
O
 
W
e
 
N
 
W
G
 
V
e
 
W
E
 
W
G
 
W
O
 
W
E
 
W
G
 
W
E
 

N
E
e
 
W
e
 
“
O



Assembler Sample 28-Feb-77 -- Rev 3

SIGNAL HANDLER:

.WORD 0

MOVQ 4 (AP),RO

TSTL 8 (R1)

BNEQU 10§

CMPL 4 (RO) , #SS$_ACCVIO

BNEQU 10§

«
-
e
 
w
9

MOVL CHFSL SIG_ARGS(RO),R1

MOVAL SIGNAL CATCH,-4(R0O) [R1]

MOVL $5S$_CONTINUE,RO

RET

10$: CLRL RO

RET

.END

[End of Appendix A]

Page A-13

;NO registers

;get both arguments

;verify "this" establisher

;branch if not

;see 1f memory access violation
;branch if not

' .
here if access violation in signal procedure

iget number of signal args ;MO3
;change PC of exception ;MO3
;jresume ;MO3
; execution +MO3
;not handled function value

;jreturn to unwind



Digital Equipment Corporation COMPANY CONFIDENTIAL Page 1

Title: VAX-11l BLISS Software Engineering Sample -- Rev 3

Specification Status: draft

Architectural Status: under ECO control

File: SEBR3.RNO

PDM #: not used

Date: 27-Feb-77

Superseded Specs: none

Author: P. Conklin

Typist: P. Conklin

Reviewer (s): R. Brender, D. Cutler, R. Gourd, T. Hastings, I. Nassi,
D. Tolman

Abstract: Appendix B contains a copy of a sample module written in
BLISS.

Revision History:

Rev # Description Author Revised Date
Rev 1 Original M. Spier 14-Apr-76
Rev 2 Revised from Review P. Marks 21-Jun-76
Rev 3 After 6 months experience P. Conklin 27-Feb-77



BLISS Sample 27-Feb-77 ~-- Rev 3 Page B-990

Change History

Rev 2 to Rev 3:

l. Added example.

[End of SEBR3.RNO]



APPENDIX B

BLISS SAMPLE

27-Feb-77 -- Rev 3

The listing on the next page shows a routine from the procedure

library. There 1is no suggestion that this routine actually works,

only that it follows the conventions set forth in this document.



BLISS Sample 27-Feb-77 -- Rev 3 Page B-2

MODULE LIBSOUT MESSAGE ( !Library routine to output a system messaqge
IDENT='1-4"
) =

BEGIN

G
u
s
 
g
u
m
 
W
D
 
C
u
n
 
S
m
n
 
f
u
n
 
¢
 
f
u
n
 
C
a
n
 
S
a
w
 
¢
u
p
 
f
w
s
 
O
w
n
 

$
u
w
n
 
S
u
n
 
S
u
n
 
S
e
m
 
O
w
w
 
b
u
m

COPYRIGHT (C) 1977

DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS 01754

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A SINGLE

COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE INCLUSION OF THE

ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR ANY OTHER COPIES THEREOF,

MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON

EXCEPT FOR USE ON SUCH SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE

TERMS. TITLE TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES

REMAIN IN DEC.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE

AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT

CORPORATION.

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS

SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

L++

!
]

!

]

!

!

1

]

!

!

]

!
1

]

|

!

1

1

]

!

FACILITY: Procedure Library

ABSTRACT:

This routine takes a system message (status) code, gets

it from the system message file and formats it with FAO.
It then outputs the message to OUTPUT.

ENVIRONMENT: Any access mode--normally user mode

AUTHOR: Peter F. Conklin, CREATION DATE: 16 Dec 76

MODIFIED BY:

Peter F. Conklin, 29-Dec-76: VERSION 01

01 - Original, using QIO to TT: only.

02 - Update to standard module format

03 - Change to use GETERR FRST and GETERR_NEXT

and to use PUT_SYSOUT
04 - (CVC) Correct sense of multi-line loop.



BLISS Sample 27-Feb-77 == Rev 3 Page B-3

!

! TABLE OF CONTENTS:

!

FORWARD ROUTINE

LIBSOUT_MESSAGE:NOVALUE; !output message

INCLUDE FILES:

NONE

MACROS:

NONE

EQUATED SYMBOLS:

S
a
p
 
P
u
B
 
¢
a
n
 

S
 

¢
u
n
 
S
u
b
 
S
 

S
u
m
 
S
u
n
 
S
u
n
 
P

LITERAL

MSG_CTRL L=132, !length of control string
MSG_BUP_L=132; !length of message

OWN STORAGE:

NONE

EXTERNAL REFERENCES:

G
u
p
 
G
u
m
 
¢
u
n
 
S
w
»
 
P
u
n
m
 
P
e
m
 
o
a
n

EXTERNAL ROUTINE

LIBSGETERR_FRST:NOVALUE, !get start of messaqge
LIBSGETERR_NEXT, lget more of message
SYSSFAOL:NOVALUE, !format message
LIBSPUT_SYSOUT:NOVALUE; !put message to SYSOUT:

'A03

ta03



BLISS Sample 27-Feb-77 -- Rev 3 Page B-4

GLOBAL ROUTINE LIBSOUT_MESSAGE ( !Output system message
MESSAGE_CODE, istandard completion code

LIST) Isubstitutable params

:NOVALUE =

14+

FUNCTIONAL DESCRIPTION:

This routine takes a system message (status) code, qets

each line of the message from the system message file

via the library routines GETERR_FRST and GETERR_NEXT,

formats it with PAO, and outputs it via the library
routine PUT_SYSOUT.

FORMAL PARAMETERS:

MESSAGE_CODE.rlc.v <31:16> facility code
<15:3> message indicator

<2:0> severity indicator:
0 = warning

1l = success

2 = error

4 = severe error

!

!

!

!

!

!

!

!

!

!

!

]

!

!

!

!

!

!

! [{LIST.rz.v}] remaining parameters are used in call to FAO
(]

! IMPLICIT INPUTS:
!

! NONE

!

! IMPLICIT OUTPUTS:

!

! NONE

]

! COMPLETION CODES:

!

! NONE

]

! SIDE EFFECTS:
!

! One or more records are output on device OUTPUT:
!

1=

BEGIN

LOCAL

CONTROL, Imessage line control cogde

MSG CTRL:VECTOR[{CHSALLOCATION(MSG _CTRL Y], 'contrcl string

MSG_BUF: VECTOR [CHSALLOCATION(MSG_BUF_LY], !text string

MSG_CTRL D:VECTOR(2], tcontrol string descriptor

MSG_BUF_D:VECTOR([2]; ltext string descriptor



BLISS Sample 27-Feb=77 -~ Rev 3 Page B-5

]

! Initialize string descriptors
|

MSG_CTRL_D[0) = MSG_CTRL_L;

MSG_CTRL_D[1]) = MSG_CTRL;
MSG_BUF_D([1] = MSG_BUF;

! Get the message control string for the first line
!

LIBSGETERR_FRST (.MESSAGE_CODE, MSG_CTRL_D, MSG_CTRL_D, CONTROL);

1+

! Loop, processing each line and getting the next
! The loop ends when GETERR_NEXT returns false

DO

BEGIN

1+

! If the control code is ' ' or 'T', then

! format message for output with FAO and then output it.
! Note that GETERR returns the control code as uppercase only.
!_

IF .CONTROL<0,8> EQLU ' ' OR .CONTROL<0,8> EQLU 'T°®
THEN

BEGIN

MSG_BUF_D[0] = MSG_BUF_L;

SYSJFAOL (MSG_CTRLTMD, MSG_BUF_D, MSG_BUF D, MESSAGE CODE)
LIBSPUT_SYSOUT (MSG_BUF_DJ; - -
END;

Reset control text length in descriptor and aet next line

S
 
G
m
p
 
S
a
m

MSG_CTRL_D[0] = MSG_CTRL_L;

END

WHILE LIBSGETERR_NEXT (MSG_CTRL_D, MSG_CTRLD, CONTROL);

END; !End of LIBSOUT_MESSAGE

5 My 2

Fevd o

'A03

'1A03

1A03

!A03

103

tA03

IMO4

1A03



BLISS Sample 27-Feb-77 -- Rev 3 Paae BR-6

END 'Ené of modulr

ELUDOM “ meauin

[End of Appendix B]



Digital Equipment Corporation COMPANY CONFIDENTIAL

Title:

Page 1

COMMON BLISS Software Engineering Sample -- Rev 3

Specification Status: draft

Architectural Status:

File:

PDM §

Date:

SECR3.RNO

not used

27-Feb-77

Superseded Specs: none

Author:

Typist:

Reviewer (s):

Abstract:

R. Murray

R. Murray

D. Tolman

BLISS.

Revision History:

Rev

Rev

Rev

Rev

$

1

2

3

Description

Original

Revised from Review

After 6 months experience

nunder ECO control

Appendix C contains a copy of a sample

Author

. Belmont

. Marks

. Murray
Mamad

e NADO1Le
 

B 
B 

By

R. Brender, D. Cutler, R. Gourd, T. Hastings, 1I. Nassi,

module written 1in

Revised Date

14-Apr-76

21-Jun-76

27-Feb-77



Common BLISS Sample

Change History

Rev 2 to Rev 3:

1. Added example.

[End of SECR3.RNO]

27-Feb-=77 == Rev Page C-990



APPENDIX C

COMMON BLISS SAMPLE

27-Feb-=77 -- Rev 3

The following is a running BLISS program that illustrates many of the
conventions discussed in this manual. It relies on a small number of
external routines for console 1/0. These are:

TTY_GET_CHAR

TTY_PUT_CHAR

TTY_PUT CRLF
TTY_PUT_INTEGER

TTY_PUT_ASCIZ

TTY_PUT_MSG



Common BLISS Sample 27-Feb-77 -- Rev 3 Page C-2

MODULE LIBSCALC ( ! INTEGER ARITHMETIC EXPRESSION EVALUATOR
IDENT = '03°',

MAIN = MAINLOOP

) =

BEGIN

COPYRIGHT 1976, DIGITAL EQUIPMENT CORP., MAYNARD, MA 01754

THIS SOFTWARE IS FURNISHED TO THE PURCHASER UNDER A LICENSE

FOR USE ON A SINGLE COMPUTER SYSTEM AND CAN BE COPIED (WITH

INCLUSION OF DIGITAL'S COPYRIGHT NOTICE) ONLY FOR USE IN SUCH

SYSTEM, EXCEPT AS MAY OTHERWISE BE PROVIDED IN WRITING BY

DIGITAL.

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT

NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL

EQUIPMENT CORPORATION. DIGITAL ASSUMES NO RESPONSIBILITY FOR
ANY ERRORS THAT MAY APPEAR IN THIS DOCUMENT.

DIGITAL EQUIPMENT CORPORATION ASSUMES NO RESPONSIBILITY FOR

THE USE OR RELIABLILTY OF ITS SOFTWARE ON EQUIPMENT WHICH IS

NOT SUPPLIED BY DIGITAL EQUIPMENT CORPORATION.

s
 

Pe
un
 
G
w
n
 
G
u
m
 

G
u
m
 

fo
us
 
Q
o
 
S
u
w
 
S
 

J
u
w
 
f
u
s
 
S
m
m
 

S
w
m
 
S
e
m
 
P
 
s
 
b
e
m

FACILITY: GENERAL LIBRARY

FUNCTIONAL DESCRIPTION:

THIS PROGRAM PARSES AND EVALUATES ARITHMETIC EXPRESSIONS,

KEEPS 26 VALUES AROUND, AND GENERALLY ACTS LIKE AN "AID"

WITH DECIMAL INTEGERS ONLY.

ENVIRONMENT: USER MODE WITH EXTERNAL ROUTINES

MODIFIED BY:

PETER C. MARKS, 10-MAY-76

01 - CONFORMATION TO S. E. MANUAL STANDARDS

RICHARD M. MURRAY, 21-FEB-77

01 ~ CONFORM TO REVISED STANDARD

ISAAC R. NASSI, 30-APR-77

i

!

]

]

]

!

]

]

!

!

]

'

!

! AUTHOR: P. BELMONT CREATION DATE: 01-JAN-76
]

1

]

!

|

!

]

|

!

1 01 - BUG FIXES, TRANSPORTABILITY CHANGES

I

1

!



Common BLISS Sample 27-Feb-77 =-- Rev 3 Page C-3

EXTENDED FUCTIONAL DESCRIPTION:

SYNTAX:

LEXICAL LEVEL: ALL CHARACTERS WITH ASCII VALUE LEO #040
ARE IGNORED. THUS, BLANKS AND TABS AND <CR> AND <NL>

ARE IGNORED (AND MANY OTHERS).

UPPER AND LOWER CASE ALPHABETIC CHARACTERS ARE IDENTIFIED.

SINCE WE READ AHEAD ONE CHARACTER, THE USER MUST

TYPE SOMETHING AFTER THE LAST CHARACTER TO GET THE JOB DONE.
AFTER PROCESSING, THE REMAINDER OF THE INPUT IS ERASED.

THE UNARY MINUS ( <T1> ) MAY NOT IMMEDIATELY FOLLOW

ANY OPERATOR EXCEPT "(". THUS -1+1; (-1+1);

(-1+(-2)); ARE ALL CORRECT BUT -1+-2; IS NOT.

<FULL> => <EXPR> ;

<EXPR> => {ALPHA>=<EXPR> ! <T5>

<T5> -> <TS> + <T4> ! <T4>

<T4> -> <T4> - <T3> ! <T3>

<T3> -> <T3> / <T2> ! <T2>

<T2> -> <T2> * <T1> ! <T1>

<T1> -> - <TO0> ! <TO> (SEE COMMENT ABOVE ON USE

UNARY MINUS.)
<TO0> -> ( <EXPR> ) ! <ALPHA> ! <DECIMAL>

<ALPHA> -> AtB!C! ... ! 2

<DECIMAL> => <{DECIMAL><DIGIT> ! <DIGIT>

<DIGIT> -> otrl1tr2¢!.,..1718109

SEMANTICS:

THERE ARE 26 VARIABLES WITH <ALPHA> NAMES. THEY

ARE INITIALLY ZERO.

ASSIGNMENT (THE "= OPERATOR) IS ALLOWED ONLY TO

A VARIABLE AND HAS THE EFFECT OF REPLACING THE VALUE

OF THE VARIABLE WITH THE EVALUATED VALUE OF THE <T5>.

THE VALUE OF AN ASSIGNMENT OPERATION IS THE VALUE

ASSIGNED. THUS, A=B=C=1; ASSIGNS 1 TO ALL THREE

VARIABLES. THE EXAMPLES: A=<T5>;

A=B=C=<T5>; B=1+ (A=B=5+3); ARE CORRECT

BUT A+1=3; 1+4A=3; ARE NOT.

"A;" MAY BE USED TO PRINT THE VALUE OF A.

THREE STACKS ARE MAINTAINED IN THIS PROGRAM,

THE "MAIN STACK" IS MAIN_STK AND ITS POINTER IS

MAIN_STK_POINTER.

ALL VALUES AND OPERATORS END UP ON IT IN RIGHT ORDER.

THE DERAILING STACK FOR OPERATORS IS OPERATOR_STACK.

OP_STACK_PTR IS ITS POINTER.f
e
m
 
I
R
 
f
e
m
 
(
W
D
 
j
u
m
 
S
U
m
 
S
e
m
 

f
e
m
 
A
P
 
e
 
f
u
m
 
(
R
 
S
 
V
U
 
e
 
S
E
B
 
T
 
(
U
 
(
U
l
 
T
R
 
C
E
D
 
f
e
m
 
D
 
P
 
T
P
 
f
u
D
 
e
u
n
 
q
u
n
 
P
 
f
a
n
 

FU
ED
 
C
E
D
 
G
u
m
 
O
 
f
u
n
 
P
u
m
 
g
u
w
 
P
u
n
 
$
E
P
 
V
D
 
g
u
p
 
S
 

f
u
w
 
O
m
m
 
S
u
w
 
S
u
w
 
0
N
 
u
w
 
S
u
p
 
G
a
m
 
S
a
m
 

fe
mw
 
O
u
m



Common BLISS Sample 27-Feb=77 =- Rev 3 Page C-4
G
a
w
 
G
 
G
u
m
 
t
e
w
 
S
a
p
 
s
 
G
u
w
 
G
m
s
 
t
e
m
 
S THIS STACK HOLDS LOWER PRECEDENCE OPERATORS AS HIGHER

PRECEDENCE OPERATORS ACCUMULATE. THIS STACK IS EMPTIED

WHEN THE ";" IS PROCESSED.

THE EVALUATION STACK IS EVAL _STK. ITS POINTER IS

EVAL STK PTR.

IT HOLDS OPERANDS WHILE THE MAIN STACK IS SCANNED FOR
OPERATORS. THE RESULTS OF OPERATIONS PERFORMED

GO ON THE EVALUATION STACK. THIS STACK IS MANAGED

BY EVAL_POLISH AND ITS FRIENDS.



Common BLISS Sample

TABLE

s
 
'T

] 
¢
 
te

m 
s

:
U
 
=
 

o¢
en
 
go
m 

¢e
w

27-Feb-77 =--

OF CONTENTS:

ORWARD ROUTINE

MAINLOOP,

EXPRESSION,

INPUT_CYCLE,

PROCESS_OPR,

READ_UNTIL_DEL,

GET_CHARACTER:NOVALUE,

PUSH_OPERATOR:NOVALUE,

POP_OPERATOR,

PUSH_MAIN_STACK:NOVALUE,
POP_MAIN_STACK,
EVAL_POLTSH:NOVALUE,

EVAL OPERATOR,

EVAL ADDRESS,
EVAL VALUE
PUSH_EVAL_STACK:NOVALUE,
POP EVAL STACK,
PRINT STRING:NOVALUE,
PRINT_STACK,

ERROR;

INCLUDE FILES:

EQUIRE

'BLI:COMIOG.REQ';

!

! MACROS:
'

MACRO

LBXEME_TYPE= LEXEME[O] &,

LEXEMB_VALUE= LEXEME(1]%,

MAIN TYPE=

MAIN VALUE=

TOPOP=

Rev

O
B
 
f
u
m
 
f
a
m
 
S
 
S
u
r
 
t
u
m
 
S
E
D
 
S
E
m
 
(
U
 
S
a
n
 
S
u
n
 
(
u
p
 
(
A
P
 
f
a
B
 
f
a
b
 
f
u
n
 

f
e
w
 
f
u
D
 
S
e
 
$
a
p
 

f
e
a
m
 
S
W
m
 
S
a
m

Page C-5

MAIN PROGRAM LOGIC

READ, PARSE, AND EVALUATE
AN EXPRESSION -

PARSE AN EXPRESSION

PROCESS AN OPERATOR

LEXEME BUILDING

GET A CHARACTER FROM INPUT

STREAM

PUSH ONTO OPERATOR STACK

POP OFF OF OPERATOR STACK

PUSH ONTO MAIN STACK

POP OFF OF MAIN STACK

EVALUATE A POLISH-TYPE

EXPRESSION

EVALUATE AN OPERATOR

EVALUATE AN ADDRESS

EVALUATE A VALUE

PUSH ONTO EVALUATION STACK

POP OFF OF EVALUATION STACK
PRINT AN EXPRESSION

PRINT THE CONTENTS OF THE

MAIN STACK

PRINT AN ERROR MESSAGE

MAIN_STK[.MATIN_STK PTR-2]%,

MAIN_STK[.MAIN STK_PTR-1]%,

OPERATOR_STACKT.OP_STACKPTR-1]%;



Common BLISS Sample

!

!

!

L

!

!

!

!

EQUATED SYMBOLS:

FIRST=

OPEN_PAREN=

CLOSE PAREN=

MULTIPLY=
PLUS=

MINUS=

DIVIDE=

SEMI COL=

EQUAL=
NEGATIVE=

CUTOFF=

IS _NAME=

IS _DECIMAL=

IS_OPERATOR=

IS_NONE=

PRCDENCE 1 IS THE

27-Feb~77 -~ Rev 3

OPERATOR CODES

O
V
W
N
 
-
=
O

«
-
 

%
 

%
 

%
 

%
 

e
 

%
 

e
-

o
w
w
 
S
a
m
 
S
w
n
 
f
a
p
 
¢
 

C
a
w
 
P
 

S
w
r
 
S
 

S
 
S

N
 
O

-
 
=

Page C-6

"PIRST" OPERATOR

OPEN PARENTHESIS

CLOSE PARENTHESIS

MULTIPLICATION "**"

ADDITION "+*"

SUBTRACTION *-"

DIVISION "“/*

SEMI-COLON ";*"

ASSIGNMENT "="

NEGATION (UNARY MINUS) *-"

OPEN PAREN AND PIRST FOR NEG

MAIN STACK ELEMENT CODES

O
 
w
N

 
-

.
-
 

w
»
 

-
 

-

‘
e
 
s
u
m
 
e
 
J
e
m

PRECEDENCE TABLES

VARIABLE NAME

INTEGER VALUE

OPERATOR

"NOTHING" (SPECIAL ELEMENT)

PRECEDENCE OF THE CURRENT OPERATOR

PRCDENCE2 IS THE PRECEDENCE OF THE OPERATOR ON TOP OF
OP-STACK.
THE TWO ARE COMPARED IN INPUT_CYCLE.

THE TWO LISTS ARE BASICALLY THE SAME, BOUT:

NOTE: PRECEDENCE_2 IS THE SAME AS PRECEDENCE 1 FOR ALL

OPERATORS EXCEPT " (" WHERE IT IS REDUCED TO 1 AND "=" WHERE
IT IS REDUCED TO 2. CLOSE PAREN WILL FORCE "=%" ONTO

STACK AND WILL FORCE ALL OTHER OPERATORS DOWN TC " ("

WHICH, WITH ")", IS REMOVED BY THE ACTION OF ")",

PRCDNCE_1= UPLIT(O0,9,2,7,4,5,6,1,3,8):VECTOR[10}.

*+ -/ ==
PRCDNCE_2= vupPLIT(O,1,2,7,4,5,6,1,2,8):VECTOR[10],

OPNAMES=

ASCII VALUE OF OPERATORS

PLIT(

PLIT (%ASCIZ 'FIRST'),

PLIT (8ASCIZ '('),

PLIT (%ASCIZ *')'),

PLIT (%ASCI1Z '*'),



Common BLISS Sample

!

!

!

LITERAL

INPUT_SIZE=

OUT_MSG_MAX=

STACK_STZE=
STOR_LEN=

P
—
—
r
 
T

NOTHING=

CAR_RETURN =

CHARMASK =

OWN STORAGE

WN

.
-
.
-
O
.
-
.
-
.
-

MAIN STK:

OPERATOR STACK:
EVAL_STK:

MAIN_STK_PTR,

OP_STACK_PTR,

EVAL_STK_PTR,

CHAR,

STORAGE:

DECVALUE,

LEXEME:

OPERATOR,

PAREN_LEVEL,

INPUT:

INPUT_POINTER,

INPUT_LENGTH,

ERRORV;

27-Feb-77 =-- Rev 3

PLIT (%ASCIZ
PL.LIT (RASCIZ
- e o Y S W e

PLIT (SASCIZ

PLIT (%ASCIZ

PLIT (%ASCIZ2

PLIT (%ASCIZ

SIZE PARAMETERS

133,

132,

400,

STACKS

VECTOR [STACK_SIZE],

VECTOR[STACK_SIZE],

VECTOR[ STACK_SIZE],

STACK POINTERS

PARSING VARIABLES AND

VECTOR([STOR_LEN],

VECTOR([ 2],

VECTOR[INPUT_SIZE],

Z
 
N
+

G
)
 
=
 
=
 
=
 
e
 
=

Page C-7

-
 %
 

-«
 
-
 

-|
! 

-

)) :VECTOR([50];

INPUT AREA SIZE

MAX OUTLINE LENGTH

SIZE OF STACKS

SIZE OF STORAGEo
 
6
w
 

d
e
m
 
=

! A CONDITION

ICARRIAGE RETURN

! MASK LOW BITS

! MAINSTACK

{ OPERATOR STACK

! EVALUATION STACK

AREAS

SINGLE ASCII

CHARACTER INPUT

IDENTIFIER VALUE

STORAGE AREA

DECIMAL VALUE

LEXICAL ELEMENT

! LEXEME[O] = TYPE

! LEXEME([1] = VALUE

OPERATOR CODE

(SEE ABOVE)

PARENTHESES LEVEL

INPUT LINE

INPUT LINE POINTER

LENGTH OF INPUT LINE

e
 
e
 
¢
u
m
 
o
 
F
a
p
 
(
o

S
m
n
 
f
w
p
 
O
=
0
 
=
 

P
u
m
 
O
u
n



Common BLISS Sample

EXTERNAL REFERAMCES:

NONE

27-Feb-77 -= Rev 3 Page C-8



Common BLISS Sample 27-Feb=-77 =-- Rev 3 Page C-9

THIS IS THE MAIN ROUTINE OF THIS MODULE. IT CONTAINS THE
GROSS LOGIC OF THE MODULE.

THE USER IS REPEATEDLY ASKED TO "TYPE EXPRESSION". UPON
DOING SO THE EXPRESSION IS PARSED AND EVALUATED BY A

L5 Lo oS TaaY e S &b Ad S

CALL TO THE ROUTINE EXPRESSION,

EXECUTION OF THIS ROUTINE (AND THE MODULE) IS HALTED BY
HITTING CONTROL C.

FORMAL PARAMETERS:

NONE

NONE

IMPLICIT OUTPUTS:

STORAGE, INPUT, INPUT_LENGTH, INPUT_POINTER

ROUTINE VALUE:

!

]

]

|

!

]

]

!

!

'

]

1

]

!

!

!

!

! IMPLICIT INPUTS:
]

!

]

!

!

]

1

1

]

! NONE

!
1

!

!

!
]

BEGIN

RESET STORAGE TO ZERO VALUES

INCR I FROM 0 TO (STOR_LEN - 1) DO

STORAGE[.I])= O0;

READ NEXT LINE

WHILE 1 DO

BEGIN

TTY_PUT_CRLF() ;

TTY_PUT_CHAR( %C'*' ); ! PROMPT
INCR I FROM 0 TC :NPUT_SIZE-1

DO

BEGIN



Common BLISS Sample 27-Feb=77 -- Rev 3

INPUT([.I] = TTY GET CHAR():

IF .INPUT[.I] EQL CAR RETURN
THEN -

BEGIN

INPUT[.I] = %C';

INPUT LENGTH = .

EXITLOOP;

END;

END;

INPUT_POINTER = -1;

IF EXPRESSION() THEN RETURN

END:;

END;

Page

ICARRIAGE RETURN

s ! ONE EXTRA SEMICOLON



Common BLISS Sample 27-Feb-77 -- Rev 3 Page C-11

LOGICALLY,

THIS ROUTINE REPEATEDLY CALLS THE ROUTINE INPUT CYCLE

IN ORDER TO READ AND PARSE THE EXPRESSION, PRINTS THE
EXPRESSION, PRINTS THE CONTENTS OF THE STACK JUST BUILT, AND

THEN EVALUATES THE EXPRESSION VIA A CALL TO EVAL POLISH.

FORMAL PARAMETERS:

NONE

IMPLICIT INPUTS:

NONE

IMPLICIT OUTPUTS:

PAREN_LEVEL

COMPLETION CODES:

RETURNED AS ROUTINE VALUE;

0 - NO ERRORS REPORTED

1 - ERROR ENCOUNTERED

SIDE EFFECTS:

NONE

BEGIN

LOCAL

CONDITION; ! VALUE RETURNED BY INPUT_CYCLE

PAREN_LEVEL = 0;

DO

CONDITION = INPUT CYCLE()

UNTIL .CONDITION NEQ 0;
IF .CONDITION EQL 1 THEN RETURN 1; 1ERROR

PRINT STRING():;

PRINT_STACK();
EVAL_POLISH();

RETURN 0

END;



Common BLISS Sample 27-Feb-77 -- Rev 3 Page C-12

ROUTINE INPUT CYCLE =

.
—
.
-
‘
—
.
.
o
.
.
-
o
-
.
-
.
—
.
-
.
-
.
—
.
.
0
-
0
—
0
—
0
—
.
-
0
—
-
0
-
0
—
0
—
0
—
-
.
—
0
-
.
—
.
—
.
—
o
—
u
-
—
 
s
 
Qu

s 
Su

n 
g

+ +

FUCTIONAL DESCRIPTION:

THIS ROUTINE MAKES CALLS TO ROUTINE READ UNTIL DELITER

ACCESSING LEXEMES AND DELIMITERS. BASED ON THE TYPE
THE ROUTINE PERFORMS VARIOUS FUNCTIONS.

NOTE:

THERE IS AN INTERNAL ROUTINE CALLED PROCESS OPR, WHICH

HANDLES OPERATOR DELIMITERS. -

FORMAL PARAMETERS:

NONE

IMPLICIT INPUTS:

LEXEME_TYPE, LEXEME_VALUE

IMPLICIT OUTPUTS:

NONE

COMPLETION CODES:

RETURNED AS ROUTINE VALUE;

0 - NO ERRORS ENCOUNTERED

1 - ERROR ENCOUNTERED

2 - END OF EXPRESSION

SIDE EFFECTS:

NONE

BEGIN

LOCAL

VALUE; ! VALUE TO BE RETURNED

IF READ UNTIL_DEL() THEN RETURN 1;

IF .LEXEME_TYPE NEQ IS_NONE

THEN

BEGIN

PUSH_MAIN_STACK (.LEXEME_TYPE);

PUSH MAIN_STACK (.LEXEME_VALUE)

END

ELSE IUNARY OPERATOR

IF (.OPERATOR NEQ MINUS AND

.OPERATOR NEQ OPEN_PAREN)



Common BLISS Sample 27-Feb-77 -- Rev 3

IF .OPERATOR EQL MINUS

THEN

IF .PRCDNCE_2[.TOPOP] LSS CUTOFF

THEN

OPERATOR = NEGATIVE

ELSE

RETURN (ERROR(5) ) ;

PROCESS_OPR

END;

Page C-13



Common BLISS Sample 27~-Feb-77 -- Rev 3 Page C-14

ROUTINE PROCESS_OPR =

++

FUCTIONAL DESCRIPTION:

THIS ROUTINE HANDLES OPERATORS (DELIMITERS). IT

KEEPS TRACK OF THE PARENTHESES COUNT AND THE PROPER

SYNTAX OF EXPRESSIONS.

FORMAL PARAMETERS:

NONE

IMPLICIT INPUTS:

OPERATOR, PAREN LEVEL, TOPOP, LEXEME_TYPE,

PRECIDENCE1, PRECIDENCE_2

IMPLICIT OUTPUTS:

PAREN_LEVEL

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! COMPLETION CODES:

! RETURNED AS ROUTINE VALUE;
0 - NO ERRORS ENCOUNTERED

1 - ERROR ENCOUNTERED

2 - END OF EXPRESSION

SIDE EFFECTS:

!

]

!

!

!

!

!

!

! NONE

]

! =

BEGIN

LOCAL

CONDITION; ! VALUE RETURNED BY PROCESS_OPF

iF .OPERATOR EQL OPEN_PAREN

THEN

PAREN LEVEL = .PAREN_LEVEL+1;

IF .OPERATOR EQL CLOSE_PAREN

THEN

PAREN LEVEL = .PAREN_LEVEL-1;

WHILE .PRCDNCE_I[.OPERATOR] LEQ .PRCDNCE_2[.TOPOP]

DO

BEGIN

PUSH_MAIN-STACK(IS-OPERATOR)7

PUSH_MAIN_STACK(POP_OPERATOR());



Common BLISS Sample 27-Feb-77 -- Rev 3 Page C-15

END;

IF .OPERATOR EQL SEMI_COL

THEN

IF .PAREN LEVEL EQL 0

THEN -

RETURN 2

ELSE

RETURN (ERROR(9));

IF .OPERATOR EQL CLOSE_PAREN

THEN

BEGIN

IF .TOPOP NEQ OPEN_PAREN THEN RETURN(ERROR(3)):
POP_OPERATOR();

IF READ_UNTIL DEL() THEN RETURN 1;
IF .LEXEME_TYPE NEQ IS _NONE THEN RETURN (ERROR(6));
CONDITION=PROCESS_OPR();
IF .CONDITION GTR 0

THEN

RETURN .CONDITION;

END

ELSE |

PUSH_OPERATOR (.OPERATOR) ;
RETURN 0

END;



Common BLISS Sample 27-Feb=-77 -- Rev 3 Page C-16

ROUTINE READ_UNTIL_DEL =

FUCTIONAL DESCRIPTION:

THIS ROUTINE DOES THE ACTUAL PARSING OF THE INPUT EXPRESSION

LOOKING FOR SYMBOLS, NUMBERS AND OPERATORS (DELIMITERS).

IT ALWAYS ATTEMPTS TO RECOGNIZE AN OPERATOR AND

RETURN ITS CODE.

PRIOR TO SEARCHING FOR THE OPERATOR IT LOOKS FOR A SYMBOL

(IS_NAME) OR INTEGER(IS_DECIMAL). IF NONE OF THESE

ARE FOUND THEN IS _NONE TS RETURNED IN THE GLOBAL VARIABLE

LEXEME_TYPE.

FORMAL PARAMETERS:

NONE

CHAR, OPERATOR

IMPLICIT OUTPUTS:

OP_STACK_PTR, MAIN_ STK_PTR, ERRORV, LEXEME TYPE,

LEXEME_VALUE, DECVALUE, OPERATOR

ROUTINE VALUE:

OPEN PAREN, CLOSE PAREN, MULTIPLY, PLUS, MINUS

!

[}

!

1

|

!
]

!

!

1

!

1

|

!

1

]

! IMPLICIT INPUTS:
{

|

1

!

1

1

1

!

!

{

'

! DIVIDE, SEMI_COL, EQUAL, ERROR(1l), ERROR(2)
!

! SIDE EFFECTS:

]

! NONE

1

!

BEGIN

IF .INPUT_POINTER EQL -1

THEN

IF FIRST TIME THROUGH PLACE SPECIAL "FIRST" DELIMITER

ON THE MAIN_STK

BEGIN

GET_CHARACTER();

OP_STACK_PTR = 0

MATIN_STK_PTR = 0

ERRORV = 0;

PUSH_OPERATOR(FIRST); ! INITDEL

END;



Common BLISS Sample 27-Feb-77 -- Rev 3 Page C-17

FIRST SEARCH FOR A SYMBO MNAD Tiaim
N 4 N Ul (3 ] vn PRYL

LEXEME_TYPE = IS NONE; !FOR THERE MAY NOT BE ONE

IF (.CHAR GEQ %CTA' AND .CHAR LEQ %C'Z') OR
(.CHAR GEQ %C'a' AND .CHAR LEQ %C'z')

THEN

BEGIN ICONVERT CHAR TO AN
LEXEME_TYPE = IS_NAME; INDEX INTO STORAGE

!ARRAY
LEXEME VALUE = (.CHAR AND CHARMASK)-1;

GET CHARACTER()
END

ELSE

IF (.CHAR GEQ %C'0' AND .CHAR LEQ $%C'9')

THEN

BEGIN

DECVALUE = 0;

WHILE (.CHAR GEQ %C'0' AND .CHAR LEQ %C'9') DO
BEGIN

DECVALUE = 10* ,DECVALUE+,CHAR-%C'0';
GET CHARACTER():

END;
LEXEME_TYPE = IS _DECIMAL;

LEXEME_VALUE = ,DECVALUE; !DECIMAL INTEGER VALUE
END;

NOW GET DELIMITER WHETHER OR NOT WE HAD AN IDENTIFIER OR NUMBER

IF (.CHAR LSS %C'(' OR .CHAR GTR %C'="')

THEN

RETURN (ERROR(1))

| A

BEGIN

OPERATOR=

(CASE (.CHAR) FROM 8$C'(' TO %C'=' OF

SET

[8C*' ('] :
OPEN_PAREN;

(8C*') ']
CLOSE_PAREN;

[8C'*']):

MULTIPLY;

[8C'+'):

PLUS:;

[8C'-"'):

MINUS:

[sC'/']:
DIVIDE;

[sC';'):
SEMI_COL:

[8C'="]:

EQUAL;

[INRANGE]:

—r o

LLO



Common BLISS Sample 27-Feb-77 -- Rev 3 Page C-18

! ALL OTHER VALUES ARE IN ERROR

RETURN (ERROR(2))

TES);

GET_CHARACTER();

IF TOPERATOR EQL 0 THEN RETURN(ERROR(2))

END;

END;



Common BLISS Sample 27-Feb-77 -- Rev 3 Page C-19

ROUTINE GET_CHARACTER :NOVALUE =

FUCTIONAL DESCRIPTIION:

THIS ROUTINE ACCESES THE NEXT CHARACTER FROM THE INPUT STREAM
AND PLACES IT IN THE GLOBAL VARIABLE CHAR.
ALL CHARACTERS WITH AN OCTAL VALUE LESS THAN 40 ARE IGNORED.

FORMAL PARAMETERS:

NONE

IMPLICIT INPUTS:

INPUT_POINTER

INPUT_POINTER, CHAR

ROUTINE VALUE:

COMPLETION CODES:

NONE

SIDE EFFECTS:

]

]

!

!

!

!

!

!

!

!

!

$

! IMPLICIT OUTPUTS:
]

!

!

!

1

!

!

!

!

!

! NONE

]

!

BEGIN

DO

BEGIN

INPUT_POINTER = ,INPUT POINTER + 1;

CHAR = _INPUT[.INPUT POINTER];
END -

UNTIL (.CBAR GTR $C' ');

END:



Common BLISS Sample 27-Feb-77 -- Rev 3 Page C-20

ROUTINE PUSH_OPERATOR(ELEMENT) ¢:NOVALUE =

1++

FUCTIONAL DESCRIPTION:

THIS ROUTINE "PUSHES"TM AN ELEMENT ONTO THE OPERATOR_STACK.

FORMAL PARAMETERS:

ELEMENT - OPERATOR TO BE ADDED TO STACK

IMPLICIT INPUTS:

OP_STACK_PTR

OP_STACK_PTR, OPERATOR_STACK

ROUTINE VALUE:

!

1

!

!

!

!

!

!

!

!

!

!

!

! IMPLICIT OUTPUTS:

!

!

!

!

| COMPLETION CODES:

'

! NONE

!

! SIDE EFFECTS:
1

! NONE

!

!

BEGIN

OPERATOR_STACK[.OP_STACK_PTR] = _ELEMENT;

OP_STACK_PTR = .OP_STACK_PTR+1

END;



Common BLISS Sample 27-Feb-77 -- Rev 3 Page C-21

ROUTINE POP_OPERATOR =

!

!

1 FUCTIONAL DESCRIPTION:

i THIS ROUTINE "POPS" A DATA ELEMENT OFF OF THE OPERATOR_STACK,
; FORMAL PARAMETERS:
; NONE

i IMPLICIT INPUTS:
: OP_STACK_PTR, OPERATOR_STACK
; IMPLICIT OUTPUTS:
i OP_STACK_PTR g

; ROUTINE VALUE:
; VALUE OF ELEMENT POPPED FROM STACK

' SIDE EFFECTS:
]

! NONE
!
==

BEGIN

OP_STACK_PTR = .OP_STACK PTR-1;

.OPERATOR_STACK[.OP_STACK PTR]
END:;



Common BLISS Sample 27-Feb=77 -- Rev 3 Page C-22

ROUTINE PUSH_MAIN_STACK (ELEMENT) :NOVALUE =

L++

FUCTIONAL DESCRIPTION:

THTS ROUTINE WILL "PUSH"TM AN ELEMENT ONTO THE MAIN_STK.

FORMAL PARAMETERS:

ELEMENT - DATA TO BE PUSHED ON MAIN_STK

IMPLICIT INPUTS:

MAIN_ STK_PTR

MAIN STK, MAIN_STK_PTR

ROUTINE VALUE:

!

!
!

!

!

!

!

!

!

!

!
!

!

| IMPLICIT OUTPUTS:

!
I

!

!

! COMPLETION CODES:

!

! NONE
l

| SIDE EPFECTS:

!

! NONE

1

! -

BEGIN

MAIN STK([.MAIN_STK_PTR]= .ELEMENT;

MAIN STK_PTR= .MAIN_STK_PTR+l

END;



Common BLISS Sample 27-Feb-77 -- Rev 3 Page C-23

14+

FUCTIONAL DESCRIPTION:

TAIS ROUTINE "POPS" AN ELEMENT OFF OF THE MAIN STK

FORMAL PARAMETERS:

NONE

IMPLICIT INPUTS:

MAIN_STK_PTR, MAIN STK

IMPLICIT OUTPUTS:

'MAIN_STK

ROUTINE VALUE:

VALUE OF ELEMENT POPPED FROM THE STACK

SIDE EFFECTS:

NONE

O
E
D
 
S
u
p
 
f
a
B
 
f
e
p
 
S
 
f
a
n
 
t
e
m
 
¢
a
m
 
(
W
D
 
J
u
n
 
(
b
 
S
u
p
 
C
E
P
 
(
u
v
 
P
O
 
G
u
p
 
P
E
D
 
Q
u
p
 
V
e
 
f
a
w
 
C
E
p
 
G
u
w
 
S
a
b
 
Q
a
n
 
=
 
Q
u
p

BEGIN

MAIN STK PTR= _MAIN& & ANV IN_ST

.MAIN_STR[.MAIN_STK_PTRT
END;



Common BLISS Sample 27-Feb-77 -- Rev 3 Page C-24

ROUTINE EVAL POLISH +NOVALUE =

14+

FUCTIONAL DESCRIPTIION:

THIS ROUTINE DOES THE ACTUAL EVALUATION OF EXPRESSION

WHICH HAS NOW BEEN PARSED AND RESIDES ON THE MAIN_STK.

OPERANDS (VARIABLES AND INTEGERS) ARE SHUNTED OFF AND PLACED

ONTO THE EVAL_STK.

OPERATORS ARE FVALUATED BY MAKING A CALL TO EVAL_OPERATOR.

FORMAL PARAMETERS:

NONE

IMPLICIT INPUTS:

MAIN_STK_PTR, MAIN_STK, EVAL_STK

IMPLICIT OUTPUTS:

EVAL_STK_PTR, LEXEME_TYPE, LEXEME_VALUE, EVAL_STK

ROUTINE VALUE:

COMPLETION CODES:

NONE

SIDE EFFECTS:

NONE

BEGIN

EVAL_STK_PTR = 0;

INCR I FROM 0 TO .MAIN_STK_PTR-I BY 2 DO

BEGIN

LEXEME TYPE = .MAIN_STK[.I]:

LEXEME VALUE = .MAIN STK[.I+l];

IF LEXEME TYPE NEQ IS OPERATOR

THEN

BEGIN

PUSH EVAL STACK( LEXEME TYPE),

PUSH_EVALTSTACK(. LEXEME VALUE)

END

ELSE

EVAL_OPERATOR(.LEXEME_VALUB):

END;

IF .MAIN_STK_PTR EQOL 2

THEN

EVAL_STK[l] = BVAL_VALUE(): ! THE CASE "A;"



Common BLISS Sample 27-Feb-77 =-- Rev 3 Page C-25

TTY_PUT_CRLF();

TTY_PUT_QUO('VAL: )

TTY_PUT_INTEGER(.EVAL_STK[I],10,10);

END:



Common BLISS Sample 27-Feb-77 -- Rev 3 Page C-26

ROUTINE EVAL_OPERATOR(STACK_OPBRATOR) =

FUCTIONAL DESCRIPTION:

THIS ROUTINE EVALUATES THE OPERATOR STACK OPERATOR.

THE PROPER NUMBER OF OPERANDS ARE ACCESSED FORM THE MAIN_STK.

AFTER EVALUATION THE VALUE IS PLACED ON THE EVAL_STK. -

FORMAL PARAMETERS:

STACK_OPERATOR - OPERATOR TO BE EVALUATED

IMPLICIT INPUTS:

IMPLICIT OUTPUTS:

STORAGE

ROUTINE VALUE:

ERROR(3)

SIDE EFFECTS:

!

[}

[}

1

1

'

!

|

|

1

t

!

!

! NONE

|

t

!

|

1

!

!

]

|

!

|

! NONE

'

!

BEGIN

LOCAL

VALUE 1, INTERMEDIATE

SAVE AREAS

VALUE_2,

VALUE_3;

VALUE_3 =

(SELECT .STACK_OPBRATOR OF

SET

[ALWAYS]:

! DO THIS FIRST - DETERMINE THE NUMBER OF OPERANDS

! NEEDED BY THIS PARTICULAR OPERATOR o

BEGIN

VALUE 2 EVAL VALUE();

VALUE_1
(TF .STACK_OPERATOR EQL EQUAL THEN

EVAL_ADDRESS()



Common BLISS Samnle 27-Feb-77 -- Rev 3 Page C-27

ELSE

IF .STACK_OPERATOR NEQ NEGATIVE THEN
EVAL VALUE())

END;

[NEGATIVE]):

] NEGATION - (UNARY MINUS)

- .VALUE2;

[MULTIPLY]:

.VALUE_1 * _VALUE_2;

[DIVIDE]:

.VALUE_1 / .VALUE_2;

[MINUS]:

.VALUE_1 - .VALUE_2;

[PLUS]:

.VALUE_1 + .VALUE_2;

{EQUAL]:

! STORE THE VALUE IN VALUE_2

STORAGE[.VALUE1] = .VALUE_2;

[OTHERWISE]:

RETURN (ERROR(8) ) ;

TES);

PUSH EVAL STACK(IS DECIMAL);
7 x ~

PUSH TEVAL STAC K{.VALUE 3);

END;: - -



Common BLiLL HAaAMp.ie Z27-Feb=717

SOUTINE f:)'\/I'\L_.f\DDi(l.:S Ho00=

T4+

FUCTIONAL DESCRIPTION:

FVALUATED,

IDENTIFIER IN STORAGE,

G
 
A
 
G
 
e
 
S
e
w
Y
 
-

YOTMATL PARAMETERS:

NONE

IMPLICIT INPUTS:

NONE

S
 
g
 
G
e
m
 

p
a
s
 
F
w
m
 

P
m
m
 
S
 

s
e
e
 
e

IMPLICIT OUTPUTS:

NONE

ROUTINE VALUE:

e
 

g
e
m
 

b
m
w
 

G
e
m
e
 
b
~
 

§
o
n

ERROR(7),

i TOP OF EVAL_STK

SIDE EFFECTS:

t
o
w
 

A
v
a
 

B
u
s
 

f
e
w
 

V
n
w
 

s
e
e

NONE

BEGIN

LOCAL

VAL,

TYPE;

VAL = POP_EVAL_STACK():
TYPE = POP_EVAL_STACK();

IF .TYPE NEQ IS_NAME THEN
.VAL

END;

-- Rev 3

ADDRESS (INDEX) OF THE

Page C-28

THIS ROUTINE IS CALLED WHEN TOI ASSIGMVFEMT ARRFrATTMARr 1 TN NF

THF VALUC PETURMNED IS THE ADDPRESS (INNEX) OF THE

IDENTIFIER FROM THE

! TEMPORARY VALUE

! TEMPORARY TYPE

RETURN (ERROR (7)) ;



Common BLISS Sample

FUCTIONAL DESCRIPTION:

27-Feb=77 == Rev 3 Paae C-29

THIS ROUTINE ACESSES THE VALUE OF THE IDENTIFIER. THE
EVAL STK VALUE IS USED TO INDEX THE IDENTIFIER VALUE STORAGE
AREATM (STORAGE).

FORMAL PARAMETERS:

NONE

IMPLICIT INPUTS:

STORAGE

IMPLICIT OUTPUTS:

NONE

ROUTINE VALUE:

VALUE OF THE IDENTIFIER ON THE TOP OF EVAL STK

SIDE EFFECTS:

NONE

BEGIN

LOCAL

TYPE,

VAL;

VAL = POP_EVAL_STACK();

TYPE = POP_EVAL STACK();
IF .TYPE EQL IS NAME THEN
.VAL -
END;

! TEMPORARY TYPE

! TEMPORARY VALUE

VAL = _STORAGE([.VAL];



Common BLISS Sample 27-Feb-77 -- Rev 3 Page C-30

ROUTINE PUSH_EVAL_STACK(ELEMENT) :NOVALUE =

FUCTIONAL DESCRIPTION

THIS ROUTINE "PUSHES" A DATA ELEMENT ONTO THE EVAL_ STK.

FORMAL PARAMETERS:

ELEMENT - DATA TO BE PLACED ON EVAL_ STK

IMPLICIT INPUTS:

EVAL_STK, EVAL_STK_PTR

EVAL_STK_PTR

ROUTINE VALUE:

COMPLETION CODES:

!

!

'

!

!

'

]

!

!

I

!

]

!

! IMPLICIT C.TPUTS:

!

]

!

]

!

{

! NONE

1

|

]

1

'

'

BEGIN

EVAL_STK[.EVAL_STK_PTR] = ,ELEMENT;

EVAL_STK_PTR = .BVAL_STK_PTR+1

END;



Common BLISS Sample 27-Feb=77 -- Rev 3

0 Q 3 r
e
t

< t
n

'
g

O "
o

t
n < > = n . > 0 F
o H

L] 4

+ +

FUCTIONAL DESCRIPTION:

FORMAL PARAMETERS:

NONE

IMPLICIT INPUTS:

IMPLICIT OUTPUTS:

EVAL_STK_PTR

ROUTINE VALUE:

SIDE EFFECTS:

NONE

O
-
.
-
0
-
0
—
.
-
.
-
.
-
.
-
0
-
0
-
.
-
.
-
.
-
.
-
.
-
0
—
0
.
-
.
-
.
-
.
-
.
-
Q
—
.
—
O
—
O
—
O
-

BEGIN

EVAL S

END:;

THIS ROUTINE "POPS" AN ELEMENT OFF OF THE EVAL STK.

EVAL_STK_PTR, EVAL_STK

VALUE POPPED FROM EVAL_STK

K PTR = ,EVAL STK PTR-1;T

.EVAL_STK[.EVAL_STK_PTR]TM

Page C-31



Common BLISS Sample 27-Feb-77 -- Rev 3 Page C-32

ROUTINE PRINT_STRING :NOVALUE =

144

FUCTIONAL DESCRIPTION

THIS ROUTINE PRINTS OUT THE EXPRESSION JUST READ IN.

FORMAL PARAMETERS:

NONE

IMPLICIT INPUTS:

INPUT

NONE

ROUTINE VALUE:

!
!

!
!

!

!

!

!
!

!

!

!

!

! IMPLICIT OUTPUTS:

!

!
!

!

! COMPLETION CODES:

!

! NONE
!

! SIDE EFFECTS:

!

! NONE

!

! -

BEGIN

TTY_PUT_CRLF();

INCR I FROM 0 TO .INPUT_LENGTH-1 DO

BEGIN

IF .INPUT([.I] EQL CAR_RETURN

THEN

EXITLOOP;

TTY_PUT_CHAR(. INPUT[.I]):

END;

END;



Common BLISS Sample 27-Feb-77 -- Rev 3 Page C-33

ROUTINE PRINT_STACK =

+ +

FUCTIONAL DESCRIPTION:

THIS ROUTINE PRINTS OUT THE CONTENTS OF MAIN STK IN SYMBOLIC
FORMAT. -

FORMAL PARAMETERS:

’

f
u
n
 

f
a
w
 
g
a
m
 
f
a
w
 
S
w
r
 
f
u
p
 
S
 
f
o
w
 
S
u
m

PR

IMPLICIT INPUTS:

MAIN_STK_PTR, MAIN_STK

IMPLICIT OUTPUTS:

NONE

ROUTINE VALUE:

COMPLETION CODES:

NONE

SIDE EFFECTS:

NONE

E
n
 
S
 
Se
B
 

fe
w
 
$
B
 
(
e
 
e
 
g
 
f
u
w
 
Su
m
 
pa
m
 
Se
m 
¢
 
0
o
 
fa
m
 
Se

w
 
f
a
n 
S
 
g
u
s 
P

BEGIN

INCR I FROM 0 TO .MAIN_STK PTR-1 BY 2 DO
BEGIN -

TTY_PUT_CRLF();

SELECT .MAIN_STK([.I] OF

SET

[IS_NAME]:

TTY_PUT_CHAR(.MAIN STK[.I+l] + %C'A');

[IS_DECIMAL]:

TTY_PUT_INTEGER(.MAIN STK([.I+1],10,10);

[IS_OPERATOR]:

TTY_PUT_ASCIZ (.OPNAMES[.MAIN STK[.I+1]]);

TES;

END;

END;



Common BLISS Sample 27-Feb=77 -- Rev 3 Page C-34

ROUTINE ERROR(ERROR_NUMBER) =

FUCTIONAL DESCRIPTION:

THIS ROUTINE PRINTS OUT ERROR MESSAGES BASED ON THE

ERROR_NUMBER PASSED TO IT. IT ALSO DUMPS THE CONTENTS OF THE

MAIN STK AND PRINTS THE EXPRESSION IN ERROR.

FORMAL PARAMETERS:

ERROR_NUMBER - INDEX INTO ERROR MESSAGE PLIT

IMPLICIT INPUTS:

IMPLICIT OUTPUTS:

NONE

ROUTINE VALUE:

1

1

1

!

]

!

]

!

]

!

|

]

!

]

! ERROR_MESSAGE
|

]

]

|

1

!

]

|

|

! SIDE EFFECTS:
]

!

]

1

NONE

BEGIN

MACRO

MESSAGE (ARGUMENT) = PLIT ($ASCIZ ARGUMENT)S%;

BIND

ERROR_MESSAGE = PLIT (

MESSAGE ( 'ERR:0 NONE'),

MESSAGE ( 'ERR:1 ILLEGAL CHARACTER ON I:.PUT'},

MESSAGE ( 'ERR: OPR EXPECTED, NOT FOUND'),

MESSAGE ( 'ERR:3 EXCESS CLOSE PARFN'),

MESSAGE ('ERR: 4 ILLEGAL UNARY OP: ATOR'),

MESSAGE ('ERR:5 ILLEGAL USE OF UNARY MINUS'),

MESSAGE ( 'ERR: 6 OPERATOR MUST FOLIOW ")*'),

MESSAGE ('ERR:7 ASSIGNMENT TO NON VAxI{ABLE'),

MESSAGE ( 'ERR:8 BAD OPERATOR ON STx(K'),

MESSAGE ('ERR:9 EXCESS OPEN PAREN';,

MESSAGE ('ERR:10 NONE')

) :VECTOR([50];

TTY PUT_CRLF() ;

TTY PUT_MSG (.ERROR_MESSAGE[ . ERROR_NUMBER] ,OUT_MSG_MAX) ;



Common BLISS Sample 27-Feb-77 -- Rev 3 Page C-35

PRINT STACK()

PRINT STRING(
RETURN 1
END:;

"
’
 
w
9

END

ELUDOM

[End of Appendix C]}



Paae Index-1

INDEX

SFORMAL macro Rit field size name, 12-3

in assembly lanquaqe, 7-15 Bit name, 12-3
S LOCAL macro BLISS LIB:, 5-7

in assembly lanquage, 7-33 Block comment, 6-4
SOWN macro BLOCK name, REF, 12-4

in assembly language, 7-14 Block statement, 7-28

Body, routine, 7-22

tascii, 14-8 Boolean value, 6-16
$blissl6, 14-8 Built-in literals, 14-6

tbliss32, 14-8

tbliss36, 14-8 Call

tbpaddr, 14-6 non-standard, 12-3

tbpunit, 14-6 CALL instruction

tbpval, 14-6, 14-17, 14-34 in assembly lanquage, 7-17

$c, 14-7 Call/return interface, 3-2

fupval, 14-6, 14-19, 14-28 Calling sequence, 4-3, 6-2
CASE instruction

.ENTRY directive, 7-11 in assembly langquage, 7-2

. PSECT name, 12-4 ChSallocation, 14-30
.SBTTL statement, 7-25 ChSptr, 14-32

Character seaquences (strings),

<access type> notation, 13-5 14-22

<arg form> notation, 13-7 Choice of language, 3-1

<arg mechanism> notation, 13-7 Code

<comment delimiter> notation, 6-1 completion, 6-11

<data type> notation, 13-6 Code PSECT, 7-20

<name> notation, 13-4 . Code sharing, 3-3

<new page> notation, 4-4 Code, condition, 12-7

{separator> notation, 4-4 Comment, 6-3

<skip> notation, 4-4 block, 6-4

{space> notation, 4-4 documenting, 6-5

<tab> notation, 4-4 group, 6-6

line, 6-7

Abstract, 4-2, 6-2 maintenance, 6-9

Abstraction mechanisms, 14-13 Common PSECT, 7-20

Address calculations, 14-18 Compiler library, 13-1

Address-relational operators, Completion code, 6-11, 12-2

14-21 Complexity, lanquage, 14-5

Addressing, relative Condition handler, 7-4

in assembly language, 7-21 Condition value, 12-2, 12-7

Algorithms Conditional assembly, 4-2, 6-12,

critical, 4-2 7-3

Alignment-attribute, 14-17 Configuration statement, 6-12

Allocation-unit attribute, 14-16, Constant value name, 12-4

14-25 Control

Author, 4-2, 6-2 working set, 3-3

Control expressions, 14-20

Copyright notice, 6-19



Critical algorithms, 4-2

Customer version number, 6-29

Data segment module, 6-20

Data type, 12-6

Declaration, 9-2

equated symbol

in assembly language, 7-5

validate

in assembly language, 7-32

variable

in assembly languaqge, 7-14,

7-20, 7-29, 7-33

weak

in assembly language, 7-34

Declaration: format, 5-2 to 9-3

Declaration: forward, 9-2

Declaration: forward routine, 9-3

Declaration: macro, 9-2 to 9-3

Declaration: order, 9-2, 9-4,

Default value, 13-8

Definition macro name,

12-4

Descriptor, call by, 7-16, 13-7

Diagnostic conventions, 15-1

Directory, module, 6-21

Documenting comment, 6-5

9-17

structure,

Edit history, 4-2

Edit in version number, 6-29

Edit number, 6-9, 6-17

Entry point

global, 12-2

Entry, procedure

in assembly language, 7-19

Environment statement, 4-2,

Equated symbol declaration

in assembly language, 7-5

Equivalencing, 14-21

Error completion code, 6-11

Exception, 6-27

calling sequence,

Expression, 9-3, 9-5

in assembly language, 7-

Expression: assignment, 9-

Expressior: block, 9-5, 9-

Expression: case, 9-5 to

Evpression: format, 9-5,

Expression: if/then/else, 9-5, 9-9

Expression: incr/decr, 9-5, 9-10

Expression: select, 9-5, 9-11

6-13

6-2

N
0

9-6

9-8

Page Index-2

Expression: while/until/do, 9-5,

9-12

Extension attribute,

External csymbol

in assembly language, 7-31

14-17

Facility prefix table, 12-7

Facility statement, 4-2, 6-13

Fail return, 6-16

FALSE Boolean value, 6-16

Field offset name, 12-3

Field selectors, 14-22, 14-43

Field support pe “sonnel, 3-2

File generation version, module,

6-21

File name, module, 6-21

File type, module, 6-21

Form, arg, 13-7

Formal parameter, 6-22

in assembly language, 7-15

Function value, 6-16

Functional description,

4-2 to 4-3, 6-14

Functionality, 3-3

General library, 13-1

Global array name, 12-3

Global entry point, 12-2

Global label

in assembly language, 7-11

Global PSECT, 7-20

Global symbol

in assembly langquage, 7-31

Global variable name, 12-3

Group comment, 6-6

Handler, condition, 7-4

History, modification, 6-17

Ident statement, 4-1

IDENT statement

in assembly language.

Implementation langu:~-

system, 3-1

Implicit input, 6-1b&

Implicit output, 6-18

Include files

in assembly lanquaqg:.

Inital-attribute, 14-29

Input parameter, 6-23

Interface style, 12--7

7-8

79



Interface type, 13-2 to 13-3

Interlocked instruction

in assembly langquage, 7-31

Interrupt

calling sequence, 6-2

Isolation, 14-4

JSB calling sequence, 6-2

Label

global

in assembly language, 7-11

in assembly langquage, 7-10

local

in assembly language, 7-12
Labels, 9-13

Language

choice of, 3-1

Language switch, 14-9

Legal notice, 6-19

Legal notices, 4-1

Library

compiler, 13-1

general, 13-1

in assembly language, 7-14

math, 13-1

object time system, 13-1

procedure, 13-1

License notice, 6-19

Line comment, 6-7

Listing control

in assembly language, 7-14

Literal PSECT, 7-20

Local label
: =1in assembly language, 7-12

LSB, .ENABL/.DSABL

in assembly language, 7-14

Machine-specific function, 14-4

Macro

in assembly language, 7-14
Macro name, 12-2

Macro-10, 14--15

Macros, 14-4, 14-8

Maintenance comment, 6-9

Maintenance number, 6-17

Mars, 14-15

MARS LIB:, 5-1

Mask name, 12-4
Math library, 13-1

Modifiability, 3-3

Page Index-3

Modification history, 6-17
Modification number, 6-9
Modular programs, 3-3
Module, 6-20, 14-4

data segment, 6-20
file name, 6-21
preface, 6-21

Module name, 12-4

Module preface, 4-1
Module switches, 14-9
MODULE.BLI, S5-7

MODULE.MAR, 5-1

Modules, 4-1

Multiple entry routine, 7-23

Name, 9-15

private, 12-2

public, 12-1

Name pattern, 12-1

Name, defined value, 14-21
Name, module, 6-21

Non-standard call, 12-3

Non-standard routine, 7-24
Non-transportable attributes,

14-17

Notation

<{access type>, 13-5

<arg form>, 13-7

<arg mechanism>, 13-7

<comment delimiter>, 6-1

<data type>, 13-6

<name>, 13-4

{new page>, 4-4

{separator>, 4-4

<skip>, 4-4

<{space>, 4-4

<tab>, 4-4

procedure argument, 13-4
Notice, legal, 6-19

Number

edit, 6-9, 6-17

maintenance, 6-17

modification, 6-9

version, 6-28

Numeric literals, 14-7

Object time system, 13-1
Offset addressing, 14-28
Offset name, 12-3

Optional arqument, 13-8
Order of routine, 7-25



Output parameter, 6-23

Outpuit string, 13-2

Own PSECT, 7-20

Packed data initalization, 14-33

Parameter

formal, 6-22

in assembly langquage, 7-15

input, 6-23

output, 6-23

Parameterization, 14-2, 14-34

Patch in version number, 6-29

Pattern

name, 12-1

Plit, 14-25

uplit, 14-25

Preface, module, 6-21

Preface, routine, 6-25

Prefix table, facility, 12-7

Private name, 12-2

Procedure, 7-17

entry

in assembly langquage, 7-19

Procedure argument notation, 13-4

Procedure library, 13-1

Process synchronization

in assembly language, 7-31

Program, 6-24

PSECT statement

in assembly language, 7-20

Public name, 12-1

Quality, 3-3

Queuve instructions

in assembly language, 7-20

Quoted strings, 14-22

used as numeric values, 14-23

Rarnge attribute, 14-17

Read code, 3-2

Readable system code, 3-2

REF BLOCK name, 12-4

Reference, call by, 7-16, 13-7

Register

save, 12-3

Relational operators, 14-20

Relative addressing

in assembly language, 7-21

Repeated arqument, 13-8

Require files, 9-16, 14-4, 14-12

search rules, 14-12

Page 1Index-4

Reserved names, 14-11

Routine, 9-17

non-standard, 7-24

order, 7-25

Routine body, 7-22

Routine entry, multiple, 7-23

Routine preface, 6-25

Routine: format, 9-17

Routine: name, 9-17

Routine: order, 9-17

Routine: preface, 9-17

Routines, 14-13

Service macro name, 12-2

Severe error completion code, 6-11

Sharing

code, 3-3

Side effect, 6-26

Sign out, 12-7

Signal, 6-27

Simplicity, 14-5

Stack local variable

in assembly langquaqe, 7-33

Statement, 7-26

block, 7-28

Status code, 12-2

Status return value, 6-16

String, 12-6

String instruction

in assembly lanquage, 7-28

String literal plits, 14-26

String literals, 14-7

Strings (character sequences),

14-22

Structire: block, 9-18

Structure

in assembly language, 7-29

Structure definition macro name,

12-4

Structure: block, 9-19

Structure: declaration,

9-18 to 9-19

Structures, 14-39

Style of interface, 12-7

Subtitle statement, 7-25

Success completion code, 6-11

Success return, 6-16

Support in version number, 6-28

Support personnel, 3-2

Symbol

external



in assembly language, 7-31

global

in assembly language, 7-31
in assembly langquaqge, 7-30

Symbol declaration, equated

in assembly language, 7-5
Synchronization, process

in assembly lanquage, 7-31
System code

readable, 3-2

System implementation lanquage,

Title statement, 4-1

TITLE statement

in assembly lanquage, 7-31

Transportability, 3-3

Transportability quidlines

address calculation, 14-19

allocation attribute, 14-16

attributes, 14-17

character sequences, 14-24

control expressions, 14-21

declarations, 14-18

field selectors, 14-43

isolation, 14-4

relational operators, 14-21
string literals, 14-23

string literals in plits, 14-28
strings, 14-24

Transportability, tools, 14-6

Transportable

control expressions, 14-21

data types, 12-6

declarations, 14-16

expressions, 14-19

structures, 14-20, 14-39

TRUE Boolean value, 6-16

Unwind

in assembly language, 7-32
Update in version number, 6-29

Validate declaration

in assembly lanquage, 7-32
Value

function, 6-16

Value, call by, 7-16, 13-7
Variable

stack local

in assembly language, 7-33

Page Index-5

Variable declaration

in assembly lanquage, 7-14,
7-20, 7-29, 7-33

Vax-11 machine, 14-15

ersion number, 6-28
Volatile-attribute, 14-17

Warning completion code, 6-11
Weak declaration

in assembly lanquage, 7-34
Weak-attribute, 14-17


	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01-001
	01-002
	01-01
	01-02
	02-001
	02-002
	02-01
	02-02
	03-001
	03-002
	03-003
	03-01
	03-02
	03-03
	03-04
	04-001
	04-002
	04-003
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	05-001
	05-002
	05-003
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	06-001
	06-002
	06-003
	06-004
	06-005
	06-006
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	07-001
	07-002
	07-003
	07-004
	07-005
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	08-001
	08-01
	08-02
	09-001
	09-002
	09-003
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	10-001
	10-002
	10-01
	11-001
	11-002
	11-01
	12-001
	12-002
	12-003
	12-004
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	13-001
	13-002
	13-003
	13-004
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	14-001
	14-002
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29
	14-30
	14-31
	14-32
	14-33
	14-34
	14-35
	14-36
	14-37
	14-38
	14-39
	14-40
	14-41
	14-42
	14-43
	14-44
	14-45
	14-46
	14-47
	14-48
	15-001
	15-002
	15-003
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	A-001
	A-002
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	B-001
	B-002
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-001
	C-002
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	C-24
	C-25
	C-26
	C-27
	C-28
	C-29
	C-30
	C-31
	C-32
	C-33
	C-34
	C-35
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05

