
PROGRAMMING TIN C

Digital Equipment Corporation

Educational Services

EY-1925E-HO-0002

Second Edition, August 1985

The information in this document is subject to change without notice and

should not be construed as a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that

may appear in this document.

The software described in this document is furnished under a license and

may be used or copied only in accordance with the terms of such license.

Digital Equipment Corporation assumes no responsibility for the use or relia-

bility.of its software on equipment that is not supplied by DIGITAL.

Copyright © 1985 Digital Equipment Corporation. All rights reserved.

Portions of this text are based on LEARNING TO PROGRAM IN C, a book

by Thomas Plum, copyright 1983, Plum Hall inc. and on the course C PRO-

GRAMMING WORKSHOP, written by Thomas Plum, copyright 1983 by Plum

Hall, Inc.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-1

BAL-8

CDP

COMPUTER LAB

COMSYST

COMTEX

CTBUS

DATATRIEVE

DDT

DEC

DECCOM

DECgraph

DECmail

DECmate

DECnet

DECspell

DECsystem-10

DECSYSTEM-20

DECtape

DECUS

DECWORD

DECwriter

DNC

DNC

EduSystem

FLIP CHIP

FOCAL

GLC-8

IAS

IDAC

IDACS

IDAC

KA10

KL10

LAB-K

MASSBUS

OMNIBUS

OS 8

PDP

PDT

PHA

PS 8

P/OS

Professional

PRO/BASIC

PRO/FMS

PRO/NAPLPS

PRO/RMS

- PRO/Videotex

PROSE

QUICKPOINT

RAD-8

Rainbow

ReGIS

RSTS

RSX

RT-11

RTM

SABR

Tool Kit

TYPESET-8

TYPESET-10

TYPESET-11

ULTRIX

UNIBUS

VAX

VMS

VT

VAX VTX

Programming in C ~outline- - page 1

Programming in C

Course Qutline

TEXT: "Learning to Program in C"

by Thomas Plum, Plum Hall Inc.

Monday:

Introduction to C

C Operands and Operators

C Control Flow - if, else if, switch, while, for

Tuesday:

C Control Flow - comma, do while, break, goto

C Functions

The C Preprocessor

Wednesday:

C Pointers and Arrays - to and including array arguments

The C Library - to and including sprintf and sscanf

Thursday:

Structures and Unions - to and including pointers to

structures

The C Library - File I/0

C Pointers and Arrays - pointer arrays

Friday:

C Pointers and Arrays - cmd line args, pointers to

functions

The C Library - system level I/0, heap allocation

Structures and Unions - arrays of structures, unions

Programming in C -outline- page 2

TEXT ASSIGNMENTS

It is recommended that the following reading in the text

"Learning to Program in C" be performed and the questions

in that reading answered. Programming exercises are provided

at the end of this workbook as a replacement for those in

the text.

Monday:

Optional assignment - computer concepts (as needed)
"Learning to Program in C" - Chs. 1, 2.1

"Learning to Program in C"

Sections 2.6, 2.7, 2.8

Sections 3.4, 3.5, 3.6

Tuesday:

"Learning to Program in C"

Sections 3.8, 3.9, 3.11

Sections 5.4, 5.7

Wednesday:

"Learning to Program in C"

Section 3.12

Sections 7.2, 7.4

Thursday:

"Learning to Program in C"

Sections 7.3, 7.7

Sections 8.1, 8.2, 8.6

Friday: (or following the completion of the course)

"Learning to Program in C"

Ch. 6

"Programming in C Workbook"

Ch. 9

Programming in C

intro

TABLE OF CONTENTS

~outline-

Y :mat 18 C& s & & ® ® @& ® & © 2 & ®© © » B L o & € & H © e 6 & @ & @ © 8 v O &

W}l’y C s ® & ©® © © ® ©° B & & & & 5 & S @ S & o B S & & @ ¢ & & & 5 © ¢ o 6 e ©& 8 O

A quick overview.....

Identifiers, keywords,

operands

Data types....ceveenen

Constants.............

String constants......

Declarations..........

Arithmetic operators..

Relational operators..

Expressions, operators, and operands

®

[4

comments,

g

®

[L4

®

&

®

®

[4 [2 [4

e

® ® ® » 6 ® © 6 © ®© 6 & » @& o & & & 0 e » o

constants.

Data Lypes. .o i it ottt ecessooscsososse

Compile and execute a simple C progranm.

A program to copy input to output......

A program to count lines, word, chars.

Sample formats for printf.............

Buffering of input....... &

® % & & © &

L4

[

[3

Logical operators......c.cceeieeveeesen

Type ConversionsS. ...c.oceeeeessecees

Type conversion examples and cast.

Lvalue and rvalue......ceeeoeeessase

increment and decrement operators.

Arr Ay S. it ieeessosoaossssonsssssess

Arrays of characters............

The array indexing formula......

String functions.....cceceeveeee

Bitwise operators. ...ccev v vvesss

Bitwise "right rotate" function.

Assignment operators.......cec..

Operator precedence......ccesooesseee

The conditional operator (thenelse)

&

Lg

L 4

@

.4

&

®

®

®

®

®

.4

|4

®

®

prage 3 -

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

38

40

Programming in C

TABLE OF

control

Statements and blocks..

If (else) statement....

Else if statement......

Switch statement.......

&

&

£

L3

k4

14

While and for statements.

Comma operator.........

Do while statement.....

Break and continue.....

Goto statement.........

functions

What is a function@?....

Basic function syntax..

Non-integer functions..

Argument passing.......

Recursive functions....

L]

®

[

&

@

@

&

CONTENTS (continued)

-outline-

L4

&

o

&

&

®

&

&

[

&

L2

® © o ¢ e e

L3

®

Initializing automatic scalars.

Storage class....cco...

Static storage class...

Initializing arravs....

External variables.....

Register storage class.

ocope rules.....c.coc000

® » ® & @ & &

®

4

&

®

L4

@

&

@

®

®

®

®

&

&

-4

]

®

Initialization summary.....

Empty brackets: three cases

Passes of C compiler.......

preprocessor

DefineabfifiQDQQQOD&Ofiflfiw

Define and macros......

IncludQDODfibebeofibfiblbb

Conditional compilation.
&

Llneoeoo»»ooaflnosoocpeoo

&

@

&

-4

&

@

L4

|4

&

L 2

B

&

@

page 4

41

42

43

44

45

46

47

48

49

50

51

52

53

55

56

57

58

60

61

62

63

o4

65

66

67

68

70

71

73

Programming in C -outline-

TABLE OF CONTENTS (continued)

pointers

What is a pointer?......cccvievenns

Declaring and using pointers..........

Simple examples using pointers........

Pointers as function arguments: swap..

Pointers as function arguments: scanf.

Pointers and arraysS...o ceeeooooncoss

o @

Pointer and array examples: hex.c, index.c.

Array arguments: strcpy, strncpy........

Array arguments: read.....c.cceescoeoee

Array arguments: write........ccooeeee

Pointer arithmetic........ccicte csnss

Multidimensional arrays.....ccceeevesss

Pointer aArrayS...ceceeceoocsccsscsscsees

Command line arguments to C........c.c..

Variable number of function arguments:

Pointers to functions.......oevv

structures

Structure basiCS. .. .vv v veeronsoseas

Members of structures......ccceeceeeoeos

Members and nesting.cceoeceeceeceos

Defined types for structures..........

Pointers to structures......ccceeeeonoe

Formats for structure definitions.....

UNions. ¢ v voeeeeeeeeeseoeceoosssssocnsoescs

Typedef ... ittt neseennsencnnscen

Arrays of structures........ceceeveees

Bit fields....eeeeeteeeeeooeosnsoconos

Linked 1lists.....vcuoceeececcescsssocescs

®

®

L 4

@

page 5

74

75

76

77

78

79

81

82

84

85

86

87

88

89

91

92

93

94

95

96

97

99

.100

. 101

.102

.104

.106

Programming in C -outline- page b

TABLE OF CONTENTS (continued)

Clibrary

standard input, standard output, and standard error..... 108

Character input/output: getchar, putchar.........cccece.. 109

Line input/output: gets, puts........ittt eecerocconsee 110

Formatted output: printf ie ettt eececoecsenecnnses 111

Formatted input: scanf.....cee e eeeeescescescooosonsonoes 112

1/0 to and from strings: sprintf, sscanf.........cccc... 113

File I/70. ... et ietieeeooeosoossossonassocssssossecscssss 114

Example of File I/0... .t eeeeeeoeeesonoseoosocccoocnsnoe 116

Error output: perror, fprintf.... ...ttt eecocennn 117

System 1evel I/0. ...t eeeeeneeeeeoeensosoenonnonsoness 118

L 120

Heap allocation: malloc, free.......oiettt veceeconenees 121

style

Data and variables. it ittt eneeetnoneensononnnss 122

Operators. ...ceeeen.s s s s s s s e e s s s e s s e e e e e s e e seaeeneesene 123

Control structures.......c.. ittt eeoeeesoeonsannones 124

FUNCEIONS..t it i i it ittt ittt ittt ct et oneesonsesansononess 125

Common € DUGS . ottt i et ittt ts e enensenscesonesesoneesnos 126

labs

Monday Programming Assignments........oeeeeereenesooncen 128

Tuesday Programming Assignments.......c..eeeeeerceoooooss 129

Wednesday Programming Assignments.........oeeveeeeonsess 130

Thursday Programming AsSsignments.......veeeeeeeeoeonesns 131

Friday Programming Assignments.ooeeeeeeeoncoonones 132

Programming in C

Table of ASCTI

G
G

S
T

A

O
R
I
,

Y
D
A
,

S
T

|
N

| S
T

O
T
A
D
I

M

M
E
G
I
T
Y
 |
 W
A
L

|
O
R
I

I

|
S
N

|
M
T
—
—
—

L
,

 |
A
N

|
TV

GI
IN

S
|
M
O

|
I

|
T
N

S
R
,

 |
 S
O

|
—
—
—
—

V
A

B

M
.

S

|
_
—
—
—
—

W
M

fi
ma

ra
mn
 r
o
e
b
o
L

|
S
O

A
t

o
r
m
e
r
y
 o
a
r
n
i
n
 w
w

o

c
t
m
i
r
e

|
o

s
o
m
m
—

w
o
w
o
m
i

o
o nul

soh

stx

etx

eot

eng

ack

bel_

bs

ht

nl

vt

np

cr

SO

si

dle

dcl

dc?2

dc3

dc4

nak

syn

etb

can

em

sub

esc

fs

ags

¥
~

R
N

H

O
B

I
O

U

W
N

-

O 0000

0001

0002

0003

0004

0005

0006

0007

0010

0011

00172

0013

0014

0015

0016

0017

0020

0021

0022

0023

0024

0025

0026

0027

0030

0031

0032

0033

0034

0035

0036

0037

0040

0041

0042

0043

0044

0045

0046

0047

0050

0051

00572

characters:

Ox00

O0x01

O0x02

O0x03

Ox04

0x05

0x06

Ox07

0x08

0x09

O0x0a

Ox0b

Ox0c

0x0d

Ox0e

Ox0f

0x10

Ox11l

Ox12

O0x13

Ox14

Ox15

Ox16

Ox17

Ox18

0x19

Oxla

Ox1b

Oxlc

Ox1d

Oxle

Ox1lf

0x20

Ox21

Ox22

O0x23

0x24

Ox25

Ox26

O0x27

0x28

O0x29

0x2a

N
I
y

T
y

e

S
T

S
O

S
R
,

 |
CO
MS
UI
N

| S
HO
IN
ON
 |

 B
T

SG
OM

EE
AR

S
R
S

A
N

| a
cO

RO
ME

D
ea
vi
ci
m

| S
CR

GI
NE

 O
CR

NE
WS

o
t

Sa
md
vm
en
.
G
R
S

WR

ES
ES

R
G
N

W
I
S

N
I

i

wE
RO
ST
TD
 |
e

D
Y

e

G
O

mc
ho
nt
s
S
R

S

<m
oa

N
| S
N

——
——
—t
ws

v

To
Oe

tn
e
o
m
0

I

-

N

e

S

O

A

O
O
0

U

P

W
t

O
~

-

-outline-

ASCII,

43

44

45

46

477

48

49

50

51

52

53

54

55

56

57

58

59

60

6l

62

63

64

65

66

67

68

69

70

71

712

73

74

75

76

77

78

79

80

81

82

83

84

85

0053

0054

0055

0056

0057

0060

0061

00672

0063

0064

0065

0066

0067

0070

0071

00772

0073

0074

0075

0076

0077

0100

0101

0102

0103

0104

0105

0106

0107

0110

0111

0112

0113

0114

0115

0lle

0117

0120

0121

0122

0123

0124

0125

Ox2b

Ox2c

Ox2d

Ox2e

Ox2f

0x30

Ox31

Ox32

0x33

0x34

0x35

0x36

Ox37

0x38

0x39

Ox3a

0x3b

Ox3c

Ox3d

Ox3e

Ox3f

0x40

Ox41

Ox42

0x43

Ox44

0x45

0x46

Ox47

0x48

0x49

Ox4da

Ox4b

Ox4c

Ox4d

Ox4de

Ox4f

0x50

0x51

0x52

0x53

0x54

0x55

decimal, octal,

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

del 127

D
l
e
d

~

M
I
N

G

S
<

-
l
i
d
—

N

Y

S

C

T
R

Q
T
D
O
I
T
E

R

R
W
U
W
H
E
I
D
T
O
H
R
D
D
L
A
O

D
D

page 7

hexadecimal

0126

0127

0130

0131

01372

0133

0134

0135

0136

0137

0140

0141

01472

0143

0144

0145

0146

0147

0150

0151

0152

0153

0154

0155

0156

0157

0160

Olel

0162

0163

0164

0165

0166

0le7

0170

0171

0172

0173

0174

0175

0176

0177

0x56

Ox57

0x58

0x59

Oxba

0x5b

O0x5c¢

0x5d

Oxbe

Ox5f

Ox60

Ox61

0x62

0x63

Ox64

0x65

0x66

Ox67

Ox68

0x69

Oxba

0x6b

Ox6bcC

Ox6d

Oxb6e

Ox6f

O0x70

Ox71

0x72

Ox73

Ox74

0x75

O0x76

Ox77

O0x78

0x79

Ox7a

0x7b

Ox7c

Ox7d

Ox7e

Ox7f

Programming in C -intro-

o A general purpose programming language.

o Low level -- "portable assembler"

Can access many computer objects directly.

No storage allocation or heap mechanism.

Weak typing rules.

No I/0 facilities.

Cannot access composite objects as a whole.

o) Single thread control flow

O Minimal run time environment

@) Modern machines:

Byte addressing

Address similar to integer

Stack is cheap

page 8

Programming in C -intro-

g o

o Efficient code generation on

a variety of modern machines.

UNIX consists of 12,000 lines

of C and 800 lines of

assembler language.

C is on a variety of machines.

o Portable

Both the compiler and the

library are easily ported

to other machines.

o Easy to learn and use.

page 9

Programming in C -intro- page

A guick overview

Fundamental data types:

characters, integers, and floatings.

Composite data types:

pointers, arrays, structures, unions,

functions.

Flow control:

if, while, for, do, switch.

Recursion and reentrancy 'for free’:

automatic storage.

ocope of data: |

internal to a function or block,

or

global within a file,

or

global through all files.

Weakly typed:

many data conversions

permitted.

10

Programming in C -intro- | page 11

Identifiers, kevwords, comments, constants

o) Identifiers are strings of letters (including underscore)
and digits, beginning with letter.

Upper and lower case are distinct.

Variables must be declared before use.

First eight characters are significant

(less for externals)

Names that start with underscore should be

reserved for system programs

o) Keywords (reserved):

auto | double if static

break else int struct

case entry | long switch

char extern - register typedef

continue float return union

default for short unsigned

do goto sizeof while

o Comments consist of any text

between /* and */

o Constants:

1 3.07 | "'x '’ “help"

0 Separators:

, ;{1 = ()

O Whitespace:

blank or newline or horizontal tab,

(Whitesmiths: any other non-printing character.)

(@ Suggestion: 80-character line limit.

Programming in C

Bytes

-intro- page 12

Data types

Type Description

char a single byte.

short a short integer.

int an integer

(same size as pointer).

long a long integer.

float a single precision

floating point number.

double a double precision |

floating point number.

Programming in C -intro- page 13

Compile and execute a simple C program

main()

{

printf("this is a C program.\n");

3

To run using the UNIX operating svstem:
O EDITING

S vi myprog.c

i{new text)>ESC

a{new text>ESC

e
W

.

s Wq

COMPILING & LINKING

$ CC -0 Myprog myprog.c

RUNNING PROGRAM

$ myprog

insert new text (before cursor)

append new text (after cursor)

move cursor left one column

move cursor down one line

move cursor up one line

move cursor right one column

"gobble" character under cursor

write output file and quit

run using the VMS operating system:

EDITING

s EDIT MYPROG.C

AC

arrow keys

delete key

PF2 key

(CTRL-Z>EX

COMPILING

$ CC/LIST MYPROG

¢ PRINT MYPROG

LINKING

to enter character mode

to move cursor on screen

to delete characters

to get help on using keypad

to exit editor

listing file MYPROG.LIS

object file MYPROG.OBJ

to get hard copy of listing file

$ ASSIGN SYSSLIBRARY:CRTLIB.OLB LNKSLIBRARY V1.0
$ ASSIGN SYSSLIBRARY:VAXCRTL.OLB LNKSLIBRARY V2.0

$ LINK MYPROG

RUNNING PROGRAM

$ RUN MYPROG

image file MYPROG.EXE

FProgramming in C -intro- page 14

A program to copy input to output

#include {(stdio.h>

/* copy input to output

x/

main()

{

char c¢;

c = getchar();

while (c != EOF)

{

putchar(c);

¢ = getchar();

}

exit (0); /*exit (1) in VAX-11C*/
3

At the top of each source file that performs 1/0

#include {(stdio.h>

defines: EOF -1

getchar()

putchar()

Programming in C -intro- - page 15

A program to count lines, words, chars

#include <{(stdio.h>

/% count lines, words, chars in input

* /

main()

{

int inword; /* currently in a word? */

short nc; /* number of chars*/

short nl; /* number of lines */

short nw; /* number of words */

char c¢; /* most recently read: char or EOF */

inword = NO;

nc = nl = nw = 0;

while ((c = getchar()) != EOF)

{

++nc;

if (¢ == '"\n’)

++nl;

if (¢ == " " || ¢ == "\n' || ¢ == "\t")

inword = NO;

else if (inword == NO)
{

inword= YES;

++nw;

3

}

printf("%d %d %d\n", nl, nw, nc);

exit (0); /*exit(l) 1in VAX-11C+*/
3 |

Programming in C -intro- | page 16

Sample formats for printf

Integer tyvpes

%d integer (printed decimal, signed)

%X hex integer

%0 octal integer

%030 3-digit octal integer with 0-fill

%C ASCII character

otrings of characters

%S ASCII character string (null-terminated)

%.5s A maximum of 5 ASCII characters from a string

Floating point

%8.2f fixed-point, 8 wide, 2 places: -2345.78

%12.5e e-format: -2.45678e-12

Programming in C ~intro- page 17

Buffering of input

On most systems, input from terminals is buffered one line

at a time. This allows correction of typing mistakes on

that one line.

Thus, the program does not see the input until the newline

is typed. (Each operating system has its own method of

over-riding this buffering to allow a program to see each

character as typed.)

EXAMPLE

#include <{(stdio.h>

/* copy input to output

*/

main()

{

char c¢;

c = getchar();

while (¢ != EOF)

| {

putchar(c);

c = getchar();

}

3

THIS WILL HAPPEN | THIS WILL NOT HAPPEN

S program | § program

dog and cat ddoogg aanndd ccaatt
dog and cat

Programming in C -operands- ' page 18

Data types

o The fundamental C data types are:

char : a byte. 8 bits

short : a 'short’ integer 16 bits

long : a 'long’ integer 32 bits

float : single-precision. | 32 bits

double : double-precision. 64 bits

int : a pointer (address) 16 or 32 bits

o Signed/Unsigned

short range of values -32768 -> +32767

unsigned short range of values 0 -> 65535

unsigned long num;

unsigned int ab;

unsigned char x;

0o Defined data types

#define tiny char

tiny x;

unsigned tiny vy;

#define ushort unsigned short

#define bool int

Advantages to defined data types:

semantic distinctions

portable data (different defines -

different hardware)

enhance readability

Programming in C -operands- page 19

Constants

O Character constants:

one char within single quotes
le' I\nf’ f\tl’ I\lOl

0 Integer constants:

decimal: |

142, 17, 34721

octal: a leading zero indicates an octal constant,
042, 01, 0732 .

hexadecimal: a leading 0x indicates hex constant,
Oxo6f, 0x238, 0xl1l7

integer constants are represented in int (2/4 bytes)
(on PDP - 200000L 1is long constant)

0 Floating constants:

1.23

.23

1.00

17e~-23

floating constants are represented in double (8B bytes)

Programming in C -operands- page 20

String constants

String constants: characters written within double quotes:

0 "Hi there"

0 Stored in memory as array of chars.

o] By convention, the last character of a string

is the null character, ‘'\0’.

QUESTIONS:

0 What is the size of these two strings?

Hhelloll 58 80 _

o What is the difference between

Programming in C -operands - page 21

Declarations

) Variables must be declared before use.

0 Declarations specify a type, followed
by a list of things having that type:

short a, b, c;

char gq, r, sC1001;

o) - The most readable format is an alphabetized list,
one variable per line, with a comment:

short i; /* buffer index counter #*/

int more; /* is there more data? * /

char tbufl801; /* terminal I/0 buffer */

double x; /* the unknown A/

Programming in C ~operands-

Arithmetic operators

/, % (remainder)

% gives remainder;

5 % 2 =

4 % 2 =

3C
o

o

a % b

gives the remainder of dividing a by b.

Not valid for double, float.

* and / and %

have higher precedence than

+ and -

Unary -

has higher precedence than

any of the above.

No guarantee of evaluation sequence:

funca() + funcb() * funcc()

could call a(), b(),

X + (y+z)

X & (y*z)

(x+y) + z

(x*y) * z

Compiler can rearrange across these parentheses.

Parentheses are not adequate for specifying the

Allows optimization:order of calculation.

(x + 1) + (y + 2) Dbecomes

Value of:

or

L

-

-

Lad

c() first.

(X + z) +y
(x *~ z) *y

23 +4 % -5 +1 - 6 %

X +y + 3

page 22

Programming in C -operands- page 23

Relational operators

The relational operators are:

> >= ((=

of lower precedence are:

== (is equal) != (not equal)

produce 0 or 1 result (0=FALSE, 1=TRUE)

Assignment operator is still lower precedence

(and not relational):

= (assignment)

All are of lower precendence than

arithmetic operators.

x + 1 (y + 2

Previously we wrote:

while ((c = getchar()) = EOF)

why not:

while (¢ = getchar() != EOF)

Always parenthesize embedded assignments.

QUESTIONS: What 1s the value of:

3 == § L

1 >= 0

4) 4

Programming in C -operands- page 24

Expressions, operators, and operands

o) Operators:

o Operands (the data being operated upon):

constant 1234 ‘x’ OxFF

variable X n C

o] Expression (examples):

operand operator operand X + 1 n * 2

unary-operator operand -40 &X

constant 40 ‘0

variable X n

o Subexpression = an expression that is part of

a larger expression

0 X = (y + z) * 46

operator + A

operand X 46

expression y+2 x=(y+2)*46

subexpression v+2 46

Programming in C ~pperands- page 25

Logical operators

O "semi-Boolean":

Zero means NO (FALSE)

non-zero means YES (TRUE)

O The logical operators are

&& (and)

|| (or) (pipe characters)
I (negation) (exclamation point)

o) Precedence of && greater than that of ||.

Both have lower precedence than relational operators:

Xx (y && y € 2

O Negation is monadic (unary): takes one operand.

Converts YES (non-zero) into NO (zero),

NO (zero) into YES (one).

o] "Short-circuit": qguarantee left-right sequence,

stop evaluating when result is determined:

if (7 ¢ MAX && ((c=getchar()) != '\n’))

0 Sequence guaranteesin C:

full-expr && |] (more to come...)

(@ Truth Table

DO WS N M D ARG SN DY OESEY N A SR R STNSD MWD GKEN GLGR WSS SO WMRW Sher wC GRS M NN RS SO VR S

Programming in C -operands- page 26

Tvpe conversions

1) Widening of operands ("coercion"):

Register "int" sizes:

2-byte (16 bit): PDP-11, 8080, %80,
4-byte (32 bit): 68000, VAX, ...

Operands shorter than int are loaded into int-sized

temporaries.

long remains long-size.

float operands are loaded into double temporaries.

2) Type balancing:

After coercion, if one operand is smaller than

the other, it is further widened to equal size.

unsigned operand is "slightly wider" than signed.

2-byte machine 4-byte machine

* double *# double

float float

4 unsigned long * unsigned int, unsigned long

* long * int, long

* unsigned int, unsigned short unsigned short

A 1int, short short

unsigned char unsigned char

char char

* means a preferred type for this machine architecture.

Programming in C -operands- page 27

Type conversion examples and cast

O For assignments, the right side Value

is converted to the type of the left side.

short 1i;

tiny t;

float f;

i=¢t; /% t is sign extended #*/

t =1; /* t gets low-order byte */

f =1i; /4 i is converted to float */

i = f; /* £ is truncated %/

O Types can be coerced by using a cast.

short i;

double 4;

d = sqrt((double) i);

o) From Standard library: sqrt()

Programming in C -operands- page 28

Lvalue and rvalue -

o Left side of an assignment is an object with

a location in storage. This object is called

an lvalue.

An lvalue has: |

type, storage class, name, location.

A simple case of an lvalue is an identifier.

o 'Right hand side of an assignment may be any
object that has a value. This object is called

an rvalue if it is not an 1lvalue.

An rvalue has:

type, name, value.

A simple case of an rvalue is a constant.

o Making a value from an lvalue simply fetches

its value from its location.

X = ¥;

4 I /* legal */

0 = x; /* illegal */

QUESTIONS : Which of the following are lvalues?

<

] O

Programming in C -operands - page 29

increment and decrement operators

O 44 adds one to a variable (lvalue).

-— subtracts one from a variable.

O ++ or -- used before the name (prefix):

b = a;

e..++b...

value of expression is a + 1

++ or -- used after the name (postfix):

b = a;

@ @ 0b++0 & &

value of expression is a

o) Fill in the missing parts:

short x, v;

x = 0;

Yy = X++; /% y == */

y = ++x; /* y == _*/

o Do not rely on exact time of ++, --.

It will be done by the next sequence-guarantee point.

sCi++1 = tLj++1; /* GOOD */

sCi++1 = tCLid; /* BAD 4/

sCil = tLi++]; /* BAD 4/

o Simpler rule: if you increment or decrement a variable,
do not refer to it again in that statement.

Programming in C ~operands- page 30

Arravs

A composite data type

o The declaration:

short scoresC3071;

declares that scores is an array of 30 short integers.

o A declaration contains a "sandwich" of type + name.

char msgl801];

name is: msqg

type is: char(801]

o] Arrays are subscripted starting at zero

(just like birthdays and anniversaries!)

scoresl0l1, scoresCl], ... scores([29]

o) To initialize the array scores to zero:

for (i=0 ; i{(30 ; ++i)

scoresli] = 0;

The for statement‘used above:

init: i=0 - done once before loop

test: i(30 - if YES, do body and step

body: scoreslil = 0;

step: ++1 - prepare for next test

o) scoreslLil] is an lvalue.

Programming in C -operands- page 31

Arrays of characters

o) Strings are represented in C as arrays of characters.

o By convention, the null character, '\0’, whose value is

| zero, 1s put on the end of all strings. This

eliminates the need to store string lengths.

@ For the string "april", the C compliler generates:

Ial’ Ipl' Irl' Iil' lll’ I\OI

o) Programs which build strings must append

‘A0’ to those strings. |

Programming in C ~operands- 'page 32

The array indexing formula

char sC5121; “type" of s is: char[512]

| | | l e | '
| | | l ! |

CLEE EETD U R SR EAD AEDO Aes CORE GO GES WOED THITD QRSO OBMD GNP DR N0 eAIe

sC0J sCll sC2] - s[5111

Basic indexing formula:

address of jth element =

address of zero-th element +

J * (size of each element)

QUESTIONS:

Suppose &sLC01 = 2000 (monadic "&" means address-of)

What is &sC10137?

Suppose a is declared:

short al5121;

and &al01 = 4000

What is &alC10137?

Programming in C -operands- page 33

String functions

cpyastr (sl, s2, 3); | === | | ===~ l

#include <{(stdio.h>

/*cpyastr - copy a string from s2 to sl

* /

cpyastr (sl, s2, n)

char slC1]; /*destination string*/

char s2C1; /*input string*/ |

unsigned int n; /*number of characters to copy*/

{

short 1;

for (i=0 ; i<n ; ++1)

slCil = s20iJ;

0 Manipulation of strings must be done explicitly.

In standard C, no statement will process an aggregate.

o) Alternative to above:

for (i=0 ; i<=n && (sllCil = s2Ci]) = '"\N0’ ; ++i)

; /Anull body/
slCidl = '\0‘;

Programming in C -operands- page 34

Bitwise operators

& bitwise and (bit-and) & | 0 1
...' ___________

0] 0 0

l
1] 0 1

| bitwise or (bit—or) ()] 0 1
......,...! uuuuuuuuuuu

0] 0 1

|
1] 1 1

~ bitwise exclusive or ~ | 0 1
...'

0] 0 1

|
1| 1 0

o] Example: char x = 0x16;

x & OxF 0 0010110

00001111

x | 1 00010110

0 000O0O0O0O1

o] What is the difference between && and & 7?

2 && 1 is 1 2 & 1 is O

QUESTIONS: What are the values of the following expressions?

O0x3F 0x67

O0x3F | Ox67

Programming in C -operands- page 35

Bitwise operators (continued)

(<

QUESTION:

5 2> 2

unary ones complement (bit-not)

~“0 1is

~1 1is

~ bitwise

bitwise

007 <<

07 >>

What is

&&

OxFFFF or 0177777 16 bit

OxFFFE or 0177776 machine

left shift (zero fill)

right shift (signed fill)

the value of:

07 & 010

Programming in C -operands- page 36

Bitwise "right rotate" function

Right rotate - bits shifted off to the right are to be

rolled into the left

Example using 8 bits:

/* right rotate function

*/

short rightrot (n, b)

short n; /* 16 bit word to rotate */
short b; /* number of bits to rotate %/

{ .

for (; b>0 ; --b) /* repeat b times #*/

{ .

if (n & 01)

n = (((unsigned)n >> 1) | 0100000);

else

n = ((unsigned)n »>> 1);

3

return (n);

1

0 Always parenthesize bitwise expressions;
bitwise precedence is tricky.

Programming in C ~operands- page 37

Assignment operators-

0 Expressions of the form;

X = X + 2;

can be written in the compressed form;

X += 2;

o X -= 5; /* subtract 5 from x */

X *= Z; /* multiply x times z */

x /=y - 1; /* x gets divided by (y - 1) */

0 operators:

+ - A&/ % DO &N

o Usefulness:

all00 ~ i + j1 = afl00 * i + j1 + n;

can be written:

all00 * i + §1 += n;

all0o0 *~ i +'j] is evaluated only oncel

0 The form += is preferred to the form =+

consider x=-1;

0 #define tiny char

tiny x, y:

X += y; /* not widened to int #*/

o) Expression result is value from operation,

converted to type of left-hand side.

Programming in C -operands- - page 38

Operator precedence

a+ Db % ¢

o Which binds more tightly, the + or the #*7?

o By historical agreement, the *

O Fully parenthsized: a + (b * c)

0 Or, in words, "multiply b times c, then add a"”

QUESTION:

Put into words (a + b) * ¢ + d

Programming in C -operands- page 39

Table of precedence

Precedence Operators

Level

15 () €31 -> .

14 I Y ++ -- - (type) * &

13 /%

12 | + -

11 >> (K

10 ¢ (= > =

9 == |I=

8 &

7 A

6 l

5 &&

4 |

3 ?

2 = += =-= (etc., op=)

1 ’

QUESTIONS: Parenthesize to show the binding:

"3

|

<

i W P > x.
.

!

Q
u

Programming in C - —-operands- page 40

The conditional operator (thenelse)

0 The ’‘'thenelse’ "7?:" operator

provides a conditional expression

in C. |

o) Ternary (triadic) operator: takes three operands.

o if (g > 25)

X = z2;

else

X = Vy;

is rewritten:

X = q > 25 ? yA : y A

T
]

0 Examples:

absx = x 0 7? -x : x;

- minxy = x (y ?2x :V;

Pregramming in C -control-

Statements and blocks

0 An expression plus a semi-colon

makes a statement.

++X;

getchar();c

X + 1; /% useless but a statementx/

o) Curly braces { 3}

denote a block (compound statement)

{
++];
X = V;

3

0 Null statement:

one lonely semicolon

page 41

Programming in C -control- page 472

If (else) statement

o) if (expression) 0 =) FALSE

non-0 => TRUE

statementl

+— e

| else

| statement?2 |

+ - ~+

0 Statement can be simple or compound

if (i<4) if (1<4)

xCil = 1i; B!

yCil = 1i; ' xCil = 1i;

yL£il = 1i;

3

o] The else clause is associated

with the closest un-elsed if statement.

if (i = 0) | if (i 1= 0)

if (bC3jil == 0) {

bLil = 1; if (bLjl == 0)

else bLild = 1;

printf ("error\n"); 3

else

printf ("error\n");

O Always put braces around a nested if.

Programming in C -control-

Else if statement

o) if (exprl)

statementl

else if (expr?2)

statement?

else if (expr3)

statement3

else

~default statement

0 Last else clause is optional.

o) only one statement is executed

QUESTION: What does this program print?

for (i = 1; 1 (= 8; ++i)

{

if (i ¢ 4)

printf ("A");

else if (i % 2 == 0)

printf("“B");

else if (5 < 1)

printf ("C");

else

printf ("D");

3

putchar(’'\n’);

page 43

Programming in C -control- page 44

Switch statement

0 Example:

switch (cmdchar)

{

case ‘a’:

add(nl);

break:

case ‘d’:

delete(nl, n2);

break;

case ‘c¢c’:

change(nl, n2);

break:;

default:

remark("?", ""):

break:

3

o) Execution starts at the case label
whose constant is equal to the

expression, and continues til the end

of the switch, or the next break.

o} Default is optional.

o You should always escape the

switch after each case with a break.

e) Prefer switch to elseif unless different

conditions are tested or tests must be in

sequence.

Programming in C -control- page 45

while and for statements

O while (expr)

statement

0 test is at top of the loop

o for (exprl; expri; eXpr3)

statement

same as

expr 1;

while (expr2)

{

statement

expr 3;

3

o) Use for rather than while when:

loop to be performed a known number of times

there is loop initialization

O "Endless" loop

#define FOREVER for (;;)

FOREVER

{

wait 1 sec

print time

3

Programming in C . -control- | page 46

Comma operator

j=k, num=1i++, ct=1++;

Evaluated left to right.

Complete list of sequence-guarantee

full-expression {3 && | | ’

Function to reverse a string in place

("SPOON" becomes "NOOPS")

int reverse (s)

char sLC1;

{

char t:;

short i, 7J;

for (i=0, j = strlen (s) - 1 ; i<(j ; ++i, --7)

t = sCild, sCild = sCj1 , sCLjl1 = t;

Programming in C -control- | page 47

Do while statement

statement

while (expr);

o test at bottom of the loop

o) The do while statement

is desirable only when the

problem dictates that statement

be executed at least once.

do

{

printf ("Answer y or n: ");

ans = getchar();

while (getchar() != '\n’)

4

3

while (ans != 'y’ && ans != 'n’);

Programming in C -control-

Break and continue

O Break causes an early exit

from for, while, do, or switch.

while (expr)

{

statement

if (expr)

break:

statement

3}

O N + 1/2-time loop

FOREVER

{

statement(s)

if (expr)

break;

statement(s)

}

Continue statement

o) Continue causes the next iteration
of the for, while, or do.

while (expr)

{

statement

if (expr)

continue;

statement

3

page 48

Programming in C -control- page 49

Goto statement

o) Goto is never needed.

o goto label;

label:

o for (...)

for (...)

for (f..)

if (error)

goto error;

error:

/*code to fix the errorx/

Programming in C ~-functions- , page 50

What is a function?
e

pgm. C subl.c sub2.c

imain() | subl () | sub2()

| ... | ... | | ...

i | |
| subl(arg) l l
| eee mmmmemme- e

| sub2(arg)

|

compile compile compile

only only only

linker

executable

program

VMS ULTRIX

$ CC PGM % cc -c pgm.cC

s CC SUB1 % cc -c subl.c

s CC SUB2 % cc -c sub2.c

s LINK PGM,SUB1,SUB2 % 1d pgm.o subl.o sub2.0 -lc

Programming in C -functions- - page 51

Basic function syntax

/* pow - return x to the power y

*/

double pow(x, y)

double x; /* base */

long y; /* exponent */

-——- body

return (...);

[return typeld name ([Cparmlistl)

Cparmlist declarationsl;

{

body

}

0 More power and complexity than a single statement.

O independent building block

o) Take time to become familiar with existing libraries,

to avoid re-inventing the wheel.

o) default return type is "int"

reverse (s)

char sC1;

{

3

Programming in C -functions- page 52

Non-integer functions

o Function must be declared in the calling function

#include <(stdio.h>

main()

{

short i, convert():

long j;

i = convert (j);

3

short convert (num)

long num;

o) If a function return is not declared

integer is assumed.

o The return statement expression

will be converted to the type of

the function.

QUESTION: What is the data type of

convert

convert(j)

Programming in C -functions- page 53

Argument passing

/* test integer power function

< /

main()

{

short 1i;

short power();

for (i = 0; i ¢ 10; ++1i)

printf("%d %d\n", i, power(2, 1i));

3

AUTOMATIC STORAGE PARAMETER STACK

i | O | | 2 | (- lst param

t t I |
| 0 |
| l

copy of variable i ==)> parameter stack

o Precise usages of the terms "argument" and "parameter":

In calling function:

actual parameter, actual argument,

dummy argument;

In called function:

formal parameter, formal argument,

parameter, real argument;

Programming in C -functions- page 54

Argument passing (continued)

/* power - raise integer x to integer n-th power

* /

short power(x, n)

int x; /*base*/

short n; / *exponent*/

{

short p;

for (p=1 ; n > 0; --n)
p‘ * = X;

return(p);

3

AUTOMATIC STORAGE PARAMETER STACK

P | | X | |
| l | l

n | |

| |

o) Width of actual arguments in parameter stack:

Always widened to int, long, or double.

QUESTION: What does the sta
:

~ -
aria as we

k look like as we enter power
P o asm de o s & PtT T
e ek ter the call:

before after

U
M
D

w
0

I
R

A
N

S
R
S

A

N

W
Y

S
H
E
C
T
G
E
S

A
R
E
N
N
S

Programming in C -functions- page 55

Recursive functions

#include {(stdio.h>

main()

{

long factorial();

printf ("3 factorial is %d\n",

factorial (3));

exit (0);

3

/* factorial - return n!

A /

long factorial(n)

long n; /* parameter, local storage */

£

if (n (= 1)

return (1)

else

return (n * factorial(n - 1)):

}

o) Variables declared within a function

are local to that function and

come into being with the dynamic

invocation of the function.

They disappear at function termination.

parameter stack comes into being with the

dynamic invocation of the function.
It disappearsat function termination.

Programming in C -functions- page 56

Initializing automatic scalars

0 An "initializer" may be attached to the declaration

of an automatic scalar (but not an array).

Automatic arrays CAN be initialized in VAX-11C.

main()

£

char ¢ = 'x’;

short i = 1;

short j = 1 & 2;

printf("%d %d %c\n", i, j, c);

exit (0):;

3

QUESTION: What does this program print?

o The intialization is done by instructions that are

executed each time the function is entered.

main()

{

short receipt();

printf ("First = %d\n", receipt());

printf("Second = %d\n", receipt());

exit (0);
]

a

short receipt()

{

short number = 1;

return (number++);

3

QUESTION: What does this program print?

Programming in C -functions- page 57

Storage class

0 Picture of C program in computer memory

contains the machine instructions

for the program

contains variables which remain inDATA

FIXED locations -- "static" storage

STACK contains automatic variables

arguments, and function-call

bookkeeping; changes as functions

are called and returned

Programming in C -functions- page 58

Static storage class

o) Internal static:

Declared inside a function or block, and is known
only inside that block (private memory).

otays put; is not in the stack.

Remembers values between function calls.

Initialization is done only once, when the program
is loaded into the machlne

main()

short receipt():;

printf ("First = %d\n", receipt());
printf("Second = %d\n", receipt());

exit (0);
3

short receipt()

{

static short number = 1:

return (number++);

}

QUESTION: What is the output of this program?

Programming in C -functions- page 59

Static storage class (continued)

O External static:

Data that is common (global) to several functions

Declared OUTSIDE the body of any function

Shared by all functions that follow in that

source file

#include {(stdio.h>

static Short rnum = 0; /* random number */

/* rand - return a random short integer

*/ |

short rand()

{ |

rnum = rnum * 12047 + 13911; /*period=8192+*/

return (rnum >> 1); |
} ;

/* srand - set random seed
x / |

int srand(seed)

short seed;

{

rnum = seed;

3

QUESTION: In which memory segment does rnum reside:

TEXT, DATA, or STACK?

Programming in C -functions- | page 60

Initializing arrays

0 UNIX = static arrays can be initialized

automatic arrays cannot be initialized

o - VMS both static and automatic arrays can

be initialized

o static data is initialized into the program file

at link time

static short digits(101 = {0,1,2,3,4,5,6,7,8,93;

static char msglfl3] = "hello, world";

o) If the array bound is bigger than the number of
initializers, the extra elements are
initialized to zero.

- If the array bound is less than the number of
initializers, a compiler error is generated.

If no bound is given, it is taken to be the number
of initializers.

QUESTION: What are the intial values?

static char st[(51 =:"std"; | I l | | l
l | | I | |

static char sC21 = "abc'; ' I I I

I | I

static short al51 = {1, 2, 33;

static short bLC1 = {1, 3, 5, 73;

static char xC1 = "abc";

Programming in C ~-functions- page 61

- External variables

0 data that is common (global) to several functions

declared outside the body of any function

functions that wish to share access to external data
use the extern keyword

#include (stdio.h>

short a = 0; /*external data can be initializedx/

main()

{

extern short a;

short 1 = 17;

long 1;

1 = subfn (i);

if (a (= 25)

3

long subfn (arg)

short arg;

{

extern short a;

a = 32 / arg;

;ééurn (...)3
I I

Programming in C -functions- page 62

Register storage class

o) register int x;

data will be allocated in general purpose registers,

instead of memory

reduce execution time since a memory access is not

needed

for variables that are used often, eg. loop index

VAX-11C will ignore - it will choose which variables
to place into registers

o] Register storage class may be assigned

to formal parameters in a function

or to automatic variables.

int power(x, n)

register int x, n;

{

register int p;

}

o) Cannot take address of (&) register.

o] For maximum portability, register should be
used only with int and pointer wvariables.

However, most compilers will do sensible

things with char and short registerheX

declarations, also.

Programming in C -functions- page 63

Scope rules§

Internal data (local)

o) data declared inside a function is known only within
that function

0 | data can be declared inside any compound statement

(formed with curly braces) (BLOCK)

data declared in a block is known only within that

block |

main()

{0
short i:

if (i <= 25)
{

float 1i;

i = 3el0;

3

| 3

External data (global)

0 data declared outside the body of a function in

a source file is known to all functions that

follow in that source file

o) static data declared outside the body of a function

in a source file canNOT be made known to a function

in any other source file

0 non-static data declared outside the body of a

function in a source file is made known to any

function in any source file with the extern

keyword

0 Function_names are external by default.

Programming in C -functions- | page 64

Initialization summary

O External or static storage is initialized only once,

into the program file at link time.

They stay put in fixed locations.

Scalars - initialized to constants or constant

expressions:

static short lim = BUFSIZ + 1;

static char separator = ‘\n’;

Arrays - 1initialized to lists of constants,

padded with zeros:

static short arC51 = {1, 2, 3, 4, 53;

static char buflC5121 = {01;

static char sC] = "dog&cat";

o Auto storage (stack), and register storage (register)

are initialized every time the function is entered.

Scalars - initialized to expressions:

short b = a + 1;

register int ¢ = 326 / b;

Arrays - cannot be initialized in auto storage (UNIX)

— can be initialized in auto storage (VMS) with

some irregularities

char buf [31 = {'d’',’0o’,'g’}; /*legal*/

char msgll = "dog"; /*illegal - compiler errork/

short tim[5] y 2, 33; /A*NOT padded with zeroes*/i

pa
n'

-

Programming in C ~-functions- page 65

1)

2)

3)

Empty brackets: three casesin C
TP IO

As parameter to function, they are a synonym for

address

long setstr (s)

char slC1]; | (-- receives the address of array s

With array initializer, they mean "take the size from
the count of initializers."

static short xC 1 = {0123, 0456, 07773;

|
3

With an external array, they mean "the bound will

be specified by the actual data declaration”

extern short y[];‘

Programming in C -functions- page 66

Passes of C compiler

o) Preprocessor: expand macros, compile-time constants,

#include files, and conditional compilation

O Parser: translate program‘into a logical
tree-structure language

o) Code generator: translate this tree into

- assembler code

o Assembler: produce relocatable object code

from the symbolic assembler code

O Linker: link the relocatable object

code together with other object files

Programming in C -preprocessor- page 67

Define

o #define ID token-string

the preprocessor replaces all occurences

of ID with 'token-string’ after this defining instance.

‘token-string’ is scanned for previously defined ID’s.

O Example

#define FAIL 1

#def ine EOF -1

if (EOF == getchar())

exit (FAIL);

becomes (in-line code)

if (-1 == getchar())

exit(1l);

o) Dangerous example:

#define RABBIT (RABBIT # RABBIT)

O Define can also be done on command line in UNIX

cc -DRT1l=1 pgm.c

0 Style rules:

put # in column 1

use uppercase names

put all #defines before any data declarations

Programming in C ~preprocessor- page 68

Define and macros

0 Example (macro):

#define SQUARE(n) n *n

#include (stdio.h>

main()

{

char x[1001;

short i:;

y = SQUARE(xLil);

® & @

3

becomes (in-line code):

v = x(ild *~ xCil;

QUESTION: Write the in-line code for SQUARE(x+1).

Fix the definition.

Programming in C -preprocessor- page 69

Macros (continuéd)

#define MAX(X, V) (((x) < (y)) 2 (y) & (x))

g#define MIN(x,) (((x)< (y)) 2 (x) = (y))

#define ABS(x) (((x) ¢ 0) ? -(x) : (x))

"Generic"” - accept any data type

Efficiency - in-line code, no call and return

Preprocessor lines are taken one at

a time; they can be continued by

placing a '\’ at the end of the line.

#define MIN(x, y) (((x) < (y)) 2 \
(x) : (y))

Continuation possible for any C statement

static char msgll = "very long... \

line";

But if string fits on one line, prefer

static char msgll =

"very long ... line”

Don’t put side-effects on arguments

ABS(++n) ==> (((++n) < 0) ? -(++n) : (++n))

SUGGESTION: Write function first.

Make macro only when needed.

(Function is less prone to

programming errors.)

Undef - To remove the latest definition:

#undef id

Rarely used in practical programming.

Programming in C -preprocessor - page 70

Include

®) #include "filename"

Causes this line to be replaced

with the entire file ‘filename’

F'or personal or project header files

The UNIX compiler searches

(1) the directory containing the C progranm,

(2) directories specified in the compile command,
(3) "standard places."

The VAX-11C compiler searches

(1) the current default directory

(2) the directory containing the C program

@ #include <filename>

For system-wide header files

The UNIX compiler searches

(1) dlrectorles specified in the compile command
(2) "standard places."

The VAX-11C compiler searches

(1) SYSSLIBRARY - a standard directory

O Header files are usually named:

file.h where file is any filename.

o) Includes may be nested (discouraged).

Programming in C ~preprocessor- page 71

Conditional compilation

#if constant-expression

or

#ifdef ID

or

#ifndef ID

(any C or preprocessor statements)

#else

(any C or preprocessor statements)

#endif

#if constant-expression

is true if constant-expression

evaluates to nonzero

#ifdef ID

is true if 'ID’ has been defined.

#ifndef ID

is true if ‘'ID’ has not been defined.

Programming in C -preprocessor- page 72

Conditional compilation examples

0 Env1ronment dependencies (adapted from stdtyp. h)

#ifdef USHORT

#define ushort unsigned short

#else

#def ine ushort short

#endif

0 Simulating hardware on mainframe

#ifdef UNIX

static char buffer [481C801 = O0;

static char *bufp = &buffer;

#else

static char #bufp = 0x8000;

#endif

0 Safe way to nest #include

| /* "sandwich" around header */

#ifndef SOMENAME

... text of header

#endif

o ~ "Tuning" for size

#if MAXTOKEN < 128

#define TOKEN char

#else

#define TOKEN ushort

#endif

o Including TRYOUT main with function file

... (code for function)

#ifdef TRYOQUT

main()

{

(code to test function)

1

#endif

Programming in C -preprocessor- page 73

Line

0 | #line line-number ID

can be used to reset the line-number

and/or ID which is passed to the compiler.

/*test.c - 0 and o are mixed up in string name

*/

main()

{

char s0 [£251;

® & 9

strcpy (so, "test string");

3

% cc test.c

"test.c", line 23: so undefined

/*test.c - 0 and o are mixed up in string name

#line used to change compiler error msg
* / |

main()

{

char s0 [£251;

#line 37 COPY

strcpy (so, "test string");

3

% cc test.c

COPY, line 37: so undefined

Programming in C -pointers- page 74

What is a pointer?

o A pointer holds the address of

another variable.

o) short 1, j; /* 1, j are short */

short *p; /* p is a pointer to short */

i = 0; |
p = &i; /* p gets address of (&) i */

O j = *p; /* that which is pointed to by p*/

thus:

p;&i’jzkp;

is the same as:

j = 1i;

o short #*p;

is read "declare p as a short pointer"

declaration of the variable p

J = *pi

is read "set j to that which is pointed to

assigning the variable j

#p has 2 meanings

@ "Address-of" (&) can be applied only to lvalues,

not rvalues.

QUESTION: Which of the following are ILLEGAL?

p = &i;

p = &(>(1i + 1);

p = &(i = 1);

Programming in C -pointers- page 75

Declaring and using pointers

O short #pi, *pj, t; /*pi,pj are pointers to short/

long *pl; /*pl is pointer to long*/

double *pd; /*pd is pointer to double*/

0 pi, pl, pd are the pointers; they are lvalues.

*pi, *pl, *pd are references to the objects

pointed to; they are also lvalues.

variable address contents

1100 | 9 |

! |

pi 1300 | 1100 |

| l

t 1350 | 14 |

I |
I 20 |

‘ | |

Pj 1380 | 1350 |

| |

pl 1400 | 1410 |

| l

1410 | 7 |

l |

1430 | 0.0 |

! |

pd 1440 | 1430 |

Programming in C

Simple examples using pointers

short *pi, *pj, t;

long *pl;

double *pd;

1)

2)

3)

4)

5)

6)

7)

8)

pi

PJ

pl

pd

-pointers-

*pd += *pi;

pi = &t;

Api = 4pl;

Pj = pi;

*pJ /= 3;

++pJ;

(Apj)++;

++pl;

1100 | 9

1300 |” 1100

1350 14

20

1380 | 1350

1400 | 1410

1410 |

1430 |

1440 | 1430

page 76

/*pil,pj are pointers to short*/

/*pl 1is pointer to longx/

/*pd 1s pointer to doublex*/

Programming in C

Pointers as function arguments:

~pointers- page 77

swap

0 Call by value; C cannot directly

alter function arguments in caller.

To change the arguments in the caller,

pass pointers to the variables to be altered.

int badswap(i, j)

short i, js
{

short t;

t 1;

J;
t;

i

]
3

This simply changes

the local i and j.

pi

pj

int swap(pi, pj)

short #*pi, *pj;

ghort t;
t = *pi;

*pl = *pj;

*pj = t;
3

This is called:

swap(&x, &vy);

Programming in C -pointers- | page 78

Pointers as function arguments: scanf

int x;

short y;

float z;

nargs = scanf ("%dxhd%f", &x, &y, &z);

Reads from standard input: 368 23 87.62

nargs tells how many successful assignments.

separators are whitespace: spaces, tabs, newlines

Input Use this call:

FFFF7421 scanf("%8x", &status)

8-digit hex int number

ABC | ,sCanf("%c%c%c", &cl, &c2, &c3)
Three contiguous characters

A BC scanf ("%$s%s%s", sl, s2, s3)

Three separate characters

(into strings)

hello scanf ("%s", str) |

One "word"

(delimited by whitespace)

hello scanf ("%80c", str)

At most 80 characters into str

499.95 scanf ("%3hd.%2hd", &dols, ¢s)

Dollars and cents (2 shorts)

o) Using scanf, there 1s no simple way to read one line

of characters up to a newline.

Programming in C -pointers- page 79

Pointers and arrays

@ All operations done by array subscripting

can be done - usually faster - with pointers.

short gLl1001];

short *pq;

pq = &qL01; /* pg gets address of the

zeroeth element of gq */

is equivalent to

P9 = 4; /*q is equivalent to &qLO01*/

700 1200

|- ===~ | | --=-- |
q | 5 | Pq | |

| =-==- | | ----- |
| 10|
| -——--] 1300

i | | ~==-- |
| | i | I
| ~===~ e | ===-- |
| 495 |

|-=--- |

o If we then write: i = *pq;

What does i have in it?

0 type of g =

tvpe of glnl =

o) »Declaration: short gL100] is read
"array of 100 shorts"”

Expression: qlnl is read "q sub n"

Programming in C -pointers- » page 80

Pointers and arrays (con‘t.)

O Whenever pointers are used in arithmetic

expressions, integer constants and variables

are scaled by the storage size of the pointer.

o) e.qg.:

double *pd;

short *pi;

X= x(pi + 2); /* the 2 is first multiplied by */

/ % 2 (the size of a short) */

d = *(pd - 7); /* the 7 is first multiplied by */

/ * 8 (the size of a double) */

o] Example: short ql(51;

- gqL01 | | 1200

&gC31 is 1200 + 342 | ————|

gCll | | 1202

| ===~
g+ 3 is 1200 + 3%2 qC21 | | 1204

| ===
qgC31 | | 1206

&qlC31 is g + 3 | - ===

gf4l | | 1208

gqCL31 1is (g + 3)

0 Generally - glnl is *(g + n)

Programming in C -pointers- page 81

Pointer and array examples: index.c

/* index - return index of first occurrence of char ¢

* in string s

* - SUBSCRIPTED version

* / |

#include {(stdio.h>

int index(s, c¢)

char sC1; /*string to be searchedx*/

char c¢; /*search character*/

{

short 1 = 0;

while (sCil = ‘'\0’ && sCild != c)
++1;

return (sCil == ¢ 2 1 : -1);

}

/* index - return index of first occurrence of char c

* in string s

* POINTER version

* / -

#include ({(stdio.h>

int index(s, c¢)

char *s; /*string to be searched*/

char c; / *search characterx/

{

char *s0 = s;

while (*s != '"\0’ && #s = c)
++S;

return (#s == ¢ 7?2 s - s0 : -1});

}

Programming in C -pointers- | page

Array arguments: strncpy

0 When arrays are passed to functions, what

C really passes is a pointer to the array.

/* strncpy - copy n characters from string s2 to

string sl

*/

char *strncpy(sl, s2, n)

char *#sl, *s2;

unsigned int n;

{

char *oldp = sl;

“while (n-- > 0)
Aksl++ = *s52++;

return (oldp);

3

o) strncpy will accept calls:

(1) strncpy(al, a2, DIM);

or

(2) strncpy(&allf0l1, &a2001, DIM);

where al and a2 are declared as arrays:

char allDIMl, a2CDIM1;

0 QUESTION: What is the type of

sl

strncpy

Programming in C -pointers- | page 83

Array arguments: a question

QUESTION: Assume the following machine state

just before calling strncpy(save, line, 4)

VARIABLE ADDRESS STORAGE

line 800 | a | b | ¢ | \0O |

| l l I |

save 1800 |l x |y | 2z | w |

What does the parameter stack look like when

strncpy(save, line, 4) is entered?

sl (- 1lst param

S2

B

T

T

T

R

e

|

l
!

|

l
!

What does the storage of save 1look like

when strncpy returns?

save 1800 | | g | |

Programming in C -pointers- page 84

Array arguments: read

#include {(stdio. h>

/* read - read characters into an array

*/

unsigned int read (s, n)

char sC1;

unsigned int n;

{

int 1i;

char c¢;

for (i =

return (

3

EXAMPLE

S

n

char sC1;

char +*s;

read (array,

/* where to store the bytes read #*/

/* max no. of bytes to read %/

0; 1 < n;)

{

C getchar();

if (c == EOF)

return (i);

sCi++]d = c;

if (¢ == '"\n’)

return (i);

3

i);

10) ®

I 4

(- lst param

IS REWRITTEN BY C TO BECOME:

(A POINTER TO CHARACTERS)

Programming in C -pointers- page 85

Array arguments: write

/* write - write the characters from an array

A/

unsigned int write (s, n)

char s(C1; /* location of bytes to write */

unsigned int n; /* how many bytes to write */

Snsigned int j;

for (j = 0; j < n; ++3)

putchar(sCjl);

return (n):;

3

QUESTION: What does the parameter stack look like after
the following function calls set up their arguments?

write ("abc", 3)

(- 1lst param

write ("0", 1)

(- 1lst param

O
N
D
I
R
E

M
R
S

S
I
S

C
U
P
A
R
N
T

I

T
G

M
N
E
I
O
N

E
A
O
T
D

o
’"abc" 400 | 3 !

! ! |
"o 500 | 0 | \NO |

| ! |

Programming in C -pointers- page 86

Pointer arithmetic

O Adding or subtracting pointers and integers

will cause C to scale according to the

storage size pointed to.

o) | Pointers may be subtracted from each other (scaled).

o Pointers to like types may be meaningfully

compared with each other.

o) Pointers may be assigned or compared against 0.
C guarantees that no data item will ever be at 0.

char *p;

if (p == NULL)

return;

o NULL: in stdio.h

QUESTION: - If &sCO1 == 1000, what address will receive 7777

short *ptr;

char slL201;

ptr = s;

A(ptr+3) = 777;

Programming in C -pointers- , page 87

Multidimensional arrays

static short scoresC71[91

{

o, 1, o0, 2, o0, 0, O, O, 1,

o, o, 0, 0, 0, 0, 0O, 0O, O,

o, 2, 3,1, 0, 0, O, O, O,

o, o, 7, 0, 1, 0, 0, O, O,

o, o0, 0, 0, 0, 0, 0, O, O,

ll 0’ l’ OI 1' Of O' OI 0!
2, 3, 1, 0, o0, 0, O, O, O,

};

0 Arrays are stored in rows, that is, right

subscripts vary the fastest.

scores L[21C31 =

o sizeof (scores) = 7 x 9 x 2

sizeof (scores[01) = 9 x 2

sizeof (scoresC01L01) = 2

= shortl[9]tyvype of scoresl(2]

QUESTIONS : If &scoresCO01C0] == 1200, what is

&scores[11L01]

scores(1]

o] Passing a multidimensional array to a function:

X = sumup(scores, 7);

where sumup is declared

short sumup(arr, nrows)

short arrl1[9];

short nrows;

Programming in C | | ~pointers- page 88

Pointer arrays

0 short #aptrl103];

declares aptr to be an array of ten

pointers to short.

o ~ static char *citiesC1 =
{HNYN’ "PHILA", HBOSH’ "LA", NULL};

0 cities 1000 | 1100 |

l |
| 1103 |

! |
| 1109 |

| l
| 1113 |

| |
] 0 |
l |

1100 | N | Y | \O |

i || |

1103 | P | H | I | L | A | \0 |

| ! l | | |

1109 | B | O | S | \0 |

i i t | |

1113 | L | A | \O |

QUESTION: Write down the TYPE and VALUE of

citiesC21C21

&cities[21C21

xcitieslC2]

Programming in C -pointers- page 89

ac

av

avC0]

avlCl]l

avlL2]

avLC 3]

Command line arguments to C

When main() is called it is passed

two arguments:

main (ac, av)

unsigned int ac;

char *avLl1l;

ac is the count of the number of arguments

passed to the main.

av is a pointer to a list of name pointers.

One types:

ULTRIX interface VMS interface

cmd al a?2 cmd = "Ssys$login:cmd.exe"

cmd al a2

and the program sees the following variables:

1400 l 3 |

1404 } 1440 :
I |

1440 1662 1662 l c | m | d | \0 |

1444 1666 1666 { a ! 1 ! \ 0 : |
1448 1669 1669 E a E 2 ; \0 E
1452

Programming in C -pointers- v page 90

Using arguments in echo.c

#include {(stdio.h>

main(ac, av)

unsigned int ac;

char *avL1];

| {

short 1i;

for (i = 1; i ¢ ac; ++i)

printf(i ¢ ac-1 ? "%s " : "%s\n",

avlil);

~exit (0);

3

o Example

S echo ab xyz 12345

ac 2200 | |

av 2204 : 2630 :
| | ___ l

avC0l 2630 | 3750 | 3750 | e | c | h | o | \O |

avCll 2634 : 3755 : 3755 : a : b : \ 0 : |
avl2] 2638 : 3758 : 3758 { X : y : y/ : \0 |

avL31 2642 : 3762 : 3762 { 1 : 2 : 3 : & | 5 | \O |
avL41 2644 : 0 :. i |

Programming in C

Variable number of functi

-pointers- page 91

on arguments: cpystr

Taking the address of the argument list allows a pointer

to walk this list:

char *cpystr(olddest, s)

char #*olddest;

char +*s;

{

char **ps = &s;

register char *dest

register char *src;

—

e ApsS; Src
while (#Asrc

*de

for (src

Adest ‘A0’;

return (olddest):;

3

Walking the pointer ps al

call the function with vari

cpystr(target, "ab"

olddest 1300 | 2000]

1304 | 3000]
1308 3“55;5|
1312 | 31301
1316 :—-_5_:

| ===~ |

| ===~ |

ps | l

dest ; “““““ ;

src | |

w—

s

I 4olddest

!= NULL; src
‘A0")

ksrc++;

A++ps)

= |

st++

ong the arguments allow user to

able number of arguments:

, "C“’ lldefl’ NULL);

2000 : A D

| ~===m e |
3000 | a | b | \0|

| === |

| ~===m- |
3050 | ¢ | \O]

| === - |

| === |
3130 | d | e | \O]

Programming in C -pointers- page 92

Pointers to functions

0 Funcfiions themselves cannot be directly
manipulated but pointers to the functions

can be.

0 void f(g)

void (*qg)(); /* pointer to function */

k = (*g)(i); /* call g(i) */

}

O For example:

short fnl (arg) /xthe first function/
short arg;

{ '

if (arg < 5) return (10);

else return (11);

short fn2 (arqg) /*the second function*/

short arg;

- {

if (arg < 5) return (20);

else return (21);

3

int func (g, i) /*the calling function*/

short (4g)(); |

short 1i;

{

printf ("%d\n", (*g)(i));

3

main()
o~

{

func (fnl, 7); /* will print 11 */

func (fn2, 3); /% will print 20 */

Programming in C -structures- page 93

Structure basics

o) A structure is a group of variables, of varying type,

which1is placed together for ease of manipulation.

0 - Formal definition§of structure variable
(define the pattern)

struct task

{

char job [201;

char *plan;

short start;

float length;

3;

0 Declare structure variables from the pattern

(actually allocate storage) B

struct task t;

e e e +

job N T A R A A I I A I O
et itettt P +

plan | I
e ——— +

start | |

+———t-——+

length | |

+—-————- +

o struct task ti, tj, tk;

declares three variables: ti, tj, tk.

o) on VAX: sizeof (ti) = (bytes).

Programming in C -structures- page 94

Members of structures

o) The member ofa structureis used in expressions:

structurename.member

e.qg. .

t.plan

or

tk.length

0 element type offset in structure

t.job char [£201] 0

t.plan char * 20

t.start short 24

t.length float 26

o) EXAMPLE:

in task.h header file:

struct task

{

char job [201;

char #*plan;

short start;

float length;

};

in prog.c program file:

#include "task.h"

#include {(stdio.h>

main()

{

static struct task tl = {"Hawaii vacation",

"car-plane", 1210, 8.451;

printf ("%s %s %d %8.2f",

tl.job, tl.plan, tl.start, tl.length);
} .

Programming in C -structures- page 95

Members and nesting

) structure.member is an lvalue

Examples:

if (tj.start (ti.start)

tk.lengtfi.; 12.3;

tl.plan = ptr;

0 One structure may be nested inside another.

struct time

{

char hh;

char mm;

char ss;

};

struct task

{

char job [C20];

char *plan;

struct time start;

float length;

};

struct task t;

o) We can now reference the components of each time:

t.start.hh

t.start.mm

t.start.ss

Programming in C -structures- page 96

Defined types for structures

o Common usage -

#define the structure as a new variable

0 EXAMPLE:

in task.h header file:

#define TASK struct task

TASK

{

char job [201;

char *plan;

short start;

float length;

};

in prog.c program file:

#include "task.h"

#include <(stdio.h>

main()

{

static TASK tl = {"Hawaii wvacation",

"car-plane", 1210, 8.453;

printf ("%s %s %d %8.2f",

tl.job, tl.plan, tl.start, tl.length);

3

Programming in C ~gstructures- page 97

Pointers to structures

o] Only a few operators are allowed upon structures:

t.plan member

&t address-of

sizeof (t) size of

Structures cannot be operated upon as a unit

e.qg. ti = tj; / *generally not workx/

/* but works in VAX-11Cx/

o) The declaration:

struct task #*ptask;

declares ptask to point to a structure of type task.

ptask = &t;

o) To access members of the structure

pointed to by ptask:

ptask->job

or

ptask->plan

or

ptask->start.mm

0 ptask->length is the same as (Aptask). length

0 t.plan is the same as (&t)->plan

Programming in C ~-structures- page

Pointers to structures (continued)

o) Pointers to structures are often used to pass

structures to functions.

0 EXAMPLE:

/*function to add a task structure to a task table

A/ ‘

#include "task.h"

int install (ptask)

struct task *ptask;

{

ptask->job ...

ptask->plan ...

ptask->start.mm ...

return (...);
}

called from the main() by:

num = install (&ti);

98

Programming in C -structures- page 99

Formats for structure definitions

®) struct task

{

char *desc;

long plan;

}

tskl, tsk?2:

) struct task
{ .

char *desc;

long plan;

};

®) struct

{

char *desc:;

long plan;

}

tskl, tsk?2:;

o) struct task tskl,tsk2;

STRUCTURE FORM and

ACTUAL STRUCTURES

STRUCTURE FORM only

ACTUAL STRUCTURES only

ACTUAL STRUCTURES from

a previously defined

STRUCTURE FORM

Programming in C -structures- - page 100

Unions

0 structure-like variables, i.e.

objects of varying types and widths in one variable

O variable values overlay one another

(not follow one another as in a structure)

o One use: two or more ways of looking at the same

storage.

union

{

long 1;

char clC41;

} parts;

1 and ¢ are two objects which

can be held in the variable parts.

If parts.l = 0x87654321

then parts.cL0] = 0x21

parts.clfl] = 0x43

parts.cl2] = 0x65

parts.clL3]1 = 0x87

o) Another use:§saving space in data storage by using the
same space for mutually-exclusive values.

union payeeno

{

char ssnoll21;

char taxidnoll1l51;

3

o) A union will be large enough to hold the largest member.

Alignment will satisfy all uses.

0 It is the programmers task to keep

track of how the union was most

recently used.

Programming in C -structures-

Typedef

o) Typedef is a method of creating

synonyms for types. This is part

of the C language not part of the

preprocessor.

o) Instead of:

#define bool int

We could say:

typedef int bool;

o) typedef char *STRING;

STRING s, t;

page 101

Programming in C -structures- page

Arraysof structures

Consider the problem of looking up

a keyword in a predefined table and

mapping it into an integer "token" for efficiency.

the book is on this desk

1 2 3 4 5 6

o) In header file (token.h)

struct keytab

{

char *word:;

int token:;

};: |

word l
l

token |

|

0 In program:

static struct keytab dtabll =

{

"define", 1,

"include", 2,

"undef", 3,

"line", 4,

"ifdef", 5,

"ifndef", 6,

"endif", 7,

"elseif", 8,

};

102

Programming in C ~structures- page 103

Arrays of structures (continued)

/*function to lookup a keyword in a table

of keytab structures and return the token

A/

#include '"token.h"

int lookup (keyword, table, tablesize)

char *keyword; / *keyword to lookupk/

struct keytab #table; /*ptr to table of structures*/

short tablesize; /*number of entries in tablex/

{

for (; tablesize > 0 ; --tablesize, ++table)

if (cmpstr(keyword, table->word))

return (table->token);

return (0); /*failurex/

3

0 Called from main() as:

typ = lookup("line", dtab, 8);

- + o- - +

keyword | Q | 1 | 1 | n | e | \0OJ

+————— + o- +

+——— - + +---—-- + I ebttt +

table | | | >l d e | £] 1| n| e | \0Of

4 4+ | m——— | A e e +

|1 |
4————- + | -===- | ee - +-

tablesize| | | ——————— >l i ln] e | 1 jlul|l d]| e | \O|

== + |-----] e e- - +

| 2 |

| ===~ |
| |

| i
| === —- | T +

| - >l e | 1 | s | e | 1| £ | \OJ|

| = ; e +

| 8 |

Programming in C -structures- page 104

Bit fields

0 Represent data as bit field instead of bytes

o Useful if storage is limited

Useful for defining status words, hardware interfaces,

o #define bits unsigned int

struct flags

{

bits

bits

bits

bits

};

struct flags f;

alloc:1;

type:3;

ref:2;

sc:3;

FEach individual field is n bits long

and may be referenced:

f.alloc

f.sc

or

etc.

SC ref type alloc

Programming in C -structures- | page 105

Bit fields (continued)

O To set oh:
f.alloc = 1;

to turn off:

f.type = 0;

to test:

if (f.sc == 1)

e @ @

o Can‘t take address of (&) field.

0 Unnamed fields are used for padding.

0 Field of width 0 causes alignment

on the next unsigned.

0 Fields cannot overlap unsigned boundary;

the field is aligned at the next unsigned.

0 Do not depend on allocation order within word;

it varies between machines. (some CPUs order bits

left to right, not right to left as in VAX, PDP)

o Do not combine bit-field operations and

mask-and-shift operations.

Programming in C -structures- page 106

Linked lists

0 A slight re-definition of our task structure will allow

the creation of linked lists (chains) of tasks:

struct task

{

struct task *next;

char 7jobl[201;

char *plan;

short start;

float length;

};

struct task t;

Programming in C -structures- page 107

Linked list (continued)

struct task *tlist; /* point to current head */

struct task #*p; /* point to new task */

o) To add an element to a task linked list:

p = malloc(sizeof (struct task));

p->next = tlist, tlist = p;

O To delete an element from a task linked list:

p = tlist, tlist = p-J>next;

free(p);

Programming in C ~-Clibrary- page 108

Standard input, standard output, and standard error

stdin Standard input

stdout Standard output

stderr Standard error file

o These three files are already opened for the main

program.

o) The default for all three files is the interactive

terminal.

| ~ === | stdout

l |- > terminal

stdin | | | |

terminal-----=--==~-- > cmd |

| l
i | stderr

| | - === > terminal

| ====--- |

0 The stdin and stdout can be changed for

| individual commands

VMS UNIX

ASSIGN filel SYSSINPUT cmd <{filel >file2
ASSIGN file2 SYSsOUTPUT

RUN CMD

| -=—===- l stdout

i | === > file 2

stdin l |

file 1 -——=--=—-eu-- > cmd |

| |
| l stderr

l

Programming in C -Clibrary- page 109

Character Input/Output: getchar, putchar

'o Basic'I/O facility:

read a character at a time from the "standard" input

write a character at a time to the "standard" output

0 Get a character from the standard input:

char getchar()

getchar gets a character from stdin. (c >= 0)

getchar returns EOF (-1) on end of file.

o) Put a character to the standard output

char putchar(c)

putchar puts character ¢ to stdout, returns c.

(c must be >=0).

putchar returns EOF on error.

o File copy:

while ((c = getchar()) != EOF)

putchar(c);

o getchar and putchar are typically implemented as
macros, not functions. |

Programming in C -Clibrary- - page 110

Line Input/Output: gets, puts

gets - gets a text line from stdin.

puts - puts a text line to stdout.

o | char *gets(s)

copies characters from stdin to the

character string at s, until:

(a) newline

(b) EOF

A ‘'\0’' terminator is added.

The newline is deleted.

gets returns its argument.

0 int puts(s)

copies from character stringat s

to stdout, appending a newline.

no value is returned.

o To copy input to output:

puts(gets(s));

Programming in C ~Clibrary- page 111

Formatted output: printf

0 printf(fmt, argl, arg2, ...)

fmt is a string specifying format

argl, ... are the variables to be output

in that format

returns the number of characters written out

characters are output to the standard output

0 EXAMPLES:

short i = 37;

static char sC]1 = "abc"

int j = 3;

printf ("%5s", s); ==) __abc

printf ("-5s", s); ==) abc

printf ("-5.2s", s): =#> ab

printf ("%54d", 1i); ==) 37

printf ("%-54", 1i); ==) 37

printf ("%xd4", j, i); ==> 37

o If output is too wide for "output width",

width 1s ignored.

Programming in C -Clibrary- | page 112

Formatted input:'scanf

0 scanf (fmt, &argl, &arg2 ... &argn)

fmt is a string specifying format

-argl, ... are the variables to be input

in that format

scanf returns the number of arguments

successfully assigned.

Characters are read from the standard input

The scan is terminated if the format

character does not match the input.

Codes for scanf are the same as for printf,

except that "hd", "ho", and "hx" read shorts.

o Input items are separated by whitespace,

which is ignored. The ‘¢’ format is an exception;

the requested number of characters are always read

including whitespace characters.

(only EOF stops the scan)

o) EXAMPLES:

int i;

short 7j;

char slC201, s2L201;

scanf ("%d%hd", &i, &j); (== 26 132

will produce i==26, j==132

scanf ("%d%d", &i, &j); (== 26 132

will cause j value to overwrite adjacent 1

scanf ("%2d%hd", &i, &j); (== 356 241

will produce i==35, j==

241 is still in terminal buffer

scanf ("%20c", s); (== test msgll2s$}I*&”

the next 20 characters go into sl

scanf ("%[abclx%lxyzl", sl, s2); (== bacyxw

will produce sl=="bac", s2=="yx"

Programming in C ~Clibrary- page 113

I/0 to and from strings: sprintf, sscanf

0 write args into a string according to fmt

char str [141;

static har month L1031 = "November";

short day = 23;

sprintf (str, "%10s %44", month, day);

will produce str == "November 23"

o read into érgs from string according to fmt

static char str [] = "Hammer 568";

char part [61]1;

long number;

sscanf (str, "%s%d", part, &number);

will produce part == "Hammer", number==568

Programming in C -Clibrary- page 114

F'ile 1/0

o) A FILE is a structure specifying...

file descriptor: 0 STDIN, 1 STDOUT, 2 STDERR,

characters left in buffer

mode

next character in buffer

buffer

from stdio.h: #define FILE struct _iobuf

FILE pointers: stdin, stdout, stderr

file descriptors: 0, 1, 2

o fopen - opens a file by name, in specified mode

FILE *fopen (fname, mode)

EXAMPLE :

FILE *fp;

fp = fopen ("data.file", "w");

mode == "w",

open for seqgential write

mode == "r"

open for sequential read

mode == "a"

append: open for writing at end

o fclose (fp)

Closes a file controlled by fp.

Programming in C -Clibrary- page 115

File I/0 (continued)

o Character 1/0

getc(fp) | /% macro */

putc(c, fp) /* macro */

fgetc(fp) /% function %/

fputc(c, fp) /* function #/

O Line I/0

fgets(s, n, fp)

read at most n-1 chars into s,

including newline

fputs(s, fp)

write s to file fp

o) Formatted I/0

fscanf(fp, fmt, &argl, ..., &argn)

fprintf(fp, fmt, argl, ..., argn)

o) Block 1/0

fread (buf, size, num, fp)

read num items of size each into buf

fwrite (buf, size, num, fp)

write num items of size each from buf

Programming in C -Clibrary- prage 116

/& Program to use C standard I/0 to write a file

* - containing one 1, two 2s, etc. up to 10

* /

#include {(stdio.h>

main()

{

FILE *fptr;

char string [101;

register i, j;

/*Create the file

* /

if ((fptr = fopen ("FILE.DAT", "w")) == NULL)

perror ("OPEN error"), exit (0);

/*Place the correct numbers in the array string and

* write the array to the file

* /

for (i=1 ; i<{(=10 : i++)

{

for (3j=0 ; j<i ; j++)

string Lj1 = 1i;

if (fwrite (string, i, 1, fptr) == 0)

perror ("WRITE error"), exit (0);

3

/%Close the file

* /

if (fclose (fptr) == EOF)

perror ("CLOSE error"), exit (0);

Programming in C ~Clibrary- page 117

Error output: perror, fprintf

o perror'("file open error'");

write string to stderr -and-

write system messageto stderr that

corresponds to the error code in

the external int errno

o] fprintf (stderr, "can’'t open file %s\n", fname);

write formatted output to stderr

Programming in C -Clibrary- page 118

System level I/0

o) an alternative to standard I/0 (fopen, fwrite, ...)

O direct calls to the ULTRIX operating system

(emulated in VMS)

O creat will create adnew file:

fd = creat (name, mode)

returns a file descriptor (positive integer)

mode specifies UNIX access permissions:

owner group others

read 0400 040 04

write 0200 020 02

execute 0100 010 01

O open will open an already existing file:

fd = open (name, mode);

returns a file descriptor (positive integer)

mode == 0 for read,

== 1 for write,

== 2 for read/write.

o) close will close a file:

close(fd);

Programming in C -Clibrary- page 119

System 1/0 (continued)

0 read and write:

read(fd, buf, size);

read size bytes into buf from fd

returns the number of bytes read

0 if end-of-file

-1 1f error

write (fd, buf, size);

write size bytes from buf to fd

returns the number of bytes written

-1 1f error

0 EXAMPLE: To copy INPUT to OUTPUT

#include <{(stdio.h>

main()

{

char bLBUFSIZI1;

short i

int fdin, fdout;

if ((fdin = open ("INPUT", 0)) == -1)

perror ("open error"'"), exit (1);

if ((fdout = creat ("OUTPUT", 0)) == -1)

perror ("creat error"), exit (1);

while ((i = read (fdin, b, BUFSIZ)) != 0)

{

if (1 ¢ 0)

perror('"read error"), exit (1);

else if (i != write(fdout, b, i))

perror('"write error"), exit (1);

3 | ! |

exit (0);

3

From stdio.h: BUFSIZ (512 on most systems)

Programming in C -Clibrary- page 120

lseek

o lseek will position within an open file for read/write

lseek (fd, offset, origin);

offset is number of bytes from the origin

0 byte offset from the beginning,

1 byte offset from the current position,

2 byte offset from the end.

iorigin

returns the resulting offset location from the beginning

o l1seek does not physically move the disk arm; it only

specifies the byte position for the next I/0 operation.

o EXAMPLE:

/*function to read randomly a block from a file
Ny

#include <(stdio.h>

int getblock(fd, buf, blkno)

int fd; /*file desc of open filex/
char *buf:; /*address to read intox/

short blkno; /*block number to readx/

{

lseek (fd, blkno * BUFSIZ, 0):

/*return T or F wvalue:

FF'== 0 if end of file

T > 0 for number of bytes read

* /

return (read(fd, buf, BUFSIZ) == BUFSIZ);
.

ot

Programming in C ~Clibrary- page 121

Heap allocation: malloc, free

o malloc - allocates space on the heap.

char *malloc(nbytes)

unsigned nbytes;

An element of size nbytes 1is

allocated, and its address is returned.

malloc() returns NULL pointer on failure.

o free - frees a previously allocated cell.

free(pcell)

char *pcell;

Free the space pointedto by pcell.

Be careful to free only those cells previously

- malloc’ed!

Programming in C -style-

C programming style

Data and variables

O Consistent and meaningful names

o | Standard defined-types: ushort, tiny,

#define ushort unsigned short

#define tiny char

o Manifest constants: EOF; NULL,

page 122

Programming in C -style- page 123

C programming stvyle

Operators

0 No blank for primary and unary ops:

*p plL1l 5.m

o) No blank for parens: (x + vy)

o) No blank for functions f(x)

0 One blank for binary ops: X +y

o One blank for key words: if (...)

O Do not assume left-to-right

evaluation:

a() + b() * c()

O Do not assume timing of side-effects within an

expression:

ali++1 = bLj++1; OK

ali++1 = bLil; BAD

o) The only guarantees for sequence and side-effects

are the sequence guarantees of C:

full-expr && | | ’ 7

Programming in C -style- page 124

C programming stvyle:

Control structures

o Braces above and below body

{

remark("bad value", code):
++nerrs;

3

0 One-tab uniform indents

0 80-char line limit: no "wrapped lines"

o] "else-if" only when necessary; prefer "switch"

o) - Avoid "goto" and "continue"

Programming in C -style- page 125

C programming style:

Functions

o Layout:

#include <{(stdio.h>

#include <(stdtyp.h>

#include "proj.h"

#define TOK short

TYPEX varx = NNN; /* commented */

/* comment describing func

* /

TYPE func(al, a2, a3)

TYPE1l al; /* describe */

TYPEZ a2; /* describe %/

TYPE3 a3; /* describe %/

{

extern TYPEX varx:;

(local declarations>

(statements>
3 |

o Build and use standard headers

(@ Source files no bigger than 500 lines;

functions no bigger than 50 lines

0 #includes, then #defines, then rest of file

0 No initializations in header files; they should

contain nothing but #define, typedef,

structure declarations, and externs.

o) Prefer static to external

0 “Defensive programming": each source file

responsible to avoid out-of bounds references.

Professional code is not allowed to "bomb-out".

Programming in C -style- page 126

Common C bugs

1. General

Uninitalized wvariables

Off-by-one errors.

Treating an array as though it were

l-origin (instead of 0O-origin).

Unclosed comments. |

Forgetting semi-colons.

Misplaced braces.

2. Types, Operators, and Expressions

Using "char" instead of "int" for the

returned value from getch.

"Backslash" typed as "Slash"; e.qg.,

~'/n’ instead of 'O.

Declaring function arguments after the

function brace, creating spurious

local variables.

Arithmetic overflow. ,

Using relational operators on strings;

e.g. 5 == "end" instead of

strcmp(s, "end").

Using "=" instead of "=="

Multiple side-effects to the same memory

in the same expression;

e.g. sec = ++sec % 60;

False assumptions about the time at which

post-increment is done.

Off-by-one errors in loops with increment.

Precedence of bitwise logical operators.

(Always parenthesize them.)

Right-shifting negative numbers

(Not equivalent to division).

Assuming the order of evaluation of expressions.

Forgetting null-terminator on strings.

Programming in C -style- page 127

Common C bugs (continued)

Control flow

Misplaced "else"

Missing "break" in "switch".

Loop with first or last case abnormal in some way.

Loop mistakenly never entered.

Functions and program structure

Wrong type of arguments

(relying on memory instead of manual).

Wrong order of arguments.

Omitting static on subfunction’s abiding storage.

Assuming that static storage is re-initialized at

each re-entry.

Macro written without full parenthesization of
arguments

and result.

Pointers and arrays

Passing pointer instead of value -- or value

instead of pointer.

Confusing "char" with "char #".

Using pointers for strings without allocating

storage for the string.

Dangling pointer references -- references to

storage no longer used.

Confusing single quotes ('\n’)

with double quotes ("\n").

Programming in C -labs- page 128

MONDAY PROGRAMMING ASSIGNMENTS

In the following exercises, avoid explanding the scope of

the exercises so as to involve sophisticated terminal input.

For example in exercise 1, avoid generalizing so as to form the

sum of numbers up to that input from the terminal.

l. Write a program to form the sum of the numbers from 1 to 25

inclusive. Print to the terminal the sum and the integer

average of the numbers.

2. Write a program that reads 5 characters from the terminal

and prints them back to the terminal in reverse order.

3. Write a program that will read characters from the terminal

until newline and print back to the terminal a line of

asterisks proportional in length to the binary value of each

character typed. Apply a scaling factor, so that the largest

ASCII character will still fit onto an 80 character line. This

program functions as a simple plotter, treating the input line

as an analog input signal.

4. Write a program that reads 2 numbers from the terminal and

prints back to the terminal the larger. What happens if a

letter is typed as input to your program?

5. Write a program which tells the size of a machine word in

bits, i.e. tells how many bits exist in an int on the

computer on which you are running.

6. Write a program which reads an line of input from the

terminal and prints each word on a separate line. A word, for

our purposes, 1s a sequence of non-whitespace characters.

Along with each word, print its hash-sum (the sum of the

characters in the word), once as a 4-digit hex number and once

as a 5-digit octal number. Print the hex number with leading

zeroes and the octal number with leading blanks. An empty line

of input should produce no output.

Programming in C -~ -labs- page 129

TUESDAY PROGRAMMING ASSIGNMENTS

In the following exercises, avoid expanding the scope of

the exercises so as to involve sophisticated terminal input.

J1. Write a function that compares 2 shorts (passed as arguments)
and returns the larger. Test the function with a progranm.

/2. Write a macro DO which will duplicate the syntax of a
FORTRAN DO loop, e.qg.

DO i=3,11,2 written as DO(i,3,11,2)

meaning a loop from an initial value of i = 3 to a final

value = 11 in increments of 2. The variable name, the limits

of the loop and the increment are arguments. Test the macro

with a program that prints to the terminal the values of the

loop during each pass.

3. a. Write a function cmpstr (sl, s2) which returns a true
value if strings sl and s2 are equal, a false value otherwise.
Compile cmpstr into an object file.

b. Write a program to test cmpstr. Compile it and link it
with cmpstr. | |

4. Write a macro TOUPPER which will translate a lower case

character into upper case using the conditional operator e.g.

a ? x : vy Test the macro with a program which reads characters

from the terminal and prints back to the terminal the result of
the TOUPPER macro on them.

5. The function nfrom (low,high) produces a random number

between low and high inclusive. See page 5-24 of the text.

Modify nfrom to generate a 1long value rather than a short

one. Write a program that calls nfrom 10,000 times to generate

random numbers from 1 to 6. Print to the terminal a summary

showing how many ls, 2s, etc. were generated.

6. Modify the program calling nfrom in the prior exercise to
simulate 10,000 rolls of two six-sided dice. Print a summary

showing each possible sum and how many times it occurred.

Programming in C ~-labs- page 130

WEDNESDAY PROGRAMMING ASSIGNMENT

1. Write a program that will populate a 50 element char array

with the integers 1-50 using pointers, not subscripts. Print

the array to the terminal on five lines

2. Write a program that reads your first name and age from the

terminal using a single scanf and forms a character string

using sprintf with your age at your next 3 birthdays. Print

the character string back to the terminal.

3. WHrite the function rindex described in Exercise 7-1 on

page 7-10 of the text "Learning to Program in C". Test with

an appropriate program. |

4. Modify the function cmpstr written in a previous exercise

to use pointers rather than subscripts. Test with a program.

5. Multidimensional arrays will be needed for this exercise.

See the appropriate pages of the text and this workbook for

assistance. The program tokens.c converts its input into a

table of tokens. ©See the supplied listing. A token is defined

as a unique number assigned to a word. The first word from the

input is assigned to token number 1, the next is assigned to

token number 2, etc. When a word is found in the input that is

identical to one encountered previously, it is given the same

token number previously assigned. After reading all the input,

the program prints out the table of token numbers and words.

If a word is longer than 8 characters, only the first 8 are

stored. -

Write the functions required by tokens. Your solution

consists of only one source file, with 2 functions:

short install (s)

char sC1;

/*Look for the word s in the table. If found,

return its token number. If not found, insert

s in the table and return a new token number.

If no space left, exit (FAIL);*/

int dumptok()

/*%Print out the token table%/

ocample execution of tokens.c:

S run tokens

ABC 123 ABC 1234567890

1 213

Token table:

1 ABC

2 123

3 12345678

Programming in C ~labs- page 131

THURSDAY PROGRAMMING ASSIGNMENTS

l. Write a program to prompt for and read from the terminal
the values for part name (maximum chars 10), part number

(6 digits) and amount in stock. Obtain and write 4 such records
into a disk file using a structure.

2. Write a program that uses an array of pointers to read from
the terminal your first name, middle name and last name. Print
on successive lines using the pointer array your last name,
middle name and first name.

3. Write a program that will read the records from the part
name file created above and print to the terminal a report

showing the part name, part number and amount in stock of each
and the total amount in stock of all parts.

4. Make the program revisions described in Exercise 8-1 on
page 8-5 of the text "Learning to Program in C".

5. Write the program runtt described in Exercise 8-2 on
page 8-7 of the text "Learning to Program in C". Ignore the
last sentence of the exercise and print out the structure
as in gettt.c.

Programming in C -labs- page 132

FRIDAY PROGRAMMING ASSIGNMENTS

1. Write a program that reads its 2 arguments from the command

line. If the strings are equal, print EQUAL and the string.

If the strings are not equal, print NOT EQUAL. If less than

or more than 2 arguments are supplied, print an appropriate

error message.

P

2. Revise the program previously written to create a part

number file to create and write to the file using

system level 1/0.

3. Write a program that will read the records using system

level 1I/0 from the part name file created above and print to

the terminal a report showing the part name, part number and

amount in stock of each and the total amount in stock of all

parts.

