
Guide to VAX C
Order Number: AI-L370C-TE

March 1987

This document describes VAX C constructs in context with both the history
of the C programming language and that of the VMS environment. It contains
information on V AX C program development in the VMS environment, the
VAX C programming language, and cross-system portability concerns.

Revision/Update Information: This revised document supersedes
Programming in VAX C, (Order No.
AA-L370B-TE).

Operating System and Version: VMS Version 4.2 or higher,

Software Version:

digital equipment corporation
maynard, massachusetts

or MicroVMS Version 4.2 or higher

V AX eVersion 2.3

First Printing, May 1982
Revised, April 1985
Revised, March 1987

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip­
ment that is not supplied by Digital Equipment Corporation or its affiliated
companies.

Copyright © 1982, 1985, 1987 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this doc­
ument requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS lAS VAXcluster
DEC net MASSBUS VMS
DECsystem-1O PDP VT
DECSYSTEM-20 PDT
DECUS RSTS

~D~DD~D DECwriter RSX

ZK3222

This document was prepared using an in-house documentation production
system. All page composition and make-up was performed by TEX, the
typesetting system developed by Donald E. Knuth at Stanford University. TEX
is a trademark of the American Mathematical Society.

Contents

PREFACE

NEW AND CHANGED FEATURES

DEVELOPING VAX C PROGRAMS ON VMS

CHAPTER 1 DEVELOPING VAX C PROGRAMS AT DCl COMMAND lEVEL
1-1

1.1 DCl COMMANDS FOR PROGRAM DEVELOPMENT

1.2 CREATING A VAX C PROGRAM
1 .2.1 Using VAX EDT
1.2.2 Using VAXTPU

1.2.2.1 The EVE Interface • 1-5
1.2.2.2 The EDT Keypad Emulator Interface • 1-6

1.3 COMPILING A VAX C PROGRAM
1.3.1 The CC Command
1.3.2 The CC Command Qualifiers
1.3.3 Compiler Error Messages
1.3.4 Compiler Listings

1.4 LINKING A VAX C PROGRAM
1.4.1 The LINK Command
1.4.2 LI N K Command Qualifiers
1.4.3 Linker Input Files
1.4.4 Linker Output Files
1.4.5 Object Module Libraries
1.4.6 Linker Error Messages

xix

xxiii

1-1

1-4
1-4
1-5

1-6
1-6
1-8

1-19
1-21

1-40
1-41
1-43
1-44
1-45
1-46
1-46

iii

1.5 RUNNING A VAX C PROGRAM 1-48

CHAPTER 2 USING THE VMS DEBUGGER 2-1

2.1

2.2

2.3

2.4

2.5

iv

OVERVIEW

FEATURES OF THE DEBUGGER

GETTING STARTED WITH THE DEBUGGER
2.3.1 Compiling and Linking a Program to Prepare for

2.3.2
2.3.3
2.3.4

Debugging
Starting and Terminating a Debugging Session
Issuing Debugger Commands
Viewing Your Source Code
2.3.4.1 Noscreen Mode • 2-9
2.3.4.2 Screen Mode • 2-9

2-1

2-3

2-4

2-4
2-5
2-6
2-9

2.3.5 Controlling and Monitoring Program Execution 2-11
2.3.5.1 Starting and Resuming Program Execution • 2-11
2.3.5.2 Determining the Current Value of the Program

Counter • 2-13
2.3.5.3 Suspending Program Execution • 2-14
2.3.5.4 Tracing Program Execution • 2-16
2.3.5.5 Monitoring Changes in Variables • 2-17

2.3.6 Examining and Manipulating Data 2-18
2.3.6.1 Displaying the Values of Variables • 2-19
2.3.6.2 Changing the Values of Variables • 2-20
2.3.6.3 Evaluating Expressions • 2-20 .

NOTES ON DEBUGGER SUPPORT FOR VAX C
2.4.1 Accessing Scalar Variables
2.4.2 Accessing Arrays
2.4.3 Accessing Character Strings
2.4.4 Accessing Structures and Unions

CONTROLLING SYMBOL REFERENCES
2.5.1 Module Setting
2.5.2 Resolving Multiply Defined Symbols

2-22
2-22
2-24
2-26
2-28

2-34
2-34
2-35

2.6 SAMPLE DEBUGGING SESSION

2.7 DEBUGGER COMMAND SUMMARY
2.7.1 Starting and Terminating a Debugging Session
2.7.2 Controlling and Monitoring Program Execution
2.7.3 Examining and Manipulating Data
2.7.4 Controlling Type Selection and Symbolization
2.7.5 Controlling Symbol Lookup
2.7.6 Displaying Source Code
2.7.7 Using Screen Mode
2.7.8 Editing Source Code
2.7.9 Defining Symbols
2.7.10 Using Keypad Mode
2.7.11 Using Command Procedures and Log Files
2.7.12 Using Control Structures
2.7.13 Additional Commands

VAX C PROGRAMMING CONCEPTS

CHAPTER 3 PROGRAM STRUCTURE

3.1 C PROGRAMMING LANGUAGE BACKGROUND

3.2 THE VAX C PROGRAMMING LANGUAGE

3.3 WRITING A PROGRAM

3.4 PRODUCING INPUT/OUTPUT

3.5 CONTROLLING PROGRAM FLOW
3.5.1 The if Statement
3.5.2 The switch Statement
3.5.3 Loops

3.6 VALUES, ADDRESSES, AND POINTERS

2-36

2-40
2-40
2-41
2-42
2-42
2-43
2-43
2-44
2-45
2-45
2-45
2-45
2-46
2-46

3-1

3-2

3-3

3-4

3-7

3-10
3-10
3-12
3-14

3-18

v

3.7 AGGREGATES 3-23
3.7.1 Arrays and Character Strings 3-23
3.7.2 Structures and Unions 3-25

3.8 FUNCTION DEFINITIONS 3-29
3.8.1 Main Function and Function Identifiers 3-31
3.8.2 Parameter List Declarations 3-32
3.8.3 Function Return Data Types 3-33
3.8.4 Variable-Length Parameter Lists 3-34

3.9 FUNCTION DECLARATIONS 3-35

3.10 FUNCTION PROTOTYPES 3-37
3.10.1 Using Function Prototypes 3-39

3.11 USING PARAMETERS AND ARGUMENTS 3-40
3.11.1 Function and Array Identifiers as Arguments 3-42
3.11.2 Passing Arguments to the Main Function 3-43

3.12 IDENTIFIERS 3-45

3.13 KEYWORDS 3-46

3.14 BLOCKS 3-49

3.15 COMMENTS 3-50

3.16 LINT-LIKE FUNCTIONALITY 3-50

vi

CHAPTER 4 STATEMENTS

4.1 CONTROL FLOW STATEMENTS
4.1.1 The null Statement
4.1.2 The goto Statement
4.1.3 The labeled Statement

4.2 EXPRESSIONS AND BLOCKS AS STATEMENTS
4.2.1 The expression Statement
4.2.2 The compound Statement

4.3 CONDITIONAL STATEMENTS
4.3.1 The if Statement
4.3.2 The switch Statement

4.3.2.1 Declarations within a switch Statement • 4-8

4.4 LOOPING STATEMENTS
4.4.1 The for Statement
4.4.2 The while Statement
4.4.3 The do Statement

4.5 INTERRUPTING STATEMENTS
4.5.1 The break Statement
4.5.2 The continue Statement
4.5.3 The return Statement

CHAPTER 5 EXPRESSIONS AND OPERATORS

5.1 LVALUES AND RVALUES

5.2 PRIMARY EXPRESSIONS AND OPERATORS
5.2.1 Parenthetical Expressions
5.2.2 Function Calls
5.2.3 Array References ([])
5.2.4 Structure and Union References

4-1

4-1
4-2
4-2
4-3

4-3
4-3
4-4

4-4
4-5
4-5

4-9
4-9

4-10
4-11

4-11
4-11
4-12
4-13

5-1

5-2

5-3
5-3
5-3
5-4
5-5

vii

5.3

5.4

5.5

5.6

5.7

5.8

5.9

viii

OVERVIEW OF THE VAX C OPERATORS

UNARY EXPRESSIONS AND OPERATORS
5.4.1 Negating Arithmetic and Logical Expressions (- !)
5.4.2 Incrementing and Decrementing Variables (++ --)

5.4.3 Computing Addresses and Dereferencing Pointers

5.4.4
5.4.5

5.4.6

(& *)
Calculating a One's Complement ("")
Forcing Conversions to a Specific Type (Cast
Operator)
Calculating Sizes of Variables and Data Types
(sizeof)

BINARY EXPRESSIONS AND OPERATORS
5.5.1 Additive Operators (+ -)

5.5.2 Multiplication Operators (* / %)
5.5.3 Equality Operators (== !=)
5.5.4 Relational Operators (> < <= > =)
5.5.5 Bitwise Operators (& I A)
5.5.6 Logical Operators (&& II)
5.5.7 Shift Operators (> > < <)

CONDITIONAL EXPRESSION AND OPERATOR (7:)

ASSIGNMENT EXPRESSIONS AND OPERATORS
(= + = _ = * = = % = > > = < < = & = A = 1=)

COMMA EXPRESSION AND OPERATOR (,)

DATA TYPE CONVERSIONS
5.9.1 Conversion of Operands
5.9.2 Conversion of Function Arguments

5-5

5-9
5-9

5-10

5-11
5-12

5-12

5-13

5-13
5-14
5-14
5-15
5-15
5-16
5-17
5-17

5-18

5-19

5-21

5-21
5-22
5-23

CHAPTER 6 DATA TYPES AND DECLARATIONS

6.1 CONSTANTS

6.2 VARIABLES
6.2.1 Classification of Variables

6.2.1.1 Data Type Keywords • 6-3
6.2.1.2 Format of a Variable Declaration • 6-4

6.3 INTEGERS (int, long, short, char, unsigned)
6.3.1 Integer Constants
6.3.2 Character Constants
6.3.3 Escape Sequences

6.4 FLOATING-POINT NUMBERS (float, double)
6.4.1 Floating-Point Constants

6.5 POINTERS (*)

6.6 ENUMERATED TYPES (ENUM)

6.7 ARRAYS ([])
6.7.1 I nitialization of Arrays

6.8 CHARACTER-STRING VARIABLES (char *, char [])
6.8.1 Character-String Constants

6.9 STRUCTURES AND UNIONS (struct, union)
6.9.1 Declaring a Structure or Union
6.9.2 Referencing Members of Structures or Unions
6.9.3 Initialization of Structures
6.9.4 Variant Structures and Unions
6.9.5 Bit Fields

6.10 THE void KEYWORD

6-1

6-2

6-2
6-3

6-5
6-6
6-7
6-8

6-9
6-10'

6-11

6-13

6-15
6-17

6-18
6-19

6-20
6-21
6-23
6-25
6-27
6-29

6-31

ix

6.11 THE typedef KEYWORD

6.12 INTERPRETING DECLARATIONS

CHAPTER 7 STORAGE CLASSES AND ALLOCATION

7.1

7.2

7.3

7.4

7.5

7.6

7.7

x

SCOPE
7.1.1
7.1.2
7.1.3
7.1.4

The Compilation and Linking Process
Position of the Declaration
Lexical Scope and Link-Time Scope
Program Example

STORAGE ALLOCATION

INTERNAL STORAGE CLASS
7.3.1 The auto Specifier
7.3.2 The register Specifier

STATIC STORAGE CLASS

EXTERNAL STORAGE CLASS

GLOBAL STORAGE CLASS
7.6.1 The globaldef and globalref Specifiers

7.6.1.1 Comparing the Global and the External Storage
Classes • 7-18

7.6.2 The globalvalue Specifier
7.6.3 Global Enumerated Types

DATA TYPE MODIFIERS
7.7.1 The const Modifier
7.7.2 The volatile Modifier

6-31

6-32

7-1

7-2
7-2
7-3
7-4
7-6

7-8

7-9
7-10
7-12

7-13

7-13

7-15
7-15

7-20
7-22

7-23
7-23
7-25

7.8 STORAGE CLASS MODIFIERS
7.8.1 The noshare Modifier
7.8.2 The readonly Modifier
7.8.3 The _align Modifier

CHAPTER 8 PREPROCESSOR DIRECTIVES

8.1

8.2

8.3

8.4

8.5

8.6

8.7

TOKEN DEFINITIONS (#define, #undef)
8.1.1 Constant Identifiers
8.1.2 Macro Substitutions
8.1.3 Listing of Substituted Lines
8.1.4 Canceling Definitions (#undef)

COMMON DATA DICTIONARY EXTRACTION (#dictionary)
8.2.1 Using the #dictionary Directive
8.2.2 Support for COD Data Types

CONDITIONAL COMPILATION (#if, #ifdef, #ifndef, #else, #elif,

8.3.1 The defined Operator

FILE INCLUSION (#include)
8.4.1 Inclusion Using Angle Brackets (< >)
8.4.2 Inclusion Using Quotation Marks (1/ 1/)

8.4.3 Inclusion of Text Modules
8.4.4 Token Substitution in #include Directives

SPECIFICATION OF LINE NUMBERS (#line, #)

SPECIFICATION OF MODULE NAME AND IDENTIFICATION
(#module)

IMPLEMENTATION-SPECIFIC PREPROCESSOR DIRECTIVE
(#pragma)

7-25
7-26
7-27
7-27

8-1

8-2
8-4
8-5
8-7
8-8

8-8
8-9

8-11

8-13
8-15

8-16
8-16
8-18
8-19
8-20

8-20

8-21

8-22

xi

8.8 VAX C PREDEFINED TOKENS 8-22
8.8.1 Predefined Tokens 8-22
8.8.2 The __ DATE __ Macro 8-'23
8.8.3 The __ TIME __ Macro 8-24
8.8.4 The __ FILE __ Macro 8-24
8.8.5 The __ LlNE __ Macro 8-24

USING VAX C FEATURES ON VMS

CHAPTER 9 USING VAX RECORD MANAGEMENT SERVICES (RMS) 9-1

9.1 RMS FILE ORGANIZATION
9.1.1 Sequential File Organization
9.1.2 Relative File Organization
9.1.3 Indexed File Organization

9.2 RECORD ACCESS MODES

9.3 RMS RECORD FORMATS

9.4 RMS FUNCTIONS

9.5 WRITING VAX C PROGRAMS USING RMS
9.5.1 Initializing File Access Blocks
9.5.2 Initializing Record Access Blocks
9.5.3 Initializing Extended Attribute Blocks
9.5.4 Initializing Name Blocks

9.6 RMS EXAMPLE PROGRAM

xii

9-2
9-3
9-3
9-4

9-5

9-5

9-6

9-8
9-10
9-11
9-12
9-13

9-14

CHAPTER 10 USING VAX C IN THE COMMON LANGUAGE
ENVIRONMENT

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

THE VAX PROCEDURE CALLING AND CONDITION HANDLING
STANDARD
10.1.1 Register and Stack Usage
10.1 .2 Return of the Function Value
10.1.3 The Argument List

SPECIFYING PARAMETER-PASSING MECHANISMS
10.2.1 Passing Arguments by Reference
10.2.2 Passing Arguments by Descriptor
10.2.3 Passing Arguments by Immediate Value
10.2.4 Passing Floating-Point Arguments by Immediate

Value
10.2.5 VAX C Default Parameter-passing Mechanisms

VMS RUN-TIME LIBRARY ROUTINES

VMS SYSTEM SERVICES ROUTINES

CALLING ROUTINES
10.5.1 Determining the Type of Call
10.5.2 Declaring an External Routine and Its Arguments
10.5.3 Calling the Externa~ Routine

CALLING VAX C SUBPROGRAMS FROM OTHER LANGUAGES
10.6.1 Sharing Program Sections with FORTRAN Common

Blocks
10.6.2
10.6.3
10.6.4

Sharing Program Sections with PL/I Externals
Sharing Program Sections with MACRO Programs
Calling System Routines
10.6.4.1 System Routine Arguments • 10-27
10.6.4.2 Symbol Definitions • 10-31

CONDITION VALUES

EXAMPLES OF CALLING SYSTEM ROUTINES

10-1

10-2
10-2
10-3
10-3

10-5
10-6
10-9

10-14

10-16
10-18

10-19

10-19

10-20
10-21
10-21
10-21

10-22

10-22
10-24
10-26
10-27

10-32

10-32

xiii

CHAPTER 11 VAX C IMPLEMENTATION NOTES 11-1

11.1 PROGRAM SECTIONS
11 .1 .1 Attributes of Program Sections (Psects)
11 .1 .2 Program Sections Created by VAX C

11-1
11-1
11-2

APPENDIX A VAX C DEFINITION MODULES A-1

APPENDIX 8 VAX C COMPILER MESSAGES 8-1

APPENDIX C OPTIONAL PROGRAMMING PRODUCTIVITY TOOLS C-1

xiv

C.1 USING VAXLSE WITH VAX C
C.1.1 Entering Source Code Using Tokens and

Placeholders
C.1.2 Compiling Source Code
C.1 .3 Examples

C. 1.3. 1 Preprocessor Lines • C-7
C.1.3.2 External Definition • C-7
C.1.3.3 Function Definition • C-9
C.1.3.4 Block Declaration • C-12
C.1.3.5 Statements and Expressions • C-18

C-1

C-2
C-4
C-6

C.2 USING THE VAX SOURCE CODE ANALYZER C-21
C.2.1 Setting up a VAXSCA Environment C-24

C.2.1.1 Creating a VAXSCA Library • C-24
C.2.1.2 Generating the Data Analysis Files • C-25
C.2.1.3 Selecting a VAXSCA Library • C-25
C.2.1.4 Loading Data Analysis Files into a Local Library • C-25

C.2.2 Using VAXSCA for Cross-Referencing C-26

APPENDIX D LANGUAGE SUMMARY

0.1 THE CC COMMAND

0.2 THE LINK COMMAND

0.3 DATA TYPE KEYWORDS

0.4 PRECEDENCE OF OPERATORS

0.5 STATEMENTS

0.6 CONVERSION RULES

0.7 VAX C ESCAPE SEQUENCES

0.8 PREPROCESSOR DIRECTIVES

0.9 RECORD MANAGEMENT SERVICES (RMS)

GLOSSARY

INDEX

EXAMPLES
1-1 Default Compiler Listing

1-2 Listing Format of Macro Substitutions

1-3 Cross-Reference Listing

1-4 Compiler Performance Statistics

1-5 Machine Code Listing

1-6 Listing Showing Command Line Definitions

2-1 Debugging Sample Program SCALARS.C

D-1

0-1

0-2

0-5

0-7

0-7

0-8

0-9

0-10

0-10

1-24

1-27
1-29

1-34

1-37

1-39

2-23

xv

2-2 Debugging Sample Program ARRAY.C 2-25
2-3 Debugging Sample Program STRING.C 2-27
2-4 Debugging Sample Program STRUCT.C 2-29
2-5 Debugging Sample Program ARSTRUCT.C 2-32
2-6 Debugging Sample Program POWER.C 2-37
2-7 A Sample Debugging Session 2-38
3-1 Simple Addition in VAX C 3-4
3-2 Output of Information 3-8
3-3 Output Using the Newline Character 3-9
3-4 Conditional Execution Using the if Statement 3-11
3-5 Conditional Execution Using the switch Statement 3-12
3-6 Looping Using the do Statement 3-15
3-7 Looping Using the for Statement 3-17
3-8 Character String Constants and Arrays 3-24
3-9 Single Storage Allocation of Unions 3-26
3-10 Structures 3-27
3-11 Case Conversion Program 3-30
3-12 Declaring Functions 3-36
3-13 Declaring Functions Passed as Arguments 3-42
3-14 Echo Program Using Command- Line Arguments 3-44
3-15 Scope of Variable Declarations in Nested Blocks 3-49
4-1 Use of switch to Count Blanks, Tabs, and Newlines 4-7
6-1 Rules for I nitialization of Structures 6-26
7-1 Scope and Externally Defined Variables 7-6
7-2 Reinitialization of auto Variables 7"'11
7-3 Use of Global Variables 7-17
7-4 Using the globalvalue Specifier 7-21
8-1 Nested Substitution Directives 8-3
9-1 External Data Declarations and Definitions 9-16
9-2 Main Program Section 9-18
9-3 F~nction Initializing RMS Data Structures 9-21
9-4 Internal Functions 9-23
9-5 Utility Function: Adding Records 9-26
9-6 Utility Function: Deleting Records 9-28
9-7 Utility Function: Typing the File 9-30

xvi

9-8
9-9
10-1
10-2

10-3
10-4

10-5
10-6
10-7
10-8
10-9
10-10
10-11

FIGURES

1-1
2-1
3-1
3-2
5-1
6-1
10-1
10-2
10-3
C~1

TABLES

2-1
2-2
3-1
5-1
5-2
6-1

Utility Function: Printing the File

Utility Function: Updating the File

Passing Arguments by Reference

Passing Arguments by Descriptor

Passing Floating-Point Arguments by Immediate Value

Sharing Data with a FORTRAN Program in Named Program
Sections

Sharing Data with a FORTRAN Program in a VAX C Structure

Sharing Data with a Pljl Program in Named Program Sections

Sharing Data with a Pljl Program in a VAX C Structure

Sharing Data with a MACRO Program in a VAX C Structure

Passing Arguments to System Services

Determining $010 Completion

Using Time Routines

Del Commands for Developing Programs

Debugger Keypad Key Functions

rvalues, Ivalues, and Assigning Pointers

The Indirection Operator in Assignments

Boolean Algebra and the Bitwise Operators

Alignment of Structure Members

Structure of a VAX Argument List

Example of a VAX Argument List

Passing Arguments by Immediate Value

Use of VAXSCA for Multimodular Development

Supported Operators

Unsupported Operators

VAX C Keywords

VAX C Operators

Precedence of VAX C Operators

VAX C Data Type Keywords

-

9-32
9-34
10-8

10-13
10-17

10-22
10-23
10-24
10-25
10-26
10-33
10-34
10-35

1-2
2-8

3-20
3-22
5-16
6-30
10-4
10-5

10-16
C-23

2-21
2-21
3-47

5-6
5-8
6-3

xvii

6-2 Size and Range of VAX C Integers 6-5

6-3 VAX C Escape Sequences 6-8

6-4 Size and Range of VAX C Floating-Point Numbers 6-9

7-1 VAX C Storage Classes and Storage Class Specifiers 7-4

7-2 Scope and the Storage Class Specifiers 7-5

7-3 Location, Lifetime, and the Storage Class Keywords 7-9

8-1 Mapping Between COD and VAX C Data Types 8-12

9-1 Common RMS Run-Time Processing Functions 9-7

9-2 VAX C RMS #include Modules 9-8

9-3 RMS Prototype Data Structures 9-9

10-1 VAX Register Usage 10-2

10-2 Valid Parameter-passing Mechanisms 10-18

10-3 Run-Time Library Facilities 10-19

10-4 System Services 10-20

10-5 VAX C Implementation 10-28

11-1 Program Section Attributes 11-2

11-2 Program Sections for VAX C Variables 11-4

A-1 VAX C Definition Modules A-1

A-2 Modified Definition Modules A-4

xviii

Preface

This manual combines reference information on the VAX C programming
language with information necessary for developing and debugging VAX
C programs on the VMS operating system. The manual also includes
information concerning the porting of C programs to and from VMS
and other operating systems, as well as the differences between VAX C
and other implementations of the language. For additional information
concerning porting programs to and from other operating systems, refer to
the VAX C Run-Time Library Reference Manual.

Intended Audience

This manual is intended for experienced programmers who need to learn
VAX C, for users who need to know the difference between VAX C and
other implementations, or for experienced VAX C users who need to
reference information. Readers should be familiar with one high-level
language. Readers should have some familiarity with the DIGITAL
Command Language (DCL); those who do not, or those who need to
reference information concerning DCL, refer to Chapter I, Developing
VAX C Programs at DCL Command Level.

Structure of This Document

This manual has 11 chapters and 4 appendixes. These chapters are
grouped into three parts as follows:

Developing VAX C Programs on VMS

• Chapter I, Developing VAX C Programs at DCL Command Level,
explains how to edit, compile, link, and run a VAX C program.

• Chapter 2, Using the VMS Debugger, explains how to use the VMS
Debugger.

xix

xx

VAX C Programming Concepts

• Chapter 3, Program Structure, explains program structure.

• Chapter 4, Statements, describes VAX C statements.

• Chapter 5, Expressions and Operators, discusses expressions and
operators used in VAX C.

• Chapter 6, Data Types and Declarations, explains data types and
declara tions.

• Chapter 7, Storage Classes and Allocation, describes storage classes
and allocation.

• Chapter 8, Preprocessor Directives, explains preprocessor directives.

Using VAX C Features on VMS

• Chapter 9, Using VAX Record Management Services (RMS) explains
VAX Record Management Services (RMS).

• Chapter 10, Using VAX C in the Common Language Environment,
describes System Services and Run-Time Library routines.

• Chapter 11, VAX C Implementation Notes, explains VAX C implemen­
tations.

Appendixes

• Appendix A, VAX C Definition Modules, describes VAX C definition
modules.

• Appendix B, VAX C Compiler Messages, lists VAX C compiler mes­
sages.

• Appendix C, Optional Programming Productivity Tools, provides an
overview of the VAX Language-Sensitive Editor (V AXLSE) as used in
conjuction with the VAX Source Code Analyzer (VAXSCA).

• Appendix D, VAX C Language Summary, provides a summary of all
VAX C language features.

• The VAX C Glossary provides an alphabetical listing of key terms.

Associated Documents

You may find the following documents useful when programming in
VAXC:

• VAX C Installation Guide-For system programmers who install the
VAX C software.

• VAX C Run-Time Library Reference Manual-For programmers who
wish to use the VAX C Run-Time Library functions and who need
additional information concerning porting programs to and from other
operating systems.

• VMS Master Index-For programmers who need to work with the VAX
machine architecture or the VMS System Services. This index lists
manuals that cover the individual topics concerning access to VMS.

• The C Programming Language l -For those who need a more intensive
tutorial than that provided in Chapter 3, Program Structure. VAX C
contains features and enhancements to the C language as defined in
The C Programming Language. Therefore, the Guide to VAX C should
be used as the reference book for the full description of VAX C.

Conventions Used in This Document

Convention

IRETURNI

Meaning

The symbol I RETURN I represents a
single stroke of the RETURN key on a
terminal.

The symbol I CTRL/X I, where letter X
represents a terminal control character,
is generated by holding down the
CTRL key while pressing the key of the
specified terminal character.

Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language (Englewood Cliffs, New Jersey:
Prentice-Hall, 1978).

xxi

xxii

Convention

$ RUN CPROG I RETURN I

float x;

x = 5;

option, ...

[output-source, ...]

sc-specifier ::=
auto
static
extern
register

{alb}

switch statement
fprintf function

Meaning

In interactive examples, the user's
response to a prompt is printed in red;
system prompts are printed in black.

A vertical ellipsis indicates that not all
of the text of a program or program
output is illustrated. Only relevant
material is shown in the example.

A horizontal ellipsis indicates that
additional parameters, options, or
values can be entered. A comma that
precedes the ellipsis indicates that
successive items must be separated by
commas.

Square brackets, in function synopses
and a few other contexts, indicate that
a syntactic element is optional. Square
brackets are not optional, however,
when used to delimit a directory name
in a VMS file specification or when
used to delimit the dimensions of
a multidimensional array in VAX C
source code.

In syntax definitions, items appearing
on separate lines are mutually exclusive
alternatives.

Braces surrounding two or more items
separated by a vertical bar (I) indicate
a choice; you must choose one of the
two syntactic elements.

A delta symbol is used in some con­
texts to indicate a single ASCII space
character.

Boldface type identifies language
keywords and the names of VMS and
VAX C Run-Time Library functions.

New and Changed Features

The following list documents the features that distinguish VAX C
Version 2.3 from previous versions:

• VAX C now supports VAXSCA. See Appendix A, VAX C Definition
Modules, for more information.

• . You cannot link modules created by the VAX C V1.n compilers with
modules created by the VAX C V2.n compilers. You must recompile
your code.

• The VAX C Run-Time Library (RTL) is no longer distributed with
VAX C and is now distributed with the VMS Run-Time Library.

• VAX C allows you to use function prototypes in function declarations.
To use prototypes, you specify the data type of the arguments in a
function declaration. The compiler checks the argument specifications
in the prototype against the parameters in the call and provides error
checking and necessary data type conversions. For more information,
refer to Chapter 3, Program Structure.

• You should not use the underscore as the first character in pro­
gram identifiers since VAX C uses the underscore to identify
implementation-specific constants, macros, and keywords. For more
information, refer to Chapter 3, Program Structure.

• VAX C no longer performs all floating-point arithmetic in double
precision. VAX C uses the precision of the operand with the highest
precision if jPRECISION=SINGLE is specified. For more information,
refer to Chapter 5, Expressions and Operators.

• VAX C supports the volatile and const data type specifiers. For more
information, refer to Chapter 6, Data Types and Declarations.

• VAX C supports the jINCLUDE_DIRECTORY qualifier, which pro­
vides an additional level of search for user-defined include files.

• VAX C supports variant structure and union declarations nested
within structure or union declarations. For more information, refer
to Chapter 6, Data Types and Declarations.

• VAX C supports vacuous tag declarations that eliminate ambiguity in
forward references to structure and union tags. For more information,
refer to Chapter 6, Data Types and Declarations.

xxiii

xxiv

• VAX C supports hexadecimal characters in escape sequences. For more
information, refer to Chapter 6, Data Types and Declarations.

• VAX C provides a way for you to align data on byte, word, longword,
quadword, octaword, or page boundaries. For more information, refer
to Chapter 7, Storage Classes and Allocation.

• VAX C supports the #pragma preprocessor directive. For more
information, refer to Chapter 8, Preprocessor Directives.

• VAX C supports the #elif preprocessor directive. For more informa­
tion, refer to Chapter 8, Preprocessor Directives.

• VAX C supports the defined operator in the #if preprocessor directive.
For more information, refer to Chapter 8, Preprocessor Directives.

• VAX C includes the predefined macros _align, __ DATE __ ,
__ FILE __ , __ LINE __ , and __ TIME __ . For more information,
refer to Chapter 8, Preprocessor Directives.

• VAX C allows macro substitution within the #include preprocessor
directives. For more information, refer to Chapter 8, Preprocessor
Directives.

• VAX C includes the new library files limits.h and float.h. For more
information, refer to Appendix A, VAX C Definition Modules.

• VAX C provides many new diagnostic messages. For more informa­
tion, refer to Appendix B, VAX C Compiler Messages.

~veloping VAX C Programs on VMS

Chapter 1

DevelopingVAXC Programs at DCl
Command level

This chapter describes how to create, compile, link, and run a VAX C
program using DCL commands.

1.1 DCl Commands for Program Development

This section briefly describes the DCL commands that are used to create,
compile, link, and run a VAX C program on a VMS system. These
commands are shown in Figure 1-1. For a more detailed description of
each command, see the sections that follow.

Developing VAX C Programs at DCl Command level 1-1

Figure 1-1: DCl Commands for Developing Programs

I COMMANDS I ACTION INPUT /OUTPUT FILES I
$ EDIT AVERAGE.C ·U Use the file type of C to AVERAGE.C

indicate the file contains a
V AX C program

source program

$ CC AVERAGE / The CC command
AVERAGE.OBJ

assumes the file type of an Compile the (A VERAGE LIS)
input file is C source program

libraries

(If you use the lUST
qualifier the compiler
creates a listing file)

'U
$ LINK AVERAGE

The LINK command assumes Link the AVERAGE.EXE
the file type of an input file object module (A VERAGE MAP)
is OBJ

(If you use the MAP qualifier / the linker creates a map file)

$ RUN AVERAGE
The RUN command assumes Run the
the file type of an image is executable
EXE image

ZK-5167-86

The following example shows each of the commands shown in Figure 1-1
executed in sequence.

1-2 Developing VAX C Programs at DCl Command level

$ EDIT/EDT FIRST_PROG.C
$ CC FIRST_PROG
$ LINK FIRST_PROG
$ RUN FIRST_PROG

To create a VAX C source program at DCL level, you must invoke a text
editor. In the previous example, the VAX EDT editor is invoked to create
the source program FIRST_PROG.C. You can, however, use another
editor, such as the VAX Text Processing Utility (VAXTPU) or the VAX
Language-Sensitive Editor (VAXLSE). C is used as the file type to indicate
that you are creating a VAX C source program. C is the conventional file
type for all VAX C source programs.

When you compile your program with the CC command, you do not have
to specify the file type; VAX C searches for C by default.

If your source program compiles successfully, the VAX C compiler creates
an object file with the file type OBJ.

However, if the VAX C compiler detects errors in your source program,
the system displays each error on your screen and then displays the DCL
prompt. You can then reinvoke your text editor to correct each error.

You can include command qualifiers with the CC command. Command
qualifiers cause the VAX C compiler to perform additional actions. In
the following example, the /LIST qualifier causes the VAX C compiler to
produce a listing file.

$ CC/LIST FIRST_PROG

For a complete list and explanation of all of the command qualifiers
available with the CC command, see Section 1.3.2.

Once your program has compiled successfully, you invoke the VMS
Linker to create an executable image file. The VMS Linker uses the object
file produced by VAX C as input to produce an executable image file as
output.

You can specify command qualifiers with the DCL command LINK. For a
complete list and explanation of all the command qualifiers available with
the LINK command, see Section 1.4.2.

Once the executable image file has been created, you can run your pro­
gram with the DCL command RUN.

Developing VAX C Programs at DCl Command level 1-3

1.2 Creating a VAX C Program

To create and modify a VAX C program, you must invoke a text editor.
The VMS system provides you with two text editors: VAX EDT (EDT)
and the VAX Text Processing Utility (VAXTPU). The following sections
describe briefly how to use both EDT and VAXTPU.

1.2.1 Using VAX EDT

EDT is an interactive general-purpose text editor that offers three editing
modes: keypad, nokeypad, and line. With keypad mode, you issue
commands by using the numeric keypad that appears to the right of
your main keyboard. With nokeypad mode, you enter commands on a
command line, which EDT processes when you press the RETURN key.
Line mode focuses on the line as the unit of text. With line mode, you
issue commands at the line mode asterisk prompt (*).

Keypad mode and nokeypad mode continually display the contents of
the file on your screen. When you begin your editing session, editing in
line mode is the default. Unlike keypad and nokeypad mode, line mode
displays only one line of text on your screen.

The following command line invokes the EDT editor and creates the file
PROG_1.C.

$ EDIT/EDT PROG_l.C

To change from line mode to keypad mode, type the CHANGE command
at the asterisk prompt. To return to line mode from keypad mode, press
CTRLjZ. To change from line mode to nokeypad mode, type the
SET NOKEYP AD command and then type the CHANGE command.

When you invoke EDT to create a file, a journal file is created auto­
matically. You can use this journal file to recover your edits if the
system fails during an editing session. To recover your edits, type the
EDIT jRECOVER command.

EDT provides an 'online HELP facility that you can access during an
editing session. In line mode, you can type the HELP command. EDT
displays general information on EDT as well as detailed information on
both line mode editing and nokeypad mode editing. In keypad mode, you
can press the HELP key or the PF2 key. EDT displays a keypad diagram
on your screen and a list of keypad editing keys. For help on a specific
keypad function, press the key you want help on.

1-4 Developing VAX C Programs at DCl Command level

For more detailed information on how to use EDT, see the VAX EDT
Reference Manual.

1.2.2 Using V AXTPU

The VAX Text Processing Utility (VAXTPU) is a high-performance,
programmable utility. VAXTPU provides two editing interfaces: the
Extensible VAX Editor (EVE) and the VAXTPU EDT Keypad Emulator.
You can also create your own interfaces.

Like EDT, VAXTPU provides you with an online HELP facility that you
can access during your editing session. When you invoke VAXTPU to
create a file, a journal file is created automatically. You can use this
journal file to recover your edits if the system fails during an editing
session. To recover your edits, type the EVE/RECOVER command.

Unlike EDT, VAXTPU provides multiple windows. This feature allows
you to view two files on your screen at the same time. VAXTPU also
provides you with other advanced features, such as two editing interfaces.

The following sections describe how to use the EVE interface and the EDT
Keypad Emulator interface.

1.2.2.1 The EVE Interface

EVE is an interactive text editor that allows you to execute common editing
functions using the EVE keypad or to execute more advanced functions
by typing commands on the EVE command line. The following command
line invokes the EVE editor and creates the file, PROG_1.C:

$ EDIT/TPU PROG_i.e

You can define a global symbol for the EDIT /TPU command by placing a
symbol definition in your LOGIN. COM file. For example:

$ EVE == "EDIT/TPU"

Once this command line is executed, you can type EVE at the DCL prompt
followed by the name of the file you want to modify or create.

For more information on using the advanced features of EVE, see the
Guide to Text Processing on VAX/VMS.

Developing VAX C Programs at DCl Command level 1-5

1.2.2.2 The EDT Keypad Emulator Interface

The EDT Keypad Emulator interface provides all of the functions asso­
ciated with EDT and uses the same keys to perform each function. The
following command line invokes the EDT Keypad Emulator:

$ EDIT/TPU/SECTION=EDTSECINI.GBL

You can define a global symbol by placing a symbol definition in your
LOGIN. COM file. For example:

$ EDTEM == "EDIT/TPU/SECTION=EDTSECINI"

When this command line is executed, you can type EDTEM at the DCL
prompt followed by the name of the file you want to create or modify.
For example:

$ EDTEM PROG_1.C

For more detailed information on how to use the EDT Keypad Emulator,
see the VAX Text Processing Utility Reference Manual.

1.3 CompiUng a VAX C Program

The VAX C compiler performs the following functions:

• Detects errors in your source program.

• Displays each error on your screen or writes the errors to a file.

• Generates machine language instructions from the source statements.

• Groups these language instructions into an object module for the VMS
Linker.

The following sections discuss the CC command and its qualifiers.

1.3. 1 The CC Command

To invoke the VAX C compiler, use the CC command. The CC command
has the following format:

CC[/qualifier ... J [file-spec [/qualifier ... JJ , ...

1-6 Developing VAX C Programs at DCl Command level

/qualifier
Specifies an action to be performed by the compiler on all files or specific
files listed. When a qualifier appears directly after the CC command,
it affects all files listed. However, when a qualifier appears after a file
specification, it affects only the file that immediately precedes it. When
files are concatenated, however, these rules do not apply.

file-spec
Specifies an input source file that contains the program or module to be
compiled. You are not required to specify a file type; the VAX C compiler
adopts the default file type C.

You can include more than one file specification on the same command
line by separating the file specifications with either a comma (,) or a plus
sign (+). If you separate the file specifications with commas, you can
control which source files are affected by each qualifier. In the following
example, the VAX C compiler creates an object file for each source file but
creates only a listing file for the source files PROG_l and PROG_3.

$ CC /LlST PROG_i, PROG_2/NOLlST, PROG_3

If you separate file specifications with plus signs, the VAX C compiler
concatenates each of the specified source files and creates one object file
and one listing file. For instance, in the following example, only one
object file is created, PROG_1.0BJ, and only one listing file is created,
PROG_1.LIS. Both of these files are named after the first source file in the
list, but contain all three modules.

$ CC PROG_i + PROG_2/LlST + PROG_3

Note that any qualifiers specified for a single file within a list of files
separated with plus signs affect all the files in the list.

You can specify the name of a text library on the CC command line
to compile a source program. A text library isa file that contains text
organized into modules indexed by a table. Text libraries have a TLB
default file extension. The modules in the text library have a TXT file
extension, by default.

When it cannot find #include modules in libraries specified in the
CC command or in the default library defined by the logical name
C$LIBRARY, the VAX C compiler searches the library identified by the
following name:

SYS$LlBRARY:VAXCDEF.TLB

Developing VAX C Programs at DCl Command level 1-7

The library VAXCDEF.TLB consists of #include modules supplied with
VAX C. These modules are identical to the set of .H files that are supplied
with VAX C. In addition, this library contains declarations of values
returned by the VMS system services.

Including text modules from the VAXCDEF.TLB library is preferable to
including the files in SYS$LIBRARY with the .H extensions. For example,
you can include the Standard I/O definitions in a program with either of
these #include lines:

'include <stdio.h>

which includes the file SYS$LIBRARY:STDIO.H; or equivalently

'include stdio

which includes the text module stdio from SYS$LIBRARY:VAXCDEF.TLB.
This method is more efficient. Including the stdio text module is usually
quicker than including the STDIO.H file from the SYS$LIBRARY library
directory due to the library indexing system.

1.3.2 The CC Command Oualifiers

The following list shows all the command qualifiers and their defaults
available with the CC command. A description of each qualifier follows
the list.

The CC command qualifiers are as follows: .

Command Qualifiers Default
/[NO]ANAL YSIS_DA T A[=file-spec] /NOANAL YSIS_DA T A
/[NO]CROSS_REFERENCE /NOCROSS_REFERENCE
/[NO]DEBUG[=(option, ...)] /DEBUG=TRACEBACK
/[NO]DEFINE[=(definition list)] /NODEFINE
/[NO]DIAGNOSTICS[=file-spec] /NODIAGNOSTICS
/[NO]G_FLOA T /NOG_FLOA T
/[NO]INCLUDE_DIRECTORY=(pathname [, ...]) /NOINCLUDE_DIRECTORY
/UBRARY
/[NO]UST[=file-spec]

/[NO]MACHINE_CODE[=option]
/[NO]OBJECT[=file-spec]
/[NO]OPTIMIZE[=NODISJOINTl

1-8 Developing VAX C Programs at Del Command level

/NOUST (interactive mode)
JUST (batch mode)
/NOMACHINE_CODE
/OBJECT
/OPTIMIZE

/[NO]PRECISION={ SINGLE ,DOUBLE}
/SHOW[=(option, ...)]

/[NO]ST ANDARD[=(option, ...)
/[NO]UNDEFINE[=(undefine list)]
/[NO]W ARNINGS[=(option, ...)]

/PRECISION=DOUBLE
/SHOW=(NOBRIEF,
NODICTIONARY,
NOEXPANSION,
NOINCLUDE,
NOINTERMEDIA TE,
NOST A TISTICS,
NOSYMBOLS,
NOTRANSLA TION,
SOURCE,
TERMINAL)
/NOST ANDARD
/NOUNDEFINE
/WARNINGS

Command qualifiers can be placed either on the CC command itself or
on individual file specifications (with the exception of the jLIBRARY
qualifier). If placed on a file specification, the qualifier affects only the
compilation of the specified source file and all subsequent source files in
the compilation unit. If placed on the CC command, the qualifier affects
all source files in all compilation units unless it is overridden by a qualifier
on an individual file specification.

The rest of this section describes the command qualifiers.

/[NO]ANAL YSIS_DATA[=files-spec]
Controls whether the compiler generates a file of source code analysis
information. The default file name is the file name of the primary source
file; the default file type is .ANA.

HNO]CROSS_REFERENCE
Directs the compiler to generate cross-references for variable names. The
cross-reference lists each line number in the listing file on which each
variable is referenced.

The default is jNOCROSS_REFERENCE.

/[NO]DEFINE=(identifier[=definition][, ...])
/[NO]UNDEFINE=(identifier[, ...])
Performs, from the command line, the same functions performed by
the #define and #undefine preprocessor directives. That is, jDEFINE
defines a token string or macro to be substituted for every occurrence
of a given identifier in the compilation unit(s); jUNDEFINE cancels a

Developing VAX C Programs at DCl Command level 1-9

previous definition. When both /DEFINE and /UNDEFINE are present in
a compilation unit or on the CC command, /DEFINE is evaluated before
/UNDEFINE.

All command qualifiers are first processed by DCL. The command line
printed at the end of a listing file shows the result of this translation.
Since the command line must be compatible with DCL, the syntax of
the /DEFINE and /UNDEFINE qualifiers differs from the syntax of
the #define and #undefine preprocessor directives. The following list
illustrates particular differences between the two syntax requirements:

• DCL converts all input to uppercase unless it is enclosed in quotation
marks.

• When more than one /DEFINE is present on the CC command or in a
single compilation unit, only the last /DEFINE is used. Similarly, only
the last /UNDEFINE is used on the CC command or the compilation
unit.

The /DEFINE qualifier is used to define identifiers for constant expressions
or to define preprocessor macros. The simplest form of a/DEFINE
definition is

/DEFINE=true

This results in a definition like the one that would result from

'define" TRUE 1

Macro definitions must be enclosed in quotation marks. DCL cannot
recognize a definition of the following form:

/DEFINE=funct(a)

and issues a warning message. The correct definition is written as follows:

/DEFINE=lIfunct(a)=a+sin(a)II

This definition produces the same results as

'define funct(a) a + sin (a)

Within a definition and inside quotes, a delimiter can be either a space or
one equal sign, whichever comes first. Consider the following example:

$ CC/DEFINE=ltrue=1"

This is equivalent to

'define true 1

1-10 Developing VAX C Programs at Del Command level

However, the definition

$ CC/DEFINE="TRUE =1"

is equivalent to

'define TRUE =1

Within the definition and outside quotes, the only allowed delimiter is
one equal sign; a space terminates the definition. Consider the following
example:

$ CC/DEFINE=(maybe=2,lfunct(a)=a+sin(a)")

These definitions are equivalent to

'define MAYBE 2
'define funct(a) a + sin(a)

However, the definitions

$ CC/DEFINE= TRUE
$ CC/DEFINE=(FALSE 0)

are not recognized by DCL. In the first example, DeL interprets TRUE as
a file specification; in the second, DCL flags an invalid value specification.

One equal sign can be passed to the compiler within a single line in one
of the following ways:

$ CC/DEFINE=(EQU==, "equ =" ,lIequal==II)

In the first definition, two equal signs are required: the first is removed by
DCL as the delimiter; the other is passed to the compiler. In the second
example, the space is recognized as a delimiter because the definition is
inside quotes. Therefore, only one equal sign is required. In the third
definition, the equal sign is used as the delimiter. The compiler removes
the first equal sign.

You can pass quotation marks in one of the following ways:

$ CC/DEFINE=(QUOTES=IIII,lfunct(b)=printf(ll%d\n"I,b)")

In both examples, DCL removes the first and last quotation marks before
passing the definition to the compiler.

Any definition specified by a jDEFINE qualifier can be cancelled by the
jUNDEFINE qualifier by giving the name of the identifier or macro. For
example:

$ CC/UNDEFINE=lquotes"

Developing VAX C Programs at DCl Command level 1-11

The jUNDEFINE qualifier is useful for undefining the predefined VAX C
preprocessor constants. For example, if you use a preprocessor constant
(such as vaxc, VAXC, VAXllc, or vms) to conditionally compile segments
of VAX C specific code, you can undefine that constant to see how the
portable sections of your program execute. Given the following program:

mainO
{
'if vaxc
printf("I'm being compiled with VAX C.");
'else
printf("I'm being compiled on some other compiler.")
'endif
}

Output from the program is as follows:

I'm being compiled with VAX C.

$ CC/UNDEFINE="vaxc" EXAMPLE I RETURN I
l.CC-W-UNDEFIFMAC, "vaxc" is not a currently defined macro;

constant zero assumed.
At line number 3 in DBAO:[MADRIGAL]EXAMPLE.C;3.

l.CC-I-SUMMARY, Completed with 0 error(s), 1 warning(s), and
o informational messages.
At line number 8 in DBAO:[MADRIGAL]EXAMPLE.C;3.

$ LINK EXAMPLE.OBJIRETURNI
l.LINK-W-WRNERS, compilation warnings

in module EXAMPLE file DBAO:[MADRIGAL]EXAMPLE.OBJ;4

$ RUN EXAMPLE.EXEIRETURNI
I'm being compiled on some other compiler.

Since jDEFINE and jUNDEFINE are not part of the source file, they are
not associated with a listing line number or source line number. Therefore,
when an error occurs in a command line definition, the message displayed
at the terminal does not indicate a line number. In the listing file, these
diagnostic messages are printed before the source listing and in the order
in which they were encountered. When the expansion of a definition
causes an error at a specific source line in the program, the diagnostics­
both at the terminal and in the listing file-are associated with that source
line.

1-12 Developing VAX C Programs at DCl Command level

A command line containing the /DEFINE and the /UNDEFINE qualifiers
can become quite long. Continuation characters cannot appear within
quotes or they will be included in the token stream. Note, too, that the
length of a command line cannot exceed the maximum length allowed
by DCL.

The defaults are /NODEFINE and /NOUNDEFINE.

/[NO]DIAGNOSTICS[=file-spec]
Creates a file containing compiler messages and diagnostic information.
The extension .DIA is the default file extension for a diagnostics file. The
diagnostics file is reserved for use with DIGITAL layered products.

The default is INODIAGNOSTICS.

/[NO]DEBUG[=(option, ...)]
Requests information to be included in the object module for use by the
VMS Debugger. You may select one or more of the following options:

Option

ALL

NONE

NOTRACEBACK

NOSYMBOLS

SYMBOLS

TRACEBACK

Usage

Includes symbol table records and traceback records. This is
equivalent to /DEBUG with no option.

Does not include any debugging information. This is
equivalent to /NODEBUG.

Does not include traceback records. This option is used
to exclude all extraneous information from thoroughly
debugged program modules. This option is equivalent to
/NODEBUG.

Includes only traceback records. This is the default if the
/DEBUG qualifier is not present on the command line.

Includes symbol table records, but not the traceback records.

Includes only traceback records. This is the default if the
/DEBUG qualifier is not present on the command line.

The default is IDEBUG=TRACEBACK.

/[NO]G_FLOA T
Controls the format of floating-point variables. When you do not specify
IG_FLOAT on the CC command line, double variables are represented in
D~oating format. When /G_FLOAT is specified, all variables declared
as double are represented in G_floating format. A program compiled
with /GJLOAT must also be linked with the G_floating library,

Developing VAX C Programs at DCl Command level 1-13

VAXCRTLG.OLB. This library must be specified so that it is searched
before VAXCRTL.OLB. For more information concerning the G_floating
attribute, refer to Chapter 6, Data Types and Declarations.

The default is jNOG_FLOAT.

/[NOJINCLUDE_DIRECTORY=(pathname [, ... J)
Provides an additional level of search for user-defined include files. Each
pathname argument can be either a logical name or a legal directory
specification, in quoted form.

The jINCLUDE_DIRECTORY qualifier is meant to provide the func­
tionality of the -i qualifier in PCC on UL TRIX. This qualifier allows you
to specify additional directories to search for include files. The forms of
inclusion affected are the #include "file-spec" and #include <file-spec>
forms. For the quoted form, the order of search is as follows:

1. The directory containing the source file.

2. The directories specified in the jINCLUDE qualifier (if any).

3. The directory or search list of directories specified in the logical name
C$INCLUDE (if any).

For the bracketed form, the order of search is as follows:

1. The directories specified in the jINCLUDE qualifier (if any).

2. The directory or search list of directories specified in the logical name
VAXC$INCLUDE (if any).

3. If VAXC$INCLUDE is not defined, then the directory or search list of
directories specified by SYS$LIBRARY.

The default is jNOINCLUDE_DIRECTORY.

/LIBRARY
Indicates that the associated input file is a library containing modules
of VAX C source text. If the library specification does not include a file
extension, the CC command assumes the .TLB default type. You must
join the /LIBRARY qualifier with a file specification in a compilation unit
using a plus sign (+); you cannot place the qualifier on the CC command.
No matter where you place the jLIBRARY qualifier in a compilation unit,
all files in the unit may make reference to modules within that library.
Consider the following example:

$ CC ONE + TWO + THREE/LIBRARyIRETURNI

1-14 Developing VAX C Programs at DCl Command level

Files ONE.C and TWO.C can contain references to modules in
THREE. TLB. However, in the following example

$ CC ONE + TWO + THREE/LIBRARY, FOURIRETURNI

the file, FOUR.C, cannot contain references to modules in THREE.TLB
since FOUR.C is located in a separate compilation unit separated by a
comma. The placement of the library file specification does not matter.
The following command lines are equivalent:

$ CC THREE/LIBRARY + ONE + TWolRETURNI
$ CC ONE + THREE/LIBRARY + TWolRETURNI
$ CC ONE + TWO + THREE/LIBRARyIRETURNI

For more information on the use of text libraries, refer to Section 1.3.1.

/[NOjLIS T[=file-specj
Directs the compiler to produce a listing file. You must specify this
qualifier whenever you need any type of listing. None of the other
qualifiers use ILlS T.

When ILIST is in effect, the compiler, by default, creates a listing file with
the same name as the source file and with the .LIS file extension. If you
include a file specification with the ILIST qualifier, the compiler uses that
specification to name the listing file.

In interactive mode, the default is INOLIST. In batch mode, the default is
ILIST.

/[NOjMACHINE_CODE[=optionj
Directs the compiler to list the generated machine code in the listing file.
However, the compiler cannot produce any kind of listing file unless you
specify ILIST as well.

There exist several formats for the listing of machine code. You may select
one of the following options.

Developing VAX C Programs at DCl Command level 1-15

Option

AFTER

BEFORE

INTERSPERSED

Usage

The option AFTER causes the lines of machine code
produced during compilation to print after all of the
source code in the listing.

The option BEFORE causes lines of machine code
produced during compilation to print before any source
code in the listing.

The option INTERSPERSED produces a listing consisting
of lines of source code followed by the corresponding
lines of machine code. This is the default option.

The default is /NOMACHINE_CODE.

/[NO]PRECISION= {SINGLE }
DOUBLE

Controls whether floating-point operations on float variables and constants
are performed in single or double precision.

The default is /PRECISION=DOUBLE.

/[NO]OBJECT[=file-spec]
Directs the compiler to produce an object module. By default, /OBJECT
creates an object module file with the same name as the first source file of
a compilation unit and with the .OBJ file extension. If you include a file
specification with /OBJECT, the compiler uses that specification instead.
See Section 1.3.1 for more information concerning file specifications.

The compiler executes more rapidly if it does not have to produce an
object module. Use the /NOOBJECT qualifier when you need only a
listing of a program or when you want the compiler to check a file of
source text for errors.

The default is /OBJECT.

/[NO]OPTIMIZE[=NODISJOINT]
Directs the compiler to optimize the generated machine code. For exam­
ple, the compiler eliminates common sub expressions, removes invariant
expressions from loops, collapses arithmetic operations into three-operand
instructions, and places local variables in registers.

When debugging VAX C programs, use the /OPTIMIZE=NODISJOINT
option if you need minimal optimization; if optimization during debugging
is not important, use the /NOOPTIMIZE qualifier.

The default is /OPTIMIZE.

1-16 Developing VAX C Programs at DCL Command Level

/SHOW=(option, ...)
The qualifier /5HOW sets or cancels listing options. You must use the
/LI5T qualifier with the /5HOW qualifier to select or cancel any of the
following options:

Option

ALL

[NO]BRIEF

[NO]DICTIONARY

[NO]EXP ANSION

[NO]INCLUDE

[NO]INTERMEDIATE

Usage

The option ALL prints all listing information.

The option BRIEF prints the same listing as
the option SYMBOLS except that BRIEF will
eliminate from the list any identifiers that are
not actually referenced in the program and are
not members of a structure or union that is
referenced in the program.

The option /NOBRIEF is the default.

The option DICTIONARY prints the Common
Data Dictionary definitions included in the
program with the #dictionary preprocessor
directive. Note that these data definitions are
marked in the listing file with an uppercase
letter D in the listing margin.

The option NODICTIONARY is the default.

The option EXPANSION prints final macro
expansions in the program listing. When you
specify this option, the number of substitutions
performed on the line prints next to each line.

The option NOEXPANSION is the default.

The option INCLUDE prints the contents of
#include files and modules in the program
listing.

The option NOINCLUDE is the default.

The option INTERMEDIATE prints all interme­
diate and also the final macro expansions in the
program listing.

The option NOINTERMEDIATE is the default.

Developing VAX C Programs at DCl Command level 1-17

Option

NONE

[NO]SOURCE

[NO]STATISTICS

[NO]SYMBOLS

[NO]TERMINAL

[NO]TRANSLATION

Usage

The option NONE prints an empty listing
file, with only the header. If you specify this
option on a command line that contains JUST
and /MACHINE_CODE, the compiler places
machine code in the list.

The option SOURCE prints the source program
statements in the program listing.

The option SOURCE is the default.

The option STATISTICS prints compiler perfor­
mance statistics in the program listing.

The option NOSTATISTICS is the default.

The option SYMBOLS prints the symbol table
of the compiled program in the program
listing. The symbol table includes a list of
all functions, the sizes and attributes of all
variables referenced in the program, and
a program section summary and function
definition map.

The option NOSYMBOLS is the default.

The option TERMINAL displays compiler
messages to the terminal.

The option TERMINAL is the default.

The option TRANSLATION prints all UNIX
system file specifications that the compiler
translates to VMS file specifications using
DEC/Shell functions. For more information on
file translation, refer to the VAX C Run-Time
Library Reference Manual.

The option NOTRANSLATION is the default.

/[NO]STANDARD[=(option, ...)]
Directs the compiler to flag certain VAX C specific constructs and VAX C
relaxations of conventional C language constructs and rules. For example,
the conversions from pointer to integer and back again are subject to more
stringent tests when you specify jSTANDARD=PORTABLE.

1-18 Developing VAX C Programs at DCl Command level

If you specify jSTANDARD without any option, the default is
jSTANDARD=PORTABLE. In summary, jSTANDARD=PORTABLE causes
the compiler to issue warning messages against coding practices that may
not be portable between VAX C and other implementations.

The default is jNOSTANDARD.

/[NO]WARNINGS[=(option, ...)]
Controls whether the compiler prints warning diagnostic messages, infor­
mational diagnostic messages, neither, or both. Using the default qualifier,
jWARNINGS, causes the compiler to print all diagnostic messages. The
jNOWARNINGS qualifier suppresses both the informational and the
warning messages.

The two options are as follows:

Option

NOINFORMATIONALS

NOWARNINGS

Usage

The option NOINFORMATIONALS causes the
compiler to suppress informational messages.

The option NOWARNINGS causes the compiler
to suppress all warning messages.

The informational message, SUMMARY, cannot be suppressed with
jNOWARNINGS or jWARNINGS=NOINFORMATIONALS.

The default is jWARNINGS.

1.3.3 Compiler Error Messages

If there are errors in your source file when you compile your program,
the VAX C compiler signals these errors and displays diagnostic messages.
You should reference the diagnostic message, locate the error, and, if
necessary, correct the error. Diagnostic messages displayed by VAX C
have the following format:

%CC-s-ident. message-text
Listing line number m
At line number n in name

Developing VAX C Programs at DCl Command level 1-19

The parts of this message are described in the following list:

%CC
The facility or program name of the VAX C compiler. This portion
indicates that the message is being issued by VAX C.

s
The severity of the error, represented as follows:

F Fatal error. The compiler stops executing when a fatal error occurs and
does not produce an object module. You must correct the error before
you can compile the program.

E Error. The compiler continues, but does not produce an object module.
You must correct the error before you can successfully compile the
program.

W Warning. The compiler produces an object module. It attempts to correct
the error in the statement, but you should verify that the compiler's
action is acceptable. Otherwise, your program may produce unexpected
results.

ident

Information. This message usually appears with other messages to inform
you of specific actions taken by the compiler. No action is necessary on
your part.

The message identification. This is a descriptive abbreviation (mnemonic)
of the message text.

message-text
The compiler's message. In many cases, it consists of more than one line
of output. A message generally provides you with enough information to
determine the cause of the error so that you can correct it.

Listing line number m
The integer m gives the line number in the listing file where the error
occurs. This information is given when you specify the command qualifier
/LIST.

At line number n in name
The integer n gives the number of the line where the error occurs. The
number is relative to the beginning of the file or text library module
specified by name. The #line directive can be used to change both the
line number and name that appear in the message.

1-20 Developing VAX C Programs at DCl Command level

The messages produced by the VAX C compiler are listed in Appendix B,
VAX C Compiler Messages.

Both the CC command and the DCL command SET MESSAGE give you
control over the display of messages. The CC qualifier /NOWARNINGS,
discussed previously, suppresses warning messages generated by the
compiler. The DCL command SET MESSAGE lets you decide whether
messages will be displayed in their entirety or in a shortened form. For
example, if you do not want to see the %CC-s-ident part of messages, you
can enter the command:

$ SET MESSAGE/NOFACILITY/NOSEVERITY/NOIDENTIFICATIONIRETURNI

This command cancels the facility, severity, and identification portion
of all messages. It remains in effect for all commands you subsequently
enter, until you reissue the SET MESSAGE command or log out of the
system.

1.3.4 Compiler Listings

A compiler listing provides information that can help you debug your
VAX C program. To generate a listing file, specify the /LIST qualifier
when you compile your VAX C program interactively. For example:

$ CC/LIST

If the program is compiled in batch mode, the listing file is created by
default; specify the /NOLIST qualifier to suppress creation of the listing
file. (In either case, the listing file is not printed automatically.) By default,
the name of the listing file is the name of the source program with a file
type of LIS. You can include a file specification with the /LIST qualifier to
override this default.

A compiler listing generated by the /LIST qualifier has the following
sections:

• Source Program Listing

This section displays the source code plus line numbers generated by
the compiler.

• Storage Map

This section displays summary information on program sections,
variables, and arrays.

Developing VAX C Programs at DCL Command Level 1-21

• Compilation Summary

This section displays the qualifiers used with the CC command and
the compilation statistics.

When used with the /LIST qualifier, the following.CC command qualifiers
supply additional information in the compiler listing:

• /CROSS_REFERENCE

• /MACHINE_CODE

• /SHOW

See Section 1.3.2 for a description of each qualifier's function.

When the CC command line contains the /LIST qualifier but does not
contain the /SHOW qualifier, you are given the default listing. All the
information in the default listing is also included in the other listing
formats. The default listing includes:

• Margin information

• The VAX C source text

• Any errors encountered during the compilation

• The command line used to invoke the compiler

The left-hand margin of the source listing produced by the VAX C com­
piler contains several items of information, arranged into fields in the
following format:

nnnnn i ss mm

nnnnn
is the compiler-generated listing line number; it starts at I, and is incre­
mented by one for each line in the source program, including lines read
from included files (whether or not the /SHOW=INCLUDE qualifier was
specified in the command line).

;
is the level of nesting of lines read from included files; this field is present
only if /SHOW=INCLUDE was specified on the command line. Level 0,
which appears as a blank, indicates lines read from the source file, or files,
specified on the command line.

1-22 Developing VAX C Programs at DCl Command level

ss
is the level of nesting of compound statements in the source program;
it starts at zero (which appears as a blank) for external definitions and
declarations, is incremented each time a left brace, which introduces a
compound statement, is encountered (including the brace which introduces
a function body), and is decremented at the corresponding right brace.
This field may also appear as an "X" instead of a number; this indicates
that the source line is being ignored by the compiler as a result of the
evaluation of a previous #if, #ifdef, or #ifndef preprocessor directive.
This field may also appear as a "0" instead of a number; this indicates
that the compiler has replaced the #dictionary preprocessor directive,
and the specified Common Data Dictionary data structure, with VAX C
source code. The flagging of COD replacements only occurs if you specify
jSHOW=DICTIONARY on the CC command line.

mm
is the level of nesting of the last macro expanded in the line; this
field is present only if the qualifier jSHOW=EXP ANSIONS or
jSHOW=INTERMEDIATE was specified on the command line.
Level 0 corresponds to the original source line, and appears as a blank.
When this field is nonzero, however, the fields "nnnnn", "i", and "ss" all
appear as blanks.

In all cases, the numbers listed are right-justified in their fields, with no
leading zeros.

NOTE

The spacing within the compiler listings in this appendix may
not be consistent with the spacing in actual compiler listings.
The listings in this index are condensed so as to fit on the
printed page.

Example 1-1 shows the default compiler listing. The
jSTANDARD=PORTABLE option was used to show how the compiler
lists error messages.

Developing VAX C Programs at DCl Command level 1-23

Example 1-1: Default Compiler Listing

o EXAMPLE
• V1.0

14-JAN-1985 14:07:31
14-JAN-1985 14:02:10

VAX C V2.0-00 Page 1
DBAO: [.D]EXAMPLE.C;2 (1)

C) 1 1* This is a sample program to show the *
2 * format of the compiler listing. as *
3 * well as the effect of the various *
4 * ISHOW command-line qualifier values. *1
5
6 1* This line shows what happens when a line

from the source file exceeds the right listing margin. *1
7
8 'include Itdebugging.hlt

13
14 'include timeb

G) YoCC-W-INCMODNOTPORT. 'include of a library module is not
portable.

•

32
33 'define NULL 0
34
35 mainO
36 {

37 1 globalvalue SS$NORMAL;

YoCC-W-NONPORTSC. Itglobalvalue lt is a nonportable storage
class specifier.

38
39
40
41
42
43
44
45
46

1
1
1
1
1
1
1
1
1

struct
char
int

timeb time_struct;
*ctime_string. *ctime();
status = SS$NORMAL;

ftime (& time_struct);
if «ctime_string =

ctime(& time_struct.time»
!= NULL)

(Continued on next page)

1-24 Developing VAX C Programs at DCl Command level

Example 1-1 (Cont.): Default Compiler Listing

47 1
48 1
49 1
50 1
51 X
52 X
53 X
54 X
55 1
56 1
57 1
58 1
59 1

Command Line

printf (IIRun time is %S".
ctime_string);

'if debugging
printf (II\n*** Debugging version \

***\n\n");

status =
'endif

}

process();
return status;

~CC/LIST/STANDARD=PORTABLE EXAMPLE.C

Key to Example 1-1:

• The name of the module and its identification appear at the top left of
the listing. The date and time of compilation and the version of the
compiler used appear at the center of the listing.

• The date and time when the source file was created and the file
specification appear below the information to the right in number •.
The page numbers of the listing file and the source file (in parentheses)
are to the far right of the listing.

• The compiler generates the listing line numbers.
e Diagnostic messages appear immediately following the source line in

question.

eD The nesting level of compound statements starts at zero (appearing
as blanks), is incremented each time a left brace is encountered,
or appears as an "X", which means that the line is ignored after a
conditional directive is evaluated.

CD The command line that generated the listing appears at the bottom.

Developing VAX C Programs at DCl Command level 1-25

The CC command line qualifiers /SHOW=EXP ANSIONS and
/SHOW=INTERMEDIATE cause the compiler listing to display the results
of macro substitution. The qualifier /SHOW=EXP ANSIONS displays only
the final, fully-substituted line, immediately following the listing of the
original source line. The qualifier /SHOW=INTERMEDIATE displays
the complete progress of substitution, printing a new line each time the
compiler replaces a macro reference by its definition. If the compiler issues
an error message against a line which contains substitutions, the message
appears between the original line and the first substituted line.

The purpose of displaying the results of macro substitution is to show the
source line as it is ultimately seen by the compiler before translation to
object code.

Example 1-2 is a listing which shows #include modules and intermediate
macro expansions.

1-26 Developing VAX C Programs at DCl Command level

Example 1-2: Listing Format of Macro Substitutions

EXAMPLE
V1.0

1
2
3
4
5
6

from the
7
8

0 9 1
10 1
11 1
12 1
13 1
14 1
15
16
17 1

18 1
19 1

8 20 2
21 2
22 2
23 2
24 2
25 2
26 1
27 1
28 1
29 1
30 1
31 1
32 1
33 1
34

14-JAN-1985 14:07:31
14-JAN-1985 14:02:10

VAX C V2.0-00 Page 1
DBAO:[.D]EXAMPLE.C;2 (1)

/* This is a sample program to show the *
* format of the compiler listing. as *
* well as the effect of the various *
* /SHOW command-line qualifier values. */

/* This line shows what happens when a line
source file exceeds the right listing margin. */

'include "debugging.h"
'define YES 1
'define NO 0
'define debugging NO

/* Yes only if debugging code is *
* to be compiled */

'include timeb
/* TIMEB - Ftime() RTL Routine Return

Structure Definition */

'include types
/* TYPES - RTL Typedef Definitions */

'ifndef TYPES_H_DEFINED
typedef long int time_t;
'define TYPES_H_DEFINED
'endif

struct timeb
{

};

time_t
unsigned short
short
short

time;
millitm;
timezone;
dstflag;

(Continued on next page)

Developing VAX C Programs at DCl Command level 1-27

Example 1-2 (Cont.): Listing Format of Macro Substitutions

35 'define NULL 0
36
31 mainO
38 {

39 1 globalvalue SS$NORMAL;
40 1 struct timeb time_struct;
41 1 char *ctime_string, *ctime();
42 1 int status = SS$NORMAL;
43 1
44 1 ftime (& time_struct);
45 1 if «ctime_string =
46 1 ctime(& time_struct.time» e 47 1 != NULL)

1 != 0)
48 1
49 1 printf (IIRun time is %S",
50 1 ctime_string);
51 1
52 1 .if debugging

1 .if NO
2 .if 0

53 X printf (lI\n*** Debugging version \
54 X ***\n\n");
55 X
56 X status =
57 1 'endif
58 1
59 1 process 0 ;
60 1 return status;
61 1 }

Command Line

CC/LIST/SHOW=(INCLUDE,INTERMEDIATE,EXPANSION) EXAMPLE.C

Key to Example 1-2:

o The level of nesting of lines read from #include files is shown. This
column is blank when the lines are read from the source file.

• The nesting level is incremented when the #include file also contains
#include directives.

• The level of nesting of the last macro expanded in the line is shown.

1-28 Developing VAX C Programs at DCl Command level

When you use the jCROSS-REFERENCE option, the compiler produces a
storage map with symbol table cross-references, as shown in Example 1-3.
The storage map produced by the jSHOW=SYMBOLS is the same as the
listing shown in Example 1-3, except that the cross-references are not
included.

Example 1-3: Cross-Reference Listing

EXAMPLE
V1.0

1
2
3
4
5

14-JAN-1985 14:07:31
14-JAN-1985 14:02:10

VAX C V2.0-00 Page 1
DBAO:[.D]EXAMPLE.C;2 (1)

/* This is a sample program to show the *
* format of the compiler listing. as *
* well as the effect of the various *
* /SHOW command-line qualifier values. */

6 /* This line shows what happens when a line
from the source file exceeds the right listing margin. */

7
8
9 1

10 1
11 1
12 1
13 1
14 1
15
16
17 1

18 1
19 1
20 2
21 2
22 2
23 2
24 2
25 2
26 1
27 1
28 1
29 1
30 1
31 1
32 1
33 1
34

'include "debugging.h"
'define YES 1
'define NO 0
'define debugging NO

/* Yes only if debugging code is *
* to be compiled */

'include timeb
/* TIMEB - Ftime() RTL Routine Return

Structure Definition */

'include types
/* TYPES - RTL Typedef Definitions */

'ifhdef TYPES_H_DEFINED
typedef long int time_t;
'define TYPES_H_DEFINED
'endif

struct timeb
{

};

time_t
unsigned short
short
short

time;
millitm;
timezone;
dstflag;

(Continued on next page)

Developing VAX C Programs at DCl Command level 1-29

Example 1-3 (Cont.): Cross-Reference Listing

35
36
37
38
39 1
40 1
41 1
42 1
43 1
44 1
45 1
46 1
47 1

1
48 1
49 1
50 1
51 1
52 1

1
2

53 X
54 X
55 X
56 X
57 1
58 1
59 1
60 1
61 1

'define NULL 0

MainO
{

globalvalue
struct
char
int

SS$NORMAL;
timeb time_struct;
*ctime_string. *ctime();
status = SS$NORMAL;

ftime (& time_struct);
if «ctime_string =

ctime(& time_struct.time»
!= NULL)
!= 0)

printf (IIRun time is %S".
ctime_string);

.if debugging

.if NO
'if 0

printf (II\n*** Debugging version \
***\n\n");

status
'endif

}

process 0 ;
return status;

+-------------+
I Storage Map I
+-------------+

.. External Declarations

Identifier
Name

• main

Line Size

37

1-30 Developing VAX C Programs at DCl Command level

Class

Extern
def.

Type and References

Function returning
long int
- No references

(Continued on next page)

Example 1-3 (Cont.): Cross-Reference Listing

timeb 27

time 29

miilitm 30

timezone 31

dstflag 32

23

10 bytes

1 longword

1 word

1 word

1 word

1 longword

Structure tag
- Referenced at

line 40

Member(offset = 0),
long int
- Referenced at

line 46

Member (offset
4 bytes),

unsigned short int
- No references

Member (offset =
6 bytes),

short int
- No references

Member (offset =
8 bytes),

shott int
- No references

Typedef: long int
- Referenced at

line 29

• Function "main" defined at line 37

Identifier
NamE!

ctime

Line Size

41

Class Type and References

Extern Function returning
pointer to char
- R.eferenced at

line 46

ctime_string 41 1 longword Not
Alloc.

Pointer to char
- Referenced at

lines 45 and 50

ftime 44 Extern Function returning
long int
- Referenced at

line 44

(Continued on next page)

Developing VAX C Programs at DCl Command level 1-31

Example 1-3 (Cont.): Cross-Reference Listing

printf

process

SS$NORMAL

status

50

59

Extern Function returning
long int
- Referenced at

line 50
Extern Function returning

long int
- Referenced at

line 59

39 1 longword Global Long int
- Referenced at

line 42

42 1 longword Register Initialized long int
- Referenced at

line 60

time_struct 40 10 bytes Auto Struct timeb

~ Psect Synopsis

Psect Name

$CODE

~ Function Definition Map

Line Name

37 main

Command Line

- Referenced at
lines 44 and 46

Alloc~tion Attributes

68 bytes Position-independent,
relocatable,
shareable,
executable, readable

15 bytes Position-independent,
relocatable,
readable, writeable

CC/LIST/SHOW=(INCLUDE,INTERMEDIATE,SYMBOLS)­
/CROSS_REFERENCE EXAMPLE.C

1-32 Developing VAX C Programs at DCL Command level

Key to Example 1-3:

o The External Declarations section of the Storage Map lists all names
declared or defined outside of any function.

• When the /CROSS_REFERENCE option is used, the compiler gives
the line number in which each name is referenced. The cross-reference
information is not included in the storage map unless the
/CROSS_REFERENCE option is used.

• For each function in the source program, the compiler lists each
declared name, giving:

• The identifier of the name

• The line on which the name is declared

• The size of the identifier

• The storage class to which the name belongs

• The data type of the name
o The Program Section (psect) Synopsis lists the program sections

created by the compiler and their attributes.

CD The Function Definition Map lists each function defined in the pro­
gram and gives the line number in which the function is defined.

When you use the /SHOW=STATISTICS option, the compiler accumulates
and displays statistics for each phase of its operation. It then lists the
amount of I/O, memory, and CPU time used during the compilation.
Example 1-4 shows the information returned by the /SHOW=STATISTICS
option.

Developing VAX C Programs at DCl Command level 1-33

Example 1-4: Compiler Performance Statistics

EXAMPLE
V1.0

1
2
3
4
5
6

from the
7
8

15
16
34
35
36
37
38
3~
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

X
X
X
X

14-JAN-1985 14:07:31
14-JAN-1985 14:02:10

VAX C V2.0-00 Page 1
DBAO: [.D]EXAMPLE.C;2 (1)

1* This is a sample program to show the *
* format of the compiler listing. as *
* well as the effect of the various *
* ISHOW command-line qualifier values *1

1* This line shows what happens when a line
source file exceeds the right listing margin. *1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1

'include "debugging.h"

'include timeb

'define NULL 0

mainO
{

SS$NORMAL; global value
struct
char
int

timeb time_struct;
*ctime_string. *ctime();
status = SS$NORMAL;

ftime (& time_struct);
if «ctime_string =

ctime(& time_struct.time»
!= NULL)

printf (IiRun time is YoSli.

ctime_string);

'if debugging
printf ("\n*** Debugging version \

***\n\ri");

status
'endif

}

processO;
return status;

(Continued on next page)

1-34 Developing VAX C Programs at DCl Cominand level

Example 1-4 (Cont.): Compiler Performance Statistics

Command Line

CC/LIST/SHOW=STATISTICS EXAMPLE.C

+------------------------+
I Performance Indicators I
+------------------------+

o pha~e buf dii- page virt
i/o i/o flt mem workset cputim

parse/semantics
to~als 7 13 148 64 1200 102

• live analysis 0 0 11 0 1200 4

reorder
invariants 0 0 4 0 1200 1

eliminate
redundancy 0 0 3 0 1200 2

C) optimizer totals 0 0 26 0 1200 13

allocator totals 0 0 0 0 1200 1

generate code
list 0 0 18 0 1200 10

register
allocation 0 0 0 0 1200 1

peephole
optimization 0 0 3 0 1200 3

branch/jump
resolution 0 0 3 0 1200 1

write object
module 0 0 6 0 1200 1

code generator
totals 0 0 35 0 1200 20

~ tot~l compilation 10 18 256 64 1200 166

61 lines compiled

~ compilation rate was 2204 lines per minute

Developing VAX C Programs at DCl Command level 1-35

Key to Example 1-4:

o The cpu tim column shows the maximum working set size, not the
total.

• The subphases of the compiler are indented in this column and
precede the totals for their phase.

6) The phase totals follow the breakdown of their subphases.

o The totals for the performance indicators may be greater than the sum
of the phase totals. For example, the buffered I/O total (buf I/O) is
10, not 7.

o The compilation rate is the number of lines compiled per minute of
CPU time. CPU times are measured in 10-millisecond units.

Finally, when you use the /MACHINE_CODE option, a listing file is cre­
ated showing the assembly language and machine code generated by the
compiler. The default option to /MACHINE_CODE is INTERSPERSED;
the other two options are BEFORE and AFTER. These options control the
placement of the lines of machine code within the listing. Using the de­
fault option, the machine code is generated in line with the VAX C source
statements and is listed below the last substituted line.

Example 1-5 shows the listing generated by the
/MACHINE_CODE=BEFORE option.

1-36 Developing VAX ,C Programs at DCl Command level

Example 1-5: Machine Code Listing

EXAMPLE
V1.0

14-JAN-1985 14:07:31
14-JAN-1985 14:02:10

0 8
0000 main:

0000 0000 . entry
5E 10 C2 0002 subl2

VAX C V2.0-00 Page 1
OBAO: [.0]EXAMPLE.C;2 (1)

main, Am<>
#16,sp

00000000* EF 16 0005 jsb C$MAIN
5C 00000000* 8F 00 OOOB movl #SS$NORMAL,ap

F2 AD 9F 0012 pushab -14(fp)
00000000* EF 01 FB 0015 calls #1,FTIME

F2 AD OF 001C pushal -14(fp)
00000000* EF 01 FB 001F calls #1,CTIME

50 05 0026 tstl rO
OF 13 0028 beql sym.1
50 00 002A pushl rO

00000000 EF OF 002C pushal $CHAR_STRING_CONSTANTS
00000000* EF 02 FB 0032 calls #2,PRINTF

0039 sym.1:

00000000* EF 00 FB 0039 calls #0 ,PROCESS

1
2
3
4
5
6

from the
7
8

15
16
34
35
36
37
38
39
40
41
42
43
44

50 5C 00 0040 movl ap,rO
04 0043 ret

/* This is a sample program to show the *
* format of the compiler listing, as *
* well as the effect of the various *
* /SHOW command-line qualifier values */

/* This line shows what happens when a line
source file exceeds the right listing margin. */

'include "debugging.h"

'include timeb

'define NULL 0

MainO
{

1 global value SS$NORMAL;
1 struct timeb time_struct;
1 char *ctime_string, *ctime();
1 int status = SS$NORMAL;
1
1 ftime (& time_struct);

(Continued on next page)

Developing VAX C Programs at DCl Command level 1-37

Example 1-5 (Cont.): Machine Code Listing

45 1 if «ctime_string =
46 1 ctime(& time_struct.time»
47 1 != NULL)
48 1
49 1 printf (IIRun time is Yes II •
50 1 ctime_string);
51 1
52 1 'if debugging
53 X printf (lI\n*** Debugging version \
54 X ***\n\nll);
55 X
56 X status =
57 1 'endif
58 1
59 1 process 0 ;
60 1 return status;
61 1 }

Command Line

CC/LIST/MACHINE_CODE=BEFORE EXAMPLE.C

Key to Example 1-5:

o The object module location of each statement and the machine code
instructions are listed.

• The assembly language code generated by each line of source text is
shown beside its corresponding machine code instruction.

Example 1-6 shows a listing file generated with the jDEFINE and
jUNDEFINE command qualifiers.

1-38 Developing VAX C Programs at DCl Command level

Example 1-6: Listing Showing Command Line Definitions

o

EXAMPLE
V1.0

1
2
3
4
5
6
7
8
9

10
68
69
70
71
72

73

74
75

X

1

1
1

14-JAN-1985 14:07:31
14-JAN-1985 14:02:10

VAX C V2.0-00 Page 1
DBAO:[.D]EXAMPLE.C;2 (1)

/* Compile this program with the *
* following qualifiers ... *
* *
* /undefine=(vax)- *
* /define=(size=100."func(n)") */

'ifdef VAX
'include stdio
'else
'include <stdio.h>
'endif

maine)
{

int i = SIZE;
1 int i = 100;

if (func(i))
1 if (1)

printf("%d\n".i);
}

Command Line

~ CC/LIST/SHOW=(EXPAN.INTER)-
EXAMPLE. C/UNDEFINE=(VAX)/DEFINE=(SIZE=100. func (n»

Key to Example 1-6:

o The command line qualifiers, as they were typed on the DIGITAL
Command Language (DCL) command line, are different than the final
DCL interpretation of the definitions.

8 The identifier, VAX, is undefined, so the compiler ignores the first
#include line and includes the STDIO.H file.

t) The compiler replaces the defined identifier SIZE with defined value.

o The function func, declared on the DCL command line, returns a true
value (1).

Developing VAX C Programs at DCl Command level 1-39

CD This line shows how DCL translated the command line definition
qualifiers: vax to VAX and size to SIZE. If defining or undefining from
the command line, and you wish to specify an identifier containing
lowercase letters, you must enclose the identifier in quotation marks
as follows:

$ CC/LIST/SHDW=(EXPAN,INTER) -
_$ EXAMPLE/DEFINE=(size=100,"func(n)"»

For more information concerning the /DEFINE and /UNDEFINE
qualifiers, refer to Section 1.3.2.

1.4 Linking a VAX C Program

Once you have compiled a VAX C source program or module, use the
DCL command LINK to combine your object modules into one executable
image, which can then be executed by the VMS system. A source program
or module cannot run on the VMS system until it is linked.

When you execute the LINK command, the VMS Linker performs the
following functions:

• Resolves local and global symbolic references in the object code.

• Assigns values to the global symbolic references.

• Signals an error message for any unresolved symbolic reference.

• Allocates virtual memory space for the executable image.

When using the LINK command on development systems, you may want
to use the /DEBUG qualifier when you link your program module. The
/DEBUG qualifier appends to the image all the symbol and line number
information appended to the object modules plus information on global
symbols, and causes the image to run under debugger control when it is
executed.

The LINK command produces an executable image by default. However,
you can also use the LINK command to obtain shareable images and
system images. The /SHAREABLE qualifier directs the linker to produce
a shareable image; the /SYSTEM qualifier directs the linker to produce a
system image. See Section 1.4.2 for a complete description of these and
other LINK command qualifiers.

For a complete discussion of the VMS Linker, see the VAX/VMS Linker
Reference Manual.

1-40 Developing VAX C Programs at DCl Command level

1.4.1 The LINK Command

The LINK command has the following format:

LINK [/command-qualifier] .,. {file-spec [/file-qualifier ...]}, ...

/command-qualifier .. .
Specifies output file options.

file-spec
Specifies the input files to be linked.

/file-qualifier ...
Specifies input file options.

If you specify more than one input file, you must separate the input file
specifications with a plus sign (+) or a comma (,).

By default, the linker creates an output file with the name of the first input
file specified and the file type EXE. Therefore, when you link more than
one file, it is good practice to list the file containing the main program
first. Then, the name of your output file will have the same name as that
of your main program module.

The following command line links the object files MAINPROG.OBJ,
SUBPROG1.0BJ, and SUBPROG2.0BJ to produce one executable image
called MAINPROG.EXE.

$ LINK MAINPROG.OBJ, SUBPROG1.0BJ, SUBPROG2.0BJ

Like the CC command, you can specify libraries on the LINK command
line. The VAX C Run-Time Library functions are executed at run time,
but references to these functions are resolved at link time. When you
link your program, the linker resolves all references to VAX C Run-Time
Library functions by searching any object code libraries that you specified
on the LINK command line. If the linker locates the function code, it
places a copy of the code in the program's local program section (psect). If
the linker does not locate the function code, it translates the logical name
LNK$LIBRARY_n to the name of an object library and then searches that
library for the code. You are to define the logicals LNK$LIBRARY_n as
the libraries SYS$LIBRARY:VAXCCURSE, SYS$LIBRARY:VAXCRTLG,
and SYS$LIBRARY:VAXCRTL. Depending on the needs of your program,
you may have to access one, two, or all three libraries. In any case, you
must adhere to the following rules for defining libraries for the linker to
search.

Developing VAX C Programs at Del Command level 1-41

1. If you do not need to use the Curses Screen Management package of
VAX C RTL functions and macros, and you do not use the
IG_FLOAT qualifier on the CC command line, you must define the
logical as follows:

$ DEFINE LNK$LIBRARY SYS$LIBRARY:VAXCRTLIRETURNI

2. If you do plan to use the IG_FLOAT qualifier with the CC command
line, but do not plan on using Curses, you must define the logicals as
follows:

$ DEFINE LNK$LIBRARY SYS$LIBRARY:VAXCRTLG.OLBIRETURNI
$ DEFINE LNK$LIBRARY_l SYS$LIBRARY:VAXCRTL.OLBIRETURNI

3. If you do plan to use the Curses Screen Management package, but do
not plan to use the IG_FLOAT qualifier, you must define the logicals
as follows:

4. Finally, if you plan to use both Curses and the IG_FLOAT qualifier,
you must define the three logicals in the following order:

The order of the specified libraries determines which versions of the
VAX C RTL functions are found by the linker first. If the linker does not
find the function code, or if LNK$LIBRARY_n is undefined, it assumes
that the function is not a VAX C RTL function, and checks the VMS
Common Run-Time Procedure Library. These references can be explicit
references in your code, or they could possibly be references generated
by the compiler to perform common operations such as input and output,
calls to mathematical functions, and so forth.

If the linker cannot resolve the reference by checking the VMS Common
Run-Time Procedure Library, it assumes that an error has been made.
For more information concerning Curses, refer to the VAX C Run-Time
Library Reference Manual. For more information concerning the G_floating
representation of double variables, refer to Chapter 6, Data Types and
Declarations.

NOTE

Do not use search lists to define the equivalence names for
LNK$LIBRARY_n. The linker will not resolve external refer­
ences to the VAX C RTL functions in the proper manner.

1-42 Developing VAX C Programs at DCl Command level

Using the object code of the VAX C RTL functions is one of two options.
You can also use the VAX C RTL as a shareable image to reduce the space
the image takes on the disk and to increase program execution rate. For
information concerning the shareable-image option, refer to the VAX C
Run-Time Library Reference Manual.

1.4.2 LINK Command Qualifiers

The LINK command qualifiers can be used to modify the linker's output,
as well as to invoke the debugging and traceback facilities. Linker output
consists of an image file and an optional map file.

The following list summarizes some of the most commonly used LINK
command qualifiers. A brief description of each qualifier follows this list.
For a complete list of LINK qualifiers, see the VAX/VMS Linker Reference
Manual.

Command Qualifiers
/EXECUT ABLE=[file-spec]
/SHAREABLE[=file-spec]
/BRIEF
/[NO]CROSS_REFERENCE
/FULL
/[NO]MAP
/[NO]DEBUG
/[NO]TRACEBACK

/EXECUTABLE [=file-spec]

Default
/EXECUT ABLE=name. EXE
/NOSHAREABLE

/NOCROSS_REFERENCE

/NOMAP (interactive)
/NODEBUG
/TRACEBACK

Causes the linker to produce an executable image. /NOEXECUTABLE
suppresses production of an image file. The default is /EXECUTABLE.

/[NO]SHAREABLE
Causes the linker to create a shareable image. /NOSHAREABLE generates
an executable image. The default is /NOSHAREABLE.

/BRIEF
Causes the linker to produce a summary of the image's characteristics and
a list of contributing modules.

Developing VAX C Programs at DCl Command level 1-43

/[NOjCROSS_REFERENCE
Causes the linker to produce cross-reference information for global sym­
bols; /NOCROSS_REFERENCE causes the linker to suppress cross­
reference information. The default is /NOCROSS_REFERENCE.

/FULL
Causes the linker to produce a summary of the image's characteristics, a
list of contributing modules, listings of global symbols by name and by
value, and a summary of characteristics of image sections in the linked
image.

/[NOjMAP
Causes the linker to generate a map file; /NOMAP suppresses the map.
The default is /MAP in batch mode and /NOMAP in interactive mode.

/[NOjDEBUG
Causes the linker to include the VMS Debugger in the executable image
and generates a symbol table; /NODEBUG causes the linker to prevent
debugger control of the program. The default is /NODEBUG.

/[NOjTRACEBACK
Causes the linker to generate symbolic traceback information when
error messages are produced; NOTRACEBACK suppresses traceback
information. The default is /TRACEBACK.

1.4.3 Linker Input Files

You can specify the object modules to be included in an executable image
in any of the following ways:

• Specify input file specifications for the object modules.

If no file type is specified, the linker searches for an object file with
the file type OB}.

• Specify one or more object module library files.

You can specify either the name of an object module library with
the /LIBRARY qualifier or the names of object modules contained in
an object module library with the /INCLUDE qualifier. The uses of
object module libraries are described in Section 1.4.5.

1-44 Developing VAX C Programs at DCl Command level

• Specify an options file.

An options file can contain additional file specifications for the
LINK command, as well as special linker options. You must use the
/OPTIONS qualifier to specify an options file. For more information
on options files, see the VAX/VMS Linker Reference Manual.

The linker uses the following default file types for input files.

File Type

OBJ

aLB

OPT

1.4.4 Linker Output Files

File

Object module

Library

Options file

When you enter the LINK command interactively and do not specify any
qualifiers, the linker creates only an executable image file. By default,
the resulting image file has the same file name as the first object module
specified with a file type of EXE.

In a batch job, the linker creates both an executable image file and storage
map file by default. The default file type for map files is MAP.

To specify an alternative name for a map file or image file or to specify an
alternative output directory or device, you can include a file specification
on the /MAP or /EXECUTABLE qualifier. In the following example, the
LINK command creates the image file [PROJECT.EXE]UPDATE.EXE and
the map file [PROJECT.MAP]UPDATE.MAP.

$ LINK UPDATE/EXECUTABLE=[PROJECT.EXE]/MAP=[PROJECT.MAP]

Developing VAX C Programs at DCl Command Level 1-45

1.4.5 Object Module Libraries

You can make program modules accessible to other users by storing them
in an object module library. To link modules contained in an object
module library, use the /INCLUDE qualifier and specify the modules
you want to link. In the following example, the LINK command directs
the linker to link the subprogram modules EGGPLANT, TOMATO,
BROCCOLI, and ONION with the main program module GARDEN.

$ LINK GARDEN, VEGGIES/INCLUDE=(EGGPLANT,TOMATO,BROCCOLI,ONION)

An object module library can also contain a symbol table with the names
of each global symbol in the library, and the name of the module in
which they are defined. You specify the name of the object module library
containing symbol definitions with the /LIBRARY qualifier. When you
use the /LIBRARY qualifier during a linking operation, the linker searches
the specified library for all unresolved references found in the included
modules during compilation.

In the following example, the linker uses the library RACQUETS to resolve
undefined symbols in BADMINTON, TENNIS, and RACQUETBALL.

$ LINK BADMINTON, TENNIS, RACQUETBALL, RACQUETS/LIBRARY

You cart define an object module library to be your default library by using
the DCL command DEFINE. The linker searches default user libraries for
unresolved references after it searches modules and libraries specified in
the LINK command. For more information about the DEFINE command,
see the VAX/VMS DeL Dictionary.

For more information about object module libraries, see the VAX/VMS
Linker Reference Manual.

1.4.6 Linker Error Messages

If the linker detects any errors while linking object modules, it displays
messages indicating the cause and severity of the error. If any error or
fatal error conditions occur (that is, errors with severities of E or F), the
linker does not produce an image file.

The messages produced by the linker are descriptive, and you do not
usually need additional information ,to determine the specific error. Some
common errors that occur during linking are as follows.

1-46 Developing VAX C Programs at DCl Command level

• An object module has compilation errors.

This occurs when you attempt to link a module that produced warning
or error messages during compilation. You can usually link compiled
modules for which the compiler generated messages, but you should
verify that the modules will actually produce the output you expect.

• The input file has a file type other than OBI and no file type was
specified on the command line.

If you do not specify a file type, the linker searches for a file that has
a file type of OBI by default. If the file is not an object file and you do
not identify it with the appropriate file type, the linker signals an error
message and does not produce an image file.

• You tried to link a nonexistent module.

The linker signals an error message if you misspell a module name on
the command line or if the compilation contains fatal diagnostics.

• A reference to a symbol name remains unresolved.

An error occurs when you omit required module or library names
from the command line and the linker cannot locate the definition
for a specified global symbol reference. In the following example, a
main program module OCEAN.OB} calls the subprogram modules
REEF.OB}, SHELLS.OBJ, and SEAWEED.OB}, and the following LINK
command is executed:

$ LINK OCEAN, REEF. SHELLS

Because SEAWEED is not linked, the linker signals the following error
messages:

%LINK-W-NUDFSYMS. 1 undefined symbol
%LINK-I-UDFSYMS, SEAWEED
%LINK-W-USEUNDEF. module "OCEAN" references undefined symbol "SEAWEED"
%LINK-W-DIAGISUED, completed but with diagnostics

If an error occurs when you link modules, you can often correct the error
by reentering the command string and specifying the correct modules or
libraries. If an error indicates that a program module cannot be located,
you may be linking the program with the wrong VAX C Run-Time Library.

For a complete list of linker messages, see the VAX/VMS System Messages
and Recovery Procedures Reference Manual.

Developing VAX C Programs at DCl Command level 1-47

1.5 Running a VAX C Program

Once you have linked your program, you can use the DCL command
RUN to execute it. The RUN command has the following format:

RUN [/[NO]DEBUG] file-spec [/[NO]DEBUG]

/[NOjDEBUG
Is an optional qualifier. Specify the /DEBUG qualifier to invoke the
debugger if the image was not linked with it. You cannot use /DEBUG
on images linked with the /NOTRACEBACK qualifier. If the image was
linked with the /DEBUG qualifier and you do not want the debugger to
prompt you, use the /NODEBUG qualifier. The default action depends on
whether the file was linked with the /DEBUG qualifier.

file-spec
Specifies the file you want to run.

The following example executes the image SAMPLE.EXE without invoking
the debugger:

$ RUN SAMPLE/NODEBUG

For more information on debugging programs, see Chapter 2, Using the
VMS Debugger.

During execution, an image can generate a fatal error called an exception
condition. When an exception condition occurs, the system displays an
error message. Run-time errors can also be issued by the operating system
or by certain utilities, such as the VMS Sort Utility (SORT).

When an error occurs during the execution of a program, the program is
terminated and the VMS condition handler displays one or more messages
on the currently defined SYS$ERROR device.

A message is followed by a traceback. For each module in the image that
has traceback information, the condition handler lists the modules that
were active when the error occurred, showing the sequence in which the
modules were called.

For example, if an integer divide-by-zero condition occurs, a run-time
message like the following appears:

Y.SYSTEM-F-INTDIV. arithmetic trap. integer divide by zero
at PC=OOOOOFC3. PSL=03C00002

1-48 Developing VAX C Programs at DCl Command level

This message is followed by a traceback message similar to the following:

%TRACE-F-TRACEBACK, symbolic stack dump follows

module name routine name line
A C 8
B main 1408

reI PC
00000007
000002F7

abs PC
00000FC3
00000B17

The information in the traceback message is as follows:

module name
The names of image modules that were active when the error occurred.

The first module name is that of the module in which the error occurred.
Each subsequent line gives the name of the caller of the module named on
the previous line. In this example, the modules are A and B; main
called C.

routine name
The name of the function in the calling sequence.

line
The compiler-generated line number of the statement in the source
program where the error occurred; or at which the call or reference to the
next procedure was made. Line numbers in these messages match those
in the listing file.

relative PC
The value of the PC (program counter). This value represents the location
in the program image at which the error occurred or at which a procedure
was called. The location is relative to the virtual memory address that the
linker assigned to the code program section of the module indicated by
module name.

absolute PC
The value of the PC in absolute terms; that is, the actual address in virtual
memory representing the location at which the error occurred.

Traceback information is available at run time only for modules compiled
and linked with the traceback option in effect. The traceback option is
in effect by default for both the CC and LINK commands. You may use
the CC command qualifier /NODEBUG and the LINK command qualifier
/NOTRACEBACK to exclude traceback information. However, traceback
information should be excluded only from thoroughly debugged program
modules.

Developing VAX C Programs at DCl Command level 1-49

Chapter 2

Using the VMS Debugger

This chapter is an introduction to using the VMS Debugger (debugger)
with VAX C programs. This chapter provides the following information:

• An overview of the debugger

• Information to get you started using the debugger

• A sample terminal session that demonstrates using the debugger

• A list of the debugger commands by function

For complete reference information on the VMS Debugger, see the
V AX/VMS Debugger Reference Manual. Online HELP is available during
debugging sessions.

2.1 Overview

A debugger is a tool that helps you locate run-time errors quickly. It
is used with a program that has already been compiled and linked suc­
cessfully, but does not run correctly. For example, the output may be
obviously wrong, or the program goes into an infinite loop or terminates
prematurely. The debugger enables you to observe and manipulate the
program's execution interactively so you can locate the point at which the
program stopped working correctly.

The VMS Debugger is a symbolic debugger, which means that you can
refer to program locations by the symbols (names) you used for those
locations in your program-the names of variables, routines, labels, and
so on. You do not need to use virtual addresses to refer to memory
locations.

Using the VMS Debugger 2-1

The debugger recognizes the syntax, expressions, data typing, and other
constructs of VAX C, as well as the following other VAX supported
languages:

Ada®
BASIC
BLISS
COBOL
DIBOL
FORTRAN
MACRO-32
Pascal
PL/I
RPG II
SCAN

If your program is written in more than one language, you can change
from one language to another during a debugging session. The current
source language 'determines the format used for entering and displaying
data, as well as other features that have language-specific settings (for
example, comment characters, operators and operator precedence, and
case sensitivity or insensitivity).

By issuing debugger commands at your terminal, you can perform the
following operations:

•
•
•
•
•

Start, stop, and resume the program's execution.

Trace the execution path of the program.

Monitor selected locations, variables, or events.

Examine and modify the contents of variables, or force events to occur.

Test the effect of some program modifications without having to edit,
recompile, and relink the program.

Such techniques allow you to isolate an error in your code much more
quickly than you could without the debugger.

Once you have found the error in the program, you can then edit the
source code and compile, link, and run the corrected version.

® Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

2-2 Using the VMS Debugger

2.2 Features of the Debugger

The VMS Debugger provides the following features to help you debug
your programs:

• Online HELP

Online HELP is always available during a debugging session and con­
tains information on all the debugger commands and also information
on selected topics.

• Source Code Display

You can display lines of source code during a debugging session.

• Screen Mode

You can capture and display various kinds of information in scrol­
lable windows, which can be moved around the screen and resized.
Automatically updated source, instruction, and register displays are
available. You can selectively direct debugger input, output, and di­
agnostic messages to displays. (Screen mode displays work best on
VT100-series or VT200-series terminals or MicroVAX workstations.)

• Keypad Mode

When you invoke the debugger, several commonly used debugger
command sequences are assigned by default to the keys of the numeric
keypad (if you have a VT100, VT52, or LK201 keypad).

• Source Editing

As you find errors during a debugging session, you can use the EDIT
command to invoke any editor available on your system. (You first
specify the editor you want with the SET EDITOR command).

• Command Procedures

The debugger allows you to execute a command procedure to recreate
a debugging session, to continue a previous session, or to avoid
typing the same debugger commands many times during a debugging
session.

• Symbol Definitions

You can define your own symbols to represent lengthy commands,
address expressions, or values.

Using the VMS Debugger 2-3

• Initialization Files

You can create an initialization file containing commands to set your
default debugging modes, screen display definitions, keypad key
definitions, symbol definitions, and so on. In addition, you may want
to have special initialization files for debugging specific programs.

• Log Files

You can record the commands you issue during a debugging session
and the debugger's responses to those commands in a log file. You
can use log files to keep track of your debugging efforts, or you can
use them as command procedures in subsequent debugging sessions.

2.3 Getting Started with the Debugger

This section explains how to use the debugger with VAX C programs. The
section focuses on basic debugger functions, to get you started quickly.
It also provides any debugger information that is specific to VAX C. For
more detailed information that is not specific to a particular language, see
the VAX/VMS Debugger Reference Manual.

2.3.1 Compiling and Linking a Program to Prepare for Debugging

Before you can use the debugger, you must compile and link your program
as explained in this section. The following example shows how to compile
and link a VAX C program (consisting of a single compilation unit named
INVENTORY) prior to using the debugger.

$ CC/DEBUG/NOOPTIMIZE INVENTORY
$ LINK/DEBUG INVENTORY

The /DEBUG qualifier on the CC command causes the compiler to write
the debug symbol records associated with INVENTORY into the object
module, INVENTORY.OBI. These records allow you to use the names
of variables and other symbols declared in INVENTORY in debugger
commands. (If your program has several compilation units, you must
compile each unit that you want to debug with the /DEBUG qualifier).

You should use the /NOOPTIMIZE qualifier when you compile a program
in preparation for debugging. Otherwise, if the object code is optimized
(to reduce the size of the program and make it run faster), the contents of
some program locations may be inconsistent with what you might expect

2-4 Using the VMS Debugger

from viewing the source code. (After debugging the program, you should
recompile it without the /NOOPTIMIZE qualifier.)

The /DEBUG qualifier on the LINK command causes the linker to include
all symbol information that is contained in INVENTORY.OBJ in the exe­
cutable image. This qualifier also causes the VMS image activator to start
the debugger at run time. (If your program has several object modules,
you may need to specify the other modules in the LINK command.)

2.3.2 Starting and Terminating a Debugging Session

To invoke the debugger, issue the DCL command RUN. The following
message will appear on your screen:

$ RUN INVENTORY

VAX DEBUG Version 4.n

Y.DEBUG-I-INITIAL, language is C, module set to 'INVENTORY'
DBG>

The INITIAL message indicates that the debugging session is initialized
for a VAX C program and that the name of the main program unit is
INVENTORY. The DBG> prompt indicates that you can now type de­
bugger commands. At this point, if you type the GO command, program
execution begins and continues until it is forced to pause or stop (for
example, if the program prompts you for input, or an error occurs).

If you have a mixed-language program that includes an Ada package, the
following message will appear on your screen instead of the previous one
when you invoke the debugger:

$ RUN INVENTORY

VAX DEBUG Version 4.n

Y.DEBUG-I-INITIAL, language is C, module set to 'INVENTORY'
Y.DEBUG-I-NOTATMAIN, type GO to get to start of main program
DBG>

The INITIAL message indicates that the debugging session is initialized
for a VAX C program and that the name of the main program unit is
INVENTORY. The NOTATMAIN message indicates that execution is
suspended before the start of the main program, so that you can execute
initialization code under debugger control. Typing the GO command
places you at the start of the main program. At that point, type the GO
command again to start program execution. Execution continues until it
is forced to pause or stop (for example, if the program prompts you for
input, or an error occurs).

Using the VMS Debugger 2-5

The following message indicates that your program has completed suc­
, cessfully:

Y.DEBUG-I-EXITSTATUS, is 'Y.SYSTEM-S-NORMAL, normal successful completion'
DBG>

To interrupt a debugging session and return to DCL leve1, press CTRL/Y.
This is useful if, for example, your program loops or you want to interrupt
a debugger command that is still in progress.

To resume the debugging session after a CTRL/Y interruption, type either
the CONTINUE or DEBUG command at DCL level. Use the CONTINUE
command to return to the point at which you interrupted the debugging
session. If you interrupted the session because of an infinite loop, use
the DEBUG command instead. The DEBUG command returns you to the
debugger prompt so that you can type another command. For example:

DBG> GO

(infinite loop)
ICTRL/vi
Interrupt

$ DEBUG
DBG>

To end a debugging session, type the EXIT command or press CTRL/Z:

DBG> EXIT
$

2.3.3 Issuing Debugger Commands

You can issue debugger commands any time you see the debugger prompt
(DBG». Type the command at the keyboard and press the RETURN
key. You can issue several commands on a line by separating the com­
mand strings with semicolons (;). As with DCL commands, you can
continue a command string on a new line by ending the previous line
with a hyphen (-).

Alternatively, you can use the numeric keypad to issue certain commands.
Figure 2-1 identifies the predefined key functions. You can also redefine
key functions with the DEFINE/KEY command.

2-6 Using the VMS Debugger

Most keypad keys have three predefined functions-DEFAULT, GOLD,
and BLUE. (The PF1 key is known as the GOLD key; the PF4 key is
known as the BLUE key.) To obtain a key's DEFAULT function, press the
key. To obtain its GOLD function, first press the PF1. (GOLD) key, and
then the key. To obtain its BLUE function, first press the PF4 (BLUE) key,
and then the key.

In Figure 2-1, the DEFAULT, GOLD, and BLUE functions are listed within
each key's outline, from top to bottom, respectively. For example, pressing
keypad key 0 issues the STEP command; pressing key PF1 and then key 0
issues the STEP IINTO command; pressing key PF4 and then key 0 issues
the STEP lOVER command.

Type the command HELP KEYPAD to get help on the keypad key
definitions.

Using the VMS Debugger 2-7

Figure 2-1: Debugger Keypad Key Functions

, F17 """I
F18

DEFAULT MOVE

ISCROLL)

PFl PF2

GOLD HELP DEFAULT

GOLD HELP GOLD

GOLD HELP BLUE

DISP SRC.INST.OUT SCROLL/UP

DISP INST.REG.OUT SCROLL/TOP

SCROLL/UP ...

"""I

SCROLULEFT EX/SOU .0\ %PC

SCROLL/LEFT:255 SHOW CALLS

SCROLL/LEFT ... SHOW CALLS 3

'2
EXAMINE SCROLL/DOWN

EXAM-Iprev) SCROLL/BOTTOM

SCROLL/DOWN ...

STEP

STEP 'INTO

STEP'OVER

LK201 Keyboard:

Press

F17

F18

F19

F20

VT-100 Keyboard:

Type

F19

EXPAND

IEXPAND +)

PF3

SET MODE SCREEN

SET ""ODE NOSCR

DISP/GENERATE

DISPLAY next

'6
SCROLL/RIGHT

SCROLL/RIGHT:255

SCROLL/RIGHT ...

sELISCROLL next

sELIOUTPUT next

sEL/SOURCE next

RESET

RESET

RESET

SET KEY 1ST A TE=DEFAUL T

SET KEY 1ST A TE=MOVE

SET KEY 1ST A TE=EXPAND

SET KEY 1ST A TE=CONTRACT

2-8 Using the VMS Debugger

F20

CONTRACT

IEXPAND -)

PF4

BLUE

BLUE

BLUE

DISP next at FS

DISP SRC. OUT

GO

SELIINST next

ENTER

ENTER

Keys 2,4,6,8

SCROLL

MOVE

EXPAND

CONTRACT

Keys 2,4,6,8

SCROLL

MOVE

EXPAND

CONTRACT

"MOVE"

r """\

"

r

4

MOVE/LEFT

MOVE/LEFT:999

MOVE/LEFT: 1 0

"EXPAND"

MOVE/DOWN

MOVE/DOWN:999

MOVE/DOWN:5

" ~

EXPAND/LEFT EXPAND/RIGHT

EXPAND/LEFT:999 EXPAND/RIGHT:999

EXPAND/LEFT:10 EXPAND/RIGHT:10

" ~ .----, ~ r ~

"CONTRACT"

r
4

EXPAND/LEFT:-1

EXPAND/LEFT:-999

EXPAND/LEFT:-10

2

EXPAND/DOWN

EXPAND/DOWN:999

EXPAND/OOWN:S

EXPAND/RIGHT:-1

EXPAND/RIGHT:-999

EXPANO/RIGHT:-10

~

ZK·4774·8S

2.3.4 Viewing Your Source Code

The debugger provides two modes for displaying information: noscreen
mode and screen mode. By default, when you invoke the debugger, you
are in noscreen mode, but you may find that it is easier to view your
source code in screen mode. Both modes are briefly described in the
following sections.

2.3.4. 1 Noscreen Mode

Noscreen mode is the default, line-oriented mode of displaying input and
output. To invoke noscreen mode from screen mode, press the keypad key
sequence GOLD-PF3. See the sample debugging session in Section 2.6 for
a demonstration of noscreen mode.

hi no screen mode, you can use the TYPE command to display one or
more source lines. For example, the following command displays line 3 of
the module whose code is currently executing:

DBG> TYPE 3
3: i = 3;
DBG>

The display of source lines is independent of program execution. To
display source code from a module other than the one whose code is
currently executing, use the TYPE command with a path name to specify
the module. For example, the following command displays lines 16
through 21 of module TEST:

DBG> TYPE TE8T\16:21

2.3.4.2 Screen Mode

To invoke screen mode, press keypad key PF3. In screen mode, the
debugger splits the screen into three displays named SRC, OUT, and
PROMPT, by default. The following example shows how your screen will
appear in screen mode.

Using the VMS Debugger 2-9

--SRC: module SCOPE---source-scroll-----------------------
2: * be used with F2.C so as to demonstrate the
3: * control of modules and setting of scope.
4:
5: mainO

--> 6: {
7: static int i;
8: static double f;
9: double function2();

10: i = 400;
- OUT -output---

- PROMPT -error-program-prompt---------------------------­
DBG>

The SRC display, at the top of the screen, shows the source code of the
module (compilation unit) whose code is currently executing. An arrow in
the left column points to the next line to be executed, which corresponds
to the current value of the program counter (PC). The line numbers, which
are assigned by the compiler, match those in a listing file.

The OUT display, in the middle of the screen, captures the debugger's
output in response to the commands that you issue.

The PROMPT display, at the bottom of the screen, shows the debugger
prompt (DBG>), your input, debugger diagnostic messages, and program
output.

The SRC and OUT displays can be scrolled to display information beyond
the window's edge. Press keypad key 8 to scroll up and keypad key 2 to
scroll down. Use keypad key 3 to change the display to be scrolled (by
default, the SRC display is scrolled). Scrolling a display does not affect
program execution.

If the debugger cannot locate source lines for the routine that is currently
executing, it tries to display source lines in the next routine down on the
call stack for which source lines are available and issues the following
message:

Y.DEBUG-I-SOURCESCOPE. Source lines not available for .O\Y.PC.
Displaying source in a caller of the current routine.

Source lines may not be available for the following reasons:

• The PC value is within a system routine, or a shareable image routine
for which no source code is available.

2-10 Using the VMS Debugger

• The PC value is within a routine that was compiled without the
/DEBUG compiler command qualifier (or with /NODEBUG).

• The PC value is within a routine whose module is not set (module
setting is explained in Section 2.5.1).

• The source file was moved to a different directory after it was com­
piled (the location of source files is embedded in the object modules).

2.3.5 Controlling and Monitoring Program Execution

This section discusses the following topics:

• Starting and resuming program execution with the GO command

• Stepping through the program's code with the STEP command

• Determining the current value of the program counter (PC) with the
SHOW CALLS command

• Suspending program execution with breakpoints

• Tracing program execution with tracepoints

• Monitoring changes in variables with watchpoints

2.3.5.1 Starting and Resuming Program Execution

There are two commands for starting or resuming program execution:
GO and STEP. The GO command starts execution. The STEP command
executes a specified number of source lines or instructions.

The GO Command

The GO command starts program execution, which continues until forced
to stop. The GO command is used most often in conjunction with break­
points, tracepoints, and watchpoints (described in Sections 2.3.5.3, 2.3.5.4,
and 2.3.5.5). If you set a breakpoint in the path of execution and then
issue the GO command, execution is suspended at that breakpoint. If you
set a tracepoint, the path of execution through that tracepoint is moni­
tored. If you set a watchpoint, execution is suspended when the value of
the watched variable changes.

You can also use the GO command to test for an exception condition or
an infinite loop. If an exception condition that is not handled by your
program occurs, the debugger takes control and displays the DBG>
prompt so that you can issue commands. If you are using screen mode,
the pointer in the source display indicates where execution stopped. You

Using the VMS Debugger 2-11

can use the SHOW CALLS command (explained in Section 2.3.5.2) to
identify the currently active routine calls (the call stack).

If an infinite loop occurs, the program does not terminate, so the debugger
prompt does not reappear. To obtain the prompt, interrupt the program
by pressing CTRL/Y and then issue the DCL command DEBUG. You can
then look at the source display and invoke a SHOW CALLS display to
obtain the current PC value.

The STEP Command

The STEP command allows you to execute a specified number of source
lines or instructions, or to execute the program to the next instruction of a
particular kind, for example, to the next CALL instruction.

By default, the STEP command executes a single source line at a time. In
the following example, the STEP command executes one line, reports the
action ("stepped to ... "), and displays the line number (27) and source
code of the next line to be executed:

DBG> STEP
stepped to TEST\COUNT\y'LINE 27

27: x++;
DBG>

The PC value is now at the first machine code instruction for line 27 of the
module TEST; line 27 is in COUNT, a routine within the module TEST.
TEST\COUNT\ %LINE 27 is a path name. The debugger uses path names
to refer to symbols. (You do not need to use a path name in referring to
a symbol, however, unless the symbol is not unique. If the symbol is not
unique, the debugger issues an error message. See Section 2.5.2 for more
information on resolving multiply defined symbols.)

The STEP command can execute a number of lines at a time. In the
following example, the STEP command executes three lines:

DBG> STEP 3

Note that only those source lines for which code instructions were gener­
ated by the compiler are recognized as executable lines by the debugger.
The debugger skips over any other lines, for example, comment lines.

Also, if a line contains more than one statement, the debugger executes all
the statements on that line as part of the single step.

2-12 Using the VMS Debugger

You can specify different stepping modes, such as stepping by instruction
rather than by line (SET STEP INSTRUCTION). Also, by default, the
debugger steps over called routines; execution is not suspended within
a called routine, although the routine is executed. Issuing the SET STEP
INTO command causes the debugger to suspend execution within called
routines, as well as within the routine that is currently executing.

2.3.5.2 Determining the Current Value of the Program Counter

The SHOW CALLS command lets you determine the current value of
the program counter (PC) (for example, after returning to the debugger
following a CTRL/Y interruption).

The $HOW CALLS command displays a traceback that lists the sequence
of calls leading to the currently executing routine. For each routine
(beginning with the currently executing routine), the debugger displays
the following information:

• The name of the module that contains the routine

• The name of the routine

• The line number at which the call was made (or at which execution is
suspended, in the case of the current routine)

• The corresponding PC addresses (the relative PC address from the
start of the routine, and the absolute PC address of the program)

For example:

DBG> SHOW CALLS
module name routine name line reI PC abs PC

*TEST PRODUCT 18 00000009 0000063C
*TEST COUNT 47 00000009 00000647
*MY_PROG MY_PROG 21 OOOOOOOD 00000653
DBG>

This example indicates that execution is currently at line 18 of routine
PRODUCT (in module TEST), which was called from line 47 of routine
COUNT (in module TEST), which was called from line 21 of routine
MY_PROG (in module MY_PROG).

Using the VMS Debugger 2-13

2.3.5.3 Suspending Program Execution

The SET BREAK command lets you select breakpoints, which are locations
at which program execution is suspended. When you reach a breakpoint,
you can issue commands to check the call stack, examine the current
values of variables, and so on.

In the following example, the SET BREAK command sets a breakpoint on
the procedure COUNT. The GO command then starts execution. When
the procedure COUNT is encountered, execution is suspended. The
debugger reports that the breakpoint at COUNT has been reached ("break
at ... "), displays the source line (54) where execution is suspended, and
prompts you for another command. At this breakpoint, you could step
through the procedure COUNT, using the STEP command, and use the
EXAMINE command (discussed in Section 2.3.6.1) to check on the current
values of X and Y.

DBG> SET BREAK COUNT
DBG> GO

break at PROG2\COUNT
54: {

DBG>

When using the SET BREAK command, you can specify program locations
using various kinds of address expressions (for example, line numbers,
routine names, instructions, virtual memory addresses, or byte offsets).
With high-level languages, you typically use routine names, labels, or line
numbers, possibly with path names to ensure uniqueness.

Routine names and labels should be specified as they appear in the
source code. Line numbers may be derived from either a source code
display or a listing file. When specifying a line number, use the prefix
%LINE. (Otherwise, the debugger interprets the line number as a memory
location.) For example, the next command sets a breakpoint at line 41
of the module whose code is currently executing; the debugger suspends
execution when the PC value is at the start of line 41.

DBG> SET BREAK %LINE 41

Note that you can set breakpoints only on lines that resulted in machine
code instructions. The debugger warns you if you try to do otherwise
(for example, if you try to set a breakpoint on a comment line). To set a
breakpoint on a line number in a module other than the one whose code
is currently executing, specify the module's name in a path name, as in
the following example.

2-14 Using the VMS Debugger

DBG> SET BREAK SCREEN_IO\%LINE 58

You do not always need to specify a particular program location, such
as line 58 or COUNT, to set a breakpoint. You can set breakpoints on
events, such as exceptions. You can also use the SET BREAK command
with the jLINE qualifier (but no parameter) to break on every line, or
with the jCALL qualifier to break on every CALL instruction, and so on.
For example:

DBG> SET BREAK/LINE
DBG> SET BREAK/CALL

You can conditionalize a breakpoint (with a WHEN clause) or specify that
a list of commands be executed at the breakpoint (with a DO clause). For
example, the next command sets a breakpoint on the labelloop3. The
DO (EXAMINE TEMP) clause causes the value of the variable TEMP to be
displayed whenever the breakpoint is triggered.

DBG> SET BREAK loop3 DO (EXAMINE TEMP)
DBG> GO

break at COUNTER\loop3
37: loop3: for(i = 1; i < 10; i ++)

COUNTER\TEMP: 284.19
DBG>

To display the currently active breakpoints, issue the SHOW BREAK
command:

DBG> SHOW BREAK
breakpoint at SCREEN_IO\%LINE 58
breakpoint at COUNTER\loop3

do (EXAMINE TEMP)

DBG>

If any portion of your program was written in Ada, two breakpoints
that are associated with Ada tasking exception events are automatically
established when you invoke the debugger. When you issue a SHOW
BREAK command under these conditions, the following breakpoints are
displayed:

DBG> SHOW BREAK
Breakpoint on ADA event "DEPENDENTS_EXCEPTION" for any value
Breakpoint on ADA event "EXCEPTION_TERMINATED" for any value

Using the VMS Debugger 2 -15

These breakpoints are equivalent to issuing the following commands:

DBG> SET BREAK/EVENT=DEPENDENTS_EXCEPTION
DBG> SET BREAK/EVENT=EXCEPTION_TERMINATED

To cancel a breakpoint, issue the CANCEL BREAK command, specify­
ing the program location or event exactly as you did when setting the
breakpoint. The CANCEL BREAK/ALL command cancels all breakpoints.

2.3.5.4 Tracing Program Execution

The SET TRACE command lets you select tracepoints, which are locations
for tracing the execution of your program without stopping its execution.
After setting a tracepoint, you can start execution with the GO command
and then monitor the path of execution, checking for unexpected behavior.
By setting a tracepoint on a routine, you can also monitor the number of
times the routine is called.

As with breakpoints, every time a tracepoint is reached, the debugger
issues a message and displays the source line. However, at tracepoints, the
program continues executing, and the debugger prompt is not displayed.
For example:

DBG> SET TRACE COUNT
DBG> GO

trace at PROG2\COUNT
54: {

When using the SET TRACE command, specify address expressions,
qualifiers, and optional clauses exactly as with the SET BREAK command.

The /LINE qualifier causes the SET TRACE command to trace every
line and is a convenient means of checking the execution path. By default,
lines are traced within all called routines, as well as the currently executing
routine. If you do not want to trace through system routines or through
routines in shareable images, use the /NOSYSTEM or /NOSHARE
qualifiers. For example:

DBG> SET TRACE/LINE/NOSYSTEM/NOSHARE

2-16 Using the VMS Oebugger

The jSILENT qualifier suppresses the trace message and the display
of source code. This is useful when you want to use the SET TRACE
command to execute a debugger command at the tracepoint. For example:

DBG> SET TRACE/SILENT YoLINE 83 DO (EXAMINE STATUS)
DBG> GO

SCREEN_IO\CLEAR\STATUS: 0

2.3.5.5 Monitoring Changes in Variables

The SET WATCH command lets you set watchpoints that will be monitored
continuously as your program executes. With high-level languages,
you typically set watchpoints on variables that have been declared in
your program (you can set watch points on arbitrary program locations,
however). If the program modifies the value oJ a watched variable, the
debugger suspends execution and displays the old and new values.

To set a watchpoint on a variable, specify the variable's name with the
SET WATCH command. For example, the following command sets a
watch point on the varia1;>le total:

DBG> SET WATCH total

Subsequently, every time the program modifies the value of total, the
watchpoint is triggered.

The following example shows the effect on program execution when your
program modifies the contents of a watched variable.

DBG> SET WATCH total
DBG> GO

watch of SCREEN_IO\total at SCREEN_IO\YoLINE 13
13: total ++;

old value: 16
new value: 17

break at SCREEN_IO.YoLINE 14
14: pop(total);

DBG>

Using the VMS Debugger 2 -17

In this example, a watchpoint is set on the variable total, and the GO
command is issued to start execution. When the value of total changes,
execution is suspended. The debugger reports the event ("watch of ... ")
and identifies where total changed (line 13) and the associated source
line. The debugger then displays the old and new values and reports
that execution has been suspended at the start of the next line (14). (The
debugger reports "break at ... ", but this is not a breakpoint; it is the
effect of the watchpoint.) Finally, the debugger prompts for another
command.

When a change in a variable occurs at a point other than at the start of a
source line, the debugger gives the line number plus the byte offset from
the start of the line.

Note the following restriction when setting watchpoints. You can set
watchpoints only on static variables. In VAX C, a static variable is created
by specifying the static, globalde£, globalre£, or extern storage class
specifiers in the variable declaration.

You cannot set watchpoints on variables that are allocated on the stack or
in registers. In VAX C, such nonstatic variables include auto and register
variables.

If you try to set a watchpoint on a nonstatic variable, the debugger issues
a message such as the following:

Y.DEBUG-W-BADWATCH. cannot watch protect address 7FF6E898

2.3.6 Examining and Manipulating Data

This section explains how to use the EXAMINE, DEPOSIT, and
EVALUATE commands to display and modify the contents of variables
and to evaluate expressions. It also notes restrictions on the use of these
commands with VAX C programs.

Note that, before you can examine or deposit into a nonstatic variable (as
defined in the previous section), its defining routine must be active (on the
call stack).

2 -18 Using the VMS Debugger

2.3.6.1 Displaying the Values of Variables

To display the current value of a variable, use the EXAMINE command.
The EXAMINE command has the following form:

EXAMINE variable-name

The debugger recognizes the compiler-generated data type of the specified
variable and retrieves and formats the data accordingly. The following
examples show some uses of the EXAMINE command.

Examine three integer variables:

DBG> EXAMINE WIDTH, LENGTH, AREA
SIZE\WIDTH: 4
SIZE\LENGTH: 7
SIZE\AREA: 28
DBG>

Examine a two-dimensional array of integers:

DBG> EXAMINE INTEGER_ARRAY
PROG2\INTEGER_ARRAY

[0,0]: 27
[0,1] : 31
[0,2] : 12
[1,0]: 15
[1,1]: 22
[1,2] : 18

DBG>

Examine element 4 of a one-dimensional array of characters:

DBG> EXAMINE/ASCII CHAR_ARRAY[4]
PROG2\CHAR_ARRAY[4]: 'm'
DBG>

The EXAMINE command can be used with any kind of address expres­
sion, not just a variable name, to display the contents of a program
location. The debugger associates certain default data types with untyped
locations. You can override the defaults for typed and untyped locations
if you want the data to be interpreted and displayed in some other data
format.

See Section 2.3.6.3 for a comparison of the EXAMINE and EVALUATE
commands.

Using the VMS Debugger 2 -19

2.3.6.2 Changing the Values of Variables

To change the value of a variable, use the DEPOSIT command. The
DEPOSIT command has the following form:

DEPOSIT variable-name = value

The DEPOSIT command is like an assignment statement in VAX C.

In the following examples, the DEPOSIT command assigns new values
to different variables. The debugger checks that the value assigned,
which can be a language expression, is consistent with the data type and
dimensional constraints of the variable.

Deposit an integer expression:

DBG> DEPOSIT WIDTH = CURRENTWIDTH + 10

Deposit element 12 of an array of characters (you cannot deposit an entire
array aggregate with a single DEPOSIT command, only an element):

DBG> DEPOSIT C_ARRAY[12] = 'K'

As with the EXAMINE command, the DEPOSIT command lets you specify
any kind of address expression, not just a variable name. You can override
the defaults for typed and untyped locations if you want the data to be
interpreted in some other data format.

2.3.6.3 Evaluating Expressions

To evaluate a language expression, use the EVALUATE command. The
EVALUATE command has the following form:

EVALUATE language-expression

The debugger recognizes the operators and expression syntax of the
currently set language. In the following example, the value 45 is assigned
to the integer variable WIDTH; the EVALUATE command then obtains the
sum of the current value of WIDTH plus 7:

DBG> DEPOSIT WIDTH = 45
DBG> EVALUATE WIDTH + 7
52
DBG>

2-20 Using the VMS Debugger

Not all VAX C operators can be supported by the debugger, since some
can produce side effects that would adversely affect debugging. The
VAX C operators that are supported in language expressions are listed in
Table 2-1; VAX C operators that are not supported by the debugger are
listed in Table 2-2.

Table 2-1: Supported Operators
Operator(s) Category

+ *
!= >

&& II

&

« »

/ %
< > = <=

?

Unary arithmetic

Binary arithmetic

Relational

Logical

Bitwise logical

Shift

sizeof

&

Compute the size of a scalar

Address of

* Dereference

Table 2-2: Unsupported OperatQrs
Operator(s) Category

++ Pre/post increment/decrement

+= *= /= %= Assignment

1= &= -

?:

(type)

Conditional

Cast

The following example shows how the EVALUATE and EXAMINE com­
mands are similar. When the expression following the command is a
variable name, the value reported by the debugger is the same for either
command.

DBG> DEPOSIT WIDTH = 45
DBG> EVALUATE WIDTH
45
DBG> EXAMINE WIDTH
SIZE\WIDTH: 45

Using the VMS Debugger 2-21

The following example shows an important difference between the
EVALUATE and EXAMINE commands:

DBG> EVALUATE WIDTH + 7
62
DBG> EXAMINE WIDTH + 7
SIZE\WIDTH: 131684

With the EVALUATE command, WIDTH + 7 is interpreted as a language
expression, which evaluates to 45 + 7, or 52. With the EXAMINE com­
mand, WIDTH + 7 is interpreted as an address expression: 7 bytes are
added to the address of WIDTH, and whatever value is in the resulting
address is reported (in this instance, 131584).

2.4 Notes on Debugger Support for VAX C

In general, the debugger supports the data types. and operators of
VAX C and of the other debugger-supported languages. However, there
are certain language-specific limitations or other differences. (For informa­
tion on the supported data types and operators of any of the languages,
type the HELP LANGUAGE command at the DBG> prompt.)

The following subsections present VAX C specific debugging examples.
These examples show you how to work with VAX C data types and
expressions.

2.4.1 Accessing Scalar Variables

The EXAMINE command displays scalar variables of any VAX C data
type. You reference scalar variables in the case in which you declare
them, using the VAX C syntax for such references.

Review Example 2-1, which presents the VAX C program SCALARS.C to
be used in the next sample debugging session.

2-22 Using the VMS Debugger

Example 2-1: Debugging Sample Program SCALARS.C

/* SCALARS.C This program defines a large number of *
* variables so as to demonstrate the effect *
* of the various STEP debugger commands. */

mainO
{

static float light_speed; /* Define the variables */

}

static double speed_power;
static unsigned ui;
static long Ii;
static char ch;
static enum primary { red, yellOW, blue} color;
static int *ptr;

light_speed = 3.0e10;
speed_power = 3. 123456789012345678ge10;
ui·= -438394;
Ii = 790374270;
ch = 'A';
color = blue;
ptr = &Ii;

The following debugging session executes SCALARS.EXE and illustrates
the commands used to access variables of scalar data type:

DBG> show symbol/type color
data SCALARS\main\color

enumeration type (primary, 3 elements), size: 4 bytes

This command uses the SHOW SYMBOL/TYPE command to display the
data type of one variable.

The next command in this sample debugging session is as follows:

DBG> set break %line 22
DBG> go
break at SCALARS\main\%LINE 22

22: }

The commands in the example set a breakpoint just prior to the end of
the program and issue a GO command to execute the program up to the
breakpoint. These commands allow the variables declared in main to be
initialized by the program.

Using the VMS Debugger 2-23

The next command in this sam.ple debugging session is as follows:

DBG> examine Ii, ui, light_speed, speed_power, ch, color, *ptr
SCALARS\main\li: 790374270
SCALARS\main\ui: 4294528902
SCALARS\main\light_speed: 3.0000001E+10
SCALARS\main\speed_power: 31234567890.12346
SCALARS\main\ch: 65
SCALARS\main\color: blue
*SCALARS\main\ptr: 790374270

The EXAMINE command directs the debugger to display the contents
of the variables listed. Note that char variables are interpreted by the
debugger as byte integers, not ASCII characters.

The next command in this sample debugging session is as follows:

DBG> examine/ascii ch
SCALARS\main\ch: "A"

To display the contents of ch as a character, you must use the / ASCII
qualifier.

The next command in this sample debugging session is as follows:

DBG> deposit/ascii c~ = IZI

DBG> examine/ascii ch
SCALARS\main\ch: IIZII

DBG>

The DEPOSIT command loads the value 'z' in the variable ch; the
EXAMINE command shows that 'z' has replaced the previous contents
of the variable ch. Again, the / ASCII qualifier is used to translate the byte
integer into its ASCII equivalent.

2.4.2 Accessing Arrays

With the EXAMINE command, you can look at the values in arrays, using
the usual VAX C syntax for array references. You can examine an entire
array by giving the array identifier. You can examine individual elements
of the array using the array operators ([]). Array elements can have any

2-24 Using the VMS Debugger

data type. Keep in mind the differences between pointer arithmetic in
VAX C and pointer arithmetic in other languages (for more information,
refer to Chapter 6, Data Types and Declarations). Given the following
declaration

expression p+ 1 is equivalent to the address of p[l]; it increments the array
by the length specified by 1 multiplied by the length of the data type
int. Expression p+l does not add value 1 to the value of variable p. The
following debugger commands are equivalent:

EVALUATE *(p+1)

EVALUATE p[l]

Review Example 2-2, which presents the VAX C program ARRAY.C to be
used in the next sample debugging session.

Example 2-2: Debugging Sample Program ARRAY.C

1* ARRAY.C This program increments an array so as to *
* demonstrate the access of arrays in VAX C. *1

mainO
{

int i;
static int arr[lO];
for (i=O; i<lO; i++)

a~r[i] =i;
}

The following debugging session executes ARRAY.EXE and illustrates the
commands used to access variable arrays:

DBG> set br %line 10
DBG> go
break at ARRAY\main\%LINE 10

10: }

The commands in the example set a breakpoint at the last line in the
program and execute the program to that point.

Using the VMS Debugger 2-25

The next command in this sample debugging session is as follows:

DBG> examine arr
ARRAY\main\arr

[0] : 0
[1] : 1
[2] : 2
[3]: 3
[4] : 4
[5] : 5
[6]: 6
[7] : 7
[8] : 8
[9]: 9

By simply specifying the variable identifier, you can look at the entire
array.

The next command in this sample debugging session is as follows:

DBG> examine arr[5]
ARRAY\main\arr[5]: 5
DBG> examine IRETURNI
ARRAY\main\arr[6]: 6
DBG> examine -
ARRAY\main\arr[5]: 5

Individual elements of the array are examined when you use the bracket
operator to specify the subscript of the element. Using the debugger's ad­
dress reference operator (specified by pressing RETURN) in an EXAMINE
command returns the next element of the array. Using the up-arrow
address reference operator returns the previous member of the array.

2.4.3 Accessing Character Strings

Character strings are implemented in VAX C as null-terminated ASCII
strings (ASCIIZ strings). To examine and deposit data in an entire string,
the / ASCIIZ qualifier (abbreviated as / AZ) can be used so that the
debugger can interpret the end of the string properly. You can examine
and deposit individual characters in the string using the VAX C array
subscripting operators ([]). When you examine and deposit individual
characters, use the / ASCII qualifier.

Review Example 2-3, which presents the VAX C program STRING.C to be
used in the next sample debugging session.

2-26 Using the VMS Debugger

Example 2-3: Debugging Sample Program STRING.C

/* STRING.C This program establishes a string so as to *
* demonstrate the access of strings in VAX C. */

mainO
{

}

static char *s = "vaxie";
static char **t = &s;

The following debugging session executes STRING.EXE and illustrates the
commands used to manipulate VAX C strings:

DBG> step
stepped to STRING\main\Y.LINE 8

8: }
DBG> examine/az *s
*STRING\main\s: "vaxie"
DBG> examine/az **t
**STRING\main\t: "vaxie"

The EXAMINE/ AZ command displays the contents of the character string
pointed to by *s and **t.

The next command in this sample debugging session is as follows:

DBG> deposit/az *s = "VAX C"
DBG> examine/ az * s. **t
*STRING\main\s: "VAX C"
**STRING\main\t: "VAX C"

The DEPOSIT / AZ command deposits a new ASCIIZ string in the variable
pointed to by *s. The EXAMINE/ AZ command displays the new contents
of the string.

The next command in this sample debugging session is as follows:

DBG> examine/ascii s[3]
[3] : II II

DBG> deposit/ascii s[3] = "_"
DBG> examine/az *s. **t
*STRING\main\s: II VAX-C II
**STRING\main\t: "VAX-C"

Using the VMS Debugger 2-27

Using array subscripting, you can examine individual characters in the
string and deposit new ASCII values at specific locations within the string.
When accessing individual members of a string, use the / ASCII qualifier.
A subsequent EXAMINE/ AZ command shows the entire string containing
the deposited value.

2.4.4 Accessing Structures and Unions

You can examine structures in their entirety or on a member-by-member
basis. You can deposit data into structures one member at a time.

References to members of a structure or union can be made using the
usual VAX C syntax for such references. That is, if variable p is a pointer
to a structure, you can reference member y of that structure with the
expression p-> y. If variable x refers to the base of the storage allocated
for a structure, then you can refer to a member of that structure with the
x. y expression.

To reference members of a structure or union, the debugger follows the
usual VAX C type-checking rules. For example, in the case of x.y,
y heed not be a member of x; it is treated as an offset with a type. When
such a reference is ambiguous-when there is more than one structure
with a member y-the debugger attempts to resolve the reference in
the following manner. The same rules for resolving the ambiguity of
a reference to a member of a structure or union apply to both x. y and
p-> y.

• If only one of the members, y, belongs in the structure or union, x,
that is the one that is referenced.

• If only one of the members, y, is in the same scope as x, then that is
the one that is referenced.

You can always give a pathname with the reference to x to narrow the
scope that is used and to resolve the ambiguity. The same pathname is
used to look up both x and y.

Review Example 2-4, which presents the VAX C program STRUCT.C to
be used in the next sample debugging session.

2-28 Using the VMS Debugger

Example 2-4: Debugging Sample Program STRUCT.C

1* STRUCT.C This program defines a structure and union so as *
* to demonstrate the access of structures and *
* unions in VAX C.

MainO
{

}

static struct
{

int im;
float fm;
char cm;
unsigned bf 3;

} sv, *p;

union
{

int im;
float fm;
char cm;

} uv;

sv.im = -24;
sv.fm :: 3.0el0;
sV.cm = 'a';
sv.bf = 7;

p = &lsv;

uV.im = -24;
uv.fm = 3.0el0;
uv.cm = 'a';

/* Binary: 111 */

The following debugging session executes STRUCT.EXE and illustrates the
commands used to access structures and unions.

Using the VMS Debugger 2-29

DBG> show symbol * in main
routine STRUCT\main
data STRUCT\main\uv
record component STRUCT\main\<generated_name_0002>.im
record component STRUCT\main\<generated_name_0002>.fm
record component STRUCT\main\<generated_name_0002>.cm
type STRUCT\main\<generated_name_0002>
data STRUCT\main\p
data STRUCT\main\sv
record component STRUCT\main\<generated_name_0001>.im
record component STRUCT\main\<generated_name_0001>.fm
record component STRUCT\main\<generated_name_0001>.cm
record component STRUCT\main\<generated_name_0001>.bf
type STRUCT\main\<generated_name_0001>

The SHOW SYMBOL command shows the variables contained in the
user-defined function main.

The next command in this sample debugging session is as follows:

DBG> set break Y.line 29
DBG> go
break at STRUCT\main\Y.LINE 29

29: uv.im = -24;

Setting a breakpoint at line 29 and issuing a GO command allows the
program to initialize the variables declared in the structure sv.

The next command in this sample debugging session is as follows:

DBG> examine sv
STRUCT\main\sv

im: -24
fm: 3.0000001E+10
cm: 97
bf: 7

An EXAMINE command that gives the name of the structure causes the
debugger to display all members of the structure. Note that sV.cm has the
char data type, which is interpreted by the debugger as a byte integer.
The debugger also displays the value of bit fields in decimal.

The next commands in this sample debugging session are as follows:

DBG> examine/ascii sv.cm
STRUCT\main \sv . cm: II a II
DBG> examine/binary sv.bf
STRUCT\main\sv.bf: 111

To display the ASCII representation of a char data type, you must use the
/ ASCII qualifier. To display bit fields in their binary representation, you
must use the /BINARY qualifier.

2-30 Using the VMS Debugger

The next commands in this sample debugging session are as follows:

DBG> deposit sv.im = 99
DBG> deposit sv.fm = 3.14
DBG> deposit/ascii sv.cm = 'z'
DBG> deposit sV.bf = Y.BIN 010
DBG> examine sv
STRUCT\main\sv

im: 99
fm: 3.140000
cm: 122
bf: 2

You deposit data into a structure one member at a time. To deposit data
into a member of type char, you can use the / ASCII qualifier and enclose
the character in either single or double quotes. To deposit a new binary
value in a bit field, use the %BIN keyword.

The next commands in this sample debugging session are as follows:

DBG> examine *P
*STRUCT\main\p

im: 99
fm: 3.140000
cm: 122
bf: 2

DBG> examine/binary p -->bf
STRUCT\main\p -->bf: 010

Members of structures (and unions) can also be accessed by pointer, as in
*p and p --> bf in the previous example.

The next command in this sample debugging session is as follows:

DBG> step
stepped to STRUCT\main\Y.LINE 30

30: uV.fm = 3.0e10;
DBG> examine uv
STRUCT\main\uv

im: -24
fm: -1.5485505E+38
cm: -24

A union contains only one member at a time. Therefore, the value for
uv.im is the only valid value returned by the EXAMINE command; the
other values are meaningless.

Using the VMS Debugger 2-31

The next commands in this sample debugging session are as follows:

DBG> step
stepped to STRUCT\main\y'LINE 31

31: uv.cm = 'a';
DBG> examine uv.fm
STRUCT\main\uv.fm: 3.0000001E+10
DBG> step .
stepped to STRUCT\main\Y.LINE 32

33: }
DBG> examine/ascii uv.cm
STRUCT\main\uv.cm: "a"

This series of STEP and EXAMINE commands shows the content of the
union as the different members are assigned values.

Review Example 2-5, which presents the VAX C program ARSTRUCT.C
to be used in the next sample debugging session.

Example 2-5: Debugging Sample Program ARSTRUCT.C

/* ARSTRUCT.C This program contains a structure definition *
* and a for loop so as to demonstrate the *
* debugger's support for vAx C operators. */

mainO
{

}

int count, i = 1;
char c = 'A';

struct
{

int digit;
char alpha;

} tbl[27] , *p;

for (count = 0; count <= 26; count++)
{

}

tbl[count] . digit = i++;
tbl[count] . alpha = c++;

The following debugging session executes ARSTRUCT.EXE and illustrates
the use of VAX C expressions on the debugger command line:

DBG> set break Yoline 20 when (count == 2)
DBG> go
break at ARSTRUCT\main\Y.LINE 20

20: }

2-32 Using the VMS Debugger

Relational operators can be used in expressions (such as count == 2 in the
preceding example) in a WHEN clause to set a breakpoint conditionally.

The next commands in this sample debugging session are as follows:

DBG> evaluate &tbl
2146736881
DBG> evaluate/address tbl
2146736881

The first EVALUATE command uses the usual VAX C syntax for referring
to the address of a variable. It is equivalent to the second command,
which uses the / ADDRESS qualifier to obtain the address of the variable.
The addresses of these variables probably will not be the same every time
you execute the program if you relink the program.

The next command in this sample debugging session is as follows:

DBG> evaluate tbl[2].digit
3

Individual members of an aggregate can be evaluated; the debugger
returns the value of the member.

The next commands in this sample debugging session are as follows:

DBG> evaluate tbl +4
YoDEBUG-I-SCALEADD. pointer addition: scale factor of 5 applied to right argument
2146736901
DBG> examine 2146736901
ARSTRUCT\main\tbl[4].digit: 5

When you perform pointer arithmetic, the debugger displays a message
indicating the scale factor that has been applied. It then returns the
address resulting from the arithmetic operation. A subsequent EXAMINE
command at that address returns the value of the variable.

The next command in this sample debugging session is as follows:

DBG> evaluate tbl[4].digit * 2
10

The EVALUATE command can perform arithmetic operations on program
variables.

Using the VMS Debugger 2-33

The next command in this sample debugging session is as follows:

DBG> evaluate 7 Yo 3
1

The EVALUATE command can also perform arithmetic calculations that
mayor may not be related to your program. In effect, it can be used as a
calculator which uses the VAX C syntax for arithmetic expressions.

The next command in this sample debugging session is as follows:

DBG> evaluate count++
YoDEBUG-W-SIDEFFECT. operators with side effects not supported (++. --)

The debugger issues a message when you use an unsupported operator.

2.5 Controlling Symbol References

In most cases, the way the debugger handles symbols (variable names,
and so on) is transparent to you. However, the following two areas may
require action on your part:

• Module setting
• Multiply defined symbols

2.5.1 Medule Setting

To facilitate symbol searches, the debugger loads symbol records from the
executable image into a run-time symbol table (RST), where they can be
accessed efficiently. Unless a symbol record is in the RST, the debugger
cannot recognize or properly interpret that symbol.

Because the RST uses memory, the debugger loads it dynamically, antici­
pating what symbols you might want to reference during execution. The
loading process is called module setting, because all of the symbol records
of a given module are loaded into the RST at one time.

At debugger startup, only the module containing the image transfer ad­
dress is set. As your program executes, whenever the debugger interrupts
execution, it sets the module surrounding the current PC value. This lets
you reference the symbols that should be visible at that location.

2-34 Using the VMS Debugger

If you try to reference a symbol in a module that has not been set, the
debugger issues a warning. For example:

DBG> EXAMINE K
Y.DEBUG-W-NOSYMBOL, symbol 'K' is not in symbol table
DBG>

You must then use the SET MODUl..E command to set the module
containing that symbol manually:

DBG> SET MODULE MOD3
DBG> EXAMINE K
MOD3\ROUT2\K: 26
DBG>

The SHOW MODULE command lists the modules of your program and
identifies. which modules have been set.

Note that dynamic module setting may slow down the debugger as
more and more modules are set. If performance becomes a problem, you
can use the CANCEL MODULE command to reduce the number of set
modules, or you can disable dynamic module setting by issuing the SET
MODE NODYNAMIC command. (The SET MODE DYNAMIC command
enables dynamic module setting.)

2.5.2 Resolving Multiply Defined Symbols

The debugger finds the symbols that you reference in commands according
to the scope and visibility rules of the currently set language. In general,
the debugger first searches for a symbol within the block or routine
surrounding the current PC value. If the symbol is not found in that scope
region, the debugger searches the nesting program unit, then its nesting
unit, and so on. (The precise order of search depends on the currently set
language and guarantees that the proper declaration of a multiply defined
symbol is selected.)

The debugger allows you to reference symbols throughout your program,
not just those that are visible at the current PC value, so that you can
set breakpoints in arbitrary areas, examine arbitrary variables, and so
on. Therefore, if the symbol is not visible at the current PC value, the
debugger also searches other scope regions. First, it searches within the
currently executing routine, then the caller of that routine, then its caller,
and so on, until the symbol is found. Symbolically, this search list is
denoted 0,1,2, ... ,n, where n is the number of calls in the call stack.
Within each of these scope regions, the debugger uses the visibility rules
of the currently set language to locate symbols.

Using the VMS Debugger 2-35

If the debugger cannot resolve a symbol ambiguity, it issues a warning.
For example:

DBG> EXAMINE Y
%DEBUG-W-NOUNIQUE, symbol 'Y' is not unique
DBG>

You can then use a path-name prefix to uniquely specify a declaration of
the given symbol. First, use the SHOW SYMBOL command to identify all
path names associated with the given symbol; then use the desired path
name when referencing the symbol. For example:

DBG> SHOW SYMBOL Y
data MOD7\ROUT3\BLOCK1\Y
data MOD4\ROUT2\Y
DBG> EXAMINE MOD4\ROUT2\Y
MOD4\ROUT2\Y: 12
DBG>

If you need to refer to a particular declaration of Y repeatedly, use the
SET SCOPE command to establish a new default scope for symbol
lookup. Then, references to Y without a path-name prefix will specify
the declaration of Y that is visible in the new scope region. For example:

DBG> SET SCOPE MOD4\ROUT2
DBG> EXAMINE Y
MOD4\ROUT2\Y: 12
DBG>

To display the current scope for symbol lookup, use the SHOW SCOPE
command. To restore the default scope, use the CANCEL SCOPE
command.

2.6 Sample Debugging Session

Example 2-6 shows the VAX C program POWER.C, which is to be used in
a simple debugging session. To learn about a larger number of debugger
command~, reexecute this program and use some of the commands listed
in Section 2.7.

2-36 Using the VMS Debugger

Example 2-6: Debugging Sample Program POWER.C

/* POWER.C This program contains two functions: "main" and *
* "power." The main function passes a number to *
* "power" which returns that number raised to the *
* second power. */

main 0
.{

static int i. j;
int powerO;

i = 2;
j = power (i) ;

}

power(j)
int j;
{

return (j * j);
}

Example 2-7 illustrates some of the debugger commands used to evaluate
the execution of POWER.C.

Using the VMS Debugger 2-37

Example 2-7: A Sample Debugging Session

4t $ CC/DEBUG/OPTIMIZE=NODISJOINT POWER
$ LINK/DEBUG POWER
$ RUN POWER

VAX DEBUG Version 4.n

~ %DEBUG-I-INITIAL. language is C. module set to I POWER I
~ DBG> set break %LINE 13 e DBG> go
~ break at POWER\main\%LINE 13
o 13: j = power(i);
t» DBG> step/into
~ stepped to routine POWER\power

16: int j;
DBG> step
stepped to POWER\power\%tINE 18

18: return (j * j)
~ DBG> examine J
~ %DEBUG-W-NOSYMBOL. symbol IJI is not in the symbol table

DBG> examine j
GO POWER\power\j: 2

DBG> step
stepped to POWER\main\%LINE 13+9

13: j = power(i);
DBG> step
stepped to POWER\main\%LINE 14

14: }
DBG> examine j

• POWER\main\j: 4
DBG> go

GD %DEBUG-I-EXITSTATUS. is '%SYSTEM-S-NORMAL. normal successful

~ DBG> exit
$

completion I

The following numbers correspond to the numbers in the previous
example:

4t To execute a program with the debugger, you must compile and
link the program with the jDEBUG qualifier. The VAX C compiler
compiles the source file with the jDEBUG=TRACEBACK qualifier
by default. However, unless you compile your program with· the
jDEBUG qualifier, you cannot access all of the program's variables.
You should use the jNOOPTIMIZE qualifier to turn off compiler
optimization that may interfere with debugging. If you desire a

2-38 Using the VMS Debugger

minimal amount of optimization that would not interfere with your
debugging session, use the /OPTIMIZE=NODIS}OINT qualifier.

• The VMS Image Activator passes control to the debugger on execution
of the image. The debugger tells you the current programming
language and the name of the object module that contains the main
function, or the first function to be executed. Remember that the
linker converts the names of object modules to uppercase letters.

6) You enter debugger commands at the prompt:

DBG>

The debugger command SET BREAK defines a point in the program
where the debugger must suspend execution. In this example, the
SET BREAK command tells the debugger to stop execution before
execution of line number 13. After the debugger processes the SET
BREAK command, it responds with the debugger prompt.

e The debugger command GO begins execution of the image.

o The debugger tells you that it suspended execution of the image at
function main in module power. The debugger specifies sections of
the program by telling you in which object module it is working,
delimited by a backslash character (\), followed by the name of
the VAX C function. The linker converted the name of the object
module to uppercase letters but the debugger specifies the name of the
function exactly as it is found in the source text.

o The debugger displays the line of source text where it suspended
execution. Refer to the source code listing in Example 2-6 to follow
the debugger as it steps through the lines of the program in this
interactive debugging example.

8 The debugger command STEP/INTO executes the first executable
line in a function. The command STEP tells the debugger to execute
the next line of code, but if the next line of code is a function call,
the debugger will not step through the function code unless you use
/INTO. Use STEP/INTO to step through a user-defined or VAX C
Run -Time Library function.

eD When stepping through a function, the debugger specifies line num­
bers by listing the object module, the VAX C function, a percent sign
(%), the identifier LINE, and the line number in the source text.
Once again, the debugger delimits all items in the specification with
backslash characters (\).

o The debugger command EXAMINE displays the contents of a variable.

CD The debugger does not recognize the variable, J, as existing in the
scope of the current module.

Using the VMS Debugger 2-39

4D The debugger supports the case sensitivity of VAX C variables; v,ari­
able j exists whereas variable J does not. Refer to Example 2-6 to
review the program variables.

The debugger responds to the EXAMINE command and tells you that
the value of the variable is 2.

~ The value of variable j in function main is different than the separate
variable j in function power. Function power executes properly; it
returns the number 2 raised to the second power.

~ Upon completion of execution of the image, the debugger states the
status of the execution. In this example, execution was successful.

41) To issue the DCL RUN command to execute the program again, or to
do other work outside of the debugger environment, use the debugger
command EXIT to end the debugging session and to go back to DCL.

The following section explains some of the commonly used debugger
commands.

2.7 Debugger Command Summary

This section lists all of the debugger commands and any related DCL
commands in functional groupings, along with brief descriptions.

During a debugging session, you can get online HELP on any command
and its qualifiers by typing the HELP command followed by the name of
the command in question. The HELP command has the following form:

HELP command

2.7. 1 Starting and Terminating a Debugging Session

($) RUN l

($) RUN/[NO]DEBUG l

Invokes the debugger if LINK/DEBUG was
used.

Controls whether the debugger is invoked when
the program is executed.

1 This is a Del command, not a debugger command.

2-40 Using the VMS Debugger

CTRLjZ or EXIT

QUIT

CTRLjY

CTRLjC

($) CONTINUE l

($) DEBUG l

ATTACH

SPAWN

Ends a debugging session, executing all exit
handlers.

Ends a debugging session without executing any
exit handlers declared in the program.

Interrupts a debugging session and returns you
to DCL level.

Has the same effect as CTRLjY, unless the
program has a CTRLjC service routine.

Resumes a debugging session after a CTRLjY
interruption.

Resumes a debugging session after a CTRLjY
interruption but returns you to the debugger
prompt.

Passes control of your terminal from the current
process to another process (similar to the DCL
command ATTACH).

Creates a subprocess; lets you issue DCL
commands without interrupting your debugging
context (similar to the DCL command SPAWN).

1 This is a DeL command, not a debugger command.

2.7.2 Controlling and Monitoring Program Execution

GO

STEP

{ SET
SHOW

} STEP

{ SET
} BREAK SHOW

CANCEL

{ SET
} TRACE SHOW

CANCEL

Starts or resumes program execution.

Executes the program up to the next line,
instruction, or specified instruction.

Establishes or displays the default qualifiers for
the STEP command.

Sets, displays, or cancels breakpoints.

Sets, displays, or cancels tracepoints.

Using the VMS Oebugger 2-41

{
SET }
SHOW WATCH
CANCEL

{ SET
CANCEL }

EXCEPTION
BREAK

SHOW CALLS

SHOW STACK

CALL

2.7.3 Examining and Manipulating Data

EXAMINE

DEPOSIT

EVALUATE

Sets, displays, or cancels watchpoints.

Sets or cancels exception breakpoints.

Identifies the currently active routine calls.

Gives additional information about the currently
active routine calls.

Calls a routine.

Displays the value of a variable or the contents
of a program location.

Changes the value of a variable or the contents
of a program location.

Evaluates a language or address expression.

2.7.4 Controlling Type Selection and Symbolization

{
SET }
SHOW RADIX
CANCEL

{ SET }
SHOW TYPE
CANCEL

SET MODE [NO]G_FLOAT

SET MODE [NO]UNE

2-42 Using the VMS Debugger

Establishes the radix for data entry and display,
displays the radix, or restores the radix.

Establishes the type to be associated with
untyped program locations, displays the type, or
restores the type.

Controls whether double-precision floating­
point constants are interpreted as G_FLOAT or
D_FLOAT.

Controls whether code locations are displayed
in terms of line numbers or routine-name + byte
offset.

SET MODE [NO]SYMBOLIC

SYMBOLIZE

2.7.5 Controlling Symbol Lookup

SHOW SYMBOL

{
SET }
SHOW MODULE
CANCEL

{
SET }
SHOW IMAGE
CANCEL

SET MODE [NO]DYNAMIC

{
SET }
SHOW SCOPE
CANCEL

2.7.8 Displaying Source Code

TYPE

EXAMINE/SOURCE

{ ~~~w } SOURCE
CANCEL

SEARCH

{ SET } SEARCH
SHOW

Controls whether code locations are displayed
symbolically or in terms of numeric addresses.

Converts a virtual address to a symbolic
address.

Displays symbols in your program.

Sets a module by loading its symbol records
into the debugger's symbol table, identifies a set
module, or cancels a set module.

Sets a shareable image by loading data struc­
tures into the debugger's symbol table, identifies
a set image, or cancels a set image.

Controls whether modules and shareable
images are set automatically when the debugger
interrupts execution.

Establishes, displays, or restores the scope for
symbol lookup.

Displays lines of source code.

Displays the source code at the location speci­
fied by the address expression.

Creates, displays, or cancels a source directory
search list.

Searches the source code for the specified string.

Establishes or displays. the default qualifiers for
the SEARCH command.

Using the VMS Debugger 2-43

{
SET } MAX_SOURCE
SHOW _FILES

{ SET } MARGINS
SHOW

2.7.7 Using Screen Mode

SET MODE [NO]SCREEN

SET MODE [NO]SCROLL

DISPLAY

{
SET }
SHOW DISPLAY
CANCEL

{
~~~W } WINDOW 
CANCEL 

SELECT 

SHOW SELECT 

SCROLL 

SAVE 

EXTRACT 

EXPAND 

MOVE 

{ SET } TERM IN AL 
SHOW 

CTRL/Wor 
DISPLAY /REFRESH 

2 -44 Using the VMS Debugger 

Establishes or displays the maximum number of 
source files that may be kept open at one time. 

Establishes or displays the left and right margin 
settings for displaying source code. 

Enables or disables screen mode. 

Controls whether an output display is updated 
line by line or once per command. 

Modifies an existing display. 

Creates, identifies, or deletes a display. 

Creates, identifies, or deletes a window 
definition. 

Selects a display for a display attribute. 

Identifies the displays selected for each of the 
display attributes. 

Scrolls a display. 

Saves the current contents of a display and 
writes it to another display. 

Saves a display or the current screen state and 
writes it to a file. 

Expands or contracts a display. 

Moves a display across the screen. 

Establishes or displays the height and width of 
the screen. 

Refreshes the screen. 



2.1.8 Editing Source Code 

EDIT 

{ SET } EDITOR 
SHOW 

2.1.9 Defining Symbols 

DEFINE 

DELETE or UNDEFINE 

{ SET } DEFINE 
SHOW 

SHOW SYMBOL/DEFINED 

2.1.10 Using Keypad Mode 

Invokes an editor during a debugging session. 

Establishes or identifies the editor invoked by 
the EDIT command. 

Defines a symbol as an address, command, or 
value. 

Deletes symbol definitions. 

Establishes or displays the default qualifier for 
the DEFINE command. 

Identifies symbols that have been defined. 

SET MODE [NO]KEYP AD Enables or disables keypad mode. 

DEFINE/KEY Creates key definitions. 

DELETE/KEY or UNDEFINE/KEY Deletes key definitions. 

SET KEY Establishes the key definition state. 

SHOW KEY Displays key definitions. 

2.1.11 Using Command Procedures and Log Files 

DECLARE 

{ SET } LOG 
SHOW 

SET OUTPUT [NO]LOG 

Defines parameters to be passed to command 
procedures. 

Specifies or identifies the debugger log file. 

Controls whether a debugging session is logged. 

Using the VMS Debugger 2-45 



SET OUTPUT [NO]SCREEN 
_LOG 

SET OUTPUT [NO]VERIFY 

SHOW OUTPUT 

{ SET } ATSIGN 
SHOW 

@file-spec 

2.7.12 Using Control Structures 

IF 

FOR 

REPEAT 

WHILE 

EXITLOOP 

2.7.13 Additional Commands 

Controls whether, in screen mode, the screen 
contents are logged as the screen is updated. 

Controls whether debugger commands are 
displayed as a command procedure is executed. 

Displays the current output options established 
by the SET OUTPUT command. 

Establishes or displays the default file speci­
fication that the debugger uses to search for 
command procedures. 

Executes a command procedure. 

Executes a list of commands conditionally. 

Executes a list of commands repetitively. 

Executes a list of commands repetitively. 

Executes a list of commands conditionally. 

Exits an enclosing WHILE, REPEAT, or FOR 
loop. 

SET PROMPT Specifies the debugger prompt. 

SET OUTPUT [NO]TERMINAL Controls whether debugger output is displayed 
or suppressed, except for diagnostic messages. 

{ SET } LANGUAGE 
SHOW 

{
SET } EVENT 
SHOW _FACILITY 

SHOW EXIT_HANDLERS 

2-46 Using the VMS Debugger 

Establishes or displays the current language. 

Establishes or identifies the current run-time 
facility for language-specific events. 

Identifies the exit handlers declared in the 
program. 



{ SET } TASK 
SHOW 

{

DISABLE } 
ENABLE AST 
SHOW 

Modifies the tasking environment or displays 
task information. 

Disables the delivery of ASTs in the program, 
enables the delivery of ASTs, or identifies 
whether delivery is enabled or disabled. 

Using the VMS Debugger 2 -4 7 





VAX C Programming Concepts 





Chapter 3 

Program Structure 

This chapter introduces the basic features of VAX C to the experienced 
programmer. The text provides detailed examples and short tutorials, as 
well as many pointers to other chapters in this manual. 

A VAX C program is a group of user-defined functions that cannot be 
nested (you cannot define functions within other function definitions). 
This chapter describes VAX C function definitions, function declarations, 
and the following components of program structure: 

• Function definitions 

• Function declarations 

• Function prototypes 

• Function parameters and arguments 

• Program identifiers 

• Blocks 

• Comments 
• VAX C language keywords 

• LINT -like functionality 

Program Structure 3-1 



3" 1 C Programming Language Background 

The C language is a general-purpose programming language that is 
manageable because of its small size, flexible because of its ample supply 
of operators, and powerful in its utilization of modern control flow and 
data structures. The C language was originally designed and implemented 
on a UNIX® system on the PDP-I1. The designer of the language spoke 
of its functionality as follows: . 

"The [C] language ... is not tied to anyone operating 
. system or machine; and although it has been called a 'system 
programming language' because it is useful for writing 
operating systems, it has been used equally well to write 
major numerical, text-processing, and database programs."l 

Like assembly language, C was not designed to accommodate the needs 
of any particular application. The C language manipulates and stores data 
with regard to the similarities of modern machine architecture. However, 
C is not as complex as assembler language and is not machine dependent. 
C is highly portable (a program is portable if you can compile and run 
its source program using several different compilers on several different 
machines). 

Although there is no ANSI or other industry-wide standard for the C 
programming language, there is a consistency of functionality between 
implementations. There must be such consistency if C is to be portable 
across systems, and this is one of the most desirable features of the 
language. So, not only must C source programs be portable, the language 
features themselves must produce the same effects on all systems when 
you compile and run programs. 

Since the C language was developed in a UNIX system environment, and 
eventually was used to rewrite most of that operating systemJ many stan­
dard methods of operation in C are related to UNIX. For instance, UNIX 
systems access files by a numeric file descriptor, so C implementations 
should provide functions to access files by file descriptor. In a UNIX sys­
tem environment, you can expect a concise command structure, an ability 
to redirect output from one program or command to the input of another 
program or command, an ability to create asynchronous and synchronous 
subprocesses, and an ability to manipulate the operating system features 
without many restrictions and system safeguards. 

® UNIX is a registered trademark of American Telephone and Telegraph Company. 
1 Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language (Englewood Cliffs, New 

Jersey: Prentice-Hall, 1978), p. 1. 

3-2 Program Structure 



Some standard C constructs include preprocessor directives and a Run­
Time Library of functions and macros. In a UNIX system environment, a 
preprocessor completes the tasks designated in the preprocessor directives 
located in the source code before any action is taken by the compiler. 

Since the C language has no means to input and output information, a 
Run-Time Library usually provides this service. If a run-time function 
produces side effects other than those produced in the UNIX system 
environment, the function's portability is questionable. 

3.2 The VAX C Programming Language 

The VAX C programming language incorporates the features that are fun­
damental to the C language and that exist in most C compilers. However, 
VAX C also provides features, unique to VAX C, that work directly and 
efficiently with the VMS operating system environment. You, the VAX 
C user, must make a choice as to which set of features of VAX Care 
most important to your programming needs: portability across systems or 
highly efficient use of the VMS operating system features. Choosing one 
set of features over the other has its benefits as well as disadvantages. 

If you choose to program in VAX C so that your source programs are 
highly portable across systems, you sacrifice efficiency to some degree. In 
order for the VAX C compiler to emulate UNIX system features, which it 
must do to maintain a satisfactory degree of portability, VMS features may 
have to be manipulated, causing a loss of efficiency. For example, whereas 
a UNIX system accesses a file using a structure called a file descriptor, VAX 
Record Management Services (RMS) access files using a variety of control 
structures. In VAX C, input/output functions appear to access files in the 
same manner as UNIX systems, but the compiler actually manipulates 
RMS structures, making it appear as though you are working in a UNIX 
system environment. Most of the VMS manipulation is transparent to the 
user, but can slow the execution of a program in some instances. 

Most of the differences between VAX C and other implementations­
differences that hinder portabil~ty of source code-evolved due to the 
differences between VMS and UNIX. For example, it is difficult for 
VAX C to create an environment that allows the programmer a great 
amount of control, as in a UNIX system environment, when VMS will 
not grant a user such control; I/0 redirection is not a part of the VMS 
command line syntax; creating subprocesses in VMS is not as efficient 
as it is in UNIX; and, VMS high-level languages do not implement 
preprocessors in exactly the same manner as languages on a UNIX system. 
In this manual, differences between VAX C and other implementations 

Program Structure 3-3 



are flagged in the text so that you can use nonportable VAX C constructs 
efficiently. 

If you choose to program in VAX C so that your program works with VMS 
in an efficient manner, you sacrifice, to some degree, the option of being 
able to port your programs to and from other systems. For example, you 
can·call the VMS Run-Time Library routines within VAX C programs. 

However, you can have portability and efficiently access the powerful 
VMS environment also. You can use special constructs of 
VAX C and of the DIGITAL Command Language (DCL) (such as the 
VAX C preprocessor substitutions and the DCL command line qualifier 
/STANDARD=PORTABLE). These constructs allow you to execute some 
segments of code only when running on VMS, and to execute other 
segments of code when running on systems other than VMS. For a 
complete discussion of portability, refer to the VAX C Run-Time Library 
Reference Manual. For more information concerning the preprocessor 
directives, refer to Chapter 8, Preprocessor Directives. For information 
concerning the DCL command line, refer to Chapter I, Developing VAX C 
Programs at DCL Command Level. 

3.3 Writing a Program 

Although conceptually simple, writing the first program in an unfamiliar 
language can be a frustrating experience. Since computers are known 
for their efficient processing of numbers, the first program presented 
here is one which adds two numbers and stores the total in a variable. 
Example 3-1 shows how to code such a program. 

Example 3-1: Simple Addition in VAX C 

.. 1* This program adds two numbers and places the sum in * 
* the variable total. *1 

• mainO 
{ 

C) int total; 

~ total = 2 + 2; 
} 

3-4 Program Structure 

1* The function name "main" *1 
1* Begins function body *1 
1* Variable of type "int" *1 
1* Blank lines are allowed *1 
1* Answer placed in "total" *1 
1* Ends the function body *1 



The following numbers correspond to the numbers in the previous 
example: 

o The text bordered by the characters (/*) and (* /) are comments. 
You cannot place comments within comments (that is, they cannot be 
nested), but you can place comments anywhere white space appears. 
White space is an area within the source code where blank spaces 
or blank lines separate code. In following chapters, allowable white 
space is defined for VAX C constructs. 

• VAX C programs are comprised of user-defined external functions 
that cannot be nested. Here, a function named main is defined. In 
VAX C, execution of a program begins at either a function named 
main or at a function using the main_program option, or both; if a 
user-specified main function does not exist, the first function in the 
program stream at the time external references are resolved is the 
default main function. The main_program option is VAX C specific 
and is not portable. For more information concerning the syntax and 
usage of the main_program option, refer to Section 3.B.l. 

VAX C functions have methods of exchanging information using 
parameters and arguments. In the function definition of main, there 
are no parameters designated by the empty parentheses; therefore, in 
the previous example, the function main cannot receive information 
by use of parameters. 

In order to specify parameters in a function definition, you list the 
parameter identifiers within the parentheses and separate them with a 
comma (,). You must declare the parameters before the beginning of 
the body of the function. If you call a function from within function 
main (you normally do not call the main function from another part of 
your program), the function name is followed by a list of arguments 
delimited by parentheses and separated by commas. The number of 
arguments must correspond with the number of parameters in the 
function declaration. In the previous example, there are no function 
calls. 

The function performs its task as determined by the statements 
found in the body, and mayor may not return a value to the calling 
expression. The body of the function main is delimited by braces ({ }). 
They are analogous to the DO-END of PL/I, or the BEGIN-END of 
Pascal. Usually, the body contains one or more return statements. 
A return statement specifies what, if anything, is returned to the 
expression that called the function. Depending upon the set-up of 
the function, you can omit the return statement, and its return value 
would remain undefined. If a function does not return a value, you 

Program Structure 3-5 



can declare the function to be of data type void. For more information 
concerning functions, refer to Section 3.8.2. 

• In the example, the variable total is declared and defined within the 
function main. You must declare all variables before referencing them 
within the program. Declarations end with a semicolon (;). If you 
declare a variable, you specify its data type. Data types specify the 
amount of storage required and how to interpret the stored object. For 
example, variable total is of the data type int (integer), the object of 
which requires 32 bits (4 bytes or 1 longword) of memory. 

3-6 Program Structure 

VAX C interprets variables of type int as integers having a positive or 
negative sign (or zero). 

When you define a variable, you specify its storage class, which 
affects its location, lifetime, and scope. Variables of type int declared 
within a function have a default storage class of auto (automatic). 
Variables of this storage class receive storage space when the function 
is activated and storage is freed when control of the calling function 
resumes. Not all storage classes are implemented by default. The user 
can specify all VAX C storage classes and may place the storage class 
keyword either before or after the data type keyword in the variable 
declaration. 

Data types and storage classes are very important when determining 
the scope of a variable. For more information concerning data types, 
refer to Chapter 6, Data Types and Declarations. For more information 
concerning storage classes, refer to Chapter 7, Storage Classes and 
Allocation. 

The reserved words used to identify data types (such as int, double), 
storage classes (such as auto, globalvalue), statements (such as if, 
goto), and operators (such as sizeof) are called keywords. Keywords 
are identifiers that are predefined identifiers and cannot be redeclared. 
You cannot use these words to identify variables and functions in your 
programs. Keywords must be expressed in lowercase letters. For a list 
of the VAX C keywords, refer to Section 3.13. 

VAX C is a case-sensitive language. You can declare variables such as 
total in any mixture of upper- or lowercase letters. If you reference 
variable total in your program, the reference also must be lowercase. 
For example, if you attempt to reference variable Total, an error 
occurs; . the compiler does not recognize the variable name due to 
the initial capital letter. You do not have to be as specific when 
referencing all VAX C identifiers; all instances of case sensitivity are 
flagged in this manual. 



e Finally, the sum of 2 + 2 is stored in variable total. This is accom­
plished using a valid VAX C statement. You can use any valid expres­
sion as a statement by ending it with a semicolon (;). Identifier total is 
a declared variable; the equal sign (=) and the plus sign (+) are valid 
VAX C operators; and, the numbers being added are valid constants. 
For more information concerning the various VAX C statements, refer 
to Chapter 4, Statements. For more information concerning the 
VAX C operators, refer to Chapter 5, Expressions and Operators. 

3.4 Producing Input/Output 

The C language includes no facilities to administer input and output (I/O). 
However, all implementations must have methods by which the programs 
and users communicate. The lack of communication in the previous 
example is inconvenient; there is no way to know if the program assigns 
the correct value of 4 to variable total. You can use a VAX C Run-Time 
Library (RTL) function to output the value of variable total to the terminal. 

All C compilers are accompanied by a Run-Time Library of functions and 
macros in order to perform input, output, and various tasks related to 
specific operating environments. The VAX C Run-Time Library provides 
many of the functions and macros that are included with other imple­
mentations of the C language. In addition, there are functions that work 
directly and efficiently with the VMS environment.. 

VAX C RTL functions are segments of object code (and, as an op-
tion, shareable images) that are accessed when external references 
within your program are resolved. All the RTL object code mod-
ules are located in the libraries SYS$LIBRARY:VAXCCURSE.OLB, 
SYS$LIBRARY:VAXCRTLG.OLB, and SYS$LIBRARY:VAXCRTL.OLB. 
Before you can execute any of the example programs in this manual, you 
must define, in the correct order, the libraries the linker must search to 
resolve references to VAX C RTL functions. To determine in which order 
to define these libraries, refer to the VAX C Run-Time Library Reference 
Manual. For general information concerning libraries, refer to Chapter I, 
Developing VAX C Programs at DCL Command Level. 

VAX C RTL macro references within program source code look just like 
function references. However, the compiler replaces macro references 
with VAX C source code at an early stage in the execution process. The 
compiler locates VAX C RTL macro source code in the .H definition files 
provided with VAX C. If your system manager extracted these .H files 
during installation, you can access the files in the directory SYS$LIBRARY. 

Program Structure 3-7 



For example, you can type the STDIO.H file at your terminal with the 
following command: 

$ TYPE SYS$LIBRARY:STDIO.HIRETURNI 

If this command causes an error, see your system manager about the 
extraction of the .H files during installation. It is a good idea to type or 
print all of the .H files to see the macros and definitions provided with 
VAXC. 

You also can locate the .H definition files in text library VAXCDEF.TLB 
located in directory SYS$LIBRARY. This manual refers to the .H files as 
definition modules since they can be accessed as modules in this text 
library. 

For more information concerning macros, refer to Chapter 8, Preprocessor 
Directives. For more information on the various methods of accessing 
VAX C RTL functions, refer to the VAX C Run-Time Library Reference 
Manual. 

Example 3-2 shows that by using the VAX C RTL function printf, a 
VAX C program can print a message to the terminal. 

Example 3-2: Output of Information 

o 

1* This program adds two numbers, assigns the value 4 to * 
* variable total, and then prints the answer on the * 
* terminal screen. *1 

maine) 
{ 

} 

int total; 

total = 2 + 2; 
1* Print intro string 

printf("Here is the answer: II); 
printf(IY.-d.", total); 1* Print the answer 

The following number corresponds to the number in the previous 
example: 

o The VAX C RTL function printf writes to the standard output (the 
terminal screen). The first call to the RTL function printf passes a 
string as the argument. The second call to printf passes a string with 
special formatting characters and a variable as arguments. Within the 
formatting string, the percentage sign ( % ) is replaced by the value of 

3-8 Program Structure 



total, the minus sign ( - ) left-justifies the output, and letter d forces 
the value of the argument to be expressed as a decimal number. The 
period (.) prints immediately after the value of total. 

Output from this program is as follows: 

Here is the answer: 4. 

If you want to print the value of total on a separate line, then the newline 
character (\n) must be added to the string. Example 3-3 illustrates how 
to output on two lines. 

Example 3-3: Output Using the Newline Character 

/* This program adds two numbers, stores the sum in the * 
* variable total, and then prints the answer on two * 
* separate lines on the terminal screen. */ 

mainO 
{ 

int total; 

total = 2 + 2; 
/* Print intro string */ 

printf("Here is the answer ... \n"); 
/* Print the answer */ 

printf("Y.-d. II , total); 
} 

Output from this program is as follows: 

Here is the answer ... 
4. 

Now that a program producing output has been presented, it is necessary 
to compile, link, and execute the program using DIGITAL Command 
Language (DCL) to see the results. Compiling a program translates 
the source code to object code; linking a program organizes storage 
and resolves external references (for example, references to VAX C RTL 
functions); and, running a program executes the image. 

In the VMS environment, a file is distinguished by a file name and by a 
file extension. You should choose the file name so that the file is easily 
identifiable to the user. You should choose the file extension to reflect 
the functionality of the file. For example, the file name ADDITION.C 
is a good name for a VAX C source program. The file extension . C 
is the default file extension for the VAX C compiler. If the file name 

Program Structure 3-9 



ADDITION is given to the VAX C compiler, the compiler will look for the 
file ADDITION.C. 

Once your program has been created and named, the program can be 
compiled, linked, and executed as follows: 

Here is the answer ... 
4. 
$ 

The .OBJ and .EXE extensions are the default file extensions assigned to 
the object file and the image file, respectively. 

You may have to define more libraries to the linker in order to use 
VAX C RTL functions in your program. The definition in the previous 
example is sufficient to execute all example programs in this chapter. 
Once you have defined the libraries, you do not have to define them 
again for the remainder of the terminal session (until you log out). For 
more information concerning the specification of libraries to the linker, the 
creation of source code, and the compilation process, refer to Chapter I, 
Developing VAX C Programs at DCL Command Level. 

3.5 Controlling Program Flow 

There will be occasions when you must execute one or more VAX C 
statements given a certain condition. There will be other occasions when 
you must execute one or more VAX C statements repeatedly, within the 
body of a loop, until you meet a certain condition. There are several 
statements in VAX C that accomplish these tasks. These statements are 
the if statement, the switch statement, the do statement, and the for 
statement. For information concerning the while statement, another 
statement which loops until meeting a condition, refer to Chapter 4, 
Statements. 

3.5.1 The if Statement 

When executing one or more VAX C statements given a certain condition, 
you can use the if statement. Example 3-4 shows a program using the if 
statement. 

3-1 0 Program Structure 



Example 3-4: Conditional Execution Using the if Statement 

o 

/* This program asks the user to guess a letter. The * 
* program tells whether the answer's correct or * 
* incorrect. The program is hard coded to accept 'a' or * 
* 'A' as the correct letter. */ 

main() 
{ 

} 

char ch; /* Declare a character */ 
/* Ask the user to guess */ 

printf("Guess which letter I'm thinking of!\n"); 

ch = getcharO; /* Get the character 

/* Correct = "a" or "A" 
if (ch == 'a' I I ch == 'A') 

/* If correct guess 
printf("You're right!"); 

else /* If incorrect guess 
{ 

} 

printf("You're wrong.\n"); 
printf("You'll have to try again!"); 

The following numbers correspond to the numbers in the previous 
example: 

o The VAX C RTL function getchar retrieves a character from the 
standard output device (the terminal). The program pauses, waiting 
for the user to type a character and to press the RETURN key. The 
function getchar retrieves one character and ignores any others that 
are typed. 

8 If the letter that the user types is either 'a' or 'A', then a message 
stating that the choice is correct prints. If any other letter is typed, 
then a message stating that the choice is incorrect prints. The equality 
operator (==) compares the variable ch with the constants 'a' and 
'A'. The logical OR operator ( II ) presents the condition to test. If 
there is more than one statement to be executed upon condition, then 
you must enclose the statements within braces ({ }). A statement 
or statements enclosed within braces is called a block or compound 
statement. The concept of blocks is important when determining the 
scope of variables. For mote information concerning blocks, refer to 
Section 3.14. 

Program Structure 3-11 



Sample output from this program is as follows: 

$ RUN EXAMPLE41RETURNI 
Guess which letter 11m thinking of! 
B I RETURN I 
Youlre wrong. 
Youlll have to try again! 

3.5.2 The switch Statement 

The switch statement can perform the same task as the if statement does 
in the previous example, but switch is particularly useful when many 
conditions must be tested. An example of the switch statement is as 
follows: 

Example 3-5: Conditional Execution Using the switch 
Statement 

1* This program plays the same guessing game as the * 
* previous example except that it uses the switch * 
* statement. *1 

~ 'include ctype 

mainO 

1* Include proper module 

{ 

} 

3-12 Program Structure 

char ch; 

printf(IIGuess what 
ch = getcharO; 
ch = _tolower(ch); 
switch(ch) 

{ 

case la l : 

letter 11m thinking of!\n"); 

1* Convert "ch": lowercase *1 
1* Examine "ch" *1 
1* Body of switch statement *1 

printf (IIYou I re right! II) ; 

return; 

} 

default 1* Any other answer 
printf("Youlre wrong.\n ll

); 

printf(IIYoulll have to try again!"); 



The following numbers correspond to the numbers in the previous 
example: 

o When using the macro _tolower, you must include the definition 
module ctype in the compilation process. The module ctype is located 
in the text library SYS$LIBRARY:VAXCDEF.TLB, and defines macros 
and constructs used for character processing and classification. 

In VAX C, the preprocessor directives are processed by an early phase 
of the compiler, not by a separate program as the name preprocessor 
implies. Directives, unlike other VAX C lines of source code, begin 
with a pound sign ( #). The pound sign must appear in 
column I-the far left margin of your source file. Do not end prepro­
cessor directives with a semicolon. 

The module ctype is not the only module which contains macros 
and definitions used by the RTL functions; there are several ways 
to include definitions in the program stream. For more information 
concerning the VAX C RTL and the definition modules, refer to the 
VAX C Run-Time Library Reference Manual. 

• The compiler replaces the reference to the _tolower macro with a 
line of VAX C source code that, when the program is run, translates 
the value of the variable ch to a lowercase letter. To see the macro 
definition of _tolower, print the file SYS$LIBRARY:CTYPE.H. For 
more information concerning the possible side effects of macros, refer 
to Chapter 8, Preprocessor Directives. 

Output from this program is as follows: 

$ RUN EXAMPLE51RETURNI 
Guess which letter I'm thinking of! 
A I RETURN I 
You're right! 

The switch statement executes one or more of a series of cases based 
on the value of the expression in parentheses. If the value of variable 
ch is la /, then the statements following the label case la l : are executed. 
In the previous example, the _to lower macro translated all answers to 
lowercase letters, so there is no need to test for uppercase letter IAI. When 
a case label has been matched with the value of expression ch, all of the 
statements following all of the remaining case labels are executed until the 
compiler encounters a break statement (which terminates the immediately 
enclosing statement), a return statement (which terminates the enclosing 
function), or the end of the switch statement. The statements following 
the default label are executed if the value of the expression does not 
match any of the other case labels. For more information concerning 
switch statements, refer to Chapter 4, Statements. 

Program Structure 3-13 



3.5.3 Loops 

In the previous examples, the user could only guess once during the 
execution of the program. To guess another letter, you had to execute the 
program again. If you want to execute a segment of code repeatedly until 
a condition is met, you may use a loop. Some loops execute a block of 
statements, known as the loop body, a specified number of times. Some 
loops test for a ~o dition first and then execute the body of the loop if the 
condition is true. Some loops execute the loop body. and then test for a 
condition, there I y guaranteeing at least one execution of the body; in 
VAX C, this last loop is called the do statement. Example 3-6 shows that 
you can use the do statement to alter the letter-guessing program. 

3-14 Program Structure 



Example 3-6: Looping Using the do Statement 

o 

• 

/* This program plays the same guessing game as the * 
* other examples except that the user must guess until * 
* the answer is correct. This is accomplished using a * 
* do statement. */ 

'include ctype 

mainO 
{ 

} 

char ch; 

printf(IIGuess what letter I'm thinking of!\n"); 
printf("Keep guessing till you get it!\n"); 

do 
{ 

/* Do the following ... 
/* Beginning of loop body 

ch = getchar(); 
ch = _tolower(ch); 
switch(ch) 

{ 

case 'a' : 
printf("You're right!"); 
return; 

case '\n': 
break; 

default 

/* Ignore RETURN (newline) ch */ 

printf("You're wrong.\n"); 
printf("You'll have to try again!\nll); 

} /* End of switch statement 
} /* End of do loop body 

/* Condition to be tested 
while(ch != 'a' && ch != 'A'); 

The following numbers correspond to the numbers in the previous 
example: 

o In this example, the case label tests to see if the value of the char­
acter is a newline character (\n). The newline character is entered 
when you press the RETURN key. If it is the newline character, the 
character is ignored and a new character is taken from the terminal. 

Program Structure 3-15 



• In the while expression at the end of the do statement, the logical 
AND operator (&&) presents the condition to be tested. The while 
expression uses the not equal to operator (!=) and translates as 
follows: "while the variable ch is not equal to 'a' AND ch is not equal 
to 'A'." 

Output from this program is as follows: 

$ RUN EXAMPLE6!RETURN! 
Guess which letter I'm thinking of! 
Keep guessing till you get it! 
B!RETURN! 
You're wrong. 
You'll have to try again! 
A!RETURN! 
You're right! 

The for statement can be used to specify the number of times to execute 
the loop body; in regard to the previous examples, it can be used to limit 
the number of guesses that the user may attempt. You can use other loops 
to limit the amount of guesses, but you are responsible for incrementing a 
counter, whereas the for statement increments automatically. Example 3-7 
illustrates the use of the for statement. 

3-16 Program Structure 



Example 3-7: Looping Using the for Statement 

G 

/* This program plays the same guessing game as the * 
* previous examples except that the user is limited to * 
* three guesses. This is accomplished using a for * 
* statement. */ 

'include ctype 

maine) 
{ 

} 

char ch; 
int i; /* An increment or for loop */ 

printf(IIGuess what letter I'm thinking of!\n"); 
printf(lIYou have three guesses. Make them count!\n"); 

/* Do the following 3 times */ 
for (i = 1; i <= 3; i++ ) 

{ /* Beginning of loop body */ 
ch = get char 0 ; 
ch = _tolower(ch); 
switch(ch) 

{ 

case 'a' : 
printf("You're right!"); 
return; 

case '\n': 
--i; 
break; 

default 
printf("You're wrong.\n"); 
if (i != 3) 

printf("You'll have to try again!\nll); 
} /* End of switch statement */ 

} /* End of for loop body */ 
printf("Sorry, you ran out of guesses!"); 

The following numbers correspond to the numbers in the previous 
example: 

G In the example, the for statement controls how many times the body 
of the loop is executed. The first expression inside the parentheses 
following the keyword for initializes loop incrementor i to 
value 1. The second expression establishes an upper bound; the value 
of variable i is not to exceed 3. The third expression establishes the 

Program Structure 3-17 



increment or decrement value of the variable that will be executed 
after every execution of the loop body. The double plus signs (++) 
are the increment operator; they increase the value of a variable by 
the integer 1. The loop body is executed, and each time the value of 
variable i increases by 1, until the value of i is greater than 3. 

f) The double minus signs (--) are the decr~ment operator. The 
decrement operator is used in this example to subtract one from the 
value of variable i so that newline characters would not be counted as 
the guess of a letter. 

Sample output from the program is as follows: 

$ RUN EXAMPLE71RETURNI 
Guess which letter I'm thinking of! 
You have three guesses. Make them count! 
BIRETURNI 
You're wrong. 
You'll have to try again! 
CIRETURNI 
You're wrong. 
You'll have to try again! 
UIRETURNI 
You're wrong. 
Sorry, you ran out of guesses! 

3.6 Values, Addresses, and Pointers 

In VAX C, every variable has two types of values: a memory location and 
a stor~d object. In VAX C, an lvalue is the variable's address in memory, 
and an rvalue is the stored object. Consider the following: 

This assignment statement is not very different from statements in other 
programming languages, but think about the differences between locations 
in memory and objects stored in memory. This assignment takes take_ 
this_object's rvalue and places it in memory at put-it-here's lvalue. 

Consider the following VAX C assignment statement: 

int x = 2, y; 

1* put_it_here 

y 

3-18 Program Structure 

x; 



The two distinct variables have different memory locations (lvalues), but, 
after the assignment statement, they contain objects of the equivalent 
value 2. 

A variable's rvalue can be many things, such as integers, real numbers, 
character strings, or data structures. One type of integer that it can be is 
the address of another variable. In other words, a variable's rvalue can 
be another variable's lvalue. In this case, one variable points to another 
variable. 

A declaration of a variable whose rvalue is a pointer to another variable is 
as follows: 

int *pointr; 

The indirection operator (*) specifies that the variable is a pointer, which 
in this example points to an object of data type int. Pointers are declared 
as pointing to an object of a particular data type. 

You can assign the address of a variable to the pointer as follows: 

static int *pointr; 
static int x = 10. Y =0; 

pointr = &x; 

/* Declarations 

/* Assignment 

The rvalue of the variable pointr is the lvalue of variable x. Notice that 
in other example assignment statements, the rvalue of the variable on the 
right side of the equal sign (=) was taken. In this example, the ampersand 
( &), which is the address of operator, translates to the following: "take 
the lvalue of this variable instead of its rvalue." 

The keyword static specifies the static storage class. For information 
concerning static and other storage class specifiers and modifiers, refer 
to Chapter 7, Storage Classes and Allocation. 

Figure 3-1 illustrates the difference between rvalues and lvalues. 

Program Structure 3-19 



Figure 3-1: rvalues, Ivalues, and Assigning Pointers 

Lvalues 
(addresses) 

1400 

141F 

14F2 

Rvalues 
(objects) 

-0 

Variable 
Identifiers 

x 

pOintr 

y 

ZK-3019-84 

Notice how the value of the variable pointr contains the address of 
variable x. Remember that the location of variables in memory and the 
order in which the compiler processes them is unpredictable and left to 
the discretion of the compiler. 

3-20 Program Structure 



Once you have assigned an address to the pointer, you will want to use it. 
For example, if you wanted to assign x's rvalue to a variable y, you could 
use the pointer in a VAX C statement as follows: 

y = *pointr; 

The asterisk (*) is the VAX C indirection operator; the object of the 
variable being pointed to by pointr is assigned to y. The indirection 
operator translates as follows: "the rvalue of this variable points to 
some other vq!iable, so go to that location and access the stored object." 
Figure 3-2 shows the status of the variables after you execute the last code 
example. 

Program Structure 3-21 



Figure 3-2: The Indirection Operator in Assignments 

Lvalues 
(ad dresses) 

1400 

141F 

14F2 

Rvalues 
(objects) 

-0 
-G 
-[] 

Variable 
Identifiers 

x 

pointr 

y 

ZK-3020-84 

For more information concerning pointers, refer to Chapter 6, Data Types 
and Declarations. 

3-22 Program Structure 



3.7 Aggregates 

The variables used in the previous examples were either pointers or single 
objects that could be manipulated, in their entirety, in an arithmetic ex­
pression. These types of variables are called scalar variables. The 
VAX C data structures-arrays, structures, and unions-are called aggre­
gates. Aggregates are comprised of segments called members. Members 
are sections of the structure which you can declare to be of a scalar or an 
aggregate data type. 

3.7.1 Arrays and Character Strings 

An array is a data structure whose members are of the same type. 
Members of arrays can be any of the scalar or aggregate data types. 

In VAX C, character strings are represented internally as arrays of type 
char. A character string may be declared and initialized as a character­
string variable using the indirection operator (*), as an array of a specified 
number of members, or as an array of an unspecified number of members 
as follows: 

char *str = "Hello" ; 
char string[6] = "Hello"; 
char strng [] = "Hello" ; 

In VAX C, all character strings end with the NUL character (\0). In the 
previous example, the NUL character is appended to Hello making the 
string six characters in length. When assigning strings to character-string 
and array variables within the program, you must use the string-handling 
VAX C Run-Time Library functions. For more information concerning the 
string-handling functions, refer to the VAX C Run-Time Library Reference 
Manual. Example 3-8 illustrates the use of character strings and arrays. 

Program Structure 3-23 



Example 3-8: Character String Constants and Arrays 

1* This program plays the same guessing games as the 
* previous examples except ~hat it uses character 
* string constants and arrays. 

mainO 
{ 

* 
* *1 

char ch; 1* Declare a character *1 

} 

1* Initialize messages *1 
char *greeting = "Guess which letter I I m thinking of! II ; 

char *message1 "Youlre right!"; 
char *message2 = "Youlre wrong."; 
char *message3 = "Youlll have to try again! II; 

char correct[2]; 
correct[O] = la l ; 
correct[1] = IAI; 

printf(lIb\nll • greeting); 
ch = getchar(); 

1* Store correct letters 

1* Yes = char string 

if (ch == correct[O] I I ch == correct[1]) 
printf (IIYeSIl. messagel); 

else 
{ 

} 

printf(IIYes\n ll • message2); 
printf(IIYesll. message3); 

Output from the program is as follows: 

$ RUN EXAMPLES!RETURN! 
Guess which letter lim thinking of! 
B !RETURN! 
Youlre wrong. 
Youlll have to try again! 

For more information concerning arrays and character strings, refer 
to Chapter 6, Data Types and Declarations. 

3-24 Program Structure 



3.7.2 Structures and Unions 

Structures and unions are aggregates whose members can be of different 
types. Structures and unions are declared using the keywords struct and 
union, an optional tag name, and a list of member declarations delimited 
by braces ( { }). A member of a structure or a union is a declared segment 
of the data structure. The syntax for declaring a member is the same as 
for declaring any variable. The structure or union tag is a name that can 
be used when declaring structure or union variables of the same type 
elsewhere in the program. Members of structures and unions may be 
referenced as follows: 

mainO 
{ 

struct optional_tag 
{ 

char letter_1; 
char letter_2; 
int number; 

1* Tag = optional_tag *1 

} characters = {'a', 'b', 59}; 1* Variable = characters *1 

characters.letter_1 = characters.letter_2; 
} 

Members may be referenced using the structure or union variable name, 
directly followed by a period (.), directly followed by the member name. 
As in the previous example, structures are initialized using a variable name 
and an assignment operator (=) immediately following the declaration of 
the members. The values of the members are delimited by braces and 
separated by commas (,). The address of the first member of a structure 
begins, in memory, at the base of the data structure, which is referred to 
as offset zero. 

Unions are declared in the same way as structures, but all members in a 
union begin at offset zero. Unlike structures, unions cannot be initialized. 
The size of the union in memory is as large as its largest member. When 
the single storage space allocated to the union contains a smaller member, 
the extra space between the end of the smaller member and the end of the 
allocated memory remains unaltered. Example 3-9 illustrates the nature 
of unions. 

Program Structure 3-25 



Example 3-9: Single Storage Allocation of Unions 

/* This example illustrates the storage maintenance of * 
* unions with different size members. */ 

mainO 
{ 

} 

union 
{ 

char lastname[8]; 
char firstinit; 

} overlap; 

/* Declare the union 

/* Array for a last name */ 
/* Char. for first initial */ 

/* Copy and print members */ 
strcpy(overlap.lastname. "Jackson"); 

printf(lY.s\n". overlap.lastname); 
overlap.firstinit = 'M'; 
printf("%c\n". overlap.firstinit); 
printf(lY.s\n". overlap.lastname); 

Output from this example is as follows: 

$ RUN EXAMPLE9.EXE IRETURNI 
Jackson 
M 
Mackson 

The RTL function strcpy copies the second string into the array variable. 
When assigning values to smaller union members, the compiler does not 
fill the remaining space with NUL characters ('\0'); whatever was in 
memory at the time remains. For more information concerning structures 
and unions, refer to Chapter 6, Data Types and Declarations. 

3-26 Program Structure 



Example 3-10 shows a structure definition and its usage. 

Example 3-10: Structures 

0 

/* This program plays the same guessing game as the * 
* previous examples except that it uses a structure. */ 

mainO 
{ 

char ch; 
char 
char 
char 
char 
char 
char 
int 

struct 
{ 

*greeting1 
*greeting2 
*message1 

= "Guess which letter lIm thinking of!"; 
= II You I ve 3 guesses. Make them count! II ; 

"You lre right! "; 
*message2 "Youlre wrong. II ; 
*message3 II You III have to try again! II ; 

*message4 II Sorry , you ran out of guesses!"; 
i; 

/* Store information */ 
storage /* Structure tag = storage */ 

char small_a; /* One correct letter */ 
char capital_a; /* Another correct letter */ 
char newline_ch; /* newline character */ 
int num_guesses; /* Number of guesses */ 

} the_var; /* Dummy declaration */ 

/* Declare "letter" * 
* */ 

~ struct storage letter 

letter.num_guesses = 3; 

{Ia l , 
using tag II storage II 
IAI, I\n l}; 

printf("Y.s\n", greeting1); 
printf("Y.s\n", greeting2); 

(Continued on next page) 

Program Structure 3-27 



Example 3-10 (Cont.): Structures 

} 

for (i = 1; i <= letter.num_guesses; i++) 
{ 

ch = getcharO; 
if (ch == letter. small_a I I ch == letter.capital_a) 

{ 

} 

else 

printf("%s". message1); 
return; 

if (ch == letter.newline_ch) 
--i; 

else 
{ 

} 

printf("%s\n". message2); 
if (i != 3) 

printf("%s\n". message3); 

} /* End of for loop body */ 
printf("%s". message4); 

The following numbers correspond to the numbers in the previous 
example: 

o In the example, the structure declaration with the tag storage has four 
members. The first three members are of type char. The last member 
is of type int. The dummy variable the_var initiates storage allocation 
and enables the tag storage to be used in structure declarations 
elsewhere in the program. 

• The variable letter is declared using the tag storage and individual 
members of the structure are initialized. The equal sign initializes 
the members of the structure variable with constants. The constants 
are separated by a comma and are delimited by braces. The number 
of initializing constants cannot exceed the number of members. 
However, as in this example, you may omit constants; the compiler 
pads the uninitialized member (in the example, member num_ 
guesses) with zeros. However, you cannot initialize a member in the 
middle of any aggregate without initializing the previous members. 

3-28 Program Structure 



Output from the program is as follows: 

$ RUN EXAMPLE10!RETURN! 
Guess which letter I'm thinking of! 
You've 3 guesses. Make them count! 
B ! RETURN I 
You're wrong. 
You'll have to try again! 
C!RETURNI 
You're wrong. 
You'll have to try again! 
UIRETURNI 
You're wrong. 
Sorry, you ran out of guesses! 

After executing these program examples, you are well on your way to 
programming in VAX C. 

3.8 Function Definitions 

You may declare or define functions you wish to call or use in a 
VAX C program. You mayor may not have to declare user-defined 
functions before you call them. This is dependent on what type of value 
the function returns, and the position of the function definition within 
the program. This section explains the rules for defining functions, but 
you may wish to refer to the discussion of declarations and definitions 
in Chapter 6, Data Types and Declarations, before reading further. 

In a function definition, you specify the VAX C statements that execute 
whenever you call the function. You also specify the parameters (if any) 
of the function. The parameters of a function provide a means to pass data 
to the function. See Section 3.11 for a detailed discussion of parameters 
and arguments. 

Program Structure 3-29 



Example 3-11 presents an example of two function definitions. 

Example 3-11: Case Conversion Program 

1* This program converts its input to lowercase. The * 
* first function passes control to the second function * 
* to convert a letter. Comments are located to the * 
* right of the code. *1 

tinclude stdio 
mainO 

O{ 
1* To use 1/0 definitions 

} 

FILE *infile, *outfile; 
int i, c, c_out; 

1* Declare files 

infile 
1* Open "infile" for input 

fopen(lexl13.in", "r"); 

1* Open "outfile" for output *1 
outfile fopen(l exl13.out", "W"); 

1* While not end of file ... *1 
1* Get a char from the file *1 

while «c = getc(infile» != EOF) 
{ 

} 

c_out = lower(c); 1* Send char to "lower" *1 
1* Output the char to file *1 

putc(c_out, outfile); 

return; 1* Optional return statement *1 

1* --------------------------------------------------- * 
* Beginning of the next function definition: * 
* --------------------------------------------------- *1 

1* Function and parameter * 
* name 

• lower(c_up) 
~ int c_up; 1* Declare parameter type *1 

{ 1* Beginning function body *1 

} 

3-30 Program Structure 

1* If capital, convert *1 
if (c_up >= 'A' && c_up <= 'Z') 

return c_up - 'A' + 'a'; 
else 1* Else, return as is *1 

return c_up; 

1* End of function body *1 
1* End function definition *1 



The fQllQwing numbers cQrresPQnd tQ the numbers in the previQus 
example: 

o PrQgram executiQn begins with functiQn main. A left brace ({) signi­
fies the beginning 'Of the functiQn bQdy; a right brace (} ) signifies the 
end 'Of the bQdy. The functiQn bQdy is any set 'Of valid VAX C state­
ments 'Or declaratiQns. Usually, the bQdy includes 'One 'Or mQre return 
statements, as shQwn here. A return statement can specify an expres­
siQn whQse value is returned tQ the calling functiQn. If the expressiQn 
is 'Omitted, the returned value is undefined in the calling functiQn. If 
the return statement is not included, the functiQn terminates when 
the right brace is encQuntered, and its return value is undefined. FQr 
mQre infQrmatiQn cQncerning the return statement, refer tQ Chapter 4, 
Statements. 

• The identifier IQwer begins a new functiQn definitiQn; functiQn IQwer 
has the single parameter c_up. AlthQugh functiQn main has nQ 
parameters, the parentheses must be present. 

e The next statement, int c_up, declares the parameter's data type; in 
this case, int (integer). The declaratiQn is 'Omitted if the functiQn has 
nQ parameters; furthermQre, declaratiQns in this place in the prQgram 
shQuld specify 'Only the names 'Of parameters, nQt the names 'Of 'Other 
variables used in the functiQn bQdy. FQr mQre infQrmatiQn cQncerning 
data types, refer tQ Chapter 6, Data Types and DeclaratiQns. 

FQr mQre infQrmatiQn cQncerning the VAX C QperatQrs used in the previ­
QUS example, refer tQ Chapter 5, ExpressiQns and OperatQrs. 

3.8.1 Main Function and Function Identifiers 

The executiQn 'Of a prQgram begins at the functiQn whQse identifier is 
main, 'Or, if there is nQ functiQn with this identifier, at the first functiQn 
seen by the VMS Linker. In Example'3-11, the main functiQn physically 
precedes the functiQn IQwer, but the tWQ functiQn definitiQns CQuid appear 
in the reverse 'Order. The wQrd main is nQt a language keywQrd, SQ it may 
be used fQr 'Other purpQses in the prQgram. 

FunctiQn names have cQmpile-time sCQpe rules that are slightly different 
frQm thQse that apply tQ 'Other identifiers. Any valid functiQn identifier 
fQllQwed by a left parenthesis is declared implicitly as the name 'Of a 
functiQn whQse stQrage class is external and whQse return value is 'Of the 
data type int. FQr mQre infQrmatiQn cQncerning scope and stQrage classes, 
refer tQ Chapter 7, StQrage Classes and AllQcatiQn. 

Program Structure 3-31 



Between the definition of a function's identifier and the declaration of its 
parameters, you can write the following option: 

The main_program option identifies the function as the main function in 
the program. It is not a keyword, and it can be expressed in either upper­
or lowercase. Use the main_prog~am option when the program does not 
contain function main and when you do not want the program's execution 
to begin at the first function linked. For example, the following definition 
establishes function lower as the main function; execution begins there, 
regardless of the order in which the function is linked. 

char lower(c_up) 
MAIN_PROGRAM 
int c_up; 
{ 

} 

NOTE 

The main_program option is VAX C specific and is not 
portable. 

3.8.2 Parameter List Declarations 

Example 3-11 illustrates only one of two possible methods of listing 
function parameters, as follows: 

lower( c_up ) 
int c_up; 
{ 

To make your code concise, you may wish to list the data types of 
the function parameters within the parameter list. If you use this 
method, your function definition also serves as a function prototype. 
See Section 3.10 for more information concerning the effect of function 
prototypes. 

3-32 Program Structure 



The second method of declaring parameter data types is shown in the 
following code example: 

lower( int c_up ) 
{ 

For instance, if you need to declare parameters of different data types, 
your function definition may appear as follows: 

function_name( int lower, int upper, int temp, char x, float y ) 
{ 

If you are using the function prototype format in a function definition, 
you must supply both an identifier and a data type specification for each 
parameter. If you do not, the action generates an error message. 

In a function definition, you have the following two options when specify­
ing an empty parameter list: 

1. You can specify empty parentheses. 

2. You can use the keyword void to specify an empty parameter list. 

An example of the use of the void keyword is as follows: 

char function_name( void ) 
{ return I a '; } 

3.8.3 Function Return Data Types 

By default, all VAX C functions return objects of data type into In 
Example 3-11, function lower returns an integer to the main function 
using the return statement. 

If you define a function that returns anything other than an integer, you 
need to specify the function return data type in the function definition. 
The following example illustrates the definition of a function returning a 
character. 

Program Structure 3-33 



char letter( int paraml. char param2. int *param3. ) 
{ 

return param2; 

If a function does not return a value, or if you do not call the function 
within an expression which requires a value, you can define the function 
to return a value of type void. Use of the void keyword generates an 
error under the following conditions: 

• If the function returns a value. 

• If you call the void function in an expression that requires a return 
value. 

• If you use the void keyword with the cast operator for anything other 
than a function. 

The following example illustrates the use of the void keyword to specify a 
function without a return value and to specify a null parameter list: 

void message( void) 
{ 

printf("Stop making sense!"); 
return; 

} 

3.8.4 Variable-Length Parameter Lists 

If you decide to define a function with a variable-length parameter list, 
you can use ellipses ( ... ) to designate the variable-length portion of the 
parameter list, as follows: 

function_name( int lower. int upper. int temp. char x. float y .... ) 
{ 

Within the function body, you should use the varargs functions and 
macros to access the (irgument list passed to the function. The varargs 
functions and macros provide a portable means of accessing variable­
length argument lists. For more information concerning variable-length 
argument lists, refer to the varargs information in the VAX C Run-Time 
Library Reference Manual. 

3-34 Program Structure 



When using ellipses for variable-length argument lists, you must have 
at least one argument preceding the ellipses. The following definition is 
legal: 

funetion_name( double lower, ... ) 
{ 

The following definition is not legal: 

funetion_name( ... ) 
{ 

If you are not using function prototypes, you can use the varargs header 
and declar~tion within the parameter list and before the function body, as 
opposed to using the ellipsis notation. The following example illustrates 
such a construct: 

funetion_name( lower, upper, temp, x, y, va_alist ) 
int lower, upper, temp; 
ehar x; 
float y; 
va_del 
{ 

NOTE 

If you use function prototypes, you should use ellipses ( .. . ) 
within parameter lists so that the compiler does not compare 
varargs declarations (va_alist, va_dcl) with prototype data 
declarations. See Section 3.10 for more information concerning 
function prototypes. 

3.9 Func:tion Declarations 

As in Example 3-11, you may call a function without declaring it if the 
function's return value is an integer. If the return value is anything else, 
the function may have to be declared. Example 3-12 illustrates when you 
need to declare a function. 

Program Structure 3-35 



Example 3-12: Declaring Functions 

mainO 
{ 

Ct char lower(); /* The function declaration */ 

while «c = getc(infile» != EOF) 
{ 

/* The function call */ 
c_out = lower(c); 
putc(c_out. outfile); 

} 
} 

char lower(c_up) 
int c_up; 
{ 

} 

/* The function definition */ 

The following number corresponds to the number in the previous 
example: 

Ct Since the location of the function definition is after the main function 
in the source code, and since function lower has a return type of char, 
you have to declare the function before calling it. 

If the function definition of lower was located before the main function in 
the source code, despite lower's return data type, you would not have to 
declare function lower before you call the function. 

In a function declaration, you can use the keyword void to specify an 
empty argument list, as follows: 

maine) 
{ 

char function_name( void ); 

} 

char function_name( void ) 
{ } 

3-36 Program Structure 



If the function's return data type is void, you must use the keyword in the 
declaration, as follows: 

mainO 
{ 

void function_name( void ); 

} 
void function_name( void) 
{ } 

If you specify argument data types or void in a function declaration, as 
shown in the following example, VAX C treats the function declaration as 
a function prototype for the scope of the declaration: 

mainO 
{ 

char function_name( int x, char y ); 

} 

Since the declaration is within the scope of function main, VAX C uses the 
function declaration as a function prototype only within function main. 
See Section 3.10 for more information concerning function prototypes. 

3.10 Function Prototypes 

A function prototype is a function declaration that specifies the data types 
of its arguments in the identifier list. VAX C uses the prototype to ensure 
that all function definitions, declarations, and calls within the scope of the 
prototype contain the correct number of arguments or parameters, and 
that each argument or parameter is of the correct data type. 

Function prototypes provide argument checking found in the LINT utility 
provided with other implementations of C. See Section 3.16 for more 
information. 

When using function prototypes, you can first define the following func­
tion: 

char function_name( int lower, int *upper, char (*func)(), double y ) 
{ } 

Program Structure 3-37 



Or, equivalently: 

char function_name( lower. upper. func. y ) 
int lower; 
int *upper; 
char (*func) 0; 
double y; 
{ } 

This function's identifier list includes an integer, a pointer to an integer, 
a pointer to a function returning a character, and a floating point value. 
The type specifications are identical to the ones used in a parameter list 
located before the function body. For more information concerning the 
interpretation of complex declarations, refer to Chapter 6, Data Types and 
Declarations. 

In each compilation unit in your program, you should determine the posi­
tion in which to place the corresponding function prototype. The position 
of the prototype determines the prototype's scope; the scope of the func­
tion prototype is the same as the scope of any function declaration. 
VAX C checks all function definitions, declarations, and calls from the 
position of the prototype to the end of its scope. If you misplace the 
prototype so that a function definition, declaration, or call occurs outside 
of the scope of the prototype, the results are undefined. 

Corresponding function prototype declarations are identical to the header 
of a function definition that specifies data types in the identifier list. Since 
prototypes are actually function declarations, you end the prototype code 
with a semicolon (;). The following code example is a prototype that 
corresponds with either of the previous function definitions: 

char function_name( int lower. int *upper. char (*func)(). double y ); 

When declaring function prototypes, you do not need to use the same 
parameter identifiers as in the function definition. If you choose, you 
do not need to specify any identifiers in the prototype declaration. The 
scope of the identifiers within function prototypes exists only within the 
identifier list; you are free to use those identifiers outside of the prototype. 

For example, you can use any of the following prototype declarations for 
the function definition presented: 

char function_name( int lower. int *upper. char (*func)(). double y ); 
char function_name( int a. int *b. char (*c)(). double d ); 
char function_name( into int *b. char (*c)(). double ); 
char function_name( into int *. char (*)(). double ); 

3-38 Program Structure 



You can specify variable-length argument lists in function prototypes by 
using ellipses. You must have at least one argument in the list preceding 
ellipses. The following example illustrates the specification of a variable­
length argument list: 

char function_name( int lower, '" ); 

You cannot omit data type specifications in a function prototype. Also, 
you cannot have a variable-length argument list that is not preceded by at 
least one argument. The following prototypes are not legal and their use 
generates appropriate error messages: 

char function_name( lower, *upper, char (*func)(), float y ); 
char function_name ( char (*func)(), float y ); 
char function_name ( ... ); 

3.10.1 Using Function Prototypes 

The use of the function prototype ensures that all corresponding function 
definitions, declarations, and calls within the scope of the prototype 
conform to the number and type of parameters specified in the prototype. 
A function prototype is considered in scope only if a function prototype 
declaration has been specified within a block enclosing the function call 
or at the outermost level of the source file. If a prototype is in scope, 
the automatic widening of float arguments to double is not performed. 
However, the automatic widening of char and short int arguments to 
int is performed. If the number of arguments in a function definition, 
declaration, or call does not match the prototype, the statement generates 
the appropriate message. 

If the data type of an argument in a function call does not match the 
prototype, VAX C attempts to perform conversions. If the mismatched 
argument is assignment compatible with the prototype parameter, VAX C 
converts the argument to the data type specified in the prototype, accord­
ing to the parameter and argument conversion rules (see Section 3.11). 

If the mismatched argument is not assignment compatible with the 
prototype parameter, the action generates the appropriate error message 
and the results are undefined. 

The syntax of the function prototype is designed so that you can extract 
the first line of each of your function definitions, add a semicolon (;) to 
the end of each line, place the prototypes in a .H definitions file, and 
include that file at the top of each compilation unit in your program. In 
this way, you declare the function prototypes to be external, so that the 
scope of the prototype extends throughout the entire compilation unit. 

Program Structure 3-39 



Also, if you wish to use prototype checking for VAX C Run-Time Library 
(RTL) function calls, you can include the modUle or modules appropriate 
for the RTL functions used in your program. You place the include 
preprocessor directives at the top of any applicable compilation units. 

For more information concerning the RTL prototype include modules, refer 
to the VAX C Run-Time Library Reference Manual. For more information 
concerning preprocessor directives, refer to Chapter 8, Preprocessor 
Directives. For more information concerning compilation units and scope, 
refer to Chapter 7, Storage Classes and Allocation. 

3. 11 Using Parameters and Arguments 

VAX C functions can exchange information by means of parameters and 
arguments. (In this manual, the term parameter denotes the variable 
within parentheses named in a function definition; the term argument 
denotes an expression that is part of a function call.) In Example 3-11, 
function lower has the single parameter c_up. When this function is 
called from the main function, argument c is evaluated and passed to 
function lower. 

The following rules apply to parameters and arguments of VAX C 
functions: 

• 

• 

• 

• 

3-40 Program Structure 

The number of arguments in a function call must always be the same 
as the number of parameters in the function definition. This number 
may be zero. 

In VAX C, the maximum number of arguments (and corresponding 
parameters) is 253 for a single function. The maximum length of an 
argument list is 255 longwords. 

Arguments are separated by commas. However, the comma is not an 
operator in this context, and the arguments may be evaluated by the 
compiler in any order. You should not expect function calls or other 
complicated expressions in the argument list to be evaluated in any 
particular order. 

In VAX C, all arguments are passed by value; that is, when a function. 
is called, the parameter receives a copy of the argument's value, not its 
address. The rule applies to all scalar variables, structures, and unions 
passed as arguments. A function cannot modify the values of its 
arguments. However, since arguments can be addresses or pointers, a 
function can use addresses to modify the values· of variables defined 
in the calling function. 



NOTE 

When passing arguments between programs written in 
VAX C and programs written in other VMS programming 
languages, remember the restrictions of the VAX Calling 
Standard. For more information concerning the VAX 
Calling Standard and passing arguments in VAX C, refer 
to Chapter 10, Mixed-Language Programming. 

• The types of evaluated arguments must match the types of their cor­
responding parameters. When a function is called, unless a function 
prototype is in scope, VAX C does not compare the types of the ar­
guments with those of the corresponding parameters and thus does 
not generally convert the arguments to the types of the parameters. 
Instead, all of the expressions in the argument list are converted 
according to the following conventions: 

Any arguments of type float are converted to double. 
Any arguments of types char or short are converted to into 

Any arguments of types unsigned char or unsigned short are 
converted to unsigned into 

Any function name appearing as an argument is converted to 
the address of the named function. The corresponding parameter 
must be declared as a pointer to a function, which evaluates to a 
value of the same data type as the function. 

Any array name appearing as an argument is converted to the 
address of the first element of the array. The corresponding 
parameter can be declared either as an array of the given type or 
as a pointer to the given type. Since character-string constants are 
declared implicitly as arrays of characters, this rule also applies to 
the use of string constants as arguments. 

No other conversions are performed on arguments. If you know that 
a particular argument must be converted to match the type of the 
corresponding parameter, use the cast operator. For more information 
concerning the cast operator, refer to Chapter 5, Expressions and 
Operators. 

• If you declare variables in the parameter declaration section that 
do not exist in the parameter list, these variables are treated as 
if they were declared in the function body. However, this is not 
good programming practice and, if used, your programs may not be 
portable. 

• If you do not declare parameters, they are implicitly declared to be of 
data type int. 

Program Structure 3-41 



3.11. 1 Function and Array Identifiers as Arguments 

A function identifier can also be used without parentheses and arguments. 
In this case, the function identifier evaluates to the address of the function. 
This method of referencing is useful when passing a function identifier in 
an argument list. You can pass the address of one function to another as 
one of the arguments. 

If you wish to pass the address of a function in an argument list, the 
function must either be declared or defined, even if the return value of 
the function is an integer. Example 3-13 shows when you must declare 
user-defined functions and how to pass functions as arguments. 

Example 3-13: Declaring Functions Passed as Arguments 

t) x() {return 25; } 

main() 
{ 

f) int yO; 

funct(x. y); 

} 

y() { return 30; } 

funct(f1. f2) 

e int (*f1) O. (*f2) 0; 
{ 

} 

3-42 Program Structure 

/* Defined before it is * 
* used 

/* Function declaration 

/* Passed as addresses 

/* Function definition */ 

/* Function definition */ 
/* Declare arguments as * 
* pointers to functions * 
* returning an integer */ 

/* A call to a function */ 



The following numbers correspond to the numbers in the previous 
example: 

o You can pass function x in an argument list, since its definition is 
located before the main function. 

8 You must declare function y before you pass the function in an 
argument list, since its function definition is located after the main 
function. 

• When you pass functions as arguments, do not include the 
parentheses. 

e When declaring the function, identifiers as parameters, declare the 
function as the result of the indirection operator (*) applied to the 
address of the function. For more information concerning parenthe­
ses in expressions and the indirection operator, refer to Chapter 5, 
Expressions and Operators. 

VAX C treats array parameters in the same way. If you pass an array 
identifier in an argument list, VAX C translates the identifier as a pointer 
to the data type of the array elements. In order to access the first element 
of the array, you need to dereference the pointer. For more information 
concerning pointers, addresses, and dereferencing, refer to Chapter 6, Data 
Types and Declarations. 

3.11.2 Passing Arguments to the Main Function 

The main function in a VAX C program can accept arguments from the 
command line from which it was invoked. The syntax for a main function 
is as follows: 

int main(argc. argv. envp) 

int argc; 
char *argv[ ] .*envp[ ]; 

In this syntax, parameter argc is the count of arguments present in 
the command line that invoked the program, and parameter argv is a 
character-string array of the arguments. Parameter envp is the environ­
ment array. It contains process information, such as the user name and 
controlling terminal. It has no bearing on passing command-line argu­
ments. Its primary use in VAX C programs is during exec and getenv 
function calls. (For more information, refer. to the V AX C Run-Time Library 
Reference Manual). 

Program Structure 3-43 



In the main function definition, the parameters are optional. However, 
you can access only the parameters that you define. You can define 
function main in any of the following ways: 

mainO 
main(argc) 
main (argc, argv) 
main (argc, argv, envp) 

To pass arguments to the main function, you must install the program as a 
DCL foreign command. When a program is installed and run as a foreign 
command, the parameter argc is always greater than or equal to I, and 
argv[O] always contains the name of the image file. 

Briefly, the procedure for installing a foreign command involves the use 
of a DCL assignment statement to assign the name of the image file to a 
symbol that is subsequently used to invoke the image. For example: 

$ ',ECHO == II $ DSK$: COMMARG . EXE II I RETURN I 

The symbol ECHO is installed as a foreign command that invokes the 
image in COMMARG.EXE. The definition of ECHO must begin with a 
dollar sign ($ ) and include a device name, as shown. 

For more information concerning the procedure for installing a foreign 
command, refer to the VAX/VMS DeL Dictionary. 

Example 3-14 shows a program called COMMARG.C, which displays the 
command-line arguments that were used to invoke it. 

Example 3-14: Echo Program Using Command-Line 
Arguments 

1* This program echoes the command-line arguments. 

'include stdio 

main(argc, argv) 
int argc; 
char *argv [] ; 
{ 

} 

int i; 
1* argv[O] is program name *1 

printf("program: Yos\n",argv[O]); 

for (i = 1; i < argc; i++) 
printf("argument Yod: Yos\n", i, argv[i]); 

3-44 Program Structure 



You can compile and link the program using the following DCL 
command lines: 

$ cc cOMMARclRETURNI 
$ DEFINE LNK$LIBRARY SYS$LIBRARY:VAXCRTL.OLBIRETURNI 
$ LINK COMMARCIRETURNI 

Sample output from this program is as follows: 

$ ECHO Long "Day's" "Journey into Night"IRETURNI 
program: db7:[oneill.plays]commarg.exe;1 
argument 1: long 
argument 2: Day's 
argument 3: Journey into Night 

DCL converts most arguments on the command line to uppercase letters. 
However, VAX C internally parses and modifies the altered command line 
to make VAX C argument access compatible with C programs developed 
on other systems. 

All alphabetic arguments in the command line are delimited by spaces. or 
tabs. Arguments that have embedded spaces or tabs must be enclosed in 
quotation marks C' II). Uppercase characters in arguments are converted to 
lowercase, but arguments within quotation marks are left unchanged. 

3. 12 Identifiers 

Identifiers can consist of letters, digits, dollar signs C $ ), and the underscore 
character C-). You should not create identifiers with a length of more 
than 31 characters. If you do, the compiler ignores all characters after the 
thirty-first character. 

The first character must not be a digit, and to avoid conflict with names 
used by VAX C, should not be an underscore character. VAX C uses a 
preceding underscore to identify implementation-specific macros and key­
words, and uses two preceding underscores to identify implementation­
specific constants. 

Upper- and lowercase letters specify different variable identifiers; that is, 
the compiler interprets abc and ABC as different variable names. 

The dollar sign should be used only within identifiers for VMS global 
symbols. Identifiers that contain dollar signs may not be portable. 

Program Structure 3-45 



Use the following conventions if practical: 

• Avoid using underscores as the first character of your identifiers. 

• Type identifiers in uppercase if they are constants that are given 
values by the #define directive. 

• Type all instances of a global name in the same case. All names that 
become part of the VMS Linker's global symbol table are represented 
there in uppercase. For example, the compiler would consider 

int global value ss$_accvio = 0; 

globalvalue SS$_ACCVIO; 

to denote different global names; however, uppercase forms for both 
are passed to the linker, potentially causing errors when the program 
is linked or executed. For more information concerning globalvalue, 
refer to Chapter 7, Storage Classes and Allocation. 

• Type all other identifiers and keywords in lowercase. 

3. 13 Keywords 

KeywordS are predefined identifiers. They cannot be redeclared. They 
identify data types, storage classes, and certain statements in VAX C. 
Note that many conventional words in VAX C programs are not actually 
keywords and can be redeclared. The notable examples are the names 
of functions, including main and the functions found in libraries that 
accompany the VAX C compiler. 

Keywords must be expressed in lowercase letters. 

Table 3-1 lists the VAX C keywords. 

3-46 Program Structure 



Table 3-1: VAX C Keywords 
Keyword Meaning 

Type specifiers: 

int 
long 
unsigned 
short 
char 
float 
double 
struct 
union 
typede£ 
enum 
void 

Storage-class specifiers: 

auto 
static 
register 
extern 

globalde£ 
globalre£ 
globalvalue 
readonly 
noshare 

Integer (On a VAX, 32 bits). 
32-bit integer. 
Unsigned integer. 
16-bit integer. 
S-bit integer. 
Single-precision floating-point number. 
Double-precision floating-point number. 
Structure (aggregate of other types). 
Union (aggregate of other types). 
Tagged set of type specifiers. 
Enumerated scalar type. 
Function return type. 

Allocated at every block activation. 
Allocated at compile time. 
Allocated at every block activation. 
Allocated by an external data definition 
(at compile time). 
Definition of global variable. 
Reference to global variable. 
Definition or declaration of global value. 
Allocated in read-only program section. 
Assigned NOSHR program section attribute. 

Program Structure 3-47 



Table 3-1 (Cont.): VAX C Keywords 
Keyword Meaning 

Statements: 

goto 
return 

continue 
break 
if 
else 
for 

do 

'while 

switch 

case 
default 
entry 

Operator: 

size of 

Transfers control unconditionally. 
Terminates a function and optionally returns a 
value to the caller. 
Causes next iteration of containing loop. 
Terminates its corresponding switch or loop. 
Executes following statement conditionally. 
Provides an alternative for the if statement. 
Iterates the next statement (zero or more times) 
under control of three expressions. 
Iterates the next statement (one or more times) 
until a given condition is false. 
Iterates the next statement (zero or more times) 
while a given expression is true. 
Executes one or more of the specified cases 
(multiway branch). 
Begins one case for switch. 
Provides default case for switch. 
None (reserved for future use). 

Computes size of operand in bytes. 

Although they are not true keywords, the VAX C compiler defines substi­
tutions for the following identifiers; you should avoid redefining them: 

vms VMS 
vax VAX 
vaxc VAXC 
vax11c VAX11C 
vms_version VMS_VERSION 

CC$gfloat 

For more information concerning these identifiers, refer to Chapter 8, 
Preprocessor Directives. 

3-48 Program Structure 



3.14 Blocks 

A block is a compound statement surrounded by braces ( { }). You can 
use a block wherever the grammar of VAX C requires a single statement. 
The common cases are the bodies of functions and if, for, do, switch, and 
while statements. Note that this definition of a block may conflict with its 
definition in other languages. In VAX C, the terms block and compound 
statement are equivalent. 

A block may also contain declarations. If it does, any declarations of 
auto, register, or static variables declare names that are local to the block. 
Example 3-15 presents nested blocks and the differences in the scope of 
declared variables. 

Example 3-15: Scope of Variable Declarations in Nested 
Blocks 

1* This program shows how variables with the same * 
* identifier can be of different data types if located *. 
* in different blocks. *1 

mainO 
{ 

Oint i; 
i = 1; 

if (i == 1) 
{ 

• float i; 

i = 3e10; 
} 

} 

1* Outer block of "main" 

1* An inner block 

The following numbers correspond to the numbers in the previous 
example: 

o In all blocks of the program, except the block in the if statement, 
variable i is an integer. The default storage class for this variable is 
auto. 

Program Structure 3-49 



f) Within the block in the if statement, variable i is a single-precision 
floating-point value. Since it is also of the storage class auto, a new 
floating-point version of variable i is allocated each time the inner 
block is activated. 

If initialization is specified for any auto or register variables in a block, it 
is performed each time control reaches the block normally; that is, such 
initializations are not performed if a goto statement transfers control into 
the middle of the block or if the block is the body of a switch statement. 
For more information concerning data types, refer to Chapter 6, Data 
Types and Declarations. For more information concerning scope and 
storage classes, refer to Chapter 7, Storage Classes and Allocation. 

3. 15 Comments 

Comments, delimited by the character pairs (/*) and (* /), can be placed 
anywhere that white space can appear. The text of a comment can contain 
any characters except the close-comment delimiter (* /). Comments 
cannot be nested. 

3.16 LINT-Like Functionality 

Some implementations of C provide a utility called LINT. LINT provides 
a way to check source code for improper definitions and declarations, for 
parameter and argument mismatching, and for inefficient coding practices. 
VAX C provides the following features that, combined, offer much of the 
functionality of LINT. 

3-50 Program Structure 



Feature Description 

/STANDARD=PORTABLE When you use the CC DIGITAL Command Language 
command to compile your source code, add this 
qualifier to Cc. The compiler flags any construct that 
may not be supported by other implementations of 
the C language. 

Function Prototypes The use of function prototypes allows VAX C 
to check the number and the data types of all 
arguments passed to functions. See Section 3.10 for 
complete information. 

VAXSCA Support The VAX Source Code Analyzer is a source code 
cross reference and static analysis tool that you can 
u!)e with VAX C source code. VAXSCA's query and 
reporting fa~ilities allow you to query a library for 
the presence of specific symbol, file, or module in­
formation, and to discern such things as declarations 
of program symbols, references to the symbols, and 
references to the source files. 

Program Structure 3-51 





Chapter 4 

Statements 

This chapter describes the statements in the VAX C programming lan­
guage. Statements are executed in the sequence in which they appear in 
a program, except as indicated. The VAX C statements are grouped as 
follows: 

• Control flow statements 
• Expressions and blocks as statements 

• Conditional statements 

• Looping statements 
• Interrupting statements 

4. 1 Control Flow Statements 

You can use some VAX C statements either to maintain or modify the 
control of the program. The following sections describe the control flow 
statements. 

Statements 4-1 



4. 1. 1 The null Statement 

Null statements are used to provide null operations in situations where the 
grammar of the language requires a statement, but the program requires 
no work to be done. 

The syntax of the null statement is as follows: 

You may need to use the null statement with the if, while, do, and for 
statements in cases where the grammar requires a statement body but the 
program requires no functional operation. The most common use of this 
statement is in loop operations, where all the loop activity is performed 
by the test portion of the loop. For example, the following statement finds 
the first element of an array known to have a value of zero: 

for(i=O; array[i] != 0; i++) 

Refer to Section 4.2 and Section 4.4 for more information concerning the 
statements mentioned here. 

4.1.2 The goto Statement 

4-2 Statements 

The goto statement transfers control unconditionally to a labeled state­
ment, where the label identifier must be located in the scope of the 
function containing the goto statement. 

The syntax of the goto statement is as follows: 

loto identifier; 

Take care when branching into a block or function body using the goto 
statement. The compiler allocates storage for automatic variables declared 
within a block when the block is activated. When a goto statement 
branches into a block, automatic variables declared in the block can not 
exist in storage. Attempts to access such variables can cause a run-time 
error. For more information concerning the automatic variables, refer 
to Chapter 7, Storage Classes and Allocation. 



4.1.3 The labeled Statement 

Labels are identifiers used to flag a location in a program, and to be the 
target of a go to statement. 

The syntax of a label is as follows: 

identifier: 

Any statement can be preceded by a label. The scope of a label is the 
current function body. Since the label name is independent of the scope 
rules applied to variables, there can be variables with the same name as 
the label in the function that contains the label. Labels are used only as 
the targets of goto statements. 

4.2 Expressions and Blocks as Statements 

The statements in the following subsections are actually expressions or 
groups of other statements that you can use when the grammar calls for a 
single statement. 

4.2.1 The expression Statement 

You can use any valid expression as a statement by terminating it with 
a semicolon. The following is an example of an expression used as a 
statement: 

i++; 

This statement increments the value of the variable i. Note that i++ 
is a valid VAX C expression which can appear in more complex VAX C 
statements. For more information concerning the valid VAX C expressions, 
refer to Chapter 5, Expressions and Operators. 

Statements 4-3 



4.2.2 The compound Statement 

A compound statement in VAX C is sometimes called a block (the com­
pound statement following the parameter declarations in a function 
definition is called the function body). It allows more than one statement 
to appear where a single statement is required by the language. The 
following is an example of a block: 

{ 

} 

int x = 5; 

z = 1; 
if (y < x) 

funct(y, z); 
else 

funct(x, z); 

The block contains optional declarations followed by a list of statements, 
all enclosed in braces. If you include declarations, the variables they 
declare are local to the block, and, for the rest of the block, they supersede 
any previous declaration of variables of the same name. Inside blocks, 
you can initialize variables whose declarations include the auto, register, 
static, or globaldef storage class specifiers. 

A block is entered Iinormally" when control flows into it, or when a goto 
statement transfers control to the label of the block itself. The compiler­
generated code allocates storage for auto or register variables each time 
the block is entered normally; the storage allocations do not occur if a 
goto statement refers to a label inside the block or if the block is the body 
of a switch statement. For more information concerning storage classes, 
refer to Chapter 7, Storage Classes and Allocation. 

All function definitions are compound statements. 

4.3 Conditional Statements 

4-4 Statements 

The statements in the following sections execute only if a tested condition 
is true. 



4.3.1 The if Statement 

An if statement executes a statement depending on the evaluation of 
an expression, and mayor may not be written with an else clause. The 
syntax of the if statement is as follows: 

if ( expression ) 
statement 

else 
statement 

An example of the if statement is as follows: 

if (i < 1) 
funct(i) ; 

else 
{ 

} 

i = x++; 
funct(i); 

If the evaluated expression within parentheses is true (in the example, if 
variable i is less than one), then the statement following the evaluated 
expression executes; the statement following the keyword else does not 
execute. If the evaluated expression is false, then the statement following 
the keyword else executes. 

Note that all logical operators define a true result to be nonzero. 
Therefore, the expression in any conditional statement can be a logical 
expression with predictable results (true or false; nonzero or zero). 

When if statements are nested within else clauses, an else clause matches 
the most recent if statement that does not already have an else clause. 

4.3.2 The switch Statement 

The switch statement executes one or more of a series of cases, based on 
the value of the expression. 

The syntax of the switch statement is as follows: 

switch ( expression ) 
statement 

Statements 4-5 



4-6 Statements 

The usual arithmetic conversions are performed on expression, but the 
result must be type int. For more information concerning the data types, 
refer to Chapter 6, Data Types and Declarations. The statement is typi­
cally a compound statement, within which one or more case labels prefix 
statements that execute if the expression matches the case. The syntax for 
a case label and expression follows: 

case constant-expression : 
statement [ • statement. . .. ] 

The constant expression must also be of type into No two case labels can 
specify the same value. The value of a constant expression can be any 
integral value. 

At most one statement in the compound statement can have the following 
label: 

default : 

The case and default labels can occur in any order. When the switch 
statement is executed, the following sequence takes place (note that each 
case flows into the next unless explicit action is taken, such as a break 
statement): 

1. The switch expression is evaluated and compared with the constant 
expressions in the case labels. 

2. If a case label matches the expression's value, the statement or list of 
statements following that label is executed. If the list of statements 
ends with the break statement, the break terminates the switch 
statement; otherwise, the next case encountered is executed. (See 
Example 4-1.) The switch statement can also be terminated by a 
return or goto statement; if the switch is inside a loop, it can be 
terminated by a continue statement. For more information concerning 
interrupting statements, refer to Section 4.5. 

3. If no case label matches the expression's value, but there is a default 
case, the default case is executed. It need hot be the last case listed. 
If a break statement does not end the default case, the next case 
encountered is executed. 

4. If there is no case for the expression's value and there is no default, 
the body of the switch statement is not executed. 

In general, the break statement must be used to ensure that a switch 
statement executes as expected. Example 4-1 uses the switch statement to 
count blanks, tabs, and newlines entered from the terminal. 



Example 4-1: Use of switch to Count Blanks, Tabs, and 
Newlines 

o • 

1* This program counts blanks, tabs and newlines in text * 
* entered from the keyboard. *1 

'include stdio 
main 0 
{ 

} 

int number_tabs = 0, number_lines = 0, number_blanks = 0; 
int ch; 
while «ch = getchar(» != EOF) 

switch (ch) 
{ 

case '\t' : ++number",tabs; 
break; 

case '\n' : ++number_lines; 
break; 

case , , ++number_blanks; 
break; 

} 

printf("Blanks\tTabs\tNewl1nes\n"); 
printf("%6d\t%6d\t%6d\n", number_blanks, 

number_tabs,number_lines}; 

The following numbers correspond to the numbers in the previous 
example: 

o A series of case labels is used to increment the counters. 

• The break statement causes control to go back to the while loop every 
time a counter increments. The program passes control automatically 
to the while loop if none of the counters is incremented. 

The program responds to the following input: 

by printing the following: 

Blanks 
7 

Tabs Newlines 
2 3 

Statements 4-7 



If you were to omit the break statements, the program would print the 
following: 

Blanks 
12 

Tabs Newlines 
2 5 

Without the break statements, each case drops through to the next case. 
The number shown for tabs happens to be right, because the tabs case is 
first in the switch statement and is executed only if ch == '\t'. Notice that 
the number shown for newlines is the correct number plus the number of 
tabs, and the number shown for blanks is the total of all three cases. 

4.3.2.1 Declarations within a switch Statement 

4-8 Statements 

If variable declarations appear in the compound statement within a switch 
statement, any initializations of auto or register variables are ineffective. 
However, if variables are initialized within the statements following a case 
label, the initialization is effective. Consider the following exam.ple: 

switch (ch) 
{ 

int x = 1; 1* Improper initialization *1 
printf("~d". x); 
case 'a' : 
{ int x = 5; 1* Proper initialization *1 

printf("~d". x); 
break; } 

case 'b i : 

} 

In the previous example, if the variable ch equals 'a', then the program 
prints the value 5. If the variable equals any other letter, the program 
prints nothing because the initialization outside of the case label is 
ineffective. 



4.4 Looping Statements 

The statements in the following sections execute repeatedly (loop), until an 
expression evaluates to false. Some loops execute a block of statements, 
known as the loop body, a specified number of times; in VAX C, this loop 
is the for statement. Some loops evaluate an expression and then execute 
the body of the loop; in VAX C, this loop is the while statement. Some 
loops execute the loop body and then evaluate the expression, thereby 
guaranteeing at least one execution of the body; in VAX C, this loop is the 
do statement. 

4.4.1 The for Statement 

The for statement evaluates three expressions and executes a statement 
(the loop body) until the second expression evaluates to false. The for 
statement is particularly useful for executing a loop body a specified 
number of times. 

The syntax for the for statement is as follows: 

for ( expression-1 ; expression-2 ; expression-3 ) 
statement; 

The for statement executes the loop body zero or more times. It uses three 
control expressions, as shown. The semicolons (;) are used to separate the 
expressions; notice that a semicolon does not follow the last expression. A 
for statement executes the following steps: 

1. Expression-l is evaluated only once before the first iteration of the 
loop. It usually specifies the initial values for variables. 

2. Expression-2 is a relational or logical expression that determines 
whether or not to terminate the loop. Expression-2 is evaluated before 
each iteration. If the expression evaluates to false, execution of the for 
loop body terminates. If the expression evaluates to true, the body of 
the loop is executed. 

3. Expression-3 is evaluated after each iteration. It usually specifies 
increments for the variables initialized by expression-I. 

4. Iterations of the for statement continue until expression-2 produces 
a false (zero) value, or until some statement such as break or got a 
interrupts. 

Statements 4-9 



The for statement is equivalent to the following: 

expression-1; 
while ( expression-2 ) 

{ 

statement 
expression-3; 

} 

The VAX C compiler optimizes certain for statements for simple loops 
such as the following: 

for(i=O; i<15; i++) 
printf(lY.d\n", i); 

When the incrementation is as simple as in the previous example, the 
compiler generates less macro code so efficiency increases. When possible, 
use for statements as opposed to while statements when the increment is 
small. 

Any of the three expressions in a loop can be omitted. If expression-2 
is omitted, the test condition is always true; that is, the while in the 
expansion becomes while(x), where x is not equal to zero. If either 
expression-lor expression-3 is omitted from the for statement, that 
expression is effectively dropped from the expansion. 

The following syntax illustrates an infinite loop: 

for (;;) statement 

Terminate infinite loops with a break, return, or goto statement. 

4.4.2 The while Statement 

4-1 0 Statements 

The while statement evaluates an expression and executes a statement 
(the loop body) zero or more times, until the expression evaluates to false. 

The syntax of a while statement is as follows: 

while ( expression ) 
statement 

An example of the while loop is as follows: 

while (x < 10) 
{ 

array[x] = x; 
x++; 

} 



This statement tests the value of the variable x; if variable x is less than 
ten, it assigns x to the xth element of the array and then increments the 
variable x. If the expression in parentheses evaluates to false, the loop 
body never executes. 

4.4.3 The do Statement 

The do statement executes a statement (the loop body) one or more times, 
until the expression in the while clause evaluates to false. 

The syntax for the do statement is as follows: 

do 
statement 

while ( expression ) 

The statement is executed at least once, and the expression is evaluated 
after each subsequent execution of the loop body. If the expression is true, 
the statement is executed again. 

4.5 Interrupting Statements 

You can use the statements in the following sections to interrupt the 
execution of another statement. These statements are primarily used to 
interrupt switch statements and loops. 

4.5.1 The break Statement 

The break statement terminates the immediately enclosing while, do, for, 
or switch statement. Control passes to the statement following the loop 
body. 

The syntax for the break statement is as follows: 

break; 

Statements 4-11 



4.5.2 The continue Statement 

4-12 Statements 

The continue statement passes control to the end of the immediately 
enclosing while, do, or for statement. 

The syntax for the continue statement is as follows: 

continue; 

Review the following syntax summary to see the effects of the continue 
statement on the looping statements: 

goto label; 

The continue statement is equivalent to the goto label statement, shown 
here, for each of the looping statements in the syntax examples that 
follow: 

while( . .. ) 
{ 

goto label; 

label: 

} 

do 
{ 

goto label; 

label: 

} 
while( . .. ) 

fore . .. ;... ;... ) 
{ 

goto label; 

label: 

} 

In the preceding syntax examples, a continue statement passes control to 
label. The continue statement is intended only for loops, not for switch 
statements. A continue inside a switch statement which is inside a loop 
causes continued execution of the enclosing loop after exiting from the 
body of the switch statement. 



4.5.3 The return Statement 

The return statement causes a return from a function, with or without a 
return value. 

The syntax of the return statement is as follows: 

re~urn [expression]; 

The compiler evaluates the expression (if you specify one) and returns the 
value to the calling function. If necessary, the compiler converts the value 
to the declared type of the calling function's return value. If there is no 
specified return value, the value is undefined. 

You can declare a function without a return statement to be of type void. 
For mo~e information concerning the void data type and function return 
values, refer to Chapter 3, Program Structure. 

Statements 4-13 





Chapter 5 

Expressions and Operators 

An expression is any series of symbols that VAX C uses to produce a 
value. The simplest expressions are constants and variable names. They 
have no operators and they yield a value directly. Other expressions 
combine operators and sub expressions to produce values. 

In some instances, the compiler makes conversions so that the data types 
of the operands are compatible. This chapter refers to these rules as 
the arithmetic conversion rules; See Section 5.9.1 for more information 
concerning these rules. 

This chapter discusses the following topics: 

• lvalues and rvalues 

• Primary expressions and operators 

• VAX C operators 

• Unary expressions and operators 

• Binary expressions and operators 

• The conditional expression and operator 

• Assignment expressions and operators 

• The comma expression and operator 

• Data type conversions 

Expressions and Operators 5-1 



5.1 Ivalues and rvalues 

A variable identifier is one of the primary VAX C expressions. (See 
Section 5.2 for more information concerning primary expressions.) This 
type of expression yields a single value, the object of the variable. 
However, when using the variable identifier with other operators, the 
expression evaluates to the variable's location in memory. The address of 
the variable is the variable's lvalue. The object stored at that address is the 
variable's rvalue. For example, VAX C use~ both the lvalue and the rvalue 
of variables in the evaluation of an expression as follows: 

x = y; 

The contents of variable yare taken and assigned to variable x. In other 
words, the expression on the right side evaluates to the variable's rvalue 
while the expression on the left side evaluates to the variable's lvalue in 
the performance of assignment. 

The following syntax defines those VAX C expressions that either have or 
produce lvalues: 

Ivalue ::= 
identifier 
primary [ expression ] 
Ivalue . identifier 
primary -) identifier 
* expression 
( Ivalue ) 

These expressions represent, respectively: 

1. Identifiers of scalar variables, structures, and unions 

2. References to scalar array elements 

3. References to structure and union members, except for references to 
fields which are not lvalues 

4. References to pointers (also called dereferenced pointers; art asterisk 
( *) followed by an address-valued expression) 

5. Any of the above expressions, enclosed in parentheses 

Allivalue expressions represent a single location in a computer's memory. 
For a pictorial explanation of lvalues and rvalues, refer to Chapter 3, 
Program Structure. 

5-2 Expressions and Operators 



5.2 Primary Expressions and Operators 

Simple expressions are called primary expressions; they denote values. 
Primary expressions include previously declared identifiers, constants 
(including strings), array references, function calls, and structure or union 
references. The syntax descriptions of the primary expressions are as 
follows: 

primary: := 
identifier 
constant 
string 
( expression ) 
primary ( expression-list ) 
primary [ expression ] 
lvalue . identifier 
primary -) identifier 

The simplest forms are identifiers such as variable names, and string or 
arithmetic constants. Other forms are expressions (delimited by parenthe­
ses), function calls, array references, lvalues and rvalues, and structure and 
union references. 

5.2.1 Parenthetical Expressions 

An expression within parentheses has the same type and value as the 
same expression without parentheses. As in declarations, any expression 
can be delimited by parentheses to change the grouping, or associative 
precedence, of the operators in a larger expression. 

5.2.2 Function Calls 

A function call is a primary expression followed by parentheses. The 
parentheses may contain a list of arguments (separated by commas) or 
may be empty. An undeclared function is assumed to be a function 
returning into If you declare an identifier as a "function returning ... ", 
but use the identifier in a context other than a function call, it converts to 
"the address of function returning ... ". 

Consider the following declaration: 

double atof 0 ; 

Expressions and Operators 5-3 



The previous example declares a function returning double. You can then 
use the identifier atof in a function call 

result = atof(c); 

or you can use the identifier at of in other contexts without the parenthe­
ses, as follows: 

dispatch(atof); 

The identifier atof converts to the address of that function, and the address 
is passed to the function dispatch. 

5.2.3 Array References ( [ ] ) 

Bracket operators ([ ]) are used to refer to elements of arrays. In an array 
defined as having three dimensions, you refer to a specific element within 
the array, as in the following example: 

int sample_array [10] [5] [2]; 
int i = 10; 
sample_array [9] [4] [1] = i; 

/* Array declaration */ 

/* Assign value to element */ 

This example assigns a value of 10 to element sample_array[9][4][1]. 

In addition, if an array reference is not fully qualified, it refers to the 
address of the first element in the dimension that is not specified. For 
example, consider the statement 

sample_array [9] [4] = 10; 

This statement assigns a value of ten to the element sample_array[9][4][0]. 
Consider the following: 

sample_array = 10; 

The statement assigns a value of ten to the element sample_array[O][O][O]. 
A reference to an array name with no bracket operator is often used to 
pass the array's address to a function, as in the following: 

funct(array); 

Bracket operators can also be used to perform general address arithmetic 
of the form 

addr[intexp] 

addr is the address of some previously declared object (pointer-valued) 
and the variable, intexp, is an integer-valued expression. The result 
of the expression is scaled, or multiplied, by the size in bytes of the 

5-4 Expressions and Operators 



addressed object; if intexp is a positive integer, the result is the address of 
a subsequent object of this size; if intexp is zero, the result is the address 
of the same object; if intexp is negative, the result is the address of a 
previous object. 

5.2.4 Structure and Union References 

A member of a structure or union can be referenced with either of two 
operators: the period (.) or the right arrow (~ ). 

A primary expression followed by a period followed by an identifier refers 
to a member of a structure or union and is itself a primary expression. 
The first expression must be an lvalue naming a structure or union. The 
identifier must name a member of that structure or union. The result 
is a reference (if the member is a scalar) to the named member of the 
structure or union. The name of the desired member must be preceded by 
a period-separated list of the names of all higher level members. For more 
information concerning structures and unions, refer to Chapter 6, Data 
Types and Declarations. 

The form for a pointer to a structure and union uses the right-arrow 
operator (-> ). A primary expression followed by an arrow (specified 
with a hyphen ( -) and a greater-than symbol (> ) followed by an 
identifier refers to a member of a structure or union. The first expression 
must be a pointer to a structure or a union. The identifier following the 
arrow operator must name a declared member of that structure or union. 
The result is a reference to the named member. 

5.3 Overview of the VAX C Operators 

You can use the simpler variable identifiers and constants in conjunction 
with VAX C operators to create more complex expressions. Table 5-1 
presents the set of VAX C operators. 

Expressions and Operators 5-5 



Table 5-1: VAX C Operators 
Operator 

- [unary] 
* [unary] 
& [unary] 

++ [prefix] 
++ [postfix] 
--[prefix] 
--[postfix] 
size of 

(type-name) 

+ 
- [binary] 
* [binary] 
I 
% 

» 
« 
< 
> 
<= 
>= 

!= 

& [binary] 
I 

&& 
II 

?: 

5-6 Expressions and Operators 

Example 

-a 
*a 
&a 
--a 
++a 
a++ 
--a 
a-­
sizeof(t1) 
sizeof e 
(tl)e 

a+b 
a-b 
a*b 
alb 
a%b 
a> > b 
a < < b 

a < b 
a > b 
a <= b 
a > =b 
a == b 
a!= b 

a&b 
a I b 
a~b 

a && b 
a II b 
!a 

a ? e1 : e2 

Result 

negative of a 
reference to object at address a 
address of a 
one's complement of a 
an after increment 
a before increment 
an after decrement 
a before decrement 
size in bytes of type tl 
size in bytes of expression e 
expression e, converted to type t1 

a plus b 
a minus b 
a times b 
a divided by b 
remainder of alb (a modulo b) 

a, right-shifted b bits 
a, left-shifted b bits 

1 if a < b; 0 otherwise 
1 if a > b; 0 otherwise 
1 if a <= b; 0 otherwise 
1 if a > = b; 0 otherwise 
1 if a equal to b; 0 otherwise 
1 if a not equal to b; 0 otherwise 

bitwise AND of a and b 
bitwise OR of a and b 
bitwise XOR (exclusive OR) of a and b 

logical AND of a and b (yields 0 or 1) 
logical OR of a and b (yields 0 or 1) 
logical NOT of a (yields 0 or 1) 

expression e1 if a is nonzero, 
expression e2 if a is zero 



Table 5-1 (Cont.): VAX C Operators 
Operator Example Result 

a=b a ( ith b assigned to a) 
+= a+=b a plus b (assigned to a) 

a -= b a minus b (assigned to a) 
*= a *= b a times b (assigned to a) 
1= a 1= b a divided by b (assigned to a) 
%= a %=b remainder of alb (assigned to a) 
> >= a > > = b a, right-shifted b bits (assigned to a) 
< <= a < <=b a, left-shifted b bits (assigned to a) 

&= a &= b a AND b (assigned to a) 
1= a 1= b a OR b (assigned to a) 
A = a A= b a XOR b (assigned to a) 

el,e2 e2 (el evaluated first) 

The operators fall into the following categories: 

• Unary operators, which take a single operand. 

• Binary operators, which take two operands and perform a variety of 
arithmetic and logical operations. 

• The conditional operator (a ternary operator), which takes three 
operands and evaluates either the second or third expression, depend­
ing on the evaluation of the first expression. 

• Assignment operators, which assign a value to a variable, optionally 
performing an additional operation before the assignment takes place. 

• The comma operator, which guarantees left-to-right evaluation of 
comma -separated expressions. 

• Primary operators, which usually modify or qualify identifiers (see 
Section 5.2 for more information). 

Table 5-2 presents the precedence by which the compiler evaluates 
operations. Those operators with the highest precedence appear at the 
top of the table; those with the lowest appear at the bottom. Operators of 
equal precedence appear in the same row. 

Expressions and Operators 5-7 



Table 5-2: Precedence of VAX C Operators 
Category 

primary 

unary 

binary (mult.) 

binary (add.) 

binary (shift) 

binary (relat.) 

binary (equal.) 

binary (bitand) 

binary (bitxor) 

binary (bitor) 

binary (AND) 

binary (OR) 

conditional 

assignment 

comma 

Operator 

() [] -> . 
! -- ++--(type) * & sizeof 

* j % 
+ -

«» 
< <= > > = 

== != 

& 

Associativity 

left to right 

right to left 

left to right 

left to right 

left to right 

left to right 

left to right 

left to right 

left to right 

left to right 

&& left to right 

II left to right 

?: right to left 

= += -= *= j= %= > > = < <= &= right to left 
A= 1= 

left to right 

For example, consider the following expression: 

The identifiers A and B are multiplied first because the multiplication 
operator (*) is of higher precedence than the addition operator (+). The 
associative rule applies to each row of operators. That is, the expression 

A/B/C 

is evaluated as 

(A/B)/C 

because the division operator evaluates from left to right. 

5-8 Expressions and Operators 



5.4 Unary Expressions and Operators 

You form unary expressions by combining a unary operator with a single 
operand. All unary operators are of equal precedence arid group from 
right to left. They perform the following operations: 

• Negate a variable arithmetically ( - ) or logically (!)/ 

• Increment ( + + ) and decrement ( - - ) variables. 

• Find addresses (&) and dereference pointers (*). 

• Calculate a one's complement (?-- ). 

• Force the conversion of data from one type to another (the cast 
operator). 

• Calculate the sizes of specific variables or of types (sizeof). 

5.4.1 Negating Arithmetic and Logical Expressions ( - ! ) 

Consider the syntax of the following expression: 

- expression 

This is the arithmetic negative of expression. The compiler performs the 
arithmetic conversions. The ne£ative of an unsigned quantity is computed 
by subtracting its value from 2 . There is no unary plus operator in 
VAXC. 

The result of the expression 

! expression 

is the logical (Boolean) negative of the expression. If the result of the 
expression is 0, the negated result is 1; if the result of the expression is 
not 0, the negated result is O. The type of the result is int. The expression 
can be a pointer (or other address-valued expression) or an expression of 
any arithmetic type. 

Expressions and Operators 5-9 



5.4.2 Incrementing and Decrementing Variables (++ --) 

The object to which the lvalue refers in the expression 

++lvalue 

is incremented before its value is used. Upon evaluating this expression, 
the result is the incremented rvalue, not the corresponding lvalue. For this 
reason, expressions that use the increment and decrement operators in this 
manner cannot appear by themselves on the left side of an assignment 
expression where an lvalue is needed. 

The object to which the lvalue refers in the expression 

Ivalue++ 

increments after its value is used. The expression evaluates to the value of 
the object before the increment, not the incremented variable's lvalue. 

If the operand is a pointer, the address is incremented by the length of the 
addressed object, not by the integer value 1. 

The objects of the following lvalues point to other variables: 

--lvalue 
Ivalue--

These pointers decrement not by the integer value I, but by the length of 
the addressed object. The data type of the variable determines the amount 
of the increment or decrement. If declared as a pointer, the variable 
increments or decrements by the length determined by the addressed 
object's data type; if declared as an integer, the variable increments or 
decrements by the value 1. 

When using the increment and decrement operators, do not depend upon 
the order of evaluation of expressions. Consider the following ambiguous 
expression: 

k = x[j] + j++; 

Is the value of variable j in xU] evaluated before or after the increment 
occurs? Do not assume which expressions the compiler evaluates first. To 
avoid ambiguity, increment the variable in a separate statement. 

5-1 0 Expressions and Operators 



5.4.3 Computing Addresses and Dereferencing Pointers (& * ) 

Consider the syntax of the following expression: 

" Ivalue 

The expression results in the lvalue itself. The ampersand dperator (&) 
may not be applied to register variables or to bit fields in structures or 
unions. 

NOTE 

In VAX C, the compiler changes any register variable to which 
the ampersand operator applies to auto. The compiler issues no 
warning message. 

In the special context of argument lists, you may apply the ampersand 
operator to constants. This use of the ampersand operator passes constants 
to user-defined functions that expect arguments to be passed by reference. 
This use is not recommended for other applications. For more information 
concerning the manipulation of argument lists, refer to Chapter 3, Program 
Structure. For more information concerning the VAX Calling Standard, 
refer to Chapter 10, Mixed-Language Programming. 

Since function identifiers and unqualified array identifiers are already 
lvalues, you cannot apply the address of an operator to these identifiers. 
If you apply the address of an operator to function identifiers or to 
unqualified array identifiers, VAX C considers this to be a redundant use 
of the address-of token and generates the appropriate error message when 
the jSTANDARD=PORTABLE qualifier is specified. 

When an expression evaluates to an address, as in the following, 

* pointer 

the address is used to indirectly access the object to which the address 
refers. Simply, an expression using the indirection operator (*) evaluates 
to the object pointed to by a pointer or by an address-valued expression. 

Expressions and Operators 5-11 



5.4.4 Calculating a One's Complement ( ~ ) 

Consider the syntax of the following expression: 

expression 

The result is the one's complement of the evaluated expression; it converts 
each I-bit into a O-bit and vice versa. The expression must be integral 
(an integer or character). The compiler performs necessary arithmetic 
conversions. 

5.4.5 Forcing Conversions to a Specific Type (Cast Operator) 

The cast operator forces the conversion of an operand to a specified scalar 
data type. The operator consists of a data type name, in parentheses, 
which precedes the operand expression, as follows: 

(type-name) expression 

The resulting value of the expression converts to the named data type, 
just as if the expression were assigned to a variable of that type. If the 
operand is a variable, its value converts to the named type. The variable's 
contents do not change. The type name has the following formal syntax: 

type-name :: = 
type-specifier abstract-declarator 

In simple cases, type-specifier is the keyword for a data type, such as char 
or double. The identifier type-specifier may also be a structure, union 
specifier, an enum specifier, or a typedef tag. 

An abstract-declarator in a parameter declaration is a declaration without 
an identifier or data type keyword: 

abstract-declarator: := 
empty 
( abstract-declarator ) 
* abstract-declarator 
abstract-declarator ( ) 
abstract-declarator [ constant-expression ] 

To avoid confusion with the form 

abstract-declarator( ) 

the abstract-declarator may not be empty as in the following: 

5-12 Expressions and Operators 



(abstract-declarator) 

Abstract declarators may include the brackets and parentheses that indi­
cate arrays and function calls. However, cast operations may not force 
the conversion of any expression to an array, function, structure, or union. 
The brackets and parentheses. are used in such operations as 

(int (*) []) Pi 

which casts identifier PI to "pointer to array of int." This kind of cast op­
eration in no way changes the contents of PI; it only causes the compiler 
to treat the value of PI as a pointer to such an array. For example, casting 
pointers this way can change the scaling that occurs when you add an 
integer to a pointer. 

5.4.6 Calculating Sizes of Variables and Data Types (sizeof) 

Consider the syntax of the following expression: 

sizeof expression 
sizeof ( type-name ) 

The result is the size in bytes of the operand. In the first case, the result 
of sizeof is the size determined by the declarations of the objects in the 
expression. In the second case, the result is the size in bytes of an object 
of the named type. The syntax of type-name is the same as that for the 
cast operator. See Section 5.4.5 for more information concerning the cast 
operator. 

5.5 Binary Expressions and Operators 

The binary operators are categorized as follows: 

• Additive operators: addition ( +) and subtraction ( - ) 

• Multiplication operators: multiplication ( * ),mod ( %), and 
division (/) 

• Equality operators: equality == and inequality (!=) 

• Relational operators: less than ( <), less than or equal to ( < =), 
greate~ than (> ), and greater than or equal to ( > =) 

• Bitwise operators: AND (&), OR ( I ), and XOR (A) 

• Logical operators: AND (&&) and OR ( II ) 

• Shift operators: left shift ( < <) and right shift (> > ) 

Expressions and Operators 5-13 



5.5. 1 Additive Operators ( + - ) 

The additive operators (+) and (-) perform addition and subtraction. 
Their operands are converted, if necessary, following the arithmetic 
conversion rules. For more information, see Section 5.9.1. 

You can increment an array pointer by adding an integral variable to the 
address of an array element. The compiler calculates the size of one array 
element, multiplies that by the integer thus obtaining the offset value, and 
then adds the offset value to the a~dress of the designated element. 

A value of any integral type may be subtracted from a pointer or address; 
in that case, the same conversions apply as for addition. 

When you combine two enum constants or variables, the type of the 
result is into 

If you subtract two addresses of objects of the same type, the result 
converts (divides by the length of the object) to an int representing the 
number of objects separating the addressed objects. The result of this 
conversion is unpredictable unless the two objects are in the same array. 

5.5.2 Multiplication Operators ( * / % ) 

The multiplication operators (*), (/), and (%) perform arithmetic con­
versions, if necessary. The binary operator (*) performs multiplication. 
The binary operator (/) performs division. When integers are divided, 
truncation is toward zero. 

The binary mod operator ( % ) divides the first operand by the second and 
yields the remainder. Both operands must be integral. The sign of the 
result is the same as the sign of the quotient. If variable b is not zero, 
then the following is always true: 

(a/b)*b + aYob = a. 

5-14 Expressions and Operators 



5.5.3 Equality Operators (= = != ) 

The equality operators equal-to (==) and not-equal-to (!=) perform the 
necessary arithmetic conversions on their two operands. These operators 
produce a result of type int, so that in the following 

a<b '7= c<d 

the result is the value 1, if both relational expressions have the same truth 
value, and zero if they do not. Two pointers or addresses are equal if they 
identify the same storage location. You can compare a pointer or address 
with an integer, but the result is not portable unless the integer is zero; a 
null pointer is considered equal to zero. 

Although different symbols are used for assignment and equality, (=) and 
( ==) respectively, VAX C allows either operator in some contexts, so you 
must be careful not to confuse them. For example, consider the following: 

if (x=l) statement-l; 
else statement-2; 

In the previous example, statement-l always executes, since the result of 
assignment x=1 delimited by parentheses is equivalent to the value of x, 
which is equal to 1, true. 

5.5.4 Relational Operators ( > < < = > =) 

The relational operators compare two operands and produce a result 
of type into The result is the value 0 if the relation is false, and 1 if it 
is true. The operators are less-than ( <), greater-than (> ), less-than 
or equal-to ( <=), and greater-than or equal-to (> =). The compiler 
performs necessary arithmetic conversions. If you compare two pointers 
or addresses, the result depends on the relative locations of the two 
addressed objects. Pointers to objects at lower addresses are less than 
pointers to objects· at higher addresses. If two addresses indicate elements 
in the same array, the address of an element with a lower subscript is less 
than the address of an element with a higher subscript. 

The operators group from left to right. However, note that the statement 

if (a<b<c) ... 

compares the variable c with zero or one (possible results of a <b); it does 
not mean "if b is between a and c ... " 

Expressions and Operators 5-15 



5.5.5 Bitwise Operators (& I ") 

These operators may be used only with integral operands: with variables 
of types char and with int of all sizes. The compiler performs the nec­
essary arithmetic conversions. The result of the expression is the bitwise 
AND (&), XOR-exclusive OR ("), or OR ( I ) of the two operands. The 
compiler always evaluates all operands. Figure 5-1 illustrates the effects 
of Boolean algebra when using the bitwise operators. 

Figure 5-1: Boolean Algebra and the Bitwise Operators 

Boolean Algebra 

AND (&) OR (I) EXCLUSIVE-OR (~ ) 

1 0 1 0 1 0 

1fJj o 0 0 1ffiij o 1 0 
1fllij 010 

OPERATOR BITWISE OPERATION DECIMAL VALUE 

AND(&) 0 95 

0 0 0 0 97 

0 0 0 0 0 65 

OR (I) 0 95 

0 0 0 0 97 

127 

X-ORr) 0 95 

0 0 0 0 97 

0 0 62 

ZK-3071-84 

5-16 Expressions and Operators 



In Boolean algebra, VAX C compares values bit by bit. If using the bitwise 
AND, and you are comparing a bit value 1 and a bit value 0, the result is 
o. When using the bitwise AND, both compared bits must be I, as shown 
in the previous figure, for the result to be 1. When using the bitwise OR, 
either bit value can be 1 for the result to be 1. When using the bitwise 
EXCLUSIVE-OR, either value, but not both, can be 1 for the result to 
be 1. Figure 5-1 illustrates the use of all three bitwise operators on two 
common values. 

5.5.6 Logical Operators (&& II ) 

The logical operators are AND (&&) and OR ( II). These operators 
guarantee left-to-right evaluation. The result of the expression (of type 
int) is either zero (false) or one (true). If the compiler is able to make an 
evaluation by examining only the left operand, it does not evaluate the 
right operand. Consider the following expression: 

E1 && E2 

The result is one if both its operands are nonzero, or zero if one operand 
is zero. If expression El is zero, E2 is not evaluated. Similarly 

E1 II E2 

is one if either operand is nonzero, and zero otherwise. If expression El is 
nonzero, E2 is not evaluated. 

The operands of logical operators need not have the same type, but each 
must be one of the fundamental types or must be a pointer or other 
address-valued expression. 

5.5.7 Shift Operators (> > < <) 
The shift operators ( < <) and (> > ) take two operands, both of which 
must be integral. The compiler performs necessary arithmetic conversions 
on both operands; then, the right operand is converted to int, and the 
type of the result is the type of the left operand. Consider the result of the 
following: 

E1 « E2 

Expressions and Operators 5-17 



The result is the value of expression E1 shifted to the left by E2 bits. The 
compiler clears vacated bits. The result of 

E1 » E2 

is the value of expression E1 shifted to the right by E2 bits. The compiler 
clears vacated bits if E1 is unsigned; otherwise, bits are filled with a copy 
of E1's sign bit. 

The result of the shift operation is undefined if the right operand (E2 in 
the previous example) is negative or if the value of E2 is greater than 32 
bits. 

5.6 Conditional Expression and Operator ( ? : ) 

The conditional operator (?:) takes three operands. It tests the result of 
the first operand and then evaluates one of the other two operands based 
on the result of the first. For example, consider the following: 

E1 ? E2 : E3 

If expression E1 is nonzero (true), then E2 is evaluated. If E1 is zero 
(false), E3 is evaluated. Conditional expressions group from right to left. 
The compiler makes conversions in the following order: 

1. If possible, the arithmetic conversions are performed on expressions 
E2 and E3, so that they will result in the same type. 

2. Otherwise, if expressions E2 and E3 are address expressions indicating 
objects of the same type, the result has that type. 

3. Otherwise, either one of the E2 and E3 operands must be an address 
expression, and the other, the constant O. The result has the type of 
the addressed object. 

5-18 Expressions and Operators 



5.7 Assignment Expressions and Operators (= + = -- *= /= %= 
> > = < <= Sr.= "= 1=) 

In VAX C, there are several assignment operators. An assignment is not 
only an operation but is also an expression. Assignments result in the 
value of the target variable after the assignment. They can be used as 
subexpressions in larger expressions. 

The set of assignment operators consists of the equal sign (=) alone and 
in combination with binary operators. An assignment expression has 
two operands (an lvalue and an expression separated by one of these 
operators). An assignment expression such as 

E1 += E2; 

is equivalent to 

E1 = E1 + E2; 

The expression E1 is evaluated only once and must result in an lvalue. 
The type of the assignment expression is the type of E1, and the result is 
the value of E1 after the completion of the operation. You must delimit 
some expressions in parentheses if the expressions possibly contain other 
operators of a lower precedence. For example, the expression 

a *= b + 1; 

is the same as 

a = a * (b + 1); 

not 

a = (a * b) + 1; 

In the simple assignment expression 

E1 = E2 

the value of expression E2 replaces the previous object of E1. Another 
example, the expression 

a_number[1] += 100; 

adds 100 to the contents of a_number[1]. The result of the expression is 
the result of the addition and has the same type as a_number[l]. 

If both assignment operands are arithmetic, the right operand is converted 
to the type of the left before the assignment. (See Section 5.9.1.) 

Expressions and Operators 5-19 



The assignment operator (=) can be used to assign values to structure and 
union members. You can assign one structure value to another as long as 
you define the structures to be the same size. With all other assignment 
operators, all right operands and all left operands must be either pointers 
or evaluate to arithmetic values. If the operator is ( -=) or ( .p), the left 
operand may be a pointer, and the right operand (which must be integral) 
is converted in the same manner as the right operand in the binary plus 
( + ) and minus ( - ) operations. 

An address may be assigned to an integer, an integer to a pointer, and 
the address of an object of one type to a pointer of another type. Such 
assignments are simple copy operations, with no conversions. This usage 
may cause addressing exceptions when you use the reSUlting pointers. 
However, if the constant 0 is assigned to a pointer, the result is a null 
pointer. The null pointer is distinguishable (by the equality operators) 
from a pointer that points to any object. 

For the sake of compatibility with other C implementations, VAX C allows 
certain deviations from the spellings of compound assignment operators 
shown in Table 5-2. The deviations are as follows: 

• When the operators are written in the order shown in Table 5-2, the 
two characters can be separated by blank spaces. For example, 

E1 += E2; 

and 

E1 + = E2; 

are identical. 

• The operators can also be written with the characters in reverse order, 
as in the following: 

E1 =+ E2; 

However, you should avoid the second form for the following reasons: 

• The syntax allowed by VAX C is more restrictive in this case. 
Specifically, the characters (*, -, and &) must be immediately ad­
jacent to the equal sign (=) character because they also appear in 
unary operators. This placement avoids ambiguities in such cases as 

E1 =*p; 

which multiplies the result of expression E 1 by the value of p. 

5-20 Expressions and Operators 



• Even with usage that follows the guidelines, it is possible to introduce 
ambiguities, as in the following: 

E1 =/*part of a comment ... 

5.8 Comma Expression and Operator (, ) 

When two expressions are separated by the comma operator, they eval­
uate from left to right, and the compiler discards the result of the left 
expression. If you separate many expressions with commas, the compiler 
discards all but the result of the rightmost expression. For example, the 
following 

R = T = 1, T += 2, T -= 1; 

assigns the value 1 to variable R and the value 2 to variable T. 

The type and value of the result of a comma expression are the type and 
value of the right operand. The operator evaluates from left to right. 

You must. delimit comma expressions with parentheses if they appear 
where commas have some other meaning, as in argument and initializing 
lists. For example, 

f(a, (t=3,t+2), c) 

calls the function, f, with the arguments a,S, and c. In addition, variable t 
is assigned the value 3. 

5.9 Data Type Conversions 

VAX C performs data type conversions in four situations: 

1. When two or more operands of different types appear in an expression 
(including an assignment). 

2. When arguments other than long integers, addresses, or double­
precision floating-point numbers are passed to a function. 

3. When arguments that do not conform exactly to the parameters 
declared in a function prototype are passed to a function. 

4. When the data type of an operand is deliberately converted by the cast 
operator. See Section 5.4.5 for more information on the cast operator. 

Expressions and Operators 5-21 



5.9.1 Conversion of Operands 

The following rules (referred to as the arithmetic conversion rules) govern 
the conversion of operands in arithmetic expressions. Although they do 
not specify explicit conversions at the machine-language level, the rules 
govern in the following order: . 

1. Any operands of type char or short (signed or unsigned) convert to 
their 32-bit equivalents (int or unsigned int), and any of type float 
convert to double. 

2. Then, if either operand is double, the other converts to double, and 
that is the type of the result. 

3. Otherwise, if either operand is unsigned, the other converts to 
unsigned, and that is the type of the result. 

4. Otherwise, both operands must be int, and that is the type of the 
result. 

The arithmetic conversions are performed on all arithmetic operands. 
Note that some operators, such as the shift operators (> > ) and ( < <) 
require integers as operands. If one operand is of type float or double, 
you cannot meet this requirement. 

In previous versions of VAX C, floating-point arithmetic was carried out in 
double precision. Since the proposed ANSI C standard no longer requires 
this conversion, VAX C attempts to perform arithmetic in single precision 
whenever possible. Whenever an operand of type float appears in an 
expression, it is treated as a single precision object unless the expression 
also involves an object of type double, in which case the usual arithmetic 
conversion applies. 

When an operand of type double is converted to float, (for example, by an 
assignment) the compiler rounds the operand before truncating it to float. 

The compiler may convert a float or double value operand to an integer 
by assignment to an integral variable. In VAX C, the truncation of the 
float or double value is always toward zero. 

Conversions also take place between the various kinds of integers. In 
VAX C, variables of type char are bytes treated as signed integers. When 
a longer integer is converted to a shorter integer or to char, it is truncated 
on the left; excess bits are discarded. 

5-22 Expressions and Operators 



For example, 

int i; 
char c; 

i = OxFFFFFF41; 
c = i; 

assigns hex 41 (' A') to variable c. The compiler converts shorter signed 
integers to longer ones by sign extension. 

Whenever the compiler combines an unsigned integer and a signed inte­
ger, the signed integer converts to unsigned and the result is unsigned. 
All conversions from signed to unsigned perform an intermediate conver­
sion to int. For example, the compiler converts a char or short operand 
to an unsigned version by first converting it to a signed int and then by 
truncating it to form the unsigned version. All conversions from unsigned 
to sighed (such as by the cast operator) involve an intermediate conversion 
to unsigned into 

You can also add integers to pointers, in which case the integer is scaled 
(multiplied) by a factor that depends on the type of the object to which 
the pointer points. See Section 5.5.1 for more information concerning 
scaling pointers. 

5.9.2 Conversion of Function Arguments 

The data types of function arguments are assumed to match the types of 
the formal parameters unless a function prototype declaration is present. 
In the presence of a function prototype, all arguments in the function 
invocation are compared for assignment compatibility to all parameters 
declared in the function prototype declaration. If the type of the argument 
does not match the type of the parameter but is assignment compati-
ble, VAX C converts the argument to the type of the parameter. (See 
Section 5.9.1.) If an argumeht in the function invocation is not assignment 
compatible to a parameter declared in the function prototype declaration, 
VAX C generates an error message. 

Unless a function prototype is present, all arguments of type float convert 
to double, all variables of type char and short convert to int, all variables 
of type unsigned char and unsigned short convert to unsigned int, and 
an array or function name converts to the address of the named array or 
function. The compiler performs no other conversions automatically, and 
any mismatches after these conversions are programming errors. 

Expressions and Operators 5;...23 



Use the cast operator to pass arguments to parameters of different 
types. See Section 5.4.5 for more information on the cast operator. 
For more information concerning the manipulation of argument lists, 
refer to Chapter 3, Program Structure. For more information concern­
ing the VAX Calling Standard, refer to Chapter 10, Mixed-Language 
Programming. 

5-24 Expressions and Operators 



Chapter 6 

Data Types and Declarations 

The values of both constants and variables have data types. This chapter 
discusses the following topics in respect to data types: 

• Constants 

• Variables 

• Integers 

• Characters 

• Pointers 

• Floating-point values 

• Enumerated types 

• Arrays 

• Structures and unions 

• The void keyword 

• The typedef keyword 

• Interpreting variable declarations 

Data Types and Declarations 6-1 



6.1 Constants 

You can represent data in VAX C using constants. A constant is a primary 
expression with a defined value that does not change. You may represent 
a constant in a literal form, which contains the explicit numbers, letters, 
and operators that comprise the constant. Or, you may define a symbol to 
represent the constant value. (For more information concerning symbolic 
representation of constants, refer to Chapter 8, Preprocessor Directives.) 
Constants, as do all data in VAX C, have data types. The data type 
determines the amount of storage needed and determines how to interpret 
the stored object or constant value. The compiler determines the data 
type of constants by the way in which their values are represented in the 
source code. 

6.2 Variables 

You can also represent data in VAX C using variables, whose values can 
change throughout the execution of the program. All variables used in a 
program must be declared. When you declare a variable, you specify the 
data type of the stored object. An object, in VAX C, is a value requiring 
storage. See Section 6.2.1 for more information concerning data types of 
variables. 

Declarations determine the size of a storage allocation, whereas definitions 
initiate the allocation of storage. VAX C constants are a good example of 
the initiation of storage allocation. By design, you can only define and 
then reference constants; there is no way to declare a constant to claim 
that the value is defined elsewhere in the program. To define a constant, 
you give the constant a value. In the case of literal values, you specify the 
value directly. When using symbolic references, you define an identifier to 
substitute for a literal value. 

Unlike constants, variables can be declared and defined. Most variable 
declarations are also definitions because storage is allocated at that point 
in the program. To declare a variable, specify the data type. To define a 
variable, assign the variable the proper storage class and place the vari­
able declaration within the program structure. Also, if you can initialize 
a variable in the declaration, the variable is defined. For more informa­
tion concerning variable definitions, scope, and storage allocation, refer 
to Chapter 7, Storage Classes and Allocation. 

6-2 Data Types and Declarations 



B.2.1 Classification of Variables 

There are two kinds of variables: scalar and aggregate variables. Scalar 
variables have objects that can be manipulated arithmetically in their 
entirety. These objects are single characters, individual numbers, and 
pointers. Aggregate variables are data structures (arrays, structures, and 
unions) that are comprised of distinct elements (members) that you can 
declare to be of either a scalar or aggregate data type. 

6.2. 1. 1 Data Type Keywords 

To declare or define variables, you need to know the VAX C keywords 
associated with each data type. Table 6-1 lists the VAX C data type 
keywords according to classification. 

Table 6-1: VAX C Data Type Keywords 
Scalar Keywords 

int 

long 

unsigned 

short 

char 

float 

double 

enum 

Aggregate Keywords Other Type Keywords 

struct void 

union 

In the sections that follow, the keywords and operators used to declare 
variables of given data types are listed in the section header for ease of 
reference. 

VAX C also supports the type modifiers const and volatile. For informa­
tion concerning these type modifiers, refer to Chapter 7, Storage Classes 
and Allocation. 

Data Types and Declarations 6-3 



6.2.1.2 Format of a Variable Declaration 

A variable declaration can be composed of the following items: 

• Data type specifiers such as a data type or data type modifier keyword, 
one structure, union, or enum tag, and if necessary, a typedef name. 

Any of these give the data type of the declared object. 

• An optional storage class keyword. 

A storage class keyword affects the scope of a variable and determines 
how it is stored. If you omit the storage class keyword, there is 
a default storage class that depends upon the physical location of 
the declaration in the program. The positions of the storage class 
keywords and the data type keywords are interchangeable. 

• Declarators, which list the identifiers of the declared objects and 
which may contain operators that declare a pointer, function, or array 
of objects of the declared type. 

• Initializers for each declared object or aggregate element giving the 
initial value of a scalar variable or the initial values of structure 
members or array elements. 

An initializer consists of an equal sign (=) followed by either a single 
expression or a comma-list of one or more expressions in braces. 

For example, the declaration 

int var_number = 10; 

both declares and defines the integer variable, var_number, that has 
an initial value of 10. The keyword int specifies the amount of storage 
needed on a VAX for an integer. The identifier var_number follows. The 
equality operator (=) initializes the variable with the literal constant 10; 
for the initialization to take place, storage is allocated and the variable is 
defined. Declarations must end in a semicolon (;). 

The variable declaration in the previous example was not difficult to 
interpret, but even experienced VAX C programmers have difficulty 
interpreting complex variable declarations. See Section 6.12 for more 
information concerning the interpretation of VAX C variable declarations. 

6-4 Data Types and Declarations 



6.3 Integers (int, long, short, char, unsigned) 

Integer variables are declared with the keywords int long, short, char, 
and unsigned. The following is an example of an integer declaration: 

int x 

Character variables are declared with the keyword char. An example of 
a character declaration with the initialization of a character variable is as 
follows: 

char ch = I a I ; 

Table 6-2 specifies the sizes and ranges of integers: 

Table 6-2: Size and Range of VAX C Integers 
Keyword Size Range 

int, 32 bits -2,147,483,648 to 
long, and 2,147,483,647 
long int 

unsigned and 32 bits o to 4,294,967,295 
unsigned int 

short and 16 bits -32,768 to 32,767 
short int 

unsigned short 16 bits o to 65,535 

char 8 bits -128 to 127 

unsigned char 8 bits o to 255 

The following sections des<:ribe the constants that you can assign to the 
integer variables. 

Data Types and Declarations 6-5 



6.3. 1 Integer Constants 

There are three types of integer constants; decimal, hexadecimal and octal. 
Integer constants can consist of the characters 0 to 9, a to f (for hexadec­
imal integers), A to F (also for hexadecimal integers), and, optionally, 
the characters x, X, 1, and L in either upper-or lowercase letters. Use the 
characters x and X to specify hexadecimal numbers. The characters I and 
L specify that the constant is to be considered as a long integer (4 bytes, 
1 longword). On other implementations of the C language, values of the 
int data type require 16 bits of storage. On a VAX, values of the int data 
type require 32 bits of storage. Therefore, note that values of the int and 
long data types require identical storage. VAX C supports the L suffix only 
for the sake of program portability. 

Integer constants can be specified in decimal, octal, and hexadecimal 
radixes. An integer constant is assumed to be decimal unless it begins 
with 0 or Ox; if it begins with zero, it is assumed to be octal; if it begins 
with Ox, it is assumed to be hexadecimal. 

In octal constants, the digits 8 and 9 have the octal values 010 and OIl, 
respectively. For instance, the octal number 039 is equal to 3 * 8 + 9, or, 
decimal value 33; the octal number 080 is equal to 8 * 8 + 0, or, decimal 
value 64. 

Even though VAX C supports the digits 8 and 9 in octal constants, you 
should avoid using these octal constants so as not to conflict with other 
implementations of the C language. 

Integer constants must not include a decimal point; constants with a dec­
imal point are of type double. Integer constants that exceed a longword 
are treated as programming errors. 

Character constants such as 'a' and '$' are also valid integer constants. 
Their integer values in VAX C are the values of the corresponding ASCII 
codes. 

Some examples of valid integer constants could include: 

133L 
Ox17A 
066 
la l 

1$1 

6-6 Data Types and Declarations 

/* Long decimal integer 
/* Hexadecimal integer 
/* Octal integer 
/* Decimal 97 
/* Decimal 36 



Examples of invalid integer constants include: 

143. 
3333333333 
+33333 
77af 

6.3.2 Character Constants 

/* Includes a decimal point 
/* Out of range for int 
/* '+' is an invalid character 
/* Hexadecimal constants must be 
* prefixed with "Ox" 

* 

A character constant is a value, requiring at least 8 bits (1 byte) or at 
most 32 bits (1 longword) of memory, that is enclosed in apostrophes. 
Character constants can be a single ASCII character, as in the following 
example: 

char ch = 'a'; /* Lowercase letter 'a' is a constant 
* assigned to ch. 

* 
*/ 

The character constant la
l has the ASCII value of 97. If the value of 

a character constant is not large enough to fill 32 bits of memory, the 
compiler stores the character or characters in the low order byte(s) and 
pads the remaining bytes with NUL characters C\O/). 

Character constants do not have to be single characters, as shown in the 
following example: 

int I_word = 'a:cd' /* This constant contains 4 characters */ 

printf("Y.c\n". I_word); 
printf("Y..4s". &l_word); /* String with maximum 4 characters */ 

Sample output from the program is as follows: 

$ RUN EXAMPLE 
a 
a:cd 
$ 

If you print variable I_word as a character, the printf function prints only 
the character located in the low order byte of the integer allocation. To 
print all. of the characters in the longword allocated to the variable, you 
have to print the variable as a string and pass the address of the integer 
variable as an argument. If you print the integer variable as a string, be 
sure to specify a precision of at most four, since you can never be sure if 
the next byte in the string is a terminating NUL character. 

Data Types and. Declarations 6-7 



The apostrophe (') and quotation mark (") are significantly different 
punctuation marks in VAX C, indicating a character constant and a string 
constant, respectively. One context in which the difference is important 
is in an argument list. .1£ you specify a function argument as a string, 
and wish to pass a character constant, you must enclose the character in 
quotation marks, not apostrophes, even if the string is only one to four 
characters in length. See Section 6.8 for more information concerning 
character-string constants. 

6.3.3 Escape Sequences 

In VAX C, escape sequences are character strings that represent a single 
printing or nonprinting character. The term escape sequences does not 
designate a string beginning with the ASCII character ESC, as in VT100 
escape sequences. Table 6-3 presents the escape sequences which specify 
the nonprinting characters, the apostrophe, and the backslash (\): 

Table 6-3: V AX C Escape Sequences 
Character Mnemonic Escape Sequence 

newline NL \n 

horizontal tab HI \t 

vertical tab VI \v 

backspace BS \b 

carriage return CR \r 

form feed FF \f 

backslash \ \\ 
apostrophe \' 
quotes \" 

bit pattern ddd \ddd or \xddd 

An escape sequence, such as '\n', denotes a single character. 

The form '\ddd' is used to specify any byte value (usually an ASCII code), 
where the digits ddd are one to three octal digits. The octal digits are 
limited to 0 to 7. A common use is to specify the ASCII NUL character, as 
follows: 

'\0' 

6-8 Data T vpes and Declarations 



Similarly, the form '\xddd' is used to specify any byte value (usually 
an ASCII code), where the digits ddd are used to specify one to three 
hexadecimal digits. 

The following are examples of valid escape sequences of the form 
'\ddd' and '\xddd'. Both of these escape sequences are used to specify 
an a-umlaut (a) on a VT2xx terminal in octal and hexadecimal digits, 
respectively. 

'\344' 
'\xe4' 

If the character following the backslash in an escape sequence is illegiti­
mate, the backslash is ignored; that is, the character constant's value is the 
same as if the backslash were not present. 

6.4 Floating-Point Numbers (float, double) 

When declaring floating-point variables, you determine the amount of 
precision needed for the stored object. In VAX C, you can have either 
single-precision or double:-precision variables. If you choose double 
precision, you have the choice of using either the D_floating or 
G_floating formats. 

Table 6-4 specifies the sizes and ranges of real numbers: 

Tab'e 6-4: Size and Range of VAX C Floating-Point Numbers 
Keyword Size Range Precision 

float 32 bits 0.29*10~ {-38}$% 7 decimal digits 
to 

1.7 *IW{38}$% 

double 64 bits 0.29*10~ {-38}$% 16 decimal digits 
D-Floating to 

1.7 *10~{38}$% 

double 64 bits 0.56*10~ {-308}$% 15 decimal digits 
G-Floating to 

0.899 *10~{308}$% 

Data Types and Declarations 6-9 



You use the keyword float to declare a single-precision floating point 
variable, represented internally in the VAX F_floating point binary format. 

The keyword double declares a double-precision floating-point vari-
able. You can use the keywords double and long float interchangeably. 
However, long float should not be used so as to avoid conflict with other 
implementations of the C language. There are two representations of the 
VAX C data type double: D_floating and G_floating. 

The G_floating precision, approximately 15 digits, is less than that of 
variables represented in D_floating format. The fractional portion of 
the variable may contain one more digit, but the integral portion of the 
variable must contain one less digit. 

The default representation of the data type double is D_floating. The 
G_floating representation is chosen by compiling the program with the 
/G_FLOAT qualifier on the DCL command line. For more information 
concerning the compilation command line, refer to Chapter 1, Developing 
VAX C Programs at DCL Command Level. Modules compiled with the 
D_floating representation should not be linked with modules compiled 
with the G_floating representation. Since there are no functions in the 
VAX C Run-Time Library that will perform type conversions on files, 
use the VMS Run-Time functions MTH$CVT_D_G, MTH$CVT_G_D, 
MTH$CVT_DA_GA, and MTH$CVT_GA_DA if you do not wish to 
recompile the program. For further information concerning the use of the 
VMS Run-Time Library, refer to the VAX/VMS Run-Time Library Routines 
Reference Manual 

6.4. 1 Floating-Point Constants 

A floating-point constant has an integral part (a decimal point) a fractional 
part (the letter e or E), and an optionally signed integer exponent. The 
integral and fractional parts consist of decimal digits; you may omit either 
the integral or fractional part. You may omit either the decimal point with 
the following digits or the E <exponent> , but not both. 

All floating-point constants are of type double. 

6-1 0 Data Types and Declarations 



The following are examples of floating-point constants: 

3.0e10 
3.0E-10 
3.0e+10 
3E10 
3.0 
. 120e2 
.120 

6.5 Pointers (*) 

Pointers in VAX C are variables that contain 32-bit addresses of other 
objects. They are declared with the asterisk operator and the data type of 
the object to which it points, as in the following: 

int *px; 

Identifier px is declared as a pointer to a variable of type int; the construct 
*px is treated as a variable of type int. An expression such as *px yields 
the object to which px points. 

Unless a pointer variable is initialized, it is a null pointer. A null pointer is 
a pointer variable that has been assigned the integer constant O. However, 
if you attempt to access data by means of a null pointer. VMS will return 
the hardware error, ACCVIO. The address space between value 0 and 511 
(decimal value, 1 page) is not accessible because it is not mapped into the 
program's virtual address space. This is true for all VAX C programs. 

When used in certain arithmetic expressions, the compiler uses the size of 
the object of the pointer. For example, if px is a pointer to an integer, 
px + 1 evaluates to the next address, 4 bytes after px. If px is a pointer to 
char, px + 1 yields the next address, 1 byte after px. The compiler uses 
the type of the pointed object to scale the arithmetic. 

A different result would occur with an expression such as the following: 

*px + 1 

This expression evaluates to the value of the object to which px points 
added to one. 

Some contexts may require a pointer of a particular type. This would be 
necessary, for example, when a function requires that an argument be 
passed by reference. 

Data Types and Declarations 6-11 



The unary asterisk (*) is also the indirection operator in VAX C. The 
unary asterisk operates as follows: 

x = *px; 

This statement assigns the value of the object pointed to by px to 
variable x. Since the asterisk can be used in any sort of declarator, you 
can have pointers to scalars, to functions, to other pointers, to structures, 
and so forth. 

The ampersand ( &) operator is used to take the address of an object. For 
example, consider the following: 

px = &x; 

This statement assigns the address of variable x to pointer px. After an 
assignment such as this, a reference to *px yields the value of x. 

You should not apply the ampersand operator to constants, to register 
variables, to function identifiers, or to array identifiers. 

The compiler stores constant values in a read-only program section (psect), 
so attempts to change the value by applying the ampersand operator 
will result in an error. VAX C allows the applicatiqn of the ampersand 
operator to constants so that you can pass constants, as arguments, to 
system service routines. For more information concerning psects, refer 
to Chapter 7, Storage Classes and Allocation. For more information 
concerning instances where you would apply the ampersand operator to a 
constant, refer to Chapter 10, Mixed-Language Programming. 

If you do apply the ampersand to register variables, the optimizing section 
of the compiler will prevent any promotion to registers. 

If you apply the ampersand to function or array identifiers, VAX C issues 
a message, since asking for the address of an expression returning an 
address is redundant. 

6-12 Data Types and Declarations 



6.6 Enumerated Types (enum) 

An enumerated type is a user-defined data type that is not derived from 
other fundamental types. Each listed enumerator is associated with an 
incremented integer constant starting with zero. The following example 
illustrates the declaration of a variable and an enumeration type, or tag: 

enum shades 
{ 

out, verydim, dim, prettybright, bright 
} light; 

This declaration defines the variable light to be of an enumerated type 
shades. The variable can assume any of the enumerated values. 

The tag shades becomes the enumeration tag of the new type; out, 
verydim, ... , bright are the enumerators with values zero through four. 
These enumerators are the constant values of the type shades and can be 
used wherever constants are valid. 

If the tag has already been declared, you can use the tag as a reference to 
that enumerated type, as in the following declaration: 

enum shades light1; 

The variable lightl is an object of the enumerated data type, shades. 

An enum tag can have the same spelling as other identifiers in the same 
program, including variable identifiers and member names in structures 
and unions, because the meanings are distinguished by context. However, 
enum c()nstant names must be spelled uniquely. VAX C allows forward 
reference to enunt tags that have not been declared yet in the source code, 
but are declared further on in the program. 

Internally, each enumerator is associated with an integer constant; the 
compiler gives the first enumerator the value 0 by default, and the re­
maining enumerators are incremented by the value I, as they are read 
from left to right. Any enumerator can be set to a specific integer constant 
value. The enumerators to the right of such a construct (unless they are 
also set to specific values) then receive values that are one greater than the 
previous value. For example, consider the following: 

enum spectrum 
{ 

red, yellow=4, green, blue, indigo, violet 
} color2; 

Data Types and Declarations 6-13 



This declaration gives red, yellow, green, blue, ... , the values 
0,4,5,6, ... 

Examining the value of a variable like color2 displays an integer, not 
a string such as red or yellow. Although they are stored internally as 
integers, regard enumerated data types as distinct from the fundamental 
types. 

Type mismatches between the enumerated and fundamental types, or 
between different enumerated types, are errors. It is not valid to say: 

enum 
{ 

red, orange, yellow, green, blue, indigo, violet 
} color1; 

enum illum 
{ 

out, verydim, dim, prettybright, bright 
} light; 

light = red; 

The enumerators red and light have different enumerated types. 

Nor is it valid to say: 

enum illum 
{ 

out, verydim, dim, prettybright, bright 
} light; 

light = 1; 

Value 1 is not an enumerated value for variable light. 

To perform valid mixed-type operations, use the cast operator. Consider 
the following example: 

1* Both evaluate to verydim (1) *1 

light = (enum ilIum) (out + (enum ilIum) red); 
light = (enum ilIum) 1; 

Here, the cast operation (enum ilIum) causes the compiler to treat enum 
constant red and integer constant 1 as values of enumerated type ilIum. 

Variables and enumerators of enumerated types take on various storage 
classifications when used with the globaldef and globalref storage class 
keywords. For more information concerning the use of these storage class 
keywords with enumerated types, refer to Chapter 7, Storage Classes and 
Allocation. 

6-14 Data Types and Declarations 



&.7 Arrays ([ ]) 

Arrays are declared with the square bracket operator ([ ]), as in the 
following declaration of a IO-element array of integers called table_one: 

int table_one[10]; 

The type specifier int gives the data type of the elements. The elements 
of an array can be of any scalar or aggregate data type. The identifier 
table_one specifies the name of the array. The constant expression gives 
the number of elements in a single dimension. Array subscripts in 
VAX C begin with the integer 0 (not 1); they must be integral. In the 
previous example, the first element is table_one[O] and the last element is 
table_one[9]. Unpredictable results may occur if you specify a subscript 
larger than or equal to the declared dimension bound; you would then be 
accessing objects outside of the memory allocated to the array. The use of 
array subscripts in the following example is not recommended: 

int table_one [10] ; 

table_one[10] = 69; 
table_one [5] = table_one[11]; 

VAX C supports multidimensional arrays: arrays declared as an array of 
arrays. Consider the following: 

int table_one [10] [2] ; 

Here, variable table_one is a two-dimensional array containing 20 inte­
gers. You can use VAX C operators in forming expressions with specific 
elements of an array, as follows: 

++table_one[O] [0] ; 1* Increment first element 

In VAX C, arrays are stored in row-major order. The element 
table_one[O][O] immediately precedes table_one[O][I], which in turn 
immediately precedes table_one[0][2]. 

When you declare an array, either single- or multidimensional, the integer 
constant is optional in the first pair of brackets. Omission of the constant 
expression is useful in the following cases: 

• If the array is external, its storage is allocated by a remote definition. 
Therefore, the constant expression can be omitted for convenience 
when the array name is declared, as in the following example. 

Data Types and Declarations 6-15 



extern int arrayl[]; 
first_function 0 
{ 

} 

In a separate compilation: 

int arrayl[10]; 
second_function() 
{ 

} 

For more information concerning external data declarations, refer 
to Chapter 7, Storage Classes and Allocation. 

• If the declaration of the array includes initializers, the size of the array 
can be omitted. In the following example: 

char array_one [] = j'Shemps" 
char array _ two (] = { 'S'. 'h'. ' e'. ' m'. 'p'. 's'. ' \0' }; 

The two definitions initialize variables with identical elements. These 
arrays have seven elements: six characters and the null character 
(\0) which terminates all character strings. VAX C determines the 
size of the array from the number of characters in the initializing 
character-string constant or initialization list. 

• If the array is used as a function parameter, it is defined in the calling 
function. The declaration of the parameter in the called function can 
omit the constant expression. The address of the beginning of the 
array is passed and subscripted references in the called function can 
modify elements of the array. 

The following example shows how an array is used in this manner: 

mainO 
{ 

1* Initialize array *1 
static char arg_str[] = "Thomas"; 
int sum; 

sum = adder(arg_str); 1* Pass address of array *1 

} 

1* Function adds ASCII values of letters in array *1 

6-16 Data Types and Declarations 



adder (param_string) 
char param_string[]; 
{ 

int i, sum=O; /* Incrementor and sum */ 
/* Loop until NUL char */ 

for (i=O; param_string[i] != '\0'; i++) 
sum += param_string[i]; 

return sum; 
} 

When the function adder is called, parameter param_string receives 
the address of the first character of argument arg_str, which can then 
be manipulated in adder. The declaration of param_string serves only 
to give the type of the parameter, not to reserve storage for it. 

6.1. 1 Initialization of Arrays 

When initializing array elements, separate the values with a comma 
and delimit the comma-list with braces ({ }). The rules for specifying a 
comma-list are as follows: 

1. If the initializer for an array begins with a left brace (0, then the 
following comma-list provides initial values for the array elements. 
The list of initializers can end with a comma, which is ignored. The 
number of initializers cannot be greater than the number of elements. 

2. If the initializer does not begin with a left brace, then only enough 
elements are taken from the initializer list to supply values to the 
array's elements. In this case, there can be more initializers than there 
are elements, and any remaining values in the list are left to initialize 
the next aggregate. 

Initialize a single-dimension array as follows: 

int ex_array[5] = { 1, 22, 333, 4444, 55555 }; 

Initialize a multidimensional array as follows: 

int ex_array [2] [5] = 
{ 

}; 

{ 1, 22, 333, 4444, 55555 }, 
{ 5, 4, 3, 2, 1 } 

The element ex_array[O][O] has a value of 1, ex_array[O][I] has a value 
of 22, ... , ex_array[1 ][0] has a value of 5, ex_array[1][I] has a value of 
4, ... , and so forth. 

Data Types and Declarations 6-11 



Another tnethod of initializing the same array is as follows: 

int ex_array [2] [5] = { 1,22,333,4444,55555,5,4,3,2, 1 }; 

VAX C initializes the elements in row-major order. The leftmost brace 
determines the row number of a multidimensional array. Elements in 
row 0 are initialized before elements in row 1. 

You may omit elements in an initialization, as follows: 

int ex_array [2] [5] = 
{ 

{ 1, 22, 333, 4444 } 
}; 

The element ex_array[O][O] has the value 1, ex_array[O][I] has the value 
22, ex_array[0][2] has the value 333, and ex_array[0][3] has the value 
4444. The last element in row 0, since ex_array was declared to have a 
storage class of static, is initialized with zero. All of the elements in the 
second row which were not specified in the initialization are initialized 
with zero. For more information concerning the static storage class, refer 
to Chapter 7, Storage Classes and Allocation. 

NOTE 

You cannot initialize array elements without initializing all 
preceding elements. The following initialization is not valid: 

example[3] = { 1 , , 3 }; 

In the previous example, you have to initialize the first and 
second element before initializing the third. 

6.8 Character-String Variables (char *, char []) 

VAX C treats character strings as arrays; they are treated as the address 
in memory of the first character in the string. There are several ways 
to declare character-string variables. You can declare a character string 
by designating a pointer to the first character of that string, as in the 
following: 

char *ex_string = "thomasina"; 

This expression copies an address, not a string, to variable ex_string. The 
object to which ex_string points, a character-string constant, ends with 
the NUL character ('\0'). 

6-18 Data Types and Declarations 



You can declare character-string variables as you would declare an array. 
For example: 

char string_one [] = "thomasina"; 
char string_2[10] = "thomasina"; 

See Section 6.7.1 for more information concerning declaration and initial­
ization of character-string variables. 

To copy one string to another, you must use the strcpy or the strncpy 
VAX C Run-Time Library (RTL) functions, as follows. 

mainO 
{ 

char ex_string[26]; 
1* Copy string into array *1 

strcpy(ex_string. "Character-string constant"); 
printf("%s\n". ex_string); 

} 

For more information concerning the string copying VAX C RTL functions, 
refer to the VAX C Run-Time Library Reference Manual 

6.B.1 Character-String Constants 

A character-string constant is a series of characters enclosed in quotation 
marks (II II). Consider the following: 

"This is a string constant *** " 

It has data type of an array of char. The string is initialized with the given 
characters. The compiler terminates the string with a NUL character (\0). 
There is no formal limit to the length of a string constant. The actual limit 
to a string constant's length in VAX C is 65,535 characters. All strings, 
even when written identically, are distinct objects. 

The apostrophe (') and quotation mark (II) are significantly· different 
punctuation marks in VAX C. See Section 6.3.2 for more information. 

The following rules apply to the characters used in character-string 
constants: 

• All characters, including the escape sequences, can be used in strings. 

• A quotation mark within a string must be preceded by a 
backslash (\). 

Data T vpes and Declarations 6-19 



• A backslash followed immediately by a newline is ignored, allowing 
long strings to be continued in the first column of the next line. 

6.9 Structures and Unions (struct, union) 

Structures and unions share the following characteristics: 

• Their members can be variables of any type, including other structures 
and unions or arrays. A member can also consist of a specified 
number of bits, called a field. 

• The only operators that are valid with structures and unions are the 
simple assignment (=) and sizeof operators. In particular, struc­
tures and unions may not appear as operands of the equality (==), 
inequality (!=), or cast operator. 

• They can be assigned to other structures and unions with the assign­
ment operator (=). The two structures or unions in the assignment 
must have the same length. 

• They can be passed to and returned by functions. The argument 
must have the same length as the function parameter. A structure or 
union is passed by value, just like a scalar variable; that is, the entire 
structure or union is copied into the corresponding parameter. 

NOTE 

When you pass structures as arguments, they mayor may 
not terminate on a longword boundary. If they do not, 
VAX C aligns the following argument on the next longword 
boundary. For more information concerning passing of 
arguments, especially between programs written in different 
VMS programming languages, refer to Chapter 10, Mixed­
Language Programming. 

The difference between structures and unions lies in the way their mem­
bers are stored: 

• The members of a structure all begin at different offsets from the base 
of the structure. The offset of a particular member corresponds to the 
order of its declaration; the first member is at offset O. Each successive 
nonfield member of a structure begins at the next byte boundary; there 
is no implicit type alignment. This alignment of structure members is 
a VAX C convention and is also followed by all other VAX languages. 
Other C implementations may align members differently. 

6-20 Data Types and Declarations 



• In a union, every member begins at offset 0 from the address of the 
union. The size of the union in memory is the size of its largest mem­
ber. When the single storage space allocated to the union contains 
a smaller member, the extra space between the end of the smaller 
member and the end of the allocated memory remains unaltered. You 
cannot initialize unions. For more information concerning unions, 
refer to Chapter 3, Program Structure. 

6.9.1 Declaring a Structure or Union 

Structures and unions are declared with the struct or union keywords. 
You can follow the keywords struct or union by a tag, which gives a 
name to the structure or union type in much the same way that an enum 
tag gives a name to the enumerated type. You can then use the tag with 
the struct or union keywords to declare variables of that type without 
specifying individual member declarations again. 

Two structures (or two unions) cannot have the same tag, but the tags 
can be the same as the identifiers used for variables and function names. 
Tags can also have the same spellings as member names. The compiler 
distinguishes them by context. The scope of a tag is the same as the scope 
of the declaration in which it appears. 

The tag is followed by braces ({ }) that enclose a list of member decla­
rations. Each declaration in the list gives the data type and name of one 
or more members. The names of structure or union members can be the 
same as other variables, function names, or members in other structures 
or unions. The compiler distinguishes them by context. In addition, the 
scope of the member name is the same as the scope of the declaration in 
which it appears. 

The list of member declarations can be followed by declarators,. which 
name and reserve storage for (define) structure or union objects. 

Structure or union declarations can take one of five forms, as follows: 

1. If a declaration includes only a tag and a list of member declarations, 
then the list of member declarations defines the tag to be a data type 
by which other objects can be declared. For example: 

struct person 
{ 

}; 

char first[20]; 
char middle[3]; 
char last [30] ; 

Data Types and Declarations 6-21 



2. When a declaration includes a tag, a list of member declarations, and 
a list of identifiers, the identifiers become objects of the structure type 
and the tag is considered to be a shorthand notation, or mnemonic, 
for the structure type. Consider the following example: 

struct person 
{ 

char first[20]; 
char middle[3]; 
char last[30]; 

} george, mary; 

·3. If the tag is omitted, the structure or union definition applies only to 
the variable identifiers that follow in the declaration. Consider the 
following example: 

struct 
{ 

char first [20] ; 
char middle [3] ; 
char last[30]; 

} george, mary; 

4. The fourth form uses the tag to refer to a structure or union defined 
in another declaration. The definition is then applied to the variable 
identifiers that follow the tag name in the declaration. 

struct person george ,mary; 

5. The fifth form uses only the struct or union keyword and the tag 
to override other identical tags in scope, and to reserve the tag for a 
later definition within a new scope. A definition within a new scope 
overrides any previous tag definition appearing in an outer scope. This 
use of declaring tags is called vacuous structure tag declaration. The 
declaration does not require the size of the structure as determined by 
the structure member list. Using such declarations, you can eliminate 
ambiguity when forward referencing tag identifiers. The following 
example illustrates such a case: 

struct ambiguous { ... }; 

{ 

struct ambiguous; /* Vacuous structure tag declaration. */ 
/* Ignore previous tag currently in scope. */ 

struct inner 
{ 

struct ambiguous *pointer; /* Declare a structure pOinter by */ 
/* forward referencing. */ 

}; 

6-22 Data Types and Declarations 



struct ambiguous 
{ ... }; 

/* Vacuous declaration refers to this */ 
/* structure, not to the first one declared. */ 

} 

In the example, the pointer to the structure defined using tag am­
biguous points to the second declaration of ambiguous, not to the 
first. 

Structures and unions can contain other structures and unions. For 
example: 

struct person 
{ 

char first [20] ; 
char middle[3]: 
char last[30]; 
struct 
{ 

int day; 
int month; 
int year; 

} birth_date; 
} george, mary; 

6.9.2 Referencing Members of Structures or Unions 

A reference to a member of a structure must be a fully qualified or a 
pointer-qualified reference. For example, the fully qualified references to 
the members last and year from the example in the previous section, are 
as follows: 

strcpy(george.last, "Harrison"); 
george.birth_date.year = 1944; 

A member name denotes the member's data type and its offset from the 
base of the structure. There are no restrictions on the reuse (as a member 
name) or redeclaration of a particular name except that the same name 
cannot be used for more than one member in the same structure. 

In VAX C, and in other recent compilers, a structure or union reference 
must be completely qualified; that is, you must prefix a member name in 
a reference either with a pointer qualifier (pointer-name -> ) or with the 
name of the structure or union and the names of all intervening members. 

Data Types and Declarations 6-23 



For example, consider the following structure declaration: 

main() 
{ 

struct 
{ 

struct { int al.a2.a3; } mema; 
struct { int al.a2.a3; } memb; 

} *pointer. structure; 

} 

pointer = &structure; 

structure.mema.al = 1; 
pointer->memb.al = 2; 

structure.al = 3; 
pointer->al = 4; 

/* Unambiguous 

/* Ambiguous: which lIall1? 

Member al must be uniquely qualified as being a member of structure 
mema or structure memb. In fact, structure members that are themselves 
structures must be given variable identifiers (mema and memb) to make it 
possible to construct fully qualified references. 

A member name is unique if it conforms to either of the following require­
ments: 

• It is used only once. 

• If it is used more than once (in different structures), every use denotes 
a member of the same data type and at the same offset from the base 
of its structure. 

If you use member names that refer to different structures than those in 
which they were declared, a programming practice not recommended, 
the compiler assumes that the program is erroneous and issues diagnostic 
messages. The following checks apply to the use of member names for 
reference to structures and unions in which they are not declared: 

• If a member name is unique, you can use it in a reference to a struc­
ture of which it is not a member, since the address and size of the 
referenced data can be determined without ambiguity. However, the 
compiler issues a nonfatal warning message. This usage is maintained 
for compatibility with other C implementations. 

• If a member name is not unique (ambiguous), its use in such a 
reference causes a fatal error message. 

6-24 Data Types and Declarations 



6.9.3 Initialization of Structures 

In structure declarations, initializers follow the structure variables, not 
the members. Separate. initializing values with commas; delimit them 
with braces ( { }). See Section 6.7.1 for more information concerning 
comma-lists. 

An example of the initialization of two structure variables is as follows: 

struct 
{ 

int i; 
float c; 

} a = { 1, 3.0e10}, b = { 2, 1.5e5 }; 

The compiler assigns structure initializers in increasing member order. 
If there are fewer initializers than members for a static, external, or 
globaldef structure, the structure is padded with zeros. For more infor­
mation concerning storage classes, refer to Chapter 7, Storage Classes and 
Allocation. 

NOTE 

There is no way to specify iterations of an initializer or to 
initialize a member in the middle of a structure without also 
initializing the previous members. 

Example 6-1 shows these initialization rules applied to an array of 
structures. 

Data Types and Declarations 6-25 



Example 6-1: Rules for Initialization of Structures 

o • • 

mainO 
{ 

int 1. m; 
static struct 

{ 

char ch; 
int i; 
float c; 

} ar [2] [3] 
{ 

{ 
{ 
{ 
{ 

} 
}; 

'a'. 1. 3e10 }. 
'bit 2. 4e10 }. 
'c' . 3. 5e10 }. 

printf("row/co1\t ch\t i\t c\n"); 
printf("-------------------------------------\n"); 
for (1 = 0; 1 < 2; 1++) 

for (m = 0; m < 3; m++) 
{ 

} 
} 

printf("[Yod] [Yod] :".1. m); 
printf("\t Yoc \t Yed \t Yee \n". 

ar[l] [m] .ch. ar[l] [m].i. ar[l] [m].c); 

The following numbers correspond to the numbers in the previous 
example: 

o You must delimit the initialization of each of the array rows with 
braces. 

• You must delimit a structure initialization with braces. 

• You must delimit an array initialization with braces. 

This program writes the following output to stdout: 

row/col ch 

[0] [0]: a 
[0] [1]: b 
[0] [2]: c 
[1] [0] : 
[1] [1] : 
[1] [2] : 

6-26 Data Types and Declarations 

i 

1 
2 
3 
o 
o 
o 

c 

3.000000e+10 
4.000000e+10 
5.000000e+10 
O.OOOOOOe+OO 
O.OOOOOOe+OO 
O.OOOOOOe+OO 



6.9.4 Variant Structures and Unions 

Variant structure and union declarations allow you to reference members 
of nested aggregates without having to reference intermediate structure 
or union identifiers. When you nest a variant structure or union declara­
tion within another structure or union declaration, the enclosed variant 
aggregate ceases to exist as a separate aggregate, and VAX C propagates 
its members to the enclosing aggregate. 

You declare variant structures and unions using the keywords 
variant_struct and variant_union. The format of these declarations is 
the same as regular structures or unions except for the following: 

• Variant aggregates must be nested within other valid structure or 
union declarations. 

• You cannot use a tag in a variant aggregate declaration. 

• You must provide a variable identifier in the variant aggregate 
declaration. 

To illustrate the use of variant aggregates, consider the following code 
example that does not use variant aggregates: 

1* The numb~rs to the right of the code represent the byte offset * 
* from the enclosing structure or union declaration. *1 

int a; 
char *b; 
union TAG_2 
{ 

int c; 
struct TAG_3 
{ 

1* O-byte enclosing_struct offset *1 
1* 4-byte enclosing_struct offset *1 
1* 8-byte enclosing_struct offset *1 

1* O-byte nested_union offset */ 
1* O-byte nested_union offset */ 

int d; 1* O-byte nested_struct offset *1 
int e; 1* 4-byte nested_struct offset *1 

}. nested_struct; 
} nested_union; 

} enclosing_struct; 

If you want to access nested member d, then you need to specify all of the 
intermediate aggregate identifiers, as follows: . 

enc~osing_struct.nested_union.nested_struct.d 

Data Types and Declarations 6-27 



If you attempted to access member d without specifying the intermediate 
identifiers, then you would be accessing the incorrect offset from the 
incorrect structure. For instance, if you specified the following: 

enclosing_struct.d 

VAX C uses the address of the original structure (enclosing_struct), and 
adds to it the assigned offset value for member d (0 bytes), even though 
VAX C calculated the offset value for d according to the nested structure 
(nestecLstruct). Consequently, VAX C accesses member a (0 byte offset 
from enclosing_struct) instead of member d. 

The following code example illustrates the same code using variant 
aggregates: 

/* The numbers to the right of the code present the byte offset * 
* from enclosing_struct. */ 

int a; 
char *b; 
variant_union 

/* O-byte enclosing_struct offset */ 
/* 4-byte enclosing_struct offset */ 

{ 

int c; /* 8-byte enclosing_struct offset */ 
variant_struct 
{ 

int d; /* 8-byte 
int e; /* 12-byte 

} nested_struct; 
} nested_union; 

} enclosing_struct; 

enclosing_struct offset */ 
enclosing_struct offset */ 

The members of variant aggregates nestecLunion and nestecLstruct are 
propagated to the immediately enclosing aggregate (enclosing_struct). The 
variant aggregates cease to exist as individual aggregates. 

Since variant aggregates nestecLunion and nestecLstruct do not exist as 
individual aggregates, you cannot use tags in their declarations and you 
cannot use their identifiers (nestecLunion, nestecLstruct) in any reference 
to their members. However, you are free to use the identifiers in other 
declarations and definitions within your program. 

If you need to access member d, you use the following notation: 

enclosing_struct.d 

If you use the following notation: 

enclosing_struct.nested_union.nested_struct.d 

unpredictable results occur. 

6-28 Data Types and Declarations 



If you use regular structure or union declarations within a variant aggre­
gate declaration, VAX C propagates the structure or union to the enclosing 
aggregate, but the members remain a part of the nested aggregate. For 
instance, if the nested structure in the last example was of type struct, the 
following offsets would be in effect: 

int a; /* O-byte enclosing_struct offset */ 
/* 4-byte enclosing_struct offset */ char *b; 

variant_union 
{ 

int c; /* 8-byte enclosing_struct offset */ 
struct TAG_2 /* 8-byte enclosing-struct offset */ 
{ 

int d; /* O-byte nested_struct offset */ 
int e; /* 4-byte nested_struct offset */ 

} nested_struct; 
} nested_union; 

} enclosing_struct; 

NOTE 

Variant structures and unions are VAX C extensions and are not 
portable. 

6.9.5 Bit Fields 

A structure member may consist of a speCified number of bits, called a 
field, which may be named or unnamed. A colon is used to separate the 
member's declarator (if any) from a constant-expression that gives the field 
width in bits. No field may be longer than 32 bits (1 longword) in VAX C. 

If no field name precedes the field-width expression, it indicates an 
unnamed field of the specified width. Since nonfield structure members 
are aligned on byte boundaries, this form can create unnamed gaps in 
the structure's storage. As a special case, an unnamed field of width zero 
causes the next member (generally another field) to be aligned on a byte 
boundary. 

Bit fields must be of data types unsigned or into The use of other data 
types is an error. Signed bit fields of the type int are recognized by 
VAX C. There are no restrictions on the use of fields except as follows: 

• You cannot declare arrays of fields. 

• The address of operator (&) cannot be applied to fields, and conse­
quently there cannot be pointers to fields. 

Data Types and Declarations 6-29 



Constructs of all data types except fields are aligned on the next byte 
boundary. Sequences of bit fields are packed as tightly as possible. In 
VAX C, fields are assigned from right to left. 

For example, Figure 6-1 illustrates the alignments resulting from the 
following code: 

static struct 
{ 

char c; 
short int i; 
unsigned fId1 3; 
unsigned fId2 4; 
unsigned 0; 
unsigned fId3 4; 

} a = { 'A', 1024,06,012,014 } 

Figure 6-1: Alignment of Structure Members 

31 o 

unused 

a.fld2 a.fld1 a.i a.c 

35 32 

~ 
'-v-' ~ 

unused a.fld3 

ZK-286-81 

In Figure 6-1, member a.i is aligned on the second byte (at bit 8), because 
scalar, nonfield members are aligned on byte boundaries. Notice that 
fields a.fld1 and a.fld2 are packed as tightly as possible in the high-order 
byte of the first longword. The unnamed, zero-length field preceding 
member a.fld3 causes that field to be aligned on the next byte boundary 
(bit 32, the second longword). 

6-30 Data T vpes and Declarations 



6.10 The void Keyword 

The void keyword is a special data type specifier that you use in function 
definitions and declarations for the following purposes: 

• To specify a function that does not return a value. 

• To specify a function prototype with no arguments. 

For instance, the following example shows how to use void to specify a 
function that does not return a value: 

void message() 
{ 

} 

printf("Stop making sense!"); 
return; 

The following example shows how to use void to specify a function 
prototype definition that takes no arguments: 

char function_name( void ) 
{ return I a I; } 

For more information concerning the void data type and function proto­
types, refer to Chapter 3, Program Structure. 

6. 11 The typedef Keyword 

The keyword typedef is used to define an abbreviated name, or synonym, 
for a lengthy type definition. In such a declaration, the identifiers name 
types instead of variables. For example: 

typedef char CH, *CP. STRING[10]. CF(); 

In the scope of this declaration, CH is a synonym for character, CP for 
pointer to character, STRING for lO-element array of characters, and CF 
for function returning a character. Each of the type definitions can be used 
in that scope to declare variables, as in: 

CF c; 
STRING s; 

1* "eli: Function returning a character *1 
1* "s": 10-character string *1 

Data Types and Declarations 6-31 



6. 12 Interpreting Declarations 

The VAX C programming language syntax for declaring objects is unlike 
the declaration syntax of other languages. Since the exact meaning of 
a complicated VAX C declaration is not always immediately apparent, 
even to an experienced C programmer, this section gives guidelines for 
interpreting and constructing VAX C declarations. 

VAX C uses the same set of operators and symbols for declarators as for 
identifiers in an expression. For example, the following example declares 
integer x and pointer px. 

int x; 
int *px; 

Declarator *px has the same form as that used to yield an integer in an 
expression, such as the following: 

x = *px; 

In the case of simple de clara tors, this symmetry makes it fairly easy 
to determine the type of an expression or the meaning of a declarator. 
Expression *px results in the integer object to which px points. 

More complicated declarators can be more difficult to interpret without 
some additional guidelines. The important one to remember is that the 
symbols used in declarators are VAX C operators, subject to the usual rules 
of precedence and grouping (associative nature). In order of precedence, 
the operators used in declarators are: 

1. The primary-expression operators « » for "function returning ... " 
and ([ ]) for "array of ... ", where the ellipsis indicates the type 
specified in the declaration. 

These operators group from left to right. 

2. The unary asterisk (*), for indirection or "pointer to ... ", which 
groups from right to left. 

Consider, for example: 

int *x[]; 

Even this brief declaration may be confusing. Does it declare an array of 
pointers to integers, or a pointer to an array of integers? Since the brackets 
are of higher precedence, it follows that: 

1. *x[] is an integer 

6-32 Data Types and Declarations 



2. x[] is a pointer to an integer 

3. x is an array of pointers to integers 

Most complicated declarators and expressions can be interpreted fairly 
quickly by such a sequential breakdown. Note that the asterisk was 
removed before the brackets because it is of lower precedence. 

Also note that this interpretation process has the desirable property of 
enumerating all the possible usage constructs involving a declarator and 
giving the semantic interpretation. 

When constructinp or interpreting declarations or expressions, use the 
following scheme for translating operators to English and vice versa: 

• "*" == "pointer to" 

• "( )" == "function returning" 

• I/[]" == "array of" 

For a more interesting example, consider: 

char *xO [] ; 

The breakdown is: 

1. *x()[] is char. 

2. x( )[] is (pointer to) char. 

3. x() is (array of) (pointer to) char. 

4. x is (function returning) (array of) (pointer to) char. 

In step 3, the brackets operator is removed first because primary­
expression operators are of equal precedence and group from left to 
right. That is, "( )[ ]" means "function returning array of", not "array of 
function returning . . . ". 

As a general rule, when breaking down a declaration this way, remove the 
operators with the lowest precedence first. Then, if operators are of equal 
precedence and group from left to right, remove the rightmost operator 
first; if they group from right to left, remove the leftmost operator first. 

1 Bruce Anderson, "Type Syntax in the Language C: An Object Lesson in Syntactic Innovation," SIGPLAN 
Notices 15, No.2 (March 1980). 

Data Types and Declarations 6-33 



The declaration shown is semantically invalid; VAX C allows functions 
returning addresses of arrays, but not functions returning arrays. Perhaps 
the intention of the programmer was a function returning the address 
of an array of pointers to characters. The declaration can be made valid 
by starting at the bottom of a breakdown and working back to a valid 
declaration: 

1. x is (function returning) (pointer to) (array of) (pointer to) char. 

2. x() is (pointer to) (array of) (pointer to) char. 

3. *x() is (array of) (pointer to) char. 

4. (*x(»[] is (pointer to) char. 

S. *( *x( »[] is char. 

6. char *(*x( »[ ];. 

In the final declaration, the first asterisk (since it groups right to left) 
applies to char. 

Parentheses, in addition to the function parameter-list operator « », are 
used in declarations to change the binding of operators. For exainple, the 
outer parentheses introduced in step 4 of the previous example prevent 
the brackets from binding to the inner set of parentheses. 

As a last case, consider: 

char (* ( *x 0 ) []) 0; 

This means: 

1. (* (*x( » []) ( ) is char. 

2. * (*x( » [] is (function returning) char. 

3. (*x(» [] is (pointer to) (function returning) char. 

4. *x() is (array of) (pointer to) (function returning) char. 

5. x() is (pointer to) (array of) (pointer to) (function returning) char. 

6. The identifier x is a function returning a pOinter to an array of pointers 
to functions returning characters. 

Spaces were used in the example to separate the declarator into its com­
ponent parts. Since spaces, tabs, and newlines are ignored by the parser, 
they should be used in actual declarations for clarity. 

6-34 Data Types and Declarations 



Chapter 7 

Storage Classes and Allocation 

The VAX C lcmguage defines a number of storage class keywords which 
specify the scope of an identifier, the location of storage, and the lifetime 
of the storage allocation. Storage class modifiers are keywords that you 
can use with the storage class and data type keywords that restrict access 
to variables. The order of the storage class keyword, the storage class 
modifier, the data type modifier, and the data type keyword within the 
variable declaration does not matter. Each declaration, by virtue of its 
position in the program source code, has a default storage class, but you 
may override the default by specifying a storage class specifier or a storage 
class modifier. 

This chapter describes the following: 

• Scope of an identifier 

• Location of storage 

• Lifetime of storage allocation 

• Internal storage class 

• Static storage class 

• External storage class 

• Global storage class 

• Data type modifiers 

• Storage class modifiers 

Storage Classes and Allocation 7 -1 



7.1 Scope 

The scope of an identifier is the portion of the program in which the 
identifier has meaning .. An identifier has meaning if it is recognized by the 
compiler, or by the VMS Linker. This section explains the rules to follow 
so that your program identifiers will have meaning, to both the compiler 
and the linker, in all desired portions of your program. 

All tags are subject to the same scope rules as other identifiers. A member 
of a structure or union may have the same name as a member of another 
structure or union; the scope of the member names can exist concurrently. 
However, when referencing one of the members in a section of the 
program where the scopes of both members are concurrent, take care 
to specify to which structure or union the member belongs. For more 
information, refer to Chapter 6, Data Types and Declarations. 

7.1.1 The Compilation and Linking Process 

To understand scope, you must understand the VMS definitions of func­
tion, compilation unit, object file, object module, and program. 

When you write VAX C source programs, you can use several methods 
to compile a program. You can compile a single source file, or a group 
of source files, into a single object file. The group of source file(s) com­
piled to create a single object file is called the compilation unit. When 
documentation to other implementations refers to the source file, the VMS 
equivalent is the compilation unit, not necessarily a single source file. The 
single, resultant object file has a file extension of .OBJ, by default. 

The linker accepts the object file as input and then resolves all external 
references, such as references to VAX C Run-Time Library (RTL) functions. 
Illternally, segments of object code, such as the object file and the RTL 
object code, are known to the linker as object modules. The object module 
has the same name (without an extension) as the object file, by default. 
For information on how to override the default module name, refer 
to Chapter 8, Preprocessor Directives. 

The second way to compile programs is to compile several compilation 
units into separate object files. The linker can take more than one object 
file as input; then, the linker resolves references between these individual 
modules as well as to external references. For more information con­
cerning compiling and linking, refer to Chapter 1, Developing VAX C 
Programs at DCL Command Level. 

7 -2 Storage Classes and Allocation 



7. 1.2 Position of the Declaration 

In determining the scope of a function or variable identifier, you must 
consider the position of a declaration within the program. A declaration 
often determines the size of a storage allocation, whereas a definition 
initiates the allocation of storage. Since declarations often are definitions, 
this section refers to definitions and declarations as declarations. You may 
wish to review Chapter 6, Data Types and Declarations, before reading 
the rest of this section. 

The location of a declaration establishes the scope of an identifier. If a 
declaration is located inside of a block (code delimited by braces ( { } », the 
compiler recognizes the identifier from the point of the declaration to the 
end of the block. If a declaration is located outside of all functions, the 
compiler recognizes the identifier from the point of the declaration to the 
end of the compilation unit. 

You can specify a storage class specifier or modifier within an identifier's 
declaration. A storage class specifier indicates a storage class, whereas a 
modifier modifies access to that storage. The order of the storage class 
specifier, storage class modifier, and the data type keyword within the 
declaration does not matter. Consider the following example: 

auto int x; 
int auto x; 

/* And. equivalently... */ 

You can declare identifiers that are of the storage class internal; the 
compiler recognizes these identifiers from the point of the declaration 
to the end of the enclosing block or function body. You can declare 
identifiers that are static; if the declaration is outside of all function bodies, 
the compiler recognizes these identifiers from the point of the declaration 
to the end of the compilation unit. 

You can also declare identifiers that are of the storage class external or of 
the storage class global; if the declaration is outside of all function bodies, 
the compiler recognizes these identifiers from the point of the declaration 
to the end of the compilation unit. The external and global storage classes 
differ from the static storage class in that the linker can possibly recognize 
a global or external variable from the point of the declaration to the end of 
the program; the external and global storage classes establish a scope that 
can possibly span object modules. 

Storage Classes and Allocation 7-3 



Table 7-1 presents the list of storage classes followed by the storage class 
specifiers used to establish scope. 

Table 7-1: VAX C Storage Classes and Storage Class 
Specifiers 

Storage 
Class 

Internal 

Static 

External 

Global 

Specifiers 

auto, register, 
absence of specifier inside a block or function 1 

static 

extern, 
absence of specifier outside of all functions 

globaldef, globalref, globalvalue 

1 Functions declared without a storage class specifier are of the external storage class, by default. 

For more information concerning the internal storage class, refer to 
Section 7.3. For more information concerning the static storage class, 
refer to Section 7.4. For more information concerning the external storage 
classes, refer to Section 7.5. For more information concerning the global 
storage classes, refer to Section 7.6. 

If,you choose, you can use the data type modifiers (const and volatile) 
or the VAX C specific storage class modifiers (readonly and noshare) to 
restrict access to data or to specify storage requirements. See Section 7.7 
for more information.concerning the data type modifiers. See Section 7.8 
for more information concerning the storage class modifiers. 

1.1.3 Lexical Scope and Link-Time Scope 

In using the storage class specifiers and modifiers, as well as positioning 
the definitions and declarations of your identifiers, keep the following two 
goals in mind: 

1. Compile the program so that the compiler recognizes all identifiers in 
the compilation unit, thus avoiding error messages. 

2. Link the program so that the VMS Linker resolves all references to 
external data definitions, thus avoiding error messages. 

7 -4 Storage Classes and Allocation 



You must make a distinction between the following types of scope: 

Lexical scope 

Link-time scope 

The region of a compilation unit within which 
an identifier is known to the compiler. When 
this manual uses the term scope, lexical scope is 
implied. 

The regions of an entire program within which an 
external or global identifier is known to the linker. 
Only the identifiers in the external and global 
storage classes have a significant link-time scope. 

Table 7-2 lists the VAX C storage class specifiers and shows both the 
link-time scope and lexical scope implied by each specifier when used 
inside and outside of functions: 

Table 7-2: Scope and the Storage Class Specifiers 
Inside a Function Outside a Function 

Storage Lexical Lexical Link.,.time 
Class Scope Link-time Scope Sq)pe Scope 

auto function NjA illegal illegal 

register function NjA illegal illegal 

static function function CUI module 

[extern] function program CUI program 

globaldef function program CUI program 

globalref function program CUI program 

globalvalue function program CUI program 

(null) function NjA CUI program 

I Compilation Unit 

Identifier (null) signifies the absence of a storage class specifier from the 
declaration. The compiler treats a (null) inside of a function or block as 
an identifier declared with the auto keyword; the compiler treats a (null) 
outside of all functions as an external definition, the identifier being of the 
external storage class. 

Storage Classes and Allocation 7-5 



In Table 7-2, the notation [extern] signifies identifiers of the external 
storage class. A single definition exists without the use of a storage 
class specifier; other declarations, that use the extern specifier, possibly 
exist that reference that definition. This notation is used throughout this 
chapter. See Section 7.5 for more information concerning the external 
storage class. 

7.1.4 Program Example 

Determining the scope of static, external, and global symbols can be very 
difficult. In Example 7-1, consider the scope of the following identifiers. 

Example 7-1: Scope and Externally Defined Variables 

CQmpilation Unit 1 Compilation Unit 2 

globaldef int 
int 

static int 

fi0 
{ 

GLOBAL_i; 
EXT_2; 
STAT; 

globaldef int GLOBAL_2; 

} 

extern int EXT_i; 

f20 
{ 

} 

7 -6 Storage Classes and Allocation 

int 

f30 
{ 

extern int EXT_2; 

} 

globalref int GLOBAL_2; 

f40 
{ 

globalref int GLOBAL_i ; 

} 

f50 
{ 

static int STAT; 

} 



The following list specifies the variable identifiers in the previous example, 
and in which functions they can be accessed without compile-time errors: 

Identifier 

GLOBAL_2 

Scope 

This variable is defined outside of all functions in compilation 
unit number 1, so you can access GLOBAL_l in the functions 
fl and f2 (from the point of the declaration to the end of the 
compilation unit). 

In compilation unit number 2, the declaration of this variable 
is located inside of function f4; the scope of the variable, in 
this compilation unit, only extends from the declaration of 
GLOBAL_l to the end of function f4. 

This variable is defined inside of the function fl. In compilation 
unit number I, the scope of GLOBAL_2 only extends from the 
declaration of GLOBAL _2 to the end of function fl. 

In compilation unit number 2, the declaration of this variable 
is outside of all functions but is located after the function f3; 
you can access the variable in the functions f4 and f5 (from the 
point of the declaration to the end of the compilation unit). 

This variable is declared outside of all functions. This decla­
ration is a reference to the definition of the same variable in 
the other compilation unit. In compilation unit number I, you 
can access EXT_l in the function f2 (from the point of the 
declaration to the end of the compilation unit). 

In compilation unit number 2, the definition of this variable is 
outside of all functions; you can access EXT_l in the functions 
f3, f4, and f5 (from the point of the declaration to the end of 
the compilation unit). 

This variable is defined outside of all functions. In compilation 
unit number I, you can access EXT_l in the functions fl and f2 
(from the point of the declaration to the end of the compilation 
unit). 

In compilation unit number 2, the declaration of this variable 
is located inside of the function f3; you can access EXT_l from 
the location of this declaration to the end of function f3. 

Storage Classes and Allocation 7 -7 



Identifier 

STAT 

Scope 

There are two variables with the same name but with different 
permanent storage locations. In essence, these are two different 
variables. 

In compilation unit number I, the variable is defined outside of 
all functions. You can access STAT, in compilation unit number 
I, in the functions f1 and f2 (from the point of the declaration 
to the end of the compilation unit). 

In compilation unit number 2, the separate variable is defined 
inside of the function f5; you can access this variable STAT 
from this declaration to the end of the function f5. 

Another way to look at the determination of scope is to see the placement 
of the declaration as a matter of privacy. In compilation unit 
number 2 in the previous example, identifier EXT_2 is made private to 
function f3 simply by placing the declaration inside of the function body. 
If you want to keep a variable private to compilation unit number 1, you 
can use a declaration using the storage class specifier static; there is no 
way to access a variable declared with static in another compilation unit. 
Using the storage class specifiers auto and register assures privacy to 
the function, since these specifiers cannot be used outside of a function 
body and storage is deallocated at the end of execution of the containing 
function body. Similarly, there is no way to access a variable declared 
with auto or register in another function or compilation unit. 

7.2 Storage Allocation 

When you define a variable, the storage class determines not only its 
scope but also its location and lifetime. The lifetime of a variable is the 
length of time for which storage is allocated. Storage for a variable can be 
allocated in the following locations: 

• On the run-time stack 

• In a machine register 

• In a program section (psect) 

Variables that are placed on the stack or in a register are temporary. For 
example, the variables of storage class auto and register are temporary. 
Their lifetimes are limited to the execution of a single block or function. 
All declarations of the internal storage class are also definitions; the 
compiler generates code to establish storage at this point in the program. 

7 -8 Storage Classes and Allocation 



Program sections, or psects, are used for permanent variables; the identi­
fier's lifetimes extend through the course of the entire program. A psect 
represents an area of virtual memory that has a name, a size, and a series 
of attributes which describe the intended or permitted usage of that por­
tion of memory. For example, the compiler places variables of the static, 
external, and global storage classes in psects; you have some control as to 
which psects contain which identifiers. All declarations of the static stor­
age class are also definitions; the compiler creates the psect at that point 
in the program. In VAX C, the first declaration of the external storage 
class is also a definition; the linker initializes the psect at that point in the 
program. 

Table 7-3 shows the location and lifetime of a variable when you use each 
of the storage class keywords: 

Table 7-3: Location, Lifetime, and the Storage Class 
Keywords 

Storage Class Location Lifetime 

(Internal null) Stack or register Temporary 

auto Stack or register Temporary 

register Stack or register Temporary 

static Psect Permanent 

[extern] Psect Permanent 

globaldef Psect Permanent 

globalref Psect Permanent 

globalvalue No storage allocated Permanent 

When working with some of the storage class keywords, you need to 
know about the programs sections (or, psects) that are created by your data 
declarations and by VAX C. For detailed information concerning psects and 
the VAX C storage classes, refer to Chapter II, VAX C Implementation 
Notes. 

7.3 Internal Storage Class 

You can assign the internal storage class to identifiers using the auto 
and register storage class specifiers. These specifiers are described in the 
following sections. 

Storage Classes and Allocation 7-9 



7.3. 1 The auto Specifier 

You use the auto storage class specifier to define a variable whose storage 
is allocated automatically upon entry into a function or block, and is 
automatically deallocated upon exit from a function or block. The code 
generated by the compiler contains instructions to allocate and deallocate 
the storage by using machine registers and the run-time stack. Since new 
storage allocation occurs upon entering a block or function, you can have 
more than one auto variable with the same name as long as you declare 
them in separate blocks· or functions. You cannot use auto outside of a 
function. 

If you explicitly initialize an auto variable, the program code initializes the 
variable to that value each time the declaring block or function is activated 
normally. This initialization cannot occur if control passes into a block by 
some other means, such as a goto statement or if the block is the body of 
a switch statement. For more information concerning the switch and go to 
statements, refer to Chapter 4, Statements. 

Within a function, auto is the default storage class. That is, any variable 
(other than a function name) that is declared within a function without a 
storage class specifier is given the auto storage class. Functions are of the 
external storage class by default. 

NOTE 

The compiler can assign auto variables to machine registers, if 
possible. Otherwise, they are placed on the run-time stack. 

Example 7-2 illustrates the reinitialization of two auto variables with the 
same name. 

7 -1 0 Storage Classes and Allocation 



Example 7-2: Reinitialization of auto Variables 

1* This example prints the values of two distinct auto * 
* variables that have the same identifier. *1 

mainO 
{ 

.. int i, x = 2; 

} 

printf (llmain: Y.d\n" ,x) ; 

for (i = 0; i < 1; i++) 
{ 

int x = 3; 
printf("for loop: Y.d\n" ,x); 

} 

printf (llmain: Y.d\n ", x); 

The following numbers correspond to the numbers in the previous 
example: 

.. This definition of variable x extends through the entire function. 

f) This definition of variable x is limited to the for statement and super­
sedes the value of variable x in the surrounding function. 

Output from this program is as follows: 

$ RUN EXAMPLE.EXEIRETURNI 
main: 2 
for loop: 3 
main: 2 

In this program, the variable x is defined twice within the main function. 
The two variables do not conflict, however. While the for loop is exe­
cuting, the variable x declared inside the block supersedes the variable x 
declared outside the block. 

Storage Classes and Allocation 7 -11 



7.3.2 The register Specifier 

Variables declared with the register storage class are similar to auto 
variables. You can only use the register internal storage class inside of 
functions and blocks. 

NOTE 

The register storage class specifier is the only specifier that you 
can use in a parameter declaration. 

A register variable differs from a variable of storage class auto in the 
way that compiler-generated program code allocates storage. The reg­
ister storage class keyword suggests that the compiler flag the variable 
for placement in a machine register. This does not guarantee that the 
program code will place the variable in a register. The compiler checks 
the following conditions to determine whether or not a variable is flagged 
to be placed in a register: 

• If the variable is not used, the optimizer may remove it entirely. 

• If the program is compiled with the /NOOPTIMIZATION command 
qualifier, no variables are assigned to registers. The optimization 
phase of the compiler determines whether a variable is a valid candi­
date for a register. 

• If the program contains too many register candidates, not all of them 
are assigned to registers. 

• If the compiler detects any other use of the variable that would make 
it inappropriate for assignment to a register, the variable will not be 
flagged. For example, if the compiler detects the application of the 
address-of operator (&) to a variable which was declared with the 
register specifier, the variable is not placed in a register. 

7 -12 Storage Classes and Allocation 



7.4 Static Storage Class 

The static storage class allows you to create permanent storage for a 
variable using the static storage class specifier in the variable declaration. 
If declared inside of a function, its scope begins at the declaration and 
spans the body of the function. If declared outside of all functions, its 
scope is limited to the compilation unit; you can not access a variable of 
the static storage class from another compilation unit. 

If no initialization is present in the declaration of a variable of the static 
storage class, the linker initializes the variable to zero. However, unlike 
auto variables, the compiler-generated program code does not reallocate 
storage for a static variable every time control reenters a function contain­
ing the definition of a static variable. That is, if when exiting a function 
a static integer variable has the value of 4, the variable retains that value 
even if control reenters the defining function. If a static identifier with the 
same name is declared in another module, the linker knows nothing of the 
other variable; the other variable has a separate psect allocation. 

A function can also be defined with the static storage class. A static 
function is not known to the linker and can be referenced only from 
within its defining module. 

For more information concerning the possible combinations of specifiers 
and modifiers, and the effects of the storage class modifiers on program 
section attributes, refer to Chapter II, VAX C Implementation Notes. 

7.5 External Storage Class 

You can declare identifiers of the external storage class in the following 
manner: 

• A definition not using another storage class keyword, located outside 
of all function bodies, establishes an external variable whose scope 
extends from the point of the definition to the end of the compilation 
unit. 

• A declaration using the extern keyword, usually located in another 
compilation unit, is a reference to the original definition. This dec­
laration extends the link-time scope of the variable into the second 
object module. If this declaration is inside of a function, it extends 
the link-time scope from the point of the declaration to the end of 
the function. If this declaration is outside of a function, it extends the 

Storage Classes and Allocation 7 -13 



link-time scope from the point of the declaration to the end of the 
object module. 

• You do not always have to use external variable declarations (with 
the extern keyword) to refer to the definition of an external variable. 
Also, if needed, you can use more than one extern declaration to 
reference the external definition. 

Use the following rules when deciding whether or not to use the extern 
specifier: 

• If the variable is defined before it is referenced and the definition is 
in the same compilation unit, you do not need to declare the variable 
with the extern specifier. 

• If the variable is defined after it is referenced, you need to first declare 
it with the extern specifier. 

• If the variable is defined in a separate compilation unit, you must 
always declare it with the extern specifier. 

Consider the following example: 

double D = 2.37; 

mainO 
{ 

} 

extern int A; 

printf("a:\tYod\n". A); 
printf("d:\tY.g\n". D); 

int A = 5; 

The main function in this program references two external variables, A 
and D. Since the variable D is defined before it is referenced, it does 
not have to be declared in the main function. Since the variable A is 
referenced before it is defined, it must be declared with the extern storage 
class specifier. 

In many implementations of the C language, you cannot use the extern 
specifier in a declaration that does not refer to ari external definition 
elsewhere in the program. Whenever the compiler encounters the first 
declaration of an identifier of the external storage class in a VAX C 
program, it creates and initializes a psect. Therefore, in VAX C, you 
can use the extern specifier in a declaration that does not refer to an 
external definition elsewhere in the program. However, this is not good 
programming practice, and if used, your programs might not be portable 
to other systems. 

7 -14 Storage Classes and Allocation 



NOTE 

In VAX C, you cannot initialize an identifier declared with the 
extern specifier. 

External variables occupy storage in psects of the same name as the 
variable identifier. When the linker manages the psects of the external 
variables, the identifiers, no matter how they appear in the source code, 
appear in uppercase to the linker. Therefore, it is good programining 
practice to express all external variables (global variables as well)in 
uppercase letters. This practice aids the debugging of your programs. 

You can specify the noshare modifier with external variables to create 
a psect with the NOSHR attribute. Similarly, you can specify the read­
only or const modifier to create a NOWRT psect. For more information 
concerning the possible combinations of specifiers and modifiers, and the 
effects of the storage class modifiers on program section attributes, refer 
to Chapter 11, VAX C Implementation Notes. 

1.6 Global Storage Class 

You can assign the global storage class to identifiers using the globaldef, 
globalref, or globalvalue storage class specifiers. These specifiers are 
described in the following sections. 

7.6. 1 The globaldef and globalref Specifiers 

You use the globaldef specifier in the definition of a global variable; 
you use the globalref specifier in reference to a global variable defined 
elsewhere in the program. The specifiers globaldef and globalref are 
used in much the same way as with external storage class. Simply, 
use globalref to refer to storage allocated elsewhere by a globaldef 
declaration. 

When defining a global symbol using the globaldef specifier, you can 
place the symbol in one of three program sections: the $DATA psect 
(globaldef alone), the $CODE psect (globaldef with readonly or const), 
or a user-named psect. You can create a user-named psect by specifying 
the psect name as a string constant in braces immediately following the 
globaldef keyword, as shown in the following definition: 

globaldef{IIpsect_name ll
} int x = 2; 

Storage Classes and Allocation 7 -1 5 



This definition creates a program section called psect_name and allocates 
the variable x in that psect. You can add any number of global variables 
to this psect by specifying the same psect name in other globaldef dec­
larations. In addition, you can specify the noshare modifier to create the 
psect with the NOSHR attribute. Similarly, you can specify the readonly 
or const modifier to create the psect with the NOWRT attribute. For 
more information concerning the possible combinations of specifiers and 
modifiers, and the effects of the storage class modifiers on program section 
attributes, refer to Chapter II, VAX C Implementation Notes. 

Variables declared with globaldef may be initialized; variables declared 
with globalref may not, since. these declarations refer to variables defined, 
and possibly initialized, elsewhere in the program. Initialization is possible 
only when storage is allocated for an object. This distinction is especially 
important when the readonly or const modifier is used; unless the global 
variable is initialized when the variable is defined, its permanent value 
is O. 

NOTE 

In the VAX MACRO programming language, it is possible to 
give a global variable more than one name. However, in 
VAX C, ,only one global name can be used for a particular 
variable. VAX C assumes that distinct global variable names 
denote distinct objects; the storage associated with different 
names must not overlap. 

Example 7-3 illustrates the use of global variables. 

7 -16 Storage Classes and Allocation 



Example 7-3: Use of Global Variables 

1* This example shows how global variables are used * 
* in VAX C programs. *1 

t) int ex_counter = 0; 
~ globaldef double velocity = 3.0e10; 
• globaldef {"distance"} long miles = 100; 

mainO 
{ 

printf(" *** FIRST COMP UNIT ***\n"); 
printf("counter:\tYod\n". ex_counter); 
printf("velocity:\tYog\n". velocity); 
printf("miles:\t\tYod\n\n". miles); 
fnO; 
printf(" *** FIRST COMP UNIT ***\n"); 
printf("counter:\tYod\n". ex_counter); 

e printf("velocity:\tYog\n". velocity); 
printf("miles:\t\tYod\n\n". miles); 

} 

1* ---------------------------------------------------- * 
* The following code is contained in a separate * 
* compilation unit. * 
* ---------------------------------------------------- *1 

static ex_counter; 
~ globalref double velocity; 

globalref long miles; 

fnO 
{ 

} 

++ex_counter; 
printf(" *** SECOND COMP UNIT ***\n"); 
if ( miles > 50 ) 

velocity = miles * 3.1 I 200 ; 
printf("counter:\tYod\n". ex_counter); 
printf("vel ocity:\tYog\n". velocity); 
printf("miles:\t\tYod\n". miles); 

The following numbers correspond to the numbers in the previous 
example: 

t) The integer variable ex_counter is a variable of storage class extern in 
the first compilation unit. In the second compilation unit, a variable 
ex_counter is of storage class static. Even though they have the 
same identifier, the two ex_counter variables are different variables 
represented by two separate memory locations. The link-time scope 
of the second ex_counter is the module created from the second 

Storage Classes and Allocation 7 -1 7 



compilation unit. When control returns to the main function, the 
external variable ex_counter retains its original value. 

• The variable velocity is a variable of storage class globalde£ and is 
stored in the psect $DATA. 

• The variable miles is also a variable of storage class globalde£ but is 
stored in the user-specified psect "distance." 

e When the variable velocity prints after the function fn executes, the 
value will have changed. Global variables have only one storage 
location. 

o When you reference global variables in another module, you must 
declare those variables in that module. In the second module, the 
global variables are declared with the globalre£ keyword. 

Sample output from this program is as follows: 

$ RUN EXAMPLE.EXEIRETURNI 
*** FIRST COMP UNIT *** 

counter: 0 
velocity: 3.000000e+l0 
miles: 100 

*** SECOND COMP UNIT *** 
counter: 1 
velocity: 1.55 
miles: 100 

*** FIRST COMP UNIT *** 
counter: 0 
velocity: 1.55 
miles: 100 

7.6.1. 1 Comparing the Global and the External Storage Classes 

The global storage class specifiers define and declare objects that differ 
from external variables both in their storage allocation and in their cor­
respondence to elements of other languages. Global variables provide 
a convenient and efficient way for a VAX C function to communicate 
with assembly language programs, with VMS system services and data 
structures, and with other high-level languages that support global sym­
bol definition, such as VAX PLfl. For more information concerning 
multi-language programming, refer to Chapter 10, Mixed-Language 
Programming. 

VAX C imposes no limit on the number of external variables in a single 
program. 

7 -18 Storage Classes and Allocation 



NOTE 

The global storage classes are VAX C specific and are not 
portable. 

There are other differences between the external and global variables. For 
example: 

• The global variables correspond to global symbols declared in assem­
bly language programs whereas external variables correspond with 
FORTRAN common blocks. 

• If you have a limited amount of storage available, you may prefer 
to use the globalvalue specifier (see Section 7.6.2) since it does not 
occupy storage in your program if expressible in 32 or fewer bits; the 
external variables always create program sections (psects). 

• You can declare a global variable, using globaldef, inside of a function 
or block, and by using a globalref specifier, access the identifier from 
another compilation unit. With external variables, you must always 
define the variable outside of all functions and blocks, and then access 
that variable in other compilation units by use of extern declarations. 

• A glob alief declaration causes the linker to load the module contain­
ing the corresponding globaldef into the image; an extern declaration 
does not cause the linker to do so. 

One similarity between the external and global storage classes is in the 
way the linker recognizes these variables internally. No matter how 
the external and global identifiers appear in the source code, the linker 
converts these identifiers to uppercase letters. For ease in debugging 
programs, you should express all global and external variable identifiers in 
uppercase letters. 

Another similarity between the external and global storage classes is that 
the external variables (by default) and the global variables (optionally) can 
be placed in psects with a user-defined name, and to some degree, user­
defined attributes. The compiler places external variables in psects of the 
same name as the variable identifier, viewed by the linker in uppercase 
letters. The compiler places globaldef{"name"} variables in psects with 
names specified in quotation marks, delimited by braces, and located 
directly after the globaldef specifier in a declaration. Again, the linker 
considers the psect name to be uppercase letters. 

Storage Classes and Allocation 7 -19 



The compiler places a variable declared using only the globalde£ specifier 
and a data type keyword into the $DATA psect. For more information 
concerning the possible combinations of specifiers and modifiers, and the 
effects of the storage class modifiers on. program section attributes, refer 
to Chapter 11, VAX C Implementation Notes. 

7.8.2 The globalvalue Specifier 

A global value is an integral value whose identifier is a global symbol. 
Global values are useful because they allow many programmers in the 
same environment to refer to values by identifier, without regard to the 
actual value associated with the identifier. The actual values can change, 
as dictated by general system requirements, without requiring changes in 
all the programs that refer to them. If you make changes to the global 
value, you only have to recompile the defining compilation unit (unless 
it is defined in an object library), not all of the compilation units in the 
program that refer to those definitions. 

NOTE 

You can use the globalvalue specifier only with variables of 
type enum, int, or with pointer variables. 

A variable declared with globalvalue does not require storage. Instead, 
the linker resolves all references to the value. If an initializer appears 
with globalvalue, the name defines a global symbol for the given initial 
value. If no initializer appears, the global value construct is considered a 
reference to some previously defined global value. 

Predefined global values serve many purposes in VMS system program­
ming, such as the definition of status values. It is customary in VMS 
system programming to avoid explicit references to such values as those 
returned by system services, and to use instead the global names for those 
values. Example 7-4 illustrates the use of the globalvalue storage class 
specifier. 

7-20 Storage Classes and Allocation 



Example 7-4: Using the globalvalue Specifier 

/* This program illustrates references to previously defined * 
* globalvalue symbols. */ 

globalvalue FAILURE = 0, EOF = -1; 

mainO 
{ 

char c; 
/* Get a char from stdin */ 

while ( (c = getchar(» != EOF) 
test(d; 

} 

/* -------------------------------------------------------- * 
* The following code is contained in a separate compilation * 
* unit. * 
* -------------------------------------------------------- */ 

'include ctype 
globalvalue FAILURE, EOF; 

test (param_c) 
char param_c; 
{ 

/* Include proper module */ 
/* Declare global symbols */ 

/* Declare parameter 

/* Test to see if number */ 
if «isalnum(param_c» != FAILURE) 

printf(IIYoc\n ll
, param_c); 

return; 
} 

In the previous program, FAILURE and EOF are defined in the first 
module: the values are placed into the program stream. In the second 
module, FAILURE and EOF are declared so that their values may be 
accessed. Like the external and global variables, the linker recognizes the 
global symbols as uppercase letters. You should express these symbols in 
uppercase. 

Storage Classes and Allocation 7 -21 



7.&.3 Global Enumerated Types 

When you use the globaldef storage class keyword with an enum defi­
nition, the enumerated constants in the definition are of the storage class 
globalvalue, initialized as the program requires to form a properly or­
dered list of the values. Enumerated type variables are of the storage class 
globaldef. 

When you use globalref with the enum keyword, all enumerated vari­
ables are of the storage class globCllref, and the enumerated constants refer 
to globalvalues of the same names as shown in the following example. 

In the first compilation unit: 

globaldef enum light { dim. medium=3. bright} light_val; 

maine) 

{ 

} 

light_val = dim; 
fnlvO; 

In the second compilation unit: 

globalref enum light { dim. medium. bright} light_val; 

fnlvO 
{ 

if (light_val < bright) printf("TOO DIM\n"); 
} 

In the first compilation unit, the enum definition establishes light_val as a 
globaldef of the enumerated type light. It also establishes the ordered list 
of enumerated globalvalues dim, medium, and bright. 

The globalref declaration in the second compilation unit allows the 
enumerated constants to be used as globalvalues. That is, the constants 
can be referenced, but not initialized. 

For more information concerning the enumerated type, refer to Chapter 6, 
Data Types and Declarations. 

7 -22 Storage Classes and Allocation 



7.7 Data Type Modifiers 

Data type modifiers affect the allocation or access of data storage. The 
data type modifiers are as follows: 

• const 

• volatile 

The following sections describe the data type modifiers in detail. 

7.7.1 The const Modifier 

The const data type modifier restricts access to stored data. If you declare 
an object to be of type const, you cannot modify that object. 

The following rules apply to the use of the const data type modifier: 

• You can specify const with any of the other data type keywords in a 
declaration. 

• If you specify const when declaring an aggregate, all of the aggregate 
members are treated as objects of type const. 

• You can specify const with volatile, or any of the storage class 
specifiers or modifiers. 

• If you attempt to access a const object using a pointer to that object 
not declared const, the result is undefined. 

• The address of a non-const object can be assigned to a pointer to a 
const object to a const pointer, but you cannot use that pointer to alter 
the value of the object. The result is undefined. 

The following example declares the variable x to be a constant integer. 

int const x; 

When declaring pointers, depending upon the placement of the const 
modifier in the declaration, VAX C will either interpret the pointer or 
the object to which it points as the constant variable. For instance, the 
following example declares the variable y to be a constant pointer to an 
integer because the const modifier appears after the asterisk. 

int * const y; 

Storage Classes and Allocation 7 -23 



In this next example, the variable z is declared as a pointer to a constant 
integer because the asterisk appears after the const modifier. 

int const * z; 

When you specify the const modifier in association with a globalde£ 
specifier that identifies a psect, be aware that all variables dedared have 
their storage allocated in the psed and that an inconsistent use of the 
const modifier can alter the psect attribute and lead to diagnostic mes­
sages. For detailed information concerning psects and the VAX C storage 
classes, refer to Chapter 11, VAX C Implementation Notes. For instance, 
the following examples are valid uses of the const modifiers. Specifically, 
in Example 1 the variable x becomes a nonconstant pointer to a constant 
integer and therefore assigns the WRT attribute to the psect. In Example 
2, the variable y becomes a constant pointer to an integer and assigns 
the NOWRT attribute to the psect. In Example 3, the variable z becomes 
a constant variable contained in the psect and assigns it the NOWRT 
attribute. 

Example 1 

globaldef {"psect"} const int * x; 

Example 2 

globaldef {"psect"} int * const y; 

Example 3 

globaldef {"psect"} const int z; 

VAX C generates a warning message when there is an inconsistent usage 
of the const modifier, as shown in the following example: 

globaldef {"psect"} const int test. * bar; 

In this example, the variable test is declared as a constant variable that 
becomes allocated in the psect and assigns it the NOWRT attribute. The 
variable bar is a pointer that is not itself constant, but that points to a 
constant integer. In this case, VAX C will automatically cause the pointer 
to become constant. Therefore, DIGITAL recommends that you do not 
mix constant and nonconstant variables in a globalde£ declaration that 
names a psect, as your program may generate unpredictabl~ results. 

7-24 Storage Classes and Allocation 



7.7.2 The volatile Modifier 

The volatile data type modifier prevents an object from being stored in 
a machine register, forcing it to be allocated in memory. This data type 
modifier is useful for declaring data that is to be accessed asynchronously. 
A device driver application often uses volatile data storage. 

The following rules apply to the use of the volatile modifier: 

• You can specify volatile with any of the other data type keywords in 
a declaration. 

• If you specify volatile when declaring an aggregate, all of the aggre­
gate members are treated as objects of type volatile. 

• You can specify volatile with const, or any of the storage class 
specifiers or modifiers except the storage class register. 

• The address of an object of some other type can be assigned to a 
volatile pointer, but the rules of the volatile data type modifier must 
be followed if you refer to the object using that pointer. 

7.8 Storage Class Modifiers 

The VAX C" compiler can accept a storage class specifier and a storage class 
modifier in any order; usually, the modifier is placed after the specifier in 
the source code. An example is as follows: 

extern no share int x; 

1* Or. equivalently ... *1 

int noshare extern x; 

The following sections describe each of the VAX C specific storage class 
modifiers in detail. 

Storage Classes and Allocation 7-25 



7.8.1 The noshare Modifier 

The storage class modifier noshare assigns the attribute NOSHR to the 
program section of the variable. This modifier is used when you wish 
to allow other programs, as shareable images, to have a copy of the 
variable's psect without the shareable image changing the variable's value 
in the original psect. 

When a variable is declared with the noshare modifier and a shared image 
that has been linked to your program refers to that variable, a copy is 
made of the variable's original psect to a new psect in the other image. 
The other program may alter the value of that variable within the local 
psect without changing the value still stored in the psect of the original 
program. 

For example, if you need to establish a set of data that would be used by 
several programs to initialize local data sets, then a VAX C program can 
do this by declaring the external variables using the nosh are specifier. 
Each program receives a copy of the original data set to manipulate, but 
the original data set remains for the next program to use. If you define 
the data as [extern] without the noshare modifier, a copy of the psect of 
that variable is not made; each program would be allowed access to the 
original data set and the initial values would be lost. If the data is declared 
as const or readonly, each program is able to access the original data set, 
but none of the programs can then change the values. 

The modifier noshare can be used with the storage class specifiers static, 
[extern], globaldef, and globaldef{"name"}. For more information con­
cerning the possible combinations of specifiers and modifiers, and the 
effects of the storage class modifiers on program section attributes, refer 
to Chapter 11, VAX C Implementation Notes. 

You can use noshare alone; when you do this, an external definition of 
storage class [extern] is implied. Also, when declaring variables using 
the [extern] and globaldef{"name"} storage class specifiers, you can use 
noshare, const, and readonly, together, in the declaration. If you declare 
variables using the static or the globaldef specifiers, and you use both of 
the modifiers in the declaration, the compiler ignores nosh are and accepts 
const or readonly. 

7 -26 Storage Classes and Allocation 



7.B.2 The. readonly Modifier 

The storage class modifier readonly, like the data type modifier const, 
assigns the NOWRT attribute to the variable's program section; if used 
with the static or globaldef specifier, the variable is stored in the psect 
$CODE, which has the'NOWRT attribute by default. 

Both the the readonly and const modifiers can be used with the storage 
class specifiers static, [extern], globaldef, and globaldef {"psect"}. 

In addition, both the readonly modifier and the const modifier can be 
used alone. When you specify these modifiers alone, an external definition 
of storage class [extern] is implied. 

The const modifier restricts access to data in the same manner as the 
readonly modifier. However, in the declaration of a pointer, the readonly 
modifier cannot appear between the asterisk and the pointer variable to 
which it applies. 

The following example illustrates the similarity between the const and 
readonly modifiers. In both instances, the variable point represents a 
constant pointer to a nonconstant integer. 

readonly int * point; 

int * const point; 

NOTE 

For new program development, DIGITAL recommends that you 
use the const modifier. 

7.B.3 The _align Modifier 

The _align modifier allows you to align objects of any of the VAX C data 
types on a specified storage boundary. You use the _align modifier in a 
data declaration or definition. 

For example, if you want to align an integer on the next quadword 
boundary, you can use either of the following declarations: 

int _align( QUADWORD) data; 
int _align( quadword) data; 
int _align( 3) data; 

Storage Classes and Allocation 7-27 



When specifying the boundary of the data alignment, you can either use 
a predefined constant or you can specify an integer value that is a power 
of two. The power of two tells VAX C the number of bytes to pad in 
order to align the data. So, in the previous example, integer 3 specifies an 
alignment of 23 bytes, which is 8 bytes-a quadword of memory. 

The following list presents all of the predefined alignment constants, their 
equivalent power of two, and their equivalent number of bytes: 

Power of Number of 
Constant Two Bytes 

BYTE, or 0 0 
byte 

WORD, or 1 2 
word 

LONGWORD, or 2 4 
longword 

QUADWORD, or 3 8 
quadword 

OCTAWORD, or 4 16 
octaword 

PAGE, or 9 512 
page 

7 -28 Storage Classes and Allocation 



Chapter 8 

Preprocessor Directives 

Preprocessor directives are lines in the source file that direct the compiler 
to alter its normal processing of VAX C source code. Preprocessor direc­
tives are not defined formally by the C language, so their implementation 
may vary from one compiler to another. For example, in most imple­
mentations of C running on UNIX systems, the preprocessor is a separate 
program that operates before the compiler, as the name "preprocessor" 
implies. In VAX C, these directives are executed in an early phase of the 
compiler. 

Those interested in porting programs to and from other C implementa­
tions should take care in choosing which preprocessor directives to use 
within their programs. See Section 8.3 for more information concerning 
conditional compilation. For a complete discussion of portability concerns, 
refer to the VAX C Run-Time Library Reference Manual. 

The preprocessor directives are introduced by number signs (#) that must 
appear in column one of the source listing. This chapter discusses the 
following preprocessor directives: 

• #define, #undef-Defines token replacements (including preprocessor 
macro substitutions). 

• #dictionary-Extracts Common Data Dictionary data definitions and 
includes them in the source file. 

• #if, #ifdef, #ifndef, #else, #elif, #endif, and the defined 
operator-Control under which conditions segments of code are 
to be compiled or not. 

• #inc1ude-Includes source text from an external file or library. 

• #line-Specifies a new line number and file name at the terminal, not 
in the listing file. 

Preprocessor Directives 8-1 



• #module-Specifies a module name to the VMS Linker. 

• #pragma-Performs an implementation-specific task. 

This chapter also discusses the following VAX C predefined macros: 

• __ DATE __ (evaluates to the current date). 

• _-FILE __ (evaluates to the name of the program source file). 

• __ LINE __ (evaluates to the line number in the source file). 

• __ TIME __ (evaluates to the current time). 

Preprocessor directives are independent of the usual scope rules; they re­
main in effect from their occurrence until the end of the compilation unit. 
For more information concerning the compilation unit, refer to Chapter I, 
Developing VAX C Programs at DCL Command Level. 

8.1 Token Definitions (#define, #undef) 

The #define directive specifies a token string that is substituted for every 
subsequent occurrence of that identifier in the program text, unless it 
occurs inside a char constant, a comment, or a quoted string. You use the 
#undef directive to cancel a definition for a token. 

The syntax of the #define directive is as follows: 

#define identifier token-string 
#define identifier(identifier. . .. ) token-string 

If you omit the token string, the identifier is deleted from the text to be 
processed by the compiler. 

After a token string is substituted in the source file, the compiler rescans 
the source line from the beginning of the substituted text to determine 
whether the previously inserted text contains identifiers defined by other 
#define directives. If so, the identifiers are replaced by their currently 
specified token strings. Example 8-1 illustrates nested #define directives. 

8-2 Preprocessor Directives 



Example 8-1: Nested Substitution Directives 

/* Show multiple substitutions and listing format 

'define AUTHOR james + LAST 

mainO 
{ 

int writer, james ,michener , joyce; 

'define LAST michener 
writer = AUTHOR; 

'define LAST joyce 
writer = AUTHOR; 

} 

When you compile this example program with the command 

$ CC/LIST/SHOW=INTERMEDIATE EXAMPLEIRETURNI 

the following listing results: 

1 /* Show multiple substitutions and 
listing format */ 

2 
3 'define AUTHOR james + LAST 
4 
5 main() 

6 { 

7 1 int writer, james ,michener, joyce; 
8 1 
9 1 'define LAST michener 

10 1 writer = AUTHOR; 
1 writer = james + LAST; 
2 writer = james + michener; 

11 1 
12 1 'define LAST joyce 
13 1 writer = AUTHOR; 

1 writer = james + LAST; 
2 writer = james + joyce; 

14 1 } 

On the first pass, the compiler replaces the identifier AUTHOR with the 
token string james + LAST. On the second pass, the compiler replaces the 
identifier LAST with its currently defined token string value. At line 9, the 
token string value for LAST is the identifier michener so michener 

Preprocessor Directives 8-3 



is substituted at line 10. At line 12, the token string value for LAST is 
redefined to be the identifier joyce so joyce is substituted at line 13. The 
following is the final text that the compiler processes: 

writer = james + joyce; 

The #define directive may be continued onto subsequent lines if neces­
sary. You must end each line to be continued with a backslash (\). The 
backslash and newline do not become part of the definition. The first 
character in the next line is logically adjacent to the character that imme­
diately precedes the backslash. The backslash/newline as a continuation 
sequence is valid anywhere after the identifier being defined, or anywhere 
after the left parenthesis in a macro definition. 

Comments within the definition line can be continued without the back­
slash/newline. In the following example, all of the text must appear on 
the same line unless comments appear in the < white-space> : 

#<white-space>define<white-space>identifier[(] 

The optional left parenthesis begins a macro parameter list (see 
Section 8.1.2), and it must not be separated from the identifier. 

8. 1. 1 Constant Identifiers 

The first form of the #define directive defines a simple substitution, 
usually of a constant for a frequently used identifier. A common use of 
the directive is to define the end-of-file (EOF) indicator: 

'define EOF (-1) 

The substitution text for this example is delimited with parentheses to 
avoid lexical ambiguities when the text is substituted in the program, as in 

i=EOF; 

If the token string -1 is substituted for the identifier EOF, then the 
contiguous characters (=- ) may be mistaken for an operator. 

8-4 Preprocessor Directives 



8.1.2 Macro Substitutions 

Macros are text substitutions that include a list of parameters. You call 
macros the same way you call a function. The parameters are replaced 
by the corresponding arguments and the text is inserted into the program 
stream. If you call a function, control passes from the program to the 
function object code (or, optionally, the function's shareable image) at run 
time; if you reference a macro, source code is inserted into the program at 
compile time. The syntax of a macro definition is as follows: 

#define name([parml[,parm2, ... ]]) [token-string] 

The identifiers' name, parmI, parm2, and so forth are identifiers, and the 
identifier token-string is arbitrary text. 

After the macro definition, all macro references in the source code with 
the following form 

name([argl[,arg2, ... ]]) 

are replaced by the token string from the directive and any formal param­
eters that appear in the token string are replaced by the corresponding 
arguments from the reference. For example, argument argl replaces 
parameter parm I, and so forth. 

As shown in the syntax of the macro definition, the token string is op­
tional. If the token string is omitted from the macro definition, the entire 
macro reference disappears from the source text. 

The token string in the macro definition, as well as actual arguments in a 
macro reference, may contain other macro references. Substitution occurs, 
but such nested references are limited to a depth of 64. The maximum 
number of parameters or arguments is also 64. 

The VAX C RTL macro _toupper is a good example of macro substitution. 
This macro is defined in the ctype definition module in the following 
manner: 

#define _toupper(c) «c) >= 'a' && (c) <= 'z' ? (c) & OX5F : (c» 

When you reference the macro _toupper, the compiler replaces the macro 
keyword and its parameter with the token string from the directive. The 
token string of VAX C source code looks cryptic but can be translated 
in the following manner: if parameter c is a lowercase letter (between 
'a' and 'z'), the expression evaluates to an uppercase letter « c) & OXSF); 
otherwise, it evaluates to the character as given. This token string uses the 

Preprocessor Directives 8-5 



if-then-else conditional operator (?:). For more information concerning 
the conditional or bitwise operators, refer to Chapter 5, Expressions and 
Operators. 

Preprocessor directives and the macro references have syntax that is 
independent of the VAX C language. The following list gives the rules for 
the specification of macro definitions: 

• The macro name and the formal parameters are identifiers and are 
specified according to the rules for identifiers in the VAX C language. 

• Spaces, tabs, and comments may be used freely within a #define 
directive. In particular, they may appear anywhere that the delta 
symbol ~ appears in the following example: 

#AdefineAname (Aparm1A, Aparm2A) A\ 
Atoken-stringA 

• White space cannot appear between the name and the left parenthesis 
that introduces the parameter list. White space may appear inside the 
token string. Also, at least one space, tab, or comment must separate 
name from define. Comments may appear within the token string, but 
they do not become part of the macro definition. 

The following list gives the rules for the specification of macro references: 

• Comments and white space characters (spaces, horizontal and vertical 
tabs, carriage returns, new lines, and form feeds) may be used freely 
within a macro reference. In particular, they may appear anywhere 
that the delta symbol appears in the following example: 

nameA(Aarg1A,Aarg2A) 

• Arguments consist of arbitrary text. Syntactically, they are not re­
stricted to VAX C expressions. They may contain embedded com­
ments and white space. Comments are ignored, but the white space is 
preserved during the substitution. 

• The number of arguments in the reference must match the number 
of parameters in the macro definition, although individual arguments 
may be null. 

• Commas separate arguments except where they occur inside string 
or character constants, comments, or parentheses. You must balance 
parentheses within arguments. 

8-6 Preprocessor Directives 



Take care when specifying the token string. Since the token string consists 
of arbitrary text, the replacement of parameters with arguments occurs 
even if a parameter appears inside a character or string constant within 
the token string. To be recognized, a parameter should be delimited from 
the surrounding text by white space or punctuation characters, such as 
parentheses. 

You must be careful when specifying macro arguments that use the 
increment ( ++ ), decrement ( -- ), and assignment (such as -t=) operators 
or other arguments that may cause side effects. Function calls are another 
source of possible side effects. For example, you should not pass the 
following argument to the _toupper macro: 

_toupper(p++) 

When the argument p++ is substituted in the macro definition, the resul­
tant line of code within the program stream is the following: 

«p++) >= 'a' && (p++) <= 'z' ? (p++) & OX5F : (p++» 

At run time, these expressions may not be evaluated in left-to-right order. 
For this reason, specifying macro arguments that may cause side effects is 
not a good programming practice. Even if you are fully aware of possible 
side effects, the token strings within macro definitions are easily changed, 
thereby changing the side effects without warning. 

8. 1.3 Listing of Substituted Lines 

The /SHOW command line qualifier has two optional values that enable 
the listing of all lines that have been modified by macro substitutions. The 
values are EXPANSION and INTERMEDIATE. 

With the qualifiers 

/LIST/SHOW=EXPANSION 

the listing produced by the compiler shows both the original line, and 
the final form of the substituted line. Substituted lines are flagged in the 
margin with numbers designating the nesting level of substitution. 

With the qualifiers 

/LIST/SHOW=INTERMEDIATE 

the compiler lists all intermediate substitutions with one substitution per 
line. 

Preprocessor Directives 8-7 



Without one of these two qualifiers, the compiler only lists the original 
form of a line. 

Example 8-1 demonstrates the effect of the /SHOW=INTERMEDIATE 
qualifier. For more information concerning the format of VAX C com­
piler listings, refer to Chapter 1, Developing VAX C Programs at DCL 
Command Level. 

8.1.4 Canceling Definitions (#undef) 

The following directive 

#undef identifier 

cancels a previous definition of the identifier by #define. 

B.2 Common Data Dictionary Extraction (#dictionary) 

The Common Data Dictionary (COD) is an optional VMS software prod­
uct, available under a separate license, that maintains a set of data struc­
ture definitions that many programs on a system can access. These data 
definitions are written in a language-independent form and are translated 
into the target language when they are included in the program stream. 

COD data definitions are contained in dictionaries that are organized 
hierarchically in the same way files are organized in directories and 
subdirectories. For example, a dictionary for defining personnel data 
might have separate directories for each employee type. A directory 
for salesmen might have subdirectories for records such as salary and 
commission history or personnel history. 

The advantages of using the COD include the following: 

• Record declarations are language-independent and can be shared 
across VAX languages that support the COD. 

• Data definitions are centrally located, which helps reduce the amount 
of duplicated effort in a programming project. 

• A single declaration helps guarantee the accuracy and reliability of 
data. 

8-8 Preprocessor Directives 



For detailed information concerning the CDD, refer to the V AX Common 
Data Dictionary Reference Manual, the V AX Common Data Dictionary 
Utilities Manual, and the V AX Common Data Dictionary Language Reference 
Manual. 

B.2.1 Using the #dictionary Directive 

The #dictionary preprocessor directive is VAX C specific, and allows 
you to extract CDD data definitions and include these definitions in your 
program. The format of the #dictionary directive is 

#dictionary cdd_path 

The cdd_path is a character string that gives the pathname of a CDD 
record or a macro which expands to the pathname of the record. For 
example: 

'dictionary "CDD$TOP.personnel.service.salary_record" 

This pathname describes all subdirectories leading to the salarY--1"ecord 
data definition, beginning with the root directory (CDD$TOP). 

The logical name CDD$DEFAULT can be used to define a default path­
name for a dictionary directory. This logical name can specify part of 
the pathname for the dictionary object. For example, you can define 
CDD$DEFAULT as follows: 

$ DEFINE CDD$DEFAULT CDD$TOP.PERSONNEL 

When this definition is in effect, the #dictionary directive can contain 

'dictionary II service . salary_record II 

CDD definitions are written in the Common Data Dictionary Language 
(CDDL), and are included in a dictionary with the CDDL command. For 
example, a definition of a structure containing someone's first and last 
name could be written as follows. 

define record cdd$top.doc.cname_record. 
cname structure. 

first datatype is text 
size is 20 characters. 

last datatype is text 
size is 20 characters. 

end cname structure. 
end cname_record record. 

Preprocessor Directives 8-9 



If this definition were found in a source file named CNAME.DDL, it could 
be included in the CDD subdirectory named "doc" by issuing the following 
command: 

$ CDDL cname 

After this command has been executed, a VAX C program can reference 
this definition with the #dictionary directive. If the #dictionary directive 
is not embedded in a VAX C structure declaration, then the resulting 
structure is declared with a tag name corresponding to the name of the 
CDD record .. Consider the following example: 

.dictionary "cdd$top.doc.cname_record" 

These lines of VAX C code result in the following declarations: 

struct cname 
{ 

} 

char first [20]; 
char last [20]; 

You can embed the #dictionary directive in another VAX C structure 
declaration, as follows: 

struct 
{ 

~nt id; 

Idictionary "cname_record" 

} customer; 

These lines result in the following declaration, with cname used as an 
identifier for the embedded structure. 

struct 
{ 

int id; 
struct 
{ 

char first [20]; 
char last [20]; 

} cname; 
} customer; 

If you specify jLIST and either jSHOW=DICTIONARY or jSHOW=ALL 
in the compilation command line, then the translation into VAX C of the 
CDD record description is included in the listing file and marked with the 
letter D in the margin. 

8-1 0 Preprocessor Directives 



8.2.2 Support for COD Data Types 

The CDD supports all VMS data types. VAX C can translate all of the 
VMS data types when they are declared in CDD records. Data types that 
do not occur naturally in the VAX C language are handled as follows: 

• VAX C never attempts to approximate a data type that is not supported 
by the C language. 

• Instead of approximating a data type, VAX C uses its own structure 
data type to represent all types not supported by the VAX C language 
(except for excessively long bit strings); specifically, VAX C creates 
structures of arrays of type char that are large enough to represent the 
data structure. 

• Bit strings (aligned or unaligned) may be up to 32 bits long, as defined 
by the VAX C language. Bit strings longer than 32 bits are broken into 
increments of 32-bit strings or smaller so that the structure is correct 
with respect to size. However, the long bit string cannot be accessed 
as one unit. 

• All row-major arrays are represented as zero-origin arrays of the 
appropriate size. An informational message is issued if the record 
description specifies nonzero-origin dimension bounds. The compiler 
adjusts the upper bound appropriately to maintain the correct number 
of elements relative to a lower bound of zero. Column-major arrays 
are converted to one-dimensional arrays containing the same total 
number of elements. 

The compiler applies various consistency checks to the record attributes 
extracted from the CDD, particularly the field data type attributes. An 
error message is issued when a record description does not pass the 
consistency checks. An informational message is issued when VAX C is 
confronted with facility-independent attributes which are not supported. 
An error message is issued when an attribute that is required by VAX C is 
not present, even if the attribute is optional in the CDD record protocol. 

The compiler synthesizes names for unnamed and filler fields. When the 
CDD does not specify a name and a name is required by the syntax of the 
VAX C language, the compiler synthesizes the name 
cc_cdd-$_unnamed-nnnnn. When the CDD specifies a filler or a name 
that VAX C does not support, the compiler synthesizes the name 
cc_cdd-$~ller_#nnnnn which includes the pound sign character ( # ). 
The string "nnnnn" represents a unique integer. 

Preprocessor Directives 8-11 



Table 8-1 summarizes the mapping between CDD data types and VAX C 
data types. 

Table 8-1: Mapping Between CDD and VAX C Data Types 
CDD Data Type C Data Type 

Unspecified Unsupported 
unsigned byte unsigned char 
unsigned word unsigned short 
unsigned longword unsigned int 
unsigned quadword Unsupported 
unsigned octaword Unsupported 

signed byte char 
signed word short 
signed longword int 
signed quad word Unsupported 
signed octaword Unsupported 

F_floating float 
D_floating double l 

G_floating double l 

H_floating Unsupported 

F_floating complex Unsupported 
D_floating complex Unsupported 
G_floating complex Unsupported 
H_floating complex Unsupported 

Text char [n] 
Varying text3 Unsupported 

Numeric string: 
unsigned Unsupported 
Left separate Unsupported 
Left overpunch Unsupported 
Right separate Unsupported 
Rig~t overpunch Unsupported 
Zoned sign Unsupported 

1 A message may be issued depending upon the specification of the IG_FLOAT qualifier. If the data 
type of the CDD record member is D_floating and the IG_FLOAT command qualifier was specified, 
or if the data type of the record member is G_floating and the INOG_FLOAT command qualifier 
was specified, an informational message is issued and the member is represented as struct { char [8]} 
instead of double. 

3For these data types, the length of the' structure is two bytes longer than the string to allow for the 
length field. 

8-12 Preprocessor Directives 



Table 8...,.1 (Cont.): 

CDD Data Type 

Packed decimal string 

Bit 
Bit unaligned 

Date and time 

Date 
Virtual field 
Varying string3 

Mapping Between CDO and VAX C Data 
Types 

C Data Type 

Unsupported 

Bit field2 

Bit field2 

Unsupported 

Unsupported 
Ignored 
Unsupported 

2 A message is issued if the bit string length is greater than 32. 

3 For these data types, the length of the structure is two bytes longer than the string to allow for the 
length field. 

Unsupported data types are mapped into VAX C as structures of character 
arrays of the appropriate size. The declaration of these data types follows 
the format: 

atruct { char Cname [a]; } CDDname; 

The CDDname is the name of the member in the COD record. Cname is an 
identifier of the form cc_cdcL$_unsupportecL#nnnnn, where nnnnn is a 
unique integer, and s is the size of the data item in bytes. 

8.3 Conditional Compilation (#if, #ifdef, #ifndef, #else, #elif, 
#endif) 

Six directives are available to control conditional compilation. They 
delimit blocks of statements that are compiled if a certain condition is true. 
You can nest these directives. The beginning of the block of statements is 
marked by one of three directives: #if, #ifdef, or #ifndef. Optionally, an 
alternative block of statements can be set aside with the #else or the #elif 
directives. The end of the block is marked by an #endif directive. 

If the condition checked by #if, #ifdef, or #ifndef is true, then VAX C 
ignores all lines between an #else (or #elif) and an #endif directive. 

Preprocessor Directives 8-13 



If the condition is false, then the lines between the #if, #ifdef, or #ifndef 
and an #else, (or #elif) or #endif directive are ignored. The compiler 
flags ignored lines with the letter X in the compiler listing margin. 

The #if directive has the form: 

#if constant-expression 

This directive checks whether the constant expression is nonzero (true). 
The operands must be constants. The increment (++), decrement (--), 
sizeof, pointer (*), address (&), and cast operators are not allowed in the 
constant expression. 

The constant expression in an #if directive is subject to text replacement 
and can, therefore, contain references to identifiers defined in previous 
#define directives. The replacement occurs before the expression is 
evaluated. 

If an identifier used in the expression is not currently defined, the compiler 
issues a diagnostic message and treats the identifier as though it were the 
constant zero. 

The #ifdef directive has the form: 

#ifdef identifier 

This directive checks whether the identifier was previously defined by a 
#define directive. 

The #ifndef directive has the form: 

#ifndef identifier 

This directive checks to see if the identifier is not defined or if it has been 
undefined by the #undef directive. 

The #else directive has the form: 

#else 

This directive delimits alternative source lines to be compiled if the 
condition tested for in the corresponding #if, #ifdef, or #ifndef directive 
is false. An #else directive is optional. 

8-14 Preprocessor Directives 



The #elif directive has the form: 

#elif constant-expression 

The #elif line performs a task similar to the combined use of the else if 
statements in VAX C. This directive delimits alternative source lines to 
be compiled if the constant expression in the corresponding #if, #ifdef, 
or #ifndef directive is false and if the additional constant expression 
presented in the #elif line is true. An #elif directive is optional. 

The #endif directive has the form: 

#endif 

This directive ends the scope of the directives. 

8.3.1 The defined Operator 

If you need to check to see if many tokens are defined, you may wish 
to use the special defined operator in a single use of the #if line. In 
this way, you can check for token definitions in one concise line without 
having to use many #ifdef or #ifndef directives. 

For example, if you want to check the following tokens: 

'ifdef token1 
printf( "Oh, Mary!\n" 
'endif 

'ifndef token2 
printf( "Oh, Mary!\n" 
'endif 

'ifdef token3 
printf( "Oh, Mary!\n" ) 
'endif 

you can use the defined operator in a single use of the #if preprocessor 
directive, as follows. 

'if defined (token1) I I !defined (token2) I I defined (token3) 
printf( "Oh, Mary!\n" ) 
'endif 

You can use defined as you would any other operator. However, you 
can only use defined in the evaluated expression of an #if or #elif 
preprocessor directive. 

Preprocessor Directives 8-15 



8.4 File Inclusion (#include) 

The #include directive inserts external text into the token stream delivered 
to the compiler. Often, global definitions for use with VAX C Run-Time 
Library (RTL) functions and macros are included in the program stream 
with the #include directive. The #include directives may be nested to 
a depth determined by the FILLM process quota and by virtual memory 
restrictions. The VAX C compiler imposes no inherent limitation on the 
nesting level of inclusion. 

In VAX C source programs, the inclusion of both VMS and most 
DEC/Shell file specifications are legal. An example of a valid DEC/Shell 
file specification is as follows: 

BEATLE!/DBAO/MCCARTNEY/SONGS.LIS.3 

The exclamation point ( !) separates the node name from the rest of the 
specification; slash characters (/) separate devices and directories; 
periods (.) separate file extensions and file versions. Since one character 
is used to separate two segments of the file specification, ambiguity can 
occur. For more information, on including DEC/Shell file specifications, 
refer to the VAX C Run-Time Library Reference Manual. 

8.4.1 Inclusion Using Angle Brackets ( < > ) 
The first form of the directive is as follows: 

#include <file-spec> 

The identifier file-spec is a valid file specification, or a logical name. A 
file specification may be up to 255 characters long. The compiler first 
translates the specified file name to see if it is a valid VMS specification. 
If it is not, the compiler then checks to see if it is a valid DEC/Shell 
specification; and if it is, translates the specification to a valid VMS 
specification using VAX C RTL functions. If the specification is not valid 
for either VMS or the DEC/Shell, an error occurs. Valid DEC/Shell file 
specifications are a subset of valid UNIX file specifications. For more 
information concerning the valid DEC/Shell file specifications, refer 
to Chapter 1, Developing VAX C Programs at DCL Command Level. 

When specifying the names of files to be included in your source program, 
avoid directory specifications of the following form: 

DBAO: [. dir-naDie . .. ] 

8-16 Preprocessor Directives 



Depending on the location of your program source file, and your current 
RMS default directory, this form of directory specification mayor may 
not translate to the intended directory. When specifying files and their 
directories, use complete directory specifications. 

This form of file inclusion delimits the file specification with angle brackets 
( < > ). When the compiler encounters this form of file inclusion, it 
translates the user-defined logical name, VAXC$INCLUDE, which you can 
define to be a valid directory specification or a search list of valid directory 
specifications; if VAXC$INCLUDE is defined, the compiler searches the 
directory or directories for the specified file. Before each execution of your 
program, you have the flexibility of redefining VAXC$INCLUDE to be any 
valid directory or list of directories you choose. 

You cannot define VAXC$INCLUDE to be a rooted directory or subdirec­
tory of the following form: 

DBAO: [dir-name.] 

When defining VAXC$INCLUDE, use complete directory specifications. 

If VAXC$INCLUDE translates to a directory or a search list of directories, 
and the compiler cannot locate the specified file, the compiler generates 
an error message. If VAXC$INCLUDE is undefined, the compiler then 
searches the directory SYS$LIBRARY for the specified file; if the file 
cannot be found, the compiler generates an error message. For more 
information concerning search lists, refer to the DCL command DEFINE in 
the VAX/VMS DeL Dictionary. 

When porting programs to the VMS environment, your programs may 
contain #include directives of the following form: 

#include <sys/file.h> 

The VAX C compiler translates this line, common in programs that run on 
UNIX systems, to the DEC/Shell path name 

/sys/file.h 

and then translates the DEC/Shell path name to the VMS file specification 

SYS:FILE.H 

If you port programs containing such directives, define the logical SYS 
to be the proper name of the VMS directory containing the files to be 
included. 

Preprocessor Directives 8-17 



8.4.2 Inclusion Using Quotation Marks ( /I /I ) 

The second form of the #include preprocessor directive is as follows: 

#include "file-spec" 

The identifier file-spec is a valid VMS or DEC/Shell file specification. 

This form of file inclusion delimits the file specification with quotation 
marks (1/ 1/). The compiler first searches the directory containing the 
compiled source file for the included file, not the current RMS default 
directory. For example, given the current directory, DBAO:[CURRENT], 
and given the following CC command line 

$ CC DBAO: [OTHERDIR]EXAMPLE.cIRETURNI 

the compiler searches DBAO:[OTHERDIR] for any included files delimited 
by quotation marks, even though the current RMS default is the directory, 
DBAO:[CURRENT]. 

If the compiler cannot locate the specified file, it translates the logical 
name C$INCLUDE. If C$INCLUDE translates to a valid directory specifi­
cation or a search list of directories,. the compiler searches that directory 
or directories for the specified file. Before each execution of your pro­
gram, you have the flexibility of redefining C$INCLUDE to be any valid 
directory or list of directories you choose. 

As with the VAXC$INCLUDE, do not define C$INCLUDE to be a rooted 
directory or subdirectory. You should use complete directory specifications 
when defining C$INCLUDE. 

If you defined C$INCLUDE, and the compiler cannot locate the specified 
file in that directory or search list of directories, the compiler generates an 
error. If C$INCLUDE is undefined, the search for the specified file ends 
in the directory containing the source file; the compiler searches no other 
directories. For more information concerning search lists, refer to the DCL 
command DEFINE in the VAX/VMS DeL Dictionary. 

CAUTION 

If you include a file from SYS$LIBRARY by using the angle 
brackets, and if the included file contains a second #include 
line that delimits the file specification with quotation marks, the 
compiler will search in the directory containing the source file 
for the specified file, not in SYS$LIBRARY. When nesting 

8-18 Preprocessor Directives 



#include directives as described previously, the file specifi­
cation in quotation marks must contain complete device and 
directory information. 

8.4.3 Inclusion of Text Modules 

The third form of the #include preprocessor directive is as follows: 

#include module-name 

The identifier module-name is the name of a module in a text library. This 
method of inclusion is the most efficient, because modules within a text 
library are indexed and thus easier to manipulate than files in a directory. 
VAX C text libraries are specified and searched as follows: 

• A text library can be created with the LIBRARY command and speci­
fied with the jLIBRARY qualifier on the CC command. 

• If you compile more than one compilation unit using a single CC 
command, you must specify the library within each of the compilation 
units, if needed. Consider the following example: 

$ cc sourcea+mylib/LIBRARY. sourceb+mylib/LIBRARY 

• If you specify more than one library to the VAX C compiler, and if the 
#include directives are not nested (see CAUTION), then the libraries 
are searched in the specified order each time an #include directive is 
encountered. Consider the following example: 

$ cc sourcea+mylib/LIBRARY+yourlib/LIBRARY 

In this example, the compiler searches for modules referenced in 
#include directives first in MYLIB.TLB and then in YOURLIB.TLB. 

• If no library is specified in the CC command, or if the specified 
module cannot be found in any of the specified libraries, the following 
actions are taken: 

If the user has defined an equivalence name for C$LIBRARY that 
names a text library, that library is searched. 

The compiler searches for any remaining unresolved module 
names in SYS$LIBRARY:VAXCDEF.TLB. 

Preprocessor Directives 8-19 



8.4.4 Token Substitution in #include Directives 

VAX C allows token substitution within the #include preprocessor 
directive. 

For instance, if you wanted to include a· file name, you could use the 
following two directives. 

'define token1 "file.ext" 

linclude token1 

If you use defined tokens in #include directives, the tokens must evaluate 
to one of the three following acceptable #include file specifications or the 
use generates an error message: 

<file-spec> 
"file-spec" 
module-name 

8.5 Specification of Line Numbers (#Iine, #) 

The VAX C compiler keeps track of information about relative line num­
bers in each file involved in the compilation and uses the number when it 
delivers diagnostic messages to the terminal. The compiler increments the 
subsequent lines from the line number specified by the #line directive. 
The directive also specifies a new file specification for the program source 
file. The #line directive will not change the line numbers in your compi­
lation listing, only the line numbers given in messages (for example, error 
messages) sent to the terminal screen. This directive is useful for locating 
errors in text that is included using the #include preprocessor directive. 

The formats of the #line directive are: 

#line constant identifier 
#line constant string 
# constant identifier 
# constant string 

The compiler gives the line following a #line directive the number spec­
ified by the parameter constant. The second parameter can be specified 
as either a VAX C identifier or a character-string constant. It supplies the 
valid VMS file specifications. The character string must not exceed 255 
characters. 

8-20 Preprocessor Directives 



8.6 Specification of MOdule Name and Identification (#module) 

When you compile source files to create an object file, the compiler assigns 
to that file the first filename of those specified in the compilation unit. 
The compiler adds the .OB} file extension to the object file. Internally, 
VMS (the debugger and the librarian as well) recognizes the object module 
by the filename; the compiler also gives the module a V1.0 version 
identification. For example, given the object file EXAMPLE.OB}, the 
debugger recognizes the EXAMPLE object module. To change the system­
recognized module name and version number, use the #module directive. 

You can find the module name and the module version number listed in 
the compiler listing file and the linker load map. 

The syntax of the #module directive is as follows: 

#module identifier identifier 
#module identifier string 

The first parameter must be a valid VAX C identifier. It specifies the 
module name to be used by the linker. The second parameter specifies 
the optional identification that appears on listings and in the object file. It 
must be either a valid VAX C identifier or a character-string constant with 
no more than 31 characters. 

Only one #module line can be processed per compilation unit, and that 
line must appear before any VAX C language text; it can follow other 
directives, such as #define, but it must precede any function definitions or 
external data definitions. 

The parameters in a #module line, as well as in a #dictionary line, 
are subject to text replacement and can, therefore, contain references to 
identifiers defined in previous #define directives. The replacement occurs 
before the parameters are processed. 

The #module directive is VAX C specific and is not portable. 

Preprocessor Directives 8~21 



8.7 Implementation-Specific Preprocessor Directive (#pragma) 

The #pragma directive performs tasks as designated by the particular 
implementation of the C language. VAX C recognizes the following 
specification for enabling and disabling the padding of structures and 
alignment of members: 

#pragma [no]member_alignment 

8.8 VAX C Predefined Tokens 

The following sections describe the VAX C predefined tokens and macros 
for use in your programs. 

8.8.1 Predefined Tokens 

The VAX C compiler defines the following preprocessor substitutions; 
these symbols are defined as if the following text fragment were included 
by the compiler before every compilation source group: 

#define vax 
#define VAX 
#define vms 
#define VMS 
#define vaxc 
#define VAXC 1 
#define vax11c 1 
#define VAX11C 

You can use these definitions to separate portable and nonportable code in 
any of your VAX C programs. 

#define CC$gfloat <value> 

You can use this definition if you compile your VAX C program using the 
/G_FLOAT qualifier. If you specify the /G_FLOAT qualifier, <value> 
is defined as 1. 

#define CC$gfloat <value> 

You can use this definition if you do not compile your VAX C program 
using the /G_FLOAT qualifier. When you do not specify the /G_FLOAT 
qualifier, <value> is defined as zero. 

8-22 Preprocessor Directives 



The symbols may be used by the VAX C programmer to conditionally 
compile VAX C programs used on more than one operating system to 
take advantage of system-specific features. See Section 8.3 for more 
information concerning the use of the preprocessor conditional compilation 
directives. 

Consider the following example: 

#if VAlC 
#include rms 
#endif 

1* Include RMS definitions *1 

Similarly, you can use the CC$gfloat preprocessor substitution so that 
you can assign values to variables of type double without causing an 
error. The VAX C compiler will only substitute 1 for CC$gfloat if you 
compiled the module using the /G_FLOAT qualifier. Therefore, you can 
conditionally assign values to variables without being certain of how much 
storage was allocated for the variable. For example, external variables may 
be assigned values as follows: 

'if CC$gfloat 
double x = 0.12e308; 
'else 
double x = 0.12e38; 
'endif 

1* Range to 10 to the 308th power *1 

1* Range to 10 to the 38th power *1 

The VAX C compiler will determine whether or not to substitute the 
value 1 for every occurrence of these identifiers in a program; these iden­
tifiers are reserved by DIGITAL. However, the effect of these definitions 
may be removed by explicitly un defining the conflicting name. See 
Section 8.1.4 for more information concerning undefining. For more infor­
mation concerning the G_floating representation of the double data type, 
refer to Chapter 6, Data Types and Declarations. 

8.8.2 The __ DATE __ Macro 

The __ DATE __ macro evaluates to a string specifying the date on which 
the compilation started. The string presents the date in the following 
format: 

Mmm-dd-yyyy 

Note that the first d is a space if dd is less than 10. 

The following is an example of the __ DATE __ macro: 

Preprocessor Directives 8-23 



8.8.3 The __ TIME __ Macro 

The __ TIME __ macro evaluates to a string specifying the time at which 
the compilation started. The string presents the time in the following 
format: 

hh:mm:ss 

The following is an example of the __ TIME __ macro: 

printf("1.s". __ TIME __ ); 

8.8.4 The __ FILE __ Macro 

The __ FILE __ macro evaluates to a string specifying the file specification 
of the current source file. The following is an example of the __ FILE __ 
macro: 

printf("file l.s" __ FILE __ ); 

8.8.5 The __ LlNE __ Macro 

The __ LINE __ macro evaluates to an integer specifying the number of 
the line in the source file containing the macro reference. The following is 
an example of the __ LINE __ macro: 

printf("At line Y.d in file l.s". __ LINE __ • __ FILE __ ); 

8-24 Preprocessor Directives 



Using VAX C Features on VMS 





Chapter 9 

Using VAX Record Management 
Services (RMS) 

VAX C provides a set of run-time library functions and macros to per­
form I/O. Some of these functions perform in the same manner as I/O 
functions found on C implementations running on UNIX systems. Other 
VAX C functions take full advantage of the functionality of the VMS file 
handling system. You can also access the VMS file handling system from 
your VAX C program without the use of the VAX C Run-Time Library 
functions. In any case, the system that ultimately accesses the files in 
VMS is VAX Record Management Services (RMS). 

This chapter introduces the following RMS topics to the VAX C 
programmer: 

• Sequential files 

• Relative files 

• Indexed files 

• Record access modes 

• RMS record formats 

• RMS functions 

• VAX C and RMS 

• RMS example program 

The file-handling capabilities of VAX C fall into two distinct categories: 

1. The VAX C Run-Time Library functions which, with little or no 
modification, are portable to other C implementations. 

Using VAX Record Management Services (RMS) 9-1 



2. The RMS functions, which are not portable to other C implementa­
tions but which provide more methods of file organization and more 
record access modes. 

This chapter briefly reviews the basic concepts and facilities of VAX RMS 
and shows examples of their application in VAX C programming. Because 
this is an overview, the chapter does not explain all RMS concepts and 
features. For language-independent information concerning RMS, refer to 
the following manuals in the VMS document set: 

• Guide to VAX/VMS File Applications. This manual contains a general 
description of the record management services of the VMS operating 
system, and the file creation and run-time options available. 

• V AX Record Management Services Reference Manual. This manual de­
scribes the user interface to RMS. It includes introductory information 
on RMS programming and detailed definitions of all RMS control 
block structures and macro instructions. 

9. 1 RMS File Organization 

VAX RMS supports three kinds of file organization: 

• Sequential 

• Relative 

• Indexed 

The organization of a file determines the way the file is stored on the 
media and, consequently, the possible operations on records. You specify 
the file's organization when you create the file; it cannot be changed. 

However, you can use the File Definition Language Editor (FDL) and the 
CONVERT or CONVERT/RECLAIM utilities to define the characteristics 
of a new file, and then fill the new file with the contents of the old file 
of a different format. For more information, refer to the VAX/VMS Utility 
Routines Reference Manual. 

9-2 Using VAX Record Management Services (RMS) 



9.1. 1 Sequential File Organization 

Sequential files have consecutive records. There are no empty records sep­
arating records that contain data. This organization limits the operations 
on the file to: 

• Positioning the file at a particular record, generally by sequentially 
moving from one record to the next. 

Direct access is also possible, either by key (relative record number) 
or by the record file address (RFA). However, although allowed for 
any file organization, access by RFA is limited to files on disk devices, 
and access by key is limited to disk files that also have fixed-length 
records. These access modes are unusual because most application 
programs do not keep track of record positions in sequential files. 

• Reading data from any record. 

• Writing data by adding records at the end of the file. 

Sequential organization is the only kind permitted for magnetic tape files 
and other non disk devices. 

9. 1.2 Relative File Organization 

Relative files have records that occupy numbered, fixed-length cells. The 
records themselves need not have the same length. Cells can be empty or 
can contain records. Consequently, the following operations are permitted: 

• Positioning the file at a particular record, usually by direct access. 

In direct access, RMS uses the relative record number-the number 
of a cell-as a key to locate the cell and its record; there is no need 
to reference other cells. RMS can also access the records sequentially, 
ignoring empty cells, or RMS can access. the file directly with the 
record file address (RFA); RMS returns the RFA in a parameter block 
whenever it writes a record, and you can access and use the RFA to 
locate the appropriate record. You can access any file organization 
with the RFA. 

• Reading a record from any cell. 

• Deleting a record from any cell. 

• Writing a record into any cell. 

Relative file organization is possible only on disk devices. 

Using VAX Record Management Services lRMS) 9-3 



9. 1.3 Indexed File Organization 

Indexed files have records that contain, in addition to data and carriage­
control information, one or more keys. Keys can be character strings, 
packed decimal numbers, and 16-bit, 32-bit, or 64-bit signed or unsigned 
integers. Every record has at least one key, the primary key, whose value 
in each record cannot be changed. Optionally, each record can have one 
or more alternate keys, whose key values can be changed. 

Unlike relative record numbers used in relative files, key values in indexed 
files are not necessarily unique. When you create a file, you can specify 
that a particular key may have the same value in different records (these 
keys are called duplicate keys). Keys are defined for the entire file, in 
terms of their position within a record and their length. 

In addition to maintaining its records, RMS builds and maintains indexes 
for each of the defined keys. As records are written to the file, their key 
values are inserted in order of ascending value in the appropriate indexes. 
This organization makes possible the following operations: 

• Positioning the file at a particular record, by direct access. In direct 
access reads, you use either a primary or alternate key, plus a spec­
ified key value, to locate the record. In direct access writes (given 
a record that contains key values in the predefined positions), RMS 
automatically adds the record to the file and adds the primary and 
alternate key values to the appropriate indexes. Records can also be 
accessed sequentially, where the sequence is defined by the index for 
a specified key. Finally, records can be accessed directly by RFA; RMS 
returns the RFA in a parameter block whenever it writes a record, and 
you can access and use the RFA to locate the appropriate record. You 
can access any file organization with the RFA. 

• Reading any record, including sequential reads controlled by a key's 
index. 

• Deleting any record. 

• Updating an alternate key's value, if the key's definition permits its 
value to change. 

• Writing records selectively, based on the value of a key and, when 
allowed in the key's definition, based on duplicate values. If duplicate 
values are permitted, you can write records containing key values 
that are already present in the key's index. If duplicate values are not 
permitted, such write operations are rejected. 

Indexed organization is possible only on disk devices. 

9-4 Using VAX Record Management Services (RMS) 



9.2 Record Access Modes 

The record access modes are sequential, direct by key, and direct by record 
file address. Again, the direct access modes are possible only with files 
that reside on disks. 

Unlike a file's organization, the record access mode is not a permanent 
attribute of the file. During the processing of a file, you can switch from 
one access mode to any other permitted for that file organization. For 
example, indexed files are often processed by locating a record directly by 
key, and then using that key's index to read sequentially all the indexed 
records in ascending order of their key values; this method is sometimes 
called the indexed-sequential access method, (ISAM). 

9.3 RMS Record Formats 

Records in RMS files can have the following formats: 

• Fixed-length format, where the length of every record is defined at 
the time of the file's creation. This format is permitted with any file 
organization. 

• Variable-length format, where the maximum length of every record is 
defined at the time of the file's creation. This format is permitted with 
any file organization. 

• Variable-length format with a fixed-length control area (VFC), where 
every record is prefixed by a fixed-length field. This format is permit­
ted only with sequential and relative files. 

• Stream format, where records are delimited by special characters called 
terminators. Terminators are part of the record they delimit. The three 
types of stream formatting are as follows: 

Stream variation, where records can be delimited with any special 
character. 

Stream_cr, where records are delimited with the carriage return 
character. 

Stream-If, where records are delimited with the line feed charac­
ter. This format variation is the default format when you create 
files using the Standard I/O functions. 

Using VAX Record Management Services (RMSI 9-5 



9.4 RMS Functions 

RMS provides a number of functions that create and manipulate files. 
These functions use RMS data structures to define the characteristics 
of a file and its records. The data structures thus are used as indirect 
arguments to the function call. 

The RMS data structures are grouped into four main categories, as follows: 

• File Access Block (FAB). Defines the file's characteristics, such as file 
organization and record format. 

• Record Access Block (RAB). Defines the way in which records are 
processed, such as the record access mode. 

• Extended Attribute Block (XAB). Various kinds of extended attribute 
blocks contain additional file characteristics, such as the definition of 
keys in an indexed file. Extended attribute blocks are optional. 

• Name Block (NAM). Defines all or part of a file specification to be 
used when an incomplete file specification is given in an OPEN or 
CREATE operation. Name blocks are optional. 

RMS uses these data structures to perform file and record operations. 
Table 9-1 lists some of the commonly used functions. 

9-6 Using VAX Record Management Services IRMSI 



Table 9-1: Common RMS Run-Time Processing Functions 
Category 

File 
Processing 

Record 
Processing 

Function 

sys$create 

sys$open 

sys$close 

sys$erase 

sys$connect 

sys$get 

sys$put 

sys$update 

sys$delete 

sys$rewind 

sys$disconnect 

Description 

Creates and opens a new file of any 
organiza tion. 

Opens an existing file and initiates file 
processing. 

Terminates file processing and closes the 
file. 

Deletes a file. 

Associates a file access block with a record 
access block to establish a record access 
stream; a call to this function is required 
before any other record processing function 
can be used. 

Retrieves a record from a file. 

Writes a new record to a file. 

Rewrites an existing record to a file. 

Deletes a record from a file. 

Positions the record pointer to the first 
record in the file. 

Disconnects a record access stream. 

All RMS functions are directly accessible from VAX C programs. The 
syntax for any RMS function has the following form: 

int sys$name(pointer) 
struct rms_structure *pointer; 

In this syntax, name corresponds to the name of the RMS function (such 
as OPEN or CREATE); rms_structure corresponds to the name of the 
structure being used by the function. 

The file-processing functions require a pointer to a file access block 
as an argument; the record-processing functions require a pointer to a 
record access block as an argument. For example, because sys$create is a 
file-processing function, its syntax would be as follows: 

int sys$create(fab) 
struct FAB *fab; 

Using VAX Record Management Services (RMS) 9-7 



Note that these syntax descriptions do not show all the options available 
when you invoke an RMS function. For a complete description of the 
RMS calling sequence, refer to the V AX Record Management Services 
Reference Manual. 

Finally, all of the RMS functions return an integer status value. The format 
of RMS status values follows the standard format described in Chapter 10, 
Mixed-Language Programming. Since they return a 32-bit integer, you do 
not need to declare the RMS return status before you use it. 

9.5 Writing VAX C Programs Using RMS 

VAX C supplies a number of #include modules that describe the RMS 
data structures and status codes. These modules are listed in Table 9-2. 

Table 9-2: VAX C RMS #include Modules 
Module 
Name 

fab 

rab 

nam 

xab 

rmsdef 

rms 

Structure 
Tag(s) 

FAB 
RAB 
NAM 

XAB 

all tags 

Description 

Defines the file access block structure. 

Defines the record access block structure. 

Defines the name block structure. 

Defines all the extended attribute block 
structures. 

Defines the completion status codes that RMS 
returns after every file- or record-processing 
operation. 

Includes all of the above modules. 

Most VAX C programmers simply include the rms module, which includes 
all the other modules. 

These #include modules define all the data structures as structure tag 
names. However, they perform no allocation or initialization of the 
structures; these modules describe only a template for the structures. To 
use the structures, you must create storage for them and initialize all the 
structure members as required by RMS. 

9-8 Using VAX Record Management Services (RMSI 



To assist in the initialization process, VAX C provides initialized RMS 
data structure prototypes. You can copy these readonly prototypes to 
your uninitialized structure definitions with a structure assignment. You 
can choose to take the default values for each of the structure members 
(as initialized by the prototypes), or you can tailor the contents of the 
structures to fit your requirements. In either case, you must use the 
templates to allocate storage for the structure and to define the members 
of the structure. 

The initialized prototypes supply the RMS default values for each member 
in the structure; they specify none of the optional parameters. To deter­
mine what default values are supplied by the prototypes, consult the VAX 
Record Management Services Reference Manual. 

The prototype data structures, and the structures which they initialize, are 
listed in Table 9-3. 

Table 9-3: RMS Prototype Data Structures 
Structure 

Prototype Tag Initialize Structure 

cc$rms_fab FAB File access block 

cc$rms-.Jab RAB Record access block 

cc$rms_nam NAM Name block 

cc$rms-xaball XABALL Allocation extended attribute block 

cc$rms-xabdat XABDAT Date and time extend~d attribute block 

cc$rms-xabfhc XABFHC File header characteristics extended at-
tribute block 

cc$rms-xabkey XABKEY Indexed file key extended attribute block 

cc$rms-xabpro XABPRO Protection extended attribute block 

cc$rms-xabrdt XABRDT Revision date and time extended attribute 
block 

cc$rms-xabsum XABSUM Summary extended attribute block 

You need not declare these structures before referencing them; the dec­
larations of these structures are contained in the appropriate #inc1ude 
module. 

Using VAX Record Management Services (RMS) 9-9 



The names of the structure members conform to the following RMS 
naming convention: 

typ$s_fld 

where the identifier typ is the abbreviation for the structure, the letter 
s is the size of the member (such as I for longword or b for byte), and 
the identifier fld is the member name; such as sts for the completion 
status code. The dollar sign ($) is a character used in VMS system logical 
names. See the V AX Record Management Services Reference Manual for a 
description of the members in each structure. 

9.5.1 Initializing File Access Blocks 

The file access block defines the attributes of the file. To initialize a 
file access block, you assign the values in the initialized data structure 
cc$rms_fab to the address of the file access block defined in your program. 
Consider the following example: 

/* This example shows how to initialize a file access block. */ 

'include rms 

struct FAB fblock; 

mainO 
{ 

fblock = cc$rms_fab; 

} 

/* Declare all RMS data structs */ 

/* Define a file access block */ 

/* Initialize the structure 

Any of these RMS structures may be dynamically allocated. For example, 
another way to allocate a file access block is as follows: 

/* This program shows how to allocate RMS structures * 
* dynamically. */ 

'include rms 

maine) 
{ 

struct FAB 

/* Declare all RMS data structs */ 

/* Allocate dynamic storage 
*fptr = malloc(sizeof (struct FAB»; 

9-10 Using VAX Record Management Services (RMS) 



*fptr = cc$rms_fab; /* Initialize the structure 

} 

Frequently, you will want to change the default values supplied by the 
prototype. If so, you must reinitialize the members of the structure 
individually. You initialize a member by giving the offset of the member 
and assigning a value to it. For example, the statement 

fblock.fab$l_xab = &primary_key; 

assigns the address of the extended attribute block named primary_key to 
the fab$l-xab member of the file access block named fblock. 

9.5.2 Initializing Record Access Blocks 

The record access block specifies how records are processed. You initialize 
a record access block in the same manner as you initialize a file access 
block. For example: 

/* This example shows how to initialize a file access block. */ 

'include rms 
struct FAB fblock; 

struct RAB rblock; 

mainO 
{ 

} 

fblock = cc$rms_fab; 
rblock = cc$rms_rab; 

rblock.rab$l_fab 

/* Define a record access block */ 

/* Initialize the structure 

/* Initiali~e the FAB member 
&fblock; 

Using VAX Record Management Services IRMSI 9-11 



9.5.3 Initializing Extended Attribute Blocks 

There is only one extended attribute block structure (XAB), but you can 
initialize it seven ways. The extended attribute blocks define additional file 
attributes that are not defined elsewhere. For example, the key extended 
attribute block is used to define the keys of an indexed file. 

All extended attribute blocks are "chained" off a file access block in the 
following manner: 

1. In a file access block, you initialize the fab$l-xab field with the 
address of the first extended attribute block. 

2. You designate the next extended attribute block in the chain in the 
xab$l_nxt field of any subsequent extended attribute blocks. You 
chain each subsequent extended attribute block in order by the key of 
reference (first the primary key, then the first alternate key, then the 
second alternate key, and so forth). 

3. You initialize the xab$l_nxt member of the last extended attribute 
block in the chain with the value 0 (the default), to indicate the end of 
the chain. 

You go through the same steps to declare extended attribute blocks as you 
would to declare the other RMS data structures: 

1. You define the structures with #inc1ude modules. 

2. You assign a specific prototype to the structure in your program. 

3. You initialize the members of the structure with the desired values. 

In the following example, two extended attribute block structures are 
declared. They are initialized as key extended attribute blocks with the 
cc$rms-xabkey prototype. The xab$l_nxt member of the primary key is 
initialized with the address of the alternate_key extended attribute block. 
Consider the following example: 

1* This example shows how to initialize the extended * 
* attribute block. *1 

'include rms 
struct XABKEY primary_key ,alternate_key; 

9-12 Using VAX Record Management Services (RMS) 



mainO 
{ 

primary_key = cc$rms_xabkey; 
alternate_key = cc$rms_xabkey; 
primary_key.xab$l_nxt = &alternate_key; 

} 

9.5.4 Initializing Name Blocks 

The name block contains default file name values, such as the directory 
or device specification, file name, or file type. If you do not specify one 
of the parts of the file specification when you open the file, RMS uses the 
values in the name block to complete the file specification and places the 
complete file specification in an array. 

You create and initialize name blocks in the same manner as you would 
initialize the other RMS data structures; as in the following example: 

1* This example shows how to initialize a name block. *1 

'include rms 

struct NAM nam; 
struct FAB fab; 

mainO 
{ 

fab = cc$rms_fab; 
nam = cc$rms_nam; 

1* Define an array for the * 
* expanded file speCification *1 

char expanded_name[NAM$C_MAXRSS); 

} 

1* Initialize the appropriate * 
* members *1 

fab.fab$l_nam = &nam; 
nam.nam$l_esa = &expanded_name; 
nam.nam$b_ess = sizeof expanded_name; 

Using VAX Record Management Services (RMS) 9-13 



9.6 RMS Example Program 

The example program in this section uses RMS functions to maintain a 
simple employee file. The file is an indexed file with two keys: social 
security number and last name. The fields in the record are character 
strings defined in a structure with the tag record. 

The records have the carriage-return attribute. Individual fields in each 
record are padded with blanks for two reasons. First, those fields that are 
key fields must be padded in some way; RMS does not understand strings 
with the trailing NUL character. Second, the choice of blank padding as 
opposed to NUL padding allows the file to be printed or typed without 
conversion. 

The program does not perform range or bounds checking. Only the error 
checking that shows the mapping of VAX C to RMS is performed. Any 
other errors are considered to be fatal. 

The program is divided into the following sections: 

• External data declarations and definitions 

• Main program section 

• Function to initialize the RMS data structures 

• Internal functions to open the file, display HELP information, pad the 
records, and process fatal errors 

• Utility functions 
ADD 

DELETE 

TYPE 

PRINT 

UPDATE 

To run this program, you would go through the following steps: 

1. Create a source file. The name of the source file in this example 
is RMSEXP.C. For more information concerning the creation of 
source files, refer to Chapter 1, Developing VAX C Programs at 
DCL Command Level. 

9-14 Using VAX Record Management Services (RMSI 



2. Compile the source file with the command 

$ CC RMSEXplRETURNI 

For more information concerning the compiling process, refer 
to Chapter I, Developing VAX C Programs at DCL Command Level. 

3. Link the program with the command 

$ LINK RMSEXP. SYS$LIBRARY:VAXCRTL/LIBIRETURNI 

For more information concerning the linking process, refer 
to Chapter I, Developing VAX C Programs at DCL Command Level. 

4. Because the program expects command line arguments, it must be 
defined as a foreign command. You can do this with the following 
command line: 

$ RMSEXP :== $device: [directory]RMSEXPIRETURNI 

The identifier device is the logical or physical name of the device 
containing your directory; the identifier directory is the name of your 
directory. The device name must be preceded by the dollar sign ($ ) 
to be recognized as a foreign command by the DCL interpreter. 

For more information concerning foreign commands, refer to Chapter I, 
Developing VAX C Programs at DCL Command Level. 

5. Run the program, using the foreign command. 

$ RMSEXP filenamelRETURNI 

The complete listing (by section) of the example program follows. Notes 
on each section are keyed to the numbers in the listing. 

Example 9-1 shows the external data declarations and definitions. 

Using VAX Record Management Services (RMSI 9-15 



Example 9-1: External Data Declarations and Definitions 

/* This segment of RMSEXP.C contains external data * 
* definitions */ 

o 'include rms 
'include stdio 
'include ssdef 

~ 'define DEFAULT_FILE_NAME ".dat" 

'define RECORD_SIZE (sizeof record) 
'define SIZE_SSN 15 
'define SIZE_LNAME 25 
'define SIZE_FNAME 25 
'define SIZE_COMMENTS 15 
'define KEY_SIZE \ 
(SIZE_SSN > SIZE_LNAME ? SIZE_SSN: SIZE_LNAME) 

t) struct FAB fab; 
struct RAB rab; 
struct XABKEY primary_key. alternate_key; 

e struct 
{ 

char ssn[SIZE_SSN]. last_name[SIZE_LNAME]; 
char first_name [SIZE_FNAME] . 

comments[SIZE_COMMENTS]; 
} record; 

~ char response [BUFSIZ] .*filename; 

~ int rms_status; 

The following numbers correspond to the numbers in the previous 
example: 

o The rms module defines the RMS data structures. The stdio module 
contains the Standard I/O definitions. The ssdef module contains the 
system services definitions. 

~ Preprocessor variables and macros are defined. A default file extension 
.DAT is defined. 

The sizes of the fields in the record are also defined. Some (such as 
the social security number field) are given a constant length. Others 
(such as the record size) are defined as macros; the size of the field 
is determined with the size of operator. VAX C evaluates constant 
expressions, such as KEY_SIZE, at compile time. No special code is 
necessary to calculate this value. 

9-16 Using VAX Record Management Services (RMS) 



• Static storage for the RMS data structures is declared. The file access 
block, record access block, and extended attribute blocks are defined 
by the rms module. One extended attribute block is defined for the 
primary key and one is defined for the alternate key. 

e The records in the file are defined using a structure with four fields of 
character arrays. 

o The BUFSIZ constant is used to define the-- size of the array that will 
be used to buffer input from the terminal. The filename variable is 
defined as a pointer to char. 

e The variable rms_status is used to receive RMS return status infor­
mation. After each function call, RMS returns status information 
as an integer. This return status is used to check for specific errors, 
end-of-file, or successful program execution. 

The main function, shown in Example 9-2, controls the general flow of 
the program. . 

Using VAX Record Management Services (RMS) 9-17 



Example 9-2: Main Program Section 

1* This segment of RMSEXP.C contains the main function * 
* and controls the flow of the program. *1 

.. main(argc.argv) 
int argc; 
char **argv; 
{ 

~ if (argc < 1 I I argc > 2) 
printf("RMSEXP - incorrect number of arguments ll ); 

else 

6) 
e o 

{ 

printf("RMSEXP - Personnel Database \ 
Manipulation Example\n"); 

filename = (argc == 2 ? *++argv : "personnel.dat"); 
initialize(filename); 
open_file 0 ; 

fore; ;) 
{ 

CD printf("\nEnter option (A.D.P.T.U) or \ 
? for help : II) ; 

gets(response); 
if (feof(stdin» 

break; 
printf("\n\n"); 

9-18 Using VAX Record Management Services (RMS) 

(Continued on next page) 



Example 9-2 (Cont.): Main Program Section 

8 switch(response[O]) 
{ 

case 'a' : case 'A' : add_employeeO; 
break; 

case 'd' : case 'D' : delete-employee(); 
break; 

case 'pI : case 'PI : print_employees(); 
break; 

case It' : case 'T' : type_employees(); 
break; 

case 'u' : case 'U' : update_employee(); 
break: 

default: printf("RMSEXP - \ 
Unknown Operation.\n"); 

case I?': case '\0': 
type_options 0 ; 

} 
} 

~ rms_status = sys$close(&fab); 

~ if (rms_status != RMS$_NQRMAL) 
error_exit("$CLOSE"); 

} 
} 

The following numbers correspond to the numbers in the previous 
example: 

o The main function is entered with two parameters. The first is the 
number of arguments used to call the program; the second is a pointer 
to the first argument (filename). 

• This statement checks that you used the correct number of arguments 
when invoking the program. 

• If a file name is included in the command line to execute the program, 
that file name is used. If a file extension is not given, .DAT is the 
file extension. If no file name is specified, then the file name is 
PERSONNEL.DAT. 

Using VAX Record Management Services (RMS) 9-19 



o The file access block, record access block, and extended attribute 
blocks are initialized. 

CD The file is opened using the RMS sys$open function. 

o The program displays a menu and checks for end~of-file (the character 
CTRLjZ). 

f) A switch statement and a set of case statements control the function 
to be called, determined by the response from the terminal. 

fD The program ends when CTRLjZ is entered in response to the menu. 
At that time, the RMS sys$close function closes the employee file. 

CD The rms_status variable is checked for a return status of 
RMS$_NORMAL. If the file is not closed successfully, then the 
error-handling function terminates the program. 

Example 9-3 shows the function that initializes the RMS data structures. 
Refer to the RMS documentation for more information about the file 
access block, record access block, and extended attribute block structure 
members. 

9-20 Using VAX Record Management Services (RMS) 



Example 9-3: Function Initializing RMS Data Structures 

1* This segment of RMSEXP.C contains the function that * 
* initializes the RMS data structures. *1 

initialize(fn) char *fn; 
{ 

~ fab = cc$rms_fab; 1* Initialize FAB *1 
fab.fab$b_bks = 4; 
fab.fab$l_dna = DEFAULT_FILE_NAME; 
fah.fab$b_dns sizeof DEFAULT_FILE_NAME -1; 
fab.fab$b_fac = FAB$M_DEL I FAB$M_GET I 

FAB$M_PUT I FAB$M_UPD; 
fab.fab$l_fna = fn; 
fab.fab$b_fns = strlen(fn); 
fab.fab$l_fop = FAB$M.CIF; 
fab.fab$w_mrs = RECORD_SIZE; 
fab.fab$b_org = FAB$C_IDX; 
fab.tab$b_rat = FAB$M_CR; 
fab.fab$b_rfm = FAB$C_FIX; 
fab.fab$b_shr = FAB$M_NIL; 
fab.fab$l_xab = &primary_key; 

1* Initialize RAB 

rab.rab$l_fab = &fab; 

primary_key = cc$rms_xabkey; 1* Initialize Primary * 
* key XAB *1 

primary_key.xab$b_dtp = XAB$C_STG; 
primary_key.xab$b_flg = 0; 
primary_key.xab$w_posO = (char *) &record.ssn -

(char *) &record; 
primary_key.xab$b_ref = 0; 
primary_key.xab$b_sizO = SIZE_SSN; 
primary_key.xab$l_nxt = &alternate_key; 
primary_key.xab$l_knm = "Employee Social Security \ 

Number "; 

(Continued on next page) 

Using VAX Record Management Services (RMSI 9-21 



Example 9-3 (Cont.): Function Initializing RMS Data 
Structures 

• 

} 

alternate_key = cc$rms_xabkey; 1* Initialize Alternate * 
* Key XAB *1 

alternate_key.xab$b_dtp = XAB$C.STG; 
alternate_key.xab$b_flg = XAB$M_DUP I XAB$M_CHG; 
alternate_key.xab$w_posO = (char *) &record.last_name -

(char *) &record; 
alternate_key.xab$b_ref = 1; 
alternate_key.xab$b_sizO = SIZE_LNAME; 
alternate_key.xab$l_knm = "Employee Last Name \ 

II. 

The following numbers correspond to the numbers in the previous 
example: 

o The prototype cc$rms_fab initializes the file access block with default 
values. Some members have no default values; they must always be 
initialized. Such members include the file-name string address and 
size. Other members can be initialized to override the default values. 

• This statement initializes the file-processing options member with the 
create-if option. A file will be created if one does not exist. 

e This statement initializes the record attributes member with the 
carriage-return control attribute. Records will be terminated with 
a carriage return/line feed when they are printed on the printer or 
displayed at the terminal. 

e The prototype cc$rms-fab initializes the record access block with the 
default values. In this case, the only member that must be initialized 
is the rab$l_fab member, which associates a file access block with a 
record access block. 

CD The prototype cc$rms-xabkey initializes an extended attribute block 
for one key of an indexed file. 

o The position of the key is specified by subtracting the offset of the 
member from the base of the structure. 

• A separate extended attribute block is initialized for the alternate key. 

9-22 Using VAX Record Management Services (RMS) 



• This statement specifies that more than one alternate key can contain 
the same value (XAB$M_DUP) and that the value of the alternate key 
can be changed (XAB$M_CHG). 

CD The key-name member is padded with blanks because it is a fixed­
length 32-character field. 

Example 9-4 shows the internal functions for the program. 

Example 9-4: Internal Functions 

/* This segment of RMSEXP.C contains the functions that * 
* control the data manipulation of the program. */ 

open_file 0 
{ 

4t rms_status = sys$create(&tab); 
if (rms_status != RMS$_NORMAL && 

rms_status != RMS$_CREATED) 
error_exit(I$OPEN"); 

if (rms_status == RMS$_CREATED) 
printf (II [Created new data file.] \n II) ; 

~ rms_status = sys$connect(&rab); 

} 

if (rms_status != RMS$_NORMAL) 
error _exi t (.I$CONNECT") ; 

~ type_options() 
{ 

printf("Enter one of the following:\n\n"); 
printf ( •• A Add an employee. \n II) ; 
printf("D Delete an employee specified by SSN.\n"); 
printf("P Print employee(s) by ascending SSN on \ 

line printer. \n") ; 

printf("T Type employee(s) by ascending last name \ 
on terminal. \n") ; 

(Continued on next page) 

Using VAX Record Management Services (RMS) 9-23 



Example 9-4 (Cont.): Internal Functions 

} 

printf("U 
print:f("? 
printf(" A Z 

Update employee specified by SSN.\n\n"); 
Type this text.\n"); 
Exit this program.\n\n"); 

o pad_recordO 
{ 

} 

int i; 

for(i strlen(record.ssn); i < SIZE_SSN; i++) 
record.ssn[i] = 1 I; 

for(i = strlen(record.last_name); i < SIZE_LNAME; i++) 
record.last_name[i] = 1 I; 

for(i = strlen(record.first_name); i < SIZE_FNAME; i++) 
record.first_name[i] = 1 I; 

for(i = strlen(record.comments);i < SIZE_COMMENTS; i++) 
record.comments[i] = 1 I; 

/* This subroutine is the fatal error handling routine. */ 

~ error_exit(operations) 
char *operation; 
{ 

} 

printf("RMSEXP - file Yes failed (Yes)\n", 
operation, filename); 

exit(rms_status); 

The following numbers correspond to the numbers in the previous 
example: 

o The open_file function uses the RMS sys$create function to create the 
file, giving the address of the file access block as an argument. The 
function returns status information to the rms_status variable. 

8 The RMS sys$connect function associates the record access block with 
the file access block. 

6) The type_options function, called from the main function, prints help 
information. Once the help information is displayed, control returns 
to the main function, which processes the response that is typed at the 
terminal. 

9-24 Using VAX Record Management Services lRMS) 



o For each field in the record, the pa<1-record function fills the remain­
ing bytes in the field with blanks. 

CD This function handles fatal errors. It prints the fUhction that caused 
the error, returns a VMS error code (if appropriate), and exits the 
program. 

Example 9-5 shows the function that adds a record to the file. This 
function is called when 'a' or 'A' is entered in response to the menu. 

Using VAX Record Management Services (RMS) 9-25 



Example 9-5: Utility Function: Adding Records 

/* This segment of RMSEXP.C contains the function that * 
* adds a record to the file. */ 

add_employee() 
{ 

o do 
{ 

printf (II (ADD) Enter Social Security Number \ 
II) ; 

gets(&response); 
} 

while(strlen(response) == 0); 

strncpy(record.ssn.response.SIZE_SSN); 

do 
{ 

} 

printf (II (ADD) 
II) ; 

gets(response); 

Enter Last Name \ 

while(strlen(response) == 0); 

strncpy(record.last_name.response.SIZE_LNAME); 

do 
{ 

} 

printf (II (ADD) 
II) ; 

gets(response); 

Enter First Name \ 

while(strlen(response) == 0); 

strncpy(record.first_name.response.SIZE_FNAME); 

do 
{ 

printf (II (ADD) Enter Comments \ 
II) ; 

gets(response); 
} 

while(strlen(response) == 0); 

strncpy(record.comments.response.SIZE_COMMENTS); 

9-26 Using VAX Record Management Services (RMSI 

(Continued on next page) 



Example 9-5 (COilt.): Utility Function: Adding Records 

~ pad_record(); 

~ rab.rab$b_rac = RAB$C_KEY; 
rab.rab$l_rbf = &record; 
rab.rab$w_rsz = RECORD_SIZE; 

~ rms_status = sys$put(&rab); 

~ if (rms_status != RMS$_NORMAL && rms_status != 
RMS$_DUP && rms_status != RMS$_OK_DUP) 

error_exit(I$PUT"); 
else 

if (rms_status == RMS$_NORMAL I I rms_status == 
RMS$_OK_DUP) 

printf("[Record added successfully.]\n"); 
else 

printf("RMSEXP - Existing employee with same SSN. \ 
not added. \n"); 
} 

The following numbers correspond to the numbers iIi the previous 
example: 

o A series of do loops controls the input of information. For each field 
in the record, a prompt is displayed. The response is buffered and the 
field is copied to the structure. 

~ When all fields have been entered, the pacLJecord function pads each 
field with blanks. 

~ Three members in the record access block are initialized prior to 
writing the record. The record access member (rab$b-fac) is initialized 
for keyed access. The record buffer and size members (rab$l-fbf and 
rab$w-fsz) are initialized with the address and size of the record to 
be written. 

~ The RMS sys$put function writes the record to the file. 

~ The rms_status variable is checked. If the return status is normal, or 
if the record has a duplicate key value and duplicates are allowed, the 
function prints a message stating that the record was added to the file. 
Any other return value is treated as a fatal error. 

Example 9-6 shows the function that deletes records. This function is 
called when 'd' or 'D' is entered in response to the menu. 

Using VAX Recotd Management Services IRMS) 9-27 



Example 9-6: Utility Function: Deleting Records 

/* This segment of RMSEXP.C contains the function that * 
* deletes a record from the file. */ 

delete_employee() 
{ 

int i; 
do 

{ 

} 

printf("(DELETE) Enter Social Security Number II); 
gets(response); 
i = strlen(response); 

while(i == 0); 

~ while(i < SIZE_SSN) 
response[i++] = , ,. 

rab.rab$b_krf = 
rab.rab$l_kbf = 
rab.rab$b_ksz = 
rab.rab$b_rac 

0; 
&response; 
SIZE_SSN; 
RAB$C_KEY; 

~ rms_status = sys$find(&rab); 

~ if (rms_status != RMS$_NORMAL && rms_status != RMS$_RNF) 
error_exit("$FIND"); 

else 
if (rms_status == RMS$_RNF) 

printf("RMSEXP - specified employee does not \ 
exist.\n"); 

else 
{ 

} 
} 

rms_status = sys$delete(&rab); 
if (rms_status !=RMS$_NORMAL) 

error_exit("$DELETE"); 

The following numbers correspond to the numbers in the previous 
example: 

o A do loop prompts the user to type a social security number at the 
terminal and places the response in the response buffer. 

f) The social security number is padded with blanks. 

9-28 Using VAX Record Management Services (RMS) 



• Some members in the record access block must be initialized before 
the program can locate the record. Here, the key of reference (0 
specifies the primary key), the location and size of the search string 
(this isthe address of the response buffer and its size), and the type of 
record access (in this case, keyed access) are given. 

o The RMS sys$find function locates the record specified by the social 
security number entered from the terminal. 

o The program checks the rms_status variable for the values 
RMS$_NORMAL and RMS$_RNF (record not found). A message 
is displayed if the record cannot be found. Any other error is a fatal 
error. 

e The RMS sys$delete function deletes the record. The return status is 
checked only for success. 

The type_employees function in Example 9-7 displays the employee file . 
at the terminal. This function is called from the main function when 't' or 
'T' is entered in response to the menu. 

Using VAX Record Management Services (RMSI 9.;..29 



Example 9-7: Utility Function: Typing the File 

/* This segment of RMSEXP.C contains the function that * 
* displays a single record at the terminal. */ 

type_employees() 
{ 

~ int number_employees; 

~ rab.rab$b_krf = 1; 

C) rms_status = sys$rewind(&rab); 
if (rms_status != RMS$_NORMAL) 

error_exit(I$REWIND"); 

e printf(lI\n\nEmployees (Sorted by Last Name)\n\n"); 
printf("Last Name First Name SSN \ 

Comments\n"); 

printf("--------­
--------\n\n"); 

---------\ 

~ rab.rab$b_rac RAB$C_SEQ; 
rab.rab$l_ubf = &record; 
rab.rab$w_usz = RECORD_SlZE; 

~ for (number_employees = 0; ; number_employees++) 
{ 

} 

rms_status = sys$get(&rab); 
if (rms_status != RMS$_NORMAL && rms_status != 

RMS$_EOF) 
error_exit("$GET"); 

else 
if (rms_status == RMS$_EOF) 

break; 

printf("%.*s%.*s%.*s%.*s\n". 
SIZE_LNAME. record. last_name. 
SIZE_FNAME. record. first_name. 
SIZE_SSN. record.ssn. 
SIZE_COMMENTS. record.comments); 

~ if (number_employees) 

} 

printf("\nTotal number of employees %d.\n". 
number_employees); 

else 
printf (II [Data file is empty.] \n II) ; 

9-30 Using VAX Record Management Services (RMS) 



The following numbers correspond to the numbers in the previous 
example: 

o A running total of the number of records in the file is kept in the 
number_employees variable. 

• The key of reference is changed to the alternate key so that the 
employees are displayed in alphabetical order by last name. 

.. The file is positioned to the beginning of the first record according 
to the new key of reference, and the return status of the sys$rewind 
function is checked for success. 

e A heading is displayed. 

o Sequential record access is specified, and the location and size of the 
record is given. 

o A for loop controls the following operations: 

• Incrementing the number_employees counter. 

• Locating a record and placing it in the record structure, using the 
RMS sys$get function. 

• Checking the return status of the RMS sys$get function. 

• Displaying the record at the terminal. 

8 This if statement checks for records in the file. The result is a display 
of the number of records or a message indicating that the file is 
empty. 

Example 9-8 shows the function that prints the file on the printer. This 
function is called by the main function when 'p' or 'P' is entered in 
response to the menu. 

Using VAX Record Management Services (RMS) 9-31 



Example $-8: Utility Function: Printing the File 

1* This segment of RMSEXP.C contains the function that * 
* prints the file. *1 

print_employees() 
{ 

int number_employees; 
FILE *fp; 

o fp = fopen("personnel.lis", "W", "rat=cr", 
, "rfm=var", "fop=spl"); 

if (fp == NULL) 
{ 

perror("RMSEXP - failed opening listing \ 
file"); 

exit(SS$_NORMAL); 
} 

~ rab.rab$b_krf = 0; 

~ rms_status = sys$rewind(&rab); 
if (rms_status != RMS$_NORMAL) 

er+or_exit(I$REWIND"); 

fprintf(fp,"\n\nEmployees (Sorted by SSN)\n\n"); 
fprintf(fp,"Last Name First Name SSN 

Comments\n"); 
\ 

fprintf(fp,"--------­
-------,..\n\n"); 

-----:-----\ 

~ rab.rab$b_rac RAB$C_SEQ; 
rab.rab$l_ubf = &record; 
rab.rab$w_usz = RECORD_SIZE; 

~ for (number_employees = 0; ; number_employees++) 
{ 

} 

rms_status = sys$get(&rab); 
if (rms_status != RMS$_NORMAL && 

rms_status != RMS$_EOF) 
error~exit(I$GET"); 

else 
if (rms_status == RMS$_EOF 

break; 

fprintf(fp, 1%.*s%.*s%.*s%.*s", 
SIZE_LNAME,record.last_name, 
S!~E_FNAME,record.first_name, 
SIZE_SSN,record.ssn, 
SIZE_COMMENTS,record.comments); 

9-32 Using VAX Record Management Services IRMS) 

(Continued on next page) 



Example 9-8 (Cont.): Utility Function: Printing the File 

€» if (number_employees) 
fprintf(fp. "Total number of employees = %d.\n". 

number_employees); 
else 

fprintf(fp."[Data file is empty.]\n"); 

~ fclose(fp); 
printf("[Listing file\"personnel.lis\"spooled to \ 

SYS$PRINT.]\n"); 
} 

The following numbers correspond to the numbers in the previous 
example: 

o This function creates a sequential file with carriage-return-control, 
variable-length records. It spools the file to the printer when the file 
is closed. The file is created using the Standard I/O Run-Time Library 
function fopen, thus associating the file with·the file pointer, fp. 

e The key of reference for the indexed file is the primary key. 

e The sys$rewind function positions the file at the first record. The 
return status is checked for success. 

e A heading is written to the sequential file using the standard I/O 
function fprintf. 

o The record access, user buffer address, and user buffer size members 
of the record access block are initialized for keyed access to the record 
located in the record structure. 

o A for loop controls the following operations: 

• Initializing the running total and then incrementing the total at 
each iteration of the loop. 

• Locating the records and placing them in the record structure with 
the RMS sys$get function, one record at a time. 

• Checking the rms_status information for success and end-of-file. 

• Writing the record to the sequential file. 

€» The number-employees counter is checked. If it is zero, a message is 
printed indicating that the file is empty. If it is not zero, the total is 
printed at the bottom of the listing. 

Using VAX Record Management Services (RMSI 9-33 



CD The sequential file is closed. Since it has the spl record attribute, the 
file is automatically spooled to the printer. The function displays a 
message at the terminal stating that the file was successfully spooled. 

Example 9-9 shows the function that updates the file. This function is 
called by the main function when lUI or lUI is entered in response to the 
menu. 

Example 9-9: Utility Function: Updating the File 

1* This segment of RMSEXP.C contains the function that * 
* updates the file. *1 

o 

update_employee() 
{ 

int i; 
do 

{ 
printf("(UPDATE) Enter Social Security Number\ 

II) ; 

gets(response); 
i = strlen(response); 

} 

while(i == 0); 

~ while(i < SIZE_SSN) 
response[i++] = 1 I.' 

~ rab.rab$b_krf = 0; 
rab.rab$l_kbf = &response; 
rab.rab$b_ksz = SIZE_SSN; 
rab.rab$b_rac = RAB$C_KEY; 
rab.rab$l_ubf = &record; 
rab.rab$w_usz = RECORD_SIZE; 

C» rms_status = sys$get(&rab); 

if (rms_status != RMS$_NORMAL && rms_status != RMS$_RNF) 
error_exit("$GET"); 

else 
if (rms_status == RMS$_RNF) 

printf("RMSEXP - specified employee does not \ 
exist.\n"); 

(Continued on next page) 

9-34 Using VAX Record Management Services (RMS) 



Example 9-9 (Cont.): Utility Function: Updating the File 

o else 
{ 

o 
o 

printf("Enter the new data or <RET> to leave \ 
data unmodified.\n\n"); 

printf("Last Name:"); 

gets(response); 
if (strlen(response» 

strncpy(record. last_name , response, 
SIZE_LNAME); 

printf (IIFirst Name: II) ; 

gets(response); 
if (strlen(response» 

strncpy(record.first_name, response, 
SIZE_FNAME); 

printf("Comments:"); 

gets(response); 
if (strlen(response» 

strncpy(record. comments , response, 
SIZE_COMMENTS); 

pad_recordO; 

rms_status = sys$update(&rab); 
if (rms_status != RMS$_NORMAL) 

error_exit("$UPDATE"); 

printf("[Record has been successfully \ 
updated.]\n"); 

} 
} 

The following numbers correspond to the numbers in the previous 
example: 

o A do loop prompts for the social security number and places the 
response in the response buffer. 

• The response is padded with blanks so that it will correspond to the 
field in the file. 

• Some of the members in the record access block are initialized for the 
operation. The primary key is specified as the key of reference, the 
location and size of the key value are given, keyed access is specified, 
and the location and size of the record are given. 

Using VAX Record Management Services (RMS) 9-35 



e The RMS sys$get function locates the record and places it in the 
record structure. The function checks the rms_status value for 
RMS$_NORMAL and RMS$_RNF (record not found). If the record is 
not found, a message is displayed. If the record is found, the program 
prints instructions for updating the record. 

(3 For each field (except the social security number, which cannot be 
changed), the program displays the current value for that field. If 
the· user presses the RETURN key, the record is placed in the record 
structure unchanged. If the user makes a change to the record, the 
new information is placed in the record structure. 

o The fields in the record are padded with blanks. 

8 The RMS sys$update function rewrites the record. The program then 
checks that the update operation was successful. Any error causes the 
program to call the fatal error~handling routine. 

9-36 Using VAX Record Management Services (RMS) 



Chapter 10 

Using VAX C in the Common Language 
Environment 

The VAX C compiler is part of the VMS common language environment. 
This environment defines certain calling procedures and guidelines that 
allow you to call routines written in different languages or prewritten 
system routines from VAX C. You can call anyone of the following 
routine types from VAX C: 

• Routines written in other VAX languages 

• VMS Run-Time Library routines 

• VMS system services 

The terms routine, procedure, and function are used throughout this 
chapter. A roiltine is a closed, ordered set of instructions that performs 
one or more specific tasks. Every routine has an entry point (the routine 
name), and optionally an argument list. Procedures and functions are 
specific types of routines: a procedure is a routine that does not return a 
value, whereas a function is a routine that returns a value by assigning 
that value to the function's identifier. 

System routines are pre written VMS routines that perform common tasks, 
such as finding the square root of a number or allocating virtual memory. 
You can call any system routine from your program, provided that 
VAX C supports the data structures required to call the routine. The 
system routines used most often are VMS Run-Time Library routines and 
system services. System routines, which are discussed later in this chapter, 
are documented in detail in the VAX/VMS Run-Time Library Routines 
Reference Manual and the VAX/VMS System Services Reference Manual. 

Using VAX C in the Common language Environment 10-1 



10.1 The VAX Procedure Calling and Condition Handling Standard 

The VAX Procedure Calling and Condition Handling Standard describes 
the concepts used by all VAX languages for invoking routines and passing 
data between them. The following attributes are specified by the VAX 
Procedure Calling and Condition Handling Standard: 

• Register usage 

• Stack usage 
• Function value return 

• Argument list 

The following sections discuss these attributes in more detail. The VAX 
Procedure Calling and Condition Handling Standard also defines such 
attributes as the calling sequence, the argument data types and descriptor 
formats, condition handling, and stack unwinding. These attributes are 
discussed in detail in the Introduction to VAX/VMS System Routines. 

10.1.1 Register and Stack Usage 

The VAX Procedure Calling and Condition Handling Standard defines 
several registers and their uses, as listed in Table 10-1. 

Table 10-1: VAX Register Usage 
Register 

PC 

SP 

FP 

AP 

Rl 

RO, Rl 

Use 

Program counter 

Stack pointer 

Current stack frame pointer 

Argument pointer 

Environment value (when necessary) 

Function value return registers 

By definition, any called routine can use registers R2 through R11 for 
computation, and the AP register as a temporary register. 

10-2 Using VAX C in the Common language Environment 



In the VAX Procedure Calling and Condition Handling Standard, a stack 
is defined as a LIFO (last-injfirst-out) temporary storage area that the 
system allocates for every user process. The system keeps information 
about each routine call in the current image on the call stack. Then, each 
time you call a routine, the system creates a structure on this call stack, 
known as the call frame. The call frame for each active process contains 
the following: 

• A pointer to the call frame of the previous routine call. This pointer 
corresponds to the frame pointer (FP). 

• The argument pointer (AP) of the previous routine call. 

• The storage address of the point at which the routine was called; 
that is, the address of the instruction following the call to the current 
routine. This address is called the program counter (PC). 

• The contents of other general registers. Based on a mask specified 
in the control information, the system restores the saved contents of 
these registers to the calling routine when control returns to it. 

When a routine completes execution, the system uses the frame pointer 
in the call frame of the current routine to locate the frame of the previous 
routine. The system then removes the call frame of the current routine 
from the stack. 

10.1.2 Return of the Function Value 

A function is a routine that returns a single value to the calling· routine. 
The function value represents the return value that is assigned to the 
function's identifier during execution. According to the VAX Procedure 
Calling and Condition Handling Standard, a function value may be 
returned as either an actual value or a condition value that indicates 
success or failure. 

10.1.3 The Argument List 

The VAX Procedure Calling and Condition Handling Standard also defines 
a data structure called the argument list. You use an argument list to 
pass information to a routine and receive results. An argument list is a 
collection of longwords in memory that represents a routine parameter list 
and possibly includes a function value. Figure 10-1 shows the structure of 
a typical argument list. 

Using VAX C in the Common Language Environment 1 0-3 



Figure 10-1: Structure of a VAX Argument List 

0 I n 

arg1 

arg2 

· 
· 
· 

argn 

ZK·5503·86 

The first longword must be present; this longword stores the number of 
arguments (the argument count: n) as an unsigned integer value in the 
low byte of the longword. The remaining 24 bits of the first longword are 
reserved for use by DIGITAL and should be zero. The longwords labeled 
argl through argn are the actual parameters, which can be any of the 
following: 

• An uninterpreted 32-bit value that is passed by value 

• An address that is passed by reference 

• An address of a descriptor that is passed by descriptor 

The argument list contains the parameters that are passed to the routine. 
Depending on the passing mechanisms for these parameters, the forms of 
the arguments contained in the argument list vary. For example, if you 
pass three arguments, the first by value, the second by reference, and the 
third by descriptor, the argument list would contain the value of the first 
argument, the address of the second, and the address of the descriptor of 
the third. Figure 10-2 shows this argument list. 

10-4 Using VAX C in the Common Language Environment 



Figure 10-2: Example of a VAX Argument List 

0 I 3 

copy of the first parameter 

address of the second parameter 

address of descriptor of the third parameter 

ZK-5504-86 

For additional information on the VAX Procedure Cailing and Condition 
Handling Standard, see the Introduction to VAX/VMS System Routines. 

10.2 Specifying Parameter-passing Mechanisms 

When you pass data between routines that are not written in the same 
VAX language, you have to specify how you want that data to be rep­
resented and interpreted. You do this by specifying a parameter-passing 
mechanism. 

The calling standard defines three ways that data can be passed in an 
argument list. When you code a reference to a non-VAX C procedure, you 
must know how each argument should be passed and write the function 
reference accordingly. 

The three argument-passing mechanisms are described in the following 
list: 

• By immediate value. When an argument is passed by immediate 
value, the actual value of the argument is present in the argument 
list. This is the default argument-passing mechanism for all function 
references written in VAX C. 

• By reference. When an argument is passed by reference, the address of 
the argument is present in the argument list. The VAX C ampersand 
operator (&) is used to pass the address of an argument. 

Using VAX C in the Common Language Environment 10-5 



• By descriptor. When an argument is passed by descriptor, the address 
of a data structure describing the argument is present in the argument 
list. From a VAX C program, you pass a descriptor first by creating 
a structure (struct) that meets the descriptor requirements of the 
called procedure and then by passing the structure's address with the 
ampersand operator ( & ). 

NOTE 

In the C programming language environment, you can take 
the address of an argument and then use that address to 
access the values of subsequent arguments in that argument 
list, operating on the assumption that the compiler did 
not propagate any of the arguments to registers. This is 
possible using the current implementation of VAX C. 

However, accessing an argument list is not an advisable 
practice in the VMS environment under. the VAX Calling 
Standard. Also, accessing argument lists in this manner 
is not portable and may not be possible in future releases 
of VAX C. For an alternate method of accessing variable­
length argument lists in the VMS environment, refer to 
VAX jVMS Run-Time Library Routines Reference Manual. 

The following sections outline each of these parameter-passing mecha­
nisms in more detail. 

10.2.1 Passing Arguments by Reference 

Some system services and run-time library procedures expect arguments 
passed by reference. This means that the argument list contains the 
address of the argument rather than its value. This mechanism is also 
used by default by some programming languages, such as PLjI, and is 
available at the programmer's option in others, such as Pascal. 

In VAX C, you can use the ampersand operator (&) to pass an argument 
by reference; that is, the ampersand operator causes the argument's 
address to be passed. Note that an array or function name in an argument 
list always results in passing the address of the array or function. 

In the special case of argument lists, VAX C allows the ampersand operator 
to be used on constants as well. However, you should limit this use of the 
ampersand solely to calls to VMS system functions to ensure portability of 
your VAX C programs to other C compilers. 

10-6, Using VAX C in the Common Language Environment 



For example, the Read Event Flags (SYS$READEF) system service requires 
that its first argument be passed by immediate value and its second 
argument be passed by reference. SYS$READEF returns the status of all 
the event flags in a particular cluster. (Event flags are numbered from 0 
to 127 and arranged in clusters of 32, such that flags 0 to 31 comprise 
cluster 0, flags 32 to 63, cluster I, and so forth.) The first SYS$READEF 
argument is any event flag number in the cluster of interest. The second 
argument is the address of a longword that receives the status of all 32 
event flags in that cluster. In addition to the event-flag status value, the 
system service returns one of the following status values, expressed here 
as global symbols: 

Returned Status Description 

SS$_WASCLR Success Specified event flag was clear. 

SS$_WASSET Success Specified event flag was set. 

SS$-ACCVIO Failure Could not write to status longword. 

SS$_ILLEFC Failure Event flag number was illegal. 

SS$_UNASEFC Failure Cluster of interest not accessible. 

Example 10-1 shows a call to the SYS$READEF system service from a 
VAX C program. 

Using VAX C in the Common Language Environment . 1 0-7 



Example 10-1: Passing Arguments by Reference 

/* This program shows how to call system service SYS$READEF. */ 

'include ssdef 
'include stdio 

int SYS$READ£F(); 

main() 
{ 

unsigned cluster_status; 

int return_status; 

enum clusterO 
{ 

/* Longword that receives * 
* the status of the * 
* event flag cluster *1 

/* Status: SYS$READEF 

/* Argument values for * 
* SYS$READEF */ 

completion, breakdown, beginning 
} event; 

event completion; /* Event flag in cluster 0 */ 

/* Obtain status of * 
* cluster O. Pass value * 
* of EVENT and address * 
* of CLUSTER_STATUS */ 

(Continued on next page) 

1 0-8 Using VAX C in the Common Language Environment 



Example 10-1 (Cont.): Passing Arguments by Reference 

return_status = SYS$READEF(event, &cluster_status); 

1* Che~k for successful * 
* call *1 

if (return_status != SS$WASCLR && return_status != SS$WASSSET) 

{ 

1* Handle the error here. 

} 

else 
{ 

1* Check bits of interest in CLUSTER_STATUS here. *1 

} 
} 

10.2.2 Passing Arguments by Descriptor 

A descriptor is a structure that describes the data type, size, and address 
of a data structure. According to the VAX Calling Standard, you must 
pass a descriptor by placing its address in the argument list. To pass an 
argument by descriptor from a VAX C program, you perform the following 
steps: 

1. Write a structure declaration that models the required descriptor. This 
involves including the text library module descrip to define struct tags 
for all the forms of descriptors. 

2. Assign appropriate values to the structure members. 

3. Use the structure name, with an ampersand operator (&) in the 
function reference, to put the structure's address in the argument list. 

In default cases, VAX C never passes arguments by descriptor. For exam­
ple, when structure or union names are written in a function's argument 
list without the ampersand operator, the structure or union is passed by 
immediate value to the called function. You pass arguments by descriptor 
only when the called function is written in another language and explicitly 
requires this mechanism. 

Using VAX C in the Common Language Environment 1 0-9 



There are several classes of descriptor. Each class requires that certain 
bits be set in the first longword of the descriptor. For more information 
concerning the descriptors and their formats, refer to the Introduction to 
VAX/VMS System Routines. In accordance with the information in the 
handbook, descriptors can be modeled in VAX C as follows: 

struct dsc$descriptor 
{ 

unsigned short dsc$w_length; 
char dsc$b_dtype 

/* Length of data */ 
/* Data type code */ 

char dsc$b_class /* Descriptor class * 
* code */ 

char *dsc$a_pointer /* Has address of first * 
* byte */ 

}; 

In this model, the variable dsc$w--1ength is a 16-bit word containing the 
length of the entire data; the unit (for example, bit or byte) in which the 
length is measured depends on the descriptor class. The member 
dsc$b_dtype is a byte containing a numeric code; the code denotes the 
data type of the data. The class member dsc$b_class is another byte code 
giving the descriptor class. The valid class codes are as follows: 

Class Code Symbolic Name IJescriptor Class 

1 DSC$K_CLASS_S Scalar, string 

2 DSC$K_CLASS_D Dynamic string descriptor 

3 Reserved by DIGITAL 

4 DSC$K_CLASS_A Array 

5 DSC$K_CLASS_P Procedure 

6 DSC$K_CLASS_PI Procedure incarnation 

7 DSC$K_CLASS_J Label 

8 DSK$K_CLASS_JI Label incarnation 

9 DSC$K_CLASS_SD 

10 DSC$K_CLASS_NCA 

11 DSC$K_CLASS_ VS 

12 DSC$K_CLASS_ VSA 

13 DSC$K_CLASS_UBS 

14 DSC$K_CLASS_UBA 

1 0-1 0 Using VAX C in the Common language Environment 



Class Code 

15 

16 

17-190 

191 

192-255 

Symbolic Name Descriptor Class 

String with bounds 
descriptor 

Unaligned bit string with 
bounds descriptor 

Reserved by DIGITAL 

Basic file array 

Reserved for customer 
applications 

The atomic class codes listed in the following table are supported by 
VAX C; all others are not directly supported by the language. Refer to 
the Introduction to VAX/VMS System Routines manual for a complete list 
of atomic class codes. The atomic class codes supported by VAX C are as 
follows: 

Class Code Symbolic Name Descriptor Class 

2 DSC$K_DTYPE _BU byte (unsigned) 

3 DSC$K_DTYPE_WU word (unsigned) 

4 DSC$K_DTYPE_LU longword (unsigned) 

6 DSC$K_DTYPE_B byte integer (signed) 

7 DSC$K_DTYPE_ W word integer (signed) 

8 DSC$K_DTYPE_L longword integer (signed) 

10 DSC$K_DTYPE_F F_floating 

11 DSC$K_DTYPE_D D_floating 

27 DSC$K_DTYPE_G G_floating 

The last member of the structure model, dsc$a_pointer, points to the first 
, byte of the data. 

Using VAX C in the Common Language Environment 1 0-11 



To pass an argument by descriptor, you define and assign values to the 
data following the normal VAX C programming practices. You must define 
a structure and assign the data's address to the pointer member. You must 
also assign appropriate values to the members dsc$w-Iength, 
dsc$b_dtype, and dsc$b_class. For the specific requirements of each 
descriptor class, refer to the Introduction to VAX/VMS System Routines. 

For example, the Set Process Name (SYS$SETPRN) system service, which 
enables a process to establish or change its process name, accepts a 
process name as a fixed-length character string passed by descriptor. The 
character string can have from 1 to 15 characters. The system service 
returns the status values denoted by the global names SS$_NORMAL, 
SS$--ACCVIO, SS$_DUPLNAM, and SS$_IVLOGNAM (for normal 
completion, inaccessible descriptor, duplicate process name, and invalid 
length, respectively). Example 10~2 shows a call to this system service 
from a VAX C program. 

In the previous example, the call to SYS$SETPRN must use the ampersand 
operator; otherwise name_desc, rather than its address, is passed. 

Although this example explicitly sets individual fields in its name_desc 
string descriptor, in practice, the run-time initialization of compile-time 
constant string descriptors is not performed in this manner. Instead, the 
fields of compile-time constant descriptors are usually initialized with 
initialized structures of storage class static. 

For the purpose of string descriptor initialization, VAX C provides a simple 
preprocessor macro in the #include text library module descrip. This 
macro is named $DESCRIPTOR. It takes two arguments, which it uses in 
a standard VAX C structure declaration. The first argument is an identifier 
specifying the name of the descriptor to be declared and initialized. The 
second argument is a pointer to the data byte to be used as the value 
of the descriptor. Since a character-string constant is interpreted as an 
initialized pointer to char, you may specify the second argument as a 
simple string constant. The $DESCRIPTOR macro may be used in any 
context where a declaration may be used. The scope of the declared 
string descriptor identifier name is identical to the scope of a simple struct 
definition as expanded by the macro. 

10-12 Using VAX C in the Common Language Environment 



Example 10-2: Passing Arguments by Descriptor 

1* This program shows a call to system service SYS$SETPRN. *1 

'include ssdef 
'include stdio 

'include descrip 

int SYS$SETPRN(); 

mainO 
{ 

int ret; 

1* Define structures for * 
* descriptors *1 

1* Define return status of * 
* SYS$SETPRN *1 

1* Name the descriptor *1 
struct dsc$descriptor_s name_desc; 

} 

char *name = "NEWPROC"; 1* Define new process name *1 

1* Length of name WITHOUT * 
* null terminator *1 

name_desc.dsc$w_Iength strlen(name); 

1* Put address of * 
* shortened string in * 
* descriptor *1 

name_desc.dsc$a_pointer = name; 

1* String descriptor class *1 
DSC$K_CLASS_S; 

1* Data type: ASCII string *1 
DSC$K_DTYPE_T; 

ret = SYS$SETPRN(&name_desc); 

if (ret != SS$_NORMAL) 1* Test return status *1 
fprintf(stderr. "Failed to set process name\n"). 
exit(ret); 

Using VAX C in the Common language Environment 1 0-13 



10.2.3 Passing Arguments by Immediate Value 

By default, all values or expressions in a VAX C function's argument 
list are passed by immediate value. The expressions are evaluated and 
the results placed directly in the argument list of the CALL machine 
instruction. 

The following statement declares the entry point of the Set Event Flag 
SYS$SETEF system service, which is used to set a specific event flag 
to 1. The Set Event Flag system service call requires one argument-the 
number of the event flag to be set-to be passed by immediate value. 
VAX C converts linker-resolved variable names (such as the entry-point 
names of system service calls) to uppercase. You do not have to declare 
them in uppercase in your program. However, linker-resolved variable 
names must be declared with identical cases. The documentation uses 
uppercase as a convention for referring to system service calls to highlight 
them in the text and examples. Consider the following example: 

/* Declare the function as a function returning type INT */ 

int SYS$SETEF(); 

Like all system services, SYS$SETEF returns an integer value (the return 
status of the service) in register O. Most system services return an integer 
c6mpletion status; therefore, the system service does not always have to 
be declared before it is used. The examples in this chapter declare system 
services for completeness. 

In the declaration of external functions, the VAX C syntax does not 
indicate the number or types of the arguments, nor does VAX C compare 
the types of arguments with the types that. the system service requires. 
It is your responsibility to ensure that the argument list of an external 
function reference contains valid arguments. 

In the V AX/VMS System Manager's Reference Manual, you can find the 
specification of each service's arguments. SYS$SETEF, for example, takes 
one argument, an event flag number. It returns one of four status values, 
which are represented by the following symbolic constants. 

10-14 Using VAX C in the Common language Environment 



Returned Status Description 

SS$_WASCLR Success Flag was previously clear. 

SS$_WASSET Success Flag was previously set. 

SS$_ILLEFC Failure Illegal event flag number. 

SS$_UNASEFC Failure Event flag not in associated cluster. 

The system services manual also defines event flags as integers in the 
range 0 to 127, grouped in clusters of 32. Clusters 0 and 1, comprising 
flags 0 to 31 and 32 to 63, respectively, are local clusters available to any 
process, with the restriction that flags 24 to 31 are reserved for use by 
VMS. There are many ways of passing valid event flag numbers from 
your VAX C program to SYS$SETEF. One way is to use enum to define a 
subset of integers, as follows: 

enum clusterO {completion. breakdown. beginning} event; 

Once the flag numbers have been defined, the SYS$SETEF service can be 
called with the following code: 

int status; 
event = completion; 

status = SYS$SETEF(event); 1* Set event flag 

Figure 10-3 shows an argument being passed by immediate value; in this 
case, the event flag number passed to SYS$SETEF. 

Using VAX C in the Common Language Environment 10-15 



Figure 10-3: Passing Arguments by Immediate Value 

main( ) 

{ 
I Argument pointer (AP) 

number of arguments: 
SYS$SETEF (4) ; 

} first argument: 4 

ZK-092-81 

10.2.4 Passing Floating-Point Arguments by Immediate Value 

Since argument lists consist of longwords, the calling standard dictates 
that immediate-value arguments be expressible in 32 bits. A single­
precision floating-point (F_floating) value is only 32 bits long, but all 
arguments of type float are promoted by VAX C to double (64 bits on a 
VAX). This double-precision value is passed as two immediate values (two 
longwords). 

NOTE 

The passing of double-precision immediate values is a violation 
of the VAX Calling Standard, but is an allowed exception for 
VAXC. 

On rare occasions, the float-to-double promotion requires some addi­
tional programming. For instance, the function OTS$POWRJ, in the VAX 
Common Run-Time Procedure Library, computes the value of a floating­
point number raised to the power of a signed longword (in VAX C terms, 
a float to the power of an int). This function (and others like it) is called 
implicitly by high-level VAX languages that have an exponentiation oper­
ator as part of the language. It requires that both its arguments be passed 
as immediate values, and it returns a single-precision (float) result. To 
pass a floating-point base to the procedure, you must use some method 
that avoids the promotion of float arguments. One such method is to use 
a structure, as shown in Example 10-3. 

10-16 Using VAX C in the Common Language Environment 



Example 10-3: Passing Floating-Point Arguments by 
Immediate Value 

/* This program shows how to pass a floating-point value, * 
* in a structure, to avoid the promotion of floating * 
* arguments to arguments of type double. */ 

'include stdio 

/* This declared function returns a value of type float. It * 
* should be called as follows: OTS$POWRJ(base, power), * 
* where base is of type float and power is of type into */ 

float OTS$POWRJ(); 

main() 
{ 

/* To hold result of * 
* OTS$POWRJ */ 

float result; 
int power; /* Power argument 

/* Structure used to pass * 
* floating-point var * 
* by value */ 

struct { float f; } base; 

base.f 3.145; /* Assign constant to base */ 
power = 2; 
result = OTS$POWRJ(base, power); 

printf(IIResult= %f\n", result); 
} 

By default, structures, like everything else, are passed by immediate value. 
Thus, in Example 10-3, the argument is not interpreted as a float and is 
not promoted to double. 

NOTE 

The passing of structures as immediate values can be a violation 
of the VAX Calling Standard if the entire structure is larger than 
one longword of memory; this type of argument passing is an 
allowed exception for VAX C. 

Using VAX C in the Common Language Environment 1 0-17 



The great majority of run-time functions that operate on floating-point 
values take their arguments by reference, so the procedure illustrated by 
Example 10-3 is not usually necessary. In addition, the example does 
not illustrate the methods for handling arithmetic errors that result from 
the operation performed. For more information on error handling in 
this context, and on the run-time library in general, see the VAX/VMS 
Run-Time Library Routines Reference Manual. 

When you pass a parameter by value, you pass a copy of the parameter 
value to the routine instead of passing its address. Because the actual 
value of the parameter is passed, the routine does not have access to 
the storage location of the parameter; therefore, any changes that you 
make to the parameter value in the routine do not affect the value of that 
parameter in the calling routine. 

10.2.5 VAX C Default Parameter-passing Mechanisms 

There are default parameter-passing mechanisms established for every 
data type you can use with VAX C. Table 10-2 shows which VAX C 
data types you can use with each parameter-passing mechanism. Asterisks 
appear next to the default parameter-passing mechanism for that particular 
data type. 

Table 10-2: Valid Parameter-passing Mechanisms 
Data Type By Reference By Descriptor By Value 

Numeric data: 

Variables YES YES YES* 

Constants YES YES YES* 

Expressions NO NO YES* 

Array elements YES YES YES* 

Entire array YES YES NO* 

String constants YES* YES NO 

Structures and Unions YES YES YES* 

Functions YES* YES NO 

You must use the appropriate parameter-passing mechanisms whenever 
you call a routine written in some other VAX language or some prewritten 
system routine. The following sections describe these routines and the 
functions they perform. 

1 0-18 Using VAX C in the Common Language Environment 



10.3 VMS Run-Time Library Routines 

The VMS Run-Time Library is a library of pre written, commonly-used 
routines that perform a wide variety of functions. These routines are 
grouped according to the types of tasks they perform, and each group 
has a prefix that identifies those routines as members of a particular VMS 
Run-Time Library facility. Table 10-3 lists all the language-independent 
Run-Time Library facility prefixes and the types of tasks each facility 
performs. 

Table 10-3: Run-Time Library Facilities 
Facility Prefix Types of Tasks Performed 

DTK$ DECtalk routines that are used to cOhtrol DIGITAL's DECtalk 
device. 

LIB$ 

MTH$ 

OTS$ 

SMG$ 

STR$ 

Library routines that obtaih records from devices, manipulate 
strings, convert data types for I/O, allocate resources, obtain 
system information, signal exceptions, establish condition 
handlers, enable detection of hardware exceptions, and 
process cross-reference data. 

Mathematics routines that perform arithmetic, algebraic, and 
trigonometric calculations. 

General purpose routines that perform tasks such as data type 
conversions as part of a compiler's generated code. 

Screen management routines that are used in designing, 
composing, and keeping track of complex images on a video 
screen. 

String manipulation routines that perform such tasks as 
searching for substrings, concatenating strings, and prefixing 
and appending strings. 

10.4 VMS System Services Routines 

System services are prewritten system routines that perform a variety of 
tasks, such as controlling processes, communicating among processes, and 
coordina ting I/O. 

Using VAX C in the Common language Environment 1 0-19 



Unlike the VMS Run-Time Library routines, which are divided into 
groups by facility, all system services share the same facility prefix (SYS$). 
However, these services are logically divided into groups that perform 
similar tasks. Table 10-4 describes these groups. 

Table 10-4: System Services 
Group Types of Tasks Performed 

AST Allows processes to control the handling of ASTs. 

Change Mode Changes the access mode of particular routines. 

Condition Handling 

Event Flag 

Information 

Input/Output 

Lock Management 

Logical Names 

Memory Management 

Process Control 

Security 

Time and Timing 

10.5 Calling Routines 

Designates condition handlers for special purposes. 

Clears, sets, reads, and waits for event flags, and 
associates with event flag clusters. 

Returns information about the system, queues, jobs, 
processes, locks, and devices. 

Performs I/0 directly, without going through VAX RMS. 

Enables processes to coordinate access to shareable 
system resources. 

Provides methods of accessing and maintaining pairs of 
character string logical names and equivalence names. 

Increases or decreases available virtual memory, controls 
paging and swapping, and creates and accesses shareable 
files of code or data. 

Creates, deletes, and controls execution of processes. 

Enhances the security of VMS systems. 

Schedules events, and obtains and formats binary time 
values. 

The basic steps for calling routines are the same whether you are calling a 
routine written in VAX C, a routine written in some other VAX language, 
a system service, or a VMS Run-Time Library routine. The following 
sections outline the procedures for calling non-C routines. 

10-20 Using VAX' C in the Common Language Environment 



10.5.1 Determining the Type of Call 

Before you call an external routine, you must first determine whether the 
call should be a procedure call or a function call. You should call a routine 
as a procedure if it does not return a value. You should call a routine as a 
function if it returns any type of value. 

10.5.2 Declaring an External Routine and Its Arguments 

To call an external routine or system routine, you need to declare it as 
an external function and to declare the names, data types, and passing 
mechanisms of its arguments. Arguments can be either required or 
optional. 

You should include the following information in a routine declaration: 

• The name of the external routine 

• The data types of all the routine parameters (optional) 

The following example shows how to declare an external routine and its 
arguments. 

char func_name (int x, char y); 

10.5.3 Calling the External Routine 

Once you have declared an external routine, you can invoke it. To invoke 
a function, you must specify the name of the routine being invoked and 
all arguments required for that routine. Make sure the data types for the 
actual arguments you are passing coincide with those of the parameters 
you declared earlier, and with those declared in the routine. The following 
example shows how to invoke the function declared in Section 10.5.2. 

If you do not want to specify a value for a required parameter, you can 
pass a null argument by inserting a zero as a placeholder in the argument 
list. 

Using VAX C in the Common Language Environment 10-21 



10.6 Calling VAX C Subprograms from Other Languages 

The following sections describe the methods involved in calling VAX C 
program sections from routines written in other VAX-native languages. 

10.6.1 Sharing· Program Sections with FORTRAN Common Blocks 

In a FORTRAN program, separately compiled procedures can share data 
in declared common blocks which specify the names of one or more 
variables to be placed in them. Each named common block represents a 
separate program section. Each procedure that declares the common block 
with the same name can access the same variable. 

As shown in Example 10-4, a VAX C extern variable corresponds to a 
FORTRAN common block with the same name. 

Example 10-4: Sharing Data with a FORTRAN Program in 
Named Program Sections 

/* VAX C program STRING.C contains the following lines of * 
* code: */ 

maine) 
{ 

} 

extern char xyz[20); 

strncpy(xyz."This is a string 
prstring(); 

" sizeof xyz); 

The FORTRAN program PRSTRING.FOR contains the following lines of 
code: 

SUBROUTINE PRSTRING 
CHARACTER*20 STRING 
COMMON /XYZ/ STRING 

TYPE 20, STRING 
20 FORMAT (' ',A20) 

RETURN 
END 

10-22 Using VAX C in the Common Language Environment 



In Example 10-4, the VAX C extern variable xyz corresponds to the 
FORTRAN common block named XYZ. The FORTRAN procedure displays 
the data in the block. When sharing program sections, both programs 
should declare corresponding variables to be of the same type. 

To share data in more than one variable in a program section with a 
FORTRAN program, the VAX C variables must be declared within a 
structure, as shown in Example 10-5. 

Example 10-5: Sharing Data with a FORTRAN Program in a 
VAX C Structure 

/* VAX C program NUMBERS.C contains the following lines of * 
* code: */ 

struct xs 
{ 

}; 

int first; 
int second; 
int third; 

mainO 
{ 

} 

extern struct xs numbers; 

numbers.first = 1; 
numbers. second = 2; 
numbers. third = 3; 
fnumO; 

The FORTRAN program FNUM.FOR contains the following lines of code: 

SUBROUTINE FNUM 
INTEGER*4 INUM,JNUM,KNUM 
COMMON /NUMBERS/ INUM,JNUM,KNUM 

TYPE 10, (INUM,JNUM,KNUM) 
10 FORMAT (318) 

RETURN 
END 

In Example 10-5, the int variables declared in the VAX C structure 
numbers correspond to the FORTRAN INTEGER*4 variables in -the 
COMMON of the same name. 

Using VAX C in the Common Language Environment 10-23 



10.6.2 Sharing Program Sections with PL/I Externals 

A VAX PLjI variable with the EXTERNAL attribute corresponds to a 
FORTRAN common block and to a VAX C extern variable. Examples 10-6 
and 10-7 illustrate the sharing of a program section between VAX C and 
VAX PLjI. 

A PLjI EXTERNAL CHARACTER attribute corresponds to a VAX C 
extern char variable, but PLjI character strings are not necessarily NUL­
terminated. In Example 10-6, VAX C and VAX PLjI use the same variable 
to manipulate the character string that resides in a program section named 
XYZ. 

Example 10-6: Sharing Data with a PL/I Program in Named 
Program Sections 

/* VAX C program STRING.C contains the following lines of * 
* code: */ 

mainO 
{ 

} 

extern char xyz[20] ; 

strncpy(xyz."This is a string 
prstringO; 

" sizeof xyz); 

The PLjI program PRSTRING.PLI contains the following lines of code: 

PRSTRING: PROCEDURE; 

DECLARE XYZ EXTERNAL CHARACTER(20); 

PUt SKIP LIST(XYZ); 
RETURN; 

END PRSTRING; 

The PLjI procedure PRSTRING writes out the contents of the external 
variable XYZ. 

PLjI also has a structure type similar (in its internal representation) to 
the struct in VAX C. Moreover, VAX PLjI can output aggregates, such as 
structures and arrays, in fairly simple stream-output statements; consider 
Example 10-7. 

10-24 Using VAX C in the Common Language Environment 



Example 10-7: Sharing Data with a PL/I Program in a VAX C 
Structure 

1* VAX C program NUMBERS.C contains the following lines of * 
* code: *1 

struct xs 
{ 

}; 

int first; 
int second; 
int third; 

maine) 
{ 

} 

extern struct xs numbers; 

numbers.first = 1; 
numbers.second = 2; 
numbers. third = 3; 
fnumO; 

The PL/I program FNUM.PLI contains the following lines of code: 

FNUM: PROCEDURE; 
1* EXTERNAL STRUCTURE CONTAINING THREE INTEGERS *1 
DECLARE 1 NUMBERS EXTERNAL. 

2 FIRST FIXED(31). 
2 SECOND FIXED(31). 
2 THIRD FIXED(31); 

PUT SKIP LIST('Contents of structure: '.NUMBERS); 
RETURN; 

END FNUM; 

The PL/I procedure FNUM writes out the complete contents of the 
external structure NUMBERS; the structure members are written out in 
the order of their storage in memory, which is the same as for a VAX C 
structure. 

Using VAX C in the Common language Environment 10-25 



10.6.3 Sharing Program Sections with MACRO Programs 

In a MACRO program, the .PSECT directive sets up a separate program 
section that can store data or MACRO instructions. The attributes in the 
.PSECT directive describe the contents of the program section. 

You can set up a psect in a MACRO program to allow data to be shared 
with a VAX C program, as shown in Example 10-8. 

Example 10-8: Sharing Data with a MACRO Program in a 
VAX C Structure 

1* VAX C program NUMBERS.C contains the following lines of * 
* code: *1 

struct xs 
{ 

int first; 
int second; 
int third; 

} example; 

mainO 
{ 

} 

printf("example.first = Y.d\n", example.first); 
printf("example.second = Yod\n", example.second); 
printf("example.third = Yod\n", example.third); 

The MACRO source code file SETVALUE.MAR contains the following 
lines: 

movl #1,first 
movl #2,second 
movl #3 ,third 
ret 

.psect example pic,usr,ovr,rel,gbl,shr,­
noexe,rd,wrt ,novec ,long 

first: .blkl 
second: .blkl 
third: .blkl 

. end 

10-26 Using VAX C in the Common language Environment 



The MACRO program initializes the locations first, second, and third in 
the psect named example and passes these values to the VAX C program. 
The locations are referenced in the VAX C program as members of the 
external structure named example. 

10.8.4 Calling System Routines 

The basic steps for calling system routines are the same as those for calling 
any external routine. However, when calling system routines, you need 
to provide some additional information that is discussed in the following 
sections. 

10.6.4. 1 System Routine Arguments 

All of the system routine arguments are described in terms of the following 
information: 

• VMS usage 

• Data type 

• Type of access allowed 

• Passing mechanism 

VMS usages are data structures that are layered on the standard VMS data 
types. For example, the VMS usage mask--1ongword signifies an unsigned 
longword integer that is used as a bit mask, and the VMS usage 
floating_point represents any VMS floating-point data type. Table 10-5 
lists all the VMS usages and the VAX C statements you need to implement 
them. 

Using VAX C in the Common language Environment 10-27 



Table 10-5: 
VMS Data Type 

access_bit_names 

access_mode 

address 

address-tange 

arg_list 

ast_procedure 

boolean 

byte_signed 

byte_unsigned 

channel 

char_string 

complex_number 

cond_value 

context 

date_time 

device_name 

ef_cluster_name 

ef_number 

VAX C Implementation 

exi t _handler_block 

fab 

file_protection 

floating_point 

V AX C Declaration 

User-defined 1 

unsigned char 

int *pointer2,4 

int *array [2f,3,4 

User-defined 1 

Pointer to function. 2 

unsigned long int 

char 

unsigned char 

unsigned short int 

char array[n]3,5 

User-defined 1 

unsigned long int 

unsigned long int 

User-defined 1 

char array[n]3,5 

char array[n]3,5 

unsigned long int 

User-defined 1 

#include fab from text library 
struct FAB 

unsigned short int, or User-defined l 

float or double 

1 The declaration of a user-defined data structure depends on how the data will be used. Such data structures can be 
declared in a variety of ways, each of which is more suitable to specific applications. 

2The term poillter refers to several declarations involving pointers. Pointers are declared with special syntax and associated 
with the data type of the object being pointed to. This object is often user-defined. 

3The term array denotes the syntax of a VAX C array declaration. 

4The data type specified can be changed to any valid VAX C data type. 

5The size of the array must be substituted for n. 

10-28 Using VAX C in the Common Language Environment 



Table 10-5 (Cont.): VAX C Implementation 
VMS Data Type 

function _code 

identifier 

io_status_block 

item_list_2 

item_list_3 

item_list_pair 

item_quota_list 

lock_id 

lock_status_block 

lock_value_block 

logical_name 

longword_signed 

longword_unsigned 

mask_byte 

mask_Iongword 

mask_quadword 

mask_word 

null_arg 

octa worLsigned 

octaworLunsigned 

page_protection 

procedure 

V AX C Declaration 

Unsigned long int or User-defined 1 

int *pointer2,4 

User-defined 1 

User-defined 1 

User-defined 1 

User-defined 1 

User-defined 1 

unsigned long int 

User-defined 1 

User-defined 1 

char array[n]3,5 

long int 

unsigned long int 

unsigned char 

unsigned long int 

User-defined 1 

unsigned short int 

unsigned long int 

User-defined 1 

User-defined 1 

unsigned long int 

Pointer to function2 

1 The declaration of a user-defined data structure depends on how the data will be used. Such data structures can be 
declared in a variety of ways, each of which is more suitable to specific applications. 

2The term pointer refers to several declarations involving pointers. Pointers are declared with special syntax and associated 
with the data type of the object being pointed to. This object is often user-defilled. 

3The term array denotes the syntax of a VAX C array declaration. 

4The data type specified can be changed to any valid VAX C data type. 

5The size of the array must be substituted for n. 

Using VAX C in the Common language Environment 10-29 



Table 10-5 (Cont.): VAX C Implementatipn 
VMS Data Type 

process_id 

process_name 

quadword_signed 

quadworcLunsigned 

righ ts_holder 

rights_id 

rab 

section_id 

section_name 

system_access_id 

time_name 

uic 

user_arg 

varying_arg 

vector_byte_signed 

vector_byte_unsigned 

vector_longword_signed 

vector_longworcLunsigned 

vector_quadworcLsigned 

vector_quad word_unsigned 

vector_ worcLsigned 

vector_ worcLunsigned 

worcLsigned 

worcLunsigned 

V AX C Declaration 

unsigned long int 

char array[n]3,S 

User-defined 1 

User-defined 1 

User-defined 1 

unsigned long int 

#include rab from text library 
struct RAB 

User-defined 1 

char array[n]3,S 

User-defined 1 

char array[n]3,S 

unsigned long int 

User-defined 1 

User-defined 1 

char array[n]3,S 

unsigned char array[n]3,S 

long int array[nf,s 

unsigned long int array[nf,s 

User-defined 1 

User-defined 1 

short int array[n]3,S 

unsigned short int array[n]3,S 

short int 

unsigned short int 

1 The declaration of a user-defined data structure depends on how the data will be used. Such data structures can be 
declared in a variety of ways, each of which is more suitable to specific applications. 

3The term array denotes the syntax of a VAX C array declaration. 

SThe size of the array must be substituted for n. 

10-30 Using VAX C in the Common language Environment 



If a system routine argument is optional, it will be indicated in the format 
section of the routine description in one of two ways: 

• [,optional-argument] 

• ,[optional-argument] 

If the comma appears outside the brackets (,[optional-argument]), you 
must pass a zero by value to indicate the place of the omitted argument. 
If the comma appears inside the brackets ([,optional-argument]), you can 
omit the argument if it is the last argument in the list. 

10.6.4.2 Symbol Definitions 

Many system routines depend on values that are defined in separate 
symbol definition files. VMS Run-Time Library routines require you to 
include symbol definitions when you are calling a Screen Management 
facility routine or a routine that is a jacket to a system service. A jacket 
routine provides a simpler interface to the corresponding system service. 
For example, the routine LIB$SYS_ASCTIM is a jacket routine for the 
$ASCTIM system service. 

If you are calling a system service, you must include the file SSDEF to 
check status. Many system services require other symbol definitions as 
well. To determine whether you need to include other symbol definitions 
for the system service you want to use, refer to the documentation for 
that particular system service. If the documentation states that values are 
defined in a macro, you must include those symbol definitions in your 
program. 

For example, the description for the flags parameter in the SYS$MGBLSC 
(Map Global Section) system service states that "Symbolic names for the 
flag bits are defined by the $SECDEF macro." Therefore, when you call 
SYS$MGBLSC you must include the definitions provided in the $SECDEF 
macro. 

In VAX C, a definition file is included as follows: 

#include stdlib 

For a list of all VAX C definition files, refer to Appendix B, VAX C 
Compiler Messages. 

Using VAX C in the Common Language Environment 1 0-31 



10.7 Condition Values 

Many system routines return a condition value that indicates success 
or failure; this value can be either returned or signaled. If a condition 
value is returned, then you must check the returned value to determine 
whether the call to the system routine was successful. If a condition value 
is signaled, then the condition value is signaled to your program instead 
of being written to a storage location. 

Condition values indicating success always appear first in the list of 
condition values for a particular routine, and success codes always have 
odd values. A success code that is common to many system routines 
is the condition value SS$_NORMAL, which indicates that the routine 
completed normally and successfully. If the condition value is returned, 
then you can test for SS$_NORMAL as follows: 

ret_status = 
if (ret_status != ss$normal) 

lib$stop 

Because all success codes have odd values, you can check a return status 
for any success code. For example, you can cause execution to continue 
only if a success code is returned by including the following statements in 
your program. 

if ({ret_status & 1) != 0) 
lib$stop (ret_status); 

In general, you can check a return status for a particular success or failure 
code or you can test the condition value returned against all success codes 
or all failure codes. 

10.8 Examples of Calling System Routines 

This section provides complete examples of calling system routines from 
VAX C. Example 10-9 shows the three mechanisms for passing arguments 
to system services and also shows how to test for status return codes. 
Example 10-10 shows various ways of testing for successful $QIO com­
pletion and Example 10-11 illustrates how to use time conversion and set 
timer routines. 

In addition to the examples provided here, the VAX/VMS Run-Time 
Library Routines Reference Manual and the VAX/VMS System Services 
Reference Manual also provide examples for selected routines. Refer to 
these manuals for help on the use of a specific system routine. 

10-32 Using VAX C in the Common Language Environment 



Example 10-9: Passing Arguments to System Services 

/* GETMSG.C 
This program is an example showing the three mechanisms 
for passing arguments to system services. It also 
illustrates how to test for specific status return 
codes from a system service call. */ 

#include stdio 
#include descrip 
#include ssdef 

main() 
{ 
int message_id; 
short message_len; 
char text [133] ; 
$DESCRIPTOR(message_text, text); 
register status; 

while (printf("\nEnter a message number <CTRL/Z to quit>: II), 
scanf("%d", &message_id) != EOF) 

} 

{ 

/* retrieve message associated with the number */ 
status = SYS$GETMSG(message_id, kmessage_len, 

&message_text, 15, 0); 

/* check for status conditions */ 
if (status == SS$_NORMAL) 

printf("\n%.*s\n", message_len, text); 
else if (status == SS$_BUFFEROVF) 

printf("\nBUFFER OVERFLOW -- Text is: %.*s\n", 
.message_len, text); 

else if (status == SS$_MSGNOTFND) 
printf("\nMESSAGE NOT FOUND.\n"); 

else 

} 

{ 

printf("\nUnexpected error in $GETMSG call.\n"); 
LIB$STOP(status); 
} 

Using VAX C in the Common language Environment 10-33 



Example 10-10: Determining $QIO Completion 

/* ASYNCH.C 
This program illustrates various ways to determine 
$QIO completion. It also illustrates the use of an 
IOSB to obtain information about the I/O operation. */ 

#include iodef 
#include ssdef 
#include descrip 

typedef struct 
{ 

main() 
{ 

short cond_value; 
short count; 
int info; 
} io_statblk; 

char text_string [] "This was written by the $QIO."; 
register status; 
short chan; 
io_statblk status_block; 
int AST_PROCO; 
$DESCRIPTOR (terminal, "SYS$COMMAND"); 

1* assign i/o channel */ 
if «(status = SYS$ASSIGN (&terminal, &chan,O,O» & 1) != 1) 

LIB$STOP (status); 

/* queue the i/o */ 
if «(status = SYS$QIO (1, chan, IO$_WRITEVBLK, &status_block, 

AST_PROC, &status_block, text_string, 
strlen(text_string),O,32,O,O» & 1) != 1) 

LIB$STOP (status); 

/* wait for the i/o operation to complete */ 
if «(status = SYS$SYNCH (1, &status_block» & 1) != 1) 

LIB$STOP (status); 
if «status_block.cond_value &1) != 1) 

LIB$STOP(status_block.cond_value); 

printf ('i\nThe I/O operation and AST procedure are done."); 
} 

AST_PROC (write_status) 
io_statblk *write_status; 

/* This function is called as an AST procedure. It uses 
the AST parameter passed to it by $QIO to determine 
how many characters were written to the terminal. */ 

{ 
printf("\nNumber of characters output is %d", write_status->count); 
printf("\nI/O completion status is %d", write_status->cond_value); 
} 

1 0-34 Using VAX C in the Common Language Environment 



Example 10-11: Using Time. Routines 

/* ALARM.C 
This program illustrates the use of time conversion 
and set timer routines. */ 

#include stdio 
#include descrip 
#include ssdef 

mainO 
{ 
#define event_flag 2 
#define timer_id 3 

typedef int quadword[2]; 

quadword delay_int; 
$DESCRIPTOR(offset. "0 ::15.00"); 
char cur_time[24]; 
$DESCRIPTOR(cur_time_desc. cur_time); 
int i; 
unsigned state; 
register status; 

/* convert offset from ASCII to binary format */ 
if «(status=SYS$BINTIM(&offset. delay_int» &1) != 1) 

LIB$STOP(status); 

/* output current time */ 
if «(status=LIB$DATE_TIME(&cur_time_desc» &1) != 1) 

LIB$STOP(status); 
cur_time[23] = '\0'; 
printf(i'The clirrent time is : %s\n". cur_time); 

/* set timer to expire in 15 seconds */ 
if «(status=SYS$SETIMR(event_flag. &delay_int. 

LIB$STOP(status); 

/* count to 1000000 */ 

O. timer_id» &1) != 1) 

printf ("beginning count .... \n") ; 
for (i=O; i<=1000000; i++) 

(Continued on next page) 

Using VAX C in the Common Language Environment 10-35 



Example 10-11 (Cont.): Using Time Routines 

1* check if timer expired *1 
switch (status = SYS$READEF(event_flag. &state» 

{ 

case SS$_WASCLR : 1* cancel timer *1 
if «(status=SYS$CANTIM(timer_id. 0» &1) != 1) 

LIB$STOP(status); 
printf(IICoUIit completed before timer expired.\n"); 
printf("Timer cancelled.\n"); 
break; 

case SS$_WASSET printf("Timer expired before count completed.\n"); 
break; 

default LIB$STOP(status); 

} 
} 

break; 

10-36 Using VAX C in the Common Language Environment 



Chapter 11 

VAX C Implementation Notes 

This chapter discusses VAX C program sections. 

11. 1 Program Sections 

The following sections describe Program Section Attributes and Program 
Sections created by VAX C. 

11.1.1 Attributes of Program Sections (Psects) 

As the VAX C compiler creates an object module, it groups data into 
contiguous program sections, or psects. The grouping depends on the 
attributes of the data and on whether the psects contain executable code 
or read/write variables. 

The compiler also writes into each object module information about the 
program sections contained in it. The linker uses this information when 
it binds object modules into an executable image. As the linker allocates 
virtual memory for the image, it groups together program sections that 
have similar attributes. 

Table 11-1 lists the attributes that can be applied to program sections. 

VAX C Implementation Notes 11-1 



Table 11-1: 
Attribute 

PIC or NOPIC 

CON or OVR 

REL or ABS 

GBL or LCL 

EXE or NOEXE 

WRT or NOWRT 

RD or NORD 

SHR or NOSHR 

USR or LIB 

VEC or NOVEC 

Program Section Attributes 
Meaning 

The program section or the data to which it refers does 
not depend on any specific virtual memory locatiort 
(PIC), or else the program section depends on one or 
more virtual memory locations (NOPIC).l 

The program section will be concatenated with other 
program sections with the same name (CON) or will 
be overiaid on the same memory locations (OVR). 

The data in the program section can be relocated 
within virtual memory (REL) or is not considered in 
the allocation of virtual memory (ABS). 

The program section is part of one cluster, is referenced 
by the same program section name in different clusters 
(GBL), or is local to each cluster in which its name 
appears (LCL). 

The program section contains executable code (EXE) or 
does not contain executable code (NOEXE). 

The program section contains data that can be modified 
(WRT) or data that cannot be modified (NOWRT). 

These attributes are reserved for future use. 

The program section can be shared in memory (SHR) 
or cannot be shared in memory (NOSHR). 

These attributes are reserved for future use. 

The program section contains privileged change mode 
vectors (VEC) or does not contain those vectors 
(NOVEC). 

1 VAX C programs can be bound into PIC or NOPIC shareable images. NOPIC occurs if declarations 
such as the following are used: "char *X = &y;" This statement relies on the address of variable y to 
determine the value of the pointer, x. 

11.1.2 Program Sections Created by VAX C 

When needed, VAX C creates the following program sections: 

• $CODE-Contains all executable code and constant data (including 
variables defined with the readonly modifier). 

11-2 VAX C Implementation Notes 



• $DATA-Contains all static variables, as well as global variables 
defined without the readonly modifier. 

• $CHAR_STRING_CONSTANTS-Contains VAX C character-string 
constants (a string of characters delimited by quotation marks; for 
example, "space" written in the program, such as the following: 

char *y = "This is a string *****" 

/* or... */ 

printf("The answer is ... Y.d\n". x); 

• VAX C also creates additional program sections for external variables, 
and for global variables when you specify a program section name in 
the global declaration. 

All program sections created by VAX C have the attributes PIC, REL, 
RD, USR, and NOVEC; the $CODE psect is aligned on byte boundaries 
while all other program sections generated by VAX C are aligned on 
longword boundaries; and the $CHAR_STRING_CONSTANTS psect 
has the same attributes as $DATA. Table 11-2 summarizes the differences 
in the psects created by VAX C. The first list assigns a number to all the 
possible combinations of storage class specifiers and modifiers, and the 
second list presents the psect name and the psect attributes of each of the 
combinations. 

Storage 
Class 
Code 

1 

2 

3 

4 

5 

6 

5 

5 

6 

5 

Storage Class Keyword Combination 

[extern] 

[extern] const readonly 

[ extern] noshare 

[extern] const readonly nosh are 

static 

static const readonly 

statIc nosh are 

globaldef 

globaldef const readonly 

globaldef nosh are 

VAX C Implementation Notes 11-3 



Storage 
Class 
Code 

7 

8 

9 

10 

Storage Class Keyword Combination 

globaldef{"name"} 

globaldef{"name"} const readonly 

globaldef{"name"} nosh are 

globaldef{"name"} const readonly nosh are 

The numbers in the first column of the previous table correspond to the 
numbers in the following table. In the following, the [extern] name psect 
is the same name of the identifier in the declaration, but the globaldef 
"name" psect can be any name you specify in the {"name"} portion of the 
declaration. 

Table 11-2: Program Sections for VAX C Variables 
Storage Program 
Class Section 
Code Name Program Attributes 

1 name OVR, GBL, SHR, NOEXE, WRT 

2 name OVR, GBL, SHR, NOEXE, NOWRT 

3 name OVR, GBL, NOSHR, NOEXE, WRT 

4 name OVR, GBL, NOSHR, NOEXE, NOWRT 

5 $ DATA CON, LCL, NOSHR, NOEXE, WRT 

6 $CODE CON, LCL, SHR, EXE, NOWRT 

7 "name" CON, GBL, SHR, NOEXE, WRT 

8 "name" CON, GBL, SHR, NOEXE, NOWRT 

9 "name" CON, GBL, NOSHR, NOEXE, WRT 

10 "name" CON, GBL, NOSHR, NOEXE, NOWRT 

11-4 VAX C Implementation Notes 



Notice that the combined use of the readonly and noshare modifiers is 
illegal in the following declarations: 

readonly noshare static int x; 

readonly noshare globaldef int x; 

When it encounters a situation as shown in the previous example, the 
compiler ignores the nosh are modifier and accepts readonly. Again, the 
order of the storage class specifier, the storage class modifier, and the data 
type keyword within a declaration is not significant. 

VAX C Implementation Notes 11-5 





Appendix A 

VAX C Definition Modules 

This appendix lists the library definition modules contained in the text 
library named SYS$LIBRARY:VAXCDEF.TLB. 

The contents of these modules can be examined in the appropriate def­
inition file. All definition files have the file extension .H and they are 
contained in the directory SYS$LIBRARY. You can print or type individual 
files, or you can issue the following command to print all the files with 
their file names appearing at the top of each page: 

$ PRINT SYS$LIBRARY:*.H/HEADER 

Table A-I qescribes each of the definition modules: 

Table A-1: VAX C Definition Modules 
Module 

accdef 

atrdef 

chfdef 

climsgdef 

ctype 

curses 

dcdef 

descrip 

devdef 

Description 

Accounting file record definitions 

File attribute definitions 

Structure definitions for condition handlers 

Command language interpreter error code definitions 

Character type and macro definitions for character classifica­
tion functions 

Curses Screen Management related definitions 

Device class and type code definitions 

Descriptor structure and constant definitions 

Device characteristics definitions 

VAX C Definition Modules A-1 



Table A-1 (Cont.): VAX C Definition Modules 
Module 

dvidef 

errno 

errnodef 

fab 

fehdef 

fibdef 

file 

floatl 

iodef 

jpidef 

lekdef 

lkidel 

libdel 

limits l 

lnmdefl 

math 

msgdef 

nam 

nfbdef 

opedef 

perror 

pqldef 

predefl 

prdef 

prvdef 

psldef 

Description 

$GETDVI system service request code definitions 

Error number definitions 

VAX C error message constants 

File access block definitions 

File characteristics definitions 

File information block definitions 

Symbol definitions for open function 

Macro definitions which provide implementation-specific 
floa ting -poin t restrictions. 

I/O function code definitions 

$GETJPI system service request code definitions 

Lock manager definitions 

Lock information data identifier information. 

Definitions of LIB$ return codes 

Macro definitions which provide implementation-specific 
constraints. / 

Logical name flag definitions 

Math function definitions 

System mailbox message type definitions 

Name block definitions 

DECNET file access definitions 

OPCOM request code definitions 

PERROR function related definitions 

Process quota code definitions 

Create process (SYS$CREPRC) system service status flags 

Processor register definitions 

Privilege mask bit definitions 

Processor status longword definitions 

1 New definition modules. 

A-2 VAX C Definition Modules 



Table A-1 (Cont.): VAX C Definition Modules 
Module 

rab 

rms 

rmsdef 

seedef 

setjmp 

sfdef 

signal 

smgdef 

ssdef 

stat 

stdio 

stsdef 

syidel 

time 

timeb 

ttdef 

tt2def 

types 

varargs 

xab 

xwdel 

Description 

Record access block definitions 

All RMS structures and return status value definitions 

RMS return status value definitions 

Image section flag bit and match constant definitions 

State buffer definition for the setjmp and longjmp functions 

Stack call frame definitions 

Signal value definitions 

Curses Screen Management interface definitions. 

System service return status value definitions 

STAT and FSTAT function related definitions 

Standard I/O definitions 

System service status code format definitions 

Definitions for Get System-wide Information (SYS$GETSYI) 
system service 

Definitions for the function localtime 

Definitions for the function ftime 

Terminal definitions 

Terminal definitions 

Type definitions 

Variable argument list access definitions 

Extended attribute block definitions 

System definitions for DECnet DDCMP 

1 New definition modules. 

VAX C Definition Modules A-3 



Table A-2 lists each of the modified definition modules and gives a 
description, of the modification: 

Table A-2: 
Modules 

atrdef 

dedef 

dvidef 

fab 

fehdef 

fibdef 

iodef 

jpidef 

lekdef 

nzsgdef 

nam 

opedef 

prvdef 

rnzsdef 

snzgdef 

ttdef 

A-4 VAX C Definition Modules 

Modified Definition Modules 
Description of Modification 

Constant identifier is in uppercase; structure tag is changed 
from ATTRIB to atrdef. 

Update incomplete symbol definitions. 

Update incomplete symbol definitions; constant identifier is in 
llppercase; structure tag in in lowercase. 

Update incomplete symbol definitions. 

Constant identifiers are in upperc;ase. 

Constant identifiers are in uppercase; update obso­
lete/incomplete symbol definitions. 

Update obsolete/incomplete symbol definitions. 

Update incomplete symbol definitions. 

Update obsolete symbol definitions. 

Update incomplete symbol definitions. 

Update obsolete symbol definitions. 

Update incomplete symbol definitions. 

Update incomplete symbol definitions. 

Update obsolete/incomplete symbol definitions. 

Update incomplete symbol definitions. 

Update incomplete symbol definitions. 



Appendix B 

VAX C Compiler Messages 

This appendix lists the VAX C compiler diagnostic messages. For each 
message, the appendix gives the mnemonic, the message text, an expla­
nation of the message, and suggested actions to be taken to avoid the 
message. For more information concerning the format of the error mes­
sages, refer to Chapter 1, Developing VAX C Programs at DCl Command 
level. 

You can also obtain the compiler diagnostic messages on-line. To do so, 
type the following: 

$ HELP CC ERROR mnemoniclRETURNI 

To receive a list of all the mnemonics, type the following: 

$ HELP CC ERRORIRETURNI 

Some messages substitute information from the program in the message 
text. In this appendix, the portion of the text to be substituted is shown as 

"****" or ****. If quotes appear around the asterisks, quotes appear in 
the substituted message. 

You can suppress the warning and informational messages with the 
/[NO]WARNINGS qualifier on the CC command line. You may want to 
do this so that the compiler broadcasts only the most severe messages to 
the terminal. For more information concerning the /[NO]WARNINGS 
qualifier, refer to Chapter 1, Developing VAX C Programs at DCl 
Command level. 

VAX C Compiler Messages 8-1 



ANACHRONISM, The 1/****1/ operator is an obsolete form, and may not 
be portable. 

Informational. You used an old-style assignment opera­
tor such as ==+ or =*. The message is issued if you specified 
jSTANDARD=PORTABLE on the CC command line. 

User Action. For the program to be portable, reverse the order 
of the operator parts. For example, =+ should be += and =* 
should be *=. The old-style operators are currently supported by 
VAX C, but they may not be supported by other C compilers, 
and they are not guaranteed to be supported in future releases of 
VAXC. 

ARGLISTOOLONG, Function reference specifies an argument list whose 
length exceeds the VAX architecture limit. 

Error. The size of your argument list in the function call ex­
ceeded 255 longwords. 

User Action. Rewrite the function definition and function 
call with a list whose member(s) take less space; for example, 
by passing floating-point and structure arguments by reference 
rather than by value. Recall that floating-point arguments occupy 
two longwords, and that structures passed by value occupy as 
many longwords as are necessary to contain the whole structure. 

ARGOVERFLOW, Length of the argument list for macro 1/****1/ exceeds 
buffer capacity; overflowing argument(s) considered to 
be null. 

Warning. The total length of the arguments in a macro reference 
exceeded the compiler's capacity to store the arguments prior to 
substitution. 

User Action. Shorten or eliminate one or more arguments. 

BADCODE, Invalid code generation sequence .. 

8-2 VAX C Compiler Messages 

Fatal. An internal compiler error occurred. 

User Action. Gather as much information as you can about the 
conditions in effect when the error occurred, and submit an SPR 
(refer to VAX C Installation Guide). 



BADPSECT, The program section (psect) specified by this statement has 
conflicting I/nowritel/ attributes with another definition of 
the same program section. 

Warning. You specified two or more references to the same 
program section, and the attributes of the references do not 
correspond. 

For example, this message appears when there exists two 
globaldef definitions. for the same name, but only one specifies 
the storage class readonly. 

User Action. Make all references to a program section consistent. 

BITARRAY, The CDD description for 1/****1/ specifies that it is an array of 
bit-fields; it has been converted to a scalar bit-field. 

Informational. The compiler generated a declaration of a bit­
field whose size is the same as the total size of the original CDD 
item. (VAX C does not support arrays of bit-fields.) 

User Action. If the generated declaration is acceptable, you need 
not take any action; otherwise, change the CDD description as 
appropriate. 

BITFIELDSIZE, The CDD description for bit-field 1/****1/ specifies a size 
greater than 32; the excess is declared separately. 

Informational. VAX C generated a series of bit-field declarations 
whose total size is the same as the original CDD item. (VAX C 
does not support individual bit-fields larger than 32 bits.) 

User Action. If the generated declarations are acceptable, you 
need take no action; otherwise, change the CDD description as 
appropriate. 

BOUNDADJUSTED, The CDD description for 1/****/1 specifies non-zero-
origin dimension bound(s); adjusted to zero-origin. 

Informational. VAX C generated a declaration whose bound(s) 
have been adjusted to start at zero. The generated array had 
the same number of elements as the original CDD item. (VAX C 
does not support dimension bounds that do not start at zero.) 

User Action. Make sure that subscript expressions in references 
to this array are offset by the appropriate amounts. 

VAX C Compiler Messages 8-3 



BUGCHECK, Compiler bug check during ****. Submit an SPR with a 
problem description. 

Fatal. An internal error occurred during the specified phase of 
compilation. 

User Action. Gather as much information as possible about 
the conditions under which the error occurred, including the 
phase of compilation, and submit an SPR (refer to the VAX C 
Installation Guide). 

CASECONSTANT, Case label value is,not a constant expression. 

Error. You specified a value in a case label that was not a 
constant. 

User Action. Replace the case value with a valid constant 
expression. 

CDDATTRIGNORED, The CDD description for "****" specifies the "****" 
attribute, which is being ignored. 

Informational. The CDD record description specifies an attribute 
for the indicated item that is not supported by VAX C. The 
compiler ignores the indicated attribute. 

User Action. None. 

CDDTOODEEP, The attributes for the Common Data Dictionary record 
description ,,****/1 exceed the implementation's limit for 
record complexity. 

Error. The indicated record description was too complex for 
VAX C to generate usable declarations. 

User Action. Simplify the record description in the CDD. 

CMPLXINIT, "****" is too complex to initialize. 

8-4 VAX C Compiler Messages 

Warning. The depth of the indicated aggregate variable ex­
ceeded the limit of 32 levels. 

User Action. Simplify or correct the initializer list or declaration, 
or initialize the variable within an assignment statement. 



COLMAJOR, The CDD description for //****// specifies that it is a column­
major array; it has been converted to a one-dimensional 
array. 

Informational. VAX C generated a declaration for this item with 
a single dimension. (VAX C supports only row-major arrays.) 

The number of elements in the array is the same as the total 
number of elements in the original array. 

User Action. Make sure that you properly compute references to 
this array. 

COMPILERR, Previous errors prevent continued compilation. Please 
correct reported errors and recompile. 

Fatal. The compiler detected too many errors to continue. 

User Action. Correct the errors reported in the previous compiler 
messages. 

CONFLICTDECL, This declaration of //****// conflicts with a previous 
declaration of the same name. 

Warning. The compiler determined that both declarations refer 
to the same object, yet the two declarations conflict in data type 
or storage class organization. 

In addition, for external variables and global symbols, the com­
piler may detect conflicting storage class specifiers, or identifiers 
that are spelled the same but consist of letters that are in differ­
ent cases (the linker converts all external and global names to 
uppercase letters). If the compiler issues an error message for 
this reason, the program may be correct; iSSUing a message in 
this instance is a warning against possible programming errors. 

User Action. If the declarations refer to the same object, 
make sure that they specify the same types and organizations. 
Otherwise, either rename one of the identifiers, or separate the 
scopes of the declarations. 

VAX C Compiler Messages 8-5 



CRXCONDITION, Common Data Dictionary description extraction 
condition. 

Informational. An anomaly occurred during the extraction of 
a CDD record description. The specific condition is described 
in an accompanying message. The severity of this message 
may be increased to warning or error depending on the specific 
condition. 

User Action. If necessary, correct the indicated condition ih the 
CDD record description. 

DEFTOOLONG, Text in #define preprocessor directive is too long; 
directive ignored. 

Warning. The length of the tokert-string in the #define directive 
exceeded the implementation's limit. 

User Action. Simplify the directive. 

DIVIDEZERO, Constant expression includes divide by zero; the result 
has been replaced with O. 

Warning. A division by zero was encountered in a constant 
expression. The expression was replaced by O. 

Usei' Action. Make sure that no divisors in the expressiort can 
evaluate to zero. 

DUPCASE, Duplicate case label value 11****11. 

Error. You specified more than one case for the indicated value 
in a switch statement. (The cases must be unique.) 

User Action. Change the case labels and/or combine the cases, 
as appropriate. 

DUPDEFAULT, Duplicate default label. 

8-6 VAX C Compiler Messages 

Error. You specified more than one default case in the same 
switch statement. 

User Action. Combine the cases or make other changes neces­
sary to eliminate the duplicate(s). 



DUPDEFINITION, Duplicate definition of "****" 

Warning. The named definition appeared more than once in the 
program. 

The two definitions are essentially the same. Both definitions 
specify the same data types and organizations, but there may 
be differences in the values, initializers, or array bounds. If the 
name is a function, there may be a difference in the number or 
types of parameters, or in the contents of the function body. 

User Action. The purpose of this message is to call a possible 
programming error to your attention. 

DUPLABEL, Duplicate label "****". 

Error. You specified duplicates of the indicated label in the same 
function. (Label identifiers must be unique within a function 
definition. ) 

User Action. Rewrite the labels (and goto statements that refer 
to them) to eliminate the duplicates. 

DUPMAINFUNC, Duplicate main function. 

Warning. You defined two or more main functions in a single 
compilation unit. 

A main function is either a function with the name "main" or 
a function with the "main_program" option. If the compila­
tion unit contains more than one main function, the compiler 
recognizes only the first as the main function. 

User Action. Make sure that there is only one main function 
defined in the compilation unit. 

DUPMEMBER, Duplicate declaration of member 11****/1. 

Warning. You declared two members with the same name in the 
same structure. 

User Action. Rename one of the members or remove one of the 
member declarations. 

VAX C Compiler Messages 8-7 



DUPP ARAMETER, Duplicate parameter //****// ignored. 

Warning. The stated function parameter occurred more than 
once in the function's formal parameter list, as in 

funct(a,b,c,a) { } 

All occurrences of the parameter after the first are ignored. 

User Action. Remove or change the duplicate parameter 
identifier. 

ENUMCLASH, Mismatched enum type in //****// operation. 

Warning. The indicated operation combined an enum variable 
or value with a value of a nonmatching type. The compiler 
issued this message if you used the jSTANDARD=PORTABLE 
qualifier on the CC command line. 

User Action. Use a cast operation to cast either the enum value 
or the other value to a matching type. 

ENUMOP, //****// is an undefined operation for enum values; enum 
operand(s) converted to into 

Warning. You used an enum variable or constant with an 
arithmetic or bitwise operator. These operators are undefined for 
use with enum types. The operation is performed; however, the 
compiler treats the enum object as an integer. 

User Action. Cast the enum object to int. 

EXTRACOMMA, Extraneous comma in macro parameter list ignored. 

8-8 VAX C Compiler Messages 

Warning. The #define macro definition on this line had extra 
commas that were ignored. 

User Action. Make sure that no parameters are omitted in the 
macro definition. 



EXTRAFORMALS, Extraneous formal parameter(s) ignored in declaration 
of "****" 

Warning. You included a function's formal parameters in a 
function declaration or definition. 

For example, the following function declaration is not allowed 
because it names the function's parameters:. 

int funct(a,b,c); 

The parameters a, b, and c are ignored. 

Similarly, the following example defines a function returning 
a pointer to a function returning an integer. The names of the 
parameters of the function returning an integer are not allowed: 

(*f(pl,p2»(ql,q2) 
int pl, p2; 
{ . .. } 

The compiler ignores the parameters ql and q2. 

User Action. Check the syntax of the function declaration and, 
if appropriate, remove the extraneous identifier(s). 

EXTRAMODULE, Redundant #module preprocessor directive ignored. 

Warning. You specified more than one #module directive in 
a single compilation; the excess directive or directives were 
ignored. 

User Action. Make sure that there exists only one #module 
directive in the source file, and that it is placed before any 
VAX C source code. 

EXTRATEXT, Extraneous text in preprocessor directive ignored. 

Informational. Extraneous text appeared in the directive, as in 

'endif ABC 

The compiler issued this message if you specified the 
/STANDARD=PORTABLE qualifier on the CC command line. 

User Action. Either remove the extraneous text or enclose it in a 
comment. 

VAX C Compiler Messages 8-9 



FATALSYNTAX, Fatal syntax error. 

Fatal. The compiler could not continue due to syntax errors. 

User Action. Correct the error in the indicated line and/or errors 
reported in previous compiler messages. 

FILENOTFOUND, Include file could not be opened. 

Fatal. The compiler could not find the include file in any of the 
valid text libraries or directories. 

User Action. Check to see if the file does exist. Then check that 
the include method you used for this file searches for the file in 
the place where you expected it to search. 

FLOATCONFLICT, The CDD description for "****" specifies the 
G_floating data type; the data cannot be represented 
when compiling with /NOG_FLOAT. 

Warning. The data type of the indicated CDD item conflicted 
with the indicated command line qualifier. 

Only one of the two double-precision, floating-point data formats 
may be used in a compilation, as specified by the command line 
qualifier (the default qualifier being /NOG_FLOAT). VAX C 
generates a declaration of an 8 byte structure for the item. 

User Action. Specify the appropriate command line qualifier, or 
change the description of the item in the CDD. 

FLOATOVERFLOW, Overflow during evaluation of floating-point con-
stant expression. 

Error. Overflow occurred during the evaluation of a constant 
expression containing floating-point operands. 

User Action. Make sure that the expression value is in the range 
0.29 * 10-38 to 1.7 * 1038

• 

8-10 VAX C Compiler Messages 



FUNCNOTDEF, Static function "****" is not defined in this compilation; 
assumed to be external. 

Warning. The indicated static function declaration did not refer 
to an existing definition. The compiler treated the function as 
external. 

User Action. Remove the storage class specifier static in the 
function declaration or use the specifier in the appropriate 
function definition. 

GLOBALENUM, Enumerators may not be initialized when declared with 
"globalref". 

Warning. You attempted to specify the values of enumeration 
constants ina declaration of an enum variable with the globalref 
storage class specifier. 

You must define these values elsewhere, in a globaldef dec­
laration, and you must not initialize them in the globalref 
declaration. 

User Action. Remove all initializing values from the globalref 
declaration. 

IFEVALERROR, **** while evaluating #if or #elif expression; "true" 
expression assumed. 

Warning. The substitute text is "Stack overflow", or "Divide by 
zero". 

User Action. For stack overflow, reduce the complexity of the 
expression. Make sure that no divisors are zero. 

IFSYNTAX, Syntax error in #if or #elif expression; true expression 
assumed. 

Warning. The #if or #elif expression on the indicated line 
cannot be evaluated because of syntax errors; it was assumed to 
be true. 

User Action. Correct the line. 

VAX C Compiler Messages 8-11 



IGNORED, Unexpected **** ignored. 

Warning. The compiler encountered an unexpected token in the 
source program, and has ignored it. (This may be a syntax error.) 

User Action. Make sure that the token and surrounding text is 
syntactically correct. 

INSBEFORE, Inserted **** before ****. 
Warning. The compiler attempted to recover from a syntax error 
by inserting a token into the source. 

User Action. Correct the syntax. 

INSMATCH, Inserted **** to match **** inserted earlier. 

Warning. The compiler attempted to recover from a syntax error 
by inserting a token to match a previous token in the source 
code. The previous token mayor may not have been inserted by 
the compiler. 

User Action. Make sure that you match all parentheses, brack­
ets, and braces. 

INTVALERROR, Integer value not used where required. 

Error. You used a noninteger value as an initializer for an enl.lm 
constant, or to specify the size of a bit field. You must specify 
these values as integer constants. 

User Action. Specify an integer constant. 

INTVALREQ, Noninteger value used incorrectly in a **** ; converted to 
integer. 

Warning. You used a noninteger value in a switch statement or 
a case label. The value has been converted to integer. 

User Action. Specify switch expressions and case label values 
as integer values, or use a cast operator to make the conversion 
explicit. 

INVAGGASSIGN, Invalid aggregate assignment. 

8-12 VAX C Compiler Messages 

Error. You attempted to assign an array to another array or to 
assign structures or unions of different sizes. 

User Action. Correct the assignment. 



INVALID IF, "****" is not a valid constant or operator in a #if or #elif 
expression; "true" expression assumed. 

Warning. You used an invalid construction in an #if or #elif 
expression, which is assumed to be true. 

,User Action. Correct the expression. 

INVALIGNSPEC, Invalid alignment specification ignored. 

Warning. You specified an alignment option that was not in the 
allowable range. The compiler ignored the specified option. 

User Action. Correct the alignment specification. 

INVALINIT, The initialization of "****" is not valid. 

Warning. The indicated object cannot be initialized as specified. 
Some objects may not be initialized at all, such as functions, 
unions, and extern or globalref objects. In other cases, the 
initializer may not be appropriate, for example, a static pointer 
cannot be initialized with the address of an automatic variable. 
This and any subsequent initializers for the same object have 
been ignored. 

User Action. Eliminate or correct the initializer, or correct the 
type or storage class of the target object, or initialize the object 
with an explicit assignment. 

INVANAFILE, The compiler has generated an invalid ANA file. Please 
submit an SPR with the sources which generate this error. 

Warning. The compiler has generated some invalid data in the 
ANALYSIS_DATA file. 

User Action. Correct all other errors. If the error persists, please 
submit an SPR. 

VAX C Compiler Messages 8-13 



INVARRAYBOUND, The declaration of 1/****1/ specifies a missing or 
invalid array bound. 

Error. In a declaration of an array, you omitted a required 
dimension bound value or specified an invalid value for a bound. 

For multidimensional arrays, you must specify bounds for 
dimensions other than the first. You also must specify a bound 
for the first (or only) dimension if this declaration is a definition. 
Valid bound values are integer constant expressions greater than 
zero. 

User Action. Make sure that all required bounds are present and 
valid. 

INVARRAYDECL, 1/****1/ is an improperly declared array. 

Error. You improperly declared an array, such as an array of 
functions. 

User Action. Make sure that the syntax of the declarator 
correctly describes the object. (The declared object may 
not be what you want.) You may find the output from the 
jSHOW=SYMBOLS qualifier to be helpful in diagnosing this 
error. 

INVASSIGNTARG, Invalid target for assignment. 

Error. You specified, as the left operand of an assignment 
operator, an expression that was not valid for assignment. For 
example, you may have tried to assign something to an array, 
to a function, to a constant, or to a variable declared with the 
storage class modifier, readonly. 

User Action. Make sure that the target is appropriate for 
assignments. 

INVBREAK, Invalid use of the I/breakl/ statement. 

8-14 VAX C Compiler Messages 

Error. You used break outside the body of a for, a while, a do, 
or a switch statement. 

User Action. Remove the break statement, or check that any 
braces in recent loops or switch statements are properly 
balanced. 



INVCMDVAL, " •••• " is an invalid command qualifier value. 

Fatal. The indicated CC command qualifier value was acceptable 
to the VMS command language interpreter (eLI), but it is mean­
ingless to VAX C; for example, LIST_OPTS is an invalid value 
for jSHOW, although it is accepted by the CLL 

User Action. Correct the qualifier value. 

INVCONDEXPR, The second and third operands of a conditional expres-
sion cannot be converted to a common type. 

Error. You specified an invalid combination of operands in a 
conditional expression. 

This can occur if the operands are pointers to objects of a 
different size of type, or if the operands are different structures. 

User Action. Make sure that both operands are of compatible 
sizes and data types. 

INVCONST, " •••• " is an invalid numeric constant. 

Warning. The indicated constant contained illegal characters or 
was otherwise invalid. 

User Action. Correct the constant. 

INVCONTINUE, Invalid use of the "continue" statement. 

Error. You used the continue statement outside the body of a 
for, while, or do statement. 

User Action. Remove the continue statement, or check that any 
braces in recent loops are properly balanced. 

INVCONVERT, The source or target of a conversion is 
noncomputational. 

Error. One of the operands in an expression could not be 
converted as specified. For example, you attempted to cast some 
object to a structure. 

User Action. Correct the expression or cast. 

VAX C Compiler Messages 8-15 



INVDEFNAME, Missing or invalid name in **** preprocessor directive; 
directive ignored. 

Warning. The indicated directive was missing a required name, 
as in: 

Idefine 

The entire directive was ignored. 

User Action. Correct or remove the directive. 

INVDICTPATH, Missing or invalid path name in #dictionary preproces­
sor directive; directive ignored. 

Warning. The indicated directive was missing a required name, 
as in: 

Idictionary 

The compiler ignores the entire directive. 

User Action. Correct or remove the directive. 

INVFIELDSIZE, The declaration of //****// specifies an invalid field size; 
size of 32 bits assumed. 

Warning. The indicated field declaration was invalid because it 
specified too large a size. 

User Action. Correct the declaration to specify either a single, 
smaller field or several contiguous fields. 

INVFIELDTYPE, The declaration of //****// specifies an invalid data type; 
type //unsigned// assumed. 

Warning. You declared a field with an invalid data type. Fields 
must be declared (and manipulated) as integers or enumerated 
types. 

User Action. Correct the declaration to specify a valid data type. 

INVFILESPEC, Missing or invalid file specification in #include prepro-

8-16 VAX C Compiler Messages 

cessor directive; directive ignored. 

Warning. The #include directive either was missing a file or 
module name or specified one that is syntactically invalid. The 
directive was ignored. 

User Action. Correct the directive. 



INVFUNCDECL, //****// is an improperly declared function. 

Error. You improperly declared a function. For example, you 
may have omitted the parameter list or a semicolon between the 
function and a previous declaration. 

User Action. Correct the syntax of the declaration. 

INVFUNCOPTION, Invalid function definition option //****// ignored. 

Warning. The indicated function definition option was not 
supported. (The only valid option is the option, main_program.) 

User Action. Check the spelling of the option, or the syntax of 
the function definition. 

INVHEXCHAR, Invalid hexadecimal character value; high-order bits 
truncated. 

Warning. An escape character specified in hexadecimal exceeded 
the limit of a one byte character. 

User Action. Correct the hexadecimal constant to represent a 
valid escape character. 

INVHEXCON, Hexadecimal constant contains an invalid character. 

Error. You specified an invalid hexadecimal constant, such as 
OxG. 

User Action. Correct the constant. 

INVIFNAME, Missing or invalid name in #ifdef or #ifndef preprocessor 
directive; //true// assumed. 

Warning. You specified no name, or a syntactically invalid one, 
in the directive; the result of the test is assumed to be true. 

User Action. Correct the directive. 

INVLINEFlLE, Invalid file specification in #line preprocessor directive; 
directive ignored. 

Warning. The file specification was syntactically invalid, and the 
directive was ignored. 

User Action. Correct the directive. 

VAX C Compiler Messages 8-17 



INVLINELINE, Missing or invalid line number in #line preprocessor 
directive; directive ignored. 

Warning. The line number was missing or was syntactically 
invalid, and the directive was ignored. 

User Action. Correct the directive. 

INVMAINRETVAL, Return value of main function is not an integer type. 

Warning. You have declared a main function with a return value 
that is not an integer type. 

User Action. Check for an omitted semicolon at the end of any 
declaration immediately preceding the declaration of the main 
function or change the return value specification to one of the 
integer types. 

INVMODIDENT, Invalid ident specification in #module preprocessor 
directive; directive ignored. 

Warning. The ident specification in the directive either was not 
a valid identifier or was not a valid character-string constant. 

User Action. Correct the directive. 

INVMODIFIER, //****// is an invalid data type modifier in this declaration. 

Warning. You specified a data type modifier other than const or 
volatile as in the following example: 

char * int ptr; 

The data type modifier int will be ignored. 

User Action. Remove or change the data type modifier. 

INVMODTITLE, Missing or invalid title specification in #module prepro-

8-18 VAX C Compiler Messages 

cessor directive; directive ignored. 

Warning. The required title in the directive either was missing 
or was not a valid identifier. 

User Action. Correct the directive. 



INVOCTALCHAR, Invalid octal character value; high-order bits trun-
cated. 

Warning. The octal value in an escape sequence was too large, 
as in '\477'. Its high-order bits were truncated. 

User Action. Correct the value. 

INVOPERAND, Invalid **** operand of a "****" operator. 

Error. You specified an invalid operand for the indicated 
operator. 

This message is issued for arithmetic and bitwise operators if 
the operand is noncomputational (such as a structure). For 
other operators (such as the increment operator), the compiler 
issues the message if the operand is not an lvalue. For binary 
operators, the substituted text indicates which operand, left or 
right, is invalid. 

User Action. Make sure that the operand is the proper type for 
the operator, and that it is an lvalue. 

INV~PKEYWORD, Missing or invalid keyword in preprocessor directive; 
directive ignored. 

Warning. You wrote a directive with no keyword, as in: 

• ABC 

The directive is ignored. 

User Action. Correct or remove the directive. 

INVPROTODEF, The parameter list for a function prototype definition 
must associate an identifier with each type. 

Error. The function definition uses the prototype format but does 
not contain an identifier for each type in the parameter list. 

User Action. Place an identifier name in the appropriate type 
declaration. 

VAX C Compiler Messages 8-19 



INVPTRMATH, Invalid pointer arithmetic. 

Error. You attempted to perform an invalid arithmetic operation 
on a pointer or pointers. The only valid arithmetic operations 
allowed with pointers are addition and subtraction. 

Furthermore, for addition, the only allowable forms are as 
follows: 

pointer + integer 
pointer += integer 

For subtraction, the only allowable forms are as follows: 

pointer - integer 
pointer -= integer 
pOinter - pointer 

In the last form, both pointers must point to objects of the same 
size. 

User Action. Make sure that the expression conforms to one of 
the previous forms listed. If necessary, cast one or both operands 
to a compatible type. 

INVSTORCLASS, The //****// storage class is invalid for the declaration 
of //****//. 

Warning. You made one of the three following programming 
errors: 

1. You specified a storage class that is invalid in the context in 
which the declaration appears; for example, specifying auto 
in a declaration located outside of a function. 

2. You specified a storage class that is incompatible with 
another storage class specifier; for example, specifying both 
static and extern. 

8-20 VAX C Compiler Messages 

3. You specified a storage class that is incompatible with the 
data type of the indicated declarator; for example, specifying 
globalvalue for an array. 

In all cases, the compiler ignores the storage class specifier. 

User Action. Correct the declaration. 



INVSUBUSE, Invalid use of subscripting. 

Error. You specified a subscript in reference to a bit-field. 

User Action. Correct the syntax. If the structure containing the 
bit-field is an array, you must specify the subscript(s) with the 
qualifier rather than with the member name. 

INVSUBVALUE, Invalid subscript value. 

Error. You specified a subscript value which is not of an integer 
type. 

User Action. Change or cast the value to an integer type. 

INVTAGUSE, Invalid use of tag 11****11. 

Error. You used a previously defined tag name in a declaration 
of a different type. For example: 

enum color {red, green, blue}; 
struct color *cp; 

A given tag may only be used with one of the types enum j 

struct, or union. Any identifiers declared with the mismatched 
type will be undefined. 

User Action. Either make sure that each use of the tag name 
specifies the same type, or use different tag names with each 
type. 

INVVARIANT, Invalid declaration of variant aggregate 11****11. 

Error. You attempted an invalid variant structure or union 
declaration such as an array of variants, a pointer to a variant, or 
a list of variant names. 

User Action. Either remove the variant keywords from the 
declaration or make sure that the keywords are used in a valid 
structure or union declaration. 

INVVOIDUSE, IIvoidll is only valid in a parameter list when it appears 
alone. Its use is ignored. 

Warning. IIvoid ll has been used in a function prototype parame­
ter list but is not the only item in the list. 

User Action. Either eliminate IIvoidll or eliminate the extra 
parameter types in the parameter list. 

VAX C Compiler Messages 8-21 



LIBERROR, Error while reading library "****". 

Fatal. The compiler could not read the indicated library. Either 
it was not a text library, or its format had been corrupted. 

User Action. Verify the spelling of the library's name, and verify 
that it is a valid VMS text library. 

LIBLOOKUP, "****" was not found in any of the specified libraries. 

Fatal. The compiler failed to locate the indicated #inc1ude 
module in any of the specified or default libraries. 

User Action. Check the CCcommand line to verify that the 
library containing the module was specified and that the module 
name, if specified, was spelled correctly. If the library was a 
default library, verify (with SHOW TRANSLATION C$LIBRARY) 
that its name is the equivalent for C$LIBRARY. 

MACDEFINREF, A macro cannot be **** during the scan of a reference 
to the macro; directive ignored. 

Warning. You tried to redefine or undefine a macro within a 
reference to it. The compiler ignores the preprocessor directive. 

User Action. Move the directive to a position outside of the 
macro reference. 

MACNONTERMCHAR, Nonterminated character constant in macro 
argument; apostrophe added at end of line. 

Warning. You omitted the closing apostrophe in a character 
constant appearing in an argument in a macro reference. 

User Action. Correct the constant. 

MACREQARGS, Macro reference requires an argument list; "****" not 
substituted. 

8-22 VAX C Compiler Messages 

Error. You wrote a macro reference without an argument list. 
The reference was deleted from the source file. 

User Action. Correct the reference, specifying the same number 
of arguments as in the definition of the macro. 



MAC SYNTAX, Syntax error in macro defiriition; directive ignored. 

Warning. The syntax of the parameter list in a macro definition 
was invalid. (You must enclose the parameter list in parentheses 
and delimit individual parameters with commas.) 

User Action. Correct the syntax. 

MACUNEXPEOF, Unexpected end-of-file encountered in a macro refer­
ence; //****// not substituted. 

Error. The end-of-file was encountered during a macro reference; 
the reference was deleted. 

User Action. See if you misplaced the closing parenthesis in the 
macro argument list. 

MAXMACNEST, Maximum text replacement nesting level exceeded; 
//****// not substituted. 

Error. You specified a macro reference that is recursive or 
otherwise causes repeated substitutions to a depth greater than 
the implementation maximum of 64. 

User Action. Correct the recursion or simplify the definitions. 

MERGED, Merged **** and **** to form ****. 

Warning. The compiler merged two separate source tokens into 
a single token. 

For example, two plus signs separated by a space may be merged 
to form the increment operator (++). 

User Action. If the compiler's action is correct, remove the 
space between the tokens. Otherwise, check for a missing token 
between those merged. 

MISARGNUMBER, The number of arguments passed to the function 
does not match the number declared in a previous 
function prototype. 

Warning. The function call contains too few or extra arguments. 

User Action. Correct the number of arguments passed to the 
function. If the prototype is incorrect, correct the prototype. 

VAX C Compiler Messages 8-23 



MISP ARAMNUMBER, The number of parameters declared does not 
match the number declared in a previous function 
prototype. 

Warning. A function prototype for this function, which ap­
peared earlier in the source file, contains a different number of 
parameters than this declaration. 

User Action. Determine which declarator is correct and modify 
the other declarator to match it. 

MISPARAMTYPE, The type of parameter "****" does not match the type 
declared in a previous function prototype. 

Warning. The type of a parameter in a function definition does 
not match the type specified for that parameter in the previous 
prototype. 

User Action. Determine which type is correct for that parameter 
and correct either the function definition or the prototype. 

MISP ARENS, Mismatched parentheses in #if or #elif expression; "true" 
expression assumed. 

Warning. The expression in a #if or #elif preprocessor directive 
contained unbalanced parentheses. 

User Action. Make sure that you balanced the parentheses in 
the expression. 

MISSENDIF, Missing #endif preprocessor directive(s). 

Error. The compiler did not encounter an #endif line for the 
most recent #if, #ifdef, or #ifndef. 

User Action. Be sure that all directives are properly struc­
tured, and, if appropriate, add the missing #endif preprocessor 
directive(s). 

MISSEXP, Missing or invalid exponent in float constant; zero exponent 

8-24 VAX C Compiler Messages 

('eO') assumed. 

Warning. You wrote a floating-point constant with the letter 
'e' or 'E' but with no exponent or an invalid exponent. The 
exponent was assumed to be zero. 

User Action. Correct the constant. 



MISSPELLED, Replaced **** with ****. 
Warning. You misspelled a reserved word. 

User Action. Correct the spelling. 

MODZERO, Constant expression includes mod 0; the result has been 
replaced with O. 

Warning. The constant expression had an invalid mod expres­
sion, such as 5 % O. The result was zero. 

User Action. Correct the expression (but note that its operands 
must not be floating-point). 

NAMETOOLONG, Identifier name exceeds 31 characters; truncated to 
"****". 

Warning. VAX C identifiers are limited to a length of 31 recog­
nized characters. 

User Action. Shorten the indicated identifier. 

NESTEDCOMMENT, Nested comment encountered. 

Informational. The compiler detected an opening comment 
delimiter (/*) within another comment. (VAX C does not 
support the nesting of comments; the first ending comment 
delimiter (* /) encountered ends the comment.) 

User Action. Check that you have not misplaced a comment 
delimiter and inadvertently "commented out" necessary code. 

NOBJECT, No object file produced. 

Informational. The compiler did not produce an object file, due 
to conditions reported in previous messages. 

User Action. Make the corrections suggested by the other 
message(s). 

VAX C Compiler Messages 8-25 



NOFLOATOP, The **** operand of a "****" operator has been converted 
from floating-point to integer. 

Warning. The compiler converted the operand to an integer. 

The left or right operand of the indicated binary operator, or the 
operand of the indicated unary operator, cannot be of type float 
or double. 

User Action. Change or cast the operand to an integral type. 

NOLISTING, No listing file produced. 

Informational. The compiler did not create a listing file (usually 
due to previously reported errors). 

User Action. None. 

NOMIXNMATCH, The parameter list of a function can either contain all 
identifiers or all types, but not both. 

Error. The parameter list of a function contains some type 
specifiers and some identifiers that do not have type specifiers. 

User Action. Either eliminate the type specifiers or add type 
specifiers to the identifiers that are missing them to create a valid 
function prototype. 

NONOCTALDIGIT, Octal escape sequence in a character or string 

8-26 VAX C Compiler Messages 

constant terminated by a nonoctal digit. 

Warning. There was an 8 or 9 in the second or third position of 
an octal escape sequence. In this case, the digits preceding the 
non octal digit were evaluated, and the 8 or 9 was considered a 
separate character. The compiler issued this message if you used 
the jSTANDARD=PORTABLE qualifier on the CC command 
line. 

User Action. Make sure that the escape sequence contains only 
octal digits. If the 8 or 9 is separate from the escape sequence, 
yet must immediately follow it, then pad the escape sequence to 
three digits using leading zeros. 



NONOCTALESC, Escape sequence in a character or string constant starts 
with a nonoctal digit. 

Warning. The first of three digits of an escape sequence was 
an 8 or 9. In this case, the backslash is ignored, and the 8 or 
9 was treated as a character. The compiler issued this message 
if you used the /STANDARD=PORTABLE qualifier on the CC 
command line. 

User Action. Make sure that the compiler resolved the ambigu­
ity correctly. 

NONPORTADDR, Taking the address of a constant may not be portable. 

Informational. You used an ampersand operator with a constant 
in the argument list of a function call. (VAX C permits this 
special case, but other compilers may not.) 

User Action. If you do not require portability, no action is 
necessary. Otherwise, correct the line. 

NONPORTARG, Passing a structure by value may not be portable. 

Informational. You passed a structure by value in a function call 
or declared a function parameter as a structure. This message is 
issued if you used the /STANDARD=PORTABLE option on the 
CC command line. 

User Action. If the program must be portable, pass the structure 
by reference. 

NONPORTCLASS, Storage class //****// is not portable. 

Informational. This message was issued against the use of 
the globalref, globaldef, globalvalue, readonly, or nosh are 
storage class specifiers. This message is issued if you specified 
the /STANDARD=PORTABLE qualifier on the CC command 
line. 

User Action. No action is necessary if you do not require 
compatibility with other C compilers. Otherwise, correct the line. 

VAX C Compiler Messages 8-27 



NONPORTCOMP, Comparison of a pointer with a nonzero integer con-
stant or an integer expression may not be portable. 

Informational. You compared a pointer to something besides 
another pointer or the constant O. This message is issued if you 
specified jSTANDARD=PORTABLE on the CC command line. 

User Action. Change the operands or cast them to the same 
type. 

This usage is not portable and is not recommended. The only 
portable comparison is a comparison between a pointer variable 
and O. 

NONPORTCONST, Character constant **** may not be portable. 

Warning. VAX C allows up to four characters to be specified in 
a character constant, but other compilers may not. The compiler 
issues this message if you use the jSTANDARD=PORTABLE 
qualifier on the CC command line. 

User Action. If you do not require portability, no action is 
necessary. 

NONPORTCVT, Conversions between pointers and integers may not be 
portable. 

Informational. You assigned an integer to a pointer or an 
address to an integer variable. This message is issued if you 
specified jSTANDARD=PORTABLE on the CC command line. 

User Action. Change the operands or cast them to the same 
type. 

This usage is not portable and is not recommended. The only 
portable assignment is the following: 

pointer = 0 

NONPORTINCLUDE, #include of a library module is not portable. 

8-28 VAX C Compiler Messages 

Informational. The specification of a library module name 
in an #inc1udepreprocessor directive is VAX C specific and 
is not portable. This message is issued if you specified the 
jSTANDARD=PORTABLE qualifier on the CC command line. 

User Action. No action is necessary if you do not require 
compatibility with other C compilers. 



NONPORTINIT, Automatic initialization for "****" may not be portable. 

Informational. You initialized an array or structure of stor­
age class auto. This message is issued if you specified 
/STANDARD=PORTABLE on the CC command line. 

User Action. If you require portability, use separate assignment 
statement(s) to set the initial value(s). 

NONPORTOPTION, The "****" function definition option is not 
portable. 

Informational. The VAX C function definition options are VAX 
C specific and are not portable. The compiler issued this message 
if you used /STANDARD=PORTABLE on the CC command line. 

User Action. No action is necessary if you do not require 
compatibility with other C compilers. 

NONPORTPPDIRX, The **** preprocessor directive is not portable. 

Informational. You used the #dictionary or #module prepro­
cessor directive. 

These directives are VAX C specific and may not be recognized 
by other compilers. The compiler issues this message if you 
specified /STANDARD=PORTABLE on the CC command line. 

User Action. No action is necessary if you do not require 
program portability. 

NONPORTPTR, The use of an integer value as a pointer qualifier for 
"****" may not be portable. 

Informational. In a reference to a structure or union member 
accessed by the "-> " operator, the qualifying expression to the 
left of the "-> " should have a pointer value. VAX C allows the 
use of integer values as well, but such usage is not portable. This 
message is issued if you specify /STANDARD=PORTABLE on 
the CC command line. 

User Action. Either use a true pointer expression as the qualifier, 
or cast the integer expression as an appropriate structure or union 
pointer. 

VAX C Compiler Messages 8-29 



NONPORTTYPE, Data type 1/****1/ is not portable. 

Informational. You used either of the data types variant_struct 
or variant_union which are VAX C specific. This message 
is issued if you specify jSTANDARD=PORTABLE on the CC 
command line. 

User Action. No action is necessary if you do not require 
program portability. 

NONSEQUITUR, ,,****1/ is not a member of the specified structure or 
union. 

Informational. In a reference to the indicated member name, 
you specified a qualifier that does not represent the structure or 
union to which the member belonged. 

The reference is valid, because the member name is unique and 
the offset can be resolved unambiguously. This use of member 
names is maintained only for compatibility with older programs. 

User Action. If the qualifier is a pointer, cast it as a pointer to 
the appropriate structure or union. 

NONTERMCHAR, Nonterminated character constant; **** assumed. 

Warning. The compiler encountered the end of the source line 
before the end of a character constant. The compiler assumed 
the indicated value. 

User Action. Correct the constant. 

NONTERMNULCHAR, Nonterminated character constant contains no 

8-30 VAX C Compiler Messages 

characters; '\0' assumed. 

Warning. The cQmpiler detected a single apostrophe (') at the 
end of the source line. 

User Action. Check to see if the apostrophe is extraneous; 
otherwise correct the constant. 



NONTERMSTRING, Nonterminated string constant; quotes added at 
end of line. 

Warning. The compiler encountered the end of the source line 
before the end of a character string. The compiler inserted a 
quotation mark (//) at the end of the line. 

User Action. Check to see if the string should be continued on 
the following line; if so, insert a backslash (\) at the end of the 
line. Otherwise, check for the missing quotation mark. 

NOOPTIMIZATION, Complex control flow caused optimization to be 
suppressed for procedure or function //****//. 

Informational.. Optimization was not performed for the indi­
cated function. 

User Action. To take advantage of optimization, simplify the 
control flow within the indicated function. 

NOSUBSTITUTION, Macro substitution cannot be performed during the 
scan of a macro reference; //****// not substituted; 
directive ignored. 

NOSUBSTITUTION, Macro substitution cannot be performed during the 
scan of a macro reference; //****// not substituted; 
"true// expression assumed. 

Warning. You wrote a complex macro reference that contained 
a preprocessor directive which in turn contained another macro 
reference. For example: 

macref1 ( arg1, 
#include MACREF2 

,argn) 

The substitution of MACREF2 was not performed and the 
directive containing it was ignored. If the directive was #if or 
#elif, the expression would be assumed to be "true". 

User Action. Restructure your code so that the directive is not 
contained within the macro reference. 

VAX C Compiler Messages 8-31 



NOTFUNCTION, Function-valued expression not found. 

Error. You used an expression in the context of a function call, 
but the expression does not evaluate to a function. 

User Action. Make sure that the expression properly evaluates 
to a function; also make sure that you properly dereference any 
pointer to a function. 

NOTPARAMETER, "****" is not listed in the function's formal parameter 
list; treated as if declared internally. 

Warning. You declared the specified identifier as a function 
parameter, but the identifier does not appear in the parameter 
list. For example: 

f(a) int a,b; { . " } 

The identifier b does not appear in function f's formal parameter 
list. Its declaration is not portable, and is probably a coding 
error. The compiler treats b as if it were declared inside the 
function definition; in this case, b becomes an automatic variable. 

User Action. Correct the declaration or the parameter list. 

NOTPOINTER, Address-valued expression not found. 

Error. You used an expression in a context requiring a pointer 
value but the expression did not evaluate to an address. 

User Action. Make sure that the expression evaluates to a 
pointer value. 

NOTSWITCH, Default labels and case labels are valid only in "switch" 

8-32 VAX C Compiler Messages 

statements. 

Error. You used case or default as a label outside the body of a 
switch statement. 

User Action. Check for unmatched braces that may have prema­
turely terminated the most recent switch statement. 



NOTUNIQUE, 11****11 is not a unique member name in this context. 

Error. You used the same member name in more than one 
structure or union definition, and then used that member name 
as an offset from some other structure or union. Since the 
compiler had no way of knowing which member definition to 
use as an offset, a message was generated. 

User Action. To avoid ambiguities, try to make all member 
names unique. 

NULCHARCON, Character constant contains no characters; 
'\0' assumed. 

Warning. You used /I for an ASCII NUL character instead 
of '\0'. 

User Action. Use '\0'. 

NULHEXCON, Hexadecimal constant contains no digits; OXO assumed. 

Warning. You specified a constant such as OX or Ox. 

User Action. Be sure that 0 is a valid value in this context; if so, 
change the constant to OxO. 

OVERDRAFT, **** has gone into DISK QUOTA overdraft. 

Informational. Your disk I/O quota was exceeded while writing 
to a file. (If necessary, your program can continue to output 
information. ) 

User Action. Purge your directories to create more space or 
increase your disk I/O quota. 

PARAMNOTUSED, Macro parameter 11****11 is not referenced in the 
definition. 

Warning. A macro definition had more parameters than ap­
peared in its substitution, as in: 

Idefine m(a,b,c) a*b 

User Action. Specify the extra parameter in the substitution 
or, if it is actually superfluous, delete it from the parameter list. 
(This is a possible programming error.) 

VAX C Compiler Messages 8-33 



P ARAMREDECL, This declaration of //****// overrides a formal 
parameter. 

Warning. Your source program contained a redeclaration of one 
of the function's formal parameters, as in: 

f(a) { int a; } 

You cannot reference the parameter from within the function. 

User Action. If the declaration is simply misplaced, move it to 
a position between the function header and the left brace at the 
beginning of the function body. Otherwise, rename one of the 
identifiers. 

PARSTKOVRFLW, Parse stack overflow. 

Fatal. The source code in your program was too complex, 
containing statements nested too deeply. 

User Action. Simplify the program. 

PPUNEXPEOF, Unexpected end-of-file encountered in preprocessor 
directive; directive ignored. 

Warning. The compiler detected the end of the source file while 
attempting to read a continuation of a preprocessor directive. 

User Action. Check for nonterminated comments, character 
strings, and other constructs that can span several lines of code. 

PTRFLOATCVT, Operand of pointer addition or subtraction converted 
from floating-point to integer. 

8-34 VAX C Compiler Messages 

Warning. You combined a pointer operand with a floating-point 
value, as in: 

int i.*ip; 

i = ip + 2. ; 

User Action. Make sure that pointers are used only with other 
pointers or with integers; in the above example and in similar 
situations, remove the decimal point from the literal constant. 



QUALNOTLVALUE, The qualifier for 11****11 is not a valid lvalue. 

Error. In a reference to a structure or union member accessed by 
the period operator (.), the qualifying expression to the left of 
the period must be an lvalue. 

User Action. Correct the qualifying expression. 

QUALNOTSTRUCT, The qualifier for 11****11 is not a structure or union. 

Informational. In a reference to a structure or union member, 
the qualifying expression to the left of the period operator (.) 
or right arrow operator (-> ) did not represent a structure 
or union. The compiler issued this message if you specified 
jSTANDARD=PORTABLE on the CC command line. 

User Action. Check for possible spelling errors. 

REDEFPROTO, This prototype conflicts with either the function defini­
tion or with a function prototype which appears earlier 
in the file. 

Warning. The prototype conflicts with a previous declaration 
of this function, either in number, type of arguments, or in the 
return type of the function. 

User Action. Determine what attribute does not match and what 
the correct attribute should be. Correct the invalid definition. 

REDUNDANT, The operand of the 11&11 operator is already an address. 
The II &11 is ignored. 

Informational. You specified 11&11 in front of an array or 
function name. The message is issued if you specified 
jSTANDARD=PORTABLE on the CC command line. 

User Action. Make sure that you intend to pass the address 
of the array or function. If you require portability, remove the 
redundant 11&11. 

REP ABBREV, Replaced abbreviation **** with ****. 
Warning. You abbreviated a reserved word. 

User Action. Complete the spelling of all reserved words. 

VAX C Compiler Messages 8-35 



REPLACED, Replaced **** with ****. 
Warning. The compiler replaced an invalid token with a differ­
ent token. (Programs that contain syntax errors usually generate 
this message.) 

User Action. Check for incorrect syntax. 

REPOVERFLOW, Length of replacement text exceeds maximum buffer 
capacity; 1/****1/ not substituted. 

Error. The length of the replacement text for a macro reference 
or the length of the text plus the rest of the line exceeded the 
implementation's limit. 

User Action. Shorten the replacement text or use multiple 
substitutions to achieve the desired result. 

RESERVED, 1/****1/ is a reserved identifier; directive ignored. 

Warning. You have specified a reserved identifier name in a 
#define or #undef preprocessor directive. Such reserved names 
may not be redefined or undefined. They are as follows: 

• __ DATE __ 

• __ FILE __ 

• defined 

• __ TIME __ 

• __ LINE __ 

User Action. Choose a different spelling for the identifier. 

SCALEFACTOR, The CDD description for 1/****(1 specifies a scale factor 
of **** ; the scale factor is being ignored. 

Informational. VAX C does not support scaled arithmetic. 

User Action. Make sure that you appropriately scale computa­
tions involving this item. 

8-36 VAX C Compiler Messages 



SEMICOLONADDED, Semicolon added at the end of the previous 
source line. 

Warning. A missing semicolon was added to the line prior to 
the line numbered in this message. 

User Action. Check the previous line carefully and add the 
semicolon in the appropriate place. 

SUMMARY, Completed with **** errors, **** suppressed warning(s), 
and **** informational messages. 

Informational. This message indicates the number of compiler 
messages (errors, warnings, and informationals) issued during 
the compilation process. You can suppress informational and 
warning messages using the /[NO]WARNINGS CC command 
line qualifier (refer to Chapter 1, Developing VAX C Programs at 
DCL Command Level). 

User Action. Consider the individual messages and recompile if 
necessary. 

SYMTABOVFL, The total number of symbol table pages exceeds the 
implementation's limit. 

Fatal. The program was too complex. 

User Action. Simplify the program by reducing the number and 
size of variables and other names, constants, and so forth. 

SYNTAXERROR, **** Found **** when expecting ****. 
Error. The illustrated syntax error prevented the generation of 
an object file. 

User Action. Correct the errors shown. 

TBLOVRFLW, Internal table overflow, too many procedures, external 
symbols (psects), or the program is too complex. 

Fatal. Either the source file contains too many functions or 
expressions, or the compiler has overflowed its virtual address 
space. 

User Action. Reduce the size of the source file by dividing it 
into smaller, separate files, or change the logic of the program to 
reduce the number of complicated expressions. 

VAX C Compiler Messages 8-37 



TOOFEWMACARGS, Argument list for macro 1/****1/ contains too few 
arguments; missing arguments assumed to be null. 

Warning. You wrote a reference to the indicated macro with 
fewer arguments than were specified in its definition. 

User Action. Make sure that the number of arguments in the 
macro reference is the same as the number of parameters in the 
definition. 

TOOMANYCHAR, Character constant contains too many characters; 
truncated to ****. 

Warning. The length of a character constant exceeded the imple­
mentation limit (four characters). The constant was truncated to 
the indicated value. 

User Action. Reduce the length of the indicated character 
constant to four or fewer characters. 

TOOMANYERR, The total number of errors exceeds the limit of 100. 

Fatal. The compiler reported more than 100 error messages in 
this compilation. The compilation ended at this point. 

User Action. Correct the errors reported in previous compiler 
messages and recompile. 

TOOMANYFUNARGS, Function reference specifies too many argu-
ments; excess arguments ignored. 

Warning. You called a function with more than 253 arguments. 
The compiler passed only the first 253 arguments; the compiler 
ignored the remainder. 

User Action. Shorten the argument list. 

TOOMANYINITS, The initializer list for 1/****1/ specifies too many 

8-38 VAX C Compiler Messages 

initializers; excess initializers ignored. 

Warning. You specified too many initializers for the indicated 
variable. (If the indicated item is an array or structure, it may be 
only partially initialized.) 

User Action. Make sure that all braces near the initializer 
sublists are balanced; if the item being initialized is or contains 
an array, make sure that you accounted for all dimensions. 



TOOMANYMACARGS, Argument list for macro "****" contains too 
many arguments; excess arguments ignored. 

Warning. You wrote a reference to the indicated macro with 
more arguments than were specified in its definition. 

User Action. Make sure that the number of arguments in the 
macro reference is the same as the number of parameters in the 
definition. 

TOOMANYMACP ARM, Parameter list for macro 1/****" contains too 
many parameters; excess parameters ignored. 

Warning. The number of macro parameters in a #define prepro­
cessor· directive exceeded the implementation limit of 64. 

User Action. Rewrite the macro definition so that it uses 64 or 
fewer parameters. 

TOOMANYSTR, String constant contains too many characters; truncated. 

Warning. You wrote a character-string constant whose length 
exceeded the implementation's limit of 65,535 characters. 

User Action. Shorten the string. 

TRUNCFLOAT, Double-precision floating-point constant cannot be 
converted to single precision; 0.0 assumed. 

Warning. You specified a double-precision constant in an ex­
pression involving a conversion to single-precision, but the 
constant's value was too small to be represented in single­
precision. 

User Action. Ensure that 0 is a valid value in this context; if 
necessary, redeclare the conversion target as double. 

VAX C Compiler Messages 8-39 



TRUNCSTRINIT, String initializer for //****// contains too many charac-
ters to fit; truncated. 

Warning. If the variable was a simple one-dimensional array, 
the initializer was truncated (such that the length of the initializer 
was array-I) and the null byte was added to the end of the array. 
If the array is a multidimensional array or an array within a 
structure, the initializer was truncated to the length of the array 
and a null byte was not added. 

User Action. Treat arrays of characters as strings allowing 
for the null byte at the end of the array. The special case of 
multidimensional arrays and arrays within structures should be 
taken into account, especially when you do not want the null 
byte to be truncated. 

TYPECONFLICT, //****// conflicts with a previous data type in this 
declaration; previous data type ignored. 

Warning. You specified more than one data type specifier in this 
declaration, and the indicated specifier conflicted with a previous 
one. 

User Action. Check for a missing semicolon in the previ­
ous declaration; otherwise, make sure that all specifiers are 
compatible. 

TYPEINLIST, The type of //****// was specified in the parameter list. This 
declaration is ignored. 

Warning. The function definition uses the prototype format but 
still contains a declaration of this parameter in the parameter 
declaration section. 

User Action. Eliminate the redundant declaration. 

UABORT, Compilation terminated by user. 

8-40 VAX C Compiler Messages 

Fatal. The compilation was terminated by a DCL CTRL/C 
command. 

User Action. None. 



UNDECLARED, //****// is not declared within the scope of this usage. 

Error. You referred to an undeclared variable. (You must declare 
variables before you use them.) 

User Action. Check the spelling of the identifier, or add a 
declaration for it, if appropriate. 

UNDEFIFMAC, //****// is not a currently defined macro; constant zero 
assumed. 

Warning. The identifier in a constant expression in an #if 
or #elif preprocessor directive was not currently defined as a 
macro. The expression was evaluated as if the identifier were a 
constant O. 

User Action. Define the identifier as a macro or remove the 
reference to it. 

UNDEFLABEL, Label //****// is undefined in this function. 

Error. You wrote //goto label-name// for an undefined label. The 
scope of a label name is restricted to the function in which it is 
used as a label; goto statements cannot branch to labels inside 
other functions. 

User Action. Check the spelling of the label name or make other 
corrections as appropriate. 

UNDEFMACRO, //****// is already undefined; directive ignored. 

Warning. The specified identifier (in an #undef directive) was 
either never defined or else occurred in a previous #undef. 

User Action. Remove the #undef, or, if applicable, appropri­
ately add the definition of the identifier. 

UNDEFSTRUCT, //****// is a structure or union type that is not fully 
defined at this point in the compilation. 

Error. You used a name in the context of a structure or union 
tag, but the name is either undefined or is not yet fully defined 
as a tag. 

User Action. Check the spelling of the name, and make sure 
that it is fully defined as a tag before it is used. 

VAX C Compiler Messages 8-41 



UNEXPEND, Unexpected end-of-**** encountered in #define preproces-
sor directive; directive ignored. 

Warning. The end of the #define directive or end of the source 
file was encountered before the definition was complete. 

User Action. Check for an incomplete comment within the 
definition, or for a missing continuation of the directive. 

UNEXPEOF, Unexpected end-of-file encountered in a ****. 

Error. The compiler encountered the end of the source file while 
scanning for the end of a string constant or a comment. 

User Action. Make sure that string constants and comments are 
properly terminated. 

UNEXPPDIRX, Unexpected **** preprocessor directive encountered; 
directive ignored. 

Warning. The specified directive occurred out of place and was 
ignored. 

User Action. Check the logic of all directives in the program to 
be sure that it is valid. 

UNKSIZEOF, Operand of sizeof has an unknown size; 0 assumed. 

Warning. The operand of a sizeof operator was an array whose 
size was unknown at compile time. A size of zero was assumed. 

User Action. Change the declaration of the array to specify the 
appropriate dimension bound. 

UNRECCHAR, Unrecognized character ignored. 

8-42 VAX C Compiler Messages 

Warning. The line contained either an entirely meaningless 
character or one that appears out of its proper context; for 
example, a number sign ( #) that was not the first character on a 
line. 

User Action. Move or remove the character. 



UNRECPRAGMA, Unrecognized pragma; directive ignored. 

Informational. You have specified a #pragma preprocessor 
directive that is not recognized by VAX C. 

User Action. Correct the syntactic or semantic error that ren­
dered it unrecognizable. Common errors include misspelled 
parameters and ambiguous abbreviations. 

UNSUPPTYPE, The COO description for "****" specifies a data type not 
supported in C. 

Informational. The compiler could not represent the indicated 
item in a VAX C construct. The compiler generated a declaration 
of a structure whose length was the same as the length of the 
unsupported data type. 

User Action. Change the COO description to specify a supported 
data type, if you require a predse representation in VAX C. 

VARNOTMEMBER, A variant aggregate must be a member of a struct or 
union. 

Error. You attempted to specify a variant_struct or a 
variant_union outside of an aggregate declaration. 

User Action. If you intend to use the structure or union as 
declared, and if the structure or union is the outermost aggregate 
in a group of nested aggregates, replace the variant keywords 
with struct or union. If you intend to use the structure or union 
as a variant aggregate, and if the structure or union is otherwise 
properly declared, nest the declaration within a valid structure or 
union declaration. If you used the variant_struct or variant_ 
union keywords in declarations other than structure or union 
declarations, remove the variant keywords. 

VOIOCALL, A IIvoid ll function cannot be invoked in a context where a 
value is expected. 

Error. You coded a call to a function declared as void, but the 
call appeared in a context where a return value was expected. 

User Action. Move the function call to a different context, or if 
the function does return a value, declare it to be void. 

VAX C Compiler Messages 8-43 



VOIDEXPR, A "void" expression cannot be used in a context where a 
value is expected. 

Error. You cast an expression to be void, but the expression was 
used in a context where its value was required. 

User Action. Remove the cast, or move the expression to a 
context that requires no return value. 

VOIDNOTFUNC, "****" is not declared to be a function; only functions 
may be declared "void". 

Error. You declared an object other than a function to be void. 

User Action. Check the syntax of the declarator. You may find 
the output produced by the /SHOW=SYMBOLS CC command 
line qualifier to be helpful in diagnosing this problem. 

VOIDRETURN, A "return" statement in a "void" function may not 

8-44 VAX C Compiler Messages 

specify a value; expression ignored. 

Warning. You specified a value in a return statement within a 
function declared as void. 

User Action. Either remove the return value or redefine the 
function as returning the appropriate data type. 



Appendix C 

Optional Programming 
Productivity Tools 

This appendix provides an overview of optional programming productivity 
tools. These tools are not included with the VAX C software; they must 
be purchased separately. Using these tools can increase your productivity 
as a VAX C programmer. Contact your DIGITAL sales representative for 
more information about these tools. 

C. 1 Using VAXLSE with VAX C 

The VAX Language Sensitive Editor (VAXLSE) is a powerful and flexible 
text editor designed specifically for software development. VAXLSE has 
important features that help you produce syntactically correct code in 
VAXC. 

To invoke VAXLSE, specify the LSEDIT command followed by a file name 
with a C file type at the DCL prompt. For example: 

$ LSEDIT USER.C 

The following sections describe some of the key features of VAXLSE. 
Section C.l.I discusses how to enter source code using VAXLSE and 
Section C.l.2 describes VAXLSE's compiler interface features. 
Section C.I.3 gives examples of how to generate VAX C source code with 
VAXLSE. 

For more details on advanced features of VAXLSE and VAXSCA, see the 
Guide to V AX Language-Sensitive Editor and V AX Source Code Analyzer. 

Optional Programming Productivity Tools C-1 



C.1.1 Entering Source Code Using Tokens and Placeholders 

VAXLSE's language-sensitive features simplify the tasks of developing and 
maintaining software systems. These features include language-specific 
placeholders and tokens, aliases, comment and indentation control, and 
templates for subroutine libraries. 

VAXLSE can be used as a traditional text editor. In addition, you can have 
the power of using VAXLSE's tokens and placeholders to step through 
each program construct and supply text for those constructs needing it. 

Placeholders are markers in the source code that indicate locations where 
you can provide program text. These placeholders help you to supply 
the appropriate syntax in a given context. Generally, you do not need to 
type placeholders; they are inserted for you by VAXLSE. Placeholders are 
surrounded by brackets or braces and percent signs. 

The types of V AXLSE placeholders are as follows: 

Type of Placeholder 

Terminal 

N on terminal 

Menu 

Description 

Provides text strings that describe valid replacements 
for the placeholder. 

Expands into additional language constructs. 

Provides a list of options corresponding to the 
placeholder. 

Placeholders are either optional or required. Required placeholders, in­
dicated by braces, represent places in the source code where you must 
provide program text. Optional placeholders, indicated by brackets, rep­
resent places in the source code where you can either provide additional 
constructs or erase the placeholder. 

You can move forward or backward from placeholder to placeholder. In 
addition, you can delete or expand placeholders as needed. 

Tokens typically represel1t keywords in VAX C. When expanded, tokens 
provide additional language constructs. You can type tokens directly into 
the buffer. Generally, you use tokens in situations, such as modifying an 
existing program, where you want to add additional language constructs 
and there are no placeholders. For example, typing IF and issuing the 
EXP AND command causes a template for an IF construct to appear on 
your screen. You can also use tokens to bypass long menus in situations 
where expanding a placeholder, such as {@statement@}, would result in a 
lengthy menu. 

C-2 Optional Programming Productivity Tools 



You can use tokens to insert text when editing an existing file by typing 
the name for a function or keyword and issuing the EXPAND command. 

VAXLSE provides commands that allow you to manipulate tokens and 
placeholders. These commands and their default key bindings are as 
follows: 

Command Key Binding Function 

EXPAND CTRL/E Expands a place-
holder. 

UNEXPAND PFI-CTRL/E Reverses the 
effect of the most 
recent placeholder 
expansion. 

GOTO PLACEHOLDER/FORWARD CTRL/N Moves the cursor 
forward to the 
next placeholder. 

GOTO PLACEHOLDER/REVERSE CTRL/P Moves the cursor 
backward to the 
next placeholder. 

ERASE PLACEHOLDER/FORWARD CTRL/K Erases a place-
holder. 

UNERASE PLACEHOLDER PFI-CTRL/K Restores the most 
recently erased 
placeholder. 

Down-arrow Moves the in-
dicator through 
a screen menu 
toward the 
bottom. 

i Up-arrow Moves the in-
dica tor through 
a screen menu 
toward the top. 

IENTERI {ENTER } Selects a menu 
IRETURNI . RETURN option. 

Optional Programming Productivity Tools C-3 



To display a list of all the defined tokens provided by VAX C, enter the 
SHOW TOKEN command. 

LSE> SHOW TOKEN 

To display a list of all the defined placeholders provided by VAX C, enter 
the SHOW PLACEHOLDER command: 

LSE> SHOW PLACEHOLDER 

To put either list into a separate file, first enter the appropriate SHOW 
command to put the list into the $SHOW buffer. Then enter the following 
commands: 

LSE> GOTO BUFFER $SHOW 
LSE> WRITE filename 

To obtain a hard copy of the list, use the PRINT command at DCL level 
to print the file you created. 

To obtain information about a particular token or placeholder, you can 
also specify a token name or placeholder name after the SHOW TOKEN 
or SHOW PLACEHOLDER command. 

C.1.2 Compiling Source Code 

To compile your code and to review compilation errors without leaving 
the editing session, you can use the VAXLSE commands COMPILE 
and REVIEW. The COMPILE command issues a DCL command in a 
subprocess to invoke the VAX C compiler. The compiler then generates 
a file of compile-time diagnostic information that VAXLSE can use to 
review compilation errors. The diagnostic information is generated with 
the /DIAGNOSTICS qualifier that VAXLSE appends to the compilation 
command. ' 

For example, if you issue the COMPILE command while in the buffer 
USER.C, the reSUlting DCL command is as follows: 

$ cc USER.C/DIAGNOSTICS=USER.DIA 

V AXLSE supports all of the VAX C compiler's command qualifiers as 
well as user-supplied command procedures. You can specify DCL quali­
fiers, such as the /LIBRARY qualifier, when invoking the compiler from 
VAXLSE. 

C-4 Optional Programming Productivity Tools 



The REVIEW command displays any diagnostic messages that result 
from a compilation. VAXLSE displays the compilation errors in one 
window and the corresponding source code in a second window. This 
multiwindow capability allows you to review your errors while examining 
the associated source code. This capability eliminates tedious steps in 
the error-correction process, and helps ensure that all the errors are fixed 
before you compile your program again. 

V AXLSE provides several commands to help you review errors and 
examine your source code. The following table lists these commands and 
their default key bindings where applicable. 

Command Key Binding Function 

COMPILE None Compiles the contents of the source 
buffer. 

COMPILE/REVIEW None Compiles the contents of the source 
buffer, puts VAXLSE into REVIEW 
mode, and displays any errors resulting 
from the compilation. 

REVIEW None Performs the same function as the 
/REVIEW qualifier on the COMPILE 
command: puts VAXLSE into REVIEW 
mode, and displays any errors resulting 
from the last compilation. 

END REVIEW None Removes the buffer $REVIEW from the 
screen; returns the cursor to a single 
window containing the source buffer. 

GOTO SOURCE CTRL/G Moves the cursor to the source buffer 
that contains the error. 

NEXT STEP CTRL/F Moves the cursor to the next error in 
the buffer $REVIEW. 

PREVIOUS STEP CTRL/B Moves the cursor to the previous error 
in the buffer $REVIEW. 

1 { Down-arrow } Moves the cursor within a buffer. 
i Up-arrow 

Optional Programming Productivity Tools C-5 



C.1.3 Examples 

This section describes the special features of VAX C available through 
V AXLSE and provides examples of VAX C code written with VAXLSE. 

The following examples show expansions of the more frequently used 
VAX C tokens and placeholders. The examples are expanded to show 
the formats and guidelines VAXLSE provides; however, not all of the 
examples are fully expanded. 

The examples show expansions of the following VAX C features: 

• Preprocessor Lines 

• External Definitions 

• Function Definitions 

• Block Declarations 

• Statements and Expressions 

Instructions and explanations precede each example, and an arrow ( ~ 
indicates the line in the code where an action has occurred. 

To reproduce the examples, invoke VAXLSE and the VAX C language by 
using the following syntax: 

LSEDIT [/qualifier ... J filename.C 

See Section C.l.l for the commands that manipulate tokens and 
placeholders. 

When the editor is used to create a new VAX C program, the initial string, 
{@compilation_unit@}, will appear at the top of the screen. Expansion of 
the initial string will produce the following: 

-) [~#module~J 

[~~odule_level_comments~] 
[~include_files~] 
[~acro_definitions~] 

[~preprocessor_line~] ... 

[~commenU] ... 

[~external_definition~] .. . 

[~function_definition~] .. . 

C-6 Optional Programming Productivity Tools 



c. 1.3. 1 Preprocessor Lines 

Erase [@_#module@], [@module-Ievel_comments@], 
[@include~les@], and [@macro_definitions@]. The cursor will now be 
positioned on [@preprocessor-line@]. Expand [@preprocessor-line@] to 
duplicate it and display a menu. Select the option _#include. 

-> #include 
[~preprocessor_line~] ... 

[~comment~] ... 

[~external_definition~] ... 

[~function_definition~] .. , 

When the #include option is selected, another menu appears that lists the 
types of #include statements. Select the option 
#include {@include-Illodule_name@}. 

-> #include {~include_module_name~} 

[~preprocessor_line~] ... 

[~comment~] ... 

[~external_definition~] .. . 

[~function_definition~] .. . 

Type the value stdio over the placeholder {@include_module_name@}. 

C.1.3.2 External Definition 
[~preprocessor_line~] ... 

[~comment~] ... 

[~external_definition~] .. . 

[~function_definition~] .. . 

Erase the placeholders [@preprocessor-line@] and [@comment@]. 
Expand the placeholder [@external_definition@] to display a menu 
and select the option static. 

-> static [~readonly~] [~data_type~] {~init_declarator~} ... ; 
[~external_definition~] ... 

[~function_definition~] ... 

Optional Programming Productivity Tools C-7 



Erase the placeholder [@readonly@], and type the value double over the 
placeholder [@data_type@]. 

-) static double <~init_declarator~} ... ; 
[~external_definition~] .. . 

[~function_definition~] .. . 

Expand {@init_declarator@} to produce the following: 

-) static double <~declarator~} [~= initializer~]. [~init_declarator~] ... ; 
[~external_definition~] .. . 

[~function_definition~] .. . 

Erase the duplicated list placeholder [@init_declarator@]... (the sepa­
rator text; will appear immediately after the inserted text). Expand the 
placeholder {@declarator@} to display a menu and select the option 
{@identifier@}; type the value number over {@identifier@}. 

-) static double number [~= initializer~]; 
[~external_definition~] .. . 

[~function_definition~] .. . 

Expand the placeholder [@= initializer@] to display a menu and select 
the option = {@init_constant_expression@}. . 

-) static double number = {~init_constant_expression~}; 
[~external_definition~] .. . 

[~function_definition~] .. . 

Type the value 30.0 over {@init_constant_expression@}. 

-) static double number = 30.0; 
[~external_definition~] .. . 

[~function_definition~] .. . 

C-8 Optional Programming Productivity Tools 



C.1.3.3 Function Definition 
[~external_definition~] .. . 

[~function_definition~] .. . 

Erase the placeholders [@preprocessor-line@], [@comment@], and 
[@external_definition@]. Expand [@function_definition@] to display a 
menu and select the option {@function_def@}. 

-) 

[~function_level_comments~] 
[~static~] [~data_type~] 
[~param_decl~] ... 
{ 

[~block_decl~] .. . 

{~statementn .. . 
} 

[~function_definition~] ... 

Because [@functior:t_definition@] is a list placeholder, a copy of it is 
placed after the body of {@function_def@}. Since 
[@function_definition@] is optional, for purposes of this example erase it. 

Erase the placeholders [@function-Ievel_comments@] and [@static@]. 
Expand [@data_type@] to display a menu and select the option 
[@unsigned@]#int. 

-) [~unsigned~] int {~function_name~} ([~parameter~] ... ) 
[~param_decl~] ... 
{ 

{~statement~} ... 
} 

Erase [@unsigned@] and type the value get_string over 
{@function_name@}. Expand the placeholder [@parameter@] to produce 
the following: 

-) int get_string ({~identifier~}. [~parameter~] ... ) 
[~param_decl~] ... 
{ 

[~block_decl~] .. . 

{~statement~} .. . 
} 

Optional Programming Productivity Tools C-9 



Type the value string over {@identifier@}, and expand [@parameter@] 
again to produce the following: 

-> int get_string (string. {~identifier~}. [~parameter~] ... ) 
[~param_decl~] ... 
{ 

[~block_decl~] .. . 

{~statement~} .. . 
} 

Type the value limit over {@identifier@} and erase [@parameter@] .... 

-> int get_string (string. limit) 
[~param_decl~] ... 
{ 

[~block_decl~] .. . 

{~statement~} .. . 
} 

Expand the placeholder [@param_dec1@]. 

int get_string (string. limit) 
-> [~register~] [~data_type~] {~deelarator~} ... ; 

[~param_decl~] ... 
{ 

[~block_decl~] .. . 

{~statemenU} .. . 
} 

Expand the placeholder [@register@] to produce the value register. Type 
the value char over the placeholder [@data_type@]. 

int get_string (string. limit) 
-> register char {~declarator~} ... ; 

[~param_decl~] ... 
{ 

[~block_decl~] .. . 

{~statement~} .. . 
} 

Expand {@dec1arator@} to display a menu and select the array format 
{@dec1arator@} [[@constant_expression@]]. Erase the duplicated list 
placeholder {@dec1arator@} to produce the following: 

int get_string (string. limit) 
-> register char {~declarator~} [[~constant_expression~]]; 

[~param_decl~] ... 
{ 

[~block_decl~] .. . 
{~statemenU} .. . 

} 

C-1 0 Optional Programming Productivity Tools 



Type the value string over {@declarator@} and erase 
[@constant_expression@]. 

int get_string (string. limit) 
-> register char string []; 

[~param_decl~] ... 
{ 

[~block_decl~] .. . 

{~statemenU} .. . 
} 

Expand [@param_decl@] again and erase the placeholder [@register@]. 

int get_string (string. limit) 
register char string []; 

-> [~data_type~] {~declarator~} ... ; 
[~param_decl~] ... 
{ 

[~block_decl~] .. . 

{~statemenU} .. . 
} 

Type the value int over [@data_type@] and expand {@declarator@} to 
display a menu. Select the option {@identifier@}. 

int get_string (string. limit) 
register char string []; 

-> int {~identifier~}. [~declarator~] ... ; 
[~param_decl~] ... 
{ 

{~statement~} ... 
} 

Type the value limit over {@identifier@} and erase [@declarator@]. .. and 
[@param_decl@] .... 

int get_string (string. limit) 
register char string []; 

-> int limit; 
{ 

[~block_decl~] .. . 

{~statemenU} .. . 
} 

Optional Programming Productivity Tools· C-11 



C.1.3.4 Block Declaration 
[~function_definition~] ... 

Expand the placeholder [@function_definition@] to display a menu and 
select the option main_function_def. 

-) [~function_level_comments~] 
{~main () OR main function that accept arguments from the command line~} 
{ 

[~block_decl~] .. . 

{~statemenU} .. . 
} 
[~function_definition~] ... 

Erase the placeholder [@function-Ievel_comments@] and the duplicated 
list placeholder [@function_definition@]. Expand {@main ( ) OR main 
function that accept arguments from the command line@} to display a 
menu and select the option main ( ). 

-) main 0 
{ 

[~block_decl~] .. . 

{~statemenU} .. . 
} 

Expand the placeholder [@block_decl@] to display a menu and select the 
option [@data_type@] [@init_declarator@]. 

main 0 
{ 

-) [~data_type~] [~init_declarator~] ... ; 
[~block_decl~] .. . 

{~statement~} .. . 
} 

Expand option struct will automatically expand to a menu, from which 
you select the option {@struct struct_decl@}. 

-) 

main 0 
{ 

{~struct struct_decl~} 
[~block_decl~] .. . 

{~statemenU} .. . 
} 

C-12 Optional Programming Productivity Tools 

[~init_declarator~] ... ; 



Expand {@struct struct_decl@} to produce the following: 

main 0 
{ 

-) struct 
{ 

{~member_decl~} ... 
} [~init_declarator~] ... ; 

[~block_decl~] .. . 

{~statementn .. . 
} 

Expand {@member_decl@} to display a menu and select the option 
[@data_type@] {@declarator@} ... ;. 

main 0 
{ 

struct 
{ 

-) [~data_type~] {~declarator~} ... ; 
[~member_decl~] ... 
} [~init_declarator~] ... ; 

[~block_decl~] .. . 

{~statement~} .. . 
} 

Type the value char over [@data_type@]. Expand {@declarator@} to 
display a menu and select the option {@declarator@} 
[[@constant_expression@]]. Erase the duplicated list placeholder 
[@declarator@]. 

-) 

main 0 
{ 

} 

struct 
{ 

char {~declarator~} [[~constant_expression~]]; 
[~member_decl~] ... 
} [~init_declarator~] ... ; 

[~block_decl~] .. . 

{~statemenU} .. . 

Optional Programming Productivity Tools C-13 



Type the value city over {@dec1arator@} and the value 20 over 
[@constant_expression@]. 

-) 

main 0 
{ 

} 

struct 
{ 

char city [20]; 
[~member~decl~] ... 
} [~init_declarator~] ... ; 

[~block_decl~] .. . 

{~statementn .. . 

Expand the placeholder [@member_decl@] again to [@data_type@] 
{@declarator@} ... ;. Type the value int over [@data_type@] and the value 
population over {@declarator@}. Erase the placeholder {@declarator@} .... 

-) 

main 0 
{ 

struct 
{ 

char city [20]; 
int population; 
[~member~decl~] ... 
} [~init_declarator~] ... ; 

[~block_decl~] .. . 

{~statementn .. . 
} 

Erase the list placeholder [@member_decl@] and expand 
[@init_declarator@]. 

-) 

main 0 
{ 

struct 
{ 

char city [20]; 
int population; 
} {~declarator~} [~= initializer~]. [~init_declarator~] ... ; 

[~block_decl~] .. . 

UstatemenU} .. . 
} 

C-14 Optional Programming Productivity Tools 



Expand {@declarator@} to display a menu and select the option 
{@declarator@} [[@constant_expression@]]. 

-> 

main 0 
{ 

} 

struct 
{ 

char city [20]; 
int population; 
} {~declarator~} [[~constant_expression~]] [~= initializer~]. 

[~init_declarator~] ... ; 
[~block_decl~] .. . 

{~statemenU} .. . 

Type the value data over {@declarator@} and the value 2 over 
[@constant_expression@]. 

-> 

main () 
{ 

} 

struct 
{ 

city [20]; 
population; 

char 
int 
} data [2] [~= initializer~]. 

[~init_declarator~] ... ; 
[~block_decl~] ... 

{~statementn ... 

Expand the placeholder [@= initializer@] to display a menu and select the 
option = {@init_multiple-line_form@}. 

-> 

main 0 
{ 

struct 
{ 

char city [20]; 
int population; 
} data [2] = {~init_multiple_line_form~}. 

[~init_declarator~] ... ; 
[~block_decl~] .. . 

{~statemenU} .. . 
} 

Optional Programming Productivity Tools C-15 



Expand {@init_multiple-line_form@} to produce the following: 

main 0 
{ 

struct 
{ 

char city [20]; 
int population; 
} data [2] = { 

}, 
[Ginit_declaratorG] ... ; 

[Gblock_declG] .. . 

{GstatemenU} .. . 
} 

Expand {@iniLJtem@} ... } to display a menu and select the option 
{ {@init--item@} ... }. 

main 0 
{ 

} 

struct 
{ 

char city [20]; 
int population; 
} data [2] = { 

}, 
[Ginit_declaratorG] ... ; 

[Gblock_declG] .. . 

{GstatementG} .. . 

Type the value Boston over {@init--item@}. 

main 0 
{ 

struct 
{ 

char city [20]; 
int population; 
} data [2] = { 

-) { "Boston", [Ginit_itemG] ... }, 
[Ginit_itemG] ... 

} 

}, 
[Ginit_declaratorG] ... ; 

[Gblock_declG] .. . 

{GstatementG} .. . 

C-16 Optional Programming Productivity Tools 



Expand the optional placeholder [@init~tem@] to display a menu and 
select the option {@init_constant_expression@}. 

main 0 
{ 

struct 
{ 

char city [20]; 
int population; 
} data [2] = { 

-> { "Boston", {lDinit_constant_expressionlD} }, 
[lDinit_itemlD] ... 

} 

}, 
[lDinit_declaratorlD] ... ; 

[lDblock_decllD] .. " 

{lDstatementlD} ... 

Type the value 250000 over {@init_constant_expression@}. 

main 0 
{ 

struct 
{ 

char city [20]; 
int population; 
} data [2] = { 

-> { "Boston", 250000 }, 
[lDinit_itemlD] ... 

}, 
[lDinit_declaratorlD] ... ; 

[lDblock_decllD] .. . 

{lDstatemenU} .. . 
} 

Expand the list placeholder [@init~tem@] in the same manner to produce 
the following: 

main 0 
{ 

struct 
{ 

char city [20]; 
int population; 
} data [2] = { 

{ "Boston", 250000 }, 
-> { "Manchester", 25000 } 

}, 
[lDinit_declaratorlD] ... ; 

[lDblock_decllD] .. . 

{lDstatementlD} .. . 
} 

Optional Programming Productivity Tools C-17 



c~ 1.3.5 Statements and Expressions 
-> [~function_d~finition~] ... 

Expand the placeholder [@function_definition@] to display a menu and 
select the option {@main_function_def@}. 

-> [~function_level_comments~] 
{~main () OR main function that accept arguments from the command line~} 
{ 

[~block_decl~] .. . 

{~statement~} .. . 
} 

[~function_definition~] ... 

Erase the placeholder [@function-1evel_comments@] and the duplicated 
list placeholder [@function_definition@]. Expand {@main ( ) OR main 
function that accept arguments from the command line@} to display a 
menu and select the option main ( ). 

-> main () 
{ 

{~statemenU} ... 
} 

Expand the placeholder {@statement@} to display a menu and select the 
option if. 

main () 
{ 

[~block_decl~] ... 

-> if ({~expression~}) 

} 

{~statemenU} 
[~else if (expression) statement~] 
[~else statement~] 
[~statemenU] ... 

Erase the optional placeholders [@else if (expression) statement@] and 
[@else statement@]. Expand the placeholder {@expression@} to display a 
menu and select the option binary_expression. 

main 0 
{ 

-> if ({~binary_expression~}) 

} 

{~statemenU} 
[~statemenU] ... 

C-18 Optional Programming Productivity Tools 



Expand {@binary_expression@} to display a menu and select the option 
{@expression@} {@ { <, >, <=, > =, ==, !=} @} {@expression@}. 

main 0 
{ 

[Gblock_declG]. " 

-> if ({GexpressionG} {G {<, >, <=, >=, ==, !=} G} {GexpressionG}) 
{GstatementG} 

[GstatementG] ... 
} 

Type the value count over {@expression@}. Expand the placeholder 
{@ { <, >, <=, > =, ==, !=} @} to display a menu and select the 
option <. 

main () 
{ 

-> if (count < {GexpressionG}) 

} 

{(OstatementG} 
[GstatementG] ... 

Type the value 10 over {@expression@}. 

main 0 
{ 

[Gblock_declG] ... 

-> if (count < 10) 

} 

{GstatementG} 
[GstatementG] ... 

Expand {@statement@} to display a menu and select the option 
{@expression@};. 

main 0 
{ 

[Gblock_declG] ... 

if (count < 10) 
-> {GexpressionG}; 

[GstatementG] ... 
} 

Optional Programming Productivity Tools C-19 



Expand {@expression@} to display a menu and select the option primary. 
Another menu is automatically displayed. Select the option function_call 
to produce the following: 

main 0 
{ 

[Gblock_declG] ... 

if (count < 10) 
-) {GprimaryG} ([Gactual_argumentG] ... ); 

[GstatementG] ... 
} 

Type the value printf over {@primary@}, and expand 
{@actual_argument@}. 

main 0 
{ 

[Gblock_declG] ... 

if (count < 10) 
-) printf ({GexpressionG}. [Gactual_argumentG] ... ); 

[GstatementG] ... 
} 

Expand {@expression@} to display a menu and select the option primary 
again. 

main 0 
{ 

[Gblock_declG] ... 

if (count < 10) 
-) printf ({GprimaryG}. [Gactual_argumentG] ... ); 

[GstatementG] ... 
} 

Expand primary to display a menu and select the option {@strin~text@}. 

main 0 
{ 

[Gblock_declG] ... 

if (count < 10) 
-) printf ("{Gstring_textGP. [Gactual_argumentG] ... ); 

[GstatementG] ... 
} 

C-20 Optional Programming Productivity Tools 



Type the value less than %d test cases\n over {@string_text@}. 

main 0 
{ 

[~block_decl~] ... 

if (count < 10) 
-) printf (Illess than Y.d test cases\n", [Oactual_argument~]",); 

[~statement~] ... 
} 

Type the value count over [@actual_argument@] ... and erase the dupli­
cated placeholder [@actual_argument@] .... 

main 0 
{ 

[~block_decl~] ... 

if (count < 10) 
-) printf (liless than Y.d test cases\n", count); 

[~statemenU] ... 
} 

C.2 Using the VAX Source Code Analyzer 

The VAX Source Code Analyzer (VAXSCA) is an interactive source code 
cross-reference and static analysis tool that works with most VAX pro­
gramming languages. VAXSCA helps developers keep track of the details 
of complex, large-scale software systems by displaying source information 
in response to user queries. VAXSCA uses data generated by the VAX C 
compiler to supply the requested source information. That information is 
stored in the VAXSCA library. The data in a VAXSCA library consists of 
the names of, and information about, all the symbols, modules, and files 
encountered during a specific compilation of the source. 

VAXSCA has both cross-reference and static analysis query features. 
Cross-referencing supplies information about program symbols and source 
files. Cross-referencing features include the following: 

• Locating names, and occurrences (uses) of these names 

• Querying a specified set of names or partial names (wildcarding 
allowed) 

• Limiting a query to specific characteristics (such as routine names, 
variable names, or source files) 

Optional Programming Productivity Tools C-21 



• Limiting a query to specific occurrences (such as the primary declara­
tion of a symbol, read or write occurrences of a symbol, or occurrences 
of a file) 

The static analysis query features of VAXSCA provide structural infor­
mation on the interrelation of routines, symbols and files. Static analysis 
features include the following: 

• Displaying routine calls to and from a specified routine 

• Analyzing routine calls for consistency as to the numbers and data 
types of arguments passed, and the types of values returned 

VAXSCA is fully integrated with V AXLSE to provide extended features. 
By using VAXSCA with VAXLSE, you can view any portion of an entire 
system and edit related source files. 

Multimodular Development 

The cross-referencing and static analysis features of VAXSCA can be 
useful during the implementation and maintenance phases of a project 
that involves many programming modules. For example, Figure C-l 
shows a project team work area that contains a set of source modules. 
To keep track of these modules in their various development stages, the 
team can use a code management tool, such as VAX DEC/CMS, which is 
represented in the figure by the CMS Library. 

When the team compiles the source code, an / ANALYSIS_DATA qualifier 
to the COMPILE command instructs the VAX C compiler to generate 
VAXSCA-required source information (.ANA data files) from the sources. 
The team then instructs VAXSCA to load the .ANA files into a previously 
established VAXSCA Library. 

When a team member wants to do additional development work on 
specific modules, that member sets up an individual work area. Such 
individual work areas might consist of the following: 

• Copies of source and object modules from the project libraries. 

• Local VAXSCA libraries that contain copies of the module information 
required to complete assigned tasks. 

To make available the module-viewing capabilities of VAXSCA/VAXLSE 
integration, the project team member must inform VAXLSE of the locations 
of latest sources, and the related source information. The team member 
provides pointers to these locations by supplying a search list for VAXLSE. 
The search list first points to source modules in individual team members' 
default directories, and then points to the remaining modules in the 

C-22 Optional Programming Productivity Tools 



Figure C-1: Use of VAXSCA for Multimodular Development 

Project Work Area 

I 

I Compile 

Debugger, 
Source 

or .ANA 
Reference Files 

CMS Copy 
Library Area 

L 

Individual Developer Work Area 

I 

I Y-
~--~~--~ rC===~ 

I Some 
Source ANA 
Code Files 

Modules 

-

Load 

I 

I 
I 

VAXSCA I 
Library 

I 
-.J 

ZK·5850·HC 

Optional Programming Productivity Tools C-23 



project source directory. With such an arrangement, each member can 
effectively "see" through the local work area to the project-wide area. If 
an individual work area contains only new modules, and all of the work 
can be done with local resources, the team member need not specify the 
pointers to the project-wide area. 

The following sections provide a general overview of V AXSCA and 
discuss some of the commands that are available to you while using 
VAXSCA within VAXLSE. For detailed information on VAXSCA and 
its use with various programming languages, refer to the Guide to VAX 
Language-Sensitive Editor and V AX Source Code Analyzer. 

C.2.1 Setting up a V AlSeA Environment 

To set up a VAXSCA environment, you must take the following steps: 

1. Create a VAXSCA library in a subdirectory. 

2. Select the library. 

3. Use the VAX C compiler to generate the data analysis (.ANA) files for 
~ach source module in your system. 

4. Load these data analysis files into your local VAXSCA library. 

You are then ready to use VAXSCA to conduct source information queries. 

C.2. 1. 1 Creating a VAXSCA Library 

To use VAXSCA, you must have a VAXSCA library to store the detailed 
source analysis data that the VAX C compiler collects. Source analysis 
data is information about all of the symbols, files and modules contained 
in the source. 

To create a VAXSCA library you first create a subdirectory at the DCL 
level. For example: 

$ CREATE/DIRECTORY PROJ:[USER.LIB1J 

This command creates a subdirectory LIBl for a local VAXSCA library. 

To initialize a new VAXSCA library you specify the CREATE LIBRARY 
command. This command has the following form: 

CREATE LIBRARY [/qualifiers ... J directory-spec[, ... J 

C-24 Optional Programming Productivity Tools 



For example: 

$ SCA CREATE LIBRARY [.LIB1] 

This command intializes and activates library LIBl. 

C.2.1.2 Generating the Data Analysis Files 

VAXSCA uses detailed source data that is generated by the VAX C com­
piler. When you specify the / ANALYSIS_DATA qualifier on the CC 
command, the generated data is output to a file with the default type 
.ANA. For example: 

$ CC/LIST/DIAGNOSTICS/ANALYSIS_DATA PG1,PG2,PG3 

This command line compiles the input files PGl.C, PG2.C and PG3.C, 
and generates four corresponding output files for each input file. The 
compiler puts these files in your current default directory unless you 
specify otherwise. 

C.2.1.3 Selecting a VAXSCA Library 

To select an existing VAXSCA library to use with your current VAXSCA 
session, use the SET LIBRARY command. The command has the following 
form: ' 

SET LIBRARY [/qualifiers ... ] direetory-spee[, ... ] 

A message appears in the message buffer, at the bottom of your screen, 
indicating whether your VAXSCA library selectioh succeeded. 

C.2.1.4 Loading Data Analysis Files into a Local Library 

Before you can examine the information in the compiler-generated source 
analysis (.ANA) files, you must load the files into a VAXSCA library using 
the LOAD command. The LOAD command has the following form: 

LOAD [/qualifiers ... ] file-spee[, ... ] 

For example: 

LSE> LOAD PG1,PG2,PG3 

This command loads your library with the modules contained in the data 
analysis files PGl, PG2, and PG3. 

Optional Programming Productivity Tools C-25 



C.2.2 Using V AXSCA for Cross-Referencing 

With a VAXSCA library in place, you can ask for symbol or file informa­
tion by using the VAXSCA command FIND. The FIND command has the 
following form: 

FIND [/qualifier ... ] [name-expression[ ... ]] 

The name-expression is a name of a symbol or file. It can be explicit 
(such as ABC), it can include wildcards (such as ABC* or AB%), and it 
can include more than one name by specifying a list of name expressions 
separated by commas. 

For example: 

LSE> FIND ABC.XY% 

You can query VAXSCA library information for the following things that 
exist within a source program: 

Name 

Item 

Occurrence 

A series of characters that uniquely identifies a symbol or a file. 

An appearance of a symbol (such as a variable, constant, label, 
or procedure) or a file. 

The use of a symbol or a file. 

To limit the information resulting from a query, you can use qualifiers on 
the FIND command, such as the /DECLARATIONS and /REFERENCE 
qualifiers. For example: 

LSE> FIND/REFERENCES=CALL BUILD_TABLE 

This command causes VAXSCA to report only references in the source 
code where the routine BUILD_TABLE is called. 

C-26 Optional Programming Productivity Tools 



When you first issue a FIND, command within VAXLSE, you initiate 
a query session. Within this context, the integration of VAXLSE and 
VAXSCA provides the following commands that can only be used within 
VAXLSE: 

{ ~:JIOUS } ! g~~~RRENCE I 
QUERY 

J STEP 

GOTO SOURCE 

GOTO DECLARATION 

Closely-associated commands that let 
you step through one or more query 
buffer displays within VAXLSE. 

Displays the source corresponding to 
the current query item. 

Positions the cursor on a symbol 
declaration in one window; and 
displays the source code that contains 
the symbol declaration in another 
window. 

Optional Programming Productivity Tools C-27 





Appendix D 

Language Summary 

This appendix briefly describes the CC and LINK commands of the 
DIGITAL Command Language (DCL) and the qualifiers used with both 
commands. This appendix also briefly describes language features. 

D.1 The CC Command 

The DIGITAL Command Language (DCL) command, CC, compiles one or 
more VAX C source files into one or more object files. The source file or 
files compiled into an object module is called the compilation unit. 

Syntax: 

CC[/qualifier . .. ] file-spec-list 

File Specification Syntax: 

file-sped/qualifier . .. ] 
file-spec-list. file-spec [/qualifier . .. ] 
file-spec-list + file-spec [/qualifier . .. ] 

Command Qualifiers Defaults 
/[NO]ANAL YSIS_DA T A[=file-spec] /NOANAL YSIS_DA T A 
/[NO]CROSS_REFERENCE /NOCROSS_REFERENCE 
/[NO]DEBUG[=option] /DEBUG=TRACEBACK 
/[NO]DEFINE[=(definition list)] /NODEFINE 
/[NO]DIAGNOSTICS[=file-spec] /NODIAGNOSTICS 
/G_FLOA T /NOG_FLOAT 
/[NO]INCLUDE _DIRECTORY=(pathname (, ... ]) /NOINCLUDE _DIRECTORY 

Language Summary 0-1 



/UBRARY 
/[NO]UST[=file-spec] 

/[NO]MACHINE_CODE[=option] 
/[NO]OBJECT[=file-spec] 
/[NO]OPTIMIZE[=NODISJOINT] 
/[NO]PRECISION={SINGLE,DOUBLE} 
/SHOW[=(option, ... )] 

/[NO]ST ANDARD=OPTION 
/[NO]UNDEFINE[=(undefine list)] 
/[NO]WARNINGS[=(option-list)] 

NOTE 

/NOUST (interactive mode) 
JUST (batch mode) 
/NOMACHINE_CODE 
/OBJECT 
/OPTIMIZE 
/PRECISION=DOUBLE 
/SHOW=(NOBRIEF, 
NODICTIONARY, 
NOEXPANSION, 
NOINCLUDE, 
NOINTERMEDIA TE, 
NOST A TISTICS, 
NOSYMBOLS, 
NOTRANSLA TION, 
SOURCE, 
TERMINAL) 
/STANDARD 
/NOUNDEFINE 
/WARNINGS 

The only qualifier that must be used with a file specification is 
the jLIBRARY qualifier. You cannot place this qualifier on the 
ee command. 

0.2 The LINK Command 

The DeL LINK command combines one or more object modules into one 
image file. If your program contains references to the VAX e Run-Time 
Library (RTL) functions, read "Specifying Libraries to the Linker" in this 
section before you link your programs. 

0-2 Language Summary 



Syntax: 

LINK [jqualifier .. , ] file-spec [jqualifier . .. ]. . .. 

Command Qualifiers 
/BRIEF 
/[NO]CONTIGUOUS 
/[NO]CROSS_REFERENCE 
/[NO]DEBUG[=file_spec] 
/[NO]EXECUTABLE[=file_spec] 
/FULL 
/HEADER 
/[NO]MAP[ =file_spec] 
/POIMAGE 
/PROTECT 
/[NO]SHAREABLE[=file_spec] 
/[NO]SYMBOL _ T ABLE[=file_spec] 
/[NO]SYSLIB 
/[NO]SYSSHR 
/[NO]SYSTEM[ =base_address] 
/[NO]TRACEBACK 
/[NO]USERLIBRARY[=table[, ... ]] 
/INCLUDE=(module_name[, ... ]) 
/LiBRARY 
/OPTIONS 
/SELECTIVE _SEARCH 

NOTE 

Defaults 
None 
/NOCONTIGUOUS 
/NOCROSS_REFERENCE 
/NODEBUG 
/EXECUT ABLE 
None 
None 
/NOMAP 
None 
None 
/NOSHAREABLE 
/NOSYMBOL _TABLE 
/SYSLIB 
/SYSSHR 
/NOSYSTEM 
/TRACEBACK 
None 
None 
None 
None 
None 

The only qualifiers that must be used with a file specification are 
the jINCLUDE, jLIBRARY, jOPTIONS, and jSELECTIVE_ 
SEARCH qualifiers. You cannot place these qualifiers on the 
LINK command. 

Language Summary O-J 



Specifying Libraries to the Linker: 

If you use any of the VAX C Run-Time Library functions, you must spec­
ify libraries for the linker to search in order to resolve references to the 
functions. You can specify these libraries using the /LIBRARY qualifier on 
the LINK command line, or you can define the logical name 
LNK$LIBRARY_n to be the name of an object library. You must define the 
logicals LNK$LIBRARY_n as the libraries SYS$LIBRARY:VAXCCURSE.OLB, 
SYS$LIBRARY:VAXCRTLG.OLB, and SYS$LIBRARY:VAXCRTL.OLB. 
Depending on the needs of your program, you may have to access one, 
two, or all three libraries. In any case, you must adhere to the following 
rules for defining libraries for the linker to search: 

1. If you do not need to use the Curses Screen Management package of 
VAX C RTL functions and macros, and you do not use the 
/G_FLOAT qualifier on the CC command line, you must define the 
logical as follows: 

$ DEFINE LNK$LIBRARY SYS$LIBRARY:VAXCRTL.OLB I RETURN I 

2. If you plan to use the /G_FLOAT qualifier with the CC command 
line, but do not plan on using Curses, you must define the logicals as 
follows: 

3. If you plan to use the Curses Screen Management package, but do not 
plan to use the /G_FLOAT qualifier, you must define the logicals as 
follows: 

$ DEFINE LNK$LIBRARY SYS$LIBRARY:VAXCCURSE.OLB RETURN 
$ DEFINE LNK$LIBRARY_1 SYS$LIBRARY:VAXCRTL.OLB RETURN 

4. Finally, if you plan to use both Curses and the /G_FLOAT qualifier, 
you must define the three logicals in the following order: 

$ DEFINE LNK$LIBRARY SYS$LIBRARY:VAXCCURSE.OLB RETURN 
$ DEFINE LNK$LIBRARY_1 SYS$LIBRARY:VAXCRTLG.OLB RETURN 
$ DEFINE LNK$LIBRARY_2 SYS$LIBRARY:VAXCRTL.OLB RETURN 

The order of the specified libraries determines which versions of the 
VAX C RTL functions are found by the linker first. If the linker does not 
find the function code, or if LNK$LIBRARY_n is undefined, it assumes 
that the function is not a VAX C RTL function, and checks other default 
libraries before it assumes that the program is in error. 

0-4 language Summary 



Instead of using the object code of the VAX C RTL functions, you can, as 
an option, use the VAX C RTL as a shareable image. To use the VAX C 
RTL as a shareable image, check with your system manager to make sure 
that the VAX C compiler and software were installed so as to allow access 
to the shared images. Specifically, check to make sure that the system 
manager answered YES to step 4 listed in VAX C Installation Guide. If that 
has been done, you can create an options file. 

If you do not use the /GJLOAT qualifier on the CC command, create an 
options file, OPTIONS_FILE. OPT, containing the following line: 

SYS$SHARE:VAXCRTL.EXE/SHARE 

If you do use the /G_FLOAT qualifier on the CC command, create an 
options file containing the following line: 

SYS$SHARE:VAXCRTLG.EXE/SHARE 

You must not include the libraries SYS$SHARE:VAXCRTL.EXE and 
SYS$SHARE:VAXCRTLG.EXE in the same options file. 

Once you have created the appropriate options file, OPTIONS_FILE.OPT, 
you can compile and link your program with the following commands: 

$ cc PROGRAM.C IRETURNI 
$ LINK PROGRAM.OBJ. OPTIONS_FILE/OPT I RETURN I 

D.3 Data Type Keywords 

Type Specifiers: 

32-bit signed or unsigned: 

tnt 
10111 
10111 lilt 
UIllipecl lilt 
UIllipecl 10111 
UIllipecl 10111 lilt 

16-bit signed or unsigned: 

Ihort 
Ihort lilt 
UIla1pecl Ihort 
UIl8ipecl 8hort illt 

Language Summary 0-5 



8-bit signed or unsigned: 

char 
UDaiped ch~ 

F_floating format: 

Uoat 

D_floating or G_floating format: 

double 
long·Uoat 

Aggregate types: 

struct 
UDioD 

Enumerated type: 

eDUIl 

Type of function return value: 

void 

Type declaration: 

typedef 

Storage class specifiers: 

auto 
reSister 
static 
extern 
8lobaldef 
slobalref 
slobalvalue 

Data type modifiers: 

CODst 
volatile 

Storage class modifiers: 

readoDly 
Doshare 
_alip 

0-6 language Summary 



0.4 Precedence of Operators 

The operators are listed from highest precedence to lowest. In the binary 
operator category, operators appear in descending order of precedence, 
line by line. 

Category Association Operator 

Primary Left to right ( ) [ ] ---+ 

Unary 

Binary 

Conditional 

Assignment 

Comma 

0.5 Statements 

Syntax: 

[ expression] 

Right to left 

Left to right 

Right to left 

Right to left 

Left to right 

identifier: statement 

,....., ++ 
& 

* 
+ 
« 
< 

& 

1 

&& 

" ?: 

sizeof 

j % 

» 
<= 

!= 

+= 
> > = 

{ [decLaration- List] [statement - List] } 

ca.e constant-expression default: statement-List 

if (expression) statement [els8 statement] 

while (expression) statement 

do statement while (expression) 

> 

(type) 

>= 

*= j= %= 
< <= &= 

* 

1= 

Language Summary D-7 



for ([expression] ; [expression] 
statement 

awitch (expression) statement 

break ; 

continue 

return [expression] 

goto identifier 

entry1 

0.6 Conversion Rules 

Arithmetic Conversion 

Any operand of type: 

char 
short 
unsigned char 
unsigned short 
float 

If operand type is: 

double 
unsigned 

Otherwise, both operands are: 

int 

1 Reserved for future use. 

0-8 Language Summary 

[expression] ) 

Is converted to: 

int 
int 
unsigned int 
unsigned int 
double 

The result and the other operands 
are: 

double 
unsigned 

And the result is: 

int 



Function Argument Conversion 

Any argument of type: 

float 
char 
short 
unsigned char 
unsigned short 

array 

function 

0.7 VAX C Escape Sequences 

Character 

newline 

horizontal tab 

vertical tab 

backspace 

carriage return 

form feed 

backslash 

apostrophe 

quotes 

bit pattern 

Is converted to type: 

double 
int 
int 
unsigned int 
unsigned int 

pointer to array 

pointer to function 

Mnemonic Escape Sequence 

NL 

HI 
VI 
BS 
CR 

FF 

\ 

ddd 

\n 

\t 
\v 

\b 

\r 

\f 
\\ 
\' 
\/1 

\ddd or \xddd 

The form "\ddd" is used to specify any byte value (usually an ASCII 
code), where the digits ddd are one to three octal digits. The octal digits 
are limited to 0 to 7. 

Similarly, the form "\xddd" is used to specify any byte value (usually an 
ASCII code), where the digits are used to specify one to three hexadecimal 
digits. 

Language Summary 0-9 



0.8 Preprocessor Directives 

Syntax: 

#define identifier[([param1, 

#undef identifier 

#dictionary cdd-path 

#elif constant-expression 

#include <fiLe-spec> 
#include "fiLe-spec" 
#include moduLe-name 

#if constant-expression 

#ifdef identifier 

#ifndef identifier 

#el.e 

#endif 

# [line] 
# [line] 

#module 
#module 

#prapa 

constant string 
constant identifier 

identifier identifier 
identifier string 

para.m2] )] token-string 

0.9 Record Management Services (RMS) 

The RMS functions can be expressed in terms of the following general 
descriptions. 

Syntax: 
#include (rms-module) 
int sys$name(pointer, [error_function], 

[success_function]) 

.truct rms_structure *pointer; 
int (*error_function)(), (*succes~_function)(); 

0-1 0 language Summary 



rms-module 
The name of one of the modules in the following list: 

Module 

fab 

rab 

nam 

xaball 

xabdat 

xabfhc 

xabkey 

xabpro 

xabrdt 

xabsum 

xabtrm 

rmsdef 

rms 

sys$name 

Description 

File access block 

Record access block 

Name block 

Allocation XAB 

Date and time XAB 

File header characteristics XAB 

Indexed file key XAB 

Protection XAB 

Revision date and time XAB 

Summary XAB 

Terminal Control XAB 

Completion status codes 

All RMS modules 

Structure 
Tag 

FAB 

RAB 

NAM 

XABALL 

XABDAT 

XABFHC 

XABKEY 

XABPRO 

XABRDT 

XABSUM 

XABTRM 

All tags 

The name of the RMS function being called. 

pointer 
A pointer to an RMS structure which (optionally) has been initialized by 
the following prototypes: 

Prototype 

cc$rms_fab 

cc$rms-Yab 

cc$rms_nam 

cc$rms-'<a ball 

cc$rms-'<abdat 

cc$rms-'<abfhc 

Description 

Initializes the file access block (F AB). 

Initializes the record access block (RAB). 

Initializes the name block (NAM). 

Initializes the allocation XAB (XABALL). 

Initializes the date and time XAB (XABDAT). 

Initializes the file header characteristics XAB 
(XABFHC). 

Language Summary 0-11 



Prototype 

cc$rms-xabkey 

cc$rms-xabpro 

cc$rms-xa brd t 

cc$rms-xabsum 

cc$rms-xabtrm 

error_function 

Description 

Initializes the indexed file key XAB (XABKEY). 

Initializes the protection XAB (XABPRO). 

Initializes the revision date and time XAB (XABRDT). 

Initializes the summary XAB (XABSUM). 

Initializes the terminal control XAB (XABTRM). 

The name of a signal handling function to be called if an error occurs 
( optional). 

success_function 
The name of a function to be called if the RMS function is successful 
( optional). 

rms_structure 
The type of structure being pointed to by pointer. 

The RMS functions return an integer status value. 

0-12 Language Summary 



Glossary 

additive operator An operator that performs addition ( +) or subtraction ( - ). 
These operators perform the arithmetic conversion on each of the operands, if 
necessary. See also arithmetic conversion rules. 

aggregate A data structure (array, structure, union) composed of segments called 
members. You declare the members to be of either a scalar or aggregate data 
type. Members of an array are called elements and must be of the same data 
type. A structure has named members that can be of different data types. A 
union is essentially a structure that is as long as its longest declared member 
and that contains the value of only one member at a time. 

ampersand (&) As a unary operator, computes the address of its operand. As 
a binary operator, performs a bitwise AND on two operands, both of which 
must be of integral type. As an assignment operator (&=), performs a bitwise 
AND on two expressions and assigns the result to the left object. The double 
ampersand (&&), a binary operator, performs a logical AND on two operands. 
See also logical operator, unary operator, binary operator, and bitwise operators. 

argument An expression that appears within the parentheses of a function call. 
The expression is evaluated and the result is copied into the corresponding 
parameter of the called function. See also argument passing and parameter. 

argument passing The mechanism by which the value of the argument in a 
function call is copied to a parameter in the called function. In VAX C, all 
arguments are passed by value; that is, the parameter receives a copy of the 
argument's value. Therefore, a function called in VAX C cannot modify the 
value of an argument except by means of its address. In general, addresses are 
passed using the ampersand operator (see ampersand ( &) in the function call 
or by passing a pointer variable. In addition, use of an array or function name 
(an array or function identifier with no brackets or parentheses) as an argument 
always results in the passing of the address of the array or function. 

Glossary-1 



arithmetic conversion rules The set of rules that govern the changing of a 
value of an operand) from one data type to another in arithmetic expressions. 
Conversions take place in assignments by changing the type of the right 
operand's result to that of the object referred to by the left operand; the 
resultant type also applies to the assignment expression. Conversions are also 
performed when arguments are passed to functions. For more information 
concerning the arithmetic conversion rules, refer to Chapter 5, Expressions and 
Operators. 

arithmetic operator A VAX C operator that performs a mathematical opera­
tion. In an expression, certain operations take precedence (are performed first) 
over other operations. The unary minus operator (-) is at the highest level of 
precedence. At the next lower level are the binary operators for multiplicaHon 
( *), division (/), and mod (%). At the next lower level are addition ( +) and 
subtraction (-). There is no unary plus operator, and there is no exponenti­
ation operator. If necessary, all the binary operators perform the arithmetic 
conversions on their operands. See also arithmetic conversion rules. 

arithmetic type One of the integral data types, enumerated types, float, or 
double. 

array An aggregate data type consisting of subscripted members, called elements, 
of the same type. Elements of an array can have one of the fundamental types 
or can be structures, unions, or other arrays (to form multidimensional arrays). 

assignment expression An expression of the form: 

E1 asgnop E2 

Expression E1 must evaluate to an lvalue, the operator asgnop is an as­
signment operator, and E2 is an expression. The type of an assignment 
expression is that of its left operand. The value of an assignment expres­
sionis that of the left operand after the assignment has taken place. If the 
operator is of the form op=, then the operation E1 op (E2) is performed, 
and the result is assigned to the object referred to by E1; E1 is evaluated 
only once. 

assignment operator The combination of an arithmetic or bitwise operator with 
the assignment symbol (=); also, the assignment symbol by itself. See also 
assignment expressions. 

Glossary-2 



asterisk (*) As a unary operator, treats its operand as an address and results 
in the contents of that address. As a binary operator, multiplies two operCinds, 
performing the arithmetic conversions, if necessary. As an assignment operator 
( *=), multiplies an expression by the value of the object referred to by the left 
operand, and assigns the product to that object. See also unary operator and 
binary operator. 

binary operator An operator that is placed between two operands. The binary 
operators include arithmetic operators, shift operators, relational operators, 
equality operators, bitwise operators (AND, OR, and XOR), logical connectives, 
and the comma operator, in that order of precedence. All binary operators 
group from left to right. VAX C has no exponentiation operator. 

bitwise operator An operator that performs Boolean algebra on the binary 
values of two operands, which must be integral. If necessary, the operators 
perform the arithmetic conversions; Both operands are evaluated. All bitwise 
operators are associative, and expressions using them may be rearranged. The 
operators include, in order of precedence, the single ampersand (&) (bitwise 
AND), the circumflex (") (bitwise exclusive OR), and the single bar ( I ) (bitwise 
inclusive OR). 

block See compound statement. 

block activation The run-time activation of a block or function, in which local 
auto and register variables are allocated storage and, if they are declared 
with initializers, given initial values. Variables of storage class static, extern, 
globaldef, and globalvalue are allocated and initialized at link time. The block 
activation precedes the execution of any executable statements in the function or 
block. Functions are activated when they are called. Internal blocks (compound 
statements) are activated when the program control flows into them. Internal 
blocks are not activated if they are entered by a goto statement, unless the 
goto target is the label of the block rather than the label of some statement 
within the block. If a block is entered by a goto statement, references to auto 
and register variables declared in the block are still valid references, but the 
variables may not be properly initialized. Blocks which make up the body of 
a switch statement are not activated; auto or register variables declared in the 
block are not initialized. 

cast An expression preceded by a cast operator of the form (type_name). The 
cast operator forces the conversion of the evaluated expression to the given 
type. The expression is assigned to a variable of the specified type, which is 
then used in place of the whole construction. The cast operator has the same 
precedence as the other unary operators. 

Glossary-3 



character 

• A member of the ASCII character set. 

• An object of the VAX C data type char which is stored in a single 
byte of memory. An object of type char always represents a single 
character, not a string. 

• A constant of type char, consisting of up to four ASCII characters 
enclosed in apostrophes (I I) not quotation marks (1/ 1/). 

See also string. 

comma operator A VAX C operator used to separate two expressions: 

E1. E2 

The expressions E1 and E2 are evaluated left to right, and the value of E1 
is discarded. The type and value of the comma expression are those of E2. 

comment A sequence of characters introduced by the pair (/*) and terminated 
by (* /). Comments are ignored during compilation. They may not be nested. 

Common Data Dictionary An optional VMS software product, available under 
a separate license, that maintains a set of data structure definitions that many 
programs on a system, written in many languages, can access. The language­
independent definitions are translated into the target language when they are 
included in the program stream. You can include the CDD records in 
VAX C programs using the #dictionary preprocessor directive. The 
#dictionary directive is VAX C specific and is not portable. 

compilation unit All of the source files compiled to form a single object module. 
In other C documentation, the term source file is synonymous with the VMS 
compilation unit, which is not necessarily a single source file. Declarations and 
definitions within a compilation unit determine the lexical scope of functions 
and variables. 

compound statement Valid VAX C statements enclosed in braces ({ }). 

Glossary-4 

Compound statements can also include declarations. The scope of these vari­
ables is local to the compound statement. A compound statement, when it is 
not the body of a function, is called a block. 



conditional operator The VAX C operator (?:), which is used in conditional 
expressions of the form: 

El ? E2 : E3 

E1, E2, and E3 are valid VAX C expressions. E1 is evaluated, and if it is 
nonzero, the result is the value of E2; otherwise, the result is the value of 
E3. Either E2 or E3 is evaluated, but not both. 

constant A primary expression whose value does not change. A constant may 
be literal or symbolic. 

constant expression An expression involving only constants. Constant expres­
sions are evaluated at compile time and may therefore be used wherever a 
constant is. valid. 

conversion The changing of a value from one data type to another. Conversions 
take place in assignments by changing the type of the right operand's result 
to that of the object referred to by the left operand; the resultant type also 
applies to the assignment expression. Conversions are also performed when 
arguments are passed to functions: char and short become int; unsigned char 
and unsigned short become unsigned int; float becomes double. Conversions 
can also be forced by means of a cast. Conversions are performed on operands 
in arithmetic expressions by the arithmetic conversions. 

conversion characters A character used with the VAX C Run-Time Library 
Standard I/O functions that is preceded by a percent sign (%) and specifies 
an input or output format. For example, letter d instructs the function to 
input/ output the value in a decimal format. 

Curses A screen management package comprised of VAX C Run-Time Library 
functions and macros that create and modify defined sections of the terminal 
screen, and optimize cursor movement. Curses defines rectangular regions 
on the terminal display that may be written upon, rearranged, moved to new 
positions on the screen, and deleted from the screen. These rectangular regions 
are called windows. To use any of the Curses functions or macros, you must 
include the curses definition module with the #inc1ude preprocessor directive. 

data definition The syntax that both declares the data type of an object and 
reserves its storage. For variables that are internal to a function, the data 
definition is the same as the declaration. For external variables, the data 
definition is external to any function (an external data definition). 

declaration A statement that gives the data type and possibly the storage class 
of one or more variables. 

Glossary-5 



DEC/Shell An optional VMS software product available under a separate license 
that is a command language interpreter based on the UNIX V7 Bourne Shell 
with commands for interactive program development, device and data file 
manipulation, and interactive and batch execution. DEC/Shell Run-Time 
Library functions were added to the VAX C RTL so that valid DEC/Shell 
file specifications could be used in VAX C source programs. See also file 
specifications. 

dictionaries A hierarchical organization, similar to the organization of directories 
and subdirectories, of data structure definitions in the Common Data Dictionary 
(CDD). See also Common Data Dictionary. 

directives See preprocessor directives. 

elements Members of an array. See also aggregate. 

enumerated type A type defined (with the enum keyword) to have an ordered 
set of integer values. The integer values are associated with constant identifiers 
named in the declaration. Although enum variables are stored internally as 
integers, they should be used in programs as if they had a distinct data type 
named in the enum declaration. 

equality operator One of the operators equal to (==) or not equal to (!=). 
They are analogous to the relational operators, but at the next lower level of 
precedence. 

exponentiation operator The VAX C language does not provide an exponentia­
tion opera tor. 

expression A series of tokens that the compiler can use to produce a value. 
Expressions have one or more operands and, usually, one or more operators. 
An identifier with no operator is an expression that yields a value directly. 
Operands are either identifiers (such as variable names) or other expressions, 
which are sometimes called subexpressions. See also operator and tokens. 

external storage class A storage class that permits identifiers to have a link­
time scope that can possibly span object modules. Identifiers of this storage 
class are defined outside of functions using no storage class specifier, and 
are declared, optionally, throughout the program using the extern specifier. 
External variables provide a means other than argument passing for exchanging 
data between the functions that comprise a VAX C program. See also link-time 
scope. 

file descriptor In the UNIX environment, the integer that identifies a file. The 
VMS equivalent is a file pointer. 

Glossary-6 



file specification An identifier that specifies an existing file. There are two 
types of valid file specifications in VAX C: VMS specifications and DEC/Shell 
specifications. DEC/Shell specifications are a subset of UNIX specifications. 

floating type One of the data types float or double, representing a single- or 
double-precision floating-point number. There are two implementations of the 
data type double: D_floating and G _floating. The range of values for the 
D_floating variables is the same as for that of float variables, but the precision 
is 16 decimal digits, as opposed to seven. Programs that use G_floating 
variables must use the /G_FLOAT command line qualifier. A G_floating 
variable has considerably greater range, but has less precision. 

function The primary unit from which VAX C programs are constructed. A 
function definition begins with a name and parameter list, followed by the 
declarations of the parameters (if any) and the body of the function enclosed 
in braces ({ }). The function body consists of the declarations of any local 
variables and the set of statements that perform its action. Functions need not 
return a value to the caller. All VAX C functions are external; that is, a function 
may not contain another function. See also function call. 

function call A primary expression, usually a function identifier followed by 
parentheses, that is used to invoke the function. The parentheses contain a 
(possibly empty) comma-separated list of expressions that are the arguments 
to the function. Any previously undeclared identifier followed immediately by 
parentheses is declared as a function returning int. Any function may call itself 
recursively. 

fundamental type The set of arithmetic data types plus pointers. In general, the 
fundamental types in VAX C comprise those data types that can be represented 
naturally on a particular machine; usually, this means integers and floating­
point numbers of various machine-dependent sizes, and machine addresses. 

global storage class A storage class that permits identifiers to have a link-time 
scope that can possibly span object modules. Identifiers of this storage class are 
defined using the globaldef storage class specifier, and are declared, optionally, 
throughout the program using the globalref specifier. The globalvalue specifier 
can be used to define a global symbol, or constant. Global variables provide a 
means other than argument passing for exchanging data between the functions 
that comprise a VAX C program. See also link-time scope. 

identifier A sequence of letters and digits, the first 31 of which must be unique. 
The underscore (_) and dollar sign ($) are letters in this context. The first 
character of an identifier must be a letter. Upper- and lowercase letters specify 
different identifiers in VAX C. However, all external names are converted to 
uppercase to be consistent with the VMS environment. 

Glossary-7 



initializer The part of a declaration that gives the initial value(s) for the preceding 
declarator. An initializer consists of an equal sign (=) followed by either a 
single expression or a comma-separated list of one or more expressions in 
braces. 

integral type One of the data types char or int (all sizes, signed or unsigned). 

internal storage class A storage class that permits identifiers declared inside 
of a function body to be recognized only from the declaration to the end of 
the immediately enclosing block. Identifiers of the internal storage class are 
declared using the auto and register storage class specifiers. See also scope. 

keyword A character string that is reserved by the VAX C language and cannot 
be used as an identifier. Keywords identify statements, storage classes, data 
types, and the like. Function names are not VAX C keywords; they may be 
redefined by the user. 

lexical scope The area in which the compiler recognizes an identifier within a 
given compilation unit. See also scope. 

lifetime The length of time for which storage for a variable is allocated. See also 
program section. 

link libraries The libraries searched by the VMS Linker in order to resolve 
external references. You can define these libraries at the DIGITAL Command 
Language (DCL) command line level using the DEFINE command. Define 
the logical LNK$ LIBRARY as the first library to search; define the logical 
LNK$LIBRARY_l as the second library to search, and so forth. Depending on 
the needs of your program, you have to specify certain libraries in a specific 
order so that your program links properly. 

link-time scope The area in which the VMS Linker recognizes an identifier 
within a given program. See also scope. 

literal A constant whose value is written explicitly in the program. Literal values 
have type int or double, depending on their forms. Character constants have 
type into Floating constants have type double. Character-string constants have 
type array of char. 

local variable See internal variable. 

Glossary-8 



logical expression An expression made up of two or more operands separated 
by a logical operator. Each operand must be of a fundamental type or must be 
a pointer or other address expression. Operands do not have to be of the same 
type. Logical expressions always return one or zero (type int) to indicate a true 
or false value, respectively. Logical expressions are always evaluated from left 
to right, and the evaluation stops as soon as the result is known. 

logical operator One of the binary operators logical AND ( &&) and logical 
OR (II). 

loops A construct which executes a single statement or a block repeatedly until 
a given expression evaluates to false. The single statement or block is called 
the loop body. VAX C has three types of loops: one which evaluates the 
expression before executing the loop body (the while statement), one which 
evaluates the expression after .executing the loop body (the do statement), and 
one which executes the loop body a previously specified number of times (the 
for statement). 

Ivalue The address in memory that is the location of an object whose contents 
can be assigned or modified. In this manual, the term is used to describe a 
category in VAX C grammar. An expression evaluating to an lvalue is required 
on the left side of an assignment operator (hence its name) and as the operand 
of certain other operators, such as the increment (+ + ) and decrement ( - - ) 
operators. A variable name is an example of an expression evaluating to an 
lvalue, since its address can be taken (with &), and values can be assigned to it. 
A constant is an example of an expression that is not an lvalue. See also rvalue. 

macro A text substitution that is defined with the #define preprocessor directive 
and includes a list of parameters. The parameters in the #define directive 
are replaced at compile time with the corresponding arguments from a macro 
reference encountered in the source text. 

main_program option A tag that can be placed on a separate line between 
the function parameter list and the rest of a function definition to tell the VMS 
image activator to begin program execution with this function. The identifier 
main_program can be used when there is no function named main; it is not a 
keyword; it can be spelled in upper- or lowercase; and it is VAX C specific. 

members Segments of the aggregate data structures (arrays, structures, unions) 
that are declared to be of either scalar or aggregate data type. See also 
aggregate. 

Glossary-9 



module 

• The object code produced and placed into a file with a .OBJ extension 
after a compilation unit has been compiled. The object file is the 
filename with the .OBJ extension; the object module is the system­
recognized name (usually the same as the object-file name without an 
extension). 

• A segment of object code located in an object library. 

multiplication operator An operator that performs multiplication (*), division 
(/), or modular arithmetic (%). If necessary, it performs the arithmetic conver­
sions on its operands. The mod operator ( % ) yields the remainder of the first 
operand divided by the second. 

null pointer A pointer variable that has not been assigned an lvalue and whose 
value has been initialized to zero. If you use a null pointer in an expression 
that needs a value, VAX C will let you try to access memory location zero, 
which will cause the ACCVIO hardware error. 

NUL character The escape sequence (\0) that VAX C uses to terminate all 
character strings. 

obj~ct Data stored at a location in memory represented by an identifier. Objects 
are one of the basic elements that the language can manipulate; that is, the 
elements to which operators can be applied. In VAX C, objects include data 
(such as integers, real numbers, or characters), data structures (arrays, structures, 
unions), and functions. 

occlude In the Curses Screen Management package, when the area of one 
defined window overlaps the area of another defined window on the terminal 
screen. See also Curses. 

operator A token that performs an operation on one or more operands. In order 
of precedence (high to low), operators are classified as the primary-expression 
operators, unary operators, binary operators, the conditional operator, assign­
ment operators, and the comma operator. 

parameter A variable listed in the parentheses and declared between the func­
tion identifier and body in the function definition. The parameter receives a 
copy of the value of an associated argument when the function is called. The 
items in parentheses in a macro definition are also called parameters, although 
the semantics are different from VAX C function calls. 

pointer A variable that contains the address (lvalue) of another variable or 
function. A pointer is declared with the unary asterisk operator (*). 

Glossary-l 0 



portability The ability to compile an unaltered C source program on several 
operating systems and machines; in this manual particularly, between UNIX 
systems and VMS. 

precedence of operators The order in which operations are performed. If an 
expression contains several operators, the operations are executed in the follow­
ing order: primary expression operators, unary operators, binary operators, the 
conditional operator, assignment operators, and the comma operator. 

preprocessor directives Lines of text in a VAX C source file that change the 
order or manner of subsequent compilation. The directives are #define, for 
macro substitution and other token replacements; #undef, to cancel a previous 
#define; #inc1ude, for inclusion of external source text; #line, to specify a line 
number to the compiler); #module, to specify a module name to the Linker; 
#dictionary, to extract data structures from the Common Data Dictionary); 
and #if, #ifdef, #ifndef, #else, #elif, #endif, to place conditions on the 
compilation of sections of a program). In VAX C, these directives are processed 
by an early phase of the compiler, not by a separate program. 

primary expression An expression that contains only a primary-expression 
operator, or no operator. Primary expressions include previously declared 
identifiers, constants, strings, function calls, subscripted expressions, and 
references to structure or· union members. 

primary-expression operator A VAX C operator that qualifies a primary 
expression. The set of such operators consists of paired brackets ([ ]), to 
enclose a single subscript); paired parentheses «», to enclose an argument list 
or to change the associative precedence of operators; a period (.), to qualify 
a structure or union name with the name of a member; and -an arrow ( ~ > ), 
to qualify a structure or union member with a pointer or other address-valued 
expression. 

program section (psect) An area of virtual memory that has a name, a size, 
and a series of attributes which describe the intended or permitted usage of 
that permanent variable. Variables of type static, and of all external and global 
types are placed in psects. See also lifetime. 

refresh A Curses Screen Management term describing the updating of the 
terminal screen so that the latest contents of defined windows are placed on the 
screen. No edits made to any window can appear on the terminal screen until 
you refresh the window on the screen using refresh, wrefresh, or touchwin. 
See also Curses. 

Glossary-11 



relational operator One of the operators less than ( <), greater than (> ), 
less than or equal to ( < =), greater than or equal to ( > =). The result (which 
is of type int) is one or zero, indicating a true or false relation, respectively. 
If necessary, the arithmetic conversions are performed on the two operands. 
Relational operators group from left to right. 

run-time library In VAX C, the group of common functions and macros that 
accompany the compiler that may be called to perform I/O tasks, character 
string manipulation, math tasks, system calls, and various other tasks. The C 
language includes no facilities to administer I/O, so compilers include run-time 
libraries to provide this service. You can access the VAX C Run-Time Library by 
receiving a copy of the function module in your program's image, or by sharing 
the function image with your program so that control is passed to the function 
image and then back to your program. See also shareable image. 

rvalue The object stored at a location in memory represented by an identifier. 
The rvalue of a variable is the variable's object. See also lvalue and object. 

scalar Single objects, including pointers, that can be manipulated in their en­
tirety, in an arithmetic expression. See also object and aggregate. 

scope The portion of a program in which a particular name has meaning. The 
link-time scope of names declared in external definitions possibly extends 
from the point of the definition's occurrence to the end of the program. The 
scope of the names of function parameters is the function itself. The scope of 
names declared in any block (that is, after the brace beginning any compound 
statement) is restricted to that block. Names declared in a block supersede any 
other declaration of the name, including external definitions, for the extent of 
that block. Tags within struct, union, typedef, and enum declarations are 
identifiers that are subject to the same scope rules as any identifiers. Member 
names in structure or union references are not subject to the same scope rules 
(see uniqueness). The scope of a label is the entire function containing the label. 

shareable image A VMS image that passes control to another image which 
passes control back to the original program. You can access the VAX C Run­
Time Library as a shared image; control is passed to the RTL and then back to 
your program instead of a copy of the function's object module being copied 
into your program's image. 

shift operator One of the binary operators ( < <) or (> > ). Both operands 
must have integral types. The value of the expression E1 < < E2 is the result 
of expression E1 (interpreted as a bit pattern) left-shifted by E2 bits. The value 
of E1 > > E2 is E1 right-shifted by E2 bits. 

Glossary-12 



statement The . language elements that perform the action of a function. 
Statements include expression statements (an expression followed by a semi­
colon), null statements (the semicolon by itself), compound statements (blocks), 
and an assortment of statements identified by keywords (such as return, 
switch, do). 

static storage class A storage class that permits identifiers to be recognized 
possibly from the point of the declaration to the end of the compilation unit. 
Identifiers of the static storage class are declared using the static storage class 
specifier~ See also scope. 

stderr The predefined file pointer associated with the terminal to report run-time 
errors. The pointed file is equivalent to the VMS logical SYS$ERROR and the 
file descriptor 2. To use this definition, include the definition module stdio in 
your source code using the #inc1ude preprocessor directive. 

stdin The predefined file pointer associated with the terminal to perform input. 
The pointed file is equivalent to the VMS logical SYS$INPUT and the file 
descriptor O. For example, if yo~ specified stdin as the pointer to the file to read 
from in the getc macro, the macro would read from the terminal. To use this 
definition, include the definition module stdio in your source code using the 
#inc1ude preprocessor directive. 

stdout The predefined file pointer associated with the terminal to perform 
output. The pointed file is equivalent to the VMS logical SYS$OUTPUT and 
the file descriptor 1. For example, if you specified stdout as the pointer to the 
file to write to in the putc macro, the macro would write to the terminal. To 
use this definition, include the definition module stdio in your source code using 
the #inc1ude preprocessor directive. 

storage class The attribute that, with its type, determines the location, lifetime, 
and scope of an identifier's storage. Examples are static, external, and auto. 

storage class modifier Keywords used with the storage class and data type 
keywords to change program section attributes of variables, thereby restricting 
access to them. The two storage-class modifiers are noshare and readonly. 

string 

• An array of type char. 
• A constant consisting of a series of ASCII characters enclosed in 

quotation marks. Such a constant is declared implicitly as an array of 
char, initialized with the given characters, and terminated by a NUL 
character (ASCII 0, VAX C escape sequence \0). 

Glossary-13 



structure An aggregate type consisting of a sequence of named members. Each 
member may have either a scalar or an aggregate type. A structure member 
may also consist of a specified number of bits, called a field. 

symbolic constant An identifier assigned a constant value by a #define direc­
tive. A symbolic constant may be used wherever a literal is valid. 

tags Identifiers that represent a declaration of the data types struct, union, 
or enum. Tags may be used in declarations from that point onward in the 
program to declare other variables of the same type without having to key in 
the lengthy declaration again. 

tokens The fundamental elements making up the text of a VAX C program. 
Tokens are identifiers, keywords, constants, strings, operators, and other 
separators. White space (such as spaces, tabs, newlines, and comments) is 
ignored except where it is necessary to separate tokens. 

type The attribute that, with its storage class, determines the meaning of the 
values found in the identifier's storage. Types include the integral and floating 
types, pointers, enumerated types, the void data type, and the derived types 
array, function, structure, and union. 

type name The declaration of an object of a given type that omits the object 
identifier. A type name is used as the operand of the cast and sizeof operators. 

unary operator An operator that takes a single operand. In VAX C, some unary 
operators can be either prefixed or placed after the operand. The set includes 
the asterisk (indirection), ampersand (address of), minus (arithmetic unary 
minus), exclamation (logical negation), tilde (one's complement), double plus 
(increment), double minus (decrement), cast (force type conversion), and sizeof 
(yields size, in bytes of its operand). 

union A union is an aggregate type that can be considered a structure all of 
whose members begin at offset 0 from the base, and whose size is sufficient to 
contain any of its members. A union can only contain the value of one member 
at a time. 

Glossary-14 



uniqueness A property of the names used for certain structure and union 
members. A name is unique if either of these conditions is true: 

• The name is used only once. 

• It is used in two or more different structures (or unions), but each use 
denotes a member at the same offset from the base and of the same 
data type. 

The significance of uniqueness is that a unique member name can possibly 
be used to refer to a structure in which the member name was not declared 
(although a warning message is issued). 

variable An identifier used as the name of an object. 

value The result of an expression. For example, when a variable on the right 
side of an assignment expression is evaluated, the value obtained is the object 
(rvalue) of the variable; when a variable on the left side of an assignment ex­
pression is evaluated, the value obtained is the address (lvalue) of the variable. 

white space Spaces, tabs, newlines, and comments. VAX C defines where you 
can and cannot place these ~haracters. 

windows In the Curses Screen Management package, the defined rectangular 
regions on the terminal screen that you can write upon, rearrange, move to 
new positions on the screen, and delete from the screen. You define windows 
by specifying the upper left corner coordinate, the number of lines, and the 
number of columns comprising the window. After editing a window, to see the 
results you must refresh the window on the terminal screen. See also refresh. 

Glossary-15 





A 
Access modes 

RMS·9-5 
Additive operators. 5-14 
Address expression 

with DEPOSIT debugger command • 2-20 
with EXAMINE debugger command • 2-19 
with SET BREAK debugger command • 2-14 
with SET TRACE debugger command • 2-16 
with SET WATCH debugger command • 2-17 

Address-of operator. 5-11, 6-12 
Aggregates • 6-14 to 6-30 

arrays • 6-15 
See also, Bracket operators ([ ]) 

debugger acCess to. 2-28 
defined • 6-3, 6,..14 
introduction to. 3-23 
structures· 6-14, 6-20 
unions· 6-14, 6-20 
variant. 6-27 

_align· 7-27 
Allocation 

modifiers· 7-23 
/ ANAL YSIS_DA T A qualifier. 1-9 
AND bitwise operator· 5-16 
argc 

main function argument· 3-43 
Arguments • 3-40 to 3-41, 3-42 

command-line· 3-43 
Conversion of· 3-40 
DCl command-line· 3-43 
function prototypes· 3-37 
functions used as· 3-42 

INDEX 

Arguments (cont'd.) 

in #define preprocessor macros· 8-5 
introduction to· 3-5 
passing 

by descriptor· 10-9 
by immediate value· 10-14 

floating-point values· 10-16 
by reference· 10-6 

rules governing • 3-40 
to a function 

conversion of· 3-41, 5-3, 5-23 
argv 

main function argument· 3-43 
Arithmetic conversion rules • 5-22 
Arithmetic operators 

negation • 5-9 
Arrays • 6-15 

as expressions· 5-4 
debugger access to· 2-24 
declaration of· 6-15 
initialization of· 6-17 
introduction to. 3-23 
references to • 5-4 

Assignment 
operators • 5-19 

precedence of· 5-7, 5-19 
Asterisk operator (*) • 6-11 
auto keyword· 7-10 to 7-11 

B 
Binary operators 

additive • 5-14 
bitwise • 5-16 
equality • 5-15 

Index-1 



Binary operators (cont'd.) 

logical- 5-17 
multiplication • 5-14 
precedence of· 5-7 
relational· 5-15 
shift - 5-17 

Bit fields· 6-29 to 6-30 
Bitwise operators· 5-16 
Blocks. 3-49 to 3-50, 4-3 to 4-4 
Boolean algebra • 5-16 

See also, Bitwise operators 
Braces (II) 

in compound statements. 3-49 
in initializer lists • 6-17 

break statement· 4-6, 4-11 
Breakpoint· 2-14 

c 
C$INClUDE logical name· 8-18 
Call stack • 2-13 
CANCEL MODULE debugger command • 2-35 
CANCEL SCOPE debugger command· 2-36 
case label • 4-6 
Case sensitivity· 3-45 
Cast operator· 5-12 
cc$rms_fab 

initialized RMS data structure· 9-9 
cc$rms_nam 

initialized RMS data structure· 9-9 
cc$rms_rab 

initialized RMS data structure· 9-9 
cc$rms_xaball 

initialized RMS data structure· 9-9 
cc$rms_xabdat 

initialized RMS data structure· 9-9 
cc$rms_xabfhc 

initialized RMS data structure· 9-9 
cc$rms_xabkey 

initialized RMS data structure· 9-9 
cc$rms~xabpro 

initialized RMS data structure· 9-9 
cc$rms_xabrdt 

initialized RMS data structure· 9-9 
cc$rms_xabsum 

initialized RMS data structure· 9-9 

2-lndex 

CC command· 1-3, 1-6, D-1 
qualifiers • 1-8 
qualifiers to • D-1 

CC DCl command 
j ANAL YSIS_DA T A qualfier· 1-9 
jCROSS_REFERENCE qualifier. 1-9 
jDEBUG qualifier· 1-13 
jDEFINE qualifier. 1-9 to 1-13 
jDIAGNOSTICS qualifier· 1-13 
jG_FlOA T qualifier. 1-13 
jINCLUDE_DIRECTORY qualifier. 1-14 
JUST qualifier· 1-15 
jMACHINE_CODE qualifier· 1-15 
jOBJECT qualifier - 1-16 
jOPTIMIZE qualifier· 1-16 
jPRECISION qualifier· 1-16 
qualifiers for· 1-8 to 1-19, 1-21 to 1-40 
jSHOW qualifier. 1-17 
JST ANDARD=PORT ABLE qualifier· 1-18 
jUNDEFINE qualifier. 1-9 to 1-13 
jW ARNINGS qualifier. 1-19 

CDD 
See Common data dictionary 

CHANGE command. 1-4 
CHAR_STRING_CONST ANTS psect· 11-2 to 

11-5 
Character 

constants • 6-7 
data type 

variable • 6-5 
strings. 6-15, 6-19 

See also, Arrays 
debugger access to· 2-26 
introduction to· 3-23 

Character-string constants· 6-19 
See also, Arrays 
limit of length • 6-19 

C language 
See also V AX C language 
Introduction to. 3-2 to 3-3 

$ClOSE 
RMS function • 9-6 

$CODE psect. 11-2 to 11-5 
Command 

See also Debugger command 
Command-line arguments· 3-43 

conversion of· 3-45 



Command-line arguments (cont'd.) 

DCl ·3-43 
Command qualifiers 

with the CC command· 1-3, 1-6 
with the LINK command • 1-3 

Comma operator 
precedence of. 5-7 

Comments • 3-50 
Common Data Dictionary (CDD)· 8-8 to 8-13 

support for data types· 8-11 
V AX C record extraction facility· 8-8 

Compilation 
process· 1-6 to 1-21 

Compilation unit 
in determining scope· 7-2 

Compile 
listing· 1-21 

Compile DCl command 
See CC DCl command 

Compiier listings 
default· 1-22 
format of· 1-21 to 1-40 
with machine code· 1-36 
with macro substitution· 1-26 
with performance statistics. 1-33 
with storage map· 1-29 

Compiler messages • B-1 
Compiling 

jDEBUG qualifier. 2-4 
jNOOPTIMIZE qualifier· 2-5 

Compound 
statements • 4-4 

Compound statements· 3-49 
Conditional operator· 5-18 

precedence of. 5-7 
Conditional statements· 4-4 to 4-8 
Condition compilation· 8-13 to 8-15 
$CONNECT 

RMS function • 9-6 
const keyword • 7 -23 
Constants • 6-2 

character· 6-7 
escape sequence· 6-8 
hexadecimal escape sequence· 6-8 

character strings· 6-19 
floating-point • 6-10 
identifier • 8-4 

Constants (cont'd.) 

integer. 6-6 
values of· 6-2 

continue statement. 4-12 
Control flow statements • 4-1 to 4-3 
Conversion rules· D-8 
Conversions • 5-21 to 5-24 

arithmetic· 5-21, 5:-22 
of data types· 5-21 
of function arguments· 5-3, 5-23 
with cast operator. 5-12 

$CREATE 
RMS function • 9-6 

jCROSS_REFERENCE qualifier· 1-9 
CTRljY 

interrupting debugger· 2-6 
CTRljZ 

exiting debugger· 2-6 

o 
D_floating representation· 6-10 
Data definitions 

external • 7 -18 
scope of external • 7- 18 

$DATA psect·11-2 to 11-5 
Data Structures· 6-14 

See also, Aggregates 
Data structures 

RMS·9-6 
definition modules· 9-8 
initialized prototypes· 9-8 

Data type keywords· D-5 
Data type modifiers • D-6 
Data types • 6-1 to 6-31 

conversion of. 5-21 
function prototypes. 3-37 
introduction to· 3-6 
modifiers· 7-23 

__ DATE __ • 8-23 
DCl command line· D-1 
DCl commands 

for program development· 1-1 
DEBUG command· 2-6 
Debugger. 2-1 

access to program variables 
arrays. 2-24 

Index-3 



Debugger 
access to program variables (cont'd.) 

character strings· 2-26 
scalars· 2-22 
structures· 2-28 
unions· 2-28 

ASCII representation· 2-30 
Sample session· 2-36 
SHOW SYMBOL command • 2-30 

Debugger command 
summary· 2-40 

/DEBUG qualifier. 2-4 
to the CC DCl command • 1-13 

Declarations • 6-2 to 6-4 
aggregate 

arrays • 6-15 
structures· 6-20 
unions· 6-20 

format of· 6-4 
function 

void· 6-30 
function prototypes. 3-37 
inside of blocks· 4-4 
interpreting • 6-32 to 6-34 
overlapping scope of· 3-49 
parameters • 3-41 
position of 

determining scope • 7 -3 to 7-4 
scalar 

character constant· 6-7 
character variable • 6-5 
enumerated • 6-13 
integer • 6-5 
pointer. 6-11 

vacuous tag declarations· 6-22 
VAX C RTl prototypes • 3-39 

Decrement operator· 5-10 
side effects within macros· 8-7 

default label· 4-6 
#define directive· 8-2 to 8-8 
defined operator· 8-15 
/DEFINE qualifier 

to the CC DCl command· 1-9 
Definition modules 

descriptions of· A-1 to A-4 
for RMS structures. 9-8 

4-lndex 

Definitions· 6-2 
function 

void· 6-30 
functions • 3-29 

$DElETE 
RMS function • 9-6 

DEPOSIT debugger command • 2-20 
Dereferencing • 5-11 

See also Pointers 
descrip 

definition module· 10-9 
$DESCRIPTOR preprocessor macro· 10-12 
Descriptors 

See also, File descriptors 
in mixed-language programming • 10-9 

/DIAGNOSTICS qualifier 
to the CC DCl command • 1-13 

#dictionary directive • 8-8 to 8-13 
Direct access modes 

RMS·9-5 
Directives 

#elif· 8-13 
#else· 8-13 
#endif· 8-13 
#if· 8-13 
#ifdef. 8-13 
#ifndef· 8-13 
#include· 8-16 
#line·8-20 
#module • 8-21 
#pragma • 8-22 
#undef· 8-8 
#define· 8-2 
#dictionary • 8-8 

$DISCONNECT 
RMS function • 9-6 

Display 
source code· 2-9 

Division operator· 5-14 
do statement • 4-11 
double keyword • 6-10 
Dynamic module setting • 2-35 

E 
ECHO DCl command • 3-44 



Editors 
VAXLSE· C-1 to C-27 

EDT editor 
invoking· 1-4 
using· 1-4 

EDT Keypad Emulator Interface· 1-5 
#elif 

preprocessor directive • 8-13 
#elif· 8-15 
#else 

preprocessor directive • 8-13 
#endif 

preprocessor directive • 8-13 
enum keyword • 6-13 
Enumerated data type. 6-13 to 6-14 

declaration of. 6-13 
envp 

main function argument. 3-43 
Equality operators ·5-15 
$ERASE 

RMS function • 9-6 
Errors 

compilation· 1-19 to 1-21 
Escape sequences. 6-8, 0-9 

hexadecimal values • 6-8 
EVALUA TE debugger command. 2-20 
Evaluating expressions 

See Expressions 
EVE interface. 1-5 
EXAMINE debugger command· 2-19 
Execution 

start/resume in debugging. 2-11 
EXIT debugger command. 2-6 
Expression 

See also Address expression 

See also Language expression 
Expressions· 4-3 to 4-4, 5-1 to 5-24 

assignment· 5-19 
as statements • 4-3 
binary 

additive • 5-14 
bitwise • 5-16 
equality • 5-15 
logical· 5-17 
multiplication • 5-14 
relational • 5-15 
shift. 5-17 

Expressions (cont'd.) 

comma. 5-21 
conditional • 5-18 
evaluation order 

ambiguity of. 5-10 
primary • 5-3 to 5-5 

array reference. 5-4 
formal syntax of· 5-3 
function call· 5-3 
Iva lues • 5-2 
parentheses • 5-3 
structure reference· 5-5 
union reference· 5-5 

unary 
addressed • 5-11 
cast· 5-12 
increment and decrement· 5-10 
negation • 5-9 
one's complement· 5-12 
sizeof • 5-13 

Extended attribute block (XAB) 
initialization of· 9-12 

Extensible V AX Editor (EVE) • 1-5 
[extern] keyword· 7 -13 
[extern] specifier· 7-6 
External storage class 

F 

compared to global· 7 -18 to 7-20 
data definitions· 7-18 
[extern]· 7-13 

F _floating declaration • 6-9 
FAB 

initialization of. 9-10 
RMS data structure. 9-6 

fab 
definition module· 9-8 

__ FILE __ • 8-24 
Files 

indexed organization· 9-4 
organization 

RMS • 9-2 to 9-4 
relative organization • 9-3 
sequential organization • 9-3 

float keyword • 6-9 

Index-5 



Floating-point 
constants • 6-10 
data type 

D_floating • 6-10 
declaration of· 6-9 
double • 6-10 
G_floating • 6-10 
long· 6-10 
precision of· 6-9 

sizes of· 6-9 
Floating-point data type 

passed by immediate value· 10-16 
for statement • 4-9 to 4-10 

introduction to· 3-16 
Foreign command 

for passing command-line arguments. 3-44 
FORTRAN common block 

sharing program sections with. 10-22 
Forward referencing 

structures • 6-22 
Function definition 

arguments 
conversion of· 5-23 

Functions 
address of· 3-42, 5-4 
as arguments. 3-42 
calls to· 5-3 

within macros· 8-7 
definitions of· 3-29 to 3-41 

argument conversion· 5-3 
arguments • 3-31, 3-40 
body· 3-31 
main_program option • 3-32 
main function· 3-31 
names of. 3-31 
parameters • 3-31, 3-40 

introduction to· 3-5 
prototypes· 3-37 
return values of· 3-35 
RMS·9-6 
scope of. 3-31 
undeclared • 5-3 
VAX e RTl 

prototypes· 3-39 
void keyword. 6-30 

6-lndex 

G 
G_floating representation· 6-10 
JG_FlOA T qualifier 

to the ee Del command • 1-13 
$GET 

RMS function • 9-6 
globaldef data type 

with enumerated values· 7-22 
globaldef keyword • 7 -15 to 7-18 
globalref data type 

with enumerated values· 7-22 
with enumerated vlaues 

See also, Storage class 
globalref keyword • 7-15 to 7-18 
Global storage class· 7 -15 to 7-21 

compared to external· 7-18 to 7-20 
variable initialization. 7 -16 

globalvalue keyword· 7-20 
GO debugger command • 2-11 
goto statement. 4-2 

H 
Help 

online. 2-3 
HELP debugger command • 2-40 

I 
Identifiers • 3-45 to 3-46 
#if 

defined operator· 8-15 
preprocessor directive. 8-13 

if statement • 4-5 
introduction to. 3-10 

#ifdef 
preprocessor directive. 8-13 

#ifndef 
preprocessor directive. 8-13 

#include 
preprocessor directive· 8-16 to 8-19 

#include modules 
descrip· 10-9 
for RMS data structures. 9-8 



#include 
preprocessor directive 

for default libraries. 1-7 
/INClUDE _DIRECTORY qualifier 

to the CC DCl command. 1-14 
Including files • 8-16 to 8-19 

V AX C RTl prototypes· 3-39 
Increment operator. 5-10 

side effects within macros· 8 .. 7 
Indexed 

file organization· 9-4 
Indirection operator. 6-12 
Initialization 

arrays • 6-17 
characters • 6-5 
character-string variables· 6-18 
debugger· 2-5 
integers • 6-5 
of global variables· 7 -16 
of RMS data structures 

extended attribute block (XAB) • 9-12 
file access block (F AB) • 9-10 
name block (NAM)· 9-13 
record access block (RAB) • 9-11 

structures· 6-25 
Input and output I/O 

introduction to· 3-7 
Integer constants· 6-6 

invalid • 6-7 
Integer data types 

declaration of· 6-5 
sizes of· 6-5 

Internal storage class· 7 -9 to 7-12 
Interrupt 

debugging session .2-6 
Interrupting statements· 4-11 to 4-13 
Invoking 

debugger. 2-5 

K 
Keypad mode. 1-4 
Keywords 

auto· 7-10 
enum· 6-13 
break· 4-11 
case· 4-6 

Keywords (cont'd.) 

const· 7-23 
continue • 4-12 
default • 4-6 

L 

do. 4-11 
else· 4-5 
extern. 7-13 
for. 4-9 
globaldef • 7 -15 
globalref • 7 -15 
globalvalue. 7-20 
goto· 4-2 
if· 4-5 
introduction to· 3-6 
list of· 3-46 
noshare • 7 -26 
readonly· 7-27 
register • 7 -12 
return • 4-13 
sizeof • 5-13 
static • 7 -13 
struct • 6-20 
switch· 4-5 
union· 6-20 
volatile· 7-25 
while·4-10 

labeled statements· 4-3 
language expression 

with DEPOSIT debugger command • 2-20 
with EVALUATE debugger command • 2-20 

language-Sensitive Editor 
See VAXlSE 

lexical scope· 7-4 to 7-6 
Libraries 

object module 
default VAX C. 1-41 

specifying to linker· 0-4 
text module 

default system. 1-7 
/LiBRARY qualifier 

to the CC DCl command· 1-14 
Lifetime 

of stored objects· 7-8 
__ LlNE __ • 8-24 

Index-7 



#Iine 
preprocessor directives· 8-20 

Line mode. 1-4 
Line number 

debugger source display· 2-10 
SET BREAK debugger command • 2-14 
SET TRACE debugger command • 2-17 

jLlNE qualifier. 2-16 
LINK command. 1-41, D-2 

qualifiers to • D-3 
Linking 

jDEBUG qualifier· 2-4 
Link-time scope. 7-4 to 7-6 
LINT· 3-50 

function prototypes· 3-37 
jLlST. 1-21 
Listing 

compilation. 1-21 
Listing file formats· 1-21 to 1-40 
jLlST qualifier 

to the CC DCl command • 1-15 
lNK$LlBRARY logical name· 1-41 
logical 

negation operator· 5-9 
operators • 5-17 

long keyword. 6-5, 6-10 
looping statements· 4-9 to 4-11 

See also, Statements 
introduction to· 3-14 

Ivalues 
introduction to • 3-18 

Ivalues· 5-2 

M 
jMACHINE_CODE qualifier 

to the CC DCl command • 1-15 
Macro definitions· 8-5, 8-6 

canceling • 8-8 
listing substituted lines· 8-7 
naming parameters in • 8-7 
possible side effects • 8-7 

MACRO program 
sharing program sections with· 10-26 -

Macros 
_align· 7-27 
__ DA TE __ • 8-23 

8-lndex 

Macros (cont'd.) 
__ FllE __ • 8-24 
__ LlNE __ • 8-24 
__ TIME __ • 8-24 

Macro substitution 
introduction to. 3-7 

Main function • 3-31 to 3-32 
passing parameters to • 3-43 

-syntax of· 3-43 
with main_program option • 3-32 

Members 
defined • 6-3 
variant aggregates· 6-27 

Messages 
compiler • B-1 to B-44 

format of· 1-19 to 1-21 
Mixed language programming • 3-40 

the V AX Calling Standard. 3-40 
Mixed-language programming 

argument passing 
by descriptor· 10-9 
by immediate value· 10-14 

floating-point numbers· 10-16 
by reference • 10-6 

Modifiers 
storage class· 7-25 

Module 
setting • 2-35 

#module 
preprocessor directive· 8-21 

Module name 
changing the default. 8-21 

Modules 
object library 

default VAX C. 1-41 
Mod operator· 5-14 
Multiplication operators. 5-14 

N 
NAM 

initialization of. 9-13 
RMS data structure· 9-6 

Negation 
arithmetic and logical. 5-9 

Nokeypad mode. 1-4 



INOOPTIMIZE qualifier 
effect on debugging. 2-5 

noshare keyword. 7-26 
Null 

pointer· 6-11 
Null statement· 4-2 

o 
Object module 

in determining scope. 7-2 
libraries 

default VAX C· 1-41 
names of· 1-49 

IOBJECT qualifier 
to the CC DCl command· 1-16 

Objects 
of variables. 6-2 

Octal constants. 6-6 
One's complement operator. 5-12 
$OPEN 

RMS function • 9-6 
Operand conversion • 5-22 
Operators • 5-5 to 5-21 

assignment • 5-19 to 5-21 
ambiguity of· 5-20 

binary • 5-13 to 5-18 
additive • 5-14 
bitwise • 5-16 
equality • 5-15 
logical· 5-17 
multiplication • 5-14 
relational • 5-15 
shift· 5-17 

bracket • 5-4 
categories of· 5-7 
comma· 5-21 
conditional • 5-18 
defined • 8-15 
list of. 5-5 
precedence of. 5-7, 0-7 
unary • 5-9 to 5-13 

address of· 5-11 
cast· 5-12 
increment and decrement. 5-10 
indirection • 5-11 
negation • 5-9 

Operators 
unary (cont'd.) 

one's complement. 5-12 
IOPTIMIZE qualifier 

to the CC DCl command· 1-16, 2-38 
OR bitwise operator· 5-16 

p 

Parameters· 3-40 to 3-41 
declaration of. 3-31, 3-41 
function prototypes· 3-37 
in #define preprocessor macros· 8-5 
introduction to. 3-5 
main function· 3-43, 3-44 
rules governing • 3-40 

Path name 
in debugging • 2-9, 2-12, 2-14, 2-36 

PC 
and SHOW CALLS debugger display· 2-13 
and source display· 2-1 0 
and STEP debugger command. 2-12 
breakpoint· 2-14-

Pl/l externals 
sharing program sections with· 10-24 

Pointers 
declaration of· 6-11 
introduction to· 3-18 
null·6-11 
unary operator • 5-11 

Portability concerns • 3-2 to 3-4 
See also, C language 
accessing argument lists. 10-6 
character-string constants. 6-7 
character string length· 6-19 
comparing pointers and integers. 5-15 
conversion of command-line arguments • 3-45 
deviations assignment operators. 5-20 
direction of bit field packing· 6-30 
global storage classes. 7 -19 
Global system status values· 7-20 
int values on a V AX • 6-6 
length of argument list • 3-40 
length of bit fields • 6-29 
length of identifiers • 3-45 
lexical scope and compilation units· 7-2 
long float keyword· 6-1 0 

Index-9 



Portability concerns (cont'd.) 

main_program option. 3-32 
octal constants· 6-6 
parameter declarations • 3-41 
passing constants by reference. 10-6 
predefined symbols. 3-48 
preprocessor implementations. 8-1 
preprocessor substitutions· 8-22 
referencing aggregate members. 6-24 
structure alignment· 6-20 
#include 

using angle brackets· 8-17 
#module directive • 8-21 
#dictionary directive. 8-9 
UNIX file specifications • 8-16 

#pragma 
preprocessor directive • 8-22 

Precedence of operators. 5-7 
in interpreting declarations. 6-32 

jPRECISION qualifier 
to the CC OCl command • 1-16 

Predefined symbols· 3-48, 8-22 to 8-23 
Preprocessor directives • 8-1 to 8-24, 0-10 

#elif· 8-13 
#else· 8-13 
#endif· 8-13 
#if· 8-13 
#ifdef· 8-13 
#ifndef· 8-13 
#include 

token substitution • 8-20 
#Iine· 8-20 
#module· 8-21 
#pragma· 8-22 
#undef·8-8 
#define· 8-2 
#dictionary • 8-8 
#include • 8-16 

Preprocessor substitutions. 8-22 
Primary expressions. 5-3 to 5-5 

See also, Expressions 
array reference. 5-4 
function call. 5-3 
Ivalues • 5-2 
parentheses • 5-3 
structure reference· 5-5 
union reference. 5-5 

1D-lndex 

Primary operators 
precedence of· 5-7 

Privacy • 7-8 
See also, Scope 

Program 
linking • 1-40 

Program section (psect) 
attributes of· 11-1 to 11-5 
created by VAX C.11-2 
for global symbols· 7 -15 
of keyword combinations. 11-3 
sharing 

with FORTRAN common blocks. 10-22 
with MACRO programs. 10-26 
with Pljl externals. 10-24 

Program structure. 3-1 to 3-51 
Prompt 

debugger (OBG> ). 2-5 
Prototypes. 3-37 

for V AX C RTl functions • 3-39 
$PUT 

RMS function • 9-6 

Q 

Qualifiers 

R 

CC command· 1-8, 0-1 
LINK command • 0-3 

RAB 
initialization of. 9-11 
RMS data structure· 9-6 

Random access mode· 9-5 
readonly keyword. 7-27 
Record file address 

access mode· 9-5 
Record Management Services (RMS) • 9-1 to 9-36 

data structures· 9-6 
example program. 9-14 
extended attribute blocks. 9-6 
file access blocks· 9-6 
file organization· 9-2 to 9-4 
functions • 9-6 
indexed organization • 9-4 
name blocks· 9-6 



Record Management Services (RMS) (cont'd.) 

random access mode· 9-5 
record access blocks. 9-6 
record access modes· 9-5 
record formats· 9-5 
relative organization· 9-3 
return status values· 9-8 
sequential organization • 9-3 

register keyword. 5-11, 6-12, 7-12 
Relational operators. 5-15 
Relative 

file organization • 9-3 
Reserved words· 3-46 
return statement· 3-31, 4-13 
Return status 

value 
RMS·9-8 

$REWIND 
RMS function • 9-6 

RMS 
See Record Management Services (RMS) 

rms 
definition module. 9-8 

rmsdef 
definition module. 9-8 

RMS functions· D-1 0 
RST (run-time symbol table) • 2-34 
RUN command • 1-48, 2-5 
RUN DCl command 

run-time errors. 1-48 
Run-time errors· 1-48 
rvalues 

introduction to. 3-18 

s 
Scalar data types· 6-4 to 6-14 

declarations • 6-4 
character • 6-5 
enumerated • 6-13 
floating-point • 6-9 
integer • 6-5 
pointers· 6-11 

defined • 6-3 
introduction to· 3-23 
variables of 

debugger access to· 2-22 

Scope· 7-2 to 7-8 
auto variables· 3-49 
debugging. 2-35 
in a compilation unit· 7-2 
in an object module. 7-2 
in a program· 7-2 
lexical scope· 7-4 
link-time scope· 7-4 
of external data • 7-18 
of functions • 3-31 
position of declarations. 7-3 to 7-4 

Screen mode· 2-9 
Sequential 

access mode· 9-5 
file organization· 9-3 

SET BREAK debugger command· 2-14 
SET MODE [NO]DYNAMIC debugger command • 

2-35 
SET MODE SCREEN debugger command • 2-9 
SET MODULE debugger command • 2-35 
SET SCOPE debugger command· 2-36 
SET TRACE debugger command· 2-16 
SET WATCH debugger command • 2-17 
Shared Image· 1-41 
/SHARE qualifier. 2-16 
Shift operators • 5-17 
SHOW CAllS debugger command • 2-13 
SHOW MODULE debugger command • 2-35 
/SHOW qualifier 

to the CC DCl command • 1-1 7 
SHOW SCOPE debugger command· 2-36 
SHOW SYMBOL debugger command • 2-30, 2-36 
/SllENT qualifier· 2-17 
sizeof keyword • 5-13 
Source Code Analyzer 

See VAXSCA 
Source display· 2-9,2-10 

not available • 2-10 
TYPE debugger command· 2-9 

Source programs 
compiling. 1-3 
creating • 1-3 
linking • 1-3 

/ST ANDARD=PORT ABLE qualifier 
to the CC DCl command. 1-18 

Statements • 4-1 to 4-13, D-7 
break· 4-11 

Index-11 



Statements (cont'd.) 

case· 4-6 
compound • 4-4 
conditional· 4-4 to 4-8 
continue • 4-12 
control flow • 4-1 to 4-3 
default· 4-6 
do· 4-11 
expressions as· 4-3 
for· 4-9 
goto· 4-2 
if· 4-5 
interrupting • 4-11 to 4-13 
labels. 4-3 
looping • 4-9 to 4-11 
null· 4-2 
return· 4-13 
switch ·4-5 
while· 4-10 

static keyword • 7 -13 
Static storage class· 7 -13 
STEP debugger command • 2-12 
Storage 

modifiers • 7 -23 
Storage allocation· 7 -8 to 11-5 

for program sections. 7-8 
attributes of· 11-1 

lifetime of variables • 7-8 
location of. 7-9 
registers· 7-8 
run-time stack • 7-8 

Storage classes • 7 -1 to 7-28 
defined· 7-1 
external • 7 -13 to 7-15 

definitions and declarations. 7 -14 
global· 7-15 
in determining scope· 7-2 
internal· 7-9 

auto keyword· 7 -10 
register keyword • 7 -12 

introduction to· 3-6 
list of· 7-4 
modifiers • 7 -25 to 7-28 

const· 7-23 
introduced • 7-4 
noshare keyword. 7-26 
readonly· 7-27 
volatile. 7-25 

12-lndex 

Storage classes (cont'd.) 

order of keywords in declarations. 7-3 
specifiers 

auto keyword· 7 -10 
[extern]. 7-6 
globaldef· 7-7 
static· 7-7 
globalref. 7-15 
globalvalue· 7-20 
keyword register· 7 -12 
list of. 7-5 
(null)· 7-5 
table of created psects. 11-3 

static keyword • 7 -13 
Storage class modifiers· D-6 
Storage class specifiers· D-6 
String data type 

declaration of. 6-18 
See also, Arrays 

Structures • 6-14 
bit fields • 6-29 
debugger access to· 2-28 
declaration of· 6-20, 6-21 to 6-23 
forward referencing • 6-22 
initialization of. 6-25 
introduction to. 3-25 
members of 

reference.s to· 5-5, 6-23 to 6-24 
passed by descriptor· 10-9 
variant aggregates· 6-27 

Substitution 
macro • 8-5, 8-6 
token 

within #include Directives· 8-20 
Subtraction operator· 5-14 
switch statement. 4-5 to 4-8 

declarations inside of. 4-8 
introduction to • 3-12 

Symbol 
module setting. 2-35 
record· 2-4 
relation to path name· 2-12 
resolving • 2-35 

Symbolic constants. 6-2 
Syntax 

main function • 3-43 
sys$close 

RMS function • 9-6 



sys$connect 
RMS function • 9-6 

sys$create 
RMS function • 9-6 

sys$delete 
RMS function • 9-6 

sys$disconnect 
RMS function • 9-6 

sys$erase 
RMS function • 9-6 

sys$get 
RMS function • 9-6 

sys$open 
RMS function • 9-6 

sys$put 
RMS function • 9-6 

sys$rewind 
RMS function • 9-6 

sys$update 
RMS function • 9-6 

jSYSTEM qualifier. 2-16 

T 
Tags 

vacuous declarations· 6-22 
Text libraries 

default system • 1-7 
__ TIME __ • 8-24 
Token 

substitution 
within #include Directives· 8-20 

Token replacement· 8-2 
TPU 

using· 1-5 
Traceback 

run-time errors • 1-48 
SHOW CALLS debugger command • 2-13 

Tracepoint. 2-16 
TYPE debugger command· 2-9 
typedef keyword • 6-31 
Type specifiers· 0-5 

u 
Unary expressions 

address of· 5-11 

Unary expressions (cont'd.) 

cast· 5-12 
increment and decrement· 5-10 
indirection • 5-11 
negation • 5-9 
one's complement· 5-12 
sizeof· 5-13 

Unary operators 
precedence of· 5-7 

#undef 
preprocessor directive • 8-8 

jUNDEFINE qualifier 
to the CC DCL command • 1-9 

Unions • 6-14 
debugger access to· 2-28 
declaration of· 6-20, 6-21 
introduction to· 3-25 
members of 

references to • 5-5 
variant aggregates. 6-27 

$UPDATE 
RMS function • 9-6 

User-defined functions 
See functions 

User-named psects. 11-2 to 11-5 
Utilities 

LINT· 3-50 

v 
Vacuous tag declarations • 6-22 
Values 

defined • 6-2 
of constants • 6-2 
of variables· 6-2 

varargs functions and macros. 3-34 
Variable 

as address expression for SET WATCH 
debugger command • 2-17 

nonstatic· 2-18 
Variable name 

DEPOSIT debugger command. 2-20 
EVALUA TE debugger command. 2-20 
EXAMINE debugger command· 2-19 

Variables 
character • 6-5 

Index-13 



Variables (cont'd.) 

declarations 
format of· 6-4 
introduction to· 3-6 

declared in overlapping blocks· 3-49 
identifiers • 3-45 
objects of· 6-2 
values of· 6-2 

variant_struct· 6-27 
variant_union. 6-27 
VAX C/LiST. 1-21 
V AXC$INCLUDE logical name. 8-17 
V AX Calling Standard 

argument lists • 3-40 
double variables· 3-40 
structures. 3-40, 6-20 

V AX C compiler 
function • 1-6 

V AXCDEF. TLB system library· 1-7 
V AX C language 

See also, C Run-Time Library (RTL) 

See also, Portability concerns 
introduction to· 3-3 to 3-4 
keywords • 3-46 

introduction to· 3-6 
list of operators • 5-5 
program structure· 3-1 

introduction to· 3-4 
V AX C Run-Time Library (RTL) 

definition modules· A-1 
portability concerns· 8-16 
prototypes • 3-39 

V AX C tutorial· 3-4 to 3-29 
See also, Statements 
addresses • 3-18 
aggregates. 3-23 to 3-29 
AND operator· 3-15 
arguments • 3-5 
arrays· 3-23 
switch statement. 3-12 
blocks • 3-11 
break statement· 3-13 
case sensitivity· 3-6 
character strings· 3-23 
comments • 3-5 
compiling and linking· 3-9 

14-lndex 

VAX C tutorial (cont'd.) 

conditional execution. 3-10, 3-12, 3-13, 3-14, 
3-16 

data types· 3-6 
definition modules· 3-7 
DIGIT AL Command Language· 3-9 
do statement. 3-14 
equality operator· 3-11 
for statement· 3-16 
function body· 3-5 
functions • 3-5 
if statement· 3-10 
input/output· 3-7 
language keywords· 3-6 
linking against libraries· 3-7 
loop incrementing • 3-17 
loops· 3-14 
macros • 3-13 
newline character· 3-9 
OR operator· 3-11 
parameters· 3-5 
pointers • 3-18 
program flow • 3-10 
return statement· 3-5 
scalars • 3-23 to 3-29 
storage classes· 3-6 
structures and unions· 3-25 to 3-29 
switch statement· 3-13 
#include preprocessor directive • 3-13 
values • 3-18 
variable declarations· 3-6 
VAX C RTL·3-7 
VMS·3-9 
VMS file extensions· 3-9 
VMS file names· 3-9 
void functions· 3-5 
white space • 3-5 

VAXLSE • C-1 to C-27 
VAXSCA • C-21 to C-27 
VMS operating system 

RMS· 9-1 
See also, Record Management Services 

void keyword • 6-30 
volatile keyword. 7-25 



w 
jW ARNINGS qualifier 

to the CC DCl command· 1-19 
Watchpoint· 2-17 

restriction • 2-18 
while statement· 4-10 
White space· 3-50 

x 
XAB 

RMS data structure· 9-6 
XOR bitwise operator· 5-16 

Index-15 





Guide to V AX C 
AI-L370C-TE 

READER'S 
COMMENTS 

Note: This form is for document comments only. 
DIGITAL will use comments submitted on this form 
at the company's discretion. If you require a written 
reply and are eligible to receive one under Software 
Performance Report (SPR) service, submit your 
comments on an SPR form. 

Did you find this manual understandable, usable, and well organized? Please make 
suggestions for improvement. 

Did you find errors in this manual? If so, specify the error and the page number. 

Please indicate the type of user jreader that you most nearly represent: 

o Assembly language programmer 
o Higher-level language programmer 
o Occasional programmer (experienced) 
o User with little programming experience 
o Student programmer 
o Other (please specify) 

Name _________________ Date __________ _ 

Organization _____________________ --,--____ _ 

Street ____________________________ ___ 

City _______________ State _____ Zip Code __ _ 

or Country 



~ - Do Not Tear - Fold liere and Tape -

BUSINESS REPLY MAIL 
'FIRST CLASS PERMIT NO.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

- - - - DoNotTear-FoldHere - - -

SSG PUBLICATIONS ZK1-3/J35 
DIGITAL EQUIPMENT CORPORATION 
110 SPIT BROOK ROAD 
NASHUA, NEW HAMPSHIRE 03062-2698 

111","11.11 •••• 11" •• 1.11.1 •• 1.1 •• 1.1 •• 11,,".1.11 

I 
- -I 

No Postage I 
Necessary 

if Mailed in the 
United States 

Qi 
C 

::i 
] 
'0 
Q 
CIl 
c 
o 
~ 
:; 
u 



READER'S 
COMMENTS 

Guide to V AX C 
AI-L370C-TE 

Note: This form is for document comments only. 
DIGITAL will use comments submitted on this form 
at the company's discretion. If you require a written 
reply and are eligible to receive one under Software 
Performance Report (SPR) service, submit your 
comments on an SPR form. 

Did you find this manual understandable, usable, and well organized? Please make 
suggestions for improvement. 

Did you find errors in this manual? If so, specify the error and the page number. 

Please indicate the type of user/reader that you most nearly represent: 

o Assembly language programmer 
o Higher-level language programmer 
o Occasional programmer (experienced) 
o User with little programming experience 
o Student programmer 
o Other (please specify) 

Name _________________ Date __________ _ 

Organization ---,-_________________________ _ 

Street _____________________________ ___ 

City _______________ State _____ Zip Code ___ _ 

or Country 



- - - - Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - - - - - -

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SSG PUBLICATIONS ZK1-3/J35 
DIGITAL EQUIPMENT CORPORATION 
110 SPIT BROOK ROAD 
NASHUA, NEW HAMPSHIRE 03062-2698 

111 ••••• 11.1111 •• 11,".1.11.1111.1111.1111111,"1.11 

- - - - Do Not Tear- Fold Here - - -

No Postage 
Necessary 

if Mailed in the 
United States 

I 
- - - - - - - -I 

1 

I 
I 
I 
I 
I 
I 
I 
I 


