
ULTRIX-32
Guide to the
BIND Service

Order No. AA-LY21A-TE

UL TRIX-32 Operating System, Version 3.0

Digital Equipment Corporation

Copyright © 1987, 1988 Digital Equipment Corporation
All Rights Reserved.

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

DEC
DECnet
DEC US
MASS BUS
MicroVAX
PDP

Q-bus
RT
ULTRIX
ULTRIX-11
ULTRIX-32
UNIBUS

VAX
VAXstation
VMS
VT
ULTRIX Worksystem Software

~nmnoma

UNIX is a registered trademark of AT&T in the USA and other countries.

IBM is a registered trademark of International Business Machines Corporation.

MICOM is a registered trademark of Micom System, Inc.

This manual was written and produced by the ULTRIX Documentation Group in Nashua, New
Hampshire.

Contents

About This Guide

Audience . vii

Organization . vii

Related Documents viii

Conventions . viii

1 Introduction to the BIND Service

1.1 BIND Servers ... 1-4

1.1.1 The Root Server ... 1-4
1.1.2 The Master Server ... 1-5
1.1.3 The Caching Server .. 1-5
1.1.4 The Forwarding Server .. 1-5
1.1.5 The Slave Server .. 1-7

1.2 BIND Clients ... 1-8

1.3 How BIND Queries are Resolved .. 1-8

1.4 How to Use the BIND Service .. 1-9

2 Setting Up the BIND Service

2.1 Setting Up a BIND Client Automatically ... 2-2

2.2 Setting Up A BIND Client Manually .. 2-2

2.2.1 Create the Resolver File .. 2-3
2.2.2 Set the Host Name .. 2-4
2.2.3 Edit the Services Order File .. 2-4
2.2.4 Reboot the System ... 2-4

2.3 Setting Up a BIND Server Automatically .. 2-4

2.3.1 Run the bindsetup Command .. 2-4
2.3.2 Edit the Domain Data Files ... 2-6
2.3.3 Reboot the System ... 2-6

2.4 Setting Up a BIND Server Manually ... 2-6

2.4.1 Edit the Boot File .. 2-7
2.4.2 Edit the Domain Data Files ... 2-10
2.4.3 Set the Host Name in the hosts and re.local Files 2-11
2.4.4 Edit the svcorder File .. 2-11
2.4.5 Reboot the System ... 2-12

2.5 Format of BIND File Entries ... 2-13

2.5.1 The include Data File Entry ... 2-15
2.5.2 The origin Data File Entry ... 2-15
2.5.3 The Start of Authority Data File Entry 2-16
2.5.4 The Name Server Data File Entry .. 2-18
2.5.5 The Address Data File Entry ... 2~18

2.5.6 The Host Information Data File Entry 2-19
2.5.7 The Well Known Services Data File Entry 2-19
2.5.8 The Canonical Name Data File Entry 2-20
2.5.9 The Domain Name Pointer Data File Entry 2-21
2.5.10 The Mailbox Data File Entry ... 2-22
2.5.11 The Mail Rename Data File Entry .. 2-22
2.5.12 The Mailbox Information Data File Entry 2-23
2.5.13 The Mail Group Data File Entry ... 2-24
2.5.14 The Mail Exchanger Data File Entry 2-24

3 Managing and Using the BIND Service

3.1 Maintaining the Domain .. 3-1

3.1.1 Domain Administrator Role ... 3-1

3.1.2 The Technical and Zone Contact .. 3-2

3.2 Naming Domains and Hosts ... 3-2

3.3 Registering With Public Networks .. 3-3

3.3.1 Contacting the DARPA Internet Network 3-4
3.3.2 Contacting the CSNET .. 3-4
3.3.3 Contacting the BITNET ... 3-4

3.4 Updating BIND Data Files ... 3-5

3.5 Obtaining Host Name and IP Address Information 3-6

3.5.1 The nslookup Command ... 3-6
3.5.2 The nsquery Command .. 3-7
3.5.3 The NIC whois Service .. 3-7

3.6 Obtaining Further Information about the BIND Service 3-8

4 Troubleshooting the BIND Service

4.1 Reviewing the Domain Data Files ... 4-1

4.2 Reviewing the /etc/re.local File ... 4-2

4.3 Reviewing the Resolver File 4-2

4.4 Reviewing the Debug Files 4-3

4.4.1 The syslog File .. 4-3
4.4.2 The named_dump.db File .. 4-4
4.4.3 The named.run File .. 4-4
4.4.4 The named.stats File .. 4-5

4.5 Obtaining the named Process ID ... 4-6

4.6 Sending Signals to the named Daemon .. 4-6

A Appendix

A.l The named.boot File .. A-1

A.2 The

A.3 The

named.ca File .. A-3

named.local File . A-4

A.4

A.5

The

The

named.hosts File A-4

named.rev File A-5

A.6 The named_dump.db File ... A-5

A.7 The named.run File A-9

A. 7 .1 A Healthy named.run File . A-9
A.7.2 An Unhealthy named.run File .. A-22

B Appendix

C Appendix

D Appendix

D .1 Getting nslookup Help

D.2 Seeing Which nslookup Options Are Set .. .

D.3 Listing Hosts in a Domain

D.4 Finding Mail Exchangers

D.5 Finding the Start of Authority

D.6 Finding Servers for a Domain .. .

D.7 Obtaining a Debug Trace

Figures

D-1

D-2

D-2

D-3

D-4

D-4

D-5

1-1: Hierarchy of BIND Zones and Domains on the Internet 1-3

1-2: Relationship of Master/Forwarder and Slave Servers 1-7

About This Guide

This guide provides introductory information about the the Berkeley
Internet Name Domain (BIND) service and explains how to install and
troubleshoot the service. In addition, this guide will assist you in
developing BIND management procedures by presenting guidelines from
which you can develop specific procedures for your site.

Audience
This guide is meant for the person responsible for maintaining networks
and system utilities such as mail on the ULTRIX operating system. This
person is usually the system manager, but could be a network manager or
the system manager who is also a user of a MicroVAX processor running
the ULTRIX operating system. This guide assumes that the reader is
familiar with the ULTRIX system commands, the system configuration, the
naming conventions, and an editor such as vi or ed. It also assumes that
the reader knows the names and addresses of the other systems on the
local network.

Organization
This guide consists of four chapters, several appendixes, and an index.
The chapters are:

Chapter 1: Introduction
This chapter introduces the BIND service. It provides the background
information that you need before you can set up and run BIND on
your system. This chapter also describes basic BIND concepts.

Chapter 2: Setting Up the BIND Service
This chapter describes how to perform the preliminary BIND setup on
your system using the bindsetup command, how to set up the BIND
service manually, and how to edit the BIND-related files.

Because the BIND environment varies from site to site, you need to
edit these files regardless of whether you use the bindsetup command.
The description of how to set up the BIND service manually is
included for those who want to understand how the BIND service

operates in addition to understanding how to edit the BIND-related
files.

Chapter 3: Managing and Using the BIND Service
This chapter describes how to manage the BIND service, including
defintions of the BIND administrative roles and information on how to
register a new top-level domain. It also describes how to use some of
the BIND features, such as obtaining a host name and IP address
using the nslookup command.

Chapter 4: Troubleshooting the BIND Service
This chapter describes how to debug the BIND service and review the
resulting debug files. It also offers general suggestions on how to
troubleshoot the BIND service.

Appendix A
This appendix provides sample BIND files for your reference. Some
depict a system with the BIND service set up properly, while others
indicate error conditions with the service.

Appendix B
This appendix shows a sample ftp session for transferring the BIND
registration questionnaire from the Network Information Center (NIC).
It also contains a copy of the registration questionnaire for your
information.

Appendix C
This appendix lists several papers, articles, and RFCs related to the
BIND service which you may want to read.

Appendix D
This appendix provides a sample interactive session with the nslookup
command. The sample is intended to help you get started with using
the command.

Related Documents
You should have available the related hardware documentation for your
system. You also should have the other documents in the ULTRIX
documentation set.

Conventions
The following conventions are used in this guide:

special In text, each mention of a specific command, option,
partition, pathname, directory, or file is presented in this
type.

command(x)

literal

italics

[]

In text, cross-references to the command documentation
include the section number in the reference manual where
the commands are documented. For example: See the
cat(1) command. This indicates that you can find the
material on the cat command in Section 1 of the ULTRIX
Reference Pages.

In syntax descriptions, this type indicates terms that are
constant and must be typed just as they are presented.

In syntax descriptions, this type indicates terms that are
variable.

In syntax descriptions, square brackets indicate terms that
are optional.

In syntax descriptions, a horizontal ellipsis indicates that
the preceding item can be repeated one or more times.

fun ct i on In function definitions, the function itself is shown in this
type. The function arguments are shown in italics.

UPPERCASE The ULTRIX system differentiates between lowercase and
uppercase characters. Enter uppercase characters only
where specifically indicated by an example or a syntax line.

ex amp I e In examples, computer output text is printed in this type.

ex amp I e In examples, user input is printed in this bold type.

% This is the default user prompt in multiuser mode.

This is the default superuser prompt.

> > > This is the console subsystem prompt.

KEYNAME

CTRL/x

In examples, a vertical ellipsis indicates that not all of the

lines of the example are shown.

In examples, a word or abbreviation in angle brackets
indicates that you must press the named key on the
terminal keyboard.

In examples, symbols like this indicate that you must hold
down the CTRL key while you type the key that follows
the slash. Use of this combination of keys may appear on
your terminal screen as the letter preceded by the
circumflex character. In some instances, it may not appear

Introduction to the BIND Service 1

This chapter provides an overview of the Berkeley Internet Name Domain
(BIND) Service.

The Bind service allows client systems to obtain host names and addresses
from BIND servers, and is basically a host name and address lookup
service for information on the Internet network. You can use the BIND
service to replace or supplement the host table mapping provided by the
local /etc/hosts file or the Yellow Pages (YP) service.

The BIND service is comprised of two parts, the software interface and
the server. The software interface is called the resolver, which consists of
a group of routines that reside in the C library /usr/lib/libc.a. The resolver
exchanges query packets with a BIND server. All BIND servers have a
name server daemon running in the backgrouna, which services queries on
a given network port. The standard port for UDP and TCP is specified in
the /etc/services file.

An advantage of using the BIND service instead of the host table lookup
method for host name and address resolution is that you avoid the need
for a single centralized clearing house for all the names and addresses.
With the BIND service you can delegate the authority to disseminate host
information to the different systems on the network responsible for it.
This works well for large networks where systems cross organizational
boundaries.

The BIND service utilizes several concepts such as domains, zones, servers,
clients, and host names and addresses. The rest of this chapter introduces
these concepts and summarizes the steps the BIND service takes to
resolve a query. For a complete discussion of host names and Internet
addresses, see the Guide to Networking.

The BIND service breaks the Internet into a hierarchy of domains, similar
to a tree structure. Each domain is given a label, and The name of the
domain is the concatenation of all the labels of the domains, from the root
to the current domain, listed from right to left and separated by dots. A
label must be unique within its domain. The entire BIND Internet
hierarchy is partitioned into several zones, each starting at a domain and
extending down to the leaf domains, or to domains where other zones
start. A zone is a subdivision of a domain and is a discrete, non-

overlapping entity. Each zone is an area of authority for which a master
server is responsible, and therefore usually represents an administrative
boundary.

Currently there are seven top-level domains in the BIND hierarchy in the
United States:

arpa For the Arpanet (gradually being phased out)

com For commercial institutions

edu For educational institutions

gov For the government

mil For military organizations

net For network-type organizations such as network service centers,
consortia, and information centers

org For miscellaneous organizations such as professional societies,
similar non-profit organizations, and so forth

In addition to these, there are several top-level domains for individual
countries. You can contact the NIC for more information about them.

<-- I

GJ
I

B
cities

I

x x x

chlco.go newyork !ooston

root
server

hp I

n1il xx xx x

Internet)

1 --

eclu I

I

',be,kel~y I I Mlt I

rn
x x x x x

ZK-0013U-GE

Figure 1-1: Hierarchy of BIND Zones and Domains on the Internet

Figure 1-1 shows the hierarchy of the Internet, two top-level domains, and
some of the major zones. In Figure 1-1, everything below com is in the
com top-level domain, and the zones are mit.edu, dee.com, and
cities.dee.com, and the host names (sometimes termed leaf domains) have
the names of cities or are depicted by an x.

Assuming a host name in the zone cities.dee.com is chicago, the following
is the fully qualified domain name for that host:

chicago.cities.dec.com.

In this example, com is the top level domain, cities.dee.com a subdomain
of com, and chicago is a host name. If a master server has the authority
for the dee.com domain only, then dee.com is a zone.

In the preceding example, note the dot (.) at the end of the domain name.
This indicates that the domain name is fully qualified, and is thus a
complete, definitive, and absolute name of a singular host.

The rest of this chapter introduces BIND servers and clients and indicates
how an individual can make use of the BIND service.

1.1 BIND Servers
A BIND server is a system running the named daemon and therefore can
answer BIND queries. There are several types of BIND servers: root,
master, caching, forwarding, and slave. The following sections describe
each them in detail.

1.1.1 The Root Server

Root servers are the ultimate authorities. The root servers know about all
the top-level domains on the Internet network. From these top-level
domains, information can be gathered about hosts on subdomains. The
root servers, for example, do not necessarily know about the cities.dee.com
subdomain. However, by performing an NS query with the nslookup
command, a root server can tell you to check with decwrl.dec.com for
information about a host on the cities.dee.com subdomain.

If a client requests information on another domain, any server, other than
slave, can pass along the request to a root server.

At this time there are seven root servers in the continental United States.
These root servers are:

ns.nasa.gov.
sri-nic.arpa.
a.isi.edu.
gunter-adam.arpa.
brl-aos.arpa.
terp.umd.edu.
c.nyser.net.

The period (.) at the end of each root server name indicates that this is
the absolute pathname and that no BIND name extensions are to be
appended. Without the period, the server name is relative to the current
domain.

With the proper option set in a BIND server's cache file, the BIND
service automatically updates the server's cache with information about any
changes regarding the root servers. This information will be absorbed by
the boot file when your server reboots. This is described in Chapter 2.

The Net work Information Center (NIC) determines who will be root
servers. The toll-free number for the NIC is:

(800) - 235 - 3155

The electronic mailing address is:

hostmaster@sri-nic.arpa

1.1.2 The Master Server

A master server is the authority for the current domain space and
maintains the BIND data bases for its zone. A server may be a master
server for multiple domains, being the primary server for some domains
and a secondary server for others.

The primary master server loads its data base from a file on disk. This
server can also delegate to other servers in its zone the authority to
answer queries for its domain space.

A secondary master server receives its authority and its data base from
the primary master server. When a secondary master server first boots, it
loads the data for the zone from a backup file, if possible (assuming you
configured your BIND service this way). It then consults with a primary
master server to check that the data base is still up to date. After the
secondary master server is running, it periodically checks with the primary
master server to see if it needs to update its data base. For information
on how to define the frequency of the update checks, see Chapter 2.

Each BIND domain should have at least two master servers, one primary
and one or more secondary. The duplicate secondary servers act as backup
servers in the event that the primary master server fails, is overloaded, or
is down.

1.1.3 The Caching Server

All servers cache the information they receive for use until the data
expires. However, caching servers have no authority for any zone, and
thus have no data bases to maintain. These servers service BIND queries
by asking other servers who have authority, such as a master server, for
the information. Caching servers store the information in a cache until the
data expires. The expiration date is based on a time to live (ttl) field,
which is attached to the data when the caching server receives it.

1.1.4 The Forwarding Server

Forwarding servers, called forwarders, process recursive requests that slave
servers cannot resolve locally. A forwarder can be any BIND server that
has Internet access. Thus, forwarders can be a primary or a secondary
master server or a caching only server. The configuration files on the
slave servers define which systems the slaves will access as forwarders.

Forwarders have full access to the Internet network and therefore are able
to obtain information not held in their local caches from root servers.

Because forwarders receive many requests from slave servers, they tend to
have a larger local cache than do slave servers. All the hosts on the
domain benefit from this meta-cache, which reduces the total number of
queries from that site by forwarding them to the root servers on the
outside Internet network.

A slave server and forwarder configuration is typically used when you do
not want all the servers to interact with the rest of the servers on the
Internet network. For example, assume a site consists of several
workstations and a VAX 8800 processor acting as a BIND forwarder.
Assume the workstations are not to have access to the Internet network.
To give the workstations the appearance of access to the Internet network,
they could be set up as BIND slave servers to the VAX 8800 system. In
this case, the BIND forwarder forwards the workstations' queries and
interacts with other BIND servers on the Internet network. When the
forwarder resolves the queries, it sends the answer to the slave server.
Figure 1-2 shows the relationship among master and slave servers and
forwarders. The arrows in Figure 1-2 depict the general flow of
information to and from some of the hosts.

BIND
client

I I 1 ____ ..,! '--------- -•- _____ Ethernet

•---------- I I I I
I I I

..--~ ~~ -~ ~~~-

BIND
client

BIND
slo.ve

server

BIND
r10.ster/

forwo.rder
server

<pr1r10.ry>

I I

.................. •.-.-.... -.... --.... -..... -.... -.... -.·.' r.n.te!:!!_e~

root
server

ZK-0012U-GE

Figure 1-2: Relationship of Master/Forwarder and Slave Servers

1.1.5

Note

You can run the BIND service on a local network, only, without
having a forwarder on your network. However, if you do not
have a forwarder on your network there is no need to have slave
servers. Without forwarders, your system does not have access
to the root servers on the Internet.

The Slave Server

Slave servers typically do not have full network access and therefore
cannot directly interact with root servers if the information requested is
not in their local caches.

If a slave server cannot resolve a query locally, it forwards the query to
its fixed list of forwarders. The slave servers try the forwarders listed in
t.hAir hnnt. filAQ nnA ~+ ~ tirnA nntil t ha lic;:t ic;: av h o::n1c;:tarl n,,. t ha rn1a't"u i<>

satisfied.

1.2 BIND Clients
A BIND client is any system that uses the BIND service to resolve host
names and addresses. BIND clients make queries, but they never resolve
them locally. Instead, BIND servers resolve the client's requests.

BIND clients do not run the named daemon. Instead, BIND clients have
the resolver file /etc/resolv.conf. No other BIND files are necessary. Here
is an example of a /etc/resolv.conf file:

domain dee.com
nameserver 128.11.22.33
nameserver 128.11 .22.44

The /etc/resolv.conf file tells the resolver the IP address of the BIND
servers which can service the client's BIND requests.

1.3 How BIND Queries are Resolved
The following steps describe the usual procedure a slave server and
forwarder take to resolve a BIND query:

1. A slave server receives a query for a host name resolution.

2. The slave server uses the gethostbyname library routine.

3. If the gethostbyname library routine cannot obtain the information,
the slave server asks the forwarders listed in its BIND boot file (the
default is named.boot) one at a time, until the query is resolved or
the list is exhausted.

4. If the forwarder does not have the information in its local cache, it
asks the root servers listed in its BIND data file, one at a time,
until the query is resolved or the list is exhausted.

5. The root server provides the forwarder with the information needed
to contact servers of the domain space containing the host in
question.

6. The forwarder sends a request to a server for that domain. It gets
the server's address information from a root server.

7. The server provides the forwarder with the information to contact
servers of the next lower domain.

8. Steps 5 and 6 repeat until the forwarder actually gets the host
information, or until the information obtained from the root server is
exhausted.

9. The forwarder returns the results to the slave server, even if the

Other BIND servers follow similar steps.

1.4 How to Use the BIND Service
If the BIND service is enabled, your system automatically uses it for any
process that needs a host name or address such as mail, rlogin, ftp, and so
forth.

In addition, users on a system with the BIND service properly set up can
run the nslookup and nsquery commands to find host names and addresses.
See Chapter 3 and nslookup(1) and nsquery(1) in the ULTRIX Reference
Pages for further information.

Setting Up the BIND Service 2

This chapter explains how to perform the preliminary setup of the Internet
Name Domain (BIND) service using the bindsetup command, and how to
perform the preliminary setup manually. The bindsetup command allows
you to set up your system as a BIND server or client. See bindsetup(8)
in the ULTRIX Reference Pages for further information about the
bindsetup command. See Chapter 1 for a description of BIND servers and
clients.

Note

After you have installed your ULTRIX operating system and set
up the BIND service, you need to edit the sendmail configuration
file /etc/sendmail.cf. For the mail utility to run with the BIND
service, you must specify your BIND domain in the sendmail.cf
file. For example, if your domain name is cities.dee.com, here is
the appropriate entry in the sendmail.cf file:

DDcities.dec.com

See the sendmail documentation and read the comments in the
file itself for further information.

The topics discussed in this chapter are:

• Setting up a BIND client automatically

• Setting up a BIND client manually

• Setting up a BIND server automatically

• Setting up a BIND server manually

• Format of BIND file entries

If you want the BIND service to be able to resolve queries about other
domains, you must register your domain. Chapter 3 describes how to
register your domain with a public network.

2.1 Setting Up a BIND Client Automatically
To set up your system as a BIND client automatically, run the bindsetup
command and then reboot the system. However, before you run the
bindsetup command, be sure that the system is in multiuser mode and
that the network is up. The easiest way to run the bindsetup command is
to supply the domain name and server IP address on the command line.
For example, if the domain name is cities.dee.com and the server IP
addresses are 128.11.22.33 and 128.11.22.44 type:

bindsetup -c cities.dee.com 128.11.22.33 128.11.22.44

The bindsetup command then sets up your system silently as a BIND
client with the domain and servers specified.

To use the bindsetup command interactively to set up a BIND client, type:

bindsetup

The bindsetup command then displays a menu and prompts you for the
required information.

After the setup has been completed, the bindsetup command lists the
updated files for your information. You should then reboot the system.
This ensures that the BIND service has your system's fully qualified
domain name, such as chicago.cities.dec.com. The following command
reboots your system:

/etc/shutdown -r now

Note

If the bindsetup command fails for any reason, be sure to check
the /etc/svcorder file. If the BIND service is not properly set
up, be sure that there is no bind entry in this file.

When prompted for the domain, be sure to supply the domain
name without the trailing dot (.) , for example:

cities.dee.com

2.2 Setting Up A BIND Client Manually
To set up your system as a BIND client manually, you need to follow
these three steps:

1. Create the file /etc/resolv.conf

2. Set the host name in the /etc/hosts and /etc/re.local files

3. Edit the /etc/svcorder file

4. Reboot the system

2.2.1 Create the Resolver File

The resolver file /etc/resolv.conf designates the BIND servers on the
network that can answer queries.

Note

If your system is a BIND server running the named daemon,
you should not set up your system as a client, since the
/etc/resolv.conf file, if it exists, is read each time the
gethostbyname() or gethostbyaddr() routine is called.

An easy way to tell if your system is a BIND server is to see if
the named daemon is running:

ps -aux I grep named

The resolv.conf file consists of at least two entries. The first entry defines
the domain and the second entry defines the server. It is best to have
additional entries, one for each additional server. Server replication reduces
the possibility of the BIND service being interrupted in the event that a
server goes down. Here is the format for /etc/resolv.conf file entries:

domain
nameserver

domainname
IP address

For example, the following shows the contents of the resolver file for a
client on the domain cities.dee.com. In this example there are two servers
listed. Note that the semicolon (;) designates a comment line in BIND
files:

domain cities.dee.com
nameserver 128.11.22.33
nameserver 128.11.22.44

See resolver(5) in the ULTRIX Reference Pages for further information
about the /etc/resolv.conf file.

2.2.2 Set the Host Na me

For information on how to set the host name in the /etc/hosts and
/etc/re.local files, see Section 2.4.3.

2.2.3 Edit the Services Order File

For information on how to edit the services order file /etc/svcorder, see
Section 2.4.4.

2.2.4 Reboot the System

After you have created the resolver file, modified your host name to the
fully qualified BIND name, and edited the services order file, you should
reboot the system. By rebooting the system, you cause all the
modifications to the files to take effect.

The following command shuts down the system and reboots it immediately:

/etc/shutdown -r now

See shutdown(8) in the ULTRIX Reference Pages for further information
about shutting down the system.

2.3 Setting Up a BIND Server Automatically
To set up your system as a BIND server automatically, you need to edit a
few files, and run the bindsetup command, and reboot the system.
However, before you run the bindsetup command, be sure that the system
is in multiuser mode and that the network is up. These are the steps for
setting up a BIND server:

1. Run the bindsetup command and answer the questions

2. Edit the domain data files

3. Reboot the System

2.3.1 Run the bindsetup Command

The first step is to execute the bindsetup command, specifying no options.
First, however, be sure that the network is up.

bindsetup

The bindsetup command prompts you for the following information:

• The domain name.

• The type of configuration, such as primary master, secondary master,
caching, or slave server.

• The full path name of the directory where the BIND data files are
to reside: the default is /etc/namedb.

• The BIND boot file name: the default is /etc/named.boot.

If you are setting up your system as a primary master server, you need to
supply the following additional information:

• The BIND host file name: the default is named.hosts.

• The BIND local host file name: the default is named.local.

• The BIND reverse local host file name: the default is named. rev.

• The BIND cache file name: the default is named.ca.

After obtaining the necessary information, bindsetup creates the appropriate
boot file for your BIND server. This file is /etc/named.boot by default.

If the /etc/svcorder file does not exist, bindsetup creates it and places two
entries in it. One entry is for the BIND service and the other is for the
local service. The local entry allows your system to perform local host
and address resolution with the /etc/hosts file in the event that the BIND
servers are down.

If the svcorder file already exists, the bindsetup commands reminds you to
review the file and to be sure that the services are listed in the proper
order. You can edit the /etc/svcorder file after the bindsetup command
completes. Be sure that you have an entry in the svcorder file for local.
See Section 2.4.4 and svcorder(5) in the ULTRIX Reference Pages for
further information about the svcorder file.

Note

If the bindsetup command fails for any reason, be sure to check
the /etc/svcorder file. If the BIND service is not properly set
up, be sure that there is no bind entry in this file.

The bindsetup command edits the /etc/re.local file. The /bin/hostname
entry is changed to reflect the full BIND name, such as changing chicago
to chicago.cities.dec.com. In addition, bindsetup places an entry for the
named daemon before the local daemons such as sendmail. The named
entry goes either before or after any YP entries, but before any NFS
entries.

Finally, the bindsetup command executes the hostname command, using the
new BIND hostname. The new host name is placed in the /etc/hosts file
for local host name and address resolution.

2.3.2 Edit the Domain Data Files

When the bindsetup command has completed, it lists the files you need to
edit manually. The default files are:

• /etc/namedb/named.hosts

• /etc/namedb/named.rev

• /etc/namedb/named.local

• /etc/namedb/named.ca

• /etc/svcorder

See Sections 2.4.4 and 2.5 for information about editing the files.

2.3.3 Re boot the System

After you have modified the files, you should reboot the system. The
following command shuts down the system and reboots it immediately:

/etc/shutdown -r now

See shutdown(8) in the ULTRIX Reference Pages for further information
about shutting down the system.

Note

If you do not want to reboot your system, you can type the
following command to start the named daemon and thus start
the BIND service running:

/usr/etc/named /etc/named.boot &

Be advised, however, that not all systems will necessarily know
about your system's new host name. Therefore, it is best to
reboot the system, if possible.

The named daemon places its process number in the file /etc/named.pid.
In the event that you need to send a signal to the named process, this is
where you can find its process identification (pid) number.

2.4 Setting Up a BIND Server Manually
BIND servers make use of several configuration files. To set up your
system as a BIND server, the first task is to set up the BIND
environment by editing the BIND configuration files. After the BIND
environment has been established, you start the BIND service by rebooting
the system as described in Section 2.3.3. Here are the steps:

1. Edit the boot file

2. Edit the domain data files

3. Set the host name in the hosts and re.local files

4. Edit the svcorder file

5. Reboot the System

2.4.1 Edit the Boot File

When the named daemon starts running, it reads the boot file. This file
tells the server what type of server it is, which zone it has authority for,
and where to get its initial data. The default path and name for the boot
file is /etc/named .boot.

Note

You can change the name of the boot file and the path by
specifying the full pathname on the command line when you start
the named daemon.

The boot file named.boot has two types of entries. One entry specifies the
directory, and the other specifies the type of server. Here is the format
of the directory entry:

directory directory

This entry specifies the directory where the data files reside for the named
daemon to read at start time. (The directory should be large enough to
hold a core dump, should one occur.) This is especially important if there
are include files with relative path names called by $include. (See Section
2.5.1 for information about the include data file entry.) The default
directory is /etc/namedb. For example:

directory /etc/namedb

The directory entry allows you to state just the file name in subsequent
entries in the boot file. If you do not have a directory entry in the boot
file, you must explicitly state the full pathname for each file name in each
entry.

Here is the format for the second type of boot file entry:

type domain/zone source data fik/IP addr refresh

The first field is the type variable, which qualifies the remainder of the
line by specifying the type of server. The choices are primary, secondary,
cache, forwarder, or slave. The second field specifies the domain or zone
for which the server has authority. The third field specifies the name of
the file from which the data is to be read. The fourth ootional field is

specifies the interval, in seconds, for refreshing the data file. The exact
content of each field depends upon the type of server:

primary

secondary

For a primary server, the first field specifies that the server
is primary for the zone stated in the second field. The third
field specifies the name of the file from which data is read.
Thus, for a primary server in a zone called cities.dee.com
with a data file called /etc/namedb/namedb.hosts, and a cache
file that is refreshed every 3600 seconds (one hour) , here are
the proper entries:

directory /etc/namedb
;type domain/zone data file/IP addr refresh
primary cities.dee.com named.hosts
cache named.ca 3600

Note that the entry beginning with a semicolon (;) is a
comment.

The entry for a secondary server is similar to that of the
primary server. The exceptions are in the first and third
fields. The first field states that the server is secondary, the
second field specifies the name of the zone, and the third
field contains the IP addresses for each of the primary
servers of the zone. For example:

directory /etc/namedb
;type domain/zone data file refresh
secondary cities.dee.com 128.11.22.33 128.11.22.44 cities.dee.com.db
cache named.ca

The data file cities.dee.com.db contains the information
accumulated in the secondary server's cache. Because this
file is explicitly specified, there is no need to specify a
refresh time for the cache entry. If the primary server is
down when a secondary server boots, the secondary server
uses this file to load its cache.

Secondary servers obtain their information across the network
from the listed primary servers. In this example, the two IP
addresses are 128.11.22.33 and 128.11.22.44. Each primary
server is tried in the order listed until the secondary server
successfully obtains the information it needs, or the list is
exhausted. Each server needs an entry similar to the
following in its boot file:

cache

primary 0.0.127-in-addr.arpa /etc/named. local

This entry provides address to hostname translation for the
local host.

Note

If no primary server is running when a secondary
server is booted, the secondary server will not be
able to load its cache. Therefore, when the server
comes to multiuser mode, the BIND service will
not be able to resolve all addresses, especially those
in the local domain that require data from the
primary server. It will, however, keep trying to
resolve all queries until a primary server comes on
line.

The absence of an entry specifying the type of authority, or
server, such as secondary or primary, designates a caching
server.

All servers, however, need an entry similar to the following:

directory /etc/namedb
;type domain/zone
cache

data file refresh
named.ca 3600

This entry primes the server's cache and designates the
cache save file. In this example, the cache save file is
/etc/namedb/named.ca. The optional time interval specifies
how often the BIND service cache will be dumped into the
cache save file. In this example, the cache is refreshed once
every 3600 seconds (once per hour). The dump frequency
should not be more often than once per hour. If the
frequency is 0 or not specified, the cache is never dumped.
In this situation, all cache files listed are read each time the
system boots.

The cache entry should be the last entry in the boot file.
Each time the system is brought to multiuser mode, any
values that are still valid (based on the time-to-live field) are
reinstated in the cache and the IP addresses of the root
BIND servers in the cache files are always used.

The following shows sample entries for a caching only server:

forwarder

slave

;type
primary
cache

domain/zone data file refresh
0.0.127-in-addr.arpa named.local

named.ca 3600

A forwarding server is always a primary or secondary server,
but is designated a forwarder by a slave server. See the
following information on slave servers in order to understand
how a slave server designates which master servers will be
its forwarder.

Slave servers need to access forwarders in order to provide
answers to resolver queries. Here are the necessary entries
for a slave server:

slave
directory
;type
forwarders
primary
cache

/etc/namedb
domain/zone
128.32.3.55 128.32.4.66
0.0.127-in-addr.arpa

data file refresh

named.local
named.ca 3600

The forwarders entry lists the IP addresses of all the
forwarders on the local network. In this example there are
two forwarders on the network. Their addresses are
128.32.3.55 and 128.32.4.66.

The slave server will query each of the forwarders in the
order they are specified until the list is exhausted or the
answer is found.

2.4.2 Edit the Domain Data Files

There are four standard files for specifying the data for a domain. These
are named.ca, named.local, named.hosts, and named.rev. These files use
the standard format described in Section 2.5. Examples of each of these
files are shown in Appendix A. The boot file specifies the location of
these files, which is usually /etc/namedb.

named.ca This file identifies the authoritative server for the zone. By
default, the named.ca file contains the necessary entries for
the root servers and does not need to be edited.

The format of the named.ca file follows the standard
described in Section 2.5.

named.local This file specifies the address for the local loopback interface,
and is typically expressed as localhost with the network
address 127.0.0.1.

named.hosts This file contains the host and address information for all
the systems in the zone.

named.rev This file specifies the in-addr.arpa domain, which allows
reverse address to name mapping. This special domain was
formed to allow inverse mapping because IP host addresses
do not fall within domain boundaries. The in-addr.arpa
domain has four labels preceding it, which correspond to the
four octets of an IP address. You must specify all four
octets even if an octet is zero. For example, the IP address
128.32.0.4 is located in the domain 4.0.32.128.in-addr.arpa.
This address reversal is awkward to read but allows for the
natural grouping of hosts in a network. See the Guide to
Networking for further information about IP addresses.

2.4.3 Set the Host Name in the hosts and re.local Files

You need to change the host name of your system to the fully qualified
BIND name. For example, if your system's name is miami and your
BIND domain is cities.dee.com, you need to change your system's name to
miami.cities.dec.com in both the /etc/hosts and /etc/re.local files. Here is
an example of a proper hosts file entry:

128.11.22.33 miami.cities.dec.com

Here is an example of a proper re.local file entry:

/bin/hostname miami.cities.dec.com

2.4.4 Edit the svcorder File

The gethostbyname() library call can detect if the BIND service is selected.
If the BIND service is not selected, gethostbyname() checks the
/etc/svcorder file to see if there is another host lookup service to use to
resolve the host name and address information.

Since the services are accessed in the order they appear in the service
order file /etc/svcorder, you need to be sure that the svcorder file has its
services listed in the proper order for your site. For example, assume the
svcorder file has the following entries:

bind
yp
local

In this example, the BIND service is first used to resolve a query. If the
BIND service fails, the YP service is used. If this fails, the local
/etc/hosts file is used. Because the process of reading the /etc/hosts file is
slow, it may be best for you to place the local entry last in the
/etc/svcorder file. Of course, if the majority of operations on your site
concern the localhost entry of the /etc/hosts file, it may be best for you to
list the local entry first in the /etc/svcorder file. This would save quite a
bit of traffic on the network and ease the load of your BIND server. It
is cheaper to find the first or second line of the /etc/hosts file than it is
to go over the IP network or through the socket software. See
svcorder(5) in the ULTRIX Reference Pages for further information about
the svcorder file.

2.4.5

Note

You should place entries for your system's local host, interface
addresses, and a few names and addresses of other systems on
your local network in the /etc/hosts file. Then you can use the
rep command to copy files from another system while your
system is in single-user mode. Do not include duplicate host
names and addresses that are covered by network services,
because the /etc/hosts file does not get updated automatically.
You should have the localhost and loopback entries in the
/etc/hosts file, in addition to the few names and addresses of
other systems on your local network. See hosts(5) in the
UL TRIX Reference Pages for a description of the hosts file
format.

Re boot the System

To have the BIND service start automatically on the BIND servers each
time the system is brought to multiuser mode, place an entry for the
named daemon in the /etc/re.local file. This entry should go before any
local daemon entries, such as sendmail. The entry for the named daemon
can go either before or after the entries for YP, but should go before any
NFS entries, if they exist. The following is a typical entry:

%BINDSTART% - BIND daemon

echo -n 'BIND daemon:' > /dev/console
[- f /usr/etc/named] && {

/usr/etc/named /etc/named.boot ; echo - n ' named' >/dev/console
}
echo '.' > /dev/console
O/oBINDENDO/o

The lines beginning with a number sign (#) are comments that make the
re. local file easier to read.

The following command shuts down the system and reboots it immediately:

/etc/shutdown -r now

See shutdown(8) in the ULTRIX Reference Pages for further information
about shutting down the system.

Note

To start the BIND service without having to bring the system to
single-user and then multiuser mode, type:

/usr/etc/named

To start the BIND service with this command, the boot file
name must be the default, which is /etc/named.boot.

2.5 Format of BIND File Entries
The boot file, by default called /etc/named.boot, specifies the names of the
BIND data files. These data files, also known as Resource Records (RR)
consist of entries that follow the formats described in this section.

Here is the general format of a BIND data file entry (RR):

name ttl addr-class entry-type entry-specific-data

The fields are as follows:

name This is the name of the domain, for example
cities.dee.com. The domain name must begin in the
first column.

For some data file entries the name field is left blank.
In that case the domain name is assumed to be the
same as the previous entry.

A free standing period (.) refers to the current domain.

A free standing at sign (@) denotes the current origm,
thus allowing you to specify more than one domain.

Two free standing periods (..) represent the null
domain name of the root.

ttl This is the time-to-live field, and specifies how long, in
seconds, the data will be stored in the data base. If
this field is left blank, the value defaults to the ttl
specified in the start of authority entry. The maximum
time-to-live is 99999999 seconds, or 3 years.

addr-class This field is the address class. There are two classes.
Internet addresses are of class IN. All other types of
network address are of class ANY. The address class
of all data file entries in a particular zone must be the
same. Therefore, only the first entry in a zone need
specify the addr-class field.

entry-type This field states the resource record type, for example
SOA, A, and so forth.

entry-specific-data All fields after the entry-type field vary for each type
of date file entry (resource record) .

The case is preserved in name and data fields when loaded into the BIND
server. All comparisons and lookups using the BIND service are performed
case insensitive.

The following characters have special meanings in BIND data file entries:

'\x A backslash (") escapes the next non-digit (x) character so that
the character's special meaning does not apply. For example, you
could use . to place a period character in a label.

'-nnn A backslash denotes the octet corresponding to the decimal number
represented by nnn. The resulting octet is assumed to be text and
is not checked for special meaning.

() Parentheses group data that cross a line. In effect, line
terminations are not recognized within parentheses.

A semicolon starts a comment, causing the rest of the line to be
ignored.

* An asterisk signifies wildcarding.

Most BIND data file entries have the current domain appended to their
names if they are not terminated by a period (.) . This is useful for
appending the current domain name to the data, such as system names,
but could cause problems when you do not want this to happen.
Consequently, if the name is not in the domain for which you are creating
the data file. end thP. n::imA wit.h A nPriorf

These are the types of entries that data files (resource records) can have:

• $include

• $origin

• SOA - start of authority

• NS - name server

• A - address

• HINFO - host information

• WKS - well know services

• CNAME - canonical name

• PTR - domain name pointer

• MB - mail box

• MR - mail rename

• MINFO - mailbox information

• MG - mail group

• MX - mail exchanger

The following sections describe each of these entries and the formats they
take.

2.5.1 The include Data File Entry

An include entry is similar to a header file in the C programming
language. This feature is particularly useful for separating different types
of data into multiple files. An include entry begins with $include in the
first column, and is followed by the name of the file to be included. For
example:

$include /etc/named/data/mailboxes

This entry requests the BIND service to load the data file
/etc/named/data/mailboxes.

The $include entry loads data files into the local zone and acts as a data
file organizer. For example, you can use $include entries to separate mail
from host information.

2.5.2 The origin Data File Entry

An origin entry changes the origin in a data file. This feature is
particularly useful for putting more than one domain in a data file. An
origin entry begins with $origin in the first column, followed by a domain
origin. For example:

$origin state.dee.com.

This entry includes the domain state.dee.com in the data file. As a result,
the BIND service can provide information about the state.dee.com domain
in addition to the local domain, provided your server is authoritative for
the zone.

The $origin and $include entries can work together. They can also save
typing and help keep the files organized. For example, assume that the
following entries are in the named.rev file:

$origin 11.128.in-addr.arpa.
$include cities.dee.com.rev

The period after arpa is significant, since it signifies the complete domain
name.

Assume that the cities.dee.com.rev file consists of entries similar to the
following:

33.22 IN PTA chicago.cities.dec.com.

In this situation, the complete reverse name for the host chicago is
translated to be:

33.22.11.128.in-addr.arpa IN PTA chicago.cities.dec.com.

2.5.3 The Sta rt of Authority Data File Entry

The start of authority (SOA) entry designates the beginning of a zone.
There should be no more than one SOA entry per zone. Here is the
format of an SOA entry:

name ttl addr-class entry-type origin person serial# refresh retry expire min

The fields in the SOA entry have the values described in Section 2.5, with
the following exceptions:

origin This field is the name of the host on which the data file
resides. This is usually a primary master server.

person

serial#

This field defines the login name and mailing address of the
person responsible for the BIND service running on the local
domain.

This field specifies the version number of the data file. The
person editing the master files for the zone should increment
the value in this field each time a change is made to the data
within the file. The serial number being changed informs the
secondary servers that there is new data to be obtained from
fha "t"\"r~'l"Y"tO.....-"'l'T DO.,,."t:Tl""\'1 'f''}..,.11""\. """"'--·u·.:- - -••-1-- .. ,.. .! nf\(\{'\ _f!L~-- Ll- -

refresh

retry

expire

min

decimal point.

The serial# field allows the BIND service to determine which
of two copies of data files in a zone are more recent.
Typically, the serial# field begins at one (1) and is incremented
by one each time the original data file is modified. It is best
to use whole integers.

This field specifies how often, in seconds, a secondary BIND
server is to check with the primary server to see if it needs to
update its data files. If the data files are out of date (as
indicated by a mismatch of serial# fields), they are updated
with the contents of the master server's files.

The minimum refresh period is 300 seconds (five minutes). If
the refresh field is left blank, however, the data file is not
dynamically updated.

This field specifies how often in seconds, a secondary BIND
server will try to refresh its data files after a refresh failure
has occurred while making the check. If a BIND server
attempts to refresh the files and fails, it tries to refresh them
again every so many seconds, as specified in the retry field.

This field specifies the upper limit, in seconds, that a
secondary BIND server can use the data files in its cache
before the data expires for lack of being updated, or before the
BIND server checks to see if its cache needs to be updated.

This field specifies the default time to live, in seconds, that a
data entry can exist in the event that the ttl entry is left
blank.

The following is an example of an SOA entry. The first line is a
comment that shows the fields:

;name ttl addr-class entry-type

@ IN SOA
origin

utah. states. dee. com

1 ; serial

3600 ; refresh every hr.

300 ; retry every 5 min.

3600000 ; expire in 100 hrs.

86400) ; min. life is 24 hrs.

person

hes. utah.states.dec.com. (

In this example note that the parentheses indicate to the BIND service
that this is a single entry. the ttl field is left blank, indicating that the
default time to live specified in the min field (86400 seconds) is being
used.

The semicolons allow comments for readability. In the example, the serial
field is 1, the refresh field is 3600 seconds (once per hour), the retry field
is 300 seconds (once per 5 minutes), the expire field is 3,600,000 (100
hours), and the minimum field is 86400 seconds (24 hours).

2.5.4 The Name Server Data File Entry

The name server (NS) entry specifies which system is the primary master
server, that is, which BIND server is responsible for the domain. There
should be only one NS entry for each primary master server on the
domain. Here is the format of the NS entry:

name ttl addr-class entry-type server

The fields in the NS entry have the values described in Section 2.5, with
the exception of the server field. This field specifies the name of the
primary master server for the domain specified in the first field.

Here is an example of an NS entry:

entry-type server ;name ttl addr-class
IN NS utah.states.dec.com.

In this example note that the first and second fields are left blank, thus
using the domain specified in a previous entry and the ttl specified in the
SOA entry.

2.5.5 The Address Data File Entry

The address (A) data file entry lists the address for a specific system.
Here is the format for an A entry:

name ttl addr-class entry-type address

The fields in the A entry have the values described in Section 2.5, with
the exception of the address field. This field specifies the IP address for
each system. There should only be one A entry for each address of a
given system.

Here is an example of two A entries:

;name
miami.cities.dec.com.

ttl addr-class
IN
IN

entry-type
A
A

address
128.11.22.44
128.11.22.33

In this example note that the first entry has left the ttl field blank, thus
using the default ttl specified in the SOA entry. The second entry has
lAft thA fi-rQt !lnrl C!£>r>nnrl .f;nlrlo hl.-.,,.,.lr +-1..,,,, "'"'~~~ -<-1...- ..l--"---lJ. ·--·--- -----~1'~ 1

in the previous entry and the default ttl specified in the SOA entry. In
this example, the host miami.cities.dec.com has two IP addresses.

2.5.6 The Host Information Data File Entry

The host information (HINFO) data file entry is for host specific
information. This entry lists the hardware and operating system that are
running at the specified host system. Only a single space separates the
name of the hardware from the operating system information. Thus, if you
need to use spaces as part of a host or operating system name, you must
place the name in quotes. In addition, th~re can be no more than one
HINFO entry for each host on the domain. Here is the HINFO entry
format:

host ttl addr-dass entry-type hardware opsys

The fields in the HINFO entry have the values described in Section 2.5,
with the following exceptions:

host This field specifies the host name. If the host is in the
current domain, you only need to specify the host, say Chicago,
for example. If the host is in a different domain, you must
specify the full BIND name, for example: utah.state.dec.com ..
Be sure to include the period (.) at the end of the host
name. This indicates the fully qualified BIND name.

hardware This field specifies the type of CPU, for example, a VAX 8800
processor.

op sys This field specifies the type of operating system running on the
specified host and should be ULTRIX for the ULTRIX operating
system.

Here is an example of a HINFO entry:

;name
ohio.state.dec.com.

ttl addr-class
IN

entry-type
HINFO

hardware
X-11/780

op sys
ULTRIX

In this example, note that the second field specifying the ttl is blank, thus
using the default ttl specified in the SOA entry.

2.5.7 The Well Known Services Data File Entry

The well know services (WKS) entry describes well known services
supported by a particular protocol at a specified address. The services and
port numbers are obtained from the list of services specified in the
/etc/services file. Here is the format of a WKS entry:

name ttl addr-class entry-type address protocol services

The fields in the WKS entry have the values described in Section 2.5,
with the following exceptions:

address This field specifies the IP address for each system. There
should only be one WKS entry for each protocol at each
address.

protocol This field specifies the protocol to be used, for example TCP or
UDP.

Here is an example of two WKS

;name ttl addr-class entry-type

IN WKS

IN WKS

entries:

address

128.32.0.4

128.32.0.78

protocol

UDP
TCP

services

who route

(echo talk

discard sunrpc sftp

uucp-path netstat host

systat daytime link

auth time ftp

nntp whois pop

finger smtp supdup

domain nameserver
chargen)

Note that the first and second fields of both entries in this example are
blank, which indicates that they are using the domain name specified in a
previous entry and the default ttl specified in the SOA entry. The
services listed in the second entry are contained within parentheses and are
thus interpreted as being one entry, even though they appear to be on
several lines.

2.5.8 The Canonical Name Data File Entry

The canonical name (CNAME) entry specifies an alias for a canonical
name. For example, if the canonical name, (also known as the full BIND
name or the fully qualified name) is miami.cities.dec.com, a reasonable alias
might be miami or mi.

An alias must be unique, and all other entries should be associated with
the canonical name and not with the alias. Do not create an alias and
then use it in other entries. Here is the format of a CNAME entry:

aliases ttl addr-class entry-type can-name

The fields in the CNAME entry have the values described in Section 2.5,
--~-4-1- -4-1-- L'-11----!-- ______ .._! ____ _

aliases This field specifies the nickname, or alias, of the canonical
name of the host.

can-name This is the canonical name of the host. If the canonical name
is a part of the current domain, then you only need to specify
the host name, for example, miami. If the canonical name is
for a host in another domain, you must specify the fully
qualified BIND name, followed by a period (.) . For example:
ohio.state.dec.com.

The following example shows two CNAME entries. The first entry is for a
CN AME in the current domain; the second entry is for a CN AME in
another domain:

;aliases
to
mon

ttl addr-class
IN
IN

entry-type
CNAME
CNAME

can-name
toledo
ohio.state.dec.com.

2.5.9 The Domain Name Pointer Data File Entry

The domain name pointer (PTR) entry allows special names to point to
some other location in the domain. PTR names should be unique to the
zone. Here is the format of a PTR entry:

rev-addr ttl addr-dass entry-type realname

The fields in the PTR entry have the values described in Section 2.5, with
the following exceptions:

rev-addr This field specifies the reverse IP address of the host. You
can obtain the reverse address from the /etc/namedb/named.rev
file. For example, if the host's address is 128.11 .22.33, the
reverse address is 33.22.11.128.

realname This is the fully qualified (canonical) BIND name of the host,
for example, miami.cities.dec.com. Be sure to include the
period (.) at the end of the real name if the host is not in
the current domain.

Here is an example of two PTR entries:

;rev-addr
33.22
66.55.44.121

ttl addr-class
IN
IN

entry-type
PTR
PTR

realname
chic ago
mail.peace.org.

In this example, the first entry is for a host whose IP host address is
22.33 in the current domain. The specified rev.addr (33.22) is meaningful

of the $origin entry. If there is not a $origin entry, then the entire IP
address, in reverse, must be specified.

The second entry is for a host in different domain (state.dee.com.). As a
rule, you should not do this because you are putting data in your server's
cache for which your server is not authoritative. PTR entries and other
resource records should be for hosts in your domain, only.

The PTR entry sets up a reverse pointer for the special domain peace.org.

2.5.10 The Mailbox Data File Entry

The mailbox (MB) entry lists the system where a user wants to receive
mail. Here is the format of an MB entry:

1-ogin ttl addr-class entry-type system

The fields in the MB entry have the values described in Section 2.5, with
the following exceptions:

login This field is the login name for a user. Login names must be
unique for the domain.

system This field specifies the name system where the user wants to
receive mail.

Here is an example of an MB entry:

;login ttl
fred

addr-class
IN

entry-type
MB

system
potsdam.cities.dec.com.

In this example note that the second field is left blank, thus using the ttl
specified in the SOA entry. Consequently, the user fred will have mail
delivered to the host named potsdam in the domain cities.dee.com.

2.5.11 The Mail Rename Data File Entry

The mail rename (MR) entry lists aliases for a specific user. Here is the
format of an MR entry:

alias ttl addr-class entry-type 1-ogin

The fields in the MR entry have the values described in Section 2.5, with
the following exceptions:

alias This field lists the nicknames for the specified user. The alias
must be unique to the domain.

login This field is the login name for the user whose alias is being
established. There should also be a corresponding MB entry
for the specified loei.n name.

Login names must be unique for the domain.

Here is an example of an MR entry:

;alias
lady
princess

ttl addr-class
IN
IN

entry-type
MR
MR

login
diana
diana

This example shows how to set up the aliases lady and princess for a user
whose login name is d iana. Note that the second field is left blank, thus
using the ttl specified in the SOA entry.

2.5.12 The Mailbox Information Data File Entry

The mailbox information (MINFO) entry creates a mail group for a mailing
list. The MINFO entry is usually associated with a mail group (MG)
entry, but can also be used with a mailbox (MB) entry. Here is the
format of a MINFO entry:

mailbox ttl addr-class entry-type requests maintainer

The fields in the MINFO entry have the values described in Section 2.5,
with the following exceptions:

mailbox This field specifies the name of the mailbox, and is usually
BIND.

requests This field specifies the name where users should send mail
relating to the BIND service or mail. For example, a user
might want to send a mail message requesting that an alias be
set up.

maintainer This field contains the login name of the person who should
receive mail error messages. This is particularly useful when
an error in member's names should be reported to a person
other than the sender.

Here is an example of a MINFO entry:

;mailbox ttl

BIND
addr-class

IN

entry-type

MINFO
requests

BIND-REQUEST
maintainer

fred@miami.cities.dec.com.

In this example, note that the second field is left blank, thus using the ttl
specified in the SOA entry.

2.5.13 The Mail Group Data File Entry

The mail group entry specifies the members of a mail group. The MG
entry is usually used with a MINFO entry. Here is the format of an MG
entry:

group ttl addr-class entry-type member

The fields in the MG entry have the values described in Section 2.5, with
the following exceptions:

group This field specifies the name of the mail group, for example,
users or marketing.

member This field specifies the login name and the domain of the user
to be included in the mail group.

Here is an example of a MINFO entry and several MG entries:

;group ttl addr-class entry-type requests member

fun IN MINFO BIND-REQUEST fred@ miami.cities.dec.com.

IN MG john@miami.cities.dec.com.

IN MG amy@miami.cities.dec.com.

In this example, note that the second field for all three entries is left
blank, thus using the ttl specified in the SOA entry. In addition, if mail is
sent to the mail group fun, fred, john, and amy receive it.

2.5.14 The Mail Exchanger Data File Entry

The mail exchanger (MX) entry specifies a system in the local domain
(called a gateway) that knows how to deliver mail to a system that may
not be directly connected to the local network. Consequently, the MX
entry is useful for systems outside your local network that want to send
mail to a user on one of your network's hosts.

You can also use the MX entry to list some of the hosts in the /etc/hosts
file so that they do not appear to other systems using the BIND service.

Here is the format of an MX entry:

system ttl addr-class entry-type pref-value gateway

The fields in the MX entry have the values described in Section 2.5, with
the following exceptions:

system This field specifies the name of the system where mail is to be
sent.

pref-value This field specifies the order a mailer should follow when there
is more than one way to deliver mail to a given system.

gateway This field contains the name of the gateway system, that is,
the system that can deliver mail to the destination system on
another network.

Here is an example of two MX entries:

;system
tampa.cities.dec.com
*.folks.dee.com

ttl addr-class
IN
IN

entry-type
MX
MX

pref-value
0
0

gateway
seismo.cs.au.
relay.cs.net.

In this example, all mail destined for the domain folks.dee.com, regardless
of the host name, is sent by route of the relay.cs.net. host. In addition,
note that the second field in both entries is left blank, thus using the ttl
specified in the SOA entry. The second entry uses an asterisk, which is a
wild card.

Managing and Using the BIND Service 3

This chapter provides the background information required for maintaining
and using the BIND service. Included is a description of the domain
administrator and the technical and zone contacts, as well as the duties of
each.

This chapter describes how to register your site with the public networks
and where to find additional information about the BIND name server.

Finally, this chapter provides a brief tutorial on how to make use of the
BIND service for obtaining host names and IP addresses. In addition, the
nslookup and nsquery commands are also introduced.

3.1 Maintaining the Domain
BIND domains are administrative entities that provide decentralized
management of host names and addresses. The domain naming scheme is
distributed and hierarchical. The Network Information Center (NIC)
maintains the zone files of the root domain BIND server. The NIC also
maintains the top-level domains arpa, com, edu, gov, mil, and org, plus a
number of country domains. In addition, the NIC registers first and
second-level domains.

The domain administrator (DA) administers each local domain with the
help of the technical and zone contacts. These roles are described in the
following sections.

3.1.1 Domain Administrator Role

Typically, each BIND domain has a domain administrator (DA), who is
responsible for coordinating and managing the domain. The DA registers a
second-level or lower domain by interacting with the DA in the next higher
level domain. For information on finding the names of the DA contacts,
see section 3.5.3.

The DA duties include:

• Understanding the concepts and procedures of the BIND service

• Ensuring that the service is reliable

• Ensuring that the BIND data is current

• Taking prompt action when necessary, for example if protocols are
violated or other serious misbehavior

• Controlling the assignments of the host and domain names

The DA furnishes users with access to names and name-related information
both inside and outside the local domain. In addition, the DA works
closely with the domain technical and zone contacts for the domain.

3.1.2 The Technical and Zone Contact

Typically, the technical and zone contact is concerned with the technical
aspects of maintaining the BIND server and resolver software and the data
files. The technical and zone contact keeps the BIND server running and
interacts with technical people in other domains and zones to solve
problems affecting the local domain.

A zone consists of those contiguous parts of the domain tree for which a
domain server has complete information and over which it has authority.
A BIND server can be the authority for several zones.

3.2 Naming Domains and Hosts
The NIC makes domain name assignments on a first-come, first-served
basis. The NIC only registers domains under the top-level domains, not
individual hosts. This allows administration and data maintenance to be
delegated down the hierarchical tree.

A domain is identified by a domain name, and consists of that part of the
domain name space that is at or below the domain name. A domain is a
subdomain of another larger domain, if it is contained within that domain.
That is, if a domain's name ends with the containing domain's name, of
which it is a subdomain. For example, AB.C.D is a subdomain of B.C.D,
C.D, D, and the root domain (.) .

There are two types of names:

• The fully qualified name represents the complete domain name. This
is also known as the absolute or canonical name. For example:

chicago.cities.dec.com.

• Relative names represent the starting name (label) of an absolute
domain name. Relative names are incomplete, but are completed by
the BIND service, using knowledge of the local domain, for example:

chicago

Relative host names such as chicago are automatically expanded to
the fully qualified domain name (chicago.cities.dec.com) when given
in a typical command.

Domain and host names must begin with a letter, end with a letter or
digit, and have only letters, digits, or hyphens as internal characters.
Although the names can be up to 64 characters, it is best to choose
names that are 12 characters or fewer because the canonical (fully
qualified) domain names are easier to keep track of if they are short. The
sum of all the label octets and label lengths is limited to 255.

Note

Domain names are case insensitive. By convention, however,
whenever you receive a domain name you should preserve its
case.

It is up to the DA to resolve any local conflicts concerning the domain
name chosen.

Note

Countries can register as top-level domains provided they name
themselves after a two-letter country code listed in the
international standard IS0-3166. (Appendix C lists several BIND
standards.) In the event that a country code is identical to a
state code that the U.S. Postal Service uses, the country can
request a three-letter code.

3.3 Registering With Public Networks
Before you can set up the BIND service on your system, your system
must be established on a local area network. If the BIND service for your
domain is part of a public network, you should get in touch with the
organization in charge of that network and request the appropriate domain
registration form. Even if your site belongs to more than one network,
you should register your site with only one. The following sections describe
how to contact these networks:

• DARPA Internet network (ARPANET)

• CS NET

• BITNET

3.3.1 Contacting the DARPA Internet Network

If your system is on the DARPA (Defense Advanced Research Projects
Agency) Internet network (also known as the ARP ANET), contact the
following organization:

hostmaster@sri-nic.arpa

The people there will provide you with information about setting up a
BIND domain.

You can also request to be placed on the BIND mailing list. This mailing
list is for people running BIND on the DARPA Internet network who want
to discuss future designs, operational problems, and other related topics.
Here is the address:

bind-request@ucbarpa.berkeley.EDU

3.3.2 Contacting the CSNET

If your site's domain name is not already registered with the CSNET
(Computer Science Network), contact the CSNET Coordination and
Information Center (CIC). They will send you an application and provide
you with information and technical advice about setting up a domain.

If your site's domain name is already registered with the CIC, you should
keep the CIC informed of how you want your site's mail routed. In
general, the CSNET relay prefers to send mail by CSNET, rather than by
the BITNET or the ARPANET. If your site is on more than one
network, the CSNET relay might not be the preferred route.

You can contact the CIC at the following electronic mail address:

cic@sh.cs.net

Or, you can reach the CIC hotline at this phone number:

(617) 873-2777

3.3.3 Contacting the BITNET

Some colleges and universities are on the BITNET network. This network
is reserved for students, faculty, and scholars who want to communicate on
a common network. BITNET stands for: "Because It's Time Network."

If your sit,e is on the BITNET and you want to set up a domain, contact
the following address or phone number for information:

BITNET Network Information Center (BITNIC)
Educom
Bitnet Network Information Center
P.O. Box 364
Princeton, NJ 08540
(609) 520-3340

For general information, send electronic mail to:

bitserve@CUNYVM

For general inquiries, send electronic mail to:

infoO/obitnic.bitnet@CUNYVM.CUNY.EDU

3.4 Updating BIND Data Files
Occasionally you may need to update the BIND data files. For example,
you may need to add a host to the data files. To update the data file -
for example to add a host - here are the steps:

1. Be sure the minimum refresh time on the secondary servers is at
least five minutes (300 seconds) .

2. Edit the appropriate data files on the primary server. If you are
adding a host name, you typically need to edit the
/etc/namedb/named.rev file and any other files with an SOA record
for your domain.

3. Increment the serial# field of the SOA entry in the appropriate data
files on the primary server. For example, if you are adding a host
name, you probably need to increment the SOA entry for the domain
in the /etc/namedb/named.rev file, as well as any other data base
files you may have set up for host names and addresses.

If you neglect to change the serial# field, the secondary servers will
not be aware of the modified data when they check their serial#
fields against the primary server's to see if they need to refresh their
data files.

The serial# field typically starts at one (1) and is incremented by
one each time the data is modified.

4. Tell the primary server to reload the data base by sending the - HUP
signal to the named daemon as follows:

ki I I -HUP 'cat /etc/named.pid'

3.5 Obtaining Host Name and IP Address Information
There are several ways that you can obtain information about host name
and IP addresses from a system using the BIND service. The following
sections provide an introduction to these commands:

• nslookup

•
•

3.5.1

nsquery

who is

The nslookup Command

One way to obtain information about host name and IP addresses is with
the nslookup command. With this command, you can non-interactively and
interactively query the BIND service for information about hosts on the
local, as well as remote, domains. You can also find information about
BIND resource records such as MX, NS, and so forth.

Here is the format for a non-interactive query with the nslookup command:

nslookup hostname

A good way to learn how to use the nslookup options is to experiment
with it. Appendix D provides a sample interactive session with the
nslookup command. For further information, see nslookup(1) in the
ULTRIX Reference Pages.

To find out MX information, you need to supply the nslookup command
with a bogus host name and a valid domain name. For example, to get
an answer to the question, "who takes mail for the domain mit.edu?", you
could type the following:

nslookup
Default Server: oops.cities.dee.com
Address: 128.54.54.1

> set querytype=mx
> find MX.mit.edu
Server: oops.cities.dee.com
Address: 128.54.54.1

findMX.mit.edu.cities.dec.com preference= 51, mai I exchanger
findMX.mit.edu.cities.dec.com preference= 50, mai I exchanger
noun.cities.dee.com inet address 128.54.54.79
wepel .cities.dee.com inet address = 128.54.54.93

noun.cities.dee.com
wepel .cities.dee.com

(continued on next page)

> <CTRL/d>

In this example, the host name MX.mit.edu. is bogus, but the domain
mit.edu. is real. See Appendix D for further examples of nslookup
command sessions.

3.5.2 The nsquery Command

The nsquery command provides a quick, non-interactive method for
obtaining host names, aliases, and IP addresses. The following example
shows how to get the host name, alias, and IP address for a host called
chicago:

nsquery Chicago
Name: chicago
Address: 128.11.22.333
Aliases: c ch

See nsquery(1) in the ULTRIX Reference Pages for further information.

3.5.3 The NIC whois Service

The NIC whois service allows you to verify the following information:

• The name and address of the organization responsible for the domain

• The name of the domain

• The domain's administrative and technical and zone contacts

• The host names and network addresses of sites providing the BIND
service for the domain

To use the NIC whois service to find information about a domain named
roads, send mail specifying the whois command and the domain in question
in the subject header:

mai I service@sri-nic.arpa
Subject: whois domain rice.edu
CTRL Id
Cc:
Nu I I message body; hope that's ok

Here is a sample response:

From SERVICE-REPLY@SRI-NIC.ARPA Thu Jun 2 17:58:38 1988

Received: from chicago.cities.dec.com (chicago.ARPA) by paris.cities.dec.com (1.2/dv.5.yp)

id AAl 7498; Thu, 2 Jun 88 17:57:20 edt

Received: by chicago.cities.dec.com (5.57 /v2.4)

id AA03640; Thu, 2 Jun 88 17:56:49 EDT

Message-Id: <8806022156.AA03640@chicago.cities.dec.com >

From: NIC Mail Service <SERVICE-REPLY@SRI-NIC.ARPA>
To: jane@ chicago (h jane ramburg-crane)
Subject: Re: whois domain rice.edu
Status: RO

Rice California (RICE-DOM)
Advanced Studies and Research
Houston, TX 77001

Domain Name: RICE.EDU

Administrative Contact:
Kennedy, Ken (KK28) Kennedy@LLL-CRG.ARPA (713) 527-4834

Technical Contact, Zone Contact:
Riffle, Vicky R. (VVR) rif@ RICE.EDU
(713) 527-8101 ext 3844

Domain servers in listed order:

RICE.EDU
PENDRAGON.CS.PURDUE.EDU

128.42.5.1
128.10.2.5

3.6 Obtaining Further Information about the BIND Service
The NIC has several online documents which you can access to obtain
further information about the BIND service. Some of these documents
are:

NETINFO:DOMAINS.TXT
This file consists of an informational table of the top-level domains
and their root servers. This file is updated each time a new top-level
domain is approved.

NETINFO:DOMAIN-INFO.TXT
This file contains a concise list of all top-level and second-level domain
names registered with the NIC. This file is updated monthly.

NETINFO:DOMAIN-CONTACTS.TXT
This file lists each of the top-level and second-level domains, and
includes the administrative, technical and zone contacts for each as
well.

NETINFO:DOMAIN-TEMPLATE.TXT
This file contains the questionnaire to be completed before registering
a top-level or second-level domain. A copy of this document is in
Appendix B.

You can use the ftp command to transfer copies of the online documents
from SRl-NIC.ARPA. Appendix B provides a sample ftp session. Or, you
can open a TCP or UDP connection to the NIC host name server, port
101 on SRl-NIC.ARPA. From there, you can invoke the command ALL­
DOM. Appendix C lists several other articles and RFCs which may be of
interest to you.

For further information about the BIND service, you can do the following:

• Send electronic mail to:

HOSTMASTER@SRl-NIC.ARPA

• Call the toll-free NIC hotline at:

(800) 235-3155

Troubleshooting the BIND Service 4

This chapter contains guidelines for troubleshooting the BIND service, as
well as information for starting, controlling and debugging the named
daemon.

If the BIND service fails to work properly, the cause is typically one of
the following:

• The data files are not set up properly

• The BIND service cannot access the root servers

The following files and daemon are crucial to the proper working of the
BIND service:

• The standard domain server data files are located in the directory
/etc/namedb, and are usually named.boot, named.rev, named.hosts,
named.local, and named.ca

• The /etc/svcorder file

• The /etc/re.local file

• The /etc/resolv.conf file (for BIND clients, only)

• The named daemon (for BIND servers, only)

The following sections describe these files and the daemon in greater detail.

4.1 Reviewing the Domain Data Files
This section offers some suggestions of what to do in the event that the
BIND service is not working properly.

First, be sure that the domain data files are set up correctly. Specifically,
be sure that the following are correct:

• The local host in the boot file and cache files

• The in-addr domain in the boot file and any other data base files

• The reverse arp IP addresses

• The host names are in the correct domain

In addition, be sure tht there is only one reverse address per host in the
domain.

If the preceding criteria is correct and you are still experiencing problems,
you should continue troubleshooting the BIND service as described in the
rest of this chapter.

For information about the domain data files, see Chapter 2. For examples
of domain data files, see Appendix A.

4.2 Reviewing the /etc/re.local File
Make sure that the host name is set to the fully qualified (canonical)
BIND name in the the /etc/re.local file. Be sure that an entry similar to
the following one exists in the /etc/re.local file. Here is the format for the
entry:

/bin/hostname host.domain

For example, here is the appropriate entry for a system named chicago in
the domain cities.dee.com:

/bin/hostname chicago.cities.dec.com

The following entry starts the domain name server each time the system
goes to multiuser mode:

BINDSTART
echo - n 'BIND daemon:' > /dev/console
[- f /usr/etc/named] && {

/usr/etc/named /etc/named.boot; echo - n ' named' > /dev/console
}
echo
BINDEND

This entry belongs either before or after any YP entries, but before any
NFS entries, if they exist. If YP and NFS entries do not exist in the
/etc/re.local file, the named entry belongs before the local daemons such as
send mail.

Note

Do not run the named daemon directly from inetd. This causes
continual restarts of the name server and def eats the purpose of
having a cache.

4.3 Reviewing the Resolver File
Make sure that the resolver file /etc/resolv.conf is accurate. It should
contain at least one master server. See chapter 2 for information about
the resolver file.

4.4 Reviewing the Debug Files
If after reviewing the re.local file and the resolver file you are still
experiencing problems, there are several other files to help you troubleshoot
the BIND service further. These files are:

• /var/spool/mqueue/syslog

• /var/tmp/named_dump.db

• /var/tmp/named.run

• /tmp/named.stat

This section provides general information about the debug files and explains
how to use them to troubleshoot the BIND service.

4.4.1 The syslog File

If the BIND service cannot access the root servers, it cannot resolve
queries about hosts in other domains. One way to determine if the root
servers are accessible is to look in the /var/spool/mqueue/syslog file. The
key phrase is:

root hints too low

This key phrase indicates how many of the available root servers are
actually accessible to your system. The minimum threshold is two, and
the maximum is the number of root servers available at their various
addresses (currently 10). If the number of root hints is too low, either
the BIND files are not configured properly or one or more of the links to
the root servers is down.

In addition, the named daemon may log error messages in the syslog file.

Here is a sample syslog file:

Jun 21 04:05:05 syslog restart

Jun 21 12:09:51 localhost: 1688 named: restarted

Jun 21 12:09:51 localhost: 1688 named: /etc/named.primaray/named.boot: No such file or directory

Jun 21 12:10:49 localhost: 1692 named: restarted

Jun 21 12:12:16 localhost: 1692 named: .. (new) named started ..

Jun 21 12: 17:30 local host: 1705 send mail: AA01705: message-id= <8806211616.AA01705@chicago.cities.dec.com >
Jun 21 12:17:31 localhost: 1705 sendmail: AA01705: from=jane, size=243562, class=O

Jun 21 12:17:49 localhost: 1707 sendmail: AA01705: to=jane@orlando, delay=00:01:18, stat=Sent

Jun 21 14:50:37 localhost: 1692 named: reloading nameserver

Jun 21 14:50:45 localhost: 1692 named: O root hints ... (too low)

Jun 21 15:20:46 localhost: 1692 named: O root hints ... (too low)

Jun 21 15:50:46 localhost: 1692 named: O root hints ... (too low)

Jun 21 15:59:02 localhost: 1840 send mail: AA01840: message-id= <8806211958.AA01840@chicago.cities.dec.com >
Jun 21 15:59:02 localhost: 1840 send mail: AA01840: from= jane, size= 835, class= 0

Jun 21 15:59: 12 local host: 1842 send mail: AA01840: to= jane@tempe, delay= 00:00:20, stat= Sent

4.4.2 The named_dump.db File

If you send the named daemon a signal to dump the data base, a copy of
the data base is dumped in the file /var/tmp/named_dump.db. Here is how
to send the signal:

ki I I -INT ·cat /etc/named.pid'

By examining the resulting named_dump.db file you can determine whether
any of the BIND data files are set up incorrectly. Here are some things
to look for:

• Is the local loopback correct?

• Is the inaddr entry correct?

• Is the local host set up correctly?

• Are the reverse arp IP addresses correct?

• Is there a reverse address for each host?

• Are the host names in the correct domain?

Appendix A lists a sample named_dump.db file for a BIND server whose
data files are correct.

4.4.3 The named.run File

If you turn on debugging, the results are logged in the file
/var/tmp/named.run. There are up to 11 debug levels. Typically, however,
you should debug the named daemon at level five. Then, from glancing at
the named.run file you should be able to get an idea of whether the BIND

named.run file indicates a connection to a root server:

TCP connected

The following lines in the named.run file indicate a poorly running system:

• Several QUESTIONS, but no ANSWERS

• Several iterations of findns, which attempt to find a name server

• Several iterations of schedretry, which schedule another attempt to
access a root server

Appendix A lists two named.run files: one for a system that is running
the BIND service properly, the other for a system that is not.

4.4.4 The named.stats File

The /var/tmp/named.stats file lists the statistics for the BIND service.
From this file you can see how much activity is being generated for the
BIND server. To generate this file, send a signal to the named daemon.
For example:

ki I I -JOT 'cat /etc/named.pid'

See Section 3. 7 .6 for more information about how to send signals to the
named daemon.

After the named daemon is running with the - IOT signal, it generates the
named.stats file. Here is an example of this file:

Thu June 21 15:05:09 1988
3389 time since boot (secs)
3389 time since reset (secs)
72 input packets
72 output packets
69 queries
0 iqueries
O duplicate queries
3 responses
O duplicate responses
69 OK answers
O FAIL answers
O FORMERR answers
2 system queries
1 prime cache calls
1 checLns calls
0 bad responses dropped
O martian responses
0 Unknown query types
60 A querys
4 NS querys
2 MX querys
3 ANY querys

The named.stats file may have entries for martian responses. A martian
response indicates a query response from a host that is unknown to the
server.

4.5 Obtaining the named Process ID
When the named daemon starts running, it places its process identification
number (pid) in the file /etc/named.pid. This feature is useful for
programs that need to send signals to the named daemon.

4.6 Sending Signals to the named Daemon
You can send several signals to the running named process without having
to restart it.

You can also find the named process ID (pid) by using the ps command
or by using the cat command with /etc/named.pid.

The signals you can send to named are as follows:

SIGHUP This signal causes the named process to read the boot file and
reload the data base. However, all previously cached data is
1---<- rtil..!- !- ··---"--1 !.£' ----- L---- _____ 1 ___ 1 _______ ,_ ___ 1_,

SIG INT

USRl

and you want named's internal data base to reflect the change.

This signal dumps the current data base and cache to the file
/var/tmp/named_dump.db. This can give you an indication of
whether the data base was loaded correctly.

This signal turns on debugging. Each subsequent USR1 signal
increments the debug level. A good rule of thumb is to
increment the debug level to five (this is accomplished by
issuing the signal five times) . The output is appended to the
file /var/tmp/named.run.

After turning on debugging, you can try using the nslookup command and
watch the debug trace. Appendix A has an example of two named.run
files; one is from a system with the BIND service running properly, the
other is from a system that cannot reach any of the root servers.

Here is an example of how to send the USR1 signal to the named
daemon:

ki I I -USRl 'cat /etc/named.pid'

You can start the named daemon in debug mode by typing the following
command:

/usr/etc/named named.boot -d5 &

This command starts the named daemon and sets the debug level to five.

USR2 This signal turns off debugging completely.

KILL

ki I I -USR2 'cat /etc/named.pid'

This signal terminates the named process. To stop the BIND
service from running in the future, comment out the bind (or
BIND) entry in the /etc/svcorder file by placing a number sign
(#) in the first column of the BIND entry.

Appendix A

This appendix provides sample BIND files to help you understand,
maintain, and troubleshoot the BIND service. The following files are listed
in this appendix:

• The named.boot file

• The named.ca file

• The named.local file

• The named. hosts file

• The named.rev file

• The named_dump.db file

• A healthy named.run file

• An unhealthy named.run file

Note

Sample BIND files are not provided for root servers. If you are
establishing your system as a root server, you can get help from
the NIC, as stated in Chapter 1.

A.1 The named.boot File
Only BIND servers need a boot file. The default name and location of the
boot file is /etc/named.boot. This section provides a sample boot file for
each type of BIND server: primary master, secondary master, slave, and
caching. Note that each type of server needs an entry of the form:

primary 0.0.127-in-addr.arpa /etc/named.local

This entry provides the address-to-hostname translation for the local host.

Here are the sample boot files:

• Primary Master Server Boot File

Data file to boot a BIND primary master server.

directory where all the data files are stored
directory etc/namedb

; type domain
primary cities.dee.com

primary 33.22.128.in-addr.arpa

primary 0.0.127.in-addr.arpa

; load the cache data last
cache

• Secondary Master Server Boot File

source host/file
named.hosts

named.rev

named.local

named.ca

Data file to boot a BIND secondary master server.

directory where all the data files are stored
directory /etc/namedb

; type
secondary

secondary

primary

domain source host/file
cities.dee.com 128.11.22.33 128.11.22.44

33.22.128.in-addr.arpa 128.11.22.33 128.11.22.33

0.0.127.in-addr.arpa named.local

; load the cache data last
cache named.ca

• Slave Server Boot File

Data file to boot a BIND slave server.

directory where all the data files are stored
directory /etc/namedb

; type
primary

domain source host/file
0.0.127.in-addr.arpa named.local

forwarders 128.11.22.33 128.11.22.33
; load the cache data last
cache

• Caching Server Boot File

named.ca

Data file to boot a BIND caching only server.

directory where all the data files are stored
directory /etc/namedb

; type
primary

domain source host/file refresh
0.0.127.in-addr.arpa named.local

; load the cache data last
cache

A.2 The named.ca File

named.ca 3600

Only BIND servers running the named daemon need a cache file. The
default name and location of the cache file is /etc/namedb/named.ca. Here
is a sample cache file:

@ (#)named.ca 4.2 (ULTRIX) 3/16/88

Data file for initial cache data for BIND root domain servers.
;domain ttl addr-class entry-type server

99999999 IN NS ns.nasa.gov.
99999999 IN NS sri-nic.arpa.
99999999 IN NS a.isi.edu.
99999999 IN NS gunter-adam.arpa.
99999999 IN NS brl-aos.arpa.
99999999 IN NS terp. umd.edu.
99999999 IN NS c.nyser.net.

sri-nic.arpa. 99999999 IN A 26.0.0.73
99999999 IN A 10.0.0.51

a.isi.edu. 99999999 IN A 26.3.0.103
gunter-adam.arpa. 99999999 IN A 26.1.0.13
hrl-::imuirn::L 99999999 TN A 1 Q'). fi ').fi ~').

99999999 IN A 128.20.1.2
ns.nasa.gov. 99999999 IN A 128.102.16.10
c.nyser.net. 99999999 IN A 128.213.5.17
terp.umd.edu. 99999999 IN A 10.1.0.17

99999999 IN A 128.8.10.90

A.3 The named.local File
Only BIND servers need a local file. The default name and location of
the local file is /etc/namedb/named.local. Here is a sample named.local
file:

@ (#)named.local 4.1 (ULTRIX)

Data file for local loopback interface.
;name ttl addr-class entry-type origin

1/18/88

@ IN SOA host.domain. sysmgr.host.domain.

1
IN
IN

NS
PTR

A.4 The named.hosts File

1
3600
300
3600000
3600)
host.domain.
localhost.

Serial
Refresh
Retry
Expire
Minimum

Only BIND servers need a hosts file. The default name and location of
the hosts file, specified in the boot file, is /etc/namedb/named.hosts. Here
is a sample named.hosts file:

; @ (#)named.hosts 4.1 (ULTRIX)

; Data file of hostnames in this domain.

;name ttl addr-class entry-type

@ IN SOA

1118/88

origin

host.domain.

person

sysmgr.host.domain. (

1

3600
300
3600000
3600)

localhost IN A 127.0.0.1
sri-nic.arpa IN A 10.0.0.51
host IN A 111.22.33.44

IN HINFO V AXstation2000 ULTRIX
another host IN A 111.22.33.55

IN HINFO V AXstationll ULTRIX
onemorehost IN A 111.22.33.66

IN HINFO VAX8800 ULTRIX

A.5 The named.rev File
Only BIND servers need a reverse hosts file. The default name and
location of the reverse hosts file is /etc/namedb/named.rev. Here is a
sample named.rev file:

@ (#)named.rev 4.1 (ULTRIX) 1/18/88

; Data file for 22.111.in-addr.arpa domain (inverse mapping).

;name ttl addr-class entry-type origin

@ IN SOA host.domain.

44.33
IN
IN

NS
PTR

91
43200
3600
1209600
86400)

host.domain.

hosttwo.domain.

A.6 The named_dump.db File

person

sysmgr.host.domain. (

; Serial

; Refresh

; Retry

; Expire

; Minimum

If you cause the named daemon to dump the data base, the results are
stored in the /var/tmp/named_dump.db file. This file is helpful in checking
the BIND data files for possible errors. Here is an excerpt of a
named_dump.db file for a system whose data base is correctly set up:

; Dumped at Thu Jun 23 14:33:15 1988
; --- Cache & Data ---
$ORIGIN .
arpa 42391 IN SOA SRI-NIC.ARPA. HOSTMASTER.SRI-NIC.ARP A.

880620 1800 300 604800 86400
474256 IN NS BRL-AOS.ARPA.
474256 IN NS A.ISi.EDU.

474256 IN NS C.NYSER.NET.
474256 IN NS TERP.DMD.EDU.
474256 IN NS NS.NASA.GOV.
42256 IN SOA SRI-NIC.ARPA. HOSTMASTER.SRI-NIC.ARPA.

880620 1800 300 604800 86400)
$ORIGIN arpa.
GUNTER-ADAM 474256 IN A 26.1.0.13 15034
BRL-AOS 474256 IN A 128.20.1.2; 13398

474256 IN A 192.5.25.82 ; 15097
SRI-NIC 474391 IN A 26.0.0.73 ; 12557

474391 IN A 10.0.0.51 ; 13135
42391 IN MX 10 SRI-NIC.ARP A.

$ORIGIN 128.in-addr.arpa.
45 475231 IN NS SONORA.DEC.COM.

475231 IN NS CYBELE.DEC.COM.
475231 IN NS DECWRL.DEC.COM.

$ORIGIN 45.128.in-addr.arpa.
31 43231 IN NS know.roads.dee.com.
45 IN SOA chicago.cities.dec.com. doe.chicago.cities.dec.com. (

7 1800 3600 1209600 86400)
IN NS chicago.cities.dec.com.

$ORIGIN 41.45.128.in-addr.arpa.
72 IN PTR hole.cities.dee.com.
$ORIGIN 42.45.128.in-addr.arpa.
141 IN PTR miami.cities.dec.com.
27 IN PTR toledo.cities.dec.com.
8 IN PTR paris.cities.dec.com.
1 IN PTR potsdam.cities.dec.com.
$ORIGIN 43.45.128.in-addr.arpa.
2 IN PTR madrid.cities.dec.com.
141 IN PTR cannes.cities.dec.com.
$ORIGIN 44.45.128.in-addr.arpa.
24 IN PTR galway.cities.dec.com.
27 IN PTR antrim.cities.dec.com.
25 IN PTR chism.cities.dec.com.
$ORIGIN 49.45.128.in-addr.arpa.
6 IN PTR akron.cities.dec.com.
13 IN PTR toledo.cities.dec.com.
14 IN PTR madrid.cities.dec.com.
15 IN PTR columbia.cities.dec.com.
2 IN PTR stow.cities.dee.com.
4 IN PTR atlanta.cities.dec.com.
$ORIGIN 0.127.in-addr.arpa.
0 IN ROA r.hir.~P'O r.it.iP~ nPI" l"Om rlnP f'hlf'!:'IO'n f'ltlPQ rfor> l"l'\l'Y'I {

7 1800 3600 1209600 86400)
IN NS chicago.cities.dec.com.

$ORIGIN 0.0.127.in-addr.arpa.
1 IN PTR localhost.
$ORIGIN com.
dee IN SOA decwrl.dec.com. postmaster.decwrl.dec.com.

142 43200 3600 1209600 86400)
IN NS sonora.dec.com.
IN NS decwrl.dec.com.
IN NS cybele.dec.com.
IN MX 100 decwrl.dec.com.

$ORIGIN dee.com.
aa IN A 128.45.1.87
bb IN A 128.45.1.81
cc IN CNAME cc32.dec.com.
dd IN A 128.45.1.33
cities IN SOA chicago.cities.dec.com. doe.chicago.cities.dec.com. (

7 1800 3600 1209600 86400)
IN NS chicago.cities.dec.com.
IN MX 200 detroit.dec.com.

tempe IN A 128.45.45.79
coxland IN A 128.45.1.176
$ORIGIN cities.dee.com.
ff IN A 128.45.45.221
* IN MX 51 tempe.cities.dec.com.

IN MX 50 chicago.cities.dec.com.
tempe IN A 128.45.45.79

IN TXT "This is class IN data for tempe."
3 TXT "choas text data for tempe."

dixie IN CNAME sunup.cities.dee.com.
IN CNAME sunset.cities.dee.com.

alias IN SOA chicago.cities.dec.com. doe.chicago.cities.dec.com.
8 1800 3600 1209600 86400)
8 1800 3600 1209600 86400)

am IN CNAME antrim.cities.dec.com.
rutland IN A 128.45.45.105
derry IN CNAME derry.cities.dec.com.
london IN CNAME london.cities.dec.com.
$ORIGIN alias.cities.dee.com.
$ORIGIN uid.cities.dec.com.
$ORIGIN passwd.cities.dec.com.
$ORIGIN pa.dee.com.
wilton IN A 128.45.1.14
$ORIGIN nae.dee.com.

midland IN A 128.45.31.151
$ORIGIN NASA.GOV.
NS 474256 IN A 128.102.16.10 ; 13964
$ORIG IN local.
tempe IN CNAME tempe.cities.dec.com.
chicago IN CNAME chicago.cities.dec.com.
$ORIGIN NYSER.NET.
C 474256 IN A 192.33.4.12 ; 12999
$ORIGIN DMD.EDU.
TERP 474256 IN A 10.1.0.17 ; 12186

474256 IN A 128.8.10.90 ; 3414
$ORIGIN !SI.EDU.
A 474256 IN A 26.3.0.103; 15203
; --- Hints ---
$0 RIG IN .

4 7 4256 IN NS BRL-AOS .ARP A.
4 7 4256 IN NS A.ISI.EDU.
474256 IN NS GUNTER-ADAM.ARPA.
474256 IN NS C.NYSER.NET.
474256 IN NS TERP.DMD.EDU.
474256 IN NS NS.NASA.GOV.
3600 IN SOA SRI-NIC.ARP A. HOSTMASTER.SRI-NIC.ARP A. (

880620 1800 300 604800 86400)
UK 407690 IN NS NSl.CS.UCL.AC.UK.

407690 IN NS NS2.CS.UCL.AC.UK.
407690 IN NS BRL-AOS.ARPA.

$ORIGIN arpa.
GUNTER-ADAM 474256 IN A 26.1.0.13
BRL-AOS 474256 IN A 128.20.1.2

4 7 4256 IN A 192.5.25.82
SRI-NIC 474256 IN A 26.0.0.73 ; 2850

474256 IN A 10.0.0.51
13620 IN MX 10 SRI-NIC.ARPA.

$ORIGIN 128.in-addr.arpa.
45 348719 IN NS SONORA.DEC.COM.

348719 IN NS CYBELE.DEC.COM.
348719 IN NS DECWRL.DEC.COM.

$ORIGIN 45.128.in-addr.arpa.
31 3600 IN NS iknow.nac.dec.com.
$ORIGIN CS.UCL.AC.UK.
NS2 407690 IN A 128.16.8.3
NSl 407690 IN A 128.16.5.32
nss 249294 IN A 128.41.9.3

249294 IN A 14.0.0.9

249294 IN MX 13 nss.cs.ucl.ac.uk.
249294 IN HINFO "MICROVAX2" "ULTRIXl.2"
249294 IN WKS 128.41.9.3 tcp telnet smtp

$ORIGIN NASA.GOV.
NS 474256 IN A 128.102.16.10
$ORIGIN DMD.EDU.
TERP 474256 IN A 10.1.0.17

474256 IN A 128.8.10.90
$ORIGIN ISI.EDU.
A 474256 IN A 26.3.0.103
$ORIGIN NYSER.NET.
C 474256 IN A 192.33.4.12

A.7 The named.run File
If you turn on debugging for the named daemon, the results are recorded
in the /var/tmp/named.run file. This file is helpful in troubleshooting the
BIND service. This section lists two sample named.run files. The first
sample is indicative of a system that has the BIND service properly set
up, while the second sample indicates a system that has the BIND service
improperly set up.

A.7.1 A Healthy named.run File

The following sample named.run file logs the successful BIND service
transactions. Notice the numerous ANSWERS.

Debug turned ON, Level 5
bootfile = /etc/named.primary/named.boot
ns_init(I etc/named. primary /named. boot)
savehash GROWING to 2
savehash GROWING to 2
zone[l] type 1: 'cities.dee.com', source = cities.dec.com.SOA
db_load(cities.dec.com.SOA, cities.dee.com, 1)
d= 'cities.dee.com', c= 1, t= 6, ttl= 0, data= 'boston.cities.dec.com.'
db_update(cities.dee.com, Ox31c04, Ox31c04, 01, Ox203a4)
savehash GROWING to 2
savehash GROWING to 2
db_update: adding 3 lc04
d= 'cities.dee.com', c= 1, t= 2, ttl= 0, data= 'boston.cities.dec.com.'
db_update(cities.dee.com, Ox32404, Ox32404, 01, Ox203a4)
match(Ox31c04, 1, 2) 1, 6
db_update: adding 32404
d= 'boston.cities.dec.com', c= 1, t= 1, ttl= 0, data= '128.45.45.93'
db_update(boston.cities.dec.com, Ox2d4c4, Ox2d4c4, 01, Ox203a4)

savehash GROWING to 2
db_update: adding 2d4c4
d= 'tampa.cities.dec.com', c= 1, t= 1, ttl= 0, data= '128.45.45.79'
db_update(tampa.cities.dec.com, Ox2d524, Ox2d524, 01, Ox203a4)
db_update: adding 2d524
d= '*.cities.dee.com', c= 1, t= 15, ttl= 0, data= '51'
db_update(*.cities.dee.com, Ox324c4, Ox324c4, 01, Ox203a4)
db_update: adding 324c4
d= '*.cities.dee.com', c= 1, t= 15, ttl= 0, data= '50'
db_update(*.cities.dee.com, Ox32504, Ox32504, 01, Ox203a4)
match(Ox324c4, 1, 15) 1, 15
db_update: flags = Oxl, sizes = 20, 19 (1)
db_update: adding 32504
db_load(cities.dee.com.db, cities.dee.com, 1)
d= 'localhost.cities.dec.com', c= 1, t= 1, ttl= 0, data= '127.0.0.1'
db_update(localhost.cities.dec.com, Ox2d5a4, Ox2d5a4, 01, Ox203a4)
db_update: adding 2d5a4
d= 'nashua.cities.dec.com', c= 1, t= 1, ttl= 0, data= '128.45.45.17'
db_update(nashua.cities.dec.com, Ox2d5e4, Ox2d5e4, 01, Ox203a4)
savehash GROWING to 11
savehash(Ox2d4e4) cnt= 5, sz= 2, newsz= 11
db_update: adding 2d5e4
d= 'paris.cities.dec.com', c= 1, t= 1, ttl= 0, data= '128.45.42.l'
db_update(paris.cities.dec.com, Ox2d4e4, Ox2d4e4, 01, Ox203a4)
db_update: adding 2d4e4
d= 'paris.cities.dec.com', c= 1, t= 13, ttl= 0, data= 'VAX'
db_update(paris.cities.dec.com, Ox32644, Ox32644, 01, Ox203a4)
match(Ox2d4e4, 1, 13) 1, 1
db_update: adding 32644
d= 'p.cities.dec.com', c= 1, t= 5, ttl= 0, data= 'paris'
db_update(p.cities.dec.com, Ox32684, Ox32684, 01, Ox203a4)
db_update: adding 32684
d= 'galway.cities.dec.com', c= 1, t= 1, ttl= 0, data= '128.45.45.1'
db_update(galway.cities.dec.com, Ox2d664, Ox2d664, 01, Ox203a4)
db_update: adding 2d664
d= 'gy.cities.dec.com', c= 1, t= 5, ttl= 0, data= 'galway'
db_update(gy.cities.dec.com, Ox32704, Ox32704, 01, Ox203a4)
db_update: adding 32704
d= 'norfolk.cities.dec.com', c= 1, t= 1, ttl= 0, data= '128.45.42.2'
db_update(norfolk.cities.dec.com, Ox2d6c4, Ox2d6c4, 01, Ox203a4)
db_update: adding 2d6c4
d= 'n.cities.dec.com', c= 1, t= 5, ttl= 0, data= 'norfolk'
db_update(n.cities.dec.com, Ox32784, Ox32784, 01, Ox203a4)
db_update: adding 32784

d= 'bangor.cities.dec.com', c= 1, t= 1, ttl= 0, data= '128.45.45.2'
db_update(bangor.cities.dec.com, Ox2d724, Ox2d724, 01, Ox203a4)
db_update: adding 2d724
d= 'bg.cities.dec.com', c= 1, t= 5, ttl= 0, data= 'bangor'
db_update(bg.cities.dec.com, Ox32804, Ox32804, 01, Ox203a4)
db_update: adding 32804
d= 'canton.cities.dee.com', c= 1, t= 1, ttl= 0, data= '128.45.43.2'
db_update(canton.cities.dee.com, Ox2d784, Ox2d784, 01, Ox203a4)
db_update: adding 2d784
d= 'c.cities.dec.com', c= 1, t= 5, ttl= 0, data= 'canton'
db_update(c.cities.dec.com, Ox32884, Ox32884, 01, Ox203a4)
db_update: adding 32884
d= 'few.cities.dee.com', c= 1, t= 1, ttl= 0, data= '128.45.45.3'
db_update(few.cities.dee.com, Ox2d7e4, Ox2d7e4, 01, Ox203a4)
db_update: adding 2d7e4
d= 'f.cities.dec.com', c= 1, t= 5, ttl= 0, data= 'few'
db_update(f.cities.dec.com, Ox32904, Ox32904, 01, Ox203a4)
db_update: adding 32904
d= 'trouble.cities.dee.com', c= 1, t= 1, ttl= 0, data= '128.45.45.4'
db_update(trouble.cities.dee.com, Ox2d844, Ox2d844, 01, Ox203a4)
db_update: adding 2d844
d= 't.cities.dec.com', c= 1, t= 5, ttl= 0, data= 'trouble'
db_update(t.cities.dec.com, Ox32984, Ox32984, 01, Ox203a4)
db_update: adding 32984
d= 'foto.cities.dec.com', c= 1, t= 1, ttl= 0, data= '128.45.45.5'
db_update(foto.cities.dec.com, Ox2d8a4, Ox2d8a4, 01, Ox203a4)
db_update: adding 2d8a4
d= 'wise.cities.dee.com', c= 1, t= 1, ttl= 0, data= '128.45.45.6'
db_update(wise.cities.dee.com, Ox2d8e4, Ox2d8e4, 01, Ox203a4)
db_update: adding 2d8e4
d= 'w.cities.dec.com', c= 1, t= 5, ttl= 0, data= 'wise'
db_update(w.cities.dec.com, Ox32a44, Ox32a44, 01, Ox203a4)
db_update: adding 32a44
d= 'marg.cities.dec.com', c= 1, t= 1, ttl= 0, data= '128.45.45. 7'
db_update(marg.cities.dec.com, Ox2d944, Ox2d944, 01, Ox203a4)
savehash GROWING to 113
savehash(Ox32584) cnt= 23, sz= 11, newsz= 113
db_load: origin NYSER.NET., buf 45.128.in-addr.arpa
db_load: origin now NYSER.NET
d= 'C.NYSER.NET', c= 1, t= 1, ttl= 583091719, data= '192.33.4.12'
db_update(C.NYSER.NET, Ox5dba4, Ox5dba4, 021, Ox203c4) hint
savehash GROWING to 2
db_update: adding hint 5dba4
db_load: origin DMD.EDU., buf NYSER.NET

db_load: origin now DMD.EDU
d= 'TERP.DMD.EDU', c= 1, t= 1, ttl= 583091719, data= '10.1.0.17'
db_update(TERP.DMD.EDU, Ox5dc64, Ox5dc64, 021, Ox203c4) hint
savehash GROWING to 2
db_update: adding hint 5dc64
d= 'TERP.DMD.EDU', c= 1, t= 1, ttl= 583091719, data= '128.8.10.90'
db_update(TERP.UMD.EDU, Ox5dd24, Ox5dd24, 021, Ox203c4) hint
match(Ox5dc64, 1, 1) 1, 1
db_update: flags = Oxll, sizes = 4, 4 (4)
db_update: adding hint 5dd24
db_load: origin !SI.EDU., buf DMD.EDU
db_load: origin now !SI.EDU
d= 'A.ISI.EDU', c= 1, t= 1, ttl= 583091719, data= '26.3.0.103'
db_update(A.IS I.EDU, Ox5dd44, Ox5dd44, 021, Ox203c4) hint
savehash GROWING to 2
db_update: adding hint 5dd44
z_time 582916333, z_refresh 3600
exit ns_init() Next interrupt in 3598 sec
database initialized
net x2d2d80 mask xffffff my_addr x5d2d2d80 128.45.45.93
net x7f mask xff my_addr xl00007f 127.0.0.1
net x2d80 mask xffff my_addr x5d2d2d80 128.45.45.93
ds 0.0.0.0 7
dqp->dq_addr 127.0.0.1 d_dfd 8
dqp- >dq_addr 128.45.45.93 d_dfd 9
Ready to answer queries.
prime_cache: priming = 0
sysquery(, 1, 2)
findns: using hints
findns: np Ox5d964
findns: 7 NS' s added for "
qnew(x lf604)
nslookup(nsp= x7fffdcbc,qp= xlf604)
nslookup: NS SRI-NIC.ARPA cl t2 (xl)
nslookup: 2 ns addrs
nslookup: NS BRL-AOS.ARPA cl t2 (xl)
nslookup: 4 ns addrs
nslookup: NS A.ISi.EDU cl t2 (xl)
nslookup: 5 ns addrs
nslookup: NS GUNTER-ADAM.ARPA cl t2 (xl)
nslookup: 6 ns addrs
nslookup: NS C.NYSER.NET cl t2 (xl)
nslookup: 7 ns addrs
nslookup: NS TERP.DMD.EDU cl t2 (xl)

nslookup: 9 ns addrs
nslookup: NS NS.NASA.GOV cl t2 (xl)
NS.NASA.GOV: not found ??? 0
nslookup: 9 ns addrs total
schedretry(Oxlf604, 13sec)
sysquery: send -> 26.0.0.73 7 (53), nsid= 1 id= 0 Oms
Return from getdtablesize() > FD_SETSIZE
datagram from 128.45.45.15, 9 1568 (39)
ns_req()
HEADER:

opcode = QUERY, id
header flags: rd
qdcount = 1, ancount

QUESTIONS:

155, rcode

0, nscount

NO ERROR

0, arcount = 0

localhost.cities.dec.com, type = A, class = IN

req: nlookup(localhost.cities.dec.com) id 39680 type= 1
req: found 'localhost.cities.dec.com' as 'localhost.cities.dec.com' (cname= 0)
wanted(2d5a4, 1, 1) 1, 1
make_rr(localhost.cities.dec.com, 2d5a4, 7fffddbb, 4 73, 1) 4
finddata: added 1 class 1 type 1 RRs
req: foundname = 1 count = 1 founddata = 1 cname = 0
sort_response(1)
findns: np Ox2d5c4
match(Ox2d5a4, 1, 6) 1, 1
findns: np Ox2d4a4
match(Ox31c04, 1, 6) 1, 6
findns: SOA found
req: leaving (localhost.cities.dec.com, rcode 0)
req: answer -> 128.45.45.15 9 (1568) id= 155 Local
datagram from 128.45.45.15, 9 1570 (40)
ns_req()
HEADER:

opcode = QUERY, id
header flags: rd
qdcount = 1, ancount

QUESTIONS:

154, rcode NO ERROR

0, nscount 0, arcount = 0

1.0.0.127.in-addr.arpa, type = PTR, class = IN

req: nlookup(1.0.0.127.in-addr.arpa) id 39424 type= 12
req: found 'l.0.0.127.in-addr.arpa' as 'l.0.0.127.in-addr.arpa' (cname= 0)
wanted(44c44, 1. 12) 1. 12

make_rr(1.0.0.127.in-addr.arpa, 44c44, 7fffddbc, 472, 1) 10
finddata: added 1 class 1 type 12 RRs
req: foundname = 1 count = 1 founddata = 1 cname = 0
sort_response(1)
findns: np Ox44a44
match(Ox44c44, 1, 6) 1, 12
findns: np Ox44a04
match(Ox32084, 1, 6) 1, 6
findns: SOA found
req: leaving (1.0.0.127.in-addr.arpa, rcode 0)
req: answer -> 128.45.45.15 9 (1570) id= 154 Local
retry(xlf604) id= 0
resend(addr= 1 n= 0) -> 10.0.0.51 7 (53) nsid= 1 id= 0 Oms
unsched(Oxlf604, 0)
schedretry(Oxlf604, 13sec)
datagram from 10.0.0.51, 9 53 (421)
ns_req()
HEADER:

1, rcode = NOERROR opcode = QUERY, id
header flags: qr aa
qdcount = 1, ancount 7, nscount = 1, arcount

QUESTIONS:
., type

ANSWERS:

NS, class IN

type = NS, class = IN, ttl = 518400, dlen 14
domain name = SRI-NIC.ARPA

type = NS, class = IN, ttl = 518400, dlen 14
domain name = BRL-AOS .ARP A

type = NS, class = IN, ttl
domain name = A.ISI.EDU

518400, dlen 11

type = NS, class = IN, ttl = 518400, dlen 18
domain name = GUNTER-ADAM.ARPA

tvoe NS. class IN. ttl 518400. dlen

10

domain name C.NYSER.NET

type = NS, class = IN, ttl = 518400, dlen 14
domain name = TERP.DMD.EDU

type = NS, class = IN, ttl = 518400, dlen 13
domain name = NS.NASA.GOV

NAME SERVERS:

type = SOA, class = IN, ttl = 86400, dlen 59
origin = SRI-NIC.ARPA
mail addr = HOSTMASTER.SRI-NIC.ARPA
serial= 880620, refresh= 1800, retry= 300, expire= 604800, min= 86400

ADDITIONAL RECORDS:
SRI-NIC.ARPA
type = A, class = IN, ttl = 518400, dlen 4
internet address 26.0.0. 73

SRI-NIC.ARPA
type = A, class IN, ttl = 518400, dlen 4
internet address = 10.0.0.51

BRL-AOS .ARP A
type = A, class IN, ttl = 518400, dlen 4
internet address = 128.20.1.2

BRL-AOS .ARP A
type = A, class
internet address

A.ISi.EDU

IN, ttl = 518400, dlen
192.5.25.82

4

type = A, class IN, ttl = 518400, dlen 4
internet address = 26.3.0.103

GUNTER-ADAM.ARPA
type = A, class = IN, ttl 518400, dlen 4
internet address = 26.1.0.13

C.NYSER.NET
type = A, class IN, ttl 518400. dlen 4

internet address = 192.33.4.12

TERP.DMD.EDU
type = A, class = IN, ttl = 518400, dlen 4
internet address = 10.1.0.17

TERP.DMD.EDU
type = A, class = IN, ttl = 518400, dlen 4
internet address 128.8.10.90

NS.NASA.GOV
type = A, class
internet address

qfindid(1)

IN, ttl = 518400, dlen
128.102.16.10

SYSTEM response nsid= 1 id= 0

4

stime 582912747/180000 now 582912750/390000 rtt 3210
NS #1 addr 10.0.0.51 used, rtt 3210
NS #0 26.0.0. 73 rtt now 3852
NS #2 128.20.1.2 rtt now 0
NS #3 192.5.25.82 rtt now 0
NS #4 26.3.0.103 rtt now 0
NS #5 26.1.0.13 rtt now 0
NS #6 192.33.4.12 rtt now 0
NS #7 10.1.0.17 rtt now 0
NS #8 128.8.10.90 rtt now 0
resp: ancount 7, nscount 1, arcount 10
sort_response(7)
sort_rr(x7fffdda5, 7, 0.0.0.0)
sort_rr(x7fffdda5, 7, 128.45.45.0)
sort_rr(x7fffdda5, 7, 127.0.0.0)
sort_rr(x7fffdda5, 7, 128.45.0.0)
doupdate(zone 0, savens 7fffd3a0, flags 9)
doupdate: dname type 2 class 1 ttl 518400
db_update(, Ox5clc4, Ox5clc4, 011, Ox203a4)
db_update: hint " 583431150
db_update(, Ox5c204, Ox5c204, 031, Ox203c4) hint
match(Ox5bf04, 1, 2) 1, 2
db_update: flags = Ox19, sizes = 13, 13 (0)
db_update: new ttl 583431150, + 518400
db_update: hint 5c204 freed
db_update: adding 5clc4
doupdate(zone 0, savens 7fffd3a0, flags 9)
doupdate: dname type 2 class 1 ttl 518400

db_update(, Ox5c204, Ox5c204, 011, Ox203a4)
db_update: hint " 583431150
db_update(, Ox5c244, Ox5c244, 031, Ox203c4) hint
match(Ox5bf04, 1, 2) 1, 2
db_update: flags = Ox19, sizes 13, 13 (17)
match(Ox5bf44, 1, 2) 1, 2
db_update: flags = Ox19, sizes 13, 13 (O)
db_update: new ttl 583431150, + 518400
db_update: hint 5c244 freed
match(Ox5clc4, 1, 2) 1, 2
db_update: flags = Ox9, sizes = 13, 13 (17)
db_update: adding 5c204
doupdate(zone 0, savens 7fffd3a0, flags 9)
doupdate: dname type 2 class 1 ttl 518400
db_update(, Ox5c244, Ox5c244, 011, Ox203a4)
db_update: hint " 583431150
HEADER:

opcode = QUERY, id 220, rcode NOERROR
header flags: rd
qdcount = 1, ancount 0, nscount 0, arcount = 0

QUESTIONS:
1.0.0.127.in-addr.arpa, type = PTR, class = IN

req: nlookup(1.0.0.127.in-addr.arpa) id 56320 type= 12
req: found '1.0.0.127.in-addr.arpa' as 'l.0.0.127.in-addr.arpa' (cname= 0)
wanted(44c44, 1, 12) 1, 12
make_rr(1.0.0.127.in-addr.arpa, 44c44, 7fffddbc, 472, 1) 10
finddata: added 1 class 1 type 12 RRs
req: foundname = 1 count = 1 founddata = 1 cname = 0
sort_response(1)
findns: np Ox44a44
match(Ox44c44, 1, 6) 1, 12
findns: np Ox44a04
match(Ox32084, 1, 6) 1, 6
findns: SOA found
req: leaving (1.0.0.127.in-addr.arpa, rcode 0)
req: answer -> 128.45.45.95 9 (4713) id=220 Local
datagram from 128.45.45.95, 9 4 714 (40)
ns_req()
HEADER:

opcode = QUERY, id
header flags: rd
qdcount = 1, ancount

3, rcode = NOERROR

0, nscount = 0, arcount 0

QUESTIONS:
antrim.cities.dec.com.com, type = A, class = IN

req: nlookup(antrim.cities.dec.com.com) id 768 type= 1
req: found 'antrim.cities.dec.com.com' as 'com' (cname= 0)
findns: np Ox2d424
findns: using cache
findns: np Ox5de24
findns: 7 NS's added for "
ns_forw()
qnew(x lf604)
nslookup(nsp= x7fffdb80,qp= xlf604)
nslookup: NS SRI-NIC.ARPA cl t2 (xO)
nslookup: 2 ns addrs
nslookup: NS BRL-AOS.ARPA cl t2 (xO)
nslookup: 4 ns addrs
nslookup: NS A.IS I.EDU cl t2 (xO)
nslookup: 5 ns addrs
nslookup: NS GUNTER-ADAM.ARPA cl t2 (xO)
nslookup: 6 ns addrs
nslookup: NS C.NYSER.NET cl t2 (xO)
nslookup: 7 ns addrs
nslookup: NS TERP.DMD.EDU cl t2 (xO)
nslookup: 9 ns addrs
nslookup: NS NS.NASA.GOV cl t2 (xO)
nslookup: 10 ns addrs total
schedretry(Oxlf604, 4sec)
forw: forw -> 192.33.4.12 7 (53) nsid= 4 id= 3 Oms
datagram from 128.45.45.95, 9 4 715 (40)
ns_req()
HEADER:

opcode = QUERY, id
header flags: rd
qdcount = 1, ancount

QUESTIONS:

1023, rcode = NOERROR

0, nscount = 0, arcount = 0

queens.dee.com, type = A, class = IN

req: nlookup(queens.dee.com) id 65283 type= 1
req: found 'queens.dee.com' as 'queens.dee.com' (cname= 0)
wanted(4clc4, 1, 1) 1, 15
finddata: added 0 class 1 type 1 RRs
findns: np Ox4c7 a4
match(Ox4clc4, 1, 6) 1, 15

findns: np Ox2d464
match(Ox32104, 1, 6) 1, 6
findns: SOA found
req: leaving (queens.dee.com, rcode 0)
make_rr(dee.com, 32104, 7fffddb3, 481, 1) 61
req: answer -> 128.45.45.87 9 (1741) id= 1023 Local
datagram from 128.45.45.87, 9 1743 (31)
ns_req()
HEADER:

opcode = QUERY, id
header flags: rd
qdcount = 1, ancount

QUESTIONS:

1023, rcode = NOERROR

0, nscount = 0, arcount = 0

queens.dee.com, type = A, class = IN

req: nlookup(queens.dee.com) id 65283 type= 1
req: found 'queens.dee.com' as 'queens.dee.com' (cname= 0)
wanted(4clc4, 1, 1) 1, 15
finddata: added 0 class 1 type 1 RRs
findns: np Ox4c7a4
match(Ox4clc4, 1, 6) 1, 15
findns: np Ox2d464
match(Ox32104, 1, 6) 1, 6
findns: SOA found
req: leaving (queens.dee.com, rcode 0)
make__rr(dee.com, 32104, 7fffddb3, 481, 1) 61
req: answer -> 128.45.45.87 9 (1743) id= 1023 Local
datagram from 128.45.45.87, 9 1745 (31)
ns_req()
HEADER:

opcode = QUERY, id
header flags: rd
qdcount = 1, ancount

QUESTIONS:

1024, rcode = NOERROR

0, nscount = 0, arcount = 0

queens.dee.com, type = A, class = IN

req: nlookup(queens.dee.com) id 4 type= 1
req: found 'queens.dee.com' as 'queens.dee.com' (cname= 0)
wanted(4clc4, 1, 1) 1, 15
finddata: added 0 class 1 type 1 RRs
findns: np Ox4c7a4
match(Ox4clc4, 1, 6) 1, 15

findns: np Ox2d464
match(Ox32104, 1, 6) 1, 6
findns: SOA found
req: leaving (queens.dee.com, rcode 0)
make_rr(dee.com, 32104, 7fffddb3, 481, 1) 61
req: answer -> 128.45.45.87 9 (1745) id= 1024 Local
datagram from 128.45.45.87, 9 1747 (31)
ns_req()
HEADER:

opcode = QUERY, id
header flags: rd
qdcount = 1, ancount

QUESTIONS:

1024, rcode = NOERROR

0, nscount = 0, arcount = 0

queens.dee.com, type = A, class = IN

req: nlookup(queens.dee.com) id 4 type= 1
req: found 'queens.dee.com' as 'queens.dee.com' (cname= 0)
wanted(4clc4, 1, 1) 1, 15
finddata: added 0 class 1 type 1 RRs
findns: np Ox4c7 a4
match(Ox4clc4, 1, 6) 1, 15
findns: np Ox2d464
match(Ox32104, 1, 6) 1, 6
findns: SOA found
req: leaving (queens.dee.com, rcode O)
make_rr(dee.com, 32104, 7fffddb3, 481, 1) 61
req: answer -> 128.45.45.87 9 (1747) id= 1024 Local
datagram from 128.45.45.87, 9 1749 (31)
ns_req()
HEADER:

opcode = QUERY, id
header flags: rd
qdcount = 1, ancount

QUESTIONS:

1025, rcode = NOERROR

0, nscount = 0, arcount = 0

queens.dee.com, type = A, class = IN

req: nlookup(queens.dee.com) id 260 type= 1
req: found 'queens.dee.com' as 'queens.dee.com' (cname= 0)
wanted(4clc4, 1, 1) 1, 15
finddata: added 0 class 1 type 1 RRs
findns: np Ox4c7a4
match(Ox4clc4, 1, 6) 1, 15

findns: np Ox2d464
match(Ox32104, 1, 6) 1, 6
findns: SOA found
req: leaving (queens.dee.com, rcode O)
make_rr(dee.com, 32104, 7fffddb3, 481, 1) 61
req: answer -> 128.45.45.87 9 (17 49) id= 1025 Local
datagram from 128.45.45.87, 9 1751 (31)
ns_req()
HEADER:

opcode = QUERY, id
header flags: rd
qdcount = 1, ancount

1025, rcode = NOERROR

0, nscount = 0, arcount = 0

QUESTIONS:
queens.dee.com, type = A, class = IN

req: nlookup(queens.dee.com) id 260 type= 1
req: found 'queens.dee.com' as 'queens.dee.com' (cname= 0)
wanted(4clc4, 1, 1) 1, 15
finddata: added 0 class 1 type 1 RRs
findns: np Ox4c7 a4
match(Ox4clc4, 1, 6) 1, 15
findns: np Ox2d464
match(Ox32104, 1, 6) 1, 6
findns: SOA found
req: leaving (queens.dee.com, rcode O)
make_rr(dee.com, 32104, 7fffddb3, 481, 1) 61
req: answer -> 128.45.45.87 9 (1751) id= 1025 Local
datagram from 128.45.45.15, 9 1574 (39)
ns_req()
HEADER:

opcode = QUERY, id
header flags: rd
qdcount = 1, ancount

QUESTIONS:

157, rcode NO ERROR

0, nscount 0, arcount = 0

localhost.cities.dec.com, type = A, class = IN

req: nlookup(localhost.cities.dec.com) id 40192 type= 1
req: found 'localhost.cities.dec.com' as 'localhost.cities.dec.com' (cname= 0)
wanted(2d5a4, 1, 1) 1, 1
make_rr(localhost.cities.dec.com, 2d5a4, 7fffddbb, 4 73, 1) 4
finddata: added 1 class 1 type 1 RRs
req: foundname = 1 count = 1 founddata = 1 cname = 0

sort_response(1)
findns: np Ox2d5c4
match(Ox2d5a4, 1, 6) 1, 1
findns: np Ox2d4a4
match(Ox31c04, 1, 6) 1, 6
findns: SOA found
req: leaving (localhost.cities.dec.com, rcode 0)
req: answer -> 128.45.45.15 9 (1574) id= 157 Local
datagram from 128.45.45.15, 9 1576 (40)
ns_req()
HEADER:

opcode = QUERY, id
header flags: rd
qdcount = 1, ancount

QUESTIONS:

156, rcode NO ERROR

0, nscount 0, arcount = 0

1.0.0.127.in-addr.arpa, type = PTR, class = IN

req: nlookup(1.0.0.127.in-addr.arpa) id 39936 type= 12
req: found '1.0.0.127.in-addr.arpa' as '1.0.0.127.in-addr.arpa' (cname= 0)
wanted(44c44, 1, 12) 1, 12
make_rr(1.0.0.127.in-addr.arpa, 44c44, 7fffddbc, 4 72, 1) 10
finddata: added 1 class 1 type 12 RRs
req: foundname = 1 count = 1 founddata = 1 cname = 0
sort_response(1)
findns: np Ox44a44
match(Ox44c44, 1, 6) 1, 12
findns: np Ox44a04
match(Ox32084, 1, 6) 1, 6
findns: SOA found
req: leaving (1.0.0.127.in-addr.arpa, rcode 0)
Req: answer -> 128.45.45.15 9 (1576) id= 156 Local
Debug turned OFF, Level 5

A.7.2 An Unhealthy named.run File

The following sample named.run file indicates that there is an error with
the BIND service. Notice the numerous QUESTIONS that are not
followed by ANSWERS. Notice, too, the numerous attempts to load BIND
name servers to answer queries.

Debug turned ON, Level 1
Debug turned ON, Level 2
Debug turned ON, Level 3
Debug turned ON. Level 4

Debug turned ON, Level 5

datagram from 128.45.45.93 port 2034, fd 7, len · 39
ns_req()
HEADER:

opcode = QUERY, id
header flags: rd
qdcount = 1, ancount

QUESTIONS:

1, rcode = NOERROR

0, nscount = 0, arcount

localhost.cities.dec.com, type = A, class = IN

req: nlookup(localhost.cities.dec.com) id 256 type= 1

0

req: found 'localhost.cities.dec.com' as 'localhost.cities.dec.com' (cname= 0)
wanted(2d564, 1, 1) 1, 1
make_rr(localhost.cities.dec.com, 2d564, 7fffddbb, 4 73, 1) 4 zone 1 ttl 0
finddata: added 1 class 1 type 1 RRs
req: foundname = 1 count = 1 founddata = 1 cname = 0
sort_response(1)
findns: np Ox2d584
match(Ox2d564, 1, 6) 1, 1
findns: np Ox2d4a4
match(Ox31c04, 1, 6) 1, 6
findns: SOA found
req: leaving (localhost.cities.dec.com, rcode 0)
req: answer -> 128.45.45.93 9 (2034) id= 1 Local

datagram from 128.45.45.93 port 2036, fd 7, len 47
ns_req()
HEADER:

opcode = QUERY, id
header flags: rd
qdcount = 1, ancount

QUESTIONS:

2, rcode = NOERROR

0, nscount = 0, arcount 0

wepel.cities.dec.com.cities.dec.com, type = A, class = IN

req: nlookup(wepel.cities.dec.com.cities.dec.com) id 512 type= 1
req: found 'wepel.cities.dec.com.cities.dec.com' as

'wepel.cities.dec.com.cities.dec.com' (cname= 0)
wanted(32444, 1, 1) 1, 15
finddata: added 0 class 1 type 1 RRs
findns: np Ox2d4e4
m~tch(Ox~2444. 1. fl) 1. 1 fi

match(Ox31c04, 1, 6) 1, 6
findns: SOA found
req: leaving (wepel.cities.dec.com.cities.dec.com, rcode 0)
req: answer -> 128.45.45.93 9 (2036) id=2 Local

datagram from 128.45.45.93 port 2037, fd 7, len 43
ns_req()
HEADER:

opcode = QUERY, id
header flags: rd
qdcount = 1, ancount

QUESTIONS:

3, rcode = NOERROR

0, nscount = 0, arcount

wepel.cities.dec.com.dec.com, type = A, class = IN

req: nlookup(wepel.cities.dec.com.dec.com) id 768 type= 1

0

req: found 'wepel.cities.dec.com.dec.com' as 'wepel.cities.dec.com.dec.com' (cname= 0)
wanted(4bec4, 1, 1) 1, 15
finddata: added 0 class 1 type 1 RRs
findns: np Ox4c624
match(Ox4bec4, 1, 6) 1, 15
findns: np Ox2d464
match(Ox31d84, 1, 6) 1, 6
findns: SOA found
req: leaving (wepel.cities.dec.com.dec.com, rcode 0)
req: answer -> 128.45.45.93 9 (2037) id= 3 Local

datagram from 128.45.45.93 port 2038, fd 7, len 35
ns_req()
HEADER:

opcode = QUERY, id
header flags: rd
qdcount = 1, ancount

QUESTIONS:

4, rcode = NOERROR

0, nscount = 0, arcount

wepel.cities.dec.com, type = A, class = IN

req: nlookup(wepel.cities.dec.com) id 1024 type= 1

0

req: found 'wepel.cities.dec.com' as 'wepel.cities.dec.com' (cname= 0)
wanted(2d504, 1, 1) 1, 1
make_rr(wepel.cities.dec.com, 2d504, 7fffddb7, 4 77, 1) 4 zone 1 ttl 0
finddata: added 1 class 1 type 1 RRs
req: foundname = 1 count = 1 founddata = 1 cname = 0
sort_response(1)

findns: np Ox2d524
match(Ox2d504, 1, 6) 1, 1
findns: np Ox2d4a4
match(Ox3lc04, 1, 6) 1, 6
findns: SOA found
req: leaving (wepel.cities.dec.com, rcode O)
req: answer -> 128.45.45.93 9 (2038) id= 4 Local

datagram from 128.45.45.93 port 2039, fd 7, len 28
ns_req()
HEADER:

opcode = QUERY, id
header flags: rd
qdcount = 1, ancount

QUESTIONS:

5, rcode = NOERROR

0, nscount = 0, arcount

muon.local, type = ANY, class = IN

req: nlookup(muon.local) id 1280 type= 255
req: missed 'muon.local' as " (cname= O)
findns: using cache
findns: np Ox5dec4
findns: 7 NS's added for "
ns_forw()
qnew(xlf604)
nslookup(nsp= x7fffdb88,qp= xlf604)
nslookup: NS SRI-NIC.ARPA cl t2 (xO)
nslookup: 2 ns addrs
nslookup: NS BRL-AOS.ARPA cl t2 (xO)
nslookup: 4 ns addrs
nslookup: NS A.IS I.EDU cl t2 (xO)
nslookup: 5 ns addrs
nslookup: NS GUNTER-ADAM.ARPA cl t2 (xO)
nslookup: 6 ns addrs
nslookup: NS C.NYSER.NET cl t2 (xO)
nslookup: 8 ns addrs
nslookup: NS TERP.DMD.EDU cl t2 (xO)
nslookup: 10 ns addrs total
retrytime: nstime lms.
schedretry(Oxlf604, 4sec)

0

forw: forw -> 10.1.0.17 7 (53) nsid= 9 id= 5 1260ms retry 4 sec

datagram from 10.1.0.17 port 53, fd 7, len 86
ns_req()

HEADER:
opcode = QUERY, id = 9, rcode = NXDOMAIN
header flags: qr aa ra
qdcount = 1, ancount = 0, nscount = 1, arcount = 0

QUESTIONS:
muon.local, type

NAME SERVERS:

ANY, class IN

type = SOA, class = IN, ttl = 86400, dlen 47
origin = SRI-NIC.ARP A
mail addr = HOSTMASTER.SRI-NIC.ARPA
serial= 880513, refresh= 1800, retry= 300, expire= 604800, min= 86400

qfindid(9)
USER response nsid= 9 id= 5
stime 579814526/240000 now 579814528/940000 rtt 2700
NS #0 addr 10.1.0.17 used, rtt 1692
NS #1 128.213.5.17 rtt now 1433
NS #2 26.1.0.13 rtt now 1481
NS #3 26.3.0.103 rtt now 3364
NS #4 192.33.4.12 rtt now 3881
NS #5 128.8.10.90 rtt now 3995
NS #6 128.20.1.2 rtt now 4328
NS #7 10.0.0.51 rtt now 5194
NS #8 192.5.25.82 rtt now 5194
NS #9 26.0.0.73 rtt now 5194
resp: ancount 0, aucount 1, arcount 0
doupdate(zone 0, savens 7fffd3b0, flags 19)
doupdate: dname type 6 class 1 ttl 86400
db_update(, Ox32084, Ox32084, 031, Ox5da44)
match(Ox5d744, 1, 6) 1, 2
match(Ox5d784, 1, 6) 1, 2
match(Ox5d7c4, 1, 6) 1, 2
match(Ox5d804, 1, 6) 1, 2
match(Ox5d844, 1, 6) 1, 2
match(Ox5d884, 1, 6) 1, 2
match(Ox5d8c4, 1, 6) 1, 2
match(Ox32004, 1, 6) 1, 6
db_update: flags = Ox19, sizes = 57, 57 (0)
db_update: new ttl 579900928, + 86400
update failed (DATAEXISTS)
resp: leaving auth NO

send_msg -> 128.45.45.93 (UDP 9 2039) id= 5
qp lf604 q_id: 1280 q_nsid: 2304 q_msglen: 28 q_naddr: 10 q_curaddr: 0
q_next: 0 q_link: 0
qremove(x lf604)
unsched(Oxlf604, 5)
qfree(xlf604)

datagram from 128.45.45.93 port 2040, fd 7, len 34
ns_req()
HEADER:

opcode = QUERY, id
header flags: rd
qdcount = 1, ancount

QUESTIONS:

6, rcode = NOERROR

0, nscount = 0, arcount

tampa.cities.dec.com, type = MX, class = IN

req: nlookup(tampa.cities.dec.com) id 1536 type= 15

0

req: found 'tampa.cities.dec.com' as 'muon.cities.dee.com' (cname= O)
wanted(3b4e4, 1, 15) 1, 1
finddata: added 0 class 1 type 15 RRs
findns: np Ox3b504
match(Ox3b4e4, 1, 6) 1, 1
findns: np Ox2d4a4
match(Ox31c04, 1, 6) 1, 6
findns: SOA found
req: leaving (tampa.cities.dec.com, rcode O)
req: answer -> 128.45.45.93 9 (2040) id= 6 Local

datagram from 128.45.45.93 port 2041, fd 7, len 34
ns_req()
HEADER:

opcode = QUERY, id
header flags: rd
qdcount = 1, ancount

QUESTIONS:

7, rcode = NOERROR

0, nscount = 0, arcount

tampa.cities.dec.com, type = A, class = IN

req: nlookup(tampa.cities.dec.com) id 1792 type= 1

0

req: found 'tampa.cities.dec.com' as 'muon.cities.dee.com' (cname= 0)
wanted(3b4e4, 1, 1) 1, 1
make_rr(tampa.cities.dec.com, 3b4e4, 7fffddb6, 4 78, 1) 4 zone 1 ttl 0
finddata: added 1 class 1 type 1 RRs

req: foundname = 1 count
sort_response(1)
findns: np Ox3b504
match(Ox3b4e4, 1, 6) 1, 1
findns: np Ox2d4a4
match(Ox31c04, 1, 6) 1, 6
findns: SOA found

1 founddata

req: leaving (tampa.cities.dec.com, rcode 0)

1 cname

req: answer -> 128.45.45.93 9 (2041) id= 7 Local
Debug turned OFF, Level 5

0

Appendix B

This appendix provides a copy of the BIND questionnaire that you need to
complete and send to the NIC domain registrar to register your BIND
domain. To obtain an on-line copy of the questionnaire, you can use the
ftp command.

The following example shows a successful ftp exchange. In this example
the site sri-nic.arpa is opened, the help option is invoked, and the BIND
domain registration questionnaire is copied to the file /tmp/questionnaire on
the local system:

ftp
ftp> open
(to) sri-nic.arpa
Connected to sri-nic.arpa.
220 SRI-NIC.ARPA FTP Server Process 5Z(47)-6 at Fri 10-Jun-88 12:07-PDT
Name (sri-nic.arpa:liza): anonymous
Password (sri-nic.arpa:anonymous):
331 ANONYMOUS user ok, send real ident as password.
230 User ANONYMOUS logged in at Fri 10-Jun-88 12:07-PDT

ftp> help
Commands may be abbreviated. Commands are:

di r mget
append form mkdi r
asc i i get ml s
be I I glob mode
cd led prompt

ftp> get
(remote-file) netinfo:domain-template.txt
(I oca I - f i I e) /tmp/quest i onna ire
200 Port 4.30 at host 128.45.45.93 accepted.

quit
quote
recv
binary
send

150 ASCII retrieve of <NETINFO>DOMAIN-TEMPLATE.TXT.28 started.
226 Transfer completed. 6129 (8) bytes transferred.
6129 bytes received in 4.62 seconds (1.3 Kbytes/s)

trace
type
user
hash

(continued on next page)

ftp> close
221 QUIT command received. Goodbye.
ftp> bye

Upon completing a successful ftp exchange, as shown in the previous
example, here is what you receive:

#more /tmp/questionnaire

[NETINFO:DOMAIN-TEMPLATE.TXT]

To establish a domain, the following information must be sent to

[2/88]

the NIC Domain Registrar (HOSTMASTER@ SRI-NIC.ARPA). Questions
may be addressed to the NIC Hostmaster by electronic mail at the
above address, or by phone at (415) 859-5539 or (800) 235-3155.

NOTE: The key people must have electronic mailboxes and NIC
"handles," unique NIC database identifiers. If you have access to
"WHO IS", please check to see if you are registered and if so, make
sure the information is current. Include only your handle and any
changes (if any) that need to be made in your entry. If you do not
have access to 11 WHO IS 11

, please provide all the information indicated
and a NIC handle will be assigned.

(1) The name of the top-level domain to join.

For example: COM

(2) The NIC handle of the administrative head of the organization.
Alternately, the person's name, title, mailing address, phone number,
organization, and network mailbox. This is the contact point for
administrative and policy questions a[lout the domain. In the case of
a research project, this should be the principal investigator.

For example:

Administrator

Organization The Net Worthy Corporation
Name Penelope Q. Sassafrass
Title President
Mail Address The NetWorthy Corporation

4676 Andrews Way, Suite 100
Santa Clara, CA 94302-1212

Phone Number (415) 123-4567

NIC Handle PQS

(3) The NIC handle of the technical contact for the domain.
Alternately, the person's name, title, mailing address, phone number,
organization, and network mailbox. This is the contact point for
problems concerning the domain or zone, as well as for updating
information about the domain or zone.

For example:

Technical and Zone Contact

Organization
Name
Title

The Net Worthy Corporation
Ansel A. Aardvark

Executive Director
Mail Address The NetWorthy Corporation

4676 Andrews Way, Suite 100
Santa Clara, CA. 94302-1212

Phone Number (415) 123-6789
Net Mailbox Aardvark@ ECHO.TNC.COM
NIC Handle AAA2

(4) The name of the domain (up to 12 characters). This is the name
that will be used in tables and lists associating the domain with the
domain server addresses. [While, from a technical standpoint, domain
names can be quite long (programmers beware) , shorter names are
easier for people to cope with.]

For example: TNC

(5) A description of the servers that provide the domain service for
translating names to addresses for hosts in this domain, and the date
they will be operational.

A good way to answer this question is to say "Our server is
supplied by person or company X and does whatever their standard
issue server does."

For example: Our server is a copy of the one operated by
the NIC; it will be installed and made operational on
1 November 1987.

(6) Domains must provide at least two independent servers for the
domain. Establishing the servers in phvsicallv separate locations

and on different PSNs is strongly recommended. A description of
the server machine and its backup, including

(a) Hardware and software (using keywords from the Assigned
Numbers RFC).

(b) Host domain name and network addresses (which host on which
network for each connected network) .

(c) Any domain-style nicknames (please limit your domain-style
nickname request to one)

For example:

- Hardware and software

VAX-11/750
IBM-PC
DEC-1090

and UNIX, or
and MS-DOS, or
and TOPS-20

- Host domain names and network addresses

BAR.FOO.COM 10.9.0.193 on ARPANET

- Domain-style nickname

BR.FOO.COM (same as BAR.FOO.COM 10.9.0.13 on ARPANET)

(7) Planned mapping of names of any other network hosts, other than
the server machines, into the new domain's naming space.

For example:

BAR-F002.ARPA (10.8.0.193) -> F002.BAR.COM
BAR-F003.ARPA (10.7.0.193) -> F003.BAR.COM
BAR-F004.ARPA (10.6.0.193) -> F004.BAR.COM

(8) An estimate of the number of hosts that will be in the domain.

(a) Initially
(b) Within one year
(c) Two years
(d) Five years.

For example:

(a) Initially
(b) One year
(c) Two years
(d) Five years

50
100
200

500

(9) The date you expect the fully qualified domain name to become
the official host name in HOSTS.TXT.

Please note: Registration of this domain does not imply an
automatic name change to previously registered ARP ANET or MILNET
hosts that will be included in this domain. If changing to a
fully qualified domain name (e.g., FOO.BAR.COM) causes a change
in the official host name of an ARP ANET or MILNET host, DCA
approval must be obtained. This should be done after your domain
name is approved by Hostmaster. Allow 10 working days for your
requested changes to be processed. ARP ANET (network 10) sites
should contact ARPANETMGR@ DDNl.ARPA. MILNET (network 26) sites
should contact MILNE TM GR@ DDNl.ARP A.

(10) Please describe your organization briefly.

For example: The Net Worthy Corporation is a consulting
organization of people working with UNIX and the C language in an
electronic networking environment. It sponsors two technical
conferences annually and distributes a bimonthly newsletter.

Appendix C

This appendix lists the papers, articles, and RFCs associated with the
BIND service that you may find useful. You can obtain the RFCs online
by using the ftp command as shown in Appendix B. See ftp(le) in the
ULTRIX Ref ere nee Pages for further information.

[Dunlap 86a]

[Dunlap 86b]

[Dyer 87]

[IEN-116]

Dunlap, K. J., Bloom, J. M., "Experiences Implementing
BIND, A Distributed Name Server for the DARPA
Internet", Proceedings USENIX Summer Conference,
Atlanta, Georga. June 1986, pages 172-181

Dunlap, K. J., "Name Server Operations Guide for
BIND", Unix System Manager's Manual, SMM-11. 4.3
Berkeley Software Distribution, Virtual VAX-11 Version.
University of California. April 1986

Dyer, S., and F. Hsu, "Hesiod", Project Athena Technical
Plan - Name Service, April 1987, version 1.9.

Postel J., "Internet Name Server", IEN-116,
USC/Information Sciences Institute, August 1979.

[Mockapetris 88] Mockapetris, P. V., Dunlap, K. J., "Development of the
Domain Name System", Proceedings ACM SIGCOMM
1988 Symposium, Stanford University, Stanford,
California, August 1988.

[Quarterman 86] Quarterman, J., and J. Hoskins, "Notable Computer
Networks" ,Communications of the ACM, October 1986,
volume 29, number 10.

[RFC-882] P. Mockapetris, "Domain names - Concepts and
Facilities," RFC-882, USC/Information Sciences Institute,
November 1983.

[RFC-883] P. Mockapetris, "Domain names - Implementation and
Specification," RFC-883, USC/Information Sciences
Institute, November 1983.

[RFC-920] J. Postel and J. Reynolds, "Domain Requirements",
RFC-920, USC/Information Sciences Institute October
1984.

[RFC-973]

[RFC-974]

[RFC-1031]

[RFC-1032]

[RFC-1033]

[RFC-1034]

[RFC-1035]

P. Mockapetris, "Domain System Changes and
Observations", RFC-973, USC/Information Sciences
Institute, January 1986.

C. Partridge, "Mail routing and the domain system",
RFC-97 4, CS NET CIC BBN Labs, January 1986.

W. Lazear, "MILNET Name Domain Transition", RFC-
1031, November 1987.

M. K. Stahl, "Establishing a Domain - Guidelines for
Administrators", RFC-1032, November 1987.

M. K. Lottor, "Domain Administrators Operations Guide",
RFC-1033, November 1987.

Mockapetris, P. V., "Domain Names - Concepts and
Facilities" RFC 1034, USC/Information Sciences Institute,
November 1987.

Mockapetris, P. V., "Domain names - Implementation and
Specification," RFC 1035, USC/Information Sciences
Institute, November 1987.

Note

In the references listed, RFC refers to papers in the ARP A
Request for Comments series and JEN refers to ARPA Internet
Experiment Notes. Both the RF Cs and IEN s may be obtained
from the Network Information Center, SRI International, Menlo
Park, CA 94025, or from the authors of the papers.

Appendix D

This appendix provides sample interactive sessions with the nslookup
command. These samples are intended to help you get started using the
nslookup command. Here are the tasks shown in this appendix:

• Getting nslookup help

• Seeing which nslookup options are set

• Listing hosts in a domain

• Finding mail exchangers

• Finding the start of authority (SOA)

• Finding servers for a domain

• Obtaining a debug trace

1.1 Getting nslookup Help
To see a list of the nslookup commands, type a question mark (?) at the
nslookup prompt:

nslookup
Default Server: wepel .cities.dee.com
Address: 0.0.0.0

> ?
Commands:
NAME
NAME! NAME2
help or ?
set OPTION

a I I
ALL
[no]debug
[no]d2
[no] def name
[no] recurse
[no]vc
domain=NAME

(identifiers are shown in uppercase, []means optional)
- print info on host/domain NAME using default server

as above, but use NAME2 as server
print help information
set an option
print options, current server and host
print options, current server and host, state info
print debugging information
print exhaustive debugging information
append domain name to each query
ask for recursive answer to query
always use a virtual circuit
set default domain name to NAME

(continued on next page)

root=NAME
retry=X
timeout=X
querytype=X
type=X

server NAME
!server NAME
finger [NAME]
root
Is [-adhms] DOMAIN

view FILE

- set root server to NAME
- set number of retries to X
- set time-out i nterva I to X
- set query type to A,CNAME,HINFO,MB,MG,MINFO,MR,MX
- set query type to A,CNAME,HINFO,MB,MG,MINFO,MR,MX
- set default server to NAME, using default server
- set default server to NAME, using initial server
- finger the optional NAME
- set current default server to the root
[>FILE] - I ist DOMAIN, optional output to FILE
-a I ist CNAME entries
-d list all entries
-h I ist HINFO entries
-m I ist MX entries
-s I ist WKS entries
- sort an 'Is' output file and view it with more

D.2 Seeing Which nslookup Options Are Set
To see which nslookup options are set, use the set all command:

nslookup
Default Server: wepel .cities.dee.com
Address: o.o:o.o

>set all
Default Server: wepel .cities.dee.com
Address: 0.0.0.0

Set options:
debug def name search recurse novc
querytype=A class=IN
domain=cities.dec.com

timeout=4 retry=4

sea r ch I i st : c i t i es . de c . com de c . com
root=sri-nic.arpa

D.3 Listing Hosts in a Dom a in
The following example shows how to use the nslookup command to create
a file listing the hosts in the domain cities.dee.com, and to then view that
file:

nslookup
Default Server: wepel .cities.dee.com
Address: 0.0.0.0

(continued on next page)

> Is cities.dee.com >filename
[wepe I . cities. dee. com]
##########
Received 531 records.
> view f i I ename
amherst
ayers
be r I in
boston
cannes
chandler
chicago
denver
gal way
ho I Ii s
ipswich
laconia
london
mad rid
mason
mi I ford
nashua
newyork
--More-- <RETURN>
par is
phoenix
tempe
temple
w i I ton
<CTRL/c>
> <CTRL/d >

128.67.45.1
128.67.42.2
128.67.45.3
128.67.45.4
128.67.45.5
128.67.45.6
128.67.45.7
128.67.46.8
128.67.45.9
128.67.49.10
128.67.45.11
128.67.48.12
128.67.45.13
128.67.45.14
128.67.45.15
128.67.46.16
128.67.45.17
128.67.45.18

128.67.42.19
128.67.46.20
128.67.45.21
128.67.45.22
128.67.45.23

D.4 Finding Mail Exchangers
The following example shows how to use the nslookup command to find
the mail exchanger for any system in the domain wepel.cities.dec.com.
Note the use of a bogus host name. In the following example, the bogus
host name is nohost:

nslookup
Default Server: wepel .cities.dee.com
Address: 0.0.0.0

> set type=mx
> nohost
Server: wepel .cities.dee.com
Address: 0.0.0.0

(continued on next page)

nohost.cities.dec.com pref= 51, mai I exchanger= noun.cities.dee.com
nohost.cities.dec.com pref= 50, mai I exchanger= wepel .cities.dee.com
noun.cities.dee.com inet address 128.45.45.79
wepel .cities.dee.com inet address= 128.45.45.93
> wepel
Server: wepel .cities.dee.com
Address: 0.0.0.0

cities. dee. com origin = wepe I . cities. dee. com
mai I addr = doe.wepel .cities.dee.com
serial=lO, refresh=1800, retry=3600, expire=1209600, min=86400

D.5 Finding the Sta rt of Authority
The following sample session shows how to use the nslookup command to
find the start of authority for the hosts named wepel and decwrl.dec.com:

nslookup
Default Server: wepel .cities.dee.com
Address: 0.0.0.0

> set type=SOA
> wepel
Server: wepel .cities.dee.com
Address: 0.0.0.0

c i t i es . de c . com or i g i n = we p e I . c i t i es . de c . com
ma i I add r = doe. wepe I . cities. dee. com
serial=lO, refresh=1800, retry=3600, expire=1209600, min=86400

> decwrl .dee.com.
Server:
Address:

wepe I . cit i es. dee. com
0.0.0.0

dee.com origin= decwrl .dee.com
mai I addr = postmaster.decwrl .dee.com
serial=197, refresh=43200, retry=3600, expire=1209600, min=86400

> <CTRL/d >

D.6 Finding Servers for a Domain
The following example shows how to use the nslookup command to find
the servers for the domain mit.edu.:

nslookup
Default Server: wepel .cities.dee.com
Address: 0.0.0.0

(continued on next page)

>server sri-nic.arpa.
Default Server: sri-nic.arpa
Address: 26.0.0.73

> set domain=mit.edu.
> Is
Server: sri-nic.arpa
Address: 26.0.0.73

Name: ls.mit.edu.
Served by:
- MIT-STRAWS.ARPA

18.71.0.151
MIT. EDU

- W20NS. MIT. EDU
18.70.0.160
MIT.EDU

- BITSY. MIT. EDU
18.72.0.3
MIT. EDU

- LITHIUM.LCS.MIT.EDU
18.26.0.121
MIT. EDU

> <CTRL/d>

D.7 Obtaining a Debug Trace
The following example shows how to use the nslookup command to help
debug the BIND service:

nslookup
Def au It Server: wepe I . cit i es. dee. com
Address: 0.0.0.0

> set debug
> set d2
> foobar
Server: wepel .cities.dee.com
Address: 0.0.0.0

res_mkquery(O, foobar.cities.dec.com, 1, 1)

SendRequest ()
HEADER:
opcode = QUERY, id = 1, rcode = NOERROR
header flags: query, want recursion
questions= 1, answers= 0, n.s. = 0, additional 0

(continued on next page)

QUESTIONS:
foobar.cities.dec.com, type

Got answer:
HEADER:

A, class

opcode = QUERY, id = 1, re ode = NOERROR
header f I ags: resp, au th. answer, want
questions= 1, answers= 0, n.s. = 0,

QUESTIONS:
foobar.cities.dec.com, type

ADDITIONAL RECORDS:
-> cities.dee.com

A, class

IN

recursion, recursion avai I.
additional = 1

IN

type= SOA, class= IN, ttl = 86400,
origin= wepel .cities.dee.com

dlen 37

ma i I add r = doe. wepe I . cit i es. dee. com
serial=lO, refresh=1800, retry=3600, expi re=1209600, min=86400

Name:

> noun
Server:
Address:

foobar.cities.dec.com

wepel .cities.dee.com
0.0.0.0

res_mkquery(O, noun.cities.dee.com, 1, 1)

SendRequest ()
HEADER:
opcode = QUERY, id = 2, re ode = NOERROR
header flags: query, want recursion
questions= 1, answers= 0, n.s. = 0, additional 0

QUESTIONS:
noun.cities.dee.com, type

Got answer:
HEADER:

A, class

opcode = QUERY, id = 2, re ode = NOERROR
header f I ags: resp, au th. answer, want
questions= 1, answers= 1, n.s. = 0,

QUESTIONS:
noun.cities.dee.com, type

ANSWERS:
A, class

IN

recursion, recursion avai I.
additional = 0

IN

(continued on next page)

-> noun.cities.dee.com
type= A, class= IN, ttl 86400, dlen 4
inet address= 128.45.45.79

Name:
Address:

noun.cities.dee.com
128.45.45.79

> set type=SOA
> noun
Server:
Address:

wepel .cities.dee.com
0.0.0.0

res_mkquery(O, noun.cities.dee.com, 1, 6)

SendRequest ()
HEADER:
opcode= QUERY, id= 3, rcode = NOERROR
header flags: query, want recursion
questions= 1, answers= 0, n.s. = 0, additional 0

QUESTIONS:
noun.cities.dee.com, type

Got answer:
HEADER:

SCA, class

opcode = QUERY, id = 3, re ode = NOERROR
header f I ags: resp, aut h. answer, want
questions= 1, answers= 0, n.s. = 0,

QUESTIONS:
noun.cities.dee.com, type

ADDITIONAL RECORDS:
-> cities.dee.com

SOA, class

IN

recursion, recursion avail.
additional = 1

IN

type= SCA, class= IN, ttl = 86400,
origin = wepe I . cities. dee. com

dlen 37

ma i I add r = doe. wepe I . cities. dee. com
se r i a I =10, ref resh=1800, ret ry=3600,

cities.dee.com

expi re=1209600, min=86400

type= SCA, class= IN, ttl = 86400, dlen 37
origin = wepe I . cities. dee. com
ma i I add r = doe. wepe I . cities. dee. com
serial=lO, refresh=1800, retry=3600, expire=1209600, min=86400

(continued on next page)

> decwrl .dee.com.
Server: wepel .cities.dee.com
Address: 0.0.0.0

res_mkquery(O, decwrl .dee.com, 1, 6)

SendRequest ()
HEADER:
opcode = QUERY, id = 4, re ode = NOERROR
header flags: query, want recursion
questions= 1, answers= 0, n.s. = 0, additional 0

QUESTIONS:
decwrl .dee.com, type SOA, class IN

Got answer:
HEADER:
opcode = QUERY,
header flags:
questions= 1,

QUESTIONS:

id = 4, rcode = NOERROR
resp, auth. answer, want
answers= 0, n.s. = 0,

decwrl .dee.com, type
ADDITIONAL RECORDS:

SOA, class IN

- > dee. com

recursion, recursion avai I.
additional = 1

type= SOA, class= IN, ttl = 83633, dlen 35
origin= decwrl .dee.com
mai I addr = postmaster.decwrl .dee.com
serial=197, refresh=43200, retry=3600, expire=1209600, min=86400

dee.com
type= SOA, class= IN, ttl = 83633, dlen 35
o r i g i n = de cw r I . de c . com
mai I addr = postmaster.decwrl .dee.com
se r i a I =197, ref resh=43200, ret ry=3600, exp i re=1209600, mi n=86400

> <CTRL/d >

A

address data file entry
defined, 2-18

B

Berkeley Internet Name Domain
See BIND

BIND client
automatic setup, 2-1 to 2-2
defined, 1-8
manual setup, 2-2 to 2-4
named daemon, 2-3n

BIND file entries
format of, 2-24

BIND file entry
defined, 2-13
format of, 2-13

BIND query
resolving, 1-8 to 1-9

BIND server
See also caching server
See also forwarding server
See also master server
See also root server
See also slave server
automatic setup, 2-4 to 2-6
caching, 1-5
defined, 1-4

BIND server (cont.)
forwarding, 1-5 to 1-7
indication of, 2-3n
manual setup, 2-6 to 2-13
master, 1-5
root, 1-4 to 1-5
slave, 1-7

BIND service
advantage of, 1-1
defined, 1-1
failure causes, 4-1

Index

further information, 3-8 to 3-9
BIND Service

introduction, 1-9
BIND service

managing, 3-1 to 3-9
resolver, 1-1
server, 1-1
setting up, 2-1 to 2-24
starting, 2-6
starting without rebooting, 2-6n
troubleshooting, 4-1 to 4-7
two parts, 1-1
utilities using, 1-9
with no forwarder, 1-7n

bindsetup command
command line, 2-2e
defined, 2-1
failure of, 2-2n
running, 2-1, 2-4

BITNET network
contacting, 3-4

boot file
default, 2-4

c

editing, 2-7 to 2-10
sample caching server, A-3
sample primary master server, A-1
sample secondary master server, A-2
sample slave server, A-2

cache file
default, 2-5

caching server
defined, 1-5

canonical name
See fully qualified

CNAME data file entry
defined, 2-20

CSNET network
contacting, 3-4

D

DARPA network
contacting, 3-4

data file
updating, 3-5

data file directory
default, 2-4

data file entry
address, 2-18
CNAME, 2-20
HINFO, 2-18
include, 2-15
MB, 2-22
MG, 2-23
MINFO, 2-23
MR, 2-22

data file entry (cont.)
MX, 2-24
NS, 2-17
origin, 2-15
PTR, 2-21
SOA, 2-16
WKS, 2-19

debug files
reviewing, 4-3

domain
case insensitive, 3-3n
defined, 3-1, 3-2
fully qualified name, 3-2
maintaining, 3-1 to 3-2
naming, 3-2
relative name, 3-2
subdomain of, 3-2

domain administrator
defined, 3-1
duties of, 3-1

domain hierarchy, 1-1, 1-2f, 1-2f
label, 1-1
leaf domain, 1-1
root, 1-1
top-level domain, 1-2

domain name
trailing period, 2-2n

F

forwarding server
defined, 1-5

ftp command, B-le

G

gethostbyname routine
with BIND, 1-8

H

HINFO data file entry
defined, 2-18

host
naming, 3-2

host file
default, 2-5

host name
obtaining, 3-6
setting, 2-3

include data file entry
defined, 2-15

IP address
obtaining, 3-6

L

local host file
default, 2-5

M

master server
defined, 1-5

MB data file entry
defined, 2-22

MG data file entry
defined, 2-23

MINFO data file entry
defined, 2-23

MR data file entry
defined, 2-22

MX data file entry
bogus name, 3-6
defined, 2-24

N

named daemon
inetd, 4-2n
obtaining PID, 4-6
process number, 2-6
sending signals to, 4-6 to 4-7

named. boot file
defined, A-1

named.ca file
defined, 2-10

name<Ldump file
reviewing, 4-4

named.hosts file
defined, 2-10

named.local file
defined, 2-10

named. pid file
process number, 2-6

named.rev file
defined, 2-11

named.run file
reviewing, 4~4

named.stats file
reviewing, 4-5

NIC
address, 1-4
phone number, 1-4

NIC whois service
See whois service

NS data file entry
defined, 2-17

nslookup command
debug trace, D-5
finding MX, D-3, D-3e to D-4e
finding servers, D-4, D-4e to D-5e
finding SOA, D-4, D-4e
getting debug trace, D-5e to D-8e
getting help, D-1, D-le
host info, 3-6
listing hosts, D-2, D-2e to D-3e

nslookup command (cont.)
obtaining IP info, 3-6
viewing options, D-2

nsquery command
obtaining host info, 3-7
obtaining IP info, 3-7

0

origin data file entry
defined, 2-15

p

PTR data file entry
defined, 2-21

public networks
registering with, 3-3 to 3-5

Q

questionnaire (bind)
sample of, B-1 to B-5

R

reboot system
command line, 2-2e

resolv .conf file
entries of, 2-3
reviewing, 4-2

resolver
See also resolv .conf file

resolver file
creating, 2-3

resource record
See data file
See data file entries
See also BIND file entry

resource record (cont.)
defined, 2-13

reverse local host file
default, 2-5

root server

s

defined, 1-4
list of, 1-4
setting up, A-ln

sendmail.cf file
editing, 2-ln

services file
specifying port, 1-1

services order file
See svcorder file

slave server
defined, 1-7

SOA data file entry
defined, 2-16

starting BIND
See reboot system

svcorder file
entries of, 2-5
named entry, 2-5

syslog file

T

reviewing, 4-3
sample of, 4-3

technical and zone contact
defined, 3-2

top-level domain
country, 3-3n
registering, 3-2

trailing period
significance of, 1-1

w

whois service
using, 3-7 to 3-8

W KS data file entry
defined, 2-19

z

zone
defined, 1-1, 3-2

HOW TO ORDER ADDITIONAL DOCUMENTATION

DIRECT TELEPHONE ORDERS

In Continental USA
and New Hampshire,
Alaska or Hawaii
call 800-DIGITAL

In Canada
call 800-267-621 5

DIRECT MAIL ORDERS (U.S. and Puerto Rico*)

DIGITAL EQUIPMENT CORPORATION
P.O. Box CS2008

Nashua, New Hampshire 03061

DIRECT MAIL ORDERS (Canada)

DIGITAL EQUIPMENT OF CANADA LTD.

100 Herzberg Road
Kanata, Ontario K2K 2A6
Attn: Direct Order Desk

I INTERNATIONAL I
DIGITAL EQUIPMENT CORPORATION

PSG Business Manager
c/o Digital's local subsidiary

or approved distributor

Internal orders should be placed through the Software Distribution Center (SOC), Digital
Equipment Corporation, Westminster, Massachusetts 014 7 3

*Any prepaid order from Puerto Rico must be placed
with the Local Digital Subsidiary:

809-754-7575

Reader's Comments

ULTRIX-32

Guide to the BIND Service
AA-LY21A-TE

Note: This form is for document comments only. DIGITAL will use comments
submitted on this form at the company's discretion. If you require a writ­
ten reply and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please

make suggestions for improvement. -------------------

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

D Assembly language programmer
D Higher-level language programmer

D Occasional programmer (experienced)

D User with little programming experience

D Student programmer

D Other (please specify)------------------

Name Date------------

Organization----------------------------

I
I
I
I
I
I
I
I

----Do Not Tear - Fold Here and Tape--------------------------------------'

~nmnomo 111111

BUSINESS REPL V MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE Will BE PAID BY ADDRESSEE

Digital Equipment Corporation
Documentation Manager
UL TRIX Documentation Group
ZK03-3/X18
Spit Brook Road
Nashua, N.H.

03063

No Postage

Necessary

if Mailed in the

United States

----Do Not Tear- Fold Here and Tape-------------------------------------

!
l

I Q
I b11
I §
•< I ...
I ::t ,o
I
I
I
I

Reader's Comments

ULTRIX· 32

Guide to the BIND Service
AA-LY21A-TE

Note: This form is for document comments only. DIGITAL will use comments
submitted on this form at the company's discretion. If you require a writ­
ten reply and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please

make suggestions for improvement. ------------------

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

D Assembly language programmer

D Higher-level language programmer

D Occasional programmer (experienced)

D User with little programming experience

D Student programmer

D Other (please specify)------------....,-----

Organization---------------------------

Street-----------------------------~

I
I
I
I
I
I
I
I

----Do Not Tear· Fold Here and Tape------------------------------------...1

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

Digital Equipment Corporation
Documentation Manager
UL TRIX Documentation Group
ZK03-3/X18
Spit Brook Road
Nashua, N.H.

03063

No Postage

Necessary

if Mailed in the

United States

- - - - Do Not Tear · Fold Here and Tape - - - - - - - - - - - - -- -

