

Reference Pages Section 5: File Formats

Order Number: AA-L Y18B-TE

June 1990

Product Version: UL TRIX Version 4.0 or higher

ULTRIX

This manual describes the format of system files and how the files are used on both RISe and
VAX platforms.

digital equipment corporation
maynard, massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause of DFARS 252.227-7013.

© Digital Equipment Corporation 1984, 1986, 1988, 1990
All rights reserved.

Portions of the information herein are derived from copyrighted material as permittea under license agreements with
AT&T and the Regents of the University of California. © AT&T 1979, 1984. All Rights Reserved.

Portions of the information herein are derived from copyrighted material as permitted under a license agreement with
Sun MicroSystems, Inc. © Sun MicroSystems, Inc, 1985. All Rights Reserved.

Portions of this document © Massachusetts Institute of Technology, Cambridge, Massachusetts, 1984, 1985, 1986,
1988.

The information in this document is subject to change without notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital or its
affiliated companies.

The following are trademarks of Digital Equipment Corporation:

IlimaDID
CDA
DDIF
DDIS
DEC
DECnet
DEC station

DECUS
DECwindows
DTIF
MASSBUS
MicroVAX
Q-bus
ULTRIX
UL TRIX Mail Connection

ULTRIX Worksystem Software
UNIBUS
VAX
VAXstation
VMS
VMS/UL TRIX Connection
VT
XUI

Ethernet is a registered trademark of Xerox Corporation.

Network File System and NFS are trademarks of Sun Microsystems, Inc.

POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers.

System V is a registered trademark of AT&T.

Teletype is a registered trademark of AT&T in the USA and other countries.

UNIX is a registered trademark of AT&T in the USA and other countries.

About Reference Pages

The ULTRIX Reference Pages describe commands, system calls, routines, file
formats, and special files for RISe and V AX platforms.

Sections
The reference pages are divided into eight sections according to topic. Within each
section, the reference pages are organized alphabetically by title, except Section 3,
which is divided into subsections. Each section and most subsections have an
introductory reference page called intra that describes the organization and
anything unique to that section. .

Some reference pages carry a one- to three-letter suffix after the section number, for
example, scan(1mh). The suffix indicates that there is a "family" of reference
pages for that utility or feature. The Section 3 subsections all use suffixes and other
sections may also have suffixes.

Following are the sections that make up the ULTRIX Reference Pages.

Section 1: Commands

This section describes commands that are available to all ULTRIX users. Section 1 is
split between two binders. The first binder contains reference pages for titles that fall
between A and L. The second binder contains reference pages for titles that fall
between M and Z.

Section 2: System Calls

This section defines system calls (entries into the UL TRIX kernel) that are used by
all programmers. The introduction to Section 2, intro(2), lists error numbers with
brief descriptions of their meanings. The introduction also defines many of the terms
used in this section.

Section 3: Routines

This section describes the routines available in UL TRIX libraries. Routines are
sometimes referred to as subroutines or functions.

Section 4: Special Files

This section describes special files, related device driver functions, databases, and
network support.

Section 5: File Formats

This section describes the fonnat of system files and how the files are used. The files
described include assembler and link editor output, system accounting, and file
system fonnats.

Section 6: Games

The reference pages in this section describe the games that are available in the
unsupported software subset. The reference pages for games are in the document
Reference Pages for Unsupported Software.

Section 7: Macro Packages and Conventions

This section contains miscellaneous infonnation, including ASCII character codes,
mail addressing fonnats, text fonnatting macros, and a description of the root file
system.

Section 8: Maintenance

This section describes commands for system operation and maintenance.

Platform Labels
The ULTRIX Reference Pages contain entries for both RISC and V AX platfonns.
Pages that have no platfonn label beside the title apply to both platfonns. Reference
pages that apply only to RISC platfonns have a "RISC" label beside the title and the
VAX-only reference pages that apply only to VAX platfonns are likewise labeled
with "V AX. " If each platfonn has the same command, system call, routine, file
fonnat, or special file, but functions differently on the different platfonns, both
reference pages are included, with the RISe page first.

Reference Page Format
Each reference page follows the same general fonnat. Common to all reference pages
is a title consisting of the name of a command ora descriptive title, followed by a
section number; for example, da t e(1). This title is used throughout the
documentation set.

The headings in each reference page provide specific infonnation. The standard
headings are:

Name

Syntax

Description

Options

Restrictions

Examples

iv About Reference Pages

Provides the name of the entry and gives a short description.

Describes the command syntax or the routine definition. Section 5
reference pages do not use the Syntax heading.

Provides a detailed description of the entry's features, usage, and
syntax variations.

Describes the command-line options.

Describes limitations or restrictions on the use of a command or
routine.

Provides examples of how a command or routine is used.

Return Values

Diagnostics

Files

Environment

See Also

Conventions

Describes the values returned by a system call or routine. Used in
Sections 2 and 3 only.

Describes diagnostic and error messages that can appear.

Lists related files that are either a part of the command or used
during execution.

Describes the operation of the system call or routine when
compiled in the POSIX and SYSTEM V environments. If the
environment has no effect on the operation, this heading is not
used. Used in Sections 2 and 3 only.

Lists related reference pages and documents in the ULTRIX
documentation set.

The following documentation conventions are used in the reference pages.

%

user input

The default user prompt is your system name followed by a right
angle bracket. In this manual, a percent sign (%) is used to
represent this prompt.

A number sign is the default superuser prompt.

This bold typeface is used in interactive examples to indicate
typed user input.

system output This typeface is used in text to indicate the exact name of a
command, routine, partition, pathname, directory, or file. This
typeface is also used in interactive examples to indicate system
output and in code examples and other screen displays.

UPPERCASE
lowercase

rlogin

filename

[]

{ I }

The ULTRIX system differentiates between lowercase and
uppercase characters. Literal strings that appear in text,
examples, syntax descriptions, and function definitions must be
typed exactly as shown.

This typeface is used for command names in the Syntax portion
of the reference page to indicate that the command is entered
exactly as shown. Options for commands are shown in bold
wherever they appear.

In examples, syntax descriptions, and routine definitions, italics
are used to indicate variable values. In text, italics are used to
give references to other documents.

In syntax descriptions and routine definitions, brackets indicate
items that are optional.

In syntax descriptions and routine definitions, braces enclose lists
from which one item must be chosen. Vertical bars are used to
separate items.

About Reference Pages v

cat(l)

In syntax descriptions and routine definitions, a horizontal ellipsis
indicates that the preceding item can be repeated one or more
times.

A vertical ellipsis indicates that a portion of an example that
would normally be present is not shown.

Cross-references to the ULTRIX Reference Pages include the
appropriate section number in parentheses. For example, a
reference to cat (1) indicates that you can find the material on the
cat command in Section 1 of the reference pages.

Online Reference Pages
The ULTRIX reference pages are available online if installed by your system
administrator. The man command is used to display the reference pages as follows:

To display the ls(l) reference page:

% man ls

To display the passwd(1) reference page:

% man passwd

To display the pas swd(5) reference page:

% man 5 passwd

To display the Name lines of all reference pages that contain the word "passwd":

% man -k passwd

To display the introductory reference page for the family of 3xti reference pages:

% man 3xti intro

Users on ULTRIX workstations can display the reference pages using the
unsupported xman utility if installed. See the xman(1X) reference page for details. J

Reference Pages for Unsupported Software
The reference pages for the optionally installed, unsupported UL TRIX software are in
the document Reference Pages for Unsupported Software.

vi About Reference Pages

intro (5)

Name
intro - introduction to file formats

Description
This section describes the formats of various include files, program output files, and
system files.

File Formats 5-1

Rise a.out(5)

Name
a.out - assembler and link: editor output

Syntax
#include <a.out.h>

Description
The a. out file contains the output from the assembler, as, and the link: editor,
Id. If errors and unresolved references do not exist, both programs make a. out
executable. When submitted to the debugger, the a. out file provides symbolic
information.

The RISC compilers and UL TRIX compilers use a file format that is similar to
standard AT&T System V COFF (common object file format).

The RISC File Header definition is based on the AT&T System V header file
filehdr.h with the following changes (also see fi lehdr(5»:

• The symbol table file pointer, f_symptr, and the number of symbol table
entries, f nsyms, specify the file pointer and the size of the Symbolic Header,
respecti vely.

• All tables that specify symbolic information have their file pointers and number
of entries in the Symbolic Header.

The Optional Header definition uses the same format as the System V header file,
aouthdr.h, (the standard (pre-COFF) UNIX system a.out header) except the following
fields have been added: bss_start, gprmask, cprmask, and gp _value.

The Section Header definition has the same format as the System V header file,
scnhdr.h, except the line number fields (s _lnnoptr and s _ nlnno) are used for gp tables
(see scnhdr(5».

The RISC relocation information definition is similar to that in Berkeley 4.3 UNIX,
which has local relocation types (see reloc(5».

The RISC file format is as follows:

• File Header

• Optional Header

• Section Headers

• Section Data - Includes text, read-only data, large data, 8- and 4-byte literal
pools, small data, small bss (0 size), and large bss (0 size).

• Section Relocation Information - Includes information for text, read-only
data, large data, 8- and 4-byte literal pools, and small data.

• Gp Tables - Missing if relocation information is not saved.

• Symbolic Header - Missing if fully stripped.

• Line Numbers - Created only if debugging is on and missing if stripped of
nonglobals or fully stripped.

• Procedure Descriptor Table - Missing if fully stripped.

5-2 File Formats

EI.out (5)

• Local Symbols - Missing if stripped of nonglobals or if fully stripped.

• Optimization Symbols - Created only if debugging is on and missing if
stripped of nonglobals or fully stripped.

• Auxiliary Symbols - Created only if debugging is on and missing if stripped
of nonglobals or fully stripped.

• Local Strings - Missing if stripped of nonglobals or if fully stripped.

• External Strings - Missing if fully stripped.

• Relative File Descriptors - Missing if stripped of nonglobals or if fully
stripped.

• File Descriptors - Missing if stripped of nonglobals or if fully stripped.

• External Symbols - Missing if fully stripped.

See Also
as(1), Id(1), nm(1), dbx(1), strip(1), filehdr(5), scnhdr(5), reloc(5), syms(5),
linenum(5).

File Formats 5-3

Rise

VAX a.out(5)

Name
a.out - assembler and link editor output

Syntax
#include <a.out.h>

Description
The a. out file is the output file of the assembler as(l) and the link editor Id(l).
Both programs make a. out executable if there were no errors and no unresolved
external references. Layout information as given in the include file for the VAX is:

/*
* Header prepended to each a.out file.
*/
struct exec {

unsigned short a_magic; /* magic number */
unsigned short a_mode; /* mode parameter */
unsigned a_text; /* size of text segment */
unsigned a_data; /* size of initialized data */
unsigned a_bss; /* size of uninitialized data */
unsigned a_syms; /* size of symbol table */
unsigned a_entry; /* entry point */
unsigned a_trsizei· /* size of text relocation * /
unsigned a_drsizei /* size of data relocation */

} ;

#define OMAGIC
#define NMAGIC
#define ZMAGIC

0407
0410
0413

/* old impure format */
/* read-only text */
/* demand load format */

/*
* Compatibility modes
*/

#define A_BSD 0
#define A_SYSV 1
#define A_POSIX 2

/*

/* All pre V2.4 a.outs and BSD */
/* System V compliant process */
/* IEEE P10D3.1 compliant process */

* Macros which take exec structures as arguments and tell whether
* the file has a reasonable magic number or offsets

to text I symbols I strings.
*/
#define N_BADMAG(x) \

((x) . a_magic) !=OMAGIC && (x) . a_magic) !=NMAGIC &&
«x) . a_magic) !=ZMAGIC)

#defrne N_TXTOFF(x) \
(x).a magic==ZMAGIC ? 1024 : sizeof (struct exec»

#define N_SYMOFF(x) \
(N TXTOFF(x) + (x).a text+(x).a data + (x) .a_trsize+(x) .a_drsize)

#define N_STROFF (x)- \ -
(N_SYMOFF(x) + (x) .a_syms)

The file has five sections: a header, the program text and data, relocation
information, a symbol table, and a string table (in that order). The last three sections
may be omitted if the program was loaded with the -s option of Id or if the symbols
and relocation have been removed by strip(1).

5-4 File Formats

a.out(5)

In the header, the sizes of each section are given in bytes. The size of the header is
not included in any of the other sizes.

When an a. out file is executed, three logical segments are set up: the text segment,
the data segment (with uninitialized data, which starts off as all 0, following
initialized), and a stack. The text segment begins at 0 in the core image and the
header is not loaded. If the magic number in the header is OMAGIC (0407), the
number indicates that the text segment will not be write protected and shared, so the
data segment is immediately contiguous with the text segment. This is the oldest
kind of executable program and is rarely used.

If the magic number is NMAGIC (0410) or ZMAGIC (0413), the data segment
begins at the first 0 mod 1024-byte boundary following the text segment, and the text
segment is not writable by the program. If other processes are executing the same
file, they will share the text segment. For ZMAGIC format, the text segment begins
at a 0 mod 1024-byte boundary in the a. out file. The remaining bytes after the
header in the first block are reserved and should be zero. In this case, the text and
data sizes must both be multiples of 1024 bytes. The pages of the file will be
brought into the running image as needed, and not preloaded as with the other
formats. This is especially suitable for large programs and is the default format
produced by Id(1).

The stack will occupy the highest possible locations in the core image, growing
downwards from Ox7ffffOOO. The stack is automatically extended as required. The
data segment is only extended as requested by brk(2).

After the header in the file, follow the text, data, text relocation, data relocation,
symbol table, and string table in that order. The text begins at byte 1024 in the file
for ZMAGIC format or just after the header for the other formats. The N_ TXTOFF
macro returns this absolute file position when given the name of an exec structure as
argument. The data segment is contiguous with the text and immediately followed
by the text relocation and then the data relocation information. The symbol table
follows all this. Its position is computed by the N_SYMOFF macro. Finally, the
string table immediately follows the symbol table at a position that can be easily
accessed using N_STROFF. The first 4 bytes of the string table are not used for
string storage; instead they contain the size of the string table which includes the 4
bytes. The minimum string table size is thus 4.

The layout of a symbol table entry and the principal flag values that distinguish
symbol types are given in the include file as follows:

/*
* Format of a symbol ~able entry.
*/
struct nlist

union {
char *n_name; /* for use when in-core */
long n_strx; /* index into file string table */

} n_un;
unsigned char n_type; /* type flag, i.e. N_TEXT; see below */
char n_other;
short n_desc; /* see <stab.h> */
unsigned n_value; /* value of this symbol (or offset) */

} ;

#define n_hash n desc /* used internally by ld */

/*
* Simple values for n_type.

File Formats 5-5

VAX

VAX a.out(5)

*/
#define N UNDF OxO /* undefined */
#define N_ABS Ox2 /* absolute */
#define N_TEXT Ox4 /* text */
#define N DATA Ox6 /* data */
#define N_BSS Ox8 /* bss */
#define N COMM Ox12 /* common (internal to ld) */
#define N FN Ox1f /* file name symbol */

#define NEXT 01 /* external bit, or'ed in */
#define N TYPE Ox1e /* mask for all the type bits */

/*
* Other permanent symbol table entries have some N STAB bits set.
* These are given in <stab.h>
*/
#define N STAB OxeO /* if any of these bits set, don't discard */

/*
* Format for namelist values.
*/
#define N_FORMAT n%08x"

In the a. out file, a symbol's n_un.n_strx field gives an index into the string table.
An n_strx value of 0 indicates that no name is associated with a particular symbol
table entry. The field n_un.n_name can be used to refer to the symbol name only if
the program sets this up using n_strx and appropriate data from the string table.

If a symbol's type is undefined external, and the value field is nonzero, the symbol is
interpreted by the loader 1 d as the name of a common region whose size is indicated
by the value of the symbol.

The value of a byte in the text or data that is not a portion of a reference to an
undefined external symbol is exactly the value that will appear in memory when the
file is executed. If a byte in the text or data involves a reference to an undefined
external symbol, as indicated by the relocation information, then the value stored in
the file is an offset from the associated external symbol. When the file is processed
by the link editor and the external symbol becomes defined, the value of the symbol
will be added to the bytes in the file.

If relocation information is present, it amounts to 8 bytes per relocatable datum, as in
the following structure:

/*
* Format of a relocation datum.
*/
struct relocation info {

int r_address; /* address which is relocated */
unsigned r symbolnum:24, /* local symbol ordinal */

F-pc~e171, /* was relocated pc relative already */
r_Iength:2, /* O=byte, l=word, 2=long */
r_extern:1, /* does not include value of sym referenced */

:4; /* nothing, yet */
} ;

There is no relocation information if a_trsize+a_drsize==O. If r_extern is 0, then
r_symbolnum is actually an n_type for the relocation (that is, N_TEXT meaning
relative to segment text origin).

5-6 File Formats

a.out(5) VAX

See Also
adb(1), as(1), dbx(l), Id(1), nm(1), strip(1), stab(5)

File Formats 5-7

Rise acct(5)

Name
acct - execution accounting file

Syntax
#include <sys/acct.h>

Description
The acct(2) system call makes entries in an accounting file for each process that
terminates. The accounting file is a sequence of entries whose layout, as defined by
the include file, is:

typedef u_short comp_t
struct acct
{

char ac_comm[10] ; /* Accounting command name */
comp_t ac_utime; /* Accounting user time */
com~_t ac_stime; /* Accounting system time */
comp_t ac_etimei /* Accounting elapsed time */
time_t ac_btime; /* Beginning time */
short ac_uid; /* Accounting user ID */
short ac_gid; /* Accounting group ID */
short ac_mem; /* average memory usage */
comp_t ac_io; /* number of disk 10 blocks */
dev_t ac_tty; /* control typewriter */
char ac_flag; /* Accounting flag */

} ;

#define AFORK 0001 /* has executed fork, but no exec */
#define ASU 0002 /* used super-user privileges */
#define ACOMPAT 0004 /* used compatibility mode */
#define ACORE 0010 /* dumped core */
#define AXSIG 0020 /* killed by a signal */
#define AHZ 64 /* the accuracy of data is l/AHZ */

#ifdef KERNEL
struct acct acctbuf;
struct gnode *acctp;
#endif

If the process does an execve(2), the first 10 characters of the file name appear in
ac _comm. The accounting flag contains bits indicating whether execve(2) was ever
accomplished and whether the process ever had superuser privileges.

See Also
acct(2), execve(2), sa(8)

5-8 File Formats

acct(5)

Name
acct - execution accounting file

Syntax
#include <sys/acct.h>

Description
The acct(2) system call makes entries in an accounting file for each process that
tenninates. The accounting file is a sequence of entries whose layout, as defined by
the include file, is:

struct acct
{

} i

char
float
float
float
time_t
short
short
float
float
dev_t
char

#define AFORK
#define ASU
#define ACOMPAT
#define ACORE
#define AXSIG

#ifdef KERNEL
struct acct
struct inode
#endif

ac_comm[10]i
ac_utime;
ac_stime;
ac_etimei
aC_btime;
ac_uidi
ac_gid;
ac_mem;
ac_ioi
ac_ttYi
ac_flagi

/* Accounting command name */
/* Accounting user time */
/* Accounting system time */
/* Accounting elapsed time */
/* Beginning time */
/* Accounting user ID */
/* Accounting group ID */
/* average memory usage */
/* number of disk 10 blocks */
/* control typewriter */
/* Accounting flag */

0:001
0002
0004
0010
0020

/* has executed fork, but no exec */
/* used super-user privileges */

acctbufi
*acctpi

/* used compatibility mode */
/* dumped core */
/* killed by a signal */

If the process does an execve(2), the first 10 characters of the file name appear in
ac_comm. The accounting flag contains bits indicating whether execve(2) was ever
accomplished and whether the process ever had superuser privileges.

See Also
acct(2), execve(2), sa(8)

File Formats 5-9

VAX

acucap(5)

Name
acucap - Automatic call unit capabilities file

Description
The acucap file lists the types of autodial modems and describes their attributes.

The tip(lc) program searches the acucap file when it encounters an at field in the
remote(5) file description. If the at string matches a name entry in the acucap
file, the tip and uucp generic dialing routines are used to place an outgoing call
according to the attributes specified for the modem in the acucap file.

The uucp(1c) program uses the same procedure for deciding how to activate an
autodialer modem, except that uucp searches for the brand name field of the
/usr / lib/uucp/L-devices file in the acucap database.

Each line in the file describes how to dial a given type of modem. This description
consists of strings, time delays, and flags that are used to control the action of any
modem. Fields are separated by a colon (:). Entries that end in a backs lash character
(\) followed by a newline are continued on the next line.

The first entry is the name or names of the modem. If there is more than one name
for a modem, the names are separated by vertical bars (I).

The fields of the description follow the name. A field name followed by an equal
sign (=) indicates that a string value follows. A field name followed by a pound sign
(#) indicates that a numeric value follows. A field name followed by the separating
colon (:) represents a Boolean.

Options
The fields following the name of the modem define the capabilities of the modem.
Capabilities are either strings (str), numbers (num), or Boolean flags (bool). A string
capability is specified as capability=value; for example, "ss=AAAB". A numeric
capability is specified by capability#Value; for example, "sd#l". A Boolean
capability is specified by simply listing the capability. Strings that are not specified
cause nothing to be issued.

ab (str) Abort string. This string is sent to the modem if tip(1c) is aborted.

cd (num) Completion delay. This number gives the time to wait between
completion string characters (in seconds, unless the Is Boolean is
specified).

cr (bool) Setting this Boolean causes the program to wait in the generic dial
routine until the modem senses a carrier.

co (str) A modem command string which instructs the modem to change from
the default speed to the speed specified by the xs field.

cs (str) Completion string. The modem issues this string after receiving and
responding to synchronization and dial strings.

da (num) Dial acknowledge. This number gives the time to wait before looking
for a dial response (in seconds).

db (booJ) Debug mode. Setting this Boolean causes the generic dialer to give more
information as it dials.

5-10 File Formats

acucap(5)

dd (num) Dial delay. This number gives the time between dial characters (in
seconds) unless the 1 s Boolean is specified.

di (str) Dial initialization. This string is used to start a dialing sequence (placed
just before the number to dial.)

dr (str) Dial response. The modem sends this string if a dialing sequence that
was just issued is successful.

ds (str) Disconnect string. This string is sent to the modem when tip(1c) is
finally disconnected.

dt (str) Dial tennination. This string is used to tenninate a dialing sequence
(placed just after the number to dial.)

fd (num) Full delay. This number is the time to wait for a carrier to be detected
(in seconds). If the call is not completed in this time, an error is
returned.

hu (bool) This Boolean causes the modem to hang up the phone if the line goes
away.

is (num) This number specifies the speed the modem must be initialized at. The
conversation speed will later be set as specified by the xs field.

Is (boot) Use an internal sleep routine rather than sleep(3) for delays. Thus, all
delays are given in microseconds rather than seconds.

os (str) Online string. The modem sends this string after carrier has been
detected.

rd (boot) Causes a 1-second delay after toggling dtr. This action will only be
taken if the re flag is also set.

re (boot) This Boolean causes the modem to toggle dtr (data tenninal ready)
before beginning synchronization. It is used to reset the present condition
of the modem.

rs (str) Replacement string. This string is a single character that will be
substituted for an equal sign (=) or dash (-) in the number to be dialed.
Used so that delay characters can be represented unifonnly, but allowing
the correct delay character to be passed to a given modem.

sd (num) Synchronization delay. This number gives the time between
synchronization characters (in seconds unless the 1 s Boolean is
specified.)

si (bool) This modem is attached to an interface that cannot return any characters
until carrier is detected. Digital's DMF32 interface acts in this way.

sr (str) Synchronization response. What the modem sends in response to a
synchronization string.

ss (str) Synchronization string. The first string the modem expects to receive; a
check to see if the modem is operating.

xs (num) Specifies the speed the modem will operate at after initialization at the
default speed per the is field.

File Formats 5-11

acuc~p(5)

Example,

Files

Tqe following example shows an entry for a Digital DF03 modem:

df031DF031dec df03:\
:cr:hu:re:di=AAAB:dd#1:os=A:ds=AA:fd#40:

/etc/acucap Shared autodial modem data base

See Also
tip(1c), uucp(lc)

5-12 File Formats

aliases(5)

Name
aliases - aliases file for sendmail

Description
The aliases file is an ASCII file that describes user ID aliases that are used in
/usr / lib/ sendmail. It is formatted as a series of lines in the following form:

name: name_l, name2, name_3, ...

The name is the name to alias, and the name n are the aliases for that name. Each
ali a s is separated from the next by a new line.

Continuation lines begin with white space. Comment lines begin with a number sign
(#).

You can only assign aliases to local names. Loops are not allowed because a
message should be sent to a person only once.

After an alias has been applied, local and valid recipients who have a . forward file
in their home directory can have messages forwarded to the list of users defined in
that file.

This is only the raw data file; the actual information pertaining to aliases is placed
into binary format in the files / ete/ aliases. dir and / ete/ aliases. pag
using the program newaliases(1). The newaliases command should be
executed each time the aliases file changes. This command allows the new changes
to take effect.

Restrictions

Files

Because of restrictions in dbm(3x), a single alias cannot contain more than
approximately 1000 bytes of information. You can specify longer aliases by
chaining; that is, use a dummy name for the last name in the alias, which creates a
continuation alias.

The aliases database may be distributed in a network by a naming service, such
as Yellow Pages or BIND/Hesiod. See the Guide to Yellow Pages or the chapter on
Hesiod in the Guide to BIND for setup information.

jete/aliases

See A!so
newaliases(l), dbm(3x), sendmail(8)
"SENDMAIL Installation and Operation Guide", ULTRIX Supplementary Documents,
Vol. III: System Manager
Guide to the BINDIHesiod Service
Guide to the Yellow Pages Service

File Formats 5-13

Rise ar(5)

Name
ar - archive (library) file format

Syntax
#include <ar.h>

Description
The archive command, ar, combines several files into one. Archives are used
mainly as libraries to be searched by the link-editor, Id.

A file produced by ar has a magic string at the start, followed by the constituent
files, each preceded by a file header. The magic number and header layout as
described in the include file are:·

#define ARMAG "!<arch>\n"
#define SARMAG 8

#define ARFMAG "'\n"

struct ar_hdr
char ar_name[16];
char ar_date[12);
char ar_uid[6];
char ar_gid[6];
char ar_fflode(8);
char ar_size[lO);
char ar_fmag[2];

} ;

The name is a blank-padded string. The ar Jmag field contains ARFMAG to help
verify the presence of a header. The other fields are left-adjusted, blank-padded
numbers. They are decimal except for ar _mode, which is octal. The date is the
modification date of the file at the time of its insertion into the archive.

Each file begins oli an even (0 mod 2) boundary; a new-line is inserted between files
if necessary. The size given reflects the actual size of the file exclusive of padding.

Provisions are not made for empty areas in an archive file.·

The encoding of the header is portable across machines. If an archive contains
printable files, the archive itself is printable.

Restrictions
A filename loses trailing blanks. Most software dealing with archives takes an
included blank as a name terminator.

See Also
ar(1), Id(1), nm(1)

5-14 File Formats

ar(5)

Name
ar - archive (library) file format

Syntax
#include <ar.h>

Description
The archive command, ar, combines several files into one. Archives are used
mainly as libraries to be searched by the link-editor Id.

A file produced by ar has a magic string at the start, followed by the constituent
files, each preceded by a file header. The magic number and header layout as
described in the include file are:

#define
#define

ARMAG "!<arch>O
SARMAG 8

#define ARFMAG "'0

struct ar_hdr {

} ;

char ar_name[16];
char ar_date[12];
char ar_uid[6);
char ar_gid[6);
char ar_mode[8);
char ar_size[lO);
char ar_fmag[2];

The name is a blank-padded string. The ar Jmag field contains ARFMAG to help
verify the presence of a header. The other fields are left-adjusted, blank-padded
numbers. They are decimal except for ar _mode, which is octal. The date is the
modification date of the file at the time of its insertion into the archive.

Each file begins on a even (0 mod 2) boundary; a new-line is inserted between files if
necessary. Nevertheless, the size given reflects the actual size of the file exclusive of
padding.

There is no provision for empty areas in an archive file.

The encoding of the header is portable across machines. If an archive contains
printable files, the archive itself is printable.

Restrictions
File names lose trailing blanks.

See Also
ar(1), Id(1), nm(1)

File Formats 5-15

VAX

auth (5)

Name
auth - auth database

Description
The auth database is a repository of security-relevant information about each user of
the system. This database contains the encrypted password associated with the user's
account in addition to a list of assorted capabilities. The database is stored as an
ndbm(3) database in the files / etc/ auth. pag and / etc/ auth. dire Records
are retrieved with the getauthuid library routine. Access to the database is
restricted to the superuser and members of the group authread.

Auth records may be converted to an ASCII representation whose format is:

1000:4KvidFYwovnwp3j811178dCl:1920129:3600:2678400:03:0:1000:0:00:00

The first field is the UID of the entry that is used as the key into the database. Then
follows:

Encrypted Password
This is the user's encrypted password. Whether this password or
the one from the /etc/passwd file is actually used is
determined by the security level that the system is running at.

Password Modification Time
This is the time(2) the password was last set.

Minimum Password Lifetime
This is the minimum number of seconds which must elapse
between setting passwords.

Maximum Password Lifetime
This is the maximum period of time for which the password will
be valid.

Account Mask These are capabilites pertaining to the account itself. They are:

1 A_ENABLE: this account is enabled.
2 A_CHANGE_PASSWORD: The user can change his or her
password.
4 A_ENTER_P ASSWORD: The user is not required to use
machine-generated passwords.

Login Failure Count

Audit ID

Audit Control

Audit Mask

5-16 File Formats

This is the count of unsuccessful login attempts since the last
successful login.

Positive integer identifier used in generating audit records for the
user.

See the audcntl(2) reference page, SET_APROC_CNTL section
for more information.

Determines which events will be audited for the user. See the
audcntl(2) and aUdit(4) reference pages for more information.

auth (5)

Restrictions
Only the superuser and members of the group authread may read information
from the auth database. Only the superuser may modify the auth database.

Files
/etc/auth. [pag,dir]
/etc/passwd
/etc/svc.conf

See Also
audcnt1(2), getauthuid(3), getpwent(3), edauth(8)

File Formats 5-17

CDA(5)

Name
CDA - Compound Document Architecture

Description
Digital's CDA architecture for compound documents is an open architecture that
establishes a framework for the interchange of many types of data in a multivendor
environment. Utilizing CDA converters, compound revisable format data can be
handled much the same as ASCII text. With CDA converters, you can write
applications that handle compound documents, regardless of the environment in
which you or application users are working.

CDA includes the Digital Document Interchange Format (DDIF), the Data Object
Transport Syntax (DOTS), and the Digital Table Interchange Format (DTIF). Each
of these formats is encoded using the Digital Data Interchange Syntax (DDIS). Using
these representations, CDA provides a method for manipulating files that contain a
number of integrated components.

The tools associated with CDA include the CDA Toolkit (libddif.a), the CDA
Converter (the main converter is cdoc(1)), and the CDA Viewers. The CDA
Toolkit is a collection of routines that support the creation of CDA applications. The
CDA Converter converts files of a specified input format to a specified output format.
The CDA Viewers are used to display CDA-encoded files on a workstation display or
character cell terminal.

All of the following products support CDA-encoded files. If you only intend to
manipulate CDA files, and do not have an interest in the particulars of the file format,
you can use anyone of these products to manipulate a CDA-encoded file:

CDA Converters
CDA Viewers (dxvdoc, vdoc)
dxcardfiler
dxmail
dxpaint
PrintScreen

See Also
cdoc(1), vdoc(1), DDIF(5), DDIS(5), DOTS(5), DTIF(5)
Compound Document Architecture Manual

5-18 File Formats

core (5)

Name
core - format of memory image file

Syntax
#include <sys/param.h>

Description
When certain errors result in a terminated process, a core file is created that
contains the memory image of a terminated process. A process can terminate for
several reasons; however, the most common causes are memory violations, illegal
instructions, bus errors, and user-generated quit signals. The sigvec(2) reference
page contains a list of the causes.

The core is created in the working directory of the terminated process (normal
access controls apply). The maximum size of a core cannot exceed the limit
imposed by set r 1 irni t (2).

The core file consists of the u. area, whose size (in pages) is defined by the
UPAGES manifest in the <sys/param.h> file. The u. area starts with a user structure
as given in <sys/user.h>. The remainder of the core file consists first of the data
pages and then the stack pages of the process image. The amount of data space
image in the core file is given (in pages) by the variable u_dsize in the u. area. The
amount of stack image in the core file is given (in pages) by the variable u_ssize in
the u. area. The size of a page is given by the constant NBPG (also from
<sys/param.h>).

See Also
dbx(1), sigvec(2), setrlimit(2)

File Formats 5-19

Rise

VAX core(5)

Name
core - format of memory image file

Syntax
#include <machine/param.h>

Description
The ULTRIX system writes out a memory image of a terminated process when any
of various errors occur. See sigvec(2) for the list of reasons. The most common
reasons are memory violations, illegal instructions, bus errors, and user-generated
quit signals. The memory image is called core and is written in the process's
working directory, provided it can be, and normal access controls apply.

The maximum size ofa core file is limited by setrlimit(2). Files that would be
larger than the limit are not created.

The core file consists of the u. area, whose size (in pages) is defined by the UPAGES
manifest in the < machine/param.h > file. The u. area starts with a user structure as
given in <sys/user~h>. ,The remainder of the core file consists first of the data pages
and then the stack pages of the process image. The amount of data space image in
the core file is given (in pages) by the variable u dsize in the u. area. The amount of
stack image in the core file is given (in pages) by the variable u_ssize in the u. area.

In general, the debugger adb(l) is sufficient to deal with core images.

See Also
adb(l), dbx(l), setrlimit(2), sigvec(2)

5-20 File Formats

cpio (5)

Name
cpio - format of cpio archive

Description
The header-structure, when the --c option of cpio(1) is not used, is:

struct {

} Hdr;

short h_magic,
h_dev;

ushort h_ino,
h_mode,
h_uid,
h_gid;

short h_nlink,
h rdev
h_mtime[2] ,
h_namesize,
h_filesize[2],

char h_name[h_namesize rounded to word];

When the - c option is used, the header information is described by:

sscanf(Chdr,"%6o%6o%6o%6o%6o%6o%6o%6o%111o%6o%111o%s",
&Hdr.h magic, &Hdr.h deY, &Hdr.h ino, &Hdr.h mode,
&Hdr.h=uid, &Hdr.h_gld, &Hdr.h_nlink, &Hdr.h=rdev,
&Longtime, &Hdr.h_namesize,&Longfile,Hdr.h_name);

The Longtime and Longfile are equivalent to Hdr.h_mtime and Hdr.hJtlesize,
respectively. The contents of each file are recorded in an element of the array of
varying length structures, archive, together with other items describing the file.
Every instance of h_magic contains the constant 070707 (octal). The items h_dev
through h_mtime have meanings explained in stat(2). The length of the null­
terminated path name h_name, including the null byte, is given by h_namesize.

The last record of the archive always contains the name TRAILER! !! Special files,
directories, and the trailer are recorded with h Jtlesize equal to zero.

See Also
cpio(l), find(1), stat(2)

File Formats 5-21

crontab(5)

Name
crontab - clock daemon table file

Syntax
lusr/lib/crontab

Description
The cron command executes at specified dates and times according to the
instructions in the /usr / lib/ crontab file. The crontab file consists of lines
with six fields each. The format for a line is as follows:

minute hour day month weekday command

The following list defines each field in the line:

minute (0-59) The exact minute that the command sequence executes.

hour (0-23) The hour of the day that the command sequence executes.

day (1-31) The day of the month that the command sequence executes.

month (1-12)

weekday (1-7)

The month of the year that the command sequence executes.

The day of the week that the command sequence executes. Monday
= 1, Tuesday = 2, and so forth.

command The complete command sequence variable that is to be executed.

The first five integer fields may be specified as follows:

• A single number in the specified range

• Two numbers separated by a minus, meaning a range inclusive

• A list of numbers separated by commas, meaning any of the numbers

• An asterisk meaning all legal values

The sixth field is a string that is executed by the shell at the specified times. A
percent sign (%) in this field is translated to a new-line character. Only the first line
of the command field, up to a percent sign (%) or end of line, is executed by the
shell. The other lines are made available to the command as standard input.

Examples
The following example is part of a crontab file:

periodic things
0,15,30,45 * * * * (echo 'AM' 'date'; echo ") >/dev/console
0,15,30,45 * * * * /usr/lib/atrun

daily stuff
5 4 * * * sh /usr/adrn/newsyslog
15 4 * * * (cd /usr/preserve; find. -mtime +7 -a -exec rm -f {} ;)
20 4 * * * find /usr/msgs -mtime +21 -a ! -perm 444 -a ! -name bounds

-a -exec rm -f {}

NOTE: The above line is wrapped.

local cleanups

5-22 File Formats

Files

crontab(5)

30 4 * * * find /usr/spool/mqueue ~type f -mtime +5 -name df -exec rm {}
35 4 * * * find /usr/spool/mqueue -type f -mtime +5 -name tf -exec rm {}
40 4 * * * find /usr/spool/rwho -type f -mtime +21 -exec rm {} ;

/ete/eron
/usr/lib/erontab

See Also
cron(8)
Guide to System Environment Setup

File Formats 5-23

DDIF(5)

Name
DDIF - Digital Document Interchange Format (DDIF) files

Description

Digital Document Interchange Format (DDIF) is a DDIS/ASN.l encoding for the
interchange of revisable compound documents with document processing systems.
DDIF is also a document output format, a storage format for user documents residing
on a disk, and a compound document format.

The purpose of DDIF is to allow the creation of compound documents and also to
serve as a standard intermediate format for the conversion of documents based on
other formats. For example, a simple ASCII text file can be converted to DDIF, and
the DDIF file can then be converted to PostScript. A DDIF document can also be
converted to ASCII.

DDIF files are documents or portions of compound documents. A DDIF document is
considered a simple document if it consists of one file. A DDIF document is
considered a compound document if it consists of more than one file, the master of
which must be a DDIF file.

A DDIF file can contain storage addresses (for example, filename) of other files,
which must be DDIF, ASCII text, binary, or PostScript. References to DOTS files is
not supported.

Because a DDIF file can reference another DDIF file and the referenced DDIF file
can reference other DDIF files, a DDIF document can consist of a tree of files.

The following commands are used to manipulate DDIF files:

edoe

ctod

dtoe

dxvdoe

vdoe

Provides a set of converters to and from DDIF format.

Packs DDIF documents into DOTS syntax. The user can
choose to archive a DDIF document in this manner. The
ctod command also copies DDIF files from one location to
another.

Copies DDIF files from one location to another.

Enables user to view DDIF documents. The dxvdoc
command is used on workstations running ULTRIX UWS
software. The dxvdoc command can also display
imbedded graphics and image data that is encoded in the
DDIF syntax.

Enables user to view DDIF documents. The vdoc
command is for use on character-cell terminals.

DDIF documents can be mailed to other users.

See Also
cdoc(1), ctod(l), dtoc(1), vdoc(1), dxvdoc(lX), DOTS(5), DDIS(5)

5-24 File Formats

dOIS(5)

Name
DDIS - Digital Data Interchange Syntax / ISO ASN.l (DDIS/ASN.l) files

Description
DDIS/ASN.1 files conform to Digital's Digital Data Interchange Syntax. DDIS
conforms to syntaxes that can be defined within the specifications of International
Standards Organization Abstract Syntax Notation One (ISO ASN.l), but is not itself
an implementation of full ISO ASN.l syntax.

DDIS/ASN.l files conform to the DDIS/ASN.l syntax. The DDIS/ASN.l syntax is
itself used to define other syntaxes. The following are among the syntaxes that are
subsets of DDIS/ ASN.l :

DDIF Digital Document Interchange Format

DTIF Digital Table Interchange Format

DOTS Data Object Transport Syntax

Files that conform to one of the DDIS/ASN.l family of syntaxes are described as
DDIS/ASN.l files. More specifically, however, the files are typed according to a
particular DDIS/ASN.l syntax. For example, a file that conforms to the DDIF syntax
is a DDIF file, and is identified by the f i 1 e(1) command as a ddis/ddif file. The
file command includes the string ddis/ as a part of its output if a file belongs in the
DDIS family.

See Also
ctod(1), dtoc(1), DDIF(5), DOTS(5), DTIF(5), CDA(5)

File Formats 5-25

dgateway (5)

. Name

dgateway - name of the intermediate host (DECnet gateway)

Description

Files

The dgateway file contains the ASCII name of the ULTRIX system serving as the
intermediate host (gateway system) used by dgate(lc) to connect to the DECnet
network. This gateway system must be connected to the local system through a local
area (TCP/lP) network and to DECnet systems through the DECnet network.

The dg a t e(1 c) command first looks in your home directory for a file named
.dgateway. The .dgateway file should contain one (and only one) system, followed
by a new line. In this case, you must have an account on the gateway system, as the
dgate(lc) command will log in to this account to do its work there. Your gateway
account must be set up so that a password is not required in order to gain access to
the system. This is accomplished by means of a .rhosts file in your home directory
on the remote system. See rlogin(1c) for more information about the .rhosts file.

If there is no .dgateway file in your home directory, the dgate(lc) command looks
for the file / etc/ dgateway, which has some optional additional fields separated
by spaces:

gateway [account] [path-to-dgated]

In this case, the dgate(lc) command logs into the gateway system running setuid
guest, while access is made through the account specified. The account specified
must allow user guest to log in to the system without providing a password. This
means that the .rhosts file in the home directory of the account listed must contain an
entry of the form "myhostname guest", where "myhostname" is the name of the
local system that desires access to the gateway node.

The syntax of the'" / . dgateway file permits an optional usemame. The usemame
on the gateway system must permit you to log in to that system from your system
without using a password. For example:

home system: localhost
'" / . dgateway contains "remotehost usemame"

gateway system: remotehost
"'username/ . rhosts contains "remotehost usemame"

This permits dgate to work even if the home system does not have an
/ etc/ dgateway file, or if the gateway system does not have a guest account.

If no account is specified in the / etc/ dgateway file, the default of the guest
account is used. The last optional field specifies the pathname for the dgated(8)
daemon. The default is / etc/ dgated.

/etc/dgateway
-/.dgateway

5-26 File Formats

dgateway (5)

See Also
dgate(1c), dgated(8), rlogin(1c)

File Formats 5-27

dir (5)

Name

Syntax

dir - format of directories

#include <sys/types.h>
#include <sys/dir.h>

Description
A directory behaves exactly like an ordinary file, except that no user may write into a
directory. The fact that a file is a directory is indicated by a bit in the flag word of
its i-node entry. For further information, see f s(5). The structure of a directory
entry is given in the include file.

A directory consists of some number of blocks of DIRBLKSIZ bytes, where
DIRBLKSIZ is chosen such that it can be transferred to disk in a single atomic
operation (for example, 512 bytes on most machines).

Each DIRBLKSIZ byte block contains some number of directory entry structures,
which are of variable length. Each directory entry has a struct direct at the front of it,
containing its inode number, the length of the entry, and the length of the name
contained in the entry. These are followed by the name padded to a 4-byte boundary
with null bytes. All names are guaranteed null terminated. The maximum length of
a name in a directory is MAXNAMLEN.

The macro DIRSIZ(dp) gives the amount of space required to represent a directory
entry. Free space in a directory is represented by entries which have dp->d_reclen >
DIRSIZ(dp). All DIRBLKSIZ bytes in a directory block are claimed by the directory
entries. This action usually results in the last entry in a directory having a large
dp->d_reclen. When entries are deleted from a directory, the space is returned to the
previous entry in the same directory block by increasing its dp->d_reclen. If the first
entry of directory block is free, then its dp->d_ino is set to O. Entries other than the
first in a directory do not normally have dp->d_ino set to O.

#ifdef KERNEL
#define DIRBLKSIZ DEV BSIZE
#else
#define DIRBLKSIZ 512
#endif

#define MAXNAMLEN 255

The DIRSIZ macro gives the minimum record length that will hold the directory
entry. This requires the amount of space in struct direct without the d_name field,
plus enough space for the name with a terminating null byte (dp->d_namlen+ 1),
rounded up to a 4-byte boundary.

#undef DIRSIZ
#define DIRSIZ(dp) \

((sizeof (struct direct) - (MAXNAMLEN+1)) + \
(((dp)->d_namlen+1 + 3) &- 3))

struct direct {

5-28 File Formats

u_long d_ino;
short d_reclen;
short d_namlen;

} ;

char d_narne[MAXNAMLEN + 1];
/* typically shorter */

struct _dirdesc {

} ;

int dd_fd;
long dd_loc;
long dd_size;
char dd_buf[DIRBLKSIZ];

dir(5)

By convention, the first two entries in each directory are for dot (.) and dot dot (..).
The first is an entry for the directory itself. The second is for the parent directory.
The meaning of ' .. ' is modified for the root directory of the master file system (" /' '),
where dot dot has the same meaning as dot.

See Also
fs(5)

File Formats 5-29

disktab(5)

Name
disktab - disk description file

Syntax
#include <disktab.h>

Description

Files

The disktab file is a simple data base that describes disk geometries and disk
partition characteristics. The format is patterned after the termcap(5) terminal data
base. Entries in disktab consist of a,number of fields separated by colons (:). The
first entry for each disk gives the names that are known for the disk, separated by
vertical bars (I). The last name given should be a long name fully identifying the
disk.

The following list indicates the normal values stored for each disk entry:

Name Type Description
ns num Number of sectors per track
nt num Number of tracks per cylinder
nc num Total number of cylinders on the disk
ba num Block size for partition 'a' (bytes)
bd num Block size for partition 'd' (bytes)
be num Block size for partition 'e' (bytes)
bf num Block size for partition 'f' (bytes)
bg num Block size for partition 'g' (bytes)
bh num Block size for partition 'h' (bytes)
fa num Fragment size for partition 'a' (bytes)
fd num Fragment size for partition 'd' (bytes)
fe num Fragment size for partition 'e' (bytes)
ff num Fragment size for partition 'f' (bytes)
fg num Fragment size for partition 'g' (bytes)
fh num Fragment size for partition 'h' (bytes)
pa num Size of partition 'a' in sectors
pb num Size of partition 'b' in sectors
pc num Size of partition 'c' in sectors
pd num Size of partition 'd' in sectors
pe num Size of partition 'e' in sectors
pf num Size of partition 'f' in sectors
pg num Size of partition 'g' in sectors
ph num Size of partition 'h' in sectors
se num Sector size in bytes
ty str Type of disk (e.g. removable, winchester)

The disktab entries can be automatically generated with the diskpart program.

letc/disktab

See Also
chpt(8), newfs(8)

5-30 File Formats

DOTS (5)

Name
DOTS - Data Object Transport Syntax (DOTS) files

Description
Data Object Transport Syntax (DOTS) is DDIS/ASN.l encoding for encapsulating
the encoded interchange form of a number of related data objects. Data objects must
be related by having embedded references to other objects in the same DOTS
encapsulation. Typically, these embedded references depend on the storage address
(for example, filename) of the referenced object. Therefore, when the referenced
object is moved from one location to another, the storage address must be updated.

The purpose of DOTS is to allow composite data objects to be moved from one
location to another as a single object and to allow the necessary storage reference to
be updated as part of the process.

The primary use for DOTS is moving multifile compound documents in which one
DDIF or DTIF file may have reference data stored in a physically separate file. Mail
is a major vehicle for moving DOTS objects.

The commands ctod and dtoc are used to pack and unpack DDIF and DTIF files.
The commands can also be used to copy a related set of DDIF or DTIF files, or both,
from one location to another.

See Also
ctod(1), dtoc(1), DDIF(5), DTIF(5), DDIS(5), CDA(5)

File Formats 5-31

DTIF(5)

Name
DTIF - Digital Table Interchange Format

Description
Digital Table Interchange Format (DTIF) is the standard format for the storage and
interchange of documents that contain data tables, formulas, and spreadsheets. You
can use DTIF to store and retrieve database information, interchange spreadsheets,
and reference table data in compound documents.

DTIF defines the logical structure and physical layout of a data table, the values
within the table (absolute data and/or expressions), and presentation attributes
(formatting) to be used when displaying or printing the table. DTIF works with
Digital Document Interchange Format (DDIF) so that you can store or reference
DTIF tables in DDIF-encoded compound documents.

A DTIF document can contain a sequence of one or more tables and is uniquely
identified by a product name, a version number, and other descriptive information
such as the document's title and creation date. Each DTIF table is a 2-dimensional
display of data values organized in columns and rows that has its own structure and
table data stored in cells.

In DTIF documents, attributes specify the type and format of information pertaining
to the data stored in a table. Column attributes describe information for all the cells
in a particular column, whereas generic column attributes can be applied to any
column in any table that references them. Format attributes define the printed and
displayed presentation of data stored in the table. Format attributes can also be
redefined at the window, column, or cell level.

See Also
CDA(5), DDIF(5), "DTIF(5)
Compound Document Architecture Manual

5-32 File Formats

Name

Syntax

dumprestor, dumpdates - incremental dump format

#include <sys/types.h>
#include <sys/inode.h>
#include <dumprestor.h>

dump(5)

Description
Tapes used by dump and restore contain:
A header record
Two groups of bit map records
A group of records describing directories
A group of records describing files

The format of the header record and of the first record of each description as given in
the include file <dumprestor.h> is:
#define NTREC
#define MLEN
#define MSIZ

#define TS TAPE
#define TS INODE
#define TS BITS
#define TS ADDR
#define TS END
#define TS CLRI
#define MAGIC
#define CHECKSUM

struct spcl {
int
time_t
time t
int
daddr_t
ina t
int

SpCli

int
struct
int
char

struct idates
char
char
time t

} i

10
16
4096

1
2
3
4
5
6
(int) 60011
(int) 84446

c_typei
c_datei
c_ddatei
c_volumei

c_tapeai
c_inumberi
c_magici
c_checksumi
dinode
c_counti
c_addr[BSIZE]i

id_name[16]i
id_incnoi
id_ddatei

#define DUMPOUTFMT "%-16s %c %s" /* for printf */

#define DUMPINFMT
/* name, incno, ctime(date) */

"%16s %c %[A\n]\n" /* inverse for scanf */

File Formats 5-33

dump(5)

NTREC is the number of l024-byte records in a physical tape block. MLEN is the
number of bits in a bit map word. MSIZ is the number of bit map words.

The TS_ entries are used in the c type field to indicate what sort of header this is.
The types and their meanings are-as follows:

TS_ TAPE Tape volume label.
TS_INODE A file or directory follows. The c _ dinode field is a copy of the disk

inode and contains bits telling what sort of file this is.
A bit map follows. This bit map has a one (1) bit for each inode that
was dumped.
A subrecord of a file description. See c addr described in the next
list.
End of tape record.
A bit map follows. This bit map contains a zero bit for all inodes
that were empty on the file system when dumped.

MAGIC All header records have this number in c_magic.
CHECKSUM Header records checksum to this value.

The fields of the header structure are as follows:

c_type
c_date
c_ddate
c_volume
c_tapea
c_inumber
c_magic
c_checksum

The type of the header.
The date the dump was taken.
The date the file system was dumped from.
The current volume number of the dump.
The current number of this (1024-byte) record.
The number of the inode being dumped if this is of type TS_INODE.
This contains the value MAGIC above, truncated as needed.
This contains whatever value is needed to make the record sum to
CHECKSUM.
This is a copy of the inode as it appears on the file system. For
further information, see fs(5).
The count of characters in c addr.
An array of characters describing the blocks of the dumped file. A
character is zero if the block associated with that character was not
present on the file system; otherwise the character is nonzero. If the
block was not present on the file system, no block was dumped; the
block will be restored as a hole in the file. If there is not sufficient
space in this record to describe all of the blocks in a file, TS_ADDR
records will be scattered through the file, each one picking up where
the last left off.

Each volume except the last ends with a tapemark (read as an end of file). The last
volume ends with a TS_END record and then the tapemark.

The structure idates describes an entry in the file / etc/ dumpdates where dump
history is kept. The fields of the structure are:

id_name The dumped filesystem is '/dev/id _ nam' .
id_incno The level number of the dump tape. For further information, see

dump(8).
id_ddate The date of the incremental dump in system format. For further

information, see types(5).

5-34 File Formats

Files
/etc/dumpdates

See Also
fs(5), types(5), dump(8), restore(8)

dump(5)

File Formats 5-35

elcsd.conf (5)

Name
elcsd.conf - error logging configuration file

Description
The elcsd. conf file contains information used by the elcsd daemon to
configure error logging for the system. The system manager maintains this file. The
error logging daemon is dependent on the current order of the entries in the
elcsd. conf file. Do not change the order.

The information in the elcsd. conf file shows any defaults and describes what you
can enter. A newline is used to delimit each entry in the file, a null entry consists of
a newline alone, and comments begin with #.

elcsd - errlog configuration file

{ # delimiter DON'T remove or comment out!
1 # status 1-local,2-1ogrem,4-remlog,5-remlog+priloglocal

errlog file size limit num. of blocks
lusr/adm/syserr # errlog dir. path

backup errlog dire path
I # single user errlog dir. path
lusr/adm/syserr # log remote hosts errlog dir. path

remote hostname to log to
} # delimiter DON'T remove or comment out!
hosts to log :8 - separate file or :R - remotes file (together)
remotel:8
remote2:8
#remote3:S
remote4:S

disabled

The status line of the elcsd. conf file describes where you can log error packets,
also called error messages:

Logs error packets locally =
1, the default.

Logs error packets from a remote system or systems to the local machine =
2.

Logs local and remote error packets locally =
3.

~ogs ~rror packets from the local system to a remote system =
4.

Logs error packets from the local system remotely and logs high
priority messages locally = 5.

The errorlog file size defines the maximum size of an errorlog file. If disk space is
limited, you can specify the maximum number of blocks (512 bytes each) you want
the errorlog file to be. If you do not specify the maximum number of blocks, the
system will notify you when the file system is 98% full.

5-36 File Formats

elcsd.conf (5)

The default errorlog directory path is /usr / adrn/ syserr. You can direct error
packets to a different directory; if you do, you must change the default for uerf
also. For further information, see uerf(8).

If the error-logging daemon cannot write to the primary errorlog directory path, it
attempts to log to the backup errOrlog directory path automatically.

The root directory is the default for the single-user errorlog directory path. When the
system makes the transition to multiuser mode, errors logged in single-user mode are
transferred to the default errorlog directory path /usr / adrn/ syserr. You can
direct single-user error packets to another directory.

To log error packets from a remote system locally, set up an errorlog directory path
on the local system. The default is /usr / adrn/ syserr.

Errorlog packets from remote systems can be logged to separate files or to one file. S
sets up a separate errorlog file for each remote system that logs locally. R logs
packets from the corresponding remote system to the file syserr.remotes. The default
is S.

Restrictions

Files

You must have superuser privileges to change the elcsd. canf file. However,
anyone can view the file.

/usr/adrn/elcsdlag
elcsd daemon messages

See Also
elcsd(8), eli(8), uerf(8)
Guide to the Error Logger System

File Formats 5-37

environ (Sint)

Name
environ - natural language support (NLS) environment variables

Description
The international environment variables are defined for the UL TRIX system and are
additional to those described in the ULTRIX reference pages, Sections 2 (system
calls) and 3 (routines), and the environ(7) reference page. The international
variables are made available to a process by exec.

This reference page is divided into two sections. The first section describes
environment variables that can control the locale setting. The second section
describes the variables that control where the cat open function searches for
message catalogs and where the setlocale function searches for language
databases.

Environment Variables That Control the Locale Setting

The LANG, LC_COLLATE, LC_TYPE, LC_NUMERIC, LC_TIME, and
LC_MONET ARY environment variables can control the locale setting. You define
these variables using the same format as the locale argument to the set locale
function. The following shows the format you use:

language[_territory[.codeset]] [@modifier]

In language, you specify the native language of the user. You can optionally specify
the user's dialect and codeset using _territory and codeset. For example, the
following definition of LANG specifies the French native language, as spoken in
France (as opposed to in Switzerland), and the Digital Multinational Character Set:

LANG = FRE_FR.MCS

In @modifier, you specify a specific instance of localization data within a single
category. For example, using @modifier, you can specify telephone directory
ordering of data, as opposed to dictionary ordering of data. You cannot use
@modifier to define the LANG variable.

The following list describes the environment variables that control the locale setting:

LANG Identifies the user's requirements for native language, local
customs, and coded character set. At run time, you can bind the
user's language requirements, as specified by the setting of LANG,
to the execution of a program by calling set locale, as follows:

set locale (LC_ALL, "");

If LANG is not defined in the current environment, the locale
defaults to the C locale. For more information on the C locale, see
the POSIX Conformance Document.

System administrators can define LANG to provide a default
setting for the system as a whole, or user's can define LANG
individually using standard command interpreter facilities.

LC COLLATE Contains the user's requirements for language, territory, and
codeset for the character collation format. LC COLLATE affects
the behavior of regular expressions and the string collation

5-38 File Formats

LC CTYPE

environ (5int)

functions in strcoll and strxfrm. If LC COLLATE is not
defined in the current environment, LANG provides the necessary
default.

Contains the user's requirements for language, territory, and
codeset for the character classification and conversion format.
LC CTYPE affects the behavior of the character-handling functions
in conv and ct ype. If LC _ CTYPE is not defined in the current
environment, LANG provides the necessary default.

LC MONETARY
Contains the user's requirements for language, territory, and
codeset for the monetary format. LC _ MONE TAR Y affects the
currency string in nl_langinfo. If LC_MONETARY is not
defined in the current environment, LANG provides the necessary
default.

LC NUMERIC Contains the user's requirements for language, territory, and
codeset for the numeric data presentation format. LC_NUMERIC
affects the radix and thousands separator character for the
formatted I/O functions in printf, scanf, nl_printf,
nl scanf, and the string conversion functions in ecvt and
at 0 1. If LC NUMERI C is not defined in the current environment,
LAN G provides the necessary default.

LC TIME Contains the user's requirements for language, territory, and
codeset for the time format. LC TIME affects the behavior of the
time functions in strftime. if LC TIME is not defined in the
current environment, LANG provides the necessary default.

Environment Variables That Specify Locations
The NLSPATH and INTLINFO environment variables control where the catopen
and set locale functions search for message catalogs and the language databases.
You define these variables using a pathname or set of pathnames. The pathnames
can contain variable elements, called substitution fields, that allow your program or
the setting of other environment variables to affect 'the setting of NLSP A TH and
INTLINFO. The following shows the format you use to define these variables:

variable-name=" [:] [/ directory] [/ substitution field]
[/ file-name] [: alternate-pathname] [: ... "

You specify either NLSP A TH or INTLINFO in place of variable-name.

A colon (:) that precedes other parts of any pathname in the definition specifies the
current directory.

In directory, you can specify a specific directory in which the function searches. If
you need the environment variable to be flexible, you can use a substitution field in
place of or with directory names. A substitution field consists of a percent sign (%),
followed by a code letter. The substitution fields you can use are as follows:

%N The value of the name argument you pass to catopen

% L The value of the LANG environment variable

% I The language element from LANG

%t The territory element from LANG

File Formats 5-39

environ (Sint)

%c The codeset element from LANG

% % A literal percent sign

If a substitution field you specify is currently undefined, catopen or setlocale
substitutes a null string. Neither function includes the underscore (_) or period (.)
separator in %t or %c substitutions.

You can specify more than one pathname when you define these environment
variables. You separate each pathname from the one that follows it using a colon (:).
If you need to specify the current directory in a pathname other than the first
pathname in the list, use a double colon (::). The functions interpret the first colon as
a separator between pathnames and the second colon as specifying the current
directory.

The following describes the leONV, INTLINFO, and NLSPATH environment
variables:

ICONV

INTLINFO

NLSPATH

5-40 File Formats

The ICONV environment variable stores the directory pathname for the
conversion codesets used by the iconv command. If this variable is
undefined, iconv searches the /usr / lib/ intln/ conv directory.

The following example shows how to define ICONV:

ICONV=/usr/lib/international/conversions

In this example, ICONV is defined as the directory pathname
/usr/users/international/conversions.

The INTLINFO environment variable stores the location of the language
database. The setlocale function reads INTLINFO when it searches
for the database.

The following example shows how to define INTLINFO:

INTLINFO = ":%L:/usr/lib/intln/%L:/usr/lib/intln/ENG_%t.%c"

In this example, the setlocale function searches for the language
database named in the LANG environment variable. The function
searches for the variable in the current directory. If the database is not in
the current directory, set locale searches in the /usr/ lib/ intln
directory for·that same database. Finally, if the database specified by
LANG is unavailable, set locale searches in /usr / lib/ intln for
the English language database that matches the current territory and
codeset.

The NLSPATH environment variable controls where the catopen
function searches for a message catalog.

The following example shows defines NLSPA TH:

NLSPATH=":%N.cat:/nlslib/%N.cat:nlslib/prograrn.cat"

This definition causes catopen to search in the current directory for the
message catalog named in the name argument you pass. If the function
cannot find the message catalog in the current directory, it searches in the
/nlslib directory. If the catalog is not in that directory, catopen
opens the /nlslib/program. cat message catalog.

See Also
intro(3int), exec(2), setlocale(3), catopen(3int), lang(5int)
Guide to Developing International Software

environ (Sint)

File Formats 5-41

ethers (5)

Name
ethers - database that maps Ethernet addresses to hostnames

Description
The jete/ethers file is used in conjunction with the reverse address resolution
protocol daemon, rarpd, to map Ethernet addresses to hostnames. It contains
information about the known (48-bit) Ethernet addresses of hosts on the Internet.

For each host on an Ethernet, a single line should be present in the file with the
following information:

Ethernet-address official-host-name

Items are separated by one or more spaces or tabs. A number sign (#) indicates the
beginning of a comment that extends to the end of line.

The standard form for Ethernet addresses is:

x:x:x:x:x:x

The x is a hexadecimal number between 0 and if, representing 1 byte. The address
bytes are always in network order.

Hostnames can contain any printable character other than a space, tab, newline, or
number sign (#)~

Hostnames in the jete/ethers file should correspond to the hostnames in the
jete/hosts file.

Examples
The following is a sample ethers file:

08:00:20:01:e5:1c
08:00:20:01:dO:4c
08:00:20:01:eO:ld
08:00:20:00:c2:4e

See Also
hosts(5), rarpd(8c)

hostl
host2
host3
host4

Guide to Network Programming

5-42 File Formats

Comments go here
Comments go here
Comments go here
Comments go here

exports (5nfs)

Name
exports - defines NFS file systems to be exported

Syntax
fete/exports

Description
The / etc/exports file describes the local file systems and directories that can be
mounted by remote hosts through the use of the NFS protocol. The exports file
can also be used to restrict access to a particular set of remote systems. The mount
request daemon mountd(8nfs) accesses the exports file each time it receives a
mount request from an NFS client.

Each entry in the / etc/ exports file consists of a file system or directory name
followed by an optional list of options or an optional list of identifiers or both. The
identifiers define which remote hosts can mount that particular file system or
directory. The identifiers listed beside the name of each file system or directory can
be either host names or YP netgroups names. When the mountd daemon receives a
mount request from a client, it searches for a match in the list of identifiers, first by
checking the client host name with the host name identifiers and second by checking
the client host name in a YP netgroups. When it finds a match, mountd makes that
file system or directory available to the requesting client.

The exports file format is defined as follows:

pathname [-r=#] [-0] [identifier_l identifier 2 identifier_n]

or

#anything

pathname:

options:

identifiers:

Name of a mounted local file system or a directory of a mounted
local file system. The pathname must begin in column 1.

-r=# Map client superuser access to uid #. If you want to
allow client superusers access to the file system or
directory with the same permissions as a local superuser,
use -r=O. Use -r=O only if you trust the superuser on
the client system. The default is -r=2, which maps a
client superuser to nobody. This limits access to world
readable files.

-0 Export file system or directory read-only.

The options can be applied to both file system and
directory entries in / etc / e xp 0 rt s .

Host names or netgroups, or both, separated by white space, that
specify the access list for this export. Host names can optionally
contain the local BIND domain name. For more information on
BIND, see the Guide to the BINDIHesiod Service.

File Formats 5-43

exports (5nfs)

NOTE

If no hosts or netgroups are specified, the mount daemon exports this
file system or directory to anyone requesting it.

A number sign (#) anywhere in the line marks a comment that extends to the end of
that line.

A whitespace character in the left-most position of a line indicates a continuation
line.

Each file system that you want to allow clients to mount must be explicitly defined.
Exporting only the root (/) will not allow clients to mount /usr. Exporting only
/usr will not allow clients to mount /usr / local, if it is a file system.

Duplicate directory entries are not allowed. The first entry is valid and following
duplicates are ignored.

Desired export options must be explicitly specified for each exported resource: file
system or directory. If a file system and subdirectories within it are exported, the
options associated with the file system are not' 'inherited". You do not need to
export an entire file system to allow clients to mount subdirectories within it.

The access list associated with each exported resource identifies which clients can
mount that resource with the specified options. For example, you can export an
entire file system read-only, with a subdirectory within it exported read-write to a
subset of clients. If a client that is not identified in the export access list of a
directory attempts to mount it, then access is checked against the closest exported
ancestor. If mount access is allowed at a higher level in the directory tree of the file
system, the export options associated with the successful match will be in effect.

Examples

Files

lusr alpha beta # export lusr to hosts alpha and beta, client
superuser maps to uid -2 and read-write
access is permitted

lusrlstaff/doe clients # export directory to hosts in netgroup clients

lusr/man/manl -0 # export directory read-only to everyone

lusr/local -r=O beta # export file system to beta, superuser
on beta maps to local superuser (uid=O)

jete/exports

See Also
hosts(5), mountd(8nfs), netgroup(5yp)
Guide to the BINDIHesiod Service
Introduction to Networking and Distributed System

5-44 File Formats

filehdr(5)

Name
filehor - file header for RISe object files

Syntax
#include < filehdr .h>

Description
Every RISe object file begins with a 20-byte header. The following e struct
declaration is used:

struct filehdr
{

} ;

unsigned short
unsigned short
long
long
long
unsigned short
unsigned short

f_magic;
f_nscns;
f_timdat;
f_symptr;
f_nsyms;
f_opthdr;
f_flags;

/* magic number */
/* number of sections */
/* time & date stamp */
/* file pointer to symbolic header */
/* sizeof(symbolic header) */
/* sizeof(optional header) */
/* flags */

The byte offset into the file at which the symbolic header can be found is f symptr.
Its value can be used as the offset in fseek(3s) to position an I/O stream to the
symbolic header. The ULTRIX system optional header is 56 bytes. The valid magic
numbers are given below:

#define MIPSEBMAGIC Ox0160 /* objects for big-endian machines */
#define MIPSELMAGIC Ox0162 /* objects for little-endian machines */
#define MIPSEBUMAGIC Ox0180 /* ucode objects for big-endian machines */
#define MIPSELUMAGIC Ox0182 /* ucode objects for little-endian machines */

RIse object files can be loaded and examined on machines differing from the
object's target byte sex. Therefore, for object file magic numbers, the byte-swapped
values have define constants associated with them:

#define SMIPSEBMAGIC Ox6001
#define SMIPSELMAGIC Ox6201

The value in f_timdat is obtained from the t ime(2) system call. Flag bits used in
RISe objects are:

#define F RELFLG 0000001
#define F EXEC 0000002
#define F LNNO 0000004
#define F_LSYMS 0000010

See Also
time(2), fseek(3s), a.out(5)

/* relocation entries stripped */
/* file is executable */
/* line numbers stripped */
/* local symbols stripped */

File Formats 5-45

Rise

fs(5)

Name

Syntax

fs, inode - format of file system volume

#include <sys/types.h>
#include <sys/fs.h>
#include <sys/inode.h>

Description
Every file system storage volume (disk, 9-track tape, for instance) has a common
format for certain vital information. Every such volume is divided into a certain
number of blocks. The block size is a parameter of the file system. Sectors 0 to 15
on a file system are used to contain primary and secondary bootstrapping programs.

The actual file system begins at sector 16 with the super block. The layout of the
super block as defined by the include file <sysl/s.h> is:

#define FS_MAGIC OxOl1954
struct fs { \

struct fs *fs~Jink; /* linked list of file systems * /
struct fs *fs_rlink; /* used for incore super blocks */
daddr_t fs_sblkno; /* addr of super block in filesys */
daddr_t fs_cblkno; /* offset of cyl-block in filesys */
daddr_t fs_iblkno; /* offset of inode-blocks in filesys * /
daddr_t fs_dblkno; /* offset of first data after cg * /
long fs_cgoffset; /* cylinder group offset in cylinder */
long fs_cgmask; /* used to calc mod fs_ntrak * /
time_t fs_time; /* last time written * /
long fs_size; /* number of blocks in fs * /
long fs_dsize; /* number of data blocks in fs * /
long fs_ncg; /* number of cylinder groups */
long fs_bsize; /* size of basic blocks in fs * /
long fs_fsize; /* size of frag blocks in fs * /
long fs_frag; /* number of frags in a block in fs * /

/* these are configuration parameters * /
long fs_minfree; /* minimum percentage of free blocks * /
long fs_rotdelay; /* num of ms for optimal next block */
long fs_rps; /* disk revolutions per second * /

/* these fields can be computed from the others * /
long fs_bmask; / /* "blkoff" calc ofblk offsets */
long fs_fmask; /* "fragoff" calc of frag offsets * /
long fs_bshift; /* "lblkno" calc of logical blkno */
long fs_fshift; /* "numfrags" calc number of frags * /

/* these are configuration parameters * /
long fs_maxcontig; /* max number of contiguous blks * /
long fs_maxbpg; /* max number of blks per cyl group * /

/* these fields can be computed from the others */
long fs_fragshift; /* block to frag shift * /
long fs_fsbtodb; /* ·fsbtodb and dbtofsb shift constant */
long fs_sbsize; /* actual size of super block * /
long fs_csmask; /* csum block offset */

5-46 File Formats

fs(5)

long fs_csshift; /* csum block number * /
long fs_nindir; /* value of NINDIR */
long fs_inopb; /* value of INOPB * /
long fs_nspf; /* value of NSPF * /
long fs_sparecon[6]; /* reserved for future constants */

/* sizes determined by number of cylinder groups and their sizes * /
daddr_t fs_csaddr; /* blk addr of cyl grp summary area * /
long fs_cssize; /* size of cyl grp summary area * /
long fs_cgsize; /* cylinder group size */

/* these fields should be derived from the hardware * /
long fs_ntrak; /* tracks per cylinder * /
long fs_nsect; /* sectors per track * /
long fs_spc; /* sectors per cylinder */

/* this comes from the disk driver partitioning */
long fs_ncyl; /* cylinders in file system * /

/* these fields can be computed from the others * /
long fs_cpg; /* cylinders per group */
long fs_ipg; /* inodes per group * /
long fs_fpg; /* blocks per group * fs_frag * /

/* this data must be recomputed after crashes * /
struct csum fs_cstotal; /* cylinder summary information * /

/* these fields are cleared at mount time * /
char fs_fmod; /* super block modified flag * /
char fs_clean; /* file system is clean flag */
char fs_ronly; /* mounted read-only flag */
char fs_flags; /* currently unused flag */
char fs_fsmnt[MAXMNTLEN];

/* name mounted on * /
/* these fields retain the current block allocation info * /

long fs_cgrotor; /* last cg searched */
struct csum *fs_csp[MAXCSBUFS];

/* list of fs_cs info buffers */
long fs_cpc; /* cyl per cycle in postbl */
short fs_postbl[MAXCPG] [NRPOS];

long fs_magic;
/* head of blocks for each rotation * /
/* magic number * /

u_char fs_rotbl[1];
/* actually longer */
} ;

/* list of blocks for each rotation */

Each disk drive contains some number of file systems. A file system consists of a
number of cylinder groups. Each cylinder group has inodes and data.

A file system is described by its super block, which in tum describes the cylinder
groups. The super block is critical data and is replicated in each cylinder group to
protect against catastrophic loss. This is done at file system creation time and the
critical super block data does not change, so the copies need not be referenced further
unless disaster strikes.

Addresses stored in inodes are capable of addressing fragments of "blocks". File
system blocks of at most size MAXBSIZE can be optionally broken into 2, 4, or 8
pieces, each of which is addressable; these pieces can be DEV _BSIZE or some
multiple of a DEV _BSIZE unit.

File Formats 5-47

fs(5)

Large files consist of exclusively large data blocks. To avoid undue wasted disk
space, the last data block of a small file is allocated only as many fragments of a
large block as are necessary. The file system format retains only a single pointer to
such a fragment, which is a piece of a single large block that has been divided. The
size of such a fragment is determinable from information in the inode, using the
"blksize(fs, ip, Ibn)" macro.

The file system records space availability at the fragment level; to determine block
availability, aligned fragments are examined.

The root inode is the root of the file system. Inode 0 cannot be used for normal
purposes and historically bad blocks were linked to inode 1; thus the root inode is 2.
(Although inode 1 is no longer used for this purpose, numerous dump tapes make
this assumption.) The lost+found directory is given the next available inode when it
is initially created by mkfs.

fs_minfree gives the minimum acceptable percentage of file system blocks that may
be free. If the freelist drops below this level, only the superuser can continue to
allocate blocks. This can be set to ° if no reserve of free blocks is deemed necessary;
however, severe performance degradations will be observed if the file system is run at
greater than 90% full. Thus, the default value of fs _ minfree is 10%.

Empirically the best trade-off between block fragmentation and overall disk
utilization at a loading of 90% comes with a fragmentation of 4. Thus, the default
fragment size is a fourth of the block size.

Cylinder group related limits: Each cylinder keeps track of the availability of blocks
at different rotational positions, so that sequential blocks can be laid out with
minimum rotational latency. NRPOS is the number of rotational positions which are
distinguished. With NRPOS 8, the resolution of the summary information is 2ms for
a typical 3600 rpm drive.

fs rotdelay gives the minimum number of milliseconds to initiate another disk
transfer on the same cylinder. It is used in determining the rotationally optimal
layout for disk blocks within a file; the default value for fs _ro tde lay is 2ms.

Each file system has a statically allocated number of inodes. An inode is allocated
for each NBPI bytes of disk space. The inode allocation strategy is extremely
conservati ve.

MAXIPG bounds the number of inodes per cylinder group and is needed only to
keep the structure simpler by having the only a single variable size element (the free
bit map). MAXIPG must be a multiple of INOPB(fs).

MINBSIZE is the smallest allowable block size. With a MINBSIZE of 4096, it is
possible to create files of size 2"32 with only 2 levels of indirection. MINBSIZE
must be big enough to hold a cylinder group block, so changes to (struct cg) must
keep its size within MINBSIZE. MAXCPG is limited only to the dimension of an
array given in (struct cg); it can be made larger as long as that structure's size
remains within the bounds dictated by MINBSIZE. Note that super blocks are never
more than size SBSIZE.

The path name on which the file system is mounted is maintained in fs Jsmnt.
MAXMNTLEN defines the amount of space allocated in the super block for this
name. The limit on the amount of summary information per file system is defined by
MAXCSBUFS.It is currently parameterized for a maximum of 2,000,000 cylinders.

5-48 File Formats

fs(5)

Per cylinder group infonnation is summarized in blocks allocated from the first
cylinder group's data blocks. These blocks are read in fromJs csaddr (sizeJs cssize)
in addition to the super block. sizeof (struct csum) must be apower of 2 in order for
the "fs_cs" macro to work.

Super block Jor a file system: MAXBPC bounds the size of the rotational layout
tables and is limited by the fact that the super block is of size SBSIZE. The size of
these tables is inversely proportional to the block size of the file system. The size of
the tables is increased when sector sizes are not powers of 2, as this increases the
number of cylinders included before the rotational pattern repeats (Js _ cpc). The size
of the rotational layout tables is derived from the number of bytes remaining in
(struct fs).

MAXBPG bounds the number of blocks of data per cylinder group, and is limited by
the fact that cylinder groups are at most one block. The size of the free block table is
derived from the size of blocks and the number of remaining bytes in the cylinder
group structure (struct cg).

[node: The inode is the focus of all file activity in the UNIX file system. There is a
unique inode allocated for each active file, each current directory, each mounted-on
file, text file, and the root. An inode is 'named' by its device/i-number pair. For
further infonnation, see the include file <syslinode.h>.

File Formats 5-49

fstab (5)

Name
fstab - file containing static information about known file systems

Description
The / et c / f stab file contains descriptive information about the known file
systems. By convention, /etc/fstab is created and maintained as a read-only file
by the system administrator. Each file system is described by its own line within
/ etc / f stab. The order of these lines and the file systems they represent is
important because fsck and mount sequentially process /etc/fstab in the
performance of their tasks.

The format of each file system description in / etc/ fstab is as follows:

spec:file:type:freq:passno:name:options

The meanings of these fields are:

spec

file

type

freq

passno

name

options

The block special file name of the device on which the file system is
located. It can also be a network name for n f s, such as / @ e r i e or
/@suez.

The pathname of the directory on which the file system is mounted.

How the file system is mounted. The ways in which a file system can be
mounted are:
rw - mount the file system read-write
ro - mount the file system read only
rq - mount the file system read-write with quotas
sw - make the special file part of the swap space
xx - ignore the entry

The frequency (in days) with which the dump command dumps the rw,
ro, and rq file systems.

The order in which the f s c k command checks the rw, ro, and rq file
systems at reboot time.

The name of the file system type. File systems can have the following
types: ufs -- ULTRIX file system and nfs -- SUN Network file system.

The options field. This field contains an arbitrary string meaningful only
when mounting file systems with the specified file system type name,
such as NFS.The specific options are described in the mount reference
pages.

Special actions occur for file systems of type sw and rq at system boot time. File
systems of type sw are made part of the swap space by the swapon(8) command and
disk quotas are automatically processed by the quotacheck(8) command and then
enabled by the quotaon(8) command for rq file systems.

Examples
Here is a sample f stab file:

/dev/raOa:/:rw:l:l:ufs::
/dev/ralg:/usr:rw:l:2:ufs::
/@bigvax:/bigvax:rw:O:O:nfs::

5-50 File Formats

/usr/uws2.0@bigvax:/usr/uws2.0:rw:O:O:nfs:soft,bg,nosuid:
/usr/dec@bigvax:/usr/dec:rw:O:O:nfs:bg,soft,nosuid:
/usr/pro/xyz@vax:/usr/pro/xyz:rw:O:O:nfs:bg,soft,intr,nosuid:

fstab (5)

The last three entries in the f stab sample shown use NFS options as described in
the mount(8nfs) reference page.

Restrictions

Files

The passno field of the root file system should be specified as 1. Other file systems
should have larger values. File systems on the same device should have distinct
passno fields. File systems on different devices may have the identical pass no fields
to allow them to be simultaneously checked.

All field delimiters (:) must exist within each file system description; only the options
field may not be present. However, only the fields spec and type are meaningful to
sw file systems and only the type field is meaningful to xx file systems.

The file system description within / et c / f stab should be parsed only through use
of the get f sent routines.

/etc/fstab File system information file

See Also
getfsent(3x), dump(8), fsck(8), mount(8), mount(8nfs), mount(8ufs) quotacheck(8),
quotaon(8), swapon(8)

File Formats 5-51

gettytab (5)

Name
gettytab - terminal configuration data base

Syntax
/etc/ gettytab

Description
The gettytab file is a simplified version of the termcap(5) data base used to
describe tenninallines. The initial terminal login process get t y(8) accesses the
gettytab file each time it starts, allowing simpler reconfiguration of terminal
characteristics. Each entry in the data base is used to describe one class of terminal.

There is a default terminal class, default, that is used to set global defaults for all
other classes. That is, the default entry is read, and then the entry for the class
required is used to override particular settings.

Capabil ities
Refer to termcap(5) for a description of the file layout. The default column below
lists defaults obtained if there is no entry in the table obtained, nor one in the special
default table.

Name Type Default Description

ab bool false Auto-baud speed selection mechanism
ap bool false Terminal uses any parity
bd num 0 Backspace delay
bk str 0377 Alternate end of line character (input

break)
cb bool false Use crt backspace mode
cd num 0 Carriage-return delay
ce bool false Use crt erase algorithm
ck bool false Use crt kill algorithm
cl str NULL Screen clear sequence
co bool false Console - add Ofter login prompt
ds str Ay Delayed suspend character
ec bool false Leave echo 20FF
ep bool false Terminal uses even parity
er str A? Erase character
et str AD End of text 2EOF character
ev str NULL Initial environment
fO num unused Tty mode flags to write messages
f1 num unused Tty mode flags to read login name
f2 num unused Tty mode flags to leave terminal as
fd num 0 Form-feed (vertical motion) delay
ft str AO Output flush character
hc bool false Do not hangup line on last close
he str NULL Hostname editing string
hn str hostname Hostname
ht bool false Terminal has real tabs

5-52 File Formats

gettytab (5)

ig bool false Ignore garbage characters in login name
im str NULL Initial (banner) message
in str AC Interrupt character

. is num unused Input speed
kl str AU Kill character
Ie bool false Terminal has lower case
1m str login: Login prompt
In str AV "literal next" character
10 str /bin/login Program to exec when name obtained
nd num 0 Newline (line-feed) delay
nl bool false Terminal has (or might have) a newline

character
nx str default Next table (for auto speed selection)
op bool false Terminal uses odd parity
os num unused Output speed
p8 bool false Use 8-bit characters
pc str Pad character
pd bool false Disable parity on output
pe bool false Use printer (hard copy) erase algorithm
pf num 0 Delay between first prompt and following

flush (seconds)
ps bool false Line connected to a MICOM port selector
qu str A Quit character
rp str AR Line retype character
rw bool false Do not use raw for input, use cbreak
sp num unused Line speed (input and output)
su str AZ Suspend character
tc str none Table continuation
to num 0 Timeout (seconds)
tt str NULL Terminal type (for environment)
ub bool false Do unbuffered output (of prompts and so

forth)
uc bool false Terminal is known upper-case only
we str AW Word erase character
xc bool false Do not echo control chars as A X
xf str AS XOFF (stop output) character
xn str AQ XON (start output) character

If no line speed is specified, speed will not be altered from that which prevails when
get t y is entered. Specifying an input or output speed will override line speed for
stated direction only.

Terminal modes to be used for the output of the message, for input of the login
name, and to leave the terminal set as upon completion, are derived from the Boolean
flags specified. If the derivation should prove inadequate, any (or all) of these three
may be overriden with one of the f 0, f 1, or f 2 numeric specifications, which can be
used to specify (usually in octal, with a leading 0) the exact values of the flags.
Local (new tty) flags are set in the top 16 bits of this (32-bit) value.

Should getty receive a null character (presumed to indicate a line break), it will
restart using the table indicated by the nx entry. If there is none, it will reuse its
original table.

File Formats 5-53

gettytab (5)

Delays are specified in milliseconds; the nearest possible delay available in the tty
driver will be used. Should greater certainty be desired, delays with values 0, 1, 2,
and 3 are interpreted as choosing that particular delay algorithm from the driver.

The cl screen clear string may be preceded by a (decimal) number of milliseconds of
delay required (a la termcap). This delay is simulated by repeated use of the pad
character pc.

The initial message, and login message, im and 1m may include the character
sequence %h to obtain the host name, %t to obtain the terminal name, and %d to
obtain the date. (% % obtains a single percent (%) character.) The host name is
normally obtained from the system, but may be set by the hn table entry. In either
case, it can be edited with he. The he string is a sequence of characters; each
character that is neither an at sign (@) nor a number sign (#) is copied into the final
host name. An at sign (@) in the he string causes one character from the real host
name to be copied to the final host name. A number sign (#) in the he string causes
the next character of the real host name to be skipped. Surplus at signs (@) and
number signs (#) are ignored.

When get ty executes the login process, given in the 10 string (usually
/bin/ login) , it will have set the environment to include the terminal type, as
indicated by the t t string, if it exists. The ev string can be used to enter additional
data into the environment. ·It is a list of comma-separated strings, each of which
should be of the form name=value.

If a nonzero timeout is specified with to, then get t y will exit within the indicated
number of seconds, either having received a login name and passed control to
login, or having received an alarm signal, and exited. This may be useful to hang
up dial-in lines.

The p 8 flag allows use of 8-bit characters.

The pd flag turns off parity on output. Output from getty is even parity unless the
op flag, the pd flag, or the p8 flag is specified. The ap flag is used to allow any
parity on input. The op (ep) flag may be specified with the ap flag to allow any
parity on input, but generate odd(even) parity on output. The parity on output is
accomplished by using the eighth bit as the parity bit. get t y (8) does not check
parity of input characters in RAW mode or 8-bit mode.

Terminals that are set up to operate in 8-bit mode should use get t yt ab entries
which include the p 8 flag. If a terminal that is set up in 8-bit mode fails to use an
appropriate gettytab entry, the output from getty and login can appear as
multinational characters. This is due to the fact that getty uses the eighth bit of
characters to provide software generated parity. The software parity generation will
transform certain ASCII characters into multinational characters. Earlier releases of
the ULTRIX operating system did not display these multinational characters, due to
the lack of full 8-bit support in the terminal subsystem.

Restrictions
Because some users insist on changing their default special characters, it is wise to
define at least the erase, kill, and interrupt characters in the default table. In all
cases, # or CTRL/H typed in a login name will be treated as an erase character, and
@ will be treated as a kill character.

5-54 File Formats

gettytab (5)

login(1) destroys the environment, so there is no point setting it in gettytab.

See Also
termcap(5), getty(8)

File Formats 5-55

gfsi (5)

Name
gfsi - The Generic File System Interface

Description
The Generic File System Interface (GFSI) is the interface between the kernel and
specific file system implementations such as u f s, the local UL TRIX file system and
nfs, the Network File System. The Generic File System Interface has many
performance improvements, along with a complete reorganization of the file system
code. The GFS interface has been accomplished with modifications to both the
mount table, s y s / moun t . h and to the inode, which under the GFS interface
implementation is referred to as the gnode. The gnode is defined in the
sys/gnode. hand sys/gnode_common. h.

The GFS interface allows superusers to mount and umoun t file systems on local
and remote machines. Changes to the /etc/fstab file allow any type of mount to
occur automatically at boot time in the files / etc/ rc and / etc/ rc. boot. Other
than mounting and unmounting file systems, users should not see any difference in
the local file system.

The GFS interface requires two system calls: getmnt(2) and getdirentries(2).
The getmnt system call handles generic mounted file system data. The
getdirentries system call handles generic directory entries from any file
system.

See Also
getdirentries(2), getmnt(2), mount(2), fstab(5), nfs(5nfs), ufs(5), fsck(8), mount(8)

5-56 File Formats

group (5)

Name
group - group file

Description
The group file is an ASCII file that contains the following information for each
group:

Group name
Encrypted password
Numerical group ID
Comma-separated list of all users allowed in the group

Each group name is separated from the next by a new line. The fields are separated
by colons. If the password field is null, no password is demanded.

Because of the encrypted passwords, it can and does have general read permission
and can be used, for example, to map numerical group IDs to names.

The group database can be distributed in a network by a naming service, such as
Yellow Pages or BIND/Hesiod. See the Guide to the Yellow Pages Service or the
Guide to the BINDIHesiod Service for setup information.

Restrictions
The passwd(1) command will not change the passwords.

Files
jete/group

See Also
passwd(1), setgroups(2), crypt(3), getgrent(3), initgroups(3x), passwd(5)
Guide to the BINDIHesiod Service
Guide to the Yellow Pages Service

File Formats 5-57

group (5yp)

Name
group - group file in a Yellow Pages environment

Description

For each group, the group file contains:

Group name
Encrypted password
Numerical group ID
Comma-separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons. Each group is separated
from the next by a new-line. If the password field is null, no password is needed.

This file resides in the / ete directory. Because of the encrypted passwords, it can
and does have general read permission and can be used, for example, to map
numerical group ID's to names.

A group file can have a line beginning with a plus (+), which means to incorporate
entries from the Yellow Pages. There are two styles of + entries: All by itself, +
means to insert the entire contents of the Yellow Pages group file at that point;
+name means to insert the entry (if any) for name from the Yellow Pages at that
point. If a + entry has a password or group member field that is not null, the
contents of that field will override what is contained in the Yellow Pages. The
numerical group ID field cannot be overridden.

Examples

+myproject:: :bill, steve
+:

If these entries appear at the end of a group file, then the group myproject will have
members bill and steve, and the password and group ID of the Yellow Pages entry
for the group myproject. All the groups listed in the Yellow Pages will be pulled in
and placed after the entry for myproject.

Restrictions
The passwd(l) command will not change group passwords.

Files

jete/group ULTRIX file system group file

/ete/yp/{domain}/group
Yellow Pages group map

See Also
yppasswd(1yp), setgroups(2), crypt(3), initgroups(3x), passwd(5yp)

5-58 File Formats

hesiod.conf (5)

Name
hesiod.conf - Hesiod configuration file

Description
The Hesiod configuration file, /etc/hesiod. conf, contains information read by
the Hesiod routines the first time they are invoked by a process. The Hesiod file
consists of ASCII text.

The / etc/hesiod. conf file is required if your system is running BIND/Hesiod.
This file must contain both the left-hand side and right-hand side of a Hesiod query.

The /etc/hesiod. conf file includes the two following entry formats:

rhs This line specifies the right-hand side of a Hesiod query. It consists of
the BIND domain name preceded by a dot (.).

lhs This entry is not currently being used but exists for compatibility
purposes.

This file is created by bindsetup(8).

Examples
The following is an example hesiod. conf file in the dec. com BIND domain.

Files

rhs=.dec.com
Ihs=

/etc/hesiod.conf

See Also
hesiod(3), bindsetup(8)
Guide to the BINDIHesiod Service

File Formats 5-59

hosts (5)

Name
hosts - host name file

Description

Files

The hosts file is an ASCII file that contains infonnation about the known hosts on
the DARPA Internet. For each host a single line should be present with the
following infonnation:

Internet address
Official host name
Aliases

Each host name is separated from the next by a new line. Items are separated by
any number of blanks or tab characters. A number sign (#) indicates the beginning of
a comment; characters up to the end of the line are not interpreted by routines that
search the file. This file is nonnally created from the official host data base
maintained at the Network Infonnation Control Center (NIC), though local changes
may be required to bring it up to date regarding unofficial aliases or unknown hosts.

Host addresses are specified in the conventional dot (.) notation using the inet_addr
routine from the Internet address manipulation library, inet(3n). Host names can
contain any printable character other than a field delimiter, newline, or comment
character.

The hosts database may be distributed in a network by a naming service, such as
Yellow Pages or BIND/Hesiod. See the Guide to the Yellow Pages Service or the
Guide to the BINDIHesiod Service for setup infonnation.

jete/hosts

See Also
gethostent(3n)
Guide to the BINDIHesiod Service
Guide to the Yellow Pages Service

5-60 File Formats

hosts.equiv (5)

Name
hosts.equiv -list of trusted hosts

Description
The hosts. equi v file resides in the / etc directory and contains a list of trusted
hosts. When an rlogin(lc) or rsh(1c) request from a host listed in the
h 0 s t s . e qu i v file is made, and the initiator of the request has an entry in
/etc/passwd, further validity checking is not required. Thus, rlogin does not
prompt for a password, and rsh completes successfully. When a remote user is in
the local hosts. equi v file, that user is defined as equivalenced to a local user
with the same user ID.

The format of hosts. equi v is a list of names, as in:
hostl
-host2
+@groupl
-@group2

A line consisting of a host name means that anyone logging in from that host is
trusted. A line consisting of a host name preceded by - means that anyone logging
in from that host is not trusted. A line consisting of a single + means that all
hosts are trusted.

NOTE

Placing a line consisting of a single + in your hosts. equi v file poses
substantial security risks and is not recommended.

The +@ and -@ syntax are specific to Yellow Pages (YP). A line consisting of
+@group means that all hosts in that network group (which is served by YP) are
trusted. A line consisting of -@group means that hosts in that network group (which
is served by YP) are not trusted. Programs scan the hosts. equi v file sequentially
and stop when they encounter the appropriate entry (either positive for host name and
+@ entries, or negative for -@ entries).

The hosts. equi v file has the same format as the. rhosts file. When a user
executes rlogin or rsh, the. rhosts file from that user's home directory is
concatenated onto the hosts. equi v file for permission checking. The host names
listed in the / etc/hosts. equi v and. rhosts files may optionally contain the
local BIND domain name. For more information on BIND, seethe Guide to the
BINDIHesiod Service. If a user is excluded by a minus entry from hosts. equi v
but included in . rhosts, that user is considered trusted. In the special case when
the user is root, only the. rhosts file is checked.

It is possible to have two entries on a single line. Separate the entires with a space.
If the remote host is equivalenced by the first entry, the user named by the second
entry is allowed to specify any name to the -1 option (provided that name is in the
/etc/passwd file). For example:

suez john

This entry allows John to log in from suez. The normal use would be to put this
entry in the. rhosts file in the home directory for bill. Then, John can log in as
bill when coming from suez without having to supply a password. The second entry

File Formats 5-61

hosts.equiv (5)

Files

can be a netgroup. For example:

+@groupl +@group2

This entry allows any user in group2 coming from a host in group1 to log in as
anyone.

/var /yp/ domain/netgroup
/var /yp/ domain/netgroup. byuser
/var /yp/ domain/netgroup. byhost

See Also
rlogin(1c), rsh(lc), netgroup(5yp)
Guide to the BINDIHesiod Service
Guide to the Yellow Pages Service

, 5-62 File Formats

inetd.conf (5)

Name
inetd.conf - Internet daemon configuration data base

Description

Files

The inetd. conf file contains information regarding the services that inetd(8c)
will handle by opening sockets and listening for requests. For each service, a single
line should be present with the following information:

Official service name (must be in / etc/ services)

Socket type (stream or dgram)

Protocol name (must be in / etc/protocols)

Delay (wait or no wait)

Program (fully specified server program name)

Arguments (up to five arguments for server program)

Items are separated by any number of blanks or tab characters. A number sign (#)
indicates the beginning of a comment. Characters up to the end of the line are not
interpreted by routines that search the file.

Fields may contain any printable character other than a field delimiter, newline, or
comment character.

A server marked as "wait" must be able to handle all requests that come to it during
its lifetime. The inetd(8c) program will not invoke any new instances of the
program until the current one terminates. If a server is marked as "nowait", a new
invocation of the server will be started for every incoming request.

/etc/inetd.conf

See Also
protocols(5), services(5), inetd(8c)

File Formats 5-63

kitcap (5)

Name
kitcap - kit descriptor database for gentape and genra utilities.

Description
The ki tcap file is a database for kit descriptors containing product codes,
directories, files, and subsets that make up a product description to be used by
gentapes or genra to create distribution media. All fields are separated by
colons (:) with a backslash (\) at the end of a line indicating continuation. Lines
starting with a number sign (#) are considered comments and are ignored. Comment
fields with a kit code description are delimited by an opening number sign (#) and a
closing colon (:).

The following ki tcap entry examples are for TK50 and MT9 media types:

Product-codeTK I Product Description:\
directoryl:directory2:directory3:\
subsetl:subset2:subset3:subset4:subset5

Product-codeMT I Product Description:\
directoryl:directory2:directory3:\
subsetl:subset2:subset3:subset4:subset5:\
%%2:\
subset6:subset7:subset8:subset9:subsetlO

The following parts make up the ki tcap descriptor for magnetic tape media:

Prod uct -code
This is an arbitrary name made up of letters and/or numbers unique to the
product that it describes. Typical codes include a product identifier and a
version identifier, as indicated in the previous examples.

Media-code (TK or MT)
The media-code is a 2 letter reference that describes the type of media the
files will be written to. The media code must be either TK for TK50 or
MT for 9-track magnetic tape devices. During run time, the gentapes
utility probes the device to be written to and determines if it is a TK50- or
MT9-type device. It then appends either TK or MT to the kitcode given
on the command line and searches for the kitcode (product-code/media­
code) in the kitcap file.

Product Description
This field is a description of the software product that is being created by
the gentapes utility and replaces the NAME field in the. ctrl file of
all the subsets that make up a product. This is an optional field for
magnetic tape media.

Directories

5-64 File Formats

The magnetic tape media production utility has the ability of producing
multi-product tapes. That is, it can take subsets from different products
that are based in different directories and merge them together to form a
third product, which is a combination of the original products. Directory
entries provide the full path locations of where the subsets that are to be
put on media will be stored. There must be at least one directory entry
for each kitcap descriptor.

Subsets

kitcap (5)

This field provides a list of subsets or files that are to be either written to
the magnetic tape media or verified from the magnetic tape media. Each
subset listed must be stored in one of the directories listed in that
particular kit cap descriptor. If a file or subset is stored in a subdirectory of
one of the directories listed in the kitcap descriptor, it is possible to
include that sub-path with the subset/filename entry instead of listing the
entire path!subpath as another directory listing. For example, a directory
listed in the kitcap descriptor under the rules given in the Directories
section is listed as:

/KITS/MYPRODUCT/OOl

A particular subset or file that a user would like to include on the media is
stored in:

/KITS/MYPRODUCT/001/subdirectory/subset

Since the subdirectory/subset specification is part of the
/KITS/MYPRODUCT /001 directory tree, it is not necessary to include
the full path /KITS/MYPRODUCT/001/ subdirectory in the directory
listing. An alternative is to include the subdirectory path with the subset
name in the subset list. For example:

MY-PROD-OOl I This is a good product:\
/KITS/MYPRODUCT/001:\
subsetl:subset2:subdirectory/subset3:subset4

Volume identifier (MT9 media only)
The volume identifier is optional. Multi-tape support is available for
products that have subsets or files that take up more room than is available
by a single 9-track magnetic tape. If the subset list results in an end-of­
tape condition, the subset list can be split into any number of multi­
volume sets by placing %%n (where n is the volume number of the next
tape) anywhere appropriate in the subset list. The subsets listed between
the volume identifiers must fit on a single piece of media. By default, the
subset list located directly after the directory list is always considered the
first volume. Therefore, a volume identifier for the first volume in a
multi-volume kit descriptor is not necessary.

The following example shows a ki tcap entry for disks:

Product-codeRA:partition:\
dd=/:Product_Description:\
directoryl:directory2:directory3:\
subsetl:subset2:subset3:subset4:subset5:\
dd=SUB/DIR:Product_Description:\
directoryl:directory2:directory3:\
subsetl:subset2:subset3:subset4:subset5

The following parts make up the kitcap descriptor for disk media:

Product -code
Same as for magnetic tape.

Media-code
The media code for disks is RA and is appended to the product-code
provided by the user at run time, by the genra utility.

File Formats 5-65

kitcap (5)

Disk Partition

dd=

This field is the partition where you want the software written to on the
disk.

This field tells the genra utility what directory you want the subsets
written to on the disk media that is being created. The contraction dd can
be thought of as the' 'destination directory" for the subsets. This field is
required and allows a hierarchial structure for those who want to put
multiple products on the same disk, or want to separate parts of one
product into different areas on the disk.

Typically, a disk is mounted by the genra utility onto a temporary mount point
under /usr /tmp This location becomes the disks root directory. If a user wants to
have only one directory for an entire product, a valid entry would be dd=/. This entry
tells the genra utility to write all the following subsets under the mount point.

In the disk kitcap descriptor example given previously, the first five subsets are being
written to the mount point, or root directory, for the disk media being made. Then a
new directory on the disk media is made, /mntyoint/SUB/DIR, and the next
five subsets are written into that directory on the disk media.

It is important to note that the top-level directory of the media disk is always
considered the mount point used by the genra script and is referenced by dd=/.
Any subdirectories listed as destination directories are created starting from the
mount point and must be referenced in full. For instance, in the previous example, if
the user wanted to put some other subsets in a subdirectory of DIR, the entry would
be dd=SUB/DIR/SUBSUBDIR. Note that each new destination directory requires a
product description.

Product Description
This field is similar to the one defined under the magnetic tape description.
However, in the case of disk media there are 2 important differences. The
product description is a required field, and all words in the description
must be connected with underscores <_). The genra script removes the
underscores at run time. For example, suppose the desired description was
as follows:

This is a good product

The Product Description entry when making disk media would become:

Directories
Same as for magnetic tape.

Subsets
Same as for magnetic tape.

Examples
TK50 and MT9 (single-volume tape)kitcap description

MYPRODUCT400 I MYPRODUCT software version 4:\
:# directory listing :\
/directoryl:/directory2:/directory3:\
:# subset listing :\
subsetl:subset2:subset3:subset4:subset5

5-66 File Formats

MT9 kitcap description (multi-volume tape)

MYPRODUCT400 I MYPRODUCT software version 4:\
/directoryl:/directory2:/directory3:\
subsetl:subset2:subset3:subset4:subset5:\
:# Volume 2 :\
%%2:\
subset6:subset7:subset8:subset9:subsetlO

RA60 kitcap description (single product)
MYPRODUCT400:c:\

dd=/:MYPRODUCT_software_version_4:\
/directoryl:/directory2:/directory3:\
subsetl:subset2:subset3:subset4:subset5

RA60 kitcap description (multiple product)

MYPRODUCT400:c:\

See Also

dd=MYPRODUCT/BASE:\
MYPRODUCT software version 4 base subsets:\
/directoryl:/directory2:/dir;ctory3:\
subsetl:subset2:subset3:subset4:subset5:\
dd=MYPRODUCT/NONBASE:\
MYPRODUCT software version 4 nonbase subsets:\
/directoryl:/directory2:/dir;ctory3:\
subsetl:subset2:subset3:subset4:subset5

genra(8), gentapes(8)

kitcap (5)

File Formats 5-67

krb.conf (5krb)

Name
krb.conf - Kerberos configuration file

Syntax
I etc/krb.conf

Description
The krb. conf file contains configuration infonnation describing the Kerberos
realm and the Kerberos servers for each realm.

The first line of the / etc/krb. conf file contains the name of the realm for the
local host. The following lines of the file indicate additional realm/host entries.
These lines can contain two parts. The first part is the realm name; the second part is
the host running a Kerberos server for that realm.

Examples

Files

The following example shows a Kerberos configuration file:

dec. com
dec. com mercury.dec.com
dec.com venus.dec.com
dec.com earth.dec.com

/etc/krb.conf

See Also
krb_get_Irealm(3krb)

5-68 File Formats

krb_dbase{5krb)

Name
krb_dbase - ASCII version of the Kerberos database

Description
All of the Kerberos tools, including the kerberos daemon, access a version of the
Kerberos database that is stored in an ndbrn-formatted file. See the ndbrn (3)
reference page for more information. Files in ndbrn format are not user readable. To
examine the Kerberos database, it is necessary to convert the ndbrn database into an
ASCII-formatted file with kdb util (8krb). A file in krb dbase format is an
ASCII-formatted version of the-Kerberos database. -

Each line in a krb _dbase-formatted file lists the attributes associated with a single
Kerberos principal. The following list describes the fields as they appear from left to
right in a krb _ dbase file. A blank entry in the database is indicated by an asterisk
(*).

Kerberos primary name: The primary name is the first part of the principal name
that the line describes. It is usually equivalent to the name of the application or user
that is associated with the principal.

Kerberos instance name: The instance name is the second section of the principal
name that the line describes. It is usually equivalent to the name of the machine on
which an application runs. If the primary name references a user, the instance name
is blank.

Maximum ticket lifetime: The third entry is the maximum lifetime of a ticket
produced for the principal by the ticket-granting service. The number stored in the
krb dbase file indicates the number of 5-minute intervals for which the ticket is
valid~ For example, if the maximum ticket lifetime of a principal is 10, any ticket
that the principal acquires from the ticket-granting service will expire in a maximum
of 50 minutes. The maximum ticket lifetime corresponds to a value of 255 (21 hours
and 15 minutes).

Kerberos database key version: The master key of the Kerberos database is used to
encrypt sections of the Kerberos database. This master key can be changed. The
fourth entry is the version number associated with the master key of the Kerberos
database.

Principal key version: The key associated with the principal can also change. The
fifth field records the version number of the key associated with the principal.

Attributes: The attributes field is not currently used by the UL TRIX implementation
of Kerberos. It should always be zero.

Key of the principal: The key of the principal is stored in the seventh and eighth
fields. It is encrypted with the master database key.

Expiration time: The date on which the principal's entry in the Kerberos database
will expire is stored in the ninth field. The first four digits of the date indicate the
year in which the entry will expire. The next two digits indicate the month, the
seventh and eighth digits indicate the day, and the last four digits indicate the hour

, and minute at which the entry will expire. For example, an entry of the form
198909171755 indicates that the principal's entry will expire on September 17, 1989
at 5:55 in the afternoon.

File Formats 5-69

krb_dbase{Skrb)

Modification time: The modification field stores the date on which the principal's
entry in the Kerberos database was last changed. It is stored in the same format as
the expiration time.

Modifier's name: The eleventh field stores the name of the utility that last modified
the principal's entry. Only db _ creat ion and a blank entry are possible in the
modifier's name field. A blank entry indicates that the field was added by
kdb _ edi t (Skrb). A modifier name field that states that the entry was produced
by db_creation indicates that the entry was added by kdb_init (Skrb) when
the database was created.

Modifier's instance: The twelfth field indicates the instance of the utility that last
modified the principal's entry. This field is always blank.

Examples

Files

The following is an example of an entry form of a krb _dbase-formatted file for
host, cactus.

kprop cactus 255 2 1 0 8f68f19 a941c6d 200001010459 198909171755 * *

/var/dss/kerberos/dbase/dbase

See Also
ndbm(3), kdb_init(8krb), kdb_edit(8kfb), kdb_destroy(8krb), kdb_util(8k:rb)

5-70 File Formats

krb_slaves (Skrb)

Name
krb_slaves - a list of Kerberos slaves

Description
The command kprop (8krb) takes as a parameter the name of a file in which a list
of Kerberos slave machines is stored. This file must be in krb slaves format.

Each line of a krb slaves-formatted file consists of the machine name of a
machine which is running a Kerberos secondary server.

If cactus. dec. corn, dopey, and walrus. dec. com run a Kerberos secondary
server, the krb_slaves file for the Kerberos primary is as follows:

cactus.dec.com
dopey
walrus.dec.com

See Also
kpropd(8krb),kprop(8krb)

File Formats 5-71

L-devices (5)

Name
L-devices - devices used to connect to remote systems

Syntax
lusr/Jib/uucp/L-devices

Description
The u u cp utility uses the L-devices file. The file contains infonnation about call
units and direct connections. It is used to map specifiers in the L. sys(5) file to
specific devices.

The format of each entry, with each field separated by blanks or tabs, is:

type line call-unit speed brand proto

type A device type, such as ACU or DIR. DIR indicates that this is a direct­
connect, hard-wired line.

line The device for the modem line or hard-wired line as named in / dev,
such as culO or ttyab. The special device files are assumed to be in the
/ dev directory.

call-unit The automatic call unit associated with line, for example, cuaO. Hard­
wired lines should place the device for the line in this field, for example,
ttyab. The value for call-unit is usually the same as the value for line.

speed The line speed.

brand The brand name of the modem or ACU. Acceptable brands are DF02,
DF03, or DF112 (for DIGITAL modems), Ventel, Hayes, and Vadic. For
direct connection, place the word direct in this field.

proto The preferred protocol type to use, for example, g or f.

Examples
Here are some typical L-devices entries:

ACU cuaO cuaO 300 DF02
ACU cua1 cua1 1200 DF03
ACU cua2 cua2 1200 DFl12
DIR ttyab ttyab 9600 direct

See Also
Guide to the uucp Utility

5-72 File Formats

L-dialcodes (5)

Name
L-dialcodes - dial code abbreviations

Syntax
/usr/Ub/uucp/L.diaicodes

Description
The uucp utility uses the L-dialcodes file. The file contains the dialcodes used
in the L. sys(5) file (for example, nh, which stands for New Hampshire). The entry
format, with the fields separated by blanks or tabs, is:

abb dial-seq

abb The abbreviation used in the L. sys(5) file.

dial-seq The dial sequence to call that location.

Examples
The following entry in the L-dialcodes file would force any L. sys file entry
that used the prefix "nh" in the phone field to send 603 to the dial unit before the
rest of the phone number is dialed:

nh 603

See Also
Guide to the uucp Utility

File Formats 5-73

L.cmds(5)

Name
L.cmds - allowable remote execution commands

Syntax
/usr/Hb/uucp/L.cmds

Description
The uucp utility uses the L. cmds file to determine which commands can be
executed by remote systems with the uux(lc) command. The uucp utility first
looks in the USERF I LE file to find the execution level defined there for the remote
system. Then, u u cp looks in the L . cmds file. The remote system can execute any
command whose execution level as defined in L. cmds is less than or equal to the
execution level for the system as defined in USERFILE. The format of the L. cmds
file is:

command X#

command An ULTRIX system command or application program.

X# The execution level associated with command. The number # can range
from 0 through 9. If the X field is omitted, then 9 is the default. If X is
specified but # is omitted, then 0 is the default, enabling any system to
use this command.

You can also specify a line in the L • cmds file to define the paths used to search for
commands:

pathl

path2

Examples

PA TH=pathl :path2 : ...

The first directory examined for commands.

The second directory examined for commands.

This example allows remote systems defined in the local system's USERFILE with
an execution level of 1 or higher to execute the commands rmail and mews. Only
remote systems with an execution level of 9 would be able to execute uux.

rmail Xl
rnews Xl
uux X9

See Also
USERFILE(5), uux(1c)
Guide to the uucp Utility

5-74 File Formats

L.sys (5)

Name
L.sys - information needed to connect to a system

Syntax
/usr/lib/uucp/L.sys

Description
The u u cp utility uses the L • s Y s file. The file contains entries for each remote
system that the local system can call and for each remote system for which the local
system accepts calls but does not call. More than one line can be used for a
particular remote system. In this case, the additional lines represent alternative
communication paths that are tried in sequential order.

The format of each entry, with each field separated by blanks or tabs, is:

system-name time device class phone login

system-name
The name of the remote system.

time A string that indicates the days of the week and the times of day when the
system can be called (for example, MoTuTh0800-1740).

device

class

phone

The day portion may be a list containing:

Su Mo Tu We Th Fr Sa

The day may also be Wk for any weekday or Any for any day.

You can indicate hours in a range (for example, 0800-1230). If you do not
specify a time, calls will be allowed at any time.

Note that a time range that spans 0000 is permitted. For example,
0800-0600 means that all times are allowed except times between 6 AM
and 8 AM.

Multiple date specifications that are separated by a vertical bar (I) are
allowed. For example, AnyOl00-06001Sa1Su means that the system can be
called any day between 1 AM and y AM or any time on Saturday and
Sunday.

An optional subfield is available to indicate the minimum time, in minutes,
before retrying a failed connection. A failed connection attempt is a login
failure, as opposed to a dialing connection failure. The subfield separator
is a comma(,). For example, Any, 9 means call any time, but wait at least
9 minutes after a failure has occurred.

Either the ACU or the hard-wired device used for the call. For the hard­
wired device, use the last part of the special file name (for example, tty2).

The line speed for the call (for example, 1200). The exception is when the
BC library routine dialout is available, in which case this is the dialout
class.

The telephone number, made up of an optional alphabetic abbreviation and
a numeric part. The abbreviation should be one that appears in the L­
dialcodes file (for example, ct5900, nh6511). If a numeric number is

File Formats 5-75

L.sys (5)

used, it should be given in full. For the hard-wired devices, this field
contains the same string as used for the device field.

login The login information, given as a series of fields and subfields in this
format:

Examples

expect1 [-[sendspecia/]-expect2] send ...

The expect1 argument is the string the local system expects to read when
logging in to the remote system, and the send argument is the string the
local system is to send when the expect string is received. If two double
quotation marks ("") are specified instead of the expect1 argument, nothing
is expected from the remote system.

The sendspecial argument specifies a special character to be sent to the
remote system if the expect1 argument is not received. If sendspecial is
omitted, and two dashes (--) follow the expectl argument, the local system
sends a carriage return to the remote system.

Other special characters are:

EaT Send an EaT character

BREAK#

PAUSE#

\d

\s

\r

\b

\#

P_ZERO

P_EVEN

P_ODD

P_ONE

Send # break sequences (default is 3)

Pause # seconds (default is 5)

Pause 1 second before sending next character

Send a blank character

Send a carriage return

Send a break character

Send the character represented by the octal number
#. For example, \05 is CTRL/e.

Change parity from even (default) to zero

Change parity to even

Change parity to odd

Change parity to one parity

The expect2 argument defines another string expected to be read after
transmission of the sendspecial argument to the remote system.

In the following example, the remote system is expected to send the string "login:",
to which the local system replies' 'xuucp".

login: xuucp ssword: smiley

Then the word "ssword:" is expected from the remote system. (The first letter of the
password prompt varies from system to system, so it is safer to look for the ending
characters.) When "ssword:" is received, the local system sends "smiley". If the
login is successful, the conversation between the peer transfer processes (uucico)
begins. If the login fails, the connection attempt fails.

5-76 File Formats

L.sys(5)

In the following example, "login:" is expected.

login:--login xuucp ssword: smiley

If it is received, "xuucp" is sent to the remote system. If login: is not received, a
carriage return is sent to the remote system, and "login:" is expected. If it is
received, xuucp is sent to the remote system. The example then proceeds the same as
the previous example.

In the following example, "login:" is expected.

login:-BREAK1-login: xuucp ssword: smiley

If it is not received, one break sequence is sent to change the baud rate of the remote
process. Then, "login:" is again expected, and the example proceeds the same as the
previous examples.

See Also
L-dialcodes(5)
Guide to the uucp Utility

File Formats 5-77

lang (Sint)

Name
lang - language names

Description
The language support databases used by set locale are stored in the directory
/usr / lib/ intln. If either the language support databases are moved or you
specify your own language support database, it is necessary to set the INTLINFO
environment variable to the new location of these tables. The syntax of this
environment variable is identical to NLSPATH. See the environ(5int) reference
page for more information.

Should you want to create your own database, use the nl langinfo(5int)
reference page and the Guide to Developing InternationaTSoftware as references for
what information your database should contain. After you creat the database, you can
specify it by using the inte111atlonal compiler, i c.

The following table defines the supplied settings of the LANG and LC_ environment
variables.

Database Language Territory Codeset Use

ENG_GB.MCS English United Kingdom DECMCS VT200 series
FRE_FR.MCS French France
GER_DE.MCS Gennan Gennany

ENG_GB.8859 English United Kingdom ISO Latin-l VT300 series
FRE_FR.8859 French France
GER_DE.8859 Gennan Gennany

ENG_GB.646 English United Kingdom. ISO 646 VT 1 00 series
FRE_FR.646 French France
GER_DE.646 Gennan Gennany

In addition to the default collation definition for the GER_DE.nnn language, Digital
provides a character collation table that collates information using the German
telephone directory ordering of data. The following example shows how to set the
LC COLLATE variable to use this table with the ISO Latin-l codeset:

LC COLLATE = GER_DE.8859@P_TELEPHONE

See Also
ic(1int), intro(3int), nl_Ianginfo(3int), setlocale(3int), environ(5int)
Guide to Developing International Software

5-78 File Formats

Name

Syntax

ldfcn - common object file access routines

#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <ldfcn.h>

Idfcn (5)

Description
The common object file access routines are a collection of functions that read an
object file that is in common object file form. The calling program must know the
detailed structure of the parts of the object file that it processes, but the calling
program does not have to know the overall structure of the object file as the routines
handle this function.

The interface between the calling program and the object file access routines is based
on the defined type LDFILE (defined as struct ldfile), which is declared in
the header file <ldfcn. h>. Primarily, this structure provides uniform access to
simple object files and object files that are members of an archive file.

The function Idopen(3x) allocates and initializes the LDFILE structure, reads in the
symbol table header, if present, and returns a pointer to the structure to the calling
program. The fields of the LDFILE structure can be accessed individually through
macros defined in <ldfcn. h>. The fields contain the following information:

LDFILE * ldptr;

TYPE(ldptr)

IOPTR(ldptr)

OFFSET(ldptr)

The file magic number, used to distinguish between archive
members and simple object files.

The file pointer returned by fopen(3s) and used by the standard
input/output functions.

The file address of the beginning of the object file; if the object file
is a member of an archive file, the offset is nonzero.

HEADER(ldptr) The file header structure of the object file.

SYMHEADER(ldptr)
The symbolic header structure for the symbol table associated with
the object file.

PFD(ldptr) The file table associated with the symbol table.

SYMTAB(ldptr) A pointer to a copy of the symbol table in memory. It is accessed
through the pCHDR structure (see cmplrs I stsupport . h). If
no symbol table is present, this field is NULL. This macro causes
the whole symbol table to be read.

LDSW AP(ldptr) If the header and symbol table structures are swapped within the
object file and all access requires using libsex, this field is set
to true. Note that if you use libmld routines, all structures,
except the optional header and auxiliaries, are swapped.

File Formats 5-79

Rise

Rise Idfcn (5)

The object file access functions can be divided into four categories:

(1) Functions that open or close an object file

Idopen(3x) and Idaopen

5-80 File Formats

open a common object file
Idclose(3x) and Idaclose

close a common object file

(2) Functions that return header or symbol table information

Idahread(3x)
read the archive header of a member of an archive file

Idfhread(3x)
read the file header of a common object file

Idshread(3x) and Idnshread
read a section header of a common object file

Idtbread(3x)
read a symbol table entry of a common object file

Idgetname(3x)
retrieve a symbol name from a symbol table entry or from
the string table

Idgetaux(3x)
retrieve a pointer into the aux table for the specified ldptr

Idgetsymstr(3x)
create a type string (for example, C declarations) for the
specified symbol

Idgetpd(3x)
retrieve a procedure descriptor

Idgetrfd(3x)
retrieve a relative file table entry

(3) Functions that position (seek to) an object file at the start of the
section, relocation, or line number information for a particular section

Idohseek(3x)
seek to the optional file header of a common object file

Idsseek(3x) and Idnsseek
seek to a section of a common object file

Idrseek(3x) and Idnrseek
seek to the relocation information for a section of a
common object file

Idlseek(3x) and Idnlseek
seek to the line number information for a section of a
common object file

Idtbseek(3x)
seek to the symbol table of a common object file

(4) Miscellaneous functions
Idtbindex(3x)

return the index of a particular common object file symbol
table entry

ranhashini t(3x)
initialize the tables and constants so that the archive hash
and lookup routines can work

ranhash(3x)

Macros

give a string return the hash index for it
ranlookup(3x)

Idfcn (5)

return an archive hash bucket that is empty or matches the
string argument

disassembler(3x)
print MIPS assembly instructions

ldreadst(3x)
cause a section of the symbol table to be read

These functions are described in detail in the manual pages identified for
each function.

The ldopen and ldaopen functions both return pointers to a LDFILE
structure.

Additional access to an object file is provided through a set of macros defined in
<ldfcn. h>. These macros parallel the standard input/output file reading and
manipulating functions. They translate a reference of the LDFILE structure into a
reference to its file descriptor field.

The following macros are provided:

GETC(ldptr)
FGETC(ldptr)
GETW(ldptr)
UNGETC(c,ldptr)
FGETS(s, n, ldptr)
FREADM((char *) Ptr' sizeof (*ptr), nitems, ldptr)
FSEEK(ldptr, offset, ptmame)
FTELL(ldptr)
REWIND(ldptr)
FEOF(ldptr)
FERROR(ldptr)
FILENO(ldptr)
SETBUF(ldptr, buf)
STROFFSET(ldptr)

The STROFFSET macro calculates the address of the local symbol's string table in
an object file. See the manual entries for the corresponding standard input/output
library functions for details on the use of these macros. (The functions are identified
as 3s in Section 3 of the reference pages.)

Restrictions
The macro FSEEK defined in the header file <ldfcn. h> translates into a call to the
standard input/output function fseek(3s). FSEEK should not be used to seek from
the end of an archive file since the end of an archive file cannot be the same as the
end of one of its object file members.

See Also
ar(l), fopen(3s), fseek(3s), Idahread(3x), Idclose(3x), Idfhread(3x), Idgetname(3x),
Idlread(3x), Idlseek(3x), Idohseek(3x), Idopen(3x), Idrseek(3x), ldlseek(3x),
Idshread(3x), Idtbindex(3x), Idtbread(3x), Idtbseek(3x)

File Formats 5-81

Rise

Rise limits (5)

Name

Syntax

limits - header files for implementation-specific constants

#include <limits .h>
#include <float.h>

Description
The header file <limits.h> specifies the sizes of integral types as required by the
proposed ANSI e standard. The header file <float.h> specifies the characteristics of
floating types as required by the proposed ANSI e standard. The constants that refer
to long doubles that should appear in <float.h> are not specified because RISe does
not implement long doubles.

The file <limits .h> contains the following:

#define
#define

#define

#define

#define
#define
#define
#define
#define

#define
#define
#define

#define
#define
#define

#define
#define

CHAR BIT 8
SCHAR MIN (-128)

/* # of bits in a 'char'
/* min integer value of a 'signed
/* char'

SCHAR MAX (+127) /* max integer value of a 'signed
/* char'

UCHAR MAX 255 /* max integer value of 'unsigned
/* char'

CHAR MIN
CHAR MAX
SHRT MIN
SHRT MAX
USHRT MAX

INT MIN
INT MAX
UINT MAX

LONG MIN
LONG MAX
ULONG_MAX

USI MAX
WORD BIT

(-128)
(+127)
(-32768)
(+32767)
65535

/* min integer value of a 'char'
/* max integer value of a 'char'
/* min decimal value of a 'short'
/* max decimal value of a 'short'
/* max decimal value of 'unsigned
/* short'

(-2147483648) /* min decimal value of an 'int'
(+2147483647) /* max decimal value of a 'int'
4294967295 /* max decimal value of 'unsigned

/* int'
(-2147483648) /* min decimal value of a 'long'
(+2147483647) /* max decimal value of a 'long'
4294967295 /* max decimal value of 'unsigned

4294967295
32

/* long'
/* max decimal value of 'unsigned'

/* # of bits in a "word" or
1 * 'int'

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

#define CHILD_MAX
#define CLK_TCK 60
#define LOCK MAX

#define LINK MAX

o

25 /* max # of processes per user
/* # of clock ticks per second

*/ max # of entries in system
/* lock table

32766 1* max # of links to a single

id */
*/
*1
*/
*1

#define LONG BIT
#define NAME MAX
#define NGROUPS MAX
#define MAX INPUT

#define MAX CANON

#define MAX CHAR

#define OPEN MAX

#define PASS MAX

5-82 File Formats

32
255
32
256

256

256

64

8

/*
1*

1* max

/*
/*
1*
1*
1*
/*

/*
/*
/*

file
of bits in a "long" (X/OPEN)
of characters in a file name

/* max # of groups
max # of bytes in terminal
input queue
max # of bytes in term canon
input line
max # of bytes in term canon
input line (X/OPEN)

max # of files a process can
have open
max # of characters in

*1
*1
*1
*1
*1
*1
*1
*1
*/
*/
*/
*/
*/

#define PATH MAX

#define PID MAX
#define SYSPID MAX

#define PIPE BUF

#define PIPE MAX

1024

30000
2

4096

4096

limits (5)

/* a password
/* max # of characters in
/* a path name
/* max value for a process ID
/* max value for a system
/* proc ID (X/OPEN)
/* max # bytes atomic in
/* write to pipe _
/* max # bytes written to a
/* pipe in a write

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

100 /* max # of simultaneous processes */
8192 /* # bytes in a physical I/O block */
32 /* # of chars in uname-returned strings */
200 /* max # of files open on system */

#define PROC MAX
#define STD BLK
#define SYS NMLN
#define SYS_OPEN
#define TMP MAX 17576 /* max # of calls to tmpnam(3S) before */

/* recycling of names occurs */
#define UID_MAX 32000 /* max value for a user or group */

/* ID */
#define NZERO 20

/* default nice value (as seen */
/* by nice(3), not intrinsically) */

/*
* Internationalization constants
*/

#define MB_LEN_MAX

#define NL ARGMAX

#define NL MSGMAX
#define NL NMAX
#define NL SETMAX
#define NL TEXTMAX

#define NL LBLMAX

#define NL LANGMAX

/*

1 /*
/*

9 /*
/*

32767
2
255
256

32767

32

* POSIX minimum values

*

max number of bytes in a multibyte */
character, any locale: placeholder */
max value of digits in calls to */
nl scanf(3S) and nl-printf(3S) */

7* max message number */
/* max n-to-1 bytes in mapping chars */

/* max set number */
/* max no. of bytes in a message */
/* string */
/* max number of labels */
/* in catalogue */
/* max number of bytes in LANG */
/* name */

* These values are the MINIMUM allowable by POSIX. Actual values
* for ULTRIX are defined above.
*/

#define _POSIX_ARG_MAX 4096 /* Length of arguments for */
/* exec () */

#define - POSIX_CHILD_MAX 6 /* Number of simultaneous */
/* procs per uid */

#define _POSIX_LINK_MAX 8 /* Number of file links */
#define POSIX MAX CANON 255 - -- /* Number of bytes in */

/* a terminal canon */
/* input queue */

#define _POSIX_MAX_INPUT 255 /* Number of bytes */
/* for which space is */
/* guaranteed in terminal */
/* input queue */

#define POSIX NAME MAX 14 /* - - - Number of bytes in a filename */
#define POSIX NGROUPS MAX 0 /* Number of allowable */ - - -

/* supplementary group ID's */
#define POSIX OPEN MAX 16 /* Number of files open at one */ - - -

/* time by a given process. */
#define _POSIX_PATH_MAX 255 /* Number of bytes in a pathname */
#define _POSIX_PIPE_BUF 512 /* Number of bytes that is */

File Formats 5-83

Rise

Rise limits (5)

/* guaranteed to be written */
/* atomically when writing to */
/* a pipe. */

The file <limits.h> contains the following values for RISe architecture:
#define ARG_MAX
#define HUGE VAL

20480 /* max length of arguments to exec */
1.8e+308 /* infinity */

The file <limits .h> contains the following value for V AX architecture:
#define ARG_MAX 10240 /* max length of arguments to exec */

The file <limits.h> contains the following value for VAX D-float architecture:
#define HUGE_VAL 1.701411834604692293e+38

The file <limits.h> contains the following value for VAX G-float architecture:
#define HUGE_VAL 8.9884656743115790e+307

The file <fioat.h> contains the following values for RIse architecture:
#define FLT RADIX 2 /* radix of exponent representation */
#define FLT ROUNDS 1 /* addition rounds */

/* (>0 implementation-defined) */
/* number of base-FLT_RADIX digits in the floating point mantissa */
#define FLT_MANT_DIG 24
#define DBL MANT DIG 53
/* minimum positi~e floating-point number x such that */
/* 1.0 + x < > 1.0 */
#define FLT_EPSILON 1.19209290e-07
#define DBL EPSILON 2.2204460492503131e-16
/* number of-decimal digits of precision */
#define FLT_DIG 6
#define DBL DIG 15
/* minimum negative integer such that FLT RADIX raised to that */
/* power minus 1 is a normalized floating point number */
#define FLT_MIN_EXP (-125)
#define DBL MIN EXP (-1021)
/* minimum normalized positive floating-point number */
#define FLT_MIN 1.17549435e-38
#define DBL MIN 2.2250738585072014e-308
/* minimum negative integer such that 10 raised to */
/* that power is in the range of normalized floating-point numbers */
#define FLT_MIN_10_EXP (-37)
#define DBL_MIN_10_EXP (-307)
/* maximum intege~ such that FLT RADIX raised to that */
/* power minus 1 is a representable finite floating-point number */
#define FLT_MAX_EXP +128
#define DBL MAX EXP +1024
/* maximum repre;entable finite floating-point number */
#define FLT_MAX 3.40282347e+38
#define DBL MAX 1.7976931348623157e+308
/* maximum integer such that 10 raised to that power is in
/* the range of representable finite floating-point numbers
#define FLT_MAX_10_EXP 38
#define DBL_MAX_10_EXP 308

The file <fioat.h> contains the following values for V AX architecture:
#define
#define

5-84 File Formats

FLT RADIX 2 /* radix of exponent representation
FLT ROUNDS 1 /* addition rounds

*/
*/

*/
*/

#define FLT_MIN_10_EXP
#define DBL_MIN_10_EXP
#define LDBL_MIN_10_EXP

/* (>0 implementation-defined)
(-37)
(-307)

#define
#define
#define
#define
#define
#define
#define
#define
#define

FLT MANT DIG 24 - -
FLT EPSILON 5.96046448e-08
FLT DIG 6
FLT MIN EXP (-127)
FLT_MIN float 2.93873588e-39
FLT_MIN_10_EXP (-38)
FLT MAX EXP 127
FLT_MAX 1.70141173319'264429ge+38
FLT MAX 10 EXP 380 - --

The file <float.h> contains the following values for VAX D-float:

#define DBL_MANT_DIG
#define DBL EPSILON
#define DBL DIG 16

56
1.3877787807814457e-17

#define DBL_MIN_EXP (-127)
#define DBL MIN 2.93873587705571880e-39
#define DBL_MIN_10_EXP (-38)
#define DBL MAX EXP 127
#define DBL MAX 1.701411834604692293e+38
#define DBL_MAX_10_EXP 38

limits (5)

*/

The file <float.h> contains the following values for VAX G-float (cc - Mg):

#define DBL_MANT_DIG 53
#define DBL EPSILON 1.1102230246251570e-016
#define DBL DIG 15
#define DBL_MIN_EXP (-1023)
#define DBL MIN 5.56268464626800350e-309
#define DBL_MIN_10_EXP (-308)
#define DBL MAX EXP 1023
#define DBL MAX 8.9884656743115790e+307
#define DBL_MAX_10_EXP 307

File Formats 5-85

Rise

Rise Iinenum(5)

Name
linenum - line number entries in a MIPS object file

Description
If the cc command is invoked with the -g option, an entry is generated in the object
file for each C source line on which a breakpoint can occur. You can then reference
line numbers when using the appropriate software test system.

See Also
cc(1), dbx(1), a.out(5)

5-86 File Formats

Itf (5)

Name
Itf - labeled tape facility

Description
The term "ltf' (Labeled Tape Facility) refers to the group of programs required to
fulfill the features and functionality outlined here.

References for the substance of this document are based on:

1. American National Standard Institute magnetic tape labels and file structure for
information interchange ANSI X3.27-1978

2. The document/working paper: Draft Proposed Revision to ANSI X3.27-1978
Public Review Comment on ANSI X3L5/83-28T 15-0ct-84 (describes the
version 4 ANSI standard)

This proposed implementation of the 1 t f does not claim to be 100% ANSI standard
in all cases. That is, the ULTRIX 1 t f does not support the entirety of the
functionality or format capabilities outlined in the documents/publications cited as
references.

It should be understood that the functionality and formats for ULTRIX-labeled tapes
are simply based on the standards and formats referred to, and described in, the
publications/documents listed previously.

The 1 t f attempts to follow these documents as working precepts as accurately as it
can, while meeting the needs of UL TRIX systems.

It should be further understood that where the cited documents specify procedures or
operational constricts that would conflict with those features/functionality normally
found in an UL TRIX system, the procedures or operational constricts, by necessity,
have been omitted from the It f implementation.

The goals of 1 t f are to create an accurate exchange of information between
ULTRIX systems and between ULTRIX and non-UL TRIX systems as an
import/export facility by providing a means to read/write tapes in a format generally
acceptable to most systems providing support of ANSI-labeled tapes.

It is not a goal of 1 t f to provide the multivolume file sets or to provide 100% of the
ANSI specifications for the following labels on non-ULTRIX generated volumes:

VOLl
Accessibility Field

VOL2 - VOL9
UVLl - UVL9 (User Volume Labels)
HDR1, EOV1, EOFl

HDR2

File-set Identifier
Expiration Date
Accessibility Field
Block Count

Buffer Offset Content
HDR3 - HDR9
UHLl - UHL9 (User Header Labels)
EOV3 - EOV9 (End of Volume Labels)
EOF3 - EOF9 (End of File Labels)
ULTl - UTL9 (User Trailer Labels)

File Formats 5-87

Itf (5)

The FORMATS section provides the general ANSI volume and label fonnats. Each
label consists of 80 bytes of ASCII data as specified. Items enclosed in parentheses 0
indicate optional fields that may be present according to the ANSI standard. The
following tenns are used as indicated:

"a" Refers to the sets of characters including uppercase (A-Z), numerals (0-9), and
special characters (space! " % & ' () * + , - _ . / : ; < :;: > ?).

BLOCK
A group of consecutive bytes of data treated as a unit by the storage medium.
Blocks are separated by an interblock gap. A block may contain part of a
record, all of the record, or many records.

BLOCK LENGTH
The minimum block size is 18 bytes and the maximum is 20480.

RECORD
A set of related data treated as a unit of infonnation:

TAPE MARK
A control block used as a delimiter.

FORMATS for ANSI VERSION 3/4 - MULTI-FILE / SINGLE VOLUME

bot
VOLl

(UVLn)
HDRl
HDR2
(HDRn)
(UHLa)

tm
DATA
tm
EOFl
EOF2
(EOFn)
(UTLn)
tm

HDRl
HDR2
(HDRn)
(UHLa)
tm
DATA
tm
EOFl
EOF2
(EOFn)
(UTLn)

Beginning of tape marker
Volume Label (only 1 permitted for ANSI version 3,
ANSI version 4 OPTIONALLY permits Volume Labels
2 through 9)
OPTIONAL User Volume labels ('n' varies from 1 - 9)
First File Header Label
Second File Header Label
OPTIONAL File Header Labels ('n' varies from 3 - 9)
OPTIONAL User File Header Labels (quantity
unspecified)
Tape Mark
data blocks of first file
Tape Mark
First End of File Label
Second End of File Label
OPTIONAL End of File Labels ('n' varies from 3 - 9)
OPTIONAL User Trailer Labels
Tape Mark

First File Header Label
Second File Header Label
OPTIONAL File Header Labels ('n' varies from 3 - 9)
OPTIONAL User File Header Labels (number undefined)
Tape Mark
data blocks of second file
Tape Mark
First End of File Label
Second End of File Label
OPTIONAL End of File Labels ('n' varies from 3 - 9)
OPTIONAL User Trailer Labels

tm Tape Mark

HDRl First File Header Label

tm Tape Mark

5-88 File Formats

Itf (5)

tm Tape Mark

VOLl - Label Fonnat - ANSI VERSION 3

The following table identifies the volume and supplies volume security infonnation:

Size
of
Field

3
1
6

1
26
14

28
1

First &
Last
Byte #

1 - 3
4
5 - 10

11
12 - 37
38 - 51

52 - 79
80

Description

or Content

"VOL"
"1"
Volume Identifier - user specifiable "a"
characters, default = "ULTRIX"
Accessibility Field - not implemented by ltf
Reserved by ANSI (spaces)
Owner ID - user defined "a" characters,
default = spaces
Reserved by ANSI (spaces)
Label Standard Version, 3 for ANSI Version 3

VOLl - Label Fonnat - ANSI VERSION 4

The following table identifies the volume and supplies volume security infonnation:

Size First &
of Last
Field Byte #

3 1 - 3
1 4
6 5 - 10

1 11
13 12 - 24
13 25 - 37

Description

or Content

"VOL"
"1"
Volume Identifier - user specifiable "a"
characters, default = "ULTRIX"
Accessibility Field - not implemented by ltf
Reserved by ANSI (spaces)
Implementation ID - "a" characters, ULTRIX
default = "DECULTRIXnnnn", where nnnn are
digits from 0000 to 9999, identifying the
version number of ltf which created volume

14 38 - 51 Owner ID - user defined "a" characters,
default = spaces

28 52 - 79 Reserved by ANSI (spaces)
1 80 Label Standard Version, 4 for ANSI Version 4

HDRl - Label Fonnat - ANSI VERSION 3/4

The following file header label identifies and describes the file. Infonnation in this
label is limited to "a" characters only:

Size
of
Field

3
1
17

First &
Last
Byte #

1 - 3
4
5 - 21

Description

or Content

"HDR"
"1"
File ID - Interchange file name, "a"
characters

File Formats 5-89

Itf (5)

6

4
4

4
2
6

6

1
6
13
7

22 - 27

28 - 31
32 - 35

36 - 39
40 - 41
42 - 47

48 - 53

54
55 - 60
61 - 73
74 - 80

File Set ID - "000001" since only one
file set on single volume
File Section Number - "0001"
Fil'e Sequence Number - starts at "0001"
and increments once for each file on volume
Generation Number - "0001"
Generation Version Number - "00"
Creation Date - Julian date, first character
denotes century, " " = 1900, "0" = 2000
Expiration Date - Julian date, not implemented
by ltf, set to " 99366"
File Security - " "
Block Count - "000000"
Implementation ID - same as in VOL1
Reserved by ANSI (spaces)

HDR2 - Lahel Fonnat - ANSI VERSION V4

File header label describes the record fonnat, maximum record size, and maximum
block length of the file. Infonnation in this label is limited to "a" characters, except
for the content of bytes 16 through 50 if volume is ANSI version 4. The contents of
the field in bytes 16 - 50 are for UL TRIX implementation only; thus, if volume is not
UL TRIX, these fields are ignored.

Size First &
of Last
Field Byte #

3 1 - 3
1 4
1 5

5 6 - 10
5 11 - 15

6 16 - 21

4 22 - 25
4 26 - 29
4 30 - 33

3 34 - 36

1 37

Description

or Content

"HDR"
"2"
Record Format - "F" fixed length records

"0" variable length records
"S" segmented records

Block Length - default = "02048"
Record Length - "F" format, length of each data

record
"0" format, maximum length of a
data record including record
control word
"s" format, maximum length of a
data record not including the
segment control word, if scw =
"00000", maximum record length
may exceed 99999 bytes

ULTRIX File Status - st mode returned from a
stat(2) call
ULTRIX File Owner ID - uid
ULTRIX Owner Group Number - gid
ULTRIX Link ID Sequence Number - if file is
hard linked, contains the file sequence number
of the file this file is linked to
ULTRIX True File Type - three character
representation of the ULTRIX disk file type
(see below)
Carriage Control - "A" = first byte of record
contains FORTRAN carriage control character

"M" = record contains all
required forms control
" " = (space) insert carriage

5-90 File Formats

return, and line feed between
records

10 38 - 47 ULTRIX File Size - in bytes if known, else
spaces

1 48 ULTRIX ltf Header Number - number of last HDR
containing the full ULTRIX pathname of the
file, digit between 3 and 9

1 49 ULTRIX ltf End of File Header Number -
number of last EOF containing the full ULTRIX
pathname of the file, digit between 3 and 9,
if "0", no path name in EOFs

1 50 ULTRIX Hard Link Flag - necessary when the file
linked to has not been put on the volume, thus
this flag is used for forward references, "0"
no links or symbolic link, "1" = hard links

2 51 - 52 Buffer Offset - number of bytes of Buffer
Offset Field, which is the first record in
the data block, if the Buffer Offset is greater
than zero, not implemented by ltf and set to "00"

28 53 - 80 ANSI reserved (spaces)

Itf (5)

The UL TRIX disk file type is described in field 34-36 of HDR2. The following list
contains the 3-character representations you can use to specify the disk file type:

"adf"
"asc"
"arc"
"arl"
"asm"
"bin"
"bsp"
"CC "
"cmp"
"com"
"cpi"
"csp"
"dir"
"eng"
"exe"
"for"
"fuf"
"nul"
"oar"
"pip"
"rof"
"soc"
"sym"
"???"

- ASCII data file
- ASCII text
- Archive
- Archive Random Library
- Assembly language text
- Binary data
- Block special file
- 'C' program text
- Compressed text file
- Command text file
- CPIO file
- Character special file
- Directory
- English text
- Executable binary
- Fortran program source
- Fortran Unformatted File
- Null/empty file
- Old Archive
- Named pipe
- roff, nroff, troff, or eqn input text
- Socket
- Symbolic Link
- Content of file not determined

File Formats 5-91

Itf (5)

HDR3 - Label Format - ANSI VERSION 3/4

OPTIONAL file header label presence and content ignored if the volume was not
created by an ULTRIX system. Content limited to "a" characters if VOLI field 80 =
"3", Embedded spaces in the path names are not permitted.

Size First & Description
of Last
Field Byte # or Content

------- -----------

3 1 - 3 "HDR"
1 4 "3"
10 5 - 14 ULTRIX standard time of last change to file
10 15 - 24 ULTRIX File Owner Name
20 25 - 44 ULTRIX Hostname
36 45 - 80 ULTRIX File Path Name - first 36 characters

HDR4 through HDR9 - Label Format - ANSI VERSION 3/4

OPTIONAL file header label used by the 1 t f to express some fractional component
of the file's complete path name, but presence and content ignored if the volume was
not created by an ULTRIX system. Content limited to "a" characters if VOLI field
80 = "3".

Size
of
Field

3
1
76

First &
Last
Byte #

1 - 3
4
5 - 80

Description

or Content

"HDR"
"4" - "9"
ULTRIX File Path Name - continuation from
previous HDR, left justified and padded with
blanks if needed

BUHLa - Label Format - ANSI VERSION 3/4

OPTIONAL User File Header Labels not supported by the 1 t f. They are not output
and, if present on an input volume, their presence and content is ignored.

Size First & Description
of Last
Field Byte #or Content

3 1 - 3 "UHL"
1 4 any valid "a" character identifying this label
76 5 - 80 Application Dependent

EOVI - Label Format - ANSI VERSION 3/4

First End-Of-Volume label that, if read before the first End Of File label (EOFI),
indicates that the file is continued on the next volume. For valid hardware and
software technical limitations, the ULTRIX 1 t f does not support multivolume file
sets and therefore does not output these labels. If present on an input volume, they
are interpreted as indicating an error condition, due to the fact that some portion of

5-92 File Formats

Itf (5)

the file will not be processed. The fields of this label are identical to the contents of
the corresponding fields in the First File Header Label (HDRl), with the exceptions
noted below. The following diagrams of EOV labels are intended for reference
purposes only.

Size
of
Field

3
1
50
6

20

First &
Last
Byte #

1 - 3
4
5 - 54
55 - 60

61 - 80

Description

or Content

"EOV"
"1"
same as corresponding fields in HDR1
Block Count - number of blocks in which
file was recorded
same as corresponding fields in HDR1

EOV2 - Label Format - ANSI VERSION 3/4

the

The fields of the Second End-Of-Volume label are identical to the contents of the
corresponding fields in the Second File Header Label (HDR2), with the exceptions
noted. The It f does not support the use of EOV labels. See the previous
description for EOVl. OPTIONAL End-Of-Volume labels 3 through 9 (EOV3-
EOV9) are not used by the It f. If present on an input volume, their presence and
content are ignored by the Itf. See NOTES for EOVI.

Size First & Description
of Last
Field Byte # or Content

------- -----------

3 1 - 3 "EOV"
1 4 "2"
76 5 - 80 same as corresponding fields in HDR2

EOFI - Label Format - ANSI VERSION 3/4

The fields of the First End-Of-File label are identical to the contents of the
corresponding fields in the First File Header Label (HDRl), with the exceptions
noted.

Size First & Description
of Last
Field Byte # or Content

3 1 - 3 "EOF"
1 4 "1"
50 5 - 54 same as corresponding fields in HDR1
6 55 - 60 Block Count - number of blocks in which the

file was recorded
20 61 - 80 same as corresponding fields in HDR1

File Formats 5-93

Itf (5)

EOF2 - Label Format - ANSI VERSION 3/4

The fields of the Second End-Of-File label are identical to the contents of the
corresponding fields in the Second File Header Label (HDR2).

Size
of
Field

3
1
76

First &

Last
Byte #

1 - :3
4
5 - 80

Description

or Content

"EOF"
"2"
same as corresponding fields in HDR2

EOF3 through EOF9 - Label Format - ANSI VERSION 3/4

OPTIONAL ANSI end-of-file labels used by the 1 t f to express some fractional
component ot the tile's complete path name. The presence and content ot these
labels are ignored if the volume was not created by an UL TRIX system. Content
limited to "a" characters if VOLI field 80 = "3".

Size First & Description
of Last
Field Byte # or Content

------- -----------

3 1 - 3 "EOF"
1 4 "3" - "9"
76 5 - 80 ULTRIX File Path Name - continuation from

HDR9 and previous EOF, left justified and
padded with blanks if needed

UTLa through UTLa - Label Format - ANSI VERSION 3/4

OPTIONAL User File Trailer Labels Set is optional. If present on an input volume,
it is ignored by the 1 t f. User File Trailer Labels are not output by the 1 t f. If
present, they take the form described. Their use is application dependent but not
supported by the 1 t f.

Size
of
Field

First &
Last
Byte #

Description

or Content

3 1 - 3 "UTL"
1 4 any valid "a" character identifying this label
76 5 - 80 Application Dependent

See Also
ltf(l)

5-94 File Formats

magic(5)

Name
magic - magic file for the file command

Syntax
/usr/lib/file/magic

Description
The magic file is used by the file command to identify files that have some sort of
magic number. A magic number is any numeric or string constant that identifies the
file containing the constant.

The magic file is formatted as follows:

Byte offset
The byte offset is where magic information is found in the file. This is the
number of bytes from the beginning of the file to the first byte of the magic
number or string. This may, optionally, be preceded by a right angle bracket
(» to indicate a continuation line to supply extra information in the printed
message.

Value type
The value type is the type of the information to be found at the specified byte
offset. The file data is interpreted as the following valid types:

byte
short
long
string

Unsigned char type
Unsigned short type
Long type
Character (byte) string

Optional operator

Value

Describes how the value specified here should be compared with the data at the
desired offset. Valid operator characters are: an equal sign, a right angle
bracket, and a left angle bracket (=, >, <). If none is specified, = is assumed.

The value to match. Numeric values may be decimal, octal, or hexadecimal.
String values are defined as regular expressions here. The regular expressions
used here are extended in two ways from regular expression definition in ed(1).

1. Normally unprintable characters may be escaped with a backslash
(\). The special characters \n, \h, \r, and \f are allowed. An octal
representation can also be used to insert any desired byte value,
except O. Normally, regular expression cannot handle such
character values. Because the backslash is used as an escape
character while the regular expression is being read in, normal
occurrences of a backslash in a regular expression must be escaped
with a second backslash. As an example, \(must be written as \\(
and \ must be written as \\

2. Text found in a file can also be inserted in the printed string with
the use of the \\% delimiter. All text found between these delimiters
is substituted into the print string.

This regular expression search never terminates until a match is

File Formats 5-95

magic(5)

explicitly found or rejected. The special character \n is a valid
character in the patterns. Therefore, the pattern . * should never be
used here.

major, minor type
The major and minor file type numbers are not used by the file(l) command.

String to print
Any desired text string. Data from the file can be included with the use of
continuation lines beginning with a right angle bracket (». Two types of
continuation lines are possible, depending on the sign of the byte offset entry.

If the byte offset is positive, the specified data can be printed in the string when
requested with an appropriate printf(3) format.

If the offset is a negative number, an internal routine will be called to test if a
particular string is necessary and, if so, to return it.

The byte orrsei number is an index io an imernai tabie of routines avaiiabie for
use. Two such routines are currently defined, both for a.out images:

Byte Offset

-1:
-2:

Returned String(s)

[liold version 7 style symbol table"]
["setuid "]["setgid "]["sticky "]

Examples

Files

The following is an example of a script. The second line adds setuid, setgid text, if
appropriate:

o string A#! []*\%[A 0*\% 7,4 %s
>-2 long 0 7,4 %sseript

The following is an example of an executable image:

>-1 long 0 12,3 %s
0 short 0413 12,4 demand paged pure
>2 short 02 12,4 POSIX
>2 short 01 12,4 SVID
>-2 long 0 12,4 %sexeeutable
>16 long >0 12,4 not stripped

The following is an example of a text file:

o string A 1h[0-9] [0-9] [0-9] [0-9] [0-9] 7,1 sees file

/usr/lib/file/magic

See Also
file(1)

5-96 File Formats

math (5)

Name
math - math functions and constants

Syntax
#include <math.h>

Descri ption
This file contains declarations of all the functions in the Math Library (described in
Section 3m), as well as various functions in the C Library (Section 3c) that return
floating-point values. It defines the structure and constants used by the
matherr(3m) error-handling mechanisms, including the following constant used as
an error-return value:

HUGE The maximum value of a single-precision floating-point number.

The following mathematical constants are defined for user convenience:

M_E The base of natural logarithms (e).

M_LOG2E

M_LOGIOE

M_LN2

M_LNIO

M_PI

M_PC2

M_PC4

M_l_PI

M_2_PI

M_2_SQRTPI

M_SQRT2

M_SQRTl_2

The base-2 logarithm of e.

The base-lO logarithm of e.

The natural logarithm of 2.

The natural logarithm of 10.

1t, the ratio of the circumference of a circle to its diameter.

1t/2.

1t/4.

1/1t.

2/1t.

2/~1t.

The positive square root of 2.

The positive square root of 1/2.

For the definitions of various machine-dependent constants, see the description of the
<va/ues.h> header file.

See Also
intro(3), values(5)

File Formats 5-97

Rise

mh-alias (5mh)

Name
mh-alias - alias file for MH message system

Description

Aliasing allows you to send mail to a person or group of persons without typing their
complete mail address. Both your MH personal alias file and the (primary) alias file
for mail delivery, /usr /new / lib/rnh/MailAliases, process aliases in the
same way. You can specify the name of your personal alias file in your
.rnh_profile.

A line of the alias file can have any of the following formats:

where:

alias : address-group
alias ; address-group
< alias-file

address-group .- address-list

address-list

.,<., file
"=" ULTRIX-group
"+" ULTRIX-group
.,*.,

'= address
address-list, address

Continuation lines in alias files end with \ followed by the newline character.

Alias-file and file are ULTRIX file names. ULTRIX-group is a group
name (or number) from /etc/group. An address is simply an ULTRIX-style
mail address. Throughout this file, case is ignored, except for alias-file names.

If the line starts with a <, then the file named after the < is read for more alias
definitions. The reading is done recursively, so a < can occur in the beginning of an
alias file with the expected results. If the address-group starts with a <, then the file
named after the < is read and its contents are added to the address-list for the alias.

If the address-group starts with an =, then the file / etc/ group is consulted for the
ULTRIX-group named after the =. Each login name occurring as a member of the
group is added to the address list for the alias.

In contrast, if the address-group starts with a +, then the file / etc/ group is
consulted to determine the group-id of the ULTRIX-group named after the +. Each
login name occurring in the /etc/passwd file whose group-id is indicated by this
group is added to the address list for the alias.

If the address-group is simply *, then the file /etc/passwd is consulted and all
login names with a user-id greater than a given number (usually 200) are added to the
address list for the alias.

A trailing * on an alias will match just about anything appropriate, as shown in the

5-98 File Formats

following example:

sgroup: fred, fear, freida
fred: frated@UCI
ULTRIX-committee: <ultrix.aliases
staff: =staff
wheels: +wheel
everyone: *
news.*: news

mh-alias (5mh)

On the first line of the example, sgroup is defined as an alias for the three names
frated@UCI, fear, and freida. On the second line of the example, fred is
defined as an alias for frated@UCI. Next, the definition of
ULTRIX-cornmittee is given by reading the file ultrix.aliases in yourMH
directory, s t a f f is defined as all users who are listed as members of the group
staff in the / etc/ group file, and wheels is defined as all users whose group­
id in / etc/passwd is equal to the wheel group. Finally, everyone is defined
as all users with a user-id in /etc/passwd greater than 200, and all aliases of the
form news, which is defined to be anything.

The following stages show how aliases are resolved at posting time.

• A list of all the addresses from the message is built and duplicate addresses are
eliminated.

• If the message originated on the local host, then alias resolution is performed for
those addresses in the message that have no host specified.

• For each line in the alias file, aliases are compared against all of the existing
addresses. If there is a match, the matched ali a s is removed from the address
list, and each new address in the address-group is added to the address list, if it
is not already on the list. The alias itself is not usually output, rather the
address-group that the alias maps to is output instead. If the alias is
terminated with a semicolon (;), instead of a colon (:), both the al ias and the
address are output in the correct format. This makes replies possible, because in
MH, aliases and personal aliases are unknown to the mail transport system.

Because the alias file is read line by line, forward references work; but backward
references are not recognized, so there is no recursion.

MH alias files are expanded into the headers of messages posted. This aliasing occurs
first, at posting time, without the knowledge of the message transport system. In
contrast, once the message transport system is given a message to deliver to a list of
addresses, for each address that appears to be local, a system-wide alias file is
consulted. These aliases are not expanded into the headers of messages delivered.

To use aliasing in MH, do the following:

1. In your .mh_profile, choose a name for your primary alias file, say
aliases, and add the following three lines:

ali: -alias aliases
send: -alias aliases
whom: -alias aliases

2. Create the file aliases in your MH directory.

3. Start adding aliases to your ali as e s file as appropriate. An alias file must not

File Formats 5-99

mh-alias (Smh)

Files

reference itself directly, or indirectly through another alias file, using the < f i 1 e
construct.

/usr/new/lib/mh/MailAliases
Primary alias file

See Also
ali(lmh), send(lmh), whom(lmh), group(5mh), passwd(5mh), mtstailor(5mh),
conflict(8mh), post(8mh)

5-100 File Formats

mh-format (5mh)

Name
mh-format - format file for MH message system

Description

Several MH commands utilize either a format string or a format file during their
execution. For example, scan(1mh) uses a format string that specifies how scan
should generate the scan listing for each message; repl(lmh) uses a format file
that directs it how to generate the reply to a message, and so on.

This reference page describes how to write new format commands or modify existing
ones. You should not attempt this unless you are an experienced MH user.

A format string is similar to a printf(3c) string, but uses multiletter escapes.
When specifying a string, the usual C backslash characters are honored: \b, \f, \n,
\ r, and \ t. Continuation lines in format files end with a backslash (\) followed by
the newline character.

The interpretation model is based on a simple machine with two registers, n urn and
s t r. The former contains an integer value, the latter a string value. When an
escape is processed, if it requires an argument, it reads the current value of either
num or str; and, if it returns a value, it writes either num or str.

Escapes are of three types: components, functions, and control. A
component escape is specified as % { name} , and is created for each header found in
the message being processed. For example, % {date} refers to the Date: field of
the appropriate message. A component escape is always string valued.

A control escape is one of: %<escape, % I , and %>. These correspond to if-then­
else constructs: if escape is not zero (for integer-valued escapes), or not empty (for
string-valued escapes), everything up to % I or %> (whichever comes first) is
interpreted; else, then skip to % I or %> (whichever comes first) and start interpreting
again. A function escape is specified as % (name) , and is statically defined. The
following table lists the function escapes.

Escape Argument Returns Interpretation

nonzero integer integer num is not zero
zero integer integer num is zero
eq integer integer num == width
ne integer integer num != width
gt integer integer width> num
null string integer str is empty
nonnull string integer str is not empty
msg integer Message number
cur integer Message is current
size integer Size of message
strlen string integer Length of str
me string User's mailbox
plus integer Add width to num
minus integer Subtract num from width
charleft integer Space left in output buffer
timenow integer Seconds since the epoch

File Formats 5-101

mh-format (Smh)

When str isa date, these escapes are defined:

Escape Argument Returns Interpretation

sec string integer Seconds of the minute
min string integer Minutes of the day
hour string integer Hours of the day (24 hour clock)
mday string integer Day of the month
mon string integer Month of the year
wday string integer Day of the week (Sunday=O)
year string integer Year of the century
yday string integer Day of the year
dst string integer Daylight savings in effect
zone string integer Timezone
sday string integer Day of the week known

1 for explicit in date
o for implicit
-1 for unknown

clock string integer Seconds since the epoch
rclock string integer Seconds prior to current time
month string string Month of the year
lmonth string string Month of the year (long form)
tzone string string Timezone
day string string Day of the week
weekday string string Day of the week (long)
tws string string Official RFC 822 rendering of the date
pretty string string A more user-friendly rendering
nodate string Date was not parseable

When str is an address, these escapes are defined:

Escape Argument Returns Interpretation

pers string string Personal name of the address
mbox string string Local part of the address
host string string Domain part of the address
path string string Route part of the address
type string integer Type of host

-1 for uucp
o for local
1 for network
2 for unknown

nohost string integer No host was present in the address
ingrp string integer Address appeared inside a group
gname string string Name of the group (present for first

address only)
note string string Commentary text
proper string string Official RFC 822 rendering of the address
friendly string string A more user-friendly rendering
mymbox string Address refers to the user's mailbox
formataddr string Print str in an address list

5-102 File Formats

mh-format(5mh)

The default fonnat string for scan follows. This has been divided into several
pieces for readability. The first part is:

%4(msg)%«cur)+%1 %>%<{replied}-%I %>

This means that the message number should be printed in four digits; if the message
is the current message, then a + is printed. If the message is not the current message,
then a space is printed. If a Replied: field is present, a - is printed. If no
Replied: field is present, then a space is printed. Next:

%02 (mon{date})/%02(mday{date})

The hours and minutes are printed in two digits (zero filled). Next:

%<{date} %1*>

If no PN Date: field is present, then a * is printed; otherwise, a space. Next:

%«mymbox{from})To:%14(friendly{to})

If the message is from me, print To: followed by a user-friendly rendering of the
first address in the To: field.

%1%17(friendly{from})%>

If the message is not from me, then the From: address is printed. Finally:

%{subject}%<{body}«%{body}%>

The subject and initial body are printed preceded by the string «.

Although this seems complicated, this method is flexible enough to extract individual
fields and print them in any fonnat the user desires.

If the -form formatfile switch is given, scan will treat each line in the named file
as a fonnat string and act accordingly. This lets the user develop template scan
listing fonnats. See /usr /new / lib/mh/ scan. time,
/usr/new/lib/mh/scan.size,and/usr/new/lib/mh/scan.timely
for more details.

See Also
ap(8mh), dp(8mh)

File Formats 5-103

mh-mail (Smh)

Name
mh-mail - message fonnat for MH message system

Description

MH processes messages in a particular fonnat. Although neither Bell nor Berkeley
mailers produce message files in the fonnat that MH prefers, MH can read message
files in that fonnat.

Each user has a mail drop box that initially receives all messages processed by
post(8mh).

The inc(lmh) command reads from the mail drop box and incorporates the new
messages found there into the user's own mail folders (typically +inbox). The mail
drop box consists of one or more messages.

Messages are expected to consist of lines of text. Graphics and binary data are not
handled. No data compression is accepted. All text is in ASCII 7-bit data.

The general memo framework of RFC 822 is used. A message consists of a block of
infonnation in a rigid fonnat, followed by general text with no specified format. The
rigidly fonnatted first part of a message is called the message header; the free-fonnat
portion is called the body. The header must always exist, but the body is optional.
These parts are separated by a blank line or by a line of dashes. The following
example shows the standard MH mail header:

To:
cc:
Subject:

The header is composed of one or more header items. Each header item can be
viewed as a single logical line of ASCII characters. If the text of a header item
extends across several real lines, the continuation lines are indicated by leading
spaces or tabs.

Each header item is called a component and is composed of a keyword or name,
along with associated text. The keyword begins at the left margin, cannot contain
spaces or tabs, cannot exceed 63 characters (as specified by RFC 822), and is
tenninated by a colon (:).

The text for most fonnatted components (such as "Date:" and "Message-Id:") is
produced automatically. The only ones entered by the user are address fields such as
"To:" and "cc:". Internet addresses are assigned mailbox names and host computer
specifications. The rough fonnat is "local@domain", for example, "MH@UCI" or
"MH@UCI-ICSA.ARPA". Multiple addresses are separated by commas (,). A
missing host/domain is assumed to be the local host/domain.

A blank line (or a line of dashes) signals that all following text up to the end of the
file is the body of the message. No fonnatting is expected or enforced within the
body.

The following is a list of header components that are considered meaningful to MH
programs:

5-104 File Formats

Files

Date:

From:

Sender:

To:
cc:
Bee:

Fcc:

Message-ID:

Subject:
In-Reply-To:

Resent-Date:
Resent-From:
Resent-To:
Resent-cc:
Resent-Bee:
Resent-Fcc:

Resent-Message-Id:

Resent:
Forwarded:

Replied:

mh-mail{5mh)

Added by post (8) , contains the date and time of the
message's entry into the transport system.
Added by po s t (8) , contains the address of the author
or authors (may be more than one if a "Sender:" field is
present). Replies are typically directed to addresses in
the "Reply-To:" or "From:" field. (The former has
precedence, if present.)
Added by po s t (8) in the event that the message
already has a "From:" line. This line contains the
address of the actual sender. Replies are never sent to
addresses in the "Sender:" field.
Contains addresses of primary recipients.
Contains addresses of secondary recipients.
Still more recipients. However, the' 'Bee:" line is not
copied onto the message as delivered, so these recipients
are not listed. MH uses an encapsulation method for
blind copies. (See send (1) .)
Causes post (8) to copy the message into the
specified folder for the sender, if the message was
successfully given to the transport system.
A unique message identifier added by post (8) , if the
-rns g i d flag is set.
Sender's commentary. It is displayed by scan (1) .
A commentary line added by repl (1) when replying
to a message.
Added when redistributing a message by post (8) .
Added when redistributing a message by po s t (8) .
New recipients for a message resent by dist (1) .
Still more recipients. See "cc:" and "Resent-To:".
Even more recipients. See "Bee:" and "Resent-To:".
Copy resent message into a folder. See' 'Fcc:" and
, 'Resent-To:".
A unique identifier appended by post (8) if the
-rnsgid flag is set. See "Message-Id:" and "Resent­
To:".
Annotation for dist (1) under the -annotate option.
Annotation for forw (1) under the -annotate
option.
Annotation for repl (1) under the -annotate option.

/usr/spool/rnail/$USER
Location of mail drop

See Also
Standard for the Format of ARPA Internet Text Messages (RFC 822)

File Formats 5-105

Name
mh_profile - user customization for MH message system

Syntax
"'I.mh _profile

Description
Each user of MH is expected to have a file named. mh profile in his or her
home directory. This file contains a set of user parameters used by some or all of the
MH family of programs. Each line of the file is in the format:

profile-component: value

The possible profile components are described in the following table. Only Pat h :
is mandatory. The others are optional; some have default values if they are not
present. In the notation used below, (profile/context, default: value) indicates
whether the information is kept in the user's MH profile or MH context and indicates
what the default value is.

Path: Mail
Locates MH transactions in directory "Mail".
(profile, no default)

Context: context
Declares the location of the MH context file.
(profile, default: <mh-dir>/context)

Current-Folder:
Keeps track of the current open folder.
(context, default: +inbox)

Previous-Sequence: pseq
Names the sequences which should be defined as the msgs or msg argument
given to the program. If not present, or empty, no sequences are defined.
Otherwise, for each name given, the sequence is first zeroed and then each
message is added to the sequence.
(profile, no default)

Sequence-Negation: not
Defines the string which, when prefixed to a sequence name, negates that
sequence. Hence, notseen means all those messages that are not a
member of the sequence seen.
(profile, no default)

Unseen-Sequence: unseen

5-106 File Formats

Names the sequences which should be defined as those messages recently
incorporated by inc. Show knows to remove messages from this sequence
once it thinks they have been seen. If not present, or empty, no sequences
are defined. Otherwise, for each name given, the sequence is first zeroed and
then each message is added to the sequence.
(profile, no default)

mh-sequences: .mh sequences
The name of the file in each folder which defines public sequences. To
disable the use of public sequences, leave the value portion of this entry
blank.
(profile, default: .mh_sequences)

atr-seq-folder: 172 178-181 212
Keeps track of the private sequence called seq in the specified folder.
(context, no default)

Editor: /usr/new/mh/prompter
Defines editor to be used by comp(lmh), dist(lmh), forw(lmh), and
repl(lmh).
(profile, default: prompter)

Msg-Protect: 600
Defines octal protection bits for message files. See chmod(1) for an
explanation of the octal number.
(profile, default: 0600)

Folder-Protect: 700
Defines protection bits for folder directories. See chmod(1) for an explanation
of the octal number.
(profile, default: 0700)

program: default switches
Sets default switches to be used whenever the MH program is invoked. For
example, you could override the Edi tor: profile component when replying
to messages by adding a component such as: repl: -editor /bin/ ed.
(profile, no defaults)

-next: nexteditor
Names "nexteditor" to be the default editor after using "lasteditor". This
takes effect at "What now?" level in comp, dist, forw, and repl. After
editing the draft with "lasteditor", the default editor is set to be
"nexteditor". If the user types "edit" without any arguments to "What
now?", then "nexteditor" is used.
(profile, no default)

Folder-Stack: folders

mhe:

The contents of the folder-stack for the f 01 de r command.
(context, no default)

If present, tells inc to compose an MH auditfile in addition to its other
tasks.

Alternate-Mailboxes:mh@uci-750a, bug-mh*
Tells repl and scan which addresses are really yours. In this way, repl
knows which addresses should be inclUded in the reply, and scan knows if
the message really originated from you. Addresses must be separated by a

File Formats 5-107

comma, and the hostnames listed should be the official hostnames for the
mailboxes you indicate, as local nicknames for hosts are not replaced with
their official site names. For each address, if a host is not given, then that
address on any host is considered to be you. In addition, an asterisk (*) may
appear at either or both ends of the mailbox and host to indicate wildcard
matching. .
(profile, default: your user-id)

Draft-Folder: drafts
Indicates a default draft folder for comp, dist, forw, and repl; which
allows more than one draft message to exist at the same time.
(profile, no default)

digest-issue-list: 1 Tells forw the last issue of the last volume sent for
the digest list.
(context, no default)

digest-volume-list: 1
Tells forw the last volume sent for the digest list.
(context, no default)

MailDrop: .mail
Tells inc your maildrop, if different from the default. This is superseded by
the $MAI LDROP envariable.
(profile, default: /usr / spool/mail/ $USER)

Signature: "Rand MH System"
Tells send your mail signature. This is superseded by the $SIGNATURE
envariable. The signature must be enclosed in double quotation marks ("
").

The following profile elements are used whenever an MH program invokes some
other program such as more(l). The. mh_profile can be used to select
alternative programs if the user wishes.

5-108 File Formats

The default values are given in the following examples:

fileproc:
incproc:
installproc:
lproc:
mailproc:
mhlproc:
moreproc:
mshproc:
packproc:
postproc:
rmmproc:
rmfproc:
sendproc:
showproc:
whatnowproc:
whomproc:

/usr/new/mh/refile
/usr/new/mh/inc
/usr/new/lib/mh/install-mh
/usr/ucb/more
/usr/new/mh/mhmail
/usr/new/lib/mh/mhl
/usr/ucb/more
/usr/new/mh/msh
/usr/new/mh/packf
/usr/new/lib/mh/post
none

/usr/new/mh/rmf
/usr/new/mh/send
/usr/ucb/more
/usr/new/mh/whatnow
/usr/new/mh/whom

If you define the environment variable $MH, you can specify a profile other than
. mh profile to be read by the MH programs that you invoke. If the value of
$MH 1s not absolute (that is, does not begin with a slash (/) it will be presumed to
start from the current working directory. This is one of the very few exceptions in
MH where nonabsolute pathnames are not considered relative to the user's MH
directory.

Similarly, if you define the envariable $MHCONTEXT, you can specify a context
other than the normal context file (as specified in the MH profile). As always, unl~ss
the value of $MHCONTEXT is absolute, it will be presumed to start from your MH
directory.

MH programs also support other envariables:

$MAILDROP : tells inc the default maildrop
This supersedes the MailDrop: profile entry.

$SIGNATURE : tells send and post your mail signature
This supersedes the Signature: profile entry.

$HOME tells all MH programs your home directory

$TERM tells MH your terminal type
The $TERMCAP envariable is also consulted. In particular, these two
envariables tell scan and mhl how to clear your terminal and how many
columns wide your terminal is. They also tell mhl how many lines long
your terminal screen is.

Some envariables are set by MH programs for whatnowproc. These are:

$edi tal t: the alternative message
Set by dist and rep 1 during edit sessions, so you can read the message
being distributed or replied to. The message is also available through a link
called @ in the current directory if your current working directory and the
folder the message lives in are on the same UNIX filesystem.

$mhdraft: the path to the working draft
Set by comp, dist, forw, and repl to tell the whatnowproc which file

File Formats 5-109

to ask What now? questions about. In addition, dist, forw, and repl
set $mhfolder if appropriate.

$mhaltmsg
Set by dist and repl to tell the whatnowproc about an alternative
message associated with the draft (the message being distributed or replied
to).

$mhdist
Set by dist to tell the whatnowproc that message redistribution is
occurring.

$mheditor
Set to tell the whatnowproc your choice of editor (unless overridden by
-noedit).

$mhuse
May be set by compo

$mhmessages
$mhannotate
$mhinplace

Set by dist, forw, and repl if annotations are to occur. The reason for
this is that the MH user can select any program as the wha tnowproc,
including one of the standard shells. As a result, it is not possible to pass
infonnation by way of an argument list.

$mhfolder: the folder containing the alternate message

Context

Set by dist and repl during edit sessions, so you can read other messages
in the currept folder besides the one being distributed or replied to. The
$mhfolder envariable is also set by show, prev, and next for use by
mhl.

In previous versions of MH, the current-message value of a writable folder was kept in .
a file called cur in the folder itself. In mh. 3, the .mh profile contained the
current-message values for all folders, regardless of their writability. In all versions
of MH since MH. 4, the. mhyrofile contains only static infonnation, which MH
programs will not update. Changes in context are made to the context file kept in
the user's MH directory. This includes, but is not limited to, the Current­
Folder entry and all private sequence infonnation. Public sequence infonnation is
kept in a file called .mh_sequences in each folder.

The. mhyrofile may override the path of the context file by specifying a
context entry (this must be in lowercase). If the entry is not absolute (does not
start with a slash (/)) it is interpreted relative to the user's MH directory. As a result,
you can actually have more than one set of private sequences by using different
context files.

5-110 File Formats

Restrictions

Files

The shell quoting conventions are not available in the . rnh y r 0 f i 1 e. Each token
is separated by white space.

There is some question as to what kind of arguments should be placed in the profile
as options. In order to provide a clear answer, recall command line semantics of all
MH programs: conflicting switches (for example, -header and -noheader) may
occur more than one time on the command line, with the lasf switch taking effect.
Other arguments, such as message sequences, filenames, and folders, are always
remembered on the invocation line and are not superseded by following arguments of
the same type. Hence, it is safe to place only switches (and their arguments) in the
profile.

If you find that an MH program is being invoked again and again with the same
arguments, and those arguments are not switches, there are a few possible solutions
to this problem.

The first is to create a (symbolic) link in your $HOME/bin directory to the MH
program of your choice. By giving this link a different name, you can create a new
entry in your profile and use an alternate set of defaults for the MH command.

Similarly, you could create a small shell script which calls the MH program of your
choice with an alternate set of invocation line switches. Using links and an alternate
profile entry is preferable to this solution.

Finally, if you are a csh user, you could create an alias for the command of the
form:

alias crnd crnd argl arg2 ...

In this way, you can avoid typing lengthy commands to the shell and still give MH
commands safely. Remember that some MH commands invoke others and that, in all
cases, the profile is read. This means that aliases are disregarded beyond an initial
command invocation.

$HOME/.rnh profile
- The user profile or $MH rather than the standard profile

<rnh-dir> / context The user context or $CONTEXT rather than the standard
context

<folder>/.rnh sequences
- Public sequences for <folder>

See Also
chmod(5), mh(lmh), environ(5)

File Formats 5-111

mtstailor (Smh)

Name
mh-tailor - system customization file for MH message system

Description
The file /usr /new/ lib/mh/mtstailor defines run-time options for those MH
programs which interact in some form with the message transport system. At
present, these user programs are: ap, conflict, inc, msgchk, msh, post,
rcvdist, and rcvpack.

The options available are listed below, along with default values and a description of
their meanings:

localname:

servers:

The host name that MH considers local. If not set, depending on the version
of ULTRIX you are running, MH will query the system for this value (For
example, <whoami.h>, gethostname). This has no equivalent in the MH
configuration file.

A host or list of hosts running sendmail can be specified. When an MH
program is run, it uses this entry to search for a central sendmail to
connect to. This is particularly useful for workstation users who may not
have sendmail running on their workstations.

systemname:
The name of the local host in the u u cp domain. If not set, depending on the
version of UL TRIX you are running, MH will query the system for this value.
This has no equivalent in the MH configuration file.

mmdfldir: /usr/spool/mail
The directory where maildrops are kept. If this is empty, the user's home
directory is used. This overrides the "mail" field in the MH configuration
file.

mmdflfil:
The name of the maildrop file in the directory where maildrops are kept. If
this is empty, the user's login name is used. This overrides the "mail" field
in the MH configuration file.

mmdelim1: \oOl\oOl\oOl\oOl\n
The beginning-of-message delimiter for maildrops.

mmdelim2: \oOl\oOl\oOl\oOl\n
The end-of-message delimiter for maildrops.

mmailid: 0

5-112 File Formats

If nonzero, then support for MMailids in / etc/passwd is enabled.
Basically, the pw _gecos field in the password file is of the form

My Full Name <mailid>
The MH internal routines that deal with user and full names will return
"mailid" and "My Full Name", respectively.

Files

mtstailor (Smh)

lockstyle: 0
The locking discipline to perform. A value of 0 means to use the flock
system call, if available. A value of 1 means to use standard BeliMail
locking always (the name of the lock is based on the file name). A value of
2 means to use MMDF locking always (the name of the lock is based on
device/inode pairs).

lockldir:
The name of the directory for making locks. If your system does not have
the flock syscall, then this directory is used when creating locks. If the value
is empty, then the directory of the file to be locked is used.

sendmail: /usr / lib/ sendmail
The pathname to the sendmail program.

maildelivery: /usr /new / lib/mh/rriaildelivery
The name of the system-wide default .maildelivery file. See
slocal(lmh) for the details.

everyone: 200
The highest user-id that should not receive mail addressed to everyone.

noshell: path
If set, indicates that for each user-id greater than the value set for
"everyone" and a login shell equivalent to the given value (for example,
/bin/ csh), mail for "everyone" should not be sent to him or her. This
option is useful for handling admin, dummy, and guest logins.

The MH message system has a flexible locking system for making locks on files.
There are two mtstailor variables you should be aware of: lockstyle and
lockldir. The first controls the method of locking; the second says where lock
files should be created. The lockstyle variable can take on three values: 0, 1, 2.

A value of 0 means to use the flock syscall if you are running on 4.2BSD;
otherwise, use a locking style of 1. A value of 1 or 2 specifies that a file should be
created whose existence means locked and whose nonexistence means
unlocked. A value of 1 says to construct the lockname by appending .lock to
the name of the file being locked. A value of 2 says to construct the lockname by
looking at the device and inode numbers of the file being locked. If the lockldir
variable is not specified, lock files will be created in the directory where the file
being locked resides. Otherwise, lock files will be created in the directory specified
by lockldir. Prior to installing MH, you should see how locking is done at your
site and set the appropriate values.

/usr/new/lib/mh/mtstailor
tailor file

File Formats 5-113

netgroup (5yp)

Name
net group - list of network groups

Description

Files

The netgroup file defines network-wide groups used for pennission checking when
doing remote mounts, remote logins, and remote shells. For remote mounts, the
infonnation in the netgroup file is used to classify machines; for remote logins and
remote shells, it is used to classify users. Each line of the netgroup file defines a
group and has the following format:

groupname member 1, .. . ,member _ n

Each member is either another group name or a combination of the host name, user
name, and domain name.

Any of the three fields can be empty, in which case a wildcard is assumed. For
example, to define a group to which everyone belongs, the following entry CQuid
appear in the netgroup file:

universal (,,)

Field names that begin with something other than a letter, digit, or underscore (such
as "-") work in the opposite way. For example:

justmachines (analytica,-,suez)
justpeople (-,babbage,suez)

The machine analytica belongs to the group justmachines in the domain suez, but no
users belong to it. Similarly, the user babbage belongs to the group justpeople in the
domain suez, but no machines belong to it.

Network groups are part of the Yellow Pages data base and are accessed through
these files:

/etc/yp/domainname/netgroup. dir
/etc/yp/domainname/netgroup. pag
/ etc/yp/ domainname/netgroup. byuser. dir
/ etc/yp/ domainname/netgroup. byuser. pag
/ etc/yp/ domainname/netgroup. byhost .. dir
/etc/yp/domainname/netgroup .byhost .pag

These files can be created from /etc/netgroup using makedbm(8yp).

/etc/netgroup
/ etc/yp/ domainname/netgroup. dir
/ etc/yp/ domainname/netgroup. pag
/ etc/yp/ domainname/netgroup. byuser. dir
/ etc/yp/ domainname/netgroup. byuser. pag
/ etc/yp/ domainname/netgroup. byhost. dir
/ etc/yp/ domainname/netgroup. byhost . pag

5-114 File Formats

netgroup (5yp)

See Also
getnetgrent(3yp), makedbm(8yp), ypserv(8yp)

File Formats 5-115

netrc (5)

Name
netrc - Berknet infonnation file (.netrc)

Description
The. netrc file contains frequently needed options for network commands.

The . netrc file uses the following fonnat:

• Each line of the. netrc file defines options for a specific machine.

• A line in the. netrc file can be either a machine line or a default line.

• Lines appear in the following order: default, default machine name, machine,
machine name, and options. Note that the default line must be the first line in
the file if it is present.

• Fields on each line are separated by spaces or tabs.

The following are valid options for a machine line:

Option Parameter Default

login name localname
password password (none)
command command (none)
write yes/no yes
force yes/no no
quiet yes/no no

See Also
ftp(lc)

5-116 File Formats

networks (5)

Name
networks - network name file

Description

Files

The networks file is an ASCII file that contains information regarding the known
networks in the DARPA Internet. For each network, a single-line ~ould be present
with the following information:

Official network name
Network number
Aliases

Each network name is separated from the next by a newline. Items are separated
by any number of blanks or tab characters or both. A number sign (#) indicates the
beginning of a comment; characters up to the end of the line are not interpreted by
routines that search the file. This file is normally created from the official network
data base maintained at the Network Information Control Center (NIC), though local
changes may be required to bring it up to date regarding unofficial aliases or
unknown networks.

The network number may be specified in the conventional dot (.) notation using the
inet_network routine from the Internet address manipulation library, inet (3n).
Network names may contain any printable character other than a field delimiter,
newline, or comment character.

The networks database may be distributed in a network by a naming service, such
as Yellow Pages or BIND/Hesiod. See the Guide to the Yellow Pages Service or the
Guide to the BINDIHesiod Service for setup information.

jete/networks

See Also
getnetent(3n)
Guide to the BINDIHesiod Service
Guide to the Yellow Pages Service

File Formats 5-117

nfs(5nfs)

Name
nfs - Network File System

Description
The Network File System (NFS) is a specific file system implemented under the
Generic File System Interface, as described in gfsi(5).

NFS provides support for sharing ordinary files and directories in a multivendor
networking environment. The system administrator for a file server machine makes a
file system available for remote access by placing the name of the file system to be
shared in an export list. The administrator for a client machine can import a file
system from any server machine that has granted access permission to the requesting
client machine. A complete exported file system or any subtree of an exported file
system can be imported by the client machine. Once imported, users on the client
machine can access files in the remote file system as though they were local files.

See Also
getdirentries(2), getmnt(2), mount(2nfs), mount(2), exports(5nfs), fstab(5), gfsi(5),
mount(8nfs), showmount(8nfs)

5-118 File Formats

nl_types (Sint)

Name
nl_types - language support database data types

Syntax
#include <nl_ types.h>

Description
Two international data types, nl_catd and nl_item, are available for you to use in
language support databases. These datatypes are defined in the <nl types. h>
m~ -
The nl_catd datatype is used by the message catalog functions, cat open,
catgets, and catclose. Variables of this datatype store message catalog
descriptors.

The nl_langinfo call uses the nl_item data type. Variables of this datatype store
data that gives infonnation about the current locale setting. For example, a data item
might specify how to fonnat the dates and times for the current locale. The data is
stored in the <langinfo. h> file.

See Also
intro(3int), catgetmsg(3int), catgets(3int), catopen(3int), nl_Ianginfo(3int)
Guide to Developing International Software

File Formats 5-119

ntp.conf (5)

Name
ntp.conf - Network Time Protocol configuration file

Description
The /etc/ntp. conf file is the configuration file for the Network Time Protocol
(NTP) daemon, ntpd. This file must be configured on your system before running
ntpd.

NOTE

Any host names that you specify in the / etc/ntp. conf file must
have an entry in the / etc/hosts file, or an entry in the master hosts
database, if the database is being served to your system by BIND/Hesiod
or Yellow Pages.

The / etc/ntp. conf file has four entry formats:

trusting no
This entry guarantees that your system synchronizes only to the NTP servers
identified in the peer and server entries specified. Digital recommends that all
systems include the trusting no entry.

peer server
This entry identifies server as one of the NTP servers that your system trusts,
and from which your system will accept time synchronization. Your system
may also provide time synchronization to this server. Servers can be identified
by host name or internet address.

NTP servers should be configured with peer entries.

server server
This entry identifies server as one of the NTP servers that your system trusts,
and from which your system will accept time synchronization. Your system
can not provide time synchronization to this server. Servers can be identified
by host name or internet address.

NTP clients should be configured with server entries.

peer Idev/nuU LOCL 1 -5 local

Examples

This entry identifies your system as a local reference clock. A local reference
clock is the most accurate system clock available at your site. If you receive
time synchronization from the Internet NTP service, you should not include
this entry on any of your systems. At most, one system in a set of nodes
running ntpd should be identified as a local reference clock.

A host which specifies this entry should not specify any peer or server
entries.

This is a sample configuration file for an NTP client which receives time
synchronization from the NTP servers: serverl, server2, and server3.
Lines beginning with a number sign (#) are comments.

NTP Configuration File

5-120 File Formats

This file is mandatory for the ntpd daemon

** ALL **

"trusting no" prevents this host from synchronizing

ntp.conf (5)

to any host that is not listed below. It is reco~en~ed
that all hosts include the line "trusting no".

trusting no

** S E R V E R **

If you are configuring a server, use "peer" entries to
synchronize to other NTP servers. For example, serverl,
server2, and server3.

#peer
#peer
#peer

**

serverl
server2
server3.

eLI E N T **

If you are configuring a client, use "server" entries to
synchronize to NTP servers. For example, serverl, server2,
and server3.

server
server
server

**

serverl
server2
server3

L 0 CAL REF ERE N C E C L 0 C K ** #

If you are configuring a local reference clock, include the
following entry and the "trusting no" entry ONLY.

#peer /dev/null

See Also
ntp(1), ntpd(8), ntpdc(8)

LOCL 1 -5 local

RFC 1129-lnternet time synchronization: The Network Time Protocol
Introduction to Networking and Distributed System Services

File Formats 5-121

passwd(5)

Name
passwd - password file

Description
The passwd file is an ASCII file that contains the following information for each
user:

Login name
Password field
User ID
Group ID
User's real name, office, extension, home phone
Initial working directory
Program to use as Shell

Each line in the passwd file represents a user entry. Each field within a user entry
is separated from the next by a colon. Each user entry is separated from the next by
a new line. If the password field is null, no password is demanded; if the Shell field
is null, then /bin/ sh is used.

This file resides in directory / et c. Because the password, if present, is encrypted,
the passwd file has general read permission and can be used, for example, to map
user IDs to names.

The "user's real name" can contain an ampersand (&), meaning insert the login
name. This information is set by the chfn(1) command and used by the finger(1)
command.

Appropriate precautions must be taken to lock the file against changes if it is to be
edited with a text editor. The vipw command does the necessary locking.

If the system is running UPGRADE security level and an asterisk appears in the
password field, or if the system is running ENHANCED level, then the content of the
password field is ignored and the password for the account is located in the
authentication database. See auth(5) and the Security Guide for Administrators for
more information.

The files / etc/passwd. dir and / etc/passwd. pag, if they exist, contain the
hashed version of the / etc/passwd file. If present, they are used by the
getpwnam and getpwuid functions to retrieve entries rapidly. See mkpasswd(8)
for more information.

The passwd database can be distributed in a network bya naming service, such as
Yellow Pages or BIND/Hesiod. See the Guide to the Yellow Pages Service or the
Guide to the BINDIHesiod Service for setup information.

Restrictions
The "name" can contain only lowercase ASCII characters a to z and the numbers 0
to 9.

5-122 File Formats

Files
/etc/passwd
/etc/passwd.dir
/etc/passwd.pag

passwd(5)

See Also
chfn(1), finger(1), login(1), passwd(1), crypt(3), getpwent(3), auth(5), group(5),
adduser(8), mkpasswd(8), vipw(8)
Guide to the BINDIHesiod Service
Guide to the Yellow Pages Service
Security Guide for Administrators

File Formats 5-123

passwd (5yp)

Name
passwd - password file description with the Yellow Pages service implemented

Description
The passwd. file stores initial login information, including passwords for each user
in the system. Regardless of whether or not the system has the Yellow Pages service
implemented, the passwd file contains the following information:

Name (login name, contains no uppercase)
Encrypted password
Numerical user ID
Numerical group ID
User's real name, office, extension, home phone.
Initial working directory
Program to use as Shell

The name can contain an ampersand (&), meaning insert the login name. This
information is set by the chfn(l) command and used by the finger(l) command.

This is an ASCII file. Each field within each user's entry is separated from the next
by a colon. Each user is separated from the next by a new line. If the password field
is null, no password is demanded; if the shell field is null, the system defaults to the
Ibinl sh shell.

This file resides in the I etc directory. Because of the encrypted passwords, it can
and does have general read permission and can be used, for example, to map
numerical user IDs to names.

Appropriate precautions must be taken to lock the I etc/passwd file against
simultaneous changes if it is to be edited with a text editor. The vipw command
does the necessary locking.

In a Yellow Pages environment, the passwd file can also have a line beginning with
a plus (+), which means to incorporate entries from the Yellow Pages data base.
There are three styles of + entries: by itself, + means to insert the entire contents of
the Yellow Pages password file at that point; +name means to insert the entry (if
any) for name from the Yellow Pages at that point; +@name means to insert the
entries for all members of the network group name at that point. If a + entry has a
nonnull password, directory, gecos, or shell field, it will override what is contained in
the Yellow Pages. The numerical user ID and group ID fields cannot be overridden.

Examples

Here is a sample I etc/passwd file:

root:q.mJzTnu8icF.:O:lO:Privileged Account:/:/bin/csh
jcj:6k/7KCFRPNVXg:508:10:JC Javert:/usr2/jcj:/bin/csh
+john:
+@documentation:no-login:
+: : :Guest

In this example, there are specific entries for users root and jcj, in case the Yellow
Pages are temporarily out of service. Alternatively, a user may need specific login
information on a given system that differs from the information contained in the
Yellow Pages map for that user. The user, john, will have his password entry in the

5-124 File Formats

Files

passwd (5yp)

Yellow Pages incorporated without change. Anyone in the netgroup documentation
will have their password field disabled, and anyone else will be able to log in with
their usual password, shell, and home directory, but with a gecos field of Guest.

/etc/passwd

See Also
chfn(1), finger(l), login(l), passwd(1), crypt(3), getpwent(3), group(5), adduser(8),
vipw(8)

File Formats 5-125

patterns (Sint)

Name
patterns - patterns for use with internationalization tools

Syntax
See the Description section.

Description
The patterns file contains the patterns that must be matched for the
internationalization tools extract, strextract, and strmerge.

The pattern file in the following example is the default patterns file located in
/usr/lib/intln/patterns.

This is the header to insert at the beginning of the first new
source file

$SRCHEADl
\#include <nl_types.h>
nl catd m catdi
\ - --

(1)

The header to insert at the beginning of the rest of the new
source files

$SRCHEAD2
\#include <nl_types.h>
extern nl_catd m catdi
\

(2)

This is the header to insert at the beginning of the message
catalogues

$ CAT HEAD
\$ /*
\$ * X/OPEN message catalogue
\$ */
\
\$quote II

(3)

This is how patterns that are matched will get rewritten.

$REWRITE (4)
catgets{_m_catd, %s, %n, %t)

Following is a list of the sort of strings we are looking for.
The regular expression syntax is based on regex(3) .

$MATCH

Match on strings containing an escaped "
"[A\\]*\\"[A"]*"

Match on general strings
"[AII]*"

Now reject some special C constructs.

$REJECT

5-126 File Formats

(5)

(6)

the empty string
nno

string with just one format descriptor
n%.n
n%.\.n

string with just line control in
n\\."

patterns (Sint)

string with just line control ~nd one format descriptor in
n%.\\."
n\\.%.n

ignore cpp include lines
\#[]*include[]*".*n
\#[]*ident[]*n.*n

reject some common C functions and expressions with quoted
strings
[sS] [cC] [cC] [sS] [iI] [dD]\[\] []*=[]*".*n
open [] * ([" ,] *, [")] *)
creat [] * ([",] *, [")] *)
access []*([",]*,[")]*)
chdir [] * ([" ,] *, [")] *)
chmod [] * ([" ,] *, [")] *)
chown [] * ([",] *, [")] *)

Reject any strings in single line comments
/*.**/

Print a warning for initialised strings.

$ERROR initialised strings cannot be replaced (7)
char["=]*=[]*"[""]*"
char["=]*=[]*"["\\]*\\"[""]*"
char []***[A-Za-z] [A-Za-zO-9]*\[["\]*\] []*=[{]*"[""]*"
char[]***[A-Za-z] [A-Za-zO-9]*\[["\]*\] []*=[{]*"["\\]*\\n[",,]*,,

The default patterns file is divided into the following sections:

(1) In the $SRCHEADI section, the strrnerge and extract commands place
text in this section at the beginning of the first new source program, which is
prefixed by nl_. These commands define the native language file descriptors
that point to the message catalog.

(2) In the $SRCHEAD2 section, the strrnerge and extract commands place
text in this section at the beginning of the second and remaining source
programs. These commands also define the native language file descriptors that
point to the message catalog. $SRCHEAD2 contains the external declaration of
the nl file descriptor.

(3) In the $CATHEAD section, the strrnerge and extract commands place
text in this section at the beginning of the message catalog.

(4) In the $REWRITE section, you specify how the strrnerge and extract
commands should replace the extracted strings in the new source program. You
can supply three options to the catgets command:

% s This option increments the set number for each source. This option
applies only if you are using the strrnerge command. For more

File Formats 5-127

patterns (5int)

infonnation on set numbers, see the catgets(3int) reference page.

% n This option increments the message number for each string extracted.
This option applies if you are using either the strmerge or extract
commands.

% t This option expands the text from the string extracted. The string can be
a error message or the default string extracted and printed by the
ca tget s command. For example, if you want an error message to
appear when catgets is unable to retrieve the message from the
message catalog, you would include the following line:

catgets(_m_catd, %s, %n, "BAD STRING")

When catgets fails, it returns the message BAD STRING.

(5) In the $MATCH section, you specify the patterns in the fonn of a regular
expression that you want the strextract, strmerge, and extract
commands to find and match. The regular expression follows the same syntax
rules as defined in regex(3) reference page.

(6) In the $REJECT section, you specify the matched strings that you do not want
the strmerge and extract commands to replace in your source program.
The regular expression follows the same syntax rules as defined in regex(3)
reference page.

(7) In the $ERROR section, the strextract, strmerge, and extract
commands look for bad matches and notify you with a warning message. The
regular expression follows the same syntax rules as defined in the regex(3)
reference page.

See Also
intro(3int), extract(lint), strextract(lint), strmerge(lint), trans(lint), regex(3)
Guide to Developing International Software

5-128 File Formats

phones(5)

Name
phones - remote host phone number data base

Description

Files

The file fete/phones contains the system-wide private phone numbers for the
tip(lc) program. This file is normally unreadable, and so can contain privileged
information.

The format of the file is a series of lines of the form: <system-name>[\t]*<phone­
number>. The system name is one of those defined in the remote(5) file and the
phone number is constructedfrom [0123456789-=*%]. The equal sign (=) and the
asterisk (*) characters are indicators to the autocall units to pause and wait for a
second dial tone when going through an exchange. The equal sign (=) is required by
the DF02-AC; the asterisk (*) is required by the BIZCOMP 1030.

Only one phone number per line is permitted. However, if more than one line in the
file contains the same system name, t i p(1 c) attempts to dial each one in turn, until
it establishes a connection.

fete/phones

See Also
tip(1c), remote(5)

File Formats 5-129

plot(5)

Name
plot - graphics interface

Description
Files in this format are produced by the routines described in p1ot(3x) and are
interpreted for various devices by commands described in p1ot(1g).

A graphics file is a stream of plotting instructions. Each instruction consists of an
ASCII letter, usually followed by bytes of binary infonnation, executed in order. A
point is designated by 4 bytes representing the x and y values and each value is a
signed integer. The last designated point in an 1, ro, n, or p instruction becomes the
current point for the next instruction.

In the following descriptions, the name of the corresponding routine in p1ot(3x) is
enclosed in parenthesis:

a (arc) The first 4 bytes are the center, the next 4 provide the starting
point, and the last 4 bytes designate the end point of a circular arc.
The least significant coordinate of the end point is used only to
determine the quadrant. The arc is drawn counter-clockwise.

c (circle) The first 4 bytes provide the center of the circle and the next 2
bytes designate the radius.

e (erase)

f (linemod)

I (line)

m (move)

n (cont)

p (point)

s (space)

5-130 File Formats

Start another frame of output.

Take the following string, up to a new line, as the style for
drawing further lines. The styles are dotted, solid, longdashed,
shortdashed, and dotdashed. This is only effective in the following
plots: 4014, ver, lvp16, and hp7475a.

Draw a line from the point designated by the next 4 bytes to the
point provided by the following 4 bytes.

The next 4 bytes provide a new current point.

Ora w a line from the current point to the point designated by the
next 4 bytes. For further infonnation, see p1ot(lg).

Plot the point provided by the next 4 bytes.

The next 4 bytes give the lower left comer of the plotting area.
The following 4 bytes give the upper right comer. The plot is
magnified or reduced to fit the device as closely as possible.

Space settings that fill the plotting area with unity scaling are listed
below for devices supported by the filters of p1ot(lg). In each of
the following cases, the plotting area is assumed square; points
outside the square can be displayed on devices that have areas
which are not square:

4014
ver
300,300s
450
aed
hitgrapb

space(O, 0, 3120, 3120);
space(O, 0, 2048, 2048);
space(O, 0, 4096, 4096);
space(O, 0, 4096, 4096);
space(O, 0, 511, 482)
space(O, 0, 768, 1024)

t (label)

See Also

dumb
gigi
grn
hp7221
Ivp16

hp747Sa

space(O, 0, 132, 90)
space(O, 0, 767, 479)
space(O, 0, 512, 512)
space(O,O, 1800, 1800)

plot (5)

space(O,O, 10365, 7962) (Paper Size: MET A)
space(O,O, 16640, 10365) (Paper Size: MET B)
space(O,O, 11040, 7721) (Paper Size: US A4)
space(O,O, 16150, 11040) (Paper Size: US A3)
space(O, 0, 7721, 7721) (Default)
Same as for Ivpl6.

Place the first character of the following ASCII string on the
current point. This string is terminated by a newline character.

graph(1g), plot(lg), plot(3x)

File Formats 5-131

printcap (5)

Name
printcap - printer capability data base

Syntax
/etc/printcap

Description
The printcap file describes the printers available on a system. There is one entry
in the file for each printer, and the entry describes the printer capabilities. A change
to the printcap file immediately affects the spooling system, unless the affected
queue is active. In this case, the spooling queue should be stopped and restarted.
For more information, refer to Ipc (8) .

Entries in the printcap file comprise a number of fields separated by colons (:).
The first entry for each printer gives the names that are known for the printer. The
names are separated by the pipe character (I). The first name is the name of the
printer that will be displayed when you use the Ipc command to show the status of a
queue. Second and subsequent names are alternative names for the printer. You can
use the last name to fully identify the printer, including blanks for readability if
necessary.

The / etc/printcap file is created when the system is installed. After this, you
can modify the printcap file by using the Iprsetup script or a suitable editor.
The Iprsetup script is described on the Iprsetup (8) reference page and in the
Guide to System Environment Setup.

When a file is printed using the 1 p r command, the file can be sent to a named
printer. If a printer is not named, and a print name is not defined by the PRINTER
environment variable, the file is sent to the printer with the name "lp" in the
printcap file. The printcap file should always have a printer with the name
"lp" .

Examples
A typical entry for a printer in the printcap file would be:

lpilpOlnlplln03 in room 4:\
:af=/usr/adm/lpacct:\
:br#4800:\
:fc#0177777:\
:fs#03:\
:if=/usr/lib/lpdfilters/ln030f:\
:If=/usr/adm/lperr:\
: lp=/dev/ttyOO: \
:mx#O:\
:of=/usr/lib/lpdfilters/ln030f:\
:pl#66:\
:pw#80:\
: sd=/usr/spool/lpd: \
:xc#0177777:\
:xs#044000:

This example shows the format of an entry created using the Iprsetup script. For
more information, refer to the Guide to System Environment Setup.

5-132 File Formats

printcap (5)

Capabi I ities
There are three types of capabilities in the printcap file: Boolean, string, and
numeric. String valued capabilities are processed before use. For more details, refer
to terrncap (5). The following list contains the names of capabilities that can be
used in the printcap file:

Name Type Default Description
af str NULL Accounting file name
br num none Baud rate, set if lp is a tty

(ioctl call)
cf str NULL Cifplot data filter
ct str "dev" Connection type - only valid

when uv=psvl.O (choices are:
dev, lat,remote, network)

db num 0 Debugging level (choices are:
o (none), 1 (normal), 10
(do not execute job, describe
actions to log file»

df str NULL Text data filter (DVI format)
du num Daemon user id
fc num 0 If lp is a tty, clear octal

flag values (tty (4) sg_flags)
ff str '\f" String to send for a form feed
fo bool false Print a form feed when device

is opened
fs num 0 If lp is a tty, set octal flag

values (tty (4) sg_flags)
gf str NULL Graph data filter (plot(3X)

format)
if str NULL Text filter that does

accounting
If str "/dev /console" Error logging file name
10 str "lock" Lock file name
lp str "/dev/lp" Device name to open for

output
mc num Maximum number of copies allowed
mx num 1000 Maximum file size (in lkbyte

blocks), 0 = unlimited
nf str NULL Ditroff (device independent

trail) data filter
of str NULL Output filtering program name
op str NULL The entry in the "Name" field

for LA T port characteristics
os str NULL Service name supported on some

terminal servers
pI num 66 Page length (in lines)
pp str "/bin/pr" Print filter
ps str "non_PS" Printer type (choices are:

non_PS, LPS)
pw num 132 Page width (in characters)
px num 0 Page width in pixels
py num 0 Page length in pixels

File Formats 5-133

printcap (5)

rf str NULL Filter for printing Fortran
style text files

rm str NULL Machine name for remote printer
rp str "lp" Remote printer name argument
rs bool false Restrict remote users to those

with local accounts
rw bool false Open the printer device for

reading as well as writing
sb bool false Short banner (one line only)
sc bool false Suppress multiple copies
sd str "/usr/spool/lpd" Spool directory
sf bool false Suppress form feeds
sh bool false Suppress printing of banner

page header
st str "status" Status file name
tf str NULL Troff data filter (cat

phototypesetter)
tr str NULL Trailer string to print when

queue empties
ts str NULL LA T terminal server node name
uv str "3.0" UL TRIX version number (choices

are: 3.0, psvl.O)
vf str NULL Raster image filter
xc num 0 If lp is a tty, clear local

mode octal values (t t Y (4) "Local
mode")

xf str NULL Transparent mode filter
xs num 0 If lp is a tty, set local mode

octal values (t t Y (4) "Local
mode")

The following capabilities set defaults for PostScript (TM) printers. You should refer
to the Ipr (1) reference page for the choices available for each capability. The
equivalent Ipr options are shown for reference purposes.

Name Type Default Description Ipr Option
Da str "ps" Data type -D
It str NULL Input tray -I
Lu str NULL Layup definition file -L
MI str NULL Record messages -M
Nu str NULL Number up -N
Or str "portrait" Orientation -0
Ot str NULL Output tray -0

Ps str NULL Page size -F
Sd str NULL Default sheet size

(see below)
Si str NULL Sides -K
Ss str NULL Sheet size -S
UI str last page Upper page limit -z
Xf str "xlator_call" Translator dispatch

program
Lf str "layup" Layup to PostScript

(TM) translator

5-134 File Formats

DI str "/usr/lib/
lpdfilters/
Ips_v3.a"

Name of the device
control module
library file

printcap (5)

The Ss capability specifies a mandatory sheet size. The print job fails if this sheet
size is not available with the printer.

The Sd capability specifies a preferred sheet size and is overridden by the Ss
capability and the lpr -3 command. If the sheet size specified by the 3d
capability is not available, the print job does not fail, but is printed on the default
sheet size for the printer.

The DI capability specifies the name of the device control module library file. This
file should be either /usr/lib/lpdfilters/lps40. a if the PrintServer
supporting host software is Version V2.0 or V2.l, or
/usr / lib/ lpdfil ters/ lps v3. a if the PrlntServer supporting host software
is Version V3.0. -

See Also
lpq(l), lpr(l), lprm(l), termcap(5), Ipc(8), Ipd(8), pac(8)
Guide to System Environment Setup

File Formats 5-135

Rise prof(5)

Name

Syntax

prof - profile within a function

#define MARK
#include <prof.h>

void MARK (name)

Description
The symbol MARK produces a mark called name that is treated the same as a function
entry point. Execution of the mark increments the counter for that mark, and the
program-counter time spent is accounted to the preceding mark or to the function if a
preceding mark is not within the active function.

The name argument can be any combination of numbers or underscores. Each name
in a single compilation must be unique, but can be the same as any ordinary program
symbol.

For marks to be effective, the symbol MARK must be defined before the header file
<prof. h> is included. This may be defined by a preprocessor directive as in the
synopsis, or by a command line argument. For example:

cc -p -DMARK foo.c

If MARK is not defined, the MARK (name) statements may remain in the source files,
but they will be ignored.

Examples
In the following example, marks are used to determine how much time is spent in
each loop. Unless the example is compiled with MARK defined on the command line,
the marks are ignored:

#include <prof.h>
foo()
{

int if j;

MARK (loopl) ;
for (i = 0; i < 2000; i++) {

}

MARK (loop2) ;
for (j = 0; j < 2000; j++) {

5-136 File Formats

prof(5) Rise
See Also

prof(l), profil(2), monitor(3c)

File Formats 5-137

protocols (5)

Name
protocols - protocol name file

Description

Files

The protocols file is an ASCII file that contains information regarding the known
protocols used in the DARPA Internet. For each protocol, a single line should be
present with the following information:

Official protocol name
Protocol number
Aliases

Each protocol name is separated from the next by a new line. Items are separated
by any number of blanks or tab characters or both. A number sign (#) indicates the
beginning of a comment; characters up to the end of the line are not interpreted by
routines that search the file.

Protocol names can contain any printable character other than a field delimiter,
newline, or comment character.

The protocols database may be distributed in a network by a naming service,
such as Yellow Pages or BIND/Hesiod. See the Guide to the Yellow Pages Services
or the chapter on Hesiod in the Guide to the BINDIHesiod Service for setup
information.

/etc/protocols

See Also
getprotoent(3n)
Guide to the BINDIHesiod Service
Guide to the Yellow Pages Service

5-138 File Formats

reloc (5)

Name
reloc - relocation information for a MIPS object file

Syntax
#include <reJoc.h>

Description
Object files have one relocation entry for each relocatable reference in the text or
data. If relocation information is present, it will be in the following format:

struct
{

reloc

long
long
ushort
unsigned

r_vaddr ;
r_symndx ;
r_type ;
r_symndx:24,
r_reserved:3,
r_type:4,
r_extern:l;

} ;

/* Relocation types */

#define R ABS 0
#define R REFHALF 1
#define R_REFWORD 2
#define R_JMPADDR 3
#define R REFHI 4
#define R_REFLO 5
#define R_GPREL 6
#define R_LI TERAL 7

/* Section numbers */

#define R SN NULL 0
#define R~)N~)EXT 1
#define R_SN_RDATA 2
#define R_SN_DATA 3
#define R_SN_SDATA 4
#define R_SN_SBSS 5
#define R_SN_BSS 6
#define R_SN_INIT 7
#define R_SN_LIT8 8
#define R_SN_LIT4 9

/* (virtual) address of reference */
/* index into symbol table */
/* relocation type */
/* index into symbol table */

/* relocation type */
/* if 1 symndx is an index into the

external symbol table, else symndx
is a section # */

The link editor reads each input section and performs relocation. The relocation
entries direct how references found within the input section are treated.

If r_extern is zero, it is a local relocation entry and then r_syrnndex is a section
number (R_SN_ *). For these entries, the starting address for the section referenced
by the section number is used in place of an external symbol table entry's value. The
assembler and loader always use local relocation entries if the item to be relocated is
defined in the object file.

File Formats 5-139

Rise

Rise reloc (5)

For every external relocation (except R_ABS) a signed constant is added to the
symbol's virtual address that the relocation entry refers to. This constant is
assembled· at the address being relocated.

R_ABS The reference is absolute and no relocation is necessary. The entry
will be ignored.

R_REFHALF A 16-bit reference to the symbol's virtual address.

R_REFWORD A 32-bit reference to the symbol's virtual address.

R_JMP ADDR A 26-bit jump instruction reference to the symbol's virtual address.

R_REFHI A reference to the high 16 bits of the symbol's virtual address.
The next relocation entry must be the corresponding R_REFLO
entry, so the proper value of the constant to be added to the
symbol's virtual address can be reconstructed.

A reference to low 16 bits to the symbol's virtual address.

A 16-bit offset to the symbol's virtual address from the global
pointer register.

A 16-bit offset to the literal's virtual address from the global
pointer register.

Relocation entries are generated automatically by the assembler and automatically
used by the link editor. Link editor options exist for both preserving and removing
the relocation entries from object files.

The number of relocation entries for a section is found in the s nreloc field of the
section header. This field is a C language short and can overflow with large objects.
If this field overflows, the section header s flags field has the S_NRELOC_OVFL
bit set. In this case, the true number of relocation entries is found in the r vaddr
field of the first relocation entry for that section. That relocation entry has a type of
R_ABS, so it is ignored when the relocation takes place.

See Also
as(l), Id(l), a.out(5), syms(5), scnhdr(5)

5-140 File Formats

remote (5)

Name
remote - remote host description file

Description
The systems known by t i p(1 c) and their attributes are stored in an ASCII file that is
structured somewhat like the termcap(5) file. Each line in the file provides a
description for a single system. Fields are separated by colons (:). Lines ending in a
backslash (\) followed immediately by a newline character are continued on the next
line.

The first entry is the names of the host system. If there is more than one name for a
system, the names are separated by vertical bars. After the name of the system
comes the fields of the description. A field name followed by an equal sign (=)
indicates a string value follows. A field name followed by a number sign (#)
indicates a following numeric value.

Entries named "tip*" and "cu*" are used as default entries by tip and the cu
interface to tip, as follows. When tip is invoked with only a phone number, it
looks for an entry of the form "tip300", where 300 is the baud rate with which the
connection is to be made. When the cu interface is used, entries of the form
"cu300" are used.

Capabi I ities
Capabilities are either strings (str), numbers (num), or Boolean flags (bool). A string
capability is specified by capability=value; for example, dv=/ dev /harris. A
numeric capability is specified by capability #Value ; for example, xa:#: 99. A Boolean
capability is specified by simply listing the capability.

at (str) Autocall unit type. This string is what is searched for in / etc/ acucap
to decide if the generic dialer is to be used. For further information, see
acucap(5).

br (num) The baud rate used in establishing a connection to the remote host.
This is a decimal number. The default baud rate is 300 baud.

em (str) An initial connection message to be sent to the remote host. For
example, if a host is reached through port selector, this might be set to the
appropriate sequence required to switch to the host.

eo (str) Call unit if making a phone call. Default is the same as the dv field.

di (str) Disconnect message sent to the host when a disconnect is requested by
the user.

do (bool) This host is on a dial-up line.

dv (str) UNIX devices to open to establish a connection. If this file refers to a
terminal line, tip(lc) attempts to perform an exclusive open on the device
to ensure only one user at a time has access to the port.

el (str) Characters marking an end-of-line. The default is NULL. Tilde (-)
escapes are recognized by tip only after one of the characters in el, or after
a carriage-return.

fs (str) Frame size for transfers. The default frame size is equal to BUFSIZ.

File Formats 5-141

remote (5)

Files

hd (bool) The host uses half-duplex communication; local echo should be
performed.

ie (str) Input end-of-file marks. The default is NULL.

md (bool) A hardwired device being used accepts modem control signals. Used
when du is not present but modem signals are to be used.

oe (str) Output end-of-file string. The default is NULL. When tip is
transferring a file, this string is sent at end-of-file.

pa (str) The type of parity to use when sending data to the host. The type can be
one of even, odd, none, zero (always set bit 8 to zero), or 1 (always set bit 8
to 1). The default is even parity.

pn (str) Telephone numbers for this host. If the telephone number field contains
an @ sign, tip searches the file / etc/phones file for a list of telephone
numbers. For further information, see phones(5).

tc (str) Indicates that the list of capabilities is continued in the named
description. This is used primarily to share common capability information.

Here is a short example showing the use of the capability continuation feature:

UNIX-1200:\
:dv=/dev/ttydO:el="D"U"C"S"Q"O:.br
:du:at=dfl12:ie=#$%:oe="D:br#1200:

ourvaxlox:\
:pn=7654321:tc=UNIX-1200

fete/remote

See Also
tip(lc), acucap(5), phones(5)

5-142 File Formats

resolv.conf (5)

Name
resolv.conf - resolver configuration file

Description

The resolver configuration file, /etc/resolv. conf, contains information that the
resolver routines read the first time they are invoked by a process. The resolver file
contains ASCII text and lists the name-value pairs that provide various types of
resolver information.

The / etc/ resol v. conf file is required if your system is running BIND. This
file must contain the BIND domain name for the local area network. If your system
is a BIND client, this file must also contain nameserver entries.

There are two entry formats for the / etc/ resol v. conf file:

domain binddomain
This line specifies the default domain to append to local host names. If no
domain entries are present, the domain returned by gethostname after
the first dot C.) is used. If the host name does not contain a domain, the
root domain is assumed.

nameserver address
In this entry, the address is the IP address, in dot notation, of the BIND
server that should be queried to resolve host name and address
information. You should have at least one name server listed. Two or
more name servers reduces the possibility of interrupted BIND service in
the event that one of the servers is down. You can list up to N SMAX (10)
name servers. If more than one server is listed, the resolver library queries
you to try them in the order listed. If no name server entries are present,
the default is to use the name server on the local machine.

The algorithm used is to try a name server, and, if the query times out, to
try the next, until out of name servers or the query is resolved. The last
step is to repeat trying all the name servers until a maximum number of
retries has been made or the query has been resolved.

The name value pair must appear on a single line, and the keyword doma i n or
nameserver must start each line.

Examples
The following is an example of a /etc/resolv. conf file:

,
; Data file for a client

domain
nameserver

cities.us
128.11.22.33

Lines beginning with a semicolon (;) are comment lines.

File Formats 5-143

resolv.conf (5)

Files
/etc/resolv.conf

See Also
gethostname(2), resolver(3), named(8)
Guide to the BIND Service

5-144 File Formats

rhosts(5)

Name
rhosts -list of hosts that are logically equivalent to the local host

Syntax
I$HOME/.rhosts

Description
The. rhosts file allows a user who has an account on the local host to log in from
a remote host without supplying a password. It also allows remote copies to the
local host.

If the. rhosts file exists, it is located in a user's home directory. It is not a
mandatory file, however.

The format of a . rhosts file entry is:

hostname [username]

The hostname is the name of the remote host from which the user wants to log into
the local host. The username is the user's login name on the remote host. If you do
not specify a user name, the user must have the same login name on both the remote
and local hosts.

The host names listed in the. rhosts file may optionally contain the local BIND
domain name. For more information on BIND, see the Guide to the BINDIHesiod
Service.

If a user ginger is logged in to hostl, and wants to log in to a host called
machinel without supplying a password, she must:

• Have an account on machinel

• Create a • rhosts file in her home directory on machinel

• Specify hostl ginger as an entry in the. rhosts file.

If ginger has the same login on both hostl and machinel, she can
simply specify hostl in her. rhosts entry.

NOTE

You can allow the superuser of a remote system to log in to your system
without password protection or perform a remote copy by having a
. rhosts file in the root (I) directory, but it is not recommended.

In addition to having a . rhosts file, the superuser needs a secure
terminal entry in the / etc/ttys file for each pseudoterminal
configured in the system. The secure entry looks similar to the
following:

ttyp3 none network secure

See the ttys(5) reference page for more information.

File Formats 5-145

rhosts(5)

Examples
The following is a sample. rhosts file for the user ginger. It is located in her
home directory on hostl. She also has accounts on the hosts called machinel,
systeml, and host3. Her login name on machinel and host3 is the same as
on hostl, but her login on systeml is gordon.

To enable ginger to log in to hostl from machinel, systeml, and host3
without supplying a password, her. rhosts on hostl should contain the
following entries:

machinel
systeml gordon
host3

See Also
hosts.equiv(5), ttys(5)
Introduction to Networking and Distributed System Services

5-146 File Formats

rmtab (5nfs)

Name
rmtab - table of local file systems mounted by remote NFS clients

Description
The rmt ab file resides in the / et c directory and contains a list of all remote hosts
that have mounted local file systems using the NFS protocols. Whenever a client
performs a remote mount, the server machine's mount daemon makes an entry in the
server machine's rmtab file. The umount command removes remotely mounted
file system entries. The umount-a command broadcasts to all servers and informs
them that they should remove all entries from rrnt ab created by the sender of the
broadcast message. By placing a umount-a command in /etc/rc .local,
rmt ab tables on NFS servers can be purged of entries made by a crashed client,
who, upon rebooting, did not remount the same file systems that it had before the
system crashed. The rmt ab table is a series of lines of the form:

hostname:directory

This table is used only to preserve information between crashes and is read only by
mountd(Snfs} when it starts up. The rttountd daemon keeps an in-core table, which
it uses to handle requests from programs like showmount(Snfs} and shutdown(S}.

Restrictions

Files

Although the rmtab table is close to the truth, it may contain erroneous information
if NFSclient machines fail to execute umount-a when they reboot.

/etc/rmtab

See Also
mount(Snfs), mountd(Snfs}, showmount(Snfs}, shutdown(S)

File Formats 5-147

rpc(5)

Name
rpc - remote procedure call file

Description

Files

The rpc file is an ASCII file that contains the following information:

rpc name
numerical rpc ID
aliases

Each rpc name is separated from the next by a new line. Items are separated by any
number of blanks or tab characters or both. A number sign (#) indicates the
beginning of a comment; characters up to the end of the line are not interpreted by
routines that search the file.

The rpc database can be distributed in a network by a naming service, such as
Yellow Pages or BIND/Hesiod. See the Guide to the Yellow Pages Service or the
Guide to the BINDIHesiod Service for setup information.

/etc/rpc

See Also
getrpcent(3n)
Guide to the BINDIHesiod Service
Guide to the Yellow Pages Service

5-148 File Formats

sccsfile (5)

Name
sccsfile - format of sees file

Description
An sees file is an ASeII file that consists of six logical parts. These six parts
include checksum, delta table (contains information about each delta), user names
(contains login names and/or numerical group IDs of users who may add deltas), flags
(contains definitions of internal keywords), comments (contains arbitrary descriptive
information about the file), and body (contains the actual text lines intermixed with
control lines).

Throughout an sees file there are lines that begin with the ASCII SOH (start of
heading) character (octal 001). This character is hereafter referred to as the control
character and will be represented graphically as @. Any line described that is not
shown beginning with the control character is prevented from beginning with the
control character.

Entries of the form DDDDD represent as-digit string number between 00000 and
99999.

The logical parts of an sees file, described in detail, are:

Checksum
The checksum is the first line of an sees file. The form of the line is:

@hDDDDD

The value of the checksum is the sum of all characters, except those of the
first line. The @ h provides a magic number of (octal) 064001.

Delta table
The delta table consists of a variable number of entries of the form:

@s 00000/00000/00000
@d <type> <sees ID> yr/mo/da hr:mi:se <pgmr> 00000 00000
@i 00000 .. .
@x 00000 .. .
@g 00000 .. .
@m <MR number>

@c <comment>

@e

The first line (@s) contains the number of lines inserted/deleted/unchanged,
respectively. The second line (@d) contains the type of the delta (normal: D and
removed: R), the sees ID of the delta, the date and time of creation of the delta, the
login name corresponding to the real user ID at the time the delta was created, and
the serial numbers of the delta and its predecessor, respectively.

The @i, @x, and @g lines contain the serial numbers of deltas included, excluded,
and ignored, respectively. These lines are optional. The @m lines (optional) each

File Formats 5-149

sccsfi Ie (5)

contain one MR number associated with the delta. The @ c lines contain comments
associated with the delta.

The @e line ends the delta table entry.

User names

Flags

The list of login names and numerical group ID of users who may add
deltas to the file, separated by new lines. The lines containing these login
names and numerical group ID are surrounded by the bracketing lines @ u
and @u. An empty list allows anyone to make a delta.

Keywords used internally. See admin(1) for more information on their
use. Each flag line takes the form:

@f <flag> <optional text>

The following flags are defined:

@f t <type of program>
@f v <program name>
@f i
@f b
@f m <module name>
@f f <floor>
@f c <ceiling>
@f d <default-sid>
@f n
@f j
@f 1 <lock-releases>
@f q <user defined>
@f z <reserved for use in interfaces>

The t flag defines the replacement for the % Y % identification keyword.

The v flag controls prompting for MR numbers, in addition to comments. If the
optional text is present, it defines an MR number-validity checking program.

The i flag controls the warning/error aspect of the' 'No id keywords" message.
When the i flag is not present, this message is only a warning; when the i flag is
present, this message will cause a fatal error (the file will not be retrieved or the delta
will not be made).

When the b flag is present, the - b option can be specified with the get command to
cause a branch in the delta tree.

The m flag defines the first choice for the replacement text of the %M% identification
keyword.

The f flag defines the' 'floor" release: the release below which no deltas may be
added.

The c flag defines the "ceiling" release: the release above which no deltas may be
added.

The d flag defines the default SID to be used when none is specified on a get
command.

The n flag causes delta to insert a null delta (a delta that applies no changes) in those
releases that are skipped when a delta is made in a new release. For example, when
delta 5.1 is made after delta 2.7, releases 3 and 4 are skipped. The absence of the n

5-150 File Formats

sccsfile (5)

flag causes.skipped releases to be completely empty.

The j flag causes get to allow concurrent edits of the same base I.

The 1 flag defines a list of releases that are locked against editing get with the -e
option.

The q flag defines the replacement for the %Q% identification keyword.

The z flag is used in certain specialized interface programs.

Comments
Arbitrary text surrounded by the bracketing lines @ t and @ T. The
comments section typically contains a description of the file's purpose.

Body The body consists of text lines and control lines. Text lines do not begin
with the control character; control lines do. There are three kinds of
control lines: insert, delete, and end, represented by the following:

@I DDDDD
@D DDDDD
@E DDDDD

The digit string is the serial number corresponding to the delta for the control line.

See Also
(1), delta(1), get(1), prs(1), sccs(1)
An Introduction to the Source Code
Eric Allman, Supplementary Documentation, Vol. II.

File Formats 5-151

Rise scnhdr(5)

Name
scnhdr - section header for a MIPS object file

Syntax
#include < scnhdr .h>

Description
Every MIPS object file has a table of section headers that specify the layout of the
data in the file. Each section that is in an object file has its own header. The C
structure appears as follows:

struct scnhdr
{
char s name[8]; /* section name */
long syaddr; /* physical address, aliased s - nlib */
long s _vaddr; /* virtual address */
long s - size; /* section size */
long s_scnptr; /* file ptr to raw data for section */
long s_relptr; /* file ptr to relocation */
long s_lnnoptr; /* file ptr to gp table */
unsigned short s - nreloc; /* number of relocation entries */
unsigned short s nlnno; /* number of gp table entries */
long s_flags~ /* flags */
} ;

File pointers are byte offsets into the file; they can be used as the offset in a call to
FSEEK (see Idfcn(5)). If a section is initialized, the file contains the actual bytes.
An uninitialized section is somewhat different. It has a size, symbols defined in it,
and symbols that refer to it. It cannot have relocation entries or data. Consequently,
an uninitialized section does not contain data in the object file, and the values for
s _scnptr, s _relptr, and s _ nreloc are zero.

The entries that refer to line numbers (s lnnoptr and s nlnno) are not used for line
numbers on MIPS machines. See the header file s ym :-h for the entries to get to the
line number table. The entries that were for line numbers in the section header are
used for gp tables on MIPS machines.

The number of relocation entries for a section is found in the s nreloc field of the
section header. This field is a C language short and can overflow with large objects.
If this field overflows, the section header s Jags field has the S_NRELOC_OVFL bit set.
In this case, the true number of relocation entries is found in the r vaddr field of the
first relocation entry for that section. That relocation entry has a type of R_ABS; thus,
it is ignored when the relocation takes place.

The gp table gives the section size corresponding to each applicable value of the
compiler option -G num (always including 0), sorted by smallest size first. It is
pointed to by the s _lnnoptr field in the section header and its number of entries
(including the header) is in the s _ nlnno field in the section header. This table only
needs to exist for the .sdata and .sbss sections. If a small section does not exist,

5-152 File Formats

scnhdr(5)

then the gp table for it is attached to the corresponding large section so the
information still gets to the link editor, Id. The C union for the gp table follows:

union gp_table
{

struct {
long
long

} header;
struct {

entry;
} ;

long
long

current_g_value;
unused;

g_value;
bytes;

1* actual value *1

1* hypothetical value *1
1* section size corresponding

to hypothetical value *1

Each gp table has one header structure that contains the actual value of the -G num
option used to produce the object file. An entry must exist for every -G num -G
num option. The applicable values are all the sizes of the data items in that section.

For .lib sections, the number of shared libraries is in the s nlib field (an .alias to
s yaddr). The .lib section is made up of s _ nlib descriptions of shared libraries.
Each description of a shared library is a libscn structure followed by the path name to
the shared library. The C structure appears here and is defined in scnhdr.h :

struct libscn
{

long size; /* size of this entry (including target name) */
long offset; /* offset from start of entry to target name */
long tsize; /* text size in bytes, padded to DW boundary */
long dsize; /* initialized data size *1
long bsize; /* uninitialized data */
long text_start; /* base of text used for this library ~I
long data_start; /* base of data used for this library */
long bss_start; /* base of bss used for this library */
/* pathname of target shared library */
} ;

See Also
ld(l), fseek(3s), a.out(5), reloc(5)

File Formats 5-153

Rise

services (5)

Name
services - service name file

Description

Files

The s e rv ice s file is an ASCII file that contains information regarding the known
services available in the DARPA Internet. For each service, a single line should be
present with the following information:

official service name
port number
protocol name
aliases

Each service name is separated from the next by a new line. Items are separated
by any number of blanks or tab characters or both. The port number and protocol
name are considered a single item; a backslash (\) is used to separate the port and
protocol (for example, 512/tcp). A number sign (#) indicates the beginning of a
comment; characters up to the end of the line are not interpreted by routines that
search the file.

Service names can contain any printable character other than a field delimiter,
newline, or comment character.

The services database may be distributed in a network by a naming service, such
as Yellow Pages or BIND/Hesiod. See the Guide to the Yellow Pages Service or the
chapter on Hesiod in the Guide to the BINDIHesiod Service for setup information.

/etc/services

See Also
getservent(3n)
Guide to the BINDIHesiod Service
Guide to the Yellow Pages Service

5-154 File Formats

Name

snmpd.conf(5n)

snmpd.conf - Simple Network Management Protocol (SNMP) daemon configuration
file

Description
The / etc/ snmpd. conf file is a configuration file that contains information used
by the snmpd daemon to define the static variables whose values are not available in
the kernel. It is created for you when you run the snmpsetup command, or you
can create it manually. The system or network manager is usually responsible for
maintaining it.

The following are the / etc/ snmpd. conf file variables and their significance:

sysDescr ID-string
The sysDescr variable describes the host. The ID-string is the value of the
variable mgmt .mib. system. sysDescr. The default sysDescr entry is
of the form:

hostname:machine-type:software id

For example, the sysDescr eritry for a MicroVAX II named hostl that is
running ULTRIX Version 4.0 might read:

sysDescr hostl:MicroVAXII:ULTRIX V4.0 (Rev 64) System #2

interface speed name speed
The interface speed variable describes a value for the Management
Information Base (MIB) variable defined as:

mgmt.mib.interfaces.ifTable.ifEntry.ifSpeed

The name parameter must be an ULTRIX interface name, such as siO. The
following interfaces have default interface speeds and types: de, qe, ni, In, se,
scs, xna. If your system has one of these interfaces, you do not need to specify
this parameter.

The speed parameter is a decimal number that describes the speed of the link in
bits per second. If you do not specify the speed parameter, snmpd does not
return this variable and marks it as unavailable.

interface type name type
The interface type variable describes a value for the MIB variable in the
interface table defined as:

mgmt.mib.interfaces.ifTable.ifEntry.ifType

The name parameter must be an ULTRIX interface name, such as siO.

See the sample / etc/ snmpd. conf file in the Examples section for a
complete listing of the possible type specifications. If the type parameter is not
specified, snmpd marks it as unavailable.

tcpRtoAlgorithm algorithm-type
The tcpRtoAlgori thm variable describes a value for the MIB variable in
the tcp group defined as mgmt . mib. tcp. tcpRtoAlgori thm. This
variable defines the Retransmission Time-Out (RTO) algorithm your system
uses.

File Formats 5-155

snmpd.conf (5n)

The algorithm-type parameter is a numeric code that represents the type of
RTO algorithm you are using. The default algorithm is Van Jacobson's, which
is algorithm number 4. See the sample snmpd. conf file in the Examples
section for a listing of the other algorithms.

If you do not specify this parameter, snmpd does not return this variable, and
marks it as unavailable.

community name IP-address type
The community variable describes anSNMP community for the agent.

The name parameter is a· string that describes the name of the community.

The IP-address parameter is the dot-notation Internet Protocol (IP) address for
the server. Only SNMP packets coming from that address are accepted. If you
specify 0.0.0.0 in the address field, the SNMP agent honors the request from
any Network Management Station (NMS) having the name community.

The type parameter can be one of the following:

read-only
Permits only monitoring of variables.

read-write
Permits both monitoring and setting of variables.

traps
Generates traps when appropriate and sends them to the specified address with
the specified community name.

The possible traps currently generated are cold start and authentication failure.

If you do not specify any community, snmpd uses the default community
public with an address 0.0.0.0 and a read-only type. Invalid uses of
communities are logged with the s y slog command. To limit the use of a
community to a finite group of machines, specify another community clause
with the same community parameter name and a different address.

timeout value
The timeout variable indicates the timeout value in seconds between the
Agent and the Extended Agent. If the Agent does not receive a response
within the allotted time, it returns an error message to the NMS. The default
timeout value is 5 seconds.

extension extended-agent pi p2 p3 p4

Examples

The extension variable lists the pathname of the extended-agent that the
Agent activates.

Variables pi through p4 are passed by the Agent to the Extended Agent; pi is
usually the process name to be given to the Extended Agent.

The default snmpd. conf file contains only the following entry:

community public 0.0.0.0 read-only

5-156 File Formats

snmpd.conf (5n)

The following is an example of an extensive snmpd. conf file:

snmpd.conf file

sysDescr host1:MicroVAXII:ULTRIX V4.0 System #2

Describe the TCP RTO algorithm you are using. Values
are listed in RFC 1066, under the TCP group variable:
tcpRtoAlgorithm
They are:

other (1)
constant (2)
rsre (3)
vanj (4)

None of the below
constant RTO
MILSTD 1778, appendix B
Van Jacobson's algorithm

tcprtoalgorithm 4

Describe who can use your SNMP daemon by
defining "communities". USAGE:

community <name><IP address><type>

This is a limited-use community; a finite number of
hosts can use it.
Can only query from this community.

community test1
community test1

128.45.10.100 read-only
128.45.10.101 read-only

These are our wide-open, general-use communities. Specifying
0.0.0.0 means that any address can use this community only
to monitor variables.

community public 0.0.0.0 read-only

This is our only management community. You can set variables
as well as monitor variables with this community. It is a
wide-open community as well.

community testwrite 0.0.0.0 read-write

This is a trap community. We send traps to these addresses
all from the same community name. Note that a 0.0.0.0
address in a trap session is illegal and snmpd will ignore
that community definition.

community trap1
community trap1

128.45.10.100 traps
128.45.10.101 traps

The interface speed is given in bits/sec. USAGE:

interface speed <name> <speed>

interface speed slO 9600

File Formats 5-157

snmpd.conf (5n)

=It

=It

=It

=It

=It

=It

=It

=It

=It

=It

=It

=It

=It

=It

=It

=It

=It

=It

=It

=It

=It

=It

=It

=It

=It

=It

=It

=It

=It

=It

=It

=It

=It

=It

=It

=It

The <name> parameter for the interface type is the
same as the <name> for the interface speed, slO for
this example. USAGE:

interface type <name> <type>

The code number for the proper interface hardware type
is specified in RFC 1066 under the if Type object
definition.

Some possible values:

other
regular1822
hdh1822
ddn-x25
rfc877-x25
ethernet-csmacd
iso88023-csmacd
iso88024-tokenBus
iso88025-tokenRing
iso88026-man
starLan
Proteon-l0MBit
Proteon-80MBit
hyperchannel
fddi
lapb
sdlc
tl-carrier
cept
basiclsdn
primarylsdn
propPointToPointSerial

interface type slO 1

=It

(1)
(2)
(3)
(4)
(5)
(6)
(7)

(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19) European equivalent of T-l
(20)
(21)
(22) -- proprietary serial

=It Timer value to time out requests to extended agents.
=It

timeout 6

=It

=It List of extended agents.
=It
extension /etc/snmpextd

In this example, note the following:

snmpextd

• Community testl can be monitored by either 128.45.10.100 or 128.45.10.101.

• Community public can be monitored by any NMS .

• Community testwrite can be monitored and managed by any NMS.

• When a trap is generated, it is sent to community trapl at 128.45.10.100 or
128.45.10.101. Destination addresses must have a mechanism in place to handle the
traps.

5-158 File Formats

snmpd.conf (5n)

See Also
snmpext(3n), snmpd(8n), snmpsetup(8n)
RFC l066--Management Information Base for Network Management of TCPIIP­
based Internets
RFC l067-A Simple Network Management Protocol
Guide to Networking

File Formats 5-159

VAX stab (5)

Name
stab - symbol table types

Syntax
#include <stab.h>

Description
The stab. h file defines some values of the n_type field of the symbol table of
a. out files. These are the types for permanent symbols (that is, not local labels,
and so on) used by the debugger dbx and the Berkeley Pascal compiler pc(1).
Symbol table entries can be produced by the. stabs assembler directive, which
allows you to specify a double-quote delimited name, a symbol type, one char and
one short of information about the symbol, and an unsigned long (usually an
address).

To avoid having to produce an explicit label for the address field, the .stabd directive
can be used to implicitly address the current location. If no name is needed, symbol
table entries can be generated using the .stabn directive. The loader promises to
preserve the order of symbol table entries produced by .stab directives. As described
in a. out(5), an element of the symbol table consists of the following structure:

/*
struct nlist

union {
char
long

n_name; / for use when in-core */
n_strx; /* index into file string table */

n_un;
unsigned char
char

n_type;
n_other;
n_desc;
n_value;

/* type flag */
/* unused */

short /* see struct desc, below */
unsigned /* address or offset or line */

} ;

The low bits of the n_type field are used to place a symbol into one segment,
maximum, according to the following masks defined in <a. out. h>. If none of the
segment bits are set, a symbol cannot be in any of these segments.

* Simple values
#define N_UNOF
#define N_ABS
#define N TEXT
#define N=OATA
#define N_BSS

for n type.
OxO - /* undefined */
Ox2 /* absolute */
Ox4 /* text */
Ox6 /* data */
Ox8 /* bss */

01 /* external bit, or'ed in */

The n_value field of a symbol is relocated by the linker, ld, as an address within the
appropriate segment. N_ value fields of symbols not in any segment are unchanged
by the linker. In addition, the linker will discard certain symbols, according to rules
of its own, unless the n_type field has one of the following bits set:

/*
* Other permanent symbol table entries have some of the
* N STAB bits set. These are given in <stab~h>
*/ -
#define N_STAB OxeO /* if any of these bits set, don't discard */

5-160 File Formats

stab (5)

This allows up to 112 (7 * 16) symbol types, split between the various segments.
Some of these have already been claimed. The C compiler generates the following
n_type values, where the comments give the use for .stabs and the n_name, n_other,
n_desc, and n_ value fields of the given n_type:

#defirie
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

N_GSYM Ox20
N_FNAME Ox22
N_FUN Ox24
N_STSYM Ox26
N LCSYM Ox28
N_RSYM Ox40
N_SLINE Ox44
N SSYM Ox60
N_SO Ox64
N_LSYM Ox80
N SOL Ox84
N_PSYM OxaO
N ENTRY Oxa4
N_LBRAC OxcO
N_RBRAC OxeO
N_BCOMM Oxe2
N_ECOMM Oxe4
N ECOML Oxe8
N_LENG Oxfe

/* global symbol: name"O,type,O */
/* procedure name (f77 kludge): name"O */
/* procedure: name"O,linenumber,address */
/* static symbol: name"O,type,address */
/* .lcomm symbol: name"O,type,address */
/* register sym: name"O,type,register */
/* src line: O"O,linenumber,address */
/* struct elt: name"O,type,struct offset */
/* source file name: name"O,O,add~ess */
/* local sym: name"O,type,offset */
/* #included file name: name"O,O,address */
/* parameter: name"O,type,offset */
/* alt entry: name,linenumber,address */
/* 1ft bracket: O"O,nesting level,address */
/* rt bracket: O"O,nesting level,address */
/* begin common: name" */
/* end common: name" */
/* end common (local name): "address */
/* second stab entry with length information */

The n_desc holds a type specifier in the form used by the Portable C Compiler,
cc(1), in which a base type is qualified in the following structure:

struct desc {

} ;

short q6:2,
q5:2,
q4:2,
q3:2,
q2:2,
ql:2,
basic:4;

There are 4 qualifications, with q 1 the most significant and q6 the least significant:

o
1
2
3

None
Pointer
Function
Array

The 16 basic types are assigned as follows:

o Undefined
1 Function argument
2 Character
3 Short
4 Int
5 Long
6 Float
7 Double
8 Structure
9 Union
10 Enumeration
11 Member of enumeration

File Formats 5-161

VAX

VAX stab (5)

12 Unsigned character
13 Unsigned short
14 Unsigned int
15 Unsigned long

The same information is encoded in a more useful form in the symbolic string. The
symbol's name is followed by a colon, which is followed by a· description of the
symbol's type. This begins with one of the following letters:

c Constant
f Local function
F Function name
G Global variable
p Argument (by value)
P External procedure
r Register variable
s Static variable
t Typedef name
T Local variable
v Argument (by ref)
V Local static variable
No letter

Local dynamic variable

This is followed by the variable's type, where type is any of the following:

integer

integer=type

* type

rtype;low;hig h;

arangetype

ename :value,;

Same as previously defined type integer

Define type integer to have form type

Pointer to type

Range of type from low to high

Array with bounds range of type

Enumerated type. The phrase" name:value," repeats as needed.

ssizename:type ,ofJset,size;;
Structure. The size is the number of bytes in the complete
structure. The phrase "name:type,ofJset,size;" repeats as needed,
giving the ofJset from the start of the structure (in bits) and the
size in bits of each member.

usizename:type ,ofJset,size;;
Union. Analagous to structure entry.

Stype Set of type.

ftype,integer~type~class;

pinteger;type ,class;

dtype

Function returning type with integer parameters, described by the
repeating "type,class;" phrase.

Procedure-like function

File of type

5-162 File. Formats

stab (5) VAX

The Berkeley Pascal compiler, pc(l), uses the following n_type value:

#define N_PC Ox30 /* global pascal symbol: name"O,subtype,line */

The complier uses the following sUbtypes to do type checking across separately
compiled files:

1 Source file name
2 Included file name
3 Global label
4 Global constant
5 Global type
6 Global variable
7 Global function
8 Global procedure
9 External function
10 External procedure
11 Library variable
12 Library routine

See Also
as(1), cc(l), dbx(1), Id(1), pc(l), a.out(5)

File Formats 5-163

statmon (5)

Name
statmon, current, backup, state - statd directory and file structures

Syntax
letelsm letclsm.bak letclstate

Description
The directories /ete/sm and /ete/sm.bak are generated by the statd daemon.
Each entry in /ete/sm represents the name of the system to be monitored by
statd. Each entry in / ete/ sm. bak represents the name of the system to be
notified by statd upon its recovery.

The file / ete/ state is generated by statd to record its version number, that is,
the number of times s tat d was invoked. The version number is incremented each
time a crash or recovery takes place.

See Also

statd(8c), lockd(8c)

5-164 File Formats

Name
stl_comp - software subset compression file

Description
The software subset compression file is used to indicate to the setld utility that the
subsets on a distribution are in compressed format. This file is created in the instctrl
directory of the kit output hierarchy by the kit s utility if the value for the
COMPRESS attribute in the key file for the product is 1. The name of this file is of
the form XXXZZZ.comp where XXX is the value of the CODE attribute for the
product and ZZZ is the value of the VERS attribute.

See Also

kits(1), stl_key(5), setld(8)

Guide to Preparing Software for Distribution on ULTRIX Systems

File Formats 5-165

Name
stl_ctrl - software subset control files

Description
Each software subset that is distributed on media used with the setld command has
an associatea control file. This control file is created by the kit s utility. It contains
the attribute information for the subset. Once the subset has been installed on a
system, the control file is placed in the usr / etc/ subsets directory. The control
file for each subset has a name formed by appending the extension. ctrl to the end
of the subset name.

The attribute definitions in the file are stored as attribute name and value pairs
separated by an equal sign (=). The attributes are:

NAME

DESC

NVOLS

MTLOC

DEPS

FLAGS

Example,s

The name of the product of which this subset is a member. This attribute
has the same value as the NAME attribute defined for the product in the
product attributes section of the key file.

The text description of the subset as given in the subset descriptor for this
subset in the key file.

Obsolete.

A pair of integers separated by a colon (:). These integers are used by the
setld utility to find the subset on tape media. The first number is the
volume in the product tape set; the second is the location within the
volume. The values established for this attribute by the kits utility are
place holders. The values are later updated as the subset is being written to
tape by the gentapes command.

The dependency list for this subset. The information for this list is taken
from the subset descriptor in the key file.

The flags value from the key file.

Here are the contents of UDTBASE400. ctrl, the control file for the
UD TBASE 400 subset:

NAME='ULTRIX/UWS T4.0 (RISe)'
DESC='Base System'
NVOLS=1:112
MTLOC=l:l
DEPS="."
FLAGS=l

5-166 File Formats

See Also
genra(l), gentapes(1), kits(l), stl_key(5), stl_tape(5), setld(8)
Guide to Preparing Software for Distribution on ULTRIX Systems

File Formats 5-167

Name
stl_key - setld kit manufacturing key file

Description
The manufacturing key files are used by the software kitting program kit s in
producing software distribution packages in setld format.

A key file has a global data section and a subset descriptor section. The sections are
separated by a line that is empty except for the %% character sequence.

The global section contains the product level attributes of the product. Comments are
permitted in this section. They begin with the number sign (#) character and end at
the next newline character. Attributes are specified by giving the attribute key, an
equal sign (=), and a value for the attribute. There must be no white space
surrounding the equals sign (=). There are five attributes that must be present with
non-null values. These are NAME, CODE, VERS, MI, and ROOT. An explanation of
each of the attributes follows:

NAME

CODE

VERS

MI

ROOT

The name of the product. The value for NAME is a string of up to 40
characters.

The 3-character product code for the product, for example, ULT.

The 3-digit version code for the product, for example, 040.

The pathname of the master inventory file for the product.

A flag with values of 0 or 1. It is used to determine if a ROOT image
checksum should be computed for the product image file. There is no
ROOT image in any product other than UL TRIX. Set it to O.

RXMAKE A flag with values of 0 or 1. Setting it to 0 suppresses the
manufacture of subset images for distribution on RX50 diskettes.
Omitting this attribute from the key file will cause the kits program
to assume a default value of 1. Digital recommends setting it to O.

COMPRESS
A flag with values of 0 or 1. Setting it to 1 causes the subset images
to be compressed using the compress utility, thereby saving space
on the distribution media. Setting it to 0 suppresses compression.
Omitting this attribute from the key file will cause the kit s program
to assign a default value of O.

The subset descriptor section contains one subset descriptor for each subset in the
product. There is one subset descriptor per line in this section and comments are not
permitted.

A subset descriptor contains subset-specific attributes in four fields separated by TAB
(CTRLII) characters. A description of each field follows:

SUBSET This field contains the name of the subset being described by the
descriptor. The subset name is composed of the product code, name
and version code. ~

DEPENDENCIES

5-168 File Formats

A list of subsets on which the described subset depends. If there are
no such subsets, the period character (.) is used. Multiple subset

dependencies are separated by a vertical bar character (I).

FLAGS A subset flags value. This is an integer. Bit 0 is used to mark the
subset as irremovable. If bit 0 is set, setld can never delete the
subset. Bit 1 is used to mark the subset as optional, otherwise it is
mandatory and must be installed from the media when encountered
by setld.

DESCRIPTION
This is a description of the subset in 40 or fewer characters. It is
used in the menu that setld presents to a user installing the
software. If spaces are desired in this field, the field must be enclosed
in single quotes.

The subset descriptors must be listed in the order in which the subsets are installed
by setld.

Restrictions
The required attributes and default values are not optimal.

Comments in the subset descriptor section will cause serious problems when
encountered by the kit s program.

TAB formatting in the subset descriptors is tightly enforced by the kits program.

Examples
This is an example key file:

ULW400.k-
ULTRIX WS V4.0 Server 2/2 (VAX) Mfg Key File

"@(#)ULW400.k2.2 (ULTRIX) 4/12/89"

000 02-mar-1989 ccb
Copy from V2. 0 (VAX) Sources
Revision update for V4.0

#% PRODUCT-LEVEL ATTRIBUTES
NAME='ULTRIX Worksystem Software V4.0'
CODE=UWS
VERS=400
MI=ULT400.mi
ROOT=O
RXMAKE=O
COMPRESS=l

#% SUBSET-LEVEL ATTRIBUTES
%%
UWSXl1400 ULTINET400 0 'X11/DECwindows User Environment'
UWSFONT400 UWSXl1400
UWSFONT15400 2
UWSDECW400 2
UWSXDEV400 ULTPGMR400
UWSMAN400ULTDCMT400 2

o 'X11/DECwindows 75dpi Fonts'
'X11/DECwindows 100dpi Fonts'
'Optional DECwindows Applications'
2 ~Worksystems Development Software'
'UWS Manual Pages'

File Formats 5-169

stl_key(5)

See Also
kits(l), stl_comp(5), stl_ctrl(5), stl_image(5), setld(8)
Guide to Preparing Software for Distribution on ULTRIX Systems

5-170 File Formats

Name
stl_mi - software distribution master inventory file format

Description
The master inventory (mi) files are used by the subset kitting program ki t s when
manufacturing subsets for installation with the setld utility.

A master inventory file contains one record for each file in a product containing
vendor-specified attribute information about each file in the kit.

The master inventory contains ASCII data, one record per line. Each record is
composed of three fields, which must be separated by TAB characters.

Here is a description of each of the fields:

FLAGS This is an integer flags value. The two lowest bits of this flag are
defined. All other bits are reserved for use by Digital.

Bit 0 of this flag is the precedence bit. Setting the precedence bit for a
file indicates to set 1 d that a new copy of this file is not as important to
the target system as a copy that is already there. This is used by setld
when determining which files to restore to the system after updating a
subset. Files containing configuration information that can be modified
after being installed are often marked with this flag.

Bit 1 of this flag is defined as the volatility bit. It is used to indicate that
the file will change after being installed to the target system and that the
changes do not indicate that the contents of the file have been corrupted.
When an application requires a log file, it is often installed a~ a zero
length file on the target system. Such log files are normally marked in
the master inventory with bit 1.

PATHNAME
This is the name of the file for which the record exists. The pathname in
this field must begin with a leading period (.). All records in the file
must be sorted in ascending order on this field. There cannot be two
records in a master inventory that represent the same file. The newinv
program enforces these requirements.

SUBSET The name of the subset to which the file belongs. A file can be
distributed as part of one subset only_ Files that share a gnode (links)
must be in the same subset. Files that are in the product hierarchy but are
not distributed as part of any subset should have a dash (-) in this field.

Examples
This example shows a section of the master inventory used to manufacture a release
of the ULTRIX software:

o ./ete/newfs UDTBASE040
o ./ete/zoneinfo/Poland
o ./usr/bin/passwd UDTBASE040
o ./usr/diskless/dev/rrz2e UDTDL040
o ./usr/ete/loekpw UDTBASE040
o ./usr/inelude/seareh.h UDTBASE040
o ./usr/lib/emplrs/ee2.0/ppu UDTBASE040

File Formats 5-171

o ./usr/lib/libplotdumb.a UDTPGMR040
o ./usr/lib/terminfo/2/2621-nl UDTBASE040
o ./usr/lib/terminfo/a/altoh19 UDTBASE040
o ./usr/lib/terminfo/h/h19b UDTBASE040
o ./usr/lib/terminfo/t/tek4024 UDTBASE040
o ./usr/man/manl/capsar.l UDTMAN040
o ./usr/man/manl/ptx.l UDTMAN040
o ./usr/man/man2/1isten.2 UDTMAN040
o ./usr/man/man3/endhostent.3n UDTMAN040
o ./usr/man/man3/1daopen.3x UDTMAN040
o ./usr/man/man3/ruserok.3x UDTMAN040
o ./usr/man/man3/tparm.3cur UDTMAN040
o ./usr/man/man5/tzfile.5 UDTMAN040
o ./usr/man/man8/secsetup.8-
o ./usr/sys/MIPS/BINARY/mc146818clock.o UDTBIN040
o ./usr/sys/data/dhu_data.c UDTBIN040
o ./usr/sys/h/devio.h UDTBASE040
o ./usr/sys/io/uba/qduser.h UDTBIN040
o ./usr/sys/net/rpc/clnt.h UDTBIN040
o ./usr/var/dss/ncs/llbd UDTRPCRT040

See Also
invcutter(1), kits(1), stl_inv(5), iff(8), setld(8).
Guide to Preparing Software for Distribution on ULTRIX Systems

5-172 File Formats

svc.conf (5)

Name
svc.conf - database service selection and security configuration file

Description
The svc. conf file is a mandatory system file that allows you to select the desired
services on a per database basis. It also allows you to select security parameters.
The default / etc/ svc. conf file has local as the service selected for each
database. This file must be modified when adding or removing a naming service,
such as Yellow Pages or BIND/Hesiod. The valid services are local, yp, and
bind. Modifications to the / etc/ svc. conf file can be made with an editor or
the /usr / etc/ svcsetup command for database service selection. They can be
made with the / u s r / et c / sec s et up command for security parameter selection.
Changes take effect immediately.

NOTE

The recommended configuration is that you have local as the first
entry for all databases.

Restrictions
White space is allowed only after commas or newlines.

You must have local as the first entry for the passwd and hosts databases.

You must have yp as the entry for the netgroup database.

You must have either local or bind as the entry for the auth database.

Examples

Files

The following is a sample / etc/ svc. conf file:

aliases=yp
auth=local,bind
group=local,yp
hosts=local,bind,yp
netgroup=yp
networks=bind
passwd=local,bind
protocols=local,bind
rpc=local,bind
services=local

PASSLENMIN=6
PASSLENMAX=16
SOFTEXP=604800
SECLEVEL=BSD

7 days in seconds
(BSD I UPGRADE I ENHANCED)

/etc/svc.conf
/usr/sys/h/svcinfo.h

File Formats 5-173

svc.conf (5)

See Also
getsvc(3), svcsetup(8)
Guide to the BINDIHesiod Service
Guide to the Yellow Pages Service

5-174 File Formats

Name

Syntax

syms - MIPS symbol table

#include < sym.h>
#include < symconst.h>

syms(5)

Description
Unlike the COFF symbol table, the MIPS symbol table consists of many tables
unbundling information. The symbol table should be viewed as a network-style
database designed for space and access efficiency.

The following structures or tables appear in the MIPS symbol table:

TABLE CONTENTS
Symbolic header

File descriptors

Procedure descriptors

Local symbols

Local strings

Line numbers

Relative file descriptors

Optimization symbols

Auxiliary symbols

External symbols

External strings

Dense numbers

Sizes and locations of all other tables

Per file locations for other tables

Frame information and location of procedure info

Local type, local variable, and scoping info

String space for local symbols

Compacted by, encoding, contains a line per instruction

Indirection for interfile symbol access

To be defined

Variable data type information for each local symbol

Loader symbols (global text and data)

String space for external symbols

Index pairs (file, symbol) for compiler use

External and local symbols contain the standard concept of a symbol as follows:

struct
{

} ;

See Also
Idfcn(5)

long iss;
long value;
unsigned
unsigned
unsigned
unsigned

/* index into string space */
/* address, size, etc., depends on sc and st */
st: 6; /* symbol type (e.g. local, param, etc.) */
sc: 5; /* storage class (e.g. text, bss, etc.) */
reserved: 1;
index; /* index to symbol or auxiliary tables */

File Formats 5-175

Rise

tar(5)

Name
tar, mdtar - tape archive file fonnat

Description
The tape archive command tar dumps several files, including special files, into one,
in a medium suitable for transportation.

A tar tape or file is a series of blocks. Each block is of size TBLOCK. A file on
the tape is represented by a header block, which describes the file, followed by zero
or more blocks, which give the contents of the file. At the end of the tape are two
blocks filled with binary zeros, as an end-of-file indicator.

The blocks are grouped for physical I/O operations. Each group of n blocks (where n
is set by the b option on the tar(l) command line, and the default is 20 blocks) is
written with a single system call; on 9-track tapes, the result of this write is a single
tape record. The last group is always written at the full size, so blocks after the two
zero blocks contain random data. On reading, the specified or default group size is
used for the first read, but if that read returns less than a full tape block, the reduced
block size is used for further reads.

The following is an example of a header block:

#define TBLOCK 512
#define NAMSIZ 100

union hblock {

} ;

char dummy[TBLOCK];
struct header. {

} dbuf;

char name[NAMSIZ];
char mode[8];
char uid[8);
char gid[8];
char size[12];
char mtime[12];
char chksum[8];
char linkflag;
char linkname[NAMSIZ);
char rdev[6]

The name field is a null-tenninated string. The other fields are O-filled octal numbers
in ASCII. Each field (of width w) contains w minus 2 digits, a space, and a null,
except size and mtime , which do not contain the trailing null. The name field
specifies the name of the file, as specified on the tar command line. Files dumped
because they were in a directory that was named in the command line have the
directory name as prefix and /filename as suffix. The mode field specifies the file
mode, with the top bit masked off. The uid and gid fields specify the user and group
numbers that own the file. The size field specifies the size of the file in bytes. Links
and symbolic links are dumped with this field specified as zero. The mtime field
specifies the modification time of the file at the time it was dumped. The chksum
field is a decimal ASCII value, which represents the sum of all the bytes in the
header block. When calculating the checksum, the chksum field is treated as if it
were all blanks. The linkflag field is ASCII 0 if the file is nonnal or a special file
and ASCII 1 if it is a hard link, and ASCII 2 if it is a symbolic link. The name to

5-176 File Formats

tar(5)

which it is linked, if any, is in linkname, with a trailing null. Unused fields of the
header are binary zeros and are included in the checksum. The rdev field encodes the
ASCII representation of a device special file's major and minor device numbers.

The first time a given i-node number is dumped, it is dumped as a regular file. The
second and subsequent times, it is dumped as a link instead. Upon retrieval, if a link
entry is retrieved, but not the file it was linked to, an error message is printed and the
tape must be manually rescanned to retrieve the linked file.

The encoding of the header is designed to be portable across machines.

Restrictions
Names or link names longer than NAMSIZ produce error reports and cannot be
dumped.

See Also
tar(l)

File Formats 5-177

Rise term (5)

Name
term - teiminal driving tables for nroff

Description

Files

The nroff(1) command uses driving tables to customize its output for various types
of output devices. These driving tables are ASCII files installed in
/usr/lib/term/tabname, where name is the name for that terminal type as
given in term(7) The file /usr / lib/term/ example describes the format of
each field in the driving table.

/usr / lib/term/ example decribes the format of each field
/usr / lib/term/tabname driving tables

See Also
term(7)

5-178 File Formats

term (5)

Name
term - terminal driving tables for nroff

Description
The nroff(l) command uses driving tables to customize its output for various types
of output devices. These driving tables are written as C programs, compiled, and
installed in /usr / lib/term/tabname, where name is the name for that terminal
type as given in term(7). The structure of the tables is as follows:

#define
struct {

INCH 240

} t;

int bset;
int breset;
int Hori
int Vert;
int Newline;
int Chari
int Em;
int Halfline;
int Adji
char *twinit;
char *twrest;
char *twnl;
char *hlr;
char *hlf;
char *flr;
char *bdon;
char *bdoff;
char *ploton;
char *plotoff;
char *up;
char *down;
char *right;
char *left;
char *codetab[256-32];
char *zzz;

The meanings of the various fields are:

bset

breset

Hor

Vert

Newline

Char

Em

Halfline

Adj

Bits to set in the c_oflag field of the termio structure before output.
For further information, see t t y(4).

Bits to reset in the c _ oflag field of the t e rmi 0 structure before output.

Horizontal resolution in fractions of an inch.

Vertical resolution in fractions of an inch.

Space moved by a newline (linefeed) character in fractions of an inch.

Quantum of character sizes, in fractions of an inch (that is, a character is
a multiple of Char units wide).

Size of an em in fractions of an inch.

Space moved by a half-linefeed (or half-reverse ... linefeed) character in
fractions of an inch.

Quantum of white space, in fractions of an inch (that is, white spaces are
a multiple of Adj units wide).

File Formats 5-179

VAX

VAX term(5)

Note: if this is less than the size of the space character (in units of Char;
see the following fields for how the sizes of characters are defined),
nroff outputs fractional spaces using plot mode. Also, if the -e
option to nroff is used, nroff sets Adj equal to Hor.

twin it Set of characters used to initialize the tenninal in a mode suitable for
nroff.

twrest

twnl

hlr

hlf

fir

bdon

bdofJ

iton

itofJ

ploton

plotofJ

up

down

right

left

code tab

5-180 File Formats

Set of characters used to restore the tenninal to nonnal mode.

Set of characters used to move down one line.

Set of characters used to move up one-half line.

Set of characters used to move down one-half line.

Set of characters used to move up one line.

Set of characters used to tum on hardware boldface mode, if any.

Set of characters used to tum off hardware boldface mode, if any.

Set of characters used to tum on hardware italics mode, if any.

Set of characters used to tum off hardware italics mode, if any.

Set of characters used to tum on hardware plot mode (for Diablo type
mechanisms), if any.

Set of characters used to tum off hardware plot mode (for Diablo type
mechanisms), if any.

Set of characters used to move up one resolution unit (Vert) in plot
mode, if any.

Set of characters used to rnove down one resolution unit (Vert) in plot
mode, if any.

Set of characters used to move right one resolution unit (Hor) in plot
mode, if any.

Set of characters used to move left one resolution unit (Hor) in plot
mode, if any.

Definition of characters needed to print an nroff character on the
tenninal. The first byte is the number of character units (Char) needed to
hold the character; that is, "\001" is one unit wide, ''\002'' is two units
wide, and so on. The high-order bit (0200) is on if the character is to be
underlined in underline mode (.ul). The rest of the bytes are the
characters used to produce the character in question. If the character has
the sign (0200) bit on, it is a code to move the tenninal in plot mode. It
is encoded as:

0100 bit on

0100 bit off

040 bit on

040 bit off

037 bits

Vertical motion

Horizontal motion

Negative (up or left) motion

Positive (down or right) motion

Number of such motions to make

Files

term (5)

zzz A zero terminator at the end

All quantities that are in units of fractions of an inch should be expressed as
INCH*num/denom, where num and denom are respectively the numerator and
denominator of the fraction; that is, 1/48 of an inch would be written as
"INCH1/48".

If any sequence of characters does not pertain to the output device, that sequence
should be given as a null string.

The source code for the terminal name is in
/usr / src/usr. bin/nroff /terrn/tabname. When a new terminal type is
added, the file rnaketerms . c should be updated to include the source to that
driving table (use #include). Note that the various terminal types are grouped into
"parts" labelled PART!, PART2, and PART3. If necessary, more parts can be
added. Users can make other changes to maketerms. c as needed. The makefile
terms . rnk in that directory should then be updated.

/usr/lib/terrn/tabname
Driving tables

tabname. c Source for driving tables

See Also
tty(4), term(7)

File Formats 5-181

VAX

termcap(5)

Name
termcap - terminal capability data base

Syntax
/etc/termcap

Description
The termeap file is a data base describing terminals used, for example, by vi(1)
and eurses(3x). Terminals are described in termeap by giving a set of
capabilities which they have and by describing how operations are performed.
Padding requirements and initialization sequences are included in termeap.

Entries in termeap consist of a number of fields separated by colons (:). The first
entry for each terminal gives the names which are known for the terminal, separated
by vertical bars (I). The first name is always 2 characters long and is used by older
Version 6 systems, which store the terminal type in a 16-bit word in a system-wide
data base. The second name given is the most common abbreviation for the terminal,
and the last name given should be a long name fully identifying the terminal. The
second name should contain no blanks. The last name may contain blanks for
readability.

Capabi I ities
(P) indicates padding is commonly needed for these strings.
(P*) indicates that padding may be based on the number of lines affected.

Name Type Pad? Description

ae str (P) End alternate character set.
al str (P*) Add new blank line.
am bool Terminal has automatic margins.
as str (P) Start alternate character set.
bc str Backspace, if not CTRL/H.
bl str Audible bell character.
bs bool Terminal can backspace with CTRL/H.
bt str (P) Back tab.
bw bool Backspace wraps from column 0 to last column.
CC str Command character in prototype, if terminal-settable.
ca bool Cursor addressable.
cd str (P*) Clear to end of display.
ce str (P) Clear to end of line.
ch str (P) Like em, but horizontal motion only; line stays the same.
cl str (P*) Clear screen.
cm str (P) Cursor motion.
co num Number of columns in a line.
cr str (P*) Carriage return (default CTRL/M).
cs str (P) Change scrolling region (VT100); like em.
ct str Clear all tab stops.
cv str (P) Like eh, but vertical only.
da bool Display may be retained above.
dB num Number of millisec of bs delay needed.

5-182 File Formats

termcap(5)

db bool Display may be retained below.
dC num Number of millisec of er delay needed.
dc str (P*) Delete character.
dF num Number of millisec of f f delay needed.
dl str (P*) Delete line.
dm str Delete mode (enter).
dN num Number of millisec of nl delay needed.
do str Move down one line.
ds str Clear host writable status line.
dT num Number of millisec of ta delay needed.
ed str End delete mode.
ei str End insert mode; give ":ei=:" if ie.
eo str Can erase overstrikes with a blank.
es bool Standout mode allowed on host writable status line.
ff str (P*) Hard-copy terminal page eject (default CTRL/L).
fs str Close host writable status line to writing.
gt bool Gtty indicates tabs.
hc bool Hard-copy terminal.
hd str Half-line down (forward 1/2 linefeed).
ho str Home cursor (if no em).
hs bool Host writable status line capabilities.
hu str Half-line up (reverse 1/2 linefeed).
hz str Hazeltine; cannot print tildes (-).
ic str (P) Insert character.
if str Name of file containing is.
im bool Insert mode (enter); give ":im=:" if ie.
in bool Insert mode distinguishes nulls on display.
ip str (P*) Insert pad after character inserted.
is str Terminal initialization string.
kO-k9 str Sent by "other" function keys 0-9.
kb str Sent by backspace key.
kd str Sent by terminal down arrow key.
ke str Out of "keypad transmit" mode.
kh str Sent by home key.
kl str Sent by terminal left arrow key.
kn num Number of "other" keys.
ko str Termcap entries for other nonfunction keys.
kr str Sent by terminal right arrow key.
ks str Put terminal in "keypad transmit" mode.
ku str Sent by terminal up arrow key.
10-19 str Labels on "other" function keys.
Ie str Move cursor left one place.
li num Number of lines on screen or page.
11 str Last line, first column (if no em).
rna str Arrow key map, used by vi Version 2 only.
mb str Turn on blinking.
md str Enter bold (extra-bright) mode.
me str Turn off all attributes, normal mode.
mh str Enter dim (half-bright) mode.
mi bool Safe to move while in insert mode.
ml str Memory lock on above cursor.
mr str Enter reverse mode.

File Formats 5-183

termcap (5)

ms
mu
nc
nd
nl
ns
os
pc
pt
rc
rf
rs
sc
se
sf
sg
so
sr
st
ta
tc
te
ti
ts
uc
ue
ug
ul
up
us
vb
ve
vs
vt
xb
xn
xr
xs
xt

bool
str
bool
str
str
bool
bool
str
bool
str
str
str
str
str
str
num
str
str
str
str
str
str
str
str
str
str
num
bool
str
str
str
str
str
num
bool
bool
bool
bool
bool

Safe to move while in standout and underline mode.
Memory unlock (turn off memory lock).
No correctly working carriage return (DM2500,H2000).
Nondestructive space (cursor right).

(P*) Newline character (default \n).
Terminal is a CRT, but does not scroll.
Terminal overstrikes.
Pad character (rather than null).
Has hardware tabs (may need to be set with is).
Recover from last save cursor (se).
Reset file, like initialization file (i f) but for reset.
Reset string, like initialization string (i s) but for reset.
Save cursor.
End stand out mode.

(P) Scroll forwards.
Number of blank chars left by so or se.
Begin stand out mode.

(P) Scroll reverse (backwards).
Save cursor.

(P) Tab (other than CTRL/I or with padding).
Entry of similar terminal - must be last.
String to end programs that use em.
String to begin programs that use em.
Open host writable status line to writing.[jA.
Underscore one char and move past it.
End underscore mode.
Number of blank chars left by us or ue.
Terminal underlines even though it does not overstrike.
Upline (cursor up).
Start underscore mode.
Visible bell (may not move cursor).
Sequence to end open/visual mode.
Sequence to start open/visual mode.
Virtual terminal number.
Beehive (f1=escape, f2=CTRL/C).
A newline is ignored after a wrap (Concept).
Return acts like ee \r \n (Delta Data).
Standout not erased by writing over it (HP 264 ?).
Tabs are destructive, magic so char (Teleray 1061).

A Sample Entry

The following entry, which describes the Concept-lOO, is among the more complex
entries in the termeap file as of this writing. This particular 'Concept' entry is
outdated and is used as an example only:

cl I clOO I conceptlOO:is=\EU\Ef\E7\E5\E8\El\ENH\EK\E\200\Eo&\200:\
:al=3*\EAR:am:bs:cd=16*\E AC:ce=16\EAS:cl=2*AL:cm=\Ea%+ %+\
:co#80:\ :dc=16\EAA:dl=3*\E AB:ei=\E\200:eo:im=\EAP:ih\
:ip=16*:li#24:mi:nd=\E=:\ :se=\Ed\Ee:so=\ED\EE:ta=8\t\
:ul:up=\E;:vb=\Ek\EK:xn:

Entries can continue onto multiple lines by giving a backslash (\) as the last character
of a line. Empty fields can be included for readability (here between the last field on
a line and the first field on the next).

5-184 File Formats

termcap(5)

Types of Capabilities

Capabilities in termcap are of three types: Boolean capabilities that indicate that
the tenninal has some particular feature; numeric capabilities giving the size of the
tenninal or the size of particular delays; and string capabilities, which give a
sequence that can be used to perfonn particular tenninal operations.

All capabilities have 2-letter codes. For instance, the fact that the Concept has
"automatic margins" (that is, an automatic return and linefeed when the end of a line
is reached) is indicated by the capability am. Hence, the description of the Concept
includes am. Numeric capabilities are followed by the number sign (#) and then the
value. Thus, co, which indicates the number of columns the tenninal has, gives the
value '80' for the Concept.

Finally, string-valued capabilities, such as ce (clear to end-of-line sequence), are
given by the 2-character code: an equal sign (=) and then a string ending at the next
following colon (:). A delay in milliseconds may appear after the equal sign (=) in
such a capability. Padding characters are supplied by the editor after the remainder of
the string is sent to provide this delay. The delay can be either an integer, for
example, "20", or an integer followed by indicates that the padding required is
proportional to the number of lines affected by the operation, and the amount given is
the per-affected-unit padding required. When an asterisk (*) is specified, it is
sometimes useful to give a delay of the fonn "3.5" to specify a delay per unit to
tenths of milliseconds.

A number of escape sequences are provided in the string-valued capabilities for easy
encoding of characters there. A \E maps to an ESCAPE character, Q"x maps to a
CTRL/x for any appropriate x, and the sequences \n \r \t \b \f give a
newline, retum, tab, backspace and fonnfeed. Finally, characters may be given as
three octal digits after a backslash (\), and the characters circumflex (1\) and backs lash
(\) may be given as \" and \ \. If it is necessary to place a colon (:) in a
capability, it must be escaped in octal as \ 072. If it is necessary to place a null
character in a string capability, it must be encoded as \ 2 00. The routines that deal
with termcap use C strings and strip the high bits of the output very late so that a
\200 comes out as a \000 would.

Preparing Descriptions

This section outlines how to prepare descriptions oftenninals. The most effective
way to prepare a terminal description is by imitating the description of a similar
tenninal in termcap and to build up a description gradually, using partial
descriptions with ex to check that they are correct. Be aware that a very unusual
tenninal may expose deficiencies in the ability of the termcap file to describe it or
bugs in ex. To easily test a new tenninal description, you can set the environment
variable TERM CAP to a pathname of a file containing the description you are
working on and the editor will look there rather than in / etc/termcap.
TERM CAP can also be set to the tenncap entry itself to avoid reading the file when
starting up the editor. This only works on Version 7 systems.

Basic Capabilities

The number of columns on each line for the tenninal is given by the co numeric
capability. If the terminal is a CRT, the number of lines on the screen is given by
the Ii capability. If the tenninal wraps around to the beginning of the next line
when it reaches the right margin, it should have the am capability. If the tenninal
can clear its screen, this is given by the cl string capability. If the tenninal can

File Formats 5-185

termcap(5)

backspace, it should have the bs capability, unless a backspace is accomplished by a
character other than AH, in which case you should give this character as the be
string capability. If it overstrikes, rather than clearing a position when a character is
struck over, it should have the as capability.

A very important point here is that the local cursor motions encoded in termeap are
undefined at the left and top edges of a CRT terminal. The editor will never attempt
to backspace around the left edge, nor will it attempt to go up locally off the top.
The editor assumes that feeding off the bottom of the screen will cause the screen to
scroll up, and the am capability tells whether the cursor sticks at the right edge of
the screen. If the terminal has switch-selectable automatic margins, the termeap
file usually assumes that this is on, that is, am.

These capabilities suffice to describe hard-copy and "glass-tty" terminals. Thus, the
model 33 teletype is described as:

t3 I 33 I tty33: co#72: os

The Lear Siegler ADM-3 is described as:

cl I adm31311si adm3:am:bs:cl=AZ:li#24:co#80

Cursor Addressing

Cursor addressing in the terminal is described by a em string capability, with
printf(3s) types of escapes such as %x in it. These substitute to encodings of the
current line or column position, while other characters are passed through unchanged.
If the em string is thought of as being a function, its arguments are the line and then
the column to which motion is desired, and the % encodings have the following
meanings:

%d
%2
%3
%.
%+x
%>xy
%r
%i
%%
%n
%B
%D

As in printj, 0 origin
Like %2d
Like %3d
Like %c
Adds x to value, then %.
If value> x adds y, no output.
Reverses order of line and column, no output
Increments line/column (for 1 origin)
Gives a single %
Exclusive or row and column with 0140 (DM2500)
BCD (16*(x/l0)) + (x%10), no output.
Reverse coding (x-2*(x%16)), no output. (Delta Data).

Consider the HP2645, which, to get to row 3 and column 12, needs to be sent
\E&aI2c03Y padded for 6 millisecond~. Note that the order of the rows and columns
is inverted here, and that the row and column are printed as 2 digits. Thus, its em
capability is "cm=6\E&%r%2c%2Y". The Microterm 2ACT-IV needs the current
row and column sent preceded by a AT, with the row and coluIlm simply encoded in
binary, "cm=AT%. %.". Terminals that use "%." need to be able to backspace the
cursor (bs or be), and to move the cursor up one line on the screen (up introduced
in the following section). This is necessary because it is not always safe to transmit
\ t, \n AD, and \r, as the system may change or discard them.

A final example is the LSI ADM-3a, which uses row and column offset by a blank
character; thus "cm=\E=%+ %+ ".

5-186 File Formats

termcap(5)

Cursor Motions

If the terminal can move the cursor one position to the right, leaving the character at
the current position unchanged, this sequence should be given as nd (non-destructive
space). If it can move the cursor up a line on the screen in the same column, this
should be given as up. If the terminal has no cursor addressing capability, but can
home the cursor (to very upper left corner of screen), this can be given as hOe
Similarly a fast way of getting to the lower left hand corner can be given as 11.
This may involve going up with up from the home position, but the editor will
never do this itself, unless 11 does, because it makes no assumption about the effect
of moving up from the home position.

Area Clears

If the terminal can clear from the current position to the end of the line, leaving the
cursor where it is, this should be given as ceo If the terminal can clear from the
current position to. the end of the display, this should be given as cd. The editor
only uses cd from the first column of a line.

InsertlDelete Line

If the terminal can open a new blank line before the line where the cursor is, this
should be given as a1; this is done only from the first position of a line. The cursor
must then appear on the newly blank line; If the terminal can delete the line which
the cursor is on, this should be given as dl. This is done only from the first
position on the line to be deleted. If the terminal can scroll the screen backwards,
this can be given as sb, but just a1 suffices. If the terminal can retain display
memory above, the da capability should be given; if display memory can be
retained below, db should be given. These let the editor understand that deleting a
line on the screen may bring nonblank lines up from below or that scrolling back
with sb may bring down nonblank lines.

InsertlDelete Character

There are two. basic kinds of intelligent terminals with respect to the insert/delete
character that can be described using terrncap. The most common insert/delete
character operations affect only the characters on the current line and shift characters
off the end of the line rigidly. Other terminals, such as the Concept 100 and the
Perkin Elmer Owl, make· a distinction between typed and untyped blanks on the
screen, shifting upon an insert or delete only to an untyped blank on the screen which
is either eliminated, or expanded to 2 untyped blanks. You can find out which kind
of terminal you have by clearing the screen and typing text separated by cursor
motions. Type "abc def" using local cursor motions (not spaces) between the
"abc" and the "def". Then, position the cursor before the "abc" and pufthe
terminal in insert mode. If typing characters causes the rest of the line to shift rigidly
and characters to fall off the end, your terminal does not distinguish between blanks
and untyped positions. If the "abc" shifts over to the "def" and then moves with it
around the end of the current line and onto the next line as you insert, you have the
second type of terminal, and should give the capability in, which stands for "insert
null". If your terminal does something different and unusual, you may have to
modify the editor to get it to use the insert mode your terminal defines. Virtually all
terminals that have an insert mode fall into one of these two classes.

The editor can handle both terminals that have an insert mode and terminals that send
a simple sequence to open a blank position on the current line. Give as irn the
sequence to get into insert mode, or give it an empty value if your terminal uses a

File Formats 5-187

termcap(5)

sequence to insert a blank position. Give as ei the sequence to leave insert mode
(give this with an empty value also, if you gave im so). Give as ie any sequence
needed to be sent just before sending the character to be inserted. Most terminals
with a true insert mode will not give ie. Terminals that send a sequence to open a
screen position should give it here. (Insert mode is preferable to the sequence to
open a position on the screen, if your terminal has both.) If post insert padding is
needed, give this as a number of milliseconds in ip (a string option). Any other
sequence that may need to be sent after an insert of a single character can also be
given in ip.

It is occasionally necessary to move around while in insert mode to delete characters
on the same line (for example, if there is a tab after the insertion position). If your
terminal allows motion while in insert mode, you can give the capability mi to
speed up inserting in this case. Omitting mi affects only speed. Some terminals
(notably Datamedia's) must not have mi because of the way their insert mode
works.

Finally, you can specify delete mode by giving dm and ed to enter and exit delete
mode, and de to delete a single character while in delete mode.

Highlighting, Underlining, and Visible Bells

If your terminal has sequences to enter and exit standout mode, these can be given as
so and se, respectively. If there are several kinds of standout mode, such as
inverse video, blinking, or underlining. Half-bright is not usually an acceptable
"standout" mode, unless the terminal is in inverse video mode constantly. The
preferred mode is inverse video by itself. If the code to change into or out of
standout mode leaves 1 or even 2 blank spaces on the screen, as the TVI 912 and
Teleray 1061 do, ug should be given to tell how many spaces are left.

Codes to begin underlining and end underlining can be given as us and ue,
respectively. If the terminal has a code to underline the current character and move
the cursor one space to the right, such as the Microterm Mime, this can be given as
ue. (If the underline code does not move the cursor to the right, give the code
followed by a nondestructive space.)

Many terminals, such as the HP 2621, automatically leave standout mode when they
move to a new line or the cursor is addressed. Programs using standout mode should
exit standout mode before moving the cursor or sending a newline.

If the terminal has a way of flashing the screen to indicate an error quietly (a bell
replacement), this can be given as vb; it must not move the cursor. If the terminal
should be placed in a different mode during open and visual modes of ex, this can be
given as vs and ve, sent at the start and end of these modes respectively. These
can be used to change, for example, from an underline to a block cursor and back.

If the terminal needs to be in a special mode when running a program that addresses
the cursor, the codes to entyr and exit this mode can be given as ti and teo This
arises, for example, from terminals like the Concept with more than one page of
memory. If the terminal has only memory-relative cursor addressing and not screen­
relative cursor addressing, a one-screen sized window must be fixed into the terminal
for cursor addressing to work properly.

If your terminal correctly generates underlined characters, with no special codes
needed, even though it does not overstrike, you should give the capability ul. If
overstrikes are erasable with a blank, this should be indicated by giving eo.

5-188 File Formats

termcap(5)

Keypad

If the terminal has a keypad that transmits codes when the keys are pressed, this
information can be given. Note that it is not possible to handle terminals where the
keypad only works in local (this applies, for example, to the un shifted HP 2621
keys). If the keypad can be set to transmit or not transmit, give these codes as ks
and ke. Otherwise, the keypad is assumed to always transmit. The codes sent by
the left arrow, right arrow, up arrow, down arrow, and home keys can be given as
kl, kr, ku, kd, and kh, respectively. If there are function keys such as fO, fI, ... ,
f9, the codes they send can be given as kO, kl, ... , k9. If these keys have labels
other than the default fO through f9, the labels can be given as 10, 11, ... , 19. If
there are other keys that transmit the same code as the terminal expects for the
corresponding function, such as clear screen, the termcapP 2-letter codes can be
given in the ko capability, for example, ":ko=cl,ll,sf,sb:", which says that the
terminal has clear, home down, scroll down, and scroll up keys that transmit the
same thing as the cl, 11, sf, and sb entries.

The rna entry is also used to indicate arrow keys on terminals that have single­
character arrow keys. It is obsolete, but still in use in Version 2 of vi, which must
be run on some minicomputers due to memory limitations. This field is redundant
with kl, kr, ku, kd, and kh. It consists of groups of 2 characters. In each
group, the first character is what an arrow key sends; the second character is the
corresponding vi command. These commands are h for kl, j for kd, k for ku, 1
for kr, and H for kh. For example, the Microterm Mime would be
"ma="Kj"Zk"XI:" indicating arrow keys left ("H), down ("K), up ("Z), and right
("X). (There is no home key on the Mime.)

Miscellaneous

If the terminal requires other than a null (zero) character as a pad, this can be given
as pc.

If tabs on the terminal require padding, or if the terminal uses a character other than
A I to tab, this can be given as tao

Hazeltine terminals, which do not allow tildes (,..,) to be printed, should indicate h z.
Datamedia terminals, which echo carriage-return linefeed for a carriage return and
then ignore a following linefeed, should indicate nco Early Concept terminals,
which ignore a linefeed immediately after an am wrap, should indicate xn. If an
erase-eol is required to get rid of standout (instead of merely writing on top of it),
xs should be given. Teleray terminals, where tabs tum all characters moved over to
blanks, should indicate xt. Other specific terminal problems may be corrected by
adding more capabilities of the form xx.

Other capabilities include is, an initialization string for the terminal, and if, the
name of a file containing long initialization strings. These strings are expected to
properly clear and then set the tabs on the terminal, if the terminal has settable tabs.
If both are given, isis printed before if. This is useful where if is
/usr / lib/tabset/ std but is clears the tabs first.

Similar Terminals

If there are two very similar terminals, one can be defined as being just like the other
with certain exceptions. The string capability tc can be given with the name of the
similar terminal. This capability must be last and the combined length of the two
entries must not exceed 1024. Since termlib routines search the entry from.Ieft to
right, and since the tc capability is replaced by the corresponding entry, the

File Formats 5-189

termcap(5)

capabilities given at the left override the ones in the similar terminal. A capability
can be canceled with xx@, where xx is the capability. For example, the following
entry defines a 2621nl that does not have the ks or ke capabilities, and hence does
not turn on the function key labels when in visual mode:

hn I 2621nl:ks@:ke@:tc=2621:

This is useful for different modes for a terminal or for different user preferences.

Restrictions

Files

The ex command allows only 256 characters for string capabilities, and the routines
in terrncap(3x) do not check for overflow of this buffer. The total length of a
single entry (excluding only escaped newlines) cannot exceed 1024.

The rna, vs, and ve entries are specific to the vi program.

/etc/termcap File containing terminal descriptions

See Also
ex(1), more(l), tset(1), ul(1), vi(1), curses(3x), termcap(3x)

5-190 File Formats

terminfo (5)

Name
terminfo - terminal capability database

Syntax
lusrllib/terminfo/* 1*

Descri ption
The terminfo database describes terminals by giving a set of capabilities which
the terminals have, and by describing how the operations are performed by the
terminals. Padding requirements and initialization sequences are included in
terminfo.

Entries in terminfo consist of a number of fields separated by commas (,). White
space after each comma (,) is ignored. The first entry for each terminal provides the
known name of the terminal, separated by vertical bars (I). The first name given is
the most common abbreviation for the terminal; the last name given should be a long
name fully identifying the terminal. All others are understood as synonyms for the
terminal name. All names, with the exception of the last, should be in lowercase and
cannot contain blanks; the last name can contain uppercase characters and blanks for
readability.

Terminal names, except for the last, should be chosen using the following
conventions:

• The piece of hardware that makes up the terminal should have a root name
chosen. For example, hp2621.

• The root name cannot contain hyphens, but synonyms can be used that do not
conflict with other names.

• Modes that the hardware can be in, or user preferences, should be indicated by
appending a hyphen and an indicator of the mode. For example, a VT100 in
132 column mode would be vt100-w.

• The following suffixes should be used where possible:

Suffix Meaning Example
-w Wide mode (more than 80 columns) vt100-w
-am With auto. margins (usually default) vt100-am
-nam Without automatic margins vt100-nam
-n Number of lines on the screen aaa-60
-na No arrow keys (leave them in local) cl00-na
-np Number of pages of memory cl00-4p
-rv Reverse video cl00-rv

The following headers are used in the capabilities table:

Variable booleans Variable is the name by which the programmer (at the terminfo
level) accesses the capability.

Capname Short name used in the text of the database, and is used by a
person updating the database.

I.code Two-letter internal code used in the compiled database, which
always corresponds to the old termcap capability name.

File Formats 5-191

terminfo (5)

Capability names have no hard length limit, but an informal limit of 5 characters has
been adopted to keep them short and to allow the tabs in the source file caps to line
up nicely. Whenever possible, names are chosen to be the same as, or similar to, the
ANSI X3.64-1979 standard. Semantics are also intended to match those of the
specification. They are as follows:

(P) Indicates that padding may be specified.

(G) Indicates that the string is passed through tparm with parms as given (#i).

(*) Indicates that padding may be based on the number of lines affected

(#) I d ' h .th i n lcates tel parameter.

Variable Cap- I. Description
Booleans name Code

auto_lefcmargin, bw bw cub 1 wraps from column 0 to last
column

auto_righcmargin, am am Terminal has automatic margins
beehive~litch, xsb xb Beehive (f1=escape, f2=ctrl C)
ceol_standout~litch, xhp xs Standout not erased by over-

writing (hp)
eaCnew line~litch, xenl xn Newline ignored after 80 cols

(Concept)
erase_overstrike, eo eo Can erase overstrikes with a

blank.
generic_type, gn gn Generic line type (for ex., dialup,

switch).
hard_copy, hc hc Hardcopy terminal
has_meta_key, Ian Ian Has a meta key (shift, sets

parity bit)
has_status_line, hs hs Has extra status line
insercnulCglitch, in in Insert mode distinguishes nulls
memory_above, da da Display may be retained above the

screen
memory_below, db db Display may be retained below the

screen
move_insert_mode, mir mi Safe to move while in insert mode
move_standoucmode, msgr ms Safe to move in standout modes
over_strike, os os Terminal overstrikes
status_line_esc_ok, eslok es Escape can be used on the status

line
teleray ~litch, xt xt Tabs ruin, magic so char (Teleray

1061)
tilde~litch, hz hz Hazeltine; can not print tildes (-)s
transparenC underline, ul ul underline character overstrikes
xon_xoff, xon xo Terminal uses xon/xoff handshaking

Numbers:
columns, cols co Number of columns in a line
inictabs, it it Tabs initially every # spaces
lines, lines li Number of lines on screen or page
lines_of_memory, 1m 1m Lines of memory if > lines. 0

5-192 File Formats

terminfo(5)

means varies
magic_cookie~litch, xmc sg Number of blank chars left by

smso or rmso
paddin~baud_rate, pb pb Lowest baud where cr/nl padding

is needed
virtuaCterminal, vt vt Virtual terminal number (UNIX

system)
width_status_line, wsl ws Number of columns in status line

Strings:
back_tab, cbt bt Back tab (P)
bell, bel bl Audible signal (bell) (P)
carriage_return, cr cr Carriage return (P*)
change_scroICregion, csr cs Change to lines #1 through #2

(vt100) (PG)
clear_alI_tabs, tbc ct Clear all tab stops (P)
clear_screen, clear el Clear screen and home cursor (P*)
elr_eol, el ce Clear to end of line (P)
clr_eos, ed cd Clear to end of display (P*)
column_address, hpa ch Set cursor column (PG)
command_character, cmdch CC Term. settable cmd char in

prototype
cursor_address, cup cm Screen reI. cursor motion row #1

col #2 (rG)
cursor_down, cudl do Down one line
cursor_home, home ho Home cursor (if no cup)
cursor_invisible, civis vi Make cursor invisible
cursor_left, cubl Ie Move cursor left one space
cursor_mem_address, mrcup CM Memory relative cursor addressing
cursor_normal, cnorm ve Make cursor appear normal

(undo vs/vi)
cursor_right, cufl nd Nondestructive space (cursor

right)
cursor_to_11, 11 11 Last line, first column (if no cup)
cursor_up, cuul up Upline (cursor up)
cursor_visible, cvvis vs Make cursor very visible
delete_character, dchl dc Delete character (P*)
delete_line, dll dl Delete line (P*)
dis~status_line, dsl ds Disable status line
down_half_line, hd hd Half-line down (forward 1/2

linefeed)
enter_alccharseCmode, smacs as Start alternate character set (P)
enter_blink_mode, blink mb Turn op blinking
enter_bold_mode, bold md Turn on bold (extra bright) mode
enter_ca_mode, smcup ti String to begin programs that use

cup
enter_delete_mode, smdc dm Delete mode (enter)
enter_dim_mode, dim mh Turn on half-bright mode
enter_insert_mode, smir im Insert mode (enter);
enter_protected_mode, prot mp Turn on protected mode
enter_reverse_mode, rev mr Turn on reverse video mode
enter_secure_mode, invis mk Turn on blank mode (chars

invisible)

File Formats 5-193

terminfo (5)

enter_standouCmode, smso so Begin stand out mode
enter_underline_mode, smul us Start underscore mode
erase_chars ech ec Erase #1 characters (PO)
exicaiccharsecmode, rmacs ae End alternate character set (P)
exicattribute_mode, sgrO me Turn off all attributes
exicca_mode, rmcup te String to end programs that use cup
exiCdelete_mode, rmdc ed End delete mode
exicinsert_mode, rmir ei End insert mode
exiCstandouCmode, rmso se End stand out mode
exicunderline_mode, rmul ue End underscore mode
flash_screen, flash vb Visible bell (may not move

cursor)
form_feed, ff ff Hardcopy terminal page eject (P*)
from_status_line, fsl fs Return from status line
iniClstring, isl il Terminal initialization string
inic2string, is2 i2 Terminal initialization string
inic3string, is3 i3 Terminal initialization string
inicfile, if if Name of file containing is
insert_character, ichl ic Insert character (P)
insert_line, ill al Add new blank line (P*)
insert_padding, ip ip Insert pad after character

inserted (p*)
key_backspace, kbs kb Sent by backspace key
key_catab, ktbc ka Sent by clear-all-tabs key
key_clear, kclr kC Sent by clear screen or erase key
key_ctab, kctab kt Sent by clear-tab key
key_dc, kdchl kD Sent by delete character key
key_dl, kdll kL Sent by delete line key
key_down, kcudl kd Sent by terminal down arrow key
key_eic, krmir kM Sent by rmir or smir in insert mode
key_eol, kel kE Sent by clear-to-end-of-line key
key_eos, ked kS Sent by clear-to-end-of-screen

key
key_fO, kfO kO Sent by function key fO
key_fl, kfl kl Sent by function key fl
key_flO, kflO ka Sent by function key fl 0
key_f2, kf2 k2 Sent by function key f2
key_f3, kf3 k3 Sent by function key f3
key_f4, kf4 k4 Sent by function key f4
key_fS, kfS kS Sent by function key fS
key_f6, kf6 k6 Sent by function key f6
key_f7, kf7 k7 Sent by function key f7
key_f8, kf8 k8 Sent by function key f8
key_f9, kf9 k9 Sent by function key f9
key_home, khome kh Sent by home key
key_ic, kichl kI Sent by ins char/enter ins mode key
key_ii, kill kA Sent by insert line
key_left, kcubl kI Sent by terminal left arrow key
key_ll, kIl kH Sent by home-down key
key_npage, knp kN Sent by next-page key
key_ppage, kpp kP Sent by previous-page key

5-194 File Formats

term info (5)

key_right, kcufl kr Sent by terminal right arrow key
key_sf, kind kF Sent by scroll-forward/down key
key_sr, kri kR Sent by scroll-backward/up key
key_stab, khts kT Sent by set-tab key
key_up, kcuul ku Sent by terminal up arrow key
keypad_local, rmkx ke Out of "keypad transmit" mode
keypad_xmit, smkx ks Put terminal in "keypad transmit"

mode
lab_£O, 1£0 10 Labels on function key £0 if not £0
lab_fl, Ifl 11 Labels on function key fl if not fl
lab_flO, IflO la Labels on function key fl 0 if not

flO
lab_f2, 1f2 12 Labels on function key f2 if not f2
lab_f3, If3 13 Labels on function key f3 if not f3
lab_f4, If4 14 Labels on function key f4 if not f4
lab_f5, If5 15 Labels on function key f5 if not f5
lab_f6, If6 16 Labels on function key f6 if not f6
lab_f7, If7 17 Labels on function key f7 if not f7
lab_f8, If8 18 Labels on function key f8 if not f8
lab_f9, If9 19 Labels on function key f9 if not f9
meta_on, smm mm Tum on "meta mode" (8th bit)
meta_off, rmm mo Tum off "meta mode"
newline, nel nw Newline (behaves like cr followed

by If)
pad_char, pad pc Pad character (rather than nUll)
parm_dch, dch DC Delete #1 chars (PO*)
parm_delete_line, dl DL Delete #1 lines (PO*)
parm_down_cursor, cud DO Move cursor down #1 lines (PG*)
parm_ich, ich IC Insert #1 blank chars (PG*)
parm_index, indn SF Scroll forward #1 lines (PG)
parm_insert_line, il AL Add #1 new blank lines (PG*)
parm_lefccursor, cub LE Move cursor left #1 spaces (PG)
parm_righccursor, cuf RI Move cursor right #1 spaces (PO*)
parm_rindex, rin SR Scroll backward #1 lines (PO)
parm_up_cursor, cuu UP Move cursor up #1 lines (PG*)
pkey_key, pfkey pk Prog funct key #1 to type string #2
pkey _local, pftoc pI Prog funct key #1 to execute string

#2
pkey_xmit, pfx px Prog funct key #1 to xmit string #2
princscreen, mcO ps Print contents of the screen
prtr_off, mc4 pf Turn off the printer
prtr_on, mc5 po Turn on the printer
repeacchar, rep rp Repeat char #1 #2 times. (PG*)
resecl string, rsl rl Reset terminal completely to sane

modes.
reseC2string, rs2 r2 Reset terminal completely to sane

modes.
resec3string, rs3 r3 Reset terminal completely to sane

modes.
resecfile, rf rf Name of file containing reset

string
restore_cursor, rc rc Restore cursor to position of

File Formats 5-195

terminfo(5)

last sc
row_address, vpa cv Vertical position absolute

(set row) (PO)
save_cursor, sc sc Save cursor position (P)
scroll_forward, ind sf Scroll text up (P)
scroll_reverse, ri sr Scroll text down (P)
seCattributes, sgr sa Define the video attributes (P09)
seCtab, hts st Set a tab in all rows, current

column
seCwindow, wind wi Current window is lines #1-#2

cols #3-#4
tab, ht ta Tab to next 8 space hardware tab

stop
to _status_line, tsl ts 00 to status line, column #1
underline_char, uc uc Underscore one char and move past

it
up_half_line, hu hu Half-line up (reverse 1/2 linefeed)
iniCprog, iprog iP Path name of program for init
key_aI, ka1 K1 Upper left of keypad
key_a3, ka3 K3 Upper right of keypad
key_b2, kb2 K2 Center of keypad
key_c1, kc1 K4 Lower left of keypad
key_c3, kc3 K5 Lower right of keypad
prtr_non, mc5p pO Turn on the printer for # 1 bytes

Sample Entry

The following entry, which describes the Concept-IOO, is one of the more complex
entries in the t e rmi n f 0:

concept100 I clOO I concept I c104 I c100-4p I concept 100,

am, bel=~G, blank=\EH, blink=\EC, clear=~L$<2*>, cnorm=\Ew,

cols#SO, cr=~M$<9>, cub1=~H, cud1=~J, cuf1=\E=,

cup=\Ea%p1%' '%+%c%p2%' '%+%c,

cuu1=\E;, cvvis=\EW, db, dch1=\E~A$<16*>, dim=\EE, dl1=\E~B$<3*>,

ed=\E~C$<16*>, el=\E~U$<16>, eo, flash=\Ek$<20>\EK, ht=\t$<S>,

il1=\E~R$<3*>, in, ind=~J, .ind=~J$<9>, ip=$<16*>,

is2=\EU\Ef\E7\ES\ES\El\ENH\EK\E\200\Eo&\200\Eo\47\E,

kbs=~h, kcubl=\E>, kcud1=\E<, kcuf1=\E=, kcuu1=\E;,

kfl=\ES, kf2=\E6, kf3=\E7, khome=\E?,

lines#24, mir, pb#9600, prot=\EI, rep=\Er%p1%c%p2%' '%+%c$<.2*>,

rev=\ED, rmcup=\Ev $<6>\Ep\r\n, rmir=\E\200, rmkx=\Ex,

rmso=\Ed\Ee, rmul=\Eg, rmul=\Eg, sgrO=\EN\200,

smcup=\EU\Ev Sp\Ep\r, smir=\E~P, smkx=\EX, smso=\EE\ED,

smul=\EG,: tabs, ul, vt#S, xenl,

Entries can continue onto multiple lines by placing white space at the beginning of
each line, with the exception of the first line. Comments can be included, as long as
the comment is preceded by a number sign (#). The following list describes terminal
capabilities in more detail.

Types of Capabilities

Boolean capabilities

5-196 File Formats

Indicate that the terminal has some particular feature. For
example, the Concept-IOO has automatic margins (an
automatic return and linefeed when the end-of-line is
reached). This is described in the Boolean capabilities
column as an am.

Numeric capabilities

String capabilities

terminfo (5)

Provide the size of the tenninal or the size of particular
delays. Numeric capabilities are followed by a number
sign (#) and then the value. Hence, the cols, which
indicates the number of column the tenninal has, provides
the value 80 for the Concept.

Provide a sequence that can be used to perfonn particular
tenninal operations. Hence, string-valued capabilities
such as el (clear to the end-of-line sequence are described
the 2-character code (an equal sign (=) and then a string
ending at the next comma (,). A delay in milliseconds can
appear anywhere in such a capability, enclosed in $< .. >
brackets, and padding characters are supplied by t pu t s
to provide this delay.

A delay can be either a number, such as 20, or a number
followed by an asterisk (*), such as 3*. The asterisk (*)
indicates that the padding required is proportional to the
number of lines affected by the operation, and the amount
given is the per-affected-unit padding required. (In the
case of the insert character, the factor is still the number
of lines affected. This is always one, unless the tenninal
has xenl and the software uses it.) When an asterisk (*) is
specified, it is sometimes useful to give a delay of the
fonn 3.5, which indicates a delay per unit to tenths of
milliseconds. (Only one decimal place is allowed.)

Escape sequences are provided in the string-valued capabilities for easy encoding of
characters there. Both \E and \e map to an ESCAPE character, AX maps to a control-x
for any appropriate x, and the sequences \n \I \r \t \b \f \s give a newline, linefeed,
return, tab, backspace, formfeed, and space. Other escapes include \/\ for /\, \\ for \ \
for comma, \: for :, and \0 for null. (\0 will produce \200, which does not tenninate a
string but behaves as a null character on most tenninals.) Finally, characters may be
given as three octal digits after a \.

Sometimes individual capabilities must be commented out. To do this, put a period
before the capability name. For example, see the second ind in the previous Sample
Entry.

Preparing Descriptions

This section describes how to prepare a description of a tenninal. The most effective
way to prepare a tenninal description is by imitating the description of a similar
tenninal in terrninfo and to build up a description gradually, using partial
descriptions with v i to ensure that they are correct. A very unusual tenninal or
errors in vi may expose deficiencies in the ability of the terrninfo file to describe
it.

To test a new tenninal description, set the environment variable TERMINFO to a
pathname of a directory containing the compiled description you are working on.
The programs can search this directory rather than search lusrlliblterminfo. To get
the padding for insert line right (if the tenninal manufacturer did not document it),
edit /etc/passwd at 9600 baud, delete 16 or so lines from the middle of the screen,
then type the character u several times quickly. If the tenninal behaves erratically,
more padding is usually needed. A similar test can be used for the insert character.

File Formats 5-197

terminfo(5)

Basic Capabilities

The number of columns on.each line for the terminal is specified by the cols numeric
capability. If the terminal is a CRT, then the number of lines on the screen is given
by the lines capability. If the terminal wraps around to the beginning of the next line
when it reaches the right margin, then it should have the am capability. If the
terminal can clear its screen, leaving the cursor in the home position, then this is
given by the clear string capability. If the terminal overstrikes (rather than clearing a
position when.a character is struck over), then it should have the os capability. If the
terminal is a printing terminal, with no soft copy unit, give it both hc and os. (os
applies to storage scope terminals, such as TEKTRONIX 4010 series, as well as hard
copy and APL terminals.) If there is a code to move the cursor to the left edge of the
current row, give this as cr. (Normally this will be carriage return, control M.) If
there is a code to produce an audible signal (bell, beep, etc), give this as bel.

If there is a code to move the cursor one position to the left (such as backspace) that
capability should be given as cubl. Similarly, codes to move to the right, up, and
down should be given as cun, cuul, and cudl. These local cursor motions· should
not alter the text they pass over; for example, you would not normally use 'cun= '
because the space would erase the character moved over.

NOTE

The local cursor motions encoded in t e rmi n f 0 are undefined at the left
and top edges of a CRT terminal. Programs should never attempt to
backspace around the left edge, unless bw is given, and never attempt to
go up locally off the top. In order to scroll text up, a program will go to
the bottom left comer of the screen and send the ind (index) string.

To scroll text down, a program goes to the top left comer of the screen and sends the
ri (reverse index) string. The strings ind and ri are undefined when not on their
respective comers of the screen.

Parameterized versions of the scrolling sequences are indn and rin, which have the
same semantics as ind and ri, except that they take one parameter and scroll that
many lines. They are also undefined, except at the appropriate edge of the screen.

The am capability tells whether the cursor sticks at the right edge of the screen when
text is output, but this does not necessarily apply to a cun from the last column.
The only local motion that is defined from the left edge is if bw is given, then a cub I
from the left edge will move to the right edge of the previous row. If bw is not
given, the effect is undefined. This is useful for drawing a box around the edge of
the screen, for example. If the terminal has switch-selectable automatic margins, the
terminfo file usually assumes that this is on; that is, am. If the terminal has a
command which moves to the first column of the next line, that command can be
given as nel (newline). It does not matter if the command clears the remainder of the
current line, so, if the terminal has no cr and If, it may still be possible to craft a
working nel out of one or both of them.

These capabilities suffice to describe hardcopy and glass-tty terminals. Thus, the
Model 33 Teletype is described as:

33 I tty33 I tty I model 33 teletype,
bel=AG, eols#72, er=AM, eudl=AJ, he, ind=AJ, os,

The Lear Siegler ADM-3 is described as:

adrn3 I 3 Ilsi adrn3,

5-198 File Formats

am, bel=AG~ clear=AZ, cols.80, cr=AM, cubl=AH, cudl=AJ,
ind=AJ, lines.24,

Parameterized Strings

terminfo (5)

Cursor addressing and other strings requiring parameters in the terminal are described
by a parameterized string capability, with printf(3s), such as escapes like %x.
For example, to address the cursor, the cup capability is given, using two parameters:
the row and column to address to. (Rows and columns are numbered from zero and
refer to the physical screen visible to the user, not to any unseen memory.) If the
terminal has memory-relative cursor addressing, that can be inaicatea by mrcup.

The parameter mechanism uses a stack and special % codes to manipulate it.
Typically a sequence pushes one of the parameters onto the stack and then prints it in
some format. Often, more complex operations are necessary.

The percent sign (%) encodings have the following meanings:

%%
%d
%2d
%3d
%02d
%03d
%c
%s

%p[1-9]
%P[a-z]
%g[a-z]
%'c'
%{nn}

outputs '%'
print popO as in printf
print popO like %2d
print popO like %3d

as in printf
print popO gives %c
print popO gives %s

push ith parm
set variable [a-z] to popO
get variable [a-z] and push it
char constant c
integer constant nn

%+ %- %* %/ %m

%&%1 %A
%=%>%<
%!%
%i

arithmetic (%m is mod): push(popO op popO)
bit operations: push(popO op popO)
logical operations: push(popO op popO)
unary operations push(op popO)
add 1 to first two parms (for ANSI terminals)

%? expr %t thenpart %e elsepart %;
if-then-else, %e elsepart is optional.
else-if's are possible ala Algol 68:
%? c1 %t bJ ~e c2 %t b2 %e .c3 %t b3 %e c4 %t b4 %e %;
ci are conditIOns, bi are bodIes.

Binary operations are in postfix form with the operands in the usual order. That is, to
get x-5, use %gx%{5}%-.

Consider the HP2645, which, to get to row 3 and column 12, needs to be sent
\E&a12c03Y padded for 6 milliseconds. Note that the order of the rows and columns
is inverted here, and that the row and column are printed as two digits. Thus, its cup
capability is cup=6\E&%p2%2dc%p1 %2dY.

The Microterm ACT-IV needs the current row and column sent preceded by a AT,
with the row and column simply encoded in binary, cup=AT%p1 %c%p2%c.
Terminals that use %c need to be able to backspace the cursor (cubl), and to move

File Formats 5-199

terminfo (5)

the cursor up one line on the screen (cuul). This is necessary because it is not
always safe to transmit \0 AD and \r, as the system may change or discard them.
(The library routines dealing with terminfo set tty modes so that tabs are never
expanded, so \t is safe to send. This turns out to be essential for the Ann Arbor
4080.) ,

A final example is the LSI ADM-3a, which uses row and column offset by a blank
character; thus cup=\E=%pl%' '%+%c%p2%' '%+%. After sending\E=, this pushes
the first parameter, pushes the ASCII value for a space (32), adds them (pushing the
sum on the stack in place of the two previous values), and outputs that value as a
character. Then, the same is done for the second parameter. More complex
arithmetic is possible using the stack.

If the terminal has row or column absolute cursor addressing, these can be given as
single parameter capabilities hpa (horizontal position absolute) and vpa (vertical
position absolute). Sometimes, these are shorter than the more general 2-parameter
sequence (as with the hp2645) and can be used in preference to cup. If there are
parameterized local motions (for example, move n spaces to the right), these can be
given as cud, cub, cuf, and cuu, with a single parameter indicating how many spaces
to move. These are primarily useful if the terminal does not have cup, such as the
TEKTRONIX 4025.

Cursor Motions

If the terminal has a fast way to home the cursor (to very upper left corner of screen),
then this can be given as home. Similarly, a fast way of getting to the lower left-hand
corner can be given as II. This may involve going up with cuul from the home
position, but a program should never do this itself (unless II does), because it can
make no assumption about the effect of moving up from the home position. Note
that the home position is the same as addressing to (0,0): the top left corner of the
screen, not memory. Thus, the \EH sequence on HP terminals cannot be used for
home.

Area Clears

If the terminal can clear from the current position to the end of the line, leaving the
cursor where it is, this should be given as el. If the terminal can clear from the
current position to the end of the display, this should be given as ed. Ed is only
defined from the first column of a line. Thus, it can be simulated by a request to
delete a large number of lines, if a true ed is not available.

Insert/delete line

If the terminal can open a new blank line before the line where the cursor is, this
should be given as ill; this is done only from the first position of a line. The cursor
must then appear on the newly blank line. If the terminal can delete the line that the
cursor is on, this should be given as dll; this is done only from the first position on
the line to be deleted. Versions of ill and dll that take a single parameter and insert
or delete that many lines can be given as iI and dl. If the terminal has a settable
scrolling region (like the VT100), the command to set this can be described with the
csr capability, which takes two parameters: the top and bottom lines of the scrolling
region. The cursor position is undefined after using this command. It is possible to
get the effect of insert or delete line using this command. The sc and rc (save and
restore cursor) commands are also useful. Inserting lines at the top or bottom of the
screen can also be done using ri or ind on many terminals without a true insert/delete
line, and this is often faster even on terminals with those features.

5-200 File Formats

terminfo (5)

If the terminal has the ability to define a window as part of memory, which all
commands affect, it should be given as the parameterized string wind. The four
parameters are the starting and ending lines in memory and the starting and ending
columns in memory, in that order.

If the terminal can retain display memory above, then the da capability should be
given; if display memory can be retained below, then db should be given. These
indicate that deleting a line or scrolling may bring nonblank lines up from below or
that scrolling back with ri may bring down nonblank lines.

Insert/Delete Character

There are two basic kinds of intelligent terminals with respect to insert/delete
character that can be described using terminfo. The most common insert/delete
character operations affect only the characters on the current line and shift characters
off the end of the line rigidly. Other terminals, such as the Concept-IOO and the
Perkin Elmer Owl, make a distinction between typed and untyped blanks on the
screen, shifting upon an insert or delete only to an untyped blank on the screen that is
either eliminated or expanded to two untyped blanks. You can determine the kin4 of
terminal you have by clearing the screen and typing text separated by cursor motions.
Type' 'abc def", using local cursor motions (not spaces) between the abc and the
def. Then, position the cursor before the abc and put the terminal in insert mode. If
typing characters causes the rest of the line to shift rigidly and characters fall off the
end, then your terminal does not distinguish between blanks and untyped positions.
If the abc shifts over to the def which then move together around the end of the
current line and onto the next as you insert, you have the second type of terminal.
You should give the capability in, which stands for "insert null". While these are
two logically separate attributes (one line, as opposed to multiline insert mode, and
special treatment of untyped spaces) every terminal's insert mode can be described
with the single attribute.

Terminfo can describe both terminals that have an insert mode and terminals that
send a simple sequence to open a blank position on the current line. Give as smir
the sequence to get into insert mode. Give as rmir the sequence to leave insert
mode. Then, give as ichl any sequence needed to be sent just before sending the
character to be inserted. Most terminals with a true insert mode will not give ichl;
terminals that send a sequence to open a screen position should give it here.

NOTE

If your terminal has both, insert mode is usually preferable to ichl. Do
not give both, unless the terminal actually requires both to be used in
combination.

If post insert padding is needed, give this as a number of milliseconds in ip (a string
option). Any other sequence that may need to be sent after an insert of a single
character may also be given in ip. If your terminal needs both to be placed into an
insert mode and a special code to precede each inserted character, both smir/rmir
and ichl can be given, and both will be used. The ich capability, with one
parameter, n, will repeat the effects of ichl n times.

It is occasionally necessary to move around while in insert mode to delete characters
on the same line (for example, if there is a tab after the insertion position). If your
terminal allows motion while in insert mode, you can give the capability mir to
speed up inserting. Omitting mir affects only speed. Some terminals (notably
Datamedia's) must not have mir because of the way their insert mode works.

File Formats 5-201

terminfo (5)

Finally, you can specify dehl to delete a single character, deh, with one parameter,
n, to delete n characters, and delete mode by giving smde and rmde to enter and
exit delete mode (any mode the terminal needs to be placed in for dehl to work).

A command to erase n characters (equivalent to outputting n blanks, without moving
the cursor) can be given as eeh with one parameter.

Highlighting, Underlining, and Visible Bells

If your terminal has one or more kinds of display attributes, these can be represented
in a number of different ways. You should choose one display form as standout
mode, representing a good, high contrast, easy to read, format for highlighting error
messages and other important information. If you have a choice, reverse video plus
half-bright is good, or reverse video alone. The sequences to enter and exit standout
mode are given as smso and rmso, respectively. If the code to change into or out of
standout mode leaves one or even two blank spaces on the screen, as the TVI 912
and Teleray 1061 do, then xme should be given to tell how many spaces are left.

Codes to begin underlining and end underlining can be given as smul and rmul,
respectively. If the terminal has a code to underline the current character and move
the cursor one space to the right, such as the Microterm Mime, this can be given as
ue.

Other capabilities to enter various highlighting modes include blink (blinking), bold
(bold or extra bright), dim (dim or half-bright), invis (blanking or invisible text),
prot (protected), rev (reverse video), sgrO (turn off all attribute modes), smaes (enter
alternate character set mode), and rmaes (exit alternate character set mode). Turning
on any of these modes singly mayor may not tum off other modes.

If there is a sequence to set arbitrary combinations of modes, this should be given as
sgr (set attributes), taking nine parameters. Each parameter is either 0 or 1, as the
corresponding attribute is on or off. The nine parameters are, in order: standout,
underline, reverse, blink, dim, bold, blank, protect, and alternate character set. Not
all modes need be supported by sgr, only those for which corresponding separate
attribute commands exist.

Terminals with the "magic cookie glitch" (xme) deposit special cookies when they
receive mode-setting sequences, which affect the display algorithm rather than having
extra bits for each character. Some terminals, such as the HP 2621, automatically
leave standout mode when they move to a new line or the cursor is addressed.
Programs using standout mode should exit standout mode before moving the cursor
or sending a newline, unless the msgr capability, asserting that it is safe to move in
standout mode, is present.

If the terminal has a way of flashing the screen to indicate an error quietly (a bell
replacement), this can be given as flash; however, it must not move the cursor.

If the cursor needs to be made more visible than normal when it is not on the bottom
line (to make, for example, a non-blinking underline into an easier to find block or
blinking underline), give this sequence as evvis. If you wish to make the cursor
completely invisible, give that as civis. The capability enorm should be given which
undoes the effects of both of these modes.

If the terminal needs to be in a special mode when running a program that uses these
capabilities, the codes to enter and exit this mode can be given as smeup and rmeup.
This arises, for example, from terminals like the Concept-IOO with more than one
page of memory. If the terminal has only memory-relative cursor addressing and not

5-202 File Formats

terminfo (5)

screen-relative cursor addressing, a one screen-sized window must be fixed into the
terminal for cursor addressing to work properly. This is also used for the
TEKTRONIX 4025, where smeup sets the command character to be the one used by
terminfo.

If your terminal correctly generates underlined characters (with no special codes
needed) even though it does not overstrike, you should give the capability ul. If
overstrikes are erasable with a blank, this should be indicated by giving eo.

Keypad

If the terminal has a keypad that transmits codes when the keys are pressed, give this
information. Note that it is not possible to handle terminals where the keypad only
works in local (this applies, for example, to the unshifted HP 2621 keys). If the
keypad can be set to transmit or not transmit, give these codes as smkx and rmkx.
Otherwise, the keypad is always assumed to transmit. The codes sent by the left
arrow, right arrow, up arrow, down arrow, and home keys can be given as keubl,
keufl, keuul, keudl, and khome, respectively. If there are function keys such as
fO, fl, ... flO, the codes they send can be given as kfO, kfl, .•• kflO. If these keys
have labels other than the default fO through flO, the labels can be given as lfO, Ifl,
••• lflO. The codes transmitted by certain other special keys can be given: kIl (home
down), kbs (backspace), ktbe (clear all tabs), ketab (clear the tab stop in this
column), kclr (clear screen or erase key), kdehl (delete character), kdIl (delete line),
krmir (exit insert mode), kel (clear to end of line), ked (clear to end of screen),
kiehl (insert character or enter insert mode), kill (insert line), knp (next page), kpp
(previous page), kind (scroll forward/down), kri (scroll backward/up), khts (set a tab
stop in this column). In addition, if the keypad has a 3 by 3 array of keys including
the four arrow keys, the other five keys can be given as kal, ka3, kb2, kel, and ke3.
These keys are useful when the effects of a 3 by 3 directional pad are needed.

Tabs and Initialization

If the terminal has hardware tabs, the command to advance to the next tab stop can
be given as ht (usually CTRL I). A backtab command which moves leftward to the
next tab stop can be given as ebt. By convention, if the teletype modes indicate that
tabs are being expanded by the computer rather than being sent to the terminal,
programs should not use ht or ebt, even if they are present, since the user may not
have the tab stops properly set. If the terminal has hardware tabs that are initially set
every n spaces when the terminal is powered up, the numeric parameter it is given,
showing the number of spaces the tabs are set to. This is normally used by the tset
command to determine whether to set the mode for hardware tab expansion and
whether to set the tab stops. If the terminal has tab stops that can be saved in
nonvolatile memory, the terminfo description can assume that they are properly set.

Other capabilities include isl, is2, and is3, initialization strings for the terminal,
iprog, the path name of a program to be run to initialize the terminal, and if, the
name of a file containing long initialization strings. These strings are expected to set
the terminal into modes consistent with the rest of the terminfo description. They are
normally sent to the terminal, by the tset program, each time the user logs in.
They will be printed in the following order: isl, is2, setting tabs using tbe and hts,
if, running the program iprog, and finally is3. Most initialization is done with is2.
Special terminal modes can be set up without duplicating strings by putting the
common sequences in is2 and special cases in isl and is3. A pair of sequences that
does a harder reset from a totally unknown state can be analogously given as rsl,
rs2, rf, and rs3, analogous to is2 and if. These strings are output by the reset

File Formats 5-203

terminfo(5)

program, which is used when the terminal gets into a wedged state. Commands are
normally placed in rs2 and rf only if they produce annoying effects on the screen and
are not necessary when logging in. For example, the command to set the vt1 00 into
80-column mode would normally be part of is2, but it causes an annoying movement
of the screen and is not normally needed because the terminal is usually already in
80-column mode.

If there are commands to set and clear tab stops, they can be given as tbc (clear all
tab stops) and hts (set a tab stop in the current column of every row). If a more
complex sequence is needed to set the tabs than can be described by this, the
sequence can be placed in is2 or if.

Delays

Certain capabilities control padding in the teletype driver. These are primarily
needed by hard copy terminals, and are used by the tset program to set teletype
modes appropriately. Delays embedded in the capabilities cr, ind, cubl, ff, and tab
cause the appropriate delay bits to be set in the teletype driver. If pb (padding baud
rate) is given, these values can be ignored at baud rates below the value of pb.

Miscellaneous

If the terminal requires other than a null (zero) character as a pad, this can be given
as pad. Only the first character of the pad string is used.

If the terminal has an extra status line that is not normally used by software, indicate
this fact. If the status line is viewed as an extra line below the bottom line, into
which one can cursor-address normally (such as the Heathkit h19's 25th line, or the
24th line of a vt100 which is set to a 23-line scrolling region), the capability hs
should be given. Special strings to go to the beginning of the status line and to
return from the status line can be given as tsl and fsl. The fsl string must leave the
cursor position in the same place it was before tsl. If necessary, the sc and rc strings
can be included in tsl and fsl to get this effect. The parameter tsl takes one
parameter, which is the column number of the status line the cursor is to be moved
to. If escape sequences and other special commands, such as tab, work while in the
status line, give the eslok flag. A string that turns off the status line, or otherwise
erases its contents, should be given as dsl. If the terminal has commands to save and
restore the position of the cursor, give them as sc and rc. The status line is normally
assumed to be the same width as the rest of the screen, for example, cols. If the
status line is a different width (possibly because the terminal does not allow an entire
line to be loaded), the width, in columns, can be indicated with the numeric
parameter, wsl.

If the terminal can move up or down half a line, you can indiCate this with hu (half­
line up) and hd (half-line down). This is primarily useful for superscripts and
subscripts on hardcopy terminals. If a hardcopy terminal can eject to the next page
(form feed), give this as ff (usually CTRL L).

If there is a command to repeat a given character a given number of times (to save
time transmitting a large number of identical characters), you can indicate this with
the parameterized string rep. The first parameter is the character to be repeated and
the second is the number of times to repeat it. Thus, tparm(repeat_char, 'x', 10)
represents "xxxxxxxxxx".

If the terminal has a settable command character, such as the TEKTRONIX 4025, this
can be indicated with cmdch. Choose a prototype command character to use in all
capabilities. This character is given in the cmdch capability to identify it. The

5-204 File Formats

terminfo (5)

following convention is supported on some UNIX systems: the environment is to be
searched for a CC variable, and, if found, all occurrences of the prototype character
are replaced with the character in the environment variable.

Terminal descriptions that do not represent a specific kind of known terminal, such as
switch, dialup, patch, and network, should include the go (generic) capability, so
that programs can complain that they do not know how to talk to the terminal. This
capability does not apply to virtual terminal descriptions, for which the escape
sequences are known.

If the terminal uses xon/xoff handshaking for flow control, give xoo. Padding
information should still be included, so that routines can make better decisions about
costs, but actual pad characters are not transmitted.

If the terminal has a meta key that acts as a shift key, setting the eighth bit of any
character transmitted, this fact can be indicated with km. Otherwise, software
assumes that the eighth bit is panty and it is usually cleared. If strings exist to tum
this meta mode on and off, they can be given as smm and rmm.

If the terminal has more lines of memory than will fit on the screen at once, the
number of lines of memory can be indicated with 1m. A value of Im#O indicates that
the number of lines is not fixed, but that there is still more memory than fits on the
screen.

If the terminal is one of those supported by the UNIX virtual terminal protocol, the
terminal number can be given as vt.

Media copy strings that control an auxiliary printer connected to the terminal can be
given as meO: print the contents of the screen, me4: tum off the printer, and meS:
tum on the printer. When the printer is on, all text sent to the terminal is sent to the
printer. It is undefined whether the text is also displayed on the terminal screen when
the printer is on. A variation me5p takes one parameter, and leaves the prihter on for
as many characters as the value of the parameter. It then turns the printer off. The
parameter should not exceed 255. All text, including me4, is transparently passed to
the printer while an me5p is in effect.

Strings to program function keys can be given as pfkey, pfloe, and pfx. Each of
these strings takes two parameters: the function key number to program (from 0 to
10) and the string to program it with. Function key numbers out of this range may
program undefined keys in a terminal-dependent manner. The difference between the
capabilities is that pfkey causes pressing the given key to be the same as the user
typing the given string; pfloe causes the string to be executed by the terminal in
local; and pfx causes the string to be transmitted to the computer.

Restrictions
Hazeltine terminals, which do not allow tilde (,..,) characters to be displ~yed, should
indicate hz.

Terminals that ignore a linefeed immediately after an am wrap, such as the Concept-
100 and VT100, should indicate xenl.

If el is required to get rid of standout (instead of merely writing normal text on top of
it), xhp should be given.

Teleray terminals, where tabs tum all characters moved over to blanks, should
indicate xt (destructive tabs). This glitch is also taken to mean that it is not possible
to position the cursor on top of a "magic cookie", that to erase standout mode it is
instead necessary to use delete and insert line.

File Formats 5-205

terminfo (5)

Files

The Beehive Superbee, which is unable to correctly transmit the escape or CTRL C
characters, has xsb, indicating that the f1 key is used for escape and f2 for CTRL C.
(Only certain Superbees have this problem, depending on the ROM.)

Other specific terminal problems can be corrected by adding more capabilities of the
form xx.

Similar Terminals

If there are two very similar terminals, one can be defined as being just like the other
with certain exceptions. The string capability use can be given with the name of the
similar terminal. The capabilities given before use override those in the terminal
type invoked by use. A capability can be canceled by placing xx@ to the left of the
capability definition, where xx is the capability. For example, the following entry

2621-nl, smkx@, rmkx@, use=2621,

defines a 2621-nl that does not have the smkx or rmkx capabilities, and hence does
not tum on the function key labels when in visual mode. This is useful for different
modes for a terminal, or for different user preferences.

/usr/lib/terminfo/?/*
Files containing terminal descriptions

See Also
tic(I), intro(3cur), printf(3s), term(7),
Guide to X/Open curses Screen-Handling

5-206 File Formats

trace (5)

Name
trace - system call tracer device

Description
The file / dev /trace is the system call trace device. It supports the following
system calls: open, close, read, ioctl, and select. The device supports
16 (configurable in sys/systrace.h as TR_USRS) simultaneous users. It uses an
8 1 92-byte buffer for trace records. The choice of which system calls to trace is done
with the ioctl system call. The select call is used for efficient reading of the
device. The select call uses an 8 1 92-byte buffer and returns when the buffer is
60% full. It is required that the user use a buffer the same size as the system buffer
size defined in sys / systrace. h as TR_BUFSIZE. All ioctl operations are
defined in the header file, sys/ systrace. h. The ioctl calls are:

ioctl

IOTR_GETOFF
IOTR_GETON
IOTR_GETALL
IOTR_GETPIDS
IOTR_GETUIDS
IOTR_GETSYSC
IOTR_GETPGRP
IOTR_SETOFF
IOTR_SETON
IOTR_SETALL
IOTR_SETPIDS
IOTR_SETUIDS
IOTR_SETSYSC
IOTR_SETPGRP

Examples

arg (pointer to)

int a
int a
int a
int a[10]
int arlO]
int arlO]
int arlO]
int a
int a
int a
int a[10]
int arlO]
int a[10]
int arlO]

A prototype example (with missing parts):

char cmd[BUFSIZ],buf[TR_BUFSIZ];
int pgrp[lO],i;
fd = open("/dev/trace",O); /* open the device */
pgrp[O] = dofork(cmd); /* fork the command to trace */
for (i=l;i<TR_PGRP;i++) /* dofork sleeps 2 seconds while */

pgrp[i] = 0; /* we set up to do the trace */
i = ioctl(fd,IOTR_SETPGRP,pgrp);/* set up for the trace */
/* select code goes here */
read(fd,buf,sizeof(buf»;

See Also
trace(1), close(2), ioctl(2), open(2), read(2), select(2)

File Formats 5-207

ttys (5)

Name
ttys - terminal initialization data

Description
The / etc / tty s file contains information used by various routines to initialize and
control the use of terminal special files. This file is created when the system is
installed and can be updated at any time.

Each terminal special file (/ dev / t t yxx) has a line in the tty s file. Each 1ine
contains several fields. Fields are separated by tabs or spaces. A field with more
than one word should be enclosed in quotes. Blank lines and comments can appear
anywhere in the file. Comments begin with a number sign (#) and are terminated by
a newline character. Unspecified fields default to the empty string or zero, as
appropriate.

The format of each line is as follows:

name command type flag1 flag2 ...

where:

name Is the name of the special file for the terminal in the / dev directory.

command

type

flags

5-208 File Formats

Some examples are:

console
ttydO
ttyd1

Is the command to be executed each time the terminal is initialized.
This can happen when the system is booted, or when the superuser
adds new terminals to the tty s file and initializes the new terminals.
The command is usually getty, which performs such tasks as
baud-rate recognition, reading the login name, and calling login. It
can be any command you wish, such as the startup command for a
window system terminal emulator or a command to maintain other
daemon processes.

Is the type of terminal normally connected to the terminal special
file. You can find the possible types by examining the
/ etc/termcap file on your system. The types available are given
as the third field in entries in that file. Some examples are:

vt100
vt200
dialup

Are the flags to be set in the ty_status or ty_window fields of
the structure returned by the getttyent(3) routine. If the line ends
in a comment, the comment is included in the ty comment field of
this structure. -

Examples

ttys (5)

These fields are used by the init command that is executed when
tenninals are initialized.

The ty _status flags are:

on Sets the TrY_ON bit in the getttyent

off

secure

nomodem

modem

shared

t y _ s tat u s field. This enables logins for this
tenninal.

The default if this flag is not set is that logins are
disabled for the tenninal.

Clears the TIY_ON bit in the getttyent
ty status field. This disables logins for this
tenninal.

Sets the TrY_SECURE bit in the getttyent
t y s tat u s field. This allows the root user to log
in On this tenninal. (The on flag should also be
set.)

The default if this flag is not set is that the root user
cannot log in on this tenninal.

Sets the TrY_LOCAL bit in the getttyent
t y s tat us field. The line ignores modem signals.
ThIs is the default if neither the modem nor
nomodem flag is set.

Clears the TrY_LOCAL bit in the get t t yen t
t Y s tat u s field. The line recognizes modem
signals.

The default if this flag is not set is nomodem. That
is, the line does not recognize modem signals.

Sets the TrY_SHARED bit in the getttyent
t y s tat u s field. The line can be used for both
incoming and outgoing connections.

The default if this flag is not set is that the line
cannot be used for incoming and outgoing
connections.

The ty _window flag is:

window="string" The quoted string is a window system process
that in i t maintains for the tenninalline.

The following example pennits the root user to log in on the console at 1200 baud:

console "jete/getty std.1200" vt100 on secure

This example allows dialup at 1200 baud without root login:

ttydO "jete/getty d1200" dialup on

These two examples allow login at 9600 baud with two different tenninal types:
hp2621-nl and vt100. In this example, the tenninals should be set up to operate in

File Formats 5-209

ttys (5)

Note

Files

7-bit mode, because the std.9600 gettytab entry is specified:

ttyOO "fete/getty std.9600" hp2621-nl on
tty01 "fete/getty std.9600" vt100 on

This example shows the same two terminals as the previous example operating·in full
8-bit mode. Note the use of a different gettytab entry:

ttyOO "fete/getty 8bit.9600" hp2621-nl on
tty01 "fete/getty 8bit.9600" vt100 on

These two examples show network pseudoterminals, which should not have get t y
enabled:

ttypO none network
ttyp1 none network off

This example shows a terminal emulator and window-system startup entry and should
be typed all on one line:

ttyvO "/usr/bin/xterm -L -r -i -fn 9x15 =80x24+0-0 unix:O"
xterm on secure window="/usr/bin/X 0 -0 #000000 -1 #FFFFFF"

This example shows an example of an entry for an Ita device:

tty01 "jete/getty 8bit.9600" vt100 on modem secure # LAT

Any terminal configured to run getty in 8-bit mode should specify a gettytab
entry that declares 8-bit operation. The command field of the tty s entry is used to
specify the gettytab entry. If the terminal device is set up to operate in 8-bit mode
and the command field does not specify an 8-bit gettytab entry, output to the
terminal appears as multinational characters. These characters are the result of the
get t y program using the eighth bit of each character to represent parity attributes.
By using an 8-bit gettytab entry, the high order bit of each character is unaffected
by the getty program. The examples presented demonstrate the use of both 7- and
8-bit terminals.

/etc/ttys The full pathname for the file

See Also
10gin(1), getttyent(3), gettytab(5), getty(8), init(i)
Guide to System Environment Setup

5-210 File Formats

types (5)

Name
types - primitive system data types

Syntax
#include <sys/types.h>

Description
The data type s defined in the include file are used in UNIX system code. Some
data of these type s are accessible to user code:

#ifndef _TYPES_
#define _TYPES_

/* major part of a device */
#define major (x) «int) («unsigned) (x) »8) &0377))

/* minor part of a device */
#define minor (x) «int) ((x) &0377))

/* make a device number */
#define makedev (x, y) «dev_t) « (x) «8) I (y)))

typedef unsigned char u - char;
typedef unsigned short u - short;
typedef unsigned int u inti
typedef unsigned long u_long;
typedef unsigned short ushort; /* sys III compat */

#ifdef mips
typedef struct yhysadr { int r [1] ; } *physadr;
typedef struct label t {

int val[12];
} label_t;
#endif
typedef struct _quad { long val[2]; } quad;
typedef long daddr_t;
typedef char * caddr_t;
typedef u_long ino_ti
typedef long sWblk_t;
typedef int size_t;
typedef int time_ti
typedef short dev_t;
typedef int off_t;

typedef struct fd_set { int fds_bits[l]; fd_set;
#endif

The form daddr _t is used for disk addresses except in an i-node on disk. For further
information, see f s(5). Times are encoded in seconds since 00:00:00 GMT, January
1, 1970. The major and minor parts of a device code specify kind and unit number
of a device and are installation-dependent. Offsets are measured in bytes from the
beginning of a file. The label_t variables are used to save the processor state while
another process is running.

File Formats 5-211

Rise

Rise types (5)

See Also
dbx(1}, lseek(2}, time(3}, fs(5}

5-212 File Formats

tzfile(5)

Name
tzfile - time zone information

Syntax
#include <tzfile.h>

Description
The time zone information files used bytzset begin with bytes reserved for future
use, followed by three 4-byte values of type "long", written in a "standard" byte
order (the high-order byte of the value is written first). These values are, in order:

tzh _ timecnt The number of transition times for which data is stored in the file.

tzh _ typecnt

tzh charcnt - -

The number of local time types for which data is stored in the file
(must not be zero).

The number of characters of "time zone abbreviation strings"
stored in the file.

This header is followed by t z h _ time cn t 4-byte values of type
"long", sorted in ascending order. These values are written in
"standard" byte order. Each is used as a transition time (as
returned by time at which the rules for computing local time
change). Next come tzh_timecnt 1-byte values of type
"unsigned char" . Each one tells which of the different types of
local time types described in the file is associated with the same­
indexed transition time. These values serve as indices into an
array of ttinfo structures that appears next in the file; these
structures are defined as follows:

struct ttinfo {
long
int
unsigned int

} ;

tt_gmtoff;
tt_isdst;
tt_abbrind;

Each structure is written as a 4-byte value for tt_gmtoff of type
"long", in a standard byte order, followed by a 1-byte value for
tt_isdst and a 1-byte value for tt_abbrind. In each
structure, tt_gmtoff gives the number of seconds to be added to
GMT, tt_isdst tells whether tm_isdst should be set by
localtime and tt_abbrind serves as an index into the array
of time zone abbreviation characters that follows the ttinfo
structure or structures in the file.

The local time call uses the first standard-time ttinfo structure in the file (or
simply the first ttinfo structure, in the absence of a standard-time structure) if
either tzh_timecnt is zero or the time argument is less than the first transition
time recorded in the file.

File Formats 5-213

tzfile(5)

See Also
ctime(3)

5-214 File Formats

ufs(5)

Name
ufs - ULTRIX local file system

Description
The UL TRIX file system is a local file system implemented under the Generic File
System Interface, GFSI, which is described in gfsi(5). UFS is a reorganization of
the file system that is always supplied with ULTRIX.

Aside from the difference in mounting and unmounting file systems, there are no
observable. differences in the ijle system compared to earlier releases. ULTRIX file
system disks are completely transportable between releases of UL TRIX.

See Also
getmnt(2), getdirentries(2), mount(2), fstab(5), nfs(5nfs), fsck(8), mount(8)

File Formats 5-215

USERFILE (5)

Name
USERFILE - defines uucp security

Syntax
lusr/Jib/uucplUSERFILE

Description
The uucp utility uses the USERFILE to establish what access a remote system can
have to the local system. An entry should exist for each system. If no entries exist
for a particular system, the default entries are used. The entries for particular systems
have the following format:

login-name, node-name X # path-name

login-name The name with which the remote system logs in.

node-name

X#

path-name

The name of the remote node.

The execution level for the remote system. The remote system can
execute commands defined in the L. cmds(5) file that have an
execution level less than or equal to the number #.

The remote system can access anything at the local system with this
prefix.

Two entries must also be provided for systems not otherwise listed:

remote, X# path-name ...
local, X# path-name ...

These entries define the execution level and access pathnames for the local system
and ~ll remote systems not defined by specific entries.

Examples

remote, Xl /usr/spool/uucppublic
local, X9 /
max,systemY /usr/sources /usr/src/share
max,systemZ X3 /usr

In the above example, the node named system Y with the login name max has access
to anything with the pathname prefixes /usr/sources and /usr/src/share.
The node named systemZ with the login name max can execute commands defined in
L. cmds(5) with an execution level of 3 or lower. It can access anything with the
pathname prefix / u sr.

Any other remote systems can execute commands defined in L. cmds(5) with an
execution level of 1 or O. They can access anything with the pathname prefix of
/usr/spool/uucppublic.

Users on the local system can execute any of the commands defined in L. cmd and
access anything on the system.

5-216 File Formats

USERFILE (5)

See Also
Guide to the uucp Utility

File Formats 5-217

utmp(5)

Name
utmp, wtmp - login records

Syntax
#include <utmp.h>

Description

Files

The utmp file records information about who is currently using the system. The file
is a sequence of entries with the following structure declared in the include file:

struct utmp {

char ut - line[8]; /* tty name */
char ut _name[8]; /* user id */
char ut _host[16]; /* host name, if remote */
long ut _time; /* time on */

} ;

This structure gives the name of the special file associated with the user's terminal,
the user's login name, and the time of the login in the form of time(3c).

The wtmp file records all logins and logouts. A null user name indicates a logout on
the associated terminal. A terminal referenced with a tilde (,..,) indicates that the
system was rebooted at the indicated time. The adjacent pair of entries with terminal
names referenced by a vertical bar (I) or a right brace (}) indicate the system­
maintained time just before and just after a date command has changed the
system's timeframe.

The wtmp file is maintained by login(1) and ini t(8). Neither of these programs
creates the file, so, if it is removed, record-keeping is turned off. It is summarized by
ac(8).

/etc/utmp
/usr/adm/wtmp

See Also
last(l), lastcomm(l), login(l), who(l), ac(8), init(8)

5-218 File Formats

uuencode(5)

Name
uuencode - fonnat of an encoded uuencode file

Description
Files output by uuencode(1c) consist of a header line, followed by a number of
body lines, and a trailer line. The uudecode command ignores any lines preceding
the header or following the trailer. Lines preceding a header must not, of course,
look like a header.

The header line is distinguished by having the first six characters by the word
"begin", followed by a space. The next item on the line is a mode (in octal) and a
string which names the remote file. A space separates the three items in the header
line.

The body consists of a number of lines, each at most 62 characters long including the
trailing new line. These consist of a character count, followed by encoded characters,
followed by a new line. The character count is a single printing character and
represents an integer, the number of bytes the rest of the line represents. Such
integers are always in the range from 0 to 63 and can be detennined by subtracting
the character space (octal 40) from the character.

Groups of 3 bytes are stored in 4 characters, with 6 bits per character. All are offset
by a space to make the characters print. The last line may be shorter than the nonnal
45 bytes. If the size is not a multiple of 3, this fact can be detennined by the value
of the count on the last line. Extra dummy characters are included to make the
character count a multiple of 4. The body is tenninated by a line with a count of
zero. This line consists of one ASCII space.

The trailer line consists of "end" on a line by itself.

See Also
mail(1), uucp(1c), uudecode(1c), uuencode(lc), uusend(1c)

File Formats 5-219

Rise varargs(5)

Name

Syntax

varargs - handle variable argument list

#include <varargs.h>

va alist

va del

void va _ start(pvar)
va_list pvar;

type va _ arg(pvar, type)
va_list pvar;

void va _ end(pvar)
va_list pvar;

Description
This set of macros allows portable procedures that accept variable argument lists to
be written. Routines that have variable argument lists, such as printf(3s), but that
do not use varargs are inherently nonportable, as different machines use different
argument-passing conventions.

va_alist Is used as the parameter list in a function header.

va del Is a declaration for va alist. A semicolon should not follow va del. - -
va list Is a type defined for the variable used to traverse the list.

va_start Is called to initialize pvar to the beginning of the list.

va _ arg Returns the next argument in the list pointed to by pvar. Type Is the
type the argument is expected to be. Different types can be mixed, but it
is up to the routine to know what type of argument is expected. This
information cannot be determined at run time.

va end is used to clean up.

Multiple traversals, each bracketed by va_start ... va_end, are possible.

The calling routine must specify how many arguments there are, because it is not
always possible to determine this from the stack frame. For example, execl is
passed a zero pointer to signal the end of the list. The p r i n t f routine can tell how
many arguments there are by the format.

It is nonportable to specify a second argument of char, short, or float to va arg,
because arguments seen by the called function are not char, short, or float.- C
converts char and short arguments to int and converts float arguments to double
before passing them to a function.

5-220 File Formats

Examples
The following example presents an implementation of execl(2):

#include <varargs.h>
#define MAXARGS 100

/* execl is called by
execl(file, argl, arg2, ... , (char *)0);

*/
execl(va_alist)
va_dcl
{

va_list ap;
char *file;
char *args[MAXARGS];
int argno = 0;

va_start(ap);
file = va_arg(ap, char *);

varargs (5)

while «args[argno++] = va_arg(ap, char *» != (char *)0)

, va_end(ap);
return execv(file, args);

See Also
exec(2), printf(3s), vprintf(3s)

File Formats 5-221

Rise

ypfi les (5yp)

Name
ypfiles - Yellow Pages data base and directory structure

Description
The Yellow Pages (YP) data base lookup service uses a data base of dbm files in the
/ etc / yp directory hierarchy. A dbm data base consists of two files, created by
calls to the dbm(3x) library package. One has the filename extension . pag and the
other has the filename extension . di r. For instance, the data base named
hosts. byname, is implemented by the pair of files hosts. byname. pag and
hosts.byname.dir.

A dbm data base served by the YP is called a YP map. A YP domain is a named set
of YP maps. Each YP domain is implemented as a subdirectory of / et c / yp
containing the map. The number of YP domains that can exist is unlimited. Each
domain can contain any number of maps.

The YP maps are not required by the YP lookup service, although they may be
required for the normal operation of other parts of the system. The YP lookup
service serves all maps. If the map exists in a given domain and a client asks about it,
the YP will serve it. There is, however, a set of default maps that the YP service
serves. The files representing these maps are listed in this description under Files.

For a map to be accessible consistently, it must exist on all YP servers that serve the
domain. To provide data consistency between the replicated maps, an entry to
execute the ypx f r command periodically should be made in the
/usr / lib/ crontab file on each slave server. More information on this topic is
in ypxfr(8yp). An entry in the / etc/ lib/ crontab file must not exist, either on
a YP master server or on a pure YP client machine.

The YP maps should contain two distinguished key-value pairs. The first is the key
YP _LAST_MODIFIED, whose value is a IO-character ASCII order number. The
order number should be the UNIX time in seconds when the map was built. The
second key is YP _MASTER_NAME, with the name of the YP master server as a
value. The makedbm(8yp) command generates both key-value pairs automatically.
A map that does not contain both key-value pairs can be served by the YP, but the
ypserv process will not be able to return values for "Get order numbe"r or "Get
master name" requests. In addition, values of these two keys are used by
ypxfr(8yp) when it transfers a map from a master YP server to a slave.

Before they can be properly accessed, the Yp maps must be initially set up for both
masters and slaves by using the ypsetup(8yp) function. Further, YP maps must be
generated and modified only at the master server location. Copies of the master
server YP maps can then be transferred to the slave servers using the ypxfr(8yp)
function. If ypxfr is unable to determine a map's location, or if it is unable to
determine whether the local copy is more recent than the master copy, extra
command line switches must be set when it is executed.

After the server data bases are set up, the contents of some maps may change. In
general, some ASCII source version of the data base exists on the master. This
version should be changed with a standard text editor. The update is incorporated
into the YP map and is propagated from the master to the slaves by running
/etc/yp/Makefile. All maps must have entries in /etc/yp/Makefile. If
a YP map is added, the /etc/yp/Makefile must be edited to support the new

5-222 File Formats

Files

ypfiles (5yp)

map. The makefile uses rnakedbrn(Syp) to generate the YP map on the master, and
yppush(Syp) to propagate the changed map to the slaves. The yppush(Syp)
command is a client of the map ypserversl. which lists all of the YP servers.

/ete/passwd
fete/group
fete/hosts
fete/networks
/ete/serviees
/ete/protoeols
/ete/netgroup
fete/ethers

See Also
makedbm(Syp), rpcinfo(Snfs), ypmake(Syp), yppoll(Syp). yppush(Syp), ypserv(Syp),
ypsetup(Syp), ypxfr(Syp)

File Formats 5-223

A

accounting file

fonnat,5-9

acct file

fonnat,5-8

acucap file

entry, 5-12e

field definitions, 5-10

fonnat, 5-10

aliases file

fonnat, 5-13

ANSI X3.27-1978 standard, 5-87

a.out file

See also stab file

fonnat, 5-4 to 5-7

layout infonnation, 5-4e

relocation infonnation, 5-6e

symbol table entry, 5-5e

ar file

fonnat, 5-15

archive file

searching, 5-15

assembler, 5-2

assembler and link editor, 5-2

auth database

fonnat, 5-16, 5-16

8
block

defined, 5-88

block length

defined, 5-88

Index

c
CDA (Compound Document Architecture), 5-18

clock daemon

crontab file, 5-22

configuration file (error logger), 5-36

core file

fonnat, 5-20

cpio file

fonnat, 5-21

crontab file

fonnat, 5-22, 5-22

o
Data Object Transport Syntax (DOTS) files, 5-31

database for terminals, 5-191

database service selection

svc.conf file, 5-173

DDIS, 5-25

DDIS/ASN.l encoding, 5-31

dgateway file

fonnat, 5-26

dial code

specifying, 5-73

Digital Data Interchange Syntax, 5-25

dir keyword, 5-28

directory

file fonnat, 5-28

disktab file

field reference list, 5-30

fonnat, 5-30

DOTS, 5-31

DTIF reference page, 5-32

dump file

field reference list, 5-34

TS~entry list, 5-34

dump keyword, 5-33

dumpdates file

field reference list, 5-34

dumprestor file

format, 5-33, 5-33 to 5-35

E
elcsd.conf file

format, 5-36

environment

variables, 5-38

ethers file

description, 5-42

host name restrictions, 5-42, 5-42e

exports file

F

file

See also hosts file

See also netgroup file

format, 5-43

Data Object Transport Syntax (DOTS), 5-31

format, 5-46

merging, 5-15

resolver configuration, 5-143

file command

magic file, 5-95

file system

format, 5-46

getting information, 5-50

reorganized,5-215

volume, 5-46

float.h, 5-82

values for D-tloat, 5-85

values for G-tloat, 5-85

values for RISe architecture, 5-84

values for V AX architecture, 5-84

fS,5-46

Index-2

fstab file

format, 5-50

G

mounting file systems, 5-50, 5-50e

restricted, 5-51

Generic File System Interface, 5-56

gettytab file

defaults, 5-52

format, 5-52 to 5-55

restricted, 5-54

gfsi file, 5-56

See also getdirentries system call

See also getmnt system call

See also NFS file

See also UFS file

graphics file

format, 5-130

group file (general), 5-57

group file (YP), 5-58

H

Hesiod configuration file, 5-59

host

listing trusted, 5-61

host name

DARPA Internet and, 5-60

hosts file

format, 5-60

hosts.equiv file, 5-61

.rhosts file and, 5-61

inetd.conf file

format, 5-63

Internet

specifying networks, 5-117

specifying protocols, 5-138, 5-148

File" "Transfer" "Protocol""

services, 5-154

Internet File Transfer Protocol, S-'-138, 5-148

intro(5) keyword, 5-1

ISO ASN.l (DDIS/ASN.l) files, 5-25

K

Kerberos files

krb.conf,5-68

krb_dbase, 5-69

krb_slaves, 5-71

kits

L

manufacturing key file format, 5-168

master inventory file format, 5-171

labeled tape facility

See ltf file

lang, 5-78

language names, 5-78

L.cmds file, 5-74

L-devices file

format, 5-72

L-dialcodes file, 5-73

Iimits.h, 5-82

values for RISe architecture:, 5-84

values for VAX architecture, 5-84

values for VAX D-float architecture, 5-84

values for VAX G-float architecture, 5-84

link editor, 5-2

login

recording, 5-218

L.sys file

See also L-devices file

See also L-dialcodes file

format, 5-75 to 5-77, 5-76e

Itf file

format, 5-87 to 5-94

label formats, 5-88 to 5-94

M

magic file, 5-95

magnetic tape

labeling, 5-87 to 5-94

mdtar file

format, 5-176

MH system

alias file, 5-98

file formatter, 5-101

message formatter, 5-104

system customization file, 5-112

user customization file, 5-106

mh-alias file, 5-98

mh-format formatter, 5-101

mh-mail formatter, 5-104

mhyrofile file, 5-106

modem

list of autodial types, 5-10

mtstailor file, 5-112

N

named configuration file

described, 5-120

netgroup file

See also getnetgrent subroutine

format, 5-114

.netrc file

format, 5-116

Network File System

See NFS file

network group

defining, 5-114

networks file

format, 5-117

NFS file system, 5-118

accessing remotely, 5-43

format, 5-118

NFS protocols

remote hosts and, 5-147

NLS (natural language support) environment

variables, 5-38

Index-3

nl_ types files, 5-119

ntp.conf file

described, 5-120

p

passwd file (general)

format, 5-122

passwd file (VP)

format, 5-124

patterns

files, 5-126

phones file

format, 5-129

plot keyword, 5-130

printcap file

format, 5-132

printer

adding, 5-132

deleting, 5-132

protocols file

R

See also inetd.conf file

See also remote file

format, 5-138, 5-148

record

defined, 5-88

remote file

format, 5-141

remote host

format file, 5-141

remote system

executing commands, 5-74

specifying, 5-75

specifying access, 5-216

specifying devices for connecting, 5-72

resolver configuration file, 5-143

.rhosts file

See also hosts.equiv file, 5-145

remote system superuser and, 5-145n

rmtab file, 5-147

Index-4

s
sees file

format, 5-149 to 5-151

sccs keyword, 5-149

services file

See also inetd.conf file

format, 5-154

setld

kits manufacturing key file format, 5-168

master inventory file format, 5-171

setld utility

specifying compressed format for files, 5-165

snmpd configuration file

defined, 5-155

parameters, 5-155

snmpd configuration file parameters

community, 5-156

extension, 5-156

interface speed, 5-155

interface type, 5-155

sysDescr, 5-155, 5-155e

tcpRtoAlgorithm, 5-156

timeout, 5-156

software kits

subset control files for, 5-166

Software subset compression file, 5-165

software subset control file, 5-166

stab file

format, 5-160 to 5-163

statd

directory, 5-164

file structures, 5-164

statmon, 5-164

stl_comp file, 5-165

stl_ ctrl file, 5-166

svc.conf

file, 5-173

symbol table, 5-175

system call tracer device, 5-207

system data types

accessible, 5-211

T

tape mark

defined, 5-88

tar file

format, 5-176

header block, 5-176e

restricted, 5-177

term file

field definitions, 5-179

format, 5-178, 5-179

termcap file

See also gettytab file

See also printcap file

format, 5-182 to 5-190

terminal

creating capability data base, 5-182 to 5-190

initializing, 5-208 to 5-210

setting. characteristics, 5-52

terminals database, 5-191

terminfo reference page, 5-191

tip command

acucap file and, 5-10

trace file, 5-207

traps

authentication failure, 5-156

cold start, 5-156

ttys file

entries, 5-20ge

format, 5-208 to 5-210

type file

format, 5-211

u
UFS file, 5-215

USERFILE file

format, 5-216

utmp file

format, 5-218

uucp utility

. acucap file and, 5-10

L.sys file, 5-75

uuencode file

format, 5-219

w
wtmp file

format, 5-218

v
yP domain

defined,5-222

YPmap

defined,5-222

format, 5-222

ypfiles keyword, 5-222

Index-5

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-baud modem from
anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the Electronic Store, call
800-DIGITAL (800-344,.4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal *

Call

800-DIGIT AL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital Subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - WMO/E15
or
Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

ole For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments ULTRIX
Reference Pages Section 5: File Formats

AA-L Y18B-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor

Accuracy (software works as manual says) 0 D 0 0
Completeness (enough information) 0 0 0 0
Clarity (easy to understand) 0 0 0 0
Organization (structure of subject matter) 0 0 0 0
Figures (useful) 0 0 0 0
Examples (useful) 0 0 0 0
Index (ability to find topic) 0 0 0 0
Page layout (easy to find information) 0 0 0 0

What would you like to see more/less of?

What do you like best about this manual? ____________ --,-________ _

What do you like least about this manual?

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using? _____ _

Namerritle _____________________ _ Dept.
Company __________ --"-______________ Date

Mailing Address _____________________________ _

____________ Email ___________ Phone ______ _

- - - - - -. Do Not Tear - Fold Here and Tape

-----------------------------Ill-Ili----------::~:::::---
NECESSARY

IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-2/Z04
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

111111111111111111111111111 II 11111111111111111111111

-------. Do Not Tear - Fold Here

Cut
Along
Dotted
Line

