
ULTRIX

Guide to the Source Code Control System

Order Number: AA-ME848-TE

Guide to the Source Code Control System

Order Number: AA-ME848-TE

June 1990

Product Version: UL TRIX Version 4.0 or higher

ULTRIX

This guide introduces the sccs(l) preprocessor, then describes how to use it with related
secs commands in a software project.

digital equipment corporation
maynard, massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause of DFARS 252.227-7013.

©Digital Equipment Corporation 1987, 1989, 1990
All rights reserved.

The information in this document is subject to change without notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital or its
affiliated companies.

The following are trademarks of Digital Equipment Corporation:

mamaamo
CDA
DDIF
DDIS
DEC
DECnet
DECstation

DECUS
DECwindows
DTIF
MASS BUS
MicroVAX
Q-bus
ULTRIX
UL TRIX Mail Connection

ULTRIX Worksystem Software
UNIBUS
VAX
VAXstation
VMS
VMS/ULTRIX Connection
VT
XUI

UNIX is a registered trademark of AT&T in the USA and other countries.

Contents

About This Manual

Audience v

Organization . v

Related Documents v

Conventions v

1 Overview to the Source Code Control System

1.1

1.2

1.3

Introduction to SCCS

SCCS Terminology

1.2.1 The s-file
1.2.2 Deltas
1.2.3 SCCS IDs (Version Numbers)
1.2.4 ID Keywords .. .

For More Information

1-1

1-2

1-2
1-2
1-3
1-3

1-4

2 Using SCCS

2.1 Creating SCCS Files 2-1

2.2 Getting Files for Compilation . 2-2

2.3 Modifying SCCS Files (Creating Deltas) ... 2-2

2.3.1 Getting a Copy to Edit ... 2-2
2.3.2 Merging the Changes Back into the s-file .. 2-3
2.3.3 When to Make Deltas 2-3
2.3.4 Getting Information About SCCS Files ... 2-3

2.3.4.1 Using secs info ... 2-4
2.3.4.2 Using secs check 2-4
2.3.4.3 Using secs delta 'secs tell' .. 2-4
2.3.4.4 Using secs what 2-4

2.3.5 Inserting ID Keywords ... 2-4

2.4

2.5

2.3.6 Creating New Releases

Restoring Old Versions

2.4.1 Reverting to Old Versions .. .
2.4.2 Selectively Deleting Old Deltas

Auditing Changes .. .

2.5.1
2.5.2
2.5.3

Printing delta Comments
Identifying Changes by Printing Comments
Identifying the Changes

2-5

2-5

2-5
2-6

2-6

2-6
2-7
2-7

2.6 Combining SCCS keywords . 2-7

2.6.1 Using the delget Command ... 2-7
2.6.2 Using the fix Command 2-8
2.6.3 Removing Edit Reservations from a File 2-8
2.6.4 Using the -d Flag 2-8

2.7 SCCS Command Summary

3 Using SCCS on a Project

3.1

3.2

3.3

3.4

3.5

3.6

Setting Up an SCCS Directory for a Project

Deciding when to Edit a File

Recovering a Corrupted Edit File .. .

Using SCCS with the admin Command

Maintaining Different Versions (Branches)

3.5.1
3.5.2
3.5.3
3.5.4

Creating a Branch
Getting Files from a Branch
Merging a Branch Back into the Main Trunk
Use Branches Sparingly

Using SCCS with the make Command

3.6.1
3.6.2
3.6.3

Maintaining Single Programs
Maintaining a Library .. .
Maintaining a Large Program

Figures

1-1: SCCS Directory Structure

iv Contents

2-8

3-1

3-3

3-3

3-3

3-4

3-4
3-4
3-4
3-5

3-6

3-6
3-7
3-8

1-1

About This Manual

The objective of this guide is to provide you with information on the Source Code
Control System (SCCS), and to explain how to use its commands and options.

Audience
This manual is written for the person who is responsible for archiving source files.
This person may also be responsible for managing and maintaining an ULTRIX
operating system. It assumes that this individual is familiar with some ULTRIX
commands and with an editor such as vi or e d .

Organization
This guide consists of three chapters and an index. The chapters are:

Chapter 1: Overview to the Source Code Control System
Provides an overview of the Source Code Control System
(SCCS), explaining SCCS terminology and SCCS keywords.

Chapter 2: Using SCCS
This chapter describes how to create SCCS files, change SCCS
files, restore old versions of SCCS files, and audit changes to
SCCS files. It also explains how to combine commonly used
SCCS keywords and contains a quick SCCS keyword reference.

Chapter 3: Using SCCS on a Project
This chapter explains the various problems and situations you
may encounter when using SCCS on a major project.

Related Documents
You should use this document in conjunction with the ULTRIX Reference Pages.

Conventions
The following conventions are used in this guide:

special In text, each mention of a specific command, option, partition,
pathname, directory, or file is presented in this t~pe.

command(x)

literal

italics

[]

function

UPPERCASE

example

example

%

>>>

vi About This Manual

In text, cross-references to the command documentation include
the section number in the reference manual where the commands
are documented. For example: See the cat(1) command. This
indicates that you can find the material on the cat command in
Section 1 of the ULTRIX Reference Pages.

In syntax descriptions, this type indicates terms that are constant
and must be typed just as they are presented.

In syntax descriptions, this type indicates terms that are variable.

In syntax descriptions, square brackets indicate terms that are
optional.

In syntax descriptions, a horizontal ellipsis indicates that the
preceding item can be repeated one or more times.

In function definitions, the function itself is shown in this type.
The function arguments are shown in italics.

The UL TRIX system differentiates between lowercase and
uppercase characters. Enter uppercase characters only where
specifically indicated by an example or a syntax line.

In examples, computer output text is printed in this type.

In examples, user input is printed in this bold type.

This is the default user prompt in multiuser mode.

This is the default superuser prompt.

This is the console subsystem prompt.

In examples, a vertical ellipsis indicates that not all of the

lines of the example are shown.

Overview to the Source Code Control 1 System

The Source Code Control System (SCCS) is a source management system, which
maintains a record of each set of changes made to the files, including why the
changes were made, who made them, and when they were made. Old versions can
be recovered, and different versions can be maintained simultaneously. Also, in
projects with more than one person, SCCS ensures that two people are not editing the
same file at the same time.

The SCCS system has two levels of operation, traditional SCCS commands and a
preprocessor for these commands, sccs(l). This manual discusses the secs
preprocessor and how you use it to create, administer, and use SCCS libraries.

1.1 Introduction to SCCS

The following figure illustrates the SCCS directory structure:

Figure 1-1: SCCS Directory Structure

My Directory
/usr/users/mydir

SCCS Directory
/usr/users/mydir/SCCS

The s-file Log

/usr/users/mydir/SCCS/s.mycode.c

r---.r--'-,
I I
I d I
1 myco e.c 1
I I L---------l

ZK-0146U-R

All versions of your program, plus the log and other information, are kept in a file
called the s-file. The s-file is basically a log file that allows SCCS to save your
file by saving the origional version and all the changes that have been made, along
with comments describing why changes were made. There are three major operations
that can be performed on the s-file:

• Getting a file for compilation (not for editing).

This operation retrieves a version of the file from the s-file. By default, the
latest version is retrieved. This file is only intended for compilation, printing,
and so forth; it is not intended to be edited or changed in any way. Thus, any
changes made to a file retrieved in this way may be lost.

• Getting a file for editing.

This operation also retrieves a version of the file from the s-file, but this version
of the file can be edited and then incorporated back into the s-file. Only one
person may be editing a file at one time.

• Merging a file back into the s-file.

This is the companion operation to getting a file for editing. After you have
edited a file, SCCS assigns a new version number to the file and saves any
comments you make explaining the reasons for your changes.

1.2 SCCS Terminology
Before attempting to place files under SCCS, you should make sure that you
understand the following SCCS terms:

• The s-file

• Deltas

• SCCS IDs

• ID keywords

The following sections describe these terms.

1.2.1 The s-file

The s-file is a single file that holds all the different versions of your file. The s-file is
stored in differential format; only the differences between versions are stored, rather
than the entire text of the new version. This saves disk space and allows selective
changes to be removed later. The s-file also includes some header information for
each version of the file, as well as any comments given by the person who created
each new version explaining why they made the changes.

1.2.2 Deltas
Each set of changes to the s-file is called a delta. Although technically a delta
only includes the latest changes, in practice it is quite common for each delta to be
made with respect to all the deltas that have occurred before. This matches normal
use, where the previous changes are not saved at all, so that all changes are
automatically based on all other changes that have happened through the file's
history. However, it is possible to get a version of the file that has selected deltas
removed. This is equivalent to removing changes at a later time.

1-2 Overview to the Source Code Control System

1.2.3 SCCS IDs (Version Numbers)

A Source Code Control System ID (SID) represents a delta and is usually a two-part
number, consisting of a release number and a level number. Normally the release
number stays the same; however, it is possible to move into a new release if some
major change to the file or project is being made.

Because SCCS normally applies all past deltas to a file, the SID of the final delta that
is applied to the file can be used to represent a version number of the file as a whole.

1.2.4 ID Keywords

When you get a version of a file and you intend to compile and install it (as opposed
to editing it), SCCS expands some special keywords, called ID keywords, inline.
You can use these ID keywords to include the current version number of the file or
other information in the file. ID keywords are of the following form:

%x%

The variable x is an uppercase letter. For example, % I% is the SID of the latest delta
applied, where as %W% includes the module name, the SID, and a mark that allows
the SCCS program to find it, and %G% is the date of the latest delta applied.

When you get a file for editing, SCCS does not expand the ID keywords; this is so
that after you put them back into the s-file, SCCS will expand them automatically on
each new version. If they were expanded accidentally, your file would appear to be
the same version from that point on, which would defeat the purpose of including the
keywords. Also, if you installed a version of the program without expanding the ID
keywords, it would be impossible to tell what version you are working on because
the s ccs program would only have the SID of %W%.

The following list summarizes the information provided by of the ID keywords.
Refer to admin(l) in the ULTRIX Reference Pages for more information on
keywords.

%Z%

%M%

%1%

%W%

%G%

%R%

%Y%

Expands to @ (#) for the what command to find. This is a special
string that signals the beginning of an keyword.

The current module name, for example, prog. c.

The highest SID applied.

A shorthand for the following: %Z%%M% <tab> %I%.

The date of the delta corresponding to the % I% keyword.

The current release number, for example, the first component of the % I%
keyword.

Replaced by the value of the -t flag (set using the admin command).

Overview to the Source Code Control System 1-3

1.3 For More Information
To assist you in maintaining existing shell scripts or programs that may use the
component modules directly, the ULTRIX Reference Pages contain descriptions of
the following SCCS modules:

admin (1)
delta(l)
prs(l)
sccsdiff (1)
val(l)
sccsfile(5)

1-4 Overview to the Source Code Control System

cdc(l)
edit (1)
rmdel (1)
sccshelp(l)
vc(l)

comb (1)
get(l)
sccs(l)
unget(l)
what(l)

Using SCCS 2

This chapter describes how to use SCCS. It describes some of the most commonly
used secs commands, such as adrnin, get, and delta, explains combined
SCCS commands, and also contains a quick reference of SCCS commands. The
specific topics discussed are:

• Creating SCCS files

• Getting files for compilation

• Modifying SCCS files (creating deltas)

• Restoring old versions

• Auditing changes

• Combining SCCS keywords

• Summary of SCCS commands

2.1 Creating SCCS Files
To put C language source and header files into SCCS format, you need to use the
admin and secs commands. For example, To set up a file named prog8. c under
SCCS in a directory called /project, here are the commands:

cd /projects
cp ~joe/prog.8c .
mkdir SCCS
secs admin -iprog8.c prog8.e

This example assumes the version of the prog8. c file being put under SCCS is in
user j o e's home directory.

If you have several files to place under SCCS, it might be easier for you to use a
simple csh script:

mkdir SCCS save
foreaeh i (prog[l-5] .c)
? secs admin -i$i $i
? mv $i save/$i
? end

This example shows how to place the files progl. c, prog2. c, prog3. c,
prog4. c, and prog5. c into the SCCS directory. As SCCS places the files into
the SCCS directory, it removes the files from the current directory and places them in
the directory save. Next, you should pull the files from the SCCS directory back
into the current directory. This is described in Section 2.2. When you are sure that
SCCS has correctly created the s-files, remove the directory save.

If you want to have ID keywords in the files, it is best to put them in before you
create the s-files. If you do not, admin prints the following message, informing you
that there are no ID keywords:

No id keywords (cm7)

2.2 Getting Files for Compilation
To get a copy of the latest version of a file, type the following command:

sccs get progl.c

When SCCS gets a file, it prints a message similar to the following:

1.1
87 lines

This message means that version 1.1 of the file was retrieved (or more accurately,
that the SID of the most recent delta applied was 1.1) and that the file contains 87
lines. The file progl. c is placed in your working directory. Furthermore, the
mode of the file is set to read-only to remind you that you are not supposed to make
changes to this copy of the file.

Note

This copy of the file should not be changed, because SCCS is unable to
merge the changes back into the s-file. If you do make changes, they
will not be under source control. Thus, the next time someone uses the
get command to get a copy of that file from SCCS, your changes will
be lost.

2.3 Modifying SCCS Files (Creating Deltas)
This section describes how to obtain a copy of an SCCS source file for editing and
how to merge the changes into the file.

2.3.1 Getting a Copy to Edit
To obtain a copy of source file to edit, use the following command, which gets a
copy of the file with read-write permissions:

sccs edit progl.c

This sccs command is equivalent to the get command with the -e flag, and
produces the same results. For example:

sccs get -e progl.c

The SCCS edit command prints the same messages that the SCCS get command
prints, with the following addition:

New delta 1.2

When you have a copy of the file that you want to edit, you can edit it using a
standard text editor. For example:

vi progl.c

2-2 Using SCCS

2.3.2 Merging the Changes Back into the s-file

When you have made the desired changes to a file, you can put your changes back
into the SCCS file using the delta command:

secs delta progl.c

SCCS then prompts for comments that it will store in the s-file:

Comments? (AD to end)

You can now enter one or more lines of text to describe the changes that you have
made and why. When you have finished entering your comments, press CTRL/D at
the beginning of a new line. secs will then print a series of messages similar to the
following:

1.2
5 inserted
3 deleted
84 unchanged

These messages indicate that delta 1.2 was created, and that SCCS inserted five lines
in the file, removed three lines, and left 84 lines unchanged. Changes to a line are
counted as a line deleted and a line inserted. SCCS then removes the changed file (in
the example, progl. c). You can obtain an updated copy of the file using the get
command.)

2.3.3 When to Make Deltas

It is probably not necessary to make a delta before every recompilation or test; if you
do, you tend to get a lot of deltas with comments such as:

Fixed compilation problem in previous delta

Fixed botch in 1.3

However, you should make a delta for each file before you install a module for
general use.

When files are out for edit, you should make all necessary changes and tests,
compiling and editing as often as necessary without making deltas. When you are
satisfied that you have a working version, make deltas for each file that is out for
edit, use the get command to retrieve updated copies, and then recompile all the
files.

2.3.4 Getting Information About SCCS Files
There are several SCCS commands that you can use to get specific information about
SCCS files. These are:

• SCCS info

• SCCS check

• sccs delta 'secs tell'

• secs what

Using SCCS 2-3

2.3.4.1 Using secs info - To find out what files are currently being edited and the names
of the users who have taken the files out for editing, type the following command:

secs info

2.3.4.2 Using secs check - The secs check command is nearly equivalent to the
info command:

secs check

The check command, however, prints no message if nothing is being edited, and
returns nonzero exit status if anything is being edited. You can use the check
command in an install entry in a makefile to abort the install if any of the files
are still out for edit.

2.3.4.3 Using secs delta 'secs tell' - If you know that all the files being edited should
have deltas made, you can use the following command line:

#secs delta 'secs tell'

The tell command is similar to the info command, except that only the names of
files being edite'd are printed, one per line.

All of these commands take a -b flag to ignore branches (alternate versions,
described in Chapter 3) and the -u flag to print only the names of files being edited
by you. The -u flag takes an optional user argument, which prints only the names of
files being edited by that user. For example, the following command prints a list of
files being edited by user john:

secs info -ujohn

2.3.4.4 Using secs what - To find out what version of a program is being run on your
system, use the following command line:

secs what progl.c /usr/bin/prog

The what command searches through the specified file and prints all strings it finds
that begin with @ (#) . This works on all types of files, including binary files and
libraries. For example, the command in the preceding example might result in the
following messages being printed:

progl.c:
progl.c 1.2 08/29/87

/usr/bin/prog:
progl.c 1.1 02/01/88

These results indicate that the source code in progl. c will not compile into the
same version as the existing binary file in /usr /bin/prog.

2.3.5 Inserting ID Keywords

The get command can insert ID keywords into your file and expand them
automatically. For example, consider a line such as the following:

static char Sccsid[] = "%W%\t%G%";

This would be replaced with something like this:

static char Sccsid[] = "@(#)progl.c 1.2 08/29/80";

This tells you the name and version of the source file and the time the delta was

2-4 Using SCCS

created. The string @ (#) is a special string that signals the beginning of an SCCS
ID keyword.

You can insert ID keywords anywhere, including in comments, but ID keywords that
are compiled into the object module are especially useful, because they allow you to
determine what version of the object is being run, as well as the source.

When you put ID keywords into header files, it is important to assign them to
different variables. For example, you might include the following line in the file
access. h:

static char AccessSid [] = "%W% %G%";

You might also include the following line in the file opsys. h:

static char OpsysSid[] = "%W% %G%";

Note

If you had assigned the keywords to the same variables, you would have
received errors when you compiled the program, because Secs Id would
be redefined. The problem with this is that if the header file is included
by many modules that are loaded together, the version number of that
header file is included in the object module many times. You may find it
more convenient to include ID keywords in comments in header files.

2.3.6 Creating New Releases
To create a new release of a program, you can specify the release number you want
to create in the edit command line. For example, the following command causes
the next delta to be in release 2, that is, the next delta will be numbered 2.1:

secs edit -r2 progl.c

Thus, future deltas will automatically be in release 2. To change the release number
of an entire system, use the following command:

secs edit -r2 secs

2.4 Restoring Old Versions
This section describes how to revert to and restore different versions of an SCCS file
and how to delete SCCS deltas.

2.4.1 Reverting to Old Versions
Suppose that after delta 1.2 was stable, you made and released delta 1.3. But assume
this delta introduced a bug, so you made delta 1.4 to correct it. But delta 1.4 still
contained bugs, and you decided you wanted to go back to the old version (delta 1.2).
You could revert to delta 1.2 by specifying the SID with the get command:

secs get -rl.2 progl.c

This creates a version of progl. c that is delta 1.2, which you can then reinstall so
that work can proceed.

In some cases you might not know the SID of the delta that you want. However, you
can revert to the version of the program that was running as of a certain date by using
the -c (cutoff) flag. For example, the following command retrieves whatever version

Using secs 2-s

was current as of July 22, 1988 at 12:00 noon:

secs get -c880722120000 progl.c

You can strip off trailing components (which then default to their highest legal
value), and insert punctuation in the obvious places. For example, the date in the
example could also be specified as follows:

secs get -c"88/07/22 12:00:00" progl.c

2.4.2 Selectively Deleting Old Deltas

Suppose that you later decided that you liked the changes in delta 1.4, but that delta
1.3 should be removed. You could do this with the SCCS rrnde l command:

secs edit rmdel 1.3 progl.c

When delta 1.5 is made, it will include the changes made in delta 1.4, but will
exclude the changes made in delta 1.3. You can also exclude a range of deltas using
a dash. For example, if you want to get rid of deltas 1.3 and 1.4, you can use the
following command, which excludes all deltas from 1.3 to 1.4:

secs edit rmdel 1.3-1.4 progl.c

Alternatively, you can use the following command to exclude a range of deltas from
1.3 to the current highest delta in release 1:

secs edit rmdel 1.3-1 progl.c

Because you can exclude each delta at will, it is most useful to put each semantically
distinct change into its own delta.

2.5 Auditing Changes
This section describes several SCCS commands that you can use to monitor changes
made to the files. These commands include:

• The pr s command - print delta comments

• The get command options - identify changes by printing comments

• The di ff s and sccsdiff commands - identify changes

2.5.1 Printing delta Comments

The pr s command enables you to print comments associated with the deltas of an
SCCS file. To print delta comments for the progl. c file, type the following
command:

secs prs progl.c

This command produces a report for each delta of the SID, including the time and
date of creation, the user who created the delta, the number of lines inserted, deleted,
and unchanged, and the comments associated with the delta. For example, the output
of the command in the example might be as follows:

D 1.288/08/29 12:35:31
removed "-q" option

bill 2 1 00005/00003/00084

D 1.187/02/05 00:19:31 eric 1 0 00087/00000/00000
date and time created 86/06/10 00:19:31 by eric

2-6 Using SCCS

2.5.2 Identifying Changes by Printing Comments
To find out why someone inserted lines in a file for example progl. c), you can get
a copy of the file that has each line preceded by the SID that created it, by typing the
following command:

secs get -m progl.c

You can then find out what a particular delta did by printing the comments the using
the pr s command.

To find out what lines are associated with a particular delta (for example, 1.3), use
the following command:

#secs get -m -p progl.c I grep 'Al.3'

The -p flag causes SCCS to send the generated source to the standard output rather
than to a file.

2.5.3 Identifying the Changes
When you are editing a file such as progl. c, you can find out what changes you
have made using the following command:

secs diffs progl.c

You can use most of the flags described in the sccsdiff command. To pass the -c
flag, use -C .

To compare two versions that are in different deltas, use the sccsdiff command.
For example, to see the differences between delta 1.3 and delta 1.6 of the file
progl. c, type the following command:

secs sccsdiff -rl.3 -rl.6 progl.c

2.6 Combining SCCS keywords
There are several SCCS command sequences that many people use frequently. SCCS
provides special compound commands and options to make it easier for you to
execute these sequences. These commands are:

• secs delget

• secs fix

• secs unedi t

• secs -d

These commands and their options are described in the following sections.

2.6.1 Using the delget Command
You often need to make a delta to some file. for example progl. c, and then get
that file. You can type the following command line to do this quickly:

secs delget progl.c

This single command produces the same results as do the following two commands:

secs delta progl.c
secs get progl.c

Using SCCS 2-7

The deledi t command is equivalent to delget except that you use the edit
command instead of the get command.

2.6.2 Using the fix Command

Frequently, there are small bugs in deltas, such as compilation errors, for which there
is no reason to maintain an audit trail. To replace a delta in a file, type the following
command:

secs fix -rl.4 progl.c

This command gets a copy of delta 1.4 of the file progl. c for you to edit and then
deletes delta 1.4 from the SCCS file. When you do perform a delta of progl. c, it
will become delta 1.4 again.

Note

You must specify the - r flag, and the specified delta must be a leaf
delta. There should be no deltas created subsequent to the creation of
that delta. Also, the fix command does not work on ans-file with no
deltas (-r 1.1).

2.6.3 Removing Edit Reservations from a File

After you have edited a file such as progl . c, if you find that you do not want to
keep the edits, you can retain the previous version with this command:

secs unedit progl.c

2.6.4 Using the -d Flag
If your files are in a working directory that is not the same directory that contains the
SCCS files, you may be able to reduce the number of keystrokes by using a shell
alias. For example, if you are in the csh shell, you can type the following command
to create an alias named sys s cc s:

alias syssccs secs -d/usr/src

Once set, that alias allows you to issue commands such as the following:

syssccs edit cmd/who.c

This command looks for the file /usr I src/ cmd/ SCCS/who. c. The file who. c
is always created in your current directory, regardless of the value of the -dfiag.

2.7 SCCS Command Summary
You should always use the following commands as options to the s cc s c ornman d .
This list is not exhaustive. For more options, see the ULTRIX Reference Pages.

get Get files for compilation (not for editing). ID keywords are expanded.

-rSID Version to get.

-p Send to standard output rather than to the actual file.

-k Do not expand id keywords.

2-8 Using SCCS

-ilist

-xlist

-m

-<;date

List of deltas to include.

List of deltas to exclude.

Precede each line with SID of creating delta.

Do not apply any deltas created after date.

edit Get files for editing. ID keywords are not expanded. Should be matched
with a de 1 ta command.

delta

unedit

prs

info

check

tell

clean

what

admin

-rSID

-b

-ilist

Same as get. If SID specifies a release that does not yet
exist, the highest numbered delta is retrieved and the new
delta is numbered with SID.

Create a branch.

Same as get.

-xlist Same as get.

Merge a file that is out for edit back into the s-file. Collect comments
about why this delta was made.

Remove a file that has been edited previously without merging the
changes into the s-file.

Produce a report of changes.

-t Print the descriptive text.

-e Print (nearly) everything.

Give a list of all files being edited.

-b Ignore branches.

-u[user] Ignore files not being edited by user.

Same as info, except that nothing is printed if nothing is being edited
and exit status is returned.

Same as info, except that one line is produced per file being edited
containing only the file name.

Remove all files that can be regenerated from the s-file.

Find and print ID keywords.

Create or set parameters on s-files.

-ifile

-z

-fjlag

Create, using file as the initial contents.

Rebuild the checksum in case the file has been trashed.

Tum on the flag.

Useful flags that can be used with the -f flag are:

b Allow branches to be made using the -b flag
with the edit command.

dSID Default SID to be used with the get or edit
commands.

i Cause No id keywords error message to be
a fatal error rather than a warning.

Using secs 2-9

fix

delget

deledit

2-10 Using SCCS

-dflag

-tfile

t The module type. The value of this flag
replaces the %Y% keyword.

Tum off (delete) the flag.

Replace the descriptive text in the s-file with the contents of
file. If file is omitted, the text is deleted. Useful for
storing documentation or design and implementation
documents to ensure they get distributed with the s-file.

Remove a delta and reedit it.

Do a de 1 ta command followed by a get command.

Do a delta command followed by an edit command.

Using SCCS on a Project 3

This chapter describes how to use SCCS while working on a large project with
several team members. The topics discussed are:

• Setting up an SCCS directory for a Project

• Deciding when to edit a file

• Recovering a corrupted edit file

• Using SCCS with the ad.min command

• Maintaining different versions (branches)

• Using SCCS with the make command

3.1 Setting Up an SCCS Directory for a Project
This section describes the preferred method for setting up an SCCS directory and
populating it with files for use on a project-wide basis. By following the steps
outlined in this section, you can eliminate the need for superuser intervention in
maintaining the project files.

A good approach for placing the files of any project under source control is first to
assign a project librarian the responsibility of maintaining those files. The project
librarian can then set up and maintain the SCCS directories and files.

It is wise to set up a generic account for the project librarian. By doing so, any user
who has the password can act as the project librarian. This feature allows the project
librarian duties to be passed from one individual to another.

The following example makes these assumptions:

• The project files are to be placed under source control in the directory
Ip r o j e ct, which has already been created and which has read/write
permissions for the members of the project

• The project librarian has the account projlib and owns the /project
directory

• The original versions of the project files are in user j oe 's home directory

With the preceding assumptions made, here are the commands the project librarian
should take to set up the SCCS directory for the project:

cd /project
mkdir secs
mkdir bin
chmod 775 SCCS
chmod 775 bin
cp /usr/ucb/sccs /project/bin/sccs.proj
chmod 4555 /project/bin/sccs.proj
ls -lg bin

total 50
-r-sr-xr-x 1 projlib staff
cp ~joe/file /project
bin/sccs.proj create file
file:
No id keywords (cm7)
1.1
124 lines
No id keywords (cm7)
ls -al *

5 -rw-r--r-- 1 projlib
5 -r--r--r-- 1 projlib

SCCS:
total 8

1 drwxr-xr-x
1 drwxr-xr-x
5 -r--r--r--

bin:
total 52

1 drwxrwxr-x
1 drwxr-xr-x

50 -r-sr-xr-x
rm ,file

2 projlib
4 projlib
1 projlib

2 projlib
4 projlib
1 projlib

51200 Aug 23 11:24 sccs.proj

4442 Aug 25 16:12 ,file
4442 Aug 25 16:13 file

512 Aug 25 16:13 .
512 Aug 25 16:13

4583 Aug 25 16:13 s.file

512 Aug 23 11:31 .
512 Aug 25 16:13

51200 Aug 23 11:24 sccs.proj

The previous example shows how to set up a file named f i 1 e in the SCCS directory
/project. The create option to the secs command (secs .proj in the
example) does the following:

1. Creates an s. file in the SCCS directory

2. Prepends a comma(,) to the file being placed under source control in the current
directory (you should remove this once you are satisfied that the file has been
correctly placed under SCCS)

3. Performs a get of the file being placed under source control

The project librarian owns all the s. files in the SCCS directory regardless of who
created them. Therefore, the project librarian can manipulate the s. files at any time
without needing to be the superuser.

Be sure that you use the modified sccs command from now on. Otherwise,
problems can occur. In this example, you should always use the command
/projects/bin/sccs.proj.

Note

If users use the I us r I u cb I s cc s command instead of the modified
version-- /project/bin/secs .proj in the example-- to place files
in SCCS, the command will fail. To eliminate the possibility of
forgetting to use the new s cc s command over the one distributed with
the system, rename the new version sccs in the project directory and
then be sure the project directory is listed first in your PA TH. In the
preceding example, you can rename /project/bin/secs .proj to
/project/bin/secs and then be sure to list the /project/bin
directory first in the PATH variable of your environment file (usually
. login or . profile).

3-2 Using SCCS on a Project

3.2 Deciding when to Edit a File
SCCS prevents people from modifying a file at the same time by locking an s-file
while it is out of SCCS for edit. As a result, you should not reserve files for editing
unless they are actually being edited at the time, because this prevents other people
on the project from making necessary changes. For example, the following might be
an appropriate way to proceed:

secs edit a.c g.c t.c
vi a. c g. c t. c (test the experimental version)
secs delget a.c g.c t.c
secs info
Nothing being edited
make install

When you use the s cc s info command as shown in the example, SCCS prints the
message Nothing being edited to confirm that the latest changes have been
merged into the SCCS s-file.

As a general rule, you should use the delta command to merge all changes to
source files before you install a program for general use. Doing this ensures that it is
possible to restore any version in use at any time.

3.3 Recovering a Corrupted Edit File
Sometimes you may find that you have corrupted or destroyed a file that you were
trying to edit. Unfortunately, you cannot just remove the file and use the edit
command again because, SCCS keeps track of the fact that someone is editing that
file and will not let you take it out for editing again. Neither can you get a copy of
the file using the get command, because that would expand the ID keywords.
Instead, type the following command:

secs get -k prog.c

This command gets a copy of the file prog. c without expanding the ID keywords.
Therefore you can use the delta command with the resulting file.

Alternately, you can use the unedi t command followed by the edit command.

In particularly bad circumstances, the SCCS file itself may become corrupted. The
most common way this happens is that someone edits the file incorrectly. Because
SCCS keeps a checksum, you get errors every time you read the file. To fix this
checksum, type the following command:

secs admin -z prog.c

This command fixs the clears the checksum for the file prog. c.

3.4 Using SCCS with the admin Command
There are a number of parameters that you can set using the admin command. The
most useful of these are flags, which you can by using the - f flag. For example, the
following command sets the -d flag to the value 1 for the file prog. c:

secs admin -fdl prog.c

You can delete the -d flag for the file prog. c by typing the following command:

secs admin -dd prog.c

The following are the most often used flags:

Using SCCS on a Project 3-3

b Allow branches to be made using the -b flag with the edit command.

dSID Default SID to be used on a get or edit command. If this is just a
release number, this flag constrains the version to a particular release
only.

i Give a fatal error if there are no ID keywords in a file. This is useful to
guarantee that a version of the file does not get merged into an s-file that
has the ID keywords inserted as constants instead of internal forms.

y The type of the module. Actually, SCCS does not use the value of this
flag except that it replaces the % Y % keyword.

You can use the -tfile flag to store descriptive text from file. This descriptive
text might be the documentation or a design and implementation document. Using
the -t flag ensures that if you send the SCCS file, you will also send the
documentation. If you omit file, the descriptive text is deleted. To see the
descriptive text, use the prs -t. command.

You can safely use the ad.min command on files any number of times. You do not
need to first reserve the file the using the get or edit commands before you can
use the ad.min command.

3.5 Maintaining Different Versions (Branches)
Sometimes it is convenient to maintain a version of a program for an extended period
while normal maintenance continues on the version in production. You can do this
by creating a branch. Normally deltas continue in a straight line, each depending on
the delta before. Creating a branch forks off a version of the program.

You can create branches using the ad.min command. For example:

sccs ad.min -fb prog.c

You can specify the - fb flags when you first create the SCCS file.

3.5.1 Creating a Branch

To create a branch for the file prog. c, type the following command:

sccs edit -b prog.c

This creates a branch with (for example) SID 1.5.1.1. The deltas for this version are
numbered 1.5.1.n

3.5.2 Getting Files from a Branch

Deltas in a branch are usually not included when you use the get command. To get
these versions for the file prog. c, type the following command:

secs get -rl.5.1 prog.c

3.5.3 Merging a Branch Back into the Main Trunk

If you are working on multiple projects, it is likely that you will have to merge
branches at some point. For example, if you are currently working on the prog. c
file in a 1.5 branch and someone has created a 1.6 delta that must also contain your
work, you can merge the two deltas with the following commands:

3-4 Using SCCS on a Project

secs edit -il.5.1.1-1.5.1 prog.c
secs delta prog.c

If some of the changes conflict, SCCS prints the following error message:

inex conflicts at line #

You should examine the generated result carefully, since SCCS includes all of the
conflicting information in the file. You should then edit the file and remove the
unwanted information from the lines identified in the error message.

The following example shows how to merge the file prog. c into a branch. You
might use this technique to maintain a different version of a program:

1. Create a directory to contain the new version. In this example, the original
directory is xyz and the new directory is newxyz:

mkdir .. /newxyz
cd .. I newxyz

2. Edit a copy of the program on a branch:

#secs -d .. /xyz edit prog.c

3. When using the old version, be sure to use the -b flag to the info, check,
tell, and clean commands to avoid confusion. For example, if your
working directory is xyz, type the following command:

secs info -b

4. To save a copy of the program (still on the branch) back in the s-file, type the
following command, which performs a delta on the branch and gets the file out
for edit for you:

#secs -d .. /xyz deledit prog.c

5. When the experiment is complete, merge the file back into the s-file using the
delta command:

#secs -d .. /xyz delta prog.c

At this point you must decide whether this version should be merged back into the
trunk (the default version), which may have undergone changes. If so, you can
merge it in using the - i flag with the edit command, as previous! y described.

3.5.4 Use Branches Sparingly
It is not unusual to have several concurrent development streams in progress at a
given time. However, you should use discretion when creating multiple branches.
Keep in mind that the more branches there are, the more complex the SCCS structure
becomes. With too many branches, tracking the files becomes very complicated.

Using SCCS on a Project 3-5

3.6 Using SCCS with the make Command
SCCS and the make command can work together. This section contains sample
makefiles for some common applications.

There are a few basic entries that every makefile should have. These are:

a. out (or some output file that the makefile generates)

This entry regenerates whatever this makefile is supposed to regenerate.
If the makefile regenerates many things, this should be called a 11 and
should in tum have dependencies on everything the makefile can
generate.

install Moves the objects to the final directory, changing file modes and
converting archive files (using the ranlib command) as necessary.

sources Creates all the source files from SCCS files.

clean Removes all unnecessary files from the directory.

print Prints the contents of the directory.

The clean entry removes any files that you can regenerate from the SCCS files. It
is wise to to keep the source files available at all times and the only time that you
should remove them is when the directory is being archived in SCCS. To remove
the files, type the following command:

sccs clean

This command line removes all the files for which an s-file exists, but which is not
being edited.

The following sections provide examples to help you understand how to use SCCS.
They are only partial and may omit some of the basic entries previously listed when
they seem obvious.

3.6.1 Maintaining Single Programs

Frequently there are directories with several largely unrelated programs (such as
simple commands). You can put these programs into a single makefile, for example:

LDFLAGS= -s

prag: prag.a
$(CC) $(LDFLAGS) -a prag prag.a

prag.a: prag.c prag.h

example: example.a
$(CC) $(LDFLAGS) -a example example.a

example.a: example.c

.DEFAULT:
SCCS get $<

As shown in the previous example, the . DEFAULT rule is called every time
something is needed that does not exist and no other rule exists to make it. The
explicit dependency of the . o file on the . c file is important. The following
makefile shows another way of accomplishing the same task:

3-6 Using SCCS on a Project

SRCS=prog.c prog.h example.c

LDFLAGS= -i -s

prog: prog.o
$(CC) $(LDFLAGS) -o prog prog.o

prog.o: prog.h

example: example.o
$(CC) $(LDFLAGS) -o example example.a

sources: $(SRCS)
$ (SRCS):

SCCS get $@

There are a number of advantages to this approach:

• The explicit dependencies of the . o on the . c files are not needed.

• There is an entry called sources, so if you want to get all the sources you can
do so by typing:

make sources

• The makefile is more predictable, because it will not try to get files that do not
exist.

3.6.2 Maintaining a Library
It is best to update libraries that are largely static using explicit commands, because
the make command does not know about updating them properly. However, you can
handle libraries that are in the process of being developed quite adequately. The
problem is that the object files (. o) have to be kept both inside and outside the
library. For example, here is a makefile:

Using SCCS on a Project 3-7

configuration information
OBJS=a.o b.o c.o d.o
SRCS=a.c b.c c.c d.s x.h y.h z.h
TARG=/usr/lib

programs
GET= secs get
REL=
AR= -ar
RANLIB= ran lib

lib.a: $ (OBJS)
$(AR) rvu lib.a $(0BJS)
$ (RANLIB) lib. a

install: lib.a
secs check
cp lib.a $(TARG)/lib.a
$(RANLIB) $(TARG)/lib.a

sources: $(SRCS)
$ (SRCS):

$(GET) $(REL) $@

print: sources
pr *.h *·[cs]

clean:
rm -f *.o
rm -f core a.out $(LIB)

With this example makefile, you can use the $ (REL) argument in the line
containing the get command to get old versions easily. For example:

make b.o REL=-rl.3

The install entry includes the line sccs check before anything else. This
guarantees that all the s-files are up-to-date (none of them is being edited) and will
abort the make command if this condition is not met.

3.6.3 Maintaining a Large Program

The following example is a simple makefile that uses the sccsget command to
obtain the source files for the recompilation process.

OBJS= a.o b.o c.o d.o
SRCS= a.c b.c c.y d.s x.h y.h z.h

GET= secs get
REL=

a.out: $(0BJS)
$(CC) $(LDFLAGS) $(0BJS) $(LIBS)

sources: $(SRCS)
$(SRCS):

$(GET) $(REL) $@

(The print and clean entries are identical to those in the previous example.) This
makefile requires that copies of the source and object files be kept during
development. It is also wise to include lines of the following form so that the
modules will be recompiled if any header files change:

3-8 Using SCCS on a Project

a.o: x.h y.h
b.o: z .h
c.o: x.h y.h z.h
z .h: x.h

Because the make command does not do transitive closure on dependencies, you
may find lines like the following in some makefiles:

z.h: x.h
touch z.h

This would be used in cases where the file z . h contains a line like the following in
order to bring the modification date of z . h in line with the modification date of
x.h:

#include "x.h"

If you have a makefile such as this, you can remove the touch command. You can
achieve the equivalent effect by doing an automatic get on z. h.

See make(l) in the ULTRIX Reference Pages for further information about the make
command and makefiles.

Using SCCS on a Project 3-9

A
admin command (secs), 3-3e

flags, 3-3

using, 3-3 to 3-4

c
check command (secs)

info command and, 2-4

checksum error

secs and, 3-3

clean command (secs), 3-6e

create command (secs)

function, 3-2

s. file and, 3-2

D

deledit command (secs), 3-5e

using, 2-7

delget command (secs)

using, 2-7

delta

creating, 2-2 to 2-5

defined, 1-2

deleting old, 2-6

deleting range, 2-6

printing comments, 2-6

replacing, 2-8

reporting activity, 2-6

delta command (secs), 3-5e

using, 2-3

when to use, 2-3

E
edit command (secs)

F

file

See also unedit command

get command and, 2-2n

using, 2-2

Index

controlling for multiperson project, 3-1

fix command (secs)

using, 2-8

G
get command, 3-4e

editing the file, 2-2n

get command (secs), 3-3e

getting latest file version, 2-2

ID keyword

compiling into object modules, 2-5

defined, 1-3

inserting, 2-4

putting in header files, 2-5

reference list, 1-3

variables, 2-5n

info command (secs), 3-5e

using, 2-4

L

library

maintaining, 3-7

M

make command, 3-7e

makefile, 3-6 e, 3-7 e, 3-8 e, 3-9e

p

program

maintaining large, 3-8

maintaining one, 3-6

project librarian

responsibility, 3-1

prs command (secs)

using, 2-6

R

rmdel command (secs)

using, 2-6

s
secs command

modified version, 3-2

using instead of modified, 3-2n

secs directory

setting up for project, 3-1 to 3-2

secs file

auditing changes, 2-6 to 2-7

checking files in edit, 2-4

comparing, 2-7

creating, 2-1, 3-4

defined, 1-2

editing, 2-2

getting, 2-2

getting branch, 3-4

getting by date, 2-5

getting by SID, 2-5

getting version number, 2-4

identifying changes, 2-7

lndex-2

SCCS file (cont.)

maintaining branches, 3-4 to 3-5

merging a branch, 3-4

merging changes, 2-3

operations, 1-1

restoring old version, 2-5, 2-6

specifying release number, 2-5

SCCS identification string

See SID

secs preprocessor, 1-1

commands, 2-8 to 2-10

for multiperson project, 3-1

introduction, 1-1

restoring lost file, 3-3

shorthand notation, 2-7

terms, 1-2 to 1-3

using shell alias, 2-8

using with make command, 3-6 to 3-9

sccsdiff command

comparing two deltas, 2-7

s-file

See SCCS file

SID

defined, 1-3

T

tell command (secs)

u

info command and, 2-4

using, 2-4

unedit command (secs)

using, 2-8

w
what command (secs)

using, 2-4

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-baud modem from
anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the Electronic Store, call
800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal *

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital Subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - WMO/E15
or
Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

* For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments ULTRIX
Guide to the Source Code ControLSystem .

AA-ME848-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor
Accuracy (software works as manual says) D D D D
Completeness (enough information) D D D D
Clarity (easy to understand) D D D D
Organization (structure of suqject matter) D D D D
Figures (useful) D D D D
Examples (useful) D D D D
Index (ability to find topic) D D D D
Page layout (easy to find information) D D D D

What would you like to see more/less of?

What do you like best about this manual?

What do you like least about this manual?

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using? ------

Name{fitle ---------------------- Dept. ---------

Company ---------------------------------- Date --------

Mailing Address ---

Email ------------- Phone

- - - - - - · Do Not Tear - Fold Here and Tape

IJDIDDID™
-----------------------------[[]-[]----------::~::E __ _

NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-2/Z04
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

1111111tlhII1111II1111ItiI1I11Iti11I1d1I111I1II11 I

- - - - - - - · Do Not Tear - Fold Here · -

Cut
Along
Dotted
Line

