
February 1979

This document describes how to design and code procedures so that they

can be installed in an object module library, or in a shareable image. It

includes the standards and recommendations for modular programming

in any language.

VAX-11

Guide to Creating

Modular Library Procedures

Order No. AA-H500A-TE

SUPERSESSION/UPDATE INFORMATION: This is a new document for this release

OPERATING SYSTEM AND VERSION: VAX/VMS V1.5

SOFTWARE VERSION: VAX/VMS V1.5

To order additional copies of this document, contact the Software Distribution

Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First printing, February 1979

The information in this document is subject to change without notice

and should not be construed as a commitment by Digital Equipment

Corporation. Digital Equipment Corporation assumes no responsibility

for any errors that may appear in this document.

The software described in this document is furnished under a license

and may only be used or copied in accordance with the terms of such

license.

No responsibility is assumed for the use or reliability of software on

equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright C) 1979 by Digital Egquipment Corporation

The postage-~prepaid READER'S COMMENTS form on the last page of this

document requests the user's critical evaluation to assist us in pre-

paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem~-10 MASSBUS

DEC DECtape OMNIBUS

PDP DIBOL 0S/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS

COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8

‘DDT " LAB=§" TYPESET-11

DECCOMM DECSYSTEM-20 TMS-11

ASSIST-11 RTS-8 ITPS~10

VAX VMS SBI

DECnet IAS PDT

DATATRIEVE TRAX

CONTENTS

Page

PREFACE ix

CHAPTER 1 INTRODUCTION 1-1

1.1 USING LIBRARIES WITH VAX/VMS 1-1

1.1.1 DIGITAL~-Supplied Libraries 1-3
1.1.2 User-Created Object Libraries 1-4
1.1.3 User-Created Shareable Images 1-5

1.1.4 Linking Programs to Run-Time Libraries 1-6
1.2 DESIGNING AND CODING MODULAR PROCEDURES 1-7

1.2.1 Advantages of Modular Programming 1-8
1.2.2 Modular Programming Standards 1-9
1.2.3 Storage 1-9
1.2.4 Naming Standards and Recommendations 1-9

1.2.5 Process-wide Resource Allocation 1-9
1.2.6 Use of System Services 1-9

1.2.7 Signaling and Condition Handling 1-10

1.2.8 AST-Reentrant Procedures 1-10
1.2.9 Position-Independent Code 1-10

1.2.10 Transfer Vectors 1-10

1.3 CREATING AND MODIFYING LIBRARIES 1-10

1.3.1 Creating and Updating Object Libraries 1-11

1.3.2 Creating Shareable Images 1-11
1.3.3 Updating Shareable Images 1-11

CHAPTER 2 DESIGN OF MODULAR PROCEDURE INTERFACES 2-1

2.1 CHECKLIST OF DESIGN AND CODING STEPS 2-1

2.2 PROCEDURE NAMES 2-3
2.2.1 Facility Names 2-3
2.2.2 Condition Value Symbols 2-4

2.2.3 Creating Your Own Facilities 2-4

2.3 EXPLICIT PARAMETERS 2~4
2.3.1 Parameter Characteristics 2-4

2.3.2 Library Facility Passing Mechanisms 2-5
2.3.3 String Descriptors 2-6

2.3.4 Optional Parameters 2-7

2.3.5 Order of Parameters 2-7

2.3.6 Error and Condition Values 2-7
2.4 IMPLICIT PARAMETERS 2-8

2.4.1 Implicit Parameters. Allocated by the

Calling Program ' 2-8

2.4.2 Implicit Inputs Allocated by the Called

Procedure 2-9

2.5 HOW TO AVOID IMPLICIT INPUTS, - 2-10

2.5.1 Combine Procedures Into-Oneiww@ 2-11

2.5.2 Designating Respons1b111ty to the Galling.

Program 2-11

2.5.2.1 Calling Program Allocates Procedure

Storage 2-12

2.5.2.2 Calling Program Passes Pointer 2-13

2.5.2.3 Calling Program Passes a Process-Wide

Identifier 2-14

iii

CONTENTS (Cont.)

Page

2.6 CONTROL OF HUMAN READABLE OUTPUT 2-14

2.7 TIMER AND RESOURCE ALLOCATION PROCEDURES 2-15

2.7.1 SHOW Entry Point 2-15

2,7.2 STAT Entry Point 2-16

2.8 DOCUMENTATION OF PROCEDURES AND MODULES 2-16

2.8.1 Write a Module Description 2-16

2.8.2 Write a Procedure Description 2-18

CHAPTER 3 USE OF STORAGE 3-1

3.1 TYPES OF STORAGE 3-1

3.1.1 Static Storage 3-1

3.1.2 Stack Storage 3-2

3.1.3 Heap Storage 3-2

3.1.4 Summary of Storage Use 3-3

3.2 CHOOSING A STORAGE TYPE 3-3

3.3 USING STATIC STORAGE 3-5

3.3.1 Pushing Down the Contents of Static Storage 3-5

3.3.2 Caller Passes the Address of Storage 3-6

3.3.3 Allocating Process-Wide Identifiers 3-7

3.3.4 Using Static Storage in Procedures Not

Needing to _Retain Results 3-8

3.4 USING STACK STORAGE 3-8

3.4.1 Using Stack Storage in MACRO 3-8

3.4.2 Using Stack Storage in BLISS 3-9

3.5 USING HEAP STORAGE 3-9

CHAPTER 4 CODING MODULAR PROCEDURES 4-1

4.1 STRUCTURED PROGRAMMING 4-1

4.1.1 Grouping Procedures 4-1

4.1.2 Levels of Abstraction 4-3

4.2 CODING STANDARDS AND RECOMMENDATIONS 4-4

4.2.1 Relocatable Modules (standard) 4-4

4.2.2 Names for Files (recommended) and Modules

(standard) ' 4-4

4.2.3 PSECT Names (standard) 4-4

4.2.4 Using Parameter Definition Files

(recommended) 4-5

4.2.5 Using Symbols vs Numbers (recommended) 4-5

4.2.6 Line Length (recommended) 4-6

4.2.7 Using Uppercase and Lowercase (recommended) 4-6

4.2.8 Using Optional Spaces (recommended) 4-6

4.2.9 Using Block Comments (recommended) 4-6

4.2.10 Using Branch and Jump Instructions in

MACRO (recommended) 4-6

4.3 INITIALIZING MODULAR PROCEDURES 4-7

4.3.1 - Initialization of Storage Areas 4-8

4.3.2 Initialization of Static Storage 4-8

4.3.3 Testing and Setting First-Time Flag 4~8

4.3.4 Making a PSECT Contribution to

LIBSINITIALIZE 4-9

4.4 RESOURCE ALLOCATION 4-10

4.4.1 Use of Storage with Resource-Allocating

Procedures 4-10

4.4.2 Allocating Identification Numbers in MACRO 4-11

4.4.3 Allocating Logical Unit Numbers in FORTRAN 4-11

4.4.4 Process-wide Resources 4-12

iv

Y

CONTENTS (Cont.)

PASSING STRINGS AS PARAMETERS

1 Accepting Input String Parameters

.2 Returning Output String Parameters

3 Passing String Parameters to Other

Procedures

.6 USE OF VAX/VMS SYSTEM SERVICES BY MODULAR

PROCEDURES

Event Flag Services

Asynchronous System Trap (AST) Services

Logical Name System Services

I/0 System Services

Process Control Services

Timer and Time Conversion System Services

Condition Handling System Services

Memory Management System Services

Change Mode System Services

Error Messages

Formatted ASCII Output

RMS System Services

Modular Procedure Notes

INVOKING OPTIONAL USER ACTION ROUTINES

[
.

1d

L4

.
L]

[
L]

L]

.
*

W
N
H
O

b

e

e

M
o

l
e

e
 W
e
)
 W
e
)
 W
e

e

)
 W

 e
)
W
)

e

W
)

’

b
=
t

o
t

e
t

W
O

O
O

S
I

Y
U

W

4

4

4

4

4

4

4

4

4

4

4

4

4

4

CHAPTER 5 SIGNALING AND CONDITION HANDLING

5.1 CONDITION VALUES

5.2 RETURNING A CONDITION VALUE AS A FUNCTION

VALUE

5.2.1 Returning and Checking an Error Status in

MACRO

5.2.2 Returning and Checking an Error Status in

BLISS

5.2.3 Returning and Checking Error Status in

FORTRAN

5.2.4 Condition Values

5.2.5 Defining Condition Value Symbols

5.2.6 Using Global Condition Values in a Calling

Program -

5. SIGNALING ERROR CONDITIONS

5.3.1 LIBSSIGNAL - Signal Exception Condition

5 2 LIBSSTOP - Stop Execution Via Signaling

5 INTERNAL SIGNALING

5 CREATING A PROCEDURE ACTIVATION ENVIRONMENT

6CHAPTER CODING MODULAR AST-REENTRANT PROCEDURES

1l AST INTERRUPTS WITHIN A PROCESS

1.1 AST Routines

2 WRITING AST REENTRANT MODULAR PROCEDURES

3 ELIMINATING RACE CONDITIONS DURING CONCURRENT

ACCESS ‘

.1 Performing all Accesses in one Instruction

3.2 Using "Test and Set" Instructions

3 Keeping a Call-in-progress Count

4 Disabling AST Interrupts

PERFORMING I/0O AT THE AST LEVEL

N

i
1

I

N
N

Lo
t

=

WO

WO

O
O

U

W
I

I
I

I
|

A
U

W

W

A
R
G

A

O
O

N

o
o
t

n

o
o

w
n

CONTENTS (Cont.)

Page

CHAPTER 7 BUILDING MODULAR PROCEDURE LIBRARIES 7-1

7.1 BUILDING THE DEFAULT SYSTEM OBJECT LIBRARY 7-1

7.1.1 Adding to the System Default Object Library 7-1

7.1.2 Accessing the Default System Object Library 7-2

7.2 BUILDING A USER-CREATED OBJECT MODULE LIBRARY 7-3

7.2.1 Accessing a User-Created Object Library 7-4

7.3 BUILDING A USER-CREATED SHAREABLE IMAGE 7-4

7.3.1 Creating Shareable Images in FORTRAN 7-5

7.3.2 Building and Installing a User-Created

Shareable Image 7-6

7.3.3 Accessing a User-Created Shareable Image 7-7

7.4 CREATING AND USING TRANSFER VECTORS 7-7

7.4.1 Building Transfer Vectors 7-7

7.4.2 Using Transfer Vectors 7-8

APPENDIX A VAX-11 MODULAR PROGRAMMING STANDARD A-1

A.l SCOPE OF APPLICABILITY A-1

A.2 FACILITY-INDEPENDENT REQUIRED AND OPTIONAL

(*) PARTS OF THE STANDARD A-2

A.3 FACILITY SPECIFIC REQUIRED AND OPTIONAL

(*) PARTS OF THE STANDARD A-5

A.4 * AST~-REENTRANT PROCEDURES (OPTIONAL) A-7

A.5 * SHAREABLE IMAGES (OPTIONAL) A-8

A.6 * UPWARDS COMPATIBLE SHAREABLE IMAGES

(OPTIONAL) A-8

A.7 MODULAR PROGRAMMING RECOMMENDATIONS (OPTIONAL) A-8

APPENDIX B NAMING CONVENTIONS B-1

B.1 PUBLIC SYMBOL PATTERNS B-1

B.2 OBJECT DATA TYPES B-4

B.3 FACILITY PREFIX TABLE B-5

APPENDIX C NOTATION FOR DESCRIBING PROCEDURE PARAMETERS Cc-1

C.1 ROUTINE INTERFACE TYPES C-1

C.2 NOTATION FOR DESCRIBING PROCEDURE PARAMETERS Cc-2

Cc.2.1 Procedure Parameter Characteristics C-2

C.2.2 Optional Parameters and Default Values C-6

C.2.3 Repeated Parameters C-6

C.2.4 Examples C-6

C.2.5 Summary Chart of Notation Cc-7

INDEX Index-1

FIGURES

FIGURE 1-1 Developing a Program that Calls Library

Procedures 1-2

1-2 DIGITAL-Supplied Libraries 1-3

1-3 Creating an Object Module Library 1-4

1-4 Creating a Shareable Image 1-5

1-5 Linking Programs to Run-Time Libraries 1-6

1-6 Executing an Image that Calls Library

Procedures 1-7

vi

CONTENTS (Cont.)

Page

FIGURES (Cont.)

FIGURE 2-1 How Implicit Inputs Can Violate Modular

Standards 2-9

2=2 Designating Storage Responsibility to the

Caller 2-12

2-3 Example of a Module Description 2-17

2-4 Example of a Procedure Description 2-20

3-1 Use of Storage Types 3-4

4-1 Examples of Modules 4-2

4-2 Levels of Abstraction 4-3

7-1 Adding a User-Created Procedure to the

Default Object Library 7-2

7-2 Development of a User-Created Object Module

Library 7-3

7-3 Creating a Shareable Image 7-5

7-4 Accessing a User-Created Shareable Image 7-6

TABLES

TABLE 2-1 Procedure Parameter Characteristics 2-5

2-2 Parameter Passing Mechanisms Used by Library

Facilities 2-6

2-3 String-Passing Techniques Used by Library

Facilities 2-6

3-1 Summary of Storage Use 3-3

4-1 Methods of Initialization 4-7

4-2 Allocation Methods for Resources 4-12

4-3 Procedure Action Taken on Strings Passed by

Calling Program 4-15

vii

PREFACE

MANUAL OBJECTIVES

This manual is a tutorial gquide to designing and coding modular
procedures written in VAX-11 MACRO, BLISS-32, or FORTRAN IV-PLUS.
Such procedures may be used for general programming or for inclusion

in a procedure library. Such libraries include the system default
object 1library, user-created object 1libraries, or user-created
shareable images.

The guide includes modular programming techniques, required and
optional programming standards and recommendations, and a description

of how to install modular procedures in both DIGITAL-supplied and

user-created libraries.

INTENDED AUDIENCES

This manual 1is intended for advanced system and applications
programmers who are already familiar with VAX/VMS system concepts.
Readers are assumed to be familiar with the VAX/VMS operating system
and proficient in a language supported by VAX/VMS.

STRUCTURE

All chapters in this manual are tutorial.

e Chapter 1 is an introduction that provides an overview of
modular programming and of libraries, the options that you
have in creating your own procedures and 1libraries, and

information required to determine which type of library you
should create.

e Chapter 2 explains how to design and document the interface
between a modular procedure and its calling progranm.

e Chapter 3 describes how procedures use storage and how to
maintain modularity while using different types of storage.

e Chapter 4 describes specific modular coding techniques in

VAX-11 MACRO, BLISS-32, and VAX-1ll FORTRAN IV-PLUS. This
includes required and optional standards for initialization,

resource allocation, passing strings, use of system services;

and invoking user action routines.

e Chapter 5 describes how to signal and return error conditions

from modular procedures,

e Chapter 6 describes programming techniques that allow
asynchronous system traps (ASTs) to occur without conflicting
with executing modular procedures.

ix

e Chapter 7 describes (1) how to insert or replace a procedure

in the system default object library, and (2) how to create

and link with either a user object library or a user shareable

image.

The appendixes provide useful background information:

e Appendix A summarizes the modular standards (both required and

optional) and recommendations. Required standards must be

followed. Optional standards must be followed or documented

as not being followed. Recommendations should be followed,

but are not necessary for procedures to be modular.

e Appendix B presents the notation for describing procedure

parameters.

e Appendix C details the VAX/VMS naming conventions.

ASSOCIATED DOCUMENTS

The following documents are associated with this manual:

e VAX-11 Common Run-Time Procedure Library Reference

Manual AA-DO36A-TE

e VAX/VMS System Services Reference Manual AA-DOl8A-TE

e VAX-11 Linker Reference Manual AA-DOl9A-TE

e VAX-11 FORTRAN IV-PLUS User's Guide AA-DO35A-TE

e VAX-11 FORTRAN IV-PLUS Language Reference Manual AA-DO34A-TE

e VAX-11 MACRO User's Guide AA-DO33A-TE

e VAX-1l1l MACRO Language Reference Manual AA-DO32A-TE

e VAX-11l BLISS-32 User's Guide AA-D942A-RE

e VAX-11l BLISS-32 Language Guide AA-HO1l9A-RE

For a complete 1list of all VAX-1l1 documents, including brief

descriptions of each, see the VAX-11 Information Directory.

CONVENTIONS USED IN THIS DOCUMENT

Unless otherwise noted, all numeric values are represented in decimal

notation.

Unless otherwise specified, all commands terminate with a carriage

return.

Variable information is indicated by lowercase characters; literal

information, which you must enter exactly as shown, is indicated by

uppercase characters.

Brackets ([]) in procedure descriptions indicate optional arguments.

An equal sign after an optional parameter indicates the default value

if you omit the parameter.

Ellipses (...) indicate parameters that can be repeated one or more

times.

Unless otherwise specified, the term MACRO will be used to mean VAX-11
MACRO, the term BLISS will be used to mean BLISS-32, and the term
FORTRAN will be used to mean VAX-11 FORTRAN IV-PLUS.

In diagrams, the following conventions are used:

» control path

—————— - data path

interface

xXi

CHAPTER 1

INTRODUCTION

A procedure is a set of related instructions that performs a
particular task. Typically, it is invoked by executing a VAX-11 CALLS
or CALLG instruction. In MACRO, a procedure begins with a .ENTRY and
terminates with a RET; 1in BLISS, a procedure is declared as a ROUTINE
with the default linkage; in FORTRAN, a procedure is a main program,
subroutine, or function.

A procedure is modular if it can be successfully 1linked and run in
combination with any other modular procedure written by you or other
Programmers. You can design and code modular procedures by following
the standards and recommendations of this book. Modular procedures
may be used for general programming or for inclusion in procedure
libraries.

The linker resolves references to procedures within a library by
searching either the user libraries specified in the LINK command or
the default system libraries. A program can then call 1library
procedures at run time. Figure 1-1 shows the development of a program
that calls one or more procedures in a library. Depending wupon the
options you select when writing modular procedures, you can control
linker access to your procedures and, subsequently, the way procedures
appear at run time. For example, procedures within a shareable image
save phsyical memory and disk space because all user processes access
a single copy.

l.1 USING LIBRARIES WITH VAX/VMS

Procedures can be grouped together in two ways:

e As an object module library. A <call to a procedure in a
module causes the module to be individually copied and linked
to the calling program's object file. The module and the

program then become a single executable image.

e As a shareable image. A call to a procedure in a shareable
image <causes the 1linker to map the entire contents of the
shareable image into the program's executable image.

The following subsections describe the default system libraries and
recommendations for creating both object module 1libraries and
shareable images.

S
N—

SHAREABLE

IMAGES

INTERACTIVE INPUT

e

N—

Figure 1-1

INTRODUCTION

OBJECT

MODULE

LIBRARIES

EDITOR SOURCE
TM~ MODULE(s)

LANGUAGE / FILENAM. XXX
&

ASSEMBLER \ e
t

‘ MODULE(S)

FILENAMLIS FILENAM.OBJ

;i:::/flggg;;;:i/
IMAGE(S)

LINKER

FILENAM.EXE

V

FILENAM.MAP

RUN FILENAM.EXE

r—"
I SHAREABLE

IMAGE

L -

CALLED

OBJECT

MODULES-

EXECUTABLE

IMAGE

N

PROGRAM

OUTPUT

Edit Time

Program is

entered & edited

Compile Time

Edited program

is translated into

an object file

Link Time

The appropriate

hbrary entry points

are made known

to the object module

to form an executable

image

Run Time

With the executable

image aware of the

proper addresses of

the relevant library

procedures in its

virtual address

space, the

image

can call hbrary

procedures at

run time

Developing a Program That Calls Library Procedures

INTRODUCTION

l.1.1 DIGITAL-Supplied Libraries

The VAX-1l Common Run-Time Procedure Library consists of modular

procedures that provide support for components of the VAX/VMS system.
This includes procedures that support the language compilers, as well
as those that are generally useful to programs. Procedures from the

Common Run-Time Procedure Library exist in two forms:

e The default system object module library, STARLET.OLB,

contains all procedures,

® The default system shareable image, VMSRTL.EXE, contains a
subset of the VAX-11l Common Run-Time Procedure Library that is

made shareable in order to save memory.

Figure 1-2 shows the VAX/VMS libraries including the default system
object library and shareable image, STARLET.OLB and VMSRTL.EXE
respectively.

SYSTEM

SERVICES

SUPPORT

SYSTEM DEFAULT

RMS SHAREABLE

PPOR ESUPPORT FUNTIME IMAGE LIBRARY

L'%’j‘EARTY (SHAREABLE SUBSET OF
MOODUEES N RUN-TIME LIBRARY LINKED

GLOBAL N AS AN IMAGE)

SYMBOLS

SYS$ LIBRARY;VMSRTL_EXE

CUSTOMER-SUPPLIED .

OBJECT MODULES

SYSTEM DEFAULT OBJECT LIBRARY VAX-11 COMMON RUN-TIME

SYS$ LIBRARY: STARLET.OLB PROCEDURE LIBRARY

Figure 1-2 DIGITAL-Supplied Libraries

The 1linker automatically searches both of these 1libraries for
unresolved references to global symbols during a LINK command. First,

the linker searches VMSRTL.EXE, which 1is a shareable subset of
STARLET.OLB. If the linker resolves a reference with this shareable

image, it will map (as opposed to copying) the entire shareable image
into the executable program image being created.

After searching VMSRTL.EXE, the linker searches the default object
library STARLET.OLB for any remaining unresolved references. If the
linker finds one, it copies the pertinent module into the executable
image.

1-3

INTRODUCTION

1.1.2 User~Created Object Libraries

Figure 1-3 shows the development of a user-created object library.

USER OBJECT

MODULE

A.0OBJ

USER OBJECT

MODULE

B.OBJ

USER OBJECT

MODULE

C.0BJ

$ LIBRARY/CREATE MY LIB A,B,C
LIBRARIAN

[,obj-module.OBJ...]

Cb
USER-CREATED

OBJECT MODULE

LIBRARY

MYLIB.OLB

Figure 1-3 Creating an Object Module Library

A user-created object module library consists of procedures written by
the wuser 1in any programming language. You can create an object

library from object files using the LIBRARY command (see the VAX/VMS

Command Language User's Guide). The default file type for object

library files is OLB. The default file type for input object files is

OBJ.

You can either explicitly or implicitly include library modules in the

program being created:

¢ Implicit inclusion occurs when a module specified in the LINK

command refers to a global symbol defined in the library that

the linker searches.

& Explicit inclusionoccurs- when you name -a module- with the

/INCLUDE qualifier after the library name in the LINK command.

The linker follows these conventions in using object libraries:

e The linker processes all input files, including libraries, 1in

the sequence in which you name them.

e If you specify both the /LIBRARY and /INCLUDE qualifier after

a library file specification, the linker includes the named

module first and then, if necessary, searches the library.

INTRODUCTION

e The linker searches the default system library for unresolved
references after it has processed all named input files,
including user libraries.

More information on the linker's use of 1libraries may be found in

Section 4.2 of the VAX-11 Linker Reference Manual.

1.1.3 User-Created Shareable Images

Figure 1-4 shows the development of a user-created shareable image.

OBJECT

MODULE.OBJ

OBJECT

MODULE.OBJ

OBJECT
MODULE.OBJ

>
The linker can

accept either of USER-CREATED
these forms OBJECT MODULE
to createa LIBRARY

shareable-image

MYLIB.OLB

LINKER $ LINK/SHAREABLE image-specs

/’_‘L\
"~

USER-CREATED

SHAREABLE

IMAGE

Figure 1-4 Creating a Shareable Image

A user-created shareable image may consist of a subset of a
user-created object 1library. It contains modular procedures usually

written in position-independent code that are used frequently enough

to warrant being shared among processes. You can specify the

user-created shareable image as input to the 1linker by using the

/OPTIONS qualifier after the name of the options file in the LINK
command. Section 8.1 of the VAX-1l Linker Reference Manual details

the benefits and uses of shareable images.

1.1.4

INTRODUCTION

Linking Programs to Run-Time Libraries

PROGRAM

OBJECT MODULES

PROGRAM.OBJ

USER-CREATED USER-CREATED DEFAULT DEFAULT
SHAREABLE OBJECT MODULE SHAREABLE OBJECT MODULE

IMAGE LIBRARY IMAGE LIBRARY

MYSHR.EXE MYLIB.OLB VMSRTL.EXE STARLET.OLB

i

LINKER

$LINK PROGRAM, MYLIB/LIBRARY, LIBOPT/OPTIONS

where file LIBOPT. OPT contains the command:
TN MYSHR/SHAREABLE

PROGRAM.EXE

OBJECT MODULES
FROM OBJECT

LIBRARIES

REFERENCES TO

SHAREABLE

Figure 1-5 Linking Programs to Run-Time Libraries

Figure 1-5 shows how each type of run-time library 1is 1linked to a
program

command

l.

2.

object module to form an executable image. When the link
shown is given, the following events occur:

PROGRAM.OBJ is linked into the image.

MYSHR.EXE, the wuser-created shareable image specified
indirectly with the options file LIBOPT.OPT, is
unconditionally included. References (if any) are resolved
and address space is allocated.

MYLIB.OLB, the user-created object library specified in the
LINK command, 1is searched. 1If references are resolved, the
linker will include a copy of the modules resolving those
references in the image. . - -

VMSRTL.EXE, the default shareable image, is automatically
included if and only if it resolves any remaining unresolved
references.l

1 You can use the /NOSYSSHR qualifier to request the linker to omit
the search of the default shareable image.

INTRODUCTION

5. STARLET.OLB, the default object 1library, 1is automatically
searched if any unresolved references remain.l If references
are resolved, the linker will include a copy of the modules

in the image that resolve those references.

The resulting executable image can be executed in a user process by

using the RUN command. This is shown in Figure 1l-6.

USER PROCESS ANOTHERUSER PROCESS

PROGRAM1.OBJ

PROGRAM.OBJ r N Arp------ -

|
USER-CREATED |

SHAREABLE IMAGE \ JRL |

(Ir———==-- A MYSHR. EXE) : :
I |

| | ~ / \|b====== -
| | ((r----°-°~ i

r—-——==- h
| | | |

ooz zocs el P | i
. ____ 0 | |
r—-——=—=-=-- i

N [. J
| | .

| | -
, | TRANSFER VECTORS

L Ny SHAREABLE SUBSET

—————— OF VAX-11 E
COMMON RUN-TIME OBJECERNC')OMDUL S

OBJECT MODULES PROCEDURE LIBRARY
FROM STARLET.OLB

VMSRTL. EXE

STARLET.OLB .
AND

MYLIB.OLB

PROGRAM. EXE PROGRAM1.EXE

Figure 1-6 Executing an Image That Calls Library Procedures

Note that copies of the modules taken from STARLET.OLB and MYLIB.OLB

are bound with each image that links with the object libraries, while

the shareable modules in VMSRTL.EXE and MYSHR.EXE reside in a single

image file that is shared.

1.2 DESIGNING AND CODING MODULAR PROCEDURES

To ensure that your procedures are compatible with all other

procedures and programs executing on VAX/VMS, you should follow the

programming standards and recommendations described in this manual.

1 You can use the /NOSYSLIB qualifier to request the linker to omit
the search of the default shareable image and the default object

module library.

INTRODUCTION

Modular programming standards are:

® A subset of the VAX-1l Procedure Calling Standard

® Additional standards and recommendations for modular
programming

They are used internally by DIGITAL in the development of VAX/VMS
library software.

Any modular procedure can be placed in an object library, a shareable
image, or both.

It is recommended that any procedure placed in a shareable image also
be placed in an object module library. Then in the rare case that a
very large program is close to the virtual memory 1limit on your
system, Yyou can choose to include only called modules from the object
library rather than allocating virtual memory for the entire shareable
image.

1.2.1 Advantages of Modular Programming

The modular programming standards described in this manual offer
several advantages over the practice of writing a complex program as a
single source module. If you follow all the required standards, you
will gain the following advantages:

® You can use any modular procedure in any program.

® You can decide to add a modular procedure to a library at any
time.

® You do not have to rewrite common algorithms every time a new
program needs them.

\

e You can divide a complex program into simpler procedures in
order to lower development time, reduce complexity, and
increase reliability.

e You canh replace a procedure with another without modifying the
calling program.

® You can add new procedures easily.

® You can control process-wide resource allocation.

® You can use different programming languages to write different
procedures for a progranm.

If you follow the optional standards specified in this manual, you can
also gain these additional advantages:

e Shareable library procedurescan save memory and link time.

® AST-reentrant procedures can be called by AST-level
procedures.

e Modular procedures that conform to all coding recommendations
are similar in format.

® Structured programming recommendations enable your procedures
to work together in a logical pattern.

INTRODUCTION

1.2.2 Modular Programming Standards

Appendix A lists the modular programming standards explained 1in this
manual. There are three types of standards:

® Required standards.

e Optional standards that are either followed or must be noted
as not followed in the procedure's documentation.

e Recommendations that make it easier for your modules to be

used by others. However, not following the recommendations

does not affect modularity.

The following sections describe the major aspects of the modular

programming standards.

1.2.3 Storage

Most procedures use some type of storage to retain information either

during a single procedure activation or between successive
activations. While any modular procedure can use any of three types

of storage, there are certain rules that are followed. These rules

are explained in Chapter 3.

1.2.4 Naming Standards and Recommendations

This manual describes the required naming standards for procedures,
modules, and program sections (PSECTS). It also describes the naming
recommendations for file names. These are described in Sections 2.2

and 4.2.

1.2.5 Process-wide Resource Allocation

Process-wide resources are those resources that may be allocated as

needed to any procedure in a process. They include blocks of virtual

memory, dynamic string space, VMS event flags, and FORTRAN logical
unit numbers. Moreover, you can create additional resources. Modular

procedures follow the standard of allocating resources by calling a
resource—-allocating procedure rather than allocating the resource

directly themselves. This prevents conflicts that could occur if two
procedures were to allocate the same resource. The available
resources and allocating methods are described in Section 4.4.

1.2.6 Use of System Services

Modular procedures may use system services that conform to the modular

programming standards. Section 4.6 lists all the system services and
indicates those that may be used by modular procedures.

INTRODUCTION

1.2.7 8ignaling and Condition Handling

Modular procedures follow certain standards to indicate errors. For
example, all modular procedures either return a condition value or
call system-signaling procedures to output all error messages. The
programming standards for signaling and condition handling are
discussed in Chapter 5. 1In addition, techniques of signaling between
related procedures are described.

1.2.8 AST-Reentrant Procedures

VAX/VMS provides a mechanism that you use to interrupt the execution
of an 1image in response to an external asynchronous event. When the
event occurs, a user-supplied asynchronous system trap (AST) routine
is called.

An AST-reentrant procedure 1is capable of being interrupted and
executed again before resuming successfully at the point of the
interrupt. Thus, they may be called from AST-level and/or
non-AST-level routines. Most modular procedures are designed to be
AST-reentrant. Chapter 6 describes how to write AST-reentrant modular
procedures.

1.2.9 Position-Independent Code

A position-independent piece of code will execute correctly no matter
where it 1is placed in the virtual address space after it is linked.
All shareable 1images are comprised of position-independent code.
However, shareable images can have data that may or may not be
position-independent,

Position-independent code is discussed in detail in Section 8.2.6 of
the VAX-11] Linker Reference Manual, and in some language reference
manuals.

1.2.10 Transfer Vectors

Transfer vectors are used to prevent the need to relink images that
call procedures 1in a shareable image every time a new version of the
image is installed. You can add transfer vectors to procedures in a
shareable image at any time, as explained in Chapter 7.

1.3 CREATING AND MODIFYING LIBRARIES

You can add or modify procedures in the default system object library
(STARLET.OLB), your own object library, or your own shareable image.

Adding procedures to existing libraries and installing your own
libraries is discussed in Chapter 7.

. INTRODUCTION

1.3.1 Creating and Updating Object Libraries

You can create or add modules to an object module library, including

the default system object 1library STARLET.OLB, with the LIBRARY

command as described in Chapter 7.

You can replace any module 1in any object library, including

STARLET.OLB, also with the use of the LIBRARY command. Modules in

STARLET.OLB may be replaced by examining the source files (available

from DIGITAL) and substituting your module for the DIGITAL-supplied

one.

1.3.2 Creating Shareable Images

You create a shareable image primarily to optimize storage space and

access time. This involves the use of code that many users can share.

Specific advantages are:

e Conservation of disk storage space

e Reduction of paging I/0

e Conservation of memory at run time

e Reduction in link time since a shared library is pre-linked

If your shareable image is written in position-independent code and

you have provided transfer vectors, the following advantage may also

be gained:

e Elimination of the need to relink all images that called the

old version when you install a new version.

You should observe the following rules-of-thumb when deciding whether

to create a shareable image:

e The combined code of all procedures in the planned shareable

image is at least 10K bytes.

e The number of potential simultaneous users for these

procedures is three or more.

1.3.3 Updating Shareable Images

If you wish to add or modify anything in a shareable image, it is

necessary to reinstall the entire 1image. You may do this to any

user-created shareable image.

You cannot add or modify anything in the system default shareable

image VMSRTL.EXE. However, by making a user-created shareable image

that contains VMSRTL.EXE, you can modify it and substitute it for

VMSRTL .EXE.

To substitute a user-created shareable image, OURSHRRTL.EXE, for

VMSRTL.EXE, the following command is used:

$COPY OURSHRRTL.EXE SYSSLIBRARY:VMSRTL.EXE/NEW_VER

CHAPTER 2

DESIGN OF MODULAR PROCEDURE INTERFACES

The interface between a procedure and its caller must be modular so

that any procedure can fit together with any other group of procedures

in a program. If you follow the design techniques described in this

chapter, your procedures will operate successfully with other modular

procedures.

The following design aspects are discussed:

® Checklist of design and coding steps

® Procedure names

e Explicit parameter types and passing mechanisms

e Implicit parameters

e Documentation of procedure functions

e Control of human readable output

e Timer and resource allocation procedures

This chapter contains required standards that must be followed to
ensure modularity, optional standards that require documentation if

not followed, and recommendations that are suggested to ensure

uniformity and ease of use.

2.1 CHECKLIST OF DESIGN AND CODING STEPS

The following checklist is provided to help you:

e Design the interface between the procedure and its caller.

e Design modular procedures.

e Code procedures.

The section numbers indicate where detailed information may be found.

1. Select procedure name(s) and facility name (see Section 2.2).

2. Define a procedure's explicit parameters (see Section 2.3).

lo.

11.

12.

13.

14,

DESIGN OF MODULAR PROCEDURE INTERFACES

Choose the following <characteristics for each explicit

parameter (see Sections 2.3.1 and 2.3.2):

- Access Type

- Data Type

- Passing Mechanism

- Form

Place the parameters in the calling sequence in the proper

order (see Section 2.3.4).

Decide whether the procedure will retain information from one

activation to another (see Section 2.4).

Determine how procedures will indicate error and success

conditions (see Section 2.3.6 and Chapter 5).

Provide optional action routines if your procedure produces

human readable output to a character imaging device (see

Section 2.6).

Provide statistic and status entry points for any resource

allocation procedure (see Section 2.7).

Write documentation for procedures and modules (see Section

2.8):

~ Write module descriptions

(see Section 2.8.1)

- Write procedure descriptions

(see Section 2.8.2)

Decide how each procedure will wutilize storage. Determine
the type of storage to be used and steps required to maintain
modular standards (see Chapter 3).

Make structured programming considerations (see Section 4.1).

Decide:

- The number of procedures involved

-~ How they interact with each other

- How they are arranged in modules

- Whether they are potentially shareable

Check Appendix A for the complete list of modular programming

standards before coding procedures.

Determine what resources your procedure will need. If a

resource allocation procedure does not exist for the
resources you need, write one and add it to STARLET.OLB (see

Section 4.4).

Code procedgre to handle error conditions (see Chapter 5).

Decide whether to make procedures AST-reentrant (see Chapter
6).

Follow coding standards and recommendations while writing

code (see Section 4.1). Be sure to follow standards in the

following areas:

~ Initialization (if needed)

(see Section 4.3)

- Use of system services (if needed)

(see Section 4.6)

DESIGN OF MODULAR PROCEDURE INTERFACES

If you are passing string parameters, see Section 4.5.

15. Debug procedures while maintaining modular standards.

16. (optional) Add debugged procedures to an object module

library and/or install as a shareable image (see Chapter 8).

2.2 PROCEDURE NAMES

Entry point naming standards follow the VAX-1l1 global symbol-naming

standards. A global symbol takes the general form:

fac$symbol (DIGITAL-supplied)

fac_symbol (user-created)

where:

fac is, typically, a 3-character facility name.

symbol is a 1 to n-character symbol, such that the entire global

symbol does not exceed 15 characters.

A symbol generally consists of a verb followed by the object that

together describe the procedure's action, such as LIB$SGET_VM. (Get

Virtual Memory). The facility name and the character symbol are

separated by a single dollar sign if the procedure is

DIGITAL-supplied, and by an underscore if the procedure is

user-created. This convention avoids conflict between DIGITAL and

user procedure names.

Some procedures are not intended to be part of the modular interface

and are only internally available within a set of procedures. These

procedures' names are differentiated by a double dollar sign 1if they

are DIGITAL-supplied and by a triple wunderscore if they are

user-created. Note that three underscores are used to differentiate

these user-created internal global entry point names from user-created

condition value symbols which have two underscores.

2.2.1 Pacility Names

The DIGITAL-defined facility names are registered in a

DIGITAL-maintained system-wide registry. The following facility names

are used in the Common Run-Time Procedure Library:

LIB General purpose

MTH Mathematics

oTS Language-independent support

FOR FORTRAN support

BLI BLISS transportable support

B32 BLISS-32 support

For language support, the facility name is generally the same as the

default file type for the 1language. Appendix B contains other

available facility names.

You may also create your own facility names if none of the above are

appropriate.

DESIGN OF MODULAR PROCEDURE INTERFACES

2.2.2 Condition Value Symbols

Condition wvalue symbols are wused to symbolically define wunique

system-wide 32-bit condition wvalues that are used in return status

codes and signal argument 1lists, and as message identifiers.

Condition value symbols have the general form:

fac$_symbol (DIGITAL-supplied)

fac___symbol (user-created)

A unique 12-bit facility number is assigned to each facility name for

the facility number field in a condition value.

2,2.3 Creating Your Own Facilities

You can create your own facilities by means of a facility name and

facility number. Bit 27 (STS$V_CUST_DEF) of a condition value

indicates whether the condition value is wuser- or DIGITAL-supplied.

This bit must be 1 if the facility number is user-created.

2.3 EXPLICIT PARAMETERS

Since explicit parameters are a procedure's ©primary interface with
everything outside of itself, standards for parameter types and

passing mechanisms must be carefully followed to maintain a modular

interface.

2.3.1 Parameter Characteristics

Every parameter has the following characteristics:

Characteristic Example

® Access type read, write, modify....

e Data type longword, floating, ASCII text,...

e Passing mechanism by-value, by-reference, by-descriptor,...

e Data form scalar, array,...

Table 2-1 1lists the possible alternatives that each of these

characteristics can have. Each alternative is described in detail in

Appendix C of this manual. This 1list is complete for all

characteristics allowed by the VAX-11l Procedure Calling Standard.

shorthand notation that is used in documentation to record the
characteristics of each parameter. The format is:

The letter abbreviations next to each characteristic indicate a

<parameter name>.<access type><data typed>.<passing mechanism><data form>

For example the documentation for the calling sequence of

LIB$GET INPUT is:

ret-status.wlc.v = LIBSGET INPUT (get-string.wt.dx [,prompt-string.rt.dx])

DESIGN OF MODULAR PROCEDURE INTERFACES

Table 2-1

Procedure Parameter Characteristics

<access type> <data type>

c call after stack unwind

f Function call (before return)

3 JMP (after unwind) access a Absolute virtual address

m Modify access arb Byte containing relative virtual address

r Read-only access arl Longword containing relative virtual

s Call without stack unwinding address

w Write-only access arw Word containing relative virtual address

b Byte integer (signed)

bu Byte logical (unsigned)

c Single character

cp Character pointer

d Double precision floating-point

f Single precision floating-point

fc Complex floating-point

h Integer value for counters

1 Longword integer

1c Longword return status

lu Longword logical (unsigned)

nu Numeric string, unsigned

nl Numeric string, left separate sign

nlo Numeric string, left overpunched sign

nr Numeric string, right separate sign

nro Numeric string, right overpunched sign

nz Numeric string, zeroed sign

o) Packed decimal string
q Quadword integer (signed)

qu Quadword integer (unsigned)

t Text (character) string

u Smallest unit of addressable storage

v Bit (variable bit field)

w Word integer (signed)

wu Word logical (unsigned)

X Data type in descriptor

p4 Unspecified

zi Sequence of instruction

zem Procedure entry mask

<{passing mechanism> <parameter form>

d By-descriptor - Scalar

r By-descriptor a Array reference or descriptor

v By-reference d Dynamic string descriptor

p Procedure reference or descriptor

s Fixed lengthflstring descriptor
X Class type in descriptor

2.3.2 Library Facility Passing Mechanisms

Library facilities usually have a distinct interface style for passing

mechanisms and data forms. If you use one of the facilities that has

already established such styles, you should follow the same

quidelines. For éxample, the calling program passes all input scalars

to LIB facility procedures by-reference. Table 2-2 summarizes the

passing mechanisms used with each data form for the library facilities

shown.

DESIGN OF MODULAR PROCEDURE INTERFACES

Table 2-2

Parameter Passing Mechanisms used by Library Facilities

Data Forms By-Value By-Reference By-Descriptor

Scalars

Input OTS,FOR LIBMTH -

Output - OTS,FOR,LIB -

Arrays

Input — OTS,FOR,LIB FOR

Output — OTS,FOR,LIB FOR

Strings

Input - — LIB, FOR, OTS

Output

Fixed length - — LIB, FOR, OTS

Dynamic - - LIB, OTS

2.3.3 String Descriptors

The calling program passes all strings by-descriptor to every library
facility. The descriptor for the string(s) must have a length, and

pointer specified as described in the VAX-11 Procedure Calling
Standard (see Section C.8 in VAX-1l Common- Run-Time Procedure Library

Reference Manual for complete description). Table 2-3 1lists the

string-passing techniques used for the library facilities shown. (See

Section 4.5 for passing strings as output parameters.

Table 2-3

String-Passing Techniques Used by Library Facilities

String Type String Descriptor Fields

Library

Class Length Pointer Facility

Input Parameter to Procedures

Input String OTS,FOR

Passed By-Descriptor Ignored Read Read LIB

| Output From Procedures: (class assumed by cailed procedure)
J

Output String

Passed-By-Descriptor Ignored Read Read FOR

(fixed-length)

Output String

Passed by Descriptor Ignored | Always Written | May Be Written LIB,OTS

(dynamic)

Output Parameter from Procedures: (class specified by calling program)

Output String

(unspecified Read Read Read LIB,0TS

(DSC$K_CLASS_Z)

Output String

(fixed length) Read Read Read LIB,OTS

(DSC$K_CLASS_S)

Output String

(dynamic) Read Always Written | May Be Written LIB,OTS

(DSC$K_CLASS_D)

DESIGN OF MODULAR PROCEDURE INTERFACES

2.3.4 Optional Parameters

An optional parameter is a parameter that the calling program can

choose to omit. The calling program indicates the omission by passing

argument list entries containing zero. If it is a trailing optional

parameter, the <calling program can pass a shortened list or a zero

argument list entry.

Note that for parameters passed by-value, there 1is no distinction

between passing a zero value or passing a zero argument list entry.

2.3.5 Order of Parameters

Procedures in the VAX-11] Common Run-Time Procedure Library follow a

consistent pattern for the relative position of parameters. It is

recommended that procedures group their parameters 1in the same

left-to-right order as the VAX-11 hardware instructions, namely:

1. Required input parameters (read access)

2. Required input-output parameters (modify access)

3. Required output parameters (write access)

4. Optional input parameters (read access)

5. Optional input-output parameters (modify access)

6. Optional output parameters (write access)

Data is accessed in a left-to-right order. The only exceptions to the

left-to-right rule are for functions in which the function value

exceeds 64 bits and so cannot be returned in RO/Rl1. In this case, the

calling program uses the first parameter to specify where the function

value is to be stored and the other parameters are shifted right one

position.

2.3.6 Error and Condition Values

A procedure can indicate errors to its caller by either returning a

condition value as a completion code or by signaling the error. It is

recommended that, whenever possible, modular procedures return a

completion code as a function value. Then, when an error occurs, the

completion code indicates the error to the caller of the procedure.

At that point, the caller can make a choice of recovery paths.

DESIGN OF MODULAR PROCEDURE INTERFACES

For a description of signaling, see Chapter 6 of VAX-1ll Common

Run-Time Procedure Library Reference Manual. Procedures in the

following facilities handle errors in specific ways:

LIB Always returns completion code.

MTH Always signals errors (function value is the mathematical

value returned).

OTS Returns completion code when a check of the

B32 code is not an excessive speed or space

BLI penalty; otherwise, it signals the error.

FOR

2.4 IMPLICIT PARAMETERS

In addition to explicit parameters, there are parameters that are not

specified in the parameter list, These implicit parameters provide

additional information to vyour procedure from static storage

locations. There are two types:

e Implicit parameters allocated by the calling program

e Implicit parameters allocated by your procedure

When deciding if your procedure will have 1implicit parameters, you

should consider the advantages and disadvantages discussed below. It

is easier to maintain modularity by not using them. If your procedure

needs to retain information from previous activations and you want to

avoid using implicit inputs, read Section 2.5. If you must use

implicit parameters, read the 'rest of this section as well as the

discussion of static storage in Chapter 3.

2.4.1 Implicit Parameters Allocated by the Calling Program

There are two types of implicit parameters that could be allocated by

the calling program:

e Statically allocated variables in a named PSECT (for example,

COMMON in FORTRAN)

e Statically allocated global variables (for example, symbols

defined with a double colon :: in MACRO, and GLOBAL variables

in BLISS)

There are several disadvantages inherent in using implicit inputs

allocated by the calling program:

e Two programmers may use the same PSECT name or global variable

for different quantities. This error will be undetected.

e The calling program is no longer 1independent of the called

procedure, as a change in one could inadvertantly affect the

other.

e In FORTRAN, the calling program has to declare all of COMMON

regardless of the number of implicit inputs actually needed.

e If your procedures are put in a sharable image, they cannot be

called from outside the shared image.

DESIGN OF MODULAR PROCEDURE INTERFACES

Using implicit parameters that are allocated by the <calling program

violates modular programming standards.

2.4.2 1Implicit Inputs Allocated by the Called Procedure

There is one type of implicit parameter allocated by the called

procedure. The procedure declares static storage using .BYTE through

.QUAD in MACRO, OWN in BLISS, and all variables in FORTRAN.

Implicit inputs of this type are normally used to keep track of

resources (by resource allocating procedures), and to shorten the
explicit parameter list. However, the use of implicit inputs by

nonresource-allocating procedures can 1lead to unexpected results.

Consider that procedure A and a companion procedure B. are in a

situation where A is specified to leave information for B. Thus B has

both explicit inputs (from its caller) and implicit inputs (from A's

storage). Next <consider that a calling program calls A, then calls

procedure X, and finally calls B. 1In order for the calling program to

get correct results from B, the calling program must know that X (and

any procedures that X calls) did not make a call to A (as such a call

would change the implicit inputs A leaves for B).

Figure 2-1 illustrates this configuration.

This call could affect implicit

input to GET.STR_LEN in

an undetected way.

STORAGE

\
I OUTPUT \

CALL GET_STRING — GET.STRING
|

|
RET I

PROCEDURE l

—

| / | /-’ CALL GET_STRING —/
|

CALLX —
1 |

)

I : {\\—— RET
I

|!
+|NPUT | PROCEDURE

CALL GET.STR_LEN : GET.STR.LEN :

CALLING PROGRAM | RET |
INTERFACE PROCEDURE INTERFACE

————= CONTROL PATH

— —— —m=— DATA PATH

Figure 2-1 How Implicit Inputs Can Violate Modular Standards

2-9

DESIGN OF MODULAR PROCEDURE INTERFACES

The use of such implicit parameters violates the modular programming
standards. The aforementioned problem will also occur if X is
rewritten in the future to include a call to A. A calling program
that assumes the old version of X thus would not get correct results
on its call to B.

Furthermore, the same problems can occur with any

nonresource-allocating procedure that leaves results for itself as

future implicit parameters.

Consider the following example of (LIB_GET_STRING) which reads a
string from the terminal, and a companion procedure (LIB_GET_STR_LEN)

which returns the length of the string last read by LIB_GET_STRING.

C Procedure to read string from terminal

FUNCTION LIB_GET_STRING (LEN)

INTEGER*4 LENGTH ! Place to remember length

CHARACTER*(*) LIB GETSTRING

READ 100, LENGTH, LIB_GET_STRING

100 FORMAT (Q, A80) ! Set LENGTH to length of line input

RETURN

C Procedure to Return Length of String Last Read

ENTRY LIB GET STR LEN

LEN =“LENGTH ~ ! LENGTH is implicit input parameter
RETURN

END

The following calling program could get unexpected results if

procedure X also happens to call LIB GET_STRING. Instead of getting

the length of the string read in statement 1000, statement 2000 uses

the length of the string read in procedure X.

CHARACTER*60 NAME

1000 NAME = LIB_GET_ STRING ()

CALL X (..%)

2000 -« = NAME (l:LIB_GET_STR LEN())

The following section describes how to avoid the problems of implicit

input parameters,

2.5 HOW TO AVOID IMPLICIT INPUTS

There are three ways to write nonresource-allocating procedures that

avoid the implicit parameter problems described above:

e When one procedure obtains results from another, combine the

two procedures into a single call (see Section 2.5.1).

e Designate responsibility for retaining information from a

procedure activation to the «calling program. This is done

with an explicit parameter, (See Section 2.5.2.)

e Specify your interfaceto consist of a sequence of calls to

different procedures, the first of which saves the contents of

any still active implicit parameters on a push down stack in

heap storage, and the last of which restores the old implicit

parameters. Thus static storage is made available to vyour
sequence of procedures for implicit inputs to be passed

between them. (See Section 3.3.1.)

DESIGN OF MODULAR PROCEDURE INTERFACES

2.5.1 Combine Procedures Into One

Often nonresource-allocating procedures that leave results for one

another can be combined into a single procedure that returns all

information explicitly in a single call. Consider the example of the

companion procedures LIB_GET_STRING and LIB _GET_STR_LEN in section

2.4.2.

By changing LIB_GET_STRING and LIB_GET_STR_LEN into a single

procedure, Procedure X will no longer be able to modify

LIB_GET_STRING's storage before the length can be returned.

C Procedure to read string from terminal

FUNCTION LIB_GET STRING (LEN)

CHARACTER*(*) LIB GET STRING
ACCEPT 100, LEN, LIB_GET_STRING

100 FORMAT (Q, A80) !Set LENGTH to length of line input

RETURN

END

The following calling program obtains both the string and 1its 1length

in a single <call, thereby preventing procedure X from causing

unexpected side effects.

CHARACTER*60 NAME .

1000 NAME = LIB_GET_STRING (NAME_LEN) !set NAME_LEN to length of

NAME

CALL X (...)

2000 ... = NAME (1:NAME_LEN)

Another way to combine several procedures into one call is to allow

the calling program to optionally gain control at a critical point in

the execution of your procedure instead of your providing two

procedures. This consists of specifying an optional action routine

parameter in your procedure that will be called if the calling program

provides it,. Thus your procedure is able to execute twice: before

and after the action routine with no implicit inputs. The FORTRAN

OPEN statement uses this technique by permitting the user to supply a

USEROPEN action routine.

To keep the calling program from having to provide implicit inputs for
its action routine, vyour procedure should also provide another

optional parameter which, if specified by the calling program, is

passed along to the action routine. The calling sequence to your

procedure is thus:

CALL my-proc¢ (...[,action-routine.flc.rp [,user-arg.xx.x]])

The calling sequence for the action routine is:

CALL action-routine (...[,user-arg.xx.x])

See Section 4.7 for an example of the code to 1invoke a user action

routine.

2.5.2 Designating Responsibility to the Calling Program

You can give responsibility (for retaining information from one

procedure activation to another) to the calling program. You can do

this in three ways:

e Cause the calling program to allocate the necessary storage

required by your procedure. Then have it pass the storage

2-11

DESIGN OF MODULAR PROCEDURE INTERFACES

address as an explicit parameter on all calls to vyour

procedure (see Section 2.5.2.1).

e Cause the calling program to allocate a longword and pass 1its

address to your procedure as an explicit parameter. On the

first call, your procedure will dynamically allocate storage

(by calling LIBS$SGET VM), and will store the address allocated

in the caller's longword. On subsequent calls, your procedure

will wuse information 1left in the storage area from previous

calls (see Section 2.5.2.2). '

e Cause the calling program to pass a process-wide identifying

value to all <calls to your procedure. The process-wide

identifier indicates which information from previous procedure

activations is to be wused as implicit inputs (see Section

2.,5.2.3).

Figure 2-2 shows a calling program with responsibility for explicitly

indicating the storage to be wused by the called procedure. The

following sections demonstrate the three ways to do this.

|

STORAGE !
- - b - e - - - -

\

~

|) T \

| \ |

A |

I READ | L
CALL READ (K) — L == STORAGEFOR [

RET ' T
| |]

PROCEDURE 7 "

| -=' / | RV
« CALLX — t I - X

{

| | I l CALL READ (L) F—~
: | : RET

GET PROCEDURE
CALL GET (K} ==l

~eonf—p

I INTERFACE

) RET

By giving the caller responsibility for

PROCEDURE storage, you can separate information
CALLING PROGRAM stored on each procedure activation,

and prevent undetected conflicts.

INTERFACE

~T =TM patAa TM CONTROL
—-_——— ; PATHS —_— PATHS

Figure 2-2 Designating Storage Responsibility to the Caller

2.5.2.1 Calling Program Allocates Procedure Storage - In this method,

“the “calling . program allocatesall the storage needed and passes its

address as an explicit parameter on each call. The library procedure

MTHSRANDOM gets the storage it needs for the seed parameter from the

calling program. The calling sequence is:

value.wf.v = MTHSRANDOM (seed.ml.r)

MTHSRANDOM takes the seed as input and computes the next random number

sequence from the current seed value. MTHSRANDOM returns a random

number between 0 and 1 and updates the longword seed passed by the

calling program so that it will generate a different value on the next

call (the code is shown in Section 3.3.1).

DESIGN OF MODULAR PROCEDURE INTERFACES

The disadvantage of this method is that you cannot increase the amount

of storage needed by your procedure without requiring all calling

programs to be rewritten. Thus you should only use this method when

you are confident that your procedure will not need to be revised in

the future to use additional storage. The next two sections describe
interface techniques which permit the size of storage to be changed

without affecting interface with the calling program.

2.5.2.2 Calling Program Passes Pointer - In this method, the calling

program allocates only a longword pointer for the dynamic heap storage
to be allocated by your procedure and passes the address of the

longword as an explicit parameter. There are two interface techniques
to indicate that storage is to be initialized:

e Provide a single entry point., A zero value in the longword

instructs your procedure to allocate and initialize dynamic

heap storage.

@ Store the address of the allocated storage 1in the 1longword.
Oon subsequent calls, the nonzero value instructs your
procedure to use that value as the address of storage where

information from previous calls can be found.

Regardless of the method used to indicate storage allocation and

initialization, you must also provide some way to indicate storage
deallocation. This can be done with either a separate parameter or

separate entry point.

For example, the following procedure, LIBSINIT TIMER which gets

specified times and counts from the operating system, uses a parameter

to determine where these values are to be stored. The calling
sequence is:

ret-status.wlc.v = LIBSINIT TIMER ([handle.ml.r])

handle

Optional address of a longword whose contents specify where the

values of times and counts will be stored.

If missing, they will be stored in static storage, thereby making
this call not AST-reentrant,

If zero, a block of dynamic heap storage is allocated by a call

to LIBSGET_VM; the values placed in that block, and the address

of the block returned in "handle".

If nonzero, it is considered to be the address of a storage block

previously allocated by a call to LIBSINIT TIMER. If so, the

block is reused, and fresh times and counts are stored in it.

Entry point LIBSFREE TIMER deallocates the block of dynamic heap
storage that had been allocated by a previous call to LIBSINIT_ TIMER.

The calling sequence is:

ret-status.wlc,v = LIBSFREE _TIMER (handle.ml.r)

handle

The address of a longword whose contents specify a block of

dynamic heap storage where times and counts have been stored.
That storage is returned to free storage by calling LIBSFREE_ VM.

DESIGN OF MODULAR PROCEDURE INTERFACES

2.5.2.3 Calling Program Passes a Process-Wide Identifier - In this
method, the calling program passes a process-wide identifying value to
identify the previous calls to which this call will be associated.
This value indicates information from previous calls used on this call
as implicit inputs. The process-wide identifier may be used by any
calling program. Examples of process-wide identifiers include logical
unit numbers in FORTRAN and I/0 channel numbers in VMS system
services.

Process-wide identifiers are a resource, Modular programming
standards require that all resources allocated by a procedure be
allocated by calling a resource-allocating procedure. This prevents
conflicts since a single procedure can keep track of multiple
allocations to more than one procedure or procedure activation.

Therefore, if you use this method, you will also have to write a

resource-allocating procedure to <control the resource. Such a

procedure should be added to the default system object library
STARLET.OLB so that all programmers may use it.

An example of a resource-allocating procedure that allocates FORTRAN
logical unit numbers is given in Section 4.4.3.

2.6 CONTROL OF HUMAN READABLE OUTPUT

A modular procedure allows its caller to control human readable output

to the terminal, queued to a line printer, or written to a file. This

is done by providing an optional parameter that the calling program

can use to specify an action routine,

If the calling program specifies an action routine, your procedure
calls the action routine with each record (line) of output ihformation

instead of outputting it directly to a file or device: The action

routine 1is repeatedly called with the address of aistring descriptor

for each record. Each record begins with a space- (FORTRAN convention)
and contains no ASCII carriage return (CR). or 1line feed (LF)

characters. Thus, the line is suitable to be placed into any three of
the four VAX-11 RMS record format files, namely,.CR, FTN,,or PRT.

The user-supplied action routine may output each record to any output
device of its choosing, as well as returning a failure or success
status to your procedure, If an error status 1is returned, vyour

procedure stops calling the action routine.and returns the same error
status to the original calling program.

In order to help your caller to write a single. action routine that
serves a number of purposes, your procedure should also provide an

additional optional parameter which, if present, is passed to the

action routine as a second argument. Then the calling program can

pass information to the action routine that 1is particular to each

call.

For example, you could create a procedure LIB_SNAP_SHOT that outputs a
memory dump to the output device LPAO unless the calling program

supplied an action routine. The calling sequence is:

ret-status = LIB_SNAP_ SHOT (low-adr, high=-adr [,user-act-rout
[,user-argl])

DESIGN OF MODULAR PROCEDURE INTERFACES

LIB_SNAP_SHOT can be called from FORTRAN as:

EXTERNAL PROC

IF (.NOT. LIB SNAP_SHOT (A, B(100), PROC)) GO TO 9999

END

FUNCTION PROC (RECORD) /

CHARACTER*(*) RECORD

INTEGER*4 PROC

PROC = 0 ! Assume Error

OUTPUT (10, *, ERR=100) RECORD

PROC = 1 ! Success

100 RETURN :

END

or as:

IF (.NOT.LIB_SNAP_SHOT (A, B(100), LIBSPUT_OUTPUT))

See Section 4.7 for an example of the code to invoke a user action

routine.

2.7 TIMER AND RESOURCE ALLOCATION PROCEDURES

It is recommended that all timer and resource allocation procedures

make statistics available for performance evaluation and debugging.

Such procedures are coded with two additional entry points:

LIB$SSHOW name or LIB_SHOW_name

LIB$SSTAT name or LIB_STAT_name

2.7.1 SHOW Entry Point

The SHOW entry point provides formatted strimngs containing the desired

information. It should follow <the conventions for providing human

readable output (see Section 2.6). 'The calling sequence is:

ret-status.wlc.v = LIB$SHOW_name ([code.rl.r [,action-routine.flc.rp

[,user-arg.xx.x]11])

where:

code

is an optional code (of the form LIBSK_ code) designating the

desired statistic. A separate code is defined for each statistic

available and are the same for the SHOW and STAT entry points.

Codes start at 1. If omitted or zero, all statistics are

provided.

action-routine

is an optional address of an action routine. If omitted,

statistics are output to SYSSOUTPUT.

DESIGN OF MODULAR PROCEDURE INTERFACES

user-arg

is an optional user parameter to be passed to the action routine.
If omitted, a shortened 1list is passed to the action routine.
The user-arg, if present, is copied to the parameter list passed
to the action routine. That is, the 32-bit arg list entry passed
by the calling program is copied to the arglist entry passed to
the action routine. Thus the access type, data type, parameter
form, and passing mechanism can be arbitrary as agreed between
the calling program and the action routine.

The optional action routine should be of the form:

status.wlc.v = ACTION-ROUTINE (string.rt.dx [,user-arg.xx.x])

See Section 4.7 for an example of the code to invoke a user action
routine,

2.7.2 STAT Entry Point

This entry point returns binary results. The calling sequence is as
follows:

ret-status.wlc.v = LIB$STAT name (code.rl.r, value.wl.r)

where:

code

is a code designating the statistic desired. A separate code is
defined for each statistic available and are the same for the
SHOW and STAT entry points. Codes start at 1.

value

is the value of the statistic returned.

2.8 DOCUMENTATION OF PROCEDURES AND MODULES

You must document your procedures so that you and others may be sure
of your procedure's objective.

2,8.1 Write a Module Description

You should add a description containing the following information at
the front of each module:

Title:

Gives the module name followed by a 1-line functional
description. -~ - ' ’ '

Version:

Gives the level and modification number. Generally 0-01 is the
original version.

Facility:

Gives a description of the 1library facility, such as general
library (LIB).

Funct

Envir

DESIGN OF MODULAR PROCEDURE INTERFACES

ional Description: (or Abstract)

Gives a short 3 to 6-line functional description of the module.
If an extensive functional description is needed, a short
abstract should be put here; the longer description is added in
a later section,

onment:

This paragraph lists any special environmental assumptions that
the module may make. These 1include assumptions made at both
compilation time and execution time that may affect either the
hardware or software environments. ‘

For execution time, describe any situations that the module may
assume or any optional standards that your module does not
follow. Normally, vyou should write: Runs at any access
mode - AST reentrant.

Author:

Modif

This

Figur

Include your name and the creation date of the module.

ied by:

Include the modification number, name of modifying programmer,
modification date, and a list of the modifications.

concludes the preface. End with a page delimiter.

@ 2-3 shows a sample module description for BLISS or FORTRAN.
(In MACRO the ! are changed to ;.)

+ -
+

TI

AB

MO

01

04

05

06

G
u
m

S
u
m

b
=

G
u
w

S

S
m
w

F
u
m

t
u
w

G
e
w

$
e
m

C
o
m

S
u
w

S
e
m

f
o
m

S
m
m

C
e
w

f
u
m

C
o
w

G
u
m

O
M
E

G
m
e

Q
u
m

O
u
m

TLE: LIBSGET_INPUT Get Line from SYS$SINPUT.

FACILITY: General Utility Library

STRACT:

Inputs a string as a record from device SYSSINPUT.

ENVIRONMENT: Runs at any access mode - AST re-entrant

AUTHOR: Bert Byte, CREATION DATE: 8-Aug-1979

DIFIED BY:

Frederick Float, 28-Sep-1979: VERSION 0
- original

- change to SYSSINPUT

— change to do OPEN at first time

- change to set up RAB for GET_STRING

Figure 2-3 Example of a Module Description

DESIGN OF MODULAR PROCEDURE INTERFACES

2.8.2 Write A Procedure Description

You should add a procedure description at the beginning of each

procedure in a module.

Always list each of the following topics regardless of their actual

presence. For example, if a procedure has no implicit inputs, write:

Implicit Inputs: NONE

Functional Description:

The functional description describes the purpose of the module

and documents its interfaces completely.

The description should include the basis for any critical

algorithms used, including literature references where

applicable. The description should also explain why a particular
algorithm was chosen.

Calling Sequence:

A calling sequence to a procedure is described by (1) a return

status, output parameter, or CALL instruction followed by (2) the

procedure name, followed by (3) the parameters used by the

procedure,

Parameters should be listed in the order in which they are

written in a higher-level language. Each parameter

characteristic should also be included, using the procedure

parameter notation described in Section 2.3.1.

Examples:

ret-status.wlc.,v = LIBSGET_INPUT (get-string.wt.dx [,prompt-string.rt.dx])

string-len.wlu.v = LIBSLEN (string.rt.dx)

CALL LIBSCRC_TABLE (poly.rlu.r, table.wl.ar)

The calling sequence description includes the instruction for

calling the routine and the parameter list, which is typically a

list of registers or parameters, In VAX-11l MACRO, each parameter
is symbolically defined as the offset relative to the argument

pointer AP.

Input Parameters:

List any explicit input parameters in the calling sequence. Each
input parameter should be 1listed in the order in which it

appears, including a qualifying description.

Implicit Inputs:

List any inputs from storage internal or external to the module

that are not specified in the parameter list.

OQutput Parameters:

List any explicit output parameters in the parameter list in the
calling sequence. Each output parameter should be listed in the
order in which it appears, including a qualifying descriptor.

DESIGN OF MODULAR PROCEDURE INTERFACES

Implicit Outputs:

List any outputs to internal or external storage that are not

specified in the parameter list.

Completion Codes:

Side

List the <condition wvalue symbols that may be returned as

completion codes. This includes exception conditions signaled,

and a list of success and failure completion codes returned 1in

RO.

Effects:

This section describes any functional side effects that are not

evident from a procedure's calling sequence. This includes

changes in storage allocation, process status, file operations,

and signals. In general, document anything out of the ordinary

that the procedure does to the environment. If a side effect

modifies 1local or global storage locations, document it in the

implicit output description instead.

Figure 2-4 shows a sample procedure description for BLISS or FORTRAN.

IN MACRO the ! are changed to ;.

1++

o
—
h
o
—
.
—
.
-
.
—
o
—
l
—
o
—
o
-
o
—
t
-
o
-
t
-
o
—
l
—
.
—
o
—
o
—
.
—
.
—
t
—
o
—
.
-
—
.
-
.
—
.
—
Q
-
t
—
.
—
.
—
.
—
o
-
.
—
o
—
0
—
.
—
.
—
0
—
.
—
0
—
‘
-
.
-
'
—
.
-
c
-
t
-
.
—
.
—
.
—
o
—
.
—
h
.
—
l
—

CALL

INPU

OuTP

DESIGN OF MODULAR PROCEDURE INTERFACES

FUNCTIONAL DESCRIPTION:

A line from the current controlling input device, SYSSINPUT, is

obtained. If an optional PROMPT_STRING is given, output will appear on

the device, SYSSINPUT, if the device is a terminal; otherwise
the PROMPT_STRING is ignored. On first call, device SYSSINPUT

is opened. Thus the user can assign the logical name to any

file name in order to redirect 1/0.

ING SEQUENCE:

Rms-status.wlc.v = LIBSGET_INPUT (get_string.wt.dx

[,prompt_string.rt.dx])

T PARAMETERS:

prompt string 1is the address of a string descriptor specifying

an optional prompt which is output to the

controlling input device. Where other conventions

are not established, it is recommended for

consistency to make prompts be an English word

followed by a colon(:), one (l) space, and no

CRLF.

UT PARAMETERS:

get string is the address of string descriptor of any type

- (unspecified, static, or dynamic, as
specified by the DSC$B_CLASS field) which is to

receive the string.

IMPLICIT INPUTS:

IMPL

COMP

SIDE

SYS_INPUT_ISI Set on first call to RMS internal stream identifier.

ICIT OUTPUTS:

SYS_INPUT _ISI Set to RMS internal stream identifier

on first call when SYSSINPUT is OPENed.

LETION STATUS:

SS$_NORMAL if success.

For fixed-length strings, if RMS error RMSS$_RTB

(RECORD TOO BIG) occurs, the truncated string is returned

with an error status of LIB$_INPSTRTRU (INPUT STRING TRUNCATED).

If any other RMS error occurs, the RMS error codes is returned.

If the descriptor class field is not a recognized code,

LIB$_INVARG (INVALID ARGUMENT) is returned.

EFFECTS:

Opens file SYSSINPUT on first call and remembers ISI for

subsequent calls.

Figure 2-4 Example of a Procedure Description

CHAPTER 3

USE OF STORAGE

3.1 TYPES OF STORAGE

There are three types of storage: static, dynamic stack, and dynamic

heap. Storage is allocated by assigning it to a virtual address. The

three forms of storage differ in how each is allocated and for how

long each remains allocated.

3.1.1 Static Storage

Static storage (statically allocated storage) 1is storage that is

allocated by the linker and whose contents are initialized at program

translation or link time. On a subsequent call to a procedure with

static storage, the storage will have the same allocation and the

previous contents.

The following forms of static storage are available in the indicated

languages:

VAX-11 MACRO

The following statements (1) allocate or (2) allocate and

initialize the static storage amount indicated:

Allocate and

Allocate Amount initialize (to 10)

.BLKB 1 Byte .BYTE 10

« BLKW 1 Word .WORD 10

.BLKL 1l Longword .LONG 10

«BLKQ 1 Quadword .QUAD 10

BLISS

OWN Storage

~ GLOBAL Storage

In the following BLISS example, A is initialized to 0 and B is

initialized to 10.

OWN

A: LONG,

B: LONG INITIAL(1l0);

FORTRAN IV-PLUS

USE OF STORAGE

All FORTRAN data storage is statically allocated. It is declared

as local variables or arrays or 1is declared in a COMMON

statement. Static storage can be initialized wusing the DATA

statement. In the following FORTRAN procedure, variables A, B,

C, FUNC, array D, and string E are all statically allocated.

Futhermore, variable A is initialized to 10 at compile time while

the other variables are initialized to 0. X, ¥, and Z are not

statically allocated:

FUNCTION FUNC(X,Y,Z)

INTEGER*4 A,B,D(100)

DATA A/10/

CHARACTER*10 E

CHARACTER*(*) X

RETURN

END

Note that wvariable A will not be reinitialized to 10 on
subsequent <calls to FUNC. 1Instead the value of A and all other

statically allocated variables will retain the values 1left from

the previous call.

3.1.2 Stack Storage

Dynamic stack storage (dynamically allocated stack storage) is

allocated on the process stack at run time as it is needed. It is

automatically deallocated when the procedure returns control to its

caller.

Stack storage is allocated in MACRO by decrementing the stack pointer

(SP) by the number of bytes of storage required:

SUBL n*4,SP

In BLISS, stack storage can be allocated as follows:

LOCAL A: LONG;

Stack storage cannot be allocated by FORTRAN users.

3.1.3 Heap Storage

Dynamic heap storage (dynamically allocated heap storage) is allocated

at run time to a procedure activation as it 1is needed from a

process-wide pool (by <calling LIBSGETVM or the system service

SEXPREG) . gynamic heap storage is deallocated -- that is, returned to

the process-wide pool -- by calling LIBSFREEVM.

Heap storage can be allocated in MACRO with a call to LIB$GET_ VM.
(See Section 5.1 in the VAX-11 Common Run-Time Procedure Library
Reference Manual.)

USE OF STORAGE

The following example shows how heap storage can be allocated in
BLISS:

EXTERNAL PROCEDURE LIB$GET_VM: ADDRESSING_MODE (GENERAL);

IF LIBSGET VM (PLIT (100), ADR)

THEN -

success, ADR set to address allocated

Heap storage may be allocated in FORTRAN but it must then be passed to

another procedure as an array parameter in order to be used. (See

Section 5.1 in the VAX-11 Common Run-Time Procedure Library Reference

Manual.)

Figure 3-1 shows how the different types of storage are used.

\

3.1.4 Summary of Storage Use

Table 3-1 lists a summary of storage available to the programmer in

various languages.

Table 3-1

Summary of Storage Use

Language

Storage MACRO BLISS FORTRAN

Type

Static Avoid if Possible Avoid if Possible If Any Variables are Present

Stack Recommended Recommended Not Applicable

Use When Stack Storage

May Be Exceeded;

Heap Or When Procedure Same as MACRO Difficult

Retains Information

For Subsequent Activation

3.2 CHOOSING A STORAGE TYPE

A procedure activation 1is the combination of instructions that

implement the procedure and the associated stack frame storage

allocated when the procedure 1is <called and deallocated when the

procedure returns. If a procedure is called again before it returns,

two activations of the same procedure exist at the same time. This
can occur if:

e The procedure is called by an AST-level routine,

e The procedure is called by a condition handler while it 1is

executing.

e The procedure is called by another procedure that it has
called.

3-3

USE OF STORAGE

‘'WAT3344$811
BuijieoAqpareoojjeaps)3|

('WATM33u4%81BuijjesAq)1ajjeday101suinjas1041U02310400pajedojjespsiabeso1g
‘uoneanoe

ainpasoudainmnye10}paulelasaqIsnws}nsasuaympuesaiieapapasuabe101sJoJunoweayluaympasnosjes)abeiolsdeaq
"jorlsaylspasdxapapaauabesols
3oe3soJunowe3U3uaympasn

siabetolsdesq JoasnT-£@ianbtg*lajjeo$3110}suanjasainpaso.idsyluaympaieoo|jeapsi1|‘uoneanoeainpasoJ4d1ualiindayl104Ajuopapasuales}nsasuaympasns1abei0lsdyoeig
O
\War:

1349\13yHv.EM13u[\3w\|13434NA300Yd34NA3004d34NA3004dS|Tvo_S|w|SvoS|
3L1YWav3aY|JLIum/avay|JLiawavay|_

|
{

_3DVHOLS49VHOLSIDVHOLS
|“o1visdV3aHMNOVLS.l—o”YYA4JOVH

OLSdV3H
HILINIOd

104pauielalaq1snuwlinsaleuaympasns|abelolsane1s

Elm/'g\34NA3
00Y4d
S|fAvoA

IL1YM/avaY|
I

USE OF STORAGE

If any of the results of a procedure must be retained for a subsequent

activation, the procedure must use static storage or ©provide a
mechanism for the caller to retain storage to access those results.

If none of the results of a procedure activation need be retained for

subsequent activations, then the procedure may use static, stack or

heap storage.

Stack storage is always recommended. It 1is fast to allocate, and

performs well in a paging system such as VMS.

Heap storage requires longer to allocate and also requires explicit

deallocation. It is recommended for use instead of stack storage when

the amount of space needed might exceed the stack, or when a variable

amount of information must be retained after your procedure returns to

its caller.

Static storage should be avoided wherever possible. It can cause

unwanted side effects 1if it 1is used for implicit parameters (see

Section 2.4.2), and when used, it is difficult to make your procedure

AST-reentrant (see Chapter 6).

3.3 USING STATIC STORAGE

There are three classes of procedures that use static storage:

® Process-wide resource-allocating procedures (See Section 4.4.)

e Nonresource-allocating procedures that retain information from

previous activations in order to shorten the explicit

parameter list (See Section 3.3.1 through 3.3.3.)

@ Procedures that do not make use of retained information from

previous activations (See Section 3.3.4.)

When the use of static storage cannot be avoided, you can maintain
modularity by using one of the following four techniques.

3.3.1 Pushing Down the Contents of Static Storage

Specify the interface with the <calling program to consist of a

sequence of calls, the first of which saves the contents of any still

active implicit parameters on a push down stack in heap storage, and

the last of which restores the old implicit parameters. Thus, static

storage is made available to your sequence of procedures for implicit

inputs to be passed between them.

To use this technique, write an initialization procedure within the

module that automatically pushes the information stored in static

storage onto a simulated software stack maintained in heap storage

where it will remain during current and future procedure activations.
Then write a termination procedure to automatically pop information
back into static storage. When using this method, you must have the

calling program also «call the initialization and termination

procedures. Additionally, the <calling program must establish a

condition handler that will call the termination procedure (that pops

the data back into static storage) in case a stack unwind occurs.

For example, FORTRAN language support procedures push down the

contents of static storage for the current I/0 statement whenever an

USE OF STORAGE

I1/0 statement is initiated. Thus I/O statements consist of a sequence
of calls of the form:

1. 1I/0 statement initialization procedure

This procedure sets up the I/0 system by initializing its
static storage for the specific I/0 requested, and flags the
logical unit to be active. 1If the specified unit has not
already been explicitly opened, a default open is performed,
with buffers and control blocks dynamically allocated. If an
I/0 statement 1is already being processed on another logical
unit, the static storage used by that I/0 statement is
"pushed down."

2. Data element transmission procedure(s)

Each data element transmission procedure copies one data

element from/to the user program to/from the I/0 buffer for
the logical unit. The logical unit is an implicit input.

3. I/0 statement termination procedure

This procedure completes the current I/0 statement. The
logical unit number is an implicit input. If another logical
unit had been "pushed," it is now "popped"” back into static
storage, thereby being restored as the current I/0O statement.

For example, the FORTRAN statement:

WRITE (2) I,IFUNC(J),B

is compiled as:

PUSHL #2 ; Unit Number

CALLS #1,FORSWRITE SU ; Initialize WRITE

- ; sequential unformatted
PUSHAL I ; Address of I

CALLS #1,FORSIO L R ; Transmit integer

PUSHAL J - ; Address of ADB for A
CALLS #1,IFUNC ; Call function IFUNC

PUSHL RO ; Push function value

CALLS #1,FORSIO L V ;7 Transmit by-value integer
PUSHAL B ; Address of B -

CALLS #1,FORSIO_F R ; Transmit Floating

CALLS #O,FORSIO_EED ; End of the I/0 List

If function IFUNC performed I/0, the WRITE statement would be pushed
down and popped back before control returns from IFUNC.

3.3.2 Caller Passes the Address of Storage

Allow the caller of the procedure to allocateand to pass the addres
of the static or dynamic storage area to be used. 1In the example
below, the mathematics library random number generator (MTHSRANDOM)
uses this method to produce the seed.

USE OF STORAGE

Example (in MACRO):

.ENTRY MTHS$SRANDOM, O ; ho registers saved, clear 1V

-
+

If this were to be placed as an inline expansion, then

EMUL SEED, #69069,#1,R0 should replace the next two

instructions because this would prevent the possibility
of integer overflow trapping.

w
s

W
e

W
e

W
o

W

W

MULL2 $#69069, Q@SEED (AP) ; update seed with multiplier

INCL @SEED (AP) ; increment seed to protect
; against strange seeds

+

The next instructions convert the seed from unsigned integer

to floating point in the range 0.0 to 1.0 exclusive.

w
e

%
o

W

“
o

EXTZV #8, #24, @SEED(AP), RO Get the most significant bit
of the seed in the range

0 .. (2%%24)-1

Convert to floating without

rounding. The result is

positive and in the range

0.0 .. (2.0**24)-1.0

CVTLF RO,RO

w
e

W
M
o

W
e

N

W

W

W

<
+

If this were to be placed as an inline expansion, then
MULF #°X00003480,R0 could replace the next two instructions.

Y
R
R

T
R

Y
R
S

BEQL 108

SUBW #24@7, RO

If zero, already correct

DIVF $"F2.0*%%24

the result is now in the

range 0.0 .. 1.0 exclusivee

W
e

W
N
e

W

10$: RET

« END

3.3.3 Allocating Process-Wide Identifiers

Your procedure allocates heap storage and returns the address of the

allocated storage as a process-wide identifier to the calling program.

Each set of related calls uses the same identifier, while each set of

unrelated calls uses different identifiers.

You must make sure that the modular procedure rather than 1its caller

allocates and deallocates the identifier wvalues. To avoid using
static storage, this identifier can be the address of heap storage.

Example (in BLISS):

ROUTINE LIBSINITBLOCK (HANDLE)=

BEGIN

EXTERNAL ROUTINE LIBYGET VM; ! Block size in bytes
LITERAL BLOCKSIZE = 16;

RETURN (LIB$GETVM (SREF (BLOCKSIZE),.HANDLE));

END;

USE OF STORAGE

3.3.4 Using Static Storage in Procedutes Not Needing to Retain Results

You can maintain modular standards in procedures that use static
storage and do not need to retain values after control is returned to
its caller by writing each variable before reading it. In FORTRAN,
this 1is done by assigning an expression to each variable before using

that variable in another expression. For example, the following
FORTRAN code is modular even though static storage is used
exclusively:

FUNCTION (A)

INTEGER D

D=A

G=D+A

In this example, the static variables D and G are initialized to
expressions consisting solely of variables passed as explicit input

parameters.

3.4 USING STACK STORAGE

You can use stack storage to maintain modularity and avoid the special

considerations necessary for using static storage. If your procedures
are written in MACRO or BLISS, you should use stack storage
exclusively when vyour procedure does not need to retain values from
its previous activations. Specific advantages of using stack storage

are:

e Data is automatically hidden from source code outside the
procedure.

e Program performance is improved since the same pages of memory

are used by many different procedures.

e Procedures are automatically AST-reentrant.

e Unintended interaction between successive activations of the
same procedure is avoided.

3.4.1 Using Stack Storage in MACRO

When using stack storage in MACRO, allocate it by subtracting the
number of bytes required from the stack pointer (SP) provided on

entry.

The following MACRO procedure concatenates two source strings and

returns the result as a single fixed-length string. No restrictions

are placed on the overlapping of source and destination strings;

therefore, a temporary stack storage technique is used:

The following steps take place:

l. Add the source lengths to the stack pointer SP.

2. Copy first string to stack,

3. Copy second string to stack.

4. Copy stack to result.

USE OF STORAGE

The calling sequence is:

CALL LIB_CONC (result.wt.ds, srcl.rt.dx, src2.rt.dx)

RESULT = 4 ; arg list offset for result

SRC1 = 8 ; arg list offset for sourcel

SRC2 = 12 ; arg list offset for source2

.ENTRY LIB CONC, "M<R2,R3,R4,R5,R6>
MOVZWL @SRC1(AP), R6 R6 = length of sourcel in bytes
MOVZIWL @SRC2(AP), RO RO = length of source2 in bytes
ADDL RO, R6 R6 = total length

SUBL R6, SP

MOVQ @SRC1 (AP), RO

MOVC3 RO, (Rl), (sSP)

MOVQ @SRC2(AP), RO

MOVC3 RO, (Rl), (R3) move SRC2 to stack

MOVQ QRESULT (AP), RO RO = len of result, Rl = adr of result
MOVCS R6, (SpP), A' ', RO, (Rl); copy temporary back to result

RET ; return, deallocating stack storage

Allocate space for SRC1 and SRC2

RO <15:0> = len, R1 = adr of SRCl

move SRC1l to stack

RO <15:0> = len, Rl = adr of SRC2

-

M
o

W
e

W
e

W
M

W
M
o

W
e

W

N

W

-

3.4.2 Using Stack Storage in BLISS

When using stack storage in BLISS, define each wvariable in the
innermost nested block. This will keep the amount of code that
affects the variable to a minimum, making it easier to understand and
maintain the procedure.

The following BLISS example computes the area of a rectangle, using

stack storage to hold the result:

ROUTINE COMPUTE_AREA (HEIGHT, WIDTH)=

BEGIN

LOCAL AREA;

AREA = ,HEIGHT * .WIDTH;

RETURN .AREA;

END;

3.5 USING HEAP STORAGE

You can use heap storage to dynamically allocate arbitrary amounts of
storage. It should be used in preference to stack storage when the

amount of required storage might exceed the stack size.

If your procedure does not explicitly deallocate the heap storage (by

calling LIB$FREEVM) before returning to its caller, your procedure
must either:

e Retain the address of the heap storage in static storage so

that it can be deallocated later, or

e Return the address (and also the responsibility) to the
caller.

This allows you to use or deallocate the storage on a later

activation. (See Section 2.5).

USE OF STORAGE

To allocate a buffer from heap storage in BLISS:

1+

! STRING_PTR is OWN storage which holds a pointer to
! a dynamically allocated buffer of 80 bytes.
!

OWN STRING_PTR;

LIBSGET_VM (%REF(80), STRING_PTR);

The following BLISS example illustrates the use of heap storage to
pass information between calls without using static storage.

ROUTINE RANSUB (SEED, DATA, NUM_VALS) =

-
+ +

FUNCTIONAL DESCRIPTION:

Compute a random number by using a congruential generator
but reordering its outputs randomly to avoid correlation
between successive results.,

FORMAL PARAMETERS:

SEED.ml.r The address of a longword containing the seed. If the
seed is 0, then the data block pointed to by DATA is assumed
to be dynamic and is deallocated (by calling LIBSFREE_VM)

DATA.ml.r The address of a longword that contains a pointer to
the address of the data block needed for
reordering the outputs. If the pointer is zero,
the block is allocated.

ARG3.rl.r The number of values over which to
reorder the outputs of the basic generator.

IMPLICIT INPUTS:

None

IMPLICIT OUTPUTS:

None

ROUTINE VALUE:

A random number from 0.0 up to but not including 1.0.
In the "final" call, the value 1.0 is returned.

COMPLETION CODES:

None

SIDE EFFECTS:

May allocate or deallocate virtual memory.

S

Sa
m

Sm
e

f
u
m

Sw

m
bo

m
Se
n

Se
m

Se
u

Si
m

Sm
m

fu
n

Gm
e

So
m

fa
m

Si
m

So
w
G

Gm
m

Ge
m

0
o

g
e
m

Ge
m
G

S
t

Gu
w
S
0

Ge
m
S

fu
n
O

Ge
w
S
t

e

Gu
n

Gm
m

Ge
m
S

S
m
n

Se
w

P
u
m

BEGIN

LoCAL

RAN1, !Interim random number
RETURN_VALUE; !Random number returned

G
e
n

S
u
m

S

f
e
m

S
u
m

S
u
w

G
e
m

G
n
m

S
u
m

G
a
m

S
u
m

+

USE OF STORAGE

BUILTIN

CBTLF; IConvert integer (long) to floating

IF (...DATA EQL 0)

THEN

We must set up the data block that will remember old values for

+

scattering purposes. The data block is formatted as follows:

0 Length, for LIB$_FREE_VM
4 Current seed for the main random number generator

8 Current seed for the auxiliary generator, which

scatters the outputs of the main generator

12-end Numbers produced recently by the main generator,

for scattering purposes.

BEGIN

If we cannot get enough virtual memory, use the old algorithm.

If (NOT (LIBSGET_VM (SREF((..NUM_-VALS + 3)*4), .DATA))) THEN RETURN

(MTHSRANDOM (.SEED));

4
+

+

We got the memory, -now initialize it.

IF (..SEED EQL 0) THEN .,SEED = 1; !Don't be confused by funny seed

..DATA = ,.NUM_VALS; lAmount to free

..DATA + 4 = (..SEED); !Seed for main generator

..DATA + 8 = (..SEED)*(..SEED); !Seed for scattering function

Store values from the main generator in the remainder of
the data block.

INCR COUNTER FROM 3 TO ..NUM_VALS + 3 DO

(..DATA) + (.COUNTER*4) = MTHSRANDOM (..DATA + 4);

END; ;of initialization

IF (..SEED EQL 0)

THEN

This is the "final" call to the random number generator.

Return the data block to free storage and return with

value 1.0, which is invalid under all other circumstances,

BEGIN

Give the user back the latest seed so that he can run again without

-
+

1+

getting the same sequence of random numbers.

.SEED = .(..DATA + 4);

Return the data block to free storage.

LIBSFREE_VM (%REF (((...DATA) + 3)*4), .DATA);

Set the data's pointer to zero, so another call will initialize

the data block again.

USE OF STORAGE

.DATA = 0;

!

! Return the value 1.0.
1

CBTLF (%REF (1), RETURN_VALUE);

RETURN (.RETURN_VALUE);

END;

'+

! Compute a random number from 0.0 to 1.0, using scattering, and
! return it,
!

! First compute a random, 24-bit integer to index into
! the random number table. Use the same algorithm as the

! main generator, but with a (usually) different seed.
| s

..DATA + 8 = ,(..DATA + 8)*6909;

..DATA + 8 = ,(..DATA +8) + 1;

RAN1 = (.(..DATA + 8)<8, 24>);

1+

! Reduce the 24-bit random number module the table size

! and add the offset for the random numbers.
| -

RAN1 = (.RAN1 MOD ...DATA) + 3;

1+

! Get a value from the table and replace it with a new value.
|

RETURN_VALUE = , ((..DATA) + (.RAN1*4)); !Get value from table
(..DATA) + (.RAN1*4) = MTH$SRANDOM ((..DATA) + 4); !Put another value in table

1+

! Return to the caller of the random number generator

! the value from the table,
|

RETURN (.RETURN_VALUE) ;

END; lof RANSUB

END

ELUDOM

CHAPTER 4

CODING MODULAR PROCEDURES

This chapter describes how to code modular procedures and modify
existing procedures to be modular in MACRO, BLISS, and FORTRAN. The
following areas are discussed:

® Structured programming recommendations

® Coding standards and recommendations

® Procedure initialization

® Resource allocation

® Use of system services

® Invoking optional user action routines

Signaling and condition handling is discussed in Chapter 5.

If you want your procedure to be AST reentrant, refer to Chapter 6 for
additional coding techniques.

4.1 STRUCTURED PROGRAMMING

Before you code individual procedures, consider how they might be
grouped into modules. If you have a number of procedures that access
common data or control blocks, you should also consider organizing
them into separate 1levels, where each level has responsibility for
different parts of the data base. These are called 1levels of
abstraction.

4.1.1 Grouping Procedures

It is recommended that each module contain a single procedure.
Occasionally, you may find it convenient to place more than one
Procedure in a single module if a procedure is called only by other
procedures in that module. It 1is also recommended if two or more
procedures:

e Share the same static storage

e Have similar calling sequences

e Perform similar functions

e Share a significant amount of common code.

CODING MODULAR PROCEDURES

| MODULE
|

i

STORAGE

(OPTIONAL)

|
, T ~ . READ/WRITE

' READ/WRITE ~ o

CALL ' MODULAR MODULAR
— : PROCEDURE PROCEDURE

\ (OPTIONAL)

I RET RET

CALL — 1 J
|
| MODULE

|

| STORAGE

| (OPTIONAL)

: €READANRHE

CALL ! ~ MODULAR fiht?: ?,?o'z"jii e 1rggéisnflgy
- i PROCEDURE modularacross the interface.

I “~—— RET

l MODULE
I

|

| STORAGE
(OPTIONAL)

|
| RET

I PROCEDURE

it READ/WRITE (OPTIONAL)
Y RET

: CALL |— J

CALL } MODULAR

- PROCEDURE

| “— RET
PROCEDURE

| (OPTIONAL)
I RET

| f> CALL

MODULAR

CALL — ! PROCEDURE
I \ (OPTIONAL)

i RET

INTERFACE

Figure 4-1 Examples of Modules

CODING MODULAR PROCEDURES

The linker always brings the entire module containing a called
procedure into the image if any of its entry points are referenced.
Thus, placing each procedure in a separate module reduces the size of
your image.

Figure 4-1 shows various types of modules.

4.1.2 Levels of Abstraction

If you are writing a large number of related procedures that call one
another or that access common data blocks, you should try to achieve
an understandable relationship among them by organizing procedures to
minimize interaction with each other and with the database. To do
this, you should:

e Organize procedures in levels of abstraction.

® Make sure each level needs to make calls only to the next
level.

® Restrict read/write access at each 1level to nonoverlapping
subsets of the data.

For example, Figure 4-2 shows the FORTRAN record 1/0 statement
Processing procedures,

levels:

These are implemented in the following three

e User program interface

e User program data formatting

e VAX-11l RMS interface

PROCEDURE PROCEDURE PROCEDURE _
TYPE G TYPE C TYPE G LEVELC: RMS INTERFACE

| 4}

ALL CALLS (,>
‘{:? PROCEDURE PROCEDURE LEVELB: USER PROGRAM

TYPE B TYPE B DATA FORMATTING

PROCEDURE PROCEDURE PROCEDURE | LEVELA: USER PROGRAM
TYPE A TYPE A TYPE A INTERFACE

- _ —_—— - MODULAR

INTERFACE

MAIN PROGRAM I

Figure 4-2 Levels of Abstraction

CODING MODULAR PROCEDURES

All calls are made in one direction: to the next highest 1level. It
is recommended that procedures at different levels should also be in
different modules,

4.2 CODING STANDARDS AND RECOMMENDATIONS

Coding standards and recommendations help maintain modularity and
produce consistent software that is easy to read, You should choose

simple ones. The following coding standards and recommendations are
used by DIGITAL for all modular procedures. You must follow the

sections marked "standard" for procedures to be modular. You may

choose to follow sections marked "recommended" for procedures to be
uniform.

4.2.1 Relocatable Modules (standard)

Most modules are, by default, relocatable during linking. The
compiler or translator makes it appear to the linker that each module

starts at location 0. The linker relocates each module to make it fit
with the other modules being linked to form an executable image. A

nonrelocatable module is a module with absolute storage allocation.
It does not adhere to modular standards since each absolute assignment
might conflict with a similar assignment in another module.

4.2.2 Names for Files (recommended) and Modules (standard)

Module and file names are derived from the procedure names. If a

module contains a single procedure, the file name consists of the

first nine characters of the procedure name with the dollar signs and
underscores eliminated. If the module contains more than one

procedure, a more general name is wused, composed of the facility

prefix and the first noun common to all procedure names in the module.

For example, the MTHSEXP procedure is contained in module MTH$EXP and
the file MTHEXP.MAR. The LIB$SGETVM and LIBSFREE_VM procedures are

contained in the module LIB$VM and the file LIBVM.B32.

4.2.3 PSECT Names (standard)

The code and data sections of a library procedure are divided into two
separate PSECTs with the names _fac_CODE and _fac_DATA respectively,
where fac is the facility name. The collating sequence for 1leading
underscores causes the 1linker to place all library procedures after
the user program in the executable image. Therefore, a library
procedure will not be placed between two user modules. This prevents
it from adversely affecting any byte or word displacement addressing
that the user program may contain. The appropriate declarations are:

in MACRO:

.PSECT _fac_CODE PIC,USR,CON,REL,LCL,SHR,EXE,RD,NOWRT

.PSECT _fac_DATA pPIC,USR,CON,REL,LCL,NOSHR,NOEXE,RD,WRT

CODING MODULAR PROCEDURES

in BLISS:

PSECT

CODE = _fac_CODE (READ, NOWRITE, EXECUTE, SHARE, PIC, CONCATENATE,
ADDRESSING MODE (WORD _ RELATIVE)),

PLIT = fac CODE (READ, NOWRITE, EXECUTE, SHARE, PIC, CONCATENATE,
ADDRESSING _MODE (WORD_ RELATIVE)),

OWN = fac DATA (READ, WRITE, NOEXECUTE, NOSHARE, PIC,
CONCATENATE ADDRESSING MODE (LONG RELATIVE)),

GLOBAL = fac DATA (READ, WRITE, NOEXECUTE, NOSHARE, PIC,
CONCATENATE ADDRESSING_MODE (LONG RELATIVE)),

in FORTRAN:

You do not have control over PSECT names, except named program
COMMON, Note, however, that program COMMON replaces the PSECT
attribute CONCATENATE with OVERLAY. Therefore, storage that vyou
allocate using COMMON might overlay that allocated by a procedure
written by someone else. Such a conflict between the two modules
would be possibler and would go undetected. Therefore, use of
COMMON violates modular programming standards.

Position-independent constant data is included in the fac CODE PSECT
to shorten the references. For example, LIB$CODE and EIB$DATA are
the only two PSECT names used by LIBS$ procedures.

4.2.4 Using Parameter Definition Files (recommended)

In some programs, it may be necessary to make identical parameter
declarations in several modules. 1In MACRO, BLISS, and FORTRAN, such
declarations are centralized in one place.

In MACRO, an auxiliary source file or macro library can be specified
in the command line.

In BLISS, your source program can contain a REQUIRE or LIBRARY
declaration that specifies a file to be included at the point of the
declaration.

In FORTRAN, your source program may contain an INCLUDE statement that
specifies a file to be included at the point of the statement.

You should use this technique to declare the symbolic offsets in a
control block that is accessed from several modules.

4.2.5 Using Symbols vs Numbers (recommended)

Symbols rather than numbers are used as much as possible. This
improves understanding and provides more information for
cross-references. In BLISS, the defined transportable symbols are
used for hardware defined quantities. For example, the size of a
general value is $BPVAL (bits per value) instead of 32, and the
pointer to a general value is $UPVAL (addressable units per value)
instead of 4. ‘

CODING MODULAR PROCEDURES

4.2.6 Line Length (recommended)

The line length for source code in each 1language 1is 1listed below.

Line lengths are shown for actual source code (not including sequence

numbers).

MACRO 80

BLISS 124

FORTRAN 72

4.2.7 Using Uppercase and Lowercase (recommended)

Uppercase is used for all source code except comments, while upper-

and lowercase 1is wused for all comments. Comments that are complete

sentences start with a capital letter and end with a period.

4.2.8 Using Optional Spaces (recommended)

A single space always follows a comma (no exceptions) and precedes and

follows an equal sign (=). A single space precedes a left parenthesis

or a left bracket (no exceptions), but not a left angle bracket. A

space also follows an exclamation mark or semicolon to separate a

comment from the source code. Plus and minus symbols (+ and =) are

surrounded by spaces in expressions.

4.2.9 Using Block Comments (recommended)

Blocks of statements are commented by one or more lines preceding the

block. Comments start in column 1 independent of the indentation of

the code. Block comments begin with a blank 1line to separate them

from the preceding code. The first comment line contains a single

plus sign (+); the last comment line contains a single minus sign

(=), followed by a blank line., Exclamation marks and semicolons are

followed by one space, except when followed by the first + and the

last -, as shown below:

MOVL RO, TABLE store current char. adr. in
code tablee

“
o

H

; This is a block comment in MACRO

i

10S: MOVL TABLE, RO RO = current character
address

w
e

“
o

4.2.10 Using Branch and Jump Instructions in MACRO (recommended)

In MACRO, code should be arranged so that branch and jump instructions

refer to labels located forward in the program listing (except for

loops and first-time initialization).

CODING MODULAR PROCEDURES

4.3 INITIALIZING MODULAR PROCEDURES

Some modular procedures must initialize themselves before they can

exXxecute properly. Examples of initialization are:

Store a value in static storage that can only be determined at

run time.,

Declare an exit handler using the SDCLEXH system service.

Allocate a process-wide resource once.

Open a process permanent file the first time, in case it was

not already opened.

Note that initialization of dynamically allocated stack and heap data

only involves writing it after each allocation before reading it.

You must perform initialization carefully to avoid violating

modularity principles:

You must perform any initialization without the <calling

program being aware of it, Therefore you cannot perform

initialization by providing an entry point that must be called

before any other entry point is called, as this would force

the calling program in turn to provide an initialization entry

point to its <caller, etc. Also you would not be able to

replace a module that does not have an 1initialization «call

with one that does, without requiring your calling programs to

be reprogrammed.

If your procedure uses LIBSINITIALIZE, you must preserve a

modular environment that will not conflict with the

environment established by any other procedure using

LIBSINITIALIZE.

Table 4-1 shows the methods that your procedures can use to perform

initialization. Each method is explained in the following sections.

Table 4-1

Methods of Initialization

Method

Initialization Call LIBSINITIALIZE Set a First Initialize Each Initialize Each

Needed: Initialize at Before Main Time Flag Time it is Time Procedure

Compile/Link Time Program . Allocated Is Called
. (At Run Time) A N

(At Run Time) (At Run Time) (At Run Time)

Of Static Storage:) ® PY

Of Stack Storage: ®

Of Heap Storage: ®

To Allocate Resources: ® °

To Set Up

$EXIT Handler: ¢ *

To Open a Process- ° °

Permanent File:

To Set Up a Handler °

Before the Main Program:

CODING MODULAR PROCEDURES

4.3.1 Initialization of Storage Areas

In order for a procedure to produce predictable results, all

statically and dynamically allocated areas must be initialized to
known values before they are read.

The initialization of static storage need only happen once per image
activation. Thus the known values can be specified:

e at compile time by using a data initializing statement

e at link time by using a data allocation statement, or

@ at run time on the first call to the procedure.

4.3.2 1Initialization of Static Storage

If your procedure has static storage, you will usually initialize it
to zero. You do this explicitly with a data initialization statement
or implicitly with the 1linker.

To save disk space, the linker will not include data pages initialized

to 2zero 1in the .EXE file. 1In addition, I/0 is eliminated since data
pages will be allocated upon your first access after the image Iis

activated.

The following examples illustrate initialization of a 1longword, DAT,

in static storage at compile or link time.

STATEMENT INITIALIZED VALUE

in MACRO:

DAT: BLKB 1 0

DAT: LONG 0 0

DAT: LONG 100 100

in BLISS:

OWN DAT; 0

OWN DAT INITIAL(O); 0

OWN DAT INITIAL(100); 100

in FORTRAN:

INTEGER*4 DAT

DATA DAT /0/

DATA DAT /100/ e
l

 o
o

4.3.3 Testing and Setting First-Time Flag

Occasionally your procedure will require initialization that can only
be performed at runtime. Examples are:

e Initialize static storage to a wvalue that can only be

determined at run time.

e Establish an EXIT handler

CODING MODULAR PROCEDURES

e Allocate a resource for the first time

® Open a process permanent file for the first time

These types of initialization are restricted to a first call to a

procedure. To do this, your procedure tests and then sets (to 1) a

statically allocated first time flag each time it 1is called. This

flag is initialized to 0 at compile or link time. Setting and testing

the flag with the VAX instruction BBSS (Branch on Bit Set and Set)

will insure that initialization will be executed exactly once.

For example, your procedure may use the VAX instructions INSQUE and

REMQUE to maintain a set of queues whose headers are in static

storage. However, to maintain a position-independent data region, the

address in the queue header can be initialized only at run time. The

LIBSSGET procedure uses this technique to initialize dynamic string

storage to a set of empty queues. Each allocation of dynamic string

storage is performed by first attempting to remove a pre-allocated

block from the appropriate queue.

The following MACRO example is a resource-allocating procedure that

keeps a single queue of quadword blocks. When it runs out of blocks,

it creates more and inserts them in the queue:

.PSECT LIB_DATA PIC,USR,CON,REL,LCL,NOSHR,NOEXE,RD,WRT

FLAG: .LONG 0 ; first-time flag
Q_HED: . LONG 0,0 b ; queue header

.PSECT _LIB CODE PIC,USR,CON,REL,LCL,SHR,EXE,RD,NOWRT

.ENTRY LIB GETX, M<>
BBCS FLAG, 10$; branch on call only

TRY: REMQUE @Q HED, RO ; RO = address of queue

BVS FILL ; Branch if empty and fill

RET

Here on first call only

w
e

w
e

e

10$: MOVAL Q HED, Q HEAD ; Make queue empty

MOVAL Q HED, Q HEAD+4 ; Back pointer too

FILL: get space for 10 quadwords by calling LIBSGET VM

and insert in queue using INSQUE -
BRB TRY ; Try to remove one again

In BLISS, you can use the BUILTIN functions TESTBITSCS and TESTBITSS

to test and then set a bit in one uninterruptible operation.

Another example of performing first-time initialization transparent to

the caller 1is to establish an EXIT handler to perform some cleanup

operation once when the image exits. Again, this is done by testing

and then setting a first-time flag. If the flag is clear, the Declare

EXIT Handler system service (SDCLEXH) is called to establish the exit

handler.

4.,3.4 Making a PSECT Contribution to LIBSINITIALIZE

This method makes a PSECT contribution to PSECT LIBSINITIALIZE that

contains one or more addresses of procedures to be called by the

library 1initialization procedure LIBSINITIALIZE before the main

program is called. (Examples of this method are shown in Appendix E

of the VAX-11l Common Run-Time Procedure Library Reference Manual.)

CODING MODULAR PROCEDURES

Note that a module in a shareable image cannot use this method because

the PSECT contribution would be to the shared image and not to the
user program image. Furthermore, if this method is wused, a modular

procedure cannot establish a condition handler before a main program
(using LIBSINITIALIZE) to alter how signaled errors are handled, when
the handling conflicts with a condition handler established by another

procedure.

4.4 RESOURCE ALLOCATION

A resource is a part of the hardware or software system that can be

allocated and deallocated. A resource is either in use or free for

use. For reliable operation, each instance of a resource must be

allocated to only one owner at a time. All potential owners must

agree beforehand on the technique for allocating each resource.

There are process-wide resources and system~-wide resources.

System-wide resources such as disk memory and physical memory are

allocated on behalf of a process by the operating system. The

following discussion is limited to process-wide resources.

Process-wide resources are allocated on behalf of a procedure

activation executing within a single process by one of two methods:

e A single allocator is used by all procedures in the image to

allocate (and/or deallocate) the resource.

e A standard discipline is agreed upon so that many allocators

may make nonconflicting allocations.

Examples of the single allocator approach are:

e The linker allocates relocatable virtual addresses among
competing procedures within an image.

¢ The S$ASSIGN system service assigns I/0 channel numbers to
competing procedures within a single process for each

procedure that needs a separate channel.

e The library procedures LIB$GET_VM and LIBSFREE_VM allocate and

deallocate wvirtual memory to requesting procedures in an

image.

Examples of the multiple-allocator approach are:

e Each procedure allocates and deallocates its own stack storage

using registers FP and SP to maintain discipline.

e Each procedure allotates registers from the pool of process
registers (R2 to R1ll) after saving the contents of these

registers on the process stack using the entry mask mechanism.

4.4.1 Use of Storage with Resource-Allocating Procedures

A resource-allocating procedure must use some static storage to keep

track of instances of a resource that are allocated and those that are
deallocated. Therefore, all resource-allocating procedures should

follow the special considerations needed by AST-reentrant procedures

with static storage (see Chapter 6).

CODING MODULAR PROCEDURES

4.4.2 Allocating Identification Numbers In MACRO

The following MACRO procedure LIB_GET_INUM allocates and deallocates
identifying numbers that can be used to identify a resource:

.TITLE LIB GET_INUM -- Allocate and deallocate identifying numbers
TAB: WORD "0 ; bitmap for event flags

.ENTRY LIB GET INUM, "M

FFC #1, #10, TAB, RO ; find first free id. no.
BEQ 20$; branch if none free
BBSS RO, TAB, 10S$; indicate id. no. 1in use

10$: MOVL RO, @4 (AP) ; return id. no. found
MOVL #1, RO ; indicate success

RET

20$: CLRL @4 (AP) ; return 0
CLRL RO ; indicate failure

RET

«END

Note that in order to make this procedure AST-reentrant, move the
label 10$ from the MOVL instruction to the FFC instruction. (See
Chapter 6).

4.4.3 Allocating Logical Unit Numbers in FORTRAN

The following FORTRAN procedure, LIB_GET_UNIT, allocates logical wunit
numbers:

FUNCTION LIB GET UNIT (UNIT)

INTEGER*4 UNIT UNITTABLE(lOO)

LIB_GET_UNIT = 1 ! Assume Success

DO 10 I= 1,100

IF(UNIT_TABLE(I)'.EQ. 0) THEN :
UNIT TABLE (I) = 1 ! Flag unit as in use

UNIT= I-1
RETURN ! return

ASSIGNED

ENDIF

10 CONTINUE

LIB_GET _UNIT = 0 ! Indicate Failure

RETURN

C Deallocate Logical Unit

ENTRY LIB FREE_UNIT

IF (UNIT TABLE (UNIT+1l) .EQ. 1 THEN

UNITTABLE(UNIT+1) =0 ! Flag unit as free

LIB FREE UNIT = 1 ! Indicate success

ELSEIF

LIB_FREE_UNIT = 0 ! Indicate already free

ENDIF

RETURN

END

LIB_GET_UNIT can be called from a FORTRAN program in the following
way:

CODING MODULAR PROCEDURES

IF .NOT. (LIB GETUNIT(I)) THEN GO TO error

OPEN (UNIT = I, ...

4.4.4 Process-wide Resources

Table 4-2 indicates process-wide resources and their single

or discipline for multiple allocators.

allocator

Table 4-2

Allocation Methods for Resources

Virtual memory

Static storage for

nonresource allocation

procedures

Process-wide

identifiers for

static storage

Dynamic string memory

VMS Event Flags

Resource Allocation Method

RO, R1 not a shared resource.

R2:R15 Preserved using stack frame discipline.

(See Appendix C.)

PSW Preserved using stack frame discipline.

allocated statically by linker.

allocated dynamically by either S$SEXPPRG

or LIB$GET VM.

deallocated dynamically only by

LIB$SFREE_ VM.

procedure to push old contents onto a

stack in heap storage and another to

pop old contents back.

caller allocates storage.

procedure to assign process-wide iden-

tifiers.

written only by calling

LIB$SCOPY_R_DX,.

OTS$SCOPY_RDX,

OTS$SGET1_DD,

LIBSSFREEl DD,

LIB$SCOPY DXDX,

OTS$SCOPY_DXDX,

LIB$SSGET1 DD,

deallocated = by
LIB$SFREEN_DD,

and

OTS$SFREE1DD, OTS$SFREEN_DD. (See
Chapter 5 of the: VAX-11 Common
Run-Time Procedure Library Reference

Manual.)

Process local event: flags 32-63

allocated by calling LIBSGET EF.

Process local event flags 1-23 ~and
32-63 may be reserved by <calling

LIBSRESERVE EF and may be freed by

calling LIBSFREE_EF.

CODING MODULAR PROCEDURES

Table 4-2(cont.)

Allocation Methods for Resources

Resource Allocation Method

Condition codes bits 32:16 contain the facility

(message IDs) number. Bit 27 is 0 for those signed
out by DIGITAL, and 1is 1 for those

signed out by customers. Each

allocator must insure uniqueness in

bits 15:3. Also the symbols for the

completion status codes and signaled

conditions are contained in a separate

source file for each facility.

Global Symbols DIGITAL-assigned symbols available for
use by users have a single "$" in

them. wWithin DIGITAL, a facility

prefix identifies a person responsible

for allocating unique symbols. Global

symbols not available to users contain

two dollar signs. User-defined

symbols should contain a _ instead of

a $ to avoid conflict with DIGITAL

symbols.

VAX/VMS does not provide resource allocation procedures or allocation

discipline for the following resources. However, if a 1library

resource allocation procedure does not exist, you can write your own

as indicated by the examples in Sections 4.4.2 and 4.4.3:

e FORTRAN logical unit numbers

e Logical Names

® Process Names

e Event flag cluster numbers 2 and 3

4.5 PASSING STRINGS AS PARAMETERS

This section describes the techniques your procedures may use to

accept and return fixed-length and dynamic string parameters.

For both string types, the calling program allocates the string's

descriptor or passes the address of its descriptor (which is allocated

by its caller).

The descriptor contains a l6-bit string length in bytes

(DSC$W_LENGTH), an 8-bit data type code (DSC$B _DTYPE), an 8-bit

descriptor class code (DSC$B_CLASS), and a 32-bit address of the first

byte of the string (DSC$A POINTER).

The calling program indicates the descriptor class in the DSC$B_CLASS

field. A fixed-length descriptor cannot be modified by the called

procedure. However, the called procedure (using dynamic

string-allocating 1library procedures) can modify the length and

address field of a dynamic string descriptor. The following section

describes input and output parameters in detail.

CODING MODULAR PROCEDURES

4.5.1 Accepting Input Sfiring Parameters

Procedures accept both fixed-length and dynamlc string descriptors as
input parameters in the same way since the string length, string
address, and data type fields appear in the same place in the two
classes of descriptor. Thus, a procedure can accept either class of
string. Modular procedures may read strings by any of the following
methods:

® Access the length and address field indirectly through the
parameter list.

e Copy the address of the string descriptor.

e Copy the contents of the string descriptor.

4.5.2 Returning Output String Parameters

This section describes the semantics of returning fixed- length or
dynamic strings as output parameters or as a function value.

The semantics for returning a fixed-length string are:

e The called procedure does not modify the string descriptor
passed by the calling program.

e The called procedure writes the string starting at the address
specified in the descrlptor (DSCSA POINTER). If the actual
string length indicated in the descriptor (DSCSW_LENGTH) 1is
not large enough, the called procedure fills the string with
trailing ASCII spaces or truncates on the right.

e If truncation occurs, the called procedure may return either
the success condition code LIB$ STRTRU or an appropriate error
condition value as a completion status (in RO) depending upon
the application.

The semantics for returning a dynamic string are:

® The called procedure may modify the string descriptor passed
by the calling program only if the descriptor class code is
dynamic (DSC$K_CLASS_D = 1) and only by calling the dynamic
string allocation procedures (LIBSGET1_DD, LIB$SCOPY_DXDX,
LIBSSCOPY RDX, OTS$GET1_DD, OTS$SCOPY__DXDX, or
OTS$SCOPY R_DX) .

® Using the dynamic descriptor passed by the calling program,
the called procedure can use either of two methods:

1. Creates the entire string to be returned and passes

it to LIB$SCOPY DXDX, LIB$SCOPY R DX, OTS$SCOPY_DXDX,
or OTS$SCOPY R __DX to be copied, or

2. Allocates the next amount of string space needed (by

calling LIB$SSGET1 DS or OTS$SGET1 DD wusing the

descrlptor passed by the calling program) and £fills

it piece-by-piece starting at the address specified
in DSC$SA POINTER.

e If the resource-allocating string procedure exhausts the
virtual memory for your process, it is recommended that your
procedure also indicate the error to the calling program by

CODING MODULAR PROCEDURES

either returning the error condition value (in RO) (LIBS

convention) or signaling the error condition (OTSS

convention).

e The called procedure cannot make a copy of the dynamic string

descriptor since 1its contents may change whenever the string

is written. Therefore, each dynamic string must have one and

only one dynamic string descriptor pointing to it.

The calling program can always pass either a fixed-length string or a

dynamic string, as indicated in the DSC$B CLASS field 1in the

descriptor (fixed length is DSC$K _CLASS_S = 1 or DSC$K CLASS Z = 0;
dynamic is DSC$SK_CLASSD = 2).

Your procedure interface specification <can indicate that your

procedure will return an output string parameter (or function value)

by wusing either fixed-length string semantics or the semantics

indicated by the calling program in the descriptor (preferred).

A modular procedure cannot expect or require a calling program to pass

a dynamic string. However, if you are using:

e Method 1 (above), your procedure can always call the 1library

procedure since it performs the semantics indicated in the

descriptor.

e Method 2 (above), before calling LIBSSGET1_DD, your procedure

must check the class code in the string descriptor

(DSC$B_CLASS) and perform fixed-length semantics explicitly if

the class code is DSCSK CLASS S = 1 or DSCSK _CLASS Z = 0.

The following table indicates the action to be taken by your procedure

for all combinations of interface specification and descriptor class

passed by the calling program: :

Table 4-3

Procedure Action Taken on Strings Passed by Calling Program

Interface Specification for Output String

Fixed-length Semantics specified

semantics by calling program

(—.wt.ds) (—.wt.dx)

Calling program passes (ignore DSB$B__CLASS) (observe PSB$B_CLASS)

Fixed-length string Space fill or Space fill or

(DSC$B_CLASS=0,1) truncate using truncate using

DSC$W_LENGTH and DSC$W_LENGTH and

DSCSA _POINTER DSC$A_POINTER

Dynamic string Space fill or Use library

(DSC$B_CLASS=2) DSC$W_LENGTH and dynamic string procedures

DSC$A_POINTER*

*Note that in this case the calling program must first allocate sufficient space for the dynamic string

(using the library dynamic string procedures) to contain the string to be returned.

CODING MODULAR PROCEDURES

4,.5.3 Passing String Parameters to Other Procedures

The following restrictions apply to string parameters passed from the

calling program to your procedure, and then from your procedure on to

another procedure:

e If you have specified that your procedure (and any it calls)

will only access the string as an input parameter, your

procedure may pass the address of either (1) the original

descriptor (preferred) or (2) a copy of the descriptor.

e If you have specified that your procedure (and any it calls)

will access the parameter as an output parameter using

fixed-length semantics (wt.ds), your procedure may pass the

address of either:

e The original descriptor (to any procedure accessing

it), or

e A copy of the descriptor in which the class code field

has been forced to fixed-length (DSCSK_CLASSS = 1) to

any procedure accessing it as output using the

semantics specified by the calling progranm. (wt.dx).

e If you have specified that your procedure (or any it calls)

will access the parameter as an output parameter using the

semantics specified by the <calling program, your procedure

must pass the address of the original descriptor because a

dynamic string must have one and only one descriptor pointing

to it.

¢ If you do not know the semantics that will be used by a

procedure that your procedure calls, you should assume the

most general case and pass the address of the original

descriptor rather than a copy.

4.6 USE OF VAX/VMS SYSTEM SERVICES BY MODULAR PROCEDURES

The operating system services are 1listed by categories 1in the

following sections. The first column in each section indicates

whether the service is modular; the numbers refer to explanatory

notes 1in Section 4.6.13. Procedures that call nonmodular system

services are nonmodular themselves,

Procedures using nonmodular system services should list them in the

SIDE EFFECTS section of the procedure description.

4.6.1 Event Flag Services

no(16) SASCEFC Associate Common Event Flag Cluster

no(1l6) SDACEFC Disassociate Common Event Flag Cluster

no(16) $DLCEFC Delete Common Event Flag Cluster

yes (1) SSETEF Set Event Flag

yes (1) SCLREF Clear Event Flag

yes SREADEF Read Event Flag

yes (1) SWAITFR Wait For Single Event Flag

yes (1) SWFLOR Wait For Logical OR of Event Flag

yes (1) SWFLAND Wait For Logical AND of Event Flag

CODING MODULAR PROCEDURES

4.6.2 Asynchronous System Trap (AST) Services

yes(15)

yes (1)

yes (1)

4.6.3

Logical names are stored in process-wide storage by VMS and

$SETAST

$DCLAST

SSETPRA

Set AST Enable

Declare AST

Set Power Recovery AST

Logical Name System Services

therefore

cause the same modularity problems as other static storage.

no(2,13) $CRELOG

no(3,13) $DELLOG

yes

4.6.4

yes

yes (3)

yes (1)

yes (1)
yes (1)

yes (1)

yes

yes (3)

yes

yes

yes

no (3)

no(2,13)

yes (3)

no

yes

yes

yes

yes

4.6.5

When using the process control services, you must specify the

parameter as zero;name

STRNLOG

SASSIGN

$DASSGN

$QIO0
SQIOW

SINPUT

SOUTPUT

SALLOC

SDALLOC

SGETCHN

SGETDEV

SGETCHN

SCANCEL

SCREMBX

SDELMBX

$BRDCST

$SNDACC

$SNDSMB

$SNDERR

$SNDOPR

Create Logical Name

Delete Logical Name

Translate Logical Name

I/0 System Services

Assign I/O Channel

Deassign I/0 Channel

Queue I/0 Request

Queue I/0 Request and Wait for Event Flag

Queue Input Request and Wait for Event Flag

Queue Output Request and Wait for Event Flag

Allocate Device

Deallocate Device

Get I/0 Channel Interface

Get I/0 Device Information

Get I/0O Channel Information

Cancel I/0 on Channel

Create Mailbox and Assign Channel

Delete Mailbox

Send Message to all terminals

Send Message to Accounting Manager

Send Message to Symbiont Manager

Send Message to Error Logger

Send Message to Operator

Process Control Services

process

otherwise, there would need to be a resource

allocation procedure to assign different values.

yes (4)

yes(3,4)

yes (3,4)

yes(3,4)

yes

yes (3)
yes(3,4)

yes(3,4)
no (5)

yes (3)

yes

yes

no(3,4)

yes (3)

no(2)

yes (4)

SCREPRC

SDELPRC

$SUSPND

SRESUME

SHIBER

SWAKE

$SCHDWK

SCANWAK

SEXIT

$FORCEX

SDCLEXH

SCANEXH

SSETPRN

SSETPRI

$SETRWM

SGETJPI

Create Process

Delete Process

Suspend Process

Resume Process

Hibernate

Wakeup

Schedule Wakeup

Cancel Wakeup

Exit

Force Exit

Declare Exit Handler

Cancel Exit Handler

Set Process Name

Set Priority

Set Resource Wait Mode

Get Job/Process Information

- 4-17

4.6.6

yes

yes

yes

yes

yes (1)

yes (1)

4.6.7

no (2)

no(2)

yes

no (8)

SGETTIM

SNUMTIM
SASCTIM

SBINTIM

$SETIMR

SCANTIM

Condition

SSETEXV

$SSETSFM

SUNWIND

$DCLCMH

CODING MODULAR PROCEDURES

Timer and Time Conversion System Services

Get Time

Convert Binary Time to Numeric Time

Convert Binary Time to ASCI]I String
Convert ASCII String to Binary time
Set Timer

Cancel Timer Request

Handling System Services

Set Exception Vector

Set System Service Failure Exception Mode

Unwind Call Stack

Declare Change Mode or Compatibility Mode Handler

4.6.8 Memory Management System Services

yes (11)

no (6)

yes (18)

yes (18)

no(7)

no(7)

no(7)

no(7)

no(95)

no (5)

yes

no (8)

no(8)

no (8)

yes (17)

ho (5)

4.6.9

no (8)

no (8)

no (8)

4.6.10

The error

allocation

SEXPREG

SCNTREG

$CRETVA

SDELTVA

$CRMPSC

SUPDSEC

$MGBLSC

$DGBLSC

SLKWSET

SULWSET

SPURGWS
SLCKPAG

SULKPAG

SADJWSL

$SETPRT

SSETSWM

Change Mode

SCMEXEC
SCMKRNL

SADJSTK

message

discipline

facility codes.

uniqueness of bits 15:3.
procedures must use LIBS$SIGNAL (or

than actually outputting an error message.

EXPAND Program/Control Region

Contract Program Control Region

Create Virtual Address Space

Delete Virtual Address Space
Create and Map Global Section

Updata Global Section File on Disk

Map Global Section

Delete Global Section

Lock Pages in Working Set

Unlock Pages from Working Set

Purge Working Set

Lock Page in Memory

Unlock Page from Memory

Adjust Working Set Limit

Set Protection on Pages

Set Process Swap Mode

System Services

Change Mode to executive mode

Change Mode to kernel mode

Adjust Outer Mode Stack Pointer

Error Messages

identification (32-bit condition code) has

LIBSSTOP) error messages

can actually use this service.

yes

vyes (12)

SGETMSG Get Message

$PUTM5G- Put Message

in which bits 26:16 are assigned by DIGITAL as
Each facility is administered by a person who ensures

However, for proper modularity all modular

rather

Only the catch-all handler

CODING MODULAR PROCEDURES

4.6.11 Formatted ASCII Output

yes $FAO Formatted ASCII Output

yes SFAOL Formatted ASCII Output with List Parameter

4.6.12 RMS System Services

In the following calls, the file name is passed as an explicit

parameter or is derived from an explicit parameter passed to a modular

procedure from a nonmodular procedure or from a user. Otherwise, the

file name may conflict with one that already exists. Do not use the

RMS optional success and error action routines since they depend on

AST interrupts being enabled even for synchronous 1/0. This

dependency is not made by modular procedures.

yes(3) SCLOSE CLOSE file

yes SCONNECT CONNECT I/0 stream

yes (9) S$CREATE CREATE file

yes(3) SDELETE DELETE record

yes(3) S$DISCONNECT DISCONNECT I/O stream

yes SDISPLAY DISPLAY information

yes(3) SERASE ERASE file

yes SEXTEND EXTEND file

yes SFIND FIND record

ves(3) S$FLUSH Write out all modified I/0 Buffers

yes (3) SFREE Unlock all previously locked records

yes(14) SGET GET record

yes SNXTVOL Magnetic tape processing continues to next volume

yes(9) SOPEN Open File

yes (14) S$PUT Write a new record to a file

yes SREAD Retrieve a specified number of bytes from a file

yes (3) SRELEASE Unlock a record pointed to by RFA field

yes SREWIND Position first record of a file

yes SSPACE Space forward or backward in a file

yes STRUNCATE Truncate a sequential file

yes SUPDATE Update an Existing Record

yes (3) S$WAIT Determine completion of asynchronous operation

yes SWRITE Write specified number of bytes to a file

4.6.13 Modular Procedure Notes

1. This service has an event flag as an input parameter which is
a process-wide resource., Process local event flags must be
allocated by calling the library event flag-allocating
procedures LIBSGET EF and LIBSFREE EF to allocate a unique

event flag. - -

2. This service changes process-wide static storage of VMS from

the default expected by modular procedures. Thus, use by

more than one procedure would ..-cause ;;a. conflict. Further

problems result if an AST interrupt occurred while static

storage was in a nondefault state. ‘

3. A module can only deallocate items that are known to have

been allocated by it.

4. No process name can be specified since there would have to be
an allocation procedure to allocate it.

10.

11.

12,

13.

14.

15,

16.

17.

18.

CODING MODULAR PROCEDURES

This service may adversely affect the execution of other
modular/reentrant procedures in the process.

You cannot use S$CNTREG to contract the program or control
region because you would violate the standard of not relying
on a particular value of an implicit input to a procedure.
Some other procedure might have expanded the region after you
had expanded it.

These services need a system-wide, group-wide, or
Process-wide allocation procedure or discipline.

These services may adversely affect the execution of
user-written procedures that are not modular/reentrant
because they are also using these system services.

File names must be passed as explicit arguments or be derived
from explicit arguments passed to a modular procedure from a
nonmodular procedure or from a user via the controlling
device.

Use LIBSSIGNAL instead. This allows the «caller to write
application-specific error messages.

If LIBSFREE VM is used to deallocate space in the program
region, LI§$GET_VM must be called in order to reuse the
deallocated space. (See Chapter 5 of the VAX-1ll Common
Run-Time Procedure Library Reference Manual)

Modular procedures should provide an optional action routine
parameter S0 that the calling program can contrel
human-readable output.

This service needs a logical name allocation procedure.

In order to be AST reentrant when using $GET and $PUT, check
for record stream active error (RMS$_RSA). 1If the error it
encountered, call SWAIT and try again. (see Section 6.4).

In order to use S$SETAST in a modular procedure, you must save
the old setting and restore it before returning to the
calling program. You must also establish a condition handler
to restore the setting in case of a stack unwind.

This service requires a resource-allocating procedure to
allocate event flag cluster numbers 2 and 3, which are not
provided for.

$SETPRT must only be used to change the protection of pages
which were statically or dynamically allocated to your
procedure.

$DELTVA and S$CRETVA must only be used on pages which were
statically or dynamically allocated to your procedure.

4.7 INVOKING OPTIONAL USER ACTION ROUTINES

An optional user action routine is a useful way to allow the calling
program to gain control at a critical point within the algorithm of
your procedure. To provide a user action routine, your procedure
should have the following calling sequence:

CALL myproc (...[,action-routine,.flc.rp[,user-arg.xx.x]])

4-20

CODING MODULAR PROCEDURES

The user action routine has the calling sequence:

status.wlc.v = action-routine (...[,user-arg.xx.x])

where your procedure copies the 32-bit arg list entry passed by the

calling program to the argument list provided to the action routine.

Thus the calling program and its action routine can communicate using

any data type, access type, passing mechanism, or arg form.

The following code fragment illustrates how to test for the presence

of an optional user action routine and pass it the optional user arg:

MOVAQ .ess RO RO = adr. of string descr. for line
’

CMPB (AP), #1 ; test no. of caller parameters

BLEQU 308 ; branch if no action routine specified

TSTL 8 (AP) ; test for 0 action routine adr.

BEQU 308 ; branch if no action routine specified
; (LIBS convention)

CMPB (AP), #2 ; test no. of caller parameters

’BLEQU 208 branch if no optional user-arg par.

+ .

Call user action routine with optional user-arg parameter

w
e

W

“
o

PUSHL 12 (AP) 2nd par = user-arg list entry

PUSHL RO ; lst par = adr. of string descr.

CALLS $#2, @8 (AP) ; call user supplied action routine

BRB 408 ; join common code

+

Call user action routine without optional user-arg parameter

“
e

w
e

“
e

208$: PUSHL RO ; lst par = adr. of string descr.
CALLS #1, @8 (AP) ; call user supplied action routine

BRB 40$

+

Call LIBSPUT OUTPUT

w
e

%
o

W

30s$: PUSHL RO ; lst par = adr. of string descr.

CALLS #1, LIBSPUT_OUTPUT ; output line to SYSSOUTPUT

40$: BLBC Ro,.o. ; test for error status

CHAPTER 5

SIGNALING AND CONDITION HANDLING

A modular procedure should not print error or informational messages.

Instead, it should use condition values to indicate success and

failure, including failure type.

A modular procedure uses either of the following techniques:

e Return a condition value as a function value (preferred).

(See Section 5.2.)

e Signal a condition value by calling LIBSSIGNAL or LIBSSTOP

when a failure ocgurs. The absence of a signal indicates

success. (See Section 5.3 of this manual and Section 6.6 of

the VAX~-11 Common ‘'Run-Time Procedure Library Reference

Manual.)

When an exception condition occurs, your procedure should use one of

these methods rather than output an error message directly.

Otherwise, the calling program will be unable to control or change

effects caused by your procedure, thereby precluding use of it in

certain situations. For example, an applications program that was

used by a nonprogramming clerk should output an applications-specific

message (such as "Please start over") rather than a systems

programming-oriented message (such as 'MRS, maximum record size

invalid').

5.1 CONDITION VALUES

A condition value is a 32-bit quantity. In addition +to indicating

success or failure, it can provide the following infermation:

e Severity of the failure

e ‘Error identification

e 'Associated message text

e Facillityrdetecting the error

e Control of error message printing

Success or failure is indicated in bit0 as a 1 or 0, respectively.

Thus, the simplest form of a-.condition value is a 1 or a 0, meaning

success or failure, respectively.

SIGNALING AND CONDITION HANDLING

5.2 RETURNING A CONDITION VALUE AS A FUNCTION VALUE

The following structured programming advantages are inherent in
returning a condition value as a function value:

© All execution paths are confined to syntactic blocks that have
a single entry and a single exit point.

¢ Error contingencies are considered when the calling program is
written, thereby increasing reliability.

e The action of the calling program is clearly indicated when
errors occur,

Your procedure can be called as a main program and the condition value
will be returned to the command language interpreter.

The following sections describe how a procedure can return a condition
value and how a calling program can check it for success or failure.

5.2.1 Returning and Checking an Error Status In MACRO

The following example shows how to indicate success or failure in a
procedure written in MACRO:

+ENTRY PROC, M<...>

+

Success return

w
e

“
s

W

MOVL #1, RO ; RO = 1 - success
RET

+

Failure return

“
e

W
e

W

CLRL RO ; RO

RET

0 - failure]

The following example shows how a MACRO calling program can check for
success or failure in a called procedure:

«EXTRN PROC

CALLG ARGLST, PROC ; call procedure
BLBC RO, 10S ; branch on error

5.2.2 Returning and Checking an Error Status in BLISS

The following example illustrates a procedure returning a success or
failure status in BLISS:

GLOBAL ROUTINE PROC (X,Y,2) =

BEGIN

IF ... THEN RETURN 1 ELSE RETURN 0
END

SIGNALING AND CONDITION HANDLING

The following example shows how a BLISS calling program can check for

success or failure in a called procedure:

EXTERNAL PROC;

IF PROC (A,B,C)

THEN

success

ELSE

failure;

5.2.3 Returning and Checking Error Status in FORTRAN

The following example illustrates how a FORTRAN procedure can return a

success or failure status:

FUNCTION PROC (X,Y,Z)

INTEGER*4 PROC

IF (...) THEN

PROC = 1

ELSE

PROC = 0

ENDIF

RETURN

END

The following example shows how a FORTRAN calling program can check

for a success or failure status:

EXTERNAL PROC

INTEGER*4 PROC

IF (PROC (A,B,C))

THEN

success

ELSE

failure

ENDIF

SIGNALING AND CONDITION HANDLING

5.2.4 Condition Values

The format of the condition value is:

3 2 2

1 8 7 32 0

CNTRL CONDITION INDENTIFICATION SEVERITY

\ / \ /

2 yr 0

S

Y

2 11

7 656 3

FACILITY NUMBER MESSAGE NUMBER

where:

condition identification (STS$V_COND_ID)

Identifies the condition uniquelyon a system-wide basis.

facility (STS$V_FAC_NO)

Identifies the software component generating the condition value.

Bit 27 1is set for customer facilities and clear for DIGITAL

facilities.

message number (STS$V MSG NO)

A status identification, that is, a description of the hardware

exception that occurred or a software-~-defined value. Message

numbers with bit 15 set are specific to a single facility.

Message numbers with bit 15 clear are system~wide status codes.

SIGNALING AND CONDITION HANDLING

severity (STS$V_SEVERITY)

Indicates the severity code: bit 0 is set for success (logical
true) and 1is clear for failure (logical false); bits 1 and 2

distinguish degrees of success or failure. Taken together the

three bits, 0 through 2, define the severity of the error as

follows:

STSSK_WARNING 0 = warning

STSSK_SUCCESS 1 = success

STSSK_ERROR 2 = error

STSSK_INFO 3 = information

STS$SK_SEVERE 4 = severe-error

cntrl

Four control bits. The software symbols are defined for these

fields in Section C€.4 of the VAX-11l Common Run-Time Procedure

Library Reference Manual.

A complete list of facility numbers and codes are found in Appendix B

of this manual. To distinguish your «condition values from those

generated by DIGITAL, you should set bit 15 (STS$V_FAC_SP) and bit 27

(STSSV_CUSTDEF) to 1.

5.2.5 Defining Condition Value Symbols

To make condition value symbols available to calling programs in a
convenient manner, you should assign a unique global symbol to each
distinct error detected by your procedure. The global symbols should
have the form:

fac error-name

You may also wish to define success condition values in order to

indicate various forms of success. For example, the system service

$SETEF (Set Event Flag) returns SS$ WASCLR or SS$_WASSET to indicate

whether the event flag was previously clear or set, respectively.

If you place your procedures in a user-created or DIGITAL-supplied

library, you may wish to include the global symbol definitions there
as well so that they are available to any module making an external
declaration.

In order to uniquely define condition value symbols so that neither
the name nor the value can possibly be the same as that defined by

another user or by DIGITAL, you must:

1. Choose a DIGITAL facility name (LIB, MTH,...) or create one.

If you create one, you must register the name with a person
at your installation who maintains responsibility for the
uniqueness of such symbols.

2. Place all symbol definitions for a given facility in a single

source file.

3. Define values for each symbol such that each value is unique
in bits 14 through 3.

4., Make sure that bits 27 and 15 are set to prevent conflict
with DIGITAL.

5. Set bits 26 through 16 to the proper facility number.
(DIGITAL-supplied numbers are listed in Appendix B.)

SIGNALING AND CONDITION HANDLING

The following examples describe how to define the following global
condition value symbols:

LIB_ NOSUCHFILE - no such file

LIB__ NOSUCHDEV - no such device .

LIB__NOSUCHDIR = no such directory

in MACRO:

The LIB facility has facility number 24, which is placed in a field
ending at bit 16. Bits 27 and 15 are set to 1.

LIB__FAC = <24@16>+<1@27>+<1@15> ; define facility

SEVERE = 4 ; Severity = severe

LIB__NOSUCHFILE == LIB__FAC + SEVERE + 1@3

LIB_ NOSUCHDEV == LIB__FAC + SEVERE + 2@3

LIB__ _NOSUCHDIR == LIB__FAC + SEVERE + 3@3

in BLISS:

GLOBAL LITERAL

LIB__FAC = 2416 + 1727 + 1°15,

SEVERE = 4

LIB__NOSUCHFILE

LIB__NOSUCHDEV

LIB__NOSUCHDIR

LIB__FAC + SEVERE + 1°3

LIB__FAC + SEVERE + 2°3

LIB__FAC + SEVERE + 3°3

IN FORTRAN:

Global symbols may be defined in MACRO for use by a FORTRAN program or

procedure.

5.2.6 Using Global Condition Values in a Calling Program

A calling program can identify a condition value returned by a

procedure and take appropriate action for each specific wvalue

returned. When identifying a condition value, the <calling program

should ignore bits 31 through 28 and bits 2 through 0 since they are

supplemental to the identification of the error. 1In some cases, the

condition value may have been signaled before being returned as a

function value. Therefore, these bits may differ from the values

defined symbolically. If the facility-specific bit is 0, then the

facility number field (bits 27 through 16) should also be ignored.

The 1library procedure LIBSMATCH _COND uses this algorithm for matching

condition values. This procedure is described in Chapter 6 of the

VAX-11 Common Run-Time Procedure Library Reference Manual.

The format for LIB$MATCH_COND iss

index = LIBSMATCH _COND (condition-value, cond-value-i ...)

condition-value

Address of longword containing the condition value to be matched.

cond-val-i

Address of longword containing the condition value to be compared

with condition-value

index

0, if no match is found; 1 for a match between the first and

(i+1)st parameter.

5-6

SIGNALING AND CONDITION HANDLING

The following sections show examples that use the condition values

described above in a program to branch to different instructions on

each different condition value. Examples are given in MACRO, BLISS,

and FORTRAN both with and without the use of LIBSMATCH_COND.

in MACRO:

.EXTRN LIB_PROC, LIB__NOSUCHFIL, LIB__NOSUCHDEV,

LIB__NOSUCHDIR

CALLG ARGLST, LIB_PROC

BLBS RO, 10$; branch if success

CMPL RO, #LIB__NOSUCHFIL

BEQL 208 : ; branch if no such file

CMPL RO, #LIB NOSUCHDEV

BEQL 30$ — ; branch if no such device

CMPL RO, #LIB NOSUCHDIR

BEQL 403 T ; branch if no such directory

; here if any other error

By using LIBSMATCH_COND, the preceding example changes to that shown

below:

+EXTRN LIB_PROC, LIB$MATCH_COND, LIB__NOSUCHFIL,

LIB__NOSUCHDEV, LIB__NOSUCHDIR

CALLG ARGLST, LIB_PROC

BLBS RO, 108 ; branch if success

PUSHL #LIS__NOSUCHDIR'

PUSHL #LIB__NOSUCHDEV

PUSHL #LIB__NOSUCHFIL

PUSHL RO

CALLS $4, LIB$MATCH_COND

15$: CASEB RO, #1, #3

20-15 ; no such file

30$-15s ; no such device

40$-408 ; no such directory

14 here if any other error

The following BLISS example also branches upon identification of a

particular condition value:

EXTERNAL ROUTINE LIB PROC: ADDRESSING_MODE (GENERAL):

EXTERNAL LITERAL LIB__NOSUCHFIL, LIB__NOSUCHDEV,

LIB__NOSUCHDIR:

ROUTINE ...

BEGIN

LOCAL COND_VAL;

COND_VAL = LIB_PROC (...)

IF NOT .COND VAL

THEN -

SELECTONE .COND_VAL OF

SET

[LIB__NOSUCHFIL]: ...

[LIB__NOSUCHDEV]: ...

[LIB__NOSUCHDIR]: ...

[OTHERWISE] : .o
TES;

e

“
e

w
e

w
o

By using LIB$SMATCH_COND, the preceding example changes to that shown

below:

EXTERNAL ROUTINE

LiB _PROC: ADDRESSING_MODE (GENERAL),

LTRSMATCH_COND: ADDRESSING_MODE (GENERAL) ;

5-7

SIGNALING AND CONDITION HANDLING

EXTERNAL LITERAL

LIB__NOSUCHFIL, LIB__ NOSUCHDEV, LIB___NOSUCHDIR; ,

EXTERNAL LITERAL LIB ___NOSUCHFIL, LIB NOSUCHDEV,

LIB__NOSUCHDIR;

ROUTINE ...

BEGIN

LOCAL COND_VAL;

COND_VAL = LIB_PROC (...)

IF NOT .COND_VAL

THEN

CASE LIBSMATCH_COND (. COND_VAL,

LIB__NOSUCHFIL

LIB___NOSUCHDEV,

LIB__NOSUCHDIR) FROM 1 TO 3

SET

[1]: ces

[2]: ces

(31: ...

[OUTRANGE] : s e ;

TES;

“
e

“
o

w
o

The following example illustrates using condition values to branch to
several different instructions in FORTRAN:

EXTERNAL LIB_PROC, LIB__NOSUCHFIL, LIB__ NOSUCHDEV,

1LIB__NOSUCHDIR

INTEGER*4 LIB_PROC, COND_VAL

COND_VAL = LIB_PROC (...)

IF (\NOT. COND_VAL) THEN

IF (COND_VAL LEQ. $%LOC(LIB__NOSUCHFIL)) THEN

ELSEIF (COND_VAL .EQ. $LOC(LIB___NOSUCHDEV)) THEN

ELSEIF (COND_VAL .EQ. $LOC(LIB__NOSUCHDIR)) THEN

ELSE

ENDIF

The following example does the same thing in FORTRAN using
LIB$MATCH_COND:

EXTERNAL LIB_PROC, LIBSMATCH_COND

EXTERNAL LIB NOSUCHFIL LIB__ SUCHDEV, LIB__NOSUCHDIR

INTEGER*4 LIB PROC, LIB$MATCH COND, COND_ VAL

COND_VAL = LIB_PROC (...)

IF (.NOT. COND_VAL) THEN

GOTO LIB$MATCH COND (COND_VAL, %LOC(LIB__NOSUCHFIL),
1l %LOC(LIB NOSUCHDEV), %LOC(LIB __NOSUCHDIR) 20,30,40

5.3 SIGNALING ERROR CONDITIONS

Currently you cannot add messages to the system message file, or have
a private message file. Thus, 1if vyour procedure signals a
user-created condition value, no associated message is printed by the

SIGNALING AND CONDITION HANDLING

catch-all handler as would normally be the case. Instead, only the

error message number will be printed.

You can however, signal existing condition values by calling

LIBSSIGNAL or LIBSSTOP.

5.3.1 LIBSSIGNAL - Signal Exception Condition

LIBSSIGNAL is called whenever it is necessary to indicate an exception

condition or output a message rather than return a status code to the

calling program. LIB$SIGNAL scans the stack frame-by-frame starting

with the most recent frame calling each established handler.

The format is:

CALL LIBSSIGNAL (condition-value [,parameters...])

condition-value

A standard signal name designating a VAX-11 system-wide 32-bit

condition value. (passed by-value).

parameters

Optional additional FAO (formatted ASCII output) parameters for

message. (passed by-value).

5.3.2 LIBSSTOP - Stop Execution Via Signaling

LIBSSTOP is called whenever it is necessary to indicate an exception

condition or output a message when it is impossible to continue

execution or return a status code to the calling program. LIBSSTOP

scans the stack frame-by-frame starting with the most recent frame

calling each established handler. LIBS$STOP guarantees that control

will not return to the caller. The format is:

CALL LIBSSTOP (condition-value [,parameters...])

The LIBSSTOP parameters, are identical to those described above for

LIBSSIGNAL.

LIB$SSIGNAL and LIBS$STOP are discussed in more detail including MACRO

and FORTRAN examples in Section 6.6 of the VAX-11 Common Run-Time

Procedure Library Reference Manual. The pattern for FAO arguments is

also described so that a series of messages can be produced.

5.4 INTERNAL SIGNALING

Because you may choose to organize procedures in levels of abstraction

(See Section 4.2) some procedures will not be available to the calling

program across the modular interface. You may want to use internal

signaling between these internal procedures.

5-9

SIGNALING AND CONDITION HANDLING

To use internal signaling, the procedures that can be called across
the modular interface must establish a condition handler. Whenever
any of your procedures detect an error, they call a central
error-signaling procedure and pass the error number as a parameter to
be used in a 32-bit condition value (bits 14 through 3). This
error-signaling procedure converts the error number to a 32-bit
condition value by:

e shifting the error number left by 3 bits.

e inserting a severity code (usually SEVERE = 4).

e setting the facility number bit field.

e setting bits 27 and 15.

The error-signaling procedure then adds any extra arguments and
signals the error by calling LIB$SIGNAL or LIBS$SSTOP. For example, the
FORTRAN support library procedure FORSSSIGNAL adds the current logical
unit number and file name to the argument list, followed by the vax-11
RMS condition value and status value from the current FAB or RAB.

Your specific condition handler is then entered. It can decide how to
proceed from this point. Usually, it will unwind to the caller of the
establisher (which 1is the program calling across the modular
interface). The signaled condition value is the value returned to the
calling program that called the establisher (outermost layer). This
can be done by making LIBSSIG_TO_RET the specific error condition
handler. LIBSSIG_TO_RET can also be called from your handler. For
example, the condition handler established by the FORTRAN support
procedures inserts the program counter (PC) of the calling program
into the signal argument list and either (1) resignals or (2) unwinds
to the ERR= address if ERR= is specified by the calling program as an
optional argument. The PC of the calling program is not known by the
internal signaling procedure FOR$$SSIGNAL. However, it is easy for the
handler to find 1it, since the handler is passed the address of the
stack frame of the establisher (which contains the PC of the calling
program).

5.5 CREATING A PROCEDURE ACTIVATION ENVIRONMENT

You can use the VAX/VMS error-signaling mechanism to create a special
per-procedure activation environment. This 1is needed to implement
most higher-level languages. In such cases, the compiled code for
each procedure activation establishes a language-specific condition
handler. The address of the handler (stored in longword zero of the
stack frame) can also serve as a means of identifying which language
the procedure was written in. This is wuseful for language support
procedures which need to know the layout of the stack frame.

Such a handler takes appropriate language-specific action on software
errors signaled by mathematics (MTH) or language support (FOR, BLI,
«+) procedures, or by hardware errors. By using such a per-activation
mechanism, procedures of different languages can call one another,
each with its own environment. Note that the main program is also a
procedure and follows the same per-procedure activation technique.
Furthermore, the code generated by the main program must not c¢all a
language initialization routine, since the main program might call
procedures written in any language.

CHAPTER 6

CODING MODULAR AST-REENTRANT PROCEDURES

This chapter describes coding techniques for modular procedures that

use the VAX/VMS AST (asynchronous system trap) interrupt mechanism

themselves, or permit calling programs to use it. A procedure is said

to be AST-reentrantl if it:

e Can be interrupted between any two instructions, permitting it

or any related procedure to be called (reentered)

e Will execute correctly when continued

This chapter describes:

e How to code AST-reentrant procedures

e How to code I/0 that may or may not be at the AST level

It is recommended that all modular procedures be AST-reentrant so that

they may be called from any program. If vyour procedure is not

AST-reentrant or calls any procedure that is not AST-reentrant, your

documentation should state that it is not AST-reentrant to warn others

using your procedure.

6.1 AST INTERRUPTS WITHIN A PROCESS

Some VAX/VMS system services allow a process to request that it be

interrupted when a particular event occurs. Since the interrupt

occurs asynchronously (out of sequence) with respect to the execution

of the process, the interrupt mechanism is called an asynchronous

system trap (AST). An AST interrupt provides a transfer of control to

a user-specified routine that services the event. The AST routine may

call other procedures including library procedures. The AST routine

and any procedures it calls are said to be executing at AST level.

1 fThe term AST-reentrant should not be confused with reentrant, which

refers to a more restrictive set of conditions encountered when static

storage is shared between processes (PSECT attribute SHR). 1In such a

situation, there can be more than two threads of concurrent execution

and each thread may alternately progress toward an end. The

restrictions become even more severe if the processes can be executing

simultaneously on several processors. Since most modular procedures

share code (and not data) between processes, not all of the techniques

described in this chapter are applicable to reentrant procedures on

single or multiprocessor configurations that share data between

processes. All of the techniques in this chapter assume that data is

statically allocated per-process (PSECT attribute NOSHR).

CODING MODULAR AST-REENTRANT PROCEDURES

While at AST level, a process cannot be interrupted again. The

process runs to completion at the AST level before the non-AST level

procedure resumes and is able to execute another instruction. Hence,

a process is either executing at AST level or at non-AST level at any

instant of time and thus consists of two "threads of execution", one

thread at each level. Note that the AST level cannot stall or use

"busy wait" to avoid being called before the non-AST level is out of a

critical section of code.

When the AST routine finishes servicing the event, it returns control

to 1its caller (which 1is the operating system). This automatically

continues the execution of the interrupted procedure at the point at

which it had been interrupted.

For example, you could call the Set Timer system service, ($SETIMR)

that would specify the address of an AST 1level procedure to be

executed when a specified time elapses. When the requested time

occurs, the system 'delivers' an AST interrupt by stopping the

currently executing procedure and calling the specified AST routine.

Another example of an AST event is typing Control °C on the terminal.

For information on the implementation of AST interrupts by system

services, see the VAX/VMS System Service Reference Manual.

If an AST interrupt occurs during the execution of a non-AST reentrant

procedure, you may get unpredictable results from either the AST level

procedure or the interrupted procedure.

A FORTRAN procedure cannot be made AST-reentrant. Hence, FORTRAN

procedures may only be called at either the AST level or the non-AST

level, but not both.

6.1.1 AST Routines

To use AST interrupts, you must write an AST routine to take control

at AST level. An AST routine must follow these guidelines:

e It must be separate from the currently executing procedure.

¢ It must not modify data or instructions used by the

interrupted procedure or its callers.

@ It is called with a CALLG instruction.

e If it modifies any registers other than RO and Rl, it must set
the appropriate bits in the entry mask so that the contents of

the registers are saved.

e If it <calls any other procedures, they must all be

AST-reentrant.

e It must return with a RET instruction.

6.2 WRITING AST REENTRANT MODULAR PROCEDURES ‘

You must observe the following standards when writing AST reentrant

procedures:

e Only AST reentrant procedures may be called at both the AST

and the non-AST level. Since an AST interrupt can arrive at

any time, AST-reentrant procedures must be written so that an

6-2

CODING MODULAR AST-REENTRANT PROCEDURES

AST interrupt can occur between any two instructions without

interfering with the <correct operation at either the AST or

non-AST levels. If a single instruction is interruptible, an

AST interrupt may also occur within that instruction. (For

more information, see the VAX-11 Architecture Handbook.)

e An AST~reentrant procedure cannot call any procedures that are

not AST-reentrant.

e If both an AST level and a non-AST level procedure access a

data base in static storage concurrently, each procedure must

make sure that a race conditionl interference does not occur.
(See Section 6.3)

e If I/0 at the AST level is performed, you must be careful not

to attempt simultaneous I/0 of the same data base from both

the AST level and non-AST level procedures. (See Section 6.4)

A procedure with no static storage 1is automatically AST-reentrant.

Hence, it 1is recommended that AST-reentrant procedures use dynamic

storage whenever possible.

A procedure with static storage may be AST-reentrant, although this is

difficult to program since statically allocated data may be being

changed when the interrupt occurs.

6.3 ELIMINATING RACE CONDITIONS DURING CONCURRENT ACCESS

There are a number of ways for your procedure to eliminate race

condition interferences when accessing and modifying data in its

static storage:

e Perform all accessing or modification in a single

uninterruptible instruction.

e Detect concurrency of data base access using "test and set"

instructions at data base entry and exit.

e Keep a call-in-progress count that is incremented when your

procedure 1is called and decremented when it returns. The

count is used as an index into separate allocated areas.

e Disable AST interrupts upon entry and restore the enable state

on exit.

The following sections describe these methods.

6.3.1 Performing all Accesses in one Instruction

For some applications, the entire modification of data 1in static

storage can be performed in a single uninterruptible instruction. For

example, you can use queue instructions at the beginning and end of

your procedure to control resource allocation.

1 The term race condition refers to a situation where two
independently executing threads of execution can access the same data

in a conflicting manner. For example, a race condition exists if a

single instance of a process-wide resource can be allocated to

different procedures at the AST and non-AST level.

6-3

CODING MODULAR AST-REENTRANT PROCEDURES

The remove queue instruction removes a control block (containing an

instance of a process-wide resource) from the free list of available
resources, making the resource available to the program. The insert

queue instruction places the control block back in the free list when

the program no longer needs the resource.

The queue headers are allocated in static storage. The control blocks

themselves can be in static storage (if a specific number of resources

are needed) or in dynamic heap storage (if a variable number of

resources are needed). ,

For example, LIB$SCOPY allocates and deallocates string space in heap

storage. A fixed number of queue headers are allocated in static

storage -- one queue for each string length.

The following example illustrates an AST-reentrant procedure that uses

queue instructions to control allocation of quadword blocks:

.PSECT LIB_DATA PIC,USR,CON,REL,LCL,NOSHR,NOEXE,RD,WRT

FLAG: .LONG © ; first-time flag
QHED .LONG 0,0

.PSECT _LIB CODE PIC,USR,CON,REL,LCL,SHR,EXE,RD,NOWRT

+.ENTRY LIB GET X, "M<>

BBCS FLAG, 10$; branch on call only
TRY: REMOVE @Q HED, RO ; RO = address of queue

BVS FILL ; branch if empty and fill

RET

+

Here on first call only

N

%
o

“
o

108: MOVAL Q HED, Q HEAD ; Make queue empty
MOVAL Q HED, Q HEAD+4 ; Back pointer too

FILL: get space for 10 quadwords by calling LIBSGET_VM

and insert in queue using INSQUE

BRB TRY ; Try to remove one again

In other applications, the static storage can be divided into two or

more pieces that are each placed in a queue.

A single queue instruction can be wused at the beginning of vyour

procedure to remove one piece, and another can be used at the end to

insert the piece back in the queue.

While a piece is removed from the queue, your procedure may modify

data in that piece. If an AST-interrupt occurs while the piece is

removed, a different piece of data will be used instead, thus avoiding

conflicts with the interrupted procedure.

6.3.2 Using "Test And Set" Instructions

To detect concurrent access of static storage at both AST and non-AST

levels, you should add the following steps to your procedures:

@ Place a branch on bit set and then set instruction (BBSS)

immediately before each of your procedures access static

storage.

® Access and/or modify static storage.,

CODING MODULAR AST-REENTRANT PROCEDURES

® Place a branch on bit clear and then clear instruction (BBCC)

immediately after each of your procedures has completed access

to static storage.

The BBSS instruction detects that concurrency is about to take place

before static storage has been accessed. There are two alternate

techniques for resolving concurrency conflicts detected by the BBSS

and BBCC instructions:

® Use separate statically allocated areas at the AST and non-AST

levels. When the BBSS instruction detects concurrency at the

beginning, use the second allocated area. Note that this

technique will not work if an exception condition could occur

between execution of the BBSS instruction and the BBCC

instruction, and 1if your procedure has not established a

condition handler. This 1is because a <condition handler

established by the calling program might also simultaneously

call your procedure,

® Repeat the execution of your procedure if concurrency |is

detected at the end. When the BBCC instruction detects this

concurrency, branch back to the beginning of your procedure

and try again.

The following example illustrates the latter technique.

This MACRO procedure, LIB_GET_INUM, allocates and deallocates VMS
event flags: ‘

.TITLE LIB_GET_INUM -- Allocate and deallocate identifying numbers 1

TAB: -WORD 0 ; bitmap for event flags

.ENTRY LIB_GET_INUM, "M<>
108 FFC #1, #10,TAB, RO ; £find first free id, no.

BEQ 208 ; branch if none free

BBSS RO, TAB. 10§ ; indicate id. no. 1in use

MOVL RO, @4 (AP) ; return id. no. found

MOVL #1, RO ; indicate success

RET

208: CLRL @4 (AP) ; return O

CLRL RO ; indicate failure

RET

« END

6.3.3 Keeping a Call-in-progress Count

You can keep track of when your procedure is called if the data base

is to be kept separate between each call by using a call-in-progress

count. Before data base access, the count is incremented and used to
index into a table of base addresses for the separate data bases. A

check for depth being exceeded should be made. After the data base

has been accessed, the count is decremented. This technique has an

advantage over the BBxx technique in that it can handle more than two

levels of reentrance. However, it is 1less reliable, since an

exception can cause the count never to be decremented, causing an

eventual procedure malfunction. This can be avoided by establishing a
condition handler in your procedure.

10

CODING MODULAR AST-REENTRANT PROCEDURES

6.3.4 Disabling AST Interrupts

Sometimes the only way to avoid race <conditions is to disable AST

interrupts during the access to static storage, and restore the state

of the AST enable at the end. However, this technique may adversely

affect performance of real-time programs using AST interrupts, and

hence should be avoided whenever any technique described in the

previous sections can be used.

The number of instructions during which the AST interrupts are

disabled should be minimized. Before disabling AST interrupts,

establish a condition handler to restore the AST 1level 1in case an

exception or stack unwind takes place.

The following MACRO example disables ASTs and then restores the state

of the enable before returning to its caller:

.ENTRY PROC, "M<>

$SETAST_S ENBFLG=0 ; disable ASTs, RO, = SS$_WASSET or

CMPL RO, #SSS$_WASSET ; were ASTs enabled?

BNEQ 10$; branch, if not

$SETAST_S ENBFLG=1 ; enable AST

10S: RET ; return with AST delivery restored

6.4 PERFORMING I/0O AT THE AST LEVEL

If your procedure performs I/0 using VAX-1ll RMS system services, there

are several coding techniques that you must observe in order for your

procedure to be AST-reentrant:

e When opening process permanent files such as SYSSINPUT,

SYSSOUTPUT, SYSSCOMMAND, or SYSS$SERROR, check for the vAX-11

RMS error status RMSS$ ACT (Active) after each $CREATE or SOPEN

service. Such an error indicates that a record operation had

already started for the process permanent file. This error

does not occur for nonprocess permanent files, and the open

service follows the constraints of shared access to the file

that may have been imposed by a previous open service. If the

error occurs, perform a SWAIT using the same file access block

(FAB) . When control returns to your procedure, try the

SCREATE or SOPEN service again. Repeat this sequence until it

succeeds.

e When performing record I/0 to any type of file, check for the

RMS error status RMS$ RSA (record stream active) after each

SGET and S$PUT service. Such an error indicates that a record

operation had already been started for the file. If the error

occurs, perform a $SWAIT using the same record block (RAB).

When control returns to your procedure, try the S$GET or $PUT
service again. Repeat this procedure until it succeeds.

The FORTRAN I/0 support procedures use this technique so that

FORTRAN I/0 can be done at AST and non-AST level., The VAX/VMS

Put Message system service (SPUTMSG) also uses this technique

so that error message signaled at AST level will be output on

SYSSOUTPUT even though the non-AST level is also calling SPUT.

SS$_¥

CODING MODULAR AST-REENTRANT PROCEDURES

e Avoid storing data in a record access block (RAB) which VAX-11

RMS may still be accessing. Your procedure may do this by one

of two techniques:

l. Allocate the RAB on the stack so that AST level and

non-AST level have separate RABs.

2. Allocate the RAB in static storage along with a busy

bit. The busy bit 1is tested and set using a BBSS

instruction before the RAB is accessed. If the RAB

is already busy, your procedure executes a SWAIT

using that RAB.

For synchronous I/0 (that is always completed before returning

control to your procedure) you may use either of the

techniques described above. However, the first 1is nmore

reliable than the second since it has no static storage and

hence cannot behave erroneously if an exception were signaled.

For asynchronous 1I/0 (when control is returned to vyour

procedure Dbefore I/0 1is completed), you must use the second

technique.

CHAPTER 7

BUILDING MODULAR PROCEDURE LIBRARIES

Modular -procedure libraries consist of compiled and assembled object
code that is associated with a calling program at 1link time.
References to procedures in these libraries are resolved when the
linker searches the wuser libraries specified in the LINK command or
the default system libraries. The program can then call library
procedures at run time.

You can create a modular procedure library by following the guidelines
of this chapter. You can place procedures in either an object module
library or a shareable image. Before starting, make sure the modular
procedures conform to the standards listed in Appendix A.

7.1 BUILDING THE DEFAULT SYSTEM OBJECT LIBRARY

You can also place procedures in the default system object 1library
STARLET.OLB. However, you must have the privileges of a system
manager to do this.

7.1.1 Adding to the System Default Object Library

With the privileges of the system manager, you may use the following
command to add procedures to STARLET.OLB: The general form is:

$ LIBRARY/REPLACE SYS$LIBRARY:STARLET file-spec{,...]

If you wish to use any of the LIBRARY command qualifiers with this
command, see the VAX/VMS Command Language User's Guide.

Figure 7-1 shows the installation of a user-created procedure in
STARLET.OLB. 1In this example, LIB CONV TIM is a sample procedure that
Converts system time to a specific format and is contained within a
module LIBCONVTIM.OBJ. The following command will add the module to
the system default library STARLET.OLB:

$ LIBRARY/REPLACE SYSSLIBRARY:STARLET.OLB LIBCONVTIM

After this command, the updated STARLET.OLB contains the new procedure
LIB_CONV_TIM.

BUILDING MODULAR PROCEDURE LIBRARIES

LIB_.CONV.TIM ENTRY POINT

>
ANY NEW

USER-CREATED

OBJECT MODULE

.0BJ

LIBCONVTIM.OBJ

STARLET.OLB

DEFAULT OBJECT — = LIBRARIAN
LIBRARY

(CURRENT VERSION)
1

d>
STARLET.OLB

UPDATED

DEFAULT OBJECT

LIBRARY

Figure 7-1 Adding a User-Created Procedure

to the Default Object Library

7.1.2 Accessing the Default System Object Library

Accessing procedures in STARLET.OLB requires no special LINK command.

STARLET.OLB is automatically searched during any LINK command after

the default system shareable image is searched, and if any unresolved

strong references remain., If references are found in STARLET.OLB, the

linker will include the modules containing the references in the

executable image.

The linker can be instructed not to search the system default

libraries by using the following qualifiers in the LINK command:

/NOSYSLIB - System will not search STARLET.OLB or VMSRTL.EXE.

/NOSYSSHR - System will not search the shareable subset of

STARLET.OLB, VMSRTL.EXE.

BUILDING MODULAR PROCEDURE LIBRARIES

More detailed information on both the LIBRARY and LINK commands may be

found in the VAX/VMS Command Language User's Guide,

7.2 BUILDING A USER~CREATED OBJECT MODULE LIBRARY

A user-created object module library consists of procedures written by

you in any VAX-supported programming language.

You can create an object library from object files using the LIBRARY

command. Figure 7-2 shows the development of a theoretical

user-created library of graphics procedures, called GRAPHICS.

GRAPHICS GRAPHICS GRAPHICS GRAPHICS NON GRAPHICS
LIBRARY LIBRARY LIBRARY LIBRARY MODULAR LIBRARY

PROCEDURE PROCEDURE PROCEDURE PROCEDURE | _ .} PROCEDURE PROCEDURE

USED BY

GRA_SPHERE GRA_OBJ_SPH| | GRA_SPH_SEC GRA_CUBE GRA_CUBE GRA_CONE

GRAPHICS LIBRARY GRAPHICS LIBRARY | GRAPHICS LIBRARY
MODULE MODULE MODULE !

GRASPHERE.OBJ GRACUBE.OBJ GRACONE.OBJ

$ LIBRARY/CREATE GRAPHICS GRASPHERE,

| GRACUBE, GRACONE

GRAPHICS.OLB

USER-CREATED
OBJECT MODULE

LIBRARY

Figure 7-2 Development of a User-Created Object Module Library

The library facility code wused 1is GRA. The modular procedures

envisioned produce mathematical representations of circles, cylinders,

squares, and other geometric shapes. For example, the module

GRASPHERE.OBJ might contain several related procedures that create

Spheres (GRA_SPHERE), oblate spheroids (GRA_OBL_SPH), and spherical

sections (GRA_SPH_SEC) grouped together because they share similar

code. The module GRACUBE.OBJ could contain both a procedure that

generates cube shapes and a nonmodular procedure that it calls.

(Note, however, that the module GRACUBE.OBJ is still modular.)

BUILDING MODULAR PROCEDURE LIBRARIES

The LIBRARY command for building a user-created object library has the

following general form:

LIBRARY/CREATE library-name file-spec[,...]

The following example shows the creation of the user-created object
library GRAPHICS.OLB that contains the modules GRASPHERE.OBJ and

GRACUBE.OBJ. (.0BJ and .OLB are the default file types for object

modules and object libraries respectively, and are included here for
clarity only.)

$ LIBRARY/CREATE GRAPHICS.OLB GRASPHERE.OBJ,GRACUBE.OBJ

After this command is given, GRAPHICS is ready to be 1linked with an
application program.

7.2.1 Accessing a User-Created Object Library

You can include library modules in the calling program's executable
image either implicitly or explicitly:

e The /LIBRARY qualifier causes the linker to search the library
specified and implicitly includes modules containing

definitions of symbols to which there are outstanding

references.

e The /INCLUDE qualifier simplifies the 1linker's search of a

library since it instructs the linker to explicitly include a
specified module in the image.

Any object library specified in an application program's LINK command

will be 1linked with that program if references to procedures in that

library are encountered. A simple form of the LINK command is:

$ LINK application-program, user-created library/LIBRARY

Any module in an object module 1library explicitly specified in an
application program's LINK command will be included in the executable

image being created. A simple form is:

SLINK application-program, user-~library/INCLUDE=(object module,...)

7.3 BUILDING A USER-CREATED SHAREABLE IMAGE

Placing procedures in a shareable image can reduce memory requirements

and improve system performance if a number of application programs
share the same set of procedures. However, the entire shareable image
must be rebuilt any time a modification is made to it.

A shareable image may be built from either position-independent or
nonposition-independent code.

The linker and image activator treat shareable images as follows: The
size of each shareable image section must remain identical from one

update to the next unless it is the last shareable image in the PO
address space, in which case it 1is free to grow. Since a

position-independent piece of code will always be placed after all

position-dependent code, position-independent shareable images are

always placed last. Creating a position-independent shareable image
will cause it to appear last in the P0 address space and thus able to

BUILDING MODULAR PROCEDURE LIBRARIES

be appended. If none of the shareable images consists of
position-independent code, the last image specified in the LINK
command becomes the last image in the address space.

7.3.1 Creating Shareable Images in FORTRAN

You can create a user-created shareable image containing FORTRAN
procedures. However, because FORTRAN data PSECTS are not
position-independent, FORTRAN procedures are also not
position-independent. Therefore FORTRAN shareable images have the
following restrictions:

e To use multiple shareable NONPIC images, the address space
must be manually assigned to each image.

e If new versions of the image are 1larger than old versions,
rebuilding shareable images will require relinking all
programs that were bound with the old one. .

e If a user-created shareable image has VMSRTL.EXE linked to it
at creation, and you specify that user image last, you can
install a new version of VMSRTL.EXE without relinking.

e Transfer vectors may be used with FORTRAN-shareable 1libraries
if all images are approximately the same size and padded with
extra space between them. Transfer vectors enable a shareable
image to be relinked without relinking all the programs that
called the old version,

Library of @ : Command Procedure
Concatenated USER-CREATED Containing $LINK Command
Object Modules{ | OBJECT MODULE MAKESHAR.COM
Intended For LIBRARY

Sharing \
GRAPHICS.OLB

To Control:

o Memory Allocation

}Optional Options File

e Universal Symbols
MAKESHAR.OPT

LINKER

Y

GRAPHICS.MAP

USER-CREATED

SHAREABLE IMAGE

GRAPHICS.EXE

Figure 7-3 Creating a Shareable Image

BUILDING MODULAR PROCEDURE LIBRARIES

7.3.2 Building and Installing A User-Created Shareable Image

Figure 7-3 shows the transformation of the wuser-created library

GRAPHICS from an object module library to a shareable image. To do

this, you must perform the following:

Create a command procedure (MAKESHAR.COM in Figure 7-3) to build the

shareable image. For example:

$ LINK/SHAREABLE=GRAPHICS/MAP/FULL-

GRAPHICS/INCLUDE=(GRA SPHERE,...), MAKESHAR/OPTIONS

where:

e /SHAREABLE instructs the linker to build a shareable image

called GRAPHICS.EXE.

e /MAP/FULL produces a detailed map of the image in (by default)

GRAPHICS.MAP.

e /INCLUDE is used to specify the list of objects to be taken

from GRAPHICS.OLB for inclusion in this shareable image.

e MAKESHAR.OPT 1is an optional input file that provides

additional information to the linker. Such information

controls memory allocation and symbol tables. (See Chapter 6

and Section 8.3 of the VAX-11l Linker Reference Manual.)

You can optionally install your shareable image as a permanent global

section. If you want to do this, refer to Section 10.2 of the VAX/VMS

System Manager's Guide.

NOW SHAR.OPT
APPLICATION

PROGRAM

CARTOON.OBJ

USER-CREATED

SHAREABLE IMAGE

GRAPHICS.EXE

CARTOON .MAP LINKER

—

———= CARTOON.EXE

Figure 7-4 Accessing a User-Created Shareable image

BUILDING MODULAR PROCEDURE LIBRARIES

7.3.3 Accessing a User-Created Shareable Image

Note that you cannot run shareable images. They are incorporated in
applications programs in a subsequent LINK operation. Figure 7-4
shows how an application program CARTOON.FOR might access the
‘user-created shareable 1image GRAPHICS.EXE. To access a user-created
shareable image, you must perform the following steps:

l. Create an OPTIONS file to specify the shareable image as an
input to the 1linker. With this specification, it is also
possible to request the linker to take a private copy of the
content of the shareable image. Normally, during the linking
of a shareable image into a wuser application program, the
linker merely creates mapping information.

In this example, the file NOWSHARE.OPT would contain:

GRAPHICS.EXE/SHAREABLE[=COPY]

2. Link an application program with the user-created shareable
image using the following command:

$ LINK application-program, options-file/OPTIONS

which in this example would be:

$ LINK CARTOON.OBJ,NOWSHARE .OPT/OPTIONS

This command will produce CARTOON.EXE, the application
program's executable image that <can call GRAPHICS.EXE at
runtime. (Note that .EXE, .0OBJ, and .OPT are the default
file types when /OPTIONS is used, and is included here for
clarity only.)

7.4 CREATING AND USING TRANSFER VECTORS

A transfer vector is a labeled virtual memory location that contains
an address of, or a displacement to, a second location in virtual
memory. This second location is the start of the instruction stream
that 1is of actual interest. In the use of shareable images, transfer
vectors are normally displacements rather than actual virtual
addresses, for reasons of position independence. There are two
reasons for doing this:

e Transfer vectors make it easy to modify and enhance the
contents of the shareable image.

e Transfer vectors allow you to avoid relinking other programs
that are bound to the shareable image.

7.4.1 Building Transfer Vectors

Transfer vectors must be written in MACRO; however, they can be wused
with Procedures written in any 1language. The CALLS or CALLG
instruction transfer vector has the form:

.TRANSFER fac_symbol ;Begin transfer vector to library

;jentry point, fac_symbol.

+«MASK fac_symbol ;Store register save mask

BUILDING MODULAR PROCEDURE LIBRARIES

BRW fac_symbol+2 ;Branch to routine at instruction

beyond the register

;save mask.

The JSB instruction transfer vector has the form:

.TRANSFER fac_symbol::

BRW fac_symbol ;branch to JSB routine

In these examples, fac_symbol is the procedure's entry point name,

For more information on how transfer vectors work, see the VAX-11l

Linker Reference Manual,

7.4.2 Using Transfer Vectors

The linker will automatically use transfer vectors if they are

present. Regardless of the procedures' languages, code the transfer

vectors as shown above. Then assemble the program containing the

transfer vectors. The resulting object is used as an input to the

link of the shareable image. For example, the shareable image

GRAPHICS, shown above might be produced with the following command:

$ LINK/SHAREABLE=GRAPHICS/MAP/FULL TRANSVEC,-

GRAPHICS/INCLUDE=(...), MAKESHARE/OPTIONS

where TRANSVEC is the object module containing transfer vectors to all

routines in the shareable image.

More detailed information about transfer vectors can be found in

section 7.2.4 and is 1illustrated in Figures 7-3 through 7-5 in the

VAX-11l Linker Reference Manual.

APPENDIX A

VAX-11] MODULAR PROGRAMMING STANDARD

This appendix is the VAX-11 standard for writing modular procedures in

any language, including MACRO and BLISS. This standard is the minimum

necessary so that a programmer can interface his software at the

callable procedure level with that written by others and vice versa.

This standard is divided into required, optional, and recommended

parts. The optional parts are indicated by asterisks (*). Any non

conformance to optional parts must be indicated 1in the procedure's

documentation. The recommended parts are documented in Section A-7.

Non conformance to the recommended parts need not be documented since

modularity is not affected. Each part of the standard is described in

greater detail in the section or sections of this manual indicated in

parentheses.

Most of this standard was derived by asking: "What general agreements

are hecessary between programmers to permit procedures to execute as

expected when combined in arbitrary ways to form a program?"

This means that a procedure that does not follow this standard may

cause another modular procedure (known or unknown) in the program

image to execute incorrectly, or vice versa.

The arbitrary ways of combining procedures are:

e Your procedure calls other procedures.

e Other procedures call your procedure.

e A calling program calls any of the above.

Therefore, any modular procedure can be added to a collection of

modular procedures without conflicting with them or any that may be

added in the fpture.

A.l1 SCOPE OF APPLICABILITY

The required, optional, and recommended parts of this standard apply

to library procedures and are recommended for other types of software,

including wutilities and application programs. Each programming

language implemented on VAX permits you to explicitly or implicitly

follow the required parts of the standard for all important language

features, Therefore, the compiler generated code for main programs

and externally available subroutines and functions permit you to

follow the required parts of the standard. Furthermore, the language

support procedures conform to the required, optional, and recommended

parts.

VAX-11 MODULAR PROGRAMMING STANDARD

This standard applies to procedures that interface to a calling
program; they do not apply to intra-module or inter-module calls that
do not interface to the calling program as long as the entire set of
procedures follows the-standard.

A.2 FACILITY-INDEPENDENT REQUIRED AND OPTIONAL (*) PARTS OF THE STANDARD

The following required and optional parts of the standard pertain to
all facilities, whether in a library or not:

1., Calls to procedures follow the VAX-1ll Procedure Calling
Standard. (See Appendix C of the VAX-11 Common Run-Time
Procedure Library Reference Manual.) Some of the following
parts of the standard restrict procedures to a subset of the
VAX-11 ProcedureiCalling Standard to increase the ability for
procedures to call one another.

2. A procedure does not accept data from or return data to the
calling program using implicit overlaid PSECTs (COMMON in
FORTRAN) or implicit global data areas. Instead all
parameters that are accepted from or returned to the calling
program use the argument list and function value registers
(RO and RO/R1l). (See Section 2.4.1 and the VAX-1l Procedure
Calling Standard.)

3. Modules must be relocatable. (See Section 4.2.1.)

4. Procedure entry point names contain at most 15 characters
having the following forms: fac$name for DIGITAL-supplied
procedures, and fac_name for user-supplied procedures, where
fac can be LIB, MTH, FOR, BLI, B32, MTH, OTS, or any other
language abbreviation (and file type) or meaningful facility
name. Global entry point names that are not intended for use
by the calling program have two dollar signs ($$) or three
underlines (___), respectively. If alternate JSB entry
points are provided, the name ends in Rn, (or just n if name
would exceed 15 characters) where n indicates the highest
register modified. (See Section 2.2.)

5. The form for module names is the same as that for procedure
entry point names. Modules containing one procedure have the
Same name as that procedure. Modules containing more than

one procedure have a name formed from a combination or common
subset of the entry point names. (See Section 4.2.2.)

6. Position-independent references (within a module) to
writeable data PSECTs use longword relative addressing. This
is done so that the data PSECT can be allocated anywhere with
respect to the code PSECT by the 1linker, and will link

correctly no matter how many code modules are included. (See
Section 4.2.3.)

7. External references use general-mode addressing so that any
of the referenced procedures can be put in a shareable image
without requiring change to the calling program.

8. A procedure does not print error or informational messages
either directly or by calling the $PUTMSG system service.
Instead, it either returns a condition value in RO as a
function value, or calls LIB$SSIGNAL or LIBSSTOP to output all
messages. (See Sections 5.2, 5.3, and A.3.)

10.

11.

VAX-11 MODULAR PROGRAMMING STANDARD

If a procedure requires initialization once per image

activation, it is done without the caller's knowledge by:

(1) the compiler at compile time or (2) the linker at 1link

time or (3) testing and setting a statically allocated

first-time flag on each, call or (4) making a PSECT

contribution to LIBSINITIALIZE. (See Section 4.3.)

Using LIB$INITIALIZE is not recommended since your procedure

cannot be placed in a shareable image. Furthermore, a

procedure must not wuse LIBSINITIALIZE to establish a

condition handler before the main program is called if it

might interact with other condition handlers established

before the main program.

If a procedure uses a process-wide resource, it calls the

appropriate resource allocating library procedure or system

service to allocate the resource.to avoid conflict with

allocations made to other procedures. To prevent needless

exhaustion of resources, a procedure that requests allocation

of a resource:

e Calls the deallocation procedure before returning to the

calling program or

e Remembers the allocation in static storage and calls the

deallocation procedure later or

e Passes the responsibility for deallocation back to the

calling program or

e Allocates a fixed number of the resources independent of

the number of times it is called.

There are currently resource allocating and deallocating

library procedures for (1) wvirtual memory in the program

region, (2) dynamic string memory, and (3) process-local

event flags. (See Section 4.4 and Chapter 5 of the VAX-11l

Common Run-Time Procedure Library Reference Manual.)

For each input and output string parameter (or string

function value) the calling program either: (1) allocates a

descriptor, or (2) passes the address of a descriptor passed

to it. A procedure accesses a formall string parameter
passed to it by:

e Accessing the string's descriptor indirectly using the

argument pointer (AP) or

e Copying the address of the string descriptor or.

e (Least preferred) Copying the entire descriptor and

changing the descriptor class code (in the copy only) to

be fixed length (DSC$B CLASS = 1) since there can only be

one dynamic string descriptor per string.

1 fThe term "formal parameter" refers to the parameter's name as it is

known to the called procedure, as opposed to either its actual value

or its name as it is known to the calling program.

A-3

12,

VAX-11l MODULAR PROGRAMMING STANDARD

The two semantics for writing formal string parameters are:

e Fixed-length string semantics: The formal string is
written using the starting address and length specified in
the descriptor passed by the calling program with space
filling or truncation on the right. The descriptor is not
modified.

e Dynamic string semantics: The formal string is either (1)
written by passing the address of the formal string
descriptor and the string to be copied to LIBS$SSCOPY_DXDX,
LIBS$SCOPY_R_DX, OTS$SCOPY_DXDX, or OTS$SCOPYR DX, or (2)
allocated by calling LIBSSGET1DD or OTSS$SSGET1_DD and
written 1in pieces. Only the length and address of the
descriptor is modified and only by any of the above
dynamic string resource allocation procedures.

The two methods that you may choose for a procedure's
interface specification to return a string as an output
string parameter (or function value) are:

e Use fixed-length semantics (regardless of the <class code
in the descriptor passed by the calling program).

o (Preferred) Use the semantics indicated in the descriptor
passed by the calling program. If DSCSB_CLASS contains
DSCSK_CLASS_S=1 or DSCSK_CLASS_Z=0, use fixed-length
string semantics, If DSCSB_CLASS contains
DSCSK_CLASSD=2, use dynamic string semantics.

A procedure cannot require its caller to pass a dynamic
string descriptor. (See Section 4.5.)

Some procedure interface specifications retain results from
one call to the next, even though the procedures are not
resource allocating procedures. The interface specification
uses one of the following techniques to permit sequences of
calls from independent parts of a program. These techniques
either eliminate the use of static storage or overcome its
limitations (in order of decreasing preference):

e The interface specification consists of a sequence of
calls to a set of one or more procedures -- the first of
which allocates and returns (as an output parameter to the
calling program): (1) the address of heap storage or (2)
some other process-wide identifying value. 'The remaining
procedures are passed to this parameter explicitly by the
calling program, and the last of these deallocates any
heap storage or process-wide identifying value. (See
Sections 2.5.2.2, 2.5.2.3, and 3.3.3.)

e The procedure's caller allocates all storage and passes
the address on each call. (See Sections 2.5.2.1 and
3.3020)

e The interface specification consists of a single call
where the calling program passes the address of one or
more action routines and arguments to be passed to them.
The procedure calls the action routine(s) during its
execution. Results are retained by the procedure across
calls to the action routine(s). (No static storage used.
See Section 2.5.1.)

VAX-11 MODULAR PROGRAMMING STANDARD

e The interface specification consists of a sequence of

calls to a set of one or more procedures, the first of
which saves the contents of any still active static

storage on a push down stack in heap storage, and the last

of which restores the o0ld contents of static storage.
Thus, static storage 1is made available for implicit

parameters to be passed from one procedure to the next in

the sequence of calls (unknown to the calling program).

However, if an exception can occur anywhere in the

sequence, the calling program must establish a condition

handler that calls the last procedure in the event of a

stack unwind (to restore the o0ld contents of static

storage.) (See Section 3.3.1l.)

13. A procedure does not assume that the implicit outputs of

procedures that it calls will remain unchanged if

subsequently used as implicit inputs to those procedures or

companion procedures. For example, your procedures cannot

call SYSSCNTREG to contract the program region by the amount

expanded previously by a call to SYSSEXPREG since an

intervening call to SYS$EXPREG might have been made by
another procedure. Similarly your procedure cannot make two

calls to SYSSEXPREG and expect to have the second program

region expansion be allocated contiguously to the first,
(See Sections 2.4.2 and 4.6.8)

14, * A procedure executes in any VAX-1ll access mode and at any
address. (You should not assume that address bit 31 is
always 0.)

15. * The storage for input and output parameters may overlap at

the option of the calling program. Therefore, a procedure is
programmed to behave the same regardless of whether there is

overlap.

16. * A procedure does not depend on AST interrupts being enabled

to execute correctly if there are other coding methods
available. Therefore when doing synchronous VAX-11] RMS 1I/0,
RMS action routines are not used. (See Section 4.6.12.)

17. A procedure provides an interface to its callers that allows
the callers to follow all required parts of this standard.

18. A procedure does not call other procedures or system services

such that the resulting combination violates any required

part of this standard from the point of view of the calling

program. A procedure may call other procedures or system

services that do not follow optional parts of this standard.
However, if the resulting combination as seen from the
calling program does not follow the optional parts, the

calling procedure must indicate such non-conformance in its

documentation. (See Section 4.6.)

19. A procedure makes no assumptions about its environment other

than those of this standard.

A.,3 FACILITY SPECIFIC REQUIRED AND OPTIONAL (*) PARTS OF THE STANDARD

The following parts apply to procedures that are part of a specific

library facility.

VAX-1l MODULAR PROGRAMMING STANDARD

The facility names below are used to represent the corresponding
library facilities:

LIB

MTH

OoTS

FOR

BLI

B32

General Utility and Resource Allocation Procedures
Mathematics Procedures

Language Independent Support Procedures

FORTRAN-specific Support Procedures

Transportable BLISS-specific Support Procedures

VAX-11 Unique Native Mode BLISS~specific Support Procedures

20.

21.

22,

The PSECT declarations for library code and data respectively
are:

in MACRO:

.PSECT _fac$CODE pPIC,USR,CON,REL,LCL,SHR,EXE,RD,NOWRT

+PSECT _fac$DATA pIC,USR,CON,REL,LCL,NOSHR,NOEXE ,RD,WRT

in BLISS:

_fac$CODE READ, NOWRITE, EXECUTE,, SHARE, PIC, CONCATENATE,
ADDRESSING_MODE (GENERAL)

_fac$SDATA READ, WRITE, NOEXECUTE, NOSHARE, PIC,
CONCATENATE, ADDRESSING_MODE® (LONG_RELATIVE)

Note that the leading underline is sorted last by the 1linker

so that library modules cannot cause truncation errors due to

byte or word displacement addressing performed by the user

program.

(In the examples above, user PSECTS replace $ with) (See

Section 4.2.3.)

A procedure's caller may indicate omitted trailing optional

parameters either by passing argument 1list entries that

contain zero, or by passing a shortened argument list.

When a new version of a procedure replaces an existing

library procedure, all added parameters are made optional to

maintain upward compatibility. (See Section 2.3.4.)

LIB Procedures:

23,

24,

LIB procedures pass arrays and strings by-descriptor and
input scalars by-reference. LIB procedures can pass
parameters by-value if the procedure provides a service for

BLISS and MACRO programmers that is generally supplied as

part of higher-level languages. For output string parameters

(and string function values), LIB procedures use the

semantics indicated in the descriptor passed-by the calling

program. (See Part 11 above and Sections 2.3.2, 2.3.3, and

4.5.)

LIB procedures return error conditions to the caller using

completion codes returned in RO as a function value rather

than signaling. (See Section 2.3.6 and Chapter 5.)

MTH Procedures:

25. MTH procedures pass input scalars by-reference. (See Section
2.3.2.)

VAX-11 MODULAR PROGRAMMING STANDARD

26. MTH procedures signal errors since the function value (RO) is
used to return a mathematical value. (See Section 2.3.6 and

Chapter 5)

Higher Level Language-specific Support Procedures (FOR, B32, BLI):

27. If a particular functional capability already exists 1in a

LIB, OTS, or MTH facility, then those procedures should be

called by other language-specific procedures rather than

implementing their own algorithms.

28, Higher-level language support procedures pass input scalars

by-value if 32 bits or less, input scalars by-reference if

exceeding 32 bits, output scalars by-reference, input and

output arrays by-reference or by-descriptor, and input and

output strings by-descriptor. (See Sections 2.3.2 and 4.5.)

29. If a higher-level language statement does not indicate an

error action, the error is signaled. Otherwise, higher-level

language support procedures return a completion code to the

caller on an error, where a compiled code check of RO would

not be an excessive speed or space penalty. However, when

the penalty is -excessive, the procedure retains the error

transfer address in the first of a series of <calls, and

transfers directly to it on an error after removing the stack

frame. (See Section 2.3.6 and Chapter 5.)

Language-Independent Support Procedures (OTS):

30. Language-independent support procedures follow the

language-specific support procedures parts of this standard

described above.

31. Language-independent support procedures return output string

parameters (and string function values) using the semantics

indicated in the descriptor passed by the calling program.

(See Part 11 above and Section 4.5.2.)

A.4 * AST-REENTRANT PROCEDURES (OPTIONAL)

The following parts are required for all AST-reentrant procedures. To

be AST-reentrant, a procedure allows any procedure (including itself)

to be called between any two instructions. This other procedure may

be an AST-level procedure, a condition handler, or another procedure

(see Chapter 6). A procedure‘that :uses no static storage and calls

only AST-reentrant procedures 'is automatically AST-reentrant. (See

Part 12 above for ways to eliminate.the use of static storage.)

32. % A-procedure that uses static storage uses one of the

following methods (or equivalent) to be called from AST and

non~-AST lewvels (in order of decreasing preference):

e Perform access and modification of the data base in a

single uninterruptible instruction. (See Section 6.3.1.)

e Detect concurrency of data base access with "test and set”

instructions at each access of the data base. (See

Section 6.3.2.)

e Keep a call-in-progress count that is incremented upon

entry to the procedure and decremented upon return. The

count is used as an index into separate allocated areas.

(See Section 6.3.3.)

VAX-11 MODULAR PROGRAMMING STANDARD

e Disable AST interrupts on entry to the procedure and
restore the state of the AST enables on return. The
procedure must also establish a condition handler that
restores the state of the AST enables in case an exception
condition or stack unwind occurs. Since this technique
may affect the real time response of the calling program,
it must be documented if used. Furthermore, the length of
time that ASTs are disabled should be minimized. (See
Section 6.3.4.)

33. * If a procedure performs I/O from the AST level by calling
VAX-11 RMS S$GET and $PUT system services, it must check for
the record stream active error status (RMS$_RSA). If the
error 1is encountered, the procedure issues the SWAIT system

N service and then retries the S$SGET or $PUT system service (See
Section 6.4.)

A.5 * SHAREABLE IMAGES (OPTIONAL)

The following additional parts are required for procedures that are to
be included in a shareable image. A procedure that adheres to the
following parts can be included in a shareable image at any time.

34. * A procedure's code is position-independent.

35. The data need not be position-independent. However, for
improved performance, it is recommended that it be
initialized to 0 to avoid either position-independent
contents or position-dependent addresses. (See Section
4,3.1.)

36. A procedure cannot use LIBSINITIALIZE to initialize data
since a shareable image cannot make a PSECT contribution to a
user program at link time. (See Section 4.3.4.)

A.6 * UPWARDS COMPATIBLE SHAREABLE IMAGES (OPTIONAL)

To be compatible with all future versions of the shareable image,
shareable image procedures follow these additional parts of the
standard:

37. A procedure's entry points are vectored. (See Section 7.4.)

38. A procedure's code and data is position-independent. Because
the operating system can provide a demand-zero page when the
page is first accessed, initializing the data to zero is
recommended.

A.7 MODULAR PROGRAMMING RECOMMENDATIONS (OPTIONAL)

The following parts of the standard are recommended in the hope that
modular procedures will be similar in form and format and thereby
easier to be used by others. However, nonconformance will not affect
modularity and need not be documented.

39. The order of required parameters should be the same as that
of the VAX-1l1l hardware instructions, namely, read, modify,
and write., Optional parameters follow in the same order.

40.

41.

42.

43.

44.

45,

VAX-11 MODULAR PROGRAMMING STANDARD

However, (according to the VAX-11l Procedure Calling Standard)

if a function wvalue cannot be represented in 64 bits, the

first parameter specifies where to store the function value,

and all other parameters are shifted one position to the

right. (See Section 2.3.5.)

A procedure should not have static storage unless it 1is a

process-wide resource-allocating procedure, or must retain

results for implicit inputs on subsequent activations. Most

of the techniques wused in Part 12 above avoid the use of

static storage. If a procedure cannot eliminate the use of

static storage and does not need to retain information from

one procedure activation to the next, it writes each static

storage location before using it. (See Sections 2.5 and

Chapter 3.)

If a procedure produces human-readable text and outputs it to

a file or device by default, it provides the caller with the

option of specifying a parameter that consists of an action

routine to accept the text instead (See Section 2.6.) The

procedure calls the action routine with each line of text as

a string containing a leading space (in case of FORTRAN

carriage control) and no ASCII CR, LF, VT, or FF. Thus the

string can be put 1in three of the four types of record

attribute files (CR, FTN, or PRN). The string is passed

by-descriptor. The action routine returns a condition value
that 1is either: success (the procedure continues), or

failure (the procedure stops further calls to the action

routine). (See Sections 2.6 and 4.7.)

A procedure that allocates process-wide resources provides an

entry point that shows the state of the resource (for

degugging and performance statistics.) If such an entry point

produces human readable output to a file or device, it must

conform to part 41. (See Sections 2.7, 4.4, and 4.7.)

Timing procedures and resource allocation procedures should

make statistics available for performance evaluation and

degugging (See Section 2,7.) Such procedures should provide

two entry points that accept an 1input parameter code
(1,...,n) indicating the desired statistic and that return a

completion status in RO:

fac$SSHOW_name ** Provides formatted strings according to

Part 41 above. A 0 input parameter code

requests all available statistics. If

the calling program does not supply the

optional action routine parameter, the

string(s) are output to SYSSOUTPUT.

fac$STAT _name ** Returns the binary value of the desired

statistic.

** (User versions use _ instead of §)

The recommended format for prompt strings is: an English

word or words followed by a colon (:), one space, and no

CRLF. (RSX utilities use > with no trailing spaces.)

Procedures should follow structured programming guidelines.

This includes placing a minimum number of
procedures -- typically one -- in a module, and arranging

procedures 1in levels of abstraction. Related procedures,
such as those that access the same static storage, should be
pPlaced in the same module. (See Section 4.1.)

A-9

46.

47.

48,

49.

50.

51.

52.

VAX-11 MODULAR PROGRAMMING STANDARD

Procedures should be placed in a module that 1is documented

with a module description. Every procedure should be

documented with a procedure description. (See Section 2.8

for the template.)

File names should be identical to the first nine characters

of the module name, with $ and _ characters omitted. (See

Section 4.2.2.)

When symbol definitions are to be coordinated between more

than one module, such as control blocks, procedure parameter

values, and completion status codes, the definitions should

be <centralized in one place. The preferred method is for

procedures to make external declarations to obtain the

symbolic value. Then, a source module can be compiled or

assembled independently from any other source files. When
the use of external symbols is not practical or possible,

procedures should use the following techniques:

in MACRO: Macro library file

in BLISS: REQUIRE or LIBRARY file

in FORTRAN: INCLUDE file

Procedure names should have the form of a verb followed by

the object of the action: for example, LIBSGETVM and
LIB$FREE_VM. (See Section 2.2.)

JSB calling sequences should be avoided as they are not
available to most languages. When a procedure uses a JSB

entry point, it should also provide an equivalent CALL entry

point.

Instructions and statements are uppercase, comments are in
upper- and lowercase, A space follows every comma,

semicolon, and exclamation point. A space precedes a left

parenthesis but not a left angle bracket or square bracket.
Block comments start in column 1 and have the following form

(use ; or ! depending on the language):

<blank 1line>

; +
’

; Put one or more lines of block comment here

'

<blank 1line>

Use symbols rather than numbers in the body of the procedure.

(See Section 4.2.5.)

A-10

APPENDIX B

NAMING CONVENTIONS

The conventions described in this appendix were derived to aid

implementors in producing meaningful public names. Public names are

all names which are global (known to the linker) or which appear in

parameter or macro definition files.

These public names are all constrained to follow these rules for the

following reasons:

e Using reserved names ensures that customer-written software

will not be 1invalidated by subsequent releases of DIGITAL

products which add new symbols.

e Using definite patterns for different uses allows you to judge

the type of object being referenced. For example, the form of

a macro name is different from that of an offset, which is

different from that of a status code.

e Using certain codes within a pattern associates the size of an

object with its name. This increases the likelihood that the

reference will use the correct instructions.

@ Using a facility code in symbol definitions gives the reader

an indication of where the symbol is defined. Separate groups

of implementors are allowed to <choose facility codes names

which will not conflict with one another.

Never define local synonyms for public symbols. The full public

symbol should be wused in every reference to give maximum clarity to

the reader.

B.l1 PUBLIC SYMBOL PATTERNS

All DIGITAL public symbols contain a currency sign. Thus, customers

and .applications developers are strongly advised to use underscores

instead of currency signs to avoid future conflicts.

Public symbols should be constructed to convey as much information as

possible about the entity they name. These are used both within a

module, and globally between modules of a facility. All names that

might ever be bound into a user's program must follow the rules for

public names; 1in the case of internal names, a double currency sign

convention can be used such as in (3) or (5) below.

NAMING CONVENTIONS

Public names are of the following forms:

1. Service macro names are of the form:

$macroname

A trailing _S or _A distinguishes the stack and separate

arglist forms. These names appear in the system macro

library and represent a call to one of many facilities. The

facility name usually does not appear in the macro name.

Facility-specific public macro names are of the form:

$facility macroname

System macros using local symbols or macros always use those

of the form:

$facility$macroname

This is the form to be used both for symbols generated by a

macro and 1included 1in calls to it, and for internal macros

which are not documented.

Status codes and condition values are of the form:

facility$_ status

Global entry point names are of the form:

facility$Sentryname
[}

Global entry point names that are intended for use only
within a set of related procedures but not by any calling

programs outside the set are of the form:

facility$Sentryname

Global entry point names that have nonstandard calls (JSB

entry point names) are of the form:

facility$entryname_Rn

where registers RO to Rn are not preserved. Note that the

caller of such an entry point must include at least registers

R2 through Rn in its own entry mask so that a stack unwind

will restore all registers properly.

Global variable names are of the form:

facility$Gt_variablename

The letter G stands for global variable and the t is a letter

representing the type of the variable as defined in Section

B.2.

Addressable global arrays use the letter A (instead of the

letter G) and are of the form:

facilityS$SAt_arrayname

The letter A stands for global array and t 1is one of the

letters representing the type of the array element according

to the list in Section B.2.

10.

11.

12.

13.

14,

15.

NAMING CONVENTIONS

In the assembler, public structure offset names are of the

form:

structure$t_fieldname

The t is a letter representing the data type of the field as

defined in Section B.2. The value of the public symbol is

the byte offset to the start of the descriptor in the

structure.

In MACRO, public structure bit field offset and single bit
names are of the form:

structures$v_fieldname

The value of the public symbol is the bit offset from the

start of the containing field (not from the start of the

control block.

In MACRO, public structure bit field size names are of the
form:

structure$s _fieldname

The value of the public symbol is the number of bits in the

field.

For BLISS, the functions of the symbols in the previous three

items are combined into a single name used to reference an

arbitrary datum. Names are of the form:

structure$x fieldname

where x is t for standard-sized data and x is V for arbitrary

and bit fields. The macro includes the offset, position,

size, and sign extension suitable for use in a REF BLOCK

structure. Most typically, this name is definable as

MACRO

structureSV_fieldname =

structure$t_fieldname,

structure$Vv_fieldname, lassembler meaning
structure$s fieldname,

<sign extension> %;

Public structure mask names are of the form:

structure$M fieldname

The value of the public symbol is a mask with bits set for

each bit in the field. This mask is not right justified;

rather it has structure$v_fieldname zero bits on the right.

Public structure constant value names are of the form:

structure$K_constantname

.PSECT names are of the form:

facility$mnemonic

and when put in a library:

_facilitySmnemonic

16.

17.

NAMING CONVENTIONS

Module names are of the form:

facility$Smnemonic

The module is stored in a file with file name

"facilitymnemonic".

Public structure definition macro names are of the form:

$facility structureDEF

Invoking this macro defines all the structure$xxx symbols.

Example of usage:

IOCSIODONE Entry point of the routine IODONE in the I/0

subsystem.

UCB$B_FORK_PRI Offset in the UCB structure to a byte datum containing

the fork priority.

UCBSL_STATUS Offset in the UCB structure to a longword datum

containing status bits.

CRB$M_BUSY Mask pattern for the busy bit in the CRB structure.

CRBSV_BUSY Bit offset in the CRB structure of the busy bit.

B.2 OBJECT DATA TYPES

The following are the letters used for the various data types or are

reserved for the following purposes:

Letter Data Type or Usage

N
K
X
E
<
C
H
N
I
O
Y
W
O
Z
I
r
X
N
R
U
H
I
O
M
E
B
O
O
W
) address (%)

byte integer

single character (%)

double precision floating

reserved to DEC

single precision floating

general value (%)

integer value for counters (¥*)

reserved for integer extensions

reserved to customers for escape to other codes

constant

longword integer

field mask

numeric string (all byte forms)

reserved to DEC as an escape to other codes

packed string

quadword integer

reserved for records (structure)

field size

text (character) string

smallest unit of addressable storage (*)

field position (assembler); field reference (BLISS)

word integer

context dependent (generic)

conhtext dependent (generic)

unspecified or non-standard

NAMING CONVENTIONS

N, P, and T strings are typically variable-length. In structures or

1/0 records they frequently contain a byte-sized digit or character

count preceding the string. If so, the location or offset is to the

count. Counted strings cannot be passed in CALLs; instead, a string

descriptor is generated.

* - The letters A, C, G, H, and U should be used in preference to L,

B, L, W, and B respectively when transportability is involved. The

following table defines their sizes:

Letter 16 32 36

A 16 32 18

C 8 8 7

G 16 32 36

H 16 16 18

u 8 8 36

B.3 FACILITY PREFIX TABLE

Following is a list of all the facility prefixes for DIGITAL-supplied

software. This list will grow over time as new facility prefixes are
chosen. No one should use a new code without registering it in a
common place.

Interface Condition

Prefix Facility Type <31:16>

B32 BLISS-32 support library \' 27
BLI BLISS transportable support library \' 20
C74 COBOL - 74 \' 29
FOR Fortran support library \' 24
MTH Math library F 22

0TS Language independent Object Time System \" 23
RMS RMS internals and status codes \' 1
SORT VAX-11l SORT any 28

SSs System Service Status Codes - 0
XPO BLISS transportable v 32

Individual products such as compilers also get unique facility codes
formed from the product name. They must be signed out in the above
list., Facility prefixes should be chosen to avoid conflict with file

types.

Structure name prefixes are typically local to a facility. Refer to
the individual facility documentation for its structure name prefixes.

This does not cause problems since these names are not global, and are

therefore not known to the linker. They become known at assembly or
compile time only by explicitly invoking the macro defining the

facility structure.

APPENDIX C

NOTATION FOR DESCRIBING PROCEDURE PARAMETERS

This appendix describes a language-independent notation for procedure

parameters, including the type of access, the data type, the parameter

passing mechanism, and the form of the parameter.

C.1 ROUTINE INTERFACE TYPES

In order to achieve the VAX-11 goal of being able to mix langauges

within a program, all routines are designed with certain common

attributes. The data types and mechanism passing rules are designed

to maximize the ability to interface to routines. A common notation

is used to express the specification of the interface.

The access types, data types, mechanisms, and parameter forms are

defined in the VAX-11] Common Run-Time Procedure Library Reference

Manual. 1In the design of a procedure interface, the data types must

be specified. Four other considerations are also important:

1. Whether the routine follows the VAX-11 procedure calling

standard.

2. Whether 1its scalar input parameters are by-value or

by-reference.

3. How output strings are returned; this is discussed 1in the

next paragraph. ’

4. Whether the routine has a function value and whether the

value is a status code or a scalar result.

Within any given facility, it is generally preferable to have only one

style of these interface choices. These are defined below. Other

combinations can be chosen, but the prospect of user confusion must be

weighed against the possible inefficiency of forced consistency.

There are two string semantics for returning a string to calling

program as an output parameter or a function value:

e Fixed-length string semantics: The called procedure writes

the string starting at the address specified in the descriptor

and blank fills or truncates on the right. It does not modify

the contents of the descriptor.

e Dynamic string semantics: The called procedure allocates the

string buffer and places both the address and the length into

the dynamic descriptor by calling library dynamic string

allocating procedures.

NOTATION FOR DESCRIBING PROCEDURE PARAMETERS

The calling program can always pass a fixed-length or dynamic string
at its option to any procedure.

There are two choices for the interface specification of a procedure:

® Return string using fixed-length semantics (notation _.Wt.ds)

® Return string using either fixed-length or dynamic semantics
as specified by the «caller in the descriptor. (notation
.Wt.dx)

The choice between these methods is dependent on the environmental
assumptions made in the design of the procedure.

The most common combinations of interface specifications are given in
the following table. The column "Scalars" shows how scalars are
passed. The column "Strings" shows how output strings are returned.
The column "Function" shows what kind of function value is returned.

Passing Output Function
Type of call 1Instruction Scalars String Value

J (non-CALL) JSB in register - -
V (by Value) CALL AP by value length,descr .lc
F (Function) CALL AP by reference none scalar
FORTRAN CALL AP by reference fixed any
COBOL CALL AP by reference fixed none

C.2 NOTATION FOR DESCRIBING PROCEDURE PARAMETERS

A concise language independent notation is used to describe each
procedure parameter. The notation is a compatible extension to the
one used in the VAX-1ll Architecture Handbook.

The notation specifies for each parameter:

l. A mnemonic name

2. The type of access the procedure will make (read, write,...)

3. The data type of the parameter (longward, floating,...)

4. The argument passing mechanism (value, reference, descriptor)

5. The form of the parameter (scalar, array,...)

Note that if a parameter is an address which is saved for later access
by another procedure, the notation should reflect the ultimate access
which will be made by the second procedure.

C.2.1 Procedure Parameter Characteristics

Subroutines are described as:

CALL subroutine_name (parameterl, parameter2, ..., parametern)

and functions are described as:

function_value = function name (parameterl, parameter2, ceey
parametern)

NOTATION FOR DESCRIBING PROCEDURE PARAMETERS

where parameter and function_value are:

<name>.<access type><data type>.<passing mechanism><parameter

form>

where:

1. <name> is a mnemonic for the procedure formal specifier or

function value specifier.

2. <access type> is a single letter denoting the type of access

that the procedure will (or may) make to the argument:

r - parameter may be read only.

m - parameter may be modified, i.e., read and written.

w - parameter may be written only.

j - parameter is an address to be (optionally) Jjumped to

after stack unwind (return). No <data type> field is

given since the argument is a sequence of instructions,

e.g., FORTRAN ERR=.

c - parameter is an address of a procedure to be

(optionally) CALLed after stack unwound (return). No

<data type> field is given since the argument 1is a

sequence of instructions.

s - parameter is an address of a procedure subroutine to be

(optionally) CALLed without unwinding the stack. No

<data type> field is given since the argument is a

sequence of instructions.

f - parameter is an address of a function to be (optionally)

CALLed without unwinding the stack. The <data type>

field indicates the data type of the function value.

a -~ reserved for wuse 1in the System Reference Manual

(address). Not used here since the object pointed to is

specified.

b - reserved for use in the System Reference Manual (branch

destination). Not used here since a branch destination

cannot be a procedure formal.

v — reserved for use 1in the System Reference Manual

(variable bit field).

3. <data type> is a letter denoting the primary data type with

trailing qualifier letters to further identify the data type.

Note that the routine must reference only the size specified

to avoid improper access violations. See Appendix C for the

numeric codes assigned to these data types for wuse in

descriptors, parameter validation, etc.

Letters Use

pA Unspecified

\Y Bit (variable bit field)

bu Byte Logical (unsigned)

c Single character

u Smallest unit for addressable storage

Cc-3

NOTATION FOR DESCRIBING PROCEDURE PARAMETERS

Letter Use

wu Word Logical (unsigned)

lu Longword Logical (unsigned)
a Absolute virtual address

cp Character pointer

1lc Longword containing a completion code
qu Quadword Logical (unsigned)

b Byte Integer (signed)
arb Byte containing a relative virtual address (*)
w Word Integer (signed)

h Integer value for counters
arw Word containing a relative virtual address (*)
1 Longword Integer (signed)
g General value

arl Longword containing a relative virtual address (*)
q Quadword Integer (signed)

f Single-Precision Floating
d Double-Precision Floating
fc Complex (Floating)

dc Double-Precision Complex

t text (character) string

nu Numeric string, unsigned

nl Numeric string, left separate sign
nlo Numeric string, left overpunched sign
nr Numeric string, right separate sign
nro Numeric string, right overpunched sign
nz Numeric string, zoned sign
p Packed decimal string

X Data type indicated in descriptor
zli Sequence of Instructions (parameter validation)
zem Procedure Entry Mask (parameter validation)

* - arl, arw, and arb is a self-relative address using the
same format as the hardware displacements. That is the
self-relative address is a signed offset in bytes with
respect to the first byte following the parameter.

<passing mechanism> is a single letter indicating the
parameter mechanism that the called routine expects:

v - value, i.e., call-by-value where the contents of the
parameter 1list entry is itself the parameter of the
indicated data type. Note that call-by-value parameter
list entries are always allocated as a longword. The
quadword data types can be used as values only for
function values, never as a formal parameter. Note also
that the VAX-11 calling standard requires that <access
type> must be r whenever <passing mechanism> is v,
except for function values where <access type> is always
w and <passing mechanism> is usually v.

r - reference, i.e., call-by-reference where the contents of
the parameter list entry is the longword address of the
argument of the indicated data type. If the parameter
is a scalar of the indicated data type or is a label,
<passing form> must be absent. 1If the parameter 1is an
array, <passing form> must be present.

d - descriptor, i.e., call-by-descriptor where the contents
of the parameter list entry is the longword address of a

NOTATION FOR DESCRIBING PROCEDURE PARAMETERS

descriptor. The descriptor is two or more longwords

that specify further information about the parameter;
see Appendix C of the VAX-11] Common Run-Time Procedure

Library Reference Manual. Note that when <passing

mechanism> is d, <arg form> must be present to indicate

the type of descriptor.

<parameter form> 1is a 1letter denoting the form of the
argument:

Null means scalar of indicated data type.

a_

pi-

3i-

array reference or array descriptor, i.e.,
call-by-reference or call-by-descriptor as indicated by

<arg mechanism>. For array call-by-reference the

contents of the parameter list entry is the address of
an array of items of the indicated data type. The

length 1is fixed, implied by entries in the array (for

example, a control block), determined by another

parameter, or specified by prior agreement. For array

call-by-descriptor, the contents of the parameter list
entry 1is the 1longword address of an array descriptor
block; Appendix C of the VAX-11 Common Run-Time

Procedure Library Reference Manual.

scalar descriptor, i.e., call-by-descriptor where the

contents of the parameters list entry is the longword

address of a 2-longword scalar descriptor. When the

data type field (DSC$B_DTYPE) indicates ASCII text

(DSC$K_DTYPE_T), the descriptor contains the 1length,

data type, and address of a fixed-length string. When

the string is written, neither the length nor the

address fields 1in the descriptor are modified, and the

string is filled with trailing spaces or a separate

parameter is updated with the written length.

dynamic string descriptor, i.e., passed-by-descriptor
where the contents of the parameter list entry is the

longword address of a 2-longword string descriptor of
the same format as that of s. However, when the string
is written, both the length and address fields may be
modified. Space is allocated dynamically by routines in

the procedure library.

Procedure descriptor, i.e., passed-by-descriptor where
the contents of the parameter list entry is the longword

address of a two longword procedure descriptor. The
descriptor contains the address of the procedure and the
data type that the procedure returns if it is a

function. <access type> must be ¢, £, j, or s.

Procedure incarnation descriptor, i.e.
passed-by-descriptor which 1is identical to a procedure

descriptor with the addition of its call frame address.

This 1is used to refer to a specific incarnation of a

procedure, such as ALGOL or PL/I.

Label descriptor i.e., passed-by-descriptor for a label
specifying the start of its code.

Label incarnation descriptor, i.e.,
passed-by-descriptor. This is identical to a label

NOTATION FOR DESCRIBING PROCEDURE PARAMETERS

descriptor with the addition of its call frame address.
This 1is wused to refer to a specific incarnation of a
procedure, such as ALGOL or PL/I.

X - Either fixed-length or dynamic descriptor as indicated
by the calling program in the DSC$B_CLASS field of the
descriptor that it passes to the called procedure.

C.2.2 Optional Parameters And Default Values

The caller may omit optional parameters at the end of a parameter list
by passing a shortened 1list. The caller may also omit optional
parameters anywhere by passing a 0 value as the contents of the
pParameter list entry. However, a caller may not omit a parameter that
is not indicated as optional. The called procedure is not obligated
to detect such a programming error. Optional parameters are enclosed
in square brackets, as follows:

CALL FORSREAD_SU (unit.rb.v [,err].r [,end.].rl]).

An equal sign (=) after a parameter inside square brackets indicates
the default value if the parameter is omitted, as in the following
example:

success.wlc.v = LIBSDELLOG (lognam.rt.ds [,tblflg.rb.v=0]).

NOTE

VAX/VMS has optional parameters, but the
list cannot be shortened. This type of
optional parameter is indicated with the

comma outside of the square brackets.

For example:

success.wlc.v = SYS$SDELLOG([tblflg.rl.v],
[lognam.rt.dx], [acmode.rl.v])

C.2.3 Repeated Parameters

Parameters that may be repeated one or more times are indicated using
ellipses, e.g., CALL FORSOPEN (keywd.rw.v,info.rl.v...). Repeated
parameters that may be omitted entirely are indicated within ellipses
inside square brackets, e.g., CALL FORSCLOSE ([logical unit.rl.v...]).

C.2.4 Examples

Sine_of angle.wf.v = MTHSSIN (angle_in_radians.rf.r)

CALL FORSREAD_SF (unit.rb.v, format.mbu.ra [,err.j.r [,end.j.r]l])

Note that (1) end may be omitted and that (2) err and end may both be
omitted. However, wunit and format must always be present. The
parameter count byte in the parameter 1list specifies how many
parameters are present. Alternatively err, end, or both could have a
0 parameter list entry in the above.

NOTATION FOR DESCRIBING PROCEDURE PARAMETERS

Common combinations are:

completion code:

longword call-by-value input arg:

address of an array of signed words for input:
address of a control block:

address of a precompiled format statement:

label to jump to:

floating input call-by-reference arg:

floating complex call-by-reference input arg:

read only character string:

output fixed-length string:

output fixed-length or dynamic string:

C.2.5 Summary Chart of Notation

<name>.<access type><data type>.<passing

Status.wlc.v =...

no_of pages.rlu.v

array.rw.ra

fab.mz.ra

format.rbu.ra

error_label.j.r

angle_in_rad.rf.r

angle.rfc.r

string.rt.ds

string.wt.ds

string.wt.dx

mechanism><parameter

form>

<access type> <data type>

r Read Z Unspecified

m Modify

w Write v Bit (variable bit field)

j RET and JMP bu Byte Logical (unsigned)

¢ RET and CALL o] Single character

s sub CALL u Smallest unit for addressable storage

f function CALL wu Word Logical (unsigned)

lu Longword Logical (unsigned)

a Absolute virtual address

cp Character Pointer

lc Longword containing a completion code

qu Quadword Logical (unsigned)

b Byte Integer (signed)

arb Byte-sized relative virtual address

W Word Integer (signed)

h Integer value for counters

arw Word-sized relative virtual address

1 Longword Integer (signed)

g General value

arl Longword-sized relative virtual address

q Quadword Integer (signed)

il Single-Precision Floating

d Double-Precision Floating

fc Complex (Floating)

dc Double-Precision Complex

t text (character) string

nu Numeric string, unsigned

nl Numeric string, left separate sign

nlo Numeric string, left overpunched sign

nr Numeric string, right separate sign

nro Numeric string, right overpunched sign

nz Numeric string, zoned sign

p Packed decimal string

X Data type indicated in descriptor

zi Sequence of Instructions

zem Procedure Entry Mask (arg validation),

NOTATION FOR DESCRIBING PROCEDURE PARAMETERS

<passing mechanism)>

v Value

r Reference

d Descriptor

<{parameter form>

<null)> scalar

a

S

d

p

pi

j
ji

X

array

fixed-length string
dynamic string

procedure

procedure incarnation

label

label incarnation

fixed-length or dynamic string
as specified in descriptor

INDEX

AST routine,

description, 6-1

AST services, 4-17

AST-interrupt,

description, 6-1

disabling, 6-6

AST-level,

I/0, 6-6

AST-reentrant procedures,

coding, 6-1

definition, 6-1, 6-2

description, 1-10

standards, A-7

writing, 6-2

Abstraction,

levels of, 4-3

Access type, 2-5, C-3

Action routine,

user-supplied, 2-14

Activation of a procedure,
definition, 3-3

Allocation of Resources,

table, 4-12, 4-13

Allocation,

of FORTRAN logical unit

numbers, 4-11

of identifying numbers, 4-11

Avoiding implicit inputs, 2-10

to 2-14

BLISS,

defining condition value

symbols, 5-6

PSECTs, 4-4, 4-5

returning error status, 5-3

using condition values, 5-7

Block comments,

using, 4-6

Branch and Jump Instructions,

using, 4-6

Call-in-progress count, 6-5

Change mode services, 4-18

Checklist,

coding and design steps, 2-1

Coding and design, 2-1

Coding procedures, 4-1

optional user action

routines, 4-20

recommendations, 4-4

standards, 4-4

Condition handling, 5-1

Condition handling services, 4-18

Condition value symbols,

defining, 5-1, 5-5

Condition value,

description, 5-1

format, 5-4

returning as a function

value, 5-2

use in a calling program, 5-6

Conventions,

‘coding, 4-3 to 4-6

line length, 4-6

Creating libraries, 1-10, 1-11

Creating object libraries, 1-11

Creating shareable images, 1-11

Data form, 2-5

Data type, 2-5, C-3

Default system object library,

accessing, 7-2

adding to, 7-1

building, 7-1

Descriptors,

string, 2-6

Documentation,

procedure, 2-16 to 2-20

Environment,

creating a procedure

activation, 5-10

Error and condition wvalues,

description, 2-7

signaling, 5-8

Error message services, 4-18

Error status,

checking in BLISS, 5-3

checking in FORTRAN, 5-3

checking in MACRO, 5-2

Event flag services, 4-16

Explicit parameters,

description, 2-4

FORTRAN,

allocation of logical unit

numbers, 4-11

creating a shareable image, 7-5

defining condition value

symbols, 5-6

I/0 language support, 3-6

returning error status, 5-3

using condition values, 5-8

Facilities,

user-created, 2-4

Facility names, 2-3

Facility prefix table, B-5

Facility,

methods of handling errors, 2-8

Index-1

INDEX (CONT.)

File names, 4-4

Files,

parameter definition, 4-5

Formatted ASCII output services,

4-19

Function value,

returning a condition value,

5~2

Grouping procedures, 1-1, 4-1

Heap storage,

description, 3-2

in BLISS, 3-10

using, 3-9

Higher-level languagée specific

standards, A-7

Human Readable Output,

control, 2-14

I/0 services, 4-17

Identifiers,

allocating, 3-7

Identifying value,

process-wide, 2-14

Implicit inputs,

allocated by the called

procedure, 2-9

allocated by the calling

program, 2-8

avoiding, 2-10

description, 2-8

Initialization,

first time flag, 4-9

methods, 4-7

of resources, 4-7

of special environments, 4-7

of static storage, 4-7, 4-8

Input string parameters, 4-14

Interface,

design, 2-1

Internal signaling, 5-9

LIBSINITIALIZE,

PSECT contribution to, 4-9

LIB$MATCH_COND, 5-6

LIB$SHOW name, 2-15, 2-16

LIB$SSIGNAL, 5-9

LIB$STAT_name, 2-16

LIBSSTOP, 5~9

LIB-specific standards, A-6

LIB GET_;NUM, 6-5

LIB GET_STRING, 2-10

LIB GET STR LEN, 2-10

LIB_SNAP_ SHOT, 2-14

Levels of abstraction, 4-3

Libraries,

Common Run-Time Procedure, 1-~3

Digital-supplied, 1-3

building, 7-1

creating and modifying, 1-10,

1-11

linking to, 1-6

user-created, 1-4

Library,

facility names, 2-3

Line length,

convention, 4-6

Linker, 1-1, 1-3

Linker,

conventions when using object

libraries, 1-4

Linking programs to libraries, 1-6

Logical name services,

MACRO,

4-17

allocation of identification

numbers,

defining condition value

symbols,

PSECTs, 4-

4-11

5-6

4, 4-5

returning error status, 5-2

using branch and jump, 4-6

using condition values, 5-6

MTHSRANDOM,

MTH-specific standards, A-6

Memory management services, 4-18

Modular procedure,

Notes for use with system

services, 4-20

building libraries, 7-1

coding, 4-1

definition, 1l-1

design, 2-1

initializing, 4-7

signaling, 5-1

standards, A-1l

Modular programming standard,

"A-1 to A-10

AST-reentrant, A-7

description, 1-9

facility-independent, A-2

to A-5

facility-specific, A-5

to A-7

optional, A-2 to A-10

3-7

recommendations, A-8 to A-10

requirements, A-2 to A-5

scope,

Index-2

A-1

INDEX (CONT.)

Modular programming standard

(Cont.)

shareable image, A-8

upward compatible images, A-8

Modular programming,

advantages, 1-8

Module description, 2-16

Module names, 4-4

Module,

documentation, 2-16, 2-17

examples of, 4-2

relocatable, 4-4

Names,

condition value, 2-4

facility, 2-3, B-5

file, 4-4

module, 4-4

naming conventions, B-1

procedure, 2-3

PSECT, 4-4, 4-5

public, B-2

transfer vectors, 7-7

Naming Conventions, B-1

Notation,

parameter shorthand, 2-5

Numbers and symbols,

using, 4-5

OTS-specific standards, A-7

Object data types, B-4

Object libraries,

accessing a user-created, 7-4

creating and updating, 1-11

building a user-created, 7-3

Object module library, 1-1

Optional parameters, 2-6

Optional spaces,

using, 4-6

Order of parameters, 2-7

Output string parameters, 4-14

PSECT contribution to

LIBSINITIALIZE, 4-9

PSECT names, 4-4, 4-5

Parameter definition files, 4-5

Parameter,

access type, C-3

characteristics, 2-5

accepting input strings as,

4-14

characteristics, 2-4, 2-5, C-2

data type, C-3

default value, C-6

Parameter (Cont.)

explicit, 2-4

form, C-5

implicit, 2-8

notation for describing, C-1

optional, 2-6, C-6

order, 2-7

passing mechanism, C-4

passing strings as, 4-13

passing strings to other

procedures, 4-16

repeated, C-6

returning output strings as,

4-14

shorthand notation, 2-5

Passing mechanisms, 2-5, 2-6, C-4

Passing techniques,

string, 2-6

Position-independent code,

description, 1-10

Procedure activation,

creating environment for, 5-10

definition, 3-3

Procedure storage,

description, 1-9

Procedure,

building libraries from, 7-1

coding, 4-1

definition, 1-1

documentation, 2-~18 to

2-20

grouping, 1l-1, 4-1

initialization, 4-7

names, 2-3

passing mechanisms, 2-5, 2-6

resource allocation, 2-15

signaling and condition

handling, 5-1

standard for modular, A-1l

summary of parameter

characteristics, 2-5

timer, 2-15

use of system services, 4-16

to 4-20

writing a description, 2-17

Process control services, 4-17

Process-wide identifier, 2-14

Process-wide identifiers,

allocating, 3-7

Process-wide resource allocation,

description, 1-9, 4-10

Process-wide resources, 4-12,

4-13

Program documentation, 2-16

to 2-20

Public names, B-2

Public symbol patterns, B-1l

Index-3

INDEX (CONT.)

RMS services, 4-19

RMS system services,

using with ASTs, 6-6

Race condition,

definition, 6-3

eliminating, 6-3

Random number generator, 3-10,

3-11

Relocatable modules, 4-4

Resource allocation procedure,

2-15

Resource allocation,

description, 1-9, 4-10

identifiers, 3-7

methods, 4-12, 4-13

of identification numbers, 4-11

use of storage, 4-10

Routine interface types, C-1

SHOW entry point, 2-15

STARLET.OLB,

accessing, 7-2

adding to, 7-1

description, 1-3

STAT entry point, 2-15

Shareable image,

accessing, 7-6

building a user-created, 7-4

creating, 1l-11

creating in FORTRAN, 7-5

description, 1-1

installing, 7-6

last in PO address space, 7-4

standards, A-8

updating, 1l-11

user-created, 1-5

upwards compatible standards,

A-8

Signaling and condition

handling,

description, 1-10

Signaling error conditions, 5-8

Signaling,

description, 5-1

internal, 5-9

Stack storage,

description, 3-2

in BLISS, 3-8

in MACRO, 3-8

using, 3-8

Standards,

required, A-2

Static storage,

initialization, 4-8

description, 3-1

using, 3-5

Steps,

coding and design, 2-1

Storage,

choosing a type, 3-3

heap, 3-2

initialization, 4-8

stack, 3-2

static, 3-1

summary of use, 3-3

use of, 3-1

String descriptors, 2-6

Strings,

passed to other procedures, 4-16

passing as parameters, 4-13

Structured programming, 4-1

Symbols and numbers,

using, 4-5

System services,

AST, 4-17

FAO, 4-19

I/0, 4-17

RMS, 4-19

change mode, 4-18

condition handling, 4-18

error message, 4-18

event flag, 4-16

logical name, 4-17

memory management, 4-18

notes for use with procedures,

4-20

process control, 4-17

timer and time conversion, 4-18

use by procedures, 1-9

use with procedures, 4-16

to 4-20

Test and set instructions, 6-4

Timer and time conversion

services, 4-18

Timer procedure, 2-15

Transfer vectors,

building, 7-7

creating, 7-7

description, 1-10

using, 7-8

Upper and lower case,

using, 4-6

User action routine,

examples, 4-21

User action routines,

coding, 4-20

User-created facilities, 2-4

User-created object libraries,

1-4

Index-4

INDEX (CONT.)

User-created object library, User-supplied action routine, 2-14
accessing, 7-4

building, 7-3

User-created shareable image, VAX/VMS éystem services, 4-16
accessing, 7-6 to 4-20
building, 7-4 VMSRTL.EXE, 1-3
description, 1-5

installing, 7-6

Index-5

NOTE:

VAX-11 Guide to Creating

Modular Library Procedures

AA-H500A-TE

READER'S COMMENTS

This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

H
i
n
n
i
N
I
n
n

Name

Assembly language programmer

Higher-level language programmer

Occasional programmer (experienced)

User with little programming experience

Student programmer

Other (please specify)

Date

Organization

Street

City. State Zip Code

or

Country

— — — Do Not Tear- Fold Here and Tape — — — — — _—— - — —_—_——— — - —

No Postage

Necessary

if Mailed in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS TW/A14

DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

—_ — Do Not Tear-FoldHere @ @ @ — — — — — — — — — — — — — — — — —_ - =

