
EY-1233E-ID-OOO 1

ANSI-77 FORTRAN
Information Document

Prepared by Educational Services
Of

Digital Equipment Corporation

Is t Ed i t ion, Ap r i I I 98 3

@ Di 9 ita I Eq u i pm en t Co r PJ rat ion I 98 3 •

All Rights Reserved.

Printed in U.S.A.

The information in this document is
subject to change without notice.
Dig ital Equi pment Corporation assumes no
responsibiliity for any errors that may
a ppear in thi s man u31 •

The software described in this document
is furnished under a license and may not
be used or copied except in accordance
with the terms of such license.

Di g i ta I Eq u i pm en t Co r po rat ion ass um e s no
responsibility for the use or
reliability of its software on equipment
that is not supplied by Digital.

The following are trademarks of Dig ital
Equi pmen t Co r po ration:

~D~DD~D
DEC
DECrnate
DECnet
DECsystem-IO
DE C S YS T EM - 20
DECUS
DECwr iter

DIBOL
MASSBUS
PDP
P/OS
Pro fe ssio nal
Rainbow
RSTS
RSX

TOPS-IO
TOPS-20
UNIB US
VAX
VMS
VT
Wo r k Processo r

5/83-15

PREFACE

CHAPTER 1

1. 1
1.2
1.2. 1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.2.7

1.2.8

1. 2.9

1.2.10
1.2. 11
1.2.12

1.2.13

1.2.14
1.2.15

1.2.16

1.3
1.3. 1
1.3.2
1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.4.5
1.5
1.6

CONTENTS

INTRODUCTION

ION'rRODUCTION •••••••••.•..•••••.••••••••••••••••••• 1-1
CHARACTER CONVENorIONS •••••••••••.•••••••••••.••.•. 1-1

Character Constants and Symbolic Constants .••••• 1-1
Character Variables and Arrays •••••••••••••••••• 1-2
Character Re1atiana1 Expressions •••••••••••••••• 1-3
C h a r act erAs s i 9 nm en t S tat 9 m en t s • • • • • • • • • • • . . • • • • 1--4
Sub s t r in 9 Re fer en c e and De fin i t ion • • • • • • • . • • • • • • 1-4
Character Expressions ••••••.•••••••••••••.•••••• 1-S
Character Var iab1es and Constants in DATA
Sota tern en ts •••••••••••••••••••••••••••••••••••••• 1-6
Character Variables, Array Elements, Arrays,
and Substrings in Input Lists ••••••••••••••••••• 1-5
Chara~ter Constants, Variables, Array
Elements, Arrays, Substrings, and
Ex pr e S5 ion sin Ou t pu t Li s t s ••••••••••••••••••••• 1-7
Character Functions ••••••••.••••••••••••••••••.• 1-7
Dummy and Actual Arguments of Type Character •••• 1-7
Intrinsic Functions that Operate on
Character Data •••••••••••••••••••••••••••••••••• 1-7
Character Variable Names, Array Element Names,
Array Names, and Substring Names in
EQUIVALENCE Statemen ts •••••••••••••••••••••••••• 1-7
Character Variable and Arrays in COMMON Blocks •• 1-8
Charactar Variables and Expressions as the
Values of the Specifiers in OPEN Stat-aments ••••• 1-8
Character Constants, Character Arrays, and
Character Variables as Format Specifiers •••••••• 1-8

C ONTR OL S 'rA TEJ'v1 ENTS •••••••••••••••••.••.••••••••••• 1-8
BLOCK IF, ELSE IF, and END IF Statements •.•••••• 1-8
DO Loop Semantics ••••••••••••••••••••••••••.••• 1-10

INPUT/OUTPUT ••••••••••••••••••••••••••••••••••••• 1-10
Format Edit Descriptors •••••••••••••••••••••••• l-10
Expressions on Output Lists 1-12
Internal Fi1es ••••••••••••••••••••••••••••••••• 1-13
Unit Specifier and Identifier •••••••••••••••••• 1-13
Format Specifier and Identifier •••••••••••••••• 1-14

ASSUMED SIZE ARRAY DECLARATORS ••••••••••••••••••• 1--14
USE OF A FOR!'1AT S'rATE1'v1ENT LABEL IN AN ASSIGN
STATEMENT •••••••••••••••••••••••••.•••••••••••••• 1-14

iii

1.7
1.8
1.9
1.10

CHAPTER 2

2.1
2.2

2.2. 1
2.2.1.1
2.2.1.2
2.2.1.3

2.2.1.4

2.2.1.5
2.2.1.6
2.2.1.7

2.2.1.8
2.2.2
2.2.3
2.2.4

2.2.5
2.2.6
2.2.7
2.2.8

2.2.9
2.2.10
2.2.11
2.2.12

2.2.13

2.2.14
2.2.15
2.2.15.1

2.2.15.2
2.2.15.3
2.2.16
2.2.17
2.2.18

2.2.19

CONTENTS (Cont)

IN'rRINSIC AND EXTERNAL STATE!~ENTS ••..•.....••.•.• 1-14
SAVE STATENlENT ...•.••.•.••..•.....••.•.•.•..••..• 1-15
NULL ARGUMENr LISTS FOR FUNCTIO~S •..•.••....•.••• 1-15
CONSTANT EXPRESSIONS ••.•..•..•..•...••...•.••.... 1-15

TOPS-IO/20 FORTRAN

I·NTRODUCTION .•.•.•••••.•...••..•••...•••.•..••••.• 2-1
MAJOR FEA'rURES OF VERSION 7 'rHAT WERE No'r IN
VE R S ION 6... 2 - 1

Features Supported for Character Data •...•.•••.. 2-1
Character Assignment Statements ..•.•••••.•.•.• 2-1
Character Expressions •••.•...••••..••..•..•.•• 2-2
Character Variables and Constants in DATA
Sta temen ts 2-2
Character Variables, Array Elements, Arrays,
and Substrin.~s in Input Lists •••.•.•.•...••••• 2-2
Dummy and Actual ArguInents of Type Character .• 2-2
EQUIVALENCE Statements ...•••••.•...•••.•...••. 2-~
Character Variables and Arrays in COMMON
Blocks .. 2-2
Namel ists ••••••..•••.•••..•.•.••.•••••.••..•.. 2-2

IF THEN ELSE Statements •.•.••••••...••••..•••••. 2-3
Expressions on Output Lists ••.•.••••••.•..•••••• 2-3
In tr insic and Gener ic Func tions a t the
li'OR'rRAN-77 Full Lang uag e Level ••••••.•••.••••••• 2-3
Internal Files (.single-Record and Mu1tirecord) •. 2-3
FORTRAN-77 DO Loop Semantics •••..•••••••••.•.••• 2-4
Assumed-Size Array Declarators •••••••••••••••••• 2-4
Use of FORMAT Statement Numbecs in ASSIGN
Sta tamen ts 2-4
·INTRINSIC Statement; EXTERNAL Statement •••.••••• 2-4
SAVE Statement ••••.••••••.••••••••••••••••.••••• 2-4
Null Arg umen t Li st s fo r Func tio ns ••••.•••...•••• 2-4
.Minor Syntax Extensions Required by the
FORTRAN-77 Standard •••••••••••••.•••••••.••.•••• 2-4
Compile Time Constant Expressions in
Declar; tions, as Array Bounds, and String
Bo und s ••••••••••••.•••••••.••••••••••••••••••••• 2-5
FORTRAN-77 PARAME'rER Statements •.•••••.••••••••• 2-5
DO WHILE and END DO Statements ••••••••••••••.••• 2-5

Optional Statement Label in the Indexed
(Standard) DO Statement •.••••••••••••••••••••• 2-5
DO WHILE Statement •••••••••.•••••••••••••.•••• 2-n
END DO Statement •••••••••..••••••••••••••••••• 2-6

LINKt ime Type-Chec king 0 f Subprog ram Arg umen ts •• 2-6
G-F1oating Double-precision Numbers •••.••••••••• 2-7
Native TOPS-20 Command Interface for the
Co m p i 1 e r • 2 - 7
New Functionality in the ERRSET Subroutine •••••• 2-7

iv

--------------_ .. _-----. --- --_ .. _ ... _-_ ... _--_._-- ------

2.2.20
2.3
2.4

CHAPTER

3.1
3.2
3.2.1
3.2.2
3. 2. 3
3.2.4
3.2.5
3.2.6
3.2.7
3.2.8
3.2.9
3.2.10
3.2.11
3.2.12
3.2.13

3.2.14
3.2.15
3.2.16
3.2.17
3.2.18
3.2.19
3.2.20
3.2.21
3.3
3.4
3.5
3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.6.5

CHAPTER

4.1
4.2
4.2.1
4.2.1.1
4.2.1.2
4.2.1.3
4.2.1.4
4.2.1.5

3

4

CONTENTS (Cant)

Utility Subroutine to Get a Free Unit Number •••• 2-8
FORTRAN-77 FEATURES THAT ARE NOT SUPPORTED •••••••• 2-8
SUMMARY OF EXTENSIONS TO THE FORTRAN-77 STANDARD •• 2-9

VAX-II FORTRAN

INrrRODUCTION ••••.•••••••••••••••••••••••••••.••••• 3-1
NEW FEATURES SUPPOR'rED BY VERSION 3 ••••••••••••••• 3-2

Bit Functions ••••••••••••••••••••••••••••••••••• 3-2
Debugger Commands for Source Code Debugg ing ••••• 3-3
DEFAULTFILE Keyword, in the OPEN Statement ••••••• 3-3
IMPLICIT NONE Statement ••••••••••••••••••••••••• 3-3
FORTRAN Data Manipulation Language Preprocessor.3-4
Faster I/O Interface •••••••••••••••••••••••••••• 3-4
Zero-Extending Intrinsic Functions •••••••••••••• 3-4
Library-Based INCLUDE Statement ••••••••••••••••• 3-4
Improved Math Routines •••••••••••••••••••••••••• 3-5
Namelist-Directed I/O Statements •••••••••••••••• 3-5
Optimization of Generateg Code •••••••••••••••••• 3-5
Optimization of I/O Routines •••••••••••••••••••• 3-5
Checking for Extensions to the FORTRAN-77
Standard .. 3-5
A Cross-Reference Listing ••••••••••••••••••••••• 3-5
Floating-Underflow Checking ••••••••••••••••••••• 3-6
Sub s t r in 9 - B 0 un d s Ch e c kin g • 3 - f)

OPTIONS Statement ••••••••••••••••••••••••••••••• 3-6
FORTRAN Definitions for System Symbols •••••••••• 3-6
Trigonometric Functions in Degrees •••••••••••••• 3-6
Run - Tim e I/O Err 0 r Me s sag e s • 3 - 6
/SHOW Qualifier ••••••••••••••••••••••••••••••••• 3-7

E XTENS IONS TO THE ANS I STANDARD ••••••••••••••••••• 3-7
ADDI'rIONAL FEATURES •••••••••••••••••••••••••••••• 3-10
VAX-II FOR'rRAN COMPILER OP'rr.r>4IZATIONS •••••••••••• 3-10
COMPATIB ILITY: VAX-II FORTRAN AND FORTRAN-66 •••• 3-10

DO Loop Minimum Iteration Count •••••••••••••••• 3-11
E XT E RNA L S tat e men t • 3 -11
OPEN Statement Keyword Defaults •••••••••••••••• 3-11
OPEN Statement' Status Keyword Default •••••••••• 3-11
X Format Edit Descriptor ••••••••••••••••••••••• 3-12

PDP-II FORTRAN

INTRODUCTION •••••••••••••••••••••••••••••••••••••• 4-1
NEW FEATURES ••••••••••••••••••••••••••• ~ •••••••••• ~-2

Fea t ure s Suppo r ted fo r Cha r ac te r Da ta ••••••••••• 4-2
Character Constants ••••••••••••••••••••••••••• 4-2
Substr ing Reference and Definition •••••••••••• 4-2
Character Expressions ••••••••••••••••••••••••• 4-2
Character Variables and Arrays •••••••••••••••• 4-2
Charac ter Relational Expressions •••••••••••••• 4-2

v

4.2.1.6
4.2.1.7

4.2.1.8
4.2.2
4.3

4.3.1
4.3.2
4.3.3
4.3.4

4.3.5
4.3.6
4.3.7

4. 3. 8

4.4
4.5
4.6
4.6.1
4. 6. 2
4.6.3
4.6.4
4.6.5
4.6.6

CHAPTER 5

Table No.

3-1
4-1

5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11

---- ---------------- -----

CONTENTS (Cont)

Character Assignment Statements ••••••••••••••• 4-2
Character Variables and Constants in DATA
Sta temen ts •••••••••••••••••••••••••••••••••••• 4-3
Character Functions ••••••••••••••••••••••••••• 4-3

IF rrHEN ELSE Sta temen ts ••••••••••••••••••••••••• 4-3
FEATURES OF THE FULL-LANGUAGE FORTRAN AS DEFINED
BY 'rHE ANS I STANDARD •••••••••••••••••••••••••••••• 4-3

Exponentiation Forms •••••••••••••••••••••••••••• 4-3
Format Edit Descriptors ••••••••••••••••••••••••• 4-3
IN'rR INS IC and EXTERN.~ L Sta temen ts ••••••••••••••• 4-4
Generic Function Selection Based on Argument
Da ta Type fo r FORTRAN-De fi ned Func tio ns ••••••••• 4-4
PARAMETER Statements •••••••••••••••••••••••••••• 4-5
General ized DO Loop Parameters •••••••••••••••••• 4-5
Lower and Upper Bound s Spec ification in Array
Declarators ••••••••••••••••••••••••••••••••••••• 4-5
Optional Syntax for I/O Statements (UNIT= and
F1VIT~) •• • 4-5

EXTENSIONS TO THE ANSI STANDARD ••••••••••••••••••• 4-5
ADDIT IONA L FEATURES ••••••••••••••••••••••••••••••• 4-7
COMPATIBILITY: PDP-II FORTRAN AND FORTRAN-66 ••••• 4-7

DO Loop Minimum Iteration Count ••••••••••••••••• 4-7
E XT E RNA L S tat e men t • 4 - 7
OPEN Statement Keyword Defaults ••••••••••••••••• 4-7
OPEN Sta temen t Sta tus Keywo rd De fa ul t ••••••••••• 4-8
Blank Common Block PSECT (.$$$$.) •••••••••••• ~ •• 4-8
X Format Edit Descriptor •••••••••••••••••••••••• 4-8

A COMPARISON OF FORTRAN LANGUAGE FEATURES

TABLES

Title Page

Tr ig onometr ic Func tions •••••••••••••••••••••••••• 3-6
Allowed Combinations of Types of Base and
Ex I?<> nen ts ••••••••••••••.•.••••••••••••••••••.•••• 4-3
Prog ramming Considerations ••••••••••••••••••••••• 5-1
Subprogram Statements •••••••••••••••••••••••••••• 5-3
Constant and Variable Types •••••••••••••••••••••• 5-4
Da ta Type s•....................•.•..••....•• . 5-5
Spec ification Statements ••••••••••••••••••••••••• 5-6
Data Initialization Statement •••••••••••••••••••• 5-8
Relational Operators ••••••••••••••••••••••••••••• 5-8
Logical Operators •••••••••••••••••••••••••••••••• 5-9
Ass ig nmen t Sta temen ts 5-9
Control Statements •••••••••••••••••••••••••••••• 5-10
Sequential I/O Statements ••••••••••••••••••••••• 5-l2

vi

Table No.

5-12
5-13
5-14
5-15
5-16

TAB LE S (Co n t)

Title Page

F i 1 e Co n t r 0 1 S tat erne n t s • 5 -1 5
Direct Access I/O Statements •••••••••••••••••••• 5-15
Indexed I/O Statements •••••••••••••••••••••••••• 5-16
For mat and Typ e s 0 f Co n v e r s ion • • • • • • • • • • • • • • • • • • 5 -1 7
Library Functions ••••••••••••••••••••••••••••••• 5-19

vii

PREFACE

American National Standard programmin';J Language FORTRt\N,
ANSI X3.9-l978, specifies the form and establishes the
interpretation of programs expressed in the FORTRAN language.
Its purpose is to promote portability of FORTRAN programs for use
on a var iety 0 f data processing system s.

FORTRAN 77 is a reVISIon of American National Standard
FORTRAN, ANSI X3.9-l966. It describes two levels of the FORTRAN
1 ang uag e, re ferred to as FORTRAN and Sub se t FORTRAN. FORTRAN 77
includes the subset, American National Standard Basic FORTRAN,
ANSI X3.l0-l966.

This information document provides information about ANSI-77
standard FORTRAN and Dig ital' s FORTRAN features under TOPS-lO/20,
VAX, and PDP FORTRAN. The primary functions of this document are
to serve as a reference point to and summary of more detailed
information, and to serve as a quick review of new features and
changes, such as the comparison and contrast of different
versions or of different operating systems.

The target audience for this document is software
s pe cia lis t s wh 0 se res po n sib iIi tie sin c 1 ud e pr e sa 1 e, ins tall at ion,
and warranty support 0 f FORTRAN. These spec ial ists should have
the following prerequisite skills and training: programming
experience; a knowledge of FORTRAN; and user-level knowledge of
the TOPS-IO/20, VMS, and the several operating systems that run
on the PDP-li family of computers. This document is not a
tutorial in the application of FORTRAN.

ix

1.1 INTRODUCTION

CHAPTER 1
INTRODUCTION

The FORTRAN language was originally developed for solving
mathematically oriented problems. The engineering and scientific
communities, as well as the business community use it extensively
for analytical work. FORTRAN appl ications have evolved to
include more general appl ications involving character and file
manipulation. In March 1976 a new standard was drafted to ensure
portability of FORTRAN programs that include the advanced file
and character handling features. The final version of this
standard was approved on 3 Apr il 1978 and is referred to in this
document as the FORTRAN-77 or ANSI-77 standard.

The following paragraphs summarize the appropriate sections of
the FORTRAN-77 full language standard (ANSI X3.9-1978). (These
sections reflect the major areas of change involved in the new
v e r s ion s 0 f TO PS -1 0/2 a , VM S , and th e PD P fa mil y 0 f 0 pe rat in g
systems.) This is not meant to be a complete delineation of all
the changes that were added to the previous standard (ANSI
X3. 9-1966). Descriptions of these changes are found in the
Amer ic an Na tio nal Stand ard Prog r amm ing Lang uag e FOR TRAN, ANS I
X3.9-1978 publ ished bOy-the ~errc an--Na tional Standard s -'InstItute.
'rhe following paragraphs refer to specific sections of this book.

1.2 CHARACTER CONVENTIONS

1.2.1 Character Constants and Symbolic Constants
A character datum has one character storage unit in a storaSJe
sequence for each character in the datum. A storage sequence 1S

a sequence of storage units (either numeric or character). If a
datum requires more than one storage unit in a storage sequence,
these storage units are consecutive. (Section 2.13)

A character datum is a string of characters consisting of any
characters capable of being represented in the processor. (Blank
characters are valid and significant.) The character position of
each character in the string is numbered consecutively from left
to rig ht • (Sec tio n 4. 8)

A character constant is a string of printable ASCII characters
enclosed by apostrophes. Blanks between delimiting apostrophes
are significant, but the delimiting apostrophes are not counted

1-1

INTRODUCTION

as part of the datum. Within a character constant, the
apostrophe character is represented by two consecutive
apostrophes with no space or other character between them.

A character constant has the form:

'clc2c3 ••••• cn'

where cl,c2,c3, ••• ,cn are printable characters.

A character constant expression is a character expression in
which each operand is a character constant, the symbol ic name of
a char ac ter constan t, 0 r a c ha r ac ter constan t ex pr e ssio n enc losed
in parentheses. (Variables, array elements, substrings, and
function references are not allowed.) (Section 6.2.3)

A parameter statement allows constants to be defined symbolically
during compilation. Its form is:

PARA.I'V1E'fER (p=e (,p=e] .)
where p is a symbol ic name and e is a constant expression.

The constant acquires the same data type as the symbol ic name.
In particular, if P is a character constant expression, e must
correspondingly be a character constant expression. The scope of
a parameter is .the program unit in which it is declared. The
data type of a symbol ic name is specified by a type-statement or
IMPLICIT statement preceding the defining PARAMETER statement.
The default length for the symbolic name is one; other lengths
c an be spec i fi ed in type- sta temen ts 0 r IMPLIC 1'f sta temen ts
preceding the symbolic name. (Refer to section 8.6.)

rrhe following is an example of the parameter statement.

CHARACTER DE UfA, EPS ILON*3
PARAMETER (DELTA='DIFF',EPSILON='SUM' ,E=2.7)

1.2.2 Character Variables and Arrays
The form of a character type-statement is:

CHARACTER [*len (,]] nam [,naml

where nam is of the form:

v (* lenl
a [(d)] [*len]

[v is a var iable name, symbol ic name 0 f a constan t, func tion
name, or dummy procedure name; a is an array name; a(d) is an
array declarator; len is the number of characters 0 f a character

1-2

IN'rRODUC TION

variable, character array element, or character function.] (Refer
to se c t ion 8. 4. 2.)

'rhe length specification Gan be an unsigned integer constant, a
positive-valued integer constant expression in parentheses, or an
asterisk in parentheses.

In the sta tem en t :

CHARACTER*4 ALPHA,BETA*1,GAMMA(lO)*8

the following character declarations are made.

ALPHA has a length specification of 4
BE'rA ha sal eng th spec i fic ation 0 f 1
G AMM A has a 1 eng th s pe c i f i cat ion 0 f 8

1 • 2. 3 Ch a rae te r Re 1 at ion a I Ex pr e s s ion s
A character relational expression has the form a reI b where a
and b are character ·expressions and reI is a relational operator.
(Refer to section 0.3.4.) This expression is interpreted as
logically true if the values of the operands satisfy the relation
specified by the operator; it is interpreted as false if the
relation is not satisfied. (Section 6.3.5)

'rhe six relational operators are:

• LT.
• LE.
• EQ.
.NE.
.GE.
.GT.

Less than
Less than or equal to
Equal to
Not equal to
Greater than or equal to
Greater than

In character relational expressions, less than means "precedes in
the ASCII collating sequence." For example, the expression:

'ABCD' .LT. 'CDEF'

states that 'ABCD' is less than 'CDEF'. Because this
relationship does exist, the value of the expression is true. If
the relationship did not exist, the value of the relationship
wo uld be fal se •

If the two character expressions in a relational expression are
not the same length, the shorter of the two is padded on the

1-3

I N'rR ODUC TI ON

right with spaces until the lengths are equal. For example, in
the relational expressions:

'ABC' .EQ. 'l\BC'

'AB' .LT. 'C'

the first has a value of true, even though the lengths of the
expressions are not equal; and the second has a value of true
even though 'AB' is longer than 'C'.

1.2.4 Character Assignment Statements
A character assignment statement has the form:

v = e

where v is the name of a
element, or character
ex pr e s s ion.

character variable,
sub str ing ; and e

c ha r ac te r a r ray
is a character

Execution of this statement causes e to be evaluated and v to be
assigned the value of e. V and e may be of different lengths.
(Section 10.4) In the full language, only as much of the value of
e must be defined as is needed to define v. For example:

CHARACTER X*4,Y*5
X=Y

doe s not r e qu ire th a t th e sub s t ring Y (4 : 5) be d e fin e d •

1.2.5 Substr ing Reference and Definition
A character substring is a contiguous segment of
variable or character array element. A character
identified by a substring name and can be assigned
referenced. (Section 5.7)

a character
sub str ing is
val ue sand

A character substring reference has one of the following forms:

v([el]: [e2])

a(s[,s] •••) ([e1]:[e2])

where:

• v is a character variable name

• a is a character array name

1-4

INTRODUCTION

• sis a sub sc r i pt ex pr e s s ion

• el is an optional numeric expression that specifies the
leftmost character position of the substring

• e2 is an optional nurner ic expression that spec ifies the
rightmost character position of the substring.

Character positions within a character variable or array element
are numbered from left to right, starting with 1.

The values of al and e2 must satisfy the inequalities:

1 • LE. e 1 • LE. e 2 • LE. len

If el is omitted, its value is implied
om itt ed, its val ue i s i m pI i e d to be
character substr ing is e2 - el + 1.

to be
1 en.

1; if e2 is
The 1 eng th 0 f a

If el or e2 is not an integer, it is converted to an integer
val ue b y t r un cat i ng its f r act i 0 na 1 pa r t • (Sec t ion s 5. 7 • 1, 5. 7 • 2)
For example, in the statement:

CHARACTER TLC*8,XIN(3,4)*6
'rLC=' START'
XIN(2,3)='OUTPUT'

the substring name TLC(2:5) has a character value of II TART" and
the substring name XIN(2,3) (4:6) has a character value of "PUrr."

In the CHARACTER type statement, character variable TLC is
declared as having a string length of 8 and each element of
character array XIN has a string length of 6.

1. 2. 6 Char ac ter Ex pressions
Character expressions (including the concatenation operator)
consist of character operands and c ha r ~c te rope r a to r s • A
character operand can be:

1. A character constan t

2. A symbol ic name 0 f a c harac ter constan t

3. A character variable

4. A character a r ray e 1 em en t

5. A character sub str ing

1-5

INTRODUCTION

6. A char ac ter ex pression, optionall y enclosed in
parenthe se s

7. A character function reference.

The character operator is the concatenation operator (II). A
character expression of the form:

character operand [Ilcharacter operand] •••

for example x21lxl, is interpreted 'as xl concatenated with x2.
The resulting character string has the value of the value of xl
on the right concatenated with the value of x2 on the left. The
length of this resulting character string is the sum of the
lehgths of xl and x2.

Parentheses do not affect the value of a character expression.

Variables, array elements, substrings, and function references are
not allowed. (Sections 6.2, 6.2.1, 6.2.2.1, 6.2.2.2, 6.2.3, 6.6.5)

For example, the value of the character expression 'XYZ'II'ASCD'
i s the c ha r a c te r s t ring 'X Y Z AB CD' •

1.2.7 Character Variables and COnstants in DATA Statements
The fo rm 0 f the DA'rA sta temen tis:

DATA nl ist/cl ist/ [[,1 nl ist/cl ist/l •••

where nlist is a list of variable names, array names, array
element names, substring names, and implied-DO lists; and clist
is a constant 1 ist of the form a[,al ••• where each a is either a
constant, a parameter, or a repetition factor of the form n*
followed by a constant or parame.ter (denoting n successive
appearances of the constant or parameter separated by commas) •
Fo rex am pI e :

CHARACTER*4 TEXT
DA Tl\ TE XT / ' YY XX ' I

illustrates the use of a character constant in a DATA statement.
(Re fer to sec tion 9.4.)

1.2.8 Character Variables, Array Elements, Arrays, and Substrings
in Input Li sts
These are discussed in Section 12.8.2.1.

1-6

INTRODUCTION

1.2.9 Character Constants, Variables, Array Elements, Arrays,
Substrings, and Expressions in Output Lists
Input/output lists are used in READ, WRITE, or PRINT statements
to spec ify data to be transferred. (Section 12.8.2.2)

1.2.10 Character Functions
These include intrinsic functions, external
statement functions that return values of
(Sections 15.2, 15.2.2, 15.4)

func tions, and
type character.

1.2.11 Dummy and Actual Arguments of Type Character
These are discussed in section 15.9.3.1.

1.2.12. Intr insic Functions that Operate on Character Data
These functions are LEN, INDEX, CHAR, ICBAR, LGE, LGT, LLE, and
LLT. (Refer to section 15.10.) LEN gives the length of the
character entity. INDEX(al,a2) gives the location of substr ing
a2 in string ale CHAR(i) returns the character in the i-th
posi tion of the processer collating sequence. The val ue is 0 f
type character of length one. ICHAR gives the position of a
character in the processor collating sequence.

LGE(al,a2) returns the value true if al = a2 or if al follows a2
in the ASCII standard collating sequence and returns the value
false otherwise. LGT(al,a2) returns the value ·true if al follows
a2 in the standard collating sequence and otherwise returns the
value false. LLE (al,a2) returns the value true if al = a2 or if
al precedes a2 in the standard collating sequence, and otherwise
returns the value false. LLT(al,a2) returns the value true if al
precedes a2 in the standard collating sequence and otherwise
returns the value false.

1.2.13 Character Variable Names, Array Element Names, Array
Names, and Substr ing Names in EQUIVALENCE Statements
An EQUIVALENCE statement is used to specify the sharing of
s to rag e un its by two 0 r m 0 r e en tit i e sin a pr og r am un it.
(Sections 8.2, 8.2.1, 8.2.3) The form of the EQUIVALENCE
s ta tern en tis:

E QU I VA LE NC E (nl i s t) [, (nl i s t)] •••

where nlist is a list of variable names, array element names,
array names, and other character. substring names. Character
strings may be equivalenced only with other character strings.
The association is made between the first storage units occupied

1-7

INTRODUCTION

by entities appearing in the equivalence 1 ist. Any adjacent
characters may also have the same character storage unit and thus
may be associated. For example:

CHARACTER A*6, C(4)*4
E QU I VA LE NC E (A, C (2))

causes the following associations:

Storage unit: 1 2 3 4 5 6 7 8
Variable A: - - - - A - -
Array C: - - C(2) -f- C(3)

1.2.14 Character Variable and Arrays in COMMON Blocks
The fo rm of a C01VlMON sta temen tis:

COMMON [f[cb] f] nlist [,] f[cb] f nlistl •••

where cb is a common block name and nlist is a list
names, array names, and array decl arator s. If
variable or array is placed in a common block, that
contain only character data. (Section 8.3.1)

of var iable
a character
block must

1.2.15 Character Variables and Expressions as the Values of the
Specifiers in OPEN Statements
These are discussed in section 12.10.1.

1.2.16 Character Constants, Character Arrays, and Character
Variables as Format Specifiers
The form of a FORMAT statement is:

FORMAT fs

where fs is a format specification. One of the options for the
format identifier is a character array name, character variable,
character array element, or character expression. (Section
13.1.2)

1.3 CONTROL STATEMENTS

1.3.1 BLOCK IF, ELSE IF, and END IF Statements
FORTRAN-77 ha s add ed BLOC K IF, ELSE IF, ELSE, and END IF
statements. (Refer to sections 11.6, 11.7, 11.8, and 11.9.)

The IF-level of a statement s is nl - n2 where nl is the number
of block IF statements from the beg inning of the program unit up

1-8

--_ .. __ ._-------------------- _._-_ .. _ .. _-_._ .. _.- --_._-_ .. _ _. __ ._ _._--_. - -

INTRODUCTION

to and including s, and n2 is the number of END IF statements in
the program unit up to but not including s. This facility
enables the processor to determine which IF-THEN-ELSE statements
correspond to eac h 0 the r •

The form of a BLOCK IF statement is:

IF (e) THEN

'it/here e is a log ical expression. The processor executes a BLOCK
IF statement by first evaluating e. If the value of e is true,
and the IF block is empty, the program control is passed directly
to the next END IF statement. If the IF block is not empty, the
first statement of the IF block is executed. If the value of e
is false, control is transferred to the next ELSE IF, ELSE, or
END IF statement having the same IF level as the BLOCK IF
statement. (An IF BLOCK consists of all the executable
statements appearing between the BLOCK IF statement up to, but
no t inc 1 ud ing, the nex t ELSE IF, ELSE, 0 r END IF s ta temen t hav ing
the same IF level as the BLOCK IF statement) •

The fo rm of an ELSE IF sta temen tis:

ELSE IF (e) 'rHEN

where e is a logical expression. An ELSE IF block consists of
all the executable statements between the ELSE IF statement up
to, but no t inc 1 ud ing, the nex t ELSE IF, ELSE, 0 r END IF
statement having the same IF level as the ELSE IF statement.

The processor executes the ELSE IF statement by first evaluating
the expression e. If the value of e is true, and the ELSE IF
block is empty, control is transferred directly to the next END
IF statement with the same IF level. If the value of e is true,
and the ELSE IF block is not empty, the first statement of the
ELSE IF block is executed. If the value of e is false, control
is transferred to the next ELSE IF, ELSE, or END IF statement
having the same IF level as the ELSE IF statement.

The form of the ELSE statement is:

ELSE

The form of the END IF statement is:

END IF

The END IF statement performs no executable function, but serves
a s a po in t 0 f r e fe r e nc e •

1-9

INTRODuc'rION

1.3.2 DO Loop Seman tic 5

'rhe fo rm of a DO sta tem~n tis:

DO s [,1 i = el, e2 [,e31

where s is the statement label of an executable statement; i is
the n am e 0 fan in teg e r, rea 1 ,or d 0 ub 1 e- pr e cis ion v a ria b 1 e
(called the DO variable in FORTRAN-77); el, e2, e3 are each an
integer, real, or double-precision expression. El is the initial
value of the DO variable, e2 is the limiting value of the DO
variable, and e3 is the increment value for the DO variable.

Two new features of FORTRAN-77 DO loops are:

1. The possibility of zero trip loops (The FORTRAN-66
standard did not specify how many iterations a DO loop
had. Mo st processo r s, incl ud ing Dig i tal and IBM,
executed loops at least once.)

2. The availability of the loop index after loop exit
(previously this was not available). (Sections 11.10
t 11 r 0 ug h 11. 10 • 7)

1.4 INPUT/OUTPUT

1. 4. 1 Fa rm at Ed it De sc r i pta r s
A field descriptor describes the size and format of a data
or items. An edit descriptor specifies an editing function
performed on a data item or items. (Refer to sections
13.5, 13.5.3, 13.5.3.1, 13.5.6, 13.5.9.2.3)

item
to be
13. 2,

The BN edit descriptor causes the processor to ignore all the
embedded and trail ing blanks it encounters within a numeric input
field. It ha s the fo rm:

BN

Th e e f f e c tis t ha t 0 f act ua 11 y
ri'3ht-justifying the remainder of
blanks is treated as zero.

removing the
the fi eld •

blanks and
A field of all

The BZ edit descriptor causes the processor to treat all the
embedded and trailing blanks it encounters within a numeric input
field as zeros. It has the form:

BZ

1-10

INTR ODUC TION

The SP edit descriptor causes the processor to produce a plus
character in any position where this character would otherwise be
optional. It has the form:

SP

'rhe S8 edit descriptor causes the pro\;essor to suppress a leading
plus character from any position where this character would
normally be produced as an optional character; it has the
opposite effect of the SP field descriptor described below. The
SS d esc r i pto r. ha s the fo rm :

SS

The S edit descriptor reinvokes optional plus characters (+) in
n umer ic 0 ut put fi eld s. It ha s the fo rm :

S

The S descriptor counters the action of either the SP or SS
descriptor by restoring to the processor the decision-making
ability to produce plus characters on an optional basis.

The T ed it descr iptor spec ifies the
start of an external record, of
processed. It has the form:

Tn

position,
the nex t

reI ative r.to the
character to be

where the term n indicates the position in the external record of
the next character to be processed. The val ue of n must be
greater than or equal to 1, but not greater than the number of
characters allowed in the record.

The TL edit descriptor is a relative tabulation specifier for
tabb ing to the 1 eft. It ha s the fo rm :

TLn

The term n specifies that the next character to be transferred
from or to a record is the nth character to the left of the
current character. The value of n must be greater than or equal
to 1. If the value of n is greater than or equal to the current
character position, the first character in the record is
~pec i fied •

The TR edit descriptor is a relative tabulation specifier for
tabb ing to the r ig ht • It ha s the fo rm :

TRn

1-11

IN'rRODUC'rION

'fhe term n indicates that the next character to be transferred
from or to a record is the nth character to the right of the
current character. The value of n must be greater than or equal
to 1.

The I field descriptor specifies decimal integer values. It has
the fo rrn :

Iw [• en]

The corresponding I/O list element must be of integer data type.

On input, the I field descriptor specifies that w characters are
to be read from an external file, interpreted as a decimal
integer val ue, and assigned to the correspond ing I/O 1 ist
element.

On output, the I field descriptor specifies that the value of the
correspondin'j I/O list element is to be transferred as a decimal
value, right-justified, to an external field w characters long.
If m is present, the external field consists of at least m
di'gits; if necessary, zeros are added on the left to bring the
total digits to ffi. If the value exceeds the field width, the
en t ire fie 1 dis f i 11 ed wi t has t e r i s ks • 1ft h e val ue 0 f the 1 i s t
element is negative, the field will have a minus sign as its
leftmost, nonblank chatacter, provided the term w is large
enough. Plus signs are optionally suppressed (at the discretion
of the processor) unless SP is specified.

rfh e G fie 1 d d esc r i pt 0 r s pe c i fie s rea lor d 0 ub 1 e pr e c 1 s 1 0 n val ue s ,
combin ing E- or F-type formats accord ing to the si ze 0 f the
number being output. It has the form:

Gw.d [Ee]

The correspond ing I/O 1 ist el emen t must be 0 f real or
double-precision data type, or it must be either the real or the
imag inary part 0 f a complex data type.

On input, the G field descr iptor does not differ from the F, E,
or D de sc r i pto r s .

On output, the G field descr iptor spec ifies that the val ue 0 f the
corresponding I/O list element is to be transferred as a real or
double-precision value in either exponential or fixed-point form
depending on its magnitude, rounded to d decimal positions, and
right-justified, to an external field w characters long.

1.4. 2 Ex pressions on OUtput Li sts
An input/output list specifies the
transferred by a data transfer

1-12

entities whose values
input/output statement.

-------------~ ~-~~-- -- ------- - ---- ---------- ------ ----~----

are
An

INTRODUCTION

input/output 1 ist is a simple 1 ist, an impl ied-DO 1 ist, or two
input/output lists separated by a comma. A simple input/output
1 ist i tern is one 0 f the following.

1. A variable
2. An array
3. A character substr ing
4 • An e 1 em en t 0 fan a r ray

In addition, in the full language, a simple output list may be an
expression, with the exception of a character expression
containing a dummy argument with a length attr ibute specified
with an asterisk. (Sections 12.8.2, 12.8.2.1, 12.8.2.2,
12.8.2.3)

Note that a constant, an expression involving operators or
function references, or an expression enclosed in parentheses may
appear as an output list item but not as an input list item.

An implied-DO list is of the form:

(dlist, i = el, e2 [,e3])

where i, el, e2, and e3 are as specified for the DO statement and
dl ist is an input/output 1 ist.

1.4.3 Internal Files
Internal files provide a means of transferring and converting
data from internal storage to internal storage. An internal file
is a character variable, character array element, character
array, or character substring. Reading and writing records is
accomplished by sequential access formatted input/output
statements.

1.4.4 Unit Specifier and Identifier
Th e fo rm 0 f the un its pe c i fie r is:

[UNIT=] u

vlhere u is an external unit identifier or an internal unit
identifier. An external unit identifier is an integer expression
with a zero or positive value or is an asterisk, identifying a
particular processor-determined external unit that is
preconnected for formatted sequential access. (Section 12.3.3)

1-13

INTRODUCTION

1.4.5 Format Specifier and Identifier
Th e fo rm 0 f a fo rm at s pe c i fie r is:

[FMT=] f

where f is a statement label of a FORMAT statement, an integer
variable that has been ASSIGNED the statement label of a FORMAT
statement, a character array name, any character expression other
than one involving concatenation of an operand whose length was
specified by an asterisk and that is not the symbolic name of a
constant, or an asterisk specifying list-directed formatting. If
FMT= is omitted, the format spec ifier must be the second item in
the control information list and the first item shall be the unit
specifier without UNIT=. (Section 12.4)

1.5 ASSUMED SIZE ARRAY DECIARATORS
In an array declarator for a dummy array, the upper bound of the
last dimension may be spec ified by an * (Sections 5.1.2,
5.1.2.2, 5.5)

The form of an array declarator is:

a (d [,d] •••)

where a is the symbol ic name 0 f the array and d is a dimension
decl arator •

A dummy array declarator is an array declarator in which the
array name is a dummy arg ument.

1.6 USE OF A FORMAT STATEMENT IABEL IN AN ASSIGN STATEMENT
'rhe form of a statement label assignment statement is:

ASSIGN s TO i

where s is a statement label of an executable statement or FORMAT
statement and i is an integer variable name. (Sections 10.3,
12.4)

An integer variable assigned a statement number may be used only
as a statement identifier in an assigned Go'ro statement or as a
format identifier in an input/output statement.

1.7 INTRINSIC AND EXTERNAL STATEMENTS
The INTRINSIC statement is used to identify a symbolic name as
representing an intrinsic function. (Refer to sections 8.7 and

1-14

I N'rR ODUC TION

8.8.) I t perm its the name to be used as an ac tual arg wnen t. The
form of the INTRINSIC statement is:

INTRINSIC fun[,fun] •••

where fun is the symbolic name of an intrinsic function. For
example:

IN'rR INS IC SIN
CALL AIDS(A,B,C,SIN)

The form of the ExrrERNAL statement is:

EXTERNAL proc[,proc] •••

where proc is the symbol ic name 0 f an ex ternal proced ure, a dummy
procedure name, or a block data program unit.

The ExrrERNAL statement is used to identify a symbol ic name as
representin'~ an external procedure or dummy procedure, and to
perm it suc h a name to be used as an ac tual arg umen t.

1.8 SAVE STATEMENT
A SAVE statement is used to retain the definition of a variable,
an array, or a named common block after the execution of a RETURN
or END statement. (Refer to Section 8.9.) The form of a SAVE
statement is:

SA VE [a, [,a] •••]

where each a is a named common block name preceded and followed
by a slash, a variable name, or an array name.

1.9 NULL ARGUMENT LISTS FOR FUNCTIONS
The form:

fun ()

may be used to reference a function with a null argument list.
(Section 15.2.1)

Statement functions with null argument lists may be declared. A
null, parenthesized argument list appears in the declaration.
(Section 15.4.1)

1-15

I NTRODUC TION

The form of a statement function statement is:

f un ([d , [,d • • •]) = e

where fun is the symbol ic name 0 f the statement function, d is a
statement function dummy argument, and e is an expression.
Parentheses may optionally be used for null argument 1 ists' in
FUNCTION statements.

1.10 CONSTANT EXPRESSIONS
Constant expressions (not just constants) may be used in array
declarators, PARAME'rER statements, and impl ied DO-lists in DATA
statements. (Sections 6.1.3, 6.1.3.1, 6.2.3, 6.4.4, 6.7,
5.1.1.1, 8.6, 9.3)

1-16

2.1 INTRODUCTION

CHAPTER 2
TOPS-10/20 FORTRAN

The FORTRAN language as implemented on the TOPS-IO and TOPS-20
operating systems is compatible with and encompasses the standard
described in American National Standard FORTRAN, X3.9-1978 at the
subset level. TOPS-IO/20 FOR"'rRAN--alSOsupportsmostOfeatures
from the FORTRAN-77 full language standard.

FORTRAN provides many extensions and additions to the FORTRAN-77
standard that greatly enhance the usefulness of FORTRAN and
increase its compatibility with FORrrRAN languages implemented by
other computer manufacturers.

The TOPS-IO/20 FORTR?\N Language Manual (AA-N383A-TK) reflects the
software as of Version-7ofthe FORTRAN-IO/20 object time system
(FORO'rS), and Version 7 of the FORTRAN-I 0/20 debugging program
(FORDDT). This manual describes the FOR'rRAN language as
implemented for the TOPS-IO operating system (FORTRAN-IO)' and the
TOPS-20 operating system (FORTRAN-20) and notes any differences.
It supersedes AA-J127A-TK.

2.2 MAJOR FEATURES OF VERSION 7 THAT WERE NOT IN VERSION 6

2.2.1 Features Supported for Character Data
Version 7 supports character data as specified by the full
language FORTRAN-77 standard. Supported features include
character assignments, character relationals, substrings,
concatenation, and char ac ter func tions and arg umen ts, incl ud ing
functions and dummy arguments of length * Character data is
supported in DATA, COMMON, and EQUIVALENCE statements; and in
formatted, binary, and image mode I/O.

2.2.1.1 Character Assignment Statements - Character constants may
be assigned to noncharacter variables. The standard restricts
the assignment of character constants to character variables.

Version 7 extends the standard to support assignment statements
in which there is overlap between the left- and right-hand sides.
The results of such an assignment will be as if the expression on
the right-hand side were assigned to a temporary and then the
value of the temporary were assigned to the left-hand side.

2-1

TOPS-IO/20 FORTRAN

2.2.1.2 Character Expressions - Version 7 extends the standard to
allow concatenation of formal parameters that are length *

2.2.1.3 Character Variables and Constants in DATA Statements
For compatibility with previous versions, Version 7 supports the
use of character constants to initialize noncharacter variables.

2.2.1.4 Character Variables, Array Elements, Arrays, and
Substrings in Input Lists - In addition to the A edit descriptor
for input/output I ist items of type character, Version 7 supports
the G edit descriptor. The G edit descriptor functions as the A
edit desc:riptor for list items of type character. R edit
descriptors are not supported for character data.

2.2.1.5 Dummy and Actual Arguments of Type Character - Version 7
extends the standard to provide support of character constants as
ac tual arg uments correspond ing to dummy arg uments tha tare
integer, real, double-precision, complex, or logical, as well as
character. This feature does not work when the name of the
fun c t ion call ed i sit s elf a d umm y a r g um en t •

I fan act ua I a r 9 urn en tis 0 f type c ha r a c te rand i s not a con s tan t ,
the corresponding dummy must be of type character. If a dummy
argument is of type character, the corresponding actual must be
of type character.

Actual arguments may be longer than correspond ing dummy
arguments. Length * may be used for character dummy arguments.

2.2.1.6 EQUIVALENCE Statements - It is illegal to equivalence a
numeric variable to a character variable. Equivalencing a
numeric variable to an unaligned character variable is fatal;
equivalencing a numeric variable to a word-aligned character
variable is nonfatal.

2.2.1.7 Character Variables and Arrays in COMMON Blocks - When a
character variable or character array is in a COMMON block, all
the entities in that COMMON block must be of type character. If
both character and numer ic data are spec ified in the same COMMON
block, a nonfatal warning message is issued • Variables other
than character var iables beg in on word boundar ies; thus a C01~MON
block containing both character and numeric data would contain
unused character positions.

2.2.1.8 Name1ists - Version 7 supports substrings in namelist
input, but not in namelist output.

2-2

-------.-.-- - - --~-------------.--.---~------

TOPS-lO/20 FORTRAN

Version 7 does not support global optimization of programs that
contain character data. If the /OP'rIMIZE switch is specified for
suc h a prog ram, the warn ing d iag no st ic :

Global optimization not yet supported with
character data - 10FT ignored

is issued.

2.2.2 IF THEN ELSE Statements
Version 7 supports the block IF, ELSE IF, ELSE, and END IF
statements.

2. 2. 3 Ex pressions on Output Li sts
An output list item can be a variable name, an array element
name, a character substr ing name, an array name, or any other
expression. FORTRAN-20 extends the standard to support output
list expressions that include concatenation of operands of length
asterisk.

2.2.4 Intrinsic and Generic runction. at the rORTRAN-77 rull
Language Level
Version 7 supports all intrinsic and generic functions described
in section 15.10 of the FORTRAN-77 standard. The following
intrinsic functions are new in Version 7.

1. DINT - Truncation for double-precision

2. ANINrr, DNINT - Nearest whole number

3. NINT, IDNINT - Nearest integer

4. DDIM - positive difference for double-prec ision

5. DPROD - Double-precision product of real arguments

6. ICHAR, CHAR, LEN, INDEX, LGE, LGT, LLE, LLT - Character
functions as described in the introduction

The following generic function names have been added: ACOS,
AINT, ANINT, ASIN, COSH, CMPLX, DBLE, DIM, LOG, LOGI0, MAX, MIN,
NINT, REAL, SINH, TAN, and TANH. The second arg umen t to CMPLX is
now optional. The generic function name INT has been extended to
support arguments that are COMPLEX and IN'rEGER (as well as REAL
and DOUBLE-PRECISION).

2.2.5 Internal Files (Single-Record and Multirecord)
Version 7 conforms to the F.ORTRAN-77 standard.

2-3

TOPS-lO/20 FORTRAN

2.2.6 FORTRAN-77 DO Loop Seman tic s
As an extension to the standard, Version 7 supports
range DO loops" (transfer into the range of a
permitted if a previous transfer out has occurred.)

2.2.7 Assumed-Size Array Dec1arators
Version 7 conforms to the FORTRAN-77 standard.

"ex tend ed
DO-loop is

2.2.8 Use of FORMAT Statement Numbers in ASSIGN Statements
Version 7 conforms to the FORTRAN-77 standard.

2.2.9 INTRINSIC Statement; EXTERNAL Statement
In Version 7, if the name 0 f an intr insic function appears in an
EXTERNAL statement, that name is subsequently treated as the name
of a user-defined function. (This is in accordance with the
FORTRAN-77 standard, but incompatible with previous versions of
FORTRAN 20. In Version 6, an asterisk appearing in front of an
intrinsic name in an EXTERNAL statement is required to force that
name to become the name of some external procedure.)

2.2.10 SAVE Statement
In Version 7, if a FORTRAN overlay contains any local variables
that are SAVEd, all writable storage in that overlay is
preserved. If a named COI'1MON block is SAVEd, that common block
is preserved. Blank COMMON is always preserved.

2.2.11 Null Argument Lists for Functions
Version 7 conforms to the FORTRAN-77 standard.

2.2.12 Minor syntax Extensions Required by the
Standard

FORTRAN-77

The comma is optional in the following: DATA statements, COMMON
statements, assigned GOTO, and after the statement number in DO
sta tements.

Parentheses may optionally be used for null argument I ists in
SUBROUTINE and CALL statements.

Statement numbers are legal on nonexecutable statements.

Exponentiation to an integer power is allowed in the subscript
expressions in DATA statements.

2-4

TOPS-IO/20 FORTRAN

2.2.13 Compile Time Constant Expressions in Declarations, as
Array Bounds, and String Bounds
Version 7 conforms to the FORTRAN-77 standard.

2.2.14 FORTRAN-77 PARAMETER Statements
Version 7 supports PARAIV1ETER statements in accordance
FORTRAN-77 stand ard • Compi I e time ex pressions
mul ti pI ication, d iv ision, or ex ponentiation 0 f COMPLEX
not supported.

with the
involv ing
data are

In Version 6 the data type of a PARA.METER was determined by the
type of the constant; in Version 7 the data type is determined
by its symbolic name.

In Version 6 the list of parameters is never enclosed in
parentheses; in Version 7 the list of parameters must be
enclosed in parentheses. If the I ist of parameters is not
enclosed in parentheses, the compiler assumes that it is not a
FORTRAN-77 PARAMETER statement and a warning message is issued.
(This warning message can be suppressed by compiling with the
/NOF77 (/F66) switch.)

In Version 7 (as in FORTRAN-77), PARAMETER statements may precede
type declaration statements except for those statements that
specify the type of parameter.

In Version 6 the parameter may only be set to simple constants;
in Version 7 the parameter may be set to a constant expression.

2.2.15 DO WHILE and END DO Statements
The DO WHILE/ END DO support involves the following enhancements
to the FORTRAN-77 standard.

2.2.15.1 Optional Statement Label in the Indexed (Standard) DO
Statement - The syntax of the indexed DO statement is:

DO [s [,]] v= e I , e 2 [,e 3]

where s is the label of the statement that terminates the I00p.
If s is omitted, the loop must be terminated by an END DO
statement as discussed below.

2-5

TOPS-IO/20 FORTRAN

2.2.15.2 DO WHILE Statement - The DO WHILE statement has the
following syntax:

DO [s [,]] WHI LE (e)

where s is the label of the statement that terminates the loop.
If s is omitted, the loop must be terminated by an END DO
statement.

E is a log ical expression that is tested at the beg inning of each
execution of the loop, including the first. If the value of the
expression is true, the statements in the body 0 f the loop are
executed; if the value of the expression is false, control
transfers to the statement following the loop.

2.2.15.3 END DO Statement - The END DO statement has the syntax:

END DO

An END DO statement terminates the range of a DO or DO WHILE
statement. The END DO statement must be used to terminate a DO
block if the DO or DO WHILE statement does not contain a
statement label. It may also be used as a labeled terminal
statement if the DO or DO WHILE statement does contain a terminal
sta temen t I abel.

2.2.16 LINKtime Type-Checking of Subprogram Arguments
FOR'rRAN Version 7 and LINK Version 5.1 provide limited
type-checking for character constants that are passed as actual
arguments that correspond to numer ic dummy arg uments. V'8rsion 7
has modified the argument passing mechanism; the argument
passing mechanism for quoted strings now involves passing the
address of a descriptor for the string rather than the word
address of the string (as is done in Version 6). These two
methods of passing arguments may b~ referred to as "passing by
descriptor" and "passing by address." If an actual argument is
passed by descriptor and the corresponding formal is passed by
address, LINK will transform the actual argument into a
passed-by-address argument if the following conditions are
sa tisfied :

1. rrhe arg umen tis a constant.

2. The str ing is in the same section as the argument block.

3. The byte po inter word in the descr iptor in the user's
image is word-aligned. (The object code generated by
FORTRAN Version 7 now includes descriptors for character
variables, primaries, and subprogram arguments) •

2-6

TOPS-IO/20 FORTRAN

No type-checking will be performed on calls involving old REL
files since either the caller or the callee or both will not have
LINK argument descriptor blocks.

Version 7 also supports a new option to the DEBUG switch of the
form /DEBUG:PARAMETERS. With this option specified, FORTRAN will
generate REL file blocks that specify that illegal argument type
mismatches should result in nonfatal error messages at load time.

2.2.17 G-Floating Double-Precision Numbers
FORTRAN-20 Version 7 provides support for the G-floating
double-precision number format. The exponent range for this
number format is 2.8D-309 to 8.9D+307.

G-floating is an alternative internal format for
double-precision, supported only on KL model B processors. The
user specifies G-floating format by specifying the /GFLOATING
command line switch to the FORTRAN compiler. /NOGFLOATING (the
defaul t) spec ifies the old double-prec ision format.

REL files that use the two different double-prec ision formats ?re
not compatible. If a user attempts to LINK together programs
compiled with different values of the /GFLOATING switch, a
warning will be issued at LINK time.

2.2.18 Native TOPS-20 Command Inter face for the Compiler
The FORTRAN-20 Version 7 compiler's command line interface now
provides support of long file names, .,?", and command
recognition. COMPILE now works for any legal TOPS-20 file name.
However, a user cannot do an EXECUTE or DEBUG of a long file
name. (LINK does not yet support long REL file names). The
syntax for the EXEC commands, EXECUTE, DEBUG, and COMPILE, is not
affected by the new command scanner.

2.2.19 New Functionality in the ERRSET Subroutine
Version 7 provides ERRSET trapping for additional classes of
errors. Also, the user can now write his own fix-up routines for
~rithmetic exceptions. The calling sequence for ERRSET is:

or

CALL ERRSET (N)
CALL ERRSET (N,I)

CALL ERRSET (N, I, SUBR)

where N equals the maximum number of error messages to type and I
equals the error to which this call applies. If I equals -1 it

2-7

TOPS-10/20 FORTRAN

will trap to any of the following errors. If I is not specified,
-1 is assumed.

o Integer overflow
1 Integer divide check
4 Floating overflow
5 Floating divide check
6 Fl oa ting und er flow
8 Library routine error
9 Output field wid th too small
10 Input floating over flow
11 Input floating underflow
12 Input integer overflow
21 FORLIS warning s
22 Nonstandard usag e warn ing s

SUBR is the subroutine to calIon the trap. If SUBR is not
specified, no routine is called on the arithmetic exception. If
SUB R iss pe c i fie d th e e f f e c tis a s if:

CALL SUBR (I, IPC, N2, ITYPE, UNFIXED, FIXED)

were placed in the program just after the instruction causing the
trap.

I is the error number of the trap. IPC is the program counter of
the trap instruction, or if the error number equals 9, IPC equals
the prog ram co un ter 0 f the FOROTS call. N2 equal s the second
error number (reserved for Digital). ITYPE is the data type of
value. UNFIXED is the val ue returned by the processor, and FIXED
is the value after the fix-up (can be changed by SUBR).

2.2.20 Utility Subroutine to Get a Free Unit Number
Version 7 provides an additional FORTRAN-supplied subroutine that
can be used to get an unused unit number. The routine FFUNIT
(first free unit) is called by:

CALL FFUNIT(IUNIT)

where IUNIT is an integer variable that is set to the first
available unit number by FFUNrr.

2.3 rORTRAN-77 FEATURES THAT ARE NOT SUPPORTED

1. The INQUIRE statement (used to determine the current
status of a file attribute) •

2. Comment lines and blank lines may not appear between an
initial line and its first continuation line, nor may
the y a ppe arb e t we en two con tin ua t ion 1 in e s •

2-8

TOPS-IO/20 FORTRAN

3. The compile time expression in a PARAMETER statement
cannot contain mul ti pI ication, d iv ision, or
exponentiation of COMPLEX data.

2.4 SUMMARY OF EXTENSIONS TO THE FORTRAN-77 STANDARD

I. Programmer convenience

A. FORDD'r: Interactive debugger with FOR TRAN-I i ke
command s

B. Optional array bound s c hac king and string bounds
c hec king

C. LINKtime c hec king for subprog ram arguments

D. Sel ec tive suppression of compil e time and run time
warning s

E. User sel ec tion of d efa ul t swi tch
SWITCH. INI

F • Run tim e t r ac e b ac k 0 n err 0 r s ;
PAUSE

G. INC LUDE s ta tt'~m en ts

val ues by means of

opt ional tr ac ebac k on

H. On TOPS-20: ? and recognition in compiler commands and
DIALOG mode

II. Structured programming

A. DO WHILE statement

B. END DO statement

III. Syntax

A. End-of-l ine commen ts

B. Multiple statements per line

2-9

TOPS-IO/20 FORTRAN

IV. Very accurate single- and double-precision arithmetic

A. 36-bit integer (10.5 decimal digits)

B. 36-bit floating-point (8 decimal digits)

C. 72-bit floating-point (18 decimal digits)

D. 8-bit floating-point exponent: 10**(-38) to 10**(+38)

E. On 2060 systems, /GFL switch also provides for an II-bit
e x po n en t ; 1 0 * * (- 3 0 8) to 1 0 * * (+ 3 0 8)

V. I/O

A. NAMELIST I/O

B. Logical device names provide run time device assignments

C. DIALOG mode provides run time selection
spec i fier s

D. IMAGE mode fil es

E. APPEND access to sequential files

of OPEN

F. DELETE, EXPUNGE, SAVE, PRINT, PUNCH dispositions in
CLOSE

G. Additional I/O statements

1. REREAD read s prev io us record

2. TYPE outputs to the user's terminal

3. ACCEPT inputs from the user's terminal

4. ENCODE/DECODE formatted reading/writing to an array
rather than a file

2-10

TOPS-IO/20 FORTRAN

H. DBMS-IO/20 support

I. SORT-IO/20 support

J. DIL-IO/20/VAX support

D I L (data in te r c ha ng eli bra r y) is a se t 0 f call ab I e sub r 0 uti n e s
that enables a COBOL or FORTRAN prog rammer to access and use data
that resides on another computer system. The DIL allows you to
pass data between programs on different systems or directly
,access records in files on other systems. You can use the DIL to
access a single record within a file and avoid having to transfer
the entire file to your system. If the accessed data is of the
wrong format or data type, OIL prov ides the necessary data
conversion facilities.

To use the OIL in a multiple computer environment, the computers
must be interconnected by OECnet to form a network.

Refer to the Data Interch~~ge Library
(AA-M58IA-'rK)-. -

2-11

User IS Ver sion I

3.1 INTRODUCTION

CHAPTER 3
VAX-II FORTRAN

VAX-II FOR'rRAN is an implementation of the full language ANSI
FORTRAN-77 standard. It is a compatible superset of PDP-II
FOR rrRAN-77. (You can compile ex isting PDP-II FORTRAN-77 source
programs, as well as new programs that incorporate features
available in VAX-II FORTRAN.) VAX-11 FORTRAN Version 3 is also
upwardly compatible from the previous versions of VAX-II FORTRAN
and VAX/VMS systems. This means that object files produced by
VAX-II FORTRAN Version 2 can be correctly 1 inked and run on
VAX/VMS Version 3. Executable images linked on previous versions
of VAX/VMS systems can be run without reI inking on VAX/VMS
Version 3 systems. It is al so po ssible to freel y mix obj ec t
files from prev io us ver sions 0 f VAX-II FORTRAN wi th Ver sion 3
obj ect files on Version 3 VAX/VMS systems. However, there is no
backward compatibility; that is, it is not possible to link or
execute files from VAX-II FORTRAN Version 3 on previous versions
of VAX/VMS systems.

This chapter descr ibes the new features supported in Version 3
and also outlines the major features that are extensions to the
standard. This information, as well as more detailed
information, is fo und in the following documents.

1. VAX-II FORTRAN Lang_~~g e Re fe renc e Manual, (Apr il 1982),
AA-D034C-TE

2. VAX-II FORTRAN User's Guide, (April 1982), AA-D035C-TE

3. VAX-II FORTRAN Installation Guide/Release
1982) AA-H953B-n-·---··_- ----.-----.--

Notes (Apr il

The following documents are of interest to VAX-II FORTRAN
prog rammer s.

1. VAX/VMS primer, AA-D030C-TE -----
2. VAX/VI'1S Command Language USer's Guide, AA-D023C-TE

3. VAX-II Symb~ic Deb ugg er Re fe renc e Man ual, AA-D 02 6D-TE

'rhe VAX-II FORTRAN Lang uage Re ~e~~nc~ Manua!. descr ibes the
FORTRAN language elements supported by VAX-II FORTRAN. It is

3-1

VAX-II FORTRAN

intended to be used as a reference manual in preparing FORTRAN
sour c e pr og ram s •

The VAX-II FORTRAN User's Guide describes how to compile, link,
debug, and--eX"ecute programs wr itten in the VAX-II FORTRAN
language, using the facilities of the VAX/VMS operating system.
It contains other information of interest to FORTRAN programmers,
such as FORTRAN input/output, error processing, programming
efficiency, compatibility between VAX-II FORTRAN and VAX-II
FORTRAN 66, and compatibil ity between VAX-II FORTRAN and PDP-II
FORTRAN.

The VAX-II FORTRAN Installation Guide/Release Notes contains
detailed instructions for installing the"VAX"=-fl FORTRAN compiler
on the VAX/VMS operating system. It also contains information
about the differences between VAX-II FORTRAN Version 3 and
previous versions of VAX-II FORTRAN, including a short
description of new features and a complete description of the
/SHOW qual ifier.

3.2 NEW FEATURES SUPPORTED BY VERSION 3

3.2.1 Bit Functions
The following additional bit-manipulation intrinsic functions
have been added.

1. IBSET sets a bit.
2. BTEST tests a bit.
3 • IB C LR c I ear s a bit.
4. IB IT Sex tr ac ts a bit fie I d •
5 • IS HF TC pe r fo r m sac i r c ul a r sh i ft.
6 • M VB I'r S m ov e s a bit fie 1 d •

IBSET, BTEST, IBCLR, IBITS, and the subroutine MVBI'rS operate on
bit fields. A bit field is a contiguous group of bits within a
binary pattern, specified by a starting bit position and a
length. IBSET, IBCLR, and BTEST operate on I-bit fields and do
not require a length argument. IBITS and MVBI'rS operate on
general bit fields. Both the starting position of a bit field
and its length are arguments to these intrinsics.

The MVBITS subroutine transfers a bit field from one storage
location (source) to a field in a second storage location
(destination). The call to MVBITS has the form:

CALL MVB I'rS (m ,i ,1 en,n ,j)

where m is an integer variable or array element that represents
the source location (that is, the location from which a bit field
is transferred); i is an integer expression that identifies the
first bit position in the field transferred from m; len is an

3-2

VAX-II FORTRAN

integer expression that identifies the length of the field
transferred from m; n is an integer variable or array element
that represents the destination location (that is, the location
to which a bit field is transferred); and j is an integer
expression that identifies the bit in which the transferr~d bit
fie 1 d beg ins.

The MVBITS subroutine transfers len bits from positions i through
i + len - I of the source location (m) to positions j through j +
1 en - 1 0 f the des tin at ion 1 0 cat ion (n) • at her bit s 0 f the
destination location and all the bits of the source location
remain unchanged. The val ues 0 f i + len and j + len must be less
t han 3 2 • IS HF TC s h i f t s a bin a r y pat t ern; a po sit i v e sh i ftc 0 un t
indicates a left circular shift, while a negative shift count
indicates a right circular shift.

3. 2. 2 Debugg er Command s for So urce Cod e Debugg ing
A new interface allowing FORTRAN users to access
source code display fac il ity has been prov ided.
debugger commands can now be used:

1. SET STEP SOURCE
2. TYPE rang e
3 • EXAM INE/ SEARC H
4. SEARC H [rang e] II str ing"
5. SET SOURC E

the debugger
The following

Refer to the VAX-II Symbolic Debugge£ Refe~~nce Manual.

3.2.3 DEFAULTFILE Keyword in the OPEN Statement
The DEFAULTFILE keyword has been added to the OPEN statement.
DEFAULTFILE allows you to specify a default file name that
overrides the general FORTRAN defaults.

3.2.4 IMPLICIT NONE Statement
The I1VIPLICIT statement now has a second format.

IMPLIC IT NONE

The IMPLICIT NONE statement inval idates all impl ic it defaul ts and
causes error messages to be generated for names that are not
explicitly typed in a type declaration statement. You must then
explicitly declare the data types of all symbolic names in the
program unit. If you specify IMPLIcrr NONE, no other IMPLICIT
statement can be included in the program unit.

3-3

VAX-II FORTRAN

3.2.5 FORTRAN Data Manipulation Language Preprocessor
An interface to an integrated FOR'rRAN data manipulation language
preprocessor has been provided under Version 3. The FORTRAN
qualifier /DML controls the use of the interface. The
preprocessor produces an intermediate file of FORTRAN 'source code.
with FORTRAN DML commands expanded into FORTRAN statements. The
compiler then compiles the intermed iate files and produces an
optional object and listing file. The listing file includes the
DML statements and, optionally, their expansions into FORTRAN
source. DML error messages appear in the correct place in the
listing. The preprocessing and compilation are controlled by a
single qual ifier on the FORTRAN command so that the user does not
need to know that a preprocessor is present.

3.2.6 Faster I/O Interface
A faster I/O interface is now provided by the following changes.

1. 1m pI ied DO loops in I/O I ists have been optimized.

2. Sinqle-element, unformatted I/O lists now use a special
in te r fac e.

3. A larger default record size is allowed for unformatted
I/O transfers.

3.2.7 Zero-Extending Intrinsic Functions
The two new in tr insic func tions IZ EXT and JZ EXT allow fo r
zero-extending arguments. FORTRAN normally converts a smaller
fixed-point data type to a larger fixed-point data type by
sign-extending the smaller value. This means that the high-order
bits of the larger data type are set to the same value as the
sign bit of the smaller data type. The functions IZEXT and JZEXT
zero-extend a value to either INTEGER*2 or INTEGER*4
respectively. This means that the high-order bits of the larger
data type are set to zero rather than to the sign bit of the
smaller data type. The generic function ZEx'r selects IZEXT or
JZEXT according to the setting of the /14 command qualifier.

3.2.8 Library-Based INCLUDE Statement
The INC LUDE sta tement ha s a second format. The new format allows
you to include modules from VAX/VMS text libraries.

INCLUDE 'file-specification (module-name) [/(NO]LIST]'

The INCLUDE statement specifies that the contents of a designated
file are to be incorporated into a compilation directly following
the sta tern en t •

3-4

------ ------------------ --------~------------------

VAX-Ii FORTRAN

3. 2.9 Improved Ma th Ro ut ine s
The accuracy of the following math routines has been improved
significantly.

1. SIN
2. COS
3. LOG
4. ATAN
5. ASIN
6. ACOS

3.2.10 Name1ist-Directed I/O Statements
The following statements provide namelist-directed I/O.

1. 'rhe NAM E;LIS T s ta tem en t

2. The READ, WRI'rE, ACCEPT, TYPE,
with a namelist specifier in
lists

3.2.11 Opt.imization of Generated Code

and PRINT statements,
place of format and I/O

The following improvements in compiler optimization have been
im pI emen ted.

1. In-line expansion of statement functions

2 • El im ina t ion 0 fred un dan t s tor e 0 pe rat ion s

3. El imination of redundant argument (eduction for calls to
SIN and COS wi th the same arg umen ts

3.2.12 Optimization of I/O Routines
The speed of the following run-time library I/O processing
routines has been improved.

1. Floating input conver sian
2. Fo rm at in te r pr e ta t ion

3.2.13 Checking for Extensions to the FORTRAN-77 Standard
The new FORTRAN qualifier /STANDARD provides optional checking
for source code that does not conform to the FORTRAN-77 standard.

3.2.14 A Cross-Reference Listing
The new FORTRAN qualifier /CROSS-REFERENCE provides an optional
cross-reference as part of the listing file.

3-5

VAX-II FORTRAN

3.2.15 Floating-Underflow Checking
The FORTRAN qualifier /CHECK=UNDERFLOW provides optional
floating-under flow chec king at r un time.

3.2.16 Substring-Bounds Checking
Th~ FORTRAN qualifier /CHECK=BOUNDS provides opt ional
substring-bounds checking at run time.

3.2.17 OPTIONS Statement
The OPTIONS statement overrides or confirms the FORTRAN command
qua I i fie r sin a pr og r am un it.

3.2.18 FORTRAN Definitions for System Symbols
A text library FORSYSDEF.TLB containing the FORTRAN definitions
fa r system symbol sis now prov id ed •

3.2.19 Trigonometric Functions in Degrees
The trigonometric functions in Table 3-1 take arguments in
degrees or produce results in degrees.

Table 3-1 Tr igonometr ic Func tions

Func tion Desc r iption

SIND, DSIND, QSIND Sine functions \vith degree
arg uments

COSD, DCOSD, QCOSD Cosine functions with degree
arg uments

TAND, DTAND, QTAND Tangent functions with degree
arg uments

ASIND, DASIND, QASIND

ACOSD, DACOSD, QACOSD

ATAND, DATAND, QATAND

ATAN2D, DATAN2D, QATAN2D

Ar'c sine wi th deg ree resu1 t

Arc co sine wi th d eg ree resul t

Arc tang en t wi th d eg ree re suI t

Two-argument arc tangent with
d eg r e ere s ul t

3.2.20 Run-Time I/O Error Messages
Additional diagnostic information is now provided with run time
I/O error messages.

3-6

VAX-II FORTRAN

3.2.21 /SHOW Qualifier
The /SHOW qualifier controls listing options for INCLUDE files,
preprocessor-generated output, and the symbol table map.

3.3 EXTENSIONS TO THE ANSI STANDARD
The following are some of the VAX-II FORTRAN-77 extensions to the
ANS I stand ard •

1. Language elements for kayed and sequential access to
VAX-II RMS mul tikey ISAM fil es.

2. A set of data types beyond those specified for full
language FORTRAN-77

LOGICAL*I, BYTE (synonymous)
LOGICAL*2
IN'rEGER*2
COMPLE X*16, DOUBLE COMPLEX
REAL*16

3. Explicit specification of storage allocation units for
data types (e.g., REAL*8, INTEGER*4).

4. Data initialization in type declaration statements.

5. IMPLICIT NONE statement (described in new features
sec tio n) •

6. DO, DO WHILE, END DO statements - As an extension to the
standard, VAX-II FORTRAN supports "extended range
DO-loops (transfer into the range of a DO-loop is
permitted if a previous transfer out has occurred) •

The DO WHILE/ END DO support involves the following
enhancements to the FORTRAN-77 standard.

A. Optional statement label in the
DO statement. The syntax
statement is:

DO [s , (,]] v= e 1 , e 2, (e 3]

indexed
of the

(stand ard)
indexed DO

where s is the label. of the statement that
terminates the loop. If s is omitted, the loop must
be terminated by an END DO statement.

3-7

VAX-II FORTRAN

B. The DO WHILE statement has the syntax:

DO [s[,1] WHILE (e)

where s is the label of the statement that
terminates the loop. If s is omitted, the loop must
be terminated by an END DO statement as discussed
below. The (e) is a logical expression that is
tested at the beginning of each execution of the
1 00 p, inc 1 ud ing the fi r st • If the val ue 0 f the
expression is true, the statements in the body of
the loop are exec uted; if the val ue 0 f the
ex pr e s s ion i s fa 1 se, con t r 01 tr an sf e r s to th e
statement following the loop.

C. The END DO statement has the syntax:

END DO

An END DO statement terminates the range of a DO or
DO WHILE statement. The END DO statement must be
used to te rm ina te a DO bloc kif the DO 0 r DO WHILE
statement does not contain a statement label. It
may also be used as a labeled terminal statement if
the DO 0 r DO WHILE sta temen t does con ta in a te rm inal
sta temen t 1 abel.

7. Bit manipulation functions.

8. Hexadecimal and octal constants and Z and 0 format edit
descriptors applicable to all data types - The 0 field
descriptor specifies octal integer values; the Z field
descriptor specifies hexadecimal (base 16) values.

9. DEFINE FILE, FIND, ENCODE, DECODE, DELETE, REWRITE, and
UNLOCK statements - The DEFINE FILE statement describes
direct-access sequential files that are associated with
a logical unit number.

The ENCODE and DECODE statements transfe r d ate between
variables or arrays in internal storage and translate
that data from internal to character form, or from
character to internal form, accord ing to format
s pe c i fie r s •

The DELETE statement deletes records in relative files
and in indexed files. Specifically, it causes a record
to be mar ked as del eted; record 5 so mar ked are no t
acc essibl e to sub se quen tREAD 0 r REWRITE sta temen ts •

3-8

VAX-II FORTRAN

The REWRITE statement transfers output data from
internal storage to the current record in an indexed
fil e.

The UNLOCK statement unlocks records in a relative or
indexed file. When a record is locked, it cannot be
accessed by any other program or log ical unit.

10. ACCEPT, TYPE input/output statements The ACCEPT
statement transfers input data to internal storage from
external records accessed under the sequential mode of
access. The TYPE statement transfers output data from
internal storage to external records accessed under the
sequential mode of access.

11. USEROPEN subroutine invocation at file OPEN time The
USEROPEN parameter has the form:

USEROPEN = P

where p is an external function name. The USEROPEN
keyword specifies a user-written external function that
con tr 01 s the 0 pe n i ng 0 f the f i 1 e •

12. INCLUDE statement (described in new features).

13. NAMELIST - Directed I/O (described in new features) •

14. 31-character identifiers that can include dollar sign
($) and und e r 1 ine ().

15. Comments allowed at the end of each so urce 1 ine.

16 • De b ug s tat em en t sin so ur c e •

17. Language elements that support the VAX-ll extended range
and extended precision floating-point architectural
features.

A. 64- bit G-floating data type with an II-bit exponent
and 53-bit mantissa, which provides a range of
0.56*10**-308 to 0.09*10**308 and a precision of 15
dec imal dig its

B. l28-bit H-floating data type with a 15-bit exponent
and a 113-bit mantissa, which provides a range of
0.84*10**-4932 to 0.59*10**4932 and a precision of
33 decimal digits

(To execute G- and H-floating data type extended
range instructions directly on the VAX-ll/780, both
the KU780 and the KE780 hardware options must be

3-9

VAX-II FORTRAN

present. To execute these instructions directly on
the VAX-II/750, the KU750 hardware option must be
present. The VAX-Il/730 does not require any
additional options for G- and H-floating data type
instruction execution.)

18. OIL support - 'rhe OIL (Data Interchange Library) is a
set of callable subroutines that enables a COBOL or
FORTRAN programmer to access and manipulate data on
another VAX or a OECSYSTEM-20. To use the OIL in a
multiple computer environment, the computers must be
interconnected by OECnet to form a network.

3.4 ADDITIONAL FEATURES

1. Support for calls to VAX/VMS system service procedures

2. Generation of symbol tables for the VAX-II symbol ic
deb ugger

3. Generation 0 f c ro ss- referenc e 1 isting s

4. Generation of shareable code

5. Up to 255 actual arg uments in a CALL statement

6. Up to 250 named COMMON blocks per· subprog ram

3.5 VAX-l! FORTRAN COMPILER OPTIMIZATIONS

1. Constant fold ing

2. Optimizations of arithmetic IF, log ical IF, and block
IF -'rHEN-E LSE

3. Common subexpression elimination

4. Removal of invariant expressions from DO loops

5. Allocation of general reg isters across DO loops

6. In line expansion of statement functions

3.6 CCMPATIBILITY: VAX-ll FORTRAN AND FORTRAN-66
The VAX-II FORTRAN compiler selects FORTRAN-77 language
in te r pr e ta t ion s by d e fa ul t • As are suI t , i t con ta ins c e r ta in

3-10

VAX-II FORTRAN

incompatibil ities wi th FOR'l'RAN implementations that are based on
the previous standard, X3.9-1966. The areas affected are:

I • DO I 00 p min i In um i t era t ion co un t
2. EXTERNAL sta temen t
3. OPEN statement BLANK keyword default
4. OPEN statement STATUS keyword default
5. X format edit descriptor.

3.6.1 DO Loop Minimum Iteration Count
The IF77 command qualifier controls the interpretation of
loop minimum iteration count. In FOR'I'RAN-77, the body
loop is not executed if the' end condition of the loop is
satisfied when the DO statement is executed.
implementations of FOR'l'RAN-66, the body of a DO loop is
exec uted at I east once.

3. 6. 2 EXTERNAL Statement

the DO
of a DO
al read y

In most
al wa ys

The IF77 command qualifier controls the interpretation of the
EXTERNAL statement. In FORTRAN-66 the EXTERNAL statement is used
to spec i fy tha t a symbol ic name is the name 0 f e i the r a
user-defined ex ternal proced ure or a FORTRAN-suppl ied func tion.
In FORTRAN-77, the IN'fRINS Ie and EXTERNAL statements are used to
accomplish this function.

3.6.3 OPEN Statement Keyword Defaults
In FOR'rRAN-77 the OPEN statement BLANK keyword controls the
interpretation of blanks in number input fields. The FORTRAN-77
default is BLANK='NULL'; that is, blanks in numeric input fields
are ignored. The FOR'I'RAN-66 interpretation of blanks in numer ic
input fields is equivalent to BLANK='ZERO'.

If a logical unJt is opened without an explicit OPEN statement,
VAX-II FORTRAN and FOR'I'RAN-66 both provide a default equivalent
to BLANK=' ZERO' •

The BLANK ke yword affec ts the treatment 0 f bl anks in n umer ic
input fields read with the D, E, F, G, I, 0, and Z field
descriptors. If BLANK='NULL' is in effect, embedded and trailing
blanks are ignored; the value is converted as if the nonblank
characters were right-justified in the field. If BLANK='ZERO' is
in effect, embedded and trailing blanks are treated as zeros.

3.6.4 OPEN Statement Status Keyword Defaul t
In FOR'rRAN-77, the OPEN statement STATUS keyword specifies
ini tial status 0 f the fil e ('OLD', 'NEW', 'SCRATCH', or
'UNKNOWN'). Tne FOR'I1RAN-77 default is STATUS='UNKNOWN'; that
is, an existing file is opened or a new fil~ is created if the

3-11

VAX-II F ORrrRAN

file does not ex ist. If you use the IF77 command qual ifier and
you do not specify STATUS (or TYPE) in an OPEN statement, the
compiler issues an informational message to warn you that it is
using a default of STATUS='UNKNOWN'. It is advisable to include
an explicit STATUS (or TYPE) keyword in every OPEN statement.

3.6.5 X Format Ed it Descr iptor
The nX edit descriptor causes transmission of the next character
to or from a record to occur at the position n characters to the
right of the current position. In a FORTRAN-77 output statement,
character positions that are skipped are not modified, and the
length of the output record is not affected. However, in many
FORTRAN-66 implementations, the X edit descriptor writes blanks
and may extend the output record.

3-12

---_._ .. _-_ _--_. __ ... - . __ ._--------_.- ---

4.1 INTRODUCTION

CHAPTER 4
PDP-II FORTRAN

PDP-II FORTRAN is an extended implementation of the ANSI subset
FORTRAN-77 standard. Version 4 contains all the features 0 f the
ANSI FORTRAN-77 subset, many of the full-set language features,
and extensions that are not included in the ANSI FORTRAN-77
standard.

This chapter describes the new features supported in Version 4
and also outlines the major features that are extensions to the
standards. This information, as well as more detailed
information, is found in the following documents.

1. PDP-II FORTRAN-77 Lang uage Reference Manual, (September
1981), AA-19791-TC

2. PDP-II FORTRAN-77 User's
AA-1884D-TC

Guide (September

3. Install ation Guid e/Rel ea se

1981) ,

PDP-II FORTRAN-77
AA-KS03B-TC------- -----------

The PDP-II FORTRAN-77 Obj ect
(AA-1874C- rrC)" is- also of

Time System
interest-to

Re fe renc e Man ual
PDP-flFoRTRAN-77

programmers.

The PDP-II FORTRAN-77 Language Reference Manual describes the
syntax and semanticsOffhe-FORTRAN-77 implementation of PDP-II
FORTRAN. It does not, however, present information spec ific to
any operating system.

The PDP-II FORTRAN-77 User's Guide contains the information ----_.- ------ ----necessary to create, link, and execute PDP-II FORTRAN-77 programs
on a PDP-II processor. programming information is provided for
the RSX-11M/M-PLUS, IAS, and RSTS/E operating systems.

The PDP-II FORTRAN-77 Installation Guide/Release Notes
the procedures-fOr install ing--PDP-ll FORTRAN
RSX-IlM/M-PLUS, RSTS/E, and IAS operating systems.

4-1

describes
on the

PDP-II FORTRAN

4. 2 NEW FEA TURES
Among the major features defined by the new ANSI subset lnnguage
FORTRAN standard and not found in either the previous ANSI
standard or previous versions of Dig ital PDP-II FORTRAN are:

1. CHARACTER data type

2. Block IF construct, including IF ••• THEN, ELSE IF, ELSE,
and END IF statements, for conditional execution of
bloc ks 0 f sta temen ts •

4.2.1 Features Supported for Character Data
Version 4 supports character data as specified by the subset
language FORTRAN-77 standard.

4.2.1.1 Character Constants - The length of a character constant
must be in the range 1 through 255.

4.2.1.2 Substring Reference and Definition - Version 4 supports
character substrings as outlined in the full-language subset.
(Note that substrings are not included in the subset.)

4.2.1.3 Character Expressions A character operand can be
character constant, character variable, character array element,
or character substring. A character expression has the form:

character operand

and can be enclosed in parentheses. Note that the concatenation
operator is not included in .the subset (nor in Version 4).

4.2.1.4 Character Variables and Arrays - The length specification
in the character type-statement can be an unsigned integer
constant or an integer-constant expression enclosed in
parentheses. [An asterisk in parentheses (*) is not allowed].
When you specify CHARACTER*len, the length specification must be
in the range 1 to 255.

4.2.1.5 Character Relational Expressions - Version 4 conforms to
the ANSI-77 full language standard.

4.2.1.6 Character Assigrunent Statements - Version 4 conforms to
the ANSI-77 subset language standard. Note that you cannot
assign a numeric value to a character variable, array element, or
substr ing •

4-2

PD P-ll FOR TR AN

4.2.1.7 Character Variables and Constants in DATA Statements
Version 4 (and the ANSI subset language) do not support impl ied
DO-lists in DATA statements.

4.2.1.8 Character Functions -
IC HAR, LL'r, LLE, LGT, and LGE.

4.2.2 IF THEN ELSE Statements

Version 4 supports LEN, INDEX,
No te tha t CHAR is no t suppo r ted.

Version 4 supports the block IF, ELSE IF, ELSE, and END IF
sta tements.

4.3 FEATURES OF THE FULL-LANGUAGE FORTRAN AS DEFINED
BY THE ANSI STANDARD

4.3.1 Exponentiation Forms
(Th i s incl ud es doubl e-prec ision and compl ex fo rms.) Tabl e 4-1
summarizes the allowed combinations of data types of base and
exponent, and the data type of the result of exponentiation. The
new features are underl ined.

Tab1 e 4-1 Allowed Combinations 0 f
Types of Base and Exponents

Exponent
Base Integer Real !buble

In teg er In teg er Real !b uble -- ----
Real Real Real Do uble

Double Double Double Double

Complex Compl ex Com pI ex No

4.3.2 Format Edit Descriptors

Complex

Come~ex

Complex

No

Com pI ex

(Th i sin c I ud e s 5, 5 P , 5S , T, T L, TR , Iw. m, and Gw. d Ee .) Ve r s ion 4
conforms to the full FORTRAN-77 standard.

4-3

PDP-II FORTRAN

4.3.3 INTRINSIC and EXTERNAL Statements
Normally, the name of an intrinsic function refers to the FORTRAN
library function with that name. However, the name can refer to
a user-defined function under any of the following conditions:

1. The name is used in a function reference with arguments
of a different data type from that normally used.

2. The name appears in an EXTERNAL statement.

The EX'rERNAL and INTRINSIC statements enable the programmer to
use subprogram names as actual arguments to other subprograms.
The semantics of the EXTERNAL statement are different in FORTRAN
77 than in previous versions of PDP-II FORTRAN. In previous
versions, the appearance of an intrinsic function name in an
EXTERNAL statement caused the processor to treat the name as the
name of an intrinsic function. In FOR'rRAN 77, the appearance of
an intrinsic function name in an EXTERNAL statement causes the
processor to treat the name as the name of an external function.
In previous versions, an intrinsic function name had to be
preceded by an asterisk to be treated as an external function.
The /NOF77 switch allows the programmer to select the previous
semantics, rather than FORTRAN-77 semantics. The following shows
the equivalent statements.

/F77
EXTERNAL ex t
EXTERNAL in t
INTRINS IC in t

/NOF77
EXTERNAL ex t
EXTERNAL * in t
EXTERNAL in t

Except when they are used in an EXTERNAL statement, intrinsic
function names are local to the program unit that refers to them.
Thus, they can be used for other purposes in other program units.
In addition, the data type of an intrinsic function does not
change if you use an IMPLICIT statement or an explicit type
declaration to change the impl ied data type rules.

You cannot have an intrinsic function and a user-defined function
wi th the same name in the same prog ram un it.

4.3.4 Generic Function Selection Based on Argument Data Type for
FORTRAN-Defined Functions
Some intrinsic functions perform the same computation but handle
different data types. These functions are references with the
same generic name. A generic-function reference refers to the
category of the computation to be performed, not to a specific
function within the category. The selection of a specific
function, that is, the actual computing procedure for a specific
data type, is left to the compiler, which chooses a spec ific
fLlnc tion wi thin a category on the basi s 0 f the data type 0 f the

4-4

PDP-II FORTRAN

relevant actual ar~ument. For example, if D is a
double-precision variable, the generic function reference SIN (D)
refers to the double-precision sine function. You need not write
DS IN (D) •

Generic function references are independent from one another.
Therefore, you could use both of the function references SIN (X)
where X is a real variable, and SIN(D) where D is a
double-prec ision var iable, in the same prog ram unit.

The intrinsic and generic functions are described in section
15.10 of the FORTRAN-77 standard.

4.3.5 PARAMETER Statements
Version 4 prov ides both the FORTRAN-77 and the earl ier form of
the PARAMETER statement. The 1 ist in the earl ier form of the
PARAMETER statement is not bounded with parentheses, and the form
of the constant (rather than typing of the symbolic name)
determines the data type of the variable.

4.3.6 General ized DO Loop Parameters
Version 4 conforms to the full FORTRAN-77
"extended range DO loops" are supported.

,
standard. Moreover,

4.3.7 Lower and Upper Bounds Specifi,cation in Array Declarators
Version 4 conforms to the full FORTRAN-77 standard.

4.3.8 Optional Syntax for I/O Statements (UNIT= and FMT=)
Version 4 conforms to the full FORTRAN-77 standard.

4.4 EXTENSIONS TO THE ANSI STANDARD

1. Language elements for keyed and sequential access to RMS
multikey ISAM files.

2. DEFINE FILE, FIND, ENCODE, DECODE, DELETE, REWRITE, and
UNLOCK statements - The DEFINE FILE statement describes
direct-access sequential files that are associated with
a log ical unit number. The OPEN statement, which can
also be used to describe direct-access sequential files,
is the preferred statement.

The FIND statement positions a direct-access file on a
specified unit to a particular record. No data transfer
ta ke s pl ac e •

The ENCODE and DECODE statements transfer data between
variables or arrays in internal storage and translate

4-5

PDP-II FORTRAN

that data from internal to character form or from
character to internal form, according to format
specifiers. Similar results can be accomplished using
internal files with formatted sequential WRITE and READ
sta temen ts •

The DELETE statement deletes records in relative files
and in indexed files. Specifically, it causes a record
to be marked as deleted; records so marked are not
accessible to subsequent READ or REWRITE statements.

The REWRITE statement repositions a sequential file
currently open for sequential or append access to the
beg in n i ng 0 f the f i 1 e •

The UNLOCK statement unlocks records in a relative or
indexed file. When a record is locked, it cannot be
accessed by any other program or log ical unit.

3. TYPE and ACCEP'r input/output statements The TYPE
statement transfers output data from internal storage to
external records accessed under the sequential mode of
access. The ACCEPT statement transfers input data to
internal storage from external records accessed under
the sequential mode of access.

4. Comments permitted at the end of each source 1 ine.

5. INCLUDE statement - The INCLUDE statement specifies that
the contents of a designated file are to be incorporated
into a compilation directly following the statement.
INC LUDE ha s no e ffec t on prog ram ex ec ut io n.

6. BYTE data type - BYTE and LOGICAL*l are synonymous.

7. Explicit specification of storage allocation units for
data type s (e.g., INTEGER*4).

8. Hexadec imal and octal constants.

9. Virtual array support for systems with memory management
directives. Virtual arrays are memory-resident and
require enough main memory to contain all elements of
all arrays.

10. 0 and Z format edit descriptors - The 0 field descriptor
specifies octal integer values; the Z field descriptor
spec ifies hexadec imal (base 16) val ues.

4-'5

------------- --------------------------

PDP-II FORTRAN

4.5 ADDITIONAL FEATURES
The PDP-II FORTRAN-77 compiler produces direct PDP-II machine
code optimized for execution-time efficiency on a PDP-II with a
floating-point processor. PDP-II FORTRAN-77 compiler
o pt i m i za t ion sin c I ud e :

1. Optimizations of arithmetic and logical IF statements

2. Common sUbexpression el imination

3. Removal of invariant expressions from DO loops

4. Allocation of processor registers across block IF
constr uc ts and DO loops.

4.6 C<l-tPATIBILITY: PDP-II FORTRAN AND FORTRAN-66
The PDP-II FORTRAN compiler selects FORTRAN-77 language
interpretations by defa ul t. As a resul t, it contains certain
incompatibilities with FOR'rRAN implementations that are based on
the prev io us stand ard, X3. 9-1966. The area s a ffec ted are:

1 • DO 1 00 p min im urn i t era t ion co un t
2. EXTERNAL statement
3. OPEN statement BLANK keyword default
4. OPEN statement STATUS keyword default
5. Blank common block PSECT
6. X format ed it descr iptor.

4.6.1 DO Loop Minimum Iteration Count
The IF77 command qualifier controls the interpretation of
loop mlnlmUffi iteration count. In FORTRAN-77, the body
loop is not executed if the end condition of the loop is
satisfied when the DO statement is executed.
implementations of FORTRAN-66, the body of a DO loop is
executed at least once.

4.6.2 EXTERNAL Statement

the DO
of a DO
al read y

In most
al wa ys

The IF77 command qualifier controls the interpretation of the
EXTERNAL statement. In FORTRAN-66 the EXTERNAL statement is used
to specify that a symbolic name is the name of either a
user-defined external procedure or a FORTRAN-suppl ied function.
In FORTRAN-77 the INTRINSIC and EXTERNAL statements are used to
accomplish this function.

4.6.3 OPEN Statement Keyword Defaul ts
In FORTRAN-77 the OPEN statement BI.J\NK keyword controls the
interpretation of blanks in the number input fields. The
FORTRAN-77 default is BLANK='NULL'i that is, blanks in numeric

4-7

PDP-II FORTRAN

input fields are ignored. The FORTRAN-66 interpretation of
blanks in numeric input fields is equivalent to BLANK='ZERO'.

If a log ic al un it is 0 pened wi tho ut an ex pI ic it OPEN sta temen t,
PDP-II FORTRAN and FORTRAN-66 both prov ide a defaul t equivalent
to BLANK=' ZERO' •

The BLANK keyword affects the treatment of blanks in numeric
input fields read with the 0, E, F, G, 1,0, and Z field
descriptors. If BLANK='NULL' is in effect, embedded and trailing
blanks are ignored; the value is converted as if the nonblank
characters were right-justified in the field. If BLANK='ZERO' is
in effect, embedded and trail ing blanks are treated as zeros.

4.6.4 OPEN Statement Status Keyword Default
In FORTRAN-77, the OPEN statement STATUS keyword spec ifies
initial status of the file ('OLD', 'NEW', 'SCRATCH', or
'UNKNOWN'). The FORTRAN-77 default is STATUS='UNKNOWN'; that
lS, an ex~isting file is opened or a new file is created if the
file does not ex ist. If you use the IF77 command qual ifier and
you do not specifiy STATUS (or TYPE) in an OPEN statement, the
compiler issues an informational message to warn you that it is
using a default of STATUS='UNKNOWN'. It is advisable to include
an ex pI ic it STATUS (or TYPE) ke ywo rd in ever y OPEN sta temen t.

4. 6. 5 B1 an k Common Bloc k PS EC T (. $ $ $ $ •)
Under PDP-II FORTRAN-77, the blank common block PSECT (.$$$$.)
has the SAV attribute. The SAV attribute on a PSECT has the
effect of pulling that PSECT into the root segment of an overlay.

4. 6. 6 X Fo rm a t Ed it De sc r i pto r
The nX edit descriptor causes transmission of the next character
to or from a record to occur at the position n characters to the
right of the current position. In a FORTRAN-77 output statement,
character positions that are skipped are not modified and the
length of the output record is not affected. However, in many
FORTRAN-66 implementation, the X ed it descr iptor wr ites blanks
and may extend the output record.

4-8

--~-~-------

CHAPTER 5
A COMPARISON OF FORTRAN LANGUAGE FEATURES

Tabl es 5-1 thro ug h 5-16
fea tur es. Re fer al so to

prov ide comparative FORTRAN lang uag e
Lang uag e Fund amen tal s (AA-M460A-RK).

Maximum number of dimensions
allowed for an array

Mixed mode expressions

Double exponentiation
(e.g., A**B**C) permitted

Statement number size
(characters)

Maximum level of nesting
for 00 loops

Maximum number of characters
allowed in a PAUSE message

Generalized subscripts
permitted

Adjustable dimensions
permitted in subprogram

Specification statement can
follow first executable
statement

Generic function selection

2 Right to left evaluation.
3 Undefined.
4 Produces warning.

Table 5-1 Programming Considerations

<-AMERlCAN-> <--PDP-8--> <-PDP-11->
NATlOOAL RSX RSX
STANDARDS RSTS/E RSTS/E

FORTRAN 05/8 05/8 OS/78 RT-ll lAS
X3.9 -77 (Full FORT FORT FORT lAS
1966 Language) II IV IV (FOR) (E77)

3 7 2 7 7 7 7

- X - X X X X

- x2 - x2 x2 x2 x2

1-5 1-5 1-5 1-5 1-5 1-5 1-5

20 10 10
3 20 - - -

- - - - - 255 255

- X X X X X X

X X - X X X X

- - - - - X -

- X - - - - X

5-1

Vf>.:I../ TOPS-l 0
VMS

TOPS-20

Vf>.:I../11
FORTRAN F-I0

7 Infin-
ity

X X

x2 x2

1-5 1-5

20 Infin-
ity

255 Infin-
ity

X X

X X

- x4

X X

A COl'-1.PARISON OF FORTRAN LANGUAGE FEATURES

Table 5-1 Programming Considerations (Cont)

Statement functions can
follow executable state-
ments or precede related
specification statements

Maximum nunber of
continuation lines

Embedded blanks permitted
in key words

Key words reserved by the
compiler

Maximum characters in a
symbolic name

Maximum level of nesting
for implied 00 loops

Comment line starts with

Source code in EBCDIC

Source code in BCD

Source code in ASCII

End-o f-l ine corranents
delimited by "1"

Label on any statement

INCLUDE from source file

INCWDE from test library

1 Not specified.
2 Undefined.
3 Warning given for >6.
4 Warning given.
5 Warning given for over 31.
6 Not on a function statement.

<-AMERlCAN->
NATIONAL
STANDARDS

FORTRAN
X3.9 -77 (Full
1966 Language)

- -

19 19

X X

- -

6 6

1 1 - -

C C,*

1 1 - -
1 1 - -
1 1 - -

- -

X

- -

- -

<--PDP-8--> <-PDP-ll->
RSX RSX
RSTS/E RSTS/E

OS/8 OS/8 OS/78 RT-ll !AS
FORT FORT FORT lAS
II IV IV (FOR) (F77)

- X X X -

Infin- 5 5 Infin- 0-99
ity ity

X X X X X

- - - - -

5 6 6 63 63

2 10 10 2 2 - -

C C C C,D,1 C,D,
* ,1

- - - - -

- - - - -

X X X X X

- - - X X

x6 X

- X

- -

5-2

VAX/ TOPS-l 0
VMS

TOPS-20

VAX/II
FORTRAN F-IO

- x4

0-99 Infin-
ity

X X

- -

315 63

2 Infin--
ity

C,D, C,$,*,
* ,1 / ,D,1

- -

- -

X X

X X

X X

X X

X -

A COMPARISON OF FORTRAN LANGUAGE FEATURES

Table 5-2 Subprogram Statements

<-AMERICAN-> <--PDP-8-->

BLOCK DATA

ENTRY entry-point
[(arg[,arg] •••)]

FUNCTION function-name
(arg [,arg] •••)

function-name (arg[,arg] •••)=
arithmetic-expression

function-name (arg [,arg] •••) =
logical expression

function-name (arg[,arg] •••)=
character expression

[nITffiffi] ~~LE PRECISION FUNCTION
COMPLEX
LOGICAL

func-name
[*length] (arg [,arg] •••)

SUBROUTINE subroutine-name
[(arg[,arg] •••)]

1 Can have name.
2 Permit () and no args.
3 ·*length not permitted.
4 INTEGER, REAL, LOGICAL only.

NATIONAL
STANDARDS

FORTRAN as/8
X3.9 -77 (Full FORT
1966 Language) II

X Xl -

- X -

X X X

X X -

X X -

- X -

x3 x3,7 -

X X X

5 *length ignored in most cases; flagged with warning.
6 Also types DOUBLE COMPLEX, CHARACTER
7 Also type CHARACTER [*length].

5-3

as/8 OS/78
FORT FORT
IV IV

X X

- -

X X

X X

X X

- -

X x4

X X

<-PDP-ll->
RSX RSX
RSTS/E RSTS/E
RT-ll lAS
lAS
(FOR) (F77)

xl xl

- X2

x2 x2

X X

X X

- -

x2 x2

X X

VN</ TOPS-l 0
VMS

TOPS-20

VN</ll
FORTRAN F-IO

xl Xl

X2 X2

x2 x2

X X

X X

X X

x2,6 x5,2,7

X X

A COMPARISON OF FORTRAN LANGUAGE FEATURES

Table 5-3 Constant and Variable Types

<-AMERlCAN-> <--PDP-8-->
NATIONAL
STANDARDS

FORTRAN 05/8 05/8 OS/78
X3.9 -77 (Full FORT FORT FORT
1966 Language) II IV IV

CONSTANT FORMS

Integer X X X X X

Real X X X X X

Double-precision X X - X -

Complex X X - X -

Double complex - - - - -

Logical X X - X X

Literal (preceded by H) X3 - X5 X5 X5

Literal (enclosed in - x7 x5 x5 x5
single quotes)

Hexadecimal - - - - -

Octal - - - xl X

Quadruple 'precision - - - - -

Radix 50 - - - - -

I In DATA statements only.
2 ["ddd] allowed anywhere [Oddd] is allowed in DATA statements.
3 In DATA, FORMAT, and subroutine arguments only.
5 Denotes Hollerith literal.
6 "ddd allowed anywhere.
7 Denotes CHARACTER constant.

5-4

<-PDP-ll->
RSX RSX
RSTS/E RSTS/E
RT-ll lAS
lAS
(FOR) (F77)

X X

X X

X X

X X

- -

X X

X5 X5

x5 x7

- X

x2 x2

- -
xl xl

VAX/ I TOPS-IO
VMS

TOPS-2O

VAX/ll
FORTRAN F-10

X X

X X

)(X

X X

X -

X X

X5 x5

x7 x7

X -

x2 x6

X -
xl -

A COMPARISON OF FORTRAN LANGUAGE FEATURES

Table 5-4 Data Types

<-AMERICAN->
NATIONAL
STANDARDS

FORTRAN
X3.9 -77 (Full
1966 Language)

Floating point

REAL X X
REAL*4 - -
REAL*8 - -
REAL*16 - -
DOUBLE PRECISION X X

Complex

COMPLEX X X
COMPLEX*8 - -
COMPLEX*16 - -
DOUBLE COMPLEX - -

Character

CHARACTER*(length) - X
CHARACTER* (*) - X

Logical

LOGICAL X X
LOGlCAL*1 - -
LOOICAL*2 - -
LOGlCAL*4 - -

Integer

INTEGER X X
INTEGER*1 - -
INTEGER*2 - -
INTEGER*4 - -

I Defaults to *2 or *4 at compile time.
2 Implemented as *4.
3 Four-byte allocation; two-byte precision.
4 BYTE is synonym for LOGlCAL*I.
5 Produces warning; * length ignored.
7 Only with FPP hardware.

<--PDP-8-->

OS/8 05/8 05/78
FORT FORT FORT
II IV IV

X X X
- - -
- - -
-

~7
-

- -

- x7 -
- - -
- - -
- - -

- - -
- - -

- X X
- - -
- - -
- - -

X X X
- - -
- - -
- - -

5-5

<-PDP-ll-> VAX/ TOPS-IO
RSX RSX VMS
RSTS/E RSTS/E TOPS-20
RT-ll lAS
!AS VAX/ll
(FOR) (F77) FORTRAN F-I0

X X X X
X X X X
X X X Xs
- - X X
X X X X

X X X X
X X X Xs
- - X X
- - X -

- X X X
- - X X

x2 xl xl Xs x4 x4 x4 Xs
- X X X
X X X X

x2 xl xl X
- - - ~s X3 X X
X X X X

A COMPARISON OF FOHTRAN LANGUAGE FEATURES

Table 5-5 Specification Statements

<-AMERICAN-> <--PDP-8--> <-PDP-ll->
NATIONAL RSX RSX
STANDARDS RSTS/E RSTS/E

FORTRAN as/8 as/8 OS/78 RT-ll lAS
X3.9 -77 (Full FORT FORT FORT' lAS
1966 Language) II IV IV (FOR) (F77)

PRCGRAM name - X - - - X X

NAMELIST /namelist-name/ name - - - - - - -
[,name •••] [[,] /namelist-
name/ name [,name •••]] •••

PARAMETER var=constant, ••• 1 - X - - - - -
2 X X PARAMETER (var=exp, •••) - - - - -

SAVE statement - X - - - - X

IMPLICIT type (characters - X - - - X X
[,type(characters)] •••

1[INTEGER lr X X - X - X X
RFAL

~ DOUBLE PRECISION
COMPLEX
LOGICAL

{"arne } array:-declarator
functlon-name

[,name } ... J ,array~declarator
, functlon-name i:INTEGER

[*2] 11 - - - - - - -
RFAL [*8]
COMPLEX [*16]
LOGICAL [*1]

fame } array-declo
function-name

[*length] [/initial-value/]

1 Type of symbolic name determined by constant.
2 Type of symbolic name determined by first letter, IMPLICIT, and type declarations.
3 Warnings produced for INTEGER*2, COMPLEX*16, LOGICAL*l.
4 Also allows types DOUBLE COMPLEX, CHARACTER.
5 Also allows type CHARACTER.
6 Initial-value not allowed.

5-6

VlVl../ TOP5-1 0
VMS

TOP5-2 0

VlVl../ll
FORTRAN F-10

X X

X X

X X

X X

X X

X X

x4 xS

X4 x3,S,6

A COMPARISON OF FORTRAN LANGUAGE FEATURES

Table 5-5 Specification Statements (Cont)

<-AMERlCAN-> <--PDP-8--> <-PDP-ll-> VAX/ TOP5-l0
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOP5-20

FORTRAN OS/8 OS/8 OS/78 RT-ll !AS
X3.9 -77 (Full FORT FORT FORT lAS VAX/ll
1966 Language) II IV IV (FOR) (F77) FORTRAN F-IO

COMMON~~:y_decl.~ X X X X X X X X X

Knarne] ,array-decl. • ••

~ame :0 COMMON/block-name! d X X - X X X X X X array- ec

Kname ~ ,array-decl. .

••• [/block-name/ •••] ••.

DIMENSION array-decl. X X X X X X X X X
[,array-decl.] •••

EQUIVALENCE (name[,name] •••) X X X X X X X X X
[, (name [,name] •••)] •••

EXTERNAL~SUbPrOgram-name ~
external-proc-name X X - X X X X X X

~SubprOgram-narne]
,external-proc-name •••

EXTERNAL X - - - - - X X xl

1[[*] subprogram-name ~
[*]external-proc-name •••

Array declarators allow - X - - - - X X X
upper and lower dimension
bounds

INTRINSIC

1[subProgram-name~ - X - - - - X X X

1 & can be used in place of *.

5-7

A COMPARISON OF FORTRAN L.ANGUAGE FEATURES

Table 5-6 Data Initialization statement

<-AMERICAN-> <--PDP-8--> <-PDP-ll-> vAX! TOPS-I 0
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS-20

FORTRAN 05/8 05/8 OSi78 RT-ll lAS
X3.9 -77 (Full FORT FORT FORT lAS VAX/ll
1966 Language) II IV IV (FOR) (F77) FORTRAN F-IO

DATA name [,name] ••• X xl - X X xl xl xl xl
/[number*] value
[,[number*]va1ue] •••
[, / [, name •••] •••] •••

Implied DO construct - X X X X - - X X

Data values converted to - X - - - - X X X
type of name

Data initialization allowed - - - - - - - X -
in type declaration
statements

t Name may be an array name implying all elements of array.

Table 5-7 Relational Operators

<-AMERICAN-> <--PDP-8--> <-PDP-ll-> VAX/ TOPS-I 0
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS-20

FORTRAN 05/8 05/8 OSi78 RT-ll lAS
X3.9 -77 (Full FORT FORT FORT lAS VAX/ll
1966 Language) II IV IV (FOR) (F77) FORTRAN F-IO

.GT. X X - X X X X X X

.GE. X X - X X X X X X

.LT. X X - X X X X X X

.LE. X X - X X X X X X

.EQ. X X - X X X X X X

.NE. X X - X X X X X X

> - - - - - - - - X

>= - - - - - - - - X

< - - - - - - - - X

<= - - - - - - - - X

-- - - - - - - - - X

- - - - - - - - X

5-8

---- _ .. -----_._--

A COMPARISON OF FORTRAN LANGUAGE FEATURES

Table 5-8 Logical Operators

<-AMERlCAN--> <--PDP-8--> <-PDP-ll-> VAX/ TOPS-1O
NATlOOAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS-20

FORTRAN 05/8 05/8 05/78 RT-ll lAS
X3.9 -77 (Full FORT FORT FORT !AS VAX/ll
1966 Language) II IV IV (FOR) (F77) FORTRAN F-1O

.Nor. X X - X X X X X X

.AND. X X - X X X X X X

.OR. X X - X X X X X X

.XOR. - - - X X X X X X

.E(]J. - X - X X X X X X

.NEQV. - X - - - - X X X

Table 5-9 Assignment Statements

<-MERleAN-> <--PDP-8--> <-PDP-ll-> vAX! TOPS-1O
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS-20

FORTRAN 05/8 05/8 05/78 RT-ll lAS
X3.9 -77 (Full FORT FORT FORT !AS VAX/ll
1966 Language) II IV IV (FOR) (F77) FORTRAN F-IO

variable = arithmetic X X X X X X X X X
expression

variable = logical expression X X - X X X X X X

ASSIGN statement-number TO X xl - X X X xl xl xl
variable

variable = character - X - - - - x2 X X
expression

I Statement label may be label of a format statement.
2 Character expression must be variable, substring, or constant.

5-9

A COMPARISON OF FORTRAN LANGUAGE FEATURES

Table 5-10 Control Statements

<-AMERICAN-> <--PDP-8-->. <-PDP-ll->
NATIONAL
STANDARDS

FORTRAN OS/8 OS/8
X3.9 -77 (Full FORT FORT
1966 Language) II IV

CALL subroutine-name X X X X
[(argument [,arg[•••)]

CONTINUE X X X X

DO statement-number control- X X X X
variable = inJ tial-value,
test-value [, increment]

END X X X X

GO TO statement-number X X X X

GO TO (statement-number, X x6 X X
statement-number
[,statement-number] •••)
[,] variable

GO TO variable [[,] X X - X
(statement number,
statement-number
[,statement-number] •••)]

IF (arithmetic-expression) X X X X
statement-number, statement
number, statement-number

IF (logical-expression) X X - X
executable-statement

1 Null argument permitted.
2 General expressions permitted.
3 Iteration count computer but minimum of one iteration.
4 Variable and expressions are of type INTEGER.

RSX RSX
RSTS/E RSTS/E

OS/78 RT-ll lAS
FORT lAS
IV (FOR) (F77)

X xl xl

X X X

X
x2,4,8 x2,8,

9,10

X X X

X X X

X x5,6 x5,6

X X x7

X X X

X X X

5 Index may be a general expression which will be converted automatically to
integer if expression of other type.

6 If index out of bounds, then acts as continue.
7 If list present and assigned label not in list, then acts as continue.
8 Optional comma after statement number.
9 Compiler switch to determine minimum iteration count (0 or 1).
10 Statement number optional.

5-10

VAX/ TOPS-I 0
VMS

TOPS-20

VAX/ll
FORTRAN F-IO

xl X

X X

x2,8,9 x2,8,9

X X

X X

x5,6 x5,6

X x7

X X

X X

A COMPARISON OF FORTRAN LANGUAGE FEATURES

Table 5-10 Control Statements (Cont)

<-AMERlCAN-> <--PDP-8--> <-PDP-ll-> VM../ TOPS-10
NATIONAL RSX RSX VMS
STANDARDS RSTS/E RSTS/E TOPS-20

FORTRAN as/8 as/8 OS/78 RT-ll !AS
X3.9 -77 (Full FORT FORT FORT lAS VAX/II
1966 Language) II IV IV (FOR) (F77) FORTRAN F-IO

IF (logical-expression) - - - - - - - - -
statement-number, statement
number

IF-THEN-ELSE-ENDIF - X - - - - X X X

DO-WHILE - - - - - - - X X

END 00 - - - - - - - X X

PAUSE (one to six octal X - - - - X X X x2
digits)

PAUSE (one to five decimal - X X X X X X X x2
digits)

PAUSE 'message' - X - - - X X X X

S'IDP (one to six octal digits) X - - - - X X X x2

STOP (one to five decimal - X - - - X X X x2
digits)

STOP 'message' - X - - - X X X X

Tracing after pause - - - - - - - x4 X

RETURN X X X X X X X X X

RETURN (expression) - X - - - - - X X

2 Up to 12 digits.
4 PAUSE enters command processor. User can STOP, CONTINUE, ASSIGN, SHOW, DEBUG, etc.

5-11

A COMPARISON OF FORTRAN LANGUAGE FEATURES

Table 5-11 Sequential I/O Statements

<-MERleAN-> <--PDP-8--> <-PDP-ll-> VAX/ TOPS-10
NATIONAL RSX RSX VMS
STJ\NDARDS RSTS/E RSTS/E TOPS-20

FOR'l"RAN as/8 as/8 as/78 RT-ll lAS
X3.9 -77 (Full FORT FORT FORT !AS VAX/l1
1966 Language) II IV IV (FOR) (F77) FORTRAN F-10

N = namelist-name
u = uni t m.mber
f = label of a format

statement
k = an I/O list
* indicates list-

directed I/O

ACCEPT f,k - - - - - X X X X

ACCEPT f - - - - - X X X X

ACCEPT*,k - - - - - X X X X

ACCEPT N - - - - - - - X X

BACKSPACE u X X - X X X X X X

ENDFILE u X X - X X X X X X

PRINT f,k X X - - - X X X X

PRINT f X X X X X X

PRINT*,k - X X X X X

PRIm' N - - - - - - - X X

PUNCH f,k - - - - - - - - X

PUNCH f - - - - - X

PUNCH* ,K - - - - - X

5-12

~~~----~~--~~-.---~-----



A COMPARISON OF FORTRAN LANGUAGE FEATURES 

Table 5-11 Sequential I/O Statements (Cont) 

N = namelist-name 
u = uni t nunber 
f = label of a format 

statement 
k = an I/O list 
* indicates list-

directed I/O 

RFAD f,k 

READ (u,f) [k] 

RFAD (u) [k] 

RFAD (u [, f] [, END=SI] 
[,ERR=S2] ) [k] 

RFAD* ,k 

READ (u,*[,END=S]] [,ERR=S2])k 

RFADN 

RFAD (u,N[,END=SI] [,ERR=S2]) 

RERFAD f,k 

REWIND u 

BACKFILE u 

SKIPFILE u 

TYPE f[ ,k] 

TYPE *[ ,k] 

TYPE N 

I Keywords in either order. 
2 Also UNIT = u, FMT = f. 
3 Also UNIT = u. 

<-MERleAN-> 
NATIONAL 
STANDARDS 

FORTRAN 
X3.9 -77 (Full 
1966 Language) 

- X 

X x2 

X x3 

- X 

- X 

- X 

- -

- -

- -
X X 

- -

- -
- -

- -
- -

4 f is mandatory (formatted only) • 
5 Also NML=N. 

<--PDP-8--> <-PDP-ll-> 
RSX RSX 
RSTS/E RSTS/E 

05/8 as/8 05/78 RT-ll lAS 
FORT FORT FORT !AS 
II IV IV (FOR) (F77) 

- - - X X 

X X X X x2 

- X X X x3 

- - - xl ,4 xl ,2 

- - - X X 

- - - xl xl ,3 

- - - - -

- - - - -

- - - - -

- X X X X 

- - - - -

- - - - -

- - - X X 

- - - X X 

- - - - -

5-13 

VAX/ TOPS-I 0 
VMS 

TOPS-2O 

VAXill 
FORTRAN F-IO 

X X 

x2 x2 

x3 x3 

xl ,2 X1,2 

X X 

xl ,3 xl ,3 

X X 

x3,s X 

- X. 

X X 

- X 

- X 

X X 

X X 

X X 



A COMPARISON OF r'ORTRAN LANGUAGE FEATURES 

Table 5-11 Sequential I/O Statements (Cont) 

N = namelist-name 
u = uni t nunber 
f = label of a format 

statement 
k = an I/O list 
* indicates list-

directed I/O 
ary = array, array element, 

or variable 

WRITE (u,f) [k] 

WRITE (u) [k] 

WRITE (u[,f] [,END=SI] 
[ , ERR=S2] ) k 

WRITE (u,*[,END=SI] 
[ , ERR=S2] ) k 

WRITE (u,N[ ,END=SI] [,ERR=S2]) 

WRITE *,k 

WRITE f,k 

WRITE f 

SKIPRECORD u 

UNLOAD u 

ENCODE/DECODE (cnt,fmt,ary)k 

1 Keywords in either order. 
3 Also UNIT = u, FMT = f. 
4 Also UNIT = u. 

<-AMERlCAN-> 
NATIONAL 
STANDARDS 

FORTRAN 
X3.9 -77 (Full 
1966 Language) 

3 
X X 

X x4 

- X 

- xl ,4 

- -

- -

- -

- -

- -

- -

- -

5 f is mandatory (formatted only). 
6 Also NML=N. 

<--PDP-8--> <-PDP-ll-. > 
RSX RSX 
RSTS/E RSTS/E 

OS/8 OS/8 OS/78 RT-ll lAS 
FORT FORT FORT lAS 
II IV IV (FOR) (F77) 

X X X X x3 

- X X X x4 

- - - xl,S xl ,3 

- - - xl xl ,4 

- - - - -

- -

- -

- -

- - - - -

- - - - -

- - - X X 

5-14 

VAX/ TOPS-l 0 
VMS 

TOPS-20 

VAX/II 
FORTRAN F-I0 

x3 x3 

x4 x4 

xl ,3 xl ,3 

xl ,4 xl ,4 

x6 X 

- X 

- X 

- X 

- X 

- X 

X X 



A COMPARISON OF FORTRAN LANGUAGE FEATURES 

Table 5-12 File Control Statements 

<-AMERlCAN-> <--PDP-8--> <-PDP-ll-> 
NATlOOAL RSX RSX 
STANDARDS RSTS/E RSTS/E 

FORTRAN OS/8 OS/8 OS/78 RT-ll lAS 
X3.9 -77 (Full FORT FORT FORT !AS 
1966 Language) II IV IV (FOR) (F77) 

OPEN - X xl - - X X 

CLOSE - X Xl - - X X 

INQUIRE - X - - - - -

1 Library subroutines. 

Table 5-13 Direct Access I/O Statements 

<-AMERleAN-> <--PDP-8--> 
NATIONAL 
STANDARDS 

FORTRAN OS/8 
X3.9 -77 (Full FORT 
1966 Language) II 

u = unit number 
n = number of records in file 
rs = length in 16-bit words 

of record 
c = indicates unformatted 
v = associated variable 

DEFINE FILE u(n,rs,c,v) - - -
[ ,u2• •• ) ••• 

FIND (u'r) - - -

RFAD (u'r[,f) [k) - x9 -
READ (u'r[f) [ ,END=Sl) - x9 -

[,ERR=S2) [K) 

WRITE (u' r[ ,f» [k) - x9 -

WRITE (u'r[,f) [,END=SI) - x9 -
[ ,ERR=S2» [k) 

DELETE (u' r[ ,ERR=s2) - - -
FORMAT statement: 

Statement-number FORMAT X X X 
( format-spec) 

1 Call DEFINE FILE with different format of arguments. 
2 Unformatted only. 

OS/8 
FORT 
IV 

X 

-

X 

-

X 

-

-

X 

3 Record size measured in 16-bit words (= 1/2 storage unit) • 
4 Record size measured in storage units. 
S END= option not allowed. 
6 Warning for i. 
8 END=SI syntax used if record number is outside of file. 
9 REC=r is syntax for direct access. 
10 Also UNIT = u, REC = r. 
l! Also UNIT = u, REC = r, FMT = f. 

5-15 

OS/78 
FORT 
IV 

X 

-

X 

-

X 

-

-

X 

<-PDP-ll-> 
RSX RSX 
RSTS/E RSTS/E 
RT-ll lAS 
!AS 
(FOR) (F77) 

x2,3 x2,3 

X xlO 

x2 xl! 

x2,S xl! 

x2 xl! 

x2,S xl! 

- xlO 

X X 

VAX/ TOPS-I 0 
VMS 

TOPS-20 

VAX/ll 
FORTRAN F-I0 

X X 

X X 

X -

VAX! TOPS-I 0 
VMS 

TOPS-20 

VAX/ll 
FORTRAN F-I0 

x2,3 -

xlO xlO 

xl! xl! 

xl! xl! 

xl! xl! 

xl! xl! 

xlO -

X X 



A COMPARISON OF FORTRAN LANGUAGE FEATURES 

Table 5-14 Indexed I/O Statements 

<-AMERleAN-> 
NATIONAL 
STANDARDS 

FORTRAN 
X3.9 -77 (Full 
1966 Language) 

u = unit nunber 
f = format specifier 
kl = key specifier 
i = key identifier 
sl = statement label 
s2 = statement label 
k = an I/O list 

READ (u[,f] ,KEY=k1[,KEYID=i]) - -
[k] 

READ (u[,f],KEY=k2[,KEYID=i] - -
[ ,END=Sl] [,ERR=S2] ) [k] 

WRITE (u[ ,f]) 1 [k] - -

WRITE (u[,f] [,END=sl] - -
[,ERR=s2] ) [k] 

REWRITE (u[ ,f]) [k] - -

REWRITE (u[ ,f] [,END=sl] - -
[ ,ERR=2]) [k] 

DELETE (u[ ,ERR=s2]) - -

UNLOCK (u[ ,ERR=s2] ) - -
1 Syntax identical to sequential write. 
2 Also UNIT = u, FMT = f. 
3 Also UNIT = u. 

<--PDP-8--> <-PDP-11-> 
RSX RSX 
RSTS/E RSTS/E 

05/8 05/8 05i78 RT-ll lAS 
FORT FORT FORT !AS 
II IV IV (FOR) (F77) 

- - - - x2 

- - - - x2 

- - - - x2 

- - - - x2 

- - - - x2 

- - - - x2 

- - - - x3 

- - - - x3 

5-16 

VAX! TOPS-10 
VMS 

TOPS-20 

VAX/ll 
FORTRAN F-10 

x2 -

x2 -

x2 -

x2 -

x2 -

x2 -

x3 -

x3 -



A COMPARISON OF FORTRAN L~NGUAGE FEATURES 

Table 5-15 Format and Types of Conversion 

<-AMERleAN-> <--PDP-8--> <-PDP-ll-> VAX/ TOPS-IO 
NATIONAL RSX RSX VMS 
STANDARDS RSTS/E RSTS/E TOPS-2O 

FORTRAN as/8 as/8 as/78 RT-11 lAS 
X3.9 -77 (Full FORT FORT FORT lAS VAX/ll 
1966 Language) II IV IV (FOR) (F77) FORTRAN F-10 

A (alFhammeric) X X X X X X X X X 

D (real D decimal exponent) X X - X - X X X X 

E (real E decimal exponent) X X X X X X X X X 

F (real, no exponent) X X· X X X X X X X 

G ( real) X X X X X X X X X 

H (literal) X X X X X X X X X 

, ... , (literal) - X X X X X X X X 

I ( integer) X X X X X X X X X 

L (logical) X X - X X X X X X 

0 (octal) - - - X X X X X X 

P (scale factor) X X - X X X X X X 

Q (record length) X X X X 

T (position indicator in - X - X X X X X X 
record) 

X (skipped data or blank) X X X X X X X X X 

Z (hexadecimal data) - - - - - - X X X 

Format specification in X X - X X X X X X 
arrays 

5-1 7 



A COMPARISON OF FORTRAN LANGUAGE FEATURES 

Table 5-15 Format and Types of COnversion (COnt) 

<-AMERlCAN-) <--PDP-8--) <-PDP-ll-) vAX! TOPS-I 0 
NATIONAL RSX RSX VMS 
STANDARDS RSTS/E RSTS/E TOP5-2 0 

FORTRAN 05/8 OS/8 OS(78 RT-ll lAS 
X3.9 -77 (Full FORT FORT FORT lAS VAX/II 
1966 Language) II IV IV . (FOR) (F77) FORTRAN F-IO 

Carriage Control X X X X X X X X X 

R (right-justified A) - - - - - - - X 

S (control of optional + sign) - X - - - X X X 

/ (record separator) X X X X X X X X X 

: (format scan terminator) - X - - - X X X X 

$ (format separator) - - - X X x3 x3 x3 x3 

BN (blank = null) X X X X 

BZ (blank = zero) X X X X 

SS (suppress optional + sign) X X X X 

SP (print optional + sign) X X X X 

TL (tab left) X X X X 

TR (tab right) X X X X 

3 Used as carriage control character also. 

5-18 



A COMPl\RISON OF FORTRAN LANGUAGE FEATURES 

Table 5-16 Library Functions 

<-AMERICAN-> <--PDP-8--> <-PDP-ll-> VNI./ TOPS-10 
NATIONAL RSX RSX VMS 
STANDARDS RSTS/E RSTS/E TOPS-20 

FORTRAN 05/8 05/8 OS/78 RT-ll lAS 
X3.9 -77 (Full FORT FORT FORT !AS VNI./ll 
1966 Language) II IV IV (FOR) (F77) FORTRAN F-10 

Absolute value: 

Real X X X X X X X X X 

Integer X X X X X X X X X 

Double-precision X X - X - X X X X 

Quad precision - - - - - - - X -
Complex to real X X - X - X X X X 

Double complex to - - - - - - - X x2 
double-precision 

Conversion: 

Integer to real X X X X X X X X X 

Integer to double X 
1 

X X X - - - - -
Integer to quad - - - - - - - X -
Real to integer X X X X X X X X X 

Double to real (obtain X X - X - X X X X 
most significant part) 

Double to integer X 

Quad to real - - - - - - - X -
Real to double X X - X - X X X X 

Real to quad - - - - - - - X -

Byte or integer*2 to X 
integer*4 (zero-extend) 

G-floating to D-floating X X 

D-floating to G-floating X X 

1 Available as implied conversion only. 
2 Argument is a two-element double-precision array. 

5-19 



A COMPARISON OF FORTRAN LANGUAGE FEATURES 

Table 5-16 Library Functions (Cont) 

Complex to real 
(obtain real part) 

Double complex to real 
(real part) 

Complex to real 
(obtain imaginary part) 

Double complex to double 
real (imaginary part) 

Real to complex 

Double real to 
double complex 

Cosine: 

Real (radians) 

Real (degrees) 

Double (radians) 

Quad 

Complex 

Double complex 

Hyperbolic (real and double) : 

Sine 

Cosine 

Tangent 

1 Real only. 
2 Also quad. 
3 Radian and degree versions. 

<-AMERlCAN-> 
NATIONAL 
STANDARDS 

FORTRAN 
X3.9 -77 (Full 
1966 Language) 

X X 

- -

X X 

- -

X X 

- -

X X 

- -

X X 

- -

X X 

- -

X X 

X X 

X X 

<--PDP-8--> 

as/8 as/8 OS/78 
FORT FORT FORT 
II IV IV 

- X -

- - -

- X -

- - -

- X -

- - -

X X X 

- X X 

- X -

- - -

- X -

- - -

- X X 

- X X 

- X X 

4 Arguments are two-element double-precision arrays. 

5-20 

-_ .. -.--~--- .-------~~~~-

<-PDP-ll-> 
RSX RSX 
RSTS/E RSTS/E 
RT-ll lAS 
lAS 
(FOR) (F77) 

X X 

- -

X X 

- -

X X 

- -

X X 

- -

X X 

- -

X X 

- -

- X 

- X 

xl X 

VAX/ TOPS-l 0 
VMS 

TOPS-20 

VAX/ll 
FORTRAN F-IO 

X X 

X -

X X 

X -

X X 

X -

X X 

X X 

x3 X 

x3 -

X X 

X .x4 

x2 X 

x2 X 

x2 X 



A COMPARISON OF FORTRAN LANGUAGE FEATURES 

Table 5-16 Library Functions (Cont) 

Arc-sine (real and double) 

Arc-cosine (real and double) 

Arc-tangent: 

Real 

Ibuble 

Quad 

Quotient of two arguments 

Sine: 

Real (radians) 

Real (degrees) 

Double (radians) 

Quad 

Complex 

Ibuble complex 

1 Real only. 
2 Also quad. 
3 Radian and degree versions. 

<-AMERICAN-> 
NATIONAL 
STANDARDS 

FORTRAN 
X3.9 -77 (Full 
1966 Language) 

X X 

X X 

X X 

X X 

- -

X X 

X X 

- -

X X 

- -

X X 

- -

<--PDP-8--> 

05/8 05/8 OS/78 
FORT FORT FORT 
II IV IV 

- X X 

- X X 

X X X 

- X -

- - -

- X X 

X X X 

- X X 

- X -

- - -

- X -

- - -

4 Arguments are two-element double-precision array. 

5-21 

<-PDP-ll-> 
RSX RSX 

"RSTS/E RSTS/E 
RT-ll lAS 
IAS 
(FOR) (F77) 

- X 

- X 

X X 

X X 

- -

X X 

X X 

- -

X X 

- -

X X 

- -

VAX! TOP5-l0 
VMS 

TOP5-20 

VAX/ll 
FORTRAN F-1O 

x2,3 X 

x2,3 X 

. x3 X 

x3 X 

x3 -
x3 X 

X X 

X X 

x3 X 

x3 -

X X 

X x4 



A COMPARISON OF FORTRAN LANGUAGE FEATURES 

Table 5-16 Library Functions (Cont) 

<-AMERlCAN-> <--PDP-8--> <-PDP-ll-> Vl\I../ TOPS-10 
NATIONAL RSX RSX VMS 
STANDARDS RSTS/E RSTS/E TOPS-20 

FORTRAN 05/8 05/8 OS/78 RT-II lAS 
X3.9 -77 (Full FORT FORT FORT lAS Vl\I../11 
1966 Language) II IV IV (FOR) (F77) FORTRAN F-IO 

Tangent - X X X X - X X X 

Cotangent - - - - - - - - X 

Logical functions: 

lAND - - - - - x2 x2 x2 x2 

IOR - - - - - x2 x2 x2 x2 

lEOR 2 x2 x2 x2 - - - - - X 

Nar - - - - - x2 x2 x2 x2 

Error function - - - - - - - - -

Garrrna function - - - - - - - - -

Log garrana - - - - - - - - -

Switch register - - X X - X X - -

Complex conjugate X X - X - X X xl X 

positive difference X X - X X X X X X 
(ul-Min(u1 ,u2» 

1 Also double complex. 
2 Available in all expressions as .AND., .OR., .XOR., and .NOT. operators for integer values. 

5-22 



A COMPARISON OF FORTRAN LANGUAGE FEATURES 

Table 5-16 Library Functions (Cont) 

<-AMERICAN-> <--PDP-8--> <-PDP-ll-> VAX/ TOPS-l 0 
NATIONAL RSX RSX VMS 
STANDARDS RSTS/E RSTS/E TOPS-20 

FORTRAN OS/8 OS/8 OS/78 RT-ll lAS 
X3.9 -77 (Full FORT FORT FORT lAS VAX/ll 
1966 Language) II IV IV (FOR) (F77) FORTRAN F-IO 

Bit set - - - X -
Bit test - - - X -
Bit clear - - - X -
Shift - - X X -
Circular shift - - - X -
Insert bits - - - X -
Move bits - - - X -
Exponential: 

Real X X X X X X X X X 

Double X X - X - X X X X 

Quad - - - - - - - X -
Complex X X - X - X X X X 

Double complex - - - - - - - X xl 

Logarithm: 

Real X X X X X X X X X 

Double X X - X - X X X X 

Quad - - - - - - - X -
Complex X X - X - X X X X 

Double complex - - - - - - - X xl 

1 Arguments are two-element double-precision arrays. 

5-23 



A COMPARISON OF FOR'fRAN LANGUAGE FEATURES 

Table 5-16 Library Functions (Cont) 

<-AMERlCAN-> <--PDP-8--> <-PDP-ll-> VAX/ TOPS-1 0 
NATIONAL RSX RSX VMS 
STANDARDS RSTS/E RSTS/E TOPS-20 

FORTRAN 05/8 05/8 OS/78 RT-ll !AS 
X3.9 -77 (Full FORT FORT FORT lAS VAX/ll 
1966 Language) II IV IV (FOR) (F77) FORTRAN F-IO 

Square root: 

Real X X X X X X X X X 

Double X X - X - X X X X 

Quad - - - - - - - X -

Complex X X - X - X X X X 

Double complex - - - - - - - X xl 

Truncation: 

Real to real X X X X X X X X X 

Real to integer X X X X X X X X X 

Double to integer X X - X - X X X X 

Quad to integer - - - - - - - X -

Real X X - X X X X X X 

Integer X X X X X X X X X 

Double-precision X X - X - X X X X 

1 Arguments are two-element double-precision arrays. 

5-24 



.~ COMPARISON OF FORTRAN LANGUAGE FEATURES 

Table 5-16 Library Functions (Cont) 

<-AMERICAN-> <--PDP-8--> <-PDP-ll-> VAX/ TOPS-l 0 
NATIONAL RSX RSX VMS 
STANDARDS RSTS/E RSTS/E TOPS-20 

FORTRAN as/8 as/8 OS/78 RT-ll lAS 
X3.9 -77 (Full FORT FORT FORT lAS VAX/II 
1966 Language) II IV IV (FOR) (F77) FORTRAN F-I0 

Maximum value X X - X X X X X X 
(Number of arguments ~2 
for all functions) 

Minimum value X X - X X X X X X 
(Number of arguments ~2 
for all functions) 

Transfer of sign: 

Real X X - X X X X X X 

Integer X X - X X X X X X 

Double-precision X X - X - X X X X 

Quad precision - - - - - - - X -
Test sense switch - - - X - X X X X 

Random number - - - - - X X X X 

Convert sign magnitude to - - - - - - - - -
2s complement and vice versa 

Remainder of time limit - - - - - - - - X 

DIVERT run time error messages X 
to a file 

ERRSET controls handling of X 
error conditions 

DATE, TIME X 

TRACE X 

5-25 





ANSI-77 FORTRAN Information Document 
EY-1233E-ID-OOOl 

Reader's Comments 

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of our 
pUblications. 

What is your general reaction to this manual? In your jUdgment is it complete, accurate, well organized, well 
written, ctcJIs it easy to use? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

What faults or errors have you found in the manual? __ ~~_~~~ ___ ~~_~_~_~~_ 

Does this manual satisfy the need you think it was intended to satisfy? _~~_~~_~~_~~~_ 

Does it satisfy your needs? _~~~~~~~~~_~~_ Why? _________________________ __ 

o Please send me the current copy of the Technical Documentation Catalog, which contains information on 
the remainder of DIGITAL's technical documentation. 

Name ~ ______ ~ _______ _ Street _~~~~~~~~~~~~~~~~_ 
Title City _~ _______________ _ 
Company _______________ __ State/Country _________________ _ 

Department _________ ~~~ ___ Zip 

Additional copies of this document are available from: 

Digital Equipment Corporation 
ESD&P Order Processing 
12A Esquire Road 
North Billerica, MA 01862 

Order No. EY-1233E-ID MRO 



Do Not Tear - Fold Here and Staple 

I II II I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO.33 MAYNARD, MA. 

POSTAGE WILL BE PAID BY ADDRESSEE 
I 

Digital Equipment Corporation 
Educational Services/Quality Assurance 
12 Crosby Drive (BUO/E08) 
Bedford, MA 01730 

No Postage 

Necessary 

if Mailed in the 

United States 





Digital Equipment Corporation • Bedford, Ma. 01730 


