
VMS

VMS RTL String Manipulation (STR$) Manual

Order Number AA-LA75A-TE

VMS RTL String
Manipulation (STR$)
Manual

Order Number: AA-LA 75A-TE

April 1988

This manual documents the string manipulation routines contained in the
STR$ facility of the VMS Run-Time Library.

Revision/Update Information: This document supersedes the STR$
section of the VAX/VMS Run-Time
Library Routines Reference Manual,
Version 4.4.

Software Version: VMS Version 5.0

digital equipment corporation
maynard, massachusetts

April 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT
DECUS RSTS

~U~UD~DTM DECwriter RSX

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA & PUERTO RICO* CANADA INTERNATIONAL

ZK4613

Digital Equipment Corporation Digital Equipment
P.O. Box CS2008 of Canada Ltd.

Digital· Equipment Corporation
PSG Business Manager

Nashua, New Hampshire 100 Herzberg Road
03061 Kanata, Ontario K2K 2A6

Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire, Alaska, and Hawaii call 603-884-6660.

In Canada call 800-267-6215.

c/o Digital§ local subsidiary
or approved distributor

*Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).
Internal orders should be placed through the Software Distribution Center (SOC), Digital Equipment
Corporation, Westminster, Massachusetts 014 7 3.

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format the
text, generate a table of contents and index, and paginate the entire document.
Writers can print the document on the terminal or line printer, or they can use
DIGITAL-supported devices, such as the LN03 laser printer and PostScript®
printers (PrintServer 40 or LN03R ScriptPrinter), to produce a typeset-quality
copy containing integrated graphics.

(fMl

'-L'Y PostScript is a trademark of Adobe Systems, Inc.

Contents

PREFACE

NEW AND CHANGED FEATURES

CHAPTER 1 OVERVIEW OF THE STR$ FACILITY

CHAPTER 2 INTRODUCTION TO STRING MANIPULATION (STR$)
ROUTINES

2.1 STRING SEMANTICS IN THE RUN-TIME LIBRARY
2.1.1 Fixed-Length Strings
2.1.2 Varying-Length Strings
2.1.3 Dynamic-Length Strings
2.1.4 Examples

2.2 DESCRIPTOR CLASSES AND STRING SEMANTICS
2.2.1 Conventions for Reading Input String Arguments
2.2.2 Semantics for Writing Output String Arguments

2.3 SELECTING STRING MANIPULATION ROUTINES
2.3.1 Efficiency
2.3.2 Argument Passing
2.3.3 Error Handling

2.4 ALLOCATING RESOURCES FOR DYNAMIC STRINGS
2.4.1 String Zone

STR$ REFERENCE SECTION
STR$ADD

STR$ANALYZE_SDESC

STR$APPEND

STR$CASE_BLIND_COMPARE

STR$COMPARE
STR$COMPARE_EQL

STR-3
STR-7

STR-9

STR-11

STR-13

STR-15

vii

x

1-1

2-1

2-1
2-1
2-2
2-2
2-3

2-4
2-6
2-6

2-9
2-9
2-9

2-10

2-11
2-13

v

Contents

INDEX

TABLES
1-1
2-1
2-2
2-3
2-4

vi

STR$COMPARE_MULTI STR-17
STR$CONCAT STR-20
STR$COPV_DX STR-23
STR$COPV_R STR-25
STR$DIVIDE STR-28
STR$DUPL_CHAR STR-32
STR$ELEMENT STR-34
STR$FIND_flRST_IN_SET STR-36
STR$FIND_FIRST_NQT_IN_SET STR-38
STR$FIND_FIRST_SUBSTRING STR-41
STR$FREE1_DX STR-45
STR$GET1_DX STR-46
STR$LEFT STR-48
STR$LEN_EXTR STR-51
STR$MATCH_WILD STR-55
STR$MUL STR-58
STR$POSITION STR-62
STR$POS_EXTR STR-65
STR$PREFIX STR-68
STR$RECIP STR-70
STR$REPLACE STR-74
STR$RIGHT STR-77
STR$ROUND STR-80
STR$TRANSLA TE STR-84
STR$TRIM STR-87
STR$UPCASE STR-89

STAS Routines
String Passing Techniques Used by the Run-Time Library
How Run-Time Library Routines Read Strings
Semantics and Descriptor Classes
Severe Errors, by Facility

1-2
2-5
2-6
2-8

2-10

Preface

This manual provides users of the VMS operating system with detailed usage
and reference information on string manipulation routines supplied in the
STR$ facility of the Run-Time Library.

Run-Time Library routines can only be used in programs written in languages
that produce native code for the VAX hardware. At present, these languages
include VAX MACRO and the following compiled high-level languages:

VAX Ada
VAX BASIC
VAX BLISS-32
VAXC
VAX COBOL
VAX COBOL-74
VAX CORAL
VAX DIBOL
VAX FORTRAN
VAX Pascal
VAX PL/I
VAX RPG
VAX SCAN

Interpreted languages that can also access Run-Time Library routines include
VAX DSM and DATATRIEVE.

Intended Audience
This manual is intended for system and application programmers who want
to call Run-Time Library routines.

Document Structure
This manual is organized into two parts as follows:

• Part I provides guidelines and reference material on STR$ routines.

Chapter 1 provides a brief overview of the STR$ routines and lists the
routines and their functions.

Chapter 2 discusses in detail how to use the Run-Time Library STR$
routines.

• Part II provides detailed reference information on each routine contained
in the STR$ facility of the Run-Time Library. This information is
presented using the documentation format described in the Introduction
to the VMS Run-Time Library. Routine descriptions appear in alphabetical
order by routine name.

vii

Preface

Associated Documents

viii

The Run-Time Library routines are documented in a series of reference
manuals. A general overview of the Run-Time Library and a description
of how the Run-Time Library routines are accessed are presented in the
Introduction to the VMS Run-Time Library. Descriptions of the other RTL
facilities and their corresponding routines and usages are discussed in the
following books:

• The VMS RTL DECtalk (DTK$) Manual

• The VMS RTL Library (LIB$) Manual

• The VMS RTL Mathematics (MTH$) Manual

• The VMS RTL General Purpose (0TS$) Manual

• The VMS RTL Parallel Processing (PPL$) Manual

• The VMS RTL Screen Management (SMC$) Manual

The VAX Procedure Calling and Condition Handling Standard, which is
documented in the Introduction to VMS System Routines, contains useful
information for anyone who wants to call Run-Time Library routines.

Application programmers in any language may refer to the Guide to Creating
VMS Modular Procedures for the Modular Programming Standard and other
guidelines.

High-level language programmers will find additional information on calling
Run-Time Library routines in their language reference manual. Additional
information may also be found in the language user's guide provided with
your VAX language.

The Guide to Using VMS Command Procedures may also be useful.

For a complete list and description of the manuals in the VMS documentation
set, see the Overview of VMS Documentation.

Conventions
Convention

CTRL/C

$ SHOW TllVIE
05-JUN-1988 11 :55:22

$ TYPE IVIYFILE.DA T

input-file, ...

[logical-name]

quotation marks
apostrophes

Preface

Meaning

In examples, a key name (usually abbreviated)
shown within a box indicates that you press
a key on the keyboard; in text, a key name is
not enclosed in a box. In this example, the key
is the RETURN key. (Note that the RETURN
key is not usually shown in syntax statements
or in all examples; however, assume that you
must press the RETURN key after entering a
command or responding to a prompt.)

A key combination, shown in uppercase with a
slash separating two key names, indicates that
you hold down the first key while you press the
second key. For example, the key combination
CTRL/C indicates that you hold down the key
labeled CTRL while you press the key labeled C.
In examples, a key combination is enclosed in a
box.

In examples, system output (what the system
displays) is shown in black. User input (what
you enter) is shown in red.

In examples, a vertical series of periods, or
ellipsis, means either that not all the data that
the system would display in response to a
command is shown or that not all the data a
user would enter is shown.

In examples, a horizontal ellipsis indicates
that additional parameters, values, or other
information can be entered, that preceding
items can be repeated one or more times, or
that optional arguments in a statement have
been omitted.

Brackets indicate that the enclosed item is
optional. (Brackets are not, however, optional
in the syntax of a directory name in a file
specification or in the syntax of a substring
specification in an assignment statement.)

The term quotation marks is used to refer
to double quotation marks ("). The term
apostrophe (') is used to refer to a single
quotation mark.

Other conventions used in the documentation of Run-Time Library routines
are described in the Introduction to the VMS Run-Time Library.

ix

Preface

New and Changed Features

x

The following STR$ routine has been added to the VMS Run-Time Library
for Version 5.0:

Table 1 New STR$ Routine for V5.0

Routine Function

STR$ELEMENT Extract Delimited Element Substring

1 Overview of the STR$ Facility

The VMS RTL String Manipulation (STR$) Manual discusses the Run-Time
Library STR$ routines that perform string functions. This chapter gives a
brief overview of the STR$ routines and lists the routines and their functions.
Chapter 2 explains in detail how the RTL handles strings. The second part of
this manual is a reference section describing all the Run-Time Library STR$
routines.

The STR$ facility provides you with routines that perform the following
functions:

• Perform mathematical operations on strings

• Compare strings

• Extract and replace substrings

• Append and concatenate strings

• Copy strings

• Search characters and substrings

• Free and allocate dynamic strings

• Perform miscellaneous functions on strings

Mathematical Operation Routines

STRADD, STRDIVIDE, STRMUL, STRRECIP, and STR$ROUND are
routines that perform mathematical functions on strings. These routines allow
you to add, divide, and multiply two strings. You can also take the reciprocal
of a string or round a string.

Compare Routines

STR$CASE_BLIND_CQMP ARE, STR$COMP ARE, STR$COMP ARE_EQL,
and STR$COMP ARE_MUL TI compare the contents of two strings and return
a value (-1, 0, or 1) that denotes whether the first string is less than, equal to,
or greater than the second string.

Extract and Replace Routines

STR$ELEMENT, STR$LEFT, STRLEN_EXTR, STRPOS_EXTR,
STR$REPLACE, and STR$RIGHT are routines that extract a substring from a
string or replace a substring with another substring.

Append and Concatenate Routines

STR$APPEND and STR$CONCAT allow you to append a string to another
string, or to concatenate up to 254 strings into one string.

Copy Routines

STR$COPY_DX and STR$COPY_R allow you to copy a string passed by
descriptor or by reference to another string.

1-1

Overview of the STR$ Facility

1-2

Search Routines

STR$FIND_FIRST_IN _SET, STR$FIND_FIRST_NQT_IN _SET, and
STR$FIND_FIRST_SUBSTRING are routines that search a string one
character at a time, comparing each character to the characters in a specified
set of characters.

Allocate and Deallocate Routines

STR$FREEl_DX and STR$GET1_DX deallocate and allocate a dynamic
string.

Miscellaneous Routines

STR$ANALYZE_SDESC, STR$DUPL_CHAR, STR$MATCH_WILD,
STR$POSITION, STR$TRANSLATE, STR$TRIM, and STR$UPCASE analyze
string descriptors, duplicate a character, match wildcard specifications, prefix
a string, return a relative position, translate matched characters, trim trailing
blanks and tabs, and convert strings to uppercase characters.

The following list contains all of the STR$ routines and their functions.

Table 1-1 STR$ Routines

Routine Name

STR$ADD

STR$ANALYZE_SDESC

STR$APPEND

STR$CASE_BLIND_COMPARE

STR$COMP ARE

STR$COMP ARE _EQL

STR$COMP ARE _MUL Tl

STR$CONCAT

STR$COPY _DX

STR$COPY_R

STR$DIVIDE

STR$DUPL_CHAR

STR$ELEMENT

STR$FIND_FIRST _IN _SET

STR$FIND_FIRST _NOT _IN_SET

STR$FIND_FIRST_SUBSTRING

STR$FREE1_DX

STR$GET1_DX

STR$LEFT

STR$LEN_EXTR

Function

Add two decimal strings

Analyze a string descriptor

Append a string

Compare strings without regard to case

Compare two strings

Compare two strings for equality

Compare two strings for equality using the
DEC Multinational Character Set

Concatenate two or more strings

Copy a source string passed by descriptor
to a destination string

Copy a source string passed by reference
to a destination string

Divide two decimal strings

Duplicate character n times

Extract delimited element substring

Find the first character in a set of characters

Find the first character that does not occur
in the set

Find the first substring in the input string

Free one dynamic string

Allocate one dynamic string

Extract a substring of a string

Extract a substring of a string

Overview of the STR$ Facility

Table 1-1 (Cont.) STR$ Routines

Routine Name

STR$MATCH_WILD

STR$MUL

STR$POSITION

STR$POS_EXTR

STR$PREFIX

STR$RECIP

STR$REPLACE

STR$RIGHT

STR$ROUND

STR$TRANSLA TE

STR$TRIM

STR$UPCASE

Function

Match a wildcard specification

Multiply two decimal strings

Return relative position of a substring

Extract a substring of a string

Prefix a string

Return the reciprocal of a decimal string

Replace a substring

Extract a substring of a string

Round or truncate a decimal string

Translate matched characters

Trim trailing blanks and tabs

Convert string to all uppercase

1-3

2 Introduction to String Manipulation (STR$) Routines

This chapter explains in detail the following topics:

• Types of strings recognized by Run-Time Library routines

• Relationship of descriptor classes to string semantics

• Differences in string handling among the LIB$, OTS$, and STR$ facilities
of the Run-Time Library

• Conventions for reading and writing string arguments in the Run-Time
Library string routines

• Selection of the proper string manipulation routines

• Allocation and deallocation of dynamic string resources

2.1 String Semantics in the Run-Time Library

2.1.1

The semantics of a string refers to the conventions that determine how a
string is stored, written, and read. The VAX architecture supports three string
semantics: fixed length, varying length, and dynamic length.

Fixed-Length Strings
Fixed-length strings have two attributes:

• An address

• A length

The length of a fixed-length string is constant. It is usually initialized when
the program is compiled or linked. After initialization, this length is read but
never written. When a Run-Time Library routine copies a source string into a
longer fixed-length destination string, the routine pads the destination string
with trailing blanks.

When you pass a string to a Run-Time Library routine, you pass the string
by descriptor. For a fixed-length string, the descriptor must contain this
information:

• The descriptor class

• The data type of the string

• The length of the string

• The address of the beginning of the string

2-1

2.1.2

2.1.3

Introduction to String Manipulation (STR$) Routines
2.1 String Semantics in the Run-Time Library

In most cases, you will not have to construct an actual descriptor. By default,
most VAX languages pass strings by descriptor. For information about how
the language you are using handles strings, see your language reference
manual. For more information about descriptors used for fixed-length strings,
refer to the Introduction to VMS System Routines.

Note: In contrast to Run-Time Library routines, system services do not pad
output strings. For this reason, when a program calls a system service that
returns a fixed-length string, the program should supply an additional
argument that indicates how many bytes the system service actually
deposited in the fixed-length buffer of the calling program. Some system
service routines have corresponding Run-Time Library routines that
provide the proper semantics for fixed-length, varying-length, and
dynamic output strings.

Varying-Length Strings
Varying-length strings have the following three attributes:

• A current length

• An address

• A maximum length

The current length of a varying-length string is stored in a two-byte field,
called CURLEN, preceding the text of the string. The address of the string
points to the beginning of this CURLEN field, not to the beginning of the
string's text.

The maximum string length is a field in the string's descriptor. The maximum
string length field specifies how much space is allocated to the string in a
program. The maximum string length is fixed and does not change.

The value in the CURLEN field specifies how many bytes beyond the
CUR LEN field are occupied by the string's text. The character positions
beyond this range are reserved for the growth of the string. Their contents
are undefined.

For example, assume a varying string whose CURLEN is 3 and whose
maximum length is 6. If a string 'ABCD' is copied into this string, the result
is 'ABCD' and the CURLEN is changed to 4. If a string 'XYZ' is now copied
into the same varying string, the resulting string is 'XYZ' with a CURLEN of
3. The maximum length is still 6. The bytes beyond the range designated by
CURLEN are undefined.

Dynamic-Length Strings

2-2

Dynamic-length strings have two attributes:

• A current length

• An address pointing to the beginning of the text

Theoretically, dynamic strings have unbounded length. The length field is an
unsigned value occupying two bytes, however, so that its maximum value is
65,535. Thus the length of a dynamic string is limited to 65,535 characters.
In most cases, a program allocates only the descriptor for this kind of string.

2.1.4

Introduction to String Manipulation (5TR$) Routines
2.1 String Semantics in the Run-Time Library

Examples

The actual space for a dynamic-length string is allocated from heap storage by
the Run-Time Library. When a Run-Time Library routine copies a character
string into a dynamic string, and the currently allocated heap storage is not
large enough to contain the string, the currently allocated storage returns to
a pool of heap storage maintained by the string routines. Then the string
routines obtain a new area of the correct size. As a result of this process of
deallocation and reallocation, both the current-length field and the address
portion of the string's descriptor may change. Often, dynamic strings are the
most convenient type to write.

The Run-Time Library string manipulation routines are the only routines that
you should use to alter the length or address of a dynamic string. Do not
use LIB$GET_ VM for this purpose. For information on allocating dynamic
strings, see Section 2.1.3.

The following examples illustrate what happens when the string 'ABCDEF'
(of length 6) is copied into various destination strings.

• Fixed-length string

If 'ABCDEF' is copied into a fixed-length string, three results are
possible:

1 If the length of the output string is greater than the length of the
source string, the string is padded with trailing spaces.

Length of output string

Result

10

'ABCDEF

2 If the length of the output string is the same as that of the input
string, the string is simply copied with no modification.

Length of output string

Result

6

'ABCDEF'

3 If the length of the output string is less than the length of the source
string, truncation on the right occurs.

Length of output string

Result

• Varying-length string

3

'ABC'

If the same string (' ABCDEF') is copied into a varying-length string, two
results are possible:

1 If the MAXSTRLEN field of the destination is greater than or equal
to the length of the source, the input string is written into the output
string without modification, and the CURLEN (current length) field of
the output string becomes 6.

2 If the MAXSTRLEN field of the destination is less than the length
of the source string, the source string is truncated on the right and
the CURLEN field is rewritten to its current length. For example, if
MAXSTRLEN = 4, the resulting string contains 'ABCD' and
CURLEN = 4.

2-3

Introduction to String Manipulation (STR$) Routines
2.1 String Semantics in the Run-Time Library

• Dynamic-length string

If a Run-Time Library routine copies the string 'ABCDEF' into a dynamic
destination string, three results are possible:

1 If the length of the destination string is greater than the length of the
source string (6), the result is a dynamic string of length 6 containing
'ABCDEF'. No padding takes place. The Run-Time Library may
deallocate the string and reallocate a new string closer in length to
the length of the source string.

2 If the length of the destination string is less than the length of the
source string, the result is also 'ABCDEF', with a length of 6. The
Run-Time Library deallocates the destination string and allocates a
new string large enough to hold the 6 characters.

3 If the destination string and source string are of equal length, a simple
copy is done. No allocation, deallocation, or padding takes place, and
the destination descriptor is not modified.

2.2 Descriptor Classes and String Semantics

2-4

A calling program passes strings to a Run-Time Library STR$ routine by
descriptor. That is, the argument list entry for an input or output string is
actually the address of a string descriptor. The calling program allocates a
descriptor for the input string that indicates the string's address and length,
so that the called routine can find the string's text and operate on it. The
calling program also allocates a descriptor for the output string. In addition
to length and address fields, each descriptor contains a field (DSC$B_CLASS)
indicating the descriptor's class. The STR$ routine reads the class field to
determine whether to write the output string as fixed length, varying length,
or dynamic string.

To determine the address and length of the data in the input string,
Run-Time Library routines call LIB$ANALYZE_SDESC or
STR$ANALYZE_SDESC. LIB$ routines call LIB$ANALYZE_SDESC; STR$
routines call STR$ANALYZE_SDESC, so that they can signal errors instead
of returning a status.

The STR$ routines provide a centralized facility for analyzing string
descriptors, so that string-handling routines can function independently
of the class of the input string. This means that if the Run-Time Library
recognizes new string types, only the analysis routine needs to be changed,
not the string routines themselves. If you are writing a routine that recognizes
all the string types recognized by the Run-Time Library, your routine should
first call LIB$ANALYZE_SDESC or STR$ANALYZE_SDESC to obtain the
address and length of the input string.

You can als<? use the string descriptor analysis routines to find the length of
a returned string. Assume that your called routine calls one of the Run-Time
Library string-copying routines to create a new string. You now want the
called routine to return the actual length of the new string to the calling
program. The called routine calls LIB$ANALYZE_SDESC to compute this
length. This sequence of calls allows you to create the new string without
knowing its ultimate length at the time it is created.

Introduction to String Manipulation (STR$) Routines
2.2 Descriptor Classes and String Semantics

The Run-Time Library routines recognize the following classes of string
descriptors:

• Z-unspecified

• S-scalar, fixed-length string

• SD-decimal scalar

• VS-varying-length string

• D-dynamic string

• A-array

• NCA-noncontiguous array

For a detailed description of these descriptor classes and their fields, see the
VAX Procedure Calling and Condition Handling Standard in Introduction to
VMS System Routines.

Table 2-1 indicates how the Run-Time Library routines access the fields of
the descriptor for input and output string arguments. Given the class of the
string and the field of the descriptor, the table shows whether the routine
reads, writes, or modifies the field.

Table 2-1 String Passing Techniques Used by the Run-Time Library

String Descriptor Fields

String Type

Input Argument to Routines

Input string passed by
descriptor

Class

Read

Length Pointer

Read Read

Output Argument from Routines; Called Routine Assumes the Descriptor
Class

Output string passed by Ignored Read Read
descriptor, fixed-length

Output string passed by Ignored Read, can be Read, can be
descriptor, dynamic modified modified

Output Argument from Routines; Calling Program Specifies the Descriptor
Class in the Descriptor

Output string, fixed- Read Read Read
length- DSC$K_CLASS =

S,Z,A,NCA,SD

Output string, dynamic- Read Read, can be Read, can be
DSC$K_CLASS_D modified modified

Output string, varying- Read MAXSTRLEN Read
length- DSC$K_CLASS_ is read;
vs CURLEN is

modified

2-5

2.2.1

2.2.2

Introduction to String Manipulation (STR$) Routines
2.2 Descriptor Classes and String Semantics

Conventions for Reading Input String Arguments
When a calling program passes an input string as an argument to a Run-Time
Library routine, the argument list entry is the address of a descriptor. The
called routine examines the class code field of the descriptor to determine
where the routine looks to find the length of the string and the first byte of
the string's text. For each descriptor class, Table 2-2 indicates which field of
the descriptor the routine uses to locate the text and length of the string. For
diagrams of the descriptors, see the VAX Procedure Calling and Condition
Handling Standard in the Introduction to VMS System Routines.

Table 2-2 How Run-Time Library Routines Read Strings

Class Length Address of First Byte of Data

z DSC$W _LENGTH DSC$A _POINTER

s DSC$W _LENGTH DSC$A_POINTER

D DSC$W _LENGTH DSC$A_POINTER

A DSC$L_ARSIZE DSC$A_POINTER

SD DSC$W _LENGTH DSC$A_POINTER

NCA DSC$L _ARSIZE DSC$A_POINTER

vs Word at DSC$A_POINTER Value of DSC$A_POINTER + 2 (Byte
(CURLEN field) after CURLEN field)

Note:

• If the descriptor class is NCA, it is assumed that the string is actually
contiguous.

• If the descriptor class is A or NCA, the element size is assumed to be one
byte.

• If the descriptor class is A or NCA, and the array being passed is
multidimensional, you should be aware of how your language stores
arrays (by column or by row).

Semantics for Writing Output String Arguments

2-6

Normally, Run-Time Library routines return the result of an operation in one
of two ways:

• The called routine returns the result as a function value in RO /Rl. If the
result is too large to fit in RO /Rl, it is returned as a function value in the
first position in the argument list, and the other arguments are shifted one
position to the right.

• The called routine returns the result as an output argument. The calling
program passes to the called routine an argument naming a variable in
which the routine will write the output string. In each RTL routine, the
access field of an output argument contains "write only".

The STR$ routines that produce string results use the first method to pass
the results back to the calling program. Because a return string, by definition,
does not fit in RO/Rl, the function value from a STR$ routine is placed in the
first position in the argument list.

Introduction to String Manipulation (STR$) Routines
2.2 Descriptor Classes and String Semantics

On the other hand, the string manipulation routines in the LIB$ and
OTS$ facilities use the second method. They return their results as output
arguments.

For example, there are three entry points for the string-copying routine,
LIB$SCOPY_DXDX, OTS$SCOPY_DXDX, and STR$COPY_DX. These copy
the source string (source-string) to the destination string (destination-string).
Their formats are as follows:

LIB$SCOPY _DXDX(SOURCE-STRING ,DESTINATION-STRING)
OTS$SCOPY_DXDX(SOURCE-STRING ,DESTINATION-STRING)
STR$COPY _DX(DESTINA TION-STRING ,SOURCE-STRING)

Because the STR$ entry point places the result string in the first position, you
can call STR$COPY_DX using a function reference in languages that support
string functions. In FORTRAN, for example, you can use a function reference
to invoke STR$COPY_DX in the following two ways:

CHARACTER*80 STR$COPY_DX

RETURN-STATUS = STR$COPY_DX(DESTINATION-STRING, SOURCE-STRING)

or

DESTINATION-STRING = STR$COPY_DX(SOURCE-STRIN9)

If you use the second form, you cannot access the return status, which is used
to indicate truncation.

If you use a function reference to invoke a string manipulation routine in
a language that does not support the concept of a string function (such as
MACRO, BLISS, and Pascal), you must place the destination string variable in
the argument list. In Pascal, for example, you can use a function reference to
invoke STR$COPY_DX as follows:

STATUS := STR$COPY_DX(DESTINATION-STRING, SOURCE-STRING);

However, the following statement results in an error:

DESTINATION-STRING := STR$COPY_DX(SOURCE-STRING)

In addition to allocating a variable for the output string, the calling program
must allocate the space for and fill in the fields of the output string descriptor
at compile, link, or run time. High-level languages do this automatically.

When a Run-Time Library routine returns an output string argument to the
calling program, the argument list entry is the address of a descriptor. The
routine determines the semantics of the output string (fixed, varying, or
dynamic) by examining the class of the descriptor for the destination string.
Given the class of the output string's descriptor, Table 2-3 specifies the
semantics used by Run-Time Library routines when writing the string.

2-7

Introduction to String Manipulation (STR$) Routines
2.2 Descriptor Classes and String Semantics

Table 2-3 Semantics and Descriptor Classes

Class Description

z Unspecified

s Scalar, string

D Dynamic string

A Array

SD Scalar decimal

NCA Noncontiguous
array

vs Varying string

2-8

Restrictions Semantics

Treated as class S Fixed-length string

None Fixed-length string

String length < 64K bytes (DSC$W _LENGTH < 64K) Dynamic string

Array is one-dimensional (DSC$B_DIMCT = 1) Fixed-length string
String length < 64K bytes (DSC$L _ARSIZE < 64K)
Length of array elements is one byte (DSC$W_LENGTH = 1)

DSC$B_DIGITS and DSC$8_SCALE are ignored Fixed-length string

Array is one-dimensional (DSC$B_DIMCT = 1) Fixed-length string
String length < 64K bytes (DSC$L _ARSIZE < 64K)
Array is contiguous (DSC$L_S1 = DSC$W_LENGTH)
Length of array elements is one byte (DSC$W _LENGTH = 1)

Current length less than maximum length of string (CURLEN Varying string
< = DSC$W _MAXSTRLEN)

When a called routine returns a string whose length cannot be determined
by the calling routine, the calling routine should also pass an optional
argument to contain the output length. This argument should be an
unsigned 16-bit integer. If the output string is a fixed-length string, the
length argument would reflect the number of characters written, not counting
the fill characters.

The output length argument is useful, for instance, when your program is
reading variable-length records. The program can read the input strings
into a buffer that is large enough to contain the largest. When you wish to
perform the next operation on the contents of the buffer, the length argument
indicates exactly how many characters have been read, so that the program
does not need to manipulate the whole buffer.

For example, LIB$GET_INPUT has the optional argument resultant-length.
If LIB$GET_INPUT is called with a fixed-length, five-character string as an
argument, and the routine reads a record containing 'ABC', then resultant­
length will have a value of 3 and the output string will be 'ABC '. But if the
routine reads a record containing the value 'ABCDEFG', resultant-length will
have a value of 5, and the output string will be 'ABCDE'. In either case, the
calling program will know exactly how many characters (not counting fillers)
the routine has read.

A routine such as STR$COPY_DX does not need the length argument,
because the calling program can determine the length of the output string. If
the output string is dynamic, the length is the same as the input string length.
If the output string is fixed-length, the length is the shorter of the two input
lengths.

Introduction to String Manipulation (STR$) Routines
2.3 Selecting String Manipulation Routines

2.3 Selecting String Manipulation Routines

2.3.1

2.3.2

Efficiency

To perform a given string manipulation operation, you can often choose one
of several routines from the Run-Time Library. The LIB$, OTS$, and STR$
facilities all contain string copying and dynamic string allocation routines.
Furthermore, a MACRO or BLISS program can call several of these routines
using either a JSB or CALL entry point.

You should consider the factors discussed below when choosing the routine
to perform the desired operation.

One of the major considerations in choosing among several routines is the
efficiency of the various options.

In general, LIB$ and STR$ routines execute more efficiently than the
corresponding OTS$ routines. OTS$ routines usually invoke the LIB$ entry
point to perform an operation.

JSB entry points usually execute more efficiently than CALL entry points.
However, a high-level language cannot explicitly access a JSB entry point.
Further, a JSB entry point does not establish a stack frame and executes
entirely in the environment of the calling program. This means, for instance,
that the called routine cannot establish its own condition handler, so it cannot
regain control if an exception occurs during execution. Also, some of the
efficiency gained by using the JSB may be lost because the calling routine
must explicitly save all of the registers that the called routine uses.

Some routines perform a specific operation that is a subset of a more general
capability. These more specialized routines are usually more efficient.
For example, if you want to join two strings together, STR$APPEND and
STR$PREFIX are more specific, and more efficient, than STR$CONCAT.
Similarly, STR$LEFT and STR$RIGHT are subsets of the capabilities of
STR$POS_EXTR.

Argument Passing
The mechanism by which a routine passes or receives arguments may also
help you to decide among several routines that perform basically the same
function.

Routines in the LIB$ and STR$ facilities pass scalar input arguments by
reference to CALL entry points and by immediate value to JSB entry points.
OTS$ routines pass scalar input arguments by immediate value to all entry
points. For most high-level languages, the default passing mechanism is
by reference. Thus if you call a LIB$ or STR$ routine from one of these
languages, it will not be necessary to specify the passing mechanism for input
scalar arguments.

Some routines require you to set up and pass more arguments than others.
For example, some use a single string descriptor, while others require separate
arguments for the length and the address of the string. Which routine you
choose then depends on the form of the information already available in your
program.

2-9

2.3.3

Introduction to String Manipulation (STR$) Routines
2.3 Selecting String Manipulation Routines

Error Handling

2-10

Routines from the LIB$, OTS$, and STR$ facilities handle errors in string
copying differently:

• LIB$

The LIB$ string-copying routines return a completion status. When
an output string must be truncated and its length depends on input
arguments, LIB$ routines consider this to be a partial success; they
therefore return LIB$_STRTRU instead of a severe error. This process
corresponds to the convention of many higher-level languages, which do
not consider truncation to be an error.

• STR$

The STR$ string-copying routines generally signal errors instead of
returning a completion status. In the case of truncation errors, STR$
routines return an error status with a severity of WARNING
(STR$_ TRU). STR$ routines consider range errors to be qualified success.

• OTS$

The OTS$ string-copying routines also signal errors that are considered
fatal (such as invalid descriptor class). However, they are designed to
leave the registers as they would be after a MOVCS instruction. Thus,
the call entry point, like MOVCS, returns in RO the number of bytes
in the source string that were not moved to the destination string. The
JSB entry points for OTS$ string-copying routines also leave registers Rl
through RS as they would be after a MOVCS instruction. See the VAX
Architecture Reference Manual for a complete description of the MOVCS
instruction.

Table 2-4 indicates the errors that each facility considers severe, and the
corresponding message: ·

Table 2-4 Severe Errors, by Facility

Error

Fatal internal error

Illegal string class

Insufficient virtual memory

LI 8$_ OTS$_ STR$_

FATERRLIB FATINTERR FATINTERR

INVSTRDES INVSTRDES ILLSTRCLA

INSVIRMEM INSVIRMEM INSVIRMEM

Some Run-Time Library routines require you to specify the length of a string
or the position of a character within a string. The maximum length for a
string in VMS is 65 ,535 characters. When you refer to character positions
in a string, the first position is 1. Given a string with length L, containing a
substring specified by character positions M to N, the following evaluation
rules apply:

• If M is less than 1, M is considered to equal 1.

• If M is greater than L, the substring specified is the null string.

• If N is greater than L, N is considered to equal the length of the source
string.

• If M is greater than N, the substring specified is the null string.

Introduction to String Manipulation (STR$) Routines
2.3 Selecting String Manipulation Routines

When specifying a substring of length L, the following applies:

• If L is less than zero, the substring specified is the null string. (A null
string is a descriptor with zero length. A descriptor with a nonzero length
and a zero pointer generates an error and yields unspecified results.)

If any of these evaluation rules applies, the range error status (qualified
success) is returned. STR$POSITION represents the exception to this
convention. This routine returns a function value giving the character position
of a substring within a string. If the function value is zero, the substring was
not found.

2.4 Allocating Resources for Dynamic Strings
This section tells how to use the Run-Time Library string resource allocation
routines. These routines allocate virtual memory for a dynamic string and
place the address of the allocated memory in a descriptor.

Dynamic strings may be the most convenient type to write, since you need
not specify constant length, maximum length, or position for them. However,
there are some restrictions on dynamic strings.

• They may cause program execution to be slower at run time.

• They require larger address space.

• They are not supported by all VAX languages.

In most cases, when you call a Run-Time Library routine to manipulate
dynamic strings, the Run-Time Library routine itself allocates the required
memory for the string. Your program needs to allocate only the descriptors.

For example, if you are copying a source string into a dynamic destination
string, simply use one of the library's string-copying routines. Copy the input
string into a dynamic string whose length and address have been initialized
to zero. The string-copying routine will then itself allocate the space that the
calling program needs.

However, if your program must explicitly construct or modify a dynamic
string descriptor, it must use the Run-Time Library allocation and deallocation
routines. This technique may be necessary, for instance, if you are
constructing a string out of components that are not themselves in string
form. Further, you can use one of the deallocation routines to free the
dynamic string after the string resources are no longer needed, in order to
optimize the program's use of resources.

The Run-Time Library provides eight entry points for string resource
allocation and deallocation, all with slightly different input arguments, calling
techniques, or methods of indicating errors. The following lists summarize
these routines and their functions.

The following routines allocate a specified number of bytes of dynamic virtual
memory to a specified string descriptor.

2-11

Introduction to String Manipulation (STR$) Routines
2.4 Allocating Resources for Dynamic Strings

2-12

Routine

LIB$SGET1_00

OTS$SGET1_00

STR$GET1_0X

JSB Entry Point

LIB$SGET 1 _00_R6

OTS$SGET1_00_R6

STR$GETLOX_R4

The following routines return one dynamic string area to free storage, and set
DSC$A_POINTER and DSC$W_LENGTH to zero.

Routine

LIB$SFREE 1 _00

OTS$SFREE 1 _00

STR$FREE1_0X

JSB Entry Point

LIB$SFREE 1 _006

OTS$SFREE 1 _006

STR$FREE LOX _R4

The following routines return one or more dynamic string areas to free
storage, and set DSC$A_POINTER and DSC$W_LENGTH to zero.

Routine

LIB$SFREEN_OO

OTS$SFREEN _OO

JSB Entry Point

LIB$SFREEN _006

OTS$SFREEN _006

If you find it necessary to call the dynamic string allocation routines, there are
several factors to consider.

• When your program calls a string allocation routine, it needs to allocate
space only for the string descriptor before making the call. Your program
does this using the statement of the particular language, either statically
at compile time, or dynamically in local stack storage or heap storage.

• If your routine explicitly allocates dynamic string descriptors in stack
storage, it must explicitly free the associated dynamic string areas by
calling the LIB$SFREEl_DD, OTS$SFREEl_DD, or STR$FREEl_DX
routine. Then your routine must free the storage for the descriptor.
After both areas have been freed, your routine can return to the calling
program. If the deallocation is not done, the dynamic string area becomes
unavailable when the RET instruction removes the descriptors that point
to the string area.

• If a routine has explicitly allocated dynamic string areas, and the routine
is then unwound by the condition handling facility, the allocated address
space cannot be referenced again. For this reason, your program should
establish a handler that will free the associated dynamic string areas
when the SS$_UNWIND condition is signaled. The handler can free
these areas by calling one of the deallocation routines. This technique is
especially important if a large amount of address space is involved, or if
the routine allocates space within a repeating loop.

You can call the string resource allocation routines only from user mode, at
AST or non-AST level. However, be extremely careful if you manipulate
dynamic strings at AST level. The string manipulation routines in the
Run-Time Library do not prevent the strings that they are manipulating
at non-AST level from being modified at AST level.

2.4.1

Introduction to String Manipulation (STR$) Routines
2.4 Allocating Resources for Dynamic Strings

String Zone

For example, consider the case in which a string manipulation routine has
calculated the lengths and addresses involved in a concatenation operation.
This string manipulation routine may be interrupted by an AST. The user, at
AST level, may write to the same string, changing its length and address. It
is then possible to resume execution of the routine with addresses that are no
longer allocated or string lengths that are no longer valid. For this reason, if
you use dynamic strings at AST level, you should allocate, use, and deallocate
them within the AST code.

The dynamic string manipulation routines are intended for use at user mode
only. If you need to manipulate dynamic strings at another access mode,
you should allocate and deallocate storage for each string at that access mode
to avoid side effects. Link each segment of your program that will run at a
different access mode with the /NOSYSSHR qualifier. In this way, you will
establish a separate copy of the string database for each access mode.

All virtual memory for dynamic strings is allocated from a Run-Time Library
zone called the string zone.

The string zone has the following benefits:

• Efficient memory utilization.

• Allocation and deallocation for long strings (more than 136 bytes) is twice
as fast.

• Elimination of paging contention with the default zone by isolation of the
string virtual memory accesses to a separate zone. A direct side effect of
this is that corruptions caused by writing into previously freed strings will
no longer affect items allocated in the default zone, directly easing the
debugging effort for such problems.

The following table shows attribute values for the string zone.

Attribute

Algorithm

Number of lookaside lists

Area of initial size

Area of extension size

Block size

Alignment

Smallest block size

Boundary tags

Page limit

Fill on allocate

Fill on free

Value

Quick fit

1 7 (short strings from 8 to 136 bytes)

4 pages

32 pages

8 bytes

Quadword boundary

16 bytes (includes boundary tags)

Boundary tags are used for long strings

No page limit

No fill on allocate

No fill on free

2-13

STR$ Reference Section
This section provides detailed descriptions of the routines provided by the
VMS RTL String Manipulation (STR$) Facility.

STR$ADD

FORMAT

RETURNS

ARGUMENTS

STR$ADD

Add Two Decimal Strings

The Add Two Decimal Strings routine adds two decimal strings of digits.

STR$ADD asign ,aexp ,adigits ,bsign ,bexp ,bdigits
, csign , cexp , cdigits

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

a sign
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Sign of the first operand. The asign argument is the address of an unsigned
longword containing this sign. Zero is considered positive; 1 is considered
negative.

a exp
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Power of 10 by which adigits is multiplied to get the absolute value of
the first operand. The aexp argument is the address of a signed longword
containing this exponent.

adigits
VMS usage: char_string
type: numeric string, unsigned
access: read only
mechanism: by descriptor

String of unsigned digits representing the absolute value of the first operand
before aexp is applied. The adigits argument is the address of a descriptor
pointing to this string. This string must be an unsigned decimal number.

bsign
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Sign of the second operand. The bsign argument is the address of an
unsigned longword containing the second operand's sign. Zero is considered
positive; 1 is considered negative.

STR-3

STR$ADD

STR-4

bexp
VMS usage: longword_signed
type: longword {signed)
access: read only
mechanism: by reference

Power of 10 by which bdigits is multiplied to get the absolute value of the
second operand. The bexp argument is the address of a signed longword
containing the second operand's exponent.

bdigits
VMS usage: char_string
type: numeric string, unsigned
access: read only
mechanism: by descriptor

String of unsigned digits representing the absolute value of the second
operand before bexp is applied. The bdigits argument is the address of a
descriptor pointing to this string. This string must be an unsigned decimal
number.

csign
VMS usage: longword_unsigned
type: longword {unsigned)
access: write only
mechanism: by reference

Sign of the result. The csign argument is the address of an unsigned
longword containing the result's sign. Zero is considered positive; 1 is
considered negative.

cexp
VMS usage: longword_signed
type: longword {signed)
access: write only
mechanism: by reference

Power of 10 by which cdigits is multiplied to get the absolute value of the
result. The cexp argument is the address of a signed longword containing this
exponent.

cdigits
VMS usage: char_string
type: numeric string, unsigned
access: write only
mechanism: by descriptor

String of unsigned digits representing the absolute value of the result before
cexp is applied. The cdigits argument is the address of a descriptor pointing
to this string. This string is an unsigned decimal number.

DESCRIPTION

CONDITION
VALUES
RETURNED

CONDITION
VALUES
SIGNALED

STR$ADD

STR$ADD adds two strings of decimal numbers (a and b). Each number to
be added is passed to STR$ADD in three arguments:

1 xdigits-the string portion of the number

2 xexp-the power of ten needed to obtain the absolute value of the
number

3 xsign-the sign of the number

The value of the number x is derived by multiplying xdigits by 10xexp and
applying xsign. Therefore, if xdigits is equal to '2' and xexp is equal to 3 and
xsign is equal to 1, then the number represented in the x arguments is
2 * 103 plus the sign, or -2000.

The result of the addition (c) is also returned in those three parts.

SS$_NORMAL

STR$_TRU

LIB$_1NV ARG

STR$_FA TINTERR

STR$_1LLSTRCLA

STR$_1NSVIRMEM

STR$_ WRONUMARG

Routine successfully completed.

String truncation warning. The fixed-length
destination string could not contain all the
characters.

Invalid argument.

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGITAL in a Software Performance Report (SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the VAX Procedure Calling and
Condition Handling Standard.

Insufficient virtual memory. STR$ADD could not
allocate heap storage for a dynamic or temporary
string.

Wrong number of arguments.

STR-5

STR$ADD

EXAMPLE

100 !+
! This is a sample arithmetic program
! showing the use of STR$ADD to add
! two decimal strings.
!-

ASIGN% = 1%
AEXP% = 3%
ADIGITS$ = '1'
BSIGN% = 0%
BEXP% = -4%
BDIGITS$ = '2'
CSIGN% = 0%
CEXP% = 0%
CDIGITS$ = 'O'
PRINT "A= "; ASIGN%; AEXP%; ADIGITS$
PRINT "B = "; BSIGN%; BEXP%; BDIGITS$
CALL STR$ADD (ASIGN%, AEXP%, ADIGITS$, &

BSIGN%, BEXP%, BDIGITS$, &
CSIGN%, CEXP%, CDIGITS$)

PRINT "C = "; CSIGN%; CEXP%; CDIGITS$
999 END

STR-6

This BASIC example uses STR$ADD to add two decimal strings, where the
following values apply:

A= -1000 (ASIGN = 1, AEXP = 3, ADIGITS = 'l')
B = .0002 (BSIGN = 0, BEXP = -4, BDIGITS = '2')

The output generated by this program is listed below; note that the decimal
value of C equals -999.9998 (CSIGN = 1, CEXP = -4, CDIGITS = '9999998').

A = 1 3 1
B = 0 -4 2
c = 1 -4 9999998

STR$ANALYZE_SDESC

STR$ANAL YZE_SDESC Analyze String
Descriptor

FORMAT

The Analyze String Descriptor routine extracts the length and starting
address of the data for a variety of string descriptor classes.

STR$ANAL YZE_SDESC input-descriptor
, word-integer-length
, data-address

corresponding jsb STR$ANALYZE_SDESC_R1
entry point

RETURNS

ARGUMENTS

None.

input-descriptor
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Input descriptor from which STR$ANALYZE_SDESC extracts the length
of the data and the address at which the data starts. The input-descriptor
argument is the address of a descriptor pointing to the input data.

word-integer-length
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference for CALL entry point, by value for JSB entry

point

Length of the data; this length is extracted from the descriptor by
STR$ANALYZE_SDESC. The word-integer-length argument is the address
of an unsigned word integer into which STR$ANALYZE_SDESC writes the
data length.

data-address
VMS usage:
type:
access:
mechanism:

address
longword (unsigned)
write only
by reference for CALL entry point, by value for JSB entry
point

Address of the data; this address is extracted from the descriptor by
STR$ANALYZE_SDESC. The data-address argument is an unsigned
longword into which STR$ANALYZE_SDESC writes the address of the
data.

STR-7

STR$ANALYZE_SDESC

DESCRIPTION

CONDITION
VALUES
SIGNALED

STR-8

STR$ANALYZE_SDESC takes as input a descriptor argument and extracts
from the descriptor the length of the data and the address at which the data
starts for a variety of string descriptor classes. See LIB$ANALYZE_SDESC
for a list of classes.

STR$ANALYZE_SDESC returns the length of the data in the word-integer­
length argument and the starting address of the data in the data-address
argument.

STR$ANALYZE_SDESC signals an error if an invalid descriptor class is
found.

STR$_1LLSTRCLA Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the VAX Procedure Calling and
Condition Handling Standard.

STR$APPEND

STR$APPEND Append String

FORMAT

RETURNS

ARGUMENTS

CONDITION
VALUES
RETURNED

The Append String routine appends a source string to the end of a
destination string. The destination string must be a dynamic or varying­
length string.

STR$APPEND destination-string ,source-string

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

destination-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string to which STR$APPEND appends the source string. The
destination-string argument is the address of a descriptor pointing to the
destination string. This destination string must be dynamic or varying-length.

source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string that STR$APPEND appends to the end of the destination string.
The source-string argument is the address of a descriptor pointing to this
source string.

SS$_NORMAL Routine successfully completed.

STR-9

STR$APPEND

CONDITION
VALUES
SIGNALED

EXAMPLE
10 !+

STR$_FA TINTERR

STR$_1LLSTRCLA

STR$_1NSVIRMEM

STR$_STRTOOLON

This example program uses
STR$APPEND to append a source
string to a destination string.

!-

DST$ = 'VAX/'
SRC$ = 'VMS'
CALL STR$APPEND (DST$, SRC$)
PRINT "DST$= ";DST$
END

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGIT AL in a Software Performance Report {SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the VAX Procedure Calling and
Condition Handling Standard.

Insufficient virtual memory. STR$APPEND could
not allocate heap storage for a dynamic or
temporary string.

The combined lengths of the source and
destination strings exceeded 65,535.

This BASIC example uses STR$APPEND to append a source string 'VMS', to
a destination string 'VAX/'.

The output generated by this program is as follows:

DST$ = VAX/VMS

STR-10

STR$CASE_BLIND_COMPARE

STR$CASE_BLIND_CQMPARE Compare Strings
Without Regard to Case

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

The Compare Strings Without Regard to Case routine compares two input
strings of any supported class and data type without regard to whether
the alphabetic characters are uppercase or lowercase.

STR$CASE_BLIND_COMPARE first-source-string
, second-source-string

VMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by value

The values returned by STR$CASE_BLIND_COMPARE and the conditions
to which they translate are as follows:

Returned Value Condition

-1

0

First-source-string is less than second-source-string

Both are the same (with blank fill for shorter string)

First-source-string is greater than second-source-string

first-source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

First string. The first-source-string argument is the address of a descriptor
pointing to the first string.

second-source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Second string. The second-source-string argument is the address of a
descriptor pointing to the second string.

STR$CASE_BLIND_COMP ARE does not distinguish between uppercase and
lowercase characters. The contents of both strings are converted to uppercase
before the strings are compared, but the source strings themselves are not
changed. STR$CASE_BLIND_COMPARE uses the DEC Multinational
Character Set.

STR-11

STR$CASE_BLIND_COMPARE

CONDITION
VALUE
SIGNALED

EXAMPLE

STR$_1LLSTRCLA

PROGRAM CASE_BLIND(INPUT, OUTPUT);

{+}
{ This program demonstrates the use of
{ STR$CASE_BLIND_COMPARE.
{
{ First, declare the external function.
{-}

FUNCTION STR$CASE_BLIND_COMPARE(STR1 : VARYING
[A] OF CHAR; STR2 : VARYING [BJ OF
CHAR) : INTEGER; EXTERN;

{+}
{ Declare the variables to be used in the
{ main program.
{-}

VAR
STRING1
STRING2
RET_STATUS

{+}

VARYING [256] OF CHAR;
VARYING [256] OF CHAR;
INTEGER;

{ Begin the main program. Read values for
{ the strings to be compared. Call
{ STR$CASE_BLIND_COMPARE. Print the
{ result.
{-}

BEGIN
WRITELN('ENTER THE FIRST STRING: ');
READLN(STRING1);
WRITELN('ENTER THE SECOND STRING: ');
READLN(STRING2);

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the VAX Procedure Calling and
Condition Handling Standard.

RET_STATUS := STR$CASE_BLIND_COMPARE(STRING1, STRING2);
WRITELN(RET_STATUS);

END.

STR-12

This Pascal example shows how to call STR$CASE_BLIND_COMPARE to
determine whether two strings are equal regardless of case. One example of
the output of this program is as follows:

$ RUN CASE_BLIND
ENTER THE FIRST STRING: KITTEN
ENTER THE SECOND STRING: kitTeN

0

STR$COMPARE

STR$COMPARE Compare Two Strings

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

The Compare Two Strings routine compares the contents of two strings.

STR$COMPARE first-source-string
, second-source-string

VMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The values returned by STR$COMP ARE and the conditions to which they
translate are as follows:

Returned Value Condition

-1

0

First-source-string is less than second-source-string

First-source-string is equal to second-source-string

First-source-string is greater than second-source-string

first-source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

First string. The first-source-string argument is the address of a descriptor
pointing to the first string.

second-source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Second string. The second-source-string argument is the address of a
descriptor pointing to the second string.

STR$COMP ARE compares two strings for the same contents. If the strings
are unequal in length, the shorter string is considered to be filled with blanks
to the length of the longer string before the comparison is made. This routine
distinguishes between uppercase and lowercase alphabetic characters.

STR-13

STR$COMPARE

CONDITION
VALUE
SIGNALED

EXAMPLE

STR$_1LLSTRCLA

100 EXTERNAL INTEGER FUNCTION STR$COMPARE
SRC1$ = 'ABC'
SRC2$ = 'BCD

+

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the VAX Procedure Calling and
Condition Handling Standard.

Note that STR$COMPARE will treat SRC1$ as if it were the same
length as SRC2$ for the purpose of the comparison. Thus, it
will treat the contents of SRC1$ as 'ABC '. However, it
will only 'treat' the contents as longer; the contents of
the source string are not actually changed.

I% = STR$COMPARE(SRC1$, SRC2$)
IF I% = 1 THEN RESULT$ = ' IS GREATER THAN '
IF I% = 0 THEN RESULT$ = ' IS EQUAL TO '
IF I% = -1 THEN RESULT$ = ' IS LESS THAN '
PRINT SRC1$; RESULT$; SRC2$

999 END

STR-14

This BASIC program uses STR$COMP ARE to compare two strings. The
output generated by this program is as follows:

ABC IS LESS THAN BCD

STR$COMPARE_EQL

STR$COMPARE_EQL Compare Two Strings for
Equality

FORMAT

RETURNS

ARGUMENTS

The Compare Two Strings for Equality routine compares two strings to
see if they have the same length and contents. Uppercase and lowercase
characters are not considered equal.

STR$COMPARE_EQL first-source-string
, second-source-string

VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

The values returned by STR$COMP ARE and the conditions to which they
translate are as follows:

Returned Value Condition

0 The length and the contents of first-source-string are
equal to the length and contents of second-source-string.

Either the length of first-source-string is not equal to
the length of second-source-string, or the contents
of first-source-string are not equal to the contents of
second-source-string, or both.

first-source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

First source string. The first-source-string argument is the address of a
descriptor pointing to the first source string.

second-source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Second source string. The second-source-string argument is the address of a
descriptor pointing to the second source string.

STR-15

STR$COMPARE_EQL

CONDITION
VALUES
SIGNALED

EXAMPLE

STR$_1LLSTRCLA

PROGRAM COMPARE_EQL(INPUT, OUTPUT);

{+}

{ This program demonstrates the use of
{ STR$COMPARE_EQL to compare two strings.
{ Strings are considered equal only if they
{ have the same contents and the same length.
{
{ First, declare the external function.
{-}

FUNCTION STR$COMPARE_EQL(SRC1STR : VARYING
[A] OF CHAR; SRC2STR : VARYING [BJ
OF CHAR) : INTEGER; EXTERN;

{+}
{ Declare the variables used in the main program.
{-}

VAR
STRING1
STRING2
RET_STATUS

{+}

VARYING [256] OF CHAR;
VARYING [256] OF CHAR;
INTEGER;

{ Begin the main program. Read the strings
{ to be compared. Call STR$COMARE_EQL to compare
{ the strings. Print the result.
{-}

BEGIN
WRITELN('ENTER THE FIRST STRING: ');
READLN(STRING1);
WRITELN ('ENTER THE SECOND STRbG: ') ;
READLN(STRING2);
RET_STATUS := STR$COMPARE_EQL(STRING1, STRING2);
WRITELN(RET_STATUS);

END.

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the VAX Procedure Calling and
Condition Handling Standard.

This Pascal example demonstrates the use of STR$COMPARE_EQL. A
sample of the output generated by this program is as follows:

STR-16

$ RUN COMPARE_EQL
ENTER THE FIRST STRING: frog
ENTER THE SECOND STRING: Frogs

1

STR$COMPARE_MUL Tl

STR$COMPARE_MUL Tl Compare Two
Strings for Equality Using
Multinational Character Set

FORMAT

RETURNS

ARGUMENTS

The Compare Two Strings for Equality Using Multinational Character
Set routine compares two character strings for equality using the DEC
Multinational Character Set.

STR$COMPARE_MUL Tl first-source-string

VMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by value

, second-source-string
[,flags-value]
{,foreign-language]

The values returned by STR$COMPARE_MUL TI and the conditions to which
they translate are as follows:

Returned Value Condition

-1

0

First-source-string is less than second-source-string.

Both strings are the same; the shorter string is blank filled.

First-source-string is greater than second-source-string.

first-source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

First string in the comparison. The first-source-string argument is the address
of a descriptor pointing to the first string.

second-source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Second string in the comparison. The second-source-string argument is the
address of a descriptor pointing to the second string.

STR-17

STR$COMPARE_MULTI

DESCRIPTION

STR-18

flags-value
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

A single flag bit. The flags-value argument is a signed longword integer that
contains this flag bit. The default value of flags-value is zero; in other words,
flags-value is case sensitive.

Symbol Meaning

CASEBLIND If bit is set, uppercase and lowercase characters are equivalent.

foreign-language
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Indicator that determines the foreign language table to be used. The foreign­
language argument is an unsigned longword that contains this foreign
language table indicator. The default value of foreign-language is 1.

Value Language

1 Multinational table

2 Danish table

3 Finnish/Swedish table

4 German table

5 Norwegian table

6 Spanish table

STR$COMP ARE_MUL TI compares two character strings to see if they
have the same contents. Two strings are "equal" if they contain the same
characters in the same sequence, even if one of them is blank filled to a
longer length than the other. The DEC Multinational Character Set, or
foreign language variations of the DEC Multinational Character Set, are used
in the comparison.

See the VMS 1/0 User's Reference Volume for more information about the
DEC Multinational Character Set.

CONDITION
VALUES
SIGNALED

STR$_1LLSTRCLA

LIB$_1NV ARG

STR$COMPARE_MUL Tl

Illegal string class. Severe error. The descriptor of
first-source-string and/or second-source-string
contains a class code that is not supported by
the VAX Procedure Calling and Condition Handling
Standard.

Invalid argument. Severe error.

STR-19

STR$CONCAT

STR$CONCAT Concatenate Two or More Strings

FORMAT

RETURNS

ARGUMENTS

STR-20

The Concatenate Two or More Strings routine concatenates all specified
source strings into a single destination string.

STR$CONCAT destination-string ,source-string
[,source-string ...]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

destination-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string into which STR$CONCAT concatenates all specified source
strings. The destination-string argument is the address of a descriptor
pointing to this destination string.

source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

First source string; STR$CONCAT requires at least one source string. The
source-string argument is the address of a descriptor pointing to the first
source string. The maximum number of source strings that STR$CONCAT
allows is 254.

source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Additional source strings; STR$CONCAT requires at least one source string.
The source-string argument is the address of a descriptor pointing to the
additional source string. The maximum number of source strings that
STR$CONCAT allows is 254.

DESCRIPTION

CONDITION
VALUES
RETURNED

CONDITION
VALUES
SIGNALED

EXAMPLES

il 10 ! +

STR$CONCAT

STR$CONCAT concatenates all specified source strings into a single
destination string. The strings can be of any class and data type, provided
that the length fields of the descriptors indicate the lengths of the strings in
bytes. You must specify at least one source string, and you can specify up to
254 source strings. The maximum length of the concatenated string is 65,535
bytes.

A warning status is returned if one or more input characters were not copied
to the destination string.

SS$_NORMAL

STR$_TRU

STR$_F A TINTERR

STR$_1LLSTRCLA

STR$_1NSVIRMEM

STR$_STRTOOLON

STR$_ WRONUMARG

Normal successful completion. All characters in
the input strings were copied into the destination
string.

String truncation warning. One or more input
characters were not copied into the destination
string. This can happen when the destination is a
fixed-length string.

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGITAL in a Software Performance Report (SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the VAX Procedure Calling and
Condition Handling Standard.

Insufficient virtual memory. STR$CONCA T
could not allocate heap storage for a dynamic
or temporary string.

String length exceeds 65,535 bytes.

Wrong number of arguments. You tried to pass
fewer than two or more than 255 arguments to
STR$CONCA T.

! This example program uses STR$CONCAT

!-

to concatenate four source strings into a
single destination string.

EXTERNAL INTEGER FUNCTION STR$CONCAT
STATUS% = STR$CONCAT (X$, 'A', 'B', 'C', 'D')
PRINT "X$ = ";X$
END

The output generated by this BASIC program is as follows:

X$ = ABCD

STR-21

STR$CONCAT

MSG1:
MSG1_LEN = .-MSG1
MSG2:
MSG2_LEN = .-MSG2
RESULT:

MSGLDSC:

MSG2_DSC:

RESULT_DSC:

.ASCII /VMS Run-/

.ASCII /Time Library/

.BLKB MSG1 LEN + MSG2_LEN

.WORD MSG1 LEN

.BYTE 14

.BYTE 1

.ADDRESS MSG!

.WORD MSG2_LEN

.BYTE 14

.BYTE 1

.ADDRESS MSG2

.WORD MSG1 LEN + MSG2_LEN

.BYTE 14

.BYTE 1

.ADDRESS RESULT

entry point

first string
its length
second string
its length
string to hold concatenation

DSC$W_LENGTH
DSC$B_DTYPE
DSC$B_CLASS
DSC$A_POINTER

DSC$W_LENGTH
DSC$B_DTYPE
DSC$B_CLASS
DSC$A_POINTER

DSC$W_LENGTH
DSC$B_DTYPE
DSC$B_CLASS
DSC$A_POINTER

.ENTRY
PUS HAQ
PUSHAQ
PUS HAQ
CALLS

EXAM1, AM<>
MSG2_DSC
MSG1_DSC
RESULT_DSC

push the descriptors
in reverse order

STR-22

#3, GASTR$CONCAT

PUSHAQ RESULT_DSC
CALLS #1, GALIB$PUT_OUTPUT
RET
.END EXAM1

concatenate strings

descr. of string to display
display it
return to calling routine

The output generated by this MACRO program is as follows:

VMS Run-Time Library

STR$COPV_DX

STR$COPY_DX Copy a Source String Passed by
Descriptor to a Destination String

FORMAT

The Copy a Source String Passed by Descriptor to a Destination String
routine copies a source string to a destination string. Both strings are
passed by descriptor.

STR$COPV _DX destination-string ,source-string

corresponding jsb STR$COPV_DX_R8
entry point

RETURNS

ARGUMENTS

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

destination-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string into which STR$COPY_DX writes the source string;
depending on the class of the destination string, the following actions occur:

Class Field

DSC$K_CLASS_S,Z,SD,A,NCA

DSC$K_CLASS_D

DSC$K_CLASS_VS

Action

Copy the source string. If needed, space is
filled or truncated on the right.

If the area specified by the destination
descriptor is large enough to contain the
source string, copy the source string and set
the new length in the destination descriptor.
If the area specified is not large enough,
return the previous space allocation (if any)
and then dynamically allocate the amount
of space needed. Copy the source string
and set the new length and address in the
destination descriptor.

Copy the source string to the
destination string up to the limit of
DSC$W_MAXSTRLEN with no padding.
Adjust current length field to actual number
of bytes copied.

The destination-string argument is the address of a descriptor pointing to the
destination string.

STR-23

STR$COPY _DX

DESCRIPTION

CONDITION
VALUES
RETURNED

CONDITION
VALUES
SIGNALED

STR-24

source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string that STR$COPY_DX copies into the destination string; the
descriptor class of the source string can be unspecified, fixed length, dynamic,
scalar decimal, array, noncontiguous array, or varying length. The source­
string argument is the address of a descriptor pointing to this source string.
(See the description of LIB$ANALYZE_SDESC for possible restrictions.)

STR$COPY_DX copies a source string to a destination string, where both
strings are passed by descriptor. All conditions except success and truncation
are signaled; truncation is returned as a warning condition value.

STR$COPY_DX passes the source string by descriptor. In addition, an
equivalent JSB entry point is provided, with RO being the first argument (the
descriptor of the destination string), and Rl the second (the descriptor of the
source string).

SS$_NORMAL

STR$_TRU

STR$_FATINTERR

STR$_1LLSTRCLA

STR$_1NSVIRMEM

Normal successful completion. All characters in
the input string were copied to the destination
string.

String truncation warning. The fixed-length
destination string could not contain all of the
characters copied from the source string.

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGITAL in a Software Performance Report (SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the VAX Procedure Calling and
Condition Handling Standard.

Insufficient virtual memory. STR$COPY _DX
could not allocate heap storage for a dynamic
or temporary string.

STR$COPV_R

STR$COPY_R Copy a Source String Passed by
Reference to a Destination String

FORMAT

The Copy a Source String Passed by Reference to a Destination String
routine copies a source string passed by reference to a destination string.

STR$COPV_R destination-string
, word-integer-source-length
, source-string-address

corresponding jsb STR$COPV_R_R8
entry point

RETURNS

ARGUMENTS

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

destination-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string into which STR$COPY_R copies the source string. The
destination-string argument is the address of a descriptor pointing to the
destination string.

The class field determines the appropriate action.

word-integer-source-length
VMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Length of the source string. The word-integer-source-length argument is the
address of an unsigned word containing the length of the source string.

STR-25

STR$COPV_R

DESCRIPTION

CONDITION
VALUES
RETURNED

STR-26

source-string-address
VMS usage: char_string
type: character string
access: read only
mechanism: by reference

Source string that STR$COPY_R copies into the destination string. The
source-string-address argument is the address of the source string.

See the description of LIB$ANALYZE_SDESC for possible restrictions.

STR$COPY_R copies a source string passed by reference to a destination
string. All conditions except success and truncation are signaled; truncation is
returned as a warning condition value.

A JSB entry point is provided, with RO being the first argument, Rl the
second, and R2 the third. The length argument is passed in bits 15:0 of Rl.

Depending on the class of the destination string, the following actions occur:

Class Field Action

DSC$K_CLASS_S,Z,SD,A,NCA Copy the source string. If needed, space is
filled or truncated on the right.

DSC$K_CLASS_D

DSC$K_CLASS_VS

SS$_NQRMAL

STR$_TRU

If the area specified by the destination
descriptor is large enough to contain the
source string, copy the source string and set
the new length in the destination descriptor.
If the area specified is not large enough,
return the previous space allocation (if any)
and then dynamically allocate the amount
of space needed. Copy the source string
and set the new length and address in the
destination descriptor.

Copy the source string to the destination
string up to the limit of DSC$W_
MAXSTRLEN with no padding. Adjust
current length field to actual number of bytes
copied.

Normal successful completion. All characters in
the input string were copied to the destination
string.

String truncation warning. The fixed-length
destination string could not contain all of the
characters copied from the source string.

CONDITION
VALUES
SIGNALED

STR$_FATINTERR

STR$_1LLSTRCLA

STR$_1NSVIRMEM

STR$COPV_R

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGIT AL in a Software Performance Report (SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the VAX Procedure Calling and
Condition Handling Standard.

Insufficient virtual memory. STR$COPY _R could
not allocate heap storage for a dynamic or
temporary string.

STR-27

STR$DIVIDE

STR$DIVIDE Divide Two Decimal Strings

FORMAT

RETURNS

ARGUMENTS

STR-28

The Divide Two Decimal Strings routine divides two decimal strings.

STR$DIVI DE asign ,aexp ,adigits ,bsign ,bexp ,bdigits
, total-digits ,round-truncate-indicator
, csign , cexp , cdigits

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

asign
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Sign of the first operand. The asign argument is the address of an unsigned
longword containing the first operand's sign. Zero is considered positive; 1 is
considered negative.

a exp
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Power of 10 by which adigits is multiplied to get the absolute value of
the first operand. The aexp argument is the address of the first operand's
exponent.

adigits
VMS usage: char_string
type: numeric string, unsigned
access: read only
mechanism: by descriptor

First operand's numeric string. The adigits argument is the address of a
descriptor pointing to the first operand's numeric string. The string must be
an unsigned decimal number.

STR$DIVIDE

bsign
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Sign of the second operand. The bsign argument is the address of an
unsigned longword containing the second operand's string. Zero is considered
positive; 1 is considered negative.

bexp
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Power of 10 by which bdigits is multiplied to get the absolute value of the
second operand. The bexp argument is the address of the second operand's
exponent.

bdigits
VMS usage: char_string
type: numeric string, unsigned
access: read only
mechanism: by descriptor

Second operand's numeric string. The bdigits argument is the address of a
descriptor pointing to the second operand's number string. The string must
be an unsigned decimal number.

total-digits
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Number of digits to the right of the decimal point. The total-digits argument
is the address of a signed longword containing the number of total digits.
STR$DIVIDE uses this number to carry out the division.

round-truncate-indicator
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Indicator of whether STR$DIVIDE is to round or truncate the result; zero
means truncate, 1 means round. The round-truncate-indicator argument is
the address of a longword bit mask containing this indicator.

STR-29

STR$DIVIDE

DESCRIPTION

CONDITION
VALUES
RETURNED

STR-30

csign
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Sign of the result. The csign argument is the address of an unsigned
longword containing the sign of the result. Zero is considered positive; 1
is considered negative.

cexp
VMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Power of 10 by which cdigits is multiplied to get the absolute value of the
result. The cexp argument is the address of a signed longword containing the
exponent.

cdigits
VMS usage: char_string
type: numeric string, unsigned
access: write only
mechanism: by descriptor

Result's numeric string. The cdigits argument is the address of a descriptor
pointing to the numeric string of the result. This string is an unsigned decimal
number.

STR$DIVIDE divides two decimal strings. The divisor and dividend are
passed to STR$DIVIDE in three parts: (1) the sign of the decimal number,
(2) the power of 10 needed to obtain the absolute value, and (3) the numeric
string. The result of the division is also returned in those three parts.

SS$_NORMAL

STR$_TRU

Normal successful completion.

String truncation warning. The fixed-length
destination string could not contain all of the
characters.

CONDITION
VALUES
SIGNALED

EXAMPLE

100 !+

LIB$_1NV ARG

STR$_DIVBY _ZER

STR$_F A TINTERR

STR$_1LLSTRCLA

STR$_1NSVIRMEM

STR$_WRONUMARG

! This BASIC example program uses STR$DIVIDE
! to divide two decimal strings and truncates
! the result.
!-

ASIGN% = 1%
AEXP% = 3%
ADIGITS$ = '1'
BSIGN% = 0%
BEXP% = -4%
BDIGITS$ = '2'
CSIGN% = 0%
CEXP% = 0%
CDIGITS$ = '0'
PRINT "A= "; ASIGN%; AEXP%; ADIGITS$
PRINT "B = "; BSIGN%; BEXP%; BDIGITS$
CALL STR$DIVIDE (ASIGN%, AEXP%, ADIGITS$, &

BSIGN%, BEXP%, BDIGITS$, &

Invalid argument.

Division by zero.

STR$DIVIDE

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGIT AL in a Software Performance Report (SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the VAX Procedure Calling and
Condition Handling Standard.

Insufficient virtual memory. STR$DIVIDE could not
allocate heap storage for a dynamic or temporary
string.

Wrong number of arguments.

3%, 0%, CSIGN%, CEXP%, CDIGITS$)
PRINT "C = "; CSIGN%; CEXP%; CDIGITS$

1500 END

This BASIC program uses STR$DIVIDE to divide two decimal strings, A
divided by B, where the following values apply:

A= -1000 (ASIGN = 1, AEXP = 3, ADIGITS = '1')
B = .0002 (BSIGN = 0, BEXP = -4, BDIGITS = '2')

The output generated by this program is as follows:

A = 1 3 1
B = 0 -4 2
c = 1 -3 5000000000

Thus, the decimal value of C equals -5000000 (CSIGN = 1, CEXP = -3,
CDIGITS = 5000000000).

STR-31

STR$DUPL_CHAR

STR$DUPL_CHAR Duplicate Character n Times

FORMAT

The Duplicate Character n Times routine generates a string containing n
duplicates of the input character. If the destination string is an "empty"
dynamic string descriptor, STR$DUPL_CHAR allocates and initializes the
string.

STR$DUPL_CHAR destination-string [,repetition-count]
[,A SC/I-character]

corresponding jsb STR$DUPL_CHAR_R8
entry point

RETURNS

ARGUMENTS

STR-32

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

destination-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string into which STR$DUPL_CHAR writes repetition-count
copies of the input character. The destination-string argument is the address
of a descriptor pointing to the destination string.

repetition-count
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Number of times ASCII-character is duplicated; this is an optional argument
(if omitted, the default is 1). The repetition-count argument is the address of
a signed longword containing the number.

ASCII-character
VMS usage: char_string
type: character strii.g
access: read only
mechanism: by reference

ASCII character that STR$DUPL_CHAR writes repetition-count times into
the destination string. The ASCII-character argument is the address of a
character string containing this character. This is an optional argument; if
omitted, the default is a space.

CONDITION
VALUES
RETURNED

CONDITION
VALUES
SIGNALED

EXAMPLE

10 ! +

SS$_NORMAL

STR$_NEGSTRLEN

STR$_TRU

STR$_F A TINTERR

STR$_1LLSTRCLA

STR$_1NSVIRMEM

STR$_STRTOOLON

! This example uses STR$DUPL_CHAR to
! duplicate the character 'A' four times.
!-

EXTERNAL INTEGER FUNCTION STR$DUPL_CHAR
STATUS%= STR$DUPL_CHAR (X$, 4%, 'A' BY REF)
PRINT X$
END

STR$DUPL_CHAR

Normal successful completion.

Alternate success. The length argument contained
a negative value; zero was used.

String truncation warning. The fixed-length
destination string could not contain all of the
characters.

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGIT AL in a Software Performance Report (SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the VAX Procedure Calling and
Condition Handling Standard.

Insufficient virtual memory. STR$DUPL_CHAR
could not allocate heap storage for a dynamic or
temporary string.

String length exceeds 65,535 bytes.

These BASIC statements set X$ equal to 'AAAA'.

The output generated by this program is as follows:

AAAA

STR-33

STR$ELEMENT

STR$ELEMENT Extract Delimited Element
Substring

FORMAT

RETURNS

ARGUMENTS

STR-34

The Extract Delimited Element Substring routine extracts an element from
a string in which the elements are separated by a specified delimiter.

STR$ELEMENT destination-string ,element-number
, delimiter-string , source-string

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

destination-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string into which STR$ELEMENT copies the selected substring.
The destination-string argument is the address of a descriptor pointing to the
destination string.

element-number
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Element number of the delimited element substring to be returned. The
element-number argument is the address of a signed longword containing
the desired element number. Zero is used to represent the first delimited
element substring, one is used to represent the second, and so forth.

delimiter-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Delimiter string used to separate element substrings. The delimiter-string
argument is the address of a descriptor pointing to the delimiter string.
Delimiter-string must be exactly one character long.

DESCRIPTION

CONDITION
VALUES
RETURNED

CONDITION
VALUES
SIGNALED

STR$ELEMENT

source-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Source string from which STR$ELEMENT extracts the requested delimited
substring. The source-string argument is the address of a descriptor pointing
to the source string.

STR$ELEMENT extracts an element from a string in which the elements are
separated by a specified delimiter.

For example, if source-string is MON"TUE"WED"THU"FRI"SAT'SUN,
delimiter-string is", and element-number is 2, then STR$ELEMENT returns
the string WED.

Once the specified element is located, all the characters in that delimited
element are returned. That is, all characters between the element-number
and the element-number + 1 delimiters are written to destination-string. At
least element-number delimiters must be found. If exactly element-number
delimiters are found, then all values from the element-number delimiter
to the end of the string are returned. If element-number equals 0 and no
delimiters are found, the entire input string is returned.

STR$ELEMENT duplicates the functions of the DCL lexical function
F$ELEMENT.

SS$_NORMAL

STR$_1NVDELIM

STR$_NOELEM

STR$_TRU

STR$_F A TINTERR

STR$_1LLSTRCLA

STR$_1NSVIRMEM

Normal successful completion.

Delimiter string is not exactly one character long
(warning).

Not enough delimited characters found to satisfy
requested element number (warning).

String truncation. The fixed-length destination
string could not contain all the characters in the
delimited substring (warning).

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGIT AL in a Software Performance Report (SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the VAX Procedure Calling and
Condition Handling Standard.

Insufficient virtual memory. STR$ELEMENT
could not allocate heap storage for a dynamic
or temporary string.

STR-35

STR$FIND_FIRST_IN_SET

STR$FIND_FIRST_IN_SET Find First Character
in a Set of Characters

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

STR-36

The Find First Character in a Set of Characters routine searches a string
one character at a time, from left to right, comparing each character in
the string to every character in a specified set of characters for which it is
searching.

STR$FIND_FIRST_IN_SET source-string
, set-of-characters

VMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by value

Position in source-string where the first match is found; zero if no match is
found.

source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String that STR$FIND_FIRST_IN _SET compares to the set of characters,
looking for the first match. The source-string argument is the address of a
descriptor pointing to the character string.

set-of-characters
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Set of characters that STR$FIND_FIRST_IN_SET is searching for in the
string. The source-string argument is the address of a descriptor pointing to
the set of characters.

STR$FINDJIRST_IN _SET compares each character in the string to every
character in the specified set of characters. As soon as the first match is
found, STR$FIND_FIRST_IN _SET returns the position in the string where
the matching character was found. If no match is found, 0 is returned. If
either source-string or set-of-characters is of zero length, 0 is returned.

CONDITION
VALUE
SIGNALED

EXAMPLE

STR$_1LLSTRCLA

PROGRAM FIND_FIRST(INPUT, OUTPUT);

{+}
{ This example uses STR$FIND_FIRST_IN_SET
{ to find the first character in the source
{ string (STRING1) that matches a character
{ in the set of characters being searched for
{ (CHARS) .
{
{ First, declare the external function.
{-}

FUNCTION STR$FIND_FIRST_IN_SET(STRING :

{+}

VARYING [A] OF CHAR; SETOFCHARS
VARYING [BJ OF CHAR) : INTEGER;
EXTERN;

{ Declare the variables used in the main program.
{-}

VAR
STRING!
CHARS
RET_STATUS

{+}

VARYING [256] OF CHAR;
VARYING [256] OF CHAR;
INTEGER;

{ Begin the main program. Read the source string

STR$FIND_FIRST_IN_SET

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the VAX Procedure Calling and
Condition Handling Standard.

{ and the set of characters being searched for. Call
{ STR$FIND_FIRST_IN_SET to find the first match.
{ Print the result.
{-}

BEGIN
WRITELN('ENTER THE STRING: ');
READLN(STRING1);
WRITELN('ENTER THE SET OF CHARACTERS: ');
READLN(CHARS);
RET_STATUS := STR$FIND_FIRST_IN_SET(STRING1, CHARS);
WRITELN(RET_STATUS);

END.

This Pascal program demonstrates the use of STR$FIND_FIRST_IN _SET. If
you run this program and set STRINGl equal to ABCDEFGHIJK and CHARS
equal to XYZA, the value of RET_STATUS will be 1. The output generated
by this program is as follows:

ENTER THE STRING:
ABCDEFGHIJK
ENTER THE SET OF CHARACTERS:
XYZA

1

STR-37

STR$FIND_FIRST_NQT_IN_SET

STR$FIND_FIRST_NQT_IN_SET Find First
Character That Does Not Occur in Set

FORMAT

RETURNS

ARGUMENTS

STR-38

The Find First Character That Does Not Occur in Set routine searches a
string, comparing each character to the characters in a specified set of
characters. The string is searched character by character, from left to
right. STR$FIND_FIRST_NQT_IN_SET returns the position of the first
character in the string that does not match any of the characters in the
selected set of characters.

STR$FIND_FIRST_NQT_IN_SET source-string
, set-of-characters

VMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by value

Position in source-string where a nonmatch was found.

Returned value

0

N

source-string

Condition

Either all characters in source-string match some character
in set-of-characters, or there were no characters in
set-of-characters.

Either the first nonmatching character in source-string
was found in position 1, or there were no characters in
source-string.

The first nonmatching character was found in position N
within source-string.

VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String that STR$FIND_FIRST_NQT_IN _SET searches. The source-string
argument is the address of a descriptor pointing to the string.

set-of-characters
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

The set of characters that STR$FIND_FIRST_NQT_IN _SET compares to the
string, looking for a nonmatch. The set-of-characters argument is the address
of a descriptor pointing to this set of characters.

STR$FIND_FIRST_NQT_IN_SET

DESCRIPTION STR$FIND_FIRST_NQT_IN _SET searches a string, comparing each
character to the characters in a specified set of characters. The string is
searched character by character, from left to right. When
STR$FIND_FIRST_NQT_IN _SET finds a character from the string that
is not in set-of-characters, it stops searching and returns, as the value of
STR$FIND_FIRST_NQT_IN_SET, the position in source-string where it
found the nonmatching character. If all characters in the string match some
character in the set of characters, STR$FIND_FIRST_NQT_IN _SET returns
0. If the string is of zero length, the position returned is 1 since none of
the elements in the set of characters (particularly the first element) will be
found in the string. If there are no characters in the set of characters, zero is
returned since "nothing" can always be found.

CONDITION
VALUE
SIGNALED

EXAMPLE

STR$_1LLSTRCLA

PROGRAM NOT_IN_SET(INPUT, OUTPUT);

{+}
{ This example uses STR$FIND_FIRST_NOT_IN_SET
{ to find the position of the first nonmatching
{ character from a set of characters (CHARS)
{ in a source string (STRING1).
{
{ First, declare the external function.
{-}

FUNCTION STR$FIND_FIRST_NOT_IN_SET(STRING
VARYING [A] OF CHAR; SETOFCHARS
VARYING [B] OF CHAR) : INTEGER;
EXTERN;

{+}
{ Declare the variables used in the main program.
{-}

VAR
STRING1
CHARS
RET_STATUS

{+}

VARYING [256] OF CHAR;
VARYING [256] OF CHAR;
INTEGER;

Read the source string

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the VAX Procedure Calling and
Condition Handling Standard.

{ Begin the main program.
{ and set of characters.
{ Print the result.

Call STR$FIND_FIRST_NOT_IN_SET.

{-}

BEGIN
WRITELN('ENTER THE STRING: ');
READLN(STRING1);
WRITELN('ENTER THE SET OF CHARACTERS: ');
READLN(CHARS);
RET_STATUS := STR$FIND_FIRST_NOT_IN_SET(STRING1, CHARS);
WRITELN(RET_STATUS);

END.

STR-39

STR$FIND_FIRST_NQT_IN_SET

STR-40

This Pascal program demonstrates the use of STR$FIND_FIRST_NOT_IN _
SET. If you run this program and set STRINGl equal to FORTUNATE and
CHARS equal to FORT, the value of RET_STATUS will be 5.

The output generated by this program is as follows:

ENTER THE STRING:
FORTUNATE
ENTER THE SET OF CHARACTERS:
FORT

5

STR$FIND_FIRST_SUBSTRING

STR$FIND_FIRST_SUBSTRING Find First
Substring in Input String

FORMAT

RETURNS

ARGUMENTS

The Find First Substring in Input String routine finds the first substring (in a
provided list of substrings) occurring in a given string.

STR$FIND_FIRST_SUBSTRING source-string ,index
, substring-index

VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

, substring
[,substring ...]

The values returned by STR$FIND_FIRST_SUBSTRING and the conditions
to which they translate are as follows:

Returned Value Condition

0 Source-string did not contain any of the specified
substrings.

STR$FINO_FIRST_SUBSTRING found at least one of the
specified substrings in the string.

source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String that STR$FIND_FIRST_SUBSTRING searches. The source-string
argument is the address of a descriptor pointing to the string.

index
VMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Earliest position within source-string at which
STR$FIND_FIRST_SUBSTRING found a matching substring; zero if no
matching substring was found. The index argument is the address of a
signed longword containing this position.

STR-41

STR$FIND_FIRST_SUBSTRING

DESCRIPTION

STR-42

substring-index
VMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Ordinal number of the substring that matched (1 for the first, 2 for the
second, and so on), or zero if STR$FIND_FIRST_SUBSTRING found no
substrings that matched. The substring-index argument is the address of a
signed longword containing this ordinal number.

substring
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Specified substring for which STR$FIND_FIRST_SUBSTRING searches in
source-string. The substring argument is the address of a descriptor pointing
to the first substring. You can specify multiple substrings to be searched for.

substring
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Additional specified substrings for which STR$FIND_FIRST_SUBSTRING
searches in source-string. The substring argument is the address of a
descriptor pointing to the substring. You can specify multiple substrings to be
searched for.

STR$FIND_FIRST_SUBSTRING takes as input a string to be searched and an
unspecified number of substrings for which to search. It searches the specified
string and returns the position of the substring that is found earliest in the
string. This is not necessarily the position of the first substring specified.
That is, STR$FIND_FIRST_SUBSTRING returns the position of the leftmost
matching substring. The order in which the substrings are searched for is
irrelevant.

Unlike many of the compare and search routines,
STR$FIND_FIRST_SUBSTRING does not return the position in a return
value. The position of the substring which is found earliest in the string is
returned in the index argument. If none of the specified substrings is found
in the string, the value of index is zero.

Zero-length strings, or null arguments, produce unexpected results. Any time
the routine is called with a null substring as an argument,
STR$FIND_FIRST_SUBSTRING always returns the position of the null
substring as the first substring found. All other substrings are interpreted as
appearing in the string after the null string.

STR$FIND_FIRST_SUBSTRING

CONDITION
VALUES
SIGNALED

STR$_1LLSTRCLA Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the VAX Procedure Calling and
Condition Handling Standard.

STR$_ WRONUMARG Wrong number of arguments. You must supply at
least one substring.

EXAMPLE
1 +

This is a BASIC program demonstrating the use of
STR$FIND_FIRST_SUBSTRING. This program takes as input
four strings that are listed in a data statement
at the end of the program. STR$FIND_FIRST_SUBSTRING
is called four times (once for each string)
to find the first substring occurring in the given
string.

OPTION TYPE = EXPLICIT

DECLARE STRING MATCH_STRING
DECLARE LONG RET_STATUS, &

INDEX, &
I, &
SUB_STRING_NUM

EXTERNAL LONG FUNCTION STR$FIND_FIRST_SUBSTRING

FOR I = 1 TO 4
READ MATCH_STRING
RET_STATUS = STR$FIND_FIRST_SUBSTRING(MATCH_STRING, &

INDEX, SUB_STRING_NUM, 'ING', 'CK', 'TH')
IF RET_STATUS = 0% THEN

PRINT MATCH_STRING;" did not contain any of the substrings"
ELSE

SELECT SUB_STRING_NUM
CASE 1

PRINT MATCH_STRING;" contains ING at position";INDEX
CASE 2

PRINT MATCH_STRING;" contains CK at position";INDEX
CASE 3

PRINT MATCH_STRING;" contains TH at position";INDEX
END SELECT

END IF
NEXT I

2 DATA CHUCKLE, RAINING, FOURTH, THICK

3 END

STR-43

STR$FIND_FIRST_SUBSTRING

STR-44

This BASIC program demonstrates the use of
STR$FIND_FIRST_SUBSTRING. The output generated by this program is as
follows:

$ BASIC FINDSUB
$ LINK FINDSUB
$ RUN FINDSUB
CHUCKLE contains CK at position 4
RAINING contains ING at position 5
FOURTH contains TH at position 5
THICK contains TH at position 1

Note that "THICK" contains both the substrings "TH" and "CK".
STR$FIND_FIRST_SUBSTRING locates the "CK" substring in "THICK", and
then locates the "TH" substring. However, since the "TH" substring is the
earliest, or leftmost matching substring, its ordinal number is returned in
substring-index, and the point at which "TH" occurs is returned in index.

STR$FREE1_DX

STR$FREE1_DX Free One Dynamic String

The Free One Dynamic String routine deallocates one dynamic string.

FORMAT STR$FREE1 _DX string-descriptor

corresponding jsb STR$FREE1_DX_R4
entry point

RETURNS

ARGUMENT

DESCRIPTION

CONDITION
VALUES
RETURNED

CONDITION
VALUES
SIGNALED

VMS usage: cond_value
type: longword {unsigned)
access: write only
mechanism: by value

string-descriptor
VMS usage: char_string
type: character string
access: modify
mechanism: by descriptor

Dynamic string descriptor of the dynamic string that STR$FREEl_DX
deallocates. The string-descriptor argument is the address of a descriptor
pointing to the string to be deallocated. The class field (DSC$B_CLASS) is
checked.

STR$FREEl_DX deallocates the described string space and flags the
descriptor as describing no string at all (DSC$A_POINTER = 0,
DSC$W_LENGTH = 0).

SS$_NORMAL

STR$_FATINTERR

STR$_1LLSTRCLA

Normal successful completion.

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGIT AL in a Software Performance Report (SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the VAX Procedure Calling and
Condition Handling Standard.

STR-45

STR$GET1_DX

STR$GET1 _DX Allocate One Dynamic String

FORMAT

The Allocate One Dynamic String routine allocates a specified number of
bytes of dynamic virtual memory to a specified dynamic string descriptor.

STR$GET1 _DX word-integer-length ,character-string

corresponding jsb STR$GET1 _DX_R4
entry point

RETURNS

ARGUMENTS

DESCRIPTION

STR-46

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

word-integer-length
VMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Number of bytes that STR$GET1_DX allocates. The word-integer-length
argument is the address of an unsigned word containing this number.

character-string
VMS usage: char_string
type: character string
access: modify
mechanism: by descriptor

Dynamic string descriptor to which STR$GET1_DX allocates the area. The
character-string argument is the address of an unsigned quadword containing
the string descriptor.

The class field (DSC$B_CLASS) is checked.

STR$GET1_DX allocates a specified number of bytes of dynamic virtual
memory to a specified string descriptor. The descriptor must be dynamic.

If the string descriptor already has dynamic memory allocated to it, but
the amount allocated is less than word-integer-length, STR$GET1_DX
deallocates that space before it allocates new space.

STR$GET1_DX is the only recommended method for allocating a dynamic
descriptor. Simply filling in the length and pointer fields of a dynamic
string descriptor can cause serious and unexpected problems with string
management.

To deallocate dynamic strings, call STR$FREEl_DX.

CONDITION
VALUES
RETURNED

CONDITION
VALUES
SIGNALED

SS$_NORMAL

STR$_FA TINTERR

STR$_1LLSTRCLA

STR$_1NSVIRMEM

STR$GET1_DX

Normal successful completion.

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGITAL in a Software Performance Report (SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the VAX Procedure Calling and
Condition Handling Standard.

Insufficient virtual memory. STR$GET 1 _DX
could not allocate heap storage for a dynamic
or temporary string.

STR-47

STR$LEFT

STR$LEFT

FORMAT

Extract a Substring of a String

The Extract a Substring of a String routine copies a substring of a source
string into a destination string. The relative starting position in the source
string is 1.

STR$LEFT destination-string ,source-string
, end-position

corresponding jsb STR$LEFT_R8
entry point

RETURNS

ARGUMENTS

STR-48

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

destination-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string into which STR$LEFT copies the substring. The
destination-string argument is the address of a descriptor pointing to the
destination string.

source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string from which STR$LEFT extracts the substring that it copies
into the destination string. The source-string argument is the address of a
descriptor pointing to the source string.

end-position
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Relative position in the source string at which the substring ends. The end­
position argument is the address of a signed longword containing the ending
position.

STR$LEFT copies all characters in the source string from position 1 (the
leftmost position) to the position number specified in this end-position
argument.

STR$LEFT

DESCRIPTION STR$LEFT extracts a substring from a source string and copies that substring
into a destination string. STR$LEFT defines the substring by specifying the
relative ending position in the source string. The relative starting position in
the source string is 1. The source string is unchanged, unless it is also the
destination string.

This is a variation of STR$POS_EXTR. Other routines that may be used to
extract and copy a substring are STR$RIGHT and STR$LEN _EXTR.

CONDITION
VALUES
RETURNED

CONDITION
VALUES
SIGNALED

EXAMPLE

SS$_NQRMAL

STR$_1LLSTRPOS

STR$_1LLSTRSPE

STR$_TRU

STR$_FA TINTERR

STR$_1LLSTRCLA

STR$_1NSVIRMEM

PROGRAM LEFT(INPUT, OUTPUT);

{+}
{ This Pascal program demonstrates the use of
{ STR$LEFT. This program reads in a source string
{ and the ending position of a substring.
{ It returns a substring consisting of all
{ characters from the beginning (left) of the
{ source string to the ending position entered.
{-}

{+}
{Declare the external procedure, STR$LEFT.
{-}

Normal successful completion.

Alternate success. An argument referenced a
character position outside the specified string. A
default value was used.

Alternate success. The length of the substring
was too long for the specified destination string.
Default values were used.

String truncation warning. The fixed-length
destination string could not contain all the
characters copied from the source string.

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGIT AL in a Software Performance Report (SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the VAX Procedure Calling and
Condition Handling Standard.

Insufficient virtual memory. STR$LEFT could not
allocate heap storage for a dynamic or temporary
string.

STR-49

STR$LEFT

PROCEDURE STR$LEFT(%DESCR DSTSTR: VARYING
[A] OF CHAR; SRCSTR
VARYING [BJ OF CHAR; ENDPOS :
INTEGER); EXTERN;

{+}
{ Declare the variables used by this program.
{-}

VAR
SRC STR
DST STR
END_POS

{+}

VARYING [256] OF CHAR;
VARYING [256] OF CHAR;
INTEGER;

{ Begin the main program. Read the source string
{ and ending position. Call STR$LEFT. Print the
{ results.
{-}

BEGIN
WRITELN('ENTER THE SOURCE STRING: ');
READLN(SRC_STR);
WRITELN('ENTER THE ENDING POSITION');
WRITELN('OF THE SUBSTRING: ');
READLN(END_POS);
STR$LEFT(DST_STR, SRC_STR, END_POS);
WRITELN;
WRITELN('THE SUBSTRING IS: ',DST_STR);

END.

STR-50

This Pascal example shows the use of STR$LEFT. The following is one sample
of the output of this program:

$ PASCAL LEFT
$ LINK LEFT
$ RUN LEFT
ENTER THE SOURCE STRING: MAGIC CARPET
ENTER THE ENDING POSITION OF
THE SUBSTRING: 9

THE SUBSTRING IS: MAGIC CAR

STR$LEN_EXTR

STR$LE N _EXTR Extract a Substring of a String

FORMAT

The Extract a Substring of a String routine copies a substring of a source
string into a destination string.

STR$LEN_EXTR destination-string
,source-string ,start-position
,longword-integer-length

corresponding jsb STR$LEN_EXTR_R8
entry point

RETURNS

ARGUMENTS

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

destination-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string into which STR$LEN_EXTR copies the substring. The
destination-string argument is the address of a descriptor pointing to the
destination string.

source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string from which STR$LEN _EXTR extracts the substring that it
copies into the destination string. The source-string argument is the address
of a descriptor pointing to the source string.

start-position
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Relative position in the source string at which STR$LEN_EXTR begins
copying the substring. The start-position argument is the address of a signed
longword containing the starting position.

STR-51

STR$LEN_EXTR

DESCRIPTION

CONDITION
VALUES
RETURNED

STR-52

longword-integer-length
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Number of characters in the substring that STR$LEN _EXTR copies to the
destination string. The longword-integer-length argument is the address of
a signed longword containing the length of the substring.

STR$LEN_EXTR extracts a substring from a source string and copies that
substring into a destination string.

STR$LEN _EXTR defines the substring by specifying the relative starting
position in the source string and the number of characters to be copied. The
source string is unchanged, unless it is also the destination string.

If the starting position is less than 1, 1 is used. If the starting position is
greater than the length of the source string, the null string is returned. If the
length is less than 1, the null string is also returned.

Other routines that may be used to extract and copy a substring are
STR$RIGHT, STR$LEFT and STR$PQS_EXTR.

SS$_NORMAL

STR$_1LLSTRPOS

STR$_1LLSTRSPE

STR$_NEGSTRLEN

STR$_TRU

Normal successful completion.

STR$LEN_EXTR completed successfully, except
that an argument referenced a character position
outside the specified string. A default value was
used.

STR$LEN_EXTR completed successfully, except
that the length was too long for the specified
string. Default values were used.

STR$LEN_EXTR completed successfully, except
that longword-integer-length contained a negative
value. Zero was used.

String truncation warning. The fixed-length
destination string could not contain all the
characters copied from the source string.

CONDITION
VALUES
SIGNALED

EXAMPLE

STR$_F A TINTERR

STR$_1LLSTRCLA

STR$_INSVIRMEM

CHARACTER*131 IN_STRING
CHARACTER*1 FRONT_CHAR
CHARACTER*1 TAIL_ CHAR
INTEGER STRLEN_EXTR, STRREPLACE, STR$TRIM
INTEGER FRONT_POSITION, TAIL_POSITION

10 WRITE (6, 800)

STR$LEN_EXTR

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGIT AL in a Software Performance Report {SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the VAX Procedure Calling and
Condition Handling Standard.

Insufficient virtual memory. STR$LEN_EXTR
could not allocate heap storage for a dynamic or
temporary string.

800 FORMAT(' Enter a string, 131 characters or less:',$)
READ (5, 900, END=200) IN_STRING

900 FORMAT (A)
ISTATUS = STR$TRIM (IN_STRING, IN_STRING, LENGTH)

DO 100 I = 1, LENGTH/2
FRONT_POSITION = I
TAIL_POSITION = LENGTH + 1 - I
ISTATUS = STR$LEN_EXTR (FRONT_CHAR, IN_STRING, FRONT_POSITION,

A %REF(1))

ISTATUS = STR$LEN_EXTR (TAIL_CHAR, IN_STRING, TAIL_POSITION,
A %REF(1))

ISTATUS = STR$REPLACE (IN_STRING, IN_STRING, FRONT_POSITION,
A FRONT_POSITION, TAIL_CHAR)

ISTATUS = STR$REPLACE (IN_STRING, IN_STRING, TAIL_POSITION,
A TAIL_POSITION, FRONT_CHAR)

100 CONTINUE
WRITE (6, 901) IN_STRING

901 FORMAT(' Reversed string is : ',/,1X,A)
GOTO 10

200 CONTINUE
END

STR-53

STR$LEN_EXTR

STR-54

This FORTRAN program accepts a string as input and writes the string in
reverse order as output. This program continues to prompt for input until
CTRL/Z is pressed. One sample of the output generated by this program is
as follows:

$ FORTRAN REVERSE
$ LINK REVERSE
$ RUN REVERSE
Enter a string, 131 characters or less: Elephants often have
flat feet

Reversed string is
.teef talf evah netfo stnahpelE

Enter a string, 131 characters or less: CTRL/Z
$

STR$MATCH_WILD

STR$MATCH_WILD Match Wildcard
Specification

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

The Match Wildcard Specification routine is used to compare a pattern
string that includes wildcard characters with a candidate string. It returns
a condition value of STR$_MA TCH if the strings match and
STR$_NQMATCH if they do not match.

STR$MATCH_WILD candidate-string ,pattern-string

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

candidate-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String that is compared to the pattern string. The candidate-string argument
is the address of a descriptor pointing to the candidate string.

pattern-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String containing wildcard characters. The pattern-string argument is the
address of a descriptor pointing to the pattern string. The wildcards in
the pattern string are translated when STR$MATCH_ WILD searches the
candidate string to determine if it matches the pattern string.

STR$MATCH_WILD translates wildcard characters and searches the
candidate string to determine if it matches the pattern string. The pattern
string may contain either one or both of the two wildcard characters, asterisk
(*) and percent (%). The asterisk character is mapped to zero or more
characters. The percent character is mapped to only one character.

The two wildcard characters that may be used in the pattern string may be
used only as wildcards. If the candidate string contains an asterisk or percent
character, the condition STR$_NOMATCH is returned, because the wildcard
characters are never translated literally.

STR-55

STR$MATCH_WILD

CONDITION
VALUES
RETURNED

CONDITION
VALUE
SIGNALED

EXAMPLE

/*

STR$_MATCH

STR$_NOMA TCH

STR$_1LLSTRCLA

* Example program using STR$MATCH_WILD.

*

The candidate string and the pattern string match.

The candidate string and the pattern string do not
match.

Illegal string class. Severe error. The descriptor of
candidate-string and/or pattern-string contains
a class code that is not supported by the VAX
Procedure Calling and Condition Handling Standard.

* The following program reads in a master pattern string and then
* compares that to input strings until it reaches the end of the
* input file. For each string comparison done, it prints
* either 'Matches pattern string' or 'Doesn't match pattern string'.
*/

declare str$match_wild
external entry (character(*) varying, character(*) varying)
returns (bit(1));

example: routine options(main);

dcl pattern_string character(80) varying;
dcl test_string character(80) varying;

on endfile(sysin) stop;

put skip;

get list(pattern_string) options(prompt('Pattern string> '));

do while('1'b);

end;

get skip list(test_string) options(prompt('Test string> '));
if str$match_wild(test_string,pattern_string)

then put skip list('Matches pattern string');
else put skip list('Doesn''t match pattern string');

end;

STR-56

STR$MA TCH _WILD

This PL/I program demonstrates the use of STR$MATCH_WILD. The output
generated by this program is as follows:

$ PLI MATCH
$ LINK MATCH
$ RUN MATCH
Pattern string> 'Must match me exactly.'
Test string> 'Will this work? Must match me exactly.'
Doesn't match pattern string
Test string> 'must match me exactly'
Doesn't match pattern string
Test string> 'must match me exactly.'
Doesn't match pattern string
Test string> 'Must match me exactly'
Doesn't match pattern string
Test String> 'Must match me exactly.'
Matches pattern string

STR-57

STR$MUL

STR$MUL

FORMAT

RETURNS

ARGUMENTS

STR-58

Multiply Two Decimal Strings

The Multiply Two Decimal Strings routine multiplies two decimal strings.

STR$MUL asign ,aexp ,adigits ,bsign ,bexp ,bdigits
, csign , cexp , cdigits

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

a sign
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Sign of the first operand. The asign argument is the address of an unsigned
longword containing the first operand's sign. Zero is considered positive; 1 is
considered negative.

a exp
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Power of 10 by which adigits is multiplied to get the absolute value of
the first operand. The aexp argument is the address of a signed longword
containing this exponent.

adigits
VMS usage: char_string
type: numeric string, unsigned
access: read only
mechanism: by descriptor

First operand's numeric string. The adigits argument is the address of a
descriptor pointing to the numeric string of the first operand. The string must
be an unsigned decimal number.

bsign
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Sign of the second operand. The bsign argument is the address of an
unsigned longword containing the sign of the second operand. Zero is
considered positive; 1 is considered negative.

DESCRIPTION

STR$MUL

bexp
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Power of 10 by which bdigits is multiplied to get the absolute value of the
second operand. The bexp argument is the address of a signed longword
containing this exponent.

bdigits
VMS usage: char_string
type: numeric string, unsigned
access: read only
mechanism: by descriptor

Second operand's numeric string. The bdigits argument is the address of a
descriptor pointing to the second operand's numeric string. The string must
be an unsigned decimal number.

csign
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Sign of the result. The csign argument is the address of an unsigned
longword containing the sign of the result. Zero is considered positive; 1
is considered negative.

cexp
VMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Power of 10 by which cdigits is multiplied to get the absolute value of the
result. The cexp argument is the address of a signed longword containing this
exponent.

cdigits
VMS usage: char_string
type: numeric string, unsigned
access: write only
mechanism: by descriptor

Result's numeric string. The cdigits argument is the address of a descriptor
pointing to the numeric string of the result. The string is an unsigned decimal
number.

STR$MUL multiplies two decimal strings. The numbers to be multiplied are
passed to STR$MUL in three parts: (1) the sign of the decimal number, (2)
the power of 10 needed to obtain the absolute value, and (3) the numeric
string. The result of the multiplication is also returned in those three parts.

STR-59

STR$MUL

CONDITION
VALUES
RETURNED

CONDITION
VALUES
SIGNALED

EXAMPLE

100 !+

SS$_NQRMAL

STR$_TRU

LIB$_1NV ARG

STR$_FATINTERR

STR$_1LLSTRCLA

STR$_1NSVIRMEM

STR$_ WRONUMARG

! This example program uses
STR$MUL to multiply two decimal
strings (A and B) and place the
results in a third decimal string,

! (C)
!-

ASIGN% = 1%
AEXP% = 3%
ADIGITS$ = '1'
BSIGN% = 0%
BEXP% = -4%
BDIGITS$ = '2'
CSIGN% = 0%
CEXP% = 0%
CDIGITS$ = '0'
PRINT "A= "; ASIGN%; AEXP%; ADIGITS$
PRINT "B = "; BSIGN%; BEXP%; BDIGITS$
CALL STR$MUL (ASIGN%, AEXP%, ADIGITS$, &

BSIGN%, BEXP%, BDIGITS$, &
CSIGN%, CEXP%, CDIGITS$)

PRINT "C = " ; CSIGN%; CEXP~o; CDIGITS$
999 END

STR-60

Normal successful completion.

String truncation warning. The fixed-length
destination string could not contain all the
characters.

Invalid argument.

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGIT AL in a Software Performance Report (SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the VAX Procedure Calling and
Condition Handling Standard.

Insufficient virtual memory. STR$MUL could not
allocate heap storage for a dynamic or temporary
string.

Wrong number of arguments.

STR$MUL

This BASIC example uses STR$MUL to multiply two decimal strings, where
the following values apply:

A= -1000 (ASIGN = l, AEXP = 3, ADIGITS = '1')
B = .0002 (BSIGN = 0, BEXP = -4, BDIGITS = '2')

Listed below is the output generated by this program; note that the decimal
value C equals -.2 (CSIGN = 1, CEXP = -1, CDIGITS = 2).

A = 1 3 1
B = 0 -4 2
c = 1 -1 2

STR-61

STR$POSITION

STR$POSITION Return Relative Position of
Substring

FORMAT

The Return Relative Position of Substring routine searches for the first
occurrence of a single substring within a source string. If STR$POSITION
finds the substring, it returns the relative position of that substring. If the
substring is not found, STR$POSITION returns a zero.

STR$POSITION source-string ,substring
[,start-position]

corresponding jsb STR$POSITION_R6
entry point

RETURNS

ARGUMENTS

STR-62

VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

Relative position of the first character of the substring. Zero is the value
returned if STR$POSITION did not find the substring.

source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string within which STR$POSITION searches for the substring. The
source-string argument is the address of a descriptor pointing to the source
string.

substring
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Substring for which STR$POSITION searches. The substring argument is the
address of a descriptor pointing to the substring.

start-position
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Relative position in the source string at which STR$POSITION begins the
search. The start-position argument is the address of a signed longword

STR$POSITION

containing the starting position. Although this is an optional argument, it is
required if you are using the JSB entry point.

If start-position is not supplied, STR$POSITION starts the search at the first
character position of source-string.

DESCRIPTION STR$POSITION returns the relative position of the first occurrence of a
substring in the source string. The value returned is an unsigned longword.
The relative character positions are numbered l, 2, 3, and so on. Zero
indicates that the substring was not found.

If the substring has a zero length, the minimum value of start-position (and
the length of source-string plus one) is returned by STR$POSITION.

If the source string has a zero length and the substring has a nonzero length,
zero is returned, indicating that the substring was not found.

CONDITION
VALUES
SIGNALED

EXAMPLE

STR$_1LLSTRCLA

PROGRAM POSITION(INPUT,OUTPUT);

{+}
{ This example uses STR$POSITION to determine
{ the position of the first occurrence of
{ a substring (SUBSTRING) within a source
{ string (STRING1) after the starting
{ position (START).
{
{ First, declare the external function.
{-}

FUNCTION STR$POSITION(SRCSTR : VARYING [A]
OF CHAR; SUBSTR : VARYING [B] OF CHAR;
STARTPOS : INTEGER) : INTEGER; EXTERN;

{+}
{ Declare the variables used in the main program.
{-}

VAR
STRING1
SUBSTRING
START
RET_STATUS

{+}

VARYING [256] OF CHAR;
VARYING [256] OF CHAR;
INTEGER;
INTEGER;

Illegal string class. The class code found in the
string class field of a descriptor is not a string
class code allowed by the VAX Procedure Calling
and Condition Handling Standard.

{ Begin the main program. Read the string and substring.
{ Set START equal to 1 to begin looking for the substring
{ at the beginning of the source string. Call STR$POSITION
{ and print the result.
{-}

STR-63

STR$POSITION

BEGIN
WRITELN('ENTER THE STRING: ');
READLN(STRING1);
WRITELN('ENTER THE SUBSTRING: ');
READLN(SUBSTRING);
START := 1;
RET_STATUS := STR$POSITION(STRING1, SUBSTRING, START);
WRITELN(RET_STATUS);

END.

STR-64

This Pascal program demonstrates the use of STR$POSITION. If you run this
program and set STRINGl equal to KITTEN and substring equal to TEN, the
value of RET_STATUS is 4.

The output generated by this program is as follows:

ENTER THE STRING:
KITTEN
ENTER THE SUBSTRING:
TEN

4

STR$POS_EXTR

STR$PQS_EXTR Extract a Substring of a String

FORMAT

The Extract a Substring of a String routine copies a substring of a source
string into a destination string.

STR$PQS_EXTR destination-string ,source-string
, start-position , end-position

corresponding jsb STR$PQS_EXTR_R8
entry point

RETURNS

ARGUMENTS

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

destination-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string into which STR$POS_EXTR copies the substring. The
destination-string argument is the address of a descriptor pointing to the
destination string.

source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string from which STR$POS_EXTR extracts the substring that it copies
into the destination string. The source-string argument is the address of a
descriptor pointing to the source string.

start-position
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference for CALL entry point, by value for JSB entry

point

Relative position in the source string at which STR$POS_EXTR begins
copying the substring. The start-position argument is the address of a signed
longword containing the starting position.

STR-65

STR$PQS_EXTR

DESCRIPTION

CONDITION
VALUES
RETURNED

CONDITION
VALUES
SIGNALED

STR-66

end-position
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference for CALL entry point, by value for JSB entry

point

Relative position in the source string at which STR$PQS_EXTR stops
copying the substring. The end-position argument is the address of a signed
longword containing the ending position.

STR$POS_EXTR extracts a substring from a source string and copies the
substring into a destination string. STR$PQS_EXTR defines the substring by
specifying the relative starting and ending positions in the source string. The
source string is unchanged, unless it is also the destination string.

If the starting position is less than 1 then 1 is used. If the starting position is
greater than the length of the source string, the null string is returned. If the
ending position is greater than the length of the source string, the length of
the source string is used.

Other routines that may be used to extract and copy a substring are
STR$LEFT, STR$RIGHT and STR$LEN _EXTR.

SS$_NORMAL

STR$_1LLSTRPOS

STR$_1LLSTRSPE

STR$_TRU

STR$_FATINTERR

STR$_1LLSTRCLA

STR$_1NSVIRMEM

Normal successful completion.

Alternate success. An argument referenced a
character position outside the specified string. A
default value was used.

Alternate success. End-position was less than
start-position. Default values were used.

String truncation warning. The fixed-length
destination string could not contain all the
characters copied from the source string.

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGIT AL in a Software Performance Report (SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the VAX Procedure Calling and
Condition Handling Standard.

Insufficient virtual memory. STR$POS_EXTR
could not allocate heap storage for a dynamic or
temporary string.

STR$PQS_EXTR

EXAMPLE

0 1 2 3 4 5 6 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FTTY D F
C* Initialize source
c
c
c
c POS_EXTR

80 TTY
string and position

MOVE '7 SW Ave'SOURCE 8
Z-ADD3 BEGPOS 90
Z-ADD4 ENDPOS 90
EXTRN'STR$POS_EXTR'

C* Extract the 2
c

character string beginning at position 3

c
c
c
c

CALL POS_EXTR
PARMD
PARMD
PARM
PARM

DEST
SOURCE
BEGPOS
ENDPOS

2

C* Display on the terminal the extracted string
C DEST DSPLYTTY

RL
RL

C SETON LR

The RPG II program above displ~ys the string 'SW' on the terminal.

STR-67

STR$PREFIX

STR$PREFIX Prefix a String

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

STR-68

The Prefix a String routine inserts a source string at the beginning of a
destination string. The destination string must be dynamic or varying
length.

STR$PREFIX destination-string ,source-string

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

destination-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string (dynamic or varying length); STR$PREFIX copies the source
string into the beginning of this destination string. The destination-string
argument is the address of a descriptor pointing to the destination string.

source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string that STR$PREFIX copies into the beginning of the destination
string. The source-string argument is the address of a descriptor pointing to
the source string.

STR$PREFIX inserts the source string at the beginning of the destination
string. The destination string must be dynamic or varying length.

SS$_NORMAL

STR$_TRU

Normal successful completion.

String truncation warning. The fixed-length
destination string could not contain all of the
characters.

CONDITION
VALUES
SIGNALED

EXAMPLE

10 !+

STR$_FATINTERR

STR$_ILLSTRCLA

STR$_1NSVIRMEM

! This example uses STR$PREFIX to
! pref ix a destination string (D$)
! with a source string ('ABCD').
! -

EXTERNAL INTEGER FUNCTION STR$PREFIX
D$ = 'EFG'
STATUS% = STR$PREFIX (D$, 'ABCD')
PRINT D$
END

STR$PREFIX

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGIT AL in a Software Performance Report (SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the VAX Procedure Calling and
Condition Handling Standard.

Insufficient virtual memory. STR$PREFIX could not
allocate heap storage for a dynamic or temporary
string.

These BASIC statements set D$ equal to 'ABCDEFG'.

STR-69

STR$RECIP

STR$RECIP

FORMAT

RETURNS

ARGUMENTS

STR-70

Reciprocal of a Decimal String

The Reciprocal of a Decimal String routine takes the reciprocal of the first
decimal string to the precision limit specified by the second decimal string
and returns the result as a decimal string.

STR$RECIP asign ,aexp ,adigits ,bsign ,bexp ,bdigits
, csign , cexp , cdigits

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

a sign
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Sign of the first operand. The asign argument is the address of an unsigned
longword containing the first operand's sign. Zero is considered positive; 1 is
considered negative.

a exp
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Power of 10 by which adigits is multiplied to get the absolute value of
the first operand. The aexp argument is the address of a signed longword
containing this exponent.

adigits
VMS usage: char_string
type: numeric string, unsigned
access: read only
mechanism: by descriptor

First operand's numeric string. The adigits argument is the address of a
descriptor pointing to the first operand's numeric string. The string must be
an unsigned decimal number.

bsign
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

DESCRIPTION

STR$RECIP

Sign of the second operand. The bsign argument is the address of an
unsigned longword containing the sign of the second operand. Zero is
considered positive; 1 is considered negative.

bexp
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Power of 10 by which bdigits is multiplied to get the absolute value of the
second operand. The bexp argument is the address of a signed longword
containing this exponent.

bdigits
VMS usage: char_string
type: numeric string, unsigned
access: read only
mechanism: by descriptor

Second operand's numeric string. The bdigits argument is the address of a
descriptor pointing to the second operand's numeric string. The string must
be an unsigned decimal number.

csign
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Sign of the result. The csign argument is the address of an unsigned
longword containing the result's sign. Zero is considered positive; 1 is
considered negative.

cexp
VMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Power of 10 by which cdigits is multiplied to get the absolute value of the
result. The cexp argument is the address of a signed longword containing this
exponent.

cdigits
VMS usage: char_string
type: numeric string, unsigned
access: write only
mechanism: by descriptor

Result's numeric string. The cdigits argument is the address of a descriptor
pointing to the result's numeric string. The string is an unsigned decimal
number.

STR$RECIP takes the reciprocal of the first decimal string to the precision
limit specified by the second decimal string and returns the result as a
decimal string.

STR-71

STR$RECIP

CONDITION
VALUES
RETURNED

CONDITION
VALUES
SIGNALED

EXAMPLE

100 +

SS$_NORMAL

STR$_TRU

STR$_DIVBY _ZER

LIB$_1NV ARG

STR$_FATINTERR

STR$_1LLSTRCLA

STR$_1NSVIRMEM

STR$_WRONUMARG

This example program uses
STR$RECIP to find the reciprocal of
the first decimal string (A) to the
precision specified in the second
decimal string (B), and place the
result in a third decimal string (C).

ASIGN% = 1%
AEXP% = 3%
ADIGITS$ = '1'
BSIGN% = 0%
BEXP% = -4%
BDIGITS$ = '2'
CSIGN% = 0%
CEXP% = 0%
CDIGITS$ = '0'

PRINT "A= "; ASIGN%; AEXP%; ADIGITS$
PRINT "B = "; BSIGN%; BEXP%; BDIGITS$
CALL STR$RECIP (ASIGN%, AEXP%, ADIGITS$, &

BSIGN%, BEXP%, BDIGITS$, &
CSIGN%, CEXP%, CDIGITS$)

PRINT "C = 11
• CSIGN%; CEXP%; CDIGITS$

999 END

Routine successfully completed.

String truncation warning. The fixed-length
destination string could not contain all of the
characters.

Division by zero.

Invalid argument.

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGIT AL in a Software Performance Report (SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the VAX Procedure Calling and
Condition Handling Standard.

Insufficient virtual memory. STR$RECIP could not
allocate heap storage for a dynamic or temporary
string.

Wrong number of arguments.

This BASIC example uses STR$RECIP to find the reciprocal of A to the
precision level specified in B.

STR-72

The following values apply:

A= -1000 (ASIGN = 1, AEXP = 3, ADIGITS = 'l')
B = .0002 (BSIGN = 0, BEXP = -4, BDIGITS = '2')

STR$RECIP

The output generated by this program is as follows, yielding a decimal value
of C equal to -.001.

A = 1 3 1
B = 0 -4 2
c = 1 -3 1

STR-73

STR$REPLACE

STR$REPLACE Replace a Substring

FORMAT

The Replace a Substring routine copies a source string to a destination
string, replacing part of the string with another string. The substring to be
replaced is specified by its starting and ending positions.

STR$REPLACE destination-string ,source-string
, start-position , end-position
, replacement-string

corresponding jsb STR$REPLACE_R8
entry point

RETURNS

ARGUMENTS

STR-74

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

destination-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string into which STR$REPLACE writes the new string created
when it replaces the substring. The destination-string argument is the
address of a descriptor pointing to the destination string.

source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string. The source-string argument is the address of a descriptor
pointing to the source string.

start-position
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference for CALL entry point, by value for JSB entry

point

Position in the source string at which the substring that STR$REPLACE
replaces begins. The start-position argument is the address of a signed
longword containing the starting position. The position is relative to the start
of the source string.

DESCRIPTION

CONDITION
VALUES
RETURNED

STR$REPLACE

end-position
VMS usage: longword_signed
type: longword (signed}
access: read only
mechanism: by reference for CALL entry point, by value for JSB entry

point

Position in the source string at which the substring that STR$REPLACE
replaces ends. The end-position argument is the address of a signed
longword containing the ending position. The position is relative to the
start of the source string.

replacement-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Replacement string with which STR$REPLACE replaces the substring. The
replacement-string argument is the address of a descriptor pointing to
this replacement string. The value of replacement-string must be equal to
end-position minus start-position.

STR$REPLACE copies a source string to a destination string, replacing part of
the string with another string. The substring to be replaced is specified by its
starting and ending positions.

If the starting position is less than 1, 1 is used. If the ending position is
greater than the length of the source string, the length of the source string
is used. If the starting position is greater than the ending position, the
overlapping portion of the source string will be copied twice.

SS$_NORMAL

STR$_1LLSTRPOS

STR$_1LLSTRSPE

STR$_TRU

Normal successful completion.

Alternate success. An argument referenced a
character position outside the specified string. A
default value was used.

Alternate success. End-position was less than
start-position or the length of the substring was
too long for the specified string. Default values
were used.

String truncation warning. The fixed-length
destination string could not contain all of the
characters.

STR-75

STR$REPLACE

CONDITION
VALUES
SIGNALED

EXAMPLE

10 !+

STR$_F A TINTERR

STR$_1LLSTRCLA

STR$_1NSVIRMEM

! This example uses STR$REPLACE to

!-

replace all characters from the starting
position (2%) to the ending position (3%)
with characters from the replacement string
('XYZ').

EXTERNAL INTEGER FUNCTION STR$REPLACE
0$ = 'ABCD'
STATUS% = STR$REPLACE (0$, 0$, 2%, 3%, 'XYZ')
PRINT D$
END

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGITAL in a Software Performance Report (SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the VAX Procedure Calling and
Condition Handling Standard.

Insufficient virtual memory. STR$REPLACE
could not allocate heap storage for a dynamic
or temporary string.

These BASIC statements set D$ equal to 'AXYZD'.

STR-76

STR$RIGHT

FORMAT

STR$RIGHT

Extract a Substring of a String

The Extract a Substring of a String routine copies a substring of a source
string into a destination string.

STR$RIGHT destination-string ,source-string
, start-position

corresponding jsb STR$RIGHT_R8
entry point

RETURNS

ARGUMENTS

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

destination-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string into which STR$RIGHT copies the substring. The
destination-string argument is the address of a descriptor pointing to the
destination string.

source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string from which STR$RIGHT extracts the substring that it copies
into the destination string. The source-string argument is the address of a
descriptor pointing to the source string.

start-position
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference for CALL entry point, by value for JSB entry

point

Relative position in the source string at which the substring that STR$RIGHT
copies starts. The start-position argument is the address of a signed
longword containing the starting position.

STR-77

STR$RIGHT

DESCRIPTION

CONDITION
VALUES
RETURNED

CONDITION
VALUES
SIGNALED

EXAMPLE

STR$RIGHT extracts a substring from a source string and copies that substring
into a destination string. STR$RIGHT defines the substring by specifying the
relative starting position. The relative ending position is equal to the length
of the source string. The source string is unchanged, unless it is also the
destination string.

If the starting position is less than 2, the entire source string is copied. If the
starting position is greater than the length of the source string, a null string is
copied.

This is a variation of STR$POS_EXTR. Other routines that may be used to
extract and copy a substring are STR$LEFT and STR$LEN_EXTR.

SS$_NORMAL

STR$_1LLSTRPOS

STR$_TRU

STR$_FA TINTERR

STR$_1LLSTRCLA

STR$_1NSVIRMEM

Normal successful completion.

Alternate success. An argument referenced a
character position outside the specified string. A
default value was used.

String truncation warning. The fixed-length
destination string could not contain all the
characters copied from the source string.

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGIT AL in a Software Performance Report (SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the VAX Procedure Calling and
Condition Handling Standard.

Insufficient virtual memory. STR$RIGHT could not
allocate heap storage for a dynamic or temporary
string.

PROGRAM RIGHT(INPUT, OUTPUT);

{+}
{ This example uses STR$RIGHT to extract a substring
{ from a specified starting position (START_POS) to
{ the end (right side) of a source string (SRC_STR)
{ and write the result in a destination string (DST_STR).
{
{ First, declare the external procedure.
{-}

PROCEDURE STR$RIGHT(%DESCR DSTSTR: VARYING

{+}

[A] OF CHAR; SRCSTR : VARYING [B] OF CHAR;
STARTPOS : INTEGER); EXTERN;

{ Declare the variables used in the main program.
{-}

STR-78

VAR
SRC_STR
DST_STR
START_POS

{+}

VARYING [256] OF CHAR;
VARYING [256] OF CHAR;
INTEGER;

{ Begin the main program. Read the source string
{ and starting position. Call STR$RIGHT to extract
{ the substring. Print the result.
{-}

BEGIN
WRITELN('ENTER THE SOURCE STRING: ');
READLN(SRC_STR);
WRITELN('ENTER THE STARTING POSITION');
WRITELN('OF THE SUBSTRING: ');
READLN(START_POS);
STR$RIGHT(DST_STR, SRC_STR, START_POS);
WRITELN;
WRITELN('THE SUBSTRING IS: ',DST_STR);

END.

STR$RIGHT

This Pascal program uses STR$RIGHT to extract a substring from a specified
starting position (START_POS) to the end of the source string. One sample
of the output is as follows:

$ RUN RIGHT
ENTER THE SOURCE STRING: BLUE PLANETS ALWAYS HAVE PURPLE PLANTS
ENTER THE STARTING POSITION
OF THE SUBSTRING: 27
THE SUBSTRING IS: URPLE PLANTS

STR-79

STR$ROUND

STR$ROUND Round or Truncate a Decimal
String

FORMAT

RETURNS

ARGUMENTS

STR-80

The Round or Truncate a Decimal String routine rounds or truncates a
decimal string to a specified number of significant digits and places the
result in another decimal string.

STR$ROUND places ,flags ,asign ,aexp ,adigits ,csign
, cexp , cdigits

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

places
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Maximum number of decimal digits that STR$ROUND retains in the result.
The places argument is the address of a signed longword containing the
number of decimal digits.

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Function flag. Zero indicates that the decimal string is rounded; 1 indicates
that it is truncated. The flags argument is the address of an unsigned
longword containing this function flag.

asign
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Sign of the first operand. The asign argument is the address of an unsigned
longword string containing this sign. A value of zero indicates that the
number is positive, while a value of 1 indicates that the number is negative.

a exp
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

DESCRIPTION

CONDITION
VALUES
RETURNED

STR$ROUND

Power of 10 by which adigits is multiplied to get the absolute value of
the first operand. The aexp argument is the address of a signed longword
containing this exponent.

adigits
VMS usage: char_string
type: numeric string, unsigned
access: read only
mechanism: by descriptor

First operand's numeric string. The adigits argument is the address of a
descriptor pointing to this numeric string. The string must be an unsigned
decimal number.

csign
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Sign of the result. The csign argument is the address of an unsigned
longword containing the result's sign. A value of zero indicates that the
number is positive, while a value of 1 indicates that the number is negative.

cexp
VMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Power of 10 by which cdigits is multiplied to get the absolute value of the
result. The cexp argument is the address of a signed longword containing this
exponent.

cdigits
VMS usage: char_string
type: numeric string, unsigned
access: write only
mechanism: by descriptor

Result's numeric string. The cdigits argument is the address of a descriptor
pointing to this numeric string. The string is an unsigned decimal number.

The Round or Truncate a Decimal String routine rounds or truncates a
decimal string to a specified number of significant digits and places the result
in another decimal string.

SS$_NORMAL

STR$_TRU

Normal successful completion.

String truncation warning. The fixed-length
destination string could not contain all of the
characters.

STR-81

STR$ROUND

CONDITION
VALUES
SIGNALED

EXAMPLE

100 !+

Ll8$_1NV ARG

STR$_FA TINTERR

STR$_1LLSTRCLA

STR$_1NSVIRMEM

STR$_ WRONUMARG

Invalid argument.

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGITAL in a Software Performance Report (SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the VAX Procedure Calling and
Condition Handling Standard.

Insufficient virtual memory. STR$ROUND could not
allocate heap storage for a dynamic or temporary
string.

Wrong number of arguments.

! This example shows the difference between
! the values obtained when rounding or truncating
! a decimal string.
!-

ASIGN% = 0%
AEXP% = -4%
ADIGITS$ = '9999998'
CSIGN% = 0%
CEXP% = 0%
CDIGITS$ = '0'
PRINT "A= "; ASIGN%; AEXP%; ADIGITS$

!+
! First, call STR$ROUND to round the value of A.
!-

CALL STR$ROUND (3%, 0%, ASIGN%, AEXP%, ADIGITS$, &
CSIGN%, CEXP%, CDIGITS$)

PRINT "ROUNDED: C = "; CSIGN%; CEXP%; CDIGITS$

!+
! Now, call STR$ROUND to truncate the value of A.
!-

CALL STR$ROUND (3%, 1%, ASIGN%, AEXP%, ADIGITS$, &
CSIGN%, CEXP%, CDIGITS$)

PRINT "TRUNCATED: C = "; CSIGN%; CEXP%; CDIGITS$
999 END

STR-82

This BASIC example uses STR$ROUND to first round and then truncate the
value of A to the number of decimal places specified by places. The following
values apply:

A= 999.9998 (ASIGN = 1, AEXP = -4, ADIGITS = '9999998')

STR$ROUND

Listed below is the output generated by this program; note that the decimal
value of C equals 1000 when rounded, and 999 when truncated.

A = 1 -4 9999998

ROUNDED: C = 0 1 100

TRUNCATED: C = 0 0 999

STR-83

STR$TRANSLATE

STR$TRANSLATE Translate Matched Characters

FORMAT

RETURNS

ARGUMENTS

STR-84

The Translate Matched Characters routine successively compares each
character in a source string to all characters in a match string. If a source
character has a match, the destination character is taken from the translate
string. Otherwise, STR$TRANSLA TE moves the source character to the
destination string.

STR$TRANSLATE destination-string ,source-string
, translation-string ,match-string

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

destination-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string. The destination-string argument is the address of a
descriptor pointing to the destination string.

source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string. The source-string argument is the address of a descriptor
pointing to the source string.

translation-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Translate string. The translation-string argument is the address of a
descriptor pointing to the translate string.

match-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Match string. The match-string argument is the address of a descriptor
pointing to the match string.

DESCRIPTION

CONDITION
VALUES
RETURNED

CONDITION
VALUES
SIGNALED

EXAMPLE
10 ! +

STR$TRANSLATE

STR$TRANSLATE successively compares each character in a source string
to all characters in a match string. If a source character matches any of the
characters in the match string, STR$TRANSLATE moves a character from the
translate string to the destination string. Otherwise, STR$TRANSLATE moves
the character from the source string to the destination string.

The character taken from the translate string has the same relative position
as the matching character had in the match string. When a character appears
more than once in the match string, the position of the leftmost occurrence of
the multiply-defined character is used to select the translate string character.
If the translate string is shorter than the match string and the matched
character position is greater than the translate string length, the destination
character is a space.

SS$_NORMAL

STR$_TRU

STR$_F A TINTERR

STR$_1LLSTRCLA

STR$_1NSVIRMEM

Normal successful completion.

String truncation warning. The fixed-length
destination string could not contain all of the
characters.

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGIT AL in a Software Performance Report (SPA).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the VAX Procedure Calling and
Condition Handling Standard.

Insufficient virtual memory. STR$TRANSLATE
could not allocate heap storage for a dynamic or
temporary string.

This example program uses STR$TRANSLATE to
translate all characters of a source string
from uppercase to lowercase characters.

!-

EXTERNAL INTEGER FUNCTION STR$TRANSLATE(STRING,STRING,STRING,STRING)
TO$='abcdefghijklmnopqrstuvwxyz'
FROM$='ABCDEFGHIJKLMNOPQRSTUVWXYZ'
X% = STR$TRANSLATE(OUT$, 'TEST',T0$,FROM$)
PRINT 'Status= ';x%
PRINT 'Resulting string = ';out$

32767 END

This BASIC example translates uppercase letters to lowercase letters, thus
performing the same function as STR$UPCASE.

STR-85

STR$TRANSLATE

STR-86

The output generated by this example is as follows:

$ RUN TRANSLATE
Status = 1
Resulting string = test

A more practical although more complicated use for STR$TRANSLATE would
be to encrypt data by translating the characters to obscure combinations of
numbers and alphabetic characters.

STR$TRIM

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

STR$TRIM

Trim Trailing Blanks and Tabs

The Trim Trailing Blanks and Tabs routine copies a source string to a
destination string and deletes the trailing blank and tab characters.

STR$TR IM destination-string , source-string
[,resultant-length]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

destination-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string into which STR$TRIM copies the trimmed string. The
destination-string argument is the address of a descriptor pointing to the
destination string.

source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string which STR$TRIM trims and then copies into the destination
string. The source-string argument is the address of a descriptor pointing to
the source string.

resultant-length
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of bytes that STR$TRIM writes into destination-string, not counting
padding in the case of a fixed-length string. The resultant-length argument
is the address of an unsigned word into which STR$TRIM writes the length
of the output string. If the input string is truncated to the size specified in the
destination-string description, resultant-length is set to this size. Therefore,
resultant-length can always be used by the calling program to access a valid
substring of destination-string.

STR$TRIM copies a source string to a destination string and deletes the
trailing blank and tab characters.

STR-87

STR$TRIM

CONDITION
VALUES
RETURNED

CONDITION
VALUES
SIGNALED

STR-88

SS$_NORMAL

STR$_TRU

STR$_F A TINTERR

STR$_1LLSTRCLA

STR$_1NSVIRMEM

Normal successful completion.

String truncation warning. The fixed-length
destination string could not contain all the
characters.

Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGITAL in a Software Performance Report (SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the VAX Procedure Calling and
Condition Handling Standard.

Insufficient virtual memory. STR$TRIM could not
allocate heap storage for a dynamic or temporary
string.

STR$UPCASE

STR$UPCASE Convert String to All Uppercase
Characters

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

The Convert String to All Uppercase Characters routine converts a source
string to uppercase.

STR$UPCASE destination-string ,source-string

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

destination-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string into which STR$UPCASE writes the string it has converted
to uppercase. The destination-string argument is the address of a descriptor
pointing to the destination string.

source-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string that STR$UPCASE converts to uppercase. The source-string
argument is the address of a descriptor pointing to the source string.

STR$UPCASE converts successive characters in a source string to uppercase
and writes the converted character into the destination string. The routine
converts all characters in the DEC Multinational Character Set.

SS$_NORMAL

STR$_TRU

Normal successful completion.

String truncation warning. The fixed-length
destination string could not contain all the
characters.

STR-89

STR$UPCASE

CONDITION
VALUES
SIGNALED

STR$_FATINTERR Fatal internal error. An internal consistency check
has failed. This usually indicates an internal error
in the Run-Time Library and should be reported to
DIGIT AL in a Software Performance Report (SPR).

STR$_1LLSTRCLA

STR$_1NSVIRMEM

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the VAX Procedure Calling and
Condition Handling Standard.

Insufficient virtual memory. STR$UPCASE could
not allocate heap storage for a dynamic or
temporary string.

EXAMPLES

il 30 ! +

!-

This example uses STR$UPCASE
to convert all characters in
the source string (SRC$) to
uppercase and write the result
in the destination string (DST$) .

SRC$ = 'abed'
PRINT "SRC$ =";SRC$
CALL STR$UPCASE (DST$, SRC$)
PRINT "DST$ =";DST$
END

This BASIC program generates the following output:

SCR$ =abed
DST$ =ABCD

fa 0 1 2 3 4 5 6 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FTTY D F 80 TTY
C* Initialize string to be converted to uppercase
C MOVE 'rep head'HEAD 8
C UPCASE EXTRN'STR$UPCASE'
C* Convert the string to uppercase
C CALL UPCASE
C PARMD RESULT 8
C PARMD HEAD
C* Display on the terminal the string in uppercase
C RESULT DSPLYTTY
C SETON LR

The RPG II program above displays the string 'REP HEAD' on the terminal.

STR-90

Index

A
Addition

of decimal strings• STR-3

D
DEC Multinational Character Set

string comparison• STR-1 1 , STR-1 7
string conversion• STR-89

Descriptor• 2-7
analysis of• 2-4

Dynamic length string• 2-1, 2-2, 2-3, STR-68
allocation of• STR-46
deallocation of• STR-45

E
Entry point

CALL entry point• 2-9
JSB entry point• 2-9

F
Fixed length string• 2-1
Function return value• 2-6

returned in output argument• 2-6
returned in RO/R1•2-6

H
Heap storage• 2-3

L
LIB$ANAL YZE_SDESC • 2-4

LIB$GET _INPUT• 2-8
LIB$GET_VM • 2-3
LIB$SCOPY_DXDX • 2-7

M
Memory

allocating strings• STR-46
deallocating strings• STR-45

Multiplication
decimal strings• STR-58

0
OTS$SCOPY_DXDX•2-7

R
Routine

See String manipulation routine
Run-Time Library routine

string manipulation• 2-1

s
STR$ADD • STR-3
STR$ANALYZE_SDESC•2-4,STR-7
STR$APPEND•2-9,STR-9
STR$CASE_BLIND_COMPARE • STR-11
STR$COMPARE•STR-13
STR$COMPARE_EQL•STR-15
STR$COMP ARE _MUL Tl• STR-1 7
STR$CONCAT•2-9,STR-20
STR$COPY_DX•2-7, 2-8, STR-23
STR$COPY_R•STR-25
STR$DIVIDE • STR-28
STR$DUPL_CHAR•STR-32
STR$ELEMENT•STR-34
STR$FIND_FIRST_IN_SET • STR-36
STR$FIND_FIRST _NQT _IN_SET • STR-38

lndex-1

Index

STR$FIND_FIRST_SUBSTRING • STR-41
STR$FREE1_DX•STR-45
STR$GET1_DX•STR-46
STR$LEFT•2-9, STR-48
STR$LEN_EXTR•STR-51
STR$MATCH_WILD • STR-55
STR$MUL • STR-58
STR$POSITION • STR-62
STR$POS_EXTR•2-9,STR-65
STR$PREFIX • 2-9, STR-68
STR$RECIP • STR-70
STR$REPLACE•STR-74
STR$RIGHT. 2-9 I STR-77
STR$ROUND•STR-80
STR$TRANSLATE•STR-84
STR$TRIM • STR-87
STR$UPCASE•STR-89
String

See also Descriptor

See also String manipulation routine
appending source string to end of destination

string• STR-9
comparing for equality, no padding• STR-1 5
comparing two• STR-13
comparing without regard to case• STR-11
concatenating• STR-20
converting to uppercase• STR-89
copying by descriptor• STR-23
copying by reference• STR-25
dividing two decimal strings• STR-28
dynamic length• 2-2, 2-3, 2-11, 2-12
evaluation rules• 2-1
finding substring• STR-62
fixed length• 2-1
inserting source string at front of destination•

STR-68
maximum length of• 2-2
null string• 2-11
output length argument• 2-8
reciprocal of decimal string• STR-70
removing trailing blanks and tabs• STR-87
rounding or truncating a decimal string• STR-80
semantics of• 2-1, 2-4
translating matched characters• STR-84

String arithmetic
addition of decimal strings• STR-3
division of decimal strings• STR-28
multiplication• STR-58

String descriptor• STR-7
String manipulation routine• 2-1

descriptor classes and string semantics• 2-4

lndex-2

String manipulation routine (cont'd.)

how to select• 2-8
list of severe errors• 2-10
reading input string arguments• 2-6
writing output string arguments• 2-6

Substring• 2-10
replacing• STR-7 4

v
Varying length string• 2-1, 2-2, 2-3, STR-9,

STR-24,STR-68

Reader's Comments VMS RTL String
Manipulation (STR$)

Manual
AA-LA75A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more /less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

__ ~o;~t;;~:·d Here ~d Tape -------------------nnr-------;~~~~---
in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 •• 1.1 ••• 1.11 •• 1

·- Do Not Tear - Fold Here --

I
I
I
I
I
I
I

