
VAXELN Host System Guide
Order Number: AA-JG87B-TE

This manual explains how to use the V AXELN host system to develop
V AXELN applications.

Revision/Update Information: This manual supersedes VAXELN Host
System Guide, AA-JG87 A-TE.

Operating System and Version: V AX/VMS, Version 4.0 or later

Software Version:

digital equipment corporation
maynard, massachusetts

VAXELN, Version 3.0

First Printing, December 1986
Revised, October 1987

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip­
ment that is not supplied by Digital Equipment Corporation or its affiliated
companies.

Copyright © 1986, 1987 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The READER'S COMMENTS form on the last page of this document requests
the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC MicroVAX VAX
DECmate MicroVMS VAX DEC/CMS
DECnet P/OS VAX DEC/MMS
DECsystem-lO PDP VAX Rdb/ELN
DECSYSTEM-20 PDT VAX Rdb/VMS
DECUS Professional VAXBI
DECwriter Q-bus VAXcluster
DEQNA Q22-bus VAXELN
DEUNA Rainbow VAXstation
DIBOL RSTS VMS
EduSystem RSX VT
lAS RT Work Processor
MASSBUS UNIBUS ~DrnDIl~D ™

ML-S718

This document was prepared using VAX DOCUMENT, Version 1.0.

Contents

PREFACE xiii

CHAPTER 1 HOST SYSTEM OVERVIEW 1-1

1 .1 HARDWARE 1-1

1.2 SOFTWARE 1-2

1.3 DEVELOPING A VAXELN APPLICATION 1-2

CHAPTER 2 PROGRAM DEVELOPMENT 2-1

2.1

2.2

COMMANDS FOR PROGRAM DEVELOPMENT

COMPILING PROGRAMS
2.2.1
2.2.2
2.2.3

EPASCAL Command
CC Command
FORTRAN Command

2-1

2-3
2-4
2-6
2-7

2.3 LINKING OBJECT MODULES 2-8
2.3.1 LINK Command 2-9
2.3.2 Using Qualifiers to Control the Linker 2-9

2.3.2.1 Generating Debugger Information (jDEBUG) • 2-10
2.3.2.2 Linking Libraries (jLlBRARY) • 2-11
2.3.2.3 Linking Library Modules and Images (jINCLUDE) • 2-11
2.3.2.4 Creating a Shareable Image (jSHAREABLE) • 2-11
2.3.2.5 Suppressing the Search Through the Default System

Libraries (jNOSYSLlB) • 2-13
2.3.2.6 Suppressing the Search Through the Default Shareable

Image Library (jNOSYSSHR) • 2-13
2.3.3 Using VAXELN Libraries 2-13
2.3.4 Selecting the Default Double-Precision Type 2-16

iii

2.4 MAINTAINING LIBRARIES 2-17
2.4.1 LIBRARY Command 2-17
2.4.2 Using Qualifiers to Control the Librarian 2-18

2.4.2.1 Creating a New Library (jCREATE) • 2-18
2.4.2.2 Inserting or Replacing Modules in an Existing Library

(jINSERT and /REPLACE) • 2-19
2.4.2.3 Listing a Library's Contents (JUST) • 2-19
2.4.2.4 Extracting Modules from a Library (JEXTRACT) • 2-19
2.4.2.5 Creating a Shareable Image Library (jSHARE) • 2-20
2.4.2.6 Deleting Modules from a Library (JDELETE) • 2-20
2.4.2.7 Compressing a Library (jCOMPRESS) • 2-20

CHAPTER 3 SYSTEM DEVELOPMENT 3-1

3.1

3.2

3.3

3.4

iv

EBUILD COMMAND

USING QUALIFIERS TO CONTROL THE SYSTEM BUILDER
3.2.1 Generating a System Map (/MAP, /FULL, /BRIEF)
3.2.2

3.2.3

3.2.4

Generating a System Image Without Entering EDIT
Mode (fNOEDIT)
Suppressing the Display of System I mage Size
(/NOLOG)
Specifying a Name for the System Image File
(fSYSTEM)

USING YOUR OWN VERSIONS OF VAXELN FILES

EDITING SYSTEM BUILDER MENUS
3.4.1 Main Menu
3.4.2 Editing the Select Target Processor Menu
3.4.3 Editing the System Characteristics Menu
3.4.4 Editing the Network Node Characteristics Menu
3.4.5 Editing the Program Description Menu
3.4.6 Editing the Device Description Menu
3.4.7 Editing the Terminal Description Menu
3.4.8 Editing the Console Characteristics Menu
3.4.9 Editing the Error Log Characteristics Menu

3-1

3-2
3-3

3-4

3-4

3-4

3-5

3-5
3-7
3-8
3-9

3-16
3-19
3-23
3-32
3-35
3-36

PTER 4 BOOTING AND DOWN-LINE LOADING 4-1

4.1 BOOTING SYSTEMS FROM DISKS 4-1

4.2 DOWN-LINE LOADING 4-4
4.2.1 Preliminary Steps 4-5

4.2.2

4.2.1.1 Installing Communication Hardware on the Target
Machine • 4-5

4.2.1.2 Configuring a Host for Down-Line Loading • 4-6
4.2.1.3 Adding the Target Machine to the Host's Network Node

Data Base • 4-6
4.2.1.4 Configuring and Installing the Bootstrap Loader • 4-7
Down-Line Loading Procedure 4-10
4.2.2.1 Reloading a Machine That Is Running the Network

Service • 4-12
4.2.2.2 Down-Line Loading During Debugging • 4-13
4.2.2.3 'Reloading Production Machines • 4-13
4.2.2.4 Down-Line Loading from Multiple Hosts • 4-14

PTER 5 DEBUGGING VAXELN SYSTEMS 5-1

5.1

5.2

3

SELECTING A DEBUGGER

INVOKING THE VAXELN DEBUGGERS
5.2.1 Using the EDEBUG Command

5.2.1.1 EDEBUG Command Syntax • 5-5
5.2.1.2 Using Qualifiers to Control the EDEBUG

Command • 5-5
5.2.1.2.1 Loading a System Across the Ethernet

(jLOAD) • 5-6
5.2.1.2.2 Exiting from the Remote Debugger

(jNODEBUG) • 5-6
5.2.2 Entering the Local Debugger and the Kernel Session

USING THE VAXELN DEBUGGERS
5.3.1 Process Identifiers
5.3.2 Command Sessions
5.3.3 Control-C Session
5.3.4 Breakpoints

5-2

5-3
5-3

5-6

5-8
5-9

5-10
5-10
5-11

v

5.4

5.5

vi

5.3.5 Using the Remote Debugger
5.3.5.1 Symbolic Debugging • 5-12
5.3.5.2 Command Files • 5-13

DEBUGGER SYNTAX RULES
5.4.1 Expressions

5.4.1.1 String Expressions • 5-16
5.4.1.2 Address Expressions • 5-16

5.4.2 Identifiers
5.4.2.1 Defining Identifiers • 5-18
5.4.2.2 Predefined Identifiers • 5-20
5.4.2.3 Program Locations and Variable Names • 5-21

5.4.3
5.4.4
5.4.5

5.4.6

Variable References
Types and Typecasting
Computational Constants
5.4.5.1 Boolean Constants • 5-25
5.4.5.2 Integer Constants • 5-25
5.4.5.3 Floating-Point Constants • 5-26
5.4.5.4 String Constants • 5-26
5.4.5.5 Special Constants • 5-27
Comments

COMMAND SUMMARY

CALL

CANCEL BREAK

CANCEL CONTROL

CANCEL EXCEPTION BREAK

CREATE JOB

CREATE PROCESS

CTRL/C

CTRL/Z

DEBUG

DEFINE

DELETE PROCESS

DEPOSIT

EVALUATE

EXAMINE

5-28

5-30

5-31

5-32

5-33

5-34

5-35

5-36

5-37

5-38

5-40

5-41

5-45

5-48

5-12

5-13
5-15

5-18

5-23
5-23
5-25

5-27

5-27

EXAMINE/INSTRUCTION 5-55

EXAMINE/PSL 5-56

EXAMINE/~OURCE 5-57

EXIT 5-59

GO 5-60

HALT 5-61

HELP 5-63

IF 5-64

LEAVE 5-65

LOAD 5-66

PREDECESSOR 5-68

SEARCH 5-69

SET BREAK 5-71

SET COMMAND 5-74

SET CONTROL 5-75

SET EXCEPTION BREAK 5-76

SET LOG 5-77

SET MODE 5-78

SET OUTPUT 5-81

SET PROGRAM 5-82

SET RETURN BREAK 5-83

SET SESSION 5-84

SET SOURCE 5-86

SET STEP 5-87

SET TIME 5-88

SHOW BREAK 5-89

SHOW CALLS 5-90

SHOW COMMAND 5-91

SHOW JOB 5-92

SHOW MESSAGE - 5-94

SHOW MODE 5-95

SHOW MODULE 5-96

SHOW PROCESS 5-97

vii

SHOW PROGRAM

SHOW SESSION

SHOW SYMBOL

SHOW SYSTEM

SHOW TIME

SHOW TRANSLATION

STEP

SUCCESSOR

TYPE

UNLOAD

WAIT

CHAPTER 6 PERFORMANCE ANALYSIS

viii

6.1 VAXELN PERFORMANCE UTILITY FEATURES

6.2 COLLECTING PERFORMANCE DATA
6.2.1 Preparing for Performance Analysis
6.2.2 Invoking the Collector
6.2.3 Collector Commands

EXIT

GO

HELP

SET DATAFILE

SET JOB_SAMPLING

SET NODE

SET PC_SAMPLING

SET PROCESS_SAMPLING

SET SYSTEM_SERVICE_SAMPLING

SHOW DATAFILE

SHOW NODE

SHOW RUN

STOP

5-99

5-100

5-102

5-104

5-105

5-106

5-107

5-109

5-110

5-112

5-113

6-1

6-1

6-2
6-3
6-4
6-4

6-6

6-7

6-8

6-9

6-10

6-11

6-12

6-14

6-15

6-18

6-19

6-20

6-21

6.3 USING THE ANALYZER
6.3.1 Analyzer Output
6.3.2 Invoking the Analyzer
6.3.3 Analyzer Commands

EXIT

FILE

HELP

PRINT

TABULATE

APPENDIX A VAX-11/750 MICROCODE PATCH

A.1 PROCEDURE

APPENDIX B USING THE ERROR LOG SERVER

B.1 OVERVIEW OF ELSE

B.2 INVOKING AND STOPPING ELSE

B.3 ELSE PARAMETERS
B.3.1 ELSE$ERRORLOG
B.3.2 ELSE$LI N K_I DLE_ST ATE
B.3.3 ELSE$SERVER_NAME
B.3.4 ELSE$TIMER_DELAY

B.4 RUN COMMAND QUALIFIERS FOR ELSE

6-30

6-31

6-32

6-33

6-34

6-22
6-22
6-29
6-29

A-1

A-2

B-1

B-1

B-2

B-3
B-3
B-3
B-4
B-4

B-4

ix

APPENDIX C A FULL SYSTEM MAP C-1

INDEX

FIGURES
2-1 Commands for Program Development 2-2

3-1 Main Menu 3-8

3-2 Select Target Processor Menu 3-9

3-3 System Characteristics Menu 3-10

3-4 Network Node Characteristics Menu 3-16

3-5 Program Description Menu 3-20

3-6 Device Description Menu 3-24

3-7 Terminal Description Menu 3-33

3-8 Console Characteristics Menu 3-36

3-9 Error Log Characteristics Menu 3-38

5-1 Initial EDEBUG Screen 5-4

6-1 PC Sampling Data by Routine 6-23

6-2 PC Sampling Data by Source Line 6-24

6-3 Job Sampling Data 6-26

6-4 Process Sampling Data 6-27

6-5 System Service Sampling Data 6-28

C-1 A Full System Map C-2

TABLES
2-1 LINK Command Qualifiers 2-10

2-2 VAXELN Run-Time Libraries 2-13

2-3 LIBRARY Command Qualifiers 2-18

3-1 EBUILD Command Qualifiers 3-2

3-2 Menu Commands 3-6

3-3 Menu Control Commands 3-7

3-4 Device Information 3-24

3-5 Terminal Types 3-34

x

4-1 Target Device Names 4-3

4-2 Datalink Device Default Addresses 4-5

5-1 EDE8UG Qualifiers 5-5

5-2 DEFINE Data Types 5-18

5-3 SET MODE Keywords 5-78

6-1 System Services Counted 6-15

8-1 ELSE Parameters 8-3

8-2 RUN Command Qualifiers for ELSE 8-5

xi

Preface

Manual Objectives

This manual explains how to use the V AXELN host system to develop
VAXELN programs and to develop, load, boot, and debug VAXELN
system images.

Intended Audience

This manual is for programmers and students who have a working
knowledge of the Pascal, C, or FORTRAN programming language. A
cursory understanding of the VAX/VMS DIGITAL command language
(DCL) is also necessary.

Document Structure

This manual is organized as follows:

• Chapter I, Host System Overview, provides an overview of the host
system's hardware and software and briefly describes the steps in
developing a VAXELN application.

• Chapter 2, Program Development, explains how to prepare VAXELN
Pascal, VAX C, and VAX FORTRAN programs for inclusion in
VAXELN systems. The chapter explains how to compile source
files, link object modules and shareable images, and maintain object
module and shareable image libraries.

xiii

• Chapter 3, System Development, explains how to use the VAXELN
System Builder to build V AXELN system images.

• Chapter 4, Booting and Down-Line Loading, describes the procedures
for booting and loading a VAXELN system image on a target machine.
Procedures for booting and loading by disk and by down-line loading
using the Ethernet are explained.

• Chapter 5, Debugging VAXELN Systems, explains how to use the
local and remote debuggers provided with the VAXELN development
system to debug VAXELN system images.

• Chapter 6, Performance Analysis, explains how to use the VAXELN
Performance Utility to collect and report performance data for
VAXELN systems.

• Appendix A, VAX-llj7S0 Microcode Patch, describes the microcode
control store patching procedure required on system power-up before
you can run VAXELN on a VAX-llj7S0.

• Appendix B, Using the Error Log Server, explains how to create error
log files on a remote node.

• Appendix C, A Full System Map, gives an example of a full map
generated by the System Builder.

Conventions

Convention

{ }

xiv

Meaning

Braces enclose lists from which you must choose one item.
For example:

{
expression }
statement

Horizontal ellipsis points mean that the item preceding
the ellipsis points can be repeated. For example:

Iqualifier ...

Vertical ellipsis points in a figure or example indicate
that not all the information the system would display is
shown or that not all the information a user is to supply
is shown.

Convention

{ }, ...

{ }; ...

[]

[]

UPPERCASE char­
acters

lowercase characters

I RETURN I

ICTRLjxl

user input

decimal notation

Meaning

Braces followed by a comma and horizontal ellipsis points
mean that you can repeat the enclosed item one or more
times, separating two or more items with commas.

Braces followed by a semicolon and horizontal ellipsis
points mean that you can repeat the enclosed item one or
more times, separating two or more items with semicolons.

Square brackets mean that the statement syntax requires
the square bracket characters. This notation is used with
Pascal arrays, sets, and attribute lists. For example:

ARRAY [INDEX1]

Square brackets are also used in the syntax of a direc­
tory name in a VAX/VMS file specification and in user
identification code (UIC) specifications.

Double brackets enclose optional items. For example:

[/qualifier . ..]

VAX/VMS, VAXELN, and language-specific reserved
words and identifiers are printed in uppercase characters.
However, you can enter them in uppercase, lowercase, or
a combination of uppercase and lowercase characters.

Elements you must replace according to the description
in the text are printed in italic lowercase characters.
However, you can enter them in lowercase, uppercase, or
a combination of lowercase and uppercase characters.

In examples, carriage returns are implied at the end of
each line. However, the I RETURN I symbol is used in some
examples to emphasize that you must press the Return
key.

I CTRLjx I indicates a control key sequence. Press the key
labeled CTRL while you simultaneously press another
key. For example:

ICTRLjCI

In interactive examples, bold print indicates user input.

Numeric values are represented in decimal notation unless
otherwise noted.

xv

Associated Documents

xvi

The following documents are part of the VAXELN document set:

• VAXELN Release Notes

• Introduction to VAXELN

• V AXELN Installation Manual

• V AXELN Run-Time Facilities Guide

• VAXELN Run-Time Utilities Guide

• V AXELN Application Design Guide

• V AXELN Pascal Language Reference Manual: Language Elements

• V AXELN Pascal Language Reference Manual: Real-Time Programming
Routines

• V AXELN Pascal Language Reference Manual: Device Drivers, Program
Development

• V AXELN C Run-Time Library Reference Manual

• VAXELN FORTRAN Programmer's Guide

• VAXELN Master Index

• V AXELN Messages Manual

The following documents are relevant to VAXELN:

•
•
•
•
•
•
•
•
•
•
•
•
•

VAX/VMS DCL Dictionary

VAX/VMS Linker Reference Manual

VAX/VMS Library Reference Manual

VAX C User's Guide

VAX/VMS Error Log Utility Reference Manual

VAX/VMS System Manager's Reference Manual

Guide to Creating Modular Procedures on VAX/VMS

Guide to VAX/VMS System Management and Daily Operations

DECnet DIGITAL Network Architecture General Description

DECnet-V AX System Manager's Guide

DECnet-VAX User's Guide

Micro V AX I Owner's Manual

Micro V AX II Owner's Manual

• LSI-ll Analog System User's Guide
• DLVll-J User's Guide

xvii

Chapter 1

Host System Overview

VAXELN is a software tool kit that provides a high-performance, run-time
system for real-time and/or distributed applications. VAXELN lets you
build VAX applications for use in configurations for which VAX/VMS
might be an inappropriate operating system. Some VAXELN application
areas include robotics, process control, image processing, seismic data
collection, patient monitoring, test equipment automation, and simulation.

The VAXELN tool kit consists of host development software and tar-
get system software. The host development system is a VAX/VMS or
MicroVMS system on which you can design, develop, and debug VAXELN
applicati~ns. This chapter provides an overview of host system hard­
ware and software and explains how to use the host system to develop a
VAXELN application.

1.1 Hardware

VAXELN supports a variety of devices and processors for V AXELN system
development and execution. To develop a VAXELN system, you need a
VAX processor running the VAX/VMS or MicroVMS operating system. If
you want to use the remote debugger, you also need a DECnet license.

Host System Overview 1-1

1.2 Software

In addition to VAX/VMS text editors and other utilities, the VAXELN host
system software includes the following development utilities:

• V AXELN Pascal Compiler - The VAXELN Pascal compiler builds
object modules from Pascal source code. VAXELN Pascal contains
extensions for systems programming. For more information about this
compiler, see the V AXELN Pascal Language Reference Manual.

• System Builder - The VAXELN System Builder builds a system
image by combining application program images with the kernel, run­
time libraries, the File Service, the Network Service, device drivers,
terminal drivers, and debuggers. Chapter 3 provides a complete
description of the System Builder.

• Debuggers - V AXELN provides a remote debugger that lets you
debug a system image from the host development system, using the
Ethernet. In addition, the tool kit includes a local debugger that allows
you to debug VAXELN systems on the target. For more information
about VAXELN debuggers, see Chapter 5.

1.3 . Developing a VAXELN Application

This section provides an overview of the steps in developing a V AXELN
application with the host system. The DCL commands you can use for
each step are illustrated in the following example. Later chapters provide
detailed explanations for each step.

.. $!PASCAL MYFILE1/DEBUG+ELN$:RTLOBJECT/LIBRARY
$!PASCAL MYFILE2/DEBUG+ELN$:RTLOBJECT/LIBRARY
$ LINK MYFILE1+MYFILE2+ELN$:RTLSHARE/LIBRARY+RTL/LIBRARY

~ $ EBUILD MYSYSTEM
t) $ EDEBUG/LOAD-MYSYSTEM.SYS VAXNODE

To create a VAXELN application, you must:

.. Develop the programs you want to include in your VAXELN system
image by using a high-Ievellanguag~ such as VAXELN Pascal, VAX
C, VAX FORTRAN, or VAXELN Ada R • You must create and compile
each source program, and link the object modules. The preceding

® Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

1-2 Host System Overview

example shows you how to compile and link the VAXELN Pascal
source files MYFILEI and MYFILE2.

• Use the System Builder to create a system image. You must invoke
the System Builder with the EBUILD command and edit the System
Builder menus. The preceding example shows you how to invoke the
System Builder to create the system image MYSYSTEM.

• Boot the system image on the target machine from local mass storage
or down-line load the system image on the target machine by using
the Ethernet. The preceding example illustrates how to use the
VAXELN remote debugger to down-line load a system image. You can
then use the remote debugger to debug the system image.

Host System Overview 1-3

Chapter 2

Program Development

This chapter explains how to develop program images for a VAXELN
system. The chapter introduces the VAX/VMS DCL commands you can
use to create and compile source programs, to link object modules, and
to maintain module libraries. After you develop your program images,
you can use the V AXELN System Builder to combine the images into a
VAXELN system (see Chapter 3).

2. 1 Commands for Program Development

Figure 2-1 illustrates the sequence of commands used to develop the pro­
gram MYFILE. These commands are described in the following sections.
The commands in the figure are shown in their simplest forms. You can
also specify qualifiers with the commands to request special processing or
to indicate a special type of input file.

Program Development 2-1

Figure 2-1: Commands for Program Development

Key:
~ I nput or output fi Ie

----Optional input or output file

2-2 Program Development

$ EDIT MYFI LE.PAS
or

S EDIT MYFILE.C 0
or

S EDIT MYFILE.FOR

$ EPASCAL MYF I LE+E LN$: RTLOBJECT III BRARY
or

$ CC MYFI LE+E LNS:VAXE LNC/LIBRARY
or

$FORTRAN MYF I LE+ELN$: FRTLOBJECT/LIBRARY

$ LINK MYFILE+ELNS:RTLSHARE/LIBRARY+RTLlLlBRARY
or

$ LINK MYFILE+ELN$:CRTLSHARE/LIBRARY+-

E LN$: RTLSHARE/LIBRARY+ELN$: RTLlLlBRARY
or

$ LINK MYFILE,ELN$:FRTLOBJECT/LIBRARY,ELN$:-

RT LSHAR E/LIBRARY,E LN$: RT LlLIBRARY

o

MLO-1770-87

o The EDIT command invokes the system editor to create a file con­
taining source code. The file type you should give the source file
depends on the language you are using.· The file types of source files
for the languages used most often to create VAXELN applications are
as follows:

Language

VAXELN Pascal

VAXC

VAX FORTRAN

Source File Type

PAS

C

FOR

• The EPASCAL, CC, or FORTRAN command invokes the appropriate
compiler to process the source code and verify that no syntax errors
or violations of the language rules exist. The compiler generates an
object module of the type OBJ and an optional listing file of the type
LIS.

If errors occur, correct them and recompile the source file. If warning
or informational messages appear, you can continue. However, if you
continue when a warning occurs, you might get unexpected results.

@) The LINK command invokes the VAXjVMSLinker to combine object
modules, shareable images, and the contents of object module and
shareable image libraries. In addition, the linker resolves references to
symbols, such as routine names. The resulting program image has the
file type EXE, and you can include the image in a V AXELN system.

The example in Figure 2-1 assumes that MYFILE.PAS, MYFILE.C, and
MYFILE.FOR specify complete programs.

2.2 Compiling Programs

After you create a VAXELN Pascal, VAX C, or VAX FORTRAN source
file, compile the file to generate an object module. To compile a VAXELN
Pascal source file, use the EP ASCAL command; to compile a VAX C
source file, use the CC command; to compile a VAX FORTRAN source file,
use the FORTRAN command. If you are compiling a source file for the
first time, you should specify the jDEBUG qualifier in the command
line to include debugging information in the object module. In the
following example, the VAXELN Pascal compiler compiles the source
file MYFILE.PAS:

Program Development 2-3

$ EPASCAL/DEaUG MYFILE

This command generates the object module file MYFILE.OBJ.

2.2.1 EPASCAL Command

The syntax for the EP ASCAL command and its qualifiers follows:

$ EP ASCAL[{/ command-qualifier} . ..] source-file-spec

[{ {~ } file-spec / positional-qualifier}

[{ {~ } file-spec [{/positional-qualifier}] } ...]]

command-qualifier

A command qualifier, which can appear after the EP ASCAL command
or after a file specification. In many cases, the default settings for the
EP ASCAL command are sufficient for compiling source files. However,
by specifying the command with qualifiers, you can precisely control
the compilation. For example, you can tell the VAXELN Pascal compiler
to include debugger information in the object module by specifying the
/DEBUG qualifier with the EP ASCAL command.

source-file-spec

A standard VAX/VMS file specification that represents the source file to be
compiled. If you do not specify a file type, the compiler uses the default
file type PAS. If you enter a command without a file specification, the
operating system prompts you for a file:

$ EPASCAL I RETURN I
_File:

file-spec

A standard VAX/VMS file specification that designates an object library
or object module whose exported declarations are to be included during
compilation. Libraries have the default file type aLB and object modules
have the default file type OBJ. You can specify up to eight object libraries
in a command; you can specify any number of object modules. Separate
multiple file specifications with commas or plus signs.

2':"4 Program Development

The first library and first module file specifications you specify must
be followed by the /LIBRARY and /MODULE qualifiers, respectively.
Subsequent files can be listed without the qualifier; a positional qualifier
affects the files that follow it up to the next file preceding a positional
qualifier. For example:

$ EPASCAL PROG+ELN$:RTLOBJECT/LIBRARY+ELN$:RTL+NEWLIB+DEFS/MODULE+BASIC_DEFS

This command line includes six file specifications - a source file specifi­
cation, three object library specifications, and two object module specifi­
cations. PROG is the source file being compiled. The /LIBRARY qualifier
affects the object libraries specified by ELN$:RTLOBJECT, ELN$:RTL, and
NEWLIB. The /MODULE qualifier affects the object modules specified by
DEFS and BASIC_DEFS.

positional-qualifier

The qualifier /LIBRARY or /MODULE.

You can specify another name for an object file or listing file by including
a file specification with the /OBJECT or /LIST qualifier. For example, the
following command generates the listing file MYFILELIST.LIS and the
object file MYFILE.OBJ:

$ EPASCAL/DEBUG/LIST-MYFlLELIST MYFlLE

The following example compiles the source file MYFILE.P AS and gener­
ates the object file MYOBJECTFILE.OBJ:

$ EPASCAL/DEBUG/OBJECT-MYOBJECTFlLE MYFlLE

For more information about the EPASCAL-command and its qualifiers, see
the V AXELN Pascal Language Reference Manual or use the HELP facility:

$ HELP EPASCAL

Program Development 2-5

2.2.2 CC Command

The syntax for the CC command and its qualifiers follows:

$ CC[/ qualifier ...] file-spec-list[/ qualifier ...]

/qualifier

Specifies an action to be performed by the compiler or a special input file
property. You can specify multiple qualifiers. In many cases, the default
settings for the CC command are sufficient for compiling source files.
However, by specifying the command with qualifiers, you can precisely
control the compilation. For example, you can tell the VAX C compiler
to include debugger information in the object module by specifying the
/DEBUG qualifier with the CC command.

You can append qualifiers to the CC command or to individual file
specifications. If you include a qualifier in a list of files to be concatenated,
the qualifier affects all the files in the list.

You can use the /LIBRARY qualifier with one or more input files that are
part of a list of files separated by plus signs (+). This qualifier indicates
that the file is a text library that can contain source text.

For more information about the CC command and its qualifiers, see the
V AXELN C Run-Time Library Reference Manual or the VAX C User's Guide,
or use the HELP facility:

$ HELP cc

file-spec-list

Specifies one or more source files to be compiled. Separate the file
specifications with commas (,) or plus signs (+). If you separate source
file specifications with commas, the programs are compiled separately. If
you separate source file specifications with plus signs, the files are joined
and compiled as one program. If you enter a command without a file
specification, the operating system prompts you for a file:

$ cc I RETURN I
_File:

The default file type for VAX C source files is C. If a file specification is
qualified with /LIBRARY, the default file type is TLB.

2-6 Program Development

You can specify another name for an object file or listing file by including
a file specification with the jOBJECT or jLIST qualifier. For example, the
following command generates the listing file MYFILELIST.LIS and the
object file MYFILE.OBJ:

$ CC/DEBUG/LIST=MYFlLELIST MYFlLE

The following example compiles the source file MYFILE.P AS and gener­
ates the object file MYOBJECTFILE.OBJ:

$ CC/DEBUG/OBJECT=MYOBJECTFILE MYFlLE

For more information about specifying file specifications with the CC
command, see the V AXELN C Run-Time Library Reference Manual and the
VAX C User's Guide.

2.2.3 FORTRAN Command

The syntax for the FORTRAN command and its qualifiers follows:

$ FORTRAN[j qualifier ...] file-spec-list[j qualifier . ..]

jqualifier

Specifies an action to be performed by the compiler or a special input
file property. You can specify multiple qualifiers. In many cases, the
default settings for the FORTRAN command are sufficient for compiling
source files. However, by specifying the command with qualifiers, you
can precisely control the compilation. For example, you can tell the VAX
FORTRAN compiler to include debugger information in the object module
by specifying the jDEBUG qualifier with the FORTRAN command.

NOTE

When you use the jDEBUG qualifier with the FORTRAN
command, you should also use the jNOOPTIMIZE qualifier.

You can append qualifiers to the FORTRAN command or to individual file
specifications. If you include a qualifier in a list of files to be concatenated,
the qualifier affects all the files in the list.

You can use the jLIBRARY qualifier with one or more input files that are
part of a list of files separated by plus signs (+). This qualifier indicates
that the file is a text library that can contain source text.

Program Development 2-7

For more information about the FORTRAN command and its qualifiers,
see the V AX FORTRAN User's Guide or use the HELP facility:

$ HELP FORTRAN

file-spec-list

Specifies one or more source files to be compiled. Separate the file
specifications with commas (,) or plus signs (+). If you separate source
file specifications with commas, the programs are compiled separately. If
you separate source file specifications with plus signs, the files are joined
and compiled as one program. If you enter a command without a file
specification, the operating system prompts you for a file:

$ FORTRAN I RET I
]ile:

The default file type for VAX FORTRAN source files is FOR. If a file
specification is qualified with /LIBRARY, the default file type is OLB.

You can specify another name for an object file or listing file by including
a file specification with the /OBJECT or /LIST qualifier. For example, the
following command generates the listing file MYFILELIST.LIS and the
object file MYFILE.OBJ:

$ FORTRAN/DEBUG/LIST-MYFILELIST MYFILE

The following example compiles the source file MYFILE.FOR and gener­
ates the object file MYOBJECTFILE.OBJ:

$ FORTRAN/DEBUG/OBJECT-MYOBJECTFILE MYFILE

For more information about specifying file specifications with the
FORTRAN command, see the VAX FORTRAN User's Guide.

2.3 Linking Object Modules

The VAX/VMS Linker combines object modules and shareable images
to produce program images. The program images are then ready for
inclusion in VAXELN systems (see Chapter 3.)

To link object modules, use the LINK command. In the following exam­
ple, the LINK command combines the object modules MYFILE1.0BJ and
MYFILE2.0BJ with references from the object module library RTL.OLB
and the shareable image library RTLSHARE.OLB:

$ LINK MYFILE1+MYFILE2+ELN$:RTLSHARE/LIBRARY+RTL/LIBRARY

2-8 Program Development

This command produces the image file MYFILE.EXE.

2.3.1 LINK Command

The syntax for the LINK command and its qualifiers follows:

$ LINK[/ qualifier ...] file-spec-list[/ qualifier ...]

qualifier

Descriptions of LINK command qualifiers you might use for developing
VAXELN applications are provided in Table 2-1.

file-spec-list'

Specifies one or more files to be linked. Each specification indicates an
object module generated by a compiler, an object module library, or
a shareable image library. Object module files have the default type
OBJ. Object module and shareable image libraries have the default file
type OLB and must be specified with the /LIBRARY or /INCLUDE file
qualifier.

If the first file specification is a library, you must use the /INCLUDE
qualifier to indicate which of its modules to use (see Section 2.3.2).

If you specify multiple file specifications, separate the specifications with
commas or plus signs (+). If you enter the LINK command without a file
specification, the operating system prompts you for a file:

$ LINK I RETURN I
Jile:

2.3.2 Using Oualifiers to Control the Linker

In many cases, the default settings for the LINK command are sufficient
for linking object modules. However, by specifying the command with
qualifiers, you can precisely control the linkage of a program image. For'
example, you can tell the linker to copy debug symbol table information
from the object modules to the program image by specifying the /DEBUG
qualifier.

You can append qualifiers to the LINK command or to individual file spec­
ifications. You must specify library file specifications with the /LIBRARY
or /INCLUDE positional qualifier.

Program Development 2-9

Table 2-1 lists ways you can use qualifiers to control linkage. The follow­
ing sections explain how to use the qualifiers. For additional information
about the LINK command and its qualifiers, see the VAX/VMS Linker
Reference Manual.

Table 2-1: LINK Command Qualifiers
Qualifier

/[NO] DEBUG

/LIBRARY

/INCLUDE=(module-list)

/[NO] SHAREABLE

/[NO] SYSLIB

/[NO] SYSSHR

Usage Default

Directs the linker to generate /[NO]DEBUG
a debug symbol table (DST)
and to give the debugger
control when the program
image is run

Specifies a library file that is
to be included in the linking
operation

Specifies a library file and
the modules in it which are
to be included in the linking
operation

Creates a shareable image /[NO]SHAREABLE

Suppresses the search SYSLIB
through the default system
libraries for unresolved
symbolic references

Suppresses the search SYSSHR
through the VAX/VMS
default shareable image
library for unresolved
symbolic references

2.3.2.1 Generating I?ebugger Information (jDEBUG)

When you compile a program, you can include debugging information
in the resulting object module by specifying the /DEBUG qualifier. If
you choose to include debugging information, you must also include that
information in the program image by specifying the /DEBUG qualifier
with the LINK command. See Chapter 5 for more information about
debugging.

2-10 Program Development

2.3.2.2 Linking Libraries (/LIBRARV)

To include the object modules or shareable images of a library file in the
linking operation, specify the library file with the /LIBRARY qualifier. The
linker searches the object modules or shareable images in the specified
library for definitions needed to resolve references from the VAXELN
object modules that you specify. For more information, see the VAX/VMS
Linker Reference Manual.

2.3.2.3 Linking Library Modules and Images (/INCLUDE)

To include a library file's object modules and shareable images in the
linking operation, specify the names of the object modules and shareable
images with the /INCLUDE qualifier. You must specify at least one
module or image with the qualifier. If you specify a list of module or
image names, separate them with commas (,).

You can specify the /INCLUDE qualifier with or without the /LIBRARY
qualifier. If you know exactly which modules or images you need to in­
clude in your program image, specify the /INCLUDE qualifier without the
/LIBRARY qualifier. Specifying /INCLUDE without /LIBRARY optimizes
your program because the linker searches for unresolved symbols, such as
routine names, only in the specified modules and images. If you specify
both qualifiers, the linker first includes the specified modules or images
and then searches for unresolved references in all other modules or images
in the specified library.

2.3.2.4 Creating a Shareable Image (/SHAREABLE)

A shareable image is a nonexecutable image that you can link into pro­
gram images. If you have a program unit that is invoked by more than
one program, linking the unit as a shareable image provides the following
benefits:

• Saves disk space - The executable images to which the shareable
image is linked do not physically include the shareable image. The
system image has only one copy of the shareable image.

• Simplifies maintenance - If you use transfer vectors and the
GSMATCH option, you can modify, recompile, and relink a share­
able image without having to relink an executable image that is linked
with it. For discussions of transfer vectors and the GSMATCH option,
refer to the VAX/VMS Linker Reference Manual.

Program Development 2-11

To create a shareable image, use the /SHAREABLE qualifier. You can
specify the qualifier in a LINK command that contains input specifications
for one or more object modules or shareable images. If you specify the
name of an existing shareable image, the image must exist in a shareable
image library. The default file type of the resulting shareable image is
EXE.

To operate on shareable image libraries, specify the LIBRARY com­
mand with the /SHARE qualifier and the shareable image files (see
Section 2.4.2.5). For detailed information on creating shareable image
libraries, see the Guide to Creating Modular Procedures on VAX/VMS.

The System Builder ensures that if you include a shareable image in the
final system, the program refers to that image. However, the System
Builder looks for shareable images in the VAXELN directory ELN$.
To use shareable images from another directory, assign the image's
file specification to the logical name ELN$name, where name is the file
name of the image. The System Builder first looks for a translation of
ELN$name. If the System Builder does not find a translation, it looks for
the file in the ELN$ directory.

For example, to instruct the System Builder to find the shareable image
MYSHARE.EXE in the directory [MYFILES], use one of the following
commands:

$ ASSIGN [MYFILES] MYSHARE . EXE ELN$MYSHARE
$ DEFINE ELN$MYSHARE [MYFILES] MYSHARE. EX!

Any programs that access a shareable image must be linked with that
image. When performing the link operation, you must specify one of the
following items on your LINK command:

•

•

The name of the shareable image library containing the symbol table
of the shareable image - use the /LIBRARY qualifier to identify a
library file.

A linker options file that contains the name of the shareable image file
- use the /SHAREABLE qualifier to identify a shareable image file.
A shareable image file must be specified in an options file rather than
on the command line, because the linker creates a shareable output
image whenever the LINK command line includes the /SHAREABLE
qualifier.

NOTE

You cannot specify shareable images as VAXELN Pascal com­
piler in pu t.

2-12 Program Development

2.3.2.5 Suppressing the Search Through the Default System Libraries
(fNOSYSLIB)

The linker searches default VAX/VMS system libraries SYS$LIBRARY:
IMAGELIB.OLB and SYS$LIBRARY:STARLET.OLB to resolve symbolic
references that remain undefined after specified input and user default
libraries are processed. If your input and your user default libraries let the
linker resolve symbolic references, specify the /NOSYSLIB qualifier. This
qualifier prevents the linker from searching the default system libraries.
If you do not use this qualifier, you could get incompatible code included
in your program image. A correct VAXELN program image should not
contain any unresolved references.

2.3.2.6 Suppressing the Search Through the Default Shareable Image
Library (/NOSYSSHR)

To prevent the linker from searching SYS$LIBRARY:IMAGELIB.OLB, the
VAX/VMS default shareable image library, for unresolved references,
specify the /NOSYSSHR qualifier. See Section 2.3.2.5.

2.3.3 Using VAXELN Libraries

The VAXELN toolkit supplies run-time libraries for linking with VAXELN
Pascal, VAX C, and VAX FORTRAN object modules. Table 2-2 lists the
run-time libraries with brief descriptions.

Table 2:""2: VAXELN Run-Time Libraries
Library

CRTLOBJECT.OLB

CRTLSHARE.OLB

FILE.OLB

FRTLOBJECT.OLB

RTL.OLB

Description

Contains object module versions of the VAX C run­
time routines

Contains shareable image versions of the VAX C
run-time routines

Contains the File Service modules and support routines

Contains object modules for VAX FORTRAN program­
ming

Contains object modules for run-time routines that
have local read/write data and a module defining
entry points for kernel procedures

Program Development 2-13

Table 2-2 (Cont.): VAXELN Run-Time Libraries
Library Description

RTLOB}ECT.OLB Contains object module versions of the VAXELN
run-time routines

RTLSHARE.OLB Contains shareable image versions of the VAXELN
run-time routines

The installation procedure places these libraries in the directory ELN$ (see
the VAXELN Installation Manual). To write your own versions of files in
this directory, see Section 3.3.

The organization of run-time support into object module and shareable
image libraries lets you specify an image's run-time support in several
ways:

• If you link the object modules with a shareable library and the
RTL.OLB library, program images can share one copy of the routines
that are shareable.

• If you link each program's object modules with the RTLOBJECT.OLB,
CRTLOBJECT.OLB, or FRTLOBJECT.OLB library and the RTL.OLB
library, program images in the final system can use their own local
copies of the run-time routines. You should list the RTLOBJECT,
CRTLOBJECT, or FRTLOBJECT library first because it refers to sym­
bols defined in RTL.

2-14 Program Development

NOTE

On occasion, a routine contained in the library RTL.OLB
will reference a routine contained in the library
RTLOBJECT.OLB. Since the typical LINK command speci­
fies RTLOBJECT ILIB before RTL/LIB, the linker will next
search the libraries in SYS$LIBRARY to resolve the refer­
ence. If your system happens to have VAX Pascal installed,
the reference may be erroneously resolved in the VAX
Pascal library P ASRTL.EXE, whose routines often have the
same names as the VAXELN counterparts.

As a result, the System Builder will fail when it attempts
to locate ELN$:P ASRTL.EXE, even though the linker did
not report any undefined global symbols. To ensure that
undefined VAXELN global symbols are reported, use the
INOSYSLIB linker command qualifier. INOSYSLIB tells
the linker not to search in SYS$LIBRARY.

Use a LINK command line like the following to resolve all
VAXELN references:

$ LINK/NOSYSLIB MYPROG+ELN$:RTLOBJECT/LIB+RTL/LIB+ -
RTLOBJECT/LIB+RTL/LIB

• You can build a system that has both local and shareable program
images - that is, some program images can keep local copies while
some share the same copies.

NOTE

When linking a C program, you cannot combine object modules
and shareable images. The libraries you link against must either
contain all object modules or all shareable images.

When a program image refers to a shareable image, the System Builder
ensures that the necessary shareable images are built into the system.

You should include the RTLSHARE.OLB and RTL.OLB libraries in most
link operations. For convenience, you can assign these libraries to logical
names. For Pascal, you can define the following logical name:

$ DEFINE LNK$LIBRARY ELN$:RTLSHARE.OLB

For C, you can define the following logical name:

$ DEFINE LNK$LIBRARY ELN$:CRTLSHARE.OLB

Since VAX FORTRAN routines are only supplied in object library form,
you can define the following logical name for FORTRAN:

$ DEFINE LNK$LIBRARY ELN$:FRTLOBJECT.OLB

You can use the following definition for the VAXELN run-time object
library:

$ DEFINE LNK$LIBRARY_1 ELN$:RTL.OLB

The preceding commands define LNK$LIBRARY and LNK$LIBRARY_l to
be the default libraries for the linker. When these definitions are in effect,
you need only specify the object module or modules for your program.
For example:

$ LINK MYOBJECT

You can display the names of the files in a library by using the LIBRARY
command with the ILIST qualifier. For example:

$ LIBRARY/LIST RTLSHARE

Program Development 2-15

For more information about the VAXELN run-time libraries, see the
VAXELN Run-Time Facilities Guide. For more information about the
LIBRARY command, see Section 2.4.1.

2.3.4 Selecting the Default Double-Precision Type

When the VAXELN toolkit is installed, libraries are configured so that the
VAX D_floating format is used by run-time routines for double-precision
operations. (Some mathematical run-time routines generate temporary
double-precision values even when your program has not declared the
data type DOUBLE.)

Two command procedures exist in the directory ELN$ that let you specify
the double-precision format for the machine for which you are devel­
oping a VAXELN system: GFLOATRTL.COM and DFLOATRTL.COM.
GFLOATRTL.COM makes G_floating the default representation for the
run-time routines. The following command changes the default to the
G_floating representation:

$ tELN$:GFLOATRTL

To go back to D_floating as the default representation, use the command:

$ tELN$:DFLOATRTL

D_floating is the default double-precision floating-point representation
for the VAXELN Pascal and VAX C compilers. To generate G_floating
instructions, use the compiler's /G_FLOATING command qualifier. For
example, to prepare a program for a MicroVAX computer that has F_
floating and G.J1oating formats, specify the /G_FLOATING qualifier
when you compile the program and use the GFLOATRTL.COM command
procedure to update the run-time library representation. You can then
omit the emulation software (described in Chapter 3) for floating-point
instructions.

2-16 Program Development

2.4 Maintaining Libraries

Use the VAX/VMS Librarian to maintain object module and shareable
image libraries. To invoke the librarian, use the LIBRARY command.
The following command places the object file MYFILE.OBJ in the object
module library OBJECTLIB.OLB:

$ LIBRARY OBJECTLIB MYFILE

For more information about the librarian or about the LIBRARY command,
see the VAX/VMS Library Reference Manual.

2.4.1 LIBRARY Command

The syntax for the LIBRARY command and its qualifiers follows:

$ LIBRARY[/ qualifier ...] library-file-spec [input-file-spec [, ...]]

/ qualifier

Descriptions of the LIBRARY command qualifiers are provided in
Table 2-3.

library-file-spec

Specifies the name of an object module library or a shareable image
library. Libraries have the default file type OLB.

input-file-spec

With the /CREATE qualifier, you can specify one or more object files to be
included in a new library. If you specify more than one input file, separate
the file specifications with commas (,).

Program Development 2-17

2.4.2 Using Qualifiers to Control the Librarian

You can control the VAX/VMS Librarian by specifying the LIBRARY
command with qualifiers. For example, you can tell the librarian to create
a new library by specifying the /CREATE qualifier and a library file
specification.

You can append qualifiers to the LIBRARY command or to individual
file specifications. When you include a qualifier in a list of files to be
concatenated, the qualifier affects all the files in the list.

Table 2-3 lists ways you can use qualifiers to control the librarian. The
following sections explain how to use the qualifiers. Additional informa­
tion about LIBRARY command qualifiers is provided in the VAX/VMS
Library Reference Manual.

Table 2-3: LIBRARY Command Qualifiers
Qualifier

jCREATE

jINSERT

jLIST[=file-spec]

jEXTRACT=(module-list)

jREPLACE

jSHARE

jDELETE=(module-list)

jCOMPRESS

Default

Creates a new library

Inserts files into an existing library

Lists a library's contents

Extracts modules from a library

Replaces existing library modules with new
files

Indicates a shareable image library

Deletes modules from a library

Compresses a library

2.4.2.1 Creating a New Library (fCREATE)

To create a new library, specify the LIBRARY command with the
/CREATE qualifier and a library specification. You can also specify a
list of object file specifications. If you do, their modules are inserted in the
new library. For example:

$ LIBRARY/CREATE OBJECTLIB MYFlLE1.MYFILE2

This command creates the object module library OBJECTLIB.OLB and
places the object files MYFILEl.OBJ and MYFILE2.0BJ in that library.

2 -18 Program Development

2.4.2.2 Inserting or Replacing Modules in an Existing Library (fINSERT
and /REPLACE)

The jINSERT and jREPLACE qualifiers are defaults. If you specify the
names of object files that are not already in the library, they are inserted.
If you specify the names of object modules that already exist in the
library, the old modules are replaced. Thus, you can insert or replace
object modules in an existing library by specifying the LIBRARY command
as follows:

$ LIBRARY OBJECTLIB MYFILE1.MYFILE2

2.4.2.3 Listing a Library's Contents (fLIST)

Use the jLIST qualifier to list the contents of a library. For example:

$ LIBRARY/LIST RTL

This command writes the list of the object modules in the library RTL.OLB
to SYS$OUTPUT (usually your terminal).

If you want to write the list of object modules to a file, specify a listing file
specification as follows:

$ LIBRARY/LIST-RTLMODULES RTL

This command writes the object modules in the RTL.OLB library to the
file RTLMODULES.LIS.

2.4.2.4 Extracting Modules from a Library (fEXTRACT)

To extract one or more modules from a library, use the jEXTRACT
qualifier. For example:

$ LIBRARY/EXTRACT-(MODULE1.MODULE2) OBJECTLIB

The modules MODULEl.OBJ and MODULE2.0BJ are removed from the
library OBJECTLIB.OLB and are placed in the default directory.

If you want to rename the output files, specify the jOUTPUT qualifier
with new output file specifications:

$ LIBRARY/EXTRACT=(MODULE1.MODULE2)/OUTPUT=(MOD1.MOD2) OBJECTLIB

The files MODULEl.OBJ and MODULE2.0BJ are extracted from the
library OBJECTLIB.OLB and are renamed MODl.OBJ and MOD2.0BJ.

Program Development 2-19

2.4.2.5 Creating a Shareable Image Library (fSHARE)

To create a shareable image library, use the jSHARE qualifier with the
jCREATE qualifier. For example: '

$ LIBRARY/CREATE/SHARE MYSHARLIB MYSHRIMG1.MYSHRIMG2

This command creates the shareable image library MYSHARLIB.OLB and
places the shareable images MYSHRIMG1.EXE and MYSHRIMG2.EXE in
that library.

2.4.2.6 Deleting Modules from a Library (fDELETE)

To delete one or more modules from a library, use the jDELETE qualifier.
For example:

$ LIBRARY/DELETE-(MODULE1.MODULE2) OBJECTLIB

This command deletes the object modules MODULE1.0BJ and
MODULE2.0BJ from the library OBJECTLIB.OLB.

2.4.2.7 Compressing a Library (fCOMPRESS)

You can recover unused space in a library resulting from module deletions
by compressing the library. Specify the jCOMPRESS qualifier and the
name of the library you want to compress:

$ LIBRARY/COMPRESS OBJECTLIB

By default, a new library file is created that has the same specification as
the one compressed, but whose version has increased by one. You can
assign a new name to the output file by specifying the jOUTPUT qualifier
with an output file specification.

2-20 Program Development

Chapter 3

System Development

After you develop the programs you need to include in your V AXELN
system, use the System Builder to create the system.

This chapter explains how to:

• Use the EBUILD command to invoke the System Builder

• Use the EBUILD qualifiers to control the System Builder

• Use your own versions of DIGITAL-supplied VAXELN files

• Edit System Builder menus

3.1 EIUILO Command

The EBUILD command invokes the System Builder to combine one or
more program images into a bootable system image. The syntax for the
command and its qualifiers follows:

$ EBUILD[j qualifier . ..] data-file-spec

jqualifier

Descriptions of the EBUILD command qualifiers are provided in Table 3-1.

data-file-spec

Specifies the data file that is to store information about your VAXELN
system. The default file type for a data file is. DAT. If you are in EDIT
mode (the default) and you specify a file that does not exist, the System
Builder creates that file. If the file exists, the System Builder reads the file,

System Development 3-1

creates a new version of the file when you make a change, and uses the
file's data to set up menus.

If you specify a data file and the /NOEDIT qualifier, the System Builder
reads that file and uses its contents to create a VAXELN system image file.

If you enter the EBUILD command without a data file specification, the
System Builder prompts you for the file:

$ EBUILD IRETURNI
_File:

NOTE

You should create and modify the data file only through the
System Builder. The results of editing the data file in any other
way are unpredictable.

3.2 Using Dualifiers to Control the System Builder

In many cases, the default settings for the EBUILD command are sufficient
for building system images. However, by specifying the command with
qualifiers, you can precisely control the System Builder. For example, you
can tell the System Builder to generate a system map by specifying the
/MAP qualifier.

You can append qualifiers to the EBUILD command or to the data file.

Table 3-1 lists qualifiers you can use to control the System Builder. The
following sections explain how to use the qualifiers.

Table 3-1: EBUILD Command Qualifiers
Qualifier

j[NO]BRIEF

j[NO]EDIT

j[NO]FULL

j[NO]LOG

3-2 System Development

Usage

Generates a brief system map

Generates a system image through EDIT
mode

Generates a full system map

Suppresses display of the system image
size

Default

jBRIEF

jEDIT

jNOFYLL

JLOG

Table 3-1 (Cont.): EBUILD Command Qualifiers

Qualifier Usage Default

jMAP=[file-spec]
jNOMAP

Generates a system map jNOMAP

jSYSTEM=file-spec Specifies a name for the system image file The data file
name

3.2.1 Generating a System Map (/MAP, /FULL, /BRIEF)

To generate a system map when you build a system image, use the /MAP
qualifier. For example, the following command names the system map file
MYDATAFILE.MAP:

$ EBUlLO/MAP MYDATAFlLE

If you specify the /MAP qualifier with a file specification, the System
Builder writes the map output to that file. For example:

$ EBUlLO/MAP-MYMAPLISTING MYDATAFlLE

In this case, the System Builder generates the system map file
MYMAPLISTING.MAP.

You can control the contents of the system map by using the mutually
exclusive qualifiers /BRIEF and /FULL UNOBRIEF is the same as /FULL).
By default, the System Builder generates a brief map that lists the images
you include in the system, the devices and terminals you specify, and the
system characteristics. A full map lists images you include in the system
and their program descriptions,- devices and their device descriptions,
terminal descriptions, and system characteristics. To generate a full system
map, use the following command:

$ EBUlLO/MAP/FULL MYDATAFlLE

See Appendix C for an example of a full system map.

System Development 3-3

3.2.2 Generating a System Image Without Entering EDIT Mode (/NOEDIT)

By default, the System Builder executes in an interactive screen-editing
mode that is compatible with VT100- and VT200-series terminals. EDIT
mode lets you interactively modify system characteristics and programs.
If you want the System Builder to build a system image without entering
EDIT mode, specify the jNOEDIT qualifier. This qualifier causes the
System Builder to create the system image from the contents of the
specified data file. For example:

$ EBUILD/NOEDIT MYDATAFlLE

3.2.3 Suppressing the Display of System Image Size (/NOLOG)

After creating a system image, the System Builder displays the size of that
system image at the terminal. You can prevent the System Builder from
displaying the image size by using the jNOLOG qualifier. For example:

$ EBUILD/NOLOG MYDATAFlLE

3.2.4 Specifying a Name for the System Image File (/SYSTEM)

The System ~uilder uses the name of the data file that you specify with
the EBUILD command and the SYS file type to name your system image.
You can override this naming convention by specifying a file name with
the jSYSTEM qualifier. For example:

$ EBUILD/SYSTEM-MYSYSTEM MYDATAFlLE

The System Builder uses the data file MYDATAFILE.DAT to create the
system image MYSYSTEM.SYS.

3-4 System Development

3.3 Using Your Own Versions of VAXELN Files

You can build a system using your own versions of Digital-supplied
files ordinarily located in the VAXELN directory ELN$. A system map
shows you what files the System Builder looks in ELN$ for. To use your
own version of an ELN$ file, you must first assign your file specification
the logical name ELN$name, where name is the name of your file. For
example, to input your own CONSOLE.EXE file, use one of the following
DCL commands.

$ ASSIGN [MYFlLES]CONSOLE.EXE ELN$CONSOLE
$ DEFINE ELN$CONSOLE [MYFILES]CONSOLE.EXE

You would also need to assign the file specification to ELN$name if your
file was in the ELN$ directory but under a different name from the file it
was replacing, for example, if your file was named MYCONSOLE.EXE.

The System Builder automatically looks for a translation of ELN$CONSOLE.
If it finds a translation, the System Builder uses that file instead of
ELN$:CONSOLE.EXE. If you do not define ELN$CONSOLE, the System
Builder will use ELN$:CONSOLE.EXE.

For a list of files installed in the ELN$ directory, see the V AXELN
I nstallation Manual.

3.4 Editing System Builder Menus

When you use EDIT mode, the System Builder displays a series of menus
on your terminal screen (VTIOO- and VT200-series terminals). By editing
the menus, you can select the programs, devices, system characteris-
tics, network node characteristics, terminal characteristics, and console
characteristics that you want to include in your system image.

To ensure that VAX/VMS has the correct characteristics for your terminal,
type the following command before invoking the System Builder:

$ SET TERMINAL/INQUIRE

To guide your reading, the rest of this chapter will describe creating and
editing the data file SAMPLE.DAT. Invoke the System Builder by typing
the following command:

$ EBUILD SAMPLE

System Development 3-5

f

The System Builder displays the Main Menu (unless the data file exists
and you specify the /NOEDIT qualifier). The name of the system (the
data or system file name) on which you are working and the type of menu
being displayed appear at the top of each menu. Menu commands appear
at the bottom of the menus. Each menu command corresponds to a
function key on your terminal's keypad. On the LK201 keyboard, the DO
and HELP keys perform their named functions and keys F17 through F20
correspond to keypad keys PF1 through PF4, respectively. Table 3-2 lists
the menu commands, their corresponding keys, and brief descriptions.

Table 3-2: Menu Commands
Keypad

Command Key LK201 Key Description

BACK PF4 F20 Displays the previous menu

DELETE

DO

EXIT

HELP

QUIT

PF3

PFI

PF4

PF2

PF3

FI9

DO/F17

F20

HELP/F18

F19

Deletes a program, device, or terminal description

Activates the selected entry

Ends the System Builder session and incorporates changes

Displays brief descriptions of the menu entries or the
general System Builder interface, depending on the context

Aborts the System Builder without altering the input file
(requires confirmation with DO)

To execute a command, select a menu item and press the appropriate
key. You can select menu commands, menu entries, or entry options by
using the arrow keys (j, L +-, --+). If you are editing a menu for the first
time, default entry options are highlighted. Similarly, menu entries and
entry options become highlighted when you select them. (If you use a
VT100 terminal, you cannot see highlighting unless the terminal has the
advanced video option.)

A diamond symbol appearing at the top, bottom, or left or right edge of
a menu indicates that additional text exists. To show the additional text,
scroll the text by using the arrow keys.

You can also use menu control commands to control the menu displays.
Table 3-3 lists the control commands with brief descriptions.

3-6 System Development

Table 3-3: Menu Control Commands
Command Description

CTRL/E Moves the cursor to the end of an argument list

CTRL/H Moves the cursor to the beginning of an argument list

CTRL/R Clears the terminal screen

CTRL/U Deletes text from the cursor back to the beginning of the line

After you edit a menu, use the DO command to incorporate your edits.
The System Builder enters the specified characteristics or description into
your VAXELN system. To return to the previous menu, use the BACK
command (the System Builder does not incorporate your edits). If you
use the DO command after entering invalid input for a menu entry, the
System Builder gives you a chance to correct the error.

The following sections describe the System Builder menus. Each section
includes a figure illustrating menu entries and their defaults and a list of
menu entry descriptions. The entries for a menu might not fit on your
terminal screen. If the diamond symbol appears at the bottom of your
screen, use the Down Arrow key (1) to scroll the screen and see the rest
of the entries.

3.4.1 Main Menu

The Main Menu lists procedures you can use to build a system from
information in your data file, to edit the characteristics of the entire system
or of the network node, and to add or edit descriptions of programs,
devices, terminals, and console characteristics. Figure 3-1 shows this
menu.

If you select the Build System item on the Main Menu and use the DO
command, the System Builder creates a system image file (file type SYS)
by combining the information in your data file with the VAXELN kernel
and run-time software and exits. If a data file does not exist, the System
Builder creates a default data file and uses that file to create the system
image file. You should not select Build System until after using the Add
Program Description Menu.

System Development 3-7

Figure 3-1: Main Menu

System SAMPLE_IMAGE

Build System

Select Target Processor

Edit System Characteristics

Edit Network Node Characteristics

Edit Program Descriptions

,Add Program Description

Edit Device Descriptions

Add Device Description

Edit Terminal Descriptions

Add Terminal Description

Edit Console Characteristics

Edit Error Log Characteristics

DO I I HELP I I QUIT I I EXIT

If you select an item other than Build System and use the DO command,
the System Builder displays another menu.

3.4.2 Editing the Select Target Processor Menu

The Select Target Processor entry on the Main Menu displays the Select
Target Processor Menu. This menu allows you to specify the target your
system will run on. You must specify the target in order to build your
system. The default is Micro V AX II (KA630). Figure 3-2 shows the
Select Target Processor Menu.

If you are using the VAXStation II, or the VAXStation 2000, select
Micro V AX II as your target. If you are using an 8800 as a single pro­
cessor, select 8700.

3-8 System Development

Figure 3-2: Select Target Processor Menu

System SAMPLE_IMAGE - Select Target Processor

MicroVAX II (KA630)

MicroVAX I

rtVAX (KA620)

8500

8530

8550

8700

8800

725

730

750

DO I I HELP

3.4.3 Editing the System Characteristics Menu

BACK

If you select the Edit System Characteristics entry on the Main Menu, the
System Builder displays the System Characteristics Menu, which lists the
run-time system characteristics of the system you are building. Figure 3-3
shows this menu.

Descriptions of the entries on the System Characteristics Menu follow:

• System image - Specify the name of the system image file. If you
specified a file name with the jSYSTEM qualifier in the EBUILD
command, the System Builder displays that name here as the default.
Otherwise, the System Builder displays the name of your data file
with a SYS file type as the default.

System Development 3-9

Figure 3-3: System Characteristics Menu

System SAMPLE-IMAGE - Editing System Characteristics

System image

Debug

Console

Local Remote Both None

Yes No

Instruction emulation String Float Both None

Boot method Disk ROM Downline

Disk/volume names

Guaranteed image list

Number of jobs 16

Number of subprocesses 48

Ports 256

Pool size 384 blocks

PO Virtual size 1024 pages

P1 Virtual size 128 pages

Interrupt stack 2 pages

System region size 128 pages

Dynamic program space 0 pages

Time interval 10000 microseconds

Connect time 45 seconds

Memory limit 0 pages

EPA Yes No

DO I I HELP BACK

• Debug - Select Local to include the debugger image EDEBUGLCL
in the system image. Select Remote to include the remote debugger
EDEBUGREM in the system image. Select Both to include both
debuggers. When you include both debuggers, EDEBUGREM is the
primary debugger; EDEBUGLCL gains control only if a fatal system
error occurs. The default is Remote. For more information on the
debuggers, see Chapter 5.

3-1 0 System Development

NOTE

You might want to include a debugger during the devel­
opment of a system. You can select a debugger even if
no program has the Debug option. The selected debugger
gains control if the program does not handle an exception.

• Console - Select Yes to allow communication with the console
terminal on the target machine. The System Builder includes the
appropriate console driver and device description. If you select
Local or Both for the Debug option, the console driver and device
description are automatically included. The name for the system's
console terminal is CONSOLE:. If you select No with the debugging
option Remote, the remote VAX/VMS terminal behaves as the console
terminal, when running the remote debugger. The default is Yes.

• Instruction emulation - This entry selects emulation software for
instructions present in the full VAX architecture but not present in the
MicroVAX architecture. Select None unless you are building a system
for a Micro VAX target machine. If your target machine is a Micro VAX
I, MicroVAX II, or KA620, you must select String to include emulation
software for string instructions in the system. Float is optional. If you
select Float, the System Builder includes emulation software for the
extended-precision floating-point instructions. Selecting Both includes
emulation software for both groups of instructions. The default is
String.

You can choose the double-precision format in VAXELN Pascal and
C programs by using the compiler qualifier /NOG_FLOATING,
and you can choose the default double-precision format of the run­
time library with the command procedures DFLOATRTL.COM and
GFLOATRTL.COM. By using these qualifiers and command proce­
dures, you can omit the slower floating-point emulation software.

• Boot method - This entry indicates the method by which the system
is to be booted on the target machine. Select Disk if the system is to
be loaded and booted from a disk or tape device. Select ROM if the
system is to be loaded and booted from read-only memory (ROM).
Select Downline if the system is to be down-line loaded. The default
is Downline.

The Boot method characteristic specifies one of the following to be
the type of image header used in the system:

System Development 3-11

Disk

ROM

Downline

No header

MicroVAX ROM header

DECnet MOP image header

If you specify that a system containing the Network Service is to
be booted from a disk, a tape device, or from ROM, but you have
not specified a node address, the System Builder displays a warning
message.

• Disk/volume names - Supply device specifications and volume
names in the following format for volumes present on the target
machine:

device-specification volume-nam,­

For example:

DQAl TESTl

Programs can refer to a volume by prefixing the given name with
DISK$. For example, in Pascal:

OPEN(FILE1,FILE_NAME := 'DISK$TEST1: [RT.SRC]RXDRlVER.PAS')

Separate multiple quoted arguments with commas. The first speci­
fication identifies the default volume. The File Service mounts the
indicated volumes when the system is booted. The volume name is
optional; if you omit it or specify a volume not present in the drive,
the File Service attempts to mount the volume that is present in the
drive.

An alternative to specifying volume names on this menu is to use the
MOUNT_VOLUME procedure, which also mounts the volume present
in the drive, if you omit the volume name.

• Guaranteed image list - Specify a list of shareable images that
are referred to by programs loaded by the dynamic program loader.
Shareable images that are referred to by programs included in the
system by the System Builder are included automatically. But share­
able images referred to by programs that are not loaded until run time
would not otherwise be included.

• Number of jobs - Specify an integer in the range 1 to 32767 to
indicate the maximum number of jobs that can exist in the system at
anyone time. The number includes both user and system jobs, for
example, device drivers. This value is used to determine the number
of PO page table slots reserved in the system. The default is 16.

3-12 System Development

• Number of subprocesses - Specify an integer in the range 1 to
32767 to indicate the maximum number of subprocesses that can
exist in the system at anyone time, including both user and system
subprocesses. This value plus the number of jobs is used to calculate
the number of PI page table slots to be reserved in the system. The
default is 48.

NOTE

Overestimating the number of jobs or subprocesses intro­
duces negligible overhead into the system. For each job
specified, two bits are allocated in a system bitmap; for
each subprocess, one bit is allocated.

• Ports - Specify an integer in the range 2 to 32767 to indicate the
maximum number of message ports the system can use simultane­
ously. The default is 256.

• Pool size - Specify an integer in the range 16 to 32764 to indicate
the number of blocks necessary to store the kernel objects the system
uses Simultaneously. Each kernel object in use requires one block,
processes require three blocks, and each job requires a few additional
blocks. Pool blocks are 128 bytes long. The default is 384.

• PO Virtual size - Specify an integer in the range 128 to 32640 to
indicate the maximum number of 512-byte pages that each PO region
in the system occupies. The kernel uses this value to allocate page
tables for each job. The default is 1024. If the value supplied is not
a multiple of 128, the System Builder will round it up to the next
multiple of 128.

Demands on PO memory arise from the following sources:

• Program images (variables at the outer level and all code)

• Heap data and other dynamically allocated memory

• Created and received messages

• Accessed AREAs

• Accessed FORTRAN Commons

All PO pages that are set up for a job at build time appear under
the job's program information entry on a full EBUILD map. These
PO pages include any demand zero pages that are not stored in the
system image on disk. Also, the Pascal NEW procedure dynamically
adds to the heap.

System Development 3-13

• PI Virtual size - Specify an integer in the range 128 to 32640 to
indicate the maximum number of 5I2-byte pages that each PI region
in the system occupies. The kernel uses this value to allocate page
tables for each process created in a job. The default is 128. If the
value supplied is not a multiple of 128, the System Builder will round
it up to the next multiple of 128.

Demands on PI memory arise from the following sources:

• The user stack

• The kernel stack

• The process-context page

All process-local variables (those declared inside a block) are placed
on the user or kernel stack in PI space, depending on which mode the
process is running in. Variables declared within the Pascal PROGRAM
block and the C main or first function are process-local variables for
the master process of a job. Furthermore, all call frames are placed on
the appropriate stack.

3-14 System Development

NOTE

The PO and PI virtual size parameters are used as the maxi­
mums for all jobs and processes in the system. Therefore, if
anyone job or process requires a large virtual PO or PI size,
every job or process in the system will have that amount as
its maximum virtual memory size. On rtVAX systems, this
can cause a problem.

Because rtVAX systems require that all memory for page
table entries be contiguous in physical memory, overesti­
mating the PO or PI virtual size can create much greater
overhead than on other systems. When each job's page
table is set up, memory for page table entries is allocated
all at one time and cannot be expanded dynamically.
Therefore, when each job is created, sufficient physical
memory is allocated for the page table entries for both
the PO and PI virtual sizes specified on the menu. When
each subprocess is created, sufficient physical memory is
allocated for the PI virtual size specified on the menu. If
more virtual memory is specified than is needed, memory
will be wasted to provide page-table entries for that unused
space.

•

•

•

•

•

•

Overestimating the PO or PI virtual size on non-rtVAX sys­
tems causes little overhead, since physical memory for page
table entries is allocated dynamically. If memory within the
virtual space specified is not required, no memory for page
table entries for that space will be allocated.

Interrupt stack - Specify an integer in the range 2 to 8192 to
indicate the maximum number of pages required for the system's
interrupt stack. The default is 2.

System region size - Specify an integer in the range 0 to 32767 to
indicate the maximum number of pages required by interrupt service
communication regions and, if selected, the performance analyzer and
error-logging buffers. The kernel uses this value to allocate page table
entries for the system during the system's start-up. The default is 128.

Dynamic program space - Specify an integer in the range 0 to 32767
to indicate the number of memory pages the kernel can allocate for
loading programs dynamically into the running system. The default is
O.
Time interval - Specify an integer in the range 1 to 120000000 (mi­
croseconds) to indicate the interval between interval timer interrupts.
The value you specify is the minimum time that can be used for time­
dependent operations. Each interrupt increments the system time and
starts time-dependent scheduling in the system. On some processors
(including the MicroVAX), you cannot alter the time interval. The
default is 10000.

Connect time '- Specify an integer in the range 1 to 3599 to indicate
the seconds allowed to elapse before a circuit connection must be
accepted. The default is 45.

Memory limit - Specify an integer in the range 0 to 65535 to
indicate the amount of physical memory in pages that is available for
use by the system. The default is O. If you specify the default, the
system will use all the memory available on the target configuration.

You need to specify a limit only in special applications, such as for a
system that contains a multiported memory. The multiported memory
would be configured at the top of memory, and the system size you
specify would not include the multiported memory. In that case,
the kernel would not allocate any multiported memory for general
needs. You can still use the ALLOCATE-MEMORY or ALLOCATE_
SYSTEM_REGION services to access this memory.

System Development 3-15

• EP A - Select Yes to allow the collection of performance data for the
system. The System Builder includes the VAXELN Performance Utility
Collector. The default is No. For more information on the VAXELN
Performance Utility, see Chapter 6.

3.4.4 Editing the Network Node Characteristics Menu

If you select the Edit Network Node Characteristics entry on the Main
Menu, the System Builder displays the Network Node Characteristics
Menu. The items on this menu define the characteristics for the Network
Service and the Authorization Service. Figure 3-4 shows this menu.

Figure 3-4: Network Node Characteristics Menu

3-16 System Development

System SAMPLE_IMAGE - Editing Network Node Characteristics

Network service

Name server

File access listener

Network device

Node name

Node address

Yes

Yes

Yes

UNA

o

No

No

No

QNA

Authorization required Yes No

BNT Other

Authorization service Local Network None

Authorization file

Default Ule

AUTHORIZE.DAT

[1,1]

Node triggerable Yes No

Network segment size 576 bytes

Remote command language Yes No

DO 1 1 HELP 1 L-! __ ---'I! BACK

You can edit the following network node characteristics:

• Network service - Select Yes if the System Builder is to include
the Network Service in your system. The default is Yes. For general
information on setting up a network, see the VAXELN Run-Time
Facilities Guide. .

• Name server - Select Yes if the the Network Name Service will be
included in the system image. If you select No, the Name Service
will not be included. Without the Name Service, your system cannot
create or translate universal names. For example, you cannot use the
NAME$UNIVERSAL argument with the EPASCAL CREATE_NAME
procedure. Excluding the Name Service on stand-alone VAXELN
nodes can provide savings in overhead. The default is Yes.

• File access listener - Select Yes if the System Builder is to include
the file access listener (FAL) server in your system. The FAL allows
access to files from a remote node, using the device name or a null
volume name. If you select Yes, you should also select Yes£or the
Network service menu item. Otherwise, the System Builder issues an
informational message. The default is Yes.

• Network device - This entry lets you select the type of driver that
connects a VAXELN machine to the Ethernet in network applications.
Select UNA for the DIGITAL Equipment UNIBUS Adapter (DEUNA).
Select QNA for the DIGITAL Equipment Q-bus Adapter (DEQNA).
Select BNT for the DIGITAL Equipment BI-Based Ethernet Adapter
(DEBNT). The default is QNA.

After you make your selection and use the DO command, the System
Builder displays the Device Description Menu, letting you specify a
device description for the network device driver. The menu entry
Name displays the correct network device. If you specify QNA or
UNA, the Regi~ter address and Vector address entries display the
appropriate default (nonzero) values, and the Interrupt priority entry
displays priority level 4, rather than the normal default of 5. If you
select BNT, you must specify the correct BI bus and adapter numbers
for your configuration.

If you select Other for the Network device entry, the System Builder
will include the driver for the device you specify, if you select Yes
for the Autoload driver entry on the Device Description Menu. The
Device Description Menu is described in Section 3.4.6.

NOTE

The driver you select is included in the system only if you
select Yes for the Network service entry.

System Development 3-17

• Node name - Specify the node name by which a VAXELN node is
identified in the network. The node name can have a maximum of six
characters and must be unique in the network. If your system image
is to be down-line loaded from your development system, you do not
have to specify a node name; the target machine receives the proper
node name automatically. For more information about adding node
names to a network and about down-line loading, see Chapter 4.

• Node address - Specify the address of a VAXELN node in the
network. If your system image is to be down-line loaded from your
development system, you do not have to specify a node address; the
target machine receives the proper node address automatically. The
address can have one of three forms:

nnn

aaa.nnn

nn-nn-nn-nn-nn-nn

DECnet node number

DECnet area and node number

Ethernet address consisting of 48 bits (4 bits
per hex digit)

The a and n characters indicate digits. The default address is O.
For more information about node addresses and node numbers, see
Chapter 4.

• Authorization required - Select Yes if the Network Service is
to restrict inbound circuit connections to users it can authorize by
communicating with the Authorization Service. Select No if the
Network Service is not to authorize inbound connections by using the
Authorization Service. The default is No.

• Authorization service - Select Local if an Authorization Server that
serves a local node is to be included in the system. Select Network
if an Authorization Server that serves an entire local area network is
to be included in the system. More than one node can have a local
server, but there should be only one network Authorization Server.
The default is None. For general information on system security, see
the V AXELN Run-Time Facilities Guide.

• Authorization file - Specify the name of the data file that the
Authorization Service should use. The data file must exist on the
same node as the Authorization Service or on a node that the service
is authorized to access (for example, one with its own local service).
The default file is AUTHORIZE.DAT.

• Default UIC - Specify the default user identification code (UIC) for
users not explicitly authorized to use the system. The default is [1,1].

3-18 System Development

• Node triggerable - Select Yes to enable down-line load triggers.
When the triggers are enabled and the Network Service is included,
the EDEBUG or NCP facility can rem.otely trigger the system. When
the Network Service is not included, an attempt to trigger will be
ignored. You should select Yes during development so you can
remotely load your system. The default is Yes.

• Network segment size - Specify an integer in the range 192 to 1470
(bytes) to indicate the maximum segment size of a message traveling
over the network. This value applies to intermediate routing nodes
between the source and destination of a message. The value should
be the same in each VAXELN system on a particular network. This
characteristic should also correspond to the EXECUTOR BUFFER SIZE
on non-VAXELN systems. The default is 576.

• Remote command language - Select Yes to enable the VAXELN
Command Language (ECL) to be executed from a VAX/VMS host.
The System Builder includes ECL in the system. The default is No.
For a discussion of ECL, see the VAXELN Run-Time Utilities Guide.

3.4.5 Editing the Program Description Menu

Each program in a system (except the kernel, the shareable run-time li­
brary images, and the. autoloaded device drivers) must have a program
description. If you select the Edit Program Descriptions entry on the
Main Menu, the System Builder displays the names of programs for which
descriptions exist. Each program in the list is a VAXELN job. Select a
program and use the DO command. The System Builder displays the
Program Description Menu for that program and lets you edit the pro­
gram's description. If no descriptions exist, the System Builder displays an
empty menu. Use the DO command to display the Program Description
Menu and add a program description. Figure 3-5 shows this menu.

If you select the Add Program Description entry on the Main Menu, the
System Builder displays the Program Description Menu and lets you add a
program description.

The System Builder adds some program descriptions automatically. For
example, if you select the File access listener entry on the Network Node
Characteristics Menu, the System Builder automatically adds the entry's
image (FALSERVER.EXE) with default program characteristics. These
system images and descriptions do not appear in the list of programs on
the Edit Program Descriptions Menu.

System Development 3-19

Figure 3-5: Program Description Menu

System SAMPLE_IMAGE - Editing Program

Program

Debug

Run

Init required

Mode

User stack (initial)

Kernel stack

Yes

Ves

Yes

User

1

1

Job priority 16

Process priority 8

Job port message limit 16384

Powerfailure exception Yes

Argument(s)

No

No

No

Kernel

pages

pages

messages

No

DO I I HELP I I DELETE BACK

The default menu settings are good starting points for most values; try
using the defaults before you change them.

Descriptions of the Program Description Menu entries follow:

• Program - Specify the name of the program image you are describ­
ing. For example, if the image file is named MYDRIVER.EXE, specify
MYDRIVER. If you want the system to associate different character­
istics with different jobs running the program, you can describe the
program more than once. For example, you might want to include
two descriptions of a program so you can debug one version but not
the other.

To include multiple descriptions, use the same image name in each
description. The System Builder loads the image once. The different
descriptions, however, apply to the different jobs created to run the
image.

3-20 System Development

The System Builder distinguishes descriptions in the system map. The
system map indicates any additional descriptions of a program by the
program name followed by a semicolon and a number. The number
1 indicates the first additional description; for the original description,
the program name does not have a suffix. You might need to specify
a name with a suffix in calls to the CREATE_JOB procedure or with
the debugger's CREATE JOB command.

• Debug - Select Yes if a job that runs the program is to pass control
to the debugger when the job is first eligible to run. The default is No.
See Chapter 5 for details about debugging.

• Run - Select Yes if a job running the program is to be created and
eligible to start when the system starts executing. The default is Yes.

• Init required - Select Yes if the program is to execute initialization
code - that is, if the program calls the INITIALIZATION_DONE
procedure. If several programs call this procedure, the System Builder
places them in order of job priority. (The System Builder, however,
gives debuggers and device drivers predetermined priorities and places
them accordingly.) The default is No.

• Mode - Select Kernel if the program is a device driver (programs
calling CREATE_DEVICE) or if the program uses routines that require
kernel mode, for example, the ALLOCATE_MAP, MFPR, MTPR, and
FREE_MAP routines. Select User mode (the default) if the program
does not require kernel mode.

• User stack (initial) - Specify an integer in the range 1 to 32767
to indicate an initial stack size for user-mode calls to user-defined
procedures and to most predeclared procedures. The default is 1.
The kernel extends the stack as needed while a job executes. User
mode programs run off the user stack except when they call kernel
procedures or change to kernel mode.

• Kernel stack - Specify an integer in the range 1 to 32767 to indicate
the stack size for programs that run in user mode and call kernel
procedures or that run in kernel mode. The default is 1. However,
most kernel-mode programs require more than one page. The kernel
does not extend the kernel stack automatically. If a program attempts
to use too much of the kernel stack, the process receives an exception.
You can avoid the exception by using the ALLOCATE_STACK kernel
service.

• Job priority - Specify an integer in the range 0 to 31 to indicate the
program's job priority. The highest priority is 0, the lowest priority is
31, and the default is 16. Try running the program with the default
priority. If necessary, change the priority to optimize the system's
performance.

System Development 3-21

NOTE

Certain system jobs and drivers run at low priority. For
example, the remote debugger runs at priority 3 and the
Ethernet driver at priority 1. Assigning a job a higher
priority than these system jobs and drivers may affect the
system adversely. For example, the remote debugger will
not get control.

• Process priority - Specify an integer in the range 0 to 15 to indicate
the program's process priority. The highest priority is 0, the lowest
priority is 15, and the default is 8. The process priority is the initial
priority of the master process and the subprocesses it creates. Try
running the program with the default priority. If necessary, change
the priority to optimize the system's performance.

• Job port message limit - Specify an integer in the range 0 to 16384
to indicate the maximum number of messages that can be queued to
the job's port without generating a wait or an error. The default is
16384.

• Powerfailure exception - Select Yes if the program is to receive
the exception KER$_POWER_SIGNAL when the processor restarts
after a power failure. Assign this exception to programs that will
establish an exception handler for KER$_POWER_SIGNAL. This type
of handler lets you take general, systemwide action when power fails;
for example, it lets you reset the system time. Device drivers generally

.need to handle power recovery with interrupt service routines. This
use of interrupt service routines is not affected by your selection of
this program description. The default is No.

• Argument(s) - Specify the program's arguments. Program arguments
are strings. If an argument includes embedded spaces, enclose the ar­
gument in quotation marks (for example, "my arg"). Separate multiple
arguments with commas. The requirements for and the meaning of
program arguments depend on the program. For example, device
driver programs generally require arguments that supply names for
the devices they are to control.

The most frequently used argument is a file specification used to
redirect terminal input or output to a file or a device other than the
controlling terminal. The first three program arguments provide
equivalence strings for the reserved file specifications SYS$INPUT:,
SYS$OUTPUT:, and SYS$ERROR:. These file specifications redirect
terminal input, terminal output, and error message output, respec­
tively. You can omit the equivalence string for one of these file
specifications by specifying a null program argument in that argu­
ment's position. If you specify a null program argument, the argument

3-22 System Development

defaults to CONSOLE:. You can also use this method of redirecting
I/O with the CREATE_JOB procedure.

In EP ASCAL, the program arguments associated with the predeclared
file variables INPUT and OUTPUT are associated with SYS$INPUT:
and SYS$OUTPUT:, respectively. The order in which you spec-
ify INPUT and OUTPUT does not matter. There is no default
for SYS$ERROR: in EP ASCAL. (See the V AXELN Pascal Language
Reference Manual) for more information about I/O redirection in
EPASCAL.

NOTE

Redirecting terminal I/O in a mixed-language application,
in which terminal I/O is performed from more than one
language, is unsupported.

If you enter more arguments than fit on the screen, the argument
display scrolls to the left. Use the Left Arrow (+-) and Right Arrow
(~) keys to scroll the argument list. Use control commands to move
around the argument list, delete arguments, or clear the screen (see
Section 3.4).

3.4.6 Editing the Device Description Menu

Each device that is part of the target machine's hardware configuration
must have a device description. Device descriptions consist of a device
name, register address, vector address, interrupt (bus-request) priority, BI
node number, and adapter number. In most cases, device descriptions
cause the associated device driver to be built into the system.

If you select the Edit Device Descriptions entry on the Main Menu,
the System Builder displays the names of devices for which descriptions
exist. Select a device and activate the DO command. The System Builder
displays the Device Description Menu for that program and lets you edit
the device's description.

If no descriptions exist, the System Builder displays an empty menu.
Activate the DO command to display the Device Description Menu and
add a device description. Figure 3-6 shows the menu.

System Development 3-23

Figure 3-6: Device Description Menu

System SAMPLE_IMAGE - Editing Device

Name

Register address %00000000

Vector address %0000

Interrupt priority 5

BI number 0

Adapter number 0

Autoload driver Yea No

Default file spec

DO I I HELP I I DELETE I I BACK

If you select the Add Device Description entry on the Main Menu, the
System Builder displays the Device Description Menu and lets you add a
device .description.

You must specify the control! status register addresses, interrupt vector
addresses, priorities, BI number, and adapter number for bus devices as
described in the appropriate device's hardware manual for your system
configuration. For devices supported by DIGITAL-supplied drivers, see
Table 3-4. (The device names listed in Table 3-4 are the conventional
names for the first device controller of the specified type and cause the
appropriate driver to be loaded.)

Table 3-4: Device Information

Device Description

ADV11 Analog in-
put/ output board.1

Analog in-
put/ output board. 1

AXV11

IDo not autoload driver.

3-24 System Development

Register
Name Address

ADV %0170400

AXV %0170400

Vector
Address

%0400

%0400

BI
num- Adapter

Priority ber number

4 0 0

4 0 0

Table 3-4 (Cont.): Device Information
BI

Register Vector num- Adapter
Device Description Name Address Address Priority ber number

CXY08 Q-bus-based TTA %00760440 %0300 4 0 0
quad-height 8-
line asynchronous
full-duplex serial
multiplexer with
modem support.

CXA16 Q-bus-based i6- TTA %00760440 %0300 4 0 0
line asynchronous
full-duplex se-
rial multiplexer.
Modems are not
supported.

CXB16 Q-bus-based 16- TTA %00760440 %0300 4 0 0
line asynchronous
full-duplex se-
rial multiplexer.
Modems are not
supported.

DEBNA BI-based Ethernet XBA %0000000 %0000 4 0-3 BI node
controller. number

DEQNA DIGITAL Q-bus-to- XQA %0774440 %0120 4 0 0
Ethernet Adapter.

DEUNA DIGITAL UNIBUS- XEA %0774510 %0120 5 See 2 See 2

to-Ethernet Adapter.

DHQ11 Micro VAX multi- TTA %0760440 %0300 4 0 0
plexer. Modems are
supported on all
eight lines.

DHV11 MicroVAX multi- TTA %0760440 %0300 4 0 0
plexer. Modems are
supported on all
eight lines.

2For devices connected to the BI-to-UNIBUS Adapter (DWBUA), specify the BI and adapter numbers listed
for the DWBUA.

System Development 3-25

Table 3-4 (Cont.): Device Information
BI

Register Vector num- Adapter
Device Description Name Address Address Priority ber number

DLVJl Asynchronous serial DLV %0176500 %0300 4 0 0
interface - same as
the DLVll-J. I

DMF-32 VAX-ll/730 or LCA %07603403 %03203 5 0 0
VAX-ll/750 line
prin ter, terminals, TTA
DRllC parallel
I/O. LC is the
conventional name
for the printer
controller, and TT is
for terminals.

DRB32 BI-based DMA DRB %0000000 %0000 4 0-3 BI node
parallel interface. I number

DRQ3B Q-bus-based DRQ %0760740 %0300 4 0 0
DMA parallel
I/O interface.1

DRV11 High-density paral- DRV %0764160 %0340 4 0 0
leI interface. I

DWBUA BI -to-UNIBUS BUA %0000000 %0000 4 0-3 BI node
adapter. number

DZQ11 MicroVAX mul- TTA %07601004 %0300 4 0 0
tiplexer. 4 asyn-
chronous lines with
modem control.

DZVll MicroVAX mul- TTA %07601004 %0300 4 0 0
tiplexer. 4 asyn-
chronous lines with
modem control.

IEQll Dual IEC/IEEE 488 CPA %0764100 %0270 4 0 0
bus controller.

IDo not autoload driver.

3Specify the same addresses for every device on the same DMF-32.

4The DZV11 is shipped with a register address of %0760010, which must be changed to %0760100 for a
MicroVAX.

3-26 System Development

Table 3-4 (Cont.): Device Information

BI
Register Vector num- Adapter

Device Description Name Address Address Priority ber number

KDA50 Micro VAX disk DUA %0772150 %0154 4 0 0
controller. The
KDA50 controller
supports RAxx-
series disks.

KDB50 BI RAxx-series disk BDA %0000000 %0000 4 0-3 BI node
adapter. number

KWVll Programmable KWV %0170420 %0440 4 0 0
real~time clock.1

LPVll MicroVAX line LPA %0777514 %0200 4 0 0
printer controller.

RQC25 Q-bus-based disk DUA %0772150 %0154 4 0 0
controller for the
RC25.

RQDXn Micro VAX disk DUA %0772150 %0154 4 0 0
controller. The
RQDXn controller
supports both RXnn
diskettes and RDnn
Winchester disks.

RUC25 Uni-bus-based disk DUA %0772150 %0154 4 0 0
controller for the
RC25.

TQK50 Cartridge tape MUA %0774500 %0260 4 0 0
controller for the
TK50.

TQK70 Cartridge tape MUA %0774500 %0260 4 0 0
controller for the
TK70.

TU58 Console tape for DDA %00000005 %0360 4 0 0
VAX-ll/730 and
VAX-ll/750 pro-
cessors.

1 Do not autoload driver.

5Do not specify a register address, because the device is controlled by internal processor registers.

System Development 3-27

Table 3-4 (Cont.): Device Information

Device

TUB1

UDA50

VAX-
11/730
inte-
grated
con-
troller

BI
Register Vector num- Adapter

Description Name Address Address Priority ber number

Reel tape system. MUA %0774500 %0260 5 0 0

UNIBUS disk DUA %0772150 %0154 5 0 0
adapter for RAxx-
series disks on the
VAX-11/730 or
VAX-11/750.

A controller that DQA %0775606 %0250 5 0 0
supports the
RB02/RBBO disk,
which is the same
as the RL02/RBO
disks.

In cases where more than one device controller is permitted on the same
backplane (such as the DZVll multiplexer in MicroVAX systems), the
addresses shown in Table 3-4 are for the first such controller. For further
information about additional controllers, see the appropriate device's
hardware manual or, for MicroVAX devices, the MicroVAX I Owner's
Manual or Micro VAX II Owner's Manual.

Devices with multiple interrupt vectors require one device description; the
additional vectors are specified with arguments to the CREATE_DEVICE
procedure.

Descriptions of the Device Description Menu entries follow:

• Name - Specify a device name that describes the device controller .
Programs use the device name as an argument to the procedure
CREATE_DEVICE (usually to call a driver program). For example,
if the name of a terminal controller is TTA, its driver program is
given TTA as a program argument. The driver program uses the
device name as an argument to the CREATE_DEVICE procedure.
When specifying terminals, you must describe individual lines by
using terminal descriptions, and you must name individual lines
with a controller name and a line number (for example, TTAl). See
Section 3.4.7 for information about terminal characteristics.

3-28 System Development

In the VAXELN documentation, conventional device names are used.
For example, DQAI is used for a disk controlled by the VAX-II/730
Integrated Disk Controller. However, you can specify your own device
name. (See also the discussions below of the Autoload driver and
Default file spec menu items for the effect the device name has on
automatic device driver loading.)

You must use the device name you specify consistently in various
contexts (that is, in different types of calls).

• Register address - Specify a register address in the range
%00000000 (the default) to %00777777 to indicate the physical
address of the device's first device control register. Use I8-bit ad­
dresses for Q-bus and UNIBUS devices, including devices connected
to a DIGITAL BI-to-UNIBUS Adapter. You can specify the address in
decimal, octal (%0), or hexadecimal (%X). For the correct value, see
Table 3-4 or consult the device's hardware manual.

For BI processors, the kernel assigns the proper number. Therefore,
you must use the default value, %00000000.

NOTE

The register address is extended, letting you specify
complete VAX physical addresses in the I/O space for
synchronous backplane interconnect (SBI) interface boards.

A driver program can obtain the address by using an output argument
with the CREATE_DEVICE procedure.

• Vector address - Specify a vector address in the range %0000 (the
default) to %0776 to indicate the address of the device's first interrupt
vector. For UNIBUS and Q22-bus devices, specify the vector that the
device asserts on the bus when its interrupt request is acknowledged.
The VAX processor uses the address as an index to the correct page
of the system control block (SCB). The System Builder fills in the SCB
vector in a call to the CREATE_DEVICE procedure. For the correct
value, see Table 3-4 or consult the device's hardware manual.

For BI processors, the kernel assigns the proper number. Therefore,
you must use the default, value, %0000.

A driver program can obtain the address of the vector of the device, or
the addresses for multiple-vector devices, by using an output argument
with the CREATE_DEVICE procedure.

System Development 3-29

• Interrupt priority - Specify an integer in the range 4 to 7 to indicate
the device's bus-request priority. The highest priority is 4, the lowest
priority is 7, and the default priority is 5. These values correspond to
the VAX interrupt priority levels 14 (hexadecimal) to 17 (hexadecimal).
For the correct value, see Table 3-4 or consult the device's hardware
manual.

You can obtain the resulting interrupt priority level by specifying an
output argument with the CREATE_DEVICE command.

• HI number - The BI number indicates the number of the BI bus
on which the device is located. If you are editing a description for
an 8800 or 8700 processor, specify an integer in the range 0 to 3. If
you are editing a description for an 8550 or 8500 processor, specify
2 or 3. You must also use the default register and vector addresses
(%00000000 and %0000), an adapter number, and possibly the
default file specification for the autoload driver.

If you are editing a description for a UNIBUS device connected to a
DIGITAL BI-to-UNIBUS Adapter, specify the BI number containing
the UNIBUS adapter. In addition, you must specify an 18-bit register
address, a UNIBUS vector for the vector address, and the BI node
number for the UNIBUS adapter as the adapter number.

In all other cases, specify 0 (the default).

NOTE

If you specify node 0 and the register address %0000000,
the console is assumed.

• Adapter number - If you are editing a description for an 8800,
8700, 8550, or 8500 processor, specify an integer in the range 0 to
15. You must also specify the default register and vector addresses
(%00000000 and %0000), a BI number, and the appropriate default
file specification for the autoload driver.

If you are editing a description for a UNIBUS device connected to
a DIGITAL BI-to-UNIBUS Adapter, specify the BI node number for
the UNIBUS adapter. In most cases, this is O. In addition, you must
specify an 18-bit register address, a UNIBUS vector for the vector
address, and a BI number containing the UNIBUS adapter.

If your target processor is a dual UNIBUS 11/750, specify 0 or 1 for
the UNIBUS adapter number.

In all other cases, specify 0 (the default) for the adapter number.

3-30 System Development

• Autoload driver - Select Yes if the System Builder is to include the
appropriate device driver image in your system image. Select No if
you want to include the driver in the system by entering it on the
Program Description Menu. You might want to disable the Autoload
driver feature while you are developing a new device driver so you
can assign the Debug characteristic to the program.

If you select Yes, the System Builder searches the list of program
descriptions for a program that has the Kernel and Init required
characteristics and that has at least one program argument matching
the device name. The System Builder gets a driver (if one exists) from
ELN$:ccDRIVER.EXE, where cc is the first two characters in the device
name.

NOTE

You can override the default by specifying a Default file
spec.

The name specified by the device description is passed to the driver
as a program argument. A program description is provided that has
appropriate program characteristics, including:

• A high job priority (such as 4)

• A 4-page kernel stack

• The Kernel characteristic

• The Init required characteristic

Use the /MAP qualifier to examine the results. The Autoload driver
feature is the easiest way to include drivers, including user-written
drivers.

The default is Yes.

The selection and loading of terminal drivers other than the console
driver is controlled by the Terminal type entry on the Terminal
Description Menu. However, you must supply a device description for
the terminal controller, such as the DMF-32 asynchronous controller.
You can then use the controller's device name with an appended digit
as a Terminal name on the Terminal Description Menu to designate
the characteristics of the particular terminal attached to that line.

NOTE

When autoloading a terminal driver, you must specify at
least one terminal name on the Add Terminal Description
Menu for each terminal controller.

System Development 3-31

You might want to load a line printer driver with an explicit
program description, which lets you specify a universal
name as a second program argument. Assigning a universal
name lets you access the printer from remote nodes.

• Default file spec - By default, the system derives the name of the
device driver file from the first two characters of the device name
(ELN$:ccDRIVER.EXE). If you select Yes for the Autoload driver
entry, you can use a different device, directory, or file name. For
example, separate versions of the DU or MU drivers are required by
some machine architectures. The Default file spec entry lets you use
one driver device name for different machine types.

When entering a Default file spec, you must specify at least a file
name. The device, directory, and file type are optional; the default
device/directory is the logical name ELN$, and the default file type is
EXE.

Specify BDDRIVER for a KDB50. The System Builder uses the default
for all other drivers.

3.4.1 Editing the Terminal Description Menu

Each terminal connected to an asynchronous serial controller line must
have a terminal description. You must include a device description for the
asynchronous controller (for example, the DMF-32 or DZVll).

NOTE

Describe the console terminal on the Console Characteristics
Menu.

If you select the Edit Terminal Descriptions entry on the Main Menu,
the System Builder displays the names of terminals for which descriptions
exist. Select a terminal and activate the DO command. The System
Builder displays the Terminal Description Menu for that terminal and lets
you edit the terminal's description.

If no descriptions exist, the System Builder displays an empty menu.
Activate the DO command to display the Terminal Description Menu and
add a terminal description. Figure 3-7 shows the menu.

3-32 System Development

Figure 3-7: Terminal Description Menu

System SAMPLE_IMAGE - Editing Terminal

Terminal

Terminal type DMF DZ DH CX16 CXOB
OTHER

Speed 9600

Parity Yes No

Parity type Odd Even

Display type Scope Hardcopy

Escape recognition Yes No

Echo Yes No

Pass all Yes No

Eight-bit Yes No

Modem Yes No

DDCMP Yes No

Command language Yes No

DO I I HELP I I DELETE I I BACK

If you select the Add Terminal Description entry on the Main Menu, the
System Builder displays the Terminal Description Menu and lets you add
a terminal description.

You can edit the following entries on the Terminal Description Menu:

• Terminal - Specify the name of a terminal, using a controller device
name followed by a unit number; for example, TTAO is the first line
on controller TTA.

• Terminal type - This entry specifies the type of controller to be used
for terminals. Table 3-5 describes the choices displayed.

System Development 3-33

Table 3-5: Terminal Types
Entry Description

DMF The asynchronous lines on a UNIBUS DMF-32 controller

DZ The DZV11 interface on a MicroVAX processor

DH The DHV11 interface on a MicroVAX processor

CX16 The CXA16 and CXB16 interfaces on the Q-bus

CX08 The CXY08 interface on the Industrial VAX

Your selection indicates the terminal driver for the controller type that
is to be loaded. The terminal name (for instance, TTA1) designates a
terminal in programs. The default is DZ.

If you select OTHER, the System Builder searches for a device name
whose first three characters match the first three characters of the
name you specify for the Terminal entry. This option lets you create
descriptions for user-written terminals.

• Speed - Specify the baud rate for input and output on the terminal
line. Possible values are:

50

75

110

134

150

30Q

600

1200

1800

The default is 9600.

2000

2400

3600

4800

7200

9600

19200

38400

• Parity - Select Yes to enable parity checking on the terminal line.
The default is No.

• Parity type - If parity checking is enabled, select Odd if you want
odd parity. Select Even if you want even parity. The default is Even.

• Display type - Select Scope if the attached terminal is a cathode ray
tube (CRT) terminal, such as a VT100 or VT200. Select Hardcopy if
the attached terminal is a hard-copy terminal. The default is Scope.
This setting is ignored for a DDCMP line.

• Escape recognition - Select Yes if the terminal driver program is
to check whether the format of escape sequences conforms to ANSI
format. This setting is ignored on a DDCMP line. The default is Yes.

• Echo - Select Yes if characters are to be echoed on the terminal
for read operations. This setting is ignored for a DDCMP line. The
default is Yes.

3-34 System Development

• Pass all - Select Yes if control characters are to be passed to user
programs as ordinary input instead of being interpreted by the driver
program. This setting is ignored for a DDCMP line. The default is
No.

• Eight-bit - Select Yes if the attached terminal uses 8-bit ASCII
characters. This setting is ignored for a DDCMP line. The default is
No.

• Modem - Select Yes if a modem is attached to the line. Modems are
supported only on the DHVl1 and DMF-32 controllers. The default is
No.

• DDCMP - This entry specifies whether the terminal line should use
the DIGITAL Data Communications Message Protocol (DDCMP) for
asynchronous DECI)et communication with another system. Select
Yes if the line acts as a point-to-point full-duplex PDCMP link. Select
No if the line acts as a regular terminal line. The default is No.

• Command language - Select Yes to enable the entering of ECL
commands at the terminal. The System Builder includes ECL in the
system. The default is No.

3.4.8 Editing the Console Characteristics Menu

If you select the Edit Console Characteristics entry on the Main Menu,
the System Builder displays the Console Characteristics Menu. Items on
this menu have the same meanings as they do for terminal descriptions,
but the settings apply only to the console terminal on the target machine.
Figure 3-8 shows this menu.

The entries you can describe on the Console Characteristics Menu follow:

• Display type - Select Scope if the attached terminal is a CRT
terminal. Select Hardcopy if the attached terminal is a hard-copy
terminal. The default is Hardcopy.

• Escape recognition - Select Yes if the terminal driver program is to
check that the format of escape sequences for input conforms to ANSI
format. The default is Yes.

• Echo - Select Yes if input characters are to be echoed on the terminal
for read operations. The default is Yes.

System Development 3-35

Figure 3-8: Console Characteristics Menu

•

•

•

System SAMPLE - Editing Console Characteristics

Display type Scope Hardcopy

Escape recognition Yes No

Echo Yes No

Pass all Yes No

Eight-bit Yes No

Command language Yes No

DO I I HELP I I BACK

Pass all - Select Yes if control characters are to be passed to user
programs as ordinary input instead of being interpreted by the driver
program. The default is No.

Eight-bit - Select Yes if the attached terminal uses 8-bit ASCII
characters. The default is No.

Command language - Select Yes to enable the entering of ECL
commands at the console terminal. The System Builder includes ECL
in the system. The default is No.

3.4.9 Editing the Error Log Characteristics Menu

If you select the Edit Error Log Characteristics entry on the Main Menu,
the System Builder displays the Error Log Characteristics Menu. This
menu enables error and event logging. You use the VAX/VMS Error
Log Utility to process the information generated by your selections on
this menu. The reports produced by the VAX/VMS Error Log Utility are
primarily intended to assist DIGITAL field service personnel.

V AXELN error log files have entries for the following events:

•

•

Errors: device errors, device time outs, machine checks, bus errors,
memory errors, asynchronous write errors, undefined interrupts, and
bugchecks

Volume changes: volume mounts and dismounts

3-36 System Development

• System events: cold start-ups, warm start-ups, system failures, and
time stamps

The error log file can be created on the target· system or on a remote
system over the network.

To create the error log file on a remote node, you must use the Error Log
Server (ELSE) (see Appendix B). When you create the error log file on the
target, you must transfer the file to a VAX/VMS system in order to use
the VAX/VMS Error Log Utility. If the target is connected to a VAX/VMS
system by the Ethernet, you can use the DCL COPY command to transfer
the file. Alternatively, you can include ECL in your VAXELN system and
use the ECL COPY command to write the file to a storage medium that
can be moved to a VAX/VMS system.

Locally created error log files have a time format that differs from remotely
created files. VAXELN only records the elapsed time from the system boot.
Files created on VAX/VMS systems have absolute times.

For descriptions of the VAX/VMS Error Log Utility, see the following:

• VAX/VMS Error Log Utility Reference Manual
• VAX/VMS System Manager's Reference Manual
• Guide to VAX/VMS System Management and Daily Operations

Figure 3-9 shows the Error Log Characteristics Menu.

Figure 3-9: Error Log Characteristics Menu

System SAMPLE_IMAGE - Editing Error Log Characteristics

Error logging Local Remote None

Number of buffers 2 pages

Error log location

DO " HELP ,'--, ---, , BACK

System Development 3-37

You can edit the following entries on the Error Log Characteristics Menu:

• Error legging - If you select Local, the System Builder includes local
error logging in the system. If you select Remote, the System Builder
includes remote error logging in the system. None is the default.

NOTE

With the possible exception of applications with very
critical real time requirements, error logging will have
minimal impact on run-time performance.

• Number of buffers - Specify an integer in the range 2 to 65535 to
indicate the number of 512-byte pages allocated for error log buffers.
The Number of buffers is ignored if you deselect error logging. The
default and minimum is 2.

• Error log location - Specify the location where the error log file is to
be written. If you select Remote, the location is the node number of
the remote system. If you select Local, the location is a file specifica­
tion. The device name must be entered in the Disk/volume names
field of the System Characteristics Menu.

To assist field service personnel, DIGITAL recommends that the file
specification have the following form:

[sysn.syserr]error log.sys

where n is a hexadecimal digit 0 through F. An example of a complete
file specification for a local error log file would be:

DUAO:[SYS2.SYSERR]ERRORLOG.SYS

You may want to build two versions of a system, one with and one
without error logging. Then if problems occur, you can run the version
with error logging to analyze the problem. If a VAXELN system does not
include error logging and a fatal event occurs, bugcheck information will
be displayed at the system console, if one is attached.

3-38 System Development

Chapter 4

Booting and Down-Line Loading

After you use the System Builder to create a system image, you can boot
the image from a disk or down -line load the image from your host system.
This chapter explains how to perform these operations.

The VAXELN installation procedure creates the system images ICP.SYS
for booting and ICP_DOWNLINE.SYS for down-line loading (see the
VAXELN Installation Manual). You should boot or down-line load one of
these images once to ensure that the installation was successful.

If you prefer to boot a system image (ICP) from a disk, you can copy the
image to a target disk, carry the medium to your target machine, and boot
the image by following instructions provided in Section 4.1.

If your host and target machines are connected by the Ethernet, you can
down-line load your system image (ICP_DOWNLINE) as described in
Section 4.2.

4. 1 Booting Systems from Disks

This section explains how to boot a system image from a disk. The
examples illustrate the procedure for booting the system image ICP.SYS.
However, you can use the same procedure to boot system images that you
create.

To boot a system image:

1. Use the COPYSYS command procedure in the ELN$ directory on
your host machine to copy the system image to a target device (tape
cartridge, disk, or diskette).

Booting and Down-line Loading 4-1

2. Transfer the storage medium to the target machine.

3. Boot the volume.

NOTE

To use the COPYSYS command procedure, you must set the
EBUILD system characteristic Boot method to Disk (for disks,
diskettes, or tape cartridges). See Section 3.4.3 for information
about system characteristics.

The COPYSYS.COM command procedure resides in the directory ELN$.
Use this command procedure to initialize and load a target device, such as
a TUS8 cartridge. To invoke the command procedure, type:

$ GELN$:COPYSYS

The procedure prompts you for the name of a system image file and an
output disk. To prepare a bootable copy of the system image ICP.SYS on
a TUS8 cartridge, respond to the prompts as follows:

System image file: ELN$:ICP
Output disk: CSA1

The command procedure then asks if you want to initialize the disk. If
you are copying to an unused disk or cartridge, you must type Y. If you
are reusing a disk or cartridge, you can type N (the default).

Initialize the disk? (YIN) [N]: Y
$

If you receive the error message "No such device" and you are using the
console device, the console device might not be connected. Your system
manager can connect the console by entering the command:

$ MCR SYSGEN CONNECT CONSOLE

If you do not need to initialize your target device, you can enter your
input on one line. For example:

$ GELN$:COPYSYS ELN$:ICP CSA1

After you copy the image, transfer the TUS8 cartridge to the target
machine and boot the system image by specifying the console boot
command (B) and the name of the device you are bo~oting. For example,
to boot an image on a TUS8 cartridge on an 11/750 target machine,
specify:

»> B DDO

4-2 Booting and Down-Line Loading

NOTE

To access an 11/750 TU58 device from a VAXELN application,
the application must use DDA1 for the device name.

After you enter the boot command, ICP .SYS begins running, and the
system displays the following:

%VAXELN system initializing

VAXELN V3.0

Testing Pascal run time routines ...
All Pascal run time routines correct
Testing C run time routines ...
All C run time routines correct
Testing time manipulation routines ...
All time manipulation routines correct
Testing system memory services ...
All system memory services correct
Testing exception handling ...
Exception handling correct
Testing process synchronizing and scheduling ...
Process synchronizing and scheduling correct
Testing message passing and job scheduling ...
Message passing and job scheduling correct

SUCCESSFUL COMPLETION OF VAXELN TESTING

Booting the system image ICP.SYS takes approximately five minutes.

Table 4-1 lists the target devices you can boot and their corresponding
names.

Table 4-1: Target Device Names
Device Name

RAnn disk DUn

RC25 disk DUn

RDnn disk DUAn

RL02 disk DQl

RX33 diskette DUAn

RX50 diskette DUAn

TK50 cartridge DDO

Booting and Down-Line Loading 4-3

Table 4-1 (Cont.): Target .Device Names

Device

TK70 cartridge

TUS8 cartridge

TU8l reel to reel

4.2 Down-Line Loading

Name

DDO

DDO

DDO

If your host and target machines are connected by the Ethernet, you can
use the Ethernet to load a system image onto the target machine and
boot the system image. Using the Ethernet to load a system image is
called down-line loading. When you down-line load a VAXELN system,
you use a down-line load bootstrap loader on the target machine and the
DECnet network facilities on the host development system. These two
software components use network communication hardware to copy a
VAXELN system image file from the host development system to the main
memory of the target machine. Once the VAXELN system is in the target
machine's memory, the target machine gets control of the processor and
begins execution.

The VAXELN system need not contain the Network Service to be down­
line loaded. However, you must include the Network Service to enable
network communication between the VAXELN system and other systems
on the same network. For more information about the Network Service,
see the VAXELN Run-Time Facilities Guide.

The rest of this chapter describes the preliminary steps and the procedure
for down-line loading system images onto target systems, using the
Ethernet. The examples illustrate the procedure for down-line loading
the system image ICP_DOWNLINE.5YS. However, you can use the same
procedure to boot system images that you create.

4-4 Booting and Down-Line Loading

4.2. 1 Preliminary Steps

Before you down-line load a system image, you must set up your host and
target machines by completing the following steps:

1. Install communication hardware on the host and target machines.

2. Configure and install DECnet-VAX software on the host system.

3. Test communication between the host and target machines.

4. Add the target machine's description to the host system's network
node data base.

5. Configure and install the down-line load bootstrap loader on the target
machine.

Before continuing, you should become familiar with the network control
program (NCP). This utility is the principal tool used to control the
network software and hardware and is fully described in the DECnet-VAX
System Manager's Guide. The following sections explain how to:

• Install communication hardware on a target machine

• Configure a host for down-line loading

• Add a target machine to the host's network node data base

• Configure the bootstrap loader

4.2.1.1 Installing Communication Hardware on the Target Machine

Install communication hardware at the default I/O bus address on the
target processor. Table 4-2 lists the address assumed by the down-line
load bootstrap loader for each particular hardware device.

Table 4-2:
Device

DEBNT

DEQNA

DE UNA

Datalink Device Default Addresses
Address (Octal)

None

774440

774510

Booting and Down-Line loading 4-5

4.2.1.2 Configuring a Host for Down-Line Loading

To configure your VAX/VMS host for down-line loading, issue the follow­
ing commands:

$ RUN SYS$SYSTEM:NCP
NCP> DEFINE LINE UNA-O SERVICE ENABLED
NCP> DEFINE CIRCUIT UNA-O SERVICE ENABLED
NCP> SET LINE UNA-O STATE OFF
NCP> SET LINE UNA-O ALL
NCP> SET CIRCUIT UNA-O STATE OFF
NCP> SET CIRCUIT UNA-O ALL

These commands enable the host to recognize boot-request messages from
the target system.

NOTE

If you are configuring a MicroVMS system, use QNA-O instead
of UNA-O for the service line and the service circuit. If you are
configuring an 8800, 8700, 8550, 8530, or 8500 system with a
DEBNT controller, use BNA-O.

4.2.1.3 Adding the Target Machine to the Host's Network Node Data
Base

You must describe the target machine in the host system's network node
data base. Use the NCP utility to store the target machine's node address,
node name, Ethernet hardware address, and host load device name.
Invoke the utility as follows:

$ RUN SYS$SYSTEM:NCP
NCP>

Use the DEFINE command to add target data to the permanent data base.
The following example uses FRED as the target node name:

NCP> DEFINE NODE FRED ADDRESS 6 SERVICE CIRCUIT UNA-O
NCP> DEFINE NODE FRED HARDWARE ADDRESS AA-OO-03-00-00-E1

NOTE

To use the DEFINE command, you must specify a system user
identification code (UIC) or set the system privilege option
(SYSPRV).

4-6 Booting and Down-Line Loading

If you are configuring a MicroVMS system, use QNA-O instead
of UNA-O for the service circuit. If you are configuring an 8800,
8700, 8550, 8530, or 8500 system with a DEBNT contrtoller,
use BNA-O.

Each node in your network must have a unique address and name. The
service circuit is the name of the host system's hardware device controller,
connecting the host system to the target machine.

The hardware address is required for down-line loading using the Ethernet
and is the Ethernet address contained in ROM on the target machine's
Ethernet hardware controller. You can usually locate this address on the
controller board, but if you cannot, contact your field service representa­
tive, who can provide the address by running the controller's diagnostic
package.

Once the target machine has been added to the host system's permanent
data base, use the SET command to copy the information to the current
data base. For example:

NCP> SET NODE FRED ALL

NOTE

To use the SET command, you must first set the operator
privilege option (OPER).

The target machine's description remains in both data bases, even after
the host system is rebooted.

4.2.1.4 Configuring and Installing the Bootstrap Loader

You must configure and install the down-line load bootstrap loader on
the target machine. VAX-ll/730- and VAX-ll/750-family processors
use the console storage medium (TU58) to store the bootstrap loaders.
MicroVAX processors store the down-line loader in the boot ROM. VAX
8800, 8700, 8550, 8530, and 8500 processors store the loader on a P /05
diskette.

To install the down-line load bootstrap loader on a TU58 console tape,
use the VAXELN NEWBOOT command procedure. You should run this
procedure from the system manager's account because some operations
require the CMKRNL privilege.

Booting and Down-Line loading 4-7

The NEWBOOT procedure copies the bootstrap loader's image file to the
console medium. This command procedure prompts you for the bootstrap
load device (XE=DEUNA), the device containing the console medium on
which the loader is to be installed, and the processor type of the target
machine. For example:

$ SET DEFAULT ELN$
$ GNEWBOOT
Bootstrap device [XE]:
Console media device [CSA1]:
Processor type [730]:
Set default bootstrap? (yiN) [y]:

After the command procedure copies the loader files to the console
medium, the loader installation is complete.

No configuration is required for a MicroVAX because the down-line loader
is contained in boot ROM. However, you may find it useful to set the
MicroVAX CPU's configuration dual inline package (DIP) switches to skip
disk booting, thus enabling unattended down-line loading of the target
machine. See the MicroVAX I Owner's Manual or MicroVAX II Owner's
Manual for details.

A P lOS diskette is included in the distribution kit for down-line loading
a system image on a VAX 8800, 8700, 8550, 8530, or 8500 processor. For
the 8700, 8550, 8530, or 8500, the P lOS diskette contains the following
files in the directory [CONSOLE]:

• XEBOOT.EXE - Bootstrap image for DEUNA down-line loading.

• XEABOO.COM - Sample console command procedure for booting
the target processor, using the DEUNA.

• ETBOOT.EXE - Bootstrap image for DEBNT down-line loading.

• ETABOO.COM - Sample console command procedure for booting
the target processor, using the DEBNT.

• DEFBOO.COM - Sample console command procedure for booting
from the DEBNT. This command procedure is invoked when the
BOOT command is typed, with no device specified, at the console
terminal. The procedure is also invoked directly by trigger booting the
system, if the system has a DE UNA, or by the command procedure
NMIRESET;COM, if the system has a DEBNT.

• NMIRESET.COM - Sample console command procedure, invoked
when a target system is trigger booted, if it has a DEBNT. This
command procedure invokes the command procedure DEFBOO.COM.

• RESTAR.COM - Command procedure for restarting the system.

4-8 Booting and Down-Line loading

For the 8800, the diskette contains different versions of the these files
in the directory [8800]. The file names have 8 appended to them. For
example, the 8800 version of XEABOO.COM is XEAB008.COM. The
diskette also contains the file [8800]SECB008.COM for booting the
secondary CPU on the 8800.

NOTE

To boot an 8800, you must ensure that the right CPU is the
primary. The sample command files ETAB008.COM and
XEAB008.COM include the SET NEXT_PRIMARY RIGHT
command before the INITIALIZE command for this purpose.

To build another copy of the P /05 diskette that contains the files just
listed, you can run the command procedure NEWBOOT.COM (normally
found in the VAXELN host directory ELN$:). This command procedure
prompts you for the bootstrap load device, the device containing the
console medium on which the loader is to be installed, and the processor
type of the target machine. Answer the questions as follows:

$ SET DEFAULT ELN$
$ taNEWBOOT
Bootstrap device [XE]:
Console media device [CSA1]: DUAn
Processor type [730]: 8nnn
Set default bootstrap? (YIN) [Y]:

where DUAn is the RX50 or RX33 drive and 8nnn is the 8800, 8700, 8550,
8530, or 8500.

Depending on your target configuration, you may have to edit one or two
of the sample command files before using them. If your host system has
an RX-50 or RX-33 drive, you can edit the file on your host system using
a standard editor. If your host system does not have either of these drives,
you can edit the file after you copy it to your P / OS disk device on the
target system. See the appropriate console manual for directions on how
to edit the file on the target system.

If your system has a DEBNT, you may need to edit the following line in
file ETABOO.COM or ETAB008.COM:

DEPOSIT R1 27 !DEBNT is on bi 2, node number 7

The first hexadecimal digit specifies the BI number for the DEBNT and the
second hexadecimal digit specifies the node number. If your configuration
differs from that, you must edit the line to match your system.

Booting and Down-Line loading 4-9

If your system has a DE UNA, you may need to edit the following line in
file XEABOO.COM or XEAB008.COM:

DEPOSIT R1 10 IDWBUA is on bi 1, node number 0

The first hexadecimal digit specifies the BI number for the DWBUA (BI­
to-UNIBUS converter) and the second hexadecimal digit specifies the
DWBUA node number. (The DE UNA itself is specified in the System
Builder's Device Driver Menu.) If your configuration differs from that, you
must edit the line to match your system.

If your system has a DEUNA, you must also edit the command file
DEFBOO.COM or DEFB008.COM. Edit the following lines, changing
ETA to XEA:

BOOT ETA I Boot from DEBNT (device type ETA), unit set in
I ETABOO.COM

To install the supplied files on your target console system:

1. Exit the console control program.

2. Mount the P lOS diskette in a drive on your target system.

3. Copy the files to the directory BIGVOLUME:[8nnO], where nn is 50 for
an 8500 or 8530, 55 for an 8550, 70 for an 8700, and 80 for an 8800,
or the directory BIGVOLUME:[CONSOLE]. When you invoke a file,
the system first looks on BIGVOLUME:[8nnO]. If the needed file is not
there, the system then looks on BIGVOLUME:[CONSOLE].

On an 8800 system, change the name of each file as you copy it,
omitting the 8. For example:

$ COPY DZ1:[8800]DEFB008.COM BIGVOLUME:[8800]DEFBOO.COM

4.2.2 Dawn-Line Loading Procedure

To down-line load a target machine, you must make the VAXELN system
image file available to the network software on the host development
system and have the down-line load bootstrap loader running on the
target machine.

When you build the system with the System Builder, be sure to specify
Downline as the Boot method entry of the System Characteristics Menu.

4-1 0 Booting and Down-Line Loading

Use the NCP facility to store the file name of the VAXELN system image
in the host system's network node data base, thus making the image's
name available to the network software. For example:

NCP> SET NODE FRED LOAD FILE ELN$:ICP_DOWNLINE.SYS

The debugger can perform the same operation if you specify the EDEBUG
command as follows:

$ EDEBUG/LOAD=ELN$:ICP.DOWNLINE.SYS

Start the down-line load bootstrap loader by specifying the console boot
command (B) and the target machine. For example, to start the DEUNA
loader on an 11/730, enter:

>>> B XEO

For an 11/750, enter:

»> B DDAO

For a MicroVAX, enter:

>>> B XQAO

To down-line load your system image on an 8500, 8530, 8550, 8700, or
8800, enter the following boot command at the console:

>>> BOOT xxx

where xxx is ETA for systems with a DEBNT and XEA for systems with a
DEUNA.

When the loader starts, it sends a load-request message to the host
system. The network software on the host system responds by creating a
Maintenance Operation Monitor (MOM) process that reads the specified
V AXELN system image file and sends it to the target bootstrap loader.

When down-line loading a machine (in contrast to booting it from a disk
or ROM), you do not have to set the node name or node address with
the System Builder; the target machine receives its proper node name and
address automatically. If you use this feature and have a system that runs
on multiple processors in a network, you can use the same system image
for each machine.

The following sections explain how to:

• Reload a machine that is running the Network Service

• Down-line load during debugging

Booting and Down-line Loading 4-11

• Reload production machines

• Down-line load from multiple hosts

4.2.2.1 Reloading a Machine That Is Running the Network Service

Once a VAXELN system is initialized, is running the Network Service, and
has trigger booting enabled, use the remote boot command TRIGGER to
boot the target machine. To use this feature, you must change the default
bootstrap loader to the down-line load bootstrap loader by setting the
default bootstrap selection switches to the correct read-only loader. On
the 11/730, you perform this setting by using the NEWBOOT command
procedure. On an 11/750, set the default boot device switch to A. On a
MicroVAX, set the CPU configuration DIP switch number 1 to ON.

To trigger a target machine, use the NCP TRIGGER command. For
example:

NCP> TRIGGER NODE FRED

The TRIGGER command sends a boot-request message to the target ma­
chine, which causes the VAXELN datalink device driver to halt execution
of VAXELN and begin execution of the down-line load bootstrap loader
(default bootstrap).

NOTE

You can configure the DEUNA controller on an 11/750 target
machine to process the boot-request message and cause the
machine to halt by causing a power-failure sequence. To en­
sure that the 11/750 restarts, you must put the Auto Restart
switch in the BOOT position. This implies that a machine re­
quiring unattended triggering cannot also restart using memory
with battery backup (that is, it will reboot when the power is
restored).

If you encounter problems loading your target machine, you can use the
network event-logging facility on the host system to locate the prob­
lem. To enable event logging on your host system, use the NCP SET
LOGGING commands.

For example, to enable network event logging to your host's console
terminal, use the following commands:

NCP> SET LOGGING MONITOR KNOWN EVENTS
NCP> SET LOGGI~G MONITOR STATE ON

4-12 Booting and Down-Line Loading

The console displays maintenance messages and network state changes
observed by the MOM network process, problems opening the VAXELN
system image file, and problems communicating with the target machine.

4.2.2.2 Down-Line Loading During Debugging

During the V AXELN programming and development cycle, the target
machine is likely to be down-line loaded and debugged remotely. To
facilitate this operation, the VAXELN debugger can down-line load targets
that are running the network and have trigger booting enabled.

The /LOAD qualifier of the EDEBUG command stores the specified
V AXELN system image file name in the network node data base and
triggers the target machine's down-line load bootstrap loader. In the
following example, the system TEST.5YS is loaded on node FRED during
an EDEBUG session:

$ EOEBUG/LOAD-TEST FRED

See Chapter 5 for a complete description of the debugger.

4.2.2.3 Reloading Production Machines

After you debug and install a VAXELN application for production use,
you can continue to use the down-line loading facilities to load target ma­
chines. The host node's data base needs to contain a description of each
V AXELN machine and system in the network. The description should
contain the information described in the previous sections, including the
file name of the production VAXELN system image file.

The default bootstrap loader on the target machines should be set to
the down-line load bootstrap loader, as described previously. Whenever
a target machine is rebooted (for example, after a power failure or a
hardware or software crash), it must be reloaded from the host system.

Booting and Down-Line Loading 4-13

4.2.2.4 Down-Line Loading from Multiple Hosts

When down-line loading target systems from multiple host systems, you
can set down-line loading parameters for the target system on only one
host system. If two or more hosts are capable of responding to a target
system's request for down-line loading, the first to respond performs
the load independently of the host that initiated the load with an NCP
TRIGGER command or an EDEBUG /LOAD command.

The loading parameters are LOAD FILE, SERVICE CIRCUIT, and
HARDWARE ADDRESS. If the last two parameters are set, the host
attempts to load the target, even though it may not have the LOAD FILE
name needed to complete the load. For example, if SERVICE CIRCUIT
and HARDWARE ADDRESS are set, but LOAD FILE is not set (the typical
case), the VAX/VMS MOM program still attempts to load the target sys­
tem (load volunteer). This attempt blocks other hosts from loading; only
later in the process will the program discover that it does not have the
LOAD FILE name.

Unfortunately, this configuration error is difficult to diagnose. This error
might be the problem if the system displays the following message:

%SYSTEM-F-TIMEOUT, Device timeout

If this configuration error is the problem, check the node data bases on the
hosts and ensure that only one data base has the load parameters specified
for the target.

For example, if you have loaded target system ABC from host XYZ and
then decide to load ABC from host XXX, you should execute the following
NCP command on node XYZ:

NCP> CLEAR NODE ABC SERVICE CIRCUIT HARDWARE ADDRESS

and execute the following command on node XXX:

NCP> SET NODE ABC SERVICE CIRCUIT UNA-O HARDWARE ADDRESS AA-OO-03-01-2B-OD

For a MicroVMS system, use QNA-O instead of UNA-O for the service
circuit. For an 8800, 8700, 8550, or 8500 system, use BNA-O.

These commands ensure one node data base has the load parameters
specified for the target ABC.

4-14 Booting and Down-Line Loading

Chapter 5

Debugging VAXELN Systems

VAXELN provides two debuggers that you can build into your VAXELN
target systems: a remote debugger and a local debugger. You can select a
debugger for your system from the System Builder's System Characteristics
Menu.

If you select the remote debugger, the System Builder places the nucleus
of that debugger in your system. When the host development system and
the target machine running your system are connected by the Ethernet,
you can use the VAX/VMS command EDEBUG to access the target system
and the debugging processes that are running on it.

By using the EDEBUG command, you can:

• Access one or more VAXELN target system nodes simultaneously for
de bugging purposes

• Use the debug symbol table information provided by VAX/VMS
compilers, so you can use variable names, labels, and source-line
information during a debugging session

• Let your terminal act as the console device on the target system

If you select the local debugger, the System Builder includes the entire
VAXELN local debugger in your system image, creating a self-contained
debugger. Having a self-contained debugger lets you enter commands
at the system's hardware console terminal without having a network
connection to a VAX/VMS host.

You cannot use debugger commands that require access to a source file
or other host data with the local debugger. However, you can still use
the local debugger to debug the V AXELN kernel and the processes on the
running system.

Debugging VAXElN Systems 5-1

This chapter explains:

• How to select a debugger mode with the System Builder

• The format of the EDEBUG command

• Concepts for using the debuggers

• Debugger syntax rules

• How to debug the VAXELN kernel

• The syntax and function of each debugger command

5. 1 Selecting a Debugger

The VAXELN System Builder provides several alternatives for specifying
how you want to debug your target system. The following options are
provided on the System Characteristics Menu:

• Local. The System Builder includes the local debugger in the system
image. You can debug the system image and the VAXELN kernel.
Select this option when you want to debug the VAXELN kernel or
kernel mode code running at an elevated interrupt priority level (IPL),
for example, an interrupt service routine, from the target system's
hardware console. Also select this option to debug kernel mode
processes that run at elevated IPLs.

• Remote. The System Builder includes the remote debugger in the
system image. You can use the EDEBUG command to remotely access
the target system over the Ethernet.

• Both. The System Builder includes both the remote debugger and
the local debugger in the system image. The remote debugger takes
control for all normal system image processes. However, the local
debugger can enter the kernel session at system start-up or through
the SET BREAK/KERNEL command. Select Both if you want to
debug processes within the system image from the remote debugger
but also want to debug the VAXELN kernel or kernel mode code that
runs at an elevated IPL.

• None. The System Builder does not include a debugger in the system
image. Use this option after you debug your system.

5-2 Debugging VAXElN Systems

From the same menu, you can select whether you want the System Builder
to include the console terminal capability in the system. If you omit the
console device from the system, the remote debugger makes your terminal
the system's console device when you establish a connection to the node
with the EDEBUG command. The System Builder automatically includes
the console device when you select the local debugger.

If you select a debugger option on the System Characteristics Menu, you
can specify that the debugger gains control when the job that runs a
program is started. On the System Builder's Program Description Menu,
select Yes for the Debug option. The debugger also gains control when
each process created inside the job begins execution.

If you include a debugger in your system, the debugger also gains control
of a process if a condition occurs that is not handled by an exception
handler or if you explicitly ask for control by halting the process with the
HALT command. The VAXELN Run-Time Facilities Guide contains more
information on VAXELN's exception-handling mechanism.

5.2 Invoking the VAXELN Debuggers

You enter the remote debugger by issuing the EDEBUG command. You
enter the local debugger in different ways, depending on the system
and program characteristics defined by the System Builder. Section 5.2.1
explains the EDEBUG command. Section 5.2.2 explains how to enter the
local debugger.

5.2. 1 Using the EDEBUG Command

The VAX/VMS EDEBUG command, issued at the DCL prompt, lets you
debug a VAXELN system you have loaded on a given node when the host
development system is connected to the target machine by the Ethernet.
From the Edebug > prompt, you can also load a new system image
from the host to the target machine, start the system with or without the
debugger in control, and connect to nodes that were loaded previously.
Chapter 4 explains how to configure and manage the Ethernet connection.

In the following example, the EDEBUG command invokes the remote
debugger to debug the system already loaded on node FRED:

$ EDEBUG FRED

Debugging VAXELN Systems 5-3

After a few seconds, the following messages appear on your host terminal:

Edebug V3.0
Connecting to "Fred".

Then the initial EDEBUG screen appears (see Figure 5-1).

Figure 5-1: Initial EDEBUG Screen

Job 3, process 1, program MYPROGRAM needs attention.
Module MYPROGRAM
3: BEGIN
4: {this version is for debugging}

> > 5: writeln('Flight Simulation');

Edebug V3.0
Connecting to "Fred".
Connected to "Fred", awaiting debug activity.
Loading traceback data from: disk: [directory]MYPROGRAM.EXE; 1

Edebug 3,1>

The prompt Edebug 3,1> indicates that you are now in the debugger at
job 3, process 1.

The debugger command DEBUG lets you debug systems on several nodes.
A description of the DEBUG command is provided in Section 5.5.

5-4 Debugging VAXELN Systems

5.2.1.1 EDEBUG Command Syntax

The syntax for the EDEBUG command and its qualifiers follows:

$ EDEBUG/l/ qualifier . .. 11 node-name

jqualifier

Descriptions of the EDEBUG command qualifiers are provided in
Table 5-1.

node-name

Specifies the name of a node running a V AXELN system. Specify the node
name without qualifiers if the target machine was already booted with a
new system or if you are connecting to an already running target machine.
Do not use the EDEBUG command for the local debugger.

If you enter the EDEBUG command without a node name, the operating
system prompts you for a node:

$ EDEBUG I RETURN I
_Node:

5.2.1.2 Using Qualifiers to Control the EDEBUG Command

By specifying the EDEBUG command with qualifiers, you can control the
way you invoke the debugger. Table 5-1 lists the EDEBUG qualifiers and
their functions. The following sections provide brief explanations of how
to use the qualifiers.

Table 5-1: EDEBUG Qualifiers
Qualifier Usage

/LOAD=system Loads and triggers the specified system image across
the Ethernet

/NODEBUG Exits the debugger after the specified system image is
loaded and started across the Ethernet

Debugging VAXElN Systems 5-5

5.2.1.2.1 Loading a System Across the Ethernet (fLOAD)

With the EDEBUG command, you can use the /LOAD qualifier to load
and start a system image across the Ethernet. Specify the /LOAD qualifier
with a system image file (type SYS) that includes the remote debugger.
For example, the following command loads and starts the system image
MYSYSTEM.SYS on the target machine FRED:

$ EDEBUG/LOAD=NYSYSTEM FRED

When you use the /LOAD qualifier, the new system replaces the system
that is already running on the target machine.

5.2.1.2.2 Exiting from the Remote Debugger (fNODEBUG)

To exit the debugger immediately after you load and start a system image
across the Ethernet, specify the /NODEBUG qualifier. For example:

$ EDEBUG/NODEBUG/LOAD-NYSYSTEM FRED

This command loads and starts the system image MYSYSTEM.SYS on the
target machine FRED, then exits the debugger.

After you exit the debugger, the target system on that node is left in a
suspended state, if any jobs or processes are built with debugger control.
Jobs and processes that are not controlled by the debugger continue to run.
Jobs and processes that are built with debugger control, however, remain
suspended until you connect to the node, return control to the debugger,
and issue debugger commands to allow them to begin executing.

5.2.2 Entering the Local Debugger and the Kernel Session

When a job under local debugger control is created, the local debugger
prompt appears at the target console. For example:

Edebug 3,1>

While you are debugging your system image, you might need to set
breakpoints and examine locations in the VAXELN kernel image, in
interrupt service routines, or in other kernel mode code at elevated
IPLs. If you included the local debugger in your system image, you can
perform these debugging operations by entering commands from the
target hardware console terminal.

5-6 Debugging VAXELN Systems

To enter the kernel session, do one of the following:

• Type the following on the hardware console when you boot the
system:

»> B/R5:4 device

This command activates the kernel session during the system's ini­
tialization sequence. If your target processor is an 8800, 8700, 8550,
8530, or 8500, you can instead edit the sample boot command file
(XEABOO.COM or ETABOO.COM) to deposit 4 into R5. Remove the
comment indicator (!) from the line:

! DEPOSIT R5 4

• Place the target machine in hardware console mode (see the appropri­
ate hardware manual for the correct procedure), then type:

»> D/I 14 5
»>C

This command activates the kernel session if the system is not exe­
cuting above interrupt priority level 5 (hexadecimal). If the system
is executing at or above that interrupt priority level, you cannot get
control at the console.

• Type the following from the local debugger:

Edebug 4,5> SET SESSION/KERNEL

This command instructs the local debugger to attach the session
associated with the kernel.

• Issue a SET BREAK/KERNEL command from the local debugger or, if
both debuggers are included, the remote debugger. Use this method
for debugging interrupt service routines or kernel mode jobs running
at elevated IPLs (see the SET BREAK command).

The following prompt appears during the kernel session:

Kernel Edebug>

To exit the kernel debugging session, use the GO command.

Debugging VAXELN Systems 5-7

5.3 Using the VAXELN Debuggers

The V AXELN debuggers let you examine or deposit memory locations,
evaluate expressions, set breakpoints, and control the execution of your
programs and system. The debuggers also let you perform systemwide
operations, such as displaying the jobs running on the system.

You can create VAXELN applications that consist of multiple jobs and
processes executing on several nodes in a network. Therefore, when
you debug a system, you might need to control more than one job
or process and more than one target system at the same time. The
VAXELN debuggers have features that handle this requirement. For each
process that you debug, the debugger establishes a command session (see
Section 5.3.1). The debugger directs the commands that you enter to
the process associated with the command session. You can change the
command session within a node with the SET SESSION command. For
processes on different nodes, use the DEBUG command to change nodes
and then use the SET SESSION command to select a process. The DEBUG
command changes the command session to the first process waiting for
attention on the new node.

A command session can be in one of the following states:

• The session's process is not waiting for a debugger command.

• The session is suspended, waiting for a debugger command.

If the state of a session changes (for example, if a breakpoint is encoun­
tered), you are immediately notified, even if that session is not the current
command session. A process whose session is waiting for debugger
commands remains inactive while you work with the command session.

If no process is running under debugger control, you can enter the de­
bugger through a Control-C session (see Section 5.3.3). You can also use
the Control-C session to change a command session before a breakpoint
occurs.

5-8 Debugging VAXELN Systems

5.3.1 Process Identifiers

To identify a command session, the debugger uses a process identifier for
each process in a running system. A process identifier lets you activate a
process's command session.

A process identifier consists of three parts:

• Job - The job name or the identification number (ID) assigned by
the kernel when the job is created. The name is usually the name
of the job's program, as specified through the System Builder or the
debugger's LOAD command. If you have more than one instance of a
program in a system, you can identify the instance with the job ID or
with the job'nameand the version number found on the system map
(see Section 3.4.5). Use the SHOW SYSTEM debugger command to
find the IDs assigned to the jobs in the system.

• Process - The identification number assigned by the kernel when the
process is created. The SHOW PROCESS debugger command displays
this number.

• Node - The node on which the process is running (remote debugger
only).

To specify a process identifier, use the following format:

job,[process] [node]

If you omit the process, process number 1, the job's master process, is
assumed. If you omit the node, the current session's node is assumed.
Some examples follow:

4,3
CONSOLE, 3
coNSoLE,3 NoDElo

The first example consists of a job number and process number. The
second example consists of a job name and process number. The third
example consists of a job name, process number, and node name.

Nonalphanumeric characters are not allowed in debugger syntax.
Therefore, if a job name contains nonalphanumeric characters, you must
enclose the job name in single quotes. For example:

'MYJoB;2' ,3

Debugging VAXELN Systems 5-9

5.3.2 Command Sessions

The identifier for the process whose command session is active is included
in the debugger prompt. For example:

Edebug 4,5>

The preceding prompt indicates that the commands you type are directed
to process 5 in job 4. If you are debugging more than one node, the node
name is also included in the prompt.

The command session is set when the debugger is invoked for the first
process waiting for debugger attention. The command session remains
constant until you change it with the DEBUG or SET SESSION command
or until the command session's process exits. The session also changes if
another session hits a breakpoint while the current session is in a running
state. When the command session's process exits, the session is reset to
the job's master process, or if the current process is the master process,
the debugger selects a session that is waiting for command input. If
no process is waiting for a command or there is no current session, the
debugger prompt does not appear. In that case, you can use the Control-C
session to activate a command session.

The debugger does not prompt for commands while a command session's
process is in a running state.

5.3.3 Control-C Session

If you need to activate a command session when no debugging session
exists or when the process of the active session is running, you can
activate a Control-C session. A Control-C session lets you enter commands
that are not directed at a particular process or lets you switch to another
session. For example, you might want to enter the command SHOW
SYSTEM, which displays the jobs in the system.

Activate a Control-C session by typing CTRLjC:

IcTRL/cl
EDEBUG CONTROL-C>

The prompt indicates that a Control-C session is active. To return to the
state that was active when you typed CTRLjC, enter a null command line.
If you type CTRLjC again, the executing command aborts and you return
to a command session prompt.

5-10 Debugging VAXElN Systems

When a Control-C session is active, you cannot use some of the debugger
commands. For example, you cannot use the EXAMINE or the DEPOSIT
command to examine or deposit memory, because no process context
is associated with the session. You can, however, use the following
commands:

• The DEBUG command

• The EVALUATE command

• The HALT command

• The SET SESSION command

• Systemwide commands

5.3.4 Breakpoints

If a program is specified for debugger control, the debugger gains control
when the job and its master process are created. At the beginning of
this command session, execution of the associated program stops, so
you can enter debugger commands. The debugger also gains control
whenever a new process within the job is created, unless you use the
CANCEL CONTROL command. Execution continues after you enter the
GO or STEP command. The GO command causes the system to continue
processing until a breakpoint occurs. The STEP command lets you execute
the program one line or instruction at a time.

A breakpoint is similar to a stop sign. You can set breakpoints that affect
only the current session's process, or you can set breakpoints that affect
an entire job. You place a breakpoint at a location in your program, and
when that breakpoint is reached during execution, the program stops
running. For example, when the debugger is in control of the current
session, if you set a breakpoint and type GO, the program executes until it
reaches the breakpoint; then it stops. You can then examine variables and
perform other operations in the current context.

NOTE

A breakpoint set for a specific process does not stop program
execution if the code in that process is executed by another
executing process.

To set breakpoints, use the SET BREAK command. For example:

Edebug 4,5> SET BREAK 500

Debugging VAXELN Systems 5-11

The SET BREAK command also lets you specify a command that is to be
executed when the program stops at the breakpoint.

To continue program execution from the point where the breakpoint
occurred, type the GO or STEP command.

For more information about the SET BREAK command, see the command
description in Section 5.5.

5.3.5 Using the Remote Debugger

The following sections discuss features available only with the remote
debugger.

5.3.5.1 Symbolic Debugging

If you are using the remote debugger, you can debug your system symbol­
ically - that is, you can refer to program locations, variables, or constants
by name, and you can view source lines. The debugger uses information
provided by the VAX compilers and linker in the object (OBJ) and program
image (EXE) files.

You request the symbolic debugging feature by specifying the jDEBUG
qualifier at compile and link time (see Chapter 2) and by selecting
Remote Of Both for the Debug option on the System Builder's Program
Characteristics Menu. A debug symbol table is generated, which contains
the following information for each module that contributes to the program
image:

• Information that relates addresses to the line numbers in a module

• Information that relates addresses to the source line that produced the
code at those addresses

• Symbolic information (names and types) about the module's variables

The debug symbol table contains the information about variables only if
you requested it when you compiled and linked the module.

NOTE

Complete debug symbol tables are quite large, and they make
a program image much larger. Therefore, after you debug your
programs, recompile them without requesting the debug symbol
table. Source-line and traceback information is comparatively

5-12 Debugging VAXELN Systems

small and can be left in the image. This information is included
in compilations by default.

The debug symbol table is associated with all the processes in the job run­
ning a program. The association is either implicit (when a job starts under
debugger control) or explicit (by use of the debugger's SET PROGRAM
command). For more information about the relation between the symbol
table and references in the debugger, see Section 5.4.2.

5.3.5.2 Command Files

You can create command files containing debugger commands. To execute
the command file, specify the @ command with the name of the command
file. For example:

GDEBUGCOMMANDS

The commands in the file DEBUGCOMMANDS.COM execute. You can
nest the command files eight levels deep.

The debugger uses the logical· names DBG$INPUT and DBG$OUTPUT for
I/O; these names are usually assigned to SYS$INPUT and SYS$OUTPUT,
respectively. You can use these logical names in debugger command files.

5.4 Debugger Syntax Rules

The V AXELN debugger command language is designed to be simple
to use for programmers who are familiar with several programming
languages. The VAXELN debugger command language is generic to most
programming languages and is similar to the command language for the
VAX/VMS debugger, DEBUG-32. The DEBUG-32 command language
provides a fully functional command language that is dynamically tailored
to the language in use at the point where the program is stopped.

The VAXELN debugger command syntax and semantics are modeled after
the DEBUG-32 command language, and wherever possible, a command
performs the same function in both debuggers.

The syntax for the debugger commands follows:

command [/ qualifier ...] parameter ...

Debugging VAXELN Systems 5-13

The qualifiers and parameters you can specify with each command are
described in the individual command descriptions (see Section 5.5).

NOTE

Qualifiers must immediately follow the command and must
precede the parameters.

The following example shows how to enter the debugger command EXIT:

Edebug 4,5> EXIT

The EXIT command terminates the debugger.

The next example shows how to enter a command with a qualifier and a
parameter:

Edebug 4,5> EXAMINE/HEX my_variable

This command examines the variable my_variable and displays the value
in hexadecimal form.

If a command does not conform to the command format or if the debugger
does not recognize the command name, the debugger treats the command
as an expression and evaluates it. For example:

Edebug 4,5> 123+466

This command displays the value 579. This evaluation feature also lets
you examine the value of a variable by typing its name. For example:

Edebug 4,5> X

This command displays the value of the variable x.

NOTE

In this chapter command and qualifier names are sometimes
abbreviated to their shortest unique form.

5-14 Debugging VAXElN Systems

5.4. 1 Expressions

Many of the debugger commands must be specified with arithmetic
expressions. These expressions are algebraic sequences consisting of
constants, parentheses, operators, and variable references.

The syntax of these arithmetic expressions does not parallel that of any
language in particular. The semantic rules for interpretation follow the
normal rules for algebraic expressions.

Arithmetic expressions you specify with debugger commands can include
the following arithmetic, Boolean, and address-related operators:

Arithmetic Operators:

+

*
/
DIV
MOD
@

The + and - operators can be either sign (positive or negative) or arith­
metic (plus or minus) operators.

Boolean Operators:

<>
<
<=
>
>=
AND
OR
NOT

Address-Related Operators:

ADDRESS(variable)
@

Debugging VAXELN Systems 5-15

The arithmetic operator @ specifies an arithmetic left-shift if the count is
positive or a right-shift if the count is negative. For example:

REF @ 2

This command shifts the contents of REF two bits to the left.

You can use the Boolean operators = and := interchangeably to express
assignments.

Use the address-related operator @ to get the value of a location repre­
sented by an address expression. Use the ADDRESS function to get the
address of an addressable variable. Some variables, such as those assigned
to registers, are not addressable.

5.4. 1. 1 String Expressions

String expressions consist of one or more string values separated with
the + operator. The operator joins the values into one string value. For
example:

'HEADER'+STR1

5.4. 1.2 Address Expressions

Address expressions return the address of a location, while other types
of expressions return the contents of a location. To understand the
difference, consider the following Pascal assignment statement, in which
a, b, and c are variables:

a := b+c;

Variables b, c, and b+c represent values to be assigned to variable a.
Variable a represents an address expression designating the address to
receive the value. In the debuggers, the left side must be an expression for
a valid address. If a were on the right side of the assignment operator, it
too would represent a value, not an address.

The following command examines the contents of address 1234:

EXAMINE 1234

The following command examines the contents of the address represented
by the variable myvar:

EXAMINE myvar

5-16 Debugging VAXELN Systems

The following command examines the contents of the address represented
by the variable myvar+2:

EXAMINE myvar+2

Address expressions consist of variable references, integer constants, and
the dyadic operators -, +, *, DIV, /' and @. Parentheses are allowed. You
:an also include the monadic operators + and - in address expressions.
The @ operator implies the contents of the specified address. For example,
the following command displays the contents of the program counter (an
address):

EXAMINE PC

To display the instruction at the PC address, specify:

EXAMINE/INSTRUCTION @PC

Since the PC contains addresses, not instructions, the following command
is invalid:

EXAMINE/INSTRUCTION PC

The following command is invalid because the identifier PC refers to the
program counter itself, not to its contents.

SET BREAK PC

To set a breakpoint at the address contained by the program counter, you
should specify the command as follows:

SET BREAK @PC

The address-versus-contents distinction also applies to symbolic references
to pointer variables. In the following example, ptr is a pointer variable:

EXAMINE ptr

The preceding command examines the contents (an address) of ptr. The
following example, however, examines the memory pointed to by ptr:

EXAMINE @ptr

NOTE

Equivalent forms of the @ operator are: ptr", *ptr, and ptr-+.

When symbols defined with the DEFINE command appear in address
expressions, the symbols yield values, much as constants do. In these
cases, the symbols are similar to registers because they always express a
value.

Debugging VAXElN Systems 5-17

5.4.2 Identifiers

During a debug session, you can refer to items by their text name, or
identifier. You can use three types of identifiers:

• Identifiers defined with the DEFINE command

• Predefined identifiers

• Program locations and variable names available to the debugger that
are defined by a program's debug symbol table entries

Identifiers are names consisting of up to 31 ASCII alphanumeric charac­
ters, the dollar sign ($) character, or the underscore (_) character. An
identifier can consist of uppercase and lowercase characters; however, an
identifier cannot begin with a number.

5.4.2. 1 Defining Identifiers

The local debugger and the remote debugger let you use the DEFINE
command to define identifiers for use in expressions and commands.
These identifiers can represent variables, constants, or addresses. For
example:

Edebug 4,5> DEFINE myval = 40

The following command defines the debugger variable an_integer with an
INTEGER data type and assigns that variable the value 10. The identifier
an_integer then yields 10 when you specify it.

Edebug 4,5> DEFINE an_integer :: INTEGER = 10

Table 5-2 lists the data types you can specify with the DEFINE command.
The default DEFINE data type is INTEGER.

Table 5-2: DEFINE Data Types
Data Type

INTEGER

BOOLEAN

BYTE_DATA(n)

REAL or FLOAT

DOUBLE or GRAND

5-18 Debugging VAXElN Systems

Description

Simple integer

TRUE or FALSE

Bytes of unspecified data

Single-precision floating-point

Double-precision floating-point

Table 5-2 (Cont.): DEFINE Data Types

Data Type Description

HUGE Double double-precision floating-point

STRING(n) Character string with fixed size of n characters

CHAR Character string with a size of one character

VARYING_STRING(n) Character string with varying size of up to n characters

RELOCATION Relocation constant

You can specify an expression for n when you use the keywords BYTE_
DATA(n), STRING(n), and VARYING_STRING(n). For example:

Edebug 4,5> DEFINE my_string:: STRING(x+3)

If you do not specify a value for n, 1 is assumed.

The data type RELOCATION is similar to INTEGER, but the value rep­
resents program locations. You can use this data type anytime; however,
it is most useful when symbolic debugging is not available. A display of
a program location (as with the SHOW SESSION command) shows the
location relative to the already defined RELOCATION data item whose
value is closest to the location, if the distance does not exceed 2048 bytes.
For example, the following command defines a RELOCATION constant
named mbase:

DEFINE mbase :: RELOCATION = 2000

When an address to be displayed is within 2048 bytes of mbase, the
address is displayed as mbase+byte_offset. For example, if the address is
2020, the debugger displays it as mbase+20.

You can encounter a debugger-defined variable with the same name as
a variable in your program. To distinguish debugger-defined identifiers,
prefix them with a percent sign (%). This character tells the debugger to
use the internal identifier, not the program variable.

For example, my_integer could be declared a variable in a Pascal program
by the following command:

VAR my_integer: INTEGER;

my_integer could be defined as a debugger internal identifier by the
following command:

DEFINE my_integer

Debugging VAXELN Systems 5-19

The following strings refer, respectively, to these uses of my_integer:

my_integer

~oIIIy _integer

You can change the value of a defined identifier by using another DEFINE
command or by using the DEPOSIT command. For example:

Edebug 4,5> DEPOSIT an_integer = 20

This command changes the value of the variable an_integer to 20.

See Section 5.5 for a complete description of the DEFINE command.

5.4.2.2 Predefined Identifiers

The debuggers contain several predefined identifiers, including identifiers
that let you access fixed hardware entities.

For example, the following general-purpose registers are predefined:

RO, Rl, R2, ... ,Rll, AP, FP, SP, PC

Other predefined identifiers include:

PSL

$

NIL

LABEL string

LINE n

Processor status longword

The constant 80000000 (hexadecimal)

The constant 0

The location of the label string

Line n of a program

If you encounter a conflict with a program's symbol, prefix the predefined
identifier with a percent sign (%). This character tells the debugger to use
the internal identifier, not the program variable.

When debugging a program that runs in kernel mode or within the kernel
debugging session, the debugger names the internal processor registers Pn,
where n is a decimal integer. For example, PI is the executive-mode stack
pointer.

5-20 Debugging VAXELN Systems

5.4.2.3 Program Locations and Variable Names

When you use the remote debugger, your program image can provide
the debugger with a debug symbol table. You can use this symbol table
to refer to locations and variables by the names you used within the
program.

The syntax for expressing program locations and variables that are in­
cluded in the debug symbol table follows:

[path-name]variab Ie-reference

The variable reference is the name of a variable or location you used
in your program. The path name qualifies the variable reference to a
particular module or routine in the program.

The debugger makes assumptions about the path name, letting you leave
out the path-name parameter in most cases. The default path name is
referred to as the reference scope or view scope. This scope is established
by the debugger, based on where your session stops. For example, if your
program stops in a routine named INITIALIZE contained in a module
called DRIVER, the view scope is set to duplicate the compiler's view of
the variable reference scope for the routine INITIALIZE. You can refer to
variables and locations inside the routine without a path name.

However, you must specify a path name when you want to refer to a
name that is not visible inside the routine where the session stops; for
example! if the session stops in another module.

You can specify path names as follows:

module-name[\routine-name\ ...]

The module-name parameter is the module in which the variable is defined.
You can use the optional list of routine names to qualify the path name if
the variable is internal to some routine. For example, the path name for
routine INITIALIZE in module DRIVER is:

driver\initialize\

In some cases, you need to specify only the module name. In other cases,
you must specify the sequence of routine names that identify the area of
the program in which you are interested. An example of a path name for
the variable a is:

Debugging VAXELN Systems 5-21

You can use predefined identifiers in path names to specify locations
within a program. For example:

declare\%LINE 10

This path name uses the predefined identifier LINE to refer to line 10
in module declare. You can omit the module name and backslash if the
debugger is stopped at a point in module declare.

NOTE

In highly optimized programs, the compiler might have elim­
inated code at a particular location, even though the source
module has explicit statements there. Optimizing may also
cause the compiler to eliminate variables.

You can also use the predefined identifier LABEL to refer to the location
of a label in a program. For example:

outmodule\%LABEL errormessage

Again, you can omit the module name and backslash if the label is defined
in the view scope.

The debugger assumes that the view scope is associated with the program
that is executing when your session stops. Since this location might
not be convenient, you can change the view scope by moving back and
forth along the call history stack. To move along the stack, use the
PREDECESSOR and SUCCESSOR commands. PREDECESSOR moves the
view scope back to the caller of the routine in which your session stops.
SUCCESSOR moves the view scope forward.

When the stopping point differs from the view scope, the debugger
displays both the view scope and the place where your session stops.
When your program stops in a location that is not part of the known
program, the debugger searches back on the call history stack until it finds
the last active place in the program.

5-22 Debugging VAXElN Systems

5.4.3 Variable References

The debugger provides a generic syntax for specifying variables. Examples
of simple variable names follow:

i
my_variable
his_variable

You can specify an entire structure or individual variables within the
structure. For example:

reel
reel.item2
reel.item3.valuel

You can express array variables in two notations:

arrayl(l,2,3)
arrayl[l,2,3]

You can also specify entire arrays: arrayl

You can spe.cify pOinter-qualified variables in the following forms:

ptr _variable"
ptr _variable-t
*ptr _variable
@ptr_variable

5.4.4 Types and Typecasting

Each expression, value, or variable reference in a deBugger command line
has an intrinsic data type, which affects the item's memory size, display
format, and expression semantics. These data types are used explicitly in
several contexts within the debugger command language. See Table 5-2
for a list of the available data types.

You can use data types as qualifiers with the EXAMINE and DEPOSIT
commands to specify a data type to use in the display or deposit of a
value. For example:

Edebug 4,5> EXAMINE/REAL counter

Debugging VAXELN Systems 5-23

This command causes counter to be examined and displayed as a floating­
point value regardless of its true data type. Here the item's intrinsic
memory size is also being specified; therefore, the debugger examines
four bytes regardless of the size of counter. For more information, see the
descriptions of the EXAMINE and DEPOSIT commands in Section 5.5.

You can specify data type names as part of a variable reference to cast the
reference's intrinsic data-type-to-variable reference. Use this feature inside
expressions to force particular semantic interpretations. For example:

Edebug 4,5> EVALUATE gas_v >= counter :: REAL

This command evaluates the Boolean expression that compares the real
variable gas_v with the integer variable counter. However, it is necessary
to interpret counter as a real number rather than as its implied integer
type. This syntax is called typecasting. You specify typecasting by using
double colons (::) followed by a type specifier.

Consider the following example:

Edebug 4,5> EXAMINE/REAL counter

This command uses the REAL data type as a qualifier to the EXAMINE
command. The following typecasting example has the same effect:

Edebug 4,5> EXAMINE counter :: REAL

The debugger does not attempt to understand all data types available
in all programming languages. Rather, it understands and operates on
several basic computational types. When interpreting the information in a
program's debugger symbol table, the debugger translates the language­
specific data type into one of its generic data types. You can determine
the debugger's interpretation of a variable by using the SHOW SYMBOL
command. The data types used by the debugger are defined in Table 5-2.

Some of these type names (STRING, for example) do not have an associ­
ated static size. In these cases, it may be necessary to specify a size value.
For example:

STRING(10)

BYTE_DATA (100)

You can specify the size value as an expression, which is interpreted when
you use the type specifier. For example:

Edebug 4,5> EXAMINE d_block :: STRING(50 div ctr)

If you do not specify a size value, 1 is assumed.

5-24 Debugging VAXELN Systems

5.4.5 Computational Constants

This section defines the syntax rules for the computational constants
supported by the VAXELN debuggers.

5.4.5.1 Boolean Constants

Boolean constants are the reserved identifiers TRUE and FALSE, denoting
the numeric values 1 and 0, respectively.

5.4.5.2 Integer Constants

Integer constants are strings of characters beginning with a digit from 0
to 9. Numbers are interpreted in the current radix. For instance, 1234 or
1FEF4 are examples of integer-valued constants. The radix in use for a
particular debugging session is dictated by the place in the program where
the session stops, and the explicit settings of the radix are done with the
SET MODE command.

You can explicitly specify a radix by prefixing the numerical string with a
% construct. The explicit radix specifiers are:

%X or %HEX for hexadecimal
%D or %DEC for decimal
%0 or %OCT for octal
%B or %BIN for binary

For example:

%0177440

If you want to include spaces in a numerical string, enclose the string in
single quotes. For example:

%X'ff ff ff ff'

When the default radix is hexadecimal, the debugger interprets unrecog­
nized identifiers as hexadecimal numbers. This feature helps avoid the
need to specify %X. For example, the following are valid hexadecimal
constants:

FEOO
OFEOO
%XFEOO

Integer constants must always be in the range _231 to 231 _1 or in the
range 0 to 232_1.

Debugging VAXElN Systems 5-25

5 .. 4.5.3 Floating-Point Constants

If the default radix is decimal, specify floating-point constants in
FORTRAN format. For example:

1.24
1.2e10

1.234e-10
-12.4

If the default radix is not decimal, you must use the %F construct to
specify floating-point constants. For example:

%F'1.241
%F 11. 2e10 I

foF 1'1. 234e-10 I
%~'-12.41

The numbers in quotes are interpreted as decimal numbers.

Floating-point constants are always converted to the VAX double-precision
format. Depending on the model of the VAX machine you are using, the
range of floating-point numbers varies. Normally, the debugger uses the
VAX DOUBLE floating-point format, providing for approximately 16 digits
in the range .2ge-38 to 1.7e38.

On some VAX machine models, the data type GRAND is available. This
data type is another double-precision floating-point data type that has
a smaller degree of precision but a larger exponent range, providing for
approximately 15 digits in the range .56e-308 to .ge30S.

You can change the default floating-constant type with the SET MODE
command.

5.4.5.4 String Constants

String and character constants are sequences of characters enclosed in
apostrophes. A pair of consecutive single quotes (") inside a string con­
stant represents a single apostrophe character. String constants in the
debugger can have up to 132 characters. A string constant cannot span
multiple lines. An example of a string constant follows:

'This is a string. I

5-26 Debugging VAXELN Systems

5.4.5.5 Special Constants

In address expressions, a period (.) is shorthand for the address of
the source for the last EXAMINE operation or for the target of the last
DEPOSIT operation.

Some items you can examine are not addressable, in which case the
debugger issues an error message saying that the period is meaningless.
For example, variables that are not stored on byte boundaries are not
addressable.

A backslash (\) represents the value of the most recent expression.

RELOCATION is a data type keyword identifying a relocation constant
whose value represents a program location (see Section 5.4.2).

5.4.6 Comments

You can include comments in command lines by preceding the comment
text with an exclamation point (!). For example:

Edebug 4.5> EXAMINE/REAL counter I This is a comment

5.5 Command Summary

The debugger command syntax is the same for the remote and local
debuggers. However, you can do symbolic debugging and display source
lines only if you use the remote debugger; otherwise, you cannot access
the debug symbol table and the program's source text.

The debuggers inform you if a particular command is invalid. For exam­
ple, you cannot use the EXAMINE/SOURCE command if you are using
the local debugger.

The rest of this section contains descriptions of the commands you can use
to debug VAXELN systems.

Debugging VAXELN Systems 5-27

CALL

CALL

Format

Parameters

Description

Calls a routine in the context of the current program and returns to
command mode when the routine completes.

NOTE

If the routine affects the state of the running program, the
debugger might lose control of the session. In addition, the
debugger does not handle breakpoints or exceptions while the
routine is executing.

CALL target II argument . . . 1

target
A path-name identifier, integer, or address expression.

Specify an address expression when the target's name is not a simple
identifier. You must enclose the address expression in parentheses.

argument
One or more optional arguments to the routine being called. If you specify
multiple arguments, separate them with commas and enclose the list in
parentheses. You can specify up to 16 arguments. After evaluation, each '
argument must fit in one longword (32 bits).

Use the CALL command when the debugger is unable to perform a
complex function. A typical example might be in debugging a command
interpreter, where the CALL command calls a routine in your application,
which dumps the debugger symbol table.

After the routine executes, the debugger displays the value returned by
the called routine in register RO.

5-28 Debugging VAXELN Systems

Examples

For example:

Edebug 4.5> CALL dump_symbol (@RO)
Symbol table entry at: 43450 Name: testl Type: integer Value: 2
16 (00000010)

1. Edebug 4.5> CALL %X200
16 (00000010)

2. Edebug 4.5> CALL external_call (1.0.FALSE)
(Parameters in HEX are 00000001 00000000 00)
1 (00000001)

3. Edebug 4.5> CALL (rtn_ptr+O) (1.0.FALSE)
2 (00000002)

CALL

Debugging VAXELN Systems 5-29

CANCEL BREAK

CANCEL BREAK

Format

Parameter·

Clualifiers

Example

Cancels breakpoints.

CANCEL BREAK [[addressJJ

/All
/KERNEl

address
An expression for the address at which a breakpoint is to be canceled.
This parameter is optional. If you omit it, specify the / ALL qualifier.
If you specify an address for which a breakpoint is not set, the system
displays .the following error message:

%EDEBUG-E-NO_SUCH_BREAKPOINT. specified breakpoint was not set

The SHOW BREAK command displays the current breakpoints.

JALL
Cancels all breakpoints.

jKERNEL
Cancels breakpoints set by the SET BREAK/KERNEL command.

See the SET BREAK command description.

5-30 Debugging VAXELN Systems

CANCEL CONTROL

CANCEL CONTROL

Format

Causes all processes that start in the command session's job to start
executing independently of the debugger. The debugger does not take
control when the process is created. To reverse this action, use the SET
CONTROL command.

CANCEL CONTROL

Debugging VAXELN Systems 5-31

CANCEL EXCEPTION BREAK

CANCEL EXCEPTION BREAK

Format

Reestablishes the default exception handler's search for the associated
session, reversing the action of the SET EXCEPTION BREAK command.

CANCEL EXCEPTION BREAK

5-32 Debugging VAXELN Systems

CREATE JOB

CREATE JOB

Format

Parameters

Example

Creates a job in the target system that runs a designated program.

CREATE JOB program-name Il(argument ...)11

program-name
A string expression that names a program already installed in the system.
Use the SHOW PROGRAM/ALL command to display the names of all
installed programs along with other information about them.

argument
One or more optional arguments to the program enclosed in parentheses.
If you specify multiple arguments, separate them with commas. You can
specify up to 16 arguments. Program arguments are strings. The strings
must be constants, DEFINE values, variables, or strings explicitly typed in.

Edebug 4,5> CREATE JOB TSTJOB (111,12 1,13 1)

Debugging VAXELN Systems 5-33

CREATE PROCESS

CREATE PROCESS

Format

Parameters

Description

Calls a routine declared as a process block in the current program and
starts the procedure as a process.

CREATE PROCESS target !I(argument ...)11

target
A path-name identifier, integer, or address expression.

Specify an address expression when the target's name is not a simple
identifier. You must enclose the address expression in parentheses.

argument
One or more optional arguments to the routine enclosed in parentheses.
If you specify multiple arguments, separate them with commas. You
can specify up to 16 arguments. The arguments must be specified in the
format that matches the declaration in the process block header. After
evaluation, each argument must fit in one longword (32 bits).

The debugger gets control of the new process when it is ready to begin
executing. If you have issued a CANCEL CONTROL command before
creating the process, you will get no response if the process starts suc­
cessfully. If an error occurs, a message is displayed to indicate the failure
status.

5-34 Oebugging VAXElN Systems

CTRL/C

Format

CTRLjC

Aborts the operation in progress and, except when in the kernel session,
invokes the debugger's command interpreter.

CTRL/C

Debugging VAXELN Systems 5-35

CTRLjZ

CTRLjZ

Exits the debugging session.

Format CTRL/Z

5-36 Debugging VAXElN Systems

DEBUG

Format

Parameter

Oualifier

Example

DEBUG

Debugs, connects to, or loads and debugs a system on another node;
changes the command session to the first process waiting for attention on
the new node; can also trigger the boot operation· on that system. Once
the name of a node is specified with the DEBUG command, that node is
known to the debugger for the duration of the debugger session.

The DEBUG command is not valid for the local debugger during the
kernel session.

DEBUG node

/LOAD=system

node
If the jLOAD qualifier is not specified, the name of a node that is running
a VAXELN system; if the ILOAD qualifier is specified, the name of the
target node that is to be loaded.

/LOAD=system
Loads the specified system image on the specified node.

Edebug 4,5> DEBUG FRED

Debugging VAXElN Systems 5-37

DEFINE

DEFINE

Format

Parameters

Description

Creates or redefines a session variable with a specified type and an initial
value.

DEFINE identifier Il:: type]Il:= expression]

identifier
The session variable that is to be created or redefined.

type
A valid debugger data type (see Table 5-2). This parameter is optional,
and the default is INTEGER. The colon (:) after the type parameter is
optional.

expression
A valid debugger expression to indicate the initial value. This parameter
is optional, and the default is O. You can redefine session variables at any
time.

Variables defined this way are available in all sessions. If a program is as­
sociated with a session, a reference to one of these identifiers is resolved to
the session variable only after the reference scope is searched. If the name
is prefixed with a percent sign (%), however, it refers unambiguously to
the session variable.

You cannot redefine the symbols Rn, Pn, PSL, SP, AP, FP, or PC. When
used in expressions, these symbols yield the contents of locations and
cannot be used as address expressions.

This command is very useful in the local debugger, where source files
are not available. You can define a session variable of the RELOCATION
type for the start of a module. You can then refer to locations within the
module as offsets in your module listing from the start of the module.

5-38 Debugging VAXElN Systems

Examples

1. Edebug 4,5> DEFINE iii
Edebug 4,5> EVALUATE iii
iii: 0 (00000000)
Edebug 4,5> DEFINE iii = ~
Edebug 4,5> EVALUATE iii
iii: 2 (00000002)

2. Edebug 4,5> DEFINE ptr1 -INTEGER:= NIL

3. Edebug 4,5> DEFINE sl STRING(10)

4. Edebug 4,5> DEFINE bd1 BYTE_DATA(30) = Sl

5. Edebug 4,5> DEFINE rtn_ptr :: RELOCATION
Edebug 4,5> DEPOSIT rtn_ptr = ADDRESS(external_call)
Edebug 4,5> EXAMINE/INSTRUCTION rtn_ptr+2
rtn_ptr+2: MOVAB -40(FP),SP
Edebug 4,5> DEFINE relo :: RELOCATION = %X200
Edebug 4,5> EXAMINE/BYTE:40 relo

DEFINE

18000300 00000010 00000004 00003039 relo + 0000
00000000 00000000 00000000 00000014 relo + 0010

90

00000000 00000061 relo + 0020 a

6. Edebug 4,5> DEFINE module_base :: RELOCATION = %X2546
Edebug 4,5> SET BREAK module_base+%X176
Edebug 4,5> EXAMINE/INSTRUCTION module_base+%X176

Debugging VAXElN Systems 5-39

DELETE PROCESS

DELETE PROCESS

Format

Parameters

Deletes a process associated with a session.

NOTE

You can only use this command to delete processes associated
with sessions that are stopped. If necessary, first use the HALT
command to stop the session.

DELETE PROCESS /Iprocessl/ /Inodel/

process
The process identifier of the process to be deleted session. This parameter
is optional. If you do not specify a process, the command deletes the
process associated with the current session.

node
The name of the node on which the process being deleted resides. This
parameter is optional. If you omit it, the current node is assumed.

5-40 Debugging VAXElN Systems

DEPOSIT

Format

Parameters

DEPOSIT

Deposits the value of an expression in a location described by a variable
reference or address expression.

The qualifiers specify the amount of storage examined, overriding the size
associated with the item's type. If the command has no associated data
type, INTEGER (longword) is the default.

DEPOSIT address := expression

/ASCII:size
/BYTE:size
/DOUBLE
/D_FLOAT
/FLOAT
/G_FLOAT
/GRAND
/H_FLOAT
/HUGE
/LONGWORD
/QUADWORD
/REAL
/WORD

address
An expression for the address at which a value is to be deposited. If you
specify a complex expression, enclose it in parentheses. You can use the =

symbol interchangeably with the := symbol.

expression
The expression whose value is to be deposited at the specified location.

Debugging VAXELN Systems 5-41

DEPOSIT

Qualifiers
/ASCII
Specifies that the target is a string.

/ ASCII: size

Specifies that the target is a string of a given size. The size specifier can
be:

:integer
=integer
:(expression)
=(expression)

The default size is 1.

/BYTE
Specifies that the target is an arbitrary sequence of bytes.

/BYTE:size

Specifies that the target is a byte sequence of a given size. The size
specifier .can be:

:integer
=integer
:(expression)
=(expression)

The default size is 1.

/D_FLOAT
Specifies that the target is a D_floating value.

/DOUBLE
Specifies that the target is a D_floating value.

/FLOAT
Specifies that the target is an F_floating value.

/G_FLOAT
Specifies that the target is a G_floating value.

/GRAND
Specifies that the target is a G_floating value.

5-42 Debugging VAXElN Systems

Description

Examples

DEPOSIT

/H_FLOAT
Specifies that the target is an H_floating value.

/HUGE
Specifies that the target is an H~oating value.

/LONGWORD
Specifies that the target is an integer.

/QUA D WORD
Specifies that the target is a quadword.

/REAL
Specifies that the target is an F_floating value.

/WORD
Specifies that the target is an integer.

Some implicit conversion is performed for you at deposit time, and if the
conversion cannot be done, an error is signaled. The rules for conversion
are:

1. If the target is an integer of Boolean value, then the source must be
integer or Boolean.

2. If the target is floating, then the source must be integer or floating.
The integer value is converted to floating.

3. If the target is string, then the source must be string or byte data. The
source is padded at the end with blanks or truncated at the end to fit
the target.

4. If the target is byte data, then the source must be string or byte data.
The source is padded with zeros or truncated to fit the target.

1. Edebug 4.5> DEPOSIT 123+456 = 10

Debugging VAXElN Systems 5-43

DEPOSIT

2. Edebug 4,5> DEPOSIT my_variable = 15

3. Edebug 4,5> DEPOSIT/ASCII: 10 %X200 = 'ABCDEF'

4. Edebug 4,5> DEPOSIT data_block_item.packet[i] := i

5-44 Debugging VAXElN Systems

EVALUATE

EVALUATE

Format

Parameter

Oualifiers

Evaluates an expression.

EVALUATE expressIon

/ADDRESS
/BINARY
/DECIMAl
/HEX
/OCTAl

expression
The expression to be evaluated. If you specify the / ADDRESS qualifier,
you must specify an address expression.

IADDRESS
Displays the effective address of the address expression. This address
would be the one examined if the same address expression were specified
with the EXAMINE command.

IS/NARY
Specifies the display radix as binary if the expression's result is an integer.

IDEe/MAL
Specifies the display radix as decimal if the expression's result is an
integer.

IHEX
Specifies the display radix as hexadecimal if the expression's result is an
integer.

Debugging VAXELN Systems 5-45

EVALUATE

Description

Examples

foeTAL
Specifies the display radix as octal if the e",pression's result is an integer.

You can evaluate expressions with or without specifying the EVALUATE
command. For example, the following expressions are evaluated without
specifying the EVALUATE command:

Edebug 4,5> (r~lF <> 31) or (%B'lllll' <> %037)
FALSE

Edebug 4,5> bl <> (b2 and FALSE)
TRUE

The following examples use the backslash command (\), which returns
the last value:

Edebug 4,5> counter+50 * 100
100600

Edebug 4,5> 2 + \
100602

Edebug 4,5> 2 + \
100604

1. Edebug 4,5> EVALUATE 100+200
300 (0000012C)

2. Edebug 4,5> EVALUATE/BINARY 100+200
100101100 (0000012C)

3. Edebug 4,5> EVALUATE/HEX 100+200
0000012C

4. Edebug 4,5> EVALUATE/DECIMAL 100+200
300 (0000012C)

5-46 Debugging VAXElN Systems

5. Edebug 4,5> EVALUATE/OCTAL 100+200
454 (0000012C)

6. Edebug 4,5> EVALUATE/ADDRESS VAR_10
7FFFD2D4

7. Edebug 4,5> EVALUATE/BINARY/ADDRESS VAR_10
1111111111111111101001011010100 (7FFFD2D4)

8. Edebug 4,5> EVALUATE/HEX/ADDRESS VAR_10
7FFFD2D4

EVALUATE

Debugging VAXELN Systems 5-47

EXAMINE

EXAMINE

Examines the value in a location in the target system's memory.

For an item with a defined data type, the data type determines the amount
of storage examined and the format of the display. The qualifiers can
override the size associated with the item's type and, in the case of the
I ASCII and the floating-point qualifiers, determine the format of the
display. The qualifiers also override the display radix specified by the SET
MODE command.

NOTE

When you are examining a pointer, the default display mode
for the address is hexadecimal. To override the default, use the
IDEC or IOCT qualifiers.

If the command has no associated data type, INTEGER (longword) is the
default.

5-48 Debugging VAXELN Systems

Format

Parameter

Oualifiers

EXAMINE /laddressJ/

/ASCII
/BINARY
/BYTE
/DECIMAl
/DOUBlE
/D_FlOAT
/FlOAT
/G_FlOAT
/GRAND
/HEX
/H_FlOAT
/HUGE
/lONGWORD
/OCTAl
/QUADWORD
/REAl
/WORD

address

EXAMINE

An expression for the address of the value that is to be examined. If the
debugger symbol table is present, you can specify a variable reference.
This parameter is optional. If you do not specify an address expression,
the command examines the next value after the one most recently exam­
ined. If you specify a circumflex (A), the command examines the value
before the one most recently examined.

jASCII
Specifies that the target is a string.

/ ASCII: size

Debugging VAXElN Systems 5-49

EXAMINE

Specifies that the target is a string of a given size. The size specifier can
be:

:integer
=integer
:(expression)
=(expression)

The default size is 1.

IBYTE
Displays the data in a dump format consisting of a hexadecimal display on
the left, followed by an address expression, followed by an ASCII display
on the right. The hexadecimal display represents 16 bytes with the lowest
address on the right and the highest on the left. The ASCII display has
the lowest address on the left and the highest on the right. The address
expression indicates lowest address. This qualifier specifies that the target
is an arbitrary sequence of bytes.

/BYTE:size

Specifies that the target is a byte sequence of a given size. The size
specifier can be:

:integer
=integer
:(expression)
=(expression)

The default size is 1.

IB/NARY
Specifies that the result is to be displayed as binary if the result is an
integer. If the address expression is a variable reference, the variable's
data type determines the default display.

IDEe/MAL
Specifies that the result is to be displayed as decimal if the result is an
integer. If the address expression is a variable reference, the variable's
data type determines the default display.

ID_FLOAT
Specifies that the target is a D_floating value.

IDOUBLE
Specifies that the target is a D_floating value.

5-50 Debugging VAXElN Systems

EXAMINE

/FLOAT
Specifies that the target is an F_floating value.

/G_FLOAT
Specifies that the target is a G_floating value.

/GRAND
Specifies that the target is a G_floating value.

/HEX
Specifies that the result is to be displayed as hexadecimal if the result is
an integer. If the address expression is a variable reference, the variable's
data type determines the default display.

/H_FLOAT
Specifies that the target is an H_floating value.

/HUGE
Specifies that the target is an H_floating value.

/LONGWORD
Specifies that the target is an integer. If the address expression is a
variable reference, the variable's data type determines the default display.

/oeTAL
Specifies that the result is to be displayed as octal if the result is an
integer. If the address expression is a variable reference, the variable's
data type determines the default display.

/Q UA DWORD
Specifies that the target is a quadword. If the address expression is a
variable reference, the variable's data type determines the default display.

/REAL
Specifies that the target is an F_floating value.

/WORD
Specifies that the target is an integer. If the address expression is a
variable reference, the variable's data type determines the default display.

Debugging VAXELN Systems 5-51

EXAMINE

Examples

1. Edebug 4,5> EXAMINE Rl
Rl: 300 (0000012C)
Edebug 4,5> EXAMINE .
Rl: 304 (00000130)

2. Edebug 4,5> EXAMINE %X4000
4000: 300 (0000012C)
Edebug 4,5> EXAMINE . + %Xl0
4010: 34 (00000130)

3. Edebug 4,5> EXAMINE RO
RO: 10 (OOOOOOOA)
Edebug 4,5> EXAMINE.
RO: 10 (OOOOOOOA)

4. Edebug 4,5> EXAMINE
Rl: 20 (00000014)
Edebug 4,5> EXAMINE -
RO: 10 (OOOOOOOA)

5. Edebug 4,5> EXAMINE/ASCII Sl
Sl: A

6. Edebug 4,5> EXAMINE/ASCII:10 Sl
Sl: ABC

7. Edebug 4,5> EXAMINE/BY Sl
Sl: 97 (00000061)

8. Edebug 4,5> EXAMINE/BY:l Sl

5-52 Debugging VAXELN Systems

611 Sl I a

EXAMINE

9. Edebug 4,5> EXAMINE/BY:3 Sl
6362611 Sl 1 abc

10. Edebug 4,5> EXAMINE/BY: 10 Sl
2020 20202020 206362611 Sl 1 abc

11. Edebug 4,5> EXAMINE/BY: 20 Sl
00064C50 00002020 20202020 206362611 Sl 1 abc .. PL ..

00064CDOI Sl + 0010 1 .L ..

12. Edebug 4,5> EXAMINE/WORD Sl
Sl: 25185 (00006261)

13. Edebug 4,5> EXAMINE/QUAD Sl
20202020 20636261 1 Sl 1 abc

14. Edebug 4,5> EXAMINE/LONG Sl
Sl: 543384161 (20636261)

15. Edebug 4,5> EXAMINE/DOUBLE RO
RO: 1.00000000000000000E+00005

16. Edebug 4,5> EXAMINE/G_FLOAT RO
RO: 8. 41178011028559882E+00041

17. Edebug 4,5> EXAMINE/HUGE RO
RO: 1.06499995818682317E+00675

Debugging VAXELN Systems 5-53

EXAMINE

18. Edebug 4,5> EXAMINE/OCTAL Ii
Ii: 1 (00000001)

19. Edebug 4,5> EXAMINE/BINARY Ii
Ii: 1 (00000001)

20. Edebug 4,5> EXAMINE/HEX Ii
I1: 00000001

21. Edebug 4,5> EXAMINE/BY:3/0CTAL Ii
00000001 I I1 I ...

22. Edebug 4,5> EXAMINE/BY:4/BINARY Ii
fill I

23. Edebug 4,5> EXAMINE data_block_item
next_data_block: 7FFFD3AC
PACKET(l): 33 (00000021)
PACKET(2): 2 (00000002)
PACKET(3): 0 (00000000)
PACKET(4): 0 (00000000)
BIT _ITEM: True

24. Edebug 4,5> EXAMINE arr_item_l0
arr_item_l0(1): 33 (00000021)
arr_item_l0(2): 2 (00000002)
arr_item_l0(3): 0 (00000000)
arr_item_l0(4): 0 (00000000)
arr_item_l0(5): 0 (00000000)
arr_item_l0(6): 0 (00000000)
arr_item_l0(7): 0 (00000000)
arr_item_l0(8): 0 (00000000)
arr_item_l0(9): 0 (00000000)
arr_item_l0(10): 805306368 (30000000)

5-54 Debugging VAXElN Systems

EXAMINE/INSTRUCTION

EXAMINE/INSTRUCTION

Format

Parameters

Examples

Displays a machine-instruction sequence.

EXAMINE/INSTRUCTION [[start] [[:end]

start
An expression for the address at which the command is to start displaying
the machine-instruction sequence. This parameter is optional. If you omit
this parameter and the end-address parameter, the command displays the
instruction at the location after the last-examined location.

end
An expression for the address at which the command is to stop displaying
the machine-instruction sequence. This parameter is optional. If you omit
it, the command displays one instruction.

1. Edebug 4,5> EXAMINE/INSTRUCTION %X4000
4000: MOVAB -10(fp),-14(fp)
Edebug 4,5> SET BREAK .

2. Edebug 4,5> EXAMINE/INSTR %LABEL first_label
More?> %LABEL first_label + 40
%Line 345 + 0000: PUSHL JOB
%Line 345 + 0002: PUSHL #00
%Line 345 + 0004: PUSHAB $CODE + OOAE
%Line 345 + 0008: PUSHL JOB
%Line 345 + OOOA: PUSHAB PAS$OUTPUT\$DATA + 0010
%Line 345 + 0010: CALLS #05,@0000166C
%Line 345 + 0017: PUSHAB PAS$OUTPUT\$DATA + 0010
%Line 345 + 001D: CALLS #01,@00001664
Edebug 4,5> EXAMINE/i
%Line 346 + 0000: MOVC3 #+ 0093,-16E8(FP)

Debugging VAXELN Systems 5-55

EXAMINE/PSL

EXAMINE/PSL

Format

Parameter

Examples

Displays the value at a specified location and expands the value into an
ASCII display of a processor status longword (PSL).

EXAMINE/PSL {[addressJl

address
An expression for the address of the value to be displayed and expanded.
The parameter is optional. If you omit it, the value at the current address
is displayed and expanded.

1. Edebug 4,5> EXAMINE/PSL @SP

2. Edebug 4,5> EXAMINE/PSL PSL
CM TP FPD IS Current Mode Previous Mode IPL DV FU IV T N Z V C

o 0 0 0 3 3 010 100 000

5-56 Debugging VAXELN Systems

EXAMINE/SOURCE

EXAMINE/SOURCE

Format

Parameters

Examples

Displays the source-line sequence.

You can use this command only with the remote debugger.

EXAMINE/SOURCE {[startJJ {[:endJJ

start
An expression for the address at which the command is to start displaying
the source-line sequence. This parameter is optional. If you omit this
parameter and the end-address parameter, the command displays the
source line at the location after the last-examined location.

end
An expression for the address at which the command is to stop displaying
the source-line sequence. This parameter is optional. If you omit it, the
command displays one source line.

1. Edebug 4,5> EXAMINE/SOURCE %LINE 345
Module TSTEDEBUG
345: WRITELN('first label');

2. Edebug 4,5> EXAMINE/SOURCE %LABEL first_label:
More?> %LABEL first_label + 40
Module TSTEDEBUG
345: WRITELN('first label');
346:
347: call_successor_label:
348:
349: p_vsl := 'this is the main body value';

Debugging VAXELN Systems 5-57

EXAMINE/SOURCE

3. Edebug 4,5> EXAMINE/SOURCE
Module TSTEDEBUG
350: SUCCESSOR;

5-58 Debugging VAXElN Systems

EXIT

Fermat

EXIT

Exits the debugging session.

When you use the remote debugger, the EXIT command disconnects the
debugger from the system but sets up a way for you to connect later
with a process under debugger control in the same state as 'when you
disconnected. For example, breakpoints are preserved.

Typing CTRLjZ is equivalent to using the EXIT command.

EXIT

Debugging VAXElN Systems 5-59

GO

GO

Format

Parameter

Continues a session's execution.

GO f[address]J

address
An expression for the address at which the command is to continue
execution. This parameter is optional. If you specify it, the integrity of
the program state is not guaranteed. If you do not specify it, the session
continues execution from where it stopped.

5-60 Debugging VAXELN Systems

HALT

Format

Parameters

Description

HALT

Stops a process by raising an asynchronous exception. If the process being
stopped is under the debugger's control or does not handle the exception,
the process enters the debugger's command wait state. Otherwise, the
process might abort. The debugger reports an exception for the process if
the process is not under debugger control.

HAL T IIprocess 11 II node 11

process
The process identifier of the process to be stopped. This parameter is
optional. If you omit it, the command stops the current process.

node
The node on which the process to be stopped resides. This parameter is
optional. If you omit it, the command stops a process on the current node.
Use this parameter if you are debugging multiple nodes.

The debugger performs the HALT operation with a V AXELN kernel
service that signals the target process. Once the signal takes effect, the
debugger gains control, and the process enters the debugger's command
wait state.

NOTE

You cannot halt a process when it is in one of the following
states:

• The process cannot be scheduled to run because of the
scheduling state of the system; to be halted, the process
must be executing or ready to execute.

• The process is waiting for the execution of the ACCEPT_
CIRCUIT or CONNECT_CIRCUIT kernel service to com­
plete.

Debugging VAXELN Systems 5-61

HALT

• The process is in an implicit wait state during the execution
of the SEND kernel service to a circuit that is full.

• The process is a kernel-mode process running at an elevated
interrupt priority level (IPL).

In each of these cases, the debugger gains control when the
process leaves the state in which it cannot be halted.

5-62 Debugging VAXElN Systems

HELP

Format

Parameters

Description

HELP

Displays information on each of the debugger commands.

When you are using the EDEBUG utility, the HELP items are the same as
those displayed by the VAX/VMS HELP command.

HELP {[keyword 11

keyword
A keyword that refers to the topic or subtopic on which you want infor­
mation. Information within HELP is arranged in a hierarchical manner.
The levels are:

1. None - If you do not specify a keyword, HELP lists the topics that
are documented in the help file. Each item in the list is a keyword in
the first level of the hierarchy.

2. Topic - If you specify a keyword that names a topic, HELP describes
the topic as it is documented in the help file. Keywords for additional
information available on this topic are listed.

3. Topic subtopic - If you specify a subtopic following a topic, HELP
provides a description of the specified subtopic.

To use the HELP facility in its simplest form, issue the HELP command
from your terminal. HELP displays a list of topics at your terminal. If
you want to see more information on one of the topics, type HELP topic
at the command level prompt. The system will display information on
that topic. If the topic has subtopics, HELP will list the subtopics. If you
want information on one of the subtopics, type HELP topicsubtopic at the
command level prompt.

Debugging VAXELN Systems 5-63

IF

IF

Format

Parameters

Examples

Conditionally executes a I-line command based on the value of a Boolean
expression. (You can use commands created with SET COMMAND.)

I F boolean-expression TH EN one-line-command

boolean-expression
A Boolean expression whose value the IF command uses to determine
whether to execute a specified command.

one-line-command
The I-line command that is to be executed based on the evaluation of the
specified Boolean expression.

1. Edebug 4,5> IF a = (123+RO) THEN DEPOSIT c := 25

2. Edebug 4,5> IF a = (123+RO) THEN EVALUATE dump_symbols

5-64 Debugging VAXElN Systems

LEAVE

Format

Example

LEAVE

Aborts the execution of a nested command file and returns to the next
higher level. The LEAVE command is useful in command files as an
argument in an IF command.

LEAVE

Edebug 4,5> IF a = (123+RO) THEN LEAVE

Oebugging VAXElN Systems 5-65

LOAD

LOAD

Format

Parameters

Installs a new program image into the target system. You can then execute
the new program image by using the CREATE JOB command. The LOAD
command is a simplified interface to the program-loading facilities and is
not available if you are using the local debugger.

LOAD program file

/DEBUG
/ JOB_PRIORITY=n
/KERNEL[=n]

program
The name of the program image to be installed on the target system. The
name you specify must be unique. This name can subsequently be used in
a CREATE JOB command.

file
The name of the file for the program to be installed on the target system.
You must include the file type, for example, .EXE. The program image
file is opened in the context of the target system, not in the context of the
remote debugger. Therefore, to load a program image from another node,
you must include the node in the file specification. Node names are not
valid; you must specify the node in the following format:

area.node-number

For example:

5.014

5-66 Debugging VAXELN Systems

Oualifiers

LOAD

jDEBUG
Specifies that the remote debugger is to get control after the specified
program is started on the target system using the CREATE JOB command.
If you do not specify this qualifier, the job running the program will not
be under debugger control.

jJOB_PRIORITY=n
Indicates the priority at which the job running the specified program is to
execute. The default is 16. The process priority always defaults to 8.

jKERNELI=nl
Indicates that the specified program is to run in kernel mode. The param­
eter n specifies the size of the kernel's stack. The default is 1.

Debugging VAXElN Systems 5-67

PREDECESSOR

PREDECESSOR

Format

Parameter

Oualifier

Moves the session's reference scope back a specified number of call frames
in the calling order.

For example, PREDECESSOR 1 lets you use variable names or other
names declared in the routine that called the current routine. The context
in which the session is stopped is not affected.

PREDECESSOR II expression]

jAUTO

expression
An expression whose value indicates the number of call frames the
reference scope is to be moved. This parameter is optional. If you omit it,
the reference scope moves back one call frame.

/AUTO
Finds the most recent frame described by the program traceback informa­
tion when a process stops.

5-68 IJebugging VAXELN Systems

SEARCH

Format

Parameters

SEARCH

Searches the program for a string or identifier. If no match is found, the
command prompt returns. No message is displayed.

SEARCH /Irangel /Itargetl

fAll
fNEXT

range
The range of the search, which you can specify one of the following ways:

• module - Search the named module beginning at its first line and
continuing to its end.

• module\line - Begin the search at the specified line number in the
named module.

• module\line:line - Search the specified range of line numbers in the
specified module.

• line - Begin the search at the given line number in the current
module.

• line:line - Search the specified range in the current module.

On the first SEARCH command, you must specify a range. If you omit
this parameter in subsequent SEARCH commands, the debugger searches
the module most recently searched, beginning at the first line after the one
most recently searched and continuing to the end of that module.

target
The string or identifier for which the debugger is to search. The debugger
displays the source lines containing occurrences of the value specified.

Debugging VAXElN Systems 5-69

SEARCH

Qualifiers

Examples

On the first SEARCH command, you must specify a target. If you omit
this parameter in subsequent search commands, the debugger searches for
the target most recently specified. If you specify a target, you must also
specify a range.

JALL
Displays all occurrences of the specified string or identifier in the specified
range.

jNEXT
Displays the first occurrence of the specified string or identifier in the
specified range. This qualifier is the default.

1. Edebug 4.5> SEARCH TSTEDEBUG\ 1 100 'A'
Module TSTEDEBUG
5: PROCEDURE macsub; SEPARATE;

2. Edebug 4.5> SEARCH 1 : 100 VAR
Module TSTEDEBUG
6: FUNCTION foraddf(VAR ii.jj : INTEGER);

3. Edebug 4.5> SEARCH
Module TSTEDEBUG
7: PROCEDURE foradds(VAR ii.jj INTEGER);

4. Edebug 4.5> SEARCH/ALL
Module TSTEDEBUG
20: VAR in_out_str : STRING «k»
100: VAR param_string : STRING«k»

5-70 Debugging VAXELN Systems

SET BREAK

SET BREAK

Format

Parameters

Sets a breakpoint at a specified address.

NOTE

When a debug symbol table is present and you use a VAX
procedure name to set a breakpoint at the procedure's entry
point, the debugger places the breakpoint at that procedure's
first instruction. For example:

SET BREAK writeroutine

This command automatically sets the breakpoint at the address
of writeroutine+2, the first instruction after the entry mask. If no
debug symbol table is present, you must place the breakpoint at
the procedure's first instruction yourself.

SET BREAK [[addressJJ DO [[commandJJ

jAll
jJOB
jKERNEl

address
An expression for the address where the breakpoint is to be set.

command
A command to be executed when the specified breakpoint is reached.
Only a I-line command is allowed. This parameter is optional. You can
specify commands defined by SET COMMAND.

Debugging VAXElN Systems 5-71

SET BREAK

o.ualifiers

Examples

/ALL
Specifies that the breakpoint is valid for the entire job. This qualifier is
equivalent to /JOB. If you do not specify the / ALL or /JOB qualifier, the
breakpoint affects only the current session's process.

/JOB
Specifies that the breakpoint is valid for the entire job. This qualifier is
equivalent to / ALL. If you do not specify the / ALL or /JOB qualifier, the
breakpoint affects only the current session's process.

/KERNEL
Sets a breakpoint in the kernel's breakpoint data base. You can use this
qualifier only with kernel-mode programs, and you cannot specify a
command. The breakpoint is set in the process's memory, and the SO
kernel address of the breakpoint is recorded in the kernel's breakpoint
data base.

You should use /KERNEL to set breakpoints in interrupt service routines
and other kernel mode code that is executed at an elevated IPL. These
jobs must be- debugged in the kernel debugging session. Because the
SO address of the breakpoint is set in the kernel's breakpoint data base,
you can set breakpoints in interrupt service routines by referring to their
program address space. The breakpoint in the interrupt service routine
occurs when your program is executing out of SO space in the kernel, not
necessarily in the context of the program itself (see the SET SESSION
command).

NOTE

You cannot use this qualifier with the remote debugger, unless
both the remote and local debuggers were built into the system.
In that case, when the breakpoint occurs, the debug information
will be displayed at the console terminal. You must then enter
commands to the kernel session at the console terminal.

1. Edebug 4.5> SET BREAK 500+512

5-72 Debugging VAXELN Systems

SET BREAK

2. Edebug 4,5> SET BREAK sym_tbl\ %LINE 125

3. Edebug 4,5> SET BREAK sym_tbl\ %LABEL not_found

4. Edebug 4,5> SET BREAK sym_tbl\srch_rtn\srch_struct

5. Edebug 4,5> SET BREAK %LINE 25

6. Edebug 4,5> EXAMINE/INSTRUCTION %X4000
4000: MOVAB -10(fp),-14(fp)
Edebug 4,5> SET BREAK .

7. Edebug 4,5> CANCEL BREAK symbol_not_found

8. Edebug 4,5> CANCEL BREAK %LINE 25

Debugging VAXElN Systems 5-73

SET COMMAND

SET COMMAND

Format

Parameters

Examples

Creates a command for use during a session.

SET COMMAND identifier DO II one-line-command]

identifier
An identifier whose occurrence indicates that a command is to execute.

one-line-command
A I-line command to be substituted for each occurrence of the specified
identifier in a command context. This parameter is optional. If you omit it,
the debugger prompts you. for a sequence of debugger commands, which
you terminate by typing an empty line. When the command identifier
appears in a command context, the sequence of commands executes.

1. Edebug 4,5> SET COMMAND ROplusl0 (EVALUATE DO RO+l0)

Edebug 4,5> SET COMMAND Rlplusl0
Command> EVALUATE Rl+l0
Command>
Edebug 4,5> ROplusl0
100 (00000064)
Edebug 4.5> SHOW COMMAND Rlplusl0
Rlplusl0 - EVALUATE Rl+l0

2. Edebug 4,5> SET COMMAND ROplusl0 DO() Erase ROplusl0 command

5-74 Debugging VAXELN Systems

SET CONTROL

SET CONTROL

Format

Reverses the action of the CANCEL CONTROL command; places all
processes in the current job under debugger control.

SET CONTROL

Debugging VAXElN .Systems 5-75

SET EXCEPTION BREAK

SET EXCEPTION BREAK

Format

Causes the session in the debugger to gain control when an exception
occurs. The debugger gains control before the kernel searches for a
programmed exception handler. By default, the debugger gets control only
if no programmed exception handlers are found. When the session stops
at an exception break, use the GO command to continue the search for an
exception handler.

You can cancel the state created by the SET EXCEPTION BREAK com­
mand by using the CANCEL EXCEPTION BREAK command.

SET EXCEPTION BREAK

5-76 Debugging VAXELN Systems

SElLOG

ForDlat

ParaDleter

SET LOG

Opens the specified file and starts logging the session. You can turn log­
ging off and on again without closing the file by using the SET OUTPUT
NOLOG and SET OUTPUT LOG commands. The file is closed when you
exit or when you enter a SET LOG command without a file specification.

Commands and responses are logged. Responses are preceded with an
exclamation point (!) making them comment lines. You can later submit
the log file as a debugger command file.

You can use this command only with the remote debugger.

SET LOG filespec

filespec
The file specification of the file to which the logging information is to be
written. The default file type is .LOG.

Debugging VAXElN Systems 5-77

SET MODE

SET MODE

Format

Parameter

Changes debugger command modes. You can change multiple modes in
one SET MODE command. Use the SHOW MODE command to see the
state of the debugger modes that are set.

SET MODE keyword f[, keyword, ... ' JJ

keyword
A keyword indicating the type of mode that is to be set. Table 5-3 lists
the valid keywords with brief descriptions.

Table 5-3: SET MODE Keywords
Keyword Description

Integer Display Mode

DECIMAL Sets the default display radix to decimal.

HEXADECIMAL Sets the default display radix to hexadecimal.

OCTAL Sets the default display radix to octal.

DJ'LOAT

DOUBLE

GJ'LOAT

GRAND

Floating Point Mode

Sets the default floating-point precision to the DJIoating data
type. This data type ranges from .2ge-38 to 1.7e38.

Sets the default floating-point precision to the DJIoating data
type. This data type ranges from .2ge-38 to 1.7e38. DOUBLE
is the default.

Sets the default floating-point precision to the GJIoating data
type. This data type ranges from .56e-308 to .ge308. The
GJIoating data type is not present on some VAX models.

Sets the default floating-point precision to the GJIoating data
type. This data type ranges from .S6e-308 to .ge308. The
GJIoating data type is not present on some VAX models.

5-78 Debugging VAXElN Systems

SET MODE

Table 5-3 (Cont.): SET MODE Keywords
Keyword

INSTRUCTION

LINE
SOURCE

INTO

OVER

NOVERIFY

VERIFY

NOPROMPT

Description

Step Unit Mode

Sets the default step unit to an instruction. You can also
change the step mode by using the SET STEP command.

Sets the default step unit to a program source line. This mode
is only valid in the remote debugger and only if a program's
symbol table is available. If a session stops in a section of the
program written in a higher-level language, the debugger is
usually set in line mode. You can also change the step mode
by using the SET STEP command. LINE and SOURCE are
equivalent.

Into/Over Mode

Specifies that you want to step into a subroutine to inspect its
code.

Specifies that you want to step over a subroutine.

Verify Mode

Suppresses the display of substituted commands and commands
from command files as they execute.

Displays substituted commands and commands from command
files as they execute.

Prompt Mode

Prevents the debugger from displaying a prompt until you type
a CTRL/C. Because debuggers use the same terminal as the
console I/O, you might use this keyword to free your terminal
for use by another program.

NOTE

When you are examining a pointer, the default display mode
for the address is hexadecimal, regardless of the mode set with
the SET MODE command. To override this default, use the
IDEC or IOCT qualifiers with the EXAMINE command.

Oebugging VAXELN Systems 5-79

SET MODE

Examples

1. Edebug 4,5> SET MODE OCTAL
Edebug 4,5> 1234
1234 (0000029C)

2. Edebug 4,5> SET MODE HEX
Edebug 4,5> 1234
00001234

3. Edebug 4,5> SHOW MODE
Radix is decimal.
Floating conversion mode is double.
Step over routine calls by line.
Automatic commands are not verified.

5-80 Debugging VAXElN Systems

SET OUTPUT

SET OUTPUT

Lets you turn logging on or off without closing the log file.

Format SET OUTPUT IIN01LOG

Debugging VAXELN Systems 5-81

SET PROGRAM

SET PROGRAM

Format

Parameter

Informs the debugger that the session's job is running a specified copy of
a program image. This command is necessary when the debugger fails to
access a program's image file, because you are using a new copy of the
image file or because the file's protection prevents access. For example,
when you copy an .EXE file, its version number might not be the same as
the number recorded in the .SYS. Likewise, the directory of a copy of an
.EXE file might not be the same as the directory recorded in the .SYS file.
The SET PROGRAM overrides the file specification in the .SYS file.

The debugger copies the specified file's symbol table information into
its memory. The debugging mode changes automatically, based on the
module in which the session stops. The radix is set appropriately for the
source language.

This command affects sessions associated with the current job.

SET PROGRAM /Iimage-file-specl/

image-file-spec
The program image to be run by the session's job. If you specify the name
of a file that does not exist, the debugger displays an error message. This
parameter is optional. However, if you omit it, the debugger discards the
symbol table information for the current image.

5-82 Debugging VAXElN Systems

SET RETURN BREAK

SET RETURN BREAK

Format

Stops the session when the current routine returns. This command enables
a temporary breakpoint that is encountered when the routine is about to
return.

You cannot cancel the state created by the SET RETURN BREAK com­
mand by using the CANCEL BREAK command.

SET RETURN BREAK

Debugging VAXElN Systems 5-83

SET SESSION

SET SESSION

Format

Parameters

Qualifiers

Changes the session to a debugging session on the current node or on
another node already specified with the DEBUG command. The state of
the previous session remains the same.

SET SESSION process /Inodel/

/GO
/KERNEL

process
The process identifier for the debugging session you want. Refer to
Section 5.3.1 for a discussion of process identifiers.

node
The node name of the process whose debugging session you want. This
parameter is optional. If you omit it, the command changes the debugging
session on the current node. You must use this parameter to change
nodes, if you are debugging multiple nodes.

/GO
Passes the GO command to the current session, then changes the session.

/KERNEL
Causes the kernel debugging session to take control at the target console.
This qualifier is valid only in the local debugger.

5-84 Debugging VAXELN Systems

SET SESSION

Examples

1. Edebug 4,5> SET SESSION 5,2

2. Edebug 4,5> SET SESSION 5,2 NODE2

3. Edebug 4,5> SET SESSION MYPROG

Debugging VAXELN Systems 5-85

SET SOURCE

SET SOURCE

Format

Parameter

Specifies a source file that is to be used during the session. Use this
command when you build an application on one machine and run the
application on another machine, when you move the source file to a new
directory, or when you want to use another version of the source file.

SET SOURCE filespec

filespec
A complete VAX/VMS file specification; for example, DUAO:[SRC]PRG.P AS.

5-86 Debugging VAXELN Systems

SET STEP

SErSTEP

Format

Parameters

Changes the default action of steps with respect to procedures and func­
tions.

See the SET MODE command description for more information on step
actions.

SET STEP /Istep-typeJ/ /Istep-sizeJ/

step-type
The keyword INTO or OVER, which indicates whether the command is to
step into or over a routine. The default is OVER.

step-size
The keyword INSTRUCTION, LINE, or SOURCE, which indicates the size
of the step the command is to take. (SOURCE and LINE have the same
meaning.) The default is LINE.

Debugging VAXElN Systems 5-87

SET TIME

SElllME

Format

Parameters

Sets the system time on a specified node.

SET TIME time-string node

time-string
A time string specified in the standard format for absolute times (dd-mmm­
yyyy hh:mm:ss.cc).

node
The name of the node on which the system time is to be set. The current
node is the default.

5-88 Debugging VAXElN Systems

SHOW BREAK

SHOW BREAK

Displays information about all breakpoints.

Format SHOW BREAK

Example

Edebug 4,5> SHOW BREAK
Module name Routine or Psect name Line ReI PC Abs PC

TSTEDEBUG TSTEDEBUG 345 000002F1 OOOOOFBF

TSTEDEBUG TSTEDEBUG 353 00000327 00000FF5

TSTEDEBUG TSTEDEBUG 356 0000034B 00001019

TSTEDEBUG TSTEDEBUG 359 0000036F 0000103D

Debugging VAXElN Systems 5-89

SHOW CALLS

SHOW CALLS

Displays the call history for the reference scope.

Far.at SHOW CALLS

Exa.ple
Edebug 4,5> SHOW CALLS
Module name Routine or Psect name Line ReI PC Abs PC

TSTEDEBUG

TSTEDEBUG

5-90 Debugging VAXELN Systems

TSTEDEBUG

TSTEDEBUG

502

217

00000202 OOOOOEDO

00000002 OOOOOCDO
00000000 800024F5

SHOW COMMAND

SHOW COMMAND

Format

Parameter

Qualifier

Example

Displays commands defined by SET COMMAND.

SHOW COMMAND llidentifierJl

fAll

identifier
A string that identifies a command previously set with SET COMMAND.
This parameter is optional. If you omit it, specify the / ALL qualifier.

JALL
Displays all commands previously set with SET COMMAND.

See the SET COMMAND command description for an example of SHOW
COMMAND.

Debugging VAXElN Systems 5-91

SHOW JOB

SHOW JOB

Format

Parameters

Qualifier

Examples

Displays information about the processes in a job.

SHOW JOB f[jobJl f[nodeJl

fAll

job
A string, identifier, or integer indicating the job for which information is
to be displayed. This parameter is optional. If you omit it, the debugger
displays information about the current job.

node
The name of the node on which the job resides. This parameter is op­
tional. If you omit it, the debugger displays the processes in the current or
specified job on the current node. Use this parameter if you are debugging
multiple nodes.

fALL
Displays all jobs.

1. Edebug 4,5> SHOW JOB 6
Job 6, program testload, priority 16 is waiting.

Shared read/write size: 1024.
Process 1, priority 8, in debug command wait.

Stack size: 5632. CPU time: 0 00:00:00.02
Accumulated CPU time for this job: 0 00:00:00.02

5-92 Debugging VAXElN Systems

2. Edebug 4,5> SHOW JOB testload
Job 6, program testload, priority 16 is waiting.
Shared read/write size: 1024.
Process 1, priority 8, in debug command wait.

Stack size: 5632. CPU time: 0 00: 00-: 00.02
Accumulated CPU time for this job: 0 00:00:00.02

SHOW JOB

Debugging VAXElN Systems 5-93

SHOW MESSAGE

SHOW MESSAGE

Format

Parameter

Example

Displays the message text associated with an expression value's return
status.

SHOW MESSAGE expression

expression
The return status of an expression value for which information is to be
displayed.

Edebug 4,5> SHOW MESSAGE %X7C3C
Bad parameter value

5-94 Debugging VAXELN Systems

SHOW MODE

SHOW MODE

Format

Displays the debugger's current operating modes (stepping defaults, radix,
and floating-point conversion type).

See the SET MODE command description for a SHOW MODE example.

SHOW MODE

Debugging VAXELN Systems 5-95

SHOW MODULE

SHOW MODULE

Displays information about the program associated with the session.

Format SHOW MODULE

Example

Edebug 4.5> SHOW MODULE
Program- SEA$: [DEBUG. TEST] TSTEDEBUG.EXE;62
Module name Symbols Language Source
TSTEDEBUG Yes Pascal Yes
FORADDF Yes FORTRAN No
FORADDS Yes FORTRAN No
PASSUBS Yes Pascal Yes
MAINO No Macro No
PLISUB Yes PL/I Yes
BINARY Some Bliss Yes
PAS$INPUT No Macro No
PAS$OUTPUr No Macro No

5-96 Debugging VAXElN Systems

SHOW PROCESS

SHOW PROCESS

Format

Parameters

Dualifier

Examples

Displays the system state of a job or a process in a job.

SHOW PROCESS /Iprocessl/ /Inodel/

fAll

process
The name of the process for which the system state is to be displayed.
This parameter is optional. If you omit it and do not specify / ALL, the
debugger displays the state of the process associated with the current
debugging session.

node
The name of the node on which the process or job resides. This parameter
is optional. If you omit it, the debugger displays the state of the processes
on the current node. Use this parameter if you are debugging multiple
nodes.

fALL
Displays all jobs.

1. SHOW PROCESS
Job 6, program TEST LOAD , priority 16 is waiting.
Shared read/write size: 1024.
Process 1, priority 8, in debug command wait.

Stack size: 5632. CPU time: 0 00:00:00.02

Debugging VAXElN Systems 5-97

SHOW PROCESS

2. Edebug 4,5> SHOW PROCESS 2,4
Job 2, program XQDRIVER, priority 1 is waiting.

Shared read/write size: 30720.
Process 4, priority 8, is waiting.

Stack size: 2048. CPU time: 0 00:00:00.07

5-98 Debugging VAXElN Systems

SHOW PROGRAM

SHOW PROGRAM

Format

Parameter

Dualifier

Example

Displays the system information about an installed program.

SHOW PROGRAM IlprogramJ/

fAll

program
The name of the program for which system information is to be displayed.
This parameter is optional. If you omit it, specify the j ALL qualifier.

JALL
Displays system information about all the installed programs.

Edebug 4,5> SH PROGRAM TESTLOAD
Program: TESTLOAD Debug User mode

Default job priority: 16 Default process priority: 8
Kernel stack size: 8 User stack size: 2
Filename: "SEA$: [DEBUG.TEST]TESTLOAD.EXE;75"

Debugging VAXELN Systems 5-99

SHOW SESSION

SHOW SESSION

Format

Parameters

Qualifier

Displays the debug state of debugging sessions.

SHOW SESSION IlprocessJ/ IlnodeJ/

fAll

process
The name of the process whose debug state is to be displayed. This
parameter is optional. If you omit it, the debugger displays the state of
the current session.

node
The name of the node on which the process resides. This parameter is
optional. If you omit it, the debugger displays the state on the current
node. Use this parameter if you are debugging multiple nodes.

fALL
Displays the debug state for all sessions in the current job.

5-100 Debugging VAXELN Systems

Example

Edebug 4,5> SHOW SESSION 5,1
Job 5, process 1, program TSTEDEBUG needs attention.
Module TSTEDEBUG
216:
»217: BEGIN

218: gbldef_i:= 4;
219: gbldef_j := 12345;

SHOW SESSION

Debugging VAXELN Systems 5-101

SHOW SYMBOL

SHOW SYMBOL

Format

Parameters

Dualifier

Displays the debugger's symbol table information, providing a way to see
what the debugger knows about the symbols in a reference scope.

SHOW SYMBOL /IpathnameJ/ /IidentifierJ/

jDEFINE

pathname
The name of the path identifying the reference scope for which symbols'
symbol table information is to be displayed. This parameter is optional. If
you omit it, the debugger displays symbol table information for symbols in
the curr.ent reference scope. If you specify a path name and an identifier,
the debugger displays information for the specified symbol in the specified
scope.

identifier
The symbol for which symbol table information is to be displayed. This
parameter is optional. If you omit it, the debugger displays information
for all symbols. If you specify a path name and an identifier, the debugger
displays information for that symbol in the specified scope. If you specify
an identifier without a path name, the debugger displays the symbol from
the current scope.

/DEFINE
Displays symbol table information about a debugger-defined symbol.
You can specify this qualifier with the identifier parameter. If you do not
specify an identifier, the debugger displays all defined session variables.

5-102 Debugging VAXELN Systems

Examples

1. Edebug 4,5> SHOW SYMBOL
Outer Scope:
1 gbldeCi

Type: Integer
Size: 1 Longword
Located at address 00000204

gbldeCj
Type: Integer
Size: 1 Longword
Located at address 00000200

Routine: TSTEDEBUG
1 APTR

Type: Pointer to anytype
Size: 1 Longword
Located at -0000175C(FP)

arr_item_10
Type: Array of Integer
Size: Not determined at compile time
Located at -000015D8(FP)

2. Edebug 4,5> SHOW SYMBOL gbldef_i
Outer Scope:
1 gbldeCi

Type: Integer
Size: 1 Longword
Located at address 00000204

3. Edebug 4,5> SHOW SYMBOL/DEFINE
$: Relocation
NIL: Relocation
iii : Integer
ptr1: pOinter to Integer
sl: String(10)
relo: Relocation

SHOW SYMBOL

Debugging VAXElN Systems 5-103

SHOW SYSTEM

SHOW SYSTEM

Format

Parameter

Example

Displays the memory, CPU time, and jobs of the system. The display of
available memory refers to the total number of pages of memory available;
these pages are not necessarily contiguous.

SHOW SYSTEM /lnodeJ/

node
The name of the node for which system information is to be displayed.
This parameter is optional. If you omit it, the debugger displays informa­
tion about the current system. Use this parameter if you are debugging
multiple nodes.

Edebug 4,5> SHOW SYSTEM
Available: Pages: 1335, Page table slots: 47, Pool blocks: 216
Time since SET TIME: Idle: 0 00:00:23.10 Total: 0 00:00:23.73
Time used by past jobs: 0 00:00:00.03

Job 2, program XQDRIVER, priority 1 is waiting.
Job 3, program EDEBUGREM, priority 3 is running.
Job 4, program DUDRIVER, priority 4 is waiting.
Job 5, program FALSERVER, priority 16 is waiting.
Job 6, program TEST LOAD , priority 16 is waiting.

5-1 04 Debugging VAXELN Systems

SHOWYIME

SHOWYIME

Format

Parameter

Displays the time.

SHOW TIME /Inodel/

node
The name of the node on which the time is to be displayed. This pa­
rameter is optional. If you omit it, the debugger displays the time on the
current system.

Oebugging VAXELN Systems 5-105

SHOW TRANSLATION

SHOW TRANSLATION

Format

Parameters

Examples

Displays the translation (PORT object value) associated with a specified
name.

SHOW TRANSLATION name /lnodel

name
An identifier or quoted string for which a translation is to be displayed.
Use a quoted string to allow characters that are not valid in identifiers.

node
The name of the node on which the translation is to be displayed. This
parameter is optional. If you omit it, the debugger displays the translation
on the node associated with the current session.

1. Edebug 4,5> SHOW TRANSLATION CONSOLE
Node: AA-00-04-00-EO-20, Network: 0, Object: 131316
000020EO 000400AA 00000000 000200F4 I 00000000 I

2. Edebug.4,5> SHOW TRANSLATION 'CONSOLE'
Node: AA-00-04-00-EO-20, Network: 0, Object: 131316
000020EO 000400AA 00000000 000200F4 I 00000000 I

3. Edebug 4,5> SHOW TRANSLATION CONSOLE SEA4
Node: AA-00-04-00-EO-20, Network: 0, Object: 131316
000020EO 000400AA 00000000 000200F4 I 00000000 I

5-106 Debugging VAXElN Systems

STEP

Format

Parameter

Oualifiers

STEP

Executes the next instruction or line. This command executes an instruc­
tion or line and returns control to the user.

See the SET MODE command description for more information on step
actions. The STEP command qualifiers temporarily override any con­
flicting mode as set by default or by the latest SET MODE or SET STEP
command.

STEP /IexpressionJ/

jlNSTRUCTION
jlNTO
jLlNE
JOVER
jSOURCE

expression
An expression that indicates the number of times the command is to
repeat. This parameter is optional. If you omit it, the debugger steps one
line or instruction.

/INSTRUCTION
Explicitly steps over one instruction.

/INTO
Stops in a routine if the next instruction or line calls a procedure or
function.

Debugging VAXElN Systems 5-107

STEP

/LINE
Steps over the instructions associated with the current line if the associated
program has line-number information. If no associated program exists or
if the session is not at a point identified by a line number, the debugger
steps over one instruction. The ILINE and lOVER qualifiers are the
defaults for the STEP command.

lOVER
Stops after a routine's return if the next instruction or line calls a proce­
dure or function. The ILINE and lOVER qualifiers are the defaults for the
STEP command.

/SOURCE
Steps over the instructions associated with the current line if the associated
program has line-number information. If no associated program exists or
if the session is not at a point identified by a line number, the debugger
steps over one instruction.

5-1 08 Debugging VAXElN Systems

SUCCESSOR

SUCCESSOR

Format

Parameter

Moves the session's reference scope a specified number of call frames for­
ward in the calling order (following use of the PREDECESSOR command).

SUCCESSOR II expressionJ/

expression
An expression indicating the number of call frames forward that the
reference scope is to move. This parameter is optional. If you omit it, the
debugger moves forward one call frame. For example, SUCCESSOR 1 lets
you use variable names or other names declared in the next routine called
from the current routine. The context in which the session is stopped is
not affected.

Debugging VAXElN Systems 5-1 09

TYPE

TYPE

Format

Parameter

Examples

Displays the source program lines in a specified range.

TYPE range

range
The range of source lines to be displayed. Specify the range in the
following format:

[moduZe\] [expression] [:expression]

The expressions must represent line numbers indicating the beginning and
end of the range. If you omit the name of the module and the backslash,
the debugger assumes the module where the session's reference scope is
set or the last module used in a TYPE or SEARCH command. If you omit
the line-number expressions, the debugger displays the line after the last
TYPE or SEARCH command.

1. Edebug 4,5> TYPE 1
Module TSTEDEBUG
1: MODULE TSTEDEBUG;

2. Edebug 4,5> TYPE 1 : 5
Module TSTEDEBUG
1: MODULE TSTEDEBUG;
2:
3: VAR gbldef_i,gbldef_j: INTEGER;
4:
5: PROCEDURE macsub; SEPARATE;

5-11 0 Debugging VAXELN Systems

3. Edebug 4,5> TYPE passubs\ 1 6
Module passubs
1: MODULE passubs;
2: PROCEDURE passubs(i,j INTEGER; k INTEGER);
3:
4: BEGIN
5: k:= i + j;
6: END;

TYPE

Debugging VAXELN Systems 5-111

UNLOAD

UNLOAD

Format

Parameters

Removes a previously loaded program image from the system. This
command is not available in the local debugger.

UNLOAD program IJnodeJl

program
The name of the program image to be removed from the system.

node
The node from which the program image is to be removed. This param­
eter is optional. If you omit it, the debugger removes the program image
from the current node.

5-112 Debugging VAXElN Systems

WAIT

Format

Parameter

Example

WAIT

Suspends the operation of the remote debugger for a specified time
interval. This command is useful in command files after a command that
must be completed before the next command can execute. For example,
if you attempt to delete a process after halting it, an error occurs if the
HALT command has not finished executing.

WAIT time-specifier

time-specifier
An integer indicating the number of tenths of a second to wait.

HALT 7.1
WAIT 5
DELETE PROCESS 7.1

Debugging VAXELN Systems 5-113

Chapter 6

Performance Analysis

The VAXELN Performance Utility is a software development tool that
helps you analyze the run-time behavior of VAXELN applications. The
VAXELN Performance Utility can pinpoint execution bottlenecks and other
performance problems in applications. Using this information, you can
modify your VAXELN applications to run faster.

This chapter explains the features of the VAXELN Performance Utility
(Section 6.1) and how to use its two components, the Collector
(Section 6.2) and the Analyzer (Section 6.3).

6. 1 VAXELN Performance Utility Features

The Collector gathers performance data on a running application and
writes the data to a performance data file. The Analyzer then reads the
performance data file and produces performance tables displaying the
data. .

The Collector and the Analyzer are fully symbolic, obtaining symbol
information from the debug symbol table that the compilers generate. The
VAXELN Performance Utility collects and analyzes the following kinds of
data:

• Program Counter (PC) sampling data. You specify which job to
collect PC data for. The Collector will sample the program counter at
an interval you select. The Analyzer can then produce reports telling
you where your job is spending most of its time.

• Job sampling data. For each job in a system, the Collector returns the
number of times the job entered the run state and the elapsed CPU
time.

Performance Analysis 6-1

• Process sampling data. For each process in a specified job, the
Collector returns the number of times the process entered the run
state and the elapsed CPU time.

• System service sampling data. For a specified job, the Collector
returns the number of times each of a subset of the VAXELN kernel
services was called.

You can only select one type of data in a single Collector run, that is, each
execution of a GO command terminated by a STOP command.

To use the VAXELN Performance Utility, the following minimum configu­
ration is required:

• Two VAX computers connected by DECnet, one running VAX/VMS
and the other running VAXELN. The Analyzer will run only on the
VAX/VMS host.

• VAXELN Version 3.0 or higher.

NOTE

You cannot use the VAXELN Performance Utility for pro­
grams with a job priority of two or above and that call the
INITIALIZATION _DONE procedure (Init required specified
on the Program Description Menu).

The syntax for Collector and Analyzer commands is as follows:

COMMANDII/ qualifier . .. lllIfilespecll

Qualifiers and parameters for Collector and Analyzer commands are
described in Section 6.2.3 and Section 6.3.3, respectively.

6.2 Collecting Perfo.rmance Data

To collect performance data from a program, you must prepare your
VAXELN system for performance analysis, invoke the Collector, and issue
Collector commands. Section 6.2.1 explains how to prepare your system
for the Collector. Section 6.2.2 explains how to invoke the Collector.
Section 6.2.3 explains the Collector commands.

6-2 Performance Analysis

6.2.1 Preparing for Performance Analysis

To prepare a VAXELN system for performance analysis, do the following:

1. For PC sampling, compile and link your program using the jDEBUG
qualifier. The jDEBUG qualifier causes the compiler to create a
debug symbol table. With the debug symbol table, the program
image contains all the symbol and line number information needed
for PC address and source code correlation. See Chapter 5 for a
discussion of the debug symbol table. Although you compile and link
with the jDEBUG qualifier, you do not have to select Debug on the
System Builder's Editing System Characteristics and Editing Program
Characteristics menus.

For example, to compile MYFILE.PAS, type:

$ EPASCAL/DEBUG/NOOP MYFILE + ELN$:RTLOBJECT/LIB

To link your program, type:

$ LINK/DEBUG MYFILE + ELN$:RTLSHARE/LIB + RTL/LIB

2. Build your program selecting EPA Yes at the System Builder's System
Characteristics Menu (see Section 3.4.3). The System Builder includes
the Collector in your system. Some of the pages you specify at the
System region size entry on that menu are allocated to the Collector.
The amount allocated depends on the kind of data you are collecting.

• When you are doing job or process sampling, the number of
System region size pages allocated is calculated as follows:

«50 * the number of jobs in the system) + 511) /512

• When you are doing system service sampling, six System region
size pages are allocated by the VAXELN Performance Utility.

• When you are doing PC sampling, the number of System region
size pages allocated is calculated as follows:

«4 * the code size in bytes/the bucket size) + 511)/512

For a discussion of the bucket size refer to the SET PC_
SAMPLING command in Section 6.2.3.

NOTE

Linking to the RTLOBJ library causes the Collector's
datafile and the System region size to be much larger
than does linking to the RTLSHARE library.

Performance Analysis 6-3

3. Load your system to the V AXELN target.

NOTE

When you include the Collector in your system, a job with a
lower priority than the VAXELN Performance Utility, priority 3,
will not start running until you initialize the Collector and issue
the GO command (see Section 6.2.3).

6.2.2 Invoking the Collector

To invoke the Collector, enter the following command at the DCL prompt
on the host system:

$ VAXELN PERFORMANCE/COLLECTOR target

where target is the DECnet name or number of the target node.

The following prompt appears:

EPC>

You can now use one of the Collector commands discussed in Section
6.2.3.

6.2.3 Collector Commands

Collector commands allow you to name the target and job for which data
is collected, to define the kind of data collected, to specify the file that
holds the data, to start and stop the Collector session on the target, and
to exit the Collector at the host. The following example gives a set of
commands for a complete Collector session.

EPC> SET NODE FRED
EPC> SET PC_SAMPLING/INTERVAL-20 MYFILE
EPC> SET DATA_FILE MYJOB.LOG
EPC> GO
EPC> STOP
EPC> EXIT

The first command specifies the system named FRED as the target for data
collection. The second command specifies the kind of data to be collected
as Program Counter samples for the program MY FILE and sets the sam­
pling rate to 20 millisecond (ms) intervals. The third command makes
MYJOB.LOG the file that will hold the data. The next two commands start

6-4 Performance Analysis

and stop the Collector session on the target. The last command exits the
Collector session at the host.

The rest of this section contains descriptions of the Collector commands in
alphabetical order.

Performance Analysis 6-5

EXIT

EXIT

Format

Description

Exits the Collector session.

EXIT

This command exits the Collector session at the host. If you use the EXIT
command after a GO but before a STOP, the Collector session continues
on the target. You can resume the Host's connection to the session by
reissuing the command:

$ VAXELN PERFORMANCE/COLLECTOR target

6-6 Performance Analysis

GO

GO

Tells the Collector to begin collecting the performance data.

Format GO

Description
You must issue a SET DATAFILE command, as well as a command setting
the kind of data to collect, before issuing a GO command. Before issuing
a second GO command, you must terminate the session begun by the first
with a STOP command.

Performance Analysis 6-7

HELP

HELP

Format

Parameter

Description

Example

Displays information on each of the Collector commands.

HELP IIkeyword ... 11

keyword .. .
One or more keywords that refer to the topic or subtopic on which you
want information. Information within HELP is arranged in a hierarchical
manner. The levels are:

1. None - If you do not specify a keyword, HELP lists the topics that
are documented in the help file. Each item in the list is a keyword in
the first level of the hierarchy.

2. Topic - If you specify a keyword that names a topic, HELP describes
the topic as it is documented in the help file. Keywords for additional
information available on this topic are listed.

3. Topic subtopic - If you specify a subtopic following a topic, HELP
provides a description of the specified subtopic.

To use the HELP facility in its simplest form, issue the HELP command
from your terminal. HELP displays a list of topics at your terminal. If
you want· to see more information on one of the topics, type HELP topic
at the command level prompt. The system will display information on
that topic. If the topic has subtopics, HELP will list the subtopics. If you
want information on one of the subtopics, type HELP topic subtopic at the
command level prompt.

EPC> HELP GO

6-8 Performance Analysis

SET DATAFILE

SET DATAFILE

Specifies the file the Collector uses to record performance data.

Format SET DATAFILE filespec

Parameter
filespec
The file specification of the file to which the performance data is written.

Example

EPC> SET DATAFILE MYFILE.COL

Performance Analysis 6-9

SET JOB_SAMPLING

SET JOB_SAMPLING

Format

Description

Enables the collection of entries to the run state and elapsed CPU times
for a system's jobs.

SET JOB_SAMPLING

For each job in the system, this command returns the job identification
number (refer to Section 5.3.1), the job name, the CPU time, and the
number of times it entered the run state.

6-10 Performance Analysis

SET NODE

SET NODE

Changes the node from which you will collect performance data.

Format SET NODE target

Parameter
target
A node name or number.

Example

EPC> SET NODE FRED

Performance Analysis 6-11

SET PC_SAMPLING

SET PC_SAMPLING

Format

Parameter

Dualifiers

Enables the collection of program counter samples for the specified job,
at the selected interval. PC data is registered if the process running when
the sample is taken belongs to the specified job.

SET PC_SAMPLING job

/BUCKET _SIZE=n
/CODE_ST ART=n
/IMAGE_SIZE=n
/INTERVAL=n

job
The progpam name entered on the Program Description Menu or specified
in a LOAD command.

jBUCKET _SIZE=n
Specifies the number of bytes each count in the tally represents. A bucket
is a range of code. The Collector counts the number of times the executing
command was in a particular range. The recommended bucket size is the
minimum of 1. The maximum is 32767. The default is 16.

jCODE_START=n
Specifies the virtual address where sampling will begin. You would set
this value if the job is loaded dynamically or if you do not wish to test
the entire job processed by EBUILD. If you omit this qualifier for a job not
processed by EBUILD, the Collector uses 200 (hexadecimal) as the starting
address.

6-12 Performance Analysis

Example

SET PC_SAMPLING

/IMAGE_SIZE=n
Specifies the size of the job being sampled. You would set this value if
the job is loaded dynamically or if you do not wish to test the entire job
processed by EBUILD. If you omit this qualifier for a job not processed
by EBUILD, the Collector uses the system's PO size as specified on the
System Characteristics Menu.

/INTERVAL=n
Specifies the interval at which sampling occurs in milliseconds. The range
is 1 through 32767. The default is the Time interval specified on the
System Builder's System Characteristics Menu. If you enter a different
value, it is truncated to the nearest multiple of the Time interval.

EPC> SET PC_SAMPLING/BUCKET_SIZE=1 MYFILE

Performance Analysis 6-13

SET PROCESS_SAMPLING

SET PROCESS_SAMPLING

Format

Parameter

Description

Example

Enables the collection of entries to the run state and elapsed CPU times
for the processes in the specified job.

SET PROCESS_SAMPLING job

job
The name entered on the Program Description Menu. See Section 3.4.5.

For each process in the job, this command returns the process identifi­
cation number (refer to Section 5.3.1), the process name, if any, set by
KER$NAME_OBJECT, the CPU time for the process, and the number of
times it entered the run state.

EPC> SET PROCESS_SAMPLING MYFILE

6-14 Performance Analysis

SET SYSTEM_SERVICE_SAMPLING

SET SYSTEM _SERVICE_SAMPLING

Format

Parameter

Description

Returns the number of times each of the V AXELN kernel services listed in
Table 6-1 is called by the specified job.

SET SYSTEM_SERVICE_SAMPLING job

job
The name entered on the Program Description Menu. See Section 3.4·.5.

This command keeps a count for each service called. The count, however,
can be greater than the number of calls your job makes. Kernel routines
can call other kernel routines. Each call to a routine is counted, whether
the call comes from your job or from another kernel routine.

Table 6-1 lists the kernel service calls logged by this command.

Table 6-1: System Services Counted
Service N arne

ACCEPT_CIRCUIT

ALLOCATE_MAP

ALLOCATE_MEMORY

ALLOCATE_P ATH

ALLOCATE_SYSTEM_REGION

CLEAR_EVENT

CONNECT_CIRCUIT

REA CREATE

CREATE_DEVICE

CREATE-EVENT

Performance Analysis 6-15

SET SYSTEM_SERVICE_SAMPLING

Table 6-1 (Cont.): System Services Counted

6-16 Performance Analysis

Service Name

CREATE_JOB

CREATE_MESSAGE

CREATE_NAME

CREATE_PORT

CREATE_PROCESS

CREATE_SEMAPHORE

CURRENT_PROCESS

DELETE

DISABLE-ASYNCH_EXCEPTION

DISABLE_SWITCH

DISCONNECT_CIRCUIT

ENABLE-ASYNCH_EXCEPTION

ENABLE_SWITCH

ENTER-KERNEL_CONTEXT

EXIT

FREE_MAP

FREE_MEMORY

FREE_PATH

FREE_SYSTEM_REGION

GET_JCB

GET_TIME

GET_USER

INITIALIZATION _DONE

INSTALL _PROGRAM

JOB_PORT

MEMORY_SIZE

POST_ERRORLOG

RAISE_DEBUG_EXCEPTION

RAISE_EXCEPTION

SET SYSTEM_SERVICE_SAMPLING

Table 6-1 (Cont.): System Services Counted

Service N arne

RAISEJROCESS_EXCEPTION

RECEIVE

REMOVE_PROGRAM

RESUME

SEND

SET_JOB-ELIGIBILITY

SET_JOBJRIORITY

SET_PROCESSJRIORITY

SETJROTECTION

SET_TIME

SET_USER

SIGNAL

SIGNAL _DEVICE

SUSPEND

SYSTEM_SERVICES

TRANSLATE_NAME

UNWIND

WAIT-ALL

WAIT-ANY

Performance Analysis 6-17

SHOW DATAFILE

SHOW DATAFILE

Format

Displays the current data file specification. This file is set by the SET
DATAFILE command.

SHOW DATAFILE

6-18 Performance Analysis

SHOW NODE

SHOW NODE

Format

Displays the name of the node from which you are collecting data. This
can be the node specified when you entered the Collector or the node
specified by the SET NODE command.

SHOW NODE

Performance Analysis 6-19

SHOW RUN

SHOW RUN

Format

Displays the type of data being collected and, where applicable, the name
of the job being sampled. For PC sampling, it also displays the sizes of
the interval, bucket, and image.

SHOW RUN

6-20 Performance Analysis

STOP

Format

STOP

Ends data collection at the target and writes the performance data file;
does not exit from the Collector at the host.

STOP

Performance Analysis 6-21

&.3 Using the Analyzer

The Analyzer reads the data file the Collector builds and produces reports
according to your specifications. You can use the Analyzer anytime after
the Collector has produced a performance data file.

To generate Analyzer output, you must invoke the Analyzer, and is-
sue Analyzer commands. Section 6.3.1 explains Analyzer output.
Section 6.3.2 explains how to invoke the Collector. Section 6.2.3 explains
the Collector commands.

6.3.1 Analyzer Output

The Analyzer can produce the following kinds of tables:

• Performance data next to the names of routines and/or modules

• Performance data next to source program text

• Run state entry counts and CPU times next to the names of jobs or
processes

• Counts of kernel routine calls next to the routine names

You type the TABULATE command to produce the tables:

EPA> TABULATE

For PC sampling data, you control how the TABULATE command presents
the data with the /ROUTINE, /MODULE, and ISOURCE qualifiers.
For example, if you use the /MODULE qualifier, each row in a table
represents one module. The numbers on each row tell you how often the
executed command was in that module.

You can control the amount of PC Sampling data a TABULATE command
displays by using the /MAXIMUM=n, IMINIMUM=n, and /[NO]ZERO)
qualifiers. The IMAXIMUM=n and IMINIMUM=n qualifiers exclude the
display of items whose percentages fall above or below the value you
specify. The IZERO qualifier includes the display of items whose count is
zero.

In Figure 6-1, a table displays PC sampling data by routine. The first
column gives the routine names. The second column gives the number
of PC counts. The third column gives the percentage of PC counts. The
command to generate this table would be:

EPA> TABULATE/ROUTINE/ZERO

6-22 Performance Analysis

Figure 6-1: PC Sampling Data by ,Routine

Module/Routine
MULT/

A
B
C
MULT

PAS$INPUT/
$CODE

PAS$OUTPUT/
$CODE

VAXELN Performance Analyzer

Program Counter Sampling Data

Count
1592

160
291
629
512

o
o
o
o

Percent
100.0%

10.1%
18.3%
39.5%
32.2%
0.0%
0.0%
0.0%
0.0%

The information at the bottom of Figure 6-1 includes information dis­
played by all Analyzer tables and information only displayed for PC
sampling data. The TABULATE command always reports its own begin­
ning and ending times and displays the name of the Collector data file.
For a description of the information that is specific to PC sampling data,
see the discussion of the TABULATE command in Section 6.3.3.

The Collector commands to generate the data file for Figure 6-1 might be:

EPC> SET NODE TARGET_1
EPC> SET PC_SAMPLING MULT/BUCKET_SIZE=2
EPC> SET DATA_FILE MULT.PC
EPC> GO
EPC> STOP
EPC> EXIT

In Figure 6-2, PC sampling data for the same program run is displayed
by source line. The first column gives the percentage of PC counts. The
second column gives the number of PC counts. The third column gives
the source line number followed by the source code text.

The command to generate this table would be:

EPA> TABULATE/SOURCE/ZERO

Performance Analysis 6-23

Figure 6-2: PC Sampling Data by Source Line

Percent

0.0%
0.0%
5.4%
4.6%

0.0%
0.0%
8.7%
9.6%

0.0%
0.0%

19.2%
20.4%

Count

o
o

86
74

o
o

138
153

o
o

305
324

Line

VAXELN Performance Analyzer

Program Counter Sampling Data

1: PROGRAM mult (input. output)
2:
3 : PROCEDURE a;
4:
5:
6: VAR
7: i: integer;
8: : integer;
9: BEGIN

10: j : = 0;
11: FOR i 1 TO 100 DO
12: : = i +
13: END;
14:
15: PROCEDURE b;
16:
17:
18: VAR
19: i: integer;
20: : integer;
21: BEGIN
22: j := 0;
23: FOR i 1 TO 200 DO
24: : = i +
25: END;
26:
27: PROCEDURE c;
28:
29:
30: VAR
31: i: integer;
32: : integer;
33: BEGIN
34: j := 0;
35: FOR i 1 TO 400 DO
36: := i +
37: END;
38:
39: VAR
40: ii integer;
41: j j integer;
42:

Figure 6-2 Cont'd. on next page

6-24 Performance Analysis

Figure 6-2 (Cont.): PC Sampling Data by Source Line

0.0% 0 43: BEGIN
44: while true do
45: begin

0.0% 0 46: jj := 0;
4.3% 68 47: for ii 1 to
5.9% 94 48: j j := ii + 1;
0.0% 0 49: a;
0.1% 1 50: jj := 0;
0.0% 0 51: for ii 1 to

11.9% 190 52: j j := ii + 1 ;
0.1% 2 53: b;
0.1% 1 54: jj := 0;
4.8% 77 55: for ii 1 to
4.6% 74 56: j j := ii + 1·
0.3% 5 57: c

58: end
59: END.

TABULATE Command Summary information:

Datafile = mult.pc

System file
Begin time
Stop time
Clock rate
Sampling interval

Total data points
Bucket size
Traced SO counts

MULT
17-NDV-1987 00:00:50.67
17-NDV-1987 00:01:16.59
10 ms
10 ms

1592
2 bytes
1

Untraced SO counts: 1

100 do

100 do

100 do

Performance Analysis 6-25

In Figure 6-3, a table displays job sampling data. The table displays the
data for each job in a system. The first column gives the job number
assigned by the system when it creates the job. The second column gives
the job name entered on the System Builder's Program Description Menu.
The third column gives the number of times the job entered the run state.
The fourth column gives the job's CPU time.

Figure 6-3: Job Sampling Data

VAXELN Performanc~ Analyzer

JOB Sampling Data

JOB NAME

2 XQDRIVER
3 CONSOLE
4 EDEBUGREM
5 EPACEMAIN
6 FALSERVER
7 EDISPLAY

TABULATE Command Summary information:

Datafile = EPACEMAIN.JOB

Begin time
Stop time

17-JUL-1987 00:02:15.81
: 17-JUL-1987 00:02:46.04

CONTEXT

518
934

6
15
2

941

TIME

0.54 sec
5.60 sec
0.02 sec
0.05 sec
0.01 sec
6.18 sec

The Collector commands to generate the data file for Figure 6-3 might be:

EPC> SET NODE TARGET_1
EPC> SET JOB_SAMPLING
EPC> SET DATA-FILE EPACEMAIN.JOB
EPC> GO
EPC> STOP
EPC> EXIT

In Figure 6-4, a table displays process sampling data. The table displays
the data for each process in job EP ACEMAIN. The first column gives the
process number assigned by the system when it creates the process. The
second column gives the process name as specified in the program. The
third column gives the number of times the process entered the run state.
The fourth column gives the processes CPU time.

6-26 Performance Analysis

Figure 6-4: Process Sampling Data

VAXELN PerfOrmance Analyzer

PROCESS Sampling Data

JOB

5

NAME

EPACEMAIN

PROCESS (ES)

1
2

EPACEMAIN
COLLECTOR_PROCESS

TABULATE Command Summary information:

Datafile = EPACEMAIN.PRO

System file
Begin time
Stop time

EPACEMAIN
17-JUL-1987 00:08:03.20
17-JUL-1987 00:10:10:15

CONTEXT

15

1
14

TIME

0.07 sec

0.02 sec
0.05 sec

The Collector commands to generate the data file for Figure 6-4 might be:

EPC> SET NODE TARGET_1
EPC> SET PROCESS_SAMPLING EPACEMAIN
EPC> SET DATA-FILE EPACEMAIN.PRO
EPC> GO
EPC> STOP
EPC> EXIT

In Figure 6-5, a table displays system service counts. The first column
gives the name of the kernel routine. The second column gives the
number of times the routine was called during the job.

Performance Analysis 6-27

Figure 6-5: System Service Sampling Data

VAXELN Performance Analyzer

SYSTEM SERVICE Sampling Data

accept_circuit
create_message
delete
disconnect_circuit
receive
send
signal
wait_any

TABULATE Command Summary information:

Datafile = EDEBUGREM_SYS.LOG

System file
Begin time
Stop time

EDEBUGREM
17-NOV-1987 00:02:04.68
17-NOV-1987 00:02:43.35

1
8
9
1
10
8
1
10

The Collector commands to generate the data file for Figure 6-5 might be:

EPC> SET NODE TARGET_l
EPC> SET SYSTEM_SERVICE_SAMPLING EDEBUGREM
EPC> SET DATA-FILE EDEBUGREM_SYS.LOG
EPC> GO
EPC> STOP
EPC> EXIT

As the above example shows, system service count tables also display the
name of the .SYS file.

Section 6.3.3 gives a complete discussion of the TABULATE command.

6-28 Performance Analysis

6.3.2 Invoking the Analyzer

To invoke the Analyzer, enter the following command at the DCL prompt
on the host system:

$ VAXELN PERFORMANCE/ANALYZER filespec

where filespec is the name of a performance data file created by the
Collector. If you omit the file specification, the system prompts you for it.

The screen displays the Analyzer prompt:

EPA>

If the data file you specify contains PC sampling data, the Analyzer looks
for a .EXE file with the same name in the same directory. If the Analyzer
cannot find the .EXE file, the following prompt appears:

Enter image file name:

Enter the file specification of the program whose PC sampling data is
collected in the data file.

You can now use one of the Analyzer commands discussed in
Section 6.3.3.

6.3.3 Analyzer Commands

Analyzer commands allow you to create tables from Collector files, to print
the tables, or to write them to text files. This section contains descriptions
of the Analyzer commands in alphabetical order.

Performance Analysis 6-29

EXIT

EXIT

Exits the Analyzer session.

Format EXIT

6-30 Performance Analysis

FILE

FILE

Writes the output from the most recent TABULATE command to a text file.

Format FI LE filespec

Parameter
filespec
The file specification of the text file to which the output is written.

Example

EPA> FILE MYTBL.LOG

Performance Analysis 6-31

HELP

HELP

Format

Parameter

Description

Example

Displays information on each of the Analyzer commands.

HELP /Ikeyword... 1/

keyword . ..
One or more keywords that refer to the topic or subtopic on which you
want information. Information within HELP is arranged in a hierarchical
manner. The levels are:

1. None - If you do not specify a keyword, HELP lists the topics that
are documented in the help file. Each item in the list is a keyword in
the first level of the hierarchy.

2. Topic - If you specify a keyword that names a topic, HELP describes
the topic as it is documented in the help file. Keywords for additional
information available on this topic are listed.

3. Topic subtopic - If you specify a subtopic following a topic, HELP
provides a description of the specified subtopic.

To use the HELP facility in its simplest form, issue the HELP command
from your terminal. HELP displays a list of topics at your terminal. If
you want to see more information on one of the topics, type HELP topic
at the command level prompt. The system will display information on
that topic. If the topic has subtopics, HELP will list the subtopics. If you
want information on one of the subtopics, type HELP topic subtopic at the
command level prompt.

EPA> HELP TABULATE

6-32 Performance Analysis

PRINT

Format

PRINT

Prints the output of the most recent TABULATE command. The output is
sent to the queue assigned the logical name SYS$PRINT.

PRINT

Performance Analysis 6-33

TABULATE

TABULATE

Format

Parameter

Qualifiers

Generates tables from Collector data files. The qualifiers for this com­
mand control the display of PC sampling data and are ignored for tables
displaying other kinds of data.

TABULATE /lrange ... 11

/MODULE
/ROUTINE
/SOURCE
/MAXIMUM=n
/MINIMUM=n
/[NO]ZERO

range . ..
A list of one or more routine names or module names for which PC
sampling data is to be displayed. If you omit this parameter for PC
sampling data, the Analyzer returns data from the entire program address
range.

/MODULE
Specifies that the results are displayed by module.

/ROUTINE
Specifies that the results are displayed by routine; this is the default.

/SOURCE
Specifies that the source lines of the routines or modules identified by the
range parameter are included in the display.

6-34 Performance Analysis

Description

TABULATE

NOTE

The Collector counts the number of times machine instructions,
not source instructions, are executed. Therefore, Analyzer
tables may show counts where no corresponding source code
exists.

/MAXIMUM=n
Specifies the maximum percentage to display.

/MINIMUM=n
Specifies the minimum percentage to display.

/IN01ZERO
Specifies that routines or modules whose counts are zero will be included
in the display; NOZERO is the default.

The jROUTINE, jMODULE, and jSOURCE qualifiers specify the parti­
tioning of the table into rows. The numerical values on a row show the
Collector's results for a routine, module, or source line. The jROUTINE,
jMODULE, and jSOURCE qualifiers are mutually exclusive.

In addition to performance data, the tables display the beginning and
ending times of the TABULATE command's execution, the name of the
Collector data file, and, for system service count tables, the name of the
.SYS file. For PC sampling data, tables also display the following items:

•

•

•

•

•

•

System file. The name of the image for which the table is displaying
data

Clock rate. The Time interval selected on the System Characteristics
Menu

Sampling interval. The value specified by the jINTERV AL qualifier
to the Collector's SET PC_SAMPLING command

Total data points. The total number of samples taken and traced to a
PO address in your code

Bucket size. The value specified by the jBUCKET_SIZE qualifier to
the Collector's SET PC_SAMPLING command

Traced SO counts. The number of times your program was found in
SO space and the address could be traced to a PO address in your code

Performance Analysis 6-35

TABULATE

Example

• Untraced so counts. The number of times your program was found
in SO space and the address could not be traced back to a PO address
in your code

EPA> TABULATE/SOURCE/ZERO/MINlMUM=5

6-36 Performance Analysis

Appendix A

VAX-11/750 Microcode Patch

System Revision LevelS of the VAX-11/750 and VAX-11/751 computers
lets you patch the machine's microcode control store. The 11/750 runs
without the patch, but not at the latest revision level.

You must load the microcode control store patches at system power-up.
To do this in VAXELN, include a special program in each system you
load onto the computer. The program must be compiled on site to take
advantage of the latest patch set.

NOTE

If your development system is not a VAX-11/750, you
might have to copy the current patch file into the system's
SYS$SYSTEM directory. Once built into a VAXELN system, the
program continues running and reloads the microcode in the
event of a power failure.

If in doubt about the revision level of your machine, check with your local
DIGITAL field service representative.

VAX-ll/750 Microcode Patch A-1

A. 1 Procedure

Perform the following procedures in the given order; they must be per­
formed on a VAX-11/750 running VAX/VMS:

1. Set the default directory to ELN$.

$ SET DEFAULT ELN$

2. Define the command to convert the patch file to an object file.

$ SET COMMAND DATATOBJ

3. Create the patch's object file.

$ DATATOBJ SYS$SYSTEM:PCS750.BINPCS750.0BJ

4. Link the resulting object file with the 11/750 microcode patch utility.

$ LINK P760UCODE+PCS760.0BJ+RTLSHARE/LIBRARY+RTL/LIBRARY

5. Include P750UCODE.EXE with a System Builder program description,
using the following characteristics:

Init required

Mode

Job priority

Powerfailure exception

A-2 VAX-ll /750 Microcode Patch

Yes

Kernel

1

Yes

Appendix B

Using the Error Log Server

If you select VAXELN error logging for your system, you can create the
error log file on the target or on a remote node (see Section 3.4.9). To
create the file on a remote system you must run the Error Log Server
(ELSE) on the remote node.

This appendix explains how to use the Error Log Server. Section B.1 gives
an overview of ELSE. Section B.2 explains how to start and exit from
ELSE. Section B.3 explains the ELSE parameters. And Section B.4 explains
the qualifiers to the DCL RUN command that executes ELSE.

B. 1 Overview of ELSE

ELSE must be running before the target attempts to send error logging in­
formation to the remote node. The impact of ELSE on the host VAX/VMS
system is normally minimal, since ELSE remains inactive until it receives
a message from the target. The minimum activity for a target node is to
generate a time-stamp log once every 10 minutes.

The impact on the VAX/VMS system increases in direct relation to the
fault activity on a target node, but does not increase greatly. The total.
impact is a function of both the number of nodes being serviced and the
fault activity on those nodes. The impact on disk space is also a function
of the number of nodes and the fault activity on each.

The error log files created by ELSE have names of the format node.SYS,
where node is the name of the target node supplied in the DECnet connect
message. ELSE also creates the files ELSE.LOG, for messages generated
by ELSE, and ELSE.ERR, for messages generated by VAX/VMS. ELSE
does not delete or purge these files automatically.

Using the Error Log Server B-1

B.2 Invoking and Stopping ELSE

The following privileges are required to run ELSE:

Privilege

SYSNAM

NETMBX

PRMMBX

DETACH

Meaning

Allows inserting logical names in the system name table

Allows creating network connections

Allows creating permanent mailboxes

Allows creating a detached process

You invoke ELSE from the supplied procedure ELN$:ELSE$STARTUP.COM.
The command to run the ELSE start-up procedure is:

$ GELN$:ELSE$STARTUP

You can include this command in the system start-up procedure. You,
must start DECnet before you type this command. If you start DECnet by
a batch job, you must issue the ELSE start-up command from the batch
file.

You stop ELSE by running the supplied procedure ELN$:ELSE$­
SHUTDOWN. COM. Do not attempt to stop ELSE by using the DCL
STOP command. The command to run the ELSE shut-down procedure is:

$ GELN$:ELSE$SHUTDOWN

You can include this command in the system shut-down procedure.
If you issue this command before you shut down DECnet, ELSE.LOG
indicates a user-requested termination. If DECnet is shut down first,
ELSE will process any transactions in its queue and perform an automatic
orderly termination, but ELSE.LOG will indicate a termination forced by
a network shut down. Letting DECnet shut down first minimizes the
possibility of missing any target messages.

NOTE

Whenever ELSE shuts down for any reason, you must restart it
manually. It will not restart itself.

8-2 Using the Error Log Server

When a network link to a target node is lost, ELSE waits the time pre­
scribed by the timer parameter ELSE$TIMER_DELAY (see Section B.3.4).
If a target does not send a message in that time, ELSE assumes that the
target has crashed and writes an inactivity message to the target's error log
file.

1.3 ELSE Parameters

The VAX/VMS system logical names listed in Table B-1 act as run-time
parameters for ELSE. The ELSE$STARTUP .COM procedure file assigns
them their values. You can edit that file to change their values.

Table 8-1: ELSE Parameters
Logical N arne

ELSE$ERRORLOG

ELSE$LINK_IDLE_STATE

ELSE$SERVER_NAME

ELSE$TIMER_DELAY

B.3.1 ELSE$ERRORLOG

Description

The directory where the target error logs will
be written

Determines whether the DECnet link will be
maintained or dropped between messages
from a target node

The name by which ELSE will be known on
the network

The length of time ELSE will wait before it
assumes that a target node has crashed

This parameter specifies the directory where the target error logs will be
written. The default is the directory assigned to the system logical name
SYS$ERRORLOG.

B.3.2 ELSE$LlNK_IDLE_STATE

A value of UP specifies that the DECnet link will be maintained between
messages from a target node. A value of DOWN specifies that the link
will be dropped between messages. ELSE and each of the target nodes
must be consistent with respect to this parameter. The default is DOWN.

Using the Error Log Server 8-3

B.3.3 ELSESSERVER_NAME

This parameter specifies the name by which ELSE will be known on the
network. ELSE and each of the target nodes must be consistent with
respect to this parameter. The default is ELSE$SERVER.

B.3.4 ELSESTIMER_DELA Y

This parameter specifies a length of time in the format hh:mm:sec. If ELSE
does not receive a message from a target node in that time, ELSE assumes
the node has crashed. The timer is reset every time a message is received
from a target. The default is 00:10:00.

1.4 RUN Command Ilualifiers for ELSE

In addition to modifying ELSE parameters, you can modify the qualifiers
to the RUN command in the ELSE$STARTUP.COM procedure. The qual­
ifiers are set to their default values in ELSE$STARTUP.COM. Table B-2
lists those qualifiers and their defaults.

8-4 Using the Error log Server

Table B-2: RUN Command Qualifiers for ELSE
Qualifier

/ AST_LIMIT=quota

/BUFFER_LIMIT=quota

/ENQUEUE_LIMIT=quota

/ERROR=filespec

/IO_BUFFERED=quota

/IO_DIRECT=quota

/OUTPUT=filespec

/PRIORITY=n

/PROCESS-NAME=name

/QUEUE_LIMIT=quota

/UIC=[uic]

Default

100

80000

200

ELSE.ERR

100

50

ELSE.LOG

7

ELSE$SERVER

75

[1,6]

Comment

Must be at least two plus number of target
nodes.

The place where VAX/VMS-generated error
messages will be sent.

The place where ELSE-generated messages
will be sent.

The VAX/VMS process name, not the
server's DECnet name.

Using the Error Log Server 8-5

Appendix C

A Full System Map

Figure C-l is a full system map produced by the System Builder. To gen­
erate a full map, you specify the /MAP qualifiier to the EBUILD command
together with the /FULL or /NOBRIEF qualifier. See Section 3.2.1.

The contents of a full map, in the following order, are:

•
•

•

•

•
•
•
•
•

The .SYS file

The VAXELN kernel corresponding to your choice on the Select Target
Processor Menu, with internal data

The VAXELN system files included in your system, with their defined
characteristics and internal data

The user files included in your system, with their defined characteris­
tics and internal data

The devices included in your system, with their defined characteristics

The shareable images included in your system, with internal data

The network node characteristics defined for your system

The system characteristics defined for your system

The size of your system in pages and bytes

A Full System Map C-1

Figure C-1: A Full System Map

VAXELN System Builder
ELN T3.0-00

System file

TEST

Kernel

ELN$:UV2KER.EXE

Programs

XQDRIVER

13-JUL-1987 09:13:12.77

DISK$USER1: [MAIN.TMP]TEST.SYS;15

SYS$SYSDEVICE: [ELN]UV2KER.EXE;6

(VAXELN kernel)
Vectors and Data:
Parameters:
RIO Data and Code:

Start: 80000000 Pages: 5
Start: 80000AOO Bytes: 130
Start: 80000A84 Pages: 53

Transfer address: 00000000

SYS$SYSDEVICE: [ELN]XQDRIVER.EXE;1

(Network device driver)
No debug. Run. Initialize. Mode = Kernel
User stack = 1. Kernel stack = 8
Job priority = 1. Process priority = 8
Job message limit = 16384
Power recovery exception = Disabled
Argument(s):

1) "XQAII

Image section(s):
Type Base VA
Demand zero 00000200
Read-only 00000600
Fixup vector 00002400
Shareable 00002600
Fixup vector 00008COO

Transfer address: 00000644

Page(s)
2

15
1

51

Image

NETWORK

Figure C-1 Cont'd. on next page

C-2 A Full System Map

Figure C-1 (Cont.): A Full System Map

CONSOLE

EDEBUGREM

FALSERVER

SYS$SYSDEVICE:-[ELN]CONSOLE. EXE;1

(Terminal driver)
No debug. Run. Initialize. Mode = Kernel
User stack = 1. Kernel stack = 8
Job priority = 2. Process priority = 8
Job message limit = 16384
Power recovery exception = Disabled
Argument(s):

1) "CONSOLE"

Image section(s):
Type Base VA
Noshr Write 00000200
Read-only 00000400
Fixup vector OOOOOEOO

Transfer address: 00000428

Page(s)
1
5
1

SYS$SYSDEVICE: [ELN]EDEBUGREM.EXE;l

(Remote debugger)

Image

No debug. Run. Initialize. Mode = Kernel
User stack = 1. Kernel stack = 2
Job priority = 3. Process priority = 8
Job message limit = 16384
Power recovery exception = Disabled
Argument(s):

Image section(s):
Type Base VA
Demand zero 00000200
Read-only 00000400
Fixup vector 00002EOO

Transfer address: 000019DD

Page(s)
1

21
1

SYS$SYSDEVICE: [ELN]FALSERVER.EXE;l

(File access listener)

Image

No debug. Run. Initialize. Mode = User
User stack = 1. Kernel stack = 1
Job priority = 16. Process priority = 8
Job message limit = 16384
Power recovery exception = Disabled
Argument(s):

Image section(s):
Type Base VA
Read-only 00000200
Fixup vector 00001800

Transfer address: 0000020F

Page(s)
11

1

Image

Figure C-1 Cont'd. on next page

A Full System Map C-3

Figure C-1 (Cont.): A Full System Map

TEST

Devices

CONSOLE

XQA

Terminals

CONSOLE

DISK$USER1:[MAIN.TMP]TEST.EXE;15

Debug, Run, No initialize, Mode = User
User stack = 1, Kernel stack = 4
Job priority = 16, Process priority = 8
Job message limit = 16384
Power recovery exception = Disabled
Argument(s):

Image section(s):
Type Base VA
Noshr Write 00000200
Demand zero 00000400
Read-only 00018AOO
Fixup vector 00018COO
Shareable 00019000

, Fixup vector 0001B400
Read-only 0001B600
Noshr Write 00020200
Fixup vector 00020400

Transfer address: 00018AOO

CSR address = %00000000
Vector = %0370
Priority = 4
BI number = 0
Adapter number = 0

CSR address = %0774440
Vector = %0120
Priority = 4
BI number = 0
Adapter number = 0

Page(s)
1

195
1
2

18
1

38
1
2

Image

CMSC

DCIO (1)
DCIO (2)

Hardcopy, Escape, Echo, No pass all, No eight-bit

Figure C-1 Cont'd. on next page

C-4 . A Full System Map

Figure C-1 (Cont.): A Full System Map

Shareable images

NETWORK

PASCALMSC

TERMINAL

DAP

PRGLOADER

SYS$SYSDEVICE: [ELN]NETWORK.EXE;l
Major Id: 1, Minor Id: 0
Map into program region = Yes
Image section(s):

Type Base VA
Read-only 8000FAOO
Noshr Write 80015COO
Fixup vector 80016000

Page(s)
49

2
1

SYS$SYSDEVICE: [ELN]PASCALMSC.EXE;1
Major Id: 1, Minor Id: 3
Map into program region = No
Image section(s):

Type Base VA
Read-only 80016400

Page(s)
10

SYS$SYSDEVICE:[ELN]TERMINAL.EXE;l
Major Id: 1, Minor Id: 0
Map into program region = No
Image section(s):

Type Base VA
Read-only 80017800
Fixup vector 80018AOO

Page(s)
9

SYS$SYSDEVICE:[ELN]DAP.EXE;l
Major Id: 1, Minor Id: 1
Map into program region = No
Image section(s):

Type Base VA
Read-only 80018COO
Fixup vector 8001F600

Page(s)
53

1

SYS$SYSDEVICE: [ELN]PRGLOADER.EXE;1
Major Id: 1, Minor Id: 0
Map into program region = No
Image section(s):

Type Base VA
Read-only 8001F800
Fixup vector 80020800

Page(s)
8
1

Figure C-1 Co nt' d. on next page

A Full System Map C-5

Figure C-1 (Cont.): A Full System Map

CMSC

DCIO

SYS$SYSDEVICE: [ELN]CMSC.EXE;l
Major Id: 2. Minor Id: 0
Map into program region = Yes
Image section(s):

Type Base VA
Read-only 80020AOO
Noshr Write 80022COO
Fixup vector 80022EOO

Page(s)
17

1

SYS$SYSDEVICE: [ELN]DCIO.EXE;l
Major Id: 2. Minor Id: 0
Map into program region = Yes
Image section(s):

1

Type Base VA
Read-only 80023200
Noshr Write 80027EOO
Fixup vector 80028000

Page(s)
38

1
2

ELNACCESS SYS$SYSDEVICE: [ELN]ELNACCESS.EXE;l
Major Id: 1. Minor Id: 0
Map into program region = No
Image section(s):

Type Base VA
Read-only 80028AOO

Page(s)
4

VAXEMUL

Fixup vector 80029200

SYS$SYSDEVICE: [ELN]VAXEMUL.EXE;l
Major Id~ 1. Minor Id: 0
Map into program region = No
Image section(s):

1

Type Base VA Page(s)
Read-only 80029400 18

Network node characteristics

Network service Yes
Name server Yes
File access listener Yes
Network device QNA
Node name
Node address o
Authorization required No
Authorization service None
Authorization file AUTHORIZE.DAT
Default system UIC [1.1]
Node triggerable Yes
Network segment size 576 bytes
Remote command language No

Figure C-1 Cont'd. on next page

C-6 A Full System Map

Figure C-1 (Cont.): A Full System Map

System characteristics

Target processor.
Debugger
Console driver
Instruction emulation
Boot method
Volume/device names
Guaranteed image list
Number of Jobs
Number of Subprocesses
Ports
Pool size
PO Virtual size
Pi Virtual size
Interrupt stack
System region size
Dynamic program space
Time interval
Connect time
Memory limit
Error logging
EPA

MicroVAX II (KA630)
Remote
Yes
String
Downline-load

16
48
256
384 blocks
1024 pages
128 pages
2 pages
128 pages
o pages
10000 microseconds
45 seconds
o pages
No
No

System image size is 348 pages (174K bytes)

/NOEDIT/MAP/FULL TEST

A Full System Map C-7

$ predefined identifier· 5-20
%

@

A

in radix specifiers· 5-25
with debugger-defined identifiers· 5-19 5-38
with floating-point constants • 5-26 '
with predefined identifiers· 5-20

in address expressions· 5-27

in address expressions· 5-16, 5-17
in arithmetic expressions • 5-16

Access modes· 3-21
See also Kernel

Ada· 1-3
Adapter number, Device Description Menu· 3-30
Address expressions • 5-16
/ ADDRESS qualifier

EV ALUA TE command • 5-45
EXAMINE command • 5-49

Address-related operators· 5-15
/ ALL qualifier

CANCEL BREAK command· 5-30
SEARCH command • 5-70
SET BREAK command • 5-71
SHOW COMMAND command • 5-91
SHOW JOB COMMAND command· 5-92
SHOW PROCESS command • 5-97
SHOW PROGRAM command • 5-99
SHOW SESSION command • 5-100

Analyzer

. See V AXELN Performance Utility
Arguments

See Program arguments
Arithmetic

expressions • 5-15
operators • 5-15

/ ASCII qualifier
DEPOSIT command • 5-41
EXAMINE command • 5-49

/ AST_LlMIT qualifier. B-5
Authorization Service· 3-18

B
/BINARY qualifier

EV ALUA TE command • 5-45
EXAMINE command • 5-49

Index

BI number, Device Description Menu· 3-30
Boolean constants· 5-25
Boolean operators· 5-15
Booting • 4-1 to 4-4
Boot method, System Characteristics Menu • 3-11
Bootstrap loader· 4-7 to 4-14

configuring and installing· 4-7
Breakpoints • 5-11
/BRIEF qualifier· 3-3, C-1
/BUCKET _SIZE qualifier· 6-3, 6-12
/BUFFER_LlMIT qualifier· B-5
Building • 3-1 to 3-39
/BYTE qualifier

DEPOSIT command • 5-41
EXAMINE command • 5-49

Index-1

c
CALL command - 5-28
CANCEL BREAK command - 5-30
CANCEL CONTROL command - 5-31
CANCEL EXCEPTION BREAK command - 5-32
CC command - 2-6 to 2-7

program development - 2-3
qualifiers - 2-6 to 2-7

/DEBUG-2-6
/LiBRARY - 2-6
/LlST- 2-7
/OBJECT - 2-7

C language
See VAX C

CLEAR NODE NCP command - 4-14
/CODE_ST ART qualifier - 6-12
Collector

See V AXELN Performance Utility
Command files

debugger - 5-13
Command language

See V AXELN command language
Commands

See DCL commands; Debugger commands;
V AXELN Performance Utility commands

Command session
See Debugging command session

Comments
debugger - 5-27

Communication hardware
installing - 4-5

Compiler
VAX C-2-3
V AXELN Pascal - 2-3
V AX FORTRAN - 2-3

Compilers
V AXELN Pascal

host software - 1-2
Compiling - 2-3,2-3 to 2-8

VAX C-2-6 to 2-7
V AXELN Pascal- 2-4 to 2-5
V AX FORTRAN - 2-7 to 2-8

/COMPRESS qualifier - 2-20
Console Characteristics Menu, System Builder-

3-35 to 3-36
Console terminal- 3-11, 3-35 to 3-36

2-lndex

Constants - 5-25 to 5-27
Boolean- 5-25
floating point - 5-26
integer - 5-25
special- 5-27
string - 5-26

Control-C session
See Debugging Control-C session

Control register - 3-29
COPYSYS command procedure - 4-1 to 4-2
CREA TE JOB command - 5-33
CREATE PROCESS command - 5-34
/CREA TE qualifier - 2-17, 2-18
CREA TE_DEVICE procedure - 3-28 to 3-30
CRTLOBJECT library - 2-13
CRTLSHARE library - 2-13
CTRL/C command - 5-35
CTRL/Z command - 5-36

D
Data types

debugger-5-18, 5-23 to 5-27
DCL commands

See also individual commands
CC- 2-6 to 2-7
EBUILD - 3-1
EDEBUG - 5-3 to 5-6

qualifiers - 5-5 to 5-6
syntax - 5-5

EDIT-2-3
EPASCAL-2-4to 2-5
FORTRAN - 2-7 to 2-8
LIBRARY - 2-17
LINK - 2-9
program development - 2-1

DEBUG command - 5-37
Debugger

See also Debugging; /DEBUG qualifier
data types - 5-18, 5-23 to 5-27
developing an application - 1-3
display radix - 5-78
exiting from - 5-6
including in system image - 3-10
local - 5-1, 5-5, 5-6
remote - 5-1, 5-3, 5-5, 5-12 to 5-13
selecting - 5-2

Debugger (cont'd.)

syntax rules • 5-13 to 5-27
See also Debugger syntax rules
identifiers • 5-18 to 5-22

Debugger command qualifiers
jADDRESS

EV AlUA TE command • 5-45
EXAMINE command • 5-49

jAll
CANCEL BREAK command • 5-30
SEARCH command • 5-70
SET BREAK command • 5-71
SHOW COMMAND command • 5-91
SHOW JOB COMMAND command • 5-92
SHOW PROCESS command • 5-97
SHOW PROGRAM command· 5-99
SHOW SESSION command • 5-100

JASell
DEPOSIT command • 5-41
EXAMINE command • 5-49

jBINARY
EV AlUA TE command • 5-45
EXAMINE command • 5-49

jBYTE·5-49
DEPOSIT command • 5-41
EXAMINE command • 5-49

jDEBUG • 5-66
jDECIMAl

EV AlUA TE command • 5-45
EXAMINE command • 5-49

jDEFINE • 5-102
jDOUBlE

DEPOSIT command • 5-41
EXAMINE command • 5-49

jD_FlOAT
DEPOSIT command • 5-41
EXAMINE command • 5-49

jFLOAT
DEPOSIT command • 5-41
EXAMINE command • 5-49

jGO·5-84
jGRAND

DEPOSIT command • 5-41
EXAMINE command • 5-49

jG_FlOAT
DEPOSIT command • 5-41
EXAMINE command • 5-49

Debugger command qualifiers (cont'd.)
jHEX

EV AlUA TE command • 5-45
EXAMINE command • 5-49

jHUGE
DEPOSIT command • 5-41
EXAMINE command • 5-49

jH_FlOAT
DEPOSIT command • 5-41
EXAMINE command • 5-49

jINSTRUCTION· 5-107
jlNTO • 5-107
jJOB· 5-71
j JOB_PRIORITY • 5-66
jKERNEl

CANCEL BREAK command • 5-30
lOAD command· 5-66
SET BREAK command • 5-71
SET SESSION command • 5-84

jLlNE • 5-107
jlOAD· 5-37
jlONGWORD

DEPOSIT command • 5-41
EXAMINE command • 5-49

jNEXT·5-70
JOCTAl

EV AlUA TE command • 5-45
EXAMINE command· 5-49

JOVER • 5-107
jQUADWORD

DEPOSIT command • 5-41
EXAMINE command • 5-49

jREAl
DEPOSIT command • 5-41
EXAMINE command • 5-49

jSOURCE • 5-107
jWORD

DEPOSIT command • 5-41
EXAMINE command • 5-49

Debugger commands· 5-27 to 5-113
CAll· 5-28
CANCEL BREAK • 5-30
CANCEL CONTROL· 5-31
CANCEL EXCEPTION BREAK· 5-32
CREA TE JOB· 5-33
CREA TE PROCESS. 5-34
CTRljC • 5-35
CTRljZ • 5-36

Index-3

Debugger commands (cont'd.)
DEBUG-5-37
DEFINE - 5-17,5-18, 5-38
DELETE PROCESS - 5-40
DEPOSIT - 5-41
EV ALUA TE - 5-45
EXAMINE - 5-48
EXAMINE/INSTRUCTION - 5-55
EXAMINE/PSL - 5-56
EXAMINE/SOURCE - 5-57
EXIT- 5-59
GO-5-60
HALT- 5-61
HELP- 5-63
IF-5-64
LEAVE- 5-65
LOAD-5-66
PREDECESSOR-5-68
SEARCH - 5-69
SET BREAK - 5-71
SET COMMAND - 5-74
SET CONTROL - 5-75
SET EXCEPTION BREAK - 5-76
SET LOG - 5-77
SET MODE - 5-78
SET OUTPUT - 5-81
SET PROGRAM - 5-82
SET RETURN BREAK - 5-83
SET SESSION - 5-84
SET SOURCE - 5-86
SET STEP- 5-87
SET TIME - 5-88
SHOW BREAK - 5-89
SHOW CALLS - 5-90
SHOW COMMAND - 5-91
SHOW JOB - 5-92
SHOW MESSAGE • 5-94
SHOW MODE - 5-95
SHOW MODULE - 5-96
SHOW PROCESS - 5-97
SHOW PROGRAM • 5-99
SHOW SESSION - 5-100
SHOW SYMBOL· 5-102
SHOW SYSTEM - 5-104
SHOW TIME - 5-105
SHOW TRANSLATION • 5-106
STEP - 5-107
SUCCESSOR - 5-109

4-lndex

Debugger commands (cont'd.)
TYPE- 5-110
UNLOAD-5-112
WAIT- 5-113

Debugger expressions - 5-15 to 5-17
address • 5-16
arithmetic • 5-15
string - 5-16

Debugger syntax rules
address expressions - 5-16
Boolean constants - 5-25
command files - 5-13
comments - 5-27
computational constants • 5-25
expressions - 5-15 to 5-17
floating-point constants - 5-26
identifiers - 5-18 to 5-22

defining - 5-18
predefined • 5-20

integer constants - 5-25
path names - 5-21
special constants - 5-27
string constants - 5-26
string expressions - 5-16
typecasting - 5-23
variable references - 5-23

Debugging
breakpoints- 5-11
command session· 5-8 to 5-10
Control-C session - 5-10
generating information - 2-10
kernel- 5-2,5-6 to 5-7,5-20,5-72
process identifiers· 5-9
reference scope - 5-21 to 5-22
symbolic - 5-12
view scope - 5-21 to 5-22

/DEBUG qualifier
CC command - 2-6
EPASCAL command - 2-4
for V AXELN Performance Utility - 6-3
LINK command· 2-10
LOAD command - 5-66

Debug symbol table - 5-1
expression program locations and variables-

5-21
for symbolic debugging - 5-12
use in performance analysis - 6-1, 6-3

DECIMAL, SET MODE command keyword - 5-78

/DECIMAL qualifier
EV ALUA TE command • 5-45
EXAMINE command • 5-49

DEFINE
Debugger command • 5-17, 5-18, 5-38
NCP command • 4-6 to 4-7

/DEFINE qualifier
SHOW SYMBOL command • 5-102

DELETE PROCESS command • 5-40
/DELETE qualifier· 2-20
DEPOSIT command • 5-41
DEUNA controller· 4-12
Device control register

See Control register
Device Description Menu, System Builder· 3-17,

3-23 to 3-32
Device drivers

See Device Description Menu; Interrupt service
routines

Device information • 3-24
/D_FLOA T qualifier

DEPOSIT command • 5-41
EXAMINE command • 5-49

D_FLOAT
SET MODE command keyword· 5-78

D_floating format • 2-16
DOUBLE, SET MODE command keyword· 5-78
Double-precision formats • 2-16, 3-11
/DOUBLE qualifier

DEPOSIT command • 5-41
EXAMINE command· 5-49

Down-line loading • 4-4 to 4-14, 5-6
Down-line loading procedure

debugging • 4-13, 5-6
multiple hosts· 4-14
reloading production machines· 4-13

E
EBUILD command • 3-1

qualifiers • 3-2 to 3-4
ECL

See V AXELN command language
EDEBUG command • 5-3 to 5-6

down-line loading· 4-11
for debugging V AXELN systems· 5-1
qualifiers • 5-5 to 5-6

EDEBUG command (cont'd.)

syntax· 5-5
EDIT command· 2-3
Editing menus

See invididual menus
Editing programs • 2-3
ELSE

See Error Log Server
/ENQUEUE_UMIT qualifier· B-5
EPA

See also V AXELN Performance Utility
EPA, System Characteristics Menu • 3-16
EPA command· 6-29
EPASCAL command· 2-4 to 2-5

file specifications· 2-4
program development· 2-3
qualifiers • 2-4 to 2-5

/DEBUG·2-4
/UBRARY· 2-5
lUST· 2-5
/MODULE • 2-5
/OBJECT • 2-5

EPC command • 6-4
Error Log Characteristics Menu, System Builder·

3-36 to 3-39
Error logging • 3-36 to 3-39, B-1 to B-5

events logged by· 3-36
remote

See Error Log Server
Error Log Server· 3-37, B-1 to B-5

files created by· B-1
impact on performance· B-1
invoking • B-2
logical names· B-3 to B-4
maximum number of nodes • B-2
parameters· B-3 to B-4
RUN command qualifiers· B-4 to B-5
stopping • B-2

/ERROR qualifier· B-5
Ethernet • 5-1, 5-2
EV ALUA TE command • 5-45
Event logging • 4-12, 4-14
EXAMINE command· 5-48
EXAMINE/INSTRUCTION command· 5-55
EXAMINE/PSL command • 5-56
EXAMINE/SOURCE command· 5-57

Index-5

EXIT

Analyzer command • 6-30
Collector command • 6-6
Debugger command • 5-59

Expressions
See Debugger expressions

jEXTRACT qualifier· 2-19

F

F _floating format • 2-16
File access listener, Network Node Characteristics

Menu· 3-17
FILE command • 6-31
FLLE library· 2-13
File specifications

EBUILD command • 3-1
EPASCAL command· 2-4
FORTRAN source file • 2-8
LIBRARY command· 2-17
object module • 2-9
object module library· 2-9
shareable image library· 2-9
V AX C source file • 2-6

File types, source • 2-3
Floating-point

See also Qualifiers; Debugger command
qualifiers; DEPOSIT, EXAMINE, and SET
MODE debugger commands

constants • 5-26
debugger data types • 5-18
debugger modes· 5-78
D_floating format • 2-16
F _floating format· 2-16
G_floating format· 2-16

jFLOA T qualifier
DEPOSIT command • 5-41
EXAMINE command • 5-49

FORTRAN
See V AX FORTRAN

FORTRAN command • 2-7 to 2-8
program development· 2-3
qualifiers· 2-7 to 2-8

jLlBRARY • 2-7, 2-8
jOBJECT· 2-8

FRTLOBJECT library • 2-13
jFULL qualifier· 3-3, C-1

6-lndex

G
jG_FLOA T qualifier

DEPOSIT command • 5-41
EXAMINE command • 5-49

G_FLOA T, SET MODE command keyword • 5-78
G_floating format • 2-16
jG_FLOA TING qualifier· 2-16
GO

Collector command • 6-7
Debugger command • 5-60

jGO qualifier
SET SESSION command • 5-84

GRAND, SET MODE command keyword· 5-78
jGRAND qualifier

DEPOSIT command • 5-41
EXAMINE command • 5-49

Guaranteed image list, System Characteristics
Menu· 3-12

H

HALT command • 5-61
HELP

Analyzer command • 6-32
Collector command • 6-8
Debugger command • 5-63

HEXADECIMAL, SET MODE command keyword·
5-78

jHEX qualifier
EV ALUA TE command • 5-45
EXAMINE command • 5-49

jH_FLOA T qualifier
DEPOSIT command • 5-41
EXAMINE command· 5-49

Host machine· 4-1
adding target to node data base· 4-6
configuring for down-line load • 4-6

Host system • 1-1
hardware· 1-1
software • 1-2

jHUGE qualifier
DEPOSIT command • 5-41
EXAMINE command • 5-49

I

IjO redirection • 3-23
ICP system images· 4-1
Identifiers • 5-18 to 5-22

defining • 5-18, 5-38
predefined· 5-20, 5-38
process • 5-9

IF command· 5-64
/IMAGE_SIZE qualifier· 6-13
/INCLUDE qualifier· 2-9

LINK command • 2-11
INITIALIZATION_DONE procedure· 3-21
Init required, Program Description Menu • 3-21
INSTRUCTION, SET MODE command keyword·

5-79
Instruction emulation • 3-11
jlNSTRUCTION qualifier· 5-107
Integer constants • 5-25
Interrupt priority, Device Description Menu· 3-29
Interrupt service routines

debugging· 5-2, 5-6 to 5-7,5-72
jlNTERV AL qualifier· 6-13
INTO, SET MODE command keyword· 5-79
jlNTO qualifier· 5-107
JIO_BUFFERED qualifier· B-5
JIO_DIRECT qualifier· B-5

J

Job port message limit, Program Description
Menu· 3-22

Job priority
debugger • 5-66
Program Description Menu • 3-21

Job sampling
See V AXELN Performance Utility

j JOB_PRIORITY qualifier· 5-66

K
Kernel

debugging· 5-2, 5-6 to 5-7,5-20,5-72
mode· 3-21,5-67

jKERNEL qualifier
CANCEL BREAK command • 5-30

jKERNEL qualifier (cont'd.)

LOAD command· 5-66
SET BREAK command • 5-71
SET SESSION command • 5-84

Kernel stack, Program Description Menu • 3-21

L
LABEL predefined identifier· 5-20, 5-22
Languages· 1-3

source file types· 2-3
LEA VE command • 5-65
Librarian

See also Libraries; LIBRARY command
using· 2-17 to 2-20

Libraries
compressing • 2-20
creating • 2-18
deleting modules from • 2-20
extracting modules from • 2-19
for shareable images • 2-20
inserting modules into • 2-19
listing contents of· 2-19
maintaining • 2-17 to 2-20
object module

linking • 2-11
program development· 2-1
replacing modules in· 2-19
shareable image

linking • 2-11, 2-20
suppressing search· 2-13

system
suppressing search in • 2-13

VAXELN
CRTLOBJECT • 2-13
CRTLSHARE· 2-13
FILE· 2-13
FRTLOBJECT· 2-13
RTL· 2-13
RTLOBJECT· 2-14
RTLSHARE • 2-14
using· 2-13 to 2-16

LIBRARY command· 2-17
qualifiers • 2-18 to 2-20
using • 2-17 to 2-20

jLlBRARY qualifier· 2-9
CC command • 2-6

Index-7

/LiBRARY qualifier (cont'd.)

EPASCAL command· 2-5
FORTRAN command· 2-7,2-8
LINK command· 2-11

LINE
SET MODE command keyword • 5-79

LINE predefined identifier· 5-20, 5-22
/LiNE qualifier· 5-107
LINK command • 2-9

program development· 2-3
qualifiers·2-9, 2-9 to 2-13

/DEBUG • 2-10
/INCLUDE· 2-9,2-11
/LiBRARY • 2-9, 2-11
/NOSYSLIB • 2-13
/NOSYSSHR • 2-13
/SHAREABLE • 2-11

Linker· 2-8 to 2-16
See also LINK command
controling· 2-9 to 2-13

/LiST qualifier
CC command • 2-7
EPASCAL command· 2-5
LIBRARY command • 2-19

LOAD command • 5-66
Loading

See Down-line 10ading;Down-line loading
procedure

/LOAD qualifier· 5-6, 5-37
Local debugger· 5-1, 5-6
Logical names

Error Log Server· B-3 to B-4
for ELN$ files • 3-5
with the Linker· 2-15

/LONGWORD qualifier
DEPOSIT command • 5-41
EXAMINE command • 5-49

M
Main Menu, System Builder· 3-7 to 3-8
Maintenance Operation Monitor (MOM) process·

4-11,4-13
/MAP qualifier· 3-3, 3-21, 3-31, C-1
/MAXIMUM qualifier· 6-35
Menus

See System Builder; individual menus

8-lndex

/MINIMUM qualifier. 6-35
Module libraries

See Libraries
/MODULE qualifier

N

EPASCAL command· 2-5
V AXELN Performance Analyzer· 6-22,

6-34 to 6-35

Name server, Network Node Characteristics Menu •
3-17

Naming programs· 3-5
NCP

See Network Control Program
Network control program (NCP) • 4-5

CLEAR NODE command • 4-14
commands • 4-6 to 4-7, 4-11, 4-14
DEFINE command • 4-6 to 4-7
SET CIRCUIT command • 4-6
SET LINE command • 4-6
SET LOGGING command • 4-12
SET NODE command· 4-7,4-11,4-14
TRIGGER command • 4-12

Network Node Characteristics Menu, System
Builder· 3-16 to 3-19

Network Service • 3-11, 4-4, 4-12
See also Network Node Characteristics Menu

NEWBOOT command procedure· 4-8, 4-9, 4-12
/NEXT qualifier

SEARCH command· 5-70
SET BREAK command • 5-71

NIL predefined identifier· 5-20
/NOBRIEF qualifier· 3-3, C-1
/NODEBUG qualifier· 5-6
/NOEDIT qualifier· 3-4
/NOLOG qualifier· 3-4
NOPROMPT, SET MODE command keyword·

5-79
/NOSYSLIB qualifier· 2-13
/NOSYSSHR qualifier· 2-13
NOVERIFY, SET MODE command keyword • 5-79

o
Object module libraries, linking· 2-11

Object modules

linking 0 2-8 to 2-16
program development 0 2-1, 2-3

/OBJECT qualifier
CC command 0 2-7
EPASCAL command 0 2-5
FORTRAN command 0 2-8

OCT AL, SET MODE command keyword 0 5-78
/OCT AL qualifier

EV ALUA TE command 0 5-45
EXAMINE command 0 5-49

Operators
address-related 0 5-15
arithmetic 0 5-15
Boolean 0 5-15

/OUTPUT qualifier 0 B-5
OVER, SET MODE command keyword 0 5-79
lOVER qualifier 05-107

p

PO address space 0 3-12 to 3-15
P 1 address space 0 3-13 to 3-15
Pascal

See V AXELN Pascal
Path names 05-21
PC sampling

See V AXELN Performance Utility
Performance analysis

See V AXELN Performance Utility
Power failure exception, Program Description

Menu o 3-22
PREDECESSOR command 0 5-68
Predefined identifiers 0 5-20, 5-38

$05-20
LABEL 0 5-20, 5-22
LINE 0 5-20, 5-22
NILO 5-20
PSL 0 5-20
use of % with 0 5-20

PRINT command 0 6-33
/PRIORITY qualifier 0 B-5
Process identifiers • 5-9
Process priority

debugger 0 5-67
Program Description Menu 0 3-22

Process sampling

See V AXELN Performance Utility
/PROCESS_NAME qualifier 0 B-5
Program arguments 0 3-22 to 3-23, 3-31

Program Description Menu 0 3-22 to 3-23
Program description

access mode 0 3-21
arguments 0 3-22
initialization required 0 3-21
job port message limit 0 3-22
job priority 03-21
kernel stack 0 3-21
power failure exception 0 3-22
process priority 0 3~22
user stack 0 3-21

Program Description Menu, System Builder 0
3-19 to 3-23

Program loader
dynamic program space 0 3-15
guaranteed image list 0 3-12

Program locations, specifying 0 5-21
Programs

compiling 0 2-3 to 2-8
editing 0 2-3
linking 0 2-8 to 2-16
naming 03-5
VAXC

debugging 0 2-10
V AXELN Pascal

debugging 0 2-10
VAX FORTRAN

debugging 0 2-10
PSL predefined indentifier 05-20

o
/QUADWORD qualifier

DEPOSIT command 0 5-41
EXAMINE command 0 5-49

Qualifiers
See also individual qualifiers; Debugger

command qualifiers
/ADDRESS

EV ALUA TE command 0 5-45
EXAMINE command 0 5-49

/ALL
CANCEL BREAK command· 5-30

Index-9

Qualifiers
/ ALL (cont'd.)

SEARCH command • 5-70
SET BREAK command • 5-71
SHOW COMMAND command • 5-91
SHOW JOB command· 5-92
SHOW PROCESS command • 5-97
SHOW PROGRAM command· 5-99
SHOW SESSION command • 5-100

/ASCII
DEPOSIT command • 5-41
EXAMINE command • 5-49

/ AST_L1MIT· B-5
/BINARY

EV ALUA TE command • 5-45
EXAMINE command· 5-49

/BRIEF· 3-3, C-1
/BUCKET_SIZE • 6-3, 6-12
/BUFFER_L1MIT • B-5
/BYTE

DEPOSIT command • 5-41
EXAMINE command • 5-49

CC command • 2-6 to 2-7
/CODE_ST ART· 6-12
/COMPRESS • 2-20
/CREATE·2-17,2-18
/DEBUG • 5-66

CC command • 2-6
/EPASCAL command· 2-4
LINK command • 2-10

/DECIMAL
EV ALUA TE command • 5-45
EXAMINE command • 5-49

/DEFINE • 5-102
/DELETE· 2-20
/DOUBLE

DEPOSIT command • 5-41
EXAMINE command· 5-49

/D_FLOAT
DEPOSIT command • 5-41
EXAMINE command • 5-49

EBUILD command· 3-2 to 3-4
EDEBUG command • 5-5 to 5-6
/ENQUEUE_L1MIT • B-5
EPASCAL command· 2-4 to 2-5
/ERROR· B-5
/EXTRACT· 2-19

10-lndex

Qualifiers
/FLOAT

DEPOSIT command • 5-41
EXAMINE command· 5-49

FORTRAN command· 2-7 to 2-8
/FULL • 3-3, C-1
/GO·5-84
/GRAND

DEPOSIT command • 5-41
EXAMINE command • 5-49

/G_FLOAT
DEPOSIT command • 5-41
EXAMINE command· 5-49

/G_FLOA TING • 2-16
/HEX

EV ALUA TE command· 5-45
EXAMINE command· 5-49

/HUGE
DEPOSIT command • 5-41
EXAMINE command· 5-49

/H_FLOAT
DEPOSIT command • 5-41
EXAMINE command • 5-49

/IMAGE_SIZE • 6-13
/INCLUDE • 2-11

LINK command • 2-9
/INSTRUCTION • 5-107
/INTERV AL • 6-13
/INTO • 5-107
/IO_BUFFERED • B-5
/IO_DIRECT • B-5
/JOB· 5-71
/ JOB_PRIORITY • 5-66
/KERNEL

CANCEL BREAK command • 5-30
LOAD command • 5-66
SET BREAK command • 5-7 1
SET SESSION command· 5-84

/L1BRARY • 2-11
CC command • 2-6
EPASCAL command· 2-5
FORTRAN command· 2-7,2-8
LINK command • 2-9

LIBRARY command • 2-18 to 2-20
/L1NE • 5-107
LINK command· 2-9, 2-9 to 2-13
/L1ST

CC command • 2-7

Qualifiers
jLlST (cont'd.)

EPASCAL command· 2-5
LIBRARY command • 2-19

jLOAD· 5-6, 5-37
jLONGWORD

DEPOSIT command • 5-41
EXAMINE command • 5-49

jMAP·3-3,3-21, 3-31, C-1
jMAXIMUM • 6-35
jMINIMUM • 6-35
jMODULE

EPASCAL command· 2-5
VAXELN Performance Analyzer· 6-22,

6-34 to 6-35
jNEXT·5-70
jNOBRIEF· 3-3, C-1
jNODEBUG • 5-6
jNOEDIT • 3-4
jNOLOG·3-4
jNOSYSLIB • 2-13
jNOSYSSHR • 2-13
jOBJECT

CC command • 2-7
EPASCAL command· 2-5
FORTRAN command • 2-8

JOCTAL
EVALUATE command· 5-45
EXAMINE command • 5-49

jOUTPUT • B-5
JOVER • 5-107
jPRIORITY • B-5
jPROCESS_NAME • B-5
jQUADWORD

DEPOSIT command • 5-41
EXAMINE command • 5-49

jQUEUE_LlMIT • B-5
jREAL

DEPOSIT command • 5-41
EXAMINE command • 5-49

jROUTINE • 6-34 to 6-35
Run command • B-4 to B-5
jSHARE • 2-20
jSHAREABLE • 2-11
jSOURCE·5-107,6-34to 6-35
jSYSTEM • 3-4
jUIC·B-5

Qualifiers
jWORD

DEPOSIT command • 5-41
EXAMINE command • 5-49

jZERO·6-35
jQUEUE_LlMIT qualifier· B-5

R
Radixes • 5-25
jREAL qualifier

DEPOSIT command • 5-41
EXAMINE command· 5-49

Redirecting IjO· 3-23
Reference scope· 5-21 to 5-22, 5-38
Register address, Device Description Menu • 3-29
RELOCATION data type· 5-19, 5-27
Remote command language

See also V AXELN command language
Remote command language, Network Node

Characteristics Menu· 3-19
Remote debugger· 5-1, 5-12 to 5-13
Remote Error Logging

See Error Log Server
jROUTINE qualifier· 6-34 to 6-35
RTL library· 2-13
RTLOBJECT library· 2-14
RTLSHARE library· 2-14
Run-time system • 1-1

See also Host system; Target system software

s
SEARCH command • 5-69
Select Target Processor Menu, System Builder·

3-8
Select Target Processor Menu System Builder·

3-8
SET BREAK command • 5-71
SET CIRCUIT NCP command • 4-6
SET COMMAND command • 5-74
SET CONTROL command • 5-75
SET DA T AFILE command • 6-9
SET EXCEPTION BREAK command • 5-76
SET JOB_SAMPLING command • 6-10
SET LINE NCP command • 4-6
SET LOG command· 5-77

Index-11

SET LOGGING NCP command • 4-12
SET MODE command· 5-78
SET NODE

Collector command • 6-11
SET NODE NCP command • 4-7, 4-11, 4-14
SET OUTPUT command • 5-81
SET PC_SAMPLING command • 6-12
SET PROCESS_SAMPLING command· 6-14
SET PROGRAM command • 5-82
SET RETURN BREAK command· 5-83
SET SESSION command • 5-84
SET SOURCE command • 5-86
SET STEP command • 5-87
SET SYSTEM_SERVICE_SAMPLING command·

6-15
SET TIME command· 5-88
Shareable image libraries • 2-11

creating • 2-20
sl!Ppressing search· 2-13

Shareable images
creating • 2-11
libraries for· 2-20
using· 2-13 to 2-15

jSHAREABLE qualifier· 2-11
jSHARE qualifier· 2-20
SHOW BREAK command • 5-89
SHOW CALLS command • 5-90
SHOW COMMAND command • 5-91
SHOW DA T AFILE command • 6-18
SHOW JOB command • 5-92
SHOW MESSAGE command • 5-94
SHOW MOPE command • 5-95
SHOW MODULE command • 5-96
SHOW NODE command • 6-19
SHOW PROCESS command • 5-97
SHOW PROGRAM command • 5-99
SHOW RUN command· 6-20
SHOW SESSION command • 5-100
SHOW SYMBOL command • 5-102
SHOW SYSTEM command • 5-104
SHOW TIME command· 5...,..105
SHOW TRANSLATION command • 5-106
SOURCE, SET MODE command keyword • 5-79
Source file types· 2-3
Source programs, program development • 2-1
jSOURCE qualifier

STEP command • 5-107
TABULA TE command • 6-34 to 6-35

12-lndex

\ special constant· 5-27
Special constants· 5-27
STEP command • 5-107
STOP command • 6-21
String constants· 5-26
String expressions· 5-16
SUCCESSOR command • 5-109
Symbolic debugging· 5-12
System Builder

See also EBUILD command
developing an application· 1-3
host software· 1-2
menus • 3-5 to 3-39

Console Characteristics· 3-35 to 3-36
Device Description • 3-23 to 3-32
Error Log Characteristics· 3-36 to 3-39
Main • 3-7 to 3-8
Network Node Characteristics·

3-16 to 3-19
Program Description· 3-19 to 3-23
Select Target Processor· 3-8
System Characteristics· 3-9 to 3-16
Terminal Description· 3-32 to 3-35

selecting debugger· 5-2
using • 3-1 to 3-39

System Characteristics Menu, System Builder·
3-9 to 3-16

System images
booting • 4-1 to 4-4
data files for· 3-2, 3-4, 3-9
developing application • 1-3
down-line loading· 4-4 to 4-14
ICP.SYS·4-1,4-2
naming • 3-4, 3-9
preventing display of size· 3-4

System libraries, suppressing search in • 2-13
System map • 3-3, C-1 to C-7
jSYSTEM qualifier· 3-4
System region size, System Characteristics Menu •

3-15
System service sampling

See V AXELN Performance Utility

T
TABULATE commmand· 6-22,6-28,6-34

Target machine • 4-1
adding to host node data base· 4-6
configuring and installing bootstrap loader· 4-7
configuring host for down-line load· 4-6
installing communication hardware· 4-5
triggering • 4-12

Target processors
See Select Target Processor Menu

Target system software· 1-1
Terminal controllers· 3-31 to 3-36
Terminal Description Menu, System Builder·

3-32to 3-35
TRIGGER NCP command • 4-12
Typecasting· 5-23
TYPE command· 5-110

u
/UIC qualifier· B-5
UNLOAD command • 5-112
User mode • 3-21
User stack, Program Description Menu· 3-21
User versions of V AXELN files· 3-5

v
Variable references· 5-23
VAX/VMS Linker

See Linker
VAXC

compiler· 2-3
file types· 2-3
programs

compiling • 2-6 to 2-7
linking • 2-8 to 2-16

VAXELN
definition • 1-1
hardware requirements • 1-1
host system software • 1-2
languages used with· 1-3
Pascal compiler· 1-2
program development· 2-1

V AXELN Ada· 1-3
V AXELN command language· 3-19, 3-35, 3-36
V AXELN debuggers

See Debuggers

V AXELN libraries

See Libraries
V AXELN Pascal

compiler- 2-3
file types· 2-3
programs

compiling • 2-4 to 2-5
linking • 2-8 to 2-16

V AXELN Performance Utility· 3-15, 3-16,
6-1 to 6-36

Analyzer· 6-1, 6-22 to 6-36
EPA command· 6-29
invoking • 6-29
output· 6-22 to 6-28

Analyzer commands • 6-29 to 6-36
EXIT· 6-30
HELp· 6-32
PRINT· 6-33
TABULATE • 6-22, 6-28, 6-34

/BUCKET _SIZE qualifier· 6-3, 6-12
/CODE_ST ART qualifier- 6-12
Collector· 6-1, 6-2 to 6-21

EPC command· 6-4
invoking • 6-4

Collector commands • 6-4 to 6-21
EXIT-6-6
GO·6-7
HELp· 6-8
SET DA T AFILE • 6-9
SET JOB_SAMPLING· 6-10
SET NODE· 6-11
SET PC_SAMPLING • 6-12
SET PROCESS_SAMPLING· 6-14
SET SYSTEM_SERVICE_SAMPLlNG·

6-15
SHOW DA T AFILE • 6-18
SHOW NODE· 6-19
SHOW RUN • 6-20
STOp·6-21

EPA command· 6-29
EPC command • 6-4
/IMAGE_SIZE qualifier· 6-13
/INTERV AL qualifier· 6-13
job sampling· 6-1 0

example· 6-26
pages allocated for - 6-3

/MAXIMUM qualifier· 6-35
/MINIMUM qualifier· 6-35

Index-13

VAXELN Performance Utility (cont'd.)

IMODULE qualifier· 6-22, 6-34 to 6-35
output • 6-22 to 6-28
PC sampling • 6-12

compiling and linking for· 6-3
examples· 6-4, 6-22 to 6-26
pages allocated for· 6-3
qualifiers • 6-22, 6-34 to 6-36
using IDEBUG qualifier for • 6-3

preparing a system for· 6-3 to 6-4
process sampling • 6-14

example • 6-26
pages allocated for· 6-3

required configuration· 6-2
IROUTINE qualifier • 6-34 to 6-35
ISOURCE qualifier· 6-34 to 6-35
system service sampling • 6-15

example· 6-27
pages allocated for· 6-3

use of system region size· 6-3
IZERa qualifier· 6-35

V AXELN run-time system

14-lndex

See Run-time system
VAX FORTRAN

compiler· 2-3
file types· 2-3
programs

compiling • 2-7 to 2-8
Vector address, Device Description Menu· 3-29
VERIFY, SET MODE command keyword· 5-79
View scope • 5-21 to 5-22, 5-38
Virtual size· 3-13 to 3-15

w
WAIT command • 5-113
IWORD qualifier

z

DEPOSIT .command • 5-41
EXAMINE command • 5-49

IZERa qualifier· 6-35

From

Alaska, Hawaii,
or New Hampshire

Rest of U.S.A.
and Puerto Rico.

HOW TO ORDER

ADDITIONAL DOCUMENTATION

Call

603-884-6660

800-258-1710

Write

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

• Prepaid orders from Puerto Rico must be placed with DIGITAL's local subsidiary
(809-754-7575)

Canada

Internal orders
(for software
documentation)

Internal orders
(for hardware
documentation)

800-267-6219
(for software
documentation)

613-592-5111
(for hardware
documentation)

617-234-4323

Digital Equipment of Canada Ltd.
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: Direct Order desk

Software Distribution Center (SDC)
Digital Equipment Corporation
Westminster, MA 01473

Publishing & Circulation Servo (P&CS)
NR03-1jW3
Digital Equipment Corporation
Northboro, MA 01532

Reader's Comments VAXELN Host System Guide
AA-JG87B-TE

Your comments and suggestions will help us improve the quality of our future documentation.
Please note that this form is for comments on documentation only.

I rate this manual's: Excellent Good

Accuracy (product works as described) 0 0
Completeness (enough information) 0 0
Clarity (easy to understand) 0 0
Organization (structure of subject matter) 0 0
Figures (useful) 0 0
Examples (useful) 0 0
Index (ability to find topic) 0 0
Page layout (easy to find information) 0 0

What I like best about this manual:

What I like least about this manual:

My additional comments or suggestions for improving this manual:

I found the following errors in this manual:
Page Description

Please indicate the type of user/reader that you most nearly represent:

o Administrative Support
o Computer Operator
o Educator/Trainer
o Programmer/Analyst
o Sales

Name/Title

Company

Mailing Address

10/87

o Scientist/Engineer
o Software Support
o System Manager
o Other (please specify)

Dept.

Phone

Fair Poor

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

Date

Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - - - - - -

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
CORPORATE USER PUBLICATIONS
ML05-5/E45
146 MAIN STREET
MAYNARD, MA 01754-2571

11111111 .111111111.1111111111111.1111.11111111111111

Do Not Tear - Fold Here

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

