

pswrap
Reference Manual

Order No. M-PAJTA-TE

ADOBE SYSTEMS
INCORPORATED

pswrap Reference Manual

Writer: Amy Davidson

October 25, 1989

Copyright© 1988, 1989 Adobe Systems Incorporated.
All rights reserved.

POSTSCRIPT and DISPLAY POSTSCRIPT are registered
trademarks of Adobe Systems Incorporated.

The infonnation in this document is furnished for infonnational use
only, is subject to change without notice, and should not be construed
as a commitment by Adobe Systems Incorporated. Adobe Systems
Incorporated assumes no responsibility or liability for any errors or
inaccuracies that may appear in this document. The software
described in this document is furnished under license and may only be
used or copied in accordance with the tenns of such license.

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any fonn or by any means, electronic,
mechanical, recording, or otherwise, without the prior written
pennission of Adobe Systems Incorporated.

This manual replaces the previous version dated October 6,
1988.

About this Manual
2 Aboutpswrap 1

3 Using pswrap 2

3.1 Command-Line Options 3
3.2 '#Iine' Directives 4

4 Writing a Wrap 5

4.1 The Wrap Definition 5

4.2 Comments 6

4.3 The Wrap Body 6

4.4 Arguments 7

4.5 Input Arguments 8

4.6 Output Arguments 8

5 Declaring Input Arguments 9

5.1 Sending Boolean Values 10
5.2 Sending User Object Values 10
5.3 Sending Numbers 11

5.4 Sending Characters 11
5.4.1 Text Arguments 11

5.5 Sending Arrays of Numbers or Booleans 13
5.6 Grouping Numeric or Boolean Values 13

5.6.1 Specifying the Size of an Input Array 14
5.7 Specifying the Context 14

6 Declaring Output Arguments 14
6.1 Receiving Numbers 15

6.2 Receiving Boolean Values 16

6.3 Receiving a Series of Ouput Values 16

6.3.1 Returning a Series of Array Elements 17
6.3.2 Size of an Output Aray 17
6.4 Receiving Characters 17
6.5 Communication and Synchronization 18

A Error Messages from the pswrap Translator 21

B Syntax 23

B.1 Semantic Restrictions 24
B.2 Clarifications 24

Index 25

iii

1 ABOUT THIS MANUAL

This manual is the programmer's reference manual for the
pswrap translator. It tells you how to use pswrap to create C­
callable procedures that contain POSTSCRIPT@ language code.

Section 2 introduces the pswrap translator.

Section 3 tells you how to run pswrap and documents the options
in the pswrap command line.

Section 4 tells you how to write wrap definitions for pswrap.

Section 6 tells you how to declare input arguments.

Section 5 tells you how to declare output arguments.

Appendix A lists error messages from the pswrap translator.

Appendix B describes the syntax used in wrap definitions.

This manual does not provide infonnation on the POSTSCRIPT
language, the DISPLAY POSTSCRIPT@ system, or the Client
Library (the programming interface to the DISPLAY POSTSCRIPT
system). For more infonnation regarding these topics, see the
following manuals:

• POSTSCRIPT Language Reference Manual

• POSTSCRIPT Language Extensions for the DISPLAY
POSTSCRIPT System

• POSTSCRIPT Language Color Extensions

• Client Library Reference Manual

2 ABOUT PSWRAP

The pswrap translator provides a natural way for a developer or
toolkit implementor to compose a package of C-callable
procedures that send POSTSCRIPT language code to the
POSTSCRIPT interpreter. These C-callable procedures are known
as wrapped procedures or wraps. (A wrap is a procedure that
consists of a C declaration with a POSTSCRIPT language body. A
wrap body is the POSTSCRIPT language program fragment in a
wrap.)

2 ABOUT PSWRAP

Here's how pswrap fits into the DISPLAY POSTSCRIPT system:

• You write the POSTSCRIPT language programs required by
your application, using the pswrap syntax described in this
manual to define a C-callable procedure and specify input
and output arguments.

• You run pswrap to translate these POSTSCRIPT language
programs into wrapped procedures.

• You compile and link these wraps with the application
program.

• When a wrap is called by the application, it sends encoded
POSTSCRIPT language to the POSTSCRIPT interpreter and
receives the values returned by the interpreter.

A pswrap source file associates POSTSCRIPT language code with
declarations of C procedures; pswrap writes C source code for
the declared procedures, in effect wrapping C code around the
POSTSCRIPT language code. Wrapped procedures can take input
and output arguments:

• Input arguments are values a wrap sends to the POSTSCRIPT
interpreter as POSTSCRIPT objects.

• Output arguments are pointers to variables where the wrap
stores values returned by the POSTSCRIPT interpreter.

Wraps are the most efficient way for an application to commu­
nicate with the POSTSCRIPT interpreter.

3 USING PSWRAP

2 pswrap Reference Manual

The form of the pswrap command line (UNIX-and C-specific)
is:

pswrap [-ar] [-0 outputCfile] [-h outputHfile] [-s maxstring] [inputFile]

where square brackets [] indicate optional items.

3.1 COMMAND-LINE OPTIONS

The pswrap command-line options are described below.

inputFile A file that contains one or more wrap defini­
tions. pswrap transforms the definitions in
inputFile into C procedure definitions. If no in­
put file is specified, the standard input (which
can be redirected from a file or pipe) is used.
The input file can include text other than proce­
dure definitions. pswrap converts procedure
definitions to C procedures and passes the other
text through unchanged; therefore, it is possible
to intersperse C-Ianguage source code with wrap
definitions in the input file.

Note: Although C code is allowed in a pswrap input file, it is
not allowed within a wrap body. In particular, C '#define' mac­
ros cannot be used inside a wrap.

-3 Generates ANSI C procedure prototypes for pro­
cedure declarations in outputCjile and, option­
ally, outputHfile. (See the -h option.) The -3 op­
tion allows compilers that recognize the ANSI C
Standard to do more complete typechecking of
parameters. To save space, the -3 option also
causes pswrap to generate 'canst' declarations.

Note: ANSI C procedure prototype syntax is not recognized by
most non-ANSI C compilers, including many compilers based
on the Portable C Compiler. Use the -3 option only in
conjunction with a compiler that conforms to the ANSI C Stan­
dard.

-h outputHFile Generates a header file that contains 'extern'
declarations for non static wraps. This file may
be used in '#include' statements in modules that
use wraps. If the -3 option is specified, the
declarations in the header file are ANSI C proce­
dure prototypes. If the -h option is omitted, a
header file is not produced.

3 USING PSWRAP 3

-0 outputCFile Specifies the file to which the generated wraps
and passed-through text are written. If omitted,
the standard output is used. If the -3 option is
also specified, the procedure declarations
generated by pswrap are in ANSI C procedure
prototype syntax.

-r Generates reentrant code for wraps that are
shared by more than one process (as in shared
libraries). Since the -r options causes pswrap to
generate extra code, use it only when necessary.

-s maxstring Sets the maximum allowable length of a
POSTSCRIPT string object or POSTSCRIPT hex
string object in the wrap body input. A syntax
error will be reported if a string is not terminated
with ') , or '>' within maxstring characters.
maxstring cannot be set lower than 80. The
default is 200.

3.2 '#LlNE'DIRECTIVES

4 pswrap Reference Manual

Since the C source code generated for wrapped procedures
usually contains more lines than the input wrap body does,
pswrap inserts '#Iine' directives into the output wrap. These
directives record input line numbers in the output wrap source
file so that a source-code debugger can display them correctly.
Since a debugger displays C source code, not the POSTSCRIPT
language code in the wrap body, pswrap inserts #line directives
for both the inputFile and the outputCfile.

Note: Unless both the input and output files are named on the
command line, the '#line' directives will be incomplete; in the
latter case, they will lack the name of the C source file pswrap
produces. Use of the standard input and standard output streams
is discouraged for this reason.

pswrap writes diagnostic output to the standard error if there are
errors in the command line or in the input. If pswrap encounters
errors during processing, it reports the error and exits with a non­
zero termination status.

4 WRITING A WRAP

Here is a sample wrap definition. It declares the gray Circle pro­
cedure, which creates a solid gray circle with a radius of 5.0
centered at (10.0, 10.0):

defineps grayCircleO
newpath
10.0 10.0 5.0 0.0 360.0 arc
closepath
0.5 setgray
fill

endps

The rules for defining a wrapped procedure are given in the next
section.

4.1 THE WRAP DEFINITION

Each wrap definition consists of four parts:

'defineps' Begins the definition; must appear at the begin­
ning of a line, without any preceding spaces or
tabs.

Declaration of the C-callable procedure

Wrap body

'endps'

The name of the procedure followed by a list in
parentheses of the arguments it takes. The argu­
ments are optional; the parentheses are required
even for a procedure without arguments. (Note
that wraps do not return values; they are
declared void.)

POSTSCRIPT language program fragment. This
fragment is sent to the POSTSCRIPT interpreter.
It includes a series of POSTSCRIPT operators and
operands separated by spaces, tabs, and newline
characters.

Ends the definition. Like 'defineps', 'endps'
must appear at the very beginning of a line.

By default, wrap defmitions introduce external (that is, global)
names that can be used outside the file in which the definition
appears. To introduce private (local) procedures, declare the

4 WRITING A WRAP 5

wrapped procedure as static. For example, the gray Circle wrap
shown above can be made static by substituting the following
statement for the first line:

defineps static grayCircleO

Note: It is helpful for the application to use a naming conven­
tion for wraps that identifies them as such; for example,
PWdrawbox, PWshowtitle, PWdrawslider, and so on.

4.2 COMMENTS

C comments can appear anywhere outside a definition. In the
POSTSCRIPT language, comments appear anywhere after the pro­
cedure is declared and before the defmition ends. pswrap strips
POSTSCRIPT language comments from the wrap body. Com­
ments cannot appear within POSTSCRIPT string objects:

I*This is a C comment*/
defineps nOCommentO

(I*This is not a comment* /)show
(%Nor is this.)length
% This is a PS comment

endps

Wraps cannot be used to send comments that contain structural
information (% % and %!). Use another Client Library facility
such as DPSWriteData for this purpose.

4.3 THE WRAP BODY

6 pswrap Reference Manual

pswrap accepts any valid POSTSCRIPT language code as
specified in the POSTSCRIPT Language Reference Manual,
POSTSCRIPT Language Extensions for the DISPLAY POSTSCRIPT
System, and POSTSCRIPT Language Color Extensions. If the
POSTSCRIPT language code in a wrap body includes any of the
following symbols, the opening and closing marks must balance.

'{ }'

'[]'

Braces (to delimit a procedure)

Square brackets (to define an array)

'()' Parentheses (to enclose a string)

'< >' Angle brackets (to mark a hexdecimal string)

Parentheses within a string body must balance or be quoted with
'\' according to standard POSTSCRIPT language syntax.

Note: pswrap does not check a wrap defmition for valid or sen­
sible POSTSCRIPT language code.

pswrap attempts to wrap whatever it encounters. Everything be­
tween the closing parenthesis of the procedure declaration and
the end of the wrap definition is assumbed to be an element of
the POSTSCRIPT language unless it is part of a comment or
matches one of the wrap arguments.

Note: pswrap does not support the 1/ POSTSCRIPT language syn­
tax for immediately evaluated names. See the POSTSCRIPT Lan­
guage Reference Manual for more information about im­
mediately evaluated names.

4.4 ARGUMENTS

Argument names in the procedure header are declared using C
types. For instance, the following example declares two vari­
ables, 'x' and 'y', of type 'long int'o

defineps MyFunc(long int x,y)

There can be any number of input and output arguments. Input
arguments must be listed before output arguments in the wrap
header. Precede the output arguments, if any, with a vertical bar
'I'. Separate arguments of the same type with a comma. Separate
arguments of differing types with a semicolon. A semicolon is
optional before a vertical bar or a right parenthesis; for example:

defineps NewFunc(float x,y; int a lint *i)

4 WRITING A WRAP 7

4.5 INPUT ARGUMENTS

Input arguments describe values that the wrap converts to en­
coded POSTSCRIPT objects at run time. When an element within
the wrap body matches an input argument, the value that was
passed to the wrap replaces the element in the wrap body. Input
arguments represent placeholders for values in the wrap body.
They are not POSTSCRIPT language variables (names). Think of
them as macro definitions that are substituted at run time.

For example, the gray Circle procedure defined on page 5 can be
made more useful by providing input arguments for the radius
and center coordinates:

defineps grayCircle(float x,y, radius)
newpath
x y radius 0.0 360.0 arc
closepath
0.5 setgray

endps

The value of input argument 'x' replaces every occurence of 'x'
in the wrap body. This version of grayCircle draws a circle of
any size at any location.

4.6 OUTPUT ARGUMENTS

8 pswrap Reference Manual

Output arguments describe values that POSTSCRIPT operators
return. For example, the standard POSTSCRIPT operator
currentgray returns the gray-level setting in the current graphics
state. POSTSCRIPT operators return values by placing them on the
top of the operand stack. To return the value to the application,
place the name of the output argument in the wrap body at a
point in which the desired value is on the top of the operand
stack. For example, the following wrap gets the value returned
by currentgray:

defineps getGray(I float *Ievel)
currentgray level

endps

When an element within a wrap body matches an output argu­
ment in this way, pswrap substitutes code that gets the returned

value from the stack. For every output argument, the wrap will
perform the following operations:

• Pop an object off the operand stack.

G Send it across the connection to the application.

• Convert it to the correct C data type.

• Store it at the place designated by the output argument ..

Each output argument must be declared as a pointer to the loca­
tion where the procedure stores the returned value. To get a 'long
int' back from a pswrap-generated procedure, declare the output
argument as 'long int *', as in the following example:

defineps countexecstack(I long int *n)
countexecstack n

endps

To call the wrap from a C program, pass it a pointer to a 'long
int':

long int val;
countexecstack(&val);

To receive information back from the POSTSCRIPT interpreter,
use only the syntax for output arguments described here. Do not
use operators that write to the standard output (such as =, ==,
print, or pstack). These operators send ASCII strings to the ap­
plication that pswrap-generated procedures cannot handle.

Sections 5 and 6 discuss the details of input and output argu­
ments, respectively.

5 DECLARING INPUT ARGUMENTS

This section defines the types allowed for input arguments. If the
wrap specifies a context argument, it must appear as the first
input argument and it must be of type 'DPSContext'.
('DPSContext' is a handle to the context record; see the Client
Library Reference Manual for more information.)

All other input arguments are declared as one of the data types in
the following list. Square brackets indicate optional elements.

5 DECLARING INPUT ARGUMENTS 9

• One of the following pswrap data types (equivalent to C
data types except for 'boolean' and 'userobject', which are
special to pswrap):

'boolean'
'int'
'short [int]'
'long [int]'
'float'

'userobject'
'unsigned [int]'
'unsigned short [int]'
'unsigned long [int]'
'double'

• An array of a pswrap data type

• A character string ('char *, or 'unsigned char *')

• A character array ('charD' or 'unsigned charD') (The
square brackets are part of C syntax.)

5.1 SENDING BOOLEAN VALUES

If an input argument is declared as 'boolean', the wrap expects
to be passed a variable of type 'int'. If the variable has a value of
zero, it is translated to a POSTSCRIPT boolean object with the
value false. Otherwise it is translated to a POSTSCRIPT boolean
object with the value true.

5.2 SENDING USER OBJECT VALUES

1 0 pswrap Reference Manual

Input parameters declared as type 'userobject' should be passed
as type 'long int'; see POSTSCRIPT Language Extensions for the
DISPLAY POSTSCRIPT System for a description of user objects.

When pswrap encounters an argument of type userobject, it will
generate POSTSCRIPT language code to get the value of the user
object. For example, pswrap expands

to

defineps access_userobject(userobject x)
x

endps

x execuserobject

The 'userobject' argument in a wrap is expanded to the object
that was used to define that user object.

If you want to use the value of a 'userobject' argument without
having it expanded by pswrap as described above, declare the
argument to be of type 'long int'. Here is an example of a wrap
that defines a user object:

defineps def_userobject(long int d)
d 10 dict defineuserobject

endps

5.3 SENDING NUMBERS

An input argument declared as one of the 'int' types is converted
to a 32-bit POSTSCRIPT integer object before it is sent to the
interpreter. A 'float' or 'double' input argument is converted to a
32-bit POSTSCRIPT real object. These conversions follow the
usual C conversion rules.1

Note: Since the POSTSCRIPT language does not support un­
signed integers, unsigned integer input arguments are cast to
signed integers in the body of the wrap.

5.4 SENDING CHARACTERS

An input argument composed of characters is treated as a
POSTSCRIPT name object or string object. The argument can be
declared as a character string or as a character array.

pswrap expects arguments that are passed to it as character
strings ('char *' or 'unsigned char *') to be null terminated
('\0'). Character arrays are not null terminated, but the number of
elements in the array must be specified as a positive integer. This
is done either by an integer constant or by an input argument of
type 'int'. See Section 5.5 for an example of this rule.

5.4.1 Text Arguments

An input argument declared as a character string or character

lSee The C Programming Language, R. W. Kernighan and D. M. Ritchie
(Englewood Cliffs, NJ: Prentice-Hall, 1978) or C: A Reference Manual,
S. P. Harbison and G. L. Steele, Jr. (Englewood Cliffs, NJ: Prentice-Hall,
1984).

5 DECLARING INPUT ARGUMENTS 11

12 pswrap Reference Manual

array is converted to a single POSTSCRIPT name object or string
object. Such an argument is referred to as a text argument.

The POSTSCRIPT interpreter does not process the characters of
text arguments. It assumes that any character escape processing
has been done before the wrap is called.

To make pswrap treat a text argument as a POSTSCRIPT literal
name object, precede it with a slash, as in the readyF ont wrap
definition below. (Only names and text arguments can be
preceded by a slash.)

defineps readyFont(char *fontname; int size)
Ifontname findfont
size scalefont
setfont

endps

To make pswrap treat a text argument as a POSTSCRIPT string
object, enclose it within parentheses. The putString wrap defini­
tion below shows a text argument, '(str) ':

defineps putString(char *str; float X, y)
X Y moveto
(str) show

endps

Note: Text arguments are only recognized within parentheses if
they appear alone, without any surrounding whitespace or addi­
tional elements. In the following wrap definition, only the first
string is replaced with the value of the text argument. The
second and third strings are sent unchanged to the interpreter.

defineps threeStrings(char *str)
(str) (str) (a str)

endps

If a text argument is not marked by either a slash or parentheses,
pswrap treats it as an executable POSTSCRIPT name object. In the
following example, 'mydict' is treated as executable:

defineps doProcedure(char *mydict)
mydict fprocedure get exec

endps

5.5 SENDING ARRAYS OF NUMBERS OR BOOLEANS

Each element in the wrap body that names an input array argu­
ment represents a literal POSTSCRIPT literal array object that has
the same element values. In the grayRect wrap definition below,
the wrap paints a gray rectangle with a given gray value at the
location specified by the element values of its 'rectNums'
parameter:

defineps grayRect (float gray, rectNums [4])
gsave
gray setgray
rectNums fillrect
grestore

endps

The defineA wrap below sends an array of any length to the
POSTSCRIPT interpreter:

defineps defineA (int data[x]; int x)
fA data def

endps

5.6 GROUPING NUMERIC OR BOOLEAN VALUES

Occasionally, it is useful to group several numeric or boolean
values into a C array, pass the array to a wrap, and then send the
individual elements of the array to the POSTSCRIPT interpreter,
as in the following example.

defineps grayCircle(float nums[3], gray)
newpath
\nums[O] \nums[1] \nums[2] 0.0 360.0 arc
closepath
gray setgray
fill

endps

In the example just above, '\nums[i]' identifies an element of an

5 DECLARING INPUT ARGUMENTS 13

input array in the wrap body, where 'nums' is the name of an
input boolean array or numeric array argument, 'i' is a non­
negative integer literal, and no whitespace is allowed between '\'
and ']'.

5.6.1 Specifying the Size of an Input Array

As the foregoing examples illustrate, you can specify the size of
an input array in two ways:

• Give an integer constant as the size when you define the
procedure, as in the grayRect wrap definition .

• Give a name that evaluates to an integer at run time as the
size, as in the defineA wrap definition.

In either case, the size of the array must be a positive integer.

5.7 SPECIFYING THE CONTEXT

Every wrap communicates with a POSTSCRIPT execution con­
text. The current context is normally used as the default. The
Client Library provides operations for setting and getting the
current context for each application. To override the default,
declare the first argument as type 'DPSContext' and pass the
appropriate context as the first parameter whenever the appli­
cation calls the wrap. Here is an example of a wrap definition
that explicitly declares a context:

defineps getGray(DPSContext c I float *Ievel)
currentgray level

endps

Warning: Do not refer to the name of the context in the wrap
body.

6 DECLARING OUTPUT ARGUMENTS

1 4 pswrap Reference Manual

To receive information back from the POSTSCRIPT interpreter,
the output arguments of a wrap must refer to locations where the
information can be stored. An output argument can be declared
as one of the following:

• A pointer to one of the basic data types listed in Section 5 ,
except for 'userobject'.

• An array of one of these types .

• A character string ('char *, or 'unsigned char *') .

• A character array ('char []' or 'unsigned char []').

If an output argument is declared as a pointer or character string,
the procedure writes the returned value at the location pointed to.

For an output argument declared as a pointer, previous return
values are overwritten if the output argument is encountered
more than once in executing the wrap body. For an output argu­
ment declared as a character string ('char *'), the value is stored
only the first time it is encountered.

If an output argument is declared as an array of one of the
pswrap data types (see page 10 for a list) or as a character array,
the wrap fills the slots in the array (see Section 6.3).

Note: Whenever an array output argument is encountered in the
wrap body, the values on the POSTSCRIPT operand stack are
placed in the array in the order in which they would be popped
off the stack. When no empty array elements remain, no further
storing of output in the array is done.

Output values can be returned in any order.

pswrap does not check whether the wrap definition provides
return values for all output arguments, nor does it check whether
the wrap body is compatible with the declared output arguments.

6.1 RECEIVING NUMBERS

POSTSCRIPT integer objects and real objects are 32 bits long.
When returned, these values are assigned to the variable
provided by the output argument. Typically, on a system where
the size of an 'int' or 'float' is 32 bits, pass a pointer to an 'int' as
the output argument for a POSTSCRIPT integer object; pass a
pointer to a 'float' as the output argument for a POSTSCRIPT real
object:

6 DECLARING OUTPUT ARGUMENTS 15

defineps my Wrap (I float *f; int *i)

A POSTSCRIPT integer object or real object can be returned as a
'float' or 'double'. Other type mismatches cause a typecbeck er­
ror (for example, attempting to return a POSTSCRIPT real object
as an 'int').

6.2 RECEIVING BOOLEAN VALUES

A procedure can declare a pointer to a 'boolean' as an output
argument:

defineps known(ehar *Diet, *x I boolean *ans)
Diet Ix known ans

endps

This wrap expects to be passed the address of a variable of type
'int' as its output argument. If the POSTSCRIPT interpreter returns
the value true, the wrap places a value of 1 in the variable
referenced by the output argument. If the interpreter returns the
value false, the wrap places a value of zero in the variable.

6.3 RECEIVING A SERIES OF OUPUT VALUES

16 pswrap Reference Manual

To receive a series of output values in a specified region of
memory, declare an output argument to be an array; then write a
wrap body in the POSTSCRIPT language to compute and return its
elements, either one at a time or in chunks. The example below
declares a wrap that returns the 256 font widths for a given font
name at a given font size:

defineps getWidths(ehar *fn; int size I float wide[256])
Ifn size seleetfont
o 1 255 {

} for
endps

(X) dup 0 4 -1 roll put
stringwidth pop wide

In the above example, the loop counter is used to assign succes­
sive ASCII values to the scratch string '(X)'. The stringwidth
operator then places both the width and height of the string on
the POSTSCRIPT operand stack. (Here it operates on a string just

one character long.) The pop operator removes the height from
the stack, leaving the width at the top. The occurrence of the
output argument 'wide' in this position triggers the width to be
popped from the stack, returned to the application, and inserted
into the output array as the next element.

The for loop (the procedure enclosed in braces followed by for)
repeats these operations for each character in the font, beginning
with the Oth and ending with 255th element of the font array.

6.3.1 Returning a Series of Array Elements

A POSTSCRIPT array object can contain a series of elements to be
stored in an output array. The elements are treated as if they had
been returned one at a time. The array is written to until all of the
elements have been filled. Therefore the test wrap defined below
will return '{1, 2, 3, 4, 5, 6}':

defineps test(l int Array[6])
[1 23] Array
[456] Array

endps

The testmore wrap defined below will return '{1, 2, 3}':

defineps testmore(l int Array[3])
[1 23] Array
[456] Array

endps

6.3.2 Size of an Output Aray

The size of an output array is specified in the same manner as the
size of an input array. Use a constant in the wrap definition or an
input argument that evaluates to an integer at run time. If more
elements are returned than fit in the output array, the additional
elements are discarded.

6.4 RECEIVING CHARACTERS

To receive characters back from the POSTSCRIPT interpreter,
declare the output argument either as a character string or as
character array.

6 DECLARING OUTPUT ARGUMENTS 17

If the argument is declared as a character string, the wrap copies
the returned string to the location indicated. Be careful to
provide enough space for the maximum number of characters
that might be returned, including the null character ('\0') that
terminates the string. Only the first string encountered will be
returned. For example, in the strings procedure defined below,
the string '123' will be returned:

defineps strings(l char *str)
(123) str
(456) str

endps

Character arrays, on the other hand, are treated just like arrays of
numbers. In the strings2 procedure, the value returned for 'str'
will be '123456':

defineps strings2(1 char *str[6])
(123) str
(456) str

endps

If the argument is declared as a character array (for example,
'char s'[num]), the procedure copies up to num characters of the
returned string into the array. Additional characters are dis­
carded. The string is not null terminated.

6.5 COMMUNICATION AND SYNCHRONIZATION

18 pswrap Reference Manual

The POSTSCRIPT interpreter can run as a separate process from
the application; it can even run on a separate machine. When the
application and interpreter processes are separated, the applica­
tion programmer must take communication into account. This
section alerts you to communication and synchronization issues.

A wrap that has no output arguments returns as soon as the wrap
body is transferred to the client/server communication channel.
In this case, the communication channel is not necessarily
flushed. Since the wrap body is not executed by the POSTSCRIPT
interpreter until the communication channel is flushed, errors
arising from the execution of the wrap body can be reported long
after the wrap returns.

In the case of a wrap that returns a value, the entire wrap body is
transferred to the client/server communication channel, which is
then flushed. The client-side code awaits the return of output
values followed by a special termination value. Only then does
the wrap return.

See the Client Library Reference Manual for information con­
cerning synchronization, run-time errors, and error handling.

6 DECLARING OUTPUT ARGUMENTS 19

20 pswrap Reference Manual

A ERROR MESSAGES FROM THE PSWRAPTRANSLATOR

The following is a list of error messages the pswrap translator
can generate:

input parameter used as a subscript is not an integer

output parameter used as a subscript

char input parameters must be starred or subscripted

hex string too long

invalid characters

invalid characters in definition

invalid characters in hex string

invalid radix number

output arguments must be starred or subscripted

out of storage, try splitting the input file

-s 80 is the minimum

can't allocate char string, try a smaller -s value

can't open file for input

can't open file for output

error in parsing

string too long

usage: pswrap [-s maxstring] [-ar] [-h headerfile] [-0 outfile] [infile]

endps without matching defineps

errors in parsing

A ERROR MESSAGES FROM THE PSWRAPTRANSLATOR 21

22 pswrap Reference Manual

errors were encountered

size of wrap exceeds 64K

parameter reused

output parameter used as a subscript

non-char input parameter

not an input parameter

not a scalar type

wrong type

parameter index expression empty

parameter index expression error

end of input file/missing endps

B SYNTAX

Square brackets [] mean that the enclosed form is optional. Curly
brackets {} mean that the enclosed form is repeated, possibly
zero times. A vertical bar I separates choices in a list.

Unit =
ArbitraryText {Definition ArbitraryText}

Definition =
NLdefineps ["static"] Ident "(" [Args] ["I" Args]")" Body NLendps

Body =
{Token}

Token =
Number I PSIdent I SlashPSIdent
I "("StringLiteral")"
I "<"StringLiteral">"
I "{" Body"}"
I ''['' Body"]"
I Input Element

Args=
ArgList {";" ArgList} [";"]

ArgList=
Type ItemList

Type =
"DPSContext" I "boolean" I "float" I "double"
I ["unsigned"] "char" I ["unsigned"] ["short" I "long"] "int"

ItemList =
Item {"," Item}

Item =
"*" Ident I Ident ["["Subscript"]"]

Subscript =
Integer I Ident

B SYNTAX 23

B.1 SEMANTIC RESTRICTIONS

• DPSContext must be the first input argument if it appears at
all.

• A simple char argument (char Ident) is never allowed (must
be * or [D.

• A simple Ident item is not allowed in an output item list
(must be * or [].

B.2 CLARIFICATIONS

24 pswrap Reference Manual

• NLdefineps matches the terminal defineps at the beginning
of a new line.

e NLendps matches the terminal endps at the beginning of a
new line.

• Ident follows the rules for C names; PSldent follows the
rules for POSTSCRIPT names.

e SlashPSldent is a POSTSCRIPT name preceded by a slash.

• StringLiteral tokens follow the POSTSCRIPT language con­
ventions for string literals.

• Number tokens follow the POSTSCRIPT language conven­
tions for numbers.

• Integer subscripts follow the C conventions for integer con­
stants.

• Input Element is \n[i] where n is the name of an input array
argument, i is a non-negative integer literal, and no white
space is allowed between \ and].

#defme 3
#include 3
#line directives 4

%! 6
%% 6

() 6

II 7

= 9
-- 9

[] 6

angle brackets 6
ANSIC 3
arguments 7

context 9
declaring 9
input 2, 7, 8
names 7
output 2,8, 14, 18
text 11

array size, output 17
arrays 13, 17
ASCII strings 9

boolean 10
booleans 13, 16

C code not allowed in wrap 3
C, ANSI 3
calling a wrap 9
character array 18
characters 11
characters,

receiving 17
command line 2
comments 6

sending 6
communication 18
context 14
context, as wrap argument 9
context, specifying 14
currentgray 8

data types 9, 10
debugging, with #line directives 4
declaration 5
defineps 5
delimiters in wrap body 6
DPSContext 9, 14
DPSWriteData 6

endps 5
execution context 14
extern declarations 3

flushing 18
font widths 16
for 17
for 17

grayCircle 5
grouping values 13

immediately evaluated names 7
input

arguments 2, 8
input arguments 7, 8
input array,

size 14
input data types 9
input file 3
integer 15

names, immediately evaluated 7
naming convention 6
nonstatic wraps 3
Notes and Warnings 3,4,6, 7, 11, 12, 14, 15

25

numbers 11, 13, 15
numeric values 13

options 3
-a 3
-h 3
-0 4
-r 4
-s 4

output
arguments 2, 8
diagnostic 4

output arguments 8, 14, 18
output C me 4
output header me 3
output, receiving 16

parentheses 6
pointer, for output argument 9
pop 16
PostScript array, returning 17
PostScript operators 8
print 9
procedure

definition 5
example definition 5
pswrap-generated 14

procedure prototypes in ANSI C 3
pstack 9
pswrap data types 10

real 15
receiving a series of output values 16
receiving boolean values 16
receiving characters 17
receiving numbers 15
reentrant wraps 4

size of output array 17
square brackets 6
standard error 4
standard input 4
standard output 4,9
static procedures 5
string length 4
stringwidth 16
synchronization 18
syntax 7

26 INDEX

text arguments 11, 12
typecheck 16

unsigned integers 11
user objects 10
userobject 15

values,
returning 8

whitespace 12
wrap 1
wrap body 1,5,6
wrap defmition 5
wrap header 7
wrap that returns a value 18
writing a wrap 5

{} 6

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040
before placing your electronic, telephone, or direct mail order.

Electronic Orders

To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using
a 1200- or 2400-baud modem. If you need assistance using the Electronic Store,
call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal)

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local DIGITAL subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02j2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local DIGITAL subsidiary or
approved distributor

SOC Order Processing - WMOjE15
or
Software Distribution Center
Digital Equipment Corporation
Westminster, Massachusetts 01473

) For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

