
VMS RTL Parallel
Processing (PPL$) Manual

Order Number: AA-LA 7 4A-TE

April 1988

This manual documents the parallel processing routines contained in the
PPL$ facility of the VMS Run-Time Library.

Revision/Update Information: This is a new manual.

Software Version: VMS Version 5.0

digital equipment corporation
maynard, massachusetts

April 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form oh the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT
DECUS RSTS

t:Jornuo~u TM DECwriter RSX

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA & PUERTO Rico* CANADA INTERNATIONAL

ZK4375

Digital Equipment Corporation
P.O. Box CS2008

Digital Equipment
of Canada Ltd.

Digital Equipment Corporation
PSG Business Manager

Nashua, New Hampshire
03061

100 Herzberg Road
Kanata, Ontario K2K 2A6
Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire, Alaska, and Hawaii call 603-884-6660.
In Canada call 800-267-6215.
*

c/o Digital's local subsidiary
or approved distributor

Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).
Internal orders should be placed through the Software Distribution Center (SOC), Digital Equipment
Corporation, Westminster, Massachusetts 01473.

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format the
text, generate a table of contents and index, and paginate the entire document.
Writers can print the document on the terminal or line printer, or they can use
DIGITAL-supported devices, such as the LN03 laser printer and PostScript®
printers (PrintServer 40 or LN03R ScriptPrinter), to produce a typeset-quality
copy containing integrated graphics.

® Postscript is a trademark of Adobe Systems, Inc.

Contents

PREFACE

NEW AND CHANGED FEATURES

CHAPTER 1 OVERVIEW OF PARALLEL PROCESSING

1.1 ADVANTAGES OF PARALLEL PROCESSING

1.2 DEFINITION OF TERMS

1.3 CHARACTERISTICS OF A PARALLEL PROCESSING
APPLICATION

1.4 SOFTWARE MODELS FOR PARALLEL PROCESSING
1.4.1 Master/Slave
1.4.1.1 True Master /Slave Model • 1-3
1.4.1.2 Self-Scheduling Master /Slave Model • 1-3
1.4.1.3 Synchronization Method • 1-3
1.4.2 Pipelining
1.4.3 Work Queue Processing
1.4.3.1 Synchronization Method • 1-5

1.5 SYSTEM REQUIREMENTS
1.5.1 Subprocess Quota
1.5.2 AST Limit
1.5.3 Enqueue Quota
1.5.4 Global Section Quota

CHAPTER 2 PROCESS MANAGEMENT AND NAMING
OPERATIONS

2.1
2.1.1
2.1.2

2.2

ACCESSING THE PPL$ FACILITY
Initializing PPL$
Terminating Access to the PPL$ Facility

PARTICIPANT MANAGEMENT

ix

xiii

1-1

1-1

1-1

1-2

1-2
1-3

1-4
1-4

1-5
1-5
1-5
1-5
1-5

2-1

2-1
2-1
2-2

2-2

v

Contents

2.2.1
2.2.2
2.2.3

2.3

CHAPTER 3

3.1
3.1.1
3.1.2
3.1.3

3.2

CHAPTER4

4.1

4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5

4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7

4.4
4.4.1
4.4.2
4.4.3

vi

Creating a Subordinate
Deleting a Subordinate
Retrieving Participant Information

APPLICATION-WIDE NAMING

SHARED MEMORY OPERATIONS

SHARED MEMORY ROUTINES
Creating Shared Memory
Flushing Shared Memory to Disk
Deleting Shared Memory

CREATING A VIRTUAL MEMORY ZONE

SYNCHRONIZATION OPERATIONS

RETRIEVING A SYNCHRONIZATION ELEMENT IDENTIFIER

BARRIER SYNCHRONIZATION.
Creating a Barrier
Reading a Barrier
Waiting at a Barrier
Setting a Barrier Quorum
Adjusting a Barrier Quorum

EVENT SYNCHRONIZATION
Creating an Event
Enabling an Event AST
Enabling an Event Signal
Awaiting an Event
Triggering an Event
Reading an Event
Predefined Events

SEMAPHORE SYNCHRONIZATION
Creating a Semaphore
Decrementing a Semaphore
Incrementing a Semaphore

2-2
2-3
2-3

2-4

3-1

3-1
3-1
3-3
3-3

3-3

4-1

4-1

4-1
4-2
4-2
4-3
4-3
4-4

4-4
4-4
4-5
4-6
4-6
4-6
4-7
4-7

4-8
4-9
4-9

4-10

4.4.4 Reading a Semaphore Value

4.5 SPIN LOCK SYNCHRONIZATION
4.5.1 Creating a Spin Lock
4.5.2 Seizing a Spin Lock
4.5.3 Releasing a Spin Lock

CHAPTER 5 DEVELOPING PARALLEL PROCESSING
APPLICATIONS

5.1 COMPARING THE USE OF SYNCHRONIZATION ELEMENTS
5.1.1 Barriers
5.1.2 Events
5.1.3 Semaphores
5.1.4 Spin Locks
5.1.5 Sharing an Element Identifier

5.2 CONSIDERATIONS
5.2.1 Naming Components
5.2.2 Using SYS$HIBER
5.2.3 Disabling ASTs
5.2.4 VAX Ada and VAX FORTRAN Considerations

CHAPTER 6 EXAMPLES OF CALLING PPL$ ROUTINES

PPL$ REFERENCE SECTION
PPL$ADJUST_QUORUM
PPL$AWAIT_EVENT
PPL$CREATE_BARRIER
PPL$CREATE_EVENT
PPL$CREATE_SEMAPHORE
PPL$CREATE_SHARED_MEMORY
PPL$CREATE_SPIN_LOCK
PPL$CREA TE_ VM _ZONE
PPL$DECREMENT_SEMAPHORE
PPL$DELETE_SHARED_MEMORY
PPL$ENABLE_EVENT_AST
PPL$ENABLE_EVENT_SIGNAL

PPL-3
PPL-5
PPL-6
PPL-8

PPL-12
PPL-15
PPL-18
PPL-20
PPL-25
PPL-27
PPL-29
PPL-32

Contents

4-10

4-10
4-11
4-11
4-11

5-1

5-1
5-1
5-1
5-2
5-2
5-2

5-3
5-3
5-3
5-4
5-4

6-1

vii

Contents

INDEX

EXAMPLES
6-1

6-2

FIGURES
PPL-1

PPL-2

viii

PPL$FIND_SVNCH_ELEMENT_ID
PPL$FLUSH_SHARED_MEMORY
PPL$GET_INDEX
PPL$1NCREMENT_SEMAPHORE
PPL$1NDEX_ TQ_PID

PPL$1NITIALIZE
PPL$PID_TQ_INDEX
PPL$READ_BARRIER
PPL$READ_EVENT
PPL$READ_SEMAPHORE
PPL$RELEASE_SPIN_LQCK
PPL$SEIZE_SPIN_LOCK
PPL$SET_QUORUM
PPL$SPAWN
PPL$STOP
PPL$TERMINATE
PPL$TRIGGER_EVENT
PPL$UNIQUE_NAME
PPL$WAIT_AT_BARRIER

Using PPL$ Routines in BLISS-32

Using PPL$ Routines in VAX FORTRAN

Signal Vector for a User-Defined Event

Signal Vector for a PPL$-Defined Event

PPL-35
PPL-37
PPL-39
PPL-40
PPL-41
PPL-42
PPL-44
PPL-45
PPL-47
PPL-48
PPL-50
PPL-51
PPL-53
PPL....:55

PPL-58
PPL-59
PPL-60
PPL-62
PPL-64

6-1

6-6

PPL-33

PPL-34

Preface

This manual provides users of the VMS operating system with detailed usage
and reference information on parallel processing routines supplied in the
PPL$ facility of the Run-Time Library.

Run-Time Library routines can only be used in programs written in languages
that produce native code for the VAX hardware. At present, these languages
include VAX MACRO and the following compiled high-level languages:

VAX® Ada®
VAX BASIC
BLISS-32
VAXC
VAX COBOL
VAX COBOL-74
VAX CORAL
VAX DIBOL
VAX FORTRAN
VAX Pascal
VAX PL/I
VAX RPG
VAX SCAN

Interpreted languages that can also access Run-Time Library routines include
VAX DSM and DATATRIEVE.

Intended Audience
This manual is intended for system and application programmers who want
to call Run-Time Library routines.

Document Structure
This manual is organized into two parts as follows:

• Part I provides guidelines and reference material on PPL$ routines.

Chapter 1 provides a brief overview of parallel processing.

Chapter 2 discusses process management and naming operations.

Chapter 3 describes shared memory operations.

Chapter 4 discusses synchronization operations.

Chapter 5 discusses some recommended methods for using the Parallel
Processing Facility for developing new programs.

Chapter 6 contains examples demonstrating how to call some PPL$
routines from major VAX languages.

® VAX is a trademark of Digital Equipment Corporation.
® Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

ix

Preface

• Part II provides detailed reference information on each routine contained
in the PPL$ facility of the Run-Time Library. This information is
presented using the documentation format described in the Introduction
to the VMS Run-Time Library. Routine descriptions appear in alphabetical
order by routine name.

Associated Documents

x

The Run-Time Library routines are documented in a series of reference
manuals. A general overview of the Run-Time Library and a description
of how the Run-Time Library routines are accessed are presented in the
Introduction to the VMS Run-Time Library. Descriptions of the other RTL
facilities and their corresponding routines are presented in the following
books:

• The VMS RTL DECtalk (DTK$) Manual

• The VMS RTL Library (LIB$) Manual

• The VMS RTL Mathematics (MTH$) Manual

• The VMS RTL General Purpose (OTS$) Manual

• The VMS RTL Screen Management (SMG$) Manual

• The VMS RTL String Manipulation (STR$) Manual

The optional Guide to Parallel Programming on VMS describes the concepts and
terminology associated with parallel processing, and introduces the concepts
involved in programming an application for parallel execution.

The VAX Procedure Calling and Condition Handling Standard, which is
documented in the Introduction to VMS System Routines, contains useful
information for anyone who wants to call Run-Time Library routines.

Application programmers in a_ny language may refer to the Guide to Creating
VMS Modular Procedures for the Modular Programming Standard and other
guidelines.

High-level language programmers will find additional information on calling
Run-Time Library routines in their language reference manuals. Additional
information may also be found in the language user's guide provided with
your VAX language.

The Guide to Using VMS Command Procedures may also be useful.

For a complete list and description of the manuals in the VMS documentation
set, see the Overview of VMS Documentation.

Conventions
Convention

CTRL/C

$SHOW TIME
05-JUN-1988 11 :55:22

$ TYPE MYFILE.DAT

input-file, ...

[logical-name]

quotation marks
apostrophes

Preface

Meaning

In examples, a key name (usually abbreviated)
shown within a box indicates that you press
a key on the keyboard; in text, a key name is
not enclosed in a box. In this example, the key
is the RETURN key. (Note that the RETURN
key is not usually shown in syntax statements
or in all examples; however, assume that you
must press the RETURN key after entering a
command or responding to a prompt.)

A key combination, shown in uppercase with a
slash separating two key names, indicates that
you hold down the first key while you press the
second key. For example, the key combination
CTRL/C indicates that you hold down the key
labeled CTRL while you press the key labeled C.
In examples, a key combination is enclosed in a
box.

In examples, system output (what the system
displays) is shown in black. User input (what
you enter) is shown in red.

In examples, a vertical series of periods, or
ellipsis, means either that not all the data that
the system would display in response to a
command is shown or that not all the data a
user would enter is shown.

In examples, a horizontal ellipsis indicates
that additional parameters, values, or other
information can be entered, that preceding
items can be repeated one or more times, or
that optional arguments in a statement have
been omitted.

Brackets indicate that the enclosed item is
optional. (Brackets are not, however, optional
in the syntax of a directory name in a file
specification or in the syntax of a substring
specification in an assignment statement.)

The term quotation marks is used to refer
to double quotation marks (") . The term
apostrophe (') is used to refer to a single
quotation mark·.

Other conventions used in the documentation of Run-Time Library routines
are described in the Introduction to the VMS Run-Time Library.

xi

New and Changed Features

The PPL$ facility is new for VMS Version 5.0. All of the routines described
in this manual are new.

xiii

1 Overview of Parallel Processing

Parallel processing occurs when a section of an application is divided into
multiple tasks, and those multiple tasks are executed simultaneously on
multiple processors.

You can use parallel processing techniques to implement fault-tolerant
systems, to decrease the amount of elapsed time required to execute an
application, and to express the inherent logical parallelism in an algorithm.
While the term parallel processing usually implies a number of processors
working together on a particular problem, you can apply the same techniques
to a variety of applications, including those that run on a single CPU.

The PPL$ facility offers routines to help you implement concurrent programs
on both single-CPU and multiprocessor systems, using VMS processes for
parallelism.

Refer to the Guide to Parallel Programming on VMS for more information about
parallel processing techniques.

1.1 Advantages of Parallel Processing
The PPL$ facility provides routines to simplify many of the tasks commonly
required to implement a parallel processing application. The PPL$ routines
are designed to work together to help you create and maintain parallel
applications. Instead of using all of the common event flag system services,
for example, to implement a semaphore, you can use the PPL$ routines that
create, read, decrement, and increment a semaphore.

The parallel processing techniques implemented by PPL$ show the greatest
performance improvements in applications that are CPU intensive. Areas
such as computer-aided design, image processing, high-energy physics, and
geophysical research, among others, see a significant lessening of elapsed
time when using PPL$ routines. Applications that are 1/0 intensive will
most often not realize any significant decrease in elapsed time, and may even
suffer in system performance when executing applications in parallel. In
other words, you must examine every application individually to determine
whether or not using the PPL$ routines, or parallel processing in general, is
appropriate.

1.2 Definition of Terms
A process is the basic entity that is scheduled by the system software.
This system software provides the context in which an image executes; for
example, the process's quota, privilege, and file context. A process, therefore,
consists of an address space and both hardware and software context.

On a VMS system there are two possible types of processes: detached
processes and subprocesses. A detached process is an independent entity on
the system. A subprocess, or subordinate process, is spawned from another
process; therefore a subordinate shares some system resources with its parent
process, and it is deleted either when the parent is deleted or when the image

1-1

Overview of Parallel Processing
1 .2 Definition of Terms

that it is executing exits. For this version of the PPL$ facility, a subordinate is
defined as a VMS subprocess.

The term participant is used to refer to any one of an arbitrary number of
independent "threads of execution" that performs an application-defined piece
of work. A participant can be either a parent process or a subordinate.

Within VMS, a global section (or shared memory) is a data structure or
shareable image section potentially available to all processes in the system.
See the VMS System Services Reference Manual for more information on global
sections.

When a participant is blocked, a synchronization element is preventing
that participant from executing. A participant can be blocked by a barrier,
semaphore, or event. When you specify blocking of a participant, the
participant is blocked by a PPL$ call to the system service $HIBER, so
that ASTs can be delivered.

The term critical section refers to any segment of your program that must be
executed only by a single process at a time.

1 . 3 Characteristics of a Parallel Processing Application
Applications that can benefit from using PPL$ routines will likely be
described by at least one of the following characteristics:

• The application runs on a multiprocessing system that consists of two or
more processors (CPUs) that can use shared memory (global sections).

• The application represents a single application program that can have
several tasks or instructions executing simultaneously across multiple
processors.

• The application uses communication and synchronization mechanisms for
controlling access to shared variables.

1 .4 Software Models for Parallel Processing

1-2

The routines provided by the PPL$ facility are based on several software and
performance models. This section discusses the models to consider when you
design your own parallel applications.

When you begin designing an application for parallel execution, you should
structure your program after the parallel processing model that best fits your
application. You will find that, in general, your application does not exactly
match one particular model, but instead more closely resembles a collection
or combination of these models, including

• The master/slave model

• The pipelining model

• The work queue processing model

1.4.1 Master/Slave

1.4.1.1

1.4.1.2

1.4.1.3

Overview of Parallel Processing
1.4 Software Models for Parallel Processing

The general master/ slave model of parallel processing has the following
characteristics:

• One participant is selected as the master, and that participant is
responsible for creating and deleting any subordinates (slaves) required
for your application.

• When you separate your application into single-stream and multiple­
stream tasks, the master is responsible for executing all of the single­
stream tasks and notifying the slave subordinates when multiple-stream
tasks are available for execution. Note that the master can also execute
some of the parallel code, but is always responsible for the execution of
the single-stream code.

All of the characteristics mentioned above hold true for any master/slave
software model. However, within this general model there are two different
forms of the master/ slave model: the true master/ $lave model, and a self­
scheduling master/ slave model, sometimes called the queuing model.

True Master/Slave Model
In the true master/slave model of parallel processing, the master executes all
the single-stream tasks and then specifically assigns a multiple-stream task
to each slave subordinate. In other words, the master is not only responsible
for executing all of the single-stream tasks and notifying the subordinates
that multiple-stream tasks are available, but also for assigning a task to each
subordinate for execution; the subordinates cannot assign work to themselves.

Self-Scheduling Master/Slave Model
In the self-scheduling master/slave model, the master is again responsible
for executing all the single-stream tasks and notifying the slave subordinates
that multiple-stream tasks are available for execution. However, in the self­
scheduling master/slave model, the master does not assign tasks to the
subordinates. Instead, the master informs the slaves which multiple-stream
tasks are available, and each slave subordinate takes a task and executes
it. That is, the slave subordinates assign tasks to themselves, although the
master is still responsible for the creation of these subordinates as well as the
execution of the single-stream code.

Synchronization Method
The most common synchronization method to use in the master/slave parallel
processing model is barrier synchronization. That is, once the master notifies
the slave subordinates that multiple-stream tasks are available for execution,
the master waits until all the slaves reach the designated barrier, which is
generally at the completion of a set of work items. At that point, the master
resumes control and continues to execute the single-stream code. (Refer to
Chapter 4 for more information about barrier synchronization.)

1-3

1.4.2

1.4.3

Overview of Parallel Processing
1.4 Software Models for Parallel Processing

Pipelining
The pipelining parallel processing model is task oriented. That is, each
processor in the system is assigned a specific task, and the data moves from
task to task. At each time step, each processor performs its assigned task and
then passes the information on to the next task, meanwhile receiving data
from the previous task.

You can compare the pipelining model of parallel processing to an assembly
line, where the work performed at each station in the line is a task in the
pipe, and the piece moving through the assembly line is the piece of data
moving through the pipe.

In the ideal situation, all of the stations in an assembly line have equal
processing speed, so that once the assembly line is fully loaded it outputs one
completed product per clock period. The same is true for a pipelining parallel
processing model. Ideally, each task requires the same amount of execution
time so that, once fully loaded, the pipe outputs one completed product
per clock period. If this is not the case, then the slowest task becomes the
bottleneck for the entire pipe. There is, however, a time overhead associated
with the initial filling of the pipe, before the first output item appears. This
overhead is a function of the number of tasks and the completion time for
each task.

Because a pipelining model is task oriented, there are not many
synchronization and communication requirements, and those that exist
can be satisfied with a message-passing technique such as a mailbox.

Work Queue Processing

1-4

The work queue parallel processing model consists of a queue of work items
and processes to complete these work items. Each participant can take a
work item off the queue, and if necessary, each participant can add newly
generated work items to the queue. As each participant completes its work
item, it does not wait for some participant to assign it a new task, but instead
takes the next item off the work queue and begins execution.

The work queue parallel processing model is similar to the self-scheduling
master/slave model in that the participants can assign themselves tasks from
the queue and execute them to completion. However, there are two major
differences. In the self-scheduling master/slave model, the predesignated
master participant always executes the single-stream code; the work queue
model has a "floating" master, which means that any participant that assigns
itself the single-stream code can execute it. The other difference is that, in
the self-scheduling master/slave model, if a slave subordinate generates an
additional piece of work, it must pass that information back to the master. In
the work queue model, any participant that generates additional work items
can simply add them to the queue.

A common example of the work queue model of parallel processing is a
typing pool. The work that must be done is stored in a bin in the middle
of the room, and each typist takes one of these work items and completes
it. If that work item in turn generates additional work, the typist puts the
additional work items back into the bin and completes execution of the
current work item. When the typist has completed the current work item, the
typist simply takes the next work item from the bin and performs that task.
Again, if that task generates additional work items, those items are placed in
the bin for later execution.

1.4.3.1

Overview of Parallel Processing
1 .4 Software Models for Parallel Processing

Synchronization Method
To achieve synchronization in a work queue model, you generally use mutual
exclusion to access data in shared memory. Mutual exclusion describes the
situation where only one participant at a time is allowed access to a critical
section of a parallel task or a critical physical resource. (A physical resource
can be a printer or an 1/0 device, for example.) Mutual exclusion can be
implemented using either a spin lock or a semaphore. (Refer to Chapter 4 for
more information about spin lock and semaphore synchronization.)

1.5 System Requirements

1.5.1

1.5.2

1.5.3

1.5.4

No privileges are required to use the PPL$ facility. However, before you
begin using PPL$, check your process quotas by using the following DCL
command:

$ SHOW PROCESS/QUOTA

The following sections discuss some process quotas that PPL$ may require
you to increase.

Subprocess Quota

AST Limit

Enqueue Quota

Each user process has a quota that determines the maximum number of
subprocesses that process can create, thereby limiting the number of processes
in a PPL$ application. Check your subprocess quota to be sure that the quota
is greater than or equal to the number of subprocesses you plan to create in
your parallel application.

Because PPL$ uses ASTs (asynchronous system traps) internally, a PPL$
application that uses other AST system services extensively may need to
increase its ASTLM quota. Under most conditions, adding 2 per participant to
your current value is sufficient. For each application, you must calculate the
possible extent of your AST use.

PPL$ uses the $ENQ system service internally. If you also use the locking
system services independently of PPL$, you may have to increase your
ENQLM quota. The largest possible increase that PPL$ may need is 3 per
participant.

Global Section Quota
If your application uses a large amount of shared memory, you may want to
request that your system manager increase the following SYSGEN parameters:

GBLSECTIONS
GBLPAGES
GBLPAGFIL

1-5

2 Process Management and Naming Operations

The PPL$ facility provides routines to help you manage your application's
processes. These management routines include those that initialize and
terminate a process's access to PPL$, create and delete subordinates, retrieve
subordinate information, and produce a name consistent throughout the
application.

2 .1 Accessing the PPL$ Facility

2.1.1 Initializing PPL$

The PPL$ facility provides the following two routines to initialize and
terminate your application's access to the facility:

PPL$1NITIALIZE Informs the PPL$ facility that the caller is forming
or joining the parallel application

PPL$TERMINA TE Ends the caller's participation in the parallel
application

PPL$INITIALIZE informs the PPL$ facility that the caller is forming or
joining the parallel application. You are not required to call this routine. The
first time you call one of the PPL$ routines listed below, the PPL$ facility is
automatically initialized. However, the routine PPL$1NITIALIZE is provided
in case you want to explicitly initialize the PPL$ facility from your program,
or if you want to specify an initial number of pages of memory available to
PPL$ that exceeds the default. Note that this is an application-wide setting,
and calls by subordinates have no effect on the space allocated.

The routines that perform automatic initialization when· first called are as
follows:

PPL$CREA TE_BARRIER

PPL$CREA TE_EVENT

PPL$CREA TE_SEMAPHORE

PPL$CREA TE_SHARED_MEMORY

PPL$CREA TE_SPIN_LQCK

PPL$CREA TE_ VM_ZONE

PPL$FIND_SYNCH_ELEMENT _ID

PPL$GET_INDEX

PPL$1NDEX_ TO_PID

PPL$PID_ TO_INDEX

PPL$SPAWN

PPL$STOP

PPL$UNIQUE_NAME

If you do not call PPL$INITIALIZE, PPL$ allocates the default (link time)
constant PPL$K-1NIT_SIZE pages for its internal data structures. This
initial allocation accommodates a minimum of 32 processes, 8 barriers, 8
semaphores, 4 events, 4 spin locks, and 16 global sections. (These numbers
represent a rough guideline for combinations of PPL$ components. If
you have less than 32 processes, for example, you can have more than 8
barriers, and so forth.) You can specify another value for the size argument
in PPL$INITIALIZE if these defaults are not appropriate for your application.

2-1

2.1.2

Process Management and Naming Operations
2.1 Accessing the PPL$ Facility

If you intend to use more PPL$ resources than PPL$K-1NIT_SIZE pages
allows, you should specify a larger value for the size argument.

Terminating Access to the PPL$ Facility
The PPL$TERMINATE routine lets you "prematurely" terminate the caller's
participation in the application, that is, before the caller has actually
completed its execution. Normally, you do not need to call this routine
because the PPL$ facility automatically performs cleanup operations when
the participating process completes its execution. Optionally, this routine
forces the exit of all of the caller's descendants.

2.2 Participant Management

2.2.1

The PPL$ facility provides several routines to simplify the tasks involved
in creating, deleting, and retrieving information about a participant. These
routines are as follows:

PPL$SPAWN

PPL$STOP

PPL$GET_INDEX

PPL$1NDEX_ TQ_PID

PPL$PID_ TQ_INDEX

Creates one or more subordinates to execute code
in parallel with the caller

Terminates the execution of a participant in the
application

Returns a unique index for the specified participant

Returns the process identifier of the participant
associated with the specified index

Returns the index of the participant with the
specified process identifier

These routines are discussed in the following sections.

Creating a Subordinate

2-2

The PPL$SP AWN routine lets you create one or more subordinates that can
execute code in parallel with the caller. Any subordinate created executes
the specified code in parallel on the same node as the caller. After calling
PPL$SPAWN, typically the parent (caller) immediately continues processing
in its own context, and each subordinate begins executing immediately after it
is created. Optionally, you can specify that the caller and all the subordinates
being created only continue after each and every subordinate has performed
its PPL$ initialization, that is, performed a call to PPL$INITIALIZE. You can
also specify the PPL$M_NODEBUG value for the flags argument. Specifying
this value prevents the startup of the VMS Debugger, even if the debugger
was linked with the image. You can therefore selectively tum the Debugger
on and off for each subordinate process.

2.2.2

2.2.3

Process Management and Naming Operations
2.2 Participant Management

It is important to note that if you want to be notified when a subordinate
terminates execution abnormally, you must call PPL$ENABLE-EVENT_
SIGNAL or PPL$ENABLE_EVENL.AST. PPL$ENABLE-EVENT_SIGNAL
and PPL$ENABLE-EVENT-AST are discussed in Chapter 4. In the following
example, the call to PPL$ENABLE-EVENT_SIGNAL indicates that the user
wants to be notified if any of the created subordinates terminates abnormally.

Deleting a Subordinate

desired_condition = PPL$K_ABNORMAL_EXIT
status = PPL$ENABLE_EVENT_SIGNAL (desired_condition)
status= PPL$SPAWN (num_of_procs,,id_array)

The PPL$STOP routine terminates the execution of the specified participant
in the parallel application. If you call PPL$STOP for a process that has
spawned subordinates, VMS forces the termination of the "descendants" of
the specified process. You should call this routine only if you want to stop a
participant before it completes execution.

Retrieving Participant Information
The PPL$ facility provides three routines that supply information about a
particular participant. These routines are as follows:

PPL$GET-1NDEX
PPL$INDEX_TQ_pJD
PPL$PID_ TQ-1NDEX

The PPL$GET-1NDEX routine returns an index that is unique within the
parallel application. An index with a zero value indicates the top or main
process, that is, the participant executing first in the application. The index of
each subordinate is assigned in order as it joins the application, so that all the
subordinates in the application always return an index greater than zero.

You can use PPL$GET-1NDEX to retrieve the identifier (participant index) of
the caller.

status = PPL$GET_INDEX (my_index)

The PPL$INDEX_TQ_pJD routine returns the process identifier of the
participant associated with the index you specify. Similarly, the PPL$PID_
T0-1NDEX routine takes a VMS process identifier and returns the index of
the associated participant.

To continue the previous example, the caller can subsequently call
PPL$INDEX_TQ_pJD to retrieve its own process identifier.

status = PPL$INDEX_TO_PID (my_index, my_pid)

2-3

Process Management and Naming Operations
2.3 Application-Wide Naming

2.3 Application-Wide Naming

2-4

The PPL$UNIQUE_NAME routine returns an application-unique name.
This name consists of a system-unique string that is specific to the calling
application; this string is appended to the string that you specify. The
resulting name will be identical for all participants in the application, but
different from all other applications on that system.

This unique name is useful, for example, if your application creates a scratch
file that must not interfere with other users who are also running their own
copies of the same application at the same time.

For example, two users running the same application in different jobs call
PPL$UNIQUE_NAME and supply the same value for the name-string
argument ("x"). The name that PPL$UNIQUE_NAME returns to the first user
is different from the name returned to the second user.

3 Shared Memory Operations

When you execute a program in a sequential processing environment, all
the instructions in your program are executed in order. However, when you
execute your applications in a parallel processing environment, the operating
system controls such things as the availability of processors and the order
of execution and completion of participants. While the instructions within
a single task are still executed sequentially, you cannot predict the order in
which tasks will execute.

Because of this unpredictability, you often require some form of interprocess
communication for tasks that are executed in parallel. The PPL$ facility
provides several routines that facilitate interprocess communication by
creating and 'Controlling shared memory. Applications calling PPL$ routines
use shared memory (known as global sections in VMS) to share information
among participants. Shared memory contains shareable code or data that can
be read, or read and written, by more than one process. For more information
about global sections, refer to the VMS System Services Reference Manual.

3.1 Shared Memory Routines

3.1.1

The shared memory routines provided by the PPL$ facility are as follows:

PPL$CREA TE_SHARED_MEMORY

PPL$FLUSH_SHARED_MEMORY

PPL$DELETE_SHARED_MEMORY

PPL$CREA TE_ VM_ZONE

Create (if necessary) and map a
section of memory that can be
shared by multiple participants

Write (flush) the contents of a global
section to disk

Delete or unmap from a global
section

Create a new storage zone that is
available to all participants in the
application

These routines are discussed in more detail in the following sections.

Creating Shared Memory
The PPL$CREATE_SHARED_MEMORY routine creates (if another
participant has not already created) and maps a section of memory that
can be shared by multiple participants. By default, PPL$CREATE_SHARED_
MEMORY gives the shared memory a name unique to the application,
initializes the section to zero, and maps the section with read/write access.
If you want to change any of these defaults, you can do so using the flags
argument.

3-1

Shared Memory Operations
3.1 Shared Memory Routines

3-2

In addition, PPL$ tries to share the memory at the same address with all other
participants in the application, if possible. This operation merely attempts to
"reserve" that address range, and it is only mapped in other participants at the
time they issue calls to this routine. If PPL$CREATE_SHARED_MEMORY
cannot map the shared memory to the same addresses for all participants,
the condition value PPL$_NONPIC is returned. (This might occur when the
application executes more than one program image.)

Optionally, this routine opens a backup storage file for the shared memory
with a specified file name.

The PPL$ facility offers two distinct memory sharing services through
PPL$CREATE_SHARED_MEMORY. The first mechanism lets you request an
unspecified range of addresses, and the PPL$ facility arranges to allocate the
same set of addresses in each participant in the application. In other words,
you let the PPL$ facility determine the address of the shared memory being
created. You request this service by specifying the starting address as zero.

The second mechanism lets you specify a particular range of addresses to be
shared. This allows the sharing of an arbitrary collection of variables, such
as a FORTRAN common block, that appear at a certain address. Since VMS
maps memory in pages (512 bytes), you must take care to share exactly the
data intended for sharing - no more and no less. When the data does not
fall exactly on page boundaries, extra effort is required to prevent accidental
sharing of local data while guaranteeing that all participants can access
the shared memory at the expected addresses. You can accomplish this by
allocating a 512-byte array at both the beginning and the end of such a data
area (common block). The request to this routine then specifies the starting
address to be that of the front "guard" array. The length is calculated by
subtracting the last address of the last "guard page" from the starting address
of the front guard. PPL$ maps the requested memory so that the lower
address is rounded up to the nearest page boundary, and the higher address
is rounded down to the nearest page boundary. This guarantees that no data
is shared unexpectedly, and that all important data in the common area (that
is, everything but the two guard pages) is fully shared.

In the following example, a section of shared memory contains a variable
named front_guard (the first variable in the section), as well as last-guard
(the last variable in the section). The lenadr array contains the length of
the desired section (including guard pages) and the starting location of the
section.

parameter (one_page = 512)

lenadr(1) = %LOC(last_guard) + one_page - %LOC(front_guard)
lenadr(2) = %LOC(front_guard)
status = PPL$CREATE_SHARED_MEMORY ('pgm_shared_data', lenadr)
IF (.NOT. STATUS) GO TO 999

3.1.2

3.1.3

Flushing Shared Memory to Disk

Shared Memory Operations
3.1 Shared Memory Routines

The PPL$FLUSH_SHARED_MEMORY routine writes (flushes the contents
of) a global section to disk. This global section must have been created by
a call to PPL$CREATE_SHARED_MEMORY. If you specified a file name
in the call to PPL$CREATE_SHARED_MEMORY, the shared memory is
written to that file when you call PPL$FLUSH_SHARED_MEMORY. If you
did not specify a file name in the call PPL$CREATE_SHARED_MEMORY,
a default file specification (with a default file type of DAT) is obtained from
SYS$SCRATCH. The shared memory name is used as a related file name.

Only the pages that have been modified are flushed to disk. This is useful,
for example, if you want to store intermediate values of the variables stored
in the global section.

To continue the previous example, you use the following statement to flush
the pgm_shared_data section to disk:

status = PPL$FLUSH_SHARED_MEMORY ('pgm_shared_data')

Deleting Shared Memory
The PPL$DELETE_SHARED_MEMORY routine deletes or unmaps from a
global section. This global section must have been created through a call to
PPL$CREATE_SHARED_MEMORY. If you specify PPL$MJLUSH as an
argument to this routine, the contents of the global section are written to
disk before the section is deleted. Note that if another participant is using
the global section when you call this routine, PPL$DELETE_SHARED_
MEMORY unmaps from the global section. When all participants have
unmapped from the section or have been deleted, PPL$DELETE_SHARED_
MEMORY deletes the global section.

In the following example, the section pgm_shared_data is deleted after its
contents are written to disk. (This is specified by the PPL$MJLUSH flag.)

flag = PPL$M_FLUSH
status= PPL$DELETE_SHARED_MEMORY ('pgm_shared_data' ,,flag)

3.2 Creating a Virtual Memory Zone
The PPL$CREATE_ VM-20NE routine creates a new storage zone that is
available to all participants in the application. You can use the zone identifier
returned by this routine in calls to the following RTL LIB$ routines:

LIB$FREE_VM LIB$RESET_VM_ZQNE

LIB$GET_VM

LIB$DELETE_ VM_ZQNE

LIB$SHOW _ VM --ZONE

LIB$VERIFY _ VM_ZQNE

3-3

Shared Memory Operations
3.2 Creating a Virtual Memory Zone

3-4

The arguments for PPL$CREATE_ VM-20NE are identical to those
of LIB$CREATE_VM-20NE, except for the last two arguments;
PPL$CREATE_ VM-20NE does not accept the get-page and free-page
arguments provided by LIB$CREATE_VM-20NE. The following restrictions
apply when you are creating a zone:

• You can only call PPL$CREATE_VM-20NE once per zone in your
application. That is, once this routine has been called by any participant,
all participants in the application can use the returned zone identifier to
call any of the RTL LIB$ routines listed previously.

• It is the caller's responsibility to ensure that the caller has exclusive access
to the zone while the reset operation is being performed.

All participants in the application share the memory allocated by calls to
LIB$GET_ VM. Therefore, memory allocated by one participant can be freed
by another participant.

4 Synchronization Operations

The PPL$ facility provides routines to create and control synchronization
elements, which control the order of processing in a parallel application.
These routines implement the following synchronization elements:

• Barriers

• Events

• Semaphores

• Spin locks

The PPL$ facility also provides a routine that can be used to retrieve the
identifier of any named synchronization element. All of the synchronization
routines are discussed in the following sections.

4.1 Retrieving a Synchronization Element Identifier
Given the name of a barrier, event, semaphore, or spin lock, the
PPL$FIND_SYNCH_ELEMENT_ID routine returns the identifier of the
associated synchronization element. This routine is useful when you are
trying to ensure that a particular synchronization element's identifier is
available to all the participants that need access to that element. By naming
the element when you actually create it, you can then use PPL$FIND_
SYNCH_ELEMENT_ID to let other participants retrieve the identifier of the
element of that name. Element names are case sensitive.

You can also retrieve the identifier of an element by naming that element and
"re-creating" it. That is, after you have created an element, all participants
that need to access that element's identifier can call the appropriate "create"
routine, specifying the same name for the element. This returns the identifier
of the existing element and a status of PPL$_ELEALREXI. One benefit of
using this method is that all participants can share the same code, with each
one calling the same create routine with the same parameter values.

4. 2 Barrier Synchronization
Barrier synchronization lets you establish a barrier, or a point that all
participants must reach before continuing their work. This method of
synchronization is useful if you have multiple execution paths that need
to synchronize at a particular point (generally, at the completion of a set of
work items). To implement barrier synchronization, the PPL$ facility supplies
the following routines:

4-1

4.2.1

4.2.2

Synchronization Operations
4.2 Barrier Synchronization

Creating a Barrier

Reading a Barrier

4-2

PPL$CREATE_BARRIER

PPL$READ_BARRIER

PPL$WAIT_AT_BARRIER

PPL$SET_QUORUM

PPL$ADJUST_QUORUM

Creates a barrier synchronization element

Returns a barrier's current quorum and
number of participants waiting at the barrier

Waits until the quorum is reached for that
barrier

Establishes the initial quorum for an inactive
barrier

Increments or decrements an active barrier's
quorum

Using all of these routines, you can implement barrier synchronization in
your parallel application.

The PPL$CREATE_BARRIER routine creates and initializes a barrier
synchronization element, and returns the identifier of that barrier. This
identifier is used as an argument to the other barrier synchronization routines.

When you create a barrier using PPL$CREATE_BARRIER, you can optionally
specify a quorum. The quorum specifies the number of participants that are
required to terminate a wait for the barrier. For example, if the quorum value
is set to 3, the first two callers of PPL$WAIT_AT_BARRIER that specify this
barrier will be blocked until a third caller issues that request. At that point,
all three participants will be released for further processing. If you omit the
quorum parameter, a default value of 1 is assigned.

For example, the following call to PPL$CREATE_BARRIER creates a barrier
named my_barrier with a quorum value of 3.

status = PPL$CREATE_BARRIER (my_barrier_id, 'my_barrier', %REF(3))

PPL$CREATE_BARRIER returns a barrier identifier that you must use in
all subsequent operations on that barrier. It is your responsibility to make
this identifier available to all the participants that need to access that barrier.
To do so, you can place the barrier identifier in shared memory. However,
there is another option. When you create the barrier initially, specify a barrier
name. Then use either of the two following methods to let any participant
retrieve the barrier identifier:

• Call PPL$FIND_SYNCH_ELEMENT_ID to retrieve the identifier of the
barrier with that name.

• Call PPL$CREATE_BARRIER again, specifying the same barrier name, to
retrieve the identifier of that barrier.

The PPL$READ~BARRIER routine returns the specified barrier's current
quorum and the number of participants currently waiting (blocked) at the
barrier. This routine is useful if, for example, you want to adjust the barrier's
quorum with the PPL$ADJUST_QUORUM routine, but you want to first
determine how many participants have reached the barrier.

4.2.3

4.2.4

Waiting at a Barrier

Synchronization Operations
4.2 Barrier Synchronization

The PPL$WAIT_AT_BARRIER routine causes the caller to wait at the
specified barrier until the specified number (quorum) of participants have
arrived at the barrier. Once the quorum is reached, all waiting participants
are released for further execution. The barrier is in effect from the time the
first participant calls PPL$WAIT_AT_BARRIER until each member of the
quorum has issued the call.

The number of participants required to constitute a quorum can be
defined by calls to the PPL$CREATE_BARRIER, PPL$SET_QUORUM,
and PPL$ADJUST_QUORUM services. Note that a call to PPL$ADJUST_
QUORUM can result in the conclusion of a barrier wait.

In the following example, a barrier is created with the name synch_barrier
and an identifier named barrier _id. The quorum for this barrier is set to 1
greater than the number of subordinates, meaning that all participants in the
application (including the parent) are required to terminate barrier synch_
barrier. Later in the application, every participant must perform the same call
to PPL$WAIT_AT_BARRIER, specifying the same barrier identifer (barrier_id)
in order to reach the quorum and terminate the barrier.

status = PPL$CREATE_BARRIER (barrier_id, 'synch_barrier',
1 %REF(subordinates+1))

status = PPL$WAIT_AT_BARRIER (barrier_id)

Setting a Barrier Quorum
The PPL$SET_QUORUM routine lets you establish an initial value for the
specified barrier's quorum. That is, you can use PPL$SET_QUORUM to
change the value of the quorum for any barrier at which participants are not
currently waiting. For example, you might want to use PPL$SET_QUORUM
to set the initial barrier quorum if you did not supply a value in your call to
PPL$CREATE_BARRIER. You can also use PPL$SET_QUORUM to change
the quorum of a barrier once the previous quorum has been reached and all
waiting participants have continued execution.

To illustrate, the previous example could also have been accomplished using
the PPL$SET_QUORUM routine instead of specifying the quorum value in
the call to PPL$CREATE_BARRIER.

status = PPL$CREATE_BARRIER (barrier_id, 'synch_barrier')
status = PPL$SET_QUORUM (barrier_id, %REF(subordinates+1))

status = PPL$WAIT_AT_BARRIER (barrier_id)

Note that PPL$SET_QUORUM must be called while no participants have
called PPL$WAIT_AT_BARRIER (in other words, while there are no
participants waiting at the barrier).

4-3

4.2.5

Synchronization Operations
4.2 Barrier Synchronization

Adjusting a Barrier Quorum
The PPL$ADJUST_QUORUM routine lets you increment or decrement the
quorum of a barrier that is currently active. That is, using PPL$ADJUST_
QUORUM, you can dynamically alter the number of participants that are
required to conclude a wait on a particular barrier.

For example, if an expected barrier participant terminates without calling
PPL$WAIT_AT_BARRIER, the quorum will never be reached and the waiting
participants will hang. By using PPL$ADJUST_QUORUM, any participant
that discovers the unexpected termination of a barrier participant could then
decrement the quorum value by 1 to accommodate this situation. Note that if
you dynamically alter the quorum value to match the number of participants
already waiting at a barrier, the barrier will be concluded and the participants
will continue their execution. Be sure that your application properly accounts
for the number of participants expected to wait at a specified barrier.

4.3 Event Synchronization

4.3.1

An event is a synchronization element that has an associated state; this
state may take on a value of occurred or not _occurred. You can enable
notification when an event occurs, and you can trigger that notification as
desired. You can also enable event notification for two predefined events,
PPL$K_NORMAL_EXIT and PPL$K_ABNORMAL_EXIT. One of those
events, as appropriate, is triggered automatically by PPL$ when a process
terminates. (See PPL$CREATE_EVENT for more information.) The PPL$
facility provides six routines that help you implement event synchronization.

PPL$CREA TE_EVENT

PPL$TRIGGER_EVENT

PPL$ENABLE_EVENT _AST

PPL$ENABLE_EVENT _SIGNAL

PPL$AWAIT_EVENT

PPL$READ_EVENT

Creates a user-defined event

Sets the event state to occurred

Delivers an AST when the event has occurred

Delivers a signal condition when the event
has occurred

Blocks the caller until the event state
becomes occurred

Returns the current state of the event

The following sections discuss each of the event synchronization routines in
more detail.

Creating an Event

4-4

The PPL$CREATE_EVENT routine creates an arbitrary user-defined event
and returns the event's identifier. When you first create an event, the state of
the event is set to not_occurred. All other operations on an event hinge on
the operation of setting the state of an event to occurred.

In the following example, an event is created called synch_event.

status = PPL$CREATE_EVENT (my_event_id, 'synch_event')

4.3.2

Synchronization Operations
4.3 Event Synchronization

PPL$CREATE-EVENT returns an event identifier that you must use in all
subsequent operations on that event. It is your responsibility to make this
identifier available to all the participants that need to access that event. To do
so, you could place the event identifier in shared memory. However, there is
another option. When you create the event initially, specify an event name.
Then use either one of the two following methods to let any participant
retrieve the event identifier:

• Call PPL$FIND_SYNCH-ELEMENLJD to retrieve the identifier of the
event with that name.

• Call PPL$CREATE_EVENT again, specifying the same event name, to
retrieve the identifier of that event.

Enabling an Event AST
The PPL$ENABLE-EVENT_AST routine lets you establish an AST routine
(and optionally an argument to that routine) that will be delivered when a
specified event occurs, that is, when the state of the event becomes occurred.
If the state of the event is already occurred when you call this routine, the
AST is delivered immediately, and the event state is reset to not_occurred. If
the state of the event is not_occurred when you call this routine, your request
for an AST to notify the caller of an event's occurrence is placed in the queue,
and will be processed once the event actually occurs. Note that the caller
continues execution immediately after the AST request is placed in the queue.

The astprm parameter has special requirements when used in conjunction
with the PPL$ facility.

• For user-defined events, the astprm must point to a vector of two
unsigned longwords. The first longword is a "context" reserved for the
user; it is not read or modified by PPL$. The second longword receives
the value specified in the call to PPL$TRIGGER_EVENT that results in
the delivery of this AST.

• For PPL$-defined events (those not created by the user), the astprm
parameter must point to a vector of four unsigned longwords that
accommodates the following:

• The user's "context" longword

• The longword to receive the event's distinguishing condition-value

• The parameters to the PPL$-defined event (the "trigger" parameter)

For example, the events corresponding to PPL$_ABNORMAL -EXIT and
PPL$_NORMAL_EXIT require an array of four longwords, since each
of these events has two additional parameters - the participant-index
and the exit-status of the terminating participant. A condition value of
PPL$_ABNORMAL _EXIT or PPL$_NORMAL _EXIT is passed as the
astprm for the corresponding PPL$-defined event.

4-5

4.3.3

4.3.4

4.3.5

Synchronization Operations
4.3 Event Synchronization

Enabling an Event Signal
The PPL$ENABLE_EVENT_SIGNAL routine lets you specify a condition
value to be signaled when the specified event occurs, that is, when the state
of the event becomes occurred. If the state of the event is already occurred
when you call this routine, the signal is delivered immediately, and the event
state is reset to not_occurred. Otherwise, your request for a signal to notify
the caller of an event's occurrence is placed in the queue, and is processed
when a corresponding trigger is issued. (Generally, a trigger is issued when a
participant calls PPL$TRIGGER_EVENT. However, the PPL$ facility triggers
predefined events automatically.) Note that the caller continues execution
immediately after the signal request is placed in the queue.

The following example illustrates a simple call to PPL$ENABLE_EVENT_
SIGNAL. Once the event my_event_id is triggered, the value user_arg is
signaled at the time the event occurs.

user_arg = my_cond_value + STS$K_SEVERE
status = PPL$ENABLE_EVENT_SIGNAL (my_event_id, user_arg)

Note that two values are signaled if you also supply a value to
PPL$TRIGGER_EVENT. The parameter you pass to PPL$ENABLE_
EVENT_SIGNAL is the first condition value, and the parameter you pass
to PPL$TRIGGER_EVENT is the second condition value.

Refer to the VMS System Services Reference Manual for more information on
condition values.

Awaiting an Event
The PPL$AWAIT_EVENT routine lets you specify th.at the caller should be
blocked until the specified event occurs, that is, until the state of the event
becomes occurred. If the state of the event is already occurred when you call
this routine, the caller proceeds immediately (without being blocked), and
the event state is reset to not_occurred. Otherwise, the caller's request to be
awakened when the event occurs is queued, and the caller is blocked.

In this example, the caller specifies that it should be blocked until the event
specified by my_event _id has occurred.

user_arg = my_cond_value
status = PPL$AWAIT_EVENT (my_event_id, user_arg)

Triggering an Event

4-6

The PPL$TRIGGER_EVENT routine lets you set an event's state to occurred.
At that point, all requests that are queued to the event are processed, so that
any enabled ASTs or signals, or both, are delivered, and anyone blocked
awaiting an event is awakened. You may also specify notification of only
one of the queued requests. Once any signals and ASTs have been processed
and any blocked participants have been awakened, the state of the event is
reset to not_occurred. All of these actions occur atomically with respect to
the event (in other words, once these actions begin, they complete without
interruption from other event operations.)

4.3.6

4.3.7

Reading an Event

Synchronization Operations
4.3 Event Synchronization

If no requests are queued for the event at the time of the trigger, the event's
state becomes occurred, and the first call to PPL$ENABLE-EVENT_AST or
PPL$ENABLE_EVENT_SIGNAL receives the requested notification.

Note that an arbitrary number of triggers may be queued for an event before
any participant enables event notification. The presence of another queued
trigger at the completion of processing one trigger forces the state to again
become occurred. That is, processing of a queued trigger occurs immediately
after processing the previous trigger.

In the following example, the event my_event_id is triggered, there~y
releasing all participants awaiting the change of that event's state to occurred.
Because a value is not specified for the signal value in this call, or in the
previous call to PPL$ENABLE_EVENT_SIGNAL, the status signaled is
PPL$-EVENT_OCCURRED.

user_arg = my_cond_value + STS$K_SEVERE
status = PPL$TRIGGER_EVENT (my_event_id, user_arg)

The PPL$READ_EVENT routine returns the current state of the specified
event. The state can be occurred or not_occurred.

Predefined Events
The PPL$ facility creates and predefines the events PPL$K_NORMAL-EXIT
and PPL$K_ABNORMAL_EXIT. You need not create these events. (These
events are described in the following sections.) When a normal or abnormal
exit occurs, PPL$ triggers the event automatically. Note that you can ignore
these predefined events at no cost. However, DIGITAL recommends that
you enable event notification of PPL$K_ABNORMAL-EXIT, because that
condition usually indicates a severe error. Notification is delivered only if
you explicitly request it by specifying the predefined event as the event-id in
a call to PPL$ENABLE_EVENT_SIGNAL, PPL$ENABLE-EVENT_AST, or
PPL$AWAIT_EVENT.

1 PPL$K_NORMAL _EXIT - This event is triggered by PPL$ when
an application participant exits normally. Normal exits include the
following:

• The participant returns a success status

• The participant calls PPL$TERMINATE

• The subordinate's parent calls PPL$TERMINATE, specifying
PPL$M_STQP_CHILDREN

• Some other participant calls PPL$STOP to terminate this participant

If you enabled a signal for this event through a call to PPL$ENABLE_
EVENT_SIGNAL, the condition signaled as the trigger parameter is
PPL$_NORMAL-EXIT.

4-7

Synchronization Operations
4.3 Event Synchronization

2 PPL$K-ABNORMAL_EXIT - This event is triggered by PPL$ when
an application participant exits abnormally. Abnormal exits include the
following:

• The participant returns an error status

• A mechanism outside PPL$ forces termination and prevents the
execution of exit handlers (for example, the DCL command STOP
/ID)

If you enabled a signal for this event through a call to PPL$ENABLE_
EVENT_SIGNAL, the condition signaled as the trigger parameter is
PPL$_ABNORMAL_EXIT.

There are some special usage considerations for the PPL$ predefined events
if delivery of an AST is requested. Refer to the description section of
PPL$ENABLE_EVENT_AST for more information.

4.4 Semaphore Synchronization

4-8

The PPL$ facility supports the use of semaphores as a synchronization
technique. You can implement semaphore synchronization using the
following PPL$ routines:

PPL$CREA TE_SEMAPHORE

PPL$DECREMENT _SEMAPHORE

PPL$1NCREMENT _SEMAPHORE

PPL$READ_SEMAPHORE

Creates and initializes a semaphore with a
waiting queue

Waits for the semaphore to have a value
greater than zero and then decrements the
semaphore

Increments the value of a semaphore by 1

Returns the current and/or maximum
values of the specified semaphore

The semaphores provided by the PPL$ facility are counting semaphores; that
is, they can take any nonnegative integer value. You can use a counting
semaphore to control access to multiple physical resources. Counting
semaphores have associated waiting queues, so that semaphore requests
are not lost but are placed in the appropriate waiting queue until they can be
processed.

If you want to implement a binary semaphore, specify a maximum semaphore
value of 1. A binary semaphore acts like a lock bit; it allows only one process
at a time to execute a critical section or access a physical resource, such as a
line printer or disk.

There are two basic operations that are performed on semaphores to
implement mutual exclusion: wait and signal. The wait operation lets you
acquire exclusive access to a critical section by decrementing the value of the
semaphore. If the value of the semaphore is zero, the wait operation forces
your process to wait until the semaphore has a value greater than zero, and
then the wait operation decrements the semaphore, granting you access to
the section. The signal operation lets you relinquish your access to a critical
section by incrementing the semaphore so that a waiting process can acquire
access.

4.4.1

4.4.2

Synchronization Operations
4.4 Semaphore Synchronization

The routines supporting semaphore synchronization are discussed in the
following sections.

Creating a Semaphore
The PPL$CREATE_SEMAPHORE routine creates and initializes a
semaphore with a waiting queue. The waiting queue stores any caller of
PPL$DECREMENT_SEMAPHORE that must be blocked because the resource
is unavailable. In your call to PPL$CREATE_SEMAPHORE, you can specify
a semaphore name, a maximum value for the semaphore, and an initial value
for the semaphore, all of which are optional. The identifier parameter is
required.

In the following example, PPL$CREATE_SEMAPHORE is used to create a
binary semaphore (maximum value of 1).

max_value = 1
init_value = 1

status = PPL$CREATE_SEMAPHORE (my_sem_id, 'my_sem', max_value,
init_value)

PPL$CREATE_SEMAPHORE returns a semaphore identifier that you must
use in all subsequent operations on that semaphore. It is your responsibility
to make this identifier available to all the participants that need to access that
semaphore. To do so, you could place the semaphore identifier in shared
memory. However, there is another option. When you create the semaphore
initially, specify a semaphore name. Then use either one of the two following
methods to let any participant retrieve the semaphore identifier:

• Call PPL$FIND_SYNCH_ELEMENT-1D to retrieve the identifier of the
semaphore with that name.

• Call PPL$CREATE_SEMAPHORE again, specifying the same semaphore
name, to retrieve the identifier of that semaphore.

Decrementing a Semaphore
The PPL$DECREMENT_SEMAPHORE routine waits for a semaphore to have
a value greater than zero, and then decrements the value by 1 to indicate the
allocation of a resource. If the value of the semaphore is zero at the time of
the call, the caller is put in the associated waiting queue and is suspended.
This operation is analogous to the w.ait protocol.

You can modify the behavior of this routine by specifying a flag parameter
that indicates that you do not want the caller to be blocked for this operation.
That is, you can request that the semaphore be decremented if and only if it
can be done without causing the caller to be blocked. You might want to do
this, for example, in situations where the cost of waiting for a resource is not
desirable, or if you merely intend to request immediate access to any one of a
number of resources.

4-9

4.4.3

4.4.4

Synchronization Operations
4.4 Semaphore Synchronization

In the following example, the caller requests access to a resource by
decrementing the semaphore my_sem_id. However, the caller does not
want to be blocked if the resource is not available, so the flag
PPL$M__NQN _BLOCKING is specified.

flag = PPL$M_NON_BLOCKING

status = PPL$DECREMENT_SEMAPHORE (my_sem_id, flag)

Incrementing a Semaphore
The PPL$INCREMENT_SEMAPHORE routine increments the value of a
semaphore by 1. This is analogous to the signal protocol. If any participants
are blocked on a call to PPL$DECREMENT_SEMAPHORE for this particular
semaphore, one of these participants is removed from the waiting queue and
awakened.

If the caller in the previous example gains access to the semaphore
my_sem_id, a subsequent call to PPL$INCREMENT_SEMAPHORE is
required once the caller completes its required access to the resource.

status = PPL$INCREMENT_SEMAPHORE (my_sem_id)

Reading a Semaphore Value
The PPL$READ_SEMAPHO,RE routine returns the current and/ or maximum
values of the specified semaphore. You can use this routine to determine how
many resources are currently available, for example, or the maximum number
of resources that can be allocated.

4.5 Spin Lock Synchronization

4-10

A spin lock is a lock on a critical section that constantly tests to see whether
or not access to the critical section is available. (Any segment of your program
that must be executed by only a single process at a time is called a critical
section.) Because this method of mutual exclusion is constantly testing the
lock and is therefore CPU intensive, it should only be used on dedicated
parallel processing systems. A spin lock is not recommended for use in a
general time-sharing environment, or when fairness in obtaining the lock is
important.

The PPL$ facility provides routines to implement spin lock synchronization.
You can implement spin locks using the following PPL$ routines:

PPL$CREATE_SPIN_LQCK Creates and initializes a simple (spin) lock

PPL$SEIZE_SPIN_LOCK

PPL$RELEASE_SPIN_LQCK

Retrieves a simple (spin) lock by waiting in
a spin loop until the lock is free

Relinquishes a spin lock

The routines implementing spin locks are discussed in the following sections.

4.5.1

4.5.2

4.5.3

Creating a Spin Lock

Synchronization Operations
4.5 Spin Lock Synchronization

The PPL$CREATE_SPIN _LOCK routine creates and initializes a simple
(spin) lock and returns the identifier. The newly created lock is initialized to
zero, indicating that the lock is not set.

In the following example, a spin lock is created named my__spin_lock. This
lock is initialized to zero at creation.

status = PPL$CREATE_SPIN_LOCK (my_lock_id, 'my_spin_lock')

PPL$CREATE_SPIN_LOCK returns a spin lock identifier that you must
use in all subsequent operations on that spin lock. It is your responsibility
to make this identifier available to all the participants that need to access
that spin lock. To do so, you could place the spin lock identifier in shared
memory. However, there is another option. When you create the spin lock
initially, specify a spin lock name. Then use either one of the two following
methods to let any participant retrieve the spin lock identifier:

• Call PPL$FIND_SYNCH_ELEMENT--1D to retrieve the identifier of the
spin lock with that name.

• Call PPL$CREATE_SPIN_LOCK again, specifying the same spin lock
name, to retrieve the identifier of that spin lock.

Seizing a Spin Lock
The PPL$SEIZE_SPIN_LOCK routine acquires a spin lock by waiting in a
spin loop until the lock is free. If you specify the PPL$M_NON _BLOCKING
flag in your call to PPL$SEIZE_SPIN_LOCK, the caller does not wait in the
spin loop if it cannot immediately obtain the lock.

Once you acquire the spin lock, you have exclusive access to it until you call
PPL$RELEASE_SPIN _LOCK to free the lock.

In the following example, the caller puts itself in a spin loop waiting for the
spin lock to be available. If the caller had specified the
PPL$M_NON _BLOCKING flag, the caller would not have been blocked if
the spin lock was not available.

status = PPL$SEIZE_SPIN_LOCK (my_lock_id)

Releasing a Spin Lock
The PPL$RELEASE_SPIN _LOCK routine relinquishes your control over the
spin lock. If there are other participants waiting in a spin loop to obtain this
lock, this routine allows one of those participants to get the lock, thereby
terminating that spin loop. Note that the participant that then gets the lock is
not necessarily the one that has been waiting the longest.

Continuing the previous example, once the caller gains access to the spin
loop, it continues processing and must call PPL$RELEASE_SPIN_LOCK
once the caller is finished with the lock. Otherwise, any other participants
blocked in spin loops can never resume execution.

status = PPL$RELEASE_SPIN_LOCK (my_lock_id)

4-11

5 Developing Parallel Processing Applications

The Parallel Processing Facility (PPL$) is a process-oriented library of routines
that simplifies development of a parallel application. This chapter discusses
some recommended methods for using the Parallel Processing Facility for
developing new programs. (Note that in this chapter, a participant can
be either a parent process or a subordinate. For this version of PPL$, a
subordinate is defined as a VMS subprocess.)

5.1 Comparing the Use of Synchronization Elements

5.1.1 Barriers

5.1.2 Events

When you begin developing a parallel processing application, you can choose
from four types of synchronization elements: barriers, events, semaphores,
and spin locks. The following sections discuss in general terms each type
of synchronization element. (Refer to Chapter 4 for more information on
synchronization elements.)

A barrier achieves synchronization by actually controlling the execution of the
participant. Barrier synchronization is useful if you have multiple execution
paths (participants) that need to synchronize at a particular point (generally,
at the completion of a set of work items). A barrier synchronizes participants
or tasks rather than resources.

A barrier has an associated quorum of participants that are required to reach
the barrier before the blocked participants are released for further execution.
You can dynamically alter the value of the quorum after you create the
barrier and even after participants are waiting at the barrier. This is useful
if, for example, a participant terminates prematurely so that the quorum you
initially established is never reached.

Event synchronization is different from barrier synchronization in that a
participant reacts to an outside event rather than simply reaching normally
some point in its code. The event routines are useful if you want to
search a tree in parallel, for example. In that case, you could define an
event to indicate the completion of the search. All of the participants call
PPL$ENABLE_EVENT_SIGNAL, and when one participant successfully
completes the search, that participant calls PPL$TRIGGER_EVENT. The
other participants are notified that the search is complete and they then stop
their own searches. Using events in this case allows you to search the tree
in parallel while preventing participants from needlessly searching after the
desired item is located.

5-1

5.1.3

5.1.4

5.1.5

Developing Parallel Processing Applications
5.1 Comparing the Use of Synchronization Elements

Semaphores

Spin Locks

You can use the PPL$ predefined events (described in PPL$CREATE_
EVENT) to be notified when a participant exits. You do this by passing the
predefined event name (for example, PPL$K-ABNORMAL _EXIT) as the
event's identifier in a call to PPL$ENABLE_EVENT-AST or PPL$ENABLE_
EVENT_SIGNAL. For example, if you call PPL$ENABLE_EVENT-AST
specifying PPL$K-ABNORMAL _EXIT as the event identifier, you could
supply an AST routine that checks to see if the terminated participant is a
member of a barrier. If so, the AST routine could then call PPL$ADJUST_
QUORUM to decrement the quorum by 1 so that the other waiting
participants do not hang. (Note that PPL$K-ABNORMAL_EXIT refers to the
event identifier, while PPL$-ABNORMAL_EXIT refers to the corresponding
condition value.)

A semaphore lets you control the availability of a particular critical region or
resource; in other words, it implements mutual exclusion. You can also use
a semaphore as a communication tool. The value of the semaphore variable
represents the number of resources available, so that by decrementing and
incrementing the semaphore you can control the access to a critical section of
your application.

Spin locks are one of the fastest forms of synchronization. This form of
synchronization can improve the performance of applications using fine­
grained parallelism. (Fine-grained parallelism means that each task performs
a very small amount of work, such as an individual machine instruction or a
few program statements.)

However, there are some negative consequences of using a spin lock. First,
the spinning action consumes a large amount qf CPU resources. Second,
when the lock is released, it is given at random to a participant waiting in
the spin loop. In other words, it does not take into consideration how long
a participant has been waiting for the lock. In general, you should not use a
spin lock in a time-sharing environment or when fairness is important.

Sharing an Element Identifier

5-2

To use the PPL$ synchronization elements (barriers, events, semaphores, and
spin locks), you first create the element with the appropriate "create" routine
(for example, PPL$CREATE_BARRIER). You then use the identifier returned
by that routine in all calls to other routines that use the element you created
(for example, PPL$WAIT_AT_BARRIER). The following list shows four ways
that you can share the element identifier among the routines that need to
access it.

1 Call PPL$FIND_SYNCH_ELEMENT__ID, supplying the name of the
element.

2 "Re-create" each element by calling the PPL$CREATE routine again,
supplying the existing element name.

3 Place the element identifier in shared memory.

Developing Parallel Processing Applications
5.1 Comparing the Use of Synchronization Elements

4 Use a facility outside of PPL$ (such as a VMS mailbox) to communicate
the identifiers among participants.

Note that when you first create an element, you must give it a name if you
want to use the name in other calls to retrieve the element identifier (as
described in 1 and 2 in the preceding list).

You can also create "anonymous" synchronization elements that you do not
have to name. However, this forces you to arrange for shared access to the
identifier (as in 3 or 4 in the preceding list).

5.2 Considerations

5.2.1

5.2.2

This section describes some items you should consider when you develop a
parallel processing application.

Naming Components
DIGITAL recommends that you do not name any user-defined component
of PPL$ with a name that includes a dollar sign($). A name that includes a
dollar sign may coincide with VMS facility names.

Using SYS$HIBER
PPL$ uses the $HIBER system service internally. If you intend to use
$HIBER in an environment of layered software, you must consider possible
interactions with underlying layers. Two possible interactions are of particular
concern here. The $WAKE system service does not maintain a count of the
number of calls to $WAKE issued for a given process, nor does it provide
for any association between a particular $WAKE and a particular $HIBER. A
program using these services in a multiprocess environment must ensure that
it responds only to those $WAKEs intended for that program. The program
must also guarantee that it does not unintentionally "use up" a $WAKE
required by some other component.

Therefore, any call to $HIBER should be enclosed in a loop that checks for the
validity of a received $WAKE request. This helps ensure correct behavior, at
the expense of some overhead for instances in which no $WAKE was issued
to another facility.

loop
exit when (this_op.hiber_ended);

-- implying the waker sets this $HIBER;
endloop;
$WAKE; -- in case someone else needs it,

-- expecting that they will similarly check validity

Note, however, that in a multithread (for example, Ada tasking) environment,
this approach still does not allow for the immediate resumption of threads
that are blocked by a call to $HIBER other than the current thread, because
the current thread is effectively queuing all those resumption requests. ·
This scenario can be repeated to an arbitrary depth, thus defeating the
parallelism. In addition, threads that rely on other threads for resumption
may be arbitrarily delayed as a result of the deferral of calls to $WAKE.

5-3

5.2.3

5.2.4

Developing Parallel Processing Applications
5. 2 Considerations

Disabling ASTs

In sum, use of a $HIBER/$WAKE scheme can increase response latency
and program overhead. You can avoid the need for those services by using
only the PPL$ routines. Use of the $HIBER and $WAKE system services is
discouraged in conjunction with the PPL$ facility.

Therefore, do not use $HIBER in your parallel application because doing so
can cause unpredictable results.

Because of the potential impact on PPL$, user disabling of ASTs is not
recommended. Use the PPL$ routines for synchronization and notification
rather than AST synchronization and notification techniques.

VAX Ada and VAX FORTRAN Considerations

5-4

If you call PPL$ from a VAX Ada application, be sure that only one task
issues calls to PPL$ routines. This is necessary because PPL$ is not multi­
thread (Ada task) reentrant. You may want to implement a monitor task that
performs all PPL$ operations.

If you use PPL$ in conjunction with VAX FORTRAN Version 5.0, be sure
that you do not explicitly share memory that FORTRAN is already sharing.
The remapping can make it impossible for FORTRAN code to reference
these addresses. DIGITAL recommends that you do not use PPL$ and
FORTRAN to operate on the same shared data. However, you can use PPL$
and FORTRAN facilities within the same application, and all other features
are compatible. Since FORTRAN's parallel support is fine-grained, you may
want to use FORTRAN for fine-grained tasks and PPL$ for medium- to
coarse-grained tasks. (A fine level of granularity means that less work, such
as individual machine instructions or a few program statements, is performed
by each task. Medium-grained tasks are procedures or subroutines within a
program, or code sequences with a single routine of a program. The coarsest
level of granularity means that tasks are separate programs.)

6 Examples of Calling PPL$ Routines

This chapter contains examples demonstrating possible uses of PPL$ routines
in the implementation of concurrent programming problems from BLISS-32
and VAX FORTRAN. The example programs in this chapter include I/O
statements to aid you in tracing program execution. Prime considerations for
program decomposition include a complete understanding of the data to be
processed and the data to be output, and mechanisms for controlling access to
this data by the various participants in the application. PPL$ routines provide
mechanisms to support access to the data by all participating processes and
to control that access. This chapter is not meant to provide a comprehensive
methodology for the development of concurrent algorithms. Example 6-1
shows the use of PPL$ routines in BLISS-32 to perform a predefined event
test. Further discussion is provided at the end of this program listing.

Example 6-1 Using PPL$ Routines in BLISS-32

0001 0
0002 1
0003 1
0004 1
0005 1
0006 1
0007 1
0008 1
0009 1
0010 1
0011 1
0012 1
0013 1
0014 1
0015 1
0016 1
0450 1
0498 1
0800 1
0801 1
0802 1
0803 1
0804 1
0805 1
0806 1
0807 1

M 0808 1
M 0809 1
M 0810 1
M 0811 1

0812 1

module example2 (main=main, addressing_mode (external=general))
begin

+
This example program shows event handling using PPL$ routines.

This program demonstrates the need for recognizing the termination
of a subordinate and its potential impact on use of synchronization
mechanisms - in this case, a barrier.

library 'sys$library:starlet';

require 'pplmsg';
require 'ppl$def';
require 'ppl$routines';

forward routine
main,
handler,
print;

macro
fail_badly_ =

(local i;
i = .0;

%;

!access violation

Example 6-1 Cont'd. on next page

6-1

Examples of Calling PPL$ Routines

Example 6-1 (Cont.) Using PPL$ Routines in BLISS-32

0813 1
0814 1
0815 1
0816 1
0817 1
0818 1
0819 1
0820 1
0821 1
0822 1
0823 1
0824 1
0825 1
0827 1
0828 2
0829 2
0830 2
0831 2
0832 2
0833 2
0834 2
0835 2
0836 2
0837 2
0838 2
0839 2
0840 2
0841 2
0842 2
0843 2
0844 2
0845 2
0846 2
0847 2
0848 2
0849 2
0850 2
0851 3
0852 3
0853 3
0854 3
0855 3
0856 3
0857 3
0858 3
0859 3
0860 3
0861 3
0862 3
0863 3
0864 3
0865 3

literal
a_user_defined_condition_value = %x'99880';

literal

own

termination_exception = a_user_defined_condition_value + sts$k_info;

index unsigned long,
barrier unsigned long;

!this participant's role

routine main =
begin
local

status unsigned long;

literal
num_children = 1;

enable handler; !set up to get the termination exception

status= PPL$GET_INDEX (index); !find out who I am
if not .status then return signal (.status);
print (%ascid'!/I am !UL', .index);

status= PPL$CREATE_BARRIER (barrier, %ascid'barrier', %ref(num_children+1));
if not .status then return signal (.status);
print (%ascid %string ('!/!UL: !_created barr= !XL!_stat= !XL'),

.index, .barrier, .status);

case .index from 0 to num_children of
set
[O] : !PARENT CODE

(
!set up for termination event notification
status= PPL$ENABLE_EVENT_SIGNAL (%ref(ppl$k_abnormal_exit),

termination_exception);
if not .status then return signal (.status);

!create the child
status= PPL$SPAWN (%ref(num_children), !how many helpers

0, ! run the same image
0, !don't need the id_list
%ref (ppl$m_init_synch !wait for child init

or ppl$m_nodebug)); !leave out debug
print (%ascid %string ('!/!UL: !_spawn stat= !XL'),

.index, .status);

Example 6-1 Cont'd. on next page

6-2

Examples of Calling PPL$ Routines

Example 6-1 {Cont.) Using PPL$ Routines in BLISS-32

0866 3
0867 3
0868 3
0869 3
0870 3
0871 3
0872 3
0873 3
0874 3
0875 2
0876 2
0877 2
0878 2
0879 3
0880 3
0881 3
0882 3
0883 3
0884 3
0885 3
0886 3
0887 3
0888 3
0889 3
0890 2
0891 2
0892 2
0893 2
0894 2
0895 2
0896 2
0897 2
0898 2
0899 2
0900 2
0901 2
0902 2
0903 2
0904 1

!The parent feels safe in waiting at this barrier for work
!completion, since a condition handler has been established.
!This wait would hang the application if we had not arranged
!to fix up the barrier in emergencies.

status= PPL$WAIT_AT_BARRIER (barrier);
print (%ascid %string ('!/!UL: !_wait stat= !XL'),

.index, .status);
) ;

[1] !CHILD 1 CODE
(
!This child would normally be doing some work for the application,
!but it breaks, never reaching the barrier as the parent expects.

fail_badly_; !terminate

!The remaining child code never executes ...

status= PPL$WAIT_AT_BARRIER (barrier);
print (%ascid %string(' !/!UL: !_wait stat= !XL'),

.index, .status);
) ;

[inrange] 0;

[outrange] 0;

tes;

!end; !bind

return ss$_normal;

end; !main

Example 6-1 Cont'd. on next page

6-3

Examples of Calling PPL$ Routines

Example 6-1 (Cont.) Using PPL$ Routines in BLISS-32

0906 1
0907 1
0908 1
0909 1
0910 1
0911 2
0912 2
0913 2
0914 2
0915 2
0916 2
0917 2
0918 2
0919 2
0920 2
0921 2
0922 2
0923 3
0924 3
0925 3
0926 3
0927 3
0928 2
0929 2
0930 2
0931 2
0932 2
0933 2
0934 1

.PSECT

0936 1
0937 2
0938 2
0939 2
0940 2
0941 2
0942 2
0943 2
0944 2
0945 2
0946 2
0947 2
0948 2
0949 2
0950 2
0951 2
0952 2
0953 2
0954 2
0955 1

6-4

routine handler
(

) =
begin

!+

signal_ arr
me ch_ arr

ref $bblock,
ref $bblock

Signal vector
Mechanism vector

! This handler is invoked as notification of the predefined event
! PPL$K_ABNORMAL_EXIT. It fixes up the barrier quorum to account
! for the lost body, and prevents application-wide hang.
!-

local status;

if (.signal_arr[chf$l_sig_name] eql termination_exception) then
(
!avoid application-wide hang by completing the outstanding barrier wait
status= PPL$ADJUST_QUORUM (barrier, %ref(-1));
print (%ascid %string ('!/!UL: !_adjust_quorum stat= !XL'),

.index, .status);
) ;

ss$_resignal !this will show us the associated message

end; ! handler

$PLIT$,NOWRT,NOEXE,2

routine print (ctrstr, p1)
begin

!+
! This formats a string with $fao and writes it.
!-

external routine
LIB$PUT_OUTPUT;

local
buff er : $bblock[132] ,
desc : vector[2];

desc[O] = %allocation(buffer);
desc[1] =buffer;
$faol (ctrstr = .ctrstr, outlen=desc[O], outbuf=desc[O], prmlst=p1);
LIB$PUT_OUTPUT (desc[O])

end; !print

The preceding BLISS example illustrates the potential for application-wide
problems when a participant terminates. A participant may terminate without
performing its expected synchronization functions.

Examples of Calling PPL$ Routines

Here, the parent and child plan to synchronize at the completion of the work
by waiting at a common barrier. The parent handles possible failure of a
subordinate by requesting notification of the PPL$K_ABNORMAL_EXIT
event. (Note that this artificial example merely demonstrates the principle,
and that a typical application might have a more difficult time determining
whether the child had reached the barrier. For example, the
PPL$READ_BARRIER routine might be useful in order to determine the
current number of participants waiting at the barrier.)

Tracing the execution of this program, the parent spawns the child, and
then waits for completion of the work at the barrier. The child terminates
prematurely, which triggers the PPL$K-ABNORMAL_EXIT event that
delivers the signal as requested by the parent. The parent's condition
handler adjusts the barrier quorum to account for this termination, the hang
is prevented, and the application completes.

6-5

Examples of Calling PPL$ Routines

Example 6-2 shows the use of PPL$ routines in VAX FORTRAN to
decompose a loop. Further discussion is provided at the end of this program
listing.

Example 6-2 Using PPL$ Routines in VAX FORTRAN

0001 PROGRAM EXAMPLE1
0002
0003 c
0004 C PROGRAM DESCRIPTION:
0005 c
0006 C This example program demonstrates master/slave loop
0007 C decomposition using PPL$ routines.
0008 c
0009 C***
0010 C DATA DECLARATIONS
0011 C***
0012
0013 C EXTERNAL DEFINITIONS
0014 EXTERNAL stsk_info, stsk_severe
0015 EXTERNAL PPL$K_ABNORMAL_EXIT, PPL$M_NODEBUG
0016 INTEGER*4 PPL$INITIALIZE, PPL$CREATE_SHARED_MEMORY
0017 INTEGER*4 PPL$SPAWN, PPL$GET_INDEX
0018 INTEGER*4 PPL$CREATE_BARRIER, PPL$WAIT_AT_BARRIER
0019 INTEGER*4 PPL$CREATE_SEMAPHORE
0020 INTEGER*4 PPL$INCREMENT_SEMAPHORE, PPL$DECREMENT_SEMAPHORE
0021 INTEGER*4 PPL$ENABLE_EVENT_SIGNAL
0022 INTEGER*4 LIB$PUT_OUTPUT
0023
0024 C DEFINE ITEMS FOR USE WITH PPL$
0025 INTEGER*4 spawn_f lags
0026 INTEGER*4 f atal_signal
0027 !for event handling
0028 INTEGER*4 sem_max_val, sem_init_val
0029 PARAMETER (sem_max_val = 1, sem_init_val 1)
0030 !for a binary semaphore
0031
0032 C DEFINE APPLICATION DATA NEEDS
0033 INTEGER*4 stride
0034 PARAMETER (stride = 5)
0035 !number of consecutive array indices each party processes
0036 INTEGER*4 subordinates
0037 PARAMETER (subordinates = 2)
0038 !number of slaves
0039 INTEGER*4 array_size
0040 PARAMETER (array_size = 50)
0041 !a small array for demonstrative purposes
0042 INTEGER*4 one_page
0043 parameter (one_page = 512)
0044

Example 6-2 Cont'd. on next page

6-6

Examples of Calling PPL$ Routines

Example 6-2 (Cont.) Using PPL$ Routines in VAX FORTRAN

0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0892
0893
0894
0895
0896
0897
0898
0899
0900
0901
0902
0903
0904
0905
0906
0907
0908
0909
0910
0911
0912
0913
0914
0915
0916
0917

C DEFINE DATA TO BE USED LOCALLY BY EACH PARTICIPANT
INTEGER*4 copies !for parent's spawn call
INTEGER*4 id_list(subordinates) !"
INTEGER*4 index
INTEGER*4 lenadr(2)
INTEGER*4 status

!each participant's PPL-index
!for creating shared memory
!info on each call

INTEGER*4 mygroup, row, col,
CHARACTER*12 my_id, group

offset !for doing the real work
!just for execution trace

C DEFINE DATA FOR SHARING
byte front_guard(one_page) !memory is mapped on page boundaries
INTEGER*4 array1(array_size, array_size) !input array
INTEGER*4 array2(array_size, array_size) !input array
INTEGER*4 final_array(array_size, array_size) !output array
INTEGER*4 next_task_number !work item info
INTEGER*4 semaphore_id !synchronization
INTEGER*4 barrier_id !"
byte rear_guard(one_page)

C PUT ALL THE SHARED DATA IN A COMMON BLOCK, WHICH WILL GET SHARED
COMMON /pgm_shared_data/ front_guard,
1 array1,
1 array2,
1 final_array,
1 next_task_number,
1 semaphore_id,
1 barrier_id,
1 rear_guard

C***
C CODE FOR ALL PARTICIPANTS STARTS HERE
C***

type *·'Initializing'
status = PPL$INITIALIZE ()
if (.not. status) call LIB$STOP (%val(status))

C MAP SHARED ADDRESS SPACE - enough for the shared variables + the spacers

lenadr(1) = %loc(rear_guard) + one_page - %loc(front_guard)
lenadr(2) = %loc(front_guard)
status= PPL$CREATE_SHARED_MEMORY ('pgm_shared_data', lenadr)
if (.not. status) call LIB$STOP (%val(status))

C DISPATCH TO ROLE-SPECIFIC CODE - PARENT @100, CHILD @200

status = PPL$GET_INDEX (index)
if (.not. status) call LIB$STOP (%val(status))

if (index .ne. 0) go to 200
go to 100

!act like a child
!act like a parent

Example 6-2 Cont'd. on next page

6-7

Examples of Calling PPL$ Routines

Example 6-2 (Cont.) Using PPL$ Routines in VAX FORTRAN

0918
0919
0920
0921
0922
0923
0924
0925
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
0956
0957
0958
0959

C***
C PARENT CODE HERE
C***

C The master performs all set-up functions, initializing both the
C application's data and the synchronization support.

100 type *• 'Parent !nit'

C !NIT A SEMAPHORE AND BARRIER FOR SYNCHRONIZATION

status = PPL$CREATE_BARRIER (barrier_id, 'synch_barrier',
1 %ref (subordinates + 1))

!slaves and master all wait at this barrier
if (.not. status) call LIB$STOP (%val(status))

status = PPL$CREATE_SEMAPHORE (semaphore_id, 'mutex',
1 sem_max_val, sem_init_val)
if (.not. status) call LIB$STOP (%val(status))

C REQUEST A SIGNAL IF SOMETHING UNUSUAL OCCURS IN A SUBORDINATE

fatal_signal = %loc(sts$k_severe) !severe means we stop
status= PPL$ENABLE_EVENT_SIGNAL (%loc(ppl$k_abnormal_exit),
1 %val(fatal_signal))
if (.not. status) call LIB$STOP (%val(status))

C CREATE THE SUBORDINATES

copies = subordinates
spawn_flags = %loc(ppl$m_nodebug) !disable child debug

status = PPL$SPAWN (copies, !how many children
1 !use current image name
1 id_list, !children IDs
1 spawn_flags) !special D
if (.not. status) call LIB$STOP (%val(status))

Example 6-2 Cont'd. on next page

6-8

Examples of Calling PPL$ Routines

Example 6-2 (Cont.) Using PPL$ Routines in VAX FORTRAN

0960
0961
0962
0963
0964
0965
0966
0967
0968
0969
0970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990
0991
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001
1002
1003

C PREPARE FOR TASK (WORK ITEM) ALLOCATION

next_task_number = 1

C INIT THE DATA TO BE PROCESSED

12
11

14
13

16
15

do 11 i = 1,array_size
do 12 j = 1,array_size

final_array(i,j) = O
continue
continue

do 13 i = 1,array_size
do 14 j = 1,array_size

array1(i, j) = i
continue
continue

do 15 i = 1,array_size
do 16 j = 1,array_size

array2(i,j) = 1
continue
continue

!clear the space for results

!arbitrarily init array 1

!likewise init array 2

C At this point, all initialization functions have been performed by
C the master, which must now wait for the subordinates to catch up.
C Each of the subordinates waits at this barrier, guaranteeing that
C they all proceed in unison.

C WAIT FOR THE CHILDREN TO INIT

type *·'Parent waiting for children to init'
status = PPL$WAIT_AT_BARRIER (barrier_id)
if (.not. status) call LIB$STOP (%val(status))

C A master might also want to participate in the parallel code sections,
C which would happen right here.
C In this example, the master waits.

Example 6-2 Cont'd. on next page

6-9

Examples of Calling PPL$ Routines

Example 6-2 (Cont.) Using PPL$ Routines in VAX FORTRAN

1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

C WAIT FOR THE CHILDREN TO COMPLETE

type *·'Parent waiting for work completion'
status = PPL$WAIT_AT_BARRIER (barrier_id)
if (.not. status) call LIB$STOP (%val(status))

C VERIFY RESULTS - LEFT AS AN EXERCISE FOR THE READER

C call verify_results
write (*,2) (((final_array(i,j), i=1,array_size), j=1,array_size))

2 format (z12.8)

C WRITE TERMINATION MESSAGE

type *· 'Parent Terminating'

go to 999

C***
c CHILD CODE HERE
C***

C PREPARE MY INDEX FOR OUTPUT - EXECUTION TRACE

200 write (unit=my_id, fmt='(I12)') index
status = LIB$PUT_OUTPUT ('child init' // my_id(10:12))

C GET READY, SLAVES

status = PPL$WAIT_AT_BARRIER (barrier_id) !parent has to say go
if (.not. status) call LIB$STOP (%val(status))

Example 6-2 Cont'd. on next page

6-10

Ex~mples of Calling PPL$ Routines

Example 6-2 (Cont.) Using PPL$ Routines in VAX FORTRAN

1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097

C PROCESSING LOOP - PERFORM THE INTENDED PROGRAM FUNCTION

do while (.true.)

! FIND OUT WHAT TO DO - IN A CRITICAL REGION

status = PPL$DECREMENT_SEMAPHORE (semaphore_id)
if (.not. status) call LIB$STOP (%val (status))

mygroup = next_task_number
next_task_number = next_task_number + stride

status = PPL$INCREMENT_SEMAPHORE (semaphore_id)
if (.not. status) call LIB$STOP (%val(status))

! MAYBE THERE'S NO WORK TO DO

if (mygroup .gt. array_size) go to 888

! EXECUTION TRACE

write (unit=group, fmt=' (I12) ') mygroup
status =

1 LIB$PUT_OUTPUT ('child/grp:' II my_id(10:12) // group(10:12))

! DO THE WORK

do 333 offset= O,(stride-1)
row = mygroup + off set
do 344 col = 1,array_size

final_array(row, col) = 0
do 355 i = 1,array_size

final_array(row,col) = final_array(row,col) +

1 (array1(row,i) * array2(i,col))
355 continue
344 continue
333 continue

end do

C CHILD TERMINATION POINT - get here when all work is done

888 status = PPL$WAIT_AT_BARRIER (barrier_id)
if (.not. status) call LIB$STOP (%val(status))

status = LIB$PUT_OUTPUT ('termination: child ' II my_id(10:12))

go to 999

Example 6-2 Cont'd. on next page

6-11

Examples of Calling PPL$ Routines

Example 6-2 (Cont.) Using PPL$ Routines in VAX FORTRAN

1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108

6-12

C***
C EXIT
C***

C WRITE STATUS

999 print 1,status
1 format(t8, 'final status= ',z12.8)

END

The preceding FORTRAN example shows a PPL$ implementation of a loop
decomposition problem. It performs a matrix multiplication of two input
arrays, resulting in an output array containing the matrix product.

Note that this example illustrates a simple master/slave model, just one
of many approaches to solve this problem. Although this application is
particularly suited to a fine-grained parallel approach, it is useful to illustrate
some parallel processing techniques. This example also includes nonessential
1/0 calls to help you understand the flow of control. Similarly, for purposes
of demonstration, the contents of the arrays is irrelevant, and their size has
been diminished considerably from what might normally be expected for an
effective (beneficial) parallel implementation.

Data dependencies are not of concern in this example, and several
participants in this application work on the calculations at the same time
in a straightforward manner. Each participant calculates the results for a
different subset of the array indexes. This requires that each participant
can access the data (that it be shared), and that each participant abide by a
common set of conventions for maintaining data integrity (by use of standard
synchronization mechanisms).

Each participant in the application executes the same program image. (This is
not a requirement, but is convenient in this example.) This is accomplished
by calling PPL$SP AWN and specifying a null value for the image-name
argument. The differentiation of the master and slave roles is achieved by
interpreting the participant-index for each participant (returned by the call to
PPL$GET_INDEX). The value 0 means "master". All other values are used to
indicate "slave" roles. (Such conventions for use of the participant-index are
entirely at the discretion of the application designer.) All necessary common
functions, such as setting up access to the shared data, are performed in
code executed by all participants. Then, role-specific code is executed by the
master or slave, as appropriate.

The required data is shared by placing both input arrays (array1 and array2)
and the output array (finaLarray) irt a single common block, named pgm_
shared_data. This common block is shared by all participants through their
calls to PPL$CREATE_SHARED_MEMORY. Note that you must guarantee
that all shared data is actually shared, and that no local data is accidentally
shared. This example demonstrates the use of guard pages at the front and
rear of the shared data. (See the Description section of PPL$CREATE_
SHARED_MEMORY for more information.) A set of array indexes is
allocated to each participant upon its request for a work item. To assure
that this task assignment phase is not confused by concurrent access to the
controlling data, these actions are performed in an atomic fashion by use of a

Examples of Calling PPL$ Routines

(binary) semaphore. (Other synchronization elements such as spin locks can
be used similarly.) Examine the following code sequence:

PPL$INCREMENT_SEMAPHORE (semaphore_id)
mygroup = next_task_number
next_task_number = next_task_number + stride
PPL$DECREMENT_SEMAPHORE (semaphore_id)

Calls to the semaphore routines establish a critical region around the use of
the next_task_number, which provides an application-wide mechanism for
guaranteeing that all array indexes are considered in the calculations. That
is, next_task_number indicates the starting array index to be processed by a
participant requesting a work item. Next_task_number must also be included
in the data to be shared, but it is there for functional reasons quite different
from the need to share the input and output arrrays. The variable mygroup
obtains the identification of the work item (the starting array index) for use
locally by a given participant. This requires that mygroup is not a shared data
item. Stride is the number of array indexes that each participant processes.
All must agree on this range to avoid miscalculation.

The semaphore-id used in implementing this critical region must be the
same in all participants. There are several ways to do this, but the method
used here places that semaphore-id in shared memory. Again, it is there for
reasons of common access entirely separate from the need to access the actual
data being manipulated by the algorithm.

This FORTRAN program arranges for orderly initiation and completion of
the application. The master (which has a participant-index of 0) creates the
subordinates and performs all single-stream actions. These actions include
preparing the data initially and doing any required cleanup (both of which
are only touched upon lightly in this example). The slaves wait for the
master to say "go". They do this by waiting at a (common) barrier. As each
participant calls PPL$WAIT_AT_BARRIER, it is blocked until all participants
have reached that barrier. Then they all proceed. Once the master has freed
the participants to do their work, it waits until the work is done, and then
does cleanup. This completion is also indicated by waiting at the barrier.
This barrier-id must also be in shared memory so that they wait at the same
barrier.

Finally, this example enables notification of the predefined event
PPL$K-ABNORMAL_EXIT. This event is triggered if any process in the
application exits with a failure status. It is recommended that you always
enable this event, since PPL$K_ABNORMAL _EXIT usually indicates a
severe problem with the application. Notice that the value STS$K_SEVERE
is specified as the enable parameter, which forces termination of the process
that receives the notification (in the absence of a condition handler).

6-13

PPL$ Reference Section
This section provides detailed descriptions of the routines provided by the
VMS RTL Parallel Processing (PPL$) Facility.

PPL$ADJUST_QUORUM

PPL$ADJUST_QUORUM Adjust Barrier Quorum

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

The Adjust Barrier Quorum routine increments or decrements the quo~um
associated with the specified barrier, thus allowing a barrier to dynamically
alter the number of participants required to conclude a wait on that barrier.
The barrier must have been created by PPL$CREA TE_BARRIER. (See
PPL$CREA TE_BARRIER for more information about quorums.)

PPL$ADJUST_QUORUM barrier-id, amount

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

barrier-id
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Identifier of the barrier. The barrier-id argument is the address of an
unsigned longword containing the barrier identifier.

Barrier-id is returned by PPL$CREATE_BARRIER.

amount
VMS usage: word_signed
type: word (signed)
access: read only
mechanism: by reference

Value to add to the barrier quorum. The amount argument is the address of
a signed word containing the amount. You can specify a negative value to
decrement the quorum.

PPL$ADJUST_QUORUM allows you to dynamically alter the number
of participants expected to wait at a barrier. A barrier has an associated
"quorum" of participants. A quorum is the number of participants required ·
to call PPL$WAIL_AT_BARRIER (and thereby be blocked) before all blocked
participants are unblocked to pass the barrier.

A barrier's quorum can be dynamically increased or decreased to allow more
participants in the quorum. This can be useful when a process that was an
expected barrier participant terminates without calling
PPL$WAIT_AT_BARRIER. The process that discovers the termination of an
expected participant can then call this routine, specifying a value of -1 for
the amount argument. This adjustment of the barrier quorum results in the
conclusion of a barrier wait when sufficient participants are already blocked
at the barrier.

PPL-3

PPL$ADJUST_QUORUM

CONDITION
VALUES
RETURNED

PPL-4

PPL$_NQRMAL

PPL$_1NV ARG

PPL$_ WRONUMARG

Routine successfully completed.

Invalid argument(s).

Wrong number of arguments.

PPL$AWAIT_EVENT

PPL$AWAIT_EVENT Await Event Occurrence

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

The Await Event Occurrence routine blocks the caller until an event occurs.

PPL$AWAIT_EVENT event-id

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

event-id
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Identifier of the event. The event-id argument is the address of an unsigned
longword containing the identifier.

The event-id is returned by PPL$CREATE_EVENT.

PPL$AWAIT_EVENT blocks the caller until a corresponding trigger sets the
event's state to occurred. (Generally, a trigger is issued when a participant
calls PPL$TRIGGER_EVENT. However, the PPL$ facility triggers predefined
events automatically.) The caller is blocked by the PPL$ facility's call to the
system service $HIBER.

If the event state is occurred when this routine is called, the caller continues
execution immediately (without blocking), and the event state is reset to
not_occurred. If the event state is not_occurred when this routine is called,
the caller is blocked and a request for a wakeup is queued. The caller is
awakened when a corresponding trigger is issued for this event.

PPL$_NQRMAL

PPL$_1NVELEID

PPL$_1NSVIRMEM

PPL$_1NV ARG

PPL$_ WRONUMARG

Routine successfully completed.

Invalid element identifier.

Insufficient virtual memory available.

Invalid argument(s).

Wrong number of arguments.

PPL-5

PPL$CREATE_BARRI ER

PPL$CREATE_BARRI ER Create a Barrier

FORMAT

RETURNS

ARGUMENTS

PPL-6

The Create a Barrier routine creates and initializes a barrier, and returns the
barrier identifier. You use the barrier identifier to perform all operations on
that barrier.

PPL$CREATE_BARRIER barrier-id [,barrier-name}
[,quorum]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

barrier-id
VMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference

Identifier of the barrier. The barrier-id argument is the address of an
unsigned longword containing the identifier. Barrier-id must be used in
calls to the other barrier routines (listed in the Description section) to identify
the barrier.

barrier-name
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the barrier. The optional barrier-name argument is the address of
a descriptor pointing to a character string containing the barrier name. The
name of the barrier is arbitrary. If you do not specify lhis argument, or if you
specify 0, an anonymous (unnamed) barrier is created. An arbitrary number
of anonymous barriers may be created by a given application.

quorum
VMS usage: word_signed
type: word (signed)
access: read only
mechanism: by reference

Number of participants required to terminate an active wait for this barrier.
The quorum argument is the address of a signed word containing the quorum
number. For example, a quorum value of 3 indicates that the first two
callers of PPL$WAIT_AT_BARRIER specifying this barrier-id are blocked
until a third caller calls PPL$WAIT_AT_BARRIER. At that point, all three
participants are released for further processing. If you do not specify a value

· for quorum, a default value of 1 is assigned.

DESCRIPTION

CONDITION
VALUES
RETURNED

PPL$CREATE_BARRI ER

PPL$CREATE _BARRIER creates and initializes a barrier, and returns the
barrier identifier. A barrier is a synchronization mechanism that allows an
arbitrary number of participants to cooperate by blocking at a given point
(generally at the conclusion of a set of work items), until all have reached the
barrier.

If an element having the specified barrier-name already exists, then the
current request must be for the same type of synchronization element. If the
types are different, the error PPL$-1NCOMPEXI is returned. For example, if
a lock of a given name exists, you cannot create a barrier by that name. (The
name is case sensitive.) If the elements are of the same type, this routine
returns the barrier-id of the existing element. A new barrier is created each
time a null name is supplied.

It is your responsibility to ensure that the barrier-id returned is made
available to any other participant in the application using the barrier. You
can retrieve the barrier-id by naming the barrier and "re-creating" it. That
is, after you have created the barrier, all participants that need to access that
barrier's identifier call this routine, specifying the same name for the element.
This returns the barrier-id of the existing barrier and a status of
PPL$-ELEALREXI. (Note that this method does not work for anonymous
barriers.) Another method is to store the returned barrier-id in shared
memory.

The value you specify for quorum indicates exactly how many participants
are required to conclude a wait at that barrier. If you do not specify a value,
a default of 1 is assigned for the quorum.

Other routines that implement barrier synchronization are as follows:

PPL$WAIT_AT_BARRIER

PPL$REAO_BARRIER

PPL$SET_QUORUM

PPL$ADJUST _QUORUM

PPL$_NORMAL

PPL$_ELEALREXI

PPL$_1NCOMPEXI

PPL$_1NSVIRMEM

PPL$_1NV ARG

PPL$_1NVELENAM

PPL$_ WRONUMARG

Wait until the quorum reaches the barrier.

Return the barrier's quorum and number of
waiting participants.

Establish the initial quorum for the barrier.

Increment or decrement a barrier's quorum.

Routine successfully completed.

An element of the same name already exists.
(Alternate success status.)

Incompatible type of element with the same name
already exists.

Insufficient virtual memory available.

Invalid argument(s).

Invalid element name or illegal character.

Wrong number of arguments.

PPL-7

PPL$CREATE_EVENT

PPL$CREATE_EVENT Create an Event

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

PPL-8

The Create an Event routine creates an arbitrary user-defined event and
returns the event identifier. You use the event identifier to perform all
operations on that event.

PPL$CREATE_EVENT event-id [,event-name]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

event-id
VMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference

Identifier of the event. The event-id argument is the address of an unsigned
longword containing the identifier. Event-id must be used in other calls to
identify the event.

event-name
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the event. The event-name argument is the address of a descriptor
pointing to a character string containing the event name. The name of the
event is entirely arbitrary. If you do not specify a value for event-name, or if
you specify 0, a new anonymous (unnamed) event is created, which can be
referenced only by its identifier. An arbitrary number of anonymous events
can be created ,by a given application.

PPL$CREATE_EVENT creates an arbitrary user-defined event and returns its
identifier, which is used in subsequent calls to other PPL$ event routines.

If an element having the specified event-name already exists, then the current
request must be for the same type of synchronization element. If the types
are different, the error PPL$-1NCOMPEXI is returned. For example, if a lock
of a ,given name exists, you cannot create an event by that name. (The names
are case sensitive.) If the elements are of the same type, this routine returns
the event-id of the existing element. A new event is created each time a null
name is supplied.

PPL$CREATE_EVENT

It is your responsibility to ensure that the event-id returned is made available
to any other participant in the application using the event. You can retrieve
the event-id by naming the event and "re-creating" it. That is, after you have
created the event, all participants that need to access that event's identifier
call this routine, specifying the same name for the element. This returns the
event-id of the existing event and a status of PPL$-ELEALREXI. (Note that
this method does not work for anonymous events.) Another method is to
store the returned event-id in shared memory.

An event is a synchronization mechanism having an associated state that
may be either occurred or not_occurred. (A call to this routine initializes
the state to not_occurred.) A participant can trigger an event (by calling
PPL$TRIGGER-EVENT), as well as enable an action to be taken when an
event is triggered. When a participant triggers an event, it may request that
either exactly one pending action is processed, or that all pending actions are
processed. An action is either an AST, a signal (condition), or a wakeup.

Routines that implement event operations are as follows:

PPL$TRIGGER_EVENT

PPL$AWAIT_EVENT

PPL$ENABLE_EVENT _AST

PPL$ENABLE_EVENT _SIGNAL

PPL$READ_EVENT

Sets the event state to occurred and
examines the queue of requested
operations. If any signals or AST s have
been enabled for the event, or if any
participant is waiting for the event, the
appropriate action is taken and the event
state is reset to noLoccurred.

Blocks the caller until the event state
becomes occurred. If the state is already
occurred when this routine is called, the
state is reset to noLoccurred and the
caller continues processing without being
blocked. If the event is not_occurred when
this routine is called, the caller is blocked,
to be awakened by a corresponding trigger
for this event.

Requests that a specified AST be delivered
when the event has occurred. If the state
is alre(ldy occurred when this routine is
called, the AST is immediately delivered
and the state is reset to not_occurred. If
the state is noLoccurred when this routine
is called, the request is queued to the event,
and the AST is delivered as a result of a
corresponding trigger for this event.

Requests that a specified signal condition
be delivered when the event is occurred.
If the state is already occurred when this
routine is called, the signal Is immediately
delivered and the state is reset to not_
occurred. Otherwise, the request is queued
to the event, and the signal will be delivered
as a result of a corresponding trigger for
this event.

Returns the current state of the event. The
state can be occurred or noLoccurred.

PPL-9

PPL$CREATE_EVENT

PPL-10

The PPL$ facility creates and predefines the events PPL$K_NORMAL _EXIT
and PPL$K_ABNORMAL_EXIT. You need not create these events. (These
events are described in the following sections.) When a normal or abnormal
exit occurs, PPL$ triggers the event automatically. Note that you can ignore
these predefined events at no cost. However, DIGITAL recommends that
you enable event notification of PPL$K_ABNORMAL_EXIT, because that
·condition usu(llly indicates a severe error. Notification is delivered only if
you explicitly request it by specifying the predefined event as the event-id in
a call to PPL$ENABLE_EVENT_SIGNAL, PPL$ENABLE_EVENT_AST, or
PPL$AWAIT_EVENT.

1 PPL$K_NORMAL _EXIT - PPL$ triggers this event when an application
participant exits normally. Normal exits include the following:

• The participant returns a success status

• The participant calls PPL$TERMINATE

• The subordinate's parent calls PPL$TERMINATE specifying PPL$M_
STQP_CHILDREN

• Some other participant calls PPL$STOP to terminate this participant

If you enabled a signal for this event through a call to PPL$ENABLE_
EVENT_SIGNAL, the condition signaled as the trigger parameter is
PPL$_NORMAL _EXIT.

2 PPL$K_ABNORMAL _EXIT - PPL$ triggers this event when an
application participant exits abnormally. Abnormal exits include the
following:

• The participant returns an error status

• A mechanism outside of PPL$ forces termination and prevents the
execution of exit handlers (for example, the DCL command STOP
/ID)

If you enabled a signal for this event through a call to PPL$ENABLE_
EVENT_SIGNAL, the condition signaled as the trigger parameter is
PPL$_ABNORMAL _EXIT.

There are some special usage considerations for the PPL$ predefined events
if delivery of an AST is requested. Refer to the description section of
PPL$ENABLE_EVENT_AST for more information.

CONDITION
VALUES
RETURNED

PPL$_NQRMAL

PPL$_ELEALREXI

PPL$_1NCOMPEXI

PPL$_1NSVIRMEM

PPL$_1NV ARG

PPL$_1NVELENAM

PPL$_ WRONUMARG

PPL$CREATE_EVENT

Routine successfully completed.

An element of the same name already exists.
(Alternate success status.)

Incompatible type of element with the same name
already exists.

Insufficient virtual memory available.

Invalid argument(s).

Invalid element name or illegal character.

Wrong number of arguments.

PPL-11

PPL$CREATE_SEMAPHORE

PPL$CREATE_SEMAPHORE Create a Semaphore

FORMAT

RETURNS

ARGUMENTS

PPL-12

The Create a Semaphore routine creates and initializes a semaphore
with a waiting queue, and returns the semaphore identifier. You use the
semaphore identifier to perform all operations on that semaphore.

PPL$CREATE_SEMAPHORE

VMS usage: cond_value

semaphore-id
{,semaphore-name]
{,semaphore-maximum]
{,semaphore-initial]

type: longword (unsigned)
access: write only
mechanism: by value

semaphore-id
VMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference

Identifier of the semaphore. The semaphore-id argument is the address of an
unsigned longword containing the identifier. Semaphore-id must be used in
other calls to identify the semaphore.

semaphore-name
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the semaphore. The semaphore-name argument is the address of
a descriptor pointing to a character string containing the semaphore name.
The name of the semaphore is entirely arbitrary. If you do not specify a
value for semaphore-name, or if you specify 0, a new anonymous (unnamed)
semaphore is created. An arbitrary number of anonymous semaphores may
be created by a given application.

semaphore-maximum
VMS usage: word_signed
type: word (signed)
access: read only
mechanism: by·reference

Maximum value of the semaphore. The semaphore-maximum argument is
the address of an unsigned longword containing the maximum value. This

DESCRIPTION

PPL$CREATE_SEMAPHORE

value must be nonnegative. If you do not supply a value for semaphore­
maximum, a default value of 1 is used, thereby making it a binary
semaphore.

semaphore-initial
VMS usage: word_signed
type: word (signed)
access: read only
mechanism: by reference

Initial value of the semaphore. The semaphore-initial argument is the
address of a signed longword containing the initial value. This value must be
less than or equal to the semaphore-maximum value. If you do not supply a
value for semaphore-initial, a default value equal to semaphore-maximum
is used.

PPL$CREATE_SEMAPHORE creates and initializes a semaphore and a
waiting queue, and returns the identifier of the semaphore. The semaphore
created may be used to control access to any user-defined resource.

If an element having the specified semaphore-name already exists, then the
current request must be for the same type of synchronization element. If the
types are different, the error PPL$-1NCOMPEXI is returned. For example,
if a lock of a given name exists, you cannot create a semaphore by that
name. (The name is case sensitive.) If the elements are of the same type, this
routine returns the semaphore-id of the existing element. A new semaphore
is created each time a null name is supplied.

It is your responsibility to ensure that the semaphore-id returned is made
available to any other participant in the application using the semaphore.
You can retrieve the semaphore-id by naming the semaphore and "re­
creating" it. That is, after you have created the semaphore, all participants
that need to access that semaphore's identifier call this routine, specifying the
same name for the element. This returns. the semaphore-id of the existing
semaphore and a status of PPL$_ELEALREXI. (Note that this method does
not work for anonymous semaphores.) Another method is to store the
returned semaphore-id in shared memory.

Depending on the value specified for semaphore-maximum, you can create
either a binary semaphore (semaphore-maximum= 1) or a counting
semaphore (semaphore-maximum > 1). Routines that implement
semaphore synchronization are as follows:

PPL$DECREMENT _SEMAPHORE

PPL$1NCREMENT _SEMAPHORE

PPL$READ_SEMAPHORE

Waits for the semaphore to have
a value greater than zero, then
decrements the semaphore.

Increments the semaphore and
wakes a participant blocked by the
semaphore, if any exists.

Returns the current and/or maximum
values of a semaphore.

PPL-13

PPL$CREATE_SEMAPHORE

CONDITION
VALUES
RETURNED

PPL-14

PPL$_NORMAL

PPL$_ELEALREXI

PPL$_1NCOMPEXI

PPL$_1NSVIRMEM

PPL$_1NV ARG

PPL$_1NVELENAM

PPL$_1NVSEMINI

PPL$_1NVSEMMAX

PPL$_ WRONUMARG

Routine successfully completed.

An element of the same name already exists.
(Alternate success status.)

Incompatible type of element with the same name
already exists.

Insufficient virtual memory available.

Invalid argument(s).

Invalid element name or illegal character.

Invalid semaphore initial value; cannot be greater
than the maximum value.

Invalid semaphore maximum value; must be greater
than zero.

Wrong number of arguments.

PPL$CREATE_SHARED_MEMORY

PPL$CREATE_SHARED_MEMORY Create

FORMAT

RETURNS

ARGUMENTS

Shared
Memory

The Create Shared Memory routine creates (if necessary) and maps a
section of memory that can be shared by multiple processes.

PPL$CREA TE _SHARED_M EMORY section-name
,memory-area
{,flags]
{,file-name]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

section-name
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the shared memory section you want to create. The section-name
argument is the address of a descriptor pointing to the shared memory section
name.

memory-area
VMS usage: vector_longword_unsigned
type: longword (unsigned)
access: modify
mechanism: by reference, array reference

The area of memory into which the shared memory is mapped. The memory­
area argument is the address of a two-longword array containing, in order,
the length (in bytes) and the starting virtual address for the area of memory.

If you specify the starting address as zero, the PPL$ facility selects the virtual
address space so that each current process in the application can map the
section to the same set of virtual addresses.

PPL$CREATE_SHARED_MEMORY returns to this argument the actual
length and starting virtual address of the shared memory created or mapped.

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

PPL-15

PPL$CREATE_SHARED_MEMORY

DESCRIPTION

PPL-16

Specifies options for creating and mapping shared memory. The flags
argument is the value of a longword bit mask containing the flag. Valid
values are as follows:

PPL$M_NOZERO

PPL$M_NOWRT

PPL$M_NOUNI

file-name
VMS usage: char_string

Does not initialize the shared memory to zero.
By default, PPL$CREA TE_SHARED_MEMORY
initializes the shared memory to zero.

Note that the creator of a shared memory section
always initializes the memory to zero, because a
VMS global section is created. Using the PPL$M_
NOZERO flag inhibits that behavior for subsequent
callers. Thus, it is not appropriate to initialize data
in a section to be shared before the first call to
PPL$CREA TE_SHARED_MEMORY.

Maps the shared memory with no write access (in
other words, read only). By default, the shared
memory is available with read/write access.

Names the shared memory a nonunique name. By
default, PPL$CREA TE_SHARED_MEMORY gives
the specified shared memory a name unique to the
application by using PPL$UNIOUE_NAME.

type: character string
access: read only
mechanism: by descriptor

Name of the file used for backup storage of the shared memory. The file­
name argument is the address of a descriptor pointing to the file name. If
you do not specify a file name, a default file specification (with a default file
type of DAT) is obtained from SYS$SCRATCH. The shared memory name is
used as a related file name.

If you specify a file that does not exist, PPL$CREATE_SHARED_MEMORY
creates it. If you specify a file that already exists, the file size defaults to that
of the shared memory.

PPL$CREATE_SHARED_MEMORY creates (if necessary) and maps a section
of memory that can be shared by multiple processes. Within VMS, a global
section (or shared memory) is a data structure or shareable image section
potentially available to all processes in the system. See the VMS System
Services Reference Manual for more information on global sections.

By default, PPL$CREATE_SHARED_MEMORY gives the shared memory
a name unique to the application, initializes the section to zero, and maps
the section with read/write access. You use the flags argument to change
any or all of those defaults. In addition, all other participants share the same
memory addresses if possible. This operation merely attempts to "reserve"
that address range, and it is only mapped in other participants at the time
they issue calls to this service. If PPL$CREATE_SHARED_MEMORY cannot
map the shared memory to the same addresses in all participants,
PPL$__NONPIC is returned. (This might occur when the application executes
more than one program image.)

CONDITION
VALUES
RETURNED

PPL$CREATE_SHARED_M EMORY

Optionally, this routine opens a backup storage file for the shared memory
with a specified file name.

The PPL$ facility offers two distinct memory sharing services through
this routine. The first mechanism lets you request an unspecified range of
addresses, and the PPL$ facility arranges to allocate the same set of addresses
in each participant in the application. You request this service by specifying
the starting address as zero.

The second mechanism lets you specify a particular range of addresses to be
shared. This allows the sharing of an arbitrary collection of variables that
appears at a certain address, such as a FORTRAN common block. Because
VMS maps memory in pages (512 bytes), you must take care to share exactly
the data intended for sharing - no more and no less. When the data
does not fall exactly on page boundaries, extra effort is required to prevent
accidental sharing of local data while guaranteeing that all participants can
access the shared memory at the expected addresses. You can accomplish
this by allocating a 512-byte array at both the beginning and the end of such
a data area (common block). The request to this routine then specifies the
starting address to be that of the front "guard" array. The length is calculated
by subtracting the starting address of the front guard from the last address
of the end guard. PPL$ maps the requested memory so that the lower
address is rounded up to the nearest page boundary, and the higher address
is rounded down to the nearest page boundary. This guarantees that no data
is shared unexpectedly, and that all important data in the common area (that
is, everything but the two guard pages) is fully shared.

PPL$_NORMAL

PPL$_CREA TED

PPL$_1NV ARG

PPL$_NONPIC

.. PPL$_ WRONUMARG

RMS$_xxx

Routine successfully completed.

Shared memory created (success).

Invalid argument.

Cannot map shared memory to same addresses as
other processes have mapped section .

Wrong number of arguments.

Miscellaneous RMS errors pertaining to file name.

Any error returned by the system service $CRMPSC.

PPL-17

PPL$CREATE_SPIN_LOCK

PPL$CREATE_SPIN_l0CK Create Spin Lock

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

PPL-18

The Create Spin Lock routine creates and initializes a simple {spin) lock,
and returns the lock identifier. You use that lock identifier to get and free
the lock.

PPL$CREATE_SPIN_LOCK lock-id [,lock-name]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

lock-id
VMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference

Identifier of the newly created lock. The lock-id argument is the address of
an unsigned longword containing the lock identifier. You must use lock-id
when getting or freeing the lock.

lock-name
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the lock. The lock-name argument is the address of a descriptor
pointing to a character string containing the name. The name of the lock is
entirely arbitrary. If you do not specify this argument, or if you specify 0, an
anonymous (unnamed) lock is created. An arbitrary number of anonymous
locks can be created by a given application.

PPL$CREATE_;.SPJN_LOCK creates and initializes a simple lock, and returns
the lock identifier. The lock is initialized to zero (not set).

If an element having the specified lock-name already exists, then the current
request must be for the same type of synchronization element. If the types
are different, the error PPL$_JNCOMPEXI is returned. For example, if a
barrier of a given name exists, you cannot create a lock by that name. (The
name is case sensitive.) If the elements are of the same type, this routine
returns the lock-id of the existing element. A new lock is created each time a
null name is supplied.

CONDITION
VALUES
RETURNED

PPL$CREATE_SPI N _LOCK

It is your responsibility to ensure that the lock-id returned is made available
to any other participant in the application using the lock. You can retrieve
the lock-id by naming the lock and "re-creating" it. That is, after you have
created the lock, all participants that need to access that lock's identifier call
this routine, specifying the same name for the element. This returns the
lock-id of the existing lock and a status of PPL$_ELEALREXI. (Note that this
method does not work for anonymous locks.) Another method is to store the
returned lock-id in shared memory.

Routines that implement spin lock synchronization are as follows:

PPL$SEIZE_SPIN_LOCK Obtain the lock for exclusive access.

PPL$RELEASE_SPIN_LOCK Release the lock.

This form of lock is recommended for use only in a dedicated parallel
processing environment, and only when fairness is not important. This
lock is not recommended for use in a· general time-sharing environment
because in that environment a spin lock consumes CPU resources.

PPL$_NORMAL

PPL$_ELEALREXI

PPL$_1NCOMPEXI

PPL$_1NV ARG

PPL$_1NVELENAM

PPL$_WRONUMARG

Routine successfully completed.

An element of the same name already exists.
(Alternate success status.)

Incompatible type of element with the same name
already exists.

Invalid argument.

Invalid element name or illegal character string.

Wrong number of arguments.

PPL-19

PPL$CREATE_VM_ZONE

PPL$CREATE_VM_ZQNE Create a New Virtual
Memory Zone

FORMAT

RETURNS

ARGUMENTS

PPL-20

The Create a New Virtual Memory Zone routine creates a new storage
zone, according to specified arguments, which is available to all
participants in the application.

PPL$CREATE_VM_ZQNE zone-id [,algorithm}
{,algorithm-argument]
[,flags] {,extend-size]
[,initial-size]{, block-size]
[,alignment] {,page-limit]
[,smallest-block-size]
{,zone-name]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

zone-id
VMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference

Zone identifier. The zone-id argument is the address of a longword that is
set to the zone identifier of the newly created zone.

algorithm
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Algorithm. The algorithm argument is the address of a signed longword that
represents the code for one of the LIB$VM algorithms:

1 LIB$K_VM_FIRST_FIT

2 LIB$K_ VM_QUICK_FIT

3 LIB$K_ VM_FREQ_SIZES

4 LIB$K_ VM_FIXED

First fit

Quick fit, lookaside list

Frequent sizes, lookaside list

Fixed size blocks

If algorithm is not specified, a default of 1 (first fit) is used.

PPL$CREATE_VM_ZQNE

algorithm-argument
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Algorithm argument. The algorithm-argument argument is tlle address
of a signed longword that contains a value that is specific to the particular
allocation algorithm.

Algorithm Value

OUICK_FIT The number of queues used. The number of queues
must be between 1 and 128.

FREQ_SIZES The number of cache slots used. The number of
cache slots must be between 1 and 16.

FIXED The fixed request size (in bytes) for each get or free.
The request size must be greater than 0.

FIRST_FIT Not used, may be omitted.

The algorithm-argument argument must be specified if you are using
the quick-fit, frequent-sizes or fixed-size-blocks algorithms. However, this
argument is ·optional if you are using the first-fit algorithm.

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags. The flags argument is the address of an unsigned longword that
contains flag bits that control various options:

Bit

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Value

LIB$M_ VM_BQUNDARY _
TAGS

LIB$M _ VM _GET _FILLO

LIB$M_VM_GET_FILL 1

LIB$M_ VM_FREE_FILLO

LIB$M_ VM_FREE_FILL 1

LIB$M_ VM_EXTEND_AREA

Description

Boundary tags for faster freeing

Adds a minimum of eight bytes to
each block

LIB$GET_VM; fill with bytes of 0

LIB$GET_VM; fill with bytes of FF
(hexadecimal)

LIB$FREE_ VM; fill with bytes of 0

LIB$FREE_ VM; fill with bytes of FF
(hexadecimal)

Add extents to existing areas if
possible

Bits 6 through 31 are reserved and must be 0.

This is an optional argument. If flags is omitted, the default of 0 (no fill and
no boundary tags) is used.

PPL-21

PPL$CREATE_VM_ZONE

PPL-22

extend-size
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Zone extend size. The extend-size argument is the address of a signed
longword that contains the number of (512-byte) pages to be added to the
zone each time it is extended.

The value of extend-size must be between 1 and 1024.

This is an optional argument. If extend-size is not specified, a default of 16
pages is used.

Note: Extend-size does not limit the number of blocks that can be allocated from
the zone. The actual extension size is the greater of extend-size and the
number of pages needed to satisfy the LIB$GET_ VM call that caused the
extend. ·

initial-size
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Initial size for the zone. The initial-size argument is the address of a signed
longword that contains the number of (512-byte) pages to be allocated for the
zone as the zone is created.

This is an optional argument. If initial-size is not specified or is specified as
0, no pages are allocated when the zone is created. The first call to
LIB$GET_ VM for the zone allocates extend-size pages.

block-size
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Block size of the zone. The block-size argument is the address of a signed
longword specifying the allocation quantum (in bytes) for the zone. All blocks
allocated are rounded up to a multiple of block-size.

The value of block-size must be a power of 2 between 8 and 512. This is an
optional argument. If block-size is not specified, a default of 8 is used.

alignment
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Block alignment. The alignment argument is the address of a signed
longword that specifies the required address alignment (in bytes) for each
block allocated.

The value of alignment must be a power of 2 between 4 and 512. This is an
optional argument. If alignment is not specified, a default of 8 (quadword
alignment) is used.

DESCRIPTION

PPL$CREATE_VM_ZQNE

page-limit
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Maximum page limit. The page-limit argument is the address of a signed
longword that specifies the maximum number of (512-byte) pages that can
be allocated for the zone. The value of page-limit must be between 0 and
32,767. Note that part of the zone is used for header information.

This is an optional argument. If page-limit is not specified or is specified as
0, the only limit is the total process virtual address space limit imposed by
VMS. If page-limit is specified, then initial-size must also be specified.

smallest-block-size
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Smallest block size. The smallest-block-size argument is the address of a
signed longword that specifies the smallest block size (in bytes) that has a
queue for the quick fit algorithm.

If smallest-block-size is not specified, the default of block-size is used. That
is, queues are provided for the first n multiples of block-size.

zone-name
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name to be associated with the zone being created. The optional zone­
name argument is the address of a descriptor pointing to a character string
containing the zone name. If zone-riame is not specified, the zone does not
have an associated name.

PPL$CREATE_ VM-ZONE creates a new storage zone. The zone identifier
value that is returned can be used in calls to the following LIB$ routines:

LIB$FREE_ VM

LIB$GET_VM

LIB$DELETE_ VM_ZONE

LIB$RESET_ VM_ZONE

LIB$SHOW _ VM_ZONE

LIB$VERIFY _ VM_ZONE

The arguments for PPL$CREATE_ VM-20NE are identical to those
for LIB$CREATE_ VM-ZONE, except for the last two arguments;
PPL$CREATE_VM-20NE does not accept the get-page and free-page
arguments provided by LIB$CREATE_ VM-ZONE. For more information
about the RTL LIB$ virtual memory zone routines, refer to the VMS RTL
Library (LIB$) Manual.

PPL-23

PPL$CREATE_VM_ZONE

CONDITION
VALUES
RETURNED

PPL-24

The following restrictions apply when you are creating a zone.

• Call PPL$CREATE_VM-20NE once for each zone in your application.
That is, once this routine has been called by any participant, all
participants in the application can use the returned zone-id to call the
LIB$ virtual memory zone routines listed previously.

• The restrictions for LIB$RESET_ VM-20NE also apply to shared zones.
That is, it is the caller's responsibility to ensure that the called program
has exclusive access to the zone while the reset operation is being
performed.

All participants in the application share the memory allocated by calls to
LIB$GET_ VM. Memory allocated by one process may be freed by another
process.

If an error status is returned, the zone is not created.

PPL$_NORMAL

PPL$_1NSVIRMEM

PPL$_1NV ARG

PPL$_1NVSTRDES

Routine successfully completed.

Insufficient virtual memory.

Invalid argument.

Invalid string descriptor for zone-name.

PPL$DECREMENT_SEMAPHORE

PPL$DECREMENT_SEMAPHORE Decrement a
Semaphore

FORMAT

RETURNS

ARGUMENTS

The Decrement a Semaphore routine waits for a semaphore to have a
value greater than 0, then decrements the value by 1 to indicate the
allocation of a resource. If the value of the semaphore is 0 at the time of
the call, the caller is put in the associated queue and is suspended. The
semaphore must have been created by PPL$CREA TE_SEMAPHORE.

PPL$DECREMENT_SEMAPHORE semaphore-id,
[,flags}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

semaphore-id
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Identifier of the semaphore. The semaphore-id argument is the address of an
unsigned longword containing the identifier.

Semaphore-id is returned by PPL$CREATE_SEMAPHORE.

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: ,by reference

Bit mask specifying options for decrementing the semaphore. The flags
argument is a longword bit mask containing the flag. The valid value for
flags is as follows:

PPL$M_NQN_BLOCKING The semaphore is decremented if and only if it can
be decremented without causing the caller to be
blocked. (This can be useful in situations where
the cost of waiting for a resource is not desirable,
or if the caller merely intends to request immediate
access to any one of a number of resources.)

PPL-25

PPL$DECREMENT_SEMAPHORE

DESCRIPTION

CONDITION
VALUES
RETURNED

PPL-26

PPL$DECREMENT_SEMAPHORE waits for a semaphore to have a value
greater than 0, then decrements the value by 1 to indicate the allocation of a
resource. If the value of the semaphore is 0 at the time of the call, the caller
is put in the queue and suspended, unless the PPL$M_NQN_BLOCKING
value for the flags argument is specified. If you specify
PPL$M_NQN _BLOCKING, the caller is not blocked, the semaphore is
not decremented, and the routine returns the status code PPL$_NQT_
AVAILABLE. The caller is blocked by the PPL$ facility's call to the system
service $HIBER.

PPL$_NORMAL

PPL$_1NVELEID

PPL$_NQT _AVAILABLE

PPL$_WRONUMARG

Routine successfully completed.

Invalid element identifier.

Operation cannot be performed immediately;
therefore it is not performed.

Wrong number of arguments.

PPL$DELETE_SHARED_M EMORY

PPL$DELETE_SHARED_MEMORY Delete Shared
Memory

FORMAT

RETURNS

ARGUMENTS

The Delete Shared Memory routine deletes or unmaps from a global
section that you created using the PPL$CREA TE_SHARED_MEMORY
routine. Optionally, this routine writes the contents of the global section
to disk before deleting the section.

PPL$DELETE_SHARED_MEMORY section-name

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

section-name
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

{,memory-area]
[,flags]

Name of the global section you want to delete. The section-name argument
is the address of a descriptor pointing to a character string containing the
global section name.

memory-area
VMS usage: vector_tongword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference, array reference

The area of memory into which the global section that you want to delete is
mapped. The memory-area argument is the address of a two-longword array
containing, in order, the length in bytes and the starting virtual address of the
area of memory.

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Bit mask specifying actions to be performed before deleting the global section.
The flags argument is a longword bit mask containing the flag. Valid values
for flags are as follows:

PPL-27

PPL$DELETE_SHARED_MEMORY

DESCRIPTION

CONDITION
VALUES
RETURNED

PPL-28

PPL$M_FLUSH

PPL$M_NOUNI

Writes the global section to disk before deleting it.

Identifies the global section as having a nonunique
name. By default, PPL$CREA TE_SHARED_
MEMORY gives the specified global section a name
unique to the application by using PPL$UNIOUE_
NAME. If you specified this value to give the
global section a nonunique name when you called
PPL$CREATE_SHARED_MEMORY, you must also
specify it when 'you call PPL$DELETE_SHARED_
MEMORY.

PPL$DELETE_SHARED_MEMORY deletes or unmaps from a global section
that you created using -the PPL$CREATE_SHARED_MEMORY routine.
A VMS global section is a section of memory potentially available to all
processes in the system.

You can use the flags argument to specify that the contents of the global
section are written to disk before the section is deleted, or to identify the
global section as having a nonunique name, or both.

If another process is using the global section when you call this routine,
PPL$DELETE_SHARED_MEMORY unmaps from the global section.
When all processes have unmapped from the section or have been deleted,
PPL$DELETE_SHARED_MEMORY deletes the global section.

PPL$_NORMAL

PPL$_1NV ARG

PPL$_WRONUMARG

Routine successfully completed.

Invalid argument.

Wrong number of arguments.

Any error returned by the system service $DGBLSC.

PPL$ENABLE_EVENT_AST

PPL$ENABLE_EVENT_AST Enable AST
Notification of an
Event

FORMAT

RETURNS

ARGUMENTS

The Enable AST Notification of an Event routine specifies the address of
an AST routine (and optionally an argument to that routine) to be delivered
when an event occurs.

PPL$ENABLE_EVENT_AST
event-id ,astadr {,astprm}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

event-id
VMS· usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Identifier of the event. The event-id argument is the address of an unsigned
longword containing the identifier.

Event-id is returned by PPL$CREATE_EVENT.

astadr
VMS usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

AST routine. The astadr argument is the address of the procedure entry mask
for the user's AST routine. This routine is called on the user's behalf when
the event state becomes' occurred.

astprm
VMS usage: user_arg
type: unspecified
access: read only
mechanism: by value

AST value passed as the argument to the specified AST routine. The astprm
argument is the address of a vector of unsigned longwords containing this
optional value. If this argument is not specified, PPL$_EVENT_OCCURRED
is the astprm for a user-created event. The astprm argument has special
restrictions when used in conjunction with the PPL$ event routines.

PPL-29

PPL$ENABLE_EVENT_A$T

DESCRIPTION

PPL-30

• For user-defined events, the AST-argument must point to a vector of
two unsigned longwords. The first longword is a "context" reserved
for the user; it is not read or modified by PPL$. The second longword
receives the value specified by the event-param argument in the call to
PPL$TRIGGER_EVENT that results in the delivery of this AST.

• For PPL$-defined events (those not created by the user), the astprm
argument must point to a vector of four unsigned longwords. The vector
accommodates the following:

• The user's "context" longword

• The longword to receive the event's distinguishing condition value

• The parameters to the PPL$-defined event (the "trigger" parameter)

Because each of the predefined events takes two arguments, the vector
that astprm points to must be four longwords in length.

PPL$ENABLE_EVENT_AST requests the delivery of a specified AST when a
corresponding trigger sets the event state to occurred. (Generally, a trigger is
issued when a participant calls PPL$TRIGGER_EVENT. However, the PPL$
facility triggers predefined events automatically.) An asynchronous system
trap (AST) is a VMS mechanism for providing a software interrupt when an
external event occurs. When you call this routine, follow all standard VMS
conventions for using ASTs.

If the event state is already occurred when you call this routine, the AST is
delivered immediately and the event state is reset to not_occurred. If the state
of the event is not_occurred when you call this routine, your request for an
AST to notify the caller of an event's occurrence is placed in the queue, and
is processed once the event actually occurs. Note that the caller continues
execution immediately after the AST request is placed in the queue.

If you do not specify a value for the astprm argument, PPL$_EVENT_
OCCURRED is passed as the astprm argument when the event occurs. If
astprm is specified, it must conform to the requirements described in the
astprm argument description.

For user-defined events, you can supply a value for the event-param
argument in the call to PPL$TRIGGER_EVENT that causes the delivery
of this AST. If you specify an event-param, it appears in this routine as the
second longword in the astprm array.

PPL$ predefines the conditions PPL$_ABNORMAL _EXIT and
PPL$_NORMAL_EXIT, corresponding to the PPL$-defined event constants
PPL$K_ABNORMAL ...:....EXIT and PPL$K_NORMAL _EXIT. You can use one
of these event constants as the event-id in a call to PPL$ENABLE_EVENT_
AST if you want to be notified when a participant exits. Each predefined
event has two additional parameters: the participant-index and the exit­
status of the terminating participant. When a normal or abnormal exit occurs,
PPL$ triggers the event automatically. Refer to PPL$CREATE_EVENT for
more information about predefined events.

For a given event, any calls to this routine from a given participant after
the first call overwrite the information previously specified. In general, you
should only call it once for each event for each participant.

CONDITION
VALUES
RETURNED

PPL$_NORMAL

PPL$_1NVELEID

PPL$_1NSVIRMEM

PPL$_1NV ARG

PPL$_ WRONUMARG

PPL$ENABLE_EVENT_AST

Routine successfully completed.

Invalid element identifier.

Insufficient virtual memory available.

Invalid argument(s).

Wrong number of arguments.

PPL-31

PPL$ENABLE_EVENT_SIGNAL

PPL$ENABLE_EVENT_SIGNAL Enable Signal
Notification of an
Event

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

PPL-32

The Enable Signal Notification of an Event routine specifies a condition
value to be signaled when the event occurs.

PPL$ENABLE_EVENT_SIGNAL event-id
[,signal-value]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

event-id
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Identifier of the event. The event-id argument is the address of an unsigned
longword containing the identifier.

Event-id is returned by PPL$CREATE_EVENT.

signal-value
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

Optional user-defined value to be signaled when the event occurs. The
signal-value argument is an unsigned longword containing this value.

PPL$ENABLE_EVENT_SJGNAL requests the delivery of a specified
condition value when a trigger sets the event state to occurred. (Generally, a
trigger is issued when a participant calls PPL$TRIGGER-EVENT. However,
the PPL$ facility triggers predefined events automatically.) If the state
is already occurred when you call this routine, the signal is delivered
immediately and the event state is reset to not_occurred. If the state of
the event is not_occurred when you call this routine, your request for a signal
to notify the caller of an event's occurrence is placed in the queue, and is
processed once the corresponding event is triggered. Note that the caller
continues execution immediately after the signal request is placed in the
queue.

PPL$ENABLE_EVENT_SIGNAL

If you specify the signal-value argument, that value is the first condition
signaled in the signal vector when the event occurs. If you do not specify
signal-value, PPL$_EVENT_QCCURRED is signaled. If the event-param
argument is specified in the call to PPL$TRIGGER_EVENT that causes the
delivery of this signal, that argument appears as the second condition value
in the signal vector. The following figure illustrates the structure of a signal
vector for a user-defined event.

Figure PPL-1 Signal Vector for a User-Defined Event

n CHF$L_SIG_ARGS

condition-value CHF$L _SIG _NAME

param-count (0)

condition-value

param-count (0) n

PC

PSL

ZK-6498-HC

PPL$ predefines the conditions PPL$_ABNORMAL_EXIT and
PPL$_NORMAL_EXIT, corresponding to the PPL$-defined event constants,
PPL$K_ABNORMAL _EXIT and PPL$K_NORMAL _EXIT. You use one of
these event constants as the event-id in a call to PPL$_ENABLE_EVENT...;_
SIGNAL if you want to be notified when a participant exits. Each predefined
event has two additional parameters: the participant-index and the exit­
status of the terminating participant. When a normal or abnormal exit occurs,
PPL$ triggers the event automatically. Refer to PPL$CREATE_EVENT for
more information about predefined events. The following figure illustrates
the structure of a signal vector for a PPL$-defined event.

PPL-33

PPL$ENABLE_EVENT_SIGNAL

CONDITION
VALUES
RETURNED

PPL-34

Figure PPb-2 Signal Vector for a PPL$-Defined Event

n CHF$L _SIG_ARGS

condition-value CHF$L_SIG_NAME

param-count (0)

condition-value

param-count (2)

n
participant-index

exit-status

PC

PSL

For more information about signal vectors, refer to the VAX Procedure Calling
and Condition Handling Standard in the Introduction to VMS System Routines.

For a given event, any calls to this routine from a given participant after the
first call overwrite the information previously specified. Usually, you should
only call it once for each event for each participant.

PPL$_NQRMAL

PPL$_1NVELEID

PPL$_1NSVIRMEM

PPL$_1NV ARG

PPL$_WRONUMARG

Routine successfully completed.

Invalid element identifier.

Insufficient virtual memory available.

Invalid argument(s).

Wrong number of arguments.

PPL$FIND_SVNCH_ELEMENT~ID

PPL$FIND_SVNCH_ELEMENT_ID Find
Synchronization Element Identification

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

Given the name of a spin lock, semaphore, barrier, or event, the Find
Synchronization Element Identification routine returns the identifier of the
associated synchronization element.

PPL$FIND_SVNCH_ELEMENT_ID element-id
,element-name

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

element-id
VMS usage: identifier
type: longword (unsigned)
access: modify
mechanism: by reference

Element identifier to be returned. The element-id argument is the address of
an unsigned longword that receives the associated identifier.

element-name
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the synchronization element for which to return the associated
identifier. The element-name argumen~ is the address of a descriptor
pointing to a character string containing the (user-defined) name of the
synchronization element.

Given the name of a spin lock, semaphore, barrier, or event,
PPL$FIND_SYNCH_ELEMENT-1D returns the identifier of an element. An
element is any spin lock, semaphore, barrier, or event previously created and
named in a call to PPL$CREATE_SPIN_LQCK,
PPL$CREATE_SEMAPHORE, PPL$CREATE_BARRIER, or PPL$CREATE_
EVENT.

PPL-35

PPL$FIND_SVNCH_ELEMENT_ID

CONDITION
VALUES
RETURNED

PPL-36

PPL$_NQRMAL

PPL$_1NV ARG

PPL$_1NVELENAM

PPL$_NOSUCHELE

PPL$_ WRONUMARG

Routine successfully completed.

Invalid argument.

Invalid element name, or illegal character string.

The element you specified does not exist.

Wrong number of arguments.

PPL$FLUSH _SHARED_M EMORY

PPL$FLUSH_SHARED_MEMORY Flush Shared
Memory

FORMAT

RETURNS

ARGUMENTS

The Flush Shared Memory routine writes (flushes) to disk the contents
of a global section that you created using the PPL$CREA TE_SHARED_
MEMORY routine. Only pages that have been modified are flushed to disk.

PPL$FLUSH_SHARED_MEMORV section-name

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

section-name
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

[,memory-area]
[,flags]

Name of the global section whose contents are to be written to disk. The
section-~ame argument is the address of a descriptor pointing to a character
string containing the global section name.

memory-area
VMS usage: vector_longword~unsigned
type: longword (unsigned)
access: read only
mechanism: by reference, array reference

The area of memory into which the specified global section is mapped. The
memory-area argument is the address of a two-longword array containing,
in order, the length (in bytes) and the starting virtual address for the area of
memory.

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Bit mask specifying actions to perform before flushing the global section. The
flags argument is a longword bit mask containing the flag. The valid value
for flags is as follows:

PPL-37

PPL$FLUSH _SHARED_M EMORY

DESCRIPTION

CONDITION
VALUES
RETURNED

PPL-38

PPL$M_NOUNI Identifies the global section as having a nonunique
name. By default, PPL$CREA TE_SHARED_
MEMORY gives the specified global section a name
unique to the application by using PPL$UNIOUE_
NAME. If you specified this value to give the
global section a nonunique name when you called
PPL$CREA TE_SHARED_MEMORY, you must also
specify it when you call PPL$FLUSH_SHARED_
MEMORY.

PPL$FLUSH_SHARED_MEMORY writes (flushes) to disk the contents of a
global section that was created using the PPL$CREATE_SHARED_MEMORY
routine. (A VMS global section is a data structure or shareable image section
potentially available to all processes in the system.) If you specified a file
name in the call to PPL$CREATE_SHARED_MEMORY, the shared memory
is written to that file when you call PPL$FLUSH_SHARED_MEMORY.
If you did not specify a file name in the call PPL$CREATE_SHARED_
MEMORY, a default file specification (with a default file type of .DAT) is
obtained from SYS$SCRATCH:. The shared memory name is used as a
related file name. Only pages that have been modified are flushed to disk.

PPL$_NORMAL

PPL$_INV ARG

PPL$_INVDESC

PPL$_NOSECEX

PPL$_WRONUMARG

Routine successfully completed.

Invalid argument.

Invalid descriptor.

The section that you specified does not exist.

Wrong number of arguments.

Any error returned by the system service $UPDSEC.

PPL$GET_INDEX

PPL$GET_INDEX Get Index of a Participant

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

The Get Index of a Participant routine returns an index that is unique within
the application. A value of zero signifies the "top" or "main" participant.
The other participants in the application always return an index greater
than zero.

PPL$GET_INDEX participant-index

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

participant-index
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

The index of the caller within this application. The participant-index
argument is the address of an unsigned longword that contains this index.
This index is assigned at process creation time and is unique for each
partidpant.

PPL$GET_JNDEX returns the unique index of the calling participant within
the application. The index of the "top" or "main" execution thread is always
zero. The index of each subordinate is assigned in the order in which it
joins the application (by a call to PPL$1NITIALIZE). For example, the first
subordinate joining the application is assigned an index of 1, the second 2,
and so on.

PPL$_NORMAL Normal successful completion.

PPL-39

PPL$1NCREMENT_SEMAPHORE

PPL$1NCREMENT_SEMAPHORE Increment a
Semaphore

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

PPL-40

The Increment a Semaphore routine increments the value of the
semaphore by 1 , analogous to the signal protocol. If any other
participants are blocked on a call to PPL$DECREMENT_SEMAPHORE
for this semaphore, one is removed from the queue and awakened. The
semaphore must have been created by PPL$CREA TE_SEMAPHORE.

PPL$1NCREMENT_SEMAPHORE semaphore-id

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

semaphore-id
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Identifier of the semaphore. The semaphore-id argument is the address of an
unsigned longword containing the identifier.

Semaphore-id is returned by PPL$CREATE_SEMAPHORE.

PPL$INCREMENT_SEMAPHORE increments the value of the semaphore
by l, analogous to the signal protocol. In addition, if any participants are
blocked on a call to PPL$DECREMENT_SEMAPHORE for this semaphore,
one is removed from the queue and awakened.

PPL$_NORMAL

PPL$_1NVELEID

PPL$_SEMALRMAX

PPL$_ WRONUMARG

Routine successfully completed.

Invalid element identifier.

The semaphore is already at its maximum value.

Wrong number of arguments.

PPL$1NDEX_ TQ_PID

PPL$1NDEX_TQ_PID Convert Participant Index
to VMS PIO

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

The Convert Participant Index to VMS PID routine returns the VMS PID of
the process or subprocess associated with the specified index.

PPL$1NDEX_ TO_PID participant-index, pid

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

participant-index
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Index of the caller within this application. The participant-index argument
is the address of an unsigned longword that contains this index. Participant­
index is assigned at process creation time and is unique for each participant.

pid
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

PIO (process identifier) of the VMS process associated with the specified
participant-index. The pid argument is the address of an unsigned longword
that receives this PIO.

PPL$INDEX_TQ_pIO returns the VMS PIO of the process or subprocess
associated with the specified participant index.

PPL$_NQRMAL
PPL$_NQ_SUCH_PARTY

Normal successful completion.

The participant specified does not exist in this
application.

PPL-41

PPL$1NITIALIZE

PPL$1NITIALIZE Initialize the PPL$ Facility

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

PPL-42

The Initialize the PPL$ Facility routine informs the PPL$ facility that the
caller is forming or joining the parallel application. Calling this routine is
optional, because PPL$ initializes itself at the first call to a PPL$ routine.

PPL$1 NITIALIZE [size]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

size
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Number of pages that PPL$ allocates for its internal data structures. The
size argument is the address of an unsigned longword containing this size
value. By default, PPL$ allocates PPL$K_INIT_SIZE pages (available to user
programs as a link-time constant) for its internal data structures. This initial
allocation provided by PPL$ accommodates a minimum of 32 processes, 8
barriers, 8 semaphores, 4 events, 4 spin locks, and 16 global sections. (These
numbers represent a rough guideline for combinations of PPL$ components.
If you have less than 32 processes, for example, you can have more than 8
barriers, and so forth.) You can increase this allocation by specifying another
value, as in the following example:

status = PPL$INITIALIZE (3*PPL$K_INIT_SIZE)

The size argument is ignored in all participants other than the "top"
participant, because at the time any subordinate initializes, the size of the
PPL$ reserved area has already been established for that application.

PPL$INITIALIZE informs the PPL$ facility that the caller is forming or
joining the parallel application. This routine initializes internal data structures
to provide the caller with all the PPL$ features. You are not generally
required to call this routine because it is performed automatically when you
call any one of the PPL$ routines listed in the following table. Note that
PPL$ does not automatically initialize when you call routines that require an
already created element. This keeps the overhead of these routines - barrier,
semaphore, event, and spin lock requests - at a minimum.

CONDITION
VALUES
RETURNED

PPL$1NITIALIZE

The routines that perform automatic initialization when first called are as
follows:

PPL$CREATE_BARRIER

PPL$CREA TE_EVENT

PPL$CREA TE_SEMAPHORE

PPL$CREATE_SHARED_MEMORY

PPL$CREATE_SPIN_LQCK

PPL$CREATE_ VM_ZONE

PPL$FIND_SYNCH _ELEMENLID

PPL$GET _INDEX

PPL$1NDEX_ TQ_PID

PPL$PID_ TO_INDEX

PPL$SPAWN

PPL$ST.OP

PPL$UNIOUE_NAME

The size argument determines the amount of space allocated for the
supporting PPL$ data structures. If your application terminates on a call
to a PPL$ routine with the fatal error PPL$_JNSVIRMEM, you do not have
enough space for the PPL$ routines to perform the requested operation. This
lack of space can occur because of the following:

1 Your system quotas are not sufficient for the amount of memory requested
by the application.

2 You have requested PPL$ routines for which the default allocation cannot
accommodate the necessary data structures. In this case, you should
carefully consider your use of PPL$ routines. You can increase the PPL$
allocation of space for internal data structures by specifying (t. larger value
for the size parameter.

PPL$_NQRMAL

PPL$_1NSVIRMEM

PPL$_ WRONUMARG

Normal successful completion.

Insufficient virtual memory available.

Wrong number of arguments.

Any condition value returned by SYS$CRMPSC.

PPL-43

PPL$PID_ TQ_INDEX

PPL$PID_TQ_INDEX Convert VMS PIO to
Participant Index

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

PPL-44

The Convert VMS PIO to Participant Index routine returns the PPL$­
defined participant index of the process or subprocess associated with the
specified VMS PIO.

PPL$PID_ TO_INDEX pid, participant-index

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

pid
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

PIO (process identifier) of the VMS process or subprocess whose participant­
index is to be obtained. The pid argument is the address of an unsigned
longword that contains this PIO.

participant-index
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Participant index of the process or subprocess associated with the specified
VMS PIO. The participant-index argument is the address of an unsigned
longword that receives this index. Participant-index is assigned by the PPL$
facility at process creation time and is unique for each participant.

PPL$PIO_ TO_INDEX returns the participant index of the VMS process
specified by the input VMS PIO.

PPL$_NORMAL
PPL$_NO_SUCH_PARTY

Normal successful completion.

The participant specified does not exist in this
application.

PPL$READ_BARRI ER

PPL$READ_BARRIER Read a Barrier

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

The Read a Barrier routine returns the specified barrier's current quorum
and the number of participants currently waiting (blocked) at the barrier.
The barrier must have been created by PPL$CREA TE_BARRIER.

PPL$READ_BARRIER barrier-id, quorum, waiters

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

barrier-id
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Identifier of the specified event. The barrier-id argument is the address of an
unsigned longword containing the identifier.

Barrier-id is returned by PPL$CREATE_BARRIER.

quorum
VMS usage: word_signed
type: word (signed)
access: write only
mechanism: by reference

Number of participants required to terminate a wait for this barrier. The
quorum argument is the address of a signed word containing the quorum
value. This argument returns the current quorum value that you set with
PPL$CREATE_BARRIER, PPL$SET_QUORUM, or PPL$ADJUST_QUORUM.

waiters
VMS usage: word_signed
type: word (signed)
access: write only
mechanism: by reference

Number of participants currently waiting at this barrier. The waiters
argument is the address of a signed word containing the number of waiting
participants.

PPL$READ_BARRIER returns the specified barrier's current quorum and the
number of participants currenty waiting (blocked) at the barrier. (Note that
calls by other participants to the PPL$ barrier routines may affect the values
returned by this routine. In effect, the values you receive for this routine may
be outdated before you receive them.)

PPL-45

PPL$READ_BARRI ER

CONDITION
VALUES
RETURNED

PPL-46

PPL$_NORMAL

PPL$_1NV ARG

PPL$_1NVELETYP

PPL$_NOSUCHELE

PPL$_ WRONUMARG

Routine successfully completed.

Invalid argument.

Invalid element type for specified operation.

The element you specified does not exist.

Wrong number of arguments.

PPL$READ_EVENT

PPL$READ_EVENT Read an Event State

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

The Read ari Event State routine returns the current state of the specified
event. The state can be occurred or noLoccurred.

PPL$READ_EVENT event-id, occurred

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

event-id
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Identifier of the specified event. The event-id argument is the address of an
unsigned longword containing the identifier.

Event-id is returned by PPL$CREATE_EVENT.

occurred
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Receives the state of the specified event. The occurred argument is the
address of an unsigned longword that receives the event state. This argument
returns a value of true if the current state of the event is occurred, and returns
false if the current state of the event is not _occurred.

PPL$READ_EVENT returns the current state of the specified event. The state
can be occurred or not_occurred. (Note that calls by other participants to the
PPL$ event routines may affect the state returned by this routine. In effect,
the state returned by this routine may be outdated before you receive it.)

PPL$_NQRMAL

PPL$_1NV ARG

PPL$_INVELETYP

PPL$_NQSUCHELE

PPL$_WRONUMARG

Routine successfully completed.

Invalid argument.

Invalid element type for specified operation.

The element you specified does not exist.

Wrong number of arguments.

PPL-47

PPL$READ_SEMAPHORE

PPL$READ_SEMAPHORE Read Semaphore
Values

FORMAT

RETURNS

ARGUMENTS

PPL-48

The Read Semaphore Values routine returns the current or maximum
values, or both, of the specified counting semaphore. The semaphore
must have been created by PPL$CREA TE_SEMAPHORE.

PPL$READ_SEMAPHORE
semaphore-id [,semaphore-value}
[,semaphore-maximum]

VMS usage: concLvalue
type: longword (unsigned)
access: write only
mechanism: by value

semaphore-id
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Identifier of the specified semaphore. The semaphore-id argument is the
address of an unsigned longword containing the identifier.

Semaphore-id is returned by PPL$CREATE_SEMAPHORE.

semaphore-value
VMS usage: word_signed
type: word (signed)
access: write only
mechanism: by reference

Value of the semaphore. The semaphore-value argument is the address
of a signed word containing the current value of the semaphore specified
by semaphore-id. A nonnegative value indicates the number of available
resources associated with this semaphore. One or more participants may be
blocked by the semaphore when the value is 0.

semaphore-maximum
VMS usage: word_signed
type: word (signed)
access: write only
mechanism: by reference

Maximum value of the semaphore. The semaphore-maximum argument is
the address of an unsigned longword containing the maximum value of the
semaphore specified by semaphore-id.

DESCRIPTION

CONDITION
VALUES
RETURNED

PPL$READ_SEMAPHORE

PPL$READ_SEMAPHORE returns the current or maximum values, or both,
of the specified semaphore. If no values are requested, a status code of
PPL$_NORMAL is returned. (Note that calls by other participants to the
PPL$ semaphore routines may affect the values returned by this routine. In
effect, the values returned by this routine may be outdated before you receive
them.)

PPL$_NORMAL

PPL$_1NV ARG

PPL$_1NVELETYP

PPL$_NOSUCHELE

PPL$_ WRONUMARG

Routine successfully completed.

Invalid argument.

Invalid element type for specified operation.

The element you specified does not exist.

Wrong number of arguments.

PPL-49

PPL$RELEASE_SPIN_LOCK

PPL$RELEASE_SPIN_LQCK Release Spin Lock

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

PPL-50

The Release Spin Lock routine relinquishes the spin lock by clearing the bit
representing the lock. The lock must have been created by
PPL$CREA TE_SPIN_LQCK.

PPL$RELEASE_SPIN_LOCK lock-id

VMS usage: cond_value
type: longword (unsigned)
access: write. only
mechanism: by value

lock-id
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Identifier of the specified lock. The lock-id argument is the address of an
unsigned longword containing the lock identifier.

Lock-id is returned by PPL$CREATE_SPIN_LOCK.

PPL$RELEASE_SPIN _LOCK relinquishes the spin lock by clearing the bit
representing the lock.

If there are other participants waiting in a spin loop to obtain this lock, this
routine allows one of the waiting participants in the spin loop to get the lock.

This form of lock is recommended for use only in a· dedicated parallel
processing environment, and only when fairness is not important. A spin
lock is not recommended for use in a general time-sharing environment
because the spin consumes CPU resources.

PPL$_NORMAL

PPL$_1NVELEID

PPL$_LOCNOTEST

PPL$_NOSUCHELE

PPL$_ WRONUMARG

Routine successfully completed.

Invalid element identifier for requested operation.

The lock was not established.

An element with the specified identifier does not
exist.

Wrong number of arguments.

PPL$SEIZE_SPIN_LOCK

PPL$SEIZE_SPIN_LQCK Seize Spin Lock

FORMAT
..

RETURNS

ARGUMENTS

DESCRIPTION

The Seize Spin Lock routine retrieves a simple (spin) lock by waiting in
a spin loop until the lock is free. The lock must have been created by
PPL$CREA TE_SPIN_LOCK.

PPL$SEIZE_SPIN_LOCK lock-id [,flags}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

lock-id
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Identifier of the lock to be seized. The lock-id argument is the address of an
unsigned longword containing the lock identifier.

Lock-id is returned by PPL$CREATE_SPIN_LOCK.

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Bit mask specifying options for seizing the lock. The flags argument is a
longword bit mask containing the flag. The valid value for flags is as follows:

PPL$M_NQN_BLOCKING The lock is seized if and only if it can be done
without causing the caller to wait (spin). (This can
be useful in situations where the cost of waiting
for a resource is not desirable, or if the caller
merely intends to request immediat~ access to any
one of a number of resources.)

PPL$SEIZE_SPIN _LOCK acquires a spin lock by waiting in a spin loop
until the lock is free. If you specify PPL$M_NQN _BLOCKING for the flags
argument, the caller does not wait in the spin loop if the lock cannot be
immediately obtained. In that case the status code PPL$_NOT_A VAILABLE
is returned.

You have exclusive access to the spin lock after you acquire it by calling this
routine. Call PPL$RELEASE_SPIN_LOCK to free the lock when you no
longer need it.

PPL-51

PPL$SEIZE_SPIN_LOCK

CONDITION
VALUES
RETURNED

PPL-52

This form of lock is recommended for use only in a dedicated parallel
processing environment, and only when fairness is not important. A spin
lock is not recommended for use in a general time-sharing environment
because the spin consumes CPU resources.

PPL$_NQRMAL

PPL$_1NVELETYP

PPL$_NQSUCHLOC

PPL$_NQT_AVAILABLE

PPL$_ WRONUMARG

Normal successful completion.

Invalid element type for requested operation.

A lock with the specified ID does not exist.

Operation cannot be performed immediately;
therefore it is not performed.

Wrong number of arguments.

PPL$SET_QUORUM

PPL$SET_QUORUM Set Barrier Quorum

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

The Set Barrier Quorum routine dynamically sets a value for the specified
barrier's quorum. This allows you to easily reuse a barrier for different
work items with various numbers of participants. The barrier must have
been created by PPL$CREATE_BARRIER.

PPL$SET_QUORUM barrier-id, quorum

VMS usage: cond_value
type: longword {unsigned)
access: write only
mechanism: by value

barrier-id
VMS usage: identifier
type: longword {unsigned)
access: read only
mechanism: by reference

Identifier of the barrier. The barrier-id argument is the address of the barrier
identifier.

Barrier-id is returned by PPL$CREATE_BARRIER.

quorum
VMS usage: word_signed
type: word {signed)
access: read only
mechanism: by reference

The number of participants required to terminate an active wait for this
barrier. The quorum argument is the address of a signed word containing
the quorum number. For example, a quorum value of 3 indicates that the
first two callers of PPL$WAIT_AT_BARRIER specifying this barrier-id are
blocked until a third participant calls PPL$WAIT_AT_BARRIER. At that point,
all three are released for further processing. This value must be positive.

PPL$SET_QUORUM allows the user to dynamically set the value of a
barrier's quorum. A barrier's quorum is the number of participants required
to call PPL$WAIT_AT_BARRIER (and thereby be blocked) before all blocked
participants are unblocked to pass the barrier and continue processing.

Note that PPL$SET_QUORUM must be called while no participants have
called PPL$WAIT_AT_BARRIER (in other words, while there are no
participants waiting at the barrier).

PPL-53

PPL$SET_QUORUM

CONDITION
VALUES
RETURNED

PPL-54

PPL$_NORMAL

PPL$_1NV ARG

PPL$_WRONUMARG

Routine successfully completed.

Invalid argument(s).

Wrong number of arguments.

PPL$SPAWN

PPL$SPAWN Initiate Parallel Execution

FORMAT

RETURNS

ARGUMENTS

The Initiate Parallel Execution routine executes code in parallel with the
caller by creating one or more subordinate threads of execution (VMS
subprocesses).

PPL$SPAWN copies [,program-name} [,children-ids}
[,flags} [,std-input-file} {,std-output-file}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

copies
VMS usage: longword_unsigned
type: longword (unsigned)
access: modify
mechanism: by reference

Number of subordinates of the specified program to be executed concurrently.
The copies argument is the address of an unsigned longword containing this
number. Its value must be positive. On output, this parameter contains the
number of subordinates actually created. This value differs from the requested
number if a spawn attempt fails, for example, because of insufficient quotas.

program-name
VMS usage: logicaLname
type: character string
access: read only
mechanism: by descriptor, fixed-length

Name of the program (image) to be invoked. The program-name argument
is the address of a descriptor pointing to a character string containing the
file specification of the image. Program-name must have no more than 63
characters. If program-name contains a logical name, the equivalence name
must be in a logical name table that the created subordinate can access. If
you do not specify a program-name, the default is to execute in parallel the
image being run by the caller.

children-ids
VMS usage: vector_longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Identifiers of each of the newly created subordinates. The children-ids
argument is the address of a vector of longwords into which is written
the index within the executing application of each subordinate successfully
initiated by this call.

PPL-55

PPL$SPAWN

DESCRIPTION

PPL-56

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Bit mask specifying options for creating processes. The flags argument is a
longword bit mask containing the flag. Valid values for flags are as follows:

PPL$M_INIT_SYNCH

PPL$M_NQDEBUG

std-input-file
VMS usage: logical-name

The caller of this routine and all subordinates it
creates are synchronized to continue processing
only after each and every subordinate created
by this routine has called PPL$1NITIALIZE. (See
the Description section for more information.)
Note that this flag cannot be reliably used if
other participants in the application also create
subordinates using $CREPRC or LIB$SPAWN.
Also, note that a failure of the created subordinate
after it successfully starts but before its call to
PPL$1NITIALIZE can cause difficulties with the use
of this flag value.

Prevents the startup of the VMS Debugger, even if
the debugger was linked with the image.

type: character string
access: read only
mechanism: by descriptor

File name of the file to serve as the standard input file in the created
subordinates. The std-input-file argument is the address of a descriptor
pointing to a character string containing the file name. If you do not specify
a value for this argument, the subordinate inherits the creating participant's
standard input file (SYS$INPUT).

std-output-file
VMS usage: logical-name
type: character string
access: read only
mechanism: by descriptor

File name of the file to serve as the standard output file in the created
subordinates. The std-output-file argument is the address of a descriptor
pointing to a character string containing the file name. If you do not specify
a value for this argument, the subordinate inherits the creating participant's
standard output file (SYS$0UTPUT).

PPL$SP AWN executes code in parallel with the caller by creating one or more
subordinate threads of execution (VMS subprocesses). This routine initiates
the parallel execution of the specified code on the same node as the caller.

CONDITION
VALUES
RETURNED

PPL$SPAWN

By default, the parent (caller) immediately continues processing in its own
context, and each child (subordinate) proceeds immediately following its
creation. (Note that here ''immediately" means "subject only to systemwide
scheduling constraints.") The PPL$M_INIT_SYNCH flag arranges that
processing in the parent and the subordinates only continues when each
and every child created by this operation has called PPL$INITIALIZE.
(Note that this initialization is performed automatically by PPL$ at the
first call to a PPL$ routine; see PPL$INITIALIZE for more information.)
This synchronization is achieved by blocking the parent in the call to
PPL$SP AWN, and blocking each child in its PPL$1NITIALIZE call, until
the last child executes this call. Then all participants are released for further
execution.

The subordinates created by this call execute the code you specify in the
program-name argument. If you do not specify an image name in this
argument, the image being executed by the current process is used in the
creation of the subordinate.

This routine creates one or more VMS subprocesses, each of which is related
to its creator in a tree-like fashion. Each has the same UIC as the parent.
Each receives a portion of the creator's resource quotas. If subprocesses exist
when their creator is deleted, they are automatically deleted, and resources
are reclaimed according to VMS-defined semantics. In addition, this routine
arranges that process logical names are inherited from parent to (each)
subordinate.

PPL$_NORMAL

PPL$_1NVNUMPRO

PPL$_ WRONUMARG

Routine successfully completed.

Invalid number of processes; cannot be less than
one.

Wrong number of arguments.

Any error returned by LIB$SPAWN.

PPL-57

PPL$STOP

PPL$STOP Stop a Participant

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

PPL-58

The Stop a Participant routine terminates the execution of the specified
participant in this application.

PPL$STOP participant-index

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

participant-index
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

PPL$-defined index of the participant to be terminated. The participant­
index argument is the address of an unsigned longword containing the
index.

Participant-index is obtained by a call to PPL$SP AWN or PPL$GET_INDEX.

PPL$STOP terminates the executfon of the specified participant in this
application. This will also result in the termination of all subordinates of the
specified participant.

Call this routine only if you want to stop a participant before it completes its
execution.

PPL$_NORMAL Normal successful completion.

Any error returned by $FORCEX.

PPL$TERM I NA TE

PPL$TERM I NA TE Abort ·PPL$ Participation

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

CONDITION
VALUES
RETURNED

The Abort PPL$ Participation routine ends the caller's participation in the
application "prematurely" - that is, at some time before the caller actually
completes its execution.

PPL$TERMINATE [flags]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Bit mask specifying options for terminating access to PPL$. The flags
argument is the address of a longword bit mask containing the flag. The
flags argument accepts the following value:

PPL$M _STOP _CHILDREN Terminates all subordinates created by the caller
in addition to terminating the caller itself. (PPL$
makes no effort to delete subordinates at process
termination in the absence of a call to this routine
specifying this flag value, but note that a VMS
subprocess is deleted when the parent terminates.)

The PPL$TERMINATE routine informs the PPL$ facility that the caller is no
longer part of the parallel application, and will make no further requests for
PPL$ services.

Normally, you need not call this routine. PPL$ automatically performs
cleanup operations when the participant completes its execution.

PPL$_NORMAL Normal successful completion.

Any error returned by $FORCEX, $DELPRC, or LIB$FREE_ VM_p AGE.

PPL-59

PPL$TRIGGER_EVENT

PPL$TRIGGER_EVENT Trigger an Event

FORMAT

RETURNS

ARGUMENTS

PPL-60

The Trigger an Event routine causes the event's state to become occurred.
You control whether all pending actions for the event are processed (made
to occur), or just one is processed. A pending action can be an AST, a
signal (condition), or a wakeup.

PPL$TRIGGER_EVENT event-id {,event-param} {,flags}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

event-id
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Identifier of the event. The event-id argument is the address of an unsigned
longword containing the identifier.

Event-id is returned by PPL$CREATE_EVENT.

event-pa ram
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

An arbitrary value to be passed to all requests processed for the event as a
result of the trigger, or, if there are no queued event notification requests for
this event, to the first caller to enable event notification. The event-param
argument is the address of ari unsigned longword containing this value.

If a participant enables delivery of an AST by calling PPL$ENABLE-EVENT_
AST, this argument appears in the second longword of the vector specified
by the astprm argument. If a participant enables delivery of a signal by
calling PPL$ENABLE-EVENT_SJGNAL, this argument appears as the third
longword in the signal vector when the condition is raised.

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Specifies options for triggering an event. The flags argument is the value of a
longword bit mask containing the flag. The valid value for flags is as follows:

DESCRIPTION

CONDITION
VALUES
RETURNED

PPL$M _NOTIFY _ONE

PPL$TRIGGER_EVENT

Processes exactly one enabled event notification.
By default, all pending actions are processed when
the event state becomes occurred.

PPL$TRIGGER_EVENT sets the event state to occurred and processes the
queue of requested operations. (The caller controls whether all pending
actions for the event are processed, or just one action is processed, by use
of the PPL$M_NQTIFY_ONE flag.) A pending action can be an AST, a
signal (condition), or a wakeup, as established by corresponding calls to
PPL$ENABLE_EVENT_AST, PPL$ENABLE_EVENT_SIGNAL, and/or
PPL$AWAIT_EVENT.

PPL$TRIGGER-EVENT initiates the appropriate action, which is finally
performed in the context of the participant that enabled the notification.
If no participant has enabled notification of the event, the event state
remains occurred. Otherwise, the notification resets the state to not_occurred.
PPL$TRIGGER_EVENT performs these steps as one atomic action; in other
words, once this routine begins executing, it completes without interruption
from other event operations.

PPL$_NORMAL

PPLL$_1NVELEID

PPL$_INSVIRMEM

PPL$_1NV ARG

PPL$_ WRONUMARG

Routine successfully completed.

Invalid element identifier.

Insufficient virtual memory available.

Invalid argument(s).

Wrong number of arguments.

PPL-61

PPL$UNIQUE_NAME

PPL$UNIQUE_NAME Produce a Unique Name

FORMAT

RETURNS

ARGUMENTS

PPL-62

The Produce a Unique Name routine returns an application-unique name.
A system-unique string specific to the calling application is appended
to the string specified by the user. The resulting name is identical for
all participants in the application, but different from those for all other
applications on that system.

PPL$UNIQUE_NAME name-string ,resultant-string
[,resultant-length]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

name-string
VMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

The user-supplied string for the unique name. The name-string argument is
the address of a descriptor pointing to a character string containing this name.

resultant-string
VMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Resulting unique name. The resultant-string argument is the address of a
descriptor pointing to a character string containing this name. Resultant­
string consists of the name-string string and an appended system-unique
string.

resultant-length
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the unique name returned as the resultant-string. The resultant­
length argument is the address of an unsigned word containing this length.

DESCRIPTION

CONDITION
VALUES
RETURNED

PPL$UNIQUE_NAME

PPL$UNIQUE_NAME returns an application-unique name that consists of a
system-unique string appended to a string you specify. The resulting unique
name is consistent within the application tree but different from any other
name within another application tree. This means that for a given input
string, the resultant name is identical when requested by any participant.

This unique name is useful, for example, when an application creates a
scratch file that must not interfere with other users who are also running their
own copy of the same application.

PPL$_NORMAL

PPL$_1NV ARG

PPL$_1NVDESC

PPL$_ WRONUMARG

Normal successful completion.

Invalid argument.

Invalid descriptor.

Wrong number of arguments.

PPL-63

PPL$WAIT_AT_BARRI ER

PPL$WAIT_AT_BARRI ER Synchronize at a
Barrier

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

PPL-64

The Synchronize at a Barrier routine causes the caller to wait at the
specified barrier. The barrier is in effect from the time the first participant
calls PPL$WAIT_AT_BARRIER until each member of the quorum has
issued the call. At that time, the wait concludes and all are released for
further execution.

PPL$WAIT_AT_BARRIER barrier-id

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

barrier-id
VMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Identifier of the barrier. The barrier-id argument is the address of an
unsigned longword containing the barrier identifier.

Barrier-id is returned by PPL$CREATE_BARRIER.

PPL$WAIL_AT_BARRIER causes the caller to wait at the specified barrier
until the quorum required for conclusion of the barrier wait arrives at the
synchronization point. As each participant calls this routine, it is blocked and
awaits the arrival of the remaining unblocked participants. When the final
unblocked participant calls PPL$WAIT__AT_BARRIER, the wait concludes and
all are freed to continue their execution. The caller is blocked by the PPL$
facility's call to the system service $HIBER.

The number of participants required to constitute a quorum can be
defined by calls to the PPL$CREATE_BARRIER, PPL$SET_QUORUM,
and PPL$ADJUST_QUORUM routines.

Note that a call to PPL$ADJUST_QUORUM can result in conclusion of a
barrier wait.

CONDITION
VALUES
RETURNED

PPL$_NQRMAL

PPL$_A TTUSETWO

PPL$_1NVELEID

PPL$_1NVELETYP

PPL$_ WRONUMARG

PPL$WAIT_AT_BARRI ER

Routine successfully completed.

Attempted use of two barriers simultaneously.
Logic error in user's program that results in
deadlock.

Invalid element identifier.

Invalid element type for specified operation.

Wrong number of arguments.

PPL-65

Index

A
Ada

special consid(3rations • 5-4
Application

characteristics of parallel• 1-2
AST

disabling • 5-4
enabling an event• 4-5

B
Barrier synchronization

advantages and disadvantages• 5-1
PPL$ routines for• 4-1 to 4-4

BLISS
example in • 6-1

Blocked
definition of• 1-2

c
Critical section

definition of• 1-2

D
Detached process

definition of• 1-1

E
Events

predefined• 4-7
Event synchronization

advantages and disadvantages • 5-1
PPL$ routines for• 4-4 to 4-7

F
FORTRAN

example in• 6-6
special considerations• 5-4

G
Global section • 3-1

M
Master/ slave software model • 1-3

characteristics of• 1-3
queuing model • 1-3
self-scheduling model • 1-3
true model • 1-3

Multiprocessing software model
master/ slave• 1-3
pipelining • 1-4
work queue processing • 1-4 to 1-5

N
Naming

application-wide• 2-4
Naming PPL$ components• 5-3

p
Parallel processing • 1-1
Participant

definition of• 1-2
Pipelining software model• 1-4
PPL$ADJUST_QUORUM • 4-4, PPL-3
PPL$AWAIT_EVENT•4-6, PPL-5
PPL$CREA TE_BARRIER • 4-2, PPL-6
PPL$CREATE_EVENT•4-4,PPL-8

lndex-1

Index

PPL$CREA TE _SEMAPHORE• 4-9, PPL-12
PPL$CREATE_SHARED_MEMORY • 3-1, PPL-15
PPL$CREATE_SPIN_LOCK • 4-11, PPL-18
PPL$CREA TE_ VM_ZONE • 3-3, PPL-20
PPL$DECREMENT _SEMAPHORE• 4-9, PPL-25
PPL$DELETE_SHARED_MEMORY • 3-3, PPL-27
PPL$ENABLE_EVENT_AST•4-5,PPL-29
PPL$ENABLE_EVENT_SIGNAL • 2-3, 4-6,

PPL-32
PPL$FIND_SYNCH_ELEMENT _ID• 4-1, PPL-35
PPL$FLUSH_SHARED_MEMORY • 3-3, PPL-37
PPL$GET_INDEX • 2-3, PPL-39
PPL$1NCREMENT_SEMAPHORE • 4-10, PPL-40
PPL$1NDEX_ TO_PID • 2-3, PPL-41
PPL$1NITIALIZE • 2-1, PPL-42
PPL$PID_ TQ_INDEX • 2-3, PPL-44
PPL$READ_BARRIER • 4-2, PPL-45
PPL$READ_EVENT•4-7,PPL-47
PPL$READ_SEMAPHORE. 4-10 I PPL-48
PPL$RELEASE_SPIN_LOCK • 4-11, PPL-50
PPL$SEIZE _SPIN _LOCK• 4-11, PPL-51
PPL$SET _QUORUM• 4-3, PPL-53
PPL$SPA\NN•2-2,PPL-55
PPL$STOP•2-3,PPL-58
PPL$TERMINATE • 2-2, PPL-59
PPL$TRIGGER_EVENT • 4-6, PPL-60
PPL$UNIOUE_NAME • 2-4, PPL-62
PPL$\NAIT_AT_BARRIER•4-3, PPL-64
Process

definition of• 1-1

Q
Quota

AST limit• 1-5
Enqueue• 1-5
Global section • 1-5
subprocess• 1-5

s
Semaphore synchronization

advantages and disadvantages• 5-2
PPL$ routines for• 4-8 to 4-10

Shared memory• 3-1 to 3-3
creating • 3-1
definition of• 1-2

lndex-2

Shared memory (cont'd.)

deleting• 3-3
flushing to disk• 3-3

Signal
enabling an event• 4-6

Spin lock synchronization
advantages and disadvantages• 5-2
PPL$ routines for• 4-10 to 4-11

Subordinate
creation of• 2-2
definition of• 1-1
deletion of• 2-3
retrieving information about• 2-3

Subprocess
definition of• 1-1

Synchronization elements • 4-1
comparing use of• 5-1
retrieving information about• 4-1

SYS$HIBER
use of• 5-3

SYSGEN parameter
global section • 1-5

T
Terminating access to PPL$• 2-2

v
Virtual memory zone

creating • 3-3

w
\Nork queue processing software model•

1-4 to 1-5

Reader's Comments VMS RTL Parallel
Processing (PPL$) Manual

AA-LA 7 4A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more /less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

--;;~t;~~:d Here ~d Ta~ ------------------Tlllr-------;~~~~---
in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 ••••• 11.11 •••• 11 •••• 1.11.1 •• 1.1 •• 1 •• 1.1 ••• 1.11 •• 1

-- Do Not Tear - Fold Here --

i
I
I
I
I
I

