
VAX-11
PASCAL Primer
Order No. AA-J 1808-TE

October 1982

This tutorial document introduces the VAX-11 PASCAL language. It is
intended to be used by programmers who are new to VAX-11 PASCAL.

REVISION/UPDATE INFORMATION: This revised document supersedes
the VAX-11 PASCAL Primer
(Order No. AA.;J1 BOA-TE).

OPERATING SYSTEM AND VERSION: VAX/VMS V3.1

SOFTWARE VERSION: VAX-11 PASCAL V2.0

digital equipment corporation · maynard, massachusetts

First Printing, April 1980
Revised, October 1982

The information in this document is subject to change without notice and should not be con­
strued as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Copyright© 1980, 1982 by Digital Equipment Corporation.
All Rights Reserved.

Printed in U.S.A.

A postpaid READER'S COMMENTS form is included on the last page of this document. Your
comments will assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: ·

DEC DIBOL RSX
DEC/CMS Edusystem UNIBUS
DECnet IAS VAX
DECsystem-IO MAS SB US VMS
DECSYSTEM-20 PDP VT
DECUS PDT ~nmnamn DECwriter RSTS

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710

In New Hampshire, Alaska, and Hawaii call 603-884-6660

In Canada call 613-234-7726 (Ottawa-Hull)
800-267-6146 (all other Canadian)

DIRECT MAIL ORDERS (CANADA)

Digital Equipment of Canada ltd.
940 Belfast Road
Ottawa, Ontario K1 G 4C2
Attn: A&SG Business Manager

ZK2096

DIRECT MAIL ORDERS (USA & PUERTO RICO)*

Digital Equipment Corporation

DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

A&SG Business Manager
c/o Digital's local subsidiary or
approved distributor

Internal orders should be placed through the Software Distribution Center (SDC). Digital Equipment
Corporation, Northboro, Massachusetts 01532

11/82-14

Contents
Page

Preface vii

Chapter 1 Introduction

1.1 Program Development

1.1.1 Creating the Program. .
1.1.2 Compiling the Program .
1.1.3 Linking the Object Module
1.1.4 Executing the Program ..

1.2 A PASCAL Program Example ..
1.3 The Structure of a PAS CAL Program .

1.3.1 The Program Heading .
1.3.2 The Declaration Section.
1.3.3 The Executable Section .

Chapter 2 Data Concepts

2.1 Types
2.2 Scalar Types

2.2.1 The Type INTEGER .
2.2.2 The Type REAL ...

2.2.2.1 Decimal Notation
2.2.2.2 Floating-Point Notation

2.2.3 The Type BOOLEAN.
2.2.4 The Type CHAR .

2.3 Variables
2.4 Expressions

2.4.1
2.4.2
2.4.3
2.4.4

Arithmetic Expressions
Relational Expressions
Logical Expressions . .
Precedence Rules for Operators

Chapter 3 Declarations and Definitions

3.1 Symbolic Names

3.1.1 Reserved Words and Predeclared Identifiers
3 .1.1.1 Reserved Words
3.1.1.2 Predeclared Identifiers .

3.1.2 User Identifiers.

3.2 Constant Definitions .
3.3 Type Definitions. . . .
3.4 Variable Declarations .
3.5 User-Defined Scalar Types .

3.5.1
3.5.2

Enumerated Types .
Subrange Types . .

iii

. 1-2

. 1-4

. 1-4

. 1-5

. 1-5

. 1-6

. 1-6

. 1-8

. 1-9
1-10

. 2-1

. 2-2

. 2-3

. 2-3

. 2-3

. 2-4

. 2-4

. 2-5

. 2-5

. 2-6

. 2-6

. 2-9
2-10
2-11

. 3-1

. 3-2

. 3-2

. 3-2

. 3-3

. 3-4

. 3-5

. 3-6

. 3-7

. 3-8
3-10

Chapter 4 Fundamental PASCAL Statements

4.1 The Assignment Statement.
4.2 The Compound Statement .
4.3 The IF-THEN Statement .
4.4 The IF-THEN-ELSE Statement
4.5 The FOR Statement

Chapter 5 Reading and Writing Data

5.1 The Predeclared Text Files Input and Output .
5.2 Reading Data .

5.2.1 The READ Procedure .
5.2.2 The READLN Procedure

5.3 Writing Data

5.3.1 The WRITE Procedure .
5.3.2 The WRITELN Procedure.

5.4 The Predeclared Functions EOLN and EOF.

5.4.1 The EOLN Function
5.4.2 The EOF Function .

Chapter 6 Structured Types: the Array and the Record

6.1

6.2

Arrays

6.1.1 Multidimensional Arrays
6.1.2 Character Strings. . . .

6.1.2.1 Character-String Constants.
6.1.2.2 Character-String Variables .

Records

Chapter 7 More PASCAL Statements

7.1 The REPEAT Statement.
7.2 The WHILE Statement .
7 .3 The CASE Statement . .
7.4 The Program Class_Data - An Example

7.4.1
7.4.2

The Declaration Section.
The Executable Section.

Chapter 8 Procedures and Functions

8.1 Procedures

8.1.1 Declaring a Procedure.
8.1.2 Calling a Procedure.

8.2 Functions .

8.2.1 Declaring a Function
8.2.2 Invoking a Function

IV

. 4-1

. 4-3

. 4-3

. 4-5

. 4-8

. 5-1

. 5-2

. 5-2

. 5-4

. 5-5

. 5-5

. 5-9

5-10

5-10
5-11

. 6-1

. 6-5

. 6-8

. 6-8

. 6-9

6-11

. 7-1

. 7-5

. 7-7
7-10

7-12
7-12

. 8-6

. 8-6

. 8-6

. 8-7

. 8-7

. 8-8

8.3 Parameters

8.3.1
8.3.2

Actual and Formal Parameters
Value and Variable Parameters
8.3.2.1 Value Parameters ..
8.3.2.2 Variable Parameters .

Appendix A PASCAL Defined Names

A.1 Standard Reserved Words .
A.2 Nonstandard Reserved Words.
A.3 Predeclared Identifiers .

Appendix B ASCII Character Set

Appendix C Summary of Predeclared Procedures and Functions

Glossary

Index

Figures

1-1 Program Development Process
1-2 Sample Program Grocery_Bill .
1-3 Executable Section of Grocery_Bill
1-4 Sample Run of Grocery_Bill.
4-1 The IF -THEN Statement Flow Chart .
4-2 The IF-THEN-ELSE Statement Flow Chart.
4-3 The FOR Statement Flow Charts.
5-1 The End of a Text File.
5-2 File Position at End-of-File.
6-1 The Two-Dimensional Array Class_Scores
6-2 The Three-Dimensional Array Hotel_ Vacancies.
7-1 The REPEAT Statement Flow Chart .
7-2 The WHILE Statement Flow Chart.
7-3 The CASE Statement Flow Charts
7-4 The Program Class_Data
8-1 The Program Compute.

Tables

2-1 Arithmetic Operators.
2-2 Result Types for Arithmetic Expressions
2-3 Relational Operators .
2-4 Logical Operators
2-5 Precedence of Operators
5-1 Default Values for Field Width .
B-1 The ASCII Character Set.
C-1 Predeclared Procedures.
C-2 Predeclared Functions .

v

. 8-8

. 8-9
8-10
8-10
8-11

. A-1

. A-1

.A-2

. 1-3

. 1-7
1-10
1-12
. 4-4
. 4-6
. 4-9
5-12
5-12
. 6-6
. 6-8
. 7-2
. 7-5
. 7-9
7-10
. 8-2

. 2-7

. 2-8

. 2-9
2-10
2-11
. 5-6
. B-1
. C-2
. C-5

Preface

Primer Objectives

This primer introduces the VAX-11 PASCAL language. It is designed to
provide sufficient information on the language for you to begin writing
PASCAL programs.

VAX-11 PASCAL is an extended implementation of the PASCAL language
that accepts programs which comply with the standard proposed by the Inter­
national Organization for Standardization. This primer describes a subset of
VAX-11 PASCAL, omitting some advanced features of the language. Once
you have mastered the concepts in this primer, you should consult the
VAX-11 PASCAL Language Reference Manual for full reference information.

Intended Audience

This primer does not attempt to teach programming concepts. It assumes that
you have some experience programming in a high-level language or that you
are taking an introductory programming course. However, prior knowledge of
the PASCAL language is not necessary.

You need not have a detailed understanding of the VAX/VMS operating
system, but some familiarity with VAX/VMS is helpful. If you are new to
VAX/VMS, see the VAX/VMS Primer for introductory material.

How to Use This Document

This primer contains eight chapters. Chapter 1 explains how to develop
PASCAL programs on VAX/VMS. Program examples are found throughout;
using the tools for program development introduced in Chapter 1, you can
enter, compile, link, and run these sample programs on VAXNMS. Each
subsequent chapter introduces new concepts in PASCAL that build on mate­
rial presented previously. To take advantage of this structure, you should read
the chapters sequentially. Throughout the primer, italics indicate a term
defined in the Glossary.

vu

For More Information

For reference information on the VAX-11 PASCAL language, ·consult the
VAX-11 PASCAL Language Reference Manual.

The VAX-11 PASCAL User's Guide provides information on using PASCAL
with the VAX/VMS operating system.

The VAX-11 Information Directory and Index briefly describes each manual
in the VAX/VMS document set. The information directory indicates which
manuals you should consult for information on various components of the
operating system.

Conventions Used in This Document

This document uses the following conventions.

Convention

{ I

{I, ...

{ I; ...

Meaning

Braces enclose lists from which you must choose one
item; for example:

{ DO~~TO}

A horizontal ellipsis means that the preceding item
can be repeated one or more times; for example:

digit ...

Braces followed by a comma and a horizontal ellipsis
mean that you can repeat the enclosed item one or
more times, separating the items with commas; for
example:

{label!, ...

Braces followed by a semicolon and a horizontal el­
lipsis mean that you can repeat the enclosed item one
or more times, separating the items with semicolons;
for example:

REPEAT {statement!; ...
UNTIL expression

A vertical ellipsis means that not all of the state­
ments in a figure or example are shown.

viii

[]

BEGIN

Groce n' .. _Bi 11

$ RUN E }(AM PI.... E

A PASCAL program
consists of a
heading and a
block.

Square brackets mean that the syntax requires the
square bracket characters. This notation is used with
arrays, sets, and attribute lists; for example:

ARRAY [index]

Double brackets enclose items that are optional; for
example:

EOLN ~ (file-variable)~

In programming examples, all PASCAL names, that
is, reserved words and predeclared identifiers, are
printed in uppercase letters.

In programming examples, all user identifiers, that
is, names created by the programmer, are printed in
lowercase letters with initial uppercase letters.

The notation (CTRL/x) indicates that you must press the
key labeled CTRL while simultaneously pressing an­
other key, such as X in this example._

A symbol with a 1- to 3-character abbreviation indi­
cates a key that you press on the terminal; for
example, (BIT) for the RETURN key.

Interactive examples are shown in two colors. User­
entered input is printed in red. Program- and system­
generated output is printed in black.

A word or phrase in italics indicates a term defined in
the Glossary.

IX

Chapter 1
Introduction

The PASCAL language was designed for teaching structured programming
techniques; as such, it is used widely in educational institutions. It has also
gained popularity as a general-purpose language because it is suitable for
many different programming applications.

PASCAL programs are structured; that is, they use English-like statements
that allow the programmer to make the logical flow efficient, readily discerni­
ble, and as linear as possible. As a result, PASCAL programs are easy to read,
modify, and maintain. The names of all data items must be explicitly de­
clared at the beginning of the program. The declaration section makes readily
apparent the symbolic names, or identifiers, that represent constants, data
types, variables, procedures, and functions.

The structure of a PAS CAL program and the wide range of available data
structures encourage modular programming. In modular programming, you
divide the solution to a problem into individual parts that can be developed
relatively independently. PASCAL's block structure promotes the translation
of these parts into procedures and functions.

PASCAL includes a variety of control statements, data types, and prede­
clared procedures and functions. Some of the language features that are com­
mon to most implementations of PASCAL are:

•INTEGER, REAL, CHAR, BOOLEAN, enumerated, and subrange scalar
data types

• ARRAY, RECORD, SET, and FILE structured data types

• FOR, REPEAT, and WHILE repetitive control statements

• CASE, IF-THEN, and IF-THEN-ELSE conditional statements

• BEGIN ... END compound statement

• READ, WRITE, READLN, and WRITELN input and output procedures

• Standard set of predeclared functions and procedures

1-1

In addition to common PASCAL language features, this primer also presents
the following V AX-11 extensions to the PASCAL language:

• Exponentiation operator

• Double- and quadruple-precision real data types

• 31-character identifiers that can include the dollar sign ($) and underscore
(_) characters

• OTHERWISE clause in the CASE statement

• Character-string and enumerated-type parameters for the READ and
READLN procedures

• Enumerated-type parameters for the WRITE and WRITELN procedures

• Initialization of variables

• Expressions in the CONST section

This chapter introduces the VAX-11 PASCAL language. Section 1.1 presents
the steps required for developing a VAX-11 PASCAL program on the
VAX/VMS operating system. By following these steps, you can run the pro­
grams that you will find throughout this primer. Section 1.2 presents a
PASCAL program example. Section 1.3 uses this example to illustrate some of
the fundamental concepts of PAS CAL programs.

For more information on all aspects of the V AX-11 PAS CAL language, see the
VAX-11 PASCAL Language Reference Manual.

1.1 Program Development

This section explains the steps required for developing a V AX-11 PAS CAL
program. Figure 1-1 illustrates the program development process. Developing
a VAX-11 PASCAL program involves four steps:
• Creating a source file containing the program source statements

• Compiling the source program to create an object module

• Linking the object module to produce an executable image

• Executing the image

You specify these steps by entering the following commands to the VAX/VMS
operating system:

$ EDIT file-sPec
$ PASCAL file-sPec
$ LINK f ile-sPec
$ RUN file-spec

1-2 Introduction

COMMANDS

$ EDIT EXAMPLE.PAS
Use the file type of PAS to
indicate the file contains a
VAX-11 PASCAL program.

$ PASCAL EXAMPLE
The PASCAL command
assumes the file type of
an input file is PAS.

(If you use the /LIST
qualifier, the compiler
creates a listing file.)

$ LINK EXAMPLE
The LINK command assumes
the file type of an input file
is OBJ.

(If you use the /MAP qualifier,
the linker creates a map file.)

$ RUN EXAMPLE
The RUN command assumes
the file type of an image is
EXE.

INPUT/OUTPUT FILES

~-C-re-at_e_a-~ _____ A EXAMPLE.PAS
_source program LJ

--~ Compile the EXAMPLE.OBJ
source program (EXAMPLE.LIS)

libraries

Link the EXAMPLE.EXE
object module (EXAMPLE.MAP)

Run the
executable

image

ZK-1016-82

Figure 1-1: Program Development Process

Each command includes a VAXNMS file specification (file-spec) and can
also include optional qualifiers. Command qualifiers provide the system with
additional information on how to execute the command. See the VAX-11
PASCAL User's Guide and the VAX/VMS Command Language User's Guide
for more information on qualifiers.

The file specification tells the operating system which file to process. A full
VAX/VMS file specification contains a lengthy string of information. How­
ever, because the system assigns appropriate default values to most of the
elements in a file specification, you rarely need to specify more than the
following two elements: ·

filename,filetYPe

Often, you need only specify the file name. The file name identifies the file
and can be up to nine alphanumeric characters long. The file type describes
the kind of data in the file and can be up to three alphanumeric characters
long.

Several files . can have the same file name as long as their file types are
different. For instance, the file name EXAMPLE is used throughout the
following sections to illustrate the four commands involved in developing

Introduction 1-3

programs. However, by default, each command applies a different file type to
the file name EXAMPLE.

1.1.1 Creating the Program

When you write a program, you must create a VAX/VMS file, called a source
file, that contains the program source statements. You use a text editor to
create a source file. For instance, to create a PASCAL program that has the
file name EXAMPLE and a file type of PAS, you can issue the EDIT/EDT
command as follows:

$ EDITiEDT E><AMPLE+ PAS ~
InPut file not found
[EOBJ

*
You must include a file type (usually PAS) with the EDIT/EDT command
because it assumes no file type by default. The EDIT/EDT command invokes
the VAXNMS default editor, EDT. The asterisk (*) prompt indicates that
EDT is ready to accept input. For information on how to use EDT, see the
EDT Editor Reference Manual.

1.1.2 Compiling the Program

After you create a VAX-11 PASCAL source file, you compile it. To compile a
source file called EXAMPLE.PAS, issue the command:

$ PASCAL E>rnMPLE ~

You can omit the file type PAS because the PAS CAL command assumes that
file type as the default.

When you ente.r the PASCAL command from the terminal, the PASCAL
compiler does the following by default:

• Produces an object module that has the same file name as the source file
and a file type of OBJ

• Uses its own defaults when it creates output files (qualifiers on the PASCAL
command can override these defaults)

If the compiler does not detect any errors in the source file, the system dis­
plays the dollar sign prompt to indicate successful compilation:

$

If the program does contain errors, however, the PASCAL compiler displays
error messages on your terminal. You can use a text editor to correct the errors
m your source program.

It is possible for a program to be successfully compiled and, at the same time,
to generate warning-level or information-level messages. In that case, the
compiler displays the diagnostic messages on your terminal.

For example, there are many information-level diagnostic messages that point
out the use of nonstandard PASCAL features (that is, VAX-11 PASCAL
extensions). These information-level errors do not affect the compilation of
a program in any way; they are reported only to flag the use of V AX-11

1-4 Introduction

PASCAL extensions. You can suppress the diagnostic messages for non­
standard PASCAL features by using the /NOSTANDARD qualifier with the
PASCAL command as follows:

$ PASCAL/NOSTAt\IDARD E>rnMPl._E (8ITl

At some installations of PASCAL, the /STANDARD qualifier is enabled by
default. If that is the case at your installation, you may wish to suppress such
messages with the /NOSTANDARD qualifier.

The /LIST qualifier on the PASCAL command requests the compiler to create
a program listing. A program listing includes the program's source state­
ments, line numbers, any error messages that are reported, and other informa­
tion related to the compilation. For instance, to create a program listing of
EXAMPLE, issue the command:

$ PASCAL/LI ST E><AMPLE (8ITl

This command causes the compiler to create a file called EXAMPLE.LIS in
addition to the object module EXAMPLE.OBJ. The /LIST qualifier does not
direct EXAMPLE.LIS to the line printer. To obtain a printed copy of the
program listing, you must use the PRINT command as follows:

$PRINT D(AMPLE (8ITl

The PRINT command assumes the default file type LIS.

1 .1 .3 Linking the Object Module

An object module (for instance, EXAMPLE.OBJ) is not executable. To gen­
erate a file that can be executed by the system, invoke the V AX-11 Linker
with the LINK command as follows:

$ LINf:: E><AMPL.E (8ITl

You can omit the file type because the LINK command assumes the file type
OBJ by default. The LINK command in this example creates a file named
EXAMPLE.EXE, which is an executable image, that is, a file that contains
your program .in an executable format. The linker automatically includes in
the executable image any library routines that the compiler has requested for
input and output, error handling, and arithmetic function calculation.

1.1.4 Executing the Program

To execute the program EXAMPLE, use the RUN command. When you issue
the RUN command, you need to provide only the name of an executable
image; the RUN command assumes the file type EXE by default. Thus, to
run the program EXAMPLE, issue the RUN command as follows: ,

$ RUN Ei<AMPLE (8ITl

The first time you run a program, it may not execute properly; if it has a bug,
or programming error, you may be able to determine the cause of the error by
examining the listing file or the output from the program. When you have
determined the cause of the error, you can edit your source program and then
repeat the compiling, linking, and running steps to test the result.

Introduction 1-5

1.2 A PASCAL Program Example

This section presents an example of a PASCAL program. This program, titled
Grocery_Bill, is illustrated in Figure 1-2. Section 1.3 uses this example to
illustrate some fundamental PASCAL concepts. The circled numbers in Fig­
ure 1-2 are keyed to more detailed explanations in Section 1.3.

You can run the sample program by following the steps outlined in Section
1.1. The V AXNMS source file you create need not have the same name as the
PASCAL program. For instance, you can create a V AXNMS file called
GROC.PAS to contain the program. The program name Grocery_Bill is an
identifier known only within the PASCAL program.

You can use the following commands to create, compile, link, and execute the
program Grocery_Bill:

$ ED IT GROC. PAS
$ PASCAL/NOSTANDARD GROC
$ LINK GROC
$ RUN GROC

If you do not include the /NOSTANDARD qualifier on the PASCAL com­
mand and /STANDARD is the default qualifier on your installation, the
compiler will report information-level 'messages for each nonstandard feature
used in the program. For example, the use of underscore(_) characters in the
program Grocery_Bill is a nonstandard feature.

The program Grocery_Bill is an interactive program in that it prompts you
for the data.it needs, performs calculations, and then prints the results. Spe­
cifically, it performs the following steps:

• Prints instructions for entering prices of grocery items

• Reads each price and sums the prices to obtain a subtotal

• Prompts for a yes or no answer to the question "Do you have any coupons?"

• Reads each coupon value that is entered and sums the values

• Subtracts the value of the coupons from the subtotal to obtain a total

• Prints the total

1.3 The Structure of a PASCAL Program

A PASCAL program consists of a heading and a block. The heading specifies
the name of the program and the names of any external files the program uses
for input and output. The block is divided into two parts: the declaration
section, which contains data declarations, and the executable section, which
contains executable statements. Figure 1-2 labels each of these parts.

The following sections describe the heading, declaration section, and execut­
able section of the sample program Grocery_Bill. To help clarify Figure 1-2
and the descriptions below, the following list presents some key syntax rules
that apply to all PASCAL programs.

1-6 Introduction

lo--<
l:$
M­
>-s
0
Q..
c
(j
M-
5·
l:$

-I
"

PROGRAM Groce n _Bi 11 C rn PUT , OUT PUT) ; j Program Heading

<* Declarations *>
TYPE

Yes_No = CYes, No> ;0 (* Defines data tYPe Yes_No
with values Yes and No *)

Declaration
Section

t,JAR
IteM_Price, Total tf)
Coupon_AMount : REAL;
Ans : Yes_No;

Executable
Section

Subtotal, Coupons : REAL := o.o;

(* Declares three real variables *)
(*Declares a variable, Ans, of tYPe Yes_No *)

(* Initializes two real variables *)

BEGIN (* Main ProsraM *)
(* Print instructions for enterins data. *)
WRITELN ('Enter cost of each Srocery ite1r1. One itefTl Per line.'>;@)
WRITELN ('Enter the value O.O to terfTlinate list of itefTls. ');
<* Read Prices and add each to subtotal until O,O is read. *>

• READLN Cite1r1_Price) ;0
{

REPEAT

0 Sub tot a 1 : = Sub tot a 1 + It e 111_ Price ; f)
UNTIL CitefTl_Price = O.O>;
WRITELN ('Subtotal e9uals -- $', Subtotal:7:2) ;G)
WRITE ('Do You have any coupons? TYPe Yes or no and Press <RET>.
READLN C Ans l ; 0
IF <Ans = Yes)
THEN

BEGrn
WRITELN C'TYPe 1.ialu.e of each coupon. One Per line,'>;0
WRITELN ('T!'Pe <CTRL'/Z> after enterin.9 all cou.Pons. ');

0{ <*Read and sufTl a1r1ount of each coupon until end of input.*)

{

REPEAT

1
READU~ CCoupoj-,_A1r1ou.nt) ;0

«!) Cou.Pons : = Coupons + CouPon_A111ou.nt; f)
UNTIL EOF <INPUT);
END;

'>;0

(* Subtract Coupons f rofTl Subtotal to obtain Total
Total :=Subtotal - Coupons;

and Print Total, *)

~~RITELN ('Pay this arr1ount -- $'' Total :7:2) ;0
END. (* End of Main ProsrafTl *)

Figure 1-2: Sample Program Grocery_Bill

Syntax Rules

1. The semicolon(;) and the period(.) are delimiters in PASCAL. The semi­
colon separates successive PASCAL statements. It also terminates the
program heading and the items in the declaration section. You need not
place a semicolon directly after the word BEGIN or before the word END
because BEGIN and END are not statements. The examples in this
primer, however, include a semicolon before the word END. This practice
makes it easier to add new statements to the end of the program at a later
date. The period marks the end of a PASCAL program.

2. The reserved words BEGIN and END are also delimiters; they are not
statements. BEGIN and END are used to separate the functional parts of
a PASCAL program. They specify the beginning and end of the executable
section. They also delimit a compound statement. Every BEGIN must be
associated with an END. 1 Therefore, make sure that you have a matching
END for every BEGIN in your program.

3. PASCAL allows free formatting of program text. You can place state­
ments anywhere on a line, divide a statement across more than one line,
and place several statements on one line. However, you cannot divide a
name or number between lines or with a space.

4. Comments can appear anywhere in a program. Comments are enclosed in
braces ({}).Alternatively, a comment can start with a left parenthesis and
asterisk and end with an asterisk and a right parenthesis. Two examples of
comments are:

{What's it all mean?}

(* This is the alternative form of a comment. *)

The PASCAL compiler ignores the text between the comment indicators.

The circled numbers in Figure 1-2 are keyed to the circled numbers appearing
in Sections 1.3.2 and 1.3.3.

1.3.1 The Program Heading

A PASCAL program always begins with a program heading. The heading
consists of:

•The reserved word PROGRAM

• The program's name

• The names of any input and output files to be used

• The semicolon delimiter

The heading in the example in Figure 1-2 is:
I ,

PROGRAM Grocery_Bill <INPUT, OUTPUT>;

1. However, there are two cases in which an END does not have to be associated with a
BEGIN: the CASE statement (see Section 7.3) and the RECORD declaration (see Section 6.2).

1-8 Introduction

The name of the program is Grocery_Bill and it uses the files INPUT and
OUTPUT. INPUT and OUTPUT are names known to PASCAL. They specify
text files that have been predeclared (that is, declared in PASCAL). When
you run an interactive program, these names indicate that the program uses
your terminal for input and output.

1.3.2 The Declaration Section

PASCAL requires that you declare all data items in the program. To declare a
data item, you specify an identifier and indicate what it represents. All decla­
rations in a program must appear in a declaration section.

The declaration section can contain the five kinds of declarations listed below.
You need not include all of them in a program. The declarations you do
include may appear in any order, and a particular kind may appear more than
once. However, you may not declare the same label, constant, type, variable,
procedure, or function more than once in a block.

•LABEL

•CONST

•TYPE

•VAR

• PROCEDURE and FUNCTION

The program Grocery_Bill contains two kinds of declarations and
definitions -TYPE and VAR. The first of these is the TYPE definition 0:
TYPE

Yes_No =(Yest No);

This TYPE section defines a data type called Yes_No and the two constants,
Yes and No, that constitute the values of the type.

The second declaration is the VAR declaration 8:

Item_Pricet Total,
CouPon_Amount : REAL;
Subtotal, Coupons : REAL := o.o;
Ans : Yes_No;

This VAR section declares five real variables: Item_Price, Subtotal, Total,
Coupon_Amount, and Coupons. In addition, a sixth variable, Ans, is de­
clared to be of the user-defined type Yes_No. The variable Ans can assume
either of two values: Yes or No.

Within the VAR section, you may specify an initial value for any variable. In
this program, the variables Subtotal and Coupons are initialized to 0.0 when
they are declared. They will each have the value 0.0 when the program begins
executing.

Introduction 1-9

1.3.3 The Executable Section

The executable section contains the statements that, when executed, perform
the actions of the program. 'The executable section follows the declaration
section, and is delimited by BEGIN and END (followed by a period). The
executable section of Grocery_Bill is shown in Figure 1-3.

BEGIN <* Main Prosram *l
(* Print instructions for enterinS data. *)
i·JRITELN ('Enter cost of each srocen' item. One iter1i Per line,');6)
WRITELN ('Enter the value O,O to terminate list of items. 'l;
(* Read Prices and add each to subtotal until O,O is read. *)

{

f:t:EPEAT A
A READU~ (Iter1i_Price) ;~ ~

~ Subtotal := Subtotal + Item_Price;~
UNTIL (It e f1L. Price = 0, 0 l ; S i_t t• t,

0
t, ::i l ,', ~,,, ,', ,'"',c) ,', O

~RITELN <'Subtotal e9uals -- $' 1 "' _ ~

WRITE ('Do }'OU ha 1,,1e an'/ coupon,:;-;· TY Pe yes or no and Press <RET>, ') ;0
"'EADLN (Ans l ;
IF (Ans'" Yes>(i)
THEN

f.'H~G IN
i..JRITELN ('TYPe •,,ialue of each coupon. One Per line.') ;0
i..JRITELN ('TYPE <CTRL!Z> after enter,inS all couPon'>• ');
(*Read and sum amount of each coupon until end of input. *l

8,\ ~ E f'2\ D L N (C o u P o n __ A r1i o u n t), ; 0 ,
{

f:t:EPEf:'.\T

~ LouPons : ::: CouPons + LouPon __ ,AMount ,9
UNTIL EDF (INPUT);
Er~D;

(*Subtract Coupons froM .Subtotal to obtain Total 1 and Print Total. *l
Total : Subtotal - CouPons;
i·ff? I T EI_, N (' P a y t h i s a frHJ u n t _, -- $ / • T o t a l : 7 : 2) ; 0
END, (* End of Main Prosram *)

Figure 1-3: Executable Section of Grocery_Bill

Between BEGIN and END are calls to procedures that read and write data
and statements that change the value of variables and control execution.

Several input and output procedures are used in the program Grocery_Bill.
For example, the first two WRITELN procedures 8 print on the terminal
instructions for entering a list of prices. The text within the apostrophes is
printed. The third WRITELN procedure 0 prints text followed by the value
of a variable. Again, the text within the apostrophes is printed. The integers
that appear after the variable name Subtotal specify field width. The first
integer specifies the total field width; that is, the number ofcolumns occupied
by the value being printed. The second integer specifies the number of places
to the right of the decimal point in the printed value.

The remaining output procedures in the program 0 print either the text that
is specified in apostrophes, or text and the value of a variable.

The program Grocery_Bill shows three examples of input procedures 0. Each
reads a value from the terminal and assigns the value to the variable specified
in parentheses. For instance:

READLN (Ans);

1-10 Introduction

This READLN procedure reads a value and assigns it to the variable Ans.
Because Ans is of type Yes_No, the value to be read must be either Yes or No.
The READLN procedure accepts the answer Yes or No in either uppercase or
lowercase characters.

The executable section of Grocery_Bill also illustrates the assignment state­
ment 0. An assignment statement contains three parts - a variable, the
assignment operator (:=), and an expression:

variable := expression;

The assignment statement causes the variable to assume the value of the
expression. For example:

Subtotal := Subtotal + Item_Price;

This assignment statement adds the current values of Subtotal and Item_
Price, then assigns the sum to Subtotal.

Grocery_Bill contains two kinds of control statements: IF-THEN and RE­
PEAT. The IF-THEN statement 0 is a conditional statement. If the expres­
sion (Ans= Yes) is true, the statement following the reserved word THEN is
executed:

IF (Ans = Yes)
THEN

BEGIN

END;

The statement following THEN is a compound statement. A compound state­
ment specifies that all the statements within BEGIN and END are executed
sequentially as a group.

Finally, there are two examples of the REPEAT statement. One example is0:

REPEAT
READLN <Item_Price);
Subtotal := Subtotal + Item_Price;

UNTIL <Item_Price = 0.0);

The REPEAT statement specifies that the statements between REPEAT and
UNTIL be executed in order, terminating when the value of the variable
Item_Price equals 0.0. The semicolon before UNTIL is optional because the
UNTIL clause is not another statement; it is part of the REPEAT statement.
The second example of a REPEAT statement is 4D>:

REPEAT

UNTIL EDF (INPUT);

This statement, like the previous REPEAT, performs the statements within
REPEAT and UNTIL repetitively. However, in this example, execution ter­
minates when the function EOF (INPUT) becomes TRUE. EOF, which
stands for end-of.file, is a predeclared PASCAL function that returns the
value TRUE at the end of an input file. The (CTRL/z) that you type after entering

Introduction 1-11

, the values of all coupons indicates the end-of-file condition. (The PASCAL
file INPUT is associated with your terminal.)

Figure 1-4 shows a sample run of the program Grocery_Bill.

$ RUN GROC
Enter cost of each srocerY item. One item Per line.
Enter the value O.O to terminate list of items.
1. 29
2.50
3.l!9
0+79
2.29
1. 20
0. 15
1. 89
2 I 19
0.75
1. 50
o.o
Subtotal e9uals -- $ 18.04
Do YOU ha1.1e an}' coupons? TYPe }'es or no and press <RET>. Yes ru
TYPe value of each coupon. One Per line.
TYPe <CTRLIZ> after enterins all coupons.
0. 15
0+25
0.29
0.70
0.75
···z
PaY this amount -- $ 15.90
$

Figure 1-4: Sample Run of Grocery _Bill

The program Grocery_Bill illustrates a small subset of the VAX-11 PASCAL
language. It was designed to give you a feel for how the parts of a PASCAL
program fit together. The following chapters describe the VAX-11 PASCAL
language in more detail.

1-12 Introduction

Chapter 2
Data Concepts

2.1 Types

This chapter presents some PASCAL data concepts. Section 2.1 introduces
the PASCAL concept of types. Section 2.2 explains the PASCAL predefined
scalar types. Finally, Sections 2.3 and 2.4 introduce the ways variables and
expressions are used in a PASCAL program.

A type is a set of values that share certain characteristics. Associated with
each type is a set of operations that can be performed on those values. For
example, the integers within a particular range constitute a type and the
addition operator (+) can be applied to values of that type.

PASCAL associates a type with each of the following entities:

• Constants

• Variables

• Functions

• Expressions

A constant is a literal representing a value of a type. For example, the number
4 is a constant in the type consisting of integers. A variable is an entity that
can assume different values during program execution. A variable's type is
the set of values the variable can assume. A function is a computation that is
associated with a name and that returns a value. The computation is per­
formed when the function is called by a function designator. A function's type
is the same as that of the values it can return. An expression is a constant, a
variable, a function, or a combination of these items separated by operators.
Every expression is associated with a type.

PASCAL types are divided into three categories; These categories are:

• Scalar types

• Structured types

• Pointer types

A value of a scalar type is an indivisible unit of data, for example, the integer

2-1

4. You use a scalar value as a single unit; that is, there are no parts that can
be accessed individually. Scalar types serve as building blocks for structured
types.

A structured type is a collection of related data components. You can access
and manipulate these components individually. VAX-11 PASCAL's prede­
fined structured types include arrays, records, varying character strings, sets,
and files. Chapter 6 presents two structured types: the array and the record.
The other structured types are described in the VAX-11 PASCAL Language
Reference Manual.

A pointer type allows you to refer to dynamic variables. See the VAX-11
PASCAL Language Reference Manual for information on pointer types and
dynamic variables.

2.2 Scalar Types

VAX-11 PASCAL defines the following scalar types:

•INTEGER

•REAL

•SINGLE

•DOUBLE

•QUADRUPLE

•BOOLEAN

•CHAR

•UNSIGNED

The INTEGER and REAL types are used for manipulating numeric data.
VAX-11 PASCAL also provides the types SINGLE, DOUBLE, and QUAD­
RUPLE, to allow you to distinguish between values that are single-, double-,
and quadruple-precision real numbers, respectively. The SINGLE type is
identical to the REAL type. (Throughout this primer, the term "real type"
refers to the REAL, SINGLE, DOUBLE, and QUADRUPLE types collec­
tively, unless otherwise noted.) The BOOLEAN type consists of the truth
values: FALSE and TRUE. The CHAR type is used for manipulating single
character data. For example, 'A' is a value of type CHAR. The sections that
follow describe the constants in each of these predefined types.

VAX-11 PASCAL also includes the UNSIGNED type. Values of the
UNSIGNED type consist of an extended set of the nonnegative integers. The
UNSIGNED type is fully described in the VAX-11 PASCAL Language Refer­
ence Manual.

PASCAL allows you to define your own scalar types. For example, the sample
program Grocery_Bill in Chapter 1 defines the type Yes_No. The type Yes_
No has two constant values, Yes and No. Details on user-defined types are
presented in Section 3.5.

· 2-2 Data Concepts

The values of a scalar type are ordered; that is, each is either greater than or
less than another value of the same type. Thus, you can compare the values of
a scalar type. For example, among the integers, 2 is greater than 1 but less
than 3.

The predefined scalar types fall into two groups: real types, which were listed
above, and the ordinal types. The ordinal types are INTEGER, UNSIGNED,
CHAR, BOOLEAN, enumerated types (see Section 3.5.1), and subranges of
ordinal types (see Section 3.5.2). Each value of an ordinal type corresponds to
a unique integer or ordinal value that indicates its place in an ordered list of
values of that type. PASCAL provides the following function that returns this
ordinal value:

ORD (:><)

If xis a constant of an ordinal type, ORD (x) returns the integer representing
its ordinal value.

2.2.1 The Type INTEGER

The INTEGER type consists of the whole number values ranging from
-2,147,483,647 through 2,147,483,647. You write an integer constant as a se­
quence of decimal digits; no commas or decimal points are allowed. A minus
sign (-) before the number specifies a negative integer. A plus sign (+) may
precede a positive integer, but is not required.

Some examples of valid PASCAL integer constants are:

452822
0

-17
+102

-24824

VAX-11 PASCAL also accepts integer constants in binary, octal, or hexadeci­
mal notation. To use such notation, refer to the VAX-11 PASCAL Language
Reference Manual for an explanation of the required syntax.

2.2.2 The Type REAL

Numbers of the REAL type include the positive values from 0.29*(10**(-38))
through l.7*(l0**38), the negative values from -l.7*(l0**38) through
-0.29*(10**(-38)), and the value 0.0. You can express real constants in two
ways:

• Decimal notation

• Floating-point notation

2.2.2.1 Decimal Notation - In decimal notation, a real constant consists of a
minus sign (-) if the number is negative, an integer part, a decimal point, and
a fractional part. A plus sign (+) may precede a positive real number, but is
not required. At least one digit must appear on each side of the decimal point.

Data Concepts 2-3

Examples of real constants in decimal notation are:

48.25
0.5

-0.8
52.0
0.0

422.004

Note that a zero must precede the decimal point of a fractional quantity and
must follow the decimal point of a whole number quantity.

2.2.2.2 Floating-Point Notation - Floating-point notation is the representa­
tion of a real number in the integer.fraction format, followed by a negative or
positive exponent. You can use floating-point notation to represent very large
or very small real numbers conveniently. For example, the following real
constants are written in both floating-point and decimal notation:

Floating-Point

2.3E2
0.00023E6
10.4E-4
3.1415927EO
4.5E9
-0.4E2

Decimal

230.0
230.0
0.0010
3.1415927
4500000000
-40.0

The exponent consists of the letter E, which can be read as "times 10 to
the power of," followed by a positive or negative whole number. Note that
PASCAL prints real numbers in floating-point notation by default.

In floating-point notation, the position of the decimal point "floats" or moves,
depending on the value of the exponent. For example, each of the following
numbers is equal to 430.0:

43000E-2
0.043E-4
430EO

Note that if the decimal part of a floating-point number is a whole number,
you can omit the decimal point (for example, 430EO).

The DOUBLE and QUADRUPLE real data types allow you to represent
values with a greater range and/or greater precision. See the VAX-11 PAS­
CAL Language Reference Manual for details and examples.

2.2.3 The Type BOOLEAN

The BOOLEAN type consists of the truth values FALSE and TRUE. PAS­
CAL orders these values so that FALSE is less than TRUE: ORD (FALSE)
equals 0 and ORD (TRUE) equals 1. Two kinds of operators can be used to
form Boolean expressions:

• Relational

• Logical

2-4 Data Concepts

Sections 2.4.2 and 2.4.3 explain how to form Boolean expressions that include
relational and logical operators.

2.2.4 The Type CHAR

You can use the CHAR type for manipulating character data. A value of type
CHAR is a single element of the ASCII character set. The ASCII character set
consists of upper- and lowercase letters, the digits 0 through 9, and various
special symbols, such as the ampersand (&) . The full ASCII character set is
listed in Appendix B.

Appendix B also lists the integer value that corresponds to each element of the
ASCII character set. These values determine how the elements of type CHAR
are ordered. For example, the integer 66 corresponds to the uppercase 'B' and
the integer 98 corresponds to the lowercase 'b'. Thus, the character 'B' is less
than the character 'b'. In the ASCII character set, all uppercase letters have
lower ordinal values than lowercase letters.

The ORD function returns the ordinal value for any given ASCII character.
For example:
ORD (I KI)

This function returns the value 75.

To specify a character constant, enclose the value in apostrophes; to specify
the apostrophe character, type it twice within apostrophes. Examples of char­
acter constants are:

'A'
'*'
'3'
'b'

(the space character)
(the apostrophe)

The elements of type CHAR are always single characters. A sequence of
characters within apostrophes is called a character string (for example,
'John Doe' or 'Memorandum'); character strings are explained in Section
6.1.2.

2.3 Variables

A variable is an entity that can assume different values during program exe­
cution. In PASCAL, every variable has a name, a type, and a value (once a
value is assigned).

A variable's name and type are established in the VAR declaration section of
a program. The name and type are permanent characteristics of the variable
during the execution of a program and therefore cannot be changed. A sample
variable declaration section is:

!.JAR
Error_Flaa : BOOLEAN;
Item_Pricer Total r Subtotal
I , J : INTEGER;

REAL;

Data Concepts 2-5

This variable section, introduced by the reserved word VAR, declares Error_
Flag to be a variable of type BOOLEAN; Item_Price, Subtotal, and Total to
be variables of type REAL; and I and J to be variables of type INTEGER.

A variable does not assume a value until the program explicitly assigns it one.
One way to as.sign a value to a variable is with an assignment statement:

Total :=Subtotal;

If the value of Subtotal is defined, this statement will assign the value of
Subtotal to the variable Total. The value of Total will then also be defined.

In addition to assignment statements, you can use value initializations in the
declaration section or input procedures in the executable section to assign
values to variables.

2.4 Expressions

An expression is a symbol or a group of symbols that PASCAL can eval­
uate. These symbols can be individual constants, variables, or functions. For
example:

ItefTl __ Price

The variable name Item_Price is an expression that is equal to the current
value of Item_Price.

Expressions can also be combinations of constants, variables, and function
designators, separated by operators. For example, the sample program in
Chapter 1 includes the following expression:

Subtotal + ItefTl_Price

This expression is equal to the sum of the values of Subtotal and Item_Price.

PASCAL includes the following types of operators for forming expressions:

• Arithmetic (such as +, -, /)

• Relational (such as <, >, =)

• Logical (such as AND, OR, NOT)

Every expression has a type. Arithmetic operators are used in arithmetic
expressions whose values are integers or real numbers. Relational and logical
operators are used in expressions that yield Boolean results.

2-6 Data Concepts

2.4.1 Arithmetic Expressions

An arithmetic expression evaluates to an integer or real value.1 It can be an
integer or real constant, a variable, or a function designator. Alternatively, it
can be a series of integer or real constants, variables, and function designators
combined with one or more arithmetic operators (shown in Table 2-1). For
example, the following expression consists of two variable names and the
subtraction operator (-):

Subtotal - Coupons

This expression equals the value of Subtotal minus the value of Coupons.

Table 2-1: Arithmetic Operators

Operator Example Meaning

+ A+B Add A and B

A-B Subtract B from A

* A*B Multiply A by B

** A**B Raise A to the power of B

I A/B Divide A by B

DIV A DIVB Divide A by B and truncate any fractional
part of the result

REM AREM B Produce the remainder after dividing A by B

MOD AMODB Produce the modulus of A with regard to B

The addition, subtraction, multiplication, and exponentiation operators (+, -,
*, and **) work on both integer and real values. They produce real results
when applied to real values, and integer results when applied to integer val­
ues. If an expression contains values of both types, the result is a real number.

The division operator (/) can be used on both real and integer values but
always produces a real result.

The DIV, REM, and MOD operators can be used only with integer values and
always produce integer results. DIV divides one integer by the other and
truncates any fraction from the result. REM returns the remainder after di­
viding one operand by the other. MOD computes the modulus of the first
operand with regard to the second.

The result of the operation I MOD J is defined only when J is a positive
integer. This result is always an integer from 0 through J-1. I MOD J is
computed as follows:

• If I is greater than J, J is subtracted repeatedly from I until the result is a
positive integer less than J.

1. In this section, the term "real" refers to the REAL and SINGLE types. The rules for using
values of types DOUBLE and QUADRUPLE in arithmetic expressions are slightly different
from those for types REAL and SINGLE. See the VAX-11 PASCAL Language Reference
Manual for information on using values of the types DOUBLE and QUADRUPLE in expres­
sions.

Data Concepts 2-7

• If I is less than 0, J is added repeatedly to I until the result is a positive
integer less than J.

• If I is less than J or equal to 0, the result of I MOD J is I.

For example, 5 MOD 3 = 2, (-4) MOD 3 = 2, and 2 MOD 5 = 2.

When both operands are positive, the REM and MOD operators return the
same result. For example, 28 REM 5 = 3 and 28 MOD 5 = 3. When the first
operand is negative, REM produces a nonpositive result, while MOD produces
a nonnegative result. For example, (-42) REM 8 = -2 and (-42) MOD 8 = 6.,

Table 2-2 shows possible combinations of arithmetic operands and operators
and the type of the result.

Table 2-2: Result Types for Arithmetic Expressions

Operator
Group

+, -, *, **
(addition, subtraction,
multiplication,
exponentiation2)

I

(division)

DIV, REM, MOD

(division with
truncation,
remainder,
modulo class)

Operand
Types 1

I op I

R op I

I op R

R op R

I op I

R op I

I op R

R op R

I op I3

Result
Type1 Example

I 4 + 5

R 4.2 ** 2

R 4 * 4.5

R 2.2 - 40.12

R 4/2

R 3.2/2

R 4/2.14

R 3.2/2.2

42 DIV 5

4 DIV 5

32 REM 5

(-4) REM 3

32 MOD 5

(-4) MOD 3

Result

9

1.764E+Ol

1.800E+Ol

-3.792E+Ol

2.000E+OO

1.600E+OO

l.869E+OO

1.455E+OO

8

0

2

-1

2

2

1. The symbols "I" and "R" stand for INTEGER and REAL, respectively; the symbol "op"
stands for "operator."

2. When you raise an integer to the power of an negative integer, you can get unexpected
results. Refer to the VAX-11 PASCAL Language Reference Manual for the rules governing
PASCAL's evaluation of expressions containing negative integer exponents.

3. In the MOD operation, the second operand must be a positive integer.

You can combine operators to form complicated expressions. For example, if
all of its operands are integers, the following expression is valid:

A + 5 DIV 2 * a - C * 3

2-8 Data Concepts

If the current values of A and C are 3 and 8, respectively, this expression
evaluates to -13. That is, it is evaluated as if it were written:

A+ ((5DHl2) *l!) - (C*3)

The order in which operands are combined is determined by PASCAL's pre­
cedence rules, described in Section 2.4.4.

2.4.2 Relational Expressions

A relational expression tests a specified relationship between two values. It
returns TRUE if the relationship is true and FALSE otherwise. For example,
to test whether the variable Max is greater than the value 100, you can use the
following expression:

Max > 100

A relational expression consists of two scalar or character string variables, or
expressions (such as Max and 100 above), separated by one of the relational
operators listed in Table 2-3. The operands must be of the same type, with
the exception that real numbers and integers can be compared. The relational
operators can also be used with expressions of types UNSIGNED and SET.
See the VAX-11 PASCAL Language Reference Manual for details.

Table 2-3: Relational Operators

Operator Example Meaning

A=B TRUE if A is equal to B

<> A<> B TRUE if A is not equal to B

> A>B TRUE if A is greater than B

>= A>= B TRUE if A is greater than or equal to B

< A<B TRUE if A is less than B

<= A<= B TRUE if A is less than or equal to B

Note that in the 2-character operators (<>, >=,and <=),the characters must
appear in the specified order and cannot be separated by a space.

Relational expressions are often used as tests in PASCAL's conditional and
repetitive statements (see Chapters 4 and 7). For example, the program
Grocery_Bill contains the following statement:

IF (Ans = Yes)
THEN

BE Gm

END;

The statements within BEGIN and END are executed only if the expression
(Ans = Yes) evaluates to TRUE.

As another example, suppose you want to compare the values of two integer

Data Concepts 2-9

variables. To determine whether a variable named N ew_Jnt is greater than or
equal to a variable named Large_Int, you can use the following expression:

New_Int >= Larse_Int

If Large_lnt holds the value 64 and New_lnt holds the value 72, the value of
the expression will be TRUE.

Because the elements of scalar types are ordered, you can form relational
expressions using scalar constants as operands. For example, the following
expressions are valid:

Expression

I c I < 'RI

TRUE > FALSE

5 = 4

Result

TRUE

TRUE

FALSE

Any expression that contains relational operators or logical operators is called
a Boolean expression because it produces a Boolean result.

2.4.3 Logical Expressions

You can form logical expressions by combining Boolean values and the logical
operators listed in Table 2-4. Logical expressions return a value of type
BOOLEAN.

Table 2-4: Logical Operators

Operator

AND

OR

NOT

Example

AANDB

AORB

NOTA

Result

TRUE if both A and Bare TRUE

TRUE if either A or B is TRUE, or if both are TRUE

TRUE if A is FALSE and FALSE if A is TRUE

The AND and OR operators combine two Boolean values to form a logical
expression. The NOT operator reverses the truth value of an expression, so
that if A is TRUE, NOT A will be FALSE, and vice versa.

The following examples show logical expressions and their :Bbolean results.

Expression

C4 > 3) AND C18 = 3 * Gl

(3 > 4l OR C18 = 3 * G>

NOT (4 <> 5l

Result

TRUE

TRUE

F?H .. SE

Boolean variables and functions can be used as operands in logical expres­
sions. For example:

Flas AND ODD (I)

Suppose Flag is a Boolean variable. ODD (I) is a function that returns TRUE
if the value of the integer variable I is odd and FALSE if the value of I is even.
Both operands, Flag and ODD (I), must be TRUE for the expression to be
TRUE.

2-10 Data Concepts

Another example:

<Ints_Read = 10) OR EDF CINPUTl

The EOF (INPUT) function returns TRUE if the end of the file INPUT has
been encountered. If either or both of the operands in this expression are
TRUE, the expression will be TRUE.

2.4.4 Precedence Rules for Operators

When evaluating expressions that contain more than one operator, PASCAL
follows precedence rules to determine the order in which operands are to be
combined. An operation with higher precedence is evaluated before an opera­
tion with lower precedence. For example, in the following expression, some
operations are performed before others:

A/B + 3*4

The division and multiplication operations are performed before the addition.
For example, if A equals 4 and B equals 2, A/B will be evaluated to- return 2.0;
3 will be multiplied by 4 to return 12. Then, the results of these calculations
will be added together to produce 14.0.

Table 2-5 lists the order of precedence of arithmetic, relational, and logical
operators, from highest to lowest. Those operators on the same line in the
table have equal precedence.

Table 2-5: Precedence of Operators

Operators Precedence

NOT Highest

+,-,OR j
**
*, /, DIV, MOD, REM, AND

=, <>, <, <=, >, >= Lowest

In addition, the following rules apply:

1. Operations enclosed in parentheses are combined first, regardless of the
precedence of operators.

2. Two operators of equal precedence (such as DIV and *) are combined from
left to right.

For example, the following expressions are evaluated differently because in
the second expression, parentheses enclose an addition operation.

Expression Result

a + 8 *-* 2 D 11.1 7 13

<4 + Bl ** 2 DIV 7 20

Data Concepts 2-11

In the first expression, PASCAL performs the exponentiation (**) and integer
division (DIV} operations before the addition operation (+). In the second
expression, the parentheses force PASCAL to add 4 and 8 first; then it squares
the result (which is 12) to obtain 144; finally, it performs the DIV operation to
obtain 20.

You should use parentheses when you combine relational and logical opera-.
tors because the logical operators have higher precedence than the relational
operators. For example, in the following expression, the logical operator AND
has the highest precedence:

A < X AND 5 <= Y + 1

PASCAL attempts to evaluate this expression as if it were written:

A < (){ AND 5) < = Y + 1

Unless X and Bare of type BOOLEAN, an error occurs because AND applies
only to Boolean operands. For correct evaluation, you must enclose the rela­
tional expressions in parentheses as follows:

(A< X> AND (5 <= Y +1)

Similarly, you must include parentheses in the following expression:

NOT (l! <> 5)

Without the parentheses, the expression is evaluated as:

<NOT l!) <> 5

This expression causes PASCAL to generate an error because 4 is not a Bool­
ean value.

Parentheses also help to clarify an expression. A long expression is easier to
read if it contains parentheses that indicate which operations are to be per­
formed first. For example:

A + ((5 DI t) 2) * .l!) - (C * 3)

The parentheses eliminate any confusion about how the expression is to be
evaluated.

2-12 Data Concepts

Chapter 3
Declarations and Definitions

You must declare or define every data item you use in a PASCAL program.
All declarations and definitions must appear in the declaration section. The
declaration section can contai,n the following parts or sections:

• LABEL - declares labels for use by the GOTO statement

• CONST - defines symbolic constants

• TYPE - creates user-defined type names

• VAR - declares variables and their types

• PROCEDURE and FUNCTION - declare procedures and functions (col-
lectively called routines)

A program need not include all these sections. Those sections that are present
may appear in any order and can occur more than once per declaration
section. Thus, you can use the names LABEL, CONST, TYPE, VAR,
PROCEDURE, and FUNCTION as many times per block as you wish. How­
ever, you can define or declare the same item only once in a declaration
section. .

All of these sections except the LABEL section introduce symbolic names that
represent data items. Section 3.1 describes symbolic names, including identi­
fiers for variables, constants, and so forth. Sections 3.2 through 3.4 explain
three parts of the declaration section - CONST, TYPE, and VAR. Section
3.5 shows how to create user-defined scalar types. PROCEDURE and FUNC­
TION sections are discussed in Chapter 8.

The LABEL section is described in the VAX-11 PASCAL Language Refer­
ence Manual.

3.1 Symbolic Names

Symbolic names are the words used in a PASCAL program. Symbolic names
can be defined by PASCAL or they can be created by the user. For example,
the following line of a PASCAL program contains three symbolic names:

l.JAR

3-1

The word VAR is defined by PASCAL; the variable name Ans and the type
name Yes_N o are created by the programmer.

There are three classes of symbolic names in PASCAL:

• Reserved words

• Predeclared identifiers

• User identifiers

Section 3.1.1 explains reserved words and predeclared identifiers. Section
3.1.2 explains how to form user identifiers.

3.1.1 Reserved Words and Predeclared Identifiers

Reserved words and predeclared identifiers are defined by PASCAL and have
a special meaning to the compiler. They are printed in uppercase letters in
this primer; however, PASCAL does not distinguish between upper- and
lowercase letters in reserved words and predeclared identifiers.

3.1.1.1 Reserved Words - PASCAL sets aside certain reserved words that
cannot be redefined. Some of the reserved words already shown in this primer
are:

AND
ARRAY
BEGIN
CONST
DIV
END

FILE
FUNCTION
IF
LABEL
MOD

NOT
OR
PROCEDURE
PROGRAM
RECORD

REPEAT
THEN
TYPE
UNTIL
VAR

Appendix A contains a complete list of the VAX-11 PASCAL reserved words.

3.1.1.2 Predeclared Identifiers - PASCAL declares certain identifiers to
name types, symbolic constants, variables, procedures, and functions. In con­
trast to reserved words, you can, if necessary, redefine predeclared identifiers
for another purpose.

If you choose to redefine one of these identifiers, you should do so with cau­
tion. Once a predeclared identifier is used to denote some other item, it can no
longer be used for its original purpose within the same block. You could, for
example, create a variable named COS; then, however, you could no longer
use the predeclared cosine function, COS, which is a usef~l language feature.

Some of the predeclared identifiers that have been mentioned so far in this
text are listed below:

BOOLEAN
CHAR
cos
DOUBLE
EOF
FALSE

3-2 Declarations and Definitions

INPUT
INTEGER
OUTPUT
QUADRUPLE
READ
READLN

REAL
SINGLE
TRUE
UNSIGNED
WRITE
WRITELN

Appendix A presents a complete list of VAX-11 PASCAL predeclared identi­
fiers.

3.1.2 User Identifiers

User identifiers are the names you create to denote program names, symbolic
constants, variables, procedures, functions, and user-defined types. In short,
user identifiers are all the names in a PASCAL program that are not reserved
words or predeclared identifiers.

When forming an identifier, you must follow VAX-11 PASCAL's syntax rules.
An identifier can be a combination of upper- and lowercase letters, digits,
dollar sign ($) characters, and underscore (_) characters, with the following
restrictions:

• An identifier cannot start with a digit.

• The first 31 characters of every identifier must be unique.

• An identifier cannot contain any blanks.

• Upper- and lowercase letters are considered equivalent.

Although identifiers can- be of any length, you will get a warning message at
compile time if an identifier exceeds 31 characters. PASCAL recognizes only
the first 31 characters; therefore, two identifiers that have the same first 31
characters are interpreted as the same identifier.

Because you can use any letter or digit in identifiers, you can easily create
names that suggest the role that the data item is to play. Such a practice
enhances the readability of your program. For example, although the word
Slug is a valid identifier, it would not be very descriptive as the name of a
variable that holds the result of a square root calculation. A variable name
like Square_Root, on the other hand, indicates what data that variable holds.

Some examples of valid user identifiers in VAX-11 PASCAL are:

Subtotal
Ite111_Price
Math_Scores
Fi ca_ Tax

Exam pl es of invalid user identifiers are:

Arra}'
1111 ore
Pac~\a8e#

(a reserved word)
(begins with a digit)
(contains the special character #)

The following two identifiers are valid according to the syntax of PASCAL.
However, they are treated as the same identifier because their first 31 charac­
ters are identical.

SPrins_InuentorY_Identif ication_Tass
SPrins_InuentorY_Identif ication_Number

Although V AX-11 PASCAL allows the dollar sign ($) character in identi­
fiers, this character has a special meaning to the VAX/VMS operating system
in some contexts. For example, all system services and run-time library proce­
dures include a dollar sign in their names. Therefore, you should restrict the
use of the dollar sign fo identifiers intended to refer to VAX/VMS names.

Declarations and Definitions 3-3

3.2 Constant Definitions

You can define identifiers to represent constant values in a CONST part of
the declaration section. Identifiers and their corresponding values are called
symbolic constants. The corresponding values can be represented by expres­
sions, which must be constant expressions. For instance, a program that adds
apples to oranges might use the number 100 to indicate the maximum number
of fruits that can be summed. Instead of using the number 100 throughout the
program, you can define an identifier and assign it the value 100 as follows:

CONST
Max_Fruits = 100;

The identifier Max_Fruits is more descriptive of the constant's use in the
program than is the number 100.

Suppose that, instead of giving Max_Fruits a constant value of 100, you
want to give it a constant value equal to the sum of the maximum number of
apples and the maximum number of oranges. If you know that Max_Apples is
equal to 60 and Max_Oranges is equal to 40, you could define the following
symbolic constants: ·

CONST
Max_APPles = GO;
Max_Oranses = ao;
Max_Fruits = Max_APPles + Max_Oranses;

Max_Apples and Max_Oranges must be declared as symbolic constants be­
fore they can be used in a constant expression.

You can define any number of symbolic constants in the CONST sections of
your program. The format of the CONST definition is:

CONST
{constant-name= value}; ...

The constant name can be any valid user identifier. The value can be an
integer, a real number, a character, a character string (see Section 6.1.2), a
Boolean constant, or another symbolic constant. The value can also be an
expression composed of symbolic constants previously defined in the program.
You must separate successive constant definitions with semicolons.

The type of a symbolic constant is the type of its corresponding value. Thus,
the type of Max_Fruits shown above is INTEGER because 100 is an integer.

Once you define a symbolic constant, the constant identifier can be used in
place of the value later in the program. However, remember that the identifier
represents a constant value or expression that cannot be changed with subse­
quent assignment statements or input procedures.

For example, to define a symbolic constant representing the number of stu­
dents in a class (say, 25), you could use the following constant definition:

CONST
Class_Size = 25;

You can now use the identifier Class_Size to represent the number 25 any­
where in your program.

3-4 Declarations and Definitions

The use of symbolic constants generally makes a program easier to read,
understand, and modify. If, in the example above, the size of the class is 28
the next term, you would simply modify the CONST definition as follows:

CONST
Class_Size = 2s;

Changing the CONST definition is easier than changing every occurrence of
the value in the program.

More examples of constant definitions are:

CONST
Leap_Year = TRUE;
Year = 188l'.!;
Century = 20;
Dot = '. ';
Country = 'United States';
Citizenship = Country;
Nurri_States =so;
Pi = 22.0/7.0i

This CONST section defines eight constant identifiers. The identifiers Year,
Century, and Num_States repre.sent integers. Leap_ Year is equal to the
Boolean value TRUE. Dot and Country represent a character value and a
character string, respectively. Citizenship is defined to be equal to the sym­
bolic constant Country and thus represents the same character string. Finally,
Pi represents the real number resulting from the division of 22.0 by 7.0.

3.3 Type Definitions

You can define types in the TYPE section of a PASCAL program. The TYPE
section associates an identifier with a specified set of values.

The format is:

TYPE
{type-name = type-definition}; ...

Each type name is a user identifier that indicates the name of the type. The
type definition specifies any valid PASCAL type.

This primer covers the following kinds of type definitions:

• Predefined scalar

• Enumerated

• Subrange

• Array

• Record

Enumerated and subrange types are varieties of user-defined scalar types;
Section 3.5 explains how to define new scalar types. Chapter 6 shows how to
specify the structured array and record types. Refer to the VAX-11 PASCAL
Language Reference Manual for information on how to specify varying charac­
ter string, set, file, and pointer types.

Declarations and Definitions 3-5

3.4 Variable Declarations

Every variable in a PASCAL program must be declared before it is used.
Section 3.5 shows how to declare variables of user-defined types. Chapter 6
shows how to declare array and record variables.

A variable declaration creates a variable and associates it with an identifier
and a type. The identifier and the type are permanent characteristics of the
variable. Unless a variable is initialized, its value is undefined until it is
assigned a value in the executable section.

You declare variables in the VAR section of a program. For example, the
following variable declarations appear in the program Grocery_:_Bill:

l.JAR
Item_Price, Total,
CouPon_Amount :. REAL;
Ans : Yes_No;

This VAR section declares three variables of type REAL and one variable
(Ans) of type Yes_No. Note that you can declare several variables in the
same VAR section.

The format of the VAR section is:

VAR
{ {variable-name}, ... : type}; ...

The variable name can be any valid user identifier. The type can be any of the
predefined scalar types - INTEGER, REAL, SINGLE, DOUBLE, QUAD­
RUPLE, BOOLEAN, CHAR, or UNSIGNED. In addition, the type can be
any identifier previously defined in the TYPE section or a type definition as
outlined in Section 3.3.

More examples of variable declarations are:

·l.JAR
Er·ror_Flas', Test : BOOLEAN;
Initial : CHAR;
Costi Retail_Pr : REAL;
Count, Iterationsi Ii J: INTEGER;

This VAR section declares the Boolean variables Error_Flag and Test; the
character variable Initial; the real variables Cost and RetaiLPr; and, finally,
the integer variables Count, Iterations, I, and J.

VAX-11 PASCAL allows you to assign an initial value to a variable when you
declare the variable in a VAR section. For example, the program Groce~y_Bill
contains the following declarations and value initializations:

l.JAR
Item_Price1 Total,
Coupon_Amount : REAL;
Subtotal, Coupons : REAL := o.o;

The VAR section assigns the value 0.0 to the variables Subtotal and Coupons.
When the program starts executing, those variables assume the value 0.0.

If a variable is not initialized in the VAR section, its value is undefined when
the program begins execution. Therefore, the values of Item_Price, Total,

3-6 Declarations and Definitions

and Coupon_Amount are undefined at the beginning of Grocery_Bill. If you
tried to use them, the result would be unpredictable.

The format of the VAR section with value initialization is:

VAR
{variable-name : type := value}; ...

The variable name and the type declare a scalar or structured variable. The
value is the initial value that is to be assigned to the variable. Note that the
operator used for initializing variables is the assignment operator(:=), not the
equal sign (=).

The value must be a constant of a type that can be assigned to the variable
(including symbolic constants and constant expressions). For example, you
can initialize a Boolean variable with either TRUE or FALSE and a character
variable with a single character enclosed in apostrophes.

The following example shows a VAR section with value initializations:
l.JAR

Course : INTEGER := 101;
Section : CHAR := 'A';
First_TrY : BOOLEAN := TRUE;
Second_TrY : BOOLEAN;
QPA : REAL := o.o;
TeMPerature : INTEGER := -10;

Note that one of the above variables, Second_ Try, was not initialized. You do
not have to initialize all (or any) of the variables that you declare.

3.5 User-Defined Scalar Types

PASCAL provides the predefined scalar types - INTEGER, REAL, SIN­
GLE, DOUBLE, QUADRUPLE, BOOLEAN, CHAR, and UNSIGNED. In
addition, PASCAL allows you to define your own scalar types. For example:

TYPE
Yes_No = <Yest No);

The user-defined scalar type Yes_No has two values, Yes and No. In this way,
it is similar to the predefined type BOOLEAN, which has the two values
FALSE and TRUE.

There are two classes of user-defined scalar types:

• Enumerated

• Subrange

To define an enumerated type, you list the type's constant values m
parentheses. For example, the type definition for Yes_No is:

(Yest No)

To define a subrange type, you specify the bounds of an interval of an existing
ordinal type~ You may not define a subrange of a real type. For example, the
following is a subrange of the type INTEGER:

0 •• 100°

Declarations and Definitions 3-7

This definition specifies a type consisting of the integers from 0 through 100.

You can define a scalar type in either of two parts of the declaration section:

• The TYPE section

• The VAR section

When you define a type in the TYPE section, you associate a type name with
a set of values. In the example above, the identifier Yes_No is the name of a
type in the same way that the identifier CHAR is the name of a type. You
must still use the VAR section to declare a variable of the type defined in the
type section. For example:

Ans : Yes_No;

Because Yes_No is a type name, you can define more than one variable of the
type, as follows:
t)AR

Ans; Ans1; Ans2 : Yes_No;

When you define a type in the VAR section, you associate one or more varia­
ble names. with the set of values of the type. Thus, the following defines a·
variable of a subrange type:

Percentase : 0 •• 100;

The variable Percentage can take on the values 0 through 100. Percentage is
not a type name; it is a variable name. The subrange 0 .. 100 has no type name
in this example.

3.5.1 Enumerated Types

An enumerated type is an ordered set of values denoted by constant identi­
fiers. To define an enumerated type, you list the identifiers that represent the
constant values of the type. The format of the enumerated type definition is:

({identifier}, ...)

As with other scalar types, the values in enumerated types are ordered.
In particular, they are arranged in ascending order from left to right. For
example:

TYPE
Month = (Jan; Feb t Mart APr; May; June;

Juh' t Aust Sept t Oct 1 NO\.J; Dec);

By this definition, the relational expression

Mar < Oct

is TRUE because Mar precedes Oct in the list of values.

The enumerated type definition associates an ordinal value with each value in
the type. The ordinal value of the first value listed is O; the ordinal value of
the second value is 1; and so forth. You can apply the ORD function to values
of enumerated types. For example, using the type Month from above, the
following function is valid:

3-8 Declarations and Definitions

ORD \Aus)

This function returns the integer value 7 because Aug is the eighth value
listed in the type definition.

A constant identifier (for example, Feb) can be used in only one enumerated
type definition. An example demonstrates the reason for this restriction. Sup­
pose the following types were defined in the type section:

TYPE
Month = (Jan, Feb, Mar, APr, MaY, June,

July, Au.st SePt1 Oct1 Not.ii Dec);
Fiscal_Year = CJu.lY1 Au.s1 SePt1 Oct1 Nov, Dec1

Jan, Feb 1 Mar 1 APr 1 MaY, Ju.nf~);

The second definition is illegal because it would make the following relational
expressions ambiguous:

Jan < Dec

Feb > July

The values of these relational express10ns depend on which type is being
referenced, Month or FiscaL Year.

To use the type Month as defined above, you must declare a variable of this
new type:

I.JAR
Birth_Month : Month;

The variable Birth_Month can assume any of the values of type Month.

You can define a type in the variable section. For example:

I.JAR
Ocean : (Atlantic, Pacific, Indian, Arctic);

This declaration creates the variable Ocean, which can take on the values
Atlantic, Pacific, Indian, and Arctic. Ocean is a variable name, not a type
name.

To initialize a variable of an enumerated type, specify a constant value as you
would for a predefined scalar type. For example, you can initialize Ocean as
follows:

I.JAR
Ocean : (Atlantic1 Pacific1 Indian1 Arctic) :=Atlantic;

The variable Ocean takes on the initial value Atlantic.

Examples

TYPE
Cities (New_Yorkr Chicaso1 Los_Anseles1 PhiladelPhia1

Seattle1 Bostont San_Franciscor Washinston_DC1
Dallas1 Pittsbursh>;

I.JAR

Colors = (Red1 Yellow1 Bluet Oranse1 PurPle1 Green);

DaY: (Sun, Mont Tuet Wedi Thur Fri1 Sat):= Fri;
Hometown : Cities := Boston;
Location : Cities;
Paintr Room_Color : Colors;

Declarations and Definitions 3-9

This TYPE section defines the types Cities and Colors, listing all the values
that variables of each type can assume. The VAR section declares the variable·
Day and defines the values it can assume. The VAR section also declares the
variables Hometown and Location of type Cities and the variables Paint and
Room_Color of type Colors. The variables Hometown and Day are initialized
with the values Boston and Fri, respectively.

3.5.2 Subrange Types

A subrange type is a subset of an existing ordinal type called the base type. If
you know a variable will never use the whole range of values allowed by a base
type, you can define a subrange of that base type. For example, a variable
that records the number of days per year during which it rains in a certain
area can never assume a value that is less than 0 or greater than 366. Thus,
you could declare an ordinal subrange type whose values range from 0 to 366:

l.JAR

The format of the subrange type definition is:

lower-limit .. upper-limit

Lower-limit and upper-limit specify the bounds of the subrange; that is, the
constant values at the extremes of the subrange interval. The bounds- must be
constants of the same base type. The base type can be any enumerated or
predefined ordinal type. Lower-limit must be less than or equal to upper-limit.

You can use a value of a subrange type anywhere in the program that you can
use its base type. Thus, you can use values of the subrange 0 .. 366 in arithme­
tic expressions just as you can use integers. The ordinal value (returned by the
ORD function) of a value of a subrange type is the same as it would be for the
base type. For example, in a subrange type consisting of the characters 'A'
through 'Z', the ordinal value of 'A' is 65, just as it is in the type CHAR.

You can initialize a variable of a subrange type by specifying a value of the
same type in a VAR section of your program. For example, you could initialize
the variable Rain_Days as follows:

Rain._Da}'S: 0,,355 := 109;

Rain_Days has the value 109 when the program begins executing.

Examples

1. TYPE

!.JAR

Days_Qf_Year = 1,,355;
AlPhabet = 'A',,'Z'i
Disits = '0',,'9';
JanuarY_TeMPS = -20. ,+GOi

Days_Off : Days_Of_Year;
Initial : AlPhabet;
Ratin.9 : Disitsi
Auerase_JanuarY : JanuarY_TeMPs;

3-10 Declarations and Definitions

The TYPE section defines four subrange types: Days_Of_ Year, Alpha­
bet, Digits, and January_Temps. The VAR section declares the variable
Days_Off, which can assume the integer values 1 through 366; Initial,
which can assume the character values 'A' through 'Z'; Rating, which can
assume the character values 'O' through '9'; and Average_January, which
can assume the integer values -20 through +60.

2. TYPE

l)AR

DaYs = (Sun1 Mon1 Tue1 Wed1 Thu1 Fri1 Sat,);
Colors = (Red1 Yellow~ Blue1 Oranse1 PurPle 1 Green);
Primary_Colors = Red, .Blue;

Week : Days := Wed;
Spectrum : Colors;
Paints : Primary_Colors := Green;
Work_DaYs : Mon •• Fri :=Fri;
Final_Grade.: 'A',, 'E';

The TYPE section defines the types Days, Colors, and Primary_Colors.
The type Primary_Colors is a subrange of the enumerated type Colors.
The VAR section declares variables of the types Days, Colors, and
Primary_Colors. In addition, the variable Work__Days is declared to be of
the subrange type Mon .. Fri, and the variable FinaLGrade is declared to
be of the subrange type 'A' .. 'E'.

The value Wed initializes the variable Week, the value Green initializes
the variable Paints, and the value Fri initializes the variable Work__Days.

Declarations and 'Definitions 3-11

Chapte_r 4
Fundamental PASCAL Statements

The basic unit of a PASCAL program is the statement. A statement directs
PASCAL to perform an action in a program. A statement consists of a system­
atic arrangement of reserved words, identifiers, operators, expressions, and
other statements. This chapter introduces the following statements:

• Assignment statement

• Compound statement

• Control statements

IF-THEN statement

IF-THEN-ELSE statement

FOR statement

The assignment statement gives a value to a variable. The compound state­
ment, delimited by BEGIN and END, groups other PASCAL statements for
sequential execution as a single statement. The IF-THEN, IF-THEN-ELSE,
and FOR statements are control statements. In the absence of control state­
ments, PASCAL statements are executed in the sequence in which they ap­
pear in the source program. Control statements alter this sequence of execu­
tion depending on whether specified conditions are met.

As mentioned in Chapter 1, the semicolon (;) is a delimiter used to separate
successive PASCAL statements. As such, it is not needed (although PASCAL
will accept it) after a statement that is followed by a program element other
than a statement--,--- for example, the END delimiter.

4.1 The Assignment Statement

The assignment statement assigns the value of an expression to a variable.
The format of the assignment statement is:

variable := expression

The assignment statement replaces the current value of the variable with the
value of the expression on the right-hand side of the assignment operator. You
can assign any expression having the same type as the variable, with a few
exceptions - you can assign an expression of type INTEGER to a variable of

4-1

type REAL, SINGLE, DOUBLE, or QUADRUPLE; an expression of type
REAL or SINGLE to a variable of type DOUBLE or QUADRUPLE; and an
expression of type DOUBLE to a variable of type QUADRUPLE. Y qu can also
assign to a subrange variable a value in the specified subrange of its base type.
Note that the assignment statement uses the assignment operator (:=), not
the equality operator (=).

For example, if I is declared as an integer variable, the following statement
assigns the value 100 to the variable I:

I : = 100;

In addition to constant values, the right-hand side of the assignment state­
ment can be any of the arithmetic, relational, an_d logical expressions de­
scribed in Section 2.4.

For example, suppose you make the following declarations:

CONST
Yes = 'Y';
No = 'N';

TYPE
DePartrrient

• t.1Ar-(

<EnsineerinS1 Sciences1Math1 Enslish1
Lansuases1 HistorY1 Fine_Arts);

-~ It IncreMent : INTEGER;
Ans1 .. .1er: CHAR;
Grade' Failin~.LGrade : REAL.;
MY-MaJor : DePartMent;
Passed : BOOLEAN;

Then, the following assignment statements are valid:

I : = 1 ;
Failins_Grade := 1Jl;
Grade := (4+5+2-1)/3;
IncreMent := I + .1;
Passed := Grade > Failin~-Grade;
Ans1A1er :=Yes;
MY-MaJor :=Fine-Arts;

Note that in the statement Answer := Yes, the expression to be assigned to
Answer is a symbolic constant. The value of the symbolic constant Yes is a
single character and can therefore be assigned to the CHAR variable Answer.
In each of the assignment statements shown above, the type of the expression
is the same as that of the corresponding variable.

4-2 Fundamental PAS CAL Statements

4.2 The Compound Statement

You can use the BEGIN and END delimiters to group one or more statements
into a compound statement. The statements are executed in sequential order.
The format of the compound statement is:

BEGIN
{statement}; ...
END

The statements between the BEGIN and END delimiters can be any PAS­
CAL statements, including other compound statements. Successive state­
ments must be separated with a semicolon; however, no semicolon is required
between the last statement and the END delimiter. PASCAL treats the com­
pound statement as if it were a single statement. For example, the program
Grocery_Bill contains a compound statement that is part of an IF-THEN
statement:

IF <Ans =Yes)
THEN

BEGIN
WRITELN ('Type value of each couPon. One Per line.');
WRITELN ('TYPe <CTRLiZ> after enter ins all coupons.');
(* Read and sum amount of each coupon until end of inPut. *)
REPEAT

READLN (CouPon_Amount):
Coupons := CouPons + C~uPon_Amount;

UNTIL EDF <INPUT);
END;

..

If the Boolean expression (Ans = Yes) is TRUE, every statement between
BEGIN and END will be executed; if the expression is FALSE, the flow of
control will transfer to the statement following the END.

This primer uses the term "statement" to mean either a single or a compound
statement. More examples of compound statements appear throughout this
chapter.

4.3 The IF-THEN Statement

Often you want a statement to be executed only if a certain condition is
satisfied. The IF-THEN statement causes the conditional execution of a
statement; that is, it executes a given statement if a specified Boolean expres­
sion is TRUE. The format is:

IF Boolean -expression
THEN

statement

The meaning of this statement is suggested by the English words "if" and
"then." "If" the expression is TRUE, "then" the statement will be executed.
If the expression is FALSE, program control will pass to the statement follow­
ing the IF-THEN statement.

Fundamental· PAS CAL Statements 4-3

Together the reserved word THEN and the statement that directly follows it
are called the THEN clause of the IF-THEN statement. The statement fol­
lowing THEN is called the object of the THEN clause.

The flow of control for the IF-THEN statement is illustrated in Figure 4-1.

Start

FALSE

TRUE

Statement

End

ZK-1024-82

Figure 4-1: The IF-THEN Statement Flow Chart

For example:

IF A < O
THEN

Nes_Ints := Nes_Ints + 1;

If the value of A is less than 0, the value of Neg_Ints will be increased by 1.

Note that you must not place a semicolon after the reserved word THEN.
If you do, an empty statement becomes the object of the THEN clause. In the
example above, had there been a semicolon after THEN, the assignment
statement would have been executed regardless of the value of the Boolean
expression.

4-4 Fundamental PAS CAL Statements

Examples

1. IF (Ans Yes)
THEN

BEGIN

The object of the THEN clause can be a compound statement. The state­
ments between BEGIN and END will be executed if the Boolean expres­
sion is TRUE. If the expression is FALSE, execution will continue with
the statement following the END.

2. IF <Ch >= 'A') AND <Ch<= 'Z')
THEN

BEGIN
Letter :=TRUE;
Letter_ Total := Letter_ Total + 1;
END;

If both relational expressions are TRUE, the compound statement will be
executed. ·

3. IF Errorflas
THEN

WRITELN ('Index number out of bounds');

The Boolean expression can be a single Boolean variable, as in this exam­
ple. The WRITELN statement will write the message in parentheses if the
current value of Errorflag is TRUE.

4.4 The IF-THEN-ELSE Statement·

The IF-THEN-ELSE statement is an alternative form of the IF-THEN state­
ment. The IF-THEN-ELSE statement causes the program to select and exe­
cute one of two statements depending on the value of a Boolean expression.
The format of the IF-THEN-ELSE statement is:

IF Boolean-expression
THEN

statementl
ELSE

statement2

Statementl and statement2 can be any PASCAL statements. Statementl will
be executed only if the expression is TRUE. If the expression is FALSE,
statement2 will be. executed instead. Together, the reserved word ELSE and

Fundamental PASCAL Statements 4-5

statement2 are called the ELSE clause of the IF-THEN-ELSE statement.
The flow of control for the IF-THEN-ELSE statement is shown in Figure 4-2.

Start

TRUE FALSE

Statement 1 Statement 2

End

ZK-1025-82

Figure 4-2: The IF-THEN-ELSE Statement Flow Chart

You must not place a semicolon between statement! and the word ELSE. The
IF-THEN-ELSE statement is a single statement and the IF-THEN clause
cannot be separated from the ELSE clause. You will receive a compile-time
error message if there is a semicolon directly before the word ELSE.

The ELSE clause is always associated with the closest IF-THEN statement.
For example:

IF A = 1
THEN

IF B <> 1
THEN

c : = 1
ELSE

D : = 1 ;

4-6 Fundamental PAS CAL Statements

The ELSE clause is associated with the second IF-THEN statement. There­
fo:r;e, if A and Bare both equal to 1, 1 is assigned to the variable D. If A is not
equal to 1, neither assignment statement is executed. If you wanted the ELSE
clause to be associated with the first IF-THEN statement, you would write

'u
the sequence as follows:

IF A = 1
THEN

BEGIN
IF B <> 1
THEN

c : = 1 ;
END

ELSE
D : = 1 ;

The object of the THEN clause of the outer IF-THEN-ELSE statement con­
sists of:

BEGIN
IF B <> 1
THEN

c : = 1 ;
END

And the ELSE clause is:

ELSE
D: = 1 ;

Thus, if A is equal to 1, the THEN clause will be executed and the ELSE
clause will be ignored. If A is not equal to 1, 1 will be assigned to D regardless
of the value of B.

Examples

1. IF (Last_Initial >= 'A') AND (Last_Initial <= 'M')
THEN

Billdate := 14
ELSE

Billdate := zs;

This example determines billing dates depending on the initial of a fast
name. Bills are sent on the 14th of the month to each customer whose last
names start with A through M, and on the 28th to customers whose last
names start with N through Z.

2. IF (Card_Su111 > 21)
THEN

Lose : = TRUE
ELSE

IF <Card_Sum >= 17)
THEN

Deal : = FALSE
ELSE

BEGIN
Deal := TRUE;
Card_Sum := Card_Sum + Newcard;
END;

This example shows a simple strategy for the game Blackjack. Note the
nested IF-THEN-ELSE statements that allow the program to select and
execute one of a group of statements. In this example, if the cards add up
to more than 21, the player will lose. If the sum is between 17 and 21,

Fundamental PASCAL Statements 4-7

inclusive, the player will not be dealt any more cards. If the sum is less
than 17, the player wql be dealt another card. The IF-THEN-ELSE
construct can become awkward if there are more than a few
selections to be made. A more elegant way to program this type of problem is
to use PASCAL's conditional CASE statement, which is explained in
Section 7 .3.

4.5 The FOR Statement

The FOR st~tement controls a loop. A loop is a construct containing a state­
ment or a series of statements that is executed repetitively until a certain
condition is met. The repetitively executed statement or series of statements
is called the loop body. In the FOR loop, the loop body is executed repetitively
based on the value of an automatically incremented or decremented variable.

For example:

FOR Int := 1 TO 10 DO
BEGIN
S9uare := Int * Int;
WRITELN <'The s9uare of't Int:3t 'e9uals'i S9uare:4);
END;

The statements between BEGIN and END are executed 10 times. The first
time through the loop, the variable INT has the value 1, the second time it
has the value 2, and so on. For each integer from 1 to 10, this example
computes the integer's square and writes it with a message to the terminal.
Thus, the output from the first iteration would be:

The s9uare of 1 e9uals

The format of the FOR statement is:

FOR control-variable :~initial-value { DO~~TO} final-value DO
statement;

The control variable can be .a variable of any ordinal type; it cannot be the
name of an array component or a record field. (Arrays and records are dis­
cussed in Chapter 6.) The initial and final values must be expressions of the
same type as the control variable.

The initial and final values are computed only once, at the beginning of the
FOR statement. Thus, if the loop body changes the value of the final expres­
sion, the change will not affect the number of times the loop is executed.

The loop body is repetitively executed while the control variable ranges from
the initial value to the final value. In the TO form of, the FOR statement, the
final value must be greater than or equal to the initial value to cause the loop
body to execute. In the DOWNTO form, the final value must be less than or
equal to the initial value. In either form, if the initial and final values are
equal, the loop body is executed once.

The loop body must not change the value of the control variable. After the
FOR statement is executed, the control variable is left undefined; you cannot

4-8 Fundamental PAS CAL Statements

assume that it retains a value. Therefore, you must assign a new value to the
control variable before you can use it elsewhere in the program.

The flow of control for both forms of the FOR statement is shown in Figure
4-3.

Start

control-variable

initial-value

TRUE

Statement

increment
contro 1-va riable

End

TO Form

FALSE

Figure 4-3: The FOR Statement Flow Charts

Start

control-variable

initial value

TRUE

Statement

decrement
control-variable

End

DOWNTO Form

FALSE

ZK-1026-82

In the TO form, on each iteration of the loop, the control variable is assigned
the successor value in its type. That is, if the control variable is an integer, the
FOR statement adds 1 to the control variable's value upon each iteration. For
control variables of other types, the control variable takes on a successive
value of its type at each iteration. Similarly, in the DOWNTO form, on each
iteration the control variable is assigned the predecessor value in its type.

Fundamental PAS CAL Statements 4-9

Examples

1. TYPE
Days= (Sunt Mont Tu.et Wedt Thut Frit Sat);

Cu.rrent_DaY : Days;
Hou.rs_Worked : REAL;

FOR Cu.rrent_DaY := Sun TO Sat DO
IF CCu.rrent_DaY <> Sun) AND CCu.rrent_DaY <> Sat)
THEN

Hou.rs_Worked := Hou.rs_Worked + s;

This example shows the use of a FOR statement with a control variable of
an enumerated type. On each iteration of this loop, the variable Current_
Day is assigned the successor of its current value in the type Days. Thus,
Current_Day equals Sun on the first iteration, Mon on the second, and so
forth. On the last iteration, the value Sat is assigned to Current_Day, the
loop body is executed for the final time, and control moves to the state­
ment following the loop.

2. FOR Student_Id := 25 DOWNTO 1 DO
BEGIN
READLN (Gradel t Grade2 t Grade3);
Auerase := <Gradel + Grade2 + Grade3) DIV 3;
IF A1.1erase >= 85
THEN

WR I T E L N (' S t u. d e n t n urn b e r ' t S t u d e n t _ I d t ' P a s s e d ')
ELSE

WRITELN ('Student number ' Stu.dent_Idt ' failed');
END;

This example shows the DOWNTO form of the FOR statement. On suc­
cessive iterations of the loop, the values from 25 down to 1 are assigned to
the variable Student-1d. For each student identification number, three
grades are read into the variables Gradel, Grade2, and Grade3. The loop
body computes a grade average and writes the appropriate message de­
pending on whether the student passed or failed.

4-10 Fundamental PAS CAL Statements

Chapter 5
Reading and Writing Data

The PASCAL statements described in the preceding chapter allow a program
to manipulate data and perform certain operations. To enter data into a
program, the program must perform input operations. To display the results
of its actions, the program must perform output operations. This chapter
describes V AX-11 PASCAL terminal input and output (I/0); that is, how to
read and write data interactively from a terminal.

Specifically, this chapter covers the following topics:

• The predeclared text files INPUT and OUTPUT

• The READ and READLN procedures for data input

• The WRITE and WRITELN procedures for data output

• The predeclared functions EOLN and EOF

5.1 The Predeclared Text Files Input and Output

You perform I/0 operations on file variables. A variable of the structured type
FILE is a sequence of data items, called file components, that have the same
type.

PASCAL predeclares two text file variables, named INPUT and OUTPUT. A
text file is a file that has components of type CHAR and that is divided into
lines. The I/O procedures and functions explained in this chapter perform
operations on either INPUT or OUTPUT by default.

When you run a program in interactive mode, V AX-11 PASCAL associates
the predeclared file variables INPUT and OUTPUT with your terminal by
default. That is, your terminal is treated as the file INPUT for reading data
and as the file OUTPUT for writing data.

Because INPUT and OUTPUT are predeclared, you do not declare them in
the declaration section. Instead, you specify them in the heading of a program
that uses them. For example, for an interactive program that accepts input
data from the terminal and writes output data to the terminal (such as the
example in Chapter 1), you must specify both files, as follows:

PROGRAM Grocen·_Bill <INPUTt OUTPUT);

5-1

You can specify the files in either order.

Some programs require no input from the terminal. For instance, a program
that prints a table of the ASCII characters needs only the output capability.
Its heading might be:

PROGRAM Print_ASCII <OUTPUT);

This program heading indicates that the name of the program is PrinLASCII
and that it uses the file OUTPUT.

You can access only one component of a file at a time. Associated with every
file is a file position that determines which component can currently be ac­
cessed. You can imagine a file's position as a movable window through which
you can see only one component at a time. A file's current position is the
position immediately following the file component that was last read or
written.

The VAX-11 PASCAL Language Reference Manual contains additional infor­
mation on PASCAL I/O. Specifically, it explains the use of input and output
procedures on files other than the predeclared files INPUT and 'OUTPUT.

5.2 Reading Data

To submit data for a program to process, you need procedures that perform
input operations. The use of input procedures allows a program to process
different sets of data each time it runs. PASCAL provides the READ and
READLN procedures for data input.

By default, the READ and READLN procedures get data from the prede­
clared file variable INPUT, that is, your terminal. The READ procedure reads
values from a file and assigns them to variables that are specified as read
parameters. The READLN procedure performs a READ operation, then
moves to the beginning of the next line of the input file.

5.2.1 The READ Procedure

The READ procedure reads data from the file variable INPUT and assigns the
values that are read to the specified variables. For example:

READ <Next_Char);

This procedure call causes a character to be read from the terminal and
assigned to the character variable Next_Char.

The general format of the READ procedure, when using the default file varia­
ble INPUT, is:

READ (~INPUT,~{variable}, ...)

Because the file variable INPUT is the default, you can omit its name from a
READ procedure call.

The variable(s) are the parameters of the READ procedure into which values
will be read. At least one variable must be specified. The parameters of the
READ procedure can be variables of any scalar type, including an

5-2 Reading and Writing Data

enumerated type. As explained in Section 6.1.2, the READ procedure also
accepts character-string variables as parameters.

The READ procedure reads values from the terminal until it finds a value for
each variable that is specified as a parameter. The first value found is as­
signed to the first variable in the list, the second value is assigned to the
second variable, anc;l so on.

Each variable must have the same type as the corresponding value being read,
with the exception that an integer value can be read into a real variable. For
example, suppose that the variables in the following READ procedure are of
type REAL, INTEGER, and INTEGER, respectively:

READ (Te111P1 Ase1 Weisht);

The following values can be read into the specified .variables:

98 11 75

The variable Temp is assigned the value 98, Age is assigned the value il, and
Weight is assigned the value 75.

Note that in the READ procedure shown above, each input value is separated
from the next by a space. Numeric data items typed at the terminal must be
separated by one or more spaces or tabs, or put on new lines. Because the
space and the tab are values of type CHAR, this rule does not apply when you
are typing character data. If a READ procedure specifies a character variable
and encounters a space or a tab, the space or tab is read and assigned to the
character variable.

As a result of a read operation, the value of the component in the current file
position is assigned to a variable; then the file position advances to the file
component following the input value.

Examples

1. Statements

READ (){ t Y) ;
READ (A15);

Input

1 2 3 4

These two READ procedures read the values on the input line into the
variables X, Y, A, and B. After the procedures are executed, X equals 1, Y

. equals 2, A equals 3, and B equals 4. The file position advances to the
position that immediately follows the value 4.

2. READ (Month t Date t Year);

If these variables are of type INTEGER, the following are valid input
values:

2 14 198ll

After the READ procedure is executed, Month equals 2, Date equals 14,
and Year equals 1984. Note again that you can use any number of spaces
to separate input values. The values also can appear on different lines as
follows:

2

14 1984

Reading and Writing Data 5-3

As above, Month equals 2, Date equals 14, and Year equals 1984. Remem­
ber that the relative position of the numbers is important. If you typed 14
before 2 at the terminal, the resulting values ,of the variables Month and
Date would be reversed. ,

3. READ (Char_t,lar);
IF Char_Var <> ' '
THEN

Count :=Count+ 1;

Assume that Char_ Var is a variable of type CHAR and that this segment
of code is within a repetitive loop. This program fragment counts the
number of characters other than the space character in a file. The READ
procedure reads a character and assigns it to Char_ Var. If the character is
not a space (' '), the variable Count will be incremented by 1. If the
character is a space, the assignment statement (Count := Count + 1;) is
skipped.

5.2.2 The READLN Procedure

Another PASCAL input procedure is the READLN procedure.,The READLN
procedure simply performs a READ and then positions the file at the begin­
ning of the next line. For example:

R~ADLN (Item_Price);

This READLN procedure reads a value into the variable Item_Price and then
positions the file at the beginning of the next line. Thus, any remaining data
on the input line is ignored. (For this reason, you were instructed to type one
item per line in the program Grocery_Bill in Chapter 1.)

In contrast to the READ procedure, at the end of the READLN procedure, the
file position advances to the first component of the next line.

The format of the READLN procedure using the default file INPUT is:

READLN (~INPUT,~{variable}, ...)

or

READLN ~(INPUT)~

After a value is read for each variable that is specified as a parameter, the rest
of the current line is discarded and the file position advances to the first
component of the next line.

As shown in the format descriptions above, the variable list in the READLN
procedure is optional. Therefore, you can use READLN as follows:

READLN;

This procedure advances the file to the beginning of the line after the current
line without reading any values.

Examples

1. Statements

READLN (>< t Y) ;
READLN <AtB);

5-4 Reading and Writing Data

Input

1 2 3 a
a 22 1 s 12

The first READLN procedure reads the values 1and2 and assigns them to
X and Y, respectively. Then the file position advances to the beginning of
the next line, and the remaining numbers on the first line are ignored. The
second READLN procedure starts reading data from the second line of the
input file and assigns the value 4 to A and the value 22 to B.

If the first READLN procedure were instead a READ procedure, only the
first line of input would be read. READ (X, Y) would read the values 1 and
2 and assign them to X and Y. The file position would not advance.
READLN (A,B) would read the values 3 and 4 from the same input line
and assign them to A and B. The file position would then advance to the
next line to wait for another call to an input procedure.

2. Statement

READLN (}-{ tY tZ)

Input

1 100
1000 1001

This procedure call assigns 1 to X, 100 to Y, and 1000 to Z. Then the file
position advances to the beginning of the line following the values 1000
and 1001. Note that the READLN procedure reads across lines until it
finds a value for each specified variable; it moves to the next line only
after the values are assigned to the variables. Thus, in this example, when
there are no more values on the line containing 1 and 100, the value 1000
from the next line is read and assigned to the variable Z.

5.3 Writing Data

To display the results of its actions, a program must perform output opera­
tions. PASCAL provides the WRITE and WRITELN procedures for data
output.

By default, the WRITE and WRITELN procedures write data to the file
OUTPUT, which is associated with your terminal. The WRITELN procedure
simply performs the WRITE procedure, and then positions the file at the
beginning of a new line.

5.3.1 The WRITE Procedure

The WRITE procedure writes data to the file variable OUTPUT. For exam­
ple:

WRITE <Total);

This procedure call writes the value of the variable Total on your terminal.

The general format, when using the default file variable OUTPUT, is:

WRITE (~ OUTPUT,~print-list)

Because OUTPUT is the default, you can either include or omit the name
OUTPUT in the WRITE procedure call. The print list specifies write parame­
ters, that is, the values to be written. It can contain:

• Expressions of any scalar type

• Character strings enclosed in apostrophes

Reading and Writing Data 5-5

Multiple parameters ~n the print list must be separated by commas.

To print the value of a symbolic constant or a variable, you simply specify its
identifier. You can print the result of an arithmetic, relational, or logical
expression by including the expression in the print list. In addition, you can
use the WRITE procedure to print a character string to explain the output.
Examples of WRITE procedures with variable, Boolean expression, and string
parameters are shown be.low. For each output line, a blank sign (16) indicates
that the corresponding WRITE procedure prints a space.

Statements Output

WRITE (Intl.Jar); IHiLH'i Hi ~ ~ 1 2
WRITE (<2>3) AND Flaa);
WRITE ('Intl.Jar e9u.als 't Intl"Jar);

~FALSE

IntVar~e9uals~~~~~~~~12

Each output line is shown above as PASCAL would print it. PASCAL auto­
matically provides spacing for various kinds of output. Thus, in the first two
examples, the output values (that is, the value 12 and the value FALSE) are
printed with a default number of leading spaces. You can control the spacing
by specifying the field width as explained below.

The third example shows how to print a character string and a value. A
character string is a sequence of characters enclosed in apostrophes (in this
example, 'Int Var equals ').The value 12 is printed with a default number of
leading blanks.

After a WRITE procedure is executed, the file is positioned immediately after
the last value that was written. Thus, if the three WRITE procedures shown
above appeared in three successive program statements, all of the output
would appear on the same line.

The field width is the minimum number of characters that will be written to
the terminal. You can specify a minimum field width for each write parameter
in the print list. However, without the field width specification, PASCAL uses
the default values listed in Table 5-1.

Table 5-1: Default Values for Field Width

Type of Variable

5-6 Reading and Writing Data

Integer

Real

Double·

Quadruple

Boolean

Character

Enumerated

String

Number of
Characters Printed

10

16

24

32

6

1

Size of identifier + 1 up to 32

Length of string

For example, the default field width for a real value is 12 characters. If the
value of a real variable called Average is 5.5, it is printed as follows:

Statement Output

WRITE (At.1eraae); ~5.50000E+OO

Note that real values are printed in floating-point format by default. The
value of Average is written in a field of 12 characters (which includes a leading
blank).

To override the default for a particular value, you must specify a field width
in the print list. The following is the general form of field-width specifications:

write-parameter : minimum ~: fraction]

Minimum and fraction represent nonnegative integer expressions. Minimum
indicates the minimum number of characters to be printed. Fraction, which is
used only with real values, indicates the number of digits to be printed to the
right of the decimal point.

For example, you may prefer to print the real-number value of Average in a
more readable decimal format. You can include field-width parameters in the
WRITE procedure call to do this:

WRITE ('The averase is' t Averaae:4:1);

This statement produces the following output:

The~averase~is~5.5

The int~ger 4 indicates that at least four characters will be printed. This
count in_cludes the decimal point and a minus sign (-) if the value is negative.
If the value is positive, as above, a leading blank is optional.

The integer 1 specifies that one digit will appear to the right of the decimal
point. 1:hus, the WRITE procedure above specifies a field width of at least
four characters, with one character to the right of the decimal point.

The following rules apply to designating field-width parameters in output
procedures:

1. If the fraction parameter is omitted from a real value, the value is printed
in floating-point format.

2. If the print field is wider than necessary, PASCAL prints the value with
the appropriate number of leading blanks.

3. If the print field is too narrow, PASCAL treats the various kinds of write
parameters as follows:

a. Character strings and nonnumeric scalar values are truncated on the
right to the specified field width.

b. Integers and real numbers in decimal format are printed using the full
number of characters needed for the value, thus overriding the field­
width specification.

c. Real, double, and quadruple values in floating-point format are
printed in a field ~fat least eight characters (for example, -1.0E+OO).

Reading and Writing Data 5-7

d. All real values in either decimal or floating-point format are printed
with a leading minus sign if they are negative. Nonnegative real num­
bers printed in decimal format need not include a leading blank.

Examples

1. Statement

WRITE ('First number -- Nurr1ber:9);

Output

Suppose the value of Number is 1. This WRITE procedure prints the text
('First number -- ') followed by eight spaces and the numeral 1. That is,
1 is said to be right-justified in the field of nine characters.

2. Statement

WRITE ('This, is a test strins':12);

Output

This£'iisl6a£'ite

The text in this example is truncated on the right so that it fits into the
field of 12 characters.

3. Statement

WRITE CNumber:4t ' values averased tb ' Averase:3:1);

Output

£'il6£'i5£'ivalues£'iaverased16tol65.5

One WRITE procedure can contain several values and character strings as
in this example. If Number equals 5 and Average is 5.5, the output shown
will be printed. Three leading blanks are included before the number 5 to
fill the print field, which is 4. The value of Average is printed in a field of
three characters.

4. Statement

WRITE (Nurrll :5: 1, 'and'; Nurr12:5: 1; 'sufri to', (Nu.1rl1+Nurr12) :G: 1);

Output

£'i71.1£'iandl629.916sufri16to£'i101.0

This example shows an arithmetic expression as a write parameter. The
values of Numl and Num2 (71.1 and 29.9, respectively) are each written
in a field of five characters. The expression (Numl + Num2) is evaluated,
and the value (101.0) is printed in a field of six characters.

5-8 Reading and Writing Data

5. Statements

WRITE ('First column headinS');
WRITE ('Second column headins':35);

Output

First~column~headins~~~~~~~~~~~~~~Second~column~headins

Remember that after a WRITE procedure is executed, the file is posi­
tioned after the last character printed. Therefore, two consecutive WRITE
procedures print data on the same line. The first procedure call to WRITE
prints the text, leaving the file position after "heading." The second pro­
cedure call right-justifies its text in a field of 35 characters.

6. If you specify a variable of an enumerated type as a write parameter,
PASCAL prints the constant identifier that names its value in uppercase
letters. For example, suppose the variable Color is defined as:

I.JAR
Color : <Bluet Yellowt Blackt

Fire_Ensine_Green):= Yellow;

The WRITE procedure call

WRITE ('MY favorite color is' t Color:15);

produces the following output:

Mv~favorite~color~is ~~~~~~~~~YELLOW

If, however, the value Fire_Engine_Green is assigned to Color, the fol­
lowing appears:

Mv~favorite~color~is~FIRE_ENGINE_GRE

Since the field width specified is not wide enough for all 17 characters in
FIRE_ENGINE_GREEN, PASCAL truncates the last 2 characters.

5.3.2 The WRITELN Procedure

Another PASCAL output procedure is the WRITELN procedure. The WRI­
TELN procedure simply performs the WRITE procedure, then positions the
file at the beginning of a new line. It has the general form:

WRITELN ~ (~ OUTPUT,~print-list) ~
Write parameters are specified in the print list in the same manner as they are
specified for the WRITE procedure. Furthermore, the field-width rules de­
scribed in Section 5.3.1 also apply to t~e WRITELN procedure.

If several parameters occur in the print list, the WRITELN procedure prints
all of the values on one line and then starts a new line. Alternatively, you can
omit the print list altogether. This omission is useful when you want to start a
new line or when you want to write a blank line to the output file.

\

Reading and Writing Data 5-9

Examples

1. Statements

WR I TELN ('The 1.1a1 u e of }{ is ' t }0 ;

WRITELN ('The 1.1alue of Y is' t Y);

Output

The~ualue~of~X~is~~~~~~~~10

The~ualue~of~Y~is~~~~~~~~15

In the output, the write parameters from each WRITELN procedure ap­
pear on different lines. After both WRITELN procedures are executed, the
file is positioned at the beginning of a new line following the output. In
contrast, if you used WRITE procedures instead of WRITELN procedures
in the example above, the output from both of the print lists would appear
on one line, as follows: ·

The~ualue~of~X~is~~~~~~~~10The~ualue~of~Y~is~~~~~~~~15

The file is positioned immediately after the value 15.

2. Statements

WRITELN ('Narr1e:'t 'Ase:':19t 'Soc. Sec. *1::':28);
WR ITELN;
WRITELN ('Socrates' t 'Old': 15 t 'Un~\no1A1n / :24);

Output

Na1r1e: Ase: Soc, Sec. #::

Socrates Old

This example illustrates how multiple parameters in the print list of a
WRITELN procedure are printed. All of the items in the print list are
printed on one line. Then the file position advances to the beginning of a
new line. This example also shows how to print a blank line. Because it
has no print list, the second WRITELN procedure prints no characters,
but creates a blank line.

5.4 The Predeclared Functions EOLN and EOF

The EOLN and EOF functions are predeclared PASCAL functions that oper­
ate on file variables and yield Boolean results. The EOLN function tests the
end-of-line condition. The EOF function tests the end-of-file condition.

5.4.1 The EOLN Function

Text files are divided into lines. Each line ends with a line-separator mark,
which indicates the end of a line. You can test for this end-of-line mark with
the EOLN function.

The format of the end-of-line function is:

EOLN~ (file-variable)~

The file variable must be a variable of type text file. For the purposes of this
chapter, the file variable is the default file INPUT. You can either specify the

5-10 Reading and Writing Data

name INPUT or omit the file variable altogether, because INPUT is the
default.

The function EOLN is TRUE when the file is positioned at the end of a line or
as soon a,s the last component on a line has been read. Otherwise, EOLN is
FALSE.

After a READ procedure reads the last component on a line, the file is posi­
tioned on the EOLN mark. In contrast, after a READLN procedure reads the
last component on a line, the file is positioned at the beginning of the next
line, that is, past the EOLN mark. Thus, after a READLN is performed, the
EOLN function is never TRUE unless the next line is empty. For this reason,
the input procedure before an EOLN test is usually a READ, not a READLN.

If a READ procedure specifying a character variable as a parameter en­
counters the EOLN mark, a space (' ') is assigned to the variable.

To specify the end of a line when typing input at the terminal, press (BIT), the
return key. After a READ procedure reads the last character that was typed
before the return key, EOLN becomes TRUE.

The following loop shows the use of the EOLN function:

WHILE NOT EOLN <INPUT) DO
BEGIN
READ <Ch);
NuM_Chars := NuM_Chars + 1;
END;

Assume that the variable Ch is of type CHAR and Num_Chars is of type
INTEGER. This loop counts the number of characters on a line. The WHILE
statement causes the loop body to execute repetitively as long as NOT
EOLN (INPUT) is true. (Section 7.2 contains information on the WHILE
statement.) When the last character on the line is read, EOLN becomes
TRUE. The WHILE statement tests for NOT EOLN (INPUT), which is now
FALSE. Therefore, the loop body is not executed again.

5.4.2 The EOF Function

Every file ends with an end-of-file mark that you can test for with the EOF
function. The EOF function is TRUE when the file is positioned on this end­
of-file mark. The EOF mark follows the last EOLN mark in a text file.

The format of the EOF function is:

EOF~ (file-variable)~

The file variable can be a variable of any file type. As with EOLN, the file
variable INPUT is the default.

As soon as the last line in a file has been read, EOF becomes TRUE. At all
other times, EOF is FALSE.

The diagram in Figure 5-1 represents the characters and the EOLN and EOF
marks in a text file.

Reading and Writing Data 5-11

Beginning
of

File
• • •

Figure 5-1: The End of a Text File

x EDLN EDF

ZK-1027-82

The symbol X represents the last component of a text file. Suppose the follow­
ing procedure reads the component denoted by X into a variable:

READLN (variable);

The variable is assigned the value in X. As a result of the READLN procedure
call, the file position advances past the EOLN mark. Thus, the file position
appears as shown in Figure 5-2.

Beginning
of

File
• • •

Figure 5-2: File Position at End-of-File

EDLN EDF

t
file position

ZK-1028-82

You usually use the READLN procedure before an EOF test. The READLN
procedure advances the file position past the EOLN mark (that is, to the EOF
mark), as shown in Figure 5-2.

If you use a READ procedure, the last component in the file is read and the
file is positioned on the EOLN mark. EOF is not TRUE because the file
position has not been advanced to the EOF mark.

The only time EOF can be TRUE after a READ procedure is when a value is
being read into a character variable. In that case, after the last component in
a file is read, the file is positioned at the EOLN mark. EOF is still FALSE. As
a result of one more read operation, a space (' ') is assigned to the character
variable and EOF is TRUE.

When you are typing input at the terminal, you can indicate the end of the file
by typing a (CTRL/zl. (CTRL/z) generates an EOLN mark (if the previous component
was not an EOLN mark) and an EOF mark. When a READLN procedure
reads the last component typed before (CTRL/z), EOF becomes TRUE. The
READLN procedure reads past the EOLN mark and causes the file to be
positioned on the EOF mark.

For example, the program Grocery_Bill contains the following construct:

REPEAT
READLN (CouPon_Amount);
Coupons := Coupons+ CouPon_Amount;

UNTIL EDF <INPUT>;

5-12 Reading and Writing Data

In Grocery_Bill, WRITELN procedures directly above this loop print in­
structions for entering data items and terminating the items entered with a
(CTRL/zl. Each time the above READLN procedure reads a value for the variable
Coupon_Amount, it reads past the EOLN mark. On the last iteration, the
READLN procedure encounters the end of the file, which was generated by
the (CTRL/z), and EOF becomes TRUE. (The REPEAT statement is explained in
Section 7.1.)

Reading and Writing Data 5-13

Chapter 6
Structured Types: the Array and the Record

6.1 Arrays

The types presented in previous chapters of this primer are all scalar types. A
variable of a scalar type is an indivisible unit of data. That is, the unit of data
contains no smaller data items that can be manipulated individually.

A variable of a structured type, on the other hand, is a collection of related
data items that you can access and manipulate individually. Although you
refer to an entire structured variable with one identifier, you can treat its data
items as individual variables.

VAX-11 PASCAL provides the following structured types for building data
structures:

• Arrays

• Records

• Varying character strings

• Sets

• Files

An array is a collection of a specified number of data items of the same type.
A record is a collection of data items that can be of different types. A varying
character string is a sequence of ASCII characters whose values are strings of
different lengths. A set is a collection of data items of an ordinal type. A file is
a sequence of any number of data items of the same type.

This chapter presents the array (Section 6.1) and the record (Section 6.2)
types. A special case of the file type - the text file - was introduced in
Chapter 5. A detailed presentation of the varying character string, set, and file
types, however, is beyond the scope of this primer. Refer to the VAX -11
PASCAL Language Reference Manual for more information on these struc­
tured types.

An array is a group of data ,items of the same type. Each data item in the
group is called a component of the array. You refer to the whole array with one
identifier. You refer to each component with the array identifier and an index,
enclosed in brackets. The indexes need not be integers; they can be values of
any ordinal type.

6-1

The following is an example of an array variable declaration:

l.JAR
Word : ARRAY[1 •• 20J OF CHAR;

An array declaration establishes three properties:

1. The identifier that names the whole array. In the example above, the
name of the array is Word.

2. The range and type of the indexes. In the array Word, the indexes are a
subrange 1..20 of integers.

3. The type of the components. The components of Word are of type CHAR.

The index of an array can be any expression of the index type. Thus, in the
array Word, the first component is Word[l], the second is Word[2], and so
forth. You can use array components as variables of the component type. For
example, the component Word[l] can appear on the left-hand side of an as­
signment statement or as a parameter of the ORD function.

The format of the type definition for an array is:

ARRAY[{index-type}, ...] OF component-type

The index type can be a subrange of any ordinal type. It can also be the full
range of the CHAR type, the BOOLEAN type, or an enumerated type. For
example, you can specify the index type in the type definition with merely the
identifier CHAR. However, the index type cannot be the full range of the type
INTEGER because an array of that size would occupy too much space in
memory.

The components of an array can be of any type, including structured types.
For example, you can define an array of integers, an array of records, or an
array of real numbers. An array of arrays is called a multidimensional array,
as explained in Section 6.1.1.

The type definition shown above can appear in the TYPE section or in the
VAR section. An example of defining an array type in the TYPE section is:

TYPE
Prices = ARRAY[1 •• 100J OF REAL;

This TYPE section defines the array type Prices, whose index type is the
subrange 1..100, and whose component type is REAL. You can declare an
array variable of type Prices as follows:

l.JAR
Sales_IteMs : Prices;

Suppose a store has up to 100 kinds of items for sale and each item is associ­
ated with a stock number in the range from 1 to 100. The variable Sales_
Items stores the price for each item. Thus, for example, the price for item
number 20 is stored in Sales_Items[20].

)

The following declarations show an example of declaring an array variable in
the VAR section.

6-2 Structured Types: The Array and the Record

TYPE
Days = (Sun, Mon, Tue, Wed; Thu, Fri, Sat);
WorK_DaY = O •• za;

I.JAR
WorK_WeeK : ARRAYCMon •• FriJ OF WorK_Day;

In the array Work_ Week, the index type Mon .. Fri is a subrange of the enu­
merated type Days. The component type Work_Day is a subrange 0 .. 24 of
integers. This declaration creates the variable Work_ Week, which has five
components, each of which represents the hours worked in one day.

Suppose you want to write a program to calculate the average of the test
scores earned in a particular course. You can treat the group of test scores as
an array. The following declarations create an array type and an array varia­
ble of that type.

TYPE
Tests = 1, .Num_Tests;
Test_Scores = ARRAYCTestsJ OF INTEGER;

I.JAR
Score : Test_Scores;

Note that you can use a type identifier (for example, Tests) as the index type
in an array definition. If Num_ Tests is a constant identifier equal to 6, Test_
Scores is an array of integers whose index values can range from 1 to 6. To use
an individual score in an executable statement, specify the array variable
name (Score) and an integer expression whose value is between 1 and Num__
Tests.

A program that calculates the average of the components in the array Score
might be written as follows:

PROGRAM Auerase_Scores IINPUT1 OUTPUT);

CONST
Nur11_Tests = Gi (* NuMber of scores to be auerased *l

TYPE
Tests= 1 •• NuM_Testsi
Test_Scores = ARRAYETestsJ OF INTEGER;

Score : Test_Scores;
SuM1 I, Auerase : INTEGER;

BEGIN
Sur11 : = 0;
FOR I:= 1 TD Nur11_Tests DD

BEGIN
WRITE ('Enter test score: ');

(* Access each COMPonent of Score *)

READLN <Score[IJl; * Read an inteser into each coMPonent *)
SuM := SuM + Score[IJ; (* SuM the coMPonents *)
ENDi

Auerase := SuM DIV NuM_Tests;
WRITE LN ('The f o 1 1 o 1A1 ins s co res 1A1 e re en t e red : ') ;
FDR I := 1 TD NuM_Tests DO

WRITELN (Score[IJ:4l; (* Print each COMPonent of Score *)
WRITELN ('The auerase is: ', Auerase:3l;
END.

Structured Types: The Array and the Record 6-3

The program reads each score that is typed after the prompt "Enter test
score:" and calculates a running sum. The average of the scores is the result of
the expression Sum DIV Num_ Tests. Output procedures print each score
that was entered and the average score.

A sample run of this program is:

Enter test score: 100
Enter test score: 88
Enter test score: 75
Enter test score: 80
Enter test score: 63
Enter test score: 8ll
The follo1Aiina scores

100
88
75
80
63
8ll

The aueraae is: 85

1A1 ere entered:

In an executable statement, you can specify a component of Score with an
index that is a variable name. In both FOR loops in the program Average_
Scores, the current score is denoted by Score[!]. In fact, the index can be any
expression of the index type; you could, for example, refer to a component as
Score[I+l], as long as I+l is in the range 1..6.

Accessing successive components in an array is a common use of the FOR
statement. By merely incrementing the control variable, the FOR statement
accesses each component of the array with fewer program statements than if
each component were a separate variable. In the program Average_Scores,
both FOR loops process each component of Score, that is, Score[l], then
Score[2], up through Score[Num_Tests].

The array component Score[!] is used in the same manner as a variable in the
READLN procedure, in the expression Sum + Score[!], and in a WRITELN
procedure. Score[!] ~s in fact a variable of type INTEGER.

You can use the assignment operator (: =) on two arrays of the same type. The
following example creates two array variables, called Current_Jan and
Record_Jan, that are both of type Month_ Temp. Month_ Temp is an array
type that represents the temperatures for each day in a month. The execut­
able section in the example shows the assignment of one array to the other.

6-4 Structured Types: The Array and the Record

Appendix B
ASCII Character Set

Table B-1 summarizes the ASCII character set. Each element of the ASCII
character set is a constant value of the PASCAL predefined type CHAR. The
ASCII decimal number in Table B-1 is the same as the ordinal value (as
returned by the PASCAL ORD function) of the associated character in the
type CHAR.

Table B-1: The ASCII Character Set

ASCII ASCII
Decimal Decimal
Number Character Meaning Number Character Meaning

0 NUL Null 40 Left parenthesis
1 SOH Start of heading 41 Right parenthesis
2 STX Start of text 42 Asterisk
3 ETX End of text 43 + Plus sign
4 EOT End of transmission 44 Comma
5 ENQ Enquiry 45 Minus sign or hyphen
6 ACK Acknowledgement 46 Period or decimal point
7 BEL Bell 47 I Slash
8 BS Backspace 48 0 Zero
9 HT Horizontal tab 49 1 One

10 LF Line feed 50 2 Two
11 VT Vertical tab 51 3 Three
12 FF Form feed 52 4 Four
13 CR Carriage return 53 5 Five
14 so Shift out 54 6 Six
15 SI Shift in 55 7 Seven
16 DLE Data link escape 56 8 Eight
17 DCl Device control 1 57 9 Nine
18 DC2 Device control 2 58 Colon
19 DC3 Device control 3 59 Semicolon
20 DC4 Device control 4 60 < Left angle bracket
21 NAK Negative acknowledgement 61 Equal sign
22 SYN Synchronous idle 62 > Right angle bracket
23 ETB End of transmission block 63 Question mark
24 CAN Cancel 64 @ At sign
25 EM End of medium 65 A Uppercase A
26 SUB Substitute 66 B Uppercase B
27 ESC Escape 67 c Uppercase C
28 FS File separator 68 D Uppercase D
29 GS Group separator 69 E Uppercase E
30 RS Record separator 70 F Uppercase F
31 us Unit separator 71 G Uppercase G
32 SP Space or blank 72 H Uppercase H
33 Exclamation mark 73 I Uppercase I
34 Quotation mark 74 J Uppercase J
35 # Number sign 75 K Uppercase K
36 $ Dollar sign 76 L Uppercase L
37 % Percent sign 77 M Uppercase M
38 & Ampersand 78 N Uppercase N
a9 Apostrophe 79 0 Uppercase 0

B-1

Table B-1: (Cont.) The ASCII Character Set

ASCII ASCII
Decimal Decimal
Number Character Meaning Number Character Meaning

80 p Uppercase P 104 h Lowercase h
81 Q Uppercase Q 105 "i Lowercase i
82 R Uppercase R 106 j Lowercase j
83 s Uppercase S 107 k Lowercase k
84 T Uppercase T 108 1 Lowercase 1
85 u Uppercase U 109 m Lowercase m
86 v Uppercase V 110 n Lowercase n
87 w Uppercase W 111 0 Lowercase o
88 x Uppercase X 112 p Lowercase p
89 y Uppercase Y 113 q Lowercase q
90 z Uppercase Z 114 Lowercase r
91 [Left square bracket 115 Lowercases
92 \ Back slash 116 Lowercase t
93 l Right square bracket 117 u Lowercase u
94 ort Circumflex or. up arrow 118 v Lowercase v
95 ~or_ Back arrow or underscore 119 w Lowercase w
96 Grave accent 120 x Lowercase x
97 a Lowercase a 121 y Lowercase y
98 b Lowercase b 122 z Lowercase z
99 c Lowercase c 123 I Left brace

100 d Lowercased 124 I Vertical line
101 e Lowercase e 125 I_ Right brace
102 f Lowercase f 126 Tilde
103 g Lowercase g 127 DEL Delete

B-2 ASCII Character Set

I* Declarations *>

CONST
Days

TYPE

31 ; (* Number of days in January *)

Temp= -20 •• Go; I* Ranle of temperatures occurrinl in January*>
Month_TemP = ARRAY[1, +Days] OF Temp;
(* Month_TemP has 31 components• each is the temP on one daY in January*)

Sur111 I1 Avera1e_Ter11P1
Record_Ave_TemP : INTEGER;

(* Averale temp in current January *)
(* Averale temp in January with record lows *)

Current_Jan1 Record_Jan : Month_Temp;
(* Current_Jan, and Record_Jan represent each day's temperature in this

Year's January and the January with lowest auerale temP1 resPectivelY+ *)

I* Executable Section *)

Sur11 : = 0;
FOR I := 1 TO Days DD

Sum := Sum + Current_Jan[IJ;
Averale_TemP :=Sum DIV Days;
(* If aver ale temp this Year is less than the record Year, assiln

this Year's temP array to the record temp array*)
IF Averale_TemP < Record_Ave_TemP
THEN

Record_Jan := Current_Jan;

This program fragment computes the average of the components of Current_
Jan to obtain the average temperature for the month and assigns that average
to Average_ Temp. If the value of Average_ Temp is less than that of Record_
Ave_Temp, the array Current_Jan is assigned to Record_Jan.

6.1.1 Multidimensional Arrays

An array whose components are themselves arrays is a multidimensional ar­
ray. An array can have any number of dimensions. Each dimension has its
own index, and each dimension can have a different index type.

For example, the declarations below create a two-dimensional array:

CONST
Class_Size = 15;
Nurri_Tests = 5;

TYPE
Class
Tests

1 •• Class_Sizei
1 •• Nurr1_ Tests;

Class_Scores : ARRAYCClassJ OF ARRAYCTestsJ OF INTEGER;

The variable Class_Scores represents scores on a series of tests for a group of
students. If Class_Size is 15 and Num_ Tests is 5, the variable declaration
creates a two-dimensional array called Class_Scores, which can store the
scores on 5 tests for each of 15 students.

Structured Types: The Array and the Record 6-5

You can abbreviate the array declaration shown above by specifying all the
index types in one pair of brackets as follows:

I.JAR
Class_Scores : ARRAYCClasstTestsJ OF INTEGER;

To refer to one component of a two-dimensional array, use the array identifier
and two index values, one for each dimension. The first index corresponds to
the first dimension declared and the second index corresponds to the second
dimension declared. For example, Class_Scores[l,3] indicates the first stu­
dent's third test score and Class_Scores[3,1] indicates the third student's first
test score.

The Class_Scores array is illustrated in Figure 6-1.

Class

Tests ,,_ __________ ,,,,,,,.._ ___________ ,
f \

2 3 4 5

1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0

•
•
•

14 0 0 0 0 0
15 0 0 0 0 0

ZK-1029-82

Figure 6-1: The Two-Dime~sional Array Class_Scores

The index ranges in Class_Scores - that is, Class and Tests - correspond to
the rows and columns, respectively, in the figure. In references to one compo­
nent of Class_Scores, the first index indicates the row and the second index
indicates the column. A particular score is found at the intersection of a row of
Class and a column of Tests. For example, Class_Scores[3,5], indicated in
Figure 6-1 by an X, is found at the intersection of the third row and the fifth
column.

To access successive components in a multidimensional array, you must use
the proper control loop. Nested FOR loops are often used for this purpose. For
example, suppose you want to find the average test score for each student in
Class_Scores. To process one student's score, the row index should be held
constant while the values in each column of that row are averaged. Then, for
each successive student, the row index should be incremented and the same
averaging operation should be performed on the new row.

6-6 Structured Types: The Array and the Record

The following declaration creates a variable that will hold each student's
average score:
l,JAR

Class_Auerases : ARRAYCClassJ OF INTEGER;

The following statements include nested FOR loops to compute the average
for each student and to store that average in the appropriate component of
Class_Averages.

FOR I := 1 to Class_Size DO
BEGIN
SU!tl : = 0;
FOR J := 1 TO Num_Tests DO

Su1t1 := Sum + Class_Scores[I tJJ;
Class_Auerases[IJ :=Sum DIV Nu~_Tests;

END;

The inner FOR loop sums the components in one row (row I). The average of
those components is assigned to Class_Averages[l]. The outer FOR loop
causes this operation to be performed for each value of I, that is, the values 1
through Class_Size (15).

For example, on the fourth iteration of the outer FOR loop, each component in
the fourth row is processed. The components Class_Scores[4,J], where J
ranges from 1 to Num_Tests (5), are summed. Class_Averages[4] is assigned
the result of Sum DIV Num_Tests, where Num_Tests equals 5.

You can define arrays of three or more dimensions by specifying the appropri­
ate number of index types in the array definition. For example:

VAR
Hotel_Vacancies : ARRAYC1 •• 8t'A'+• 'B' ,1 •• 10] OF BOOLEAN;

The variable Hotel_ Vacancies represents a hotel with 160 rooms. The hotel
has eight stories, each denoted by a number from 1 to 8. Each story has 2
corridors and each corridor has 10 rooms. The three dimensions of the array
have index types 1..8, 'A' .. 'B ', and 1..10, corresponding to the stories, corri­
dors, and rooms in each corridor of the hotel. Thus, each component in
HoteLVacancies represents a room in the hotel. An individual component of
HoteL Vacancies has the value TRUE if the room is vacant and FALSE if it is
full.

Structured Types: The Array and the Record 6-7

The floors 1 through 8 in Hotel_ Vacancies are illustrated in Figure 6-2.
Rooms

r 1
Ai.

' 2 3 4 9 10

{Corridor A D D D D • • • D D
Floor

1

0 D D D D D Corridor B • • •

- - - - - - -
{Corridor A D D D D • • • D D

Floor
2

Corridor B D D D D • • • D D
- - - - - - - - - - - - - -

•
•
•

- - - - - -

{Corridor A D D D D • • • D D
Floor

8

D D D D D D Corridor B • • •
ZK-1030-82

Figure 6-2: The Three-Dimensional Array HoteLVacancies

On the first floor, room number 1 on corridor B is denoted by HoteL
Vacancies[l, 'B ',1]; that component is indicated in Figure 6-2 with an X.
Note that one index type in HoteL Vacancies is a subrange of type CHAR and
the other two index types are subranges of type INTEGER

6.1.2 Character Strings

A string constant is a sequence of characters enclosed in apostrophes. A string
variable is defined as a one-dimensional packed array of characters.

6.1.2.1 Character-String Constants - Character-string constants are often
used in output statements to print a message or a prompt. In addition, you
can assign a string constant to a string variable if the variable is of the
appropriate type.

The following are all character-string constants:

'Pay this amount -- $'
'Continual ~lo9uence is tedious'
'111e1110 rand Ufrl'

'365'
'The writer''s Prerosative'

(* Blaise Pascal *)

Note that the constant '365' is not an integer; it is a string of numeric
characters. To indicate the apostrophe character in a string constant, you
must type it twice, asjn 'The writer' 's prerogative'.

6-8 , Structured Types: The Array and the Record

6.1.2.2 Character-String Variables - The type of a character-string variable
is a packed array of characters. Packing means that the characters are stored
in memory as densely as possible. The index type must be an integer subrange
with a lower bound of 1.

To pack an array, include the reserved word PACKED in the type definition.
For instance, the following example defines a character-string type and de­
clares a variable of that type:

TYPE
Strins : PACKED ARRAY[1,,20J OF CHAR;

Narr1e: Strins;

These declarations create a 20-component character-string variable called
Name. Any character string assigned to Name must be exactly 20 characters
long. PASCAL neither adds spaces to extend a shorter string nor truncates a
longer string.

A string variable can be assigned the value of any string constant or variable
of the correct length. For example, given the declarations of Chapter and
Section shown below, you can assign string constants to each of them as
shown.

TYPE
Title = PACKED ARRAY[1,,20J OF CHAR;

I.JAR
ChaPterr Section Title;

Chapter := 'STRUCTURED TYPES
Section := 'Character Strinss

! ;

In

'
You must include spaces at the end of each string so that each string contains
20 characters.

You can assign one string variable to another as follows:

ChaPter := Section;

Both variables must be of the same type. Two string variables are of the same
type if the upper bounds of their index types are the same.

You can use the READ or READLN procedure to read a sequence of charac­
ters into a string variable. For example, if Name is a variable of type String,
that is, PACKED ARRA Y[l..20] OF CHAR, you can write the procedure call:

READ (Narr1e);

The READ procedure reads successive characters from a file into successive
components of the array, starting with the component Name[l]. ·The read
operation is complete when EOLN becomes TRUE or when the number of
characters in the array (20 in Name) have been read. If EOLN becomes
TRUE before a character is read into every component of the array, the
remaining components are filled with spaces.

Structured Types: The Array and the Record 6-9

For example, if the READ (Name) procedure reads the following characters,
up to the EOLN mark, from a file

Joshua Jones EOLN
the value of the variable Name will be

'Joshua Jones

Components Name[l] through Name[12] contain the characters
'Joshua Jones. ' The READ procedure automatically assigns spaces to com­
ponents Name[13] through Name[20]. Note that ifthere were additional char­
acters on the line instead of the EOLN mark, those characters would have
been read into components of Name.

Similarly, you can use WRITE or WRITELN to print a string variable. For
example:

WRITE (Na1t1e);

This WRITE procedure produces the following output:

Joshua Jones

You can apply the relational operators(<, <=, >, >=,=,and<>) to character
strings of the same length. The result of comparing two strings depends on the
lexicographic ordering of the strings. Just as words in a dictionary are ar­
ranged according to an alphabetical ordering, character strings are ordered
according to the ordinal value of corresponding characters in the string. (See
Appendix B for the ordinal value of each component in the ASCII character
set. Remember that uppercase letters have lower ordinal values than lower­
case letters.)

PASCAL evaluates string expressions by comparing characters that occupy
corresponding positions in the two strings. When the first nonequal characters
in the two strings are compared, the value of the string that contains the
character with the higher ordinal value is greater than the value of the other
string. If all characters are the same, including spaces, the values of the
strings are equal.

For example, the following relational expressions are TRUE:

'prosrammers' < 'tech writers'
'wine & roses ' > 'wine & cheese'

The first expression is TRUE because the ordinal value of 'p' (112) is less than
the ordinal value of 't' (116). When evaluating the second expression, PAS­
CAL compares 'r' and 'c' because they are the first characters that are not the
same in the two strings. The ordinal value of 'r' (114) is greater than the
ordinal value of 'c' (99).

You can form relational expressions with character-string variables as well as
with constants. Given the declaration of Section of type Title, that is,
PACKED ARRA Y[l..20] OF CHAR, the following statement includes a valid
relational expression:

IF Section = 'Character Strinss
THEN

WRITELN('That 11 5 al 1 folt'.s ! Ii;

6-10 Structured Types: The Array and the Record

6.2 Records

A record is a structured type consisting of related data items of potentially
different types. A record is organized into fields; each field can have a differ­
ent type. An example of a record variable declaration follows:

I.JAR
Person : RECORD

Name : PACKED ARRAY[1 •• 20J OF CHAR;
Ase: 0 •• 150;
Sex : <Female' Male);
END;

The record variable Person has three fields: the field Name is a character
string; the field Age is a subrange of integers; and the field Sex is an enu­
merated type consisting of the values Female and Male. To refer to one field,
specify the name of the record variable and the name of the field, separated
by a period. Each field can be treated as a variable of the field type. For
example:

Person.Ase := 25;

Person.Age refers to the field Age contained in the record Person. It can be
assigned a value as if it were an integer variable.

The record type definition format is as follows:

RECORD
{{field-name}, ... : type}; ... ~;~

END;

As shown, the type definition can specify the names of one or more fields,
which can be of any type. If there are several fields of the same type, their
names must be separated with commas. You cannot define more than one
field with the same name within a given record.

The reserved words RECORD and END enclose the fields in a record defini­
tion. Successive fields of different types must be separated by a semicolon (;).
A semicolon is not required between RECORD and the first field name or
between the last field type and END.

NOTE

The record declaration is one exception to the rule that every
END must be associated with a BEGIN.

Suppose you are shopping for a new home and you want to maintain informa­
tion on the houses you see. The important factors in choosing a home might
include cost, distance from place of work, number of rooms, method of heat­
ing, and location. The following TYPE section defines a record type named
House:

TYPE
House RECORD

Cost, Distance : REAL;
Num_Rooms : 1 •• 20;
Heat : <Gas, Oil, Electric, Solar, Coal);
Location PACKED ARRAY[1 •• 20J OF CHAR;
Suitable : BOOLEAN;
END;

Structured Types: The Array and the Record 6-11

The record type House consists of six fields. Note that you can use a struc­
tured type as a field of a record: in the type House, the field Location is a
structured type.

To maintain information on a number of houses, you can declare an array of
records. For example, if the constant identifier Max_Houses is defined as 10,
you can declare an array of 10 House records as follows:

I.JAR
House_Choices : ARRAY[1 •• Max_HousesJ OF House;

The variable House_Choices stores multiple records in one array. To refer to
one field of one record in this array, specify the variable name House_
Choices, an index enclosed in square brackets, a period, and the field identi­
fier. For example:

House_Choices[IJ.Heat

You use each field of a record variable in the same way that you use a variable
of the field type. Thus, the following statements are valid:

FOR I := 1 TO Max_Houses DO
BEGIN
READLN <House_Choices[IJ,Cost);
READLN (House_Choices[IJ,Distance);
READLN (House_Choices[IJ,Num_Rooms>;
IF (House_Choices[IJ.Cost < 70000.0) AND

(House_Choices[IJ.Distance < 15.0) AND
<House_Choices[IJ.Num_Rooms > G>

THEN
House_Choices[IJ.Suitable :=TRUE

ELSE
House_Choices[IJ.Suitable := FALSE;

END;

You can assign one record variable to another of the same type. For example,
the following variable section declares two record variables of the same type:

I.JAR
New_Houset Dream_House : House;

If Dream_House is defined (that is, if each field of Dream_House has a
value), you can assign Dream_House to New_House as follows:

New_House := Dream_House;

Records can be nested in a record definition; that is, a record can contain a
field that is another record. For example:

TYPE
EmPloYee = RECORD

l,JAR
Err1PlO}'ee_N

Name : PACKED ARRAY[1, .ZOJ OF CHAR;
Address : RECORO

HouseNo : INTEGER;
Streett City : PACKED ARRAY[1++20J OF CHAR;
State : PACKED ARRAY[1,,2J OF CHAR;
ZiP : 0 .. 88888;
ENO;(* End of Address record*)

EmPloyeeNo : INTEGER;
JobTitle: PACKED ARRAY[1,,10J OF CHAR;
Sal an REAL;
ENO; (* End of EmPloYee record *)

Err1Pl0Yee;

6-12 Structured Types: The Array and the Record

To refer to a field within the Address record, you must specify the identifier
Employee_N, a period, the identifier Address, a period, and the particular
field identifier. For example:

EmPloYee_N.Address.State := 'PA';

This statement assigns the value of the string 'PA' to the field named State
in the record Employee_N .Address.

When you are performing 1/0 operations on text files, you must read and write
the information in a record field by field. PASCAL does not read or write an
entire record. For example:

WRITELN ('Na1t1e: 't E1t1Ployee_N.Na1t1e, 'Nu111ber' t

EmPloYee_N.EmPloYeeNo);

This WRITELN procedure prints two fields of Employee_N, that is, Name
and EmployeeNo.

When you refer to fields of the same record repetitively, it is cumbersome to
repeat the record name in each reference. The WITH statement allows you to
specify the record name once and refer to the fields directly in the subsequent
statement.

The format of the WITH statement is:

WITH {record-variable}, ... DO
statement;

The record variable specifies the name of the record to which the statement
refers. Within the statement, you can refer to a field of the record directly
instead of using the record.fieldname format.

For example, the FOR loop using the record variable House_Choices can be
rewritten as follows:

FOR I := 1 TO Max_Houses DO
WITH House_Choices[IJ DO

BEGIN
READLN <Cost);
READLN <Di stance);
READLN <Num_Rooms);
IF <Cost < 70000.0) AND (Distance < 15,0>

AND <Num_Rooms > G)
THEN

Suitable := TRUE
ELSE

Suitable := FALSE;
END;

Each statement between the BEGIN and END delimiters uses the record
name House_Choices[IJ. Thus, the statement

READLN <Cost);

is the same as the statement

READLN <House_Choices[IJ,Cost);

Structured Types: The Array and the Record 6-13

You can also use the WITH statement to refer directly to fields in nested
records. You list the record names, in the order in which they are nested, after
the reserved word WITH. For example:

TYPE
Name PACKED ARRAYC1 •• 20J OF CHAR;
Date RECORD

Month: (Jant Febt Marcht APril1 MaY1 June1
Jul}'' Aust Sept, Oct, No• . .1, Dec);

Day: 1..31;

I.JAR

Year : INTEGER;
END;

HosP RECORD
Patient: Na1r1e;
BirthDate : Date;
Ase : INTEGER;
END;

WITH HosPt BirthDate DO
BEGIN
Patient := 'Thomas Jefferson
Month := APril;
Da}' := 13;
Year := 1743;
Ase := z39;
END;

I•

'

The record Hosp contains the field BirthDate, which is also a record (of type
Date). By specifying Hosp in the WITH statement, you can refer to Patient
and Age,

1

which are fields of Hosp. By specifying BirthDate, you can access
Month, Day, and Year, even though these fields are in a nested record. Thus,
the WITH statement shown above is the same as the following sequence of
statements:

WITH Hosp DO
WITH BirthDate Do

BEGIN

END;

The record names in the WITH statement must be specified in the same order
in which they are nested. For instance, BirthDate is nested within the record
Hosp in the declaration; therefore, Hosp must be specified before BirthDate
in the WITH statement.

6-14 Structured Types: The Array and the Record

Chapter 7
More PASCAL Statements

In addition to the statements presented in Chapter 4, PASCAL includes the
following control statements:

• REPEAT statement

• WHILE statement

• CASE statement

• GOTO statement

This chapter describes the REPEAT, WHILE, and CASE statements, and
gives a program example using various PASCAL statements. The GOTO
statement, which transfers program control to a statement prefixed by a label,
is explained in the VAX-11 PASCAL Language R~ference Manual.

The REPEAT and WHILE statements, like the FOR statement, control loops.
In both REPEAT and WHILE, the statement(s) within the loop body are
executed repetitively depending on the value of a Boolean expression. The
difference between REPEAT and WHILE lies in the point at which the value
of the Boolean expression is tested.

The CASE statement is similar to the IF-THEN and IF-THEN-ELSE state­
ments because it is a conditional statement. Remember that a conditional
statement selects one statement for execution if a condition is met. Unlike IF­
THEN and IF-THEN-ELSE, the CASE statement allows the selection to be
made from a list of more than two statements.

7.1 The REPEAT Statement

The REPEAT statement allows you to specify the repetitive execution of a
statement or series of statements until a certain condition becomes TRUE.
The format is:

REPEAT {statement}; ...
UNTIL Boolean-expression

The statement(s) within the reserved words REPEAT and UNTIL can be any
PASCAL statement(s). The loop body is executed until the Boolean expres­
sion becomes TRUE. The flow of control for the REPEAT statement is shown
in Figure 7-1.

7-1

Start

Statement(s)

FALSE

TRUE

End

ZK-1031-82

Figure 7-1: The REPEAT Statement Flow Chart

The example below shows the use of a REPEAT loop to search for a value in a
sorted array. Assume that you have made the following declarations:

CONST
Size = 20;

TYPE

I.JAR

Name PACKED ARRAY[1 •• 20J OF CHAR;

Name_List : ARRAY[i •• SizeJ OF Name;
Name_to_Find : Name;
It Jt Middle : INTEGER;
Found : BOOLEAN;

Assume also that the array Name_List contains an alphabetized list of
names, say, of authors. The following program fragment prompts for a name,
then searches the array for that name.

7-2 More PAS CAL Statements

(* Input the name of the author *)
WRITE ('Name to find : ');
READLN CName_to_Find);
(* Initialize variables before executins loop *)
I : = 1 ;
J := Size;
Found : = FALSE;
REPEAT

(* If Name_to_Find is in Name_Listr it falls between the
components Name_List[IJ and Name_List[JJ *>

Middle := CI+J) DIV 2;
IF CName_to_Find = Name_List[MiddleJ)
THEN

BEGIN
(* Set Found f las and Print a messase *>
Found : = TRUE;
WRITELN <Name_to_Findr ' is component', Middle:3);
END

ELSE
IF CName_to_Find > Name_List[MiddleJ)
THEN

(* Increase lower array bound to select toP half *>
I := Middle + 1

ELSE
IF <Name_to_Find < Name_List[MiddleJ)
THEN

(* Decrease UPPer array bound to select lower half *)
J :=Middle - 1;

UNTIL Found OR CI > J);
IF NOT Found
THEN

WRITELN CName_to_Find, ' is not in the list.');

The REPEAT loop contains statements that repetitively partition the array
and search the appropriate half. The variables I and J initially represent the
upper and lower bounds of the array Name_List, and are changed during
execution to represent the bounds of the part of the array currently being
searched. Execution of the loop terminates when Name_to_Find is found (in
which case the variable Found is TRUE) or when the value of I exceeds the
value of J, indicating that Name_to_Find is not in the array.

For example, if the value of Size is 20, Name_to_Find is first compared with
Name_List[lOJ. If their values match, Found becomes TRUE, a message is
printed, and the loop terminates.

If Name_to_Find is greater than Name_List[lO], that is, if it falls later in
the alphabet, then I takes on the value 11. The search is confined to the
second half of the array, and the loop is repeated for components Name_
List[ll] through Name_List[20].

If Name_to_Find is less than Name_List[lOJ, that is, if it falls earlier in the
alphabet, then J takes on the value 9. The search is confined to the first half of
the array, and the loop is repeated for components Name_List[lJ through
N ame_List[9].

On the second iteration, Name_to_Find is compared with the middle compo­
nents in the selected half of the array, either Name_List[15] or Name_List[5).
If the names do not match, the array is partitioned further. The search contin­
ues until Name_to_Find matches a component of Name_List.

More PAS CAL Statements 7-3

If the name is not in the array, eventually the value of I will exceed the value
of J, causing execution of the loop to terminate.

Note the following properties of the REPEAT statement:

• The statement(s) in the loop body are always executed at least once because
the Boolean expression in the UNTIL clause is evaluated after the loop body
is executed.

• A statement or statements within the loop body must eventually cause the
value of the Boolean expression to become TRUE. Otherwise, the loop
would never stop executing.

• Because the reserved words REPEAT and UNTIL enclose the statements to
be executed, you do not need a compound statement to set off multiple
statements. The statements may be delimited with BEGIN and END, but
do not have to be. In addition, you need not use a semicolon immediately
preceding UNTIL.

Examples

1. Assume that Count, Sum, Number, and Average have been declared as
integer variables. ·

Surr1 : = 0;
Count:= o;
REPEAT

READ (Nurr1b er) ;
Sum := Su~ +Number;
Count :=Count+ 1;

UNTIL EOLN <INPUT> OR (Count = 10);
Auerase := Sum DIV Counti

This example reads and sums a list of 1 to 10 integers on a line and
averages them. The integers must be entered on one line and a ~ must
be entered after the last integer. The REPEAT loop reads in one integer,
adds it to Sum, and increases Count by 1.

The REPEAT loop is terminated when EOLN (INPUT) is TRUE or when
Count equals 10. EOLN (INPUT) becomes TRUE as a result of the (Bru
typed after the last integer entered.

2. The following declarations have been made:

TYPE

I.JAR
Namestrins = PACKED ARRAY[1 •• 20J OF CHAR;

Name : Namestrins;
Name list : ARRAY[1, .30J of Namestrins;
Namecount : INTEGER;

The REPEAT loop below uses these variables:

Narr1ecount := o;
REPEAT

READLN (Name) ;
Namecount := Namecount + 1;
Namelist[NamecountJ := Name;

UNTIL EDF OR (Namecount = 30);

7-4 More PAS CAL Statements

This example reads character strings representing names and stores them
in the array Namelist, which contains components of type PACKED
ARRAY OF CHAR. N amelist can contain up to 30 names.

The REPEAT loop increases Namecount by 1, then reads one name and
assigns it to one component of Namelist (that is, Namelist[Namecount]).
The loop is terminated when Namecount equals 30 or when EOF becomes
TRUE. Note that, because the READLN statement reads one name and
then skips to a new line, each name in the input file must be typed on a
different line.

7.2 The WHILE Statement

The WHILE statement is like the REPEAT statement in that it specifies the
repetitive execution of a statement. The format is:

WHILE Boolean-expression DO statement

The loop body is executed while the Boolean expression is TRUE. When the
expression becomes FALSE, execution terminates.

The flow of control for the WHILE statement is shown in Figure 7-2.

Start

FALSE

TRUE

Statement

End

ZK-1032-82

Figure 7-2: The WHILE Statement Flow Chart

More PAS CAL Statements 7-5

There are three important differences between the WHILE statement and the
REPEAT statement.

1. WHILE tests the expression before executing the statement(s) in the loop
body; REPEAT tests the expression after executing the statement(s).
Therefore, if the Boolean expression is FALSE when WHILE is first en­
countered, the statement following DO is not executed.

2. WHILE controls the execution of only one statement. Hence, to execute a
group of statements repetitively, you must use a compound statement.
REPEAT does not require a compound statement.

3. WHILE terminates execution of the loop when a condition becomes
FALSE. REPEAT terminates execution when the condition becomes
TRUE.

Examples

1. Example 1 in the preceding section can be rewritten using a WHILE
statement to produce the same results:

Loop with WHILE Statement

SUfTl : ::: 0;
Count:= o;
WHILE NOT EOLN <INPUT> AND <Count< 10) DO

BEGIN
READ (Nur11be r);
Sum := Sum + Number;
Cou~t :=Count+ 1;
END;

Auerase := Sum DIV Count;

Loop with REPEAT Statement

SUfTl : ::: 0;
-Count := o;
REPEAT

READ < Nurtibe r >;
Sum := Sum + Number;
Count := Count + 1;

UNTIL EOLN <INPUT> OR <Count 10);
Auerase := Sum DIV Count;

The differences between the two examples lie in the specification of the
conditions for terminating the loop. The WHILE loop is different in these
ways:

• The test for EOLN (INPUT) must be written as NOT EOLN (INPUT)
so that the loop body is repeated as long as EOLN (INPUT) is FALSE.
If the input line is empty, the WHILE loop is not executed at all, while
the REPEAT loop is executed once. The REPEAT loop reads an addi­
tional line while searching for a number.

• The condition which determines that only 10 integers can be averaged
must be rewritten as Count < 10 (instead of Count = 10). On the last

7-6 More PAS CAL Statements

iteration, the 10th integer is read and Count becomes 10. Count < 10 is
then FALSE, so the loop body is not executed again.

• The logical expression uses the operator AND instead of OR. The state­
ments are executed as long as both conditions are TRUE.

2. WHILE NOT Errorflas AND <Intcount < 100) DO
BEGIN
READ <Int);
IF Int > 0
THEN

Poscount := Poscount + 1
ELSE

IF Int < 0
THEN

Nescount := Nescount + 1
ELSE

Errorflas := TRUE;
Intcount := Intcount + 1;
ENO;

This WHILE loop reads an integer: if it is positive, the variable Poscount
is incremented; if it is negative, the variable Negcount is incremented. Up
to 100 integers can be counted; the number of integers counted is accumu­
lated in Intcount. If a zero is encountered in INPUT, Errorflag becomes
TRUE and the loop is terml.nated.

Suppose that in the program surrounding the above fragment, there is
more than one way to obtain an error and thus assign the value TRUE to
Errorflag. If Errorflag is TRUE before the program encounters the WHILE
statement, the loop body will not be executed. Similarly, if Intcount is
greater than or equal to 100, the loop will not be executed.

7 .3 The CASE Statement

The CASE statement selects one out of a group of statements for execution. In
a CASE statement, constant values, or case labels, are associated with each
possible statement or action to be performed. CASE executes the statement
labeled by the value that equals a specified expression. For example:

CASE Ans1A1ers OF

END;

9t10: Score:= 'A';
8 : Score := 'B';
7 : Score := 'C';
G : Score := 'D';
Ot1t2t3tllt5.: Score:= 'F';

This CASE statement compares the value of the expression Answers to the
case labels (the numbers 0 through 10). If the value of Answers is any of the
numbers from 0 to 10, the statement to the right of that number is executed.

NOTE

The CASE statement is one exception to the rule that every
END must be associated with a BEGIN.

More PASCAL Statements 7-7

The format of the CASE statement is:
CASE case-selector OF

{case-label-list : statementl; ...
[[;]OTHERWISE {statementl; ...]

END
The case selector is any expression (not only a variable) whose value is of an
ordinal type. The case label list consists of one or more values of the same
type as the selector, separated by commas. Each label list is associated with
the statement to its right. The label list and statem,ent must be separated by a
colon(:). You may include an optional OTHERWISE clause that contains one
or more statements that are not associated with labels.

You can specify the labels in any order. Each label . may appear only once
within a CASE statement.

At run time, if the selector equals one of the specified labels, the statement
to the right of that label is executed. If an OTHERWISE clause is included
and the selector does not equal one of the labels, the statements following
OTHERWISE are executed. It is an error if the selector does not equal a
label and there is no OTHERWISE clause.

The flow of control for the CASE statement is shown in Figure 7-3.

Examples

1. Suppose you have made the following declarations:

Month : (Jan' Feb, Mar, APr, Ma}', June t

Jul}'; Aus, Sept, Oct1 No1}, Dec);
Season : (Winter. SPrins, Summer, Fall>;
Te1r1P : INTEGER;
Sn 01,,1 : BOOLEAN;

You can use the following CASE statement:

CASE Month OF
Jan, Febi Mar : BEGIN

Season := Winter;
IF CTe1r1P <= 30)
THEN

Sno1,.1 : = TRUE;
END;

APri MaY, June : Season := SPrins;
July, Aus, Sept: Season:= Su1r11r1er;
Oct• Nov, Dec : Season :=Fall;

END;

At run time, the current value of Month is evaluated. The statement
associated with that value is executed; the rest of the statements are
ignored. For example, if Month equals May, then Spring will be assigned
to the variable Season.

2. This example represents the relationship of combinations of genes to the
occurrence of dominant versus recessive traits. Assume that Gene_Combo
and Trait are variables of enumerated types declared as follows:

I.JAR
Gene_Combo : (Recessive_Recessive. Recessive_Dominantt

Do1rlinant_Recessi1}e' Do1rlinant_Do1r1inant);
Trait : CRecessivei Dominant);

7-8 More PAS CAL Statements

Case Selector

Label-List1 Label List2 • • • Label-Listn

Statement Statement Statement

End

Standard Form

OTHERWISE
Case Selector

Label-List1 Label-List2 • • • Label-Listn

Statement Statement ••• Statement Statement(s)

OTHERWISE form
ZK-1033-82

Figure 7-3: The CASE Statement Flow Charts

More PAS CAL Statements 7-9

These variables are used in the following CASE statement:

CASE Gene_Combo OF

ENDi

Recessiue_R~cessiue : Trait := Recessive;
OTHERWISE

Trait := DoMinant;

If the value of Gene_Combo is Recessive_Recessive, the value Recessive
is assigned to Trait. If Gene_Combo evaluates to any other value, the
OTHERWISE clause is executed; that is, Dominant is assigned to Trait.

7 .4 The Program Class~Data -An Example

This section presents an example program called Class_Data. The program
illustrates several of the language features covered in Chapters 5, 6, and 7.

The program Class_Data, illustrated in Figure 7-4, reads and stores informa­
tion about a hypothetical group of students. The data for one student is stored
in a variable (Student) whose type is a record with three fields. The three
fields contain the following information:

• Social security number

•Name

•Year

The array Class contains information about a group of students. The execut­
able section illustrates the use of the WITH, WHILE, and CASE statements,
1/0 procedures, and various other PASCAL features.

PROGRAM Class_Data <INPUT10UTPUT) i

I* Declarations *I

CONST
Max_Size = 100; e

TYPE
Student_Id

RECORD
=0

t.JAR

SocSec : PACKED ARRAY[1,,11J OF CHARi (* SocSec is in the forM: ###-##-#### *)
NaMe PACKED ARRAY[1 •• 20J OF CHARi
Year <FreshMant SoPhoMoret Juniort Senior) i
ENDi

Student : Student_Idi f)
Class: ARRAY[1 .. Max_SizeJ OF Student_I•:li•
ClassSizet I : INTEGER:= Oi~
Fresh_Count, Soph_Count, Jun_Count ,~0 (* Initializes each of these intes"er *)
Sen_Count : INTEGER := o;-= <* 1.iariables to 0 *)

BEGIN (* Class_Data *)

A WRITELN ('For each student' tYPe a nar11e1 soc. sec. #t and ~·eart as')i

{

(* Instructions *)

~ WRITELN ('PrOMPted. Press <RET> after each answer and <CTRLIZ> after list')i
WRITELNi

Figure 7-4: The Program Class_Data

7-10 More PASCAL Statements

(* InPut Section *l
WRITE ('Nar11e: '); (* Initial proMPt *l

(*This loop ProMPts for and then reads 1ata for a student record1 assiSns
it to one coMPonent of the arraY Class1 and increMents the array index
and the variable ClassSize. The loop is terMinated when EDF becoMes true
(that is1 when <CTRLIZ> is encountered,) *)

WHILE NOT EDF DO «i)
BEGIN
WITH Student DO 4D

BEGIN
READLN (NaMe) i
WRITE ('Soc Sec#: ')j ~
READLN (SocSecli 4D
WRITE ('Year: ');
READLN (Year);
ENDi

A{ClassSize := ClassSize + 1;
~ Class[ClassSizeJ := Student;

IF ClassSize < <Max_Size)
THEN

WRITE ('Nar11e: 'l
ELSE

WRITELN ('The class is full, tYPe <CTRL/Z)');
ENO;

WRITELN;

(* DutPut Section *>
(* The followins section Prints the output data. The outPut consists of a

headinSt and a naMet nuMber1 and Year for each student. In addition1 the
nuMber of students in each Year is counted and reported in the output. *>

WRITELN ('Nar11e: ', '.SocSec #; ':Zll1 'Year: ':lll>;
WRITELN; "'-
FOR I := 1 TO ClassSize DOC!) ""'

BEGIN . ~
WITH Class[IJ DO /

BEGIN
WRITELN <Nar11e:201 SocSec:111 Year:12);
CASE Year OF ~

Freshr11an :- Fresh_Count : = Fresh_Count + 1;
SoPhoMore : SoPh_Count := Soph_Count + 1;
Junior Jun_Count := Jun_Count + li
Senior : Sen_Count := Sen_Count + 1;

ENO.;
END;

END;
WRITELN;
WRITELN ('Class Profile:');
WRITE (Fresh_Count:21 ' freshMen ', SoPh_Count:21 ' soPhoMores
WRITELN (Jun_Count:21 ' Juniors ', Sen_Count:21 ' seniors ');
END. (* Class_Data *)

(* Sar11Ple OutPut 4D
Nar11e: SocSec #. Year:

KathY Moore 23ll-34-5678 FRESHMAN
John Jones 3ll5-67-8807 SENIOR
Da1.1 e Bro1A1n 078-34-2345 JUNIOR
Ruth Doe 121-21-2121 FRESHMAN
Barb Cohen 000-00-0000 SENIOR
Ro}' Rose rs 234-56-7880 SOPHOMORE

C 1 a s s P ·r o f i 1 e :
2 freshMen 1 soPhoMores 1 Juniors 2 se~'ors *l

Figure 7-4 (Cont.): The Program Class_Data

More PAS CAL Statements 7-11

The circled numbers in Figure 7-4 are keyed to the numbers in the following
sections.

7 .4.1 The Declaration Section

The major data structure in the program Class_Data is the user-defined type
Student_ld 0. Student_Id is a record containing three fields - SocSec,
Name, and Year. The field SocSec is a packed array of 11 characters. Social
security numbers are to be input in this format:

xxx-xx-xxxx

The -field Name is a packed array of 20 characters. The field Year is an
enumerated type consisting of the four class levels - Freshman, Sophomore,·
Junior, and Senior.

The variable Student 8 is declared to be of type Student_Id. It can contain
only one data record (that is, one name, social security number, and year).
The variable Class 0 can contain a group of records. Class is an array with
components of type Student_Id and with indexes that range from 1 to Max_
Size. Max_Size 0 is a symbolic constant defined as 100 in the CONST·
section. This CONST definition can be easily modified to accommodate a
larger or smaller group of students.

The remaining variables are integers 0 that represent the number of students
in the entire class, the number of students in each year, and a FOR loop
control variable (the variable I). Each of the count variables is initialized to 0
when it is declared.

7 .4.2 The Executable Section

The program Class_Data accepts data on a group of students, stores the
information in an array of records, and prints the information. The program
follows the steps outlined below:

• Prints instructions for the user 0.

• Prompts for and then reads input data for each student 8~

• Increments the index variable ClassSize and assigns data for one student to
one component of the array Class 0.

• Prints collected data, including headings 0. The output data consists of a
name, a social security number, and a year for each student, and the num­
ber of students in each of the four years.

The executable section contains various PASCAL statements and 1/0 proce­
dures. For example, the WHILE loop (ID determines the flow of control for the
section that prompts for and reads data. The statements within the WHILE
loop are executed repetitively as long as NOT EOF is TRUE.

7-12 More PASCAL Statements

There are two examples of the WITH statement in Class_Data G>. The first
example is:

WITH Student DO

This statement allows direct references to fields of the record variable Student
in the subsequent compound statement. Thus, the following statements are
equivalent:

READLN (Narr1e) ; RE0DLN (Student.Name);

The WITH statement is also used in the output section. In this WITH state­
ment, the specified record variable is one component of the array Class. Be­
cause the FOR loop a> increments the index variable I, a different component
.of Class is processed each time the WITH statement is executed.

In addition, the program illustrates two extended I/O features of V AX-11
PASCAL: (1) prompting at the terminal and (2) reading of character strings.
The input section contains the following statement, which prompts for input
data at the terminal m:
WRITE ('SocSec #: ');

This statement prints the string enclosed in apostrophes and leaves the car­
riage or cursor positioned after the last character printed. You can then finish
the line by typing a string that represents a social security number:

SocSec #: azS-29-0000

The following statement m reads the string into a packed array of characters:

READLN (SocSec);

Each character in the social security number (including hyphens) is assigned
to a component of Student.SocSec.

Class_Data shows the use of a CASE statement~ in the output section. The
selector in the CASE statement is Year, which is one field of the current
component of Class (that is, Class[I]). As the FOR loop steps through each
component of Class, this CASE statement counts the number of occurrences
of each year. For example, if Class[l].Year equals Sophomore, the CASE state­
ment selects the statement to the right of the value Sophomore. Thus, Soph_
Count is increased by 1.

The WRITE and WRITELN statements in the output section ~ illustrate
various examples of field-width specifications. These statements produce the
sample output 4D shown below the program.

More PASCAL Statements 7-13

Chapter 8
Procedures and Functions

In many cases, it is convenient to group into a discrete unit statements that
perform some specific action in a program. In PASCAL, procedures and func­
tions are examples of such discrete units. You can write procedures and func­
tions to perform specific tasks. For example, all of the output operations
needed in a program can be contained in one procedure. The program can call
the procedure every time the output operations are needed.

A procedure is a named group of statements that performs a set of actions.
You declare a procedure in the declaration section. Subsequently, you can call
the procedure in the executable section. When a procedure is called, the
statements are executed as a group.

A function is similar to a procedure in that (1) it is a named set of statements,
(2) you must declare it in the declaration section, and (3) the statements are
executed as a group when the function is called by a function designator.
However, a function has a type and returns a value of that type. You can use a
function designator just as you would use any expression; in fact, it is an
expression.

Procedures and functions have similar structures and restrictions. This primer
uses the term routine in descriptions that apply to both procedures and func­
tions. You can use predeclared routines, which are declared by PASCAL and
denoted by predeclared identifiers, or you can create user-declared routines,
as described in this chapter. Appendix C contains tables of all the prede­
clared procedures and functions in VAX-11 PASCAL.

The sample program Compute, shown in Figure 8-1, illustrates some general
concepts that apply to all routines. The explanations that follow Figure 8-1
are keyed to the figure by means of the circled numbers.

Sections 8.1 and 8.2 describe procedures and functions, respectively, in detail.
Section 8.3 discusses how to pass data, in the form of parameters, to a routine.

8-1

PROGRAM CoMPute IINPUTt OUTPUT>;

<*This ProsraM coMPutes the MiniMUMt Maximum, and averase values in a list of
intesers tYPed at the terminal and the number of tiMes the Minimum and maxiMUM values
occur. The nurriber of intesers it accePts is deterrrlined by the sYrribolic constar1t Nurriber. *)

CONST
NuMber

TYPE

25i

Ranse = o •• 1000;
List= ARRAY[l+,NurriberJ OF Ranse;

Arr : Listi
MiniMum1 MaxiMUM : Ransei
Ai.ierase: REALi
Int_Count : INTEGER;

PROCEDURE Rea1LintsG)
(t.JAR A : List ; l

t.'AR I : INTEGER J ; f (i) 40

(* Max nuMber of values to be Processed *)

(* Values can be in this ranse *l
(* SPecifies the aMount and ranse for values *l

(* Holds the values to be Processed *)
(* MiniMum and MaxiMum of list *l
(* Averase value in list *l
(* NuMber of values read from terminal *)

'* This Procedure reads the intesers to be Processed into the array A+ The
array of inteSers and the nuMber of inteSers that were read are Passed back
to the Main ProsraM+ *l

BEGIN
WRITELN 'TYPe froM 1 to ', Number:3, ' intesers1 in the ranse of 0 to 1000. 'l;
WRITELN 'TYPe <RET> after each inteser and <CTRLIZ> after last inteser. ');
I : = 0;
WHILE NOT EDF IINPUTl AND II NuMberl DO

BEGIN
I :=I+ li
READLN (A [I J) ;
ENDi

ENDi

PROCEDURE Min_Max_Ai.is 0
IA: Listi }
Ints_Read INTEGER>; (i)

(* Read_Ints *l

(*This Procedure COMPUtes the MinimuM1 MaxiMUMt and averase values in array A,
It also counts the occurrences of the MiniMUM and maxiMUM values; Each of these
computations is Printed with text that labels each value. *l

I
t.JAR

Surri' J : INTEGER; 0 Max_Count' Min_Count
Mini Max : Ransei
Ai.is: REALi

l++Nurriber;

Figure 8-1: The Program Compute

8-2 Procedures and Functions

PROCEDURE Print_Data; 0
BEGIN
WRITELN;

Max:Ll1'1 occu1'rins'1 Max_Count:Ll1 WRITELN ('Maxi1r1u1r1 -
WRITELN ('Minimum -' Min:Ll1' 1 occurrins'' Min_Count:Ll1

1,1alue (truncated)='• TRUNC(A1,1sl:Gl!
value =', A1,1s : 12);

WRITELN
WRITELN
ENO;

('A1,1erase
('A1,1erase

BEGIN (* Min_Max_Avs *l
Max:= A[lJ;
Min := Max;
Sum := Max;
Max_Count := 1;
Min_Count := 1;
(* Besin followins' FOR loop with a 2 because Max and Min

already contain the first component in array, The first

' ti frl es ')
ti fTl e S I)

iteration compares the second component to the first component. *l
FOR J := 2 TO Ints_Read DO (* A[JJ is current intes'er in array *l

BEGIN
Sum :=Sum+ A[JJ;
IF ALJJ Max
THEN

BEGIN
Max := A[JJ;
Max_Count : = 1;
END

ELSE
IF A[JJ = Max
THEN

Max_Count := Max_Count + 1;

(*If A[JJ >Maxi assisn it to Max *l

(* If A[JJ Maxi increment Max_Count *)

IF A[JJ Min (* If A[JJ Mini assisn it to Min*)
THEN

BEGIN
Min := A[JJ;
Min_Count := 1;
END

ELSE
IF A[JJ = Min
THEN

Min_Count := Min_Count + 1;
mo;
Avs := Sum/Ints_Read;
Print_Data; f)
mo;

(****** MAIN PROGRAM ******)
G)

(BEGIN r A ,

o'Read __ Ints (Arr I Int_Countl ;f)
)Min_Max_Ai.i.9 \Arr 1 Int_Count) ;$
(END I

I* If AEJJ Mini increment Min_Count *l

(* Print results *l
I* Min_Max_Aus *l

Figure 8-1: (Cont.) The Program Compute

Procedures and Functions 8-3

The program Compute finds the minimum, maximum, and average values in
a list of integers typed at the terminal.

Execution starts with the BEGIN that delimits the executable section of the
main program 0 and follows these steps:

1. The main program calls the procedure -Read_Ints 8, which performs
these steps:

a. Types instructions to the terminal

b. Reads integers and assigns them to successive components of the array
A, terminating when EOF is TRUE or when 25 values have been read

2. The main program calls the procedure Min_Max_AvgO, which performs
these steps:

a. Finds the minimum and maximum values of the integers stored in the
array, and computes the number of times each minimum and maxi­
mum occurred

b. Computes the average number of integers read

c. Calls the procedure Print_Data, which prints the result of each com­
putation with text that labels each value

Format of a Routine

All routines must be declared in the declaration section of the main program
or of another routine. A routine is not executed when it is declared. It is
executed as a result of a routine call, which can appear in the main program or
in another routine.

Thus, in Figure 8-1, the procedures Read_Ints 0 and Min_Max_Avg 0
appear in the declaration section of the program Compute. These procedures
are executed as a result of procedure calls 8 0, which appear in the execut­
able section of Compute.

Routines are said to be nested within the main program. In addition, routines
can be nested within other routines. You can refer to the name of a nested
routine only from inside the block that declares it. For example, the procedure
Print_Data is nested within the procedure Min_Max_Avg 0. Print_Data is
executed as a result of a procedure call & in the body of Min_Max_Avg.

8-4 Procedures and Functions

Routines are similar in format to programs. A routine consists of a heading
and a block; the block contains a declaration section and an executable sec­
tion. The heading of a routine is slightly different from that of a program: it
can contain a formal parameter list 0. The heading of a function also indi­
cates the type of the value returned. The declaration section defines local data
items that are used in the routine. The executable section contains the state­
ments that perform the actions of the routine.

Identifiers Used in Routines

The statements in a routine can use three kinds of user identifiers:

• Local identifiers

• Global identifiers

• Parameters

Local identifiers are defined in the declaration section of a routine. They can
be accessed only from within the routine block in which they are declared. For
example, the procedure Min_Max_Avg uses the local identifiers Sum, J,
Max_Count, Min_Count, Min, Max, Avg, and Print_Data 0. The proce­
dures Read_lnts and Print_Data use no local identifiers.

Global identifiers are declared outside a routine; they can be accessed by the
routine. Thus, identifiers declared in the main program block are global to all
routines. Identifiers declared in a routine are global to all nested routines. For
example, the procedure Print_Data has no local variables. It uses the global
identifiers defined in the surrounding block Min_Max_Avg 0. In addition,
predeclared identifiers are global to all parts of a PASCAL program.

Parameters are the means by which routines can communicate with the main
program and with each other. The parameters in the routine heading are
called formal parameters. Their identifiers are used within the routine block.
Each formal parameter corresponds to an actual parameter found in the rou­
tine call. During execution, the formal parameters within the routine take on
the values of the actual parameters.

For example, in the procedure Read_Ints, the formal parameter list declares
the parameters A and I of type List and INTEGER, respectively~. The
procedure is called with two actual parameters: Arr of type List and Int_
Count of type INTEGER ID. The identifiers A and I are used within Read_
Ints to represent the variables Arr and Int_Count.

The scope of an identifier is the part of the program in which you have access
to the identifier; that is, the block in which it is declared. Thus, the scope of
an identifier declared in the main program block is the full program. The
scope of an identifier declared in a routine block is that routine and all
routines nested within it.

In a routine, you can redeclare an identifier that has been declared in an outer
block. When you use an identifier that is declared both in a routine and in an
outer block, the identifier always refers to the declaration of most limited
scope. The scope of the global identifier does not include any block in which it

Procedures and Functions 8-5

is redeclared. Thus, the local identifier can have properties (for instance, type
or value) distinct from those of the global identifier.

8.1 Procedures

A procedure associates an identifier with a group of statements. For example,
the program Compute contains a simple procedure called Print_Data that
performs output operations:
PROCEDURE Print_Data;

BEGIN
WRITELN;
WRITELN ('Maxir11ur11 ='1 Max:41 ', occurrins'1 Max_Count:41 'tir11es');
WRITELN ('Minir11ur11 ='1 Min:41 '1 occurrina'1 Min_Count:41 'tir11es');
WRITELN ('Ai.ierase 1.ialue (truncated) ::£', TRUNC (A 1 • .is) :G) i
WRITELN ('Averaae value =', Avs:12);
ENDi

The specification of Print_Data in the procedure Min__Max._Avg is a proce­
dure declaration.

8.1~1 Declaring a Procedure

To declare a procedure, specify the procedure heading and block in a PROCE­
DURE part of the declaration section. You can declare a procedure in the
main program or in another routine. The format of a procedure declaration is:

PROCEDURE procedure-name ~(formal-parameter-list)~;
~declaration-section~
BEGIN
{statement}; ...
END;

The procedure name specifies the identifier to be used as the name of the
procedure. The formal parameter list describes the formal parameters used in
the procedure (see Section 8.3).

The declaration section contains local declarations and definitions. The state­
ments between BEGIN and END can be any PASCAL statements. In short,
the procedure block is identical to the main program block with the following
exceptions:

• The declaration section cannot usually contain value initializations.

• The procedure block ends with an END followed by a semicolon (;) rather
than by a period (.).

You cannot redeclare the formal parameter names as local identifiers in the
procedure.

8.1.2 Calling a Procedure

A procedure is executed as a result of a procedure call. A procedure call
consists of the procedure name and, when required, an actual parameter list.
If the procedure declaration contains a formal parameter list, the procedure
call must contain a corresponding actual parameter list.

8-6 Procedures and Functions

For example, to execute the procedure Print_Data, you specify its name as a
procedure call:

P r i n t _ D a t'a ;

Note that the procedure call is itself a statement.

The main program i11 Compute (Figure 8-1) consists of two statements - a
procedure call to Read_Ints and a procedure call to Mi:n__Max_Avg:

BEGIN
Read_Ints <Arr, Int_Count);
Min_Max_Ai.i,g <Arr, Int_Count);
END.

The call to Read_Ints specifies two actual parameters, the variables Arr and
Int_Count. They correspond to the formal parameters A and I in the proce­
dure. The call to Min_Max_Avg passes the same two variables as actual
parameters. In Min_Max_Avg, the formal parameters A and Ints_Read take
on the values of the actual parameters Arr and Int_Count.

Actual and formal parameters are described in greater detail in Section 8.3.1.

8.2 Functions
A function associates an identifier with a group of statements that returns a
value. Functions are similar in format to procedures. However, a funCtion is
associated with a type and returns a value of that type. The type of the return
value is specified in the function heading.

For example, the following is a valid function declaration:

FUNCTION Di!}ides
CDi!}idendt Di!}isor : INTEGER>
: BOOLEAN;

BEGIN
IF CDi!}idend MOD Di!}isor 0)
THEN

Di!}ides := TRUE
ELSE

Di!}ides := FALSE;
END;

Divides is a Boolean function that returns a Boolean value. If Divisor is a
factor of Dividend (that is, if Divisor can be divided into Dividend with a zero
remainder), the function Divides will be TRUE. Otherwise, the function
Divides wiU be FALSE.

8.2.1 Declaring a Function

To declare a function, you specify its heading and block in a FUNCTION part
of the declaration section. The format of a function declaration is identical to
that of a procedure, except that it begins with the reserved word FUNCTION
instead of PROCEDURE and includes a result type. The format is:

FUNCTION function-name ~(formal-parameter-list)~ : result-type;
~declaration-section~
BEGIN
{statement}; ...
END;

Procedures and Functions 8-7

The function name is the identifier used as the name of the function. The
formal parameter list must conform to the format described in Section 8.3.1.
The result type may be any type except a file type or a structured type that
has a file component.

The block of a function is the same as the block of a procedure. Remember
that routines cannot usually contain value initializations and that they are
terminated with a semicolon (;) instead of a period (.).

Every function must include at least one statement that assigns a value of the
result type to the function name. In the function Divides, if the Boolean
expression - (Dividend MOD Divisor = 0) - is TRUE, the value TRUE will
be assigned to the function name. Otherwise, FALSE will be assigned to the
function name. If a value is not assigned to the function name during execu­
tion of the function, the function result will be undefined.

8.2.2 Invoking a Function

A function is called, and thereby executed, as a result of a function designa­
tor. A function designator is an expression and thus can be used wherever
other expressions can be used. For example, a function designator may appear
on the right-hand side of an assignment statement.

You can use the following statement to call the function Divides:

IF Divides CNuml' NuM2)
THEN

WRITELN <Numl:a, ' is a multiPle of ', Num2:4)
ELSE

WRITELN <Num1:4t' is not a multiple of ', Num2:4);

In this statement, the following expression is a function designator:

Dii.iides (Nurr11 t Nurr12)

The function designator is a Boolean expression in the IF-THEN-ELSE state­
ment. As with a procedure, the actual parameters in a function designator are
passed to the function. Thus, in the function Divides, the parameters Divi­
dend and Divisor take the values of Numl and Num2, respectively.

If, as a result of the IF-THEN-ELSE statement, Divides returns TRUE, the
first WRITELN procedure will be performed. If Divides returns FALSE, the
second WRITELN procedure will be performed.

Actual parameters are used in a function designator in exactly the same
manner as they are used in procedure calls. See Section 8.3.1 for details.

8.3 Parameters

You pass data (that is, values and variables) to a routine by means of parame­
ters. Formal parameters are those listed in the routine declaration. Actual
parameters are those specified in the routine call. In the body of the routine,
the formal parameters represent the actual parameters.

VAX-11 PASCAL contains several extensions to the syntax of formal and
actual parameters. The VAX~ll PASCAL Language Reference Manual pro­
vides complete information on these extensions.

8-8 Procedures and Functions

8.3.1 Actual and Formal Parameters

A routine's formal parameters assume the values of the actual parameters
when the routine is called. Formal parameters are listed in the formal param­
eter list in the heading of the routine. The formal parameter list describes the
parameters used within the routine and their types. The formal parameter list
is the declaration for the routine's parameters; they are not declared else­
where. For example, a procedure named Print_Sym_Array may have the
following heading:

PROCEDURE Print_Sym_Array
(t.JAR A : Arr;
Side : INTEGER);

In this procedure, A and Side are formal parameters and their types are Arr
and INTEGER, respectively.

The format of the formal parameter list for specifying value or variable
parameters (see Section 8.3.2) is:

(~VAR] {identifier-list : type}; ...)

The reserved ~ord VAR is placed only before variable parameters. The identi­
fier list specifies one or more identifiers that denote formal parameters. The
type specifies the type of the parameters in the preceding identifier list.

The formal parameter list determines the contents of the actual parameter
list. In the actual parameter list, you include one actual parameter for each
formal parameter specified in the routine heading. All identifiers used in the
actual parameter list must be declared in the block surrounding the routine
call.

For example, a valid procedure call to the procedure Print_Sym_Array is:

Print_Sym_ArraY (Current_Arrt Current_Side);

The actual ·parameter Current_Arr is associated with the formal parameter
A, and the actual parameter Current_Side is associated with the formal
parameter Side.

Thus, each actual parameter corresponds to a formal parameter. This corre­
spondence is established solely on the basis of the position of the parameters'
positions in their respective parameter lists. The type of an actual parameter
must be th_e same as that of its corresponding formal parameter.

You can call a routine several times with different actual parameters. For
example, the same program that contains the procedure call to Print_Sym_
Array (shown above), can contain the following:

Print_S}'lrLArra}' (Another_Arr' Another_Side);

As a result of this procedure call, when Print_Sym_Array is executed, the
formal parameters A and Side represent the actual parameters Another_Arr
and Another_Side, respectively.

To illustrate further the use of parameters, the procedure Print_Data from
Figure 8-1 can be rewritten so that it uses parameters instead of global varia­
bles:

Procedures and Functions 8-9

PROCEDURE Print_Data
<PMax1 PMin : Ranse;

PMax_Count1 PMin_Count
PAl.I s : REAL) ;

BEGIN
WRITELNi

INTEGER;

WRITELN ('Maxir11ur11 =', PMax:ll1 ', occurrins', PMax_Count:ll1 'tir11es')i
WRITELN ('Minir11ur11 =', PMin:ll1 ', occurrins', PMin_Count:ll1 'tir11es'ii
WRITELN ('At.ierase t.ialue (truncated) ='1 TRUNC <PAt.iSl:G);
WRITELN < 'At.ierase t.ialue =', PAt.iS: 12);
ENDi

The formal parameter list describes the variables used in the procedure and
their types. PMax and PMin are parameters of type Range (defined as 0 .. 1000
in the program Compute). PMax_Count and PMin_Count are parameters of
type INTEGER, and PAvg is a parameter of type REAL.

The following is a valid procedure call to the rewritten procedure Print_Data:

Print_Data <Max t Mint Max_Count t Min_Count t Aus);

Within the procedure, the formal parameters are used in the WRITELN pro­
cedures as if they already had values, even though no values are assigned to
them. When the procedure is executed, each formal parameter (PMax, PMin,
PMax_Count, PMin_Count, and Avg) assumes the value of its correspond­
ing actual parameter (Max, Min, Max_Count, Min_Count, and Avg, respec­
tively).

The identifiers Max, Min, Max_Count, Min_Count, and Avg must be de­
clared outside the procedure Print_Data. (In Compute, they are declared in
the declaration section of the procedure Min_Max_Avg.) Each of these
parameters must have the same type as its corresponding formal parameter.

8.3.2 Value and Variable Parameters

You can specify several kinds of parameters in a routine's formal parameter
list. The kind of parameter specified in the routine heading determines how
the parameter is passed to the routine. The two most common kinds of param­
eters are:

1. Value parameters -the value of the actual parameter is made available
to the routine. The routine cannot change the actual parameter's value
during execution.

2. Variable parameters - the address of the actual parameter variable is
made available to the routine. The routine can change the actual parame­
ter's value.

PASCAL passes value parameters to routines by default. However, if you
include the reserved word VAR before a parameter in the formal param­
eter list, the corresponding actual parameter will be passed as a variable
parameter.

8.3.2.1 Value Parameters - When you do not want a routine to change the
value of an actual parameter, you pass the actual parameter as a value pa­
rameter. An actual parameter passed as a value parameter can be any expres­
sion that can be assigned to the formal parameter type.

8-10 Procedures and Functions

The procedure Min_Max_Avg in the program Compute specifies only value
parameters in its heading:

PROCEDURE Min_Max_Avs
<A : List;
Ints_Read : INTEGER>;

This declaration specifies that the parameters in the procedure call will be
passed as value parameters. The procedure call is:

M i n _Max __ A 1.1 s (A r r t I n t _Co u n t) ;

When the procedure is executed, it uses the values of the variables Arr and
Int_Count whenever the parameters A and Ints_Read are specified. Even if
the procedure changed the values of A and Ints_Read, the values of Arr and
Int_Count would be unchanged.

An actual value parameter can be an expression. For example, you could use
the following procedure call to Min_Max_Avg:

Min_Max_Ai.is <Arr t Int_Count - Extras);

When the call is executed, the expression Int_Count - Extras will be evalu­
ated and the resulting value passed to the formal parameter Ints_Read.

8.3.2.2 Variable Parameters - When you want a routine to change the value
of an actual parameter, you must pass the actual parameter as a variable
parameter.

To specify a variable parameter, you must include the reserved word VAR
before a list of identifiers in the formal parameter list. VAR can appear more
than once in the routine heading. An actual parameter that is passed as a
variable parameter must be a variable of the same type as the corresponding
formal parameter.

For example, the procedure Read_Ints declares variable parameters in its
formal parameter list:

PROCEDURE Read_Ints
(I.JAR A : List ;

VAR I : INTEGER>;

The corresponding actual parameters must be variables of type List and IN­
TEGER. Thus, the following is a valid procedure call:

Read_Ints <Ar rt Int_Count);

Note that only the variable names appear in the actual parameter list; the
reserved word VAR is not included.

When you use a variable parameter, the memory address of the actual param­
eter is made available to the routine. Therefore, in the example above, the
formal parameter A and the actual parameter Arr represent the same varia­
ble. When the routine changes the value of A[IJ, it actually changes the value
of Arr[IJ.

The routine Read_lnts contains the following statements:

WHILE NOT EDF <INPUT) AND <I < Number> DO
BEGIN
I : = -I + 1 ;
READLN (A [I J) ;
END;

Procedures and Functions 8-11

The WHILE loop assigns values to components of array A until EOF is TRUE
or until I is equal to Number. After the routine is executed, the array Arr and
the variable Int_Count reflect the values assigned to A and I in the routine.

The procedure Read_lnts illustrates the importance of VAR parameters. The
main purpose of Read_Ints is to read integers from the terminal into an array.
If you use value parameters, the integers that are read will be lost after the
procedure is executed. However, if you use VAR parameters, the values in the
array and the number of integers that were read are reflected in the main
program. The next line in the program uses these new values (Arr and Int_
Count) in the procedure call to Min_Max__Avg.

You can have both value and variable parameters in the same formal parame­
ter list. For example;

FUNCTION SYmmetrY
<VAR SYmArr : Square_Arr;
Side : INTEGER>

: BOOLEAN;

I.JAR
It J : INTEGER;

BEGIN
SYMMetrY := TRUE;
FOR I := 1 TO Side DO

FOR J := I TO Side DO
IF ACitJJ <> ACJtIJ
THEN

SYmmetrY := FALSE;
ENDi

The function Symmetry will return TRUE if a two-dimensional array is sym­
metric and FALSE if it is not symmetric. Suppose the type Square_Arr is
defined as follows: ·

TYPE
Square_Arr = ARRAYC1 •• 10t1 •• 10) OF INTEGER;

That is, it is a 100-component array of integers. The parameter Side is of type
INTEGER and holds the length of the sides of the array being tested.

The function heading specifies that an actual parameter of type Square_Arr
will be passed as a.variable parameter. However, the actual parameter of type
INTEGER that is passed to Side is a value parameter.

You can reference the function Symmetry as follows:

IF SYMMetrY <This_Arrt This_Side)
THEN

WRITELN ('The array is Symmetric');

Suppose that This_Arr is of type Square_Arr and This_Side is of type
INTEGER. This_Arr will be passed as a variable parameter, and This_Side
will be passed as a value parameter.

8-12 Procedures and Functions

Appendix A
PASCAL-Defined Names

A.1

)

This appendix contains lists of the names defined by V AX-11 PAS CAL.
Section A.1 lists the standard reserved words that cannot be redefined as
identifiers. Section A.2 lists nonstandard reserved words that VAX-11 PAS­
CAL allows you to redefine. Section A.3 lists the predeclared identifiers that
hold a special meaning to PAS CAL, but can, if necessary, be redefined as user
identifiers.

Standard Reserved Words

AND END NOT THEN
ARRAY FILE OF TO
BEGIN FOR OR TYPE
CASE FUNCTION PACKED UNTIL
CONST GOTO PROCEDURE VAR
DIV IF PROGRAM WHILE
DO IN RECORD WITH
DOWNTO LABEL REPEAT
ELSE MOD SET

A.2 Nonstandard Reserved Words

%DES CR
%1MMED
%INCLUDE
%REF
%STD ES CR

MODULE
OTHERWISE
REM
VALUE
VARYING

A-1

A.3 Predeclared Identifiers

ABS FALSE PAD TEXT
ADD_JNTERLOCKED FIND PAGE TIME
ADDRESS FINDK PRED TRUE
ARCTAN GET PUT TRUNC
BIN HALT QUAD TRUNCATE
BITNEXT HEX QUADRUPLE UAND
BIT SIZE INDEX READ UFB
BOOLEAN INPUT READLN UINT
CARD INT READV UNDEFINED
CHAR INTEGER REAL UNLOCK
CHR LENGTH RESET UNOT
CLEAR-INTERLOCKED LINE LIMIT RESETK UNPACK
CLOCK LN REVERT UNSIGNED
CLOSE LOCATE REWRITE UOR
cos LOWER ROUND UPDATE
DATE MAXINT SET _INTERLOCKED UPPER
DBLE NEW SIN UROUND
DELETE NEXT SINGLE UTRUNC
DISPOSE NIL SIZE UXOR
DOUBLE OCT SNGL WRITE
EOF ODD SQR WRITELN
EOLN OPEN SQRT WRITEV
ESTABLISH ORD STATUS
EXP OUTPUT SUBS TR
EXPO PACK succ

A-2 PASCAL - Defined Names

Appendix C
Summary of Predeclared Procedures and
Functions

Tables C-1 and C-2 summarize the procedures and functions declared by
VAX-11 PASCAL. Some of the procedures and functions listed are not de­
scribed in this primer. Some procedures have an optional parameter, de­
scribed as e in this appendix. The value of this parameter indicates how errors
should be handled if they occur during execution of the procedure. For further
information, see the VAX-11 PASCAL Language Reference Manual.

C-1

Table C-1: Predeclared Procedures

Procedure

CLOSE(f,parameters,e)

DATE(str)

DELETE(f,e)

DISPOSE(p)

DISPOSE(p, tl, .. .,tn)

ESTABLISH(id)

FIND(f,n,e)

FINDK(f,kn,kv,m,e)

GET(f,e)

HALT

LOCATE(f,n,e)

LINELIMIT(f,n,e)

NEW(p)

NEW(p, tl,. .. ,tn)

OPEN (f,parameters,e)

Parameter

f = file variable
parameters - see the

VAX-11 PASCAL Language
Reference Manual

e = error parameter

str = variable of type
PACKED ARRAY
(1..11] OF CHAR

f = file variable
e = error parameter

p = pointer value

p = pointer value
tl, ... ,tn = tag field

constants

id = function-identifier

f = file variable
n = component number
e = error parameter

f = file variable
kn = key number
kv = key value
m = match type
e = error parameter

f = file variable
e = error parameter

None

f = file variable
n = component number
e = error parameter

f = text file variable
n = integer expression
e = error parameter

p = pointer variable

p = pointer variable
tl, ... ,tn = tag field

constants

f = file variable
parameters - see the

VAX-11 PASCAL Language
Reference Manual

e = error parameter

Action

Closes file f with the specified properties.

Assigns current date to str.

Deletes current component of file f. File f must have
relative or indexed organization and be opened for di­
rect or keyed access. The current component must be
locked.

Releases storage for p'. Any pointers to the storage
become undefined.

Releases storage for p'; used when p' is a record with
variants. Tag field values are optional; if specified,
they must be identical to those specified when storage
was allocated by NEW.

Sets up a V AX-11 condition handler to process excep­
tions.

Moves the current file position to component n of file f.

Moves the current position of file f to a specified com­
ponent. The match type can have a value of EQL,
GTR, or GEQ to indicate that the component to be
found has a value in key position kn that is equal to,
greater than, or greater than or equal to key value kv.
Match type m is optional and defaults to EQL. File f
must be opened for keyed access.

Moves the current file position to the next component
off. Then GET(f) assigns the value of that component
to f', the file buffer variable.

Calls LIB$STOP, signaling PAS$_ABORT. Without
an appropriate condition handler, HALT terminates
execution of the program.

Positions file f at component n so that the next PUT
procedure can modify n.

Terminates execution of the program when output to
file f exceeds n lines. The value for n is reset to its
default after each call to REWRITE for file f.

Allocates storage for p' and assigns its address to p.

Allocates storage for p'; used when p' is a record with
variants. The optional parameters t1 through tn spec­
ify the values for the tag fields of the current variant.
All tag field values must be listed in the order in which
they were declared. They cannot be changed during
execution. NEW does not initialize the tag fields.

Opens file f with the specified properties.

(Continued on next page)

C-2 Summary of Predeclared Procedures and Functions

Table C-1: (Cont.) Predeclared Procedures

Procedure

PACK(a,i,z)

PAGE(f,e)

PUT(f,e)

READ(f, vl, ... ,vn,e)

READLN(f, vl, ... ,vn,e)

READV(s,vl, ... ,vn)

RESET(f,e)

RESETK(f,kn,e)

REVERT

REWRITE(f,e)

TIME(str)

TRUNCATE(f,e)

UNLOCK(f,e)

UNPACK(z,a,i)

UPDATE(f,e)

Parameter

a = variable of type
ARRA Y[m .. nJ OF T

i = starting index
of array a

z = variable of type
PACKED ARRAY[u .. vJ
OFT

f = text file variable
e = error parameter

f = file variable
e = error parameter

f = file variable
vl, ... ,vn = variables
e = error parameter

f = text file variable
vl, ... ,vn = variables
e = error parameter

s = character-string
expression

vl, ... ,vn =variables

f = file variable
e = error parameter

f = file variable
kn = key number
e = error parameter

None

f = file variable
e = error parameter

str = variable of type
PACKED ARRAY
[l..llJ OF CHAR

f = file variable
e = error parameter

f = file variable
e = error parameter

z = variable of type
PACKED ARRAY[u .. vJ
OFT

a = variable of type
ARRAY[m .. nJ OFT

i = starting index
in array a

f = file variable
e = error parameter

Action

Moves (v-u+l) components from array a to array z by
assigning components a[i] through a[i+v-uJ to z[u]
through z[v]. The upper bound of a must be greater
than or equal to (i+v-u).

Skips to the next page of file f. The next line written to
f begins on the second line of a new page.

Writes the value of C, the file buffer variable, into the
file f and moves the current file position to the next
component of f.

Assigns successive values from the input file f to the
variables vl through vn. You must specify at least one
variable (vl). The default for f is INPUT.

Performs the READ procedure, then sets the current
file position to the beginning of the next line. The vari­
ables vl through vn are optional. The default for f is
INPUT.

Assigns successive values from the input string s to the
variables vl through vn. You must specify at least one
variable (vl).

Enables reading from file f. RESET(f) moves the cur­
rent file position to the beginning of the file f and as­
signs the first component off to the file buffer variable,
C. EOF(f) is set to FALSE unless the file is empty.

Enables reading from file f. RESETK(f,kn) moves the
current file position to the component with the lowest
value in key position kn. File f must be opened for
keyed acce,ss.

Cancels a VAX-11 condition handler set up by ES­
TABLISH.

Enables writing to file f. REWRITE(f) truncates the
file f to zero length and sets EOF(f) to TRUE.

Assigns the current time to str.

Deletes current file component and all components fol­
lowing it. File f must have sequential organization.

Unlocks the current file component if it is locked.

Moves (v-u+l) components from array z to array a by
assigning components z[ul through z[v] to a[iJ through
a[i+v-uJ. The upper bound of a must be greater than or
equal to (i+v-u).

Writes the contents of the file buffer into the current
component. File f must have relative or indexed organ­
ization and be opened for direct or keyed access. The
current component must be locked.

(Continued on next page)

Summary of Predeclared Procedures and Functions C-3

Table C-1: (Cont.) Predeclared Procedures

Procedure Parameter

WRITE(f,pl, ... ,pn,e) f = file variable
pl, ... ,pn = write

parameters
e = error parameter

WRITELN(f,pl, ... ,pn,e) f = text file variable
pl, ... ,pn = write

parameters
e = error parameter

WRITEV(s,pl, ... ,pn) s = character-string
variable

pl, ... ,pn =write
parameters

Action

Writes the values of pl through pn into the file f. At
least one parameter (pl) must be specified. The de­
fault for f is OUTPUT.

Performs the WRITE procedure, then skips to the be­
ginning of the next line. The write parameters are op­
tional. The default for f is OUTPUT.

Writes the values of pl through pn into the character
strings.

C-4 Summary of Predeclared Procedures and Functions

Table C-2: Predeclared Functions

Category Function Parameter Type Result Type Purpose

Arithmetic ABS(x) Any arithmetic Same as x Computes the absolute value of x.
type

ARCTAN(x) Integer, Unsigned, Real Computes the arc tangent of x. The result
Real is expressed in radians.

Double Double
Quadruple Quadruple

COS(x) Integer, Unsigned, Real Computes the cosine of x. The parameter
Real is expressed in radians.

Double Double
Quadruple Quadruple

EXP(x) Integer, Unsigned, Real Computes e**X, the exponential function.
Real

Double Double
Quadruple Quadruple

LN(x) Integer, Unsigned, Real Computes the natural logarithm of x. The
Real value of x must be greater than 0.

Double Double
Quadruple Quadruple

SIN(x) Integer, Unsigned, Real Computes the sine of x. The parameter is
Real expressed in radians.

Double Double
Quadruple Quadruple

SQR(x) Any arithmetic Same as x Computes X**2, the square of x.
type

SQRT(x) Integer, Unsigned, Real Computes the square root of x. If xis less
Real than zero, an error occurs.

Double Double
Quadruple Quadruple

Ordinal PRED(x) Any ordinal type Same as x Returns the predecessor value in the type
of x (if a predecessor exists).

SUCC(x) Any ordinal type Same as x Returns the successor value in the type of
x (if a successor exists).

Boolean EOF(f) File Boolean Indicates whether the file position is at
the end of the file f. EOF(f) becomes
TRUE only when the file position is after
the last component in the file. The de-
fault for f is INPUT.

EOLN(f) Text file Boolean Indicates whether the position of file f is
at the end of a line. EOLN(f) is TRUE
only when the file position is after the last
character in a line, in which case the
value of C is a space. The default for f is
INPUT.

ODD(x) Integer, Unsigned Boolean Returns TRUE if the integer x is odd; re-
turns FALSE if xis even.

UFB(f) File Boolean Returns TRUE if the last file operation
left the file buffer undefined; otherwise,
returns FALSE.

UNDEFINED(r) Real, Double, Boolean Returns TRUE if the variable r contains a
Quadruple reserved operand; otherwise, returns

FALSE.
(Continued on next page)

Summary of Predeclared Procedures and Functions C-5

Table C-2: (Cont.) Predeclared Functions

Category

Transfer

Dynamic
Allocation

Character
String

Function

CHR(x)

DBLE(x)

INT(x)

ORD(x)

QUAD(x)

ROUND(x)

SNGL(d)

TRUNC(x)

UINT(x)

UROUND(r)

UTRUNC(r)

ADDRESS(x)

BIN(x,l,d)

HEX(x,l,d)

INDEX(sl,s2)

LENGTH(s)

OCT(x,l,d)

PAD(s,fill,l)

Parameter Type

Integer, Unsigned

Any arithmetic
type

Any ordinal type

Any ordinal type

Any arithmetic
type

Real, Double,
Quadruple

Any arithmetic
type

Real, Double,
Quadruple

Any ordinal type

Real, pouble,
Quadruple

Real, Double,
Quadruple

Any VOLATILE
variable except a
component of a
packed
structured type

x = any type
l,d = Integer

Result Type

Char

Double

Integer

Integer

Quadruple

Integer

Real

Integer

Unsigned

Unsigned

Unsigned

Pointer

Varying

x = any type Varying
l,d = Integer

Any string type Integer

Any string type Integer

x = any type Varying
),d = Integer

s = any string type Varying
fill = Character
1 = Integer

C-6 Summary of Predeclared Procedures and Functions

Purpose

Returns the character (if one exists)
whose ordinal value is x.

Rounds the value of x to a double-preci­
sion real number.

Converts the value of x to an integer.

Returns the ordinal value corresponding
to the value of x.

Rounds the value of x to a quadruple-pre­
cision real number.

Rounds the real value x to the nearest
integer.

Rounds the value of d to a single-preci­
sion real number.

Truncates the real value x to an integer.

Converts the value of x to an unsigned
integer.

Converts the value of a real-type parame­
ter r to an unsigned integer by rounding
the fractional part.

Converts the value of a real-type parame­
ter r to an unsigned integer by truncating
the fract10nal part.

Returns a pointer which references the
parameter.

Converts a parameter x to its binary rep­
resentation. Returns the binary value in a
string of length 1 with d significant digits.
Parameters 1 and d are optional.

Converts a parameter x to its hexadeci­
mal representation. Returns the hexa­
decimal value in a string of length l with
d significant digits. Parameters 1 and d
are optional.

Locates the first occurrence of s2 within
sl. Returns an integer value indicating
the leftmost position of s2. Returns 0 if s2
is not fdund.

Returns an integer value indicating the
current length of s.

Converts a parameter x to its octal repre­
sentation. Returns the octal value in a
string of length 1 with d significant digits.
Parameters 1 and d are optional.

Pads a string s with a fill character until
it is of length 1.

(Continued on next page)

Table C-2: (Cont.) Predeclared Functions

Category

Unsigned

Allocation
Size

Low_Level
Interlocked

Miscel­
laneous

Function

SUBSTR(s, b,l)

UAND(ul,u2)

UNOT(u)

UOR(ul,u2)

UXOR(ul,u2)

SIZE(x,cl, ... ,cn)

NEXT(x)

BITSIZE(x)

BITNEXT(x)

ADD--1NTER­
LOCKED(e, v)

SET --1NTER­
LOCKED(b)

CLEAR--1NTER­
LOCKED(b)

CARD(s)

CLOCK

EXPO(r)

STATUS(f)

Parameter Type Result Type

s = any string type Varying
b,l = Integer

Unsigned

Unsigned

Unsigned

Unsigned

x = any type
cl, ... ,cn = case

constants

Any type

Any type

Any type

e = assignment
compatible
with v

v = Integer,
Unsigned,
or Subrange

Boolean

Boolean

Set

Real, Double,
Quadruple

File

Unsigned

Unsigned

Unsigned

Unsigned

[nteger

[nteger

[nteger

[nteger

[nteger

Boolean

Boolean

[nteger

[nteger

[nteger

[ntf;lger

Purpose

Constructs a new string beginning at po­
sition b of a given string s and extending
to length I.

Performs a binary logical AND on the
corresponding bits of parameters ul and
u2.

Performs a binary logical NOT on the
bits of parameter u.

Performs a binary logical OR on the cor­
responding bits of parameters ul and u2.

Performs a binary logical exclusive OR on
the corresponding bits of parameters ul
and u2.

Returns an integer value indicating the
number of bytes allocated for a variable
or record field of type x. If the variable is
part of a variant record, case constants cl
through en may be specified.

Returns an integer value indicating the
number of bytes allocated for a compo­
nent of type x in an unpacked array.

Returns an integer value indicating the
number of bits allocated for a field of type
x in a packed record.

Returns an integer value indicating the
number of bits allocated for a component
of type x in a packed array.

Adds e to v. Returns -1 if the result is
negative, 0 if the result is zero, +1 if the
result is positive.

Assigns TRUE to parameter b and re­
turns its original value.

Assigns FALSE to parameter b and re­
turns its original value.

Returns the number of elements cur­
rently belonging to the set s.

Returns an integer value equal to the cen­
tral processor time used by the current
process. The time is expressed in mil­
liseconds.

Returns the integer-valued exponent of
the floating-point representation of r.

Returns 0 if the previous operation on the
file succeeded, -1 if the previous opera­
tion encountered an end-of-file, and a
positive integer representing an error
code if the previous operation resulted in
an error.

Summary of Predeclared Procedures and Functions C-7

Glossary

actual parameter

Value or variable that is passed in a procedure or function call and is used during
execution of the routine.

actual parameter list

List of actual parameters that is specified in a routine call. The actual parameters
must be separated by commas, and the entire list enclosed in parentheses.

address

A location in the computer's memory.

arithmetic expression

Expression that uses arithmetic operators to produce a real or integer value.

arithmetic operator

array

Symbol used with numeric variables, function designators, and constants in forming
arithmetic expressions. In PASCAL, the arithmetic operators are +, -, *, /, **,DIV,
REM, and MOD.

Collection of a specified number of data items, called components, that have the
same type and share an identifier. The components can be accessed by the array
identifier and an index, enclosed in brackets. See also index.

ASCII character set

Characters and output control data that represent characters in V AX-11 PASCAL.
(ASCII stands for American Standard Code for Information Interchange.) Each
member of the ASCII character set corresponds to a unique integer between 0 and
255, inclusive.

Glossary-I

assignment statement

Executable statement that assigns a value to a variable.

base type

block

(1) The ordinal type of which a subrange is a subset. For example, the subrange
0 .. 123 has the base type INTEGER. (2) The ordinal type from which the members of
a set are chosen.

Declaration and executable sections of a program, procedure, or function. One block
can be nested in another; for example, a procedure block is nested in the block of its
declaring program.

Boolean expression

Expression that evaluates to one of the Boolean values FALSE or TRUE.

BOOLEAN type

bound

Predefined scalar type that has the identifiers FALSE and TRUE as constant values.

Upper or lower limit of a subrange, often used in defining the index limits for a
dimension of an array.

case label

In the CASE statement, a constant of the same type as the case selector. A list of case
labels, separated by commas and followed by a colon (:), precedes each statement
that can be chosen for execution.

case selector

In the CASE statement, the expression whose value determines the statement se­
lected for execution. The statement executed is the one whose case label is equal to
the value of the case selector.

character

Single element of the ASCII character set and a value of the predefined type CHAR.

character string

Sequence of ASCII characters, enclosed in apostrophes. See also string constant,
string variable, and varying character string.

2-Glossary

CHAR type

Predefined scalar type that has the ASCII character set as constant values.

comment

Any sequence of characters appearing between the character pairs { and } or (* and
*). Comments are for documentation purposes and are ignored by PAS CAL.

compiler

Program that translates source program statements into an object module.

component

In an array, record, or file, an individual data item. An array component is denoted
by the array name and an index for each dimension. A record component (also called
a field) is denoted by the record na'me followed by the field name. See also file
component.

compound statement

One or more PASCAL statements, bracketed by the reserved words BEGIN and
END, that are executed sequentially as a unit.

conditional statement

Statement that selects another statement for execution, depending on the value of an
expression. PASCAL's conditional statements are IF-THEN, IF-THEN-ELSE, and
CASE.

constant

Literal that represents a value that cannot change during program execution. Exam­
ples include 'p ', 3, 2. 781, and 'metaphysics

constant expression

An expression whose value can be computed when the program is compiled.

control statement

Statement that directs the flow of control in a program, such as the IF-THEN-ELSE,
FOR, WHILE, REPEAT-UNTIL, or CASE statement.

control variable

Ordinal variable that takes on sequential values with each iteration of a FOR loop.
After normal completion of the loop, the value of the control variable is undefined.

Glossary-3

data structures

Combinations of single data items that form related groups of data; for example,
records or arrays.

data type

See type.

decimal notation

Representation of real numbers in the integer.fraction format, as in 23.27, -7.83, and
0.0.

declaration

Specification that lists one or more labels or associates an identifier with what it
represents. All labels and all identifiers for constants, types, variables, procedures,
and functions must be declared.

declaration section

The part of a block that contains the declarations and definitions.

default

Action taken or value assumed by the system when none is explicitly specified.

delimiter

Punctuation mark or reserved word that sets off one part of a PAS CAL program from
another. BEGIN and END enclose the executable section or a compound statement.
The semicolon (;) separates declarations or statements, and the period (.) indicates
the end of the program.

dimension

Range of values for one index of an array. An array can have any number of dimen­
sions; see multidimensional array.

double precision

Precision of approximately 16 significant digits and a range from l0**-38 through
10**38, or 15 significant digits and a range from l0**-308 through 10**308 for a
floating-point real number; the type DOUBLE provides double precision.

4-Glossary

DOUBLE type

Predefined scalar type that has double-precision real numbers as values.

end-of-file

Condition indicating that the current file contains no more data. The EOF function
tests this condition.

end-of-line

Condition indicating that the current line contains no more data. The EOLN func­
tion tests this condition.

enumerated type

Type comprising a sequence of values denoted by constant identifiers. A list of
identifiers, separated by commas and enclosed in parentheses, defines an enumerated
type.

executable image

File containing the executable version of a program. An executable image is the
outpu,t from the linker, and is created by linking one or more object modules.

executable section

The part of a block that contains the executable statements, delimited by BEGIN.
and END, which perform the actions of the block. See statement.

expression

A constant, a variable, a function designator, or some combination of constants,
variables, function designators, operators, and parentheses that PASCAL can evalu­
ate. Every expression is associated with a type.

extension

Language feature found in VAX-11 PASCAL, but not in the PASCAL standard
proposed by the International Organization for Standardization.

external file

field

File that exists outside the scope of the PASCAL program, and therefore must be
specified in the program heading.

Named component of a record, containing data items of one or more types. Refer­
ences to a field are in the record.fieldname format.

Glossary-5

field width

file

Minimum number of characters that the WRITE or WRITELN procedure writes to a
text file for a particular value.

See file variable.

file component

Accessible unit of a file variable. A file component can be of any type except a file
type or a structured type with a file component.

file name

A 0- to 9-character name component of a VAXNMS file specification.

file position

Position immediately following the file component that was last read or written. Only
the component at the current file position can be accessed.

file specification

Unique VAX/VMS identification of a file on a mass storage medium (such as a disk).
It describes the physical location of the file (node, device, and directory) and identi­
fies the VAX/VMS file name, file type, and file version number.

file type

(1) In the VAX/VMS file specification, the 0- to 3-character type component that
usually describes the nature of a file or how it is used; for example, PAS indicates a
PASCAL source program. (2) In VAX-11 PASCAL, a structured type that is a se­
quence of any number of data components of the same type.

file variable

Named sequence of components of the same type, used in I/O operations. A file can
have any number of components; they can be of any type except a file type or a
structured type with a file component.

floating-point notation

Representation of real-number data in the integer.fraction format, followed by a
positive or negative exponent. The exponent is introduced by the letter E for a single­
precision number, as in 7.321E02; by the letter D for a double-precision number, as in
9.345D10; and by the letter Q for a quadruple-precision number as in 6.307Q04.

6-Glossary

formal parameter

Name that is declared in the heading of a procedure or function, and that represents
an actual parameter when the procedure or function is invoked.

formal parameter list

List of passing mechanisms and formal parameter declarations that appears in the
heading of a procedure or function. The entries in the list are separated by semicolons
and the list is enclosed in parentheses.

function

Routine that returns a value when executed. A function consists of a heading (which
includes the function's name and result type) and a block. See also predeclared
function.

function designator

Use of a function name and actual parameter list in an executable statement to
invoke the function.

function heading

Specification of the name, formal parameter list, and result type of a function in a
function declaration.

global identifier

Identifier that is declared in a block at an outer level and therefore can be used inside
the current (inner-level) block without redeclaration.

heading

Specification that precedes a block and defines the block's name and parameters.

identifier

index

One or more alphanumeric characters that denote a symbolic constant, data type,
variable, procedure, function, or other item that is not a reserved word. Although an
identifier can be of any length, PASCAL treats only the first 31 characters as signifi­
cant.

Expression of an ordinal type that is used with an array name to specify a component
of that array.

Glossary-7

input procedure

Procedure that reads data into a program. Input procedures provided by PASCAL
include READ, READLN, and GET.

integer

In VAX-11 PASCAL, a whole number between -2,147,483,647 and +2,147,483,647; a
value of type INTEGER.

INTEGER type

Predefined scalar type that has the integers as values. In VAX-11 PASCAL, integer
values range from -2,147,483,647 through 2,147,483,647.

interactive mode

label

linker

Mode of communication in which the system responds to the commands and program
input that the user types at the terminal.

(1) See case label. (2) Nonnegative integer constant that is declared in the LABEL
section and used to make a statement accessible from a GOTO statement. The label
precedes the statement and is separated from it by a colon (:).

Program that creates an executable image from one or more object modules. Pro­
grams must be linked before they can be executed.

local identifier

Identifier that is declared within a block and is unknown - and therefore
inaccessible - outside that block.

logical expression

Expression that uses logical operators to combine Boolean values.

logical operator

loop

Reserved word or symbol that specifies a logical test, the result of which is one of the
Boolean values FALSE or TRUE. The logical operators in PASCAL include AND,
OR, and NOT.

Construct that controls the repetitive execution of one or more statements until a_
specified condition is met.

8-Glossary

loop body

Statement or group of statements that are executed repetitively under the control of a
FOR, REPEAT, or WHILE statement.

modulus

Integer value that results when one operand, J, is repeatedly subtracted from another
operand, I (or repeatedly added, if I is negative), until the difference is less than J.
This difference is called the modulus of I with respect to J.

multidimensional array

Array with components of an array type. Each dimension of a multidimensional array
has its own indexes, which can be of different types.

nested

Contained within, as in a function declared within a procedure or a record that is a
field of another record.

nonstandard

Not found in the PASCAL language standard proposed by the International Organi­
zation for Standardization; said of extensions that are specific to VAX-11 PASCAL.

object module

Binary output from a language compiler or assembler that is input to the linker. The
linker processes one or more object modules to produce an executable image.

operand

Expression whose value is used in an arithmetic, relational, or logical operation.

operator

Symbol used in an expression to cause PASCAL to perform a specific calculation
task. PASCAL includes arithmetic, relational, and logical operators.

ordinal type

Sequence of values having a one-to-one correspondence with the set of integers. The
ordinal types in VAX-11 PASCAL are INTEGER, UNSIGNED, CHAR, BOOLEAN,
enumerated types, and subranges of these ordinal types.

Glossary-9

ordinal value

Integer corresponding to the position of a given value in a sequential list of values of
its type. Ordinal value applies only to INTEGER, CHAR, BOOLEAN, enumerated,
and subrange types. The ORD function returns the ordinal value of an expression of
one of these types.

output procedure

Procedure that writes data into a file. Output procedures provided by PASCAL
include WRITE, WRITELN, and PUT.

packed

Stored densely in the computer's memory.

parameter

Means of passing information between blocks. See actual parameter, formal parame­
ter, read parameter, and write parameter.

parameter list

Specification of the actual or formal parameters for a procedure or function. The
parameter list follows the name of the procedure or function and is enclosed in
parentheses. See also actual parameter list and formal parameter list.

PASCAL

(1) French mathematician and philosopher, born in 1623 and died in 1662.
(2) Structured programming language developed by Niklaus Wirth in Zurich, Swit­
zerland, in the early 1970s.

pointer type

Type whose values are references to dynamic variables.

precedence rules

Rules applied to the order of evaluation of operations in an expression. An operation
with higher precedence is performed before an operation with lower precedence.

predecessor value

Value that immediately precedes a given value in an ordinal type. The PRED func­
tion returns the predecessor value.

predeclared

Declared by PAS CAL rather than by the programmer.

IO-Glossary

predeclared identifier

Identifier declared by PASCAL to name a type, symbolic constant, file variable,
procedure, or function.

predeclared routine

Procedure or function declared by PASCAL and available for use without further
declaration.

predefined

See predeclared.

procedure

Routine that consists of a procedure heading and a block. When called, a procedure is
executed as a unit. See also predeclared routine.

procedure call

Statement that invokes a procedure. A procedure call consists of the name of a
procedure and its actual parameter list (when required).

procedure heading

Specification of the name and optional formal parameters of a procedure in a proce­
dure declaration.

program heading

Specification that begins a PASCAL program. The program heading specifies the
program's name and its external files.

quadruple precision

Precision of approximately 33 significant digits and a range from l0**-4932 through
10**4932 for a floating-point real number; the type QUADRUPLE provides quadru­
ple precision.

QUADRUPLE type

Predefined scalar type that has quadruple-precision real numbers as values.

read parameter

Variable used as a parameter in a call to the READ or READLN procedure to which
an input value will be assigned.

Glossary-11

real number

In VAX-11 PASCAL, the floating-point internal representation of a number ranging
from approximately 0.84*(10**-4932) through 0.59*(10**4932) for positive quantities,
approximately -0.59*(10**4932) through -0.84*(10**-4932) for negative quantities,
and the value 0.0.

REAL type

record

Predefined scalar type that has the single-precision real numbers as values; synony­
mous with SINGLE type.

Organized collection of data containing zero or more fields, each of which can be of a
different type.

relational expression

Expression that uses relational operators to test the relationship between two values.

relational operator

Symbol that tests the relationship between two values, the result of which is one of
the Boolean values FALSE or TRUE. PASCAL's relational operators are <, >, <=,
>=, <>, and IN.

repetitive statement

Statement that causes an action to be performed iteratively. PASCAL's repetitive
statements are FOR, REPEAT, and WHILE.

reserved word

Word set aside by the PAS CAL compiler as the name for a declaration, statement,
data structure, delimiter, or operator. Reserved words have special meanings to the
compiler and cannot be used as identifiers.

return value

Result of a function, assigned to the function's name during its execution. The return
value is supP,lied to the calling block wherever a function designator appears.

routine

Procedure or function; used in this manual in descriptions that apply to both proce-
dures and functions. /

12-Glossary

scalar type

scope

set

Type in which the values are unique and indivisible units of data. The values of a
scalar type follow a particular order. Predefined scalar types include INTEGER,
REAL, CHAR, and BOOLEAN.

Portion of the program in which an identifier has a particular meaning. The scope of
an identifier is the block in which it is declared.

Collection of elements of an ordinal type.

single precision

Precision of approximately seven significant digits and a range from l0**-38 through
10**38 for a floating-point real number; the types SINGLE and REAL provide single
precision.

SINGLE type

Predefined scalar type that has the single-precision real numbers as values; synony­
mous with REAL type.

source file

VAX/VMS file that contains source program statements used as input to a language
compiler.

statement

string

Sequence of reserved words, identifiers, operators, expressions, and special symbols
that performs a program action or alters the flow of program execution.

See character string.

string constant

Character string used as a literal constant in the program, for example 'one pink
rose'.

string variable

Variable of type PACKED ARRA Y[l..n] OF CHAR, where n represents an integer
constant.

Glossary-13

structured type

Collection of related data components. The components can be of the same type (as
for arrays and files) or of different types (as for records).

subrange type

Subset of an existing ordinal type, defined for use as a distinct type. A subrange must
be a continuous range of constant values, and is described by its upper and lower
bounds separated by the .. symbol.

successor value

Value that succeeds a given value in an ordinal type. The SUCC function returns the
successor value.

symbolic constant

Name defined to represent a constant value; can be used in place of the value.

symbolic name

Word used in a PASCAL program. A symbolic name can be a reserved word, a
predeclared· identifier, or a user identifier.

text editor

Complex program that allows you to create files and modify existing files.

text file

type

File that has components of type CHAR and is implicitly divided into lines.

Set of values, usually named with an identifier, for which certain operations are
defined. Some types are defined by VAX-11 PASCAL - INTEGER, REAL, SIN­
GLE, DOUBLE, QUADRUPLE, BOOLEAN, CHAR, and UNSIGNED. Others can
be defined by the programmer.

UNSIGNED type

Predefined scalar type that has an extended set of nonnegative integers as values.

user-defined type

Type defined by the programmer. User-defined types can be scalar (enumerated or
subrange), structured, or pointer.

14-Glossary

user identifier

Identifier created by the programmer to denote a program, symbolic constant, type,
variable, procedure, or function.

value initialization

VAX-11 PASCAL extension that allows a programmer to assign a constant value to a
variable in the program's declaration section.

value parameter

Formal parameter that represents an actual parameter expression whose value is
used as input to a routine.

variable

Data item (of fixed type) that can change in value during execution of the program.

variable parameter

Formal parameter that represents an actual parameter variable whose value can
change as a result of the execution of a routine.

varying character string

Sequence of ASCII characters whose values are character strings of different lengths.

write parameter

Expression with optional field width that is specified as a parameter to the WRITE or
WRITELN procedure, which writes it in the specified file.

Glossary-15

INDEX

A

Addition operator, 2-7
Address, passing, 8-9, 8-10
Apostrophe character, 2-5

in strings, 6-8
Arithmetic operator, 2-7
ASCII character set, B-1
Assignment, 1-11

of arrays, 6-4
of character strings, 6-9
operator, 1-11, 4-2
statement, 1-11, 4-1
to variables, 4-1

Array,
component, 6-1, 6-2
data structure, 6-1
dimension, 6-5
index, 6-1
index type, 6-2
multidimensional, 6-5
operations on, 6-4
packed, 6-8
structured type, 6-1
three-dimensional, 6-7
two-dimensional, 6-5
type definition, 6-2

B

Base type, 3-10
BEGIN delimiter, 1-8, 1-10
BEGIN-END pair, exception, 6-11, 7-7

use in routines, 8-4
Block, 3-1

function, 8-7, 8-8
procedure, 8-6
program, 1-6

Block structure, 1-1
Boolean expression, 2-10
Boolean type, 2-4

writing, 5-6
Bounds, of subrange type, 3-7

c
Call, procedure, 8-6
Case,

label, 7-7
selector, 7-8

CASE statement, 7-1, 7-7, 7-8
CHAR type, 2-5
Character set, ASCII, B-1
Character string, 2-5, 6-8, 6-9

See also string
constant, 6-8
expression, 6-10
reading, 6-9, 7-13
variable, 2-9, 6-8, 6-9
writing, 6-10

Comment, 1-8
Command,

EDIT, 1-2, 1-4
LINK, 1-2, 1-5
PAS CAL, 1-2, 1-4
PRINT, 1-5
qualifiers, 1-3
RUN, 1-2, 1-5

Compiling a program, 1-2, 1-4
Component,

array, 6-1
file, 5-1

Compound statement, 1-11, 4-3
Conditional statement, 1-11, 2-9

CASE, 7-7

Index-I

IF -THEN, 4-3
IF-THEN-ELSE, 4-5

CONST section, 3-1, 3-4
Constant,

definition, 3-4
expression, 3-4
string, 6-8
symbolic, 3-4
type of, 2-1

Control statement, 1-11, 4-1
Control variable, 4-8
Creating a program, 1-4
CTRL/Z, specifying EOF with, 5-12

Data,
global, 8-5
local, 8-5
reading, 5-2
structures, 6-1
type, 2-1
writing, 5-5

D

Decimal format, printing, 5-7
Decimal notation, 2-3
Declaration,

See also definition
FUNCTION, 3-'-1, 8-7
LABEL, 3-1
order of, 3-1
PROCEDURE, 3-1, 8-6
section, 1-6, 1-9, 3-1
VAR, 1-9, 3-6
variable, 2-5, 3-6

Default,
values for field width, 5-6
values for file specification, 1-3

Defining types, 3-5
in TYPE section, 3-8
in VAR section, 3-8

Definition, 3-1
See also declaration

array, 6-1
CONST, 3-1, 3-4
enumerated type, 3-8
file, 6-1
record, 6-1, 6-10
set, 6-1
subrange type, 3-10
TYPE, 1-9, 3-1, 3-5, 3-8
type in VAR section, 3-8
varying character string, 6-1

Delimiter,
BEGIN, 1-8, 1-10, 4-3
END, 1-8, 1-10, 4-1, 4-3
period, 1-8
semicolon, 1-8, 4-1

Dimension, of array, 6-5

Index-2

DIV operator, 2-7, 2-8
Division operator, 2-7, 2-8
DOUBLE type, 2-4

writing, 5-6, 5-7, 5-8
Double-precision, 2-2
DOWNTO, 4-8
Dynamic variable, 2-2

E

EDIT command, 1-2, 1-4
Editor,

EDT, 1-4
End-of-file,

condition, 1-11, 5-11
condition, on a terminal, 5-12

End-of-line,
condition, on a terminal, 5-11

END,
delimiter, 1-8, 1-10, 4-1, 4-3
in record type definition, 6-11
in CASE statement, 7-7

Enumerated type,
definition, 3-8
writing, 5-6, 5-7, 5-9

EOF function, 1-11, 5-10, 5-11
EOLN function, 5-10
Error message, 1-4, 1-5, 1-6
Executable,

image, 1-2, 1-5
section, 1-6, 1-10
statement, 1-6, 1-10

Executing a program, 1-2, 1-5
Exponential notation,

see floating-point notation
Exponentiation operator, 2-7, 2-8
Expression, 1-11, 2-6

arithmetic, 2-7, 2-8
Boolean, 2-9
character string, 2-9, 6-10
constant, 3-4
evaluation of, 2-11
logical, 2-9, 2-10
operator in, 2-6
parentheses in, 2-11, 2-12
relational, 2-9
type of, 2-1
writing, 5-5

External file, 1-6

Field,
of a record, 6-11
width, 1-10, 5-6
width rules, 5-7

F

File,
access to, 5-2
component, 5-1
data structure, 6-1
external, 1-6
INPUT, 1-9, 5-1
name, 1-3
OUTPUT, 1-9, 5-1
position, 5-2
position, after READ, 5-3, 5-12
position, after READLN, 5-4, 5-12
position, after WRITE, 5-6
position, after WRITELN, 5-9
position, at EOF, 5-11
position, at EOLN, 5-11
predeclared text, 1-9
source, 1-4
specification, 1-3
specification defaults, 1-3
type, VAX/VMS, 1-3
variable, 5-1

FILE type, 5-1, 6-1
Floating-point notation, 2-4

writing numbers in, 5-7, 5-8
Flow chart,

CASE statement, 7-9
FOR statement, 4-9
IF-THEN statement, 4-4
IF -THEN -ELSE, 4-6
REPEAT statement, 7-2
WHILE statement, 7-5

FOR statement, 4-8
Format, of program, 1-8
Function, 8-1, 8-7

block, 8-8
declaration, 8-1, 8-7
designator, 8-1, 8-8
heading, 8-7
predeclared, C-5
result type of, 2-1, 8-7

FUNCTION section, 3-1, 8-7

Global, identifier, 8-5
GOTO statement, 7-1

Heading,
function, 8-7
procedure, 8-6
program, 1-6, 1-8
routine, 8-5

G

H

Identifier,
constant, 3-4

I

in enumerated type, 3-8
global, 8-5
local, 8-5
predeclared, 3-2, A-2
redeclaring, 8-5
scope of, 8-5
user, 3-3

IF -THEN statement, 4-3
IF -THEN-ELSE statement, 4-5
Index,

in multidimensional array, 6-5,
6-6, 6-7

type, 6-1, 6-2, 6-3, 6-4
Inform a ti on -level,

diagnostic messages, 1-4
errors, 1-4

Initializing a variable, 1-9, 3-6
Input procedure, 1-10, 5-1, 5-2
INPUT file, 1-9, 5-1
Integer, writing, 5-6, 5-7
INTEGER type, 2-3
Interactive program, 5-1

L

LABEL section, 3-1
LINK command, 1-2, 1-5
Linking an object module, 1-2, 1-5
/LIST qualifier, 1-5
Logical operator, 2-9
Local data, 8-5
Local identifier, 8-5
Loop, 4-8, 7-1

use with arrays, 6-6
Loop body, 4-8, 7-1
Lowercase characters in identifier, 3-3

M

MOD operator, 2-7, 2-8
Module, object, 1-2, 1-4
Modular programming, 1-1
Multidimensional array, 6-2, 6-5
Multiplication operator, 2-7, 2-8

N
Nonstandard features,

suppressing error messages for, 1-5
/NOSTANDARD qualifier, 1-5, 1-6

lndex-3

0
Object module, 1-2, 1-4

linking, 1-5
Operator,

addition, 2-7
DIV, 2-7, 2-8
division, 2-7, 2-8
exponentiation, 2-7, 2-8
logical, 2-9
MOD, 2-7, 2-8
multiplication, 2-7, 2-8
precedence, 2-11
relational, 2-9, 6-10
REM, 2-7, 2-8
subtraction, 2-7, 2-8

ORD function, 2-3, 2-4, 2-5, 3-8
Ordering,

of declaration section, 3-1
of enumerated types, 3-8

Ordinal type, 2-3
BOOLEAN 2-4
CHAR, 2-5
enumerated, 3-8
INTEGER, 2-3
subrange, 3-10

Ordinal value, 2-3
of enumerated types, 3-8
of subrange types, 3-10

OTHERWISE clause,
in CASE statement, 7-8

Output procedure, 1-10, 5-1, 5-5
OUTPUT file, 1-9, 5-1

p

Packed, 6-8
Parentheses in expressions, 2-11, 2-12
Parameter, 8-5, 8-8

actual, 8-5, 8-6, 8-8, 8-9
actual list, 8-6, 8-9 ·.
correspondence of, 8-9
declaration, 8-5, 8-9
formal, 8-5, 8-6, 8-8, 8-9
formal list, 8-5, 8-9
list, 8-5, 8-8, 8-9
read, 5-2
type of, 8-9
value, 8-10, 8-11, 8-12
VAR, 8-9, 8-10, 8-11
variable, 8-9, 8-10, 8-11, 8-12
write, 5-5

PASCAL,
command, 1-2, 1-4
defined names, A-1
VAX-11 extensions, 1-2, 1-4

Index-4

Pass data to routine, 8-8
Pass by reference,

See VAR parameter
Pass by value,

See value parameter
Period delimiter, 1-8, 1-10
Pointer type, 2-1, 2-2
Predecessor value, 4-9
Predeclared,

function, C-5
identifier, 3'--2, A-2
procedure, C-1
routine, 8-1, C-1

Precedence rules, 2-11
PRINT command, 1-5
Procedure, 8-1, 8-6

block, 8-6
call, 8-6
declaration, 8-6
heading, 8-6
input, 1-10, 5-2
name, 8-6
output, 1-10, 5-5
predeclared, C-1

PROCEDURE section, 3-1
Program,

block, 1-6
compiling, 1-4
development, 1-2, 1-3
execution, 1-2, 1-5
heading, 1-6, 5-1, 5-2
interactive, 5-1
listing, creating, 1-5
structure of, 1-6

Prompting at the terminal, 7-13

Q

QUADRUPLE type, 2-2
writing, 5-6, 5-7, 5-8

Quadruple precision, 2-2
Qualifier,

on command, 1-3
/LIST, 1-5
/NOSTANDARD, 1-5, 1-6

R

Read,
of character data, 5-3
of character string, 6-9, 7-13
of data, 5-1, 5-2
parameter, 5-2

READ procedure, 5-2
READLN procedure, 5-2, 5-4
Real number,

writing, 5-6, 5-7, 5-8
REAL type,

double-precision, 2-2
single-precision, 2-2
quadruple-precision, 2-2

Relational operator, 2-9, 6-10
Record,

data structure, 6-1
field of, 6-11
nested, 6-12
structured type, 6-1
type definition, 6-11

REPEAT statement, 7-1
Repetitive statement, 2-9

REPEAT, 7-1
WHILE, 7-5

Reserved words, 3-2, A-1
Result type, 2-1, 8-7
Routine, 8-1

block, 8-5
declaration, 8-4
execution, 8-4
heading, 8-5
nested, 8-4
passing data to, 8-8

RUN command, 1-2, 1-5

Scalar type, 2-1
BOOLEAN, 2-4
CHAR, 2-5
enumerated, 3-8
INTEGER, 2-3
ordering of, 2-3
REAL, 2-3
subrange, 3-10

Scientific notation,

s

See floating-point notation
Section,

CONST, 3-3
declaration, 1-6, 3-1
executable, 1-6, 1-10
FUNCTION, 3-1, 8-7
LABEL, 3-1
PROCEDURE, 3-1, 8-6
TYPE, 3-1, 3-5, 3-7
VAR, 3-1, 3-5, 3-8

Semicolon delimiter, 1-8, 4-1, 8-6, 8-8
SET type, 6-1

Single-precision, 2-2
SINGLE type, 2-2

writing, 5-6, 5-7, 5-8
Source file, 1-2, 1:._4
Statement, 4-1

assignment, 1-11, 4-1
CASE, 7-1, 7-7
compound, 1-11, 4-1, 4-3
conditional, 1-11, 2-9, 4-3, 4-5
control, 1-11, 4-1
executable, 1-6, 1-10
FOR, 4-8
GOTO, 7-1
IF -THEN, 4-3
IF-THEN-ELSE, 4-5
procedure call, 8-6
REPEAT, 1-11, 7-1
repetitive, 2-9
WHILE, 7-1, 7-5
WITH, 6-13

String,
character, 6-8
comparing, 6-10
constant, 6-8
expression, 6-10
input of, 6-9
ordering of characters in, 6-10
operation, 6-10
output of, 6-10
read with READ or READLN, 6-9
print with WRITE or WRITELN, 6-10
variable, 2-9, 6-8, 6-9

Structured type, 2-1
array, 6-1
record, 6-11
variable, 6-1

Subrange type, 3-10
Subscript,

See index
Subtraction operator, 2-7, 2-8
Successor value, 4-9
Symbolic names, 3-1
Syntax rules, 1-8

for user identifiers, 3-3

T
Text file, 5-1, 5-10

end of, 5-11
predeclared, 1-9, 5-1

Terminal,
prompting at, 7-13
input from, 5-1
output to, 5-1

Index-5

Three-dimensional array, 6-7
TO, 4-8
Two-dimensional array, 6-5
Type, 2-1

ARRAY, 6-1
BOOLEAN, 2-4
CHAR, 2-5
of constant, 2-1
DOUBLE, 2-2, 2-4
of expression, 2-1
file, 1-3
FILE, 5-1, 6-1
of function, 2-1, 8-7
function result, 8-8
identifier, 3-5
INTEGER, 2-3
ordinal, 2-3
pointer, 2-1, 2-2
predefined, 2-2
QUADRUPLE, 2-2, 2-4
REAL, 2-3
RECORD, 6-11
SET, 6-1
SINGLE, 2-2
subrange, 3-7, 3-10
UNSIGNED, 2-2
user-defined scalar, 3-7
of variable, 2-1
VARYING, 6-1

TYPE section, 3-1, 3-5, 3-8
Type definition, 1-9, 3-5

array, 6-2
enumerated, 3-8
record, 6-11
subrange, 3-10

UNSIGNED type, 2-2
UNTIL clause,

u

of REPEAT statement, 1-11, 7-4
Uppercase characters in identifier, 3-3
User-defined,

enumerated type, 3-8
scalar type, 3-7
subrange type, 3-10
types, 3-5, 3-7, 3-8

Index-6

User id~ntifiers, 3-3
dollar sign in, 3-3
syntax rules for, 3-3

v
Value parameter, 8-10, 8-11, 8-12
Value initialization, 3-6

illegal use of, 8-6, 8-8
VAR,

declaration, 1-9
parameter, 8-9, 8-10, 8-11
section, 3-1, 3-6, 3-7

Variable, 1-9, 1-11, 2-5
assigning values to, 4-1
control, 4-8
declaration, 2-5, 3-6
declaration, format of, 3-6
dynamic, 2-2
file, 5-1
identifier, 3-6
initializing, 1-9, 3-6
record, 6-11
section,

See VAR section
string, 2-9, 6-8, 6-9
structured type, 6-1
type of, 2-1

Variable parameter, 8-9, 8-10, 8-11, 8-12
Varying character string, 6-1

w
Warning-level,

diagnostic messages, 1-4
errors, 1-4

WHILE statement, 7-1, 7-5
WITH statement, 6-13
Write,

of character string, 5-5, 5-6, 5-7, 6-10
of data, 5-5
of expressions, 5-5
parameter, 5-5

WRITE procedure, 5-5
WRITELN procedure, 5-5, 5-9

READER'S COMMENTS

VAX-11 PASCAL Primer
AA-J180B-TE

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, u'sable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
0 Student programmer
[] Other (please specify)

Organization

Street

State ______ Zip Code-----­
or Country

- - Do Not Tear - Fold Here and Tape

11111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03061

No Postage
Necessary

if Mailed in the
United States

- - - DoNotTear-FoldHere - - -· - - - - - - - - - - - - - - - - -- - -

