
November 1979

This document describes how to compile, link, and execute VAX-11 PASCAL

programs on the VAX/VMS operating system. It also contains information use-

ful to VAX-11 PASCAL programmers, dealing with input and output, procedure

calling, error processing, and storage allocation.

VAX-11 PASCAL

User’s Guide

Order No. AA-H485A-TE

SUPERSESSION/UPDATE INFORMATION: This is a new document for this

release,

OPERATING SYSTEM AND VERSION: VAX/VMS V1.6

SOFTWARE VERSION: VAX-11 PASCAL V1.0-1

To order additional copies of this document, contact the Software Distribution

Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipmént corporation - maynard, massachusetts

First Printing, November 1979

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a 1license

and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on

equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright C) 1979 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the wuser's «critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS

DEC DECtape OMNIBUS

PDP DIBOL 0S/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS

COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8

DDT LAB-8 TYPESET-11

DECCOMM DECSYSTEM-20 TMS-11

ASSIST-11 RTS-8 ITPS-10

VAX VMS SBI

DECnet IAS PDT

DATATRIEVE TRAX

CONTENTS

PREFACE

CHAPTER b
= USING VAX-11 PASCAL

CREATING AND EXECUTING A PROGRAM

VAX/VMS FILE SPECIFICATIONS AND DEFAULTS(
S

*

*

N

CHAPTER N COMPILING A PROGRAM

THE PASCAL COMMAND

PASCAL COMPILER QUALIFIERS

Specifying Qualifiers with the PASCAL

Command

Specifying Qualifiers in the Source Code

SPECIFYING OUTPUT FILES

COMPILER LISTING FORMAT

Source Code Listing

Machine Code Listing

Cross—-Reference Listing

L -N
N
N

.

N
N
=

. N

.

.

O

B

D

W

N

.

N
N L

]

w

N

=

CHAPTER w LINKING A PROGRAM

THE LINK COMMAND

LINKER COMMAND QUALIFIERS

Image File Qualifiers

Map File Qualifiers

Debugging and Traceback Qualifiers

LINKER INPUT FILE QUALIFIERS

/LIBRARY Qualifier

/INCLUDE Qualifier

L[
]

W

N

-

L

*

L

W
w
w
h
h
N
h
D
N
h
N
D-

L]

L]
NW
W
w
w
w
w
w
w
w

e

o
*

CHAPTER > EXECUTING A PROGRAM

FINDING AND CORRECTING ERRORS

Error-Related Command Qualifiers

SHOW CALLS Command

SAMPLE TERMINAL SESSION[

S

N

b [
] N

-

CHAPTER 1
9
2

INPUT AND OUTPUT

LOGICAL NAMES

FILE CHARACTERISTICS

File Organization

Record Access

RECORD FORMATS

. N

=

(
N
G

 E
G
E
G
 N
S

R
G
N
S

N
G
R
S

R
S

*

B
B

W
W
W
N
D
N
D
N
K

L 1 Fixed-Length Records

.3.2 Variable-Length Records

. OPEN PROCEDURE PARAMETERS

4.1 Buffer Size

4.2 File Status

4.3 Record Access Mode

iii

N

-

O

[
T

T
A

I
|

U

w
W
w
W
w
N

-

W
W
w
W
w
w
w
w
w
w

1
=
Y

T
R

A
I

T
T

N
B

B
B
B

D
A

W
W
W
W
N
D
-

;
o
o

CHAPTER

CHAPTER

CHAPTER

. . .

w

N

=

A
N

N

N

L]

R

S

=

*

B

W
D

*

L]

L

L =

N
A
N
H

O
O

~
J

s

o

o

o

o

o

o

«

o

o

. N

=

N
n
a
d

W

N
N

N
N
N
N
N
N
N
I
Y

L]

B

W
W
W
w
w
w
N
N
-

L]

o
 o
]

0

0
0

0

0
0

0
0

0
0

0
0

0
O

*

o

o

&

o

o

o

o

«

o

»

w

N
+

L
t

W
w
N

-

. [

o
]

5.2

CONTENTS

Record Type

Carriage Control

LOCAL INTERPROCESS COMMUNICATION: MAILBOXES

COMMUNICATING WITH REMOTE COMPUTERS: NETWORKS

CALLING CONVENTIONS

VAX-11 PROCEDURE CALLING STANDARD

Argument Lists

Parameter Passing Mechanisms

By-Reference Mechanism

By-Immediate-Value Mechanism

By-Descriptor Mechanism

Functions and Procedures as Parameters

Function Return Values

Arguments to PASCAL Subprograms

CALLING VAX/VMS SYSTEM SERVICES

Calling System Services by Function

Reference

Calling System Services as Procedures

Passing Parameters to System Services

Input and Output By-Reference Parameters

Optional Parameters

Passing Character Parameters

CALLING RUN-TIME LIBRARY PROCEDURES

COMPLETE SYSTEM SERVICE EXAMPLE

ERROR PROCESSING AND CONDITION HANDLERS

RUN-TIME LIBRARY DEFAULT ERROR PROCESSING

OVERVIEW OF VAX-11 CONDITION HANDLING

Condition Signals

Handler Responses

WRITING A CONDITION HANDLER

Establishing and Removing Handlers

Parameters for Condition Handlers

Handler Function Return Values

Condition Values and Symbols

Floating-Point Operation

CONDITION HANDLER EXAMPLES

VAX-11 PASCAL SYSTEM ENVIRONMENT

USE OF PROGRAM SECTIONS

STORAGE OF SCALAR AND POINTER TYPES

STORAGE OF UNPACKED STRUCTURED TYPES

STORAGE OF PACKED STRUCTURED TYPES

Storage of Packed Sets

Storage of Packed Arrays

Storage of Packed Records

REPRESENTATION OF FLOATING-POINT DATA

Single-Precision Floating-Point Data

(SINGLE, REAL Types)

Double-Precision Floating-Point Data

(DOUBLE Type)

iv

{

A

V
T
U
N
T

 W
D

|

O

O
O

)

e

Ji
e)

 N
ie

)
 J
ie

)
e

)
 J
ie

)
J
e
)

 |

1

w
W
N
H
-

~
J |
—

N
N

N
N
N
N
N
N
N
N
N

i
O
B

W
W
N
D
N

©

|
-

0
0

0
0

0
0

0
0

0
0

O

o
0

|
1

O

N

D

W
N
H

o
o }

1
s

 o
]

o
] |
[
~

CONTENTS

Page

APPENDIX A DIAGNOSTIC MESSAGES A-1

A-1 COMPILER DIAGNOSTICS A-1

A-2 RUN-TIME ERROR MESSAGES A-19

APPENDIX B CONTENTS OF RUN-TIME STACK DURING PROCEDURE

CALLS B-1

INDEX INDEX-1

FIGURES

FIGURE 1-1 Program Development Process 1-2

2-1 Compiler Listing Format 2-8

4-1 Source Program Listing Traceback List 4-3

8-1 Storage of Sample Record 8-4

8-2 Storage of Sample Record 8-7

8-3 Storage of Sample Packed Record Containing

Packed Array 8-8

8-4 Single-Precision Floating-Point Data

Representation 8-8

8-5 Double-Precision Floating-Point Data

Representation 8-9

B-1 Contents of Run-Time Stack During Procedure

Calls B-2

TABLES

TABLE 1-1 File Specification Defaults 1-3

2-1 PASCAL Compiler Qualifiers 2-2

2-2 PASCAL Command Qualifiers 2-5

2-3 Source Code Qualifiers 2-6

3-1 Linker Qualifiers 3-2

4-1 /DEBUG and /TRACEBACK Qualifiers 4-2

5-1 Predefined System Logical Names 5-2

6-1 Suggested Variable Data Types 6-10

8-1 Program Section Attributes 8-1

8-2 Program Section Usage and Attributes 8-2

8-3 Storage of Scalar and Pointer Types 8-3

8-4 Storage of Packed Array Elements 8-5

PREFACE

MANUAL OBJECTIVES

The VAX-11 PASCAL User's Guide is intended for use in developing new

PASCAL programs, and 1in compiling and executing existing PASCAL

programs on VAX/VMS systems. PASCAL language elements supported on

VAX/VMS are described in the VAX-11 PASCAL Language Reference Manual.

INTENDED AUDIENCE

This manual is designed for programmers who have a working knowledge

of PASCAL. Detailed knowledge of VAX/VMS 1is helpful but not

essential; familiarity with the VAX/VMS Primer is recommended. Some

sections of this book, however, (condition handling, for instance)

require more extensive understanding of the operating system. In such

sections, you are directed to the appropriate manual(s) for the

required additional information.

STRUCTURE OF THIS DOCUMENT

This manual is organized as follows:

e Chapter 1 provides an overview of the steps you must follow to

create, compile, link, and execute a VAX-11 PASCAL program.

e Chapter 2 describes how to compile your program and explains

the options available at compile time.

e Chapter 3 supplies information on the VAX-11 Linker and its

options, as they apply to PASCAL programs

e Chapter 4 describes execution commands.

e Chapter 5 provides information about PASCAL input/output,

including details on the use of logical names, file

conventions, and record structure.

e Chapter 6 discusses the conventions followed 1in calling

procedures, especially the conventions for passing parameters.

e Chapter 7 describes error processing, in particular, how to

use the condition handling facility. This chapter is intended

for users with in-depth knowledge of VAX/VMS.

e Chapter 8 describes the relationship between VAX-11 PASCAL and

the VAX/VMS operating system, with particular emphasis on

program section usage, storage allocation, and data

representation.

vii

e Appendix A summarizes diagnostic messages.

e Appendix B illustrates the contents of the run-time stack

during procedure calls.

ASSOCIATED DOCUMENTS

The following documents are relevant to VAX-1l PASCAL programming:

e VAX/VMS Primer

e VAX-11 PASCAL Primer

e VAX-11 PASCAL Language Reference Manual

e VAX/VMS Command Language User's Guide

e VAX-11 Run-Time Library Reference Manual

e VAX-11 Linker Reference Manual

e VAX/VMS System Services Reference Manual

@ VAX-11 Architecture Handbook

For a complete list of VAX-11 software documents, see the VAX-11

Information Directory.

CONVENTIONS USED IN THIS DOCUMENT

This document uses the following conventions.

Convention

Uppercase words

and letters

Lowercase words

and letters

I

Meaning

Uppercase words and letters, used 1in examples,

indicate that you should type the word or letter

exactly as shown.

Lowercase words and letters, used in format

examples, indicate that you are to substitute a word

or value of your choice.

Double brackets indicate optional elements.

Square brackets indicate that you must type the

bracket characters.

Braces are used to enclose 1lists from which one

element is to be chosen.

A horizontal ellipsis indicates that the

item(s) can be repeated one or more times.

preceding

A vertical ellipsis indicates that not all of the

statements in an example or figure are shown.

viii

Convention

S PASCAL

$_File:

Meaning

In examples of commands you enter and system

responses, all output lines and prompting characters

that the system prints or displays are shown in

black letters. All the lines you type are shown in

red letters.

A symbol with a 1- to 3-character abbreviation

indicates that you press a key on the terminal, for

example, GO.

ix

CHAPTER 1

USING VAX-11 PASCAL

VAX-11 PASCAL is an extended implementation of the PASCAL language.

The VAX-11 PASCAL compiler executes in native mode under the VAX/VMS

operating system.

This manual describes how you interact with the VAX/VMS operating

system using VAX-11 PASCAL. It contains instructions for compiling,

linking, and executing a PASCAL program, and provides information on

the following topics:

e Performing input and output operations

e Calling VAX/VMS system services and Run-Time Ldibrary routines

e Using the VAX/VMS condition handling facility

e Writing efficient VAX-11 PASCAL programs

This chapter provides an overview of the steps 1in creating and

executing a VAX-11 PASCAL program. It also describes the standard

VAX/VMS file specification and defaults.

1.1 CREATING AND EXECUTING A PROGRAM

Figure 1-1 illustrates the program development process, from inception

to execution. You specify the steps shown in Figure 1-1 by entering
commands to the VAX/VMS operating system. These commands are:

$ EDIT file-spec

$ PASCAL file-spec

$ LINK file-spec

$ RUN file-spec

With each command, you include information that further defines what

you want the system to do. Of prime importance is the file

specification, indicating the file to be processed. You <can also

specify qualifiers that modify the processing performed by the system.

USING VAX-11 PASCAL

COMMANDS INPUT/OUTPUT FILES

$ EDIT AVERAGE.PAS

Use the file type of PAS to

indicate the file contains a AVERAGE.PAS
Create a

VAX-11 PASCAL program. source program

$ PASCAL AVERAGE

The PASCAL command

assumes the file type of

an input file is PAS. Compile the

source program iy

(If you use the /LIST

qualifier, the compiler

creates a listing file.)

$ LINK AVERAGE

The L/NK command assumes

libraries

‘ AVERAGE.OBJ
N g (AVERAGE.LIS)

the file type of an input file Link the

1s OBJ. object module

AVERAGE.EXE

(AVERAGE.MAP)

(1f you use the /MAP qualifier,

the linker creates a map file.)

$ RUN AVERAGE

The RUN command assumes

the file type of an image Is
EXE. Image

Run the

executable

Figure 1-1 Program Development Process

1.2 VAX/VMS FILE SPECIFICATIONS AND DEFAULTS

A VAX/VMS file specification indicates the input file to be processed

or the output file to be produced. File specifications have the

following form:

node::device:[directorylfilename.filetype;version

The punctuation marks (colons, brackets, period, semicolon) are

required syntax that separate the wvarious components of the file

specification.

node

Specifies a network node name. This 1is applicable only to

systems that support DECnet-VAX.

device

Identifies the device on which the file is stored or 1is to be

written.

USING VAX-11 PASCAL

directory

Identifies the name of the directory under which the file is

cataloged, on the device specified. You <can delimit the

directory name with square brackets, as shown, or with angle

brackets (< >).

filename

Identifies the file by its name; filename can be up to 9

alphanumeric characters long.

filetype

Describes the kind of data in the file; filetype can be up to 3

alphanumeric characters long.

version

Specifies which version of the file 1is desired. Versions are

identified by a decimal number, which is incremented by 1 each

time a new version of a file is created. Either a semicolon or a

period can be used to separate filetype and version.

You need not explicitly state all elements of a file specification
each time you compile, link, or execute a program. The only part of

the file specification that is usually required is the file name. If

you omit any other part of the file specification, a default value is
used. Table 1-1 summarizes the default values.

Table 1-1

File Specification Defaults

Optional Default

Element Value

node Local network node

device User's current default device

directory User's current default directory

filetype Depends on usage:

Input to PASCAL compiler PAS

Output from PASCAL compiler OBJ

Input to linker OBJ

Output from linker EXE

Input to RUN command EXE

Compiler source listing LIS

Linker map listing MAP

Input to executing program DAT

Output from executing program DAT

version Input: highest existing version

Output: highest existing version

plus 1

USING VAX-11l PASCAL

If you request compilation of a PASCAL program and you specify only a

file name, the compiler can process the source program if it finds a

file with the specified file name that:

e Is stored on the default device

e Is cataloged under the default directory name

e Has a file type of PAS

If more than one file meets these conditions, the compiler chooses the

one with the highest version number.

For example, assume that your default device Iis DBAO, your default

directory is SMITH, and you supply the following file specification to

the compiler:

$ PASCAL

$_File: CIRCLE

The compiler will search device DBAO in directory SMITH, seeking the

highest version of CIRCLE.PAS. 1If you do not explicitly specify an

object file, the compiler will generate the file CIRCLE.OBJ, store it

on device DBAO 1in directory SMITH, and assign it a version number 1

higher than any other version of CIRCLE.OBJ currently cataloged 1in

directory SMITH on DBAO.

CHAPTER 2

COMPILING A PROGRAM

After creating a VAX-11l PASCAL source program, you compile it. At

compile time, you specify the name of the file(s) containing the

source code and indicate which qualifiers you wish to use.

At your option, the compiler produces one or more object files, which

are input to the 1linker (see Chapter 3), and one or more listing

files. The listing files contain source code 1listings, information

about compilation errors, and optional items such as cross-reference

listings.

2.1 THE PASCAL COMMAND

To compile a source program, use the PASCAL command in the following

form:

$ PASCAL[/qualifiers] file-spec-listl[/qualifiers]

/qualifiers

Indicate special processing to be performed by the compiler.

file-spec-list

Specifies the source file(s) containing the program or module to

be compiled. You <can specify more than one source file. If
source file specifications are separated by commas, the programs
are compiled separately. If source file specifications are

separated by plus signs, the files are concatenated and compiled

as one program.

In interactive mode, you can also enter the file specification on a

separate line by typing a carriage return after you type PASCAL. The

system responds with a prompt for the file specification:

$ PASCAL
$_File:

Type the file specification and any file qualifiers immediately after

the $ File: prompt.

2.2 PASCAL COMPILER QUALIFIERS

In many cases, the simplest form of the PASCAL command is sufficient

for compilation. Sometimes, however, you will need to use PASCAL

compiler qualifiers to specify special processing.

COMPILING A PROGRAM

Table 2-1 lists the qualifiers you can use with the VAX-11 PASCAL

compiler. You can specify the qualifiers on the command line or in

source code comments. This section describes the effect of each

gqualifier on a PASCAL program. Section 2.2.1 describes how to specify

command line qualifiers. Section 2.2.2 deals with specifying

qualifiers in source code comments.

Table 2-1

PASCAL Compiler Qualifiers

Can Be Specified

Qualifier Purpose in Source Code?

CHECK Generates code to perform Yes

run-time checks

CROSS_REFERENCE Produces a cross-reference Yes

listing of identifiers

DEBUG Generates records for Yes

VAX-11 Symbolic Debugger

ERROR_LIMIT Terminates compilation No

after 30 errors

LIST Produces source listing Yes

file

MACHINE_CODE Includes representation of Yes

machine code in

source listing file

OBJECT Specifies name of No

object file

STANDARD Prints messages indicating Yes

use of PASCAL extensions

WARNINGS Prints diagnostics for Yes

warning-level errors

CHECK

The CHECK qualifier directs the compiler to generate code to perform

run-time checks. This code checks for illegal assignments to sets and

subranges, and out-of-range array bounds and case labels. The system

issues an error message and normally terminates execution if any of

these conditions occur.

When this qualifier is disabled, the compiler generates no check code.

By default, CHECK is disabled.

COMPILING A PROGRAM

CROSS_REFERENCE

The CROSS_REFERENCE qualifier produces a cross-reference listing of

all identifiers. The compiler generates separate cross-references for

each procedure and function. To get complete cross-reference listings

for a program, the qualifier must be in effect for all modules of the

program. This qualifier is ignored if no 1listing file is being

generated.

By default, CROSS_REFERENCE is disabled.

You can specify this qualifier in the source code, as described 1in
Section 2.2.2. Note, however, that the cross-reference listing for a
portion of a procedure or function may be incomplete.

DEBUG

The DEBUG qualifier specifies that the compiler 1is to generate

information for use by the VAX-1ll1 Symbolic Debugger and the run-time
error traceback mechanism. When you enable the option, the compiler
generates some DEBUG and TRACEBACK records for each procedure or

program for which the qualifier is in effect.

When this qualifier is disabled, the compiler generates only TRACEBACK

records. By default, DEBUG is disabled.

ERROR_LIMIT

The ERROR LIMIT qualifier terminates compilation after 30 errors,

excluding warning-level errors. If this qualifier 1is disabled,

compilation continues through the entire unit. You cannot specify
this qualifier in the source code.

By default, ERROR_LIMIT is enabled.

Note that after it finds 20 errors (including warning messages) on any

one source line, the compiler generates error 255, Too many errors on

this source line. Compilation of the line continues, but no further

error messages are printed for that line.

LIST

The LIST qualifier produces a source listing file. It has the form:

LIST[=file-spec]

You can include a file specification for the 1listing file. The

default file specification designates the name of the first source

file, your default directory, and a file type of LIS.

The compiler does not produce a 1listing file in interactive mode

unless you specify the LIST qualifier. 1In batch mode, the compiler

produces a listing file by default. 1In either case, the listing file
is not automatically printed. You must use the DIGITAL Command
Language (DCL) PRINT command to obtain a 1line printer copy of the

listing file. A sample listing is explained in Section 2.4.

MACHINE CODE -

The MACHINE CODE qualifier places in the listing file a representation

of the object code generated by the compiler.

The compiler ignores this qualifier if the LIST qualifier 1is not

enabled.

By default MACHINE CODE is disabled.

2-3

COMPILING A PROGRAM

OBJECT

The OBJECT qualifier can be used when you want to specify the name of

the object file. It has the form:

/OBJECT[=file~specl

If you omit the file specification, the object file defaults to the

name of the first source file, the default directory, and a file type

of OBJ. You cannot specify this qualifier in the source code.

You can disable this qualifier to suppress object code; for example,

when you only want to test the source program for compilation errors.

By default, OBJECT is enabled.

STANDARD

The STANDARD qualifier tells the compiler to print warning-level

messages at each place where the program uses "nonstandard" PASCAL

features.

Nonstandard PASCAL features are the extensions to the PASCAL 1language

that are incorporated in VAX-11 PASCAL. Nonstandard features include

VALUE declarations and the exponentiation operator. Appendix C of the

VAX-11 PASCAL Language Reference Manual lists all the extensions.

By default, STANDARD is enabled.

WARNINGS

The WARNINGS qualifier directs the compiler to generate diagnostic

messages in response to warning-level (W) errors.

By default, WARNINGS 1is enabled. A warning diagnostic message

indicates that the compiler has detected acceptable but unorthodox

syntax or has performed some corrective action; in either case,

unexpected results may occur. To suppress warning diagnostic

messages, disable this qualifier. Note that messages generated when

the STANDARD qualifier is enabled appear even if WARNINGS is disabled.

Appendix A lists the compiler diagnostic messages.

2.2.1 specifying Qualifiers with the PASCAL Command

A PASCAL command qualifier has the form:

/qualifier[[=file-spec]

Table 2-2 lists the qualifiers you can use on the PASCAL command line.

The optional file specification indicates the name of an output file

for the OBJECT and LIST qualifiers only. To enable the qualifier,

specify 1its name. To disable the qualifier, specify the negative

form.

You can abbreviate all command line qualifiers by truncating them on

the right. All qualifiers are unique when truncated to their first

four characters, not including the NO of the negative form. You can

truncate further as 1long as the resulting command is unique. For

example, you can truncate CROSS REFERENCE to CR, CHECK to CH, and

DEBUG to D. -

COMPILING A PROGRAM

When you use PASCAL command qualifiers in command procedure files, it

is recommended that vyou use the full qualifier names to ensure

readability. To guarantee compatibility with future releases of the

system, you should not abbreviate qualifiers in command procedures to

fewer than four characters.

Table 2-2

PASCAL Command Qualifiers

Qualifier Negative Form Default

/CHECK /NOCHECK /NOCHECK

/CROSS_REFERENCE /NOCROSS_REFERENCE /NOCROSS_REFERENCE

/DEBUG /NODEBUG /NODEBUG

/ERROR_LIMIT /NOERROR_LIMIT /ERROR LIMIT

/LIST[=file-spec] /NOLIST /NOLIST (interactive)
J/LIST (batch)

/MACHINE CODE /NOMACHINE CODE /NOMACHINE CODE

/OBJECT[=file-spec] /NOOBJECT /OBJECT

/STANDARD /NOSTANDARD /STANDARD

/WARNINGS /NOWARNINGS /WARNINGS

Examples

1. $ PASCAL CALC

The source file CALC.PAS is compiled. By default, the OBJECT,

STANDARD, WARNING, and ERROR_LIMIT options are enabled.

2. $ PASCAL/CHECK/NOSTANDARD CALC

The source file CALC.PAS 1is compiled, and check code is

generated. The compiler does not issue warnings for the use of

language extensions.

3. $ PASCAL/LIST/CR CALC

The source file CALC.PAS is compiled and the 1listing file

CALC.LIS is generated. The listing file includes a

cross-reference listing.

2.2.2 Specifying Qualifiers in the Source Code

You can use qualifiers in the source code to enable and disable
special processing during compilation. When specified in the source

code, qualifiers have the form:

(*$qualifier {+}[,qualifier {i} ;...]| icomment?)

COMPILING A PROGRAM

The first character after the comment delimiter must be a dollar sign

(S); the dollar sign cannot be preceded by a space. Table 2-3 lists

the qualifiers you can specify in your source program. Note that vyou

can optionally use a l-character abbreviation for each qualifier. The

abbreviation is simply the first character of the qualifier name,

except for CROSS_REFERENCE, whose abbreviation is X.

Table 2-3

Source Code Qualifiers

Qualifier Abbreviation

CHECK C

CROSS_REFERENCE X

DEBUG D

LIST L

MACHINE CODE M

STANDARD S

WARNINGS W

To enable a qualifier, specify a plus sign (+) after 1its name or

abbreviation. To disable a qualifier, specify a minus sign (-) after

its name or abbreviation. You can specify any number of qualifiers.

You <can also include a text comment after the qualifiers, separated

from the list of qualifiers by a semicolon.

When specified in the source code, the LIST qualifier cannot contain a

file specification. The listing file will have the default

specification as described in Section 2.2 above.

For example, to generate check code for only one procedure in a

program, enable the CHECK qualifier before the procedure declaration

and disable it at the end of the procedure, as follows:

(X$C+ § enable CHECK for TESTLI onmluX)

FROCEDURE TEST1S$

L

ENIDs

(X$C-idisable CHECKX)

Command line qualifiers override source code qualifiers. I£f, for
example, the source code specifies DEBUG+, but you type

PASCAL/NODEBUG, the DEBUG option will not be in effect.

2.3 SPECIFYING OUTPUT FILES

The compiler produces object files and listing files. You can control

the production of these files by using the LIST and OBJECT qualifiers

with the PASCAL command. Unless you specify otherwise, the compiler

generates an object file. In interactive mode, the compiler, by

COMPILING A PROGRAM

default, does not generate a listing file; you must use the LIST

qualifier to explicitly specify a 1listing file. In batch mode,

however, the opposite is true: by default, the compiler produces a

listing file. To suppress the listing file, you must disable the LIST

qualifier.

During the early stages of program development, you may £find it

helpful to suppress the production of object files until your source

program compiles without errors. To do so, specify the NOOBJECT

qualifier on the PASCAL command 1line. If you do not specify

/NOOBJECT, the compiler generates object files as follows:

e If you specify one source file, one object file is generated.

e If you specify multiple source files, separated by plus signs,

the source files are concatenated and compiled, and one object

file is generated.

e If you specify multiple source files, separated by commas, each

source file 1is <compiled separately, and an object file is

generated for each source file.

e You can use both plus signs and commas in the same command 1line

to produce different combinations of concatenated and separate

object files (see Example 4 below).

To produce an object file with an explicit file specification, vyou

must specify /OBJECT on the PASCAL command line (see Section 2.2).

Otherwise, the object file will have the name of 1its corresponding

source file and a file type of OBJ. By default, the object file

produced from concatenated source files has the name of the first

source file. All other file specification attributes (node, device,

directory, and version) assume the default attributes.

Examples

1. $ PASCAL/LIST AAA,BBB,CCC

Source files AAA.PAS, BBB.PAS, and CCC.PAS are compiled as

separate files, producing object files named AAA.OBJ, BBB.OBJ,

and CCC.0BJ; and 1listing files named AAA.LIS, BBB.LIS, and

CCC.LIS.

2. $ PASCAL XXX+YYY+ZZZ

Source files XXX.PAS, YYY.PAS, and ZZZ.PAS are concatenated and

compiled as one file, producing an object file named XXX.0BJ. 1In

batch mode, this command also produces the listing file XXX.LIS.

3. $ PASCAL/OBJECT=SQUARE

$ File: CIRCLE

The system issues the $_File: prompt because the PASCAL command

does not specify a source file. The file CIRCLE.PAS is compiled,

producing an object file named SQUARE.OBJ, but no 1listing file.

(This example applies to interactive mode only.)

4. $ PASCAL AAA+BBB,CCC/LIST

Two object files are produced: AAA.OBJ (comprising AAA.PAS and

BBB.PAS) and CCC.OBJ (comprising CCC.PAS). 1In interactive mode,

this command produces the listing file CCC.LIS. In batch mode,

it produces two listing files: AAA.LIS and CCC.LIS.

5.

2.4

When

COMPILING A PROGRAM

$ PASCAL ABC+CIRC/NOOBJECT+XYZ

When you include a qualifier in a list of files that are to be

concatenated, the qualifier affects all files in the list. Thus,

the command shown above completely suppresses the object file.

That 1is, source files ABC.PAS, CIRC.PAS, and XYZ.PAS will be

concatenated and compiled, but no object file will be produced.

$ PASCAL/LIST [DIR]MNP

The source file MNP.PAS in directory [DIR] is compiled, producing

an object file named MNP.OBJ and a listing file named MNP.LIS.

The compiler places the object and listing files in the default

directory.

COMPILER LISTING FORMAT

you specify the LIST qualifier, VAX-11] PASCAL produces a compiler

listing. This section explains the format of the compiler listing

illustrated in Figure 2-1.

EXAMPLE 11-0CT~-1979 11:35:18 VAX-11 PASCAL VERSION V1.0-1 PAGE 1
01 11-0CT-1979 11334247 DB2:L200»200IEXAMFLE.PAS34 (1)

LINE LEVEL

NUMEERS FROC STMT STATEMENT.

100 1 i rrogram EXAMPLE CINFUT»OUTFUT) ¢

200 2 1

300 03 lo label 103

400 4q 1 var AsByCIiREALS
500] 1

600) 1 bedin

700 7 1

800 8 0 rereat

200 9 2 WRITELNC(/Enter triandle sides’)$

1000 10 @2 if EOLNC(INFUT) then goto 107
1100 11 2 READLNC(AYR)$

1200 12 2 C = (SARCA) + SQR(E)) XX 0.5

ZFAS-W~DIAGN ~450 xK¥k 12 ==
X¥% WARNING 450! Nonstandard FPascal! Exronentiation

1300 13 2 WRITELNC(‘Hurotenuse isl ‘»C)§

1400 14 2 until FALSES:

1500 15 1

1600 16 1 103 ? //@
1700 17 1 WRITELNC('Dlone’?#

#*FAS-F-DIAGN "20,*,4<—'@ b 3§ 17 ==
*%X%x ERROR 4 ") exrected

Xk% ERROR 20! "»' eurected

1800 18 1

1900 19 1 end.

20 0

Comrilation time = 0.96 seconds (2036 lines/mirute).

2 Errors 1 Nonstandard feature

Last error(uwarning) on line 17.@

Active ortions at end of comrilation?

NonEBUG,STANDARD,LIST,NOCHECK,uaRNINGs.CRDSS_REFERENCE,‘g’
MACHINE._CODE» OBJECT ERROR_LIMIT = 30

Figure 2-1 Compiler Listing Format

W
'

COMPILING A PROGRAM

EXAMFLE 11-0CT-1979 1133518 VAX-11 FASCAL VERSION V1.,0-1 PAGE 2

MACHINE .CODE

GENERATED CODE (PRIOR TO BRANCH OFTIMIZATION)

LINE ADDRESS OFCODE OFERANDS BYTESTREAM (HEXADECIMALS? READ FROM RIGHT TOQ LEFT)

0002 MOVAER XVAR(O» 0)sR11 SB 00 00 00 00 00 9E
0009 MOVL R13+s%XVAR(O» 4) 00 00 00 00 00 5O DO

0010 FUSHL %0 00 DD

0012 CLRD -(R14) 7E 7C
0014 PUSHL Ri11 Sk DD

0016 FUSHL #67436548 04 05 00 04 8F DD

001cC CLRD ~(R14) 7E 7C
001E FUSHL #0 00 DD

0020 FUSHAL (R13)BTM-20 EC AD DF

0023 CLRD -(R14) 7 7C
0025 FUSHL. #0 00 DD

0027 CALLS #7»8YS$GETJIFI @ 00 00 00 00 00 07 FE
002E ADDL2 #8s+R14 SE 08 €O
0031 ADDL2 #5636y (R11) 6B 00 00 16 04 8F CO

0038 FPUSHAL (R11)RTM8 08 AR DF

003E CALLS #1sFASSINFUT 00 00 00 00 00 01 FE
0042 FUSHAL (R11)ERTM8 @08 AR IF

0045 @ FPUSHAL (R11)W"236 00 EC CB DF
0049 CALLS #2,FASSOUTFUT 00 00 00 00 00 02 FE

@B 00350 MOVL. R14y(R13)B"-12 F4 AD SE IO

9 0054 MOVAR (R11)W"236sR10 SA 00 EC CR 9E

8 0059 SUEBL2Z #16sR14 SE 10 €2
005C FUSHL R10 Sa4 Dp

00SE MOVAE XVAR(2s 0)sR9 §9 00 00 00 00 00 9E

0065 MOVL R?r(R14)B74 04 AE 59 DO

0069 MOVL #21s(R14)BTM12 oC AE 15 DO

006D MOVL #21+(R14)BTM8 08 AE 15 DO

0071 CALLS #5,PASSWRITESTR 00 00 00 00 00 05 FB
0078 MOVAR (R11)WTM236yR10 54 00 EC CE 9E

EXAMPLE 11-0CT-1979 11335218 VAX~11 PASCAL VERSION V1.0-1 FAGE 4

CROSS..REFERENCE

CROSSREFERENCE LISTING

A 4 11 12

BQ) 4 11 12@3
c ¢D4 12 13
INPUT 1 10

QUTPUT 1

GLOBALLY DEFINED IDENTIFIERS?

EOLN 0 10

FALSE 0 14

READLN 0 11

REAL 0 4 @
SAR 0 12 12

WRITELN 0 9 13 17

Figure 2-1 (Cont.) Compiler Listing Format

The compiler listing contains the following three sections:

e Source code listing -- When you specify the LIST qualifier,
the source code is listed by default.

e Machine code listing -- To generate the machine code 1listing,

you must specify the MACHINE CODE qualifier.

e Cross-reference listing -- To generate cross references for

all identifiers wused in the program, you must specify the

CROSS REFERENCE qualifier.

The numbers throughout this section are keyed to the numbers in Figure

2-1.

ronits ¢ iin [

COMPILING A PROGRAM

Title Line -- Each page of the listing contains a title 1line. The

title 1line ists the module name , the date and time of the

compilation , the PASCAL compiler name and version number o , and
the listing page number ".

2.4.1 Source Code Listing

Each page of the source code listing contains a line under the title

line specifying the date and time of source file creation a and the

VAX/VMS file specification of the source file o

Source Code Listing -- The lines of the source code are printed in the

source code listing. 1In addition, the listing contains the following

information pertaining to the source code:

e SOS line numbers " -— If you created or edited the source
lines in a PASCAL module with the S0OS editor, SOS line numbers

appear in the leftmost column of the source code listing. SOS

line numbers are irrelevant to the PASCAL compiler.

e Line numbers 0 -- The compiler assigns unique 1line numbers
to the source 1lines in a PASCAL module. The symbolic

traceback that 1is printed 1if your program encounters an

exception at run time refers to these line numbers.

® Procedure level o -- Each line that contains a declaration
lists the procedure 1level of that declaration. Procedure

level 1 indicates declarations in the outermost block. The

procedure level number increases by one for each nesting level

of functions or procedures.

e Statement level @ -- The 1listing specifies a statement
level for each 1line of source code after the first BEGIN

delimiter. The statement level starts at 0 and increases by 1

for each nesting level of PASCAL structured statements. The

statement level of a comment is the same level as that of the

statement that follows it.

Errors and Warnings -- The source code listing includes information on

any errors or warnings detected by the compiler. A line beneath the

source code line in which the error is detected specifies whether the

diagnostic 1is a warning or an error. In addition, the error

description can contain the following information:

e A circumflex (°) that points to the character position in the

line where the error was detected QD .

® A numeric code, following the circumflex, that specifies the

particular error . On the following lines of the source

listing, the compiler prints the text that corresponds to each

numeric code . Note that one source program error often

causes the PASCAL compiler to detect more than one error 0 .

¢ An asterisk (*) that shows where the compiler resumed

translation after the error @ .

e The line number in which the error was detected @ and the
line number of the last line containing an error diagnostic

. You can use these error line numbers to trace the error

diagnostics backwards through the source listing.

COMPILING A PROGRAM

Summary -- At the end of the source listing, the _compiler tells vyou

how much time was required for the compilation . If your program

generated warning or error messages, the compiler prints a summary of

all the errors and the source line number of the last message

. Finally, the compiler lists the status of all the compilation

options @ .

2.4.2 Machine Code Listing

The machine code 1listing (if requested with the MACHINE CODE

qualifier) follows the source 1listing. The machine code listing

contains:

e Symbolic representation @ ~— The symbolic representation,
similar to a VAX-11l MACRO instruction, appears for each object

instruction generated. Because the PASCAL compiler operates

in one pass, it must generate these instructions before it

performs branch optimization. Branch optimization can cause

certain BRW instructions to be deleted. Therefore, these

instructions will not be identical to those appearing in the

executable image.

e Source line number ‘E’ -- A source line number marks the
first object instruction that the compiler generated for the

first PASCAL statement on that source line.

e Hexadecimal address @ -— The hexadecimal address 1is an
approximation of the address of the object instruction. You

should not use these addresses for debugging purposes because

they do not correctly correspond to the locations in the

executable image. The branch optimization mentioned above can

change the addresses of the object instructions.

e Hexadecimal 1instruction @ -- This is the hexadecimal
rTepresentation of the object instruction. You should read the

hexadecimal instruction from right to 1left because the

rightmost byte has the smallest address. Again, because of

its one-pass operation, the compiler must generate some object

instructions before it can determine the address bytes of

their operands. The addresses of these operands are printed

as zeros. After generating the hexadecimal representation of

an instruction, but before writing the object code file, the

compiler places the <correct wvalues 1into the binary object

code.

2.4.3 Cross—-Reference Listing

The cross-reference listing (if requested with the CROSS REFERENCE

qualifier) appears after the machine code listing. It contains two

sections:

® User-specified identifiers @ —- This section lists all the
identifiers you declared.

e Globally-defined identifiers @ -- This section 1lists the
PASCAL predefined identifiers that the program uses.

Each line of the cross-reference listing contains an identifier @
and a 1list of the source line numbers where the identifier is used

. The first 1line number indicates where the identifier |is

declared. Predefined identifiers are listed as if they were declared

on line 0. The cross-reference listing does not specify pointer type

identifiers that are used before they are declared.

2-11

CHAPTER 3

LINKING A PROGRAM

After compiling your VAX-11 PASCAL program you link the object

module (s) to produce an executable image file. Linking resolves all

references in the object code and establishes absolute addresses for

symbolic locations.

3.1 THE LINK COMMAND

To link an object module, issue the LINK command in the following

general form:

$ LINK[/command-qualifier(s)] file-spec[/file-qualifier(s)...]

/command-qualifier(s)

Specify output file options.

file-spec

Specifies the input object file to be linked.

/file-qualifier(s)

Specify input file options.

In interactive mode, you <can issue the LINK command with no

accompanying file specification. The system responds with the prompt:

$_File:

The file specification must be typed on the same line as the prompt.

If the file specification does not fit on one line you can type a

hyphen (-) as the last character of the line and continue on the next

line.

You can enter multiple file specifications separated from each other

by commas or plus signs. When used with the LINK command, the comma

has the same effect as the plus sign: no matter which you use, the

linker creates a single executable image from the input files. 1If no

output file is specified, the linker produces an executable image with

the same name as the first object module and a file type of EXE.

Table 3-1 lists the linker qualifiers of particular interest to PASCAL

users. See the VAX-11] Linker Reference Manual for details on the

linker.

LINKING A PROGRAM

Table 3-1

Linker Qualifiers

Type of

Qualifier Qualifier Negative Form Default

Command /BRIEF None Not applicable
qualifiers

/CROSS_REFERENCE /NOCROSS_REFERENCE /NOCROSS_REFERENCE

/DEBUG /NODEBUG /NODEBUG

/EXECUTABLE[=file-spec] | /NOEXECUTABLE /EXECUTABLE

/FULL None Not applicable

/MAP[=file-specl /NOMAP /NOMAP (interactive)
/MAP (batch)

/SHAREABLE[=£file-spec] /NOSHAREABLE /NOSHAREABLE

/TRACEBACK /NOTRACEBACK /TRACEBACK

Ipput /INCLUDE=module-~name (s) None Not applicable

gtiiifiers /LIBRARY None Not applicable

3.2 LINKER COMMAND QUALIFIERS

LINK command qualifiers modify the output of the 1linker and specify
whether the debugging or the traceback facility is to be included.
Linker output consists of an image file and, optionally, a map file.
The following qualifiers, described 1in Section 3.2.1, control the
image file generated by the linker:

/EXECUTABLE[=file-spec]

/NOEXECUTABLE

/SHAREABLE[=file-specl

The map file qualifiers, described in Section 3.2.2, are:

/MAP[=file-spec]
/BRIEF

/FULL

/CROSS_REFERENCE

The debugger and traceback qualifiers, described in Section 3.2.3,
ares. ‘

/DEBUG

/TRACEBACK

LINKING A PROGRAM

3.2.1 1Image File Qualifiers

The image file qualifiers include:

/EXECUTABLE

/SHAREABLE

If you do not specify an 1image file qualifier, the default Iis

/EXECUTABLE; the 1linker produces an executable image. To suppress

production of an image, specify the negative form, as:

/NOEXECUTABLE

For example:

$ LINK/NOEXECUTABLE CIRCLE

The file CIRCLE.OBJ 1is 1linked, but no 1image 1is generated. The

/NOEXECUTABLE qualifier is useful if you want to verify the results of

linking an object file without actually producing the image.

To designate a file specification for an executable 1image, use

/EXECUTABLE in the form:

/EXECUTABLE=file-spec

For example:

$ LINK/EXECUTABLE=TEST CIRCLE

The file CIRCLE.OBJ is linked, and the executable image generated is

named TEST.EXE.

A shareable image is one that can be used in a number of different

applications. It can be a private image vyou use for your own

applications, or it can be installed in the system by the system

manager for use by all users. To create a shareable image, specify

/SHAREABLE. For example:

$ LINK/SHAREABLE CIRCLE

To include a shareable image as input to the linker, you must use an

options file and specify the /OPTIONS file qualifier in the LINK

command. Refer to the VAX-11l Linker Reference Manual for details.

If you specify /NOSHAREABLE, the linker generates an executable image.

3.2.2 Map File Qualifiers

The map file qualifiers tell the linker whether to generate a map file

and, if so, the information the map file is to include. The map file
qualifiers are:

/MAP

/BRIEF

/FULL

/CROSS_REFERENCE

3-3

LINKING A PROGRAM

The map qualifiers are specified as follows:

/MAP[=file-spec] u{/FULL }H[I/CROSS_REFERENCE]]
/BRIEF

Note that you must specify /MAP if vyou specify /BRIEF, /FULL, or

/CROSS _REFERENCE.

The linker uses defaults to generate or suppress a map file. In

interactive mode, the default is to suppress the map; in batch mode,

the default is to generate the map.

If no file specification is included with /MAP, the map file has the

name of the first input file and a file type of MAP. It is stored on

the default device, in the default directory.

The optional qualifiers /BRIEF and /FULL define the amount of

information included in the map file, as follows:

e /BRIEF produces a summary of the image's characteristics and a

list of contributing modules.

e /FULL produces (1) a summary of the 1image's characteristics

and a 1list of contributing modules (as produced by /BRIEF),

(2) listings of global symbols by name and by value, and (3) a

summary of characteristics of 1image sections in the linked

image.

By default, if you specify neither /BRIEF nor /FULL, the map file

contains a summary of the' image's characteristics and a list of

contributing modules (as produced by /BRIEF), plus a 1list of global

symbols and values, in symbol name order. For a complete description

of the map file's contents, refer to the VAX-11] Linker Reference

Manual.

The /CROSS_REFERENCE qualifier can be used with either the default or

/FULL map qualifier to request cross-reference information for global

symbols. This cross-reference information indicates the object

modules that define and/or refer to global symbols encountered during

linking. The default is /NOCROSS_REFERENCE.

3.2.3 Debugging and Traceback Qualifiers

The /DEBUG qualifier indicates that the VAX-11 symbolic debugger is to

be included 1in the executable 1image and a symbol table is to be

generated. If you specify /DEBUG at link time, the program always

executes under the control of the debugger, unless you specify

/NODEBUG with the RUN command. The default at link time is /NODEBUG.

When vyou specify the /TRACEBACK qualifier, error messages are

accompanied by symbolic traceback information showing the sequence of

calls that transferred control to the program unit in which the error

occurred. If you specify /NOTRACEBACK, this information 1is not

produced. The default is /TRACEBACK. If you specify both /DEBUG and

/NOTRACEBACK, the traceback capability is automatically included, and

/NOTRACEBACK has no effect.

LINKING A PROGRAM

3.3 LINKER INPUT FILE QUALIFIERS

Input file qualifiers are used as modifiers on the input file

specification. Input files can be object files, shareable images

specified in an options file, or library files.

3.3.1 /LIBRARY Qualifier

The /LIBRARY qualifier has the form:

/LIBRARY

This qualifier specifies that the input file 1is an object-module

library that the 1linker must search to resolve undefined symbols

referenced in other input modules. The default file type is OLB.

3.3.2 /INCLUDE Qualifier

The /INCLUDE qualifier has the form:

/INCLUDE=module-name(s)

This qualifier specifies that the input file 1is an object-module

library, and that the modules named are the only modules in that

library that are to be explicitly included as input. At 1least one

module name is required. To specify more than one, enclose the module

names in parentheses, and separate them with commas. The /LIBRARY

qualifier can be used with the /INCLUDE qualifier to modify a single

input file specification. If you use both qualifiers on the same

input file, the specified 1library 1is also searched for unresolved

references.

CHAPTER 4

EXECUTING A PROGRAM

After you have compiled and 1linked your program, the system can

execute it. The RUN command initiates execution. It has the form:

$ RUN[/[INOCIDEBUG]file-spec

You must specify the file name; default values are applied if vyou

omit optional elements of the file specification. The default file

type is EXE.

The DEBUG qualifier allows you to wuse the debugger, even 1if vyou

omitted this qualifier from the PASCAL and LINK commands (see Sections

2.2 and 3.1). If you specify /NODEBUG, the program executes without

debugger intervention. This qualifier allows you to override a /DEBUG

qualifier specified at link time.

4.1 FINDING AND CORRECTING ERRORS

Both the compiler and the Run-Time Library include facilities for
detecting and reporting errors. VAX/VMS also provides the debugger to

help you locate and correct errors. In addition to the debugger, you

can use a traceback facility to track down errors that occur during
program execution.

4.1.1 Error-Related Command Qualifiers

At each step in compiling, linking, and executing your program, Yyou

can specify command qualifiers that affect how errors are reported.

At compile time, you can use the /DEBUG qualifier to ensure that

symbolic information 1is preserved for use by the debugger. At link

time, you can also specify the /DEBUG qualifier to make the symbolic
information available to the debugger. The same qualifier can be

specified with the RUN command to invoke the debugger at run time.

Table 4-1 summarizes the /DEBUG and /TRACEBACK qualifiers.

If you use none of these qualifiers at any point in the

compile-link-execute sequence, and an execution error occurs, you will

receive a traceback list by default.

EXECUTING A PROGRAM

Table 4-1

/DEBUG and /TRACEBACK Qualifiers

Qualifier Command Effect Default

/DEBUG PASCAL The PASCAL compiler /NODEBUG

creates symbolic data

needed by the debugger.

/DEBUG LINK Symbolic data created by the /NODEBUG

compiler is passed to the

debugger. Traceback list is

also produced.

/TRACEBACK | LINK Traceback information is /TRACEBACK

passed to the debugger.

Traceback list is produced.

/DEBUG RUN Invokes the debugger. The None

DBG> prompt is displayed.

Not needed if $ LINK/DEBUG

was specified.

/NODEBUG RUN If /DEBUG was specified in None

the LINK command, RUN/NODEBUG

suppresses the DBG> prompt.

To perform symbolic debugging, you must use the /DEBUG qualifier with

both the PASCAL command and the LINK command. It then is unnecessary

to specify it with the RUN command. If you omit /DEBUG from either

the PASCAL command or the LINK command, you can use it with the RUN

command to invoke the debugger. However, the executable image will

not contain debug records and symbol tables used in debugging, and you

will be forced to express addresses as absolute values, rather than

symbolically.

If you specify LINK/NOTRACEBACK, you will receive no traceback list in

the event of error. Figure 4-1 shows an example of a source program

listing and a traceback list.

The traceback list is interpreted as follows:

When the error condition is detected, vyou receive the appropriate

message, followed by the traceback information. In this example, a

message is displayed by the system, indicating the nature of the

error, the address at which the error occurred (PC), and the contents

of the Processor Status Longword (PSL). This message is followed by

the traceback information.

The traceback information is presented in inverse order to the routine

or subprogram calls. Of particular interest to you are the values

listed under routine name and line, the first of which shows which

routine or subprogram generated the error. The value given for line

corresponds to a compiler-generated line number in the source program

listing (not to be confused with editor-generated line numbers). The

line number indicates the nearest previous line on which a statement

begins. Using this information, you can usually isolate the error in

a short time.

If you specify either LINK/DEBUG or RUN/DEBUG, the debugger assumes

control of execution. If an error occurs, control reverts to the

debugger; the traceback 1list 1is not automatically printed. To

4-2

EXECUTING A PROGRAM

display traceback information, you can use the debugger command SHOW

CALLS, as described in Section 4.1.2. For more information on using

the debugger with VAX-11 PASCAL programs, refer to the VAX-11 PASCAL

Installation Guide/Release Notes.

$ PASCAL/LIST TRACE
% TYFE TRACE
TRACETEST 3-0CT-1979 11321108 VAX~-11 PASCAL VERSION V1.0-1 PAGE 1
01 3-0CT-1979 112041 DELICTEST.FASITRACE.PASH1 (1)

LINE LEVEL

NUMEERS FROC STMT STATEMENT

1 1 FPROGRAM TRACETEST?

2 1

3 2 FROCEDURE F1 (VAR X ¢ REAL)?

4 2 BEGIN

S) X $¢= 1.0/X3

& 1 ENDS

7 0

8 2 PROCENURE P2 (Y ¢ REAL)?

9 2 BEGIN

10 0 P1CY)$

11 1 ENDS

12 0

13 0 REGIN

14 0 F2¢0.0)%

15 1 END.

16 O

17 0

Comeilation time = 0.+68 seconds (1500 lines/minute).

Active ortions at end of comerilation?

NODEBUG » STANDARD s LIST » NOCHECK » WARNINGS y NOCROSS _REFERENCE »

NOMACHINE_CODE OBJECTyERROR_LIMIT = 30

$ LINK TRACE
$ RUN TRACE

YSYSTEM-F~FLTDIVs arithmetic trass floating/decimal divide by zero at PC=00000429, FPSL=03C0002A
LTRACE-F~TRACERACKy sumbolic stack dume follows

module name routine name lire relative PC absolute PC

TRACETEST F1 5 00000029 00000429

TRACETEST P2 10 00000030 0000045D

TRACETEST TRACETEST i4 0000004E 000004AC

Figure 4-1 Source Program Listing Traceback List

4.1.2 SHOW CALLS Command

When an error occurs in a program that is executing under the control

of the debugger, no traceback 1list 1is produced. To generate a

traceback list, use the SHOW CALLS command, which has the form:

DBG>SHOW CALLS

EXECUTING A PROGRAM

4.2 SAMPLE TERMINAL SESSION

A simple dialog between you and the system might appear as follows:

RET

Username! SMITH

Fassword! G (Your password is not displayed)

WELCOME TO VAX/UMS VERSION 1.6

$ EDIT CIRCLE.FAS 6D

Inerut IDBAZIESMITHICIRCLE. PAS

00100

(enter source program)

XE @D (terminate edit session and write file to disk)

CORAZ2ICSMITHICIRCLE.FAS#11]

$ FASCAL/ZLIST CIRCLE

$ LINK CIRCLE

RUN CIRCLE

CHAPTER 5

INPUT AND OUTPUT

This chapter describes input and output (I/0) for VAX-11 PASCAL. In

particular, it provides information about PASCAL I/O in relation to

VAX-11 Record Management Services (VAX-11 RMS). The topics covered

include:

e Logical names

e PASCAL file characteristics

e PASCAL record formats

e OPEN procedure parameters

e Local interprocess communication by means of mailboxes

e Remote communication by means of DECnet-VAX

5.1 LOGICAL NAMES

The VAX/VMS operating system provides the logical name mechanism as a

way of making programs device and file independent. If you use

logical names, your program need not specify the particular device on

which a file resides or the particular file that contains data.

Specific devices and files can be defined at run time.

A logical name is an alphanumeric string, up to 63 characters long,
that you specify in place of a file specification. The operating
system provides a number of predefined 1logical names, already

associated with particular file specifications. Table 5-1 lists the

logical names of special interest to PASCAL users.

In addition, the system manager defines the 1logical names PASSINPUT
and PASSOUTPUT, which default to SYSSINPUT and SYSSOUTPUT, at compiler

installation.

Logical names provide great flexibility because they can be associated

not only with a complete file specification, but also with a device, a

device and a directory, or even another logical name.

INPUT AND OUTPUT

Table 5-1

Predefined System Logical Names

Name Meaning Default

SYS$DISK Default device and directory As specified by the

user

SYSSERROR Default error message file User's terminal

(interactive); batch

log file (batch)

SYSSCOMMAND | Default command input stream User's terminal

(interactive); batch

command file (batch)

SYSSINPUT Default input file User's terminal

(interactive); batch

command file (batch)

SYSSOUTPUT Default output file User's terminal
. (interactive); batch

log file (batch)

You <can create a logical name and associate it with a file
specification by means of the ASSIGN command. Thus, before program
execution, you can associate the logical names in your program with
the file specifications appropriate to your needs. For example:

$ ASSIGN DBAO:[SMITH]TEST.DAT;2 DATA

This command creates the logical name DATA and associates it with the
file specification DBAO:[SMITH]TEST.DAT;2. The system uses this file
specification when it encounters the logical name DATA during program

execution. For example:

OPEN (INDATA, 'DATA', OLD);

In executing this PASCAL statement, the system uses the file
specification DBAOQ:[SMITH]TEST.DAT;2 for the logical name DATA. To
specify a different file when you execute the program again, issue
anothér ASSIGN command. For example:

$ ASSIGN DBA2:[JONES]REAL.DAT;7 DATA

This command associates the logical name DATA with a different file

specification and replaces the previous logical name assignment. The
OPEN statement above will now refer to the file

DBA2: [JONES]REAL.DAT;7.

You can also assign logical names with the MOUNT and DEFINE commands

(see the VAX/VMS Command Language User's Guide).

5.2 FILE CHARACTERISTICS

A clear distinction must be made between the way files are organized

and the way records are accessed.

INPUT AND OUTPUT

The term file organization applies to the way records are physically
arranged on a storage device. The term record access refers to the
method used to read records from or write records to a file,
regardless of the file's organization. A file's organization is
specified when the file is created and cannot be changed. Record
access is specified each time the file is opened and can vary.

5.2.1 File Organization

VAX-11 PASCAL supports sequential file organization. Sequential files
consist of records arranged in the order in which they are written to
the file (the first record written is the first record in the file,
the second record written 1is the second record in the file, and so
on). As a result, records can be added only at the end of the file.

5.2.2 Record Access

You specify record access mode as a parameter to the OPEN procedure.
VAX-11 PASCAL provides two ways of accessing records:

® Sequential

e Direct

If you select sequential access mode, records are written to or read
from the file, starting at the beginning and continuing through the
file one record after another.

Sequential access to a file means that you can read a particular
record only after reading all the records preceding it. New records
can be written only at the end of a file that is open for sequential
access.

If you select direct access mode, you can specify the order in which
records are accessed. Each FIND procedure call must include the
relative record number indicating the record to be read. You can
directly access a file only if it contains fixed-length records,
resides on disk, and is open for input (reading).

5.3 RECORD FORMATS

Records are stored in one of two formats:

e Fixed length

@ Variable length

You can access fixed-length records in either sequential or direct
mode. Variable-length records can be accessed only in sequential
mode.

5.3.1 Fixed-Length Records

When you specify fixed-length records (see Section 5.4.4), you are
specifying that all records in the file contain the same number of
bytes. A file opened for direct access must contain fixed-length
records, to allow the record location to be computed correctly.

5-3

INPUT AND OUTPUT

5.3.2 Variable-Length Records

Variable-length records can contain any number of bytes, up to the

buffer size specified when the file was opened. Variable-length

records are prefixed by a count field, indicating the number of bytes

in the record. The count field comprises two binary bytes on a disk

device and four decimal digits on magnetic tape. The value stored in

the count field indicates the number of data bytes in the record.

5.4 OPEN PROCEDURE PARAMETERS

This section supplements the description of the OPEN procedure that

appears in the VAX-11 PASCAL Language Reference Manual. In

particular, it describes how the VAX-11 Record Management Services

(RMS) affect VAX-11 PASCAL. For more information, refer to the VAX-1l1

Record Management Services Reference Manual.

The OPEN procedure has the following general format:

OPEN (file-variable, 'VAX/VMS file specification', buffer-size,

file-status, record-access-mode, record-type,

carriage-control);

Buffer size, file status, record access mode, record type, and

carriage <control are RMS-dependent attributes described in this

section.

5.4.1 Buffer Size

The buffer size parameter is an integer that specifies the maximum

record size in bytes for a text file. The default for a VAX-11 PASCAL

text file is 133 bytes. For a file of any other type, this parameter

has no meaning.

5.4.2 File Status

The file status parameter indicates whether the specified file exists

or must be created. The possible values for this parameter are:

NEW

OLD

A file type of NEW indicates that a new file must be created with the

specified characteristics. NEW is the default value.

If you specify OLD, the system tries to open an existing file. An

error occurs 1f the file cannot be found. A type of OLD is illegal

for internal files, which are newly created each time the declaring

program unit is executed.

5.4.3 Record Access Mode

The record access mode parameter specifies the mode of access to

records in the file. The possible values for this parameter are:

SEQUENTIAL

DIRECT

INPUT AND OUTPUT

The default record access mode is SEQUENTIAL. In SEQUENTIAL mode, you

can access files that have fixed- or variable-length records.

DIRECT mode allows you to use the FIND procedure to read files with

fixed-length records. You cannot access a file with variable-length
records in DIRECT mode.

5.4.4 Record Type

The record type parameter specifies the structure of records in a

file. The possible values for this parameter are:

FIXED

VARIABLE

A value of FIXED indicates that all records in the file have the same

length. A value of VARIABLE indicates that the records within the

file can vary in length. VARIABLE is the default for a new file. For

an existing file, the default is the record type associated with the

file at its creation.

5.4.5 Carriage Control

The carriage control parameter specifies the type of carriage control

in effect for an output text file. The possible values for this

parameter are:

LIST

CARRIAGE

NOCARRIAGE

A value of LIST indicates that each record will be preceded by a 1line

feed and followed by a carriage return when the file is output to a

terminal or line printer. LIST is equivalent to the VAX-1ll RMS record

attribute CR. LIST is the default for all text files.

A value of CARRIAGE indicates that the first byte of each record

contains a carriage control character. CARRIAGE is equivalent to the

VAX-11 RMS record attribute FTN.

A value of NOCARRIAGE indicates that the record contains no carriage

control information. NOCARRIAGE 1is equivalent to the VAX-1l1l RMS

record attribute PRN with all bits equal to zero.

5.5 LOCAL INTERPROCESS COMMUNICATION: MAILBOXES

It is often useful to exchange data between processes: for example,

to synchronize execution or to send messages.

A mailbox is a record-oriented, pseudo I/0 device that allows data to

be passed from one process to another. Mailboxes are created by the

Create Mailbox (SYSSCREMBX) system service (see Section 6.2.1 for an

example using SYSS$SCREMBX). This section describes how to send and

receive data using mailboxes.

Data transmission by means of mailboxes is synchronous; that 1is, a

PASCAL program that writes a message to a mailbox must wait until that

message is read, and a program that reads a message from a mailbox

INPUT AND OUTPUT

must wait until a message is written. When the writing program closes

the mailbox, an end-of-file «condition 1is returned to the reading

program. VAX-1l RMS ensures that the message transmission is complete

before it returns control to the user program.

For example:

FROGRAM MAIL (MBXs OQUTFUT)

VAR MEX 1 TEXTS

REGIN

OFEN (MEBXy ‘MAILBOX‘y OLDy SEQUENTIAL)

RESET (MEX)3

WHILE NOT EOF (MEX) DO

BEGIN

WHILE NOT EQLN (MEX) DO

BEGIN

WRITE (MRXTM)3$

GET (MEX)

END

WRITELNS

GET (MEX)

END?

CLOSE (MEX)

END,

This program reads messages from a mailbox known by the logical name

MAILBOX. The messages are lines of text, which are then printed at

the user's terminal.

5.6 COMMUNICATING WITH REMOTE COMPUTERS: NETWORKS

If your computer is one of the nodes in a DECnet network, you can use

VAX-11 PASCAL 1I/0 procedures to communicate with other nodes in the

network. These procedures allow you to exchange data with a program

at the remote computer (task-to-task communication) and to access

files at the remote computer (resource sharing).

Both task-to-task communication and resource sharing between systems

are transparent. That is, these intersystem exchanges do not appear

to be different from local interprocess and file-access exchanges.

To communicate across the network, specify a node name as the first

element of a file specification. For example:

BOSTON: :DBAQ: [SMITH] TEST.DAT;2

Remote task-to-task communication requires a special form of file

specification. You must use the notation TASK= in place of the device

name and supply the task name, as in the following example:

BOSTON:: "TASK=UNA"

The example specifies the task named UPDATE on the BOSTON node of the

network.

The following program fragment shows how messages can be received from

a remote program by means of VAX-1l PASCAL I/0 procedures.

INPUT AND OUTPUT

OFEN (NETJORy ‘RBOSTONZI:*TASK=UNA"'»OLD)#

RESET (NETJOR)3

RDAT (= NETJOBTMS

NET..FROC (RDATsWRTDATYS

CLOSE (NETJOR)S

The effect of these statements is to establish a 1link with a Jjob

(TASK) named UNA at the node BOSTON and to receive a component from

the file variable associated with the remote program. The variable

RDAT contains the data. Then the procedure NET_PROC is called to

process the data and the link is broken.

The next example shows how you can write a remote file wusing VAX-11

PASCAL I/0 procedures.

FROGRAM UFDATE (NEWDATy RBRANCH)s

VAR NEWDAT ¢ FILE OF INTEGERS$

BRANCH ¢ FILE OF INTEGERS$

REGIN

OFEN (NEWDATy "NEWDAT.DAT »OLIDD 5

RESET (NEWDAT)

OFPEN (BRANCHy 'NASHUA"PLUGH XYZZY" ! IMASTER.DATs NEW) 5

REWRITE (BRANCH)

WHILE NOT EOF (NEWDAT) D0

BEGIN

BRANCHTM: =NEWLATTM §

GET (NEWDAT)

FUT (BRANCH)

END

CLLOSE (BRANCH)3

CLOSE (NEWDAT)

END.

The sample program writes records in a remote file at the node NASHUA.

It reads data from a local file known by the logical name NEWDAT and

writes the data across the network to the remote file MASTER.DAT 1in

the directory [PLUGH] with password XYZZY.

If you use logical names in your program, you can equate the logical

names with either 1local or remote files. Thus, if your program

normally accesses a remote file, and the remote node becomes

unavailable, you can bring the volume set containing the file to the

local site. You <can then mount the volume set and assign the

appropriate logical name. For example:

Remote Access

$ ASSIGN REM::APPLIC SET:file-name LOGIC

Local Access

$ MOUNT device-name APPLIC_SET

$ ASSIGN APPLIC SET:file-name LOGIC

The MOUNT and ASSIGN commands are described in detail in the VAX/VMS

Command Language User's Guide.

DECnet capabilities are described in the DECnet-VAX Reference Manual.

CHAPTER 6

CALLING CONVENTIONS

In the context of the VAX/VMS operating system, a procedure is a

routine entered by a CALL instruction. 1In a PASCAL program, such a

routine can be a function or procedure written in PASCAL, a function

or procedure written in some other language, a VAX/VMS system service,

or a VAX-11l Run-Time Library procedure. In many cases, procedures

perform calculations that are used widely and repeatedly in many

applications. 1In PASCAL, you can write each procedure once and call

it from many other programs.

This chapter describes how to call procedures that are not written in

PASCAL and provides information on calling VAX/VMS system services and

VAX-11] Run-Time Library procedures. See the VAX-11] PASCAL Language

Reference Manual for information on defining and invoking PASCAL

functions and procedures.

The material presented here assumes some knowledge of procedure

calling and argument passing mechanisms. You should be familiar with

these subjects before you attempt to use the features described in

this chapter. Refer to the VAX-11 Run-Time Library Reference Manual

and the VAX-11 Architecture Handbook for more information.

6.1 VAX-11l PROCEDURE CALLING STANDARD

Programs compiled by the VAX-11 PASCAL compiler conform to the

standard defined for VAX-11 procedure calls (see Appendix C of the

VAX-11 Architecture Handbook). This standard prescribes how arguments

are passed, how function wvalues are returned, and how procedures

receive and return control. VAX-11] PASCAL also provides features that

allow programs to call system services and procedures written in other

native-mode languages supported by VAX/VMS.

VAX-11 PASCAL uses the VAX-1l CALLS instruction to <call procedures.

The illustrations in Appendix B outline the events that occur during a

procedure call and show the structure of the run-time stack after each

event.

6.1.1 Argument Lists

Each time you call a procedure, VAX-11 PASCAL constructs an argument

list. The VAX-11 procedure calling standard defines an argument list

as a sequence of longword (4-byte) entries. The first byte of the

first entry in the list is an argument count, which indicates how many

arguments follow in the list.

CALLING CONVENTIONS

The arguments in the 1list are based on the passing mechanisms

specified in the formal parameter list and the values in the actual

parameter list. The argument list contains the arguments actually

passed to the procedure. .

6.1.2 Parameter Passing Mechanisms

Non-PASCAL procedures require arguments as addresses, immediate

values, or descriptors. The VAX-11l procedure calling standard defines

three mechanisms by which arguments are passed to procedures:

1. By-reference -- the argument list entry is the address of the

value

2. By-immediate-value -- the argument list entry is the value

3. By-descriptor -- the argument list entry is the address of a

descriptor of the value

The following subsections describe what you must specify in vyour

VAX-11 PASCAL program to correctly pass arguments to non-PASCAL

subprograms using each of these mechanisms. Note that this

information pertains only to subprograms written in languages other

than PASCAL. For information about passing arguments to PASCAL

subprograms from non-PASCAL programs, see Section 6.1.5. Refer to the

VAX-11 PASCAL Langquage Reference Manual for a description of parameter

passing between PASCAL subprograms.

6.1.2.1 By-Reference Mechanism - The by-reference mechanism passes

the address of the actual parameter. By default, PASCAL uses this

mechanism for everything except dynamic array parameters. You can

invoke the by-reference mechanism in two ways:

1. By omitting the mechanism specifier from the formal parameter

list. This syntax invokes PASCAL by-value semantics.

2. By using the VAR specifier in the formal parameter 1list.

This syntax invokes PASCAL by-reference semantics.

If you omit the mechanism specifier, PASCAL passes the address of the

actual parameter. PASCAL expects the called procedure to copy the

value from the specified address to local storage. You should use

this method only if the called procedure does not change the value of

the corresponding actual parameter. When vyou omit the mechanism

specifier, the actual parameter must be an expression.

For example, the following function declaration and corresponding

function call use this method:

FUNCTION MTHSTANH (ANGLE : REAL) :REAL; EXTERN;

TANH := MTHSTANH (RADIANS);

This example declares the VAX-11 Run-Time Library function MTHSTANH as

an external subprogram. The MTHS TANH function returns, in

floating-point notation, the hyperbolic tangent of an angle. The

input parameter to this function 1is the size of the angle (in

radians), and it must be passed by-reference. Because the function

MTHSTANH does not change the value of the angle, you can omit the

mechanism specifier when you declare the function. The returned value

CALLING CONVENTIONS

is assigned to the variable TANH by the assignment statement shown.

(See Section 6.3 for more information on calling Run-Time Library

procedures.)

Use the VAR specifier to pass an actual parameter that can change in

value during execution of the procedure. You must use VAR when

passing a file variable as a parameter. The VAR specifier 1is also

useful to prevent the copying of large parameters. Specify VAR in the

following format:

VAR formal-parm-list : type ;

The formal parameter list specifies one or more formal parameters of

the indicated type. Each of these parameters will be passed using the

by-reference mechanism and with by-reference semantics.

When you call the procedure, the argument list contains the address of

the value to be passed. The actual parameter must be a variable or a

component of an unpacked, structured variable; constants,

expressions, procedure names, and function names are not allowed.

The following declarations and corresponding function call show how to

pass an address to an external routine.

TYPE BIT64 = PACKED ARRAY [1..2] OF BOOLEAN;

VAR SYSTIME : BIT64;

FUNCTION SYSSGETTIM (VAR BINTIM : BIT64) : INTEGER; EXTERN;

STATUS := SYSSGETTIM (SYSTIME);

This example declares the Get Time (SYSSGETTIM) system service, which

returns the system time. The actual parameter SYSTIME is a 64-bit

variable into which the system service writes the time.

6.1.2.2 By-Immediate-Value Mechanism - VAX/VMS system services and

Run-Time Library procedures sometimes require that the calling program

pass an immediate value, that is, the value itself. To direct PASCAL

to pass a value instead of an address, use the %IMMED mechanism

specifier, as follows:

$IMMED formal-parm-list : type

The formal parameter list specifies one or more formal parameters of

the 1indicated type. Variables that require more than 32 bits of

storage, including all file variables, cannot be passed as immediate

values. You can use %IMMED only with non-PASCAL subprograms.

When you call the procedure, the actual parameter 1list contains the

value of each parameter for which you specified $IMMED. The actual

parameter can be a constant, a variable, or an expression. Note that

$IMMED can also modify procedure and function names, as described in
Section 6.1.3.

The following declarations and corresponding function call show how to

pass an immediate value to a system service procedure.

VAR EVENT_FLAG : INTEGER;

FUNCTION SYSSWAITFR ($IMMED EFN : INTEGER) : INTEGER; EXTERN;

STATUS := SYSSWAITFR (EVENT_FLAG);

6-3

CALLING CONVENTIONS

This example declares the Wait for Single Event Flag (SYSSWAITFR)

system service, which waits for a single event flag. SYSSWAITFR

requires one value parameter, the number of the event flag for which

to wait. This number is passed as an immediate value, copied from the

integer variable EVENT FLAG.

6.1.2.3 By-Descriptor Mechanism - The by-descriptor mechanism passes

the address of a string, array, or scalar descriptor, as described in

Appendix C of the VAX-11 Architecture Handbook. VAX-11 PASCAL

includes the $STDESCR mechanism specifier for passing string

descriptors and the $%DESCR mechanism specifier for passing array and

scalar descriptors. You cannot pass a component of a packed structure

using either of these specifiers. You can use these specifiers only

with non-PASCAL subprograms. Note that, by default, PASCAL passes an

array descriptor to a formal dynamic array parameter.

To pass a string descriptor, specify %$STDESCR as follows:

$STDESCR formal-parm-list : type;

The formal parameter list specifies one or more parameters of the

indicated type. Only string constants, packed character arrays with

subscripts from 1 to n, and packed dynamic character arrays with

subscripts of an integer or integer subscript type can be passed by

string descriptor.

When you call the procedure, the argument list contains the address of

each string descriptor. For example, the Broadcast (SYS$SBRDCST)

system service requires two string descriptors as parameters:

TYPE MSGTYPE

DEVTYPE

PACKED ARRAY[1..80] OF CHAR;

PACKED ARRAY([1l..6] OF CHAR;

VAR MESSAGE : MSGTYPE;

TERMINAL : DEVTYPE;

FUNCTION SYSS$SBRDCST (%STDESCR MSG : MSGTYPE;

$STDESCR DEV : DEVTYPE):

INTEGER; EXTERN;

STATUS := SYSSBRDCST (MESSAGE, TERMINAL);

The %STDESCR specifier indicates that both parameters must be passed

by string descriptor. The actual parameters MESSAGE and TERMINAL are

packed arrays of 80 and 6 characters, respectively.

Routines written in other high-level languages may require array or

scalar descriptors. To pass an array or scalar descriptor, use $%DESCR

in the following format:

$DESCR formal-parm-list : type

The formal parameter list specifies one or more parameters of the

indicated scalar or array type. The type can be any predefined scalar

type or an unpacked array (fixed or dynamic) of a predefined scalar

type. The argument list contains the address of the descriptor of an

array or scalar variable.

CALLING CONVENTIONS

The following example shows how an array descriptor might be passed to

a FORTRAN subroutine.

TYPE FORAY = ARRAY [1..10,1..10] OF CHAR;

PROCEDURE FORMATRIX (%$DESCR ARRDES : FORAY); FORTRAN;

The FORTRAN subroutine FORMATRIX expects the array to be passed

by-descriptor. A call to FORMATRIX might be the following:

FORMATRIX (CHARARR);

The actual parameter CHARARR specifies a character array, and the
argument 1list contains the address of a descriptor for this array.
(Note that VAX-11 FORTRAN treats character parameters as CHARACTER¥*1

variables.)

6.1.3 Functions and Procedures as Parameters

You can pass procedure and function names as immediate wvalues to
routines written in other languages, using the following format:

$IMMED PROCEDURE procedure-name-list

$IMMED FUNCTION function-name-list : type

The procedure name list specifies the name of one or more formal

procedure parameters. The function name list specifies the name of

one or more formal function parameters of the indicated type. The

corresponding actual parameter lists specify the names of the actual

procedures and functions to be passed as parameters.

For example:

PROCEDURE FORCALLER (%$IMMED PROCEDURE UTILITY); FORTRAN;

The FORTRAN subroutine FORCALLER calls a PASCAL procedure and requires

that the name of the procedure be passed as an immediate value. The
argument list contains the address of the PASCAL procedure's entry

mask. A call to the FORTRAN procedure might be:

FORCALLER (PRINTER);

Any subprogram passed with $IMMED should access only its own variables

and those declared at program level.

For information on passing procedure and function names between PASCAL

subprograms, see the VAX-11 PASCAL Language Reference Manual.

6.1.4 Function Return Values

A function returns a value to the calling program by assigning that
value to the function's name. The value must be a scalar, subrange,

or pointer type; structured types are not allowed. The method by
which a value is returned depends on its type, as listed below.

CALLING CONVENTIONS

Type Return Method

Integer, real, General Register RO

single, character,

Boolean, pointer,

user-defined scalar

Double RO0: Low-order result

Rl: High-order result

6.1.5 Arguments to PASCAL Subprograms

When calling a PASCAL subprogram from a non-PASCAL subprogram, you

must ensure that the arguments are in the correct form. By default,

VAX-11 PASCAL expects most parameters to be passed by-reference.

For a PASCAL value parameter (declared without a mechanism specifier),

the argument 1list must contain the address of the value. The PASCAL

subprogram will copy the value from the passed address upon entry.

For a VAR parameter, the argument list must contain the address of the

variable. The subprogram does not copy the value, but instead uses

the address to access the actual parameter variable. Actual parameter

variables that can change in value as a result of subprogram execution

must be passed in this manner. 1In addition, all files must be passed

as PASCAL VAR parameters.

For a formal procedure or function parameter (indicated by the

PROCEDURE or FUNCTION specifier), the argument list must specify the

address of the bound procedure value, which consists of two longwords.

The first 1longword contains the address of the entry mask for the

subprogram; the second longword contains the environment pointer.

(This process implements the VAX-11 by-reference mechanism for a

procedure or function.)

For a formal dynamic array parameter, the argument list must contain

the address of an array descriptor.

6.2 CALLING VAX/VMS SYSTEM SERVICES

You can declare any VAX/VMS system service as an external function or

procedure and then call it from your PASCAL program. When declaring a

system service, specify an identifier in the following form:

SYSS$service-name

For example, the name of the S$SFAO system service is SYSSFAO.

You pass parameters to the system service according to its particular

requirements: a value, an address, or the address of a descriptor may

be needed, as described in Section 6.1.2. To 1invoke the system

service, use a function or procedure call in your PASCAL program. See

the VAX/VMS System Services Reference Manual for a full description of

each system service.

The system provides three files containing condition symbol

definitions. When vyou declare a system service or Run-Time Library

procedure, you should specify the appropriate file in the CONST

section to define the condition values in your PASCAL program. Use

CALLING CONVENTIONS

the $INCLUDE directive to specify the file name, as described in the

VAX-11 PASCAL Language Reference Manual.

The three files are SYSSLIBRARY:LIBDEF.PAS, SYS$SLIBRARY:MTHDEF.PAS,

and SYSSLIBRARY:SIGDEF.PAS, as described below.

SYSSLIBRARY:LIBDEF.PAS

This file contains definitions for all condition symbols from the

general utility Run-Time Library procedures. These symbols have the

form:

LIBS xyz

For example:

LIBS_NOTFOU

SYSSLIBRARY:MTHDEF.PAS

This file contains definitions for all condition symbols from the

mathematical procedures library. These symbols have the form:

MTHS Xyz

For example:

MTH$_SQUROONEG

SYSSLIBRARY:SIGDEF.PAS

This file contains miscellaneous symbol definitions used in condition

handlers. These symbols have the form: i

SS$_xyz

For example:

SS$_FLTOVF

6.2.1 Calling System Services by Function Reference

In most cases, you will want to declare a system service as a function

so that you can check its return status. Each system service returns

a VAX-11 condition value indicating whether completion was successful.

These condition values can be interpreted as 1integer codes that
correspond to symbolic names such as SS$ ACCVIO. 0dd codes indicate

successful completion and even codes indicate failure.

For example, the following procedure defines and calls the Create

Mailbox (SYSSCREMBX) system service.

CALLING CONVENTIONS

FROCEDURE CREATE_MAILEOXS$

CONST ZINCLUDE ‘SYS$LIBRARYISIGIEF.FAS’

TYFE STATUS = (INT_.STATy» BOOL.STAT)#

WORD = 0..6355357%

SURSZ = 1..637

CHAN_STAT = (INT_.CHAN,DUMMY.CHAN)?

CHAN.TYPE = PACKED RECORD

CASE CHAN.STAT OF

INT.CHAN ¢ (CHAN_NO ¢ INTEGER)S$

DUMMY.CHAN ¢ (BOT_.CHAN ¢ WORID)

ENDs

VAR MEX.REC $: RECORD

CASE STATUS OF)

INT.STAT ¢ (MEX.INT ¢ INTEGER)?

ROOL_STAT ¢ (MEX._.ROOL : ROOLEAN)

ENDs

CHAN_REC ¢! CHAN._TYFE?

FUNCTION SYS$CREMBX (XZIMMED FPRMFLG ¢ INTEGERS
VAR CHAN : CHAN..TYFE?

»IMMED MAXMSGs BUFQUOy FROMSKs ACMODE : INTEGERS?

YSTOESCR LOGNAM ¢ FACKED ARRAY L[SURG31 OF CHAR):

INTEGER$? EXTERN#

BEGIN

WITH MBX.REC DO BEGIN

MEX_INT = SYS$CREMEX(OsCHAN_REC»0+0s0s0»MAILBOX)7

IF NOT MBX.EOOL THEN BEGIN

WRITELN (‘Error when truing to create mailbox’)s

HALT

END

END

END§

The function reference allows a return status to be stored 1in the

record MBX REC. If the function's return status is false (represented

by any even integer), indicating failure, an error occurs and error

processing can be undertaken. You can also check for a particular

return status, such as lack of privileges, by comparing the return

status to one of the status codes defined by the system. For example:

IF MBX_REC.MBX_INT = SS$_NOPRIV THEN

WRITELN ('No privilege to create mailbox');

Refer to the VAX/VMS System Services Reference Manual for information

about return status codes. The relevant return status codes are

described with each system service.

CALLING CONVENTIONS

6.2.2 Calling System Services as Procedures

If you do not need to check the return status, you can declare a

system service as an external procedure rather than an external
function. Procedure calls to system services are made in the same way

that «calls are made to any other procedure. For example, to use the

Create Mailbox system service, define and call the procedure

SYSSCREMBX, as follows:

PROCEDURE SYSSCREMBX (%IMMED PRMFLG : INTEGER;

VAR CHAN : CHAN_TYPE;

$IMMED MAXMSG, BUFQUO, PROMSK, ACMODE : INTEGER;

$STDESCR LOGNAM : ARRAY [SUB63] OF CHAR);

EXTERN;

SYSSCREMBX (0,CHAN_REC,0,0,0,0, MAILBOX');

You should declare CHAN_REC and CHAN TYPE as in the previous section.

This procedure call corresponds to the function reference, but does

not allow you to test the status code returned by the system service.

6.2.3 Passing Parameters to System Services

Most system services require input parameters to be passed as

immediate values. When declaring these parameters, you must use the
$IMMED mechanism specifier. Some system services, however, require

input parameters to be passed by-reference. For input parameters

passed by-reference, you should use the default (that 1is, omit the
mechanism specifier) so that actual parameters can be expressions.

In addition, most system services require output parameters to be

passed by-reference. For these parameters, you must use the VAR

mechanism specifier to ensure that PASCAL correctly interprets the
output data. The VAX/VMS System Services Reference Manual lists the
mechanism by which each parameter to a system service must be passed.

6.2.3.1 Input and Output By-Reference Parameters - You will often

need to tell the system service where to find input values and where
to store output values. Thus, you must ascertain the hardware data
type of the parameter: byte, word, longword, or quadword.

For input parameters that refer to byte, word, or longword values, you

can specify either constants or variables. If you specify a variable,
it must be of a type that is allocated an equal or greater amount of
storage than is allocated to the hardware data type required.

For output parameters, you must declare a variable of exactly the
length required, to avoid including extraneous data. For example, if
the system returns a byte wvalue in a word-length wvariable, the
leftmost eight bits of the variable will not be overwritten on output
and the variable will not contain the data you expect. Table 6-1
lists the suggested input and output variable types.

CALLING CONVENTIONS

Table 6-1

Suggested Variable Data Types

VAX/VMS Hardware | Input Parameter Output Parameter

Type Required Declaration Declaration

Byte INTEGER, CHAR CHAR

Word INTEGER Appropriate
packed

record

Longword INTEGER INTEGER

Quadword Properly Properly

dimensioned array dimensioned array

sufficient space

To store the output produced by a system service, you must allocate
to contain the output. You can do so by declaring

proper size. For example, the Create Mailboxvariables of the

(SYSSCREMBX) system service returns a 2-byte value.

up storage space as follows:

TYPE WORD = 0,.465535%

CHAN.TYFE = FACKED RECORD

BOT.CHAN : WORD

END§

+

.

VAR CHAN..REC

+

VALUE CHAN.REC

FUNCTION SYS$CREMEX (ZIMMED FRMFLG

+

*

MEX.REC. MEX..INT

CHAN.TYFE?S

t= (0)y

Thus, you can set

¢ INTEGER?®

VAR CHAN : CHAN.TYFE;

ZIMMED MAXMSGs BUFQUOy FROMSKy ACMODE § INTEGERS$

ZSTDESCR LOGNAM ¢ FACKED ARRAY [SUB&31 OF CHAR):

INTEGERS EXTERNS

t= SYS$CREMBX (OsyCHAN.RECs Os Or Oy Oy ‘MAILBOX)¥

CALLING CONVENTIONS

If the output is a quadword value, you must declare an array or record

of the proper size. For example, the Get Time (SYSSGETTIM) system

service returns the time as a quadword binary value. Thus, you would

need to specify the following:

TYFE QUAD = ARRAY [1..21 OF INTEGERS$

VAR SYSTIM ¢ QUADs

ISTAT ¢ INTEGER?

*

FUNCTION SYS$GETTIM (VAR F_SYSTIM { QUADD! INTEGER? EXTERN:

*

ISTAT (= SYS$GETTIM (S8YSTIM)}$

6.2.3.2 Optional Parameters - VAX-11 PASCAL does not allow you to

omit parameters from procedure or function calls. If you choose not

to supply an optional parameter, you should pass the value zero using

the immediate wvalue (%$IMMED) mechanism. For example, the Translate

Logical Name (SYSSTRNLOG) system service has three optional

parameters. If you do not specify values for these parameters, you

must include zeros in their places, as follows:

ISTAT := SYSSTRNLOG ('CYGNUS', NAMLEN,NAMDES, 0,0,0);

6.2.3.3 Passing Character Parameters - Some VAX/VMS system services

require character parameters for either input or output. For example,

the Translate Logical Name (SYSSTRNLOG) system service accepts a

logical name as input and returns the associated logical name or file

specification, if any, as output.

VAX/VMS system services usually require strings to be passed by string

descriptor. Specify $STDESCR in the function or procedure declaration

to pass the required string parameters by string descriptor. On

input, a character <constant or packed array of characters must be

passed to the system service by descriptor. On output, two parameters

are required: (1) a packed array of characters to hold the output

string and (2) an INTEGER variable, which is set to the actual 1length

of the output string. For example:

TYFPE POS_WORD = 0,.65535%

SURG3 = 1..635

WORD_TYPE = FPACKED RECORD

SHORTWD : FOS.WORD

ENDvy

STRING..RUF = FACKED ARRAY [1.,.128]1 OF CHAR?

VAR ICODE : INTEGERS

NAMLEN : WORD.TYFES

NAMDES : STRING.EBUF

6-11

CALLING CONVENTIONS

FROCEDURE ERROR?$

*

FUNCTION SYS$TRNLOG (XZSTDESCR CYGNUS ! PACKED ARRAY LSUR&63] OF CHARS

VAR RSLLEN ! WORD.TYFES$

ZSTDESCR RSLEBUF { STRING.RUF$

ZIMMED TABLEy ACMODE, DSEMSK ¢ INTEGER) ¢ INTEGERS

BEGIN

L4

+

*

ICODE = SYS$TRNLOG (“CYGNUS’» NAMLENsNAMDES»0y0s4)3

IF NOT ODD (ICODE) THEN ERRORS3

The logical name CYGNUS is translated to its associated name or file

specification, and the output values (length and associated name or

file specification) are stored in the locations you specified --

NAMLEN and NAMDES, respectively. The last parameter, with value 4,

causes the system to disable its search of the process 1logical name

table; only the system and group tables are searched.

Section 6.4 presents another complete system service example.

6.3 CALLING RUN-TIME LIBRARY PROCEDURES

The VAX-11 Run-Time Library provides mathematical procedures that vyou

can call from PASCAL programs. These procedures are described in the

VAX-11 Run-Time Library Reference Manual.

You can invoke a Run-Time Library procedure from a PASCAL program by

defining it as an external function and including the appropriate

function reference. For example:

VAR SEED.VAL ¢! INTEGERS

RANDL.RSLT ¢ REALS

+

+

FUNCTION MTH$RANDOM (SEED ¢ INTEGER) ¢ REAL$? EXTERNj

*

*

RAND_.RSLT = MTH$RANDOM(SEED.VAL)?

This example uses the uniform pseudorandom number generator

(MTH$RANDOM).

When defining a function for a Run-Time Library procedure, you should

note the following:

e The mechanism by which each parameter is passed

(by-immediate-value, by-reference, or by-descriptor)

e The types appropriate for the parameters and the result

In the pseudorandom number generator, the seed parameter is passed by

reference and the result is a real number, as shown.

EXTERN?

CALLING CONVENTIONS

6.4 COMPLETE SYSTEM SERVICE EXAMPLE

This section presents a sample PASCAL procedure that declares and

calls the Get Job/Process Information (SYSSGETJPI) system service.
The procedure declares SYSSGETJPI as an INTEGER function, so that upon

return, it can check for successful completion.

SYSSGETJPI is used here to get the process identification and name of
the current process. When used for this purpose, SYS$SGETJPI requires
information in only the fourth of seven parameters. The first,
second, third, fifth, sixth, and seventh parameters must be null. The

fourth parameter contains the address of a list of descriptors that
describe the specific information requested and point to buffers to
receive the information. 1In this example, the list is constructed as

a record. It contains fields corresponding to each required item as
noted in the description of SYS$GETJPI in the VAX/VMS System Services
Reference Manual.

FROCEDURE GETJFINFO (VAR NAME! FRCNAM? VAR ID! INTEGER)#

(XThis rrocedure calls the SYS$SGETJIFI sustem service to

get the process ID and rrocess names which are

used as formal rarameters. It uses these tures

and variables?

WORD —- 16 bits to contain buffer lensgth and recuest code
FTR_FPID -~ Address of rrocess I.0.

FTR.PIDLEN -~ Address of srocess I.Il. lensth

FTR.FRCNAM ~- Address of rsrocess name string
FTR.FPRCNAMLEN ~- Address of length of srocess name string

JPIREL -~ Record containing item list sarameter

ICODE -- Status returned by SYS$GETIFI function

The following ture is declared in the main srodram?

FRONAM = PACKED ARRAY [1..1%5%1 OF CHARX)

CONST NULL = OF

TYPE WORD = 0..655353

RECJ = RECORD

FIDINFO ¢ PACKED RECORD

FIDLENy JFIS.FID ! WORD

ENDS

PTR..FID ¢ TINTEGERS

FTROFIDLEN ¢ "INTEGERS

FRCONAMINFO ¢ PACKED RECORD

FRONAMLENy JPIS._FRCNAM 3 WORD

ENDS

FTR.FRCNAM ¢ "FRUNAMS

FTR.FRCNAMLEN ¢ "INTEGERS

ENDLIST ! INTEGER

END¢

VAR TICODE : INTEGERS:

JRIREC ¢ RECJS

FUNCTION SYS$GETJFPI (ZIMMED A»EBsC ¢ INTEGER? VAR ITMLST : RECJS

YIMMED XsYe?Z ¢ INTEGER)Y ¢ INTEGERS EXTERNS

(KAYEByC andgd XsY¥s?Z asre rull rarametersi)

CALLING CONVENTIONS

BEGIN

(XSet ur record rarameterx)

WITH JRPIREC IO

REGIN

FPIDINFO.FPIDLEN §¢=

FIDINFO.JFIS_PID ¢

NEW (FTR.PID)S

FTR..FIDTM 03

NEW (FTR.FIDLEN)S

FTR.FIDLENTM 03

FRCNAMINFO.FRONAMLEN $=

FRCNAMINFO.JFPI$. FRCNAM 3

45

= AX3193%

¢ e
P

P seme
2=

154
e

NEW (FPTR.FRCNAM)§

PTR-FRCNAMTM 3= ¢

NEW (FPTR.FPRCNAMLEN)

PTR.FRCNAMLENTM 3= 03

ENDLIST $= 0

* o
=

ENDS

(XCall function and returrn status in

ICODE = SYS$GETJFI (NULLs NULLs NULLS

IF NOT ODD ICODRE THEN

BEGIN

WRITELN (‘Error in GETJPI rrocess’)$

HALT

END

ELSE BEGIN

NAME (= JFIREC.FPTR.FPRCNAMTMS

InD := JPIREC.PTR.FIDTM

END

END3

(XLength of I bufferXx)

CkHes: of JPI$.FIDX)

(XGet address of 1DX)

(kZero I variablex)

(XGet address of lendgthX)

(¥Zero ID length variableX)

{(XLength of name bufferXx)

AX31CH

(XHex of JPI$_.FRUNAMX)

(kGet address of nameX)

‘%

(kRlank-fill rname stringX)

(XGet address of lendgthX)

(¥XZero name lendgth variableXx)

(XList must end with OX)

STATUS variableX)

JFIRECY NULLs NULLY

(XIf errory %)

NULL)#

(Xrrint error messadeX)

(Xand haltXx)

(XIf successfulk)

rname to NAME raramX)

id to ID raramX)

(kassidn

(Xand assidn

CHAPTER 7

ERROR PROCESSING AND CONDITION HANDLERS

During the execution of your VAX-11 PASCAL program, various

conditions, including errors and exceptions, <can occur. These

conditions can result from errors during I/0 operations, invalid input

data, incorrect calls to library routines, errors in arithmetic, or

system-detected errors. VAX-11 PASCAL provides two methods of error

control and recovery:

e Run-Time Library default error-processing procedures

e VAX-11 Condition Handling Facility (including user-written

condition handlers) .

These error-processing methods are complementary and can be wused in

the same program. Thus, you have two options in dealing with errors.

You can allow the Run-Time Library to provide all condition handling

for vyou. The Run-Time Library provides default error processing by

generating error messages for all error or exception conditions that

occur during the execution of a PASCAL program. Section 7.1 describes

error processing by the Run-Time Library as it applies to VAX-11

PASCAL. Appendix A describes the error messages that can be generated

for a PASCAL program.

At the lowest level, the VAX-11 Condition Handling Facility provides

all condition handling for the Run-Time Library. You can also use it

directly to provide procedures (user-written condition handlers) for

processing conditions that occur during your program's execution. The

use of condition handlers, however, requires considerable programming

experience and should not be undertaken by novice users. You should

understand the condition handling descriptions in the VAX/VMS System

Services Reference Manual, the VAX-11 Run-Time Library Reference

Manual, and the VAX-11 Architecture Handbook before vyou attempt to

write a condition handler.

7.1 RUN-TIME LIBRARY DEFAULT ERROR PROCESSING

By default, the Run-Time Library prints a message and terminates

PASCAL program execution when an error occurs. These default actions

occur unless your program includes a condition handler.

Run-time errors are reported in the following format:

$PAS-F-code, text

The code is an abbreviation of the error message text, which explains

the error. VAX-11 PASCAL run-time errors and recovery procedures are

described in Appendix A. Most Run-Time Library procedures provide

their own error messages, as described in the VAX-11] Run-Time Library

Reference Manual.

ERROR PROCESSING AND CONDITION HANDLERS

7.2 OVERVIEW OF VAX-11 CONDITION HANDLING

When the VAX/VMS system creates a user process, it establishes a

system-defined condition handler which, 1in the absence of any

user-written condition handler, processes errors that occur during
execution of the wuser image. Thus, by default, a run-time error
causes the system-defined condition handler to print one of the
standard error messages and to terminate or continue execution of the
image, depending on the severity code associated with the error.

When a condition is signaled, the system searches for a condition
handler to respond. The system conducts the search by calling
handlers in preceding stack frames wuntil it activates a condition
handler that does not resignal. The default handler calls the
system's message output routine so that it can send the appropriate
message to the user. Messages are sent to the SYSSOUTPUT file and to

the SYSSERROR file, if both files are present. If the condition
permits, program execution continues. Otherwise, the default handler

forces program termination and the condition value becomes the program

exit status.

You can create and establish your own condition handlers according to

the needs of your applications. For example, you can create and

display messages that specifically describe conditions encountered

during execution of an application program, instead of relying on the

standard system error messages.

7.2.1 Condition Signals

A condition signal <consists of a call to one of the two

system-supplied signal procedures, LIBSSIGNAL and LIBSSTOP. The

signal procedures must be declared external, for example:

PROCEDURE LIBSSIGNAL (%IMMED CONDITION : INTEGER); EXTERN;

PROCEDURE LIBS$SSTOP (%IMMED CONDITION : INTEGER); EXTERN;

You signal a condition when you do not want to handle it in the
routine in which it was detected, but want instead to pass

notification to other active routines. 1If the current procedure can

continue after the signal is made, call LIB$SIGNAL. A higher-level
procedure can then determine whether program execution is to continue.
If the condition will not allow the current procedure to continue,

call LIBSSTOP.

Condition values are usually expressed as condition symbols. For

example:

LIBSSIGNAL (MTHS_FLOOVEMAT);

You <can include additional parameters to provide supplementary

information about the error.

When called, a signal procedure searches for condition handlers by
examining the preceding stack frames until it activates a condition
handler that does not resignal.

ERROR PROCESSING AND CONDITION HANDLERS

7.2.2 Handler Responses

A condition handler responds to an exception <condition by taking

action in three major areas:

@ Condition correction

e Condition reporting .

® Condition control

First, the handler determines whether it can correct the <condition.

If it <can, the handler takes the appropriate action, and execution

continues. 1If it cannot <correct the <condition, the handler may

resignal the condition. That is, it requests that another condition

handler process the exception.

Condition reporting performed by handlers can involve one or more of

the following actions:

@ Maintaining a count of exceptions encountered during program

execution

® Resignaling the same condition to send the appropriate message

to your terminal or log file

®¢ Changing the severity field of the condition wvalue and

resignaling the condition

e ©Signaling a different condition, for example, to ©produce a

message oriented to a specific application

Execution can be affected in a number of ways. Among them are:

@ Continuing from the signal. 1If the signal was issued through

a call to LIBSSTOP, the program will exit.

e Unwinding to the establisher at the point of the call that

resulted 1in the exception. The handler can determine the

function value returned by the called procedure.

e Unwinding to the establisher's <caller (the procedure that

called the procedure that established the handler). The

handler can determine the function wvalue returned by the

called procedure.

7.3 WRITING A CONDITION HANDLER

The following sections describe how to code and establish a condition

handler, and provide some simple examples. See Appendix C of the

VAX-11 Architecture Handbook, the VAX-11l Run-Time Library Reference

Manual, and the VAX/VMS §System Services Reference Manual for more

details on condition handlers.

ERROR PROCESSING AND CONDITION HANDLERS

7.3.1 Establishing and Removing Handlers

When a procedure is called, no condition handler is initially

established. To use a condition handler, you must first define both
the Run-Time Library procedure LIBSESTABLISH and the condition handler

as follows:

FUNCTION ERR_HANDLER : INTEGER; EXTERN;

PROCEDURE LIBSESTABLISH ($IMMED FUNCTION HANDLER : INTEGER);

EXTERN;

To establish the handler, you must call LIBSESTABLISH. To remove an

established handler, define the Run-Time Library procedure LIBSREVERT,

and call it as follows:

PROCEDURE LIBSREVERT; EXTERN;

-

LIBSREVERT;

As a result of this call, the condition handler established 1in the
current procedure activation 1is removed. When a procedure returns,

the condition handler established by the procedure 1is automatically

removed.

Note that condition handlers written in PASCAL can access only their

own local data and data declared at program or module level.

7.3.2 Parameters for Condition Handlers

A PASCAL condition handler is an INTEGER function that is called when

an exception condition occurs. You must define two formal VAR

parameters for a condition handler:

1. An integer array to refer to the parameter list from the call

to the signal procedure (the signal parameters). That is,

the list of parameters included in calls to LIBSSIGNAL or

LIBSSTOP (see Section 7.2.1).

2. An integer array to refer to information concerning the
procedure activation that established the condition handler
(the mechanism arrays).

For example, you can define a condition handler as follows:

TYPE MECHARR = ARRAYLO..41 OF INTEGER?

SIGARR = ARRAY [0..91 OF INTEGER?

+

*

FUNCTION ERR.HANDLER (VAR SIGARGS ! SIGARR?

VAR MECHARGS : MECHARR) § INTEGER?

REGIN

*

ENDy

ERROR PROCESSING AND CONDITION HANDLERS

FROCEDURE LIB$ESTABLISH (ZIMMED FUNCTION HANDLER ¢ INTEGER)$# EXTERNS

LIBSESTARLISH (ERR_HANDLER)§

*

*

+

END.

The array SIGARGS receives the values listed below from the signal

procedure.

Value Meaning

SIGARGS[0] Indicates how many parameters are being passed

in this array (parameter count).

SIGARGS[1] Indicates the condition being signaled

(condition value). See Section 7.3.4 for a

discussion of condition values.

SIGARGS[2 to n] Indicates optional parameters as specified by

the call to LIBSSIGNAL or LIBSSTOP; note that

the dimension bounds for the SIGARGS array

should specify as many entries as necessary to

refer to the optional parameters.

The array MECHARGS receives information about the procedure activation

status of the procedure that established the condition handler. The

values from this procedure are listed below.

Value Meaning

MECHARGS[0] Specifies the number of parameters in this array

(4).

MECHARGS[1] Contains the address of the procedure activation

stack frame that established the handler.

MECHARGS[2] Contains the number of calls that have been made

(that 1is, the stack frame depth) from the

procedure activation, up to the point at which

the exception occurred.

MECHARGS [3] Contains the value of register RO at the time of

the signal.

MECHARGS[4] Contains the value of register Rl at the time of

the signal.

7.3.3 Handler Function Return Values

Condition handlers specify function return values to control

subsequent execution. The function return values and their effects

are listed below.

ERROR PROCESSING AND CONDITION HANDLERS

Value Effect

SSS_CONTINUE Continues execution from the signal. If the

signal was issued by a call to LIBSSTOP,
however, the program exits.

SSS$_RESIGNAL Resignals to continue the search for a condition

handler to process the condition.

In addition, a condition handler can request a stack unwind by calling

SYSSUNWIND before returning. Declare SYSSUNWIND as follows: ‘

FUNCTION SYSSUNWIND (%$IMMED DEPTH : INTEGER; $%IMMED NEWPC : INTEGER):

INTEGER; EXTERN;

When SYS$UNWIND is called, the function return value is ignored. The
handler modifies the saved registers RO and Rl in the mechanism

parameters to specify the called procedure's function value.

A stack unwind can be made to one of two places:

e Unwind to the establisher, at the point of the call that

resulted in the exception. Specify:

STATUS := SYSSUNWIND (MECHARGS[2],0);

@ Unwind to the procedure that called the establisher. Specify:

STATUS := SYSSUNWIND (0,0);

7.3.4 Condition Values and Symbols

VAX-11 uses condition values to indicate that a called procedure has

either executed successfully or failed, and to report exception

conditions. Condition values are 32-bit packed records (usually

interpreted 'as integers), consisting of fields that indicate which
system component generated the value, the reason the value was

generated, and the severity of the condition. A condition value has

the form:

31 28 27 16 15 32 0

c FACILITY MESSAGE SEV

Field Bits Meaning

C 31:28 Control bits

Facility 27:16 Identifies the software component that

generated the condition wvalue. Bit 27 =1

indicates a customer facility. Bit 27 = 0

indicates a DIGITAL facility.

Message 15:3 Describes the condition that occurred. Bit 15

= 1 indicates the message 1is specific to a

single facility. Bit 15 = 0 indicates a

system-wide message.

ERROR PROCESSING AND CONDITION HANDLERS

Field Bits Meaning

Sev 2:0 Specifies a severity code, as follows:

- warning

- success

- error

information

~ severe error

- reservedN
W
N
O
H
O

|

5, 6,

A warning severity code (0) indicates that output was produced, but

that the results might not be what you expected. An error severity

code (2) indicates that output was produced even though an error was

detected. Execution can continue, but the results will not all be

correct. A severe error code (4) indicates that the error was of such

severity that output was not produced. A condition handler can alter

the severity code of a condition value to allow execution to continue

or to force an exit, depending on the circumstances.

The condition value is passed as the second element of the array

SIGARGS. Occasionally, your <condition handler may require that a

particular condition be identified by an exact match. That 1is, each

bit of the condition value (31:0) must match the specified condition.

For example, you may want to process a floating overflow condition

only 1if its severity code 1is still 4 (that 1is, if no previous

condition handler has changed the severity code). As noted above, a

typical <condition handler response is to change the severity code and

resignal.

In many cases, however, you may want to respond to a condition,

regardless of the value of the severity code. To ignore the severity

and control fields of a condition wvalue, declare and call the

LIBSMATCH_COND function, as follows:

FUNCTION LIBSMATCH_COND (CONDVAL,COMPVAL : INTEGER):

BOOLEAN; EXTERN;

*

IF LIBSMATCH_COND(SIGARGS[1],PASS_ERRACCFIL)

THEN...

7.3.5 Floating-Point Operation

Some conditions involving floating-point operations require special

action 1if you want to continue execution. Operations that involve,

for example, floating overflow, dividing by 0, or computing the square

root of a negative number store a unique result known as a floating

reserved operand. If a subsequent floating-point operation accesses

this result, a hardware reserved operand fault 1is generated and

signaled. This can continue indefinitely if the condition handler

does not change the reserved operand, because the operand is accessed

each time the computation is retried.

ERROR PROCESSING AND CONDITION HANDLERS

To allow computation to continue, you must change the reserved operand

by defining and calling the Run-Time Library routine LIBSFIXUP_FLT, as

follows:

FUNCTION LIBSFIXUPFLT (VAR SIGADR : SIGVECTOR;

VAR MECHADR : MECHVECTOR; VAR OP : DOUBLE):

INTEGER; EXTERN;

STATUS:= LIBSFIXUP_FLT(SIGARGS,MECHARGS,NEWOPERAND);

The types SIGVECTOR and MECHVECTOR in this example refer to the types

of the signal and mechanism argument vectors, which are assumed to be

defined in the calling procedure. Note that you should specify the

third parameter as a double-precision variable. This ensures that the

reserved operand will be changed correctly regardless of its

precision. If you do not have a special value for this parameter,

specify 0.0. For more information on LIBSFIXUP_FLT, see the VAX-11

Run-Time Library Reference Manual.

7.4 CONDITION HANDLER EXAMPLES

The example in this section illustrates how to declare and wuse a

condition handler with a typical PASCAL procedure. It establishes a
condition handler that is called when an error occurs in a file

opening procedure. If the error is the general "Error

opening/creating the file," signified by the PASS_ERROPECRE code, an

unwind is performed. Any other error is resignaled.

PROCEDURE OPENHAND}

(XThis erocedure shows how to establish and call a condition handler

from 3 PASCAL rrodsram. It uses these tures!?

DATAREC ~- a2 record ture for the accounting file

DATAFILE -—- a file ture with comrorents of twure DATAREC

SIGARR —-- an arraw ture for signal rarameters

MECHARR -- an array ture for mechasnism rarameters

Arnd it declares these dglobal variables?

FLAG ~—- a Boolean set to TRUE when an error occurs

NEW_ACCOUNTS -- a file varisble of tuyre DATAFILE

% STATUS -- an all-rurrose function return status variable

CONST ZINCLUDE ‘SYS$LIBRARY!SIGDEF.PAS’

(XThis file contains the PASCAL declarations of the condition slsnals*)

TYFE DATAREC = RECORD

NAME : PACKED ARRAY [1..301 OF CHARj}

AMOUNT ¢ REALS

COST ¢ REAL3

ESTE { PACKED ARRAY [1..113 OF CHAR

Ds

DATAFILE = FILE OF DATARECS

SIGARR = ARRAY [0..9]1 OF INTEGERS$

MECHARR = ARRAY [0..41 OF INTEGERS

VAR FLAG ! BOOLEANS?

NEW.ACCOUNTS ¢ DATAFILES

STATUS ¢ INTEGERS

ERROR PROCESSING AND CONDITION HANDLERS

PROCEDURE LIBSESTABLISH (ZIMMED FUNCTION FIXER ¢ INTEGER)S EXTERNS
(XThe sustem service rrocedure LIBSESTABLISH will be called to
establish the condition handlerx)

PROCEDURE OPENER (VAR ACCOUNTS ¢ DATAFILE);
(XThis erocedure will be called to oren the file and write new
records in it. It slso rerforms dats entry and cleanuer. Only

the OPEN processing is shown here for simplicituk)

(XLocal variable declarationsx)

FUNCTION HANDLER (VAR SIGARGS ¢ SIGARR? VAR MECHARGS { MECHARR)!

INTEGERS$

(XThis function will be called to handle 2 file orening error during
the OPENER rrocedure. It uses only dloballuw declared variablesg»

excert for the SYSSUNWIND and LIBSMATCH.COND functions.X)

FUNCTION SYSSUNWIND (DEPTH ¢ INTEGER$ ZIMMED NEWPC ¢ INTEGER)!}

INTEGERS EXTERNS$

FUNCTION LIBSMATCH.COND (CONDVAL» COMFVAL ¢ INTEGER)$

ROOLEAN? EXTERN$

BEGIN

IF (LIBSMATCH._.COND (SIGARGSL11y PAS$_ERROPECRE)) THEN (XIf error orening filesX)
BEGIN

FLAG := TRUE? (kset file error flad€x)

STATUS $= SYSSUNWIND(MECHARGSL21+1s 0) (kand unwindX)

END$

HANDLER (= SS$_RESIGNAL (XIf some other errorsy resignalXx)
END$ (Xend HANDLERX)

BEGIN

LIBSESTABLISH (HANDLER)$} (Xestablish condition handlerx)
OPEN (ACCOUNTS» ‘LDATAJACCOUNTS.DAT’»0LDs SEQUENTIAL)?

(XData entryr storadger and cleanurX)

END} (XEnd OPENERX)

BEGIN

(XThis is the start of the outermost srocedurex)

FLAG (=FALSE} (kinitialize Flag to FALSE for test belowk)

OPENER (NEW._ACCOUNTS)3 (¥oren the fileX)

IF FLAG THEN WRITELN (‘Error in orening file’)

(XFrint messade if error handler was calledX)
END# (XEnd OPENHANDX)

7-9

CHAPTER 8

VAX-11 PASCAL SYSTEM ENVIRONMENT

This chapter describes the relationship between the VAX/VMS operating

system and the VAX-11 PASCAL compiler. It covers the following

topics:

e Use of program sections

@ Storage of scalar and pointer types

® Storage of unpacked structured types

® Storage of packed structured types

® Representation of floating-point data

8.1 USE OF PROGRAM SECTIONS

The VAX-11 PASCAL compiler uses contiguous areas of memory, called

program sections, to store information about the program. The VAX-11

Linker controls memory allocation and sharing according to the

attributes of each program section. Table 8-1 lists the possible

program section attributes.

Table 8-1

Program Section Attributes

Attribute Meaning

PIC/NOPIC Position independent or position dependent

CON/OVR Concatenated or overlaid

REL/ABS Relocatable or absolute

GBL/LCL Global or local scope

SHR/NOSHR Shareable or nonshareable

EXE/NOEXE Executable or nonexecutable

RD/NORD Readable or nonreadable

WRT/NOWRT Writeable or nonwriteable

VAX-11 PASCAL SYSTEM ENVIRONMENT

VAX-11 PASCAL implicitly declares three program sections: S$SGLBL,
SCODE, and S$PDATA. Table 8-2 summarizes the usage and attributes of
these program sections.

Table 8-2

Program Section Usage and Attributes

Program

Section

Name Usage Attributes

SGLBL Read/write static data PIC, OVR, REL, GBL,

declared at module or NOSHR, NOEXE, RD, WRT

program level

SCODE Read-only generated PIC, CON, REL, LCL,

executable code SHR, EXE, RD, NOWRT

SPDATA Read-only constants pPI1IC, CON, REL, LCL,

that need storage SHR, NOEXE, RD, NOWRT

Each module in your PASCAL program is named according to the
identifier specified in the program or module header. You can use the

module name to qualify the program section name in LINK commands. For

more information, refer to the VAX-1ll Linker Reference Manual.

When the 1linker constructs an executable image, it divides the

executable image into sections. Each image section contains program
sections that have the same attributes. The 1linker controls memory

allocation by arranging image sections according to program section
attributes.

The linker allows you to use special options to change program section
attributes and to influence the memory allocation in the image. You

include these options in an options file, which is input to the
linker. The options and the file are described in the VAX-1ll Linker
Reference Manual.

8.2 STORAGE OF SCALAR AND POINTER TYPES

When not part of a packed structure, the scalar types in PASCAL are
allocated storage space as summarized in Table 8-3.

Variables of scalar types, with the exception of DOUBLE variables, are
aligned on a boundary corresponding to their sizes. DOUBLE variables
are aligned on longword boundaries rather than on quadword boundaries.

Variables of subrange types are allocated and aligned in the same way
as variables of the associated scalar types. For example, an integer
subrange variable is allocated one 1longword and 1is aligned on a
longword boundary. A subrange of an enumerated type DAYS_OF_ WEEK

(with values SUNDAY, MONDAY, TUESDAY, and so on) is stored in one byte

and aligned on a byte boundary.

A pointer is simply a longword containing an address.

VAX-11 PASCAL SYSTEM ENVIRONMENT

Table 8-3

Storage of Scalar and Pointer Types

Type Storage Allocation Alignment Boundary

Character 8 bits (1 byte) Byte

Boolean 8 bits (1 byte) Byte

Integer, single, real | 32 bits (1 longword) | Longword

Double 64 bits (1 quadword) | Longword

Enumerated 8 bits (1 byte) if Byte if type contains

type contains 256 256 elements or less;

elements or less; word if type contains

16 bits (1 word) if more than 256 elements

type contains more

than 256 elements

Pointer 32 bits (1 longword) | Longword

8.3 STORAGE OF UNPACKED STRUCTURED TYPES

The unpacked structured types (sets, arrays, and records) are stored

and aligned as described below. Note that this description applies

only to data items that are not part of another structure.

A set consists of 32 bytes (8 1longwords) aligned on a longword

boundary.

An array is stored and aligned according to the type of its elements.

For example, each element of an array of integers is stored in a

longword and aligned on a longword boundary. Similarly, each element

of a character array 1is stored 1in a byte and aligned on a byte

boundary.

Records are stored field by field according to the type of each field.

The type of the first field in the record establishes the alignment of

the entire record. Subsequent fields in the record are always aligned

on byte boundaries, regardless of the type of the first field. For

example:

VAR A ¢ RECORD

X : INTEGER ;

Y ¢ BOOLEAN ;

Z : INTEGER

END;

Record A is aligned on a longword boundary because its first field, X,

contains an integer value, which is stored in a longword. Figure 8-1

shows how this record is stored.

Bytes 0 through 3 (bits 0 through 31) contain the first field, X,

which is an integer 1longword value. Byte 4 (bits 32 through 39)

contains the Boolean value of Y, and bytes 5 through 8 (bits 40

through 71) contain the other integer longword value, Z.

VAX-11 PASCAL SYSTEM ENVIRONMENT

7 //////////////////;/;///////////////71 z((?NO::ss:)]

Figure 8-1 Storage of Sample Record

8.4 STORAGE OF PACKED STRUCTURED TYPES

Although you can pack any structured type, packing saves storage space

only for sets, arrays, and records. Packing files has no effect on

their storage.

In general, storage space for packed types is allocated according to

the "32-bit rule," as follows:

e Any data item that is 32 bits or less in length is packed into

as few bits as possible.

e Any data item over 32 bits 1long 1is allocated the smallest

possible number of bytes and is aligned on a byte boundary.

The subsections below describe exactly how storage 1is allocated to

each packed type and note any exceptions to the general 32-bit rule.

The descriptions apply only to data items that are not part of another

structure.

8.4.1 Storage of Packed Sets

A packed set that is not a component of another packed structure 1is

byte-aligned. Each packed set 1is allocated space according to the

32-bit rule, based on the ordinal value of its largest element:

e If the ordinal value is less than or equal to 31, the set is

allocated the number of bits equal to the ordinal value plus

one. For example, a packed set of 2..19 is allocated 20 bits.

e If the ordinal value is greater than 31, the set is allocated

the number of bits equal to the ordinal value plus one,

rounded up to the nearest byte boundary. For example, a

packed set of subrange type 100..101 is allocated 13 bytes

(101+1 bits rounded up to a byte boundary).

Since the size of a set is 1limited to 256 elements, with ordinal

values from 0 to 255, a packed set can occupy at most 32 bytes (8

longwords) of memory.

8.4.2 Storage of Packed Arrays

A packed array that is not a component of another packed structure is

aligned on a byte boundary. The elements of the array are packed to

the nearest bit. Table 8-4 lists the space requirements for elements

of packed arrays.

VAX-11 PASCAL SYSTEM ENVIRONMENT

Table 8-4

Storage of Packed Array Elements

Type Storage
Allocation

Boolean 1l bit

Character 8 bits (1 byte)

Integer, real, single 32 bits (1 longword)

Double 64 bits (1 quadword)

Subrange of integer, Minimum number of bits in which the

character, or largest and smallest possible values

enumerated type can be expressed

Enumerated types Number of bits required for 1largest

ordinal value

Pointers 32 bits (1 longword)

All structured types Same as structured types not in

packed array. However, if the total

size of the structured type is

greater than 32 bits, the array

element 1is allocated a minimum

number of bytes, that is, the 32-bit

rule applies. Structured types

requiring 32 bits or less space are

bit-aligned.

Note that integer subranges are packed into the minimum amount of

space needed to hold the largest or smallest value, whichever needs

more space. For example, each element of PACKED ARRAY [1..10] OF

-128..127 is allocated 8 bits. Each element of PACKED ARRAY [1l..64]

OF 0..7 is allocated 3 bits.

Enumerated types are packed into the number of bits required to hold

the largest ordinal value. For example, an enumerated type with 16

values is allocated 4 bits, because its ordinal values are 0 through

15.

A packed array of an unpacked structured type saves no storage space.

The only effect of such a specification is to byte-align the array.

Instead, specify a packed array of a packed structured type. The

following two examples illustrate this difference.

Examples

1. TYPE INT_SET = SET OF 0..14;

VAR INT_ARR : PACKED ARRAY [1..5] OF INT SET;

An unpacked set of type INT SET is stored as 8 1longwords.

Consequently, each element of INT_ ARR requires 8 longwords, for a

total of 40 longwords (640 bits) of space.

VAX-11 PASCAL SYSTEM ENVIRONMENT

2. TYPE INT_SET = PACKED SET OF 0..14;

VAR INT_ARR : PACKED ARRAY [1..5] OF INT SET;

A packed set of type INT_SET is allocated 15 bits. Each element

of INT_ARR therefore requires 15 bits, for a total of 75 bits for

the entire array.

Storage for packed arrays of records and arrays of packed records is

allocated similarly.

Multidimensional arrays can also be packed. As for the other

structured types, you must specify packing at the innermost level to

gain any significant space advantage. For a 2-dimensional array, an

array of a packed array generally takes less space than a packed array

of an array, as in the following examples.

Examples

1. TYPE INTERNALARR = ARRAY [1..5] OF 0..6;

VAR SAMP1_ARR : PACKED ARRAY [1..5] OF INTERNAL ARR;

Each element of an array of type INTERNAL ARR is stored in a

longword. Each element of SAMP1 ARR, in turn, requires 5

longwords ~- enough storage space for 5 elements of type

INTERNAL ARR. The entire array SAMPl1 ARR therefore occupies 25

longwords (800 bits).

2. VAR SAMP1 ARR : PACKED ARRAY [1..5,1..5] OF 0..6;

VAR SAMP1 ARR : ARRAY [1..5] OF PACKED ARRAY [1..5] OF 0..6;

Specifying PACKED for an array with multiple subscripts results

in packing only at the innermost level. Therefore, the two array

declarations in this example are equivalent. Each PACKED

ARRAY[1..5] OF 0..6 requires 15 bits. Because the packed arrays

are elements of an unpacked array, their size is rounded up to an

even 16 bits. The total size of each SAMP1_ARR is therefore 80

bits. Example 3 shows a slightly more efficient way of

allocating this array.

3. TYPE INTERNALARR = PACKED ARRAY [l1..5] OF 0..6;

VAR SAMP2_ARR : PACKED ARRAY [l..5] OF INTERNAL_ ARR;

In this example, each element of INTERNAL ARR requires only 3

bits because the array is packed. Each element of SAMP2 ARR can

be stored in 15 bits, and the entire array occupies 75 bits.

4. TYPE INTERNAL ARR = PACKED ARRAY [1..5] OF 0..6;

SAMP3_ARR = PACKED ARRAY [1l..5] OF INTERNAL ARR;

VAR SAMPLE : PACKED ARRAY [1..5] OF SAMP3 ARR;

This example shows how you can maximize space savings for arrays

of more than two dimensions by specifying PACKED at every level.

As in Example 3, each element of INTERNALARR requires 3 bits,

and each element of SAMP3 ARR requires 15 bits. The entire array

SAMPLE, then, requires 375 bits.

8.4.3 Storage of Packed Records

A packed record that is not a component of another packed structure is

aligned on a byte boundary. The fields within the record are

allocated space depending on their sizes and types.

VAX-11 PASCAL SYSTEM ENVIRONMENT

Fields of scalar types, if less than or equal to 32 bits 1long, are

packed to the nearest bit. A field that requires more than 32 bits is

aligned on a byte boundary and is allocated space as for a field of an

unpacked record.

Except for its alignment, a field that contains an wunpacked array.

set, or record occupies the same amount of space in a packed or

unpacked record. To pack such a field, you must explicitly declare

the type of the field to be packed. For example:

VAR SAMPLEl : PACKED RECORD

A : =128 ..127;

B : BOOLEAN;

C : ARRAY [1..5] OF 0..30

END;

This record is byte-aligned and is allocated storage as follows:

Field Storage Allocation

A 8 bits
B 1 bit

C 160 bits

Field A, an integer subrange, 1is stored 1in the smallest possible

amount of space, 7 data bits plus a sign bit. Field B, a Boolean,

takes up one bit, leaving 7 bits unused. Field C is an unpacked

array, which 1is allocated storage as for integers, 32 bits (1

longword) for each of 5 elements.

Figure 8-2 shows how this record is stored.

31 15 8 7 0

ci1l] unused I B I A

Cl2] cl1]

Ci3] Cl2]

Cl4] CI[3]

Cisl Cl4]

C[5]

175 167

Figure 8-2 Storage of Sample Record

This record requires a total of 176 bits (11 words) of storage.

Compare the preceding example with the next one, which specifies a

packed array.

VAR SAMPLE2 : PACKED RECORD

A : -128..127;

B : BOOLEAN;

C : PACKED ARRAY [1..5] OF 0..30

END;

VAX-11 PASCAL SYSTEM ENVIRONMENT

This record is byte-aligned and is allocated storage as follows:

Field Storage Allocation

A 8 bits

B 1 bit
C 25 bits

Fields A and B are allocated the same amount of space in both sample

records. Field C, however, requires much less space in SAMPLE2

because it is packed. Each element of the packed array C occupies

only 5 bits. Figure 8-3 shows how this record is stored.

31 29 24 19 14 987 0

C[5] ci4] CI3] cl2] Cl1] B A

C[5]

33 32

Figure 8-3 Storage of Sample Packed Record Containing Packed Array

This record requires a total of 34 bits of storage.

8.5 REPRESENTATION OF FLOATING-POINT DATA

The following sections summarize the 1internal representation of

single-precision (REAL and SINGLE types) and double-precision (DOUBLE

type) floating-point numbers. For more detailed information, see the

VAX-11 Architecture Handbook.

8.5.1 Single-Precision Floating-Point Data (SINGLE, REAL Types)

A single-precision floating-point value 1is represented by four

contigueus bytes. The bits are numbered from the right 0 through 31,

as shown in Figure 8-4.

15 14 76 0

S EXPONENT FRACTION A

FRACTION

31 16

Figure 8-4 Single-Precision Floating-Point Data Representation

A single-precision floating-point value is specified by its address A,

the address of the byte containing bit 0. The form of the value is

sign magnitude with bit 15 the sign bit, bits 14 through 7 an excess

128 binary exponent, and bits 6 through 0 and 31 through 16 a

normalized 24-bit fraction with the redundant most significant

VAX-11 PASCAL SYSTEM ENVIRONMENT

fraction bit not represented. Within the fraction, bits of increasing

significance go from 16 through 31 and 0 through 6.

The 8-bit exponent field encodes the wvalues 0 through 255. An

exponent wvalue of 0, with a sign bit of 0, indicates that the

floating-point value has a value of 0. Exponent values of 1 through

255 indicate binary exponents of -127 through +127. An exponent value

of 0, with a sign bit of 1 is taken as a reserved operand.

Floating-point instructions processing a reserved operand take a

reserved operand fault.

The value of a floating point number is in the approximate range of

.29% (10**-38) through 1.7*%(10*%*38). The precision of a

single-precision value is approximately one part in 2**23, or 7

decimal digits.

8.5.2 Double~Precision Floating-Point Data (DOUBLE Type)

A double-precision floating-point wvalue 1is represented by eight

contiguous bytes. The bits are numbered from the right 0 through 63,

as shown in Figure 8-5.

1514 76 0

S EXPONENT FRACTION A

FRACTION

FRACTION

FRACTION

63 48 #

Figure 8-5 Double-~Precision Floating-Point Data Representation

A double-precision floating-point value is specified by its address A,

the address of the byte containing bit 0. The form of a

double-precision floating-point value is identical to a

single-precision floating-point value except for an additional 32

low-significance fraction bits. Within the fraction, bits of

increasing significance are numbered 48 through 63, 32 through 47, 16

through 31, and 0 through 6.

The exponent conventions and approximate range of values are the same

for double-precision floating-point wvalues as for single-precision

floating-point wvalues. The precision of a double-precision

floating-point value is approximately one part in 2*¥*55, or 16 decimal

digits.

APPENDIX A

DIAGNOSTIC MESSAGES

This appendix summarizes the error messages that can be generated by a

PASCAL program at compile time and at run time.

A.1 COMPILER DIAGNOSTICS

VAX-11 PASCAL reports compile-time diagnostics in the source listing

(if one is created) and summarizes them on the terminal (in

interactive mode) or in the batch 1log file (in batch mode).
Compile-time diagnostics are preceded by the following:

$PAS-1-DIAGN

The 1 represents the severity level of the error. A level of W
indicates a warning-level error which will not prevent your program

from linking or executing. A level of F indicates a fatal error which
you must correct for your program to link and execute properly.

The diagnostic messages that the PASCAL compiler can print are listed
below. All messages are printed with both number and text. Messages

with numbers less than 400 indicate serious syntax errors that you

must correct for ©proper compilation. Messages with numbers greater

than 400 indicate the use of VAX-11 PASCAL extensions and illegal

compiler options.

1 Error in simple type

The declaration for a base type of a set or the index type of an

array contains a syntax error.

2 Identifier expected

The statement syntax requires an identifier, but none can be

found.

3 PROGRAM or MODULE expected

The statement syntax requires the reserved word PROGRAM or

MODULE.

4 ')' expected

The statement syntax requires the right-parenthesis character.

10

11

12

13

14

15

':' expected

DIAGNOSTIC MESSAGES

The statement syntax requires a colon character.

Illegal symbol

The statement contains an illegal symbol, such as a misspelled

reserved word or illegal character.

Error in parameter list

The parameter

comma, colon,

OF expected

The statement

'(' expected

The statement

Error in type

The statement

is present.

'[' expected

The statement

']' expected

The statement

END expected

list contains a syntax error, such as a missing

or semicolon character.

syntax

syntax

syntax

syntax

syntax

requires the reserved word OF.

requires the left-parenthesis character.

requires a data type, but no type identifier

requires the left square bracket character.

requires the right square bracket character.

The compiler cannot find the delimiter END, which marks the end
of a compound statement, subprogram, or program.

';' expected

The statement syntax requires the semicolon character.

Integer expected

The statement syntax requires an integer, for example, as a
statement label.

16

17

18

19

20

21

22

50

51

52

53

DIAGNOSTIC MESSAGES

'=' expected

The statement syntax requires the equal sign to separate a

constant identifier from a constant value or to separate a type

identifier from a type definition.

BEGIN expected

The compiler cannot find the delimiter BEGIN, which marks the

beginning of an executable section.

'..' expected

The compiler cannot £find the .. symbol, which is required

between the endpoints of the subrange.

Error in field-list

The field list in a record declaration contains a syntax error.

',' expected

The statement syntax requires a comma character.

Empty parameter (successive ',') not allowed

The parameter 1list attempts to specify a null or missing

parameter, or contains an extra comma. In PASCAL, you cannot

omit optional parameters.

Illegal (nonprintable) ASCII character

The program contains a character that is not a printable ASCII

character.

Error in constant

A constant contains an illegal character or is‘improperly formed.

':=' expected

The statement syntax requires the assignment operator.

THEN expected

The compiler cannot find the reserved word THEN to complete the
IF-THEN statement.

UNTIL expected

The compiler cannot find the reserved word UNTIL to complete the

REPEAT statement,

54

55

58

59

60

97

98

99

100

101

DIAGNOSTIC MESSAGES

DO expected

The compiler cannot find the reserved word DO to complete the FOR

statement or the WHILE statement.

TO/DOWNTO expected

The compiler cannot find the reserved word TO or DOWNTO in the

FOR statement.

Invalid expression

The statement syntax requires an expression, but the first symbol

the compiler finds is not legal in an expression.

Error in variable

A reference to an array element or record field contains a syntax

error.

ARRAY expected

The compiler cannot find the reserved word ARRAY in the type

definition.

Strings in excess of 65535 characters not allowed in comparisons

Relational operators cannot be applied to strings 1longer than

65535 bytes.

Parameter count exceeds 255

The number of parameters to a procedure or function cannot exceed

255,

End of input encountered before end of program. Compilation

aborted.

The end of the input file was encountered before an entire

program had been parsed.

Array size too large

A declared array 1is 1larger than 2,147,483,647 bytes or

2,147,483,647 bits for a packed array.

Identifier declared twice

An identifier is declared twice within a declaration section.

You <can redeclare identifiers only in different declaration

sections.

102

103

104

105

107

108

109

110

111

112

DIAGNOSTIC MESSAGES

Lowbound exceeds highbound

The lower limit of a subrange is greater than the upper limit of

the subrange, based on their ordinal values in their base type.

Identifier is not of appropriate class

The identifier names the wrong class of data. For example, it

names a constant where the syntax of the statement requires a
procedure.

Identifier not declared

The program uses an identifier that has not been declared.

Sign not allowed

A plus or minus sign has occurred before an expression of

nonnumeric type.

Incompatible subrange types

The subrange types are not compatible according to the rules of

type compatibility.

File not allowed in variant part

A file type cannot appear in the variant part of a record.

Type must not be REAL or DOUBLE

You cannot specify a real value here. Real values cannot be used

as array subscripts, control values for FOR loops, tag fields of

variant records, elements of set expressions, or boundaries of
subrange types.

Tagfield type must be scalar or subrange

The tag field for a variant record must be a scalar or subrange

type.

Incompatible with tagfield type

The case label and the tag field are of incompatible types.

These two items must be compatible according to the general
compatibility rules.

Index type must not be REAL or DOUBLE

Array subscripts cannot be real values; if numeric, they must be

integer or integer subrange values.

113

114

115

116

117

118

119

120

121

122

123

DIAGNOSTIC MESSAGES

Index type must be scalar or subrange

Array subscripts must be scalar or subrange values, and cannot be

of a structured type.

Base type must not be REAL or DOUBLE

The base type of this set or subrange cannot be one of the real

types.

Base type must be scalar or subrange

The base type of this set or subrange must be scalar or subrange

values, and cannot be of a structured type.

Actual parameter must be a set of correct size

The actual parameter must be of correct size when passed as a VAR

parameter.

Undefined forward reference in type declaration: <name)>

The base type of a pointer was not defined in the TYPE section.

VALUE initialization must be in main program

A VALUE initialization statement can appear only in the main

program block; vyou cannot initialize variables in subprograms.

Forward declared; repetition of parameter list not allowed

You cannot repeat the parameter 1list after the forward

declaration of a subprogram.

Function result type must be scalar, subrange, or pointer

The function specifies a result that is not a scalar, subrange,

or pointer type. Function results cannot be structured types.

File value parameter not allowed

A file cannot be passed as a value parameter.

Forward declared function; repetition of result type not allowed

The result of the function appears in both the forward

declaration and in the later complete declaration. The result

can appear only in the forward declaration.

Missing result type in function declaration

The function heading does not declare the type of the result of

the function.

124

125

126

127

128

129

130

131

132

133

DIAGNOSTIC MESSAGES

F-format for REAL and DOUBLE only

You can specify two integers in the field width (such as R:3:2)

for real, single, and double values only.

Error in type of predeclared function parameter

A parameter passed to a predeclared function is not of the

correct type.

Number of parameters does not agree with declaration

The number of actual parameters passed to the subprogram is

different from the number of formal parameters declared for that

subprogram. You cannot add or omit parameters.

Parameter cannot be element of a packed structure

You cannot pass one element of a packed structure to a

subprogram; you must pass the entire structure if you want to

use it.

Result type of actual function parameter does not agree with

declaration

The result of an actual function parameter is not of the type

specified in the formal parameter list.

Operands are of incompatible types

Two or more of the operands in an expression are of incompatible

types. For example, the program attempted to compare a numeric
and a character variable.

Expression is not of set type

The operators you specified are valid only for set expressions.

Type of variable is not set

The statement syntax requires a set variable.

Strict inclusion not allowed

You must use the <= and >= operators to test set inclusion.

PASCAL does not allow you to use the less than (<) and greater

than (>) signs.

File comparison not allowed

Relational operators cannot be applied to file variables.

134

135

136

137

138

139

140

141

142

143

144

DIAGNOSTIC MESSAGES

Illegal type of operand(s)

You cannot perform the specified operation on data items of the

specified types.

Type of operand must be Boolean

This operation requires a Boolean operand.

Set element must be scalar or subrange

The elements of a set must be scalar or subrange types. Sets
cannot have elements of structured types.

Set element types not compatible

The elements of this set are not all of the same type.

Type of variable is not array

A variable that is not of an array type is followed by a left
square bracket or a comma inside square brackets.

Index type is not compatible with declaration

The specified array subscript is not compatible with the type
specified in the array declaration.

Type of variable is not record

A period appears following a variable that is not a record type.

Type of variable must be file or pointer

A circumflex character appears after the name of a variable that
is not a file or pointer.

Illegal parameter substitution

The type of an actual parameter is not compatible with the type
of the corresponding formal parameter.

Loop control variable must be an unstructured, non-floating point
scalar

The control variable in a FOR loop must be an integer, integer
subrange, or user-defined scalar type; it cannot be a real

variable.

Illegal type of expression

The specified expression evaluates to a type that is incompatible
in this position.

145

146

147

148

149

150

151

152

153

154

DIAGNOSTIC MESSAGES

Type conflict between control variable and loop bounds

The type of the control variable in a FOR 1loop 1is incompatible

with the type of the bounds you specified.

Assignment of files not allowed

You cannot assign one file to another. Output procedures must be

used to give values to files.

Label types incompatible with sélecting expression

The type of a case label is incompatible with the type to which

the selecting expression evaluates. Case labels and selecting

expressions must be of compatible types.

Subrange bounds must be scalar

You can specify subranges of scalar types only. You cannot

specify a real or string subrange.

Index type must not be integer

The index type of a nondynamic array cannot be integer, although

it can be an integer subrange.

Assignment to this function is not allowed

You cannot assign a value to an external or predeclared function

identifier.

Assignment to formal function parameter is not allowed

You cannot assign a value to the name of a formal function

parameter,

No such field in this record

You attempted to access a record by an incorrect or nonexistent

field name.

Error count exceeds error limit. Compilation aborted

The number of errors exceeds 30, the limit set by the ERROR_LIMIT

option.

Type of parameter must be integer

The actual parameter passed to this function or procedure must be

an integer.

155

156

157

158

159

160

161

162

163

164

DIAGNOSTIC MESSAGES

Recursive $INCLUDE not allowed. Compilation aborted

The $INCLUDE directive cannot 1include the file in which the

directive appears.

Multidefined case label

The same case label refers to more than one statement. Each case

label can be used only once within the CASE statement.

Case label range exceeds 1000

The range of ordinal values between the largest and smallest case

labels must not exceed 1000.

Missing corresponding variant declaration

In a call to NEW or DISPOSE, more tagfield constants were

specified than the number of nested variants in the record type

to which the pointer refers.

Double, real or string tagfields not allowed

Tag fields cannot be real or string variables, but must be

scalar.

Previous declaration was not forward

The reiteration of a procedure or function that was not

forward-declared is illegal.

Procedure/function has already been forward declared

The subprogram has already been forward declared.

Undeclared procedure or function: <name>

A procedure or function was forward-declared but its block was

never declared.

Type of parameter must be real or integer

The subprogram requires a real or integer expression as a

parameter.

14

This procedure/function cannot be an actual parameter

The specified predeclared procedure or function cannot be an

actual parameter. If you must use it in the subprogram, call it

directly.

A-10

165

166

167

168

169

170

171

172

173

174

175

DIAGNOSTIC MESSAGES

Multidefined label

A label appears in front of more than one statement in a single

executable section.

Multideclared label

The program declares the same label more than once.

Undeclared label

The program contains a label that has not been declared.

Undefined label: <label>

The program defines a label, but does not use the label in the

executable section.

Set element value must not exceed 255

The ordinal value of an element of a set must be between 0 and

255.

Value parameter expected

A subprogram that is passed as an actual parameter can have only

value parameters.

Type of variable must be textfile (FILE OF CHAR)

The specified operation or subprogram requires a text file

variable as an operand or parameter.

Undeclared external file

The program heading specifies an external file that has not been

declared at program or module level.

Negative set elements not allowed

The value of an integer set element must be between 0 and 255.

Type of parameter must be file

The specified subprogram requires a file as a parameter.

INPUT not declared as an external file

The program makes an implicit reference to the file variable

INPUT, but INPUT is either not declared, or has been redeclared

at an inner level.

A-11

176

177

178

179

181

182

183

184

185

186

187

DIAGNOSTIC MESSAGES

OUTPUT not declared as an external file

The program makes an implicit reference to the file wvariable

OUTPUT, but OUTPUT is either not declared or has been redeclared
at an inner level,

Assignment to function identifier not allowed here

Assignment to a function identifier is allowed only within the

function block.

Multidefined record variant

A constant tag field value appears more than once in the

definition of a record variant.

File of file type not allowed

You cannot declare a file that has components of a file type.

Array bounds too large

The bounds of an array are too large to allow the elements of the

array to be accessed correctly.

Expression must be scalar

The expression must specify a scalar value; structured variables

are not legal.

$IMMED, $DESCR, $STDESCR allowed only in external
procedure/function

These 'extended parameter specifiers are allowed only for

procedures and functions which are declared EXTERN,

External procedure has same name as main program

Program and procedure names must be unique.

Formal procedures may have at most 20 parameters

A procedure name that is defined as a formal parameter can have

at most 20 value parameters.

Formal procedures may not have dynamic array parameters

You cannot pass a dynamic array as a parameter to 'a procedure
that is itself passed as a parameter.

Illegal dynamic array assignment

The program attempts to perform an illegal assignment involving

dynamic arrays.

A-12

188

189

190

191

192

193

194

195

196

197

198

DIAGNOSTIC MESSAGES

Parameter must be scalar and not real or double

The parameters to the predeclared functions SUCC and PRED must be

scalar types, and cannot be one of the real types.

Actual parameter must be a variable

When you use VAR with a formal parameter, the corresponding

actual parameter must be a variable and not a general expression.

READLN/WRITELN/PAGE are defined only for textfiles

The predeclared procedures READLN, WRITELN, and PAGE operate only

on text files.

READ/WRITE require input/output parameter list

The READ and WRITE procedures require at least one parameter;

you cannot omit the parameter list.

Illegal type of input/output parameter

Arrays, sets, records, and pointers cannot be parameters to the

READ and WRITE procedures.

Field width parameter must be of type INTEGER

The field width you specify must be an integer.

Variable must be of type PACKED ARRAY[l..11l] OF CHAR

The DATE and TIME procedures require a parameter of this type.

Type of variable must be pointer

The statement syntax requires a variable of pointer type.

Type of variable does not agree with tagfield type

The type of a variable in a tag value list is incompatible with

the tag field type.

Type of parameter must be REAL or DOUBLE

The statement syntax requires a real (single- or

double-precision) value.

Type of parameter must be DOUBLE

The statement syntax requires a double-precision value.

A-13

199

200

201

202

203

204

205

206

207

208

DIAGNOSTIC MESSAGES

Parameter must be of numeric type

The procedure or function requires an integer or real number

value.

Parameter must be scalar or pointer and not real

The procedure or function requires an integer, user-defined

scalar, Boolean, integer subrange, user-defined scalar subrange,

or pointer parameter.

Error in real constant: digit expected

A real constant contains a nonnumeric character where a numeral

is required.

String constant must not exceed source line

The end of the line occurs before the apostrophe that closes a

string. Make sure that the second apostrophe has not been left

out.

Integer constantvexceeds range

An integer constant is outside the permitted range of integers

(that is, -2%*3]1 to 2**31-1),

Actual parameter is not of correct type

The actual parameter 1is not compatible in type with the
corresponding formal parameter.

Zero length string not allowed

You cannot specify a string that has no characters.

Illegal digit in octal or hexadecimal constant

An octal or hexadecimal constant contains an illegal digit.

Real or double constant out of range

A single- or double-precision real number is outside the
permitted range -- 0.29*10**(-38) to 1.7*(10**38) for positive

numbers and -0.29*10**(-38) to -1.7%(10**38) for negative

numbers.

Data type cannot be initialized

This variable contains a type that cannot be initialized, such as
a file.

A-14

209

210

211

212

213

214

215

216

217

218

219

DIAGNOSTIC MESSAGES

Variable has been previously initialized

You can specify only one VALUE declaration for a variable.

Variable is not array or record type

The VALUE initialization for a variable that is not a record or

an array contains a constructor.

Incorrect number of values for this variable

The VALUE declaration contains too many or too few values for the

variable being initialized.

Repetition factor must be positive integer constant

The repetition factor in an array initialization must be a

positive integer constant.

Type identifier does not match type of variable

The optional type identifier must be compatible with the type of

variable to be initialized.

Incorrect type of value element

A constant appearing in a VALUE initialization has a type other

than that of the variable, record field, or array element to be

initialized.

RMS record size is out of range

The record size specified in the OPEN procedure call exceeds the

maximum,

Type OLD is not allowed for this file

You cannot specify OLD for an internal file.

$DESCR, %STDESCR not allowed for procedure or function parameters

The only extended mechanism specifier that may be applied to

PROCEDURE and FUNCTION parameters is $IMMED.

Array must be unpacked

An array parameter to PACK or UNPACK is not unpacked correctly.

Array must be packed

An array parameter to PACK or UNPACK is not packed correctly.

A-15

220

221

222

223

224

225

250

251

252

255

259

DIAGNOSTIC MESSAGES

Packed bounds must not exceed unpacked bounds

The bounds of the packed array exceed the unpacked bounds.

$STDESCR not allowed for this type

This mechanism specifier may be applied only to strings and to
packed dynamic arrays of CHAR indexed by integer.

$DESCR not allowed for this type

This mechanism specifier may be applied only to the predefined
scalar types and to unpacked arrays of these types.

$IMMED not allowed for this type

This mechanism specifier may be applied only to types that occupy
4 bytes or less, or to PROCEDURE or FUNCTION parameters.

$DESCR, %IMMED, 3%STDESCR not allowed for VAR parameters

You cannot combine the %DESCR, $%STDESCR, and %IMMED mechanism
specifiers with the VAR specifier.

Iilegal file attribute specification

You specified an attribute in the OPEN statement that 1is not
recognized by the compiler.

Too many nested scopes of identifiers

You can have only 20 levels of nesting. A new nesting level
occurs with each block or WITH statement.

Too many nested procedures and/or functions

Subprograms can be nested no more than 20 levels deep.

Assignment to function not allowed here. Probable name/scope
conflict

This error is generated when a function is nested inside a
function with the same name.

Too many errors on this source line

The PASCAL compiler diagnoses only the first 20 errors on each
source line.

Expression too complicated

The expression is too deeply nested. To correct this error, vyou
should separately evaluate some parts of the expression.

A-16

260

261

263

300

302

303

304

305

306

401

DIAGNOSTIC MESSAGES

Too many nonlocal labels

The subprogram contains more than 1000 labels that are declared

at a higher level, that is, not locally declared.

Declarations out of order or repeated declaration sections

The declarations must be in the following order: labels,

constants, types, variables, values, and subprograms. Only the

main program can contain value declarations.

Program segment too large: branch displacement exceeds 32767

bytes

A statement is too large to allow the generation of a branch

instruction to span the statement. Use subprogram calls to break

the program into smaller units.

Division by zero

The program attempts to divide by zero.

Index expression out of bounds

The value of the expression 1is outside the range of the

subscripts of this array.

Value to be assigned is out of bounds

The value to the right of the assignment operator is out of range

for the variable to which it is being assigned.

Element expression out of range

The value of the expression is out of range for the array element

to which you are assigning it.

Dimension specification out of range

The second argument to UPPER or LOWER specifies an array

dimension greater than the number of dimensions of the first

argument.

Index type of dynamic array parameter exceeds range of

declaration

The index type of the actual dynamic array parameter extends

beyond the range declared in the formal parameter list.

Warning: 1Identifier exceeds nn characters

Identifiers can be any length, but PASCAL scans only the first 15

characters for uniqueness.

A-17

402

403

404

405

450

451

452

453

454

456

457

458

459

460

461

462

463

464

DIAGNOSTIC MESSAGES

Warning: Error in option specification

A compiler option is incorrectly specified in the source code.

Warning: Source input after "END." ignored

The compiler ignores any characters after the END that terminates

the program.

Warning: Duplicate external procedure name

Two external procedures or functions have been declared with the

same name, They refer to the same externally compiled

subprogram.

Warning: LABEL Declaration in module ignored

The compiler ignores label declarations at the outermost level in

a module.

Nonstandard Pascal: Exponentiation

Nonstandard Pascal: Value declaration

Nonstandard Pascal: OTHERWISE clause

Nonstandard Pascal: $INCLUDE directive

Nonstandard Pascal: MODULE declaration

Nonstandard Pascal: '$' OR '_' in identifier(s)

Nonstandard Pascal: Dynamic arrays

Nonstandard Pascal: $IMMED, $%DESCR, or $STDESCR parameter

Nonstandard Pascal: Octal or hexadecimal constant

Nonstandard Pascal: Double precision constant

Nonstandard Pascal: External procedure declaration

Nonstandard Pascal: Octal or hexadecimal data output

Nonstandard Pascal: Output of user-defined scalar

Nonstandard Pascal: Input of string or user-defined scalar

A-18

DIAGNOSTIC MESSAGES

465 Nonstandard Pascal: Input/output of double precision data

466 Nonstandard Pascal: Implementation-defined type, function, or

procedure

A.2 RUN-TIME ERROR MESSAGES

When an error occurs at run-time, VAX-11] PASCAL issues an error

message and aborts execution. The run-time error messages appear in

the format:

$PAS~-F~-code, Text

code

An abbreviation of the message text. Messages are alphabetized

by this code.

Text

The explanation of the error.

Some conditions, particularly I/O errors, may cause several messages

to be printed. The first message is a general diagnostic specifying

the file being accessed (if any) when the error occurred. Then a more

specific PASCAL message may be issued to clarify the nature of the

error. Finally, a VAX-11 RMS error message may be printed. In most

cases, you should be able to understand the error by looking up the

first two messages in the list below. If not, refer to the VAX/VMS

System Messages and Recovery Procedures Manual for an explanation of

the VAX-11l RMS error message.

ATTDISINV Attempt to dispose invalid pointer value xxx at PC = XXX

The DISPOSE procedure was called with an illegal parameter value,

probably because of an uninitialized pointer. You should use the

NEW procedure to correctly allocate the pointer.

CASSELBOU CASE selector out of bounds at PC = xxXx

In a CASE statement, the case selector expression does not

correspond to one of the case label values, and no OTHERWISE

clause is specified. This message occurs only when the CHECK

option is in effect.

ERRACCFIL Error in accessing file nnnnnn

This message identifies the file being accessed when an I/O error

occurred.

ERRCLOFIL Error closing file

An error occurred while a file was being closed. This 1is an

internal PASCAL error and should be reported to DIGITAL. Please

submit a Software Performance Report (SPR), including an example

program if possible.

A-19

DIAGNOSTIC MESSAGES

ERROPECRE Error opening/creating file

An error occurred when the system attempted to open or create the

file. The parameters specified 1in the OPEN procedure (or the

defaults, if the OPEN procedure was not used) are probably

incorrect for this file.

ERRRESFIL Error resetting file

An error occurred during execution of the RESET procedure. This

is an internal PASCAL error and should be reported to DIGITAL.

Please submit a Software Performance Report (SPR), including an

example program is possible.

ERRREWFIL Error rewriting file

An error occurred during execution of the REWRITE procedure.

This 1is an internal PASCAL error and should be reported to

DIGITAL. Please submit a Software Performance Report (SPR),

including an example program if possible.

FILBUFNOT File buffer not allocated

The system could not find enough space to allocate the file

buffer. This means that too many files are open or too many

pointers are in use.

FILNOTCLO Files INPUT and OUTPUT cannot be closed by user

You cannot call CLOSE for the predeclared file wvariables INPUT

and OUTPUT.

FILOUTINV File OUTPUT opened with invalid parameters

You can specify only a carriage control option when you open the

predeclared file variable OUTPUT.

FILTYPNOT File type not appropriate

You tried to open for direct access (DIRECT) a file of type TEXT,

or a file with variable-length records.

INPCONERR Input conversion error

The system found erroneous input when reading a text file.

INVASGINC Invalid assignment of incompatible dynamic arrays at PC = xxx

The program tried to assign incompatible dynamic arrays to one

another. For the assignment to be legal, the arrays must have

the same element type and the same upper and lower bounds for

each dimension. This message appears only if CHECK is enabled.

DIAGNOSTIC MESSAGES

LINLENEXC Line length exceeded, line length = xxx

The length of an output line was greater than the maximum allowed

by the record size for this file. Check to be sure that you did

not omit a call to the WRITELN procedure. If you must write

lines of this 1length, increase the record size in the OPEN

statement.

LINLIMEXC LINELIMIT exceeded, LINELIMIT = XXX

The number of lines output to the specified file exceeds the

limit. Make sure that the excessive output was not caused by an

infinite loop and increase the line limit if necessary.

OUTCONERR Output conversion error

The program tried to write data of an incorrect type to a text

file. Make sure that all output values are properly defined.

PROEXCHEA Process exceeds heap maximum size at PC = XXX

The system could not find enough space to allocate storage for a
pointer wvariable. This error is probably caused by an infinite
loop that calls the NEW procedure, thus attempting to allocate an

infinite amount of heap storage. If the program does not include

an infinite loop, your process may actually require more heap
storage than the maximum process size allows. 1In this case, try

to make your program smaller; 1if you <cannot, ask your system

mahager about increasing the maximum process size.

PROEXCSTA Process exceeds stack maximum size at PC = xxx

The system could not expand the stack to make room for the last
procedure or function called. This error is probably caused by
infinite recursion, where a number of procedures and functions
call each other without returning. Make sure that the program

does not include this type of logic error. If the program logic

is sound, the process may actually require more space than the

maximum process size allows. 1In this case, try to make your

program smaller; if you cannot, ask your system manager about

increasing the maximum process size.

RESREQACC RESET required before accessing

You can use the FIND procedure only on files that are open for

input.

RESREQREA RESET required before reading the file

The program did not call the RESET procedure before trying to

read the file.

A-21

DIAGNOSTIC MESSAGES

REWREQWRI REWRITE required before writing to file

The program did not call the REWRITE procedure before trying to

write to the file.

SETASGBOU Set assignment out of bounds at PC = xxx

The program tried to assign an illegal value to a set variable.

Make sure that all set assignments specify values that are within

the bounds of the set. This message appears only 1if CHECK is

enabled.

SUBASGBOU Subrange assignment out of bounds at PC = xxx

The program tried to assign an illegal value to a subrange

variable. Make sure that all subrange assignments specify values

that are within the bounds of the subrange. This message appears

only if CHECK is enabled.

A-22

APPENDIX B

CONTENTS OF RUN-TIME STACK DURING PROCEDURE CALLS

Figure B-1 outlines the events that occur during a procedure call and

shows the contents of the run-time stack after each event.

CONTENTS OF RUN-TIME STACK DURING

0 Before procedure call:

lower addresses

PROCEDURE CALLS

:SP

Stack grows calling

toward lower procedure local

addresses data area

:FP

higher addresses

SP = Stack Pointer

FP = Frame Pointer

9 The calling procedure’s actions:
First:

Decrements SP by 4 times

number of parameters &

stores actual parameters

on stack.

parameter 1

called

procedure — :

parameters
parameter n

calling

procedure

local data

area

FP Second:

Calculates “static link” ‘

to allow the called procedure

to find the stack frame

W of its declaring procedure.

Figure B-1

Stores static link in R1.

Finally:

Issues CALLS instruction.

Contents of Run-Time Stack During Procedure Calls

Figure B-1 (Cont.)

CONTENTS OF RUN-TIME STACK DURING PROCEDURE CALLS

9 The CALLS instruction’s actions:

Finally:

Creates and pushes

stack frame.

First: Condition handler

Pushes parameter count & .

fills with zero-bytes to a P mask PSW
longword size. called old AP

procedure .

0 n stack o FP
frame PC

Second: . o R2-R11 saved
Sets new argument pointer o parameter count as needed

(AP) equal to current SP. - and zeros

calied

. procedure

Third: parameters
Adjusts stack to a -

longword boundary. calling
procedure

data area

e The called procedure’s actions:

First:]

Loads base register R11 with the Third:
address of the program-level Allocates space for
variables. local data and

copies value parameters.

Second: ocal | .
" oca I value parameters

Pushes static link (R1) and —

local AP on stack. data & local data
SP -12(FP)

local AP local AP

— Finally:
tati

R1 static link Saves SP at -12(FP).

f condition handier FP

mask PSW

old AP
called

procedure < FP

stack frame
PC

R2-R11

as needed

.
parameter count AP

and zeros

calling procedure

parameters

calling procedure

data area

o —— T N ——

Contents of Run-Time Stack During Procedure Calls

INDEX

A

Access,

direct (random), 5-3, 5-4

remote, 5-6

sequential, 5-3, 5-4

Actual parameter list, 6-2, 6-3

Address parameters—--see By-refer-

ence mechanism

Argument count, 6-1

Argument list, 6-1, 6-6

Arguments to PASCAL subprograms,

6-6

Array descriptor, 6-4, 6-6

Assigning logical names, 5-2

Attributes,

file, 5-4

program section, 8-1

Bound procedure value, 6-6

Bounds checking, 2-2

BRIEF qualifier, 3-2, 3-3

Buffer size, 5-4

By-descriptor mechanism, 6-2,

6-4

By-immediate-value mechanism,

6-2, 6-9

By-reference mechanism, 6-2, 6-6,

6-9

By-reference semantics, 6-2, 6-3

By-value semantics, 6-2

C

CALL instruction, 6-1

Calling conventions, PASCAL, 6-1

Calling Run-Time Library proce-

dures, 6-12

Calling standard, procedure, 6-1

Calling system services, 6-6

Calls, procedure, 6-1

CALLS instruction, 6-1, B-2

CARRIAGE attribute, 5-5

Carriage control, 5-4

Character parameters, passing,

6-11

CHECK qualifier, 2-2, 2-6

Checking, bounds, 2-2

Commands,

ASSIGN, 5-2

EDIT, 1-1, 4-

LINK, 1-1, 3-

PASCAL, 1-1,

RUN, 1-1, 4-1

SHOW CALLS, 4-3

Command line qualifiers, 2-4

4

1

2-1

Communication,

DECnet, 5-6

interprocess, 5-5

network, 5-6

task-to-task, 5-6

Compiler error messages,

Compiler listing, 2-3, 2-

Compiler qualifiers, 2-1

Compiling a program, 2-1

Concatenating source files, 2-7

Condition handler, 7-1

data accessible to, 7-4

default, 7-2

establishing, 7-4

example of, 7-8

function return values, 7-5

parameters for, 7-4

removing, 7-4

request of stack unwind by,

7-6

responses, 7-3

system—-defined, 7-2

user written, 7-2, 7-3

Condition handling, 7-1

Condition signal, 7-2

Condition symbol, 7-2, 7-6

Condition symbol definition

files, 6-6

Condition value, 6-7, 7-2

format, 7-6

Count field, 5-4

Creating and executing a program,

1-1

Cross-reference listing, 2-3,

2-10, 2-12

CROSS REFERENCE qualifier

(compiler), 2-2, 2-3, 2-6,

2-10

CROSS REFERENCE qualifier

(Tinker), 3-2, 3-3

D

Data representation,

floating-point, 8-8

DEBUG qualifier (compiler), 2-2,

2-3, 2-6

DEBUG qualifier (execution), 4-1

DEBUG qualifier (linker), 3-2,

3-4, 4-2

Debugger, 2-3, 3-4, 4-1, 4-2,

4-3

Declaring Run-Time Library proce-

dures, 6-12

Declaring system services, 6-6,

6-7, 6-9

DECnet communications, 5-6

A-1

8

Index-1

Descriptor, 6-2, 6-4, 6-6

Device, 1-2

Diagnostic messages,

compiler, A-1 to A-19

format of compiler, A-1l

format of run-time, A-19

run time, A-19 to A-22

Direct access, 5-3, 5-4

DIRECT attribute, 5-4,

Directory, 1-3

Divide by zero, 7-4

Double-precision format, 8-9

E

EDIT command, 1l-1

Entry mask, 6-6

Environment, PASCAL system,

Environment pointer, 6-6

Error,

compiler, A-1

correction, 4-1

default processing, 7-1

messages, A-1 through A-22

numbers, A-1l

processing, 7-1, A-1

run time, 7-1, A-19

severity code, 7-6

5-5

8-1

ERROR LIMIT qualifier, 2-2, 2-3

Establish a condition handler,

7-4

Executable image, 3-3

EXECUTABLE qualifier, 3-2, 3-3

Executing a program, 1-1, 4-1

Extensions to standard PASCAL,

2-4

External subprograms, 6-2

F

Fault, reserved operand,

8-9

File,

attributes, 5-4

characteristics,

image, 3-3

LIBDEF.PAS,

library, 3-5

listing, 2-2, 2-8

map, 3-3, 3-4

MTHDEF.PAS, 6-

object, 2-2, 2

organization,

parameter, 6-3,

sequential, 5-3

SIGDEF.PAS, 6-7

specification,

status, 5-4

7-7 ’

5-2

6-7

7

-4, 2-6

5-3

6-6

1-2

File specification defaults, 1-3

Filename, 1-3

INDEX

Files,

concatenating source, 2-7

condition symbol definition,

6-6, 6-7

Filetype, 1-3

FIND procedure, 5-3,

FIXED attribute, 5-5

Fixed-length records,

Floating-point data,

errors involving, 7-7, 7-8

representation of, 8-8

Floating-point operation, 7-7

Formal parameter,

function, 6-5,

list, 6-2, 6-3

procedure, 6-5,

Format,

carriage control, 5-4

compiler listing, 2-8

condition value, 7-6

double-precision data, 8-9

file specification, 1-2

floating point, 8-8

listing file, 2-8

OPEN procedure, 5-4

record, 5-3, 5-4

single-precision data, 8-8

FULL qualifier, 3-2, 3-3

Function,

arguments to, 6-6

as parameters, 6-5

declaring system service as,

6-7

external, 6-2

MTHSRANDOM, 6-12

MTHSTANH, 6-2

return status,

return values,

Run-Time Librar

5-5

5-3, 5-5

6-6

6-6

6-8

6-5

Y , 6-1, 6-12

Image,

executable, 1-2,

shareable, 3-3

$IMMED FUNCTION specifier, 6-5

$IMMED mechanism specifier, 6-3,

6-9

$IMMED PROCEDURE specifier, 6-5

Immediate value, 6-2, 6-3, 6-9

procedure and function names,

6-5

$INCLUDE directive, 6-7

INCLUDE qualifier, 3-2, 3-5

Input by-reference parameters,

3-3

Input/output, 5-1

Interprocess communication, 5-5

Index-2

LIBSESTABLISH, 7-4

LIBSREVERT, 7-4

LIB$SSIGNAL, 7-2, 7-4

LIBSSTOP, 7-2, 7-3, 7-4

LIBDEF.PAS file, 6-7

Library files, 3-5

LIBRARY qualifier, 3-2, 3-5

Library, object-module, 3-5

Line length, maximum (buffer

size), 5-4 i

LINK command, 1-1, 3-1, 8-2

LINK command qualifiers, 3-2,

4-2

Linker input file qualifiers,

3-5

Linking the object modules, 3-1

List, argument, 6-1

LIST carriage control format,

5-5

LIST qualifier,*2-2, 2-3

command line, 2-5

file specification for, 2-3,

2-6

files produced by, 2-3, 2-6

specified in source code, 2-6

Listing,

cross~reference, 2-3, 2-10,

2-12

machine code, 2-10, 2-11

source code, 2-10, 2-11

traceback, 4-1

Listing file, 2-2

format of, 2-8, 2-9, 2

when produced, 2-3, 2-

Logical names, 5-1, 5-2

Machine code listing, 2-10, 2-11

MACHINE_ CODE qualifier, 2-2,

2-3, 2-6, 2-10, 2-11

Mailbox, 5-5

Map file, 3-3

MAP qualifier, 3-2, 3-3

Mechanism arrays, 7-4

Mechanism specifier,

default, 6-2

$DESCR, 6-4

$IMMED, 6-3

$IMMED FUNCTION, 6-5

$IMMED PROCEDURE, 6-5

$STDESCR, 6-4

VAR, 6-2

Messages,

compiler, A-1

run-time, A-19

MTHDEF.PAS file, 6-7

-10

6, 2-7

INDEX

N

Names,

logicai, 5-1, 5-2

program section, 8-2

Network communications, 5-6

NEW file attribute, 5-4

NOCARRIAGE attribute, 5-

Nonstandard features, 2-

(o)

Object code, 2-3

5

4

Object code listing, 2-10, 2-11

Object file, 2-2, 2-4, 2-6

OBJECT qualifier, 2-2, 2-4, 2-6

OLD file attribute, 5-4

OPEN procedure parameters, 5-4

Optional parameters, 6-11

Options--see qualifiers

Output by-reference parameters,

6-9

Overflow, floating, 7-4

P

Parameter lists, 6-2, 6-3

Parameters,

character, 6-11

condition handler, 7-4, 7-

formal function, 6-5, 6-6

formal procedure, 6-5, 6-6

input and output by-reference,

6-9

OPEN procedure, 5-4

optional, 6-11

PASCAL subprogram, 6-5, 6-6

passing mechanisms, 6-2

signal, 7-4, 7-5

VAR, 6-2, 6-6, 7-4

PASSINPUT, 5-1

PASSOUTPUT, 5-1

PASCAL command, 1-1, 2-1

PASCAL command qualifiers, 2-2

PASCAL subprograms,

arguments passed to, 6-6

Passing mechanisms,

by-descriptor, 6-2, 6-4

by-immediate-value, 6-2, 6-3

by-reference, 6-2, 6-9

default, 6-2

Passing parameters,

by default mechanism, 6-2

by-descriptor, 6-2, 6-4

by-immediate value, 6-2, 6-3

by-reference, 6-2, 6-9

to OPEN procedure, 5-4

to PASCAL subprograms, 6-5

to Run-Time Library procedures,

6—-12

to system services, 6-9

4 5

Index-3

INDEX

Procedure calling standard, 6-1

Procedure calls,

contents of run-time stack,

B-1, B-2

Procedures, 6-1

arguments to, 6-6

as parameters, 6-5

declaring system service, 6-9

external, 6-2

Run-Time Library, 6-1, 6-12

system service, 6-1, 6-9

Program development process, 1-1,

1-2

Program sections, 8-1

attributes, 8-1

names, 8-2

Q

Qualifiers, compiler, 2-1

CHECK, 2-2, 2-6

CROSS REFERENCE, 2-2

DEBUG, 2-2, 2-3, 2-6
ERROR LIMIT, 2-2, 2-3

LIST, 2-2, 2-3, 2-6
MACHINE CODE, 2-2, 2-3, 2-6

OBJECT, 2-2, 2-4

STANDARD, 2-2, 2-4,

WARNINGS, 2-2, 2-4,

Qualifiers, linker, 3-

BRIEF, 3-2, 3-3

CROSS REFERENCE, 3-2, 3-3

DEBUG, 3-2, 3-4, 4-1
EXECUTABLE, 3-2, 3-3

FULL, 3-2, 3-3

INCLUDE, 3-2, 3-

LIBRARY, 3-2, 3-

MAP, 3-2, 3-3

SHAREABLE, 3-2, 3-3

TRACEBACK, 3-2, 3-4, 4-1

Qualifiers, PASCAL command, 2-4,

2-5

Qualifiers, source code, 2-6

R

Random (direct) access, 5-3

Record access mode, 5-3, 5-

Record formats, 5-3, 5-4

Record Management Services, 5-4,

5-5

Record size, maximum, 5-4

Record type, 5-4, 5-5

Records,

fixed-length, 5-3, 5-5

variable~length, 5-3, 5-4, 5-5

2-

22—

1

5

5

4

Reference, pass by, 6-2, 6-6,

6-9

Remote access, 5-6, 5-7

Remove a condition handler, 7-4

Reserved operand fault, 7-7, 8-9

Resignal, 7-3

RMS, 5-4, 5-5

Routines, 6-1

RUN command, 1-1, 4-1

Run-time error messages, A-19

through A-22

Run-Time Library procedure, 6-1

declaring, 6-12

LIBSESTABLISH, 7-4

LIBSFIXUP FLT, 7-8

LIBSREVERT, 7-4

MTHSRANDOM, 6-12

MTHSTANH, 6-2

optional parameters, 6-11

S

Sequential access, 5-3, 5-

SEQUENTIAL attribute, 5-4

Sequential files, 5-3

Shareable image, 3-3

SHAREABLE qualifier, 3-2, 3-3

SHOW CALLS command, 4-3

SIGDEF.PAS file, 6-7

Signal parameters, 7-4, 7-5

Signal procedure,

LIBSSIGNAL, 7-2, 7-4

LIBSSTOP, 7-2, 7-3, 7-4

Signals,

condition, 7-2

Single-precision data represen-

tation, 8-8, 8-9

Source code listing, 2-10, 2-11

Source code qualifiers, 2-6

Source files, concatenating, 2-7

STANDARD qualifier, 2-2, 2-4,

2-6

Storage allocation,

packed arrays, 8-4

packed sets, 8-4

packed records, 8-4, 8-6

pointer types, 8-2

scalar types, 8-2

unpacked arrays, 8-3

unpacked records, 8-3

unpacked sets, 8-3

String descriptor, 6-4

Subprograms, 6-1

arguments to, 6-6

external, 6-2

Subprograms as parameters, 6-5

4

Index-4

Symbol, condition, 7-2, 7-6

System services,

Broadcast (SYS$BRDCST),

5-5, 6-7, 6-9, 6-10

declaring as functions,

(SYSSGETJPI), 6-13

6-4

Create Mailbox (SYSSCREMBX),

6-7

declaring as procedures, 6-9

Get Job/Process Information

Get Time (SYSSGETTIM), 6-3,

6-11

naming, 6-6

optional parameters, 6-1

output from, 6-10

parameters to, 6-9

Translate Logical Name

(SYSSTRNLOG), 6-11

unwind (SYSSUNWIND), 7-6

Wait for Single Event Fl

(SYSSWAITFR), 6-3

T

1

ag

Task~to-task communication,

Text file,

carriage control, 5-5

maximum line length, 5-4

Traceback information, 3-4

TRACEBACK qualifier, 3-2,

4-1

[

3_

5~

4-

4 4

6

1

INDEX

U

User-written condition handler,

vV

Value semantics, 6-2

Values,

condition, 7-6

function return, 6-5

signal procedure, 7-5

VAR parameters, 6-2, 6-3, 6-6,

7-4

VARIABLE attribute, 5-5

Variable-length records, 5-3,

5-4, 5-5

Version, 1-3

W

Warning messages, 2-2, 2-4, A-1,

A-17

WARNINGS qualifier, 2-2, 2-4,

2-6

Writing a condition handler, 7-3

y 4

Zero divide, 7-4

Index-5

VAX-11 PASCAL

User's Guide

AA-H485A-TC

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's

discretion. If you require a written reply and are

eligible to receive one under Software Performance

Report (SPR) service, submit your comments on an SPR

form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.- '

Did you find errors in this manual? If so, specify the error and the
page number.

Pl
ea

se

cu

t
al
on
g

th
is

li

ne
.

Please indicate the type of reader that you most nearly represent.

Assembly language programmer

Higher-level language programmer

Occasional programmer (experienced)

User with little programming experience

Student programmer

O
o
d
o
o
d

Other (please specify)

Name Date

Organization

Street

City. State Zip Code
or

Country

— — Do Not Tear - Fold Here and Tape — — — — — _— = = — = = — — - —_]

No Postage |
Necessary |

if Mailed in the | |

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS TWwW/A14

DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

— Do Not Tear - Fold Here @~ @ — — — — — — — — — — — — — — — — - - - —

M
t

A
l
n
s
v
v
a

M
a
d
d
n
d

¥

2
a
n

