VAX-11
PASCAL Primer

Order No. AA-J180B-TE

October 1982

This tutorial document introduces the VAX-11 PASCAL language. it is
intended to be used by programmers who are new to VAX-11 PASCAL.

REVISION/UPDATE INFORMATION: This revised document supersedes
the VAX-11 PASCAL Primer
(Order No. AA-J180A-TE).
OPERATING SYSTEM AND VERSION: VAX/VMS V3.1

SOFTWARE VERSION: . VAX-11 PASCAL V2.0

digital equipment corporation - maynard, massachusetts

First Printing, April 1980
Revised, October 1982

The information in this document is subject to change without notice and should not be con-
strued as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1980, 1982 by Digital Equipment Corporation.
All Rights Reserved.

Printed in U.S.A.

A postpaid READER’S COMMENTS form is included on the last page of this document. Your
comments will assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSX
DEC/CMS ‘ Edusystem UNIBUS
DECnet IAS VAX
DECsystem-10 MASSBUS VMS
DECSYSTEM-20 PDP

VT
DECUS PDT mﬂgnnan
DECwriter RSTS .

ZK2096
HOW TO ORDER ADDITIONAL DOCUMENTATION
In Continental USA and Puerto Rico céil 800-258-1710 DIRECT MAIL ORDERS (CANADA)
In New Hampshire, Alaska, and Hawaii call 603-384-6660 Digital Equipment of Canada Ltd.
940 Belfast Road
In Canada call 613-234-7726 (Ottawa-Hull) Ottawa, Ontario K1G 4C2
800-267-6146 (all other Canadian) Attn: A&SG Business Manager
DIRECT MAIL ORDERS (USA & PUERTO RIéO)* DIRECT MAIL ORDERS (INTERNATIONAL)
Digital Equipment Corporation Digital Equipment Corporation
P.O. Box CS2008) A&SG Business Manager
Nashua, New Hampshire 03061 c/o Digital's local subsidiary or
approved distributor
*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)
Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

11/82-14

Contents

Preface

Chapter 1

Chapter 2

Chapter 3

Page
vii
Introduction
1.1 Program Development, 1-2
1.1.1 Creating the Program. e 1-4
1.1.2 Compiling the Program 1-4
'1.1.3 Linking the Object Module 1-5
1.1.4 Executing the Program 1-5
1.2 A PASCAL Program Example 1-6
1.3 The Structure of a PASCAL Program. 1-6
1.3.1 The Program Heading 1-8
1.3.2 The Declaration Section. 1-9
1.3.3 The Executable Section. 1-10
Data Concepts
21 Types.o e e e e e 2-1
2.2 Scalar Types oo 2-2
2.21 The Type INTEGER 2-3
222 TheTypeREAL 2-3
2.2.2.1 Decimal Notation 2-3
2.2.2.2 Floating-Point Notation 2-4
2.2.3 The Type BOOLEAN. 2-4
224 TheTypeCHAR 2-5
2.3 Variables e e 2-5
2.4 EXpressions e e e e e e e e e e e e 2-6
2.4.1 Arithmetic Expressions 2-6
2.4.2 Relational Expressions 2-9
2.4.3 Logical Expressions. e e e e e e e e 2-10
2.4.4 Precedence Rules for Operators 2-11
Declarations and Definitions
3.1 Symbolic Names. L 3-1
3.1.1 Reserved Words and Predeclared Identifiers 3-2
3.1.1.1 ReservedWords 3-2
3.1.1.2 Predeclared Identifiers 3-2
3.1.2 User Identifiers. 00 3-3
3.2 Constant Definitions 3-4
3.3 Type Definitions. 0o e e e e 3-5
3.4 Variable Declarations 3-6
3.5 User-Defined Scalar Types 3-7
3.56.1 Enumerated Typeso 3-8
3.5.2 Subrange Types 3-10

iil

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Fundamental PASCAL Statements

4.1 The Assignment Statement. e e e e e e e e

v

4-1

4.2 The Compound Statement 4-3

4.3 The IF-THEN Statement 4-3

4.4 The IF-THEN-ELSE Statement 4-5

45 The FOR Statement 4-8
Reading and Writing Data

5.1 The Predeclared Text Files Input and Output. 5-1

52 Reading Data e 5-2

5.2.1 The READ Procedure. 5-2

5.2.2 The READLN Procedure 5-4

53 WritingData 5-5

5.3.1 The WRITE Procedure 5-5

5.3.2 The WRITELN Procedure. 5-9

5.4 The Predeclared Functions EOLN and EOF. 5-10

5.4.1 The EOLN Function R 5-10

5.4.2 The EOF Function 5-11

Structured Types: the Array and the Record

6.1 Arrays. e e e e e e e e e e 6-1

6.1.1 Multidimensional Arrays 6-5

6.1.2 Character Strings. 6-8

6.1.2.1 Character-String Constants. 6-8

6.1.2.2 Character-String Variables 6-9

6.2 Records e e 6-11
More PASCAL Statements

7.1 The REPEAT Statement. S

7.2 The WHILE Statement 7-5

7.3 The CASE Statement 7-1

7.4 The Program Class__Data — An Example 7-10

7.4.1 The Declaration Section. 7-12

7.4.2 The Executable Section. . P T 7-12
Procedures and Functions

81 Procedureso e e e 8-6

8.1.1 Declaring a Procedure. 8-6

8.1.2 Calling a Procedure. 8-6

82 Functionso 8-7

8.2.1 Declaring a Function 817

8.2.2 Invoking a Function, 8-8

8.3 Parameters Lo 8-8

8.3.1 Actual and Formal Parameters 8-9
8.3.2 Value and Variable Parameters 8-10
8.3.2.1 Value Parameters 8-10
8.3.2.2 Variable Parameters 8-11

Appendix A PASCAL Defined Names

A.1 Standard Reserved Words A-1
A.2 Nonstandard Reserved Words. A-1
A.3 Predeclared Identifiers A-2

Appendix B ASCII Character Set

Appendix C Summary of Predeclared Procedures and Functions

Glossary

Index

Figures
1-1 Program Development Process 1-3
1-2 Sample Program Grocery_Bill 1-7
1-3 Executable Section of Grocery_ Bill 1-10
1-4 Sample Run of Grocery_Bill. 1-12
4-1 The IF-THEN Statement Flow Chart. 4-4
4-2 The IF-THEN-ELSE Statement Flow Chart. 4-6
4-3 The FOR Statement Flow Charts. 4-9
5-1 The End of a Text File. e 5-12
5-2 File Position at End-of-File. 5-12
6-1 The Two-Dimensional Array Class__Scores 6-6
6-2 The Three-Dimensional Array Hotel _Vacancies. 6-8
7-1 The REPEAT Statement Flow Chart 7-2
7-2 The WHILE Statement Flow Chart. 7-5
7-3 The CASE Statement Flow Charts e e e e e e 7-9
7-4 The Program Class_Data 7-10
8-1 The Program Compute. 8-2

Tables
2-1 Arithmetic Operators. 2-7
2-2 Result Types for Arithmetic Expressions 2-8
2-3 Relational Operators. 2-9
2-4 Logical Operators 2-10
2-5 Precedence of Operators e 2-11
5-1 Default Values for Field Width 5-6
B-1 The ASCII Character Set. B-1
C-1 Predeclared Procedures. C-2
C-2 Predeclared Functions C-5

Preface

Primer Objectives

This primer introduces the VAX-11 PASCAL language. It is designed to
provide sufficient information on the language for you to begin writing
PASCAL programs.

VAX-11 PASCAL is an extended implementation of the PASCAL language
that accepts programs which comply with the standard proposed by the Inter-
national Organization for Standardization. This primer describes a subset of
VAX-11 PASCAL, omitting some advanced features of the language. Once
you have mastered the concepts in this primer, you should consult the
VAX-11 PASCAL Language Reference Manual for full reference information.

Intended Audience

This primer does not attempt to teach programming concepts. It assumes that
you have some experience programming in a high-level language or that you
are taking an introductory programming course. However, prior knowledge of
the PASCAL language is not necessary.

You need not have a detailed understanding of the VAX/VMS operating
system, but some familiarity with VAX/VMS is helpful. If you are new to
VAX/VMS, see the VAX/VMS Primer for introductory material.

How to Use This Document

This primer contains eight chapters. Chapter 1 explains how to develop
PASCAL programs on VAX/VMS. Program examples are found throughout;
using the tools for program development introduced in Chapter 1, you can
enter, compile, link, and run these sample programs on VAX/VMS. Each
subsequent chapter introduces new concepts in PASCAL that build on mate-
rial presented previously. To take advantage of this structure, you should read
the chapters sequentially. Throughout the primer, italics indicate a term
defined in the Glossary.

vii

For More Information

For reference information on the VAX-11 PASCAL language, ‘consult the
VAX-11 PASCAL Language Reference Manual.

The VAX-11 PASCAL User’s Guide provides information on using PASCAL
with the VAX/VMS operating system.

The VAX-11 Information Directory and Index briefly describes each manual
in the VAX/VMS document set. The information directory indicates which
manuals you should consult for information on various components of the
operating system.

Conventions Used in This Document

This document uses the following conventions.

Convention Meaning

{1) Braces enclose lists from which you must choose one
item; for example:

TO
{ DOWNTO }

A horizontal ellipsis means that the preceding item
can be repeated one or more times; for example:

digit...

{,... Braces followed by a comma and a horizontal ellipsis
mean that you can repeat the enclosed item one or
more times, separating the items with commas; for
example:

{labell,...

{)., Braces followed by a semicolon and a horizontal el-
lipsis mean that you can repeat the enclosed item one
or more times, separating the items with semicolons;
for example:

REPEAT {statement};...
UNTIL expression

A vertical ellipsis means that not all of the state-
ments in a figure or example are shown.

viii

L1

BEGIN

Grocervy..Bill

CTRL/X

RET

g RUN EXAMPLE

A PASCAL program
consists of a

heading and a
block.

Square brackets mean that the syntax requires the
square bracket characters. This notation is used with
arrays, sets, and attribute lists; for example:

ARRAY [index]

Double brackets enclose items that are optional; for
example:

EOLN | (file-variable) ||

In programming examples, all PASCAL names, that
is, reserved words and predeclared identifiers, are
printed in uppercase letters.

In programming examples, all user identifiers, that
is, names created by the programmer, are printed in
lowercase letters with initial uppercase letters.

The notation indicates that you must press the
key labeled CTRL while simultaneously pressing an-
other key, such as X in this example.

A symbol with a 1- to 3-character abbreviation indi-
cates a key that you press on the terminal; for
example, for the RETURN key.

Interactive examples are shown in two colors. User-
entered input is printed in red. Program- and system-
generated output is printed in black.

A word or phrase in italics indicates a term defined in
the Glossary.

ix

Chapter 1
Introduction

The PASCAL language was designed for teaching structured programming
techniques; as such, it is used widely in educational institutions. It has also
gained popularity as a general-purpose language because it is suitable for
many different programming applications.

PASCAL programs are structured; that is, they use English-like statements
that allow the programmer to make the logical flow efficient, readily discerni-
ble, and as linear as possible. As a result, PASCAL programs are easy to read,
modify, and maintain. The names of all data items must be explicitly de-
clared at the beginning of the program. The declaration section makes readily
apparent the symbolic names, or identifiers, that represent constants, data
types, variables, procedures, and functions.

The structure of a PASCAL program and the wide range of available data
structures encourage modular programming. In modular programming, you
divide the solution to a problem into individual parts that can be developed
relatively independently. PASCAL’s block structure promotes the translation
of these parts into procedures and functions.

PASCAL includes a variety of control statements, data types, and prede-
clared procedures and functions. Some of the language features that are com-
mon to most implementations of PASCAL are:

e INTEGER, REAL, CHAR, BOOLEAN, enumerated, and subrange scalar
data types

e ARRAY, RECORD, SET, and FILE structured data types

J FOR,\REPEAT, and WHILE repetitive control statements

* CASE, IF-THEN, and IF-THEN-ELSE conditional statements

e BEGIN...END compound statement

e READ, WRITE, READLN, and WRITELN input and output procedures

e Standard set of predeclared functions and procedures

1-1

In addition to common PASCAL language features, this primer also presents
the following VAX-11 extensions to the PASCAL language:

¢ Exponentiation operator
¢ Double- and quadruple-precision real data types

¢ 31-character identifiers that can include the dollar sign ($) and underscore
() characters

¢ OTHERWISE clause in the CASE statement

¢ Character-string and enumerated-type parameters for the READ and
READLN procedures

¢ Enumerated-type parameters for the WRITE and WRITELN procedures
e Initialization of variables
e Expressions in the CONST section

This chapter introduces the VAX-11 PASCAL language. Section 1.1 presents
the steps required for developing a VAX-11 PASCAL program on the
VAX/VMS operating system. By following these steps, you can run the pro-
grams that you will find throughout this primer. Section 1.2 presents a
PASCAL program example. Section 1.3 uses this example to illustrate some of
the fundamental concepts of PASCAL programs.

For more information on all aspects of the VAX-11 PASCAL language, see the
VAX-11 PASCAL Language Reference Manual.

1.1 Program Development

1-2

This section explains the steps required for developing a VAX-11 PASCAL
program. Figure 1-1 illustrates the program development process. Developing
a VAX-11 PASCAL program involves four steps:

¢ Creating a source file containing the program source statements
¢ Compiling the source program to create an object module

e Linking the object module to produce an executable image

e Executing the image

You specify these steps by entering the following commands to the VAX/VMS
operating system:

% EDIT file-srec

% PASCAL file-srec
$ LINK file-specg

% RUN file-srec

Introduction

COMMANDS k INPUT/OUTPUT FILES

$ EDIT EXAMPLE.PAS
Use the file type of PAS to
indicate the file contains a Create a
VAX-11 PASCAL program. source program

EXAMPLE.PAS

$ PASCAL EXAMPLE
The PASCAL command
assumes the file type of
an input file is PAS. Compile the)

source program

EXAMPLE.OBJ
(EXAMPLE.LIS)
(If you use the /LIST
qualifier, the compiler
creates a listing file.)

libraries

$ LINK EXAMPLE
The LINK command assumes
the file type of an input file Link the

is OBJ. object module

EXAMPLE.EXE
(EXAMPLE.MAP)

|

(\\\\\\\\\\\ \\\\() (\\\\((\\\\\\\O

(If you use the /MAP qualifier,
the linker creates a map file.)

$ RUN EXAMPLE Run the
The RUN comman_d assumes executable
the file type of an image is image
EXE.

ZK-1016-82
Figure 1-1: Program Development Process

Each command includes a VAX/VMS file specification (file-spec) and can
also include optional qualifiers. Command qualifiers provide the system with
additional information on how to execute the command. See the VAX-11
PASCAL User’s Guide and the VAX/VMS Command Language User’s Guide
for more information on qualifiers.

The file specification tells the operating system which file to process. A full
VAX/VMS file specification contains a lengthy string of information. How-
ever, because the system assigns appropriate default values to most of the
elements in a file specification, you rarely need to specify more than the
following two elements: ‘

filename.filetvre
Often, you need only specify the file name. The file name identifies the file

and can be up to nine alphanumeric characters long. The file type describes
the kind of data in the file and can be up to three alphanumeric characters

long.

Several files can have the same file name as long as their file types are
different. For instance, the file name EXAMPLE is used throughout the
following sections to illustrate the four commands involved in developing

Introduction 1-3

1-4

programs. However, by default, each command applies a different file type to
the file name EXAMPLE.

1.1.1 Creating the Program

When you write a program, you must create a VAX/VMS file, called a source
file, that contains the program source statements. You use a text editor to
create a source file. For instance, to create a PASCAL program that has the
file name EXAMPLE and a file type of PAS, you can issue the EDIT/EDT
command as follows:

% EDIT/EDT EMAMPLE.PAS

Imput file not found

[EOB]

3

You must include a file type (usually PAS) with the EDIT/EDT command
because it assumes no file type by default. The EDIT/EDT command invokes
the VAX/VMS default editor, EDT. The asterisk (*) prompt indicates that

EDT is ready to accept input. For information on how to use EDT, see the
EDT Editor Reference Manual.

1.1.2 Compiling the Program

After you create a VAX-11 PASCAL source file, you compile it. To compile a
source file called EXAMPLE.PAS, issue the command:

% PASCAL EXAMPLE

You can omit the file type PAS because the PASCAL command assumes that
file type as the default.

When you enter the PASCAL command from the terminal, the PASCAL
compiler does the following by default: '

¢ Produces an object module that has the same file name as the source file
and a file type of OBJ

e Uses its own defaults when it creates output files (qualifiers on the PASCAL
command can override these defaults)

If the compiler does not detect any errors in the source file, the system dis-
plays the dollar sign prompt to indicate successful compilation:

$

If the program does contain errors, however, the PASCAL compiler displays
error messages on your terminal. You can use a text editor to correct the errors
in your source program.

It is possible for a program to be successfully compiled and, at the same time,
to generate warning-level or information-level messages. In that case, the
compiler displays the diagnostic messages on your terminal.

For example, there are many information-level diagnostic messages that point
out the use of nonstandard PASCAL features (that is, VAX-11 PASCAL
extensions). These information-level errors do not affect the compilation of
a program in any way; they are reported only to flag the use of VAX-11

Introduction

PASCAL extensions. You can suppress the diagnostic messages for non-
standard PASCAL features by using the /NOSTANDARD qualifier with the
PASCAL command as follows:

$ PASCAL/NOSTANDARD EXAMPLE

At some installations of PASCAL, the /STANDARD qualifier is enabled by
default. If that is the case at your installation, you may wish to suppress such
messages with the /NOSTANDARD qualifier.

The /LIST qualifier on the PASCAL command requests the compiler to create
a program listing. A program listing includes the program’s source state-
ments, line numbers, any error messages that are reported, and other informa-

tion related to the compilation. For instance, to create a program listing of
EXAMPLE, issue the command:

$ PASCAL/LIST EXAMPLE

This command causes the compiler to create a file called EXAMPLEL.LIS in
addition to the object module EXAMPLE.OBJ. The /LIST qualifier does not
direct EXAMPLE.LIS to the line printer. To obtain a printed copy of the
program listing, you must use the PRINT command as follows:

& F’F!INT EXAMPLE
The PRINT command assumes the default file type LIS.

1.1.3 Linking the Object Module

An object module (for instance, EXAMPLE.OBJ) is not executable. To gen-
erate a file that can be executed by the system, invoke the VAX-11 Linker
with the LINK command as follows:

$ LINK EXAMPLE

You can omit the file type because the LINK command assumes the file type
OBJ by default. The LINK command in this example creates a file named
EXAMPLE.EXE, which is an executable image, that is, a file that contains
your program in an executable format. The linker automatically includes in
the executable image any library routines that the compiler has requested for
input and output, error handling, and arithmetic function calculation.

1.1.4 Executing the Program

To execute the program EXAMPLE, use the RUN command. When you issue
the RUN command, you need to provide only the name of an executable
image; the RUN command assumes the file type EXE by default. Thus, to
run the program EXAMPLE, issue the RUN command as follows:

$ RUN EXAMPLE

The first time you run a program, it may not execute properly; if it has a bug,
or programming error, you may be able to determine the cause of the error by
examining the listing file or the output from the program. When you have
determined the cause of the error, you can edit your source program and then
repeat the compiling, linking, and running steps to test the result.

Introduction 1-5

1.2 A PASCAL Program Example

This section presents an example of a PASCAL program. This program, titled
Grocery__Bill, is illustrated in Figure 1-2. Section 1.3 uses this example to
illustrate some fundamental PASCAL concepts. The circled numbers in Fig-
ure 1-2 are keyed to more detailed explanations in Section 1.3.

You can run the sample program by following the steps outlined in Section
1.1. The VAX/VMS source file you create need not have the same name as the
PASCAL program. For instance, you can create a VAX/VMS file called
GROC.PAS to contain the program. The program name Grocery._Bill is an
identifier known only within the PASCAL program.

You can use the following commands to create, compile, link, and execute the
program Grocery__Bill:

$ EDIT GROC.PAS

$ PASCAL/NOSTANDARD GRO
$ LINK GROC :
$ RUN GROC

If you do not include the /NOSTANDARD qualifier on the PASCAL com-
mand and /STANDARD is the default qualifier on your installation, the
compiler will report information-level messages for each nonstandard feature
used in the program. For example, the use of underscore (__) characters in the
program Grocery__Bill is a nonstandard feature.

The program Grocery_ Bill is an interactive program in that it prompts you
for the data.it needs, performs calculations, and then prints the results. Spe-
cifically, it performs the following steps:

e Prints instructions for entering prices of grocery items

* Reads each price and sums the prices to obtain a subtotal

e Prompts for a yes or no answer to the question “Do you have any coupons?”’
* Reads each coupon value that is entered and sums the values

e Subtracts the value of the coupons from the subtotal to obtain a total

* Prints the total

1.3 The Structure of a PASCAL Program

1-6

A PASCAL program consists of a heading and a block. The heading specifies
the name of the program and the names of any external files the program uses
for input and output. The block is divided into two parts: the declaration
section, which contains data declarations, and the executable section, which
contains executable statements. Figure 1-2 labels each of these parts.

The following sections describe the heading, declaration section, and execut-
able section of the sample program Grocery__Bill. To help clarify Figure 1-2
and the descriptions below, the following list presents some key syntax rules
that apply to all PASCAL programs.

Introduction

uononpoIUY

L2-1

PROGRAM Grocervy.Bill (INPUT: OUTPUT): } Program Heading

(% Declarations #}
TYPE
Yes.No = (Yes. Nn);‘) (# Defines data tvepe Yes.No
With values Yes and No #)
Declaration UaR
Section Item_Price: Tﬂtal?e
Couron.fAmount : REALG (% Declares three real variables *)
fine @ Yes _Nos (% Declares a variable: fAns: of tvre
Subtotals, Courpons @ REAL = 0.03% (% Initializes two real variables ¥}
BEGIN (¥ Main Prodram #¥)
(# Print instructions for entering data. #7
WRITELN (‘Enter cost of each drocery item., One item per liﬁes’}§€,
WRITELN (‘Enter the wvalue O.0 to terminate list of items.’)3
(# Read prices and add each to subtotal until 0.0 is read. #}
REFEAT
o READLN (Item_Price) ;@
Subtntal := Subtotal + Item,Price§iD
UNTIL (Item_ Price = 0,013
WRITELN (‘Subtotal esuals -- %7 Subtotal:?:E)i‘,
WRITE (‘Do vou have anvy courons? Tvee ves or no and press <RET:. *)%(a
READLN (Ans) i
(IF {Ans = Yes)
Executable THEN
Section BECIN
WRITELN (“Tvee value of each coupon, 0One rer line*’);<a
WRITELN (/Tyre <CTRL/Z: after entering all courons.)i
c, (¥ Read and sum amount of each coupon until end of inpPut. #}
REPEAT
® READLN (Courofi_Amount) ;@

Courpons 1= Courpons + CouPanmAmountiii
UMTIL EOF (INPUTI)S

END 3
{# Bubtract Courpons from Subtotal to obtain Tetal: and print Total. #3
Total := Subtotal - Couronsi
MRITELN ("Pay this amount -- $7'; Total:?:i);(a
EMD . (¥ End of Main Progdram #)

Figure 1-2: Sample Program Grocery_ Bill

Syntax Rules

1. The semicolon (;) and the period (.) are delimiters in PASCAL. The semi-
colon separates successive PASCAL statements. It also terminates the
program heading and the items in the declaration section. You need not
place a semicolon directly after the word BEGIN or before the word END
because BEGIN and END are not statements. The examples in this
primer, however, include a semicolon before the word END. This practice
makes it easier to add new statements to the end of the program at a later
date. The period marks the end of a PASCAL program.

2. The reserved words BEGIN and END are also delimiters; they are not
statements. BEGIN and END are used to separate the functional parts of
a PASCAL program. They specify the beginning and end of the executable
section. They also delimit a compound statement. Every BEGIN must be
associated with an END.! Therefore, make sure that you have a matching
END for every BEGIN in your program.

3. PASCAL allows free formatting of program text. You can place state-
ments anywhere on a line, divide a statement across more than one line,
and place several statements on one line. However, you cannot divide a
name or number between lines or with a space.

4. Comments can appear anywhere in a program. Comments are enclosed in
braces ({}). Alternatively, a comment can start with a left parenthesis and
asterisk and end with an asterisk and a right parenthesis. Two examples of
comments are:

{ What’s it all mean?}
(* This is the alternative form of a comment. *)
The PASCAL compiler ignores the text between the comment indicators.

The circled numbers in Figure 1-2 are keyed to the circled numbers appearing
in Sections 1.3.2 and 1.3.3.

1.3.1 The Program Heading

A PASCAL program always begins with a program heading. The heading
consists of:

¢ The reserved word PROGRAM

* The program’s name

¢ The names of any input and output files to be used
¢ The semicolon delimiter

The heading in the example in Figure 1-2 is:
) .
PROGRAM Grocery_Bill (INPUT, OUTPUT) i

1. However, there are two cases in which an END does not have to be associated with a
BEGIN: the CASE statement (see Section 7.3) and the RECORD declaration (see Section 6.2).

1-8 Introduction

The name of the program is Grocery__Bill and it uses the files INPUT and
OUTPUT. INPUT and OUTPUT are names known to PASCAL. They specify
text files that have been predeclared (that is, declared in PASCAL). When
you run an interactive program, these names indicate that the program uses
your terminal for input and output.

1.3.2 The Declaration Section

PASCAL requires that you declare all data items in the program. To declare a
data item, you specify an identifier and indicate what it represents. All decla-
rations in a program must appear in a declaration section.

The declaration section can contain the five kinds of declarations listed below.
You need not include all of them in a program. The declarations you do
include may appear in any order, and a particular kind may appear more than
once. However, you may not declare the same label, constant, type, variable,
procedure, or function more than once in a block.

e LABEL
e CONST
* TYPE
e VAR
e PROCEDURE and FUNCTION
The program Grocery_Bill contains two kinds of declarations and
definitions — TYPE and VAR. The first of these is the TYPE definition ©:
TYPE
Yes.No = {(Yes, Noli
This TYPE section defines a data type called Yes__No and the two constants,
Yes and No, that constitute the values of the type.
The second declaration is the VAR declaration @:

VAR
Item_ Prices Total:
Couron_Amount : REALS
Subtotal s Courons @ REAL = 0,03
Ans @ Yes.Noi

This VAR section declares five real variables: Item__Price, Subtotal, Total,
Coupon_Amount, and Coupons. In addition, a sixth variable, Ans, is de-
clared to be of the user-defined type Yes_No. The variable Ans can assume
either of two values: Yes or No.

Within the VAR section, you may specify an initial value for any variable. In
this program, the variables Subtotal and Coupons are initialized to 0.0 when
they are declared. They will each have the value 0.0 when the program begins
executing.

Introduction 1-9

1.3.3 The Executable Section

The executable section contains the statements that, when executed, perform
the actions of the program. The executable section follows the declaration
section, and is delimited by BEGIN and END (followed by a period). The
executable section of Grocery__Bill is shown in Figure 1-3.

BEGIN (% Main Program *)

(% Print instructions for enterind data., #*)}

WRITELN (‘Enter cost of each grocery item. One item pPer 1ir|eé’};9
WRITELN (‘Enter the value 0,0 to terminate list of items. 1}

(% Read Frrices and add each to subtotal until 0.0 is read. *)
REFEAT
9 READLM (If_.em,,.PriceHe
Subtotal &= Subtotal + ItemMPriceia
UNTIL (Ttem.price = 0,003)
WRITELM {(‘Subtotal eauals -- &' S!,lt«tctalz'/‘::-l’);e

WRITE {(’Do vou have anvy courons? Tyre ves or no and press “RET:. "}ie
FEADLM (Ans)i
IF (Ans = "s’ea)e
THEHM

BEGIN

WRITELN (Tyepe wvalue of each courpon. One per 11\'1@.")5@

WRITELN (‘TY¥PE 4“CTRL/Z> after enterind all courons,)i
e (% Read and sum amount of each guran until end of input. #*3

REPEAT
@ READLN (IZZOI..-.Pnn._i—‘nnnunt.)ie

Courong &= Dourons + [:DLI.PDT'IW.QMOl,!l"l'h;0

UNTIL EOF (INPUT) S
BN

tbhtract Courons from Subtotal to abtain Totals and eprint Total. ¥}
s Bubtotal - Couronss
N (‘Pay this amount -- $7: T»:st.alu"?:’i’,)ie

(% End of Main Prodram %)

Figure 1-3: Executable Section of Grocery__Bill

s

Between BEGIN and END are calls to procedures that read and write data
and statements that change the value of variables and control execution.

Several input and output procedures are used in the program Grocery_ Bill.
For example, the first two WRITELN procedures © print on the terminal
instructions for entering a list of prices. The text within the apostrophes is
printed. The third WRITELN procedure @ prints text followed by the value
of a variable. Again, the text within the apostrophes is printed. The integers
that appear after the variable name Subtotal specify field width. The first
integer specifies the total field width; that is, the number of columns occupied
by the value being printed. The second integer specifies the number of places
to the right of the decimal point in the printed value.

The remaining output procedures in the program @ print either the text that
is specified in apostrophes, or text and the value of a variable.

The program Grocery__Bill shows three examples of input procedures @. Each
reads a value from the terminal and assigns the value to the variable specified
in parentheses. For instance:

READLN (Ans) i

1-10 Introduction

This READLN procedure reads a value and assigns it to the variable Ans.
Because Ans is of type Yes__No, the value to be read must be either Yes or No.
The READLN procedure accepts the answer Yes or No in either uppercase or
lowercase characters.

The executable section of Grocery__Bill also illustrates the assignment state-
ment @. An assignment statement contains three parts — a variable, the
assignment operator (:=), and an expression:

variable := expression;

The assignment statement causes the variable to assume the value of the
expression. For example:

Subtotal = Subtotal + Item._.Prices

This assignment statement adds the current values of Subtotal and Item__
Price, then assigns the sum to Subtotal.

Grocery__Bill contains two kinds of control statements: IF-THEN and RE-
PEAT. The IF-THEN statement @ is a conditional statement. If the expres-
sion (Ans = Yes) is true, the statement following the reserved word THEN is
executed:

IF (Ans = Yes)

THEN
BEGIN

¥
@

+

END 3

The statement following THEN is a compound statement. A compound state-
ment specifies that all the statements within BEGIN and END are executed
sequentially as a group.

Finally, there are two examples of the REPEAT statement. One example is ©:

REPEAT
READLN (Item_Pricel}s
Subtotal 1= Subtotal + Ttem.Prices

UNTIL (Item_Price = 0,0)3

The REPEAT statement specifies that the statements between REPEAT and
- UNTIL be executed in order, terminating when the value of the variable
Item_ Price equals 0.0. The semicolon before UNTIL is optional because the
UNTIL clause is not another statement; it is part of the REPEAT statement.
The second example of a REPEAT statement is @:

REPEAT

4

+

UNTIL EOF (INPUT);

This statement, like the previous REPEAT, performs the statements within
REPEAT and UNTIL repetitively. However, in this example, execution ter-
minates when the function EOF (INPUT) becomes TRUE. EOF, which
stands for end-of-file, is a predeclared PASCAL function that returns the
value TRUE at the end of an input file. The that you type after entering

Introduction 1-11

. the values of all coupons indicates the end-of-file condition. (The PASCAL
file INPUT is associated with your terminal.)

Figure 1-4 shows a sample run of the program Grocery_ Bill.

& RUN GROC

Erter ocost of each drocery item, One item Fer line.
Eviter the value 0.0 to terminate list of items.
1:29

2.80

3.49

0.79

2.2
s 20
04158
1.89
2.19
0,79
1.50
0.0
Subtotal eauals -- % 18.04
Do vou have any coupons? Tvyee ves or no and press <RET:>. ves GED
Tyee value of each couron. One rer line.
Tyee <CTRL/Z> after enteringd all courons.
.15
0,25
0,29
0,70
0,79
“Z
Pay this amount -~ % 15.80
%

Figure 1-4: Sample Run of Grocery__Bill
The program Grocery__Bill illustrates a small subset of the VAX-11 PASCAL
language. It was designed to give you a feel for how the parts of a PASCAL

program fit together. The following chapters describe the VAX-11 PASCAL
language in more detail.

1-12 Introduction

Chapter 2
Data Concepts

This chapter presents some PASCAL data concepts. Section 2.1 introduces
the PASCAL concept of types. Section 2.2 explains the PASCAL predefined
scalar types. Finally, Sections 2.3 and 2.4 introduce the ways variables and
expressions are used in a PASCAL program.

2.1 Types

A type is a set of values that share certain characteristics. Associated with
each type is a set of operations that can be performed on those values. For
example, the integers within a particular range constitute a type and the
addition operator (+) can be applied to values of that type.

PASCAL associates a type with each of the following entities:
e Constants
¢ Variables
¢ Functions

¢ Expressions

A constant is a literal representing a value of a type. For example, the number
4 is a constant in the type consisting of integers. A variable is an entity that
can assume different values during program execution. A variable’s type is
the set of values the variable can assume. A function is a computation that is
associated with a name and that returns a value. The computation is per-
formed when the function is called by a function designator. A function’s type
is the same as that of the values it can return. An expression is a constant, a
variable, a function, or a combination of these items separated by operators.
Every expression is associated with a type.

PASCAL types are divided into three categories. These categories are:
e Scalar types ‘

e Structured types

¢ Pointer types

A value of a scalar type is an indivisible unit of data, for example, the integer

2-1

4. You use a scalar value as a single unit; that is, there are no parts that can
be accessed individually. Scalar types serve as building blocks for structured

types.

A structured type is a collection of related data components. You can access
and manipulate these components individually. VAX-11 PASCAL’s prede-
fined structured types include arrays, records, varying character strings, sets,
and files. Chapter 6 presents two structured types: the array and the record.
The other structured types are described in the VAX-11 PASCAL Language
Reference Manual.

A pointer type allows you to refer to dynamic variables. See the VAX-11
PASCAL Language Reference Manual for information on pointer types and
dynamic variables.

2.2 Scalar Types

2-2

VAX-11 PASCAL defines the following scalar types:
e INTEGER

e REAL

e SINGLE

e DOUBLE

e QUADRUPLE

e BOOLEAN

e CHAR

e UNSIGNED

The INTEGER and REAL types are used for manipulating numeric data.
VAX-11 PASCAL also provides the types SINGLE, DOUBLE, and QUAD-
RUPLE, to allow you to distinguish between values that are single-, double-,
and quadruple-precision real numbers, respectively. The SINGLE type is
identical to the REAL type. (Throughout this primer, the term “real type”
refers to the REAL, SINGLE, DOUBLE, and QUADRUPLE types collec-
tively, unless otherwise noted.) The BOOLEAN type consists of the truth
values: FALSE and TRUE. The CHAR type is used for manipulating single
character data. For example, ‘A’ is a value of type CHAR. The sections that
follow describe the constants in each of these predefined types.

VAX-11 PASCAL also includes the UNSIGNED type. Values of the
UNSIGNED type consist of an extended set of the nonnegative integers. The
UNSIGNED type is fully described in the VAX-11 PASCAL Language Refer-
ence Manual.

PASCAL allows you to define your own scalar types. For example, the sample
program Grocery_ Bill in Chapter 1 defines the type Yes__No. The type Yes__
No has two constant values, Yes and No. Details on user-defined types are
presented in Section 3.5.

Data Concepts

The values of a scalar type are ordered; that is, each is either greater than or
less than another value of the same type. Thus, you can compare the values of
a scalar type. For example, among the integers, 2 is greater than 1 but less
than 3.

The predefined scalar types fall into two groups: real types, which were listed
above, and the ordinal types. The ordinal types are INTEGER, UNSIGNED,
CHAR, BOOLEAN, enumerated types (see Section 3.5.1), and subranges of
ordinal types (see Section 3.5.2). Each value of an ordinal type corresponds to
a unique integer or ordinal value that indicates its place in an ordered list of
values of that type. PASCAL prov1des the following function that returns this
ordinal value:

ORD (w1

If x is a constant of an ordinal type, ORD (x) returns the integer representing
its ordinal value.

2.2.1 The Type INTEGER

The INTEGER type consists of the whole number values ranging from
-2,147,483,647 through 2,147,483,647. You write an integer constant as a se-
quence of decimal digits; no commas or decimal points are allowed. A minus
sign (-) before the number specifies a negative integer. A plus sign (+) may
precede a positive integer, but is not required.

Some examples of valid PASCAL integer constants are:

452822
0

-17
+102
-24824

VAX-11 PASCAL also accepts integer constants in binary, octal, or hexadeci-
mal notation. To use such notation, refer to the VAX-11 PASCAL Language
Reference Manual for an explanation of the required syntax.

2.2.2 The Type REAL

Numbers of the REAL type include the positive values from 0.29*(10+*(-38))
through 1.7+(10%+38), the negative values from -1.7*%(10%*38) through
-0.29%(10%*(-38)), and the value 0.0. You can express real constants in two
ways:

e Decimal notation

¢ Floating-point notation

2.2.2.1 Decimal Notation — In decimal notation, a real constant consists of a
minus sign (-) if the number is negative, an integer part, a decimal point, and
a fractional part. A plus sign (+) may precede a positive real number, but is
not required. At least one digit must appear on each side of the decimal point.

Data Concepts 2-3

2-4

Examples of real constants in decimal notation are:

48.25
0.5
-0.8
52.0
0.0
422.004

Note that a zero must precede the decimal point of a fractional quantity and
must follow the decimal point of a whole number quantity.

2.2.2.2 Floating-Point Notation — Floating-point notation is the representa-
tion of a real number in the integer.fraction format, followed by a negative or
positive exponent. You can use floating-point notation to represent very large
or very small real numbers conveniently. For example, the following real
constants are written in both floating-point and decimal notation:

Floating-Point Decimal
2.3E2 230.0
0.00023E6 230.0
10.4E-4 0.0010
3.1415927E0 3.1415927
4.5E9 4500000000
-0.4E2 -40.0

The exponent consists of the letter E, which can be read as “times 10 to
the power of,” followed by a positive or negative whole number. Note that
PASCAL prints real numbers in floating-point notation by default.

In floating-point notation, the position of the decimal point “‘floats” or moves,
depending on the value of the exponent. For example, each of the following
numbers is equal to 430.0:

43000E-2
0.043E-4
430E0

Note that if the decimal part of a floating-point number is a whole number,
you can -omit the decimal point (for example, 430E0).

The DOUBLE and QUADRUPLE real data types allow you to represent
values with a greater range and/or greater precision. See the VAX-11 PAS-
CAL Language Reference Manual for details and examples.

2.2.3 The Type BOOLEAN

The BOOLEAN type consists of the truth values FALSE and TRUE. PAS-
CAL orders these values so that FALSE is less than TRUE: ORD (FALSE)
equals 0 and ORD (TRUE) equals 1. Two kinds of operators can be used to
form Boolean expressions:

* Relational

¢ Logical

Data Concepts

Sections 2.4.2 and 2.4.3 explain how to form Boolean expressions that include
relational and logical operators.

2.2.4 The Type CHAR

You can use the CHAR type for manipulating character data. A value of type
CHAR is a single element of the ASCII character set. The ASCII character set
consists of upper- and lowercase letters, the digits 0 through 9, and various
special symbols, such as the ampersand (&). The full ASCII character set is
listed in Appendix B.

Appendix B also lists the integer value that corresponds to each element of the
ASCII character set. These values determine how the elements of type CHAR
are ordered. For example, the integer 66 corresponds to the uppercase ‘B’ and
the integer 98 corresponds to the lowercase ‘b’. Thus, the character ‘B’ is less
than the character ‘b’. In the ASCII character set, all uppercase letters have
lower ordinal values than lowercase letters.

The ORD function returns the ordinal value for any given ASCII character.
For example:

ORD ('K*)
This function returns the value 75.

To specify a character constant, enclose the value in apostrophes; to specify
the apostrophe character, type it twice within apostrophes. Examples of char-
acter constants are:

~
e

X

‘b’

(the space character)
(the apostrophe)

A

The elements of type CHAR are always single characters. A sequence of
characters within apostrophes is called a character string (for example,
‘John Doe” or "Memorandum “); character strings are explained in Section
6.1.2.

2.3 Variables

A variable is an entity that can assume different values during program exe-
cution. In PASCAL, every variable has a name, a type, and a value (once a
value is assigned).

A variable’s name and type are established in the VAR declaration section of
a program. The name and type are permanent characteristics of the variable
during the execution of a program and therefore cannot be changed. A sample
variable declaration section is:
VAR

Error_Flag @ BOOLEANS

Item-Price:, Total, Subtotal 3 REAL:
I+ J : INTEGERS

Data Concepts 2-5

This variable section, introduced by the reserved word VAR, declares Error__
Flag to be a variable of type BOOLEAN; Item__Price, Subtotal, and Total to
be variables of type REAL; and I and J to be variables of type INTEGER.

A variable does not assume a value until the program explicitly assigns it one.
One way to assign a value to a variable is with an assignment statement:

Total := Subtotals

If the value of Subtotal is defined, this statement will assign the value of
Subtotal to the variable Total. The value of Total will then also be defined.

In addition to assignment statements, you can use value initializations in the
declaration section or input procedures in the executable section to assign
values to variables.

2.4 Expressions

2-6

An expression is a symbol or a group of symbols that PASCAL can eval-
uate. These symbols can be individual constants, variables, or functions. For
example:

Item._ . Price

The variable name Item__Price is an expression that is equal to the current
value of Item__Price.

Expressions can also be combinations of constants, variables, and function
designators, separated by operators. For example, the sample program in
Chapter 1 includes the following expression:

Subtotal + Item.Price

This expression is equal to the sum of the values of Subtotal and Item__Price.
PASCAL includes the following types of operators for forming expressions:
¢ Arithmetic (such as +, -, /)

¢ Relational (such as <, >, =)

e Logical (such as AND, OR, NOT)

Every expression has a type. Arithmetic operators are used in arithmetic
expressions whose values are integers or real numbers. Relational and logical
operators are used in expressions that yield Boolean results.

Data Concepts

2.4.1 Arithmetic Expressions

An arithmetic expression evaluates to an integer or real value.! It can be an
integer or real constant, a variable, or a function designator. Alternatively, it
can be a series of integer or real constants, variables, and function designators
combined with one or more arithmetic operators (shown in Table 2-1). For
example, the following expression consists of two variable names and the
subtraction operator (-):

Subtotal - Couraons

This expression equals the value of Subtotal minus the value of Coupons.

Table 2-1: Arithmetic Operators

Operator Example Meaning

+ A+B Add A and B

- A-B Subtract B from A

* A+B Multiply A by B

ok AxxB Raise A to the power of B

/ A/B Divide A by B

DIV A DIV B Divide A by B and truncate any fractional
part of the result

REM A REM B Produce the remainder after dividing A by B

MOD A MOD B Produce the modulus of A with regard to B

The addition, subtraction, multiplication, and exponentiation operators (+, -,
* and **) work on both integer and real values. They produce real results
when applied to real values, and integer results when applied to integer val-
ues. If an expression contains values of both types, the result is a real number.

The division operator (/) can be used on both real and integer values but
always produces a real result.

The DIV, REM, and MOD operators can be used only with integer values and
always produce integer results. DIV divides one integer by the other and
truncates any fraction from the result. REM returns the remainder after di-
viding one operand by the other. MOD computes the modulus of the first
operand with regard to the second.

The result of the operation I MOD J is defined only when J is a positive
integer. This result is always an integer from 0 through J-1. I MOD J is
computed as follows:

o If I is greater than J, J is subtracted repeatedly from I until the result is a
positive integer less than J.

1. In this section, the term ‘“‘real” refers to the REAL and SINGLE types. The rules for using
values of types DOUBLE and QUADRUPLE in arithmetic expressions are slightly different
from those for types REAL and SINGLE. See the VAX-11 PASCAL Language Reference
Manual for information on using values of the types DOUBLE and QUADRUPLE in expres-
sions.

Data Concepts 2-7

e If I is less than 0, J is added repeatedly to I until the result is a positive
integer less than J.

e If I is less than J or equal to O, the result of I MOD J is 1.
For example, 5 MOD 3 = 2, (-4) MOD 3= 2, and 2 MOD 5 = 2.

When both operands are positive, the REM and MOD operators return the
same result. For example, 28 REM 5 = 3 and 28 MOD 5 = 3. When the first
operand is negative, REM produces a nonpositive result, while MOD produces
a nonnegative result. For example, (-42) REM 8 = -2 and (-42) MOD 8 = 6.

Table 2-2 shows possible combinations of arithmetic operands and operators
and the type of the result.

Table 2-2: Result Types for Arithmetic Expressions

Operator Operand Result
Group Types! Type! Example Result
P Iopl I 4+5 9
(addition, subtraction, Ropl R 4.2 #x 2 1.764E+01
:}’(‘;ﬂi‘; lliif‘;t‘f;lg) IopR R 4545 1.800E+01
Rop R R 2.2 -40.12 - -3.792E+01
/ ITopl R 4/2 2.000E+00
(division) Ropl R 3.2/2 1.600E+00
IopR R 4/2.14 1.869E +00
RopR R 3.2/2.2 1.455E+00
DIV, REM, MOD IopP® I 42 DIV 5 8
(division with 4 DIV 5 0
imcatin wrEMs
modulo class) (-4) REM3 -1
32MOD5 2
(-4)MOD3 2

1. The symbols “I” and “R” stand for INTEGER and REAL, respectively; the symbol “op”
stands for “‘operator.”

2. When you raise an integer to the power of an negative integer, you can get unexpected
results. Refer to the VAX-11 PASCAL Language Reference Manual for the rules governing
PASCAL’s evaluation of expressions containing negative integer exponents.

3. In the MOD operation, the second operand must be a positive integer.

You can combine operators to form complicated expressions. For example, if
all of its operands are integers, the following expression is valid:

A+ 5 DIV Z2 % 4 - C % 3

2-8 Data Concepts

If the current values of A and C are 3 and 8, respectively, this expression
evaluates to -13. That is, it is evaluated as if it were written:

A+ (05 DIV 2y % 4y - (O * 3)

The order in which operands are combined is determined by PASCAL’s pre-
cedence rules, described in Section 2.4.4.

2.4.2 Relational Expressions

A relational expression tests a specified relationship between two values. It
returns TRUE if the relationship is true and FALSE otherwise. For example,
to test whether the variable Max is greater than the value 100, you can use the
following expression:

Max » 100

A relational expression consists of two scalar or character string variables, or
expressions (such as Max and 100 above), separated by one of the relational
operators listed in Table 2-3. The operands must be of the same type, with
the exception that real numbers and integers can be compared. The relational
operators can also be used with expressions of types UNSIGNED and SET.
See the VAX-11 PASCAL Language Reference Manual for details.

Table 2-3: Relational Operators

Operator Example Meaning
= A=B TRUE if A is equal to B
<> A<>B TRUE if A is not equal to B
> A>B TRUE if A is greater than B
>= A>=B TRUE if A is greater than or equal to B
< A<B TRUE if A is less than B
<= A<=B TRUE if A is less than or equal to B

Note that in the 2-character operators (<>, >=, and <=), the characters must
appear in the specified order and cannot be separated by a space.

Relational expressions are often used as tests in PASCAL’s conditional and
repetitive statements (see Chapters 4 and 7). For example, the program
Grocery__Bill contains the following statement:

IF fAns = Yes)
THEN

BEGIN

END 3

The statements within BEGIN and END are executed only if the expression
(Ans = Yes) evaluates to TRUE.

As another example, suppose you want to compare the values of two integer

Data Concepts 2-9

2-10

variables. To determine whether a variable named New__Int is greater than or
equal to a variable named Large__Int, you can use the following expression:

New..Int »= Larde.Int

If Large__Int holds the value 64 and New__Int holds the value 72, the value of
the expression will be TRUE.

Because the elements of scalar types are ordered, you can form relational
expressions using scalar constants as operands. For example, the following .
expressions are valid:

Expression Result
cr s RS TRUE
TRUE » FALSE TRUE
5 = 4 FaLSE

Any expression that contains relational operators or logical operators is called
a Boolean expression because it produces a Boolean result.

2.4.3 Logical Expressions

You can form logical expressions by combining Boolean values and the logical
operators listed in Table 2-4. Logical expressions return a value of type
BOOLEAN.

- Table 2-4: Logical Operators

Operator Example Result
AND A AND B TRUE if both A and B are TRUE
OR AORB TRUE if either A or B is TRUE, or if both are TRUE

NOT NOT A TRUE if A is FALSE and FALSE if A is TRUE

The AND and OR operators combine two Boolean values to form a logical
expression. The NOT operator reverses the truth value of an expression, so
that if A is TRUE, NOT A will be FALSE, and vice versa.

The following examples show logical expressions and their Boolean results.

Expression Result
(4 = 3) AND (18 = 3 # &) TRUE
(3 = 4y OR (18 = 3 % G} TRUE
NOT (4 <> 3)) FALSE

Boolean variables and functions can be used as operands in logical expres-
sions. For example:

Flag AND ODD (I3

Suppose Flag is a Boolean variable. ODD (I) is a function that returns TRUE
if the value of the integer variable I is odd and FALSE if the value of I is even.
Both operands, Flag and ODD (I), must be TRUE for the expression to be
TRUE.

Data Concepts

Another example:
(Ints_Read = 10) OR EOF (INPUT)

The EOF (INPUT) function returns TRUE if the end of the file INPUT has
been encountered. If either or both of the operands in this expression are
TRUE, the expression will be TRUE.

2.4.4 Precedence Rules for Operators

When evaluating expressions that contain more than one operator, PASCAL
follows precedence rules to determine the order in which operands are to be
combined. An operation with higher precedence is evaluated before an opera-
tion with lower precedence. For example, in the following expression, some
operations are performed before others:

A/B + 3%4

The division and multiplication operations are performed before the addition.
For example, if A equals 4 and B equals 2, A/B will be evaluated to return 2.0;
3 will be multiplied by 4 to return 12. Then, the results of these calculations
will be added together to produce 14.0.

Table 2-5 lists the order of precedence of arithmetic, relational, and logical
operators, from highest to lowest. Those operators on the same line in the
table have equal precedence.

Table 2-5: Precedence of Operators

Operators Precedence
NOT ' Highest
sk .
*, /, DIV, MOD, REM, AND
+, -, OR
=, <>, & <=y >, = Lowest

In addition, the following rules apply:

1. Operations enclosed in parentheses are combined first, regardless of the
precedence of operators.

2. Two operators of equal precedence (such as DIV and #*) are combined from
left to right.

For example, the following expressions are evaluated differently because in
the second expression, parentheses enclose an addition operation.

Expression Result
4 + 8 %% T DIV 7 13
(4 + 8y %% 2 DIV 7 ” 20

Data Concepts 2-11

2-12

In the first expression, PASCAL performs the exponentiation (**) and integer
division (DIV) operations before the addition operation (+). In the second
expression, the parentheses force PASCAL to add 4 and 8 first; then it squares
the result (which is 12) to obtain 144; finally, it performs the DIV operation to
obtain 20. '

You should use parentheses when you combine relational and logical opera-
tors because the logical operators have higher precedence than the relational
operators. For example, in the following expression, the logical operator AND
has the highest precedence:

A < X AND B <= ¥ + 1

PASCAL attempts to evaluate this expression as if it were written:

A < (M AND B) <= Y + 1

Unless X and B are of type BOOLEAN, an error occurs because AND applies

only to Boolean operands. For correct evaluation, you must enclose the rela-
tional expressions in parentheses as follows: :

(A < X) AND (B <= ¥ +1)

Similarly, you must include parentheses in the following expression:
NDT (4 <> 5)

Without the parentheses, the expression is evaluated as:

(NOT 4) <3 5

This expression causes PASCAL to generate an error because 4 is not a Bool-
ean value.

Parentheses also help to clarify an expression. A long expression is easier to
read if it contains parentheses that indicate which operations are to be per-

formed first. For example:

A+ ({3 DIV 2y = 4y - (C % 3)

The parentheses eliminate any confusion about how the expression is to be
evaluated. . -

Data Concepts

Chapter 3
Declarations and Definitions

You must declare or define every data item you use in a PASCAL program.
All declarations and definitions must appear in the declaration section. The
~ declaration section can contain the following parts or sections:

e LABEL — declares labels for use by the GOTO statement
* CONST — defines symbolic constants

¢ TYPE — creates user-defined type names

¢ VAR — declares variables and their types

¢ PROCEDURE and FUNCTION — declare procedures and functwns (col-
lectively called routines)

A program need not include all these sections. Those sections that are present
may appear in any order and can occur more than once per declaration
section. Thus, you can use the names LABEL, CONST, TYPE, VAR,
PROCEDURE, and FUNCTION as many times per block as you wish. How-
ever, you can define or declare the same item only once in a declaration
section.

All of these sections except the LABEL section introduce symbolic names that
represent data items. Section 3.1 describes symbolic names, including identi-
fiers for variables, constants, and so forth. Sections 3.2 through 3.4 explain
three parts of the declaration section — CONST, TYPE, and VAR. Section
3.5 shows how to create user-defined scalar types. PROCEDURE and FUNC-
TION sections are discussed in Chapter 8.

The LABEL section is described in the VAX-11 PASCAL Language Refer-
ence Manual.

3.1 Symbolic Names

Symbolic names are the words used in a PASCAL program. Symbolic names
can be defined by PASCAL or they can be created by the user. For example,
the following line of a PASCAL program contains three symbolic names:

VAR
Arns @ Yes. Noj

3-1

The word VAR is defined by PASCAL; the variable name Ans and the type
name Yes__No are created by the programmer.

There are three classes of symbolic names in PASCAL:
® Reserved words

¢ Predeclared identifiers

o User identifiers

Section 3.1.1 explains reserved words and predeclared identifiers. Section
3.1.2 explains how to form user identifiers. '

3.1.1 Reserved Words and Predeclared ldentifiers

Reserved words and predeclared identifiers are defined by PASCAL and have
a special meaning to the compiler. They are printed in uppercase letters in
this primer; however, PASCAL does not distinguish between upper- and
lowercase letters in reserved words and predeclared identifiers.

3.1.1.1 Reserved Words — PASCAL sets aside certain reserved words that
cannot be redefined. Some of the reserved words already shown in this primer

are:
AND FILE NOT REPEAT
ARRAY FUNCTION OR -~ THEN
BEGIN IF PROCEDURE TYPE
CONST LABEL PROGRAM UNTIL
DIV MOD RECORD VAR
END '

Appendix A contains a complete list of the VAX-11 PASCAL reserved words.

3.1.1.2 Predeclared ldentifiers — PASCAL declares certain identifiers to
name types, symbolic constants, variables, procedures, and functions. In con-
trast to reserved words, you can, if necessary, redefine predeclared identifiers
“for another purpose.

If you choose to redefine one of these identifiers, you should do so with cau-
tion. Once a predeclared identifier is used to denote some other item, it can no
longer be used for its original purpose within the same block. You could, for
example, create a variable named COS; then, however, you could no longer
use the predeclared cosine function, COS, which is a useful language feature.

Some of the predeclared identifiers that have been mentioned so far in this
text are listed below: ‘

BOOLEAN INPUT REAL
CHAR INTEGER SINGLE
COS ouTPUT TRUE
DOUBLE QUADRUPLE UNSIGNED
EOF - READ WRITE
FALSE READLN WRITELN

3-2 Declarations and Definitions

Appendix A presents a complete list of VAX-11 PASCAL predeclared identi-
fiers.

3.1.2 User ldentifiers

User identifiers are the names you create to denote program names, symbolic
constants, variables, procedures, functions, and user-defined types. In short,
user identifiers are all the names in a PASCAL program that are not reserved
words or predeclared identifiers.

When forming an identifier, you must follow VAX-11 PASCAL’s syntax rules.
An identifier can be a combination of upper- and lowercase letters, digits,
dollar sign ($) characters, and underscore (_) characters, with the following
restrictions:

® An identifier cannot start with a digit.

e The first 31 characters of every identifier must be unique.
¢ An identifier cannot contain any blanks.

¢ Upper- and lowercase letters are considered equivalent.

Although identifiers can be of any length, you will get a warning message at
compile time if an identifier exceeds 31 characters. PASCAL recognizes only
the first 31 characters; therefore, two identifiers that have the same first 31
characters are interpreted as the same identifier.

Because you can use any letter or digit in identifiers, you can easily create
names that suggest the role that the data item is to play. Such a practice
enhances the readability of your program. For example, although the word
Slug is a valid identifier, it would not be very descriptive as the name of a
variable that holds the result of a square root calculation. A variable name
like Square__Root, on the other hand, indicates what data that variable holds.

Some examples of valid user identifiers in VAX-11 PASCAL are:

Subtotal
Item.Price
Math.Scores
Fica_Tax

Examples of invalid user identifiers are:

Array (a reserved word)
ilmore (begins with a digit)
Packade# (contains the special character #)

The following two identifiers are valid according to the syntax of PASCAL.
However, they are treated as the same identifier because their first 31 charac-
ters are identical.

SPrins,Inuentnrv,Ideﬁtificatian-TaSS
Serind.Inventory_Identification.Number

“Although VAX-11 PASCAL allows the dollar sign ($) character in identi-
fiers, this character has a special meaning to the VAX/VMS operating system
in some contexts. For example, all system services and run-time library proce-
dures include a dollar sign in their names. Therefore, you should restrict the
use of the dollar sign to identifiers intended to refer to VAX/VMS names.

Declarations and Definitions 3-3

3.2 Constant Definitions

3-4

You can define identifiers to represent constant values in a CONST part of
the declaration section. Identifiers and their corresponding values are called
symbolic constants. The corresponding values can be represented by expres-
sions, which must be constant expressions. For instance, a program that adds
apples to oranges might use the number 100 to indicate the maximum number
of fruits that can be summed. Instead of using the number 100 throughout the
program, you can define an identifier and assign it the value 100 as follows:

CONSBT
Max.Fruits = 1003

The identifier Max__Fruits is more descriptive of the constant’s use in the
program than is the number 100.

Suppose that, instead of giving Max__Fruits a constant value of 100, you
want to give it a constant value equal to the sum of the maximum number of
apples and the maximum number of oranges. If you know that Max__Apples is
equal to 60 and Max_Oranges is equal to 40, you could define the following
symbolic constants: ‘ ‘

CONET
Max_.Aprrles = BO3
Max._ . Orandes = 403
Max_ . Fruits = Max_.Arrles + Max. . Orandgessi

Max__Apples and Max__Oranges must be declared as symbolic constants be-
fore they can be used in a constant expression.

You can define any number of symbolic constants in the CONST sections of
your program. The format of the CONST definition is:

CONST

{constant-name = value};...

The constant name can be any valid user identifier. The value can be an
integer, a real number, a character, a character string (see Section 6.1.2), a
Boolean constant, or another symbolic constant. The value can also be an
expression composed of symbolic constants previously defined in the program.
You must separate successive constant definitions with semicolons.

The type of a symbolic constant is the type of its corresponding value. Thus,
the type of Max__Fruits shown above is INTEGER because 100 is an integer.

Once you define a symbolic constant, the constant identifier can be used in
place of the value later in the program. However, remember that the identifier
represents a constant value or expression that cannot be changed with subse-
quent assignment statements or input procedures.

For example, to define a symbolic constant representing the number of stu-
dents in a class (say, 25), you could use the following constant definition:

CONST
Class. Size = 251

You can now use the identifier Class_Size to represent the number 25 any-
where in your program.

Declarations and Definitions

The use of symbolic constants generally makes a program easier to read,
understand, and modify. If, in the example above, the size of the class is 28
the next term, you would simply modify the CONST definition as follows:
CONST

Class_.Size = 283
Changing the CONST definition is easier than changing every occurrence of
the value in the program.

More examples of constant definitions are:

CONST

Lear.¥ear = TRUES

Year = 189843

Century = 204

Dot = ‘.73

Country = ‘United States

Citizenshirp = Countryi

Num_States = 3043

Pi = 22.0/7.0% v
This CONST section defines eight constant identifiers. The identifiers Year,
Century, and Num__States represent integers. Leap__Year is equal to the
Boolean value TRUE. Dot and Country represent a character value and a
character string, respectively. Citizenship is defined to be equal to the sym-
bolic constant Country and thus represents the same character string. Finally,
Pi represents the real number resulting from the division of 22.0 by 7.0.

3.3 Type Definitions

You can define types in the TYPE section of a PASCAL program. The TYPE
section associates an identifier with a specified set of values.

The format is:

TYPE :
{type-name = type-definition};...

Each type name is a user identifier that indicates the name of the type. The
type definition specifies any valid PASCAL type.

This primer covers the following kinds of type definitions:
¢ Predefined scalar

e Enumerated

e Subrange

e Array

® Record

Enumerated and subrange types are varieties of user-defined scalar types;
Section 3.5 explains how to define new scalar types. Chapter 6 shows how to
specify the structured array and record types. Refer to the VAX-11 PASCAL
Language Reference Manual for information on how to specify varying charac-
ter string, set, file, and pointer types.

Declarations and Definitions 3-5

3.4 Variable Declarations

3-6

Every variable in a PASCAL program must be declared before it is used.
Section 3.5 shows how to declare variables of user-defined types. Chapter 6
shows how to declare array and record variables.

A variable declaration creates a variable and associates it with an identifier
and a type. The identifier and the type are permanent characteristics of the
variable. Unless a variable is initialized, its value is undefined until it is
assigned a value in the executable section.

You declare variables in the VAR section of a program. For example, the
following variable declarations appear in the program Grocery__Bill:
AR ,

Item-.Price: Total:

Couron_fAmount & REAL:
Ans » Yes.Nosj

This VAR section declares three variables of type REAL and one variable

(Ans) of type Yes__No. Note that you can declare several variables in the
same VAR section.

The format of the VAR section is:

VAR
{ {variable-name},... : type};...

The variable name can be any valid user identifier. The type can be any of the
predefined scalar types — INTEGER, REAL, SINGLE, DOUBLE, QUAD-
RUPLE, BOOLEAN, CHAR, or UNSIGNED. In addition, the type can be
any identifier previously defined in the TYPE section or a type definition as
outlined in Section 3.3.

More examples of variable declarations are:

AR
Error_Flad, Test & BODLEANS
Initial : CHAR:
Costs Retail. . Pr : REAL
Counts Iterations: I J & INTEGER:

This VAR section declares the Boolean variables Error__Flag and Test; the
character variable Initial; the real variables Cost and Retail_Pr; and, finally,
the integer variables Count, Iterations, I, and J.

VAX-11 PASCAL allows you to assign an initial value to a variable when you
declare the variable in a VAR section. For example, the program Grocery__ Bill
contains the following declarations and value initializations:
UAR '

ITtem.Prices Total;:

Couron.fmount 1 REAL:
Subtotal s Courpons @ REAL 1= 0.03%

The VAR section assigns the value 0.0 to the variables Subtotal and Coupons.
When the program starts executing, those variables assume the value 0.0.

If a variable is not initialized in the VAR section, its value is undefined when
the program begins execution. Therefore, the values of Item__Price, Total,

Declarations and Definitions

and Coupon_Amount are undefined at the beginning of Grocery_ Bill. If you
tried to use them, the result would be unpredictable.

The format of the VAR section with value initialization is:

VAR
{variable-name : type := value};...

The variable name and the type declare a scalar or structured variable. The
value is the initial value that is to be assigned to the variable. Note that the
operator used for initializing variables is the assignment operator (:=), not the
equal sign (=).

The value must be a constant of a type that can be assigned to the variable
(including symbolic constants and constant expressions). For example, you

can initialize a Boolean variable with either TRUE or FALSE and a character
variable with a single character enclosed in apostrophes.

The following example shows a VAR section with value initializations:

VAR

Course @ INTEGER := 1013

Section & CHAR 1= 474

First.Try : BOOLEAN = TRUE?

Second.Try : BOOLEANS

OPA ¢ REAL := 0,03

Temperature ¢ INTEGER := -103
Note that one of the above variables, Second_Try, was not initialized. You do
not have to initialize all (or any) of the variables that you declare.

3.5 User-Defined Scalar Types

PASCAL provides the predefined scalar types — INTEGER, REAL, SIN-
GLE, DOUBLE, QUADRUPLE, BOOLEAN, CHAR, and UNSIGNED. In
addition, PASCAL allows you to define your own scalar types. For example:

TYPE
Yes Mo = (Yess Mol

The user-defined scalar type Yes__No has two values, Yes and No. In this way,
it is similar to the predefined type BOOLEAN, which has the two values
FALSE and TRUE. :

There are two classes of user-defined scalar types:
¢ Enumerated
e Subrange

To define an enumerated type, you list the type’s constant values in
parentheses. For example, the type definition for Yes_ No is: :
{Yes: Nojl ‘

To define a subrange type, you specify the bounds of an interval of an existing

ordinal type. You may not define a subrange of a real type. For example, the
following is a subrange of the type INTEGER:

0., 100°

Declarations and Definitions 3-7

3-8

This definition specifies a type consisting of the integers from 0 through 100.
You can define a scalar type in either of two parts of the declaration section:
¢ The TYPE section

* The VAR section

When you define a type in the TYPE section, you associate a type name with
a set of values. In the example above, the identifier Yes_ No is the name of a
type in the same way that the identifier CHAR is the name of a type. You
must still use the VAR section to declare a variable of the type defined in the
type section. For example:
UAR

Ans ¢ Yes_Nosj
Because Yes__No is a type name, you can define more than one variable of the
type, as follows:
VAR ‘

Anss Ansl: Ans2 @ Yes.Noj
When you define a type in the VAR section, you associate one or more varia-
ble names with the set of values of the type. Thus, the following defines a
variable of a subrange type:

VaR
Percentade : O,,1003

The variable Percentage can take on the values 0 through 100. Percentage is
not a type name; it is a variable name. The subrange 0..100 has no type name
in this example.

3.5.1 Enumerated Types

An enumerated type is an ordered set of values denoted by constant identi-
fiers. To define an enumerated type, you list the identifiers that represent the
constant values of the type. The format of the enumerated type definition is:

({identifier},...)

As with other scalar types, the values in enumerated types are ordered.
In particular, they are arranged in ascending order from left to right. For
example: ‘
TYPE
Month = {Jarns Febs Mars Arr.: Mav ., June.
Julvs Auds Serts Octs Nowvse Decls

By this definition, the relational expression
Mar < Oct '
is TRUE because Mar precedes Oct in the list of values.

The enumerated type definition associates an ordinal value with each value in
the type. The ordinal value of the first value listed is 0; the ordinal value of
the second value is 1; and so forth. You can apply the ORD function to values
of enumerated types. For example, using the type Month from above, the
following function is valid:

Declarations and Definitions

ORD (Aug)

This function returns the integer value 7 because Aug is the eighth value
listed in the type definition.

A constant identifier (for example, Feb) can be used in only one enumerated
type definition. An example demonstrates the reason for this restriction. Sup-
pose the following types were defined in the type section:
TYPE

Month = {Jans Feb: Mar: Arr: Mav: June:

Julv s Auds Sert s Oots Nous Decds
Fispcal. Year = {Julv: Aud: Sert: Oct: Nouv: Dec:
Javs Feb s Mar: Arrs Mav s Junels

The second definition is illegal because it would make the following relational
expressions ambiguous:

Jan < Dec

Feb > July

The values of these relational expressions depend on which type is being
referenced, Month or Fiscal__Year.

To use the type Month as defined above, you must declare a variable of this
new type:
VAR
Birth.Month : HMonthi
The variable Birth_Month can assume any of the values of type Month.

You can define a type in the variable section. For example:

VAR
Ocean s {(Atlantics Pacific: Indians: Arctic)i

This declaration creates the variable Ocean, which can take on the values
Atlantic, Pacific, Indian, and Arctic. Ocean is a variable name, not a type
name. o

To initialize a variable of an enumerated type, specify a constant value as you
would for a predefined scalar type. For example, you can initialize Ocean as
follows:

VAR
Ocean @ (Atlantic: Pacific: Indian: Arctic) = Atlantic}

The variable Ocean takes on the initial value Atlantic.

Examples
TYPE .
Cities = (New.YorKk: Chicado: Los_.Andeles: Philadelrhia:
Seattle: Boston. San.Francisco. Washindton.DC:
Dallas: Pittsburghls
Colors = (Red: Yellow: Blue:s Orande: Purple: Green)i
VAR ;
Dav ¢ (SBuns Mown: Tues Weds Thu: Fri: Sat) 1= Fris

Hometown ¢ Cities := Bostoni
Location @ Citiess
Paint: Room_Color 2 Colorss

Declarations and Definitions 3-9

This TYPE section defines the types Cities and Colors, listing all the values
that variables of each type can assume. The VAR section declares the variable
Day and defines the values it can assume. The VAR section also declares the
variables Hometown and Location of type Cities and the variables Paint and
Room__Color of type Colors. The variables Hometown and Day are initialized
with the values Boston and Fri, respectively.

3.5.2 Subrange Types

A subrange type is a subset of an existing ordinal type called the base type. If
you know a variable will never use the whole range of values allowed by a base
type, you can define a subrange of that base type. For example, a variable
that records the number of days per year during which it rains in a certain
area can never assume a value that is less than 0 or greater than 366. Thus,
you-could declare an ordinal subrange type whose values range from 0 to 366:

VAR
Fain.Davs ¢ 0O..3661

The format of the subrange type definition is:
lower-limit..upper-limit

Lower-limit and upper-limit specify the bounds of the subrange; that is, the
constant values at the extremes of the subrange interval. The bounds must be
constants of the same base type. The base type can be any enumerated or
predefined ordinal type. Lower-limit must be less than or equal to upper-limit.

You can use a value of a subrange type anywhere in the program that you can
use its base type. Thus, you can use values of the subrange 0..366 in arithme-
tic expressions just as you can use integers. The ordinal value (returned by the
ORD function) of a value of a subrange type is the same as it would be for the
base type. For example, in a subrange type consisting of the characters ‘A’
through ‘Z’, the ordinal value of ‘A’ is 65, just as it is in the type CHAR.

You can initialize a variable of a subrange type by specifying a value of the
same type in a VAR section of your program. For example, you could initialize
the variable Rain__Days as follows:

VAR
Rain-Davs 3 0,.366 1= 1083

Rain__Days has the value 109 when the program begins executing.

Examples

1. TvPE
Davs 0f . Year = 1.,3G68%
Alrhabet = ‘A7 "273%
Dlgltg = l(:jféé’a;;
Janvary . Temes = -20,,+503%

VAR

Davs..Off ¢ Davs.Of Year:
Imitial & Alrhabetd
Rating @ Didits:
fiverade._ Januwary 3 January._Temps?

3-10 Declarations and Definitiqns

The TYPE section defines four subrange types: Days._Of_Year, Alpha-
bet, Digits, and January_Temps. The VAR section declares the variable
Days__Off, which can assume the integer values 1 through 366; Initial,
which can assume the character values ‘A’ through ‘Z’; Rating, which can
assume the character values ‘0’ through ‘9’; and Average__January, which
can assume the integer values -20 through +60.

TYPE
Davs = {(Suns Mon., Tues Weds Thus Fri. Sat)i
Colors = (Red: Yellow: Blue, Oranges Purrle:s Greenli
Primarv.Colors = Red.,.Blue:
VAR
Heek : Davs 1= MHedsi
Spectrum : Colorsi

Paints @ Primarv.Colors = Greens

WorkK_Davs ¢ Mon..Fri = Fris

Final_ Grade. @ ‘A&7., E°%
The TYPE section defines the types Days, Colors, and Primary__Colors.
The type Primary__Colors is a subrange of the enumerated type Colors.
The VAR section declares variables of the types Days, Colors, and
Primary__Colors. In addition, the variable Work__Days is declared to be of
the subrange type Mon..Fri, and the variable Final _Grade is declared to
be of the subrange type ‘A’..'E’.

The value Wed initializes the variable Week, the value Green initializes
the variable Paints, and the value Fri initializes the variable Work _Days.

Declarations and Definitions 3-11

Chapter 4
Fundamental PASCAL Statements

The basic unit of a PASCAL program is the statement. A statement directs
PASCAL to perform an action in a program. A statement consists of a system-
atic arrangement of reserved words, identifiers, operators, expressions, and
other statements. This chapter introduces the following statements:

¢ Assignment statement

¢ Compound statement

¢ Control statements
— IF-THEN statement
— IF-THEN-ELSE statement
— FOR statement

The assignment statement gives a value to a variable. The compound state-
ment, delimited by BEGIN and END, groups other PASCAL statements for
sequential execution as a single statement. The IF-THEN, IF-THEN-ELSE,
and FOR statements are control statements. In the absence of control state-
ments, PASCAL statements are executed in the sequence in which they ap-
pear in the source program. Control statements alter this sequence of execu-
tion depending on whether specified conditions are met.

As mentioned in Chapter 1, the semicolon (;) is a delimiter used to separate
successive PASCAL statements. As such, it is not needed (although PASCAL
will accept it) after a statement that is followed by a program element other
than a statement — for example, the END delimiter.

4.1 The Assignment Statement

The assignment statement assigns the value of an expression to a variable.
The format of the assignment statement is:

variable := expression

The assignment statement replaces the current value of the variable with the
value of the expression on the right-hand side of the assignment operator. You
can assign any expression having the same type as the variable, with a few
exceptions — you can assign an expression of type INTEGER to a variable of

4-2

type REAL, SINGLE, DOUBLE, or QUADRUPLE; an expression of type
REAL or SINGLE to a variable of type DOUBLE or QUADRUPLE; and an
expression of type DOUBLE to a variable of type QUADRUPLE. You can also
assign to a subrange variable a value in the specified subrange of its base type.-
Note that the assignment statement uses the assignment operator (:=), not
the equality operator (=).

For example, if I is declared as an integer variable, the following statement
assigns the value 100 to the variable I: :

I = 1003

In addition to constant values, the right-hand side of the assignment state-

ment can be any of the arithmetic, relational, and logical expressions de-
scribed in Section 2.4.

For example, suppose you make the following declarations:

CONST
\]ies = I\'lr';
No = "N73
TYPE
Department = {(Endineerind: Seciences: Math: English:
Landuades Historys Fine_firts) i

- UAR

Iy Ivocrement @ INTEGERS
fBnswer 3 CHARS

Grades Failing.Grade : REALS
My Mador 3 Departments’
Passed & BOOLEAN:

Then, the following assignment statements are valid:

I 2= 1%

Failing.Grade 5= 1,03

Grade = (4d+8+2-11/34%

Increment = I + .13

Passed s= Grade » Failind.Gradesd
Answer 1= Yesi

My.Mador = Fine_Artsi

Note that in the statement Answer := Yes, the expression to be assigned to
Answer is a symbolic constant. The value of the symbolic constant Yes is a
single character and can therefore be assigned to the CHAR variable Answer.

In each of the assignment statements shown above, the type of the expression
is the same as that of the corresponding variable.

Fundamental PASCAL Statements

4.2 The Compound Statement

You can use the BEGIN and END delimiters to group one or more statements
into a compound statement. The statements are executed in sequential order.
The format of the compound statement is:

BEGIN
{statement};...
END

The statements between the BEGIN and END delimiters can be any PAS-
CAL statements, including other compound statements. Successive state-
ments must be separated with a semicolon; however, no semicolon is required
between the last statement and the END delimiter. PASCAL treats the com-
pound statement as if it were a single statement. For example, the program
Grocery__Bill contains a compound statement that is part of an IF-THEN
statement: ’
IF (Ans = Yes)
THEN

BEGIN

WRITELN (‘Tyrpe value of each couron.: One per line.)3
WRITELN (/'Tvpe <CTRL/Z> after entering all courons.)i

(% Read and sum amount of each couron until end of input. *)
REPEAT) :
READLN (Coupon_Amount)®
Courons = Courons + Couron_Amounts’ .
UNTIL EOF (INPUTD) S
END 3§

If the Boolean expression (Ans = Yes) is TRUE, every statement between
BEGIN and END will be executed; if the expression is FALSE, the flow of
control will transfer to the statement following the END.

This primer uses the term “statement” to mean either a single or a compound
statement. More examples of compound statements appear throughout this
chapter.

4.3 The IF-THEN Statement

Often you want a statement to be executed only if a certain condition is
satisfied. The IF-THEN statement causes the conditional execution of a
statement; that is, it executes a given statement if a specified Boolean expres-
sion is TRUE. The format is: '

IF Boolean-expression
THEN
statement

The meaning of this statement is suggested by the English words “if” and
“then.” “If”’ the expression is TRUE, “then” the statement will be executed.
If the expression is FALSE, program control will pass to the statement follow-
ing the IF-THEN statement.

Fundamental PASCAL Statements 4-3

4-4

Together the reserved word THEN and the statement that directly follows it
are called the THEN clause of the IF-THEN statement. The statement fol-
lowing THEN is called the object of the THEN clause.

The flow of control for the IF-THEN statement is illustrated in Figure 4-1.

Boolean
expression

Statement

ZK-1024-82

Figure 4-1: The IF-THEN Statement Flow Chart

For example:

IF A < 0
THEN
Ned_Ints 1= Ned_ Ints + 13

If the value of A is less than 0, the value of Neg__Ints will be increased by 1.

Note that you must not place a semicolon after the reserved word THEN.
If you do, an empty statement becomes the object of the THEN clause. In the
example above, had there been a semicolon after THEN, the assignment
statement would have been executed regardless of the value of the Boolean
expression.

Fundamental PASCAL Statements

Examples

1. IF t(Ans = Yes)
THEN
BEGIN

+
#

®

END 3

The object of the THEN clause can be a compound statement. The state-
ments between BEGIN and END will be executed if the Boolean expres-
sion is TRUE. If the expression is FALSE, execution will continue with
the statement following the END.

2. IF (Ch *= ‘A’) AND (Ch <= ‘77
THEN
BEGIN
lLetter 1= TRUES
Letter.Total 3= Letter.Total + 1%
END 3§

If both relational expressions are TRUE, the compbuhd statement will be
executed.

3. IF Errﬂrflés
THEN
WRITELN (‘Index number out of bounds)i

The Boolean expression can be a single Boolean variable, as in this exam-

ple. The WRITELN statement will write the message in parentheses if the
current value of Errorflag is TRUE.

4.4 The IF-THEN-ELSE Statement:

The IF-THEN-ELSE statement is an alternative form of the IF-THEN state-
ment. The IF-THEN-ELSE statement causes the program to select and exe-

cute one of two statements depending on the value of a Boolean expression.
The format of the IF-THEN-ELSE statement is:

IF Boolean-expression
THEN
statementl

ELSE
statement2

Statementl and statement2 can be any PASCAL statements. Statement1 will
be executed only if the expression is TRUE. If the expression is FALSE,
statement2 will be executed instead. Together, the reserved word ELSE and

Fundamental PASCAL Statements 4-5

statement2 are called the ELSE clause of the IF-THEN-ELSE statement.
The flow of control for the IF-THEN-ELSE statement is shown in Figure 4-2.

Boolean
expression

Statement 1 Statement 2

End

ZK-1025-82

Figure 4-2: The IF-THEN-ELSE Statement Flow Chart

You must not place a semicolon between statementl and the word ELSE. The
IF-THEN-ELSE statement is a single statement and the IF-THEN clause
cannot be separated from the ELSE clause. You will receive a compile-time
error message if there is a semicolon directly before the word ELSE.

The ELSE clause is always associated with the closest IF-THEN statement.
For example:

IF & = 1
THEN
IF B <> 1
THEN
G o= 1
ELSE
D := 13

4-6 Fundamental PASCAL Statements

The ELSE clause is associated with the second IF-THEN statement. There-
fore, if A and B are both equal to 1, 1 is assigned to the variable D. If A is not
equal to 1, neither assignment statement is executed. If you wanted the ELSE
clause to be associated with the first IF-THEN statement, you would write

the

IF
THE

ELS

V)
sequence as follows:

A= 1
N
BEGIN
IF B <x 1
THEN
Coa= 13
END
E
D o= 13

The object of the THEN clause of the outer IF-THEN-ELSE statement con-

sists of:
BEGIN
IF B < 1
THEN

Coa= 13
END

And the ELSE clause is:

ELS

E
De=13

Thus, if A‘is equal to 1, the THEN clause will be executed and the ELSE
clause will be ignored. If A is not equal to 1, 1 will be assigned to D regardless
of the value of B.

Examples
1. IF (Last_Initial »= ‘A’) AND (Last_.Initial <= ‘M’}
THEN .
Billdate := 14
ELSE
Billdate := ZB3%

This example determines billing dates depending on the initial of a last
name. Bills are sent on the 14th of the month to each customer whose last
names start with A through M, and on the 28th to customers whose last
names start with N through Z.

IF (Card..Bum > 21}
THEN
Lose 1= TRUE
ELSE
IF (Card.Sum »= 17)
THEN
Deal := FALSE
ELSE
BEGIN
Deal := TRUE:
Card.8um 5= Card.Sum + Newcards
END 3

This example shows a simple strategy for the game Blackjack. Note the
nested IF-THEN-ELSE statements that allow the program to select and
execute one of a group of statements. In this example, if the cards add up
to more than 21, the player will lose. If the sum is between 17 and 21,

Fundamental PASCAL Statements 4-7

inclusive, the player will not be dealt any more cards. If the sum is less
than 17, the player will be dealt another card. The IF-THEN-ELSE
construct can become awkward if there are more than a few
selections to be made. A more elegant way to program this type of problem is
to use PASCAL’s conditional CASE statement, which is explained in
Section 7.3.

4.5 The FOR Statement

4-8

The FOR statement controls a loop. A loop is a construct containing a state-
ment or a series of statements that is executed repetitively until a certain
condition is met. The repetitively executed statement or series of statements
is called the loop body. In the FOR loop, the loop body is executed repetitively
based on the value of an automatically incremented or decremented variable.

For example:

FOR Int z= 1 TO 10 DO
BEGIN
Sauare = Int % Ints
WRITELN (’The sauware of ‘s Int:3: ’ eauals’: Sauare:sd)s
END 3

The statements between BEGIN and END are executed 10 times. The first
time through the loop, the variable INT has the value 1, the second time it
has the value 2, and so on. For each integer from 1 to 10, this example
computes the integer’s square and writes it with a message to the terminal.
Thus, the output from the first iteration would be:

The sauare of 1 eauals 1

The format of the FOR statement is:
; TO -
FOR control-variable :=initia1-value{ DOWNTO } final-value DO
statement;

The control variable can be a variable of any ordinal type; it cannot be the
name of an array component or a record field. (Arrays and records are dis-
cussed in Chapter 6.) The initial and final values must be expressions of the
same type as the control variable.

The initial and final values are computed only once, at the beginning of the
FOR statement. Thus, if the loop body changes the value of the final expres-
sion, the change will not affect the number of times the loop is executed.

The loop body is repetitively executed while the control variable ranges from
the initial value to the final value. In the TO form of the FOR statement, the
final value must be greater than or equal to the initial value to cause the loop
body to execute. In the DOWNTO form, the final value must be less than or
equal to the initial value. In either form, if the initial and final values are
equal, the loop body is executed once.

The loop body must not change the value of the control variable. After the
FOR statement is executed, the control variable is left undefined; you cannot

Fundamental PASCAL Statements

assume that it retains a value. Therefore, you must assign a new value to the
control variable before you can use it elsewhere in the program.

The flow of control for both forms of the FOR statement is shown in Figure

4-3.

\

control-variable control-variable

initial-value) initial value

Control-variable Control-variable

< = final-value >= final-value
Statement ' Statement
Y : |
increment decrement
control-variable . control-variable
TO Form DOWNTO Form

ZK-1026-82

Figure 4-3: The FOR Statement Flow Charts

In the TO form, on each iteration of the loop, the control variable is assigned
the successor value in its type. That is, if the control variable is an integer, the
FOR statement adds 1 to the control variable’s value upon each iteration. For
control variables of other types, the control variable takes on a successive
value of its type at each iteration. Similarly, in the DOWNTO form, on each
iteration the control variable is assigned the predecessor value in its type.

Fundamental PASCAL Statements 4-9

Examples

1. Tv¥PE
Days = (Suns Mons Tue:s Wed: Thus Fri: Sat)i
VAR
Current.Day : Davss
Hours. . Worked : REAL 3

FOR Current.Day = Sun TO Sat DO
IF (Current.Day <> Sun}) AND (Current.Day <> Sat)
THEN
Hours.Worked 1= Hours_.Worked + 83

This example shows the use of a FOR statement with a control variable of
an enumerated type. On each iteration of this loop, the variable Current__
Day is assigned the successor of its current value in the type Days. Thus,
Current__Day equals Sun on the first iteration, Mon on the second, and so
forth. On the last iteration, the value Sat is assigned to Current__Day, the
loop body is executed for the final time, and control moves to the state-
ment following the loop.

2. FOR Student_Id := 25 DOWNTO 1 DO
BEGIN
READLN (Gradels GradeZ, Graded)
Averade = {(Gradel + Grade2 + Graded) DIV 33

IF Auerade =»= BS
THEN)

WRITELN (‘Student number ‘+ Student.Id: ' rPassed’)
ELSE

WRITELN (‘Student number 7y Student.Id: 7 failed)}
ENMD 3 ' ’

This example shows the DOWNTO form of the FOR statement. On suc-
cessive iterations of the loop, the values from 25 down to 1 are assigned to
the variable Student_Id. For each student identification number, three
grades are read into the variables Gradel, Grade2, and Grade3. The loop
body computes a grade average and writes the appropriate message de-
pending on whether the student passed or failed.

4-10 Fundamental PASCAL Statements

Chapter 5
Reading and Writing Data

The PASCAL statements described in the preceding chapter allow a program
to manipulate data and perform certain operations. To enter data into a
program, the program must perform input operations. To display the results
of its actions, the program must perform output operations. This chapter
describes VAX-11 PASCAL terminal input and output (I/O); that is, how to
read and write data interactively from a terminal.

Specifically, this chapter covers the following topics:

¢ The predeclared text files INPUT and OUTPUT

e The READ and READLN procedures for data input

e The WRITE and WRITELN procedures for data output
¢ The predeclared functions EOLN and EOF

5.1 The Predeclared Text Files Input and Output

You perform I/O operations on file variables. A variable of the structured type
FILE is a sequence of data items, called file components, that have the same

type. -

PASCAL predeclares two text file variables, named INPUT and OUTPUT. A
text file is a file that has components of type CHAR and that is divided into
lines. The I/0O procedures and functions explained in this chapter perform
operations on either INPUT or OUTPUT by default.

When you run a program in interactive mode, VAX-11 PASCAL associates
the predeclared file variables INPUT and OUTPUT with your terminal by
default. That is, your terminal is treated as the file INPUT for reading data
and as the file OUTPUT for writing data.

Because INPUT and OUTPUT are predeclared, you do not declare them in
the declaration section. Instead, you specify them in the heading of a program
that uses them. For example, for an interactive program that accepts input
data from the terminal and writes output data to the terminal (such as the
example in Chapter 1), you must specify both files, as follows:

PROGRAM Grocerv.Bill C(INPUTs OUTPUT);

You can specify the files in either order.

Some programs require no input from the terminal. For instance, a pfogram
that prints a table of the ASCII characters needs only the output capability.
Its heading might be:

PROGRAM Print.ASCII (OUTPUT) S

This program heading indicates that the name of the program is Print_ASCII
and that it uses the file OUTPUT.

You can access only one component of a file at a time. Associated with every
file is a file position that determines which component can currently be ac-
cessed. You can imagine a file’s position as a movable window through which
you can see only one component at a time. A file’s current position is the
position immediately following the file component that was last read or
written.

The VAX-11 PASCAL Language Reference Manual contains additional infor-
mation on PASCAL I/0. Specifically, it explains the use of input and output
procedures on files other than the predeclared files INPUT and OUTPUT.

5.2 Reading Data

5-2

To submit data for a program to process, you need procedures that perform

input operations. The use of input procedures allows a program to process
different sets of data each time it runs. PASCAL provides the READ and
READLN procedures for data input.

By default, the READ and READLN procedures get data from the prede-
clared file variable INPUT, that is, your terminal. The READ procedure reads
values from a file and assigns them to variables that are specified as read
parameters. The READLN procedure performs a READ operation, then
moves to the beginning of the next line of the input file.

5.2.1 The READ Procedure

The READ procedure reads data from the file variable INPUT and assigns the
values that are read to the specified variables. For example:

READ (Next_Char)}

This procedure call causes a character to be read from the terminal and
assigned to the character variable Next__Char.

The general format of the READ procedure, when usmg the default file varia-
ble INPUT, is:

READ (|INPUT, |{variable},...)

Because the file variable INPUT is the default, you can omit its name from a
READ procedure call.

The variable(s) are the parameters of the READ procedure into which values

will be read. At least one variable must be specified. The parameters of the
READ procedure can be variables of any scalar type, including an

Reading and Writing Data

enumerated type. As explained in Section 6.1.2, the READ procedure also
accepts character-string variables as parameters.

The READ procedure reads values from the terminal until it finds a value for
each variable that is specified as a parameter. The first value found is as-
signed to the first variable in the list, the second value is assigned to the -
second variable, and so on.

Each variable must have the same type as the corresponding value being read,
with the exception that an integer value can be read into a real variable. For
example, suppose that the variables in the following READ procedure are of
type REAL, INTEGER, and INTEGER, respectively:

READ (Temp: Adesr Weidght)i

The following values can be read into the specified variables:
898 11 75

The variable Temp is assigned the value 98, Age is assigned the value 11, and
Weight is assigned the value 75.

Note that in the READ procedure shown above, each input value is separated
from the next by a space. Numeric data items typed at the terminal must be
- separated by one or more spaces or tabs, or put on new lines. Because the
space and the tab are values of type CHAR, this rule does not apply when you
are typing character data. If a READ procedure specifies a character variable
and encounters a space or a tab, the space or tab is read and assigned to the
character variable. ’

As a result of a read operation, the value of the component in the current file
position is assigned to a variable; then the file position advances to the file
component following the input value. .

Examples
1. Statements Input
READ (X .Y)3

READ (A:B) 3 12 3 4

These two READ procedures read the values on the input line into the
variables X, Y, A, and B. After the procedures are executed, X equals 1, Y
cequals 2, A equals 3, and B equals 4. The file position advances to the
position that immediately follows the value 4. :

2. READ (Mowth: Dates Year):

~ If these variables are of type INTEGER, the following are valid input
values: ‘
z 14 1984
After the READ procedure is executed, Month equals 2, Date equals 14,
and Year equals 1984. Note again that you can use any number of spaces

to separate input values. The values also can appear on different lines as
follows:

s
£

14 1984

Reading and Writing Data 5-3

As above, Month equals 2, Date equals 14, and Year equals 1984. Remem-
ber that the relative position of the numbers is important. If you typed 14
before 2 at the terminal, the resulting values of the variables Month and
Date would be reversed. "

3. REQD‘(Char,Uar>;
IF Char_VYar <> ° “
THEN

Count &= Count + 13

Assume that Char__Var is a variable of type CHAR and that this segment
of code is within a repetitive loop. This program fragment counts the
number of characters other than the space character in a file. The READ
procedure reads a character and assigns it to Char__Var. If the character is
not a space (~), the variable Count will be incremented by 1. If the
character is a space, the assignment statement (Count := Count + 1;) is
skipped.

5.2.2 The READLN Procedure

Another PASCAL input procedure is the READLN procedure. The READLN
procedure simply performs a READ and then positions the file at the begin-
ning of the next line. For example:

READLN (Item_Price);
This READLN procedure reads a value into the variable Item__Price and then
positions the file at the beginning of the next line. Thus, any remaining data

on the input line is ignored. (For this reason, you were instructed to type one
item per line in the program Grocery_Bill in Chapter 1.)

In contrast to the READ procedure, at the end of the READLN procedure, the
file position advances to the first component of the next line.

The format of the READLN procedure using the default file INPUT is:
READLN (|INPUT, |{variable},...)
or ’
READLN [(INPUT)|

After a value is read for each variable that is specified as a parameter, the rest
of the current line is discarded and the file position advances to the first
component of the next line.

As shown in the format descriptions above, the variable list in the READLN
procedure is optional. Therefore, you can use READLN as follows:
READLN§

This procedure advances the file to the beginning of the line after the current
line without reading any values.

Examples

1. Statements Input
READLM (X :¥) 3 12 3 4
READLN (A.B) 3 4 22 18 12

5-4 Reading and Writing Data

The first READLN procedure reads the values 1 and 2 and assigns them to
X and Y, respectively. Then the file position advances to the beginning of
the next line, and the remaining numbers on the first line are ignored. The
second READLN procedure starts reading data from the second line of the
input file and assigns the value 4 to A and the value 22 to B.

If the first READLN procedure were instead a READ procedure, only the
first line of input would be read. READ (X,Y) would read the values 1 and
2 and assign them to X and Y. The file position would not advance.
READLN (A,B) would read the values 3 and 4 from the same input line
and assign them to A and B. The file position would then advance to the
next line to wait for another call to an input procedure.

2. Statement Input
READLN (XY ,2) © 1 100

1000 1001

This procedure call assigns 1 to X, 100 to Y, and 1000 to Z. Then the file
position advances to the beginning of the line following the values 1000
and 1001. Note that the READLN procedure reads across lines until it
finds a value for each specified variable; it moves to the next line only
after the values are assigned to the variables. Thus, in this example, when
there are no more values on the line containing 1 and 100, the value 1000
from the next line is read and assigned to the variable Z.

5.3 Writing Data

To display the results of its actions, a program must perform output opera-
tions. PASCAL provides the WRITE and WRITELN procedures for data
output.

By default, the WRITE and WRITELN procedures write data to the file
OUTPUT, which is associated with your terminal. The WRITELN procedure
simply performs the WRITE procedure, and then positions the file at the
beginning of a new line.

5.3.1 The WRITE Procedure

The WRITE procedure writes data to the file variable OUTPUT. For exam-
ple:

WRITE (Total)si

This procedure call writes the value of the variable Total on your terminal.

The general format, when using the default file variable OUTPUT, is:
WRITE (|OUTPUT, |print-list) |

Because OUTPUT is the default, you can either include or omit the name
OUTPUT in the WRITE procedure call. The print list specifies write parame-
ters, that is, the values to be written. It can contain:

¢ Expressions of any scalar type

¢ Character strings enclosed in apostrophes

Reading and Writing Data 5-5

5-6

Multiple parameters in the print list must be separated by commas.

To print the value of a symbolic constant or a variable, you simply specify its
identifier. You can print the result of an arithmetic, relational, or logical
expression by including the expression in the print list. In addition, you can
use the WRITE procedure to print a character string to explain the output.
Examples of WRITE procedures with variable, Boolean expression, and string
parameters are shown below. For each output line, a blank sign (B) indicates
that the corresponding WRITE procedure prints a space.

Statements Output
WRITE (IntWar): BB RERLE
WRITE ((2:3) AND Flad)s BWFALSE

WRITE (/IntWar esuals 7 IntWar)s IntVarbeaualsbbbbbBBEBLZ

Each output line is shown above as PASCAL would print it. PASCAL auto-
matically provides spacing for various kinds of output. Thus, in the first two
examples, the output values (that is, the value 12 and the value FALSE) are
printed with a default number of leading spaces. You can control the spacing
by specifying the field width as explained below.

The third example shows how to print a character string and a value. A
character string is a sequence of characters enclosed in apostrophes (in this
example, ‘IntVar equals “). The value 12 is printed with a default number of
leading blanks.

After a WRITE procedure is executed, the file is positioned immediately after
the last value that was written. Thus, if the three WRITE procedures shown
above appeared in three successive program statements, all of the output
would appear on the same line.

The field width is the minimum number of characters that will be written to
the terminal. You can specify a minimum field width for each write parameter
in the print list. However, without the field width specification, PASCAL uses
the default values listed in Table 5-1.

Table 5-1: Default Values for Field Width

Number of
Type of Variable Characters Printed

Integer 10

" Real ' 16
Double 24
Quadruple 32
Boolean 6
Character 1
Enumerated Size of identifier + 1 up to 32
String Length of string

Reading and Writing Data

For example, the default field width for a real value is 12 charécters. If the
value of a real variable called Average is 5.5, it is printed as follows:

Statement Output
WRITE {(Auerade)? B, B0000E+00

Note that real values are printed in floating-point format by default. The
value of Average is written in a field of 12 characters (which includes a leading

blank).

To override the default for a particular value, you must specify a field width
in the print list. The following is the general form of field-width specifications:

write-parameter : minimum |: fraction||

Minimum and fraction represent nonnegative integer expressions. Minimum
indicates the minimum number of characters to be printed. Fraction, which is
used only with real values, indicates the number of d1g1ts to be printed to the
right of the decimal point.

For example, you may prefer to print the real-number value of Average in a
more readable decimal format. You can include field-width parameters in the
WRITE procedure call to do this:

WRITE (/'The averade is’: Averadesdsl)i

This statement produces the following output:
Thebaveradehish3 .5
The integer 4 indicates that at least four characters will be printed. This

count includes the decimal point and a minus sign (-) if the value is negative.
If the value is positive, as above, a leading blank is optional.

The integer 1 specifies that one digit will appear to the right of the decimal
point. Thus, the WRITE procedure above specifies a field width of at least
four characters, with one character to the right of the decimal point.

The following rules apply to designating field-width paramefers in output
procedures:

1. If the fraction parameter is omitted from a real value, the value is printed
in floating-point format.

2. If the print field is wider than necessary, PASCAL prints the value with
the appropriate number of leading blanks.

3. If the print field is too nérrow, PASCAL treats the various kinds of write
parameters as follows:

a. Character strings and nonnumeric scalar values are truncated on the
right to the specified field width.

b. Integers and real numbers in décimal format are printed using the full
number of characters needed for the value, thus overriding the field-
width specification.

c. Real, double, and quadruple values in floating-point format are
printed in a field of at least eight characters (for example, -1.0E+00).

Reading and Writing Data 5-7

5-8

d. All real values in either decimal or floating-point format are printed
with a leading minus sign if they are negative. Nonnegative real num-
bers printed in decimal format need not include a leading blank.

\

Examples

1. Statement
WRITE (’First number -~ 7% Mumber:8)i
Output

Firstlnumberb--BhbbBERERL

Suppdse the value of Number is 1. This WRITE procedure prints the text
(“First number --) followed by eight spaces and the numeral 1. That is,
1 is said to be right-justified in the field of nine characters.

Statement '

WRITE ('This., is a test strind’/s12)3%

Output
Thiskhisbalbte

The text in this example is truncated on the right so that it fits into the
field of 12 characters.

Statement

WRITE (Number:d., ‘ values averaded to ‘' Averade:3sl)i

Output

FhbSbhuvaluesbaveradedbtob3.3

One WRITE procedure can contain several values and character strings as
in this example. If Number equals 5 and Average is 5.5, the output shown
will be printed. Three leading blanks are included before the number 5 to
fill the print field, which is 4. The value of Average is printed in a field of
three characters.

Statement

WRITE (NumlsSsls “and’ s NumZ2:5:1 s " sumto’ s (Numl+Num2i Bl

Output
P71 1bandb29. 9% sumbtolb101.0

This example shows an arithmetic expression as a write parameter. The
values of Numl and Num2 (71.1 and 29.9, respectively) are each written
in a field of five characters. The expression (Numl + Num2) is evaluated,
and the value (101.0) is printed in a field of six characters.

Reading and Writing Data

5. Statements

WRITE (‘First column heading’) s
WRITE (’‘Second column heading’:35)3%

Output

FirstbcolumnbheadindbbbbbbEbEHEYBE Secondbcolumnbheading
Remember that after a WRITE procedure is executed, the file is posi-
tioned after the last character printed. Therefore, two consecutive WRITE
procedures print data on the same line. The first procedure call to WRITE

prints the text, leaving the file position after “heading.” The second pro-
cedure call right-justifies its text in a field of 35 characters.

6. If you specify a variable of an enumerated type as a write parameter,
PASCAL prints the constant identifier that names its value in uppercase
letters. For example, suppose the variable Color is defined as:

VAR
Color : (Blues Yellow, Black:
Fire_Endine.Greenl):= Yellows

The WRITE procedure call

WRITE ('My favorite color is’s ColorslB)s
produces the following output:
Mvi#favoritebcolorbis WRBHEBEBEYELLOW

If, however, the value Fire__Engine__Green is assigned to Color, the fol-
lowing appears:

MvbfavoritebcolorbisWFIRE.ENGINE.GRE

Since the field width specified is not wide enough for all 17 characters in
FIRE_ENGINE_GREEN, PASCAL truncates the last 2 characters.

5.3.2 The WRITELN Procedure

Another PASCAL output procedure is the WRITELN procedure. The WRI-
TELN procedure simply performs the WRITE procedure, then positions the
file at the beginning of a new line. It has the general form:

WRITELN [(|OUTPUT, |print-list) |

Write parameters are specified in the print list in the same manner as they are
specified for the WRITE procedure. Furthermore, the field-width rules de-
scribed in Section 5.3.1 also apply to the WRITELN procedure.

If several parameters occur in the print list, the WRITELN procedure prints
all of the values on one line and then starts a new line. Alternatively, you can
omit the print list altogether. This omission is useful when you want to start a
new line or when you want to write a blank line to the output file.

Reading \and Writing Data 5-9

Examples

1. Statements

WRITELN (/The wvalue of X is’» X)3
WRITELN (’'The value of ¥ is’, Y)3j

Output

ThebvaluebofWXBisHUBHBBEEELO
ThebvalusBofbYHisHBHHHBEKLS

In the output, the write parameters from each WRITELN procedure ap-
pear on different lines. After both WRITELN procedures are executed, the
file is positioned at the beginning of a new line following the output. In .
contrast, if you used WRITE procedures instead of WRITELN procedures
in the example above, the output from both of the print lists would appear
on one line, as follows: ‘

TheBvalueWofbXPishbBEEEEE10ThebvaluehofEY ishhEBEKEL1S
The file is positioned immediately after the value 15.

2. Statements

WRITELN (‘Names’s ‘Ade: :189: ‘Soc. Sec. #:’ 317813
WRITELNS
WRITELN ('Socrates’s ‘01d7:1%: ‘Unknown 2413

Output
Names: fide: Soc. Sec. #3
Socrates 01d UnEnown

This example illustrates how multiple parameters in the print list of a
WRITELN procedure are printed. All of the items in the print list are
printed on one line. Then the file position advances to the beginning of a
new line. This example also shows how to print a blank line. Because it
has no print list, the second WRITELN procedure prints no characters,
but creates a blank line.

5.4 The Predeclared Functions EOLN and EOF

5-10

The EOLN and EOF functions are predeclared PASCAL functions that oper-
ate on file variables and yield Boolean results. The EOLN function tests the
end-of-line condition. The EOF function tests the end-of-file condition.

5.4.1 The EOLN Function

Text files are divided into lines. Each line ends with a line-separator mark,
which indicates the end of a line. You can test for this end-of-line mark with
the EOLN function.

The format of the end-of-line function is:
EOLN| (file-variable) |

The file variable must be a variable of type text file. For the purposes of this
chapter, the file variable is the default file INPUT. You can either specify the

Reading and Writing Data

name INPUT or omit the file variable altogether, because INPUT is the
default.

The function EOLN is TRUE when the file is positioned at the end of a line or
as soon as the last component on a line has been read. Otherwise, EOLN is
FALSE.

After a READ procedure reads the last component on a line, the file is posi-
tioned on the EOLN mark. In contrast, after a READLN procedure reads the
last component on a line, the file is positioned at the beginning of the next
line, that is, past the EOLN mark. Thus, after a READLN is performed, the
EOLN function is never TRUE unless the next line is empty. For this reason,
the input procedure before an EOLN test is usually a READ, not a READLN.

If a READ procedure specifying a character variable as a parameter en-
counters the EOLN mark, a space (* ’) is assigned to the variable.

To specify the end of a line when typing input at the terminal, press @D, the
return key. After a READ procedure reads the last character that was typed
before the return key, EOLN becomes TRUE.

The following loop shows the use of the EOLN function:

WHILE NOT EOLN (INPUT) DO
BEGIN
READ (Ch)
Num_.Chars := Num.Chars + 13
END 3 .

Assume that the variable Ch is of type CHAR and Num__Chars is of type
INTEGER. This loop counts the number of characters on a line. The WHILE
statement causes the loop body to execute repetitively as long as NOT
EOLN (INPUT) is true. (Section 7.2 contains information on the WHILE
statement.) When the last character on the line is read, EOLN becomes
TRUE. The WHILE statement tests for NOT EOLN (INPUT), which is now
FALSE. Therefore, the loop body is not executed again.

5.4.2 The EOF Function

Every file ends with an end-of-file mark that you can test for with the EOF
function. The EOF function is TRUE when the file is positioned on this end-
of-file mark. The EOF mark follows the last EOLN mark in a text file.

The format of the EOF function is:
EOF| (file-variable) |

The file variable can be a variable of any file type. As with EOLN, the file
variable INPUT is the default.

As soon as the last line in a file has been read, EOF becomes TRUE. At all
other times, EOF is FALSE.

The diagram in Figure 5-1 represents the characters and the EOLN and EOF
marks in a text file.

Reading and Writing Data 5-11

5-12

Beginning

of ¢ o o X EOLN EOF

File

ZK-1027-82

Figure 5-1: The End of a Text File

The symbol X represents the last component of a text file. Suppose the follow-
ing procedure reads the component denoted by X into a variable:

READLN (variable);

The variable is assigned the value in X. As a result of the READLN procedure
call, the file position advances past the EOLN mark. Thus, the file position
appears as shown in Figure 5-2.

Beginning .
of * o o EOLN EOF
File

file position

ZK-1028-82

Figure 5-2: File Position at End-of-File

You usually use the READLN procedure before an EOF test. The READLN
procedure advances the file position past the EOLN mark (that is, to the EOF
mark), as shown in Figure 5-2.

If you use a READ procedure, the last component in the file is read and the
file is positioned on the EOLN mark. EOF is not TRUE because the file
position has not been advanced to the EOF mark.

The only time EOF can be TRUE after a READ procedure is when a value is
being read into a character variable. In that case, after the last component in
a file is read, the file is positioned at the EOLN mark. EOF is still FALSE. As
a result of one more read operation, a space (*) is assigned to the character -
variable and EOF is TRUE.

When you are typing input at the terminal, you can indicate the end of the file
by typing a CTRLZ). generates an EOLN mark (if the previous component
was not an EOLN mark) and an EOF mark. When a READLN procedure
reads the last component typed before CRLZ), EOF becomes TRUE. The
READLN procedure reads past the EOLN mark and causes the file to be
positioned on the EOF mark.

For example, the program Grocery__Bill contains the following construct:

REPEAT
READILN (Courpov_Amount):
Courons = Courpons + Couron_Amount?

UNTIL EOF (INPUT)S

Reading and Writing Data

In Grocery_Bill, WRITELN procedures directly above this loop print in-
structions for entering data items and terminating the items entered with a
CRL2). Each time the above READLN procedure reads a value for the variable
Coupon_Amount, it reads past the EOLN mark. On the last iteration, the
READLN procedure encounters the end of the file, which was generated by
the €RLUZ), and EOF becomes TRUE. (The REPEAT statement is explained in
Section 7.1.)

Reading and Writing Data 5-13

Chapter 6
Structured Types: the Array and the Record

The types presented in previous chapters of this primer are all scalar types. A
variable of a scalar type is an indivisible unit of data. That is, the unit of data
contains no smaller data items that can be manipulated individually.

A variable of a structured type, on the other hand, is a collection of related
data items that you can access and manipulate individually. Although you
refer to an entire structured variable with one identifier, you can treat its data

" items as individual variables.

VAX-11 PASCAL provides the following structured types for building data

structures:

e Arrays

® Records

® Varying character strings
* Sets

o Tiles

An array is a collection of a specified number of data items of the same type.
A record is a collection of data items that can be of different types. A varying
character string is a sequence of ASCII characters whose values are strings of
different lengths. A set is a collection of data items of an ordinal type. A file is

a sequence of any number of data items of the same type.

This chapter presents the array (Section 6.1) and the record (Section 6.2)
types. A special case of the file type — the text file — was introduced in
Chapter 5. A detailed presentation of the varying character string, set, and file
types, however, is beyond the scope of this primer. Refer to the VAX-11
PASCAL Language Reference Manual for more information on these struc-

tured types.
6.1 Arrays

An array is a group of data.items of the same type. Each data item in the
group is called a component of the array. You refer to the whole array with one
identifier. You refer to each component with the array identifier and an index,
enclosed in brackets. The indexes need not be integers; they can be values of

any ordinal type.

6-1

~ The following is an example of an array variable declaration:

VAR
Word ¢ ARRAYL1..201 0OF CHARS

An array declaration establishes three properties:

1. The identifier that names the whole array. In the example above, the
name of the array is Word.

2. The range and type of the indexes. In the array Word, the indexes are a
subrange 1..20 of integers.

3. The type of the components. The components of Word are of type CHAR.

The index of an array can be any expression of the index type. Thus, in the
array Word, the first component is Word[1], the second is Word[2], and so
forth. You can use array components as variables of the component type. For
example, the component Word[1] can appear on the left-hand side of an as-
signment statement or as a parameter of the ORD function.

The format of the type definition for an array is:
ARRAYI({index-type},...] OF component-type

The index type can be a subrange of any ordinal type. It can also be the full
range of the CHAR type, the BOOLEAN type, or an enumerated type. For
example, you can specify the index type in the type definition with merely the
identifier CHAR. However, the index type cannot be the full range of the type
INTEGER because an array of that size would occupy too much space in
memory.

The components of an array can be of any type, including structured types.
For example, you can define an array of integers, an array of records, or an
array of real numbers. An array of arrays is called a multidimensional array,
as explained in Section 6.1.1.

The type definition shown above can appear in the TYPE section or in the
VAR section. An example of defining an array type in the TYPE section is:
TYPE

Prices = ARRAY[1,,1001 OF REAL3
This TYPE section defines the array type Prices, whose index type is the
subrange 1..100, and whose component type is REAL. You can declare an
array variable of type Prices as follows:

VAR
Sales.Items 3 Pricesi

Suppose a store has up to 100 kinds of items for sale and each item is associ-
ated with a stock number in the range from 1 to 100. The variable Sales _
Items stores the price for each item. Thus, for example, the price for item
number 20 is stored in Sales__Items[20].

The following declarations show an example of declaring an array variable in
the VAR section.

6-2 Structured Typés: The Array and the Record

TYPE
Davs = (Bun Mons Tues Wed:, Thu, Fri: Satli
Work. . Day = 0,243

VAR
Work. Week @ ARRAYIMon..Fril OF Work.Davs

In the array Work__Week, the index type Mon..Fri is a subrange of the enu-
merated type Days. The component type Work__Day is a subrange 0..24 of
integers. This declaration creates the variable Work__Week, which has five
components, each of which represents the hours worked in one day.

Suppose you want to write a program to calculate the average of the test
scores earned in a particular course. You can treat the group of test scores as
an array. The following declarations create an array type and an array varia-
ble of that type.
TYPE

Tests = 1l..Num.Testsi

Test.Scores = ARRAYITests] OF INTEGERS

VAR

Score @ Test.Scoresi

i

Note that you can use a type identifier (for example, Tests) as the index type
in an array definition. If Num__Tests is a constant identifier equal to 6, Test__
Scores is an array of integers whose index values can range from 1 to 6. To use
an individual score in an executable statement, specify the array variable
name (Score) and an integer expression whose value is between 1 and Num__
Tests.

A program that calculates the average of the components in the array Score
might be written as follows:

PROGRAM Auverade_Scores (INPUT, OUTPUT):

CONST

"Num_.Tests = B3 (% Number of scores to be averaded *)
TYPE

Tests = 1. .Mum.Testss

Test.Scores = ARRAYL[Testsl OF INTEGERS

VAR

Score @ Test_Scoressi
Sums I+ Averade : INTEGER]
BEGIN
Sum 1= 03
FOR I := 1 70 Num_Tests DO (% Access each component of Score *)
BEGIN
WRITE (’Enter test score: ‘)i
READLN (ScorelI13)3 t#% Read an inteder into each component *)
Sum 2= Sum + ScorelI1: (% Sum the comPonents #*)
END 3§
Auverade = Sum DIV Num.Tests?
WRITELN (‘The following scores were entered: ‘)3
FOR I := 1 TO Num.Tests DO
WRITELN (ScorelIl:d)3 (¥ Print each component of Score %)
WRITELN (‘The average is: ‘' Auerade:3)3;
END .,

Structured Types: The Array and the Record 6-3

6-4

The program reads each score that is typed after the prompt “Enter test
score:”” and calculates a running sum. The average of the scores is the result of
the expression Sum DIV Num__Tests. Output procedures print each score
that was entered and the average score.

A sample run of this program is:

Eviter test scores: 100
Enter test score: 88
Enter test score: 75
Evter test score: S0
Enter test score: B3
Enter test score: 894
The following scores were entered:

100

8g

75

90

B3

94
The averade is: 85

In an executable statement, you can specify a component of Score with an
index that is a variable name. In both FOR loops in the program Average__
Scores, the current score is denoted by Score(l]. In fact, the index can be any
expression of the index type; you could, for example, refer to a component as
Score[l+1], as long as I+1 is in the range 1..6.

Accessing successive components in an array is a common use of the FOR
statement. By merely incrementing the control variable, the FOR statement
accesses each component of the array with fewer program statements than if
each component were a separate variable. In the program Average_ Scores,
both FOR loops process each component of Score, that is, Score[l], then
Score[2], up through Score[Num__Tests].

The array component Score(l] is used in the same manner as a variable in the
READLN procedure, in the expression Sum + Score[l], and in a WRITELN

procedure. Score(l] is in fact a variable of type INTEGER.

You can use the assignment operator (:=) on two arrays of the same type. The
following example creates two array variables, called Current_Jan and
Record__Jan, that are both of type Month_Temp. Month__Temp is an array
type that represents the temperatures for each day in a month. The execut-
able section in the example shows the assignment of one array to the other.

Structured Types: The Array and the Record

Appendix B
ASCII Character Set

Table B-1 summarizes the ASCII character set. Each element of the ASCII
character set is a constant value of the PASCAL predefined type CHAR. The
ASCII decimal number in Table B-1 is the same as the ordinal value (as
returned by the PASCAL ORD function) of the associated character in the

type CHAR.

Table B-1: The ASCII Character Set

ASCII ASCII
Decimal Decimal
Number Character Meaning Number Character Meaning

0 NUL Null 40 (Left parenthesis
1 SOH Start of heading 41) Right parenthesis
2 STX Start of text 42 * Asterisk
3 ETX End of text 43 + Plus sign
4 EOT End of transmission 44 y Comma
5 ENQ Enquiry 45 - Minus sign or hyphen
6 ACK Acknowledgement 46 . Period or decimal point
7 BEL Bell 47 / Slash
8 BS Backspace 48 0 Zero
9 HT Horizontal tab 49 1 One

10 LF Line feed 50 2 Two

11 vT Vertical tab 51 3 Three

12 FF Form feed 52 4 Four

13 CR Carriage return 53 5 Five

14 SO Shift out 54 6 Six

15 SI Shift in 55 7 Seven

16 DLE Data link escape 56 8 Eight

17 DC1 Device control 1 57 9 Nine

18 DC2 Device control 2 58 : Colon

19 DC3 Device control 3 59 ; Semicolon

20 DC4 Device control 4° 60 < Left angle bracket

21 NAK Negative acknowledgement 61 = Equal sign

22 SYN Synchronous idle 62 > Right angle bracket

23 ETB End of transmission block 63 ? Question mark

24 CAN Cancel 64 @ At sign

25 EM End of medium 65 A Uppercase A

26 SUB Substitute 66 B Uppercase B

27 ESC Escape 67 C Uppercase C

28 FS File separator 68 D Uppercase D

29 GS Group separator 69 E Uppercase E

30 RS Record separator 70 F Uppercase F

31 Us Unit separator 7 G Uppercase G

32 SP Space or blank 72 H Uppercase H

33 ! Exclamation mark 73 1 Uppercase 1

34 ” Quotation mark 74 J Uppercase J

35 # Number sign 75 K Uppercase K

36 $ Dollar sign 76 L Uppercase L

37 % Percent sign 77 M Uppercase M

38 & Ampersand 78 N Uppercase N

39 ! Apostrophe 79 (0] Uppercase O

Table B-1: (Cont.) The ASCII Character Set

ASCII ASCII
Decimal Decimal
Number Character Meaning Number Character Meaning

80 P Uppercase P 104 h Lowercase h
81 Q Uppercase Q 105 i Lowercase i
82 R Uppercase R 106 j Lowercase j
83 S Uppercase S 107 k Lowercase k
84 T Uppercase T 108 1 Lowercase 1
85 U Uppercase U 109 m Lowercase m
86 \% Uppercase V 110 n Lowercase n
87 \'% Uppercase W 111 o Lowercase o
88 X Uppercase X 112 p Lowercase p
89 Y Uppercase Y 113 q Lowercase q
90 Z Uppercase Z 114 r Lowercase r
91 [Left square bracket 115 s Lowercase s
92 \ Back slash 116 t Lowercase t
93] Right square bracket 117 u Lowercase u
94 “ort Circumflex or. up arrow 118 v Lowercase v
95 —or__ Back arrow or underscore 119 w Lowercase w
96 ‘ Grave accent 120 b3 Lowercase x
97 a Lowercase a -121 y Lowercase y
98 b Lowercase b 122 z Lowercase z
99 c Lowercase ¢ 123 { Left brace
100 d Lowercase d 124 | Vertical line
101 e Lowercase e 125 J Right brace -
102 f Lowercase f 126 - Tilde

103 g Lowercase g 127 DEL Delete

B-2 ASCII Character Set

(* Declarations %)

CONST
Davs = 313 (% Number of davs in January %)
TYPE
Temp = -20.,.603% (% Rande of temperatures occurring in Januvary %)

Month_Temp = ARRAYL1..Davsl OF Tempi
(¥ Month_Temp has 31 comPonentss each is the temp on one day in January *)

VAR .

Sums I Averade_Temp: (% Averade temp in current January %)

Record_Ave_Temp : INTEGER] (% Averade temp in Januwary with record lows %)

Current_Jan: Record_Jan : Month_Temp3

(# Current_Jans and Record_Jan rerresent each dav’s temperature in this
vear’s January and the January with lowest averade temPs respectivelw. %)

(# Executable Section *)

+
.

.

Sum 1= 03
FOrR I = 1 TO Davs DO
Sum = Sum + Current-JanlI1}
Averade_Temp = Sum DIV Davsi
(¥ If averade temp this vear is less than the record vears assidn
this vear‘s temPp arravy to the record temp array #*)
IF Averade_Temp < Record_Ave_Teme
THEN
Record_Jan := Current_Jan}

This program fragment computes the average of the components of Current__
Jan to obtain the average temperature for the month and assigns that average
to Average__Temp. If the value of Average__Temp is less than that of Record _
Ave__Temp, the array Current__Jan is assigned to Record__Jan.

6.1.1 Multidimensional Arrays

An array whose components are themselves arrays is a multidimensional ar-
ray. An array can have any number of dimensions. Each dimension has its
own index, and each dimension can have a different index type.

For example, the declarations below create a two-dimensional array:

CONST
Class_Size = 153
Num.Tests = 33

TYPE
Class = 1.,.Class._.Sizei}
Tests = l..Num.Testss
VAR

Class.Bcores @ ARRAY[Classl OF ARRAY[Tests] OF INTEGERS:

The variable Class_Scores represents scores on a series of tests for a group of
students. If Class__Size is 15 and Num__Tests is 5, the variable declaration
creates a two-dimensional array called Class_Scores, which can store the
scores on 5 tests for each of 15 students.

Structured Types: The Array and the Record 6-5

6-6

You can abbreviate the array declaration shown above by specifying all the
index types in one pair of brackets as follows:

VAR .
Class._Scores 3 ARRAYIClass:Testsl OF INTEGERS

To refer to one component of a two-dimensional array, use the array identifier
and two index values, one for each dimension. The first index corresponds to
the first dimension declared and the second index corresponds to the second
dimension declared. For example, Class__Scores(1,3] indicates the first stu-
dent’s third test score and Class__Scores[3,1] indicates the third student’s first
test score.

The Class__Scores array is illustrated in Figure 6-1.

Tests

guli=
.0 0
.0 O

0o o-
= 0O O

Class <

« 0 O
s O

00O
0O

ZK-1029-82

O0O---00 0

Figure 6-1: The Two-Dimensional Array Class__Scores

The index ranges in Class__Scores — that is, Class and Tests — correspond to
the rows and columns, respectively, in the figure. In references to one compo-
nent of Class__Scores, the first index indicates the row and the second index
indicates the column. A particular score is found at the intersection of a row of
Class and a column of Tests. For example, Class__Scores([3,5], indicated in
Figure 6-1 by an X, is found at the intersection of the third row and the fifth
column. '

To access successive components in a multidimensional array, you must use
the proper control loop. Nested FOR loops are often used for this purpose. For
example, suppose you want to find the average test score for each student in
Class__Scores. To process one student’s score, the row index should be held
constant while the values in each column of that row are averaged. Then, for
each successive student, the row index should be incremented and the same
averaging operation should be performed on the new row.

Structured Types: The Array and the Record

The following declaration creates a variable that will hold each student’s
average score:

VAR
Class_.fAueradges : ARRAYI[Class]l OF INTEGER:

The following statements include nested FOR loops to compute the average
for each student and to store that average in the appropriate component of
Class__Averages.

FOR I = 1 to Class.Bize DO
BEGIN
Sum = 03
FOR J = 1 TO Num-Tests DO
Sum = Sum + Class_ScoresCIJ13§
Class_.AveradeslI] = Sum DIV Num.Testsi
END 3

The inner FOR loop sums the components in one row (row I). The average of
those components is assigned to Class__Averages(I]. The outer FOR loop
causes this operation to be performed for each value of I, that is, the values 1
through Class__Size (15).

For example, on the fourth iteration of the outer FOR loop, each component in
the fourth row is processed. The components Class__Scores[4,J], where J
ranges from 1 to Num__Tests (5), are summed. Class_Averages[4] is assigned
the result of Sum DIV Num__Tests, where Num__Tests equals 5.

You can define arrays of three or more dimensions by specifying the appropri-
ate number of index types in the array definition. For example:

VAR
Hotel_Vacancies @ ARRAYL1..8:'A7,.'B7:1,.101 OF BOOLEANS3

The variable Hotel__Vacancies represents a hotel with 160 rooms. The hotel
has eight stories, each denoted by a number from 1 to 8. Each story has 2
corridors and each corridor has 10 rooms. The three dimensions of the array
have index types 1..8, "A’.."B’, and 1..10, corresponding to the stories, corri-
dors, and rooms in each corridor of the hotel. Thus, each component in
Hotel _Vacancies represents a room in the hotel. An individual component of
Hotel _Vacancies has the value TRUE if the room is vacant and FALSE if it is
full.

Structured Types: The Array and the Record 6-7

6-8

The floors 1 through 8 in Hotel__Vacancies are illustrated in Figure 6-2.

(~BEBA-AE
Newors 5] OO O---0 O
(wenO O OO0 0
i CorridorBDDDDoooDD
(w000 OO0

s [1 [[O

0
0

ZK-1030-82

Figure 6-2: The Three-Dimensional Array Hotel_Vacancies

On the first floor, room number 1 on corridor B is denoted by Hotel _
Vacancies(1, 'B’,1]; that component is indicated in Figure 6-2 with an X.
Note that one index type in Hotel _Vacancies is a subrange of type CHAR and
the other two index types are subranges of type INTEGER.

6.1.2 Character Strings

A string constant is a sequence of characters enclosed in apostrophes. A string
variable is defined as a one-dimensional packed array of characters.

6.1.2.1 Character-String Constants — Character-string constants are often
used in output statements to print a message or a prompt. In addition, you
can assign a string constant to a string variable if the variable is of the
appropriate type.

The following are all character-string constants:

‘Pay this amount -- %7

‘Continual eloguence is tedious’ (% Blaize Pascal %)
‘memorandum’

‘365

‘The writer’’s prerodative’

Note that the constant ‘365" is not an integer; it is a string of numeric
characters. To indicate the apostrophe character in a string constant, you
must type it twice, as.in "The writer " 's prerogative ".

~ Structured Types: The Array and the Record

6.1.2.2 Character-String Variables — The type of a character-string variable
is a packed array of characters. Packing means that the characters are stored
in memory as densely as possible. The index type must be an integer subrange
with a lower bound of 1.

To pack an array, include the reserved word PACKED in the type definition.
For instance, the following example defines a character-string type and de-
clares a variable of that type:
TYPE ,

String : PACKED ARRAYL[1.,201 OF CHAR;

VAR

Name : Strings
These declarations create a 20-component character-string variable called
Name. Any character string assigned to Name must be exactly 20 characters
long. PASCAL neither adds spaces to extend a shorter string nor truncates a
longer string.

A string variable can be assigned the value of any string constant or variable
of the correct length. For example, given the declarations of Chapter and
Section shown below, you can assign string constants to each of them as
shown.
TYPE

Title = PACKED ARRAYL1.,.201 OF CHAR;

VAR

Charters Section : Titles
Charter = ‘STRUCTURED TYPES ‘3
Section 1= ‘Character Strings ‘3

You must include spaces at the end of each string so that each string contains
20 characters.

You can assign one string variable to another as follows:

Charter 1= Section:

Both variables must be of the same type. Two string variables are of the same
type if the upper bounds of their index types are the same.

You can use the READ or READLN procedure to read a sequence of charac-
ters into a string variable. For example, if Name is a variable of type String,
that is, PACKED ARRAY![1..20] OF CHAR, you can write the procedure call:

READ (Name} §

The READ procedure reads successive characters from a file into successive
components of the array, starting with the component Name[l]. The read
operation is complete when EOLN becomes TRUE or when the number of
characters in the array (20 in Name) have been read. If EOLN becomes
TRUE before a character is read into every component of the array, the
remaining components are filled with spaces.

Structured Types: The Array and the Record 6-9

6-10

For example, if the READ (Name) procedure reads the following characters,
up to the EOLN mark, from a file

Joshua Jones EOLN

the value of the variable Name will be

‘Joshua Jones !

Components Name[l] through Name[12] contain the characters
‘Joshua Jones.” The READ procedure automatically assigns spaces to com-
ponents Name[13] through Name[20]. Note that if there were additional char-
acters on the line instead of the EOLN mark, those characters would have
been read into components of Name.

Similarly, you can use WRITE or WRITELN to print a string variable. For
example:

WRITE (Name)i

This WRITE procedure produces the following output:

Joshua Jones

You can apply the relational operators (<, <=, >, >=, =, and <>) to character
strings of the same length. The result of comparing two strings depends on the
lexicographic ordering of the strings. Just as words in a dictionary are ar-
ranged according to an alphabetical ordering, character strings are ordered
according to the ordinal value of corresponding characters in the string. (See
Appendix B for the ordinal value of each component in the ASCII character
set. Remember that uppercase letters have lower ordinal values than lower-
case letters.)

PASCAL evaluates string expressions by comparing characters that occupy
corresponding positions in the two strings. When the first nonequal characters
in the two strings are compared, the value of the string that contains the
character with the higher ordinal value is greater than the value of the other
string. If all characters are the same, including spaces, the values of the
strings are equal.

For example, the following relational expressions are TRUE:

‘Prodgrammers’ < ‘tech writers’
‘wine & roses ‘wine & cheese’

The first expression is TRUE because the ordinal value of ‘p’ (112) is less than
the ordinal value of ‘t’ (116). When evaluating the second expression, PAS-
CAL compares ‘r’ and ‘c’ because they are the first characters that are not the
same in the two strings. The ordinal value of ‘r’ (114) is greater than the
ordinal value of ‘¢’ (99).

You can form relational expressions with character-string variables as well as
with constants. Given the declaration of Section of type Title, that is,
PACKED ARRAYI1..20] OF CHAR, the following statement includes a valid
relational expression:

IF Section = ‘Character Strings

THEN :
WRITELM('That' ‘s all folks!)i

Structured Types: The Array and the Record

6.2 Records

A record is a structured type consisting of related data items of potentially
different types. A record is organized into fields; each field can have a differ-
ent type. An example of a record variable declaration follows:

VAR
Person : RECORD
Name : PACKED ARRAYL1..201 OF CHARS
fge @ 0.,1801
Sex ¢ (Female: Male)s
END 3 :

The record variable Person has three fields: the field Name is a character
string; the field Age is a subrange of integers; and the field Sex is an enu-
merated type consisting of the values Female and Male. To refer to one field,
specify the name of the record variable and the name of the field, separated
by a period. Each field can be treated as a variable of the field type. For
example:

Person.Ade 1= 253

Person.Age refers to the field Age contained in the record Person. It can be
assigned a value as if it were an integer variable.

The record type definition format is as follows:

RECORD
{{field-name},...: type};...;
END;

As shown, the type definition can specify the names of one or more fields,
which can be of any type. If there are several fields of the same type, their
names must be separated with commas. You cannot define more than one
field with the same name within a given record.

The reserved words RECORD and END enclose the fields in a record defini-
tion. Successive fields of different types must be separated by a semicolon (;).
A semicolon is not required between RECORD and the first field name or
between the last field type and END. :

NOTE

The record declaration is one exception to the rule that every
END must be associated with a BEGIN.

Suppose you are shopping for a new home and you want to maintain informa-
tion on the houses you see. The important factors in choosing a home might
include cost, distance from place of work, number of rooms, method of heat-
ing, and location. The following TYPE section defines a record type named
House:

TYPE

House = RECORD
Cost: Distance @ REALGS

Mum.Reooms 3 1..203%

Heat 3 (Gass 0ils Electric: Solars: Coalldsd
Location @ PACKED ARRAYLL1..201 0OF CHAR:
Suitable @ BOOLEANG:

END S

Structured Types: The Array and the Record 6-11

The record type House consists of six fields. Note that you can use a struc-
tured type as a field of a record: in the type House, the field Location is a
structured type.

To maintain information on a number of houses, you can declare an array of
records. For example, if the constant identifier Max__ Houses is defined as 10,
you can declare an array of 10 House records as follows:
UAR

House_ Choices @ ARRAYIL1. .Max_Houses] OF Houseld
The variable House__Choices stores multiple records in one array. To refer to
one field of one record in this array, specify the variable name House__
Choices, an index enclosed in square brackets, a period, and the field identi-
fier. For example:

House.Choices[Il.Heat

You use each field of a record variable in the same way that you use a variable
of the field type. Thus, the following statements are valid:

FOrR I := 1 TO Max_Houses DO
- BEGIN
READLN (House.Choices[I1.Cost) 3
READLN (House_.Choicesl[Il.Distancels’
READLN (House_ChoiceslIl.Num_Rooms) 3

IF (House.Choices[Il:Cost < 70000.0) AND
{House. . Choices[Il.Distance < 15.0) AND
(House_Choices[Il.Num_Rooms > B}

THEN
House.Choices[Il:.8uitable = TRUE

ELSE
House. . Choices[Il.8uivable 1= FALSES

END 3

You can assign one record variable to another of the same type. For example,
the following variable section declares two record variables of the same type:

VAR
New_ House: Dream_House 3§ House:

If Dream__House is defined (that is, if each field of Dream__House has a
value), you can assign Dream__House to New__House as follows:

New_House := Dream.Housel

Records can be nested in a record definition; that is, a record can contain a
field that is another record. For example: ’

TYPE
Emplovee = RECORD

Name : PACKED ARRAYL1,.201 0OF CHAR3

Address : RECORD
HouseNo : INTEGER:
Streety City : PACKED ARRAYILL1..201 OF CHAR?
State : PACKED ARRAYL1..21 OF CHARS
Zie : 0,.,8999993
END3i (% End of Address record %)

EmploveeNo = INTEGER3

JobkTitle : PACKED ARRAYL1.,.101 OF CHAR:

Salarvy : REALS '

END 3 (% End of Emplovee record #*)

VAR
Emplovee.N : Emplovee?

6-12 Structured Types: The Array and the Record

To refer to a field within the Address record, you must specify the identifier
Employee__N, a period, the identifier Address, a period, and the particular
field identifier. For example:

EmpPlovee.N.Address.B8tate := ‘PA‘S

This statement assigns the value of the string "PA " to the field named State
in the record Employee_N.Address.

When you are performing I/O operations on text files, you must read and write
the information in a record field by field. PASCAL does not read or write an
entire record. For example:

WRITELN (’‘Name:’: Emplovee.N.Name, ‘Number’:
Emplovee.N.EmploveeNo} s

This WRITELN procedure prints two fields of Employee__N, that is, Name
and EmployeeNo.

When you refer to fields of the same record repetitively, it is cumbersome to
repeat the record name in each reference. The WITH statement allows you to
specify the record name once and refer to the fields directly in the subsequent
statement.

The format of the WITH statement is:

WITH {record-varlable}
statement;

The record variable specifies the name of the record to which the statement
refers. Within the statement, you can refer to a field of the record directly
instead of using the record.fieldname format

For example, the FOR loop using the record variable House__Choices can be
rewritten as follows: »

FOR I == 1 TO0 Max_Houses DO
WITH House.Choices[I]1 DO
BEGIN
READLN {(Cost)
READLNM (Distance) i
READLN (Num_.Rooms) 3

IF (Cost + 70000,0} AND (Distance « 13.0)
AND (Num_Rooms » B)

THEN
Suitable 2= TRUE

ELSE
Suitable 2= FALSES

END 3§

Each statement between the BEGIN and END dehmlters uses the record
name House__Choices[I]. Thus, the statement

READLN (Cost) 3

is the same as the statement
READLN (House_ _Choices{Il1.Cost)

Structured Types: The Array and the Record 6-13

6-14

You can also use the WITH statement to refer directly to fields in nested
records. You list the record names, in the order in which they are nested, after
the reserved word WITH. For example:

TYPE :
Name = PACKED ARRAYIL1.,.201 OF CHAR:
Date = RECORD
Month 5 (Jan: Febs Marchs Aprils Mavy,s June:
July s Audgs Serpty Octs Nows Degdi
Dav = 1..,313%
Year : INTEGERS
END %
VAR

Hosp @ RECORD
Patient 3 Namej
BirthDate : Datesd
Ade & INTEGER?
END 3

+

+

WITH Hosrps BirthDate DO

BEGIN

Patient 2= ‘Thomas Jefferson ‘y
Month == Aprils

Day = 133

Year = 17433

Ade 1= 2383

END

The record Hosp contains the field BirthDate, which is also a record (of type
Date). By specifying Hosp in the WITH statement, you can refer to Patient
and Age, which are fields of Hosp. By specifying BirthDaté, you can access
Month, Day, and Year, even though these fields are in a nested record. Thus,
the WITH statement shown above is the same as the following sequence of
statements:

WITH Hose DO

WITH BirthDate Do
BEGIN

+
+

END3

The record names in the WITH statement must be specified in the same order
in which they are nested. For instance, BirthDate is nested within the record
Hosp in the declaration; therefore, Hosp must be specified before BlrthDate
in the WITH statement.

Structured Types: The Array and the Record

Chapter 7
More PASCAL Statements

In addition to the statements presented in Chapter 4, PASCAL includes the
following control statements:

e REPEAT statement
e WHILE statement
* CASE statement

¢ GOTO statement

This chapter describes the REPEAT, WHILE, and CASE statements, and
gives a program example using various PASCAL statements. The GOTO
statement, which transfers program control to a statement prefixed by a label,
is explained in the VAX-11 PASCAL Language Reference Manual.

The REPEAT and WHILE statements, like the FOR statement, control loops.
In both REPEAT and WHILE, the statement(s) within the loop body are
executed repetitively depending on the value of a Boolean expression. The
difference between REPEAT and WHILE lies in the point at which the value
of the Boolean expression is tested.

The CASE statement is similar to the IF-THEN and IF-THEN-ELSE state-
ments because it is a conditional statement. Remember that a conditional
statement selects one statement for execution if a condition is met. Unlike IF-
THEN and IF-THEN-ELSE, the CASE statement allows the selection to be
made from a list of more than two statements.

7.1 The REPEAT Statement

The REPEAT statement allows you to specify the repetitive execution of a
statement or series of statements until a certain condition becomes TRUE.
The format is:

REPEAT {statement};...
UNTIL Boolean-expression

The statement(s) within the reserved words REPEAT and UNTIL can be any
PASCAL statement(s). The loop body is executed until the Boolean expres-
sion becomes TRUE. The flow of control for the REPEAT statement is shown

in Figure 7-1.

7-1

7-2

Start

Statement(s)

Boolean
expression

ZK-1031-82

Figure 7-1: The REPEAT Statement Flow Chart

The example below shows the use of a REPEAT loop to search for a value in a
sorted array. Assume that you have made the following declarations:

CONST

Size = 203 (*¥Dimension of "arrav#*)
TYPE ’

Name = PACKED ARRAYL1..201 OF CHARS
VAR

Name.list : ARRAY[L1..5izel OF Namej
Name_.to_Find : Names3

I+ Jy Middle ¢ INTEGER:

Found : BOOLEAN:

Assume also that the array Name_List contains an alphabetized list of
names, say, of authors. The following program fragment prompts for a name,
then searches the array for that name.

More PASCAL Statements

(¥ Input the name of the author #*)

WRITE (‘Name to find 3)3

READLN (Name.to.Find):

(# Initialize variables before executing loaop #)
I 13

oo

J Siged
Found := FALSES
REPEAT

(# If Name_to.Find is in Mame_lList: it falls hetween the
comrPonents Mame_.lList[Il and Name_List[J1 %}
Middle = (I+J} DIV 23
IF {(Mame_to.Find = Name_ListIMiddlel}
THEN
BEGIN
(% Set Found flad and print a message #*)
Found = TRUE:
WRITELN (Name_.to.Find: 7 is comeponent’ s Middles3) 3
END
ELSE
IF (Name.to_Find » Name_List[{Middlel)}
THEN
(# Increase lower array bound to select tor half %)
I z= Middle + 1
ELSE -
IF (Name_to.Fiwd <« Name_List[Middlel)
THEN ‘
{# Degrease upper array bound to select lower half #)
Jors Middle - 13
UNTIL Found OR (I = .03
IF NOT Found
THEN
WRITELN {(Name_toe.Find: 7 is not in the list.’)3

The REPEAT loop contains statements that repetitively partition the array
and search the appropriate half. The variables I and J initially represent the
upper and lower bounds of the array Name_ List, and are changed during
execution to represent the bounds of the part of the array currently being
searched. Execution of the loop terminates when Name__to__Find is found (in
which case the variable Found is TRUE) or when the value of I exceeds the
value of J, indicating that Name__to__Find is not in the array.

For example, if the value of Size is 20, Name__to_Find is first compared with
Name_ List[10]. If their values match, Found becomes TRUE, a message is
printed, and the loop terminates.

If Name__to_Find is greater than Name__List[10], that is, if it falls later in
the alphabet, then I takes on the value 11. The search is confined to the
second half of the array, and the loop is repeated for components Name__
List[11] through Name__List[20].

If Name__to__Find is less than Name__List[10], that is, if it falls earlier in the
alphabet, then J takes on the value 9. The search is confined to the first half of
the array, and the loop is repeated for components Name__List[1] through
Name_ List[9]. ‘

On the second iteration, Name__to__Find is compared with the middle compo-
nents in the selected half of the array, either Name__List[15] or Name__List[5].
If the names do not match, the array is partitioned further. The search contin-
ues until Name__to__Find matches a component of Name__List.

More PASCAL Statements 7-3

74

If the name is not in the array, eventually the value of I will exceed the value
of J, causing execution of the loop to terminate.

Note the following properties of the REPEAT statement:

¢ The statement(s) in the loop body are always executed at least once because
the Boolean expression in the UNTIL clause is evaluated after the loop body
is executed.

¢ A statement or statements within the loop body must eventually cause the
value of the Boolean expression to become TRUE. Otherwise, the loop
would never stop executing.

¢ Because the reserved words REPEAT and UNTIL enclose the statements to
be executed, you do not need a compound statement to set off multiple
statements. The statements may be delimited with BEGIN and END, but
do not have to be. In addition, you need not use a semicolon immediately
preceding UNTIL.

Examples

1. Assume that Count, Sum, Number, and Average have been declared as
integer variables.

Sum 1= 03
Count &= 03
REPEAT
READ (NMumber)
Sum 1= Sum + Number?
Count = Count + 13
UNTIL EOLN (INPUT) OR (Count = 10}3
Averade := Sum DIV Count:

This example reads and sums a list of 1 to 10 integers on a line and
averages them. The integers must be entered on one line and a must
be entered after the last integer. The REPEAT loop reads in one integer,
adds it to Sum, and increases Count by 1.

The REPEAT loop is terminated when EOLN (INPUT) is TRUE or when
Count equals 10. EOLN (INPUT) becomes TRUE as a result of the
typed after the last integer entered.

2. The following declarations have been made:

TYPE -
NMamestring = PACKED ARRAYL1..201 OF CHARS
VAR

Name & Namestringsj

Namelist 3 ARRAYL1.,.301 of Namestrings

Namecount : INTEGERS

The REPEAT loop below uses these variables:

NMamecount == 03

REPEAT
READLN (Name) 3
Namecount 2= Namecount + 13
NamelistINamecount]l = Namei

UNTIL EOF OR (Namecount = 30)3

More PASCAL Statements

This example reads character strings representing names and stores them
in the array Namelist, which contains components of type PACKED
ARRAY OF CHAR. Namelist can contain up to 30 names. '

The REPEAT loop increases Namecount by 1, then reads one name and
assigns it to one component of Namelist (that is, Namelist[Namecount]).
The loop is terminated when Namecount equals 30 or when EOF becomes
TRUE. Note that, because the READLN statement reads one name and
then skips to a new line, each name in the input file must be typed on a
different line.

7.2 The WHILE Statement

The WHILE statement is like the REPEAT statement in that it specifies the
repetitive execution of a statement. The format is:

WHILE Boolean-expression DO statement

The loop body is executed while the Boolean expression is TRUE. When the
expression becomes FALSE, execution terminates.

The flow of control for the WHILE statement is shown in Figure 7-2.

Boolean
expression

Statement

ZK-1032-82

Figure 7-2: The WHILE Statement Flow Chart

More PASCAL Statements 7-5

7-6

There are three important differences between the WHILE statement and the
REPEAT statement.

1. WHILE tests the expression before executing the statement(s) in the loop
body; REPEAT tests the expression after executing the statement(s).
Therefore, if the Boolean expression is FALSE when WHILE is first en-
countered, the statement following DO is not executed. '

2. WHILE controls the execution of only one statement. Hence, to execute a
group of statements repetitively, you must use a compound statement.
REPEAT does not require a compound statement.

3. WHILE terminates execution of the loop when a condition becomes
FALSE. REPEAT terminates execution when the condition becomes
TRUE.

Examples

1. Example 1 in the preceding section can be rewritten using a WHILE
statement to produce the same results:

Loop with WHILE Statement

Sum 1= 03

Count 1= 03

WHILE NOT EQLN (INPUT)Y AND {(Count < 103 DO
BEGIN :
READ {(Mumber)
Sum 3= Sum + Numbers?
Count := Count + 13
END 3

fiverade 1= Sum DIV Counts

Loop with REPEAT Statement

Sum = 0F
SQount 2= 03
REPEAT
READ (Numberds -
Sum = Sum + Numbers
Count = Count + 13
UNTIL EOLN (INPUT) OR (Count = 10)1%
Auverade = Sum DIV Counts

The differences between the two examples lie in the specification of the

conditions for terminating the loop. The WHILE loop is different in these

ways: ‘ ‘

¢ The test for EOLN (INPUT) must be written as NOT EOLN (INPUT)
so that the loop body is repeated as long as EOLN (INPUT) is FALSE.
If the input line is empty, the WHILE loop is not executed at all, while
the REPEAT loop is executed once. The REPEAT loop reads an addi-
tional line while searching for a number.

e The condition which determines that only 10 integers can be averéged
must be rewritten as Count < 10 (instead of Count = 10). On the last

More PASCAL Statements

iteration, the 10th integer is read and Count becomes 10. Count < 10 is
then FALSE, so the loop body is not executed again.

¢ The logical expression uses the operator AND instead of OR. The state-
ments are executed as long as both conditions are TRUE.

2. WHILE NOT Errorflasg AND (Iwtcount < 100) DO
BEGIN
READ (Int);
IF Int > O
THEN
Poscount := Poscount + 1
ELSE
IF Int < O
THEN '
Nedgocount := Negcount + 1
ELSE
Errorflag = TRUES
Intecount = Intcount + 13
END 3
This WHILE loop reads an integer: if it is positive, the variable Poscount
is incremented; if it is negative, the variable Negcount is incremented. Up
to 100 integers can be counted; the number of integers counted is accumu-
lated in Intcount. If a zero is encountered in INPUT, Errorflag becomes

TRUE and the loop is terminated.

Suppose that in the program surrounding the above fragment, there is
more than one way to obtain an error and thus assign the value TRUE to
Errorflag. If Errorflag is TRUE before the program encounters the WHILE -
statement, the loop body will not be executed. Similarly, if Intcount is
greater than or equal to 100, the loop will not be executed.

7.3 The CASE Statement

The CASE statement selects one out of a group of statements for execution. In
a CASE statement, constant values, or case labels, are associated with each
possible statement or action to be performed. CASE executes the statement
labeled by the value that equals a specified expression. For example:

CASE Answers 0OF

9:10 : Score = ‘A3

8 : Score === ‘B’

7 : Score 3= ‘0735

B @ Score = ‘D3

01 +2+3+44+5 2 Score 1= ‘F’3%

END 3

This CASE statement compares the value of the expression Answers to the
case labels (the numbers 0 through 10). If the value of Answers is any of the
numbers from 0 to 10, the statement to the right of that number is executed.

NOTE

The CASE statement is one exception to the rule that every
END must be associated with a BEGIN.

More PASCAL Statements 7-7

7-8

The format of the CASE statement is:

CASE case-selector OF
{case-label-list : statement};...
[[;JOTHERWISE {statement};...]
END

The case selector is any expression (not only a variable) whose value is of an
ordinal type. The case label list consists of one or more values of the same
type as the selector, separated by commas. Each label list is associated with
the statement to its right. The label list and statement must be separated by a
colon (:). You may include an optional OTHERWISE clause that contains one
or more statements that are not associated with labels.

You can specify the labels in any order. Each label may appear only once
within a CASE statement.

At run time, if the selector equals one of the specified labels, the statement
to the right of that label is executed. If an OTHERWISE clause is included
and the selector does not equal one of the labels, the statements following
OTHERWISE are executed. It is an error if the selector does not equal a
label and there is no OTHERWISE clause.

The flow of control for the CASE statement is shown in Figure 7-3.

Examples

1.. Suppose you have made the following declarations:

VAR
Month = (Jans Febs Mar: Aprs Mav s June:s
July s Aug: Serts Octs Nous Dec)s
Season ¢ (Winter: SPrind: Summer:s Fall)s
Temp & INTEGER 3§
Sriow ¥ BOOLEANS

You can use the following CASE statement:

CASE Month OF
Jarny Febs Mar @ BEGIN
Season % Winters

IF {Temp <= 303
THERN
) Snow 1= TRUES
END §
Arrs May: June @ Season 1= Springs
July s Aud: Serpt @ Season = Summer:
Octs Movse Dec @ Season = Falls

END S

At run time, the current value of Month is evaluated. The statement
associated with that value is executed; the rest of the statements are
ignored. For example, if Month equals May, then Spring will be assigned
to the variable Season.

2. This example represents the relationship of combinations of genes to the
occurrence of dominant versus recessive traits. Assume that Gene_Combo
and Trait are variables of enumerated types declared as follows:

VAR
Gene.Combo @ (Recessive.Recessive, Recessive_Dominant

Dominant Recessive: Dominant_Dominant) i
Trait : {(Recessive: Dominant)?

More PASCAL Statements

‘ Start ’

|

< Case Selector >

Label-List1 Label List2 e e e |Llabel-Listn

Y Y

Statement Statement csoe Statement

Standard Form
(Start ’
Y

OTHERWISE
< Case Selector >——_

Label-List1 Label-List2 o e e |Label-Listn

! \ v

Statement Statement oee Statement Statement(s)

OTHERWISE form

ZK-1033-82

Figure 7-3: The CASE Statement Flow Charts

More PASCAL Statements 7-9

These variables are used in the following CASE statement:

CASE Gene_.Combo OF

Recessive_Recessive : Trait 1= Recessives

OTHERWISE

Trait := Dominant;3

END
If the value of Gene_Combo is Recessive__Recessive, the value Recessive
is assigned to Trait. If Gene_Combo evaluates to any other value, the
OTHERWISE clause is executed; that is, Dominant is assigned to Trait.

7.4 The Program Class_Data— An Example

This section presents an example program called Class_Data. The program
illustrates several of the language features covered in Chapters 5, 6, and 7.

The program Class__Data, illustrated in Figure 7-4, reads and stores informa-
tion about a hypothetical group of students. The data for one student is stored
in a variable (Student) whose type is a record with three fields. The three
fields contain the following information:

e Social security number
e Name
® Year

The array Class contains information about a group of students. The execut-
able section illustrates the use of the WITH, WHILE, and CASE statements,
I/O procedures, and various other PASCAL features.

PROGRAM Class.Data (INPUT.OUTPUT)S
(% Declarations *)

CONST
Max_Size = 1003 @

TYPE

Student.Id = o
RECORD
SocBec : PACKED ARRAYL1..111 OF CHAR] (% SpcBec is in the form: #H#EH-SE-Haa" *)
Name : PACKED ARRAYL1.,.,201 OF CHARS
Year 1 (Freshman: Sorphomores Junior, Senior)3i
END 3

VAR
Student : Stl.ldent_I-:I;e
Class : ARRAYLLl..Max_Sizel OF Student_- Idie .
ClassSizey I : INTEGER := Oi~e
Fresh.Counts Sorh_Count: Jun. Count»-&-(a (* In1t1a11*es each of these inteder #*)
Sen.Count : INTEGER := 0} (% variables to O *)

BEGIN (# Class_Data *)
(# Instructions *)

(3 WRITELN (‘For each students tvpe a name, soc. sec., # and vears as’)}
WRITELN (‘prompted, Press <RET:» after each answer and <CTRL/Z> after list’)3}
WRITELNS ’

Figure 7-4: The Program Class_ Data

7-10 More PASCAL Statements

((* InPut Section *)
WRITE (‘Name: ')} ' (# Initial prompt #*)

(% This looep prompts for and then reads data for a student records assidns
it te onrne component of the arrav Classs and increments the arrav index
and the variable ClassSize. The loor is terminated when EOF hecomes true
(that iss when <CTRL/Z* is encountered,) *)

WHILE NOT EOF DO ()
BEGIN .
WITH Student DO (@)
BEGIN
READLN (Name) i
WRITE (‘Soc Sec *#:_)i (P
READLN (SocSec)i
WRITE (‘/Year: ‘)3
READLN (Year)3
END3
c, ClassSize := ClassBize + 13
Class[ClassSizel := Student]
IF ClassBize < (Max-Size)
THEN ‘
WRITE (’Name: ‘)
ELSE
WRITELN (‘The class is full, tvpe “CTRL/Z>’)}
END 3 .
WRITELNS

/ (* Dutput Section *)

(# The following sectiow Prints the output data. The output consists of a
headinds and a name,» number, and vear for each student. In addition, the
number of studerts in each vear is counted and rerorted in the outPut, *)

WRITELN (‘Name:’s ‘SocSec #:’:24,y ‘Year:’':14)3

WRITELNj
FOR I := 1 TO ClassSize DO (P

BEGIN ' @

WITH Class[I]1 DO
BEGIN

WRITELN (Name:20, SocSec:ll, Year:12)3

CASE Year OF ~=—
Freshman i Fresh_Count := Fresh_.Count + 13
Sorhomore : Sorph.Count = Soph.Count + 13
Jumior ¢ Jun_Count = Jun_-Count + 13§
Senior : Sen.Count := Sen.Count + 13}

END 3
END 3
END 3
WRITELNS
WRITELN (‘Class Profile:z’)3
WRITE (Fresh_Count:Z2s ' freshmen ‘3 Sorph_Count:Z2,: ' sorhomores ‘) j e
WRITELN (Jun_Count:2, ‘ Juniors ‘» Sen_Count:2: ' seniors ’)j —s——"

\END.‘ (¥ Class_Data *)

(*# Sample Output m
Name: SocSec #: : Year:

Kathy Moore 234-34-5678 FRESHMAN

John Jones 345-67-8907 SENIOR

Dauve Brown 078-34-2345 JUNIOR

Ruth Doe 121-21-2121 FRESHMAN -
Barb Cohen 000-00-0000 SENIOR .
Roy Roders 234-56-78890 SOPHOMORE

Class P}pfile:
2 freshmen 1 sophomores 1 Juniors 2 ser‘ors *)

Figure 7-4 (Cont.): The Program Class__Data

More PASCAL Statements

7-12

The circled numbers in Figure 7-4 are keyed to the numbers in the following
sections. :

7.4.1 The Declaration Section

The major data structure in the program Class__Data is the user-defined type
Student_Id @. Student_Id is a record containing three fields — SocSec,
Name, and Year. The field SocSec is a packed array of 11 characters. Social
security numbers are to be input in this format:

XXX—-XX—-XXXX

The field Name is a packed array of 20 characters. The field Year is an
enumerated type consisting of the four class levels — Freshman, Sophomore :
Junior, and Senior.

The variable Student @ is declared to be of type Student__Id. It can contain
only one data record (that is, one name, social security number, and year).
The variable Class ® can contain a group of records. Class is an array with
components of type Student__Id and with indexes that range from 1 to Max__
Size. Max__Size @ is a symbolic constant defined as 100 in the CONST
section. This CONST definition can be easily modified to accommodate a
larger or smaller group of students.

The remaining variables are integers @ that represent the number of students
in the entire class, the number of students in each year, and a FOR loop
control variable (the variable I). Each of the count variables is initialized to 0
when it is declared.

7.4.2 The Executable Section

The program Class__Data accepts data on a group of students, stores the
information in an array of records, and prints the information. The program
follows the steps outlined below:

¢ Prints instructions for the user ©.
® Prompts for and then reads input data for each student @.

¢ Increments the index variable ClassSize and assigns data for one student to
one component of the array Class ©.

e Prints collected data, including headings ©. The output data consists of a
name, a social security number, and a year for each student, and the num-
ber of students in each of the four years.

The executable section contains various PASCAL statements and I/O proce-
dures. For example, the WHILE loop @ determines the flow of control for the
section that prompts for and reads data. The statements within the WHILE
loop are executed repetitively as long as NOT EOF is TRUE.

More PASCAL Statements

There are two examples of the WITH statement in Class_Data ®. The first
example is:

WITH Student DO

This statement allows direct references to fields of the record variable Student
in the subsequent compound statement. Thus, the following statements are
equivalent:

READLN {(Name) s READLN (Student.Name)s

The WITH statement is also used in the output section. In this WITH state-
ment, the specified record variable is one component of the array Class. Be-
cause the FOR loop ® increments the index variable I, a different component
of Class is processed each time the WITH statement is executed.

In addition, the program illustrates two extended I/O features of VAX-11
PASCAL: (1) prompting at the terminal and (2) reading of character strings.
The input section contains the following statement, which prompts for input
data at the terminal ®:

WRITE ('SocSec #:z 7)1

This statement prints the string enclosed in apostrophes and leaves the car-
riage or cursor positioned after the last character printed. You can then finish
the line by typing a string that represents a social security number:

SocBSec #:; 425-29-0000

The following statement @ reads the string into a packed array of characters:
READLN (BocBec) s

Each character in the social security number (including hyphens) is assigned
to a component of Student.SocSec.

Class_Data shows the use of a CASE statement ® in the output section. The
selector in the CASE statement is Year, which is one field of the current
component of Class (that is, Class(I]). As the FOR loop steps through each
component of Class, this CASE statement counts the number of occurrences
of each year. For example, if Class[I]. Year equals Sophomore, the CASE state-
ment selects the statement to the right of the value Sophomore. Thus, Soph__
Count is increased by 1.

The WRITE and WRITELN statements in the output section @ illustrate
various examples of field-width specifications. These statements produce the
sample output @ shown below the program.

More PASCAL Statements 7-13

Chapter 8
Procedures and Functions

In many cases, it is convenient to group into a discrete unit statements that
perform some specific action in a program. In PASCAL, procedures and func-
tions are examples of such discrete units. You can write procedures and func-
tions to perform specific tasks. For example, all of the output operations
needed in a program can be contained in one procedure. The program can call
the procedure every time the output operations are needed.

A procedure is a named group of statements that performs a set of actions.
You declare a procedure in the declaration section. Subsequently, you can call
the procedure in the executable section. When a procedure is called, the
statements are executed as a group.

A function is similar to a procedure in that (1) it is a named set of statements,
(2) you must declare it in the declaration section, and (3) the statements are
executed as a group when the function is called by a function designator.
However, a function has a type and returns a value of that type. You can use a
function designator just as you would use any expression; in fact, it is an
expression. ‘

Procedures and functions have similar structures and restrictions. This primer
uses the term routine in descriptions that apply to both procedures and func-
tions. You can use predeclared routines, which are declared by PASCAL and
denoted by predeclared identifiers, or you can create user-declared routines,
as described in this chapter. Appendix C contains tables of all the prede-
clared procedures and functions in VAX-11 PASCAL.

The sample program Compute, shown in Figure 8-1, illustrates some general
concepts that apply to all routines. The explanations that follow Figure 8-1
are keyed to the figure by means of the circled numbers.

Sections 8.1 and 8.2 describe procedures and functions, respectively, in detail.
Section 8.3 discusses how to pass data, in the form of parameters, to a routine.

PROGRAM Comepute (INPUT, DUTPUT)S

(* This Pprodram computes the minimum: maximum, and averade values in a list of
inteders tvped at the terminal and the number of times the minimum and maximum values
occur. The number of inteders it accerts is determined by the symbolicconstant Number. *)

CONST

Number = 253 (* Max number of values to be Processed #*)
TYPE

Rande = 0,.,100073 (% Yalues can be in this rande #*)

List = ARRAYL1, . Numberl OF Rande} (¥ Specifies the amount and rande for values %)
VAR

Arr ¢ Lists (% Holds the walues to be Processed %)

Minimum: Maximum @ Randei (% Minimum and Maximum of list #*)

Averade : REALS (¥ Averade value in list *)

Int.Count : INTEGERS (% Mumber of wvalues read from terminal #*)

PROCEDURE Read_Ints @)
(VAR A 3 Lists

var 1 : INTEGER) /@ @

(# This Pprocedure reads the inteders to be processed into the arravy A, The
array of inteders and the number of inteders that were read are passed back
toe the main Prodram. #*)

BEGIN
WRITELN ('Tvpe from 1 to '+ Mumber:3s ' inteders: in the range of O to 1000, 733
WRITELN ('Tvrpe <RET:> after each inteder and <CTRL/Z* after last inteder, ')}
I 1= 03
WHILE NOT EOF (INPUT) AND (I < Mumber) DO
BEGIN
I e= 1T + 1%
READLN (ALI1) S
END 3
END 3 . (% Read_Ints *)

PROCEDURE Min_Max_Ave @
(A & Listd
Ints.Read : INTEGER);}(J

{(# This Procedure computes the minimums maximum: and averade values in arrav A,
It also counts the occurrences of the mivimum and maximum values! Each of these
computations is privted with text that labels each value. *}

VAR
Sums J 2 INTEGERS
G) Max_Count s+ Min.Count & 1l.,Number;
Mirns Max : Rande}
Aud @ REALS

Figure 8-1: The Program Compute

8-2 Procedures and Functions

PROCEDURE Print_Datai (@
BEGIN
WRITELN;
WRITELN
WRITELN ‘Minimum

WRITELN

END3

‘Auverade value

BEGIN

Max == A[113
Min 3= Maxi

Sum = Maxi
Max_Court == 13
Min_Count == 13

(# Bedin followind FOR loor with a

("Maximum =7 Max:ds’,
{ =y Minsd s’
WRITELN (’Averade wvalue (truncated)
{ = 1275

goeourring’ s Max-Countsd,
occurring’y Min.Countad.

{ %

-

fotimes)

times)3
¢ TRUNC(Aug):B) 3

Min_Max_Aug #*)

2 because Max and Min

already contain the first component
iteration comrpares the second component to the first component. *)

FOR 4 = 2 70 Ints.Read DO
BEGIN
Sum = Sum + ALJI}

{*

IF ACJI * Max (%
THEN

BEGIN

Max &= ALJIS

Max -Count 2= 13

ERD
ELSE

IF ACJI = Max (%

THEN

Max_.Count = Max.Count + 13

IF ACJI < Min (%
THER

BEGIN

Mivn = ALJIS .

Min-Count 2= 13

EMD
ELSE

IF ALJT = Min (*

THEN

Min-Count 2= Min_Count + 13

END
Aud 1= Sumilnts_Read}i
Print_Datasi (€]

END S

(%xxded MAIN PROGRAM *x%x#%)

BEGIN /-v\’\

o_‘l?ead,_lnt.s {arrs Int_Count) i @
Min.Max.Aud (Arr. Int_Count);G,
END .

Figure 8-1: (Cont.) The Program Compute

(%

in array, The first

ACJ] is current inteder in arravy -*)

If ACJY » Max:s assign it to Max #*)

If ACJY = Max: increment Maw_Count #)

If ALJ] Min: assign it to Min #)

If ALJY = Mins increment Min.Count *)

Frint results #*)
Min_Max_Audg *)

Procedures and Functions

8-3

8-4

The program Compute finds the minimum, maximum, and average values in
a list of integers typed at the terminal.

Execution starts with the BEGIN that delimits the executable section of the
main program @ and follows these steps:

1. The main program calls the procedure .Read__Ints @, which performs
these steps:

a. Types instructions to the terminal

b.