
VAXOPS5
Reference Manual
Order Number: AA-EZ19C-TE

May 1989

This document describes the components of VAX OPS5. It is a reference tool for writing VAX
OPS5 programs.

If you want to use a VAXstation to create, run, and revise VAX OPS5 programs, you should
also read the VAX OPSS Development Environment User's Guide.

Revision/Update Information: This document supersedes the VAX OPSS Reference
Manual, AA-EZ198-TE.

Operating System 'and Version: VMS Version 5.1 or higher and DECwindows for the VAX
OPS5 Development Environment.

Software and Version:

digital equipment corporation
maynard, massachusetts

VMS Version 5.0 or higher for the VAX OPS5 compiler
and run-time system.

VAX OPS5 Version 3.0

First Printing, September 1985
Revised, February 1988
Revised, May 1989

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1985, 1988, 1989.

All rights reserved.
Printed in U.S.A.

The postpaid Reader's Comments form at the end of this document requests your critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC US
LN03
PDP
PrintServer 40
ScriptPrinter
UNIBUS

VAX
VAXcluster
VAXC
VAX COD
VAX DBMS
VAX DEC/CMS
VAX DEC/MMS

The following is a third-party trademark:

VAX DOCUMENT
VAX OPSS
VAXstation
VAX TPU
VMS

Postscript is a registered trademark of Adobe Systems, Inc.

03l/£/

ML-81161

Contents

Preface . xi

Part I VAX OPS5 Components

Chapter 1

1.1

1.2

1.3

Chapter 2

2.1

2.2

2.3

Introduction to VAX OPS5

VAX OPS5 Structure
1. 1 .1 Working Memory .
1.1.2 Productions .. .
1.1.3 Recognize-Act Cycle

Atoms
1.2.1 Symbolic Atoms
1.2.2 Integer Atoms
1.2.3 Floating-Point Atoms
1.2.4 Quoted Atoms

Program Elements .. .
1 .3. 1 Declarations .
1.3.2 Executable Statements
1.3.3 Comments .. .

Working Memory

Working-Memory Elements
2. 1 .1 Class Name .
2.1 .2 Attributes .

2.1.2.1 Scalar Attributes .
2.1.2.2 Vector Attributes

Internal Representation of Working-Memory Elements
2.2.1 Time Tags .. .
2.2.2 Storing the Class Name and Attribute· Values

Declarations .
2.3.1 LITERALIZE Declarations
2.3.2
2.3.3
2.3.4

LITERAL Declarations
VECTOR-ATTRIBUTE Declarations
EXTERNAL Declarations .

1-2
1-2
1-2
1-3

1-3
1-3
1-3
1-4
1-4

1-5
1-5
1-6
1-6

2-1
2-2
2-2
2-2
2-3

2-3
2-3
2-4

2-6
2-6
2-7
2-8
2-8

iii

Chapter 3 Productions

3.1 Production Name .

3.2 Left-Hand Side-Condition Elements .
3.2.1 Specifying Condition-Element Components

3.2.1 .1 Constants
3.2.1.2 Variables
3.2.1 .3 Predicates
3.2.1.4 Conjunctions
3.2.1 .5 Disjunctions
3.2.1.6 Function Calls
3.2.1 . 7 Quote Operator .

3.2.2 Specifying Element Variables

3.3 Right-Hand Side-Actions .
3.3.1 Variables
3.3.2 Function Calls
3.3.3 Element Designators .

Chapter 4 Recognize-Act Cycle

4.1 Match

4.2 Conflict Resolution .
4.2.1 Conflict-Resolution Rules

4.2.1 .1 Refraction .
4.2.1 .2 Recency .
4.2.1 .3 Specificity .

4.2.2 Conflict-Resolution Strategies
4.2.2.1 Lexicographic-Sort Strategy
4.2.2.2 Means-Ends-Analysis Strategy

4.3 Act

Part II Writing VAX OPS5 Programs

Chapter 5 Using VAX OPS5 Statements, Actions, and Functions

5.1 Initializing a Program .

5.2 Modifying Working Memory
5.2.1 Creating Working-Memory Elements
5.2.2 Deleting Elements from Working Memory
5.2.3 Changing the Atoms in Working-Memory Elements

5.3 Copying Atoms from a Working-Memory Element

5.4 Saving and Restoring the State of Working Memory and the Conflict Set

5.5 Stopping Program Execution

5.6 Binding Variables
5.6.1 Binding a Variable to an Atom

iv

3-2

3-2
3-3
3-4
3-4
3-5
3-6
3-6
3-7
3-8
3-8

3-8
3-9
3-9

3-10

4-2

4-3
4-3
4-3
4-4
4-4
4-5
4-5
4-6

4-7

5-2

5-3
5-3
5-4
5-4

5-5

5-6

5-7

5-7
5-7

5.7

5.8

5.9

5.10

5.11

5.12

Chapter 6

6.1

6.2

6.3

6.4

6.5

6.6

5.6.2
5.6.3

Binding a Variable to an Attribute's Field
Binding an Element Variable to a Working-Memory Element

Performing Arithmetic Computations

Performing Input and Output Operations
5.8.1 Opening Files
5.8.2 Setting the Default Input Source and Output Destination
5.8.3 Closing Files
5.8.4 Reading Input
5.8.5 Writing Output

5.8.5.1 Producing Output on a New Line
5.8.5.2 Specifying the Column in Which to Start Writing Output .. .
5.8.5.3 Producing Right-Justified Output

Controlling Loops

Using System-Generated Atoms ..

Adding Productions to an Executing Program

Sample VAX OPS5 Program

Using Routines Written in Other VAX Languages

.Calling a VAX OPS5 Program as a Subroutine

Result Element

Overview of External Routines
6.3.1 External Functions
6.3.2 External Subroutines

Declaring External Routines

Calling External Routines
6.5.1 Calling Functions
6.5.2 Calling Subroutines

Creating the External Routine
6.6.1 Declaring Arguments for Functions
6.6.2 Declaring VAX OPS5 Support Routines
6.6.3 Using VAX OPS5 Support Routines
6.6.4 Creating Working-Memory Elements
6.6.5 Retrieving Arguments from the Result Element
6.6.6 Converting Data Types

6.6.7
6.6.8
6.6.9
6.6.10
6.6.11
6.6.12
6.6.13
6.6.14

6.6.6.1 Symbolic Atoms
6.6.6.2 Integer Atoms
6.6.6.3 Floating-Point Atoms
Comparing Atoms for Equality
Placing Atoms in the Result Element
Stopping Program Execution ~
Displaying Warning Messages
Using Files Opened by the VAX OPS5 Program
Reading Input
Writing Output
Generating Atoms

5-8
5-8

5-9

5-10
5-10
5-11
5-12
5-12
5-13
5-14
5-14
5-14

5-15

5-17

5-18

5-19

6-2

6-3

6-3
6-3
6-3

6-4

6-4
6-4
6-5

6-6
6-6
6-6
6-7
6-8
6-9

6-10
6-10
6-11
6-12
6-13
6-13
6-14
6-14
6-15
6-15
6-17
6-17

v

6.7 Examples of Calling External Routines
6.7.1 A VAX OPS5 Program That Calls an External Function

6.7.1.1 VAX OPS5 Program-STATISTICS.OPS
6.7.1.2 VAX BASIC External Function-FNSQRT.BAS
6.7.1.3 VAX FORTRAN External Function--'-FNSQRT.FOR
6.7.1.4 VAX PASCAL External Function-FNSQRT.PAS

6.7.2 A VAX OPS5 Program That Calls an External Subroutine
6.7.2.1 OPS5 Program-STOCK.OPS
6.7.2.2 VAX BASIC External Subroutine-STOCKSUB.BAS

6.7.3 A VAX OPS5 Program That Uses a VAX DBMS Data Base
6.7.3.1. VAX OPS5 Program-DBMS.OPS
6.7.3.2 VAX BASIC External Function-DBMS.BAS
6.7.3.3 VAX OPS5 Include File-OPS.INC
6.7.3.4 BLISS-32 File-OPSATOM.B32
6.7.3.5 VAX Common Data Dictionary Data Description Language

File-DBMS.DDL
6.7.3.6 Include File-DBMS.INC

6.8 Handling an Asynchronous System Trap (AST)
6.8.1 Synchronizing Completion Routines

6-18
6-18
6-18
6-19
6-19
6-20
6-20
6-20
6-22
6-23
6-23
6-24
6-28
6-28

6-29
6-29

6-30
6-30

Part Ill VAX OPS5 Operator, Declaration, Statement, Action, Function,
Command, and Support-Routine Descriptions

Chapter 7

Chapter 8

Chapter 9

vi

Operators
A 7-2

7-4
<>. 7-5
>.. 7-6
>=... 7-7
<.. 7-8
<=... 7-9
<=> . 7-10
{}... 7-11
<< >> . 7-12
II. 7-13
\\ . 7-14

Declarations
EXTERNAL .. .
LITERAL
LITERALIZE
VECTOR-ATTRIBUTE

Statements
CATCH .. .
PRODUCTION
STARTUP

8-2
8-5
8-6
8-7

9-2
9-3
9-4

Chapter 10 Actions
ADDSTATE . 10-3
AFTER.. 10-4
BIND . 10-5
BUILD . 10-6
CALL... 10-8
CBIND. 10-9
CLOSE FILE . 10-10
DEFAULT. 10-11
HALT. 10-12
MAKE . 10-13
MODIFY. 10-15
OPEN FILE . 10-17
REMOVE . 10-18
RESTORESTATE. 10-19
SAVESTATE . 10-20
WRITE. 10-21

Chapter 11 Functions
ACCEPT . 11-2
ACCEPTLINE . 11-3
COMPUTE . 11-5
CALF. 11-6
GENATOM . 11-7
LITVAL. 11-8
RJUST. 11-9
SUBSTR . • 11-10
TASTO. 11-11

Chapter 12 Command Interpreter Commands
@ . 12-4
ADDSTATE . 12-5
AFTER...................... 12-6
BACK . 12-7
BUILD . 12-8
CALL.......................... 12-9
CLOSEFILE . 12-10
cs . 12-11
DEFAULT. 12-12
DISABLE . 12-13
ENABLE. 12-14
EXCISE . 12-15
EXIT . 12-16
MAKE . 12-17
MATCHES . 12-18
MODIFY. 12-20
NEXT . 12-21
OPENFILE . 12-22
PBREAK . 12-23
PPWM.. 12-24
REMOVE -. 12-26
REPORT 12-27
RESTART . 12-28

vii

RESTORESTATE . 12-29
RUN . 12-30
SAVESTATE . 12-31
SHOW SPACE . 12-32
STRATEGY. 12-33
WATCH . 12-34
WBREAK . 12-36
WM.. 12-37

Chapter 13 Support Routines
OPS$ACCEPT . 13-3
OPS$ACCEPTLINE . 13-4
OPS$ASSERT. 13-5
OPS$ATOM . 13-6
OPS$CANCEL_RUN . 13-7
OPS$CLEAR . 13-8
OPS$COMPLETION . 13-9
OPS$CRLF . 13-10
OPS$CVAF. 13-11
OPS$CVAN . 13-12
OPS$CVFA . 13-13
OPS$CVNA . 13-14
OPS$EQL . 13-15
OPS$FLOATING . 13-16
OPS$GENATOM . 13-17
OPS$HALT. 13-18
OPS$1FILE . 13-19
OPS$1NITIALIZE . 13-20
OPS$1NTEGER . 13-21
OPS$1NTERN . 13-22
OPS$LITBIND . 13-23
OPS$LITVAL . 13-24
OPS$0FILE . 13-25
OPS$PARAMETER . 13-26
OPS$PARAMETERCOUNT . 13-27
OPS$PNAME . 13-28
OPS$RESET . 13-29
OPS$RUN . 13-30
OPS$STARTUP. 13-31
OPS$SYMBOL . 13-32
OPS$TAB. 13-33
OPS$VALUE . 13-34
OPS$WARNING . 13-35
OPS$WRITE.. 13-36

Appendix A %INCLUDE Compiler Directive

A.1 Format .. . A-1

A.2 Argument .. . A-1

A.3 Example A-1

viii

Index

Figures

2-1

2-2

2-3

2-4

2-5

2-6
3-1

3-2

4-1

6-1

Tables

5-1

6-1

7-1

8~1

9-1

10-1

10-2

11-1

12-1

12-2

12-3

12-4

12-5

13-1

Internal Representation of a Working-Memory Element .

Time Tag Representation

Storing the Class Name

Storing the Values of Scalar Attributes

Shared Attributes .

Storing the. Value of a Vector Attribute

Production Format .

Matching Atoms in a Working-Memory Element with Component Values

Recognize-Act Cycle .

Arguments Stored in the Result Element

VAX OPS5 Statements, Actions, and Functions

Include Files

Summary of Operators .. .

Summary of Declarations .

Summary of Statements .

Summary of Actions .. .

DEFAULT Action Keywords

Summary of Functions .. .

Summary of Commands

DEFAULT Command Keywords

DISABLE Command Keywords

ENABLE Command Keywords

Trace Levels

Summary of Support Routines

2-3

2-4

2-4

2-5

2-5

2-6
3-1

3-4

4-2
6-9

5-1

6-7

7-1

8-1

9-1

10-1

10-11

11-1

12-2

12-12
12-13

12-14
12-34

13-1

ix

Preface

Manual Objectives

This document provides VAX OPS5 programmers with a complete description of
VAX OPS5 components.

If you want to use a VAXstation to create, run, and revise VAX OPS5 programs,
you should also read the VAX OPS5 Development Environment User's Guide.

Intended Audience

The document is for readers who have a basic understanding of VAX OPS5. Some
familiarity with the VMS operating system is helpful. For information concerning
this system, refer to the section Associated Documents in this preface.

Structure of This Document

This document is divided into three parts and one appendix. Part I consists of
four chapters that describe the VAX OPS5 components. Part II· consists of two
chapters that explain how to write programs in VAX OPS5. Part III consists of
seven chapters that describe the VAX OPS5 operators, declarations, statements,
actions, functions, commands, and support routines. The appendix tells you how
to use the %INCLUDE compiler directive.

Associated Documents

• VAX OPS5 User's Guide

• VAX OPS5 Thrsion 3.0 Release Notes (on-line)

• The Artificial Intelligence Education Series: VAX OPS5 (self-paced instruc-
tion)

• VAX OPS5 Development Environment User's Guide

• VMS DECwindows User's Guide

• VAX Architecture Handbook

• Introduction to VMS

• VMS DCL Dictionary

• Guide to Using VMS Command Procedures

• VMS Record Management Services Manual

xi

For a complete list of VMS software documents, see the VMS Master Index.

NOTE

In addition to the aforementioned VAX documents, the following text
is also recommended: Rule-based Programming with OPS5 by Thomas
Cooper and Nancy Wogrin.

To order this text, write to:

Morgan Kaufmann Publishers, Inc.
P.O. Box 50490
Palo Alto, CA 94303-9953
Attn: Michael McClatchey

Or, you can phone the publisher at (415) 965-4081.

Document Conventions

xii

The following conventions are used in this document:

Convention

[]

{ }

{ } ...

{ }

Meaning

Square brackets enclose items that are optional. For example:

[file-id]

A horizontal ellipsis means that the item preceding the ellipsis
can be repeated. For example:

action ...

You can specify many of the constructs described in Part III
with more than one argument. If you specify more than one
argument with an operator, declaration, statement, action,
function, or command, separate the argument values with
any combination of spaces, tabs, and carriage returns. If
you specify more than one argument with a support routine,
separate the values with a comma and a space.

In format specifications, braces enclosing a horizontal list of
items indicate items that are considered one unit of code. For
example:

{scalar-attribute value}

In these cases, do not include the braces in your code.

In examples of VAX OPS5 code, however, braces enclose con­
junctions and specify element variables. In these cases, the
braces must be included in the syntax.

Braces followed by a horizontal ellipsis mean that you can re­
peat the enclosed unit of code one or more times. For example:

{attribute-name= field} ...

Braces enclosing a vertical list of items indicate that you must
choose one of the items. For example:

{
action }
command

Convention Meaning

A vertical ellipsis in a figure or example indicates that not all
the information the system displays is shown or that not all
the information y~u should enter is shown.

UPPERCASE characters DCL commands and qualifiers and the names of VAX OPS5
declarations, statements, actions, functions, commands, and
support routines are printed in uppercase characters. However,
you can enter them in uppercase, lowercase, or a combination
of uppercase and lowercase.

lowercase characters The arguments you must specify with DCL commands and VAX
OPS5 operators, declarations, statements, actions, functions,
commands, and support routines are printed in lowercase char­
acters. However, you can enter them in lowercase, uppercase,
or a combination of lowercase and uppercase characters.

blue-green ink In examples, user input is printed in blue-green ink. For
example:

decimal notation

OPS5> EXIT
$

A carriage return is the implied terminator for user input at
the end of command lines. If a control character or other type
of terminator is required, it will be explicitly stated in the text.

All numeric values are represented in decimal notation.

xiii

Part I
VAX OPS5 Components

Part I of this manual provides information about the VAX OPS5 components.

Chapter 1 introduces the structure of VAX OPS5. Chapters 2, 3, and 4 describe
working memory, productions, and the recognize-act cycle.

Chapter 1

Introduction to VAX OPS5

VAX OPS5 is used in the field of artificial intelligence for developing applications
for expert systems and cognitive psychology. It is characterized by:

• A global data base

• Condition-action (or IF-THEN) rules programmed in the form of productions,
which operate on the global data base

• Productions that are executed in an unspecified order

• Computation with symbolic expressions and numbers

• Simple syntax

• Knowledge representation

VAX OPS5 is an extended implementation of standard OPS5. VAX OPS5
programs are compiled using the VAX OPS5 compiler and executed using the
VAX OPS5 run-time system. This manual provides information about VAX OPS5.
For tutorial information, see the self-paced instruction (SPI) course The Artificial
Intelligence Education Series: VAX OPS5. For information about how to use VAX
OPS5 with the VMS operating system, see the VAX OPS5 User's Guide.

NOTE

In addition to the aforementioned VAX documents, the following text
is also recommended: Rule-based Programming with OPS5 by Thomas
Cooper and Nancy Wogrin.

To order this text, write to:

Morgan Kaufmann Publishers, Inc.
P. 0. Box 50490
Palo Alto, CA 94303-9953
Attn: Michael McClatchey

Or, you can phone the publisher at (415) 965-4081.

This chapter provides an overview of the structure of VAX OPS5 and describes
VAX OPS5 atoms and program elements.

Introduction to VAX OPS5 1-1

1.1 VAX OPS5 Structure

The VAX OPS5 system has two key components: a data base called working
memory and productions that manipulate the data base. The run-time system
uses a recognize-act cycle to process the contents of working memory and the
productions.

Working memory, productions, and the recognize-act cycle are described in
Chapters 2, 3, and 4, respectively.

1.1.1 Working Memory

Working memory is a global data base that stores elements that describe a
problem. Each element can have a class name and a list of associated attributes
and their values. The class name classifies the element according to the type of
information the element contains. The attributes and their values describe the
element's characteristics.

Suppose a VAX OPS5 program requires a data base that contains the following
information about checks drawn on a bank account:

Checks

Number Amount Date

102 10.06 2 Nov 1988

103 22.45 14 Nov 1988

104 56.00 14 Nov 1988

108 13.10 25 Nov 1988

You can represent this information in working memory with four elements. To
classify the elements, you can assign the class name CHECK to each element.
You can use the symbols NUMBER, AMOUNT, and DATE to name the attributes
that describe the elements' characteristics. For example, an element might look
like:

(CHECK ANUMBER 102 AAMOUNT 10.06 ADATE 2 NOV 1988)

1.1.2 Productions

Productions operate on working memory. Each production has a name and
consists of a condition part, called the left-hand side, and an action part, called
the right-hand side. The left-hand side is a list of patterns called condition
elements, with which working-memory elements are compared. The right-hand
side is a list of actions that are executed when working-memory elements match
the condition elements on the production's left-hand side. An action consists of an
action na.me and its arguments, and usually manipulates the contents of working
memory.

An example of a production follows:

(P OVERDRAWN-ACCOUNT
(ACCOUNT ANUMBER <ID> ABALANCE <BALANCE>)
(CHECK AACCOUNT-NUMBER <ID> AAMOUNT > <BALANCE>)

-->
(WRITE (CRLF) (CRLF) !Your account is overdrawn. I)
(HALT))

1-2 Introduction to VAX OPS5

The name of this production is OVERDRAWN-ACCOUNT. The left-hand side
consists of two condition elements:

(ACCOUNT ANUMBER <ID> ABALANCE <BALANCE>)

(CHECK AACCOUNT-NUMBER <ID> AAMOUNT > <BALANCE>)

The right-hand side contains two actions-a WRITE action that displays a
message and a HALT action that stops program execution.

1.1.3 Recognize-Act Cycle

The recognize-act cycle consists of four steps:

1. Recognize matches

2. Select a match

3. Act (execute the selected production)

4. Go to step 1

During the match step, the system compares working-memory elements with
the condition elements on the left-hand side of each production. When working­
memory elements match the condition elements, the production is ready for
execution. The system selects one of the ready productions, executes the actions
on its right-hand side, and begins the cycle again.

1.2 Atoms

The unit of data in a VAX OPS5 program is called an atom. There are three types
of atoms: symbolic, integer, and floating point.

1.2.1 Symbolic Atoms

A symbolic atom is one that does not have a numeric value. For example:

c

CHECK

?-c

10-14

1.2.2 Integer Atoms

Integer atoms consist of the following:

• An optional plus or minus sign

• One or more decimal digits

• An optional decimal point

Introduction to VAX OPS5 1-3

The following are examples of integer atoms:

2

20.

-20

-2.

The valid range for integer atoms is -2**29 to 2**29-1.

1.2.3 Floating-Point Atoms

A floating-point atom is composed of the following:

• An optional plus or minus sign

• Zero or more decimal digits

• A decimal point

• One or more decimal digits after the decimal point

• An optional exponent

An exponent consists of the letter e followed by a signed or unsigned integer and
represents a power of 10 by which a preceding number is to be multiplied. For
example, e-8 represents the value 10 raised to the power -8.

NOTE

A floating-point atom must include a decimal point followed by a digit,
an exponent, or both.

The following are examples of floating-point atoms:

0.0

.25

10.05e-14

-5.elO

Floating-point atoms are implemented as VAX F _floating data. The valid range
for floating-point atoms is .29e-38 to l.7e38. The precision is approximately
seven decimal digits. For information about the VAX floating data types, see the
VAX Architecture Handbook.

1.2.4 Quoted Atoms

The following characters have a specific meaning in the VAX OPS5 syntax:

• Escape character

• Control characters

• Space

• Tab

• Parentheses (())

1-4 Introduction to VAX OPS5

• Braces ({ })

• Circumflex (A)

• Semicolon (;)

To include these characters in an atom, "quote" the atom by enclosing it in
vertical bars (I I). The text between the two vertical bars is considered one
symbolic atom. For example, the compiler and run-time system recognize THIS
IS AN ATOM to be four atoms separated by spaces. However, in the following
example, they recognize THIS IS AN ATOM to be one atom:

!THIS IS AN ATOM!

Quoted atoms are symbolic atoms; therefore, I 1.2 I is a symbol, not a floating­
point number, and arithmetic operations cannot be performed on it.

The opening and closing quotes must appear on the same line in the code. They
can enclose as many characters as are allowed in an atom's print name. (The
maximum number of characters an atom's print name can consist of is 256.)

The circumflex (A) is the VAX OPS5 attribute operator, but in the following
example vertical bars enclose the atom, so it is treated as any ordinary character.

!"NUMBER!

If the atom you enclose in vertical bars includes a vertical bar, double the vertical
bar. For example:

!This is a vertical bar -- I I. I

When the atom is displayed or printed, it includes only one vertical bar:

This is a vertical bar -- I .

The VAX OPS5 compiler and run-time system do not distinguish between
uppercase and lowercase characters unless the characters appear inside vertical
bars. For example, the word CHECK has the same meaning in any of the
following forms:

CHECK

ChecK

check

However, the following examples represent different values:

I CHECK I

I Check I

1.3 Program Elements

VAX OPS5 programs consist of declarations, executable statements, and optional
comments.

1.3.1 Dedarations

Declarations are units of code, each enclosed in parentheses, that define the
attributes and external routines used in a program. Attribute declarations
are described in Section 2.3. External routine declarations are described in
Chapter 8. Declarations must precede any other kind of statement.

Introduction to VAX OPS5 1-5

1.3.2 Executable Statements

Executable statements are units of code, each enclosed in parentheses, that
perform some type of operation. An executable statement can be a startup
statement, catcher, or production. Startup statements and catchers are described
in Sections 5.1 and 5.9, respectively. Productions are described in Chapter 3.

To improve the readability of a program, you can format units of code by using
spaces, tabs, and new-line characters.

1.3.3 Comments

A VAX OPS5 program can contain comments. A comment starts with a semicolon
and :finishes at the end of the same line. For example:

;This is a comment.

If you want comment text to extend over more than one line, you must start each
line with a semicolon.

The compiler ignores the text of comments. Therefore, comments can be used at
the start of a program, before the attribute declarations; they can contain any
ASCII character and can appear anywhere a space character is valid.

If you use a semicolon as part of an atom, you must enclose the atom in vertical
bars to ensure that the semicolon is not treated as the start of a comment.

1-6 Introduction to VAX OPS5

Chapter 2

Working Memory

Working memory is a global data base of information representing the problem a
VAX OPS5 program is to solve. The information is stored in elements, which are
grouped into classes. Elements storing similar information can be grouped in the
same class.

Working memory can contain several classes of elements, and each class can have
more than one element. An example of a class that contains only one element is
a class representing the opening balance of a checking account. An example of
a class that contains more than one element is a class representing the records
written in a checkbook register.

Working memory is dynamic. As a VAX OPS5 program is executed, elements are
added, deleted, and modified continually.

2.1 Working-Memory Elements

A working-memory element is a sequence of atoms that represents an object or
concept. Each atom is stored in a field that you can label with an attribute name.
You can specify a working-memory element, using a combination of the following:

• A class name

• A list of scalar attributes and their values

• A vector attribute and its value

The class name identifies the element's class, and the attributes and their values
describe the element's characteristics. The value of each scalar attribute is an
atom. The value of a vector attribute can be one or more atoms. The format for
specifying a working-memory element is as follows:

[class-name] [{scalar-attribute value} ...] [vector-attribute value]

Consider the following element:

(CHECK ANUMBER 102 AAMOUNT 10.06 ACOUNTED YES
ADATE 2 NOV 1988)

This statement represents a working-memory element of the class CHECK. The
attributes ANUMBER, AAMOUNT, ACQUNTED, and A DATE represent four
characteristics of the element. The values of the scalar attributes A NUMBER,
AAMOUNT, and ACOUNTED are the atoms 102, 10.06, and YES, respectively.
The value of the vector attribute ADATE is the list of atoms 2 NOV 1988.

Working Memory 2-1

2.1.1 Class Name

2.1.2

A class name is a symbol that identifies a group of similar elements. Elements
that have the same class name have the same attributes, but the values of the
attributes are different. For example, the following elements have the class name
CHECK:

(CHECK "NUMBER 102 "AMOUNT 10.06 "COUNTED NO
"DATE 2 NOV 1988)

(CHECK "NUMBER 103 "AMOUNT 22.45 "COUNTED NO
"DATE 14 NOV 1988)

Attributes

An attribute consists of the attribute operator (A), followed by an attribute name,
which describes the element's characteristics.

Suppose you want to specify a working-memory element that has the class
name CHECK, a number, an amount, and a count status. You can specify these
characteristics with the attribute names NUMBER, AMOUNT, and COUNTED
as follows:

(CHECK "NUMBER 102 "AMOUNT 10.06 "COUNTED NO)

You can use the same attribute name in more than one element even if the
elements have different class names. For example, the attribute ANUMBER is
used in both of the following elements:

(CHECK "NUMBER 102 "AMOUNT 10.06 "COUNTED NO)

(TRANSACTION "NUMBER 2560 "TYPE DEPOSIT)

An attribute name can also be an integer. The integer indicates the field of the
working-memory element in which the attribute's value is stored or is to be stored
(see Section 2.2.2). (Using integers as attribute names is not recommended,
because it can cause confusion.)

You do not have to specify all the attributes associated with a class name. If the
cfass name CHECK is associated with the attributes "NUMBER, "AMOUNT,
and "COUNTED, you can specify:

(CHECK "AMOUNT 10.06)

This element has the class name CHECK and the attribute "AMOUNT, whose
value is the atom 10.06.

The next two subsections explain the difference between the two types of at­
tributes.

2.1.2.1 Scalar Attributes

The value of a scalar attribute is an atom (see Section 1.2). For example:

"NUMBER 102

The following example shows a working-memory element whose class name
is CHECK and whose scalar attributes are "NUMBER, AAMOUNT, and
"COUNTED:

(CHECK "NUMBER 102 "AMOUNT 10.06 ACOUNTED NO)

The values of the attributes are the atoms 102, 10.06, and NO, respectively.

The maximum number of scalar attributes you can specify for an element is 255.

2-2 Working Memory

2.1.2.2 Vector Attributes

The value of a vector attribute is a list of one or more atoms. For example:

ADATE 2 NOV 1988

Consider the following working-memory element:

(CHECK ANUMBER 102 AAMOUNT 10.06 ACOUNTED NO)

Suppose you add the vector attribute "'DATE with the list of atoms 2 NOV 1988:

(CHECK ANUMBER 102 AAMOUNT 10.06 ACOUNTED NO
ADATE 2 NOV 1988)

This working-memory element has the class name CHECK; the scalar attributes
"'NUMBER, "'AMOUNT, and "'COUNTED; and the vector attribute "'DATE.

The number of atoms that you specify for a vector attribute can vary during a
program's execution. The value of a vector attribute can consist of a maximum of
127 atoms.

2.2 Internal Representation of Working-Memory Elements

The internal representation of a working-memory element includes a time tag
and one or more atoms, which represent the element's class and attribute values.
Figure 2-1 illustrates how the atoms are stored in fields.

Figure 2-1: Internal Representation of a Working-Memory Element

Field 2 3 4 5

n [,.-I ______ ____._I _NI L_._I ___._I _NI L ___ I ______._......____.

t f
Time Class
Tag Name

Values of
Scalar

Attributes

NOTE

Value of
Vector

Attribute

ML0-002248

NIL is stored in the fields that are not assigned atoms.

2.2.1 Time Tags

Time tags are integers that the run-time system uses to determine recency during
conflict resolution (see Section 4.2.1.2). The run-time system assigns a unique
time tag to each element in working memory. The element with the largest time
tag is the most recent. Figure 2-2 illustrates how the run-time system assigns
time tags.

Working Memory 2-3

Figure 2-2: Time Tag Representation

Time
Tag Element

Element-1

2 Element-2

3 Element-3

4 Element-4

ML0-002249

Element-4 has the largest time tag and therefore is the most recent.

In addition to the run-time system using time tags to determine recency, you can
use time tags as arguments for some VAX OPS5 commands (see Chapter 12 and
the VAX OPS5 User's Guide).

When you delete an element from working memory, you also delete the element's
time tag, which is not used again during the program's execution. Likewise,
if you modify an element, it is assigned a new time tag. (When you modify an
element, the run-time systeni deletes that element from working memory and
adds a revised element.)

2.2.2 Storing the Class Name and Attribute Values

The first field of the structure that stores a working-memory element is reserved
for the element's class name. If an element does not have a class name, the
run-time system places NIL in the first field. Figure 2-3 shows how the run-time
system stores the class name for the following element:

(CHECK ANUMBER 102 AAMOUNT 10.06 ACOUNTED NO
ADATE 2 NOV 1988)

Figure 2-3: Storing the Class Name

Field 1

I CHECK I NIL

t t
Time Class
Tag Name

ML0-002250

The compiler assigns fields to the names of the scalar attributes when the at­
tribute names are declared (see Section 2.3). An attribute's field stores that
attribute's value. Consider the following working-memory element:

2-4 Working Memory

(CHECK ANUMBER 102 AAMOUNT 10.06 ACOUNTED NO)

Figure 2-4 illustrates the internal representation when the compiler assigns field
2 to NUMBER, field 3 to AMOUNT, and field 4 to COUNTED.

Figure 2-4: Storing the Values of Scalar Attributes

Field

t
Time
Tag

2 3 4

Class "NUMBER
Name "AMOUNT

"COUNTED

5

NIL

ML0-002251

The field assigned to each attribute name is global, that is, the attribute name
refers to the same field for each element class in which the attribute name
appears. Consider the following elements:

(CHECK ANUMBER 102 AAMOUNT 10.06 ACOUNTED NO)
(ORDER ADEPARTMENT AUTOMOTIVE ANUMBER 10-562)

These elements have different class names but share the scalar attribute
"NUMBER. Suppose field 2 in the first element corresponds to the attribute
name NUMBER. Since the attribute name refers to the same field for both ele­
ments, the value of the attribute "NUMBER is placed in field 2 for both elements,
although the value in each element can be different. Figure 2-5 illustrates this.

Figure 2-5: Shared Attributes

1

Time<
Tag

2

Class "NUMBER
Name

"COUNTED

"AMOUNT j
~-..--~~-..--~~-..--~~-..--~----.

NO NIL

Class "NUMBER
Name "DEPARTMENT ML0-002252

You can refer to a field in an element's structure directly by specifying the number
of the field with the attribute operator. For example, to refer to the atom stored
in the second field, you can specify:

"2

Working Memory 2-5

However, using the attribute operator with an integer is not recommended
because you might refer to the wrong atom. For example, the compiler might
assign the fields 2, 3, and 4 to the attribute names NUMBER, AMOUNT, and
COUNTED, respectively. Suppose you want to refer to the attribute ANUMBER.
If you specify the attribute operator with 3, you refer to the value of the attribute
A AMOUNT, not the value of A NUMBER. However, if you' use the attribute name,
you will always refer to the correct atom. Using attribute names also makes
debugging and maintaining programs easier.

The compiler reserves field 256 of each working-memory element for the start
of the vector attribute, if there is one (see Section 2.3.3). Assigning the value of
vector attributes to this location eliminates the chance of the run-time system
writing over scalar-attribute fields. The predefined field stores the first atom of
the vector attribute's value. The rest of the atoms are stored sequentially in the
remaining fields.

Consider the following working-memory element:

(CHECK ANUMBER 102 AAMOUNT 10.06 ACOUNTED NO
ADATE 2 NOV 1988)

Figure 2-6 shows this element's internal representation.

Figure 2-6: Storing the Value of a Vector Attribute

Field 2 3 4 5

NIL NIL

t
Time Class "NUMBER
Tag Name "AMOUNT

"COUNTED

2.3 Declarations

2 NOV 1988

"DATE

ML0-002253

Attribute names and external routines must be declared using the LITERALIZE,
LITERAL, VECTOR-ATTRIBUTE, or EXTERNAL declaration, which must
appear before any other kind of statement. The following sections explain how
to use these declarations. For detailed descriptions of the declarations, see
Chapter 8.

2.3.1 LITERALIZE Declarations

Use the LITERALIZE declaration to do the following:

• Associate a class with a list of attribute names

• Tell the compiler to assign unique fields to the specified attribute names

2-6 Working Memory

An example of a LITERALIZE declaration follows:

(LITERALIZE CHECK
NUMBER
AMOUNT
COUNTED)

This declaration associates the class name CHECK with the attribute names
NUMBER, AMOUNT, and COUNTED. The declaration lets the program re­
fer to working-memory elements that have the class name CHECK and any
combination of the attributes whose names are listed.

This declaration also tells the compiler to assign fields to the specified attribute
names. The compiler does not necessarily assign fields in the order in which you
write the attribute names. If you use the same attribute name in more than one
LITERALIZE declaration, the same field position will be assigned to each.

You can find out which field the compiler has assigned to an attribute name
by calling the LITVAL function in a right-hand-side action (see Section 5.6.2).
Consider the preceding LITERALIZE declaration, and suppose the compiler
assigns field 2 to NUMBER. The following call to the LITVAL function returns 2:

(LITVAL NUMBER)

2.3.2 LITERAL Declarations

You can explicitly assign fields to attribute names, using the LITERAL declara­
tion. For example:

(LITERAL NUMBER = 2
AMOUNT = 4
COUNTED = 7)

This LITERAL declaration assigns field 2 to NUMBER, field 4 to AMOUNT, and
field 7 to COUNTED.

If a program contains both LITERAL and LITERALIZE declarations, the compiler
processes the LITERAL declarations first, regardless of the order in which you
specify the declarations. The compiler uses the field assignments for the attribute
names specified in both LITERAL and LITERALIZE declarations. If the compiler
cannot use the assignments specified by a LITERALIZE declaration, it displays
the following error message:

%0PSCOMP-W-LITCLASH, Literal value clash involving AAAAAA in
literalize declaration -- old value kept

You should use LITERALIZE declarations rather than LITERAL declarations
for two reasons. First, when you use a LITERAL declaration, you might inad­
vertently assign the same field to two different attribute names. For example,
suppose you specified the following LITERAL declarations:

(LITERAL NUMBER = 2
AMOUNT = 4
COUNTED = 5
DATE = 6)

(LITERAL NAME = 3
COUNT = 4)

If you used the attributes "COUNT and "AMOUNT in the same working-memory
element, the program would overwrite the values of these attributes unless you
changed one of the declarations, since field 4 would be assigned to the names of
both attributes.

Working Memory 2-7

Second, LITERAL declarations do not associate a class with attribute names.
Therefore, when you use LITERAL declarations, the run-time system displays
working-memory elements in lists rather than in an attribute-value-pair format,
making the debugging process more difficult.

2.3.3 VECTOR-ATTRIBUTE Declarations

Use the VECTOR-ATTRIBUTE declaration to assign field 256 to the name of a
vector attribute. The run-time system stores the atoms of the attribute's value,
starting in that field. The following example declares the vector attribute named
DATE:

(VECTOR-ATTRIBUTE DATE)

You can declare all the vector attributes of a program in one VECTOR­
ATTRIBUTE declaration or declare each vector attribute separately.

After you have declared a vector attribute, you can specify the name of that
attribute in a LITERALIZE declaration. For example:

(LITERALIZE CHECK
NUMBER
AMOUNT
COUNTED
DATE)

This declaration associates the class name CHECK with the attribute names
NUMBER, AMOUNT, COUNTED, and DATE. Only one vector attribute can be
declared for a class.

2.3.4 EXTERNAL Declarations

If your VAX OPS5 program contains calls to an external routine, which is a
routine written in a language other than VAX OPS5, you must declare it using an
EXTERNAL declaration, which identifies it to the VAX OPS5 compiler.

The EXTERNAL declaration is described in Chapter 8.

2-8 Working Memory

Chapter 3

Productions

Productions are the condition-action statements of a VAX OPS5 program. If data
in working memory matches the conditions in a production, the run-time system
can execute the production's actions. Each production consists of:

• A production name

• A left-hand side (LHS)

• An arrow (- ->)

• A right-hand side (RHS)

The left-hand side of a production consists of one or more condition elements,
which contain the patterns that working-memory elements must match. Each
condition element must be enclosed in parentheses.

The right-hand side consists of one or more actions. Actions instruct the run-time
system to perform operations, such as add, remove, or modify working-memory
elements. Each action must be enclosed in parentheses.

Figure 3-1 illustrates the structure of a production.

Figure 3-1 : Production Format

Left-hand side {
Right-hand side {

(P production-name
(condition-element-1)
(condition-element-2)
(condition-element-n)

-->
(action-1)
(action-2)
(action-n)

ML0-002254

Productions must be enclosed in parentheses. The P, which follows the opening
parenthesis, signifies that the following code is a production. The production
name distinguishes the production from other productions in a program.

The left-hand side of the production is separated from the right-hand side by an
arrow, created by typing two dashes and a greater-than sign (- ->).

Productions 3-1

An example of a production follows:

(P COUNTED-CHECKS
{ <REPLY>

(REPLY ADATE { <DAY> <> STOP } <MONTH> <YEAR>)
-(CHECK ADATE <DAY> <MONTH> <YEAR> ACOUNTED NO)

{ <COUNTER>
(COUNT AVALUE <VALUE>)

-->
(REMOVE <REPLY>)
(REMOVE <COUNTER>)
(MAKE START)
(WRITE (CRLF) (CRLF) !There arel <VALUE> !checks dated!

<DAY> <MONTH> <YEAR> (CRLF)))

The name of this production is COUNTED-CHECKS. The left-hand side consists
of three condition elements:

(REPLY ADATE { <DAY> <> STOP } <MONTH> <YEAR>)

-(CHECK ADATE <DAY> <MONTH> <YEAR> ACOUNTED NO)

(COUNT AVALUE <VALUE>)

The braces ({ }) enclosing the first and third condition elements define element
variables <REPLY> and <COUNTER>. Section 3.2.2 explains how to specify
element variables.

The minus sign preceding the second condition element indicates that it is
negative. Section 3.2 explains positive and negative condition elements.

The right-hand side contains four actions: two REMOVE actions, a MAKE action,
and a WRITE action.

You can list productions in any order without affecting the way the program is
executed. However, if you group productions that work toward the same goal, the
program is easier to read and maintain.

3.1 Production Name

A production name is a symbol that identifies a production. The name of each
production in a program must be unique. You can name a production with any
symbol except NIL. (The run-time system uses NIL to identify working-memory
elements created by a VAX OPS5 command.)

3.2 Left-Hand Side-Condition Elements

3-2 Productions

The left-hand side of a production contains one or more condition elements.
The run-time system compares the atoms in working-memory elements with
corresponding patterns in condition elements.

Specifying a condition element is similar to specifying a working-memory element.
Use any combination of the following:

• A class name

• A list of scalar attributes and their values

• A vector attribute and its value

For descriptions of these components, see Sections 2.1.1 and 2.1.2.

Condition elements can be positive or negative. The first condition element
must be positive. A left-hand side can have a maximum of 32 positive condition
elements and unlimited negative condition elements.

A production is ready for execution when working-memory elements match
all the production's positive condition elements, but none matches its negative
condition elements. (See Section 4.1 for a description of the match phase of the
recognize-act cycle.) For example, suppose the left-hand side of a production
contains the following condition elements:

(REPLY ADATE STOP)

-(CHECK ADATE 14 NOV 1988)

(COUNT AVALUE 10)

The production is ready for execution when working-memory elements match
the first and third condition elements, but none matches the second condition
element.

The sections that follow explain how you can specify components in a condition
element and how to use element variables.

3.2.1 Specifying Condition-Element Components

The values you specify in the components of a condition element can be constant
atoms, variables, or function calls. They can be preceded by a predicate, indi­
cating the comparison operation to be performed (equal to, greater than, and so
on). Combinations of comparison operations for an attribute can be built using
conjunctions and disjunctions, which are similar to AND and OR operators.

If a symbol in a working-memory element and a symbol in a condition element
are composed of the same sequence of characters, the symbols match. A number
in a working-memory element and a number in a condition element match if the
difference between the two numbers is zero and both numbers are the same type
(integer or floating point).

The run-time system compares each atom in a working-memory element using
the comparison operation specified in the corresponding component. The system
uses the following rules for each comparison:

• If the component specifies a class name, the system compares the first atom
in the working-memory element with that name.

• If the component specifies a scalar attribute and value, the system compares
that attribute's value with the value specified in the component.

• If the component is a vector attribute and a value, the system compares the
first atom of that attribute's value with the first atom of the value specified
in the component. The system continues comparing atoms until the value is
exhausted.

The match phase of the recognize-act cycle is described in Section 4.1.

Suppose working memory contains an element in which fields 2, 3, and 4
are assigned to the attribute names NUMBER, AMOUNT, and COUNTED,
respectively:

(CHECK ANUMBER 102 AAMOUNT 10.06 ACOUNTED NO
ADATE 2 NOV 1988)

Now consider the following condition element:

(CHECK ANUMBER 102 ADATE 2 NOV 1988)

Productions 3-3

Figure 3-2 illustrates how the run-time system compares the atoms in the
preceding working-memory element with the values of this condition element's
components.

Figure 3-2: Matching Atoms in a Working-Memory Element with Component
Values

Condition
Element

Working
Memory 1

Class Scalar Attribute
Name and Value

,---A----.
(CHECK "NUMBER 102

CHECK 102 10.06 NO

Vector Attribute
and Value

"DATE 2 NOV 1988)

ML0-002255

The remaining atoms in the working-memory element are ignored and do not
influence the match process.

The following subsections explain how to specify component values, using con­
stants, variables, predicates, conjunctions, disjunctions, function calls, and the
quote operator.

3.2.1.1 Constants

Constants can be symbols, integers, or floating-point numbers.

3.2.1.2 Variables

3-4 Productions

A variable is a symbol enclosed in angle brackets (< >). An example is
<NUMBER>.

NOTE

In VAX OPS5, the symbol<=> represents the same-type operator. You
cannot use it as a variable.

Variables refer to unknown atoms in a working-memory element. The first time a
variable is used in a production, the variable is bound to the atom in the working­
memory element matching the condition element. All occurrences of that variable
in that production represent the same atom. For example, suppose the left-hand
side of a production contains the following condition elements:

(REPLY ADATE <DAY> <MONTH> <YEAR>)

-(CHECK ADATE <DAY> <MONTH> <YEAR>)

If the run-time system finds a match for the first condition element, the system
binds the variable <DAY> to the first atom of the vector attribute /\DATE, the
variable <MONTH> to the second atom, and the variable <YEAR> to the third
atom. Suppose the variable <DAY> is bound to atom 2. Then the variable <DAY>
in the second condition element must represent atom 2.

3.2.1.3 Predicates

Predicates are operators that can precede values (constants and variables) in
condition-element components. Predicates test the atoms in working-memory ele­
ments and produce a match if the atoms meet specific conditions. The predicates
are:

Same type as and equal to

<> Not same type as or not equal to

<=> Same type as

< Same type as and less than

<= Same type as and less than or equal to

> Same type as and greater than

>= Same type as and greater than or equal to

Every value specified in a condition element is preceded by a predicate, either
implicitly or explicitly. Values that you specify without a predicate are implicitly
preceded by the equal operator. For example, the following components are
equivalent:

"NUMBER 102

"NUMBER = 102

The equal operator is the only predicate that can precede the first occurrence of
a variable, because the first time a variaple occurs, it is bound to an atom. The
rest of the predicate operators must be specified with either an atom or a variable
bound to an atom. Suppose the left-hand side of a production consists of the
following condition elements:

(REPLY "DATE <DAY> <MONTH> <YEAR>)

(CHECK ADATE > <DAY>)

If the variable <DAY> in the first condition element is bound to atom 10, the
run-time system uses 10 to find working-memory elements that match the second
condition element. A working-memory element that has the class name CHECK
and a vector attribute ADATE whose first atom is an integer greater than 10
produces a match.

You can use the equal(=), not-equal(<>), and same-type(<=>) operators with any
· type of atom or a variable bound to any type of atom. The rest of the operators

must be specified with integers, floating-point numbers, or variables bound to
integers or floating-point numbers, or with calls to functions that return integers
or floating-point numbers.

Comparisons of two atoms fail if they are not the same type. For example, a
match on the component A NUMBER < <NUMBER> will fail unless the atom
in a working-memory element is an integer and the variable <NUMBER> is
bound to an integer, or the element is a floating-point number and the variable
<NUMBER> is bound to a floating-point number. (The number in the working­
memory element must also be less than the number bound to the variable for the
match to succeed.)

See Chapter 7 for descriptions of the predicate operators.

Productions 3-5

3.2.1.4 Conjunctions

A conjunction is a pattern of conditional tests all of which must be true of an
atom in a working-memory element. A conjunction is similar to a logical AND.

You specify a conjunction by enclosing the list of conditional tests in braces ({ }).

A conjunction is useful for binding a variable to an atom that satisfies one or
more conditional tests. For example, if you want an integer between 102 and 105,
you can specify the following condition element, which contains the appropriate
conjunction:

(CHECK ANUMBER { > 102 < 105 })

If you also want to bind the value of the attribute A NUMBER to a variable, you
can use the following conjunction:

(CHECK ANUMBER {<NUMBER> > 102 < 105 })

If working memory contains an element that has the class name CHECK and an
attribute ANUMBER whose value is 103 or 104, a match results. The run-time
system then binds the variable <NUMBER> to that value.

You can also use a conjunction as a placeholder by specifying the braces without
conditional tests. A placeholder can be used to skip over atoms in a vector
attribute's value. For example:

(CHECK ADATE { } <MONTH>)

A working-memory element that has the class name CHECK and a vector
attribute whose second atom is bound to <MONTH> matches this condition
element. The values of the other attributes do not affect the match.

You can also use a placeholder when you specify a condition element without
using attribute names. For example, if you had used a LITERAL declara­
tion to assign fields 2, 3, and 4 to the attributes ANUMBER, AAMOUNT, and
ACOUNTED you might specify:

(CHECK { } { } YES)

A working-memory element whose fourth field contains the atom YES matches
this condition element.

3.2.1.5 Disjunctions

3-6 Productions

A disjunction is a pattern containing a list of constant atoms. Only the atoms
specified in the list can match the pattern. A disjunction is similar to a logical
inclusive OR.

Specify a disjunction by enclosing the list of constant atoms between double angle
brackets (<< >>). The following condition element contains a disjunction:

(CHECK ANUMBER << 103 105 108 >>)

If working memory contains an element whose class name is CHECK and whose
ANUMBER attribute has the value 103, 105, or 108, a match results.

The atoms you specify in a disjunction are not evaluated. Therefore, operators
and variables are recognized as symbols: Consider the following disjunction:

<< ANUMBER <NUMBER> >>

The run-time system recognizes the circumflex (A), NUMBER, and <NUMBER>
to be symbols, not an attribute operator, attribute name, and variable.

3.2.1.6 Function Calls

You can represent a component value with a call to the COMPUTE function or an
external function. Function calls perform an operation and return one or more
atoms when the operation is complete. A function call is a function name and its
arguments enclosed in parentheses. The format for specifying a function call is:

(function-name argument-1 argument-2 ...)

For example:

(COMPUTE 1 + <VALUE>)

COMPUTE is the name of the function, and the rest of the values are the func­
tion's argument values.

NOTE

If a function requires no arguments, you must still enclose the function
name in parentheses.

Function calls can include variables, but the variables must be bound to atoms,
that is, the variables must have been used in a previous condition element or
previously in the same condition element.

The COMPUTE function evaluates an arithmetic expression and returns the
result. For example:

(P UPDATE-COUNTER
(CURRENT-TASK ANAME COUNTING ACOUNTED <C>)
(COUNTER ACOUNT (COMPUTE <C> - 1))

-->

The first condition element binds the variable <C> to a number in a working­
memory element. A working-memory element that has the class name
COUNTER, and an attribute ACOUNT whose value is a number one less than the
number to which the variable <C> was originally bound, will match the second
condition element. (For more information about using the COMPUTE function,
see Section 5. 7.)

You can also represent a component value with a call to an external function. An
external function is a function written in a language other than VAX OPS5.

If a condition element contains a call to an external function, you must declare
the function at the beginning of the program with the EXTERNAL declaration
(see Chapter 8).

The following condition element contains the function call (SQUARE_ROOT
<VARIANCE>):

(MEANSD AMEAN <MEAN> ASTDDEVIATION (SQUARE_ ROOT <VARIANCE>))

For more information about calling external functions, see the VAX OPS5 User's
Guide.

Productions 3-7

3.2.1. 7 Quote Operator

In condition elements, you can quote component values so that they are not
evaluated. This allows you to use any symbol, operator, variable, or function call
as a constant atom.

To quote a value, precede it with the quote operator(//). Using this operator is
similar to enclosing an atom in vertical bars (see Section 1.2.4). For example:

(CHECK ANUMBER // <NUMBER>)

The atom <NUMBER> in a working-memory element will match the symbol
<NUMBER>. If you do not use the quote operator, an atom will match the atom
bound to the variable <NUMBER>.

You should quote function calls when you create working-memory elements that
are used by the BUILD action (see Section 5.11). An example of a quoted call to
the SUBSTR function follows:

II (SUBSTR <BUILD-PRODUCTION> 2 INF)

The function call is treated like a list of atoms that can be placed in a working­
memory element.

3.2.2 Specifying Element Variables

An element variable is a variable that is bound to a working-memory element. To
specify an element variable, enclose the variable and a positive condition element
in braces ({ }). For example:

{ <COUNTER> (COUNT AVALUE <VALUE>) }

This can also be written with the variable after the condition element:

{ (_COUNT AVALUE <VALUE>) <COUNTER> }

When a working-memory element matches the condition element, the variable
is bound to that working-memory element. In the preceding example, the
variable <COUNTER> is bound to the working-memory element that matches the
condition element:

(COUNT AVALUE <VALUE>)

The CBIND action also binds an element variable to a working-memory element
(see Section 5.6.3).

On a production's left-hand side, any element variable can be specified only once.
However, a unique element variable can be specified for each positive condition
element in the 1eft-hand side of a production.

3.3 Right-Hand Side-Actions

3-8 Productions

The right-hand side of a production consists of one or more actions. Actions
perform the following operations:

• Modify working memory

• Save and restore the state of working memory and the conflict set

• Stop program execution

• Bind variables

• Manipulate files

• Write output

• Control loops

• Add productions to executing programs

• Call external subroutines

An action includes an action name and its arguments enclosed in parentheses.
The format for specifying an action is:

(action-name argument-1 argument-2 ...)

For example:

(MAKE CHECK ANUMBER 102 AAMOUNT 10.06 ACOUNTED NO
ADATE 2 NOV 1988)

In this example, MAKE is the name of an action, and the rest of the values are
the action's argument values.

NOTE

If an action does not require arguments, you must still enclose the
action name in parentheses.

Most VAX OPS5 actions require at least one argument. An argument consists
of an optional attribute (a "A" followed by the attribute name) and the attribute
value.

You can represent argument values with atoms, variables bound to atoms, or
function calls that evaluate to atoms. Sections 3.3.1 and 3.3.2 explain how to use
variables and function calls.

For information about how to use actions in a VAX OPS5 program, see Chapter 5.
For a detailed description of each action, see Chapter 10.

3.3.1 Variables

You can use a variable to represent an argument value in an action if the variable
is bound to an atom. A variable can be bound to an atom in a condition element
or in a BIND action. Section 3.2.1.2 explains how to bind variables in condition
elements. Section 5.6 explains how to bind variables, using the BIND action.

The OPENFILE action opens a file for input or output and associates a file
identification name with that file. The following OPENFILE action opens the file
whose specification is bound to the variable <FILE-SPEC>:

(OPENFILE CHECKSI <FILE-SPEC> IN)

3.3.2 Function Calls

You can represent an argument value with a call to a VAX OPS5 function or an
external function. The format for function calls is described in Section 3.2.1.6.

Consider the following MAKE command:

(MAKE REPLY ADATE (ACCEPTLINE))

First, the run-time system evaluates the call to the ACCEPTLINE function. The
MAKE command then uses the value returned by the ACCEPTLINE function to
create a working-memory element.

Productions 3-9

You can also represent an argument value with a call to an external function. An
external function is a function written in a language other than VAX OPS5.

If an action contains a call to an external function, you must declare the function
at the be.ginning of the program with the EXTERNAL declaration (Chapter 8).

The following BIND action contains the function call (SQUARE_ROOT
<VARIANCE>):

(BIND <STD_DEVIATION> (SQUARE_ROOT <VARIANCE>))

For more information about calling external functions, see the VAX OPS5 User's
Guide.

3.3.3 Element Designators

An element designator is either an elem~nt variable that labels a condition
element, or an integer that refers to the position of a condition element on the
left-hand side of a production. The MODIFY and REMOVE actions and the
SUBSTR function require an argument whose value is an element designator.

Element variables are bound to working-memory elements during the match
phase of the recognize-act cycle or by CBIND actions (see Section 5.6.3). When
you use an element variable in an action or function call, the variable refers to
the working-memory element to which it is bound. Likewise, when an action or
function uses an integer designator, the designator refers to the working-memory
element that matches the condition element indicated by that integer.

The following production uses three element variables:

(P FIND-CHECKS
{ <REPLY>

-->

(REPLY ADATE { <DAY> <> STOP } <MONTH> <YEAR>)
<CHECK>
(CHECK ANUMBER <NUMBER> AAMOUNT <AMOUNT>

ACOUNTED NO ADATE <DAY> <MONTH> <YEAR>)
<COUNTER>
(COUNT AVALUE <VALUE>) }

(WRITE (CRLF) (CRLF) !Found check number! <NUMBER>
lfor $1 <AMOUNT>
ldatedl (SUBSTR <REPLY> DATE INF))

(MODIFY <CHECK> ACOUNTED YES)
(MODIFY <COUNTER> AVALUE (COMPUTE 1 +<VALUE>)))

The element variable <CHECK> is bound to the working-memory element that
matches the condition element:

(CHECK ANUMBER <NUMBER> AAMOUNT <AMOUNT>
ACOUNTED NO ADATE <DAY> <MONTH> <YEAR>)

The element variable <COUNTER> is bound to the working-memory element
that matches the condition element:

(COUNT AVALUE <VALUE>)

The MODIFY actions use the element variables to change the working-memory
elements bound to those variables.

This production could also use integers as element designators:

3-10 Productions

(P FIND-CHECKS
(REPLY ADATE { <DAY> <> STOP } <MONTH> <YEAR>)
(CHECK ANUMBER <NUMBER> AAMOUNT <AMOUNT>

ACOUNTED NO ADATE <DAY> <MONTH> <YEAR>)
(COUNT AVALUE <VALUE>)

-->
(WRITE (CRLF) (CRLF) !Found check number! <NUMBER>

!for $1 <AMOUNT>
!dated! (SUBSTR 1 DATE INF))

(MODIFY 2 ACOUNTED YES)
(MODIFY 3 AVALUE (COMPUTE 1 +<VALUE>)))

In this version of the production, the MODIFY actions are specified with the
element designators 2 and 3. When an element designator is integer n, the
designator refers to the working-memory element that matches the nth positive
condition element. Therefore, the designator 2 refers to the working-memory
element· that matches the condition element:

(CHECK ANUMBER <NUMBER> AAMOUNT <AMOUNT>
ACOUNTED NO ADATE <DAY> <MONTH> <YEAR>)

The designator 3 refers to the working-memory element that matches the
condition element:

(COUNT AVALUE <VALUE>)

NOTE

Use element variables for element designators whenever possible.
When you use an integer element designator, it is more difficult to keep
track of the working-memory element to which the designator refers.

Productions 3-11

Chapter 4

Recognize-Act Cycle

The VAX OPS5 run-time system uses a recognize-act cycle (Figure 4-1) to execute
VAX OPS5 programs. The cycle consists of the following steps:

1. Match-Examines the current contents of working memory to locate all
working memory elements that satisfy the condition elements in the left-hand
sides of the program's productions. The productions whose left-hand sides are
satisfied are placed in a list called the conflict set.

2. Conflict resolution-Selects one production from the conflict set. If the conflict
set is empty (because no left-hand side has been satisfied) the program halts.

3. Act-Executes the actions on the right-hand side of the selected production.
If the right-hand side contains the HALT action, the program halts.

4. Go to step 1.

This chapter describes the steps of the cycle.

Recognize-Act Cycle 4-1

4.1 Match

Figure 4-1: Recognize-Act Cycle

Productions

production-1
production-2
production-3
production-4

production-(i)

production-(n-i)
production-(n)

Conflict
Set

production-2 time-tags
production-4 time-tags
production-(i) time-tags

Working Memory

Act­
execute actions
on right-hand side
of production (i)

Conflict
Resolution production-(i)

ML0-002256

During the match phase of the recognize-act cycle, the run-time system compares
the elements in working memory with each condition element in each production's
left-hand side. The left-hand side of a production is satisfied when working­
memory elements match every positive condition element and when no working­
memory elements match negative condition elements. Consider the following
production:

(P COUNTED-CHECKS
{ <REPLY>

(REPLY ADATE { <DAY> <> STOP } <MONTH> <YEAR>)
-(CHECK ADATE <DAY> <MONTH> <YEAR> ACOUNTED NO)

{ <COUNTER>
(COUNT AVALUE <VALUE>)

-->
(REMOVE <REPLY>)
(REMOVE <COUNTER>)
(MAKE START)
(WRITE (CRLF) (CRLF) !There are I <VALUE> !checks datedl

<DAY> <MONTH> <YEAR> (CRLF}))

When working-memory elements match the first and third condition elements
and when no working-memory elements match the second condition element, the
left-hand side of this production is satisfied.

As the left-hand sides of productions are satisfied, the run-time system creates a
conflict set containing records of the working-memory elements that match the
condition elements of a production. Each record, called an instantiation, includes

4-2 Recognize-Act Cycle

4.2

a production name and a list of the time tags of working-memory elements that
match the condition elements on the production's left-hand side.

An example of an instantiation is:

FIND-CHECKS 12 3 11

FIND-CHECKS is the name of the production. The integers 12, 3, and 11 are
time tags of the working-memory elements that match condition elements on the
production's left-hand side. The element whose time tag is 12 matches the first
condition element, the element whose time tag is 3 matches the second condition
element, and the element whose time tag is 11 matches the third condition
element.

More than one set of working-memory elements might satisfy the left-hand
side of a production. Therefore, the conflict set might contain more than one
instantiation for the same production. For example, the conflict set could contain:

FIND-CHECKS 12 3 11
FIND-CHECKS 12 4 11
FIND-CHECKS 12 5 11
FIND-CHECKS 12 6 11
FIND-CHECKS 12 2 11

Conflict Resolution

Once the conflict set is built, the recognize-act cycle proceeds to the conflict­
resolution phase. During conflict resolution, the run-time system uses a strategy
to select one of the instantiations in the conflict set.

Section 4.2.1 explains the rules on which the conflict-resolution strategies are
based. Section 4.2.2 describes the conflict-resolution strategies.

4.2.1 Conflict-Resolution Rules

The conflict-resolution strategies are based on the following rules:

1. Refraction-Selects an instantiation only once. Refraction prevents a program
from looping infinitely on the same data.

2. Recency-Selects the instantiation that refers to the most recent data in
working memory. Working-memory elements that have the highest time
tags contain the most recent data. Therefore, the system must select the
instantiation that contains the highest time tags.

3. Specificity-Selects an instantiation of a production whose left-hand side is
the most specific. Specificity is determined by the number of conditional tests
on a production's left-hand side.

4.2.1.1 Refraction

Refraction prevents programs from looping infinitely on the same data by remov­
ing instantiations from the conflict set after they have been selected.

Recognize-Act Cycle 4-3

4.2.1.2 Recency

To determine which instantiation is to be selected, the run-time system deter­
mines an instantiation's recency by comparing the time tags of all instantiations
in the conflict set, and selecting the most recent.

Suppose the first pair of instantiations the run-time system compares are:

FIND-CHECKS 12 3 11
FIND-CHECKS 12 4 11

The system compares the highest time tags of the instantiations. If one time tag
is higher than the other, the instantiation with the higher time tag is ordered
first. If the time tags are equal, the system compares the next highest time tags
of the instantiations. The highest time tags for both instantiations in the example
are 12. Therefore, the system compares the next highest time tags. The next
highest time tags for both instantiations are 11. The system continues comparing
the time tags until one time tag is higher than the other. Both instantiations in
the example have one more time tag for the system to compare. Since the first
instantiation contains time tag 3, and the second instantiation contains time tag
4, the second instantiation is more recent.

If one instantiation runs out of time tags before the other instantiation, the
one with more time tags is ordered before the one with fewer time tags. If both
instantiations have the same time tags and run out of time tags at the same time,
the recency of the instantiations is equal.

4.2.1.3 Specificity

If the recency of two or more instantiations is equal, the run-time system must
order the instantiations according to their specificity. An instantiation's specificity
is determined by the complexity of the left-hand side of the production to which
the instantiation refers.

The VAX OPS5 compiler calculates the specificity of each production in a pr-ogram
by counting the number of conditional tests in the production's left-hand side.
The production whose left-hand side contains the most tests is the most specific.
Each of the following items is considered to be a single conditional test:

• A class name

• A disjunction

• A constant value preceded by a predicate (except within a disjunction)

• An occurrence of a variable (except the first occurrence)

NOTE

The compiler does not consider an attribute to be a conditional test.

The content of a disjunction is considered to be one conditional test. For example,
the following disjunction is one test:

<< 105 14 NOV 1988 >>

The compiler considers each disjunction, constant, and variable in a conjunction
to be a separate test. The following conjunction contains two tests:

{ << 100 104 106 >> > 102 <NUMBER> }

4-4 Recognize-Act Cycle

Consider the following production:

(P COUNTED-CHECKS
{ <REPLY>

(REPLY ADATE { <DAY> <> STOP } <MONTH> <YEAR>)
-(CHECK ADATE <DAY> <MONTH> <YEAR> ACOUNTED NO)

{ <COUNTER>
(COUNT AVALUE <VALUE>)

-->
(REMOVE <REPLY>)
(REMOVE <COUNTER>)
(MAKE START)
(WRITE (CRLF) (CRLF) !There are I <VALUE> !checks dated!

<DAY> <MONTH> <YEAR> (CRLF)))

The left-hand side of this production contains eight conditional tests. The first
condition element contains two tests-REPLY and<> STOP. The variables
<DAY>, <MONTH>, and <YEAR> are not tests, because those variables appear
for the first time in the production and are bound to atoms. The second condition
element contains five tests- CHECK, <DAY>, <MONTH>, <YEAR>, and NO.
The variables are counted as tests in this element because the variables are
bound to atoms that can be compared to the atoms in a working-memory element.
The third condition element contains one conditional test-COUNT. The variable
<VALUE> is not a test, because that variable appears for the first time.

4.2.2 Conflict-Resolution Strategies

The VAX OPS5 run-time system supports two conflict-resolution strategies: the
lexicographic-sort (LEX) strategy and the means-ends-analysis (MEA) strategy.
These strategies use the rules described in the preceding sections to order the
instantiations in the conflict set.

Both strategies apply the rules in the following order: refraction, recency,
specificity. However, the MEA strategy includes an extra step after refraction,
which helps to organize large programs. This step orders the instantiations
according to the recency of the working-memory element matching the first
condition element in each production.

The default strategy for VAX OPS5 is LEX. You can change the strategy to MEA
by specifying the STRATEGY command with the keyword MEA. For example:

OPS5>(STRATEGY MEA)

To change the strategy back to the default, specify the command with the keyword
LEX.

OPSS>(STRATEGY LEX)

For more information about the STRATEGY command, see Chapter 12. The
next two sections describe how the two strategies order the instantiations in the
conflict set.

4.2.2.1 Lexicographic-Sort Strategy

The LEX strategy is for programs that do not depend on the order in which the
productions are executed. The LEX strategy uses the following rules in sequence
to order the instantiations in the conflict set:

1. Apply refraction by removing from the conflict set the instantiations the
run-time system has selected during the previous cycle.

2. Order the rest of the instantiations according to their recency and select the
instantiation with the highest level of recency.

Recognize-Act Cycle 4-5

3. If more than one instantiation has the highest level of recency, order those
instantiations according to their specificity and select the instantiation with
the highest level of specificity.

4. If more than one instantiation has the highest level of specificity, select an
instantiation arbitrarily.

Suppose a production FIND-CHECKS contains 10 conditional tests, a production
COUNTED-CHECKS contains 8 conditional tests, and the conflict set contains
the following instantiations:

FIND-CHECKS 3 6 20
COUNTED-CHECKS 20 3 6

After the instantiations have. been checked for refraction, the strategy checks the
instantiations for recency. Since both instantiations contain the same time tags
(even if they are in a different order), the instantiations are equally recent. The
strategy then applies the rule of specificity. The instantiation that contains the
production name FIND-CHECKS is more specific because the left-hand side of
that production contains 10 conditional tests. Therefore, the first instantiation in
the preceding conflict set is selected for the next phase of the recognize-act cycle.

4.2.2.2 Means-Ends-Analysis Strategy

The MEA strategy places highest priority on the production whose first condition
element is matched by the most recent working-memory element. Use this
strategy if you place the most important condition element first on the left-hand
side of each production. The extra step of the MEA strategy checks the recency
of the time tags for the working-memory elements matching these condition
elements. Therefore, you can use the MEA strategy for programs that deal with
problems you can divide into tasks.

The MEA strategy uses the following rules in sequence to order the instantiations
in the conflict set:

1. Apply refraction by removing from the conflict set the instantiations the
run-time system has selected during the previous cycle.

2. Compare the first time tag of each instantiation still remaining in the conflict
set and select the instantiation with the highest level of recency.

3. If more than one instantiation has the highest level of recency for the first
time tag, order those instantiations according to their recency (using all time
tags) and select the instantiation with the highest level of recency.

4. If more than one instantiation has the highest level of recency, order those
instantiations according to their specificity and select the instantiation with
the highest level of specificity.

5. If more than one instantiation has the highest level of specificity, select an
instantiation arbitrarily.

Suppose the run-time system uses the MEA strategy to select an instantiation
from the conflict set in the previous section.

FIND-CHECKS 3 6 20
COUNTED-CHECKS 20 3 6

After the instantiations have been checked for refraction, the MEA strategy
checks the recency of the first time tag in each instantiation. Since the first time
tag for the first instantiation is 3 and the first time tag for the second is 20, the
instantiation of COUNTED-CHECKS has the highest level of recency. Therefore,

4-6 Recognize-Act Cycle

4.3 Act

the run-time system selects the second instantiation for the next phase of the
recognize-act cycle.

After the run-time system has selected an instantiation, the recognize-act
cycle enters the act phase. During this phase, variables are bound to values,
and the actions on the right-hand side of the production to which the selected
instantiation refers are executed. The actions are executed in the order in
which they appear in the code, except for REMOVE and MODIFY actions. The
run-time system executes REMOVE actions last. MODIFY becomes a MAKE and
a REMOVE; the MAKE part is executed in order, the REMOVE at the end of the
phase.

If a HALT action is executed, the run-time system stops executing recognize-act
cycles when the current cycle is completed and returns control to the command
interpreter. Otherwise, the cycle goes back to the match phase when the act
phase is completed.

Recognize-Act Cycle 4-7

Part II
Writing VAX OPSS Programs

Part II of this manual provides information on the use of the VAX OPS5
components.

Chapter 5 explains how to use the VAX OPS5 statements, actions, and functions,
and provides a sample VAX OPS5 program. Chapter 6 explains how routines
written in other VAX languages can be called from an OPS5 program, how an
OPS5 program can be called as a subroutine from a program written in another
VAX language, and how to synchronize completion routines.

Chapter 5

Using VAX OPS5 Statements, Actions, and
Functions

You can use VAX OPS5 statements, actions, and functions in a VAX OPS5
program to perform the operations listed in Table 5-1 (each operation is listed
with the constructs used to perform the operation). The following sections explain
how to use the constructs. The last section provides a sample VAX OPS5 program
that contains some of the constructs. Detailed descriptions of the statements,
actions, and functions used in this chapter are provided in Chapters 9, 10, and
11, respectively.

Table 5-1 : VAX OPS5 Statements, Actions, and Functions

Operation

Initialize a program

Modify working memory

Copy values from a working-memory element

Save and restore the state of working memory
and the conflict set

Stop program execution

Bind variables

Perform arithmetic computations

Perform input and output operations

Control loops

Use system-generated atoms

Construct

STARTUP statement

MAKE action
REMOVE action
MODIFY action

SUBSTR function

SAVESTATE action
ADDSTATE action
RESTORESTATE action

HALT action

BIND action
LITVAL function
CBIND action

COMPUTE function

OPENFILE action
CLOSEFILE action
DEFAULT action
ACCEPT function
ACCEPTLINE function
WRITE action
CRLF function
&JUST function
TABTO function

CATCH statement
AFTER action

GENATOM function

(continued on next page)

Using VAX OPS5 Statements, Actions, and Functions 5-1

Table 5-1 (Cont.): VAX OPS5 Statements, Actions, and Functions

Operation

Add productions to an executing program

Call external subroutines

5.1 Initializing a Program

Construct

BUILD action

CALL action

You should initialize a VAX OPS5 program with declarations and an optional
STARTUP statement. Declarations assign the fields of working-memory elements
to class names and attribute names (see Section 2.3) and identify external
routines. AH deciarations must appear before any statements that use them.

A STARTUP statement sets up initial conditions, such as the contents of working
memory, the enabling or disabling of run-time messages, the conflict-resolution
strategy, and the run-time system's trace level. Only one STARTUP statement
can appear in a program.

A STARTUP statement can include actions and the commands @, DISABLE,
ENABLE, RUN, STRATEGY, and WATCH. For descriptions of these commands,
see Chapter 12.

Consider the following declarations and STARTUP statement:

(VECTOR-ATTRIBUTE DATE)

(LITERALIZE CHECK
NUMBER AMOUNT COUNTED DATE)

(LITERALIZE COUNT
VALUE)

(LITERALIZE REPLY
DATE)

(STARTUP
(MAKE CHECK ANUMBER 102 AAMOUNT 10.06 ACOUNTED NO

ADATE 2 NOV 1988)
(MAKE CHECK ANUMBER 103 AAMOUNT 22.45 ACOUNTED NO

ADATE 14 NOV 1988)
(MAKE CHECK ANUMBER 104 AAMOUNT 56.00 ACOUNTED NO

ADATE 14 NOV 1988)
(MAKE CHECK ANUMBER 108 AAMOUNT 13.10 ACOUNTED NO

ADATE 25 NOV 1988)
(MAKE START)
(WATCH 0)
(DISABLE HALT)
(STRATEGY MEA)
(RUN))

The VECTOR-ATTRIBUTE declaration declares the symbol DATE to be the
name of a vector attribute. Each LITERALIZE declaration associates a class
name with a list of attribute names and assigns fields to those names. The
STARTUP statement sets up initial conditions, and the MAKE actions create five
working-memory elements.

1 [NIL]
2 [NIL]
3 [NIL]
4 [NIL]
5 [NIL]

(CHECK A NUMBER
(CHECK A NUMBER
(CHECK A NUMBER
(CHECK ANUMBER
(START)

102 A AMOUNT
103 A AMOUNT
104 A AMOUNT
108 A AMOUNT

5-2 Using VAX OPS5 Statements, Actions, and Functions

10.06
22.45
56.00
13.10

A COUNTED NO A DATE 2 NOV 1988)
A COUNTED NO ADATE 14 NOV 1988)
A COUNTED NO ADATE 14 NOV 1988)
A COUNTED NO ADATE 25 NOV 1988)

The WATCH command sets the run-time system's trace level to 0, the DISABLE
command disables run-time informational messages and causes control to be
returned to the operating system when the program halts, and the STRATEGY
command sets the conflict-resolution strategy to MEA. The RUN command
instructs the run-time system to start executing recognize-act cycles.

5.2 Modifying Working Memory

A VAX OPS5 program can modify the contents of working memory during
execution.

5.2.1 Creating Working-Memory Elements

To create a working-memory element, use the MAKE action with a combination
of the following arguments:

• A class name

• A list of scalar attributes and their values

• A vector attribute and its value

The following MAKE action creates an element whose class name is CHECK,
whose scalar attributes are "NUMBER, "AMOUNT, and "COUNTED, and whose
vector attribute is "DATE:

(MAKE CHECK ANUMBER 102 AAMOUNT 10.06 ACOUNTED NO
ADATE 2 NOV 1988)

The element is stored in working memory as follows:

1 [NIL] (CHECK ANUMBER 102 AAMOUNT 10.06 ACOUNTED NO ADATE 2 NOV 1988)

The following production contains two MAKE actions:

(P WHAT-DATE
{ <START>

(START)
-->

(REMOVE <START>)
(WRITE (CRLF) (CRLF) !What date do you want to search for? I)
(WRITE (CRLF) (CRLF) !Enter the day, the first three!

I letters of the month, and the year. I
(CRLF)

!For example -- 14 NOV 19881
(CRLF) (CRLF)

I Type STOP to halt the program. I
(CRLF) (CRLF)

I Date>>> I)
(MAKE COUNT AVALUE 0)
(MAKE REPLY ADATE (ACCEPTLINE)))

The first MAKE action creates a working-memory element (which can be exam­
ined using the WM command described in Chapter 12) that has the class name
COUNT and a value 0:

6 [WHAT-DATE] (COUNT AVALUE 0)

The second MAKE action creates a working-memory element that has the class
name REPLY and atoms read from the terminal by the ACCEPTLINE function.
If the function reads the atoms 14, NOV, and 1988, the MAKE action creates the
following working-memory element:

Using VAX OPS5 Statements, Actions, and Functions 5-3

7 [WHAT-DATE] (REPLY ADATE 14 NOV 1988)

For information about reading input, see Section 5.8.4.

5.2.2 Deleting Elements from Working Memory

The REMOVE action deletes elements from working memory. Specify this action
with one or more element designators, which indicate the working-memory
elements to be deleted. Consider the following production:

(P COUNTED-CHECKS
{ <REPLY>

(REPLY ADATE { <DAY> <> STOP } <MONTH> <YEAR>)
-(CHECK ADATE <DAY> <MONTH> <YEAR> ACOUNTED NO)

{ <COUNTER>
(COUNT AVALUE <VALUE>)

-->
(REMOVE <REPLY>)
(REMOVE <COUNTER>)
(MAKE START)
(WRITE (CRLF) (CRLF) !There arel <VALUE> !checks datedl

<DAY> <MONTH> <YEAR> (CRLF}))

The first REMOVE action deletes the working-memory element that matches the
condition element bound to the element variable <REPLY>:

(REPLY ADATE { <DAY> <> STOP } <MONTH> <YEAR>)

The second REMOVE action deletes the working-memory element that matches
the condition element bound to the element variable <COUNTER>:

(COUNT AVALUE <VALUE>)

If two or more REMOVE actions contain the same argument value, the extra
REMOVE actions are ignored.

The run-time system executes REMOVE actions after executing all other actions
on the right-hand side, regardless of their position in the code. For example:

(MAKE (SUBSTR <CHECK> DATE INF))
(REMOVE <CHECK>)
(MAKE (SUBSTR <CHECK> DATE INF))

The calls to the SUBSTR function return the same value, even though the
REMOVE action appears between the two calls. See Section 5.3 for information
about using the SUBSTR function.

5.2.3 Changing the Atoms in Working-Memory Elements

To change atoms in a working-memory element, use the MODIFY action with
an element designator, which indicates the element whose atoms you want to
change, the attributes to be changed, and new atoms. The MODIFY action
deletes the working-memory element indicated by the designator and then uses
the attributes and their values to create a new element. The new element retains
the atoms in the deleted element except for the atoms in fields of the specified
attributes, which are replaced by the new atoms that you specified.

5-4 Using VAX OPS5 Statements, Actions, and Functions

NOTE

Since you create a new working-memory element when you modify an
element, the element's time tag changes.

To change the value of the ACOUNTED attribute in the working-memory element
indicated by the element variable <CHECK>, specify the action:

(MODIFY <CHECK> ACOUNTED YES)

Suppose working memory contains the following elements:

1 [NIL] (CHECK A NUMBER 102 A AMOUNT 10.06 A COUNTED NO ADATE 2 NOV 1988)
2 [NIL] (CHECK A NUMBER 103 A AMOUNT 22.45 A COUNTED NO "DATE 14 NOV 1988)
3 [NIL] (CHECK A NUMBER 104 A AMOUNT 56.00 A COUNTED NO ADATE 14
4 [NIL] (CHECK ANUMBER 108 "AMOUNT 13.10 A COUNTED NO "DATE 25
6 [WHAT-DATE] (COUNT AVALUE 0)
7 [WHAT-DATE] (REPLY ADATE 14 NOV 1988)

The following production contains two MODIFY actions:

(P FIND-CHECKS
{ <REPLY>

-->

(REPLY ADATE <DAY> <> STOP } <MONTH> <YEAR>)
<CHECK>
(CHECK ANUMBER <NUMBER> AAMOUNT <AMOUNT>

ACOUNTED NO ADATE <DAY> <MONTH> <YEAR>)
<COUNTER>
(COUNT "VALUE <VALUE>) }

(WRITE (CRLF) (CRLF) !Found check number! <NUMBER>
lfor $1 <AMOUNT>
ldatedl (SUBSTR <REPLY> DATE INF))

(MODIFY <CHECK> ACOUNTED YES)
(MODIFY <COUNTER> "VALUE (COMPUTE 1 +<VALUE>)))

NOV 1988)
NOV 1988)

The first MODIFY action modifies the working-memory element that matches
the second positive condition element, by changing the value of the attribute
ACOUNTED to YES.

The second MODIFY action modifies the working-memory element that matches
the condition element (COUNT AVALUE <VALUE>) by changing the value of the
attribute AVALUE to the result of the function call (COMPUTE 1 + <VALUE>).

When this production is executed, working memory changes as follows:

l[NIL] (CHECK ANUMBER 102 AAMOUNT 10.06 "COUNTED NO "DATE 2 NOV 1988)
2[NIL] (CHECK ANUMBER 103 AAMOUNT 22.45 ACOUNTED NO ADATE 14 NOV 1988)
4[NIL] (CHECK ANUMBER 108 AAMOUNT 13.10 ACOUNTED NO ADATE 25 NOV 1988)
7[WHAT-DATE] (REPLY ADATE 14 NOV 1988)
9[FIND-CHECKS] (CHECK ANUMBER 104 AAMOUNT 56.00 ACOUNTED YES ADATE 14 NOV 1982
lO[FIND-CHECKS] (COUNT AVALUE 1)

The working-memory element whose time tag is 3 is replaced by the working­
memory element whose time tag is 9, and the new value of the attribute
ACOUNTED is YES. The element whose time tag is 6 is replaced by the ele­
ment whose time tag is 10, and the new value of the attribute AVALUE is 1.

5.3 Copying Atoms from a Working-Memory Element

The SUBSTR function copies a sequence of atoms from a working-memory
element to output produced by the WRITE action or to another working-memory
element created by the MAKE action or modified by the MODIFY action.

Using VAX OPS5 Statements, Actions, and Functions 5-5

Specify the SUBSTR function with three arguments: an element designator and
two values that mark the boundaries of the sequence of atoms the function is to
copy. The SUBSTR function copies atoms from the working-memory element to
which the designator refers.

The boundary markers can be attribute names, integers, or variables bound to
attribute names or integers. Integers indicate specific fields in an element. The
value marking the end of the sequence can also be the symbol INF, which causes
the function to copy atoms until it reaches the end of the element.

The WRITE action in the following production contains a call to the SUBSTR
function:

(P FIND-CHECKS
{ <REPLY>

(REPLY ADATE { <DAY> <> STOP } <MONTH> <YEAR>)
<CHECK>
(CHECK ANUMBER <NUMBER> AAMOUNT <AMOUNT>

ACOUNTED NO ADATE <DAY> <MONTH> <YEAR>)
<COUNTER>
(COUNT AVALUE <VALUE>) }

-->
(WRITE (CRLF) (CRLF) !Found check number! <NUMBER>

!for $1 <AMOUNT>
!dated! (SUBSTR <REPLY> DATE INF))

(MODIFY <CHECK> ACOUNTED YES)
(MODIFY <COUNTER> AVALUE (COMPUTE 1 +<VALUE>)))

The SUBSTR function copies the atoms in the value of the attribute A DATE. The
WRITE action then displays those atoms on the terminal.

5.4 Saving and Restoring the State of Working Memory and the
Conflict Set

You can copy the program state, that is, the state of working memory and the
conflict set, to a file by using the SAVESTATE action. The following action copies
the program state to the file CHECKS.DAT:

(SAVESTATE CHECKS.DAT)

Once you have saved the program state in a file, you can use the ADDSTATE
action to add the contents of that file to the current program state:

(ADDSTATE CHECKS.DAT)

If you want to clear the program state and restore it to the state produced by the
SAVESTATE action, use the RESTORESTATE action. Suppose you have used the
SAVESTATE action to copy the program state to the file CHECKS.DAT. You can
use the following action to clear and restore the program state to that recorded in
the file CHECKS.DAT:

(RESTORESTATE CHECKS.DAT)

NOTE

The comment character for VAX OPS5 is a semicolon(;). Therefore, if
the VMS file specification you give includes a semicolon, enclose the
specification in vertical bars (I I).

The state of external user-supplied routines is not saved by the SAVESTATE
action, and thus cannot be added or restored with the ADDSTATE or
RESTORESTATE action.

5-6 Using VAX OPS5 Statements, Actions, and Functions

5.5 Stopping Program Execution

You can use the HALT action to stop the run-time system from executing
recognize-act cycles; program execution stops when the current recognize-act cycle
ends. If informational messages are enabled, the run-time system displays the
following message and invokes the command interpreter:

%0PSRT-I-HALTED, HALT -- right-hand-side action

OPS5>

If informational messages are disabled, the run-time system exits from the
VAX OPS5 program. To disable and reenable informational messages, use the
DISABLE and ENABLE commands described in Chapter 12.

Consider the following production, and suppose informational messages are
enabled:

(P STOP-COUNT
{ <REPLY>

(REPLY ADATE STOP)
-->

(REMOVE <REP LY>)
(HALT))

When a working-memory element matches the condition element bound to the
element variable <REPLY> and the production STOP-COUNT has the highest
priority in the conflict set, the HALT action causes the run-time system to stop
executing recognize-act cycles when the current cycle ends, displays the following
message, and invokes the command interpreter:

%0PSRT-I-HALTED, HALT -- right-hand-side action

OPS5>

5.6 Binding Variables

You can bind variables to values by using the BIND and CBIND actions. The
BIND action binds a variable to an atom. By using the BIND action with the
LITVAL function, you can bind a variable to an attribute's field. The CBIND
action binds an element variable to the element most recently added to working
memory.

5.6.1 Binding a Variable to an Atom

Use the BIND action to bind a variable to an atom. When you specify the BIND
action with a variable and a right-hand-side expression, the run-time system
evaluates the expression and binds the variable to the result of the evaluation.
For example:

(BIND <COUNTER> (COMPUTE <N> + 1))

The run-time system evaluates the expression (COMPUTE <N> + 1) and binds
the variable <COUNTER> to the result.

You can also specify the BIND action without a right-hand-side expression:

(BIND <NEW-ATOM>)

Using VAX OPS5 Statements, Actions, and Functions 5-7

When the action is executed, the run-time system creates a new atom and binds
the specified variable <NEW-ATOM> to the atom. Each time the action is
executed, a unique atom is created and bound to the variable. This is similar to
the action of the GENATOM function described in Chapter 11.

5.6.2 Binding a Variable to an Attribute's Field

You can bind a variable to an attribute's field by using the LITVAL function in
a BIND action. The LITVAL function returns the integer that represents an
attribute's field. Specify the function with a declared attribute name or a variable
bound to a declared attribute name. For example, suppose a LITERALIZE
declaration has caused field 2 to be assigned to the attribute name NUMBER.
The following call to the LITVAL function will return 2:

(LITVAL NUMBER)

You can also specify the LITVAL function with an integer or a variable bound to
an integer. In these cases, the function returns only that integer.

The name of a vector attribute refers only to the first atom in the attribute's
value. Therefore, you can refer directly only to the first atom. To refer to other
atoms in the vector, you must first bind a variable to the integer representing the
field of that first atom. You can then refer to subsequent fields by incrementing
the integer bound to that variable.

For example, suppose the value of the vector attribute "DATE represents the day,
month, and year, and you want to change the month. If you specify the LITVAL
function with the attribute name DATE, the function returns the field storing the
day. To access the atom in the month field, you can specify:

(BIND <DAY-FIELD> (LITVAL DATE))
(BIND <MONTH-FIELD> (COMPUTE <DAY-FIELD>+ 1))
(MODIFY 1 ADATE <DAY> (SUBSTR 2 <MONTH-FIELD> <MONTH-FIELD>))

The first BIND action binds the integer that represents the field containing the
first atom of the attribute's value to the variable <DAY-FIELD>. Since the month
is the second atom in the value, you must add 1 to the integer bound to the
variable <DAY-FIELD>, using the COMPUTE function. The second BIND action
binds the new field to the variable <MONTH-FIELD>. The MODIFY action then
changes the month of the working-memory element matching the first condition
element in the production to the month of the working-memory element matching
the second condition element.

5.6.3 Binding an Element Variable to a Working-Memory Element

The CBIND action binds an element variable to the last element added to
working memory by a MAKE, MODIFY, or CALL action. For more information
about element variables, see Section 3.2.2.

5-8 Using VAX OPSS Statements, Actions, and Functions

Consider the following actions:

(MAKE CHECK ANUMBER 102 AAMOUNT 10.06 ACOUNTED NO
ADATE 2 NOV 1988)

(CBIND <NEW-WME>)

The MAKE action creates a working-memory element, and then the CBIND
action binds the element variable <NEW-WME> to that element. You can then
use the element variable <NEW-WME> as an element designator in a REMOVE
or MODIFY action, or in a call to the SUBSTR function.

5.7 Performing Arithmetic Computations

The values you specify for many action arguments can be numbers. Rather than
explicitly specifying a number, you can specify a call to the COMPUTE function.
It evaluates an arithmetic expression and returns the result. An arithmetic
expression can contain numbers, variables bound to numbers, and arithmetic
operators. If an expression contains both an integer and a :floating-point number,
the result is a :floating-point number.

The operators you can use are:

+ Addition

Subtraction

* Multiplication

II Division

\\ Modulus

NOTE

Use the modulus operator only with an integer or a variable bound to
an integer.

Use infix notation in VAX OPS5 arithmetic expressions, that is, place operators
between operands. Separate each operator and operand with a space. For
example:

2 + <X>

All operators have the same priority, and the COMPUTE function evaluates them
from right to left. For example, the result of the following call to the COMPUTE
function is 12:

(COMPUTE 2 + 2 * 5)

To override the right-to-left evaluation, use parentheses. For example, the
following call to the COMPUTE function produces 20:

(COMPUTE (2 + 2) * 5)

Using VAX OPS5 Statements, Actions, and Functions 5-9

Consider the following production:

(P FIND-CHECKS
{ <REPLY>

(REPLY ADATE { <DAY> <> STOP } <MONTH> <YEAR>)
<CHECK>
(CHECK ANUMBER <NUMBER> AAMOUNT <AMOUNT>

ACOUNTED NO ADATE <DAY> <MONTH> <YEAR>)
<COUNTER>
(COUNT AVALUE <VALUE>) }

-->
(WRITE (CRLF) (CRLF) !Found check number! <NUMBER>

!for $1 <AMOUNT>
!dated! (SUBSTR <REPLY> DATE INF))

(MODIFY <CHECK> ACOUNTED YES)
(MODIFY <COUNTER> AVALUE (COMPUTE 1 +<VALUE>)))

The call to the COMPUTE function calculates a new value for the attribute
AVALUE. The function adds 1 to the integer to which the variable <VALUE> is
bound and returns the result as the value of the attribute AVALUE.

NOTE

VAX OPS5 does not perform complex mathematical tasks. For complex
mathematical tasks, a VAX OPS5 program can call external routines
written in other VAX languages (see Chapter 6) that are optimized for
algorithmic coding.

5.8 Performing Input and Output Operations

VAX OPS5 programs can read input from and write output to a terminal or a file.
You can use VAX OPS5 actions to:

• Open files

• Close files

• Set the default input source and output destination

• Read input

• Write output

5.8.1 Opening Files

To open a file for reading or writing, use the OPENFILE action. Specify the
action with a file identifier, a VMS file specification, and one of the keywords IN,
OUT, or APPEND. If you specify IN, the action opens an existing file for reading
only. If you specify OUT, the action creates a new file and opens it for writing
only. If you specify APPEND, the action opens an existing file for writing and
sets the file pointer to the end of the file.

After opening a file, the action associates the file identifier with that file. For
example, the following action opens the file CHECKS.DAT for reading and
associates the file identifier CHECKS! with the file:

(OPENFILE CHECKSI CHECKS.DAT IN)

5-10 Using VAX OPSS Statements, Actions, and Functions

In the next example, the OPENFILE action opens the file CHECKS.LOG for
writing, and associates the file identifier CHECKSO with the file.

(OPENFILE CHECKSO CHECKS.LOG OUT)

NOTE

The comment character for VAX OPS5 is a semicolon(;). Therefore, if
the VMS file specification you give includes a semicolon, enclose the
specification in vertical bars (I I).

Once a file has been opened and associated with a file identifier, you can use
that file for input or output operations by specifying the file identifier with the
following actions, functions, and commands:

• ACCEPT function (input)

• ACCEPTLINE function (input)

• CLOSEFILE action (input and output)

• CLOSEFILE command (input and output)

• DEFAULT action (input and output)

• DEFAULT command (input and output)

• WRITE action (output)

5.8.2 Setting the Default Input Source and Output Destination

Use the DEFAULT action to set the default source for input operations or the
destination for output operations. The argument values you specify with the
action determine the source or destination.

By default, input comes from the terminal. To set the source to a file, specify the
DEFAULT action with the file identifier of an open input file and the keyword
ACCEPT. Suppose CHECKS! is the file identifier for an open input file. The
following action sets that file to be the default source for input:

(DEFAULT CHECKSI ACCEPT)

Once the default for input has been set to a file, all input required by the
ACCEPT and ACCEPTLINE functions is taken from that file. To set the default
back to the terminal, specify the symbol NIL with the keyword ACCEPT.

(DEFAULT NIL ACCEPT)

The terminal is also the default destination for output. To set the destination to
a file, specify the DEFAULT action with the file identifier of an open output file
and the keyword TRACE or WRITE. The keyword TRACE sets the destination
for trace output (see the VAX OPS5 User's Guide), and the keyword WRITE sets
the destination for the WRITE action. Suppose CHECKSO is the file identifier
for an open output file. The following action sets that output file to be the default
destination for trace output:

(DEFAULT CHECKSO TRACE)

Once the destination for trace output has been set to a file, all trace output
produced by the run-time system is sent to that file. Likewise, if you substitute
the keyword WRITE for TRACE, all output produced by the WRITE action is sent
to that file.

(DEFAULT CHECKSO WRITE)

Using VAX OPS5 Statements, Actions, and Functions 5-11

To set the default destination back to the terminal, specify the symbol NIL with
the appropriate keyword. For example:

(DEFAULT NIL TRACE)

5.8.3 Closing Files

To close files, specify the CLOSEFILE action with the file identifiers of the files
you want to close. The action closes the files associated with the file identifiers
you specify and then dissociates the identifiers from the files. For example,
to close files whose file identifiers are CHECKS! and CHECKSO, specify the
following:

(CLOSEFILE CHECKSI CHECKSO)

Once you have closed a file, you can no longer use its file identifier with other
actions, functions, or commands to perform input and output operations. To use
the files again, you must reopen them.

5.8.4 Reading Input

The input functions ACCEPT and ACCEPTLINE read atoms and lists of atoms
(enclosed in parentheses) from the terminal or a file. The ACCEPT function
reads either an atom or a list. The ACCEPTLINE function reads a line of input
consisting of one or more atoms and lists.

The MAKE action in the following production uses the ACCEPT function to read
input:

(P WHAT-NUMBER
{ <START>

(START) }
-->

(REMOVE <START>)
(WRITE (CRLF) IWhat number are you looking for? I)
(MAKE REPLY ANUMBER (ACCEPT)))

The attribute "'NUMBER is given the value read by the ACCEPT function.

By default, the input functions read input from the terminal. If you want an
input function to read from a file, call the function with the file identifier of an
open input file or change the default for input, using the DEFAULT action (see
Section 5.8.2).

When the ACCEPT function reads past the end of a file, the function returns
END-OF-FILE.

You can specify the ACCEPTLINE function with default values, which can be
atoms or variables bound to atoms. The function returns the default values if it
reads:

• A line of input that consists of only a carriage return

• Past the end of a file

The MAKE action in the following production contains a call to the ACCEPTLINE
function, which includes the default values NO and DATE:

5-12 Using VAX OPS5 Statements, Actions, and Functions

(P WHAT-DATE
{ <START>

(START)
-->

(REMOVE <START>)
(WRITE (CRLF) !What date do you want to search for? I)
(MAKE REPLY ADATE (ACCEPTLINE NO DATE)))

The function call reads the atoms you type at the terminal. The MAKE action
uses the atoms to create a working-memory element that has the class name
REPLY and the attribute A DATE. If the default for input is a file, the atoms are
read from that file and not from the terminal. If you press the Return key, or
if the file from which the function reads does not contain an atom, the function
returns the atoms NO and DATE to the attribute "DATE.

5.8.5 Writing Output

To write output to the terminal or a file, use the WRITE action. If you want to
send output to a file, specify the action with the file identifier of an open output
file or change the default for the WRITE action, using the DEFAULT action (see
Section 5.8.2).

The right-hand-side expression that you specify with a WRITE action is evaluated
by the WRITE action, and the output is written on the current output line with
one space between values.

Suppose the variable <VALUE> is bound to 5, <DAY> is bound to 2, <MONTH>
is bound to NOV, and <YEAR> is bound to 1988. You could use these variables in
a WRITE action as follows:

(WRITE There are <VALUE> checks dated <DAY> <MONTH> <YEAR>)

This action displays the following output on the terminal:

THERE ARE 5 CHECKS DATED 2 NOV 1988

The WRITE action writes output in uppercase characters. To display output in
exactly the way you have entered it, enclose the text in vertical bars (I I). For
example:

(WRITE !There arel <VALUE> !checks datedl <DAY> <MONTH> l<YEAR>I)

This action displays:

There are 5 checks dated 2 NOV <YEAR>

The variable <YEAR> rather than its value is included in the output because
<YEAR> is specified between vertical bars.

You can control the format of the WRITE action's output by using the CRLF,
TABTO, and RJUST functions to:

• Produce output on a new line

• Specify the column in which to start writing output

• Produce right-justified output

Using VAX OPS5 Statements, Actions, and Functions 5-13

5.8.5.1 Producing Output on a New Line

To write output on a new line, use the CRLF function in a WRITE action. The
CRLF function places an end-of-line character string (carriage-return and line­
feed control characters) in the result element.

The following production contains WRITE actions that include calls to the CRLF
function:

(P WHAT-DATE
{ <START>

(START)
-->

(REMOVE <START>)
(WRITE (CRLF) (CRLF) !What date do you want to search for?

(CRLF) (CRLF) !Enter the day, the first three!
I letters of the month, and the year. I

(CRLF)
!For example -- 14 NOV 19881

(CRLF) (CRLF)
!Type STOP to halt the program. I

(CRLF) (CRLF)
I Date>>> t)

(MAKE COUNT AVALUE 0)
(MAKE REPLY ADATE (ACCEPTLINE)))

The WRITE actions in this production produce the following output:

What date do you want to search for?

Enter the day, the first three letters of the month, and the year.
For example -- 14 NOV 1988

Type STOP to halt the program.

Date>>>

5.8.5.2 Specifying the Column in Which to Start Writing Output

Use the TABTO function to specify in which column the WRITE action is to start
writing output. Specify the column number with an integer or a variable bound
to an integer. For example:

(TABTO 15)

If the column you specify is to the left of the last column in which output has
been written, the WRITE action writes the output on a new line, starting at the
specified column.

The following WRITE action displays the headers of three columns:

(WRITE (CRLF) (TABTO 10) NUMBER
(TABTO 25) AMOUNT
(TABTO 40) DATE)

This action produces the following output:

NUMBER AMOUNT DATE

5.8.5.3 Producing Right-Justified Output

The WRITE action writes output right-justified in a field of a specified width if
you use the RJUST function. Specify the width with an integer or a variable
bound to an integer. For example:

(RJUST 45)

5-14 Using VAX OPS5 Statements, Actions, and Functions

When a WRITE action contains the RJUST function, the WRITE action:

1. Allocates a field of the width specified, beginning at the next possible position
on the output line

2. Determines the number of character positions required by the output being
written

3. Inserts spaces that cause the output to be right-justified in the field

If the output being written requires more character positions than you specify for
the field, the WRITE action writes the output as if the RJUST function was not
specified, that is, the WRITE action inserts one space and then writes the output.

A call to the RJUST function must directly precede the value being written. You
can use the RJUST function after calls to the CRLF and TABTO functions. For
example:

(WRITE (CRLF)
(TABTO 5)
(RJUST 10) 1250. 00 I)

The following WRITE action writes a vertical list of numbers right-justified in a
column that is 10 characters wide:

(WRITE (CRLF) (RJUST 10) 110.061
(CRLF) (RJUST 10) 12. 451
(CRLF) (RJUST 10) 156. 00 I
(CRLF) (RJUST 10) 1250. 00 I)

This action produces the following output:

10.06
2.45

56.00
250.00

5.9 Controlling Loops

You can control loops in a VAX OPS5 program by using a catcher. A catcher is a
list of actions that are executed after a specified number of recognize-act cycles
have been executed. Catchers control loops by placing a limit on the number
of recognize-act cycles that can be executed before the catcher. For example,
if program execution is unattended, as in a batch job, the catcher can halt the
program if it does not produce results within a specified limit of recognize-act
cycles.

You define a catcher with a CATCH statement, which includes a symbol and
one or more actions. The symbol names the catcher, and functions as a label.
A catcher's name must be unique; that is, it cannot be the same as the name
of another catcher, a production, an external routine, an action, or a function
that already exists in the program. When the catcher is enabled, the actions are
executed.

The following CATCH statement defines a catcher named FINISH, which consists
of two actions:

(CATCH FINISH
(WRITE (CRLF) !Finished. I)
(HALT))

Using VAX OPS5 Statements, Actions, and Functions 5-15

The AFTER action enables a catcher by telling the run-time system when to
execute the catcher. Specify the AFTER action with a positive integer and the
name of the catcher you want to enable. The integer indicates the number
of recognize-act cycles the run-time system is to execute before executing the
specified catcher. If execution halts before the specified number of recognize-act
cycles are executed, the catcher is not executed.

Only one catcher can be enabled at a time. Therefore, when you enable a catcher,
you disable the catcher currently enabled.

The following action enables the catcher FINISH:

(AFTER 10 FINISH)

The run-time system executes the catcher FINISH after 10 recognize-act cycles
have been executed. If program execution halts before 10 cycles have been
executed, the run-time system does not execute the catcher. After a catcher has
been executed, it is disabled, so this catcher will not be executed repeatedly every
10 cycles.

The following VAX OPS5 program illustrates the use of two catchers: STARTER
and FINISH. An AFTER action in the STARTUP statement indicates that catcher
STARTER is to be executed after one recognize-act cycle has been executed.
The AFTER action in catcher STARTER enables catcher FINISH after 10
recognize-act cycles have been executed.

(STARTUP
(WATCH 0)
(DISABLE HALT)
(STRATEGY MEA)
(MAKE START)
(AFTER 1 STARTER)

(RUN))

;Disables trace output
;Disables halt messages
;Sets conflict-resolution strategy to MEA
;Creates working-memory element (START)
;Enables catcher STARTER after 1
; recognize-act cycle
;Executes recognize-act c¥cles

(CATCH STARTER ;Catcher STARTER
(WRITE (CRLF) I Counting to 10 ... I)
(AFTER 10 FINISH) ;Enables catcher FINISH after the run-time

; system has executed 10 productions
(MAKE NUMBER 1))

(CATCH FINISH. ;Catcher FINISH
(WRITE (CRLF) !Finished.I)
(HALT)) ;Stop program

(P INITIALIZE
{ <START>

(START)
-->

;Initialize working memory

(WRITE (<:;:RLF) I Starting ... I)
(REMOVE <START>))

(P COUNT
{ <NUMBER>

(NUMBER <N>)
-->

(WRITE (CRLF) <N>)

;Output numbers

(MODIFY <NUMBER> A2 (COMPUTE (<N> + 1))))

This program produces the following output:

5-16 Using VAX OPS5 Statements, Actions, and Functions

Starting ...
Counting to 10 ...
1
2
3
4
5
6
7
8
9
10
Finished.

5.10 Using System-Generated Atoms

The GENATOM function generates unique atoms. Each time the run-time
system starts executing a program, the first occurrence of the GENATOM
function generates the atom G: 1. The second atom the function generates is
G:2, the third atom is G:3, and so on. Because the atoms are unique within any
program run, you can use them to create data structures, such as lists, to identify
working-memory elements, and to associate working-memory elements.

Data structures provide programs with a mechanism to store and retrieve data.
The following VAX OPS5 code shows how you can use the GENATOM function to
link working-memory elements to form a list:

(LITERALIZE HEAD
ID)

(LITERALIZE LIST
ID FIRST-ELEMENT NEXT-ELEMENT)

(STARTUP (MAKE LIST AFIRST-ELEMENT THIS)
(MAKE LIST AFIRST-ELEMENT THAT)
(MAKE LIST AFIRST-ELEMENT THESE)
(MAKE LIST AFIRST-ELEMENT THOSE))

(P GET-LIST-HEAD
{ <FIRST>

(LIST) }
-(HEAD)

-->
(BIND <POINTER> (GENATOM))
(MODIFY <FIRST> AID <POINTER>)
(MAKE HEAD AID <POINTER>))

(P MAKE-LIST
{ <UNBOUND>

(LIST AID NIL)
<TAIL>
(LIST AID <> NIL ANEXT-ELEMENT NIL) }

-->
(BIND <NEXT-ELEMENT> (GENATOM))
(MODIFY <UNBOUND> AID <NEXT-ELEMENT>)
(MODIFY <TAIL> ANEXT-ELEMENT <NEXT-ELEMENT>))

The production GET-LIST-HEAD initializes the list head, which is an identifi­
cation that points to the first list element. The production MAKE-LIST builds
the list (THOSE THESE THAT THIS) by linking the working-memory elements
that have the class name LIST. The linkage between elements is established by

(ID) of another.

Using VAX OPS5 Statements, Actions, and Functions 5-17

Because the GENATOM function always returns a new atom, you can use the
function to identify working-memory elements. For example, if a program keeps
a record of transactions for a checking account, you could use the GENATOM
function to assign a unique atom to each transaction. You could then identify a
particular transaction by binding the atom produced by the function to a variable.
The following BIND action binds the variable <TRANSACTION-ID> to the atom
produced by the GENATOM function:

(BIND <TRANSACTION-ID> (GENATOM))

You can use the atoms produced by the GENATOM function to associate one
working-memory element with another working-memory element. For example:

(P ACCOUNT-TRANSACTIONS

-->
(BIND <TRANSACTION-ID> (GENATOM))
(MAKE TRANSACTION ATYPE <TYPE> AID <TRANSACTION-ID>)
(MAKE ACCOUNT AID <NUMBER>

ATRANSACTION-RECORD <TRANSACTION-ID>))

The BIND action binds the variable <TRANSACTION-ID> to the unique atom
the GENATOM function creates. The first MAKE action creates a working­
memory element that represents a transaction. The transaction is assigned
a type and an identification name, which is the atom bound to the variable
<TRANSACTION-ID>. The second MAKE action creates a working-memory
element that assigns the transaction to an account. The two MAKE actions
associate the elements they create by including the transaction's unique
identification name as a value in both elements.

5.11 Adding Productions to an Executing Program

You can add productions to an executing program by using the BUILD action.
Specify this action with a production name, a left-hand side, an arrow (- ->), and
a right-hand side:

(BUILD production-name
left-hand-side

-->
right-hand-side)

If the BUILD action finds an existing production with the name that you
have specified, the original production is disabled and the new one is built.
However, disabled productions remain in memory; therefore, if you build the
same production many times, you decrease system performance.

Do not precede the left-hand side with the letter P and do not enclose the
production in parentheses. The run-time system adds the P and parentheses
when it creates the production.

The following production contains a BUILD action:

(P ADD-STOP-COUNT
(STATUS AREADY-TO-STOP YES)

-->
(BUILD STOP-COUNT

{ <REPLY>
(REPLY ADATE STOP)

-->
(REMOVE <REPLY>)
(HALT)))

5-18 Using VAX OPS5 Statements, Actions, and Functions

This production adds the following production to the executing program:

(P STOP-COUNT
{ <REPLY>

(REPLY ADATE STOP)
-->

(REMOVE <REPLY>)
(HALT))

By default, the BUILD action treats variables, actions, and functions as
constants. If you want the BUILD action to evaluate a variable, action, or
function call while the run-time system adds the production to the program,
precede the variable, action, or function call with the unquote operator (\ \).
Suppose the variable <CITY> in the following example is bound to BOSTON.

(BUILD ADD-ADDRESS
(HOUSE ACITY \\<CITY> AADDRESS <ADDRESS>)

-->
(WRITE INew listing -- I <ADDRESS>))

The new production is:

(P ADD-ADDRESS
(HOUSE ACITY BOSTON AADDRESS <ADDRESS>)

-->
(WRITE INew listing -- I <ADDRESS>))

The unquoted variable <CITY> is evaluated to BOSTON. However, the variable
<ADDRESS> is not evaluated until the production ADD-ADDRESS is executed
during another recognize-act cycle. A description of the unquote operator is
provided in Chapter 7.

The source code for a new production is placed in a file named OPS_$BUILD.OPS.
Each time a BUILD action is executed, the run-time system creates a new
version of the file. You can add the productions stored in the build files (OPS_
$BUILD.OPS;n) to a program's source code by specifying the files when you
compile the program or by editing the program to include the build files.

5.12 Sample VAX OPS5 Program

; This VAX OPS5 program counts the number of checks that were
; written on a particular date.

(VECTOR-ATTRIBUTE DATE)

(LITERALIZE CHECK
NUMBER AMOUNT COUNTED DATE)

(LITERALIZE COUNT
VALUE)

(LITERALIZE REPLY
DATE)

Using VAX OPSS Statements, Actions, and Functions 5-19

(STARTUP
(STRATEGY MEA)
(MAKE CHECK "NUMBER 102 "AMOUNT

"DATE 2 NOV 1988)
(MAKE CHECK "NUMBER 103 "AMOUNT

"DATE 14 NOV 1988)
(MAKE CHECK "NUMBER 104 "AMOUNT

"DATE 14 NOV 1988)
(MAKE CHECK "NUMBER 105 "AMOUNT

"DATE 14 NOV 1988)
(MAKE CHECK "NUMBER 106 "AMOUNT

"DATE 14 NOV 1988)
(MAKE CHECK "NUMBER 107 "AMOUNT

"DATE 14 NOV 1988)
(MAKE CHECK "NUMBER 108 "AMOUNT

"DATE 25 NOV 1988)
(MAKE CHECK "NUMBER 101 "AMOUNT

"DATE 2 NOV 1988)
(MAKE CHECK "NUMBER 109 "AMOUNT

"DATE 30 NOV 1988)
(DISABLE HALT)
(MAKE START)
(RUN))

(P WHAT-DATE
{ <START>

(START)
-->

(REMOVE <START>)

10.06 "COUNTED NO

22.45 "COUNTED NO

56.00 "COUNTED NO

27.25 "COUNTED NO

250.00 "COUNTED NO

16.15 "COUNTED NO

13.10 "COUNTED NO

40.30 "COUNTED NO

45.80 "COUNTED NO

(WRITE (CRLF) (CRLF) !What date do you want to search for? I)
(WRITE (CRLF) (CRLF) !Enter the day, the first three!

I letters of the month, and the year. I
(CRLF)

JFor example -- 14 NOV 19881
(CRLF) (CRLF)

!Type STOP to halt the program. I
(CRLF) (CRLF)

I Date>>> I)
(MAKE COUNT "VALUE 0)
(MAKE REPLY "DATE (ACCEPTLINE)))

(P FIND-CHECKS
{ <REPLY>

-->

(REPLY "DATE <DAY> <> STOP } <MONTH> <YEAR>)
<CHECK>
(CHECK "NUMBER <NUMBER> "AMOUNT <AMOUNT>

"COUNTED NO "DATE <DAY> <MONTH> <YEAR>)
<COUNTER>
(COUNT "VALUE <VALUE>) }

(WRITE (CRLF) (CRLF) !Found check number! <NUMBER>
Jfor $1 <AMOUNT>
Jdatedl (SUBSTR <REPLY> DATE INF))

(MODIFY <CHECK> "COUNTED YES)
(MODIFY <COUNTER> "VALUE (COMPUTE 1 +<VALUE>)))

(P COUNTED-CHECKS
{ <REPLY>

(REPLY "DATE { <DAY> <> STOP } <MONTH> <YEAR>)
-(CHECK "DATE <DAY> <MONTH> <YEAR> "COUNTED NO)

{ <COUNTER>
(COUNT "VALUE <VALUE>)

-->
(REMOVE <REPLY>)
(REMOVE <COUNTER>)
(MAKE START)
(WRITE (CRLF) (CRLF) !There are! <VALUE> !checks dated!

<DAY> <MONTH> <YEAR> (CRLF)))

5-20 Using VAX OPS5 Statements, Actions, and Functions

(P STOP-COUNT
{ <REPLY>

(REPLY ADATE STOP)
-->

(REMOVE <REPLY>)
(HALT))

Using VAX OPS5 Statements, Actions, and Functions 5-21

Chapter 6

Using Routines Written in Other VAX Languages

Programming tasks, such as computing mathematical expressions, manipulating
strings, and editing large quantities of data, are often easier and more efficient to
develop in languages other than VAX OPS5. If you are developing a VAX OPS5
program that needs to perform these types of operations, you should consider
using external routines. An external routine is a function or subroutine written
in a language other than VAX OPS5. VAX OPS5 programs can call external
routines written in any VAX language except APL.

On the other hand, it is often useful to call a subroutine written in VAX OPS5
from a program written in another VAX language. An example might be a
program controlling a real-time environment which accesses a VAX OPS5 expert
system for decision support. The VAX OPS5 system supplies a number of support
routines to help implement such an interface. A subroutine written in VAX OPS5
is a complete VAX OPS5 program which is executed by being called from another
program. It then runs as part of the same process as the calling program.

Most VAX languages can call external routines, such as VMS and RMS system
services, run-time library routines, the Database Management System (VAX
DBMS), and the Common Data Dictionary (VAX CDD). If a VAX OPS5 program
needs to use one of these services, the program must call an external routine
written in another language that, in turn, calls that service.

The VAX Architecture Handbook and the Introduction to VMS System Routines
contain detailed information about calling external routines and passing
arguments. You should be familiar with these subjects before creating a VAX
OPS5 program that calls external routines.

A routine that a program can call is termed a "procedure" in the manuals
mentioned. This chapter, however, uses the expression "external routine" to
maintain consistency with VAX OPS5 terminology.

To create a VAX OPS5 program that calls an external routine, you must perform
the following steps:

1. Create the VAX OPS5 source file.

2. Create the external routine source file.

3. Compile the external routine source file into an object file.

4. Compile the VAX OPS5 source file into an object file.

5. Link the the VAX OPS5 and the external object code modules to the VAX
OPS5 run-time module to produce an executable image.

6. Execute and debug the program.

You follow the same procedure when creating a program in another VAX language
that calls a VAX OPS5 routine.

Using Routines Written in Other VAX Languages 6-1

This chapter explains these steps, describes the result element, provides an
overview of external routines, provides examples showing how VAX OPS5
programs call external routines written in other VAX languages, and shows how
to handle asynchronous system traps.

6.1 Calling a VAX OPS5 Program as a Subroutine

A program written in a language other than VAX OPS5 may call a subroutine
written in VAX OPS5 to perform a task that is easier to describe in VAX OPS5
than in the language used for the main program.

One way to do this is to use the LINKER to make a shared image of the VAX
OPS5 program, and then link the main program and the shared image. The main
program can call the VAX OPS5 program by a parameterless procedure call to the
image entry point in the VAX OPS5 program.

If you use this mechanism, when the main program calls the VAX OPS5
subroutine it has very little control over its execution. In particular, it is not easy
to pass parameters with the call to make the VAX OPS5 subroutine do something
different each time it is called.

The best, and recommended, way to call a VAX OPS5 program as a subroutine is
to:

1. Compile the VAX OPS5 program using the /NOENTRY switch.

2. Call OPS$INITIALIZE, OPS$STARTUP, OPS$RUN, and call OPS$CLEAR
and OPS$CANCEL_RUN as needed, from the main program.

3. Link the main program and the VAX OPS5 object files into a single executable
image.

Using this mechanism, you can call OPS$INITIALIZE to start the VAX OPS5
run-time system, call OPS$STARTUP to execute the STARTUP statement in the
VAX OPS5 subroutine, and call OPS$RUN to control the execution of recognize­
act cycles by the VAX OPS5 run-time system. You can pass parameters with a
call by making working-memory elements at any time after OPS$INITIALIZE
has been called.

You can call the VAX OPS5 subroutine more than once, by calling OPS$STARTUP
and OPS$RUN as necessary. You can clear working memory between subroutine
calls by calling the OPS$CLEAR support routine. The OPS$CANCEL_RUN
support routine can be used, from any external routine called by the VAX OPS5
subroutine, to force the subroutine to stop executing recognize-act cycles.

NOTE

It is not possible to use the recommended mechanism to LINK more
than one VAX OPS5 program directly to a main program written in
another language. This is because a single copy of the VAX OPS5 run­
time system would be shared by the VAX OPS5 subroutines, causing
erroneous results. It is possible to link the program in such a way that
there are multiple copies of the run-time system, but it is recommended
that the VAX OPS5 programs be combined and the method described
above of passing parameters to the VAX OPS5 subroutine be used to
specify the required functionality of the subroutine.

6-2 Using Routines Written in Other VAX Languages

6.2 Result Element

The result element is a buffer the VAX OPS5 run-time system uses to interact
with working memory and to store atoms used and produced by VAX OPS5
actions, functions, and support routines. The run-time system clears and places
new atoms in the result element each time the system interacts with working
memory.

For example, when the run-time system constructs a working-memory element, it
stores the element's atoms in the result element until the element is ready to be
loaded into working memory. The run-time system loads the element by copying
the contents of the result element to a storage area in working memory. Likewise,
when the run-time system modifies a working-memory element, the system copies
the element from working memory to the result element and then modifies the
contents of the result element. See Sections 6.5 and 6.6 for more details on how
external routines can interact with the result element.

6.3 Overview of External Routines

External routines can be either functions or subroutines. Before you develop an
external routine, you should be familiar with the differences between these two
types of routines.

6.3.1 External Functions

A function usually receives arguments from a VAX OPS5 program, performs an
operation (such as computing the square root of a number), and returns a value
to the program.

Arguments that are passed to a function and the value a function returns must
evaluate to atoms. An atom is a 32-bit longword representing a symbol or
number. If a call to an external function includes arguments, the arguments
are passed to the function using the immediate value mechanism by default
or by reference, if required. For more information about argument-passing
mechanisms, see the VAX Architecture Handbook or the Introduction to VMS
System Routines.

The mechanism used to return an atom from an external routine depends on how
the routine is declared in the VAX OPS5 program.

6.3.2 External Subroutines

A subroutine is usually more complex than a function. It performs a sequence of
operations, and does not return a value to the VAX OPS5 program. Subroutines
can perform such operations as creating working-memory elements, performing
input and output operations, or calling a VAX DBMS data base.

Like calls to functions, calls to subroutines can include arguments. If a call to an
external subroutine contains arguments, the VAX OPS5 run-time system creates
an argument list by placing the atoms you specify in successive fields of the result
element starting in field 1. The subroutine must then use a VAX OPS5 support
ruul.iu~ LU r~t..n~v~ L~it:: c:t..t~U.UH:a.tL;:; ;.tv.t.u ~~.tc u:;;ou~~ c:~c.tJ.J.c.t.t~.

Using Routines Written in Other VAX Languages 6-3

6.4 Declaring External Routines

Before a program can use an external routine, it must be declared using the
EXTERNAL declaration statement.

An EXTERNAL declaration can take one of two forms:

• A declaration that simply specifies the routine names

• A full declaration that allows you to specify routine names, argument types,
and argument-passing mechanisms

If a function is declared using the second version, it is expected to return values
using the standard VMS mechanism. The result is returned in register RO.

Functions declared using the first version must use a nonstandard mechanism
to return function results. The second form of the EXTERNAL declaration is
therefore recommended.

The following example declares the external routines READ_NYSE_EXTRACT
and SQUAREROOT using the first version mentioned above:

(EXTERNAL READ_NYSE_EXTRACT SQUAREROOT)

If declared in this way and used on the left-hand side (LHS) of a production,
SQUAREROOT must return a value in RO, but if used on the right-hand side
(RHS), it must return a value by calling the OPS$VALUE routine.

The following example declares the above external routines using the second
version of the EXTERNAL declaration:

(EXTERNAL
(READ_NYSE_EXTRACT)
(SQUAREROOT FLOAT-ATOM (NUMERIC-ATOM BY VALUE)))

In this case, SQUAREROOT must always return a value in RO. It should
return, but may not, an atom representing a floating-point value and take, as an
argument, an atom representing either a floating-point number or an integer.

The type specifications are optional and may be checked at compile time or run
time if supplied. The mechanism specification for the argument is optional. If the
mechanism is not specified, the default is to pass an argument by value.

6.5 Calling External Routines

The methods for calling functions and subroutines are different. To call a
function, you can include the function's name and arguments in a condition
element on the left-hand side of a production or as an argument in an action on
the right-hand side of a production. To call a subroutine, use the CALL action or
command.

6.5.1 Calling Functions

You can call a function from either the left-hand or the right-hand side of a
production. However, functions called from condition elements should not make,
remove, or modify elements in working memory. The format for calling a function
is the same as the format for calling the functions defined in VAX OPS5. A
function call must include the function's name and can optionally include a list of
arguments. The function name you specify must have been previously declared
with the EXTERNAL declaration.

6-4 Using Routines Written in Other VAX Languages

Arguments must evaluate to atoms. If an argument is a variable, it must be
bound to an atom in a condition element on the left-hand side or by a BIND
action on the right-hand side prior to the call. The following call to the function
SQUAREROOT uses the variable <VARIANCE> as an argument:

(SQUAREROOT <VARIANCE>)

To call a function from the left-hand side of a production, place the function call
in a condition element. For example, the following condition element calls the
function SQUAREROOT:

(MEANSD AMEAN <MEAN> ASTDDEVIATION (SQUAREROOT <VARIANCE>))

When the function call executes, the atom bound to the variable <VARIANCE>
is passed to the function SQUAREROOT. The function SQUAREROOT then
calculates the square root of that value and places the result in the result
element. The atom the SQUAREROOT function returns is assigned to the
attribute "STDDEVIATION and is then used by the program to produce matches
with working-memory elements.

To call a function from the right-hand side, specify th.e function call as an
argument in an action. For example, the following BIND action contains a call to
the function SQUAREROOT:

(BIND <STDDEVIATION> (SQUAREROOT <VARIANCE>))

The atom bound to the variable <VARIANCE> is passed by value to the function
SQUAREROOT. The function SQUAREROOT then calculates the square root of
that value and the result is bound to the variable by the BIND action.

6.5.2 Calling Subroutines

You can call a subroutine with the CALL action or command. You must specify
the name of the subroutine and can optionally include a list of arguments. The
subroutine you specify must have been previously declared with the EXTERNAL
declaration.

The arguments in a CALL action must evaluate to atoms. Argument values can
be symbols, numbers, variables, or function calls. If an argument is a variable,
it must be bound to an atom in a condition element on the left-hand side or by
a BIND action on the right-hand side prior to the call. The VAX OPS5 run-time
system places the argument values in successive fields of the result element,
starting with the first field.

The following CALL action calls a subroutine named READ_NYSE_EXTRACT
with the variable <NAME> as an argument:

(CALL READ_NYSE_EXTRACT <NAME>)

The run-time system places the atom bound to the variable <NAME> in the
first field of the result element. The subroutine READ _NYSE_EXTRACT then
retrieves the atom, using a VAX OPS5 support routine. After the subroutine
completes its execution, the run-time system executes the next action on the
production's right-hand side.

You can also call external subroutines with the CALL command at the command
interpreter level. Use the CALL command for debugging by making sure the
subroutine correctly creates working-memory elements.

Using Routines Written in Other VAX Languages 6-5

6.6 Creating the External Routine

Before developing an external routine, you should know the routine's objective,
the language in which you are going to develop the routine, whether the routine is
going to be a function or a subroutine, what arguments and passing mechanisms
you are going to specify with the routine, and the value the routine will return (if
it is a function). This information determines:

• Whether you need to declare the arguments in a function's definition

• What VAX OPS5 support routines the external routine must declare

• What VAX OPS5 support routines the external routine needs to use

The VAX OPS5 run-time system provides support routines that you can include
in an external routine. Each support routine you use must be declared. Once
the support routines are declared, the external routine can call them to perform
operations, such as converting data types, creating working-memory elements, or
displaying warning messages.

The following sections explain how to declare arguments in function definitions
and how to declare and use VAX OPS5 support routines. The VAX BASIC
examples use the convention that variable names represent floating-point
variables unless they end with a percent sign(%) or dollar sign($). A percent
sign indicates an integer variable and a dollar sign indicates a character string.
For example, ATOM% is a 32-bit longword that represents a VAX OPS5 integer
atom.

6.6.1 Declaring Arguments for Functions

An external function must declare the arguments that are passed to it. The
declaration must include the same number of arguments that you specify in the
function call and must define each argument as a longword.

Suppose a VAX OPS5 program contains a BIND action that binds the variable
<STDDEVIATION> to the result of a function call.

(BIND <STDDEVIATION> (SQUAREROOT <VARIANCE>))

The argument (SQUAREROOT <VARIANCE>) is a call to the function
SQUAREROOT. The function call contains one argument-the variable
<VARIANCE>. Therefore, the function SQUAREROOT must declare that
argument. For example:

100 FUNCTION LONG SQUAREROOT (LONG ATOM%)

This line of code defines the function name SQUAREROOT and declares both the
SQUAREROOT function and the argument to be.passed to that function. The
expression (LONG ATOM%) declares the argument as a longword whose name is
ATOM%.

6.6.2 Declaring VAX OPS5 Support Routines

You must declare each support routine as an external routine call. This applies
equally to functions and subroutines. Use the appropriate declaration for the
language you are using. The VAX OPS5 compiler kit contains a number of
%INCLUDE files containing all the necessary definitions for each VAX language
supported by VAX OPS5 calling mechanisms.

6-6 Using Routines Written in Other VAX Languages

For example, if you are interfacing a VAX PASCAL program to VAX OPS5, you
would %INCLUDE the OPSDEF.PAS file in your program as follows:

Declarations

{ Include VAX OPS5 routine declarations
%INCLUDE 'OPS$LIBRARY:OPSDEF.PAS'

Procedure DoSomething }

For a VAX BASIC external routine to access the OPSDEF.BAS declarations, place
the following %INCLUDE statement in the routine:

%INCLUDE "OPSDEF.BAS"

Table 6-1 lists the languages and INCLUDE files supported by the VAX OPS5
compiler kit:

Table 6-1 : Include Files

Language

VAX Ada

VAX BASIC

VAXC

VAX FORTRAN

VAX PASCAL

BLISS-32

File

OPS$LIBRARY:OPSDEF.ADA

OPS$LIBRARY:OPSDEF.BAS

OPS$LIBRARY:OPSDEF.H

OPS$LIBRARY:OPSDEF.FOR

OPS$LIBRARY:OPSDEF.PAS

OPS$LIBRARY:BLI320PS5.REQ

6.6.3 Using VAX OPS5 Support Routines

Arguments for support routines can be optional or required. Enclose all the
arguments in parentheses and separate them with a comma (;) and a space.
Ensure that all arguments are of the correct types and that you are using the
correct mechanisms. If a support routine does not require any arguments, use
empty parentheses, except when you are using the VAX Ada language, as follows:

OPS$WRITE ()

Use the support routines in an external routine to:

• Retrieve arguments from the result element (external subroutines only)

• Convert data types

• Compare atoms for equality

• Place atoms in the result element

• Create working-memory elements

• Stop program execution

• Display warning messages

• Use files opened by the VAX OPS5 program

• Read input from a terminal or file

• Write output to a terminal or file

Using Routines Written in Other VAX Languages 6-7

• Generate atoms

The following sections explain how to use the support routines to perform these
operations. Detailed descriptions of the routines are provided in Chapter 13.

6.6.4 Creating Working-Memory Elements

An external subroutine can create a working-memory element if it:

1. Clears the result element. Use the OPS$RESET routine to delete atoms in
the result element.

2. Performs necessary data conversions. If necessary, use the
OPS$INTERN, OPS$CVNA, or OPS$CVFA routine to convert each value
being placed in the result element to an atom.

3. Places atoms in the result element. Use the OPS$VALUE routine to place
each atom in the result element. If you want to place an atom in a particular
field of the result element, use the OPS$TAB routine.

4. Copies the contents of the result element to working memory. After
all the atoms are placed in the result element, use the OPS$ASSERT routine
to copy the contents of the result element to working memory.

The following VAX BASIC code creates a working-memory element:

CALL OPS$RESET ()
WME_CLASS% = OPS$INTERN

(CLASS$ BY REF, LEN (CLASS$) BY VALUE)
CALL OPS$VALUE BY VALUE (WME_CLASS%)
A'l'OM'ii = 0.1:'.:5$1N'l'ERN (TO'l'AL_.:5HA.Rl:~ . .:.:5$ BY RE.I:!', b'ii BY VALUE)

CALL OPS$VALUE BY VALUE (ATOM%)
ATOM% = OPS$INTERN (HI PRICE$ BY REF, 6% BY VALUE)
CALL OPS$VALUE BY VALUE (ATOM%)
ATOM% = OPS$INTERN (LOW PRICE$ BY REF, 6% BY VALUE)
CALL OPS$VALUE BY VALUE-(ATOM%)
ATOM% = OPS$INTERN (CLOSING_PRICE$ BY REF, 6% BY VALUE)
CALL OPS$VALUE BY VALUE (ATOM%)
CALL OPS$ASSERT ()

The call to the OPS$RESET routine clears the result element. The OPS$INTERN
routine converts the character strings to atoms. After each conversion, the atom
is assigned to the variable ATOM%, and the OPS$VALUE routine places the atom
in the result element. The OPS$ASSERT routine then copies the contents of the
result element to working memory.

If you want to retrieve the integer atom associated with an attribute name,
use the OPS$LITBIND or OPS$LITVAL routine. Specify the OPS$LITBIND
routine with the name of an attribute. If a field has been previously assigned
to that attribute with a LITERAL, LITERALIZE, or VECTOR-ATTRIBUTE
declaration, the support routine returns 'the integer that represents that field.
For example, suppose a LITERALIZE declaration assigned field 2 to the attribute
name NUMBER. The following call to the OPS$LITBIND routine will return the
integer atom 2:

6-8 Using Routines Written in Other VAX Languages

NUMBER$ "NUMBER"
ATOM% = OPS$INTERN (NUMBER$ BY REF, 6% BY VALUE)
NFIELD% OPS$LITBIND (ATOM%)

If you specify the name of an attribute that is not declared in the VAX OPS5
program, the support routine returns the attribute's name.

An external subroutine can place the integer atom representing an attribute's
field in the result element by using the OPS$LITVAL routine. Specify the routine
with the name of an attribute. The routine calls the OPS$LITBIND routine to
retrieve the integer atom associated with the attribute name and then calls the
OPS$VALUE routine to place that atom in the result element. Thus, you do not
have to use the OPS$VALUE routine explicitly to return the atom to the result
element.

6.6.5 Retrieving Arguments from the Result Element

When a call to an external subroutine contains arguments, the run-time system
places the argument values in the result element, starting in field 1. Consider
the following CALL action:

(CALL READ_NYSE_EXTRACT <NAME> <DATE> <STATUS>)

This call to the subroutine READ_NYSE_EXTRACT includes three arguments:
<NAME>, <DATE>, and <STATUS>. Figure 6-1 illustrates how the run-time
system places the values of these arguments in the result element.

Figure 6-1 : Arguments Stored in the Result Element

Atom Bound to Variable <NAME>

Atom Bound to Variable <DATE>

Atom Bound to Variable <STATUS>

argument-3 NIL

ML0-002257

To retrieve argument values from the result element, an external subroutine must
include the OPS$PARAMETERCOUNT and OPS$PARAMETER support routines.
The OPS$PARAMETERCOUNT routine returns to the subroutine an integer that
indicates the number of argument values stored in the result element.

The OPS$PARAMETER routine retrieves an argument value stored in the result
element. Specify this routine with an integer that indicates the field from which
you want an argument value to be retrievea.. You must specny tms support
routine for each argument. That is, if a CALL action contains three arguments,
you must specify the OPS$PARAMETER routine three times. For example:

Using Routines Written in Other VAX Languages 6-9

IF OPS$PARAMETERCOUNT () <> 3% THEN

2000 NAME% OPS$PARAMETER (1% BY VALUE)

DATE% OPS$PARAMETER (2% BY VALUE)

STATUS% OPS$PARAMETER (3% BY VALUE)

The OPS$PARAMETERCOUNT routine checks the number of argument values
that are stored in the result element. If, for example, the support routine returns
a value that is not equal to three, the subroutine displays a warning message.
The OPS$PARAMETER routine retrieves the three argument values and assigns
them to the variables NAME%, DATE%, and STATUS%.

6.6.6 Converting Data Types

In a VAX OPS5 program, data can be represented only by symbolic and numeric
atoms. Therefore, external routines usually need to convert an argument value
or a return value to a different data type. Using support routines, an external
routine can:

• Translate a symbolic atom to a character string or a character string to a
symbolic atom

• Convert an integer atom to an integer or an integer to an integer atom

• Convert a floating-point atom to a floating-point number or a floating-point
number to a floating-point atom

The type of conversion depends on whether the argument's value is a symbolic,
integer, or floating-point atom.

6.6.6.1 Symbolic Atoms

To check whether an argument value is a symbolic atom, use the OPS$SYMBOL
routine. Specify the routine with an atom. If the atom is a symbol, the support
routine returns 1. Otherwise the routine returns 0. For example, suppose you
specify the OPS$SYMBOL routine with the atom STKNAME%:

SYMBOL TEST% = OPS$SYMBOL (STKNAME%)

If the atom is symbolic, 1 is assigned to the variable SYMBOL_ TEST%; otherwise
0 is assigned to the variable.

6-10 Using Routines Written in Other VAX Languages

An external routine can translate a symbolic atom to a character string by using
the support routine OPS$PNAME. The routine translates the atom, copies the
character string to a user-supplied buffer, and returns an integer that represents
the number of characters in the string. Specify the OPS$PNAME routine with
three arguments; the symbolic atom to be translated, the address of the buffer
to which the string is to be copied, and an integer that represents the number of
characters in the string (string's length). You can use the following VAX BASIC
statement to translate the symbolic atom STKNAME% and store the character
string at the address STOCK_NAME$:

CHARS% OPS$PNAME(STKNAME%, STOCK_NAME$ BY REF, 6%)

The integer that represents the number of characters in the string is assigned to
the variable CHARS%.

If the value you specify for the length argument is less than the number of
characters in the string being copied, the support routine copies only the number
of characters indicated by the value of the argument.

NOTE

The OPS$PNAME routine returns the integer representing the number
of characters in the character string, even if the routine does not copy
the entire string.

To convert a character string to a symbolic atom, use the OPS$INTERN support
routine. Specify this support routine with two arguments: the address and the
length of the character string to be translated. The support routine returns
the symbolic atom produced from the translation. For example, if you want to
translate the character string whose address is TOTAL_SHARES$ and whose
length is six characters, specify:

ATOM% OPS$INTERN (TOTAL_SHARES$ BY REF, 6% BY VALUE)

The symbolic atom the support routine returns is assigned to the variable
ATOM%.

6.6.6.2 Integer Atoms

To check whether an argument value is an integer atom, use the OPS$INTEGER
routine. Specify the routine with an atom. If the atom is an integer, the support
routine returns 1. Otherwise the routine returns 0.

An external routine can convert an integer atom to an integer by using the
support routine OPS$CVAN. Specify the routine with the atom that is to be
converted. Suppose you want to test whether the value of the variable ATOM%
is an integer atom, and if the result is true, you want to convert the atom to an
integer.

Using Routines Written in Other VAX Languages 6-11

If OPS$INTEGER (ATOM%)
THEN INTEGER% = OPS$CVAN (ATOM%)

If the value of the variable ATOM% is true, the OPS$CVAN routine converts the
integer atom to an integer and the result of the conversion is assigned to the
variable INTEGER%.

Use the OPS$CVNA support routine to convert an integer to an atom. Specify
the routine with the integer to be converted. Suppose the value of the variable
INTEGER% is an integer. To convert the integer to an atom, specify:

ATOM% OPS$CVNA (INTEGER% BY VALUE)

The result of the conversion is assigned to the variable ATOM%.

6.6.6.3 Floating-Point Atoms

To check whether an argument value is a floating-point atom, use the
OPS$FLOATING routine. Specify the routine with an atom. If the atom is a
floating-point number, the support routine returns L Otherwise the routine
returns 0.

An external routine can convert a floating-point atom to a floating-point number
by using the support routine OPS$CVAF. Specify the routine with the atom that
is to be converted. Suppose you want to test whether the value of the variable
ATOM% is a floating-point atom, and if the result is true, you want to convert the
atom to a floating-point number.

If OPS$FLOATING (ATOM%)
THEN FLOATING POINT OPS$CVAF (ATOM%)

If the value of the variable ATOM% is true, the OPS$CVAF routine converts the
atom to a floating-point number and the result of the conversion is assigned to
the variable FLOATING_POINT.

Use the OPS$CVFA support routine to convert a floating-point number to an
atom. Specify the routine with the number to be converted. Suppose the value
of the variable FLOATING_POINT% is a floating-point number. To convert the
number to an atom, you can specify:

ATOM% OPS$CVFA (FLOATING_POINT% BY VALUE)

The result of the conversion is assigned to the variable ATOM%.

6-12 Using Routines Written in Other VAX Languages

6.6. 7 Comparing Atoms for Equality

An external routine can compare two atoms by using the OPS$EQL support rou­
tine. The result of an atom comparison is true if one of the following statements
is true:

• The atoms are both symbols that consist of the same characters.

• The atoms are the same integer.

• The atoms are the same floating-point number.

If the result is true, the support routine returns 1. If the result is false, the
routine returns 0. In the following example, the OPS$EQL routine returns 1.

TEST% OPS$EQL (OPS$CVNA (2), OPS$CVNA (2))

6.6.8 Placing Atoms in the Result Element

External subroutines can use the OPS$VALUE support routine to place atoms
in the result element. Functions use this support routine to return an atom to
a VAX OPS5 program. Subroutines use the routine to create working-memory
elements.

The following code shows how a function uses the OPS$VALUE routine to return
the result of a calculation to the main program:

ATOM% = OPS$CVNA (INTEGER% BY VALUE)
CALL OPS$VALUE BY VALUE (ATOM%)

The OPS$CVNA routine converts the result to an atom. The OPS$VALUE
routine then ph1ces the atom in the result element.

Use the OPS$VALUE routine in subroutines to create working-memory elements.

The OPS$RESET routine deletes the atoms in the result element. Therefore,
when a call to the OPS$VALUE routine follows a call to the OPS$RESET routine,
OPS$VALUE places an atom in the result element's first field. For example:

CALL OPS$RESET ()
CALL OPS$VALUE BY VALUE (WME_CLASS%)

Using Routines Written in Other VAX Languages 6-13

You can specify the field of the result element in which the next atom entry is
to be placed by using the OPS$TAB routine. You can indicate the field with
an integer or the name of an attribute that was declared in the VAX OPS5
program in a LITERAL, LITERALIZE, or VECTOR-ATTRIBUTE declaration.
For example, if you want an atom to be placed in the third field of the result
element, you can call the OPS$TAB and OPS$VALUE routines as follows:

CALL OPS$TAB BY VALUE (OPS$CVNA (3% BY VALUE))
CALL OPS$VALUE BY VALUE (ATOM%)

6.6.9 Stopping Program Execution

The OPS$HALT support routine causes the run-time system to stop executing
a program after completing the current recognize-act cycle. If halt messages
are enabled, the run-time system passes control to the VAX OPS5 command
interpreter; otherwise, the system passes control to the operating system, or
the program calling the VAX OPS5 routine. You can enable and disable halt
messages, using the VAX OPS5 commands ENABLE and DISABLE (see the VAX
OPS5 User's Guide).

6.6.10 Displaying Warning Messages

If you want an external routine to display warning messages on the terminal at a
particular point during a routine's execution, specify the OPS$WARNING routine
with:

• The address of the first byte of the character string in which the warning
message is stored

• The length of the character string that stores the warning message

• One or more atoms the routine is to display in front of the warning message.
These atoms are optional.

Consider the following VAX BASIC example:

IF OPS$PARAMETERCOUNT () <> 1%
THEN Z$ = ("Enter only the name of a stock") &

\ CALL OPS$WARNING (Z$ BY REF, LEN (Z$) BY VALUE) &
\ EXIT SUB

The OPS$PARAMETERCOUNT routine returns the number of argument values
that are in the result element. If the argument count is 1, the external routine
continues to execute. If the argument count is an integer greater than 1, the
external routine calls the OPS$WARNING routine to display the following
warning message and exits:

Enter only the name of a stock

6-14 Using Routines Written in Other VAX Languages

6.6.11 Using Files Opened by the VAX OPS5 Program

If an external routine needs to read from or write to a file opened by the VAX
OPS5 program, the external routine must include the OPS$IFILE or OPS$0FILE
routine. The OPS$IFILE routine returns the address of an input file's record
access block (RAB). The OPS$0FILE routine returns the address of an output
file's RAB. For more information about RABs, see the VMS Record Management
Services Manual. ·

Specify the OPS$IFILE and OPS$0FILE routines with the atom representing
the file identifier of a file opened in the VAX OPS5 program. Specify the name
of an open input file if you use the OPS$IFILE routine, or the name of an open
output file if you use the OPS$0FILE routine. For example, suppose a VAX
OPS5 program opened a file for input and assigned that file the file identifier
STOCK_DATA. If the same program calls an external routine, the routine can use
the open input file if the routine includes the OPS$IFILE routine. A call to the
routine might look like the following:

FILEID$ = "STOCK DATA"
FILEID ATOM% = OPS$INTERN

-(FILEID$ BY REF, LEN(FILEID$) BY VALUE)
RAB% = OPS$IFILE (FILEID_ATOM%)

The RAB of the file associated with STOCK_DATA is assigned to the variable
RAB%.

If you specify the OPS$IFILE or OPS$0FILE routine with a file identification
name that is not associated with an open input or open output file, the routine
returns 0.

6.6.12 Reading Input

An external routine can read input from the terminal or a file and place the input
in the result element by using the OPS$ACCEPT or OPS$ACCEPTLINE support
routine. By default, these support routines read input from the terminal. If you
want an external routine to read input from a file, specify the support routine
with a file identifier or set a file as the default source with the DEFAULT action,
prior to calling the external routine.

Assume the file identifier STOCK_DATA is associated with the open input file
STOCK.DAT for the following example:

FILEID$ = "STOCK DATA"
FILEID ATOM% = OPS$INTERN

-(FILEID$ BY REF, LEN(FILEID$) BY VALUE)
CALL OPS$ACCEPT BY VALUE (FILEID_ATOM%)

The OPS$ACCEPT routine reads input from the file STOCK.DAT and places the
input in the result element.

Using Routines Written in Other VAX Languages 6-15

The OPS$ACCEPT routine reads an atom or a list of atoms. OPS$ACCEPT
also removes the outermost parentheses from a list and matches, or balances,
parentheses when reading the list.

The OPS$ACCEPTLINE routine reads a line of input that consists of atoms and
lists. OPS$ACCEPTLINE simply removes all unquoted parentheses without
matching.

To determine whether the input is an atom or a list, the support routines
check the first printing character in the input. The routine assumes that
any first character other than a parenthesis indicates an atom and places the
atom in the result element. In addition to a file identifier, you can specify the
OPS$ACCEPTLINE routine with default values, which can be atoms or variables
bound to atoms. The routine places the default values in the result element when
the routine reads:

• A line of input from the terminal that consists of only a carriage return

• A file that consists of a line of only spaces and tabs

• Past the end of a file

Suppose a VAX BASIC external routine contains the following code:

STOCK INPUT$ = "STOCK INPUT"
STOCK-INPUT% = OPS$INTERN

- (STOCK_INPUT$ BY REF, 11% BY VALUE)
DATE$ = "12-0CT-1988"
DATE% = OPS$INTERN (DATE$ BY REF, 11% BY VALUE)
NAME$ = "DISNEY"
NAME% = OPS$INTERN (NAME$ BY REF, 6% BY VALUE)

CALL OPS$ACCEPTLINE BY VALUE (STOCK_INPUT%, DATE%,
NAME%)

If the value of the variable STOCK_INPUT% is a symbolic atom representing a
file identifier, the OPS$ACCEPTLINE routine reads input from the input file.
Otherwise, the routine reads the input that is entered at the terminal. If you
supply the routine with user input, the routine places that input in the result
element and disregards the atoms STOCK_INPUT, 12-0CT-1988, and DISNEY
If you just press the Return key, the routine places the atoms STOCK_INPUT,
12-0CT-1988, and DISNEY in the result element.

If the OPS$ACCEPT reads past the end of a file, or if the OPS$ACCEPTLINE
routine reads past the end of a file and default values are not supplied, the
routines place the symbol END-OF-FILE in the result element.

Using the OPS$ACCEPT and OPS$ACCEPTLINE routines is similar to using the
VAX OPS5 ACCEPT and ACCEPTLINE functions described in Chapter 11.

6-16 Using Routines Written in Other VAX Languages

6.6.13 Writing Output

An external routine can display the atoms in the result element on the terminal
or write the atoms to a file by using the OPS$WRITE routine. This support
routine is useful for debugging because it lets you preview the contents of the
result element when the external routine executes.

The atom stored in the first field of the result element determines whether the
atoms are displayed on the terminal or are written to a file. If the first field
contains the file identifier of a file opened for output by the VAX OPS5 program,
the routine writes the remaining atoms to the associated file. Otherwise, the
atoms in the result element are written to the default output file.

Suppose the symbol STOCK_DATA is a file identifier of an open output file and
the result element contains the following values:

(STOCK_DATA STOCK_EXTRACT 100 125.25 67 105.125)

When the following code executes, the OPS$WRITE routine writes the atoms
STOCK_EXTRACT, 100, 125.25, 67, and 105.125 to the file associated with the
file identifier STOCK_DATA:

CALL OPS$WRITE ()

If the atom in the first field is not a file identifier, the routine writes the atoms
in the result element to the default destination, which is the terminal unless you
change the destination with the VAX OPS5 DEFAULT-action or command.

If you want the OPS$WRITE routine to write output on more than one line,
precede the call to the OPS$WRITE routine with calls to the OPS$CRLF routine.
The OPS$CRLF routine places an end-of-line character string, which consists of
a carriage-return character and a line-feed character, in the current field of the
result element.

Using the OPS$WRITE and OPS$CRLF routines is similar to using the WRITE
action and the CRLF function described in Chapter 11.

6.6.14 Generating Atoms

An external routine can generate and return new atoms by using the OPS$ATOM
routine. Each atom the run-time system generates is unique. Each time the run­
time system starts executing a program, the first occurrence of the OPS$ATOM
support routine generates the atom G:l. The second atom the routine generates
is G:2, the third atom is G:3, and so on.

An external routine can place the new atom in the result element, using the
OPS$VALUE routine. For example:

NEW ATOM% = OPS$ATOM ()
CALL OPS$VALUE BY VALUE (NEW_ATOM%)

Using Routines Written in Other VAX Languages 6-17

The OPS$GENATOM routine calls the OPS$ATOM routine to create the new
atom and then calls the OPS$VALUE routine to place the atom in the result
element. Thus, you do not have to use the OPS$VALUE routine explicitly to
return the value to the result element.

6.7 Examples of Calling External Routines

The following sections provide examples of VAX OPS5 programs that call external
routines. Section 6. 7 .1 shows a program that calls an external function, and
Section 6.7.2 shows a program that calls an external subroutine. Section 6.7.3
provides a program that calls an external routine that calls a VAX DBMS data
base.

6. 7 .1 A VAX OPS5 Program That Calls an External Function

This section contains a VAX OPS5 program that computes and displays informa­
tion about the mean and standard deviation of two numbers. The program calls
an external function that calculates and returns the square root of a number.
Examples of the function's source code and the include file are provided in VAX
BASIC, VAX FORTRAN, and VAX PASCAL. For examples of INCLUDE files to
use with other languages, look at the INCLUDE files supplied with your VAX
OPS5 compiler.

6.7.1.1 VAX OPS5 Program-STATISTICS.OPS
; STATISTICS.OPS

; Declare the call-out function
(EXTERNAL (SQUARE_ROOT FLOAT-ATOM (~UMERIC-ATOM BY REFERENCE)))
; SQUARE_ROOT calculates the square root of a number and returns a
; floating-point number

(LITERALIZE ELEMENT
NUMBER
COUNT
SUM
SUM_SQ)

(LITERALIZE MEANSD
MEAN
STD_DEVIATION)

(STARTUP
(MAKE START)
(WATCH 2)
(RUN))

(P INIT
{<GO> (START)}

-->

Data entered at terminal
Numbers entered
Sum of the numbers entered
Sum of the squares of the numbers

Average of the numbers
"Spread" of the numbers

(WRITE (CRLF) !This program calculates statistics for a I
I sequence of numbers. I

(CRLF) !Enter a number: I)
(MAKE ELEMENT ANUMBER (ACCEPT) ACOUNT 0 ASUM 0.0 ASUM_SQ 0.0)
(REMOVE <GO>))

6-18 Using Routines Written in Other VAX Languages

(P GET-NUMBERS
{ <ELEM> (ELEMENT ANUMBER { <NUMBER> <> STOP } ASUM <SUM>

ACOUNT <COUNT> ASUM_SQ <SUM_SQ>) }
-->

(WRITE (CRLF) !Enter another number or STOP to exit: I)
(MODIFY <ELEM> ANUMBER (ACCEPT) ACOUNT (COMPUTE <COUNT> + 1)

ASUM (COMPUTE <SUM> + <NUMBER>)
ASUM_SQ (COMPUTE <SUM_SQ> +<NUMBER>* <NUMBER>)))

(P CALCULATE-STATISTICS
(ELEMENT ANUMBER STOP ASUM <SUM> ACOUNT <COUNT> ASUM_SQ <SUM_SQ>)

-->
(WRITE (CRLF) I Sum of I <COUNT> I numbers is I <SUM>

(CRLF) I Sum of the squares of the numbers is I <SUM SQ>)
(WRITE (CRLF) !Computing mean and standard deviation ... I)
(BIND <MEAN> (COMPUTE <SUM>// <COUNT>})
(BIND <VARIANCE> (COMPUTE (<SUM SQ> - (<COUNT> *

<MEAN>* <MEAN>)) // (<COUNT> - 1)))

Pass the <VARIANCE> as an argument to the external function
The return value in the result element will be bound to
<STD DEVIATION>

(BIND <STD_DEVIATION> (SQUARE_ROOT <VARIANCE>))
(WRITE (CRLF) !Mean is I <MEAN>)
(WRITE I, Standard deviation isl <STD_DEVIATION>)
(HALT))

6.7.1.2 VAX BASIC External Function-FNSQRT.BAS
!FNSQRT.BAS

FUNCTION LONG SQUARE ROOT (LONG ATOM)
! Definitions of VAX-OPSS support routines
%INCLUDE "OPS$LIBRARY:OPSDEF.BAS"
DECLARE SINGLE R

! Convert a VAX OPS5 atom to a floating-point number
IF OPS$FLOATING (ATOM BY VALUE) THEN

R = OPS$CVAF (ATOM BY VALUE)
ELSE

Convert a VAX OPS5 atom to an integer
IF OPS$INTEGER (ATOM BY VALUE) THEN

R = OPS$CVAN (ATOM BY VALUE)
END IF

END IF

! Convert a floating-point number to a VAX OPS5 atom
SQUARE_ROOT = OPS$CVFA (SQR(R) BY VALUE)

END FUNCTION

6.7.1.3 VAX FORTRAN External Function-FNSQRT.FOR
C FNSQRT.FOR

INTEGER FUNCTION SQUARE_ROOT (ATOM)

C Definitions of VAX OPSS support routines
INCLUDE 'OPS$LIBRARY:OPSDEF.FOR'

INTEGER ATOM
REAL*4 R

C Convert a VAX OPS5 atom to an integer or a floating-point number
C Built-in function, %VAL, forces immediate-value mechanism

IF (OPS$INTEGER(%VAL (ATOM))) THEN

C Convert a VAX OPS5 atom to an integer
R = OPS$CVAN (%VAL (ATOM))

ELSE IF (OPS$FLOATING (%VAL (ATOM))} THEN

Using Routines Written in Other VAX Languages 6-19

C Convert a VAX OPS5 atom to a floating-point number
R = OPS$CVAF (%VAL (ATOM))

END IF

SQUARE_ROOT = OPS$CVFA (%VAL (SQRT(R)))

END

6.7.1.4 VAX PASCAL External Function-FNSQRT.PAS
(*FNSQR.PAS*)

module sqr; (* Call out from VAX OPS5 V3.0 to VAX-11 PASCAL V3.0 *)

(* Definitions of VAX OPS5 support routines *)

%include 'ops$library:opsdef .pas'

[global] function square_root (atom: integer) :integer;

var
r : real;

begin

(* Convert a VAX OPS5 atom to a floating-point number or an integer. *)

if ops$f loating (atom) then
r ops$cvaf (atom)

else if ops$integer(atom) then
r := ops$cvan(atom);

(* Convert a floating-point number to a VAX OPS5 atom *)

square_root ·= OPS$CVFA (sqrt (r));

end;

end.

Use the following statement to link any of the functions on the previous pages to
the program STATISTICS.OPS:

LINK STATISTICS,FNSQR,OPSINTERP/OPTIONS

6.7.2 A VAX OPSS Program That Calls an External Subroutine

This section contains a VAX OPS5 program that analyzes the daily stock extract
and gives you advice. The program calls an external subroutine that adds
elements to working memory. The subroutine is written in VAX BASIC.

6.7.2.1 OPS5 Program-STOCK.OPS
; STOCK.OPS

(EXTERNAL (READ_NYSE EXTRACT))

(LITERALIZE EXTRACTED_LISTING
STOCK
CLOSING
HI LIMIT
LO_LIMIT)

(LITERALIZE REQUEST
STOCK NAME
BUY_PRICE)

(STARTUP
(MAKE START))

6-20 Using Routines Written in Other VAX Languages

; Declare the call-out procedure

Name from data file
Closing price from data file
Computed price limit
Computed price limit

Name requested
Original value of stock

(P INIT
{ <START> (START) }

-->
(WRITE (CRLF) !This program analyzes the daily stock extract

(CRLF) land gives you advice. Please enter the stock
(CRLF) I name: I)

(BIND <NAME> (ACCEPT))
(MAKE REQUEST ASTOCK_NAME <NAME>)
(CALL READ_NYSE_EXTRACT <NAME>)
(REMOVE <START>))

(P LOOK_AT_EXTRACTED_DATA
{ <REQUEST> (REQUEST ASTOCK_NAME <STOCK_NAME>) }
{ <EXTRACTED_LISTING> (EXTRACT~D_LISTING

-->

ASTOCK <STOCK NAME>
ACLOSING <PRICE>) }

(WRITE (CRLF) !Found a listing for the stock.
!What was your buy price? I)

(BIND <BUY> (ACCEPT))
(MODIFY <REQUEST> ABUY_PRICE <BUY>)
(MODIFY <EXTRACTED_LISTING>

ALO_LIMIT (COMPUTE <BUY> - (<BUY>// 10))
AHI_LIMIT (COMPUTE <BUY>+ (<BUY>// 10))))

(P SELL FALLING
<REQUEST> (REQUEST ASTOCK_NAME <STOCK_NAME>

ABUY_PRICE { <BUY> <>NIL })
<EXTRACTED_LISTING> (EXTRACTED_LISTING

-->

ASTOCK <STOCK NAME>
ALO LIMIT <LO LIMIT> - -
ACLOSING < <LO_LIMIT>)

(WRITE (CRLF) !The price has dropped more than 10% since you I
!bought the stock. I

(CRLF) I Suggest that you sell. I
(CRLF) (CRLF))

(REMOVE <REQUEST>)
(REMOVE <EXTRACTED_LISTING>)
(MAKE START))

(P SELL PROFIT
{ <REQUEST> (REQUEST ASTOCK NAME <STOCK NAME>

ABUY_PRICE { <BUY> <>NIL })
<EXTRACTED_LISTING> (EXTRACTED_LISTING

-->

ASTOCK <STOCK NAME>
AHI LIMIT <HI LIMIT>
ACLOSING > <HI_LIMIT>)

(WRITE (CRLF) !The price has gone up. I
(CRLF) IYou may want to sell and make a profit. I
(CRLF) (CRLF))

(REMOVE <REQUEST>)
(REMOVE <EXTRACTED_LISTING>)
(MAKE START))

(P NOT ACTIVE
{ <REQUEST> (REQUEST ASTOCK NAME <STOCK NAME>

ABUY_PRICE { <BUY> <>NIL })
<EXTRACTED_LISTING> (EXTRACTED_LISTING

ASTOCK <STOCK_NAME>)
-->

(WRITE (CRLF) I The stock has not had much change in price. I
(CRLF) !This program can be enhanced to consider other

I factors besides price. I
(CRLF) (CRLF))

(REMOVE <REQUEST>)
(REMOVE <EXTRACTED_LISTING>)
(MAKE START))

Using Routines Written in Other VAX Languages 6-21

(P RE_START
(REQUEST)

-->
(MAKE START))

6.7.2.2 VAX BASIC External Subroutine-STOCKSUB.BAS
! STOCKSUB.BAS

100 SUB READ NYSE EXTRACT

200

- -
! Definitions of VAX OPS5 support routines
%INCLUDE "OPSDEF.BAS"

MAP (NYSE_COMPOSITE)
LONG FIFTY_TWO_WEEKS HIGH,
LONG FIFTY_TWO_WEEKS_LOW,
STRING STOCK = 6,
LONG DIV,
LONG YLD_PERCENT,
LONG PE_RATIO,
LONG SALES_lOOS,
LONG HIGH,
LONG LOW,
LONG CLOSING,
LONG NET CHG

ON ERROR GOTO 19000

OPEN 'NYSE.DAT' FOR INPUT AS FILE #1%,
ORGANIZATION INDEXED,
MAP NYSE_COMPOSITE,
PRIMARY KEY STOCK NODUPLICATES

DECLARE LONG STKNAME, WME_CLASS, ATOM

&

&

&

&

&

&

&

&

&

&

&

&

&

&

DECLARE STRING STOCK_NAME, CLASS, TOTAL_SHARES, &
HI_PRICE, LO_PRICE

300 !***

! Get argument to find stock record

!***

! The stock name should be the only argument in result element
IF (OPS$PARAMETERCOUNT ()) <> 1%

THEN Z$ = ("Enter the name of a stock") &
\ CALL OPS$WARNING (Z$ BY REF, LEN (Z$) BY VALUE) &
\ EXIT SUB

320 Get the VAX OPS5 atom
Get the character string that represents the stock name

STKNAME = OPS$PARAMETER (1% BY VALUE)
STOCK NAME= SPACE$(6%)
CALL OPS$PNAME(STKNAME BY VALUE, STOCK_NAME BY REF, &

6% BY VALUE)

STOCK_NAME = EDIT$ (STOCK_NAME, 34%)
GET #1%, KEY #0 EQ STOCK_NAME

400 !***

! Make a new working-memory, element
!
!***

! Start by clearing the result element

CALL OPS$RESET ()

Then create an atom for the class name and place it in the
! first field of the result element

6-22 Using Routines Written in Other VAX Languages

CLASS = "EXTRACTED LISTING"
WME_CLASS = OPS$INTERN (CLASS BY REF, LEN (CLASS) BY VALUE)
CALL OPS$VALUE BY VALUE (WME_CLASS)

! Find the field of the STOCK attribute and place the name
! atom in the next field

Z$ = "STOCK"
CALL OPS$TAB(OPS$INTERN(Z$ BY REF, LEN(Z$) &

BY VALUE) BY VALUE)
CALL OPS$VALUE BY VALUE (STKNAME BY VALUE, LEN &

(STOCK_NAME) BY VALUE)

Convert the closing price to an integer atom, set the field
position to the field of the ACLOSING attribute, and place
the integer atom in that field

ATOM = OPS$CVNA (CLOSING BY VALUE)
Z$ = "CLOSING"
CALL OPS$TAB(OPS$INTERN(Z$ BY REF, LEN(Z$) BY VALUE) BY VALUE)
CALL OPS$LITVAL BY VALUE (ATOM)

! Copy the contents of the result element to working memory,
! creating a new working-memory element

CALL OPS$ASSERT ()

9000 ! Clean up

CLOSE #1%
EXIT SUB

19000 Z$ = ("That stock is not in the data base.")
CALL OPS$WARNING (Z$ BY REF, LEN (Z$) BY VALUE)
RESUME 9000

END SUB

6.7.3 A VAX OPS5 Program That Uses a VAX DBMS Data Base

This section contains a VAX OPS5 program that calls a VAX BASIC subroutine
that calls VAX DBMS. The BLISS-32 fil~ that generates descriptors for calls
between the VAX OPS5 program and the VAX BASIC subroutine, the VAX
Common Data Dictionary data description language (DDL) file that defines the
data base structure to VAX DBMS, and the include file that supplies the data
base description generated by VAX DBMS are also provided.

6.7.3.1 VAX OPS5 Program-DBMS.OPS
; DBMS.OPS

(LITERAL
ID = 2
CUSTOMER-NAME 3
LINE-NUMBER = 3
LINE-QUANTITY 4
LINE-NAME = 5
STATUS = 6)

(EXTERNAL
(READ_DBMS)
(WRITE_DBMS)
(CALL_DBQ))

(STARTUP
(CALL CALL_DBQ BIND OPSTEST)
(CALL CALL_DBQ READY EXCLUSIVE UPDATE))

Using Routines Written in Other VAX Languages 6-23

(P WRITE-TO-DBMS
{ <STATUS> (ASTATUS WRITE-TO-DATABASE) }

-->
(CALL WRITE_DBMS (SUBSTR <STATUS> 1 INF))
(MODIFY <STATUS> ASTATUS IN-DATABASE))

(P READ-FROM-DBMS
{ <READ> (READ AID <ID> ASTATUS <STATUS>)

-->
(CALL READ_DBMS <ID> <STATUS>)
(REMOVE <READ>))

6.7.3.2 VAX BASIC External Function-DBMS.BAS
! DBMS.BAS

1 %SBTTL 'READ DBMS'

FUNCTION LONG READ DBMS

This function reads an order structure from the
currently bound and ready data base. The function
uses the value of the first argument as the order
id, and places the value of the second argument in
the field of the attribute ASTATUS.

%INCLUDE "DBMS.INC"
%INCLUDE "OPS.INC"

EXTERNAL LONG FUNCTION DBQ_TILEND

ID ATOM% = OPS$PARAMETER(1%)

STATUS ATOM% OPS$PARAMETER(2%)

IF OPS$SYMBOL(ID_ATOM%)
THEN
ID$= SPACE$(50%)

X% = OPS$BAS PNAME(ID_ATOM%,ID$)

ELSE
ID$ NUM1$(0PS$CVAN(ID_ATOM%))

END IF
IF OPS$SYMBOL(STATUS_ATOM%)

THEN
STATUS$= SPACE$(50%)

X% = OPS$BAS PNAME(STATUS_ATOM%,STATUS$
ELSE

STATUS$= NUM1$(0PS$CVAN(STATUS_ATOM%))
END IF

The first
argument
(ORDER ID)

The second
argument
(STATUS)

If the atom is a
symbol, you must
define a local
dynamic variable

Put the symbol
string into ID$

It is a number
Convert it to a
string

If the atom is a
symbol, you must
define a local
dynamic variable

Put the symbol
string into
STATUS

It is a number
Convert it to a
string

LSET ORDER ID = ID$ Move ID string to
DBMS work area

STATUS%= DBQ_TILEND("FETCH FIRST ORDER REC USING ORDER_ID")

IF STATUS%
THEN
X% = OPS$RESET ()

6-24 Using Routines Written in Other VAX Languages

Try to read record
If record exists,

Clear the result
element

The following code builds a working-memory element like:

(ORDER AID <ID> ASTATUS <STATUS> ACUSTOMER-NAME <NAME>)

Each value call inserts the defined value into the
working-memory element and increments the field. Each
call to OPS$TAB sets the field for the next value call.
OPS$BAS_INTERN returns (and adds if not present) the
OPS5 symbol value for the defined string. OPS$LITBIND
returns the field or binding of the attribute defined.

X% OPS$VALUE (OPS$BAS_INTERN ("ORDER"))
X% OPS$TAB (OPS$LITBIND (OPS$BAS_INTERN ("ID")))
X% OPS$VALUE(ID ATOM%)
X% OPS$TAB(OPS$LITBIND(OPS$BAS INTERN("STATUS")))
X% OPS$VALUE(STATUS_ATOM%)
X% OPS$TAB(OPS$LITBIND(OPS$BAS_INTERN("CUSTOMER-NAME")))
X% OPS$VALUE(OPS$BAS_INTERN(EDIT$(

X% OPS$ASSERT ()
ORDER_CUSTOMER_NAME,164%)))

Pass the new
working-memory
element through
the match phase

The following loop makes a working-memory element for each
line-item record encountered. Note each element starts
with an OPS$RESET and ends with an OPS$ASSERT.

WHILE DBQ_TILEND("FETCH NEXT LINE ITEM REC WITHIN" + &

NEXT
END IF

"ORDER_LINE_ITEM_SET")
X% OPS$RESET ()
X% OPS$VALUE (OPS$BAS INTERN ("LINE-ITEM"))
X% OPS$TAB (OPS$LITBIND (OPS$BAS INTERN (II ID")))
X% OPS$VALUE(ID ATOM%) -
X% OPS$TAB (OPS$LITBIND (OPS$BAS INTERN ("STATUS")))
X% OPS$VALUE(STATUS ATOM%)
X% OPS$TAB(OPS$LITBIND(OPS$BAS INTERN("LINE-NAME")))
X% OPS$VALUE(OPS$BAS_INTERN(EDIT$(

LINE ITEM NAME,164%)))
X% OPS$TAB(OPS$LITBIND(OPS$BAS_INTERN(­

"LINE-NUMBER")))
X% OPS$VALUE(OPS$CVNA(LINE ITEM NUMBER))
X% OPS$TAB(OPS$LITBIND(OPS$BAS_INTERN(

"LINE-QUANTITY")))
X% OPS$VALUE(OPS$CVNA(LINE ITEM QUANTITY))
X% OPS$ASSERT() - -

END FUNCTION

1000 %SBTTL 'WRITE DBMS'

FUNCTION LONG WRITE DBMS
This routine writes one data base record each time
the routine is called. The routine is called with
a complete working-memory element. The routine
looks at the element's class name to decide what
record to write. Each field in each record is
mapped to an attribute from the working-memory
element and each field value is extracted from the
appropriate field in the element. This routine
expects the data base to be bound and ready and the
calls to be made in the correct sequence (that is,
order before its line items).

%INCLUDE "DBMS.INC"
%INCLUDE "OPS.INC"

EXTERNAL LONG FUNCTION DBQ_TILEND

Using Routines Written in Other VAX Languages 6-25

WME_TYPE$ = SPACE$(50%)
! Get the class name

X% = OPS$BAS PNAME(OPS$PARAMETER(1%),WME_TYPE$)
SELECT WME_TYPE$ Select by class

name
CASE = "ORDER" If it is an order,

get the value for
attribute AID

X% OPS$PARAMETER(OPS$CVAN(OPS$LITBIND(
OPS$BAS_INTERN ("ID"))))

IF OPS$SYMBOL(X%)
THEN

ELSE

X$ = SPACE$(50%)
X% = OPS$BAS PNAME(X%,X$)
LSET ORDER_ID = X$ Put the value in

ORDER ID

LSET ORDER ID NUM1$(0PS$CVAN(X%))
END IF

! Attribute
CUSTOMER-NAME &

X% OPS$PARAMETER(OPS$CVAN(OPS$LITBIND(
OPS$BAS_INTERN(11 CUSTOMER-NAME 11

))))

IF OPS$SYMBOL(X%)
THEN

ELSE

END IF

X$
X%

SPACE$ (50%)
OPS$BAS_PNAME(X%,X$)

LSET ORDER CUSTOMER NAME - -

LSET ORDER CUSTOMER NAME

X$

into
ORDER CUSTOMER
NAME

NUM1$(0PS$CVAN(X%))

! Write it
STATUS% = DBQ_TILEND("STORE ORDER_REC")

CASE = "LINE-ITEM" LINE-ITEM rec
! Attribute

ALINE-NAME &
X% OPS$PARAMETER(OPS$CVAN(OPS$LITBIND(

OPS$BAS_INTERN ("LINE-NAME"))))
IF OPS$SYMBOL(X%)

THEN
X$
X%

SPACE$(50%)
OPS$BAS_PNAME(X%,X$)

into
LSET LINE ITEM NAME X$ LINE ITEM NAME

ELSE
LSET LINE ITEM NAME NUM1$(0PS$CVAN(X%))

END IF
! Attribute

ALINE-NUMBER &
X% OPS$PARAMETER(OPS$CVAN(OPS$LITBIND(

OPS$BAS_INTERN ("LINE-NUMBER"))))
IF OPS$SYMBOL(X%)

THEN
LINE ITEM NUMBER 0

ELSE

LINE ITEM NUMBER
END IF

into
LINE ITEM NUMBER

OPS$CVAN (X%)

! Attribute
"LINE-QUANTITY &

X% OPS$PARAMETER(OPS$CVAN(OPS$LITBIND(
OPS$BAS_INTERN ("LINE-QUANTITY"))))

IF OPS$SYMBOL(X%)
THEN

6-26 Using Routines Written in Other VAX Languages

ELSE

END IF
STATUS%

END SELECT

END FUNCTION

LINE_ITEM_QUANTITY 0
into
LINE ITEM
QUANTITY

LINE_ITEM_QUANTITY = OPS$CVAN(X%)

DBQ_TILEND("STORE LINE_ITEM_REC")

2000 %SBTTL 'CALL_DBQ'

FUNCTION LONG CALL_DBQ

20000

%INCLUDE "DBMS.INC"
%INCLUDE "OPS.INC"

EXTERNAL LONG FUNCTION DBQ_TILEND

PARAM COUNT% = OPS$PARAMETERCOUNT()
CALL_STRING$ = ""
FOR X% = 1% TO PARAM COUNT%

ATOM% = OPS$PARAMETER(X%)
IF OPS$SYMBOL(ATOM%)

THEN
X$ = SPACE$(50%)
Y% = OPS$BAS PNAME(ATOM%,X$)
CALL_STRING$- CALL_STRING$ + X$
ELSE

+ II II

CALL_STRING$ CALL STRING$ + &
NUMl$(0PS$CVAN(ATOM%)) + II II

END IF
NEXT X%
STATUS%= DBQ_TILEND(CALL_STRING$)

END FUNCTION

%SBTTL 'DBQ_TILEND'

FUNCTION LONG DBQ_TILEND (STRING DBQS)

This function controls iterative reads supplied by
a data base. The function returns true while
successful read operations are done and returns
false when the end condition is returned from DBMS.
All other DBMS errors are treated as fatal.

EXTERNAL LONG FUNCTION &
DBQ$INTERPRET,

LIB$MATCH_COND

EXTERNAL LONG CONSTANT SS$_NORMAL, DBM$_END

DECLARE LONG DBQ_MATCH, DBQ_RETSTS
DBQ_MATCH = 0%
DBQ_RETSTS = DBQ$INTERPRET(DBQS)
IF DBQ_RETSTS AND SS$_NORMAL THEN

ELSE

DBQ_TILEND = -1%
EXIT FUNCTION

VAX/VMS DBMS
function &

VAX/VMS RTL
function

Check for OK first
Hopefully OK will
be the case the
majority of the
time

DBQ_MATCH = LIB$MATCH_COND(DBQ_RETSTS, DBM$_END)
IF DBQ_MATCH = 1% THEN

DBQ_TILEND = 0%
EXIT FUNCTION

ELSE
CALL LIB$SIGNAL(DBQ_RETSTS BY VALUE)

END IF
END IF

Using Routines Written in Other VAX Languages 6-27

END FUNCTION

6.7.3.3 VAX OPS5 Include File-OPS.INC
OPS.INC

This file contains declarations for the most common VAX OPS5
support routines. All VAX OPS5 support routines expect
arguments to be passed by value, which is why string
arguments require an intermediate function to be called.

EXTERNAL LONG FUNCTION &
OPS$BAS PNAME, &
OPS$BAS=INTERN, &
OPS$ACCEPT, &
OPS$ACCEPTLINE, &
OPS$ASSERT, &
OPS$ATOM, &
OPS$CVAN(LONG BY VALUE), &
OPS$CVNA(LONG BY VALUE), &
OPS$LITBIND(LONG BY VALUE), &
OPS$PARAMETER(LONG BY VALUE), &
OPS$PARAMETERCOUNT, &
OPS$RESET, &
OPS$SYMBOL(LONG BY VALUE), &
OPS$TAB(LONG BY VALUE), &
OPS$VALUE(LONG BY VALUE)

6.7.3.4 BLISS-32 File-OPSATOM.832
! OPSATOM.B32

MODULE BASIC TO_OPS (
ADDRESSING_MODE(EXTERNAL=GENERAL,

NONEXTERNAL=GENERAL)
) =

BEGIN

!+

!-

This module provides the interface between VAX OPS5 and VAX BASIC.
The routines build th~ string descriptor required by VAX BASIC
from the appropriate VAX OPS5 values.

FIELD
BASIC DESCRIPTOR FIELDS =

SET
DESC_LEN = [0,0,16,0],
DESC_TYPE = [0,16,8,0],
DESC_CODE = [0,24,8,0],
DESC_PTR = [1,0,32,0]
TES;

EXTERNAL ROUTINE
OPS$INTERN,
OPS$PNAME;

FORWARD ROUTINE
OPS$BAS INTERN,
OPS$BAS=PNAME;

MACRO
$BASIC_DESCRIPTOR = BLOCK[2] FIELD (BASIC_DESCRIPTOR_FIELDS) %;

GLOBAL ROUTINE OPS$BAS_INTERN (str)
BEGIN

MAP str: REF $BASIC DESCRIPTOR;
RETURN OPS$INTERN(CH$PTR(.str[DESC_PTR]), .str[DESC_LEN]);

6-28 Using Routines Written in Other VAX Languages

END;

GLOBAL ROUTINE OPS$BAS_PNAME (atom, str)
BEGIN

MAP str: REF $BASIC_DESCRIPTOR;
str[DESC_LEN] = OPS$PNAME(.. atom, CH$PTR(.str[DESC_PTR]),
. str [DESC_LEN])

END;
END
ELUDOM

6.7.3.5 VAX Common Data Dictionary Data Description Language File-DBMS.DDL
SCHEMA OPSTEST

AREA ORDER FILE

RECORD ORDER REC
WITHIN ORDER FILE

ITEM ORDER ID
ITEM ORDER CUSTOMER NAME - -

RECORD LINE ITEM REC - -
WITHIN ORDER FILE

ITEM LINE ITEM NUMBER
ITEM LINE_ITEM_QUANTITY
ITEM LINE ITEM NAME

SET ALL ORDER SET - -
OWNER
MEMBER
INSERTION
RETENTION

SYSTEM
ORDER REC
AUTOMATIC
FIXED

SET ORDER LINE ITEM SET - -
OWNER
MEMBER
INSERTION
RETENTION
ORDER

6.7.3.6 Include File-DBMS.INC
! DBMS.INC

MAP (DBM$UWA_B) &

ORDER REC
LINE ITEM REC
AUTOMATIC
MANDATORY
LAST

STRING DBMUWA = 0, &
WORD DBM_CRID, &
WORD FILL, &
STRING DBM CRNS = 1, &
STRING DBM CRNM = 31, &
LONG DBM_MSGVEC, &
LONG DBM_COND, &
STRING FILL = 64, &
LONG DBM_RTB (3), &

..... ORDER REC Record &
STRING ORDER_ID = 20, &

TYPE CHARACTER 20
TYPE CHARACTER 20

TYPE SIGNED LONGWORD
TYPE SIGNED LONGWORD
TYPE CHARACTER 11

STRING ORDER_CUSTOMER_NAME 20, &
..... LINE ITEM REC Record & - -

LONG LINE_ITEM_NUMBER, &
LONG LINE_ITEM_QUANTITY, &
STRING LINE ITEM NAME = 11, &
STRING FILL 1, &
STRING FILL = 0

Using Routines Written in Other VAX Languages 6-29

EXTERNAL LONG FUNCTION DBQ$INTERPRET
EXTERNAL LONG FUNCTION DBM$ACCEPT
EXTERNAL LONG FUNCTION DBM$PLACE
EXTERNAL LONG FUNCTION DBM$SIGNAL
EXTERNAL LONG FUNCTION DBM$STATS
EXTERNAL LONG CONSTANT &

DBM$_END, &
SS$_NORMAL

! This list of constants is shortened for clarity

6.8 Handling an Asynchronous System Trap (AST)

On VMS systems, programs can get information from external sources, such as
timers and I/O devices, by calling system routines which let the program request
that it be interrupted when a particular event occurs. Since the interrupt occurs
asynchronously (out of sequence) with respect to the program's execution, the
interrupt mechanism is called an asynchronous system trap (AST). The trap
provides a transfer of control to a user-specified procedure that handles the event.

When a program calls a system routine, it specifies the AST handler as one of
its arguments. The program then continues to execute while the system routine
performs its task independently. When the system routine :finishes, it interrupts
the calling program by passing control to the AST handler specified. When
the AST handler :finishes, the program continues from the point where it was
interrupted.

Normally, the AST routine examines the result of calling the system routine,
possibly updates the program's data, and then returns control to the program at
the point the interruption occurred.

In a VAX OPS5 program, however, the data (working memory) can only be
updated at certain points in the recognize-act cycle, so ASTs have to be
"synchronized." This is done using the OPS$COMPLETION support rou-
tine. The AST handler does not alter working memory itself-instead it calls
OPS$COMPLETION, passing the address of a routine, called the completion
routine, which updates working memory. When the run-time system gets to the
point in the recognize-act cycle where it is safe to update working memory, it calls
the completion routine.

6.8.1 Synchronizing Completion Routines

For a program to communicate with such external sources, you must create:

• An external routine that accesses the source by calling a VMS system service
that will complete asynchronously

• An AST service routine called by the VMS operating system when the
information from the external source becomes available. This routine will
execute asynchronously, calling the OPS$COMPLETION support routine with
the address of a completion routine as an argument.

• A completion routine called by the VAX OPS5 program at a suitable time,
which passes information from the external source to the program by creating
working-memory elements

NOTE

The completion routine must call the OPS$COMPLETION sup­
port routine with the argument value 0 to avoid being called again
unnecessarily after the next recognize-act cycle.

6-30 Using Routines Written in Other VAX Languages

Part Ill
VAX OPS5 Operator, Declaration, Statement, Action,

Function, Command, and Support-Routine
Descriptions

Part III of this manual describes the VAX OPS5 operators, declarations, state­
ments, actions, functions, commands, and support routines. The descriptions in
each chapter are presented alphabetically by name, providing a quick reference
tool. The descriptions include usage details, syntax, format, arguments, and
examples.

Many of the constructs described in the following chapters can be specified with
arguments. When you specify argument values with an operator, declaration,
statement, action, function, or command, separate the values with any combi­
nation of spaces, tabs, and carriage returns. When you specify arguments with
support routines, separate the values with a comma and a space.

Chapter 7

Operators

This chapter describes the VAX OPS5 operators. Operators are characters that
belong to the ASCII character set and have specific meaning to the VAX OPS5
syntax. Table 7-1 lists the operators and provides brief descriptions. The rest of
the chapter provides detailed descriptions and examples.

When you specify argument values with an operator, separate them with any
combination of spaces, tabs, and carriage returns, unless specified otherwise.

Table 7-1: Summary of Operators

Operator
/\

=

<>

>

>=

<

<=

<=>

{ }

<< >>

II

\\

Description

Specifies an attribute of a working-memory element

Produces a match if an atom in a working-memory element is the same type
as and equal to a specified value

Produces a match if an atom in a working-memory element is not the same·
type as or not equal to a specified value

Produces a match if an atom in a working-memory element is the same type
as and greater than a specified value

Produces a match if an atom in a working-memory element is the same type
as and greater than or equal to a specified value

Produces a match if an atom in a working-memory element is the same type
as and less than a specified value

Produces a match if an atom in a working-memory element is the same type
as and less than or equal to a specified value

Produces a match if an atom in a working-memory element is the same type
as a specified value

Specifies a conjunction (logical AND)

Specifies a disjunction (logical OR)

Prevents evaluation of symbols, operators, variables, and function calls

Forces evaluation of symbols, operators, variables, and function calls

Operators 7-1

A

A

Format

Argument

Example

7-2 Operators

Specifies an attribute of a working-memory element. You can specify attributes in
condition elements and actions.

For more information about attributes, see Section 2.1.2.

A attribute-name

attribute-name
A symbolic attribute name must be declared in a LITERAL, LITERALIZE, or
VECTOR-ATTRIBUTE declaration before it is used.

An integer indicates the field to which the run-time system is to refer. Suppose
you want an attribute to refer to the atom stored in the second field of a working­
memory element. You can specify:

"2

In actions, you can represent an attribute name with a variable that is bound to
a declared attribute name or an integer. If a variable is bound to an attribute
name, the run-time system refers to the field assigned to that name. Likewise, if
the variable is bound to an integer, the system refers to that field.

Suppose a LITERALIZE declaration assigns fields 2, 3, and 4 to the attribute
names NUMBER, AMOUNT, and COUNTED, respectively. Consider the follow­
ing condition element:

(CHECK "NUMBER 102 "AMOUNT 10.06 "COUNTED NO)

A working-memory element that stores the atoms 102, 10.06, and NO as follows
will match the condition element:

• 102 in field 2

• 10.06 in field 3

• NO in field 4

Suppose a LITERALIZE declaration assigns fields 2, 3, and 4 to the attribute
names NUMBER, AMOUNT, and COUNTED, respectively. Suppose also that the
variable <NUMBER> is bound to the attribute name NUMBER. Now consider
the following MAKE action:

(MAKE CHECK "<NUMBER> 102 "AMOUNT 10.06 "COUNTED NO)

The action creates a working-memory element whose atoms are stored as follows:

I\

• CHECK (class name) in field 1

• 102 in field 2

• 10.06 in field 3

• NO in field 4

Operators 7-3

=

=

Format

Argument

Example

7-4 Operators

Produces a match if an atom in a working-memory element is the same type as
and equal to a value specified in a condition element. If you omit the operator
from a condition element, the run-time system uses the equal operator to compare
the atoms in working-memory elements with that value.

The equal operator is the only predicate that can precede the first occurrence of a
variable, because the first time you use a variable, the run-time system binds the
variable to a value.

For more information about predicates, see Section 3.2.1.3.

=value

value
The value to which an atom in a working-memory element is to be compared. The
value must be a constant, a variable, or a function call.

A working-memory element that has the- class name CHECK and the attribute
A NUMBER whose value is the integer 102 will match the following condition
element:

(CHECK ANUMBER = 102)

As the run-time system uses the equal operator implicitly if you do not specify a
predicate, the following condition element is equivalent to the preceding element:

(CHECK ANUMBER 102)

<>

Format

Argument

Example

<>

Produces a match if an atom in a working-memory element is not the same type
as or not equal to a value specified in a condition element.

<>value

value
The value to which an atom in a working-memory element is to be compared. The
value must be a constant, a variable bound to a constant, or a function call.

A working-memory element that has the class name CHECK and the attribute
ANUMBER whose value is not the integer 102 will match the following condition
element:

(CHECK ANUMBER <> 102)

Operators 7-5

>

>

Format

Argument

Example

7-6 Operators

Produces a match if an atom in a working-memory element is the same type as
and greater than a value specified in a condition element.

>value

value
The value to which an atom in a working-memory element is to be compared. The
value must be a number, a variable bound to a number, or a function call.

A working-memory element that has the class name CHECK and the attribute
"NUMBER whose value is an integer greater than 102 will match the following
condition element:

(CHECK ANUMBER > 102)

>=

Format

Argument

Example

>=

Produces a match if an atom in a working-memory element is the same type as
and greater than or equal to a value specified in a condition element.

>=value

value
The value to which an atom in a working-memory element is to be compared. The
value must be a number, a variable bound to a number, or a function call.

A working-memory element that has the class name CHECK and the attribute
ANUMBER whose value is an integer greater than or equal to 102 will match the
following condition element:

(CHECK ANUMBER >= 102)

Operators 7-7

<

<

Format

Argument

Example

7-8 Operators

Produces a match if an atom in a working-memory element is the same type as
and less than a value specified in a condition element.

<value

value
The value to which an atom in a working-memory element is to be compared. The
value must be a number, a variable bound to a number, or a function call.

A working-memory element that has the class name CHECK and the attribute
"NUMBER whose value is an integer less than 102 will match the following
condition element:

(CHECK ANUMBER < 102)

<=

Format

Argument

Example

<=

Produces a match if an atom in a working-memory element is the same type as
and less than or equal to a value specified in a condition element.

<=value

value
The value to which an atom in a working-memory element is to be compared. The
value must be a number, a variable bound to a number, or a function call.

A working-memory element that has the class name CHECK and the attribute
"NUMBER whose value is an integer less than or equal to 102 will match the
following condition element:

(CHECK ANUMBER <= 102)

Operators 7-9

<=>

<=>

Format

Argument

Example

7-10 Operators

Produces a match if an atom in a working-memory element is the same type
as a value specified in a condition element. The types of values are symbols,
integers, and floating-point numbers. For example, if you specify the operator
with a symbol or a variable bound to a symbol, a match is produced if the atom in
the working-memory element is a symbol.

<=>value

value
The value to which an atom in a working-memory element is to be compared. The
value must be a number, a variable bound to a number, or a function call.

A working-memory element that has the class name CHECK and the attribute
"NUMBER whose value is an integer will match the following condition element:

(CHECK ANUMBER <=> 102)

{ }

Format

Argument

Example

{ }

Specifies a conjunction. A conjunction is similar to a logical AND. It is a left­
hand-side pattern containing one or more conditional tests, all of which an atom
in a working-memory element must satisfy.

For more information about conjunctions, see Section 3.2.1.4.

{[conditional-test ...]}

conditional-test
One or more conditional tests that an atom in a working-memory element is to
satisfy.

The argument is optional. If you do not specify a conditional test, the braces act
as a condition-element placeholder, that is, they indicate the presence of an atom
whose value you do not want to test. Use a placeholder to skip over atoms in a
vector attribute's value, or when you specify a condition element without using
attribute names.

A working-memory element that has the class name CHECK and the attribute
ANUMBER whose value is an integer between 102 and 105 will match the
following condition element:

(CHECK { ANUMBER >= 102 <= 105 })

Operators 7-11

<<>>

<<>>

Format

Argument

Example

7-12 Operators

Specifies a disjunction. A disjunction is similar to a logical inclusive OR. It is a
left-hand-side pattern containing a list of constant values, one of which can match
the pattern.

For more information about disjunctions, see Section 3.2.1.5.

<<value ... >>

value
A symbol, integer, or floating-point number that an atom in a working-memory
element is to match. You can specify one or more values.

The atoms you specify in a disjunction are not evaluated; therefore, operators and
variables are recognized as symbols.

A working-memory element that has the class name CHECK and the attribute
ANUMBER whose value is the integer 103, 105, or 108 will match the following
condition element:

(CHECK ANUMBER << 103 105 108 >>)

II

Format

Argument

Example

II

Prevents the evaluation of symbols, operators, variables, and function calls. You
can use this operator (quotes) in condition elements and actions.

II value

value
The symbol, operator, variable, or function call to be quoted.

To find an atom in a working-memo_ry element that matches the symbol
<NUMBER>, specify the following condition element:

(CHECK ANUMBER // <NUMBER>)

The atom <NUMBER> in a working-memory element will match the symbol
<NUMBER>. If you do not use the quote operator (//), the atom will match the
value bound to the variable <NUMBER>.

Operators 7-13

\\

\\

Format

Argument

Example

7-14 Operators

Forces the evaluation (unquotes) of symbols, operators, variables, and function
calls. Use this operator to unquote values in the condition elements and actions
you specify as arguments in a BUILD action. You must remove the quote for each
value you want the BUILD action to evaluate. For more information about the
BUILD action, see the description in Chapter 10.

\\ value

value
The symbol, operator, variable, or function call to be evaluated.

Suppose the variable <CITY> in the following BUILD action is bound to
BOSTON:

(BUILD ADD-ADDRESS
(HOUSE ACITY \\<CITY> AADDRESS <ADDRESS>)

-->
(WRITE !New listing -- I <ADDRESS>))

The new production is:

(P ADD-ADDRESS
(HOUSE ACITY BOSTON AADDRESS <ADDRESS>)

-->
(WRITE JNew listing -- I <ADDRESS>))

The unquoted variable <CITY> is evaluated to BOSTON. However, the variable
<.ADDRESS> is not evaluated until the production ADD-ADDRESS is executed
during another recognize-act cycle.

Chapter 8

Declarations

This chapter describes the VAX OPS5 declarations. Table 8-1 lists the names of
the declarations and gives brief descriptions. The rest of the chapter provides
detailed descriptions and examples presented alphabetically by name. For more
information about declarations, see Section 2.3.

When you specify argument values in a declaration, separate them with any
combination of spaces, tabs, and carriage returns.

Table 8-1 : Summary of Declarations

Declaration

EXTERNAL

LITERAL

LITERALIZE

VECTOR-ATTRIBUTE

Description

Declares external routines

Assigns specified fields of a working-memory element to
attribute names

Associates a class with a list of attribute names and assigns
fields of a working-memory element to the specified attribute
names

Assigns a predefined field of a working-memory element to
specified vector-attribute names

Declarations 8-1

EXTERNAL

EXTERNAL

Format A

Arguments

Declares external routines, which are functions or subroutines written in VAX
languages other than VAX OPS5. The EXTERNAL declaration provides the
names of the routines to the VAX OPS5 compiler.

There are two sorts of EXTERNAL declarations (Format A and Format B). The
mechanism you must use for returning values from external functions depends on
which format is used.

For more information about declaring and calling external routines, see Chapter 6
in this document, the VAX Architecture Handbook, and the Introduction to VMS
System Routines.

EXTERNAL {(external-routine-spec)} ...

where external-routine-spec is:

external-routine-name [return-type] [([argument-type] [mechanism])] ...

external-routine-name
A symbol that represents the name of an external routine. The name you specify
must be the same as the name specified in the external routine's code. You can
specify one or more routine names.

return-type
If this is present, it must be one of the symbols SYMBOLIC-ATOM, NUMERIC­
ATOM, FLOAT-ATOM, INTEGER-ATOM, or ANY-ATOM. It indicates which
type of atom is expected to be returned by the external routine that you are
declaring, and may cause a run-time check to be performed.

argument-type
If this is present, it must be one of the symbols SYMBOLIC-ATOM, NUMERIC­
ATOM, FLOAT-ATOM, INTEGER-ATOM, or ANY-ATOM. It indicates the type
of value that should be used for the· corresponding routine argument, and may
cause a run-time check to be performed. If you do not specify the argument-type,
ANY-ATOM is used as the default.

mechanism
This argument indicates the passing mechanism to be used. If it is present, it
must be either BY VALUE (which causes the value of the atom to be passed), or
BY REFERENCE (which causes the atom's address to be passed). If you do not
specify the mechanism, BY VALUE is used as the default.

8-2 Declarations

Example

Format B

Argument

EXTERNAL

NOTES

The mechanism argument and the return-type argument are ignored if
the routine is used in a CALL action.

If the external routine is called as a function, it must use the standard
VMS mechanism to return a value, that is, the value must be in
register RO.

The following EXTERNAL declaration declares the external routines SORT_
TRANSACTIONS and BALANCE, and specifies two parameters to be passed for
SORT_TRANSACTIONS and one for BALANCE:

(EXTERNAL
(SORT_TRANSACTIONS

(ANY-ATOM BY VALUE)
(FLOAT-ATOM BY REFERENCE))

(BALANCE
(ANY-ATOM BY REFERENCE)))

EXTERNAL external-routine-name ...
This syntax has been retained in order to be compatible with earlier versions of
VAX OPS5, but you are advised to use format A wherever possible.

external-routine-name
A symbol that represents the name of an external routine. The name you specify
must be the same as the name specified in the external routine's code. You can
specify one or more routine names.

NOTES

If the external routine is called as a function on the left-hand side of
a production, it must use the standard VMS mechanism to return a
value, that is, the value must be in register RO.

If the external routine is called as a function on the right-hand side
of a production, it can only return a value by means of a call to the
OPS$VALUE routine described in Chapter 13.

Calls to OPS$VALUE will have no effect if they are made from
an external function that was called from the left-hand side of a
production.

Declarations 8-3

EXTERNAL

Example

The following EXTERNAL declaration declares the external routines SORT_
TRANSACTIONS and BALANCE:

(EXTERNAL
SORT TRANSACTIONS
BALANCE)

8-4 Declarations

LITERAL

Format

Arguments

Example

LITERAL

Assigns specified fields of a working-memory element to attribute names. The
LITERAL declaration lets you control which field the compiler assigns to an
attribute.

All declarations must appear before any other type of statement. If the declara­
tion part of a program contains both LITERAL and LITERALIZE declarations,
the compiler processes the LITERAL declarations first, regardless of the order
in which they are specified. The compiler uses the field assignments for the
attributes specified in both LITERAL and LITERALIZE declarations. If the as­
signments specified by a LITERAL declaration conflict with assignments made by
a LITERALIZE declaration, the compiler displays the following message:

%0PSCOMP-W-LITCLASH, Literal value clash involving AAAAAA in
literalize declaration -- old value kept

LITERAL {attribute-name= field} ...

attribute-name
The name of an attribute to which a field is to be assigned.

field
An integer that indicates the field assigned to the specified attribute.

The following LITERAL declaration assigns the fields 2, 3, and 4 to the attribute
names NUMBER, AMOUNT, and COUNTED, respectively:

(LITERAL
NUMBER = 2
AMOUNT = 3
COUNTED = 4)

Declarations 8-5

LITERALIZE

LITERALIZE

Format

Arguments

Example

Associates a class with a list of attribute names and assigns fields of a working­
memory element to the specified attribute names.

All declarations must appear before any other type of statement. If the declara­
tion part of a program contains both LITERAL and LITERALIZE declarations,
the compiler processes the LITERAL declarations first, regardless of the order
in which they are specified. The compiler uses the field assignments for the
attributes specified in both LITERAL and LITERALIZE declarations. If the as­
signments specified by a LITERAL declaration conflict with assignments made by
a LITERALIZE declaration, the compiler displays the following message:

%OPSCOMP-W-LITCLASH, Literal value clash involving AAAAAA in
literalize declaration -- old value kept

LITERALIZE class-name attribute-name ...

class-name
The name of the class with which the specified attribute names are to be
associated.

attribute-name
The name of an attribute to which a field is to be assigned. You can specify one
or more attribute names, of which only one can be the name of a vector attribute.

The following LITERALIZE declaration associates the attribute names NUMBER,
AMOUNT, COUNTED, and DATE with the class name CHECK and assigns fields
to the attribute names:

(LITERALIZE CHECK
NUMBER
AMOUNT
COUNTED
DATE)

8-6 Declarations

VECTOR-ATTRIBUTE

VECTOR-ATTRIBUTE

Format

Argument

Example

Assigns field 256 of a working-memory element to specified vector-attribute
names. The first atom of a vector attribute's value is stored in that field.

You can declare all vector attributes for a program either separately or in one
declaration. All vector-attribute declarations must be given before the STARTUP
statement (if any) and before the first production in the program.

NOTE

Vector-attribute declarations are global within a program. Once you
have declared the name of a vector attribute, you cannot use the same
name for a scalar attribute.

VECTOR-ATTRIBUTE attribute-name ...

attribute-name
The name of a vector attribute to be assigned the predefined field for vector
attributes. You can specify the name of one or more vector attributes.

The following VECTOR-ATTRIBUTE declaration declares vector attributes
named DATE and TRANSACTIONS:

(VECTOR-ATTRIBUTE DATE TRANSACTIONS)

Declarations 8-7

Chapter 9

Statements

This chapter describes the VAX OPS5 statements. Table 9-1 lists the names of
the statements and gives brief descriptions. The rest of the chapter provides
detailed descriptions and examples presented alphabetically by name.

When you specify argument values in a statement, separate them with any
combination of spaces, tabs, and carriage returns.

Table 9-1 : Summary of Statements

Statement

CATCH

PRODUCTION

STARTUP

Description

Creates a catcher

Performs right-hand-side actions when left-hand-side conditions are
met

Executes actions and commands that set up initial conditions for a
program's execution

Statements 9-1

CATCH

CATCH

Format

Arguments

Example

9-2 Statements

Creates a catcher, which is a list of actions that are executed after a specified
number of recognize-act cycles have been executed. An AFTER action or com­
mand specifies the number of recognize-act cycles to be executed before the
catcher is executed.

For more information about catchers and controlling loops, see Section 5.9.

CATCH catcher-name action ...

catcher-name
A unique symbol that names the catcher being created. The symbol cannot
represent the name of another catcher, a production, an external routine, an
action, or a function that already exists in the program.

action
An action. You can specify one or more actions. For information about actions,
see Section 3.3 and Chapter 10.

The following CATCH statement creates a catcher named BALANCE, which
displays a message after the number of recognize-act cycles specified in an
AFTER action or command have been executed, and stops execution:

(CATCH BALANCE
(WRITE (CRLF) !Check your balance. I)
(HALT))

PRODUCTION

PRODUCTION

Format

Arguments

Example

Performs right-hand-side actions when left-hand-side conditions are met and the
production has been selected from the conflict set.

P production-name condition-element ... action ...

production-name
A unique symbol that names the productiqn being created. The symbol cannot
represent the name of another production, a catcher, an external routine, an
action, or a function that already exists in the program.

condition-element
A specified pattern against which working memory elements can be matched.
See Chapter 3 for information about condition elements, and Chapter 4 for
information about matching.

Condition elements can have condition-element variables associated with them,
can be negative, and can introduce variables that are used in other condition
elements and in actions on the right-hand side.

action
An action. You can specify one or more actions. For information about actions,
see Section 3.3 and Chapter 10.

The following production, named STOP-COUNT, halts the program and removes
the working-memory element bound to the variable <REPLY>:

(P STOP-COUNT
{ <REPLY>

(REPLY ADATE STOP)
-->

(REMOVE <REPLY>)
(HALT))

Statements 9-3

STARTUP

STARTUP

Format

Arguments

Example

9-4 Statements

Executes actions and commands that are executed before any productions, to set
up initial conditions for a program's execution. Only one STARTUP statement
can be used in a program, and it is optional.

For more information about initializing VAX OPS5 programs, see Section 5.1.

STARTUP { action } ...
command

action
An action. You can specify one or more actions. For information about actions,
see Section 3.3 and Chapter 10.

command
A VAX OPS5 command. The commands you can specify are@, DISABLE,
ENABLE, RUN, STRATEGY, and WATCH. You can specify one or more com­
mands. For descriptions of the commands, see Chapter 12.

The following STARTUP statement turns off trace output, disables informational
messages, sets the conflict-resolution strategy to MEA, creates a working-memory
element whose class name is START, and starts the execution of recognize-act
cycles:

(STARTUP
(WATCH 0)
(DISABLE HALT)
(STRATEGY MEA)
(MAKE START)
(RUN))

Disable trace output
Disable informational messages
Set conflict-resolution strategy
Initialize working memory
Start executing recognize-act cycles

Chapter 10

Actions

This chapter provides descriptions of the VAX OPS5 actions. Actions instruct
the run-time system to perform operations. Table 10-1 lists the names of
the actions and provides brief descriptions. The rest of the chapter provides
detailed descriptions and examples presented alphabetically by name. For more
information about actions, see Section 3.3.

Most VAX OPS5 actions require at least one argument. You can represent
argument values with atoms, variables bound to atoms, or function calls that
evaluate to atoms. When you specify argument values, separate them with any
combination of spaces, tabs, and carriage returns.

Table 10-1 : Summary of Actions

Action Description

ADDSTATE Adds the contents of a file produced by the SAVESTATE action or
command to the current state of working memory and the conflict set

AFTER Specifies the number of recognize-act cycles that must be executed
before a specified catcher is executed

BIND Binds a variable to an atom

BUILD Adds a new production to an executing program

CALL Calls an external subroutine

CBIND Binds an element variable to a working-memory element

CLOSEFILE Closes the open files associated with specified file identifiers and
dissociates the identifiers from the files

DEFAULT Sets the terminal or a file as the default input source for the ACCEPT
and ACCEPTLINE functions, or the default output destination for
the WRITE action or for trace output

HALT Stops the run-time system from executing recognize-act cycles at a
particular point during a program's execution

MAKE Creates a working-memory element

MODIFY Changes one or more atoms in an existing working-memory element

OPENFILE Opens a file and associates it with a file identifier

REMOVE Deletes elements from working memory

RESTORESTATE Clears and then restores working memory and the cortflict set to
the state recorded in a file produced by the SAVESTATE action or
command

(continued on next page)

Actions 10-1

10-2 Actions

Table 10-1 (Cont.): Summary of Actions

Action

SAVESTATE

WRITE

Description

Copies the state of working memory and the conflict set to a file

Sends output from a program to the terminal or a file

ADDSTATE

ADDSTATE

Format

Argument

Example

Adds the contents of a file produced by the SAVESTATE action or command to
the current state of working memory and the conflict set. The time tags of the
working-memory elements in the saved file are ignored.

ADDSTATE file-spec

file-spec
A VMS file specification for a file previously produced by the SAVESTATE action
or command.

NOTE

The comment character for VAX OPS5 is a semicolon(;). Therefore, if
the VMS file specification you specify includes a semicolon, enclose the
specification in vertical bars (I I).

Suppose you use the SAVESTATE action to store a state of working memory and
the conflict set in the file CHECKS.DAT. The following action adds the contents
of the file CHECKS.DAT to the current state of working memory and the conflict
set:

(ADDSTATE CHECKS.DAT)

Actions 10-3

AFTER

AFTER

Format

Arguments

Example

10-4 Actions

Specifies the number of recognize-act cycles that must be executed before a
specified catcher is executed, thus controlling loops in a program.

For more information about catchers and controlling loops, see Section 5.9.

AFTER cycles catcher-name

cycles
A positive integer that specifies the number of recognize-act cycles that are to be
executed before the specified catcher is executed. If execution halts before the
specified number of cycles has been executed, the catcher is not executed.

catcher-name
A symbol that names a catcher.

The following action specifies that the catcher named BALANCE is to be executed
after five recognize-act cycles have been executed:

(AFTER 5 BALANCE)

If program execution halts before five cycles have been executed, the catcher is
not executed.

BIND

Format

Arguments

Example

BIND

Binds a variable to an atom.

BIND variable [rhs-expression]

variable
The variable to which an atom is to be bound.

rhs-expression
A right-hand-side expression to be evaluated. The action binds the specified
variable to the atom that results from the evaluation.

This argument is optional. If you do not specify the argument, the action uses the
GENATOM function to generate an atom, and binds the specified variable to that
atom.

Consider the following right-hand-side expression:

(COMPUTE <BALANCE> - <WITHDRAWAL>)

When evaluated, this expression computes the difference between the values
bound to the variables <BALANCE> and <WITHDRAWAL>. The following BIND
action evaluates this expression and binds the variable <NEW-BALANCE> to
the atom that results:

(BIND <NEW-BALANCE> (COMPUTE <BALANCE> - <WITHDRAWAL>))

The following action creates a new atom and binds the variable <NEW-ATOM>
to that atom:

(BIND <NEW-ATOM>)

Actions 10-5

BUILD

BUILD

Format

Arguments

10-6 Actions

Adds a new production to an executing program.

By default, the BUILD action treats variables, actions, and function calls as
constants. If you want the action to evaluate a variable, action, or function
call when the run-time system adds the production to the program, precede the
variable, action, or function call with the unquote operator (\ \). This operator is
described in Chapter 7.

The source code for the new production is stored in a file named OPS$BUILD.OPS.
Each time a BUILD action is executed, the run-time system creates a new
version of the file. You can add the productions stored in the build files
(0PS$BUILD.OPS;n) to a program's source code by specifying the files when
you compile the program, or by editing the program to include the build files.

For more information about adding productions to an executing program, see
Section 5.11.

BUILD production-name left-hand-side--> right-hand-side

production-name
A symbol that names the production to be added to the program. The symbol
cannot represent the name of a catcher or an external routine that already exists
in the program. If the BUILD action finds an existing production with the name
that you have specified, the original production is disabled and the new one is
built. However, disabled productions remain in memory; therefore, if you build
the same production many times, you decrease system performance.

Do not precede the production name with an open parenthesis and the symbol P.
The BUILD action adds these characters when it creates the production.

left-hand-side
One or more condition elements.

-->
A symbol that separates the left-hand side of the production from the right-hand
side.

right-hand-side
One or more actions. Enclose each action within parentheses. However, do not
place a closing parenthesis for the new production at the end of the last action.
The BUILD action adds the closing parenthesis when it creates the production.

Example

Consider the following production:

(P ADD-STOP-COUNT
(STATUS AREADY-TO-STOP YES)

-->
(BUILD STOP-COUNT

{ <REPLY>
(REPLY ADATE STOP)

-->
(REMOVE <REPLY>)
(HALT)))

This production adds the following production to the executing program:

(P STOP-COUNT
{ <REPLY>

(REPLY ADATE STOP)
-->

(REMOVE <REPLY>)
(HALT))

Suppose a program creates the following working-memory element:

(BUILD-PRODUCTION NEW-PRODUCTION (DATE AYEAR 1988)
--> (MAKE NOV 1 ADAY-OF-WEEK TUESDAY))

Suppose the same program contains the following production:

(P ADD-PRODUCTION
{ <BUILD-PRODUCTION>

(BUILD-PRODUCTION)
-->

(BUILD\\ (SUBSTR <BUILD-PRODUCTION> 2 INF))
(REMOVE <BUILD-PRODUCTION>))

BUILD

The unquote operator causes the BUILD action to evaluate the call to the
SUBSTR function, which provides the BUILD action with the necessary argu­
ments to create a new production while the program is executing.

Actions 10-7

CALL

CALL

Format

Arguments

Example

10-8 Actions

Calls an external subroutine, which is a routine written in a VAX language other
than VAX OPS5.

For information about calling external subroutines, see the VAX OPS5 User's
Guide.

CALL external-routine-name [external-routine-argument ... }

external-routine-name
The name of the external subroutine to be called. Specify the name of a subrou­
tine that has been declared with the EXTERNAL declaration. Otherwise, the
compiler displays the following warning:

%0PSCOMP-W-EXTCALL, Subroutine AAAAAA not declared external

external-routine-argument
A number or symbol representing the value of an external routine's argument.
This argument is optional and can be specified one or more times.

The following EXTERNAL declaration declares an external subroutine named
READ_NYSE_EXTRACT:

(EXTERNAL READ_NYSE_EXTRACT)

The following action calls the subroutine READ_NYSE_EXTRACT with the
variable <NAME> as an argument:

(CALL READ_NYSE_EXTRACT <NAME>)

NOTES

Type checking may be performed at run time for any argument for
which there is a corresponding type specification in the EXTERNAL
declaration.

Any passing mechanisms specified in the EXTERNAL declaration of
the routine are ignored.

CBIND

Format

Argument

Example

CBIND

Binds an element variable to the last element added to working memory by a
MAKE, MODIFY, or CALL action.

For information about specifying element variables, see Section 3.2.2.

CBIND element-variable

element-variable
The element variable to be bound to the last element added to working memory.

The following action binds the element variable <COUNTER> to the last element
added to working memory:

(CBIND <COUNTER>)

Actions 10-9

CLOSEFILE

CLOSEFILE

Format

Argument

Example

10-10 Actions

Closes the open files associated with specified file identifiers and dissociates the
identifiers from the files.

CLOSEFILE file-id ...

file-id
The file identifier of an open file to be closed. You can specify one or more file
identifiers.

The following action closes the open files associated with the file identifiers
CHECKS! and CHECKSO:

(CLOSEFILE CHECKSI CHECKSO)

DEFAULT

Format

Arguments

Example

DEFAULT

Sets the terminal or a ft.le as the default input source for the ACCEPT and
ACCEPTLINE functions, or the default output destination for the WRITE action
or trace output. If you do not use the DEFAULT action to specify otherwise,
the default source for input and destination for output are SYS$INPUT and
SYS$0UTPUT.

DEFAULT location keyword

location
The source from which input is to be read or the destination to which output is
to be written. The value can be either a file identifier or the symbol NIL. If you
specify a file identifier, the DEFAULT action sets the source or destination to the
open file associated with that name. If you specify NIL, the input is read from or
output is sent to the terminal.

keyword
A keyword that specifies whether the default is to be set for the ACCEPT and
ACCEPTLINE functions, the WRITE action, or trace output. Table 10-2 lists the
keywords you can specify.

Table 10-2: DEFAULT Action Keywords

Keyword

ACCEPT

TRACE

WRITE

Description

Input read by the ACCEPT and ACCEPTLINE functions is read from the
specified source.

Trace output is sent to the specified destination. You can enable and disable
trace output, using the WATCH command (see Chapter 12).

Output produced by the WRITE action is sent to the specified destination.

The following action sets the open file associated with the file identifier CHECKS!
to be the default source of input for the ACCEPT and ACCEPTLINE functions:

(DEFAULT CHECKSI ACCEPT)

To set the default back to the terminal, specify:

(DEFAULT NIL ACCEPT)

Actions 10-11

HALT

HALT

Format

Example

10-12 Actions

Stops the run-time system from executing recognize-act cycles after the current
recognize-act cycle ends. If informational messages are enabled, the run-time
system displays the following message and invokes the command interpreter:

%0PSRT-I-HALTED, HALT -- right-hand-side action

OPSS>

If informational messages are disabled, the run-time system returns control to
the operating system, or to the calling program 1.f the VAX OPS5 program was
called as a subroutine. The ENABLE and DISABLE commands are described in
Chapter 12.

HALT

The following production causes the run-time system to stop executing the
recognize-act cycles when a working-memory element matches the condition
element (REPLY "DATE STOP):

(P STOP-COUNT
{ <REPLY>

(REPLY ADATE STOP)
-->

(REMOVE <REPLY>)
(HALT))

%0PSRT-I-HALTED, HALT -- right-hand-side action

OPSS>

MAKE

Format

Arguments

Example

MAKE

Creates a working-memory element.

For information about working-memory elements, see Section 2.1.

MAKE [class-name] [{[scalar-attribute} value} ... } [vector-attribute value]

class-name
A symbol that names the class of the element to be created. This argument is
optional. If you specify a class name, the action places the name in the first field
of the working-memory element. If you do not specify a class name, the action
places NIL in the first field of the element.

scalar-attribute
A scalar attribute that describes a characteristic of the working-memory element
to be created.and specifies the field of the working-memory element in which the
corresponding value will be placed. You must specify a value with each scalar
attribute.

value
An atom to be placed in the field of the working-memory element indicated by the;
corresponding attribute.

vector-attribute
A vector attribute that describes a characteristic ofthe working-memory element
to be created. Only one vector attribute can be specified in a MAKE action; if you
specify a vector attribute, you must specify a value with it.

value
One or more atoms to be placed in the working-memory element. The first atom
is placed in the field indicated by the vector attribute. If the vector attribute is
declared, the first atom is placed in field 256, and the remaining atoms are placed
sequentially in the fields that follow.

The following production contains two MAKE actions:

(P WHAT-DATE
{ <START> (START) }

-->
(REMOVE <START>)
(WRITE (CRLF) (CRLF) !What date do you want to search for? I)
(WRITE (CRLF) (CRLF) !Enter the day, the first three!

I letters of the month, and the year. I
(CRLF)

!For example -- 14 NOV 19881

Actions 10-13

MAKE

10-14 Actions

(CRLF) (CRLF)
!Type STOP to halt the program. I

(CRLF) (CRLF)
!Date>>> I)

(MAKE COUNT AVALUE 0)
(MAKE REPLY ADATE (ACCEPTLINE)))

The first MAKE action creates a working-memory element that has the class
name COUNT and the attribute "VALUE whose value is 0.

6 [WHAT-DATE] (COUNT AVALUE 0)

The second MAKE action creates a working-memory element that has the class
name REPLY and the vector attribute "DATE whose value is read from the
terminal by the ACCEPTLINE function. For example, if the function reads the
atoms 14, NOV, and 1988, this MAKE action creates the following element:

7 [WHAT-DATE] (REPLY ADATE 14 NOV 1988)

MODIFY

Format

Arguments

Example

MODIFY

Changes one or more atoms in an existing working-memory element. The action
removes an element from working memory and uses the atoms in that element
and new atoms that you specify to create a new element. Therefore, when you
modify a working-memory element, the element's· time tag changes.

You can change more than one atom in a MODIFY action, and you can use the
same working-memory element in more than one MODIFY action in the same
production.

For more information about working-memory elements, see Section 2.1.

MODIFY element-designator {attribute value). ..

element-designator
An element variable or an integer that refers to a condition element on the left­
hand side of the production, which indicates the working-memory element whose
atoms are to be changed.

attribute
An attribute that specifies which atom in the working-memory element is to be
changed. You must specify a value with each attribute.

value
An atom or a list of atoms (if you specify a vector attribute) to replace one or more
atoms in the working-memory element. The corresponding attribute indicates the
field in which the new atom is placed.

Suppose working memory contains the following elements:

l[NIL] (CHECK "NUMBER 102 "AMOUNT 10.06 "COUNTED NO
2[NIL] (CHECK "NUMBER 103 "AMOUNT 22.45 "COUNTED NO
3[NIL] (CHECK "NUMBER 104 "AMOUNT 56.00 "COUNTED NO
4[NIL] (CHECK "NUMBER 108 "AMOUNT 13.10 "COUNTED NO
6 [WHAT-DATE] (COUNT "VALUE 0)
7[WHAT-DATE] (REPLY "DATE 14 NOV 1988)

The following production contains two MODIFY actions:

(P FIND-CHECKS
{ <REPLY>

"DATE
"DATE
"DATE
"DATE

(REPLY "DATE { <DAY> <> STOP } <MONTH> <YEAR>)
<CHECK>
(CHECK "NUMBER <NUMBER> "AMOUNT <AMOUNT>

"COUNTED NO "DATE <DAY> <MONTH> <YEAR>)

2 NOV 1988)
14 NOV 1988)
14 NOV 1988)
25 NOV 1988)

Actions 10-15

MODIFY

{ <COUNTER>
(COUNT AVALUE <VALUE>) }

-->
(WRITE (CRLF) (CRLF) !Found check number! <NUMBER>

lfor $1 <AMOUNT>
ldatedl (SUBSTR <REPLY> DATE INF))

(MODIFY <CHECK> ACOUNTED YES)
(MODIFY <COUNTER> AVALUE (COMPUTE 1 +<VALUE>)))

The first MODIFY action modifies the working-memory element bound to the
element variable <CHECK> by changing the value of the attribute "COUNTED
to YES.

The second MODIFY action modifies the working-memory element bound to the
element variable <COUNTER> by changing the value of the attribute "VALUE to
the result of the function call (COMPUTE 1 + <VALUE>).

When this production is executed, working memory changes as follows:

l[NIL] (CHECK ANUMBER 102 AAMOUNT 10.06 ACOUNTED NO ADATE 2 NOV 1988)
2[NIL] (CHECK ANUMBER 103 AAMOUNT 22.45 ACOUNTED NO ADATE 14 NOV 1988)
4[NIL] (CHECK ANUMBER 108 AAMOUNT 13.10 ACOUNTED NO ADATE 25 NOV 1988)
7[WHAT-DATE] (REPLY ADATE 14 NOV 1988)
9[FIND-CHECKS] (CHECK ANUMBER 104 AAMOUNT 56.00 ACOUNTED YES ADATE 14 NOV 1988)
lO[FIND-CHECKS] (COUNT AVALUE 1)

10-16 Actions

The working-memory element whose time tag is 3 is replaced by the working­
memory element whose time tag is 9, and the new value of the attribute
"COUNTED is YES. The element whose time tag is 6 is replaced by the el­
ement whose time tag is 10, and the new value of the attribute "VALUE is
1.

OPEN FILE

Format

Arguments

Example

OPEN FILE

Opens a file and associates it with a file identifier.

OPENFILE file-id file-spec keyword

file-id
A symbol that represents the file identifier with which the specified file is to be
associated.

file-spec
The VMS file specification for the file to be opened. If you are opening a file for
input, the file must already exist.

NOTE

The comment character for VAX OPS5 is a semicolon(;). Therefore, if
the VMS file specification you specify includes a semicolon, enclose the
specification in vertical bars (I I).

keyword
A keyword that indicates whether the specified file is to be opened for input or
output. If you specify IN, the action opens an existing file for reading only. If you
specify OUT, the action creates a new file and opens it for writing only. If you
specify APPEND, the action opens an existing file for writing, and sets the file
pointer to the end of the file.

The following action opens the file CHECKS.DAT for input and associates it with
the file identifier CHECKS!:

(OPENFILE CHECKSI CHECK.DAT IN)

Actions 10-17

REMOVE

REMOVE

Format

Argument

Example

10-18 Actions

Deletes elements from working memory.

NOTE

The binding between a working-memory element and a condition
element is not removed until the production's execution is complete, or
a RESTORESTATE action or OPS$CLEAR routine is executed.

REMOVE element-designator ...

element-designator
An element variable or an integer that refers to a condition element on the left­
hand side of the production, which indicates the working-memory element to be
deleted. You can specify one or more designators.

Consider the following production:

(P COUNTED-CHECKS
{ <REPLY>

(REPLY ADATE { <DAY> <> STOP } <MONTH> <YEAR>)
-(CHECK ADATE <DAY> <MONTH> <YEAR> ACOUNTED NO)

{ <COUNTER>
(COUNT AVALUE <VALUE>)

-->
(REMOVE <REPLY>)
(REMOVE <COUNTER>)
(MAKE START)
(WRITE (CRLF) (CRLF) !There arel <VALUE> !checks datedl

<DAY> <MONTH> <YEAR> (CRLF)))

The REMOVE actions delete the working-memory elements bound to the element
variables <REPLY> and <COUNTER>.

RESTORESTATE

RESTO RESTATE

Format

Argument

Example

Clears and then restores working memory and the conflict set to the state
recorded in a file produced by the SAVESTATE action or command.

RESTORESTATE file-spec

file-spec
The VMS file specification for a file previously produced by the SAVESTATE
action or command. The action uses the contents of the file to restore the state of
working memory and the conflict set.

NOTE

The comment character for VAX OPS5 is a semicolon(;). Therefore, if
the VMS file specification you specify includes a semicolon, enclose the
specification in vertical bars (I I).

The following action clears and then restores the contents of working memory
and the conflict set to the same state recorded in the file CHECKS.DAT:

(RESTORESTATE CHECKS.DAT)

NOTES

RESTORESTATE clears all working memory elements before loading
the new state; therefore, variable bindings are lost.

After a RESTORESTATE action, GENATOM will produce atoms that
are different from any that were recorded in the saved file but may
repeat atoms that were generated before the RESTORESTATE action
was executed.

Actions 10-19

SAVESTATE

SAVESTATE

Format

Argument

Example

10-20 Actions

Copies to a file the state of working memory and the conflict set. You can later
use the ADDSTATE and RESTORESTATE action or command to add to or
overwrite the current memory with the contents of the file.

SAVESTATE file-spec

file-spec
The VMS file specification for the file to which the action is to copy the state of
working memory and the conflict set.

NOTE

The comment character for VAX OPS5 is a semicolon(;). Therefore, if
the VMS file specification you specify includes a semicolon, enclose the
specification in vertical bars (I I).

The following action copies the state of working memory and the conflict set to
the file CHECKS.DAT:

(SAVESTATE CHECKS.DAT)

WRITE

Format

Arguments

WRITE

Sends output from a program to the terminal or a file. By default, the WRITE
action sends output to the terminal. To send output to a file, you can do one of
the following:

• Specify the WRITE action with a file identifier

• Change the default destination for the WRITE action, using the DEFAULT
action or command

WRITE [file-id] rhs-expression

file-id
The file identifier of the destination file for the WRITE action's output. This
argument is optional. If you do not specify the argument or if the name you
specify is not associated with an open output file, the output is sent to the current
default for the WRITE action (set with the DEFAULT action or command).

rhs-expression
A right-hand-side expression that represents the output. The action evaluates
the expression and sends the output to the terminal or a file. Use the following
functions to format the output:

• CRLF -Carriage return/line feed

• TABTO-Tab

• RJUST-Right justify

If you do not use these functions, the WRITE action displays its output on the
current output line with one space between values. For information about using
these functions, see Sections 5.8.5.1 through 5.8.5.3.

An example of a right-hand-~ide expression follows:

(CRLF) (CRLF) !There arel <VALUE> !checks dated!
<DAY> <MONTH> <YEAR> (CRLF)

NOTE

Specify the right-hand-side expression as a list of atoms. If you specify
attributes and their values in pairs (for example, ANUMBER 102), the
order of the output depends on the assignment of fields to attribute
names.

Actions 10-21

WRITE

Example

10-22 Actions

Consider the following WRITE action:

(WRITE (CRLF) (CRLF) !There arel <VALUE> !checks dated I
<DAY> <MONTH> <YEAR> (CRLF))

This action produces the following output if the variable <VALUE> is bound to 5
and the variables <DAY>, <MONTH>, and <YEAR> are bound to 14, NOV, and
1988, respectively:

There are 5 checks dated 14 NOV 1988

Chapter 11

Functions

This chapter provides descriptions of the VAX OPS5 functions. A function is a
subroutine that performs an operation and returns one or more values to the
program.

Table 11-1 lists the names of the functions and provides brief descriptions.
The rest of the chapter provides detailed descriptions and examples presented
alphabetically by name. For information about function calls, see Section 3.2.1.6.

Most VAX OPS5 functions require at least one argument. You can represent
argument values with atoms, variables bound to atoms, or calls to functions that
return a single atom (that is, COMPUTE, GENATOM, or external functions).
When you specify argument values, separate them with any combination of
spaces, tabs, and carriage returns.

Table 11-1: Summary of Functions

Function

ACCEPT

ACCEPTLINE

COMPUTE

CRLF

GEN ATOM

LITVAL

&JUST

SUBSTR

TAB TO

Description

Reads an atom or a list of atoms (enclosed in parentheses) from the
terminal or a file

Reads a line of input consisting of one or more atoms and lists of atoms
(enclosed in parentheses) from the terminal or a file

Evaluates an arithmetic expression and returns the result

Causes the WRITE action to produce output on a new line

Returns a system-generated atom

Returns the integer that represents an attribute's field

Causes the WRITE action to right justify output in a field of a specified
width

Copies a sequence of atoms from a working-memory element to output
produced by the WRITE action or to another working-memory element
created with the MAKE action or modified by the MODIFY action.

Causes the WRITE action to start writing output in a specified column

Functions 11-1

ACCEPT

ACCEPT

Format

Argument

Example

11-2 Functions

Reads an atom or a list of atoms (enclosed in parentheses) from the terminal or a
file. The list can contain parentheses; the function continues reading until it finds
a closing parenthesis that matches the first opening parenthesis, then it discards
the outermost pair of parentheses, but returns all other parentheses as atoms. If
the function reads only"()", it returns the value NIL.

By default, the ACCEPT function reads input from the terminal. If you want the
function to read input from a file, call the function with the file identifier of an
open input file, or change the default for input, using the DEFAULT action (see
Section 5.8.2).

When the ACCEPT function reads past the end of a file, the function returns the
symbol END-OF-FILE.

ACCEPT [file-id]

file-id
The file identifier of the file from which input is to be read. This argument is
optional. If you do not specify a file identifier, or if the name you specify is not
associated with an open input file, input is read from the current default for the
ACCEPT function (set with the DEFAULT action or command).

The MAKE action in the following production uses the ACCEPT function to read
input:

(P WHAT-NUMBER
{ <START>

(START) }
-->

(REMOVE <START>)
(WRITE (CRLF) !What number are you looking for? I)
(MAKE REPLY ANUMBER (ACCEPT)))

The attribute "'NUMBER is given the value read by the ACCEPT function.

ACCEPTLINE

ACCEPTLINE

Format

Arguments

Example

Reads a line of input terminated by a carriage-return character, discarding all
unquoted parentheses.

If some of the atoms on a line of input have already been read, the line of input is
defined as all the remaining atoms on the current line, that is, from the current
position to the next carriage return (CRLF) character; if no atoms have been
read from the current line, the input line is defined as the whole of the current
line; if all the atoms on the current line have been read, the input line is the line
following the current line.

If the input line contains no atoms, the default values are used.

By default, the ACCEPTLINE function reads input from the terminal. If you
want the function to read input from a file, call the function with the file identifier
of an open input file or change the default for input, using the DEFAULT action
(see Section 5.8.2).

ACCEPTLINE [file-id] [default-value ...]

file-id
The file identifier of the file from which input is to be read. This argument is
optional. If you do not specify a file identifier, or if the name you specify is not
associated with an open input file, input is read from the current default for the
ACCEPTLINE function (set with the DEFAULT action or command).

default-value
An atom that the ACCEPTLINE function is to return if the function reads:

• A line of input from the terminal that consists only of a carriage return

• A file that consists of a line of spaces and tabs

• Past the end of a file

This argument is optional. If you do not specify a default value, the function does
not return a value in these cases.

You can specify one or more default values.

The MAKE action in the following production contains a call to the ACCEPTLINE
function, which returns the atoms NO and DATE if the input line is empty:

Functions 11-3

ACCEPTLINE

11-4 Functions

(P WHAT-DATE
{ <START>

(START)
-->

(REMOVE <START>)
(WRITE (CRLF) !What date do you want to search for? I)
(MAKE REPLY ADATE (ACCEPTLINE NO DATE)))

The function call reads the values you type at the terminal until you press the
Return key. The MAKE action uses the values to create a working-memory
element that has the class name REPLY and the attribute A DATE. If the default
for input is a file, the values are read from that file rather than from the terminal.
If the function reads a blank line from the file, or if input is from the terminal
and the user only presses the Return key, the function returns the atoms NO and
DATE to the attribute A DATE.

COMPUTE

Format

Argument

Example

COMPUTE

Evaluates an arithmetic expression and returns the result.

COMPUTE arithmetic-expression

arithmetic-expression
The arithmetic expression to be evaluated. An arithmetic expression can contain
numbers, variables bound to numbers, arithmetic operators, and function calls. If
an expression contains both an integer and a floating-point number, the result is
a floating-point number.

NOTE

If you specify a function, it must return only one atom in register RO.

The operators you can use are:

+

*
II

\\

Addition

Subtraction

Multiplication

Division

Modulus

NOTE

Use the modulus operator only with an integer or a variable bound to
an integer.

Use infix notation in VAX OPS5 arithmetic expressions; that is, place operators
between operands. Separate each operator and operand with a space.

All operators have the same priority, and the COMPUTE function evaluates them
from right to left. To override the right-to-left evaluation, use parentheses.

Consider the following MODIFY action:

(MODIFY <COUNTER> "'VALUE (COMPUTE 1 + <VALUE>))

The call to the COMPUTE function adds 1 to the value bound to the variable
<VALUE> and returns the result to the attribute AVALUE.

Functions 11-5

CRLF

CRLF

Format

Example

11-6 Functions

Causes the WRITE action to produce output on a new line.

NOTE

Use the CRLF function with the WRITE action only.

CALF

Consider the following production:

(P WHAT-DATE
{ <START>

(START)
-->

(REMOVE <START>)
(WRITE (CRLF) (CRLF) IWhat date do you want to search for?

(CRLF) (CRLF) !Enter the day, the first three I
I letters of the month, and the year. I

(CRLF)
IFor example -- 14 NOV 19881

(CRLF) (CRLF)
I Type STOP to halt the program. I

(CRLF) (CRLF)
IDate>>> I)

(MAKE COUNT AVALUE 0)
(MAKE REPLY ADATE (ACCEPTLINE)))

The WRITE action produces the following output:

What date do you want to search for?

Enter the day, the first three letters of the month, and the year.
For example -- 14 NOV 1988

Type STOP to halt the program.

Date>>>

GENATOM

Format

Example

GENATOM

Returns a system-generated atom. Each time the run-time system starts execut­
ing a program, the first call to the GENATOM function generates the atom G: 1.
The second atom the function generates is G:2, the third atom is G:3, and so on.
For information about how to use system-generated atoms, see Section 5.10.

GENATOM

The following BIND action binds the variable <TRANSACTION-ID> to the atom
produced by the GENATOM function:

(BIND <TRANSACTION-ID> (GENATOM))

Functions 11-7

LITVAL

LITVAL

Format

Argument

Example

11-8 Functions

Returns the integer that represents an attribute's field. Use this function to com­
pute the field that contains an atom in a vector attribute's value. For information
about how to bind a variable to an attribute's field, see Section 5.6.2.

LITVAL attribute-name

attribute-name
The name of an attribute.

Suppose a LITERALIZE declaration assigned field 2 to the attribute name
NUMBER. Consider the following WRITE action:

(WRITE !Field! (LITVAL NUMBER)
lis assigned to the attribute ANUMBER. I)

The call to the LITVAL function returns the atom 2, and the WRITE action
displays the following output:

Field 2 is assigned to the attribute ANUMBER.

RJUST

Format

Argument

Example

RJUST

Causes the WRITE action to right-justify output in a field of a specified width.
This function is useful for writing a column of numbers with decimal positions
aligned.

Calls to the RJUST function can follow calls to the CRLF and TABTO functions
but must directly precede the value being written. For example:

(WRITE (CRLF)
(TABTO 5)
(RJUST 10) 1250. 00 I)

NOTE

Use the RJUST function with the WRITE action only.

RJUST width

width
An integer that indicates the width of the field in which output is to be placed. If
the output being written requires more character positions than you specify for
the field, the WRITE action writes the output as if the RJUST function had not
been specified. That is, the action inserts one space and then writes the output.

The following WRITE action writes a vertical list of numbers right-justified in a
column 10 characters wide:

(WRITE (CRLF) (RJUST 10) 110. 061
(CRLF) (RJUST 10) 12. 451
(CRLF) (RJUST 10) 156. 00 I
(CRLF) (RJUST 10) 1250. 00 I)

The output is:

10.06
2.45

56.00
250.00

Functions 11-9

SUBSTR

SUBSTR

Format

Arguments

Example

Copies a sequence of atoms from a working-memory element to output produced
by the WRITE action or to another working-memory element created with the
MAKE action or modified by the MODIFY action.

SUBSTR element-designator first-value last-value

element-designator
An element variable or integer that refers to a condition element on the left-hand
side of the production, which indicates the working-memory element from which
atoms are to be copied.

first-value
An attribute name or integer that refers to the first atom to be copied from the
working-memory element.

last-value
An attribute name or integer that refers to the last atom to be copied from the
working-memory element. You can also specify the symbol INF, which causes the
function to copy atoms until it gets to the end of the element. If the first and last
values that you specify are the same, the function copies only one atom.

The WRITE action in the following production contains a call to the SUBSTR
function:

(P FIND-CHECKS
{ <REPLY>

-->

(REPLY ADATE {<DAY><> STOP },<MONTH> <YEAR>)
<CHECK>
(CHECK ANUMBER <NUMBER> AAMOUNT <AMOUNT>

ACOUNTED NO ADATE <DAY> <MONTH> <YEAR>)
<COUNTER>
(COUNT AVALUE <VALUE>) }

(WRITE (CRLF) (CRLF) !Found check number! <NUMBER>
lfor $1 <AMOUNT>
ldatedl (SUBSTR <REPLY> DATE INF))

(MODIFY <CHECK> ACOUNTED YES)
(MODIFY <COUNTER> AVALUE (COMPUTE 1 +<VALUE>)))

The SUBSTR function copies the atoms in the value of the vector attribute
"DATE. The WRITE action then includes those atoms in its output.

11-10 Functions

TABTO

Format

Argument

Example

TABTO

Causes the WRITE action to start writing output in a specified column.

NOTE

Use the TABTO function with the WRITE action only.

TABTO column

column
An integer that indicates the column in which the WRITE action is to start
writing output. If you specify a column that is to the left of the last column
in which output is written, the WRITE action writes the output on a new line,
starting at the specified column.

The following WRITE action displays the headers of three columns:

(WRITE (CRLF) (TABTO 10) NUMBER
(TABTO 25) AMOUNT
(TABTO 40) DATE)

The output is:

NUMBER AMOUNT DATE

Functions 11-11

Chapter 12

Command Interpreter Commands

This chapter describes the commands you can use with the VAX OPS5 command
interpreter. Table 12-1 lists the names of the commands and gives brief
descriptions. The rest of the chapter provides detailed descriptions and examples
presented alphabetically by name. For more information about commands, see
the VAX OPS5 User's Guide.

Most VAX OPS5 commands require at least one argument. Argument values
must be atoms; they cannot be variables or function calls and cannot include the
quote operator(//). When you specify argument values, separate them with any
combination of spaces, tabs, and carriage returns.

There are two ways of entering commands: with and without enclosing
parentheses. If you start without an opening parenthesis, the command
interpreter does not check pairing of parentheses within the command. You can
continue the command on a new line by ending the line with a hyphen (-) and a
carriage return.

If you start a command with an opening parenthesis, every opening parenthesis
must have a corresponding closing one. If you want to include an extra
parenthesis in a command you have started this way, you must include it in
quote characters as follows: I (I , or the interpreter will not allow you to end
the command until it finds the corresponding parenthesis. Also, you can continue
the command over any number of lines, ending each line with a carriage return
and starting each new line at the continuation prompt (_OPS5>).

Nesting parentheses is convenient for entering the body of a production for use
by a BUILD action. For example:

OPSS>(MAKE BUILDME NEW-PRODUCTION (<X>) --> (WRITEIHil))

You can abbreviate commands, as long as the abbreviation is unambiguous.

The command interpreter treats a semicolon(;) as a comment character, allowing
you to include comments in your commands. This is particularly useful in
command files that are executed with the @ command. If a command argument
includes a semicolon, enclose the argument in vertical bars (I I) to ensure that
the argument is evaluated and not treated as a comment.

Command Interpreter Commands 12-1

Table 12-1: Summary of Commands

Command

@

ADDSTATE

AFTER

BACK

BUILD

CALL

CLOSE FILE

cs
DEFAULT

DISABLE

ENABLE

EXCISE

EXIT

MAKE

MATCHES

MODIFY

NEXT

OPENFILE

PBREAK

PPWM

REMOVE

REPORT

RESTART

RESTO RESTATE

RUN

SAVESTATE

SHOW SPACE

Description

Opens a file containing VAX OPS5 commands and executes the
commands

Adds the contents of a file produced by the SAVESTATE action or
command to the current state of working memory and the conflict set

Specifies the number of recognize-act cycles that must be executed
before a specified catcher is executed

Restores working memory and the conflict set to the state of a
previous recognize-act cycle

Adds a STARTUP statement, a production, or a catcher to a halted
executable image

Calls an external subroutine

Closes the open files associated with specified file identifiers and
dissociates the identifiers from the files

Displays the current contents of the conflict set

Sets the terminal or a file as the default input source for the ACCEPT
and ACCEPTLINE functions, or the default output destin~tion for
the WRITE action or trace output

Disables run-time system features

Enables run-time system features

Disables productions

Exits from the command interpreter and returns control to the
operating system

Creates a working-memory element

Displays the time tags of working-memory elements that match
condition elements in specified productions

Changes one or more atoms in an existing working-memory element

Displays the instantiation the run-time system will select from the
conflict set for the act phase of the next recognize-act cycle

Opens a file and associates it with a file identifier

Displays productions that have breakpoints set, sets breakpoints for
productions, or deletes b!eakpoints from productions

Displays working-memory elements that match a specified element
pattern

Deletes elements from working memory

Generates a timing report and a cause report that you can use to
debug and optimize VAX OPS5 programs

Reruns an OPS5 program from the OPS5 level

Clears and then restores working memory and the conflict set tc,
the state recorded in a file produced by the SAVESTATE action or
command

Executes recognize-act cycles

Copies the state of working memory and the conflict set to a file

Displays information about working memory and the VAX OPS5
symbol table

(continued on next page)

12-2 Command Interpreter Commands

Table 12-1 (Cont.): Summary of Commands

Command

STRATEGY

WATCH

WBREAK

WM

Description

Displays or sets the conflict-resolution strategy

Displays or sets the run-time system's trace level

Displays working-memory elements that have breakpoints set, sets
breakpoints for working-memory elements, or deletes breakpoints
from working-memory elements ·

Displays working-memory elements

Command Interpreter Commands 12-3

@

@

Format

Argument

Example

Opens a file containingVAX OPS5 commands and executes the commands. The
file must contain only VAX OPS5 commands. If the file cannot be opened, the
run-time system displays the following message:

%0PSRT-W-OPENERR, @ -- unable to open specified file

You can use the @ command in a STARTUP statement. For a description of the
STARTUP statement, see Chapter 9.

@file-spec

file-spec
The VMS file specification for a file containing VAX OPS5 commands to be
executed.

NOTE

The comment character for VAX OPS5 is a semicolon(;). Therefore, if
the VMS file specification you give includes a semicolon, enclose the
specification in vertical bars (I I).

Suppose the file CHECKS.DAT consists of the following commands:

(MAKE CHECK ANUMBER 102 AAMOUNT 10.06 A COUNTED NO
~DATE 2 NOV 1988)

(MAKE CHECK ANUMBER 103 AAMOUNT 22.45 A COUNTED NO
ADATE 14 NOV 1988)

(MAKE CHECK ANUMBER 104 AAMOUNT 56.00 A COUNTED NO
ADATE 14 NOV 1988)

(MAKE CHECK ANUMBER 108 AAMOUNT 13.iO A COUNTED NO
ADATE 25 NOV 1988)

(MAKE START)
(STRATEGY MEA)

The following command opens the file CHECKS.DAT and executes five MAKE
commands and a STRATEGY command:

OPS5>@ ~HECKS.DAT

12-4 Command Interpreter Commands

ADDSTATE

ADDSTATE

Format

Argument

Example

Adds the contents of a file produced by the SAVESTATE action or command to
the current state of working memory and J_he conflict set. The time tags of the
working memory-elements in the saved file are ignored.

ADDSTATE file-spec

file-spec
A VMS file specification for a file previously produced by the SAVESTATE action
or command.

NOTE

The comment character for VAX OPS5 is a semicolon(;). Therefore, if
the VMS file specification you give includes a semicolon, enclose the
specification in vertical bars (I I).

Suppose you use the SAVESTATE command to store the state of working memory
and the conflict set in the file CHECKS.DAT. The following command adds the
contents of the file CHECKS.DAT to the current state of working memory and the
conflict set:

OPS5>ADDSTATE CHECKS.DAT

Command Interpreter Commands 12-5

AFTER

AFTER

Format

Arguments

Example

Specifies the number of recognize-act cycles that must be executed before a
specified catcher is executed, thus controlling loops in a program.

For more information about catchers and controlling loops, see Section 5.9.

AFTER cycles catcher-name

cycles
A positive integer that specifies the number of recognize-act cycles that are to be
executed before the specified catcher is executed. If execution halts before the
specified number of cycles has been executed, the catcher is not executed.

catcher-name
A symbol that names a catcher.

The following command specifies that the catcher named BALANCE is to be
executed after five recognize-act cycles have been executed:

OPSS>AFTER 5 BALANCE

If program execution halts before five recognize-act cycles have been executed, the
catcher is not executed.

12-6 Command Interpreter Commands

BACK

Format

Argument

Example

BACK

Restores working memory and the conflict set to the state of a previous recognize­
act cycle. However, the command does not restore the effects of actions and
commands that do not modify working memory or the conflict set (such as I/O
operations).

By default, the BACK command is disabled to increase the speed of program
execution. To enable the command for debugging, use the ENABLE command
with the keyword BACK (see the description of the ENABLE command).

For more information about backing up over recognize-act cycles, see the VAX
OPS5 User's Guide.

BACK [cycles]

cycles
An integer that specifies the number of recognize-act cycles the run-time system
is to back up. The maximum number of cycles that can be backed up is 64.

This argument is optional. If you do not specify the argument, the system backs
up one cycle.

The following command restores working memory and the conflict set to the state
that existed before the last three recognize-act cycles were executed:

OPSS>BACK 3

Command Interpreter Commands 12-7

BUILD

BUILD

Format

Example

Adds a STARTUP statement, a production, or a catcher to a running program
that has been paused.

Use the following procedure.

1. Enter BUILD at the OPS5> prompt. OPS5 should display the _BUILD>
prompt.

2. Enter the information you want to add to the image. Use as many lines as
necessary.

3. Enter ENDBUILD or type Ctrl/Z. OPS5 should display the OPS5> prompt.

4. Enter RESTART to resume execution with the new information in effect.

BUILD

TEST.EXE is a program that does not yet contain any constructs. The following
entries add a STARTUP statement to TEST.EXE.

OPS5>BUILD
_BUILD> (STARTUP (MAKE X))

BUILD> ENDBUILD
OPS5>RESTART

The following entries add a production to TEST.EXE.

OPS5>BUILD
BUILD> (P TEST (<X>) --> (WRITE (CRLF) !Dear Subscriber:!))

=BUILD> lctr11zl
OP SS> RESTART

Now TEST.EXE prints the message:

Dear Subscriber:

12-8 Command Interpreter Commands

CALL

Format

Arguments

Example

CALL

Calls an external subroutine, which is a routine written in a VAX language other
than VAX OPS5.

For information about calling external subroutines, see Chapter 6.

CALL external-routine-name [external-routine-argument .. .]

external-routine-name
The name of the external subroutine to be called. Specify the name of a subrou­
tine that has been declared with the EXTERNAL declaration. Otherwise, the
run-time system displays the following warning:

?OPSRT-~-NOTEXTERNAL, CALL -- routine not declared external:
AAAAAA

external-routine-argument
A number or symbol representing the value of an external routine's argument.
The arguments are placed in order in the result element, starting in position one,
and can be retrieved by using the OPS$PARAMETER support routine.

The following EXTERNAL declaration declares an external subroutine named
READ_NYSE_EXTRACT:

(EXTERNAL READ_NYSE_EXTRACT)

The following command calls the subroutine READ_NYSE_EXTRACT with the
atom DISNEY as an argument:

OPS5>CALL READ NYSE EXTRACT DISNEY - -

Command Interpreter Commands · 12-9

CLOSEFILE

CLOSEFILE

Format

Argument

Example

Closes the open files associated with specified file identi~ers and dissociates the
identifiers from the files.

CLOSEFILE file-id ...

file-id
The file identifier of an open file to be closed. You can specify one or more file
identifiers.

The following command closes the open files associated with the file identifiers
CHECKS! and CHECKSO:

OPSS>CLOSEFILE CHECKSI CHECKSO

12-10 Command Interpreter Commands

cs

Format

Example

cs

Displays the current contents of the conflict set. This contains instantiations
that include a production name and a list of time tags of working-memory ele­
ments that satisfy that production's left-hand side. The CS command displays
instantiations in the following format:

production time-tag-1 time-tag-2 ...

where time-tag-1 is the time tag of a working-memory element that matches the
first condition element on the left-hand side, time-tag-2 matches the second, and
so on.

cs

The following command displays the contents of the conflict set:

OPSS>CS
FIND-CHECKS 12 3 11
FIND-CHECKS 12 4 11
FIND-CHECKS 12 5 11
FIND-CHECKS 12 6 11
FIND-CHECKS 12 2 11

Command Interpreter Commands 12-11

DEFAULT

DEFAULT

Format

Arguments

Example

Sets the terminal or a file as the default input source for the ACCEPT and
ACCEPTLINE functions, or the default output destination for the WRITE action
or trace output. If you do not use the DEFAULT command or action to specify
otherwise, the default source for input and destination for output are SYS$INPUT
and SYS$0UTPUT.

DEFAULT location keyword

location
The source from which input is to be read or the destination to which output is
to be written. The value can be either a file identifier or the symbol NIL. If you
specify a file identifier, the DEFAULT command sets the source or destination
to the open file associated with that name. If you specify NIL, the input is read
from or output is sent to the terminal.

keyword
A keyword that specifies whether the default is to be set for the ACCEPT or
ACCEPTLINE functions, the WRITE action, or trace output. Table 12-2 lists the
keywords you can specify.

Table 12-2:· DEFAULT Command Keywords

Keyword

ACCEPI'

TRACE

WRITE

Description

Input read by the ACCEPI' and ACCEPI'LINE functions is read from the
specified source.

Trace output is sent to the specified destination. You can enable and disable
trace output, using the WATCH command.

Output produced by the WRITE action is sent to the specified destination.

The following command sets the open file associated with the file identifier name
CHECKS! to be the default source of input for the ACCEPT and ACCEPTLINE
functions:

OPS5>DEFAULT CHECKSI ACCEPT

To set the default back to the terminal, specify:

OPS5>DEFAULT NIL ACCEPT

12-12 Command Interpreter Commands

DISABLE

Format

Argument

Example

DISABLE

Disables run-time system features, such as the run-time system message display,
the Performance Measurement and Evaluation (PME) package, and the BACK
command. To disable a feature, specify the appropriate keyword.

You can use the DISABLE command in a STARTUP statement. For a description
of the STARTUP statement, see Chapter 9.

For more information about disabling run-time system features, see the VAX
OPS5 User's Guide.

DISABLE keyword

keyword
A keyword that specifies the feature to be disabled. The keywords and the
facilities they disable are listed in Table 12-3.

Table 12-3: DISABLE Command Keywords

Keyword Facility Default

BACK BACK command Disabled

HALT Run-time informational messages Enabled

TIMING PME package Disabled

WARNING Run-time warning and fatal error messages Enabled

The following command disables the BACK command:

OPSS>DISABLE BACK

Command Interpreter Commands 12-13

ENABLE

ENABLE

Format

Argument

Example

Enables run-time system features, such as the run-time system message display,
the Performance Measurement and Evaluation (PME) package, and the BACK
command. To enable a feature, specify the appropriate keyword.

You can use the ENABLE command in a STARTUP statement. For a description
of the STARTUP statement, see Chapter 9.

For more information about enabling run-time system features, see the VAX.
OPS5 User's Guide.

ENABLE keyword

keyword
A keyword that specifies the feature to be enabled. The keywords and the
facilities they enable are listed in Table 12-4.

Table 12-4: ENABLE Command Keywords

Keyword Facility Default

BACK BACK command Disabled

HALT Run-time informational messages Enabled

TIMING PME package Disabled

WARNING Run-time warning and fatal error messages Enabled

The following command enables the BACK command:

OPSS>ENABLE BACK

12-14 Command Interpreter Commands

EXCISE

Format

Argument

Example

EXCISE

Disables productions. After a production has been disabled, it cannot be executed.
To use the production again, you must exit from the command interpreter and
reexecute the program.

Use the EXCISE command to disable productions that appear to be causing
errors.

C:i\CiSc pfuuuctfun-narne ...

production-name
The name of a production to be disabled. You can specify the name of one or more
productions.

The following command disables the productions named FIND-CHECKS and
COUNTED-CHECKS:

OPSS>EXCISE FIND-CHECKS COUNTED-CHECKS

Command Interpreter Commands 12-15

EXIT

EXIT

Format

Example

Exits from the command interpreter and returns control to the operating system,
or to the calling program if the VAX OPS5 program was called as a subroutine.
Using this command is equivalent to typing Ctrl/Z.

EXIT

The following command exits from the command interpreter and returns control
to the operating system:

OPSS>EXIT
$

12-16 Command Interpreter Commands

MAKE

Format

- " Argumems

Example

MAKE

Creates a working-memory element.

For more information about working-memory elements, see Section 2.1.

MAKE [class-name] [{scalar-attribute value} ...] [vector-attribute value]

class-name
A symbol that names the class of the element to be created. This argument is
optional. If you specify a class name, the command places the name in the first
field of the working-memory element. If you do not specify a class name, the
command places NIL in the first field of the element.

scalar-attribute
A scalar attribute that describes a characteristic of the working-memory element
to be created and specifies the field of the working-memory element in which the
corresponding value will be placed. You must specify each scalar attribute with a
value.

value
An atom to be placed in the field of the working-memory element indicated by the
corresponding attribute.

vector-attribute
A vector attribute that describes a characteristic of the working-memory element
to be created. You must specify a vector attribute with a value. Specify only one
vector attribute in a MAKE command.

value
One or more atoms to be placed in the working-memory element. The first atom
is placed in the field indicated by the vector attribute. If the vector attribute is
declared, the first atom is placed in field 256, and the remaining atoms are placed
sequentially in the fields that follow.

Consider the following MAKE command:

OPSS>(MAKE CHECK ANUMBER 102 AAMOUNT 10.06 ACOUNTED NO ADATE 2 NOV 1988)

This command creates the following working-memory element:

1 [NIL] (CHECK) ANUMBER 102 AAMOUNT 10.06 ACOUNTED NO ADATE 2 NOV 1988)

Command Interpreter Commands 12-17

MATCHES

MATCHES

Format

Argument

Example

Displays the time tags of working-mell}.pry elements that match condition el­
ements in specified productions. The command lists the time tags for the
working-memory elements that match the first condition element, then the
second condition element, and so on. The command lists the time tags as follows:

*** matches for n ***
time-tag

The n in the preceding output indicates the position of the condition element in
the production. For example, if the condition element is the first element in a
production, n is 1.

Working-memory elements might match more than one condition element, partic­
ularly if the condition elements in .productions contain variables. Therefore, the

J- .

MATCHES command also displays the time tags of the working-memory elements
that match more than one condition element.

For more information about displaying match information, see the VAX OPS5 ·
User's Guide.

MATCHES production-name ...

production-name
The name of a production for which match information is to be displayed. You
can specify the name of one or more productions.

Suppose working memory contains the following elements:

1 [NIL] (CHECK ANUMBER 102 A AMOUNT 10.06 A COUNTED NO ADATE 2 NOV 1988)
2 [NIL] (CHECK ANUMBER 103 A AMOUNT 22.45 A COUNTED NO ADATE 14 NOV 1988)
3 [NIL] (CHECK ANUMBER 104 A AMOUNT 56.00 A COUNTED NO ADATE 14 NOV 1988)
4 [NIL] . (CHECK ANUMBER 108 A AMOUNT 13.10 A COUNTED NO ADATE 25 NOV 1988)
6 [WHAT-DATE] (COUNT AVALUE 0)
7 [WHAT-DATE] (REPLY ADATE 14 NOV 1988)

12-18 Command Interpreter Commands

Consider the following production:

(P FIND-CHECKS
{ <REPLY>

(REPLY ADATE <D~J> <> STOP } <MONTH> <YEAR>)
<CHECK>
(CHECK ANUMBER <NUMBER> AAMOUNT <AMOUNT>

ACOUNTED NO ADATE <DAY> <MONTH> <YEAR>)
<COUNTER>
(COUNT AVALUE <VALUE>) }

-->
(WRITE (CRLF) (CRLF) !Found check number! <NUMBER>

!for $1 <AMOUNT>
ldatedl (SUBSTR <REPLY> DATE INF))

(MODIFY <CHECK> ACOUNTED YES)
(MODIFY <COUNTER> AVALUE (COMPUTE 1 +<VALUE>)))

The following command displays matches for this production:

OPS5>MATCHES FIND-CHECKS
>>> FIND-CHECKS <<<
*** matches for 1 ***
7
*** matches for 2 ***
1
2
3
4
*** matches for 1 2 ***
7 2
7 3
*** matches for 3 ***
6

MATCHES

Command· Interpreter Commands 12-19

MODIFY

MODIFY

Format

Arguments

Example

Changes one or more atoms in an existing working-memory element. The com­
mand removes an element from working memory and uses the atoms in that
element and new atoms you specify to create a new element. Therefore, when you
modify a working-memory element, the element's time tag changes.

You can change more than one atom in a MODIFY command.

For more information about working-memory elements, see Section 2.1.

MODIFY time-tag {attribute value} ...

time-tag
The time tag of the working-memory element whose atoms are to be changed.

attribute
An attribute that specifies which value in the working-memory element is to be
changed. You must specify each attribute with a value.

value
An atom (or a list of atoms if you specify~ vector attribute) to replace one or more
atoms in the working-memory element. The corresponding attribute indicates the
field in which the new atom is placed.

Suppose working memory contains the following elements:

1 [NIL] (CHECK ANUMBER 102 A AMOUNT 10.06 A COUNTED NO ADATE 2 NOV 1988)
2 [NIL] (CHECK ANUMBER 103 A AMOUNT 22.45 A COUNTED NO ADATE 14 NOV 1988)
3 [NIL] (CHECK ANUMBER 104 A AMOUNT 56.00 A COUNTED NO ADATE 14 NOV 1988)
4 [NIL] (CHECK ANUMBER 108 A AMOUNT 13.10 A COUNTED NO ADATE 25 NOV 1988)
6 [WHAT-DATE] (COUNT AVALUE 0)
7 [WHAT-DATE] (REPLY ADATE 14 NOV 1988)

The following command changes an atom in the working-memory element whose
time tag is 3:

OPS5>MODIFY 3 ACOUNTED YES

The command removes the element whose time tag is 3 from working memory
and creates the following working-memory element:

9 [NIL] (CHECK ANUMBER 104 AAMOUNT 56.00 ACOUNTED YES ADATE 14 NOV 1988)

12-2~ Command Interpreter Commands

NEXT

Example

NEXT

Displays the instantiation the run-time system will select from the conflict set for
the act phase of the next recognize-act cycle. The NEXT command displays the
instantiation in the following format:

production time-tag-1 time-tag-2 ...

The output format is the same as for the CS command.

NEXT

The following command shows that the next instantiation· the run-time system
will select from the conflict set is FIND-CHECKS:

OPSS>NEXT
FIND-CHECKS 12 6 11

Command Interpreter Commands 12-21

OPEN FILE

OPEN FILE

Format

Arguments

Example

Opens a file and associates it with a file identifier.

OPENFILE file-id file-spec keyword

file-id
A symbol that represents the file identifier with which the specified file is to be
associated.

file-spec
The VMS file specification for the file to be opened. If you are opening a file for
input, the file must already exist.

NOTE

The comment character for VAX OPS5 is a semicolon(;). Therefore, if
the VMS file specification you give includes a semicolon, enclose the
specification in vertical bars (I I).

keyword
A keyword that indicates whether the specified file is to be opened for input or
output. If you specify IN, the command opens an existing file for reading only. If
you specify OUT, the command creates a new file and opens it for writing only.
If you specify APPEND, the command opens an existing file for writing, and sets
the file pointer to the end of the file.

The following command opens the file CHECKS.DAT for input and associates it
with the file identifier CHECKS!:

OPSS>OPENFILE CHECKSI CHECKS.DAT IN

12-22 Command Interpreter Commands

PBREAK

Format

Argument

Example

PBREAK

Displays productions that have breakpoillts set, sets breakpoints for productions,
or deletes breakpoints from productions. When the run-time system encounters a
breakpoint, the system finishes executing the current recognize-act cycle, displays
the following message, and invokes the command interpreter:

%0PSRT-I-PBREAK, PBREAK encountered

OPS5>

PBREAK [production-name ...]

production-name
The name of a production. You can specify one or more production names. If you
specify the name of a production for which a breakpoint is not set, the command
sets a breakpoint. If you specify the name of a production for which a breakpoint
is set, the command deletes the breakpoint.

The argument is optional. If you do not specify the name of a production, the
command displays the names of the productions for which breakpoints are set.

The following command displays the names of the productions for which break­
points are set:

OPS5>PBREAK
WHAT-DATE
COUNTED-CHECKS

Suppose a breakpoint is not set for the production named FIND-CHECKS, and a
breakpoint is set for the production named COUNTED-CHECKS. The following
commands set a breakpoint for the production FIND-CHECKS and delete the
breakpoint from the production COUNTED-CHECKS:

OPS5>PBREAK
COUNTED-CHECKS
OPS5>PBREAK FIND-CHECKS COUNTED-CHECKS
OPS5>PBREAK
FIND-CHECKS

Command Interpreter Commands 12-23

PPWM

PPWM

Format

Arguments

Displays working-memory elements that match a specified element pattern.
Element patterns are similar to working-memory elements and can include
a class name, scalar attributes specified with values, and a vector attribute
specified with a value.

When the command displays a working-memory element, the output includes the
following information:

• Time tag

• Name of the production that created the element

• List of atoms in the element

The system displays this information in the following format:

time-tag [production-name] (class-name attribute-1 value-1 attribute-2 value-2 ...)

If you do not specify a pattern, the command displays all the elements in working
memory.

PPWM [class-name] [{scalar-attribute value} ...] [{vector-attribute value}]

class-name
A symbol that names the class of working-memory elements to be displayed. This
argument is optional.

scalar-attribute
A scalar attribute that describes a characteristic of the working-memory elements
to be displayed and specifies the field of the working-memory elements in which
the corresponding value is stored. You must specify each scalar attribute with a
value.

value
An atom in the working-memory elements to be displayed.

vector-attribute
A vector attribute that describes a characteristic of the working-memory elements
to be displayed. You must specify a vector attribute with a value. Specify only
one vector attribute in an element pattern.

value
One or more atoms in the working-memory elements to be displayed.

12-24 Command Interpreter Commands

Example

PPWM

The following command displays all elements in working memory:

OPS5>PPWM
1 [NIL] (CHECK A NUMBER 102 A AMOUNT 10.06 A COUNTED NO ADATE 2 NOV 1988)
2 [NIL] (CHECK A NUMBER 103 A AMOUNT 22.45 A COUNTED NO ADATE 14 NOV 1988)
3 [NIL] (CHECK A NUMBER 104 A AMOUNT 56.00 A COUNTED NO ADATE 14 NOV 1988)
4 [NIL] (CHECK ANUMBER 108 A AMOUNT 13.10 A COUNTED NO ADATE 25 NOV 1988)
6 [WHAT-DATE] (COUNT AVALUE 0)
7 [WHAT-DATE] (REPLY ADATE 14 NOV 1988)

The following command displays the elements in working memory that match the
specified element pattern:

OPS5>PPWM ADATE 14 NOV 1988
2 [NIL] (CHECK ANUMBER 103 AAMOUNT 22.45 ACOUNTED NO ADATE 14 NOV 1988)
3 [NIL] (CHECK ANUMBER 104 AAMOUNT 56.00 ACOUNTED NO ADATE 14 NOV 1988)
7 [WHAT-DATE] (REPLY ADATE 14 NOV 1988)

Command Interpreter Commands 12-25

REMOVE

REMOVE

Format

Argument

Example

Deletes elements from working memory.

REMOVE time-tag ...

time-tag
An integer that represents the time tag of a working-memory element to be
deleted. You can specify one or more time tags. You can also specify an. asterisk
(*) to delete all working-memory elements.

The following command deletes all working-memory elements:

OPSS>REMOVE *

The following command deletes the working-memory elements whose time tags
are 3 and 4:

OPSS>REMOVE 3 4

12-26 Command Interpreter Commands

REPORT

Format

Argument

Example

REPORT

Generates a timing report and a cause report that you can use to debug and
optimize VAX OPS5 programs. The reports include the output of the Performance
Measurement and Evaluation (PME) package and are placed in the files
TIMINGCPU.TXT and TIMINGCAU.TXT. When you exit from the VAX OPS5
command interpreter, you can use the DCL command TYPE to display the reports
on the terminal or the DCL command PRINT to print hard-copy listings of the
reports.

For more information about the PME package, see the VAX OPS5 User's Guide.

REPORT keyword

keyword
The keyword TIMING causes the REPORT command to generate reports using
the data collected by the PME package. The PME package is disabled by default.
To enable and disable the package, use the ENABLE and DISABLE commands
with the keyword TIMING.

The following command generates a timing and cause report, using the output
of the PME package, and places the reports in the files TIMINGCPU.TXT and
TIMINGCAU.TXT:

OPSS>REPORT TIMING

Command Interpreter Commands 12-27

RESTART

RESTART

Format

Example

Lets you rerun a paused VAX OPS5 program from the beginning, without exiting
to the DCL level.

The RESTART command:

• Removes all elements from working memory and the conflict set

• Resets the time-tag counter

• Resets the DEFAULT WRITE, DEFAULT ACCEPT, and DEFAULT TRACE
files to NIL

• Closes all files opened with the OPENFILE command

• Resets the recognize-act cycle counter

• Executes the STARTUP statement

RESTART

The following command reruns from the beginning a program that has been
paused.

OPSS>RESTART

12-28 Command Interpreter Commands

RESTO RESTATE

RESTO RESTATE

Format

Araument -

Example

Clears and then restores working memory and the conflict set to the state
recorded in a file produced by the SAVESTATE action or command.

RESTORESTATE file-spec

file-spec
The VMS file specification for a file previously produced by the SAVESTATE
action or command. The command uses the contents of the file to restore working
memory and the conflict set.

NOTE

The comment character for VAX OPS5 is a semicolon(;). Therefore, if
the VMS file specification you give includes a semicolon, enclose the
specification in vertical bars (I I).

The following command clears and then restores the contents of working memory
and the conflict set to the same state recorded in the file CHECKS.DAT:

OPS5>RESTORESTATE CHECKS.DAT

Command Interpreter Commands 12-29

RUN

RUN

Format

Argument

Example

Causes the run-time system to execute recognize-act cycles. The run-time system
does not execute recognize-act cycles until this command has been executed. You
can use the RUN command to control the number of recognize-act cycles the
system executes.

You can use the RUN command in a STARTUP statement. For a description of
the STARTUP statement, see Chapter 9.

For more information about executing recognize-act cycles, see the VAX OPS5
User's Guide.

RUN [integer]

integer
The number of recognize-act cycles the run-time system is to execute. This
argument is optional. If you do not specify an integer, the run-time system
executes recognize-act cycles until no productions are satisfied or a HALT action,
breakpoint, or Ctrl/C interrupts execution.

NOTE

If the program halts, the run-time system does not execute the number
of recognize-act cycles indicated by the integer.

The following command starts executing recognize-act cycles:

OPS5>RUN

The following command executes four recognize-act cycles:

OPS5>RUN 4

The following STARTUP statement includes the RUN command:

(STARTUP
(RUN))

When you enter the DCL command RUN to execute a program that includes
this statement, the run-time system starts executing recognize-act cycles without
invoking the command interpreter.

12-30 Command Interpreter Commands

SAVESTATE

SAVESTATE

Format

Argument

Example

Copies the state of working memory and the conflict set to a :file. You can restore
the contents of that :file to working memory and the conflict set later, using the
ADDSTATE and RESTORESTATE actions and commands.

SAVESTATE file-spec

file-spec
The VMS :file specification for the :file to which the command is to copy the state
of working memory and the conflict set.

NOTE

The comment character for VAX OPS5 is a semicolon(;). Therefore, if
the VMS :file specification you give includes a semicolon, enclose the
specification in vertical bars (I I).

The following command copies the state of working memory and the conflict set
to the :file CHECKS.DAT:

OPS5>SAVESTATE CHECKS.DAT

Command Interpreter Commands 12-31

SHOW SPACE

SHOW SPACE

Format

Example

Displays information about working memory and the VAX OPS5 symbol table.
The information consists of the current number of working-memory elements and
symbol-table entries, the amount of memory that these currently occupy, and the
largest value that these have reached during this execution of the program.

SHOW SPACE

OPS5>SHOW SPACE
WORKING-MEMORY ELEMENTS
Current number 10
Current space used -- 0.6
Maximum number 12
Maximum space used -- 0.7

KBytes

KBytes

SYMBOL TABLE ENTRIES
Current number
Current space used -­
Maximum number
Maximum space used --

97
4.4 KBytes

97
4.4 KBytes

12-32 Command Interpreter Commands

STRATEGY

STRATEGY

Format

Argument

Example

Displays or sets the conflict-resolution strategy, which can be either means-ends­
analysis (MEA) or lexicographic-sort (LEX). The default is the LEX strategy.

You can use the STRATEGY command in a STARTUP statement. For a descrip­
tion of the STARTUP statement, see Chapter 9.

STRATEGY [keyword]

keyword
A keyword that specifies the conflict-resolution strategy to be set. Specify the
keyword LEX to enable the LEX strategy or the keyword MEA to enable the MEA
strategy.

This argument is optional. If you do not specify a keyword, the command displays
the strategy that is enabled.

The following command shows that the LEX strategy is enabled:

OPS5>STRATEGY
LEX

The following command enables the MEA strategy:

OPS5>STRATEGY MEA

Command Interpreter Commands 12-33

WATCH

WATCH

Format

Arguments

Displays or sets the run-time system's trace level. The amount of trace infor­
mation the system displays while executing a program depends on the system's
current trace level. The trace levels are represented with the integers 0 to 4, or
with the names RULE, NORULE, WM, NOWM, CS, NOCS, PM, NOPM, ALL,
and NOALL. Each level is described in Table 12-5.

You can use the WATCH command in a STARTUP statement. For a description
of the STARTUP statement, see Chapter 9.

For details about trace output, see the VAX OPS5 User's Guide.

WATCH {[trace-level] }
[trace-name] ...

trace-level
An integer in the range 0 to 4 that represents the trace level to be set. You can
specify only one trace level in a WATCH command.

trace-name
The name of the trace level, which is added to the level currently set. You can
give a list of trace names, in which case these are applied from left to right.

Table 12-5 lists the trace levels and describes their effects.

Table 12-5: Trace Levels

Level

RULE

NO RULE

WM

NOWM

cs
NOCS

PM

NOPM

ALL

NO ALL

0

Effect

Enables tracing of firing rules

Disables rule tracing

Enables tracing of working-memory elements into and out of working memory

Disables working-memory tracing

Enables tracing of instantiations into and out of the conflict set

Disables conflict set tracing

Enables tracing of productions into and out of production memory

Disables production-memory tracing

Enables RULE, WM, CS, and PM tracing

Disables all tracing

Disables all tracing

(continued on next page)

12-34 Command Interpreter Commands

Example

Table 12-5 (Cont.): Trace Levels

Level

1

2

3

4

Effect

Enables RULE tracing

Enables RULE and WM tracing

Enables RULE, WM, and CS tracing

Enables RULE, WM, CS, and PM tracing

WATCH

The argument is optional. If you do not specify a trace level, the command
displays the run-time system's current trace level.

OPSS>WATCH 2
OPSS>WATCH
RULE WM
OPSS>WATCH CS NORULE
OPSS>WATCH
WM CS

Command Interpreter Commands 12-35

WBREAK

WBREAK

Format

Argument

Example

Displays working-memory elements that have breakpoints set, sets breakpoints
for working-memory elements, or deletes breakpoints from working-memory
elements.

If a breakpoint is set for a working-memory element, the run-time system en­
counters that breakpoint after executing the right-hand side of the production
that created the element. At that point, the system finishes executing the current
recognize-act cycle, displays the following message, and invokes the command
interpreter.

%0PSRT-I-WBREAK, WBREAK encountered

OPS5>

WBREAK [element-pattern}

element-pattern
An element pattern is similar to a working-memory element, and can include
a class name, scalar attributes specified with values, and a vector attribute
specified with a value. You can specify one or more element patterns. If you
specify the name of an element pattern for which a breakpoint is not set, the
command sets a breakpoint. If you specify the name of an element pattern for
which a breakpoint is set, the command deletes the breakpoint.

The argument is optional. If you do not specify the name of a production, the
command displays the names of the productions for which breakpoints are set.

The following command displays the names of the working-memory elements for
which breakpoints are set:

OPS5>WBREAK
CHECK ADATE 14 NOV 1988

Suppose a breakpoint is not set for the element pattern CHECK "DATE 14 NOV
1988. The following command will set a breakpoint for that element:

OPS5>WBREAK CHECK ADATE 14 NOV 1988

To delete the breakpoint, use the same command:

OPS5>WBREAK CHECK ADATE 14 NOV 1988

12-36 Command Interpreter Commands

WM

Format

Argument

Example

WM

Displays the working-memory elements whose time tags are specified.

When the command displays a working-memory element, the output includes the
following information:

• Time tag

• Name of the production that created the element

• List of atoms in the element

Tne system ci.ispiays trus information in the foiiowing format:

time-tag [production-name] (class-name attribute-1 value-1 attribute-2 value-2 ...)

WM [time-tag ...]

time-tag
An integer that represents the time tag ·of a working-memory element the
command is to display. You can specify one or more time tags.

The argument is optional. If you do not specify a time tag, the command displays
all the elements in working memory.

The following command displays all the elements in working memory:

OPS5>WM
1 [NIL] (CHECK A NUMBER 102 A AMOUNT 10.06 A COUNTED NO A DATE 2 NOV 1988)
2 [NIL] (CHECK A NUMBER 103 "AMOUNT 22.45 "COUNTED NO "DATE 14 NOV 1988)
3 [NIL] (CHECK A NUMBER 104 "AMOUNT 56.00 "COUNTED NO "DATE 14 NOV 1988)
4 [NIL] (CHECK "NUMBER 108 A AMOUNT 13.10 "COUNTED NO "DATE 25 NOV 1988)
6 [WHAT-DATE] (COUNT AVALUE 0)
7 [WHAT-DATE] (REPLY "DATE 14 NOV 1988)

The following command displays the working-memory elements whose time tags
are 3 and 4:

OPS5>WM 3 4
3 [NIL] (CHECK ANUMBER 104 "AMOUNT 56.00 "COUNTED NO "DATE 14 NOV 1988)
4 [NIL] (CHECK "NUMBER 108 "AMOUNT 13.10 "COUNTED NO "DATE 25 NOV 1988)

Command Interpreter Commands 12-37

Chapter 13

Support Routines

This chapter describes the VAX OPS5 support routines you can include in
programs written in other VAX languages. These routines enable such programs
to communicate with VAX OPS5 programs. To understand the descriptions in this
chapter, you should be familiar with the procedure for calling external routines
(described in the VAX OPS5 User's Guide). Table 13-1 lists the names of the
support routines and gives brief descriptions. The rest of the chapter provides
detailed descriptions and examples presented alphabetically by name.

Some of the routines store values in a buffer called the result element. This
buffer is used to hold atoms that are arguments to actions, and atoms that will
constitute a working-memory element, until the element is added to working
memory.

The syntax used to describe the routines is:

routine-name (argumentl, argument2 ...)

The parentheses are included even when no arguments are required. For
example:

OPS$ASSERT ()

For information about how to use the support routines, see the VAX OPS5 User's
Guide.

Table 13-1: Summary of Support Routines

Support Routine

OPS$ACCEPT

OPS$ACCEPTLINE

OPS$ASSERT

OPS$ATOM

OPS$CANCEL_RUN

OPS$CLEAR

OPS$COMPLETION

OPS$CRLF

Description

Reads input from the terminal or a file and places the input
in the result element

Reads a line of input from the terminal or a file and places
the input in the result element

Adds the current result element to working memory,
creating a new working-memory element

Creat~s and returns a unique symbolic atom

Causes execution of recognize-act cycles to be suspended at
the end of the next cycle

Clears the run-time system

Synchronizes completion routines

Places an end-of-line character string in the result element

(continued on next page)

Support Routines 13-1

Table 13-1 (Cont.): Summary of Support Routines

Support Routine

OPS$CVAF

OPS$CVAN

OPS$CVFA

OPS$CVNA

OPS$EQL

OPS$FLOATING

OPS$GENATOM

OPS$HALT

OPS$1FILE

OPS$1NITIALIZE

OPS$1NTEGER

OPS$1NTERN

OPS$LITBIND

OPS$LITVAL

OPS$0FILE

OPS$PARAMETER

OPS$PARAMETERCOUNT

OPS$PNAME

OPS$RESET

OPS$RUN

OPS$STARTUP

OPS$SYMBOL

OPS$TAB

OPS$VALUE

OPS$WARNING

OPS$WRITE

13-2 Support Routines

Description

Converts a floating-point atom to a floating-point number
and returns the result

Converts an integer atom to an integer and returns the
result

Converts a floating-point number to a :floating-point atom
and returns the result

Converts an integer to an integer atom and returns the
result

Compares two atoms for equality and returns a Boolean
result

Tests whether an atom is a floating-point atom and returns
a Boolean result

Places a unique symbolic atom in the result element

Stops program execution

Returns the address of an input file's record management
service (RMS) record access block (RAB)

Initializes the VAX OPS5 program

Tests whether an atom is an integer atom and returns a
Boolean result

Translates a character string to a symbolic atom and
returns the result

Returns the integer atom representing the field associated
with an attribute name

Places the integer atom representing the field associated
with an attribute name in the result element

Returns the address of an output file's RMS record access
block (RAB)

Returns an argument value from the result element

Returns the integer representing the number of argument
values stored in the result element

Translates a symbolic atom to a character string and
returns the string's length

Deletes all atoms currently stored in the result element

Causes execution of recognize-act cycles

Executes the VAX OPS5 program's STARTUP statement

Tests whether an atom is a symbol and returns a Boolean
result

Specifies the field in which the next entry to the result
element is to be placed

Places an atom in the result element

Displays a warning message on the terminal

Displays on the terminal the atoms currently in the result
element, or writes the atoms to a file

OPS$ACCEPT

OPS$ACCEPT

Format

Argument

Return Value

Reads input from the terminal or a file and places the input in the result element.
To determine whether the input is an atom or a list of atoms (enclosed in paren­
theses), the routine checks the first printing character in the input. The routine
assumes that any first character other than a parenthesis indicates an atom
and places the atom in the result element; it assumes that an unquoted opening
parenthesis indicates a list. It reads the atoms in the list until it encounters a
closing parenthesis, removes the outermost pair of parentheses, and puts the
atoms in the result element.

By default; the OPS$ACCEPT routine reads input from the terminal. If vou want
the routine to read input from a file, specify the routine with a file identifier,
or set a file as the default source with the DEFAULT action or command (see
Section 5.8.2) before calling the external routine.

When the OPS$ACCEPT routine reads past the end of a file, the routine places
the symbol END-OF-FILE in the result element.

Using this routine is similar to using the ACCEPT function described in
Chapter 11.

OPS$ACCEPT ([file-id])

file-id
The file identifier (symbolic atom) of the source file from which input is to be
read. This argument is optional. If you do not specify a file identifier or if the
name you specify is not associated with an open input file, the input is read from
the current default for the ACCEPT function (set with the DEFAULT action or
command).

None.

Support Routines 13-3

OPS$ACCEPTLINE

OPS$ACCEPTLINE

Format

Arguments

Return Value

Reads a line of input terminated by a carriage-return character, discarding all
unquoted parentheses.

If some of the atoms on a line of input have already been read, the line of input is
defined as all the remaining atoms on the current line, that is, from the current
position to the next carriage-return (CRLF) character; if no atoms have been
read from the current line, the input line is defined as the whole of the current
line; if all the atoms on the current line have been read, the input line is the line
following the current line.

If the input line contains no atoms, the default values are used.

By default, the OPS$ACCEPTLINE routine reads input from the terminal. If you
want the routine to read input from a file, call the routine with the file identifier,
or set a file as the default for source with the DEFAULT action or command (see
Section 5.8.2) before calling the external routine.

Using this routine is similar to using the ACCEPTLINE function described in
Chapter 11.

OPS$ACCEPTLINE ([file-id], [default-value], ...)

file-id
The file identifier (symbolic atom) of the source file from which input is to be
read. This argument is optional. If you do not specify a file identifier, or if the
identifier you specify is not associated with an open input file, the input is read
from the current default for the ACCEPTLINE function (set with the DEFAULT
action or command).

default-value
An atom the OPS$ACCEPTLINE routine is to place in the result element if the
routine reads:

• A line of input from the terminal that consists of only a carriage return

• A file that consists of a line of only spaces and tabs

• Past the end of a file

A default value is optional and you can specify one or more of them.

None.

13-4 Support Routines

OPS$ASSERT

OPS$ASSERT

Format

IJaih 1rn \/ah 1ai .. ____ ----

Adds the current result element to working memory, creating a new working­
memory element.

OPS$ASSERT ()

None.

Support Routines 13-5

OPS$ATOM

OPS$ATOM

Format

Return Value

Creates and returns a symbolic atom. The first occurrence of the routine gener­
ates the atom G: 1. The second atom the routine generates is G:2, the third atom
is G:3, and so on. For information about how to use system-generated atoms, see
the VAX OPS5 User's Guide.

Using this routine is similar to using the GENATOM function described in
Chapter 11.

OPS$ATOM ()

A unique symbolic atom.

13-6 Support Routines

OPS$CANCEL_RUN

OPS$CANCEL_RUN

Format

Return Values

Stops program execution. The VAX OPS5 run-time system stops executing
recognize-act cycles when the current cycle ends and, if VAX OPS5 informational
messages are enabled, displays the following message and invokes the VAX OPS5
command interpreter when execution stops.

%0PSRT-I-CANCELED, OPS$CANCEL_RUN used

OPS5>

If HALT is enabled, the run-time system returns control to the operating system,
or to the calling program if the VAX OPS5 program was called as a subroutine. To
enable and disable HALT, use the ENABLE and DISABLE commands described
in Chapter 12.

OPS$CANCEL_RUN ()

Two values:

OPS$_NORMAL

OPS$_NORUN

The request to stop execution has been successfully queued.

The run-time system was not executing.

Support Routines 13-7

OPS$CLEAR

OPS$CLEAR

Format

Return Values

Clears the run-time system: it removes all working-memory elements from
working memory, clears the conflict set, and resets the time-tag counter. It can be
called at any time after OPS$INITIALIZE has been called, and it can be called
repeatedly. However, it cannot be called from external routines while the VAX
OPS5 system is running.

NOTE

This routine is normally called from a main program that calls a VAX
OPS5 program as a subroutine.

OPS$CLEAR ()

Three values:

OPS$_NORMAL

OPS$_NOTINI

OPS$_RUNNING

The run-time system has been successfully cleared.

The OPS$INITIALIZE service has not yet been called.

The VAX OPS5 system is currently running recognize-act cycles.

13-8 Support Routines

OPS$COMPLETION

OPS$COMPLETION

Format

Argument

Return Value

Specifies or queries the address of a routine that is to be called at the end of the
current recognize-act cycle. (This is normally used to change working memory
following an interrupt. The VAX OPS5 program will not produce correct results if
working memory is altered during the wrong phase of the recognize-act cycle.)

For more information about completion routines, see the VAX OPS5 User's Guide.

address
The address (longword) of a completion routine, or 0. If you specify an address,
the run-time system calls the completion routine at the end of the current
recognize-act cycle. If you specify 0, the recognize-act cycle continues executing
the VAX OPS5 program. The argument is optional.

The value specified as an argument. If you specified the address of a completion
routine, the support routine returns that address. If you specified 0, the support
routine returns 0. If you do not specify an argument, the support routine returns
the last argument value specified with the support routine.

Support Routines 13-9

OPS$CRLF

OPS$CRLF

Format

Return Value

Places an end-of-line symbol (a carriage return followed by a line feed) in the
result element. Use this routine before a call to the OPS$WRITE routine if you
want output to be displayed on a new line.

Using this routine is similar to using the CRLF function described in Chapter 11.

OPS$CRLF ()

None.

13-10 Support Routines

OPS$CVAF

OPS$CVAF

Format

Argument

Return Value

Converts a floating-point atom to a floating-point number and returns the result.

OPS$CVAF (floating-point-atom)

floating-point-atom
The floating-point atom to be converted to a floating-point number.

A floating-point number of type VAX F _fl.oat data (see the VAX Architecture
Handbook).

Support Routines 13-11

OPS$CVAN

OPS$CVAN

Converts an integer atom to an integer and returns the result.

Format

OPS$CVAN (integer-atom)

Argument

integer-atom
The integer atom to be converted to an integer.

Return Value

An integer.

13-12 Support Routines

OPS$CVFA

OPS$CVFA

Format

Argument

Return Value

Converts a floating-point number to a floating-point atom and returns the result.

OPS$CVFA (floating-point-number)

iioaring-poinr-number
\ The floating-point number to be converted to a floating-point atom. The number

you specify must be VAX F _float data (see the VAX Architecture Handbook).

A floating-point atom.

Support Routines 13-13

OPS$CVNA

OPS$CVNA

Converts an integer to an integer atom and returns the result.

Format

OPS$CVNA (integer)

Argument

integer
The integer to be converted to an integer atom.

Return Value

An integer atom.

13-14 Support Routines

OPS$EQL

Format

Arguments

Return Value

OPS$EQL

Compares two atoms for equality and returns a Boolean result. The result is true
(indicated by 1) if one of the following statements is true:

• The atoms are both symbols that consist of the same characters in the same
order.

• The atoms are the same integer.

• The atoms are the same floating-point number.

The result is false (indicated bv 0) in all other cases.

OPS$EQL (atom1, atom2)

atom1
The first atom to be compared.

atom2
The second atom to be compared.

The integer 1 if the result is true and 0 if the result is false.

Support Routines 13-15

OPS$FLOATING

OPS$FLOATING

Format

Argument

Return Value

Tests whether an atom is a floating-point atom and returns a Boolean result. If
the atom is a floating-point atom, the result is true (indicated by 1). Otherwise,
the result is false (indicated by 0).

OPS$FLOATING (atom)

atom
The atom to be tested.

The integer 1 if the result is true and 0 if the result is false.

13-16 Support Routines

OPS$GENATOM

OPS$GENATOM

Format

Return Value

Places a symbolic atom in the result element. The routine calls the OPS$ATOM
routine to create the new atom. An example of such an atom is G: 1. After that
routine has created the atom, the OPS$GENATOM routine calls the OPS$VALUE
routine to place that atom in the result element.

For information about how to use system-generated atoms, see the VAX OPS5
User's Guide.

Using this routine is similar to using the GENATOM function described in
Chapter 11.

OPS$GENATOM ()

None.

Support Routines 13-17

OPS$HALT

OPS$HALT

Format

Return Value

Stops program execution. The VAX OPS5 run-time system stops executing
recognize-act cycles when the current cycle ends and, if VAX OPS5 informational
messages are enabled, displays the following message and invokes the VAX OPS5
command interpreter when execution stops:

%OPSRT-I-HALTED, HALT -- right-hand-side action

OPSS>

If HALT is enabled, the run-time system returns control to the operating system,
or to the calling program if the VAX OPS5 program was called as a subroutine. To
enable and disable HALT, use the ENABLE and DISABLE commands described
in Chapter 12.

OPS$HALT ()

None.

13-18 Support Routines

OPS$1FILE

OPS$1FILE

Format

Argument

Return Value

Returns the address of the record access block (RAB) of an input file's record
management services (RMS). The external routine can then use the RAB to read
input from that file.

For information about RABs, see the VMS Record Management Services Manual.

OPS$1FILE (file-id)

file-id
The file identifier (symbolic atom) for a file opened for input in the VAX OPS5
program.

The RAB address of the file associated with the specified file identifier. If the
specified name is not associated with an open input file, the support routine
returns 0.

Support Routines 13-19

OPS$1NITIALIZE

OPS$1NITIALIZE

Format

Return Values

Initializes a VAX OPS5 program. It must be called before calls are made to any
other support routine. (This should be used only if the VAX OPS5 program is
called as a subroutine.)

OPS$1NITIALIZE ()

Two values:

OPS$_NORMAL The run-time system has been successfully initialized.

OPS$_NOINI The OPS$INITIALIZE routine has already been called.

13-20 Support Routines

OPS$1NTEGER

OPS$1NTEGER

Format

Argument

Return Value

Tests whether an atom is an integer atom and returns a Boolean result. If the
atom is an integer atom, the result is true (indicated by 1). Otherwise, the result
is false (indicated by 0).

OPS$1NTEGER (atom)

atom
The atom to be tested.

The integer 1 if the result is true and 0 if the result is false.

Support Routines 13-21

OPS$1NTERN

OPS$1NTERN

Translates a character string to a symbolic atom and returns the result.

Format
OPS$1NTERN (address, length)

Arguments

address
The address of the character string to be translated.

length
The length of the character string to be translated.

Return Value

A symbolic atom.

13-22 Support Routines

OPS$LITBIND

OPS$LITBIND

Format

Argument

Return Value

Returns the integer atom representing the field associated with an attribute
name.

OPS$LITBIND (attribute-name)

attribute-name
A symbolic atom that represents the name of the attribute whose field is to be
returned. The attribute name that you specify must have been declared in the
VAX OPS5 program with a LITERAL, LITERALIZE, or VECTOR-ATTRIBUTE
declaration.

The integer atom representing the field associated with the specified attribute
name. If the attribute name is not declared, the support routine returns that
name.

Support Routines 13-23

OPS$LITVAL

OPS$LITVAL

Format

Argument

Return Value

Places the integer atom representing the field associated with an attribute
name in the result element. The routine calls the OPS$LITBIND routine, which
returns the integer representing the field, and then calls the OPS$VALUE routine
to place that integer in the result element.

Using this function is similar to using the LITVAL function described in
Chapter 11.

OPS$LITVAL (attribute-name)

attribute-name
A symbolic atom that represents the name of the attribute whose field is to be
placed in the result element. The attribute name that you specify must have
been declared in the VAX OPS5 program with a LITERAL, LITERALIZE, or
VECTOR-ATTRIBUTE declaration.

None.

13-24 Support Routines

OPS$0FILE

OPS$0FILE

Format

Argument

Return Value

Returns the address of the record access block (RAB) of an input file's record
management services (RMS). The external routine can then use the RAB to write
output to that file.

For information about RABs, see the VMS Record Management Services Manual.

OPS$0FILE (file-id)

file-id
The file identifier (symbolic atom) for a file opened for output in the VAX OPS5
program.

The RAB address of the file associated with the specified file identifier. If the
specified name is not associated with an open output file, the support routine
returns 0.

Support Routines 13-25

OPS$PARAMETER

OPS$PARAMETER

Format

Argument

Return Value

Returns an argument value from the result element.

When a call to an external subroutine contains arguments, the VAX OPS5 run­
time system places the argument values in the result element, starting in field
1. Use the OPS$PARAMETER routine to retrieve the argument values from the
result element.

OPS$PARAMETER (field)

field
An integer indicating the field from which an argument value is to be re­
turned. The integer must be less than or equal to the integer returned by the
OPS$PARAMETERCOUNT routine.

The atom stored in the specified field.

13-26 Support Routines

OPS$PARAMETERCOUNT

OPS$PARAMETERCOUNT

Format

Return Value

Returns the integer representing the number of argument values stored in the
result element.

When a call to an external subroutine contains arguments, the VAX OPS5 run­
time system places the argument values in the result element, starting in field 1.
Use the OPS$PARAMETERCOUNT routine to return an integer that indicates
the number of argument values the run-time system placed in the result element
for a particular call.

OPS$PARAMETERCOUNT ()

The integer representing the number of arguments stored in the result element.

Support Routines 13-27

OPS$PNAME

OPS$PNAME

Format

Arguments

Return Value

Translates a symbolic atom to a character string and returns the string's length.

OPS$PNAME (symbolic-atom, address, length)

symbolic-atom
The symbolic atom to be translated to a character string.

address
The address of the buffer to which the character string is to be copied.

length
An integer that represents the maximum number of characters in the character
string to be copied (the size of the buffer).

The integer representing the number of characters in the character string (even if
the routine does not copy the entire string). lf you do not specify a symbolic atom
for the first argument, the routine returns 0, and a character string is not copied.
If the length you specify is less than the number of characters in the string being
copied, the routine copies only the number of characters indicated by the value of
the length argument.

13-28 Support Routines

OPS$RESET

OPS$RESET

Format

Return Value

Deletes all atoms currently stored in the result element, filling each field of
the result element with NIL, and setting the TAB to the first field. (See the
description of the OPS$TAB routine later in this chapter.)

OPS$RESET ()

None.

Support Routines 13-29

OPS$RUN

OPS$RUN

Format

Argument

Return Values

Causes recognize-act cycles to be executed. It can be called at any time after
OPS$INITIALIZE has been called, and it can be called repeatedly. However,
it cannot be called from external routines if the VAX OPS5 system is currently
running.

NOTE

This routine is normally called from a main program that calls a VAX
OPS5 program as a subroutine.

OPS$RUN ([count])

count
This argument is optional. If you do not specify a value, the program will run
until the conflict set is empty, a HALT action is executed, the user types Ctrl/C,
or the OPS$CANCEL_RUN service is called.

If you specify a value that is less than zero, the program will run until the
number of cycles specified in the STARTUP statement has been performed. If the
number you specify is greater than or equal to zero, the program will run until
that number of cycles has been performed.

Seven values:

OPS$_ CANCELED

OPS$_EMPTYCS

OPS$_EXIT

OPS$_HALTED

OPS$_NOTINI

OPS$_PAUSE

OPS$_RUNNING

The OPS$CANCEL_RUN routine was called.

The conflict set is empty.

The user typed Ctrl/Z or the EXIT command at the OPS5> prompt.

A right-hand-side HALT action has been executed.

The OPS$INITIALIZE. service has not yet been called.

The requested number of recognize-act cycles has been completed.

The VAX OPS5 system is currently executing recognize-act cycles.

13-30 Support Routines

OPS$STARTUP

OPS$STARTUP

Format

na. ,,
1 a111rt.w111 wu.1w..-....,

Executes the VAX OPS5 STARTUP statement. It can be called at any time after
OPS$INITIALIZE has been called, and it can be called repeatedly.

OPS$STARTUP ()

Three values:

OPS$_NORMAL The STARTUP statement has been executed.

OPS$_NOSTARTUP There is no STARTUP statement in the program.

OPS$5_NOTINI The OPS$INITIALIZE service has not yet been called.

Support Routines 13-31

OPS$SYMBOL

OPS$SVMBOL

Format

Argument

Return Value

Tests whether an atom is a symbol and returns a Boolean result. If the atom
is a symbol, the result is true (indicated by 1). Otherwise, the result is false
(indicated by 0).

OPS$SVMBOL (atom)

atom
The atom to be tested.

The integer 1 if the result is true and 0 if the result is false.

13-32 Support Routines

OPS$TAB

Format

Argument

Return Value

OPS$TAB

Specifies the field in which the next entry to the result element is to be placed.

OPS$TAB (field)

llt:iu
An integer atom or attribute name (symbolic atom) that represents the field in
which the next entry to the result element is to be placed. If you specify an
integer atom, the routine specifies that the next entry be placed in a field that
corresponds to that integer. If you specify an attribute name, the routine specifies
that the next entry be placed in the field associated with that name.

None.

Support Routines 13-33

OPS$VALUE

OPS$VALUE

Format

'Argument

Return Value

Places an atom in the result element. The field of the result element in which the
atom is placed is determined as follows:

• If the call to the OPS$VALUE routine follows a call to the OPS$TAB routine,
the OPS$VALUE routine places the atom in the field specified by the call to
OPS$TAB.

• If the OPS$VALUE routine follows the OPS$RESET routine, the OPS$VALUE
routine places the atom in the first field.

• Otherwise, the OPS$VALUE routine places the atom in the field following the
last field in which an entry was made. Thus, consecutive calls to this routine
create a vector.

OPS$VALUE (atom)

atom
The atom to be placed in the result element.

None.

13-34 Support Routines

OPS$WARNING

OPS$WARNING

Format

A.-~ •• .-....... +
'""'~WI I l~I

Return Value

Displays a warning message on the terminal.

For more information about warning messages, see the VAX OPS5 User's Guide.

OPS$WARNING (address, length, [atom], .. .)

address
The address of the first byte of the character string in which the warning message
is stored.

length
An integer that represents the length of the character string that stores the
warning message.

atom
An atom the OPS$WARNING routine is to display in front of the warning
message. This argument is optional. You can specify one or more atoms.

None.

Support Routines 13-35

OPS$WRITE

OPS$WRITE

Format

Return Value

Displays the atoms currently in the result element on the terminal or writes the
atoms to a file. If the first field of the result element contains a file identifier,
the routine writes the remaining atoms to the file associated with that name.
Otherwise, the routine writes the atoms to the default destination, which is the
terminal unless you change the default with the DEFAULT action or command
(see Section 5.8.2).

Using this routine is similar to using the WRITE action described in Chapter 10.

OPS$WRITE ()

None.

13-36 Support Routines

Appendix A

%INCLUDE Compiler Directive

VAX OPS5 provides one compiler directive, %INCLUDE, which allows you to
include another VAX OPS5 program file in the current compilation.

A.1 Format

%INCLUDE filespec

A.2 Argument

file spec
The filespec you give must be a valid VMS file specification for the file that you
want to include. If you do not specify a complete file specification, the compiler
uses the default device and directory, and the file type OPS.

A.3 Example

%INCLUDE TESTPROG.OPS

NOTES

The VAX OPS5 compiler includes the file that you specify in the
program compilation at the point where the %INCLUDE directive
appears, and prints the included code in the program listing file, if the
compilation produces one.

The file you specify for inclusion can itself contain a %INCLUDE
directive.

The comment character for VAX OPS5 is a semicolon(;). Therefore, if
the VMS file specification you give includes a semicolon, enclose the
specification in vertical bars (I I).

%INCLUDE Compiler Directive A-1

-, 5-9
See also Conjunctions
description, 7-11
(iaoie), 1-1

* 5-9
+, 5-9
II

division, 5-9
quote

See also Atoms
description, 7-13
(table), 7-1
using, 3-8

" 1-6
<

See also Predicates
description, 7-8
(table), 7-1
using, 3-5

<<>>

<=

See also Disjunctions
description, 7-12
(table), 7-1
using, 3-6

See also Predicates
description, 7-9
(table), 7-1
using, 3-5

<=>

<>

>

>=

See also Predicates
description, 7-10
(table), 7-1
using, 3-5

See also Predicates
description, 7-5
(table), 7-1
using, 3-5

See also Predicates
description, 7-4
(table), 7-1
using, 3-5

See also Predicates
description, 7-6
(table), 7-1
using, 3-5

See also Predicates

>=(cont'd.)
description, 7-7
(table), 7-1
using, 3-5

(g>

\ \

command
description, 12-4
STARTUP statement, 5-2
(table), 12-2

modulus, 5-9
unquote

See also BUILD action
description, 7-14
(table), 7-1
using, 5-19

See also Attributes
description, 7-2
(table), 7-1

I I. 1-4

A
ACCEPT function

See also ACCEPTLINE function
description, 11-2
setting default, 5-11
(table), 5-2, 11-1
using, 5-12

ACCEPT keyword
with DEFAULT action, 5-11, 10-11
with DEFAULT command, 12-12

ACCEPTLINE function
See also ACCEPT function
description, 11-3
setting default, 5-11
(table), 5-2, 11-1
using, 5-12

Act, 4-7
See also Recognize-act cycle

Actions, 3-8 to 3-11
See also individual actions
calling functions, 3-9
descriptions, 10-1 to 11-2
element designators, 3-1 O
format, 3-9
structure, 1-2
summary, 10-1
using, 5-1 to 5-21
variables, 3-9

Index

lndex-1

Addition
See COMPUTE function

ADDSTATE action
See also RESTORESTATE and SAVESTATE

actions
description, 10-3
(table}, 5-2, 10-1
using, 5-6

ADDSTATE command
See also RESTORESTATE and SAVESTATE

commands
description, 12-5
(table}, 12-2

AFTER action
See also CATCH statement
description, 1 Q-4
(table}, 5-2, 10-1
using, 5-16

AFTER command
See also CATCH statement
description, 12-6
(table}, 12-2

AND
See Conjunctions

Arithmetic
operators, 5-9
performing operations, 5-9

AST, 6-30
handling, 6-30

AST service routines, 6-30
Asynchronous System Traps

See AST
Atoms, 1-3

binding to variables, 3-9
binding variables to, 5-7
changing in working-memory elements, 5-4
comparing, 3-5
comparing for equality, 6-13
converting data types, 6-10 to 6-12
copying from working-memory elements, 5-5
deleting from result element, 6-13
floating-point, 1-4, 6-12
generating, 6-17
integer, 1-3, 6-11
placing in result element, 6-13
quoted, 1-4
symbolic, 1-3, 6-1 O
testing with predicates, 3-5
using system-generated, 5-17

Attributes, 2-2

B

names, 2-2
declaring, 2-6

operator ("}, 2-2, 7-1
scalar, 2-2

storing value of, 2-4
vector, 2-3

storing value of, 2-6

BACK command
description, 12-7
(table}, 12-2

BACK keyword
with DISABLE command, 12-13, 12-14

lndex-2

BIND action
description, 10-5
(table}, 5-2, 10-1
using, 3-9, 5-7

BUILD action
description, 10-6
(table}, 5-2, 10-1
using, 5-18

BUILD command
description, 12-8

c
CALL action

See also External routines
description, 10-8
(table}, 5-2, 10-1

CALL command
See also External routines
description, 12-9
(table}, 12-2

Calling external routines
See External routines

Catchers, 5-15
CATCH statement

See also AFTER action and command
description, 9-2
(table}, 5-2, 9-1
using, 5-15

CBIND action
description, 10-9
(table), 5-2, 10-1
using, 3-8, 5-8

Classes, 2-1
Class names, 2-2

specificity, 4-4
storing, 2-4

CLOSEFILE action
See also OPENFILE action
description, 10-1 O
(table), 5-2, 10-1
using, 5-12

CLOSEF!LE command
See also OPENFILE command
description, 12-1 O
(table}, 12-2

Command interpreter commands
See also individual commands
descriptions, 12-1 to 12-37
summary, 12-2

Comments, 1-6
Compiler directives

%INCLUDE, A-1
Completion·routines, 6-30
COMPUTE function

calling from condition elements, 3-7
description, 11-5
(table}, 5-2, 11-1
using, 5-9

Conditional tests, 4-4
See also Specificity

Condition elements, 3-2 to 3-8
calling functions, 3-7
conjunctions, 3-6
constants, 3-4
disjunctions, 3-6

Condition elements (cont'd.)

.element variables, 3-8
predicates, 3-5
quoting component values, 3-8
specificity, 4-4
specifying, 3-2
specifying components, 3-3
structure, 1-2
variables, 3-4

Conflict resolution, 4-3 to 4-7
See also Recognize-act cycle
conflict set, 4-3
instantiations, 4-3
recency, 4-4
refraction, 4-3
rules, 4-3
specificity, 4-4
strategies, 4-5

LEX, 4-5
iviC:A,-o

time tags, 2-3
Conflict set, 4-3

See also Conflict resolution
restoring state of, 5-6
saving state of, 5-6

Conjunctions, 3-6
See also Condition elements
specificity, 4-4

Constants
in condition elements, 3-4

CALF function
See also WRITE action
description, 11-6
(table), 5-2, 11-1
using, 5-14

CS command

D

See also Conflict set
description, 12-11
(table), 12-2

Data
See Atoms

Data types
converting, 6-10 to 6-12

Declarations, 1-5
See also individual declarations
descriptions, 8-1 to 9-3
initializing programs, 5-2
summary, 8-1
using, 2-6

DEFAULT action
description, 10-11
(table), 5-2, 10-1
using, 5-11

DEFAULT command
description, 12-12
(table), 12-2

DISABLE command
description, 12-13
STARTUP statement, 5-2
(table), 12-2

Disjunctions, 3-6
See also Condition elements
specificity, 4-4

Division
See COMPUTE function

E
Element class, 2-1
Element designators, 3-10
Element variables, 3-8

as element designators, 3-1 O
binding to working-memory elements, 5-8

ENABLE command
description, 12-14
STARTUP statement, 5-2
(table), 12-2

EXCISE command
description, 12-15
(table), 12-2

Executable statements, 1-6
EXIT command

aescnpt1on, l '-1 o
(table), 12-2

EXTERNAL declaration
descripti,on, 8-3
first version, 6-4
second version, 6-4
(table), 8-1

·using, 2-8, 3-7, 3-10
External functions

See External routines
External routines

See also Support routines
calling, 6-1

examples, 6-18 to 6-30
clearing result element, 6-13
comparing atoms for equality, 6-13
converting data types, 6-10 to 6-12
creating, 6-6
declaring, 2-6, 6-4
declaring support routines, 6-6
displaying warning messages, 6-14
functions, 6-3

calling, 6-4
calling from actions, 3-1 O
calling from condition elements, 3-7
declaring arguments, 6-6
example, 6-18

generating atoms, 6-17
halting program execution, 6-14
overview, 6-3
placing atoms in result element, 6-13
reading input, 6-15
subroutines, 6-3

calling, 6-5
creating working-memory elements, 6-8
example, 6-20
retrieving arguments, 6-9

using open files, 6-15
writing output, 6-17

External subroutines
See External routines

F
Fields, 2-3

binding variables to, 5-8

lndex-3

File identifier
with ACCEPT function, 5-12, 11-2
with ACCEPTLINE function, 5-12, 11-3
with CLOSEFILE action, 5-12, 10-10
with CLOSEFILE command, 12-10
with DEFAULT action, 5-11, 10-11
with DEFAULT command, 12-12
with OPENFILE action, 5-10, 10-17
with OPENFILE command, 12-22
with OPS$ACCEPTLINE support routine, 13-4
with OPS$ACCEPT support routine, 13-3
with OPS$1FILE support routine, 13-19
with OPS$0FILE support routine, 13-25
with WRITE action, 5-13, 10-21

Files
closing, 5-12
loading

See @ command
opening, 5-1 o
using with external routine, 6-15

Firing
See Recognize-act cycle

Floating-point atoms, 1-4
See also Atoms
See Atoms

Functions

G

See also Actions, Condition elements, and
individual functions

See also Actions, Condition elements and individual
functions

calling, 6-4
calling from actions, 3-9
calling from condition elements, 3-7
declaring arguments, 6-6
descriptions, 11-1 to 11-11
external, 6-3
format, 3-7
summary, 11-1
using, 5-1 to 5-21

GENATOM function
description, 11-7
(table), 5-2, 11-1
using, 5-17

H
HALT action

description, 10-12
(table), 5-2, 10-1
using, 5-7

HALT keyword
with DISABLE command, 12-13, 12-14

%INCLUDE compiler directive, A-1
Include files

See also support routines
IN keyword

with OPEN FILE action, 5-10, 10-17
with OPENFILE command, 12-22

Input
reading, 5-12

lndex-4

Input (cont'd.)
reading with external routine, 6-15
setting default, 5-11

Instantiations, 4-3
See also Conflict resolution

Integer atoms, 1-3
See Atoms

Integers
See Atoms

K
Keywords

ACCEPT

L

with DEFAULT action, 5-11, 10-11
with DEFAULT command, 12-12

BACK
with DISABLE command, 12-13, 12-14

HALT
with DISABLE command, 12-13, 12-14

IN
with OPEN FILE action, 5-10, 10-17
with OPENFILE command, 12-22

LEX, 12-33
MEA, 12-33
OUT

with OPENFILE action, 5-10, 10-17
with OPENFILE command, 12-22

TIMING
with DISABLE command, 12-13, 12-14
with REPORT command, 12-27

TRACE
with DEFAULT action, 5-11, 10-11
with DEFAULT command, 12-12

WARNING
with DISABLE command, 12-13, 12-14

WRITE
with DEFAULT action, 5-11, 10-11
with DEFAULT command, 12-12

Left-hand side (LHS), 3-2 to 3-8
satisfying, 4-2
specificity, 4-4
structure, 1-2

LEX
keyword, 12-33
strategy, 4-5

Lists
creating, 5-17

LITERAL declaration
description, 8-5
(table), 8-1
using, 2-7

LITERALIZE declaration
description, 8-6
(table), 8-1
using, 2-6

LITVAL function
declarations, 2-7
description, 11-8
(table), 5-2, 11-1
using, 5-8

Loops
controlling, 5-15

M
MAKE action

See also Working-memory elements
description, 10-13
(table), 5-2, 10-1
using, 5-3

MAKE command
See also Working-memory elements
description, 12-17
(table), 12-2

Match, 4-2
See also Recognize-act cycle

MATCHES command
description, 12-18
(table), 12-2

MEA
keyword, 12-33
strategy, 4-6

lAnl"'ll~V --•:-~
IV'l....,,...,11 I '°"V'-IWll

See also Working-memory elements
description, 10-15
element designators, 3-10
(table), 5-2, 10-1
using, 5-4

MODIFY command
See also WorkinQ-memory elements
description, 12-20
(table), 12-2

Modulus
See COMPUTE function

Multiplication
See COMPUTE function

N
NEXT command

0

See also Conflict Set
description, 12-21
(table), 12-2

OPENFILE action
See also CLOSEFILE action
description, 1 0-17
(table), 5-2, 10-1
using, 5-10

OPENFILE command
See also CLOSEFILE command
description, 12-22
(table), 12-2

Operators, 7-1 to 7-14
See also individual operators
{ }, 7-11
II, 7-13
<, 7-8
<< >>, 7-12
<=, 7-9
<=>, 7-10
<>, 7-5
=, 7-4
>, 7-6
>=, 7-7
summary, 7-1
\\, 7-14

Operators (cont'd.)
", 7-2

OPS$ACCEPTLINE support routine
description, 13-4
(table), 13-1
using, 6-15

OPS$ACCEPT support routine
description, 13-3
(table), 13-1
using, 6-15

OPS$ASSERT support routine
description, 13-5
(table), 13-1
using, 6-8

OPS$ATOM support routine
description, 13-6
(table), 13-1
using, 6-17

OPS$CANCEL_RUN support routine
J~;:.01iiJi.h:>11, 13-7
(table), 13-1

OPS$CLEAR support routine
description, 13-8
(table), 13-1

OPS$COMPLETION, 6-30
OPS$COMPLETION support routine

description, 13-9
(table), 13-1

OPS$CRLF support routine
description, 13-1 O
(table), 13-1
using, 6-17

OPS$CVAF support routine
description, 13-11
(table), 13-2
using, 6-12

OPS$CVAN support routine
description, 13-12
(table), 13-2
using, 6-11

OPS$CVFA support routine
description, 13-13
(table), 13-2
using, 6-8, 6-12

OPS$CVNA support routine
description, 13-14
(table), 13-2
using, 6-8, 6-12

OPS$EQL support routine
description, 13-15
(table), 13-2
using, 6-13

OPS$FLOATING support routine
description, 13-16
(table), 13-2
using, 6-12

OPS$GENATOM support routine
description, 13-17
(table), 13-2
using, 6-18

OPS$HAL T support routine
description, 13-18
(table), 13-2
using, 6-14

OPS$1FILE support routine
description, 13-19
(table), 13-2

lndex-5

OPS$1FILE support routine (cont'd.)

using, 6-15
OPS$1NITIALIZE support routine

description, 13-20
(table), 13-2

OPS$1NTEGER support routine
description, 13-21
(table), 13-2
using, 6-11

OPS$1NTERN support routine
description, 13-22
(table), 13-2
using, 6-8, 6-11

OPS$LITBIND support routine
description, 13-23
(table), 13-2
using, 6-8

OPS$LITVAL support routine
description, 13-24
(table), 13-2
using, 6-8

OPS$0FILE support routine
description, 13-25
(table}, 13-2
using, 6-15

OPS$PARAMETERCOUNT support routine
description, 13-27
(table}, 13-2
using, 6-9

OPS$PARAMETER support routine
description, 13-26
(table), 13-2
using, 6-9

OPS$PNAME support routine
description, 13-28
(table), 13-2
using, 6-11

OPS$RESET support routine
description, 13-29
(table), 13-2
using, 6-8, 6-13

OPS$RUN support routine
description, 13-30
(table), 13-2

OPS$STARTUP support routine
description, 13-31
(table), 13-2

OPS$SYMBOL support routine
description, 13-32
(table), 13-2
using, 6-10

OPS$TAB support routine
description, 13-33
(table), 13-2
using, 6-8, 6-14

OPS$VALUE support routine
description, 13-34
(table}, 13-2
using, 6-8, 6-13

OPS$WARNING support routine
description, 13-35
(table), 13-2
using, 6-14

OPS$WRITE support routine
description, 13-36
(table), 13-2
using, 6-17

lndex-6

OR
See Disjunctions

OUT keyword
with OPENFILE action, 5-10, 10-17
with OPENFILE command, 12-22

Output

p

controlling format, 5-13
setting default, 5-11
specifying column for, 5-14
writing, 5-13 to 5-16

on new line, 5-14
right-justified, 5-14

writing with external routine, 6-17

PBREAK command
description, 12-23
(table), 12-2

PPWM command
See also Working memory, WM command
description, 12-24
(table), 12-2

Predicates, 3-5
See also Condition Elements
specificity, 4-4

Productions, 3-1 to 3-11
adding to executing programs, 5-18
format, 3-1
left-hand side, 3-2 to 3-8

satisfying, 4-2
name, 3-2
right-hand side, 3-8 to 3-11
structure, 1-2

PRODUCTION statement
description, 9-3
(table), 9-1

Programs, restarting, 12-28

Q
Quoted atoms, 1-4
Quote operator, 3-8, 7-13

R
Recency, 4-4

See also Conflict resolution
time tags, 2-3

Recognize-act cycle, 4-1 to 4-7
act, 4-7
conflict resolution, 4-3 to 4-7
match, 4-2
stopping execution, 5-7
structure, 1-3

Refraction, 4-3
See also Conflict resolution

REMOVE action
See also Working-memory elements
description, 10-18
element designators, 3-10
(table), 5-2, 10-1
using, 5-4

REMOVE command
See also Working-memory elements
description, 12-26

REMOVE command (cont'd.)
(table), 12-2

REPORT command
description, 12-27
(table), 12-2

RESTART command
description, 12-28

Restarting programs, 12-28
RESTORESTATE action

See also ADDSTATE and SAVESTATE actions
description, 10-19
(table), 5-2, 10-1
using, 5-6

RESTORESTATE command
See also ADDSTATE and SAVESTATE commands
description, 12-29
(table), 12-2

Result element, 6-3, 13-1
clearing, 6-13
piacing ai:oms in, 0-1 \j

retrieving arguments from, 6-9
Right-hand side (RHS), 3-8 to 3-11

See also Actions
structure, 1-2

RJUST function
See also WRITE action
description, 11-9
(table), 5-2, 11-1
using, 5-14

Routines
AST service, 6-30
completion, 6-30
external

See External routines
handling ASTs, 6-30
support

See Support routines
Rules

See Productions
RUN command

s

description, 12-30
STARTUP statement, 5-2
(table), 12-2

SAVESTATE action
See also ADDSTATE and RESTORESTATE actions
description, 10-20
(table), 5-2, 10-2
using, 5-6

SAVESTATE command
See also ADDSTATE and RESTORESTATE

commands
description, 12-31
(table), 12-2

Scalar attributes, 2-2
storing value of, 2-4

SHOW SPACE command
description, 12-32
(table), 12-2

Specificity, 4-4
See also Conflict resolution

STARTUP statement
description, 9-4
(table), 5-2, 9-1

STARTUP statement (cont'd.)
using, 5-2

Statements
See also individual statements
CATCH, 9-2
descriptions, 9-1 to 9-4
PRODUCTION, 9-3
STARTUP, 9-4
summary, 9-1
using, 5-1 to 5-21

Strategies
See Conflict resolution

STRATEGY command
See also Conflict resolution
description, 12-33
STARTUP statement, 5-2
(table), 12-3

Subroutines
calling, 6-5
creating working-memory elements, 6-8
external, 6-3

SUBSTR function
description, 11-1 O
element designators, 3-1 O
(table), 5-2, 11-1
using, 5-4, 5-5

Subtraction
See COMPUTE function

Support routines, 6-6 to 6-18
See also External routines and individual support

routines
declaring, 6-6
descriptions, 13-1 to 13-36
include files, 6-7
summary, 13-1
using, 6-7 to 6-18

Symbolic atoms, 1-3
See also Atoms
See Atoms

Synchronizing completion routines
See Completion routines

System services
See VMS system services

T
TASTO function

See also WRITE action
description, 11-11
(table), 5-2, 11-1
using, 5-14

Time tags, 2-3
instantiations, 4-3
recency, 4-4

TIMING keyword
with DISABLE command, 12-13, 12-14
with REPORT command, 12-27

TRACE keyword
with DEFAULT action, 5-11, 10-11
with DEFAULT command, 12-12

Trace output
setting default, 5-11

u
Unquote operator, 7-14

lndex-7

User-defined routines
See External routines

v
Variables

See also Actions, Condition elements, and Element
variables

binding, 5-7 to 5-9
binding to atoms, 5-7
binding to attributes' fields, 5-8
in actions, 3-9
in condition elements, 3-4
specificity, 4-4

VAX OPS5 program
data

See Atoms
elements, 1-5
halting execution, 6-14
including external routines, 6-3
initializing, 5-2
sample, 5-19
stopping execution, 5-7

VECTOR-ATTRIBUTE declaration
description, 8-7
(table), 8-1
using, 2-8

Vector attributes, 2-3
storing value of, 2-6

VMS system services
asynchronous, 6-30

w
WARNING keyword

with DISABLE command, 12-13, 12-14
Warning messages

displaying, 6-14
WATCH command

See also Trace output
description, 12-34
STARTUP statement, 5-2
(table), 12-3

WBREAK command
description, 12-36
(table}, 12-3

WM command
See also Working memory and PPWM command
description, 12-37
(table), 12-3

Working memory, 2-1 to 2-8
classes, 2-1
elements

See Working-memory elements
modifying, 5-3 to 5-5
restoring state of, 5-6
saving state of, 5-6
structure, 1-2
time tags, 2-3

Working-memory elements, 2-1
associating, 5-18
attributes, 2-2

storing values of, 2-4
binding element variables to, 3-8, 5-8
changing atoms, 5-4
class name, 2-2

lndex-8

Working-memory elements
class name (cont'd.)

storing, 2-4
copying atoms from, 5-5
creating, 5-3

with external routine, 6-8
deleting, 5-4
fields, 2-3
format, 2-1
identifying, 5-18
internal representation, 2-3
time tags, 2-3

WRITE action
See also CRLF, RJUST and TASTO functions
description, 10-21
setting default, 5-11
(table), 10-2
using, 5-13

WRITE keyword
with DEFAULT action, 5-11, 10-11
with DEFAULT command, 12-12

HOW TO ORDER ADDITIONAL DOCUMENTATION

From

Alaska, Hawaii,
or New Hampshire

Rest of U.S.A.
and Puerto Rico*

Call

603-884-6660

1-800-DIGITAL

Write

Digital Equipment Corporation
P. 0. Box CS2008
Nashua, NH 03061

* Prepaid orders from Puerto Rico, call Digital's local subsidiary (809-754-7575)

Canada

Internal orders
(for software
documentation)

Internal orders
(for hardware
documentation)

800-267-6219
(for software
documentation)

613-592-5111
(for hardware
documentation)

DTN: 234-4323
508-351-4323

Digital Equipment of Canada Ltd.
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: Direct Order desk

Software Distribution Center (SDC)
Digital Equipment Corporation
Westminster, MA 014 73

Publishing & Circulation Serv. (P&CS)
NR03-1/W3
Digital Equipment Corporation
Northboro, MA 01532

Reader's Comments VAX OPSS
Reference Manual

AA-EZ19C-TE

Your comments and suggestions will help us improve the quality of our fµture documentation. Please note
that this form is for comments on documentation only.

I rate this manual's:
Accuracy (product works as described)
Completeness (enough information)
Clarity (easy to understand)
Organization (structure of subject matter)
Figures (useful)
Examples (useful)
TnnPx fr1hilit.v to finn toni~)

. v ~ .

Page layout (easy to find information)

What I like best about this manual:

What I like least about this manual:

I found the following errors in this manual:

Page Description

Excellent
D
D
D
D
D
D
n
D

My additional comments or suggestions for improving this manual:

Good
D
D
D
D
D
D
n
D

Please indicate the type of user/reader that you most nearly represent:

D Administrative Support
D Computer Operator
D Educator/Trainer
D Programmer/Analyst
D Sales

Name/Title

Company

Mailing Address

10/87

D Scientist/Engineer
D Software Support
D System Manager
D Other (please specify)

Dept.

Phone

Fair
D
D
D
D
D
D
n
D

Date

Poor
D
D
D
D
D
D
n
D

Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - - - - - -

Do Not Tear - Fold Here

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
CORPORATE USER PUBLICATIONS
PK03-1/30D
129 PARKER STREET
MAYNARD, MA 01754-2198

111 111 ... 1.1.1 •• 1 .. 11.1 .. 1.1 .. 1 ... 1.1.1 ... 11.1

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

- - - - - - - - - - - - - - - - -I

I

