VAX-11 PASCAL

Language Reference Manual
Order No. AA-H484C-TE

October 1982

This document describes the elements of the PASCAL language supported by
VAX-11 PASCAL. It is intended as a reference manual for use in preparing
VAX-11 PASCAL source programs.

SUPERSESSION/UPDATE INFORMATION: This revised document supersedes the
VAX-11 PASCAL Language Reference
Manual (Order No. AA-H484B-TE)

SOFTWARE VERSION: VAX-11 PASCAL V2.0

digital equipment corporation - maynard, massachusetts

First Printing, November 1979
Revised, March 1981
Revised, October 1982

The information in this document is subject to change without notice and should not be con-
strued as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1979, 1981, 1982 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

A postpaid READER’S COMMENTS form is iricluded on the last page of this document. Your
comments will assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSX
DEC/CMS Edusystem UNIBUS
DECnet IAS VAX
DECsystem-10 MASSBUS VMS
DECSYSTEM-20 PDP

VT
DECwritr RSTS dlilgliltlall

ZK2085
HOW TO ORDER -ADDITIONAL DOCUMENTATION
In Continental USA and Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS (CANADA)
In New Hampsbhire, Alaska, and Hawaii call 603-884-6660 Digital Equipment of Canada Ltd.
940 Belfast Road
In Canada call 613-234-7726 (Ottawa-Hull) Ottawa, Ontario K1G 4C2
800-267-6146 (all other Canadian) Attn: A&SG Business Manager

DIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation Digital Equipment Corporation

P.O. Box CS2008 A&SG Business Manager

Nashua, New Hampshire 03061 c/o Digital’s local subsidiary or

approved distributor

*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

Internal orders should be placed through the Software Distribution Center (SDC), Dlgltal Equipment
Corporation, Northboro, Massachusetts 01532

Contents

Preface

Chapter 1

Chapter 2

Page

...................................... X1
Introduction

1.1 Overview of VAX-11 PASCAL, 1-2

1.1.1 Data Types. e e e e e e e e e e 1-2

1.1.2 Definitions and Declarations 1-2

1.1.3 Executable Statements1-3

1.14 Routineso e e e e 1-3

1.1.5 Scope of Identifierso 1-3

1.1.6 Compilation Units 1-4

1.1.7 Attributeso 1-4

1.1.8 Structure of a PASCAL Program 1-4

1.2 Lexical Elements 1-6

1.2.1 Character Set e e 1-6

1.2.2 Special Symbolso 1-7

123 Reserved Words oo 1-7

1.2.4 Identifiers oo oo 1-8

1.2.4.1 Predeclared Identifiers 1-9

1.2.4.2 User Identifiers 1-9

1.3 Comments. e e e e e e e e e 1-9

1.4 The INCLUDE Directive. 1-10
Data Types

2.1 Ordinal Types. . . . o, 2-2

2.1.1 INTEGER Type 2-2

2.1.2 UNSIGNED Type o v i v v v v oo o 2-3

213 CHARType oo oo 2-3

2.14 BOOLEAN Type. e e e e e s e 2-4

2.1.5 Enumerated Type 2-4

2.1.6 Subrange Type. e 2-5

22 Real Types o e e e e e e e e 2-6

2.3 Structured Types e e e 2-8

231 RECORD Type. v v i ... 2-8

2.3.1.1 Record Type Examples. 2-10

2.3.1.2 Records with Variants 2-10

iii

Chapter 3

Chapter 4

Chapter 5

232 ARRAY Type. oo 2-13

2.3.2.1 Multidimensional Arrays. 2-14
2.3.2.2 Fixed-Length Character Strings. 2-17
2.3.2.3 Array Type Examples 2-18
2.3.3 VARYINGOFCHARType 2-19
234 SET Type i i e e 2-20
235 FILEType.« . o o o i e e 2-21
2.3.56.1 External and Internal Files. 2-23
2352 TextFiles. 2-23
2.4 Pointer Typeso e e e e e e 2-23
2.5 Type Compatibility, 2-24
2.5.1 Structural Compatibility, 2-25
2.5.2 Assignment Compatiblity 2-26
Expressions
3.1 Type Conversions 0 vt e e e e e e 3-2
3.2 Operatorso e e e e e e e e 3-3
3.2.1 Arithmetic Operators 3-3
3.2.2 Relational Operators 3-5
3.2.3 Logical Operators. 3-5
3.2.4 String Operators 3-6
3.25 SetOperators 3-7
3.2.6 Type Cast Operator. v . v v v o .. 3-8
3.3 Precedence of Operators 3-9
The Declaration Section
4.1 Label Declarations. 4-1
4.2 Constant Definitions 4-2
4.3 Type Definitions. o oo 4-2
4.4 Variable Declarations 4-3

PASCAL Statements

5.1
5.2
5.3
5.4

5.5

5.6

The Compound Statement 5-2
The Assignment Statement. L. 5-2
The Empty Statement 5-3
Conditional Statements 5-3.
54.1 The CASE Statement. 5-4
5.4.2 The IF-THEN Statement v e e e e 5-5
5.4.3 The IF-THEN-ELSE Statement. 5-6
Repetitive Statements L0 5-8
5.5.1 The FOR Statement 5-9
5.5.2 The REPEAT Statement 5-10
5.5.3 The WHILE Statement. 5-11
The WITH Statement 5-12

iv

Chapter 6

Chapter 7

5.7
5.8

The GOTO Statement v v v v v v .. 5-14
The Procedure Call 5-15

Procedures and Functions

6.1
6.2
6.3

6.4

6.5

6.6

Concepts of Routines. 6-2
Routine Headings 6-2
Formal Parameters.o 6-3
6.3.1 Value Parameters.o e e 6-4
6.3.2 Variable Parameterso 6-5
6.3.3 Formal Procedure and Function Parameters 6-7
6.3.4 Foreign Mechanism Specifiers on Formal Parameters. 6-7
6.3.5 Conformant Schemas 6-9
6.3.6 Default Formal Parameters 6-11
Blocks and Scopeo oL oo 6-12
6.4.1 Scope of Identifiers 6-13
6.4.2 FunctionBlocks o, 6-15
6.43 Examples 6-16
Directives e e e e e 6-17
6.5.1 FORWARD Declarations 6-17
6.5.2 EXTERNAL Routines 6-19
Routine Calls e 6-19
6.6.1 Calling Functions as Procedures. 6-20
6.6.2 Parameter Association 6-21
6.6.3 Default Parameters. 6-22
6.6.4 Actual Value Parameters 6-22
6.6.5 Actual Variable Parameters 6-23
6.6.6 Actual Procedure and Function Parameters 6-24
6.6.7 Foreign Mechanism Specifiers on Actual Parameters 6-26

Predeclared Rbutines

7.1

7.2
7.3

7.4

Arithmetic Functions 0. 7-1
7.1.1 Fully Generic Functions. 7-2
7.1.2 Real Generic Functions 7-2
Ordinal Functions o v v o i e e 7-2
Boolean Functions e 7-2
731 ODD (X) v v e e e e e e e e e e 7-3
7.3.2 UNDEFINED (r). v« o v i v i i v e i e e e 7-3
Transfer Routines e 7-3
7.4.1 Transfer Functions 7-3
7411 CHR (X). o v v o v it s e e 7-3
741.2 DBLE (x). o v i e e e e 7-3
7413 INT (x). o v o e o e e e e e 7-3
7414 ORD (X).« v v i e e e e e 7-3
7415 QUAD (X). . . v v v v v v e e e e e e e e e e 7-4

Chapter 8

7.5

7.6

7.7
7.8

7.9

7.10

7416 ROUND () o o o oo o 7-4

7417 SNGL(x). o e 7-4

7418 TRUNC () v v v v v v i ve v . 7-4

7419 UINT () o o e e e e e e e e 7-4

7.41.10 UROUND (r) v o v v v v . 7-4

7.41.11 UTRUNC (r) v o i i e i e 7-4
7.4.2 Transfer Procedures. 7-5

7421 PACK (a,i,z) o v v v v v v v e e 7-5

7.42.2 UNPACK (z,a,1). « v v v v v v i e i e 7-6
Dynamic Allocation Routines. 7-6
751 ADDRESS (X) o e e e e e e e e e e 7-6
752 NEW (D). . . . o o o o e e e e e e e e e 7-6
753 DISPOSE (P)« o o i e e e e e 7-7
754 NEW and DISPOSE—Record-with-Variants Form 7-9
Character-String Routines 7-10
7.6.1 BIN (x[, length[], digits]]). 7-10
7.6.2 HEX (x[, length[, digits|]) 7-11
7.6.3 INDEX (object, pattern) 7-11
764 LENGTH (str)« v v v v v v v o 7-12
7.65 OCT (x[, length[, digits]]) 7-12
7.6.6 PAD (str, fill, size)o 7-13
7.6.7 SUBSTR (str, start, length). 7-13
7.6.8 READV (str, parameter-list) T-14
7.6.9 WRITEV (str, parameter-list) 7-15
Unsigned Functions 7-16
Allocation Size Functions 7-16
781 SIZE (x[,tl,..tn])o 7-16
782 NEXT (X) 7-17
783 BITSIZE (x) v i i it s 7-17
784 BITNEXT (x) 7-17
Low-Level Interlocked Functions 7-17
7.91 ADD_INTERLOCKED (e, v). 7-17
7.9.2 CLEAR_INTERLOCKED (b) 7-18
7.93 SET_INTERLOCKED (b) 7-18
Miscellaneous Routines. 7-18
7101 CARD (s) e 7-18
7.10.2 CLOCK o o e e e e e e e 7-18
7.10.3 DATE (str) and TIME (str). 7-18
7.10.4 ESTABLISH (function-identifier) 7-19
7.10.56 EXPO(r) o e e e e e e 7-19
7.10.6 HALT« . . e 7-19
7.10.7 REVERT. o oo 7-19

Input and Output

8.1

I/OProcessing o . e e e e e 8-1
811 RMSRecords. 8-1
8.1.1.1 Fixed-Length RMS Records 8-2
8.1.1.2 Variable-Length RMS Records 8-2

vi

8.2
8.3

8.4

8.5

8.6

8.7

812 RMSFIles« e e e e e e e 8-2

8.1.2.1 Sequential Organization 8-2
8.1.2.2 Relative Organization 8-2
8.1.2.3 Indexed Organization 8-2
8.1.83 Access Methods 8-3
8.1.3.1 Sequential Access 8-3
81.3.2 Direct Accesso e 8-3
8.1.3.3 Keyed Accesso oo 84
I/O Procedures. e e e e 84
General Procedureso 8-7
831 OPEN Procedure 8-7
83.1.1 FileName. 8-9
8.3.1.2 History—NEW, OLD, READONLY, or UNKNOWN . . 89
83.13 RecordLength. 8-10
8.3.1.4 Access Method—SEQUENTIAL, DIRECT, or KEYED 8-10
8.3.1.5 Record Type—FIXED or VARIABLE 8-10
8.3.1.6 Carriage Control—LIST, CARRIAGE, FORTRAN,
NOCARRIAGE, or NONE 8-10
8.3.1.7 Organization—SEQUENTIAL, RELATIVE,
or INDEXED 8-11
8.3.1.8 Disposition—SAVE, DELETE, PRINT,
PRINT_DELETE, SUBMIT, or SUBMIT.__DELETE. 8-11
8.3.1.9 Sharing—READONLY, READWRITE, or NONE . . . 8-11
8.3.1.10 User Action 8-12
8.3.1.11 Exampleso 8-12
8.3.2 CLOSE Procedure 8-13
8.3.2.1 Disposition—SAVE, DELETE, PRINT,
PRINT_DELETE, SUBMIT, or SUBMIT_DELETE. 8-14
8.3.22 UserAction 8-14
8.3.2.3 Examples e e e 8-14
Sequential Access Input Procedures. 8-14
84.1 GET Procedure. 8-15
8.4.2 READ Procedure 8-16
8.4.3 RESET Procedure 8-19
Sequential Access Output Procedures 8-20
851 PUT Procedure. v v o v v v 8-20
8.5.2 REWRITE Procedure. e e 8-22
8.5.3 WRITE Procedure 8-23
Miscellaneous Routines. 8-24
8.6.1 EOF Function« 8-24
86.2 STATUS Function 8-25
8.6.3 TRUNCATE Procedure. 8-26
86.4 UFBFunction 8-27
8.6.5 UNLOCK Procedure 8-27
Text File Manipulation 8-28
©8.7.1 EOLN Function v .. 8-28
8.7.2 LINELIMIT Procedure 8-29
8.7.3 PAGE Procedure o 8-30

vii

Chapter 9

8.7.4 READLN Procedure 8-31

8.7.5 WRITELN Procedure. 8-32
8.7.6 Output with Specified Field Width 8-35
8.7.7 Writing Binary, Hexadecimal, and Octal Values 8-36
8.7.8 Prompting on Terminal Files 838
8.8 Direct Access Procedures. 8-38
8.8.1 DELETE Procedure 8-38
8.8.2 FIND Procedure 8-39
8.8.3 LOCATE Procedure 8-40
8.8.4 UPDATE Procedure 8-41
8.9 Keyed Access Procedures. 8-41
89.1 FINDK Procedure 8-42
8.9.2 RESETK Procedure S 8-43
810 Terminal I/O e 8-43

Compilation Units

9.1 Compilation Unit Structure 9-1
9.2 Sharing Declarations and Definitions e e 9-2
9.2.1 Using Global and External Identifiers 9-3

9.2.2 Using Environment Files 9-4
9.2.2.1 ENVIRONMENT Attribute 9-5

9.2.2.2 INHERIT Attribute 9-5

9.2.2.3 Multiply Declared Names 9-7

923 Examples, R 9-8

Chapter 10 Attributes

10.1 Specifying Attributes.o 0oL 10-2
10.2 Alignment Attributes e e e e e 10-4
10.3 Allocation Attributes.o 10-5
10.4 ASYNCHRONOUS Attributes 10-7
10.5 CHECK Attribute v 10-8
10.6 Double-Precision Attributes 10-10
10.7 ENVIRONMENT Attribute 10-11
10.8 IDENT Attribute 10-11
10.9 INHERIT Attribute’.« . . o o oo 10-11
10.10 INITTALIZE Attribute 10-12
10.11 KEY Attribute e e 10-12
10.12 LIST Attributeo 10-13
10.13 Optimization Attributes 10-14
10.14 OVERLAID Attribute 10-15
10.15 POS Attribute. oo 10-15
10.16 READONLY Attribute. 10-16
10.17 Size Attributes L L. Lo 10-18
10.18 UNBOUND Attribute 10-19
10.19 UNSAFE Attribute 10-20
10.20 Visibility Attributeso L L 10-23
10.21 VOLATILE Attribute e e e e e e e e 10-24
10.22 WRITEONLY Attribute 10-27

viii

Appendix A ASCII Character'Set

Appendix B Syntax Summary

B.1 Syntax Productions00 000 . . .B-1
B.2 Syntax Diagrams L0000 e B-9

Appendix C Predeclared Routines
Appendix D Summary of VAX-11 PASCAL Extensions

Appendix E Differences Between Version 1 and Version 2

E.1 Decommitted Features. e e e e e e e e e e e e E-1
E.1.1 VALUE Section E-2
E.1.2 Dynamic Array Parameters E-2
E.1.3 Lower and Upper Functions. E-3
E.1.4 Printing Hexadecimal and Octal Values E-3
E.1.5 The OPEN Procedure. E-4
E.1.6 Specifying Qualifiers in the Source Code. E-6

E.2 /OLD_VERSION Qualifier E-7
E.2.1 Comment Delimiters E-7
E22 %INCLUDE Files. . . . - E-7
E.2.3 Multidimensional Packed Arrays E-7
E.2.4 Storage of Components E-8
E25 Storageof Sets. E-8
E.2.6 TEXT Files and FILEOFCHAR E-8
E.2.7 MOD Operator. o v v i E-8
E.2.8 String Variable Parameters to the READ Procedure E-9
E29 FieldWidths.00 E-9
E.2.10 Global Identifiers. E-9
E.2.11 Allocation in Program Sections E-9

E.3 Minor Language Changes. E-10

Appendix F Error Detection
Appendix G Description of Implementation Features

G.1 Implementation-Defined Features. G-1
G.2 Implementation-Dependent Features G-3

Appendix H Program Examples

H.1 Update Indexed File. H-1
H.2 HexadecimalInput. H-5
H.3 Screen Display. H-6
H.4 Countwords e H-8

Index

ix

Figures

1-1 Structure of a PASCAL Program 1-5
1-2 %INCLUDE File Levels 1-12
2-1 Two_Dimensional Array Two_D 2-15
2-2 Three__Dimensional Array Chess3D. 2-16
2-3 Values Assigned to a Two—_Dimensional Array 2-17
2-4 File Buffer Contents 2-22
6-1 Scope of Identifiers 6-14
8-1 File Position After GET 8-16
Tables
1-1 Special Symbols.o 1-7
1-2 Standard Reserved Words 1-7
1-3 Nonstandard Reserved Words. 1-8
1-4 Predeclared Identifiers 1-9
2-1 Range and Precision of Real Types 2-6
2-2 Assignment Compatibility 2-26
3-1 Arithmetic Operators. 3-3
3-2 Results of Negative Exponents 3-4
3-3 Result Types of Arithmetic Operations 3-5
3-4 Relational Operators. o v v v e e 3-5
3-5 Logical Operators 3-6
3-6 String Operators. e 3-6
3-7 Set Operators 3-7
3-8 Precedence of Operators 3-9
8-1 Access Methods for File Organizations 8-3
8-2 File Mode During I/O Processing 8-6
8-3 Summary of OPEN Procedure Parameters 8-8
8-4 Default Values for VAX/VMS File Specifications 8-9
8-5 Carriage-Control Characters 8-33
8-6 Default Field Widths,, 8-35
10-1 Attributes on Routines and Compilation Units. 10-1
10-2 Attributes on Data Items. 10-2
10-3 Summary of Checking Options ©10-9
A-1 The ASCII Character Set. A-1
C-1 Predeclared Procedures. C-1
C-2 Predeclared Functions C-4
D-1 Language Extensions. e D-1
E-1 Summary of Version 1 OPEN Parameters. E-5

Preface

Manual Objectives

This manual describes the VAX-11 PASCAL language, which is an extension
of the standard proposed for the PASCAL programming language by the
International Organization for Standardization. This manual is designed pri-
marily for reference; it is not a tutorial document. For information about
tutorial and user documents, refer to the Associated Documents list later in
this preface.

Intended Audience

Readers who know the PASCAL language will benefit most from this manual.
You need not have a detailed understanding of the VAX/VMS operating
system, but some familiarity with VAX/VMS is helpful. Relevant documents
about VAX/VMS are also listed under Associated Documents.

xi

Structure Of This Document

This manual has 10 chapters and 8 appendixes.

e Chapter 1 contains an overview of the VAX-11 PASCAL language and
illustrates the structure of a PASCAL program.

e Chapter 2 provides detailed information on data types.

e Chapter 3 discusses expressions involving constants, variables, function de-
signators, and operators.

e Chapter 4 describes the declaration sections.
e Chapter 5 explains the statements that perform the actions of a program.
¢ Chapter 6 discusses how to write procedures and functions.

® Chapter 7 presents the predeclared procedures and functions supplied by
VAX-11 PASCAL.

e Chapter 8 provides detailed information on input and output procedures.
¢ Chapter 9 describes compilation units and independent compilation.

¢ Chapter 10 provides information on VAX-11 PASCAL attributes.

¢ Appendix A lists the ASCII character set.

¢ Appendix B presents the syntax productions and diagrams for the VAX-11
PASCAL language.

¢ Appendix C summarizes the predeclared procedures and functions available
in VAX-11 PASCAL.

e Appendix D lists the extensions incorporated in VAX-11 PASCAL.

e Appendix E explains the differences between Version 2 and previous ver-
sions of VAX-11 PASCAL.

e Appendix F describes how the VAX-11 PASCAL compiler and run-time
system detect violations of the language standard.

e Appendix G describes the features of PASCAL that are defined by or de-
pendent on the VAX-11 implementation.

e Appendix H gives complete PASCAL program examples.

xii

Associated Documents

Users at all levels should refer to the VAX-11 PASCAL User’s Guide for
information on compiling, linking, running, and debugging their programs.

For programmers unfamiliar with the PASCAL language, the VAX-11
PASCAL Primer provides a tutorial introduction.

The VAX/VMS Primer provides introductory material for programmers unfa-
miliar with the VAX/VMS operating system.

The VAX/VMS Command Language User’s Guide describes the VAX/VMS
commands that will help all users in creating, editing, copying, and printing
files containing PASCAL programs.

The VAX-11 Information Directory and Index briefly describes all VAX/VMS
system documentation, defining the intended audience for each manual and
providing a synopsis of each manual’s contents.

Conventions Used In This Document

This document uses the following conventions.
Convention Meaning

{4 Braces enclose lists from which you must choose
one item; for example:

{expression}
statement

A horizontal ellipsis means that the item preceding
the ellipsis can be repeated; for example:

digit ...

{1,... Braces followed by a comma and a horizontal el-
lipsis mean that you can repeat the enclosed item
one or more times, separating two or more items
with commas; for example:

flabell,...

{ ;... Braces followed by a semicolon and a horizontal
ellipsis mean that you can repeat the enclosed item
one or more times, separating two or more items
with semicolons; for example:

REPEAT {statement};....
UNTIL expression

A vertical ellipsis in a figure or example means that
not all of the statements are shown.

xiii

[1

items in UPPERCASE
letters and special
symbols

items in lowercase
letters

Square brackets mean that the statement syntax
requires the square bracket characters. This nota-
tion is used with arrays, sets, and attribute lists; for
example:

ARRAY[index1]

Double brackets enclose items that are optional; for
example:

EOLN [|

Uppercase letters and special symbols in syntax de-
scriptions indicate VAX-11 PASCAL reserved
words and predeclared identifiers; for example:

BEGIN
END

~ Lowercase letters represent elements that you must
"replace according to the description in the text.

In this manual, complex examples and syntax diagrams have been divided
into several lines to make them easy to read. PASCAL does not require that
you format your programs in any particular way; therefore, you should not
regard the formats used in this manual as mandatory.

xiv

Chapter 1
Introduction

VAX-11 PASCAL is an extended implementation of the PASCAL language
that has been developed for use under the VAX/VMS operating system. It
includes all the standard language elements plus the following extensions:

e UNSIGNED data type
¢ Double- and quadruple-precision real data types

e VARYING OF CHAR structured data type for items that can accept char-
acter strings of varying lengths

¢ Exponentiation operator

¢ Initialization of variables in a VAR section

e OTHERWISE clause in the CASE statement
¢ Extended parameter specifications

¢ Extended input and output capabilities, including support for relative and
indexed file organizations

¢ Independent compilation

e Attributes that modify data items and the names of procedures, functions,
programs, and modules

In this manual, the term “VAX-11 PASCAL” is used to emphasize features
that are found in the VAX-11 implementation but not in the PASCAL lan-
guage definition.

This chapter presents an overview of PASCAL, including some VAX-11 ex-
tensions, and illustrates the structure of a PASCAL program. It also describes
PASCAL’s lexical elements—the character set, reserved words, identifiers,
and special symbols. The final sections explain how to document a program
and how to include existing files in a source program.

1-1

1.1 Overview of VAX-11 PASCAL

1-2

A PASCAL program performs operations on data items known as constants,
variables, and function results. A constant is a quantity with an unchanging
value; a constant to which you give a name is called a symbolic constant. A
variable is a quantity whose value can change while the program executes. A
function result is the value returned following the execution of a function.

1.1.1 Data Types

Every PASCAL data item is associated with a data type. A data type, usually
indicated by a type identifier, determines both the range of values a data item
can assume and the operations that can be performed on it. In addition, the
type determines the storage space required for all of the data item’s possible
values.

PASCAL provides identifiers for many predefined types. Thus, a program’s
operations can involve integers, real numbers, Boolean and character data,
records, arrays, character strings, sets, files, and pointers to dynamic varia-
bles. VAX-11 PASCAL includes another predefined type, which you can use
to represent large unsigned integers. PASCAL also allows you to create your
own types by defining an identifier of your choice to represent a range of
values; a user-defined type is also associated with a set of operators and a
storage requirement.

The type of a constant is the type of its corresponding value. The type of a
variable is the type established when the variable is declared and generally
cannot be changed. The type of a function result is the type of the value
returned by the function (called the result type).

Variables and function results can change in value any number of times.
However, all of the values they assume must be within the range established
by their type. A variable does not assume a value until the program assigns it
one. A function result is computed during the execution of the function.

In PASCAL, types are associated not only with data items but also with
expressions. An expression represents the computation of a value resulting
from a combination of variables, constants, function results, and operators.
You can use arithmetic, relational, logical, string, and set operators to form
PASCAL expressions. Arithmetic operations produce integer, unsigned, or
real-number values. Relational and logical operations yield Boolean results.
String operations manipulate strings of characters. Set operations form the
union, intersection, and differences of two sets.

1.1.2 Definitions and Declarations

PASCAL requires that you define every symbolic constant and user-created
type and declare every label, variable, procedure, and function used in a
program. You define and declare such data in the declaration section of the
program, which can contain LABEL, CONST, TYPE, VAR, PROCEDURE,
and FUNCTION sections. All of these sections except LABEL introduce iden-
tifiers and indicate what they represent; a LABEL section declares numeric

Introduction

labels that correspond to executable statements accessed by GOTO state-
ments. In VAX-11 PASCAL, a VAR section can assign initial values to the
variables declared. An initialized variable assumes the given value when pro-
gram execution begins.

1.1.3 Executable Statements

The executable section of a PASCAL program contains the statements that
perform the program’s actions. The executable section is delimited by the
words BEGIN and END. Between BEGIN and END are conditional and
repetitive statements, statements that assign values to variables and function
identifiers, and statements that control program execution.

1.1.4 Routines

PASCAL allows you to group definitions, declarations, and executable state-
ments into routines. You can use routines as a convenient way to organize a
program by isolating the individual tasks that the program is to accomplish.

PASCAL has two kinds of routines—procedures and functions. Procedures are
usually written to perform a series of actions. They are called by an execut-
able statement known as a procedure call. Functions are written to compute
and return a value; they are called when a function designator appears within
an expression. PASCAL supplies many predeclared routines that perform
frequently used operations, such as input and output.

Normally, a routine consists of a heading and a block, which you supply in the
routine’s declaration. The heading provides the routine’s name, usually a list
of formal parameters that declare the external data for the routine, and, in the
case of functions, the type of the function result. The routine block consists of
an optional declaration section and an executable section. The purpose of a
declaration section in a routine is to declare data items that are local to the
routine (that is, data items that are unavailable outside the routine).

1.1.5 Scope of ldentifiers

PASCAL is a block-structured language: it allows you to nest routine blocks
not only within the main program but also within other routines. Each routine
can have its own local definitions and declarations; it can even redeclare an
identifier that has been declared in an outer block. A routine declared at an
inner level has access to the declarations and definitions made in all blocks
that enclose it.

The part of the program in which you have access to an identifier is called the
scope of the identifier. Qutside its scope, an identifier has either no meaning
or a different meaning. Specifically, the scope of an identifier is the block in
which it is declared. Since blocks can be nested, the scope of a particular
identifier can include blocks at lower levels in the program hierarchy. You
must keep track of the scope of identifiers, especially if you plan to use the
same name for several data items.

Introduction 1-3

1-4

1.1.6 Compilation Units

VAX-11 PASCAL uses the term ‘“compilation unit” to denote either a pro-
gram or a module, each of which can be compiled as a separate unit (unlike a
routine, which cannot be compiled without the context of a program or mod-
ule). A program consists of a heading and a block, just as a routine does. A
VAX-11 PASCAL module consists of a heading followed only by a declaration
section; it cannot contain executable statements. The heading contains the
name of the program or module and, possibly, a list of identifiers that indicate
any external files used. The data items declared in a compilation unit are
available at all levels of the compilation unit, including nested routines, and
are also available to subsequently compiled programs and modules, which can
“inherit” these declarations. ' '

1.1.7 Attributes

The VAX/VMS operating system controls how a VAX-11 PASCAL program
is compiled, linked, and executed. The defaults provided by the various com-
ponents of VAX/VMS are sufficient for most applications; however, for ad-
vanced applications, such as systems programming, you may need to change
such factors as the allocation size, addressing boundaries, and form of storage
occupied by variables; the techniques used by the VAX-11 PASCAL compiler
to compile your program; and the sharing of data declarations among compi-
lation units. By including a class of language extensions known as attributes,
VAX-11 PASCAL allows you to change many of the properties of a program
that are normally determined by VAX/VMS.

Attributes are identifiers that specify how variables, formal parameters,
routines, and compilation units are to be qualified by the changes you make to
VAX/VMS defaults. The syntax for specifying attributes is given throughout
this manual in the sections describing type definitions, variable declarations,
and routine, program, and module headings. Explanations, rules, and de-
faults for all the attributes are provided in Chapter 10.

1.1.8 Structure of a PASCAL Program
Figure 1-1 illustrates some of the typical parts of a PASCAL program.

Introduction

PROGRAM Calculator (INPUT DUTPUT);} Program Heading

' TYPE
Yes_No = (Yes, No)j
VAR
Subtotals Orerand : REALS
Equation : BOOLEANS
Orperator : CHARS

Answer : Yes_Noi

. PROCEDURE Instructions§} Procedure Heading
Declaration <

Section /BEGIN
WRITELN (‘'This Prodram addss subtractss multirliess and’}3i
WRITELN (‘divides real numbers, Enter a number in response’} 3
WRITELN (’to the Orerand: promept and enter an operator -- 713
Procedure WRITELN (‘+4 -, %, /4 or = -- in response to the Orperators:)3
Block WRITELN (‘prompt, The prodram Keeps a runnind subtotal’)i

WRITELN (‘until vou enter an esual sign (=) in reseponse to’')i
WRITELN (‘the Orerator: Promet, You can then exit from’);
WRITELN (’the Prodram or bedin a vnew set of caleulations,)3
\ \END3i (% end of procedure Instructions %)

(BEGIN
WRITE (‘Do vou need instructions™ Tyre ves or no.’)i
READLN (Answer) i

IF Answer = Yes
THEN

Instructionss
REPEAT

Eauation := FALSES
Subtotal 1= 0Of
WRITE (‘Operands:)3
READLN (Subktotalls
WHILE (NDT Eauation) DO
BEGIN
WRITE (’'Orerator:’)}
READLN (Orerator)s
IF (Orperator = ‘=7)
THEN
BEGIN
Eaqauation := TRUES?
Executable WRITELN ¢(’The answer is ‘, Subtotal)}}
Section END
ELSE
BEGIN
WRITE (‘OPerand:’}}
READLN (OPerand)}
CASE Orerator OF

‘+/ 1 Subtotal Subtotal + Operand}

‘-’ 1 SBubtotal := Subtotal - Operands}
‘¥’ 1 Subtotal := Subtotal ¥ Operandi
/' 1 Bubtotal := Subtotal / Operand:
END 3
WRITELN (‘The subtotal is “» Bubtotalls
END 3
END 3

WRITE {‘Any more calculations? Tyrpe ves or no,'}3
READLN (Answer) i

UNTIL Answer = Noi

\ END .

ZK-094-81

Figure 1-1: Structure of a PASCAL Program

Introduction 1-5

1.2 Lexical Elements

1-6

A PASCAL program is composed entirely of lexical elements. These elements
may be individual symbols, such as arithmetic operators, or they may be
words that have special meanings in PASCAL. The basic unit of any lexical
element is a character, which must be a member of the ASCII character set,
as described in Section 1.2.1. Some characters are special symbols that are
used in PASCAL as statement delimiters, operators, and elements of the
language syntax. The special symbols used in VAX-11 PASCAL are presented
in Section 1.2.2.

The words used in a PASCAL program are combinations of alphabetic and
numeric characters and occasionally a dollar sign ($), an underscore (__), or a
percent sign (%). Some words are reserved for the names of executable state-
ments, operations, and predefined data structures. The words that are re-
served in VAX-11 PASCAL are listed in Section 1.2.3. Other words in a
PASCAL program are identifiers. Predeclared identifiers represent routines
and data types provided by VAX-11 PASCAL. Other identifiers are created
by the user to name programs, symbolic constants, variables, and any neces-
sary program elements that have not already been named. Section 1.2.4 ex-
plains how to use both kinds of identifiers in a program.

1.2.1 Character Set

VAX-11 PASCAL uses an extended American Standard Code for Information
Interchange (ASCII) character set (see Appendix A). This extended ASCII
character set contains 256 characters, each of which corresponds to a numeric
value. The characters fall into the following categories:

¢ The upper- and lowercase letters A through Z and a through z
e The numbers 0 through 9

e Special characters, such as the ampersand (&), question mark (?), and
equal sign (=)

e Nonprinting characters, such as the space, tab, line feed, carriage return,
and bell

¢ Extended, unspecified characters with numeric codes from 128 to 255

The VAX-11 PASCAL compiler does not distinguish between upper- and
lowercase characters except when they appear inside apostrophes. For exam-
ple, the word PROGRAM has the same meaning when written as any of the
following: '

PROGRAM

PRodrAnm

program

The characters below, however, represent different values:
.y

TR

Introduction

Similarly, the following two phrases represent different values:
‘BREAD AND ROSES’

‘Bread and Roses’

1.2.2 Special Symbols

Special symbols represent delimiters, operators, and other syntactic elements.
VAX-11 PASCAL’s special symbols are listed in Table 1-1. In symbols com-
posed of more than one character, the characters cannot be separated by
spaces.

Table 1-1: Special Symbols

Name Symbol Name Symbol
Apostrophe ’ Less than <
Assignment operator = Less than or equal <=
Brackets L Minus sign N

()] Multiplication *
Colon : Not equal <>
Comma R Parentheses ()
Comments (x =) Percent %
{} Period
Division / Plus sign o+
Equal = Pointer @
Exponentiation ek
Greater than > Semicolon ’
Greater than or equal >= Subrange operator

Type cast operator

1.2.3 Reserved Words

In the PASCAL language definition, the words in Table 1-2 are reserved for
the names of statements, data types, and operators. This manual shows these
words in uppercase letters.

Table 1-2: Standard Reserved Words

AND END NOT SET
ARRAY FILE OF THEN
BEGIN FOR OR TO
CASE FUNCTION PACKED TYPE
CONST GOTO PROCEDURE UNTIL
DIV IF PROGRAM VAR
DO IN " "RECORD WHILE
DOWNTO LABEL "REPEAT WITH
.ELSE -~ "MOD- P

Introduction 1-7

1-8

You can use reserved words in your program only in the contexts for which
they are defined. You cannot redefine a reserved word for use as an identifier.

The nonstandard words listed in Table 1-3 are reserved for VAX-11 PASCAL
extensions. If you wish, you may redeclare those words that do not contain a
percent sign (%); however, any extension using those words becomes unavaila-
ble within the block in which the word was redeclared. Nonstandard words
beginning with the percent sign may not be redeclared as identifiers because
they contain a special symbol. This manual shows nonstandard reserved
words in uppercase letters.

Table 1-3: Nonstandard Reserved Words

%DESCR - MODULE
%IMMED OTHERWISE
%INCLUDE REM

%REF VALUE
%STDESCR VARYING

1.2.4 ldentifiers

In PASCAL, identifiers are used to name programs, modules, symbolic con-
stants, data types, variables, procedures, functions, and program sections. An
identifier is a combination of letters, digits, dollar signs ($), and underscores
(); it must conform to the following restrictions:

¢ An identifier cannot start with a digit.
¢ An identifier cannot contain any spaces or special symbols.

¢ The first 31 characters of an identifier must denote a unique name within
the block in which the identifier is declared.

In VAX-11 PASCAL, only the first 31 characters of an identifier are scanned
for uniqueness. A warning message results from every occurrence of an identi-
fier that exceeds 31 characters. The following examples show valid and invalid
identifiers:

Valid

FORZNS

MAX_WORDS

UPTO

LOGICAL .NAME_TABLE funiaue in first
LOGICAL _NAME_SCANNER 31 characters)
SYS$CREMBXY

Invalid

AAWHILE (starts with a digit)

UPBTO (contains an ampersand)

YEAR_END_BO _MASTER.FILE.TOTAL_DISCOUNT {(not uniaue in first
YEAREND.BO_MASTER.FILE_TOTAL_DOLLARS 31 characters)

Although VAX-11 PASCAL allows the dollar sign ($) in identifiers, this char-
acter has a special meaning to the VAX/VMS operating system in some con-

texts. You should restrict the use of the dollar sign to identifiers representing
VAX/VMS symbolic names.

Introduction

1.2.4.1 Predeclared Identifiers — VAX-11 PASCAL predeclares the identifiers
listed in Table 1-4 as the names of procedures, functions, data types, sym-
bolic constants, and file variables. Predeclared identifiers appear in uppercase
letters throughout this manual.

Table 1-4: Predeclared Identifiers

ABS FALSE PACK SUBSTR
ADD__INTERLOCKED FIND PAD SUCC
ADDRESS FINDK PAGE TEXT
ARCTAN GET PRED TIME

BIN HALT PUT TRUE
BITNEXT HEX QUAD TRUNC
BITSIZE INDEX QUADRUPLE TRUNCATE
BOOLEAN INPUT READ UAND
CARD INT READLN UFB

CHAR INTEGER READV UINT

CHR LENGTH REAL UNDEFINED
CLEAR_INTERLOCKED LINELIMIT RESET UNLOCK
CLOCK LN RESETK UNOT
CLOSE LOCATE REVERT UNPACK
COS LOWER REWRITE UNSIGNED
DATE MAXINT ROUND UOR

DBLE NEW SET_INTERLOCKED UPDATE
DELETE NEXT SIN UPPER
DISPOSE NIL SINGLE UROUND
DOUBLE ocCT SIZE UTRUNC
EOF ODD SNGL UXOR
EOLN OPEN SQR WRITE
ESTABLISH ORD SQRT WRITELN
EXP OUTPUT STATUS WRITEV
EXPO

You can redefine a predeclared identifier to denote some other item. Once you
do so, however, you can no longer use that identifier for its usual purpose
within the block in which it is redefined.

For example, the predeclared identifier READ denotes the READ procedure,
which performs input operations. If you use the word “read” to denote some-
"thing else, perhaps a variable, you cannot use the READ procedure within the
same block. You should avoid redefining predeclared identifiers because you
could lose access to useful language features.

1.2.4.2 User Identifiers — User identifiers denote the names of programs, mod-
ules, symbolic constants, variables, procedures, functions, program sections,
and user-defined types. User identifiers represent significant data structures,
values, and actions that are not represented by a reserved word, predeclared
identifier, or special symbol.

1.3 Comments

In addition to data declarations and executable statements, a PASCAL pro-
gram can contain comments—words and phrases that record important infor-
mation about the program. When processing a program, the compiler ignores

Introduction 1-9

the text of a comment; therefore, a comment can contain any ASCII character
(except a nonprinting control character) and can appear anywhere a space is
legal.

To signify a comment, you can either enclose the text in braces or precede it
with a left-parenthesis/asterisk character pair and follow it with an
asterisk/right-parenthesis character pair. For example:

{ This is a comment. ¥

(¥ This is a comment Ltoo. *)

In VAX-11 PASCAL, the special symbols used to delimit comments are
equivalent. Thus, once you have begun a comment with an opening delimiter,
the first occurrence of a closing delimiter of either kind ends the comment. For
example:

{ The delimiters of this comment do not match. #*)
(% PASCAL allows vou to mix delimiters in this wav, ¥

However, VAX-11 PASCAL does not allow you to nest comments. That is,
you cannot include one set of comments within another. For example:

(¥ Comments cannot be nested { contained inside more than one
set of comment delimiters } within vour prodram. %)

The above example would result in a compile-time error.

1.4 The %INCLUDE Directive

The %INCLUDE directive allows you to access the text from one PASCAL
source file during the compilation of another; the directive is useful when the
same information is used by several programs. The contents of the included
file are inserted at the point where the compiler encounters the %INCLUDE
directive. This directive can appear anywhere that a comment is legal.

Syntax

%INCLUDE ’VAX/VMS file-specification {/'-'ST } .
/NOLIST
VAX/VMS file-specification

The name of the file to be included (see the VAX-11 PASCAL User’s
Guide for the syntax of a VAX/VMS file specification). Apostrophes are
required to enclose the VAX/VMS file specification and the /LIST or
/NOLIST option.

/LIST

An option that indicates that the included file should be printed in the
listing of the program if a listing is being generated. This option is the
default.

/NOLIST

An option that indicates that the included file should not be printed in
the listing of the program. However, the line containing the 2INCLUDE
directive does appear in the program listing if one is being generated.

Introduction

When the compiler finds the %ZINCLUDE directive, it stops reading from the
current file and begins reading from the included file. When the compiler
reaches the end of the included file, it resumes compilation at the point in the
original file following the line that contains the %INCLUDE directive. If you
specify neither /LIST nor /NOLIST, the source listing state (that is, whether
or not a source listing is being produced) does not change when the compiler
switches to the included file.

In the following example, the ZINCLUDE directive specifies the file CON-
DEF.PAS, which contains constant definitions.

Main PASCAL Program
PROGRAM Student.Courses (INPUT. OUTPUT: Sched) s

CONGT
LINCLUDE ‘CONDEF.PAS/LISTS

TYPE Schedules = RECORD
Year : (Frs Bos Jrs Sri:
Name : PACKED ARRAYL1..301 0OF CHaRS
Parents @ PACKED ARRAYIL1.,.d401 OF CHAR?
Collede : (Arts: Endineering: Architecture.
figricultures Hotell s
END§

CONDEF.PAS

Max_.Class = 300%
N_.Profs = 1403
Frosh = 30003

The %INCLUDE directive instructs the compiler to insert the contents of the
file CONDEF.PAS after the reserved word CONST in the main program. The
main program Student__Courses is compiled as though it were written as
follows:

PROGRAM Student.Courses (INPUT: OQUTPUT: Sched);

CONST
Max.Class = 3003
NM_Profs = 1403
Frosh = 30003

TYPE
Schedules = RECORD
Year: (Fr: Sos Jrs Sr)s
Name: PACKED ARRAYL1..301 0OF CHARS
Parents : PACKED ARRAYL1..401 0OF CHAR:
Collede ¢ {(Arts: Endinesring: Architecture:
fAgriculture s Hotell:
END§

Introduction 1-11

You can use the ZINCLUDE directive in another included file; however,
recursive %INCLUDE directives are not allowed. If, for example, the file
OUT.PAS contains a %INCLUDE directive for the file IN.PAS, then IN.PAS
cannot contain the %ZINCLUDE directive for OUT.PAS.

A file included at the outermost level of a program is said to be included at the
first level. A file included by a first-level file is said to be included at the
second level, and so on. In general, a program may not include any files
beyond the fifth level. Nesting levels may be further restricted by the number
of open files that you as a user of your system are allowed to have open at one
time. Figure 1-2 illustrates the legal levels of included files.

PROGRAM P
%INCLUDE "A.PAS’ (* level 1 %)

A.PAS
{ TYPE definitions }
%INCLUDE 'B.PAS’ (* level 2 %)

B.PAS
{ VAR declarations }

%INCLUDE "C.PAS’ (* level 2 *)

C.PAS
{ CONST definitions |
%INCLUDE 'D.PAS” (* level 3 *)

D.PAS
{ VAR declarations }
%INCLUDE "E.PAS’ (* level 4 *)

E.PAS
{ FUNCTION declaration |
%INCLUDE 'F.PAS” (* level 5 *)

F.PAS
(* May not have any
included files *)

ZK-285-81

Figure 1-2: %INCLUDE File Levels

1-12 Introduction

Chapter 2
Data Types

VAX-11 PASCAL has four categories of data types: ordinal, real, structured,
and pointer. Ordinal and real types, which are often referred to collectively as
the scalar types, are the fundamental types that serve as building blocks for
the structured types. The pointer type allows you to refer to dynamically
allocated variables.

VAX-11 PASCAL supplies predefined ordinal types for integer, character,
and Boolean data. Two predefined types denote integer values. The type
INTEGER represents signed integer values; the type UNSIGNED represents
nonnegative values of the VAX-specific logical unsigned type (refer to the
VAX Architecture Handbook for a full description of this type). The type
CHAR signifies individual alphabetic, numeric, and special characters. The
type BOOLEAN consists of the values FALSE and TRUE.

In addition, PASCAL allows you to define your own ordinal types in one of
two ways:

¢ By enumerating each value of the type (called an enumerated type)
¢ By defining the type as a subrange of another ordinal type (called a sub-
range type)

Three predefined real types provide explicit single-, double-, and quadruple-
precision real numbers. :

VAX-11 PASCAL has five structured types: RECORD, ARRAY, VARYING
OF CHAR, SET, and FILE. Structured types allow you to process groups of
ordinal, real, structured, and pointer data items. For example, you could have
a varying-length string of characters, a file of records, or an array of pointers.

The pointer type consists of the storage addresses of dynamic variables and
the constant identifier NIL.

This chapter is organized as follows:

¢ Section 2.1 discusses the ordinal types—INTEGER, UNSIGNED, CHAR,
BOOLEAN, enumerated, and subrange.

® Section 2.2 discusses the real types—REAL, SINGLE, DOUBLE, and
QUADRUPLE.

® Section 2.3 discusses the structured types—RECORD, ARRAY, VARYING
OF CHAR, SET, and FILE.

e Section 2.4 discusses the pointer type.

e Section 2.5 presents the rules of type compatibility, which determine the
operations and assignments you can perform with data items of different

types.

2.1 Ordinal Types

2-2

The values in an ordinal type have a one-to-one correspondence with the set of
positive integers. These values are ordered so that each has a unique ordinal
value that indicates its position in a list of all the values of the type. The
ordinal types are discussed individually in Sections 2.1.1 through 2.1.6.

Three predeclared functions operate only on expressions of an ordinal type;
they return information about the type’s ordered sequence of values. The
PRED function finds the predecessor of any value of an ordinal type (except
the smallest). Similarly, the SUCC function finds the successor of any value
of an ordinal type (except the largest).. The ORD function finds the ordinal
value of any value of an ordinal type and returns it as an integer. Note that
the ordinal value of an integer is the integer itself. Chapter 7 provides further
information on these functions.

2.1.1 INTEGER Type

The INTEGER data type denotes positive and negative integer values ranging
from -2%x*31+1 through 2#+31-1. This range contains numbers from
-2,147,483,647 through 2,147,483,647. The largest possible value of the INTE-
GER type is known by the predefined constant identifier MAXINT.

You indicate a decimal integer by using decimal digits. No commas or deci-
mal points are allowed. The following are valid decimal integers in PASCAL:
17
8}
89324
VAX-11 PASCAL also allows you to specify integers in binary, octal, and
hexadecimal notations. You can use integers written in these notations any-
where that decimal integers are permitted (except as labels; see Section 4.1).
To specify an integer in binary, octal, or hexadecimal notation, place a per-
cent sign (%) and a letter in front of a number enclosed in apostrophes. The
appropriate letters, which may be either upper- or lowercase, are B for binary
notation, O for octal notation, and X for hexadecimal notation. Inside the
apostrophes, you can include spaces and tabs to make the notation easy to
read. Note that regardless of which notation you use, the integer value may
not be greater than MAXINT nor less than -MAXINT. For example:
YEI1000 00117
%o‘7712°
%x ‘DEC’

Data Types

You can use negative integers in binary, octal, decimal, and hexadecimal
notations. However, a negative integer such as -27 is not a constant, but is
actually an expression consisting of the negation operator (-) and the integer
value 27. The use of negative integers in complex expressions may not produce
the results you expect; see Section 3.2.1 for more explanation. The input
operations described in Chapter 8 allow you to supply a leading plus or minus
sign with integer values; output operations, also described in Chapter 8, auto-
matically supply leading minus signs with negative integer values.

2.1.2 UNSIGNED Type

The UNSIGNED data type denotes nonnegative integer values from 0
through 2+%32-1. The largest possible value of the UNSIGNED data type is
4,294,967,295, which is more than twice as large as the value of MAXINT.
UNSIGNED is a machine-dependent type intended for use in systems pro-
gramming, not for every application involving nonnegative integers.

When a VAX-11 PASCAL program contains an integer constant greater than
MAXINT or less than -MAXINT, the constant is treated as being of type
UNSIGNED. Unsigned integers can be written in decimal, binary, octal, and
hexadecimal notations (see Section 2.1.1 for notation rules). Integer constants
not greater than MAXINT and not less than -MAXINT are always treated as
being of type INTEGER.

2.1.3 CHAR Type

The CHAR data type comprises single character values from the ASCII char-
acter set, as listed in Appendix A. To specify a character constant, enclose a
printable ASCII character in apostrophes. The apostrophe character itself
must be typed twice within apostrophes. Each of the following is a valid
‘character constant:

n

0

s 7
3

LN A

LA

You can write character strings such as ‘ HELLO * and ’ **** ‘ but you must
represent them as packed arrays of characters (see Section 2.3.2.2) or varying-
length character strings (see Section 2.3.3).

When you use the ORD function on an expression of type CHAR, the result is
the ordinal value of the character in the ASCII character set. For example, if
the variable Q__Char has the value ‘Q‘, then the expression

ORD (Q_Char)

returns the integer 81, which is the ordinal value of uppercase Q in the ASCII
character set.

Data Types 2-3

2-4

The order of the characters in the ASCII character set may not be what you
expect if you are not familiar with the set. Although the numeric characters
are in numeric order and the alphabetic characters are in alphabetic order, all
uppercase characters have lower ordinal values than all lowercase characters.
For example:

ORD (“0‘) is less than ORD (’97) and

ORD (A7) is less than ORD (727) but
ORD ('Z7) is less than ORD (‘a’)

You can specify a nonprinting character such as a control character by writing
an empty string, ’ /, followed immediately by the ordinal value of the charac-
ter in the ASCII character set, enclosed in parentheses. For example:

C7)

This constant represents the control character that corresponds to the bell on
your terminal.

2.1.4 BOOLEAN Type

The BOOLEAN data type consists of two constant values denoted by the
predeclared identifiers FALSE and TRUE. These values are ordered so that
FALSE is less than TRUE. Thus, the ORD function applied to the Boolean
value FALSE returns the integer 0; ORD (TRUE) returns the integer 1.

Boolean values are the result of testing relationships for truth or validity.

2.1.5 Enumerated Type

An enumerated type is an ordered set of constant values denoted by identi-

fiers. The enumerated type syntax requires that all constant identifiers of the

type be listed in order and enclosed in parentheses.

Syntax
({identifiery,...)

identifier
A constant value of the type.

The values of an enumerated type follow a left-to-right order such that any
identifier in the list has an ordinal value greater than the ordinal values of all
identifiers to its left and less than the ordinal values of all identifiers to its
right. Thus, given:

(Sprindsy Summers Falls Winter)

Spring is less than Fall because Spring precedes Fall in the list of constant
values.

The definition of an enumerated type associates an ordinal value with each
identifier. The ordinal value of the first identifier is 0; the ordinal value of the
second identifier is 1, and so forth. You can apply the ORD function to
expressions of enumerated types. Using the example above, the expression
ORD (Summer) is legal. Its result is 1 because Summer is the second value
listed.

Data Types

An identifier in an emumerated type cannot be defined for any other purpose.
For example, the following enumerated type:

(Falls Winter:s SpPring?}

cannot be defined in the same block as the previous type because the identi-
fiers Spring, Fall, and Winter would not be unique. Since the result of ORD
(Fall) could be either 2 or 0, it is in fact undefined.

A maximum of 65,535 identifiers can be listed in an enumerated type.

Some examples of enumerated types are:

(Milk, Water: Cola, Beer)
(Swim,: Runs 5Ki)
(Oatmeal » Sudars Peanut_Butter: Choc.Chir)}

2.1.6 Subrange Type

A subrange type specifies a limited portion of another ordinal type (called the
base type) for use as a distinct type. The subrange syntax indicates the lower
and upper limits of the type.

Syntax

lower-bound..upper-bound

lower-bound
A constant expression that establishes the lower limit of the subrange.

upper-bound
A constant expression that establishes the upper limit of the subrange.

The subrange type is defined only for the values between and including the
lower and upper bounds. The value of the upper bound must be greater than
or equal to the value of the lower bound. The subrange symbol (..) separates
the bounds of the subrange.

The base type can be any enumerated or predefined ordinal type. The values
in the subrange type are in the same order as they are in the base type. For
example, the result of the ORD function applied to a value of a subrange type
is the ordinal value that is associated with the relative position of the value in
the base type, not in the subrange type.

You can use a subrange type anywhere in a program that its base type is legal.
A value of a subrange type is converted to a value of its base type before it is
used in an operation. All rules that govern the operations performed on an
ordinal type pertain to subranges of the type.

The use of subrange types can make a program clearer. For example, you can
limit the legal values for the days of the year by defining the subrange type
1..366.

If you enable subrange checking at compile time, the system generates a run-
time error for the assignment of an out-of-range value to a subrange variable.
In the above example, such an error occurs when an integer value less than 1
or greater than 366 is assigned to a variable of the subrange type. If you do not
enable subrange checking, the compiler does not detect invalid assignments to

Data Types 2-5

subrange variables. (See Section 10.5 and the VAX-11 PASCAL User’s Guide
for more information about subrange checking.)

The following are examples of subrange types and some possible uses for

them: »

MR- (# sindle-didit numbers %)

AR I (% the first half of the alrhabet *)
1+.31 (#* the davs of a month *)

Jan e e Jun

Mav..Dec (# diven an enumerated tvpe

listing the months in order %)

2.2 Real Types

VAX-11 PASCAL’s predefined real data types allow you to express a wide
range of real-number values with different degrees of precision. The identifiers
REAL, SINGLE, DOUBLE, and QUADRUPLE denote the real types. REAL
and SINGLE are synonymous; both denote single-precision real values. The
type DOUBLE denotes double-precision real values. The type QUADRUPLE
denotes quadruple-precision real values. In this manual, the term “real type”
refers to the REAL, SINGLE, DOUBLE, and QUADRUPLE types collec-
tively; the term “REAL type” refers to both the REAL and SINGLE types.

DOUBLE exists in two formats, G__floating and D__floating, which allow you
to choose whether double-precision values will express a very wide range (G_—
floating) or a more limited range with somewhat greater precision (D__float-
ing). You should not use both formats of DOUBLE in the same compilation
unit; Section 10.6 describes how you can specify the double-precision format
for a compilation unit by using an attribute.

Table 2-1 compares the range of values and the degree of precision for the real
types.

Table 2-1: Range and Precision of Real Types

D_FLOATING G_FLOATING

SINGLE DOUBLE DOUBLE QUADRUPLE
Smallest -0.29E-38 -0.29D-38 -0.56D-308 -0.84Q-4932
negative value
Largest -1.70E38 -1.70D38 -0.90D308 -0.59Q4932
negative value
Smallest 0.29E-38 0.29D-38 0.56D-308 0.84Q-4932
positive value
Largest 1.70E38 1.70D38 0.90D308 0.59Q4932
positive value
Precision . 1 part in 1 part in 1 part in 1 part in
2%%23 = 2#%55 = 2452 = 2+%112 =
7 decimal 16 decimal 15 decimal 33 decimal
digits digits digits digits

2-6 Data Types

Real numbers can be written in either decimal or exponential notation. To
write real numbers in decimal notation, you use the set of decimal digits and a
decimal point. At least one digit must appear on either side of the decimal
point. That is, a zero must always precede the decimal point of a real number
between 1 and 0, and a zero must follow the decimal point of a whole number.
The following are valid real numbers in decimal notation:
2.4
893,2497
8.0
Q,0
Some numbers are too large or too small to be written conveniently in the
above format; therefore, PASCAL provides exponential notation as a second
way of writing real numbers. The parts of a real number written in exponen-
tial notation are: a real number or an integer, an upper- or lowercase letter to
denote the type of precision, and an integer exponent with its minus sign or
optional plus sign. For example:
2,3e2

10.,0E-1
9,14158E0

The letter E after the value means that the value is to be multiplied by a
power of 10 and indicates a single-precision real number. The integer follow-
ing the E tells which power of 10 is to be used and can be positive or negative.
Thus, the real number 237.0 can be represented in any of the following ways:

237e0 2,372 0.000237E+6 2370E-1 0,0000000237E10

To indicate a double-precision real number, you must use exponential nota-
tion. Replace the letter E with the letter D (upper- or lowercase) to indicate
the exponent. The following examples illustrate double-precision format:

oDao

4,371528665D-3

B1Zd2
Similarly, the letter Q (upper- or lowercase) in exponential notation desig-
nates a quadruple-precision value. For example:
0,1143503

33622
0,1182%9-4

Exponential notation is also called floating-point format because the position
of the decimal point ““floats” depending on the exponent following the letter.

You can use negative real numbers in decimal and exponential notations.
However, a negative real number such as -4.5e+3 is not a constant, but is
actually an expression consisting of the negation operator (-) and the real
number 4.5e+3. The use of negative integers in complex expressions may not
produce the results you expect; see Section 3.2.1 for more explanation. The
input operations described in Chapter 8 allow you to supply a leading plus or
minus sign with integer values; output operations, also described in Chapter
8, automatically supply leading minus signs with negative integer values.

Data Types 2-7

2.3 Structured Types

2-8

In PASCAL, a structured type differs from an ordinal or a real type because it
can contain more than one component at a time. Each component can be of
an ordinal, real, structured, or pointer type. You can either access individual
components of the type or process the entire structure.

The structured types are characterized by the type(s) of their components and
by the manner in which the components are organized. VAX-11 PASCAL has
five structured types, as described in the following sections: RECORD, AR-
RAY, VARYING OF CHAR, SET, and FILE.

For each structured type except FILE, you express a constant value of the
type by forming a constructor. An array or record constructor must contain
one constant value of the appropriate type for each component of the struc-
ture. You use constructors in the following ways in a PASCAL program:

e In a CONST section to define symbolic constants

¢ In a VAR section to initialize variables of structured types

¢ In an executable section to assign values to variables of structured types
¢ In an executable section to pass parameters to PASCAL routines

To save storage space, you can pack an object of any structured type except
VARYING OF CHAR. Packed structures are generally stored in as few bits as
possible. To create a packed structured type, specify the reserved word
PACKED in front of the type definition.

2.3.1 RECORD Type

A record is a group of components called fields, which may be of different
types and which may contain one or more data items. The record type defini-
tion specifies the name and type of each field.

Syntax

[PACKED]RECORD
field-list
END

where the syntax of a field-list is:

l]:{ {{field-identifier},... : [attribute-list] type};... [;variant-clause] } [:]
variant-clause [; | '
field-identifier
The name of a field. Note that you can specify no field identifiers if you
wish, thus making the field list empty.
attribute-list

One or more identifiers that provide additional information about the
field(s) (see Chapter 10).

Data Types

type
The type of the corresponding field(s). A field can be of any type.

variant-clause
The variant part of the record (see Section 2.3.1.1).

To refer to a field within a record variable, you specify the name of the
variable and the name of the field, separating them with a period. For in-
stance, the field identifiers Team.Wins, Team.Losses, and Team.Percent
could refer to three fields of a record variable named Team. You can use a
field anywhere in a program that a variable of the field type is allowed.

The names of the fields must be unique within a record type but can be
repeated in different record types. For instance, you can define the field
Percent only once within a particular record type. Other record types, how-
ever, could also have fields called Percent. Because you must use the name of
the record variable to refer to the field, no ambiguity results if fields in
different record types have the same name.

A record type can include fields that are themselves records. In such a case,
the name of the field includes the name of every record within which it is
nested. For example:

RECORD

Part 3 INTEGER:
Received : RECORD

Month : (Jans Febs Mar: Arrs Mav e Jun:
Jul s Auds Serps Oct, Nouvs Decds
Day & 1.,.313%
Year @ INTEGERS
END 3§
Inventory : INTEGER;:

END s

If you declare a variable Order of this type, you refer to its fields
as Order.Part, Order.Received.Month, Order.Received.Day,
Order.Received.Year, and Order.Inventory.

In a record constructor, constant values of the appropriate types are listed
within parentheses in the same order as the corresponding fields appear in the
record type definition. Constructors for nested records are enclosed in nested
parentheses. A record constructor is usually preceded by the record type iden-
tifier. The type identifier is optional in the following cases:

e When the constructor is used to initialize a record variable
e When the record constructor is nested inside another constructor

If the record type in the previous example were named Order__Rec, you could
write the following constructor for it:

Order_.Rec (213 (Feh, 1, 1858}, 7407)
The constructor specifies a constant value of the correct type for each field in
the record and retains the same order as the field list. Note that because the

record type Received is nested inside type Order__Rec, you need not specify
the type identifier Received.

Data Types 2-9

2-10

Two attributes, KEY and POS, can be applied only to record fields. The KEY

attribute allows you to designate one or more fields as the key field(s) of an
indexed file. The POS attribute allows you to position record fields relative to
the beginning of the record. See Chapter 10 and the VAX-11 PASCAL User’s
Guide for more information on these attributes.

2.3.1.1 Record Type Examples

1. RECORD
Year 3 INTEGERS
Gross @ REAL:
Net : REALS
Deductions 3§ INTEGER?®
ITtemized 2 BOOLEAN:
END 3

This example shows a record type with six fields. A possible constructor
for this type is: ‘

(1979, 10000,0, B8000,0, 1300, FALSE)
2. RECORD
Person i Mames

Address : RECORD
Number 2 INTEGERS

Streets Town : Name;:
Zie ¢ 0,.99999;3
END 3

Ade = 0,,1504%

END 3

This example shows one record nested within another. To write a con-
structor for the record type shown, you must enclose a constructor for the
record Address within the constructor for the entire record. For example:

(‘Blaise Pascal fy (1B23+ ‘Pensees Street
‘Clermont Alaska Ty B1GB2) s 39)
2.3.1.2 Records with Variants — A record can include one or more fields or

groups of fields called variants, which can contain different types or amounts
of data at different times during program execution. Thus, two variables of
the same record type can represent different data. To specify a variant, you
must include a variant clause as the last field in a record type definition.

Syntax
CASE [tag-identifier : [attribute-list] tag-type-identifier OF
{case-label-list : (field-list)};...

The tag field consists of the elements between the reserved words CASE and
OF. The tag field is common to all variants in the record type. Its data type

~corresponds to the case label values and determines the current variant. As

the syntax description illustrates, you can specify the tag field in two ways:

Data Types

1. tag-identifier : [attribute-list] tag-type-identifier

The tag identifier and tag type define the name and type of the tag field.
The tag type identifier must denote an ordinal type. You refer to the tag
field in the same way that you refer to any other field in the record—with
the record.field-identifier syntax.

2. [attribute-list] tag-type-identifier
In the second form, there is no tag identifier you can evaluate to determine

the current variant; therefore, you must keep track of the current variant
yourself. The tag type identifier must denote an ordinal type.

tag-identifier
The name of the tag field.

attribute-list .
One or more identifiers that provide additional information about the
variant (see Chapter 10).

tag-type-identifier
The type identifier for the tag field.

case-label-list

One or more constant values of the tag field type. There must be one
label for each possible value in the tag type.

field-list
The names, types, and attributes of one or more fields. At the end of a
field list, you can specify another variant clause. (See Section 2.3.1 for
the syntax of a field list; note that the field list can be empty.)

You can refer only to the fields in the current variant. You may not change the
variant while a reference exists to any field in the current variant. (The
conditions that establish a variable reference are listed in Section 4.3.)

When you specify the tag field using a tag identifier, the current variant is the
one whose label is equal to the current value of the tag identifier. Until you
assign a new value to the tag identifier, you cannot refer to a field having a
different case label. The following example shows the use of the tag identifier
form:

RECORD

Part = 1..89993%
CASE Onorder 3 BOOLEAN OF

TRUE : (Order_Quantity @ INTEGERS3
Frice: REAL)S
FALBE @ (Rec.BQuantity : INTEGERS

Cost @ REAL) S
END 3

In this example, the last two fields in the record vary depending on whether
the part is on order. Records for which the value of the tag identifier Onorder
is TRUE will contain information about the current order; those for which it is
FALSE, about the previous shipment.

Data Types 2-11

2-12

The second way of specifying the tag field uses a tag type without a tag
identifier. A reference to orie field identifier causes the corresponding variant
to become the current one; all other variants become undefined immediately.
The following example shows the specification of a tag field without a tag
identifier:
RECORD
Patient : MName}i
Birthdate @ Dates
Age : INTEGERS
CASE Sex OF

Male : (Beard : BOOLEAN) S

Female & {(Births : 1.,,30)3
END 3

In this example, assume that the tag field Sex is of an enumerated type with
constant values Male and Female. The last field in this record is either the
Boolean field Beard, if Male is the variant most recently referred to, or the
integer subrange Births, if Female is the variant most recently referred to.

You can define a variant only for the last fields in the record. Variant fields
can, however, be nested, as in the following example:
RECORD
Patient : Names
Birthdate = Dates
Ade : INTEGER:
CASE Parsex : Sex of
Male & ()3
Female & (CASE Births : BOOLEAN OF
FALSE : ()3
TRUE : (Nofkids : INTEGER)):
END

This record includes a variant field for each woman based on whether she has
children. A second variant, which contains the number of children, is defined
for women who have children.

A constructor for a record type that contains variants must include values for
the tag field and the field identifiers in the corresponding variant. You must
specify a value for the tag field, even if it has no tag identifier, to ensure that
the correct variant is initialized. For example, consider the following record
type named Call:
RECORD
Caller : Name}
Time @ REAL
Subd 1 (Works Plav: Sales:s Chat}i
CASE BOOLEAN OF

TRUE ¢ (Hour ¢ INTEGER):

FALBE ¢ ()3
END 3

A constructor for this record type might look like this:
Call (‘Washindton’s, 10,30, Chats TRUE, 12}
The constructor initializes the tag field with the Boolean value TRUE and the

field identifier Hour with the integer value 12. Note that the tag field is
initialized even though it does not have an identifier.

Data Types

To initialize this record type with the value FALSE for the tag field, you could
write the following record constructor:

(‘Washington’s 10,30, Chat, FALSE)
This constructor specifies the same values as the previous one for all fields

except the tag field. The tag field value is now last in the list because the
FALSE case of the variant specifies no additional fields.

2.3.2 ARRAY Type

An array is a group of components of the same type that share a common
identifier. The array type definition specifies the type of the components and
the type of one or more indexes by which the components are accessed.

Syntax

[PACKED]ARRAY({[attribute-list] index-type,...] OF
[attribute-list] component-type

attribute-list

One or more identifiers that provide additional information about the
index type or the component type (see Chapter 10).

index-type
The type of the index, which can be any ordinal type.

component-type
The type of the array components, which can be any type.

The indexes of an array must be of an ordinal type. You usually cannot
specify the type INTEGER as the index type because such an array would
exceed the available memory space. To use integer values as indexes, you
must specify an integer subrange. (An exception to this rule is the conformant
array parameter; see Section 6.3.5.)

To refer to an array component, specify the name of an array variable, fol-
lowed by an index value enclosed in brackets. For example, if you declare a
variable Letters of type ARRAY([1..26] OF CHAR, you refer to its components
as Letters[1], Letters(2], Letters(3], and so on, through Lettersi26].

You can use an array component anywhere in a program that a variable of the
component type is allowed. The only operation defined for the array as a
whole, however, is the assignment (:=) operation (see Section 5.2).

In an array constructor, a constant value of the appropriate type for every
component is listed within parentheses. To specify the same value for consec-
utive components, you can use a repetition factor of the form:

n OF value

Data Types 2-13

2-14

The integer n denotes the number of consecutive components that
are to receive the same value; n must be a constant expression of type
INTEGER. ! The value can be either a signed constant or another constructor
of the component type.

As for records, an array constructor is usually preceded by the array type
identifier. The type identifier is optional in the following cases:

e When the constructor is used to initialize an array variable
e When the array constructor is nested inside another constructor

For example, you could write the following constructor for an ARRAY [1..8]
OF REAL whose type identifier is Result:

Result (1.318. 4,.2028., & OF 3.88, 7.0, 3 0OF O,5445)0

This constructor includes the repetition factor 2 OF 3.68, which specifies the
value 3.68 for the third and fourth components, and the repetition factor 3 OF
9.6445, which specifies the value 9.6445 for the last three components.

2.3.2.1 Multidimensional Arrays — An array whose components are them-
selves arrays is multidimensional because it has more than one index. An
array can have any number of dimensions, and each dimension can have a
different index type. For example, the following syntax illustrates a two-
dimensional array type:

ARRAYLO, .41 OF ARRAYL'A’..'D’]1 OF INTEGER

You can abbreviate the syntax by specifying all the index types in one pair of
brackets. For example:

ARRAYLO. .4y ‘A, ’'D’1 OF INTEGER

To refer to a component of a two-dimensional array, specify the name of an
array variable followed by two bracketed index values, written in the order in
which their index types were declared. The first index indicates the rows of
the array; the second index indicates the columns. For example, if you declare
a variable Two__D of the array type shown above, you could refer to the
components as Two_DI0, A ‘], Two__DI0, ‘B ‘], and so on. You could also
use the alternative form Two__D[0][‘A ’]. Figure 2-1 represents the array
variable Two__D.

1. In a constructor, the constant n cannot be a constant expression beginning with a paren-
thesis if the value being repeated is of type RECORD or ARRAY.

Data Types

ZK-097-81

Figure 2-1: Two__Dimensional Array Two__D

The first component in the first row is Two__DI[0, ‘A ‘1. The second compo-
nent in this row is Two__DI0, ‘B ‘1. The first component in the second row is
Two__DI1,“A]. The last component in the last row is Two__D[4, ‘D “]. In
general, element j of row i is Two__D[,]jl.

If you do not specify a value for the rightmost index of a multidimensional
array, you are referring to a component of an array type. For example,
Two__DI0] refers to the entire first row of the array Two__D. This row is itself
an array with four integer components.

You can construct arrays of three or more dimensions in a similar fashion. For
example, suppose you create an enumerated type Chessmen with the values
(QR,QN,QB,Q,K,KB,KN,KR,P,E). You could then declare a variable
Chess3D of type ARRAYI[1..3, 1..8, QR..KR] OF Chessmen. This array speci-
fies a three-dimensional chessboard whose indexes represent the levels, ranks,
and files of the chessboard. For example, the reference Chess3DI1] indicates
one level, or a single chessboard. The reference Chess3DI[1,1,QR] specifies the
first level, first square in the upper left corner (bottom level, first rank,
Queen’s Rook file). Figure 2-2 illustrates the three levels of this array.

Data Types 2-15

2-16

KN KR
) 1 QR QN QB QK KB KR CHESS3D[3,n,CHESSMEN]
8
QR|aQN @B @ K KB KN KR
5 1 CHESS3D[2,n,CHESSMEN]
8
QR|QN QB Q@ K KB KN KR
5 1 CHESS3D[1,n,CHESSMEN]
3
4
5
6
7
8

ZK-098-81
Figure 2-2: Three__Dimensional Array Chess3D

Just as a multidimensional array is really an array of arrays, so a constructor
for a multidimensional array is a constructor whose components are construc-
tors. You must include a constant value for each component of each array. For
example, the syntax ARRAY]I0..3, 1..5] OF REAL describes a two-dimensional
array of real numbers. A constructor for an array of this type must consist of
four constructors, each having five real values. One possible constructor is:

(1,011 514251.39144) 2 OF (5 OF 0,00,
(10,1, 2 0OF 11,0 2 OF 11.1))

If you imagine the first index of this array as representing rows and the second
index as representing columns, then the constructor above is filling the col-
umns of the array one row at a time. Figure 2-3 shows the assignment of the
above constructor to an array variable.

‘Data Types

3] 10.1 11.0 11.0 | 111 1.1

ZK-100-81
Figure 2-3: Values Assigned to a Two__Dimensional Array

You write a constructor for an array with three or more dimensions in a
similar way. For example, for the array type

ARRAYLO. .11 OF ARRAYLZ..41 OF ARRAYLL. .31 0OF INTEGER

you could write the constructor

(0123 (20,40,B80) (98:89:,1000))
({57 :89)y (25,5078 (100:200,3003733

For all but the innermost dimension, the constant values are actually written
in the form of constructors because the component type of these arrays is
another array. At the innermost dimension, the constant values are integers.
Note that you must nest the constructors in the order in which the corre-
sponding array types were defined.

2.3.2.2 Fixed-Length Character Strings — A fixed-length character string in
PASCAL is defined as a packed array of characters with a lower bound of 1.
The length of the string is established by the array’s upper bound. The follow-
ing example illustrates a fixed-length character-string type:

PACKED ARRAYIL1..201 OF CHAR:

A variable of this type must contain a string of exactly 920 characters. The
compiler will not add blanks to extend a shorter string, nor will it truncate a
longer string. If you specify a string of incorrect length, an error occurs.

Note that if the upper bound of the array exceeds 65,535, the array is not
considered to be a character string and cannot be treated as one in a program.

There are two ways to form a string constructor: ;
¢ Enclose in apostrophes a string of characters of the correct length

¢ Surround individual characters with apostrophes, separate them with com-
mas, and enclose the list of characters in parentheses

Data Types 2-17

2-18

With either method, you must provide one character constant for every com-
ponent of the packed array. If the string does not have enough characters, you
must add spaces to extend it. The following are valid constructors for a
packed array of 10 characters:

'JEFFERSON

CFd B F O F S E RIS 0 N)

Some members of the ASCII character set, including the bell, the backspace,
and the carriage return, are nonprinting characters. In VAX-11 PASCAL, you
can include nonprinting characters within a character string.

Syntax
printing-string “({valuel,...) [“printing-string " |

printing-string
A character-string constant enclosed in apostrophes.

value ,
An integer denoting the ordinal value of an ASCII character.

You must close the string of printing characters with an apostrophe before you
can indicate the nonprinting characters. After you have listed the ordinal
values for the nonprinting characters, you can reopen the string and continue
with printing characters. For example:

‘A bell ‘(7)Y din a null-terminated ASCII string’ (0}
The ordinal value of the bell character is 7, and the value of the null character

is 0. Note that the integers 7 and 0 are enclosed in parentheses within the
character string.

The only nonprinting characters that can be inserted directly into a quoted
string are the space and the tab.

2.3.2.3 Array Type Examples

1. ARRAYL1..501 OF 0..200
This example shows a 50-component array of integers in the subrange
from 0 to 200. A constructor to give all the components the value zero
might be:
(50 DF o)

2. ARRAYILL..8y OR..KR] OF Chesswen

This example shows a two-dimensional array that represents a chess
board. Assume that the component type of the array, Chessmen, is the
enumerated type (QR, QN, QB, Q, K, KB, KN, KR, P, E). You could
write the following constructor to show how the chess pieces are arranged
on the board at the start of a game:

(UORUON QB QR KB sRNMERY . (8 OF P 4 OF (8 OF B, {8 0OF P,

(R :ON OB 0K KB KN KR

The pieces from Queen’s Rook (QR) to King’s Rook (KR) are lined up
along each end of the board, in the first and eighth rows of the array. The

Data Types

second and seventh rows of the array contain Pawns (P). The third
through sixth rows are empty (E).

3. PACKED ARRAYL1..101 OF CHARS
For this array type, you could write the following string constructors:

CLPsEBach’
‘endrossing’

cio OF ¢ g

2.3.3 VARYING OF CHAR Type

The VARYING OF CHAR data type denotes a string of character compo-
nents. The maximum length of the string is established by the VARYING OF
CHAR type definition. Unlike a fixed-length packed array of characters, a
VARYING string can have values of any length, from zero to the maximum
specified. ’

Syntax
VARYING[upper-bound] OF [attribute-list]] CHAR

upper-bodnd
An integer in the range from 1 through 65,535 that indicates the length of
the longest possible string.

attribute-list

One or more identifiers that provide additional information about the
VARYING string components (see Chapter 10).

When you declare a variable or component of type VARYING OF CHAR, the
compiler allocates enough storage space to hold a string of the maximum
length. The lengths of the character strings assigned to the variable or compo-
nent may vary from zero to the specified maximum. A VARYING string with
length zero is the empty string, * ‘.

Although VARYING OF CHAR is a distinct type, it possesses some of the
properties of both record and array types. A VARYING string is actually
stored as though it were a record with two fields, LENGTH and BODY. The
type syntax

VARYING[upper-bound] OF CHAR
may be thought of as the record type:

RECORD

LENGTH = L[WORDI O.,upper-bound}

BODY : PACKED ARRAY[L1:.urpper-boundl OF CHAR?
END 3

LENGTH and BODY are predeclared field identifiers in VAX-11 PASCAL.
The LENGTH field contains the length of the current character string; the
BODY field contains the string. If your program requires it, you can access the
values of LENGTH and BODY as you would access the values of record fields.
Note that BODY is a fixed-length array large enough to contain a character
string of the maximum length specified. (The WORD attribute is explained in
Section 10.17.)

Data Types 2-19

2-20

You can refer to the components of a VARYING string just as you refer to
individual array components: by using the name of a VARYING string varia-
ble followed by an index value enclosed in brackets. For example, to access
the fourteenth character of the variable Sentence, specify Sentence[l14]. You
may not specify an index value that is greater than the length of the current
string. Enabling bounds checking causes this rule to be checked at run time
(see Section 10.5 and the VAX-11 PASCAL User’s Guide). Bounds checking
is enabled by default.

The VARYING OF CHAR type does not have its own constructor syntax.
Instead, it uses the same constructor syntax as a fixed-length character string,
except that the length of the constructor can be shorter than the length
specified in the type definition. When you need to assign to or initialize a
variable of type VARYING OF CHAR, or when you need to pass a value to a
formal parameter of type VARYING OF CHAR, you must use an expression
that is assignment compatible with the variable or parameter (see Section
2.5).

Examples
[. VARYINGIZS1 OF CHAR
For this VARYING OF CHAR type, some possible values are:

7

ol
Ban

fdang fAmadeus Mozart

b

2. ARRAYL1..51 0OF UARYINGLZO1 0OF CHAR
A constructor for this array type would have five string values, as in the
following:

("Boston’

aom

i TR
Title
futhor & VAR
Catedory 3 (Fig

EMD s

v Monfiction: Dhildrendd

A constructor for this record type must have two string values and a
constant value of the enumerated type. For example:

{fGope with the Wind’ s "Mitchell: Fictioni

2.3.4 SET Type

In PASCAL, a set is a collection of data items of the same ordinal type (called
the base type). The set type definition specifies the values that can be ele-
ments of a variable of that type.

Syntax
[PACKED] SET OF [attribute-list] base-type

attribute-list

One or more identifiers that provide additional information about the
base type (see Chapter 10).

Data Types

base-type
The ordinal type identifier or type definition from which the set elements
are selected. Note that real numbers cannot be elements of a set type.

You define a set by listing all the values that can be its elements. A set whose
base type is INTEGER or UNSIGNED can have a maximum of 256 elements;
the ordinal value of each element must be between 0 and 255. Therefore,
integers outside the range of 0 through 255 cannot be set elements. For sets of
other ordinal base types, elements can include the full range of the type.

To form a set constructor, enclose within brackets one or more constant values
selected from the list of set elements. You can indicate consecutive values
that appear in the set definition by using the subrange (..) symbol. For exam-
ple, a constructor for a SET OF 35..115 could look like this:

[39, 67, 95 110..1153]

The set constructor contains nine values: 39, 67, 95, and all the integers
between 110 and 115 inclusive.

A set having no elements is called an empty set and is written [].

Examples
. SET OF CHaAR
Some possible constructors for this set type are:

Lids s TES: 174 07 U]
R R e T I T e

Note that the upper limit of the subrange is the maximum allowed for a
set of integers.

2.3.5 FILE Type

A file is a sequence of components of the same type. The number of compo-
nents is not fixed; a file can be of any length. The file type definition identifies
the component type.

Syntax
[PACKED] FILE OF [attribute-list] component-type

attribute-list
One or more identifiers that provide additional information about the file
components (see Chapter 10). '

component-type

The type of the file components. It can be any ordinal, real, pointer, or
structured type, except a file type or a structured type with a file compo-
nent.

Data Types 2-21

2-22

When you declare a file variable, the compiler automatically creates a file
buffer variable of the component type; this variable takes on the value of one
file component at a time. You can access only one file component, called the
current component, at a given time. The predeclared input and output proce-
dures described in Chapter 8 move the file position, thus changing the value of
the file buffer variable. To denote the file buffer variable, write the name of
the associated file variable and follow it with a circumflex (*). No operations
may be performed on the file while a reference to the file buffer variable
exists. (The conditions that establish a variable reference are listed in Section
4.3.)

For example, suppose you declare a file variable Math__Scores of type FILE
OF INTEGER. As input and output procedures change the file position, the
value of the file buffer variable Math__Scores” also changes. Figure 2-4 shows
the file positioned at the third component; the value of Math__Scores” is 70.

one file component
—

90 65 70 73 81 89

!

file position

70 File buffer Math__Scores”

ZK-101-81

Figure 2-4: File Buffer Contents

The arithmetic, relational, Boolean, and assignment operators cannot be used
with file variables or structures containing file components. You cannot form
constructors of file types.

Examples
1. FILE OF BOOLEAN

This example shows a file of Boolean values. If you declare a variable
Truthvals of this type, the file buffer variable is denoted by Truthvals”.

2. FILE OF PACKED ARRAY[1..,201 OF CHAR

The components of this file type are strings of 20 characters. You could
declare variables of this file type to contain lists of names, such as Ac-
cept__List, Reject__List, and Wait__List.

3. FILE OF RECORD

Trial : INTEGERS

Date : RECORD
Month : (JansFeb Mar:Apr May sJdun.

Jul sAudsSerslot +NoviDecg) s

Day = 1,,313
¥Year : INTEGER:
END 3

Data Types

Temps Pressure : INTEGERS
¥Yield, Purity : REAL:
END 3§

This example shows a file of records. If you declare a variable Results of
this type, you would access fields of the record components as
Results . Trial, Results”.Date.Month, and so on.

2.3.5.1 External and Internal Files — A file that has a name in a directory and
exists outside the context of a VAX-11 PASCAL program is known to
VAX-11 Record Management Services (RMS) as an external file. A file that
has no name and is not retained after the program finishes execution is known
as an internal file. The OPEN procedure (see Section 8.3.1) creates an associ-
ation between VAX-11 RMS and a file variable.

A file declared in the program heading is external by default. A file declared
in a nested block is internal by default. You can change the default by giving
an explicit name to an internal file. The file is then considered external and is
retained with the specified name after the program has ceased execution.

2.3.5.2 Text Files — PASCAL supplies a predefined file type called TEXT.
Variables of this type are called text files and have components of type
CHAR. A text file differs from a file of type FILE OF CHAR in that it is
divided into lines. Each line in a text file is a sequence of characters termi-
nated by an end-of-line marker. You can refer to the marker indirectly
through the predeclared procedures READLN and WRITELN (see Sections
8.7.4 and 8.7.5) and the predeclared function EOLN (see Section 8.7.1).

The predeclared file variables INPUT and OUTPUT are files of type TEXT.
They refer to the standard input and output files, normally a terminal (in
interactive mode) or the batch input and log file (in batch mode). These files
are the defaults for all the predeclared text file procedures described in
Chapter 8.

2.4 Pointer Types

Normally, variables exist as long as the program or routine in which they are
declared is executing. By default, variables declared at program or module
level are allocated in static storage; variables declared in nested blocks are
allocated automatically on the stack. Some applications, however, require
variables that have shorter or longer lifetimes within a program, or an un-
known number of variables of a certain type. PASCAL allows you to use
dynamic variables to fulfill these requirements.

Dynamic variables are allocated in an area called heap storage as they are
needed during program execution. The NEW and DISPOSE procedures, de-
scribed in Sections 7.5.2 and 7.5.3, allocate and deallocate dynamic variables.

Unlike other variables, dynamic variables do not have identifiers; you must
refer to them indirectly with pointers. The pointer type definition identifies
the type identifier of the dynamic variable.

Data Types 2-23

Syntax
- "[attribute-list] base-type-identifier
attribute-list

One or more identifiers that provide additional information about the
base type (see Chapter 10).

base-type-identifier

The type identifier of the dynamic variable to which the pointer type
refers. The base type can be any type.

A variable of a pointer type refers to a dynamic variable of the base type, and
is said to be bound to that type. To indicate a pointer variable, write its name.
To indicate the dynamic variable to which a pointer refers, write the name of
the pointer variable followed by a circumflex (*). For example, suppose that
M is a pointer variable bound to a record of type Myrec. Specify M" to denote
the record variable of type Myrec to which M refers.

Pointers assume values through initialization, assignment, the READ proce-
dure (see Section 8.4.2), and the NEW procedure. The value of a pointer can
be either the storage address of a dynamic variable or the predeclared identi-
fier NIL. NIL indicates that the pointer does not currently refer to a dynamic
variable.

A file referenced by a pointer is not closed until either execution of the pro-
gram terminates or the dynamic variable is deallocated with the DISPOSE
procedure. If you do not want the file to remain open throughout program
execution, you must use the CLOSE procedure (see Section 8.3.2) to close it.

Example

RECORD

Name : VARYINGL301 OF CHARS

Class @ (Standbvs Coachs First):
Non.Smoking : BOOLEANG

Flight_ _Number 3 INTEGERS
Destivation 3 VARYINGLSI OF CHARG:
Next_Passender : “"Reservationsi
END 3

Suppose you define the record type shown here and give it the type identifier
Reservation. The field Next_Passenger is defined as a pointer to the type
Reservation. You could declare a variable Ticket of type Reservation; then, by
manipulating the pointer variable Ticket.Next__Passenger, you could create a
linked list of records.

2.5 Type Compatibility

2-24

The VAX-11 PASCAL compiler enforces two forms of type compatibility:
e Structural compatibility
e Assignment compatibility

Structural compatibility, described in Section 2.5.1 determines the types of
data you can pass as VAR parameters and the types of pointer assignments
you can make. Assignment compatibility, presented in Section 2.5.2, deter-
mines the types of values you can assign to variables of each type.

Data Types

2.5.1 Structural Compatibility

Two types are structurally compatible only if they have the same allocation
size and the same type structure. VAX-11 PASCAL requires that the type of a
variable passed to a routine as an actual parameter be structurally compatible
with the type of the corresponding formal VAR parameter. VAX-11 PASCAL
also checks the structural compatibility of the base types when a pointer
expression is assigned to a pointer variable.

Two ordinal types are structurally compatible only if they have the same base
type and the same allocation size. The size may be established either by a size
attribute (see Section 10.17) or by default. (See the VAX-11 PASCAL User’s
Guide for the default allocation sizes of ordinal types.)

If two ordinal types are components of packed structured types, they are
structurally compatible only if the ranges of values they describe have identi-
cal upper and lower bounds.

In general, each real type is structurally compatible only with itself. However,
because REAL and SINGLE are synonymous, they are structurally compati-
ble with each other.

For two structured types to be structurally compatible, they must have the
same allocation size and both must be packed or both unpacked. The follow-
ing conditions also affect structural compatibility:

¢ If both types are record types, they must have the same number of fields,
and the types of corresponding fields must be structurally compatible and
identically positioned. If the record types have variant parts, the corre-
sponding variants must have identical case labels written in the same order.
The types of the fields within corresponding variants must be structurally
compatible.

o If both types are array types, the types of their components must be struc-
turally compatible. The index types must have identical base types and
identical upper and lower bounds.

e If both types are VARYING OF CHAR types, their maximum lengths must
be equal. The lengths of the current values of the VARYING strings do not
affect structural compatibility.

o If two components of packed structured types are set types, their base types
must have identical lower bounds and upper bounds.

¢ If both types are set types, file types, or pointer types, their base types must
be structurally compatible. Because of the possibility that a pointer type
can be defined in terms of itself, the VAX-11 PASCAL compiler begins the
test for the structural compatibility of two pointer types by assuming that
they are indeed compatible. Next, the compiler tests the two base types for
structural compatibility. If within the base type, the compiler encounters
the same pointer types it is testing, it still follows the original assumption
that the pointer types are compatible. If the base types prove to be structur-
ally compatible, then the two pointer types are in fact structurally compati-
ble.

Data Types 2-25

The effects of the alignment, POS, READONLY, UNSAFE, VOLATILE, and
WRITEONLY attributes on structural compatibility are discussed in Chapter
10.

2.5.2 Assignment Compatibility

Assignment compatibility rules apply to the types of values used to initialize
variables, the types of expressions assigned to variables using the assignment
operator (:=), and the types of actual parameters passed to formal value
parameters. Table 2-2 shows the contexts in which the type of an expression is
assignment compatible with the type of a variable or a formal parameter.

Table 2-2: Assignment Compatibility

Type of Variable Type of Assignment-
or Parameter Compatible Expression

INTEGER INTEGER

UNSIGNED , UNSIGNED, INTEGER

CHAR CHAR

Subrange , Base type of the subrange

REAL, SINGLE REAL, SIN GLE, UNSIGNED, INTEGER

DOUBLE DOUBLE, REAL, SINGLE, UNSIGNED, INTEGER

QUADRUPLE QUADRUPLE, DOUBLE, REAL, SINGLE, UNSIGNED,
INTEGER

PACKED ARRAY OF CHAR CHAR, PACKED ARRAY OF CHAR with the same length,
VARYING string whose current value is equal in length to
the packed array

VARYING OF CHAR CHAR, PACKED ARRAY OF CHAR, VARYING string
whose current value does not exceed the maximum length
of the variable or parameter

Pointer Pointer to a structurally compatible type

Two record types or two array types are assignment compatible if they are
structurally compatible. When you assign one record variable to another, or
one array variable to another, the VAX-11 PASCAL compiler does not check
for out-of-range assignments to record fields or array components; such as-
signments do not result in an error message, even if subrange checking is
enabled at compile time. (See Section 10.5 and the VAX-11 PASCAL User’s
Guide for more information.)

A set expression is assignment compatible with a set variable if the sets’ base
types are compatible. In addition, all elements of the set expression must be
included in the range of the variable’s base type.

Note that assignment operations are not allowed on objects of file types or
structured types that have file components.

The POS, READONLY, and UNSAFE attributes can change the rules of
assignment compatibility; see Chapter 10 for complete descriptions of these
changes.

2-26. Data Types

Chapter 3
Expressions

An expression denotes a value. An expression may simply represent the value
of a constant, a variable, or a function designator. Frequently, though, it
involves the values of one or more such data items, or operands, combined
with one or more operators.

VAX-11 PASCAL recognizes two forms of expressions: compile-time expres-
sions and run-time expressions. A compile-time expression consists entirely of
operands whose values can be determined when the program is compiled. The
simplest compile-time expression is a single constant or constant identifier.
Other compile-time expressions combine constants and constant identifiers
with operators and the predeclared functions listed below (see Chapter 7 for
complete descriptions):

. Arithmétic——ABS, ARCTAN, COS, EXP, LN, SIN, SQR, SQRT
¢ Ordinal —PRED, SUCC
¢ Boolean—ODD

e Transfer—CHR, DBLE, INT, ORD, QUAD, ROUND, SNGL, TRUNC,
UINT, UROUND, UTRUNC

e Unsigned—UAND, UNOT, UOR, UXOR
e Allocation size—SIZE, NEXT, BITSIZE, BITNEXT
e Miscellaneous—CARD, EXPO

A run-time expression includes at least one operand whose value cannot be
determined until the program is actually executed. A run-time expression
contains one or more variables or function designators, but can also include
constants, constant identifiers, and operators. You include a function designa-
tor within an expression by writing the function identifier and, optionally, a
list of parameters that supply input values. The value of the function result is
used in the expression. (See Chapter 6 for a complete discussion of writing
function designators.) .

When forming an expression, you are not limited to combining integers only
with integers, real numbers only with real numbers, and so forth. PASCAL
performs type conversions under certain circumstances, as described in Sec-
tion 3.1, so that you can form expressions with operands of different types.

3-1

The operators used to form PASCAL expressions are the arithmetic, rela-
tional, logical, string, and set operators, all of which are explained in Sections
3.2.1 through 3.2.5. Although in general you cannot change the type of a
variable once it has been declared, sometimes you might want to have this’
capability when forming expressions. Therefore, VAX-11 PASCAL allows you
to alter temporarily the concept of a variable’s type by using the type cast
operator, as explained in Section 3.2.6. The order in which the operands in an
expression are combined is determined by the precedence rules for the various
operators, as described in Section 3.3.

3.1 Type Conversions

3-2

Since PASCAL is a strongly typed language, you cannot normally treat a
value of one type as though it were of a different type, as you can in many
languages. For example, you cannot assign the character ‘1‘ to a variable of
type INTEGER, because ‘1’ is not an integer constant but a character con-
stant. However, there are times when it makes sense to combine values of two
different types because the values have something in common. For example,
suppose you wish to add a value of type REAL to a value of type INTEGER.
This operation is legal because the value of type INTEGER is converted to its
equivalent as a value of type REAL before the operation is performed. The
result of the operation is of type REAL.

In PASCAL, values are converted from one type to another when the conver-
sion is required for an operation, an assignment, or a formal/actual parameter
association. Prior to any type conversion, the arithmetic types are ranked
from lowest to highest: '

INTEGER
UNSIGNED
REAL,SINGLE
DOUBLE
QUADRUPLE

Similarly, the character types are also ranked from lowest to highest:

 CHAR
PACKED ARRAY OF CHAR
VARYING OF CHAR

When values of two different arithmetic or character types are combinéd in an
expression, the lower-ranked operand is converted to its equivalent in the
higher-ranked type. The result of an operation in which conversion occurs is
always of the higher-ranked type.

Conversions to values of type UNSIGNED are never checked for overflow.
When combined with other unsigned values, negative integer values are con-
verted to large unsigned values by the calculation of the modulus with respect
to 2+*32 (see Section 3.2.1 for a description of the MOD operation).

Expressions

A special case of conversion can occur when you attempt to assign an expres-
sion of type VARYING OF CHAR to a variable of type PACKED ARRAY OF
CHAR. If the VARYING string has exactly the same number of components
as the packed array, the VARYING string is converted to a packed array of
characters before the assignment is made. If you attempt to perform this
assignment with a VARYING string that has a different number of compo-
nents than the packed array, a run-time error occurs.

3.2 Operators

PASCAL provides several classes of operators. You can form complex com-
pile-time and run-time expressions by using operators to combine constants,
constant identifiers, variables, and function designators.

PASCAL supplies the following classes of operators:
¢ Arithmetic operators

¢ Relational operators

* Logical operators

e String operators

e Set operators

3.2.1 Arithmetic Operators

An arithmetiec operator usually provides a formula for calculating a value. To
perform an arithmetic operation, you combine numeric data items with one or
more of the operators listed in Table 3-1.

Table 3-1: Arithmetic Operators

Operator Example Result

+ A+B Sum of A and B

- A-B B subtracted from A

* A+B Product of A and B

*% Ax+B A raised to the power of B

/ A/B A divided by B

DIV ADIVB Result of A divided by B,

truncated toward zero

REM A REM B Remainder of A divided by B

MOD A MOD B Modulus of A with respect to B
Addition, subtraction, ’multiplication, and exponentiation (+, —, *, and **)

operate on integer, unsigned, and real operands and produce a result of the
same type as the values. If the expression contains operands of different types,
PASCAL’s conversion rules apply (see Section 3.1).

Expressions 3-3

3-4

When you use a negative integer as an exponent, the exponentiation operation
may yield unexpected results. The result of an integer raised to the power of a
negative integer is defined as shown in Table 3-2.

Table 3-2: Results of Negative Exponents

Base Exponent Result
0 Negative or 0 Error
1 Negative 1
-1 Negative and odd -1
-1 Negative and even 1
Any other Negative 0
integer

For example, the expression 1*#(-3) equals 1; (-1)**(-3) equals -1; (-1)**(-4)
equals 1; and 3**(-3) equals 0.

The division (/) operator can be used on integer, unsigned, and real operands,
but always produces a real result. Use of the division (/) operator can therefore
cause some loss of precision in expressions involving integer and unsigned
operands.

DIV, REM, and MOD operate only on integer and unsigned operands. DIV
divides one integer or unsigned operand by the other, producing an integer or
unsigned result. DIV truncates toward zero any fraction; it does not round
the result. For example, the expression 23 DIV 12 equals 1, and (-5) DIV 3
equals -1. '

REM returns the remainder after dividing the first operand by the second.
Thus, 5 REM 3 evaluates to 2. Similarly, 3 REM 3 evaluates to 0 and (-4)
REM 3 evaluates to -1.

MOD returns the modulus of the first operand with respect to the second. The
result of the operation A MOD B is defined only when B is a positive integer.
This result is always an integer between 0 and B-1. The modulus of A with
respect to B is computed as follows:

NOTE

The use of negative integer and real-number constants as operands
in MOD and exponentiation operations may not produce the results
you expect because the minus sign (-) is actually a negation opera-
tor. For example, the expression -2.0**2 is equivalent to the expres-
sion —(2.0*+2) and produces the result -4.0. Therefore, you should
enclose a negative constant in parentheses to make sure that it is
interpreted as you intend. The expression (-2.0)**2 produces the
result 4.0.

Table 3-3 lists the result types of arithmetic operations with operands of
various types.

Expressions

Table 3-3: Result Types of Arithmetic Operations

Operator Type of Operands Result Type

+ INTEGER, UNSIGNED, Same as the operands if both are of the same ‘

- REAL, DOUBLE, type; otherwise, the operand of the lower-

* QUADRUPLE ranked type is converted and the result is of

** the higher-ranked type

/ INTEGER, UNSIGNED, One of the real types — REAL if the
REAL, DOUBLE, operands are of type REAL (or SINGLE) or a
QUADRUPLE lower-ranked type; otherwise, the operand of

the lower-ranked type is converted and the
result is of the higher-ranked type

DIV INTEGER and INTEGER if both operands are of type
REM UNSIGNED only INTEGER; UNSIGNED if the operands are
MOD of mixed types or are both UNSIGNED); oth-

erwise, an error occurs

3.2.2 Relational Operators

A relational operator tests the relationship between two ordinal, real, string,
or set expressions and returns a Boolean result. If the relationship holds, the
result is TRUE; otherwise, the result is FALSE. Table 3-4 lists the relational
operators that you can apply to arithmetic operands. You can also apply
relational operators to string operands, as described in Table 3-6, and to set
operators, as described in Table 3-7.

Table 3-4: Relational Operators

Operator Example Result
= A=B TRUE if A is equal to B
<> A<>B TRUE if A is not equal to B
< A<B TRUE if A is less than B
<= A<«=B TRUE if A is less than or equal to B
> A>B TRUE if A is greater than B
>= A>=B TRUE if A is greater than or equal to B

Note that the two characters that constitute the not equal (<>), greater than
or equal (>=), and less than or equal (<=) operators must appear in the order
specified and cannot be separated by a space.

3.2.3 Logical Operators

A logical operator evaluates one or more Boolean expressions and returns a
Boolean value. The logical operators are listed in Table 3-5.

Expressions 3-5

Table 3-5: Logical Operators

Operator Example Result
AND A AND B TRUE if both A and B are TRUE
OR AORB TRUE if either A or B is TRUE (or if both are
TRUE)
NOT NOT A TRUE if A is FALSE (and FALSE if A is TRUE)

The AND and OR operators combine two conditions to form a compound
condition. The NOT operator reverses the value of a single condition so that if
A is TRUE, NOT A is FALSE, and vice versa.

3.2.4 String Operators

A string operator concatenates or compares character-string expressions; its
result is either a string or a Boolean value. The string operators are listed in
Table 3-6.

Table 3-6: String Operators

Operator Example Result

+ A+B String that is the concatenation of strings A
and B

= =B TRUE if strings A and B have equal ASCIL
values ‘

<> A<>B TRUE if strings A and B have unequal
ASCII values

< A<B TRUE if ASCII value of string A is less than
that of string B

<= A<=B TRUE if ASCII value of string A is less than
or equal to that of string B

> A>B TRUE if ASCII value of string A is greater
than that of string B

>= A>=B TRUE if ASCII value of string A is greater

than or equal to that of string B

With the plus sign (+), you can concatenate any combination of VARYING
character strings, packed arrays of characters, and single characters.

The result of a string comparison depends on the ordinal value (in the ASCII
character set) of the corresponding characters in the strings (see Appendix A).
For example:

‘motherhood’ > ‘cherry pie’
This relational expression is TRUE because lowercase ‘m ‘ comes after lower-

case ‘¢’ in the ASCII character set. If the first characters in the strings are
the same, PASCAL looks for differing characters, as in the following:

‘strindl’ < ‘stringd’

This expression is TRUE because the digit 1 precedes the digit 2 in the ASCII
character set.

3-6 Expressions

The relational operators are legal only for character strings of the same length.
The length of the current value of a VARYING string, not its maximum
length, determines whether the string can be compared to a particular packed
array of characters or another VARYING string. Enabling bounds checking
causes the lengths of all character strings to be checked at run time for illegal
operations (see Section 10.5 and the VAX-11 PASCAL User’s Guide). Bounds
checking is enabled by default.

3.2.5 Set Operators

A set operator forms the union, intersection, or difference of two sets, com-
pares two sets, or tests an ordinal value for inclusion in a set. Its result is
either a set or a Boolean value. Table 3-7 lists the set operators.

Table 3-7: Set Operators

Operator Example Result

+ A+B Set that is the union of sets A and B

* A*B Set that is the intersection of sets A
and B

- A-B Set of those elements of set A that are
not also in set B

= A=B TRUE if set A is equal to set B

<> A<>B TRUE if set A is not equal to set B

<= A<=B TRUE if set A is a subset of set B

>= A>=B TRUE if set B is a subset of set A

IN CINB TRUE if C is an element of set B

Most set operators require both operands to be set expressions. The IN opera-
tor, however, requires an ordinal expression as its first operand and a set
expression as its second operand. The ordinal expression must be of the same
type as the set’s base type. For example:

23 0IM T1..107

The result of this IN operation is TRUE because 2+3 evaluates to 6, which is a
member of the set [1..10].

The elements of a set constructor used in a set operation need not all be
constants of the set type. Set elements are also allowed to be components of
run-time expressions. For example, the set constructor

Cis J+35: E#1ls m:oml
is a legal component of a run-time expression. If at run time, however, the
value of m is greater than the value of q, the expression m..q would result in

no set elements. In that case, the set constructor shown here would denote
only three set elements.

Expressions 3-7

3-8

3.2.6 Type Cast Operator

Every variable is associated with one and only one type: the type with which
it was declared. Sometimes, however, you might be able to perform an opera-
tion more efficiently if you were able to relax temporarily PASCAL’s strict
type-checking rules.

VAX-11 PASCAL provides the type cast operator, which changes the context
in which you can use a variable or an expression of a certain data type. The
actual representation of the object being cast is never altered by the type cast
operator. The type is simply overridden for the duration of one operation.

Syntax

variable-identifier :: type-identifier
or

(expression) :: type-identifier

The type cast operator (::) separates the name of a variable or an expression
in parentheses from its target type, the type to which it is being cast. The
operator “alters” the type of the cast object at that point only. The compiler
assumes that a type cast will not affect the object at any other point in the
program. Therefore, if the type cast is likely to affect the object elsewhere, the
object should be declared with the VOLATILE attribute (see Section 10.21).

Once a variable or an expression has been cast, it has all the properties of its
target type during the execution of the operation in which the type cast
operator appears. A variable and its target type must have the same alloca-
tion size. Therefore, you may not cast a conformant variable parameter (see
Section 6.3.5), although you may cast a fixed-size component of a conformant
parameter.

When an expression in parentheses is cast, its value is either truncated on the
left or padded on the left with zeros (if necessary) so that the allocation size of
the expression’s value and its target type become the same. The type of a cast
expression cannot be VARYING OF CHAR (see Section 2.3.3) or a confor-
mant schema (see Section 6.3.5). In addition, the target type of a cast expres-
sion cannot be VARYING OF CHAR. See the VAX-11 PASCAL User’s Guide
for the representation details for all the types.

Example
TYPE
F_-Float = PACKED RECORD
Fracl &« 0,.127%
Exrpo 1 0..2585;
Sidn : BOOLEANS
Frac2 ¢ 0.,.B55353
END %
VAR
A 2 REAL S
ArtF_FloatsExpo 1= Az:F.Float.Exrag + 13

Expressions

In this example, the record type F__Float illustrates the layout of an F__
floating real number. The real variable A is cast as a record of this type,
allowing you to access the fields containing the mantissa, exponent, sign, and
fraction of A. Adding 1 to the field containing the exponent gives the same
result as multiplying A by 2.0.

3.3 Precedence of Operators

The operators in an expression establish the order in which the operands are
combined. Table 3-8 lists the order of precedence of the operators, from high-
est to lowest.

Table 3-8: Precedence of Operators

Operators Precedence

Highest
NOT

k%

=/, DIV, REM, MOD, AND
+, -, OR, Unary +, Unary -

Y
=, <>, &, <=, >, >=, IN Lowest

In PASCAL, operators of equal precedence (such as + and -) are combined
from left to right.

You must use parentheses for correct evaluation of an expression that com-
bines relational operators. Consider, for example, the following expression:

A<=X AND Bi=Y
Without parentheses, this expression would be interpreted as A<= (X AND

B) <=Y and would result in an error if X and B are not of type BOOLEAN.
The expression needs parentheses, as follows:

(AC=X) aAND (B<=Y

When the rewritten expression is evaluated, the Boolean values of the two
relational expressions are combined with the AND operator.

You can use parentheses in an expression to force a particular order for com-
bining the operands. For example:

Expression: Result:
8*5DIV2-4 16
8 * 5 DIV (2 - 4) -20

The first expression is evaluated according to the normal precedence rules.
First, 8 is multiplied by 5 and the result (40) is divided by 2. Then, 4 is
subtracted to get 16. The parentheses in the second expression, however, force
the subtraction of 4 from 2 (yielding -2) to be performed before the division of
40 by -2. The result is -20.

Expressions 3-9

3-10

Parentheses can also help to clarify an expression. For instance, you could
write the first example as follows:

(g + 5y DIV 2y - 4

The parentheses eliminate any confusion about how the expression is to be
evaluated.

The PASCAL compiler does not guarantee the order in which subexpressions,
or the components of a complex expression, will be evaluated. In fact, some
logical operations may be evaluated only partially if the result can be deter-
mined without complete evaluation. Usually the order of evaluation does not
prevent the correct result from being produced. However, you should not
overlook the importance of order in subexpression evaluation when you are
writing logical operations involving function designators that have side ef-
fects. (A side effect is an assignment to a nonlocal variable or to a VAR
parameter within a function block.)

For example, the following IF statement contains two function designators for
function F:

IF F{A) AND F{B)
THEN

+
3

i

Regardless of which function designator is evaluated first, if the result is
FALSE, the other function designator does not have to be evaluated: the
result of the IF test is likewise FALSE. Suppose that function F assigns the
value of its parameter to a nonlocal variable. Because you cannot know which
function designator was evaluated first, you cannot be sure of the value of the
nonlocal variable after the IF statement is performed. Therefore, the desired
results of your program should not depend on the order of subexpression
evaluation.

Expressions

Chapter 4
The Declaration Section

The first two parts of a PASCAL block are the heading and the declaration
section. The heading specifies the name of the program, module, procedure, or
function. The declaration section contains sections that define symbolic con-
stants and user-created types, and sections that declare labels, variables,
procedures, and functions. Each of these sections is introduced by an appro-
priate reserved word—LABEL, CONST, TYPE, VAR, PROCEDURE, or
FUNCTION. A block need not include all of these sections. In VAX-11
PASCAL, those sections that are present may appear in any order and may
appear more than once in a declaration section.

This chapter describes label declarations (Section 4.1), constant definitions
(Section 4.2), type definitions (Section 4.3), and variable declarations
(Section 4.4). Refer to Chapter 6 for information on procedure and function
declarations.

4.1 Label Declarations

A label makes a statement accessible by a GOTO statement (see Section 5.7).
A label is declared in a LABEL section; it is defined by its appearance preced-
ing an executable statement. The declaration and the definition of a label
must occur at the same level in the program.

Syntax

LABEL f{label},...;

label
A decimal integer between 0 and MAXINT. When declaring several
labels, you can specify them in any order.

A label can precede any statement in the program but can be accessed only by
a GOTO statement. You must use a colon (:) to separate the label from the
statement it precedes. Each label must precede exactly one statement within
the scope of the label’s declaration.
Example

LABEL 0. BBSGB, 778 43523

This LABEL section specifies four labels: 0, 6656, 778, and 4352.

4-1

4.2 Constant Definitions

A CONST section defines symbolic constants by associating constant identi-
fiers with compile-time expressions.

Syntax

CONST
{constant-identifier = constant-expression};...

constant-identifier ,
The identifier of the symbolic constant being defined.

constant-expression
Any legal compile-time expression. As explained in Chapter 3, the
VAX-11 PASCAL compiler must be able to evaluate all the components
of a compile-time expression when it compiles the program.

Once a constant identifier is associated with an expression, it retains the value
of that expression throughout program execution. You can change the value
only by changing the definition in the CONST section.

You cannot access the individual components or fields of a symbolic constant
that represents an array or record constructor.

The use of constant identifiers makes a program easier to read, understand,
and modify. If you need to change the value of a symbolic constant, simply
modify the CONST declaration instead of changing each occurrence of the
constant in the program. This capability also makes programs simpler to
maintain and easier to transport to other machines.

Example

CONST
Year = 188153
Month = “January’i
Initial = ‘p’3%

Almost_Pi = 22,0/7.03
Tinyd = 1.,7233D-103%
lLie = FALSEs

Untruth = Lies

This CONST section defines seven symbolic constants. Year and Tinyd repre-
sent integer and double-precision numeric constants. Month represents a
string constant, and Initial represents a character constant. The constant

value of Almost__Pi is the real-number result of the expression 22.0/7.0. Both
Lie and Untruth are equal to the Boolean value FALSE.

4.3 Type Definitions

4-2

A TYPE section introduces the name and set of values for a user-defined type.

Syntax
TYPE
{type-identifier = [attribute-list]typej;...
type-identifier
The identifier of the type being defined.

The Declaration Section

attribute-list .
One or more identifiers that provide additional information for use when
the type identifier appears in a declaration (see Chapter 10).

type
Any legal PASCAL type syntax.

PASCAL usually requires that a type identifier be defined before its subse-
quent use in the definitions of other types. In the only exception to this rule,
PASCAL allows you to use a base type identifier in a pointer type definition
before you define the base type. However, the base type must be defined
before the end of the TYPE section in which it is first mentioned. For
example:

TYPE
Ptr_to-Mouvie = "Mouvies
Name = PACKED ARRAYL1..201 0OF CHAR:
Mouvie = RECORD
Title: Director : Namesi
Year : INTEGER3
Stars : FILE 0OF Name?
Mext : Pir_.to.Mouvies
END 3

The type Ptr__to__Movie is defined as a pointer to the type Movie, which is
defined later in the same TYPE section.

Example
TYPE
Evtertainment = {(Dinner: Movie: Theater: Concert}i

Davs_of_MHWeek = (Suns Mon: Tues: MWed: Thurs: Fri: Sat)i
Hours_MWorked = ARRAYI[Mon..Fril OF INTEGERS
Salary = ARRAYL1..3010F REALS

Pay = Balarvi
Ptr_oto.Hits = “Hits3
Hits = RECORD
Title: Artist: Composer @ VARYINGLZ3CI OF CHARS

WeeKs_on.Chart : INTEGERS?
First. Version : BOOLEANGS
~ END3

This TYPE section defines seven types and their identifiers. Both Entertain-
ment and Days__of__Week are enumerated types. Hours__Worked is an array
type with five integer components. Salary and Pay are identical array types of
50 real numbers each. Ptr__to__Hits is defined as a pointer to the type Hits,
which is a record type having the five fields listed.

4.4 Variable Declarations

A VAR section declares variables and associates with each an identifier, a
type, and possibly an initial value.

Syntax

VAR
{{variable-identifier},... : [attribute-list] type [:= value]};...

The Declaration Section 4-3

4-4

variable-identifier
The identifier of the variable being declared.

attribute-list

One or more identifiers that provide additional information about the
variable (see Chapter 10).

type
Any legal PASCAL type syntax.

value
Any assignment-compatible compile-time expression.

You can combine several identifiers in the same variable declaration if the
variables are of the same type and are being initialized either with the same
value or not at all. The following rules apply to variable initializations:

¢ Only statically allocated variables can be initialized. Variables declared at
program or module level are statically allocated by default. To initialize a
variable declared at an inner level, you must give it the STATIC attribute
(see Section 10.3).

* You must initialize a variable with a compile-time expression of an assign-
ment-compatible type. Scalar variables require scalar constants; structured
variables require constant constructors.

* You cannot initialize file variables.

¢ The constant identifier NIL is the only value with which you can initialize a
pointer variable.

A reference to a variable consists of the variable’s use in one of the situations
in the following list:

e The variable or one of its components is passed as a VAR (or %REF or
%DESCR) parameter. The reference lasts throughout the call to the corre-
sponding routine. (See Chapter 6 for a discussion of VAR, %REF, and
%DESCR parameters.)

¢ The variable or one of its components is used on the left side of an assign-
ment statement. The reference lasts throughout the execution of the state-
ment. (See Section 5.2 for a discussion of the assignment statement.)

* The variable or one of its components is accessed by a WITH statement.
The reference lasts throughout the execution of the statement. (See Section
5.6 for a discussion of the WITH statement.)

The existence of a variable reference sometimes prohibits certain operations
from being performed on the variable. Such restrictions are noted in this
manual.

The Declaration Section

Example

VAR
Choice @ Entertainment = Dinnersd
Answer s Rumor @ BOOLEANS
Temp : INTEGER 1= BGO3J
Grade : ‘A'..°'D"3
Next_Sondg ¢ Ptroto.Hits 2= NIL3J
Weekly_ Hours 2 Hours_.Worked 2= (7:8:7:89:6)3

This VAR section declares seven variables and indicates the type of each.
Choice is of the user-defined type Entertainment and is initialized with the
constant identifier Dinner. Answer and Rumor are both Boolean variables.
Temp is an integer variable initialized with the value 60. Grade is of a charac-
ter subrange type consisting of the characters ‘A", 'B’, "C’, and 'D’. The
pointer variable Next__Song is a pointer to the record type Hits defined in
Section 4.3. Next__Song is given the constant identifier NIL as its initial
value. The variable Weekly__Hours is declared to be of the user-defined array
type Hours__Worked and is initialized with a constructor of integers.

The Declaration Section 4-5

Chapter 5
PASCAL Statements

PASCAL provides several statements that control the actions performed in a
program. This chapter presents information, organized as follows, on each of
these statements: ‘

¢ The compound statement
e The assignment statement
e The empty statement
¢ Conditional statements:
- CASE
- IF-THEN
- IF-THEN-ELSE
¢ Repetitive statements:
- FOR
- REPEAT
- WHILE
e The WITH statement
e The GOTO statement
¢ The procedure call

PASCAL statements are classified as either simple or structured. The simple
statements are the assignment, GOTO, and empty statements, and the proce-
dure call. The structured statements are the compound, conditional, repeti-
tive, and WITH statements. They enclose simple and structured statements
that must be executed in order, repetitively, or when the specified conditions
are met. You can use a structured statement anywhere in a block that a
simple statement is allowed; therefore, this manual uses the term ‘“state-
ment”’ to mean either a simple or a structured statement.

5-1

5.1 The Compound Statement

The compound statement groups a series of statements so that they can be
executed sequentially as though they were a single statement.

Syntax

BEGIN
{statement];...
END

statement
Any simple or structured statement.

A compound statement can combine any PASCAL statements, including
other compound statements. The statements that make up the compound
statement must be separated with semicolons. No semicolon is required be-
tween the last statement and the END delimiter; however, the examples in
this manual show a semicolon before the END delimiter. This practice makes
it easier to add new statements before the END at a later date.

Examples of compound statements appear throughout this chapter.

5.2 The Assignment Statement

5-2

The assignment statement assigns a value to a variable or function identifier.
Syntax

identifier := expression
identifier

The name of a function or any variable except a file variable.

expression

A run-time expression whose type is assignment compatible with the
type of the variable.

Note that the assignment operator is := in PASCAL. Do not confuse this
operator with the equal sign (=).

The value of the expression on the right of the operator establishes the value
to be assigned to the variable on the left.

You may not assign values to a variable of a record type with variants that
was allocated with the NEW procedure (see Section 7.5.4); you may, however,
assign values to a field of such a record variable.

Examples
1. % == 13

The variable X is assigned the value 1.
2. T := A<B;

The value of the Boolean expression A<B is assigned to the variable T.

PASCAL Statements

3. Vowel_Set = [7A7: ‘E7y “I°s 707 U1

The set variable Vowel__Set is assigned the set constructor shown. The
base type of Vowel__Set must include the characters ‘A", 'E’, 'I", 'O,
and ‘U’.

4., Myv_.Arrav[ll = Mv_Arravi7] + Your_Arravi{1d1:

The first component of My__Array is assigned the sum of the values of the
seventh component of My__Array and the fourteenth component of
Your__Array.

5. Awardrec := New_Winner:

Assume that Awardrec and New__Winner are record variables of assign-
ment-compatible types. This example assigns the value of each field of
New__Winner to the corresponding field of Awardrec.

5.3 The Empty Statement

The empty statement causes no other action to occur than the advancement
of program flow to the next statement.

An empty statement can be represented by two consecutive semicolons. For
example:
BEGIN

o= 103

Y oi= 203

[s =

ZLI1 == 3503
3

END 3
'A common use of the empty statement appears in nested IF-THEN-ELSE
statements (see Section 5.4.3).

5.4 Conditional Statements

A conditional statement causes a statement to be executed depending on the
value of a controlling expression. PASCAL provides three conditional state-
ments: CASE, IF-THEN, and IF-THEN-ELSE.

PASCAL Statements 5-3

54

5.4.1 The CASE Statement

The CASE statement causes one of several statements to be executed, de-
pending on the value of an ordinal expression called the case selector.

Syntax

CASE case-selector OF
{case-label-list : statement};...
;] [OTHERWISE

{statement};...
Hl
D

EN

case-selector
An expression of an ordinal type.

case-label-list

One or more constant values of the same ordinal type as the case selector,
separated by commas.

Each case label corresponds to a statement that will be executed if the value
of the case selector is equal to the case label. You can specify the case labels in
any order; however, the difference in ordinal values between the largest and
label and the smallest must not exceed 1000. Each case label can appear
only once within a given CASE statement, but can appear in other CASE
statements.

At run time, the system evaluates the case-selector expression and chooses
which statement to execute. If the value of the case selector does not appear in
the case label list, the system executes the statement(s) in the OTHERWISE
clause. If you omit the OTHERWISE clause, the value of the case selector
must be equal to one of the case labels.

Enabling case-selectors checking causes an error message to be produced at
run time if the CASE statement fails to find an executable statement. When
case-selectors checking is disabled, the result is undefined if the CASE selec-
tion fails and you have omitted an OTHERWISE clause. (See Section 10.5
and the VAX-11 PASCAL User’s Guide.)

Examples

1. CASE Ade OF
546 ¢ IF Birth_Month * See
THEN
Grade 2= 1
ELSE
Grade 1= 03
7 &« BEGIN
Grade 1= 23
Readind . 8Kill := TRUE?
END3
8 : Grade := 3i
END 3

At run time, the system evaluates the case selector Age and executes the
corresponding statement. The value of Age must be equal to 5, 6, 7, or 8.

PASCAL Statements

2. CASE Agde OF
546 ¢ IF Birth.Month > Ser
THEN
Grade = 1
ELSE
Grade 1= 03
7 1 BEGIN
Grade = 234
Readingd . SKill := TRUE}?
END 3
8 : GRADE
OTHERWISE
Grade = 03
Reading 8Kill

3

FALSE:
END 3

In this example, if the value of Age is not 5, 6, 7, or 8, the statements in
the OTHERWISE clause are executed.

3. CASE Alrhabetic OF
"ATLEY T/ 407U’ : Alrha_Flad
‘Y7 3 Alrha Flag

Yowels
Sometimes 3

o

OTHERMWISE
Alrha.Flag := Consonants’
END§

This example assigns the value of Vowel, Sbmetimes, or Consonant to
Alpha__Flag, depending on the value of the case selector Alphabetic.

5.4.2 The IF-THEN Statement

The IF-THEN statement causes the execution of a statement, depending on
the value of a Boolean expression.

Syntax

IF expression
THEN
statement

expression
Any Boolean expression.

The statement is executed only if the value of the expression is TRUE.
Otherwise, program control passes to the statement following the IF-THEN
statement. '

The THEN clause can specify either a simple or a structured statement. Note,
however, that you must not place a semicolon between the word THEN and
another statement (whether simple or structured). For example:

IF Davy = Thurs

THEN 3

(¥ miseplaced semicolon %)
BEGIN
END 3§

PASCAL Statements 5-5

5-6

As a result of the misplaced semicolon, the empty statement becomes the
object of the THEN clause. In this example, the compound statement follow-
ing the IF-THEN statement will be executed regardless of the value of Day.

Examples
1. IF ((¥*¥37/Constant) + Factor) > 1000,0
THEN
Answer := Answer - Factor}

If the value of the arithmetic expression is greater than 1000.0, a new
value is assigned to the variable Answer.

2. IF {(A*B) AND (B:C)
THEN
D= 4a - C3

If the values of both relational expressions are TRUE, D is assigned the
value of A-C. As discussed in Section 3.3, PASCAL does not always evalu-
ate all the terms of a Boolean expression if it can evaluate the entire
expression based on the value of one term. Thus, if the value of one of the
relational expressions is FALSE, the other expression may not be evalu-

ated.
3. IF (Name = “Bmith’) AND (Initial = “J7%}
THEN
BEGIN
Count = Count + 13
SmithaddlCountl := Addresss
END 3

This example counts the number of people named J Smith and stores the
street address of each person in an array.

5.4.3 The IF-THEN-ELSE Statement

The IF-THEN-ELSE statement is an extension of the IF-THEN statement
that includes an alternative statement, the ELSE clause. The ELSE clause is
executed if the test condition is FALSE.

» Syntax

IF expression
THEN

statementi
ELSE
statement2

expression
Any Boolean expression.

statement1
The statement to be executed if the value of the expression is TRUE.

statement2
The statement to be executed if the value of the expression is FALSE.

PASCAL Statements

The object of a THEN or ELSE clause can be any simple or structured
statement, including another IF-THEN-ELSE statement. For example:

IF A=1
THEN
IF Bl
THEN
Ce=1
ELSE
Di=14

By definition, PASCAL interprets this statement as though it included BE-
GIN and END delimiters, as follows:
IF A=1
THEN
BEGIN
IF Bl
THEN
Ci=1
ELSE
Di=13
END 3

D is assigned the value 1 if the values of both A and B are 1.

The ELSE clause always modifies the closest IF-THEN statement. Therefore,
the object of the THEN clause in an IF-THEN-ELSE statement cannot be
one of the following:

e An IF-THEN statement
e A structured statement ending with an IF-THEN statement

This restriction helps you avoid writing statements that may not execute as
you had intended. For example:
IF A = 1
THEN
IF B<x1
THEN C 1= 1
ELSE
C = 03

Regardless of the format of this statement, PASCAL associates the ELSE
clause with the statement IF B<>1 THEN C:=1. Thus, if the test IF A=1 is

FALSE, no action is taken. To execute the ELSE clause when the test IF A=1
is FALSE, you could insert an empty statement, as follows:

IF A =1
THEN
IF B <= 1
THEN
C o= 1
ELSE
ELSE
C o= O3

Note that the object of the first ELSE clause is empty.

PASCAL Statements 5-7

A semicolon preceding an ELSE clause terminates the IF-THEN-ELSE state-
ment and causes a compile-time error. For example:

IF Ade » Retire.Ade
THEN
Retired = TRUEF (* misrplaced semicolon #)

ELSE

Years_lLeft = Retire_Ade - Ade:
An error occurs when the reserved word ELSE is encountered because it is not
a legal statement.

Examples
1. IF Disease
THEN
WRITELN (‘This Person is sick.’)
ELSE

WRITELN (‘This Person is healthvy,’)5§

This example prints a different line of text depending on the value of the
Boolean variable Disease.

2. IF Balance < 0.0
THEN
BEGIN
WRITELN {(‘QOuerdrawn by “ ABS (Balance)):
WRITELN (‘Loan of ‘9 Loans * at ‘+ Rate:
‘% automatically derposited’)s
Balance := Balance + Loans?
Bill_.Amt := Loan % (1 + Rate)s
END
ELSE
WRITELN (’No loan issued this month ‘)3
WRITELN (‘Balance is '+ Balancel$

If the value of Balance is negative, the compound statement is executed to
print two lines of notification, add a loan to Balance, and compute the
amount of the bill for the loan. A zero or positive value for Balance results
in a message stating that no loan was issued. The WRITELN procedure
that prints the final balance is independent of the conditional statement
and is always executed.

5.5 Repetitive Statements

5-8

Repetitive statements specify loops, that is, the repetitive execution of one or
more statements. PASCAL provides three repetitive statements: FOR, RE-
PEAT, and WHILE.

PASCAL Statements

5.5.1 The FOR Statement

The FOR statement specifies the repetitive execution of a statement based on
the value of an automatically incremented or decremented control variable.

Syntax
TO

DOWNTO } final-value DO

FOR control-variable := initial-value {
statement

control-variable
The name of a previously declared variable of an ordinal type.

initial-value
An expression whose type is assignment compatible with the type of the
control variable.

final-value
An expression whose type is assignment compatible with the type of the
control variable.

The control variable, the initial value, and the final value must all be of the
same ordinal type. The repeated statements, called the loop body, must not
change the value of the control variable.

At run time, completion tests are performed before the FOR statement is
executed. In the TO form, if the value of the control variable is less than or
equal to the final value, the loop body is executed and the value of the control
variable is incremented. When the value of the control variable is greater than
the final value, execution of the entire loop is complete.

In the DOWNTO form, if the value of the control variable is greater than or
equal to the final value, the loop body is executed and the value of the control
variable is decremented. When the value of the control variable is less than
the final value, execution of the entire loop is complete.

Because completion tests are performed before the statement is executed,
some loop bodies are never executed. For example:
FOR Control := N TO N+Q DO

WeeKklControll := Week[Controll + Netpavs$

If the value of N+Q is less than the value of N (that is, if Q is negative), the
loop body is never executed.

The value of the control variable is incremented or decremented in units of
the appropriate type. For control variables of type INTEGER or UNSIGNED,
one is added or subtracted to the value upon each iteration. For other types,
the control variable takes on the successor (or predecessor) value of the type.
For example, the value of a control variable of the subrange type "‘A’.."Z" is
incremented (or decremented) to the next character value each time the loop
is executed.

If the FOR loop terminates normally (that is, if the loop exits because it is
completed and not because of a GOTO statement), the value of the control
variable is left undefined. You cannot assume that the control variable retains

PASCAL Statements 5-9

5-10

a value. Therefore, you must assign a new value to the control variable before
you use it elsewhere in the program.

If the FOR loop is terminated by a GOTO statement, the control variable
retains the last value assigned to it and can be used outside the loop.

Examples

1. FOR N 2= Lowbound TO Highkound DO
Sum = Sum + Int.ArravI[NI;

This FOR loop computes the sum of the components of Int__Array with
index values from Lowbound through Highbound.

2. FOR Year := 1899 DOWNTO 1801 DD
IF (Year MOD 4) = ©
THEN
WRITELN (Yearzds * is a lear vear’')}

The DOWNTO form is used here to print a list of all the leap years in the
nineteenth century.

3. FOR I := 1 TO 10 DO
FOR J := 1 TO 10 DO
ACT +J1 == 03

This example shows how you can nest FOR loops. For each value of I, the
executing program steps through all 10 values of the array J and assigns
the value 0 to each component.

4, FOR Emrlovee 3= 1 TO N DO

BEGIN
Hrs 3= 03
FOR Day := Mon TO Fri DO

IF NOT SicklEmrlaovee:Dav]

THEN

Hrs := Hrs + 83

PavlEmploveel := WadelEmrloveel # Hrsi
END 3

This example combines structured statements. The inner FOR statement
computes the number of hours each employee worked from Monday
through Friday. The outer FOR statement resets the number of hours to 0
for each employee and computes each person’s pay as the product of Wage
and Hrs.

5.5.2 The REPEAT Statement

The REPEAT statement executes one or more statements until a specified
condition is true.
Syntax

REPEAT

{statement;...

UNTIL expression
expression

Any Boolean expression.

PASCAL Statements

The syntax of the REPEAT statement allows you to combine several state-
ments between the reserved words REPEAT and UNTIL without BE-
GIN/END delimiters. The expression is evaluated after the statements are
executed; therefore, the loop body is always executed at least once.

Example

REPEAT
READ (X)) 3
IF (¥ IN £°07,,.7'8°1)
THEN
BEGIN
Digit.Count = Digit.Count + 13
Digit . Bum = Digit_Sum + ORD (X} - ORD (70733
END
ELSE
Char.Count := Char_Count+1l3
UNTIL EOLN (INPUT):

Assume that the variable X is of type CHAR and the variables Digit__Count,
Digit__Sum, and Char__Count denote integers. The example reads a charac-
ter (X). If the value of X is a digit, the count of digits is incremented by one
and the sum of digits is increased by the value of X, as computed by the ORD
function. If the value of X is not a digit, the variable Char__Count is incre-
mented by one. The REPEAT loop continues processing characters until it
reaches an end-of-line condition.

5.5.3 The WHILE Statement

The WHILE statement executes one or more statements while a specified
condition is true.

Syntax

WHILE expression DO
statement

expression
Any Boolean expression.

The WHILE statement causes the statement following the word DO to be
executed while the value of the conditional expression is TRUE. The expres-
sion is evaluated before the statement is executed. If the value of the expres-
sion is initially FALSE, the statement is never executed. The repeated state-
ment must change the value of the expression; otherwise, the result is an
infinite loop.

Unlike the REPEAT statement, the WHILE statement controls the execution
of only one statement. Hence, to execute a group of statements repetitively,
you must use a compound statement. Otherwise, only the single statement
immediately following the word DO is repeated.

PASCAL Statements 5-11

Examples

1. WHILE NOT EOF (Filel) DO
READLN (Filel)s

This statement skips to the end of Filel.
2. WHILE NOT EOLN (INPUT) DO

BEGIN
READ (X)) 3
IF NOT (M IN [L/A7.. 27y ‘a’ 27+ 707,,79°1)
THEN
Err = Err + 13
END 3

This example reads an input character from the current line. If the char-
acter is not a digit or letter, the error count (Err) is incremented by one.

3. Sum = 03

Ntests s= 13

Aug 1= 1003

WHILE {Avg *= 80) AND (Ntests <= Maxtests) DO
BEGIN
Sum 2= Sum + Test[NTestsli
Avd 1= Bum DIV Ntests:
Ntests 2= Ntests + 13
END 3

IF Auvg <« 90

THEN
WRITELN (‘Your averade drorpped below 90 as of test '

Ntests:3) 3

After initializing Sum to 0, the WHILE loop repeatedly calculates a stu-
dent’s average test score. If the average score falls below 90, the calcula-
tions cease and an informational message is printed. If the average never
falls below 90, calculations continue until Ntests is greater than Maxtests;
no message is printed.

5.6 The WITH Statement

5-12

The WITH statement provides an abbreviated notation for references to the
fields of a record variable.

Syntax

WITH {record-variable},... DO
statement

record-variable
The name of the record variable to which the statement refers.

The WITH statement allows you to refer to the fields of a record by their
names alone, rather than by the record.field-identifier syntax. In effect, the
WITH statement opens the scope of the field identifiers so that references to
field identifiers alone (not prefixed by the record name) are unambiguous.

Specifying more than one record variable has the same effect as nesting
WITH statements. If the records themselves are nested, their names must
appear in the order in which they were nested in the record type definition. If

PASCAL Statements

the records are not nested, their names can appear in any order. Thus, the
following two statements are equivalent:

WITH Cat:» Dog DO
Bills := Bills + Catuvet + Dogdueti

WITH Cat DO
WITH Dog DO
Bills = Bills + Catvet + Doduet}

Note that if :the record Cat includes the nested record Dog, you must specify
Cat before Dog.

Examples

1. VAR
Taxes : RECORD

Gross : REALS
Net : REALS
Bracket : REALS
Itemized : BOOLEAN:
Paid : REAL:
END 3

+

WITH Taxes DO
IF Net < 10000,0
THEN
Ttemized = TRUE:

This statement tests the value of the field Taxes.Net and sets Taxes.Item-
ized to TRUE if the value of Taxes.Net is less than 10000.0.

2. TYPE

Name = VARYINGLZ201 OF CHAR:

Date = RECORD
Month : (Jan: Feb.: Mar, Arrs Mav ., Jun:

Juls Augs Sers Octs Nous Decdid
Dar ¢ 1..313%
Year @ INTEGER:
END 3
UAR

Hosep : RECORD
Patient : Names3
Birthdate : Date:
END 3

®

WITH Hoseps Birthdate DO

BEGIN

Patient 2= ‘Thomas Jefferson’s}
Month := APri

Day 1= 133

¥Year 3= 17433

END 3

PASCAL Statements 5-13

This example shows how you can use the WITH statement to assign
values to the fields of a record. The WITH statement specifies the names
of the record variables Hosp and Birthdate. The record names must be in
order; that is, Hosp must precede Birthdate. The assignment statements
need only specify the field names; for example, Patient instead of
Hosp.Patient, Month instead of Hosp.birthdate.Month, and so forth.

5.7 The GOTO Statement:

5-14

The GOTO statement causes an unconditional branch to a statement prefixed
by a label.

Syntax
GOTO label

label
An unsigned decimal integer that represents a statement label.

Upon execution of the GOTO statement, program control shifts to the state-
ment with the specified label. The statement can be any PASCAL statement,
including an empty statement.

The GOTO statement must be within the scope of the label declaration. A
GOTO statement that is outside a structured statement cannot jump to a
label within that structured statement. A GOTO statement within a routine
can branch to a labeled statement in an enclosing block only if the labeled
statement appears in the block’s outermost level of nesting; that is, the la-
beled statement cannot occur within a structured statement.

Example

FOR I = 1 TO 10 DO
BEGIN
IF Real_ Arrav[I]l = 0,0
THEN
BEGIN
Result == 0,03
GOTO 103
END 3
Result = Result + 1,0/Real_Arrav[I13
END 3

102 Invertsum := Result)

This example shows how you can use the GOTO statement to exit from a loop.
The loop computes the sum of the inverses of the components of the variable
Real__Array. If the value of one of the components is 0.0, however, the sum is
set to 0.0 and the GOTO statement forces an exit from the loop.

PASCAL Statements

5.8 The Procedure Call

A procedure call specifies the actual parameters to be passed to a procedure
and executes the procedure.
Syntax

routine-identifier [(factual-parametery,...)]

routine-identifier
The name of a procedure or function.

actual-parameter

A run-time expression of an appropriate type, or the name of a procedure
or function.

The procedure call associates the actual parameters in the list with the formal
parameters in the procedure declaration. It then transfers control to the proce-
dure. When the procedure has finished executing, control returns to the next
executable statement following the procedure call.

The formal parameter list in the procedure declaration determines the possi-
ble contents of the actual parameter list. Depending on the types of the formal
parameters, the actual parameters can be constants, variables, expressions,
procedure identifiers, or function identifiers.

In VAX-11 PASCAL, a function may be called using the procedure call syn-
tax. In this case, the value returned by the function is ignored. See Chapter 6
for a complete discussion of procedures and functions.

Examples
1. Toellbooth (Changes 0,25 Lanel1113

This statement calls the procedure Tollbooth, and passes the variable
Change, the real constant 0.25, and the first component of the array Lane:
as actual parameters.

2. Taxes (RatexIncomes ‘Pav’)i

This statement calls the procedure Taxes, with the expression RatexIn-
come and the string constant ‘Pay’ as actual parameters.

3. End.Process}

This statement calls the procedure End__Process, which has no
parameters.

PASCAL Statements 5-15

Chapter 6 |
Procedures and Functions

When designing a program that solves a complex problem, you may find it
convenient to break down the problem into a collection of simpler subprob-
lems. You can develop each subproblem independently and, once you have
debugged it, you can be sure that it will execute successfully. In PASCAL, you
can segment programs in this way by writing procedures and functions.

Procedures and functions, collectively called routines in this manual, have
similar structures and restrictions. You can include routines in the main
program, or you can compile them separately from the main program in
modules. A VAX-11 PASCAL program can include user-written routines;
external routines such as VAX/VMS system services, VAX-11 Run-Time
Library routines, and routines written in other VAX-11 languages; and prede-
clared routines. External routines are discussed in greater detail in the
VAX-11 PASCAL User’s Guide; predeclared routines are described in
Chapter 7.

This chapter is organized as follows:

¢ An overview of the concepts of PASCAL routines—Section 6.1
e The structure of a routine heading—Section 6.2

¢ The kinds of formal parameters—Section 6.3

e The properties of the routine block—Section 6.4

¢ The purposes of routine directives—Section 6.5

e The rules for the association of actual and formal parameters in routine
calls—Section 6.6

6.1 Concepts of Routines

The overall algorithm for a program can usually be divided into relatively
simple, repetitive tasks. In PASCAL, you can code each task separately as a
routine; that is, as either a procedure or a function. Both procedures and
functions associate a set of statements with an identifier; the statements are
executed as a group when the routine is called from the executable section of
the main program or another routine. In addition, a function returns a value
of its declared type to the calling program or routine. You may call a function
anywhere that an expression of its result type is allowed. Note that routines
must usually be declared in a declaration section before they can be called.

A routine declaration consists of a heading and a body. The heading identifies
the routine and may include a list of other identifiers, called formal parame-
ters, if the routine needs to exchange data with the calling program or routine.
The body is either a directive or a block. A directive supplies information
about forward-declared and external routines; a block contains a declaration
section (which may include nested routine declarations) and an executable
section.

A routine exchanges data with the main program and with other routines by
means of formal parameters and function results. The formal parameters used
within the routine block must be listed in the routine heading. At run time, a
formal parameter receives a value from an actual parameter in the routine
call. You can call a routine several times with different actual parameters.
The compiler checks every call to ensure that the types of the actual and
formal parameters are compatible.

The scope of an identifier is the part of the program in which the identifier is
accessible. In PASCAL, the scope of a label or an identifier (which represents
a symbolic constant, variable, type, procedure, or function) is the block in
which it is defined or declared, minus any nested blocks that redeclare the
same label or identifier. The declaration section in the main program block
introduces identifiers that are accessible in the main program and in all
nested routines. The declaration sections in routine blocks specify local iden-
tifiers. You can use a local identifier in the routine that declares it and in all
nested routines. In a routine, you can redeclare an identifier that has been
declared in an outer block; the identifier always refers to the declaration of
most limited scope.

6.2 Routine Headings

6-2

To declare a routine, you supply the routine’s heading and either a block or a
directive in a PROCEDURE or FUNCTION declaration section. Normally,
you must declare a routine before you can call it from an executable section.
The FORWARD directive, outlined in Section 6.5.1, allows you to escape this
restriction.

The routine heading provides all the information necessary to determine
whether the actual parameters in a call to the routine can legally be passed to
the formal parameters in the declaration. Note that a procedure can have as

Procedures and Functions

many as 255 formal parameters; certain functions, depending on their result
types, are limited to 254 (see the VAX-11 PASCAL User’s Guide for details).

Syntax
[attribute-list] PROCEDURE procedure-identifier [formal-parameter-list];

[attribute-list] FUNCTION function-identifier [formal-parameter-list] -
: [attribute-list | result-type-identifier;

attribute-list

One or more identifiers that provide additional information about the
procedure, function, or function result (see Chapter 10).

procedure-identifier, function-identifier

The identifier that names the routine and, in the case of functions, also
names the function result.

formal-parameter-list

The identifiers and types of the formal parameters and optionally the
mechanism specifiers and attribute lists (see Section 6.3).

result-type-identifier

The type identifier of the function result, which can denote any type
except a file type or a structured type with a file component.

A directive that may follow the heading declares that the routine is a FOR-
WARD, FORTRAN, or EXTERNAL routine (see Section 6.5). A block that
follows the heading contains an optional declaration section, which declares
any data items that are local to the routine, and an executable section, which
contains the statements that perform the routine’s actions.

6.3 Formal Parameters

Formal parameters can be divided into three general categories: input param-
eters, output parameters, and routine parameters. A routine uses input
parameters to obtain values; it uses output parameters to return values to the
calling block. A function result is simply a special case of output parameter.

Some parameters act as both input and output parameters: the routine takes
their values as inputs, modifies the values, and returns the changed values. In
PASCAL, parameters used solely to supply input data are called value
parameters (see Section 6.3.1); those used to return output values are called
variable parameters (see Section 6.3.2).

Sometimes a routine requires the use of another procedure or function in order
to perform its own actions. In PASCAL, a call to a routine can supply the
name of another routine as a formal parameter (see Section 6.3.3).

When two routines exchange parameters, the calling routine must supply the
data using the mechanism that the called routine expects. When declaring or
calling routines not written in PASCAL, you may need to state an explicit
mechanism for passing parameters. VAX-11 PASCAL includes a set of
mechanism specifiers for declaring foreign (non-PASCAL) parameters (see

Procedures and Functions 6-3

6-4

Section 6.3.4). Foreign parameters can be used as input, output, or routine
parameters.

A formal parameter list may be composed of one or more of the five kinds of
parameter sections listed below. A parameter section introduces one or more
formal parameter identifiers and indicates how they will be interpreted within
the routine.

¢ Value parameters—introduced without a reserved word

¢ Variable parameters—introduced by the reserved word VAR

® Procedure parameters—introduced by the reserved word PROCEDURE
¢ Function parameters—introduced by the reserved word FUNCTION

e Foreign parameters—introduced by a mechanism specifier (%REF,
%IMMED, %DESCR, or %STDESCR)

The following sections describe the semantics of parameter passing in
PASCAL and the use of each kind of parameter. Also described are confor-
mant schemas (Section 6.3.5) and default parameters (Section 6.3.6).

6.3.1 Value Parameters

By the rules of value semantics, a formal value parameter represents a local
variable within the called routine. The value of an actual parameter expres-
sion is passed to the called routine, which uses a copy of the value to initialize
the formal parameter. The copy is not retained when control returns to the
calling block. Therefore, if the called routine assigns a new value to the formal
parameter, the change is not reflected in the calling block.

When you do not include a reserved word before the name of a formal parame-
ter, you automatically cause PASCAL to use value semantics to pass data to
that parameter.

Syntax

type-identifier }
conformant-schema
[:= [mechanism-specifier] default];

fidentifier},... : [attribute-list] {

identifier
The name of the formal parameter. Multiple identifiers must be sepa-
rated with commas.

attribute-list
One or more identifiers that provide additional information about the
formal parameter (see the text below and Chapter 10).

type-identifier
The type identifier of the parameters in this section.

conformant-schema

The type syntax of a conformant array or a conformant VARYING pa-
rameter (see Section 6.3.5).

Procedures and Functions

mechanism-specifier

The mechanism by which a default value is to be associated with the
formal parameter (see Sections 6.3.4 and 6.3.6).

default
A default value for the parameter (see Section 6.3.6).

Any attributes associated with a formal parameter become attributes of the
local variable. They do not affect the values that can be passed to the parame-
ter; they affect the behavior of the formal parameter only within the routine
block. When a formal parameter has the UNSAFE attribute, the types of the
actual parameters passed to it are not checked for compatibility (see Section
10.19).

The following are examples of formal value parameter sections in a routine
heading:
PROCEDURE Alrha

(A: B = INTEGERS
C : CHAR):

FUNCTION Factor
(Dividend: Divisor : INTEGER?}
: BOOLEANS

6.3.2 Variable Parameters

By the rules of variable semantics, a formal variable parameter represents
another name for a variable in the calling block. The routine directly accesses
the actual parameter that corresponds to a formal variable parameter, rather
than accessing a copy of it. Thus, the routine can assign a new value to the
formal parameter during execution, and the changed value will be reflected
immediately in the calling block.

PASCAL uses variable semantics to pass data to a formal parameter that is
preceded by the reserved word VAR. Such a parameter is often called a formal
VAR parameter.

Syntax

type-identifier }
conformant-schema
[:= [mechanism-specifier] default];

VAR fidentifier},... : [attribute-list]

identifier
The name of the formal parameter. Multiple identifiers must be sepa-
rated with commas.

attribute-list

One or more identifiers that provide additional information about the
formal parameter (see Chapter 10 for details).

type-identifier
The type identifier of the parameters in this parameter section.

Procedures and Functions 6-5

conformant-schema

The type syntax of a conformant array or a conformant VARYING pa-
rameter (see Section 6.3.5).

mechanism-specifier

The mechanism by which a default value is to be associated with the
formal parameter (see Sections 6.3.4 and 6.3.6).

default
A default value for the parameter (see Section 6.3.6).

The following examples illustrate the formal VAR parameter sections of rou-
tine headings:

PROCEDURE Read_Write
(UAR A = List)i

FUNCTION Counter
(VAR Instringy Qutstring i VARYINGIStrind.Sizel OF CHARS
VAR Valid : BOOLEAN)
: INTEGER

Because no copy is made of the actual parameter, you can save storage space
by using formal VAR parameters instead of value parameters. This technique
can be especially helpful when you are passing actual parameters that require
large amounts of storage. However, to use a VAR parameter as an efficient
substitute for a value parameter:

* You must not modify the actual parameter.

* You should not refer to the actual parameter by more than one name within
the same block.

The following example illustrates how passing a large array to a formal VAR
parameter differs from passing it to a value parameter.
TYPE

Big_Array = ARRAYLO,.100001 OF REAL;

PROCEDURE Reverse
(VAR Inarrs Outarr : Bid_.Arrav)i

VAR
I+ J @ INTEGER?S

BEGIN

Jor= 03

FOR I := 10000 DOWNTOD O DO
BEGIN

OutarrLIl 2= InarrlJl;
Jog=od o+ 1%
END 3

END 3

VAR

Aly A2 ¢ Bidg.Arrav:i
Reverse (Al AZ)
Reverse (Als AL)

3 (% Would execute successfully *)
H (% Would fail =)

6-6 Procedures and Functions

The procedure Reverse is designed to reverse the order of the components of
the array variable Inarr and write them to the array variable Outarr. You can
save storage space by declaring Inarr and Outarr as formal VAR parameters,
thus preventing the compiler from making copies of each 10,000-component
array. The first call to Reverse illustrates this method.

In the second call to Reverse, however, the same array variable (A1) is passed
to both Inarr and Outarr. Since Inarr and Outarr are formal VAR parameters,
the procedure accesses the actual parameter Al directly: Reverse actually
modifies the input values as it writes the reversed components back into Al.
Thus, the second call shown in this example would fail to execute as expected.

6.3.3 Formal Procedure and Function Parameters

Just as it is often convenient to subdivide a program into routines, it is often
useful to break down routines even further into more procedures and func-
tions. To declare a procedure or a function as a formal parameter to another
routine, you must include a complete routine heading in the formal parameter
list (see Section 6.2 for the syntax of a routine heading). You can associate a
foreign mechanism specifier and a default value with a formal procedure or
function parameter, as described in Section 6.3.6.

The following examples show formal procedure and function parameter sec-
tions in routine declarations:
PROCEDURE Aerrly

(FUNCTION Orperation {(Left: Ridght = REAL) : REAL:

Fesult : REALDYS

FUMCTION Copy
(PROCEDURE Get_Char (UAR C : CHAR):
PROCEDURE Put_.Char (I ¢ CHAR))
: BOOLEAMS

The identifiers listed as formal parameters to a formal procedure or function
parameter are not accessible outside the routine declaration. They merely
indicate the number and kind of actual parameters necessary. You refer to
these identifiers only when you use nonpositional calling syntax to call a
routine parameter. (Section 6.6.2 describes nonpositional syntax.)

In the above example, the formal parameter list of Get__Char informs the
compiler that Copy must pass one character parameter to Get__Char using
variable semantics. Copy does not refer explicitly to the formal parameter C
unless it calls Get__Char using nonpositional syntax.

6.3.4 Foreign Mechanism Specifiers on Formal Parameters

When declaring PASCAL routines, you specify the semantics (value or varia-
ble) by which a formal parameter manipulates an actual parameter; the com-
piler is responsible for choosing the appropriate mechanism by which to pass
the actual parameter. However, when declaring an external routine (one writ-
ten in a language other than PASCAL) that is called by a PASCAL routine,
you must specify not only the correct semantics but the correct mechanism as
well.

Procedures and Functions 6-7

6-8

VAX-11 PASCAL provides the foreign mechanism specifiers %IMMED,
%REF, %DESCR, and %STDESCR, one of which can precede a formal pa-
rameter in the declaration of an external routine. If the formal parameter does
not represent a routine, the mechanism specifier must precede the parameter
name. If the formal parameter represents a routine, the specifier must precede
the reserved word PROCEDURE or FUNCTION in the parameter declara-

tion.

A mechanism specifier can also appear before the name of an actual parame-
ter; see Section 6.6.7 for a description of this feature.

A mechanism specifier forces the use of mechanisms defined in the VAX-11
Procedure Calling Standard and also implies certain semantics. The passing
of an expression to a foreign mechanism parameter implies foreign value
semantics: the calling block makes a copy of the actual parameter’s value and
passes this copy to the called routine. The copy is not retained when control
returns to the calling block. Note that foreign value semantics differs from
value semantics in that the calling block, not the called routine, makes the

copy.

The passing of a variable to a foreign mechanism parameter (except a param-
eter with the ZIMMED specifier) implies foreign variable semantics: the
variable itself is passed. A compile-time warning occurs if the compiler must
convert the value of an actual parameter variable to make it match the type of
a foreign mechanism parameter. In that case, the compiler passes a copy of
the converted value by foreign value semantics using the specified mecha-
nism. You can eliminate this warning by enclosing the actual parameter vari-
able in parentheses; by doing so, you prevent the compiler from interpreting
the actual parameter as a variable. The compiler takes the same action,
whether or not it produces a warning message.

Mechanism specifiers on formal parameters produce the following results:

e A %REF formal parameter requires actual parameters to be passed using
the by-reference mechanism. %REF implies variable semantics unless the
actual parameter is an expression; in that case, it implies foreign value
semantics.

e A %IMMED formal parameter requires actual parameters to be passed
using the by-immediate-value mechanism and always implies value seman-
tics. %IMMED cannot be used on formal parameters of type VARYING OF
CHAR or on conformant array and conformant VARYING parameters (see
Section 6.3.5).

e A %DESCR formal parameter requires actual parameters to be passed using
the by-descriptor mechanism and interprets the semantics as %REF does.

e A %STDESCR formal parameter requires actual parameters to be passed
using the by-string-descriptor mechanism. An actual parameter variable of
type PACKED ARRAY OF CHAR implies variable semantics. An actual
parameter expression of either type PACKED ARRAY OF CHAR or type
VARYING OF CHAR implies foreign value semantics. You cannot use
%STDESCR on formal procedure and function parameters.

Procedures and Functions

Note that because the semantics is implicit in the mechanism, a formal
parameter cannot be declared with both the reserved word VAR and a
mechanism specifier.

As Section 6.6.7 describes, the VAX-11 PASCAL compiler checks for type
compatibility when an external routine is called. However, at the time-of the
declaration, a %IMMED formal parameter that does not represent a routine is
checked to ensure that it can be stored in 32 or fewer bits. A %IMMED formal
parameter that does represent a routine must be declared with the
UNBOUND attribute (see Section 10.18).

The VAX-11 PASCAL User’s Guide provides further information about the
use of foreign mechanism specifiers. Appendix C of the VAX Architecture
Handbook defines the VAX-11 Procedure Calling Standard and explains de-
scriptor formats.

6.3.5 Conformant Schemas

Some programming applications require general routines that can process
arrays with potentially different bounds, or character strings with potentially
different maximum lengths. Under PASCAL’s rules of type checking, you
would not easily be able to declare the type of such a parameter. Therefore,
VAX-11 PASCAL provides conformant array and conformant VARYING
schemas.

A conformant schema is a syntax that represents a set of types that are
identical except for their bounds. The bounds of a conformant parameter are
determined each time a corresponding actual parameter is passed. The
bounds of an actual parameter are available within the routine through iden-
tifiers declared in the schema. A conformant schema can appear only within a
formal parameter list.

You can use conformant schemas when declaring value, variable, and foreign
mechanism parameters. When you use a conformant schema instead of a type
identifier in a formal parameter declaration, a call to the routine can provide
arrays and VARYING strings of different sizes, within the bounds specified by
the schema. For example, you could write a procedure that finds the mini-
mum, maximum, and average of the components of a one-dimensional array
of integers. Similarly, you could write a function that returns the number of
times one string occurs within another. On each call to such routines, the
bounds of the formal parameters would be equal to those of the actual
parameter.

Conformant Array Schema

(ARRAY/[{lower-bound-identifier..upper-bound-identifier:
[attribute-list] index-type-identifier};...]

OF [attribute-list] { type-identifier }

< conformant-schema

PACKED ARRAY[lower-bound-identifier..upper-bound-identifier:
[attribute-list] index-type-identifier]
OF [attribute-list] type-identifier)

Procedures and Functions 6-9

6-10

lower-bound-identifier

An identifier that represents the lower bound of the conformant array’s
index.

upper-bound-identifier

An identifier that represents the upper bound of the conformant array’s
index.

attribute-list

One or more identifiers that provide additional information about the
conformant array (see Chapter 10).

index-type-identifier
The type identifier of the index, which must denote an ordinal type.

type-identifier
The type identifier of the array components, which can denote any type.

Note that to specify the range and type of the index, you must use type
identifiers that represent predefined or user-defined ordinal types. The identi-
fiers that represent the index bounds can be thought of as READONLY value
parameters, implicitly declared in the procedure declaration. Unless the con-
formant schema is packed, the component can be either a type identifier or
another conformant schema; therefore, only the last dimension of a confor-
mant schema can be packed.

Conformant VARYING Schema
[[attribute-list]] VARYING[upper-bound-identifier] OF CHAR

attribute-list

One or more identifiers that provide additional information about the
conformant VARYING string (see Chapter 10).

upper-bound-identifier

An identifier that represents the upper bound of the conformant VARY-
ING string’s index.

The upper bound identifier specifies the maximum length of the VARYING
string and must denote an integer. You can use the upper bound identifier in
the body of the routine as a READONLY value parameter. The lower bound,
which you do not declare, is always zero.

When you pass a conformant VARYING string expression to a value parame-
ter, the length of the actual parameter’s current value parameter (not its
declared maximum length) becomes both the current length and the maxi-
mum length of the formal parameter. When you pass a conformant VARYING
string variable to a VAR parameter, the declared maximum length of the
actual parameter becomes the maximum length of the formal parameter.

Two conformant schemas (array or VARYING) are equivalent if they have
indexes of the same ordinal type and components that either are structurally
compatible or are themselves equivalent conformant schemas. They must also

Procedures and Functions

have the same number of dimensions. Finally, either both must be packed or
both unpacked.

Examples

1. TYPE
Workdavs = 1..31%
Feb.Davs = 1..283%
Mar..Davs = 1.,.313%

PROCEDURE Ivnventory
(UAR Amt.Sold : ARRAYIFirst_.Dav..lLast_Day : Morkdavs]
OF INTEGER?! 3

The formal parameter Amt__Sold can have index values from 1 to 31 to
indicate the number of workdays in each month. Thus, an actual parame-
ter passed to Amt_Sold could be an array whose index type is either
Feb__Days or Mar__Days. The procedure could then sum the components
of Amt__Sold and return the monthly inventory total to the calling block.
TYPE

l.evel Rande = 1..6%

Nolasses = 1..83%

Nstudents = 1,.40%

Mames = PACKED ARRAY[1..351 OF CHARS

PROCEDURE Student.Count
{(School ¢ ARRAYIGrade_ Low.:Grade_ High @ Level_ Randesd
Units._Low, . .Units_Hidh : Nolassesi
Purils_ Min. .Purils_Max § Mstudents]
OF Names)} 3

This example declares School as a three-dimensional conformant array
parameter. Note that it uses the abbreviated syntax for specifying the
index type of a multidimensional array. Each array passed to School could
contain the names of all the students in a particular elementary school.
The indexes of the array denote the number of grades in the school, the
number of classes at each grade level, and the number of students in each
class.

PROCEDURE Dashed. Line
(VAR String @ VARYINGLLenl OF CHARD):

In this example, note that Len is not a previously declared identifier but is
instead an additional implicit parameter defined by the procedure decla-
ration. The upper bound of the conformant parameter String is estab-
lished by the declared maximum length of the actual parameter passed to
it when the procedure Dashed__Line is called.

6.3.6 Default Formal Parameters

Sometimes when writing a routine, you can assume that every call to the
routine will supply the same value for a particular parameter. If you were able
to specify that value as a default for the formal parameter, then you would
need to pass an actual parameter only if you wanted to supply a different
value.

Procedures and Functions 6-11

VAX-11 PASCAL allows you to associate a formal parameter with its default
value when you declare it; to do so, you append the following information to
the parameter declaration:

= [[mechanism-specifier]] constant-expression;

The constant expression that follows the assignment operator (:=) is evalu-
ated when the routine is declared. This default value, plus the optional mech-
anism specifier, must be a legal actual parameter for the kind of formal
parameter with which the default is associated. The mechanism specifier is
required when the formal parameter is a procedure or function so that type
checking between the actual and formal parameters is suspended. Sections
6.6.4 through 6.6.7 provide the rules for writing actual value, variable, routine,
and foreign mechanism parameters.

For example, suppose you declare the following routine:

FUNMCTION Net_Pavy
({Hours : INTEGERS
Tax : REAL := 0,053
Rate : REALS
Fica : REAL := 0,073
OQuertime : INTEGER)
: REALS

The formal parameters Tax and Fica are given the default values 0.05 and
0.07, respectively. Unless a call to Net__Pay explicitly provides different val-
ues for these parameters, the defaults are used.

6.4 Blocks and Scope

6-12

As described in Section 6.1, a block contains a declaration section and an
executable section. The declaration section declares labels and identifiers that
are available within the block. An identifier declared in the declaration sec-
tion can be used in subsequent declarations and definitions. The new labels
and identifiers declared inside a block are local to that block and are unknown
outside the scope of the routine.

By default, all local variables in routines are automatically allocated; that is,
the system does not retain the values of local variables after it exits from the
routine. Rather, each call to a routine creates copies of the local variables.
Therefore, you can call a routine recursively without affecting the values held
by the local variables at each activation of the routine. To preserve the value
of a local variable (not the copy) from one call to the next, you must declare
the local variable with the STATIC attribute (see Section 10.3).

Procedures and Functions

The executable section of the block contains the statements that perform its
actions. You can cause an exit from a block with one of the following state-
ments: either the last executable statement of the block, which causes normal
termination; or a GOTO statement, which transfers control to an outer block.
You may not, however, use a GOTO statement in an outer block to transfer
control into an inner block.

6.4.1 Scope of Identifiers

In PASCAL, the concept of scope is important because scope defines the legal
limits of an identifier’s accessibility. The scope of an identifier extends from
its initial declaration to the end of the block, minus any nested blocks that
redeclare the identifier. Scope rules help limit the declaration of an identifier
to that part of the program in which the identifier is actually used. By taking
advantage of scope rules, you can use an identifier more than once within a
program and give it different meanings. You should, however, limit the rede-
claration of identifiers to very short names, such as I, J, or X, to avoid
confusion. The following rules of scope apply to PASCAL identifiers:

¢ An identifier can be declared only once within a particular scope.
¢ A previously declared identifier can be redeclared in a nested block.

¢ An identifier declared in the main program block is accessible in all nested
blocks (except where it is redeclared); that is, its scope is the entire
program.

¢ A procedure identifier can be redeclared within its own declaration section. 7

e A function identifier can also be redeclared, but not in a declaration section
of the function’s outermost block. Because a function identifier must have a
value assigned to it, it can be redeclared only in a nested block.

¢ A formal parameter name follows the same rules of scope as a function
identifier: it can be redeclared only in a nested block.

¢ A label declaration follows rules of scope similar to those for identifiers. The
scope of a label is the block in which it is declared, minus any nested blocks
that redeclare the label number. Therefore, you can transfer control from
one block to an enclosing block, but you must follow certain restrictions, as
outlined in Section 5.7.

Figure 6-1 illustrates the scope of identifiers that appear in several blocks in a
program.

Procedures and Functions 6-13

VAR
As B = INTEGER:

PROCEDURE lLevella
(2 ¥ ¢ INTEGER)

TYPE
C = ARRAYL1..,351 OF CHAR:
UaR
Dy E Cs
ENDi (% end PROCEDURE Levella %)

PROCEDURE Levellb
(U U = CHAR:
UaR T & INTEGER)S

FUNCTION LeuvelZ: CHARG

VAR
B : BOOLEANS

%

END3 (% end FUNCTION Leueli #)

s

END: (¥ end PROCEDURE Levellh #)

s

Figure 6-1: Scope of Identifiers

Because of PASCAL’s scope rules, the following statements about the identi-
fiers declared in Figure 6-1 are true:

e Variable identifiers A and B are accessible everywhere in the example

and, except in function Level2 (which redeclares B as the identifier of a
BOOLEAN variable), they represent integers.

e Type identifier C and variable identifiers D and E are declared in procedure
Levella and are accessible in that block. However, the scope of C, D, and E

Procedures and Functions

does not include those blocks that are outside the declaring procedure. You
could not, for example, refer to the variable E in procedure Levellb because
that block is outside the scope of the identifier E.

¢ Function Level2 redeclares the identifier B so that it represents a BOOL-
EAN variable rather than an integer. Inside Level2, B is BOOLEAN, but
outside that block, B is still an integer. You may not redeclare B within the
scope of the first block shown because B has already been declared there to
denote an integer.

¢ The identifier Levella is declared as a procedure identifier in the outermost
block of the example. Levella could have been redeclared in its own decla-
ration section along with the procedure’s local identifiers C, D, and E.

¢ The identifier Level2 is declared as a function identifier within procedure
Levellb. Level2 cannot be redeclared within its own declaration section, but
could be redeclared within a nested block.

¢ The formal parameter identifiers V, U, and T in procedure Levellb cannot
be redeclared as local identifiers within that procedure, but could be rede-
clared within the nested block of function Level2.

6.4.2 Function Blocks

In PASCAL, a function identifier acts much like a variable and is synonymous
with the function result. When the function is called, the value of its result is
undefined. By the time the function has finished execution, a value whose
type is assignment compatible with the result type must have been assigned
to the function identifier. The last value assigned to the function identifier is
the result that is returned to the calling block.

The function result may be of any ordinal, real, structured, or pointer type,
except a file type or a structured type with a file component. Any attributes
associated with the function result apply only within the function block. As-
signment (:=) is the only operation allowed on the function result. You cannot
pass a function identifier to a formal VAR parameter. You cannot access
individual array components or record fields of the function result, nor can
you access the storage to which a function result of a pointer type refers. A
block may refer to a function identifier declared in an enclosing block, but
only for the purposes of assigning a value to it and recursively calling it. If you
use the function identifier as an expression within its own executable section,
the result is a recursive call on the function.

Procedures and Functions 6-15

6.4.3 Examples

The following examples show complete procedure and function declarations.

1. PROCEDURE Min_Max_Aud
(A : ARRAYIL..H : INTEGERI OF INTEGERS
VAR Mins Max : Randes
VAR Auvg : REAL)

VAR
Sums J 3 INTEGER:

BEGIN
Max

ACLTS
Min oz Max 3
Sum Max 3
FOR J == L+1 TO H DO
BEGIN
Sum 3= Sum + ALJ13
IF AaLJl » Max
THEN
Max := ALJIS
IF ALJI < Min

H

THEN
Min 2= ALJI3
END §
Aud = Bum/{H - L+1)3
END 3

This procedure computes the minimum, maximum, and average values in
array A. Min, Max, and Avg are formal VAR parameters whose values are
returned to the calling block and can be used in other computations in the
program. A is specified as a value parameter because the procedure is
concerned only with the values in the array; the array is not an output
parameter.

2. FUNCTION Count-Substrs
(VAR String : VARYINGLLenil OF CHARS
VAR KevyStr : VARYINGILLen21 OF CHAR)
INTEGER 3

(*¥ This function returns the number of times one
substring is found in another. #*)

LABEL
103

VAR
I+ Jy Count 3 INTEGER:

6-16 Procedures and Functions

BEGIN

Count 1= 03
FOR I 2= O TO SBtrind.lendth - KevStr.lLendth DO
BEGIN
FOR J = 1 TO KevStr.Length DO
IF String [I+J] <> KevStr [J]
THEN
GOTO 103
Count := Count + 13
10:
END 3§
Céunt*Substrs := Counti
% D3 (¥Count._Substrs*)

The function Count__Substrs uses two formal VAR parameters, String
and KeyStr. (Remember that you can access the LENGTH field of a
VARYING string separately.) Count__Substrs returns an integer value
that indicates the number of times KeyStr appears within String. Note
that although formal VAR parameters are used here, the function does not
modify them; they are used simply to save storage space.

6.5 Directives

A directive is the alternative to a block in a routine declaration. A directive
provides the compiler with information about two kinds of routines: a routine
whose heading is declared separately from its body, indicated by the FOR-
WARD directive; and a routine that is external to the PASCAL program,
indicated by the EXTERNAL (or, equivalently, the EXTERN or FORTRAN)
directive.

To specify a directive, include it immediately after the routine heading and
follow it with a semicolon (;). Directives are recognized only in this position in
a routine declaration. When you use a directive, you must not follow the
heading with a block. The following sections describe the two classes of direc-
tives.

6.5.1 FORWARD Declarations

Although PASCAL requires you to declare routines before you refer to them, a
forward declaration allows a routine to refer to another routine whose block
has not yet been specified. For example, if two routines call each other recur-
sively, a complete declaration of both routines is impossible. Omitting the
declaration is also impossible because without a formal parameter list, the
routine cannot be compiled, nor can calls to the routine be verified. Therefore,

Procedures and Functions 6-17

6-18

you must forward-declare one of the recursive routines. The forward declara-
tion provides the compiler with the information it needs, just as any other
declaration does. But the forward declaration allows you to withhold the
specification of the routine block until later in the source file.

A forward declaration consists of the routine heading followed by the FOR-
WARD directive, without a routine block. For example:
PROCEDURE Chestnut

(Bld : REAL:

Doec @ CHARG

VAR Are : Rec) s
FORWARD 3

When you specify the block of a forward-declared routine, you supply only the
appropriate reserved word (PROCEDURE or FUNCTION) and the routine
name. You do not repeat the formal parameter list, the result type, and the
attribute lists that may have appeared in the routine heading.

Example

[GLOBALI FUNCTION Adder
(Orl,s OpZ, OpP3 @ REAL)
: REALS
FORWARD 3

PROCEDURE Printer
{Student : Name.Array):

4

BEGIN

+

Adder (A, B+ C)3

d

)
+
*
+
®
]
k)

END

(* GLOBAL %) FUNCTION Addersi
(¥ (Opls Or2s OrP3 : REAL) : REAL %)
BEGIN

Printer (‘Leornardo da VYinci’):
+
+

s

END 3

This example forward-declares the function Adder, whose block appears after
the declaration of the procedure Printer. Note that the heading of the Adder
block describes its formal parameters, result type, and attribute list within

Procedures and Functions

comment delimiters. Although you must omit the parameter list, result type,
and attribute lists when you declare the function block, inserting this infor-
mation as a comment is good documentation practice.

6.5.2 EXTERNAL Routines

The EXTERNAL, EXTERN, and FORTRAN directives indicate routines
that are external to a PASCAL program. They are used to declare independ-
ently compiled PASCAL routines and routines written in other languages,
including VAX/VMS system services and VAX-11 Run-Time Library
routines. In VAX-11 PASCAL, the FORTRAN, EXTERN, and EXTERNAL
directives are equivalent. However, to ensure the portability of your program,
you should use the FORTRAN directive only for external routines written in
FORTRAN.

If you declare independently compiled PASCAL routines with the GLOBAL
attribute (see Section 10.20), their names must be unique. That is, no two
PASCAL routines with the GLOBAL attribute can have the same name, even
if they are declared in different scopes or different compilation units.

External routines not written in PASCAL are the only routines that can be
declared using the %IMMED, %REF, %DESCR, and %STDESCR mecha-
nism specifiers. See Section 6.3.4 and the VAX-11 PASCAL User’s Guide for
details.

Examples

1. FUNCTION MTH$TANH
(Andle @ REAL)
: REALS
EXTERNS

This example declares MTH$TANH, a VAX-11 Run-Time Library proce-
dure, as an external routine.

2. PROCEDURE Forstrindg)
(ASTDESCR & @ PACKED ARRAYLA..B ¢ INTEGERI OF OHARYS
FORTRANS

This example declares the FORTRAN procedure Forstring. The formal
parameter list specifies S as a conformant array parameter that is passed
by string descriptor.

6.6 Routine Calls

A PASCAL routine is activated by either the execution of a procedure call or
the evaluation of a function designator in an executable section. The syntax
for invoking procedures and functions is identical:

Syntax

routine-identifier [[({actual-parameter},...)]]

routine-identifier
The name of the procedure or function.

Procedures and Functions 6-19

6-20

actual-parameter
A run-time expression of an appropriate type, or the name of a procedure
or function.

Actual parameters are required unless the routine has no formal parameter
list or unless default values are being used for all the formal parameters.

Although procedure calls and function designators have the same syntax, the
ways in which you use them within an executable section are different. A
procedure call is a statement by itself. A function designator usually does not
appear by itself; it is an expression whose result is used within an executable
statement.

For example, you could invoke the procedure Yearly__Totals as

Yearlv.Totals (Amount.Purchased, Amount.Sold,: Amount.Discount}

while you might invoke the function Compute__Interest as
Earningds := Compute_Interest (Investment:s 0,13+ 5)3
The procedure Yearly__Totals is executed for its effects; the function Com-

pute__Interest is executed to compute a value that is then assigned to the
variable Earnings.

For those instances when the function result is irrelevant, VAX-11 PASCAL
allows you to call a function as though it were a procedure by using an
executable statement.

The topics discussed in the following sections include:

e The calling of functions as procedures—Section 6.6.1

® The association of formal and actual parameters—Section 6.6.2
e The effect of default parameters on association—Section 6.6.3

¢ The specific rules for passing actual parameters to formal value, variable,
and routine parameters—Sections 6.6.4 through 6.6.6

e The presence of foreign mechanism specifiers in actual parameter
lists—Section 6.6.7

6.6.1 Calling Functions as Procedures

Sometimes you may want to perform the operations contained in a particular
function, even though the result returned by the function is meaningless to
the rest of your program. In VAX-11 PASCAL, you can use a procedure call
statement to activate a function. In such cases, the function result is ignored.
You may not, however, pass a function to a formal procedure parameter.

For example, given the function declaration

FUNCTION Buf.Put
(Varvingd_Ptr @ UARYINGLLenl OF CHAR)
: BOOLEANS

Procedures:and- Functions

you could write the following statements to call it:

IF Buf_Put (Ptr_Yary)
THEN

+
+

3

Buf_ Put (Ptr~Uayv)i
In the first call, the THEN clause is executed if the value of the function

result is TRUE. The second call treats Buf__Put as a procedure and disre-
gards the result.

6.6.2 Parameter Association

A routine call must pass exactly one actual parameter for each formal param-
eter. The actual parameter is either listed explicitly in the routine call or is
supplied by means of a default value in the routine declaration.

One way of establishing the correspondence between actual and formal
parameters is to give the parameters in each list the same position. That is,
the association of actual and formal parameters proceeds from left to right,
item by item, through both lists. This form of association is called positional
syntax.

For example, suppose you declare the following procedure:

PROCEDURE CompPute_Sum
(X+ ¥ : INTEGER3
VAR 2 : INTEGER)

Using positional syntax, you could issue the following procedure call:

Compute_ Sum (Quantity + B: 15, Total)si

Thus, the formal parameter X is passed the value of Quantity + 6; Y is passed
the integer value 15; and Z is passed the variable Total. Quantity and Total
must be accessible as integer variables in the block from which Compute__
Sum is called.

Another way of establishing correspondence is to specify the formal parameter
name and the actual parameter being passed to it. In VAX-11 PASCAL, you
can associate an actual with a formal parameter using the assignment (:=)
operator. The actual parameters in the call do not have to appear in the same
order as the formal parameters appeared in the declaration. This form of
association is called nonpositional syntax.

Using nonpositional syntax, you could call the procedure Compute__Sum
with the following statement:

Compute.Sum (2 2= Total:, ¥ 1= Quantity + G+ ¥ 1= 15})3

This call to Compute__Sum is equivalent to the call in the previous example
that used positional syntax.

You may use both positional and nonpositional actual parameters in the same
call. However, you must still supply at most one actual parameter for any

Procedures and Functions 6-21

6-22

formal parameter, and you must list the positional parameters first. If you
used both positional and nonpositional actual parameters in the same param-
eter list, the previous call to Compute__Sum might look like this:

Compute.Bum (Quantity + B & = Total.: ¥ 1= 13)3%

The first actual parameter, Quantity + 6, corresponds to the formal parameter
X because both are the first parameters in their respective lists. Since the
next two actual parameters use nonpositional syntax, they can be in either
order, but they must be associated by name with the formal parameters to
which they belong. '

6.6.3 Default Parameters

When a routine call supplies no actual parameter for a formal parameter that
was declared with a default value, the default is used. A compile-time error
occurs if you fail to supply an actual parameter for a formal parameter that
does not have a default value.

When you declare a formal parameter with a default value, you can either
omit it from the routine call or, if you use positional syntax, (see Section 6.6.2)
you can indicate its position with a comma. For example, consider the routine
heading that was shown in Section 6.3.6:

FUNCTION Net._.Pav
(Hours 3 INTEGERS
Tax : REAL = 0,053
Rate : REAL:
Fica : REAL 3= 0.,07%
OQuertime 3 INTEGER)
REAL :

You can call Net__Pay in one of two ways:

Take_Home_Y¥ear := TaKke_Home_¥ear +
Net_Pay (Overtime = Quertime_lWesk:
Rate 1= Pav_Rate:
Hours = Hours.Week!:

i

i

Take.Home.¥Year := Take_.Home.Year +
Net.Pay (Hours.Weeks :+ Pav_Rate:
y Ouertime.Wesk) 3

You can override a formal parameter’s default value by associating the formal
parameter with an actual parameter in a routine call. For example, if you
wanted to replace the default value of the formal parameter Tax in the exam-
ple above for one call, you could call Net__Pay as follows:

Take. . Home. . Year:= Take_Home.Year +
Net.Pay (Hours_.MWeeKk: 0,08, Pav_.Rate: : Ouertime_Weehl)s

As a result of this routine call, the default value of Tax would be replaced by
the value 0.06 supplied in the actual parameter list.

6.6.4 Actual Value Parameters

When a routine requires an actual parameter for input, you use value seman-
tics to pass the actual parameter. An actual value parameter must be a
compile-time or run-time expression whose type is assignment compatible

Procedures and Functions .

with the type of the corresponding formal parameter. Because there is no
assignment compatibility for file variables, they can never be passed as value
parameters.

If necessary, the type of an actual parameter is converted to the type of the
formal parameter to which it is being passed. In this case, PASCAL follows
the same type conversion rules that it uses to perform any other assignment
(see Section 3.1). You may, for example, pass an integer expression to a
formal parameter of a real type. If an actual parameter has the UNSAFE
attribute, no conversion occurs (see Section 10.19).

When passing array and character-string expressions to conformant formal
parameters, you must make sure that the components and indexes of both
parameters are of the same base type. The index bounds of the actual parame-
ter must fall within the range of the conformant array schema’s index type.
The rules for passing actual parameters to a conformant array parameter are
affected by the UNSAFE attribute (see Section 10.19).

The following formal parameter list requires three value parameters:

PROCEDURE Alrha
(As B ¢ INTEGERS
C ¢ CHAR)

You could write the following procedure call for the procedure Alpha:
Alrha (H+Y s 11, G713

if X and Y are integer variables. Note that the actual parameters correspond-
ing to A and B must be integer expressions, and the actual parameter corre-
sponding to C must be a character expression.

6.6.5 Actual Variable Parameters

When a routine requires an actual parameter as output, you use variable
semantics to pass the actual parameter. Because the routine has direct access
to the actual parameter, any change that the routine makes to the parame-
ter’s value is-immediately reflected in the actual parameter.

In general, an actual VAR parameter must be a variable or a component of an
unpacked structured variable; it cannot be any other expression unless the
corresponding formal parameter has the READONLY attribute (see Section
10.16). You must pass a file variable to a formal VAR parameter. You may not
pass the tag field of a variant record to a formal VAR parameter.

When passing array and character-string variables to conformant formal
parameters, you must make sure that the components and indexes of both
parameters are of the same base type. The index bounds of the actual parame-
ter must be within the range of the conformant array schema’s index type.
The rules for passing actual parameters to a conformant array parameter are
affected by the UNSAFE attribute (see Section 10.19).

The type of a variable passed to a routine must be structurally compatible
with the type of the corresponding formal parameter. You cannot pass a
component of a packed structure to a formal VAR parameter, although you
can pass the entire structure. '

Procedures and Functions 6-23

6-24

The following formal parameter list contains three VAR parameters:

PROCEDURE Tempest
(VAR Seas Breeze : REALS
VAR Sick 1 Med.File)s

You could call the procedure Tempest with this statement:

Tempest (Tides Srpeeds, Patient)s}

The actual parameters Tide and Speed must be variables of a real type. The
actual parameter Patient must be a variable of the previously defined type

Med__File.

In VAX-11 PASCAL, certain attributes in a routine declaration or a routine
call affect the rules of compatibility between actual and formal VAR parame-
ters. The resulting modifications to structural compatibility rules are outlined
in Chapter 10. These rules also apply to the corresponding components of
structured types and to the base types of pointer types used as formal parame-
ters. The attributes that result in rule changes are the alignment, POS,
READONLY, size, UNSAFE, VOLATILE, and WRITEONLY attributes.

6.6.6 Actual Procedure and Function Parameters

Sometimes a routine requires you to pass the name of a procedure or function
as an actual parameter. When passing routines as parameters to other
routines, VAX-11 PASCAL requires that the formal parameter lists in both
declarations be congruent. As described in Section 6.3, a formal parameter list
can have five different kinds of parameter sections: value, variable, proce-
dure, function, and foreign mechanism. Two formal parameter lists are con-
gruent if they have the same number of sections and if the sections in corre-
sponding positions meet any of the following conditions:

* Both are value parameter sections containing the same number of parame-
ters. The types of parameters must either be structurally compatible or be
equivalent conformant schemas.

® Both are variable parameter sections containing the same number of
parameters. The types of the parameters must either be structurally com-
patible or be equivalent conformant schemas. Any attributes associated
with a formal VAR parameter affect the kinds of actual parameters that can
be passed to it (see Section 6.6.5).

* Both are procedure parameter sections having either congruent formal pa-
rameter lists or no formal parameters.

® Both are function parameter sections having either congruent formal pa-
rameter lists or no formal parameters, and having structurally compatible
result types.

¢ Both are foreign parameter sections having the same mechanism specifier
and the same number of parameters, whose types must be structurally
compatible.

If one formal parameter list has a LIST attribute on its last parameter section,
the other formal parameter list must also have this attribute.

Procedures and Functions

The following program shows a function declaration that includes two func-
tions as formal parameters.
PROGRAM Monevy s

VAR
Costs: Pav, Fedtax: Food : REAL:
Housind : INTEGERS

FUNCTION Income
(Salary s
Tax : REAL)
REAL Y

s

FUNCTION Exrenses
(Rent : INTEGERS
Grocery @ REAL)

REAL S

+

FUNCTION Buddet .
(FUNCTION Credit {(Earninds: UStax : REAL) : REALS
FUNCTION Debit (Housing : INTEGER: Eat : REAL) : REAL)
REAL 3§

UAR
Deduct @ REALS

BEGIN (% FUNCTION Buddet #3
Deduct
Buddet

+

Debit (Eat := Food: Housing := Housingli
Credit (Pavy, Fedtax) - Deducts

)

BEGIN (% Main prodram %}
Costs := Buddet {Income: Exrenses)i

END .

When the function Budget is called, the function Income is passed to the
formal function parameter Credit, and the function Expenses is passed to the
formal function parameter Debit. When Credit is called, the program-level
variables Pay and Fedtax are substituted for Credit’s formal parameters,
Earnings and UStax. In the call to Debit, nonpositional syntax is used to
associate Debit’s formal parameters Housing and Eat with the program-level
variable Housing and Food. Note that there is no conflict between the names
of program-level variables and formal parameters of routine parameters.

The presence of the ASYNCHRONOUS and UNBOUND attributes in rou-
tine declarations causes additional requirements to be imposed on the
routines that can legally be passed as actual parameters. See Chapter 10 for
complete information about the effects of these attributes.

Procedures and Functions 6-25

6-26

6.6.7 Foreign Mechanism Specifiers on Actual Parameters

When calling an external routine, you must make sure that you pass actual
parameters by the mechanism stated or implied in the routine declaration. To
this end, VAX-11 PASCAL allows you to use the foreign mechanism specifiers

%IMMED, %REF, %DESCR, and %STDESCR before an actual parameter in
a routine call.

When a mechanism specifier appears in a call, it overrides the type, seman-
tics, and mechanism specified in the formal parameter declaration. Thus,
type checking is suspended for the parameter association to which the speci-
fier applies. (See the VAX-11 PASCAL User’s Guide for more information on
mechanism specifiers.)

Regardless of whether the mechanism is determined by a formal or an actual
parameter, the mechanism specifier is interpreted in the same way (see Sec-
tion 6.3.4).

Special considerations arise when a function that has no formal parameters of
its own (or that has defaults that are being used for all its formal parameters)
is passed as a formal parameter to another routine. The appearance of the
function identifier in an actual parameter list could indicate the passing of
either the address of the entry mask or the function result. In VAX-11
PASCAL, the address of the entry mask is passed by default. Therefore, to
cause the function result to be passed, you must enclose the function identi-
fier in parentheses.

For example, the following routine calls show the function F being passed by
immediate value as an actual parameter to the procedure P:

P (AIMMED F) 3
P (AIMMED (F)) 3

In the first example, the address of function F’s entry mask is passed by
immediate value to the procedure P. In the second example, function F is
evaluated, and its result is then passed by immediate value to P.

Procedures and Functions

Chapter 7
Predeclared Routines

VAX-11 PASCAL supplies predeclared procedures and functions that per-
form various commonly used operations. Note that predeclared functions al-
ways return a value that is associated with the function identifier. You use
predeclared routines to:

¢ Perform arithmetic operations

¢ Return ordinal values

e Test Boolean relations

e Convert data from one type to another

e Create and destroy dynamic variables

e Pack and unpack array variables

e Perform operations on character strings and unsigned integers
¢ Determine the allocation size of a type

e Implement interlocked instructions

e Perform input and output (see Chapter 8)
¢ Perform other miscellaneous actions

In this chapter, the term “‘arithmetic types” refers to those data types that
can be used in arithmetic operations. The arithmetic types are INTEGER,
UNSIGNED, and the real types.

The following sections describe predeclared VAX-11 PASCAL routines in the
order listed above. These routines are summarized in Appendix C.

7.1 Arithmetic Functions

Arithmetic functions perform mathematical computations. Actual parame-
ters to these functions can be expressions of any arithmetic type. The prede-
clared arithmetic functions fall into two categories: fully generic functions and
real generic functions.

7-1

7.1.1 Fully Gen-eric Functions

Fully generic functions take an actual parameter of any arithmetic type and
return a value of the same type. The fully generic functions are:

¢ ABS (x)—computes the absolute value of x.

¢ SQR (x)—computes the square of x.

7.1.2 Real Generic Functions

Real generic functions take an actual parameter of any arithmetic type and
return a value of a real type. If the parameter is of type INTEGER,
UNSIGNED, REAL, or SINGLE, the function returns a value of type REAL.
If the parameter is of type DOUBLE or QUADRUPLE, the function returns a
value of the same type. The real generic functions are:

e ARCTAN (x)—computes the arc tangent of x and expresses the result in
radians.

e COS (x)—computes the cosine of x, which is expressed in radians.
e EXP (x)—computes the exponential of x; that is, e**x.

¢ LN (x)—computes the natural logarithm of x. The value of x must be
greater than zero.

e SIN (x)—computes the sine of x, which is expressed in radians.

¢ SQRT (x)—computes the square root of x. If the value of x is less than zero,
an error results.

7.2 Ordinal Functions

Ordinal functions require an actual parameter of an ordinal type and return a
value of the same type. The ordinal functions are:

e PRED (x)—returns the value that immediately precedes x in the ordered
sequence of values of its type. There must be a predecessor value for x in the

type.

e SUCC (x)—returns the value that immediately succeeds x in the ordered
sequence of values of its type. There must be a successor value for x in the
type.

7.3 Boolean Functions

7-2

Boolean functions return one of the Boolean values FALSE and TRUE. In
addition to the predeclared Boolean functions described here, VAX-11
PASCAL supplies the Boolean functions EOF, EOLN, and UFB, discussed in
Chapter 8.

Predeclared Routines

7.3.1 ODD (x)

The ODD function tests whether the value of x is odd. The parameter x must
be of type INTEGER or UNSIGNED. The function returns TRUE if the value
of x is odd and FALSE if the value of x is even.

7.3.2 UNDEFINED (r)

The UNDEFINED function tests whether r contains a reserved operand.
The parameter r must be a variable of type REAL, SINGLE, DOUBLE, or
QUADRUPLE. The function returns TRUE if r contains a value that has been
reserved by VAX/VMS (see the VAX Architecture Handbook for details about
VMS reserved values). If r does not contain a reserved value, the function
returns FALSE. An error would result if you tried to use r in arithmetic
computations.

7.4 Transfer Routines

Transfer routines take an actual parameter of one type and convert it to
another type.

7.4.1 Transfer Functions

Transfer functions convert the value of an actual parameter to its equivalent
in another type and return the converted value of the new type.

7.4.1.1 CHR (x) — The CHR function returns a value of type CHAR whose
ordinal value in the ASCII character set is x, provided such a character exists.
The parameter x must be of type INTEGER or UNSIGNED and have a value
from 0 to 255. ‘

7.4.1.2 DBLE (x) — The DBLE function converts the value of x to its double-
precision equivalent and returns a value of type DOUBLE. The parameter x
must be of an arithmetic type. The value of x must not be too large to be
represented by a double-precision number.

7.4.1.3 INT (x) — The INT function converts the value of x to its integer
equivalent and returns a value of type INTEGER. The parameter x must be
of an ordinal type.

No error results if x is of type UNSIGNED and has a value greater than
MAXINT. In that case, the value of x is converted to its equivalent as a 32-bit
integer by subtracting 2+*32 from it. For example, INT(3604928157) returns
the value -690,039,139, which is the negative integer with the same 32-bit
representation as the unsigned integer value 3,604,928,157.

7.4.1.4 ORD (x) — The ORD function returns as an integer the position of x in
the ordered sequence of values of x’s type. The parameter x must be of an
ordinal type. Note that the ordinal value of an integer is the integer itself. If x
is of type UNSIGNED, its value must not be greater than MAXINT.

Predeclared Routines 7-3

7-4

7.4.1.5 QUAD (x) — The QUAD function converts the value of x to its quadru-
ple-precision equivalent and returns a value of type QUADRUPLE. The
parameter x must be of an arithmetic type.

7.4.1.6 ROUND (r) — The ROUND function converts the value of r to its
integer equivalent by rounding the fractional part of the value. The parameter
r must be of type REAL, SINGLE, DOUBLE, or QUADRUPLE. The value
returned is of type INTEGER. The value of r must not be too large to be
represented by an integer.

7.4.1.7 SNGL (x) — The SNGL function rounds the value of x to its single-
precision equivalent and returns a value of type SINGLE. The parameter x
must be of an arithmetic type. The value of x must not be too large to be
represented by a single-precision number.

7.4.1.8 TRUNC (r) — The TRUNC function converts the value of r to its
integer equivalent by truncating the fractional part of the value. The parame-
ter r must be of type REAL, SINGLE, DOUBLE, or QUADRUPLE. The
value returned is of type INTEGER. The value of r must not be too large to be
represented by an integer.

7.4.1.9 UINT (x) — The UINT function converts the value of x to its equiva-
lent as an unsigned integer and returns a value of type UNSIGNED. The
parameter x must be of an ordinal type.

No error results if x is of type INTEGER and has a negative value. In that
case, the internal representation of x is returned as an unsigned number.

7.4.1.10 UROUND (r) — The UROUND function converts the value of r to
its equivalent as an unsigned integer by rounding the fractional part of the
value. The parameter r must be of type REAL, SINGLE, DOUBLE, or
QUADRUPLE. The value returned is of type UNSIGNED.

No error results if the value of r is negative or greater than 4,294,967,295. In
that case, the unsigned result is the rounded parameter value MOD
4,294,967,296.

7.4.1.11 UTRUNC (r) — The UTRUNC function converts the value of r to its
equivalent as an unsigned integer by truncating the fractional part of the
value. The parameter r must be of type REAL, SINGLE, DOUBLE, or
QUADRUPLE. The value returned is of type UNSIGNED.

No error results if the value of r is negative or greater than 4,294,967,295. In
that case, the unsigned result is the truncated parameter value MOD
4,294,967,296.

Predeclared Routines

7.4.2 Transfer Procedures

Transfer procedures pack and unpack array paraméters.

7.4.2.1 PACK (a,i,z) — The PACK procedure copies components of an un-
packed array variable to a packed array variable. PACK requires three
parameters: an unpacked array variable a, a value i to indicate the starting
value of a’s index, and a packed array z of the same component type as a.

The number of components in a must be greater than or equal to the number
of components in z. PACK (a,i,z) assigns the components of a, starting with
ali], to the array z, starting with z[low-bound], until all the components in z
are filled.

In general, when specifying i, keep in mind that the upper bound of a (that is,
n) must be greater than or equal to i+v-u, where v is the upper bound of z and
u is the lower bound of z. That is, ORD (n) must be greater than or equal to
ORD (i) + ORD (v) - ORD (u).

Packing need not start with the first component of array a; for example,
PACK (A,5,P) packs components A[5] through A[24] into components P[1]
through P[20].

Examples
1. VAR
A 1 ARRAYIL..Z200 OF 0.,153
F i PACKED ARRAYL1..201 OF 0..153
FOR I := 1 TO 20 D0

READ (ALT1)s
FACK (A 1+ P

This program fragment assigns the components A[1] through A[20] to P[1]
through P[20]; that is, all the components in A are packed into P.
9. VAR

A or ARRAYLDL. 231 OF 1..15%
Poe PACKED ARRAYDL. . 201 OF 1..153

B

PACK (As 1+ P)3

This procedure moves components of array A into the packed array P. The
parameter 1 specifies that the packing will start with array component
A[1]. Thus, the components A[1] through A[20] are assigned to P{1] through
P[20]. The components A[21] through A[25] are not moved.

Predeclared Routines 7-5

7.4.2.2 UNPACK (z,a,i) — The UNPACK procedure copies components of a
packed array variable to an unpacked array variable. The parameters re-
quired for UNPACK are identical to those required for PACK. The restric-
tions on the array indexes and the value of i are also the same as for PACK
(see Section 7.4.2.1).

Normally, you cannot pass the individual components of a packed array to
formal VAR parameters (see Section 6.6.5); you must first unpack the array.

Example

VAR
P : PACKED ARRAYL1..,101 OF CHARS
A @ ARRAYL1.,.101 OF CHAR;

PROCEDURE Process.CompPonents
(VAR Ch : CHAR) S

+

4

READ (F

R
UNPACK (Py Ay 1)3
FOrR I := 1 TO 10 DO

Process._.Components (A[I])?v

This program fragment reads characters into the packed array P. The UN-
PACK procedure assigns P[1] through P[10] to the unpacked array compo-
nents A[l] through A[10]. Then, for each call to Process__Components, one
component of A is passed to the procedure.

7.5 Dynamic Allocation Routines

7-6

VAX-11 PASCAL provides dynamic allocation routines for the creation of
pointer variables. Using pointer variables and dynamic allocation routines,
you can create linked data structures, as illustrated in Section 7.5.3.

7.5.1 ADDRESS (x)

The ADDRESS function returns a pointer value that refers to x. The parame-
ter x must be a VOLATILE variable of any type except a component of a
packed structured type. A compile-time warning results if x is a formal VAR
parameter, a component of a formal VAR parameter, or a variable that does
not have the VOLATILE attribute (see Section 10.21).

The VAX-11 PASCAL compiler assumes that all pointers refer either to dy-
namic variables allocated by the NEW procedure or to variables that have the
VOLATILE attribute; a pointer cannot refer to a nonvolatile variable unless
the variable is allocated in heap storage by the NEW procedure (see Section
7.5.2).

7.5.2 NEW (p)

The NEW procedure sets aside memory for p”, that is, the dynamic variable
to which the pointer variable p refers. The value of this newly allocated
variable (p”) is undefined. You cannot assume that the allocated area is
initialized.

Predeclared Routines

Example

For example, you could declare a pointer variable as follows:

VAR

Ptr : “INTEGER:
This declaration establishes Ptr as a pointer variable that refers to an integer
variable. The integer variable and its address, however, do not yet exist. You
must use the following procedure call to allocate memory for the dynamic
variable:

NEW (Ptr)3

This procedure allocates a variable of type INTEGER in dynamically allo-
cated heap storage. The variable is denoted by Ptr”, that is, the name of the
pointer variable followed by a circumflex ("). This procedure also assigns the
address of the allocated integer to Ptr.

7.5.3 DISPOSE (p)

The DISPOSE procedure deallocates memory for the dynamic variable p~.
You refer to this variable using a pointer value.

For example, to deallocate memory for the dynamic variable Ptr", you can

‘issue the following procedure call:

DISPOSE (Ptr)i

As a result, the memory allocated for Ptr” is deallocated and the variable is
destroyed. The value of the pointer Ptr becomes undefined. Because you
cannot refer to an undefined quantity, you cannot call DISPOSE more than
once for the same dynamic variable. ‘

PROGRAM LinKed.List (INPUT: DUTPUT)3

{# This Prodram constructs a linkKed list of records. Each

student record containsg the wame and student ID number of one
student and: in additions a field that is a pPointer to the
next record, The prodgram reads a number and a name and assidns

each of them to a field of the student record. Then it inserts

the new

comPonent at the bedinning of the linkKed list by

assidning the "Start" pointer to that new record. *)

TYPE
Student_ Ptr = "Student_Dataj
String = PACKED ARRAYL1..201 OF CHAR:
Number = 1.,898899:

Student_Data = RECORD

Name : Strindi
Stud..ID 2 Numbers
Next : Student_ Ptri
END 3§

Predeclared Routines 7-7

{ %

WRITELN
WRITELN

VAR

Start s
New.. ID
New. . Mame & Strings
Count

Student ¢ Student_ Ptri
Number 3

s INTEGERS

PROCEDURE Write.Data
{(Student ¢ Student. . Ptr)i

(% This procedure prints the list of students. Because the printing
starts at the bedinning of the linkKed list: the student names
and ID numbers are printed in the reverse of the order in which
they were entered, %)

UAR
I+l INTEGER §
Mext . Student @ Student.Ptr3
BEGIN
WRITELN (/'Names ‘¢ ‘Student ID. : ‘:28)i
REPEAT

END 3§

WRITELN {(Student”.Name:Z20: Student”,S5tud D273
Mext.Student = Student” . Next?

DISPOSE (Student) s

Student = Next.Students?

UMTIL Student = NILS

(*# End of Write.Data #}

Main Prodram %)
BEGIN
Count ==

Start 1=
WHILE NOT EOF DO

IF

BEGIN
READLN

Student” .Next ==
Student” «Name =

[AR]

{('Tyvrpe a S-digit ID number and a name for each student.)3
(‘Press CTRL/Z when finished., ' }3§

NIL S

(New..IDy+ New_.Name) 3
NEW (Student) s’

Starti
New._Name i

Student ™ 8tudID = New.ID3

Start
Count
END 3
Count

THEN
Write.Data {(Start)}
END .

7-8

»
"
u
B

0

Student i
Count + 13

In the main program, the WHILE loop begins by reading a number and a
name for one student. The NEW procedure allocates memory for a new record
named Student. This new record becomes the first record in the list; that is,
Student”.Next points to the previous head of the list (or to NIL, if only one
record has been read). The value of the new student record is assigned to the
pointer variable Start.

The Write__Data procedure writes the name and student ID number for each
student in the linked list. After writing data for one student, the procedure
assigns the address of the next record in the list to Next__Student. The
DISPOSE procedure deallocates memory for one student record. After deallo-
cating memory for Student, the procedure assigns the value of Next__Student
to Student. When the current Student record again points to NIL, the loop
stops executing.

Predeclared Routines

Example

TYPE
Menu.Ptr
Meat_.Tvre
Beef. . Port
Menu.Orde

VAR
Menu.Sele

7.5.4 NEW and DISPOSE—Record-with-Variants Form

You can use the following forms of NEW and DISPOSE when manipulating
dynamic variables of a record type with variants:

NEW (pv,t1,...,tn)
DISPOSE (p,t1,...,tn)

The parameter pv must be a pointer variable of a type that refers to a record
type with variants; the parameter p must be a pointer expression (including a
pointer-valued function) of a type that refers to a record type with variants. In
both cases, the optional t parameters must be constant expressions of an
ordinal type. They represent nested tag field values, where t1 is the outermost
variant.

If you create a dynamic variable without specifying the tag field values,
enough memory is allocated to hold any of the variants in the record. Some-
times, however, a dynamic variable will take values of only a particular vari-
ant. If that variant requires less memory than NEW (p) would normally
allocate, you can use the NEW (p,t1,...,tn) form. Because the record-with-
variants form of the NEW procedure allocates memory for the variant alone
and not for the whole record, you cannot assign or evaluate the record as a
whole; you can assign and evaluate only the record’s individual fields.

= "Menu_Orders

= (Figshs Fowl: Beef) 3
ion = (Oz_ 10, Oz 16+ 0z 32013
r = RECORD
CASE Entree : Meat.Tvee OF
Fish
(Fish_ Tvre

(Salmons Cod:s Perchs Trout)i
Lemon ¢ BOOLEAN) 3

Fowl
(Fowl. . Tyre
(Chickens Duck: Goosel)s
Sauce
(Orandes Cherry s Raisinld)i
Beef
{Beef. .Tvre

(Steaks Roasts Prime.Rib) s
CASE Size : Beef.Portion 0OF
Oz 10, Oz 1B
(Beef. Ved : (Pea: Mixed)})s
0z 32
{Stomach. . Cure
(Bicarbonate:
Antacid;
) None_Needed))3
END 3

ction : Menu.Ptri

Predeclared Routines 7-9

You can allocate memory as follows for only the variant that corresponds to
Fish:

NEW (Menu.Selections Fish)s3

You can allocate memory for nested variants as follows:

NEW (Menu-Selections Beefs» 0z_32)3%

The tag field values must be listed in the order in which they were declared.

The DISPOSE (pv,t1,...,tn) procedure call releases memory occupied by p".
The tag field values t1 through tn must be identical to those specified when
memory was allocated with NEW. For example:

DISPOSE (Menu_.Selection: Beef, 0z_32)3

This call deallocates the memory allocated by the last NEW procedure call
shown above.

If a dynamic variable with specified record variants was allocated by the
NEW procedure, it can be deallocated only by a DISPOSE procedure that
specifies identical record variants.

You may not dispose a dynamically allocated variable while a reference to it
exists. Section 4.4 describes the conditions that establish a variable reference.

7.6 Character-String Routines

7-10

VAX-11 PASCAL supplies predeclared routines that manipulate character
strings. The seven predeclared functions, BIN, HEX, INDEX, LENGTH,
OCT, PAD, and SUBSTR, and the two predeclared procedures, READV and
WRITEV, are described in the following sections.

7.6.1 BIN (x[, length[, digits]])

The BIN function converts the value of x to its binary equivalent and returns
the binary digits in a string of type VARYING OF CHAR. The only parameter
required is the expression to be converted; this parameter can be of any type
except VARYING OF CHAR, a conformant array schema, or a conformant
VARYING schema. Two optional integer parameters specify the length of the
resulting string and the minimum number of significant digits to be returned.
If you specify a length that is too short to hold the converted value, the
resulting string is truncated on the left.

If you omit the optional parameters, the bit width of the converted parameter
value determines the string length and the number of significant digits. By
default, the number of significant digits is the minimum number of characters
necessary to express all the bits of the converted parameter. This default
length is one character more than the default number of digits, which causes a
leading blank to be included in the resulting string when both parameters are
omitted.

Predeclared Routines

Example

TYPE
Month_Dates = SET OF 0..31%
VAR
Davs. . Of .Rain : Month.Dates:
Davs_ Of .Rain 2= [1: 2+ B 1(:)} 12y 14+ 18 22+ 25 3013
Result = BIN (Davs.Of_Rain., 3203

In this example, the BIN function converts the value of Days__Of__Rain to its
binary equivalent and returns this value as a string of 32 characters. The
resulting string has a 1 in each position where a value was assigned to Days__
Of_Rain and a 0 in all other positions. Thus, the string value returned by
BIN for Days__Of__Rain is "01000010010001000101010001000110 . Note that
the binary representation is from right to left, with the leftmost bit represent-
ing the set element 31.

7.6.2 HEX (x[, length[, digits]])

The HEX function converts x to its hexadecimal equivalent and returns the
hexadecimal digits in a string of type VARYING OF CHAR. The parameters
required for HEX and their default values are the same as those for BIN (see
Section 7.6.1).

Example
VAR
P : "Reci
Digits 1= 83
NEW (P)3
Result 1= HEX (Ps 10;: Digits)s

In this example, the HEX function returns a string of 10 characters containing
the hexadecimal equivalent of the value of the pointer variable P. The string
has 8 significant digits, as specified by the value of the actual parameter
Digits.

7.6.3 INDEX (object, pattern)

The INDEX function locates the first occurrence of a pattern string within an
object string. INDEX requires two character-string expressions as parame-
ters: an object string to be searched and a pattern string to be found. The
function returns an integer value that indicates the position where the left-
most component of the pattern string was located in the object string. The
search ends as soon as the first occurrence of the pattern string is located. If
the pattern string is not found, INDEX returns the value 0. If the pattern
string is an empty string, INDEX returns the value 1. If the object string is an
empty string, INDEX returns the value 0 unless the pattern string is also
empty; in that case, INDEX returns the value 1.

Predeclared Routines 7-11

7-12

Examples

1. Obdect_String := ‘The Pildgrims landed at Plvmouth Rock’s3
Pattern.Strindg 1= ‘Plymouth Rock’s
Position = INDEX (0Obdect._Strind, Pattern.String) 3’

The INDEX function searches the value of Object__String for the value of
Pattern__String. The integer value returned in this example is 24, which
indicates that the first character of Pattern__String occurs in position 24
of Object__String.

2. Obdect_String == ‘The Pildrims landed at Plvmouth Rock’s

Pattern.Strind 1= ‘Mavflower’:
Pesition := INDEX (Object. .Strindg: Pattern.String}}

The INDEX function searches the object string value "The Pilgrims
landed at Plymouth Rock’, looking for the pattern string value "May-
flower . Since the function never finds Pattern__String within Object__
String, it returns the integer value O.

7.6.4 LENGTH (str)

The LENGTH function returns an integer value that indicates the length of a
character-string expression that is its parameter.

Example
Current.B8tringd := ‘¥Year-to-Date Sales’:
Current-Lendgth = LENGTH (Current.String)s

The LENGTH function indicates the length of the current value of Current__
String. Since this parameter has been assigned the value “Year-to-Date
Sales’, the LENGTH function returns the integer value 18, indicating the
number of characters in Current__String.

7.6.5 OCT (x[, length[, digits]])

The OCT function converts the value of x to its octal equivalent and returns
the octal digits in a string of type VARYING OF CHAR. The parameters
required for OCT and their default values are the same as those for BIN (see
Section 7.6.1).

Examples

1. IntWar = 4273
Fesult 3= 00T (IntWar, 10, 333
The OCT function returns the octal equivalent of IntVar in a string with
10 characters and 3 significant digits. The value returned in this example
is ’ 653 ". The string is padded on the left with enough blanks to
extend it to the length specified.

2. Result 3= 00T {IntWar: 10 1033

If the value of IntVar is the same as in the previous example, the OCT
function returns the value "0000000653 . The resulting string is padded
with leading zeros to provide the 10 significant digits requested.

Predeclared Routines

7.6.6 PAD (str, fill, size)

The PAD function appends a fill character to a character string as many times
as is necessary to extend the string to its specified size. You must pass three
parameters to PAD: a character-string expression to be padded, an expression
of type CHAR to be used as the fill character, and an integer expression
indicating the size of the final string. The function returns a character string
of the desired size. This string is composed of the original string fellowed by
the fill character, which is repeated as many times as is necessary to extend
the string to its specified size.

The final size must be greater than or equal to the length of the string to be
padded.

Examples

toetring i

1. Pad_String = ‘Shor
= PAD (Pad. . String: %7 Z0V3

Fesult_ String 3

This example pads the value of Pad__String with the filler character "*’
until the string is 20 characters long. Since Pad__String has the value
“Short string’, the PAD function returns the character string “Short
Strhlg********'.

2. Pad_String := ‘Lond character string’s
Strind.Bize 3= 103
Result. String = PaAD (Pad.Stringd: 17 Bitring.Sizedd

This example pads the value of Pad__String with the filler character !’
until the string is 10 characters long. Since Pad__String has been assigned
the value "Long character string ’, it already contains more than 10 char-
acters. Therefore, an error occurs at run time.

7.6.7 SUBSTR (str, start, length)

The SUBSTR function extracts a substring from another character string.
SUBSTR requires three parameters: a character string to be taken apart, an
integer expression that indicates the starting position of the substring, and an
integer expression that indicates the length of the substring. The function
returns a character string of the length specified, starting at the specified
position.

The following rules apply to the use of the SUBSTR function:
¢ The values of the starting position and the length must be greater than zero.

® There must be enough characters following the starting position to construct
~ a substring of the specified length.

Predeclared Routines 7-13

7-14

Examples

1. Oridinal_String := ‘This is the oridinal string’}
Start_Position = 133§
Substring_Lendth := 133
New.String := SUBSTR (Oridinal_Stringd. Start. . Position:
Substring.lLendgth) i

The SUBSTR function constructs a character string starting at position 13
of Original _String and containing the next 15 characters. It returns the
character string ‘original string’.

2. Oridival._String := ‘The substring cannot be formed’3
New.String := SUBSTR (Oridival. String: 12+ 25)3%

In this example, an error at run time occurs because the SUBSTR func-
tion cannot construct a character string of length 25 beginning in position
12, because there are only 18 characters in Original _String following the
specified starting position.

7.6.8 READV (str, parameter-list)

The READV procedure reads characters from a character-string expression
and assigns them to the variables listed as parameters in the READV proce-
dure call. The behavior of READV is analogous to that of READLN; the
character string is analogous to a one-line file.

An error occurs at run time if values have not been assigned to all the parame-
ters listed in the READYV procedure call before the end of the character string
is reached.

Examples
TYPE

Color = (Yellows Reds Blueds

Flower = (Daisvs Rose:s Orchid: Tulir)i
VaRr

Paint 2 Colorsi

Bousuet : Flower}

Month @ VARYINGLS]1 OF CHAR:
Reallar : REALS

Read.String : VARYINGL171 OF CHAR3

+
+

+

Read. Btring = ‘Red July 2B6.,338B057;
1. READY (Read_Strings Paint: Month, Reallar)i

The READV procedure reads characters from the string variable Read__
String and assigns them to the variables Paint, Month, and RealVar.

2. READV (Read.String: Paint: Month: RealVar: Bousuet)i

In this example, when the READV procedure is called, the value of
Read__String does not contain enough characters to assign values to all
the variables listed. Therefore, an error occurs.

Predeclared Routines

3. READY (Read_Strinds Paints Month)s

In this example, characters are read from Read__String only until values
are supplied for Paint and Month. The rest of the characters in the string
are ignored.

4. READY (Read_Strings RealWar: Paint: Month?i

In this example, the READV procedure tries to assign the first characters
of Read__String to the variable RealVar. Because RealVar is of type
REAL, the characters ‘Red " cannot be assigned to it and an error occurs.

7.6.9 WRITEV (str, parameter-list)

The WRITEV procedure writes characters to a character-string variable of
type VARYING OF CHAR by converting to textual representations the values
of the parameters listed in the procedure call. The behavior of WRITEV is
analogous to that of WRITELN; the character-string variable is analogous to
a one-line file. :

An error occurs if WRITEV reaches the maximum length of the character
string before the values of all the parameters in the procedure call have been
written into the string.

Example
TYPE

Color = (Yellows Red:s Blue)i

Flower = (Daisv s Rose: Orchid: Tulie} 3
VAR

Bouauet @ Flower := Orchids

Month : VARYINGLS91 OF CHAR:

RealVar : REALS

Write.String : VARYINGL301 OF CHAR:

+
+

RealWar := 232,703%

WRITEV (Write_Strind:s Yellow: RealWar:7:3: PRED(Bouauet)}§

The WRITEV procedure writes the constant value Yellow, the value of Real-
Var with a specified field width (see Section 8.7.6), and the predecessor of the
value of Bouquet into the variable Write__String. Write__String then con-
tains the value

f NYELLOWZ32.705 ROSE’

Predeclared Routines 7-15

7.7 Unsighed Functions

VAX-11 PASCAL supplies the predeclared functions UAND, UNOT, UOR,
and UXOR to perform binary logical operations on expressions of type
UNSIGNED and return unsigned values. The operations performed by the

functions are as follows:

e UAND (ul, u2)—performs a binary logical AND on the corresponding bits
of the two expressions

* UNOT (ul)—performs a binary logical NOT on each bit of the expression

¢ UOR (ul, u2)—performs a binary logical OR on the corresponding bits of
the two expressions

¢ UXOR (ul, u2)—performs a binary logical exclusive OR on the correspond-
ing bits of the two expressions

Examples
1. Result := UAND (%X'FF9’, %4X'7037);

The UAND function performs a binary logical AND operation on each
pair of bits and returns the unsigned hexadecimal value %X "701°.

2. Result := UNDT (ZX'FF97)}

The UNOT function performs a binary logical NOT operation on each bit
and returns the unsigned hexadecimal value %X FFFFF006".

3. Result := UOR (%AX/FFO’, %X’ 7037)3

The UOR function performs a binary logical OR operation on each pair of
bits and returns the unsigned hexadecimal value %X FFB’.

4, Result = UNOR (ZX/'FF9’, ZX'7037)3

The UXOR function performs a binary logical exclusive OR operation on
each pair of bits and returns the unsigned value %X '8FA’.

7.8 Allocation Size Functions

7-16

VAX-11 PASCAL’s allocation size functions provide information about the
amount of storage allocated for variables and components of various types
(see the VAX-11 PASCAL User’s Guide for the default allocation size for
items of each type). The parameters may be in the form of variable or type
identifiers. Each function returns an integer value that represents the alloca-
tion size of the given parameter.

7.8.1 SIZE (x[,t1,...,tn])

The SIZE function returns an integer value that indicates the number of bytes
that would be allocated for a variable or record field of type x.

The parameter to the SIZE function may be a variant record variable or type
identifier. In that case, you can supply additional parameters t1 through tn
that correspond to the case labels of the record. The SIZE function returns an
integer value that indicates the number of bytes that would be allocated by
the NEW procedure for a dynamic variable of the specified variant.

Predeclared Routines

7.8.2 NEXT (x)

The NEXT function returns an integer value that indicates the number of
bytes that would be allocated for one component of type x in an unpacked
array.

A warning occurs if x represents a formal parameter because the alignment of
the corresponding actual parameter cannot be determined. The formal and
actual parameters are assumed to have the same alignment, but in fact, the
actual parameter is allowed to have greater alignment.

Note that the NEXT and SIZE functions return the same byte size values for
a given type, except when the components of the specified type in an un-
packed array would have been padded to ensure proper alignment.

7.8.3 BITSIZE (x)

The BITSIZE function returns an integer value that indicates the number of
bits that would be allocated for one field of type x in a packed record.

7.8.4 BITNEXT (x)

The BITNEXT function returns an integer value that indicates the number of
bits that would be allocated for one component of type x in a packed array.

7.9 Low-Level Interlocked Functions

VAX-11 PASCAL provides low-level interlocked functions to allow parallel
processes and asynchronous routines to operate in a real-time or multitasking
environment. The compiler translates these functions into the interlocked
machine instructions provided by the VAX-11 architecture.

7.9.1 ADD_INTERLOCKED (e, v)

The ADD_INTERLOCKED function adds the value of the expression e to
the value of the variable v, using the VAX-11 Add Aligned Word Interlocked
(ADAWI) instruction, and stores the newly computed value in v. The type of v
must be an integer or an unsigned subrange; v must have an allocation size of
two bytes and must be aligned on a word boundary. The type of e must be
assignment compatible with that of v. The function returns the integer value
-1 if the new value of v is negative, 0 if it is zero, and +1 if it is positive.

Note that unless the type of v is an integer subrange that includes negative
values, the result of the ADD__INTERLOCKED function will never be -1.

Overflow and subrange checking are never performed on the ADD__INTER-
LOCKED operation, even if these options are in effect for the rest of the
routine or compilation unit. (See Section 10.5 and the VAX-11 PASCAL
User’s Guide for details on checking options.)

Predeclared Routines 7-17

7.9.2 CLEAR_INTERLOCKED (b)

The CLEAR_INTERLOCKED function assigns the value FALSE to b and
returns the original value of b, using the VAX-11 Branch on Bit Clear and
Clear Interlocked (BBCCI) instruction. The parameter b must be a variable of
type BOOLEAN. The variable does not have to be aligned; therefore, it can
be a field of a packed record.

7.9.3 SET__INTERLOCKED (b)

The SET_INTERLOCKED function assigns the value TRUE to b and re-
turns the original value of b, using the VAX-11 Branch on Bit Set and Set
Interlocked (BBSSI) instruction. The parameter b must be a variable of type
BOOLEAN. The variable does not have to be aligned; therefore, it can be a
field of a packed record.

7.10 Miscellaneous Routines

7-18

VAX-11 PASCAL supplies predeclared routines that determine the amount
of time a process uses, record the system date and time, control error handling
of a program, and perform miscellaneous calculations.

7.10.1 CARD (s)

The CARD function returns an integer value indicating the number of compo-
nents that are currently elements of the set expression s.

7.10.2 CLOCK

The CLOCK function returns an integer value indicating the amount of cen-
tral processor time in milliseconds used by the current process. This function
must not have a parameter list. Note that the result of CLOCK includes the
amount of central processor time allocated to all previously executed images.

7.10.3 DATE (str) and TIME (str)

The predeclared procedures DATE and TIME assign the current date and
time to a string variable. Each procedure requires a parameter str of type
PACKED ARRAYI[1..11] OF CHAR.

Predeclared Routines

For example:

UaR
Todavs.Dates Current.Time PACKED ARRAYIL. . 111 OF CHARS

+

DATE (Todavs. Dateld
TIME (Current.Timels

These two calls return results in the following format:

1-Feh-1858
14120525, 98
As shown, if the day of the month is a 1-digit number, the leading zero does
not appear in the result; that is, a space appears before the date string. The
time is returned in 24-hour format. Thus, the time shown here is 14 hours, 20
minutes, 25 seconds, and 98 hundredths of a second.

7.10.4 ESTABLISH (function-identifier)

The ESTABLISH procedure establishes a VAX-11 condition handler that
processes errors and reports the status of exceptions and conditions. The
parameter to ESTABLISH must be the name of a function that has the
ASYNCHRONOUS attribute (see Section 10.4). See the VAX-11 PASCAL
User’s Guide for further information.

7.10.5 EXPO (r)

The EXPO function returns the integer-valued exponent of the floating-point
representation of the parameter r. When r is of type REAL, SINGLE, or D__
floating DOUBLE, the exponent is an integer value from -128 to 127. When r
is of type G__floating DOUBLE, the exponent is an integer value between
-1024 and 1023. When r is of type QUADRUPLE, the exponent is an integer
value between -16,384 and 16,383. The parameter r must be of a real type.
(See the VAX-11 PASCAL User’s Guide for more information about D__
floating and G_floating double-precision numbers.)

7.10.6 HALT

The HALT procedure calls the VAX-11 Run-Time Library procedure LIB$-
STOP with the condition value PAS$_HALT. Without an appropriate condi-
tion handler, HALT terminates execution of the program. This procedure
must not have a parameter list.

7.10.7 REVERT

The REVERT procedure cancels a condition handler activated by the ES-
TABLISH procedure. This procedure must not have a parameter list. See the
VAX-11 PASCAL User’s Guide for more information.

Predeclared Routines 7-19

Chapter 8
Input and Output

VAX-11 PASCAL includes an extensive set of predeclared routines governing
input/output (I/O) processing. These routines enable you to establish files
with sequential, relative, or indexed organization and process them by
sequential, direct, or keyed access. This chapter describes general 1/O
processing and the related predeclared routines, and explains the concepts of
terminal 1/0.

8.1 1/0 Processing

The following sections describe in general terms the elements of PASCAL I/O
processing: records, files, and access methods. See the VAX-11 PASCAL
User’s Guide for more details.

8.1.1 RMS Records

VAX-11 PASCAL uses the VAX-11 Record Management Services (RMS)
subsystem for data storage, retrieval, and modification. Both RMS and
PASCAL use the term ‘“file” to define an organized collection of logically
related data items. However, PASCAL considers files to consist of file compo-
nents, while RMS divides files into records. Since RECORD is a predefined
structured type in PASCAL, this chapter uses the term “file component”
whenever possible. When it is necessary to discuss particular characteristics of
RMS records, the term “RMS record” is used.

Generally, a PASCAL file component exactly corresponds to an RMS record.
If the file is of a type other than TEXT, an RMS record consists of a single file
component. For example, in a file of type INTEGER, each RMS record con-
sists of one integer value. Each I/O statement accesses one file component at a
time.

Components of PASCAL text files do not correspond to RMS records. A file of
type TEXT has components of type CHAR and is divided into lines. Each line

of character components, terminated by an end-of-line marker, constitutes an
RMS record.

RMS stores records in one of two formats: fixed length or variable length.
Text files are usually, but not necessarily, stored as variable-length RMS
records.

8-2

8.1.1.1 Fixed-Length RMS Records — In a file composed of fixed-length RMS
records, all file components must contain the same number of bytes. You can
access fixed-length RMS records with sequential, direct, or keyed access
methods. A file with sequential organization that is opened for direct access
may contain only fixed-length RMS records to allow the record location to be
computed correctly. An indexed file created by VAX-11 PASCAL usually
consists solely of fixed-length RMS records.

8.1.1.2 Variable-Length RMS Records — Variable-length RMS records can
contain any number of bytes, up to the record length specified when the file
was created.Variable-length RMS records are prefixed by a count field whose
value indicates the number of bytes in each record. Although any PASCAL
file can be created with variable-length RMS records, only text files and files
of type VARYING OF CHAR can truly have RMS records of different lengths.
All other PASCAL files have components of uniform size.

8.1.2 RMS Files

An RMS file is a collection of logically related components that are arranged
in a specific order and treated as a unit. There are three kinds of file arrange-
ment or organization: sequential, relative, and indexed. The organization of a
file is determined when the file is created.

Files are normally stored on disk, although sequential files may also be stored
on magnetic tape. Other peripheral devices, such as terminals, card readers,
and line printers, are treated as sequential files.

8.1.2.1 Sequential Organization — Components of a sequential file are ordered
in physical sequence. Each component, except the first, has another compo-
nent preceding it, and each component, except the last, has another compo-
nent following it. The physical order in which components appear is identical
to the order in which they were written to the file.

8.1.2.2 Relative Organization — Components of a relative file consist of a
specified number of fixed-length cells ordered in physical sequence. These
cells are numbered from 1 (the first) to n (the last), with each number repre-
senting the location of a component relative to the beginning of the file. Each
cell either contains a single file component or is empty. You refer to a specific
component in the file by its cell number (component number).

8.1.2.3 Indexed Organization — Components of an indexed file are ordered on
the basis of certain data fields, called keys, that are contained in each compo-
nent.

When you design an indexed file, you decide which fields in the file compo-
nents are to be the keys; the contents of these fields will be used to identify
specific components in subsequent operations. The length of a key field and
its relative position in the component are identical for all components in the
file.

Input and Output

When you create an indexed file, you must define at least one key for the file
by using the KEY attribute (see Section 10.11). This mandatory key is called
the primary key of the file. By default, the primary key of each component
must have a unique value; however, you can change the default to allow
duplicate primary keys. You can also define other keys, as many as 254 of
them, called alternate keys. An alternate key is a field that is of the same
length and in the same position in each component in the file.

8.1.3 Access Methods

The access method is the technique a program uses to retrieve and store file
components. VAX-11 PASCAL supports three access methods: sequential,
direct, and keyed.)

The access method is specified as part of the OPEN procedure, which opens a
file. A file’s access method cannot be changed unless the file is first closed
with the CLOSE procedure and then opened again with a different access
method specification.

A file may always be processed sequentially, even when the specified access
method is direct or keyed. If the access method is not specified, VAX-11
PASCAL defaults to the sequential method.

Table 8-1 shows the valid access methods for each kind of file organization.

Table 8-1: Access Methods for File Organizations

Access Method

File Organization
Sequential Direct Keyed

Sequential ' Yes Yesl No
Relative Yes Yes No
Indexed Yes No Yes

1. Components must be fixed-length RMS records.

8.1.3.1 Sequential Access — Sequential access means that components are
processed in sequence. For a sequential file, the sequence is the physical
sequence of the components. For a relative file, the sequence is the cell num-
ber sequence. For an indexed file, the sequence is the ascending order of
primary key values. If two components in an indexed file have the same key
value, the sequence is the order of their insertion in the file.

8.1.3.2 Direct Access — Direct access means that the components are pro-
cessed in an order specified by FIND and LOCATE procedures (see Sections
8.8.2 and 8.8.3). FIND positions a direct-access file to accept input; LOCATE
positions the file to write output. A file with sequential organization must
have fixed-length RMS records in order to be accessed by the direct method.

Input and Output 8-3

8.1.3.3 Keyed Access — Keyed access means that the components are pro-
cessed in an order determined by the value of a key field. You use the FINDK
procedure to indicate the key value of the component you wish to process.
FINDK positions the file to the component that corresponds to the key value
you specify as a parameter. (See Section 8.9.1 for more information.)

8.2 1/O Procedures

VAX-11 PASCAL provides predeclared procedures and functions to perform
input and output operations on file variables. These routines, which may
operate differently depending on a file’s organization and access method, are
arranged in the following categories in this chapter:

General Procedures

e OPEN—opens a VAX/VMS file with specified characteristics
¢ CLOSE—closes a file

Sequential Access Input Procedures

¢ GET—reads a file component into the file buffer variable

¢ READ—reads a file component into a specified variable

. RESET——prepares a file for input

Sequential Access Output Procedures

e PUT—writes the file buffer variable to the specified file

¢ REWRITE—truncates a file to length zero and prepares it for output
¢ WRITE—writes specified values to a file

Miscellaneous Routines

® EOF—indicates the end of an input file

¢ TRUNCATE—truncates records from a file

e UFB—indicates whether the file buffer is undefined

¢ UNLOCK—unlocks the current component in the file

Text File Manipulation

¢ EOLN—indicates the end of an input line

e LINELIMIT—terminates program execution after a specified number of
lines have been written to a text file

¢ PAGE—advances output to the next page of a text file
e READLN—reads a line from a text file

* WRITE—allows you to specify field widths to format the values being writ-
ten to a text file

e WRITELN—writes a line to a text file

8-4 Input and Output

Direct Access Procedures

e DELETE—deletes the current component from a file

¢ FIND—performs direct access to a file for input operations

e LOCATE—performs direct access to a file for output operations

¢ UPDATE—writes the contents of the file buffer back into the current com-
ponent

Keyed Access Procedures
e FINDK—accesses a component of an indexed file
¢ RESETK—readies an indexed file for reading

The 1I/O procedures (but not the I/0 functions) can accept an additional
- parameter that specifies the action to be taken should the procedure fail to
execute successfully. This optional parameter is called ERROR and can ac-
cept two values, CONTINUE and MESSAGE. If you specify ERROR:=
CONTINUE, the program continues to execute regardless of any error condi-
tions encountered during execution of the procedure. If you specify ERROR:=
MESSAGE, an appropriate error message will be printed and program execu-
tion will cease if an error occurs. By default, an error message is printed and
program execution is terminated after the first error in an I/O operation is
encountered.

ERROR must be the last parameter in a procedure’s parameter list. You must
use nonpositional syntax to call the procedure. You cannot use the ERROR
parameter with the I/0 functions EOF, UFB, and EOLN, nor with any refer-
ence to the file buffer. For further information, consult the VAX-11 PASCA
User’s Guide. :

At any time during the execution of a process, a file variable is considered to
be in one of three modes: Inspection, Generation, or Undefined. When a file is
reading input, it is in Inspection mode. When output is being written to a file,
the file is in Generation mode. A file in an undefined state of processing is in
Undefined mode. The mode often determines the valid operations for the file.
Table 8-2 shows the mode required before execution of each I/O routine and
the mode in which the file is left after each routine has executed.

Input and Output 8-5

Table 8-2: File Mode During I/O Processing

10 Routine. Mode Befor Mode Ater
OPEN Undefined Undefined
CLOSE Any Undefined
GET Inspection Inspection
READ Inspection Inspection
RESET Any Inspection
PUT Generation Generation
REWRITE Any Generation
WRITE Generation, unless keyed access, Generation
which may be any mode
EOF Inspection or Generation No change
STATUS Any No change, unless error
TRUNCATE Inspection Generation
UFB Any No change
UNLOCK Inspection Inspection
EOLN Inspection Inspection
LINELIMIT Any No change
PAGE Generation No change
READLN Inspection Inspection
WRITELN Generation Generation
DELETE Inspection Inspection
FIND Any Inspection if successful;
Undefined if unsuccessful
LOCATE Any Generation
UPDATE Inspection Inspection
FINDK Any Inspection if successful;
Undefined in unsuccessful
RESETK Any Inspection

8-6 Input and Output

8.3 General Procedures
This section describes the following general procedures:
« OPEN
e CLOSE

8.3.1 OPEN Procedure

The OPEN procedure opens a file, defines the file access method, and allows
you to specify file parameters. The term “record” in the parameter names of
the OPEN procedure indicates an RMS record. :

Syntax
1. OPEN (file-variable
~ [file-name],
[history],

[record-length],
[access-method]],
[record-type],
[carriage-control],

- [organization],
[disposition]),
[file-sharing]),
[user-action]),
[ERROR := error-recovery])

FILE__VARIABLE := file-variable
[T FILE__NAME file-history T
RECORD__LENGTH := record-length
ACCESS__METHOD := access-method
RECORD__TYPE := record-type.
OPEN (¢ CARRIAGE__CONTROL := carriage-control)
ORGANIZATION := organization
DISPOSITION := disposition
SHARING := file-sharing
USER_ACTION := user-action
ERROR := error-recovery

file-variable
The name of the file variable associated with the file to be opened.

file-name
Information about the file for the operating system.

Input and OQutput 8-7 -

8-8

The file variable and file name designate the file to be opened. Except for the
file variable, all parameters are optional. The remaining parameters are sum-
marized in Table 8-3 and discussed in detail in the following sections.

If the parameter names (such as RECORD._TYPE) are not used, as in syntax
1, the parameters must be listed in the specified order. If parameter names are
used, as in syntax 2, the parameters can be specified in any order. You can
mix the use of positional and nonpositional parameters, but once a nonposi-
tional parameter name has been used, all the following parameter values must

be nonpositional.

Table 8-3: Summary of OPEN Procedure Parameters

Parameter

Parameter Values

Default

History

OLD, NEW, READONLY,
UNKNOWN

NEW (OLD, if an external file is
opened using RESET)

Record-length

Any positive integer value

133 bytes for text files; for other files,
parameter is ignored

Access-method

DIRECT, KEYED, or
SEQUENTIAL

SEQUENTIAL

Record-type

FIXED or VARIABLE

VARIABLE for new text files and
FILE OF VARYING; FIXED for other
new files; for old files, record type es-
tablished at file creation

Carriage-
control

LIST, CARRIAGE, FORTRAN,
NOCARRIAGE, NONE

LIST for text files and FILE OF
VARYING; NOCARRIAGE for all
other files. Old files use their existing
carriage-control parameter

Organization

SEQUENTIAL, RELATIVE,
INDEXED

SEQUENTIAL for new files; previous
organization for existing files

Disposition

SAVE, DELETE, PRINT,
PRINT_DELETE,; SUBMIT,
SUBMIT_DELETE

SAVE for named files; DELETE for
files without a file-name parameter

Sharing

READONLY, READWRITE,
NONE

READONLY if file history is
READONLY; NONE for all other files

User-action

Function-identifier

None

Error-recovery

MESSAGE (see Section 8.2)

CONTINUE, MESSAGE

Before the OPEN procedure is called, the file is in Undefined mode; its mode
does not change after OPEN has executed.

You cannot use OPEN on a file variable that is already open.

If INPUT and OUTPUT are used, they are implicitly opened when the pro-
gram begins execution, unless you explicitly open them with OPEN proce-
dures as the first executable statements of the program. INPUT is opened
with a history of READONLY unless you specify otherwise.

Input and Output

Because the RESET and REWRITE procedures implicitly open files, you
need not always use the OPEN procedure. RESET and REWRITE impose the
defaults shown in Tables 8-3 and 8-4. For the file history parameter, RESET
uses a default of OLD, and REWRITE uses a default of NEW.

You must use the OPEN procedure to do the following:

¢ Create a text file with fixed-length RMS records

e Create a file with RELATIVE or INDEXED organization
¢ Open a file for DIRECT or KEYED access

¢ Specify a line length other than 133 for a line in a text file

8.3.1.1 File Name — The file name indicates the system name of a file that is
represented by a PASCAL file variable in an OPEN procedure. For the file
name, you specify a character-string expression (compile-time or run-time)
that contains a VAX/VMS file specification or a logical name. (Apostrophes
are required to delimit a character-string constant or a logical name used as
the file name. See the VAX-11 PASCAL User’s Guide for more information
about logical names.)

If you omit the file name and do not declare the file variable as an external
file, the newly created file has no name. If you omit the file name of an
external file, the default values shown in Table 8-4 are used.

Table 8-4: Default Values for VAX/VMS File Specifications

Element Default
Node Local computer
Device Current user device
Directory Current user directory
File name PASCAL file variable name or its logical
: name translation
File type DAT

Version number (history) OLD: highest current number
NEW: highest current number +1

8.3.1.2 History—NEW, OLD, READONLY, or UNKNOWN — The history param-
eter indicates whether the specified file exists or must be created. A file
history of NEW indicates that a new file must be created with the specified
characteristics. NEW is the default value except when the file has been
opened with the RESET procedure.

A file history of OLD indicates that an existing file is to be opened. An error
occurs if the file cannot be found. OLD is the default value for files opened
with the RESET procedure.

Input and Output 8-9

8-10

A file history of READONLY indicates that an existing file is being opened
only for reading. An error occurs if you attempt to write to a file that has been
opened with a READONLY file history.

A file history of UNKNOWN indicates that an old file should be opened; if no
old file exists, a new file is created with the specified characteristics.

8.3.1.3 Record Length — The value of the record-length parameter is a posi-
tive integer that specifies the maximum size in bytes for a line in a text file or
a file of type FILE OF VARYING. The default value is 133 bytes. For files of

other types, you should not specify a record length.

By default, a file of type TEXT or VARYING OF CHAR has variable-length
RMS records. The record length specified for such a file determines the length
of the longest line in the file. Each line can contain any number of characters
up to the record length specified. If you create a file of type TEXT or VARY-
ING OF CHAR with fixed-length RMS records, the record length determines
the exact length of each line in the file. Each line must contain the number of
characters specified by the record length.

If you do not specify a record length for an existing file, the length specified at
the file’s creation is assumed.

8.3.1.4 Access Method—SEQUENTIAL, DIRECT, or KEYED — The access-
method parameter specifies the method by which file components are to be
accessed. With the SEQUENTIAL method, you can access files with fixed- or
variable-length RMS records. The default access method is SEQUENTIAL.

The DIRECT method allows you to use the FIND and LOCATE procedures to
gain random access to sequential or relative files with fixed-length RMS re-
cords. You cannot use the DIRECT method to access a sequential file that has
variable-length records.

With the KEYED method, you can access indexed files using the FINDK
procedure to locate a specific component. You cannot open text files for
KEYED access.

8.3.1.5 Record Type—FIXED or VARIABLE — The record-type parameter spec-
ifies the structure of the RMS records in the file. A value of FIXED indicates
that all file components have the same length. A value of VARIABLE indi-
cates that the length of the file components can vary.

VARIABLE is the default record type for a new file of type TEXT or VARY-
ING OF CHAR; other new files use FIXED as the default. For an existing file,
the default is the record type associated with the file at its creation.

8.3.1.6 Carriage Control—LIST, CARRIAGE, FORTRAN, NOCARRIAGE, or
NONE — The carriage-control parameter specifies the carriage-control format
for the file. A value of LIST indicates single spacing between components.
LIST is the default option for all text files, including the predeclared file
OUTPUT and files of type VARYING OF CHAR.

Input and Output

The CARRIAGE or FORTRAN option indicates that the first character of
every output line is a carriage-control character.

The NOCARRIAGE or NONE option specifies that the file has no carriage
control. NONE is the default option, except for text files and files of type
VARYING OF CHAR.

The effects of the carriage-control options are summarized in Table 8-5 in
Section 8.7.5.

8.3.1.7 Organization—SEQUENTIAL, RELATIVE, or INDEXED — The organiza-
tion parameter specifies the physical organization of a newly created RMS
file; it does not determine the manner in which the file is to be accessed. (See
Table 8-1 for the valid access methods for each file organization.)

The organization of an existing file must agree with the organization specified
when the file is opened. The default value for new files is SEQUENTIAL.

8.3.1.8 Disposition—SAVE, DELETE, PRINT, PRINT_DELETE, SUBMIT, or
SUBMIT__DELETE — The disposition parameter describes what is to be done
with the file when it is closed. If you specify SAVE, the file is retained. SAVE
is the default value for external files.

If you specify DELETE, the file is deleted. If you specify PRINT, the file is
submitted to the system line printer spooler and is not deleted. The file is
deleted after being printed if you specify PRINT _DELETE.

If you specify SUBMIT, the file is submitted to the batch job queue and is not
deleted. The file is deleted after being processed if you specify SUBMIT__
DELETE.

An unnamed file is automatically deleted when it is closed and cannot be
saved. The only disposition you may specify for an unnamed file is DELETE.

8.3.1.9 Sharing—READONLY, READWRITE, or NONE — The sharing parame-
ter indicates whether other programs can access the file while it is open. A
value of READONLY indicates that other programs can read the file while it
is open but cannot write to it. READONLY is the default value for files that
have a history of READONLY.

A value of READWRITE indicates that other programs can read and write to
the file while it is open.

A value of NONE denies other programs all access to the file while it is open.
NONE is the default value for files with histories of NEW, OLD, and UN-
KNOWN.

If you specify SHARING := READWRITE for an existing file with sequential
organization, you must explicitly specify ORGANIZATION := SEQUEN-
TIAL in the same OPEN procedure.

Input and Output 8-11

8-12

8.3.1.10 User Action — The user-action parameter causes the Run-Time Li-
brary to call a user-written function to open the file, instead of calling RMS to
open the file according to its usual defaults. The user-action parameter allows
access to VAX-11 RMS facilities not directly available to a VAX-11 PASCAL
program.

A user-action function is expected to perform the RMS tasks that would have
been invoked automatically, but it may also perform additional tasks. The
required tasks are SOPEN and $CONNECT for existing files, and $CREATE
and $SCONNECT for new files. The function should return a value indicating
whether the file was successfully opened. More extensive information on the
user-action parameter is supplied in the VAX-11 PASCAL User’s Guide.

8.3.1.11 Examples
1. PROGRAM Main (Userguide)s

VAR)
Userduide 3 TEXT:

+

OPEN (Userguidel}s

When the OPEN procedure is executed, the system first attempts to use
Userguide as a logical name. If no such logical name is assigned, the
system creates the file USERGUIDE.DAT in the default device and direc-
tory on the local computer. If Userguide had not been specified as an
external file in the program header, the OPEN procedure would have
created an internal file. By default, the file is created with a record length
of 133 bytes and RMS records of variable length. The system then opens
the file for sequential access.

2. OPEN (Albums
‘DBL:TEASTWESTIINVENT Y
ACCESS.METHOD := DIRECT:
HISTORY = 0OLD):

This example opens the existing VAX/VMS file DB1:[EASTWEST]IN-
VENT.DAT for direct access. The VAX/VMS file is known to the
PASCAL program as the file variable Albums. The order of the parame-
ters for this OPEN procedure has been changed by the use of nonposi-
tional parameter names.

3. OPEN (Solar:
"Ennerdy’ s
HISTORY := NEW:
RECORD_TYPE := FIXED) 3

This procedure creates a file with the VAX/VMS specification designated
by the logical name Energy. The file is created with fixed-length RMS
records.

Input and Output

4, OPEN (Journal._fccounts
CJOURNAL . DAT 7
HISTORY 1= UNENOEN .
ACCESS METHOD = KEYED:
ORGANIZATION 1= INDEXHEDR)

If the file JOURNAL.DAT already exists, this procedure will open it;
otherwise, a new file named JOURNAL.DAT will be created with the
specified characteristics. If the file does exist, it must have the same
characteristics as those in the parameter list of the OPEN procedure. The
file is opened with indexed organization for keyed access.

5. 0OPEN {ChecKingBalange s
ORGANIZATION 1= RELATIVE
ALCESS METHOD = DIRECT
USER.DACTION = Open._Checkingls

This procedure opens the file CheckingBalance by calling the user-action
function Open__Checking. The Open__Checking function should perform
the RMS tasks $CREATE and $CONNECT, in addition to any other
operations. The function returns a value indicating whether the file was
successfully opened with relative organization for direct access.

8.3.2 CLOSE Procedure
The CLOSE procedure closes an open file.

Syntax

1. CLOSE (file-variable
[disposition]],
[user-action],
[ERROR := error-recovery])

2. FILE__VARIABLE := file-variable
CLOSE (DISPOSITION := disposition. ‘)
USER_ACTION := user-action
ERROR := error-recovery

file-variable
The name of the file variable associated with the file to be closed.

Except for the file variable, all parameters to the CLOSE procedure are op-
tional. If the nonpositional parameter names are not used, as in syntax 1, the
parameters must be in the order specified. If nonpositional parameter names
are used, as in syntax 2, the parameters can be specified in any order.

The file may be in any mode before the CLOSE procedure is called. Execution
of CLOSE sets the mode to Undefined.

Execution of the CLOSE procedure causes the system to close the file and, if
the file is internal, .to delete it. Each file is automatically closed when control
passes from the block in which it is declared.

You cannot close a file that has not been opened either explicitly by the
OPEN procedure or implicitly by the RESET or REWRITE procedure. If you
attempt to close a file that was never opened, an error occurs.

Input and Output 8-13

8.3.2.1 Disposition—SAVE, DELETE, PRINT, PRINT_DELETE, SUBMIT, or
SUBMIT_DELETE — The disposition parameter describes what is to be done
with the file when it is closed. The parameter values and the defaults are the
same as those for the disposition parameter in the OPEN procedure (refer to
Table 8-4).

If a disposition value was specified in the OPEN procedure, an identical
disposition value is usually specified in the CLOSE procedure. If the two
values are different, the value in the CLOSE procedure takes precedence.

8.3.2.2 User Action — The user-action parameter causes the Run-Time Li-
brary to call a user-written function to close the file instead of closing the file
according to its usual defaults. The user-action parameter allows access to
VAX-11 RMS facilities not explicitly available to a PASCAL program.

A user-action function is expected to perform the RMS $CLOSE task that

‘would have been invoked automatically, but it may perform additional tasks.

The function should return a value indicating whether the file was success-
fully closed. More extensive information on the user-action parameter is sup-
plied in the VAX-11 PASCAL User’s Guide.

8.3.2.3 Examples

1. CLOSE (Albums)}
This procedure closes the file Albums and deletes it if it is an internal file.

2. CLOSE (Products:
DISPOSITION = PRINT.DELETED!S

This procedure closes the files Products, submits it to the line printer, and
deletes it after the hard copy is produced. The file must not have been
opened with a file history of READONLY.

3. CLOSE (Shoelnventory.
USER_ACTION = Close.Filel)s

This procedure calls the user-action function Close__File, which must
perform the RMS task $CLOSE in addition to any other operations. The
function must return a value to indicate whether the file Shoelnventory
was successfully closed.

8.4 Sequential Access Input Procedures

8-14

This section describes input procedures that apply primarily to files opened
for sequential access; however, these procedures can also be used on files
opened for direct and keyed access.

The sequential access input procedures are:
e GET

e READ

e RESET

Input and Output

8.4.1 GET Procedure

The GET procedure advances the file position and reads the next component
of the file into the file buffer variable. If the file has relative or indexed
organization, the component is also locked.

Syntax
GET (file-variable [[ERROR = error-recovery]])

file-variable
The name of the file variable associated with the input file.

error-recovery

The parameter value that indicates the action to be taken if an error
occurs while the GET procedure is executing (see Section 8.2).

Before the GET procedure is used for the first time to read one or more file
components, the file must be in Inspection mode and prepared for reading
input. Depending on the access method specified when the file was opened,
you can prepare the file for input in the following ways:

e If the file is open for sequential access, call the RESET procedure. RESET
sets the mode to Inspection, advances the file position to the first compo-
nent, and assigns the component’s value to the file buffer variable.

e If the file is open for direct access, ‘call either the RESET or FIND proce-
dure, either of which positions the file.

e If the file is open for keyed access, call the FINDK, RESET, or RESETK
procedure to position the file.

As aresult of the GET procedure, the file remains in Inspection mode, and the
file position advances to the next component. This component is locked and
EOF and UFB are set to FALSE. Unless the end-of-file marker is encoun-
‘tered, the file buffer variable takes on the value of that component. If no
component is found, EOF and UFB are set to TRUE. The following example
shows the use of GET:

RESET (Books);

NMewrec := BooKs™3
GET {(BooKs)i

After execution of the RESET procedure, the value of the file buffer variable
Books” is equal to the value of the first component of the file. The assignment
statement assigns this value to the variable Newrec. The GET procedure then
assigns the value of the second component to Books®”, advancing the file
position to the second component. Another GET procedure would advance the
file position to the third component. This sequence of events is illustrated in
Figure 8-1.

Input and Output 8-15

8-16

Beginning e o o EOF

of File
Q T
|
|
RESET GET
(Books) (Books)
Beginning N o o EOF
of File

o

1 1
RESET GET GET
(Books) (Books) (Books)

ZK-103-81

Figure 8-1: File Position After GET

By using the GET procedure repeatedly, you can read sequentially through a
file.

When called for a file with relative organization, GET skips any nonexistent
components to find the next component. A successful GET operation locks the
component and sets EOF and UFB to FALSE. If a component is not found,
EOF and UFB become TRUE.

When you reach the end of the file, EOF automatically becomes TRUE and
the file buffer variable becomes undefined (UFB is TRUE). If GET is used
when EOF is TRUE, a run-time error occurs and program execution is
aborted.

Example

GET (Fhones) 3

This example reads the next component of the file Phones into the file buffer

variable Phones”. Prior to executing GET, the value of EOF (Phones) must be
FALSE; if it is TRUE, an error occurs.

8.4.2 READ Procedure

The READ procedure reads one or more file components into a variable.
Syntax
READ ([[file-variable,] {variable-identifier},... [, ERROR := error-recoveryl)

file-variable

The name of the file variable associated with the input file. If you omit
the name of the file, the default is INPUT.

Input and Output

variable-identifier

The name of the variable into which a file component will be read;
multiple identifiers must be separated with commas.

error-recovery

The parameter value that indicates the action to be taken if an error
occurs while the READ procedure is executing (see Section 8.2).

The file must be in Inspection mode before READ is called. The file remains
in Inspection mode after execution of a READ procedure.

By definition, the READ procedure for a nontext file performs an assignment
statement, a GET procedure, and an UNLOCK procedure for each variable.
Thus, the procedure call

READ (file-variable, variable-identifier);
is similar to

variable-identifier := file-variable™;
GET (file-variable);
UNLOCK (file-variable);

The READ procedure reads from the file until it has found a value for each
variable in the list. The first value read is assigned to the first variable in the
list, the second value read is assigned to the second variable, and so on. The
values and the variables must be of assignment-compatible types. Reading
stops if an error occurs.

For a text file, more than one file component (that is, more than one charac-
ter) can be read into a single variable. For example, many text file compo-
nents can be read into a string or numeric variable. The READ procedure
repeats the assignment, GET, and UNLOCK process until it has read a se-
quence of characters that represent a legal value for the next variable in the
parameter list. The procedure continues to read components from the file
until it has assigned a value to each variable in the list.

After the last character has been read from a line of a text file, EOLN is
TRUE and the file buffer variable contains a space. Unless you are reading
into a character or string variable, a call to READ at this point skips over the
end-of-line marker and positions the file at the beginning of the next line. If
you are reading into a variable of type CHAR when EOLN is TRUE, the space
is read and assigned to the variable, and the file position advances. If you are
reading into a string variable when EOLN becomes TRUE, the file position
does not change. In the latter case, you should do a READLN to advance the
file position past the end-of-line marker.

Values from a text file can be read into variables of integer, real, character,
string, and enumerated types. Text file values to be read into integer, real,
and enumerated-type variables can be preceded in the file by any number of
spaces, tabs, and end-of-line markers. Values to be read into character varia-
bles, however, must not be separated because they are read and assigned
character by character. If an invalid character is encountered during the
reading of a text file item, the value being formed is terminated.

Input and Output 8-17

8-18

When reading constant identifiers of an enumerated type from a text file, the
PASCAL run-time system reads all characters in the identifier but recognizes
only the first 31 characters. You need input only enough characters to make
the identifier unique among the other constant identifiers of its type. Text
input data for enumerated types may consist of both lower- and uppercase
characters.

Boolean input data in text files obey the same rules as other enumerated
types. For example, all of the following character combinations that could
appear in a text file are equivalent: TRUE, True, T, t, tr.

You can use the READ procedure to read a sequence of characters from a text
file into a variable of type PACKED ARRAY OF CHAR. Successive charac-
ters from the file are assigned to components of the array, in order, until each
component has been assigned a value. If any characters remain on the line
after the array is full, the next READ procedure begins with the next charac-
ter on that line. If the end of the line is encountered before the array is full,
spaces are assigned to the remaining components.

You can also read text file characters into a variable of type VARYING OF
CHAR. Characters are assigned to a VARYING string in a manner similar to
that in which they are assigned to a packed array. However, if the end-of-line
marker is encountered before the VARYING string has been filled to its maxi-
mum length, the VARYING string value is not padded with spaces. Instead,
its current length is set equal to the number of characters that have been read
into it. If you call the READ procedure with a parameter of type VARYING
OF CHAR and EOLN is TRUE, no characters are read into the VARYING
string; its current length is set to zero.

Every nonempty text file ends with an end-of-line marker and an end-of-file
marker. Therefore, the function EOF never becomes TRUE when you are
reading strings with the READ procedure. To test EOF when reading strings,
use a READLN procedure to advance the file beyond the end-of-line marker.

Examples

1. READ (Temp: Ade: Weidht)}

Assume that Temp, Age, and Weight are real variables, and that the
following values have been entered at the terminal:

8.6 11 758

The variable Temp is assigned the value 98.6, Age is assigned the value
11.0, and Weight is assigned the value 75.0. You need not type all three
values on the same line.
2. TYPE
String = PACKED ARRAYL[1.,.201 OF CHAR:

VAR
Names 1 TEXTS
Press Yeep 3 Strinds
+
.
3

READ (Namess Press Veer)j

Input and Output

This program fragment declares and reads the file Names, which contains
the following character strings:

John F. Kennedy Lyndon B. Johnson Lyndon B. Johnson SEOLN:
Hubert H. Humphrey C{EOLNX
Richard M. Nixon Spiro T. Adnew TEOLNZ

The first call to the READ procedure sets Pres equal to the 20-character
string ‘John F. Kennedy @~ and Veep equal to ‘Lyndon B.
Johnson “. The second call to the procedure assigns the value "Lyndon
B. Johnson ’ to Pres and, after encountering the end-of-line marker,
fills the array Veep with spaces. The file position will not advance to the
beginning of the next line until a READLN is performed.
3. TYPE
Color = {(Red:; Fire_Endine_Green: Blue: Black)i

VAR
lLight : Color:

+

READ (Lidght)3

In this example, if the letter R is read, the variable Color is assigned the
value Red. However, if the letters Redx are read, an error occurs. If the
letters Bl are read, an error also occurs since Bl is not unique. However,
the letters Blu are unique and would be interpreted as the constant identi-
fier Blue.

8.4.3 RESET Procedure
The RESET procedure readies a file for reading.

Syntax
RESET (file-variable [, ERROR := error-recovery])

file-variable
The name of the file variable associated with the input file.

error-recovery

The parameter value that indicates the action to be taken if an error
occurs while the RESET procedure is executing (see Section 8.2).

The file may be in any mode before RESET is called to set the mode to
Inspection.

If the file is an external file and is not already open, RESET opens it using the
defaults listed in Tables 8-3 and 8-4. You cannot use RESET to create a file.

After execution of RESET, the file is positioned at the first component, and
the file buffer variable contains the value of this component. If the file is not
empty, EOF and UFB are FALSE and the first component is locked to pre-
-vent access by other processes. If the file is empty, EOF and UFB are TRUE.
If the file does not-exist, RESET does not create it, but returns an error at run
time.

Input and Output 8-19

.

8-20

You should call RESET before reading any file with sequential organization
except the predeclared file INPUT. The RESET procedure removes the end-
of-file marker from any file connected to a terminal device (including
INPUT), thus allowing reading from the file to continue. If you call RESET
for the predeclared file OUTPUT, an error occurs.

A call to RESET on a relative file opened for direct access positions the file at
its first existing component.

A call to RESET on an indexed file opened for keyed access positions the file
at the first component relative to the primary key.

Examples

1. OPEN (Phones:
‘Phones.Dat
ACCESS _METHOD s= Direct)
RESET {(Phones!s

These statements open the file variable Phones for direct access. After
execution of the OPEN and RESET procedures, you can use the FIND
procedure for direct access to the components of the file Phones.

2. RESET (MWeidhts)}

If the file variable Weights is already open, this procedure call prepares it
for reading and assigns the value of the first file component to Weights ™. If
the file is not open, RESET causes the system to perform an OPEN by
default. If Weights is an external file, its file history will be OLD. Other-
wise, an error occurs.

8.5 Sequential Access Output Procedures

This section describes output procedures that apply primarily to files opened
for sequential access; however, these procedures can also be used on direct-
and keyed-access files.

The following sequential output procedures are described:
e PUT

e REWRITE

e WRITE

8.5.1 PUT Procedure
The PUT procedure adds a new component to a file.

Syntax
PUT (file-variable [[ERROR := error-recovery])

file-variable
The name of the file variable associated with the output file.

error-recovery

The parameter value that indicates the action to be taken if an error
occurs while the PUT procedure is executing (see Section 8.2).

Input and Output

Before executing the first PUT procedure on a sequential-access file, you must
execute a REWRITE or TRUNCATE procedure to set the file to Generation
mode. Both REWRITE and TRUNCATE set EOF to TRUE, thus preparing
the file for output. (Note that TRUNCATE is legal only on files with sequen-
tial organization; see Section 8.6.3.) If the file has indexed organization, the
components to be written must be ordered by primary key.

Before executing the first PUT on a file opened for direct access, you must
execute a REWRITE or LOCATE procedure to position the file.

The PUT procedure writes the value of the file buffer variable at the end of
the specified sequential- or direct-access file. After execution of the PUT

procedure, the value of the file buffer variable becomes undefined (UFB is
TRUE). EOF remains TRUE and the file remains in Generation mode.

You may call the PUT procedure for a keyed-access file, regardless of the file’s
mode (Inspection, Generation, or Undefined). PUT causes the file buffer vari-
able to be written to the file at the position indicated by the key. If the
component has more than one key, the file buffer variable is inserted in each
index at the appropriate location. After execution of PUT, a keyed-access file
is in Generation mode.

Example
PROGRAM Bookfile (INPUT: DUTPUT: Books):

TYPE
Stringd = PACKED ARRAYL1..401 OF CHARS
Bookreec = RECORD
Author ¢ Strings
Title : Strings
END 3

UAR
Mewbook : BooKreci
Books ¢ FILE OF Bookrecgs
N s INTEGERS

BEGIN
REWRITE (Books?s
FOR N == 1 TO 10 DO
BEGIN
WITH Newbook DO
BEGIN
WRITE ('Titles 33
READLN (Titled s
WRITE (‘Author:)i
READLN (Author) s
EMD 3§
Books® = NewbooKk3s
PUT (Booksl)s
END 3
CLOSE (Books) i
END .

This program writes the first 10 records read from the terminal into the file
Books. The records are typed at the terminal and assigned to the record
variable Newbook. They consist of two 40-character strings denoting a book’s
author and title. The FOR loop accepts 10 values for Newbook, assigning each
new record to the file buffer variable Books". The PUT statement writes the
value of Books" into the file for each input record.

Input and Output 8-21

8-22

8.5.2 REWRITE Procedure
The REWRITE procedure readies a file for output.

Syntax
REWRITE (file-variable [, ERROR := error-recovery])

file-variable
The name of the file variable associated with the output file.

error-recovery

The parameter value that indicates the action to be taken if an error
occurs while the REWRITE procedure is executing (see Section 8.2).

The file can be in any mode before REWRITE is called to set the mode to
Generation. If the file variable has not been opened, REWRITE creates and
opens it using the defaults listed in Tables 8-3 and 8-4.

The REWRITE procedure truncates a file to length zero and sets EOF and
UFB to TRUE. You can then write new components into the file with the
PUT, WRITE, and WRITELN procedures (WRITELN is defined only for text
files). After the file is open, successive calls to REWRITE truncate the exist-
ing file to length zero; they do not create new versions of the file.

To update an existing file with sequential organization, you must either use
the TRUNCATE procedure or copy the contents to another file, specifying
new values for the components you need to update.

REWRITE, when applied to a file with relative or indexed organization, de-
letes the contents of the file and sets the file position to the beginning of an
empty file.

Examples
1. REWRITE {(Storms) i

If the file variable Storms is already open, this REWRITE procedure
prepares the file for writing, clears it of old data, and sets the file position
to the beginning of the file. If Storms is not open, a new version is created
with the same defaults as for the OPEN procedure (Section 8.3.1).
2. OPEM {(Ratinds:

TLINSURANCEICARS . DAT 7

HISTORY := OLD.

RECORD TYPE 1= FIXED)$
REWRITE (Ratings)i

The OPEN procedure opens the file variable Ratings, which is associated
with the VAX/VMS file CARS.DAT in directory [INSURANCE]. The
REWRITE procedure discards the current contents of the file Ratings and
sets the file position to the beginning of the file. After execution of this
procedure, EOF (Ratings) is TRUE.

Input and Output

8.5.3 WRITE Procedure
The WRITE procedure assigns data to an output file.

Syntax
WRITE ([file-variable,]{expressioni,... [, ERROR := error-recovery])

file-variable

The name of the file variable associated with the output file. If you omit
the name of the file, the default is OUTPUT.

expression
A compile-time or run-time expression whose value is to be written;
multiple output values must be separated with commas. An output value
must have the same type as the file components; however, values written
to a text file can also be expressions of any ordinal, real, or string type.

error-recovery

The parameter value that indicates the action to be taken if an error
occurs while the WRITE procedure is executing (see Section 8.2).

The file (unless it is a keyed-access file) must be in Generation mode before
WRITE is called; it remains in that mode after WRITE has executed.

By definition, a WRITE to a nontext file performs an assignment to the file
buffer variable and a PUT for each output value. For nontext files, the types
of the output values must be assignment compatible with the component type
of the file. Thus, the procedure call

WRITE (file-variable, expression);
is similar to

file-variable™ := expression;

PUT (file-variable);
For text files, the WRITE procedure converts the value of each expression to a
sequence of characters. It repeats the assignment and PUT process until all

the values have been written to the file. See Section 8.7.8 for information on
using WRITE with text files.

Examples

1. TYFE
String = PACKED ARRAYLL..E01 OF CHARS

VAR
Mames FILE OF Strings’
Fres Strings
WRITE (Names: ‘Millard Fillwore fy Presii

This example writes two components in the file Names. The first is the 20-
character string constant "“Millard Fillmore “. The second is the value
of the string variable Pres.

Input and Output 8-23

2. VAR
Fain.fAmts 3 FILE OF REAL:
fud. Fain: Max.Rain: Min.Fain @ REALS

WRITE (Rain.fAmts: Avd_Fain: Min.Rairn: 0,317 Max_ Fainds

The file Rain__Amts contains real numbers indicating amounts of rain-
fall. The WRITE procedure writes the values of the variables Avg__Rain
and Min__Rain into the file, and follows them with the real constant 0.312
and the value of the variable Max__ Rain.

8.6 Miscellaneous Routines

8-24

The miscellaneous routines described in this section are generally used when
dealing with sequential access files. In some cases, as indicated, the routines
can also be used on direct or keyed access files.

e KOF (also legal on files opened for direct or keyed access)

e STATUS (also legal on files opened for direct or keyed access)
e TRUNCATE

e UFB (also legal on files opened for direct access)

e UNLOCK (also legal on files opened for direct or keyed access)

8.6.1 EOF Function

The EOF (end-of-file) function indicates whether the file pointer is positioned
after the last component in a file.
Syntax

EOF [(file-variable)]

file-variable

The name of the file variable associated with the input file. If you omit
the name of the file, the default is INPUT.

The file may be in either Inspection or Generation mode before EOF is called;
however, end-of-file must be well defined. The input operations GET,
RESET, FIND, and FINDK are guaranteed to leave end-of-file well defined.
The file mode does not change after EOF has executed.

"The Boolean function EOF returns TRUE when the file pointer is positioned

after the last component in the file. The EOF function returns FALSE up to
and including the time when the last component of the input file is read into
the file buffer. You must attempt to get another file component after the last
to determine whether the file is positioned at end-of-file.

When EOF is tested for a file with relative organization opened for direct
access, the result is TRUE if the file is in Inspection mode and the last GET or
RESET operation positioned the file beyond the last existing component. If
the file is in Generation or Undefined mode, the result of EOF is undefined.

Input and Output

When EOF is tested for a file with indexed organization opened for keyed
access, the result is TRUE if the file is in Inspection mode and the last
FINDK, GET, RESET, or RESETK operation positioned the file beyond the
last component with the current key number. Successful attempts at FINDK,
GET, RESET, and RESETK cause EOF to be FALSE. If the file is not in
Inspection mode, EOF is undefined.

If you attempt to read a file after EOF becomes TRUE, an error results.

Examples
1. Coupons = 01
WHILE NOT EOF DO
BEGIHN
RE (Couron.fmount ¥
Courpons = Courons + Couron.fmount§

ERD S

This example calculates the total value of the coupons contained in the
file INPUT. The loop is performed while the EOF function returns
FALSE.
2., MWHILE HNOT EOF (MasterFile) DO

BEGIN

FEADLY (MasterFiles Customerli

IF Customer:Mew <% Yes

THER

Old s= 01d + 1

This example counts the numbers of old and new customers in a master
file. The loop is performed while EOF is FALSE.

8.6.2 STATUS Function

The STATUS function indicates the status of a file following the last opera-
tion performed on it.

Syntax
STATUS (file-variable)

file-variable
The name of the file variable associated with the file to be tested.

The file may be in any mode before STATUS is called; unless an error occurs,
STATUS does not change the file mode upon execution.

The STATUS function returns one of the following integer codes that indicate
the previous operation’s effect on the file: 0 indicates a successful operation;
-1 indicates that the previous operation encountered an end-of-file; a positive
integer value indicates that the previous operation resulted in an error. The
specific error condition codes returned by the STATUS function are listed in
the VAX-11 PASCAL User’s Guide.

Input and Output 8-25

8-26

STATUS never signals an error condition using the VAX-11 Condition Han-
dling Facility; rather, it reports an error status in its return value.

A test by the STATUS function on a text file causes delayed device access to
occur, thus filling the file buffer with the next file component (see Section
8.10). Therefore, EOF, EOLN, UFB, and STATUS never return an error code
following a successful STATUS function.

Example
RESET (Filel, ERROR := CONTINUE) S
IF STATUS (Filel) » O
THEN

WRITELN (‘Cannot access first record’)
ELSE

IF 85TATUS (Filel) < 0O

THEN

WRITELN (‘File is empty ')
ELSE

READ (Filel)}

This example resets a file and prepares it for reading. Following the RESET,
the file status is tested first for an error condition and then for an end-of-file.
If the RESET procedure encounters either of these conditions, an appropriate
error message is printed. If the STATUS function indicates that the RESET
was successful, the first record is read from the file.

8.6.3 TRUNCATE Procedure

The TRUNCATE procedure indicates that the current file component and all
components following it are to be deleted.
Syntax

TRUNCATE (file-variable [, ERROR := error-recovery|)

file-variable
The name of the file variable associated with the file to be truncated.

error-recovery

The parameter value that indicates the action to be taken if an error
occurs while the TRUNCATE procedure is executing (see Section 8.2).

The file must be in Inspection mode before TRUNCATE is called. After the
procedure’s execution, the mode is set to Generation so that output can be
written to the file.

The current component is the one at which the file buffer is positioned. After
the appropriate components have been deleted, the file remains positioned at
the new end-of-file, but the file buffer itself is undefined. Thus, EOF and UFB
are both set to TRUE.

TRUNCATE can be used only on a file that has sequential organization.

Input and Output

Example
TRUNCATE (MasterFile):

This procedure deletes components from the sequential file MasterFile, begin-
ning with the current component and continuing until EOF is TRUE. When
the operation is complete, EOF (MasterFile) and UFB (MasterFile) are
TRUE and new data may be written at the end of MasterFile.

8.6.4 UFB Function

The UFB (undefined file buffer) function returns a Boolean value to indicate
whether the last file operation gave the file buffer an undefined status.

Syntax
UFB (file-variable)

file-variable
The name of the file variable associated with the file whose buffer is
being tested.

The file may be in any mode before UFB is called; execution of UFB does not
change the file mode.

UFB tests the effect of the last I/O operation done to the file. UFB returns
FALSE if a successful GET, FIND, FINDK, RESET, or RESETK operation
has filled the file buffer. GET, FIND, FINDK, RESET, and RESETK proce-
dure calls that do not fill the file buffer set UFB to TRUE. UFB also returns
TRUE after DELETE, LOCATE, PUT, REWRITE, TRUNCATE, and
UPDATE procedures have left the contents of the file buffer unknown.

Assigning a new value to the file buffer with an assignment statement does
not change the value of UFB.

Example

FIND {(Supprliess December):
IF NOT UFB (Surplies)
THEN

Inventory 2= Inventory - Supprlies”;
If the variable December has a value of 12, the FIND procedure attempts to
find the twelfth component of the file Supplies. If the FIND procedure is
successful, Supplies” assumes the value of this component and UFB (Sup-
plies) is FALSE. If, however, the FIND procedure is unable to find the twelfth
component of the file, UFB (Supplies) returns TRUE. In this example, the
value of Supplies” is subtracted from the value of Inventory only if the FIND
procedure is successful.

8.6.5 UNLOCK Procedure

The UNLOCK procedure releases the current file component for access by
other processes.

Syntax
UNLOCK (file-variable [, ERROR := error-recovery])

Input and Output 8-27

file-variable

The name of the file variable associafed with the file whose component is
to be unlocked.

error-recovery

The parameter value that indicates the action to be taken if an error
occurs while the UNLOCK procedure is executing (see Section 8.2).

The file must be in Inspection mode before UNLOCK is called; it remains in
Inspection mode after UNLOCK has executed.

If the component at which the file pointer is positioned has been locked, the
UNLOCK procedure releases it.

Although UNLOCK may be used on files with any organization, no unlocking
is performed on files with sequential organization. When such a file is opened,
it is locked as a whole, rather than by individual components, with the SHAR-
ING parameter. However, a call to the UNLOCK procedure for a sequential
file does not cause an error.

Example
UNLOCK (SalesFile) s
If SalesFile has direct or indexed organization, the UNLOCK procedure re-

leases the contents of the current component. If SalesFile has sequential or-
ganization, the procedure has no effect.

8.7 Text File Manipulation

8-28

The following routines apply only to the handling of text files (including
INPUT and OUTPUT). The following routines are described:

¢ EOLN

e LINELIMIT
e PAGE

e READLN

e WRITELN

In addition, the use of the output procedures WRITE, WRITELN, and WRI-
TEV with a field width specification for more readable output is described in
Sections 8.7.6 and 8.7.7, and prompting on terminal files is discussed in Sec-
tion 8.7.8. (The WRITEV procedure, which writes the values of expressions to
a VARYING string, is fully described in Section 7.6.9.)

8.7.1 EOLN Function

The EOLN (end-of-line) function tests for the end-of-line marker within a
text file.

Syntax .
EOLN [(file-variable)]

Input and Output

file-variable

The name of a file variable associated with a text file. If you omit the
name of the file, the default is INPUT.

The file must be in Inspection mode and EOF must be FALSE before EOLN
is called. EOLN leaves the file in Inspection mode.

The Boolean EOLN function returns TRUE when the file pointer is positioned
after the last character in a line. When EOLN is TRUE, the file buffer con-
tains a blank character.

The EOLN function returns FALSE when the last component in the line is
read into the file buffer. Another character must be read to cause EOLN to
return TRUE and to cause the file buffer to be positioned at the end-of-line
marker following the last character of the line. If you use the EOLN function
on a nontext file, an error occurs.

Examples

1. Num_Chars = 03
WHILE NOT EOLN DO
BEGIN
READ (Chis
Mum.Chars 3= Num.Chars + 13
ERND S
READLNS

This example assumes that a new line of input is being scanned and it
calculates the number of characters in that line. The WHILE statement
continues to execute until the end-of-line marker is read.

2. WHILE NOT EOF {(MasterFile} DO

BEGIN
WHILE NOT EOLM (MasterFile) DO
BEGIN
READ (MasterFile:s H)¥i
IF NOT (¥ IN [L/A° .27+ a2/ :°07,, 8711
THERM
Err 2= Err + 13
END 3
READLN (MasterFile}s
END§

This example scans the characters on each line of a text file called Master-
File and checks for characters that are neither digits nor letters. If a
nonnumeric or nonalphabetic character is encountered in the file, the
counter Err is incremented by one. The loop is executed until the last
component in the file is read.

8.7.2 LINELIMIT Procedure

The LINELIMIT procedure terminates execution of the program after a speci-
fied number of lines has been written into a text file.

Syntax
LINELIMIT (file-variable, n [, ERROR :=error-recovery])

Input and Output 8-29

8-30

file-variable

The name of the file variable associated with the text file to which this
limit applies.

A positive integer expression that indicates the number of lines that can
be written to the file before execution terminates.

error-recovery
The parameter value that indicates the action to be taken if an error
occurs while the LINELIMIT procedure is executing (see Section 8.2).

The file may be in ahy mode before LINELIMIT is called; the file mode does
not change after LINELIMIT has executed.

- The VAX-11 PASCAL run-time system determines a default line limit for

text files by translating the logical name PASSLINELIMIT as a string of
decimal digits. If this logical name has not been defined, there is no default
line limit. You can override the default by calling LINELIMIT with a smaller
or larger value for n. '

After the number of lines written into the file has reached the line limit,
program execution terminates unless the WRITELN procedure that exceeded
the line limit includes the ERROR:=CONTINUE parameter.

Example

LINELIMIT (Debts, 100)3

Execution of the program terminates after 100 lines have been written into the
text file Debts.

8.7.3 PAGE Procedure

The PAGE procedure skips from the current page to the next page of a text
file.

Syntax
PAGE (file-variable [, ERROR := error-recovery])

file-variable
The name of a file variable associated with a text file.

error-recovery

The parameter value that indicates the action to be taken if an error
occurs while the PAGE procedure is executing (see Section 8.2).

The file must be in Generation mode before the PAGE procedure is called; the
mode does not change as a result of the procedure’s execution.

Execution of the PAGE procedure requires the system to clear the record
buffer, if it contains data, by performing a WRITELN, and then to advance
the output to a new page of the specified text file. The next line written to the
file begins on the second line of a new page (the first line is always empty).
You can use this procedure only on text files. If you specify a file of any other
type, an error occurs.

Input and Output

The value of the page eject record that is output to the file depends on the
carriage-control format for that file. When CARRIAGE or FORTRAN is en-
abled, the page eject record is equivalent to the carriage control character ’1’.
When LIST, NOCARRIAGE, or NONE is enabled, the page eject record is a
single form-feed character.

Examples

1. PAGE {(Userguide)s’
This PAGE procedure causes a page eject record to be written in the text
file Userguide.

2. PAGE (QUTPUT)

This PAGE procedure writes a page eject record to the terminal (in in-
teractive mode) or in the batch log file (in batch mode).

8.7.4 READLN Procedure
The READLN procedure reads lines of data from a text file.

Syntax
READLN ([file-variable,] {variable-identitier},... |, ERROR := error-recovery])

file-variable

The name of the file variable associated with the text file to be read. If
you omit the name of the file, the default is INPUT.

variable-identifier

The name of the variable into which a value will be read; multiple identi-
fiers must be separated with commas. If you do not specify any variable
names, READLN skips a line in the specified file.

error-recovery

The parameter value that indicates the action to be taken if an error
occurs while the READLN procedure is executing (see Section 8.2).

The file must be in Inspection mode before READLN is called; it remains in
that mode after the procedure’s execution.

The READLN procedure reads values from a text file. After reading values for
all the listed variables, the READLN procedure skips over any characters
remaining on the current line and positions the file at the beginning of the
next line. All the values need not be on a single line; READLN continues until
values have been assigned to all the specified variables, even if this process
results in the reading of several lines of the input file.

When applied to several variables, READLN performs the following sequence:

READ (file-variable, {variable-identifier},...);
READLN (file-variable);

EOLN is TRUE after a READLN only if the new line is empty.

Input and Output 8-31

You can use the READLN procedure to read integers, real numbers, charac-
ters, strings, and constants of enumerated types. The values in the file must
be separated as for the READ procedure. The rules governing the reading of
values from text files are presented with the READ procedure (see Section

8.4.2).
Example
TYPE
Strindg = PACKED ARRAYL1.,.201 OF CHAR:
UaRr
Names : TEXT:
Press Yeep : Stringi

+

+

READLN (Namess Pres,» Yeep)i

This program fragment declares and reads the file Names, which contains the
following characters:

John F. Kennedy Lyndon B, Johnson Lyndon B. Johnson TEOLN
Hubert H, Humphrey <EQLNZ

Richard M, Nixon Sepiro T, Adrnew SEOLN®

CTEOLN>

ZEQF =

The READLN procedure reads the values ‘John F. Kennedy for Pres

and 'Lyndon B. Johnson ’ for Veep. It then skips to the next line, ignoring
the remaining characters on the first line. Subsequent execution of the proce-
dure assigns the value "Hubert H. Humphrey ° to Pres and the space de-
tected as the end-of-line marker to Veep. A third call to the procedure reads
‘Richard M. Nixon " into Pres and "Spiro T. Agnew " into Veep.
The procedure then skips past the end-of-line marker to the beginning of the
next line. Another call to READLN sets EOLN and EOF equal to TRUE.

8.7.5 WRITELN Procedure
The WRITELN procedure writes a line of data to a text file.

Syntax
WRITELN [([file-variable,]{expression,... [, ERROR := error-recovery])]

file-variablé
The name of the file variable associated with the text file to be written. If
you omit the name of the file, the default is OUTPUT.

expression

A compile-time or run-time expression whose value is to be written;
multiple output values must be separated by commas. The expressions
can be of any ordinal, real, or string type and are written with a default
field width (see Section 8.7.6).

error-recovery

The parameter value that indicates the action to be taken if an error
occurs while the WRITELN procedure is executing (see Section 8.2).

8-32 ° Input and Output

The file must be in Generation mode before WRITELN is called; it remains in
that mode after WRITELN has executed.

The WRITELN procedure writes the specified values into the text file, inserts
an end-of-line marker after the end of the current line, and then positions the
file at the beginning of the next line. When applied to several expressions,
WRITELN performs the following sequence:

WRITE (file-variable, {expressioni,...);
WRITELN;

For example:

WRITELN (Userduides ‘This manual describes how to interact?’)3

As a result of this procedure, the string is written to the text file Userguide,
followed by an end-of-line marker. and skips to the next line.

When you open a text file or a file of type VARYING OF CHAR, you can
specify the value CARRIAGE (or FORTRAN) for the carriage-control param-
eter. If you select CARRIAGE (or FORTRAN) format, the first character of
each output line is treated as a carriage-control character when output is
directed to carriage-control devices, such as a terminal or a line printer. If
output is directed elsewhere, the character is written into the file and will be
read back when the file is opened for input.

Table 8-5 summarizes the carriage-control characters and their effects. For
purposes of carriage control, any characters other than those listed in the
table are ignored.

Table 8-5: Carriage-Control Characters

Character Meaning

7 Overprinting: starts output at the beginning of the current line

Single spacing: starts output at the beginning of the next line

0’ Double spacing: skips a line before starting output
1’ Paging: starts output at the top of a new page
$ Prompting: starts output at the beginning of the next line and

suppresses carriage return at the end of the line

() Prompting with overprinting: suppresses line feed at the beginning of
the line and carriage return at the end of the line; note that this charac-
ter is the ASCII NUL character

The carriage-control character must be the first item in an output text line.
For example, if the text file Tree has been opened with the CARRIAGE
option, you can use the following procedure:

WRITELN (Trees * ‘¢ Stringl: Btrinddli

The first item in the list is a space character. The space indicates that the
values of Stringl and String2 will be printed on a new line when the file is
written to a terminal, line printer, or similar carriage-control device.

Input and Output 8-33

8-34

If you select CARRIAGE format when opening the predeclared file OUTPUT,
you can use the dollar sign ($) character to initiate prompting for input at the
terminal. For example:

WRITELN (‘$How many inches of rain last night?’) 3

This procedure prints the text at the terminal and suppresses the carriage
return. The answer can be typed at the end of the line on which the prompt
appears.

If you specify CARRIAGE, but use an invalid carriage-control character, the
first character in the line is ignored. The output appears with the first charac-
ter truncated.

Examples
1. WRITELN (Class[Il: 7 is the drade for this student. 3

This WRITELN procedure writes a component of the character array
Class to the file OUTPUT.

2. WRITELN;:

A call to WRITELN without a file variable or print list ends the printing
of the current line on the file OUTPUT, which represents the standard
output device (usually the terminal).

3. TYFPE
Strind = PACKED ARRAYILL..231 OF CHAR:

Uak
Newhires = TEXTS
N o2 INTEGERS:
Mewrec @ RECORD
Id @ INTEGERS
Mame s Address 3 Strings
END
OPEN (HNewhires:
CARRIAGE.CONTROL = CARRIAGE::
REWRITE {(Newhires):
WITH Mewrec DO

BEGIN
WRITELN (Newhires: “INew hire # fe IDel s 7 ds s Hameld
WRITELN {(Newhires: ° 7 MName: ‘liwves at: 13

WRITELN (Newhires: © 713
WRITELN {(Newhires: ° 7+ fAddre
END 3

In this example, four lines are written to the text file Newhires. The
output starts at the top of a new page, as directed by the carriage-control
character ‘1°, and appears in the following format:

New hire # 73 is Irvindg Hashington
Irving Hashindgton lTives at:

22 Chestnut St Seattle

Input and Output

8.7.6 Output with Specified Field Width

The output values of a WRITE, WRITELN, or WRITEV (see Section 7.6.9)
procedure can be compile-time or run-time expressions, with values of any
ordinal, real, or string type. Each value is written with a default field width,

which specifies the minimum number of characters to be written for the value.
Table 8-6 lists the default field widths.

Table 8-6: Default Field Widths

Type .Of Item Number of Characters
Printed

INTEGER, UNSIGNED 10

CHAR 1

BOOLEAN 6

Enumerated Size of longest identifier +1 up to 32
REAL 12

DOUBLE 20

QUADRUPLE 40

Character String Length of string

You can override these defaults for a particular value by specifying a field
width in the print list, using the following format:

output:minimum([:fraction]

Both minimum and fraction represent integer expressions with positive or
zero values. The minimum indicates the minimum number of characters to be
written for the value. The fraction, which is permitted only for values of real
types, indicates the number of digits to be written to the right of the decimal
point. The format of the field width specification is identical for the WRITE,
WRITELN, and WRITEV procedures.

By default, real numbers are written in exponential format. Note that regard-

less of the real number’s type, output procedures always prefix the exponent
with the letter E. Each real number in exponential format is preceded by a

blank or a minus sign, and the value of the rightmost digit is rounded. For

example:

WRITELN (Shoesize)}

If the value of Shoesize is 12.5, this procedure produces the following output:

1.23000E+01

To write the value in decimal format, you must specify a field width as in this
example:

WRITELN (Shoesize:S:l)3

Input and Output 8-35

The first integer indicates that a minimum of five characters will be written.
The minimum includes the minus sign, if needed, and the decimal point. The
second integer specifies one digit to the right of the decimal point. The result-
ing output is as follows: :

s
2.5

If the field specified is wider than necessary, the value is written with leading
blanks.

If you try to write an integer, unsigned, or real value in a field that is too
narrow, the field width is expanded to the minimum necessary to write the
value. If you try to write a value of an enumerated type, a Boolean value, or a
string value in a field that is too narrow, the value is truncated on the right.
The truncated identifier is not checked. for uniqueness.

For an expressidn of an enumerated type, the constant identifier denoting the
expression’s value is written. For example:

VAR

Color & (Blue: Yellow: Black: Fire Endine.Green)

4
WRITE My favorite coler is 7 Uolors1®)3

When the value of Color is Yellow, the following is written:

My favorite color is YELLOW

When the value of Color is Fire__Engine__Green, the following appears:
My favorite color is FIRE.ENGINE.GRE
Since the field width specified is not wide enough for all 17 characters in the

identifier, the identifier is truncated after the field is filled. Note that con-
stants of enumerated types are written in all uppercase characters.

8.7.7 Writing Binary, Hexadecimal, and Octal Values

You can use the predeclared conversion functions BIN, HEX, and OCT in
combination with the WRITE, WRITELN, and WRITEV procedures to write
binary, hexadecimal, and octal values. These functions and the WRITEV
procedure are described in detail in the subsections of Section 7.6.

Syntax

WRITE ([file-variable,]
{BIN (expression[, length[, digits])i....)

WRITE ([[file-variable,]
fHEX (expression[, length[, digits]])i....)

WRITE ([file-variable,]
{OCT (expression[, tengthf], digits|])....)

The BIN, HEX, and OCT functions convert the value of the first expression in
the list to its equivalent as a binary, hexadecimal, or octal number. The
resulting digits are returned in a VARYING string.

8-36 Input and Output

The actual parameter list of the conversion function must contain an expres-
sion to be written. Two optional integer parameters specify the length of the
resulting string and the number of significant digits to be returned. If you
omit these parameters, the bit width of the converted value determines the
string length and the number of significant digits. If the converted value is
shorter than the specified length, it is padded with spaces on the left. If the
converted value is longer, it is truncated on the left.

For every expression whose binary, hexadecimal, or octal value you wish to
write, you must call the appropriate conversion function separately with an
actual parameter list. You can call more than one BIN, HEX, or OCT func-
tion in the same output procedure call. Arbitrary items (including pointers)
may be written in binary, hexadecimal, or octal notation to text files.

You can specify field widths with the BIN, HEX, and OCT functions; how-
ever, the results are likely not to be what you expect. For example, suppose
you want to convert the value of I to its hexadecimal equivalent and you want
the converted value to be written in a field three characters wide. You might
write the following procedure call:

WRITELN (HEX (I):3)3
However, since the converted value is longer than the field width specifica-

tion, the value is truncated on the right rather than on the left. Therefore, the
output generated by this procedure would be:

8] 8]
Thus, you should be careful about specifying field widths with BIN, HEX,
and OCT when the converted value could exceed the field width given.
Examples
1. WRITE (HEY {(Pavroll: 10} HEX (Balarv: 12331
The values of the variables Payroll and Salary are converted to their
hexadecimal equivalents. Payroll is printed with 10 characters and Salary

is printed with 12 characters. The output values, preceded by two initial
blanks, might look like this:

O0O031IFE OOOOSHAR

2. WRITELN (OCT (Social_Securitys 14), BIN (Survev: 8))3
The value of the variable Social__Security is converted to its octal equiva-
lent and printed with 14 characters. Then the value of the variable Survey

is converted to its binary equivalent and printed with eight characters. A
sample line of output, preceded by three blanks, might look like this:

O271137762500101110
3. WRITEY (Final_Balance: OCT (Debits: 16), OCT {(Credits: 1B))}

The values of the variables Debits and Credits are converted to their octal
equivalents and written to the string variable Final _Balance with 16
characters each. The output string, preceded by three blanks, might look
like this: ‘

‘ 77777770342 000000337667

Input and Output 8-37

8.7.8 Prompting on Terminal Files

In VAX-11 PASCAL, if you open an interactive terminal file (such as
OUTPUT) with the default carriage-control option LIST, you can use the
WRITE procedure to prompt for input at the terminal. Each time you read
from an interactive terminal file (such as INPUT), the system checks for any
output in the terminal record buffer. If the buffer contains any characters, the
system prints them at the terminal, but suppresses the carriage return at the
end of the line. The output text appears as a prompt, and you can type input
on the same line. For example:

WRITE (‘Name three presidents:’);
READ (Presls Pres2s Presd)s

The system prints the prompt at the terminal, leaving the carriage positioned
just after the colon (:). You can then begin typing input on the same line as
the prompt. When the system executes the READ procedure, it finds the
output string waiting to be printed.

Prompting works only for files associated with interactive terminals. For any
other files, no output is written until the new line is started with a WRITELN.
(Section 8.10 contains more information on prompting.)

Example

WRITE (Numl:3:1: and’ s Num2:53:1: sum to’s (Muml + NumZ):6:1)

In this example, if the value of Numl is 71.1 and the value of Num2 is 29.9,
the resulting output to the terminal is:

71+1 and 28,9 sum to 101.0

Note that the chosen field width causes each of the real numbers to be pre-
ceded by a space.

8.8 Direct Access Procedures

8-38

The following procedures are generally legal only on files opened for direct
access. In some cases, as indicated, the procedures apply to keyed access files
as well.

e DELETE (also legal on files opened for keyed access)
e FIND

e LOCATE

e UPDATE (also legal on files opened for keyed access)

8.8.1 DELETE Procedure
The DELETE procedure deletes the current file component.

Syntax
DELETE (file-variablel[, ERROR := error-recovery]])

Input and Output

file-variable
‘The name of the file variable associated with the file from which a com-
ponent is to be deleted. -

" error-recovery

The parameter value that indicates the action to be taken if an error
occurs while the DELETE procedure is executing (see Section 8.2).

The file must be in Inspection mode before DELETE is called; the mode does
not change after the procedure’s execution.

When the DELETE procedure is called, the current component, as indicated
by the file buffer, must have already been locked by a successful FIND,
FINDK, GET, RESET, or RESETK procedure before it can be deleted. After
deletion, the component is unlocked and UFB is TRUE.

DELETE can be used only on files with relative or indexed organization that
have been opened for direct or keyed access; it cannot be used on files with
sequential organization.

Example

DELETE {(AccountsPavablels

This procedure call deletes the current component. When the component has

been deleted, it is unlocked and UFB (AccountsPayable) is TRUE. A run-
time error occurs if the current component of AccountsPayable is not locked.

8.8.2 FIND Procedure
The FIND procedure positions a file at a specified component.

Syntax
FIND (file-variable, component-number |, ERROR :— error-recovery|)

file-variable

The name of a file variable associated with a file that is open for direct
access. The file must have fixed-length records.

component-number

A positive integer expression that indicates the component at which the
file is to be positioned. If the component number is zero or negative, a
run-time error occurs.

error-recovery

The parameter value that indicates the action to be taken if an error
occurs while the FIND procedure is executing (see Section 8.2).

The FIND procedure allows direct access to the components of a file. You can
use the FIND procedure to move forward or backward in a file.

The file must have been opened for direct access and may be in any mode
before a call to FIND.

Input and Output 8-39

8-40

After execution of the FIND procedure, the file is positioned at the specified
component. The file buffer variable assumes the value of the component, and
the file mode is set to Inspection. If the file has relative organization, the
current file component is locked. If there is no file component at the selected
position, the file buffer is undefined (UFB becomes TRUE) and the mode
becomes Undefined. After any call to FIND, the value of EOF is undefined.

You can use the FIND procedure only when reading a file that was opened by
the OPEN procedure. If the file is open because of a default open (that is, with
RESET or REWRITE), a call to FIND results in a run-time error because the
default access method is sequential.

Examples
1. FIND (Albums: Current + 513
If the value of Current is 6, this procedure causes the file position to move

to the eighth component; the file buffer variable Albums” assumes the

value of the component. If no eighth component exists, Albums” is unde-
fined and UFB (Albums) is TRUE.

2. FIND {(Albums: Current - 1313

If the value of Current is 6, this procedure causes the file position to move
to the fifth component. The file buffer variable Albums” assumes the
value of the fifth component.

8.8.3 LOCATE Procedure

The LOCATE procedure positions a direct-access file at a particular compo-
nent so that the next PUT procedure can modify that component.

Syntax
LOCATE (file-variable, component-number [, ERROR : error-recovery])

file-variable
The name of the file variable associated with the file to be positioned.

component-number

A positive integer expression that indicates the relative component num-
ber of the component to be found.

error-recovery

The parameter value that indicates the action to be taken if an error
occurs while the LOCATE procedure is executing (see Section 8.2).

The file may be in any mode before LOCATE is called. The mode is set to
Generation after the procedure’s execution.

The LOCATE procedure positions the file so that the next PUT procedure will
write the contents of the file buffer into the selected component. After
LOCATE has been performed, UFB is TRUE and EOF is undefined.

Input and Output

Example

LOCATE {AcocountsReceivable, BG3) 3
fAocountsReceivable” 1= Next.fAccocounts
PFUT f{AccountsReceivablel s

The LOCATE procedure positions the file AccountsReceivable before relative
component number 63. UFB (AccountsReceivable) is now TRUE and EOF
(AccountsReceivable) is undefined. The assignment statement loads the file
buffer with the contents of file position 63. The PUT operation writes the file
buffer into file component number 63. UFB (AccountsReceivable) remains
TRUE.

8.8.4 UPDATE Procedure
The UPDATE procedure writes the contents of the file buffer into the current

component.
Syntax
UPDATE (file-variable], ERROR := error-recovery|)

file-variable
The name of the file variable associated with the file whose component is
to be updated.

error-recovery

The parameter value that indicates the action to be taken if an error
occurs while the UPDATE procedure is executing (see Section 8.2).

The file must be in Inspection mode before UPDATE is called; it remains in
that mode after the procedure’s execution.

The UPDATE procedure is legal only for files with relative or indexed organi-
zation that have been opened for direct or keyed access. The current compo-
nent must have already been locked by a successful FIND, FINDK, GET,
RESET, or RESETK procedure before the contents of the file buffer can be
rewritten into it. After the update has taken place, the component is unlocked
and UFB is TRUE.

Example
URDATE (OoctoberSales) s

This procedure writes the file buffer contents (OctoberSales”) back into the
current file component OctoberSales. The component is then unlocked and
UFB (OctoberSales) is TRUE.

8.9 Keyed Access Procedures
The following procedures are legal only to files opened for keyed access.
e FINDK
e RESETK

Input and Output 8-41

8-42

8.9.1 FINDK Procedure

The FINDK procedure searches the index of an indexed file opened for keyed
access and locates a specific component.

Syntax

FINDK (file-variable, key-number, key-value[, match-type]
[, ERROR := error-recovery])

file-variable
The name of the file variable associated with the file to be searched.

key-number
A positive integer expression that indicates the key position.

key-value

An expression that indicates the key to be found; it must be assignment
compatible with the key field in the specified key position.

match-type

An identifier that indicates the relationship between the key value in the
- FINDK procedure call and the key value of a component.

error-recovery

The parameter value that indicates the action to be taken if an error
occurs while the FINDK procedure is executing (see Section 8.2).

A component of an indexed file can have as many as 255 key fields. When you
establish key fields with the KEY attribute (see Section 10.11), you assign
each one a key number from 0 to 254. Key number 0 represents the mandatory
primary key of the file. Separate indexes are built for each key number in the
file.

The key value and the match type provide information about the key to be
found. The key value must be assignment compatible with the key fields of
the key number being searched. The match type must be one of the identifiers
EQL, GTR, or GEQ, to indicate that the key to be found has a value equal to,
greater than, or greater than or equal to the key value in the FINDK proce-

-dure call. The match type is optional; if omitted, it defaults to EQL.

The FINDK procedure can be called for any indexed file opened for keyed
access, regardless of the file’s mode. If the component described exists, the file

‘buffer is filled with that component; UFB and EOF both become FALSE. The

mode is set to Inspection and the component is automatically locked. If no
component is found to match the description, UFB becomes TRUE and EOF
is undefined. The mode is set to Undefined.

Example

'FINDH (BookIndex:s 1 3%5: GEQI3

This procedure searches the index for key number 1 in the file BookIndex until
it finds the first component whose key value is greater than or equal to 35. If
the component matching the description in the FINDK statement is found,

Input and Output

UFB (BookIndex) and EOF (BookIndex) are FALSE, and the component is
locked. If the component cannot be found, UFB (BookIndex) is TRUE, and
EOF (BookIndex) is undefined. BookIndex must be an indexed file opened for
keyed access.

8.9.2 RESETK Procedure

The RESETK procedure, like the RESET procedure described in Section
8.4.3, readies a file for reading.

Syntax
RESETK (file-variable, key-number[, ERROR = error-recovery]])

file-variable
The name of the file variable associated with the input file.

key-number
A nonnegative integer expression that indicates the key position.

error-recovery

The parameter value that indicates the action to be taken if an error
occurs while the RESETK procedure is executing (see Section 8.2).

The file can be in any mode before RESETK is called to set the mode to
Inspection.

RESETK can be applied only to indexed files opened for keyed access. You
assign a key number from 0 to 254 to each key field of a file component with
the KEY attribute (see Section 10.11). The file is searched for the component
with the lowest value in the specified key number. This component becomes
the current component in the file and is locked. The value of the current
component is copied into the file buffer; EOF and UFB are set to FALSE. If
the component does not exist, EOF and UFB become TRUE. Note that a
RESETK on key number 0 is equivalent to a RESET.

Example
CRESETKE {(BookIndexe Q)3

This procedure searches the file BookIndex for the component with the lowest
value in the primary key. If this component exists, it becomes the current file
component and is locked. UFB (BookIndex) and EOF (BookIndex) become
FALSE. If the procedure was unable to find the component, UFB (BookIndex)
and EOF (BookIndex) become TRUE. BookIndex must be an indexed file
opened for keyed access. ' :

8.10 Terminal 1/O

The PASCAL language definition requires that the file buffer always contain
the next file component that will be processed by the program. This definition
can cause problems when the input to the program depends on the output
most recently generated. To alleviate such problems in the processing of the
text files, VAX-11 PASCAL uses a technique called delayed device access,
also known as ‘“lazy lookahead.”

Input and Output 8-43

8-44

As a result of delayed device access, an item of data is not retrieved from a
physical file device and inserted in the file buffer until the program is ready to
process it. The file buffer is filled when the program makes the next reference
to the file. A reference to the file consists of any use of the file buffer variable,
including its implicit use in the GET, READ, and READLN procedures, or
any test for the status of the file, namely, the EOF, EOLN, STATUS, and
UFB functions.

The RESET procedure, which is required when any text file is opened for
input, initiates the process of delayed device access. (Note that RESET is
done automatically on the predeclared file INPUT.) RESET expects to fill the
file buffer with the first component of the file. However, because of delayed
device access, an item of data is not supplied from the input device to fill the
file buffer until the next reference to the file.

When writing a program for which the input will be supplied by a text file,
you should be aware that delayed device access occurs. Since RESET initiates
delayed device access, and since EOF and EOLN cause the file buffer to be
filled, you should place the first prompt for input before any tests for EOF or
EOLN. The information you enter in response to the prompt supplies data
that is retained by the file device until you make another reference to the
input file.

Example

VAR
I : INTEGER:

BEGIN
WRITE (’Enter an inteder or an empty line: ‘)3
WHILE NOT EOLN DO
BEGIN
READLN (I)3
WRITELN (‘The inteder was: ‘“+ I:1)5
WRITE (‘Enter an inteder or an empty line: ‘)3
END 3
WRITELN (‘Done’) i
END .,

The first reference to the file INPUT is the EOLN test in the WHILE state-
ment. When the test is performed, the system attempts to read a line of input
from the text file. Therefore, it is very important to prompt for the integer or
empty line before testing for EOLN.

Suppose you respond to the first prompt by supplying an integer as input.

~ Access to the input device is delayed until the EOLN function makes the first

reference to the file INPUT. The EOLN function causes a line of text to be
read into the internal line buffer. The subsequent READLN procedure reads
the input value from the line of text and assigns it to the variable I. The
WRITELN procedure writes the input value to the text file OUTPUT. The
final statement in the WHILE loop is the request for another input value. The
loop terminates when EOLN detects the end-of-line marker.

Input and Output

Delayed device access can produce unexpected results if you try to use the
STATUS function to test the status of a text file after you have performed a
READLN on the file. Remember that a READLN procedure call actually
performs a READ procedure on each variable listed as a parameter, then
performs a READLN to position the file at the beginning of the next line.
Therefore, a call to STATUS after a READLN actually tests whether the file
was successfully positioned. To test the status of the file, STATUS causes
delayed device access to occur, thereby filling the file buffer with the next
component. If you want to test the successful reading of data from the input
file, you should read the data with the READ procedure, call the STATUS
function, and then perform a READLN to advance the file to the beginning of
the next line.

Input and Output 8-45

Chapter 9
Compilation Units

VAX-11 PASCAL includes two kinds of compilation units: programs and
modules. Although both programs and modules have declaration sections,
only programs have executable sections. A program can be compiled, linked,
and executed by itself. A module, on the other hand, cannot be executed
unless it is linked with a main program written in PASCAL or another lan-
guage. (Note that although a module may contain routine declarations, these
routines cannot be executed independently of a program.)

VAX-11 PASCAL gives you the optlon of writing modules that have the
following characteristics:

¢ They can be combined with other separately compiled, but logically coordi-
nated, programs and modules for execution as a single unit.

® They can be developed independently from other particular programs or
modules, but used as library modules bound into larger systems at link
time.

9.1 Compilation Unit Structure

VAX-11 PASCAL compilation units begin with a heading that identifies the
program or module and lists the external file variables it uses.
Syntax

PROGRAM

[attribute-list] {MODULE

} identifier [({file-variable},...)]];

attribute-list
One or more identifiers that provide additional information about the
compilation unit (see Chapter 10 for details).

identifier
The name of the program or module.

file-variable

The name(s) of the file variables associated with the external file(s) used
by the compilation unit.

The identifier appears only in the heading and has no other purpose within
the compilation unit. INPUT and OUTPUT must be listed in the heading if
they are used. File variables for external files other than INPUT and OUT-
PUT must be listed in the heading and declared in the block. INPUT and
OUTPUT should not be declared in the block. See Section 2.3.5 for more
information on files.

The block of a program or module begins at the end of the heading and
continues through the end of the compilation unit. In programs, the outermost
block is divided into two sections: the declaration section and the executable
section. In modules, the outermost block consists solely of a declaration sec-
tion.

Examples

1. PROGRAM Testl;
This program heading names the program Test1, but omits the file varia-
ble list; thus, this program does not use any external files.

2. MODULE Sauares (INPUT, OUTPUT);
This module heading names the module Squares and specifies the prede-
clared file variables INPUT and OUTPUT.

3. PROGRAM Pavroll (Emplovee: Salarv.: DUTPUT)
This program heading names the program Payroll and specifies file varia-
bles for three external files: Employee, Salary, and OUTPUT. The files
Employee and Salary must subsequently be declared in a VAR section of

the program. Because OUTPUT is a predeclared file variable, it is not
declared in the program.

9.2 Sharing Declarations and Definitions

9-2

By allowing compilation units to share declarations and definitions, VAX-11
PASCAL provides a means for separately compiled units to communicate
with each other. The two sharing techniques supplied by VAX-11 PASCAL
are:

® The use of global and external identifiers to share variables and routines
(see Section 9.2.1). With this method, the identifiers are shared among all
the compilation units that compose an executable image. This method is
the only way for compilation units written in different languages to share
declarations. The compiler does not check each declaration of an identifier
to ensure that the identifier is always declared with the same type.

¢ The use of environment files to share variables, routines, constants, and
types (see Section 9.2.2). With this method, declarations and definitions are
shared only among those compilation units that “inherit” them. The com-
piler checks to make sure that every use of a shared object is legal for an
object of its type. This method can be used only when all the compilation
units involved are written in PASCAL.

Compilation Units

9.2.1 Using Global and External Identifiers

Variables and routines declared in a compilation unit can be referred to in
another compilation unit if the declaration in the first compilation unit in-
cludes the GLOBAL attribute, and the declaration in the second compilation
unit includes the EXTERNAL attribute (see Section 10.20 for descriptions of
both attributes). Because the compiler performs no type checking in this case,
to avoid errors you must make sure that both declarations specify the same

type.

You cannot use global and external names to share the definitions of symbolic
constants and user-defined types.

For example, assume program A and module B share identifiers as follows:
File A.PAS
PROGRAM A (INFUT, OUTFUT);

UaR
Amts Total. Tax: [GLOBALT REALS

CEXTERMALT PROCEDURE Caled
EXTERNS

[CLOBALT PROCEDURE GL+3

EMD s

BEGIN

*
FEAD (Amt) i

Calos

WRITELMN (/PURCHASE AMOUNT “: Amtel0:2)3
WRITELN (7 + s TawslOrZyrs
WRITELN (7PAY THIS TOTAL fy TotalslOeZis
END .

Compilation Units 9-3

9-4

File B.PAS
MODULE B}

CONST
Rate = 0,061

VAR
Amt: Total, Tax: [EXTERNALI REALS

[EXTERNALI PROCEDURE GI1f3
EXTERN:

[GLOBAL] PROCEDURE Calc?

BEGIN
‘Tax = Amt * Rate}
Total 2= Tax + Amt?
G1fs
END3

END .,

In program A, the GLOBAL attribute specifies that Amt, Total, and Tax are
global variables. Module B can refer to Amt, Total, and Tax because it uses
the EXTERNAL attribute to specify that these variables were declared in
another compilation unit. Amt, Total, and Tax must be declared to be of the
same type in both compilation units. Similarly, Calc and GIf are declared as
global procedures in one compilation unit and as external procedures in the
other. The result is that each compilation unit can call the other’s procedures.

9.2.2 Using Environment Files
The ENVIRONMENT and INHERIT attributes (described in Sections 10.7

and 10.9) allow programs and modules to share the definitions of symbolic
constants and user-defined types and the declarations of variables and
routines from previously compiled units. See Chapter 10 for descriptions of
attributes other than ENVIRONMENT and INHERIT that apply to compila-
tion units.

An environment consists of descriptions of constant, type, variable, proce-
dure, and function identifiers declared at the outermost level of a compilation
unit. When one compilation unit inherits the environment of another, the
effect is to incorporate the environment file directly into the first compilation
unit.

An environment file is similar to a %INCLUDE file, with the following differ-
ences:

® An environment file can contain only declarations and definitions.

- o The environment file and the compilation unit that inherits it are checked

to ensure that their versions are consistent (see the VAX-11 PASCAL User’s
Guide for details on version consistency). '

Compilation Units

e The data in the environment file exists in a form that the compiler can
handle more easily.

e A variable inherited from an environment file is not a newly created varia-
ble, but is instead the same variable that was allocated storage by the
declaring compilation unit. :

The following sections describe the uses of the ENVIRONMENT and IN-
HERIT attributes. Section 9.2.2.3 explains the rules governing multiple decla-
rations of identifiers.

9.2.2.1 ENVIRONMENT Attribute — To define the environment of a compila-
tion unit, include the ENVIRONMENT attribute and a VAX/VMS file speci-
fication (enclosed in apostrophes) in an attribute list immediately preceding
the program or module heading. The declarations and definitions made at the
outermost level of the compilation unit are saved in a file identified by the file
specification.

For example, when the following program is compiled, an environment file
named CALC.PEN is created:

[ENVIRONMENT("CALC.PEN')1 PROGRAM Calec (INMPUT. OUTPFUT?

LABEL 753
CONST

Pi = 3.14159273%
TYPE

Yes_No = (Yes, No)si
VAR

Orperand 2 REALS
Subtotal : REAL 3= 0.003
lrerator 3 CHARS
Answer : Yes.Nos

PROCEDURE Instructionsi

+

+

Descriptions of Pi, Yes__No, Subtotal, Operand, Operator, Answer, and In-
structions are included in CALC.PEN. Environment files do not include la-
bels or variable initializations; therefore, the label 75 and the initialization of
Subtotal to 0.00 are not part of CALC.PEN.

9.2.2.2 INHERIT Attribute — Once an environment has been defined, other
modules can reference the identifiers it declares by inheriting the environment
with the INHERIT attribute. For example, if you include INHERIT
("CALC.PEN") in the attribute list immediately preceding a module head-
ing, that module can refer to Pi, Yes__No, Subtotal, and so on, just as if the
identifiers had been declared at the outermost level of the module itself.

Compilation Units 9-5

Using environment files, you would write program A and module B from
Section 9.2.1 as follows:

File A.PAS
[ENVIRDNMENT(‘APEN‘)1 PROGRAM A (INPUT, OQUTPUT);

CONST
Rate = 0,063

VAR
Amt» Totals Tax @ REALS

PROCEDURE Calci
EXTERNAL 3

PROCEDURE G1f3

BEGIN

k3
L3

+

END i

BEGIN

*

+

READ (Amt) s

Calcs

WRITELN (/PURCHASE AMOUNT ‘s Amt:10:2)3
WRITELN (7 + fy TaxslO:2) 3
WRITELN (/PAY THIS TOTAL “y TotalelOs2)s
END .

File B.PAS
[INHERIT(‘A.PEN’)1 MODULE B}

[GLOBALY PROCEDURE CalcH

BEGIN

Tax := Amt % Rate}
Total := Tax + Amis
G1lfs

*
+

4

END 3
END .

The ability to share environments allows module B to eliminate the CONST
definition, the VAR declarations, and the declaration of the procedure GIf.
Program A does not inherit the environment of module B; therefore, the
procedure Calc still must be declared GLOBAL in the called program (mod-
ule B) and EXTERNAL in the calling program (program A).

A compilation unit can define and inherit any number of environments. How-
ever, each file specification associated with an INHERIT attribute must rep-
resent an environment file created by an earlier compilation. The identifiers
inherited by the compilation unit are not included in the environment defined

9-6 Compilation Units

by the unit. In the following example, the environment created by the compi-
lation of ModA includes the declarations from the outermost level of ModA,
but NOT those from Main and ModB:

CENVIRONMENT ¢ “MAINJPEN’)Y] PROGRAM Mains
CINHERIT('MODB.PEN') » ENVIRONMENT{(‘MODA.PEN’)] MODULE ModAj

CINHERIT(O'MAIN.PEN') » ENVIRONMENT('MODB.PEN’)1 MODULE ModBi

9.2.2.3 Multiply Declared Names — The identifiers to which you can refer at
the outermost level of a compilation unit—that is, all those defined in the
outermost level of the compilation unit itself, plus those declared in all inher-
ited environments—must be unique. Thus, the same identifier cannot be
declared in two simultaneously inherited environments, and an identifier in-
herited from an environment cannot be redeclared at the outermost level of
the compilation unit.

Several exceptions to this redeclaration rule are needed, because a module can
inherit the environment of a program that calls its global procedures or func-
tions, or refer to its global variables. Such a conflict occurs in the compilation
units in the following example:

File PROG.PAS
[ENVIRONMENT (‘PROG,PEN‘)] PROGRAM Prods;

[EXTERNALI PROCEDURE Insti
EXTERNS

Insts
*
4

+

END .

File MOD.PAS
CINHERIT('PROG.PEN')1 MODULE Mod}

[GLOBAL1 PROCEDURE Insts

BEGIN

+

3

END 3
END .

The procedure Inst is defined in Mod and called in the executable block of
Prog. Mod inherits the environment created by the compilation of Prog; thus,
the identifier Inst is said to be multiply declared in Mod.

Compilation Units 9-7

9-8

The same problem could occur with global functions or variables. Therefore,
VAX-11 PASCAL allows the following exceptions to the redeclaration rule:

e A variable identifier may be multiply declared if all declarations of the
variable have the same type, and all but one declaration at most are exter-
nal.

® A procedure identifier may be multiply declared if all declarations of the
procedure have congruent parameter lists (see Section 6.6.6), and all but
one declaration at most are external.

* A function identifier may be multiply declared if all declarations of the
function have congruent parameter lists and identical result types, and all
but one declaration at most are external.

If one declaration of a variable or a routine is not external, it must be a global
declaration.

9.2.3 Examples
1. [ENVIRONMENT(‘MOD1,PEN‘)1 MODULE Modl;

CENVIRONMENT(MODZ.PEN’)Y] MODULE ModZs
CENVIRONMENTC(‘MOD3.PEN’)Y] MODULE Mod3s

CINHERIT(/MODL.PEN’ : "MODE.PEN’ "MOD3.PEN")]T PROGRAM Prog:

This example shows how large systems can be split into several functional
components, or modules, that share environments. These four source files
are equivalent to one long PASCAL program that includes all the declara-
tions defined in all the modules. A modular design allows you to treat
different parts of a system individually; you can develop the components
separately, and later, when changes are needed, you can update and re-
compile one module without having to recompile them all.

2. L[ENVIRONMENT(‘NEWWRITE.PEN’)] MODULE Newwrite}

This example shows the heading of a module called Newwrite, which
might contain a special output routine. A compilation unit that wanted to
use this routine could inherit the module’s environment as follows:

CINHERIT(‘NEWWRITE.PEN')]1 MODULE Process?

The module Process now has access to all the definitions and declarations
in Newwrite. The environment for Newwrite can define the special sym-
bolic constants and user-defined types needed to call the new routine. The
availability of these additional symbolic constants and user-defined types
enables Process to communicate easily and efficiently with the called
routine,

Compilation Units

Chapter 10
Attributes

An attribute is an identifier that directs the VAX-11 PASCAL compiler to
change its behavior in some way. Attributes allow additional control over the
properties of data items, routines, and compilation units. An attribute class
can consist of a single attribute identifier, or of several attribute identifiers
with a common characteristic. When an attribute is not explicitly stated, the
compiler follows default rules to assign properties to program elements. Table
10-1 lists the attribute classes that can be applied to formal routine parame-
ters, routines, and compilation units. Table 10-2 lists the attribute classes
that can be applied to data items.

Table 10-1: Attributes on Routines and Compilation Units

Program Element

Class

Routine . Compilation
Parameter Routine Unit
Allocation No Yesl Yesl
ASYNCHRONOUS Yes Yes No
CHECK No Yes Yes
Double-Precision No No Yes
ENVIRONMENT No No Yes
IDENT No No Yes
INHERIT No No Yes
INITIALIZE No Yes No
LIST Yes No No
Optimization No Yes Yes
OVERLAID No No Yes
UNBOUND Yes Yes No
Visibility No Yes Yes?

1. PSECT is the only allocation attribute allowed
2. EXTERNAL and WEAK__EXTERNAL not allowed

10~1

Table 10-2: Attributes on Data Items

Data Item

Class Pointer . .

R A T
Alignment Yes Yes3 Yes3 Yest Yes No
Allocation Yes No No No No No
KEY No No No Yes® No No
LIST No Yes No No No No
POS No No No Yes® No No
READONLY Yes Yes Yes Yes No No
Size Yes Yes® Yes Yes? Yes No
UNSAFE Yes Yes8 Yes Yes Yes Yes
Visibility Yes No No No No No
VOLATILE Yes Yes Yes Yes Yes No
WRITEONLY Yes Yes Yes Yes No No

1. Component of a record, array, VARYING string, or file (includes conformant schemes)

2. Index of an array, tag field of a variant record (when no tag identifier is present), base type of
a set

3. UNALIGNED not allowed

4. Not allowed on components of files or VARYING strings

5. Allowed only on record fields (including the tag field of a variant record)

6. Not allowed on conformant parameters

7. Not allowed on components of files or VARYING strings, or on structured types with file
components

8. Not allowed on conformant VARYING parameters

10.1 Specifying Attributes

A list of attributes enclosed in brackets can appear anywhere in a program
that a type, a type identifier, or the heading of a routine or compilation unit is
allowed. However, only one attribute from a particular class can appear in a
given attribute list. The use of attribute lists is illustrated in the appropriate
syntax diagrams throughout this manual. Notice that the names of attributes,
when used in a suitable context, do not conflict with other identifiers with the
same name in the program.

Syntax

[identifier1 [[({

constant-expression}]] oo
identifier2)
identifier1

The name of the attribute.

constant-expression
A compile-time integer expression, represented in this chapter by n, that
qualifies several of the VAX-11 PASCAL attributes.

identifier2

The name of an option available with the CHECK attribute or of a
storage area indicated by the COMMON and PSECT attributes.

10-2 Attributes

Some attributes require a special form of constant expression called a name-
string. The syntax of a name-string differs from that of other strings in
VAX-11 PASCAL in that a name-string cannot use the extended string syn-
tax (see Section 2.3.2.2).

Every program element listed in Tables 10-1 and 10-2 must be associated
with one property for which there is an applicable attribute class. If the
program does not give each program element an explicit attribute from each
class, the VAX-11 PASCAL compiler automatically supplies the defaults for
the unspecified classes at the time of the element’s declaration. In some
classes, as described in the following sections, the default property is not
available through an explicit attribute.

Attributes can be associated with data items in two ways:'

e By appearing in a type definition in a TYPE section; the item is later
declared to be of that type.

¢ By appearing in the declaration of an item preceding its type.

When a type definition includes a list of attributes, the type has only those
attributes specified. The compiler does not supply the defaults for the unspec-
ified classes until a data item is declared to be of that type. Two rules govern
the use of attributes in a TYPE section:

¢ The attributes of the type can neither conflict with nor duplicate any attrib-
utes explicitly stated in the data item’s declaration.

¢ The type cannot be used anywhere that its accompanying attributes are
illegal.

The following examples show both legal and illegal uses of attributes in type
definitions:

TYPE
A = [GLOBALT INTEGER:
B = [UNALIGNEDI INTEGER:
VAR
Al ¢ L[GLOBALI A3 (# Illedals durlicates

GLOBAL attribute of
tyre A ¥)

AZ : LEXTERNALI A3 (% Illedals conflicts with
GLOBAL attribute of
tyre A #)

Bl = "Bi (¥ Illedal? pointer base
tyre cannot be
UNALIGNED #)

C & A (¥ legal #)

1. The presence in VAX-11 PASCAL of compile-time expressions and attribute lists leads to a
minor ambiguity in the language syntax. If the compiler finds a left bracket ([) symbol when it
expects to find a type or type identifier, it always assumes that the bracket indicates the
beginning of an attribute list. The ambiguity arises because the left bracket could also repre-
sent the beginning of a set constructor that denotes the low bound of a subrange type. If the
latter case is in fact what you intend, simply parenthesize the set constructor; the compiler will
interpret the expression correctly.

Attributes 10-3

The first three variable declarations are illegal for the reasons shown in
the comments. The declaration of C is legal; C is declared as a
GLOBAL integer variable because of the characteristics of its type. The com-
piler supplies defaults for all other classes applicable to the variable C.

Attributes associated with data items usually modify type compatibility
rules. The sections of this chapter pertaining to the accessibility, alignment,
ASYNCHRONOUS, LIST, POS, size, UNBOUND, UNSAFE, and VOLA-
TILE attributes describe their effects on type compatibility. Attributes ap-
plied to components of structured types affect the entire structure. The sec-
tions discussing the accessibility, alignment, size, and volatility attributes
also present the rules for using these attributes with structured types.

The following sections describe the attribute classes in alphabetical order.
Note that in this chapter, the term “object” is used to indicate any program
element to which the attributes of the class can be applied.

10.2 Alignment Attributes

104

The alignment attributes can be applied to variables, the base types of
pointer variables, components of structured variables, and function results.
They indicate whether the object should be aligned on a specific addressing
boundary in memory.

ALIGNED [(n)]

An ALIGNED object is aligned on the memory boundary indicated by n.
The constant expression n indicates that the address of the object must
end in at least n zeros. ALIGNED(0) specifies byte alignment,
ALIGNED(1) specifies word alignment, ALIGNED(2) specifies longword
alignment, ALIGNED(3) specifies quadword alignment, ALIGNED(4)
specifies octaword alignment, and ALIGNED(9) specifies page align-
ment.

UNALIGNED
An UNALIGNED object may be aligned on any bit boundary.
Rules and Defaults

e The default alignment of an object depends on its size. The VAX-11
PASCAL User’s Guide contains the complete rules for default alignment.

e In VAX-11 PASCAL, an UNALIGNED variable cannot have an allocation
size greater than 32 bits.

¢ The constant expression n must denote an integer. If you omit it, the default
is 0, indicating byte alignment.

e ALIGNED(9) is the largest alignment allowed.

¢ An AUTOMATIC variable (see Section 10.3) cannot have alignment greater
than a longword.

¢ The minimum alignment for an object of a structured type is the greatest
alignment specified for any of its components.

Attributes

e Alignment attributes are illegal on components of files and VARYING
strings.

e The alignment of a formal VAR parameter cannot be greater than the
alignment of a corresponding actual parameter, either by default or by
means of an alignment attribate. In an array variable passed to a confor-
mant formal parameter, alignment and size attributes (see Section 10.17)
are illegal on all dimensions of the actual parameter, except the first, that
correspond to the dimensions of the formal parameter.

e A formal parameter cannot be UNALIGNED. Thus, an UNALIGNED vari-
able cannot be passed to a formal VAR parameter.

e The base type of a pointer variable passed to the NEW procedure cannot
have alignment greater than a quadword, nor can it be UNALIGNED.

o If the base type of a pointer variable has a specified alignment, then the
base type of a pointer expression assigned to it must have an alignment
equal to that of the variable.

¢ Pointer types are structurally compatible only if their base types have iden-
tical alignment.

Example

UAR
Free_Buffers @ CALIGNED(1) WORDI -Z%%15,,.2%%15-13

*

IF ADD_INTERLOCKED (-1 Free_Buffers) <= 0
THEN

+
+

+

The predeclared function ADD_INTERLOCKED requires that the second
parameter passed to it have word alignment and an allocation size of one
word. In this example, the variable Free__Buffers is declared with alignment
and size attributes to meet these restrictions. (The ADD_INTERLOCKED
function is described in Section 7.9.1.)

10.3 Allocation Attributes

The allocation attributes can be applied to variables, routines, and compila-
tion units. They indicate the form of storage that the object should occupy.

STATIC

Storage for a STATIC variable is allocated only once. A STATIC varia-
ble exists as long as the executable image in which it was allocated
remains active.

AUTOMATIC

Storage for an AUTOMATIC variable is allocated each time the program
enters the routine in which the variable was declared. The storage is
deallocated each time the program exits from that routine. An AUTO-
MATIC variable exists as long as the declaring routine remains active.

Attributes 10-5

10-6

AT(n)
No storage is allocated for a variable having the AT attribute. The varia-
ble is assumed to reside at the exact address specified by the constant
expression n. Variables representing machine-dependent entities are fre
quently given the AT attribute.

COMMON [(identifier)]

Storage for a variable having the COMMON attribute is allocated in an
overlaid program section called a common block. This attribute allows
you to share variables with other languages (such as FORTRAN). If you
include an identifier in the attribute, it indicates the name of the com-
mon block. If you omit the identifier, the name of the variable is used as
the name of the common block. See the VAX-11 PASCAL User’s Guide
for details.

PSECT(identifier)

The identifier designates the program section in which storage for an
object is to be allocated. Storage for the object remains allocated as long
as the executable image in which the object was declared remains active.
See the VAX-11 PASCAL User’s Guide for details.

Rules and Defaults

e PSECT is the only allocation attribute that can be applied to routines and
compilation units.

* By default, variables declared in nested blocks are automatic.
¢ By default, variables declared at the outermost level of a module are static.

¢ By default, variables declared at the outermost level of a program are static,
although for efficiency they may actually be made automatic (see the
VAX-11 PASCAL User’s Guide.

® Program-level variables with the AUTOMATIC attribute are not recorded
in environment files.

e GLOBAL and EXTERNAL variables (see Section 10.20) are implicitly
static. Thus, they conflict with the AUTOMATIC attribute.

¢ A variable having the AT, COMMON, or PSECT attribute is implicitly
static.

e The COMMON attribute can be applied only to variables.

¢ Only one variable can be allocated in a particular common block. Therefore,
the name of the common block cannot be used as the name of another
common block or program section.

e If a PASCAL program shares a record variable with a FORTRAN program,
the fields must be laid out identically in both common blocks.

Attributes

Example
PROGRAM Print.Random (OUTPUT)

VAR
I« [AUTOMATICI INTEGERS

FUNCTION Random

: INTEGER
VAR
¥ oz [STATICI INTEGER := 153
BEGIN
Xoa= (8 * M)y + 7y MOD 113
Fandom s= X3
END§
BEGIN
FOR I ::= 1 TO 20 DO
WRITELN (Random?) 3§

END .

The program Print_ Random includes a function that generates a random
integer. Because the variable X is declared STATIC, its value will be pre-
served from one activation of the function to the next. By default, the storage
for X would have been deallocated when control returned to the main pro-
gram. Because X is STATIC, it retains the value it had when Random ended
and assumes this value the next time Random is called. In the program
Print__Random, the program-level variable I is declared AUTOMATIC to
override the default static allocation.

10.4 ASYNCHRONOUS Attribute

-The ASYNCHRONOUS attribute can be applied to routines and routine
parameters declared in external routines to indicate that the routine may be
called by an asynchronous event. Since such an event can alter the values of
variables within the routine unpredictably, the ASYNCHRONOUS attribute
changes how the routine is optimized.

Rules and Defaults

¢ In the absence of an ASYNCHRONOUS attribute, the compiler assumes
that the routine can be activated only by actual calls within the program.

e All predeclared routines are ASYNCHRONOUS by default.

¢ Any routines called from within the block of an ASYNCHRONOUS routine
must be local to the ASYNCHRONOUS routine or must be themselves
ASYNCHRONOUS, either by default or by an explicit attribute.

o All nonlocal variables accessed from within the block of an ASYNCHRO-
NOUS routine must be declared VOLATILE (see Section 10.21).

e If a formal routine parameter is ASYNCHRONOUS, all actual parameters
passed to it must also be ASYNCHRONOUS.

e An ASYNCHRONOUS routine may be passed as an actual parameter to a
formal routine parameter that does not have this attribute.

Attributes 10-7

Example
PROCEDURE Do_Somethings

VAR
I : [VOLATILE] INTEGER?
J @ INTEGER

[ASYNCHRONOUSI FUNCTION Handler
: BOOLEANS

BEGIN

I + 13

BEGIN
ESTABLISH (Handler)3

+
+

+

END

This example illustrates the declaration of an ASYNCHRONOUS function,
Handler. Note that the executable section of Handler cannot access variables
declared in the enclosing block of the procedure Do__Something unless those
variables are declared VOLATILE. Thus, Handler can access the variable I,
which has the VOLATILE attribute, but cannot access the variable J.

10.5 CHECK Attribute

10-8

The CHECK attribute can be applied to routines and compilation units. It
specifies error-checking options that are to be enabled during program execu-
tion.

CHECK({identifier},...)

The options listed with the CHECK attribute are enabled. If you omit
the list of options, all available positive options are enabled.

The options listed in Table 10-3 allow you to choose which aspects of a
program should be checked. Options enable the specified checking features
while their negations disable them. For example, the POINTERS option
checks the addresses to which pointer variables refer. If you specify the NO-
POINTERS option for a routine, the checking of pointer addresses is disabled
inside that block.

Attributes

Table 10-3: Summary of Checking Options

Option Action Negation
ALL Enables all forms of checking NONE
BOUNDS Verifies that an index expression NOBOUNDS

is within the bounds of an array’s
index type and that character-
string sizes are compatible with
the operations being performed

CASE_SELECTORS Verifies that the value of a case NOCASE_SELECTORS

selector is contained in the corre-
sponding case label list

OVERFLOW Verifies that the result of an inte- NOOVERFLOW
ger computation does not exceed
the machine representation

POINTERS Verifies that the value of a pointer NOPOINTERS
variable is not NIL

SUBRANGE Verifies that values assigned to NOSUBRANGE
variables of subrange types are
within the subrange; verifies that -
a set expression is assignment
compatible with a set variable

Rules and Defaults

e BOUNDS is the only option enabled by default. The defaults for the other
options are NOCASE_SELECTORS, NOOVERFLOW, NOPOINTERS,
and NOSUBRANGE. If you wish to enable any of the options, you must

specify them with the CHECK attribute.

Example
PROGRAM ChecK_ Featuresi

[CHECK{POINTERS :CASE_SELECTORS)1 PROCEDURE Linked_lList
(UAR Client 3 Info.Recls

&

[CHECK(OVERFLOW) I FUNCTION Inteder._Comrute
(UAR Intls Int2s Int3 : INTEGER)
INTEGER 3

3

PROCEDURE Bounds.Checok
(UAR String : YARYINGIL301 OF CHARS
VAR Char_ Arravy : ARRAYIL1..23]1 OF CHAR:
VAR Half.Alrha @ "A7.:'H7)3

+

Attributes

10-9

The routines Linked__List and Integer__Compute will have the specified op-
tions plus the BOUNDS option enabled (by default). All other options will
remain disabled when Linked_List and Integer__Compute are called. The
procedure Bounds__Check will have only the default BOUNDS option en-

- abled.

10.6 Double-Precision Attributes

10-10

Double-precision attributes can be applied to compilation units to indicate
which format should be used to represent double-precision real numbers.
These attributes choose the internal hardware representation to be used for
items of type DOUBLE within the compilation unit. See Section 2.2 for a
discussion of the two types of double-precision real numbers; see the VAX-11
PASCAL User’s Guide for details of the hardware representation.

G_FLOATING

Double-precision variables and expressions in the compilation unit are
represented in G__floating format. Their values have an approximate
range from 10#*-308 through 10+#*308 and an approximate precision of 15
decimal digits. Not all VAX-11 processors support the G__floating data

type.
NOG__FLOATING

Double-precision variables and expressions in the compilation unit are
represented in D__floating format. Their values have an approximate
range from 10**38 through 10*+38 and an approximate precision of 16
decimal digits.

Rules and Defaults
e NOG_FLOATING is the default double-precision attribute.

e All independently compiled units that are linked together should use the
same double-precision format.

Example

[G_FLOATING ENVIRONMENT (‘REALDATA.PEN‘)1 MODULE Real_Datas

[GoFLOATING ENVIRONMENT("STRINGDATA.PEN’)] MODULE Strind.Datas

[G_FLOATING INHERIT('REALDATA.PEN' + 'STRINGDATA.PEN'1]
PROCRAM Record.Keerpinds

This example shows the headings of a program and the two modules whose
environments it inherits. Note that all three compilation units must specify

the G_FLOATING attribute in order for the G__floating format of represen-
tation to be used.

Attributes

10.7 ENVIRONMENT Attribute

The ENVIRONMENT attribute can be applied to compilation units and
causes the unit’s program- or module-level declarations and definitions to be
saved.

ENVIRONMENT(name-string)

The declarations and definitions made at the outermost level of the com-
pilation unit (provided they do not have the AUTOMATIC attribute) are
saved in a newly created environment file. You must name this file by
including a VAX/VMS file specification in the name-string (see Section
10.1 for the syntax of a name-string). The ENVIRONMENT attribute
makes the contents of an environment file available to other compilation
units that inherit it. See Chapter 9 for further explanation and examples.

10.8 IDENT Attribute

The IDENT attribute can be used to qualify the name of a compilation unit.
See the VAX-11 PASCAL User’s Guide for a description of this attribute.

IDENT(name-string)

The name-string can contain additional information whose use is imple-
mentation specific. The VAX-11 PASCAL compiler uses this string to
supply identification information to the linker. (See Section 10.1 for the
syntax of a name-string.)

Rules and Defaults

e In the absence of an IDENT attribute, the string "01” is supplied to the
linker.

10.9 INHERIT Attribute

The INHERIT attribute can be used to indicate the environment files to be
inherited by a compilation unit.

INHERIT({name-string},...)
The compilation unit inherits one or more environment files named by
the VAX/VMS file descriptions in the name-strings (see Section 10.1 for
the syntax of a name-string). These files contain declarations and defini-
tions made at program or module level in other compilation units. See
Chapter 9 for further explanation and examples.

Rules and Defaults

¢ The environment files specified by the INHERIT attribute must have al-
ready been created in compilation units that have the ENVIRONMENT
attribute.

Attributes 10-11

10.10 INITIALIZE Attribute

The INITIALIZE attribute can be applied to procedures to indicate that the
procedure is to be called before the main program is entered. A compilation
unit may include any number of INITIALIZE procedures, all of which are
called in an unspecified order before the main program is entered.

Rules and Defaults

¢ In the absence of an INITIALIZE attribute, the compiler assumes that a
routine can be activated only by actual calls within the program.

e By default, INITIALIZE procedures have the characteristics of UNBOUND
routines (see Section 10.18).

¢ An INITIALIZE procedure cannot have a formal parameter list.
e An INITIALIZE procedure cannot be external.

Example
PROGRAM Routine_Activate?

[INITIALIZE] PROCEDURE Check_Dreni

BEGIN (4% Routine_Activate)

+

In this example, the body of the INITIALIZE procedure Check__Open will be
executed before the main program is activated.

10.11 KEY Attribute

10-12

The KEY attribute can be applied to record fields. KEY indicates that the
field is to be used as a key field when the record is part of an indexed sequen-
tial file.

KEY [(m)]

A key number of 0 indicates that the field is the primary key of the
record. All other key numbers indicate alternate keys.

Rules and Defaults

¢ The key number n must be a constant expression that denotes an integer
value in the range from O through 254. If you omit the key number, the
default value is 0.

¢ When you create a new indexed file with more than one key field, you must
make sure that the defined keys are dense; that is, you may not omit any
key numbers in the range from 0 through the highest key number specified.

¢ The KEY attribute is ignored except when the record is the component type
of a file (see Chapter 8).

Attributes

e A key field can be of any ordinal type or of type PACKED ARRAY OF
CHAR. If the key field is of type PACKED ARRAY OF CHAR, its length
cannot exceed 255 characters.

e The KEY attribute does not affect type compatibility rules.
® A key field may not be UNALIGNED (see Section 10.2).

¢ A key field of an ordinal type must be allocated exactly one byte, one word,
or one longword. This restriction is imposed by VAX-11 RMS.

* An integer key field that is allocated one byte may not have negative values.
This restriction is imposed by VAX-11 RMS.

Example

TYPE
Redgister = RECORD
Student.No @ [KEY(0)1 INTEGER3:
Student.Name : RECORD
Last.Name : PACKED ARRAYIL1..201]

OF CHAR3

First.Name : PACKED ARRAYIL1..151
OF CHAR:

Initial : CHAR:

END
Course.load ¢ INTEGER:S
Grade_Averade : REAL:
Class : [KEY{(1)] PACKED ARRAYL1..81 0OF CHAR:
END 3

This example defines the identifier Register to denote a record type. The first

field, Student__No, is the primary key of the record. Register contains an-
other field, Class, which is established as the alternate key.

10.12 LIST Attribute

The LIST attribute can be applied to a formal parameter of a routine not
written in PASCAL. LIST indicates that the routine may be called with
multiple actual parameters that correspond to the last formal parameter
named in the routine heading.

Rules and Defaults

¢ In the absence of a LIST attribute, an error results if the number of actual
parameters exceeds the number of formal parameters.

e The LIST attribute can be applied only to the last formal parameter in a
parameter list.

¢ You may supply zero, one, or more than one actual parameter to correspond
to a LIST formal parameter, but you must use positional syntax when
supplying them. The number of actual parameters you can supply is limited
by VAX/VMS to 255.

¢ You may use the LIST attribute on procedure and function parameters to
indicate that an external routine can take an arbitrary number of routine
parameters.

Attributes 10-13

¢ All actual parameters that correspond to a LIST formal parameter must be
compatible (or congruent) with the type of the formal parameter.

e For formal and actual parameter lists to be congruent, both the actual
routine parameter and the corresponding formal routine parameter must
either have the LIST attribute or lack the LIST attribute.

Example

PROGRAM Arg_Mech s

CEXTERNAL(MTH$JIMAXOY T FUNCTION JMax©O
(Int.list ¢ L[LISTI INTEGER)

INTEGER 3
ATERNS
VAR
Iy J» Ky L = INTEGERS
Int_Arravy 3 ARRAYL[1..101 OF INTEGER:

BEGIN (x Main Prodram)

+

'
H o+ -

JMax0 (Jdy Ke Ly Imt_ArravlJ+11s Int_Arravy[K+271,
Int.Arravy[L+331}3
END .

I

The program Arg__Mech illustrates the effect of the program, this routine is
known as the function JMax0. JMax0 is declared with one formal LIST pa-
rameter; therefore, the function designator in this example contains excess
actual parameter entries. Any number of integer expressions can be passed as
actual parameters when JMax0 is called.

10.13 Optimization Attributes

10-14

Optimizati(;n attributes can be applied to routines and compilation units to
indicate whether the VAX~11 PASCAL compiler should optimize code. See
the VAX-11 PASCAL User’s Guide for more information on optimization.

OPTIMIZE
The compiler is allowed to optimize the code for the object.

NOOPTIMIZE

The compiler is prohibited from optimizing the code for the object. The
NOOPTIMIZE attribute ensures that expressions will be evaluated com-
pletely, from left to right.

Rules and Defaults
e OPTIMIZE is the default optimization attribute.

Attributes

Example
"PROGRAM Numberss

[NOOPTIMIZE] PROCEDURE Process_Nedatives

+
¢

+

This example shows the use of the NOOPTIMIZE attributes to disable optim-
ization of the code for the routine Process__Negative. Code for the rest of the
program will be optimized.

10.14 OVERLAID Attribute

The OVERLAID attribute can be applied to compilation units to indicate how
storage should be allocated for variables declared within the unit. If you
specify OVERLAID, the variables declared at program or module level (unless
they have the STATIC or PSECT attribute) will overlay the storage of static
variables in all other OVERLAID compilation units. See the VAX-11
PASCAL User’s Guide for more information.

This attribute is intended for use only with programs that use the decommit-
ted separate compilation facility provided by Version 1 of VAX-11 PASCAL.

Rules and Defaults

e By default, variables are not stored in OVERLAID compilation units.
Example

[OVERLAID] PROGRAM A

[OVERLAID] PROGRAM B3

Because the OVERLAID attribute is specified, the variables declared at the
outermost level of program B will overlay those declared at the outermost
level of program A,

10.15 POS Attribute

The POS attribute can be applied to a field of a packed or an unpacked
record. POS forces the field to a specific bit position within the record.

POS(n)
The constant expression n specifies the bit location, relative to the begin-
ning of the record, at which the field begins.

Rules and Defaults

e VAX-11 PASCAL’s defaults for the positioning of record fields are de-
scribed in the VAX-11 PASCAL User’s Guide.

¢ The constant expression n cannot denote a negative integer.

® The beginning position of a field must be greater than the ending position of
the field preceding it.

Attributes 10-15

¢ Inside a record variant, the beginning position of a field must be greater
than the ending position of the preceding field within the same variant. As
always, the variants themselves may overlap.

¢ A record variable containing a field of a file type cannot include a POS
attribute for any field.

¢ In VAX-11 PASCAL, a field whose allocation size is greater than 32 bits
must be positioned on a byte boundary.

e The specified bit position must not conflict with the alignment explicitly
required by an alignment attribute (see Section 10.2).

* Two record types in which corresponding fields are not identically posi-
tioned are neither assignment compatible nor structurally compatible.

Example

TYPE
Control = RECORD
Flag.l : [BIT,»POS(0O)Y] BOOLEANS
Flag_ 2 : [BIT,POS5(1)]1 BOOLEANS
Count : [BYTE,ALIGNEDI 0,.1003%
Error : [BIT»POS(31)]1 BOOLEANS
END

This example uses the POS attribute to position the fields of an unpacked
record such that Flag__1 occupies bit 0, Flag__2 occupies bit 1, and Error
occupies bit 31. Because the Count field has size and alignment attributes, it
is allocated one byte of storage and is aligned on the byte boundary following
Flag__2; that is, storage for Count occupies bits 8 through 15. Bits 2 through 7
and 16 through 30 are left empty; there is no way for you to refer to them.

10.16 READONLY Attribute

10-16

The READONLY attribute can be applied to variables, formal parameters,
the base types of pointer variables, and components of structured variables.
READONLY specifies that an object can be read by a program but cannot
have values assigned to it. For example, if A is a READONLY formal parame-
ter, you can use it in an expression such as C := A + B. You can also use A as a
value parameter in routine calls such as ORD (A), and you can pass A as a
READONLY VAR parameter. You cannot, however, assign values to A, as in
A:=B + C.

Rules and Defaults
e By default, an object can be both read and written.
¢ No value of any type is assignment compatible with a READONLY object.

¢ The presence of a READONLY component in an object of a structured type
prohibits the object itself from having values assigned to it.

e A READONLY actual VAR parameter can be passed only to a READONLY
formal VAR parameter.

¢ A pointer expression whose base type is READONLY is assignment compat-
ible only with a pointer variable whose base type is also READONLY.

"Attributes

Example
PROGRAM Tests

TYPE
T = RECORD
I ¢ INTEGERS
END 3
PRonly = " L[READONLYI T3

UaRr
Pro : PRonlvsi
Prw ¢ ° T3

PROCEDURE @
(P : PRonlvy}si

VAR
¥ ¢+ INTEGERS
BEGIN
¥ o= P .13
END 3
‘BEGIN
NEW (Pro)l:
NEW (Prw) i
Q (Pro)s
@ (Prw)s
Prw®sI 2= 03

+
+

+

This example shows the declaration of two pointer variables, Pro and Prw,
and the calls to NEW that create the dynamic variables Pro” and Prw". The
type of the formal parameter P requires that a corresponding actual parame-
ter have read access; therefore, both Pro and Prw can legally be passed to Q as
actual parameters. Since P is a READONLY parameter, the value of the
dynamic variable P" (which corresponds to either Pro” or Prw”) can be as-
signed to a variable, as shown in the assignment statement in the body of Q.
However, only Prw” can have values assigned to it, as shown in the last
statement above.

Attributes 10-17

10.17 Size Attributes

10-18

Size attributes can be applied to variables, formal pararﬁeters, base types of
pointer variables, components of structured variables, and function results.
They specify the amount of storage to be reserved for the object.

BIT[[(n)ﬂ

BYTE[(n)]

WORD[(n)]

LONG[(n)]

QUAD[(n)]

OCTA[(n)]
The amount of storage may be expressed in bits, bytes, words, longwords,
quadwords, or octawords. The optional constant n indicates the number
of storage units.

Rules and Defaults

* The default size of an object depends on its type. See the VAX-11 PASCAL
User’s Guide for the rules of default allocation sizes.

* The constant expression n must denote a positive integer. If you omit n, the
default value is 1.

e In VAX-11 PASCAL, the following size rules apply:
- Objects of ordinal types cannot have sizes larger than 32 bits.

- Objects of REAL, SINGLE, and pointer types must have sizes of exactly
32 bits.

- Objects of type DOUBLE must have sizes of 64 bits.
- Objects of type QUADRUPLE must have sizes of 128 bits.

® The amount of storage described must be large enough to contain an object
of the specified type; otherwise, a compile-time error occurs.

¢ The size specified for an object of a structured type must be large enough to
contain all the components of the object.

* A size attribute is illegal on a conformant parameter, a component of a
VARYING string, and an object of a structured type having a file compo-
nent. In an array variable passed to a conformant formal parameter, size
and alignment attributes (see Section 10.2) are illegal on all dimensions of
the actual parameter, except the first, that correspond to the dimensions of
the formal parameter.

e Two variables of the same type that have different allocation sizes are
assignment compatible, but are not structurally compatible.

Attributes

Example
PROGRAM Sizes;

TYPE
Status = [LONGI BODLEANS

VAR
Return.Status : Statussi

FUNCTION Examerle
(Paraml: ParamZ2 : INTEGER)
: Status’
EXTERNAL §

+

s

The program Size defines a Boolean type Status and declares a variable
Return__Status of this type. Therefore, the result type of the function is
declared to have a size of one longword.

10.18 UNBOUND Attribute

The UNBOUND attribute can be applied to routines and formal routine
parameters. An UNBOUND routine does not access automatic variables in
the scope in which it is declared. That is, the bound procedure value of an
UNBOUND routine does not include the static scope pointer. The VAX-11
PASCAL User’s Guide explains the use of the bound procedure value.

Rules and Defaults

¢ In the absence of an UNBOUND attribute, the compiler assumes that the
bound procedure value of a routine includes the static scope pointer.

* By default, all predeclared routines and all routines declared at program or
- module level have the characteristics of UNBOUND routines. All routines

declared in nested blocks are considered bound unless they have an
UNBOUND attribute.

¢ All routines called from within the block of an UNBOUND routine must be
local to the UNBOUND routine or be themselves UNBOUND, whether by
default or by an explicit attribute.

e Nonlocal variables accessed from within the block of an UNBOUND routine
cannot have AUTOMATIC allocation (see Section 10.3).

e If a formal routine parameter is UNBOUND, all actual routine parameters
passed to it must also be UNBOUND.

¢ An UNBOUND routine may be passed as an actual parameter to a formal
routine parameter that is not UNBOUND.

Attributes 10-19

Example

CEXTERNALI FUNCTION F
(ZIMMED [UNBOUNDI PROCEDURE Count)
: BOOLEANS
EXTERNAL §

PROCEDURE A3j

VAR
I = [BTATIC] INTEGERS:
B : BOOLEAN: :

[UNBOUNDI PROCEDURE P3

BEGIN

I + 13

This example illustrates the declaration of the UNBOUND procedure P and
the UNBOUND formal procedure parameter Count. Note that the executable
section of P cannot access variables declared in the enclosing block of proce-
dure A unless those variables are statically allocated. Thus, Handler can
access the variable I, which is declared with the STATIC attribute, but can-
not access the variable B, which is automatically allocated. Because the for-
mal parameter Count is UNBOUND, only other UNBOUND routines (such
as P) can be passed to function F as actual parameters. Count must be
declared UNBOUND because it is passed by immediate value (see the
VAX-11 PASCAL User’s Guide for more information).

- 10.19 UNSAFE Attribute

10-20

The UNSAFE attribute can be applied to variables, formal parameters, the
base types of pointer variables, components of structured variables, function
results, and the types of other data items (see Table 10-2). UNSAFE indi-
cates that an object can accept values of any type without type checking. The
exact properties of an UNSAFE object depend on the object’s machine repre-
sentation.

Attributes

Rules and Defaults
¢ A conformant VARYING parameter may not be declared UNSAFE.

¢ An expression of any type is assignment compatible with an UNSAFE ob-
ject. However, neither the expression nor the object can contain a file com-
ponent. If the machine representations of the expression and the UNSAFE
object differ, the compiler forces them to have the same number of bits by
modifying the value of the expression as follows:

— If the expression contains more bits than the object, the low-order bits of
the expression are assigned to the object and the high-order bits are dis-
carded.

- If the expression contains fewer bits than the object, the expression is
assigned to the low-order bits of the object and the remaining high-order
bits of the object are assigned zeros.

¢ A pointer expression is assignment compatible with a pointer variable
whose base type is UNSAFE only if the base types have the same allocation
size and if they have compatible alignment, READONLY, VOLATILE, and
WRITEONLY attributes.

® An actual parameter variable can be passed to an UNSAFE formal VAR
parameter if the types have the same allocation size and if they have com-
patible alignment, READONLY, VOLATILE, and WRITEONLY attrib-

utes.

e When a formal parameter is an UNSAFE conformant array, the VAX-11
PASCAL compiler must be able to establish bounds for the corresponding
actual parameter that exactly describe the amount of storage the parameter
occupies. If the conformant array is one-dimensional, the actual parameter
need not be an array. The compiler constructs the bounds of the formal
array so that the actual parameter and the formal array have the same size.
For this construction to be possible, the size of the actual parameter must
be an exact multiple of the size of the formal array component. The com-
piler chooses the low bound of the formal parameter’s index to be the small-
est possible nonnegative value of the index type. If the formal conformant
parameter is a multidimensional array with n dimensions, the actual pa-
rameter must be an array having no fewer than n-1 dimensions. The first
n-1 dimensions of the two arrays will have identical array bounds. The
compiler chooses bounds for the last dimension of the conformant array
so that the conformant as a whole describes the exact size of the actual
parameter. ‘

Attributes 10-21

Example
PROGRAM Output.Buffer (DataFile) 3

TYPE
Natural = 0, ,MAXINT:

VAR
DataFile @ FILE OF ARRAYLO,.3111 OF CHAR;
Int_Array @ ARRAYLO..10231 OF INTEGER3
String : VARYINGLZ20481 OF CHARS
Chr_Array : ARRAYLO..40831 OF CHARS
Status : BOOLEAN:

FUNCTION Put.Buf
(VAR Buffer : L[UNSAFE] ARRAYLA..B: Naturall OF CHAR)
BOOLEAN 3

VAR
Cur : [STATICI INTEGER := 0f
I : INTEGER]?

BEGIN
FOR I := A TO B DO
BEGIN
DataFile"[Curl = BufferlIl:
Cur 2= Cur + 13
IF Cur > 511
THEN
BEGIN
PUT(DataFile):
Cur 2= 0F
END %
END 3
Put_Buf = (Cur = 0)3
END 3§

BEGIN (% Main prodram #*)
Status Put.Buf (Int_.Arrav)i
Status = Put.Buf (Strind)3
Status = Put.Buf (Chr.Arrav)i

+

nonon

+

+

END .

The program Output__Buffer declares a function whose only formal parame-
ter is an UNSAFE conformant array of characters. The function Put_Buf
assigns successive components of the conformant array parameter to the file
buffer variable of DataFile. If DataFile" is filled, the function returns TRUE;
otherwise, it returns FALSE.

The program issues three calls to Put__Buf. In the first and second calls, the
actual parameters are not of the same type as the formal parameter Buffer.
But, because Buffer has the UNSAFE attribute, it accepts an actual parame-
ter of any type and treats it as though it were an array of characters. The third
call to Put__Buf passes an actual parameter of the same type as the formal
parameter.

10-22 Attributes

10.20 Visibility Attributes

The visibility attributes can be applied to variables, routines, and compila-
tion units. They control the sharing of an object between independently com-
piled units and indicate the name by which the object is known outside the
compilation unit that declares it. See the VAX-11 Linker Reference Manual
for further information.

LOCAL
The LOCAL attribute indicates that an object is unavailable to other
independently compiled units. Only compilation units that have access
to the environment in which the object was declared can refer to the
object.

GLOBAL [(identifier)]

The GLOBAL attribute provides a strong definition of an object so that
other independently compiled units can refer to it. You can specify an
identifier with the GLOBAL attribute to indicate the name by which the
corresponding object is known to the VAX-11 Linker. Normally, you do
not include an identifier, so that the linker recognizes the same object
name as the declaring compilation unit.

EXTERNAL [(identifier)]

The EXTERNAL attribute indicates a variable or routine that is as-
sumed to be GLOBAL in another independently compiled unit. If the
attribute includes an identifier, that name, rather than the identifier
being declared, is supplied to the VAX-11 Linker. The names available
to the linker for corresponding GLOBAL and EXTERNAL variables and
routines must be identical.

WEAK__GLOBAL [(identifier)]
WEAK__EXTERNAL [(identifier)]

These attributes are similar to the GLOBAL and EXTERNAL attrib-
utes. A WEAK__GLOBAL object is linked only when it is specifically
included in the linking operation. A WEAK__EXTERNAL variable or
routine is not critical to the linking operation. To resolve a weak refer-
ence, the linker searches only the named input modules.

Rules and Defaults
* By default, all variables and routines are LOCAL.

e Compilation units may not have the EXTERNAL or WEAK__EXTERNAL
attribute.

® Variables with any visibility attribute other than LOCAL are implicitly
static.

* LOCAL is the only visibility attribute you can specify for nonstatic varia-
bles.

¢ By default, GLOBAL and EXTERNAL routines have the characteristics of
UNBOUND routines (see Section 10.18).

Attributes 10-23

* Routines with any visibility attribute other than LOCAL cannot refer to
AUTOMATIC variables declared in enclosing blocks (see Section 10.3) and
can call only those routines that are local, predeclared, or unbound (by
default, routines declared at program or module level have the characteris-
tics of UNBOUND routines).

* EXTERNAL routines must be followed by the directive EXTERN, EX-
TERNAL, or FORTRAN when they are declared (see Section 6.5.2).

Example

PROGRAM Freshman.Class$
[GLOBAL(Sort._Students)] PROCEDURE Class.List
(VAR Redister_List s
Sorted_List : Student_.Rec)3i

MODULE Senior._.Classi
[EXTERNAL(Sort-Students)] PROCEDURE Roll.Call
(VAR Start_list:
End.List : Sewnior_Rec)s

This example shows the global declaration of a procedure with the name
Sort_Students and an external reference to the same procedure in a different
compilation unit.

10.21 VOLATILE Attribute

10-24

The VOLATILE attribute can be applied to variables, formal parameters, the
base types of pointer variables, components of structured variables, and func-
tion results. VOLATILE indicates the assumptions that the compiler can
legally make about the value of an object. Normally, a compiler assumes that
an object’s value will not be subject to unusual side effects. During execution,
an object’s value will generally change only under the following circum-
stances:

e When another value is assigned to it

® When it is passed as a writeable VAR parameter

® When it is read into by a READ, READLN, or READV procedure
® When it is used as the control variable of a FOR loop

In addition, the compiler expects to evaluate the object only when it appears
in an expression.

The VOLATILE attribute informs the compiler that the object’s value will be
subject to unusual side effects during execution. In addition to changing in
the usual ways, the value of a VOLATILE object may change as the result of
an action not directly specified in the program. Thus, the compiler assumes
that the value of a VOLATILE object can be changed or evaluated at any
time during program execution. Consequently, a VOLATILE object does not
participate in any optimization based on assumptions about its value.

Examples of VOLATILE behavior are the behavior of many device registers
and modification by asynchronous processes and exception handlers.

Attributes

Rules and Defaults
¢ By default, objects are not VOLATILE.

* An object of a structured type that has a VOLATILE component is VOLA-
TILE as a whole. However, the presence of a VOLATILE component does
not make other components of the same variable VOLATILE.

® The presence of the VOLATILE attribute guarantees that operations will be
performed on scalar objects in a single machine instruction. Because opera-
tions on structured objects may require more than one instruction, the use
of the VOLATILE attribute on an object of a structured type might not
produce the expected results.

e A VOLATILE variable is structurally compatible only with a formal VAR
parameter that is VOLATILE.

¢ A pointer expression whose base type is VOLATILE is assignment compati-
ble only with a pointer variable whose base type is VOLATILE.

* Two pointer types are structurally compatible only if their base types have
identical volatility. ’

Examples

1. VAR
¥ @ CHAR:
: [VOLATILE] RECORD
CASE BOOLEAN OF
FALSE ¢ (I : INTEGER}3
TRUE : (C : CHAR)S

END3

P

g

A.C 2= “A’F (% TRUE becomes the current variant *)
AT = BB {(* Assidgnment makes FALSE the current variant %)
X o= A.CH (¥ TRUE is adain the current variants

¥ is assidned the value ‘B’: which

has an ordinal value of BB *)
+
+

+

As the comments show, a reference to one field identifier causes the corre-
sponding variant to become the current variant. In addition, each refer-
ence immediately causes the other variant to become undefined. Thus,
when the assignment A.I := 66 is made, the reference to A.I causes FALSE
to become the current variant and A.C to become undefined. As a result of
the statement X := A.C, the value last assigned to the variant is assigned
to X. Ordinarily the compiler could assume that A.C had retained the
value ‘A ’, since no further assignments had been made directly to A.C.
However, the value of A.C changed unexpectedly through the assignment
to A.I. Therefore, unless the record A is declared VOLATILE, the result of
the assignment X := A.C would be undefined because the compiler’s legit-
imate assumptions had been violated.

Attributes 10-25

10-26

2.

Attributes

PROGRAM Yolatility (OUTPUT)S

VAR
Pint ¢ “[VOLATILE] INTEGERS
I ¢+ INTEGERS
J o2 [VOLATILEI INTEGERS
A : ARRAYLO,.101 OF INTEGER:

BEGIN

NEW (Pint)3i

I 1= 03F

Jor= 03

Pint® 1= 03

(¥ Compiler mavy assume I = 0Oy maKes no assumptions about J *)

WRITELN (I. Js Pint®s ALIT)S {(* Values are O Oy 0O ALOT *)

Pint = ADDRESS (J) 3 (% Pint” now = .J #}

Pimt™ s= 13 (¥ Therefore J now = 1 %}

(¥ Compiler may assume I = 0O, makes no assumptions about J *)
WRITELN (I, Jy Pint™ sy ALI1) (% Yalues are O, 1+ 1 ALO] %)
Pint := ADDRESS (I): (% Causes a warning messade

gsince I is not WOLATILE #)
Pint® 2= 23

(¥ Compiler may assume I = O and ALIT = ALO]
Mavy make no assumptions about J %)

WRITELN (I Js Pint™y ALI1) (* Actual values are
2y 1 29 ALZ2T %) 3
END.,

This example assigns values to the variables I and J and to the newly
created variable Pint". The comments illustrate the difference between
the assumptions the compiler can legally make about the values of the
variables and the actual values contained in the variables. The compiler’s
assumption about the value of I was incorrect because the value of I
changed unexpectedly. The ADDRESS (I) function caused Pint to point
to I (that is, Pint" and = I became the same variable). When Pint" was
assigned the value 2, I also received the value 2. Because I had been
initialized to 0 and was not directly referred to in the rest of the program,
the compiler assumed that a reference to I at this point would be equiva-
lent to a reference to 0. Likewise, the compiler also assumed that a refer-
ence to A[l] would be equivalent to a reference to A[0]. In fact, however,
when execution ceases, the value of I is 2 and the value of A[l] is the value
of Al2].

Depending on the optimizations the compiler made about the value of I,
any operations performed after the unanticipated assignment to I could
yield unexpected results. Because J was declared VOLATILE, the com-
piler did not optimize code based on the value of J. Therefore, any refer-
ence to J yields the expected results.

Note that the ADDRESS (I) function in this program causes a warning
message. The VAX-11 PASCAL compiler assumes that pointer variables
point only to variables in heap-allocated storage and not to statically
allocated, nonvolatile variables such as I. Thus, ADDRESS (I) in this case
violates the compiler’s assumptions.

10.22 WRITEONLY Attribute

The WRITEONLY attribute can be applied to variables, formal parameters,
the base types of pointer variables, and components of structured variables.
WRITEONLY specifies that an object can have values assigned to it but
cannot be read by a program. For example, if X is a WRITEONLY integer
variable, you can give it a new value by assignment, as in X := 23, or by
reading a new value into it, as in READ (X). But you cannot assign the value
of X to another variable, as in Y := X. ‘

Rules and Defaults
e By default, objects can be both read and written.
¢ A WRITEONLY object cannot be used in expressions.

e A WRITEONLY component in an object of a structured type prohibits the
object itself from being written.

e A WRITEONLY actual VAR parameter can be passed only to a formal VAR
parameter that is WRITEONLY.

e A pointer expression whose base type is WRITEONLY is assignment com-
patible only with a pointer variable whose base type is WRITEONLY.

Example

TYPE
WOnly = [WRITEONLY] INTEGERS

VAR
Writ.Int 2 WOnlys
NMorm.Int 2 INTEGERS

PROCEDURE Trv_.Access
(VAR Write.Param ¢ WOnlvy)s

BEGIN (¥ Main prodram *)
Writ_Int 2= SQR (Norm_Int);i
Try.fAccess (Writ. Int)s

s

¢

This example shows legal statements involving WRITEONLY variables. The
WRITEONLY variable Writ__Int is assigned the result of the square root
operation and is passed as an actual parameter to a WRITEONLY formal
parameter.

Attributes 10-27

Appendix A
ASCII Character Set

Table A-1 summarizes the ASCII character set. Each element of the character
set is a constant of the predefined PASCAL type CHAR. An ASCII decimal
number in Table A-1 is the same as the ordinal value (as returned by the
PASCAL ORD function) of the associated character in the type CHAR.

Note that VAX-11 PASCAL uses an extended implementation of the ASCII
character set. The extended characters, which do not appear in Table A-1,
have the following decimal values:

e 128-160 Extended control characters
* 161-254 Extended graphics characters
e 255 “EKight Ones”

Table A-1: The ASCII Character Set
ASCII ASCII
Decimal Character Meaning Decimal Character Meaning
Number ‘ Number
0 NUL Null 21 NAK Negative acknowledgement
1 SOH Start of heading 22 SYN Synchronous idle
2 STX Start of text 23 ETB End of transmission block
3 ETX End of text 24 CAN Cancel
4 EOT End of transmission 25 EM End of medium
5 ENQ Enquiry 26 SUB Substitute
6 ACK Acknowledgement 27 ESC Escape
7 BEL Bell 28 FS File separator
8 BS Backspace: 29 GS Group separator
9 HT Horizontal tab 30 RS Record separator
10 LF Line feed 31 USs Unit separator
11 VT Vertical tab 32 SP Space or blank
12 FF Form feed 33 ! Exclamation mark
13 CR Carriage return 34 ? Quotation mark
14 SO Shift out 35 # Number sign
15 SI Shift in 36 3 Dollar sign
16 DLE Data link escape: 37 % Percent sign
17 DC1 Deviee control 1 38 & Ampersand
18 DE2 Device control 2 .39 ’ Apostrephe
19 DC3 Device control 3 40 (Left parenthesis
20 DC4 Device control 4 41) Right parenthesis

Table A-1 (Cont.):

The ASCII Character Set

ASCII ASCII
Decimal Character Meaning Decimal Character Meaning
Number Number
42 * Asterisk 85 U Uppercase U
43 + Plus sign 86 v Uppercase V
44 R Comma 87 w Uppercase W
45 - Minus sign or hyphen 88 X Uppercase X
46 . Period or decimal point 89 Y Uppercase Y
47 / Slash 90 Z Uppercase Z
48 0 Zero 91 [Left square bracket
49 1 One 92 \ Back slash
50 2 Two 93] Right square bracket
51 3 Three 94 “ort Circumflex or up arrow
52 4 Four 95 “or__ Back arrow or underscore
53 5 Five 96 ’ Grave accent
54 6 Six 97 a Lowercase a
55 7 Seven 98 b Lowercase b
56 8 Eight 99 c Lowercase ¢
57 9 Nine 100 d Lowercase d
58 : Colon 101 e Lowercase e
59 ; Semicolon 102 f Lowercase f
60 < Left angle bracket 103 g Lowercase g
61 = Equal sign 104 h Lowercase h
62 > Right angle bracket 105 i Lowercase i
63 ? Question mark 106 j Lowercase j
64 @ At sign 107 k Lowercase k
65 A Uppercase A 108 1 Lowercase 1
66 B Uppercase B 109 m Lowercase m
67 C Uppercase C 110 n Lowercase n
68 D Uppercase D 111 0 Lowercase o
69 E Uppercase E 112 p Lowercase p
70 F Uppercase F 113 q Lowercase q
71 G Uppercase G 114 r Lowercase r
72 H Uppercase H 115 s Lowercase s
73 I Uppercase 1 116 t Lowercase t
74 J Uppercase J 117 u Lowercase u
75 K Uppercase K 118 v Lowercase v
76 L ~ Uppercase L 119 w Lowercase w
77 M Uppercase M 120 X Lowercase x
78 N Uppercase N 121 y Lowercase y
79 (6] Uppercase O 122 z Lowercase z
80 P Uppercase P 123 { Left brace
81 Q Uppercase Q 124 I Vertical line
82 R Uppercase R 125 } Right brace
83 S Uppercase S 126 ~ Tilde
84 T Uppercase T 127 DEL Delete
A-2 ASCII Character Set

Appendix B
Syntax Summary

This appendix summarizes the syntax of VAX-11 PASCAL in the notation
used throughout this manual and presents syntax diagrams in the format
commonly used for PASCAL.

B.1 Syntax Productions

This section provides the collected syntax productions that define VAX-11
PASCAL.

Syntax
actual-parameter-list ->

[mechanism-specifier] procedure-identifier
[mechanism-specifier] function-identifier
(§ [mechanism-specifier] expression yet)
[[type-identifier ,] {constant-expression},...
write-list-element
array-constructor ->

({[[constant-expression OF] initial-value },...)

array-type ->

[PACKED] ARRAY [{[attribute-list] simple-type},...] OF type

assignment-statement ->

{ variable

= expression
function-identifier} press

attribute-list ->

[{ identifier [[({ expression },...)]] 1.l

binary-digits ->

{74

B-2

block ->

declaration-part
BEGIN

{ statement};...
END

case-statement ->

CASE expression OF
{{ constant-expression },... : statement};...
[[;] OTHERWISE {statement};...]

H

END

compilation unit ->

{ program }
module
compound-statement->

BEGIN
{ statement};...
END
conformant-schema ->
VARYING [identifier] OF [attribute-list] type-identifier \

PACKED ARRAY [identifier..identifier': [[attribute-list]] type-identifier] ‘
OF [attribute-list] type-identifier

ARRAY [{identifier..identifier : [[attribute-list]] type-identifier };...] ‘

~

OF [attribute-list] (type-identifier
{ conformant-schema}

J

constant-definition ->

CONST {identifier = constant-expression };...

decimal-digits ->
{0 123 4}
5 6 7 8 9
declaration-part ->

label-declaration
constant-definition
type-definition
variable-declaration
value-declaration
procedure-declaration
function-declaration

Syntax Summary

directive ->

EXTERN
EXTERNAL
FORTRAN
FORWARD

empty-statement ->

enumerated-type ->

({ identifier },...)
expression ->

simple-expression l]:{ <> <<= N} simple-expression]]
= > >= |

extended-alphabetic >

{ letter }
$

factor ->

(array-type-identifier array-constructor \
constant-identifier

(expression)[:: type-identifier]
function-identifier [actual-parameter-list]
NOT factor

< numeric-constant >
real-constant

record-type-identifier [record-constructor]
[set-type-identifier] set-constructor
string-constant

\ variable)

field-list ->

{ {{identifier },... : type};... [; variant-clause] } I:]
variant-clause ‘
file-type ->

[PACKED] FILE OF type

for-statement ->

TO

FOR variable-identifier := expression { DOWNTO

} expression DO

statement

Syntax Summary B-3

foreign-section ->

value-section
mechanism-specifier procedure-section
function-section

formal-parameter-list ->

value-section
g VAR-section

(procedure-section jee)
l function-section
foreign-section

function-declaration ->

function-heading ; { Z:S:c':(tive} :

function-heading ->
[attribute-list] FUNCTION identifier [formal-parameter-list]
: [attribute-list] type-identifier

function-section ->

function-heading [:= [mechanism-specifier] initial-value]

goto-statement ->

GOTO decimal-digits

hexadecimal-digits ->

decimal-digits
A B CDEF

abcdef

identifier ->

. decimal-digits
-alph
extended-alphabetic [[{ extended-alphabetic} :|:|

if-statement ->

IF expression
THEN statement
[ELSE statement]

initial-value ->

constant-expression
array-constructor

record-constructor

Syntax Summary

label-declaration ->

LABEL {decimal-digits},...;

letter ->
A BCDEFGHI J KL M
NOPQRSTUVWXYZ
a b cdef ghi j kI m
n o pqgqgr st uvwxyz

mechanism-specifier ->

%DESCR
%IMMED
%REF
%STDESCR

module ->

module-heading
declaration-part
END.

module-heading ->

[attribute-list] MODULE identifier [({identifier},...)];

name-string ->

space

tab

printing-
character-
other-than-"

numeric-constant ->

decimal-digits
%O “octal-digits” I
%X ’hexadecimal-digits"
%B “binary-digits”

octal-digits ->

pointer-type ->
* [attribute-list] type-identifier

Syntax Summary B-5

primary ->

factor [[{+* factor}...]
procedure-declaration ->

procedure-heading ;{ block } :

directive
procedure-heading ->

[attribute-list] PROCEDURE identifier [formal-parameter-list]

procedure-section ->

procedure-heading [:= [mechanism-specifier] initial-value]

procedure-statement ->

procedure-identifier
function-identifier

} [actual-parameter-list]
program ->

program-heading

block.
program-heading ->

[attribute-list] PROGRAM ‘identifier [({identifier},...)];

real-constant ->
decimal-digits (. decimal-digits l
Q
1. decimal-digits { D } { :L } decimal-digitsy
E

record-constructor ->

({initial-value},...)

record-type ->

[PACKED] RECORD
field-list
END

repeat-statement ->

REPEAT {statement};...UNTIL expression

set-constructor ->

[[{expression [..expression]} ,...]]

B-6 Syntax Summary

set-type ->
[PACKED] SET OF [attribute-list] simple-type

simple-expression ->

{f} term {j } term

OR

simple-statement ->

assignment-statement
procedure-statement
goto-statement
empty-statement

simple-type ->
type-identifier
enumerated-type
subrange-type

statement ->

[[decimal-digits :]] { simple-statement }

structured-statement

string-constant ->

name-string
{ {name-string ({ constant-expression},...)}... [[name-string]]}

structured-statement ->

case-statement
compound-statement
for-statement

if statement
repeat-statement
while-statement
with-statement

structured-type ->

array-type
file-type
record-type
set-type
varying-type

subrange-type ->

constant-expression..constant-expression

Syntax Summary B-7

term ->
) * / DIV primary
primary {REM MOD AND}

type ->

) . simple-type
[attribute-list] structured-type

pointer-type

type-definition ->

TYPE {identifier = type};...

value-declaration ->

VALUE {identifier := initial-value} ;...

value-section ->

{identifier },... : [attribute-list] type-identifier
conformant-schema

[:= [mechanism-specifier] initial-value]

VAR-section ->

VAR {identifier ... : [attribute-list] { type-identifier }

conformant-schema

[:= [mechanism-specifier] initial-value]

[{expression },...]
variable-identifier field-identifier
{ field-identifier }

variable -> I

:: type-identifier ’

variable-declaration ->

VAR {{identifier },... : type [:= initial-value] };...

variant-clause ->

CASE [identifier :] [attribute-list] type-identifier OF
{ { constant-expression },... : (field-list) };...

varying-type ->

VARYING [constant-expression] OF [attribute-list] type-identifier

Syntax Summary

while-statement ->

WHILE expression DO statement

with-statement ->

WITH {variable},... DO statement

write-list-element ->

expression[:expression[:expression]]

B.2 Syntax Diagrams
The following diagrams illustrate the syntax of these items:
e Actual parameter list
e Array constructor
e Attribute list
¢ Binary digits
e Block
e Compilation unit
¢ Conformant schema
e Decimal digits
¢ Declaration part
¢ Expression
¢ Factor
e Field list
e Formal parameter list
e Formal parameter section
¢ Function heading
¢ Hexadecimal digits
e Identifier
e Initial value
* Mechanism specifier
e Numeric constant
e QOctal digits
* Primary
¢ Procedure heading

¢ Real constant

Syntax Summary B-9

e Record constructor
¢ Routine declaration
e Set constructor

e Simple expression
e Simple statement

e Simple type

e Statement

e String constant

e Structured statement
e Term

* Type

e Variable

An example of how to interpret a diagram follows:

identifier

J

KX,
059)

— letter

decimal
digits

[
{

ZK-129-81

The diagram illustrates that the first character of an identifier can be either
an underscore (__), a dollar sign ($), or a letter. The next character is chosen
from the section labeled A and can be a digit, a letter, a dollar sign, or an
underscore. Section A is repeated until the identifier is defined. Note that
rounded symbols (circles or ovals) denote elements that must appear exactly
as shown; rectangular symbols denote elements for which there is a separate
diagram.

B-10 Syntax Summary

18-145-%Z

)
/

— uolssaldxe *Qﬂ_ uoissaidxa D f— UOISSOIAXD et
_ uojssaidxe . « lainuspi
) JUBJSUOD i adAy
q J181j198ds
- uoissaidxs wsiueyoow [
PETINUET] J81j108ds
bl uonouny wsiueyosw
J
> Jsinuep! J213108ds)
61, ainpeooud ¢ wsiueyosW

181| J9jaweded [enyoe

B-11

Syntax Summary

array constructor

constant initial
expression value
O/
ZK-570-81
attribute list
/-
identifier | expression
\
ZK-131-81
binary digits
ZK-132-81

B-12 Syntax Summary

block

declaration part

statement |

ZK-107-81

Syntax Summary

B-13

18- LLL-HZ

anN3

Ued uoiele|osp J

Jaljinuspl

©

Jai4auapy ‘I@DDOEb‘l

O~

Ja13uspl

Q

si] sinqune

l

J81}i3usp! WVHO0Hd

1iun uone|idwod

Syntax Summary

B-14

conformant schema

- VARYING 0 identifier | o @

[—'—J attribute list J - type -

identifier

ARRAYW identifier ——-@—*1 identifier —]

‘——CPACKED

)

scalar t
attribute list s R . y pe
identifier

. ARRAY [] identifier ——@——— identifier ~—®—]

\—Ls attribute list scalar type

identifier
~
@ | attribute fist —1 typ-e_ >
identifier
@ tribute I conformant
attribute list schema

ZK-133-81

Syntax Summary B-15

decimal digits

534353534

~

-

ZK-566-81

B-16 Syntax Summary

declaration part

LABEL decimal
digits J
o
‘ CONST dentifi constant
identitier expression !
- ,
L"‘ TYPE > identifier 4’@* type

identifier

o

type F—

initial value

"'(VALUE ,l

identifier

——@—-—‘ initial value f——

“] declaration

routine

ZK-109-81

Syntax Summary B-17

B-18

expression

=1 simple expression

J

000900

Syntax Summary

~ simple expression

E—

ZK-119-81

factor

- variable -

constant
identifier

L _ string
constant

real constant} -

numeric
constant

actual
parameter
list

L function
identifier

_ type
;-.@_— expression ° ° identifier

record type

NOT factor
| array type array
identifier “] constructor o

identifier

record

constructor

set type

identifier

set

constructor

ZK-115-81

Syntax Summary B-19

B-20

field list

identifier

CASE

type

identifier

attribute list

4 e ©
identifier

constant |
expression

O

field list

formal parameter list

Syntax Summary

()
>/

formal
parameter section

ZK-568-81

ZK-134-81

Arewiwing XejuiAg

1e-d

formal parameter section

mechanism
specifier
VAR
identifier
mechanism procedure
specifier heading
function
heading

. R type
attribute list . .
s identifier
conformant
schema
mechanism initial
specifier vaiue

ZK-136-81

function heading

.] ' " formal
attribute list FUNCTION identifier : parameter list

attribute list type identifier fb———m=
ZK-1035-82
hexadecimal digits
~
decimal °
digits
ZK-121-81
identifier

) 6%
05

— letter T

decimal
| digits

[
{

ZK-112-81

B-22 Sy.ntax Summary

initial value

constant
expression

array
constructor

record |
constructor

ZK-565-81

mechanism specifier

— %REF r’

%IMMED

%DESCR

%STDESCR

i

ZK-564-81

numeric constant

decimal
digits

octal digits

6 ° ‘ hexadecimal
digits

"—"——’._’” G ‘ binary digits

0 0 ¢

ZK-114-81

Syntax Summary B-23

octal digits

20909660

ZK-120-81

primary

———| factor -

factor

ZK-116-81

procedure heading

B-24

' .) . C _formal
attribute list PROCEDURE identifier - parameter list

Syntax Summary

ZK-1034-82

real constant

—_—

decimal decimal o
digits A\ digits |

decimal

record constructor

initial
value

routine declaration

procedure

digits

ZK-113-81

ZK-567-81

heading

function
heading

O

- block

N

EXTERN

EXTERNAL

I

FORTRAN ~

I

FORWARD

|

ZK-130-81

Syntax Summary B-25

set constructor

Q
?

expression expression

ZK-569-81
simple expression
term ‘
2 term |
ZK-118-81
simple statement
variable
-— expression ——

function
identifier
procedure
identifier

actual

parameter

list
function
identifier

decimal

GOTO 7 »

digits

. -/
ZK-108-81

B-26 Syntax Summary

statement

simple type

»1 type identifier

identifier

constant

decimal digits

expression () expression

constant

string constant

ZK-124-81

simple statement

structured statement

ZK-137-81

tab
printing character). -
other than ~

constant
expression

Syntax Summary

ZK-572-81

B-27

28-1/011-%Z

 aa)
ans3

3svo

JUBWDLRIS | 3ISIME3IHLO
N)
- juswalels 1A|OA l uoissa.dxe \n_oj uoissaidxa
JuBISU0D \/
juswele)s IIIA 3813 vl juswole)s N3IHL uoissaidxa

ljuswajels

O
G-

jusawajels painjonlis

Syntax Summary

B-28

28-2/0L-MZ

uswaiels f@

uawialers

uoissaldxa

®

s|qeLeA

()
-/

uojssaldxa

O1LNMOQd

Jalnuap!
s|geLeA

uolssaldxa

.llA TLINN }

Juswaels

HLIM

H04

1v3id3d

luswalels

-]

uoisssidxs

ITHM

b

:

B-29

Syntax Summary

term

——=1 primary -
]
DIV REM < MOD) (AND
primary j- y. J
ZK-117-81

B-30° Syntax Summary

Ie-g Arewwing Xejuig

type

attribute list simple type -

. . type
g——@——[‘ attribute list identifier

VARYING a constant | 0 @ ttrib list type
expression attribute lis identifier
N '
PACKED u
- ARRAY attribute list simple type] OF type -

FILE @ type
RECORD field list END -

SET @ attribute list 1 simple type —

ZK-125-81

18-121-MZ

Jayuap! adA}

18Y13U3p} PIaY .A|©l|
\

©

[I@ -~ uoIssaidxa

1a13UBp] |3y fm

SENTGITE JIETS IT:T

ajqeliea

Syntax Summary

B-32

Appendix C
Predeclared Routines

Tables C-1 and C-2 summarize VAX-11 PASCAL’s predeclared procedures
and functions. Routines that handle input and output are described in detail
in Chapter 8; these routines can accept an optional parameter, designated
here as e, that indicates the action to be taken should an error occur during
the routine’s execution. All other predeclared routines are described in Chap-

ter 7.

Table C-1: Predeclared Procedures

Procedure Parameter

Action

CLOSE(f,parameters,e) f = file variable

DATE(str)

DELETEC(f,e)

DISPOSE(p)

DISPOSE(p, t1,..

ESTABLISH(id)

FIND(f,n,e)

parameters — see the VAX-11
PASCAL Language
Reference Manual

e = error parameter

str = variable of type
PACKED ARRAY

{1..11] OF CHAR

f = file variable
e = error parameter

p = pointer value

.,tn) p = pointer variable
tl,...,tn = tag field
constants

id = function-identiﬁey

f = file variable
n = component number
e = error parameter

Closes file f with the specified properties.

Assigns current date to str.

Deletes the current component of file f. File f
must have relative or indexed organization and
be opened for direct or keyed access. The current
component must be locked.

Releases storage for p”. Any pointers to the stor-
age become undefined.

Releases storage for p”; used when p”~ is a record
with variants. Tag field values are optional; if
specified, they must be identical to those speci-
fied when storage was allocated by NEW.

Sets up a VAX-11 condition handler to process
exceptions.

Moves the current file position to component n of
file f.

Table C-1 (Cont.):

Predeclared Procedures

Procedure

Parameter

Action

" FINDK(f,kn,kv,m,e)

GET(f,e)
HALT
LOCATE(f,n,e)

LINELIMIT(f,n)

NEW(p)

NEW(p, t1,...,tn)

OPEN(f,parameters,e)

PACK(a,i,z)

PAGE(f,e)

PUT(f,e)

C-2

f=

file variable

kn = key number
kv = key value
m = match type

e = error parameter

f = file variable

e = error parameter

None

f = file variable

n = component number

e = error parameter

f = text file variable

n = integer expression

p = pointer variable

p = pointer variable

tl,...,tn = tag field
constants

f = file variable

parameters — see the VAX-11

e =

a =

-
1

®
Il

Predeclared Routines

PASCAL Language
Reference Manual
error parameter -

variable of type
ARRAY (m..n] OF T
starting index

of array a

variable of type
PACKED ARRAY [u..v]
OF T

text file variable
error parameter

file variable
error parameter

Moves the current position of file f to a specified
component. The match type can have a value of
EQL, GTR, or GEQ to indicate that the compo-
nent to be found has a value in key position kn
that is equal to, greater than, or greater than or
equal to key value kv. Match type m is optional
and defaults to EQL. File f must be opened for
keyed access.

Moves the current file position to the next com-
ponent of f. Then GET(f) assigns the value of
that component to f*, the file buffer variable.

Calls LIB$STOP, signaling PAS$_ABORT.
Without an appropriate condition handler,
HALT terminates execution of the program.

Positions file f at component n so that the next
PUT procedure can modify n.

Terminates execution of the program when out-
put to file f exceeds n lines. The value for n is
reset to its default after each call to REWRITE
for file f.

Allocates storage for p~ and assigns its address to
p.

Allocates storage for p”“; used when p~ is a record
with variants. The optional parameters t1
through tn specify the values for the tag fields of
the current variant. All tag field values must be
listed in the order in which they were declared.
They cannot be changed during execution. NEW
does not initialize the tag fields.

Opens file f with the specified prOpérties.

Moves (v-u+1) components from array a to array
z by assigning components ali] through ali+v-u]
to z[u] through z[v]. The upper bound of a must
be greater than or equal to (i+v-u).

Skips to the next page of file f. The next line
written to f begins on the second line of a new

page.
Writes the value of f", the file buffer variable,

into the file f and moves the current file position
to the next component of f.

Table C-1 (Cont.):

Predeclared Procedures

Procedure

Parameter

Action

READ(f, vl,...,vn,e)

READLN({, v1,...,vn,e) v

READV(s,v1,...,vn)

RESET(f,e)

RESETK(f,kn,e)
REVERT
REWRITE(f,e)
TIME(str)
TRUNCATE(f,e)

UNLOCK(f,e)

UNPACK(z,a,i)

UPDATEC(f,e)

f = file variable
vl,...,vn = variables
e = error parameter

f = text file variable
vl,...,vn = variables
e = error parameter

s = character string
expression
vl,...,vn = variables

f = file variable
e = error parameter

f = file variable
kn = key number
e = error parameter

None

f = file variable
e = error parameter

str = variable -of type
.PACKED ARRAY
[1..11] OF CHAR

f = file variable
e = error parameter

f = file variable
e = error parameter

z = variable of type
PACKED ARRAY[u..v]
OF T

a = variable of type
ARRAY [m..n] OF T

i-= starting index
in array a

f = file variable
e = error parameter

Assigns successive values from the input file f to
the variables v1 through vn. You must specify at
least one variable (v1). The default for f is IN-
PUT. .

Performs the READ procedure, then sets the cur-
rent file position to the beginning of the next
line. The variables vl through vn are optional.
The default for f is INPUT.

Assigns successive values from the input string s
to the variables v1 through vn. You must specify
at least one variable (v1).

Enables reading from file f. RESET(f) moves the
current file position to the beginning of the file f
and assigns the first component of f to the file
buffer variable, £*. EOF(f) is set to FALSE un-
less the file is empty.

Enables reading from file f. RESETK(fkn)
moves the current file position to the component
with the lowest value in key position kn. File f
must be opened for keyed access.

Cancels a VAX-11 condition handler set up by
ESTABLISH.

Enables writing to file f. REWRITE(f) truncates
the file f to zero length and sets EOF(f) to
TRUE.

Assigns the current time to str.

Deletes current file component and all compo-
nents following it. File f must have sequential
organization.

Unlocks the current file component if it is locked.

Moves (v—u+1) components from array z to array
a by assigning components z[u] through z[v] to
a[i] through ali+v-u]. The upper bound of a must
be greater than or equal to (i+v-u).

Writes the contents of the file buffer into the
current component. File f must have relative or
indexed organization and be opened for direct or
keyed access. The current component must be
locked.

Predeclared Routines C-3

Table C-1 (Cont.): Predeclared Procedures

Procedure

Parameter

Action

WRITE(f,p1,...,pn,e)

WRITELN({,p1,...,pn,e)

WRITEV(s,pl,...,pn)

f = file variable

pl,...,pn = write
parameters

e = error parameter

f = text file variable

pl,...,pn = write
parameters

e = error parameter

s = character string
variable

pl,...,pn = write
parameters

Writes the values of pl through pn into the file f.
At least one parameter (pl) must be specified.
The default for f is OUTPUT.

Performs the WRITE procedure, then skips to
the beginning of the next line. The write parame-
ters are optional. The default for f is OUTPUT.

Writes the values of pl through pn into the char-
acter strings.

Table C-2: Predeclared Functions

Category Function Parameter Type

Result Type

Purpose

Arithmetic ABS(x)

ARCTAN(x)

COS(x)

EXP(x)

LN(x)

SIN(x)

SQR(x)

SQRT(x)

Ordinal PRED(x)

SUCC(x)

Boolean EOF(f)

Any arithmetic
type

INTEGER
REAL

INTEGER
REAL

INTEGER
REAL

INTEGER
REAL

INTEGER
REAL

Any arithmetic
type

INTEGER
REAL
Any ordinal type

Any ordinal type

File variable

C-4 Predeclared Routines

Same as x
REAL
REAL
REAL
REAL
REAL
Same as x
REAL
Same as x
Same as x

BOOLEAN

Computes the absolute value of x.

Computes the arc tangent of x. The re-
sult is expressed in radians.

Computes the cosine of x. The parame-
ter is expressed in radians.

Computes e**x, the exponential func-
tion.

Computes the natural logarithm of x.
The value of x must be greater than 0.

Computes the sine of x. The parameter
is expressed in radians.

Computes x**2, the square of x.

Computes the square root of x. If x is
less than zero, an error occurs.

Returns the predecessor value in the
type of x (if a predecessor exists).

Returns the successor value in the type
of x (if a successor exists).

Indicates whether the file position is at
the end of the file f. EOF(f) becomes
TRUE only when the file position is
after the last component in the file. The
default for f is INPUT.

Table C-2 (Cont.):

Predeclared Functions

Category Function Parameter Type Result Type Purpose
EOLN(f) Text file BOOLEAN Indicates whether the position of file f is
variable at the end of a line. EOLN(f) is TRUE
only when the file position is after the
last character in a line, in which case
the value of f* is a space. The default
for f is INPUT.
ODD(x) INTEGER BOOLEAN Returns TRUE if the integer x is odd;
returns FALSE if x is even.
Transfer CHR(x) INTEGER CHAR Returns the character (if one exists)
whose ordinal value is x.
INT(x) Any ordinal type INTEGER Converts the value of x to an integer.
ORD(x) Any ordinal type INTEGER Returns the ordinal value corresponding
to the value of x.
ROUND(x) REAL INTEGER Rounds the REAL value x to the nearest
‘ integer.
TRUNC(x) REAL INTEGER Truncates the REAL value x to an inte-
ger.
Dynamic ADDRESS(x) - Any variable Pointer Returns the pointer that references the
Allocation except a parameter.
component of a
packed
structured type
Character BIN(x,1,d) X = any type Varying Converts a parameter x to its binary
String 1 = integer representation. Returns binary value in
d = integer a string of length 1 with d significant
digits. Parameters 1 and d are optional.
HEX(x,l,d) X = any type Varying Converts a parameter x to its hexadeci-
1 = integer mal representation. Returns hexadeci-
d = integer mal value in a string of length 1 with d
significant digits. Parameters | and d
_are optional.
INDEX(s1,s2) Any string type Integer Locates first occurence of s2 within s1.
Returns integer indicating leftmost po-
sition of s2. Returns 0 if s2 is not found.
LENGTH(s) Any string type Integer Returns integer value indicating current
length of s.
OCT(x,1,d) X = any type Varying Converts a parameter x to its octal rep-
1 = integer resentation. Returns octal value in a
d = integer string of length 1 with d significant di-
gits. Parameters 1 and d are optional.
PAD(s,fill,1) s = string Varying Pads a string s with fill character until
fill = character it is of length 1.
1 = integer
SUBSTR(s,b,l) s = string Varying Constructs a new string beginning at
b = integer position b of a given string s and extend-
1 = integer ing to length 1.

Predeclared Routines C-5

Table C-2 (Cont.):

Predeclared Functions

Category Function Parameter Type Result Type Purpose
Unsigned UAND(ul,u2) Unsigned Unsigned Performs a binary logical AND on the
corresponding bits of parameters ul and
u2.

UNOT(u) Unsigned Unsigned Performs a binary logical NOT on the
corresponding bits of parameter u.

UOR(ul,u2) . Unsigned Unsigned Performs a binary logical OR on the cor-
responding bits of parameters ul and
u2.

UXOR(ul,u2) Unsigned Unsigned Performs a binary logical exclusive OR
on the corresponding bits of parameters
ul and u2.

Allocation SIZE(x,cl,....cn) x = any type Integer Returns an integer value indicating
Size cl,...,cn = number of bytes allocated for a variable
case constants or record field of type x. If the variable

is part of a variant record, case con-

stants c1 through cn may be specified.

NEXT(x) Any type Integer Returns integer value indicating num-
ber of bytes allocated for a component
of type x in-an unpacked array.

PSIZE(x) Any type Integer Returns integer value indicating num-
ber of bits allocated for a field of type x
in a packed record

PNEXT(x) Any type Integer Returns integer value indicating num-
ber of bits allocated for a component of
type x in a packed array.

Low__Level ADD__INTER- e = assignment Integer Adds e to v. Returns -1 if result is nega-
Interlocked LOCKED(e,v) compatible tive, 0 if result is zero, +1 if result is
with v positive.
v = Integer,
Unsigned,
or Subrange

SET_INTER- Boolean Boolean Assigns TRUE to parameter b and re-

LOCKED(b) turns its original value.

CLEAR_INTER- Boolean Boolean Assigns FALSE to parameter b and re-

LOCKED(b) turns its original value.

Miscellaneous CARD(s) Set Integer Returns the number of elements cur-
rently belonging to the set s.

CLOCK None Integer Returns an integer value equal to the
central processor time used by the cur-
rent process. The time is expressed in
milliseconds.

EXPO(r) Real, Double, Integer Returns the integer-valued exponent of

Quadruple the floating-point representation of r.

STATUS(f) File . Integer Returns 0 if the previous operation on
the file succeeded, -1 if the previous op-
eration encountered an end-of-file, and
a positive integer representing an error
code if the previous operation resulted
in an error.

C-6 Predeclared Routines

Appendix D

Summary of VAX-11 PASCAL Extensions

Table D-1 summarizes the language features provided in VAX-11 PASCAL
that are not part of the PASCAL language definition.

Table D-1: Language Extensions

Category

Extension

Lexical and syntactical extensions

Reserved words: MODULE, OTHERWISE, REM,
VARYING, %DESCR, %STDESCR, %IMMED,
%REF, %INCLUDE

Exponentiation operator (**)

REM operator

Type cast operator (::) for variables and expressions
Binary, hexadecimal, and octal notation for integers
Double- and quadruple-precision real numbers

Dollar sign ($) and underscore () characters in
identifiers

Identifiers that can begin with any character other
than a digit but whose first 31 characters must be
unique

Extended syntax for inclusion of nonprinting charac-
ters in character strings

Compile-time constant expressions allowed anywhere
a constant is allowed

Constructors of structured types used anywhere in
place of a constant of the structured type

Attributes used with data items, routines, and compi-
lation units

Relaxed rules for assignment compatibility

Structural compatibility enforces between actual and
formal parameters

Table D-1 (Cont.): Language Extensions

Category

Extension

Predefined types

UNSIGNED, SINGLE, DOUBLE (D_floating and
G__floating), QUADRUPLE

VARYING OF CHAR structured type and concatena-
tion operator for VARYING strings

Predeclared procedures

CLOSE, DATA, DELETE, ESTABLISH, FIND,
FINDK, HALT, LINELIMIT, LOCATE, OPEN,
READY, RESETK, REVERT, TIME, TRUNCATE,
UNLOCK, UPDATE, WRITEV

Predeclared functions

Boolean functions: UFB and UNDEFINED

Transfer functions: DBLE, INT, QUAD, TRUNC,
UINT, UROUND, UTRUNC

Dynamic allocation function: ADDRESS

Character-string functions: BIN, HEX, INDEX,
LENGTH, OCT, PAD, SUBSTR

Unsigned functions: UAND, UNOT, UOR, UXOR

Allocation size functions: SIZE, NEXT, BITSIZE,
BITNEXT

Low-level interlocked functions: ADD__INTER-
LOCKED, SET_INTERLOCKED, CLEAR_IN-
TERLOCKED

Miscellaneous functions: CARD, CLOCK, EXPO

READ, READLN, WRITE,
WRITELN extensions

Parameters of character-string and enumerated types
for READ and READLN

Parameters of enumerated types for WRITE AND
WRITELN

Prompting at the terminal with a WRITE/READ or
WRITE/READLN sequence '

Optional carriage-control specification for text files

with WRITE and WRITELN

Extended 1/O capabilities

Direct access and relative file organization

Keyed access and indexed file organization

Declarations

Declaration and definition sections that can appear
more than once and in any order

Initialization of static variables in VAR declaration
sections at program or module level

VALUE initialization section

Statements

D-2 Summary of VAX-11 PASCAL Extensions

OTHERWISE clause in CASE statement

Table D-1 (Cont.):

Language Extensions

Category

Extension

Procedures and functions

Functions that return values of structured types
(other than file types)

Function called as procedures
Externalprocedure and functiQn declarations
Default values for formal parameters
Nonpositional parameter passing

Extended mechanism specifiers for passing parame-
ters to external procedures and functions: %IMMED,
%REF, %DESCR, %STDESCR

Compilation

MODULE capability for combining declarations and
definitions to be compiled independently from the
main program

ENVIRONMENT and INHERIT attributes to con-
trol independent compilation

Summary of VAX-11 PASCAL Extensions D-3

Appendix E
Differences Between Version 1 and Version 2

This appendix describes the differences between previous versions of VAX-11
PASCAL and Version 2. These differences fall into three categories:

e Features that have been decommitted. The previous versions of these fea-
tures are still supported in Version 2 to allow you to run existing programs;
however, it is recommended that you modify your programs to reflect the
Version 2 changes.

e Features that are controlled by the /OLD_VERSION compile-time quali-
fier.

e Minor changes that are not likely to affect the vast majority of existing
VAX-11 PASCAL programs.

If you modify a program that executed successfully under previous versions of
VAX-11 PASCAL, you should not make changes that conflict with the Ver-
sion 2 language definition. If conflicts exist and you compile the program with
Version 2, one of two problems may result:

* You may get warning messages at compile time.
¢ The program may compile successfully but may not run.

If you must use language features that conflict with Version 2, you can use the
/OLD__VERSION qualifier at compile time to produce the desired results.
The /OLD_VERSION qualifier and the conflicts that it resolves are de-
scribed in Section E.2.

E.1 Decommitted Features
The following decommitted features are described in this section:
e VALUE initialization section
e Syntax of dynamic array parameters
¢ Predeclared functions LOWER and UPPER
¢ Printing of hexadecimal and octal values with the WRITE procedure
e Syntax of the OPEN procedure

¢ Specification of compiler qualifiers in the source code

E-2

E.1.1 VALUE Section

The VALUE section initializes variables that are declared in the main pro-
gram declaration section. You can initialize ordinal, real, and structured vari-
ables (except file variables) with constants or constructors of the same type.

The description below presents general information on VALUE initializations.
The exact format of the initialization depends on the type of the variable
being initialized. For more information on types, refer to Chapter 2.

Syntax
VALUE {variable-identifier := value};...

variable-identifier

The name of the variable to be initialized. You cannot specify a list of
variable identifiers.

value

A constant of the same type as the variable, or a constructor for a record,
array, or set variable.

You must specify a constant of the correct type for each variable being initial-
ized; you cannot specify an expression. Note that structured variables require
constructors (see Chapter 2).

The VALUE initialization section can appear only in the main program decla-
ration section. You cannot initialize variables in procedures, functions, or
modules.

VAX-11 PASCAL Version 2 allows you to initialize variables in a VAR decla-
ration section of the main program (see Section 4.4).

E.1.2 Dynamic Array Parameters

Some programming applications require general routines that can process
arrays with different bounds. Version 1 of VAX-11 PASCAL allows you to
declare routines with dynamic array parameters. You can call the routine with
arrays of different sizes, as long as their bounds are within those specified by
the formal parameter.

For example, you could write a procedure that sums the components of a one-
dimensional array. Each time you use the procedure, you might want to pass
arrays with different bounds. Instead of declaring multiple procedures using
arrays of each possible size, you could use a dynamic array parameter. The
procedure will treat the formal parameter as though its bounds were those of
the actual parameter.

In routines that contain dynamic array parameters, you use the predeclared
functions LOWER and UPPER to return the lower and upper bounds of the
actual array parameter (see Section E.1.3).

Syntax

tarray-identifier},... : [PACKED] ARRAY/[{index-type-identifier},...]
OF type-identifier

Differences Between Version 1 and Version 2

Note that you must use a type identifier to specify the range of the indexes.
You cannot use a subrange. The type identifier can be any of the predefined
ordinal types (for example, INTEGER).

The components and indexes of the actual and formal dynamic array parame-
ters must be of compatible types. The rules for dynamic array compatibility
(see Section E.1.2) are identical to those for compatibility between other
arrays, with one exception: the range of the index types of the actual array
parameter must be within the range specified for the formal parameter.

The following differences exist between the Version 2 syntax and the syntax of
previous versions. See Section 6.3.5 for further details of the Version 2 syntax.

¢ In Version 2, dynamic arrays are known as conformant arrays, and the
syntax that describes them is called a conformant array schema.

e The conformant array schema for Version 2 requires that the upper and
lower bounds of the conformant array parameter be declared with identifiers
in the formal parameter list. You can then use these identifiers within the
routine block to refer to the upper and lower bounds of the parameter.

e Version 2 allows the type identifier of a conformant array parameter to be
another conformant array schema.

E.1.3 Lower and Upper Functions

Previous versions of VAX-11 PASCAL included the predeclared functions
LOWER and UPPER, which you could use to determine the upper and lower
bounds of dynamic array parameters (see Section E.1.2). Because the syntax
of conformant array parameters has changed for Version 2 (see Section 6.3.5),
these functions are no longer necessary. They are supported, however, for
programs that use the old syntax.

Syntax

LOWER (a [, n])
UPPER (a [, n])

The parameter a denotes an array variable; the optional parameter n is an
integer constant that denotes a dimension of a. If you omit a value for the
parameter n, it defaults to 1. The LOWER function returns the lower bound
of the nth dimension of a; the UPPER function returns the upper bound of the
nth dimension of a.

E.1.4 Printing Hexadecimal and Octal Values

The following sections explain how to print values in hexadecimal and octal
notation using the WRITE procedure. Version 2 provides the predeclared
functions HEX, OCT, and BIN, which return the hexadecimal, octal, and
binary equivalents of the input value (see Section 7.6). You can use these
functions in conjunction with the WRITE, WRITELN, and WRITEYV proce-
dures to print values in hexadecimal, octal, and binary notation.

The following formats of the WRITE procedure are used to print hexadecimal
and octal values in Version 1.

Differences Between Version 1 and Version 2 E-3

E-4

Syntax

-+ "WRITE ({expression:field-width HEX]},...)
WRITE ({expression:field-width OCT},...)

expression

The value to be written. Arbitrary items (including pointers) can be
written in hexadecimal or octal notation to text files.

field-width
A positive integer expression indicating the length of the print field.

For hexadecimal values, if the field width specified is less than eight charac-
ters, and the output value is greater than the field width, the value being
printed is truncated on the left. If the field width is greater than eight charac-
ters, and the output value is less than the field width, the field is padded with
blanks on the left.

For octal values, if the field width specified is less than 11 characters, and the
output value is greater than the field width, the value being printed is trun-
cated on the left. If the field width is greater than 11 characters, and the
output value is less than the field width, the field is padded with blanks on
the left.

Examples
1. WRITE {(Pavroll:10 HEX):

The value of the variable Payroll is printed in a field of 10 hexadecimal
characters.

2. WRITE (Social_Securitv:id 0OCT);

The value of the variable Social_Security is printed in a field of 14 octal
characters.

E.1.5 The OPEN Procedure

The OPEN procedure opens a file and allows you to specify file parameters.
Version 2 includes new parameters and additional parameter values and has
changed some defaults. Table E-1 lists the file parameters available under
Version 1, their possible values, and their defaults.

Differences Between Version 1 and Version 2

Table E-1: Summary of Version 1 OPEN Parameters

Parameter Parameter Values Default

History OLD or NEW NEW (OLD, if the file is opened
using RESET)

Record-length Any positive integer 133 bytes

Access-method DIRECT or SEQUENTIAL SEQUENTIAL

Record-type FIXED or VARIABLE VARIABLE for new files; for old
files, record type established at file
creation

Carriage-control LIST, CARRIAGE, FORTRAN, LIST for all text files; NOCAR-
NOCARRIAGE, NONE RIAGE for all other files. Old files
use their existing carriage-control

parameter

The following differences exist between the Version 2 OPEN syntax and the
syntax of Version 1. See Section 8.3.1 for a complete description of the Version
2 OPEN procedure. '

e In Version 1, the file name is specified as a string constant (VAX/VMS file
specification) or a logical name. In Version 2, a string expression containing
a file specification can be used as the file name.

e In Version 2, the parameter values READONLY and UNKNOWN have
been added to the history parameter.

¢ In Version 2, the parameter value KEYED has been added to the access-
method parameter.

¢ In Version 2, the default record type is VARIABLE for new text files and
files of type FILE OF VARYING OF CHAR,; for all other new files, the
default is FIXED. The default for old files remains the same.

¢ In Version 2, the default carriage control is LIST for text files and files of
type FILE OF VARYING OF CHAR. The default for all other file types and
for old files remains the same.

¢ Version 2 includes five new parameters for the OPEN procedure: organiza-
tion, disposition, sharing, user-action, and error-recovery. These parame-
ters, their possible values, and their defaults are described in Section 8.3.1.

Note that although direct access to text files is prohibited in both Version 1
and Version 2, the point at which the error occurs differs in the two versions.
In Version 1, an OPEN procedure is allowed to specify direct access for a text
file; the error occurs when a FIND procedure attempts to access the file. In
Version 2, an OPEN procedure that specifies direct access to a text file causes
an error to be generated.

Differences Between Version 1 and Version 2 E-5

E-6

E.1.6 Specifying Qualifiers in the Source Code

In previous versions of VAX-11 PASCAL, you could specify compiler quali-
fiers within comments in the source code. VAX-11 PASCAL Version 2 does
not support this feature. It is recommended that you specify these qualifiers
with the PASCAL command when you compile the program. Alternatively,
you can use attributes in your program to perform some of the same opera-
tions that are performed by compiler qualifiers. For more information, refer to
Chapter 10 and to the VAX-11 PASCAL User’s Guide.

In Version 1, the CHECK qualifier (abbreviated C) generates code to perform
run-time checks. The CROSS_REFERENCE qualifier (X) produces a cross-
reference listing of identifiers. The DEBUG qualifier (D) generates records for

‘the VAX-11 Symbolic Debugger. The LIST qualifier (L) produces a source

listing file. The MACHINE__CODE qualifier (M) includes machine code in
the source listing file. The STANDARD qualifier (S) prints informational
messages indicating the use of VAX-11 PASCAL extensions. The WARN-
INGS qualifier (W) prints diagnostics for warning-level errors.

Syntax
(*${qualifier},...[; comment] *)

qualifier
A qualifier name or a 1-character abbreviation.

comment
The text of a comment, which is optional.

The first character after the comment delimiter must be a dollar sign ($),
which cannot be preceded by a space.

To enable a qualifier, use a plus sign (+) after the qualifier’s name or abbrevi-
ation. To disable a qualifier, use a minus sign (-) after the qualifier’s name or
abbreviation. You can specify any number of qualifiers in a single comment.
You can also include text in the comment after the qualifiers. The text must
be separated from the list of qualifiers by a semicolon.

You can use qualifiers in the source code to enable and disable options during
compilation. For example, to generate check code for only one procedure in a
program, insert a comment that enables the CHECK qualifier before the
procedure declaration. After the end of the procedure declaration, include a
comment that disables the qualifier. For example:

(*#$C+37 enable CHECK for Testl only #)
PROCEDURE Testl}

+
+

END 3
(#6C-3 disable CHECK option %)

You can specify qualifiers in both the source code and the PASCAL command
line. Command line qualifiers override source code qualifiers. If, for example,
the source code specifies DEBUG+, but you type PASCAL/NODEBUG, the
DEBUG option will not be in effect.

Differences Between Version 1 and Version 2

E.2 /OLD_VERSION Qualifier

The VAX-11 PASCAL language definition in early versions conflicts in some
respects with that of Version 2, which is based on Level 0 of the standard
proposed by the International Organization for Standardization (ISO). The
/OLD__VERSION qualifier on the PASCAL command informs the compiler

" that it should default to the VAX-11 PASCAL Version 1 language definition
when conflicts arise. By default, /OLD_VERSION is disabled so that the
compilation conforms to the PASCAL standard.

Because the Version 2 compiler performs many optimizations on the source
code, you should also enable the /NOOPTIMIZE qualifier during the recom-
pilation of old programs. The /NOOPTIMIZE qualifier prevents the compiler
from making optimizations that might cause an old program to behave unex-
pectedly when it is recompiled.

The following sections describe the conflicts between Version 2 and the preVi-
ous versions of VAX-11 PASCAL and explain how they are resolved by the
/OLD_VERSION qualifier.

E.2.1 Comment Delimiters

Version 2, unlike previous versions, considers the opening comment delimiters
(* and { equivalent; likewise, the closing delimiters *) and } are considered
equivalent. Therefore, a comment begun with (* can be terminated with },
and a comment begun with { can be terminated by *).

Recompilation of the program with the /OLD_VERSION qualifier will cause
the Version 1 restriction to be enforced so that you cannot combine comment
delimiters in this way.

E.2.2 %INCLUDE Files

In previous versions of VAX-11 PASCAL, the default file type of a %IN-
CLUDKE file is DAT. However, in Version 2, the default file type is PAS.

You must use the /OLD_VERSION qualifier to recompile a program that
includes one or more files that have a file type of DAT.

E.2.3 Multidimensional Packed Arrays

Previous versions of the VAX-11 PASCAL compiler interpret the shorthand
form of the array type definition

PACKED ARRAYIxsv szl

to be equivalent to the longer definition
ARRAYLx]1 OF ARRAYLvy1l OF PACKED ARRAYLz1

That is, only the last dimension of the array is packed. In Version 2, however,
the shorthand definition above is equivalent to the longer definition:

PACKED ARRAYLx1 OF PACKED ARRAYLv1 OF PACKED ARRAYIL:z1

In the Version 2 interpretation, all dimensions of the array are packed.

Differences Between Version 1 and Version 2 E-7

E-8

You must use the /OLD_VERSION qualifier to recompile a program that
includes a multidimensional packed array of which you want only the last
dimension to be packed.

E.2.4 Storage of Components

In previous versions of VAX-11 PASCAL, a component of the subrange type
0..0 in a packed record or array is allocated one bit of storage. In Version 2,
however, a component of this type is not allocated any storage.

You must use the /OLD_VERSION qualifier to recompile a program in
which one bit of storage is required to be allocated for such a component.

E.2.5 Storage of Sets

In previous versions of VAX-11 PASCAL, an unpacked set type was always
allocated 256 bits. In Version 2, the allocation size of an unpacked set depends
on the set’s base type and on whether the unpacked set is allocated in a
packed or an unpacked context. See the VAX-11 PASCAL User’s Guide for
details.

You must use the /OLD_VERSION qualifier to recompile a program in
which an unpacked set requires an allocation size of 256 bits.

E.2.6 TEXT Files and FILE OF CHAR

Previous versions of VAX-11 PASCAL consider the predefined file types
TEXT and FILE OF CHAR to be equivalent. In Version 2, however, files of
type TEXT are composed of complete lines of characters terminated by an
end-of-line marker, while files of type FILE OF CHAR are composed of indi-
vidual characters. Section 8.1.1 and the VAX-11 PASCAL User’s Guide pro-
vide detailed information about the differences between these two file types.

You must use the /OLD_VERSION qualifier to recompile a program that
requires a TEXT file and a FILE OF CHAR to be treated identically.

E.2.7 MOD Operator

The MOD operator, as defined by previous versions of VAX-11 PASCAL,
returns the remainder that results from the DIV operation. In Version 2,
however, the MOD operator is equivalent to the mathematical modulus oper-
ation. Therefore, Version 2 allows you to perform the operation I MOD J only
when J is a positive number; the MOD function always returns a value from 0
to J-1. To compute the remainder from the DIV operation, Version 2 provides
the REM operator. (See Section 3.2.1 for more information about the MOD
and REM operators.)

You must use the /OLD_VERSION qualifier to recompile a program in
which you use the MOD operator to compute the remainder.

Differences Between Version 1 and Version 2

E.2.8 String Variable Parameters to the READ Procedure

In previous versions of VAX-11 PASCAL, if a READ procedure encounters an
end-of-line marker as the first character to be read into a string variable, it
ignores the marker and advances the file position to the beginning of the next
line of input. In Version 2, a READ procedure never skips an end-of-line
marker that is the first character to be read into a string variable. If a READ
procedure encounters an initial end-of-line, the file remains positioned at the
end of the line; you must call a READLN procedure to advance the file
position to the next line. See Section 8.4.2 for further discussion of the READ
procedure with string variable parameters.

Recompilation with the /OLD_VERSION qualifier causes a READ proce-
dure to skip one end-of-line marker that it encounters as the first character to
be read into a string variable.

E.2.9 Field Widths

In previous versions of VAX-11 PASCAL, a value of type REAL or SINGLE is
written with a default field width of 16 characters; a value of type DOUBLE,
with 24. In Version 2, however, the default field width for a value of type
REAL or SINGLE is 12 characters; for a value of type DOUBLE, 20.

In addition, previous versions of VAX-11 PASCAL always expand the field
width of a real number written in decimal format (when necessary) so that the
real number is preceded by a leading blank. No leading blank is inserted in
Version 2.

You must use the /OLD_VERSION qualifier to recompile a program in
which you want to use the default field width specifications of Version 1.

E.2.10 Global Identifiers

In previous versions of VAX-11 PASCAL, the names of program-level proce-
dures and functions are considered global identifiers. However, in Version 2,
such names are not considered global unless they have the GLOBAL attrib-
ute.

You must use the /OLD_VERSION qualifier to recbmpile a program in
which the names of program-level routines are to be made global by default.

E.2.11 Allocation in Program Sections

Unlike previous versions, Version 2 of VAX-11 PASCAL does not allocate
storage for static, program-level variables in an overlaid program section. (See
the VAX-11 PASCAL User’s Guide for information about program section
allocation in Version 2.)

To cause the Version 2 compiler to treat static, program-level variables and
routine identifiers in the same manner as previous versions, you must use the
/OLD_VERSION qualifier. You can also apply the OVERLAID attribute
(see Section 10.14) to a compilation unit to cause the storage for its static,
program-level variables to be allocated in an overlaid program section. Ena-
bling /OLD_VERSION has the same effect as applying the OVERLAID at-
tribute to all compilation units in a program.

Differences Between Version 1 and Version 2 E-9

E.3 Minor Language Changes

E-10

- Some minor language changes that have been made in Version 2 cannot be
controlled by the /OLD_VERSION qualifier. Such changes, however, are not
likely to have adverse affects on most existing VAX-11 PASCAL programs.
These changes are as follows:

e To flag language extensions when the /STANDARD qualifier is enabled,
Version 2 uses the PASCAL standard proposed by the International Organi-
zation for Standardization as the language definition. The Version 1 lan-
guage is defined by the PASCAL User Manual and Report by Jensen and
Wirth.

¢ In Version 2, the /STANDARD qualifier is disabled by default. The Version
2 compiler does not automatically flag extensions to the PASCAL language
definition contained in the ISO standard. /SSTANDARD was enabled in
Version 1.

® Version 2 ignores all comments whose first character (inside the opening
delimiter) is a dollar sign ($). Note that this behavior prohibits the specifi-
cation of compile-time qualifiers in the source code, which was legal in
Version 1 (see Section E.1.6).

e In Version 2, the /CHECK qualifier is enabled by default to check the
bounds of array and character-string assignments. You can change the de-
fault if you wish, and you can also specify the checking of other aspects of
your program. /CHECK was disabled by default in Version 1 and did not
allow you to specify checking options.

® In Version 2, a change in the value of the control variable inside the body of
a FOR statement does not affect the number of times the loop body is
executed. (This behavior is the reverse of Version 1.)

® Version 2 considers EOLN to be FALSE when EOF is TRUE. (In Version 1,
EOLN was TRUE at end-of-file.) This change is necessary to make Version

2 conform to the ISO standard, which forbids a program from testing for
EOLN at end-of-file.

® A negative field-width value in a WRITE or WRITELN procedure call
generates an error in Version 2. In Version 1, a negative field-width value
defaulted to 0.

* When writing double-precision values, Version 2 output procedures indicate
the exponent by the letter E. (Version 1 used the letter D on output values.)
Note, however, that input procedures in both Version 1 and Version 2 accept
either D or E as the exponent letter of double-precision values.

e In Version 2, the default length of a record in a text file is 133 bytes. Because
of an error in Version 1, the default length was actually 254, contrary to the
description in the documentation.

e LIBSESTABLISH, the Run-Time Library procedure that sets up condition
handlers, cannot be used in Version 2. Instead, you use the new predeclared
procedures ESTABLISH and REVERT.

Differences Between Version 1 and Version 2

¢ Run-time condition values have new values in Version 2. These values are
contained in the file SYSSLIBRARY:PASDEF.PAS. To make them avail-
able in your program, include the file in a CONST section.

e In Version 2, when a nonlocal GOTO statement transfers control from a
routine to a labeled statement in an enclosing block, any condition handlers
established by intervening routines are called first with the condition SS$__
UNWIND. In Version 1, a nonlocal GOTO statement transferred control
directly to the labeled statement; no condition handlers were executed for
intervening routines.

e In Version 2, you cannot use the predeclared functions SNGL and ORD as
function parameters using the Version 1 syntax for function parameter dec-
larations. You must rewrite the formal parameter declarations to use the
Version 2 syntax (see Section 6.3.3).

Differences Between Version 1 and Version 2 E-11

Appendix F
Error Detection

This appendix describes how the VAX-11 PASCAL compiler and run-time system detect
violations of the PASCAL language standard. Errors detected at run time cause a program to
terminate and return appropriate error messages. Errors described here as “not detected”
cause a program to produce unexpected results.

The type of an index value is not assignment compatible with the index type of an array.

Explanation: Detected at run time if bounds checking was enabled during compilation.

The current variant changes while a reference to it exists.

Explanation: Not detected. An example of a reference to a variant is the passing of the variant to a
formal VAR parameter.

The value of a variable to which a pointer refers (p”) is NIL.

Explanation: Usually detected at run time. Always detected if pointers checking was enabled during
compilation.

The value of a variable to which a pointer refers (p~) is undefined.

Explanation: Not detected.

The DISPOSE procedure is called to dispose of a heap-allocated variable while a reference to the variable exists.

Explanation: Not detected. Examples of such references are: passing the variable or a component of it to
a formal VAR parameter, or using the variable in a WITH statement (if the variable is a record).

»
The value of file f changes while a reference to f* exists.

Explanation: Not detected. An example of a reference to f” is the passing of £~ by reference to a routine;
until the routine has ceased execution, you may not perform any operation on file f.

The ordinal type of an actual parameter is not assignment compatible with the type of the corresponding formal
parameter.

Explanation: Detected at run time if subrange checking was enabled during compilation of the called
routine.

The set type of an actual parameter is not assignment compatible with the type of the corresponding formal
parameter.

Explanation: Detected at run time if subrange checking was enabled during compilation of the called
routine.

A file is not in Generation mode when a PUT, WRITE, WRITELN, or PAGE procedure is attempted.

Explanation:. Detected at run time.

A file is in Undefined mode when a PUT, WRITE, WRITELN, or PAGE procedure is attempted.
Explanation: Not detected.

The result of an EOF function is not TRUE when a PUT, WRITE, WRITELN, or PAGE procedure is attempted.

Explanation: Detected at run time. The operation is illegal only when the file is accessed sequentially.

The value of the file buffer variable is undefined when a PUT procedure is attempted.
Explanation: Not detected.

A file is in Undefined mode when a RESET procedure is attempted.
Explanation: Not detected.

A file is not in Inspection mode when a GET, READ, or READLN procedure is attempted.

Explanation: Detected at run time.

A file is in Undefined mode when a GET, READ, or READLN procedure is attempted.
Explanation: Not detected.

The result of an EOF function is TRUE when a GET, READ, or READLN procedure is attempted.

Explanation: Detected at run time.

The type of the file buffer variable is not assignment compatible with the type of the variable that is a parameter
to a READ or READLN procedure.

Explanation: Detected at run time.

The type of the expression being written by a WRITE or WRITELN procedure is not assignment compatible with
the type of the file buffer variable.

Explanation: Detected at run time.

The current variant does not exist in the list of variants specified with the NEW procedure.

Explanation: Not detected.

The DISPOSE(p‘) procedure is called to deallocate a pointer variable that was created using the variant form of
the NEW procedure.

Explanation: Not detected.

¥
The variant form of the DISPOSE procedure does not specify the disposal of the same number of variants that
were created by the variant form of the NEW procedure. '
Explanation: Not detected.
The variant form of the DISPOSE procedure does not specify the disposal of the same variants that were created
by the variant form of the NEW procedure.
Explanation: Not detected.

The value of the parameter to the DISPOSE procedure is NIL.

Explanation: Detected at run time.

F-2 Error Detection

The value of the parameter to the DISPOSE procedure is undefined.
Explanation: Not detected.

A variant record created by the NEW procedure is accessed as a whole, rather than one component at a time.

Explanation: Not detected.

In the PACK(a,i,z) procedure, the type of the index value i is not assignment compatible with the index type of a.

Explanation: Detected at run time if subrange checking was enabled during compilation.

The PACK procedure is attempted when the value of at least one component of a is undefined.

Explanation: Not detected.

The index value i in the PACK procedure is greater than the upper bound of the index type of a.

Explanation: Detected at run time.

In the UNPACK(z,i,a) procedure, the type of the index value i is not assignment compatible with the index type
of a.

Explanation: Detected at run time if subrange checking was enabled during compilation.

The index value i in the UNPACK procedure is greater than the upper bound of the index type of a.

Explanation: Detected at run time if subrange checking was enabled during compilation.

The UNPACK procedure is attempted when the value of at least one component of z is undefined.

Explanation: Not detected.

The resulting value of SQR (X) does not exist.

Explanation: Detected at run time for integers if overflow checking was enabled during compilation;
always detected at run time for real numbers.

In the expression LN (X), the value of X is negative.

Explanation: Detected at run time.

In the expression SQRT (X), the value of X is negative.

Explanation: Detected at run time.

The resulting value of TRUNC (X) does not exist after the following calculations have been done: if the value of
X is positive or zero, then 0 <= X-TRUNC (X) <1; otherwise, -1 < X-TRUNC (X) <=0.

Explanation: Detected at run time if overflow checking was enabled during compilation.

The resulting value of ROUND (X) does not exist after the following calculations have been done: if the value of
X is positive or zero, ROUND (X) is equivalent to TRUNC (X+ 0.5); otherwise, ROUND (X) is equivalent to
TRUNC (X-0.5). '

Explanation: Detected at run time if overflow checking was enabled during compilation.

The resulting value of CHR (X) does not exist.

Explanation: Detected at run time if subrange checking was enabled during compilation.

The resulting value of SUCC (X) does not exist.

Explanation: Detected at run time if subrange checking was enabled during compilation.

The resulting value of PRED (X) does not exist.

Explanation: Detected at run time if subrange checking was enabled during compilation.

Error Detection F-3

The function EOF (f) is called when the file f is undefined.
Explanation: Not detected.

The function EOLN (f) is called when the file f is undefined.
Explanation: Not detected.

The function EOLN (f) is called when the result of EOF (f) is TRUE.
Explanation: Not detected.

A variable is not initialized before it is first used.

Explanation: Not detected.

In the expression X/Y, the value of Y is zero.

Explanation: Detected at run time.

In the expression I DIV J, the value of J is zero.

Explanation: Detected at run time.

In the expression I MOD J, the value of J is zero or negative.

Explanation: Detected at run time if subrange checking was enabled during compilation.

An operation or function involving integers does not conform to the mathematical rules for integer arithmetic.

Explanation: Detected at run time if overflow checking was enabled during compilation.

A function result is undefined when the function returns control to the calling block.

Explanation: Not detected.
The ordinal type of an expression is not assignment compatible with the type of the variable or function identifier
to which it is assigned.

Explanation: Detected at run time if subrange checking was enabled during compilation.
The set type of an expression is not assignment compatible with the type of the variable or function identifier to
which it is assigned.

Explanation: Detected at run time if subrange checking was enabled during compilation.

None of the case labels is equal in value to the case selector in a CASE statement.
Explanation: Detected at run time if case-selectors checking was enabled during compilation.
In a FOR statement, the type of the initial value is not assignment compatible with the type of the control
variable, and the statement in the loop body is executed.
Explanation: Detected at run time if subrange checking was enabled during compilation. Assignment
compatiblity is not enforced if the statement in the loop body can never be executed.
In a FOR statement, the type of the final value is not assignment compatible with the type of the control variable
and the statement in the loop body is executed.
Explanation: Detected at run time if subrange checking was enabled during compilation. Assignment
compatibility is not enforced if the statement in the loop body can never be executed.
When an integer is being read from a text file, the digits read do not constitute a valid integer value. (Initial
spaces and end-of-line markers are skipped.)

Explanation: Detected at run time.

F-4 Error Detection

When an integer is being read from a text file, the type of the value read is not assignment compatible with the
type of the variable.

Explanation: Detected at run time if subrange checking was enabled during compilation.
When a real number is read from a text file, the digits read do not constitute a valid real number. (Initial spaces
and end-of-line markers are skipped.)

Explanation: Detected at run time.

The value of the file buffer variable is undefined when a READ or READLN procedure is performed.
Explanation: Not detected.
A WRITE or WRITELN procedure specifies a field width in which the integers representing the total width and
the number of fractional digits are less than 1.
Explanation: Not detected.
The bounds of an array passed to a conformant array parameter are outside the range specified by the conformant
array’s index type.

Explanation: Detected at run time if bounds checking was enabled during compilation.

Error Detection F-5

Appendix G
Description of Implementation Features

The ISO standard for PASCAL allows some features of the language to be
defined by a particular implementation or dependent on an implementation.
This appendix lists all features of VAX-11 PASCAL that are implementation-
defined or implementation-dependent, and explains how these features are

treated by VAX-11 PASCAL.

G.1 Implementation-Defined Features

The value of each character allowed in a character string
VAX-11 PASCAL Treatment: See Appendix A.
The range of real number values represented by the type REAL

VAX-11 PASCAL Treatment: See the VAX Architecture Hand-
book.

The characters represented by the type CHAR and their ordinal values
VAX-11 PASCAL Treatment: See Appendix A.

The point at which the REWRITE, PUT, RESET, and GET procedures are
performed on a file

VAX-11 PASCAL Treatment: Performed immediately unless the
file is a terminal file, in which case delayed device access occurs (see
Section 8.10)

The value of MAXINT
VAX-11 PASCAL Treatment: 2,147,483,647
The accuracy to which the results of real-number operations are calculated

VAX-11 PASCAL Treatment: See the VAX Architecture Handbook
and the VAX-11 Record Management Services Reference Manual.

G-2

Default field widths
VAX-11 PASCAL Treatment:
Values of type INTEGER 10
Values of type REAL 12
Values of type BOOLEAN 6

The number of digits used to represent the exponent of a floating-point num-

ber o
- VAX-11 PASCAL Treatment:
F__floating or D__floating 2
G_floating 3
H__floating 4
The value of the exponent character
VAX-11 PASCAL Treatment: ‘E’

The case (upper or lower) in which the Boolean values TRUE and FALSE are
printed as output

VAX-11 PASCAL Treatmevl/lt: Uppercase; that is, TRUE and
FALSE

The effect of the PAGE procedure -

VAX-11 PASCAL Treatment: PAGE writes a line containing only
the form-feed character (ASCII value 12)

The binding of a file variable whose name is listed in the program heading

VAX-11 PASCAL Treatment: The file name (unless it is INPUT or
OUTPUT) is equated to a logical name, if a translation for the file
name exists. If there is no corresponding translation, the file type
DAT is appended to the name listed in the heading, as in IN-
FILE.DAT. If the file name is INPUT, the file is equated to PAS-
$INPUT, if PASSINPUT is defined; otherwise, the file is equated to
SYSS$INPUT. Similarly, if the file name is OUTPUT, the file is
equated to PAS$OUTPUT, if PAS$OUTPUT is
defined; otherwise, the file is equated to SYS$OUTPUT.

Description of Implementation Features

G.2 Implementation-Dependent Features

The order of evaluation of the following items:
¢ Index values of an array variable
e Expressions in a set constructor
e Operands in a dyadic operation
VAX-11 PASCAL Treatment: Random order

Order of evaluation, accessing, and binding of actual parameters in a function
designator and a procedure call

VAX-11 PASCAL Treatment: Random order

Order of accessing the variable and evaluating the expression in an assign-
ment statement

VAX-11 PASCAL Treatment: Random order
The effect of reading a text file for which the PAGE procedure was called

VAX-11 PASCAL Treatment: Page reads a line containing only the
form-feed character (ASCII value 12).

The binding of a file variable whose name is listed in the program heading to
entities that are external to the program

VAX-11 PASCAL Treatment: Reported as an error at compile time

Description of Implementation Features G-3

Appendix H
Program Examples

This appendix contains four programs that perform the following tasks:

e Program 1 adds, deletes, and updates records in an indexed file and pro-
duces a list of records sorted by customer number, last name, and zip code.

¢ Program 2 reads hexadecimal input typed at the terminal and converts it to
decimal. This program simulates the behavior of VAX-11 Run-Time Li-

brary input procedures.

e Program 3 writes a message in reverse video to the terminal screen, then
prompts for and accepts information typed after the message.

¢ Program 4 counts the number of occurrences of each word in a file and
~ prints an alphabetized list of the words.

H.1 Update Indexed File

PROGRAM Update_File (OUTPUT, Addressess Transactions: SortOut) i

TYPE
Code =
String

(Ay Dy C) 3
= UARYING [331 0OF CHAR3

(¥ Record of customer information #*)
Address_Record = RECORD

VAR

Customer_No : [KEY(0)1 PACKED ARRAY [1..B81 OF CHARS
Last_Name : [KEY(1)1 PACKED ARRAY [1..235]1 OF CHAR:
First.Name : Strind}

Initial : CHAR:

Address : String}

City 3 Strindj

State : PACKED ARRAY [1..21 OF CHAR:

Zip : L[KEY(Z2)1 PACKED ARRAY [1..851 OF CHAR3

END 3

(% Master file of customers %)
Addresses 3 FILE OF Address..Records’

(¥ Input file of transactions %)
Transactions 3 TEXTS

Tcode

: Codes

Customer_No : PACKED ARRAY [1..81 0OF CHAR:
Last.Name 3 PACKED ARRAY [1..251 OF CHAR:
Initial : CHAR:

First_Name: Addr

State : PACKED ARRAY

Zir @ PACKED ARR
Record_ Number

(% Sorted output file %)
SortOut 3 TEXTSH

I

: INTEGER:

essy City 3 String?d

[1..21 OF CHAR:

AY [1,.31 OF CHARS

INTEGER == 13

PROCEDURE Add_Record
(Rec_ Num : INTEGER)

(# This procedure adds a record to the master file Addresses %)

VAR

Arec @ Addres

BEGIN
READLN (Transact
FIMDR (Addresses

IF UFB (Addresse
THEN
BEGIN
WITH Arec
BEGIN
READLN.
READLN
READLN
READLN
READLN
READLN
READLN
WRITE ¢
END-
END
ELSE
BEGIN

WRITELN (‘Fil
WRITELN (‘New
FOR I := 1 TO

READLN (Tr
END 3§

END 3

s.Recordsi

ionss Arec.Customer_No)3
+ Oy Arec,Customer_No) 3

s)

Do

{Transactions

{Transactions

(Transactions
(Transactions
(Transactions
(Transactions
{Transactions

+
2
+
¥
+
$

-

lLast.Name) s
First-Name) 3
Initial)s
Address) s
Citv)s
State)s
2ip) i

Addresses s Arec) i

e already contains record for ‘s Arec.Customer_MNo)i
record ‘s Rec.Num:3: ‘ not added’) 3

7 DO
ansactions) i

PROCEDURE Delete.Record

{

{(# This procedure

Rec.Num : INTEG

BEGIN
READLN (Transact
FINDK (Addresses

IF NOT UFB (Addr
THEN

DELETE (Addre
ELSE

BEGIN

WRITELN ('Fil
WRITELN ('Rec
END 3

END 3

ER) 3

deletes a record from the master file Addresses ¥)

ions s Customer.Mo)j
+ Oy Customer-No) 3

X228

s5e6)

7

e does not contain record for + Customer_.Nodi

’

ord number 4

PROCEDURE Change_.Record
Rec.Num : INTEGER):

{

Rec.Num:3+ ‘ not deleted’)?

{(# This procedure updates a record in the master file Addresses
information provided in the Transactions file #*)

H-2

with the new

Program Examples

BEGIN
READLN (Transactions: Customer.No) 3
FINDK (Addressess O Customer_No)3
IF NOT UFB (Addresses)
THEN
BEGIN
READLN (Transactions: Addresses”,Address) s’
READLN (Transactions: Addresses”.Citv)3
READLN (Transactions: Addresses”.State)
READLM (Transactionss Addresses” . ZiP}3i
UPDATE (Addresses) i
END
ELSE
BEGIN
WRITELN (‘File does not contain record for ‘¢ Customer.MNol3
WRITELN (‘Record number ‘s Rec.Num:3: ‘ not chanded’)s
FOR I 2= 1 TO 4 DO
READLN (Transactions) i
END 3§
END %

PROCEDURE Number_.Sort:
{# This pProcedure produces a list of customers sorted by number #)

VAR
Format_.String : [STATICI VARYING [101 OF CHAR := ‘73

BEGIN
RESETK (Addresses: 0)3
OPEN (SortDut)s
REWRITE (Sort0Out) i o
WRITELN (SortOuts ‘Customer Number’:17: ‘Last Name :19:
‘Zip Code’:28)3
WRITELN (Sort0ut)s
WRITELN (SortOut) 3
WHILE NOT EOF (Addresses) DO
BEGIN
WRITELN (SortOuts Format_String:5, Addresses”.Customer_Noys
Format.String:10, Addresses”.Last_Name, Format_-String:lo.
Addresses”,Zir) 3
GET (Addresses) i
END 3
END 3

PROCEDURE MName_Sorts

(¥ This procedure produces a list of customers sorted by last name #*)

VAR
Format_String @ [STATICI VARYING [10]1 OF CHAR := 73

BEGIN

RESETK (Addressess 11}3

PAGE {(SortQut)

WRITELN (SertOuts ‘Last Name’:189: ‘Customer Number :33:
‘Zip Code’:13)3%

WRITELN (SortOut) s

WRITELN (SortOut)

WHILE NOT EOF (Addresses) DO

BEGIN .

WRITELN (SortOut:» Format.String:5, Addresses”,Last_Name:
Format.Strind:10: Addresses”.Customer_Nos Format_Strind:z10;:
Addresses”.Zir) i

GET {(Addresses) i

END 3

END 3

Program Examples H-3

PROCEDURE Ziep_Sorts

(# This procedure Produces a list of customers
sorted by ziP code %)

VAR ‘
Format.S5tring @ [STATICI VARYING L1011 OF CHAR := /'3

BEGIN
RESETK (Addressess 2) 4%
PAGE {(SortDut)
WRITELN (SortOuts ‘Zip Code’:12, ‘Last Name ' ':22:
‘Customer Number’:33)3
WRITELN (SortOut)i
WRITELN (SortOut)s
WHILE NOT EOF (Addresses) DO
BEGIN
WRITELN (SortOuts Format.String:5, Addresses”,Ziry Format_String:l10;,
Addresses”,Last.Names Format.Strind:10s Addresses”,Customer._No) 3}
GET (Addresses) i
END 3
CLOSE (SortOut) s
END 3

BEGIN
OPEN (Addresses:
HISTORY 1= UNKNOWN:
ORGANIZATION := INDEXED:
ACCESS_METHOD := KEYED) S
OPEN (Transactions;s
‘DISK$WORK: LRECORDSITRANS,.DAT '
HISTORY := 0OLD):
RESETK (Addressess 0)3
RESET (Transactions) i
WHILE NOT EOF {(Transactions) DO
BEGIN
READLN (Transactions:s Tcocode) s
(# Determine whether record is to be added, deleted, or changded
and call the appropriate Procedure to process it %)
CASE Tcode OF
A : Add_Record (Record_Mumber) s’
D ¢ Delete_Record (Record_Mumber)
C : Chande_Record {(Record.Mumber) 3}
END 3
Record_Number := Record_Number + 13
END 3
{(# Produce sorted output file *)
Number_Sorts
Mame_Sorts
Zirp_Sorts
CLOSE (Addresses) i
CLOSE (Transactioris)$
END.

H-4 Program Examples

H.2 Hexadecimal Input
PROGRAM Read_Hex (INPUT.: OUTPUT) 3

LABEL
1 { Value successfully converted ¥
2 { End of white srpace ¥
993 { Errors flush remainder of line 1}
CONST
Promept = ‘Enter a hex number: 73
Space_or_tab = [/ 'y * 13

Hex_Digits = ['07,.7'8%y A, 'F’y "a’s'f71%

VAR
Hex_Value : INTEGER:

BEGIN
WRITELNS
WRITE (Prompt)3i
WHILE TRUE DO
BEGIN
IF EOLN (INPUT)
THEN
{ No input on this line - Put out a new Promrt
BEGIN
WRITE (Prompt) i
READLMN 3
END 3§
WHILE NOT EOLN (INPUT) DO
{ BKirp leadindg white srace }
IF INPUT" IN Space.or_tab

THEN
GETCINPUT)
ELSE
GOTO 23
IF NOT EOLN (INPUT)
THEN
{ Not a blank line so hex value should follow
BEGIN
IF NOT (INPUT" IN Hex.Didits)
THEN
{ First character that was wot space or tab
was not hex either - error %
BEGIN
WRITELN (‘Illegdal hex value’)}
GOTO 993
END
ELSE
{ At least one hex character 3
BEGIN
Hex Yalue 1= 04}
REPEAT
BEGIN
IF NOT (INPUT™ IN Hex_Didits)
THEN

{ Next character is not a hex didit -
conversion complete 3
GcoTo 1

¥

Program Examples

ELSE

{ Check for overflows then include this

digit in the accumulated value 3
BEGIN
IF Hex.Value > %ZX'0Q7FF FFFF’
THEN

{ Multiplving by 16 would cause value

to become nedative I}
BEGIN
WRITELN (‘Hex value too larde’)s
GOTO 993
END
ELSE
BEGIN
Hex_VYalue := H
CASE INPUT" OF
Oy Ly Y2y T3y T4,
Sy BTy 77y By ‘897
Hex.Yalue := Hex.Value - 0ORD
/A.-" IB!' ICI’ ID!, IE." IF‘/=
Hex_ Yalue := Hex.Value - ORD
faty by oty dfy ety TF 7
Hex_Yalue := Hex.Value - 0ORD

ex-Yalue * 163

END 3

(707)3

('A")

(‘a’)

Hex._ Value := Hex.Value + ORD (INPUT")3

GET(INPUT) 3

END 3
END 3
END 3
UNTIL EOLN (INPUT) 3
{ End of line - conversion complete 3
GOTO 13
END 3
END 3§
99 :
{ Error Previously rerported - flush remainder of line 2

WHILE NOT EOLN (INPUT) DO
GET (INPUT) i
END 3§

1:

WRITELN (‘Ualue in decimal: ‘s Hex.Value)sd
END .

H.3 Screen Display

PROGRAM Screen_Routines (INPUT, OUTPUT) S

{* This Pprodram illustrates the use of the Run-Time
(% LLibrary screen rPacKadge routines.
TYPE

Word.inteder = [WORDI 0,,B35335:
Form_.line = VARYING [15]1 OF CHAR?
Data_line = VARYING [301 OF CHAR:

VAR
Screen.stats Liner Column, Counter & INTEGER:
Welcome_Msg : VARYING [301 OF CHAR:
Form : ARRAY [1..31 OF Form.lines
Userdata : ARRAY [1.,.31 OF Data-line:

*)
*)

+ 103

+ 103

Reverse : Word_.inteder := 23 (% flads for LIBEPUT_SCREEN %)

(¥**¥#%% Declare external RTL routines *%¥%%%%%)

H-6 Program Examples

[EXTERNALI FUNCTION LIB$ERASE.PAGE
(Line.no : Word_inteders3:
Col_.vwo : Word_inteder)
: INTEGER
HTERN S

[EXTERNAL] FUNCTION LIB%PUT_SCREEN
(Out_text : YARYING [C1 OF CHAR:
Line_no ¢ Word.inteder?$
Col.no : MWord_intedersi
Flags : Word_.integer := %IMMED 0)
: INTEGER
EXTERNS

[EXTERNALI FUNCTION LIB$SET.CURSOR
(Live_no : Word_inteders
Col_.no : MWord_.inteder)
: INTEGER3
EXTERNS

[EXTERNALI FUNCTION LIB$GET_SCREEN
(VAR Input_text @ VARYING [U] OF CHAR3
Promet.str 3 VARYING [V]1 OF CHAR := ZIMMED O3
VAR Out.len : Word.inteder := ZIMMED O)
: INTEGER:
EXTERNS

[EXTERNAL] PROCEDURE LIB#STOP
(ZIMMED Cond_value = INTEGER)S
HTERNS

(%% %%%% Bedin main Prodram *¥¥k*x%)

BEGIN

Welcome_Msg := ‘WELCOME! Please input data as requested. ‘3
Form[11l = ‘Name: ‘3

Form[21 = ’'Address: ‘3

Form[31 = ‘Phone: ‘3

(¥ Clear the entire screen #*)
Screen.stat = LIB$ERASE.PAGE (Line.no := 1 Col_mo = 1)3
IF NOT ODD (Screewn.stat)
THEN
LIB$STOP (Screen.stat)si :
(% Write a welcome messade to terminal in reverse video *)
Line = 33
Column 1= 353
Screen.stat 1= LIB$PUT_SCREEN {(MWelcome.Msd, Line: Column: Reverse)ls
IF NOT 0ODD (Screen.stat)
THEN
LIB$STOP (Screen.stat) i
(% Dutput prompts and collect data %)
Line 2= 33
Column = 1013
FOR Counter := 1 TO 3 DO
BEGIN
Screen.stat = LIB$SET.CURSOR (Line.no := Line+Counter:
Col.no 2= Column)i
IF NOT ODD (Screen-stat)
THEN
LIB$STOP (Screen.stat) i
Screen_stat := LIB$GET._SCREEN (UserdatalCounterl: FormiCounterl}s
IF NOT ODD (Screevn.stat)
THEN
LIB$S5TOP (Screen.stat)i.
END 3
END .

Program ‘Examples

H.4 Countwords
PROGRAM Countwords (INPUT, OQUTPUT: F) 3

CONST
Word_ Length = 203

TYPE
Strind = PACKED ARRAY [1l.,.Word_Lendthl OF CHARS
Ref_Tree_Node = “Tree_Node}

(# Record to define the tree *)
Tree_Node = RECORD
Lower.Branch:s Upper_Branch : Ref_Tree_Node3?
Count @ INTEGER:?
Word ¢ Strings
END 3

UAR
Root : Ref_Tree_Nodes
Mew_Word 2 Strings
F s TEXT3 '

(# This function allocates storade and assigns an address %)
FUNCTION Create.Node : Ref.Tree_Nodei

VAR
New.Node : Ref._ Tree.Node:

BEGIN

NEW (New.Node) 3

(% Initialize the variables #*)

WITH New_.Node™ DO
BEGIN
Lower.Branch :=
Urrer_Branch :=
Count 1= 1%
Word := New._.Wordi
END 3§

Create_Node := New_Mode$

END 3

NIL
NIL

an am

(¥ This procedure searches the tree until the word is located
or until the vnew word is inserted in the tree., *)

PROCEDURE Enter_Nodes

UAR
Current : Ref.Tree_Node?

BEGIN
Current := Koot}
(% Initialize the pointer Create.Node to the root of the tree %)
IF Current = NIL
THEN
Root := Create_Node
ELSE
REPEAT
WITH Current™ DO
IF Werd = New_MWord
THEN
(¥ If the new word exists in the tree: the
variable Count is incremented by 1 and
the pointer Current is set to NIL %)

H-8 Program Examples

BEGIN
Current 2= NIL:
Count = Count + 1
END

ELSE

(# The lower branch of the tree is searched #*)

IF Word » New_Word
THEN
BEGIN
Current := Lower.Branchi
IF Current = NIL
THEN
Lower_Branch := Create.Node
END
ELSE

(¥ The upper branch of the tree is searched %)

BEGIN
Current := Upper_Branchi
IF Current = NIL

THEN
Uprper.Branch := Create_Nodes3
END
UNTIL Current = NILS

END 3§

(# This procedure prompts for the ineput file name:s orPens

the file:, and performs a RESET *)
PROCEDURE Initializeid

VAR
Filename 2 PACKED ARRAY [1..321 OF CHAR:S

BEGIN
WRITE (‘Enter the name of the file to be scanned:
READLN (Filevname)§
OPEN (FILE_VARIABLE e F i
FILE_NAME := Filename:
HISTORY := 0OLD)
RESET (F1) 3
END 3

(# This procedure may call itself to print the tree
alphabetical order *)

PROCEDURE Print_Node
(Current : Ref_Tree_Node)3

BEGIN

IF Current <> NIL

THEN

WITH Current™ DO

BEGIN
Print-Node {(Lower_Branch)3’
WRITELN (Word, * “» Count:B)3
Print.Node (Upper._Branch)i
END 3§

END 3

(# This procedure scans the file for novnalephabetics,

R

in

maKes

lowercase letters out of uppercase letters: and enters

the word into the tree by calling Enter_Node #*)

Program Examples

H-9

PROCEDURE Scan_Files

YAR
I INTEGER 3
C : CHAR;j

BEGIN
I == 03
C o= 1 73
(¥ Check for nonalphabetics #*)
WHILE NOT EOF (F) DO
BEGIN

WHILE NOT EOF (F) AND NOT (C IN L['A’.. 727,

READ (F+ C) 3
WHILE NOT EOF (F) AND (C IN ['A’..’2"
BEGIN

L

‘a‘y iz

(¥ Convert uppPercase letters to lowercase #*)

IF CINL7a’s.s’2"1

THEN
C := CHR (ORD (C) + ORD ('A’) -
I == 1 + 13
IF I <= Word_Length
THEN

New_Word[I1 2= C3
READ (Fs C) &
END 3§

ORD

(‘a’))s

‘a2z’ 1)

Do

(¥ Enter the word into the tree via the Procedure %)

IFI >0
THEN
BEGIN
FOR I e I + 1 TO Word_.Lendth DO
New_WordL Il 2= 7 73§
Evnter_Node?
I 2= 0OF
END 3
END 3
END §

(% Main Prodram *)
BEGIN

Initializes
Scan.Files
Print.Node (Root)3
END

H-10 Program Examples

DO

Index

A

ABS function, 7-2
Access-method parameter
in OPEN procedure, 8-10
Access methods, 8-3
direct, 8-3
keyed, 8-4
sequential, 8-3 ,
Actual parameter list, 5-15, 6-20
Actual parameters, 6-20
alignment of, 10-5 o
assignment compatibility of, 6-22, 10-21
ASYNCHRONOQUS attribute with, 10-7
correspondence with formal parameters, 6-21
defaults for, 6-22
effect of UNSAFE attribute on, 6-23
function, 6-24
INITIALIZE attribute on, 10-12
LIST attribute on, 10-13
mechanism specifiers on, 6-26
procedure, 6-24
READONLY attribute on, 10-16
routine, 6-24
in routine calls, 5-15, 6-20
size attributes on, 10-18
structural compatibility of, 6-23
UNBOUND attribute on, 10-19
value semantics with, 6-22
variable semantics with, 6-23
WRITEONLY attribute on, 10-27
ADD_INTERLOCKED function, 7-17
Addresses
dynamic variable, 7-6
ADDRESS function, 7-6
ALIGNED attribute, 10-4
Alignment
data item, 10-4
key field, 10-13
Alignment attributes, 10-4

Allocation

automatic, 10-5

common block, 10-6

data, 10-5

local variable, 6-12

key field, 10-13

overlaid, 10-15

program section, 10-6

static, 10-5

subrange component, E-8
Allocation attributes, 10-5
Allocation size functions, 7-16
Alternate keys, 8-3, 10-12
ARCTAN function, 7-2
Arithmetic functions, 7-1
Arithmetic operators, 3-3
ARRAY type, 2-13 to 2-19-

assignment, 2-13

assignment compatibility of, 2-26

bounds checking of, 10-9

character-string, 2-17

components of, 2-13

conformant, 6-9

‘constructors for, 2-13 to 2-14

indexes of, 2-13

multidimensional, 2-14 to 2-17

constructors for, 2-16 to 2-17
packing, E-7

PACKED ARRAY OF CHAR, 2-17

specifying attributes with, 2-13

structural compatibility of, 2-25
ASCII character set, 1-6, 2-3, A-1

nonprinting characters in, 2-4
Assignment compatibility, 2-26

affected by POS, 10-15

affected by READONLY, 10-16

affected by UNSAFE, 10-20
Assignment operator, 5-2
Assignment statement, 5-2
ASYNCHRONOUS attribute, 10-7

Index-1

AT attribute, 10-6
Attribute classes, 10-1, 10-3
defaults for, 10-3
Attributes, 10-1
See individual attributes by name
associating with data, 10-3
in compilation unit heading, 9-1
in conformant array schema, 6-9
in conformant VARYING schema, 6-10
effects of
on assignment compatibility, 2-26
on function results, 6-15
on parameter congruence, 6-24
on parameters, 6-5
on structural compatibility, 2~26, 6-24
name-string syntax with, 10-3
in routine declarations, 6-3
in type definitions
array, 2-13
file, 2-21
pointer, 2-24
record, 2-8
set, 2-20
VARYING OF CHAR, 2-19
in variant clause, 2-10
syntax for specifying, 10-2
Attribute specifications
in TYPE sections, 10-3
in VAR sections, 4-3
AUTOMATIC attribute, 10-5

Base type

pointer, 2-24

set, 2-21

subrange, 2-5
BEGIN block

See Compound statement
Binary notation, 2-2

in output procedure, 8-36
BIN function, 7-10
BIT attribute, 10-18
BITNEXT function, 7-17
BITSIZE function, 7-17
Blocks

forward-declared routine,

6-17

function, 6-12, 6-15

procedure, 6-12

routine, 6-12
Boolean functions, 7-2

Index-2

BOOLEAN type, 2-4
default field width of, 8-35
reading from text files, 8-18
Bound procedure values, 10-19
Bounds checking, 10-9
character-string, 3-7
VARYING string, 2-20
Buffer variable, 2-22
BYTE attribute, 10-18

Calls
function, 6-19, 6-20
procedure, 5-15, 6-19
CARD function, 7-18
Cardinality of set, 7-18
Carriage control
with output, 8-33
with PAGE procedure, 8-31
in prompting, 8-34, 8-38
Carriage-control characters, 8-33
Carriage-control parameter
in OPEN procedure, 8-10
Case labels, 5-4
in CASE statement, 5-4
with SIZE function, 7-16
in variant clause, 2-10 to 2-12
Case selector, 5-4
CASE statement, 5-4
checking of case selector, 5-4, 10-9
Cast operator, 3-8
Characters
ASCII, 1-6, A-1
nonprinting, 2-4
nonprinting string, 2-18
ordinal values of, 2-3
type CHAR, 2-3
Character set, A-1
Character strings, 2-17 to 2-20
constructors for, 2-17 to 2-18
default field width of, 8-35
extracting substrings from, 7-13
finding lengths of, 7-12
fixed-length, 2-17 to 2-18
locating patterns in, 7-11
nonprinting characters in, 2-18
operators for, 3-6

PACKED ARRAY OF CHAR type, 2-17 to

2-18

Character strings (Cont.)
padding, 7-13
predeclared routines for, 7-10
reading from, 7-14
reading from text files, 8-17, 8-18
varying-length, 2-19 to 2-20

VARYING OF CHAR type, 2-19 to 2-20

writing to, 7-15
CHAR type, 2-3
default field width of, 8-35
reading from text files, 8-17
CHECK attribute, 10-8
CHR function, 7-3

CLEAR_INTERLOCKED function, 7-18

CLOCK function, 7-18
CLOSE procedure, 8-13

disposition parameter in, 8-14

file names in, 8-13

file variables in, 8-13

user-action parameter in, 8-14
Comments, 1-9

equivalence of delimiters in, E-7

nested, 1-10
COMMON attribute, 10-6
Common blocks, 10-6
Compatibility

assignment, 2-26

structural, 2-25
Compilation units, 9-1
Compile-time expressions, 3-1
Compile-time qualifiers

in source code, E-6
Component numbers

in relative files, 8-2
Components

array, 2-13

file, 8-1

multidimensional array, 2-14, 2-15

text file, 8-1
Compound statement, 5-2
Concatenation

character-string, 3-6
Conditional statements, 5-3

CASE, 54

IF-THEN, 5-5

IF-THEN-ELSE, 5-6
Condition handlers

canceling, 7-19

establishing, 7-19
Conformant arrays

affected by UNSAFE, 10-21
Conformant parameters

size attributes on, 10-18

Conformant schemas, 6-9
array type, 6-9
equivalence of, 6-10
VARYING type, 6-10
Congruence
affected by LIST, 10-14
routine parameter, 6-24
Constant identifiers
in CONST section, 4-2
in enumerated type, 2-4
MAXINT, 2-2
NIL, 2-24, 4-4
Constants
definition of, 4-2
symbolic, 4-2
Constructors, 2-8
array, 2-13 to 2-14
fixed-length string, 2-17 to 2-18
multidimensional array, 2-16 to 2-17
record, 2-9
set, 2-21
variant record, 2-12 to 2-12
varying-length string, 2-20
CONST section, 4-2
Control variables, 5-9
Conversion
actual-parameter type, 6-23
binary value, 7-10
double-precision, 7-3
hexadecimal value, 7-11
integer, 7-3, 7-4
by rounding, 7-4
by truncation, 7-4
octal value, 7-12
quadruple-precision, 7-4
single-precision, 7-4
type, 3-2
unsigned integer, 7-4
by rounding, 7-4
by truncation, 7-4
COS function, 7-2 ‘
Current variant, 2-11 to 2-12

Data type

See Types
DATE procedure, 7-18
DBLE function, 7-3
Decimal notation

for integers, 2-2

Index-3

Decimal notation (Cont.) ~ Disposition parameter

in output procedure, 8-35 ‘ CLOSE procedure, 8-14
for real numbers, 2-7 default for, 8-11
Declarations o OPEN procedure, 8-11
See also Definitions ‘ DIV operator, 3-4
external, 6-19 : : Double-precision attributes, 10-10
FORWARD, 6-17 Double-precision real numbers, 2-6, 2-7
function, 6-2 ' DOUBLE type, 2-6
LABEL, 4-1 o allocation size of, 10-18
multiple, 9-7 : : default field width of, 8-35
procedure, 6-2 exponential notation for, 2-7
sharing, 9-2 Dynamic allocation
variable, 4-3 : predeclared routines for, 7-6
Declaration sections, 4-1 ‘ Dynamic arrays, E-2
CONST, 4-2 . ‘ See also Conformant schemas
FUNCTION, 6-2 ‘ predeclared functions with, E-3
LABEL, 4-1 Dynamic variables, 2-23 to 2-24
module, 9-2 allocation of, 7-6, 7-9
PROCEDURE, 6-2 disposal of, 7-7, 7-9
program, 9-2
routine, 6-12, 6-13
TYPE, 4-2 ' E
VALUE, E-2
VAR, 4-3 Elements
Decommitted features, E-1 array,
Default parameters See Components
actual, 6-22 ' lexical, 1-6
formal, 6-11 set, 2-21
Definitions : Empty set, 2-21
See also Declarations : Empty statements, 5-3
constant, 4-2 in IF-THEN, 5-6
label, 4-1 in IF-THEN-ELSE, 5-7
pointer type, 4-3 End-of-file condition
sharing, 9-2 See EOF function
type, 4-2 End-of-line condition
Delayed device access, 8-43, 8-44 - See also EOLN function
with STATUS function, 8-26 while reading strings, E-9
DELETE procedure, 8-38 : Enumerated types, 2-4 to 2-5
Descriptor mechanisms, 6-8 default field width of, 8-35
%DESCR mechanism specifier reading from text files, 8-17, 8-18
on actual parameters, 6-26 o ENVIRONMENT attribute, 9-4, 9-5, 10-11
on formal parameters, 6-8 ‘ Environments, 9-4 ‘
D__floating real numbers, 2-6 creating, 10-11
Direct access, 8-3 inheriting, 9-5, 9-6, 10-11
predeclared procedures for, 8-38 EOF function, 8-24
Directives before EOLN, 8-29
EXTERN, 6-19 on indexed files, 8-25
EXTERNAL, 6-19 o with PUT, 8-21
FORTRAN, 6-19 while reading strings, 8-18
FORWARD, 6-17 on relative files, 8-24
%INCLUDE, 1-10 : after RESETK, 8-43
DISPOSE procedure, 7-7 after REWRITE, 8-22
record-with-variants form of, 7-9 - after TRUNCATE, 8-26

Index-4

EOLN function, 8-28

with READ, 8-17, 8-18

while reading characters, 8-17, 8-18 -

while reading strings, 8-17, 8-18

with READLN, 8-31
Error detection, F-1
ERROR parameter, 8-5
Error recovery, 8-5
ESTABLISH procedure, 7-19
Evaluation

subexpression, 3-10

order of, 3-9
Executable section, 5-1

program, 9-2

routine, 6-13
EXP function, 7-2
EXPO function, 7-19
Exponential notation, 2-7

in output procedures, 8-35
Exponentiation, 3-4
Exponents

real number, 7-19
Expressions, 3-1

compile-time, 3-1

in CONST section, 4-2

order of evaluation of;, 3-9

run-time, 3-1

using parentheses in, 3-9

in variable initialization, 4-4 -
Extensions

summary of VAX-11, D-1
EXTERNAL attribute, 10-23
External files, 2-23

listed in headings, 9-2
External identifiers, 9-3
External routines, 6-19
EXTERN (EXTERNAL) directive, 6-19

F

Fields
record, 2-8 to 2-9
position in records, 10-15
Field width, 8-35
with BIN function, 8-37
default, 8-35
default in previous language versions, E 9
with HEX function, 8-37
with OCT function, 8-37
File buffers
filled with data, 8-44
undefined, 8-27

File buffer variables, 2-22
after FIND, 8-40
File components

distinguished from RMS records 8-1

FILE OF CHAR, 2-23
File position pointer, 2-22
at end-of-file, 8-24
at end-of-line, 8-29
after FIND, 8-40
after READLN, 8-31
after RESET, 8-19
after WRITELN, 8-33
Files, 8-1, 8-2
access methods of, 8-3; 8-10

carriage control of, 8-10, 8-33

closing, 8-13
components of, 8-1

creating with REWRITE, 8-22

disposition of, 8-11, 8-14
environment, 9-4

~external, 2-23
filling buffers of, 8-44
history of, 8-9
indexed organization of, 8-2
INPUT, 2-23
internal, 2-23
listed in headings, 9-2
modes of, 85

names in OPEN procedure, 8-9

opening with OPEN, 8-7
opening with RESET, 8-19
organization of, 8-11
OUTPUT, 2-23

preparing for input, 8-15
record length of, 8-10
record type of, 8-10
relative organization of, 8-2
RMS, 8-2

sequential organization of, 8-2

sharing of, 8-11
File specifications, 8-9
FILE type, 2-21 to 2-23
component types of, 2-21
external file, 2-23
FILE OF CHAR, 2-23
internal file, 2-23

specifying attributes with, 2-21
structural compatibility of, 2-25

text-file, 2-23
File-name parameter

in OPEN procedure, 8-9
FINDK procedure, 8-42
FIND procedure, 8-39

Index-5

Fixed-length records, 8-2
Floating-point notation, 2-7
Foreign mechanism parameters
actual, 6-26
formal, 6-7
Foreign semantics, 6-7
Formal parameters, 6-3
affected by READONLY, 6-24, 10-16
alignment of, 10-5
ASYNCHRONOUS attribute on, 10-7
congruence of, 6-24
correspondence with actual parameters, 6-21
defaults for, 6-11
effect of attributes on, 6-5
effect of LIST attribute on, 6-24
effect of UNSAFE attribute on, 6-5
function, 6-7
INITIALIZE attribute on, 10-12
mechanism specifiers on, 6-7
procedure, 6-7
routine, 6-7
scope of, 6-13
UNBOUND attribute on, 10-19
value, 6-4
variable, 6-5
WRITEONLY attribute on, 10-27
FOR statement, 5-9
FORTRAN directive, 6-19
FORWARD directive, 6-17
Function designators, 6-19
Function parameters
actual, 6-24
formal, 6-7
Function results, 6-15
Functions
as actual parameters, 6-24
allocation size, 7-16
arithmetic, 7-1
Boolean, 7-2
called as procedures, 6-20
calls to, 6-19
character-string, 7-10
declaration of, 6-2
dynamic allocation, 7-6
external, 6-19
as formal parameters, 6-7
forward declarations of, 6-17
headings of, 6-2
interlocked, 7-17
ordinal, 7-2
predeclared, 7-1
See individual functions by name
recursion of, 6-17
results of, 6-15

Index-6

Functions (Cont.)
scope of, 6-13
side effects of, 3-10
transfer, 7-3
unsigned, 7-16

G

Generation mode, 8-5

GET procedure, 8-15
G__FLOATING attribute, 10-10
G__floating real numbers, 2-6, 10-10
GLOBAL attribute, 10-23

restriction on external routines, 6-19

Global identifiers, 9-3

in previous language versions, E-9
GOTO statement, 5-14

labels for, 4-1

H

HALT procedure, 7-19
Headings

compilation unit, 9-1

routine, 6-2
Hexadecimal notation, 2-2

in output procedure, 8-36
HEX function, 7-11

in output procedure, 8-36
History parameter

in OPEN procedure, 8-9

IDENT attribute, 10-11
Identifiers, 1-8

constant, 2-4, 4-2

external, 9-3

external file, 9-2

global, 9-3

local, 6-12

module name, 9-2

multiple declarations of, 9-7

predeclared, 1-9

program name, 9-2

redeclaration of, 6-13

scope of, 6-13

type, 4-2

user, 1-9

variable, 4-3
IF-THEN-ELSE statement, 5-6

IF-THEN statement, 5-5
%IMMED foreign mechanism
on actual parameters, 6-26
on formal parameters, 6-8
UNBOUND attribute required with,
6-9
Immediate value mechanism, 6-8
%INCLUDE directive, 1-10
compared to ENVIRONMENT, 9-4
default file type for, E-7
Indexed files, 8-2
key fields in, 10-12
using EOF on, 8-25
using REWRITE on, 8-22
INDEX function, 7-11
Index type
array, 2-13
multidimensional array, 2-14 to 2-15
INHERIT attribute, 9-5, 9-6, 10-11

Inheriting environments, 9-5, 9-6, 10-11

Initialization
of variables, 4-4
Initialization procedure, 10-12
INPUT, 2-23
Input procedure, 8-4
for sequential access, 8-14
Inspection mode, 8-5
Integers
decimal notation for, 2-2
negative, 2-3
radix notation for, 2-2
unsigned, 2-3
INTEGER type, 2-2
default field width of, 8-35
reading from text files, 8-17
Interlocked functions, 7-17
Internal files, 2-23
INT function, 7-3

KEY attribute, 10-12
Keyed access, 8-4
predeclared procedures for, 8-41
Key fields, 8-2, 8-42, 8-43, 10-12
alignment of, 10-13
allocation of, 10-13
alternate, 8-3
definition of in records, 10-12
in indexed files, 8-2
primary, 8-3, 8-42, 10-12
type of, 10-13
Key number, 8-42, 8-43

Labels

declaration of, 4-1

definition of, 4-1

scope of, 6-13
LABEL section, 4-1
Language extension summary, D-1
Language syntax summary, B-1
Lazy lookahead, 8-43
LENGTH function, 7-12
Lexical elements, 1-6
LINELIMIT procedure, 8-29
LIST attribute, 10-13

on formal parameters, 6-24
LN function, 7-2
LOCAL attribute, 10-23
Local variables, 6-12
LOCATE procedure, 8-40

using before PUT, 8-21
Locking file components

with FINDK procedure, 8-42

with GET procedure, 8-15
Logical operators, 3-5
LONG attribute, 10-18
Loops

FOR, 5-9

REPEAT, 5-10

WHILE, 5-11
LOWER function, E-3

MAXINT, 2-2
Mechanism specifiers
on actual parameters, 6-26
on formal parameters, 6-7
Mode of file, 8-5
MOD operator, 3-4
decommitted definition of, E-8
Modules, 9-1, 9-2
Multidimensional arrays, 2-14 to 2-17
constructors for, 2-16 to 2-17
effect of packing on, E-7

N

Name-strings
in attribute list, 10-3
Nesting
comments, 1-10
%INCLUDE files, 1-12

Index-7

Nesting (Cont.)
records, 2-9
variant records, 2-12
NEW procedure, 7-6

record-with-variants form of, 7-9

NEXT function, 7-17
NIL, 2-24

NOG_FLOATING attribute, 10-10

Nonpositional syntax, 6-21
Nonprinting characters, 2-4
in character-string, 2-18
NOOPTIMIZE attribute, 10-14

Notation

binary, 2-2
decimal

integer, 2-2

real number, 2-7
exponential, 2-7
floating-point, 2-7
hexadecimal, 2-2
octal, 2-2

o)

Ordinal types, 2-1, 2-2
allocation size of, 10-18

assignment compatibility of, 2-26
structural compatibility of, 2-25

Ordinal values, 2-2, 7-3

Boolean, 2-4

case label, 5-4

character, 2-3

character in comparison, 3-6

enumerated type, 2-4

subrange type, 2-5
Organization of files, 8-2
Organization parameter

in OPEN procedure, 8-11
OTHERWISE clause

in CASE statement, 5-4
OUTPUT, 2-23
Output procedures, 8-4

for sequential access, 8-20
Overflow checking, 10-9
OVERLAID attribute, 10-15

o

OCTA attribute, 10-18 PACKED ARRAY OF CHAR type, 2-17 to 2-18

Octal notation, 2-2

in output procedure, 8-36
OCT function, 7-12

in output procedure, 8-36
ODD function, 7-3
/OLD__VERSION qualifier, E-7
OPEN procedure, 8-7

decommitted syntax of, E-5
Operands

in expressions, 3-1

reserved, 7-3
Operators, 3-3

arithmetic, 3-3

assignment, 5-2

logical, 3-5

precedence of, 3-9

relational, 3-5

set, 3-7

string, 3-6

type cast, 3-8
Optimization

affected by ASYNCHRONOUS, 10-7

affected by VOLATILE, 10-24

disabling during recompilation, E-7

OPTIMIZE attribute, 10-14
ORD function, 7-3
Ordinal functions, 7-2

Index-8

assignment compatibility of, 2-26
default field width of, 8-35
reading from text files, 8-17, 8-18

as type of key field, 10-13
Packing

array, 7-5

structured type, 2-8
PACK procedure, 7-5
PAD function, 7-13
PAGE procedure, 8-30
Parameters

actual value, 6-22

actual variable, 6-23

alignment of, 10-5

assignment compatibility of, 6-22
association of formal and actual, 6-21

conformant, 6-9
congruence of, 6-24
defaults for, 6-11, 6-22
dynamic array, E-2
effect of attributes on, 6-5 -
foreign mechanism, 6-7, 6-26
formal, 6-3

value, 6-4

variable, 6-5
function, 6-7, 6-24
nonpositional syntax for, 6-21

Parameters (Cont.)
positional syntax for, 6-21
procedure, 6-7, 6-24
routine, 6-7, 6-24
scope of, 6-13
structural compatibility of, 6-23
Parentheses
in expressions, 3-9
PASSLINELIMIT logical name, 8-30
Pointer types, 2-1, 2-23 to 2-24
affected by alignhment attribute, 10-5
affected by READONLY, 10-16
affected by UNSAFE, 10-21 "
affected by VOLATILE, 10-25
affected by WRITEONLY, 10-27
alignment of, 10-5
allocation size of, 10-18
assignment compatibility of, 2-26
checking of, 10-9
definition of, 4-3
specifying attributes with, 2-24
structural compatibility of, 2-25
Pointer variables, 2-24, 7-6
POS attribute, 10-15
effect on compatibility, 10-16
Position
record field, 10-15
Positional syntax, 6-21
Precedence of operators, 3-9
Predeclared functions, 7-1
See individual functions by name
allocation size, 7-16
arithmetic, 7-1
Boolean, 7-2
character-string, 7-10
dynamic allocation, 7-6
interlocked, 7-17
ordinal, 7-2
summary of, C—4
transfer, 7-3
unsigned, 7-16
Predeclared identifiers, 1-9
Predeclared procedures, 7-1
See individual procedures by name
character-string, 7-14, 7-15
dynamic allocation, 7-6
input, 8-4
output, 8-4
summary of, C-1
transfer, 7-5
Predeclared routines, 7-1
See individual routines by name
summary of, C-1

PRED function, 7-2
Primary keys, 8-3, 8-42, 10-12
Procedure calls, 5-15, 6-19
used with functions, 6-20
Procedure parameters
actual, 6-24
formal, 6-7
Procedures
as actual parameters, 6-24
declaration of, 6-2
external, 6-19
as formal parameters, 6-7
FORWARD declaration of, 6-17
headings of, 6-2
predeclared, 7-1

See individual procedures by name -

scope of, 6-13

transfer, 7-15
Programs, 9-1, 9-2
Program sections

storage allocation in, 10-6, E-9
Prompting on text files, 8-38, 8-44
PSECT attribute, 10-6 ’
PUT procedure, 8-20

Q

QUAD attribute, 10-18
QUAD function, 7-4

Quadruple-precision real number, 2-6, 2-7

QUADRUPLE type, 2-6
allocation size of, 10-18.
default field width of, 8-35

Qualifier
compile-time, E-6
/OLD_VERSION, E-7
in source code, E-6

Radix notation, 2-2
Reading a file
with READ, 8-16
with READLN, 8-31
when RESET required, 8-20
READLN procedure, 8-31
call to STATUS after, 8-45
READONLY attribute, 10-16
on parameters, 6-24

Index-9

READ procedure, 8-16
with character strings, E-9
READYV procedure, 7-14
Real numbers, 2-6 to 2-7
decimal notation for, 2-7
double-precision, 2-6
exponential notation for, 2-7
negative, 2-7
precision of, 2-6
quadruple-precision, 2-6
range of values of, 2-6
single-precision, 2-6
REAL type, 2-6
allocation size of, 10-18
default field width of, 8-35
exponential notation for, 2-8
Real types, 2-1, 2-6 to 2-7
See also Real numbers
assignment compatibility of, 2-26
default field width of, 8-35
reading from text file, 8-17
structural compatibility of, 2-25
writing to text file, 8-35
Record-length parameter
in OPEN procedure, 8-10
Records
fixed-length, 8-2
RMS, 8-1
variable-length, 8-2
variant, 2-10 to 2-14
RECORD type, 2-8 to 2-13
assignment compatibility of, 2-26, 10-16
constructors for, 2-9
constructors for variant, 2-12 to 2-13
dynamic variables with variant, 7-9
fields of, 2-8, 2-9
nested, 2-9
position of fields in, 10-15
specifying attributes with, 2-8, 2-10
structural compatibility of, 2-25, 10-16
using WITH statement with, 5-12
variant clauses in, 2-10 to 2-14
Record-type parameter
in OPEN procedure, 8-10
Reference mechanism, 6-8
References
to variables, 4-4
%REF mechanism specifier
on actual parameters, 6-26
on formal parameters, 6-8
Relational operators, 3-5
Relative files, 8-2
using EOF on, 8-24
using REWRITE on, 8-22

Index-10

Relative organization, 8-2
REM operator, 3-4
REPEAT statement, 5-10
Repetition factor, 2-13 to 2-14
Repetitive statements, 5-8

FOR, 5-9

REPEAT, 5-10

WHILE, 5-11
Reserved operands, 7-3
Reserved words, 1-7
RESETK procedure, 8-43
RESET procedure, 8-19

using before GET, 8-15
REVERT procedure, 7-19
REWRITE procedure, 8-22

using before PUT, 8-21
ROUND function, 7-4
Routine parameters

actual, 6-24

formal, 6-7
Routines :

activation of, 6-1

as actual parameters, 6-24

calling, 6-19

declaration of, 6-2

external, 6-19

as formal parameters, 6-7

FORWARD declaration of, 6-17

headings for, 6-2

local variables in, 6-12

predeclared, 7-1

See individual routines by name

Run-time expressions, 3-1

in assignment statements, 5-2

in set constructors, 3-7

S

Scalar types, 2-1
Schemas

See Conformant schemas
Scope

of identifiers, 6-13
Semantics

foreign, 6-8

value, 6-4, 6-22

variable, 6-5, 6-23
Separate compilation

with OVERLAID attribute,

10-15

Sequential access, 8-3

input procedures for, 8-14

output procedures for, 8-20

- Sequential files
when RESET required, 8-20
using TRUNCATE on, 8-22
using UNLOCK on, 8-28
Sequential organization, 8-2
SET_INTERLOCKED function, 7-18
Set operators, 3-7
SET type, 2-20 to 2-21
assignment compatibility,
2-26
base type of, 2-21
bounds checking of, 10-9
cardinality of, 7-18
constructors for, 2-21, 3-7
operators, 3-7
specifying attributes for, 2-20
storage of unpacked, E-8
structural compatibility of,
2-25
Sharing
declarations, 9-2
variables with FORTRAN, 10-6
Sharing parameter
in OPEN procedure, 8-11
Side effects, 3-10
on variables, 10-24
Simple statements, 5-1
SIN function, 7-2
Single-precision real numbers, 2-6, 2-7
SINGLE type, 2-6
allocation size of, 10-18
default field width of, 8-35
exponential notation for, 2-7
Size attributes, 10-18
SIZE function, 7-16
SNGL function, 7-4
Special symbols, 1-7
SQR function, 7-2
SQRT function, 7-2
Stack storage, 2-23
Standard, PASCAL
detection of violations to, F-1
Statement labels, 4-1, 5-14
Statements, 5-1
assignment, 5-2
CASE, 5-4
compound, 5-2
conditional, 5-3
empty, 5-3
FOR, 5-9
GOTO, 5-14
IF-THEN, 5-5
IF-THEN-ELSE, 5-6
procedure call, 5-15

Statements (Cont.)
REPEAT, 5-10
repetitive, 5-8
simple, 5-1
structured, 5-1
WHILE, 5-11
WITH, 5-12
Static allocation, 10-5
STATIC attribute, 10-5
on local variables, 6-12
Static storage, 2-23
STATUS function, 8-25
called after READLN, 8-45
%STDESCR foreign mechanism
on actual parameters, 6-26
on formal parameters, 6-8
String-descriptor mechanisms, 6-8
String operators, 3-6
Strings
See also Character strings
PACKED ARRAY OF CHAR type, 2-17 to
2-18
VARYING OF CHAR type, 2-19 to 2-20
Structural compatibility, 2-24, 2-25
affected by POS, 10-16
affected by UNBOUND, 10-19
affected by UNSAFE, 10-21
affected by VOLATILE, 10-25
affected by WRITEONLY, 10-27
effect of allocation size on, 10-18
effect of attributes on, 6-24
Structured statements, 5-1
Structured types, 2-1, 2-8
affected by READONLY, 10-16
affected by size attributes, 10-18
affected by VOLATILE, 10-25
affected by WRITEONLY, 10-27
alignment of, 10-4, 10-5
allocation size of, 10-18
assignment compatibility of, 2-26
constructors for, 2-8
packing, 2-8
structural compatibility of, 2-25
Subexpressions
evaluation of, 3-10
Subprograms
See Routines
Subrange symbol, 2-5
Subrange types, 2-5 to 2-6
bounds checking of, 2-5, 10-9
Subscripts
See Index type
SUBSTR function, 7-13
SUCC function, 7-2

Index—ll

Symbolic constants
definition of, 4-2

Types (Cont.)
ordinal, 2-1, 2-2

Symbols packed structured, 2-8
special, 1-7 pointer, 2-1, 2-23 to 2-24
Syntax summary, B-1 QUADRUPLE, 2-6
REAL, 2-6
RECORD, 2-8 to 2-13
T real, 2-1, 2-6
scalar, 2-1
Tag fields, 2-10 to 2-13 SET, 2-20 to 2-21
Tag identifiers, 2-11 SINGLE, 2-6

Tag type, 2-11 to 2-12
Target type ‘

in type cast operation, 3-8
TEXT, 2-23
Text files, 2-23

components of, 8-1

contrasted with FILE OF CHAR, E-8
delayed device access to, 8-43, 8-44

predeclared routines for, 8-28
prompting on, 8-38, 8-44
reading with READ, 8-17
reading with READLN, 8-31
writing with WRITE, 8-23
writing with WRITELN, 8-32
TIME procedure, 7-18
Transfer functions, 7-3
Transfer procedures, 7-6
TRUNCATE procedure, 8-26
using before PUT, 8-21
Truncating files
with REWRITE, 8-22
with TRUNCATE, 8-26
TRUNC function, 7-4
Type cast operator, 3-8
Type compatibility, 2-24
assignment compatibility,
2-26, 10-16, 10-18,
10-21, 10-25, 10-27
structural compatibility,

structured, 2-1, 2-8
subrange, 2-5 to 2-6
UNSIGNED, 2-3

VARYING OF CHAR, 2-19 to 2-20

U

UAND function, 7-16
UFB function, 8-27
UINT function, 7-4
UNALIGNED attribute, 10-4
UNBOUND attribute, 10-19
required with %IMMED, 6-9
Undefined file buffer, 8-27
UNDEFINED function, 7-3
Undefined mode, 8-5
Unlocking file components, 8-27
with DELETE, 8-39
with READ, 8-17
with UPDATE, 8-41
UNLOCK procedure, 8-27
UNOT function, 7-16
Unpack array, 7-6
UNPACK procedure, 7-6
UNSAFE attribute, 10-20

effect on actual parameters, 6-23

effect on assignment compatibility, 10-21

effect on formal parameters, 6-5

2-25, 10-5, 10-16, Unsigned functions, 7-16

10-18, 10-21, 10-25, 10-27 Unsigned integers

Types, 2-1 ‘ decimal notation for, 2-2
arithmetic, 7-1 radix notation for, 2-2
ARRAY, 2-13 to 2-19 : UNSIGNED type, 2-3
BOOLEAN, 24 default field width of, 8-35
CHAR, 2-3 UOR function, 7-16

" definition of, 4-2 UPDATE procedure, 8-41
DOUBLE, 2-6 Updating sequential files
enumerated, 2-4 to 2-5 by copying, 8-22
FILE, 2-21 to 2-23 : with TRUNCATE, 8-22
identifiers for, 4-2 . ' UPPER function, E-3
INTEGER, 2-2 : UROUND function, 7-4

Index-12

User-action parameters
CLOSE procedure, 8-14
OPEN procedure, 8-12

UTRUNC function, 7-4

UXOR function, 7-16

\')

Value parameters, 6-4
actual, 6-22
assignment compatibility of, 6-22
formal, 6-4
VALUE section, E-2
Value semantics
for actual parameters, 6-22
for formal parameters, 6-4

implied by foreign mechanism, 6-8

Variable-length records, 8-2
Variable parameters, 6-5
actual, 6-23
formal, 6-5
structural compatibility of, 6-23
Variables
alignment of, 10-4
allocation of, 10-5
control, in FOR statement, 5-9
declaration of, 4-3
dynamic, 2-23 to 2-24
dynamic allocation of, 7-6
dynamic disposal of, 7-7
initialization of, 44, E-2
local, 6-12
reference to, 4-4
sharing, 10-6
side effects on, 10-24
Variable semantics,
for actual parameters, 6-23
for formal parameters, 6-5

Variable semantics (Cont.)

implied by foreign mechanism, 6-8

Variant records, 2-10 to 2-14
constructors for, 2-12 to 2-13
structural compatibility of, 2-25

VAR parameters
See Variable parameters

VAR section, 4-3
initialization of variables in, 4-4

VARYING OF CHAR type, 2-19 to 2-20

assignment compatibility of, 2-26

bounds checking of, 10-9

conformant, 6-10

default field width of, 8-35

reading from text files, 8-18

specifying attributes with, 2-19

structural compatibility of, 2-25
Visibility attributes, 10-23
VOLATILE attribute, 10-24

in type-cast operation, 3-8

w

WEAK__EXTERNAL attribute, 10-23

WEAK__GLOBAL attribute, 10-23
WHILE statement, 5-11
WITH statement, 5-12
WORD attribute, 10-18
WRITELN procedure, 8-32

with field width, 8-35
WRITEONLY attribute, 10-27
WRITE procedure, 8-23

with field width, 8-35
WRITEV procedure, 7-15

with field width, 8-35
Writing files

with WRITE, 8-23

with WRITELN, 8-35

Index-13

VAX-11 PASCAL
Language Reference
Manual
AA-H484C-TE

READER’'S COMMENTS
NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the

company’s discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

[Assembly language programmer
(] Higher-level language programmer
[J Occasional programmer (experienced)
[User with little programming experience
(] Student programmer
[J Other (please specify)
Name __ Date
Organization
Street
City State____________Zip Code

or Country

| RAN Cone
- — — Do Not Tear - Fold Here and Tape — — — — o0 g%—(pﬁfg ——————————

' ‘ No Postagej
i Necessary
if Mailed in the
‘ . United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADD‘R ESSEE

BSSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD

NASHUA, NEW HAMPSHIRE 03061

- - Do NotTear-FoldHere — — =~ — — — — — — — — = — — — = — — — — — —

