EY-1233E-ID-0001

ANSI-77 FORTRAN
Information Document

Prepared by Educational Services
Of
Digital Equipment Corporation

lst Edition, April

(© pigital Equipment Corporation 1983.

All Rights. Reserved.

Printed in U.S.A.

The information in this document is
subject to change without notice.
Digital Equipment Corporation assumes no
responsibiliity for any errors that may
appear in this manual.

The software described in this document
is furnished under a license and may not
be used or copied except in accordance
with the terms of such license.

Digital Equipment Corporation assumes no
responsibility for the Juse or
reliability of its software on equipment
that is not supplied by Digital.

The following are trademarks of Digital
Equipment Corporation:

ofilgliftll DIBOL TOPS-10

DEC MASSBUS TOPS-20
DECmate PDP UNIBUS

DECnet P/0S VAX
DECsystem-10 Professional VMS
DECSYSTEM-20 Rainbow VT

DECUS RSTS : Work Processor

DECwriter RS X

1983

5/83-15

CONTENTS
PREFACE

CHAPTER 1 INTRODUCTION

1.1 INTRODUCTION . ¢ e eveee ianasancnsaneaas csessesesseeal-l
1.2 CHARACTER ”ONVENPIONS.. cceeseeseeenraanans 1-1
l1.2.1 Character Constants and Symbolic Constants...... 1-1
1.2.2 Character Variables and ArrayS....eeeee. seresesnn 1-2
1.2.3 Character Relational Exprussions. 1-3
1.2.4 Character Assignment Statzments.......... cheeen 1-4
1.2.5 Substring Reference and Daflnltlon1-4
1.2.6 Character EXpressionsS.....cevceecees st teeeceeaann 1-5
1.2.7 Character Variables and Constants in DATA

Statements..... Geeesesasacsssecenssen e cececnoene 1-56
1.2.8 Character Variables, Array Elements, Arrays,

and Substrings in Input ListS...ceecieeeecnans ee.l-5
1.2.9 Character Constants, Variables, Array

Elements, Arrays, Substrings, and

Expressions in OUtput LiStS.:eeeeveeeeeeeaceens .1-7
1.2.10 Character Functions......eceecieeeeeeenas ceeesesesal=T
1.2.11 Dummy and Actual Arguments of Type Character....l-7
1.2.12 Intrinsic Functions that Operate on

Character Dat@.ceeeeeeeecss ceeceesesesccnsase s .1-7
1.2.13 Character Variable Names, Array Element Names,

Array Names, and Substring Names in

EQUIVALENCE StatementS...ieceeeesescessecencscaeal="
1.2.14 Character Variable and Arrays in COMMON Blocks..1-8
1.2.15 Character Variables and Expressions as the

Values of the Specifiers in OPEN Statements..... 1-8
1.2.16 Character Constants, Character Arrays, and

Character Variables as Format Specifiers....... .1-8
1.3 CONTROL STATEMENT S .. vesveeceoesaneccaccnsocnscsans 1-8
1.3.1 BLOCK IF, ELSE IF, and END IF StatementS........1-8
1.3.2 DO Loop SemanticS.iieeeeeeeeecsoceennn ceeeenae ..1-10
1.4 INPUT/OUTPUT..... cececnssennn D e
1.4.1 Format Edit DesSCriptOrS....eceececerececencens se.1-10
1.4.2 Expressions on Output Lists......... cecescecann 1-12
1.4.3 Internal FileS...eieeeeeeececaccacnanens ceecacnn 1-13
1.4.4 Unit Specifier and Identifier.......... seessseal-1l3
1.4.5 Format Specifier and Identifier...... ceecenan ..1-14
1.5 ASSUMED SIZE ARRAY DECLARATORS . ¢t e cceeeeceans eeeel-14
1.6 USE OF A FORMAT STATEMENT LABEL IN AN ASSIGN

STATEMENT....... cecsecsseccccsens e eeceue s ececccsa 1-14

iii

107
1.8

1.9
1.10
CHAPTER 2
2.1

2.2
2.2.1
2.2.1.1
2.2.1.2
2.2.1.3
2.2.1.4

NN
L]

NN
L]

oW N

.

NN NN
.

DN DN
L]

W ~J o

NN NN

. L] .

(SR SENEN)
.

= O

N O

2.2.13

2.2.14
2.2.15
2.2.15.1

DN NN
* L] .
NN N NN
. L]]

=
. L]

o Jayurn

2.2.19

w N

‘ CONTENTS (Cont)
INTRINSIC AND EXTERNAL STATEMENTS......cc....
SAVE STATEMENT .. .cveeeeeennnces
NULL ARGUMENT LISTS FOR FUNCTIONS....eee...
CONSTANT EXPRESSIONS....

® e 060 0 000 000 00 0

TOPS-10/20 FORTRAN

INTRODUCTION. ¢ e e vwew ce s o
MAJOR FEATURES OF VERSION 7 THAT WERE NOT IN
VERSION Bceececeacscacoccsasocsasasasssasssoncs
Features Supported for Character Data......
Character Assignment StatementS.......c..

® ®© e 0 0% 00 0 0 s 0006000 000

Character EXpPressionS...ceeceees ceeseseens
Character Variables and Constants in DATA
StatementS eeeeeeeeeceescacocess e ecsseenne

e o 0

. o 0

Character Variables, Array Elements, Arrays,

and Substrings in Input Lists.....

ooooooo

Dummy and Actual Arguments of Type Character

EQUIVALENCE Statements......
Character Variables and Arrays in COMMON
BlOoCKS ioeeeeesoesceeeooassssasscssocssosnss
NaMel iSES.eeseeeceoecossossssscaansancnccscs
IF THEN ELSE Statements...... . ceses e
Expressions on Output ListS.eieeeeoeos
Intrinsic and Generic Functions at the
FORTRAN-77 Full Language Level.......ceenrse

ooooooooooo . e

* o o

¢ o0

Internal Files (Single-Record and Multirecord)

FORTRAN-77 DO Loop SemantiCS..eecececceascss
Assumed-Size Array DeclaratorS..ceececescsss
Use of FORMAT Statement Numbers in ASSIGN
StatementES.eeseerecesscssssssssssssosnsaansa
‘INTRINSIC Statement; EXTERNAL Statement....
SAVE Statement.e.ceeceeecsscocccoscsccocsoces
Null Argument Lists for FunctionS.....eees..
Minor Syntax Extensions Required by the
FORTRAN-77 Standard .cceececececscececccscccsnses
Compile Time Constant Expressions in
Declar: tions, as Array Bounds, and String
BOUNA S eeeeoseescoossssscsscssscsascscsasossosses
FORTRAN-77 PARAMETER StatementS.ceeeecececs
DO WHILE and END DO StatementS...cceeeeceoss
.Optional Statement Label in the Indexed

e a0

¢ o e . ¢ o
N NN

NN NN

* e o . []
NN NN DN

T
(=Y

e o
NN
o

l 1o
N NN

I
W W NN

I
DWW

|
[~ Y

(Standard) DO Statement..ccceacececcssccccsscsesal=D
DO WHILE Statement.e.e.eeeeeecceocccsoscsascscnsel=bh

END DO Statement.ceeeceees

0-.0.00000-..0-2_6

LINKtime Type-Checking of Subprogram Arguments..2-6
G-Floating Double-Precision Numbers.....eeeeee..2-7

Native TOPS-20 Command Interface for the
Compiler..cceeeeceecenans

...................2"7

New Functionality in the ERRSET Subroutine......2-7

iv

MDD

*
[y
o

oW

Q
5
3
K

e o .
NN NN NDNDDNNDNDDNDDNDND

WWWwwwwwuwuww www w
e o L]
WNHE O

L]
PP RO W N

L] L] . L] L] L] . L] . . L]] L] . L] L] .
L] L] (] . (] [] . L] [] .
BN 2 b b e
FowoOuOU D

WWWWwWwWwwwwwwwwwwww
L]
AN UTEWNNNDNDNDNDNN

.
| W

Q
S
3
5

. L[] . .
[] L[] [
= e
L] L] .
U wWh e

[N = S S S D N
.
NN DN

CONTENTS (Cont)

Utility Subroutine to Get a Free Unit Number....2-8
FORTRAN-77 FEATURES THAT ARE NOT SUPPORTED..«.«.....2-8
SUMMARY OF EXTENSIONS TO THE FORTRAN-77 STANDARD..2-9

VAX-11 FORTRAN

INTRODUCTION. e ceeeeeescocscccosnceaosacsoscascaccscsessl—
NEW FEATURES SUPPORTED BY VERSION 3..ccccceccecesesld—

Bit FUNCELIONS .t et eeececcsscocscsocccoccss

1
2
0003-2

Debugger Commands for Source Code Debugging.....3-3
DEFAULTFILE Keyword in the OPEN Statement.......3-3
IMPLICIT NONE Statement...eececcecssoscosscoscsssl3=3
FORTRAN Data Manipulation Language Preprocessor.3-4
Faster I/0 InterfacCe.eceeeceeecscecescesascnsssosssi—q
Zero-Extending Intrinsic FunctionsS.....eeeeee...3-4

Library-Based INCLUDE Statement..ccecceccesscas
Improved Math RouUtineS...ececesaecscsosscccssaces
Namel ist-Directed I/0 StatementS.cceececccccecass
Optimization of Generated Code.cvervecsnccccscan
Optimization of I/0 RoutineS.eceeeeeseecoss

Checking for Extensions to the FORTRAN-77

Standard................-...QI.O..0.0..
A Cross—Reference LiSting.ceeeceeeceecs

Floating-Underflow Checking..eeeeeeeecencene

Substring-Bounds Checking..c.eeecesessse
OPTIONS Statement...ceeecaes

®e o o o0

FORTRAN Definitions for System Symbols......

Trigonometric Functions in Degrees.....
Run-Time I/0 Error MeSSageS.eeeeessccss
/SHOW Qualifier.ecececeececocccconocncacs
EXTENSIONS TO THE ANSI STANDARD::¢:eeoosees
ADDITIONAL FEATURES.......
VAX-11 FORTRAN COMPILER OPIrIMIZATIONS....
COMPATIBILITY:
DO Loop Minimum Iteration Counte..eeeo.
EXTERNAL Statement...cceeecscecocccsecs
OPEN Statement Keyword DefaultS..eece.e

® @ 00 0 0000000 80

OPEN Statement Status Keyword Default.......

X Format Edit DesSCriptOr.cceecececesess

PDP-11 FORTRAN

INTRODUCTION . s eeeeeesscsccssasasnsossssssse
NEW FEATURES.eeceseeccseccsacsosscssososansns
Features Supported for Character Data..
Character ConstantS..eececeesscscsses
Substring Reference and Definition...
Character EXpPresSSionNS..ceccecececescces
Character Variables and ArrayS.......
Character Relational Expressions.....

e o o s 0

VAX-11 FORTRAN AND FORTRAN-66.

e o o 0 0

L]
wwc‘uww
(G2 NS, W, o

.
.
e o
| |
AN IR I¥e) Weo)le) I) Ie) W) WU, 6, |

. .
. .
$(fUJwLHU)wLuu)
|

L]
.
.
w

.
[]
w
|
oy
(@]

.«+3-10
..3-10
..3-11
..3-11
..3-11
..3-11
««3-12

)
.
e o

. L]

¢« o o

e o o o

I I
DD

o>
L] .
NN
. L]
-
. L]
(oo} ~N o

TR
« o
wN N
.
[N

L]

ot N
L]
wwww
.
W N

[Ty
o o o
www

W
.
w
.
(00

L]
L]
AU W

L e S
.

[e) o) o) v) o) Mo Mo WU, IeY
.

CHAPTER 5

Table No.

=W
[
]

oot un
I
PHFWOONOUTS WN

= O

CONTENTS (Cont)

Character Assignment StatementS...cceeeceececessd—2
Character Variables and Constants in DATA
StatementS..ieeeeeeeorseeocsosssssncecsnscaccccsesd=3
Character FUNCLiONS.cieeecececososceecccncaccsssd=3
IF THEN ELSE StatementS.cecceeccescescoscccoccescesd=3
FEATURES OF THE FULL-LANGUAGE FORTRAN AS DEFINED
BY THE ANSI STANDARD: .t eeetossvccscoccocssccccscessd=3
Exponentiation FOrMS.:cceeceeeecsssoscsccsscscscccesd=3
Format Edit DesSCriptOrS..cecececceescecsccccocceead=3
INTRINSIC and EXTERNAL StatementS..cccececccecess.d-4
Generic Function Selection Based on Argument
Data Type for FORTRAN-Defined FunctionS.........4-4
PARAMETER StatementS.cceececcccccccecoseccecsessd=h
Generalized DO Loop Parameters........ cecsessessd=5
Lower and Upper Bounds Specification in Array
DeClarator Seeeescescscsscscsscscsosscsssscccsessassseeld=b
Optional Syntax for I/0 Statements (UNIT= and
PMT=) ceveeceoosonsesaccsoesoscsosscscscsssasssascssssesd=h
EXTENSIONS TO THE ANSI STANDARD.::eecescoacecesceeesd=bh
ADDITIONAL FEATURES. ¢t ceeteecceosccsccscncsssnsesd=T
COMPATIBILITY: PDP~11 FORTRAN AND FORTRAN-66.....4-7
DO Loop Minimum Iteration CoUnt...cceeceecceccesesd=7
EXTERNAL Statement.c.ceeceeeescecosccsescscsccsasesd="
OPEN Statement Keyword DefaultS..cecececececessassd=T
OPEN Statement Status Keyword Default...........4-8
Blank Common Block PSECT (.3$553.) cececeacccceesead—8
X Format Edit DesCriptOor.cececececsccccccnccesssd—8

A COMPARISON OF FORTRAN LANGUAGE FEATURES

TABLES
Title Page

Trigonometric FunctionS...eciieeeececcceceaceceness3—b
Allowed Combinations of Types of Base and

B PONENES . e eieeeoacsesosscscsossscsasosacccsccnscsscsesd=3
Programming ConsiderationS...ecceecescceceeccscsasab=-1
Subprogram StatementS.....cceescesccoccccscccsssssd=3
Constant and Variable TYPES.ccecccccasoscccccesssdd
DAat3 TYPESeteeecocesocsososscsossassnsscsncsscssasacscassd=D
Specification StatementS...vieeeeccccsassaseccceadb
Data Initialization Statement...ccececececcecesessess=8
Relational OperatorS.ecscececccscccccsasascasnceassdB
Logical OperatorS...eeeececsecsccsccsacssoasascsssd9
Assignment StatementS....ccceccrescscsssssascsssssd9
Control StatementS.c.ceccecceccccccscscsscccasssoesad=10
Sequential I/0 StatementS.cce.cececescccoccscoceccsseb=12

vi

TABLES (Cont)

Table No. Title Page
5-12 File Control StatementS.....ceeseescecccccccceeesdl’
5-13 Direct Access I/0 StatementS.ecsecececsscceseoasasssad=lb
5-14 Indexed I/0 StatemMeNtS ceceeeceesecsscescscssssosedlb
5-15 Format and Types of ConversionN...ceeeeeeecceceeesd-17
5-16 Library FUNCtioNS..eeeseescccscnscacsesscsssseesd1O

vii

PREFACE

Amer ican National Standard Programming Language FORTRAN,
ANSI X3.9-1978, specifies the form and establishes the
interpretation of programs expressed in the FORTRAN language.
Its purpose is to promote portability of FORTRAN programs for use
on a variety of data processing systems.

FORTRAN 77 is a revision of BAmerican National Standard
FORTRAN, ANSI X3.9-1956. It describes two levels of the FORTRAN
language, referred to as FORTRAN and Subset FORTRAN. FORTRAN 77
includes the subset, American National Standard Basic FORTRAN,
ANSI X3.10-1956.

This information document provides information about ANSI-77
standard FORTRAN and Digital's FORTRAN features under TOPS-10/20,
VAX, and PDP FORTRAN. The primary functions of this document are
to serve as a reference point to and summary of more detailed
information, and to serve as a quick review of new features and
changes, such as the comparison and <contrast of different
versions or of different operating systems.

The target audience for this document is software
specialists whose responsibilities include presale, installation,
and warranty support of FORTRAN. Thesa specialists should have
the following prerequisite skills and training: programming
experience; a knowledge of FORTRAN; and user-—level knowledge of
the TOPS-10/20, VMS, and the several operating systems that run
on the PDP-11 family of computers. This document 1is not a
tutorial in the application of FORTRAN.

ix

CHAPTER 1
INTRODUCTION

1.1 INTRODUCTION

The FORTRAN language was originally developed for solving
mathematically oriented problems. The engineering and scientific
communities, as well as the business community usz it extensively
for analytical work. FORTRAN applications have evolved to
include more general applications involving character and file
manipulation. 1In March 1976 a new standard was drafted to ensure
portability of FORTRAN programs that include the advanced file
and character handling features. The final wversion of this
standard was approved on 3 April 1978 and is referred to in this
document as the FORTRAN-77 or ANSI-77 standard.

The following paragraphs summarize the appropriate sections of
the FORTRAN-77 full language standard (ANSI X3.9-1978). (These
sections reflect the major areas of change involved in the new
versions of TOPS-10/20, VS, and the PDP family of operating
systems.) This is not meant to be a complete delineation of all
the changes that were added to the previous standard (ANSI
X3.9-1966). Descriptions of these <changes are found 1in the
American National Standard Programming Language FORTRAN, ANSI
X3.9-1978 published by the American National Standards Institute.
The following paragraphs refer to specific sections of this book.

1.2 CHARACTER CONVENTIONS

1.2.1 Character Constants and Symbolic Constants

A character datum has one character storage unit in a storage
sequence for each character in the datum. A storage sequence is
a sequence of storage units (either numeric or character). If a
datum requires more than one storage unit in a storage sequence,
these storage units are consecutive. (Section 2.13)

A character datum is a string of characters consisting of any
characters capable of being represented in the processor. (Blank
characters are valid and significant.) The character position of
each <character in the string is numbered consecutively from left
to right. (Section 4.8)

A character constant is a string of printable ASCII characters

enclosed by apostrophes. Blanks between delimiting apostrophes
are significant, but the delimiting apostrophes are not counted

1-1

INTRODUCTION

as part of the datum. Within a character constant, the
apostrophe character is represented by two consecutive
apostrophes with no space or other character between them.

A character constant has the form:

'clc2c3.....cCn’
where c¢cl,c2,c3,...,cn are printable characters.

A character constant expression 1s a character expression in
which each operand is a character constant, the symbolic name of
a character constant, or a character constant expression enclosed

in parentheses. (Variables, array elements, substrings, and
function references are not allowed.) (Section 6.2.3)

A parameter statement allows constants to be defined symbolically
during compilation. 1Its form is:

PARAMETER (p=e [,p=e] . . .)
where p is a symbolic name and e is a constant expression.

The constant acquires the same data type as the symbolic name.
In particular, if p is a character constant expression, e must
correspondingly be a character constant expression. The scope of
a parameter is the ©program unit in which it is declared. The
data type of a symbolic name is specified by a type-statement or
IMPLICIT statement preceding the defining PARAMETER statement.
The default length for the symbolic name is one; other 1lengths
can be specified in type-statements or IMPLICIT statements
preceding the symbolic name. (Refer to section 8.6.)

The following is an example of the parameter statement.

CHARACTER DELTA, EPSILON*3
PARAMETER (DELTA='DIFF',EPSILON='SUM' ,E=2.7)

1.2.2 Character Variables and Arrays

The form of a character type-statement is:
CHARACTER [*len [,1] nam [,nam} . . .

where nam is of the form:

v [* len]
a [(d)] [*len]

[v is a variable name, symbolic name of a constant, function

name, or dummy procedure name; a is an array name; a(d) is an
array declarator; len is the number of characters of a character

1-2

INTRODUCTION

variable, character array element, or character function.] (Refer
to section 8.4.2.)

The length specification can be an unsigned integer constant, a
positive-valued integer constant expression in parentheses, or an
asterisk in parentheses.

In the statement:
CHARACTER*4 ALPHA,BETA*1,GAMMA(10)*8
the following character declarations are made.

ALPHA has a length specification of 4
BETA has a length specification of 1
GAMMA has a length specification of 8

1.2.3 Character Relational Expressions

A character relational expression has the form a rel b where a
and b are character expressions and rel is a relational operator.
(Refer to section 6.3.4.) This expression 1s interpreted as
logically true if the values of the operands satisfy the relation
specified by the operator; it is interpreted as false 1if the
relation is not satisfied. (Section 6.3.5)

The six relational operators are:

. LT. Less than _
.LE. Less than or equal to
.EQ. Equal to

.NE. Not equal to

.GE. Greater than or equal to
.GT. Greater than

In character relational expressions, less than means "precedes in
the ASCII collating sequence." For example, the expression:

'ABCD' .LT. 'CDEF'

states that 'ABCD' is 1less than 'CDEF'. Because this
relationship does exist, the value of the expression is true. If
the relationship did not exist, the wvalue of the relationship
would be false.

If the two character expressions in a relational expression are
not the same 1length, the shorter of the two 1is padded on the

INTRODUCTION

right with spaces until the lengths are equal. For example, 1in
the relational expressions:

'ABC' .EQ. 'aBC !
'AB' .LT. 'c!
the first has a value of true, even though the 1lengths of the

expressions are not equal; and the second has a value of true
even though 'AB' is longer than 'C'.

1.2.4 Character Assignment Statements
A character assignment statement has the form:

v = e
where v is the name of a <character wvariable, character array

element, or character substring; and e 1is a character
expression.

Execution of this statement causes e to be evaluated and v to be
assigned the wvalue of e. V and e may be of different lengths.
(section 10.4) In the full language, only as much of the value of
e must be defined as is needed to define v. For example:

CHARACTER X*4,Y*5
X=Y

does not require that the substring Y(4:5) be defined.
1.2.5 Substring Reference and Definition

A character substring is a contiguous segment of a character
variable or <character array element. A character substring is

identified by a substring name and can be assigned values and
referenced. (Section 5.7)
A character substring reference has one of the following forms:
v([el]l:[e2])
a(s{,sl...) ([el]l:[e2])
where:

@ Vv is a character variable name

@ a is a character array name

1-4

INTRODUCTION

e s is a subscript expression

e el is an optional numeric expression that specifies the
leftmost character position of the substring

e 2 is an optional numeric expression that specifies the
rightmost character position of the substring.

‘Character positions within a character variable or array element
are numbered from left to right, starting with 1.

The values of 21 and e2 must satisfy the inequalities:

1 .LE. el .LE. e2 .LE. len
If el is omitted, its value 1is implied to be 1; if e2 is
omitted, its wvalue is implied to be 1len. The length of a
character substring is e2 - el + 1.
If el or e2 is not an integer, it 1s converted to an integer
value by truncating its fractional part. (Sections 5.7.1], 5.7.2)
For example, in the statement:

CHARACTER TLC*8,XIN(3,4)*6

TLC='START'

XIN(2,3)='0UTPUT"'

the substring name TLC(2:5) has a character value of "TART" and
the substring name XIN(2,3)(4:6) has a character value of "PUT."

In the CHARACTER type statement, character wvariable TLC 1is

declared as having a string 1length of 8 and each element of
character array XIN has a string length of 6.

l.2.6 Character Expressions
Character expressions (including the concatenation operator)

consist of character operands and character operators. A
character operand can be:

1. A character constant

2. A symbolic name of a character constant

3. A character variable

4. A character array element

5. A character substring

INTRODUCTION

6. A character expression, optionally enclosed in
parentheses

7. A character function reference.

The character operator is the concatenation operator (//). A
character expression of the form:

character operand [//character operand]...

for example x2//x1, is interpreted as x1 concatenated with x2.
The resulting character string has the value of the value of x1
on the right concatenated with the value of x2 on the left. The
length of this resulting character string is the sum of the
lengths of x1 and x2.

Parentheses do not affect the value of a character expression.

Variables, array elements, substrings, and function references are
not allowed. (Sections 6.2, 6.2.1, 6.2.2.1, 6.2.2.2, 6.2.3, 6.6.5)

For example, the value of the character expression 'XYZ'//'ABCD'
is the character string 'XYZABCD'.

1.2.7 Character Variables and Constants in DATA Statements
The form of the DATA statement is:

DATA nlist/clist/[[,] nlist/clist/]...

where nlist is a list of wvariable names, array names, array
element names, substring names, and implied-DO lists; and clist
is a constant list of the form al,al... where each a is either a
constant, a parameter, or a repetition factor of the form n*
followed by a constant or parameter (denoting n successive
appearances of the constant or parameter separated by commas).
For example:

CHARACTER*4 TEXT
DATA TEXT/'YYXX'/

illustrates the use of a character constant in a DATA statement.
(Refer to section 9.4.)

l.2.8 Character Variables, Array Elements, Arrays, and Substrings
in Input Lists
These are discussed in Section 12.8.2.1.

1-6

INTRODUCTION

1.2.9 Character Constants, Variables, Array Elements, Arrays,
Substrings, and Expressions in Output Lists

Input/output lists are used in READ, WRITE, or PRINT statements
to specify data to be transferred. (Section 12.8.2.2)

1.2.10 Character Functions

These 1include intrinsic functions, external functions, and
statement functions that return values of type <character.
(Sections 15.2, 15.2.2, 15.4)

1.2.11 Dummy and Actual Arguments of Type Character
These are discussed in section 15.9.3.1.

1.2.12 Intrinsic Functions that Operate on Character Data

These functions are LEN, INDEX, CHAR, ICHAR, LGE, LGT, LLE, and
LLT. (Refer to section 15.10.) LEN gives the length of the
character entity. INDEX(al,a2) gives the location of substring
a2 in string al. CHAR(i) returns the character in the i-th
position of the processer collating sequence. The value 1is of
type character of 1length one. ICHAR gives the position of a
character in the processor collating sequence.

LGE (al,a2) returns the value true if al = a2 or if al follows a2
in the ASCII standard collating sequence and returns the value
false otherwise. LGT(al,a2) returns the value true if al follows
a2 1in the standard collating sequence and otherwise returns the
value false. LLE(al,a2) returns the value true if al = a2 or 1if
al precedes a2 in the standard collating sequence, and otherwise
returns the value false. VLLT(al,a2) returns the value true if al
precedes a2 1in the standard collating sequence and otherwise
returns the value false.

1.2.13 Character Variable Names, Array Element Names, Array
Names, and Substring Names in EQUIVALENCE Statements

An EQUIVALENCE statement 1is wused to specify the sharing of
storage units by two or more entities in a program unit.
(Sections 8.2, 8.2.1, 8.2.3) The form of the EQUIVALENCE
statement is:

EQUIVALENCE (nlist)[,(nlist)]...

where nlist is a list of variable names, array element names,
array names, and other character substring names. Character
strings may be equivalenced only with other character strings.
The association is made between the first storage units occupied

INTRODUCTION

by entities appearing in the equivalence 1list. Any adjacent
characters may also have the same character storage unit and thus
may be associated. For example:

CHARACTER A*6, C(4)%*4
EQUIVALENCE (A,C(2))

causes the following associations:

Storage unit: 1 2 3 4 5 6 7 8
Variable A: - - - - - - A - - - =
Array C: - - C(2) -/- C(3) - -

l.2.14 Character Variable and Arrays in COMMON Blocks
The form of a COMMON statement is:

COMMON [/[cb]l/] nlist [,]1/[cb]l/ nlist]...

where cb is a common block name and nlist is a list of wvariable
names, array names, and array declarators. If a character
variable or array is placed in a common block, that block must
contain only character data. (Section 8.3.1)

1.2.15 Character Variables and Expressions as the Values of the
Specifiers in OPEN Statements
These are discussed in section 12.10.1.

1.2.16 Character Constants, Character Arrays, and Character
Variables as Format Specifiers
The form of a FORMAT statement is:

FORMAT f£fs
where fs is a format specification. One of the options for the
format 1identifier is a character array name, character variable,

character array element, or character expression. (Section
13.1.2)

1.3 CONTROL STATEMENTS

1.3.1 BLOCK IF, ELSE IF, and END IF Statements

FORTRAN-77 has added BLOCK 1IF, ELSE 1IF, ELSE, and END IF
statements. (Refer to sections 11.6, 11.7, 11.8, and 11.9.)

The IF-level of a statement s is nl - n2 where nl is the number
of block IF statements from the beginning of the program unit up

1-8

INTRODUCTION

to and including s, and n2 is the number of END IF statements in
the program unit up to but not including s. This facility
enables the processor to determine which IF-THEN-EL3SE statements
correspond to each other.

The form of a BLOCK IF statement is:
IF (e) THEN

where e is a logical expression. The processor executes a BLOCK
IF statement by first evaluating e. 1If the valus of e is true,
and the IF block is empty, the program control is passed directly
to the next END IF statement. If the IF block is not empty, the
first statement of the IF block is executed. If the value of e
is false, control 1is transferred to the next ELSE IF, ELSE, or
END IF statement having the same IF 1level as the BLOCK IF
statement. (An IF BLOCK consists of all the executable
statements appearing between the BLOCK IF statement up to, but
not including, the next ELSE IF, ELSE, or END IF statement having
the same IF level as the BLOCK IF statement) .

The form of an ELSE IF statement is:
ELSE IF (e) THEN

where e is a logical expression. An ELSE IF block consists of
all the executable statements between the ELSE IF statement up
to, but not including, the next ELSE 1IF, ELSE, or END IF
statement having the same IF level as the ELSE IF statement.

The processor executes the EL3E IF statement by first evaluating
the expression e. If the value of e is true, and the ELSE IF
block is empty, control is transferred directly to the next END
IF statement with the same IF level. If the value of e is true,
and the ELSE IF block is not empty, the first statement of the
ELSE IF block is executed. 1If the value of e is false, control
is transferred to the next ELSE IF, ELSE, or END IF statement
having the same IF level as the ELSE IF statement.

The form of the ELSE statement is:
ELSE

The form of the END IF statement is:
END IF

The END IF statement performs no executable function, but serves
as a point of reference. :

1-9

INTRODUCTION

1.3.2 DO Loop Semantics
The form of a DO statement is:

DO s [,] i=el, 2 [,e3]

where s is the statement label of an executable statement; 1 is
the name of an integer, real, or double-precision variable
(called the DO variable in FORTRAN-77); el, e2, e3 are each an
integer, real, or double-precision expression. El is the initial
value of the DO variable, e2 is the 1limiting wvalue of the DO
variable, and e3 is the increment value for the DO variable.

T™wo new features of FORTRAN-77 DO loops are:

1. The possibility of =zero +trip loops (The FORTRAN-66

~ standard did not specify how many iterations a DO loop

had. Most processors, including Digital and IBM,
executed loops at least once.) '

2. The availability of the 1loop 1index after 1loop exit
(previously this was not available). (Sections 11.10
through 11.10.7)

1.4 INPUT/OUTPUT

1.4.1 Format Edit Descriptors

A field descriptor describes the size and format of a data item
or items. An edit descriptor specifies an editing function to be
performed on a data item or items. (Refer to sections 13.2,
13.5, 13.5.3, 13.5.3.1], 13.5.6, 13.5.9.2.3)

The BN edit descriptor causes the processor to ignore all the
embedded and trailing blanks it encounters within a numeric input
field. It has the form: ‘

BN
The effect 1is that of actually removing the blanks and
right-justifying the remainder of the field. A field of all
blanks is treated as zero.

The BZ edit descriptor causes the processor to treat all the
embedded and trailing blanks it encounters within a numeric input
field as zeros. It has the form:

BZ

INTRODUCTION

The SP edit descriptor causes the processor to produce a plus
character in any position where this character would otherwise be
optional. It has the form:

Sp

The SS edit descriptor causes the processor to suppress a leading
plus character from any position where this character would
normally be produced as an optional character; it has the
opposite effect of the SP field descriptor described below. The
SS descriptor. has the form:

5SS

The S edit descriptor reinvokes optional plus characters (+) 1in
numeric output fields. It has the form:

S

The S descriptor counters the action of either the SP or SS
descriptor by restoring to the processor the decision-making
ability to produce plus characters on an optional basis.

The T edit descriptor specifies the ©position, relative .to the
start of an external record, of the next character to be
processed. It has the form:

Tn

where the term n indicates the position in the external record of
the next character to be processed. The value of n must be
greater than or equal to 1, but not greater than the number of
characters allowed in the record.

The TL edit descriptor is a relative tabulation specifier for
tabbing to the left. It has the form:

TLn

The term n specifies that the next character to be transferred
from or to a record 1is the nth character to the left of the
current character. The value of n must be greater than or equal
to 1. 1If the value of n is greater than or equal to the current
character position, the first character in the record is
specified.

The TR edit descriptor is a relative tabulation specifier for
tabbing to the right. It has the form:

TRn

1-11

INTRODUCTION

The term n indicates that the next character to be transferred
from or to a record 1is the nth character to the right of the
current character. The value of n must be greater than or equal
to 1.

The I field descriptor specifies decimal integer values. It has
the form:

Iw[.m]
The corresponding I/O0 list element must be of integer data type.

On input, the I field descriptor specifies that w characters are
to be read from an external file, interpreted as a decimal
integer wvalue, and assigned to the corresponding 1I/0 1list
element.

On output, the I field descriptor specifies that the value of the
corresponding I/0 list element is to be transferred as a decimal
value, right-justified, to an external field w characters 1long.
If m is present, the external field consists of at least m
digits; if necessary, zeros are added on the left to bring the
total digits to m. If the value exceeds the field width, the
entire field is filled with asterisks. If the value of the 1list
element 1is negative, the field will have a minus sign as its
leftmost, nonblank character, provided the term w is 1large
enough. Plus signs are optionally suppressaed (at the discretion
of the processor) unless SP is specified. '

The G field descriptor specifies real or double precision values,
combining E- or F-type formats according to the size of the
number being output. It has the form:

Gw.d[Ee]

The corresponding I/0 1list element must be of real or
double-precision data type, or it must be either the real or the
imaginary part of a complex data type.

On input, the G field descriptor does not differ from the F, E,
or D descriptors.

On output, the G field descriptor specifies that the value of the
corresponding I/0 list element is to be transferred as a real or
double-precision value in either exponential or fixed-point form
depending on its magnitude, rounded to d decimal positions, and
right-justified, to an external field w characters long.

1l.4.2 Expressions on Output Lists
An input/output 1list specifies the entities whose wvalues are
transferred by a data transfer input/output statement. An

1-12

INTRODUCTION

input/output list is a simple list, an implied-DO 1list, or two
input/output 1lists separated by a comma. A simple input/output
list item is one of the following.

1. A variable

2. An array

3. A character substring
4. An element of an array

In addition, in the full language, a simple output list may be an
expression, with the exception of a character expression
containing a dummy argument with a 1length attribute specified
with an asterisk. (Sections 12.8.2, 12.8.2.1, 12.8.2.2,
12.8.2.3)

Note that a constant, an expression involving operators or
function references, or an expression enclosed in parentheses may
appear as an output list item but not as an input list item.

An implied-DO list is of the form:
(dlist, i = el, e2 [,e3])

where i, el, e2, and e3 are as specified for the DO statement and
dlist is an input/output list.

1.4.3 Internal Files

Internal files provide a means of transferring and converting
data from internal storage to internal storage. An internal file
is a character wvariable, character array element, character
array, or character substring. Reading and writing records is
accompl ished by sequential access formatted input/out put
statements.

1.4.4 Unit Specifier and Identifier
The form of the unit specifier is:

[UNIT=]u

where u is an external wunit identifier or an internal unit
identifier. An external unit identifier is an integer expression
with a zero or positive value or is an asterisk, identifying a
particular processor—-determined exX ternal unit that is
preconnected for formatted sequential access. (Section 12.3.3)

INTRODUCTION

1.4.5 Format Specifier and Identifier
The form of a format specifier is:

[FMT=] £

where f is a statement label of a FORMAT statement, an integer
variable that has been ASSIGNED the statement label of a FORMAT
statement, a character array name, any character expression other
than one involving concatenation of an operand whose length was
specified by an asterisk and that is not the symbolic name of a
constant, or an asterisk specifying list-directed formatting. If
FMT= is omitted, the format specifier must be the second item in
the control information list and the first item shall be the unit
specifier without UNIT=. (Section 12.4)

1.5 ASSUMED SIZE ARRAY DECLARATORS

In an array declarator for a dummy array, the upper bound of the
last dimension may be specified by an *. (Sections 5.1.2,
5.1.2.2, 5.5)

The form of an array declarator 1is:
a (d [’d]oco)

where a is the symbolic name of the array and 4 1is a dimension
declarator.

A dummy array declarator is an array declarator 1in which the
array name is a dummy argument.

1.6 USE OF A FORMAT STATEMENT LABEL IN AN ASSIGN STATEMENT
The form of a statement label assignment statement is:

ASSIGN s TO i

where s is a statement label of an executable statement or FORMAT
statement and i 1is an integer variable name. (Sections 10.3,
12.4)

An integer variable assigned a statement number may be used only
as a statement identifier in an assigned GOTO statement or as a
format identifier in an input/output statement.

1.7 INTRINSIC AND EXTERNAL STATEMENTS
The INTRINSIC statement is used to identify a symbolic name as
representing an intrinsic function. (Refer to sections 8.7 and

INTRODUCTION

8.8.) It permits the name to be used as an actual argument. The
form of the INTRINSIC statement is:

INTRINSIC fun[,fun]...

where fun is the symbolic name of an intrinsic function. For
example:

INTRINSIC SIN
CALL AIDS (A,B,C,SIN)

The form of the EXTERNAL statement is:
EXTERNAL proc[,proc]...

where proc is the symbolic name of an external procedure, a dummy
procedure name, or a block data program unit.

The EXTERNAL statement is used to identify a symbolic name as
representing an external procedure or dummy procedure, and to
permit such a name to be used as an actual argument.

1.8 SAVE STATEMENT

A SAVE statement is used to retain the definition of a wvariable,
an array, or a named common block after the execution of a RETURN
or END statement. (Refer to Section 8.9.) The form of a SAVE
statement is:

SAVE [a,[,a]...]

where each a is a named common block name preceded and followed
by a slash, a variable name, or an array name.

1.9 NULL ARGUMENT LISTS FOR FUNCTIONS
The form:

fun ()

may be used to reference a function with a null argument 1list.
(Section 15.2.1)

Statement functions with null argument lists may be declared. A
null, parenthesized argument 1list appears in the declaration.
(Section 15.4.1)

INTRODUCTION

The form of a statement function statement is:
fun ([(d4,[,d...]) = e

where fun is the symbolic name of the statement function, d is a
statement function dummy argument, and e 1is an expression.
Parentheses may optionally be used for null argument 1lists 1in
FUNCTION statements.

1.10 CONSTANT EXPRESSIONS

Constant expressions (not just constants) may be wused in array
declarators, PARAMETER statements, and implied DO-lists in DATA
statements. (Sections 6.1.3, 6.1.3.1, 6.2.3, 6.4.4, 6.7,
5.1.1.1, 8.6, 9.3)

CHAPTER 2
TOPS-10/20 FORTRAN

2.1 INTRODUCTION

The FORTRAN language as implemented on the TOPS-10 and TOPS-20
operating systems is compatible with and encompasses the standard
described in American National Standard FORTRAN, X3.9-1978 at the
subset level. TOPS-10/20 FORTRAN also supports most features
from the FORTRAN-77 full language standard.

FORTRAN provides many extensions and additions to the FORTRAN-77
standard that greatly enhance the wusefulness of FORTRAN and
increase its compatibility with FORTRAN languages implemented by
other computer manufacturers.

The TOPS-10/20 FORTRAN Language Manual (AA-N383A-TK) reflects the
software as of Version 7 of the FORTRAN-10/20 object time system
(FOROTS), and Version 7 of the FORTRAN-10/20 debugging program
(FORDDT) . This manual describes the FORTRAN language as
implemented for the TOPS-10 operating system (FORTRAN-10) and the
TOPS-20 operating system (FORTRAN-20) and notes any differences.
It supersedes AA-J127A-TK.

2.2 MAJOR FEATURES OF VERSION 7 THAT WERE NOT IN VERSION 6

2.2.1 Features Supported for Character Data

Version 7 supports character data as specified by the full
language FORTRAN-77 standard. Supported features include
character assignments, character relationals, substrings,
concatenation, and character functions and arguments, including
functions and dummy arguments of length *. Character data 1is
supported in DATA, COMMON, and EQUIVALENCE statements; and in
formatted, binary, and image mode I/O.

2.2.1.1 Character Assignment Statements - Character constants may
be assigned to noncharacter variables. The standard restricts
the assignment of character constants to character variables.

Version 7 extends the standard to support assignment statements
in which there is overlap between the left- and right-hand sides.
The results of such an assignment will be as if the expression on
the right-hand side were assigned to a temporary and then the
value of the temporary were assigned to the left-hand side.

2-1

TOPS-10/20 FORTRAN

2.2.1.2 Character Expressions - Version 7 extends the standard to
allow concatenation of formal parameters that are length *.

2.2.1.3 Character Variables and Constants in DATA Statements -
For compatibility with previous versions, Version 7 supports the
use of character constants to initialize noncharacter variables.

2.2.1.4 Character Variables, Array Elements, Arrays, and
Substrings in Input Lists - In addition to the A edit descriptor
for input/output list items of type character, Version 7 supports
the G edit descriptor. The G edit descriptor functions as the A
edit descriptor for 1list items of type character. R edit
descriptors are not supported for character data.

2.,2.1.5 Dummy and Actual Arguments of Type Character - Version 7
extends the standard to provide support of character constants as
actual arguments corresponding to dummy arguments that are
integer, real, double-precision, complex, or logical, as well as
character. This feature does not work when the name of the
function called is itself a dummy argument.

If an actual argument is of type character and is not a constant,
the corresponding dummy must be of type character. If a dummy
argument is of type character, the corresponding actual must be
of type character.

Actual arguments may be 1longer than correspond ing dummy
arguments. Length * may be used for character dummy arguments.

2.2.1.6 EQUIVALENCE Statements - It is illegal to equivalence a
numeric variable to a <character variable. Equivalencing a
numer ic variable to an unaligned character variable 1is fatal;
equivalencing a numeric variable to a word-aligned character
variable is nonfatal.

2.2.1.7 Character Variables and Arrays in COMMON Blocks - When a
character wvariable or character array is in a COMMON block, all
the entities in that COMMON block must be of type character. If
both character and numeric data are specified in the same COMMON
block, a nonfatal warning message is issued. Variables other
than character variables begin on word boundaries; thus a COMMON
block containing both character and numeric data would contain
unused character positions.

2.2.1.8 Namelists - Version 7 supports substrings in namelist
input, but not in namelist output.

2-2

TOPS-10/20 FORTRAN

Version 7 does not support global optimization of programs that
contain character data. If the /OPTIMIZE switch is specified for
such a program, the warning diagnostic:

Global optimization not yet supported with
character data - /OPT ignored

is issued.

2.2.2 IF THEN ELSE Statements

Version 7 supports the block 1IF, ELSE IF, EL3E, and END IF
statements.

2.2.3 Expressions on Output Lists

An output list item can be a variable name, an array element
name, a character substring name, an array name, or any other
expression. FORTRAN-20 extends the standard to support output
list expressions that include concatenation of operands of length
asterisk.

2.2.4 Intrinsic and Genaeric Functions at the FORTRAN=77 Full
Language Level

Version 7 supports all intrinsic and generic functions described
in section 15.10 of the FORTRAN-77 standard. The following

intrinsic functions are new in Version 7.

1. DINT - Truncation for double-precision

2. ANINT, DNINT - Nearest whole number

3. NINT, IDNINT - Nearest integer

4. DDIM - Positive difference for double-precision

5. DPROD - Double-precision product of real arguments

6. ICHAR, CHAR, LEN, INDEX, LGE, LGT, LLE, LLT - Character
functions as described in the introduction

The following generic function names have been added: ACOs,
AINT, ANINT, ASIN, COSH, CMPLX, DBLE, DIM, LOG, LOGl0, MAX, MIN,
NINT, REAL, SINH, TAN, and TANH. The second argument to CMPLX is
now optional. The generic function name INT has been extended to
support argunents that are COMPLEX and INTEGER (as well as REAL
and DOUBLE~-PRECISION).

2.2.5 Internal Files (Single-Record and Multirecord)
Version 7 conforms to the FORTRAN-77 standard.

2-3

TOPS-10/20 FORTRAN

2.2.6 FORTRAN-~77 DO Loop Semantics

As an extension to the standard, Version 7 supports “extended
range DO loops" (transfer into the range of a DO-loop is
permitted if a previous transfer out has occurred.)

2.2.7 Assumed-Size Array Declarators
Version 7 conforms to the FORTRAN-77 standard.

2.2.8 Use of FORMAT Statement Numbers in ASSIGN Statements
Version 7 conforms to the FORTRAN-77 standard.

2.2.9 INTRINSIC Statement; EXTERNAL Statement

In Version 7, if the name of an intrinsic function appears in an
EXTERNAL statement, that name is subsequently treated as the name
of a user-defined function. (This 1is 1in accordance with the
FORTRAN-77 standard, but incompatible with previous versions of
FORTRAN 20. In Version 6, an asterisk appearing in front of an
intrinsic name in an EXTERNAL statement is required to force that
name to become the name of some external procedure.)

2.2.10 SAVE Statement
In Version 7, if a FORTRAN overlay contains any local variables
that are SAVEd, all writable storage 1in that overlay 1is

preserved. If a named COMMON block is SAVEd, that common block
is preserved. Blank COMMON is always preserved.

2.2.11 Null Argument Lists for Functions
Version 7 conforms to the FORTRAN-77 standard.

2.2.12 Minor Syntax Extensions Required by the FORTRAN-77
Standard

The comma is optional in the following: DATA statements, COMMON
statements, assigned GOTO, and after the statement number in DO
statements.

Parentheses may optionally be used for null argument 1lists in
SUBROUTINE and CALL statements.

Statement numbers are legal on nonexecutable statements.

Exponentiation to an integer power is allowed in the subscript
expressions in DATA statements.

2-4

TOPS-10/20 FORTRAN

2.2.13 Compile Time Constant Expressions in Declarations, as
Array Bounds, and String Bounds
Version 7 conforms to the FORTRAN-77 standard.

2.2.14 FORTRAN-77 PARAMETER Statements

Version 7 supports PARAMETER statements in accordance with the
FORTRAN-77 standard. Compile time expressions involving
multiplication, division, or exponentiation of COMPLEX data are
not supported.

In Version 6 the data type of a PARAMETER was determined by the
type of the constant; 1in Version 7 the data type is determined
by its symbolic name.

In Version 6 the 1list of parameters 1is never enclosed in
parentheses; in Version 7 the 1list of parameters must be
enclosed in parentheses. If the 1list of parameters 1is not
enclosed in parentheses, the compiler assumes that it is not a
FORTRAN-77 PARAMETER statement and a warning message is 1issued.
(This warning message can be suppressed by compiling with the
/NOF77 (/F66) switch.)

In Version 7 (as in FORTRAN-77), PARAMETER statements may precede
type declaration statements except for those statements that
specify the type of parameter.

In Version 6 the parameter may only be set to simple constants;

in Version 7 the parameter may be set to a constant expression.

2.2.15 DO WHILE and END DO Statements
The DO WHILE/ END DO support involves the following enhancements
to the FORTRAN-77 standard.

2.2.15.1 Optional Statement Label in the 1Indexed (Standard) DO
Statement - The syntax of the indexed DO statement is:

DO [s[,]] wv=el,e2[,e3]
where s is the label of the statement that terminates the 1locup.

If s 1is omitted, the loop must be terminated by an END DO
statement as discussed below.

2-5

TOPS-10/20 FORTRAN

2.2.15.2 DO WHILE Statement - The DO WHILE statement has the
following syntax:

DO [s[,]1] WHILE (e)

where s is the label of the statement that terminates the 1loop.
If s 1is omitted, the. loop must be terminated by an END DO
statement.

E is a logical expression that is tested at the beginning of each
execution of the loop, including the first. If the value of the
expression is true, the statements in the body of the 1loop are
executed; if the wvalue of the expression is false, control
transfers to the statement following the loop.

2.2.15.3 END DO Statement — The END DO statement has the syntax:
END DO

An END DO statement terminates the range of a DO or DO WHILE
statement. The END DO statement must be used to terminate a DO
block if the DO or DO WHILE statement does not contain a
statement 1label. It may also be wused as a labeled terminal

statement if the DO or DO WHILE statement does contain a terminal
statement label.

2.2.16 LINKtime Type-Checking of Subprogram Arguments

FORTRAN Version 7 and LINK Version 5.1 provide limited
type-checking for character constants that are passed as actual
arguments that correspond to numeric dummy arguments. Version 7
has modified the argument passing mechanism; the argument
passing mechanism for quoted strings now 1involves passing the
address of a descriptor for the string rather than the word
address of the string (as is done in Version 6). These two
methods of passing arguments may be referred to as "passing by
descriptor" and "passing by address." If an actual argument 1is
passed by descriptor and the corresponding formal is passed by
address, LINK will transform the actual argument into a
passed-by-address argument if the following <conditions are
satisfied:

1. The argument is a constant.

2. The string is in the same section as the argument block.

3. The byte pointer word in the descriptor in the user's
image 1is word-aligned. (The object code generated by

FORTRAN Version 7 now includes descriptors for character
variables, primaries, and subprogram arguments).

2-6

TOPS-10/20 FORTRAN

No type-checking will be performed on calls involving o0ld REL
files since either the caller or the callee or both will not have
LINK argument descriptor blocks.

Version 7 also supports a new option to the DEBUG switch of the
form /DEBUG:PARAMETERS. With this option specified, FORTRAN will
generate REL file blocks that specify that illegal argument type
mismatches should result in nonfatal error messages at load time.

2.2.17 G-Floating Double-Precision Numbers

FORTRAN-20 Version 7 provides support for the G-floating
double-precision number format. The exponent range for this
number format is 2.8D-309 to 8.9D+307.

G-floating is an alternative internal format for
double-precision, supported only on KL model B processors. The
user specifies G-floating format by specifying the /GFLOATING
command 1line switch to the FORTRAN compiler. /NOGFLOATING (the
default) specifies the o0ld double-precision format.

REL files that use the two different double-precision formats are
not compatible. If a user attempts to LINK together programs
compiled with different values of the /GFLOATING switch, a
warning will be issued at LINK time.

2.2.18 Native TOPS-20 Command Inter face for the Compiler

The FORTRAN-20 Version 7 compiler's command 1line interface now
provides support of long file names, "?", and command
recognition. COMPILE now works for any legal TOPS-20 file name.
However, a wuser cannot do an EXECUTE or DEBUG of a long file
name. (LINK does not yet support long REL file names). The
syntax for the EXEC commands, EXECUTE, DEBUG, and COMPILE, is not
affected by the new command scanner.

2.2.19 New Functionality in the ERRSET Subroutine

Version 7 provides ERRSET trapping for additional classes of
errors. Also, the user can now write his own fix-up routines for
arithmetic exceptions. The calling sequence for ERRSET is:

CALL ERRSET (N)
CALL ERRSET (N, I)
or
CALL ERRSET (N,I,SUBR)

where N equals the maximum number of error messages to type and I
equals the error to which this call applies. If I equals -1 it

2-7

TOPS-10/20 FORTRAN

will trap to any of the following errors. If I is not specified,
-1 is assumed.

0 Integer overflow

1 Integer divide check

4 Floating over flow

5 Floating divide check

6 Floating under fiow

8 Library routine error

9 Output field width too small
10 Input floating over flow

11 Input floating under flow
12 Input integer overflow

21 FORLIB warnings

22 Nonstandard usage warnings

SUBR is the subroutine to call on the trap. If SUBR 1is not
specified, no routine is called on the arithmetic exception. If
SUBR is specified the effect is as if:

CALL SUBR (I, IPC, N2, ITYPE, UNFIXED, FIXED)

were placed in the program just after the instruction causing the
trap. :

I is the error number of the trap. 1IPC is the program counter of
the trap instruction, or if the error number equals 9, IPC equals
the program counter of the FOROTS call. N2 equals the second
error number (reserved for Digital). ITYPE is the data type of
value. UNFIXED is the value returned by the processor, and FIXED
is the value after the fix-up (can be changed by SUBR).

2.2.20 Utility Subroutine to Get a Free Unit Number
Version 7 provides an additional FORTRAN-supplied subroutine that

can be wused to get an unused unit number. The routine FFUNIT
(first free unit) is called by: :
CALL FFUNIT(IUNIT)

where IUNIT is an integer variable that 1is set to the first
available unit number by FFUNIT.

2.3 FORTRAN-77 FEATURES THAT ARE NOT SUPPORTED

l. The INQUIRE statement (used to determine the <current
status of a file attribute).

2. Comment lines and blank lines may not appear between an

initial 1line and its first continuation line, nor may
they appear between two continuation lines.

2-8

TOPS-10/20 FORTRAN

3. The compile time expression 1in a PARAMETER statement
cannot contain multiplication, division, or
exponentiation of COMPLEX data.

2.4 SUMMARY OF EXTENSIONS TO THE FORTRAN-77 STANDARD

I. Programmer convenience

A. FORDDT: - Interactive debugger with FORTRAN-1ike
command s

B. Optional array bounds chacking and string bounds
checking

C. LINKtime checking for subprogram arguments

D. Selective suppression of compile time and run time
warnings

E. User selection of default switch wvalues by means of
SWITCH. INI

F. Run time traceback on errors; optional traceback on
PAUSE

G. INCLUDE statements

H. On TOPS-20: ? and recognition in compiler commands and
DIALOG mode

II. Structured programming
A. DO WHILE statement
B. END DO statement
IITI. Syntax
A. End-of-line comments

B. Multiple statements per 1line

2-9

TOPS-10/20 FORTRAN

IV. Very accurate single- and double-precision arithmetic

A.

B.

C'

D.

36-bit integer (10.5 decimal digits)

36-bit floating-point (8 decimal digits)

72-bit floating-point (18 decimal digits)

8-bit floating-point exponent: 10**(-38) to 10**(+38)

On 2060 systems, /GFL switch also provides for an 1ll-bit
exponent; 10**(-308) to 10**(+308)

NAMELIST 1I/0
Logical device names provide run time device assignments

DIALOG mode provides run time selection of OPEN
specifiers

IMAGE mode files
APPEND access to sequential files

DELETE, EXPUNGE, SAVE, PRINT, PUNCH dispositions 1in
CLOSE

Additional I/0O statements

1. REREAD reads previous record

2. TYPE outputs to the user's terminal

3. ACCEPT inputs from the user's terminal

4. ENCODE/DECODE formatted reading/writing to an array
rather than a file

2-10

TOPS-10/20 FORTRAN

H. DBMS-10/20 support
I. SORT-10/20 support

J. DIL-10/20/VAX support

DIL (data interchange library) is a set of callable subroutines
that enables a COBOL or FORTRAN programmer to access and use data
that resides on another computer system. The DIL allows you to
pass data between programs on different systems or directly
access records in files on other systems. You can use the DIL to
access a single record within a file and avoid having to transfer
the entire file to your system. If the accessed data is of the
wrong format or data type, DIL provides the necessary data
conversion facilities.

To use the DIL in a multiple computer environment, the computers
must be interconnected by DECnet to form a neatwork.

Refer to the Data Interchange Library User's Guide, Version 1
(AA-M581A-TK) . :

2-11

CHAPTER 3
VAX-11 FORTRAN

3.1 INTRODUCTION

VAX-11 FORTRAN is an implementation of the full 1language ANSI
FORTRAN-77 standard. It is a compatible superset of PDP-11
FORTRAN-77. (You can compile existing PDP-11 FORTRAN-77 source
programs, as well as new programs that incorporate features
available in VAX-11 FORTRAN.) VAX-11] FORTRAN Version 3 1is also
upwardly compatible from the previous versions of VAX-11 FORTRAN
and VAX/VMS systems. This means that object files produced by
VAX-11 FORTRAN Version 2 can be <correctly linked and run on
VAX/VMS Version 3. Executable images linked on previous versions
of VAX/VMS systems can be run without relinking on VAX/VMS
Version 3 systems. It is also possible to freely mix object
files from previous versions of VAX-11 FORTRAN with Version 3
object files on Version 3 VAX/VMS systems. However, there is no
backward compatibility; that is, it is not possible to link or
execute files from VAX-11] FORTRAN Version 3 on previous versions
of VAX/VMS systems.

This chapter describes the new features supported in Version 3
and also outlines the major features that are extensions to the
standard. This information, as well as more detailed
information, is found in the following documents.

l. VAX-11 FORTRAN Language Reference Manual, (April 1982),
AA-D034C-TE

2. VAX-11 FORTRAN User's Guide, (April 1982), AA-D(Q35C-TE

3. VAX-11] FORTRAN Installation Guide/Release Notes (April
1982) AA-H953B-TE

The following documents are of interest to VAX-11 FORTRAN
programmers.

1. VAX/VMS Primer, AA-DO30C-TE

2. VAX/VMS Command Language User's Guide, AA-D023C-TE

3. VAX-1l Symbolic Debujgger Reference Manual, AA-DO026D-TE

The VAX-11l FORTRAN Language Reference Manual describes the
FORTRAN language elements supported by VAX-11 FORTRAN. It is

3-1

VAX-11 FORTRAN

intended to be used as a reference manual 1in preparing FORTRAN
source programs.

The VAX-11 FORTRAN User's Guide describes how to compile, 1link,
debug, and execute programs written in the VAX-11 FORTRAN
language, using the facilities of the VAX/VMS operating system.
It contains other information of interest to FORTRAN programmers,
such as FORTRAN input/output, error processing, programming
efficiency, compatibility between VAX-11 FORTRAN and VAX-11
FORTRAN 66, and compatibility between VAX-11 FORTRAN and PDP-11
FORTRAN. :

The VAX-11 FORTRAN Installation Guide/Release Notes contains
detailed instructions for installing the VAX-11 FORTRAN compiler
on the VAX/VMS operating system. It also contains information
about the differences between VAX-11 FORTRAN Version 3 and
previous versions of VAX-11 FORTRAN, including a short

description of new features and a complete description of the
/SHOW qualifier.

3.2 NEW FEATURES SUPPORTED BY VERSION 3

3.2.1 Bit Functions

The following additional bit-manipulation intrinsic functions
have been added.

l. IBSET sets a bit.

2. BTEST tests a bit.

3. IBCIR clears a bit.

4. IBITS extracts a bit field.

5. ISHFTC performs a circular shift.
6. MVBITS moves a bit field.

IBSET, BTEST, IBCLR, IBITS, and the subroutine MVBITS operate on
bit fields. A bit field is a contiguous group of bits within a
binary pattern, specified by a starting bit position and a
length. IBSET, IBCLR, and BTEST operate on 1l-bit fields and do
not require a length argument. IBITS and MVBITS operate on
general bit fields. Both the starting position of a bit field
and its length are arguments to these intrinsics.

The MVBITS subroutine transfers a bit field from one storage
location (source) to a field in a second storage location
(destination) . The call to MVBITS has the form:

CALL MVBITS(m,i,len,n,j)
where m is an integer variable or array element that represents
the source location (that is, the location from which a bit field

is transferred); i is an integer expression that identifies the
first bit position in the field transferred from m; 1len is an

3-2

VAX-11] FORTRAN

integer expression that identifies the 1length of the field

transferred from m; n is an integer variable or array element
that represents the destination location (that is, the location
to which a bit field 1is transferred); and j is an integer

expression that identifies the bit in which the transferred bit
field begins.

The MVBITS subroutine transfers len bits from positions i through
i + len - 1 of the source location (m) to positions j through j +
len - 1 of the destination 1location (n). Other bits of the
destination location and all the bits of the source location
remain unchanged. The values of i + len and j + len must be less
than 32. ISHFTC shifts a binary pattern; a positive shift count
indicates a left circular shift, while a negative shift count
indicates a right circular shift.

3.2.2 Debugger Commands for Source Code Debugging

A new interface allowing FORTRAN users to access the debugger
source code display facility has been provided. The following
debugger commands can now be used:

l. SET STEP SOURCE

2. TYPE range

3. EXAMINE/SEARCH

4. SEARCH [range] "string"
5. SET SOURCE

Refer to the VAX-11 Symbolic Debugger Reference Manual.

3.2.3 DEFAULTFILE Keyword in the OPEN Statement

The DEFAULTFILE keyword has been added to the OPEN statement.
DEFAULTFILE allows you to specify a default file name that
overrides the general FORTRAN defaults.

3.2.4 IMPLICIT NONE Statement
The IMPLICIT statement now has a second format.

IMPLICIT NONE

The IMPLICIT NONE statement invalidates all implicit defaults and
causes error messages to be Jgenerated for names that are not
explicitly typed in a type declaration statement. You must then
explicitly declare the data types of all symbolic names in the
program unit. If you specify IMPLICIT NONE, no other IMPLICIT
statement can be included in the program unit.

3-3

VAX-11 FORTRAN

3.2.5 FORTRAN Data Manipulation Language Preprocessor

An interface to an integrated FORTRAN data manipulation language
preprocessor has been provided under Version 3. The FORTRAN
qualifier /DML <controls the wuse of the inter face. The
preprocessor produces an intermediate file of FORTRAN source code.
with FORTRAN DML commands expanded into FORTRAN statements. The
compiler then compiles the intermediate files and produces an
optional object and listing file. The listing file includes the
DML statements and, optionally, their expansions into FORTRAN
source. DML error messages appear in the correct place in the
listing. The preprocessing and compilation are controlled by a
single qualifier on the FORTRAN command so that the user does not
need to know that a preprocessor is present.

3.2.6 Faster I/0 Interface
A faster I/0 interface is now provided by the following changes.

1. Implied DO loops in I/0 lists have been optimized.

2. Single-element, unformatted I/0 lists now use a special
inter face.

3. A larger default record size is allowed for unformatted
I/0 transfers.

3.2.7 Zero-Extending Intrinsic Functions

The two new intrinsic functions IZEXT and JZEXT allow for
zero-extending arguments. FORTRAN normally converts a smaller
fixed-point data type to a 1larger fixed-point data type by
sign-extending the smaller value. This means that the high-order
bits of the larger data type are set to the same value as the
sign bit of the smaller data type. The functions IZEXT and JZEXT
Zzero—extend a value to either INTEGER*2 or INTEGER*4
respectively. This means that the high-order bits of the larger
data type are set to zero rather than to the sign bit of the
smaller data type. The generic function ZEXT selects IZEXT or
JZEXT according to the setting of the /I4 command qualifier.

3.2.8 Library-Based INCLUDE Statement
The INCLUDE statement has a second format. The new format allows
you to include modules from VAX/VMS text libraries.
INCLUDE 'file-specification (module-name) [/[NO]JLIST]'
The INCLUDE statement specifies that the contents of a designated

file are to be incorporated into a compilation directly following
the statement.

3-4

VAX-11 FORTRAN

3.2.9 Improved Math Routines
The accuracy of the following math routines has been improved
significantly.

1. SIN
2. COs
3. LOG
4. ATAN
5. ASIN
6. ACOS

3.2.10 Namelist-Directed I/0 Statements
The following statements provide namelist-directed 1/0.

l. The NAMELIST statement

2. The READ, WRITE, ACCEPT, TYPE, and PRINT statements,
with a namelist specifier 1in place of format and I/0
lists

3.2.11 Optimization of Generated Code
The following improvements in compiler optimization have been
implemented.

1. In-line expansion of statement functions
2. Elimination of redundant store operations

3. Elimination of redundant argument feduction for calls to
SIN and COS with the same arguments

3.2.12 Optimization of I/0 Routines
The spead of the following run-time 1library I/0 processing
routines has been improved.

1. Floating input conversion
2. Format interpretation

3.2.13 Checking for Extensions to the FORTRAN-77 Standard
The new FORTRAN qualifier /STANDARD provides optional checking
for source code that does not conform to the FORTRAN-77 standard.

3.2.14 A Cross—-Reference Listing
The new FORTRAN qualifier /CROSS-REFERENCE provides an optional
cross-raference as part of the listing file.

VAX-11 FORTRAN

3.2.15 Floating-Underflow Checking
The FORTRAN qualifier = /CHECK=UNDERF LOW provides optional
floating-underflow checking at run time.

3.2.16 Substring-Bounds Checking
The FORTRAN qualifier / CHEC K=B OUNDS provides optional
substring-bounds checking at run time.

3.2.17 OPTIONS Statement
The OPTIONS statement overrides or confirms the FORTRAN command
qualifiers in a program unit.

3.2.18 FORTRAN Definitions for System Symbols
A text library FORSYSDEF.TLB containing the FORTRAN definitions
for system symbols is now provided.

3.2.19 Trigonometric Functions in Degrees

The trigonometric functions in Table 3-1 take arguments in
degrees or produce results in degrees.

Table 3-1 Trigonometric Functions

Function Description

SIND, DSIND, QSIND Sine functions with degree
arguments

COsSD, DCOSD, QCOSD Cosine functions with degree
arguments

TAND, DTAND, QTAND Tangent functions with degree
arguments -

ASIND, DASIND, QASIND Arc sine with degree result

ACOSD, DACOSD, QACOSD Arc cosine with degree result

ATAND, DATAND, OQATAND Arc tangent with degree result

ATAN2D, DATAN2D, QATANZ2D Two-argument arc tangent with

degree result

3.2.20 Run-Time I/0 Error Messages
Additional diagnostic information is now provided with run time
I/0 error messages.

3-6

-

P

B Waaanil+ ~ 20

VAX-11 FORTRAN

3.2.21 /SHOW Qualifier

The /SHOW qualifier controls listing options for INCLUDE files,
preprocessor—-generated output, and the symbol table map.

3.3 EXTENSIONS TO THE ANSI STANDARD
The following are some of the VAX-11 FORTRAN-77 extensions to the
ANSTI standard.

1.

2.

Language elements for keyed and sequential access to
VAX-11 RMS multikey ISAM files.

A set of data types beyond those specified for full
language FORTRAN-77

LOGICAL*1, BYTE (synonymous)
LOGICAL*2

INTEGER*2

COMPLEX*16, DOUBLE COMPLEX
REAL*16

Explicit specification of storage allocation wunits for
data types (e.g., REAL*8, INTEGER*4).

Data initialization in type declaration statements.

IMPLICIT NONE statement (described 1in new features
section) .

DO, DO WHILE, END DO statements — As an extension to the
standard, VAX-11 FORTRAN supports "extended range
DO-loops (transfer into the range of a DO-loop 1is
permitted if a previous transfer out has occurred).

The DO WHILE/ END DO support involves the following
enhancements to the FORTRAN-77 standard.

A. Optional statement label in the indexed (standard)
DO statement. The syntax of the indexed DO
statement is:

DO [s,[,]1] v=el,e2,[e3]

where s is the 1label. of the statement that
terminates the loop. If s is omitted, the loop must
be terminated by an END DO statement.

VAX-11 FORTRAN

B. The DO WHILE statement has the syntax:
DO [s[,]] WHILE (e)

where s 1is the 1label of the statement that
terminates the loop. If s is omitted, the loop must
be terminated by an END DO statement as discussed
below. The (e) 1is a 1logical expression that is
tested at the beginning of each execution of the
loop, 1including the first. If the value of the
expression is true, the statements in the body of
the loop are executed; if the wvalue of the
expression 1is false, control transfers to the
statement following the loop.

C. The END DO statement has the syntax:
END DO

An END DO statement terminates the range of a DO or
DO WHILE statement. The END DO statement must be
used to terminate a DO block if the DO or DO WHILE
statement does not contain a statement label. It
may also be used as a labeled terminal statement 1if
the DO or DO WHILE statement does contain a terminal
statement label.

Bit manipulation functions.

Hexadecimal and octal constants and Z and O format edit
descriptors applicable to all data types - The 0 field
descriptor specifies octal integer values; the Z field
descriptor specifies hexadecimal (base 16) values.

DEFINE FILE, FIND, ENCODE, DECODE, DELETE, REWRITE, and
UNLOCK statements - The DEFINE FILE statement describes
direct-access sequential files that are associated with
a logical unit number.

The ENCODE and DECODE statements transfer date between
variables or arrays 1in internal storage and translate
that data from internal to character form, or from
character to internal form, according to format
specifiers.

The DELETE statement deletes records in relative files
and in indexed files. Specifically, it causes a record
to be marked as deleted; records so marked are not
accessible to subsequent READ or REWRITE statements.

3-8

lo.

11.

12.
13.

14.

15.

16.

17.

VAX-11] FORTRAN

The REWRITE statement transfers output data from

internal storage to the current record in an indexed
file.

The UNLOCK statement unlocks records in a relative or
indexed file. When a record is locked, it cannot be
accessed by any other program or logical unit.

ACCEPT, TYPE input/output statements - The ACCEPT
statement transfers input data to internal storage from
external records accessed under the sequential mode of
access. The TYPE statement transfers output data from
internal storage to external records accessed under the
sequential mode of access.

USEROPEN subroutine invocation at file OPEN time - The
USEROPEN parameter has the form:

USEROPEN = p

where p is an external function name. The USEROPEN
keyword specifies a user-written external function that
controls the opening of the file.

INCLUDE statement (described in new features).
NAMELIST - Directed I/0 (described in new features).

31-character identifiers that can include dollar sign
($) and underline ().

Comments allowed at the end of each source line.
Debug statements in source.

Language elements that support the VAX-11 extended range
and extended ©precision floating-point architectural
features.

A. 64- bit G-floating data type with an 1ll-bit exponent
and 53-bit mantissa, which provides a range of
0.56*10**-308 to 0.09*10**308 and a precision of 15
decimal digits

B. 128-bit H-floating data type with a 15-bit exponent
and a 113-bit mantissa, which provides a range of
0.84*10%*-4932 to 0.59*10**4932 and a precision of
33 decimal digits

(To execute G- and H-floating data type extended

range instructions directly on the VAX-11/780, both
the KU780 and the KE780 hardware options must be

3-9

VAX-11 FORTRAN

18.

present. To execute these instructions directly on
the VAX-11/750, the KU750 hardware option must be
present. The VAX-11/730 does not require any

additional options for G- and H-floating data type
instruction execution.) ‘

DIL support - The DIL (Data Interchange Library) is a
set of callable subroutines that enables a COBOL or
FORTRAN programmer to access and manipulate data on
another VAX or a DECSYSTEM-20. To use the DIL in a
multiple computer environment, the computers must be
interconnected by DECnet to form a network.

3.4 ADDITIONAL FEATURES

1.

2.

Support for calls to VAX/VMS system service procedures

Generation of symbol tables for the VAX-11] symbolic
debugger

Generation of cross-reference listings
Generation of shareable code
Up to 255 actual arguments in a CALL statement

Up to 250 named COMMON blocks per subprogram

3.5 VAX-11 FORTRAN COMPILER OPTIMIZATIONS

l.

2.

3.
4.
5.

6.

Constant folding

Optimizations of arithmetic IF, logical 1IF, and block
IF-THEN-ELSE

Common subexpression elimination
Removal of invariant expressions from DO loops
Allocation of general registers across DO loops

In line expansion of statement functions

3.6 COMPATIBILITY: VAX-11 FORTRAN AND FORTRAN-66

The VAX-11] FORTRAN compiler selects FORTRAN-77 language
interpretations by default. As a result, 1t contains certain

VAX-11] FORTRAN

incompatibilities with FORTRAN implementations that are based on
the previous standard, X3.9-1966. The areas affected are:

1. DO loop minimum iteration count

2. EXTERNAL statement

3. OPEN statement BLANK keyword default
4. OPEN statement STATUS keyword default
5. X format edit descriptor.

3.6.1 DO Loop Minimum Iteration Count

The /F77 command qualifier controls the interpretation of the DO
loop minimum iteration <count. 1In FORTRAN-77, the body of a DO
loop is not executed if the end condition of the loop is already
satisfied when the DO statement is executed. In most
implementations of FORTRAN-66, the body of a DO 1loop 1is always
executed at least once.

3.6.2 EXTERNAL Statement

The /F77 command qualifier controls the interpretation of the
EXTERNAL statement. In FORTRAN-66 the EXTERNAL statement is used
to specify that a symbolic name 1is the name of either a
user-defined external procedure or a FORTRAN-supplied function.
In FORTRAN-77, the INTRINSIC and EXTERNAL statements are usad to
accomplish this function.

3.6.3 OPEN Statement Keyword Defaults

In FORTRAN-77 the OPEN statement BLANK keyword controls the
interpretation of blanks in number input fields. The FORTRAN-77
default is BLANK='NULL'; that is, blanks in numeric input fields
are 1ignored. The FORTRAN-66 interpretation of blanks in numeric
input fields is equivalent to BLANK='ZERO'.

If a logical unit is opened without an explicit OPEN statement,
VAX-11 FORTRAN and FORTRAN-66 both provide a default equivalent
to BLANK='ZERO'.

The BLANK keyword affects the treatment of blanks in numeric
input fields read with the D, E, F, G, I, 0, and Z field
descriptors. If BLANK='NULL' is in effect, embedded and trailing
blanks are 1ignored; the value is converted as if the nonblank
characters were right-justified in the field. If BLANK='ZERO' is
in effect, embedded and trailing blanks are treated as z2ros.

3.6.4 OPEN Statement Status Keyword Default
In FORTRAN-77, the OPEN statement STATUS keyword specifies
initial status of the file ('OLD', 'NEW', 'SCRATCH', or

'UNKNOWN') . The FORTRAN-77 default 1is STATUS='UNKNOWN'; that
is, an existing file is opened or a new file is created if the

3-11

VAX-11 FORTRAN

file does not exist. 1If you use the /F77 command qualifier and
you do not specify STATUS (or TYPE) in an OPEN statement, the
compiler issues an informational message to warn you that it is
using a default of STATUS='UNKNOWN'. It is advisable to include
an explicit STATUS (or TYPE) keyword in every OPEN statement.

3.6.5 X Format Edit Descriptor

The nX edit descriptor causes transmission of the next character
to or from a record to occur at the position n characters to the
right of the current position. In a FORTRAN-77 output statement,
character positions that are skipped are not modified, and the
length of the output record is not affected. However, in many
FORTRAN-66 implementations, the X edit descriptor writes blanks
and may extend the output record.

3-12

CHAPTER 4
PDP-11 FORTRAN

4.1 INTRODUCTION

PDP-11 FORTRAN is an extended implementation of the ANSI subset
FORTRAN-77 standard. Version 4 contains all the features of the
ANSI FORTRAN-77 subset, many of the full-set 1language features,
and extensions that are not included in the ANSI FORTRAN-77
standard.

This chapter describes the new features supported in Version 4
and also outlines the major features that are extensions to the
standards. This information, as well as more detailed
information, is found in the following documents.

1. PDP-11 FORTRAN-~77 Language Reference Manual, (September
1981), AA-19791-TC

2. PDP-11 FORTRAN-77 \User's Guide (September 1981),
AA-1884D-TC

3. PDP-11 FORTRAN-77 Installation Guide/Release Notes,
AA-K503B-TC

The PDP-11 FORTRAN-77 Object Time System Reference Manual
(AA-1874C-TC) is also of interest to PDP-11 FORTRAN-77
programmers.

The PDP-11 FORTRAN-77 Language Reference Manual describes the

syntax and semantics of the FORTRAN-77 implementation of PDP-11
FORTRAN. It does not, however, present information specific to

any operating system.

The PDP-11 FORTRAN-77 User's Guide contains the information
necessary to create, link, and execute PDP-11 FORTRAN-77 programs
on a PDP-11 processor. Programming information is provided for
the RSX-11M/M-PLUS, IAS, and RSTS/E operating systems.

The PDP-11 FORTRAN-77 Installation Guide/Release Notes describes
the procedures for installing PDP-11 FORTRAN on the
RSX-11M/M-PLUS, RSTS/E, and IAS operating systems.

PDP-11 FORTRAN

4.2 NEW FEATURES
Among the major features defined by the new ANSI subset language
FORTRAN standard and not found in either the previous ANSI

standard or previous versions of Digital PDP-11 FORTRAN are:
1. CHARACTER data type

2. Block IF construct, including IF...THEN, ELSE IF, ELSE,
and END IF statements, for conditional execution of
blocks of statements.

4,2.1 Features Supported for Character Data
Version 4 supports character data as specified by the subset
language FORTRAN-77 standard.

4.2.1.1 Character Constants - The length of a character constant
must be in the range 1 through 255.

4.2.1.2 Substring Reference and Definition - Version 4 supports
character substrings as outlined in the full-language subset.
(Note that substrings are not included in the subset.)

4.2.1.3 Character Expressions - A character operand can be
character constant, character variable, character array element,
or character substring. A character expression has the form:

character operand

and can be enclosed in parentheses. Note that the concatenation
operator is not included in the subset (nor in Version 4).

4.2.1.4 Character Variables and Arrays - The length specification
in the character type-statement can be an unsigned integer
constant or an integer-constant expression enclosed in
parentheses. [An asterisk in parentheses (*) is not allowed].
When you specify CHARACTER*len, the length specification must be
in the range 1 to 255.

4.,2.1.5 Character Relational Expressions - Version 4 conforms to
the ANSI-77 full language standard.

4.2.1.6 Character Assignment Statements - Version 4 conforms to
the ANSI-77 subset language standard. Note that you cannot
assign a numeric value to a character variable, array element, or
substring.

PDP-11 FORTRAN

4.2.1.7 Character Variables and Constants in DATA Statements -
Version 4 (and the ANSI subset language) do not support implied
DO-lists in DATA statements.

4,2.1.8 Character Functions - Version 4 supports LEN, INDEX,
ICHAR, LLT, LLE, LGT, and LGE. Note that CHAR is not supported.

4.2.2 IF THEN ELSE Statements
Version 4 supports the block IF, ELSE 1IF, ELSE, and END 1IF
statements.

4.3 FEATURES OF THE FULL-LANGUAGE FORTRAN AS DEFINED
BY THE ANSI STANDARD

4.3.1 Exponentiation Forms

(This includes double-precision and complex forms.) Table 4-1
summarizes the allowed combinations of data types of base and
exponent, and the data type of the result of exponentiation. The
new features are underlined.

Table 4-1 Allowed Combinations of
Types of Base and Exponents

Exponent :
Base Integer Real Double Compl ex
Integef Integer Real Double Compl ex
Real Real Real Double Compl ex
Double Double Double Double No
Complex Complex Complex | No Compl ex

4.3.2 Format Edit Descriptors
(This includes S, Ssp, Ss, T, TL, TR, Iw.m, and Gw.dEe.) Version 4
conforms to the full FORTRAN-77 standard.

4-3

PDP-11 FORTRAN

4,3.3 INTRINSIC and EXTERNAL Statements

Normally, the name of an intrinsic function refers to the FORTRAN
library function with that name. However, the name can refer to
a user-defined function under any of the following conditions:

1. The name is used in a function reference with arguments
of a different data type from that normally used.

2. The name appears in an EXTERNAL statement.

The EXTERNAL and INTRINSIC statements enable the programmer to
use subprogram names as actual arguments to other subprograms.
The semantics of the EXTERNAL statement are different in FORTRAN
77 than 1in previous versions of PDP-11 FORTRAN. 1In previous
versions, the appearance of an intrinsic function name in an
EXTERNAL statement caused the processor to treat the name as the
name of an intrinsic function. In FORTRAN 77, the appearance of
an intrinsic function name in an EXTERNAL statement causes the
processor to treat the name as the name of an external function.
In previous versions, an intrinsic function name had to be
preceded by an asterisk to be treated as an external function.
The /NOF77 switch allows the programmer to select the previous
semantics, rather than FORTRAN-77 semantics. The following shows
the equivalent statements.

/F77 : /NOF 77

EXTERNAL ext EXTERNAL ext
EXTERNAL int EXTERNAL *int
INTRINSIC int EXTERNAL int

Except when they are used in an EXTERNAL statement, intrinsic
function names are local to the program unit that refers to them.
Thus, they can be used for other purposes in other program units.
In addition, the data type of an intrinsic function does not
change if you use an IMPLICIT statement or an explicit type
declaration to change the implied data type rules.

You cannot have an intrinsic function and a user-defined function
with the same name in the same program unit.

4.3.4 Generic Function Selection Based on Argument Data Type for
FORTRAN-Defined Functions

Some intrinsic functions perform the same computation but handle
different data types. These functions are references with the
same generic name. A generic-function reference refers to the
category of the computation to be performed, not to a specific
function within the category. The selection of a specific
function, that is, the actual computing procedure for a specific
data type, is left to the compiler, which chooses a specific
function within a category on the basis of the data type of the

4-4

PDP-11 FORTRAN

relevant actual argument. For example, if D is a
double-precision variable, the generic function reference SIN(D)
refers to the double-precision sine function. You need not write
DSIN(D) .

Generic function references are independent from one another.
Therefore, you could use both of the function references SIN(X)

where X 1is a real wvariable, and SIN(D) where D is a
double-precision variable, in the same program unit.

The intrinsic and generic functions are described in section
15.10 of the FORTRAN-77 standard.

4.3.5 PARAMETER Statements

Version 4 provides both the FORTRAN-77 and the earlier form of
the PARAMETER statement. The 1list in the earlier form of the
PARAMETER statement is not bounded with parentheses, and the form
of the constant (rather than typing of the symbolic name)
determines the data type of the variable.

4.3.6 Generalized DO Loop Parameters .
Version 4 conforms to the full FORTRAN-77 standard. Moreover,
"extended range DO loops" are supported.

4.3.7 Lower and Upper Bounds Specification in Array Declarators
Version 4 conforms to the full FORTRAN-77 standard.

4.3.8 Optional Syntax for I/0 Statements (UNIT= and FMT=)
Version 4 conforms to the full FORTRAN-77 standard.

4.4 EXTENSIONS TO THE ANSI STANDARD

1. Language elements for keyed and sequential access to RMS
multikey ISAM files.

2. DEFINE FILE, FIND, ENCODE, DECODE, DELETE, REWRITE, and
UNLOCK statements - The DEFINE FILE statement describes
direct-access sequential files that are associated with
a logical unit number. The OPEN statement, which can
also be used to describe direct-access sequential files,
is the preferred statement.

The FIND statement positions a direct-access file on a
specified unit to a particular record. No data transfer
takes place.

The ENCODE and DECODE statements transfer data between
variables or arrays in internal storage and translate

4-5

PDP-11 FORTRAN

10.

that data from internal to <character form or from
character - to internal form, according to format
specifiers. Similar results can be accomplished using
internal files with formatted sequential WRITE and READ
statements.

The DELETE statement deletes records in relative files
and 1in indexed files. Specifically, it causes a record
to be marked as deleted; records so marked are not
accessible to subsequent READ or REWRITE statements.

The REWRITE statement repositions a sequential file
currently open for sequential or append access to the
beginning of the file.

The UNLOCK statement unlocks records in a relative or
indexed file. When a record is locked, it cannot be
accessed by any other program or logical unit.

TYPE and ACCEPT input/output statements - The TYPE
statement transfers output data from internal storage to
external records accessed under the sequential mode of
access. The ACCEPT statement transfers input data to
internal storage from external records accessed wunder
the sequential mode of access.

Comments permitted at the end of each source line.

INCLUDE statement - The INCLUDE statement specifies that
the contents of a designated file are to be incorporated
into a compilation directly following the statement.
INCLUDE has no effect on program execution.

BYTE data type - BYTE and LOGICAL*1 are synonymous.

Explicit specification of storage allocation units for
data types (e.g., INTEGER*4).

Hexadecimal and octal constants.

Virtual array support for systems with memory management
directives. Virtual arrays are memory-resident and
require enough main memory to contain all elements of
all arrays.

O and Z format edit descriptors - The O field descriptor
specifies octal integer values; the Z field descriptor
specifies hexadecimal (base 16) values.

PDP-11 FORTRAN

4.5 ADDITIONAL FEATURES

The PDP-11 FORTRAN-77 compiler produces direct PDP-11 machine
code optimized for execution-time efficiency on a PDP-11 with a
floating-point processor. PDP-11 FORTRAN-77 compiler
optimizations include:

1. Optimizations of arithmetic and logical IF statements
2. Common subexpression elimination
3. Removal of invariant expressions from DO loops

4. Allocation of processor registers across block IF
constructs and DO loops.

4.6 COMPATIBILITY: PDP-11 FORTRAN AND FORTRAN-66

The PDP-11 FORTRAN compiler selects FORTRAN-77 language
interpretations by default. As a result, it contains certain
incompatibilities with FORTRAN implementations that are based on
the previous standard, X3.9-1966. The areas affected are:

1. DO loop minimum iteration count

2. EXTERNAL statement

3. OPEN statement BLANK keyword default
4. OPEN statement STATUS keyword default
5. Blank common block PSECT

6. X format edit descriptor.

4.6.1 DO Loop Minimum Iteration Count

The /F77 command qualifier controls the interpretation of the DO
loop minimum iteration count. In FORTRAN-77, the body of a DO
loop is not executed if the end condition of the loop is already
satisfied when the DO statement 1s executed. In most
implementations of FORTRAN-66, the body of a DO loop 1is always
executed at least once.

4.6.2 EXTERNAL Statement

The /F77 command qualifier controls the interpretation of the
EXTERNAL statement. In FORTRAN-66 the EXTERNAL statement is used
to specify that a symbolic name 1is the name of either a
user-defined external procedure or a FORTRAN-supplied function.
In FORTRAN-77 the INTRINSIC and EXTERNAL statements are used to
accompl ish this function.

4.6.3 OPEN Statement Keyword Defaults

In FORTRAN-77 the OPEN statement BLANK keyword controls the
interpretation of blanks in the number input £fields. The
FORTRAN-77 default is BLANK='NULL'; that is, blanks in numeric

4-7

PDP-11 FORTRAN

input fields are ignored. The FORTRAN-66 interpretation of
blanks in numeric input fields is equivalent to BLANK='ZERO'.

If a logical unit is opened without an explicit OPEN statement,
PDP-11 FORTRAN and FORTRAN-66 both provide a default equivalent
to BLANK='ZERO'.

The BLANK keyword affects the treatment of blanks in numeric
input fields read with the D, E, F, G, I, 0, and Z field
descriptors. If BLANK='NULL' is in effect, embedded and trailing
blanks are 1ignored; the value is converted as if the nonblank
characters were right-justified in the field. If BLANK='ZERO' is
in effect, embedded and trailing blanks are treated as zeros.

4,6.4 OPEN Statement Status Keyword Default

In FORTRAN-77, the OPEN statement STATUS keyword specifies
initial status of the file ('OLD', 'NEW', 'SCRATCH', or
'UNKNOWN'). The FORTRAN-77 default 1is STATUS='UNKNOWN'; that
is, an existing file is opened or a new file is created if the
file does not exist. If you use the /F77 command qualifier and
you do not specifiy STATUS (or TYPE) in an OPEN statement, the
compiler issues an informational message to warn you that it 1is
using a default of STATUS='UNKNOWN'. It is advisable to include
an explicit STATUS (or TYPE) keyword in every OPEN statement.

4.6.5 Blank Common Block PSECT (.$$$S.)

Under PDP-11 FORTRAN-77, the blank common block PSECT (.$$SS.)
has the SAV attribute. The SAV attribute on a PSECT has the
effect of pulling that PSECT into the root segment of an overlay.

4.6.6 X Format Edit Descriptor

The nX edit descriptor causes transmission of the next character
to or from a record to occur at the position n characters to the
right of the current position. 1In a FORTRAN-77 output statement,
character positions that are skipped are not modified and the
length of the output record is not affected. However, in many
FORTRAN-66 implementation, the X edit descriptor writes blanks
and may extend the output record.

4-8

CHAPTER 5
A COMPARISON OF FORTRAN LANGUAGE FEATURES

Tables 5-1 through 5-16 provide comparative FORTRAN 1language
features. Refer also to Language Fundamentals (AA-M460A-RK).

Table 5~-1 Programming Considerations

{—AMERICAN—> {=————PDP-8——> {~—PDP-11——> | VAX/ TOPS-10
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS-20
FORTRAN | 0S/8 0S/8 0S/78(RT-11 IAS
X3.9 -77(Full | FORT FORT FORT | IAS VAX/11
1966 Language) | II v v (FOR) (F77) | FORTRAN | F-10
Maximum number of dimensions | 3 7 2 7 7 7 7 7 Infin-
allowed for an array ity
Mixed mode expressions - X - X X X X X X
"Double exponentiation - X2 - X2 X2 X2 X2 ‘ X2 X2
(e.g., A**B**C) permitted
Statement number size 1-5 1-5 1-5 1-5 1-5 1-5 1-5 1-5 1-5
(characters)
Maximum level of nesting - - 20 10 10 3 20 20 Infin-
for DO loops ity
Maximum number of characters | - - - - - 255 255 255 Infin-
allowed in a PAUSE message v ity
Generalized subscripts - X X X X X X X X
permitted

Adjustable dimensions X X - X X X X X X
permitted in subprogram

Specification statement can - - - - - X - - X4
follow first executable
statement

Generic function selection - X - - - - X X X

2 Right to left evaluation.
3 Undefined.
4 Produces warning.

A COMPARISON OF FORTRAN LANGUAGE FEATURES

Table 5-1 Programming Considerations (Cont)
{—AMERICAN—> {=~——eePDP=B——m> {~—=PDP-11-——> | VAX/ TOPS-10
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS-20
FORTRAN 0s/8 0S/8 0S/78 | RT-11 IAS
X3.9 =77(Full | FORT FORT FORT | IAS VAX/11
1966 Language) | II v v (FOR) (F77) | FORTRAN | F-10
Statement functions can - - - X X X - - X4
follow executable state- ’
ments or precede related
specification statements
Maximum number of 19 19 Infin- 5 5 Infin- 0-99 0-99 Infin-
continuation lines ity ity ity
Embedded blanks permitted X X X X X X X X X
in key words
Key words reserved by the - - - - - - - - -
compiler
Maximum characters in a 6 6 5 6 6 63 63 315 63
symbolic name
Maximum level of nesting -1 1 2 10 10 2 -2 -2 Infin-
for implied DO loops ity
Comment line starts with C C,* C C C c,b,! C,D, c,D, c,$,*,
*,1 *,1 //D,!
: 1 1
Source code in EBCDIC - - - - - - - - -
Source code in BCD -1 -1 - - - - - - -
Source code in ASCII 1 . X X X X X X X
End-of-line comments - - - - - X X X X
delimited by "!"
Label on any statement X X6 X X X
INCLUDE from source file - - - X X X
INCLUDE from test library - - - - X -

Not specified.

Undefined.

Warning given for >6.
Warning given.

Warning given for over 31.
Not on a function statement.

AU WN -

5-2

A COMPARISON OF FORTRAN LANGUAGE FEATURES

Table 5-2 Subprogram Statements

{—AMERICAN—> < PDP~8——> {—PDP-11—> | VAX/ TOPS-10
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS-20
FORTRAN 0S/8 0S/8 0S/78 | RT-11 IAS
X3.9 =77(Full | FORT FORT FORT | IAS VAX/11
1966 Language)| II v v (FOR) (F77) FORTRAN | F-10
BLOCK DATA X Xl - X X Xl Xl Xl X:l
ENTRY entry-point - X - - - - xz X2 X2
[(argl,arg]...)]
. 2 2 2 2
FUNCTION function-name X X X X X X X X X
(arg[,arq]...)
function-name (argf{,argl...)= |X X - X X X X X X
arithmetic-expression
function-name (arg[,argl...)= |X X - X X X X X X
logical expression
function-name (arg(,argl...)= |- X - - - - - X X
character expression
INTEGER
REAL
DOUBLE PRECISION(|FUNCTION X3 X3"7 - X X4 X2 X2 Xz'6 x5’2'7
COMPLEX
LOGICAL
func-name
[*length] (arg[,arq]...)
SUBROUTINE subroutine-name X X X X X X X X X
{(argl,arg]...)]

Can have name.

Permit () and no args.

*length not permitted.

INTEGER, REAL, LOGICAL only.

*length ignored in most cases; flagged with warning.
Also types DOUBLE COMPLEX, CHARACTER

Also type CHARACTER [*length].

NS WN -

5-3

A COMPARISON OF

FORTRAN LANGUAGE FEATURES

Table 5-3 Constant and Variable Types
<—AMERICAN—> < PDP-8 > {—PDP-11—> | VAX/ TOPS-10
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS-20
FORTRAN 0s/8 0S/8 0S/78 | RT-11 IAS
X3.9 =77(Full | FORT FORT FORT | IAS VAX/11 .
1966 Language) | II IV IV (FOR) (F77) | FORTRAN | F-10
CONSTANT FORMS
Integer X X X X X X X X X :
Real X X X X X X X X X
Double-precision X X - X - X X X X
Complex X X - X - X X X X
Double complex - - - - - - - X -
Logical X X - X X X X X X
Literal (preceded by H) X3 - XS X5 X5 xS X5 X5 xs
Literal (enclosed in - X7 x5 x5 X5 X5 X7 X7 X7
single quotes)
Hexadecimal - - - - - - X X -
Octal - - - X1 X)(2 X2 X2 X6
Quadruple precision - - - - - - - X -
Radix 50 - - - - - x* x> x* -
1 In DATA statements only.
2 ["ddd] allowed anywhere [0ddd] is allowed in DATA statements.
3 In DATA, FORMAT, and subroutine arguments only.
5 Denotes Hollerith literal.
6 "ddd allowed anywhere.
7 Denotes CHARACTER constant.

5-4

A COMPARISON OF FORTRAN LANGUAGE FEATURES

Table 5-4 Data Types

{—AMERICAN—> | <{———PDP-8——-> <—PDP-11—> | VAX/ TOPS-10
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS-20
FORTRAN 0s/8 0S/8 0S/78| RT-11 IAS
X3.9 =77(Full | FORT FORT FORT | IAS VAX/11
1966 Language)| II v v (FOR) (F77) | FORTRAN | F-10
Floating point
REAL X X X X X X X X X
REAL*4 - - - - - X X X X
REAL*8 ' - - - - - X X X XS
REAL*16 - - - =7 - - - X X
DOUBLE PRECISION X X - X - X X X X
Complex
COMPLEX X X - X7 - X X X X
COMPLEX*8 - - - - - X X X X5
COMPLEX*16 - - - - - - - X X
DOUBLE COMPLEX - - - - - - - X -
Character
CHARACTER* (length) - X - - - - X X X
CHARACTER* (*) - X - - - - - X X
Logical
LOGICAL X X - X X Xz X;’ Xi X5
LOGICAL*1 - - - - - X X X X5
LOGICAL*2 - - - - - - X X X
LOGICAL*4 - - - - - X X X X
Integer
INTEGER X X X X X X2 X1 Xl X
INTEGER*1 - - - - - - - - ~c
INTEGER*2 - - - - - X3 X X X
INTEGER*4 - - - - - X X X X
1 Defaults to *2 or *4 at compile time.
2 Implemented as *4.
3 Four-byte allocation; two-byte precision.
4 BYTE is synonym for LOGICAL*1,
5 Produces warning; * length ignored.
7 Only with FPP hardware.

A COMPARISON OF FORTRAN LANGUAGE FEATURES

Table 5-5 Specification Statements
{—AMERICAN—> < PDP-8———> {~—PDP-11—> | VAX/ TOPS-10
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS-20
FORTRAN 0s/8 0s/8 0S/78 | RT-11 IAS
X3.9 =77 (Full FORT FORT FORT' | IAS VAX/11
1966 Language)| II v v (FOR) (F77) FORTRAN | F-10
PROGRAM name - X - - - X X X X
NAMELIST /namelist-name/ name | - - - - - - - X X
[,name...] [[,] /namelist-
name/ name [,name...]]...
PARAMETER var=constant,...l - - - - = - X X X
PARAMETER (var=exp,...)2 - X - - - - X X X
SAVE statement = X - - - - X X X
IMPLICIT type (characters - X - - - X X X X
[,type(characters)]...
INTEGER X X - X - X X X4 X5
REAL
«~ DOUBLE PRECISION
COMPLEX
LOGICAL
name
array-declarator
function-name
,name
,array-declarator(...
,function-name
INTEGER [*2] - - - - - - _ x4 x3r5:6

REAL [*8]
COMPLEX [*16]
LOGICAL [*1]

name
array-decl.

function-name

AN

—_

*length] [/initial-value/]

Also allows type CHARACTER.
Initial-value not allowed.

DN W

Type of symbolic name determined by constant.
Type of symbolic name determined by first letter, IMPLICIT, and type declarations.
Warnings produced for INTEGER*2, COMPLEX*16, LOGICAL*1,
Also allows types DOUBLE COMPLEX, CHARACTER.

A COMPARISON OF FORTRAN LANGUAGE FEATURES

Table 5-5 Specification Statements (Cont)

{—AMERICAN—> < PDP-8———> {—PDP-11—> | VAX/ TOPS-10
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS-20
FORTRAN 0S/8 0S5/8 0S/78 | RT-11 IAS
X3.9 =77(Full | FORT FORT FORT | IAS VAX/11
1966 Language)| II v v (FOR) (F77) FORTRAN | F-10
ame
COMMON rray-decl.} X X X X X X X X X
;name
,array-decl, "
hame
COMMON/block-name/- array- dec],} X X - X X X X X X
yhame
,array-decl.}
ces [/block-narhe/. eelees
DIMENSION array-decl. X X X X X X X X X
[,array-decl.]...
EQUIVALENCE (name[,name]...) X X X X X X X X X
[,(name(,namel ...)]...
subprogram-name _
EXTERNAL {ex ternal-proc-nam e} X X X X X X X X
7y subprogram-name
,external-proc-name {1°°°
EXTERNAL X . - - - - X X Xl
[*] subprogram-name .
[*]external-proc-name
Array declarators allow - X - - - - X X X
upper and lower dimension
bounds
INTRINSIC
{subprog ram—name} - X - - - - X X X

1 & can be used in place of *,

A COMPARISON OF

FORTRAN LANGUAGE FEATURES

Table 5-6 Data Initialization Statement
<—AMERICAN—> | < PDP-8 > | <—PDP-11—> | VAX/ TOPS-10
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS-20
FORTRAN 0s/8 0s/8 0S/78 | RT-11 IAS
X3.9 =77(Full | FORT FORT FORT | IAS VAX/11
1966 Language) | II Iv v (FOR) (F77) FORTRAN | F-10
DATA name [,name]... X xl - X X Xl Xl Xl Xl
/[number*]value
[, [number*}value]...
[,/[,name.eelece) eee
Implied DO construct - X X X X - - X X
Data values converted to - X - - - - X X X
type of name
Data initialization allowed - - - - - - - X -
in type declaration
statements
1 Name may be an array name implying all elements of array.
Table 5-7 Relational Operators
<~—AMERICAN--> < PDP-8 > <{~—PDP-11—> | VAX/ TOPS-10
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS-20
FORTRAN 0S/8 0S/8 0S/78 | RT-11 IAS
X3.9 =77(Full | FORT FORT FORT | IAS VAX/11
1966 Language) | II v v (FOR) (F77) FORTRAN | F-10
.GT. X X - X X X X X X
.GE. X X - X X X X X X
.LT. X X - X X X X X X
.LE. X X - X X X X X X
.EQ. X X - X X X X X X
.NE. X X = X X X X X X
> - - - - - = - - X
>= = - - - = - . - X
< - - - - - - - - X
<= - - - - - - - - X
== — - - - - - - - X
- - - - - - - - X

5-8

A COMPARISON OF FORTRAN LANGUAGE FEATURES

Table 5-8 Logical Operators
{——AMERICAN--> < PDP-8 > <{—PDP-11—> | VAX/ TOPS-10
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS-20
FORTRAN 0s/8 0S/8 0S/78 | RT-11 IAS
X3.9 =77(Full | FORT FORT FORT | IAS VAX/11
1966 Language) | II v v (FOR) (F77) | FORTRAN | F-10
.NOT. X X - X X X X X X
.AND. X X - X X X X X X
.OR. X X - X X X X X X
-XOR. - - - X X X X X X
<EQV. - X - X X X X X X
NEQV, - X - - - - X X X
Table 5-9 Assignment Statements
{—AMERICAN—> | {————PDP-8—> {~—PDP-11—> | VAX/ TOPS-10
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS-20
FORTRAN 0s/8 0s/8 0S/78 | RT-11 IAS
X3.9 -77(Full | FORT FORT FORT | IAS Vax/11
1966 Language) | II v v (FOR) (F77) | FORTRAN | F-10
variable = arithmetic X X X X X X X X X
expression
variable = logical expression| X X - X X X X X X
ASSIGN statement-number TO X Xl - X X X X1 Xl Xl
variable
variable = character - X - - - - x2 X X
expression

1 Statement label may be label of a format statement.

2 Character expression must be variable, substring, or constant.

5-9

A COMPARISON OF FORTRAN LANGUAGE FEATURES

Table 5-10 Control Statements

{-—AMERICAN—> | {=————PDP-8—>, <{—=PDP-11—> | VAX/ TOPS-10
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS—-20
FORTRAN 0s/8 05/8 0S/78 | RT-11 IAS
X3.9 =77(Full | FORT FORT FORT | IAS VAX/11
1966 Language) | II v v (FOR) (F77) | FORTRAN| F-10
CALL subroutine-name X X X X X)(l)(l Xl X
[(argument [,arg[...)]
CONTINUE X X X X X X X X X
2,4,8 8 2,8 2,8,9
DO statement-number control- | X X X X X x2r 8 y2.8, 1 2,89 | 2.8,
s P 9,10
variable = initial-value,
test-value [,increment]
END X X X X X X X X X
GO TO statement-number X X X X X X X X X
GO TO (statement-number, X X6 X X X X5'6 X5’6 X5’6 XS'6
statement-number
[,statement-number]...)
[,] variable
GO TO variable [[,] X X - X X X)(7 X x7
(statement number,
statement-number
[,statement-number] ...)]
IF (arithmetic-expression) X X X X X X X X X
statement-number, statement
number, statement-number
IF (logical-expression) X X - X X X X X X
executable-statement

Null argument permitted.
General expressions permitted.
Iteration count computer but minimum of one iteration.
Variable and expressions are of type INTEGER.
Index may be a general expression which will be converted automatically to
integer if expression of other type.
If index out of bounds, then acts as continue.
If list present and assigned label not in list, then acts as continue.
Optional comma after statement number.
Compiler switch to determine minimum iteration count (0 or 1).
0 Statement number optional.

b wN =

HO®oJOn

5-10

A COMPARISON OF FORTRAN LANGUAGE FEATURES

Table 5-10 Control Statements (Cont)
<{~—AMERICAN—> < PDP-8 > {—PDP-11—> | VAX/ TOPS-10
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS-20
FORTRAN 0s/8 0s/8 0S/78| RT-11 IAS
X3.9 =77(Full | FORT FORT FORT | IAS VAX/11
1966 Language) | II IV IV (FOR) (F77) | FORTRAN | F-10
IF (logical-expression) - - - - - - - - -
statement-number, statement
number
IF-THEN-ELSE-ENDIF - X - - - - X X X
DO-WHILE - - - - - - - X X
END DO - - - = - - - X X
2
PAUSE (one to six octal X - - - - X X X X
digits)
PAUSE (one to five decimal - X X X X X X X X2
digits)
PAUSE 'message’ - X - - - X X X X
STOP (one to six octal digits)|X - - - - X X X X2
STOP (one to five decimal - X - - - X X X X2
digits)
STOP 'message’ - X - - - X X X X
Tracing after pause - - - - - - - x4 X
RETURN X X X X X X X X X
RETURN (expression) - X - - - - - X X

2 Up to 12 digits.

4 PAUSE enters command processor. User can STOP, CONTINUE, ASSIGN, SHOW, DEBUG, etc.

5-11

A COMPARISON OF

FORTRAN LANGUAGE FEATURES

Table 5-11 Sequential I/0 Statements
<—AMERICAN—> < PDP-8———> {—PDP-11-—> | VAX/ TOPS-10
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS-20
FORTRAN 0s/8 0S/8 0S/78 | RT-11 IAS
X3.9 -77(Full | FORT FORT FORT | IAS VAX/11
1966 Language)| II v v (FOR) (F77) | FORTRAN | F-10
N = namelist-name
u = unit number
f = label of a format
statement
k = an I/0 list
* indicates list-
directed 1/0
ACCEPT £,k - - - - - X X X X
ACCEPT £ - - - - - X X X X
ACCEPT* ,k - - - - - X X X X
ACCEPT N - - = - - - - X X
BACKSPACE u X X - X X X X X X
ENDFILE u X X - X X X X X X
PRINT £,k X X . . = X X X X
PRINT £ X X X X X X
PRINT* k - X X X X X
PRINT N - - - - - - - X X
PUNCH £,k - - - - - - - - X
PUNCH £ - - - - - X
PUNCH¥* ,K - - - - - X

5-12

A COMPARISON OF FORTRAN LANGUAGE FEATURES

Table 5-11 Sequential I/O Statements (Cont)

<—AMERICAN—> < PDP-8 > {——PDP-11—> | VAX/ TOPS-10
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS-20
FORTRAN 0s/8 0s/8 0S/78 | RT-11 IAS .
X3.9 -77(Full FORT FORT FORT | IAS VAX/11
1966 Language) | II v v (FOR) (F77) FORTRAN | F-10
N = namelist-name
u = unit number
f = label of a format
statement
k = an 1I/0 list
* indicates list-
directed 1/0
READ £,k - X - - - X X X X
2
READ (u,f) (k] X X2 X X X X X x2 x2
READ (u) [k] X X3 - X X X X3 X3 X3
READ (uf,f][,END=S1] - X - - - xl'4 xtr2 xtr2 xl'2
[,ERR=52]) (k]
'READ* , k - X - - - X X X X
READ (u,*[,END=S]]1[,ERR=S2])k| - X - - - xt xt3 |xle3 [x13
READ N - - - - - - - X X
READ (u,N[,END=S1][,ERR=S2]) |- - - - - - - 3 | x
REREAD £,k - - - - - - - - X.
REWIND u X X - X X X X X X
BACKFILE u - - - - - - - - X
SKIPFILE u - - - - - - - - X
TYPE f[,Kk] - - - - - X X X X
TYPE *[,k] - - - - - X X X X
TYPE N - - - - - - - X X

Keywords in either order.

Also UNIT = u, IMT = £,

Also UNIT = u.

f is mandatory (formatted only).
Also NML=N.

U W N =

5-13

A COMPARISON OF FORTRAN LANGUAGE FEATURES

Table 5-11 Sequential I/0 Statements (Cont)
<—AMERICAN—> {~———PDP-8———> {——PDP-11—> | VAX/ TOPS-10
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS-20
FORTRAN 0s/8 0S/8 0S/78 | RT-11 IAS
X3.9 =77(Full FORT FORT FORT IAS VAX/11
1966 Language) | II v v (FOR) (F77) FORTRAN | F-10
N = namelist-name
u = unit number
f = label of a format
statement
k = an I/0 list
* indicates list-
directed 1/0
ary = array, array element,
or variable
3
WRITE (u,f) (k] X x3 X X X X X3 X3 X
WRITE (u)[k] X X4 - X X X X4 X4 X4
WRITE (u[,f](,END=S1] - X - - - X1’5 Xl'3 Xl'3 Xl’3
[,ERR=S2])k
WRITE (u,*[,END=S1) - xl'4 - - - xl x4 xl'4 xl'4
[,ERR=S2])k
WRITE (u,N[,END=S1][,ERR=S2]) | - - . . = . = X6 X
WRITE *,k = - - - - X
WRITE £,k - - - - - X
WRITE £ - - - - = X
SKIPRECORD u - - - - - - - - X
UNLOAD u - - - - - - - - X
ENCODE/DECODE (cnt, fmt,ary)k - - - - - X X X X

Keywords in either order.
Also UNIT = u, FMT = f,
Also UNIT = u.

AU D W

Also NML=N,

f is mandatory (formatted only).

5-14

A COMPARISON OF FORTRAN LANGUAGE FEATURES

Table 5-12 File Control Statements
<—AMERICAN—> < PDP-8 > <{—PDP-11—-> | VAX/ TOPS-10
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS~-20
FORTRAN 05/8 0s/8 0S/78 | RT-11 1IAS
X3.9 =77 (Full FORT FORT FORT IAS VAX/11
1966 Language) { II v v (FOR) (F77) | FORTRAN | F~10
OPEN - X Xl - - X X X X
CLOSE - X Xl - - X X X X
INQUIRE - X - - - - - X -
1 Library subroutines.
Table 5-13 Direct Access 1I/0 Statements
{—AMERICAN—> {~——=PDP~Bmmm> <~—PDP-11—> | VAX/ TOPS-10
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS-20
FORTRAN 0s/8 0S/8 0S/78 | RT-11 IAS
X3.9 =77(Full | FORT FORT FORT | IAS VAX/11
1966 Language) | II Iv v (FOR) (F77) FORTRAN | F-10
u = unit number
n = nunber of records in file
rs = length in 16-bit words
of record
c = indicates unformatted
v = associated variable
DEFINE FILE u(n,rs,c,v) - - - X X x2,3 X2’3 x2’3 -
[,u2...]...
FIND (u'r) - - - - _ X x10 x10 x10
READ (u'r[,f]) (k] - x° - X X x? xt i xtt
READ (u'r[f] [,END=S1] - X - - - A N Pet xit
[,ERR=S2]) [K]
WRITE (u'r{,f]) [k] - X9 - X X X2 Xll X11 Xll
WRITE (u'r[,£][,END=S1] - X - - - x2r3 x gl xtt
[,ERR=S2]) [k]
DELETE (u'r[,ERR=s2]) - - - - - - Xlo Xlo -
FORMAT statement:
Statement—-number FORMAT X X X X X X X X X

(format-spec)

Unformatted only.

END= option not allowed.
Warning for #.

Lo d W+

10 Also UNIT = u, REC = r.

11 Also UNIT = u, REC =r, FMT = £,

Call DEFINE FILE with different format of arguments.

Record size measured in 16-bit words (= 1/2 storage unit).
Record size measured in storage units.

END=S1 syntax used if record number is outside of file.
REC=r is syntax for direct access.

5-15

A COMPARISON OF FORTRAN LANGUAGE FEATURES

Table 5-14 Indexed I/0 Statements
<-—AMERICAN—> < PDP-8——> <{-——-PDP-11—> | VAX/ TOPS-10
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS-20
FORTRAN 0s/8 0s/8 0S/78 | RT-11 IAS
X3.9 -77(Full FORT FORT FORT IAS VAX/11
1966 Language) | II v v (FOR) (F77) FORTRAN | F-10
u = unit number
f = format specifier
kl = key specifier
i = key identifier
sl = statement label
s2 = statement label
k = an I/0 list
READ (u[,f],KEY=k1[,KEVID=i])| - - - - - - x? x2 -
(k1
READ (ul,f],KEV=k2[KEYID=i] | - - - - - - X2 x? -
{,END=S1] [,ERR=S2]) [k]
WRITE (ul,£])* (K] - - - - - - X2 x2 -
WRITE (ul,£)[,END=s1] - - - - - - X2 x? -
[,ERR=s2]) [k]
REWRITE (ul,f]) [K] - - - - - - x> x2 -
REWRITE (ul,£][,END=s1] - - - - - - x? x2 -
[,ERR=2]) [k]
DELETE (u[,ERR=s2]) - - - - - - %3 %3 -
UNLOCK (ul,ERR=s2]) - - - - - - x3 x3 _
1 Syntax identical to sequential write,
2 Also UNIT = u, FMT = £,
3 Also UNIT = u.,
5-16

A'COMPARISON OF FORTRAN LANGUAGE FEATURES

Table 5-15 Format and Types of Conversion

{——AMERICAN—> | {~——PDP-8——> {——PDP-11—> | VAX/ TOPS-10
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS-20
FORTRAN 0s/8 0S/8 05/78 | RT-11 IAS
X3.9 -=77(Full | FORT FORT FORT | IAS VAX/11
1966 Language) | II v v (FOR) (F77) FORTRAN | F-10
A (alphanumeric)) X X X X X X X X X
D (real D decimal exponent) X X - X - X X X X
E (real E decimal exponent) X X X X X X X X X
F (real, no exponent) X X X X X X X X X
G (real) X X X X X X X X X
H (literal) X X X X X X X X X
'eou! (literal) - X X X X X X X X
I (integer) X X X X X X X X X
L (logical) X X - X X X X X X
0 (octal) - - - X X X X X X
P (scale factor) X X - X X X X X X
Q (record length) X X X X
T (position indicator in - X - X X X X X X
record)
X (skipped data or blank) X X X X X X X X X
Z (hexadecimal data) - - - - - - X X X
Format specification in X X - X X X X X X
arrays

5-17

A COMPARISON OF FORTRAN LANGUAGE FEATURES

Table 5-15 Format

and Types of Conversion (Cont)

{—AMERICAN—> < PDP-8 > {~—PDP-11—> | VAX/ TOPS-10
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS-20
FORTRAN 0s/8 0S/8 0S/78 | RT-11 IAS
X3.9 -77(Full FORT FORT FORT | IAS VAX/11
1966 Language)| II IV IV ~(FOR) (F77) | FORTRAN | F-10
Carriage Control X X X X X X X X X
R (right-justified A) - - - - - - - X
S (control of optional + sign)| - X - - - X X X
/ (record separator) X X X X X X X X X
: (format scan terminator) - X - - - X X X X
$ (format separator) - - - X X x3 X3 x3 x3
BN (blank = null) X X X X
BZ (blank = zero) X X X X
SS (suppress optional + sign) X X X X
SP (print optional + sign) X X X X
TL (tab left) X X X X
TR (tab right) X X X X

3 Used as carriage control character also.

5-18

A COMPARISON OF FORTRAN LANGUAGE FEATURES

Table 5-16 Library Functions

{—AMERICAN—> | <~——PDP-8 > {~—=PDP-11—> | VAX/ TOPS-10
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS-20
FORTRAN 0s/8 0S/8 0S/78| RT-11 IAS
X3.9 -=77(Full FORT FORT FORT | IAS VAX/11
1966 Language) | II v v (FOR) (F77) | FORTRAN | F-10
Absolute value:
Real X X X X X X X X X
Integer X X X X X X X X X
Double-precision X X - X - X X X X
Quad precision - - - - - - - X -
Complex to real X X - X - X X X X
Double complex to - - - - - - - X x2
double-precision
Conversion:
Integer to real X X X X X X X X X
Integer to double - X - - - -1 X X X
Integer to quad - - - - - - - X -
Real to integer X X X X X X X X X
Double to real (obtain X X - X - X X X X
most significant part)
Double to integer X
Quad to real - - - - - - - X -
Real to double X X - X - X X X X
Real to quad - - - - - - - X -
Byte or integer*2 to X
integer*4 (zero-extend)
G-floating to D-floating X X
D-floating to G-floating X X

1 Available as implied conversion only.
2 Argument is a two—-element double-precision array.

5-19

A COMPARISON OF FORTRAN LANGUAGE FEATURES

Table 5-16 Library Functions (Cont)
<—AMERICAN—> {——PDP-8——> {~—PDP-11—> | VAX/ TOPS-10
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS-20
FORTRAN 0s/8 0S/8 0S/78| RT-11 IAS
X3.9 -=77(Full | FORT FORT FORT | IAS VAX/11
1966 Language) | II v v (FOR) (F77) FORTRAN | F-10
Complex to real X X - X - X X X X
(obtain real part)
Double complex to real - - - - - - - X -
(real part)
Complex to real X X - X - X X X X
(obtain imaginary part)
Double complex to double - - - - - - - X -
real (imaginary part)
Real to complex X X - X - X X X X
Double real to - - - - - - - X -
double complex
Cosine:
Real (radians) X X X X X X X X X
Real (degrees) - - - X X - - X X
Double (radians) X X - X - X X X3 X
Quad - - - - - - - X3 -
Complex X X - X - X X X X
Double complex - - - - - - - X x4
Hyperbolic (real and double):
Sine X X - X X - X X2 X
Cosine X X - X X = X X2 X
Tangent X X - X X Xl X X2 X
Real only.
Also guad.

Radian and degree versions.

W N -

Arguments are two—element double-precision arrays.

20

A COMPARISON OF FORTRAN LANGUAGE FEATURES

Table 5-16 Library Functions (Cont)

{—AMERICAN——> {==——PDP-8——> {——PDP-11—> | VAX/ TOPS-10
NATIONAL RSX RSX VMS
STANDARDS ‘RSTS/E RSTS/E TOPS-20
FORTRAN 0s/8 0s/8 0S/78| RT-11 IAS
X3.9 -=77(Full | FORT FORT FORT | IAS VAX/11
1966 Language) | II Iv v (FOR) (F77) FORTRAN | F-10
Arc-sine (real and double) X X - X X - X X2'3 X
Arc-cosine (real and double) | X X - X X - X XZ'3 X
Arc-tangent:
Real X X X X X X X ’ X3 X
Double X X - X - X X X3 X
Quad - - - - - - - x3 -
Quotient of two arguments X X - X X X X x3 X
Sine:
Real (radians) X X X X X X X X X
Real (degrees) - - - X X - - X X
Double (radians) X X - X - X X)(3 X
Quad - - - - - - - x3 -
Complex X X - X - X X X X
Double complex - - - - - - - X X4
1 Real only.
2 Also quad.
3 Radian and degree versions.
4 Arguments are two—element double-precision array.

A COMPARISON OF FORTRAN LANGUAGE FEATURES

Table 5-16 Library Functions (Cont)
{—AMERICAN—> < PDP-8 > {=—PDP-11-—> | VAX/ TOPS-10
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS~-20
FORTRAN 05/8 0S/8 0S/78 | RT-11 IAS
X3.9 =77(Full | FORT FORT FORT | IAS VAX/11
1966 Language) | II v v (FOR) (F77) | FORTRAN | F-10
Tangent - X X X X - X X X
Cotangent - - - - - - - - X
Logical functions:
IAND - - - - -)(2 X2 Xz X2
2
IOR - - - - - X2 X2 X2 X
IEOR - - - - - x> x° X X
NOT - - - - - x* x? x? X2
Error function - - - - - - - - -
Gamma function - - - - - - - - -
Log gamma - - - - - - - - -
Switch register - - X X - X X - -
Complex conjugate X X - X - X X Xl X
Positive difference X X - X X X X X X

(ul—Min(ul,uz))

1 Also double complex.

2 Available in all expressions as .AND., .OR.,

.XOR., and .NOT. operators for integer values.

5-22

A COMPARISON OF FORTRAN LANGUAGE FEATURES

Table 5-16 Library Functions (Cont)

{—AMERICAN—> | < PDP-8 > <—PDP-11-—> | VAX/ TOPS-10
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS-20
FORTRAN 0s/8 0s/8 0S/78| RT-11 IAS
X3.9 =77(Full | FORT FORT FORT | IAS VAX/11
1966 Language)| II v v (FOR) (F77) FORTRAN | F-10
Bit set - - - X -
Bit test - - - X -
Bit clear - - - X -

" shift - - X X -
Circular shift R - - X -
Insert bits - - - X -
Move bits - - - X -
Exponential:

Real X X X X X X X X X
Double X X - X - X X X X
Quad - - - - - - - X -
Complex X X - X - X X X X
Double complex - - - - - - - X Xl
Logarithm:
Real X X X X X X X X X
Double X X - X - X X X X
Quad - - - - - - - X -
Complex X X - X - X X X X
Double complex - - - - - - - X Xl

1 Arguments are two-element double-precision arrays.

A COMPARISON OF FORTRAN LANGUAGE FEATURES

Table 5-16 Library Functions (Cont)
{—AMERICAN—> < PDP-8——> {——PDP-11-—> | VAX/ TOPS-10
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS-20
FORTRAN 0s/8 0s/8 05/78 RT-11 IAS
X3.9 <77(Full | FORT FORT FORT | IAS VAX/11
1966 Language) | II v v (FOR) (F77) | FORTRAN | F-10
Square root:
Real X X X X X X X X X
Double X X - X - X X X X
Quad - - - - - - - X -
Complex X X - X - X X X X
Double complex - - - - - - - X Xl
Truncation:
Real to real X X X X X X X X X
’Real to integer X X X X X X X X X
Double to integer X X - X - X X X X
Quad to integer - - - - - - - X -
Real X X - X X X X X X
Integer X X X X X X X X X
Double-precision X X - X - X X X X

1 Arguments are two-element double-precision arrays.

5-24

A COMPARISON OF FORTRAN LANGUAGE FEATURES

Table 5-16 Library Functions (Cont)

{—AMERICAN—> {=———=PDP~8~———> <{—PDP-11—> | vax/ TOPS-10
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS—-20
FORTRAN 0s/8 0S/8 0S/78 | RT-11 IAS
X3.9 =77(Full | FORT FORT FORT | IAS VAX/11
1966 Language) | II v v (FOR) (F77) | FORTRAN | F-10
Maximum value X X - X X X X X X
(Number of arguments >2
for all functions)
Minimum value X X - X X X X X X
(Number of arguments >2
for all functions)
Transfer of sign:
Real X X - X X - X X X X
Integer X X - X X X X X X
Double-precision X X - X - X X X X
Quad precision - - - - - - - X -
Test sense switch - - - X - X X X X
Random number - - - - - X X X X
Convert sign magnitude to - - - - - - - - -
2s complement and vice versa
Remainder of time limit - - - - - - - - X
DIVERT run time error messages X
to a file
ERRSET controls handling of X
error conditions
DATE, TIME X
TRACE X

ANSI-77 FORTRAN Information Document Reader’s Comments
EY-1233E-ID-0001

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of our
publications.

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well
written, etc.? Is it easy to use?

What features are most useful?

What faults or errors have you found in the manual?

Does this manual satisfy the need you think it was intended to satisfy?

Does it satisfy your needs? Why?

O Please send me the current copy of the Technical Documentation Catalog, which contains information on
the remainder of DIGITAL’s technical documentation.

- Name Street
Title City

| Company State/Country
Department Zip

~ Additional copies of this document are available from:

Digital Equipment Corporation
ESD&P Order Processing

12A Esquire Road

North Billerica, MA 01862

Order No. EY-1233E-ID MRO

Do Not Tear — Fold Here and Staple

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD, MA.
POSTAGE WILL BE PAID BY ADDRESSEE
4

Digital Equipment Corporation
Educational Services/Quality Assurance
12 Crosby Drive (BUO/EO08)

Bedford, MA 01730

No Postage
Necessary
if Mailed in the
United States

Digital Equipment Corporation ¢ Bedford, Ma. 01730

