
Programming in
VAX-11

Programming in

VAX-11 C

May 1982

This manual defines the VAX-11 C pro­
gramming language and provides the
information necessary for developing
C programs on VAX-11 computers.

Programming in

VAX-11 C
AA-L370A-TE

Software Version V1 .0

digital equipment corporation . maynard, massachusetts

First Printing, May 1982

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no respon­
sibility for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright © 1982 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist in preparing
future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DECsystem-10 PDT
DEC US DECSYSTEM-20 RSTS
DIGIT AL DECwriter RSX
PDP DIBOL VMS
UNIBUS EduSystem VT
VAX IAS
DECnet MASSBUS

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710

In New Hampshire, Alaska, and Hawaii call 603-884-6660

In Canada call 613-234-7726 (Ottawa-Hull)
800-267-6146 (all other Canadian)

DIRECT MAIL ORDERS (CANADA)

Digital Equipment of Canada Ltd
940 Belfast Road
Ottawa, Ontario K1G 4C2
Attn: A&SG Business Manager

ZK2164

DIRECT MAIL ORDERS (USA & PUERTO RICO)'

Digital Equipment Corporation

DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

*Any pfepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

A&SG Business Manager
c/o Digital's local subsidiary or
approved distributor

Internal orders should be placed through the Software Distribution Center (SOC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

Contents

Page

Preface XVII

Chapter 1 A Brief Discussion of C . . 1

1.1 Data Types. 1
1.2 Operations . 3
1.3 Program Control 4

1.3.1 Decisions and Transfers of Control. 4
1.3.2 Loops 5
1.3.3 Function Calls . 6

1.4 Program Structure .6
1.5 Sample Program .8
1.6 Degree of Standardization . 13

Chapter 2 Program Structure 16

2.1 Function Definitions 16
2.1.1 Main Function and Function Names. 18
2.1.2 Parameters and Arguments 20
2.1.3 Identifiers 21
2.1.4 Blocks . 22
2.1.5 Comments 23
2.1.6 Keywords 23

2.2 External Data Definitions . 25

Chapter 3 Data Types and Declarations . 26

3.1 Format of a Declaration. 27
3.2 Scalar Declarations and Types. 27

3.2.1 Integers 28
3.2.2 Characters and Character Strings 29
3.2.3 Floating-Point Numbers. 31
3.2.4 Pointers 32
3.2.5 Enumerated Types 33

3.3 Storage Classes . 35
3.4 Data Structures. 37

3.4.1 Arrays . 37
3.4.2 Structures and Unions 39

iii

3.5 Initialization . 45
3.5.1 Initialization of Scalar Variables. 46
3.5.2 Initialization of Aggregate Variables . 46

3.6 Scope of Names 49
3.7 Interpreting Declarations 49
3.8 typedef. 52

Chapter 4 Expressions and Operators . 53
4.1 Data Type Conversions . 55

4.1.1 Conversion of Operands . 55
4.1.2 Conversion of Function Arguments 56

4.2 Primary Expressions and Operators 57
4.2.1 Parenthesized Expressions. 57
4.2.2 Function Calls . 57
4.2.3 Array References . 58
4.2.4 Lvalues 58
4.2.5 Structure and Union References . 59

4.3 Unary Expressions and Operators . 60
4.3.1 Negating Arithmetic and Logical Expressions 60
4.3.2 Incrementing and Decrementing Variables . 60
4.3.3 Computing Addresses and Dereferencing Pointers. 61
4.3.4 Calculating a One's Complement 62
4.3.5 Forcing Conversions to a Specific Type 62
4.3.6 Calculating Sizes of Variables and Data Types . 63

4.4 Binary Expressions and Operators . 63
4.4.1 Additive Operators . 63
4.4.2 Multiplicative Operators 64
4.4.3 Equality Operators . 64
4.4.4 Relational Operators 64
4.4.5 Bitwise Operators. 65
4.4.6 Logical Operators . 65
4.4.7 Shift Operators . 65

4.5 Conditional Expression and Operator 66
4.6 Assignment Expressions and Operators. 66
4.7 Comma Expression and Operator 68

Chapter 5 Statements 69
5.1 Expression Statement . 69
5.2 Compound Statement. 69
5.3 if Statement . 70
5.4 while Statement 70
5.5 do Statement . 70
5.6 for Statement 70
5.7 break Statement . 71
5.8 switch Statement. 71
5.9 continue Statement. 74

lV

5.10 return Statement .
5.11 goto Statement ..
5.12 Labeled Statement.
5.13 Null Statement ..

74
74
75
75

Chapter 6 Library Functions 76

6.1 Performing I/O from C Programs. 76
6.1.1 Stream Files and Stream Access. 78

6.1.1.1 Relationship to VAX-11 C Record
Management Services (RMS) . 79

6.1.1.2 Stream Access to Stream Files 79
6.1.1.3 Stream Access to Record Files. 79

6.1.2 Standard I/O . . 82
6.1.3 UNIX I/O 82
6.1.4 Predefined Files . 83

6.2 Character Classification . 86
6.3 String Handling 88
6.4 Character Conversion . . 89
6.5 Mathematical Functions 90
6.6 Memory Allocation . . . 92
6.7 Miscellaneous Functions. 93
6.8 UNIX Emulation 94
6.9 Organization of Libraries and Definition (h) Files. 96
6.10 Interpreting Synopses of Functions 96
6.11 Library Functions 97

6.11.1 abort . . 98
6.11.2 abs, fabs 98
6.11.3 access . 98
6.11.4 acos . . 98
6.11.5 alarm . 99
6.11.6 asin . 99
6.11.7 atan. . 99
6.11.8 atan2 . . 100
6.11.9 atof, atoi, atol. . 100
6.11.10 atoi. 100
6.11.11 atol. 101
6.11.12 brk, sbrk. . 101
6.11.13 cabs . . 101
6.11.14 calloc. . 101
6.11.15 ceil. . . 101
6.11.16 cfree . . 102
6.11.17 chdir . . 102
6.11.18 chmod . 102
6.11.19 chown . 103
6.11.20 clearerr . 103
6.11.21 close . . 103
6.11.22 cos . . 103
6.11.23 cosh . . 104

v

6.11.24 creat . . 104
6.11.25 ctermid. . 106
6.11.26 ctime. . 106
6.11.27 cuserid. . 107
6.11.28 delete. . 108
6.11.29 dup, dup2. . 108
6.11.30 ecvt, fcvt, gcvt . . 108
6.11.31 execl, execv, execle, execve. . 110
6.11.32 execle . 112
6.11.33 execv. . 112
6.11.34 execve . . 112
6.11.35 exit, _exit . . 112
6.11.36 exp. . 112
6.11.37 fabs . 113
6.11.38 fclose. . 113
6.11.39 fcvt. . 113
6.11.40 fdopen . 113
6.11.41 feof. . 114
6.11.42 ferror. . 115
6.11.43 fflush. . 115
6.11.44 fgetc . . 115
6.11.45 fgetname. . 115
6.11.46 fgets . . 115
6.11.47 fileno. . 115
6.11.48 floor . . 116
6.11.49 fopen. . 116
6.11.50 fprintf . 117
6.11.51 fputc. . 117
6.11.52 fputs . . 117
6.11.53 fread. . 117
6.11.54 free, cfree . 118
6.11.55 freopen. . 118
6.11.56 frexp. . 119
6.11.57 fscanf . 119
6.11.58 fseek. . 119
6.11.59 ftell . 119
6.11.60 ftime. . 120
6.11.61 fwrite . 120
6.11.62 gcvt . 120
6.11.63 getc, fgetc, getchar, getw. . 120
6.11.64 getchar. . 121
6.11.65 getegid. . 121
6.11.66 getenv . 121
6.11.67 geteuid. . 122
6.11.68 getgid . 122
6.11.69 getname, fgetname . . 122
6.11.70 getpid . 122
6.11.71 gets, fgets . 123
6.11.72 getuid, getgid, geteuid, getegid . . 123

vi

6.11.73 getw .. 123
6.11.74 gsignal. 124
6.11.75 hypot, cabs . 124
6.11.76 isalnum 125
6.11.77 isalpha. 125
6.11.78 isascii 125
6.11.79 isatty. 125
6.11.80 iscntrl . 126
6.11.81 isdigit . . 126
6.11.82 isgraph. . 126
6.11.83 islower. . 126
6.11.84 isprint . . 127
6.11.85 ispunct. . 127
6.11.86 isspace . . 127
6.11.87 isupper. 127
6.11.88 isxdigit. 128
6.11.89 kill. 128
6.11.90 ldexp. 128
6.11.91 localtime . . 129
6.11.92 log, loglO. . 129
6.11.93 longjmp . 129
6.11.94 lseek . . 130
6.11.95 malloc . . 131
6.11.96 mktemp . 131
6.11.97 modf. . 131
6.11.98 nice . 131
6.11.99 open . . 132
6.11.100 pause . 132
6.11.101 perror. . 133
6.11.102 pipe. . 133
6.11.103 pow. . 134
6.11.104 printf, fprintf, sprintf . . 134
6.11.105 putc, fputc, putchar, putw. . 139
6.11.106 putchar . . 139
6.11.107 puts, fputs. 139
6.11.108 putw 140
6.11.109 rand, srand 140
6.11.110 read. 140
6.11.111 realloc. . 141
6.11.112 rewind . 141
6.11.113 sbrk. . 141
6.11.114 scanf, fscanf, sscanf . . 141
6.11.115 setbuf. . 144
6.11.116 setgid . . 144
6.11.117 setjmp, longjmp . . 145
6.11.118 setuid, setgid 147
6.11.119 signal . . 147
6.11.120 sin . 150
6.11.121 sinh. . 151

vii

6.11.122 sleep . 151
6.11.123 sprintf. . 151
6.11.124 sqrt. . 151
6.11.125 srand . . 151
6.11.126 sscanf. . 151
6.11.127 ssignal . 152
6.11.128 strcat, strncat . . 152
6.11.129 strchr, strrchr . . 153
6.11.130 strcmp, strncmp . . 153
6.11.131 strcpy, strncpy . 154
6.11.132 strcspn . 154
6.11.133 strlen . . 155
6.11.134 strncat . 155
6.11.135 strncmp. . 155
6.11.136 strncpy . 155
6.11.137 strpbrk . 156
6.11.138 strrchr . 156
6.11.139 strspn. . 156
6.11.140 tan . 157
6.11.141 tanh. . 157
6.11.142 time. . 157
6.11.143 times . 158
6.11.144 tmpfile . 158
6.11.145 tmpnam. . 158
6.11.146 toascii . . . 159
6.11.147 tolower, _tolower . . 159
6.11.148 toupper, _toupper. . 159
6.11.149 umask. . 160
6.11.150 ungetc. . 160
6.11.151 vfork . 160
6.11.152 wait. . 162
6.11.153 write . 162

Chapter 7 Preprocessor Control Lines . . 163

7.1 Token Replacement . . 163
7.1.1 Constant Identifiers. . 165
7.1.2 Macro Substitutions 165
7.1.3 Listing of Substituted Lines. 167
7.1.4 Canceling Definitions . 168

7.2 File Inclusion . 168
7.3 Conditional Compilation 169
7.4 Specification of Line Numbers. . 170
7.5 Specification of Module Name and Identification. . 171

Vlll

Chapter 8 Using VAX-11 Record Management Services
(RMS) 172

8.1 RMS File Organization
8.1.1 Sequential Organization.
8.1.2 Relative Organization.
8.1.3 Indexed Organization.

8.2 Record Access Modes
8.3 RMS Record Formats
8.4 RMS Functions.
8.5 Writing VAX-11 C Programs Using RMS

8.5.1 Initializing File Access Blocks . . .
8.5.2 Initializing Record Access Blocks .
8.5.3 Initializing Extended Attribute Blocks .
8.5.4 Initializing Name Blocks

8.6 RMS Example Program

Chapter 9 Mixed-Language Programming
9.1 The Call Stack

. 173

. 173

. 173

. 174

. 175

. 175

. 175

. 177

. 179

. 180

. 181

. 182

. 182

. 208

. 209
9.1.1 Call Frames 209
9.1.2 The Argument List 209

9.2 Passing Arguments by Immediate Value . . 211
9.2.1 Checking System Service Return Values . . 213
9.2.2 Passing Floating-Point Arguments by Immediate

Value 216
9.3 Passing Arguments by Reference. . 218
9.4 Passing Arguments by Descriptor . 220
9.5 Variable-Length Argument Lists. . 225
9.6 Return Status Values 226

9.6.1 Format of Return Status Values. . 227
9.6.2 Manipulating Return Status Values . . 229
9.6.3 Testing for Success or Failure 230
9.6.4 Testing for Specific Return Status Values . 231

Chapter 1 o Storage Allocation 233

10.1 Program Sections 233
10.1.1 Attributes of Program Sections . 234
10.1.2 Program Sections Created by VAX-11 C. . 235
10.1.3 Link-Time Scope of Names 236

10.2 Sharing Program Sections with FORTRAN Common
Blocks. 236

ix

10.3 Sharing Program Sections with PL/I Externals . . . 239
10.4 Sharing Program Sections with MACRO Programs. . 240

Chapter 11 Global Symbols 242

11.1 Global Symbols and extern variables ..
11.2 The globaldef and globalref Keywords .
11.3 The globalvalue Keyword .
11.4 Enumerated Global Values

Chapter 12 Program Development .
12.1 File Specification Formats and Defaults.

12.1.1 Temporary Defaults
12.1.2 Changing the Default Directory .

. 242

. 243

. 245

. 245

. 247

. 247

. 249

. 251
12.2 Logical Names. 251

12.2.1 Logical Name Translation. 252
12.2.2 Uses of Logical Names 252
12.2.3 Commands to Control Logical Names . 252

12.3 Creating and Maintaining Files. . 253
12.4 The HELP Command 255
12.5 Using Command Procedures . 255
12.6 Libraries 258

12.6.1 Text Libraries 260
12.6.1.1 Naming Text Modules. . 260
12.6.1.2 Default C Libraries . . . 262
12.6.1.3 Default System #include Library. . 263

12.6.2 Object Libraries 263
12.6.2.1 Creating an Object Module Library. . 263
12.6.2.2 Default User Object Module Libraries . 266
12.6.2.3 System Libraries . . . 266

Chapter 13 Creating Source Programs.
13.1 Introduction to EDT.

13.1.1 Line Editing Command Summary.
13.1.2 The HELP Facilities ..

13.2 Invoking and Terminating EDT
13.2.1 Invoking EDT
13.2.2 Terminating EDT ...

13.3 Creating a New File in Line Mode
13.4 Editing an Existing File in Line Mode

13.4.1 Range Specifications
13.4.2 Maneuvering in the File . .
13.4.3 Inserting New Text
13.4.4 Deleting and Replacing Text
13.4.5 Moving Text . . .
13.4.6 Substituting Text.

x

. 268

. 268

. 269

. 271

. 272

. 272

. 274

. 274

. 275

. 275

. 278

. 279

. 280

. 281

. 281

13.4.7 Input from and Output to Files 283
13.4.8 Editing a File from Another Directory . . 283

13.5 Character Editing 284
13.5.1 Entering and Exiting from Character Editing Mode 286
13.5.2 Maneuvering the Cursor 286
13.5.3 Inserting Text 288
13.5.4 Deleting and Undeleting Text . . 288
13.5.5 Moving Text 289

13.6 Protecting and Recovering Text. . 289
13. 7 EDT Aids for the Programmer . . 290

13.7.1 Structured Tabs 290
13.7.2 Special-Purpose Key Definitions. . 291
13.7.3 Start-Up Command Files. 293

Chapter 14 Compiling, Linking, and Executing
C Programs 294

14.1 The Compile Command (CC). . 295
14.1.1 CC Command Format . 296
14.1.2 Specifying Input Files. . 297
14.1.3 Compiling Files into Separate Object Modules . . 297
14.1.4 Compiling Files into One Object Module. . 297
14.1.5 Specifying Library Files. . 298
14.1.6 Command and File Qualifiers . . 299
14.1.7 Compiler Diagnostic Messages and Error

Conditions . . 302
14.2 The LINKER Command (LINK) . . 304

14.2.1 Format of the LINK Command . . 306
14.2.2 Linker Messages . . 306
14.2.3 Linker Input Files . 308
14.2.4 Linker Output Files . 310
14.2.5 Specifying Map File Qualifiers . 312
14.2.6 Specifying Debugging Qualifiers. . 312

14.3 Executing Programs (RUN) . 313
14.3.1 Image Execution with RUN . . 313
14.3.2 Command-Line Arguments . 313
14.3.3 Image Exit. . 315
14.3.4 Run-Time Errors . . 316
14.3.5 Interrupting a Program . . 317
14.3.6 Returning Values to the Command Interpreter . . 318

Chapter 15 Debugging VAX-11 C Programs . . 319

15.1 Using the VAX-11 Symbolic Debugger . . 319
15.1.1 Beginning and Ending a Debugging Session . 320
15.1.2 The DEBUG Command. . 321
15.1.3 Effects of Optimization on Debugging . . 321

15.2 Debugger Command Syntax and Summary . . 322

XI

15.3 Special Characters and Expressions. 328
15.4 The Run-Time Symbol Table 328

15.4.1 Names Included in the Symbol Table by Default. . 330
15.4.2 Adding Names to the Symbol Table. . 331

15.5 Specifying References and Locations 332
15.5.1 References to Global Symbols 333
15.5.2 References to Program Locations 333
15.5.3 Symbolic References to Program Locations. . 334
15.5.4 The Debugger's Permanent Symbols. . 334

15.6 Scope 335
15.6.1 Changing the Scope 337
15.6.2 The Scope of Automatic Variables. . . 338

15. 7 The EXAMINE and DEPOSIT Commands . . 339
15.7.1 Scalar Variables 339
15.7.2 Arrays. 340
15. 7 .3 Character Strings. . . . 343
15. 7.4 Structures and Unions . 345

15.8 The GO Command. . . 347
15.9 The STEP Command . 348
15.10 Breakpoints 349
15.11 Tracepoints. 351
15.12 Watchpoints 351
15.13 Entering and Returning from Functions . 352

15.13.1 Stepping Into and Over Functions. . 353
15.13.2 Displaying the Calling Sequence. . 353
15.13.3 Calling Functions. 353

Appendix A Portability Considerations . . 355

Appendix B C Glossary. 367

Appendix C VAX-11 C Compiler Messages . 377

Appendix D Compiler Listing Formats . . 404

Appendix E VAX-11 C Definition Modules . 419

Appendix F VAX-11 C Run-Time Modules and
Entry Points . . 423

Appendix G ASCII Character Set . . 433

Index .. . 437

XII

Examples
1-1 Shell Sort in FORTRAN
1-2 Shell Sort in PASCAL .
1-3 Shell Sort in C
2-1 Case Conversion Program .
3-1 Using Arrays as Function Parameters
3-2 Arrays of Structures
5-1 Use of switch to Count Blanks, Tabs, and Newlines
6-1 Calling cuserid with an Argument. .
6-2 Calling cuserid with the Argument 0
6-3 The ecvt Function . .
6-4 The fdopen Function
6-5 The printf Function
6-6 The setjmp and longjmp Functions .
6-7 The signal, alarm, and pause Functions
6-8 The strcspn Function
6-9 The strspn Function
6-10 The vfork Function
8-1 External Data Declarations and Definitions
8-2 Main Program Section
8-3 Function Initializing RMS Data Structures
8-4 Internal Functions
8-5 Utility Function: Adding Records .
8-6 Utility Function: Deleting Records
8-7 Utility Function: Typing the File .
8-8 Utility Function: Printing the File.
8-9 Utility Function: Updating the File
9-1 Checking System Service Return Values.
9-2 Passing Floating-Point Arguments by Immediate Value.
9-3 Passing Arguments by Reference
9-4 Passing Arguments by Descriptor
9-5 Passing Compile-Time String Descriptors
9-6 Use of Variable-Length Argument Lists .
9-7 Testing for Success
9-8 Testing for Specific Return Status Values
10-1 Sharing Data with a FORTRAN Program in Named

.9
10
11
17
39
48
73

107
107
109
114
137
146
150
155
156
161
185
187
190
193
196
198

. 200

. 203

. 206

. 213

. 217

. 219

. 223

. 224

. 226

. 230

. 232

Program Sections 237
10-2 Sharing Data with a FORTRAN Program in a VAX-11 C

Structure . 238
10-3 Sharing Data with a PL/I Program in Named Program

Sections
10-4 Sharing Data with a PL/I Program in a V AX-11 C

Structure
10-5 Sharing Data with a MACRO Program in a VAX-11 C

Structure
12-1 A Sample Command Procedure
14-1 Echo Program Using Command-Line Arguments .. .
15-1 Scope of Symbolic Names
15-2 Examining and Depositing Values in Scalar Variables.

Xlll

. 239

. 240

. 241

. 256

. 314

. 336

. 340

15-3 Examining Data in an Array . . 341
15-4 Examing Floating-Point Elements of an Array . 342
15-5 Examining and Depositing Characters in a Character

String. . 343
15-6 Examining Data in Structures . 345
15-7 Examining Data in Unions. . 346
15-8 Using the CALL Command . 354
E-1 Checking the errno Variable . 422

Figures
3-1 Alignment of Structure Members 45
6-1 1/0 Interface from C Programs 77
6-2 Mapping Standard and UNIX 1/0 to RMS 78
9-1 The Call Stack . . 210
9-2 An Argument List . 215
9-3 Passing Arguments by Immediate Value. . 215
9-4 Passing Arguments by Reference . 221
9-5 Internal Representation of a Status Value . 229
12-1 Commands for VAX-11 C Program Development . 248
12-2 Creating and Using an #include Mudule Library . 261
12-3 Creating and Using an Object Module Library . 264
13-1 VT52 Keypad . . 285
13-2 VTlOO Keypad . 285
14-1 Linking Object Modules . . 305
D-1 Default Compiler Listing . . 406
D-2 Listing Format of Macro Substitutions . 408
D-3 Cross-Reference Listing. . 411
D-4 Compiler Performance Statistics . 416
D-5 Machine Code Listing . 417

Tables
1-1 Summary of C Operators . . 3
2-1 C Keywords 23
4-1 Precedence of C Operators 54
6-1 Input/Output Functions. . 84
6-2 Character Classification Functions. 87
6-3 String-Handling Functions . . . 88
6-4 Character Conversion Functions . 89
6-5 Mathematical Functions . . . 90
6-6 Memory Allocation Functions . . 92
6-7 Miscellaneous Functions 93
6-8 UNIX Emulation Functions. . . 94
6-9 File Access Block and Record Access Block Keywords . 105
6-10 Conversion Characters for Formatted Output . . 135
6-11 Conversion Characters for Formatted Input. . . 143
6-12 VAX-11 C Signals. 148
8-1 Common RMS Run-Time Processing Functions . 176
8-2 VAX-11 C RMS #include Modules 177

XlV

8-3 RMS Prototype Data Structures. 178
10-1 Program Section Attributes 234
10-2 Program Sections for VAX-11 C Variables 235
11-1 Comparison of Global Symbols and extern Variables . 243
12-1 Summary of File Specification Syntax 250
12-2 Commands for Maintaining Logical Names . . 253
12-3 V AXNMS Commands for File Maintenance . 254
12-4 Commands to Control Library Files . . 262
13-1 Summary of Line Editing Commands. . 270
13-2 Single-Line Range Specifications 276
13-3 Multiple-Line Range Specifications. . . 277
14-1 LINK Command Qualifiers 307
14-2 Specifying Input and Output Files for the Linker . . 311
14-3 Contents of a Map File 312
15-1 Summary of Debug Commands 323
15-2 Arithmetic Operators 329
15-3 Address Reference Operators 329
A-1 Relationship of VAX-11 C Run-Time Functions to Other

C Run-Time Functions 355
E-1 VAX-11 C Definition Modules . 419
E-2 errno Symbolic Values. 420
F-1 VAX-11 C Run-Time Modules . 423
F-2 VAX-11 C Run-Time Entry Points . 425
F-3 Run-Time Library Procedures Called by VAX-11 C . 431
G-1 ASCII Character Set 433

xv

Preface
Scope of This Manual
This manual combines reference information on the VAX-11 C lan­
guage with the information necessary for developing and debugging C
programs on a V AXNMS system.

Who Can Use This Manual
Most readers of this manual should be familiar with at least one other
high-level programming language, possibly several. Therefore, the
manual does not try to teach VAX-11 C to new programmers. Instead,
it answers the questions that are usually posed by experienced pro­
grammers who want to learn a new language quickly.

Where to Find More Information
If you would like a more tutorial introduction to the C language, see
The C Programming Language, 1 by the designers of the language. That
book contains extensive examples of programs written in C and can
serve as an introduction to the C language in particular or to program­
ming in general. Note that V AX-11 C contains features and enhance­
ments to the C programming language. Therefore, Programming in
VAX-11 C should be used as the reference book for the full description
of VAX-11 C.

Unless you do all your programming in C and make little or no use of
features that depend on V AXNMS or the VAX-11 machine architec­
ture, you should have all or most of the VAXNMS system documenta­
tion available for reference. For a complete list of all VAXNMS docu­
ments and their order numbers, see the VAX-11 Information Directory
and Index.

1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language
(Englewood Cliffs, New Jersey: Prentice-Hall, 1978).

xvii

Conventions Used in This Document

Enter string>AbcdffiIT)

float x;

x = 5;

option, ...

quotation mark
apostrophes

switch statement
fprintf function

[output-source, ...]

sc-specifier ::=
auto
static
extern
register
typedef

declarator initializer

In computer dialogs, the user's response to a
prompt is printed in red.

A vertical ellipsis indicates that not all of the
text of a program or program output is illus­
trated. Only relevant material is shown in the
example.

A horizontal ellipsis indicates that additional
parameters, options, or values can be entered.
A comma that precedes the ellipsis indicates
that successive items must be separated by
commas.

The term quotation mark is used to refer to
the quotation mark symbol ("). The term
apostrophe is used to refer to the single quota­
tion mark symbol (').

Boldface type identifies language keywords
and the names of library functions.

Square brackets, in function synopses and a
few other contexts, indicate that a syntactic
element is optional.

In syntax definitions, items appearing on sep­
arate lines are mutually exclusive alterna­
tives.

Italics, in syntax definitions and most other
contexts, indicate that a syntactic element is
optional.

A delta symbol is used in some contexts to
indicate a single ASCII space character.

The symbol IBrn represents a single stroke of
the RETURN key on a terminal.

The symbol rQIBI0, where x is a letter, repre­
sents a terminal control character, generated
by holding down the CTRL key while pressing
the letter key.

xviii

Chapter 1

A Brief Discussion of C

Because most readers of this manual are familiar with at least one other
high-level programming language, the manual does not try to teach
V AX-11 C to new programmers. Instead, it answers the questions typi­
cally posed by experienced programmers who want to learn a new lan­
guage quickly. These questions include:

• What are the language's data types?

• What operations can be performed on particular types? What con­
version and type checking take place when different types are
mixed in an operation?

• How is the flow of a program controlled? That is, by what means
are such fundamental tools as decisions, loops, and functions writ­
ten in the language?

• What is the structure of a program?

• To what extent is the language standardized, in the practical sense
that a program compiled on one manufacturer's system can also be
compiled, with a minimum of change, on another system?

• What distinguishes this language from others?

These questions are addressed briefly in this chapter, and in more
detail later.

If you are already familiar with the C programming language, you will
find that VAX-11 C is fundamentally the same language as that to
which you are accustomed. You might want to start with Chapter 12,
Program Development. That chapter and those that follow it explain
how to develop C programs on a VAX/VMS system.

Even if you are already familiar with C on other implementations, you
would be well advised to consult Chapters 1 through 11 to note the
extensions and relaxed rules specific to VA.X-11 C.

1.1 Data Types

Programming languages seem to fall into two groups with respect to the
way they represent data. Some, like PL/I, use forms that are closely
related to particular applications. Consequently, such languages have

1

many data types and, of necessity, have complex rules for operations on
various types and conversions between types. Other languages, C
among them, use data types that are closely related to the way comput­
ers are built. C has a small set of fundamental types in which scalar
variables can be declared as:

• Integers of various, fixed sizes. Integers can be signed or, if de­
clared with the keyword unsigned, unsigned. The integer key­
words (in VAX-specific sizes) are:
- char, an 8-bit byte, usually used to represent an ASCII charac­

ter
- short, or short int, a 16-bit integer
- int, or long int, a 32-bit integer

• Floating-point numbers, in two fixed sizes:
- float, a single-precision floating-point number (represented in

the V AX-11 F floating-point format)
- double, a double-precision floating-point number (represented

in the VAX-11 D floating-point format)

• enum values, which are scalars of a user-defined, or enumerated,
type. As in PASCAL, you can define new scalar types in C by
writing a type name followed by an ordered list of identifiers that
are the constants of that type.

• Pointers. On the VAX-11, pointer variables contain 32-bit ad-
dresses of other variables.

It can be seen from this list that C's scalar types were chosen for ease of
implementation, since most machines can represent integers and float­
ing-point numbers directly. In most implementations, VAX-11 C in­
cluded, enum values are represented in some internal integer format.
However, in programs they should be treated as having a type distinct
from the arithmetic types.

C compilers differ in the exact size of a particular kind of variable, but
all use machine representations that are natural to the machine in
question. For example, VAX-11 C uses a longword to represent the
default size integer (int). The language provides a standard operator,
sizeof, which yields the size of its operand in bytes, where a byte is the
amount of storage required to hold one character in the machine's
native character set. Therefore, in any implementation, sizeof(char) is
usually 1. The sizeof operator can be used to determine the size ofother
data types on a particular machine.

As in virtually all programming languages, you can also represent data
in aggregates of associated items. C has three kinds of aggregate:

2

• The array - an aggregate of items, or elements, which all must
have the same data type. Arrays may be multidimensional. Char­
acter strings in C are declared as one-dimensional arrays of type
char, either explicitly in string variables or implicitly in charac­
ter-string constants.

Chapter 1

• The structure - an aggregate of items, or members, which can
have the same or different data types. The amount of storage
occupied by a structure is the sum of the sizes of all its members.

• The union - an aggregate similar to the structure, but whose
storage holds the value of only one member at a time. That is, the
storage occupied by a union is as large as its largest member.

1.2 Operations

C has a very large set of operators, as shown in Table 1-1.

Table 1-1: Summary of C Operators

Operator Example Result

- [unary] -a negative of a
* [unary] *a reference to object at address a
& [unary] &a address of a

a one's complement of a
++ [prefix] ++a a after increment
+ + [postfix] a++ a before increment
-- [prefix] --a a after decrement
-- [postfix] a-- a before decrement
sizeof sizeof(tl) size in bytes of type t1

sizeof e size in bytes of expression e
(type-name) (tl)e expression e, converted to type t1

+ a+ b a plus b
- [binary] a-b a minus b
* [binary] a* b a times b
I a I b a divided by b
% a% b remainder of a/b (a modulo b)

>> a>> b a, right-shifted b bits
<< a<< b a, left-shifted b bits

< a< b 1 if a < b; 0 otherwise
> a> b 1 if a > b; 0 otherwise
<= a<= b 1 if a <= b; 0 otherwise
>= a>= b 1 if a >= b; 0 otherwise

a== b 1 if a equal to b; 0 otherwise
!= a!= b 1 if a not equal to b; 0 otherwise

& [binary] a&b bitwise AND of a and b
a : b bitwise OR of a and b
a ' b bitwise XOR (exclusive OR) of a and b

&& a && b logical AND of a and b (yields 0 or 1)
'' a : : b logical OR of a and b (yields 0 or 1) ''

!a logical NOT of a (yields 0 or 1)

A Brief Discussion of C 3

Table 1-1: (Cont.) Summary of C Operators

Operator

?:

+=

*=
I=
%=
>>=
<<=
&=

Example

a ? el : e2

a= b
a+= b
a-= b
a*= b
a I= b
a%= b
a>>= b
a<<= b
a&= b
a := b
a A= b

el,e2

Result

expression el if a is nonzero,
expression e2 if a is zero

a (with b assigned to a)
a plus b (assigned to a)
a minus b (assigned to a)
a times b (assigned to a)
a divided by b (assigned to a)
remainder of a/b (assigned to a)
a, right-shifted b bits (assigned to a)
a, left-shifted b bits (assigned to a)
a AND b (assigned to a)
a OR b (assigned to a)
a XOR b (assigned to a)

e2 (el evaluated first)

The operands of bitwise operators must be integral; that is, they must
be signed or unsigned integers. The operands of the arithmetic or com­
parison operators are converted automatically to a common type by a
set of rules known as the usual arithmetic conversions (see Section
4.1.1).

The restrictions that do exist on operand types are intended to prevent
meaningless or unrepresentable results. For instance, integers and
pointers may be used together in some expressions, but not in others
where they would probably produce meaningless addresses. Expres­
sions that can appear on the left side of an assignment are called
lvalues, to distinguish them from other expressions.

Note that it is conventional in C for a logical "true" value to be equiva­
lent to the condition "is not equal to zero." Similarly, "false" is equiva­
lent to "is equal to zero." It is important to realize that a true/false
status may be conveyed by other than the integer constants 0 and 1 or
the least significant bit of an integral value. In C, the constants 200 and
3.297el5, for example, are both "true".

1.3 Program Control

As in other languages, C has keywords and operators that make deci­
sions, control loops, and call functions.

1.3.1 Decisions and Transfers of Control
Decisions can be made in C programs with the if and else keywords,
and with the conditional operator.

4 Chapter 1

The if statement is a compound statement involving a logical expres­
sion:

if (expression) statement

The statement is executed if the expression is true (that is, has a non­
zero value). The statement can be either a single statement or a com­
pound statement enclosed in braces (11). It can be followed by an else
statement, which provides an alternative statement to be executed if
the logical expression is false (zero).

A similar kind of operation (but one that produces a value) can be
effected with the conditional operator:

e1 ? e2 : e3

The conditional operator (?:) means: evaluate expression el, and then
evaluate expression e2 if the result of el is nonzero. If the result of el is
zero, evaluate expression e3 instead.

C has facilities to transfer control both conditionally and uncondition­
ally:

• The goto statement transfers control unconditionally to a given
label.

• The switch statement transfers control to one of a list of cases,
depending on the value of a given expression.

• The break and continue statements perform transfers of control
in loop and switch statements. break terminates a loop or switch
and transfers control to the next statement; continue transfers
control to the bottom of the enclosing loop.

1.3.2 Loops
Loops are implemented in C with the for, while, and do statements.
The distinctions are as follows:

• The do statement executes its body one or more times; a given
expression is evaluated after each execution of the body, and if the
result is zero the do loop terminates.

• The while statement is the same as a do statement except that the
controlling expression is evaluated before each iteration. That is,
the while body may not be executed at all, whereas the do body is
always executed at least once.

• The for statement has three user-specified expressions and a body.
The first expression is executed before the first iteration of the
body; usually, it initializes a control variable. The second expres­
sion is executed before every iteration, including the first; execu­
tion of the loop proceeds only if the result of the second expression

A Brief Discussion of C 5

is nonzero. The third expression is executed at the end of every
iteration; it usually controls the change made to the control varia­
ble. For example:

for (i = o; i < 10; i++) statement

executes the statement 10 times, because i < 10 becomes false
(zero) after the tenth iteration. In other words, the for statement
above is equivalent to:

i = 0;
while(i < 10)

{

statement
i++;
}

1.3.3 Function Calls
AC function can call any other function simply by declaring its name.
Once declared, the name, followed by parentheses, can be used in ex­
pressions. For example, the following program segment first declares a
function (dfun) and then calls it from a separately compiled source file:

I* MAIN (CALLING> FUNCTION *I
1r1a in ()
{

I* DECLARE x AND t AS DOUBLE-PRECISION
*VALUES• dfun AS A FUNCTION RETURNING
* SUCH A VALUE
*I

double Xtttdfun()j
I* CALL dfunt ASSIGNING RETURNED

* VALUE TO t

*I
t = dfun(x);
}

A function call like the one shown here is performed the same way
whether the called function is written in C or in some other V AX-11
native mode language, such as FORTRAN, MACRO, or PL/I.

1.4 Program Structure
A C program is made up of one or more function definitions. For exam­
ple, a function named lower might be defined as follows:

I* CONVERT UPPERCASE TO LOWERCASE */
101,.ter(c_up)
int c_upj
{

6 Chapter 1

}

if (c_up >= 'A'&&, c_1_1p <= 'Z')
return (c_up + 'a' - 'A');

else return (c_up);

The definition shows, in the first two lines, that lower has one parame­
ter, c_up, and that c_up is an integer. The action taken by the func­
tion, or the body, consists of the statements between the braces (I l).
The execution of a function terminates when a return statement is
executed or when the right brace is encountered.

This example also shows a few other features of C program structure:

• C is a free-form language, like PL/I or PASCAL. The meaning of a
program is independent of the placement of text on a line or page.

• Programs may be commented freely, with comment text written
between the character pairs/* and*/ wherever spaces are valid. A
comment can have more than one open-comment delimiter (/*),
but it can have only one close-comment delimiter (4). This makes
it easy to convert unwanted source lines into comments.

All C functions are external; a function definition may only call other
functions, not define them. Therefore, C is not a block-structured lan­
guage as the term is usually applied. However, C does have facilities for
controlling the scope of variables. The scope of a variable can be part of
a function, the entire function, several functions in a program, or the
entire program.

In addition to function definitions, programs may also contain data
definitions that are external to any of the program's functions. An
external data definition is one means of extending the scope of a varia­
ble beyond a single function, so that information can be shared among
the functions in the program.

Keywords in C identify data types (such as int and char), storage
classes (such as auto and static), and certain statements (such as if
and return). C keywords are predefined identifiers that may not be
redeclared by the programmer. Keywords must be lowercase, and they
cannot be abbreviated.

Note that many identifiers that have special meaning in C programs
are not keywords. For example, C recognizes main to be the name of the
main function. If any function in a program is named main, execution
starts with that function. However, since it is not a keyword, main can
be used in other contexts, too. Similarly, the names oflibrary functions,
which in C perform such fundamental operations as input and output,
are not keywords.

A Brief Discussion of C 7

1.5 Sample Program
If you are not familiar with the C programming language, you may
want to compare a common algorithm in C with the same algorithm in
a familiar language.

The sample program in this section (Examples 1-1 through 1-3) is a
Shell sort algorithm. A Shell sort first compares elements in the un­
sorted data that are far apart (before comparing adjacent ones), and
then it places them in the proper order. The gap between compared
elements is initially half the size of the unsorted data array. The gap
gradually diminishes until the program is comparing adjacent ele­
ments. Thus, the data end up in the correct order.

8 Chapter 1

C Sort array of intesers into ascendins orde~,

C Declare looP counter and arra'/; initialize array,
INTEGER I 1ARRAY (0: 9)

DATA ARRAY/1018181718'112131415/

C Sort the data in the array,

CALL SHELL(ARRAY110)

C Write out the sorted data,
DO 10 I ; 018

10 WRITE(G.15) ARRAY(!)

15 FORMAT(' '.!2)

END

SUBROUTINE SHELL(V1N)

C To MaKe these coMParisons easier, bes in subscripts

C at zero,

INTEGER l.'(O:N 1)

INTEGER GAP 1I1J1TEMP

C Initialize the Sap to half the array size,

GAP ; N/2

C PerforM looP froM stateMents 10 to 88 until the

C SaP is zero.

10 IF <GAP .LE. 0) GO TO 100

C No1,,1 co1r1Pare the elerr1ents of each Pair that is

C separated by the Sap, and reverse any that are

C out of order.
I ; GAP

20 IF(! .GE, NJ GO TD 90

J ; I-GAP

30 IF ((J .LT. 0) .OR, (t.l(J) .LE, l.J(J+GAPll) GO TO 80

C Values are out of order: reverse theM.
TEMP ; l.J(J)

t.J(J) ; l.'(J+GAPl

l.l(J+GAPl ; TEMP

J ; J-GAP

GO TO 30

80 CONTINUE

I ; I+ 1

GO TD 20

90 CONT I NUE

C Reduce the Sap

GAP ; GAP/2

99 GO TD 10

100 RETURN

ENO

Example 1-1: Shell Sort in FORTRAN

A Brief Discussion of C 9

ProsraM Main<outPut)i

canst
MAXSU6 = Si (* MAXIMUM SUBSCRIPT *>

<* DECLARE THE TYPE DF ARGUMENT
TD 6E PASSED TD THE SHELL PROCEDURE *)

arStYPe arraY[O,.MAXSU6J of inteseri

var
i: inteseri
arr: arStYPei (* arr JS AN ARRAY DF INTEGERS *>

value
arr:= (10181817181!1Z131ll15)i <*INITIALIZE ARRAY*>

<* PASS THE ARRAY TD shell 6Y REFERENCE *)

Procedure shell (var v: arStYPei n: inteser);

var
Sap ri ,j tteMP: inteS'er;

bes in
Sap : = n div 2;

while ('Sap > 0) do
bes in
i : = S'aP;

while (i < n) do
besi n
j := i-Sap;

while < <J >= O> and Cv[JJ > v[J+SapJ)) do
besin
teMP := v[J]j
v[JJ := v[J+sap]j
v[J+aaP] := teMPi
J := J-SaP
endi
: = i+1;

end;

sap := sap div 2
end

end;

beain (* MAIN PROCEDURE *)

shell< arr 110);
for i := 0 to MAXSU6 do writeln(arr[i])

end <* END MAIN PROCEDURE *)

<* END OF PROGRAM *>

Example 1-2: Shell Sort in PASCAL

10 Chapter 1

Main() /*SORT ARRAY OF INTEGERS INTO ASCENDING ORDER*/ 0
{ 8

static int array[]= {!Q,9,9,7,9,1,2,3,a,SH 8
int i;

shell (array .!Ol i/* PASS THE ARRAY TO shell */

I* WRITE OUT THE SORTED DATA */
for <i=Ol ·i<!Ol i++l

Printf(11 'Z.d\n 11 ,arra~·[iJ);

shell(v,nl
int 1J [J 1n;

}

for (SaP = n/2i Sap > Oi Sap /= 2l
for (i = Sap; i < n; i++)

for (J i-laPl J>=O && u[JJ)u[J+SaPJl J -= Sap)

teMP = u[JJi
•J[JJ = ''[J+sapJ;
u[J+SaPl = teMPi

Example 1-3: Shell Sort in C

0

The following notes are keyed to the circled numbers in Example 1-3:

0 The definition of the main function and execution of the program
begin here. The empty parentheses (required syntax) indicate that
the main function in this program has no parameters.

8 The left brace (0 begins a compound statement. This character is
required; there are no substitutes, such as brackets or parentheses.
Compound statements can be used wherever single statements are
valid, such as in the bodies of loops.

0 This line illustrates the declaration of a variable - here, a static
array of integers. Ten initializers are supplied (in the braces). The
size of the array, normally an integer within the brackets ([]), is
omitted in this case, and the size is determined automatically by the
number of initializers. The size of an array in C is the number of its
elements, not the maximum subscript. The size in this example is
10, so the subscripts range from 0 to 9.

A Brief Discussion of C 11

Note also that the line is indented. Indentation is not semantically
meaningful in C, but it is used to show subordination. The state­
ments in the body of the main function are usually indented under
the braces that enclose the body.

0 This line illustrates a function call in C; here, the shell function is
called. The format of Example 1-3 suggests that main and shell are
in the same file, but they could be in separately compiled files, too.

Notice that shell has not been formally declared in the main func­
tion. The C default in such situations is to assume that shell is a
function returning an integer. Even when declarations are present in
the calling function, they show only the function's name and the
type of its return value, not the number or types of the parameters.

The identifier array and the constant 10 are shell's arguments. The
number and types of arguments in a function call must exactly
match the declaration of the external function's parameters.

0 The for statement is one of C's facilities for controlling program
loops. The body of a for statement is a single or compound state­
ment, which follows the for statement and a list of expressions.
Here, the body is a call to the function printf, which is executed 10
times to write out the sorted values in the array.

0 The right brace ends a compound statement, which in this case is
the body of the main function. The execution of functions ends
either when a return statement is executed or when the terminating
right brace is encountered.

f) This line begins the definition of the function shell, which has two
parameters. 1 The parameters need not have the same identifiers as
the arguments in the calling function.

0 This line declares the parameters v[l and n. Parameter declarations
precede the function body. They show the number and types of the
function parameters - in this case "array of integers" and "inte­
ger". The function arguments must match the parameter definitions
in both number and type.

0 This line begins a series of nested for loops. Notice that, as a result
of C's grammar, all three for statements precede the body of the
innermost loop.

Cii> This line begins the for body, which performs the actual exchange of
values in the array. Notice that the body is also the syntactic end of
the shell function; that is, shell does not have a return statement.

1. The term parameter in VAX-11 C is comparable to parameter in PL/I or
dummy argument in FORTRAN; it denotes a variable declared in the called
function, as opposed to argument, which denotes the expression written in the
function call.

12 Chapter 1

The sorted array elements are returned to the main function through
the parameter v. Because v's corresponding argument is the address
of the first element of the main function's array, references to v's
elements are also references to the elements of array. The bracket
operator (used for array subscripting) is actually performing address
arithmetic to determine the appropriate element of the main func­
tion's array. (The bracket operator and address arithmetic are ex­
plained in Chapter 4.)

However, except in cases of implicit or explicit address passing, you
should regard C as a language that passes arguments by value. That
is, an argument's value is calculated and copied into the correspond­
ing parameter.

1.6 Degree of Standardization

There is no ANSI standard or other industry-wide standard for the C
programming language. The C language is described in the book writ­
ten by the designers of C, 1 and in a series of technical notices published
by the American Telephone and Telegraph Company.
Certain features are fundamental to C and exist in most C compilers,
including the VAX-11 C compiler. These features are described in this
manual as follows:

• All basic elements of program structure are documented in Chap­
ter 2. (Chapter 2 points out that VAX-11 Callows certain non­
portable characters in identifiers and also has the nonportable
storage classes globaldef, globalref, globalvalue, and readonly.)

• The data types and declaration rules are described in Chapter 3.

• The set of (and rules governing) operators are described in Chapter
4. These rules describe the format of a function call, although they
do not describe a set of available functions. The C language has no
built-in or otherwise predefined functions.

• The set and semantics of statements are documented in Chapter 5.

In addition to the compiler, virtually every C language implementation
includes: (1) a preprocessor facility; (2) a set of definition files (conven­
tionally identified by the file type H); and (3) a library of run-time
functions. Compared with the features listed above, these aspects of a C
implementation are more loosely standardized and depend on the par­
ticular machine for which the C implementation was designed. The
following commentary suggests guidelines for using these features to
write portable programs:

1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language
(Englewood Cliffs, New Jersey: Prentice-Hall, 1978).

A Brief Discussion of C 13

1. In most respects, the preprocessor control lines described in
Chapter 7 are compatible with their equivalents in other imple­
mentations. Note, however, that VAX-11 C allows constant ex­
pressions of any integral type in an #if preprocessor control line.
These are valid C expressions, evaluated by the usual rules, that
have constant results. (In this context, constant expressions can­
not include the sizeof operator.) This set of expressions may be
more extensive than some compilers allow. A reasonable precau­
tion is to limit #if expressions to actual constants.

In addition, some aspects of the macro substitutions performed
by the VAX-11 C #define control line may differ from other
implementations. Because this feature is so widely used in C
programming, the best precaution is to compare the results of
the different compilers.

2. The V AX-11 C definition files are designed to be semantically
compatible with those of other known implementations. The text
in each file may not be identical with other manufacturers' ver­
sions, but in most cases, you can expect a program that uses
such files to compile successfully and to function correctly.

In addition, the search order for #include files is probably unique
to the VAX-11 implementation, although it is designed to be
useful and functionally similar to other implementations. The
main work for you may be to place the included file in the appro­
priate directory. See Chapter 7.

3. The functions in the VAX-11 C run-time library are documented
in Chapter 6. There is no guarantee that run-time functions are
absolutely compatible with those of other implementations.
However, the input/output functions, character and string func­
tions, mathematical functions, and memory allocation functions
are common features, and these functions in VAX-11 C are com­
patible with those of other implementations. It is possible that
the set of miscellaneous functions may be specific to the V AX-11
and UNIX1 implementations. The UNIX emulation functions
are included in VAX-11 C for the specific purpose of emulating
UNIX system functions; they may not occur in most C imple­
mentations.

4. Finally, the following functions are specific to VAX-11 C:

• strspn and strcspn
• strpbrk
• creat, in the form that includes RMS keywords
• delete

1. UNIX is a trademark of Bell Laboratories.

14 Chapter 1

Transporting programs between VAX-11 C and other C implementa­
tions may require minor program modifications. V AX-11 C provides
the following predefined constants for constructing portable programs;
all are defined to be nonzero ("true" in C's logic tests):

v ax
l.lftl s
vax11c

These symbols can be used, for example, in #if and #ifdef control lines
to determine whether source code that may not be portable should be
compiled. Control lines are described in Chapter 7.

Appendix A contains more information on compatibility between
V AX-11 C and other C compilers. The information in Appendix A
may be useful when transporting C programs.

The VAX-11 C compiler command, CC, also has a
/STANDARD=PORTABLE qualifier that detects most nonportable
constructions and issues appropriate warning messages.

A Brief Discussion of C 15

Chapter 2

Program Structure

This chapter describes the two basic elements of a C program: function
definitions and external data definitions.

Functions define the actions performed by a program. Section 2.1 de­
scribes C function definitions and explains the following associated
elements of the C language:

• Function names
• Function parameters and arguments
• Identifiers
• Blocks
•Comments
•Keywords

External data definitions provide an alternative to function parameters
for exchanging information among several functions in a program. They
are described in Section 2.2.

2.1 Function Definitions

Example 2-1 shows a simple C program that consists of two function
definitions; the components of a function definition are labeled in the
second function.

The name lower begins a new function definition; the function lower
has a single parameter, c_up. (Notice that although main has no
parameters, the pair of parentheses must be present.)

The next statement, int c_up, declares the parameter's data
type - in this case, int for integer. The declaration is omitted if the
function has no parameters; furthermore, declarations in this place in
the program may specify only the names of parameters, not the names
of other variables.

16

#include stdio

I* PROGRAM THAT CONVERTS ITS INPUT TO LOWERCASE */
fTla in ()
{

}

FILE *infile1 *outfile;
int i tC tC_Out;

I* OPEN INFILE FOR INPUT */
i n f i 1 e = f o Pen (11 ex 1 1 3 + in 11 , 11 r 11) ;

I* OPEN OUTFILE FOR OUTPUT */
outfile

1A1hile (_(c
{

f 0 pen (II e x 11 3 • a u t II t II 1,.,1 11) ;

aetc(infilel) r: EOFl

c out 101A1er(c);
Putc(c_out 1outfile);
}

I* BEGINNING OF FUNCTION DEFINITION,
* GIVING FUNCTION NAME AND PARAMETER NAME
*I

101A1e r (c_uP)

I* DECLARATION OF PARAMETER TYPE */
int c_up;

I* BEGINNING OF FUNCTION BODY */
{

if (C-UP >= 'A' f>,f,, C_IJP <= 'Z')
return (c_up + 'a' - 'A');

else return (c_up);

I* END OF FUNCTION BODY;

}

* END OF FUNCTION DEFINITION
*I

Example 2-1: Case Conversion Program

Progralll Structure 17

The left brace (D signifies the beginning of the function body; a right
brace (I) signifies the end. The function body is any set of valid C
statements. Usually, the body includes one or more return statements,
as shown here. A return statement can specify an expression whose
value is returned to the calling function. If the expression is omitted,
the returned value is undefined in the calling function. If the return
statement is not included, the function terminates when the right brace
is encountered, and its return value is undefined.

2.1.1 Main Function and Function Names
The execution of a program begins at a function named main, or, if
there is no function with this name, at the first function seen by the
VAX/VMS Linker. The word main is not a language keyword, however,
so it may be used for other purposes in the program. In Example 2-1,
the main function physically precedes the function lower, but the two
function definitions could appear in the other order.

Function names have compile-time scoping rules that are slightly dif­
ferent from those that apply to other identifiers. Any valid function
identifier followed by a left parenthesis is declared implicitly as the
name of a function returning int. In Example 2-1, the name lower is not
declared in the main function even though it is used there. If lower were
to return something other than an integer, its name would have to be
declared in the main function with the type of the returned value. For
example:

main ()
{

I* DECLARE lower AS FUNCTION RETURNING A CHARACTER */
char lorArer()j

}

FILE *infile' *outfile;
int itCtC out;

i n f i 1 e = f o Pen (11 e x 1 1 3 + i n 11 t 11 r 11) ;

0 u t f i 1 e = f 0 pen (!I e x 1 1 3 ' 0 u t II t 11 1,..1 II) ;

letc(infileJ) I= EOFJ

c_out lower(c);
putc (c_out 1outf i 1 el;
}

char 101.,,,1e r (c __ up)

int c ... uP;
{

}

18 Chapter 2

A function name can also be used without parentheses and arguments.
It is then treated as the address of the function of that name. However,
functions must be defined or declared before they can be referenced in
this way. A typical use is in a list of arguments, to pass the address of a
function to another function as one of the arguments.

In the following example, the main function references two functions, x
and y. The function x is defined before the main function, so it is not
declared in the main function. The function y must be declared because
its definition follows the main function. The statement funct(x,y)
passes the addresses of the two functions to the function funct, which is
contained in a separately compiled source file.

I* x() IS DEFINED BEFORE IT IS USED */
x() {return 25;}

111 a in ()

I* y() MUST BE DECLARED BEFORE IT IS USED*/
int Y () ;

I* x AND y ARE PASSED AS THE ADDRESSES
OF THE FUNCTIONS */

funct(xt}');

}

y() { return 30i }

In a separate comPilation:

funct(f1,f2)
I* DECLARES THE ARGUMENTS AS POINTERS TO FUNCTIONS

* RETURNING INTEGERS
*I

int (*fi)(), (*f2)():
{

}

Between the definition of a function's name and the declaration of its
parameters, you can write the option:

i11ain_Prosra1n

This option identifies the function as the main function in the program.
It is not a keyword, and it can be spelled in either upper- or lowercase.
Use it when the program does not contain a function named main and
when you do not want the program's execution to begin at the first

Program Structure 19

function linked. For example, the following definition establishes the
function lower as the main function; execution begins there, regardless
of the order in which the function is linked:

char lowerCc_up)
MAIN_ PROGRAM
int c_upj
{

}

NOTE
The main_program option is a VAX-11 C language exten­
sion.

2.1.2 Parameters and Arguments
C functions can exchange information by means of parameters and
arguments. In this manual, the term parameter denotes the variable (in
parenthesis) named in a function definition; the term argument de­
notes an expression that is part of a function call. In Example 2-1, the
function lower has a single parameter, c_up. When this function is
called from main, the argument c is evaluated and passed to lower.

The following rules apply to parameters and arguments of C functions:

20

• The number of arguments in a function call must always be the
same as the number of parameters in the function definition. This
number may be zero.

• In VAX-11 C, the maximum number of arguments (and corre­
sponding parameters) is 253 for a single function.

• Arguments are separated by commas. However, the comma is not
an operator in this context, and the arguments may be evaluated
by the compiler in any order. (In other words, you should not
expect function calls or other complicated expressions in the argu­
ment list to be evaluated in any particular order.)

• In C, all arguments are passed by value, that is, when a function is
called, the parameter receives a copy of the argument's value, not
its address. The rule applies to all scalar variables and to struc­
tures and unions passed as arguments. Strictly speaking, a func­
tion cannot modify the values of its arguments. Of course, since
arguments can be addresses or pointers, a function can use ad­
dresses to modify the values of variables defined in the calling
function.

• The types of evaluated arguments must match the types of their
corresponding parameters. When a function is called, C does not
compare the types of the arguments with those of the correspond-

Chapter 2

ing parameters and thus does not generally convert the arguments
to the types of the parameters. Instead, all of the expressions in
the argument list are converted according to the following conven­
tions:

Any arguments of type float are converted to double.

Any arguments of types char or short are converted to int.

Any arguments of types unsigned char or unsigned short are
converted to unsigned int.

Any function name appearing as an argument is converted to
the address of the named function. The corresponding param­
eter must be declared as a pointer to a function, where the
function returns a value of the same type as the function
named as an argument.

Any array name appearing as an argument is converted to the
address of the first element of the array. (An array name is the
identifier used to declare an array, either without the pair of
brackets that usually enclose a subscript, or with fewer pairs
of brackets than appear in the array's declaration.) The corre­
sponding parameter can be declared either as an array of the
given type or as a pointer to the given type. Since character­
string constants are declared implicitly as arrays of charac­
ters, this rule also applies to the use of string constants as
arguments.

No other conversions are performed on arguments. If you know
that a particular argument must be converted to match the type of
the corresponding parameter, use the cast operator, described in
Chapter 4.

2.1.3 Identifiers
Identifiers can consist of letters, digits, dollar signs ($), and the under­
score (_), The first character must not be a digit. An identifier can
contain any number of characters, but its first 31 characters must be
unique.

The dollar sign should be used only in identifiers for V AXNMS global
symbols. Identifiers that contain dollar signs may not be portable.

Upper- and lowercase letters specify different identifiers. That is, abc
and ABC are interpreted as different names by the compiler. You must
spell language keywords in lowercase. (Note that the debugger converts
all lowercase identifiers to uppercase, and identifiers that are unique to
the compiler, such as abc and ABC, will not be unique to the debugger.
See Chapter 15 for more information on the debugger.)

Use the following conventions if practical:

• Spell identifiers in uppercase if they are constants that are given
values by the #define control line.

Program Structure 21

• Spell all instances of a global name (for example, a name declared
with globalvalue) in the same case. All names that become part of
the VAX/VMS Linker's global symbol table are represented there
in uppercase. For example, the compiler would consider

int llobalualue ss$_accuio = o;
llobalualue sss_ACCVIO;

to denote different global names; however, uppercase forms for
both are passed to the linker, potentially causing errors when the
program is linked or executed.

• Spell all other identifiers and keywords in lowercase.

2.1.4 Blocks
A block is a compound statement surrounded by braces O l) .1 It can be
used wherever the grammar of C requires a single statement. The com­
mon cases are the bodies of functions and if, for, do, switch, and while
statements.

A block may also contain declarations. If it does, any declarations of
auto, register, or static variables declare names that are local to the
block. For example:

1r1a in ()
{

int i ;
i = 1 ;

if (i
{

1)

float ii

}

i = 3e10;
}

I* OUTER BLOCK (BODY OF Main FUNCTION) */

I* INNER BLOCK */

In both blocks in the example, the variable i is declared with the de­
fault storage class auto. Within the inner block, i is a single-precision
floating-point value; elsewhere, i is an integer. Since both declarations
are of automatic variables, a new, floating-point version of i is allocated
each time the inner block is activated.

If initialization is specified for any auto or register variables in a block,
it is performed each time control reaches the block normally; that is,

1. Note that this use of the term block may differ from its use in other lan­
guages; in C, the terms block and compound statement are interchangeable.)

22 Chapter 2

such initializations are not performed if a goto statement transfers
control into the middle of the block or if the block is the body of a
switch statement.

2.1.5 Comments
Comments, delimited by the character pairs /* and */, can be placed
anywhere that white space can appear. The text of a comment can
contain any characters except the close-comment delimiter(*/). Com­
ments cannot be nested.

2.1.6 Keywords
Keywords are predefined identifiers. They cannot be redeclared. They
identify C's data types, storage classes, and certain statements. Note
that many conventional words in C programs are not actually keywords
and can be redeclared. The notable examples are the names of func­
tions, including main and the functions found in standard libraries that
accompany C compilers.

Keywords must be written in lowercase letters.

Table 2-1 lists the C keywords.

Table 2-1: C Keywords

Keyword

Type specifiers:

int
long
unsigned
short
char
float
double
struct
union
typedef
en um
void

Program Structure

Integer
Extended precision
Unsigned integer
16-bit integer
8-bit integer

Meaning

Single-precision floating-point number
Double-precision floating-point number
Structure (aggregate of other types)
Union (aggregate of other types)
Tagged set of type specifiers
Enumerated scalar type
None (reserved for future use)

23

Table 2-1: (Cont.) C Keywords

Keyword

Storage-class specifiers:

auto
static
register
extern

globaldef
globalref
globalvalue
readonly

Statements:

goto
return

continue
break
if
else
for

do

while

switch

case
default
entry

Operator:

sizeof

Meanirig

Allocated at every block activation
Allocated at compile time
Allocated at every block activation
Allocated by an external data definition (at com­
pile time)
Definition of global variable
Reference to global variable
Definition or declaration of global value
Allocated in read-only program section

Transfers control unconditionally
Terminates a function and optionally returns a
value to the caller
Causes next iteration of containing loop
Terminates its corresponding switch or loop
Executes following statement conditionally
Provides an alternative for the if statement
Iterates the next statement (zero or more times)
under control of three expressions
Iterates the next statement (one or more times)
until a given condition is false
Iterates the next statement (zero or more times)
while a given expression is true
Executes one or more of the specified cases (multi­
way branch)
Begins one case for switch
Provides default case for switch
None (reserved for future use)

Computes size of operand in bytes

Al though they are not true keywords, the V AX-11 C compiler defines
substitutions for the following identifiers; you should avoid redefining
them:
t}(Jl s
tJ ax

•.•ax11c

See Section 7 .3 for more information on these identifiers.

24 Chapter 2

2.2 External Data Definitions

An external data definition is one that occurs outside a function. It
defines a name that can be used identically in several functions. The
scope of the name is the remainder of the compilation. (That is, the
scope is the remainder of the source file containing the definition, plus
any files that are concatenated in the same compile command.) Thus,
every function that follows the external data definition in the compila­
tion can use the name as defined in the external definition, without
declaring it.

External data definitions are syntactically the same as declarations of
variables inside a function. A definition gives the data type of the
variable(s), with a list of keywords (such as short int), the identifiers
(which indicate whether the variable(s) are arrays or pointers), and any
initial values. For example:

int x = 5; f* DEFINES A VARIABLE OUTSIDE A FUNCTION *f
rr1a in ()
{

f* THE FUNCTION CAN REFERENCE x WITHOUT DECLARING IT *I
Printf("'X,d" tX) j

}

A function that precedes the external data definition can also reference
the identifier by declaring it with the extern keyword. For example:

rr1a in ()
{

f* DECLARES x AS EXTERNAL TO THE FUNCTION */
extern int xi

Printf("'X,d" tX) j

}

f* THE DEFINITION OF x FOLLOWS THE REFERENCE TO IT *f
int x = 5i

Furthermore, the external data definition can be in a separately com­
piled source file. The source file containing the definition and the
source file containing the reference are linked together; the linker then
resolves the external reference.

If no storage-class specifier appears in the external data definition, then
the external definition creates a program section (psect) with the same
name as the identifier and initializes it with the given initial value, if
any. If a storage-class specifier does appear, it can be any storage class
keyword except auto or register. Initializers can appear only when no
storage class appears or when the storage class of the variable is static,
globalvalue, readonly, or globaldef. (For more information on storage
classes, see Chapter 3.)

Program Structure 25

Chapter 3

Data Types and Declarations

In C, data is represented by variables and constants. Every valid con­
stant has a data type that is determined by the way in which the
constant is written. Variables have data types specified in their decla­
rations, and all variables must be declared. This chapter describes C's
data types and the declaration of variables of these types. The general
format of declarations is described in Section 3.1.

C recognizes the following fundamental, or scalar, data types. Each
type describes the representation of a single datum. These types are
described in detail in Section 3.2:

• Integers of various sizes. Integers are used in C to represent 8-, 16-,
and 32-bit signed or unsigned numbers.

• Characters. C also has conventions and functions that facilitate
the treatment of 8-bit integers as ASCII characters.

• Floating-point numbers, of either single or double precision.

• Pointers, which are variables containing 32-bit addresses that can
point to functions and to variables of any other type, including
other pointers and data structures.

• User-defined, or enumerated, types. Enumerated types are used to
manipulate information in which a certain order is implicit, but
for which a numeric representation is unnecessary or inappropri­
ate.

Storage classes, identified in declarations by keywords such as auto
and static, define the storage location and lifetime of variables. Storage
classes are explained in Section 3.3.

Data structures, or aggregates, are made up of many members or ele­
ments, each of which is a fundamental type or an aggregate. The follow­
ing data structures can be defined in C programs and are explained in
detail in Section 3.4:

• Arrays, which are data structures made up of identically typed
members, called elements.

• Structures, which are made up of members that may have differ­
ent types and are stored in consecutive locations in memory.

• Unions, which are structures in which the members share the same
storage.

26

Section 3.5 explains how to initialize variables in their declarations.

Section 3.6 explains the scope of names in C programs, that is, it
explains whether a particular declaration permits a variable name to be
used in several parts of a program or restricts its use to a particular
part.

Section 3.7 suggests a model for interpreting complicated declarations
and expressions written in C.

3.1 Format of a Declaration
A declaration is composed of the following items:

• A storage class keyword.

• At least one data type keyword, structure or union tag, enum tag,
or typedef name, which gives the data type of the declared object.

• One or more declarators, which list the identifiers of the declared
object and which may contain operators that declare a pointer,
function, or array of objects of the declared type.

• At most one initializer for each declared object, giving the initial
value of a scalar variable or the initial values of a structure, union,
or array.

For example, the declaration
static int arraY[lOJ = { 1,z,3,4,5,s,7,s,s.io };

declares a static, 10-element array of integers, named array. The key­
word static specifies the storage class; the keyword int, the data type.
The declarator array[lO] specifies an object with the identifier array,
and the bracket operator ([10]) specifies an array size of 10 elements.
The text "= I 1, ... 10 I" is an initializer that supplies the initial values
of the 10 elements; the first element, array[O], is given the initial value
1, and so on.

3.2 Scalar Declarations and Types
In simple scalar declarations, each declarator is an identifier. For
example:

int XtYtZi

declares three integers named x, y, and z. Since no storage class is
specified, a default storage class is used. If this declaration appears
outside any function, it is a definition of the external variables x, y, and
z; that is, the variables are given the storage class extern by default. If
the declaration appears within a function, x, y, and z are given the
storage class auto by default.

Data Types and Declarations 27

The scalar data types - integers, characters, floating-point numbers,
pointers, and enumerated types - are described in the subsections that
follow.

3.2.1 Integers
Integers are declared with the keywords int, short, long, char, and
unsigned, which specify the following internal representations:

• int and long specify a longword (32 bits) representing a signed
integer. int, long, and long int can be used interchangeably in
VAX-11 C. The range of possible int values is -2,147,483,648 to
2,147,483,647.

• short specifies a word (16 bits) representing a signed integer. short
and short int can be used interchangeably. The range of possible
short values is -32, 7R8 to 32, 767.

• char specifies a byte (8 bits) representing a signed integer. char
variables can participate in arithmetic expressions with other in­
tegers. The numeric range of possible char values is -128 to 127.
However, they usually represent ASCII characters.

• unsigned specifies a longword representing an unsigned integer.
unsigned and unsigned int can be used interchangeably. The
range of possible unsigned values is 0 to 4,294,967,295. unsigned
char and unsigned short are also valid, meaning 8- and 16-bit
unsigned integers, respectively. The range of possible unsigned
char values is 0 to 255, and the range of possible unsigned short
values is 0 to 65,535.

C also has integer constants in decimal, octal, and hexadecimal ra­
dixes. An integer constant is assumed to be decimal unless it begins
with 0 or Ox; if it begins with 0, it is assumed to be octal; if it begins
with Ox, it is assumed to be hexadecimal.

Integer constants must consist of the characters 0 to 9 and, optionally,
the characters x, X, 1, L, and-. (Because Chas no unary plus operator,
integer constants cannot include a plus sign.) In octal constants, the
digits 8 and 9 have the octal values 10 and 11, respectively. Hexadeci­
mal constants may also use either 'A' to 'F' or 'a' to 'f'.

Integer constants must not include a decimal point; constants with a
decimal point are of type double.

Integer constants that exceed a longword are treated as programming
errors and are flagged by the VAX-11 C compiler.

A decimal, octal, or hexadecimal integer immediately followed by an
upper- or lowercase L is a long constant. Note, however, that int and
long are identical data types in VAX-11 C, so the L suffix is not
necessary.

28 Chapter 3

Examples of invalid integer constants include:

143.

-3333333333
+33333
77af

I* INCLUDES A DECIMAL POINT;
TYPE IS double */

I* OUT OF RANGE FOR int */

I* + IS AN INVALID CHARACTER */

I* HEXADECIMAL CONSTANTS MUST BE
PREFIXED WITH Ox •I

Note that char constants, such as 'a' and '$', are valid integer con­
stants, too. Their integer values in V AX-11 C are the values of the
corresponding ASCII codes.

3.2.2 Characters and Character Strings
A character variable is declared with the keyword char, and character
constants are single characters enclosed in apostrophes, as in:

I* ch IS A CHARACTER VARIABLE */
char ch;

I• THE LOWERCASE LETTER 'a' IS
A CONSTANT ASSIGNED TO ch •/

Ch = I a I;

A character-string variable is declared as an array of type char. A
character-string constant is a series of characters enclosed in quotation
marks and, in expressions, is treated as the address of the first charac­
ter in the string. String constants cannot be directly assigned (with the
assignment operator) to string variables, because arrays cannot be used
on the left-hand side of the assignment operator. Instead, strings are
copied with the strcpy and strncpy functions. (strcpy and strncpy are
string-manipulating functions described in Chapter 6.) For example:

I* strin• IS A 10-ELEMENT ARRAY OF char •I
char stri1H[10J;

I• COPY THE STRING constant INTO THE ARRAY strin• •I
strcpy(strin••"constant"I;

Data Types and Declarations 29

NOTE

The apostrophe (')and quotation mark(") are significantly
different punctuation marks in C, indicating a char con­
stant and a string constant, respectively. One context in
which the difference is important is in an argument list. If a
function argument is specified as a string, then a constant
argument for that function must be enclosed in quotation
marks, not apostrophes, even if the string contains only one
character.

A single character enclosed in apostrophes is a character constant,
whose value is the ASCII code for the character. Nonprinting charac­
ters, the apostrophe, and the backslash are specified by the following
escape sequences: 1

Character Mnemonic Escape Sequence
newline NL \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
backslash \ \\
apostrophe \,
bit pattern ddd \ddd

Note that an escape sequence, such as '\n', denotes a single character.

The form \ddd is used to specify any byte value (usually an ASCII
code), where ddd is one to three octal digits giving the character's
value. (Here, the octal digits are limited to 0 to 7.) A common use is

I \0 I

to specify the ASCII character NUL.

If the character following the backslash in an escape sequence is not one
shown above, the backslash is ignored; that is, the character constant's
value is the same as if the backslash were not present.

A string constant is a series of characters enclosed in quotation marks:
11 Th i s i s a s t. r i n s • 11

It has the type "array of'' char and storage class static. The string is
initialized with the given characters and tei;minated (by the compiler)
with a NUL ('\O') character. (The NUL is typically used by programs
to find the end of a string,) Note that this representation means that

1. It is conventional in C programming to refer to these mnemonics as escape
sequences. The term does not have the same meaning here as in "VT52 escape
sequence" or other contexts in which it implies a string beginning with the
ASCII character ESC.

30 Chapter 3

there is no formal limit to the length of a string constant. The actual
limit to a string constant's length in VAX-11Cis1000 characters. All
strings, even when written identically, are distinct objects.

When used in an expression, a string is treated as the address of the
first character in the string. Thus, if p is a pointer to char, then

P = 11 t h o M a s i n a 11 ;

is a valid expression that copies an address, not a string, to the pointer
p. (Complete strings are transferred from place to place with the func­
tions strcpy and strncpy.)

The following rules apply to the characters used in strings:

• All characters, including the escape sequences, can be used in
strings.

• A quotation mark within a string must be preceded by a backslash
(\).

• A backslash followed immediately by a newline is ignored, allow­
ing long strings to be continued on the next line.

3.2.3 Floating-Point Numbers
The keyword float is used to declare a single-precision floating-point
variable, represented internally in the V AX-11 F-floating binary
format. The approximate range of absolute values for a float variable is
0.29 x 10-38 to 1.7 x 1038. The approximate precision of a float variable
is seven decimal digits.

The keyword double declares a double-precision floating-point varia­
ble, represented internally in VAX-11 D-floating binary format. (The
keywords double and long float can be used interchangeably.) The
approximate range of absolute values for double variables is the same
as for floats, but the precision is approximately 16 decimal digits.

A floating constant has an integral part, a decimal point, a fractional
part, an e or E, and an optionally signed integer exponent. The integral
and fractional parts consist of decimal digits; either the integral or
fractional part may be omitted. Either the decimal point or the "E<ex­
ponent>" (but not both) may be omitted.

All floating constants are of type double.

Some examples of floating constants are:

3.0e10
3.0E-10
3.0e+10
-3E10
3.0
.120e2
.120

Data Types and Declarations 31

Floating-point constants in C can be unsigned or negative; note again
that, because C has no unary plus operator, a constant such as

+J,OelO

is not valid.

3.2.4 Pointers
Pointers in C are variables that contain addresses of other variables.
They are not declared with a keyword, but instead are declared with an
asterisk, as in:

int *PX;

The identifier px is declared as a pointer to a variable of type int.

Pointers always contain the addresses of known objects or are null
pointers. A null pointer is a pointer variable that has been assigned the
integer constant 0, and does not point to any object.

A declarator of the form

*declarator

is used to declare a pointer.

The declaration

int *intPtr ~ i;

declares intptr as a pointer to an integer and i as an integer.

Pointers are declared as pointing to a particular data type. The "type of
the pointer" (here, int) is used when the pointer participates in certain
arithmetic operations with nonpointer expressions. Furthermore, some
contexts, such as argument lists, may require a pointer of a particular
type.

The unary asterisk (*) is also the indirection operator in C. For
example:

i = *intPtri

assigns an integer (the value of the object pointed to by intptr) to i.
Since the asterisk can be used in any sort of declarator, you can have
pointers to scalars, to functions, to other pointers, to structures, and so
forth.

The name intptr can also be used without the asterisk operator to
represent the pointer variable, rather than the object it points to. For
example:

assigns the address (using the "address-of' unary operator &) of the
variable x to intptr.

32 Chapter 3

3.2.5 Enumerated Types
An enumerated type is a data type that is not derived from other
fundamental types. For example, a type named spectrum can be enu­
merated by writing:

enurTl spectrum
{

red rorana'e rYel 101.i ra'reen rblue tindia'o rviolet
} ;

where spectrum is the enumeration tag of the new type, and red,
orange, ... violet are the enumerators. These enumerators are the con­
stant values of the type spectrum and can be used wherever constants
are valid. This declaration merely associates the tag spectrum with the
list of constants and does not declare any data of type spectrum.

Data of type spectrum could be declared by writing a list of identifiers
after the type enumeration

enur11 sPectrur11
{

red rorana'e n•el low ra'reen 1blue tindia'o t<.1iolet
} color1;

or by using the tag spectrum as a reference to the type enumerated
elsewhere, as in:

enum spectrum color1i

Both examples declare color! as an object of type spectrum - that is, a
spectrum variable. The second form must occur within the scope of the
definition of spectrum.

An enumerated type also can be declared with no tag, as in:

{

out 1verYdim 1dim 1PrettYbrisht 1brisht
} lia'hti

This declaration defines a variable (light) of an enumerated type. The
variable can assume any of the enumerated values, but since there is no
enumeration tag like spectrum, other declarations cannot refer to this
type without replicating the entire list of constant values: out, verydim,
... bright.

enum tags (such as spectrum) can have the same spellings as other
identifiers in the same program (including variables and member
names in structures and unions), because the meanings are distin­
guished by context. Tags are subject to the same scope rules as other
identifiers. However, enum constant names must be spelled uniquely.

Data Types and Declarations 33

In declarations of enumerated types, the place of a data type keyword is
taken by an enum-specifier of the form:

enum-specifier ::=
enum identifier I enum-list I
enum identifier
enum I enum-list I

where the identifier is the name, or tag, of the new type. The enum-list
gives an ordered list of values that a datum of this type can have. Thus:

enum-list ::=
enumerator
enum-list , enumerator

where

enumerator ::=
identifier
identifier = constant-expression

Internally, each enumerator is associated with an integer constant; the
first enumerator in the enum-list is given the value zero by default, and
the enumerators are incremented by one as they are read from left to
right. Any enumerator can be followed by the syntax "= constant­
expression" to set it to a specific (integer) constant value. The enu­
merators to the right of such a construct (unless they have constant
expressions, too) then receive values that begin at constant-expres­
sion+l. For instance:

enurn sPectruM
{

red1Yellow=Z1Sreentblue1indiao1violet
};

gives red, yellow, green, ... the values 0,2,3,

Enumerated data types should be regarded as distinct from the funda­
mental types, although they are stored internally as integers. Examin­
ing the value of an object like spectrum above (by writing it out, for
instance) shows an integer, not a string such as "red" or "yellow."

34 Chapter 3

Type mismatches between the enumerated and fundamental types, or
between different enumerated types, are considered errors. Thus, it is
not valid to say

enuM spectrur11
{

red 'or ans e 'Ye 1 1o1,1 'Sr e en 'b 1 u e tin di So t •! i o 1 et
} colori;

enur~ illur11
{

out ••.Jen·dir11 tdir11 tPrettYbriaht tbriaht
} li.sht;

liaht = red;

because red and light have different enumerated types. Nor is it valid
to say

en u1r1
{

out ••!erYdir11 tdi111 tPrettYbriaht tbriaht
} liShtj

liaht = 1;

because 1 is not an enumerated value for light.

To make mixed-type operations valid, use the cast operator. For
example:

liSht out + (enuM illuMl red;

liaht = lenuM illuMI 1;

Here, the cast (enum illum) causes the compiler to treat the enum
constant red and the integer constant 1 as values of the enumerated
type illum. (For general information on the cast operator, see Section
4.3.5.)

3.3 Storage Classes

The storage class of a name determines its location and scope. The C
storage classes are:

• auto, indicating that storage is allocated at the activation of the
defining block (that is, at run time) and exists only for the dura­
tion of that block activation.

Data Types and Declarations 35

• static, indicating that the storage is allocated at compile time and
exists for the duration of the program. static variables reside in
the program section (psect) named $DATA; however, static
readonly variables reside in the program section named $CODE.

• register, indicating (to C compilers in general) that the variable is
to be placed in a machine register, if possible (only function
parameters and automatic variables can have this class.).

In V AX-11 C, registers are allocated based on frequency of use of a
given variable. The keyword register is ignored by the VAX-11 C
compiler. Any scalar variable with the storage class auto or regis­
ter is eligible for allocation to registers as long as its address is not
taken with the ampersand operator and it is not a member of a
structure or union.

• extern, indicating a reference to storage defined elsewhere in an
external data definition. No storage is allocated by an extern dec­
laration, and thus no initializers can appear in it.

In V AX-11 C, each extern variable is assigned a separate program
section with the same name as the variable. If readonly appears,
the program section has the NOWRT (not writeable) attribute.
There can be approximately 65,532 extern names per compilation.

• globaldef, defining the variable as a global symbol.

• globalref, indicating that the variable is a global symbol that is
defined elsewhere.

• readonly, used with static, extern, and globaldef. It assigns the
variable in a program section with the attribute NOWRT. The
keyword readonly, used by itself, implies extern.

• globalvalue, indicating that the declared object is a global name
for an integer (or enum value).

For more details on globalref, globaldef, globalvalue, and readonly,
see Chapter 10, Storage Allocation, and Chapter 11, Global Symbols.

The auto and register classes are local, or internal, to their defining
blocks. static names may be known internally or externally, depending
on whether the declaration of the object is inside or outside a function
definition. extern names are known everywhere within the scope of
their external definitions.

As with many languages, VAX-11 C programs are often constructed of
separately compiled modules. Each module can contain several func­
tion definitions and several external data definitions. It is primarily in
this case that the difference between static and extern is significant. In
an external data definition, a name can be declared with either static
or extern; however, a static name is known only in the remainder of its
own module, whereas an extern name is known everywhere in the pro­
gram. For more information, see Section 10.1.

36 Chapter 3

If no storage-class specifier appears in a declaration, the defaults are as
follows:

• Inside a function, the default is auto (except for function identi­
fiers).

• Outside a function (that is, in an external data definition), the
construct is considered to be the definition of an extern variable.
globaldef and globalvalue, which are VAX-11 C extensions, are
never taken as defaults.

extern, globaldef, and static variables are initialized to zero by default
(and only once) if no initialization is specified explicitly.

An explicitly initialized auto or register variable is initialized each
time its declaring function or block is activated normally (that is, con­
trol is transferred into the block by some means other than a goto
statement). There is no default initialization of such variables.

3.4 Data Structures

The aggregate data types - arrays, structures, and unions - are de­
scribed in the sections that follow.

3.4.1 Arrays
Arrays are declared with square brackets ([]).The elements of an array
can be other arrays (to form multidimensional arrays), structures,
unions, scalars of all types, and pointers to any object.

If an array name appears in the argument list of a function, the address
of the beginning of the array is passed. Therefore, subscripted refer­
ences in the called function can modify elements of the array.

A declarator of the form

declarator[constant-expression]

is used to declare an array. The constant expression gives the number of
elements in a single dimension. Array subscripts in C begin with 0, not
1, and they must be integral. Therefore, the constant expression gives
the number of elements in a dimension, but not the maximum sub­
script. That is,

int arravintClOJ;

declares an array of 10 integers; the maximum subscript is 9.

A multidimensional array is declared as an array of arrays, for example:

int arrav2C10J[2J;

where array2 is a two-dimensional array containing 20 integers. The
same syntax is used to reference an individual element, as in:

++arrav2COJCOJ; I• INCREMENT FIRST ELEMENT, •/

Data Types and Declarations 37

An element of a multidimensional array should not be referenced with
multiple expressions in the same set of brackets; in fact, since the
comma is an operator, the reference to array[i,j] is the same as a refer­
ence to arrayLJJ.

In C, arrays are stored in row-major order (the rightmost subscript
varies most rapidly).

The constant expression is optional only in the first pair of brackets
after the array's identifier. Omission of the constant expression is useful
in the following cases:

38

• If the array is external, its storage is allocated by a remote defini­
tion. Therefore, the constant expression can be omitted for con­
venience when the array name is declared, as in:

extern int arrarl[J;
function 1()
{

}

In a separate compilation:

int arraY1[10Ji
function_2()
{

}

• If the declaration of the array includes initializers, the size of the
array can be omitted; it is calculated from the number of initial­
izers.

• If the array is used as a function parameter, it is defined in the
calling function. The declaration of the parameter in the called
function can omit the constant expression. Example 3-1 shows
how an array is used in this way.

Chapter 3

main ()
{

f* STRING TO BE PASSED AS ARGUMENT IS DECLARED AS

}

A POINTER TO CHAR •I
char •s = "Thomas•;
int SU(Tl;

surrl = adder(s);

I* ADD UP ASCII VALUES */
adder(strina)
I* DECLARATION OF PARAMETER OMITS THE CONSTANT

E)<PRESSION •I
char strina[J;
{

!• SUM IS INITIALLY ZERO */
int i 1Sllfr1=0;
for (i=Oi strina[i] I= '\O'; i++) surri+=strins[iJ;
return surrJ;

}

Example 3-1: Using Arrays as Function Parameters

When the function adder is called, the parameter "string" receives
the address of the first character of the arguments, which can then
be manipulated in adder. The declaration

char strina[J;

serves only to give the type of the parameter, not to reserve storage
for it.

3.4.2 Structures and Unions
Structures and unions are declared by the keywords struct and union,
respectively. The members of a structure all begin at different offsets
from the base of the structure. The offset of a particular member corre­
sponds to the order of its declaration; the first member is at offset 0.

In a union, every member begins at offset 0 from the address of the
union; that is, each member of a union denotes the same storage.
Unions cannot be initialized.

Structures and unions share the following characteristics:

• Their members can be variables of any type, including other struc­
tures and unions or arrays. A member can also consist of a speci­
fied number of bits, called a field.

• They can be assigned to other structures and unions with the
simple assignment operator (=). The two structures or unions in
the assignment must have the same length.

Data Types and Declarations 39

• They can be passed as arguments that correspond to structure or
union parameters, and returned by functions. The two structures
or unions involved in argum~nt passing must have the same
length. A structure or union is passed by value, just like a scalar
variable; that is, the entire structure or union is copied into the
corresponding parameter.

• The only operators that are valid with structures and unions are
simple assignment (=) and sizeof. In particular, structures and
unions may not appear as operands of the equality(==), inequal­
ity (!=), or cast operator.

Structures and unions are declared with the struct or union type speci­
fier:

struct-or-union-specifier ::=
struct { struct-decl-list l
struct identifier { struct-decl-list I
struct identifier
union { struct-decl-list l
union identifier { struct-decl-list l
union identifier

Except for the keywords struct and union, these aggregates are de­
clared with identical syntax. The optional identifier in the above syntax
is known as the tag of the structure or union. The forms of declaration
are used as follows:

1. If the tag is omitted, the structure or union definition applies
only to the identifiers that follow it in the declaration.

2. If a declaration includes both the tag and struct-decl-list, then it
declares one or more identifiers to be variables with the given
structure, and it declares the tag to be a shorthand, or mne­
monic, notation for the structure.

3. The third form above uses the tag to refer to a previously defined
structure or union. The definition is then applied to the identi­
fiers that follow the struct-or-union-specifier in the declaration.

The following examples illustrate the three forms of structure declara­
tion:

I* FIRST FORM; STRUCTURE WITH NO TAG */
struct

{

char first[20J; /*FIRST NAME. */
char Middle[2Jl /*MIDDLE INITIAL AND PERIOD. */
char last[30Jl /*LAST NAME, */
int iq;

} tOMtMarY ;

40

I* IQ, *I
I* AND TWO VARIABLES WITH

THIS STRUCTURE, */

Chapter 3

Each successive nonfield member of a structure begins at the next byte
boundary; there is no implicit type alignment. For example, the mem­
ber iq is not necessarily aligned on a longword boundary, even though it
is an int. 1

A reference to a member of a structure must be fully qualified, or it
must be a pointer-qualified reference (discussed later). For example,
the reference to Tom's IQ is:

t orr1. i ci

A member name denotes the member's data type and its offset from the
base of the structure. There are no restrictions on the reuse (as a mem­
ber name) or redeclaration of a particular name except that the same
name cannot be used for more than one member in the same structure.
A member name is unique if it conforms to either of the following
requirements:

• It is used only once.

• If it is used more than once (in different structures), every use
denotes a member of the same data type and at the same offset
from the base of its structure.

Member names are normally used to refer to the same structure or
union in which the member name was declared. The following checks
apply to the use of member names for reference to structures and
unions in which they were not declared:

• If a member name is unique, you can use it in a reference to a
structure of which it is not a member, since the address and size of
the referenced datum can be determined without ambiguity. How­
ever, the compiler issues a nonfatal warning message. (This usage
is maintained for compatibility with old C programs.)

• If a member name is not unique (ambiguous), its use in such a
reference causes a fatal error message.

In VAX-11 C, and in other recent compilers, a structure or union refer­
ence must be uniquely qualified; that is, a member name in a reference
must be prefixed either with a pointer qualifier (pointer-name ->) or
with the name of the structure or union and the names of all interven­
ing members that are required to make the reference unambiguous. For
example, consider the following structure declaration:

1. This alignment of structure members is a VAX-11 C convention and is fol­
lowed by all other VAX-11 languages. Other C implementations may align
members differently.

Data Types and Declarations 41

rr1 a in ()

}

stru.ct
{

stru.ct {int a1~a2ta3;} frleroa;
struct {int a1ta2,a3;} irlefrib;
} *Pointertstructure;

Pointer = &structure:

structure.mema.al = I; I* NONAMBIGUOUS */

Pointer->memb.a1 = 2;

structure.al 3; I* AMBIGUOUS */
Pointer->al = 4;

A reference to one of the integers in this structure must be of the form:

stru.cture~mema.a1

Pointer-)meMa.a1

but not:

structure.al
Pointer->a1

In fact, structure members that are themselves structures must be
given member names (as with mema above) to make it possible to
construct fully qualified references.

If the structure has a tag, then the tag can be used to declare more
variables with the same structure. For example:

I* SECOND FORM; STRUCTURE WITH THE TAG Person */
struct Person

{

ch a r
char
char

first[20J
friiddle[2];
last[3(!J;

/*

I*
/*

FIRST NAME */
MIDDLE INITIAL.
L.AST NAME *I

int i<d I* IQ */
}I /*NO VARIABLES DECLARED HERE1

*/

JUST THE STRUCTURE ANO ITS TAG */

I* THIRD FORM: TWO STRUCTURE VARIABLES
OF TYPE Person *f

struct Person dicK1Jane;

Structure tags can have the same spellings as other variables. The
compiler distinguishes them by context. Structure tags can also have
the same spellings as member names.

42 Chapter 3

Structures can contain other structures. For example:

struct date
{

int da'/;
int 1~onthi

int >'ear;
int Yearda)•j
char month_name[aJ;
} ;

struct Person I• STRUCTURE WITH THE TAG person •I
{

char first[2(1Jj
char 1r1iddle[2J j
char last[30Ji
int i q;

I•
I•

I*
I•

FIRST NAME *I
MIDDLE INITIAL */

LAST NAME */

IQ •I

st ruct date birth; I* DATE OF BIRTH •I
struct date election; I• DATE OF ELECTION •I
}; I• ND VARIABLES ARE DECLARED •I

I• DECLARE dick AND Jane AS STRUCTURES OF TYPE
Person WITH date DF birth AND election •I

struct Person dick ,Jane;

In a structure or union declaration, the keyword struct or union (and
the tag, ifthere is one) is followed by a a pair of braces (I l) that enclose
a list of the form:

struct-decl-list ::=
struct-declaration
struct-declaration struct-decl-list

Each struct-declaration describes an individual member, giving its type
and other attributes:

struct-declaration ::=
type-specifier struct-declarator-list ;

where struct-declarators have the form:

struct-declarator ::=
declarator
declarator : constant-expression
: constant-expression

Usually, a struct-declarator is just a declarator for the member of the
structure or union, as in the previous examples where the declarator

char first[2(1J;

specified a member that was a 20-element array of char.

Data Types and Declarations 43

In structure declarations, initializers follow the structure variables, not
the members. Consider, for example:

struct
{

int i;
float c;
} a= { 1t3.0e10 h b = { 2t1.5e5 H

This example declares the structure variables a and b with different
initial values.

A structure member may also consist of a specified number of bits,
called a field, which may be either named or unnamed. A colon is used
to separate th~ member's declarator (if any) from a constant-expression
that gives the field width in bits. No field may be longer than 32 bits in
VAX-11 C.

If no field name precedes the field-width expression, the struct-declara­
tor indicates an unnamed field of the specified width. Note that since
nonfield structure members are aligned on byte boundaries, this form
can create unnamed gaps in the structure's storage. As a special case,
an unnamed field of width zero causes the next member (generally
another field) to be aligned on a byte boundary,

The use of field types other than unsigned or int is an error. There are
no restrictions on the use of fields except as follows:

• There can be no arrays of fields.

• The "address of' (&) operator cannot be applied to fields, and
consequently there cannot be pointers to fields.

Scalar items (except fields), arrays, structures, unions, and enum
members are aligned on the next byte boundary. Sequences of fields are
packed as tightly as possible. On the VAX-11, fields are assigned from
right to left.

For example, the following structure declaration results in the align­
ments shown in Figure 3-1:

static struct
{

44

char c;
short int i;
unsisned fld1 3;
unsisned fld2 4;
unsisned o;
unsisned fld3 4;
} a= { 'A't 1024• 06t 012, 014}

Chapter 3

31 0

unused 1010110 00000100 00000000 01000001

-.,,--.-
a.fld2 a.fld 1 a.i a.c

35 32

~ -.,,- '-.;-'

unused a.fld3

ZK-286-81

Figure 3-1: Alignment of Structure Members

In Figure 3-1, the member a.i is aligned on the second byte (at bit 8),
because scalar, nonfield members are aligned on byte boundaries. No­
tice that the fields a.fldl and a.fld2 are packed as tightly as possible in
the high-order byte of the first longword. The unnamed, zero-length
field preceding a.fld3 causes that field to be aligned on the next byte
boundary, bit 32.

You can use the /MAP qualifier on the LINK command to produce a
storage map. The storage map shows how structure members have been
aligned by the linker.

3.5 Initialization

In declarations, variables can be given initial values with an initializer.
An initializer consists of an equal sign (=) followed by either a single
expression or a comma-separated list of one or more expressions in
braces.

For static and extern variables, all expressions in an initializer must be
constant expressions or must give the address of a previously declared
variable, possibly offset by a constant expression.

For auto and register variables, the expressions in an initializer may
be arbitrary expressions involving previously declared variables, con­
stants, and functions. To be used in initializers, variables and functions
must have known values. That is, a variable must have been initialized
or assigned a value, and a function must return a value.

Data Types and Declarations 45

3.5.1 Initialization of Scalar Variables
An initializer that applies to a scalar variable contains a single expres­
sion, possibly enclosed in braces. The evaluated expression is used as
the scalar's initial value, with the same conversions performed as for an
assignment to the type of the scalar. For example, the declarations

inti=1;
char ch 'a';
float c = 3.0e!O;
float f = 1;

initialize the variables i, ch, c, and f with 1, 'a', 3.0elO, and 1, respec­
tively. At compile time, the integer constant 1 is converted to float
before it is used to initialize f.

3.5.2 Initialization of Aggregate Variables
Initializers are assigned to an array or structure in row-major order or
increasing member order. If there are fewer initializers than members
for a static aggregate, the aggregate is padded with zeros. The following
rules govern the use of braces in initializer lists for structures and
arrays:

• If the initializer for an aggregate begins with a left brace (0, then
the following comma-separated list provides initial values for the
aggregate's elements or members. The list of initializers can end
with a comma, which is ignored. The number of initializers cannot
be greater than the number of elements or members.

• If the initializer does not begin with a left brace, then only enough
elements are taken from the initializer list to supply values to the
aggregate's members. In this case, there can be more initializers
than there are elements or members, and any remaining values in
the list are left to initialize the next aggregate.

For example, the declaration:

static int x[QJ[3J
{

{ 1 • 2 '3 } '
{ 4,5,5 } .
{ 7,9,9 } .
} ;

initializes the first nine elements of the 12-element (two-dimensional)
array x: x[O][O] is initially 1, x[O][l] is 2, ... x[2](2] is 9. That is, each inner
set of braces matches one row of the array. So, the initializer for row x[O]
begins with a left brace, and the three initial values following the brace
initialize that row's elements. There cannot be more than three initial
values. No initializers are given for the last row, row x[3], so, because x

46 Chapter 3

has storage class static, x[3][0], ... x[3][2] are initialized with zero. The
comma following the last initializer(! 7, 8, 9 I) is ignored. This decla­
ration has the identical effect as:

static int x[tJH3J = { 1,z,3,a,5,s,7,s,9 };

In this case, although the initializer for x begins with a left brace, the
initializer for row x(OJ does not; therefore, the first three initial values
are taken for x[0][0], ... x[0][2], and the leftover values remain for the next
aggregate. The next aggregate is row x[l]; again, that row's initializer
does not begin with a left brace, so the values 4, 5, and 6 initialize the
elements in that row.

If the initializers for the rows do not specify enough values for each
column, then the elements corresponding to the missing values are
initialized with zero. For example:

static int x[tJJ[3J
{

{ 1 .2 },
{ a ,5 } ,
{ 7t8 },
} ;

initializes x[O][OJ with 1, x[O][l] with 2, x[l][OJ with 4, ... , x[2][2] with 8.
The elements in column 2, such as x[0][2], are initialized with zero, as
are all the elements in the row x[3].

When the size of an array is omitted from a declaration, the compiler
determines the size by counting the initializers. For example:

int bins[]= {1,z,3,a,5};

Here, the array bins is given a size of 5 elements.

An array of characters can be initialized with a string constant as long
as the storage class of the array is not auto. In that case, the assumed
size includes the NUL character which terminates all strings. For
example:

static char name[] = "Wilbur";

makes "name" an array of 7 characters, and is equivalent to

char na111e[J = {'W't'i't'l't'b't'u't'r't'\0'}

or

char naMe[7J = {'W't 1 i't'l't'b't'U't'r't'\O'}

There is no way to specify iterations of an initializer or to initialize an
element or member in the middle of an aggregate without also initializ­
ing the previous elements or members.

Example 3-2 shows these rules applied to an array of structures.

Data Types and Declarations 47

flla in ()
{

}

i rt t., 1 t fT) ;

static struct

char chi
int i ~

float ci
} ar[2][3J

{

I* INITIALIZER FOR ROW ar[OJ: •I
{{'a', 1, 3e10},
{'b't 2, 4e10},
{'c'• 3, 5e10}},

I• NO INITIALIZER FOR ROW ar[lJ */
} ;

for(l=Oil 2; 1 ++)
for (r11 = o; 111

{

3; 1T1++)

Printf("first fTlefTlber, row %d col %d: %c\n",
l 11111ar[lJ[r11J .ch);

Printf("second 111er11ber, ro1,1 /.,d col /.,d: 'X,d\n"'
1 t111,ar[lJ[1T1J.i);

Printf("third 111er11bero ro1,1 'X.d col 'X,d: 'X.e\n"•
l 11111ar[lJ[r11J.c);

}

This program writes the following output to stdout:

first 1T1eMber1 row 0 col 0: a
second member, row 0 col 0:
third MeMber, row 0 col 0: 3.000000e+lO
first membert row 0 col 1: b
second membert row 0 col 1: 2
third MeMbert row 0 col 1: 4.000000e+lO
first member1 row 0 col 2: c
second membert row 0 col 2: 3
third MeMbero row 0 col 2: 5.000000e+lO
first MeMber. row 1 col 0:
second member, row 1 col 0: 0
third membert row 1 col O: Q,OOOOOOe+OO
first MeMber1 row 1 col 1:
second membert row 1 col 1: 0
third MeMber1 row 1 col 1: o.ooooooe+oo
first membert row 1 col 2:
second membert row 1 col 2: 0
third MeMber1 row 1 col 2: o.ooooooe+OO

Example 3-2: Arrays of Structures

48 Chapter 3

3.6 Scope of Names

The scope of a name is that'portion of a program in which the name has
meaning. The following scope rules apply to the names of enum con­
stants, typedef names, variables, and functions:

• The scope of a name defined in an external data definition is the
remainder of the current compilation. That is, the scope is the
remainder of the source file plus any source files that are con­
catenated in the compiler command line after the source file con­
taining the definition. The scope can be overridden by a declara­
tion in a subsequent function or block.

• The scope of a name defined in a block is limited to that block.
The definition can be overridden by a declaration in an internal
block.

• The scope of a parameter name is the entire function in which the
name is declared. The definition can be overridden by a declara­
tion in an internal block.

• Function names are implicitly declared as extern when an unde­
clared function is called.

There are. other categories of names that can be used without conflict
with variable and function names or with each other. These are:

• The names of labels. Labels are used only as the targets of goto
statements, and that context distinguishes them from variables of
the same name. The scope of a label name is the entire function in
which the label appears.

• The tags used in struct and union declarations. Two structures or
enum types cannot. have the same tag, but the tags can be the
same as the identifiers used for variable and function names. The
scope of tags is the same as the scope of the declarations in which
they appear. (Note that enum constant names, unlike enum tags,
must be distinct from the names of variables or functions in the
same scope.)

• The names of structure or union members. The scope of member
names is the same as the scope of the declarations in which they
appear.

3. 7 Interpreting Declarations
The C programming language syntax for declaring objects is rather
unlike the declaration syntax of other languages. Since the exact mean­
ing of a complicated C declaration is not always immediately apparent,
even to an experienced C programmer, this section gives guidelines for
interpreting (or, possibly, constructing) C declarations.

Data Types and Declarations 49

C uses the same set of operators and sym'bols lfor declarators as for
identifiers in an expression. For example:

int x;
int *PX;

declare an integer, x, and a. pointer to an integer, px. The declarator
*PX has the same form as that used to yield an integer in an expression,
such as:

In the case of simple declarators, this symmetry makes it fairly easy to
determine the type of an expression or the meaning of a declarator.

More complicated declarators can be more difficult to interpret without
some additional guidelines. The important one to remember is that the
symbols used in declarators are C operators, subject to the usual rules
of precedence and grouping (associativity). In order of precedence, the
operators used in declarators are:

1. The primary-expression operators () for "function returning ... "
and [] for "array of ... ", where the ellipsis indicates the type
specified in the declaration. These operators group from left to
right.

2. The unary asterisk (*), for indirection or "pointer to ... ", which
groups from right to left.

Consider, for example:

int *X[];

Even this brief declaration may be confusing. Does it declare an array
of pointers to integers, or a pointer to an array of integers? Since the
brackets are of higher precedence, it follows that:

1. * x [] is an integer
2. x [] is a pointer to an integer
3. x is an array of pointers to integers

Most complicated declarators and expressions can be interpreted fairly
quickly by such a sequential breakdown. Note that the asterisk was
removed before the brackets because it is of lower precedence.

Also note that this interpretation process has the desirable property
that it enumerates all the possible usage constructs involving a
declarator and gives the semantic interpretation.

When constructing or interpreting declarations or expressions, use the
following scheme1 for translating operators to English and vice versa:

• "*" == "pointer to"
• " () " == "function returning"
• " [] " == "array of'

1. Bruce Anderson, "Type Syntax in the Language C: An Object Lesson in
Syntactic Innovation," SIGPLAN Notices 15, No. 2 (March 1980).

50 Chapter 3

For a more interesting example, consider:

char *x()[J;

The breakdown is:

1. * x < > [J is char
2. x () [J is (pointer to) char
3. x () is (array of) (pointer to) char
4. x is (function returning) (array of) (pointer to) char

In step 3, the [] operator is removed first because primary-expression
operators are of equal precedence and group from left to right. That is
to say, "()[]"means "function returning array of", not "array of func­
tion returning ... ".

As a general rule, when breaking down a declaration this way, remove
the operators with the lowest precedence first. Then, if operators are of
equal precedence and group from left to right, remove the rightmost
operator first; if they group from right to left, remove the leftmost
operator first.

As it happens, the declaration shown above is semantically invalid; C
allows functions returning addresses of arrays, but not functions return­
ing arrays. Perhaps the intention was a function returning the address
of an array of pointers to characters. The declaration can be made valid
by starting at the bottom of a breakdown and working back up to a
valid declaration:

1. x is (function returning) (pointer to) (array of) (pointer to) char
2. x () is (pointer to) (array of) (pointer to) char
3. * x () is (array of) (pointer to) char
4. (* x ()) [J is (pointer to) char
5. *<*x())[Jischar
6. c h a r * (* x ()) [J ;

In the final declaration, the first asterisk (since it groups right to left)
applies to char. Clearly, such a declaration, once it is known to have
the desired meaning, should have a comment explaining its purpose.

Parentheses (in addition to the () operator) are used in declarations to
change the binding of operators. For example, the outer parentheses
introduced in step 4 of the previous example prevent the brackets from
binding to the inner set of parentheses.

As a last case, consider:

char(* (*x()) []) ();

Data Types and Declarations 51

This means:

1. <* <*x<>> [J) ()is char
2. * (* x <)) [J is (function returning) char
3. (* x ()) [J is (pointer to) (function returning) char
4. *X <) is (array of) (pointer to) (function returning) char
5. x <) is (pointer to) (array of) (pointer to) (function returning)

char
6. x is a function returning a pointer to an array of pointers to

functions returning characters

Spaces were used in the example to separate the declarator into its
component parts. Since spaces, tabs, and newlines are ignored by the
parser, they can and should be used in actual declarations for clarity.

3.8 typedef

The keyword typedef is used to define an abbreviated name, or syno­
nym, for a lengthy type definition. Grammatically, the word typedef is
a storage-class specifier, so it can precede any valid declaration. In such
a declaration, the identifiers name types instead of variables. For ex­
ample:

tYPedef char CHt *CP. STRING[10J.CF<)j

In the scope of this declaration, CH is a synonym for "character," CP
for "pointer to character," STRING for "10-element array of charac­
ters," and CF for "function returning a character." Each of the type
definitions can be used in that scope to declare variables, as in:

CF ci /*c IS A FUNCTION RETURNING A CHARACTER*/
STRING s; I* s IS A 10-CHARACTER STRING*/

52 Chapter 3

Chapter 4

Expressions and Operators

An expression is any series of symbols that C uses to produce a value.
The simplest expressions are constants and variable names. They have
no operators and they yield a value directly. Other expressions combine
operators and subexpressions to produce values.

This chapter describes the following aspects of expressions and opera­
tors:

• Data type conversions
• Primary expressions and operators
• Unary expressions and operators
• Binary expressions and operators
• Assignment expressions and operators
• The conditional expression and operator
• The comma expression and operator

Table 4-1 shows the set of C operators arranged by precedence. Those
operators with the highest precedence appear at the top of the table;
those with the lowest appear at the bottom. Operators of equal prece­
dence appear in the same row.

For example, in the expression

A*B+C

A and B are multiplied first, because * is of higher precedence than +.
The table also includes the associativity rule that applies to each row of
operators. That is, the expression

A/B/C

is evaluated as

(A/B)/C

because the I operator groups from left to right.

As Table 4-1 shows, the operators fall into the following categories:

• Primary operators, which usually modify or qualify identifiers. For
example, both the arrow operator (->) and the period operator
qualify structure references.

• Unary operators, which take a single operand. A familiar example
is the unary minus sign, which negates its arithmetic operand.

53

Table 4-1: Precedence of C Operators

Category Operator

primary () [l -> .

unary ! - ++ -- - (type) * & sizeof

binary (mult.) * I %

binary (add.) + -

binary (shift) < < > >

binary (relat.) < <= > >=

binary (equal.) !=

binary (bitand) &

binary (bitxor)

binary (bi tor)

binary (AND)

binary (OR)

conditional

&&

'' ''
?:

assignment += -=*=I=%=>>=<<=&= A l=

comma

Associativity

left to right

right to left

left to right

left to right

left to right

left to right

left to right

left to right

left to right

left to right

left to right

left to right

right to left

right to left

left to right

• Binary operators, which take two operands and perform a variety
of arithmetic and logical operations.

• The conditional operator (a ternary operator), which, in the ex­
pression

A ? B : c;
evaluates either expression B or C, based on the evaluation of
expression A.

• Assignment operators, which assign a value to a variable, option­
ally performing an additional operation before the assignment
takes place.

• The comma operator, which guarantees left-to-right evaluation of
comma-separated expressions.

To understand the details about particular operators, you must also
understand the circumstances in which C performs data type conver­
sions.

54 Chapter 4

4.1 Data Type Conversions

C performs data type conversions in three situations:

1. When two or more operands of different types appear in an ex­
pression (including an assignment).

2. When arguments other than long integers, addresses, or double­
precision floating-point numbers are passed to a function.

3. When the data type of an operand is deliberately converted by
the cast operator. (The cast operator is described in Section
4.3.5.)

4.1.1 Conversion of Operands
The following rules (sometimes referred to as the usual arithmetic con­
version rules) govern the conversion of operands in arithmetic expres­
sions. Although they do not specify explicit conversions at the machine­
language level, the rules govern in the following order:

1. Any operands of type char or short (signed or unsigned) are
converted to their 32-bit equivalents (int or unsigned int), and
any of type float are converted to double.

2. Then, if either operand is double, the other is converted to dou­
ble, and that is the type of the result.

3. Otherwise, if either operand is unsigned, the other is converted
to unsigned, and that is the type of the result.

4. Otherwise, both operands must be int, and that is the type of the
result.

The usual arithmetic conversions are performed on all arithmetic
operands. Note that some operators (such as the shift operators > > and
< <) require integers as operands, and this requirement cannot be met if
one operand is of type float or double.

In general, floating-point arithmetic is carried out in double precision.
Whenever an operand of type float appears in an expression, it is con­
verted to type double; the compiler lengthens the operand by padding
its fractional part with zeros.

When an operand of type double is converted to float - for example,
by an assignment - the operand is rounded before being truncated to
float.

A float or double value operand may also be converted to an integer by
assignment to an integral variable. In VAX-11 C, the truncation of the
float or double value is always toward zero.

Conversions also take place between the various kinds of integers. In
VAX-11 C, chars are bytes treated as signed integers. When a longer

Expressions and Operators 55

integer is converted to a shorter integer or to char, it is truncated on the
left; excess bits are discarded. For example:

int i ;

char ci

i = OxFFFFFFlll;
c = i ;

assigns hex 41 ('A') to c. Shorter signed integers are converted to longer
ones by sign extension.

Whenever an unsigned integer and a signed integer are combined, the
signed integer is converted to unsigned and the result is unsigned. All
conversions from signed to unsigned perform an intermediate conver­
sion to int. For example, the compiler converts a char or short operand
to an unsigned version by first converting it to a signed int and then by
truncating it to form the unsigned version. All conversions from un­
signed to signed (such as by the cast operator) involve an intermediate
conversion to unsigned int.

You can also add integers to pointers, in which case the integer is scaled
(multiplied) by a factor that depends on the type of the object to which
the pointer points. For more details, see the discussion of the additive
operators (Section 4.4.1).

4.1.2 Conversion of Function Arguments
The data types of function arguments are assumed to match the types
of the formal parameters. C does not compare the types case by case.
Instead, all arguments of type float are converted to double, all chars
and shorts are converted to ints, all unsigned chars and unsigned
shorts are converted to unsigned ints, and an array or function name
is converted to the address of the named array or function. No other
conversions are performed automatically, and any mismatches after
these conversions are programming errors. Use the cast operator to pass
arguments to parameters of different types.

56 Chapter 4

4.2 Primary Expressions and Operators

Primary expressions denote values. Primary expressions include previ­
ously declared identifiers, constants (including strings), array refer­
ences, function calls, and structure or union references. Syntactically,
the primary expressions are as follows:

primary ::=
identifier
constant
string
(expression)
primary (expression-list)
primary [expression]
lvalue . identifier
primary -> identifier

The simplest forms are identifiers (variable names) and string or arith­
metic constants. Other forms are parenthesized expressions, function
calls, array references, lvalues and rvalues (see Section 4.2.4), and
structure and union references.

4.2.1 Parenthesized Expressions
An expression within parentheses has the same type and value as the
same expression without parentheses. As in declarations, any expres­
sion can be parenthesized to change the grouping, or associativity, of its
operators.

4.2.2 Function Calls
A function call is a primary expression followed by parentheses. The
parentheses may contain a list of arguments (separated by commas) or
may be empty. An undeclared function is assumed to be a function
returning int. If an identifier was declared as a "function returning ... ",
but is used in a context other than a function call, it is converted to
"address of function returning ... ". That is, the declaration

double atof();

declares a function returning double. The name atof can then be used
in a function call:

result = atof(c)l

Or atof can be used in other contexts without being followed by the
parentheses:

disPatch(atof);

In the second case, the name atof is converted to the address of that
function, and the address is passed to the dispatch function.

Expressions and Operators 57

4.2.3 Array References
Bracket operators are used to refer to elements of arrays. Given an
array defined as array[10][5][2], you refer to a specific element within
the array, as in the following example:

int arrav[10J[5J[2J;
int i ;
i = arrad8][Q][1J;

This example assigns the value of the element in array[9][4][1J to i.

In addition, if an array reference is not fully qualified, it refers to the
address of the first element in the dimension that is not specified. For
example, the statements

int *iP;
iP = arraY[8J[QJ;

assign the address of array[9][4][0J to the pointer ip. Therefore, you
could write

iP = arra)'[8J;

to assign the address of array[9][0][0J to the pointer ip. Finally, a refer­
ence such as

iP array;

assigns the address of the array's first element, array[0][0][0], to the
pointer ip. A reference to an array name with no bracket operator is
often used to pass the array's address to another function, as in:

funct(array);

Bracket operators can also be used to perform general address arithme­
tic of the form:

addr[intexP]

where addr is the address of some previously declared object (that is, a
pointer-valued expression), and intexp is an integer-valued expression.
The result of the expression is scaled, or multiplied, by the size in bytes
of the addressed object; if intexp is a positive integer, the result is the
address of a subsequent object of this size; if intexp is zero, the result is
the address of the same object; if intexp is negative, the result is the
address of a previous object.

4.2.4 Lvalues
The values of objects are sometimes categorized further, into !values
and rvalues. The computer can be considered a machine that manipu­
lates abstract objects which have a specific location and contain a
specific value. The !value then denotes the location of an object. That
location is used when the contents of the object are modified. The

58 Chapter 4

rvalue denotes the contents of the object. It is used when the contents of
the object are read. For instance, in the expression

the contents of y (if y is a variable) are taken and assigned to x. In other
words, the expressions use the rvalue of y and the lvalue of x in per­
forming the assignment.

The following syntax defines those C expressions that either have or
produce lvalues: 1

!value ::=
identifier
primary [expression]
!value . identifier
primary -> identifier
• expression
(!value)

In order, these expressions represent:

1. Names of scalar variables, structures, and unions.
2. References to array elements (also scalars).
3. References to structure and union members (the meaning of the

period operator or the right-arrow operator), except for refer­
ences to fields which are not lvalues.

4. References to pointed-to objects (also called dereferenced
pointers - that is, the asterisk followed by the name of a
pointer variable or by another address-valued expression).

5. Any of the above, enclosed in parentheses.

All lvalue expressions represent a single location in the computer's
memory.

4.2.5 Structure and Union References
A member of a structure or union can be referenced with either of two
operators: the period or the right arrow.

A primary expression followed by a dot followed by an identifier refers
to a member of a structure or union and is itself a primary expression.
The first expression must be an lvalue naming a structure or union. The
identifier must name a member of that structure or union. The result is
a reference (if the member is a scalar) to the named member of the
structure or union. The name of the desired member must be preceded

1. The word /value is sometimes used to mean either an !value or one of these
expressions. The context usually makes the meaning clear. In this manual,
!value means one of these expressions.

Expressions and Operators 59

by a period-separated list of the names of all higher level members. For
more information, see Section 3.4.2.

The other form for structure .and union references uses the arrow opera-·
tor. A primary expression followed by an arrow (built from a hyphen(-)
a9d a greater-than symbol (>)) followed by an identifier refers to a
member of a structure or union and· is itself a primary expression. The
first expression must be a pointer to a structure or a union. It must be
some expression that results in a structure's or union's address. The
identifier must name a member of that structure or union. The result is
a reference to the named member.

4.3 Unary Expressions and Operators
Unary expressions are formed by combining a unary operator with a
single operand. All unary operators are of equal precedence and group
from right to left. They perform the following operations:

• Negate a variable arithmetically (-) or logically (!).
• Increment (+ +) and decrement (--) variables.
• Find addresses(&) and dereference pointers(*).
• Calculate a one's complement C).
• Force the conversion of data from one type to another (cast).
• Calculate the sizes of specific variables or of types (sizeof).

4.3.1 Negating Arithmetic and Logical Expressions
The result of the expression

- expression

is the arithmetic negative of the expression. The usual arithmetic
conversions are performed. The negative of an unsigned quantity is
computed by subtracting its value from 232• There is no unary plus
operator in C.

The result of the expression

! expression

is the logical (Boolean) negative of the expression. If the expression is
zero, the result is 1; if the expression is not zero, the result is 0. The
type of the result is int. The expression can be a pointer (or other
address-valued expression) or an expression of any arithmetic type.

4.3.2 Incrementing and Decrementing Variables
The object referred to by the lvalue in the expression

++lvalue

is incremented before its value is used. The result is a new value of the
object, not a reference to tlie object; for instance, the above expression
could not appear by itself on the left side of an assignment expression.

60 Chapter 4

The object referred to by the lvalue in the expression

lvalue++

is incremented after its value is used. The result is the value of the
,gbject before the increment, not a reference to the object.

If the operand is a pointer, the address it contains is incremented by the
length of the addressed object.

The objects referred to by the lvalues in the expressions

--lvalue
lvalue--

are decremented analogously to the prefix and postfix ++ operators.
Again, the result is the value of the object either before or after the
decrement, not a reference to the object; that is, the expression
--lvalue or lvalue-- cannot be used alone on the left side of an assign­
ment expression.

If the operand is a pointer, the address it contains is decremented by
the length of the addressed object.

4.3.3 Computing Addresses and Dereferencing Pointers
The expression

& !value

results in the address of the object to which the lvalue refers. The
ampersand operator may not be applied to register variables or to bit
fields in structures or unions. 1

In the special case of argument lists, the ampersand operator may be
applied to constants. This use of the ampersand operator passes con­
stants to non-C functions that expect arguments to be passed by refer­
ence. This use is not recommended for other applications.

In the following

* expression

the asterisk operation means indirection. The expression must be a
pointer or other address-valued expression, and the result is a reference
to the object to which the expression points. The type of the addressed
object is the type of the result.

1. In VAX-11 C, any register variable to which the ampersand operator is
applied is simply changed to auto. No warning message is issued.

Expressions and Operators 61

4.3.4 Calculating a One's Complement
The result of

expression

is the one's complement of the expression. The expression must b~
integral (an integer or character). The usual arithmetic conversions are
performed.

4.3.5 Forcing Conversions to a Specific Type
The cast operator is used to force the conversion of an operand to a

. specified scalar data type. The operator consists of a data type name,
written in parentheses, which precedes the operand expression:

(type-name) expression

The value of the expression is converted to the named type, just as if
the expression were assigned to a variable of that type. If the operand is
a variable, its value is taken and then converted to the named type.
The variable's contents are not changed. The type name has the follow­
ing formal syntax:

type-name ::=
type-specifier abstract-declarator

In simple cases, the type specifier is the keyword for the data type, such
as char or double. The type specifier may also be a struct-or-union
specifier or an enum-specifier or a typedef tag.

The abstract declarator is a declaration without the identifier:

abstract-declarator ::=
empty
(abstract-declarator)
• abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expression]

To avoid confusion with the form

abstract-declarator()

the abstract declarator may not be empty in:

(abstract-declarator)

Abstract declarators may include the brackets and parentheses that
indicate arrays and function calls. However, cast operations may not
force the conversion of any expression to an array, function, structure,
or union. The brackets and parentheses are used in such operations as

(int (*)[J) P1

which casts Pl to "pointer to array of int." Note that this kind of cast
operation in no way changes the contents of Pl; it only causes the
compiler to treat the value of Pl as a pointer to such an array. For

62 Chapter 4

example, casting pointers this way can change the scaling that occurs
when an integer is added to the pointer.

4.3.6 Calculating Sizes of Variables and Data Types
In the expressions

sizeof expression
sizeof (type-name)

the result is the size in bytes of the operand. In the first case, the result
of sizeof is determined from the declarations of the objects in the ex­
pression. In the second case, the result is the size in bytes of an object of
the named type. The syntax of type-name is the same as for the cast
operator.

4.4 Binary Expressions and Operators

The binary operators fall into the following categories:

• Additive operators: addition (+) and subtraction (-).

• Multiplicative operators: multiplication (*), mod (%), and divi­
sion (/).

• Equality operators: equality (==) and inequality (!=).

• Relational operators: less than (<), less than or equal to (<=),
greater than(>), and greater than or equal to(>=).

• Bitwise operators: AND (&), OR (:), and XOR (').

• Logical operators: AND (&&) and OR (: :).

• Shift operators: left (< <) and right (> >).

4.4.1 Additive Operators
The additive operators+ and- perform addition and subtraction. Their
operands are transformed by the usual arithmetic conversions.

The address of an array element and a value of any integral type can be
added. The compiler converts the integer to an address offset by multi­
plying the integer by the length of the addressed object. The result is
the address of an object of the same type as the originally addressed
object, where both objects are in the same array.

A value of any integral type may be subtracted from a pointer or ad­
dress; then, the same conversions apply as for addition.

When two enum constants or variables are combined, the result is of
type int.

Expressions and Operators 63

If two addresses of objects of the same type are subtracted, the result is
converted (it is divided by the length of the object) to an int represent­
ing the number of objects separating the addressed objects. The results
of this conversion are unpredictable unless the two objects are in the
same array.

4.4.2 Multiplicative Operators
The multiplicative operators *, /, and % perform the usual arithmetic
conversions. The binary * operator performs multiplication. The binary
I operator performs division. When integers are divided, truncation is
toward zero.

The binary % (mod) operator divides the first operand by the second
and yields the remainder. Both operands must be integral. The sign of
the result is the same as the sign of the quotient. If b is not zero, then it
is always true that (a/b)*b + a%b equals a.

4.4.3 Equality Operators
The equality operators== (equal to) and !=(not equal to) perform the
usual arithmetic conversions on their two operands. Like the relational
operators, they produce a result of type int, so that

a<b == c<d

is 1 if both relational expressions have the same truth value, and 0 if
they do not. Two pointers or addresses are equal if they identify the
same storage location. A pointer or address can be compared with an
integer, but the result is not portable unless the integer is zero; a null
pointer is considered equal to zero.

Although different symbols are used for assignment and equality (=
and==, respectively), Callows either operator in some contexts, so you
must be careful not to confuse them. For example:

if (x= 1) statement-1;
else statement-2;

always executes statement-I, since the value of the expression x=l is 1.

4.4.4 Relational Operators
The relational operators compare two operands and produce a result of
type int. The result is 0 if the relation is false and 1 if it is true. The
operators are < (less than), > (greater than), <= (less than or equal to),
and>= (greater than or equal to). The usual arithmetic conversions are
performed. If two pointers or addresses are compared, the result de­
pends on the relative locations of the two addressed objects. Pointers to
objects at lower addresses are "less than" pointers to objects at higher
addresses. If two addresses indicate elements in the same array, the
address of an element with a lower subscript is less than the address of
an element with a higher subscript.

64 Chapter 4

The operators group from left to right. However, note that the state­
ment

if <a<b<c> •••

compares c with the value 0 or 1; it does not mean "if b is between a
and c ... ".

4.4.5 Bitwise Operators
These operators may be used only with integral operands (that is, with
chars and with ints of all sizes). The usual arithmetic conversions are
performed. The result is the bitwise AND(&), XOR (exclusive OR, ·),
or OR (:) of the two operands. All operands are always evaluated.

4.4.6 Logical Operators
The logical operators are && (AND) and : : (OR). These operators
guarantee left-to-right evaluation. The right operand is not evaluated if
the result is known from the evaluation of the left operand. The result
(of type int) is either 0 or 1. That is:

E1 && E2

is 1 if both its operands are nonzero, or 0 if one operand is zero. If El is
zero, E2 is not evaluated. Similarly:

E1 : : E2

is 1 if either operand is nonzero, and 0 otherwise. If El is nonzero, E2 is
not evaluated.

The operands of logical operators need not have the same type, but
each must be one of the fundamental types or must be a pointer or
other address-valued expression.

4.4. 7 Shift Operators
The shift operators (< < and > >) take two operands, both of which must
be integral. The usual arithmetic conversions are performed on both
operands; then, the right-hand operand is converted to int, and the
type of the result is the type of the left operand. The result of:

E1 « E2

is the value of expression El shifted to the left by E2 bits. Vacated bits
are cleared. The result of

E1 » E2

is the value of expression El shifted to the right by E2 bits. Vacated
bits are cleared if El is unsigned; otherwise, the right shift is
arithmetic - vacated bits are filled with a copy of El's sign bit.

The result of the shift operation is undefined if the right-hand operand
(E2) is negative oi if the value of E2 is greater than 32 bits.

Expressions and Operators 65

4.5 Conditional Expression and Operator

The conditional operator (?:) takes three operands. It tests the result of
the first operand and then evaluates one of the other two operands
based on the result of the first. For example:

E1 ? E2 : E3

If El is nonzero, then E2 is evaluated. If El is zero, E3 is evaluated.
Conditional expressions group from right to left. Conversions are made
in the following order:

1. If possible, the usual arithmetic conversions are performed on E2
and E3, to ma~e them have the same type.

2. Otherwise, if E2 and E3 are address expressions indicating ob­
jects of the same type, the result has that type.

3. Otherwise, either one of the E2 and E3 operands must be an
address expression, and the other, the constant 0. The result has
the type of the addressed object.

4.6 Assignment Expressions and Operators

In C, there are several assignment operators. An "assignment" is not
only an operation but also an expression. Assignments result in the
value of the target variable after the assignment. They can be used as
subexpressions in larger expressions.

The set of assignment operators consists of the equal sign (=) alone and
in combination with binary operators. An assignment expression has
two operands - an !value and an expression - separated by one of
these operators. An assignment expression such as

E1 OP= E2

is equivalent to

E1 = E1 op (E2)

For example, the expression

E1 += E2;

is equivalent to

E1 = E1 + E2;

El is evaluated only once and must be an lvalue. The type of the
assignment expression is the type of El, and the result is the value of
El after the operation is performed. E2 is parenthesized above because
it could contain other operators that are of lower precedence than op.
For example, the expression

a + b 1 ;

is the same as

a= a+ (b 1) ;

66 Chapter 4

not

a= a+ b << 1;

In the simple assignment expression

E1 = E2

the value of E2 replaces the previous value in El. Another example, the
expression

arraY[1J += 100;

adds 100 to the contents of array[l]. The result of the expression is the
result of the addition and has the same type as array[l].

If both assignment operands are arithmetic, the right operand is con­
verted to the type of the left before the assignment is made.

The simple assignment operator (=) can be used to assign structures
and unions. All other assignment operators, all right operands, and all
left operands that are not pointers must be arithmetic. If the operator is
-= or +=, the left operand may be a pointer, and the right operand
(which must be integral) is converted in the same manner as that in
which the binary + and - operators are converted.

An address may be assigned to an integer, an integer to a pointer, and
the address of an object of one type to a pointer of another type. Such
assignments are simple copy operations, with no conversions. This us­
age may cause addressing exceptions when the resulting pointers are
used. However, if the constant 0 is assigned to a pointer, the result is a
null pointer. The null pointer is distinguishable (by the equality opera­
tors) from a pointer that points to any object.

For the sake of compatibility with older implementations of C, VAX-11
Callows certain deviations from the spellings of compound assignment
operators shown in Table 4-1. Namely:

• When the operators are written in the order shown in Table 4-1,
the two characters can be separated by white space. That is:

E1 += E2;

and

E1 + = E2;

are identical.

• The operators can also be written with the characters in reverse
order, as in:

E1 =+ E2;

Expressions and Operators 67

However, you should avoid the second form for the following reasons:

• The syntax allowed by V AX-11 C is more restrictive in this case.
Specifically, the characters *, +, -, and &, because they also ap­
pear in unary operators, must be immediately adjacent to the '='
character in this form. This placement avoids ambiguities in such
cases as:

E1 =*p;

which multiplies the value in El by the value of p.

• Even with usage that follows the guidelines, it is possible to intro­
duce ambiguities, as in:

E1 =f*part of a comment...

4. 7 Comma Expression and Operator

When two expressions are separated by the comma operator, they are
evaluated from left to right, and the result of the left expression is
discarded. For example:

R = CT = 1 • T += 2);

assigns 3 to both R and T.

The type and value of the result of a comma expression are the type and
value of the right operand. The operator groups from left to right.

Note that comma expressions must be parenthesized if they appear
where commas have some other meaning, as in argument and initializer
lists. For example:

f(a, (t=3.t+2), o)

calls the function f with the arguments a, 5, and c. In addition, t is
assigned the value 3.

68 Chapter 4

Chapter 5

Statements

This chapter describes the statements in the C programming language.
Except as indicated, statements are executed in the sequence in which
they appear in a program.

5.1 Expression Statement

You can use any valid expression as a statement by terminating it with
a semicolon:

expression ;

5.2 Compound Statement

A compound statement in C is sometimes called a block and allows
more than one statement to appear where a single statement is required
by the language. A compound statement has the form:

compound-statement ::=
I declaration-list statement-list I

That is, the block is an optional list of declarations followed by a list of
statements, all enclosed in braces. If you include declarations, the vari­
ables they declare are local to the block and, for the rest of the block,
they supersede any previous declaration of variables of the same name.
Variables of storage class auto, register, or static can have initializers
in the declaration list.

A block is entered "normally" when control flows into it, or when a goto
statement transfers control to the label of the block itself. Any auto or
register variables are initialized each time the block is entered nor­
mally; the initializations do not occur if a goto statement refers to a
label inside the block or if the block is the body of a switch statement.

69

5.3 if Statement

A conditional if statement can be written with or without an else
clause:

if (expression) statement
if (expression) statement else stateme~t

In each case, the expression is evaluated, and if it is not zero, the first
statement is executed.

Note that all relational operators define a "true" result to be nonzero so
that the expression in any if statement (or any other conditional state­
ment) may be a relational expression with predictable results (nonzero
or zero).

If the else clause is included and the expression is zero, the else state­
ment is executed. In a series of if-else clauses, the else matches the
most recent else-less if.

5.4 while Statement

The while statement has the form:

while (expression) statement

The expression is evaluated before each execution, and the statement is
executed zero or more times, as long as the expression is not zero.

5.5 do Statement

The do statement has the form:

do statement while (expression) ;

The statement is executed at least once, and the expression is evalu­
ated after each execution. If the expression is not zero, the statement is
executed again.

5.6 for Statement

The for statement has the form:

for (expression-1 ; expression-2 ; expression-3)
statement

The for statement executes a statement zero or more times. It uses
three control expressions, as shown. (Note that expression-3 is not fol­
lowed by a semicolon.) A for loop is executed in the following steps:

70

1. Expression-1 is evaluated before the first iteration of the loop,
and only once. It usually specifies the initial values for variables.

Chapter 5

2. Expression-2 is a relational or logical expression that determines
whether to terminate the loop. Expression-2 is evaluated before
each iteration. If it is zero, execution of the for statement termi­
nates. If it is not zero, the statement is executed.

3. Expression-3 is evaluated after each iteration. It usually speci­
fies increments for the variables initialized by expression-1.

4. Iterations of the for statement continue until expression-2 pro­
duces a "false" (zero) value, or until some statement, such as
break or goto, interrupts it.

The for statement is equivalent to:

expression-1;
while (expression-2) I statement expression-3; I

The V AX-11 C compiler optimizes certain for statements for simple
loops such as

for(i=Oj i<15j i++)
Printf("'X.d\n" 1i);

So the use of for statements rather than the equivalent while state­
ment is preferred.

Any of the three expressions in a loop may be omitted. If expression-2
is omitted, the test condition is always true; that is, the while in the
above expansion becomes while(l). If either expression-1 or expres­
sion-3 is omitted from the for statement, that expression is effectively
dropped from the above expansion.

The construct

for (;;) statement

is an infinite loop. It can be terminated by a break, return, or goto
within the statement.

5. 7 break Statement

The break statement has the form:

break;

It terminates the immediately enclosing while, do, for, or switch
statement. Control passes to the statement following the terminated
statement.

5.8 switch Statement

The switch statement has the form:

switch (expression) statement

The switch statement executes one or more of a series of cases, based
on the value of the expression.

Statements 71

The usual arithmetic conversions are performed on the expression, but
the result must be int. The statement is typically a compound state­
ment, within which any statement or list of statements can be prefixed
with one or more case labels:

case constant-expression :

where the constant expression must also be int. No two case labels may
specify the same value. The value of any constant expression must be
between -32, 768 and 32, 767.

At most one statement in the compound statement may have the label:

default :

The case and default labels may occur in any order. When the switch
statement is executed, the following sequence takes place (note that
each case "flows into" the next unless explicit action is taken, such as a
break statement):

1. The switch expression is evaluated and compared with the con­
stant expressions in the case labels.

2. If a case label matches the expression's value, the statement or
list of statements following that label is executed. If the list of
statements ends with the break statement, the break termi­
nates the switch statement; otherwise, the next case encoun­
tered is executed. (See Example 5-1.) The switch statement can
also be terminated by a return or goto statement; if the switch
is inside a loop, it can be terminated by a continue statement.

3. If no case label matches the expression's value, but there is a
default case, the default case is executed. It need not be the last
case listed. If a break statement does not end the default case,
the next case encountered is executed.

4. If there is no case for the expression's value and there is no
default, the body of the switch statement is not executed.

NOTE
If declarations appear in the compound statement within a
switch statement, any initializations of auto or register
variables are ineffective. However, this rule does not apply
to compound statements following a case label.

In general, the break statement must be used to ensure that a switch
executes as expected. Example 5-1 uses the switch statement to count
blanks, tabs, and newlines entered from the terminal. A series of case
statements is used to increment the counters. The break statement
causes the program to return to the beginning of the while loop when
one of the counters is incremented. The program returns automatically
to the beginning of the while loop if none of the counters is incre­
mented.

72 Chapter 5

#include stdio

I• A PROGRAM TO COUNT BLANKSt TABSt ANO NEWLINES, •I
main ()
{

}

int number_tabs = o;
int number_lines = o;
int number_blanKs = o;
int ch;
while ((ch= Setchar()) != EOFJ

s1,1itch (chi {
case '\t': ++number_tabs; breaK;
case '\n': ++number_lines; breaKi
case ' ': ++number_blanKsi breaKi
}

Printf("BlanKs\tTabs\tNewlines\n");
Printf ("'X.Bd\t'X.Bd\t'X.Bd\n" tnurtlber_blanKs •

number_tabs t1H1111ber_lines);

Example 5-1: Use of switch to Count Blanks, Tabs,
and Newlines

The program responds to the following input:

E•.ie rY sood boy,~
The <tuicf\ bro1.,1n fox.~
Line 1,1ith 2@§1@§1 tabs.~
···z

by writing out:

Blanf;s
7

Tabs Ne1,Jl in es
2 3

On the other hand, if the break statements were omitted, the program
would write out:

Blanf\s
12

Tabs Newlines
2 5

Without the break statements, each case drops through to the next
case. The number shown for tabs happens to be right, because the tabs
case is first in the switch statement and is executed only if ch== '\t '.
Notice that the number shown for newlines is the correct number plus
the number of tabs, and the number shown for blanks is the total of all
three cases.

Statements 73

5.9 continue Statement

The continue statement has the form:

continue;

The continue statement immediately passes control to the bottom of
the immediately enclosing while, do, or for statement.

In each of the. following statements, a continue is equivalent to goto
label:

while (...) { ... label: ; l
do { ... label: ; l while (...);

for (... ; ... ; ...) { ... label: ; l
continue is intended only for loops, not for switches. A continue inside
a switch inside a loop causes reiteration of the enclosing loop.

5.10 return Statement

The return statement has the form:

return expression ;

The return statement causes a return from a function, with or without
a return value.
The return value is undefined unless specified in a return statement.
When an expression is specified in the return statement, it is evaluated
and the value is returned to the calling function; the value is converted,
if necessary, to the type with which the called function was declared.

A function that does not have a return statement is the same as a
return statement that does not specify an expression; it does not return
a value to the calling function.

5.11 goto Statement

The goto statement has the form:

goto identifier ;

The goto statement transfers control unconditionally t<Y the labeled
statement. The identifier must be a label located in the current func­
tion.

goto may be used to branch into a block, but any automatic variables
declared in the block will not be initialized.

74 Chapter 5

5.12 Labeled Statement

A label has the form:

identifier:

Any statement can be preceded by a label. The scope of a label is the
current function. Since the label name is independent of the scope rules
applied to variables, there can be variables with the same name as the
label in the function that contains the label. Labels are used only as the
targets of goto statements.

5.13 Null Statement

A null statement is a semicolon:

Null statements are used to provide null operations in situations where
the grammar of the language requires a statement. In particular, the
bodies of if-else, while, do, and for statements are not optional, so the
null statement is often used to write these statements with null bodies.
The most common use is in loop operations where all the loop activity is
performed by the test portion of the loop. For example, the following
statement finds the first zero element of an array known to have a zero
element:

farli=OI arraY[il != o; i++l ;

Statements 75

Chapter 6

Library Functions

Because the C language has no predefined or built-in functions, all C
compilers are supplied with libraries of common functions that can be
used by C programmers on their particular system. This chapter de­
scribes the library functions supplied with the VAX-11 C compiler. The
function descriptions are grouped alphabetically in Tables 6-1 through
6-8, according to the following categories:

• Input/output (1/0) functions
• Character classification functions
• String-handling functions
• Character conversion functions
• Mathematical functions
• Memory allocation functions
• Miscellaneous functions
• UNIX emulation functions

Section 6.11 describes each function in detail.

Programs that use these library functions must contain a C function
named main or a C 'function with the main_program attribute.

NOTE
When an error occurs during a call to any of the functions
described in this chapter, the function returns an unsuc­
cessful status and sets the external variable errno to a
value which indicates the reason for the failure. See Appen­
dix E for more information.

6.1 Performing 1/0 from C Programs

The C programming language has no built-in 1/0 functions. However,
each implementation usually provides some 1/0 capability in the form
of library functions. The amount of 1/0 support varies from implemen­
tation to implementation; the user interface and language functionality
also differ between implementations.

As shown in Figure 6-1, V AX-11 C makes available four distinct hierar­
chical levels of 1/0. The lowest level, VAX/VMS system services, is

76

closest to the operating system; the highest level, standard l/O, is far­
thest. For the duration of a program, each level of access is exclusive of
the others; you cannot access a file from different levels in the same
program.1

,---,

p Standard 1/0

r
0 UNIX 1/0
g
r VAX-11 RMS
a
m

System Services ...__
ZK-493-81

Figure 6-1: 1/0 Interface from C Programs

Before deciding which level is appropriate for you, you must first ask
the question: Are you concerned with UNIX compatibility, or are you
developing code that will run solely under VAX-11 C? If UNIX com­
patibility is important to you, you will probably want to use the two
highest levels of 1/0 - standard 1/0 and UNIX 1/0 - because they
are more independent of the operating system. The two highest levels
are also easier to learn quickly, an important consideration for new
programmers.

If UNIX compatibility is not important to you, or you require the
sophisticated file processing that the standard 1/0 and UNIX 1/0 levels
do not provide, then you will find VAX-11 RMS desirable. Note that
the use of RMS is mandatory for RMS relative and indexed file organ­
izations. For a description of RMS, see Chapter 8.

If you are writing system-level software, you may need to directly ac­
cess V AXNMS through calls to system services. For example, you may
need to directly access a user-written device driver through QIO$
(Queue I/O) system service requests. To do this, you would need to use
the VAXNMS level of I/0; this level is recommended for experienced
V AXNMS programmers only. Chapter 9 contains some examples of
programs that call V AXNMS system services.

The UNIX and standard I/O functions are contained in the V AX-11 C
run-time library. Only those UNIX and standard I/0 functions that are
appropriate for V AXNMS are provided. That is, some functions that
may be provided by other implementations are not provided by
VAX-11 C because those functions conflict with VAXNMS. In some
cases, conflicting functions are replaced by an equivalent V AX-11 C
function. For example, the UNIX unlink function has been replaced by

1. The exception to this rule is the fdopen function. It allows a file opened by
UNIX 1/0 functions to be accessed by standard 1/0 functions. However, after an
fdopen function call, you can use only standard I/0 functions to access the file.

Library Functions 77

the VAX-11 C delete function. Table 6-1 lists the run-time functions
that perform VO on the UNIX and standard levels.

As shown in Figure 6-2, the UNIX and standard VO functions map to
RMS and, subsequently, to VAX/VMS. When you create a file on ei­
ther of these levels, you are actually creating an RMS sequential file.
The standard I/0 functions create sequential files with stream record
format. The UNIX VO functions create stream files by default, but you
may specify certain record attributes (including the record format)
when you create the file.

6.1.1 Stream Files and Stream Access
Stream files are files treated as streams of bytes. A series of bytes is
read from or written to a stream file directly, with no record structure or
implied carriage control. In VAX-11 C, and in most other implementa­
tions of C, stream files and their associated functions form the standard
I/O facilities.

Stream files are created by the fopen and create functions. For exam­
ple, a call to fopen that opens a new file for output creates a stream file.
A call to fopen that opens ah existing file for input presents the pro­
gram with a stream file that is processed with the conventional stream
I/O functions, such as fseek, ftell, fread, fwrite, and fprintf.

p
r
0
g
r
a
m

1--- File Pointer --••:I ____ s_t_an_d~a-rd_11_0 ___ ~

File Descriptor

File Descriptor ----IL.., ____ u_N_1..,.~_1_10 ____ _.

RMS Data Structures

RMS Data Structures --1 ... ____ v_A_x_-....,')_R_M_s ___ _.

1/0 Channel

1--- 1/0 Channel --1.__ ___ s_ys_te_m_s_e_rv_ic_e_s __ __.

ZK-494-81

Figure 6-2: Mapping Standard and UNIX 1/0 to RMS

78 Chapter 6

6.1.1.1 Relationship to VAX-11 Record Management Services (RMS)
Stream files in VAX-11 C correspond to VAX-11 RMS stream files
with the line feed terminator attribute. VAX-11 C permits stream ac­
cess to stream files. It also permits stream VO operations on RMS
record files, but the positioning options of stream access are more re­
stricted with record files.

The next sections review the stream access options permissible with
stream files and define the extent to which stream access is permitted
with RMS record files.

If you are not familiar with RMS, you should consult the manuals listed
at the beginning of Chapter 8 before continuing with this section.

6.1.1.2 Stream Access to Stream Filas
Stream access to stream files uses the stream VO facilities of RMS. A
stream of bytes is either written to or read from a file with no transla­
tion. If the file has been opened for update, it can be read (fread) and
written (fwrite) at the current byte position in the file.

An fread followed by an fwrite places bytes in the file after the last
byte of the previous fread. An fwrite followed by an fread causes
reading to begin after the last byte of the previous fwrite.

A stream file can be positioned to an arbitrary byte at any time (fseek).
If positioned beyond the end-of-file, then the file is extended with zero
bytes. The file may be positioned relative to the beginning-of-file, rela­
tive to the current position, or relative to the end-of-file. The first byte
in the file is byte zero; therefore, specifying zero as the absolute position
in an fseek call positions the file at its first byte. You can also deter­
mine the current byte position of a stream file with the ftell function.

You must open a file for update if the file is going to be written ran­
domly. For example:

#include stdio

1~a in ()
{

FILE *outfile;
outfile = foPen("disKfile.dat" t"w+");

}

Here, the stream file diskfile.dat is opened for "write update" access.
(For the distinction between "read update" and "write update," see
fopen, Section 6.11.49.)

6.1.1.3 Stream Access to Record Flies
Stream access to record files is done with the record VO facilities of
RMS. A byte stream is emulated by translating carriage control during
the process of reading and writing records. Random access is allowed to
record files, but positioning (with fseek) must be on a record boundary,

Library Functions 79

and writes followed by reads (or reads followed by writes) do not work
as with stream files. Positioning of a record file causes all buffered
input to be discarded and buffered output to be written to the file.

Stream input from record files is emulated by the run-time support in
two steps. First, a logical record is read from the file. Second, the record
is expanded to simulate a stream of byteR by translating the record's
carriage-control information (if any). In RMS terms, the translation is
performed by one of the following steps:

• If the record attributes are implied carriage control (RAT=CR),
then a newline is appended to the record.

• If the record attributes are print carriage control (RAT=PRN),
then the prefix and postfix carriage controls are expanded and
concatenated before and after the record.

• If the record attributes are FORTRAN carriage control
(RAT=FTN), then the first byte of the record is removed, and
prefix and postfix characters are concatenated to the record. The
following rules describe the way the character in the first byte
maps onto the prefix and postfix bytes that appear in the emu­
lated stream. <record> denotes the bytes containedin the logical
record exclusive of the first, carriage-control byte; '\n' denotes the
newline character; '\f denotes the form-feed character; '\r' de­
notes the carriage-return character:

NUL

0

1

+

-+ <record>

-+ \n<record> \n

-+ \f <record> \n

-+ <record> \r

$ -+ \n<record>

all others __, <record> \n

• If the input is coming from a nonterminal file, then the record is
passed unchanged to the user program with no prefix or postfix
characters added to it.

If the record attributes are null (RAT=null) and the input is com­
ing from a terminal, then the terminator is appended to the rec­
ord. If the terminator is a carriage return or CTRL/Z, then it is
translated to a newline.

• If the record format is variable length with fixed control
(RFM=VFC), and the record attributes are not print carriage con­
trol (RAT is not PRN), then the fixed-control area is concatenated
to the front of the record.

As you read from the file, the VAX-11 C run-time support delivers a
stream of bytes resulting from the above translations. Information that
is not read from an expanded record by one function call is delivered on
the next input function call.

80 Chapter 6

CAUTION
An expanded record cannot exceed 512 bytes. Thus, the
input record generally must not exceed 510 bytes of actual
data, since up to two characters may be added in the ex­
pansion process.

Stream output to record files is performed by the V AX-11 C run-time
support in two steps. First, a logical record is formed from the bytes
specified by the output function (fwrite, for example) by translating
any carriage-control bytes into RMS terms. Then, the logical record is
written out.

The first part of the stream output emulation is the formation of a
logical record. As you write bytes to a record file, the emulator exam­
ines the information being written for record boundaries. The handling
of information in the byte stream depends on the attributes of the
destination file or device, as follows:

• If the record attributes specify no carriage-control information
(RAT=null), then the stream of bytes presented in an output­
function call is taken to be a logical record.

• If the destination file or device being written to has carriage-con­
trol information (RAT=CR, RAT=FTN, or RAT=PRN), then the
emulator buffers output bytes while it searches for a newline char­
acter. Up to 512 bytes are buffered. If more than 512 bytes are
encountered before a newline is encountered, then an error is sig­
naled and the buffer is written out. Otherwise, when a newline is
found, the logical record is formed by appending the newline to the
buffered bytes.

The second part of stream output emulation is the actual writing of the
logical record formed during the first step. One of the following steps is
executed to form the output record:

• If the output file record format is variable length with fixed control
(RFM=VFC), and the record attributes do not include print car­
riage control (RAT is not PRN), then the beginning of the logical
record is taken to be the fixed-control header, and the number of
bytes written out is reduced by the length of the header. If there
are too few bytes in the logical record, an error is signaled.

• If the record attribute is carriage control (RAT=CR), and if the
logical record ends with a newline, the newline is dropped, and the
logical record is written out with implied carriage control.

• If the record attribute is print carriage control (RAT=PRN), then
the record is written with print carriage control. If the logical
record ends with a newline, the newline is dropped, and the output
record is preceded by a line feed and followed by a carriage return.

• If the record attribute is FORTRAN carriage control (RAT=FTN),
then the logical record is written out with FORTRAN carriage
control. If the logical record ends with a newline, the newline is

Library Functions 81

dropped and a space character is inserted at the front of the rec­
ord. Otherwise, a NUL is inserted at the front of the record.

• If the record attribute is null (RAT=null), then a test is performed
to determine whether the logical record is being written to a termi­
nal device. If so, the record is scanned, and each newline that is
encountered is replaced by a carriage-return/line-feed pair. The
record is then written out with no carriage control.

6.1.2 Standard 1/0
The standard I/O functions access the file by a file pointer. A file
pointer points to a file control block, which is defined in the stdio
#include module as a preprocessor substitution (similar to a typedef)
for a data type named FILE. The structure contains the definition of an
RMS sequential file with stream record format.

A file pointer is declared as follows:

FILE *infile;

In this case, infile is a pointer to a FILE structure.

The VAX-11 C run-time library contains the following functions that
access files by file pointer:

fopen fseek
fclose ftell
fileno rewind
freopen fread
setbuf getc
feof fgetc
fflush getw

6.1.3 UNIX 1/0

fgets
fscanf
fwrite
fprintf
putc
fputc

fputs
ungetc
fgetname
clearerr
ferror
putw

The UNIX I/O functions access the file by a file descriptor. A file
descriptor is an integer that identifies the file. A file descriptor is de­
clared as follows:

int fd;

In this case, fd is the name of the file descriptor.

When you create a file on the UNIX I/O level, you can supply values for
the following RMS file attributes:

• Allocation quantity
• Block size
• Default file extension
• Default file name
• A number of file-processing options
• Multiblock count
• Multibuffer count
• Maximum record size
• Record attributes
• Record format

82 Chapter 6

Functions such as creat associate the file descriptor with a file. For
example:

f d = c r e at (11 i n f i 1 e 11 t 0 t 11 r at = c r 11 t 11 r f iri = t.i a r 11) ;

This statement creates the file infile., with mode argument 0, carriage­
return control, and variable-length records, and it associates the file
descriptor, fd, with the file. When the file is accessed for other opera­
tions, such as reading or writing, the file descriptor is used to refer to
the file. For example:

1,1rite(fd .buffer .sizeof(buffer));

This statement writes the contents of the buffer to infile.

The VAX-11 C run-time library contains the following functions that
access files by file descriptor:

creat
open
write

close
pipe
getname

6.1.4 Predefined Files

dup
I seek

dup2
read

VAX-11 C defines three file pointers that perform 1/0 to and from the
logical devices usually associated with the user's terminal (for interac­
tive jobs) or a batch stream (for batch jobs).1 These file pointers are
defined when you include the stdio module with the #include pre­
processor control line.

The file pointer stdin is associated with the terminal to perform input.
This file is equivalent to SYS$INPUT. The file pointer stdout is associ­
ated with the terminal to perform output. This file is equivalent to
SYS$0UTPUT. The file pointer, stderr, is associated with the termi­
nal to report run-time errors. This file is equivalent to SYS$ERROR.

Three file descriptors also exist that refer to the terminal. The file
descriptor 0 is equivalent to SYS$INPUT, 1 is equivalent to SYS$0UT­
PUT, and 2 is equivalent to SYS$ERROR.

When performing 1/0 at the terminal, you can use standard 1/0 func­
tions (giving the name stdin, stdout, or stderr as an argument), you
can use UNIX 1/0 functions (giving the file descriptor as an argument),
or you can use the following functions, which specifically perform 1/0 at
the terminal:

getchar
putchar
gets
puts
scanf
printf

1. Since the three process permanent files SYS$INPUT, SYS$0UTPUT, and
SYS$ERROR perform the same functions for both interactive and batch jobs,
the term terminal I/O refers to both terminal and batch stream I/O.

Library Functions 83

Table 6-1: Input/Output Functions

Name Description
#include Page
Module

Opening and Closing Files

close Closes a file 103

creat Creates a new file 104

dup, Creates new descriptors for existing 108
dup2 files

fclose Closes a file stdio 113

fdopen Creates a FILE structure and associ- stdio 113
ates it with a file descriptor

fileno Returns an integer file descriptor stdio 115

fopen Opens a file stdio 116

freopen Reassigns the address of a FILE struc- stdio 118
ture and opens the file

open Opens a file for reading, writing, or 132
both

pipe Allows two processes to share data 133
with read and write calls

setbuf Associates a buffer with an input or stdio 144
output file

tmpfile Creates a temporary file for use during stdio 158
a process; the file is deleted when the
process (and its forks) is terminated

Positioning in Files

feof Tests for end-of-file stdio 114

fflush Writes out any buffered information stdio 115
to the file

fseek Places you at a specified byte offset stdio 119
relative to the beginning of the file,
the end of the file, or the current loca-
tion within the file

ftell Returns the current byte offset from stdio 119
the beginning of the file to the current
location within the file

84 Chapter 6

Table 6-1: (Cont.) Input/Output Functions

Name Description
#include

Page
Module

lseek Places you at a byte offset within a file 130
and returns the new position as an in-
teger

rewind Places you at the beginning of the file stdio 141

Input Functions

fread Reads a specified number of items stdio 117
from the file

fgetc Returns the next character from a file; stdio 120
generates a true function call

fgets Reads a line from a file; the line is stdio 123
terminated by a NUL character

fscanf Performs formatted input from a file stdio 141

getc Returns the next character from a file; stdio 120
implemented as a macro

getchar Returns the next character from the stdio 120
standard input device

gets Reads a line from the standard input stdio 123
device; the newline is replaced with a
NUL character

isatty Determines if a file descriptor is asso- 125
ciated with a terminal

read Reads a specified numbers of bytes 140
from a file and places them in a buffer

scanf Performs formatted input from the stdio 141
standard input device

sscanf Performs formatted input from mem- stdio 141
ory

Output Functions

delete Deletes a file 108

fgetname Returns the file specification for a stdio 122
given file pointer

fprintf Performs formatted output to a speci- sfdio 134
fied file

fputc Writes a single character to a file; gen- stdio 139
erates a true function call

Library Functions 85

Table 6-1: (Cont.) Input/Output Functions

Name

fputs

fwrite

getname

printf

putc

putchar

puts

putw

sprintf

ungetc

write

Description

Writes a string to a file

Writes the specified number of items
to the file

Returns the file specification for a
given file descriptor

Performs formatted output to the
standard output device

Writes a single character to a file; im­
plemented as a macro

Writes a single character to the stand­
ard output device

Writes a string to the standard output
device; terminates the string with a
newline

Writes a specified integer to a file

Performs formatted output to a char­
acter string in memory

Writes a character to a file buffer and
leaves the file positioned before the
character

Writes a number of bytes from a
buffer to a file

Error-Handling Functions

clearerr

ferror

Resets the error and end-of-file indica­
tors

Returns a nonzero integer if an error
occurs during read or write operations

6.2 Character Classification

#include
Module

stdio

stdio

stdio

stdio

stdio

stdio

stdio

stdio

stdio

stdio

stdio

stdio

Page

139

120

122

134

139

139

139

139

134

160

162

103

115

The functions in Table 6-2 operate on characters. All of the functions in
this table take a single argument and perform a logical operation. The
argument can have any value. In the case of isascii, the function re­
turns a logical result which states whether the argument is an ASCII

86 Chapter 6

character (0 to 177 octal). The other functions return a logical result
which states whether the argument is a particular type of ASCII char­
acter.

Appendix G contains a table of the ASCII character set. For each ASCII
character, the table shows which character classification functions re­
turn a true value.

Table 6-2: Character Classification Functions

Name Description
#include

Page
Module

isalnum Determines if the argument is alphanu- ctype 125
meric

isalpha Determines if the argument is alphabetic ctype 125

isascii Determines if the argument is an ASCII ctype 125
character

iscntrl Determines if the argument is a control ctype 126
character

isdigit Determines if the argument is a digit ctype 126

isgraph Determines if the argument is a graphic ctype 126
character

islower Determines if the argument is a lowercase ctype 126
letter

isprint Determines if the argument is a printing ctype 127
character

ispunct Determines if the argument is a punctua- ctype 127
tion character

is space Determines if the argument is a space, ctype 127
horizontal or vertical tab, carriage return,
form feed, or newline

is upper Determines if the argument is an upper- ctype 127
case letter

isxdigit Determines if the argument is a hexadeci- ctype 128
mal digit

Library Functions 87

6.3 String Handling

The functions in Table 6-3 manipulate strings. Some concatenate
strings. Others search strings for specific characters or perform other
lexicographic comparisons, such as determining the equality of two
strings.

Table 6-3: String-Handling Functions

Name Description
#include

Page
Module

strcat Concatenates two strings 152

strchr Searches a string for the first occurrence 153
of a given character

strcmp Performs lexicographic comparison of two 153
ASCII strings

strcpy Copies one string to another 154

strcspn Searches a string for a character within a 154
set and returns the number of characters
preceding the first match

strlen Returns the length of a string 155

strncat Concatenates two strings up to a maxi- 152
mum number of characters

strncmp Performs lexicographic comparison of two 153
ASCII strings (up to a maximum number
of characters)

strncpy Copies a maximum number of characters 154
from one string to another

strpbrk Searches a string for a character within a 156
set and returns the address of the first
match

strrchr Searches a string for the last occurrence 153
of a given character

strspn Searches a string for the first occurrence 156
of a character that is not in the search set

88 Chapter 6

6.4 Character Conversion
The functions in Table 6-4 perform character and arithmetic conver­
sions.

Table 6-4: Character Conversion Functions

Name

atof

atoi

atol

ecvt

fctv

gcvt

toascii

to lower
_to lower

to upper
_toupper

Description

Converts an ASCII string to a numeric
value (double) ·

Converts an ASCII string to a numeric
value (int)

Converts an ASCII string to a numeric
value (long)

Converts a double value to a NUL-termi­
nated ASCII string

Converts a double value to a NUL-termi­
nated ASCII string

Converts a double value to a NUL-termi­
nated ASCII string of digits

Converts an 8-bit ASCII character to a
7-bit ASCII character

Converts uppercase characters to lower­
case; returns lowercase characters un­
changed

Converts lowercase characters to upper­
case; returns uppercase characters un­
changed

Library Functions

#include
Module

math

Page

100

100

100

108

108

108

159

159

159

89

6.5 Mathematical Functions

Table 6-5 shows the library functions that perform mathematical oper­
ations.

The errno definition file defines two run-time error return values for
mathematical functions. EDOM causes an error message to be written
to stderr when an argument is inappropriate; that is, when the argu­
ment is not within the function's domain. ERANGE causes an error
message when a result is out of range; that is, when the argument is too
large to be represented by the machine.

Table 6-5: Mathematical Functions

Name

abs

Description

Returns the absolute value of the integer
argument

acos Returns a value in the range 0 to pi which
is the arc cosine of the radian argument

asin Returns a value in the range -pi/2 to pi/2
which is the arc sine of the radian argu­
ment

atan Returns a value in the range -pi/2 to pi/2
which is the arc tangent of the radian ar­
gument

atan2

cabs

ceil

cos

Returns a value in the range -pi to pi
which is the arc tangent of the two argu­
ments

Returns "sqrt(x*X + Y*Y)"

Returns the smallest value which is equal
to or greater than the argument

Returns the cosine of the radian argu­
ment

cosh Returns the hyperbolic cosine of the argu­
ment

exp Returns the base e raised to the power of
the argument

fabs Returns the absolute value of the float­
ing-point argument

floor Returns the largest integer which is less
than or equal to the argument

#include Page
Module

98

98

math 99

math 99

math 100

math 124

math 101

math 103

math 104

math 112

math 98

math 116

90 Chapter 6

Table 6-5: (Cont.) Mathematical Functions

Name Description #include Page
Module

frexp Returns the mantissa of the argument math 119

hypot Returns "sqrt(x*X + Y*Y)" math 124

ldexp Returns the first argument times 2 to the math 128
power of the second argument

log Returns the natural logarithm of the ar- math 129
gument

loglO Returns the base 10 logarithm of the ar- math 129
gument

modf Returns the fractional part and the inte- math 131
gral part of the argument

pow Returns the first argument raised to the math 134
power of the second argument

rand Returns pseudorandom numbers 140

sin Returns a value that is the sine of the math 150
radian argument

sinh Returns a value that is the hyperbolic math 151
sine of the argument

sqrt Returns the square root of the argument math 151

srand Reinitializes the random-number genera- 140
tor

tan Returns the tangent of the radian argu- math 157
ment

tanh Returns the hyperbolic tangent of the ar- math 157
gument

Library Functions 91

6.6 Memory Allocation

The functions in Table 6-6 allow you to control the allocation of mem­
ory from a C program. The functions calloc, malloc, and realloc return
the address of the allocated area. They return a null pointer if there was
insufficient memory.

The memory allocation functions in this section and the facilities listed
below are mutually exclusive and should not be used in the same pro­
gram:

• The functions brk and sbrk

• The VAX/VMS system services $EXPREG and $CNTREG

•The VAX-11 Common Run-Time Procedure Library functions
LIB$GETVM and LIB$FREEVM

Table 6-6: Memory Allocation Functions

Name Description #include Page
Module

calloc Allocates and clears an area of memory 101

cfree Deallocates the space allocated by calloc 118

or realloc

free Deallocates the space allocated by malloc 118
or realloc

malloc Allocates the specified number of contig- 131
uous bytes of memory

realloc Changes the size of an area previously al- 141
located by calloc or malloc

92 Chapter 6

6. 7 Miscellaneous Functions
The functions in Table 6-7 perform miscellaneous services, such as
identifying the process's user or terminal, or setting and generating
signals.

Table 6-7: Miscellaneous Functions

Name

ctermid

cuserid

gsignal

longjmp

mktemp

perror

setjmp

signal

sleep

ssignal

tmpnam

Description

Returns the name of the controlling ter­
minal

Returns the name of the user who initi­
ated the controlling process

Raises a specified software signal

Returns to the context saved by setjmp

Creates a file name from a template

Writes (to stderr) the most recent error
encountered by VAXNMS during execu­
tion of a C program

Saves the context of the calling function
for a subsequent longjmp call

Establishes the action to be taken when a
specific signal is raised

Suspends the current process for at least
the specified number of seconds

Establishes the action to be taken when a
specific signal is raised

Creates a character string to take the
place of the file-name argument of other
function calls

Library Functions

#include
Page

Module

stdio 106

stdio 107

signal 124

setjmp 145

131

133

setjmp 145

signal 147

151

signal 152

stdio 158

93

6.8 UNIX Emulation

The functions in Table 6-8 emulate UNIX/C functions of the same
name. The emulation functions can help you convert C programs writ­
ten for the UNIX system to C programs that will run on a V AXNMS
system.

Table 6-8: UNIX Emulation Functions

Name

abort

access

alarm

brk

chdir

ch mod

ch own

ctime

execl

execle

execv

execve

exit,
_exit

ftime

getenv

94

Description

Terminates the process

, Checks a file for a specific access mode

Sends a signal to the process after a speci­
fied number of seconds

Returns the lowest virtual address that is
not used by the program

Changes the default directory

Changes the protection of the named file

Changes the owner user identification
code of the file

Converts the current time to an ASCII
string

Executes images that are external to the
current program

Executes images that are external to the
current program

Executes images that are external to the
current program

Executes images that are external to the
current program

Terminates the current process

Returns the time elapsed since 00:00:00,
January 1, 1970 in seconds and mil­
liseconds

Searches the environment array for the
current process and returns the value as­
sociated with a specified environment

#include
Module

time

timeb

Page

98

98

99

101

102

102

103

106

110

110

110

110

112

120

121

Chapter 6

Table 6-8: (Cont.) UNIX Emulation Functions

Name

getegid

geteuid

getgid

getpid

getuid

kill

localtime

nice

pause

sbrk

setgid

setuid

time

times

um ask

vfork

wait

Description

Returns the group and member number
from the user identification code

Returns the group and member number
from the user identification code

Returns the group and member number
from the user identification code

Returns the current process ID

Returns the group and member number
from the user identification code

Sends a signal to a process

Converts the time in seconds to hours,
minutes, seconds, and so on

Increases or decreases a process priority

Suspends the calling process

Adds a number of bytes to the current
break address and returns the new break
address

Included for compatibility; performs no
operation

Included for compatibility; performs no
operation

Returns the time elapsed since 00:00:00,
January 1, 1970 in seconds

Returns process times

Creates a file-protection mask to be used
whenever a new file is created

Sets up communication channels for
spawning and controlling a child process

Causes the calling process to wait until a
signal is received or until one of its child
processes terminates

Library Functions

#include
Module

Page

123

123

123

122

123

128

129

131

132

101

147

147

157

158

160

160

162

95

6.9 Organization of Libraries and Definition (h) Files

All object code for the functions described in this chapter is in the
SYS$LIBRARY:CRTLIB.OLB library. The files in this library contain
the standard definitions required by the functions.

All text definition files have the file type h. For example, the definition
file stdio.h defines the FILE structure used by the standard 1/0 func­
tions.

Calls to most VAX-11 C library functions are preceded by #include
control lines, which name a specific definition module. The definition
modules required by a function are shown in the synopsis for that
function with an #include control line. For more details on the #include
control line, see Chapter 7.

Some V AX-11 C functions are implemented as preprocessor macros for
compatibility with other C compilers. To determine whether a function
is a true C function or whether it is a macro, see the description of that
function.

6.1 o Interpreting Synopses of Functions

This chapter follows the usual convention for showing the synopses of
functions. A synopsis is a compact representation of the order of a
function's parameter list (if any), the parameters' types, and the type
of the value returned by the function. The representation closely resem­
bles the format of the actual C text for the function and its parameters.

For example, the synopsis of the feof function is:

#include stdio
int feof(file_pointer)
FILE •file_pointer;

The description of feof states that it is implemented as a macro. The
synopsis shows that:

96

• The function requires the definition module stdio.

• The function returns an int. Since it is a macro, feof is not de­
clared. This line in the synopsis indicates only the return value,
not the form of a declaration.

• There is one parameter, file_pointer, which is a pointer to FILE
(FILE is defined in stdio).

Chapter 6

To use feof in a program, you need only write the function call, pre­
ceded at some point by the #include control line, as in:

!• INCLUDE STANDARD DEFINITIONS •/
#include stdio

111 a in ()
{

}

!• DEFINE A FILE-POINTER •!
FILE •infilei

I* UNTIL END OF FILE REACHED •I
1A1hile (lfeaf(infile))

I* SOME FILE OPERATION •I
{

}

The format of synopses only resembles, and does not duplicate, the
format of function definitions. Because some library functions take var­
ying numbers of parameters, synopses have additional conventions not
used in actual C function definitions:

• Optional parameters are enclosed in square brackets ([l).

• An ellipsis (...) is used to show that a given parameter may be
repeated.

• In cases where the type of a parameter may vary, its type is not
shown in the synopsis.

For example:

#include stdio
int printf(format_specification(,output_source, ...])
char •format_specification;

The synopsis for printf shows that the parameter output__source is
optional, may be repeated, and is not always of the same data type.
The remaining information about printf's parameters is in the descrip­
tion of the function.

6.11 Library Functions

The following sections describe each function in the VAX-11 C run­
time library. The functions are listed alphabetically.

Library Functions 97

6.11.1 abort
The function abort executes an illegal instruction that terminates the
process.

•Synopsis

abort()

6.11.2 abs, labs
The function abs returns the absolute value of an integer. The function
fabs returns the absolute value of a floating-point value.

•Synopses

int abs(integer)
int integer;

#include math
double fabs(x)
double x;

6.11.3 access
The function access checks a file to see whether a specified access
mode is allowed. It returns 0 if the access is allowed and -1 if not. The
mode argument is interpreted as shown:

Mode Argument Access Mode

0 Tests to see if the file exists
1 Execute
2 Write (implies delete access)
4 Read

Combinations of access modes are indicated by summing the above
values. For example, 7 indicates RWED.

•Synopsis

int access(name,mode)
char •name;
int mode;

6.11.4 acos
The function acos returns a value in the range 0 to pi, which is the arc
cosine of its radian argument. The value of acos(x) is 0 when lxl>l, and
errno is set to EDOM.

•Synopsis

98

#include math
double acos(x)
double x;

Chapter 6

6.11.5 alarm
The function alarm sends the signal SIGALRM (defined in the signal
module) to the invoking process after the number of seconds indicated
by its argument has elapsed. The maximum delay allowed is
2,147,483,647 seconds. Unless it is caught or ignored, the signal termi­
nates the process.

Successive alarm calls reinitialize the alarm clock. Alarms are not
stacked. Calling alarm with a zero argument cancels any pending
alarms.

The function returns the number of seconds remaining from a previous
alarm request.

Because the clock has a 1-second resolution, the signal may occur up to
1 second early. If the SIGALRM signal is caught, resumption of execu­
tion may be delayed by an arbitrary amount because of scheduling
delays. See also pause, gsignal, ssignal, signal.

•Synopsis

int alarm(seconds)
unsigned seconds;

6.11.6 asin
The function asin returns a value in the range -pi/2 to pi/2, which is the
arc sine of its radian argument. The value of asin(x) is 0 when lxl>l,
and errno is set to EDOM.

•Synopsis

#include math
double asin(x)
double x;

6.11.7 atan
The function atan returns a value in the range -pi/2 to pi/2, which is
the arc tangent of its radian argument.

•Synopsis

#include math
double atan(x)
double x;

Library Functions 99

6.11.8 atan2
The function atan2 returns a value in the range -pi to pi. The returned
value is the arc tangent of x/y, where x and y are the two arguments.

•Synopsis

#include math
double atan2(x,y)
double x,y;

6.11.9 atof, atoi, atol
These functions convert strings of ASCII characters to the appropriate
numeric values. The functions recognize strings in various formats,
depending on the returned data type, as follows:

• The string for atof may contain leading white space (space, hori­
zontal or vertical tab, carriage return, form feed, or newline). This
is followed by an optional sign, then a string of digits (optionally
containing a decimal point), then an optional exponent, composed
of an 'e' or 'E', and then an (optionally signed) integer:

[white-spaces) [+1-Jdigits[.digitsl [elE[+1-JintegerJ

The first unrecognized character ends the string.

• The string for atoi and atol may contain a series of leading tabs
and spaces, then an optional sign, and then a series of digits (with
no decimal point):

[white-spaces) [+1-Jdigits

atoi and atol are synonymous in VAX-11 C.

These functions do not account for overflows resulting from the conver­
sion.

•Synopses

#include math

double atof(nptr)
char •nptr;

int atoi(nptr)
char •nptr;

long atol(nptr)
char •nptr;

6.11.10 atoi
See atof.

100 Chapter 6

6.11.11 atol
See atof.

6.11.12 brk, sbrk
The function brk defines the lowest virtual address that is not used by
the program. The lowest address is specified by the addr argument,
which the function rounds up to the next 512-byte multiple. The
rounded address is called the break. This address (the address of a
char) is returned by the function. An address that is greater than or
equal to the break and less than the stack pointer is considered to be
outside the program's address space. Attempts to reference it will cause
access violations.

sbrk adds the number of bytes specified by its argument to the current
break and returns the new break.

When a program is executed, the break is set to the highest location
defined by the program and data storage areas. Consequently, brk and
sbrk are needed only by programs that have growing data areas.

brk and sbrk return -1 if the program requests too much memory.

•Synopses

char •brk(addr)
char •sbrk(incr)
unsigned incr, addr;

6.11.13 cabs
See hypot.

6.11.14 canoe
The function calloc allocates an area of memory. The number and size
(in bytes) of this area are the arguments. The elements are initialized to
0. If calloc is unable to allocate the space, it returns 0.

•Synopsis

char •calloc(number,size)
unsigned number.size;

6.11.15 ceil
The function ceil returns the smallest integer that is equal to or greater
than its argument.

•Synopsis

#include math
double ceil(x)
double x;

Library Functions 101

6.11.16 cfree
See free.

6.11.17 chdir
The function chdir changes the default directory. The function returns
0 if the directory is successfully changed to the given name, and -1 if
the change fails. The name argument is a NUL-terminated character
string naming a VAX/VMS-style directory.

If chdir is called in USER mode, the default directory change is only
temporary. On image exit, the default is set to whatever it was before
the execution of the image. If you want the change to be effective across
images, you should call chdir from SUPERVISOR, EXECUTIVE, or
KERNEL mode.

•Synopsis

int chdir(name)
char •name;

6.11.18 chmod
The function chmod changes the file protection of a file. Only someone
with a WRITE privilege for the file can change the mode. The function
returns 0 if the change was successful and -1 if unsuccessful.

The first argument is the name of a file. The second argument is a
mode. Modes are constructed by ORing any of the following values:

Value Privilege

0400 OWNER: READ
0200 OWNER: WRITE
0100 OWNER: EXECUTE
0040 GROUP: READ
0020 GROUP: WRITE
0010 GROUP: EXECUTE
0004 WORLD:READ
0002 WORLD:WRITE
0001 WORLD:EXECUTE

When you supply a mode argument of 0, chmod gives the file the user's
default file protection.

The system is always given the same privileges as the owner. A WRITE
privilege also implies a DELETE privilege.

•Synopsis

int chmod(name,mode)
char •name;
unsigned mode;

102 Chapter 6

6.11.19 chown
The function chown changes the owner UIC (user identification code)
of the file.

The first argument to chown, name, is the address of an ASCII file
name. The second and third arguments are the owner and group names,
respectively. chown returns 0 on success and -1 on failure.

• Synopsis

int chown(name,owner,group)
char •name;
unsigned owner.group;

6.11.20 clearerr
The function clearerr resets the error and end-of-file indications for a
file (so that ferror and feof will no longer return a nonzero value).
clearerr is implemented as a macro.

• Synopsis

#include stdio

clearerr(file_pointer)
FILE •file_pointer;

6.11.21 close
The function close closes the file associated with a file descriptor. Note
that all files are closed on image exit. All buffered data is written to the
file if it was opened for writing or update.

The function returns 0 if the file is properly closed. It returns -1 if the
file descriptor is undefined or if an error occurs while the file is being
closed (for example, if the buffered data cannot be written out).

•Synopsis

int close(file_descriptor)
int file_descriptor;

6.11.22 cos
The function cos returns the cosine of its radian argument.

•Synopsis

#include math
double cos(x)
double x;

Library Functions 103

6.11.23 cosh
The function cosh returns the hyperbolic cosine of its argument.

•Synopsis

#include math
double cosh(x)
double x;

6.11.24 creat
The function creat creates a new file. The created file has the specifica­
tion given by the name argument. If the file already exists, a version
number one greater than any existing version is assigned to the file.

If the file did not previously exist, it is given the file protection that
results from ANDing the mode argument with the complement of the
current protection mask (see umask). (For details on mode arguments,
see chmod.) The new file is opened for reading and writing, and its file
descriptor is returned. (See also open, close, read, write, and lseek on
file descriptors.)

The function returns an integer file descriptor. It returns -1 to indicate
protection violations, undefined directories, and conflicting file attrib­
utes.

•Synopsis

int creat(name,mode[,file_attribute, ...])
char •name, •file_attribute;
unsigned mode;

name
A NUL-terminated string containing any valid VAXNMS file speci­
fication.

mode
An unsigned value that specifies the file-protection mode to be
ANDed with the complement of the current protection mode.

file-attribute
A character string of the form:

"keyword = value, ... "

where keyword is an RMS (Record Management Services) field in
the file access block (FAB) or record access block (RAB), and value
is valid for assignment to that field. Some fields permit you to spec­
ify more than one value. In these cases, the values are separated by
commas.

The set of valid keywords is listed in Table 6-9.

104 Chapter 6

Table 6-9: File Access Block and Record Access
Block Keywords

Keyword

"alq = n"

"bis= n"

"deq = n"

"dna = filespec"

"fop.= val, val, ... "

umbc = n"

"mbf = n"

"mrs = nn

"rat = val, val..."

"rfm =val"

Library Functions

Value

decimal

decimal

decimal

string

ctg
cbt
tef
cif
sup
scf
spl
tmd
tmp
nef

decimal

decimal

decimal

er
blk
ftn
pm

fix
stm
stmlf
stmcr

var
vfc
udf

Description

Allocation quantity

Block size

Default extension quantity

Default filename string

File processing options

Contiguous
Contiguous-best-try
Truncate at end-of-file
Create if nonexistent
Supersede
Submit as command file on close
Spool to system printer on close
Temporary delete
Temporary (no file directory)
Not end-of-file

Multiblock count

Multibuffer count

Maximum record size

Record attributes

Carriage-return control
Allow records to span block boundaries
FORTRAN print control
Print file format

Record format

Fixed-length record format
RMS-11 stream record format
Stream format with line-feed terminator
Stream format with carriage-return ter­
minator
Variable-length record format
Variable-length record with fixed control
Undefined

105

6.11.25 ctermid
The function ctermid returns a character string giving the equivalence
string of SYS$COMMAND. This is the name of the controlling termi­
nal. The function takes a single argument, which must be a pointer to
char. If this argument is null, the file name is stored internally and is
overwritten by the next ctermid call. Otherwise, the file name is stored
beginning at the location pointed to by the argument.

•Synopsis

#include stdio
char •ctermid(string)
char •string;

6.11.26 ctime
ctime converts a time in seconds, since 00:00:00 January 1, 1970, to an
ASCII string of the form: wkd mmm dd hh:mm:ss 19yy\n\O.

The argument to ctime is a pointer to the time value to be converted.
ctime returns a pointer to the 26-character ASCII string.

Successive calls to ctime overwrite any previous time values.

•Synopsis

#include time
char •clime (bintim)
long •bintim

106 Chapter 6

6.11.27 cuserid
The function cuserid returns a pointer to a character string containing
the name of the user who initiated the current process. If the argument
is null, the user name is stored internally. If the argument is not null, it
points to a storage area of length L_cuserid (defined by stdio), and the
name is written into that storage. If the user name is null, the function
returns a pointer to a null string.

• Synopsis

#include stdio
char •cuserid(string)
char •string;

•Example

Examples 6-1 and 6-2 show two ways to return the user ID with the
cuserid function.

I* WRITE OUT cuserid VALUE */
#include stdio

1r1a in ()
{

static char strina[L_cuseridJ = "";
Printf("Initiatins user: /.,s\n" 1cuserid(strins));

}

Example 6-1: Calling cuserid with an Argument

If the user running the program is named ZENO, the program writes
the following to stdout:

Initiatins user: ZENO

The same output results from the program in Example 6-2.

I* WRITE OUT cuserid VALUE */
#include stdio
111 a in ()
{

}

I• 0 INDICATES NULL ARGUMENT */
Printf(11 Initiatins user: %s\n 11 tcuserid(Q));

Example 6-2: Calling cuserid with the Argument 0

Library Functions 107

6.11.28 delete
The function delete deletes the specified file. The argument is a charac­
ter string that gives a VAX/VMS file specification. The usual defaults
and logical name translation are applied to the file specification.

delete returns 0 if it is successful and -1 if it fails.

•Synopsis

int delete(file_specification)
char •file_specification;

6.11.29 dup, dup2
Given a file descriptor returned by open, creat, or pipe, these functions
allocate a new descriptor that refers to the original file. Both return the
new file descriptor. dup2 causes its second argument to refer to the
same file as its first argument.

Both functions return -1 if their arguments are invalid. The argument
file_descriptor_l is invalid if it does not describe an open file;
file_descriptor-2 is invalid if the new descriptor cannot be allocated.

•Synopses

int dup(file_descriptor)
int file_descriptor;

int dup2(file_descriptor_ 1,file_descriptor _2)
int file_descriptor _ 1,file_descriptor _2;

6.11.30 ecvt, fcvt, gcvt
Each of these functions converts its argument, a double value, to a
NUL-terminated string of ASCII digits and returns the address of the
string. In all three functions, value is the double-precision value to be
converted, and ndigit is the number of ASCII digits (not including the
NUL) to be used in the converted string. Calls to these functions
overwrite any existing string.

ecvt and fcvt return, via the argument decpt, the position of the deci­
mal point relative to the first character in thjl returned string. A nega­
tive int value means that the decimal point is to the left of the returned
digits, and a zero means that the decimal point is immediately to the
left of the first digit. If ecvt and fcvt are given a negative value to
convert, then the integer pointed to by *sign is set to be nonzero.
Otherwise, the integer is set to be zero.

gcvt places the converted string in buf and returns the address of buf. If
possible, gcvt produces ndigit significant digits in FORTRAN-F for­
mat, or if not possible, in E-format. Trailing zeros may be suppressed.

108 Chapter 6

•Synopses

char •ecvt(value,ndigit,decpt,sign)
double value;
int ndigit, •decpt,.sign;

char •fcvt(value,ndigit,decpt,sign)
double value;
int ndigit,.decpt,.sign;

char •gcvt(value,ndigit,buf)
double value;
char •but;
int ndigit;

•Example

Example 6-3 shows a program that uses the ecvt function to convert a
double value called val. The program then prints the information
returned by ecvt.

!• ECVT EXAMPLE */

#include stdio
r11a in ()

{

}

I• VALUE TO BE CONVERTED */
double 1.ial;

I• VARIABLES FOR SIGN AND DECIMAL PLACE */

int sisr,.Pointi

I• ARRAY FOR CONVERTED STRING •I
static char strins[20Ji

val = -3.1287830e-10i

Printf("orisinal value: 'X.e\n",1.ialli
strcP\'(strins1ec•.1t(•.1al ,5,fi,point ,fi,sisn));
Printf("cont.1erted strins: 'X,s\n" .strins);
if (sisn)

P r i n t f (11 1.1 a 1 u e i s n e sat i l.J e \ n 11) ;

else Printf("•.1alue is Positit.1e\n")j
Printf("decirr1al Point at 'X.d\n" 1Point);

The output of the program is:

orisinal value: -3.128783e-10
converted strins: 31288
value is nesative
decimal Point at -8

Example 6-3: The ecvt Function

Library Functions 109

6.11.31 execl, execv, execle, execve
The functions execl and execv execute the image in the file named by
their first argument. Only V AX-11 C images can be executed by these
functions and these images must not be linked with BASE= 0. execl's
arguments consist of the file name and character strings giving all
arguments for the image. The last argument must be 0, to indicate the
end of the list. execv's arguments consist of the name of the file and an
array of strings that give the arguments for the image. The last element
of the array must be 0. By convention, the first string (argO or argv[Ol)
in both cases is the same as the name of the file.

Any open files remain open across execv or execl calls. Signals that are
ignored in the calling image are also ignored after calls to these func­
tions, but signals for which actions were specified in the calling image
revert to their default handling.

There is no return from a successful execv or execl call, since the
calling image is lost. The functions return -1 to indicate a variety of
errors, including:

• The file cannot be found.

• The file contents are not executable.

• Nobody (not system, group, owner, or world) has EXECUTE pri­
vilege for the file.

• The image requires too much memory.

When a V AX-11 C program executes, it is called as follows by the run­
time system:

111ain (arsc 1ars•.11en<.1P)
int arsc;
char •arsv[J 1•envp[J;
{

}

The arguments argc and argv are the argument count and array of
argument strings, respectively. The argument envp is an array of
strings that specify the program's environment. Each string in envp has
the form:

name= value

where name is either HOME, TERM, PATH, or USER, and value is a
NUL-terminated value. The last element of envp must be the null

110 Chapter 6

pointer (0). When the run-time system executes the program, it places
a copy of the current environment vector in the external variable envi­
ron. This variable is used by execl and execv to pass the environment
to the new program. The meanings of the names are as follows:

• HOME is the user's login directory, that is, the translation of the
logical name SYS$LOGIN. The associated value is a VAXNMS­
style directory specification. For example:

HDME=DBl:EZENOJ

• TERM is the type of terminal being used. The associated values
are as follows:

la3ll
la36
la38
la120
"'t05
l.I t52
1,1t55

1,1tlxx-BO
1,1tlxx-l32

ft1-ft8
unf;no1.in

undefined

The values vtlxx-80 and vtlxx-132 indicate any of the VTlOO­
series terminals in 80- or 132-column mode, respectively. The val­
ues ftl through ft8 are for user-designated foreign terminals. A
value of unknown indicates that the terminal is not recognized by
VAXNMS; undefined indicates that the terminal is recognized by
VAXNMS but not by VAX-11 C. The null string indicates that
there is no terminal associated with the process.

• PATH is the default device and directory. For example, after the
DCL command:

$SET DEFAULT WRK$:[ZENO.C.SRCJ

the path would be:

PATH = WRK$:EZENO,C,SRCJ

• USER is the name of the user who initiated the current process, as
returned by cuserid. For example, if the process is initiated by
user ZENO, the user environment string is:

USER=ZEND

The strings in envp can be retrieved by the function getenv, which
returns the value associated with the specified name, for example,
PATH (see getenv).

Library Functions 111

The functions execve and execle pass the environment explicitly.

•Synopses

int execl(name,arg0,arg1 ,. .. argn,O)
char •name, •argO, ... •argn;

int execv(name,argv)
char •name, •argv[];

int execle(name,arg0,arg1 ,. .. argn,O,envp)
char •name, •argO, ... •argn,•envp[];

int execve(name,argv,envp)
char •name, •argv[],•envp[];

6.11.32 execle
See execl.

6.11.33 execv
See execl.

6.11.34 execve
See execl.

6.11.35 exit, _exit
The functions exit and _exit terminate the process from which they
are called. They return the specified status to the parent process, if any.
If the program is invoked by DCL, the status is interpreted by DCL and
a message is displayed. The function exit flushes and closes all open
files before performing the exit; _exit terminates the process immedi­
ately, without these clean-up actions.

•Synopsis

exit(status)
int status;

_exit(status)
int status;

6.11.36 exp
The function exp returns the base e raised to the power of the argu­
ment. If an overflow occurs, exp returns the largest possible floating­
point value and sets errno to ERANGE.

•Synopsis

#include math
double exp(x)
double x;

112 Chapter 6

6.11.37 fabs
See abs.

6.11.38 fclose
The function fclose closes a file by flushing any buffers associated with
the file control block and freeing the file control block previously associ­
ated with the file pointer.

When a program terminates normally, fclose is called automatically for
all open files. fclose returns 0 on success. If the buffered data cannot be
written to the file, or if the file control block is not associated with an
open file, fclose returns EOF (a preprocessor constant defined in the
#include module stdio).

•Synopsis

#include stdio
int fclose(file_pointer)
FILE •file_pointer;

6.11.39 fcvt
See ecvt.

6.11.40 fdopen
The fdopen function associates a file pointer with a file descriptor
returned by an open, creat, dup, dup2, or pipe function. This allows
you to access a file originally opened by one of these UNIX I/O func­
tions with standard 1/0 functions. (Ordinarily, a file can be accessed by
either a file descriptor or by a file pointer, but not both, depending on
the way it is opened. See Section 6.1.)

The first argument to fdopen is the file descriptor returned by open,
creat, dup, dup2, or pipe. The second argument, type, is one of the
character strings "r", "w", "a", "r+", "w+", or "a+", for read, write, ap­
pend, read update, write update, or append update, respectively. (See
also fopen.) The type must agree with the opened file's access mode (0
= reading, 1 = writing, 2 = reading and writing).

On success, fdopen returns a nonzero value which is the file descriptor.
On error, fdopen returns 0.

•Synopsis

FILE •fdopen(file_descriptor,type)
int file_descriptor;
char •type;

•Example

Example 6-4 shows a program that creates a file with variable-length
records (rfm =var) and the carriage-return attribute (rat= er).

Library Functions 113

The program uses creat to create and open the file and fdopen to
associate the file descriptor with a file pointer. fdopen changes the way
the file can subsequently be referenced. After the fdopen call, the pro­
gram references the file by file pointer to write records (fwrite) and
close the file (fclose).

#include stdio
#define ERROR 0
#define ERROR! -1
#define BUFFSIZE 132

I* A STREAM FILE USING A FILE DESCRIPTOR
AND A FILE POINTER */

rna in (l
{

char buffer[BUFFSIZEJ;
int fildes;
FILE *fp;

if ((fildes = creat("data.dat"tOt"rat=cr"•
"rfrn=uar"ll == ERRORll

Perror("FILE3: create() failed\n"l,
exit(2);

if ((fp = fdoPen(fildest"•,.i")) ==NULL)
Perrorl"FILE3: fdoPen(l failed\n"l,
exit CZ);

i.1hile(fsetslbuffertBUFFSIZEtstdinl I= NULLl
{

if (fwrite(buffer tsizeof(*bufferl,
strlen(bufferltfP) ==ERROR)

Perror("FILE3: fwrite() failed\n")'
exitC2l;

}

}

if (fclose(fp) == EOFl
PerrorC"FILE3: fclose(l failed\n"l,
exit(2l;

Example 6-4: The fdopen Function

6.11.41 feof
The function feof tests a file to see if the end-of-file has been reached. If
so, feof returns a nonzero integer; if not, it returns 0. feof is imple­
mented as a macro.

•Synopsis

#include stdio
int feof(file_pointer)
FILE •file_pointer;

114 Chapter 6

6.11.42 ferror
The function ferror returns a nonzero integer if an error has occurred
while reading or writing a file. A call to the function continues to return
this indication until the file is closed or until clearerr is called. ferror
is implemented as a macro.

•Synopsis

#include stdio
int ferror(file_pointer)
FILE •file_pointer;

6.11.43 fflush
The function fflush writes out any buffered information for the speci­
fied file. (Note that output files are normally buffered if and only if
they are not directed to a terminal, but stderr is not buffered unless
setbuf is used.)

fflush returns 0 when it is successful. If the buffered data cannot be
written to the file, or if the file control block is not associated with an
output file, fflush returns EOF (a preprocessor constant defined in the
#include module stdio).

•Synopsis

#include stdio
int fflush(file_pointer)
FILE •file_pointer;

6.11.44 fgetc
See getc.

6.11.45 fgetname
See getname.

6.11.46 fgets
See gets.

6. 11.4 7 fileno
The function fileno returns an integer file descriptor that identifies the
specified file. fileno is implemented as a macro. See also open, lseek,
creat, read, and write.

•Synopsis

#include stdio
int fileno(file_pointer)
FILE •file_pointer;

Library Functions 115

6.11.48 floor
The function floor returns (as a double) the largest integer that is less
than or equal to its argument.

•Synopsis
#include math
double floor(x)
double x;

6.11.49 fopen
The function fopen opens a file by returning the address of a FILE
structure, denoting a file control block. The file control block may be
freed with the fclose function, or by default on normal program termi­
nation.

The first argument to fopen is a character string containing a valid
V AXNMS file specification. The second argument, access_mode, is
one of the character strings "r", "w", "a", "r+", "w+", or "a+", for read,
write, append, read update, write update, or append update, respec­
tively.

The access modes have the following effects:

• "r" opens an existing file for reading.

• "w" opens a file for writing and creates a new file. If the file already
exists, it creates a new file with the same name and a higher
version number.

• "a" opens the file for append access. An existing file is positioned
at end-of-file, and data is written there. If the file does not exist, it
is created.

The update access modes allow a file to be opened for both reading and
writing. When used with existing files, "r+" and "a+" differ only in the
initial positioning within the file. The modes are as follows:

• "r+" opens an existing file for read update access. It is opened for
reading, positioned initially at beginning-of-file, but writing is also
allowed.

• "w+" opens a new file for write update access.

• "a+" opens a file for append update access. The file is positioned at
end-of-file (writing) initially. If the file does not exist, it is created.

116 Chapter 6

The function returns NULL (the null pointer value defined in the
#include module stdio) to signal errors, including:

• File protection violations

• An attempt to open a nonexistent file for read access

• Failure to open the specified file

•Synopsis

#include stdio
FILE •fopen(file_spec,access_mode)
char •file_spec, •access_mode;

6.11.50 fprintf
See printf.

6.11.51 fputc
See putc.

6.11.52 fputs
See puts.

6.11.53 tread
The function fread reads a specified number of items from the file. The
reading begins at the current location in the file. The items read are
placed in storage beginning at the location given by the first argument.
The size of an item in bytes must also be specified.

The function returns the number of items actually read. If fread en­
counters the end-of-file or an error, it returns 0 (not EOF).

•Synopsis

#include stdio
int fread(pointer,size_of_item,num ber _items, file_pointer)
int number _items,size_of_item;
FILE •file_pointer;

The first argument, pointer, points to the items being read. The second
argument, size_of_item, is the size of the items being read.

Library Functions 117

6.11.54 free, cfree
The functions free and cfree make available for reallocation the area
allocated by a previous calloc, malloc, or realloc call. The argument is
the address returned by a previous call to malloc, calloc, or realloc.
The contents of the area are unchanged. The functions return 0 if the
area is successfully freed, -1 if an error occurs. For compatibility with
other C implementations, you should use free with malloc and cfree
with calloc.

•Synopsis

int free(pointer)
char •pointer;

int cfree(pointer)
char •pointer;

6.11.55 freopen
The function freopen substitutes the file named by a file specification
for the open file addressed by a file pointer. The latter file is closed. The
function is typically used to associate one of the predefined names
stdin, stdout, or stderr with a file.

The first argument is a pointer to a string that contains a valid
VAXNMS file specification. After the function call, the given file
pointer is associated with this file.

The second argument, access_mode, is one of the character strings 11r 11 ,

"w", "a", "r+", "w+", or "a+", for read, write, append, read update, write
update, or append update, respectively. (See also fopen.)

The third argument is a pointer to a FILE structure, denoting a cur­
rently open file. After the function call, the open file is closed.

If the attempt to reopen fails (that is, if the file specified by the first
argument cannot be accessed), the function returns the null pointer
value. Otherwise, the function returns the address of the reopened file
control block.

•Synopsis

#include stdio
FILE •freopen(file_spec,access_mode,file_pointer)
char •file_spec, •access_mode;
FILE •file_pointer;

118 Chapter 6

6.11.56 frexp
The function frexp returns the mantissa of a double value. The
mantissa is a double and its magnitude is less than one. The second
argument is a pointer to an int, to which frexp returns the exponent.

•Synopsis

#include math
double frexp(value,eptr)
double value;
int •eptr;

6.11.57 fscanf
See scanf.

6.11.58 fseek
The function fseek positions the file to the specified byte offset in the
file. It returns EOF(a preprocessor constant defined in the #include
module stdio) for improper seeks, 0 for successful seeks.

•Synopsis

#include stdio
int fseek(file_poi nter ,offset,direction)
FILE •file_pointer;
int offset, direction;

Direction is an integer indicating whether the offset is measured from
the current read or write address (1), from the beginning of the file (O),
or from the end-of-file (2).

In general, fseek should always be directed to an absolute position
returned by ftell. With stream files, the direction argument can be 0, 1,
or 2. With record files, an fseek to a position that was not returned by
ftell causes unpredictable behavior. See also ftell.

6.11.59 flell
The function ftell returns the current byte offset to the specified stream
file. The offset is measured from the beginning of the file. With record
files, ftell returns the position of the next record, not the current byte
offset.

This function is useful only for handing an offset to fseek, to reposition
the file to where it was when ftell was called. An error causes -1 to be
returned.

•Synopsis

#include stdio
int ftell(file_pointer)
FILE •file_pointer;

Library Functions 119

6.11.60 ftime
The function ftime returns the elapsed time since 00:00:00, January 1,
1970, in a timeb structure. The timeb structure has the members
time_t time (which gives the time in seconds), unsigned short millitm
(which gives the fractional time in milliseconds), short timezone, and
short dstflag. The timezone and dstflag members are always 0.

•Synopsis

#include timeb
ftime (time_pointer)
struct timeb •time_pointer;

6.11.61 fwrite
The function fwrite writes a specified number of items to the file. The
writing begins at the current location in the file. The size of an item in
bytes must also be given.

The function returns the number of items actually written. It returns 0
if there is an error.

•Synopsis

#include stdio
int fwrite(pointer ,size_of_item,nu mber _items,file_pointer)
int number_items, size_of_item;
FILE •file_pointer;

The first argument points to the items being written. The second argu­
ment is the size in bytes of the items being written.

6.11.62 gcvt
See ecvt.

6.11.63 getc, fgetc, getchar, getw
The function getc returns the next character as an int from a specified
file. The file is left positioned after the returned character, and the next
getc call takes the character from that position. getc is implemented as
a macro. fgetc is identical to getc, but it generates an actual function
call, not a macro substitution. getchar is a macro identical to
getc(stdin).

getw returns the next four characters from the specified input file as an
int. No conversion is performed. If end-of-file is encountered during the
retrieval of any of the four characters, then EOF (a preprocessor con­
stant defined in the #include module stdio) is returned and all four
characters are lost.

120 Chapter 6

All the functions return EOF on end-of-file or error, but since EOF is a
perfectly good integer, feof and ferrol" should be used to check the
success of getw.

•Synopses

#include stdio

int getc(file_pointer)
FILE •file_pointer;

int fgetc(file_pointer)
FILE •file_pointer;

int getchar()

int getw(file_pointer)
FILE •file_pointer;

6.11.64 getchar
See getc.

6.11.65 getegid
See getuid.

6.11.66 getenv
The function getenv searches the environment array for the current
process and returns the value associated with a specified environment
name.

The names can be one of the following:

• HOME - The user's login directory.

• TERM - The type of terminal being used. See execl.

• PATH - The default device and directory.

• USER - The name of the user who initiated the process.

•Synopsis

char •getenv(name)
char •name;

•Example
cfunc()
{

Print f ("Te ·r rn in a 1 t Y Pe: 'Y.. s \ n" , II et en v ("TERM")) ;
}

If the terminal in use is a DIGITAL VTlOO in 132-column mode, the
function cfunc writes the following to stdout:

Terrninal tYPe: vtl00-132

Library Functions 121

6.11.67 geteuid
See getuid.

6.11.68 getgid
See getuid.

6.11.69 getname, fgetname
These functions return the VAXNMS file specification associated with
an integer file descriptor (getname) or file pointer (fgetname).

Both functions place the file specification in a buffer and return the
buffer's address. The buffer should be an array large enough to contain
a fully qualified file specification (the maximum length is 128 charac­
ters). If an error occurs, getname returns -1, and fgetname returns 0.

•Synopses

char •getname(file_descriptor,buffer)
int lile_descriptor;
char •buffer;

#include stdio
char •fgetname(file_pointer,buffer)
FILE •file_pointer;
char •buffer;

6.11. 70 getpid
The function getpid returns the process ID of the current process.

•Synopsis

int getpid()

122 Chapter 6

6.11. 71 gets, fgets
The function gets reads a line from the file stdin. The newline charac­
ter ('\n') that ends the line is replaced by the function with an ASCII
NUL character ('\O'). The function returns its argument, which is a
pointer to a character string containing the acquired line. If an error
occurs or if end-of-file is encountered before a newline is encountered,
the function returns the null pointer value.

The function fgets reads a line from a specified file, up to a specified
maximum number of characters or up to and including the newline
character, whichever comes first. The function terminates the line with
a NUL ('\0') character. Note that, unlike gets, fgets places the newline
that terminates the input record into the user buffer if it fits. On end­
of-file or error, the function returns the NULL pointer value (defined in
the #include module stdio). Otherwise, it returns the address of the
first character in the line.

•Synopses

#include stdio
char •gets(string)
char •string;

char •fgets(string,maxline,file_pointer)
char •string;
int maxline;
FILE •file_pointer;

6.11. 72 getuid, getgid, geteuid, getegid
These functions return, in V AXNMS terms, group and member num­
bers from the user identification code (UIC). (For example, ifthe UIC is
[313,031], 313 is the group number, and 031 is the member number.)

In VAX-11 C, there is no difference between getgid and getegid. Both
return the group number from the current UIC. Similarly, getuid and
geteuid both return the member number from the current UIC.

•Synopses

unsigned getgid()
unsigned getegid()
unsigned getuid()
unsigned geteuid()

6.11.73 getw
See getc.

Library Functions 123

6.11. 7 4 gsignal
The function gsignal raises (generates) a specified software signal.
Raising a signal causes the action established by the ssignal function
to be taken. ·

The argument to gsignal, sig, identifies the signal to be raised. The
result of a gsignal call is one of the following:

• If gsignal specifies a sig argument that is outside the range de­
fined in the signal module, then gsignal returns 0, and errno is set
to EINVAL.

• If ssignal establishes SIG_DFL (default action) for the signal,
then gsignal does not return. The image is exited with the
VAX/VMS error code that corresponds to the signal.

• If ssignal establishes SIG-1GN (ignore signal) as the action for
the signal, then gsignal returns its argument, sig.

• Otherwise, ssignal must have established an action function for
the signal. That function is called, and that function's return
value is returned by gsignal. ·

•Synopsis

#include signal
int gsignal(sig)
int sig;

6.11. 75 hypot, cabs
The functions hypot and cabs return:

sqrt(x•x + y•y)

•Synopsis
#include math

double hypot(x,y)
double x,y;

double cabs(z)
struct

I
double x,y;
I z;

124 Chapter 6

6.11. 76 isalnum
The macro isalnum returns a nonzero integer if its argument is one of
the alphanumeric ASCII characters. 1 Otherwise, it returns 0.

•Synopsis

#include ctype
int isalnum(character)
char character;

6.11. 77 isalpha
The macro isalpha returns a nonzero integer if its argument is an
alphabetic ASCII character. 1 Otherwise, it returns 0.

•Synopsis

#include ctype
int isalpha(character)
char character;

6.11. 78 isascii
The macro isascii returns a nonzero integer if its argument 1s any
ASCII character. 1 Otherwise, it returns 0.

•Synopsis

#include ctype
int isascii(character)
char character;

6.11. 79 isatty
The function isatty returns 1 ifthe specified file descriptor is associated
with a terminal, and 0 if it is not. A return value of -1 indicates an
error, for example, the file descriptor is not associated with an open file.

•Synopsis

int isatty(file_descriptor)
int file_descriptor;

1. Refer to Appendix G.

Library Functions 125

6.11.80 iscntrl
The macro iscntrl returns a nonzero integer if its argument is an ASCII
DEL character (177 octal) or any nonprinting ASCII character (code
less than 40 octal) .1 Otherwise, it returns 0.

•Synopsis

#include ctype
int iscntrl(character)
char character;

6.11.81 isdigit
The macro isdigit returns a nonzero integer if its argument is a decimal
digit character (0-9). 1 Otherwise, it returns 0.

• Synopsis

#include ctype
int isdigit(character)
char character;

6.11.82 isgraph
The macro isgraph returns a nonzero integer if its argument is a
graphic ASCII character. 1 Otherwise, it returns 0. Graphic ASCII char­
acters are those with octal codes greater than or equal to 41 (' ! ') and
less than or equal to 176 ('- '). In other words, they comprise the set of
printable characters minus the space.

•Synopsis

#include ctype
int isgraph(character)
char character;

6.11.83 islower
The macro islower returns a nonzero integer if its argument is a lower­
case alphabetic ASCII character .1 Otherwise, it returns 0.

• Synopsis

#include ctype
int islower(character)
char character;

1. Refer to Appendix G.

126 Chapter 6

6.11.84 isprint
The macro isprint returns a nonzero integer if its argument is any
ASCII printing character (ASCII codes from 40 octal to 176 octal).1

Otherwise, it returns 0.

•Synopsis

#include ctype
int isprint(character)
char character;

6.11.85 ispunct
The macro ispunct returns a nonzero integer if its argument is an
ASCII punctuation character - that is, if it is nonalphanumeric and
greater than 40 octal. 1 Otherwise, it returns 0.

•Synopsis

#include ctype
int ispunct(character)
char character;

6.11.86 isspace
The macro isspace returns a nonzero integer if its argument is
"whitespace", that is, it is an ASCII space, tab (horizontal or
vertical), carriage-return, form-feed, or newline character.1 Otherwise,
it returns 0.

•Synopsis

#include ctype
int isspace(character)
char character;

6.11.87 isupper
The macro isupper returns a nonzero integer if its argument is an
uppercase alphabetic ASCII character. 1 Otherwise, it returns 0.

•Synopsis

#include ctype
int isupper(character)
char character;

1. Refer to Appendix G.

Library Functions 127

6.11.88 isxdigit
The macro isxdigit returns a nonzero integer if its argument is a hexa­
decimal digit (0-9, A-F, or a-f). 1 Otherwise, it returns 0.

•Synopsis

#include ctype
int isxdigit(character)
char character;

6.11.89 kill
The function kill sends a signal to the process specified by a process ID.
Unless the user has system privileges, the sending and receiving proc­
esses must have the same UIC. The function returns 0 if the kill was
successfully queued. It returns -1 to indicate errors, including:

• The receiving process has a different UIC and the user is not a
SYSTEM user.

• The receiving process does not exist.

See also ssignal, gsignal, getpid.

•Synopsis

int kill(pid,sig)
int pid,sig;

6.11.90 ldexp
The function ldexp returns its first argument multiplied by 2 raised to
the power of its second argument, that is, x(2e).

If underflow occurs, ldexp returns 0, and if overflow occurs, it returns
the largest possible value of the appropriate sign. In both cases, ermo is
set to ERANGE.

•Synopsis

#include math

double ldexp(x,e)
double x;
int e;

1. Refer to Appendix G.

128 Chapter 6

6.11.91 localtime
The localtime function converts a time (expressed as the number of
seconds elapsed since 00:00:00 January 1, 1970) into hours, minutes,
seconds, and so on. The converted time value is placed in a time struc­
ture defined in the time #include module with the tag tm. The follow­
ing member names are offsets into the structure. They are integers:

• tm_hour hours (24)

• tm_min

• tm__sec

• tm_isdst

• tm_mon

• tm_mday

• tm_year

• tm_wday

• tm_yday

minutes

time in seconds

daylight savings time (always 0)

month (0-11)

day of the month (1-31)

year (last two digits)

day of the week (0-6)

day of the year (0-365)

The argument to localtime is a pointer to the time in seconds relative
to 00:00:00 January 1, 1970. This time can be generated by the time
function or supplied by the user. localtime returns a pointer to the time
structure. Successive calls to localtime overwrite the structure.

•Synopsis

#include time
struct tm •localtime(bintim)
int •bintim;

6.11.92 log, logl O
The function log returns the natural (base e) logarithm of the argu­
ment, which must be of type double. (The returned value is also dou­
ble.) loglO returns the double base 10 logarithm of its double argu­
ment. If the argument x is zero or negative, the functions return 0 and
set errno to EDOM.

•Synopses

#include math

double log(x)
double x;

double log 1 O(x)
double x;

6.11.93 longjmp
See setjmp.

Library Functions 129

6.11.94 lseek
The function lseek positions a file to an arbitrary byte position and
returns the new position as an int. The function sets the new position
relative either to the beginning of the file (direction=O), the current
position (direction=l), or the end of the file (direction=2). The file
descriptor is an integer returned by open, creat, dup, or dup2. The
offset argument and the return value are measured in bytes. See also
open, creat, dup, dup2, and fseek.

The function returns -1 if the file descriptor is undefined or if you
attempt to seek before the beginning of the file.

lseek can position a stream file on any byte offset. lseek can position a
record file only on record boundaries. The available standard 1/0 func­
tions always position a record file at its first byte, at the end-of-file, or,
in the case of fwrite and fread, on the record boundary following the
last record that was written or read. Therefore, the arguments given to
lseek must specify either the beginning or end of the file, a zero offset
from the current position (an arbitrary record boundary), or the posi­
tion returned by a previous, valid lseek call.

CAUTION

If you seek beyond the end-of-file, and then write to
the file, the function creates a "hole" by filling the
skipped bytes with zeros.

In general, lseek should always be directed to abso­
lute positions returned by ftell. With stream files, the
direction argument can be 0, 1, or 2. With record files,
an lseek to a position that was not returned by ftell
causes unpredictable behavior.

•Synopsis

int lseek(file_descriptor,offset,direction)
int offset,file_descriptor,direction;

The following call obtains the position of the next record in an RMS
record file (which has the descriptor filel):

I* 0 RELATIVE TO CURRENT POSITION */
POS = lseef;(filel10tl)

The return value in pos can then be used later in the program (perhaps
after the file has been repositioned by write or read) to return to this
position, as in:

I* POSITION RELATIVE TO BEGINNING */
ne1,1pos = lseef((filel 1Pos 10);

130 Chapter 6

6.11.95 malloc
The function malloc allocates a contiguous area of memory whose size
in bytes is supplied as an argument. It returns the address of the first
byte, which is aligned on a longword boundary. malloc returns 0 if it is
unable to allocate enough memory.

•Synopsis

char •malloc(size)
unsigned size;

6.11.96 mktemp
The mktemp function creates a unique file name from a template. You
supply the template in the form, "namXXXXXX". The six trailing X's
are replaced by a unique series of characters. You may supply the first
three characters (nam).

The argument to mktemp is a pointer to the template. mktemp returns
a pointer to the file name it creates. If a unique file name cannot be
created, mktemp returns a pointer to an empty string (\0).

•Synopsis

char •mktemp(template)
char •template;

6.11.97 modf
The function modf accepts two arguments, a double value and a
pointer to an int. It returns the positive fractional part of its first
argument and assigns the address of the integral part to its second
argument.

•Synopsis

#include math

double modf(value,iptr)
double value,•iptr;

6.11.98 nice
The function nice increases or decreases process priority by the amount
of the argument. A positive argument decreases priority, and a negative
argument increases priority. The resulting priority cannot be less than
one or greater than the process's base priority. nice returns 0 on success
and -1 on failure.

When a process forks, the resulting child inherits the parent's priority.

•Synopsis

nice(increment)
int increment;

Library Functions 131

6.11.99 open
The function open opens a file by file specification, either for reading
(mode = O), writing (mode = 1), or update (both reading and writing,
mode = 2). It returns an integer file descriptor that is used by read,
write, lseek, dup, dup2, and close.

The function positions the file at its beginning (byte O). It returns -1 if
the file does not exist, if it is protected against reading or writing, or if
the file, for any other reason, cannot be opened.

See also creat, read, write, close, dup, dup2, and lseek.

NOTE
If you intend to do random writing to a stream file, the file
must be opened for update (mode= 2).

•Synopsis

int open(name,mode)
char •name;
int mode;

The argument, name, is a NUL-terminated character string containing
a valid V AXNMS file specification.

6.11.100 pause
The function pause causes its calling process to stop (hibernate) until
the process receives a signal. Control is not returned to the process that
called pause, except after a SYS$W AKE system service call. The proc­
ess may be reawakened by kill or alarm.
See also signal.

•Synopsis
pause()

132 Chapter 6

6.11.101 perror
The function perror writes a short error message to stderr describing
the last error encountered during a call to the C run-time library from a
C program. It writes out its argument (a user-supplied prefix to the
error message), followed by a colon, followed by the message itself,
followed by a newline. The argument typically is the name of the pro­
gram that incurred the error.

The message written by perror is taken from the standard message
string vector sys_errlist; sys_errlist can be indexed by the value of
the external variable errno.

The variable sys__nerr contains the current number of messages in
sys_:_errlist.

•Synopsis

extern char •sys_errlist[];
extern int sys_nerr;

perror(string)
char •string;

6.11. 102 pipe
The pipe function allows two processes, which are spawned by subse­
quent vfork calls, to exchange data with read and write calls. It re­
turns 0 if the pipe was created and -1 if the attempt to create the pipe
failed.

After a successful return, the array file_descriptor contains two file
descriptors. The first descriptor (in element 0) is used for reading data
from the pipe, and the second (in element 1) is used for writing data to
the pipe. The maximum size of a single write is 512 bytes.

The forked processes inherit the open file descriptors.

•Synopsis

int pipe(file_descriptor)
int file_descriptor[2];

Library Functions 133

6.11.103 pow
The function pow returns the first argument raised to the power of the
second argument. Both arguments must be double, and the returned
value is double. If the result overflows, pow returns the largest possible
floating-point value and sets errno to ERANGE. If the argument y is
negative and nonintegral, or if both arguments are zero, pow returns 0
and sets errno to EDOM.

•Synopsis

#include math

double pow(x,y)
double x,y;

6.11.104 printf, fprinH, sprinH
These functions perform formatted output to the standard output
(printf), to a specified file (fprintf), or to a character string in memory
(sprintf). All three take a format-specification argument that contains
characters to be written literally to the output and/or conversion speci­
fications that correspond to the list of optional output sources.

All three functions return the number of characters actually written
out. printf and fprintf return -1 if an I/0 error occurs. sprintf returns
-1 if the output string overflowed the internal buffer.

•Synopses

#include stdio

int printf(format_specification[,outpuLsource, ...])
char •format_specification;

int fprintf(file_pointer,formaLspecification[,output_source,, ..])
FILE •file_pointer;
char •formaLspecification;

int sprintf(string,formaLspecification[,outpuLsource, ...])
char •string, •formaLspecification;

In the printf, fprintf, and sprintf functions, the output sources are
expressions whose types correspond to conversion specifications given
in the format specification. If no conversion specifications are given, the
output sources may be omitted. Otherwise, the function call must have
exactly as many output sources as there are conversion specifications,
and the conversion specifications must match the types of the output
sources. Conversion specifications are matched to output sources in
simple left-to-right order.

The format specification is a character string that specifies the output
format. The string may contain two kinds of items:

134 Chapter 6

• Ordinary characters, which are simply copied to the output.

• Conversion specifications, each of which causes the conversion of a
corresponding output source to a character string, in a particular
format.

• Conversion Specifications

Each conversion specification begins with a percent sign (%) and ends
with a conversion character that specifies an output format. The output
formats are are described in Table 6-10.

Table 6-10: Conversion Characters for Formatted Output

Character

d

0

x

u

c

s

e

f

g

%

Meaning

Convert to decimal format.

Convert to unsigned octal format (without leading zero).

Convert to unsigned hexadecimal format (without leading Ox).
An uppercase X causes the hexadecimal digits A-F to be printed
in uppercase. A lowercase x causes those digits to be printed in
lowercase.

Convert to unsigned decimal format (giving a number in the
range 0 to 4,294,967,295).

Output single character (NUL characters are ignored).

Output as character string (write out characters until NUL is
encountered or until number of characters indicated by the preci­
sion specification is exhausted. If the precision specification is
zero or omitted, all characters up to a NUL are output).

Convert float or double to the format [-]m.nnnnnnE[+: -)xx,
where the number of n's is specified by the precision (default =

6). If the precision is explicitly zero, the decimal point appears
but no n's appear. An E is printed if the conversion character is
an uppercase E. An e is printed if the conversion character is a
lowercase e.

Convert float or double to the format [-Jm .. m.nnnnnn, where the
number of n's is specified by the precision (default = 6). Note
that the precision does not determine the number of significant
digits printed. If the precision is explicitly zero, no decimal point
appears and no n's appear.

Convert float or double to d, e, or f format, whichever is shorter
(suppress insignificant zeros).

Write out the % symbol. No conversion is performed.

Library Functions 135

The following characters can be used between the % sign and the con­
version character. They are optional, but if specified, they must occur
in the order listed.

Character

width

precision

*

•Example

Meaning

Left-justify the converted output source in its field.

Use this integer constant as the minimum field width. If
the converted output source is wider than this minimum,
write it out anyway. If the converted output source is
narrower than the minimum width, pad it to make up the
field width. Padding is with spaces normally, and with
zeros if the field width is specified with a leading zero.
(This does not mean that the width is an octal number.)
Padding is on the left normally and on the right if a
minus sign is used.

Separates field width from precision.

Use this integer constant to designate the maximum
number of characters to print with s format, or the num­
ber of fractional digits with e or f format.

Indicates that a following d, o, x, or u specification corre­
sponds to a long output source. (Note that, in VAX-11 C,
all ints are long by default.)

Can be used to replace the field width specification
and/or the precision specification. The corresponding
width or precision is given in the output source.

Example 6-5 shows how printf interprets different kinds of conversion
specifications.

136 Chapter 6

#inclurje stdio

frl a in ()

{

double t.i a I 123.3ll5Ge+3i
ch a r 'C, ;
int -1500000000i
char *s 11 t h o r1i as i n a 11 ;

I* Print the forfrlat code, a colon1 two tabs'
* and the forfrlatted output ualue1 with the
* outPut field delifrlited bY >,
*I

}

Print f ("'/., % 8. ll f : \ t \ t < 'X, 8. ll f > \ n " , •.i a 1)
Printf("'X.'X.8f:\t\t<'X.8f>\n" 1ual);
Print f ("'X. 'X. 8 , 0 f : \ t \ t < 'X, 8 • Of > \ n " , •.i a 1)
P r i n t f ("'X. % - 8 , 0 f : \ t \ t < 'X. - 8 , 0 f > \ n \ n " 1 •.i a 1)

Printf("'X.'X.11.Ge:\t\tO::'X.11.Ge>\n" 1<.ial);
Printf("'X,'J..11e:\t\t<'X.11e>\n" 1<.ial);
P r i n t f (" 'X. % 11 , 0 e : \ t \ t < ·x. 11 , 0 e > \ n " , '-' a 1) ;
Printf("'J..%-11.0e:\t\t<'J..-11,0e>\n\n" 1ual)

P r i n t f (" 'X. 'X. 1 1 s : \ t \ t < 'X. 1 1 s > \ n " , •.i a 1)
Pr int f ("'X. 'X. 8 s: \ t \ t < 'X.8 s > \ n \ n" '•.i a 1)

Printf("'X.'X,d:\t\t < ·x. d > \nu 'c) ;
Printf ("'X.'X.c:\t\t < ·x. c > \n " 'c) ;
Printf("'X.'J..o:\t\t < 'X. 0 > \n " 'c) ;

Printf("'X.'J..x:\t\t < ·x.·x > \n\n " 'c) ;

Printf("'X.'J..d:\t\t<'X.d>\n" 1i);
Printf("'X.'J..u:\t\t<'X.u>\n" 1i);
Printf("'X.'J..x:\t\tO::'X,x>\n\n" 1i l;

Printf("'X.'J..s:\t\t<'X.s::,\n" isl;
Printf("'X.%-8.Gs:\t\t<'X.-8.Gs::,\n" is);

Print f < "·x. ·x. - * • * s : \ t \ t < '/., -*, * s > \ n" , 8 , 5 , s l
Printf("'X,'X,G,Os:\t\t<'J..G.Os>\n\n" is);

Example 6-5: The printf Function

Library Functions 137

The program writes the following to stdout:

'X.9. llf:
'.Y..9f:
'Y.,9, Of:
'Y.,-9, Of:

'.Y.. 11 , Ge:
'.Y.. 11 e :
'.Y..11.0e:
'.Y..-11.0e:

'X.11 a:
'X.98:

'Y.,d:
'Y.,c:
'Y,, 0:

'Y.,x:

'Y,, d:
'Y,,1_t:

'Y,, x:

'.Y..s:
'.Y..-9, Gs:
'Y,, -*. * s:
'Y.,G. Os:

<1233ll5.GOOO>
<1233ll5.GOOOOO>
< 1233llG>
<1233llG

<1.233ll5Ge+05>
<1.233ll5Ge+05>

1.e+05>
<1.e+05

1233llG>
1233llG>

<G7>
<C>
<103>
<ll3>

1500000000>
<279ll9G729G>
<aG97d100>

<thor11asina>
<thor11as
<thor11a
<thor11asina>

Example 6-5: (Cont.) The printf Function

138 Chapter 6

6.11.105 putc, fputc, putchar, putw
The function putc writes a single character to a file and returns the
character. The file is left positioned after the character. putc is imple­
mented as a macro; fputc acts the same as putc but is a true function,
not a macro. The function putchar is implemented as a macro. It
writes a single character to the standard output (stdout) and returns
the character. putchar is identical to putc(stdout).

putw writes four characters to the output file as an int. No conversion
is performed. If end-of-file is encountered during the retrieval of any of
the four characters, then EOF is returned and all four characters are
lost.

All of these functions return EOF (defined in the #include module
stdio) to designate output errors. Since EOF is itself an integer, ferror
should be used to detect errors encountered by putw.

•Synopses

#include stdio

int putc(character,file_pointer)
char character;
FILE •file_pointer;

int fputc(character,file_pointer)
char character;
FILE •file_pointer;

int putchar(character)
char character;

int putw(integer,file_pointer)
int integer;
FILE •file_pointer;

6.11.106 putchar
See putc.

6.11.107 puts, fputs
The function puts writes a character string to stdout, followed by a
newline. The function fputs writes a character string to a specified file.
It does not append a newline to the string. Neither function copies the
terminating NUL to the output stream.

•Synopses

#include stdio

int puts(string)
char •string;

int fputs(string,file_pointer)
char •string;
FILE •file_pointer;

Library Functions 139

6.11.108 putw
See putc.

6.11.109 rand, srand
The function rand returns pseudorandom numbers in the range 0
to 231-1. It uses a multiplicative congruential random number genera­
tor with a repeat factor (period) of 232. The random number generator is
reinitialized by calling srand with the argument 1, or it can be set to a
specific point by calling srand with any other number.

•Synopses
int rand();

int srand(seed)
int seed;

6.11.110 read
The function read reads bytes from a file and places them in a buffer.
The buffer argument is the address of at least n bytes of contiguous
storage in which the input is placed. The function returns the number
of bytes actually read. The return value does not necessarily equal
nbytes. For example, if the input is from a terminal, at most one line of
characters is read.

A return value of 0 means that end-of-file was encountered. A return
value of -1 indicates any sort of read error, including physical input
errors, illegal buffer addresses, protection violations, undefined file de­
scriptors, and so forth.

The specified file descriptor must refer t.o a file currently opened for
reading (see open).

•Synopsis

int read(file_descri ptor, buffer, n bytes)
int file_descriptor,nbytes;
char •buffer;

140 Chapter 6

6.11.111 realloc
The function realloc changes the size of the area pointed to by the first
argument to the number of bytes given by the second argument. realloc
returns the address of the area, since the area may have moved to a new
address. If the area was moved, the space previously occupied is freed.
If realloc is unable to reallocate the space (for example, if there is not
enough room), it returns 0.

The contents of the area are unchanged up to the lesser of the old and
new sizes. New space in the reallocated area is initialized with 0.

The first argument may point to an allocated area or, unless other
allocations have been made in the meantime, to an area freed by free or
cfree.

•Synopsis

char •realloc(pointer,size)
char •pointer;
unsigned size;

6.11.112 rewind
The function rewind sets the file to the beginning. rewind is equivalent
to fseek(file-pointer,0,0). It returns -1 to indicate failure; 0 to indicate
success. rewind can be used with either record or stream files.

•Synopsis

#include stdio
int rewind(file_pointer)
FILE •file_pointer;

6.11.113 sbrk
See brk.

6.11.114 scanf, fscanf, sscanf
These functions perform formatted input from the standard input
(scanf), from a specified file (fscanf), or from a character string in
memory (sscanf). All three take a format-specification argument that
contains ordinary characters, which must match the corresponding
characters in the input, and/or conversion specifications that corre­
spond to the list of optional input targets.

The functions return the number of successfully matched and assigned
input items. If end-of-file (or string) is encountered, the functions re­
turn EOF (a preprocessor constant defined in the #include module
stdio).

Library Functions 141

•Synopses

#include stdio

int scanf(format_specification[,inpuLpointer, ...])
char •formaLspecification;

fscanf(file_pointer,format_specification[,inpuLpointer, ...])
FILE •file_pointer;
char •format_specification;

sscanf(string, formaLspecification [,in puLpoi nter, ...])
char •string,•formaLspecification;

In all three functions, the format specification is a character string
specifying the input formats to be used. A format specification can
include three kinds of items:

1. White-space characters (spaces, tabs, and newlines), which
match optional white-space characters in the input field.

2. Ordinary characters (not %), which must match the next non­
white-space character in the input.

3. Conversion specifications, which govern the conversion of the
characters in an input field and their assignment to an object
indicated by a corresponding input pointer (see list below).

Each input pointer is an address expression indicating an object whose
type matches that of a corresponding conversion specification. (Conver­
sion specifications form part of the format specification.) The indicated
object is the target that receives the input value. There must be as
many input pointers as there are conversion specifications, and the
addressed objects must match the types of the conversion specifica­
tions.

• Conversion Specifications

Each conversion specification begins with a percent sign(%). This sign
is followed by an optional assignment-suppression character (*) - see
"Remarks" - an optional number giving the maximum field width,
and a conversion character. The conversion characters are described in
Table 6-11.

•Remarks

• The delimiters of the input field can be changed with the bracket
([l) conversion specification, described above. Otherwise, an input
field is defined as a string of non-white-space characters. It ex­
tends either to the next white-space character or until the field
width, if specified, is exhausted. (Note, therefore, that the func­
tion reads across line/record boundaries, since the newline charac­
ter is a white-space character.)

• A call to one of these functions resumes searching immediately
after the last character processed by a previous call.

142 Chapter 6

Table 6-11: Conversion Characters for Formatted Input

Character

d

0

x

c

f

e

ld,lo,lx

le,lf

hd,ho,hx

[..]

Meaning

Expect a decimal integer in the input. The corresponding argu­
ment must point to an int.

Expect an octal integer in the input (with or without a leading
zero). The corresponding argument must point to an int.

Expect a hexadecimal integer in the input (without a leading Ox).
The corresponding argument must point to an int.

Expect a single character in the input. The corresponding argu­
ment must point to a char. The usual skipping of white space is
disabled in this case, so that n white-space characters can be read
with %nc. If a field width is given with c, the given number of
characters is read, and the corresponding argument should point
to an array of char.

Expect a character string in the input. The corresponding argu­
ment must point to an array of characters that is large enough to
contain the string plus the terminating NUL character (\0). The
input field is terminated by a space, tab, or newline.

Expect a floating-point number in the input. The corresponding
argument must point to a float. The input format for floating­
point numbers is [+: -lnnn[.[ddd]J[{E: ej[+: -Jnn], where the n's
and d's are decimal digits (as many as indicated by the field
width minus the signs and the letter E).

Synonym for f.

Same as d, o, x, except that a long integer of the specified radix
is expected. (Retained for compatibility only, since long and int
are the same in VAX-11 C.) The same effect can be achieved by
using D, 0, and X.

Same as e, f, except that the corresponding argument is a double
instead of a float. (The same effect can be achieved by using an
uppercase E or F.)

Same as d,o,x, except that a short integer of the specified radix is
expected.

Expect a string that is not delimited by white-space characters.
The brackets enclose a set of characters (not a string). Ordinarily,
this set (or "character class") is made up of the characters that
comprise the string field. Any character not in the set will termi­
nate the field. However, if the first (leftmost) character is an up­
arrow ('), then the set shows the characters that terminate the
field. The corresponding argument must point to an array of
characters.

Library Functions 143

• If the assignment-suppression character (*) appears in the format
specification, no assignment is made. The corresponding input
field is interpreted and then skipped.

• The arguments must be pointers or other address-valued expres­
sions, since C permits only calls by value. To read a number in
decimal format and assign its value to n, you must write

sc anf ("'X,d" ,~,n)

not

s c an f (11 '.Y., d 11 ~ n)

• White space in a format specification matches optional white
space in the input field. That is, the format specification:

field = /.,x

matches:

field 5218
field=5218
field= 5218
field =5218

but not:

fiel d=5218

6.11.115 setbuf
The function setbuf associates a buffer with an input or output file. It
may be used after the file has been opened, but must be used before any
I/0 is done to it. It causes file operations to use the specified character
array as a buffer instead of using an automatically allocated buffer. The
buffer must be large enough to hold an entire input record. The
BUFSIZ constant defined in the stdio module is available for you to use
as the size of the buffer. If the buffer is NULL (defined in the #include
module stdio), the file will be unbuffered. Otherwise the buffer is used
for all subsequent I/0 operations on the file. A buffer is normally ob­
tained by calling malloc.

•Synopsis

#include stdio
setbuf(fi le_poi nter, buffer)
FILE •file_pointer;
char •buffer;

6.11.116 setgid
See setuid.

144 Chapter 6

6.11.117 setjmp, longjmp
The setjmp and longjmp function pair provides a way to transfer con­
trol from a nested series of functions back to a predefined point without
returning normally (that is, not by a series of return statements). The
setjmp function saves the context of the calling function in an environ­
ment buffer. The longjmp function restores the context of the environ­
ment buffer.

The environment buffer is declared as an array of integers long enough
to hold the register context of the calling function. It is declared by the
typedef jmp_buf. The contents of the general-purpose registers, in­
cluding the program counter (PC), are stored in the buffer.

When setjmp is first called, it returns the value 0. If longjmp is then
called, naming the same environment as the call to setjmp, control is
returned to the setjmp call as if it had returned normally a second time.
The return value of setjmp in this second return is the value supplied
by the user in the longjmp call. To preserve the true value of setjmp,
the function calling setjmp must not be called again until the associ­
ated longjmp is called.

•Synopses

#include setjmp

setjmp(env)
jmp_buf env;

longjmp(env,val)
jmp_buf env;

•Example

The program in Example 6-6 uses a series of case statements to deter­
mine how the program has returned from a series of functions. The
NORMAL case is always executed once. The program sets the return
value of setjmp to 0 and calls the function x, which calls y. If the
function y succeeds, it calls z. If it does not succeed, y uses the longjmp
function to return the value Y_FAILED to the main function. If the
function z succeeds, it executes a series of return statements to return
to the middle of the NORMAL case. Otherwise, z uses the longjmp
function to return the value Z_FAILED.

Library Functions 145

•include stdio
•include setjMP
•define NORMAL 0
•define Y_FAILED 1

#define Z_FAILEO 2
JMP~buf enuironMent;

FILE *fPi

Main ()

switch CsetjMp(environMent))
{

case NORMAL:
fp = foPen("anYfile", 11 w11);

x () ;
fclose (fp);
breaKi

case Y_FAILEOi
fPrintf (fP1"Could not Proceed; failed in r() ,\n");
y_cleanup();

x ()

y ()

{

146

breaKi

case Z_FAILED;

y () ;

fPrintf(fPt''Could not Proceed; failed in z().\n 11);

fclose(fp);
breaK;

if(11 error 11)

z () ;

lonSjMp(environMent1 Y_FAILED);
f* CONTROL GOES BACK TO THE BEGINNING

OF THE case STATEMENT */

Chapter 6

z ()

if(11 error 11)

lonSJMP(environmentt Z_FAILED);
I* CONTROL GOES BACK TO THE BEGINNING

OF THE case STATEMENT */

Example 6-6: The setjmp and longjmp Functions

6.11.118 setuid, setgid
These functions are. included only for program compatibility. They
both return 0 (to indicate success). They perform no other operation.

•Synopses

int setuid(member_number)
unsigned member_number;

int setgid(group_number)
unsigned group_number;

6.11.119 signal
The function signal allows you either to catch or to ignore a signal.
Signals are raised by a variety of events, including:

• A gsignal call (see gsignal).

• A user typing CTRL/C at a terminal (thus raising the signal
SIGINT).

• Certain programming errors.

• A kill function call from another process.

Signals are given the mnemonics (as in SIGINT, above) found in the
definition module signal. Normally, all signals cause the termination of
the receiving process. However, the signal function allows you to ignore
most of them or to interrupt to a specific location for handling. Table
6-12 shows the signals defined in the sigrial module, ways to generate
the signals on V AXNMS, and the qualities of the signal, such as
whether or not the signal can be ignored. (Unless noted otherwise, the
signal can be reset and it can be caught or ignored.)

Library Functions 147

Table 6-12: V AX-11 C Signals

Name

SIGHUP

SIG INT

SIGQUIT

SIG ILL

SIG TRAP

SIGIOT

SIG EMT

SIGFPE

SIG KILL

SIG BUS

SIGSEGV

SIGSYS

SIG PIPE

SIGALRM

SIG TERM

148

Description

Hang up

Interrupt

Quit

Illegal
instruction

Trace trap

IOT instruction

EMT instruction

Floating-point ex­
ception

Kill

Bus error

Segment
violation

System call
error

Broken pipe

Alarm clock

Software
terminate

Generated by

Data set hang up

VMS CTRL/C inter­
rupt

CTRL/C if the action
for SIGINT is the
SJG_J)FL default

Illegal instruction, re­
served operand, or re­
served address mode

TBIT trace trap or
breakpoint fault in­
struction

Not implemented

Compatibility mode
trap or op code re­
served to customer

Floating-point
overflow/underflow

External signal only

Access violation or
change mode user

Length violation or
change mode supervi­
sor

Bad argument to sys­
tem call

Not implemented

Timer AST

External signal only

Notes

Not reset when
caught

Not reset when
caught

Cannot be caught
or ignored

Chapter 6

The first argument in a signal call is sig, the number or mnemonic
associated with a signal. Customarily, the sig argument is one of the
mnemonics defined in the signal module. The second argument is func,
which is either the action to be taken when the signal is raised, or the
address of a function needed to handle the signal.

If the func argument is the constant SIG_DFL (defined in the
#include module signal), the action for the given signal is reset to the
default action, which is the termination of the receiving process. If the
argument is SIG_IGN, the signal is ignored. (Note that not all signals
can be ignored.)

If the func argument is neither SIG_DFL nor SIG_IGN, then it speci­
fies the address of a signal-handling function. When the signal is raised,
the addressed function is called with sig as its argument. When the
addressed function returns, the interrupted process continues at the
point of interruption. (This is called "catching a signal.") Except as
indicated in Table 6-12, signals are reset to SIG_DFL after they have
been caught. Thus, you must call signal each time you want to catch a
signal.

The signal function returns the address of the function previously (or
initially) established to handle the signal. If the sig argument is out of
range, signal returns -1, and errno is set to EINV AL.

A child process (see vfork) inherits only the defaulted and ignored
signals of the process that spawned it.

An exec call (see exec) resets all caught signals to the default action.

•Synopsis

#include signal

int (•signal(sig,func))()

int sig;
int (*func)();

•Example

I• FUNCTION RETURNING
ADDRESS OF FUNCTION
RETURNING int •/

I• SIGNAL NUMBER •/
I• ADDRESS OF FUNCTION

RETURNING int •/

Example 6-7 shows how you can use the signal, alarm, and pause
functions to alternately suspend and resume a program.

Library Functions 149

#define SECONDS 5

#include stdio
#include sia'nal

I* INITIALIZE THE ALARM COUNTER */
int number_of_alarms = 5;

main ()
{

int alarm_action();

I* PASS SIGNAL ANO FUNCTION TO silnal */
silnal(SIGALRM1alarm_actionl;

I* SET ALARM CLOCK FOR 5 SECONDS *I
a 1 a rrr1 (SECONDS) ;

I* SUSPEND THE PROCESS UNTIL THE SIGNAL IS RECEIVED */
Pause();

}

alarm_action()
{

I* PRINT THE VALUE OF THE ALARM COUNTER *f
Printf("\t(Zd\007>" 1number_of_alarms);

I* PASS SIGNAL AND FUNCTION TO silnal */
silnallSIGALRM1alarm_action);

I* SET ALARM CLOCK */
alarrr1ISECONDS);

I* DECREMENT ALARM COUNTER */
if (--number_of_alarms)

Pause();
}

Example 6-7: The signal, alarm, and pause Functions

6.11.120 sin
The function sin returns the sine of its radian argument. Both the
argument and the sine value must be double.

•Synopsis

#include math
double sin(x)
double x;

150 Chapter 6

6.11.121 sinh
The function sinh returns the hyperbolic sine of its argument. Both the
argument and the hyperbolic sine value must be double. The value of
sinh(x), if it causes an overflow, is a double value with the largest
possible magnitude and the appropriate sign.

•Synopsis

#include math
double sinh(x)
double x;

6.11.122 sleep
The function sleep suspends the execution of the current process for at
least the number of seconds indicated by its argument. On success,
sleep returns the number of seconds that the process slept. On error,
sleep returns -1.

•Synopsis

int sleep(seconds)
unsigned seconds;

6.11.123 sprinH
See printf.

6.11.124 sqrt
The function sqrt returns the square root of its argument. The argu­
ment and the returned value are both double. sqrt returns 0 if x is
negative, and errno is set to EDOM (defined in the #include module
errno).

•Synopsis

#include math
double sqrt(x)
double x;

6.11.125 srand
See rand.

6.11.126 sscanf
See scanf.

Library Functions 151

6.11.127 ssignal
The function ssignal allows you to specify the action to be taken when
a particular signal is raised. The first argument, sig, is a number or
mnemonic associated with a signal. (The symbolic constants for signal
values are defined in the #include module signal. See Table 6-12.) The
second argument, action, represents the action to be taken when the
signal is raised, or the address of a function that is executed when the
signal is raised.

ssignal returns the address of the function previously established as
the action for the signal. Note that the address may contain the value
SIG_DFL (0) or SIG_IGN (1).

ssignal calls signal with the same arguments; the only difference be­
tween the two is in their return value on detecting an error (usually an
invalid signal argument). ssignal returns 0 to indicate errors. For this
reason, there is no way to know whether a return status of 0 indicates
failure or whether it indicates that a previous action was SIG_DFL (0).
signal returns -1 on error.

For more details on establishing actions for signals, see signal. For
more details on the actions taken when a signal is raised, see gsignal.

•Synopsis

#include signal
I• ssignal IS A FUNCTION RETURNING
• THE ADDRESS OF A FUNCTION RETURNING
*AN INTEGER.
* I

int (•ssignal(sig,action)) ()

I• action IS A POINTER TO A FUNCTION
* RETURNING AN INTEGER.
* I

int sig, (•action)();

6.11.128 strcat, strncat
The function strcat concatenates its second argument to the end of its
first argument. Both arguments must be character strings, and, in the
case of strcat, NUL-terminated.

The function strncat performs the same operation, but uses characters
from the second argument up to a specified maximum unless the NUL
terminator is encountered first. The argument max is an integer giving
the maximum number of characters to use from string_2. If max is
zero or negative, no characters are copied from string_2. If a strncat
call reaches the specified maximum, strncat sets the next byte in
string_l to NUL.

152 Chapter 6

Both functions return the address of the first argument, string_l, It is
assumed to be large enough to hold the concatenated result.

•Synopses

char •strcat(string_ 1,string_2)
char •string_ 1, •string_2;

char •strncat(string_ 1,string_2,max)
char •string_ 1, •string_2;
int max;

6.11.129 strchr, strrchr
The function strchr returns the address of the first occurrence of a
given character in a NUL-terminated string. It returns 0 if the charac­
ter does not occur in the string. strrchr is similar, but returns the
address of the last (rightmost) occurrence of the character.

•Synopses

char •strchr(string,character)
char •string,character;

char •strrchr(string,character)
char •string.character;

6.11.130 strcmp, strncmp
The function strcmp compares two ASCII character strings and returns
a negative, zero, or positive integer, indicating that the first string is
lexicographically less than, equal to, or greater than the second string.
The returned value is obtained by subtracting the characters at the first
position where the two strings disagree. (See Table G-1 for the numeric
values of ASCII characters).

strncmp performs the same operation except that it compares a speci­
fied maximum number of characters in the two strings. The argument
max gives the maximum number of characters (beginning with the
first) to be compared. If max is zero or negative, no comparison is
performed, and 0 is returned (the strings are considered equal).

With either function, the comparison is terminated when a NUL is
encountered in one of the strings.

•Synopses

int strcmp(string_ 1,string_2)
char •string_ 1, •string_2;

int strncmp(string_ 1,string-2,max)
char •string_ 1, •string_2;
int max;

Library Functions 153

6.11.131 strcpy, strncpy
The function strcpy copies the argument string_2 into the argument
string_l, stopping after string--2's NUL character is copied.

strncpy copies exactly max characters from string--2 to string_l; the
value in string_2 is either truncated or padded with NUL characters. If
string--2 is truncated, the copy in string_l is not necessarily termi­
nated by a NUL character.

Both functions return the address of string_l.

•Synopses

char •strcpy(string_ 1,string--2)
char •string_ 1, •string--2;

char •strncpy(string __ 1,string __ 2,max)
char •string_ 1,•string--2;
int max;

6.11.132 strcspn
The function strcspn searches a string for a character in a specified set
of characters. It returns the number of characters that precede the
matched one. (That is, the function spans the characters not in the set
and returns the number of such leading characters. See also strspn.)

If the argument string is a null string, strcspn returns 0. If no charac­
ters match between string and charset, strcspn returns the length of
string.

•Synopsis

int strcspn(string,charset)
char •string, •charset;

•Example

Example 6-8 shows how strcspn interprets four different kinds of argu­
ments.

154 Chapter 6

#include stdio
rtla in ()
{

FILE *outfilej
0 ll t f i 1 e = fa pen (II st r c s p n • 0 u t II , II IAI II) ;

fprintf(outfileo"strcsPn with null charset: Zd\n",
s t r c s P n (11 a b c d e f 11 t 11 11)) ;

fPrintf(outfileo"strcspn 1,1ith null strins: /.,d\n"t
strcspn(""o"abcdef"));

}

fPrintf(outfile o"strcspn(abc oabc): /.,d\n"'
strcspn(11 abc 11 t 11 abc 11));

fPrintf(outfile o"strcspn(abc 1def): /.,d\n",
strcspn(11 abc 11 t"def 11));

The example writes the following to strcspn.out:

strcspn with null charset: G
strcsPn with null strins: 0
strcspn(abcoabc): 0
strcspn(abctdef): 3

Example 6-8: The strcspn Function

6.11.133 strlen
The function strlen returns the length of a string of ASCII characters.
The returned length does not include the terminating NUL character
(\0).

•Synopsis

int strlen(string)
char •string;

6.11.134 strncat
See strcat.

6.11.135 strncmp
See strcmp.

6.11.136 strncpy
See strcpy.

Library Functions 155

6.11.137 strpbrk
The function strpbrk searches a string for the occurrence of one of a
specified set of characters. It returns the address of the first character
in the string that is in the set, or NULL if no character is in the set.

•Synopsis

char •strpbrk(string,charset)
char •string,•charset;

6.11.138 strrchr
See strchr.

6.11.139 strspn
The function strspn searches a string for the occurrence of a character
that is not in a specified set of characters. It returns an int giving the
number of characters that precede the mismatched character. (That is,
the function spans the characters in the set and returns the number of
such leading characters. See also strcspn.)

If charset is a null string, strspn returns 0. If all the characters in string
are also in charset, the function returns the length of string.

•Synopsis

int strspn(string,charset)
char •string, •charset;

•Example

Example 6-9 shows how strspn interprets different arguments.

#include stdio
111a in ()
{

}

156

FILE *outfilei
0 u t f i 1 e = f 0 pen (II st r s p n t a u t II t II !Al ll) ;

f Print f (out f i 1 e , "st rs Pn 1,1 it h nu 11 ch a rs et: 'X, d \ n" ,
s t r s p n (II ab c d e f II t II ti)) ;

fPrintf(outfile1"strsPn with null strins: %d\n",
strsPn(1111 1 11 abcdef 11));

fprintf(outfile 1"strspn(abc tabc): 'X.d\n",
5 t r s p n (II a b c ll t II a b c II)) ;

fPrintf(outfile 1"strsPn(abc ,def): 'X,d\n",
st rs P n (11 ab c 11 , 11 d e f 11)) ;

Chapter 6

The example writes the following to strspn.out:

strsPn with null charset: 0
strsPn with null strins: 0
strspn(abctabcl: 3
strsPn(abctdef): 0

Example 6-9: The strspn Function

6.11.140 tan
The function tan returns a double value that is the tangent of its
radian argument, which must also be double. The value of tan(x) at its
"singular points" (... -3pi/2,-pi/2,pi/2 ...) is the largest possible double
value, and errno is set to ERANGE.

•Synopsis

#include math
double tan(x)
double x;

6.11.141 tanh
The function tanh returns a double value that is the hyperbolic tangent
of its double argument.

•Synopsis

#include math
double tanh(x)
double x;

6.11.142 time
The function time returns the time elapsed since 00:00:00, January 1,
1970, in seconds. If time's argument is not null, it points to the place
where the returned time is also stored.

•Synopses

long time(time_location)
long •time_location;

Library Functions 157

6.11.143 times
The function times returns the accumulated times of the current proc­
ess and of its terminated child processes. The times are placed in a time
structure defined below. For both process and children times, the struc­
ture breaks down the time by user and system time. Since V AXNMS
does not differentiate between system and user time, all system times
are returned as 0. Accumulated CPU times are returned in 10-mil­
lisecond units.

struct tbuffer
{

int proc_user_time;
int Proc_sYstem_time;
int child_user_time;
int child_sYstem_time;
} ;

•Synopsis

times(buffer)
struct tbuffer •buffer;

6.11.144 tmpfile
The function tmpfile creates a temporary file that is opened for update.
The file exists only for the duration of the process and is preserved
across forks. The function returns the address of a FILE structure (de­
fined in the stdio module), or a null pointer value if there is an error.

•Synopsis

#include stdio
FILE •tmpfile()

6.11.145 tmpnam
The function tmpnam creates a character string that can be used in
place of the file-name argument in other function calls. If the name
argument is null, tmpnam returns the address of an internal storage
area. If name is not null, then it is taken to be the address of an area of
length L_tmpnam (defined in the #include module stdio). In this case,
name is returned by tmpnam. Successive calls to tmpnam with null
arguments cause the current name to be overwritten.

•Synopsis

#include stdio
char •tmpnam(name)
char •name;

158 Chapter 6

6.11.146 toascii
The function toascii converts its argument, an 8-bit ASCII character,
to a 7-bit ASCII character. toascii is a macro.

•Synopsis

#include ctype
int toascii(character)
char character;

6.11.147 tolower, _tolower
The function tolower converts its argument, an uppercase alphabetic
ASCII character, to lowercase. If the argument is already a lowercase
character, it is returned unchanged. _tolower is implemented as a
macro; tolower as a function.

•Synopses

char tolower(character)
char character;

#include ctype
char _tolower(character)
char character;

6.11.148 toupper, _toupper
The function toupper returns its argument, an ASCII lowercase alpha­
betic character, converted to uppercase. If the argument is already
uppercase, it is returned unchanged. _toupper is implemented as a
macro; toupper as a function.

•Synopses

char toupper(character)
char character;

#include ctype
char _toupper(character)
char character;

Library Functions 159

6.11.149 umask
The function umask creates a file protection mask that is used when­
ever a new file is created, and returns the old mask value. The actual
file protection of a newly created file is the bitwise AND of the mode
with the complement of the umask argument. The mode is supplied
when the file is opened. The umask argument shows which bits to turn
off when a new file is created. Initially, the mask is 0 (no restrictions).

See also chmod.

•Synopsis

int umask(mode_complement)
unsigned mode_complement;

6.11.150 ungetc
The function ungetc writes a character to the buffer of a file and leaves
the file positioned before the character. The character is said to be
"pushed back" onto the file, since it will be returned by the next getc
call. The function returns the pushed-back character or EOF if it can­
not push the character back.

One push-back is guaranteed, provided something has previously been
read from the file. fseek erases all memory of pushed-back characters.

•Synopsis

#include stdio

int ungetc(character,file_pointer)
char character;
FILE •file_pointer;

6.11.151 vfork
The function vfork sets up the communication channels necessary to
spawn and control a new process. The process from which vfork is
called is known as the the parent process. The spawned process is
known as the child process.

Ndte that vfork does not itself create a new process. Instead, it creates
a duplicate of the caller's call frame, makes a record of the call's loca­
tion (that is, a record of who the parent is), and returns a value. The
return value is either 0 or the process ID of the child. That is, vfork
returns 0 in the child process and a process ID in the parent.

You can use the value returned by vfork to control the parent and child
processes; usually, the return value is used to decide whether to call one
of the exec functions to create the child process. (See Example 6-10.) A
child process created in such a manner inherits the following context
from its parent:

160 Chapter 6

• The user ID, group ID, and user name.

• All signals for which the action is to ignore the signal (see signal);
signals that are caught in the parent are reset to their default
handling in the child.

• The set of files opened by the parent. However, only record devices
and files opened for reading can be shared by the parent and child,
and the pointers to positions in the input files cannot be shared.
Files opened by the parent for writing cannot be shared.

• The environment array of the parent (see getenv and the exec
functions).

•Synopsis
int vfork()

•Example

Example 6-10 shows how vfork is used to control the creation of a child
process and to monitor its execution and return status. The child proc­
ess executes the image in the file CHILDl.EXE.

#include stdio
#include ssdef

main ()
{

int status 1cstatus;

I* SET UP CHILD PROCESS */
if ((status= vforK()) != 0)

{

I* WAIT FOR CHILD PROCESS TO RETURN */
if ((status= wait(&statusll == -11

{

Perror(11 Parentl 11);

exit(SS$_NORMALI;
}

Printf("Child's final status: 'X.d\n"1cstatus)j
}

else

}

{

I* EXECUTE THE IMAGE IN CHILDl.EXE */
if ((status execl("childl" •"child_name" •

"child_ars1",0ll == -1)

}

{

Perror("Parent1"1,
exit(SS$_NORMALI;
}

Example 6-10: The vfork Function

Library Functions 161

6.11.152 wait
The function wait suspends the calling process until a signal is received
or until one of its child processes terminates. If a child has terminated
since the last wait, wait returns immediately. If there are no children,
wait returns immediately with a return value of -1. A normal return
value is the process ID of the terminated child.

The argument of wait points to an integer that receives the status with
which the child was terminated. If the status is null, then the normal
return value is returned (there are no side effects).

•Synopsis

int wait(status)
int •status;

6.11.153 write
The function write writes a specified number of bytes from a buffer to a
file. The buffer argument is the address ofn number of bytes of contigu­
ous storage.

The function returns the number of bytes actually written. It returns -1
for errors, including undefined file descriptors, illegal buffer addresses,
and physical 1/0 errors.

The file descriptor must refer to a file opened for writing or update (see
open).

•Synopsis

int write(file_descriptor,buffer,nbytes)
int file_descriptor,nbytes;
char •buffer;

162 Chapter 6

Chapter 7

Preprocessor Control Lines

Preprocessor control lines are lines in the source file that modify the
action of the compiler. 1 The control lines are introduced by number
signs (#) and do not end with semicolons. The number sign must appear
in column 1. The effects of preprocessor control lines are independent of
the usual scope rules and persist from their occurrence until the end of
the compilation. Preprocessor control lines are not defined formally by
the C language. Their implementations may differ from one compiler to
another.

The control lines are:

• #define - defines token replacements (including preprocessor
macro substitutions)

• #inclu~e - includes source text from an external file or library

• #if, #ifdef, #ifndef, #else, and #endif - control conditional com­
pilation

• #line - specifies a line number

• #module - specifies a module name to the V AXNMS Linker

7 .1 Token Replacement

The #define control line specifies a token string that is substituted for
every subsequent occurrence of the indicated identifier in the program
text (unless it occurs inside a char constant, a comment, or a quoted
string). The #define control line's forms are:

#define identifier token-string
#define identifier(identifier, ...) token-string

If the token string is omitted, the identifier is deleted from the text
given to the compiler.

1. The term preprocessor is used in this manual for consistency with other
writing on the C language. However, VAX-11 C differs from other implementa­
tions in that these control lines are processed by an early phase of the compiler,
not by a separate program.

163

After a token string is substituted in the source file, the compiler re­
scans the source file from the beginning to determine whether any
previously replaced token strings contain identifiers defined by other
#define control lines. If so, the identifiers are replaced by their token
strings. For example:

I* SHOW MULTIPLE SUBSTITUTIONS AND LISTING FORMAT */
#define AUTHOR williaM + LAST

Main ()
{

int 1,1 rite r 'w i 11 i ahl 'sh a Ke s Pe are 'Ye at s ;
#define LAST shaKesPeare

writer = AUTHOR;

#define LAST Yeats

writer = AUTHOR;
}

When this text is compiled with the command

$ CC/SHOW=INTERMEDIATE RESCANIB@

the following listing results:

1 /* SHOW MULTIPLE SUBSTITUTIONS AND

2
3
a
5
G
7
8

8
10

11
12
13
1 ll

15

2

LISTING FORMAT */
#define AUTHOR williaM + LAST

Main ()
{

int i.-1riter ,1,1i 11iaM1shaf;esPeare ,yeats;

#define LAST shaKespeare

writer
writer
1,,iriter

AUTHOR;
1,1illiaM +LAST;
williaM + shaKesPeare;

#define LAST Yeats

1,.iriter
i.-1riter

2 '1,.iriter
}

AUTHOR;
1.iilliaM +LAST;
williar~ +Yeats;

Line 8 establishes shakespeare as the substitution for LAST, and line 2
establishes william + LAST as the substitution for AUTHOR. In line
10, AUTHOR is replaced by william + LAST. Then, the result is re­
scanned for other substitutable text, as a result of which LAST is
replaced by shakespeare. There is no further substitution possible. In

164 Chapter 7

line 12, the #define c.ontrol line changes the substitution for LAST from
shakespeare to yeats. In line 14, the final text becomes:

writer = williaM + Yeats;

The #define control line may be continued onto subsequent lines if
necessary. Each line to be continued must be terminated by a back­
slash (\) and a newline. The backslash and newline do not become part
of the definition. The first character in the next line is logically adja­
cent to the character that immediately precedes the backslash. The
backslash/newline as a continuation sequence is valid anywhere after
the identifier being defined, or anywhere after the left parenthesis in a
macro definition.

Comments can be continued without the backslash/newline. In the fol­
lowing example, all of the text must appear on the same line unless
comments appear in the <white-space>:

#<white-space>define<white-space>identifier[(]

The optional left parenthesis begins a macro parameter list (see Section
7.1.2), and it must not be separated from the identifier.

7 .1.1 Constant Identifiers
The first form of the #define control line defines a simple substitution,
usually of a constant for a frequently used identifier. A common use of
the control line is to define the end-of-file indicator:

#define EDF (-ll

The substitution text for this example is parenthesized to avoid lexical
ambiguities when the text is substituted in the program, as in

i=EOF;

7 .1.2 Macro Substitutions
Macros are defined with a #define control line of the form:

#define name([parm1 [,parm2, ...]]) [token-string]

where name, parml, parm2, and so forth are identifiers, and token­
string is arbitrary text.

Anywhere in the source file following such a control line (except within
comments, character constants, or string constants), a macro reference
of the form

name([arg1 [,arg2,. ..]])

is replaced by the token string from the control line. Furthermore, any
formal parameters (such as parml) that appear in the token string are
replaced by the corresponding arguments (such as argl) from the refer­
ence.

Preprocessor Control Lines 165

For example, the definition of the macro _toupper is contained in the
C definition module ctype. This file defines that macro in the following
manner:

#define touPPer(c) ((c) >= 'a'!\,!\,(c)<= 'z'?(c)!\,(l){5F: (c))

When you reference the macro _toupper, the compiler substitutes the
macro definition and replaces the parameter (c) with the argument you
give in the macro reference.

Preprocessor control lines and the macro reference have syntax that is
independent of the C language. The following discussion gives the rules
for specification of macro definitions and references:

1. Macro Definitions. The macro name and the formal parameters
are identifiers and are specified according to the rules for identi­
fiers in the C language.

Spaces, tabs, and comments may be used freely within a #define
control line. In particular, they may appear anywhere that the
delta (.0.) symbol appears in the following example:

#6def i ne6name(6parm 16,6parm26)6token-stri ng6

Note that white space cannot appear between the name and the
left parenthesis that introduces the parameter list. White space
may appear inside the token string. Also, at least one space, tab,
or comment must separate the name from the word define. Com­
ments may appear within the token string, but they do not be­
come part of the macro definition.

2. Macro References. Comments and white-space characters
(spaces, horizontal and vertical tabs, carriage returns, newlines,
and form feeds) may be used freely within a macro reference. In
particular, they may appear anywhere that the delta symbol
appears in the following example:

name6(6arg16,6arg26)

Arguments consist of arbitrary text. Syntactically, they are not
restricted to C expressions. They may contain embedded com­
ments and white space. Comments are ignored, but the white
space is preserved during the substitution.

The number of arguments in the reference must match the num­
ber of parameters in the macro definition, although individual
arguments may be null.

Commas separate arguments except where they occur inside
string or character constants, comments, or parentheses.
Parentheses within arguments must be balanced.

When a macro reference is encountered in the source file, it is replaced
by the token string from the macro definition. Then, the token string is
scanned for the formal parameters. Any that are found are replaced by
the corresponding actual arguments from the macro reference. Since
the token string consists of arbitrary text, this replacement occurs even

166 Chapter 7

if a parameter appears inside a character or string constant in the token
string. (In order to be recognized, a parameter must be delimited from
the surrounding text by white space or punctuation characters.)

You must be careful when specifying macro arguments that use the
increment(++), decrement(--), and assignment (such as+=) opera­
tors or other arguments that may cause side effects (such as function
calls). For example, you should not pass the following argument to the
_toupper macro:

__ tO!JPPer(*p++)

When *P++ is substituted in the macro definition, the result is:

((*p++) >='a' &:Ei: (*p++) <= ';:'? (*p++) t, 0>(5F: (*P++))

At run-time, p will have a different value at each reference to it.

If the token string is omitted from the macro definition, the entire
macro reference simply disappears from the source text.

The token string in the macro definition, as well as actual arguments in
a macro reference, may contain other macro references. Substitution
occurs as expected, but such nested references are limited to a depth of
64. The maximum number of parameters or arguments is also 64.

7 .1.3 Listing of Substituted Lines
The VAX-11 C compiler command has two /SHOW qualifiers that
enable the listing of all lines that have been modified by macro substi­
tutions.

With the qualifier

/SHOW E)<PANSION

the listing produced by the compiler shows the final form of a line (after
all substitutions), preceded by its original form and followed by the
listing of machine code, if any. Substituted lines are flagged in the
margin.

With the qualifier

/SHOW= INTERMEDIATE

all intermediate substitutions are also listed, with one substitution per
line.

Without one of these two qualifiers, only the original form of a line
(before the substitutions) is listed.

The example in Section 7.1 demonstrates the effect of the /SHOW=
INTERMEDIATE qualifier. For details on the format of VAX-11 C
listings, see Appendix D.

Preprocessor Control Lines 167

7 .1.4 Canceling Definitions
The control line

#undef identifier

cancels a previous definition of the identifier.

7 .2 File Inclusion

The #include control line inserts external text into the token stream
delivered to the compiler. Its forms are: .

#include <file-spec>
#include "file-spec"
#include module-name

file-spec is a valid VMS file specification or logical name. module-name
is the name of a module in a text library.

If the file-spec is delimited by angle brackets (<>), SYS$LIBRARY is
searched for a file of that name.

If the file-spec is delimited by quotation marks (" "), and if, after apply­
ing the usual RMS defaults, no directory is known, then the directory
containing the source file is searched for the file.

Any text not delimited in the #include control line is assumed to be the
name of a module in a VAXNMS text library. VAX-11 C text libraries
are specified and searched as follows:

• A text library can be created with the LIBRARY command and
specified with a qualifier on the V AX-11 C compile command.

• If more than one compilation is done by a single compile com­
mand, the library must be specified for each source file, as in:
CC sourcea+mYlib/LIBRARYtsourceb+mYlib/LIBRARY

• If more than one library is specified in the compile command, the
libraries are searched in the specified order each time an #include
control line is encountered. For example:
CC sourcea+mYlib/LIBRARY+Yourlib/LIBRARY

ln this example, references to #include modules are searched for
first in MYLIB.TLB and then in YOURLIB.TLB.

• If no library is specified in the compile command, or if the speci­
fied module cannot be found in any of the specified libraries, the
following actions are taken:

- If the user has defined an equivalence name for C$LIBRARY
that names a text library, that library is searched.

- Any remaining unresolved module names are searched for in
SYS$LIBRARY:CSYSDEF. TLB.

#include control lines may be nested to a depth of four.

168 Chapter 7

7 .3 Conditional Compilation

Five control lines are available to control conditional compilation. They
delimit blocks of statements that are compiled if a certain condition is
true; they may be nested. The beginning of the bl-0ck of statements is
marked by one of three control lines: #if, #ifdef, or #ifndef. Optionally,
an alternative block of statements can be set aside with the #else con­
trol line. The end of the block is marked by an #endif control line.

If the condition checked by #if, #ifdef, or #ifndef is true, then all lines
between an #else and #endif are ignored by the compiler. If the condi­
tion is false, then the lines between the #if, #ifdef, or #ifndef and an
#else or #endif control line are ignored. Ignored lines are flagged with
an X in the compiler listing margin.

The #if control line has the form:

#if constant-expression

It checks whether the constant expression is nonzero (true). The
operands must be constants. The increment (++), decrement (--),
sizeof, pointer (*), address (&), and cast operators are not allowed in
the constant expression. ·

The constant expression in an #if control line is subject to text replace­
ment and can, therefore, contain references to identifiers defined in
previous #define control lines. The replacement occurs before the ex­
pression is evaluated.

If an identifier used in the expression is not currently defined, the
compiler issues a warning message (UNDEFIFMAC), and treats the
identifier as though it were the constant zero.

The #ifdef control line has the form:

ifdef identifier

It checks whether the identifier was previously defined by a #define
control line.

The #ifndef control line has the form:

#ifndef identifier

It checks to see if the identifier is not defined or if it has been undefined
by the #undef control line.

The #else control line has the form:

#else

It delimits alternative source lines to be compiled if the condition
tested for in the corresponding #if, #ifdef, or #ifndef control line is
false. An #else control line is optional.

The #endif control line has the form:

#endif

It ends the scope of the above control lines.

Preprocessor Control Lines 169

The VAX-11 C compiler defines three preprocessor substitutions with
the names vax, vms, and vaxllc. These symbols are defined as if the
following text fragment were included by the compiler before every
compilation source group.

#define VMS

#define •1ax
#define vax11c

The symbols may be used by the C programmer to conditionally com­
pile C programs used on more than one operating system to take advan­
tage of system-specific features. For example:

#if vax11c
#include rrr1s
#end if

I* include RMS definitions •/

Because the VAX-11 C compiler will substitute 1 for every occurrence
of these identifiers in a program, these three identifiers should be con­
sidered reserved by DIGITAL. The effect of these predefinitions may be
removed by explicitly undefining the conflicting name.

7 .4 Specification of Line Numbers

The C compiler keeps track of information about relative line numbers
in each file involved in the compilation. When it displays a diagnostic
message at the terminal, the compiler also displays this information.
The #line control line specifies a new starting line number (the number
is incremented from that point) and a new identifier or string for the
file containing the control line. The new information is in effect until
the end of the file or until another #line control line changes it.

The formats of the #line control line are:

#line constant identifier
#line constant string
constant identifier
constant string

The constant must be an unsigned decimal integer. It supplies the line
number. The second parameter can be specified as either a VAX-11 C
identifier or a character-string constant. It supplies the V AXNMS file
specification. The character string must not exceed 128 characters.

170 Chapter 7

7 .5 Specification of Module Name and Identification

The #module control line causes the following information to be ap­
plied to the object module of the current compilation:

• A module name that appears in the compiler listing file and linker
load map. The module name is then recognized by the debugger
and librarian.

• An optional identification string (such as a version number) which
also appears in the listing file and load map.

If it does not encounter a #module control line during compilation, the
V AX-11 C compiler gives the output object file (if any) the same mod­
ule name as the first function it encounters and it gives the file an
identification of Vl.O. You can use the #module control line to override
these defaults.

The formats of the control line are:

#module identifier identifier
#module identifier string

The first parameter must be a valid VAX-11 C identifier. It specifies
the module name to be used by the linker. The second parameter speci­
fies the optional identification that appears on listings and in the object
file. It must be either a valid V AX-11 C identifier or a character-string
constant with no more than 31 characters.

Only one #module line can be processed per compilation, and that line
must appear before any C language text. (That is, it can follow other
control lines, such as #define, but it must precede any function defini­
tions or external data definitions.)

The parameters in a #module line are subject to text replacement and
can, therefore, contain references to identifiers defined in previous #de­
fine control lines. The replacement occurs before the parameters are
processed.

The #module control line is a VAX/VMS extension of the preprocessor;
it may not occur in other C implementations.

Preprocessor Control Lines 171

Chapter 8

Using VAX-11 Record Management Services
(RMS)

The C programming language does not provide built-in, or predefined,
facilities for handling files. All input and output (1/0) operations in a C
program are performed by calls to external functions, which vary in
nature and number from one implementation to another. The file­
handling capabilities of VAX-11 C fall into two distinct categories:

1. Those functions which follow the conventions that allow pro­
. grams written in one version of the language to run with little or
no modification with other versions of the language and run-time
library. This involves the use of stream files and C functions that
perform standard and UNIX I/O (refer to Chapter 6).

2. The RMS functions which are not portable to other C implemen­
tations, but which provide more kinds of file organization and
more record access modes.

This chapter briefly reviews the basic concepts and facilities of V AX-11
RMS and shows examples of their application in VAX-11 C program­
ming. Because this is an overview, not all RMS concepts and features
are explained. If you want more complete information, consult the fol­
lowing manuals in the V AXNMS document set:

•Introduction to VAX-11 Record Management Services. This docu­
ment contains a general description of the record management
services of the V AXNMS operating system. The information in
this document is introductory; programming techniques are not
presented. Indexed sequential access is described.

• VAX-11 Record Management Services Reference Manual. This
manual fully describes the user interface to RMS. It includes some
introductory information on RMS programming and detailed defi­
nitions of all RMS access blocks, attribute blocks, and macro
instructions.

172

8.1 RMS File Organization

V AX-11 RMS supports three kinds of file organization:

• Sequential organization
• Relative organization
• Indexed organization

The organization of a file determines the way the file is stored on the
medium and, consequently, the possible operations on records. A file's
organization is specified when the file is created, and it cannot be
changed.

8.1.1 Sequential Organization
Sequential files have consecutive records. There are no empty records
separating records that contain data. This organization limits the oper­
ations on the file to:

• Positioning the file at a particular record, generally by sequen­
tially moving from one record to the next.1

• Reading data from any record.

• Writing data by adding records at the end of the file.

Sequential organization is the only kind permitted for magnetic tape
files.

8.1.2 Relative Organization
Relative files have records that occupy numbered, fixed-length cells.
The records themselves need not have the same length. Cells can be
empty or can contain records. Consequently, the following operations
are permitted:

• Positioning the file at a particular record, usually by direct access.
In direct access, the relative record number (actually the number
of a cell) is usually used as a key to locate the cell and its record,
without reference to other cells. The records can also be accessed
sequentially, in which case any empty cells are ignored, or they
can be accessed directly by record file address (RFA). (The RFA is
returned in a parameter block whenever a record is written and
can be used subsequently to locate the record directly.)

1. Direct access is also possible, either by key (relative record number) or by the
record file address (RFA). However, access by RFA is limited to files on disk
devices, and access by key is limited to disk files that also have fixed-length
records. These access modes are unusual because most application programs do
not keep track of record positions in sequential files.

Using VAX-11 Record Management Services (RMS) 173

• Reading a record from any cell.

• Deleting a record from any cell.

• Writing a record into any cell.

The relative file organization is possible only on disk devices.

8.1.3 Indexed Organization
Indexed files have records that contain, in addition to data and
carriage-control information, one or more keys. Keys can be character
strings, packed decimal numbers, and 16- or 32-bit signed or unsigned
integers. Every record has at least one key, the primary key, whose
value is fixed. Optionally, each record can have one or more alternate
keys, whose values can vary.

Unlike relative record numbers used in relative files, key values in
indexed files are not necessarily unique. When you create a file, you can
specify that a particular key may have the same value in different
records (these keys are called duplicate keys). Keys are defined for the
entire file, in terms of their position within a record and their length.

In addition to maintaining its records, RMS builds and maintains
indexes for each of the defined keys. As records are written to the file,
their key values are inserted in order of ascending value in the appropri­
ate indexes. This organization makes possible the following operations:

• Positioning the file at a particular record, by direct access. In
direct access reads, either a primary or alternate key, plus a speci­
fied key value, is used to locate the record. In direct access writes
(given a record that contains key values in the predefined posi­
tions), RMS automatically adds the record to the file and adds the
primary and alternate key values to the appropriate indexes.
Records can also be accessed sequentially, where the sequence is
defined by the index for a specified key. Finally, records can be
accessed directly by RF A. (The RF A is returned in a parameter
block whenever a record is written and can be used subsequently
to locate the record directly.)

• Reading any record, including sequential reads controlled by a
key's index.

• Deleting any record.

• Updating an alternate key's value, if the key's definition permits
its value to change.

• Writing records selectively, based on the value of a key and, when
allowed in the key's definition, based on duplicate values. If dupli­
cate values are permitted, you can write records containing key
values that are already present in the key's index. If duplicate
values are not permitted, such write operations are rejected.

Indexed organization is possible only on disk devices.

174 Chapter 8

8.2 Record Access Modes

The record access modes, summarized in Section 8.1, are sequential,
direct (random) by key, and direct by record file address. Again, the
direct access modes are possible only with files that reside on disks.

Unlike a file's organization, the record access mode is not a permanent
attribute of the file. During the processing of a file, you can switch from
one access mode to any other permitted for that file organization. For
example, indexed files are often processed by locating a record directly
by key, and then using that key's index to read sequentially all the
indexed records (this is sometimes called the indexed sequential access
method, or ISAM).

8.3 RMS Record Formats

Records in RMS files can have the following formats:

• Fixed-length format, where the length of every record is defined at
the time of the file's creation. This format is permitted with any
file organization.

• Variable-length format, where the maximum length of every rec­
ord is defined at the time of the file's creation. This format is
permitted with any file organization.

• Variable-length format with a fixed-length control area (VFC),
where every record is prefixed by a fixed-length field. This format
is permitted only with sequential and relative files.

8.4 RMS Functions

RMS provides a number of functions that create and manipulate files.
These functions use RMS data structures to define the characteristics
of a file and its records.

The RMS data structures are grouped into four main categories, as
follows:

• File Access Block (FAB). Defines the file's characteristics, such as
file organization and record format.

• Record Access Block (RAB). Defines the way in which records are
processed, such as the record access mode.

• Extended Attribute Blocks (XAB). Various kinds of extended
attribute blocks contain additional file characteristics, such as the
definition of keys in an indexed file. (Extended attribute blocks
are optional.)

• Name Block (NAM). Defines all or part of a file specification to be
used when an incomplete file specification is given in an OPEN or
CREATE operation. (Name blocks are optional.)

Using VAX-11 Record Management Services (RMS) 175

RMS uses these data structures to perform file and record operations.
Table 8-1 lists some of the commonly used functions.

Table 8-1: Common RMS Run-Time Processing Functions

Category

File
Processing

Record
Processing

Function

sys$create

sys$open

sys$close

sys$erase

sys$connect

sys$get

sys$put

sys$update

sys$delete

sys$rewind

sys$disconnect

Description

Creates and opens a new file of any organiza­
tion

Opens an existing file and initiates file proc­
essing

Terminates file processing and closes the file

Deletes a file

Associates a file access block with a record
access block to establish a record access
stream; a call to this function is required be­
fore any other record processing function can
be used

Retrieves a record from a file

Writes a new record to a file

Rewrites an existing record to a file

Deletes a record from a file

Positions the record pointer to the first record
in the file

Disconnects a record access stream

All RMS functions are directly accessible from VAX-11 C programs.
The synopsis for any RMS function has the following form:

int sys$name(pointer)
struct .rms_structure •pointer;

In this synopsis, name corresponds to the name of the RMS function
(such as OPEN or CREATE); rmS-.Structure corresponds to the name
of the structure being used by the function.

The file-processing functions require a pointer to a file access block as
an argument; the record-processing functions require a pointer to a
record access block as an argument. For example, because sys$create is
a file-processing function, its synopsis would be as follows:

int sys$create(fab)
struct FAB •fab;

176 Chapter 8

Note that these synopses do not show all the options available when an
RMS function is invoked. Refer to Chapter 8 of the VAX-11 Record
Management Services Reference Manual for a complete description of
the RMS calling sequence.

Finally, all of the RMS functions return an integer status value. The
format of RMS status values follows the standard format described in
Chapter 9 of this manual. Because they return a 32-bit integer, you do
not need to declare the RMS functions before you use them.

8.5 Writing VAX-11 C Programs Using RMS

VAX-11 C supplies a number of #include modules that describe the
RMS data structures and status codes. These modules are listed in
Table 8-2.

Table 8-2: V AX-11 C RMS #include Modules

Module Structure
Description Name Tag(s)

fab FAB Defines the file access block structure

rab RAB Defines the record access block structure

nam NAM Defines the name block structure

xab XAB Defines the extended attribute block structure

rmsdef Defines the completion status codes that RMS returns
after every file- or record-processing operation

rms all tags Includes all of the above modules

Most VAX-11 C programmers simply include therms module, which
includes all the other modules.

These #include modules define all the data structures as structure tag
names. However, they perform no allocation or initialization of the
structures; these modules describe only a template for the structures.
To use the structures, you must create storage for them and initialize
all the structure members as required by RMS.

To assist in the initialization process, V AX-11 C provides initialized
RMS data structure prototypes. You can copy these readonly proto­
types to your uninitialized structure definitions with a structure assign­
ment. You can choose to take the default values for each of the struc­
ture members (as initialized by the prototypes), or you can tailor the
contents of the structures to fit your requirements. In either case, you
must use the templates to allocate storage for the structure and to
define the members of the structure.

Using VAX-11 Record Management Services (RMS) 177

The initialized prototypes supply the RMS default values for each
member in the structure; they specify none of the optional parameters.
To determine what default values are supplied by the prototypes, con­
sult the VAX-11 Record Management Services Reference Manual.

The prototype data structures, and the structures which they initialize,
are listed in Table 8-3.

Table 8-3: RMS Prototype Data Structures

Prototype
Structure

Initialized Structure
Tag

cc$rms_fab FAE File access block

cc$rms__rab RAB Record access block

cc$rms_nam NAM Name block

cc$rms_xaball XAB Allocation extended attribute block

cc$rms_xabdat XAB Date and time extended attribute block

cc$rms_xabfbc XAB File header characteristics extended attrib-
ute block

cc$rms_xabkey XAB Indexed file key extended attribute block

cc$rms__xabpro XAB Protection extended attribute block

cc$rms__xa brd t XAB Revision date and time extended attribute
block

cc$rms_xa bsum XAB Summary extended attribute block

You need not declare these structures before referencing them; the
declarations of these structures are contained in the appropriate
#include module.

The names of the structure members conform to the following RMS
naming convention:

typ$s_fld

where typ is the abbreviation for the structure, s is the size of the
member (such as 1 for longword orb for byte), and fld is the member
name (such as sts for the completion status code). See the VAX-11
Record Management Services Reference Manual for a description of the
members in each structure.

178 Chapter 8

8.5.1 Initializing File Access Blocks
The file access block defines the attributes of the file. To initialize a file
access block, you assign the values in the initialized data structure
cc$rms_fab to the address of the file access block defined in your
program. For example:

I* DECLARE ALL RMS DATA STRUCTURES •!
:t:t:include r1T1s

I* DEFINE A FILE ACCESS BLOCK •I
struct FAB fblocKI
111 a in ()
{

I* INITIALIZE THE STRUCTURE */
fblock = ccSrms_fabl

}

Any of these RMS structures may be dynamically allocated. For
example, another way to allocate a file access block is as follows:

I* DECLARE ALL RMS DATA STRUCTURES */

#include rfrlS

111 a in ()
{

}

f* ALLOCATE DYNAMIC STORAGE */
struct FAB •fPtr = malloc(sizeof (struct FAB));

I* INITIALIZE THE STRUCTURE */
•fPtr = ccSrms_fabl

More often than not, you will want to change the default values sup­
plied by the prototype. If so, you must reinitialize the members of the
structure individually. You initialize a member by giving the offset of
the member and assigning a value to it. For example, the statement

fblock.fabSl_xab = &PrimarY_Key;

assigns the address of the extended attribute block named primary_
key to the fab$l__xab member of the file access block named fblock.

Using VAX-11 Record Management Services (RMS) 179

8.5.2 Initializing Record Access Blocks
The record access block specifies how records are processed. You initial­
ize a record access block in a manner similar to the way in which you
initialize a file access block. For example:

#include rrris

struct FAB fblock;

I* DEFINE A RECORD ACCESS BLOCK */
struct RAB rblock;
Illa in ()
{

}

180

I* INITIALIZE THE STRUCTURE */
fblock cc$rms fab;
rblocK = cc$rms rab;

I* INITIALIZE THE fab MEMBER */
rblock.rab$l_fab = &fblocK;

Chapter 8

8.5.3 Initializing Extended Attribute Blocks
There is only one extended attribute block structure, but you can ini­
tialize it seven ways. The extended attribute blocks define additional
file attributes that are not defined elsewhere. For example, the key
extended attribute block is used to define the keys of an indexed file.

All extended attribute blocks are "chained" off of a file access block in
the following manner:

1. In a file access block, you initialize the fab$l_xab field with the
address of the first extended attribute block.

2. You designate the next extended attribute block in the chain in
the xab$l__nxt field of any subsequent extended attribute
blocks. You chain each subsequent extended attribute block in
order by the key of reference (first the primary key, then the first
alternate key, then the second alternate key, and so on).

3. You initialize the xab$l__nxt member of the last extended
attribute block in the chain with 0 (the default), to indicate the
end of the chain.

You go through the same steps to declare extended attribute blocks as
you would to declare the other RMS data structures:

1. You define the structures with #include modules.
2. You assign a specific prototype to the structure in your program.
3. You initialize the members of the structure with the desired

values.

In the following example, two extended attribute block structures are
declared. They are initialized as key extended attribute blocks with the
cc$rms_xabkey prototype. The xab$l__nxt member of the primary key
is initialized with the address of the alternate_key extended attribute
block.

#include rrtls
struct XAB PriMarY-KeYralternate_Key;

111a in ()
{

}

Pri111arY_keY = cc$r111s_xabkeY;
alternate_keY = cc$r111s_xabKey;
Pri111arY_keY.xab$l_nxt = &alternate_Key;

Using VAX-11 Record Management Services (RMS) 181

8.5.4 Initializing Name Blocks
The name block contains default file name values, such as the directory
or device specification, file name, or file type. If you do not specify one
of the parts of the file specification when you open the file, RMS uses
the values in the name block to complete the file specification and
places the complete file specification in an array.

You create and initialize name blocks in the same manner as you would
initialize the other RMS data structures; for example:

#include r111s

struct NAM nam;
struct FAB fabi

111a in ()
{

fab cc$rms_fabj
nam cc$rms_nam;

I* DEFINE THE ARRAY WHERE THE EXPANDED
* FILE SPECIFICATION WILL BE PLACED
*I

char exPanded_name[NAM$C_MAXRSSJj

I* INITIALIZE THE APPROPRIATE MEMBERS */

}

fab.fab$l_nam
n a 111, n a 1~ $ l _es a
nam.nam$b_ess

&n a~1;
B,expanded_name;
sizeof exPanded_namel

8.6 RMS Example Program

The example program in this section uses RMS functions to maintain a
simple employee file. The file is an indexed file with two keys: social
security number and last name. The fields in the record are character
strings defined in a structure with the tag record.

The records have the carriage-return attribute. Individual fields in each
record are padded with blanks for two reasons. First, those fields that
are key fields must be padded in some way; RMS does not understand
C-style strings with the trailing NUL character. Second, the choice of
blank padding as opposed to NUL padding allows the file to be printed
or typed without conversion.

The program does not perform range or bounds checking. Only the error
checking that shows the mapping of VAX-11 C to RMS is performed.
Any other errors are considered to be fatal.

182 Chapter 8

The program is divided into the following sections:

• External data declarations and definitions

• Main program section

• Function to initialize the RMS data structures

• Internal functions to open the file, display HELP information, pad
the records, and process fatal errors

• Utility functions:
- add
- delete
- type
- print
- update

To run this program, you would go through the following steps:

1. Create a source file. (The name of the source file in this exam­
ple is RMSEXP.C.) Chapter 13 describes the EDT editor
which could be used to create the source file.

2. Compile the source file with the command

$ CC RMSE)<P

Chapter 14 describes the compile command and its options.

3. Link the program with the command

$LINK RMSEXP ,SYS$LIBRARY:CRTLIB/OLB

Chapter 14 describes the link command.

4. Because the program expects command line arguments, it
must be defined as a foreign command, as follows:

$ RMSE)<P :== $de1.1ice:[directon·JRMSE)<P

where device is the logical or physical name of the device con­
taining your directory; directory is the name of your directory.
The device name must be preceded by the dollar sign ($) to be
recognized as a foreign command by the DCL interpreter.

Chapter 14 describes the use of foreign commands to execute a
program.

5. Run the program, using the foreign command.

$ RMSE)<P f i 1 enarr1e

The complete listing (by section) of the example program follows.
Notes on each section are keyed to the numbers on the listing.

Using VAX-11 Record Management Services (RMS) 183

-~

("'.)
::r
i>o

~
(!) ...,
00

Example 8-1 shows the external data dtclarations and definitions.

0 The rms module defines the RMS data structures. The stdio module contains the standard I/0 definitions. The ssdef
module contains the system services definitions.

8 Preprocessor variables and macros are defined. A default file-name string is defined as ".dat."

The sizes of the fields in the record are also defined. Some (such as the social security number field) are given a
constant length. Others (such as the record size) are defined as macros; the size of the field is determined with the
sizeof operator. V AX-11 C evaluates constant expressions, such as KEY _SIZE, at compile time. No special code is
necessary to calculate this value.

0 Static storage for the RMS data structures is declared. The file access block, record access block, and extended
attribute blocks are defined by the rms module. One extended attribute block is defined for the primary key and one
is defined for the alternate key.

0 The records in the file are defined using a structure with four fields of character arrays.

0 The BUFSIZ constant is used to define the size of the array that will be used to buffer input from the terminal. The
filename variable is defined as a pointer to char.

0 rms__status is a variable that is used to receive RMS return status information. After each function call, RMS
returns status information as an integer. This return status is used to check for specific errors, end-of-file, or
successful program execution.

c
"' s·

aq

~ :x
I

~
"' 0
p_.

~
I" ::s
I"

~
El
<t> ::s
M-

w
<t>

~
<=;•
<t>
"'

~
'!!},

,....
00
Ct

0 #include r1ns
#include stdio

#include ssdef

8 #define DEFAULT_FILE_NAME

6)

#define RECORD_SIZE
#define SIZE_SSN
#define SIZE_LNAME
#define SIZE_FNAME
#define SIZE_COMMENTS
#define KEY_SIZE

structFABfab;
struct RAB rab;

11 • d at 11

(sizeof record)

15
25
25
15
(SI ZE_SSN ··. SI ZE_LNAME ·7

struct >~AB Prir11arY ~~.e~' talternate_~{eY;

0 struct {
char ssn[SIZE_SSNJ ,last_name[SIZE_LNAMEJ;

SIZE_SSN

char first_name[SIZE_FNAMEJ, comments[SIZE_COMMENTSJ;
}

record;

0 char response[BLJFSIZJ •*filena11ie;

0 int r1r1s_status;

Example 8-1: External Data Declarations and Definitions

SIZE_LNAMEl

-00
~

0
::r
.§
~
ex>

The main function, shown in Example 8-2, controls the general flow of the program.

0 The main function is entered with two parameters. The first is the number of arguments used to call the program;
the second is a pointer to the first argument (filename).

8 This statement checks to see if the correct number of arguments were used when the program was called.

8 If the file name is included in the command line to execute the program, that file name is used. (Note that if a file
type is not given, .dat is the type.) If no file name is specified, then the file name is personnel.dat.

0 The file access block, record access block, and extended attribute blocks are initialized.

0 The file is opened using the RMS sys$open function.

0 The program displays a menu and checks for end-of-file (CTRL/Z).

0 A switch statement and a set of case statements control the function to be called, determined by the response from
the terminal.

0 The program ends when CTRL/Z is entered in response to the menu. At that time, the RMS sys$close function
closes the employee file.

0 The rms_status variable is checked for a return status of RMS$_NORMAL. If the file is not closed successfully,
then the error-handling function terminates the program.

c
[fl s·

IJq

~
>::
I

>--'
>--'

~
(")

0 ...
p_.

s:=
Sl:>
:::1
Sl:>

IJq
(1)

s
(1)

:::1 .,....
w
(1)

< ;:;·
(1)
00

~
w

-00
-.:i

0 r11ain (arsc ,ars 1..1) char **ar8t.!;
{

e if(arac 1llarsc 2)

P r i n t f (11 RMS E >< P - i n c o r r e c t n u fil b e r of a r s u. Iii en t s 11)

else

8
0
0

{

Pr int f (11 RMS E >~ P - Pe rs on n e 1 Database Man i Pu l at i on E J{ a fr\ P 1 e \ n

filenai11e = (arsc == 2? *++ar::i1.i

i n i t i a 1 i z e (f i l en a 111 e)
OPen_file()

for (; ;)
{

11 Pe r s on n e 1 • d at 11)

0 Printf(11 \nEnter option (A~D~PrT~U)
::lets (re·::,ponse);

o r ·--::-· f o r h e 1 P : 11) ;

f)

if (feof(stdin))
b re af;;

P r i n t f (11 \ n \ n 11)

switch(resPonse[OJ)
{

case ;a'~ case 'A-' add_eMPloYee()
breaK;

Example 8-2: Main Program Section

.I ~

-QC
QC

0
::r"
ll>

~
(!)
00

}

case 'd': case 'D':

case 'p': case 'P':

case 't': case 'T':

case 'u 1 : case 'U':

default:
case'?': case '\O':

}

}

delete_emPloYee();
break;

Print_emPloYees();
breaK;

tYPe_emPloYees();
break;

update_emPloYeell;
break;

Printf("RMSE){P-Unkno~•n DPeration.\n"I;

tYPe_oPtions();
break;

8 rms_status = sys$close<lldab);

E> if (rms_status I= RMS$_NORMALl
error_exitl"$CLOSE"l;

}

Example 8-2: (Cont.) Main Program Section

;;?
s·
aq

~

~
"' a
s:::
~
~ s
(D

::s
00
(D

3.
"' (D
fll

~
00
~

-OD
cc

Example 8-3 shows the function that initializes the RMS data structures. Refer to the RMS documentation for more
information about the file access block, record access block, and extended attribute block structure members.

0 cc$rms_fab initializes the file access block with default values. Some members have no default values; they must
always be initialized. (Such members include the file-name string address and size.) Other members can be
initialized to override the default values .

@ This statement initializes the file-processing options member with the "create-if'' option. A file will be created if one
does not exist.

8 This statement initializes the record attributes member with the carriage-return control attribute. Records will be
terminated with a carriage return/line feed when they are printed on the printer or displayed at the terminal.

0 cc$rms__rab initializes the record access block with the default values. In this case, the only member that must be
initialized is the rab$l_fab member, which associates a file access block with a record access block.

0 cc$rms_xabkey initializes an extended attribute block for one key of an indexed file.

0 The position of the key is specified by subtracting the offset of the member from the base of the structure .

0 A separate extended attribute block is initialized for the alternate key.

0 This statement specifies that more than one alternate key can contain the same value (XAB$M_DUP) and that the
value of the alternate key can be changed (XAB$M_CHG).

0 The key-name member is padded with blanks because it is a fixed-length 32-character field.

....
~ =

(".)
t:J"

i
00

initialize(fnl char *fn;
{

0 fab = cc$rms_fab; I* Start bl' initializin.9 FAB */

fab,fab$b_bf(s =a;
fab,fab$Ldna = DEFAULT_FILE_NAME;
fab.fab$b_dns = sizeof DEFAULT_FILE_NAME -1;
fab.fab$b_fao = FAB$M_DEL: FAB$M_GET:

FAB$M_PUT : FAB$M_UPD;
fab.fab$l_fna = frd
fab.fab$b_fns = strlen(fn);

8 fab.fab$l_foP = FAB$M_CIF;
fab.fab$w_mrs = RECDRD_SIZE;
fab.fab$b_ors = FAB$C_Iox;

e fab.fab$b_rat = FAB$M_CR;
fab.fab$b_rfrrt = FAB$C_FIX;
fab.fab$b_shr = FAB$M_NIL;
fab, fab$l_xab = &Pri111an·_k.eY;

0 rab = 00$r111s_rab; I* Initialize RAB*/

rab, rab$l_fab = l'.dab;

0 Prir11ar)'_f(ey = 00$r111s_xa·bk.eY; I* Initialize Prirnan· f\e)'){AB ·U

;;;::
s·

(Jq

~
~

Si
(")

g
p..

~
~
~ s
ro
t:l
<+
00
ro

3.
(")
ro
"'

0

e

0

0

}

Pri1T1arY_KeY.xab$b_dtP = XAB$C_STG;
PrilTlarY_KeY+xab$b_fla = (lj
Prirr1arY_KeY+xab$1,1_posO =(char*) !l,record.ssn - (char*) i',,record;
PriMarY_KeY.xab$b_ref = (lj
Pri1T1arY_Ke;-.xab$b_sizO = SIZE_SSN;
PriMarY_KeY.xab$l_nxt &alternate_KeYi
PrirtlarY_Ke;-.xab$l_Knrtl = "EMPloYee Social Security Nurtlber II ;

alternate_Key = cc$r1T1s_xabf;ey; I* Initialize Alternate f(e;·){AB *i

al te rnate_f\e;•. xab$b_dtP = >:AB$C_STG;
alternate_f\ey.xab$b_fla = XAB$M_DUP: XAB$M_CHG;
alternate_KeY.xab$w_pos0 =(char *l &record.last_nartle - (char*) &,record;
alternate_KeY.xab$b_ref = 1;
al te rnate_f(ey. xab$b_s i zO = SIZE_LNAME;
alternate_Key,xab$l_Kn1Tl = "E1r1Pl0Yee Last Nartle II;

'Ea Example 8-3: Function Initializing RMS Data Structures
~
!!3

-cc -

-cC
N

0
::r
ll>

'"Cl

~
00

Example 8-4 shows the internal functions for the program.

0 The open._file function uses the RMS sys$create function to open the file, giving the address of the file access block
as an argument. The function returns status information to the rms__status variable.

8 The RMS sys$connect function associates the record access block with the file access block.

9 The type_options function, called from the main function, prints help information. Once the help information is
displayed, control returns to the main function, which processes the response that is typed at the terminal.

8 For each field in the record, the pacL..record function fills the remaining bytes in the field with blanks.

0 This function handles fatal errors. It prints the function that caused the error, returns a VAXNMS error code (if
appropriate), and exits the program.

c::::
00 s·

(IQ

;:;:
:x
I

~
(")
0
0..

s;::
Pl
::i
Pl

(IQ
(1)

El
(1)

::i
""'" w
(1)

:;!
r;·
(1)
00

~
!E

......
~
~

8

oPen file()
{

}

0 rrrts_statu.s = S'/S$create(&:fab);

e

if (r111s_status I= RMS$_NORMAL ~,~, r111s_status I= RMS$.. J:REATED)

error_exit("$CREATE");

if (r111s_status == RMS$_CREATEDJ

Printf(11 [Created ne1,,..1 data file+J\.n 11)

rfrls_status = sys$connect(&:rab);

if (r111s_status I= RMS$_NORMAL)

error exit("$CONNECT")i

tYPe_oPtions()
{

P r i n t f (11 Ent e r on e o f t h e f o 1 1 o 1_..1 i n 8 : \ n \ n 11) ;

Ad d an e iti P 1 o y e e + \ n 11) ;

De 1 e t e an e 111P1 o y e e s Pe c i f i e d b / SS N ~ \ n '' .i ~

Print f (11 A

Print f (11 D

Printf("P

Printf("T

Printf("LJ

Printf(11 ?

Print e1r1PlO}'ee(s) by ascend ins SSN on line Printer,\n ·1 ~

T~·pe ei11Plo·;,--ee(s) bY ascendins la.st naiile on ter-1i:"1ina n ,, .:i '

UP date e fTl P 1 o ye e s Pe c i f i e d b Y SS N • \. n \ n 11

TY Pe t h i s t e x t • \ n 11) ;

P r i n t f (11 ••• z Ex i t t h i s P r o 8 r· a rr1 ~ \ n \ n 11)

}

Example 8-4: Internal Functions

-;f

(")
::r
Ill
"O
'""'" ro
00

0 Pad_record()
{

int

for (i

f o r (i

for (i

for (i

}

i ;

strlen(record.ssn)j i SI ZE_SS~H i ++)

record+ssn[iJ =' 1 ;

st r 1 en (record, 1 as t _ n a111 e) ; i
record.last_na111e[iJ =' 'j

st r 1 en (record, first_ n a111 e) ; i

record+first_na11ie[iJ = / ';
strlenCrecord+coMMents>; i

record.coftlfr1ents[iJ =' 1 ;

SI ZE_LNAME; i ++ i

SIZE_nJAMEi i++i

SIZE_COMMENTSi i++l

0 error exit(operation) char *operation /*Fatal error process ins subroutine*/
{

}

P r i n t f (11 RMS E >< P - f i I e '/., s f a i 1 e d ('X, s) \ n 11 t o Pe r at i on ~ f i 1 en a r1i e)
exit(rms status);

Example 8-4: (Cont.) Internal Functions

c:::
"' s·

(Jq

~

~
(")
0
Q..

~
§
Jlcl
m
El
m
:::s
w
m
~ e;·
m
"'

~
w -

-~

Example 8-5 shows the function that adds a record to the file. This function is called when 'a' or 'A' is entered in
response to the menu.

8 A series of do loops controls the input of information. For each field in the record, a prompt is displayed. The
response is buffered and the field is copied to the structure.

@ When all fields have been entered, the pad_record function pads each field with blanks .

8 Three members in the record access block are initialized prior to writing the record. The record access member
(rab$b_rac) is initialized for keyed access. The record buffer and size members (rab$l_rbf and rab$w_rsz) are
initialized with the address and size of the record to be written .

8 The RMS sys$put function writes the record to the file.

0 The rms_status variable is checked. If the return status is normal, or if the record has a duplicate key value and
duplicates are allowed, the function prints a message stating that the record was added to the file. Any other return
value is treated as a fatal error.

......
~

""

n
::r'
po

~
(1)

'"' (XJ

add_efTlPl oYee ()

{

0 do
{

Printf("(ADD)

.9ets (response)

Enter Social Security NUiilber

} 1,.1hile(strlen(response) == Ol

st r n c P }' (rec o rd ~ s ~- n ' res Pons e F SIZE_ SSN)

do
{

Print f (" (ADD)

Sets(resPonse)
Enter Last Nallie

} 1A1hile(strlen(response)= 0);

st r n c P)' (record • 1 as t _ n a11i e ' res Pons e 'SIZE_ L ~JAME)

do
{

Printf("(ADDl

Sets(resPonse)

Enter Fi r·;;;t Nairie

} r,,,1hile(strlen(resPonse) == 0)

I!)

!I)

!l)

~ s·
aq

~

~
0
0
p..

s=
Sl>
i:l

~ s
(I)

i:l
'(/)
(I)

~ h.
(I)

"'

~
'(/)
~

-~

e
0

0

0

}

strncpy(record,first_name1resPonse 1SIZE_FNAMEI;

do
{

Printf(" CADDI Enter Corr11r1ents
Sets (response);
}i,.1hile(strlen(resPonse) == 01;

strncP)' (record, cornments 1resPonse 1SIZE_COMMENTSI;

Pad_record();

rab.rab$b_rac
rab.rab$l_rbf
rab, rab$i,.1_rsz

RAEl$[_KEY;
&record;
RECORD_SIZE;

rrns_status = sys$putC&rab);

II);

if (rms_status ! = RMS$_NORMAL &,& rrns_status ! = RMS$_DUP &,& rrr1s_status ! = RMS$_0K_DUPI
error_exit("$PUT");

else if (rrns_status == RMS$_NORMAL : : rrr1s_status == RMS$_0K_DUPI
Printf("[Record added successfully,]\n");

else
Printf("RMSEXP-Existins" eMPloYee 1~ith same SSN1 not added,\n");

Example 8-5: Utility Function: Adding Records

~ Example 8-6 shows the function that deletes records. This function is called when 'd' or 'D' is entered in response to the
oo menu.

()
i:J"'
i:i>

~ ...
00

0 A do loop prompts the user to type a social security number at the terminal and places the response in the response
buffer.

8 The social security number is padded with blanks.

8 Some members in the record access block must be initialized before the program can locate the record. Here, the key
of reference (O specifies the primary key), the location and size of the search string (this is the address of the response
buffer and its size), and the type of record access (in this case, keyed access) are given.

0 The RMS sys$find function locates the record specified by the social security number entered from the terminal.

0 The program checks the rms_status variable for the values RMS$-.NORMAL and RMS$_RNF (record not
found). A message is displayed if the record cannot be found. Any other error is a fatal error.

0 The RMS sys$delete function deletes the record. The return status is checked only for success.

delete_emPloYeell
{

0
int i ;

do
{

Printfl "I DELETE I Enter Social Secu.rit)' Nu.;11ber "I;
sets(response);
i = strlenlresponse);

} '•'hi re (i = = 0) ;

f} 1,1hileli < SIZE_SSNI
resPonse[i++] , , .

'

~ s·
aq

~ ,..... ,.....

~
(') a
s;::
§

~
s
§ .,..._

r:n
~ e.;·
('D

"'
~
!!3

-~ ~

e

e
0

}

rab, rab$b_f; rf = 0;
rab. rab$l_Kbf =&response;
rab, rab$b_K.sz = SIZE_SSN;
rab, rab$b_rac = RAB$C_KEY;

rrns_status = sys$find(!'.>,rabl;

if (rrr1s_status ! = RMS$_NORMAL !',,!\, rrr1s_status ! = RMS$ __ RNFJ
error_ exit ("$FI ND") ;

else if (rrns_status == RMS$_RNFl

else

0

Printf("RMSE><P-sPecified err1Pl0Yee does not e><ist,\n");

{

rflls_status = s\•s$delete C&rab);
if (rrr1s_status != RMS$_NQRMALl

error_exit("$DELETE");
}

Example 8-6: Utility Function: Deleting Records

g

0
t:r
I»

'"g_
(!)
00

The type_employees function in Example 8-7 displays the employee file at the terminal. This function is called from
the main function when 't' or 'T' is entered in response to the menu.

0 A running total of the number of records in the file is kept in the number_employees variable.

8 The key of reference is changed to the alternate key so that the employees are displayed in alphabetical order by last
name.

8 The file is positioned to the beginning of the first record according to the new key of reference, and the return status
of the rms$rewind function is checked for success.

9 A heading is displayed.

0 Sequential record access is specified, and the location and size of the record is given.

0 A for loop controls the following operations:

• Incrementing the number_employees counter.
• Locating a record and placing it in the record structure, using the RMS sys$get function.
• Checking the return status of the RMS sys$get function.
• Displaying the record at the terminal.

8 This if statement checks for records in the file. The result is a display of the number of records or a message
indicating that the file is empty.

tYPe_eMPlorees()
{

0

•
•

int nuMber_e1nPlo>·eesj

rab, rab$b_f(rf = 1;

rMs_status = srs$re1,1indl&rabl;
if (rMs_status ! = RMS$_NORMALl

error_exitl"$REWIND"I;

c::
"' s·

IJCl

~

~
<":> a
s;::
$)>
::s
~ s
<D ::s
00
<D

'.<! c:;·
<D

"'
~
!!3

~ -

e

0

0

e

}

Printf("\n\nEmPlo>·ees (Sorted by Last Narriel\n\n");
Printfl"Last Name
Printf("---------

First Nar11e

rab.rab$b_rac
rab.rab$l_ubf
rab.rab$w_usz

RABSC_SEQ;
l\,record;
RECDRD_SIZE;

SSN

for(nUrnber_eftlPlOYees = (lj ;number_eftlPlO)'ees++)
{

rrns_status = s'·s$set(&rab);

[: 0 fTHTl en t s \ n II) ;

- - - - - - - - \ n \ n 11)

if (rms_status ! = RMS$_NORMAL !';,!',, rr11s_status 1 = RMS$_EC!Fl
error_exitC"SGET"I;

else if Crr11s_status == RMS$_EOF)
breaK;

Printfl"%,•s%.•s%.•s%.•s\n" .SIZE_LNAME.record.last_name~
SIZE_FNAME1record,first_name.
SIZE_SSN1record.ssn.
SIZE_COMMENTS,record.commentsl

}

if (n Urrl be r _ e 111P1 o ,. e es)
P r in t f (11 \ n To t a 1 nu rrt b e r of e frl P 1 o y e e s :;: /., d , \ n 11 t n u rr1 b e r __ e rr1 P 1 o y e e s)

else
Printfl"[Data file is er11Pt;·,J\n");

Example 8-7: Utility Function: Typing the File

~ Example 8-8 shows the function that prints the file on the printer. This function is called by main when 'p' or 'P' is
N entered in response to the menu.

(")
t:l"'
.§
£" ...
00

0 This function creates a sequential file with carriage-return-control, variable-length records. It spools the file to the
printer when the file is closed. The file is created using the UNIX 1/0 creat function, thus associating the file with
an integer file descriptor (filedes).

$ The file descriptor is associated with a file pointer (fp), so that the file can be processed with standard 1/0 functions.

8 The key of reference for the indexed file is the primary key.

8 The sys$rewind function positions the file at the first record. The return status is checked for success.

0 A heading is written to the sequential file using the standard 1/0 function fprintf.

0 The record access, user buffer address, and user buffer size members of the record access block are initialized for
keyed access to the record located in the record structure.

0 A for loop controls the following operations:

• Initializing the running total and then incrementing the total at each iteration of the loop.
• Locating the records and placing them in the record structure with the RMS sys$get function, one record at a

time.
• Checking the rms__status information for success and end-of-file.
• Writing the record to the sequential file.

0 The number_employees counter is checked. If it is zero, a message is printed indicating that the file is empty. If it is
not zero, the total is printed at the bottom of the listing.

0 The sequential file is closed. Since it has the spl record attribute, the file is automatically spooled to the printer. The
function displays a message at the terminal stating that the file was successfully spooled.

e
"' s·

crq

;;:
:x
I ,.... ,....

~
('";)

0
0...

$:
I>' ::s
I>' crq
Cl)

s
Cl)

::s ,...
rn
Cl)

::1
<=:;•
Cl)

"' s
$:
rn

N
0
~

Print_emPloYees()
{

0

f)

e
0

0

int nu1T1ber_er1iPlo'/ees;
int filedes;
FILE *f P;

f i 1 e d e s = c r e at (11 Pe r s on n e 1 + 1 i ~- 11 t 0 t 11 r at = c r 11 ~ 11 r f iri = 1.) a r 11 ~ 11 f o p = s p 1 11

if (filedes == --1)

Pe r r o r (11 RMS E)-{ P - f a i 1 e d o Pen i n .s· 1 i s t i n 8 f i 1 e (c r e at ()) 11

exit(SS$_MORMAL)

f P f d o Pen (f i 1 e d e s t 11 1,...1 11) ;

if (I f P)

Pe r r o r (11 RMS E }(P f a i 1 e d o Pen i n 8 1 i s t i n .g f i 1 e (f d o Pen (

exit (SS$.. NORMAL)

rab.rabib Krf = o;

r1r1s._statu.s = s:.-:s$-re1A1ind (/l:rab)

if (r111s status I= RMS$_NORMAL)

e r r o r __ e x i t (11 $ r:;:· E L>J I ~~ D 11)

f P r i n t f (f P ~ 11 \ n \ n E 111 P 1 o y e e s (So r t e d by SS I"~) \ n \ n 11)

fprintf(fp,"Last Mar11e
fPrintf(fp ,"-····---------

Fir· st l"-L=1ii"1 e SSN Cofii111ents \n ! ;

\ n \ n 11 '1 ~

Example 8-8: Utility Function: Printing the File

N
Q

"'""
(i)

8

0

Ci)

0 }
g"

rab, rab$b_rac = RA5$C_SEQ;
rab, rab$l_ubf =&,record;
rab, rab$1,;_usz = RECDRD_SIZE;

for (nu1rtbe r_e1r1Pl Ol'ees = 0; inu1rtbe r_eh1Pl Ol'ees++ l
{

rms_status = 5)'5$.!l'et (&,rab l;
if (r1r1s_status != RMS$_NORMAL && r1r>s_statu.s != RMS$_EOFl

error_exit("$GET"l;
else if (r1r1s_status == RMS$_EOF)

breaK;

fPrintf(fPo"Z,•sZ,•sZ.•sZ.•s\n" oSIZE_LNAME, record.last_name'
SIZE_FNAME.record.first_name•
SIZE_SSNorecord.ssnt
SIZE_COMMENTSorecord.comments)

}

if (number_eh1Pl0Yeesl
f Printf (fp o"\nTotal number of e1r1Ployees 'Y..d + \n 11 tnu111be r_err1Pl 01·ees);

else
fPrintf(fp,"[Data file is e1r1Pt)·,J\n"l;

fclose(fp);
Printf("[Listins' file \"personnel.lis\" sPooled to SYS$PRINT,J\n");

~ Example 8-8: (Cont.) Utility Function: Printing the File

CXl

~ s·
11<1

~

~
n a
a;::
ll>
l:I
ll>

~ s
<1l

~
00

~ n·
<1l
(/J

~
!!3

N = ~

Example 8-9 shows the function that updates the file. This function is called by main when 'u' or 'U' is entered in
response to the menu.

0 A do loop prompts for the social security number and places the response in the response buffer.

8 The response is padded with blanks so that it will correspond to the field in the file.

9 Some of the members in the record access block are initialized for the operation. The primary key is specified as the
key of reference, the location and size of the key value are given, keyed access is specified, and the location and size
of the record are given.

0 The RMS sys$get function locates the record and places it in the record structure. The function checks the
rmS--Status value for RMS$_NORMAL and RMS$-RNF (record not found). If the record is not found, a message
is displayed. If the record is found, the program prints instructions for updating the record.

0 For each field (except the social security number, which cannot be changed), the program displays the current value
for that field. If the user types @, the record is placed in the record structure unchanged. If the user makes a change
to the record, the new information is placed in the record structure.

0 The fields in the record are padded with blanks.

8 The RMS sys$update function rewrites the record. The program then checks that the update operation was
successful. Any error causes the program to call the fatal error-handling routine.

~
0
~

(1

5
'O
(1:)
00

!JPdate efrtPlo'/ee(

int i ;

0 do
{

Printf("(UPDATEi Enter Soci.al Security Nu1f1ber "i

8

e

sets(responsei;

i = strlen(resPonse)
} IAlhile(i == 0);

IA!hile(i SIZE_SSNi
resPonse[i++J

rab.rab$b_krf

rab.rab$1 Kbf
rab.rab$b_ksz
rab.rab$b rac
rab.rab$l ubf
rab.rab$w_usz

0;

&:response;

SIZE_SSN;
RAB$C_~;EY;

&:record;
RECORD_srzE;

0 rf11s_status = sys$Set (&:rab)

if (r111s status t = RMSS_NORMAL i\,i\, r1r1s statu·s
error ex i t (11 $GET 11) ;

else if (rr11s status= RMSS_RtiFi

RMSLRt·ff i

Printf(11 RMSE>~P-sPecified ei11Pl0Yee doe·; not e;-·"i.'c~-t~\n

e
00

5·
~

< >
><
I

~
(")
0 ...
0..

s;.:
~
::i
~

~
s
<1l

~
w
<1l

~ ;·
<1l
00

~
w
~

N = -:i

0 e 1 s e

0

0

}

{

P r i n t f (11 En t e r t h e n e 1,,.1 d at a o r < r· e t u r n > t o 1 e a 1...i e d a t a
u n 111 o d i f i e d + \ n \ n 11)

Print f ("Last N a11> e:
sets(resPonse) i
if (strlen(resPonse))

'X, t *'=· 11 r S I Z E _ L NAME r r e c o r d .; l fl s t n EUii e)

st r n c PY (record + 1 as t _ n a iri e t res Pons e ffe SIZE_ L ~-~AME) ~

Printf("First Na11re: 'X,,*s 11 f S I Z E __ F NAME t r e c o r d + f i r s t ··- n a Iii e)
sets(resPonse) i
if (strlen(resPonse))

strncPY(record+first nar1ie tresPonse tSIZE __ FNAME);

Printf(11 CoMMents: ~~ .. * s 11 ~SIZE_ COMMENTS t rec o r· d + co i1Hf1 en t ~-)

Sets(resPonse);
if (strlen(resPonse)

strncpy(record.comments .response 1SIZE_COMMENTSJ

Pad record();

r111s_status = sys$update (!',,rab)

if (r111s status 1 = RMS$_NORMAU
error_exit("$UPDATE");

P r i n t f (11 [Re c o rd h as b e en s u c es s f u 1 1 ,, u Pd at e d t J \ n 11)

}

Example 8-9: Utility Function: Updating the File

Chapter 9

Mixed-Language Programming

Mixed-language programming is possible with V AX-11 C because the
architecture of V AX-11 computers defines a set of conventions - the
V AX-11 Calling Standard - that enables argument passing among
procedures. With the calling standard you can write functions in C that
invoke procedures written in other VAX-11 native-mode programming
languages.

The VAX-11 Calling Standard defines the way a reference to a non-C
function must be written in a C program. For a C function to call a non­
e function that expects to receive immediate values in, its argument
list, the calling method is quite similar to that for calling an external C
function. If the non-C function expects to receive arguments by refer­
ence or by descriptor, a function reference in the C program can still be
written using familiar C operations and concepts. For example, if you
want to call a C function from some other language such as PL/I, the
only specific knowledge you need about C is the precise manner in
which C's data types are represented on a V AX-11 computer (see
Chapter 11); you can find the remaining information in the documenta­
tion for the other language, in this case the VAX-11 PL/I User's Guide.

The calling standard allows all communication among the native-mode
VAX languages to be done within the languages themselves. The source
modules for a program can be written in any of the languages, and as
long as each module follows the calling standard, the linker will take
the compiled object modules and construct an executable program
image. It is not necessary to construct your own call interfaces to
VAX/VMS system services, since the necessary definition text is pro­
vided with V AX-11 C #include modules contained in the library
SYS$LIBRARY:CSYSDEF.TLB.

This chapter reviews the implementation of function calls in V AX-11 C
and the VAX-11 Calling Standard. (If necessary, you can consult Ap­
pendix C of the VAX-11 Architecture Handbook for more details.) This
chapter also explains the methods for calling non-C functions in
V AX-11 C. It assumes that you know the C conventions and rules for
passing arguments to external procedures, as described in Chapter 4. If
you are interested in calling C functions from some other language, see
Chapter 10.

208

Most of the examples in this chapter show calls to VAX/VMS system
service procedures. The system services are available to all VAX/VMS
installations and use all forms of argument passing. However, the ex­
amples do not fully describe the procedures themselves. For further
details on system services, see the VAX/VMS System Services Refer­
ence Manual.

9.1 The Call Stack

The calling standard defines a call stack as a temporary storage area for
each user process. The VAX-11 hardware maintains information on the
call stack about each block activation in the current image.

9.1.1 Call Frames
Whenever a function is activated in a C program, the hardware creates
a structure - the call frame - on the call stack for the function. The
call frame for each activation contains:

• A pointer to the call frame of the previous function activation.
This pointer is called the Frame Pointer (FP).

• The saved Argument Pointer (AP) of the previous activation.

• The address in storage of the point of invocation of the function,
that is, the address of the next instruction following the function
reference that activated the current function. This address ·is
called the Program Counter (PC), or saved PC.

• The saved contents of some of the general registers and other
control information (such as the condition codes in the processor
status word, or PSW). Based on a mask specified in the control
information, the system restores these registers when control re­
turns to the caller.

Figure 9-1 illustrates the call stack and several call frames. Function A
calls function B, which calls function C. When a function reaches a
return statement or when control reaches the end of the function, the
system uses the frame pointer in the call frame of the current function
to locate the frame of the previous function. It then removes the call
frame of the current function from the stack.

9.1.2 The Argument List
All function parameters are passed by means of an argument list, which
consists of a series of up to 255 longwords. The argument list for a
function activation is pointed to by a register called the Argument
Pointer (AP).

Mixed-Language Programming 209

~ -Q

(")
::;,-"

~
(1)
tO

T T
0 I~ B

~ I FP

PC

R2

;:::,: . ;:::,:

I R1~--=1

Figure 9-1: The Call Stack

AP - copy of argument pointer
for function A

FP - pointer to A's call frame
PC - memory location in A at

which B was invoked
R2 - contents of A's general

registers R2 through R11

c

ZK-090-81

The first longword in the argument list always contains, in its low-order
byte, the number of arguments (longwords) that were passed; the first
longword itself is not included in this number. Figure 9-2 illustrates the
format of an argument list.

The calling standard defines three ways that data can be passed in an
argument list. When you code a reference to a non-C procedure, you
must know how each argument should be passed and write the function
reference accordingly.

The three argument-passing mechanisms are:

• By immediate value. When an argument is passed by immediate
value, the actual value of the argument is present in the argument
list. This is the default argument-passing mechanism for all func­
tion references written in VAX-11 C.

• By reference. When an argument is passed by reference, the ad­
dress of the argument is present in the argument list. The C am­
persand operator (&) is used to pass the address in the argument
list.

• By descriptor. When an argument is passed by descriptor, the
address of a data structure describing the argument is present in
the argument list. From a C program, you pass a descriptor first by
creating a structure (struct) that meets the descriptor require­
ments of the called procedure and then by passing the structure's
address with the ampersand operator (&).

9.2 Passing Arguments by Immediate Value

By default, all values or expressions in a VAX-11 C function's argu­
ment list are passed by immediate value. That is, the expressions are
evaluated and the results placed directly in the argument list of the
CALL machine instruction.

The following statement declares the entry point of the Set Event Flag
SYS$SETEF1 system service, which is used to set a specific event flag
to 1. The Set Event Flag system service call requires one
argument - the number of the event flag to be set - to be passed by
immediate value.

int SYS$SETEF () ;
I* FUNCTION RETURNING INT */

1. VAX-11 C converts linker-resolved variable names (such as the entry-point
names of system service calls) to uppercase. You do not have to declare them in
uppercase in your program. However, linker-resolved variable names must be
declared with identical cases. The documentation uses uppercase as a conven­
tion for referring to system service calls to highlight them in the text and exam­
ples.

Mixed-Language Programming 211

Like all system services, SYS$SETEF returns an integer value (the
return status of the service) in register 0.1 In the declaration of external
functions, the C syntax does not indicate the number or types of the
arguments, nor does C compare the types of arguments with the types
that the system service requires. It is your responsibility to ensure that
the argument list of an external function reference contains valid argu­
ments.

In the VAX/VMS System Services Reference Manual you can find the
specification of each service's arguments. SYS$SETEF, for example,
takes one argument, an event flag number. It returns one of four status
values, which are represented by the following symbolic constants:

Returned Status Description

SS$_WASCLR Success Flag was previously clear

SS$_WASSET Success Flag was previously set

SS$__ILLEFC Failure Illegal event flag number

SS$_UNASEFC Failure Event flag not in associated
cluster

The system services manual also defines event flags as integers in the
range 0 to 127, grouped in clusters of 32. Clusters 0 and 1, comprising
flags 0 to 31 and 32 to 63, respectively, are local clusters available to
any process, with the restriction that flags 24 to 31 are reserved for use
by VAX/VMS. There are many ways of passing valid event flag num­
bers from your C program to SYS$SETEF. One way is to use enum to
define a subset of integers:

enuM clusterO {cOiTlPletion tbrea~\do1A1n tbesinnin.5} et.ient;

Once the flag numbers have been defined, the SYS$SETEF service can
be called by writing:

int status;
event = comPletion;

statu.s SYS$SETEF(e1.ient); I* SET EVENT FLAG */

1. Most system services return an integer completion status; therefore, the sys­
tem service does not always have to be declared before it is used. The examples
in this chapter declare system services for completeness.

212 Chapter 9

Figure 9-3 shows an argument being passed by immediate value - in
this case, the event flag number passed to SYS$SETEF.

9.2.1 Checking System Service Return Values
The custom in V AXNMS programming is to compare the return status
of a system service with a global symbol, not with the literal value
associated with a particular return status. Consequently, a high-level
language program should define the possible return status values for a
service as symbolic constants. In VAX-11 C, you can do so by including
the text library module ssdef; Example 9-1 shows how this is done.

I* DEFINE SYSTEM SERVICE STATUS VALUES */
**include ssdef
#include stdio

I* DECLARATION OF THE SERVICE (not re9uiredl */
int SYS$SETEF (l ;

I* CALLING FUNCTION */
~ia in ()
{

I* STATUS OF $SETEF */
int efstatus;

I* ARGUMENT VALUES FDR $SETEF */
enufll clusterO {co~1Pletion •breaf\down 1besinnins}
event;

event = coMPletion;

Example 9-1: Checking System Service Return Values

Mixed-Language Programming 213

I• SET EVENT FLAG •I
efstatus = SYSSSETEFCeventl;

I• TEST RETURN STATUS •I
if(efstatusl ==. SSS_WASSETl

{

fPrintf Cstderr,"Flal was already set\n");
}

else if(efstatus == SS$_WASCLRI
{

fprintf (stderr 1"Fla1 1,,ias Pre11iously clear\n");
}

else fPrintf(stderr1
"Could not set COMPietion event fla1.\n \
Possible Prolra1~1r1inl error.\n");

exit(efstatus);

Example 9-1: (Cont.) Checking System Service
Return Values

The system service return status values (88$_ WASSET and
88$_ W ASCLR) in Example 9-1 are defined by the #include text mod­
ule ssdef.

In the example, the statement executed when an error occurs also shows
behavior typical of programs running under V AXNMS. With the state­
ments

else fprintf(stderr1
"Could not set COMPietion event fla1,\n \
Possible ProlraMMinl error,\n");

exit<efstatusl;

the example program attempts to provide a program-specific error mes­
sage and then passes the offending error status to the caller. If the
program were to be executed by the DCL, then any status value re­
turned by the program would be interpreted by DCL. DCL prints a
standard error message on the terminal to provide you with more infor­
mation about the reason for the failure. For example, if the program
were to encounter the SS$_1LLEFC return status, the following mes­
sages would be displayed:

Could not set 'coMPletion' event flal.
Possible prolraMMinl error.
%SYSTEM-F-ILLEFCo illelal event flal cluster.

214 Chapter 9

a:=
~-
0...

r
~

l
$l:>

s s s·
aq

Argument Pointer (AP)

not used I n

argument_1

argument_2

~ ~

n =argument count

bits 4 through 31
are reserved by
DIGITAL

I argument_n I
ZK-091-81

Figure 9-2: An Argument List

main()

{
I Argument pointer (APfJ-----------.

number of arguments:

first argument: 4
SYS$SETEF (4);

}
ZK-092-81

N Figure 9-3: Passing Arguments by Immediate Value -01

9.2.2 Passing Floating-Point Arguments by Immediate Value
Because argument lists consist of longwords, the calling standard dic­
tates that immediate-value arguments be expressible in 32 bits. A
single-precision floating-point (F-floating) value is only 32 bits long,
but all arguments of type float are promoted by C to double (on a
VAX-11, 64 bits). This double-precision value is passed as two immedi­
ate values (two longwords).

NOTE

The passing of double-precision immediate values is a vio­
lation of the usual V AX-11 procedure-calling standard, but
is an allowed exception for V AX-11 C.

On rare occasions, the float-to-double promotion requires some addi­
tional programming. For instance, the function OTS$POWRJ, in the
VAX-11 Common Run-Time Procedure Library, computes the value of
a floating-point number raised to the power of a signed longword (in C
terms, a float to the power of an int). This function (and others like it)
is called implicitly by high-level VAX languages that have an exponen­
tiation operator as part of the language. It requires that both its argu­
ments be passed as immediate values, and it returns a single-precision
(float) result. To pass a floating-point base to the procedure, you must
use some method that avoids the promotion of float arguments. One
such method is to use a structure, as shown in Example 9-2:

By default, structures, like everything else, are passed by immediate
value. Thus, in Example 9-2 the argument is not interpreted as a float
and is not promoted to double.

The great majority of run-time functions that operate on floating-point
values take their arguments by reference, so the procedure illustrated
by Example 9-2 is not usually necessary. You should note, in addition,
that the example does not illustrate the methods for handling arith­
metic errors that result from the operation performed. For more infor­
mation on error handling in this context, and on the run-time library in
general, see the VAX-11 Run-Time Library Reference Manual.

216 Chapter 9

#include stdio

I* FUNCTION RETURNING FLOAT; CALLING SEQUENCE IS
* OTS$POWRJ(base 1Po1,1er), WHERE base
* IS A float AND POWER IS AN int
*I

float OTS$POWRJ()j

I* PROGRAM CALLING OTS$POWRJ *I
111a in ()
{

}

I* OTS$POWRJ RESULT */
float result;

I* POWER ARGUMENT */
int po1,.,1er;

I* STRUCTURE USED TO PASS FLOAT BY VALUE */
struct { float fj > base;

I* ASSIGN CONSTANT <IMPLIED float) TO BASE*/
base.f = 3.1l!5j
po1,..1er = 2;
result = OTS$POWRJ(base 1Po~1er);

Printf <"Result= Zf\n" 1result);

Example 9-2: Passing Floating-Point Arguments by
Immediate Value

Mixed-Language Programming 217

9.3 Passing Arguments by Reference
Some system services and run-time library procedures expect argu­
ments passed by reference. This means that the argument list (in the
CALL machine instruction) contains the address of the argument
rather than its value. This mechanism is also used by default by some
programming languages, such as PL/I, and is available at the program­
mer's option in others, such as PASCAL.

In V AX-11 C, you can use the ampersand operator (&) to pass an
argument by reference, that is, the ampersand operator causes the ar­
gument's address to be passed. Note also that an array or function
name in an argument list always results in passing the address of the
array or function; the ampersand is not required in such cases.

In the special case of argument lists, VAX-11 Callows the ampersand
operator to be used on constants as well. (However, you should limit
this use of the ampersand to calls to V AXNMS system functions to
ensure portability of your VAX-11 C programs to other C compilers.)

For example, the Read Event Flags (SYS$READEF) system service
requires that its first argument be passed by immediate value and its
second argument be passed by reference. SYS$READEF returns the
status of all the event flags in a particular cluster. (Event flags are
numbered from 0 to 127 and arranged in clusters of 32, such that flags 0
to 31 comprise cluster 0, flags 32 to 63, cluster 1, and so forth.) The first
SYS$READEF argument is any event flag number in the cluster of
interest. The second argument is the address of a longword that re­
ceives the status of all 32 event flags in that cluster. In addition to the
event-flag status value, the system service returns one of the following
status values, expressed here as global symbols:

Returned Status Description

SS$_WASCLR Success Specified event flag was clear

SS$_WASSET Success Specified event flag was set

SS$__ACCVIO Failure Could not write to status long-
word

SS$__ILLEFC Failure Event flag number was illegal

SS$_UNASEFC Failure Cluster of interest not accessible

Example 9-3 shows a call to the SYS$READEF system service from a C
program.

218 Chapter 9

I* DEFINE SYSTEM SERVICE STATUS VALUES */
#include ssdef
#include stdio

I* DECLARATION OF SREADEF Cnot re~uiredl */
int SYSSREADEF C I ;

I* CALLING FUNCTION */
hl a in ()
{

}

f* LONGWORD THAT RECEIVES THE
STATUS OF THE EVENT FLAG CLUSTER */

unsilned cluster_status;

I* RETURN STATUS OF SREADEF */
int return_status;

I* ARGUMENT VALUES FOR SREADEF */
enurrl clusterO { corrtPletion .breaHdo1,1n 1belinninl}
e 1.1 en t;

I* EVENT FLAG IN CLUSTER 0 *I
event = completion;

I* OBTAIN STATUS OF CLUSTER 0:
* PASS VALUE OF event AND
* ADDRESS OF cluster_status

*' return_status SYSSREADEFCevent1
&cluster_statusl;

I* CHECK FOR SUCCESSFUL CALL */
if(return_status != SSSWASCLR &&

return_status != SSSWASSETI
{

I* ERROR PROCESSING */

}

else
{

f* CHECK BITS OF INTEREST IN cluster_status */

}

Example 9-3: Passing Arguments by Reference

Mixed-Language Programming 219

Figure 9-4 illustrates argument passing by reference - in this case, to
the SYS$READEF system service.

9.4 Passing Arguments by Descriptor

A descriptor is a structure that describes the data type, size, and ad­
dress of a datum. According to the VAX-11 Calling Standard, you must
pass a descriptor by placing its address in the argument list. To pass an
argument by descriptor from a VAX-11 C program, you perform the
following steps:

1. Write a struct declaration that models the required descriptor.
This involves including the text library module descrip to define
struct tags for all the forms of descriptors.

2. Assign appropriate values to the structure members.

3. Use the structure name, with an ampersand operator (&) in the
function reference, to put the structure's address in the argu­
ment list.

In default cases, VAX-11 C never passes arguments by descriptor. For
example, when structure or union names are written in a function's
argument list without the ampersand operator, the structure or union is
passed by immediate value to the called function. You pass arguments
by descriptor only when the called function is written in another lan­
guage and explicitly requires this mechanism.

There are several classes of descriptor. Each class requires that certain
bits be set in the first longword of the descriptor. These classes, and the
format of the descriptor defined by each, are described in the VAX-11
Architecture Handbook. In accordance with the information in the
handbook, descriptors can be modeled as follows in VAX-11 C:

struct dsc$descriPtor
{

220

unsilned short dsc$w_lenlth;
char dsc$b_dtYPe
char dsc$b_class

char •dsc$a_Pointer

/•LENGTH OF DATUM•/
!•DATA TYPE CODE•/
!•DESCRIPTOR CLASS

CODE•/
I• HAS ADDRESS OF

FIRST BYTE*/

Chapter 9

~
~·
<D c..

r =
~
~
'"d

~
ll> s s s·

(Jq

ts -

FLAGS

main()

{
unsigned flags; Argument Pointer (AP)

SYS$READEF(4,&flags); number of arguments:

} first argument:

2

4

second argument: address of variable

ZK-093-81

Figure 9-4: Passing Arguments by Reference

In this model, dsc$w_length is a 16-bit word containing the length of
the entire datum; the unit (for example, bit or byte) in which the length
is measured depends on the descriptor class. The dsc$b_dtype mem­
ber is an 8-bit byte containing a numeric code; the code denotes the
data type of the datum. The class member dsc$b_class is another byte
code giving the descriptor class. The valid class codes are as follows:

Class Code Symbolic Name Descriptor Class

1 DSC$K_CLASS_S Scalar, string
2 DSC$K_CLASS_D Dynamic string

3
4
5
6
7
8

9-191
192-255

DSC$K_CLASS_A
DSC$K_CLASS_F
DSC$K_CLASS_FI
DSC$K_CLASS_J
DSK$K_CLASS_JI

descriptor
Reserved by DIGITAL
Array
Procedure
Procedure incarnation
Label
Label incarnation
Reserved by DIGITAL
Reserved for customer
applications

The last member of the structure model, dsc$a_pointer, points to the
first byte of the datum.

To pass an argument by descriptor, you define and assign values to the
datum following the normal C programming practices. You must define
a structure of the form shown above and assign the datum's address to
the pointer member. You must also assign appropriate values to the
other members, dscw_length, dscb_dtype, and dsc$b_class. See
the Architecture Handbook for the specific requirements of each de­
scriptor class.

For example, the Set Process Name (SYS$SETPRN) system service,
which enables a process to establish or change its process name,
accepts a process name as a fixed-length character string passed by
descriptor. The character string can have from 1 to 15 characters. The
system service returns the status values denoted by the global names
SS$_NORMAL, SS$_ACCVIO, SS$_DUPLNAM, and
SS$-1VLOGNAM (for normal completion, inaccessible descriptor, du­
plicate process name, and invalid length, respectively). Example 9-4
shows a call to this system service from a C program.

222 Chapter 9

/*DEFINE SYSTEM SERVICE STATUS VALUES•/
#include ssdef
/•DEFINE STRUCTURES FOR DESCRIPTORS*/
#include descriP
#include stdio

/•DECLARATION OF THE SERt.JICE (not required)*/
int '.3YS$SET PRN () ;

/•PROGRAM CALLING $SETPRN•/
111 a in ()
{

}

!•RETURN STATUS OF $SETPRN•/
int retj

!•NAME DESCRIPTOR•/
struct dsc$descriPtor_s naMe_desc;

I• NEW PROCESS NAME•/
char •naMe = "NEWPROC"j

!•LENGTH OF NAME WITHOUT NUL TERMINATOR•/
naMe_desc.dsc$w_lenlth = strlen(naMel;

!•PUT ADDRESS OF SHORTENED
STRING IN DESCRIPTOR•/

naMe_desc.dsc$a_Pointer = naMe;

!•STRING DESCRIPTOR CLASS•/
naMe-desc.dsc$b_class = DSC$K_CLASS_s;

/•DATA TYPE IS ASCII STRING•/
naMe-desc.dsc$b_dtYPe = DSC$K_DTYPE_T;

ret = SYS$SETPRNl&naMe_desc);

!•TEST RETURN STATUS*/
if(ret I= SS$_NORMALl
fPrintf(stderr1 "Failed to set process

na111e\n")'
exit(ret)j

Example 9-4: Passing Arguments by Descriptor

Mixed-Language Programming 223

Note that the call to SYS$SETPRN must use the ampersand operator;
otherwise name_desc, rather than its address, is passed.

Although this example explicitly sets individual fields in its
name_desc string descriptor, in practice, the run-time initialization of
compile-time constant string descriptors is not performed in this man­
ner. Instead, the fields of compile-time constant descriptors are usually
initialized with statically initialized structures.

For the purpose of string descriptor initialization, VAX-11 C provides
a simple preprocessor macro in the #include text library module de­
scrip. This macro is named $DESCRIPTOR. It takes two arguments,
which it uses in a standard C structure declaration. The first argument
is an identifier specifying the name of the descriptor to be declared and
initialized. The second argument is a pointer to the data byte to be
used as the value of the descriptor. (Because a character-string con­
stant is interpreted as an initialized pointer to char, you may specify
the second argument as a simple string constant.) The $DESCRIPTOR
macro may be used in any context where a declaration may be used.
The scope of the declared string descriptor identifier name is identical
to the scope of a simple struct definition as expanded by the macro.

Example 9-5 shows a variant of the program in Example 9-4. Here, the
$DESCRIPTOR macro is used to create a compile-time string descrip­
tor and to pass it to the SYS$SETPRN system service routine. In
Example 9-5, the program simply returns the status value returned by
SYS$SETPRN to DCL for interpretation.

/*DEFINE $DESCRIPTOR MACRO*/
#include descriP

/*DECLARE THE SERl.JICE (not re9uired) */
int SYS$SETPRN < l;

/*PROGRAM CALLING $DESCRIPTOR*/
rr1a in ()
{

}

/*INITIALIZE STRUCT naMe_desc AS STRING
DESCRIPTOR*/

static $OESCRIPTDR<narr1e_desc •"NEWPRDC");

return SYS$SETPRN<&naMe-desc);

Example 9-5: Passing Compile-Time String Descriptors

The $DESCRIPTOR macro is used in further examples in this chapter.

224 Chapter 9

9.5 Variable-Length Argument Lists

Although most system services and other external procedures require a
specific number of arguments, some accept a variable number of op­
tional arguments. Because C function declarations never show the
number of parameters expected by external functions, the way you call
an external function from a VAX-11 C program depends on the seman­
tics of the called function. Briefly stated, you must always supply the
number of arguments that the external function expects. The rules are
as follows:

• When optional arguments occur between required arguments, they
cannot simply be omitted, or nulled. If omitting such an argument
is necessary - for example, to select a default action - the argu­
ment must be written as a zero.

• When optional arguments occur at the end of an argument list, the
format of the function reference depends on the action of the
called function:

- If the called function checks the number of arguments passed,
you can omit optional trailing arguments from the function
reference. (Note that system services generally do not check the
length of the argument list.)

- If the called function does not check the number of arguments
passed, all arguments must be present in the function refer­
ence.

For example, the function STR$CONCAT, in the Common Run-Time
Library, concatenates from 2 to 254 strings into a single string. Its call
format is as follows (see also the VAX-11 Run-Time Library Reference
Manual):

ret = STR$CONCAT(dst,src1 ,scr2[,src3, ... src254);

where dst is the destination for the concatenated string, and srcl,
src2, ... src254 are the source strings. (All arguments are passed by de­
scriptor.) All but the first two source strings are optional. The function
checks to see how many arguments are present in the call; if fewer than
three (the destination and two sources) are present, the function re­
turns an error status value. Example 9-6 shows a call to the STR$CON­
CAT function from VAX-11 C.

Mixed-Language Programming 225

#incl1Jde stdio
#incl1Jde descriP
#incl1Jde ssdef

/*DECLARATION OF STR$CONCAT (not re91Jiredl */
int STR$CONCAT<) i

main ()
{

/*RETURN STATUS OF STR$CONCAT*/
int reti

/*DESTINATION ARRAY OF CONCATENATED STRINGS*/
char dest[21Ji

}

/*CREATE COMPILE-TIME DESCRIPTORS*/
$DESCRIPTOR (d st t des t) i
static $DESCRIPTOR(src1 t "abcdeflhiJ") i
static $DESCRIPT0R(src2t "KlmnoP9rst")i

/*CONCATENATE STRINGS*/
ret = STR$CONCAT<&dst t&srcl ,!\,src2) i

/*TEST RETURN STATUS VALUE*/
if <re t ! = SS$_ NORMAL>

fprintf(stderr1"Failed to concatenate
strinls,\n") •

exit(ret)i

I* PROCESS STRING* I
e 1 s e

dest[20] = '\O'i
Printf("Resultant strinl: Zs\n" tdest) i

Example 9-6: Use of Variable-Length Argument Lists

9.6 Return Status Values

The VAX-11 returns status values from system service procedures in
general register RO. This return status value indicates the success or
failure of the operation performed by the called procedure. In VAX-11
C, passing a return status value in RO is equivalent to a function return­
ing int.

To obtain a return status value from any system procedure, you can
declare the procedure as a function, as shown in the following example:

int SYS$SETEF () i

226 Chapter 9

After declaring a procedure in this way, you can invoke the procedure
as a function and obtain a return status value. (In C, such a declaration
is needed only as program documentation; SYS$SETEF could simply
be called without explicit declaration and would be interpreted by de­
fault as a function returning int.)

This section describes:

• The format of a return status value, that is, the meaning of partic­
ular bits within the value.

• The way to manipulate return status values.

• Recommended techniques for testing a return status value for suc­
cess or failure or for a specific condition.

9.6.1 Format of Return Status Values
All VAX/VMS system procedures and programs use a longword value
to communicate return status information. When a VAX-11 C main
function executing under the control of the DCL command interpreter
executes a return statement to return control to the command level,
the command interpreter uses the return status value to conditionally
display a message on the current output device.

To provide a unique means of identifying every return condition in the
system, bit fields within the value are defined as follows:

These fields are:

control bits
~
31 28 27

severity
,,..---_

3 2 0

I I condition identification I I

control bits (31-28)

27 1615 3

facility
number

message
number

ZK-283-81

These define special action(s) to be taken. At present, only bit 28 is
used. When set, it inhibits the printing of the message associated
with the return status value at image exit. Bits 29 through 31 are
reserved for future use by DIGITAL and must be zero.

Mixed-Language Programming 227

facility number(27-16)
This is a unique value assigned to the system component, or facility,
that is returning the status value. Within this field, bit 27 has a
special significance. If bit 27 is clear, the facility is a DIGITAL
facility: the remaining value in the facility number field is a number
assigned by the operating system. If bit 27 is set, the number indi­
cates a customer-defined facility.

message number (15-3)
This is an identification number that specifically describes the re­
turn status or condition. Within this field, bit 15 has a special signif­
icance. If bit 15 is set, the message number is unique to the facility
that is issuing the message. If bit 15 is clear, the message is issued by
more than one system facility.

severity (2-0)
This is a numeric value indicating the severity of the return status.
The possible values in these three bits, and their meanings, are as
follows:

Value Meaning

0 Warning
1 Success
2 Error
3 Informational
4 Severe error

5-7 Reserved

Note that odd values indicate success (an informational condition is
considered a successful status) and that even values indicate failures
(a warning is considered an unsuccessful status).

The following names are associated with these fields:

control bits CONTROL
bit 28 (inhibit message) INHIB_MSG

facility number
bit 27 (customer facility)

message number
bit 15 (facility specific)

severity
bit 0 (success)

FAC_NO
CUST_DEF

MSG_NO
FAC_SP

SEVERITY
SUCCESS

When testing return values in a VAX-11 C program, you can either test
only for successful completion of a procedure, or you can test for spe­
cific return status values.

228 Chapter 9

9.6.2 Manipulating Return Status Values
It is possible to construct a structure or union that describes a return
status value, but in practice this method of manipulating return status
values is unwieldy. A status value is usually constructed or checked
using bitwise operators. VAX-11 C provides the #include module
stsdef, which contains preprocessor definitions to make this job easier.
All of the preprocessor symbols are named according to the V AXNMS
naming convention, as follows:

STS$type_name

STS
identifies standard return status values.

type
is one of the following characters denoting the type of the constant:

K represents a constant value
M represents a bit mask
S represents the size of a field
V defines the bit offset to the field

name
is an abbreviation for the field name.

For example, the following constants are defined in stsdef for the facil­
ity number field, FAC_NO, which spans bits 16 through 27:

#define STSSS_FAC_NO 12

#define STSSV_FAC_ND 16

#define STSSM_FAC_ND OxFFFOOOO

/*SIZE OF THE FIELD
IN BITS*/

/*BIT OFFSET TD THE
BEGINNING OF THE
FIELD*/

/*BIT MASK OF THE
FIELD*/

Figure 9-5 shows how the status value would be represented internally.

STS$S_FAC_NO STS$V_FAC_NO

31

00001111 11111111 00000000 00000000

STS$M_FAC_NO

ZK-528-81

Figure 9-5: Internal Representation of a Status Value

Mixed-Language Programming 229

The following expression can be used to extract the facility number
from a particular status value contained in the variable named status:

(status & STSSM_FAC_NOl STSSl)_FAC .. NO

Note that the parentheses are required for the expression to be evalu­
ated properly; the relative precedence of the bitwise AND operator (&)
is lower than the precedence of the binary shift operator (> >) .

9.6.3 Testing for Success or Failure
To test a return status value for success or failure, you need only test
the SUCCESS bit. A value of true in this bit indicates that the return
value is a successful value.

Example 9-7 shows a program that checks the SUCCESS bit.

+1:include stdio

ttinclude descriP
+i:include stsdef

r11a i. n ()
{

int status;
SDESCRIPTOR(nar11e 1"student");

status = SYSSSETPRNl&namel;

if (status & STSSM_SUCCESSl
{

I* SUCCESS CODE •I
f P r i n t f (s t d e r r r 11 Su. c c e s s f u 1 c o r11 P 1 e t i on 11) ;

}

e 1 s e

I* FAILURE CODE •!
fPrintf(stderrt 11 Failed to set Process

n a 111 e f \ n 11) ~

exit(status);

Example 9-7: Testing for Success

The failure code in Example 9-7 causes the printing of a program­
specific message that indicates the condition that caused the program
to terminate. The error status is passed to the DCL (via the exit func­
tion), which then interprets the status value.

230 Chapter 9

9.6.4 Testing for Specific Return Status Values
Each numeric return status value defined by the system has a symbolic
name associated with it. The names of these values are defined as
system global symbols, and you can access their values by referring to
their symbolic names.

The global symbol names for V AXNMS return status values have the
format:

facility$_code

facility
The facility is an abbreviation or acronym for the system facility
that defined the global symbol.

code
The code is a mnemonic for the specific status value.

Some examples of facility codes used in global symbol names are:

Facility
Code

SS

RMS

SOR

Used By

System services; these status codes are listed in the
VAX/VMS System Services Reference Manual.

File system procedures; these status codes are listed in
the VAX-11 Record Management Services Reference
Manual.

SORT procedures; these status codes are listed in the
VAX-11 SORT User's Guide.

The definitions of the global symbol names for the facilities listed above
are located in the default system object module libraries, and thus are
automatically located when you link a V AX-11 C program that refer­
ences them.

When you write a V AX-11 C program that calls system procedures and
you want to test for specific return status values using the symbol
names, you must:

1. Determine, from the documentation of the procedure, the status
values that can be returned, and choose the values for which you
want to provide specific tests.

Mixed-Language Programming 231

2. Declare the symbolic name for each value of interest. The ssdef
and rmsdef #include modules define, respectively, the system
service and RMS return status values. (The return status values
in these two modules are defined with the #define control line.)
If you are checking return status values from other facilities,
such as the SORT utility, you must explicitly declare the return
values as globalvalues. For example:

slobalt.ialue int SOR$_0PENIN;

3. Reference the symbols in your program.

Example 9-8 shows a program that checks for specific return status
values (defined by the ssdef #include module).

*!include ssdef
#include stdio
#include descriP

$OESCRIPTOR(rr1essase ,"\07<<Lunch-tirrie>>\07");

frl a in<)
{

int status = sYs$brdcst<&messase10);

if (status!= SS$_NORMAU
{

if (status == SS$_NOPRIV)
fPrintf(stderr1

"Can't broadcast; re~uires OPER

}

else
P r i l.I i 1 e s e . 11) ;

fPrintf(stderr1
"Can't broadcast; sor11e fatal
error. 11);

exit(status);
}

Example 9-8: Testing for Specific Return Status Values

232 Chapter 9

Chapter 10

Storage Allocation

This chapter provides general information on the use of program sec­
tions by the VAX-11 C compiler and the V AX-11 Linker. Examples are
shown in which VAX-11 C shares program sections with VAX-11 FOR­
TRAN, VAX-11 PL/I, and VAX-11 MACRO. For program sections to
be shared among languages, you need to know the way each non-C
language stores various data types, and the way each language allocates
program sections for external data. For full details on sharing program
sections with other languages, see the documentation supplied with
those languages (for example, the VAX-11 PL/I Encyclopedic Refer­
ence or the VAX-11 FORTRAN User's Guide).

10.1 Program Sections

When the VAX-11 C compiler creates an object module, it groups data
in the object module into contiguous areas called program sections, or
psects. The grouping depends on the attributes of the data and on
whether the psects contain executable code or read/write variables.

The compiler also writes into each object module information about the
program sections contained in it. The linker uses this information when
it binds object modules into an executable image. As the linker allo­
cates virtual memory for the image, it groups together program sections
that have similar attributes.

Finally, the compiler adds any global names to the object module's
table of global symbols. Names declared with globalref, globaldef, and
globalvalue are written in this table; others are not. Note that global­
value adds a name to the global symbol table but does not allocate
storage in any program section; if an initializer appears with global­
value, the name added to the symbol table is a global symbol for the
given value; if no initializer appears, the name is a global name for a
value defined elsewhere in the system. (For more information on global
symbols, see Chapter 11.)

233

10.1.1 Attributes of Program Sections
Table 10-1 lists the attributes that can be applied to program sections.

Table 10-1: Program Section Attributes

Attribute

PIC or NOPIC

CON or OVR

REL or ABS

GBL or LCL

EXE or NOEXE

WRTor NOWRT

RD or NORD

SHR or NOSHR

USR or LIB

VEC or NOVEC

Meaning

The program section or the data to which it refers does
not depend on any specific virtual memory location
(PIC), or else the program section depends on one or
more virtual memory locations (NOPIC).1

The program section will be concatenated with other
program sections with the same name (CON) or will be
overlaid on the same memory locations (OVR).

The data in the program section can be relocated within
virtual memory (REL) or are not considered in the allo­
cation of virtual memory (ABS).

The program section is part of one cluster, is referenced
by the same program section name in different clusters
(GBL), or is local to each cluster in which its name ap­
pears (LCL).

The program section contains executable code (EXE) or
does not contain executable code (NOEXE).

The program section contains data that can be modified
(WRT) or data that cannot be modified (NOWRT).

These attributes are not currently used.

The program section can be shared in memory (SHR) or
cannot be shared in memory (NOSHR).

These attributes are reserved for future use.

The program section contains privileged change mode
vectors (VEC) or does not contain those vectors (NO­
VEC).

1. C programs can be bound into PIC or NOPIC shareable images. NOPIC
occurs if declarations such as the following are used:

char *x = B,>';

This statement relies on the address ofy to determine the value of the pointer x.

234 Chapter 10

10.1.2 Program Sections Created by VAX-11 C
VAX-11 C always creates the following program sections:

• $CODE - contains all executable code and constant data (includ­
ing variables defined with the readonly keyword).

• $DAT A - contains all static variables, as well as global variables
defined without the readonly keyword.

• $CHAR_STRING_CONSTANTS - contains C character-string
constants written in the program, such as:

11 Th i s i s a s t r i n 8 • 11

This program section has the same attributes as $DATA (see
Table 10-2).

VAX-11 C also creates additional program sections for extern variables
and global variables (when the global variables' declarations specify a
program section name explicitly). Table 10-2 summarizes the differ­
ences in program section attributes that correspond to differences in
VAX-11 C storage classes. All program sections created by VAX-11 C
have the attributes PIC, REL, RD, USR, and NOVEC.

All program sections generated by V AX-11 C (except $CODE) are
aligned on longword boundaries; the $CODE psect is aligned on byte
boundaries.

Table 10-2: Program Sections for VAX-11 C Variables

Storage Program
Program

Class Section
Keywords Name

Attributes

[extern]l name2 OVR,GBL,SHR,NOEXE, WRT

[extern] 1 readonly name2 OVR,GBL,SHR,NOEXE,NOWRT

static $DATA CON,LCL,NOSHR,NOEXE, WRT

static readonly $CODE CON, LCL, SHR, EXE, NOWRT

globaldef $DATA CON,LCL,NOSHR,NOEXE,WRT

globaldef l"name"I name2 CON,GBL,SHR,NOEXE, WRT

globaldef readonly $CODE CON, LCL, SHR, EXE, NOWRT
[or name]2

1. If extern is present, the declaration is a reference to a previously existing
datum in a program section with these attributes; if extern is absent, storage is
allocated in such a program section.
2. name is either the identifier of the variable declared with the specified key­
word(s) or the name specified in globaldef l"name"I·

Storage Allocation 235

10.1.3 link-Time Scope of Names
The term link-time scope is sometimes used to describe whether a
particular object is accessible by more than one module in a program
image. For simple variables and arrays, the identifier is recognized by
the linker. For structures and unions, only the identifier, not the tag or
the members, is recognized by the linker. Therefore, only the names of
objects have a link-time scope.

The link-time scope of a variable depends on its storage class, as fol­
lows:

• The scope of a static variable is restricted to the compilation unit
in which it appears. If an identical declaration of the static varia­
ble appears in a different object module, a different object is
defined.

• For all other storage classes covered in Table 10-2, the link-time
scope is the entire image, since all modules in the program have
access to the program sections in which they reside. You must still
declare the name with congruent declarations in every module,
but each declaration refers to the same object. For example,
extern is used to declare the name of an object defined in a stand­
ard external data definition, where the definition can be in another
module. globalref is used to declare the name of an object defined
elsewhere with globaldef.

If two variables are declared with different attributes (for example,
read-only in one instance, not read-only in another), the V AX-11
Linker will issue diagnostics at link-time, usually the MULPSC (con­
flicting psect attributes) warning diagnostic.

10.2 Sharing Program Sections with FORTRAN
Common Blocks

In a FORTRAN program, separately compiled procedures can share
data in declared common blocks which specify the names of one or
more variables to be placed in them. Each named common block repre­
sents a separate program section. Each procedure that declares the
common block with the same name can access the same variable.

As shown in Example 10-1, a VAX-11 C extern variable corresponds to
a FORTRAN common block with the same name.

236 Chapter 10

STRING.C contains:

r~a in ()
{

}

extern char xyz[20J;

strncPY(xyz,"This t~ a strins
PrstrinS();

PRSTRING.FOR contains:

SUBROUTINE PRSTRING
CHARACTER*20 STRING
COMMON /XYZ/ STRING

TYPE 20, STRING
20 FORMAT (' ' 1A20)

RETURN
END

11 tsizeof xyz);

Example 10-1: Sharing Data with a FORTRAN Program
in Named Program Sections

In Example 10-1, the VAX-11 C extern variable xyz corresponds to the
FORTRAN common block named XYZ. The FORTRAN procedure
displays the data in the block.

To share data in more than one variable in a program section with a
FORTRAN program, the V AX-11 C variables must be declared within
a structure, as shown in Example 10-2.

Storage Allocation 237

NUMBERS.C contains:

struct xs
{

int fir•c.t;
int second;
int thirdi
} ;

Main ()
{

}

extern struct xs numbers;

nuMbers,first = 1;
numbers.second = 2;
numbers.third = 3;
f n U!Tl () ;

FNUM.FOR contains:

SUBROUTINE FNUM
INTEGER•4 INUM1JNUM1KNUM
COMMON /NUMBERS/ INUM1JNUM1KNUM

TYPE 101 CINUM1JNUM1KNUMl
10 FORMAT (3I8l

RETURN
mo

Example 10-2: Sharing Data with a FORTRAN Program
in a VAX-11 C Structure

In Example 10-2, the int variables declared in the VAX-11 C structure
numbers correspond to the FORTRAN INTEGER*4 variables in the
COMMON of the same name. Note that in a FORTRAN common
block, all variables must be either integers or character strings. Varia­
bles of different data types cannot be grouped into the same block.

238 Chapter 10

10.3 Sharing Program Sections with PL/I Externals

A VAX-11 PL/I variable with the EXTERNAL attribute corresponds
to a FORTRAN common block and to a VAX-11 C extern variable.
Examples 10-3 and 10-4 illustrate the sharing of a program section
between VAX-11 C and VAX-11 PL/I.

A PL/I EXTERNAL CHARACTER attribute corresponds to a VAX-11
C extern char variable, but PL/I character strings are not necessarily
NUL-terminated. In Example 10-3, VAX-11 C and VAX-11 PL/I use
the same variable to manipulate the character string that resides in a
program section named XYZ.

STRING.C contains:

1r1 a in ()

}

extern char xyz[2QJ;

s t r n c PY (x ~, z t 11 Th i s i s a s t r i n 8 11 t s i z e o f x Y z) ;

Prstrins();

PRSTRING.PLI contains:

PRSTRING: PROCEDURE;

DECLARE XYZ EXTERNAL CHARACTERCZOI;

PUT SKIP LISTIXYZl;
RETURN;

END PRSTR I ~~G;

Example 10-3: Sharing Data with a PL/I Program
in Named Program Sections

The PL/I procedure PRSTRING writes out the contents of the external
variable XYZ.

PL/I also has a structure type similar (in its internal representation) to
the struct in VAX-11 C. Moreover, VAX-11 PL/I can output aggre­
gates, such as structures and arrays, in fairly simple stream-output
statements; see Example 10-4.

Storage Allocation 239

NUMBERS.C contains:

Main ()
{

}

extern struct xs nuMbers;

nuMbers.first = 1;
nuMbers.second = z;
nuMbers.third = 3;
fnuM C);

FNUM.PLI contains:

FNUM: PROCEDURE;
I* EXTERNAL STRUCTURE CONTAINING THREE INTEGERS */

DECLARE 1 NUMBERS EXTERNAL•
2 FIRST FIXE0<31),
2 SECOND FI XEO < 31 > •
2 THIRD FIXED<31 >;

PUT SKIP LIST< 'Contents of structure:' 1NUMBERS>;
RETURN;

END FNUM;

Example 10-4: Sharing Data with a PL/I Program
in a VAX-11 C Structure

The PL/I procedure FNUM writes out the complete contents of the
external structure NUMBERS; the structure members are written out
in the order of their storage in memory, which is the same as for a C
struct.

10.4 Sharing Program Sections with MACRO
Programs

In a MACRO program, the .PSECT directive sets up a separate pro­
gram section that can store data or MACRO instructions. The attrib­
utes in the .PSECT directive describe the contents of the program
section.

240 Chapter 10

You can set up a psect in a MACRO program to allow data to be shared
with a VAX-11 C program, as shown in Example 10-5.

NUMBERS.C contains:

struct

int firsti
int second;
int thirdi
} exa111Plei

111a in ()
{

}

set_1.1alue ();

Printf("exa111Ple,first = 'X.d\n"1exa111Ple1first)i
Print f ("ex a111P1 e. sec and = 'X, d \ n" 'ex a 111P1 e , second) ;
P r i n t f (" e x a 111 P 1 e • th i r d = 'X. d \ n " , e x a 111 P 1 e 1 t h i r d) ;

SETVALUE.MAR contains:

first:
second:
third:

11101!1 1.first
11101.11 2,second
11101.11 31third
ret

• P sect ex a111P1 e Pi c , us r 'o 1.1 r 1 re 1 , s' b 1 'sh r ,
noexe 1rd t1,.,1rt tnovec tlons

• b rn 1

• b lfd
• b lf(1

+end

Example 10-5: Sharing Data with a MACRO Program
in a V AX-11 C Structure

The MACRO program initializes the locations first, second, and third
in the psect named example and passes these values to the C program.
The locations are referenced in the C program as members of the exter­
nal structure named example.

Storage Allocation 241

Chapter 11

Global Symbols

In large programs, it is often desirable to share data among program
modules by some means other than argument passing. In all C com­
pilers, a variable to be shared by external functions must be declared
with the extern keyword in each separately compiled function that
refers to it. Each extern variable in VAX-11 C resides in its own pro­
gram section. As illustrated in Chapter 10, extern variables are similar
in this respect to FORTRAN named common blocks and to PL/I exter­
nal variables.

Global symbols provide an alternative method for defining external
variables and values. The keywords globaldef and globalvalue define
objects that differ from externs both in their storage allocation and in
their correspondence to elements of other languages. (These differences
are spelled out explicitly in Table 11-1.) Global symbols provide a
convenient and efficient way for a C function to communicate with
assembly language programs, with VAX/VMS system services and data
structures, and with other high-level languages that support global
symbol definition, such as VAX-11 PL/I.

This chapter describes:

• The use of global symbols within C functions.
• The globaldef, globalref, and globalvalue keywords.
• The declaration and use of system-defined global symbols.

11.1 Global Symbols and extern Variables

Within VAX-11 C programs, you can define variables as global symbols
when you are coding calls to system procedures. You can also use global
symbols instead of extern variables to communicate between two or
more VAX-11 C functions.

Table 11-1 summarizes the differences between global symbols and
extern variables. Note that a primary difference is the manner in which
the linker allocates storage. Linker storage allocation is described in
more detail in Chapter 10.

242

Table 11-1: Comparison of Global Symbols
and extern Variables

Global Symbol

Declared with the globaldef, globalref,
or globalvalue keywords.

Corresponds to a global symbol declared
in assembly language.

Can be declared with globalvalue and
does not occupy storage in program sec­
tions if expressible in 32 (or fewer) bits.

No practical limit on the number of
global symbols that can be defined and
referenced in an object module.

extern Variable

Declared with the extern key­
word.

Corresponds to a FORTRAN
common block.

Always occupy storage in pro­
gram sections.

Limited to approximately 65,532
extern names.

11.2 The globaldef and globalref Keywords

The globalref and globaldefkeywords, respectively, declare and define
a global variable. Global variables are exactly like static variables,
except that their link-time scope is the entire program instead of a
single compilation unit. If you do not specify a program section name,
by globaldef l"name"l, VAX-11 C places globaldefs definition for the
name in a default program section. The definition is placed in the
$CODE psect if it is defined with the readonly keyword; it is placed in
the $DATA psect if it is not defined with the readonly keyword. Thus,
globaldef avoids the use of named program sections by extern declara­
tions, making the limited number of named program sections available
for operations that require them.

The keywords globaldef and globalref are used similarly with external
data definitions and extern declarations. That is, globalref is used to
refer to storage allocated elsewhere (usually by a globaldef definition).
For example:

Global Symbols 243

In one compilation unit:

I* DEFINITION DF EXTERNAL VARIABLE: counter
RESIDES IN A PROGRAM SECTION NAMED counter •I

int counter = o;

I* DEFINITION OF GLOBAL VARIABLE: uelocitY
RESIDES IN THE PROGRAM SECTION $DATA *I

slobaldef double uelocitY = 3.0elo;

I* A C MAIN FUNCTION •I
1r1 a in ()
{

}

In a separate compilation unit:

I* DECLARATION OF EXTERNAL VARIABLE:
THE LINKER RESOLVES THIS REFERENCE
TO THE PROGRAM SECTION counter •I

extern counter;

f* DECLARATION OF GLOBAL VARIABLE:
THE LINKER RESOLVES THIS REFERENCE
TO THE PROGRAM SECTION $DATA */

slobalref double velocity;

I* ANOTHER C FUNCTION THAT USES
counter AND uelocitv •I

fn (f)
{

}

Notice that initializers can appear in definitions of global variables (as
in definitions of extern variables), but not in references to global varia­
bles. Initialization is possible only when storage is allocated for the
object. This distinction is especially important when the readonly key­
word is used; unless the global (or extern) variable is initialized when
the variable is defined, its value is undefined.

244

NOTE
In the VAX-11 MACRO programming language, it is possi­
ble to give a global variable more than one name. However,
in VAX-11 C, only one global name can be used for a par­
ticular variable. VAX-11 C assumes that distinct global
names denote distinct objects; the storage associated with
different names must not overlap.

Chapter 11

11.3 The globalvalue Keyword

A variable declared with globalvalue does not require an address refer­
ence in storage. Instead, the compiler can refer to it by its value during
execution. If an initializer appears with globalvalue, the name be­
comes a global symbol for the given initial value. If no initializer ap­
pears, the globalvalue construct is considered a reference to some pre­
viously defined global value. (Note that globalvalue can be used only
with the data types int and long.)

Predefined global values serve many purposes in VAX/VMS system
programming, such as the definition of status values (see Section 9.6.4).

Global values are useful because they allow many programmers in the
same environment to refer to values by name, without regard to the
actual value (for example, the integer) associated with the name. The
actual values can change, as dictated by general system requirements,
without affecting all the programs that use system resources. As men­
tioned in Chapter 9, it is customary in VAX/VMS system programming
to avoid explicit references to such values as those returned by system
services, and to use instead the global names for those values.

11.4 Enumerated Global Values

When the globaldef storage class keyword is used with an enum defini­
tion, the enumerated constants in the definition become globalvalues,
initialized as required to form a properly ordered list of the values.
Variables of the enumerated type become globaldefs.
When globalref is used with enum, all enumerated variables are
globalrefs, and the enumerated constants refer to globalvalues of the
same names. For example:

In the first compilation unit:

I• DEFINE GLOBAL ENUMERATED TYPE •I
globaldef enuM light { diMtMedium.bright } light_ual;

1r1a in ()

{

}

Jight_val =dim;
I• CALL FUNCTION •I
fnhd);

Global Symbols 245

In the second compilation unit:

1lobalref enum lilht { dim1medium1brilht } lilht_ual;

fn 1 u ()
{

if (lilht_ual < brilht) Printf("TOO DIM\n");
}

In the first compilation unit, the enum definition establishes light_val
as a globaldef of the enumerated type light. It also establishes the
ordered list of enumerated globalvalues dim, medium, and bright.

The globalref declaration in the second compilation unit allows the
enumerated constants to be used as globalvalues. That is, the con­
stants can be referenced, but not initialized.

246 Chapter 11

Chapter 12

Program Development

Throughout the process of V AX-11 C program development, you have
to interact with the VAX/VMS operating system. Through this interac­
tion, you either create or use many different types of files. Figure 12-1
shows the kinds of files required or created during program develop­
ment, as well as the commands that relate to those files.

This chapter summarizes the following information about VAX/VMS:

• The rules for specifying input and output files for commands and
programs.

• The commands available to you for file creation, modification, and
maintenance.

• The use of command procedures as an aid to program develop­
ment.

• The commands for creating and using text and object libraries.

For a tutorial introduction to these concepts, see the VAX/VMS
Primer. For detailed definitions of commands and file specifications,
see the VAX/VMS Command Language User's Guide.

12.1 File Specification Formats and Defaults

A file specification provides the system with all the information it needs
to locate a unique file. In Figure 12-1, all input and output files are
specified in their simplest form.

To define a unique C source file, you need only give it a unique name
and a file type of C. All other portions of a file specification are allowed
to default to system- and command-supplied names. For example, in
Figure 12-1 the following defaults are in effect:

• All the commands shown use the current default device and direc­
tory to locate a specified file.

• The EDIT command does not assume any defaults. The file type C
is specified in this example so that the file type can be defaulted
for the CC command.

247

$ EDIT METRIC.C

$ CC/LIST METRIC

$ LINK/MAP METRIC

$ RUN METRIC

Key

~ input or output fife

/ optional input or output file

The EDIT command invokes a system editor to create a
disk file containing C source statements.

text
libraries

The CC command invokes the VAX-11 C compiler to
process the source statements and verify that there are no
syntax errors or violations of the language rules. If there
are no errors. the compiler creates an object module and
optionally a listing.

object
module
libraries

The LINK command binds object modules into an execut­
able program image. The linker searches system libraries
and user-specified libraries, if any, to locate alt run-time
modules and global symbols required for the image.

The RUN command executes a program image.

ZK-084-81

Figure 12-1: Commands for VAX-11 C
Program Development

248 Chapter 12

• The CC command assumes, if no file type is specified for a source
file, that its file type is C. If no qualifiers override the default
output file types used by CC, the compiler uses the default file
types LIS and OBJ for the listing and object files, respectively.

• The LINK command assumes, if no file type is specified for an
input file, that its file type is OBJ. If no qualifiers override the
linker's default output file types, the linker uses the default file
types EXE and MAP for the image and map files, respectively.

• The RUN command assumes, if no file type is specified, that the
input file type is EXE.

Table 12-1 summarizes the syntax of V AXNMS file specifications.

The following example shows a COPY command with a complete file
specification:

$COPY TUCSON::DBA3:[WILLJMEMO,DATl3 HERE.DAT

This command copies the third version of the file MEMO.DAT in the
directory [WILL] on the device DBA3 from the remote node TUCSON
to the file HERE.DAT on the local system. The input file located at the
node named TUCSON is fully specified. The output file HERE.DAT
will be placed in the current default device and directory. If that direc­
tory does not contain a file named HERE.DAT, the COPY command
will give the copied file a version number of 1. Otherwise, HERE.DAT
will have a version number one greater than the highest version number
of the existing file.

12.1.1 Temporary Defaults
Many V AXNMS file-handling commands use temporary defaults un­
der certain conditions. When a command such as PRINT or TYPE
accepts a list of input file specifications, it uses explicit elements of one
file specification as a temporary default for subsequent ones. Some
examples follow.

$PRINT [PROJECT,DATAJALPHAtBETA,DAT1GAMMA

In this example, the PRINT command uses the default input file type
LIS for the first input file and the file type DAT as specified for the
second input file. It then applies the temporary default DAT to the file
GAMMA. The PRINT command prints the highest existing versions of
ALPHA.LIS, BETA.DAT, and GAMMA.DAT from the directory
[PROJECT.DATA] on the current default device.

$PRINT [PROJECT,DATAJFOREST,TXT1,DAT1.REF

Here, the PRINT command uses the temporary default FOREST as a
file name and prints the files FOREST.TXT, FOREST.DAT, and
FOREST.REF.

Temporary defaults are applied to device names, directories, file
names, and file types. After the command is executed, the temporary
defaults are no longer in effect.

Program Development 249

Table 12-1: Summary of File Specification Syntax

Field Syntax Rules

node 1 - 6 characters
terminated by : :

device Valid mnemonic or
dev logical name
c A-Z
u 0 - 65535

directory 1 - 9 characters
[name] up to 8 names,
[name.name ...] separated by

periods(.)

filename 0 - 9 characters

filetype 0 - 3 characters
preceded by a
period(.)

version 0 - 32767
preceded by
a semicolon (;)
or a period (.)

1. [* l all directories
[name ...] all directories in path
[* ...] all subdirectories in all directories
[-.name] back up a directory

2. * - all file names

Local node

SYS$DISK

A
0

Defaults

Current defaultl

Input: temporary defaults apply2
Output: same as input file

Applied by command; temporary
defaults apply2

Input: highest3
Output: highest + 1

String - match all names containing "string"
str%ng - match any character in % position

3. * - all versions
; - use most recent version

250 Chapter 12

12.1.2 Changing the Default Directory
To change the default device or directory that is applied to all file
specifications, use the SET DEFAULT command. Unless you override
them in the explicit specification of a file, defaults set by this command
remain in effect for all subsequent commands until you either issue a
new SET DEFAULT command or log off the system.

For example:

$ SET DEFAULT CPRDJECT,SOURCEJ
$ CC METRIC

The CC command compiles the source program METRIC.C from the
current default directory [PROJECT.SOURCE]. The output file,
METRIC.OBJ, is also placed in this directory.

12.2 Logical Names

Another way to refer to a specific device, directory, or file is with a
logical name. It can represent an entire file specification or the leftmost
portion of one. To create logical names, use the DEFINE command. For
example:

$ DEFINE SRC CPROJECT.SOURCEJ
$ TYPE SRC:ALPHA,C

This command creates the logical name SRC to represent the directory
specification [PROJECT.SOURCE]. When SRC is used with the TYPE
command, the logical name in the file specification is replaced by its
current equivalence name. The TYPE command displays the file
[PROJECT.SOURCEJALPHA.C.

Only one logical name is permitted in a file specification. It must be the
first or only element, and it must be followed by a colon if any other
elements are present.

The V AXNMS system maintains tables of all logical names created by
users. There are three kinds of logical name tables:

• Process. A separate logical name table exists for every user, or
process, on the system. These names are available only to the user
who defines them. A DEFINE command places a logical name in
the process logical name table by default.

• Group. A separate logical name table exists for every group on the
system. The names in any of these tables can be accessed only by
users who have the same group number in their user identification
code. To place a name in the group logical name table, you must
specify /GROUP on a DEFINE command, and you must have the
GRPNAM user privilege.

Program Development 251

• System. There is a single system logical name table. The logical
names in this table can be accessed by all users. To place a name
in the system logical name table, you must specify /SYSTEM on a
DEFINE command, and you must have the SYSNAM user privi­
lege.

12.2.1 Logical Name Translation
When the system attempts to locate an equivalence name for the name
of a C source file, or for a portion of a file specification, it is said to be
performing a logical name translation. The system searches the process,
then the group, then the system logical name tables. Each time the
system translates a logical name, it examines the result to see if there is
still a logical name. If so, it translates the result. This recursive transla­
tion occurs until the file specification is complete or until 10 recursive
translations have been made.

You can determine the current equivalence for a logical name by enter­
ing the SHOW TRANSLATION command. For example:

$ SHOW TRANSLATION SRC
SRC = "EPROJECT.SRCJ" (process)

The response gives the translation and indicates that the logical name
SRC was found in the process logical name table.

A logical name assignment is deleted when a new definition is given for
the name or when the name is explicitly deleted with a DEASSIGN
command. For example:

$ DEASSIGN SRC

This command deletes the table entry for the logical name SRC.

12.2.2 Uses of Logical Names
VAX/VMS system programs use logical names in many ways. For ex­
ample, the VAX-11 C compiler and the VAX/VMS Linker use logical
names to provide default libraries for #include text modules and object
module libraries, respectively.

Of principal interest to VAX/VMS programmers is the ability to use
logical names to provide device and file independence when executing
program images or command procedures. For example, the file specifi­
cation associated with a file pointer in a C source program (as in the
fopen function) can be a logical name. Each time you execute the
program, you can issue a DEFINE command to provide a different
equivalence name for the C file.

12.2.3 Commands to Control Logical Names
Table 12-2 lists the VAX/VMS command language, DCL, commands
that maintain logical names.

252 Chapter 12

Table 12-2: Commands for Maintaining Logical Names

Command

DEFINE

DEFINE/USER

ASSIGN

DEASSIGN

SHOW TRANSLATION

SHOW LOGICAL

Function

Creates a logical name and places it in the
process, group, or system logical name table. The
/PROCESS, /GROUP, and /SYSTEM qualifiers
specify the table in which the name is to be
placed.!

Creates a logical name for the execution of the
next image only. The name is automatically de­
leted following the completion of the next com­
mand or program.!

Provides the same function as DEFINE. However,
the order of the command parameters is re­
versed.!

Deletes a logical name from the process, group, or
system logical name table.1

Displays the result of translating a logical name
once and displays the name of the table in which
the logical name was found.l

Displays the result of translating a logical name
recursively. This command is performed by a sep­
arate program and causes the current image that
is executing, if any, to be terminated.

1. This command is executed by the command interpreter and can be issued
when a program is interrupted with (CTRL/Yl •

12.3 Creating and Maintaining Files

Table 12-3 describes some of the basic file-handling commands avail­
able to programmers in the VAX/VMS command language, DCL. For
detailed descriptions, see the VAX/VMS Command Language User's
Guide. For online assistance in entering a command or determining its
parameters, qualifiers, or options, use the HELP command.

Program Development 253

Table 12-3: V AXNMS Commands for File
Maintenance

Category Command

File creation CREATE

EDIT

Correcting and EDIT
modifying files

SET DIRECTORY

SET FILE

Command Function

Creates a file from records or data
that follows in the input stream;
for example, lines entered from a
terminal or placed in a batch input
file.

Invokes one of the VAX/VMS in­
teractive editing programs, for ex­
ample, SOS, EDT, or EDI.

Invokes one of the interactive edi­
tors to make changes or additions
to a disk file.

Modify the characteristics of a
directory.

Modify the characteristics of a file.

Cataloging and CREATE/DIRECTORY Establishes a new directory or a
organizing files hierarchy of directories to catalog

files.

Copying and
backing up files

254

DIRECTORY

LIBRARY

RENAME

SET DEFAULT

{
ALLOCATE}
INITIALIZE
MOUNT

Lists files and information about
them. Can list files with common
file names or file types, files in one
or more directories, files created
since a certain date, and so on.

Creates and maintains libraries of
#include text modules and librar­
ies of object modules.

Changes the directory in which a
file is cataloged; or changes the file
name, file type, or version number
of a file.

Changes the current default device
or directory.

Provide device-handling and con­
trol commands that let you access
data written on nonsystem disks,
on magnetic tapes, or on punched
cards; or to output data to a disk or
tape.

Chapter 12

Table 12-3: (Cont.) VAX/VMS Commands for File
Maintenance

Category Command

COPY

Deleting files DELETE

PURGE

12.4 The HELP Command

Command Function

Copies the contents of a file or files
to another file or files.

Makes the contents of a file inac­
cessible by removing its directory
entry.

Deletes a specified number of ear­
lier versions of a file or a group of
files.

Many of your questions about VAXNMS commands and VAX-11 C
can be answered by the HELP utility. The HELP utility is a tree­
structured group of specially formatted text files and a program that
allows you to display these files at the terminal. Each level of the tree
displays the information for that level plus a list of topics that are
available at the next lower level of the tree.

The format of the HELP command is as follows:

HELP [subtopic [subtopic [,.,] J J rBITI

The V AX-11 C help file contains information about the CC command
line, the C language, and the V AX-11 C compiler diagnostic messages.

You can obtain the list of the V AX-11 C help topics at the top level of
the tree by typing:

$ HELP CC

12.5 Using Command Procedures

A command procedure is a file that contains a sequence of V AXNMS
commands and, optionally, data. You can cause the commands in the
procedure to be executed in either of two ways:

• Interactively, you specify the name of the file following the @
(execute procedure) command. For example:

$ @TESTAM

Program Development 255

The @ command assumes that the file type of a command pro­
cedure is COM. Thus, the @TESTAM command executes the
procedure TESTAM.COM.

• With DCL's SUBMIT command, you can submit the command
procedure to a system batch job queue for execution. For example:

$ SUBMIT TESTAM

This command enters the file TEST AM.COM in the system batch
job queue. On completion of the job, the system prints a log file
that indicates how the job ran.

You can devise and use command procedures to simplify and enhance
your program development. For example, you can write a command
procedure that will compile, link, and run a specific C program. The
procedure can specify all the libraries needed by the CC and LINK
commands and even contain all the input data you would require to
test the program.

Command procedures can also be generalized. By taking advantage of
such DCL features as the assignment statement and the IF, GOTO,
and ON commands, you can write a command procedure that looks like
a program; it can process variables, make decisions based on their
values, and perform error condition handling.

Example 12-1 suggests a way to construct command procedures for C
program development and testing.

$ ON WARNING THEN EXIT
$ I

$LIST := ""
$ I

$ IF Pl ,EQS, "L" THEN LIST := /LIST=LP:
$ CC'LIST' APPLIC1METRIC+DATA5/Ll5RARY
$LINK APPLIC1METRIC1[APPLICLIBJAPPLIC/LIBRARY
$ I

$ RUN APPLIC
55555.88888888
4444.333

'alphabetic strinl'
$ E><IT

Example 12-1: A Sample Command Procedure

0
e
e
0
0

256 Chapter 12

Th!! following notes are keyed to the circled numbers in Example 12-1.
0 The ON command establishes an error-handling routine for the com­

mand procedure. This command specifies that the procedure is to
exit if any error occurs with a severity of warning or greater. Thus, if
the CC command returns with an unsuccessful status, the procedure
executes an EXIT command that causes the procedure to terminate
immediately. Otherwise, the procedure continues with the LINK
command. If that command issues a warning or error, the procedure
exits. Otherwise, the RUN command executes.

8 The exclamation point (!) is a comment delimiter.

8 The procedure creates a variable, or command symbol, named LIST
and gives it an initial value of a null string. The assignment state­
ment := gives a symbol a character-string value.

0 The procedure then tests whether any values were specified when
the procedure was invoked. A value passed to a command procedure,
that is, a parameter, is given a default name of Pn, where n is the
position of the parameter in the command. For example, the proce­
dure may be executed as follows:

$ @TESTAM L

In this execution, Lis the first (and only) parameter. The symbol Pl
is given a value of L. In this procedure, L indicates that a listing file
is requested. The IF command tests the value of Pl. If Pl is L, then
the symbol LIST is redefined to have a value of /LIST=LP:.

0 Following the CC command name, the symbol LIST is specified
inside apostrophes. The apostrophes, in this context, are substitu­
tion operators that request the command interpreter to substitute
the symbol LIST with its current value. If LIST is a null string (that
is, if L was not specified), the command after substitution is:

$CC APPLIC 1METRIC+DATAB/LIB

If L was specified, the command after substitution is:

$ CC/LIST=LP: APPLIC 1METRIC+DATAB/LIB

0 The program APPLIC is executed. It reads input data from the
default input device. When a command procedure executes, the de­
fault input device is the command procedure itself. Thus, the data
are read from the procedure file. In a command procedure, any line
that does not begin with a dollar sign ($) is treated as input data for
the previous command or program. The input terminates (and an
actual end-of-file condition occurs) when a new line that begins with
a dollar sign ($) is encountered. In this example, the program AP­
PLIC reads all the lines between the RUN command and the EXIT
command.

Program Development 257

For more detailed information on the commands shown in the preced­
ing example, and for additional examples of techniques you can use in
command procedures, see the VAX/VMS Guide to Using Command
Procedures.

12.6 Libraries

Libraries collect frequently used text or functions in easily accessible
modules. Libraries make program development efficient in a number of
ways.

With libraries, you can avoid programming at a machine-language or
machine-dependent level. Within reason, the text and object libraries
supplied with VAX-11 Callow you to use your existing programming
methods (and, in many cases, existing source text) to develop C pro­
grams for the VAX-11 computer, without detailed knowledge of the
VAX-11 architecture or VAXNMS operating system.

In addition, most portability problems occur below the level of the C
language and can be addressed by changing (or creating) a library,
thereby modifying an entire set of programs that use the same features.
Programs then move more easily from one computer system to another.

Libraries help you avoid the pitfall of "reinventing the wheel." Once a
function or other item has been shown to be correctly designed and
implemented, you can put it in a user library, perhaps for use by sev­
eral programmers in the same environment. For example:

• Commonly used pieces of source text can be grouped into modules
in a text library. The source text need not comprise entire C func­
tions. In fact, text library modules are used frequently in C pro­
grams to supply complicated definitions, macros, or text substitu­
tions needed by the program. You select a module from a text
library by writing an #include control line in the program, specify­
ing the module's name. (See Chapter 7 for an explanation of the
forms of the #include control line.) You then specify the name of
the library with a qualifier (/LIBRARY) to the CC command.

• Commonly used object (compiled) code can be grouped into mod­
ules in an object library. Again, the object modules need not
comprise entire C programs, although each results from a module
of source text that can be compiled separately. Object modules are
located and selected automatically by the V AXNMS Linker to
resolve references in the program to otherwise undefined functions
or global sym::iols. If the object modules are located in a library
that you have created, you must specify the library's name with a
qualifier to the LINK command.

258 Chapter 12

Libraries can simplify the user's interface to the program development
commands, CC and LINK. Both commands search a series of default
user libraries and DIGITAL-supplied libraries for unresolved refer­
ences. This feature allows a new V AXNMS programmer to use the
simplest forms of the CC and LINK commands, with reasonable assur­
ance that a correctly written C program will compile and execute on a
V AXNMS system. That is:

• The library of source text (SYS$LIBRARY:CSYSDEF.TLB) sup­
plied with the V AX-11 C compiler is searched for references that
are still unresolved after a search for any specified or default text
libraries has been made.

• You can define equivalents for the logical names C$LIBRARY and
LNK$LIBRARY. These logical names describe the defaults for
user-defined text and object libraries, respectively. If the CC com­
mand cannot resolve references from #include lines in the text
libraries you have specified, it searches the equivalent of C$LI­
BRARY for the necessary text modules. If the LINK command
cannot resolve the function references in the object libraries you
specify, it searches the equivalent of LNK$LIBRARY. The library
SYS$LIBRARY:CRTLIB.OLB, supplied with the VAX-11 C com­
piler, contains the object code for VAX-11 C library functions (the
functions described in Chapter 6). You must specify
SYS$LIBRARY:CRTLIB.OLB explicitly in the LINK command,
or assign it to the logical name LNK$LIBRARY, in order to resolve
references to these functions.

• The VAXNMS system libraries (VMSRTL.EXE and STAR­
LET.OLE) call routines in the VAX-11 Common Run-Time Pro­
cedure Library. (These routines are documented in the VAX-11
Run-Time Library Reference Manual.) Any references to functions
that are still unresolved after a search for the libraries specified in
the LINK command and the equivalent for LNK$LIBRARY are
assumed to be calls to these run-time procedures. These calls can
result from an explicit function reference in the program, or they
can be internal calls generated by the compiler to perform com­
mon operations such as input and output, calls to mathematical
functions, and so forth. The LINK command automatically
searches VMSRTL.EXE and STARLET.OLE to resolve these ref­
erences.

The remainder of this section describes how to create text libraries and
object libraries. This description is confined to areas that are of particu­
lar interest to C programmers. For more detailed coverage of the topics
presented here, consult the following V AXNMS manuals:

Program Development 259

• VAX-11 Utilities Reference Manual - for information on the
VAXNMS Librarian.

• VAX-11 Guide to Creating Modular Library Procedures - for
more extensive information on modular programming techniques
for VAXNMS.

• VAX-11 Run-Time Library Reference Manual - for instructions
on making direct calls to procedures in the VAX-11 Common Run­
Time Procedure Library.

12.6.1 Text Libraries
A text library is a file that contains text organized into modules and a
table indexing the modules. The LIBRARY command creates and mod­
ifies text libraries; these libraries have a default file type of TLB. To
use libraries of C #include modules, you must:

1. Create one or more libraries consisting of C source text.
2. Specify the name of a module in an #include control line in the

C source program.
3. Specify the name of the library in the CC command to compile

the source program, or define the library as a default user library
with an equivalence name for C$LIBRARY.

Figure 12-2 illustrates the creation of an #include module library and
its use in compiling C programs.

12.6.1.1 Naming Text Modules
When the LIBRARY command adds a module to a library, it uses by
default the file name of the input file as the name of the module. In the
example in Figure 12-2, the LIBRARY command adds the contents of
the files APPLIC.SYM and DECLARE.C to the library and names the
modules APPLIC and DECLARE.

Alternatively, you can use the /MODULE qualifier to specify a name
for a library module. For example:

$ LIBRARY/TEXT/INSERT CCFILES -
$_DECLARE.C/MODULE EXTERNAL_DECLARATIDNS

This command inserts the contents of the file DECLARE.C into the
library CCFILES and names the module EXTERNAL_
DECLARATIONS. This module can be included in a C source file with
the control line:

#include external_declarations

Table 12-4 summarizes the commands that create libraries and provide
maintenance functions. For a complete list of the LIBRARY command
qualifiers and for a description of other DCL commands listed in Table
12-4 see the VAX/VMS Command Language User's Guide.

260 Chapter 12

APPL!C.SYM DECLARE.C

$ UElRARY·TEXLCREATE
$_LIBRARY CFILES
$_FILE APPLICSYM.DECLARE.C

The LIBRARY/TEXT command creates a library
containing text modules. This command creates
the library CFILES.TLB that contains the modules
APPLIC and DECLARE.

$CC METRIC• CFILES/LIBRARY

METRIC.OBJ

The CC command processes the input files
METRIC.C and uses the library CFILES.TLB
to locate alt #include references in the
format #include module-name.

Figure 12-2: Creating and Using an #include
Module Library

Program Development

ZK-086-81

261

Table 12-4: Commands to Control Library Files

Function and Command Syntaxl

Create a library.
$ LIBRARY(rEXT/CREATE library-name file-spec, ...

Add one or more modules to a library.
$ LIBRARYtrEXT/INSERT library-name file-spec,. ..

Replace one or more modules in a library.
$ LIBRARY(rEXT/REPLACE2 library-name file-spec, ...

Specify the names of modules to be added to a library.
$ LIBRARY(rEXT/INSERT library-name file-spec/MODULE=module-name

Delete one or more modules from a library.
$ LIBRARYtrEXT/DELETE=(module-name, ...) library-name

Copy a module from a library into another file.
$ LIBRARY(rEXT!EXTRACT=module-name library-name

List the modules in a library.
$ LIBRARY(rEXT/LIST/OUTPUT=file-spec library-name

Rename a library or move a library to another directory.
$ RENAME old-library-name new-library-name

Delete a library.
$ DELETE library-name

Copy or backup a library.
$ COPY input-library-name output-library-name

1. The LIBRARY command qualifier (rEXT indicates a text module library. By
default, the LIBRARY command assumes an object module library.

2. REPLACE is the default function of the LIBRARY command, if no other action
qualifiers are specified. If no module exists with the given name, /REPLACE is
effectively /INSERT.

12.6.1.2 Default C libraries
You can define one of your private #include module libraries as a de­
fault library. The C compiler searches the default library after it
searches libraries specified in the CC command.

To define a default library, make the library file specification equiva­
lent to the logical name C$LIBRARY, as in the following example:

$ DEFINE CSLIBRARY SYSSLDGIN:DATAB.TLB

While this assignment is in effect, the compiler automatically searches
the library SYS$LOGIN:DATAB.TLB for any #include modules that it
cannot locate in libraries explicitly specified in the CC command.

262 Chapter 12

You can define the logical name C$LIBRARY in the process, group, or
system logical name table. If the name is defined in more than one
table, the C compiler uses the equivalent for the first match it finds in
the normal order of search (that is, first the process, then the group,
then the system table). Thus, if C$LIBRARY is defined in both the
process and group logical name tables, the process logical name table
assignment overrides the group logical name table assignment.

12.6.1.3 Default System #include Library
When it cannot find #include modules in libraries specified in the CC
command or in the default library defined by C$LIBRARY, the C com­
piler searches the library identified by the name:

SYSSLIBRARY:CSYSDEF.TL6

CSYSDEF.TLB is a library of #include modules supplied with VAX-11
C. It contains declarations of values returned by the VAX/VMS system
services, as well as the text of all files of type h that are supplied with
VAX-11 C. For example, you can include the standard VO definitions
in a program with either of these #include lines:

#include <stdio.h)

which includes the file SYS$LIBRARY:STDIO.H; or equivalently

#include stdio

which includes the text module STDIO from SYS$LIBRARY:CSYS­
DEF.TLB.

12.6.2 Object libraries
An object library is a file of object code organized into modules. The
modules are indexed by two tables:

• A module name table, which lists the names of the modules in the
library. The names are those given to the modules when they are
compiled.

• A global symbol table, which lists all the global symbols defined in
each module.

These are the tables that the linker searches.

12.6.2.1 Creating An Object Modula Library
The LIBRARY command creates and updates libraries. It assumes by
default that a library upon which it is performing a function is an object
module library. You can use object module libraries to:

• Catalog and group commonly used functions.

• Provide a default set of modules for the linker to use in resolving
global references in object modules it is linking.

• Enhance the performance of linking operations by putting all
needed modules in a single library, thus reducing the number of
files that need to be opened during linking.

Program Development 263

Figure 12-3 illustrates the steps you would take to create object mod­
ules, to create a library, and to use the library when linking programs.

METRIC.C APPLIC'.C

$ CC METRIC, APPLIC

The CC command compiles the programs
METRIC.C and APPLIC.C separately
and creates the object modules
METRIC.OBJ and APPLIC.OBJ.

APPLIC.OBJ

$LIBRARY/CREATE DEFLIB
$_FILE: METRIC, APPLIC

TESTALL.C

$CC TESTALL

The LIBRARY command creates the
object module library DEFLIB.OLB
that contains the modules in the
files METRIC and APPLIC.

The CC command compiles the file
TESTALL.C. This source program
contains references to the
global symbols APPLIC and METRIC.

$LINK TESTALL, DEFLIB/LIBRARY

The LINK command specifies DEFLIB
as the default library to search
for unresolved references in the
module TESTALL. The linker locates
METRIC and APPLIC in this library
and includes them in the image file.

TESTALL.EXE

ZK-087~81

Figure 12-3: Creating and Using an Object Module Library

264 Chapter 12

The LIBRARY command uses the following default file types:

• OLB indicates an object module library file.
• OBJ indicates an object module file.

When the LIBRARY command inserts an object module in a library, it:

• Enters the name of the module in the library's module name table.

• Enters all global symbols from the object module in the library's
global symbol table.

For example, a C program named QUEUES.C might contain the fol­
lowing definitions:

read,'()
{

llobalref char •zp;

}

llobaldef char •stk;

addel(9ueue ,paint)
char •9ueue •*Point;
{

refrl•.>el (9ueue •Point)
char •9ueue •*Point;
{

}

This module can be compiled and placed in a library as follows:

$ CC QUEUES
$ LIBRARY/INSERT DEFLIB QUEUES

After the LIBRARY command in this example has been executed, the
module name table for the library DEFLIB.OLB contains an entry for
the module named QUEUES. The library's global symbol table con­
tains entries for the names ready, addel, remvel, and stk. Object mod­
ules that refer to any of those names can then be linked with this
library. When the library is specified as input to the linker, the linker
searches the library's module name table and global symbol table for
unresolved references.

Program Development 265

12.6.2.2 Default User Object Module Libraries
You can define one or more of your own object module libraries as
default user libraries. The linker searches them for unresolved refer­
ences after it searches modules and libraries specified in the LINK
command.

To indicate that a library is a default user library, enter a DEFINE
command as shown in the following example:

$DEFINE LNK$LIBRARY DBA5:CMY,LIBSJDEFLIB

LNK$LIBRARY is a logical name; DBA5:[MY.LIBSJDEFLIB is the
name of an object module library that you want the linker to search
automatically in all subsequent link operations.

You can establish any object module library as a default user library
by creating a logical name for the library. The logical names you
must use are LNK$LIBRARY (as above), LNK$LIBRARY_l,
LNK$LIBRARY--2, and so on, to LNK$LIBRARY_999. If more than
one of these logical names exists when a LINK command executes,
the linker searches them in numerical order, beginning with
LNK$LIBRARY.

Default libraries may also be shared by users who have the same group
number in their user identification codes. To share a library in a group,
make the logical name assignment in the group logical name table (the
GRPNAM user privilege is required for this assignment). For example:

$ DEFINE/GROUP LNK$LIBRARY CAPPLICLIBJAPPLIC

When this logical name assignment is in effect, the linker searches the
library [APPLICLIBJAPPLIC.OLB, as necessary, for all link operations
performed by processes in the group of the user who entered this com­
mand.

The logical names LNK$LIBRARY through LNK$LIBRARY--999 can
exist in both process and group logical name tables without conflict.
Similarly, these names can also be defined in the system logical name
table to provide a default system-wide user library (the SYSNAM user
privilege is required).

12.6.2.3 System Libraries
The directory identified by the system-defined logical name
SYS$LIBRARY contains the library files:

• VMSRTL.EXE
• STARLET.OLE

The file VMSRTL.EXE contains the VAX-11 Run-Time Library. The
procedures in this library provide:

• Commonly used mathematical and string-handling functions.
• Procedures that support code produced by VAX/VMS compilers.

266 Chapter 12

VMSRTL.EXE is a library in shareable image format; that is, it is
prelinked and can be accessed concurrently by many images. The pro­
cedures in a shareable image library can be used by a program even
though the procedures are not physically included in the program im­
age. The references to the procedures in the shareable image library are
not resolved until the program actually runs. For information about
creating shareable image libraries, and a description of the VAX-11
Run-Time Library, see the VAX-11 Run-Time Library Reference
Manual.

STARLET.OLE contains, in object module form, all the procedures in
VMSRTL.EXE, as well as additional run-time modules required by
various compilers and system programs. The global symbols for
V AX-11 C have nonstandard names for compatibility with other C
implementations. Therefore, the VAX-11 C object modules cannot be
included in STARLET.OLE; they are in a separate library
(SYS$LIBRARY:CRTLIB.OLB).

By default, the linker searches STARLET.OLE and VMSRTL.EXE to
resolve references to external names that are still unresolved after the
libraries specified in the LINK command and the user default libraries
have been searched.

You can control whether the linker searches VMSRTL.EXE and
STARLET.OLE by using the /NOSYSSHR and /NOSYSLIB quali­
fiers. These qualifiers have the following effects:

• If you specify /NOSYSSHR, the linker does not search the share­
able version of the Run-Time Library. Any run-time procedures
required by your program will be included in your image from
STARLET.OLE.

• If you specify /NOSYSLIB, the linker searches neither
VMSRTL.EXE nor STARLET.OLE. You must provide private
versions or copies of any run-time procedures required by your
program.

For example:

S LINK/NOSVSSHR METRIC1APPLIC0DEFLIB/LIBRARV

In this link operation, the linker searches the library DEFLIB.OLB,
then any default user libraries, then STARLET.OLE. It does not search
VMSRTL.EXE.

For additional information on the LINK command, see Chapter 14. For
information on how to call Run-Time Library procedures and
VAX/VMS system services from a C program, see Chapter 10.

Program Development 267

Chapter 13

Creating Source Programs

The first step in developing a V AX-11 C program consists of creating
the program's source file. VAXNMS offers two supported text editors
that allow you to do this: SOS and EDT. This chapter provides an
introduction to the use of EDT. For information on SOS, refer to the
VAX-11 Text Editing Reference Manual.

There are three other sources of information on EDT. The first is the
VAX-11 EDT Editor Reference Manual. 1 The second is the computer­
assisted course titled "Introduction to the EDT Editor" supplied with
the VAXNMS operating system. The third is EDT's help facility.

13.1 Introduction to EDT

EDT, the DEC Standard Editor, is an interactive general-purpose text
editor. It offers two modes of operation: line editing, in which opera­
tions are performed on entire lines of text; and character editing, in
which operations are performed on characters and words as well as on
lines. Line editing is possible at either hard-copy or video terminals.
Character editing, while usable at hard-copy terminals, is most effec­
tive at video terminals.

Line editing mode, with its English-like commands, is simple for the
inexperienced user to learn. Character editing mode, while requiring
practice, is also very simple. Therefore, EDT is a good editor for some­
one who must learn a text editor quickly.

EDT also offers many advanced features:

• Multiple text buffers. By default, editing operations take place
within a single text buffer called MAIN. However, you can main­
tain an unlimited number of alternate text buffers as "holding
areas" for text that you do not necessarily wish to incorporate in
the output file.

1. Some installations may have the EDT Editor Manual instead of the VAX-11
EDT Editor Reference Manual. The two manuals contain the same information
about EDT.

268

• Flexible input and output commands. You can copy files into an
EDT text buffer after beginning the editing session, and you can
output text buffers or portions of text buffers to files before ending
the session.

• Macro capability. You can create sequences of line editing com­
mands that you invoke with a single command.

• The ability to define keys for custom character editing applica­
tions. For example, a keypad key can be defined so that it inserts a
specified line of text each time it is pressed. This function is espe­
cially useful in programming applications where certain state­
ments may be repeated frequently.

Finally, EDT protects your text. Should your editing session end in an
unexpected manner, you can recover all your editing operations by
reentering the EDT command line with the /RECOVER qualifier. EDT
then "replays" your editing session up to the point of interruption,
using the contents of the journal file that it maintained during the lost
session.

The following subsections introduce EDT's line editing commands and
help facilities.

13.1.1 Line Editing Command Summary
When you invoke EDT, and throughout your editing session, EDT
prompts you to enter line editing commands by displaying an asterisk.
For example:

$ EDIT/EDT METRIC.C
1 main()

*
Table 13-1 describes briefly in alphabetic order the most useful com­
mands that you can enter in response to the line editing prompt (*).
Examples of these commands occur throughout Sections 13.2, 13.3, and
13.4. The smallest acceptable abbreviation for each command is shown
in bold type in the table.

All line editing commands are terminated with a IB@. Most of the
commands allow or require you to specify a range or ranges; the range
specification tells EDT where the action of the command should take
place. Section 13.4.1 summarizes range specifications, and the com­
mand examples show various ways of specifying a range.

Creating Source Programs 269

Table 13-1: Summary of Line Editing Commands

Command

CHANGE [range]

COPY [rangelJ TO [range2J l/QUERYJ

{ KEY }
DEFINE MACRO

DELETE [range] [/QUERYJ

EXIT [file-spec]

FIND range

HELP [topic ... J

INCLUDE file-spec [range]

INSERT [range]

MOVE [rangel] TO [range2J [/QUERY]

QUIT [/SA VEJ

REPLACE [range]

SET [parameter]

SET lNOJNUMBERS

270

Function

Invokes character editing mode for
specified buffer

Copies lines specified by rangel to
a location in an EDT buffer speci­
fied by range2; does not delete
lines from original location

Defines a new or revised key func­
tion for character editing mode, or
defines a macro name

Deletes a specified line or lines

Terminates EDT, saving the con­
tents of the text buffer MAIN as
the output file

Moves the current line to a speci­
fied ·line

Displays information on a specified
EDT command or function

Copies an external file to a location
in a text buffer specified by range

Opens a text buffer for the inser­
tion of text at the location speci­
fied by range

Moves lines specified by rangel to
the location specified by range2,
deleting the lines from the source
location

Terminates EDT without creating
an output file, optionally saving
the journal file

Deletes specified lines from a text
buffer and leaves the buffer open
for insertion of text

Sets a variety of editor operating
parameters

Enables/disables the display of line
numbers

Chapter 13

Table 13-1: (Cont.) Summary of Line Editing Commands

Command

SHOW [parameter]

SUBSTITUTE /stringl/string2/[range]
[/QUERY]

Function

Displays specified editor operating
parameters

Replaces stringl with string2, ei­
ther in the current line or in the
specified range

[SUBSTITUTE] NEXT [/stringl/string2l Replaces stringl with string2,
based either on the strings speci­
fied or on the previous SUBSTI­
TUTE command

[TYPE] range Displays specified lines and makes
the first line in range the current
line; the default command

WRITE file-spec [range] Moves a copy of specified text from
a buffer to a file

13.1.2 The Help Facilities
EDT offers online help in both line and character editing modes. In line
editing mode, you invoke the help facility by entering the HELP com­
mand. Issued without parameters, this command displays_ information
on how to get further help, plus a list of subjects for which help is
available. If you enter one of the subjects as a parameter to the HELP
command, EDT displays information on that subject, and possibly an­
other list. For example:

*HELP DELETE

DELETE

The DELETE (abbreviation: DI command deletes the line
sPecified

Additional information available:

Creating Source Programs 271

/QUERY
*HELP DELETE /QUERY

DELETE

/QUERY

*

Q Quit• do not delete any of the rest of the
lines

A All, delete all of the rest of the lines

In character editing mode, you obtain help by pressing the HELP key
on the keypad; EDT displays a diagram of the keypad with all the key
functions identified. You can then obtain help on an individual func­
tion by pressing the key that invokes that function. (Section 13.5 shows
how to find the HELP key.)

13.2 Invoking and Terminating EDT

An editing session begins when you invoke EDT with the EDIT/EDT
command, and ends when you terminate EDT with the EXIT or QUIT
command. You may start an editing session with no file and create the
text for the file during the course of the session. Or you may specify an
existing file when you start the session, in which case EDT loads the file
into its MAIN text buffer. EDT does not destroy the contents of any
existing file that you edit; it simply produces a new version, leaving the
old version intact.

13.2.1 Invoking EDT
To invoke EDT, issue an EDIT/EDT command in the format:

EDIT/EDT!/qualifier ... J file-spec

Qualifiers

/[NOJCOMMAND[=file-specJ
/[NOJJOURNAL[=file-specl
/[NOJOUTPUT[=file-specl
/[NOJREAD_ONLY
/[NOJRECOVER

file-spec

Default

/COMMAND=EDTINI.EDT
/JOURNAL=infile-name.JOU
/OUTPUT=infile-spec
/NOREAD_ONLY
/NORECOVER

Specifies the file to be created or edited. If the file does not exist,
EDT creates it.

EDT does not provide a default file type. If you do not specify one,
the file type is null.

272 Chapter 13

/OUTPUT[=file-specJ
/NOOUTPUT

Supplies an alternate file specification for the output file. By de­
fault, EDT creates an output file upon exit that has the same name
and type as the input file and a version number of 1 (if the input file
does not exist) or one higher than the highest existing version (if the
input file does exist).

If you specify /NOOUTPUT, EDT does not automatically create an
output file when you issue the EXIT command.

The remaining qualifiers, which describe specialized editor functions,
are described elsewhere: the /COMMAND qualifier, in Section 13.7.3;
the /JOURNAL, /READ_ONLY, and /RECOVER qualifiers, in Sec­
tion 13.6.

For convenience, you can issue the following command to equate a
short command symbol (EDT, in this example) to EDIT/EDT:

$EDT :== "EDIT/EDT"

After you issue this command, the command interpreter will recognize
the symbol EDT (or whatever symbol you specify) as equivalent to
EDIT/EDT.

When you invoke EDT, the response varies depending on whether or
not the file that you specify exists. (Other factors, such as commands
contained in a start-up command file named EDTINI.EDT, may fur­
ther alter the response.) If the file does not exist, EDT so informs you,
and prompts you to issue editing commands:

$ EDIT/EDT METRIC,C
InPut file does not exist
EEOBJ

*
The asterisk (*) is EDT's line editing prompt. When EDT is display­
ing the asterisk prompt, you can enter any of the commands listed in
Table 13-1.

If the file exists, its first line is displayed instead of [EOBJ:

$ EDIT/EDT METRIC.C
1 main Cl

*

Creating Source Programs 273

NOTE
If you invoke EDT and it does not display an asterisk
prompt, you cannot enter line editing commands. This con­
dition can result when the current default directory con­
tains a start-up command file named EDTINI.EDT that
causes EDT to enter character editing mode directly. If this
happens, you can enter line editing mode by typing a (CTRLIZI.

You can override the unwanted effects of a start-up com­
mand file by including the /NOCOMMAND qualifier on
the command line.

13.2.2 Terminating EDT
Use the EXIT command to terminate EDT and create an output file
from the contents of the MAIN text buffer. To override the default
output file, you can specify an output file with the EXIT command, as
shown in the following example:

*E)< IT AL TNAME, C
_DBl:CPROJECTJALTNAME.C;1 55 lines
$

The QUIT command terminates EDT without creating an output file.
You can use QUIT if you are simply reading a file without modifying it
or if you do not want to save your edits.

13.3 Creating a New File in Line Mode

To create a new file, you issue an EDIT/EDT command that specifies a
file that does not currently exist in your directory. After EDT responds
with the asterisk prompt, issue the INSERT command (abbreviation I)
followed by ~. The cursor or print head then moves to the right 16
spaces; this space is left by EDT to accommodate line numbers, al­
though none appear at this stage. You can now enter as many lines of
text as you wish. When you are finished entering text, terminate the
insert with~- The following example illustrates this process:

$ EDIT/EDT EXAMPLE.TXT
lnPut file does not exist
CEO BJ
*I

This is the
This i s the
This is the
This is the
This is the
This is the
This i s the
(CTRL/Z) ···z

*

274

first line of E>!AMPLE, TJ<T
second 1 in e of E><AMPLE f TXT
th i rd 1 in e of E>!AMPLE, T\T
fourth 1 in e of E>!AMPLE, T><T
fifth line of E><AMPLE t T)<T
sixth 1 in e of EYAMPLE. nn
se•.ienth 1 in e of E>!AMPLE, TJ<T

Chapter 13

The [EOBJ designation indicates that you are currently at end-of­
buffer, and that any text you insert will be the only text in the buffer.

If you do not want EDT to leave space in front of each line for line
numbers, you can issue the SET NONUMBERS command; EDT then
begins each line at the left margin of the terminal. EDT continues to
number lines, but does not display the numbers. You can restore the
line number display later by issuing a SET NUMBERS command.

13.4 Editing an Existing File in Line Mode

To edit an existing file in your directory, issue an EDIT/EDT command
that specifies its name. (For information on how to edit a file from a
directory other than your own, see Section 13.4.8.) EDT displays the
first line in the file, as shown in the following example:
$ EDIT/EDT EXAMPLE.TXT

1 This is the first line of EXAMPLE.TXT

*
The number 1 to the left of the line is the line number. It is not part of
the file. The file starts with the word This.

The line displayed is the current line. EDT uses the current line as the
default in many of its operations. For example, an INSERT command
that does not specify a range causes EDT to insert text in front of the
current line.

The concept of "range" is central to all EDT line editing operations.
The next section describes ways of specifying range. The sections that
follow it describe the most common and useful line editing operations.

13.4.1 Range Specifications
A range consists of the line or lines on which EDT performs an opera­
tion. A range specification is a description of a range in terms that EDT
can understand. All the line editing commands (except SUBSTITUTE
NEXT) described in the sections that follow accept one or more range
specifications, although many do not require one.

The simplest range specification identifies a single line of text. A line
can be located by its position in the file relative to the current line, by a
text string, or by its line number. Since line numbers are primarily
useful in range specifications, they are described here.

When you insert lines of text in a new file, or when EDT loads an
existing file into its MAIN buffer, each line of the file receives a num­
ber. The numbering starts with 1 and proceeds upwards by ones. If you
insert lines of text between existing lines, EDT numbers the new lines
using appropriate decimal increments. This technique ensures that
there will be enough unique line numbers to cover any reasonable edit­
ing operation. EDT displays the line numbers whenever it displays

Creating Source Programs 275

text, unless you have issued the SET NONUMBERS command. In that
case, EDT does not display line numbers, but it does continue to assign
them.

Single-line range specifications are listed in Table 13-2; examples
appear below.

Table 13-2: Single-Line Range Specifications

Specification

number

'string' or
"string"

- 'string ' or
-"string"

[range] { ~} [number]

BEGIN

END

Specification

20.6

"#include"

Meaning

The current line

The line specified by the number

The next line containing the string you specify

The preceding line containing the string you specify

The line that is the specified number of lines after (or
before, if minus) the single line specified by range
(range defaults to the current line; number defaults
to 1)

The first line in the text buffer

An empty line (designated by [EOB]) following the
last line of text in the text buffer.

Meaning

The line numbered 20.6

The next line that contains the string
#include

-"putchar(c);" The first preceding line that contains the string
putchar(c);

-6 The line six lines before the current line

'i++ '+4 The line four lines after the line that contains the
string i++

When EDT searches for a string, the case of the search string need not
match the case of the target. For example, getchar is a match for
GETCHAR or Getchar. This condition is the default; you can change it
with the SET SEARCH command.

There are several methods available for specifying a range of more than
one line. They are listed in Table 13-3; examples appear below.

276 Chapter 13

Table 13-3: Multiple-Line Range Specifications

Specification

[rangel] { T~RU} [range2J

[range] { F6R} number

BEFORE

REST

WHOLE

range, range ...
or

range AND range AND ...

Meaning

The set of lines from rangel through range2,
which are single-line range specifications (both
rangel and range2 default to the current line,
if omitted)

The specified number of lines beginning with
the single line specified by range (range de­
faults to the current line, if omitted)

All lines in the buffer that precede the current
line

The current line and all lines in the buffer that
follow it

The entire buffer

All lines specified by each single-line range

[range] ALL 'string' All lines in the range containing the specified
string (the default for range is the entire
buffer)

Specification Meaning

2:6.5 Lines 2 through 6.5, inclusive

'#include' #5 The line containing the string #include and the
four lines following it, for a total of five lines

. -10:. The line 10 lines before the current line through
the current line, inclusive

10:50 ALL 'get' All lines from line 10 through line 50 that con-
tain the string get

Most range specifications can be combined with a text buffer specifica­
tion. During your editing session, you may wish to hold and edit text in
buffers other than MAIN. To create and gain access to alternate buff­
ers, include the name of the buffer in a range specification, using the
following syntax:

=buffer [range]
or

BUFFER buffer [range]

Creating Source Programs 277

In this syntax, "buffer" stands for the name of the buffer. It can be
from 1 to 30 alphanumeric characters, but it must start with an alpha­
betic character. If you include a range of lines following the buffer
name, you specify the range within the named buffer. If you omit the
range specification, you specify either the entire named buffer or its
first line, depending on context.

The following examples show buffer specifications in use.

Specification Meaning

=PROGl The entire contents of the text buffer
named PROGl, or (for commands requir­
ing a single-line range specification) its
first line.

=INC 'subl() ': 'l' The lines that contain the strings subl()
and l in the text buffer named INC, and all
lines in between.

=COM ALL 'copy() ' All lines that contain the string copy() in
the buffer named COM.

13.4.2 Maneuvering in the File
This section describes commands for maneuvering in a buffer contain­
ing text; in other words, for changing the location of the current line.

The TYPE command, followed by a range, causes EDT to display the
line or lines in the range and resets the current line to the first (or only)
line displayed. The word TYPE (abbreviation T) is optional; it need
not be entered. For example:

*T 1:3
1 This is the first line of EXAMPLE.TXT
2 This is the second line of EXAMPLE, Tl<T
3 This is the third line of EXAMPLE. nn

*4~*2

a This is the fourth line of D(AMPLE, T}(T
5 This is the fifth line of E)<AMPLE, T}(T

*
If you do not include the word TYPE, and if the range specification
begins with an alphabetic character (such as WHOLE or REST), you
must precede it with a percent sign (%) . Otherwise, EDT tries to
interpret the range ,specification as a command. For example:

278 Chapter 13

Unrecosnized command
*~%;REST

*

a
5
G
7

This
This
This

This

i s the
is the
i s the
i s the

fourth 1 in e 0 f D<AMPLE, T>'.T

fifth 1 in e of Ei<AMPLE, Tin
sixth 1 in e of E>{AMPLE t T><T
sei.ienth line of E)<AMPLE, T>'.T

A carriage return in response to the asterisk prompt displays the line
following the current line and sets the current line to the displayed line.
A series of carriage returns, therefore, displays successive lines and sets
the current line to the displayed line each time. This is an easy way to
work through a file line by line. For example:

* ru
5 This i s the fifth 1 in e of D<AMPLE, T>'.T

*!l1Ul
G This is the sixth line of Ei<AMPLE, Tin

*

The FIND command (abbreviation F) locates a specified line without
displaying it. It is useful for setting the current line to the top of a large
block of text that would be cumbersome to display on the terminal. For
example, each of the following commands resets the current line to the
top of the MAIN text buffer:

*=MAIN

*F MA IN

However, the first command (an implied TYPE command) displays the
entire contents of the MAIN text buffer. The second command just sets
the current line and displays an asterisk prompt.

If you specify a range that EDT cannot locate, EDT issues a message
and does not change the current line setting.

13.4.3 Inserting New Text
The procedure for inserting new text in a buffer already containing text
is exactly the same as that for inserting text in an empty buffer (see
Section 13.3), except that you can control where the text goes by in­
cluding a range specification with the INSERT command. The lines
you insert are placed in front of the line you specify. If you specify
multiple lines, the insert goes in front of the first line in the range. If
you omit the range specification, the insert goes in front of the current
line.

Creating Source Programs 279

In the following example, the INSERT command causes EDT to insert
text in front of line 5 in the current buffer. Then the range specification
(an implied TYPE command) causes EDT to display lines 4 through 6,
showing the result of the insertion.

First insert line
Second insert line
Third insert line
(CTRL/Z) '· Z

* '1: G
ll This is the fourth line of EXAMPLE.TXT

First insert line

*

ll • 1
a.2
l!. 3
5
G

Second insert line
Third insert line
This is the fifth line of EXAMPLE.TXT
This is the sixth line of EXAMPLE.TXT

NOTE
EDT, which inserts text in front of the current line, is dif­
ferent from many other text editors that insert text follow­
ing the current line.

13.4.4 Deleting and Replacing Text
Use the DELETE command (abbreviation D) to delete a specified
range. If you omit the range, the DELETE command deletes the cur­
rent line. After a delete operation, EDT displays the line following the
last line deleted; this is the new current line. For example:

*D 4.1>t2
2 lines deleted

4,3 Third insert line
*D
1 line deleted

5 This is the fifth line of EXAMPLE,TXT

*
The /QUERY qualifier to the DELETE command causes EDT to
prompt you before deleting each line of the range. The prompt is a
question mark (?) . You can respond to the prompt in one of four ways:

Y (yes) Delete this line
N (no) Do not delete this line
A (all) Delete all remaining lines in the specified range
Q (quit) Quit the delete operation

The REPLACE command (abbreviation R) deletes a specified range
and allows you to insert lines to replace the deleted lines. You termi­
nate the insertion with a (CTRL/Z), just as with the INSERT command.

280 Chapter 13

13.4.5 Moving Text
The COPY and MOVE commands (abbreviations CO and M, respec­
tively) allow you to move one or more lines of text from one place in the
buffer to another, or from one buffer to another. The effect of these
commands is similar; the only difference is that the COPY command
does not delete the text from its original location, whereas the MOVE
command does.

The following example illustrates both commands, as well as alterna-
tive ways of specifying a range: ·

*%WHOLE
1 This i s the first line of E){AMPLE. nn
2 This is the second 1 i i"1 e of DAMPLE, TXT
3 This is the third line of E)<AMPLE, T>(T
ll This i s the fourth line of E)<AMPLE. nn
5 This is the fifth line of E){AMPLE. nn
G This is the sixth line of E)<AMPLE. n:T
7 This is the se1.1enth line of E){AMPLE. nn

*COPY 1: 3 TO 'SI><TH'
3 lines COPle1j

*5:6
5 This is the fifth 1 in e of EXAMPLE. nn
5. 1 This is the first line of E){AMPLE. nn
5.2 This is the second line of E){AMPLE. nn
5.3 This is the third 1 in e of E>(AMPLE, TKT
G This is the sixth 1 in e of E>(AMPLE. TKT

*M 5. 1 #3 TO BEGIN
3 lines fTl 0 I.I e d

*'X,WH
(I • 1 This is the first line of E>(AMPLE. TXT
0.2 This is the second line of E){AMPLE. nn
o. 3 This is the third line of E>(AMPLE. T){T

This i s the first line of EXAMPLE.TKT
2 This i s the second line of EXAMPLE. TKT
3 This is the third line of E)<AMPLE. TKT
ll This i s the fourth line of EXAMPLE. nn
5 This i s the fifth line of [}{AMPLE. T>{T

G This is the sixth line of E){AMPLE, TXT
7 This i s the seventh line of E)<AMPLE. TKT

*

The /QUERY qualifier to either COPY or MOVE causes EDT to
prompt you before copying or moving each line of the range. It operates
the same way as the /QUERY qualifier to DELETE (see Section
13.4.4).

13.4.6 Substituting Text
Two commands, SUBSTITUTE and SUBSTITUTE NEXT, substitute
one string for another within a line or lines. These are the only line

Creating Source Programs 281

editing commands that can alter text within a line, as opposed to
changing the entire line. The SUBSTITUTE command (abbreviation
S) operates on the current line or on a specified range; the SUBSTI­
TUTE NEXT command (abbreviation N) makes a substitution at the
next opportunity within th!) buffer.

The format of the SUBSTITUTE command is:

SUBSTITUTE /stringl/string2/[range] l/QUERYJ

The command finds stringl and substitutes string2 for it. If you do not
specify a range, the substitution takes place in the current line. If you
do, the command makes every substitution within the range. The fol­
lowing example illustrates the command first without and then with a
range specified:

* 1

*5 /first/1st/

1 substitution
*5 iofiin/4:6

lj

5
G

3 substitutions

*

This is the first line of EXAMPLE,TXT

This is the 1st line of EXAMPLE,TXT

This is the fourth line in EXAMPLE,TXT
This is the fifth line in EXAMPLE.TXT
This is the sixth line in EXAMPLE,TXT

Slashes (I) are not the only characters you can use to delimit stringl
and string2. Any nonalphanumeric character will work, as long as the
delimiters are matched and do not occur in either string. For example,
the following command substitutes the string a/3 for a/2 in the current
line, using dollar signs ($) as delimiters:

*S $a/2$a/3$
25

1 substitution

*

size = a/J;

The /QUERY qualifier to SUBSTITUTE causes EDT to prompt you
before making each substitution. It operates the same way as the
/QUERY qualifier to DELETE (see Section 13.4.4).

The SUBSTITUTE NEXT command (abbreviation N) substitutes for
the next occurrence of stringl that it finds in the buffer. If you specify
neither stringl nor string2, the command takes their values from the
last SUBSTITUTE command you issued. For example:

* '"
/ in I of/
lj This is the fourth line of EXAMPLE,TXT

~ N
C" ,> This is the fifth line of EXAMPLE,TXT

*

282 Chapter 13

13.4. 7 Input from and Output to Files
Two EDT commands, INCLUDE and WRITE, allow you to incorporate
text from files and output text to files during your editing session. The
INCLUDE command (abbreviation INC) incorporates the contents of a
file at a specified location in a text buffer. If you do not want the entire
file incorporated in the MAIN text buffer, you can specify an alternate
buffer as the range, and then copy the desired portions of the file to
their proper places in MAIN. For example:

*INC SBRTNES.C SUBS

*
This command creates a buffer called SUBS and fills it with the con­
tents of the file SBRTNES.C from the EDT default directory (that is,
the directory of the input file given with the EDIT/EDT command).

The WRITE command (abbreviation WR) creates a file by copying the
contents of a specified range in a text buffer. The text is not deleted
from the text buffer, and EDT does not terminate following the opera­
tion. If you do not specify a range with the write command, EDT
outputs the entire contents of the current text buffer. The following
example shows the command used with a range:

*WR ROUTINEl,C =SUBS 'add:': 'return'
DBl:[PROJECTJROUTINEl.c;1 45 lines

*
This command creates the file ROUTINEl.C from the lines that con­
tain the strings add: and return in the buffer named SUBS, and all
lines in between.

Unless you include a directory in the file specification, WRITE always
creates the file in your current default directory. This is true even ifthe
input and output files are in another directory.

13.4.8 Editing a File from Another Directory
You can edit a file that exists in another directory and use the /OUT­
PUT qualifier to EDIT/EDT to direct the output file to your directory.
However, EDT uses the directory of the input file that you specify in
the EDIT/EDT command line as its default directory. This default has
the following effects:

• EDT attempts to create its journal file in its default directory, that
is, the other directory. If you do not have the privilege to do this,
EDT issues an error message and terminates. You should instead
use the /JOURNAL qualifier to place the journal file in your direc­
tory. (See Section 13.6 for a description of the journal file and
/JOURNAL.)

• If you issue an INCLUDE command and do not specify a direc­
tory, EDT attempts to locate the file in its default directory, that
is, the other directory. To specify a file in your own directory, use a
directory specification with INCLUDE.

Creating Source Programs 283

In the following example, a user with the account [WILBUR] edits a file
from the account [PROJECT]:

$ EDIT/EDT [PRDJECTJDATADEF,C -
$_/OUTPUT=[WILBURJ /JOURNAL=[WILBURJ

*INCLUDE [WILBURJENTRIES.C

The input file for this editing session is [PROJECTJDATADEF.C; the
output file is [WILBURJDATADEF.C. The INCLUDE command incor­
porates a file from directory [WILBUR]. If the INCLUDE command
had not specified a directory, EDT would have looked for the file
fPROJECTJENTRIES.C.

13.5 Character Editing

EDT's character editing mode allows you to perform editing operations
at any position in your text instead of line by line. For most applica­
tions, especially those requiring extensive detail modification of exist­
ing text, character editing is faster and more straightforward than line
editing. When you use character editing mode on a video terminal, your
screen always contains an accurate picture of the area of the file in
which you are working. The terminal's cursor shows exactly where you
are at all times.

There are two types of character editing: nokeypad and keypad. Nokey­
pad character editing works on all terminals, including hard-copy ter­
minals. It requires you to enter short commands through the keyboard
and terminate each command with a OCi'.l. Keypad character editing
works on the VT52 and VTlOO video terminals and on terminals that
are compatible with them. In keypad editing, you request editor func­
tions by pressing keys on the auxiliary keypad; no OCi'.l is required to
terminate the command. Anything you type on the keyboard, including
carriage returns, is inserted into the file as text.

This section describes only keypad character editing. To learn about
nokeypad character editing, read the VAX-11 EDT Editor Reference
Manual.

The keypads for the VT52 and VTlOO (and compatible) terminals are
different. Therefore, the following description refers to functions rather
than to specific keys. It is a good idea to keep a copy of the appropriate
keypad diagram handy while you are learning character editing. Fig­
ures 13-1and13-2 show the keypad diagrams for the VT52 and VTlOO,
respectively. The numbers or characters in the upper right of each key
correspond to the label on the key.

284 Chapter 13

0
al
~ s·

(Jq

w
8
n
~

~
~
$>)

s
"'

N
00
Q1

r----i-----,----r---t,
I I I I I
I GOLD I HELP I DEL L I UP I
I I I UNO L I REPLACE I
L----1-----+----~----~
I 1 1 a I 9 1 ~ I

: PAGE I FNDNXT I DEL w : DOWN :

I COMMAND : FIND : UNO w I SECT I
r----1----r----t---~
I 4 I 5 I 6 I I
I ADVANCE I BACKUP I DEL c I RIGHT '1
I BOTTOM I TOP I UNO c I SPECINS

1----L----~----J ____ J
1 I 2 I 3 I ...- I

I I I I I
I WOAD I EOL I CUT I LEFT I
I CHNGCASE I DEL EOL I PASTE I APPEND I

~----L---~t---~t-~~~1
I I I I
I LINE I SELECT I ENTER I
I OPEN LINE I RESET I SUBS I
L _________ _i ____ l_ ____ J

zK,QSB-81

Figure 13-1: VT52 Keypad

r---"tr---~r---:-r---.:i

I I I I I
I UP I DOWN I LEFT I RIGHT I
I I I I I
L---~-----L----L----~

r--~~;---~1---~~---~~
'1 GOLD I HELP I FNDNXT I DEL L I

I I FIND I UNO L I

~----t----~----~----~
I 7 I a I 9 I - ,
I PAGE I SECT I APPEND '1 DEL w I
I COMMAND I FILL I REPLACE UNO w I
I I I I
r---~i----rl----~----~
I I I I I
I ADVANCE I BACKUP I CUT I DEL c I
I BOTTOM I TOP I PASTE I UNO c I

rl ____ L----~----L---~
1 I 2 I 3 I ENTER I

I I I I I WOAD I EOL I CHAR I I
I CHNGCASE I DEL EOL I SPECINS I I
L ____ L----~----' ENTER I
I 0 I • I SUBS I
I I I I
I LINE I SELECT I I
I OPEN LINE I RESET I I
L _________ L ____ L ___ ~

ZK,089-81

Figure 13-2: VTIOO Keypad

Note that most keys perform two functions. To use the upper of the two
functions listed, press the key. To use the lower function, first press and
release the GOLD key, then press the desired key.

13.5.1 Entering and Exiting from Character Editing Mode
To enter character editing mode from line editing mode, use the
CHANGE command (abbreviation C). When you issue the CHANGE
command, the screen first goes blank and then fills with text. The
cursor is positioned at the current line or the line you specified with the
CHANGE command. (If the buffer is empty, the cursor and [EOBJ
appear at the top of the screen.)

EDT does not display line numbers while in character editing mode,
although it does continue to assign them as you insert text.

When you have finished your character editing operations and wish to
return to line mode, enter a ~. It terminates character editing and
causes EDT to display the asterisk prompt. You can then perform line
editing operations or end the editing session, as appropriate.

The sections that follow describe some of the character editing opera­
tions available to you.

13.5.2 Maneuvering the Cursor
Before performing most character editing operations, you must move
the cursor to the location in the file where you wish the operation to
take place. There are many ways to move the cursor; experience teaches
which is best in a given situation.

The LEFT and RIGHT functions move the cursor one character to the
left or right. If the cursor is at the end of a line, the RIGHT function
moves it to the beginning of the next line. Conversely, if the cursor is at
the beginning of a line, the LEFT function moves it to the end of the
previous line.

The UP and DOWN functions move the cursor one line up or down.
The column position of the cursor does not change, unless there is no
text in the corresponding column above or below. In that case, the
cursor moves to the end of the preceding or following line.

The beginning-of-line function, obtained by pressing the BACK
SPACE key, moves the cursor to the beginning of the line in which it is
positioned. If the cursor is already at the beginning of a line, the func­
tion moves it to the beginning of the previous line.

The TOP and BOTTOM functions move the cursor to the beginning
and end of the buffer, respectively.

All the remaining cursor movement functions depend in part on the
ADVANCE and BACKUP functions. The ADVANCE function causes
subsequent cursor movement to occur in the forward direction, that is,
toward the end of the buffer. The BACKUP function causes subsequent

286 Chapter 13

cursor movement to occur in the backward direction, toward the begin­
ning of the buffer. When character editing begins, cursor movement is
forward, until reversed by the BACKUP function.

The following functions depend on the current direction established by
ADVANCE and BACKUP:

• The CHAR function moves the cursor one character.

• The WORD function moves the cursor to the beginning of the next
or previous word (the end-of-line character is considered a word).

• The LINE function moves the cursor to the beginning of the next
line, if the current direction is forward. If backward, the LINE
function moves the cursor to the beginning of the line in which the
cursor is positioned, or, if the cursor is at the beginning of a line, to
the beginning of the previous line.

• The EOL (for end-of-line) function moves the cursor to the next or
previous end-of-line character.

• The SECT (for section) function moves the cursor one 16-line
section.

• The PAGE function moves the cursor to the next or previous page
mark (by default, a form feed).

All of these cursor movement functions can be combined with a repeat
count, which causes the function to be repeated a specified number of
times. To enter a repeat count, press the GOLD key, then type in the
count on the keyboard (not keypad) number keys, then type in the
function to be repeated. As you enter the repeat count, the numbers
appear on the screen below the area reserved for text. The numbers
disappear as soon as you enter the function.

You can also use FIND and FNDNXT (for find next) to move the
cursor to a certain string. To find a string, press the FIND function key.
EDT prompts you for a search string. Type the search string without
delimiters, and terminate it with either the ADVANCE or BACKUP
function to determine the direction of search. EDT moves the cursor to
the beginning of the search string. If the search string is not found,
EDT issues a message and does not move the cursor.

The FNDNXT function finds the next occurrence of the current search
string in the current direction. The current search string is the last
string you entered with the FIND function.

Note that you can locate strings that include carriage returns with the
FIND function. Simply enter the carriage return as part of the search
string. The carriage return does not terminate the search string; you do
that with the ADVANCE or BACKUP function. EDT echoes a carriage
return in a search string as 'M.

Creating Source Programs 287

13.5.3 Inserting Text
Once the cursor is positioned, you can insert text in front of it simply by
typing the text on the keyboard. No command is required. Whatever
you type becomes part of the file. Your insertion appears on the screen
as you type it, and the surrounding text moves as necessary.

When you insert text at the beginning or in the middle of a line, the end
of the line may disappear off the edge of the screen. The text is not lost.
However: if you enter a carriage return in the text you are typing, the
text appears on the next line. To avoid this problem, you can use the
OPEN LINE function. When the cursor is at the beginning of a line,
OPEN LINE provides a blank line above that line, and positions the
cursor at the beginning of the blank line.

As you type new text, you may notice errors in surrounding text. You
can move the cursor to these errors and correct them at any time, and
then move the cursor back and continue to insert text.

13.5.4 Deleting and Undeleting Text
EDT character editing provides several methods of deleting text in
units of varying sizes. EDT also maintains three buffers to contain text
that has been deleted. The character buffer contains the last character
deleted; the word buffer contains the last word deleted; and the line
buffer contains the last line deleted. You can insert the contents of each
of these three buffers at the cursor position by using the UND C, UND
W, and UND L functions, respectively. There is no limit to the time or
number of operations between a delete operation and the undelete oper­
ation that reinserts the deleted text. Furthermore, you can undelete one
unit of text as many times as you wish, and at any locations you wish.

The DEL C (for character) function deletes the character at which the
cursor is positioned, and moves the cursor to the next character. The
DELETE key on the keyboard deletes the character before the cursor
position (the last character typed, ifyoU: are inserting text) but does not
change the cursor position. Both of these functions move the deleted
character into the character buffer, from which it can be retrieved by
using the UND C function.

The DEL W (for word) function deletes text from the current cursor
position to (but not including) the first character of the next word. The
LINE FEED key on the keyboard deletes text from (but not including)
the cursor position back to the first character of the current word. Both
of these functions move the deleted text into the word buffer, from
which it can be retrieved by using the UND W function.

The DEL L (for line) function deletes text from the cursor position
through the next end-of-line character. The DEL EOL (for end-of-line)
function is similar, except that it does not delete the end-of-line charac­
ter. Typing~ deletes from (but not including) the cursor position to

.288 Chapter 13

the beginning of the current line. All of these functions move the de­
leted text into the line buffer, from which it can be retrieved by using
the UND L function.

13.5.5 Moving Text
Character editing provides two basic methods of moving text. The first
is available through the three undelete functions. You can delete a unit
of text from one location, move the cursor to another location, and
undelete the text there. However, this method is only effective for units
that can be deleted by the various functions described in Section 13.5.4.
To move larger or more precise blocks of text, use CUT and PASTE.
These two functions allow you to "cut" any amount of contiguous text
from one location and "paste" it somewhere else.

The first step is defining the text to be moved. To do this, move the
cursor to either the beginning or the end of the text, and enter the
SELECT function. Then, move the cursor to the other extremity of the
text. In so doing, you create a select range: that is, all the text between
the cursor position and the position at which you entered the SELECT
function. On VTlOO terminals with the advanced video option, EDT
highlights the select range with reverse video. If you make a mistake
while you are defining the select range, enter the RESET function to
cancel the select range currently in effect.

Once you have defined the select range, enter the CUT function. The
text within the select range disappears. (EDT moves it into a text
buffer named PASTE.) Move the cursor to the position at which the
text is desired, and enter the PASTE function. The text appears at the
cursor position.

You can paste the cut text in as many locations as required. Specifi­
cally, you can paste the text as soon as you cut it, then you can move
the cursor and paste the text again. This is in effect a copy operation.

Each CUT operation destroys the previous contents of the PASTE
buffer and replaces them with the select range. To add the select range
to the contents of the PASTE buffer, use the APPEND function.

The PASTE buffer is an ordinary EDT text buffer. You can edit within
it, load it from a file with the INCLUDE command, and create a file
from its contents with the WRITE command.

13.6 Protecting and Recovering Text

Three qualifiers to the EDIT/EDT command allow you to protect files
against inadvertent modification and to recover editing operations that
have been lost. This section discusses them.

The /READ_ONLY qualifier controls whether journaling and the crea­
tion of an output file are enabled. (Specifying /READ_ONLY is equiv­
alent to specifying /NOOUTPUT and /NOJOURNAL.) /NOREAD_

Creating Source Programs 289

ONLY, the default, allows EDT to create an output file and a journal
file. Use /READ_ONLY in situations where you want to be sure you do
not create a modified file, or for reading a file in a directory where you
do not have write privileges.

The /JOURNAL qualifier allows you to disable (/NOJOURNAL) or to
specify the name of the journal file that EDT creates to record your
editing activity. By default, EDT creates a journal file with the file
name of the input file and a file type of JOU. If the editing session ends
abnormally, EDT can use the contents of the journal file to re-create
the session. If the editing session ends normally (that is, as the result of
an EXIT or QUIT command without a /SAVE qualifier), EDT deletes
the journal file.

The /RECOVER qualifier causes EDT to use the contents of a journal
file to re-create a previous editing session, perhaps one that was lost as
the result of an accidental ~ or system problem. If you specify
/RECOVER, EDT locates a file with the same name as the input file
and a file type of JOU, then it applies all the editing operations re­
corded in the journal file to the input file. These operations appear on
your terminal as EDT performs them. When EDT has exhausted the
contents of the journal file, the activity on the terminal ceases. You can
now continue to edit.

Two notes of caution are necessary. First, it is important for the
EDIT/EDT command that starts a recovery operation to match exactly
the command that started the lost session, including any special start­
up command files. The only difference between the two commands
should be the /RECOVER qualifier. In particular, the input file must
be the same version that you started with at the beginning of the lost
session. Second, note that EDT does not necessarily recover your ses­
sion to the exact point where it was lost. A few keystrokes may be
missing.

13. 7 EDT Aids for the Programmer

In addition to the general-purpose editing operations discussed thus
far, EDT provides some advanced functions that are especially useful
for programming. The following sections introduce some of these.

13. 7 .1 Structured Tabs
Although C is a ffee-form language, in which excess spaces and tabs
have no significance, it is common practice to indent lines to indicate
the relationship of statements. It is laborious to enter repeatedly the
correct combination of tabs and spaces to achieve the desired inden­
tion. EDT solves this problem by providing a system of structured tabs
in character editing mode. While you are inserting text, a depression of
the tab key inserts the correct combination of tabs and spaces to bring
the cursor to the desired column. When you need to begin lines at a

290 Chapter 13

different column, you can increase or decrease the indention level to
move the starting column to the left or right by a preset increment.

To use the structured tab feature, follow these steps:

1. While in line editing mode, set the increment between tabs by
issuing the SET TAB command with a suitable value. For exam­
ple:

*SET TAB ll

*
At this point, the first CffiID on a line (while in character editing
mode) positions the cursor at column 5. Subsequent tab stops
are at the normal locations.

2. When you want to change the indention level, use (CTRL/El or (CTRL/Dl •

Each depression of (CTRL/El increases the indention by one incre­
ment; the first tab stop is n spaces further to the right, where n is
the number you gave with the SET TAB command. Pressing
(CTRL!D) decreases the indention level.

3. If you want to set the indention level to correspond to a given
column, position the cursor at that column and press ~. The
column must be at an even multiple of n spaces from the left
edge of the screen.

4. If you want to change the indention of a block of lines, first
define a select range that includes the lines to be shifted. (To
define a select range, position the cursor at one end of the block
of lines, enter the SELECT function, and then position the cur­
sor at the other end.) Then enter a repeat count (the GOLD key
followed by a number typed on the keyboard) to indicate how
many units of n spaces the lines should be shifted. A positive
repeat count shifts the lines to the right; a negative repeat count
shifts the lines to the left. Finally, press (CTRLfTl.

13. 7 .2 Special-Purpose Key Definitions
EDT allows you to redefine the functions invoked by all the keys on the
auxiliary keypad and many control characters as well. There are two
ways to redefine a key's function:

• While in character editing mode, press (CTRL/KJ. EDT prompts you to
press the key you wish to define. Once you have pressed the key,
EDT prompts you to enter the new function. You can do this
either by typing the nokeypad commands that make up the func­
tion, or by pressing the keypad keys that correspond to the func­
tions you require. You must follow the function specification with
a period. The ENTER function terminates a definition of this
type.

• While in line editing mode, issue the DEFINE KEY command.
You define the new function to perform as a string of nokeypad
character editing commands, followed by a period. The string and
period must be enclosed in quotes.

Creating Source Programs 291

Key redefinition requires a good grasp of nokeypad character editing
syntax, as well as a good deal of practice. The EDT help facility (partic­
ularly HELP DEFINE KEY and HELP CHANGE SUBCOMMANDS)
and the VAX-11 EDT Editor Reference Manual are good sources of
information. However, this section describes one common application:
the redefinition of a key to insert a string of text.

While writing a program, you may find that you are typing the same
group of words over and over. For example, you might get tired of
typing c = getchar(). In character editing mode, follow this procedure
to define a key to insert the string c = getchar():

1. Press ~ . EDT prompts you with:

Press the KeY You •..iish to define

2. Select a function that you do not use often, for example,
SPECINS. You might also select a control character. Enter the
function or control character. EDT then prompts you with:

No•..i enter the definition terminated by ENTER

3. Type the following:
ic = aetchar(J~.

(The period is required syntax.)
4. Press ENTER to terminate the definition procedure.

For the remainder of the editing session, the key that used to invoke the
SPECINS function instead inserts the string c = getchar() at the cur­
sor position.

In line editing mode, you can redefine a key by using the DEFINE KEY
command. To identify a keypad key in the command, you use a num­
ber. You can find out which numbers are assigned to which keys by
issuing the command HELP DEFINE KEY VT52 or HELP DEFINE
KEY VTlOO. These commands display the numbers assigned to keypad
keys on the respective terminals.

Next, you issue a DEFINE KEY command, specifying the key and the
function you wish the key to perform. The following example redefines
the SPECINS function (GOLD/3 on a VTlOO) to insert the string
c = getchar():

•DEFINE KEY GDLD 3 AS "ic = aetcharll"Z,"

*
The quotes and period are required syntax. The ·z is not a i'.rtRL/Zl, but a
circumflex followed by a Z. For the remainder of the editing session,
GOLD/3 will insert the string c = getchar() at the cursor position.

The examples above represent only a small fraction of the capabilities
of key redefinition. With practice, you can create powerful custom func­
tions that can save you a great deal of time. You may want to store
these functions in a start-up command file so that you will not have to
define them each time you begin an editing session. The next section
describes start-up command files.

292 Chapter 13

13. 7 .3 Start-Up Command Files
When you invoke EDT, it searches your current default directory for a
file named EDTINl.EDT. If EDT finds such a file, it executes the line
editing commands contained in the file before turning control over to
you. This function allows you to customize EDT to suit your needs.
Some of the commands that a start-up command file might contain
are:

• DEFINE KEY. These commands redefine the function invoked by
a keypad key or control character while in character editing mode.
(See Section 13.7.2.)

• DEFINE MACRO. These commands associate a name with a se­
quence of line editing commands stored in a text buffer. You can
then invoke the sequence by entering the macro name in response
to the line editing asterisk prompt.

• INCLUDE. These commands bring text from a file into a text
buffer. You might use them to load macros into a buffer, or to fill a
buffer with text that you often use. (See Section 13.4.7.)

• SET. These commands establish EDT operating parameters. Par­
ticularly useful are SET TAB, which establishes the increment for
structured tabs, and SET MODE CHANGE, which causes EDT to
enter directly into character editing mode. (Section 13.7.1 de­
scribes the use of structured tabs.)

You can use the /COMMAND qualifier to the EDIT/EDT command to
cause EDT to search for a file other than EDTINl.EDT. This means
that you can have several start-up command files, each designed for a
particular application. You may want to include a command in your
login command procedure file to equate a short mnemonic to an
EDIT/EDT command that invokes a special start-up command file.
For example, if you have the following line in your login command file:

$ EDC :== "EDIT/EDT/COMMAND=C.EDT"

then the command:

$ EDC METRIC.C

invokes EDT with the start-up command file C.EDT to edit the file
METRIC.C.

Creating Source Programs 293

Chapter 14

Compiling, Linking, and Executing
C Programs

If the VAX-11 C compiler and its associated libraries are installed on
your system, you can compile, link, and execute a self-contained C
program with the commands shown in the following example:
$ DEFINE LNK$LIBRARY SYS$LlBRARY:CRTLJB,OLB(ijDJ
$ CC ZENO 001
$ LINK ZEN0001
$ RUN ZENO 001

where ZENO.C is the program source file.

The term self-contained means that:

• A single source file (here, ZENO.C) specifies all the C source text,
either explicitly or with #include control lines.

• The program is written entirely in C and uses only those external
functions that are included in one of the following:

- A user-defined object library associated with the logical name
LNK$LIBRARY.

- A user-defined text library associated with the logical name
C$LIBRARY.

- The DIGITAL-supplied text library SYS$LIBRARY:
CSYSDEF.TLB.

- The DIGITAL-supplied object libraries SYS$LIBRARY:
VMSRTL.EXE or SYS$LIBRARY:STARLET.OLB.

In this example, the library SYS$LIBRARY:CRTLIB.OLB, which con­
tains the object code for all the functions described in Chapter 6, is
made the equivalence name for LNK$LIBRARY. While this logical
name assignment is in effect, all references to the VAX-11 C library
functions are resolved to SYS$LIBRARY:CRTLIB.OLB by the LINK
command.

The logical name equivalent for C$LIBRARY is searched for modules of
C text that are named in #include control lines but whose libraries
either were not found or were not (as in the above example) specified in
the CC command. (See Chapter 7 for a description of the forms of
#include control lines.)

294

The text library SYS$LIBRARY:CSYSDEF.TLB is supplied by
DIGITAL with VAX-11 C and contains the necessary C definition text
for calling V AXNMS system services. This library is searched for any
text specified in the "library-lookup" form of #include control lines
that cannot be located elsewhere.

In practice, many or even most of the programs you write cannot be
prepared with the simple forms of the commands shown above, for two
reasons.

First, the three commands can accept qualifiers to extend their actions.
For example, the CC command as shown above does not cause the
compiler to produce a source listing.

More important, you will often want to develop programs that are not
self-contained. It is also possible to:

• Construct a program from many separate files of C source text.
Each file is compiled separately, producing a separate file of object
code. Then, the object files are linked to form the executable
image.

• Concatenate several files of C source text with a single CC com­
mand. This procedure produces a single object file that is then
linked and executed.

• Include, with the #include control line, modules (or files) of C
source text rather than writing all the source text in your own
source files. Text libraries are, of course, used in self-contained
programs as well. You can create text libraries to store your own C
text. (Text libraries are discussed in Chapter 12.)

• Link the program with libraries of precompiled object code. You
can define your own object libraries to store compiled C functions
or definitions, or you can use the object libraries supplied with the
VAX-11 C compiler. (Object libraries are discussed in Chap­
ter 12.)

14.1 The Compile Command (CC)

The VAX-11 C compile command (CC) performs the following opera­
tions:

• Takes the actions specified by #include, #define, and other control
lines encountered in the source file, to modify the contents and/or
interpretation of the C source text.

• Checks the validity of C source text and issues warning or error
messages for invalid statements.

• Translates the C source text into machine language instructions.

Compiling, Linking, and Executing C Programs 295

• Groups data and machine language instructions into program sec­
tions.

• Writes the program sections into an object module.

Object modules are subsequently combined by the V AXNMS Linker
to form an executable image. When the V AX-11 C compiler creates an
object module, it effectively provides the linker with the following infor­
mation:

• The module name, which is usually the same as the file name (not
including the file type). That is, if the file given to the compiler is
named ZENO.C, the resulting module name is ZENO.

• A list of all entry points (functions), external variables, and global
symbols declared in the module. The linker uses this information
when it binds together two or more modules and resolves refer­
ences to the same name in several modules.

• A summary of the program sections it has created and their attrib­
utes, plus the generated machine instruction text and relocation
information.

• Traceback information, which is used by the V AXNMS default
condition handler when a run-time error occurs. Traceback infor­
mation allows the default handler to display a list of the active
blocks, in order of activation, as an aid to debugging.

• A symbol table, if you request it. This table lists all internal and
external names used in the module, giving definitions of their
locations. It is used as a debugging aid with the VAX-11 Symbolic
Debugger.

14.1.1 CC Command Format
The syntax of the CC command and its qualifiers is as follows:

CC command:
CC[/qualifier ...] file-spec-list

file-spec-list:
file-spec[/ qualifier ...]
file-spec-list , file-spec[/qualifier ...]
file-spec-list + file-spec[/qualifier ...]

296 Chapter 14

Command Qualifier
/[NOJCROSS-REFERENCE
/[NOJDEBUG[=optionJ
/lNOJLIST

/[NOJMACHINE_CODE
/[NOJOBJECT
/[NOJOPTIMIZE
/SHOW[=(option, ...)J

/STANDARD=[NOJPORTABLE
/lNOJWARNINGS

File Qualifier
/LIBRARY

Default
/NOCROSS-REFERENCE
/DEBUG=TRACEBACK
/NOLIST (interactive mode)
/LIST (batch mode)
/NOMACHINE_CODE
/OBJECT
/OPTIMIZE
/SHOW=(NOINCLUDE,SOURCE,
NOSTATISTICS,NOEXPANSION,
NOINTERMEDIATE,NOSYMBOLS)

/STANDARD=NOPORTABLE
/WARNINGS

The qualifiers are described in detail in Section 14.1.6.

14.1.2 Specifying Input Files
The file-spec-list specifies one or more files of C source text and, op­
tionally, libraries of C text that are searched for modules named in
#include control lines.

If a file specification does not contain a file type, the compiler assumes
a default file type of C for a source file. If the file specification is
qualified with the /LIBRARY qualifier and does not contain a file type,
the compiler assumes a default file type ofTLB for a text library file.

14.1.3 Compiling Files Into Separate Object Modules
File specifications separated by commas are compiled into separate
object modules. By default, each object module is placed in a file of the
same name as the source file and with the file type OBJ. For example,
the command

CC MDDATE1ZEN01METRIC(fil)

creates the object module files MDDATE.OBJ, ZENO.OBJ, and
METRIC.OBJ.

14.1.4 Compiling Files Into One Object Module
File specifications separated by plus signs are compiled into a single
object module, as if the source files in the list were a single source file.
By default, the object module is placed in a file with the same name as
the first source file in the list and with the type OBJ. For example, the
command

CC MDDATEtZEND+METRIC(fil)

Compiling, Linking, and Executing C Programs 297

creates the object module files MDDATE.OBJ and ZENO.OBJ, where
ZENO.OBJ contains the object code resulting from the source code in
files ZENO.C and METRIC.C.

Compiling two or more files this way produces the same results as
compiling the same text from a single file. Consider, for example, the
following:

CC ALPHA+ BETA+ GAMMA.DELTAIBITI

This command produces two object modules in separate files:
ALPHA.OBJ and DELTA.OBJ. The scope of any function definitions
or external data definitions in ALPHA.C, BETA.C, and GAMMA.C
includes the files that follow the definition in the plus-sign list. If
BETA.C contains the external data definition

double s11111;

then sum denotes a double-precision variable in BETA and GAMMA,
without further declaration. In ALPHA.C, because it precedes the defi­
nition, the variable must be declared with:

extern double sum;

The same extern declaration must be used in DELTA.C, since it is not
part of the same object module.

Note that the component files of ALPHA.OBJ need not represent com­
plete C programs (or C statements or expressions) as long as the combi­
nation of all the source files results in a valid C program.

Note also that the qualifiers described in Section 14.1.6 affect all files in
a plus-sign list. For example, the command

CC ALPHA + BETA + GAMMA/LISTIBITI

produces an object file and a listing file of the source text from all three
files.

14.1.5 Specifying Library Files
When you specify a library file in a CC command, you must precede the
file specification of the library with a plus sign and use the /LIBRARY
qualifier. For example:

$ CC APPLIC+DATAB/LIBRARY

This CC command compiles the source program APPLIC.C and uses
the library DAT AB. TLB to locate any #include module references of
the form:

#include text-module-name

The module name must not be enclosed in quotation marks or angle
brackets.

298 Chapter 14

When more than one library is specified in a CC command, the com­
piler searches the libraries in the specified order each time it processes
an #include control line that specifies a text module name. For
example:

S CC APPLIC+DATAB/LIBRARY+NAMES/LIBRARY+SYMS/LIBRARY

When the C compiler processes an #include control line (with no delim­
iters around the name in the line) in the source file APPLIC.C, it
searches for modules referenced in the libraries DATAB.TLB,
NAMES.TLB, and GLOBALSYMS.TLB, in that order.

In a command that requests multiple compilations, a library must be
specified for each compilation in which it is needed. For example:

S CC METRIC+DATAB/LIBRARY,APPLIC+DATAB/LIBRARY

In this example, the C compiler compiles METRIC.C and APPLIC.C
separately and uses the library DATAB.TLB for each compilation.

The order in which the library file specifications appear within a
concatenated list of files is irrelevant. For example, the following are
equivalent:

S CC ALPHA+MYLIB/LIBRARY+BETA
S CC ALPHA+BETA+MYLIB/LIBRARY

After the compiler has searched all libraries specified in the above
command(s), it searches the default user library, if any, and then the
default library SYS$LIBRARY:CSYSDEF.TLB.

14.1.6 Command and File Qualifiers
Command qualifiers can be placed either on the CC command itself or
on individual file specifications. If placed on a file specification, the
qualifier affects only the compilation of the specified file. If placed on
the CC command, the qualifier affects all files processed by the com­
mand unless it is overridden by a qualifier on an individual file specifi­
cation. The file qualifier /LIBRARY can be placed only on a file specifi­
cation, not on the CC command.

The rest of this subsection describes the qualifiers individually.

/CROSS__REFERENCE
/NOCROSS__REFERENCE

/CROSS__REFERENCE directs the compiler to generate, in a list­
ing file, cross-references for variable names. The cross-reference lists
each line number in the listing file on which each variable is refer­
enced. By default, the compiler does not generate a cross-reference
(/NOCROSS__REFERENCE). If /CROSS__REFERENCE is speci­
fied, then /LIST and /SHOW=SYMBOLS are implied; a listing file
containing a storage map is generated and named according to the
defaults described for listing files (see /LIST).

Compiling, Linking, and Executing C Programs 299

/DEBUG[=optionJ
/NODEBUG

/DEBUG requests information to be included in the object module
for use by the VAX-11 Symbolic Debugger. (For more information
on the debugger, see Chapter 15.) You may select one of the options
shown below.

Option

ALL

TRACEBACK

Usage

Includes symbol table records and traceback
records. This is equivalent to /DEBUG with no
option.

Includes only traceback records. This is the de­
fault if the /DEBUG qualifier is not present on
the command.

NOTRACEBACK Does not include traceback records. This op­
tion is used to exclude all extraneous informa­
tion from thoroughly debugged program mod­
ules. This option is equivalent to /NODEBUG.

NONE Does not include any debugging information.
This is equivalent to /NODEBUG.

/LIBRARY
/LIBRARY indicates that the associated input file is a library con­
taining modules of C source text. If the file specification does not
include a file type, CC assumes the default type TLB. A library
specification must be preceded by a plus sign and pertains only to
the file specification to which it is appended. For example:

$ CC ALPHA 1BETA+USERLIB/LIBRARYIBDJ

Presumably, the file BETA.C contains references (in #include con­
trol lines) to modules in the text library USERLIB.TLB, and the file
ALPHA.C does not. (If ALPHA contains such references, the specifi­
cation USERLIB/LIBRARY must also be appended to ALPHA.)

For more information on the creation and use of text libraries, see
Chapter 12.

/LIST[=file-specJ
/NO LIST

/LIST directs the compiler to produce a listing file. If the CC com­
mand is executed in interactive mode, the default is /NOLIST. In
batch mode, the default is /LIST.

You automatically get a listing file when you specify /CROSS_
REFERENCE, /MACHINE_CODE, or /SHOW with one or more of
the options INCLUDE, SYMBOLS, EXPANSION, or INTERME­
DIATE.

When /LIST is in effect, the compiler, by default, creates a listing
file with the same name as the source file and with the file type LIS.
If you include a file specification with the /LIST qualifier, that spec­
ification is used for the listing file.

300 Chapter 14

/MACHINE_CODE
/NOMACHINE_CODE

/MACHINE_CODE directs the compiler to list the generated ma­
chine code in the listing file. The default is /NOMACHINE_
CODE. If you specify /MACHINE_CODE, /LIST is implied.

/OBJECT[=file-specl
/NO OBJECT

/OBJECT directs the compiler to produce an object module and is
the default. By default, /OBJECT creates an object module file with
the same name as the source file (or the name of the first file in a
plus-sign list) and with the file type OBJ. If you include a file speci­
fication with /OBJECT, that specification is used instead.

The compiler executes more rapidly if it does not have to produce an
object module. Use the /NOOBJECT qualifier when you need only a
listing of a program or when you want the compiler to check a file of
source text for errors.

/OPTIMIZE
/NO OPTIMIZE

/OPTIMIZE directs the compiler to optimize the generated machine
code. For example, the compiler eliminates common subexpressions,
removes invariant expressions from loops, collapses arithmetic oper­
ations into three-operand instructions, and places local variables in
registers. /OPTIMIZE is the default. /NOOPTIMIZE instructs the
compiler to perform no optimization.

When /DEBUG is specified, the compiler will not perform those
optimizations that would affect debugging.

/SHOW=(option, ...)
/SHOW sets or cancels listing options. You can select or cancel any
of the options shown below.

Option

[NOJINCLUDE

[NOJSOURCE

[NOJSTATISTICS

Usage

Prints/does not print the contents of #in­
clude files and modules in the program
listing.

NOINCLUDE is the default.

Prints/does not print the source program
statements in the program listing.

SOURCE is the default.

Prints/does not print compiler perform­
ance statistics in the program listing.

NOSTATISTICS is the default.

Compiling, Linking, and Executing C Programs 301

[NOJSYMBOLS

[NOJEXPANSION

Prints/does not print the symbol table of
the compiled program in the program list­
ing. The symbol table includes a list of all
functions, the sizes and attributes of all
variables referenced in the program, and
a program section summary and function
definition map.

NOSYMBOLS is the default unless
/CROSS_REFERENCE is used.

Prints/does not print final macro expan­
sions in the program listing.

NOEXPANSION is the default.

[NOJINTERMEDIATE Prints/does not print all intermediate and
also the final macro expansions in the
program listing.

NOINTERMEDIATE is the default.

/STANDARD=PORTABLE
/STANDARD=NOPORTABLE

/STANDARD=PORTABLE directs the compiler to flag certain
VAX-11 C language extensions and VAX-11 C relaxations of con­
ventional C language constructs and rules. For example, pointer/
integer interchangeability is subject to more stringent tests when
/STANDARD=PORTABLE is specified. In summary,
/STANDARD=PORTABLE causes the compiler to issue warning
messages against C usage that may not be portable between V AX-11
C and other implementations. The default is /ST AND ARD=
NOPORTABLE.

/WARNINGS
/NOWARNINGS

/NOWARNINGS tells the compiler not to display warning (severity
W) messages on the terminal or in the listing file (if any). You may
find this qualifier useful when you are compiling programs that you
know contain statements that cause warnings. The default is
/WARNINGS. .

14.1. 7 Compiler Diagnostic Messages and Error Conditions
One of the functions of the C compiler is to identify syntax errors and
violations of language rules in the source program. If it locates any
errors, the compiler writes messages to your default output devices
(SYS$0UTPUT and SYS$ERROR). Thus, if you enter the CC com­
mand interactively, the messages are displayed on your terminal. If the
CC command is executed in a batch job, the messages appear in the
batch job log file.

302 Chapter 14

If the compiler creates a listing file, it also writes the messages to the
listing. Each message in the listing follows the statement that caused
the error.

When it appears on the terminal, a message from the compiler has the
format:

%CC-s-ident, message-text
Listing line number m
At line number n in name

The parts of this message are described below.

%CC

s

The facility, or program, name of the V AX-11 C compiler. This
portion indicates that the message is being issued by VAX-11 C.

The severity of the error, represented as follows:

F Fatal error. The compiler stops executing when a fatal error
occurs and does not produce an object module. You must cor­
rect the error before you can compile the program.

E Error. The compiler continues, but does not produce an object
module. You must correct the error before you can successfully
compile the program.

W Warning. The compiler produces an object module. It attempts
to correct the error in the statement, but you should verify that
the compiler's action is acceptable. Otherwise, your program
may produce unexpected results.

I Information. This message usually appears with other messages
to inform you of specific actions taken by the compiler. No
action is necessary on your part.

ident
The message identification: a descriptive abbreviation (mnemonic)
of the message text.

message-text
The compiler's message. In many cases, it consists of more than one
line of output. A message generally provides you with enough infor­
mation to determine the cause of the error so that you can correct it.

listing line number m
The integer m gives the number of the line in the listing file where
the error occurs. This information is given when /LIST is specified or
implied.

At line number n in name
The integer n gives the number of the line where the error occurs.
The number is relative to the top of the file or text library module
specified by name. The #line control line can be used to change the
line number and name that appear in the message.

Compiling, Linking, and Executing C Programs 303

The messages produced by the VAX-11 C compiler are listed in Appen­
dix C. The format of an error message in a program listing is shown in
Appendix D.

Both the CC command and the DCL command SET MESSAGE give
you control over the display of messages. The CC qualifier /NOWARN­
INGS, discussed previously, suppresses warning messages generated by
the compiler. SET MESSAGE lets you decide whether messages will be
displayed in their entirety or in a shortened form. For example, if you
do not want to see the %CC-s-ident part of messages, you can enter the
command:

$ SET MESSAGE/NOFACILITY/NOSEVERITY/NOIDENTIFICATION

This command cancels the facility, severity, and identification portion
of all messages. It remains in effect for all commands you subsequently
enter, until you reissue the SET MESSAGE command or log off the
system.

14.2 The LINKER Command (LINK)

This discussion of the linker is confined to areas of particular interest to
VAX-11 C programmers. For additional information on linker capabili­
ties and detailed descriptions of LINK command qualifiers and op­
tions, see the VAX-11 Linker Reference Manual.

The linker prepares an executable image from object modules. The
primary operations of the linker are the allocation of virtual memory
within the executable image, the resolution of symbolic references
among modules being linked, and the assignment of values to relocat­
able global symbols. The linker allocates storage for user-defined val­
ues, variables, and functions in program sections, whose locations,
names, and characteristics depend on the storage class of the variable
or other name. The linker also allocates storage for the executable code
in the module. The allocation of virtual memory is discussed in Chap­
ter 10.

When two or more object modules are linked, the linker resolves refer­
ences in one module to variables and other names defined in the mod­
ules already linked. This means that the program sections used by the
linker allow the modules to use each others' variables and functions.
For instance, two C functions can refer to the same extern variable
because each extern variable resides in its own program section. The
linker simply resolves an extern name to a program section of the same
name. Figure 14-1 illustrates the linking of two object modules, in
the files APPLIC.OBJ and READY.OBJ, which use the same extern
variable.

304 Chapter 14

(')
0 s
~
5·
~

~
t:l
~
5·
~

§
p..

t<:l
~
<!>

"' ~
5·

(Jq

(')

l
$l:l

s
"'

~
Q
~

$LINK APPLIC 1READY
unsisned flas_buffer=Oxoooo;
aPPlic(

{
int o..ial i

read;'(1.ial);

}
read>' ('-')
int '-' ;

{
extern unsianed flaa_bufferi

}

Figure 14-1: Linking Object Modules

APPLIC

READY

The linker arranges
object modules and
the storage allocated
to external variables.
In the modules APPLIC
and READY, all references
to the external variable
FLAG_BUFFER are
resolved to the same
virtual storage location.

ZK-085-81

Because of the linker's ability to resolve references, modules written in
different languages can pass information to each other by referring to
the same program section. Chapter 10 includes examples that show
variables in C functions sharing program sections with FORTRAN
common blocks, PL/I external variables, and MACRO program sec­
tions.

The linker must also be used for self-contained programs - those com­
posed of only one object module - because most object modules gen­
erated by the compiler contain calls and references to VAX-11 C run­
time procedures. The linker automatically locates these procedures in
the default system object module libraries. These libraries are de­
scribed in more detail in Chapter 12.

14.2.1 Format of the LINK Command
The format of the LINK command is:

LINK[/qualifier ...] file-spec[/qualifier ...], ...

file-spec, ..•
The file specifications denote one or more files containing object
modules to be linked and, optionally, libraries containing modules.

You can separate the file specifications with commas or plus signs.
In either case, all the specified files are used to create a single exe­
cutable image.

If the file specification does not contain a file type and is not quali­
fied by /LIBRARY, /INCLUDE, or /OPTIONS, the linker assumes a
default file type of OBJ.

/qualifier ...
The list of qualifiers may include one or more LINK command qual­
ifiers. The /LIBRARY, /INCLUDE, and /OPTIONS qualifiers can
only be specified following the specification of an input file. All other
qualifiers listed can be specified following either the LINK com­
mand or any input file specification.

Table 14-1 summarizes the categories of LINK command qualifiers.

14.2.2 Linker Messages
If the linker detects any errors while linking object modules, it displays
messages indicating the cause and severity of the error. If any error or
fatal conditions occur, the linker will not produce an image file. Since
the messages produced by the linker are descriptive, you do not nor­
mally need additional information to determine the meaning of a spe­
cific error.

Some of the more common errors that occur during linking are as fol­
lows:

306 Chapter 14

• The module being linked generated warnings during compilation.
You can often link such modules, but you should verify that the
modules will produce the results you expect.

• The modules being linked define more than one transfer address.
The linker warns you if more than one function in the C program is
identified as the main function. The image file created by the
linker in this case can be run. The entry point to which control is
transferred is the first one found by the linker.

• A reference to a symbol name remains unresolved. This error oc­
curs when you omit required module or library names from the
LINK command, and the linker cannot locate the definition for a
specified global symbol reference. Such images will not usually
execute properly. You can often correct such errors by reenter­
ing the command string and specifying the correct modules or
libraries.

Table 14-1: LINK Command Qualifiers

Function Qualifiers

Request output files /EXECUTABLE[=fi/e-spec)
and define a file
specification.

Request and specify
the contents of a
memory allocation
listing.

/SHAREABLE!=fi/e-specl
/SYMBOL_TABLEl=fi/e-specJ

/BRIEF
/IN OJ CROSS-REFERENCE
/FULL
/!NOJMAP

Specify the amount /!NOJDEBUG
of debugging infor- /!NOJTRACEBACK
mation.

Indicate that input !INCLUDE=(module-name)
files are libraries /LIBRARY
and specifically in- /SELECTIVE_SEARCH
elude certain mod-
ules.

Request or disable /iNOJSYSLIB
the searching of de- /[NOJSYSSHR
fault user libraries /iNOJUSERLIBRARYI=tab/e)
and system librar-
ies.

Indicate that an in- /OPTIONS
put file is a linker
input file.

Defaults

/EXECUTABLE=name.EXE,
where name is the name of the
first input file.
/NOSHAREABLE
/NOSYMBOL_TABLE

/NO CROSS-REFERENCE

/NOMAP (interactive)
/MAP=name.MAP (batch)
where name is the name of the
first input file.

/NODEBUG
/TRACEBACK

/SYSLIB
/SYSSHR
/USERLIBRARY =ALL

Compiling, Linking, and Executing C Programs 307

If an error indicates that a module with a name in the format C$_
name or C$$_name cannot be located, you may not be linking the
program with the correct VAX-11 C run-time library. The LINK com­
mand must specify the library SYS$LIBRARY:CRTLIB.OLB, or that
library must be established as the equivalent of the logical name
LNK$LIBRARY.

14.2.3 linker Input Files
You can specify the object modules to be included in an executable
image in any of the following ways:

• Specify files containing individual object modules created by a
compiler. The linker assumes that any unqualified file specifica­
tion is an object module.

• Specify one or more object module libraries to be searched to
resolve references to external procedures and variables. These li­
braries are searched for all references that are not reselved among
the modules specifically included in the compilation. You must
qualify the file specification of the library with the /LIBRARY
qualifier.

• Specify explicit modules from an object module library to be in­
cluded in the image. You must qualify the file specification of the
library with the /INCLUDE qualifier and specify the names of the
object modules to be included.

• Specify an options file containing additional file specifications and
special linker options. You must qualify the file specification of an
options file with the /OPTIONS qualifier.

The linker uses these default file types for input files:

File File Type

Object module OBJ
Library OLB
Options file OPT

You specify object modules and libraries in a command as follows:

$ LINK METRIC•-
$_FORMATS/ INCLUDE= (PR I NTL I NE, TERML I NE> • -
$_[PROJECT,QBJLIBJMATHLIB/LIBRARY

This LINK command links the object module METRIC.OBJ with the
modules PRINTLINE and TERMLINE from the library FOR­
MATS.OLB. Any references to external procedures and variables that
are not defined in any of these three modules will cause the linker
to search the library MATHLIB.OLB in the directory
[PROJECT.OBJLIBJ before it searches the system libraries.

308 Chapter 14

The format and content of a linker options file are described in detail in
the VAX-11 Linker Reference Manual. You may wish to use an options
file if you have a very long list of input files to be specified, if you want
to link a module with a shareable image file, or if you want to request
special linker options.

When you specify more than one input file for the LINK command, the
linker combines individual object files or library modules in the order in
which they are listed.

When you specify libraries as input for the linker, you can specify as
many as you wish; there is no practical limit. More than one library can
contain a definition for the same module name. The linker uses the
following conventions to search libraries specified in the command
string:

• A library is searched only for definitions that are unresolved in the
previous input files specified.

• If more than one library is specified for an object module, the
libraries are searched in the order in which they are specified.

For example:

$LINK METRIC1DEFLIB/LIBRARYtAPPLIC

The library DEFLIB will be searched only for unresolved references in
the object module METRIC. It is not searched to resolve references in
the object module APPLIC. However, this command can also be en­
tered as follows:

$ LINK METRIC.APPLIC.DEFLIB/LIBRARY

In this case, DEFLIB.OLB is searched for all references that are not
resolved between METRIC and APPLIC. After the linker has searched
all libraries specified in the command, it searches default user libraries,
if any, and then the default system libraries.

When one or more logical names exist for default user libraries, the
linker uses the following search order to resolve references:

1. The process, then the group, and then the system logical name
tables are searched for the name LNK$LIBRARY. If the logical
name exists in any of these tables and if it contains the desired
reference, the search ends.

2. The process, then the group, and then the system logical name
tables are searched for the names LNK$LIBRARY_l through
LNK$LIBRARY_999. If the logical name exists in any of these
tables, and if it contains the desired reference, the search ends.

This search sequence is repeated for each reference that remains unre­
solved.

Compiling, Linking, and Executing C Programs 309

The search order can be modified for a particular link operation. To
override the search of a library, you can do one of the following:

• Delete the logical name of the library you do not want searched.
For example:

$ DEASSIGN LNKSLIBRARY

The DEASSIGN command deletes the logical name table entry
LNK$LIBRARY.

• Specify /USERLIBRARY or /NOUSERLIBRARY on the LINK
command. These qualifiers let you specify the PROCESS,
GROUP, and SYSTEM keyword options to explicitly control
which logical name tables are to be searched for default user li­
braries. For example:

$ LINK/USERLIBRARY=GROUP inP1Jt f i 1 e",,

When it executes this command, the linker searches only the
GROUP logical name table. Specify /NOUSERLIBRARY to ex­
clude all default user libraries in the search.

For complete details on defining and using default user libraries, see
the VAX-11 Linker Reference Manual.

14.2.4 Linker Output Files
When you enter the LINK command interactively with no qualifiers,
the linker creates only an executable image file. By default, it has the
same file name as the first or only object module specified, and it has a
file type of EXE. For example:

SLINK A,B,C

This LINK command links the object modules in the files A.OBJ,
B.OBJ, and C.OBJ, and it creates the image file A.EXE.

In a batch job, the linker creates both an executable image file and a
storage map file by default. The default file type for map files is MAP.

Some of the rules for naming input and output files are shown in Table
14-2. These rules also apply to the specification of names with the
/MAP qualifier. To specify an alternate name for a map file or image
file, or to specify an alternate output directory or device, you can in­
clude a file specification on the /MAP or /EXECUTABLE qualifier.
Some examples are:

310 Chapter 14

Command

$ LINK METRIC/MAP=TEST

Output File(s)

METRIC.EXE (by default)
TEST.MAP

$ LINK METRIC/EXE­
$_=[PROJECT.EXEJ­
$_/MAP=[PROJECT.MAPJ

[PROJECT.EXEJMETRIC.EXE

$ LINK METRIC/MAP=LP:

[PROJECT.MAPJMETRIC.MAP

METRIC.EXE (by default)
line printer listing of
the map file

In the third example, the map file is not saved on disk after it is
printed.

Table 14-2: Specifying Input and Output Files
for the Linker

Rule Example

If you do not specify $ LINK METRIC
the /EXECUTABLE
qualifier, the linker
gives the image file the
same name as the first
input file.

If you specify /EXE­
CUTABLE following
the name of an input
file, the linker uses
that file's name to
name the output file.

$LINK METRIC,_
$-APPL IC/EXECUTABLE

Output File(s)

METRIC.EXE

APPLIC.EXE

Ifyougiveafilespec- $LINK/EXECUTABLE- TEST.EXE
ification with the $_=TEST METRIC, APP LI C
/EXECUTABLE qual-
ifier, the linker uses
that file specification.

When you specify a
device and/or directory
for a file specification,
that device and/or di­
rectory becomes a
temporary default for
the remaining input
and output files.

$LINK METRIC,_
$_[PROJECTJ­
$_MATHLIB/LIBRARY 1-

$-FORMATS/EXECUTABLE

[PROJECTJFORMATS.EXE

Compiling, Linking, and Executing C Programs 311

14.2.5 Specifying Map File Qualifiers
The map file, also called a memory allocation listing or storage map,
describes how the linker has arranged the object modules and their
contents in the image file .. The map file also lists the virtual memory
addresses that the linker has assigned to procedure entry points.

When you specify the /MAP qualifier, or when a map is produced by
default in a batch job, the /BRIEF and /FULL qualifiers define the
information included in the file, overriding the default content. The
types of maps and the qualifiers you use to request them are:

• Brief - specify /MAP /BRIEF
• Default - specify /MAP
• Full - specify /MAP /FULL

The contents of these maps are summarized in Table 14-3. For infor­
mation on how the V AX-11 describes object modules to the linker and
arranges program data according to their attributes, see Chapter 10.

Table 14-3: Contents of a Map File

Summary of image
characteristics

Names of all modules
in the image

Linker performance
statistics

BRIEF

DEFAULT

FULL

List of global sym­
bols by name

List of user-defined
program sections

14.2.6 Specifying Debugging Qualifiers

List of global symbols
by value

Summary of character­
istics of each image
and program section in
the image

You can specify either the /DEBUG or /TRACEBACK qualifiers when
you link an image. The qualifiers control the amount of debugging
information that is available to the V AX-11 Symbolic Debugger and to
the run-time error-reporting mechanism.

By default, the linker includes traceback information, which causes the
run-time system to list all of the procedure invocations active at the
time of a fatal run-time error. If you specify the /NOTRACEBACK
qualifier, that information will not be available.

312 Chapter 14

Regardless of whether you specified /DEBUG to the VAX-11 C com­
piler, you can specify /DEBUG when you link the object module. This
qualifier requests that the object modules containing the debugger pro­
gram be linked to your object modules. When you execute the program,
the debugger initially takes control. The steps required to run a pro­
gram under the control of the debugger and the symbolic debugging
capabilities available for C programmers are described in Chapter 15.

14.3 Executing Programs (RUN)

This section describes the considerations involved in executing C pro­
grams on the V AXNMS operating system. For further information on
any of the DCL commands or topics presented here, see the VAX/VMS
Command Language User's Guide.

14.3.1 Image Execution with RUN
You execute a VAX-11 program with the RUN command. The RUN
command assumes by default that the file type of a program image is
EXE. For example, the command

$ RUN METRIC

locates the file METRIC.EXE in the current default directory. Control
then passes to the main function in the C program. If no function in the
program is identified as the main function, then initial control passes to
the first, or only, module that was linked into the image.

14.3.2 Command-Line Arguments
The main function in a V AX-11 C program can accept arguments from
the command line that invokes it. The synopsis for a main function is
as follows:

int main(argc,argv,envp)
int argc;
char •argv[], •envp[] ;

In this synopsis, argc is the count of arguments present in the command
line that invoked the program, and argv is a character-string array of
the arguments. envp is the environment array. It contains process infor­
mation, such as the user name and controlling terminal. It has no
bearing on passing command-line arguments. Its primary use in C pro­
grams is during exec and getenv function calls. See Chapter 6 for more
details on the use of the envp argument.

Compiling, Linking, and Executing C Programs 313

In the main function definition, the parameters are optional; you can
define main in any of the following ways:

1na in ()
l!lain(arsc)
h1ain (arsc 1arsv >'
111ain(arsc 1arsv 1envPl

However, you can access only the parameters that you define.

To pass arguments to the main function, you must install the program
as a DCL foreign command. When a program is installed and run as a
foreign command, argc is always greater than or equal to 1, and argv[O]
always contains the name of the image file. Example 14-1 shows a
program called COMMARG.C, which displays the command-line argu­
ments that were used to invoke it.

#include stdio

I* ECHO COMMAND LINE ARGUMENTS */
1nain (arsc 1ars•.1)
int arsci
char *arsv[J;
{

}

int i i

I* arsv[OJ IS THE PROGRAM NAME */
Printf("Prosral!l: %s\n" 1arsv[OJ>;

for (i=1j i<arsci i++)
Print f ("a rs u1n en t % d: '1., s \ n" , i , a rs v [i J) ;

Example 14-1: Echo Program Using
Command-Line Arguments

The program is then compiled and linked normally:

$ CC COMMARG@)

$ DEF LNK$LIBRARY SYS$LIBRARY:CRTLIB.OLB@J

$ LINK COMMARG@J

The procedure for installing a foreign command is described fully in the
VAX/VMS Command Language User's Guide. Briefly, the procedure
uses a DCL assignment statement to assign the name of the image file
to a symbol that is subsequently used to invoke the image. For exam­
ple:

$ ECHO : = = $ WRK $: COMMARG, E><E@)

Here, ECHO is installed as a foreign command that invokes the image
in COMMARG.EXE. The definition of ECHO must begin with a dollar
sign ($) and include a device name, as shown.

314 Chapter 14

A sample run of the ECHO command follows:
$ECHO No1,1 is "the Ti1r1e" i8ITI
Prolram: db7:[zeno.srclcommar1.exe;1
arsurr1ent 1: no1,.,1
ar11rn1ent Z: is
arsument 3: the Time

The command line you enter is subject to the usual DCL rule of conver­
sion to uppercase for most arguments. VAX-11 C internally parses and
modifies the DCL-modified command line to make the command line
more compatible with UNIX-developed programs.

All alphabetic arguments in the command line are delimited by spaces
or tabs. Arguments that have embedded spaces or tabs must be en­
closed in quotation marks ("). Uppercase characters in arguments are
converted to lowercase, but arguments within quotation marks are left
unchanged.

14.3.3 Image Exit
When the main function executes a return statement or reaches the
end of its outer block, the image is terminated. In the context of the
V AXNMS operating system, the termination of an image (image exit)
causes the system to perform a variety of clean-up operations during
which open files are closed, system resources are freed, and so on.

Image exit also occurs as a result of run-time errors or any of the
following:

• The execution of the image was interrupted by (CTRL!Y), followed
either by a command that executes another image or by the DCL
command EXIT. (Note that the DCL command STOP does not
cause image exit.)

• A function in the program called the SYS$EXIT system service.

• A process in the system called the SYS$FORCEX system service,
forcing the exit of the current process.

For complete details on the actions V AXNMS takes when an image
exits, and for an explanation of the SYS$EXIT and SYS$FORCEX
system services, see the VAX/VMS System Services Reference Manual.

On image exit, the current contents of general register 0 are delivered to
the V AXNMS command interpreter (DCL) as a status value. To per­
form properly on image exit, the function must be the first function
encountered by the linker, or it must be named main or be defined with
the main-program option. Otherwise, the function must include one of
the following to return a V AXNMS error code:

• A return statement
• A call to _exit
• A call to exit

Compiling, Linking, and Executing C Programs 315

14.3.4 Run-Time Errors
When an error occurs during the execution of a program, the program is
terminated and one or more messages are displayed by the V AXNMS
condition handler on the current SYS$ERROR device.

A message is followed by a traceback. For each module in the image
that has traceback information, the condition handler lists the modules
that were active when the error occurred, showing the sequence in
which the modules were called.

For example, if an integer divide-by-zero condition occurs, a run-time
message like the following appears:

ZC-F-ERROR1 C error condition
%SYSTEM-F-INTDIV, arithMetic trap, inteser divide by zero

at PC=OOOOOFC3t PSL=03C00002

This message is followed by a traceback message similar to the follow­
ing:

ZTRACE-F-TRACEBACK1 SYMbolio staoK duMP follows
r11odule nar11e

MAIN
C$MAIN

routine na111e

MAIN
C$MAIN

line

B

1£108

relatil.Je PC

00000007

000002F7

The information in the traceback message is as follows:

module name

absolute PC
OOOOOFC3
00000517

The names of image modules that were active when the error oc­
curred. (For errors originating in the C source code, the module
names are those created by the CC command or #module control
line.)

The first module name is that of the module in which the error
occurred. Each subsequent line gives the name of the caller of the
module named on the previous line. In this example, the modules
are MAIN and C$MAIN; C$MAIN called MAIN.

routine name
The name of the function in the calling sequence.

line
The source program (compiler-generated) line number of the state­
ment in which the error occurred, or at which the call or reference to
the next procedure was made. Line numbers in these messages
match those in the listing file.

relative PC
The value of the PC (program counter). This value represents the
location in the program image at which the error occurred or at
which a procedure was called. The location is relative to the virtual
memory address that the linker assigned to the code program section
of the module indicated by module name.

316 Chapter 14

absolute PC
The value of the PC in absolute terms, that is, the actual address in
virtual memory representing the location at which the error oc­
curred.

Traceback information is available at run time only for modules com­
piled and linked with the traceback option in effect. The traceback
option is in effect by default for both the CC and LINK commands.
You may use the CC command qualifier /NODEBUG and the LINK
command qualifier /NOTRACEBACK to exclude traceback informa­
tion. However, traceback information should be excluded only from
thoroughly debugged program modules.

14.3.5 Interrupting a Program
When you execute the RUN command interactively, you cannot exe­
cute any other program images or DCL commands until the current
image exits. However, if your program is not performing as
expected - if, for instance, you believe your program is in an endless
loop - you can interrupt it with (CTRL/Y). For example, the sequence

$ RUN APPLIC
···y

$

interrupts the program APPLIC. After you have interrupted a program,
you can terminate it by entering a DCL command that executes an­
other image, or by entering the DCL command EXIT.

Following a CTRL/Y interruption, you can also force an entry to the
debugger by entering the DEBUG command. The debugger is described
in Chapter 15.

Some other DCL commands have no direct effect on the image. You
can enter any of the following commands and then resume the execu­
tion of the image with the DCL command CONTINUE:

ALLOCATE
ASSIGN
ATTACH
CLOSE
DEALLOCATE
DEASSIGN
DEBUG
DECK
DEFINE
DELETE/SYMBOL
DEPOSIT
EOD
EXAMINE
GOTO
IF

INQUIRE
ON
OPEN
READ
SET CONTROL_ Y
SET DEFAULT
SETON
SET PROTECTION/DEFAULT
SET VERIFY
SET UIC
SHOW DAYTIME
SHOW DEFAULT
SHOW PROTECTION
SHOW QUOTA
SHOW STATUS
SHOW SYMBOL

Compiling, Linking, and Executing C Programs 317

SHOW TIME STOP
SHOW TRANSLATION WAIT
SPAWN WRITE

14.3.6 Returning Values to the Command Interpreter
The main function in a V AX-11 C program can use the return state­
ment to return a status value to the command interpreter. When any
program or command is executed under the control of the DCL com­
mand interpreter, general register 0 (RO) indicates the completion
status. The command interpreter has a special routine that uses the
value of RO to print or display a message on completion of a program.

When the returned value is a numeric value expressible in 32 bits or
less, it is placed in RO. Every possible message that can be issued by a
system program, command, or component has a unique 32-bit numeric
value associated with it. By using this value, the command interpreter
locates the message in a central system message file or a user-defined
message file.

Note that if you write a main function that returns arbitrary values, the
values may be detected by the command interpreter and used to dis­
play messages that you would not expect. On the other hand, you can
take advantage of this convention and use the return statement to exit
from a program with a specific status. For example:

#include ssdef

111a in (>

{

return SS$_NORMAL;
}

In this example, the #include module ssdef defines linker-resolved sym­
bols for standard V AXNMS status return values.

Under the following conditions, the command interpreter does not dis­
play messages on completion of a program:

• A return statement specifies the value SS$_NORMAL, denoting
normal return status.

• The main function does not return a value. If the main function
has no return statement, or if its return statement specifies no
return value, the value SS$_NORMAL is always returned and no
message is displayed.

• The status return value suppresses the printing of status messages.
(See Chapter 9.)

318 Chapter 14

Chapter 15

Debugging VAX-11 C Programs

The VAX-11 Symbolic Debugger helps you detect logic and program­
ming errors. Specifically, it lets you control the execution of your pro­
gram so you can monitor specific locations, change the contents of
locations, check the program flow, and otherwise locate and correct
errors as they occur. This chapter describes those areas of debugging
that are specific to VAX-11 C. For a detailed description of the
VAX-11 Symbolic Debugger, refer to the VAX-11 Symbolic Debugger
Reference Manual.

The V AX-11 Symbolic Debugger has many helpful features, among
which are the following:

• It is interactive. You control your program and interact with the
debugger from your terminal.

• It understands V AX-11 C scalar variable names and their data
types. Thus, when you want to look at the contents of a variable,
or change the value of a variable, the debugger will convert your
ASCII text input to the data type of the variable.

• It understands other programming languages, such as FORTRAN
and COBOL. Thus, if your programs consist of procedures written
in different languages, you can change from one language to an­
other during the course of a debugging session.

For this version of the VAX-11 C compiler, not all functions of the
VAX-11 Symbolic Debugger are supported. This chapter describes the
extent of support as it presently exists.

15.1 Using the VAX-11 Debugger

This section gives brief examples that show how to invoke and use the
debugger with a VAX-11 C program.

319

15.1.1 Beginning and Ending a Debugging Session
To execute a VAX-11 C program with the debugger, you must first
compile and link the program with the /DEBUG qualifier, as in the
following example:

$ CC/DEBUG METRIC
$ LINK/DEBUG METRIC

The /DEBUG qualifier in the CC command requests the compiler to
write symbol table records into the object module. These records permit
you to examine and modify variables by name during the debugging
session.

The /DEBUG qualifier in the LINK command requests the linker to
include the debugger routines, global symbols, and traceback informa­
tion in the executable image. To include only traceback information,
specify /TRACEBACK (which is the default for all LINK commands).

To obtain a program listing and a storage map listing of the functions
being debugged, compile the function(s) with the /SHOW=SYMBOLS
qualifier added to the /DEBUG qualifier. For example:

$ CC/DEBUG/SHOW=SYMBOLS METRIC

The /SHOW qualifier can request a listing of #include files that are
part of your program. To list the storage map and #include files (with
their statement line numbers), specify:

$ CC/DEBUG/SHOW=ISYMBOLS,INCLUDEI METRIC

In addition, if you use #define macros, you can compile your modules
with the /SHOW=EXPANSION qualifier. To list the compiler map,
#include files, and #define macro expansion, specify:

$ CC/DEBUG/LIST/SHOW=ISYMBOLS0INCLUDE1EXPANSIONI METRIC

When you execute an image compiled and linked with the debugger,
initial control goes to the debugger, which identifies itself as follows:

$ RUN METRIC
VAX-11 DEBUG Version 'x.xx'

ZDEBUG-l-INITIALt lanluale is BAS!Ct Module set to 'CONVERT'
DBG>

For this version of the VAX-11 C debugging support, the language is set
to BASIC. The module name displayed in the debugger's message is the
name of the object module containing the main function. It is not
necessarily the same as the name of the image file. This message indi­
cates that the name of the main function in the image file METRIC is
CONVERT.

The DBG> prompt indicates that the debugger is now ready to process
your commands. You respond to the prompt with one of the commands
recognized by the debugger. (See Table 15-1.)

To terminate the debugging session, use the EXIT command:

DBG>Ei<IT

320 Chapter 15

When your program has been thoroughly debugged, you can recompile
and relink it without the /DEBUG qualifier. Or, you can run it with the
/NODEBUG qualifier. For example:

$ RLJN/NODEBLJC METRIC

However, the modules required by the debugger occupy space within a
program image file, so recompiling is usually preferable.

15.1.2 The DEBUG Command
When a program that has been linked with /DEBUG is executing, you
can interrupt it with (CTRL/Y) at any time and invoke the debugger by
entering the DEBUG command. For example, if you think a program
may be looping, or if you see erroneous output, you can interrupt it as
follows:

$ RLJt< COMPUTE

$ DEBUG
DBC>

When you press (CTRL/Y), the command interpreter displays its dollar sign
($) prompt, and you can enter the DEBUG command. The DBG>
prompt indicates that the debugger has control.

If the program was compiled and linked with the /DEBUG qualifier,
· you have access to full symbolic debugging; you can reference program

variables, line numbers, and entry-point names. If the program was not
compiled with the /DEBUG qualifier, you have access to limited sym­
bolic debugging; you can reference only entry-point names.

15.1.3 Effects of Optimization on Debugging
When you compile a V AX-11 C program, the resulting object code is
optimized; that is, the compiler has used techniques to make the pro­
gram run faster. For example, the compiler puts automatic scalar varia­
bles in registers, removes invariant expressions from loops, and so on.

You do not need to disable any compiler optimizations in order to
debug a V AX-11 C program. By default, the compiler does not perform
any optimization that would adversely affect debugging when /DEBUG
is specified.

Debugging VAX-11 C Programs 321

15.2 Debugger Command Syntax and Summary

You enter commands to the debugger in much the same way that you
enter DCL commands. The debugger commands have the format:

cmd [keyword] [/qualifier] [param ...] !comment

cmd
Is a command verb (for example, SET, CANCEL) that indicates the
general function to be performed.

keyword
Gives the specific function to be performed by the command (for
example, CANCEL MODULE, SET SCOPE, SHOW LAN­
GUAGE).

/qualifier
Modifies the effect of the command.

par am
Qualifies the function in some way, such as specifying a range of
locations to be monitored.

comment
Is any text message. The debugger ignores all text after the exclama­
tion mark.

You can enter more than one command on a command line by separat­
ing the commands with semicolons (;).

You can continue a command on a new line by ending the line with a
hyphen (-); the debugger will then prompt for the rest of the command
with an underscore (_).

Table 15-1 summarizes the debugger commands. The boldface letters
indicate the minimum abbreviation you must type in order for the
debugger to recognize the command name, qualifier, or parameter.

You can obtain information about a debugging command with the de­
bugger's HELP command.

322 Chapter 15

Table 15-1: Summary of Debug Commands

@file-spec

Reads debugger commands from the specified command procedure file.

CALL entry-name [(argument, ...)]

Invokes a specified function and optionally passes arguments to it.

CANCEL ALL

Cancels all breakpoints, tracepoints, and watchpoints, and restores the
mode and scope to their original values.

{

/ALL } %LINE line-number
CANCEL BREAK entry-name

symbolic-reference
nonsymbolic-address

Cancels all breakpoints or a specified breakpoint.

CANCEL EXCEPTION BREAK

Cancels the effect of SET EXCEPTION BREAK and restores the
debugger's default method for handling exceptions.

CANCEL MODE

Restores the radix and display modes to their defaults for VAX-11 C
debugging, which are decimal and symbolic.

CANCEL MODULE {/ALL }
module, ...

Deletes all modules from the run-time symbol table, or deletes one or
more modules from the symbol table.

CANCEL SCOPE

Resets the scope to that containing the current program counter.

CANCEL TRACE

%LINE line-number
entry-name
symbolic-reference
nonsymbolic-address
/ALL
/BRANCH
/CALL

Cancels a specified tracepoint or all tracepoints.

Debugging VAX-11 C Programs 323

Table 15-1: (Cont.) Summary of Debug Commands

CANCEL TYPE/OVERRIDE

Restores the debugger's default interpretation of variables: the variables'
declared data types and sizes.

CANCEL WATCH l ~~~~hie-reference l
symbolic-reference (
nonsymbolic-address}

Cancels all watchpoints or cancels a watchpoint on a specified location
or variable.

DEFINE symbol= expression , ...

Creates one or more symbols whose values are equated to program loca­
tions or to numeric expressions.

DEPOSIT location= data [,data, ...]

[

/ASCII-n j [/DECIMAL J
/BYTE. /HEXADECIMAL
/INSTRUCTION /OCTAL
/LONG
/WORD

Changes the contents of a specified variable or program location.

EVALUATE [/ADDRESSJ expression, ...

[
/DECIMAL]
/HEXADECIMAL
/OCTAL

Evaluates an expression or an address and displays the results in decimal
or other specified radix.

EXAMINE variable-reference

[

/ASCII:n]
/BYTE
/INSTRUCTION
/LONG
/WORD

f!SYMBOLIC J
l_INOSYMBOLIC

[
/DECIMAL J
/HEXADECIMAL
/OCTAL

Displays the current contents of a variable.

EXIT
Ends the debugging session and returns control to the command inter­
preter.

324 Chapter 15

Table 15-1: (Cont.) Summary of Debug Commands

GO [
%LINE line-number]
entry-name
symbolic-reference
nonsymbolic-address

Starts or continues program execution.

HELP

Displays a description of a debugger command, parameter, or qualifier.

l %LINE line-number I
entry-name

SET BREAK I /AFTER:n l b 1. e [DO (cmd l;cmd ... l)
sym o 1c-re.erence
nonsymbolic-address

Sets a breakpoint at a specified statement, function, or program address.

SET EXCEPTION BREAK

Requests that the debugger treat external exception conditions as if they
were breakpoints; requests a program interrupt when an exception occurs.

SET LANGUAGE language-name

Specifies the source language of a module or routine, for language-specific
debugging.

SET LOG [file-spec]

Specifies the name of a log file to which the debugger should write pro­
gram output when the SET OUTPUT LOG command has been entered.

HEXADECIMAL
SET MODE OCTAL , ...

NOSYMBOLIC
SYMBOLIC

{

DECIMAL }

Sets the default mode for entering and displaying program locations that
are not declared variables.

SET MODULE { module-name , ... }
/ALL

Adds the symbols from the indicated module(s) to the run-time symbol
table.

Debugging V AX-11 C Programs 325

Table 15-1: (Cont.) Summary of Debug Commands

[LOG]
NO LOG

SET OUTPUT [TERMINAL]
NOTERMINAL

[VERIFY]
NO VERIFY

Controls whether the debugger writes output to a log file or to the
terminal, and whether it echoes commands executed from command pro­
cedures.

SET SCOPE
{ ~cope-number }

Specifies the modules to be searched for a symbol and the order in which
they are to be searched.

[OVER]
INTO

SET STEP [SYSTEM]
NO SYSTEM

[INSTRUCTION]
LINE

Specifies how the debugger is to behave when the STEP command is
issued.

entry-name

SET TRACE symbolic-r~ference l %LINE line-number }

nonsymbohc-address
/BRANCH

326

/CALL

Establishes a tracepoint at a specified statement, function, or program
location.

Chapter 15

Table 15-1: (Cont.) Summary of Debug Commands

l/ASCII:length J
/BYTE

SET TYPE [/OVERRIDE J /INSTRUCTION
/LONG
/WORD

Sets the default data E types for the DEPOSIT and EXAMINE com­
mands for locations that do not have declared data types.

SET WATCH variable-reference

Establishes a watchpoint on a specified static variable.

SHOW BREAK

Displays current breakpoints.

SHOW CALLS [integer]

Displays the current program location and all, or a specified number of,
preceding calls.

SHOW LANGUAGE

Displays the current debugging language.

SHOW LOG

Displays the current status of the log file, if any.

SHOW MODE

Displays the current default entry and display modes.

SHOW MODULE

Lists the modules in the image being debugged and shows which modules
have names in the run-time symbol table.

SHOW OUTPUT

Displays the current status of the debugger's output files.

SHOW SCOPE

Displays the current default scopes.

SHOW STEP

Displays the current default step conditions.

SHOW TRACE

Displays current tracepoints.

Debugging VAX-11 C Programs 327

Table 15-1: (Cont.) Summary of Debug Commands

SHOW TYPE [/OVERRIDE]

Displays current default data type or override type.

SHOW WATCH

Displays current watchpoints and the number of bytes being watched.

STEP

/OVER]
/INTO

[/SYSTEM]
/NO SYSTEM

/INSTRUCTION [integer l]
/LINE [integer l

Executes one or more statements, or steps into or over subroutines.

15.3 Special Characters and Expressions

This section summarizes how the debugger interprets special characters
that perform address arithmetic. For example, you can use the multi­
plication operator (*) in the following manner:

DBG>EXAMINE 1% LINE 401 •2

After this command, the debugger displays the value at the program
location whose address is twice that of % LINE 40.

Table 15-2 lists arithmetic operators.

The debugger provides a quick method for referencing relative ad­
dresses or locations in DEPOSIT and EXAMINE commands. Table
15-3 lists these relative addressing operators.

15.4 The Run-Time Symbol Table

The debugger maintains a run-time symbol table that lists the symbols
you can refer to during a debugging session. The run-time symbol table
always contains the names of global symbols in the image. The names
of local symbols, that is, names of variables defined within your pro­
gram, are available in the image file only if you included the /DEBUG
qualifier in the CC command.

328 Chapter 15

Table 15-2: Arithmetic Operators

Character

+

I

@

< >

Interpretation

Arithmetic addition (binary) operator, or unary plus sign

Arithmetic subtraction (binary) operator, or unary minus sign

Arithmetic multiplication operator

Arithmetic division operator

Arithmetic shift operator

Precedence operators; do <enclosed> first

Decimal radix operator

Octal radix operator

Hexadecimal radix operator

Table 15-3: Address Reference Operators

Operator Meaning

The current location (the location most recently referred to by
an EXAMINE or DEPOSIT command). Use this symbol with
VAX-11 C to refer to a scalar variable or to an element of an
array of scalars.

The previous location (the location at the next lower address
from the current location).

~ The next location (the location at the next higher address from
the current location). Press IB@ to refer to the next element in
an array of scalar variables.

Debugging V AX-11 C Programs 329

15.4.1 Names Included in the Symbol Table by Default
Before you can refer to a name, you must ensure that the name is in the
run-time symbol table. By default, when a debugging session begins,
you have access to global symbols and variables declared within the
indicated module. For example, a VAX-11 C function may contain the
lines:

ftl a in ()
{

}

static enu111 color {red1oranse1Yello1,1} cli
static char chi
static float lisht_speedi
static double speed_poweri
static int ii
static unsisned uii
lisht_speed 3.0elOi
sPeed_Power = 3.1234567890123456789e10i
cl = redi
Ch = I a I ;

i = -438394i
ui = 790374270;

The debugger identifies the current module as MAIN, and by default
you can access the names cl, light_speed, speed_power, i, ui, and ch. 1

When you want to access a variable or location that is not in the symbol
table by default, you must specify the module containing the variable
or location.

1. The debugger does not recognize case differences between C identifiers. For
example, if the function contained the declaration "char Cl;'', the debugger
would not distinguish between the character and enumerated versions of the
variable, and it would issue a warning message. In addition, the debugger does
not recognize the difference between labels and variables of the same name, even
though these do not constitute naming conflicts in VAX-11 C.

330 Chapter 15

15.4.2 Adding Names to the Symbol Table
When a program begins executing, the symbol table contains only the
symbols in the first executed function. If you are debugging multiple
functions, you must use the SET MODULE command to copy symbols
from other modules to the symbol table. For example, a V AX-11 C
function can declare an external function as follows:

r11a in ()
{

}

static int i;
static double fi
double f2();

i = 400;
P r i n t f (11 c on t en t s o f i : ·x. d \ n 11 ~ i) ;
f = f2(i)j

Printf("contents off: '1..e\n",f);

double f2(p)
int p;
{

}

static double i;
static int ,j;

i = 3+0e10;
j ::: 2;
return(P*i*J);

To refer to the variable j in f2, you must first bring f2's symbols into the
table with the command:

DBG>SET MODULE F2

This command makes the names of static variables in f2 accessible. For
example, after this SET MODULE command, you can examine j with
the command:

DBG > E>'.AM I ~jE .J

Automatic variables in a function - for example, in f2 - are not ac­
cessible until the function actually executes, since it is not until then
that variables are allocated storage.

Subsequently, you can use the CANCEL MODULE command to re­
move symbols you no longer need, and then you can use the SET
MODULE command again to insert the symbols you require next. At
any time, you can display a list of the available modules with the
SHOW MODULE command. For example:

Debugging VAX-11 C Programs 331

DBG>SHOW MODULE
111odu1 e n a1r1 e S)'f11bols lansuase size

MAIN '/es BASIC 128
F2 I' es BASIC 160
C$MAIN no MACRO 104
C$$DOPRINT no MACRO 232
C$UNU< no MACRO 1988
C$MALLOC no MACRO 412
C$CUSER ID no MACRO 220
C$STRCPY no MACRO 168
C$STRLEN no MACRO 168
C$STRNCPY no MACRO 168
LI B$GET _FOREIGN no BLISS 116
LIB$MSGDEF no MACRO 1o4
RMSGBL no MACRO 104
total 111odules: 13. re1r1aininS size: G2882f

The display shows all the modules used by the program, 13 in this case,
and it shows whether a module's symbols are currently in the symbol
table. For this version of the debugger, C modules appear as "BASIC"
in the language column. For instance, the symbol table currently con­
tains the symbols in modules MAIN and F2, but not those in the other
modules. 1 The symbols in F2 were inserted by the SET MODULE
command. Thus, when the program first executes, the "symbols" col­
umn for F2 would say "no," meaning that its symbols are not currently
accessible.

15.5 Specifying References and Locations

The run-time symbol table lets you refer to names and program loca­
tions symbolically. You need concern yourself only with the name, and
not the memory location, of the data. This symbolic form of reference
applies to scalar variables and to program addresses, such as program
line numbers and function names.

You can refer to the following items symbolically:

• Scalar variables (but not function parameters)
• Global symbols
• Program locations
• Symbols you create with the DEFINE debugger command
• Permanent symbols defined by the debugger

1. The module names prefixed by C$, LIB$, RMS, and OTS$$ are run-time
modules required for the execution of the V AX-11 C programs.

332 Chapter 15

Symbols can be variable references or values. The debugger interprets
them according to the following rules:

1. If a symbol begins with an alphabetic character, the debugger
assumes that it is a program variable or a symbolic reference to
an address.

2. If a symbol begins with a numeric character (O through 9), the
debugger assumes that it is a numeric constant.

3. If a symbol is enclosed in apostrophes or quotation marks, the
debugger assumes that it is a character-string constant.

15.5.1 References to Global Symbols
Global symbols are those symbols defined with the globaldef or global­
value storage class keywords. The names of the functions are also con­
sidered global symbols. Global symbols can be referenced from all parts
of the program.

15.5.2 References to Program Locations
You can refer to program locations by function name, line number, or
(nonsymbolic) virtual address. To specify a function by name, give the
command followed by the name of the function. For example, the com­
mand

DBG>SET BREAK LIST_BY_FLOWER

sets a breakpoint at the entry to function lisLby_flower.

To specify a line number, use the %LINE specifier, as shown here:

DBG>SET BREAK %LINE G

This command sets a breakpoint at line 6, which corresponds to the
compiler-generated line number shown in the listing.

The debugger does not recognize all line numbers. In particular, it does
not recognize those line numbers associated with nonexecutable state­
ments, such as declarations. If you specify such a line number, the
debugger responds with a message indicating that no such line exists.

You can also set breakpoints at a line within a function. For example,
the commands

DBG>SET MODULE LIST_BY_FLOWER
DBG>SET BREAK %LINE LIST_BY_FLOWER\11

set a breakpoint at line 11 in list_by_flower.

To specify a virtual address, you issue the command without a prefix.
For example:

DBG>SET BREAK 700

Debugging V AX-11 C Programs 333

You can determine the virtual address of a line number or a variable by
entering an EVALUATE command as follows:

DBG>EVALUATE/ADDRESS %LINE 17
800

The debugger displays the virtual address of the instructions for the
statement on line 17.

15.5.3 Symbolic References to Program Locations
At times you may want to assign a symbolic name to a program loca­
tion. To do this you must first determine the virtual address of the
location with the EVALUATE/ADDRESS command. Then, you must
use the DEFINE command to assign the symbolic name. For example:

DBG>EVALUATE/ADDRESS %LINE 42
1666
DBG>DEFINE CHK = 1666

Subsequent references to line 42 can be made using the defined symbol
CHK. For example, the command

DBG>SET BREAK CHK

sets a breakpoint at line 42. Similarly, the commands

DBG>EVALUATE/ADDRESS CARD-COUNTER
6445
DBG>DEFINE CC = 8445

define a symbolic name for the variable card_counter.

15.5.4 The Debugger's Permanent Symbols
The debugger has the following permanent symbols; you can use them
at any time during the debugging session.

• RO - Rll General registers 0 through 11
• AP Argument pointer
• FP Frame pointer
• SP Stack pointer
• PC Program counter
• PSL Processor status longword

These names cannot be redefined; for example, you cannot use the
name RO to create a symbol definition with the DEFINE command.1

1. The names of permanent symbols may also conflict with identical names used
in your program. Furthermore, all names from your program are entered in
uppercase in the debugger symbol table, so the name of a variable sp in your
program conflicts with the permanent symbol SP.

334 Chapter 15

15.6 Scope

In VAX-11 C, the scope of a name is the function in which the name is
declared. If the program you are debugging consists of more than one
function, symbolic references may be ambiguous. At times, you may
have to tell the debugger how to resolve ambiguous references.

For example, assume that you are debugging two functions; both use a
variable i, and both modules are included in the run-time symbol table.
Unless you explicitly specify the scope of i, the debugger may be unable
to determine which variable i you want.

You can specify the scope in one of three ways:

• By using the debugger's current default scope.

• By explicitly specifying the scope of the variable by prefixing the
variable's name with its pathname.

• By setting a new default scope with the SET SCOPE command.

When you begin a debugging session, the debugger automatically de­
fines the first function linked as the default scope (also called the PC
scope). However, this default scope is dynamic; that is, as you debug
your program, the default scope is always the function that is currently
executing. To resolve a symbolic reference, the debugger goes through
the following steps:

1. If the specified symbolic name is unique within the run-time
symbol table, then the debugger uses that name.

2. If the specified symbol is ambiguous - that is, it is not unique
within the symbol table - but one of its occurrences is within
the current PC scope, then the debugger recognizes the symbol
as it appears in the PC scope.

3. If the specified symbol is not defined in the symbol table, or if it
is ambiguous and does not occur within the current PC scope,
then the debugger issues an error message indicating that the
name is ambiguous.

The program and dialog in Example 15-1 illustrate these rules.

Debugging V AX-11 C Programs 335

PROGRAM:

~1air,()

{

static int i;
static double fj•
double f2();
i 400;
f = f2(i)j

}

double f2(P)
int pj
{

static double ij
static int Jj
i = 3.0e10j
j = 2 j

return(P*i*J);
}

DEBUGGER DIALOG:

DBG>SHOW MODULE
hlOd1Jle narne

MAIN
FZ

DBG>EXAMINE i
MAIN\!: 0
DBG>EXAMINE f2\i

SYhlbols

Yes
no

lanauaa'e

BASIC
BASIC

size

168

200

ZDEBUG-W-NOSYMBOLt SYhlbol 'FZ\I' is not in the SYhlbol table
DBG>SET MODULE f2
DBG>EXAMINE f2\i
FZ\I: o.ooooooooooooooooE+oo
DBG>SET BREAK %LINE fZ\17
DBG>so
routine start at MAIN
breaK at F2\%LINE 17
DBG>EXAMINE i
FZ\I: 30000000000,00000
DBGlEXAMINE hlain\i
MAIN\!: 400
DBG>E;{ IT

Example 15-1: Scope of Symbolic Names

336 Chapter 15

The first EXAMINE command displays MAIN's version of i, because
MAIN is the default scope. The SET MODULE command allows you
to examine F2's version of i and to set the breakpoint at line 17 (which
is in function f2). The GO command starts the program, which is then
interrupted at the breakpoint. Now, the default scope is F2, and the
EXAMINE command shows F2\I. At this point, to look at MAIN's
version of i, you must use the pathname "main\" in front of the varia­
ble name to resolve the reference to i.

When you use a %LINE specifier, the specifier must appear before the
pathname. For example:

DBG>SET BREAK %LINE SUBl\7

This command sets a breakpoint at line 7 in the scope of the module
SUBl.

If you want to make frequent references to a location with a long path­
name, you can define a symbolic name for it with the DEFINE com­
mand. For example:

DBG>SET SCOPE INSIDE
DBG>EVALUATE/ADDRESS CARD_COUNTER
8885
DBG>DEFINE CC = 8885
DBG>SET SCOPE MAINP

DBG>E>'.Ar1IME CC

In this example, the SET SCOPE command changes the scope to the
module INSIDE, the EVALUATE/ADDRESS command displays the
virtual address of the variable card_counter, and the DEFINE com­
mand uses this value to define the symbol named CC. Subsequently,
the scope is reset to MAINP. During the debugging session, the value of
card_counter can be referred to with the symbolic name CC, regard­
less of the current scope.

15.6.1 Changing the Scope
If you want to make a number of symbolic references within the same
function, you can eliminate the need to specify scope with each sym­
bolic address by using the SET SCOPE command. For example, the
following command sets the scope to SUB3:

DBG>SET SCOPE SUBJ

You can also define a scope list to specify the order in which the de­
bugger should search for symbols. For example, the command
DBG>SET SCOPE MAR101JAN

Debugging V AX-11 C Programs 337

instructs the debugger to search for symbols first in function mar. If it
cannot find a specified symbol in mar, then the debugger searches the
PC scope, and, if necessary, jan. (The symbol 0 shows that the current
scope is the default PC scope.)

The scope defined in a SET SCOPE command becomes the default
scope for all symbolic references until you explicitly change or cancel
the scope. You can determine the current scope at any time by entering
the SHOW SCOPE command. For example:

DBG>SHOW SCOPE
scope: MAR tOt JAN

The message shows that the current scope is set first to MAR, then to
the PC scope, and finally to JAN.

The SHOW SCOPE command may also respond as follows:

DBG>SHOW SCOPE
scope: 0 [= MULT\MULTJ

Again, the symbol 0 shows that the current scope is the default PC
scope. Within brackets, the debugger displays the module and routine
name of the default scope; the scope is module MULT, function mult.

The CANCEL SCOPE command resets the scope to the default PC
scope.

When you explicitly SET SCOPE to a function (module) name, the
debugger implicitly performs a SET MODULE command. Therefore,
symbols for the function specified in your SET SCOPE command are
placed in the symbol table. However, if you use the PC scope, you must
also use SET MODULE to place symbols for the function in the symbol
table.

15.6.2 The Scope of Automatic Variables
If you refer to an automatic variable when the function that defines the
variable is not in the current scope, the debugger displays a warning
message. For example, this would occur if you tried to refer to an
automatic variable declared in a function that has executed a return
statement, and control has returned to the debugger:

%DEBUG I-EXITSTATUS1 is '%SYSTEM-S-NORMAL1 normal
successful COMPietion'

DBG>D(AMINE)-(
%DEBUG I-PCNOTINSCPt PC is not within the scope of the

routine declarinS
symbol XLOOK\XLOOK\X: 3

This message notifies you that the variable x in the function xlook does
not have an address assigned exclusively to it and that its address may
have another use in the current section of your program.

338 Chapter 15

15. 7 The EXAMINE and DEPOSIT Commands

The EXAMINE and DEPOSIT commands display and change the con­
tents of variables, respectively. When you examine or deposit data into
a V AX-11 C variable, you do not need to specify the data type of the
variable, unless you want to deposit data of a different type. In the
following example, xvalue is of type float.

DBG>EXAMINE XVALUE
MAIN\XVALUE: 14.50000
DBG>EXAMINE/BYTE XVALUE
MAIN\){t.JALUE: 68

The debugger always uses the declared data type of a scalar variable
unless you override it. In this example, the /BYTE qualifier tells the
debugger to display only the contents of the first byte of the storage
occupied by the variable xvalue.

The SET TYPE/OVERRIDE command tells the debugger to display all
variables using a certain type. For example, in response to the following
command, the debugger displays only the first byte of any variable's
storage:

DBG>SET TYPE/OVERRIDE BYTE

To restore the normal interpretation <;>f data. types, use the CANCEL
TYPE/OVERRIDE command.

For this release of V AX-11 C, there are restrictions both on the data
types of variables that you can access and on the syntax used to refer to
them. Because the language in this version of the debugger is set to
BASIC, you cannot examine or modify the following data types in the
usual C syntax:

• Arrays
• Structures and unions
• Function parameters

Furthermore, the debugger cannot properly manipulate array elements
or structure/union members unless they are integers or characters. The
methods for working around the syntactic restrictions are discussed
later in this chapter.

15. 7 .1 Scalar Variables
You can use EXAMINE to display scalar variables of any C data type.
If you specify more than one variable and separate them with commas,
the contents of each variable are displayed. You can use the DEPOSIT
command to change the contents of one variable at a time. Then the
variable name and the new value must be separated by an equal sign.
The program and debugger dialog in Example 15-2 show how scalar
variables of several types are examined and how a new value can be
deposited into a variable.

Debugging VAX-11 C Programs 339

PROGRAM:

main ()
{

}

static float lisht_speedi
static double sPeed_Poweri
static unsisned uii
static lons lii

liSht_speed
sPeed_Power
li -438394;

3.0e10i
3.1234567890123456789e10i

ui = 790374270;

DEBUGGER DIALOG:

DBG>SET BREAK %LINE 12
DBG>GO
routine start at MAIN
breaK at MAIN\ZLINE 12
DB G >E){AM IN EIDE CIMA L 1 i , u i , 1 i sh t _ s Peed , s Pe e d _Po'•' e r
MAIN\LI: -438394
MAIN\UI: 790374270
MAIN\LIGHT_SPEED:
MAIN\SPEED_POWER:

3.0000001E+10
31234567890.12346

DBG>DEPOSIT ui = 1
DBG>EXAMINE/DECIMAL ui
MAIN/UI: 1

Example 15-2: Examining and Depositing Values
in Scalar Variables

15. 7 .2 Arrays
With the EXAMINE command, you can look at the values in arrays,
although the syntax understood and returned by the debugger differs
from the usual C syntax for subscripted references. The valid data
types for array elements are as follows:

• Integers (all sizes, signed or unsigned)
• Enumerated (enum) values1

1. In this and all other contexts, the debugger treats enumerated types as
integers.

340 Chapter 15

Note that floating-point arrays cannot be examined by the debugger.

The program and dialog in Example 15-3 illustrate the examination of
elements in the integer array arr:

PROGRAM:

111a in ()
{

int i ;

static int arr[1QJ;
for <i=o; i<10; i++)
{

arr[iJ=i;
}

}

DEBUGGER DIALOG:

DBG:SET BREAK %LINE 8
DBG::GO
routine start at MAIN
break at MAIN\%LINE 8
DBG>E><AMINE arr
MArn\ARR: 0
OBG>GD
start at MAIN\ZLINE 8
break at MAIN\%LINE 8
DBG>GD
start at MAIN\ZLINE 8
break at MAIN\%LINE 8
DBG>GO
start at MAIN\ZLINE 8
break at MAIN\ZLINE 8
DBG>GD
start at MAIN\ZLINE 8
break at MAIN\%LINE 8
DBG>E:<AMINE arr
MAIN\ARR: 0
DBG >E><AM I NE
1028: 1
DBG >E>'.At1 I NE
1 032: 2
DBG>E>;AMINE
1036: 3
DBG >E)< IT

Example 15-3: Examining Data in an Array

Debugging VAX-11 C Programs 341

The debugger does not allow you to write BASIC-like subscripted refer­
ences to the array elements. The dialog in Example 15-3 shows the
correct way to look at the elements' values, after several GO commands
have executed the loop in the program. The command:

E>'.AM I NE ARR

shows the contents of the first element (in C syntax, arr[Ol). Then, the
commands:

E i<A M IN E !B[1)

show the subsequent locations in the array - the elements arr[l],
arr[2], and so on.

In contrast, consider the attempt to examine a floating-point array
shown in Example 15-4.

PROGRAM:

Iii a in (l
{

}

int i ;
static float arr[lOJ;
for (i=O; i<10; i++)
{

arr[iJ=i*3.0e10;
}

DEBUGGER DIALOG:

DBG>SET BREAK %LINE 8
DBG>GO
routine start at MAIN
break at MAIN\%LINE 8
DBG>GO
start at MAIN\%LINE 8
break at MAIN\%LINE 8

DBG >Ei<AM I NE arr
MAIN\ARR: 0
DBG >El<AM I NE
1028: -2072620577
DBG>EJ<IT

Example 15-4: Examining Floating-Point Elements
of an Array

342 Chapter 15

Here, the array elements are of type float, but the debugger displays
them as integers. There is no facility in this version of the debugger for
displaying elements or members of any aggregate unless they are inte­
gral (integers or characters).

15. 7 .3 Character Strings
To examine or modify parts of a character string, you must override the
default mode of the debugger (long integer), by use of the /ASCII quali­
fier. The program and dialog in Example 15-5 show the EXAMINE and
DEPOSIT commands used to examine and change characters in the
variable string:

The first EXAMINE command shows a meaningless value for the
string, because the debugger uses its default display type, long integer.
Notice that you can either specify the /ASCII:n qualifier on each com­
mand, where n is the number of characters to be displayed, or you can
override the default display type, set it to ASCII:l, and step through
the array with EXAMINE commands. With the deposit command, you
must use the /ASCII qualifier, or the debugger will interpret the value
you try to assign as an integer (hence the warning message).

PROGRAM:

#include stdio
frl a in ()
{

char strins[20J;

strcpy(strins1 11 VAX-11 C'');
}

Example 15-5: Examining and Depositing Characters
in a Character String

Debugging VAX-11 C Programs 343

DEBUGGER DIALOG:

DBG>SHOW MODE
modes: symbolic, decimal
tYPe: Ions inteser
type/override: none
DBG>SET BREAK %LINE 65
DBG>,GO
routine start at MAIN
breaK at MAIN\%LINE 65
DBG>EXAMINE STRING
MAIN\STRING: 760758614
DBG>EXAMINE/ASCII:l strins
21".17255152: v
DBG>EXAMINE/ASCII:B strins
2147255152: VAX-11 C
DBG>DEPOSIT strins = 'PDP'
%DEBUG-W-INVNUMBERt invalid nu~eric strins 'PDP'
DBG>DEPOSIT/ASCII:3 strins = 'PDP'
DBG>EXAMINE/ASCII:B strins
2147255152: PDP-11 C
OBG>SET TYPE/OVERRIDE ascii:l
OBG>EXAMINE STRING
2147255152: p

DBG>EXAMINE
2147255153: D
DBG>EXAMINE
2147255154: p

DBG>EXAMINE
2147255155: -
DBG>EXAMINE
2147255156:
DBG>EXIT

Example 15-5: (Cont.) Examining and Depositing
Characters in a Character String

344 Chapter 15

15. 7 .4 Structures and Unions
You can manipulate structures and unions in a manner similar to that
shown for arrays. The program and dialog in Example 15-6 illustrate
the examination of structure members:

PROGRAM:

1~a in ()
{

}

static struct
{

int i n1;
float fnti
char cm;
} s 'I;

st)+ i ft'I

s \I. f ltl

S V + Cfll

-2LI;
3.0elOi
I a I;

DEBUGGER DIALOG:

DBG>SET BREAK ZLINE 13
DBG>GD
routine start at MAIN
breaK at MAIN\ZLINE 13
DBG>EXAMINE su,fM

ZDEBUG-W-NOSYMBOLo srMbol 'SU.FM' is not in the srMbol table
OBG>EXAMINE SU

MAIN\SV: -2ll
DBG>EVALUATE/ADDRESS su

102ll
OBG>EXAMINE
1028: -2072820577
DBG>EXAMINE
1032: 87
DBG>EXAMINE/ASCII:l
1032: a
DBG>EXAMINE/ASCII:l 1032
1032: a

Example 15-6: Examining Data in Structures

Debugging VAX-11 C Programs 345

Notice the warning message; the debugger does not accept the C syntax
for a structure reference. Instead, the debugger displays the first mem­
ber in storage, sv.im. Since that member is an integer and the default
display mode is integer, the correct value is shown.

The virtual address of sv is shown by the EVALUATE/ADDRESS com­
mand, and the following EXAMINE command shows the next item in
storage (four bytes away from sv, since the default display mode is a
long, or 32-bit, integer). This EXAMINE command shows the contents
of the longword at virtual address 1028, which is the correct address of
the floating-point member sv.fm, but the value is incorrect. Floating­
point members cannot be examined.

The next EXAMINE command shows the next longword, which con­
tains the member sv.cm, a character. You can display it in either deci­
mal or character form, as shown. Note the use of the EXAMINE com­
mand to redisplay the contents of the "current" (most recently refer­
enced) location.

Unions are manipulated in a way similar to structures except that all
the members of a union occupy the same storage. The dialog in Exam­
ple 15-7 shows several references to the same location after the SET
BREAK and STEP commands have performed the assignment state­
ments individually.

PROGRAM:

Main ()
{

}

346

static union
{

int i M;
float fMi
char cMi

} uv;

l .. t'J t i l'Tt

!JI)• flrt

UV• C ITt

-2llj

3.0e10;
I a,';

Chapter 15

DEBUGGER DIALOG:

DBG>SET BREAK ILINE 11
DBG>GD
routine start at MAIN
breaK at MAIN\ILINE 11
DBG > E>'.AM I NE u ''
MAIN\Ul.J: 24
DBG>STEP
start at MAIN\ILINE 11
stepped to MAIN\ILINE 12
DBG>E>'.AMINE '-'''
MAIN\UV: -2072820577
DBG>STEP
start at MAIN\ILINE 12
stepped to MAIN\ILINE 13
DBG > E>'.AM I NE u ''
MAIN\UV: -2072820703
DBG>EXAMINE/ASCII:l uu
MAIN\Ul.J: a
DBG>Ei<I T

Example 15-7: Examining Data in Unions

As with structures, the floating-point member, uv.fm, cannot be dis­
played meaningfully.

15.8 The GO Command

The GO command starts program execution. You use this command
when you begin the debugging session and when you want to continue
execution after the program has been suspended. For example:

$ RUN FLOWERS

VAX-11 DEBUG Version x.xx

IDEBUG-I-INITIAL, lansuale is 'BASIC', scoPe and
Module set to 'FLOWERS'

DBG>GD

IDEBUG-1-EXITSTATUS, is 'ISYSTEM S-NORMAL1 norMal
successful completion'

DBG>

Debugging VAX-11 C Programs 347

The EXITSTATUS message indicates that the program has run to
completion.

When you are finished with the debugging session, use the EXIT com­
mand to leave the debugger. You must not restart a program from the
beginning unless you first exit from the debugger. Otherwise, unpre­
dictable results occur. If your program loops or fails to complete execut­
ing, or if you need to interrupt it for any other reason, you can press
(CTRL/Yl to return to the DCL command level. For example:

DBG>GO

···y

$

The $ prompt on the terminal indicates that you have returned to the
DCL command level. To return to the debugger, type DEBUG or CON­
TINUE. If you type DEBUG, control returns to the debugger and the
debugger prompts you for a command. If you type CONTINUE, the
debugging session continues from where it was interrupted.

If you do not want to continue the debugging session, you can enter a
STOP command or DCL command to stop the debugging session. You
can also reissue the RUN command for the program you are executing,
if you want to rerun it from the beginning.

15.9 The STEP Command

You will often want to maintain control of your program so that you can
display and/or modify variables after single statements have been exe­
cuted. The STEP command executes a program one or more lines at a
time. For example:

DBG>STEP 5

causes the debugger to execute the next five statements and suspend
the program.

When you are stepping through a program, the debugger displays only
the line numbers of the lines as they are executed; it does not display
the statements.

348 Chapter 15

The debugger maintains default modes for stepping commands. You
can override the default modes with the STEP command qualifiers, or
you can change the default with the SET STEP command. For exam­
ple, the default step for high-level languages is STEP/LINE, indicating
a line or statement number increment. In assembly language, the de­
fault is STEP/INSTRUCTION. Thus, if you want to look at the ma­
chine instructions that are executed for each V AX-11 C statement line,
enter the debugger command SET STEP INSTRUCTION, as follows:

DBG>SET STEP INSTRUCTION
DBG>STEP
start at MAINP\MAINP\ALPHA %LINE 28
stepped to MAINP\MAINP\ALPHA %LINE 27
DBG>STEP
start at MAINP\MAINP\ALPHA %LINE 27
stepped to MAINP\MAINP\ALPHA %LINE 27 +31 MOVZWL •321R3
DBG>STEP

For each VAX-11 C statement, there are one or more machine-language
instructions. Each STEP command displays the next instruction.

When you subsequently issue a STEP command without qualifiers, the
instruction mode remains in effect. You can supersede this default by
including the /LINE qualifier in a STEP command. For example:

DBG>STEP/LINE 10

This command tells the debugger to execute 10 lines, regardless of the
current step default.

It is better to use STEP to execute only a few instructions at a time. To
execute many instructions and then stop, use a SET BREAK command
to set a breakpoint, and then issue a GO command.

15.1 O Breakpoints

The BREAK commands let you select locations for suspending the
program. Thus, you can let a program run until it reaches a specified
statement. Then you can examine and/or modify variables or arrays in
the program. The BREAK commands perform the following functions:

• SET BREAK defines a line number, function name, or address at
which to suspend execution.

• SHOW BREAK displays all breakpoints currently set in the pro­
gram.

• CANCEL BREAK removes one or more breakpoints currently set
in the program.

For example, the command

DBG>SET BREAK %LINE 7

Debugging V AX-11 C Programs 349

sets a breakpoint at the statement corresponding to line number 7 in
the compiler listing. The debugger interrupts the program at line 7,
before the line is executed, as in this example:

DBG>SET BREAK %LINE 7
DBG>GO
routine start at MAINP\MAINP
break at MAINP\MAINP %LINE 7

After the breakpoint is set, the GO command continues program execu­
tion. When statement 7 is reached, the debugger interrupts the pro­
gram and displays a message indicating that the breakpoint has been
reached. At this breakpoint, you can examine or change static varia­
bles, begin stepping through the program, and so on.

To set a breakpoint at a function entry point, specify it by name. For
example:

DBG>SET BREAK PRINT_ROUTINE

This command sets a breakpoint at the entry to the function print_
routine.

You can use the I AFTER qualifier to control when a breakpoint takes
effect. For instance, if you set a breakpoint on a line that is in the range
of a loop, you can specify the number of iterations that should be
executed before the break occurs, as shown in the following example:

DBG>SET BREAK/AFTER:3 %LINE 20

In this example, the breakpoint is reported the third time line 20 is
encountered and every time it is encountered thereafter.

The SET BREAK command also lets you specify some action to be
taken each time a breakpoint is encountered. For example, to set a
breakpoint at a location, examine one or more variables, and continue,
you could enter a SET BREAK command as follows:

DBG>SET BREAK %LINE 29 DOIEXAMINE TOTAL;EXAMINE AREA;GOl
DBG>GD

After this command, the debugger sets a breakpoint at line 29. Each
time the statement on this line is executed, the debugger interrupts the
program, displays the contents of the variables total and area, and
executes the GO command to continue execution.

You can cancel a breakpoint with the CANCEL BREAK command. For
example:

DBG>CANCEL BREAK %LINE 9

This command cancels the breakpoint at line 9. To cancel all break­
points, enter:

DBG>CANCEL BREAK/ALL

You can display the current breakpoints m effect with the SHOW
BREAK command.

350 Chapter 15

15.11 Tracepoints

A tracepoint is similar to a breakpoint in that it suspends program
execution and displays the address at the point of suspension. However,
in the case of a tracepoint, program execution resumes immediately.
Thus, tracepoints let you follow the sequence of program execution to
ensure that execution is carried out in the proper order.

Note that if you set a tracepoint at the same location as a current
breakpoint, the breakpoint is canceled, and vice versa.

The TRACE commands perform the following functions:

• SET TRACE establishes lines or entry points in the program
where execution is to be momentarily suspended.

• SHOW TRACE displays the locations in the program where
tracepoints are currently set.

• CANCEL TRACE removes one or more tracepoints currently set
in the program.

For example, you can use SET TRACE if you want to keep track of the
number of times a given function is called, as follows:

DBG>SET TRACE JNSIDEOUT

Each time a call is made to insideout, the debugger displays a message
like the following:

routine trace at MAINP\MAINP\INSIDEOUT

The message gives the pathname of the symbol.

To set a tracepoint on a given statement, use the %LINE specifier, as in
the example below:

DBG>SET TRACE %LINE 30

While this tracepoint is in effect, the debugger displays a message each
time the statement on line 30 is executed.

15.12 Watchpoints

A watchpoint is a location that the debugger monitors. The debugger
informs you when your program tries to modify the contents of the
location. You can determine, therefore, whether locations are being
modified inadvertently during program execution. When you debug a
VAX-11 C program, you can set a watchpoint on a variable, and when
the watched variable is modified, the debugger suspends program exe­
cution, displays the address of the instruction, and prompts for a com­
mand.

Debugging VAX-11 C Programs 351

The following commands control watchpoints:

• SET WATCH defines the location(s) to be monitored.

• SHOW WATCH displays the location(s) currently being moni­
tored.

• CANCEL WATCH disables monitoring of a specified location or
of all locations.

You can monitor only static scalar variables. Because automatic varia­
bles are allocated storage on the stack, they are protected from access.
You cannot set watchpoints, tracepoints, and breakpoints at the same
location; the most recently issued command overrides the other.

Run-time errors occur if' a watchpoint is in effect while 1/0 is being
performed. Thus, to watch a variable, you must be careful not to set the
watchpoint until all previous 1/0 is completed. You can do this by
setting a breakpoint after an I/0 statement and then setting a watch­
point. For example, ·if you want to watch a variable r in a function that
contains a printf call on line 12, you could set the watchpoint as
follows:

DBG>SET BREAK %LINE 13 DO CSET WATCH R;GOI
OBG>SET BREAK %LINE 12 DD (CANCEL WATCH R;GOI

The SET BREAK commands in the above example ensure that each
time printf is about to be called, the watchpoint at r is canceled.
Following the printf call, the watchpoint is reestablished.

When a watched variable is modified, the debugger displays its former
contents, if any, and the modified contents. It then prompts you to
enter a command. The message is similar to the following:

write to MA!NP\MA!NP\Rl!:GI at PC MAINP\MAINP ZLINE 13 +25
old 1.1alue +0000000000

new value = +oosaoo2100
DBC>

You must enter GO or STEP to continue the program's execution.

15.13 Entering and Returning from Functions

You can use the following commands to debug a program that consists
of more than one function:

• The STEP command lets you specify whether you want to debug a
called function or step over it.

• The SHOW CALLS command displays a traceback of the calling
sequence.

• The CALL command lets you call a function and pass arguments
to it.

352 Chapter 15

15.13.1 Stepping Into and Over Functions
When you are stepping through a program, or when you have set a
breakpoint at a function reference, you can decide whether or not to
enter the function. To enter the function, type the following command:

DBG >STE p /I tno
If the names declared in this module are not already in the run-time
symbol table, you must also enter a SET MODULE command to in­
clude the symbols (including line numbers) to which you want to refer.

If you do not want to debug the function, enter:

DBG :: STEP /0'.JER

Then, the debugger continues the program's execution at the function's
entry point and returns control to you when the function returns.

The STEP command also lets you decide whether you want to step
through system functions, such as VAX/VMS system services. If you
specify STEP/SYSTEM, then the debugger will step through system
functions for you. You cannot, however, set breakpoints or examine
data that is being used by system functions.

You can use the SET STEP command to set a default mode for step­
ping. For example:

DBG>SET STEP INTO

After this command, the debugger steps into all functions. Note, how­
ever, that the debugger steps into the VAX-11 C run-time functions
and system services as well as your functions.

15.13.2 Displaying the Calling Sequence
The SHOW CALLS command produces a traceback of calls. This is
particularly useful when you have returned to the debugger after a
!CTRL/Y) interrupt. The debugger displays a traceback list that shows you
the sequence of calls leading to the current module. If you specify a
value, that value determines the number of calls to be displayed. For
example,

DBG>SHOW CALLS G

causes the six most recent calls to be displayed.

15.13.3 Calling Functions
You can use the CALL command to call a function during the debug­
ging session. You can also specify arguments for the function, although
they must be literal constants. The program and debugger dialog in
Example 15-8 use the CALL command to call the function f2.

Debugging VAX-11 C Programs 353

PROGRAM:

#define CZ 10
#include stdio
111 a in ()
{

}

static int i;
i aoo;
i = f2(i)j

int f2(P)
int P;
{

}

DEBUGGER DIALOG:

DBG>SET BREAK %LINE 65
DBG>GD
routine start at MAIN
breaK at MAIN\ZLINE 65
DBG>CALL f2(2)
routine start at F2

value returned is 4

DBG>CALL f2(i)
routine start at F2

value returned is 1048578

DBG>CALL f2(C2)
%DEBUG-W-NDSYMBOL, SYMbol 'CZ' is not in the s1mbol table

DBG >E>D T

Example 15-8: Using the CALL Command

Note that when you specify arguments with the CALL command, you
must use only literal constants. Variables are not valid in the argument
list of a CALL command, and neither are constants defined by the
#define control line or enum constant names.

The debugger always displays a return value from the function that was
invoked. Thus, if the function returns a value, the actual return value
will be displayed. However, ifthe function does not return a value or, as
in this example, you specify an invalid argument, the returned value is
meaningless.

354 Chapter 15

Appendix A

Portability Considerations

The information in this appendix is not meant to be exhaustive, but
rather is meant to serve as a guide to the kinds of portability considera­
tions that C programmers face when porting C programs from different
operating systems. This information is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation on the compatibility or functionality of V AX-11 C.

The functions and library routines in Table A-1 are, in general, sup­
ported by C compilers. The comments next to each function describe
possible differences between the VAX-11 C function and other imple­
mentations of the same function.

It is not a goal of VAX-11 C to duplicate all run-time functions that
exist on every implementation of the language, but rather to provide a
reasonable subset of those functions. Some functions that are available
in other implementations have not been implemented on VAX-11 C for
any or all of the following reasons:

• The function is not current; recent developments in the language
may have made the function obsolete or may have created a re­
placement for the function.

• The function is incompatible with the VAX/VMS operating
system.

• The function would create serious performance restrictions if it
were implemented.

Table A-1: Relationship of VAX-11 C Run-Time
Functions to Other C Run-Time Functions

abort

abs

access

acct

VAX/VMS does not generate a core dump.

Equivalent functionality.

Equivalent functionality.

Not provided in the VAX-11 C run-time library. The DCL
SET command can be used to turn accounting on and off; the
VAX/VMS system service, SYS$SNDACC, can be used to
send messages to an accounting file.

355

Table A-1: (Cont.) Relationship of VAX-11 C Run-Time
Functions to Other C Run-Time Functions

a cos

alarm

alloc

arc

asctime

assert

a sin

atan

atan2

atof

atoi

atol

brk,sbrk

cabs

calloc

ceil

cfree

chdir

chmod

ch own

circle

clearerr

close

closepl

cont

356

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Not provided.

Not provided.

Not provided.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

On VAX-11 C, the string may contain any of the white-space
characters (space, horizontal or vertical tab, carriage return,
form feed, or newline).

See atof.

See atof.

The V AX-11 C version rounds the break address to the next
higher multiple of 512 bytes.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

The VAX-11 C version changes the default directory for the
user's program only. The user at a terminal will still have the
same default directory as before the call. On V AXNMS, use
the DCL SET DEFAULT command. Also, remember the dif­
ferences between UNIX and VAXNMS directory syntax.

VAXNMS has no equivalent to the "set user id'', "set group
id" or "save text" file attributes. You can specify group and
system read, write, and execute protection individually.
chmod to 1000 ("save text") is done on VAXNMS using the
INSTALL utility.

Equivalent functionality.

Not provided.

Equivalent functionality.

Equivalent functionality.

Not provided.

Not provided.

Appendix A

Table A-1: (Cont.) Relationship of VAX-11 C Run-Time
Functions to Other C Run-Time Functions

creat

crypt

ctime

ctype functions

curses

dbm

dup

dup2

ecvt

endfsent

endgrent

endpwent

erase

exec,execl,
execle

exit

exp

fabs

fclose

fcvt

ferror

feof

fdopen

fflush

fgetc

fgets

fileno

floor

fprintf

fputc

VAX-11 C adds optional file attributes to allow the creation
of files with RMS formats other than stream.

Not provided.

Equivalent functionality.

V AX-11 C also has isgraph and isxdigit. See also the spe­
cific ctype (character classification) function in this table.

Not provided.

Not provided.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Not provided.

Not provided.

Not provided.

Not provided.

The principle of process overlaying is not used in VAX/VMS.
On VAX-11 C, you can exec C programs only. When specify­
ing the environment array, use the DCL syntax.

If the process was invoked by the DCL command interpreter,
then VAX/VMS interprets the return value and prints a DCL
message.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Portability Considerations 357

Table A-1: (Cont.) Relationship of VAX-11 C Run-Time
Functions to Other C Run-Time Functions

fputs

fopen

fork

fread

free

freopen

frexp

fscanf

fseek

ftell

fwrite

gamma

gcvt

getc

getchar

getenv

getgrent

getgrgid

getgrnam

getlogin

getpass

getpw

getpwent

getpwuid

getpwnam

getw

getfsent

getfsfile

getfsspec

getpid

358

Equivalent functionality.

File specification must be a valid VAX/VMS file name.

Not provided (see vfork).

Equivalent functionality ..

Equivalent functionality.

File specification must be a valid VAX/VMS file name.

Equivalent functionality.

VAX-11 C provides the following conversion characters: h, Id,
lo, Ix, le, and If.

When using record files, input from ftell is required for
VAX-11 C.

When using record files, VAX-11 C returns the position of the
next record.

Equivalent functionality.

Not provided.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Not provided.

Not provided.

Not provided.

Not provided.

Not provided.

Not provided.

Not provided.

Not provided.

Not provided.

Equivalent functionality.

Not provided.

Not provided.

Not provided.

Equivalent functionality.

Appendix A

Table A-1: (Cont.) Relationship of VAX-11 C Run-Time
Functions to Other C Run-Time Functions

getuid,getgid,
geteuid,getegid

gets

gm time

hypot

index

ioctl

isalpha

isascii

iscntrl

isdigit

islower

is print

ispunct

isspace

is upper

jO,jl,jn

kill

kill pg

13tol

label

ldexp

link

line

linemod

localtime

log,loglO

longjmp

lseek

ltol3

malloc

VAX-11 C returns the group and member codes from the
UIC; VAXNMS does not distinguish between real and effec­
tive user IDs.

Equivalent functionality.

Not provided.

Equivalent functionality.

Not provided.

Not provided.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Not provided.

V AXNMS requires system privileges if the sending and re­
ceiving processes have different UICs.

Not provided.

Not provided.

Not provided.

Equivalent functionality.

Not provided.

Not provided.

Not provided.

On VAX-11 C, daylight savings always equals zero.

Equivalent functionality.

Equivalent functionality.

The VAX-11 C version positions on record boundaries for
RMS record files.

Not provided.

V AX-11 C aligns the area returned on a longword boundary.

Portability Considerations 359

Table A-1: (Cont.) Relationship ofVAX-11 C Run-Time
Functions to Other C Run-Time Functions

mknod Not provided.

mktemp Equivalent functionality.

modf Equivalent functionality.

monitor Not provided.

mount,umount Not provided.

move Not provided.

mpx Not provided.

nlist Not provided. (This information can be obtained from the
linker load map.)

nice On V AXNMS, the resulting priority cannot be greater than
the process base priority.

open VAX-11 C requires mode= 2 when randomly writing to files.

openpl Not provided.

pause On VAXNMS, processes can also be awakened with the
SYS$WAKE system service.

pclose Not provided.

perror Equivalent functionality.

pipe On V AXNMS, the maximum size of a single write operation
is 512 bytes.

point Not provided.

popen Not provided.

pow Equivalent functionality.

printf Equivalent functionality.

profil Not provided.

ptrace Not provided.

putc Equivalent functionality.

puts Equivalent functionality.

putw Equivalent functionality.

qsort Not provided.

rand Equivalent functionality.

read Equivalent functionality.

re_comp Not provided.

re_exec Not provided.

360 Appendix A

Table A-1: (Cont.) Relationship of VAX-11 C Run-Time
Functions to Other C Run-Time Functions

realloc

reboot

rewind

rind ex

scanf

sscanf

setbuf

setgrent

setjmp

setsfent

On V AX-11 C you can reallocate only the last freed area. For
example, if you were to make two calls to free, only the sec­
ond area could be reallocated.

Not provided.

Equivalent functionality.

Not provided.

V AX-11 C provides the following conversion characters: h, Id,
lo, lx, le, and If.

VAX-11 C provides the following conversion characters: h, ld,
lo, Ix, le, and If.

Equivalent functionality.

Not provided.

Equivalent functionality.

Not provided.

setpgrp,getpgrp Not provided.

setpwent

sighold

sigignore

signal

sigpause

sigrelse

sigset

sigsys

sin

sinh

sleep

space

sprintf

sqrt

srand

Not provided.

Not provided (see VAX-11 C ssignal,gsignal routines in
Chapter 6).

Not provided (see VAX-11 C ssignal,gsignal
Chapter 6).

Equivalent functionality.

Not provided (see VAX-11 C ssignal,gsignal
Chapter 6).

Not provided (see VAX-11 C ssignal,gsignal
Chapter 6).

Not provided (see VAX-11 C ssignal,gsignal
Chapter 6).

Not provided (see VAX-11 C ssignal,gsignal
Chapter 6).

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Not provided.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

routines in

routines in

routines in

routines in

routines in

Portability Considerations 361

Table A-1: (Cont.) Relationship of VAX-11 C Run-Time
Functions to Other C Run-Time Functions

stat,fstat

stime

strcat

strcmp

strcpy

strlen

strncat

strncmp

strncpy

swab

sync

syscall

system

tgetent

tgetflag

tgetnum

tgetstr

tgoto

time,ftime

times

timezone

tputs

umask

unlink

ungetc

utime

va_alist

va_arg

va_dcl

va_end

va_list

va_start

362

Not provided.

Not provided.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Not provided.

Not provided.

Not provided.

Not provided.

Not provided.

Not provided.

Not provided.

Not provided.

Not provided.

VAX-11 C does not return timezone or daylight fields.

V AXNMS does not distinguish between system and user
times. VAX-11 C returns the time in IO-millisecond units.

Not provided.

Not provided.

Equivalent functionality.

Not provided in VAXNMS. Temporary files can be created
using the RMS extensions to creat.

Equivalent functionality.

Not provided.

Not provided.

Not provided.

J>lot provided.

Not provided.

Not provided.

Not provided.

Appendix A

Table A-1: (Cont.) Relationship ofVAX-11 C Run-Time
Functions to Other C Run-Time Functions

vadvise Not provided.

valloc Not provided.

vfork Equivalent functionality.

vhangup Not provided.

vlimit Not provided.

vread Not provided.

vswapon Not provided.

vwrite Not provided.

wait Equivalent functionality.

wait3 Not provided.

write Equivalent functionality.

ADDITIONAL NOTES

• The global symbols end, edata, and etext are not implemented in
VAX-11 C.

• You should not attempt to substitute your own code for functions
that are already supplied by VAX-11 C. For example, the VAX-11 C
version of strcpy expects a return value. If you were to include a
version of strcpy which did not return a value, the procedure would
not perform correctly. The following code is an example of this:

strcpy(p,q) char *P•*"I;
{

}

This use of strcpy will not work; there is code inside the VAX-11 C
run-time library that expects, and makes use of, a return value.

• Some UNIX-based applications make use of Shell functionality, such
as I/O redirection and piping, to achieve program modularity.
V AXNMS DCL does not exactly duplicate this functionality. You
may be able to emulate the UNIX Shell I/0 redirection capability by
setting up the proper values for SYS$INPUT, SYS$0UTPUT, and
SYS$ERROR in a DCL command procedure used to run the applica­
tion(s). For example, the UNIX command

% APPLICl < FILEA : APPLIC2 > FILEB

Portability Considerations 363

uses the output file from APPLICl as the input file to APPLIC2. The
same results can be achieved with the following V AXNMS DCL
commands:
$ DEFINE/USER SYS$INPUT FILEA
$ DEFINE/USER SYS$0UT,PUT TEMP
$ RUN APPLIC1
$ DEFINE/USER SYS$INPUT TEMP
$ DEFINE/USER SYS$0UTPUT FILEB
$ RUN APPLIC2

The same series of commands can be written in a general form (to
pass arguments to the DCL command interpreter) in an indirect com­
mand file. See Chapter 12 for information on how to create indirect
command files.

• There are differences in the way that UNIX and V AXNMS lay out
virtual memory. In UNIX, the address space between 0 and the break
address are accessible to the user program. In V AXNMS, the first
page of memory is not accessible.

If a program tries to reference location 0 on VAXNMS, a hardware
error (ACCVIO) is returned and the program terminates abnormally.
V AXNMS reserves the first page of address space to catch incorrect
pointer references, such as a reference to a location pointed to by a
null pointer. For this reason, some existing UNIX programs may fail
and should be rewritten.

• Some C programmers code all external declarations in #include files.
Then, specific declarations that require initialization are redeclared
in the relevant module. This practice causes the VAX-11 C compiler
to issue a warning message about multiply declared/defined variables
in the same compilation. One way to avoid this warning is to make
the redeclared symbols extern variables in the #include files.

•void is not supported by VAX-11 C in this release.

•The asm call is not supported by VAX-11 C.

• Some C programs call the counted string functions strcmpn and
strcpyn. These names are not used by VAX-11 C. Instead, you can
define macros that expand the strcmpn and strcpyn names into the
equivalent names strncmp and strncpy.

• The VAX-11 C compiler does not support the initialization form:

int foo 123i

Programs using this form of initialization will have to be changed.

• There is a fixed limit to the length of a string that V AX-11 C accepts
(1000 bytes). Long strings must be divided, and programs that use
string arrays may need to be changed.

• VAX-11 C defines the compile-time constants vax, vms, and vaxllc.
These constants are useful for programs that must run compatibly on
various machines and operating systems. (See Section 7.3.)

364 Appendix A

• The C language does not guarantee any memory order for the varia­
bles in a declaration such as

• The V AX-11 Linker usually places V AX-11 C extern variables in
program sections (psects) of the same name as the variable. The
linker then links the psects alphabetically by name. If you are porting
a C program from another operating system to VAXNMS, you may
find that the order of items in the program have been allocated differ­
ently in virtual memory. This has caused existing programs with
hidden bugs to fail.

• The dollar sign ($) and the underscore (_) are allowed characters
in V AX-11 C identifiers.

• VAX-11 C requires the use of VAXNMS file specifications. See
Chapter 12 for a description of the necessary file specification syntax.

• The C language does not define any order for the evaluation of expres­
sions in function parameter lists or in general expressions. The way in
which different C compilers evaluate an expression is only important
when the expression has "side effects," as in

a[iJ = i++;

and
f(p++,p++)

Neither VAX-11 C nor any other C compiler can guarantee that such
expressions will be portable.

• The size of an integer is 32 bits on V AX-11 C. Programs that were
written for other machines and that assume a different size of an int
will have to be modified.

• The C language defines structure alignment to be dependent on the
machine for which the compiler is designed. V AX-11 C aligns struc­
ture members on byte boundaries. Other implementations may align
structure members differently.

• References to structure members in V AX-11 C must not be ambigu­
ous. (See Section 3.4.2.)

•case labels in VAX-11 C must be expressible in 16 bits. Some other
implementations may allow case labels of different sizes.

• The keyword register is ignored by the V AX-11 C compiler; registers
are allocated based on how frequently a variable is used. Any scalar
variable with the storage class auto or register may be allocated to a
register as long as the variable's address is not taken with the amper­
sand operator (&) and as long as it is not a member of a structure or
union.

Portability Considerations 365

• When moving programs from one operating system to another, the
operations of the different linkers must also be taken into account.
The VAX-11 Linker does not load an object module from an object
library unless the module contains a function definition, a globaldef
(definition), or a globalvalue (definition) that is needed to resolve a
reference in another component of the program. When you refer to an
extern variable from a program, the linker does not load the library
module if the module contains only a compile-time initialization of
the variable. This is a temporary restriction, which can be avoided in
either of two ways:

In the following example, the program PROG.C contains an external
declaration of a variable; the module LABDATA.C initializes the
variable.

PROG.C:

r11a in ()
{

extern float lab_data[J;

}

LABDATA.C:

lab_data()
{

float lab data= { 1.21 3,4, 5,G, 7.8 };
}

You could link the object code for the program and the module either
by naming the LABDATA object file in the link command, or by
explicitly extracting the module from a library (here, it is part of the
MYLIB library), as follows:

$LINK PROG1LABDATA1SYS$LIBRARY:CRTLJB/LJB

$LINK PROG1MYLIB/LIB/INCLUDE LABDATA1-
$_SYS$LIBRARY:CRTLIB/LIB

You can also bundle the initialization in a module that would be
loaded, that is, in a module that contains a function definition, a
globaldef (definition), or a globalvalue (definition).

366 Appendix A

Appendix B

C Glossary

This appendix defines terms used in this manual.

additive operator
An operator that performs addition (+) or subtraction (-). It per­
forms the usual arithmetic conversions on its operands.

aggregate
One of the derived types: array, structure, or union. An array has
elements of the same data type. A structure has named members
that can be of different data types. A union is essentially a struc­
ture that is as long as its longest declared member and that
contains the value of only one member at a time.

ampersand (&)
As a unary operator, computes the address of its operand. As a
binary (infix) operator, performs a bitwise AND on two operands,
both of which must be of integral type. As an assignment operator
(&=), performs a bitwise AND of an expression with the value of
the object referred to by the left-hand expression and assigns the
result to that object. The double ampersand(&&), a binary oper­
ator, performs a logical AND on two operands (see also logical
operator).

argument
An expression that appears within the parentheses of a function
call. The expression is evaluated and the result is copied into the
corresponding parameter of the called function. See also argu­
ment passing. and parameter.

argument passing
The mechanism by which the argument in a function call is asso­
ciated with a parameter in the called function. In C, all argu­
ments are passed by value; that is, the parameter receives a copy
of the argument's value. Therefore, a function called in C cannot
modify the value of an argument except via its address. In gen­
eral, addresses are passed by using the ampersand operator (see
ampersand(&)) in the argument expression. In addition, use of
an array or function name (an array or function identifier with no
brackets or parentheses) as an argument always results in the
passing of the address of the array or function.

367

arithmetic operator
A C operator that performs an arithmetic operation. The unary
minus (-) operator is at the highest level of precedence. At the
next lower level are the binary operators for multiplication (*),
division (/), and mod (%) . At the next lower level are addition (+)
and subtraction(-). There is no unary plus operator, and there is
no exponentiation operator. All the binary operators perform the
usual arithmetic conversions on their operands.

arithmetic type

array

One of the integral data types, enumerated types, float, or
double.

An aggregate data type consisting of subscripted elements of the
same type. Elements of an array can have one of the fundamental
types or can be structures, unions, or other arrays (to form multi­
dimensional arrays).

assignment expression
An expression of the form:

E1 asgnop E2

where El must be an !value, asgnop is an assignment operator,
and E2 is an expression. The type of an assignment expression is
that of its left operand. The value of an assignment expression is
that of the left operand after the assignment has taken place. If
the operator is of the form "op=", then the operation El op (E2)
is performed, and the result is assigned to the object referred to
by El; El is evaluated only once.

assignment operator
The combination of an arithmetic or bitwise operator with the
assignment symbol (=); also, the assignment symbol by itself.
These operators are used in assignment expressions.

asterisk (*)
As a unary operator, treats its operand as an address and results
in the contents of that address. As a binary operator, multiplies
two operands, performing the usual arithmetic conversions. As an
assignment operator (*=), multiplies an expression by the value
of the object referred to by the left operand, and assigns the
product to the object.

binary operator

368

An operator that is placed between two operands. The binary
operators include arithmetic operators, shift operators, relational
operators, equality operators, bitwise operators (AND, OR, and
XOR), logical connectives, and the comma operator, in that order
of precedence. All binary operators group from left to right.
(Note: C has no operator for exponentiation.)

Appendix B

bitwise operator

block

An operator that performs a bitwise logical operation on two
operands, which must be integral. The usual arithmetic conver­
sions are performed. Both operands are evaluated. All bitwise
operators are associative, and expressions using them may be
rearranged. The set comprises, in order of precedence, the single
ampersand ([&J bitwise AND), the circumflex (['] bitwise exclu­
sive OR), and the single bar ([: J bitwise inclusive OR).

See compound statement.

block activation

cast

The run-time action of activating a block or function, in which
local auto and register variables are allocated storage and, if
they are declared with initializers, given initial values. (static,
extern, globaldef, and globalvalue variables are allocated and
initialized at compile time.) The block activation precedes the
execution of any executable statements in the function or block.
Although it is not literally true, you can think of a block activa­
tion as the "execution of the declarations" in the block. Func­
tions are activated when they are called. Internal blocks (com­
pound statements) are activated when the program control flows
into them. Internal blocks are not activated if they are entered by
a goto statement, unless the goto target is the label of the block
rather than the label of some statement within the block. If a
block is entered by a goto statement, references to auto and
register variables declared in the block are still valid references,
but the variables may not be properly initialized. Blocks which
make up the body of a switch statement are not activated; auto
or register variables declared in the block are not initialized.

An expression preceded by a cast operator of the form "(type­
name) ". The cast operator forces the conversion of the evaluated
expression to the given type. The precise meaning of a cast is as if
the expression were assigned to a variable of the specified type,
which is then used in place of the whole construction. The cast
operator has the same precedence as the other unary operators.

character
(1) A member of the ASCII character set.

(2) An object of the C data type char - that is, a byte. (An
object of type char always represents a single character, not a
string.)

(3) A constant of type char, consisting of up to four ASCII char­
acters enclosed in apostrophes (', not ").

See also string.

C Glossary 369

comma operator
A C operator used to separate two expressions:

E1 , E2

The expressions El and E2 are evaluated left to right, and the
value of El is discarded. The type and value of the comma ex­
pression are those of E2.

comment
A sequence of characters introduced by the pair /* and termi­
nated by */. Comments are ignored during compilation. They
may not be nested.

compound statement
A compound statement consisting of valid C statements enclosed
in braces (I I). Compound statements can also include declara­
tions. The scope of these variables is local to the block.

conditional operator
The C operator (?:), which is used in conditional expressions of
the form:

E1 ? E2 : E3

where El, E2, and E3 are expressions. El is evaluated, and if it is
nonzero, the result is the value of E2; otherwise, the result is the
value of E3. Only one of E2 and E3 is evaluated.

constant
A primary expression whose value does not change. A constant
may be literal or symbolic.

constant expression
An expression involving only constants. Constant expressions are
evaluated at compile time and may therefore be used wherever a
constant is valid.

conversion
The changing of a value from one data type to another. Conver­
sions take place in assignments by changing the type of the right
operand's result to that of the object referred to by the left oper­
and; that type is also the type of the assignment expression.
Conversions are also performed when arguments are passed to
functions: char and short become int; unsigned char and un­
signed short become unsigned int; float becomes double.
Conversions can also be forced by means of a cast. Conversions
are performed on operands in arithmetic expressions by the usual
arithmetic conversions.

data definition

370

The syntax that both declares the data type of an object and
reserves its storage. For variables that are internal to a function,
the data definition is the same as the declaration. For external
variables, the data definition is external to any function (an ex­
ternal data definition).

Appendix B

declaration
A statement that gives the characteristics (such as data type) of
one or more variables.

enumerated type
A type defined (with the enum keyword) to have an ordered set of
integer values. The integer values are associated with constant
identifiers named in the declaration. Although enum variables
are stored internally as integers, they should be used in programs
as if they had a distinct data type.

equality operator
One of the operators == (equal to) or != (not equal to). They are
analogous to the relational operators, but at the next lower level
of precedence.

exponentiation operator
The C language does not provide an exponentiation operator.

expression
A series of tokens that the compiler can use to produce a value.
Expressions have one or more operands and, usually, one or more
operators. (An identifier with no operator is an expression that
yields a value directly.) Operands are either identifiers (such as
variable names) or other expressions, which are sometimes called
subexpressions. See also operator.

external variable
A variable that is defined externally to any function. External
variables provide a means other than argument passing for ex­
changing data between the functions that comprise a C program.

floating type
One of the data types float or double, representing a single- or
double-precision floating-point number.

function
The primary unit from which C programs are constructed. A
function definition begins with a name and argument list, which
are followed by the declarations of the arguments (if any) and the
body of the function enclosed in braces ((l). The function body
consists of the declarations of any local variables and the set of
statements that perform its action. Functions need not return a
value to the caller. All C functions are external; that is, a function
may not contain another function. See also function call.

function call
A primary expression followed by parentheses. The parentheses
contain a (possibly empty) comma-separated list of expressions
that are the arguments to the function. Any previously unde­
clared identifier followed immediately by parentheses is contex­
tually declared as a function returning int. Any function may call
itself recursively.

C Glossary 371

fundamental type
The set of arithmetic data types plus pointers. In general, the
fundamental types in C comprise those data types that can be
represented naturally on a particular machine; usually, this
means integers and floating-point numbers of various machine­
dependent sizes, and machine addresses.

identifier
A sequence of letters and digits, the first 31 of which must be
unique. The underscore (_) and dollar sign ($) are letters in this
context. The first character of an identifier must be a letter.
Upper- and lowercase letters specify different identifiers in
VAX-11 C. Note, however, that all external names are converted
to uppercase to be consistent with VAX/VMS.

initializer
The part of a declaration that gives the initial value(s) for the
preceding declarator. An initializer consists of an equal sign (=)
followed by either a single expression or a comma-separated list
of one or more expressions in braces.

integral type
One of the data types char or int (all sizes, signed or unsigned).

keyword
A word (series of characters) that is reserved by the C language
and cannot be used as an identifier. Keywords identify state­
ments, storage classes, data types, and the like. Function names
are not C keywords; they may be redefined by the user.

literal
A constant whose value is written explicitly in the program.
Literals have type int or double, depending on their forms. Char­
acter constants have type int. Floating constants have type dou­
ble. Character-string constants have type "array of" char.

logical expression
An expression made up of two or more operands separated by
logical connectives. Each operand must be of a fundamental type
or must be a pointer or other address expression. Operands do not
have to be of the same type. Logical expressions always return 1
or 0 (type int) to indicate a true or false value, respectively.
Logical expressions are always evaluated from left to right, and
the evaluation stops as soon as the result is known.

logical operator
One of the binary operators && (logical AND) and (logical
OR).

372 Appendix B

lvalue
The abstract value that denotes the location of an object whose
contents can be assigned or modified. In this manual, the term is
used to describe a category in C grammar. An lvalue is required
on the left-hand side of an assignment operator (hence its name)
and as the operand of certain other operators, such as the incre­
ment (+ +) and decrement (--) operators. A variable name is an
example of an lvalue, since its address can be taken (with&), and
values can be assigned to it. A constant is an example of an
expression that is not an lvalue.

macro
A text substitution that is defined with the #define preprocessor
control line and includes a list of "parameters." The parameters
in the #define control line are replaced at compile time with the
corresponding arguments from a macro reference encountered in
the source text.

multiplicative operator
An operator that performs multiplication (*), division (/), or
modulo arithmetic (%). It performs the usual arithmetic conver­
sions on its operands. The mod operator(%) yields the remainder
of the division of the first operand by the second.

object
One of the basic elements that the language can
manipulate - that is, the elements to which operators can be
applied. In C, objects include data (such as integers, real num­
bers, or characters), data structures (arrays, structures, unions),
and functions.

operator
A token that performs an operation on one or more operands. In
order of precedence (high to low), operators are classified as the
primary-expression operators, unary operators, binary operators,
the conditional operator, assignment operators, and the comma
operator.

parameter
A variable declared in an external function definition, between
the function name and the body of the function. The parameter
receives a copy of the value of an associated argument when the
function is called. The items in parentheses in a macro definition
are also called parameters, although the semantics are different
from C function calls.

pointer
A variable that contains the address of another variable or func­
tion. A pointer is declared with the unary asterisk operator.

C Glossary 373

preprocessor control lines
Lines of text in a C source file that change the order or manner of
subsequent compilation. The control lines are #define (for macro
substitution and other token replacements), #undef (to cancel a
previous #define), #include (for inclusion of external source text),
#line (to specify a line number to the compiler), #module (to
specify a module name to the linker), and #if, #ifdef, #ifndef,
#else, and #endif (to conditionalize the compilation of the pro­
gram). In VAX-11 C, these control lines are processed by an early
phase of the compiler, not by a separate program.

primary expression
An expression that contains only a primary-expression operator,
or no operator. Primary expressions include previously declared
identifiers, constants, strings, function calls, subscripted expres­
sions, and references to structure or union members.

primary-expression operator
A C operator that qualifies a primary expression. The set of such
operators consists of paired brackets (to enclose a· single sub­
script), paired parentheses (to enclose an argument list or to
change the associativity of operators), a period (to qualify a struc­
ture or union name with the name of a member), and an arrow (to
qualify a structure or union member with a pointer or other ad­
dress-valued expression).

relational operator
One of the operators <, >, <=, or >=. The result (type int) is 1 or
0, indicating a true or false relation, respectively. The usual arith­
metic conversions are performed on the two operands. Relational
operators group from left to right.

scalar
A single object (as opposed to aggregate). See also object.

scope

374

The portion of a program in which a particular name has mean­
ing. The scope of names declared in external definitions extends
from the point of the definition's occurrence to the end of the
compilation unit in which it appears. The scope of the names of
function parameters is the function itself. The scope of names
declared in any block (that is, after the brace beginning any
compound statement) is restricted to that block. Names declared
in a block supersede any other declaration of the name, including
external definitions, for the extent of that block. struct, union,
typedef, and enum tags are identifiers that are subject to the
same scope rules as any identifiers. Member names in structure
or union references are not subject to the same scope rules (see
u,niqueness). The scope of a label is the entire function containing
the label.

Appendix B

shift operator
One of the binary operators < < or > >. Both operands must have
integral types. The value of El<<E2 is El (interpreted as a bit
pattern) left-shifted by E2 bits. The value of El> >E2 is El right­
shifted by E2 bits.

statement
The language elements that perform the action of a function.
Statements include expression statements (an expression fol­
lowed by a semicolon), null statements (the semicolon by itself),
compound statements (blocks), and an assortment of statements
identified by keywords (such as return, switch, do).

storage class
The attribute that, with its type, specifies C's interpretation of an
identifier. The storage class determines the location and lifetime
of an identifier's storage. Examples are static, external, and
auto.

string
(1) An array of type char.

(2) A constant consisting of a series of ASCII characters enclosed
in quotation marks. Such a constant is declared implicitly as an
array of char, initialized with the given characters, and termi­
nated by a NUL character (ASCII 0, C escape sequence \0).

structure
An aggregate type consisting of a sequence of named members.
Each member may have any type. A structure member may also
consist of a specified number of bits, called a field.

symbolic constant
An identifier assigned a constant value by a #define control line.
A symbolic constant may be used wherever a literal is valid.

tokens

type

The fundamental elements making up the text of a C program.
Tokens are identifiers, keywords, constants, strings, operators,
and other separators. White space (such as spaces, tabs, new­
lines, and comments) is ignored except where it is necessary to
separate tokens.

The attribute that, with its storage class, specifies C's interpreta­
tion of an identifier. The type determines the meaning of the
values found in the identifier's storage. Types include the integral
and floating types, pointers, enumerated types, and the derived
types array, function, structure, and union.

type name
In essence, the declaration of an object of a given type that omits
the name of the object. A type name is used as the operand of the
cast and sizeof operators.

C Glossary 375

unary operator
An operator that takes a single operand. In C, some unary opera­
tors can be either prefix or postfix. The set includes the asterisk
(indirection), ampersand (address of), minus (arithmetic unary
minus), exclamation (logical negation), tilde (r-1 one's comple­
ment), double plus (increment), double minus (decrement), cast
(force type conversion), and sizeof (yields size, in bytes, of its
operand).

union
An aggregate type. It can be considered a structure all of whose
members begin at offset 0 from the base and whose size is suffi­
cient to contain any of its members.

uniqueness
A property of the names used for certain structure and union
members. A name is unique if either of these conditions is true:

• The name is used only once.
• It is used in two or more different structures (or unions), but

each use denotes a member at the same offset from the base
and of the same data type.

The significance of uniqueness is that a unique member name can
be used to refer to a structure in which the member name was not
declared (although a warning message is issued).

usual arithmetic conversions
The set of rules that govern the conversion of operands in arith­
metic expressions. The rules are applied in the following order:

1. Any operands of type char or short are converted to int,
and any of type float are converted to double.

2. Then, if either operand is double, the other is converted to
double, and that is the type of the result.

3. Otherwise, if either operand is unsigned, the other is con­
verted to unsigned and that is the type of the result.

4. Otherwise, both operands must be int, and that is the type
of the result.

variable
An identifier used as the name of an object.

376 Appendix B

Appendix C

VAX-11 C Compiler Messages

This appendix lists the VAX-11 C compiler diagnostic messages alpha­
betically. For each message, the appendix gives the mnemonic, the
message text, an explanation of the message, and suggested actions to
be taken to avoid the message. Chapter 14 gives information on the
format of compiler messages.

You can also obtain the compiler diagnostic messages online. Type:

$HELP ERROR CC 1rine1r1onic !BITi

To receive a list of all the mnemonics, type:

$ HELP ERROR CC ~

Some messages substitute information from the program in the mes­
sage text. In this appendix, the portion of the text to be substituted is
shown as "****"or****. If quotes appear around the asterisks, quotes
appear in the substituted message.

ANACHRONISM, The "****" operator is an obsolete form, and may
not be portable.

Warning. You have used an old-style operator such as=+ or=*.
The message is issued only if the /STANDARD=PORTABLE
qualifier is specified in the CC command line.

User Action. For the program to be portable, you should reverse
the order of the parts of the operator. For example,=+ should be
+= and =* should be *=· The old-style operators are supported by
V AX-11 C, but they may not be supported by other C compilers.

ARGLIST, The VAX architecture does not allow argument lists to be
more than 255 longwords (ints) in length. The arguments
beyond this limit have been ignored.

Warning. You have called a function with too long an argument
list.

User Action. To avoid this message and unpredictable results,
rewrite the function definition and function call with a shorter
argument list.

377

ARGNOTPORT, Passing a structure by value is not portable.

Warning. This message occurs when a structure is passed by
value in a function call, or when a function parameter is declared
as a structure, and when the /STANDARD=PORTABLE option
is used in the CC command line.

User Action. If the program must be portable, pass the structure,
by reference, as a pointer to the structure.

ARGOVERFLOW, Length of macro argument list exceeds buffer ca­
pacity; overflowing argument(s) considered to be
null.

Warning. The total length of the arguments in a macro reference
exceeds the compiler's capacity to store the arguments prior to
substitution.

User Action. To avoid this message and unpredictable results,
shorten one or more arguments.

ASNDATTYPE, Target of assignment operator is noncomputational
data type.

Error. You have specified, as the left-hand operand of an assign­
ment operator, an expression that is not valid for assignment. For
example, you have tried to assign something to an array or func­
tion.

User Action. Correct the statement. The assignment target must
be a scalar variable (including a scalar array element or structure
member), structure, union, or dereferenced pointer.

ASNREADONLY, Target of assignment operator is read-only.

Error. You have attempted to assign a value to a read-only ob­
ject. Such objects include literal constants, enumerated con­
stants, and variables declared with the storage class readonly.

User Action. If you specified a constant, replace it with a valid
assignment target. If you specified a readonly variable, remove
the readonly keyword from its definition.

BADAUTOINIT, The automatic initialization for"****" is not valid. It

378

has been ignored.

Warning. Automatic character arrays cannot be initialized with
string constants. This is a temporary restriction.

User Action. Initialize the array with an explicit list of charac­
ters, or copy the string to the array using the strcpy function.

Appendix C

BADCODE, Invalid code generation sequence.

Fatal. An internal compiler error occurred.

User Action. Gather as much information as you can about the
conditions in effect when the error occurred, and submit an SPR.

BADCONDEXPR, The nonpointer operand of a conditional expression
must be the integer constant 0.

Error. Conditional expression operands involving pointers must
consist of either one or two pointers and the integer constant 0.
For example:

The float constant 1.2 is not allowed.

User Action. To avoid this message, replace the invalid operand
with an expression of the correct type (pointer or 0).

BADIFEVAL, **** while evaluating #if expression; "true" expression
assumed.

Warning. The substitute text is "Stack overflow", or "Divide by
zero". The expression was taken to be true.

User Action. Reevaluate the line and make the appropriate cor­
rections.

BADMODULE, Redundant #module control line; line ignored.

Warning. You specified more than one #module control line in a
single compilation; the excess line or lines were ignored.

User Action. To avoid this message correct the lines.

BADPARDCL, "****"is not a named formal parameter in the defined
function. It has been declared as auto.

Warning. You declared the specified identifier as a function pa­
rameter, and the identifier does not appear in the parameter list.
For example:

f(a) int a.b; {,. ,}

The identifier b was declared as an auto variable in the defined
function.

User Action. The identifier's declaration is nonportable and is
possibly a programming error. To avoid this message and unpre­
dictable results, correct the declaration or function definition.

VAX-11 C Compiler Messages 379

BADPSECT, The program section (psect) specified by this statement
has conflicting READONLY attributes with another def­
inition of the same program section.

Warning. You have specified two or more references to the same
program section, and they do not agree with the program sec­
tion's attributes. For example, this message can appear when two
globaldef definitions appear for the same name, but only one
specifies the storage class readonly.
User Action. To avoid this message and unpredictable results,
make all references to a program section consistent.

BADSUBV AL, Array subscripts must be specified for subscripts other
than the first.

Warning. You omitted too many subscripts from an array decla­
ration. A subscript (the number of elements) can be omitted if
there is only one dimension. If there is more than one dimension,
only the first (leftmost) pair of brackets in the declaration can be
empty. This applies equally to declarations of array parameters
and extern declarations of arrays.

User Action. To avoid this message and unpredictable results,
correct the declaration, specifying a size for every dimension after
the first.

BADUNARY, The operand of a **** operator was noncomputational.

Error. You specified an expression of an illegal type with a unary
operator, such as ++function-call or --union.

User Action. Replace the operand with an expression valid for
the illustrated operator.

BADVINIT, 11 **** 11 is a value. It may be initialized only with a con-
stant expression.

Warning. You attempted to initialize a globalvalue with a non­
constant initializer.

User Action. To avoid this message and unpredictable results,
correct the initializer.

BINNONCOMPUT, The **** operand of a "****" operator is noncom-

380

putational.

Error. Either the left or right operand of the illustrated operator
is an illegal data type, as in function-name+2.

User Action. Specify an expression that is valid for use with the
operator.

Appendix C

BUGCHECK, Compiler bug check during ****. Submit an SPR with a
problem description.

Fatal. An internal error occurred during the specified phase of
compilation.

User Action. Gather as much information as possible about the
conditions under which the error occurred, including the phase of
compilation, and submit an SPR.

CASECONSTANT, Case label value is not a constant expression.

Error. You specified a value in a case label that was not a con­
stant.

User Action. Replace the case value with a valid constant ex­
pression.

CASERANGE, Case label value **** is not a 16-bit integer.

Error. You specified a value in a case label that is not expressi­
ble in 16 bits.

User Action. Correct the case label so that it is expressible in 16
bits.

CMPLXINIT, "****" is too complex to initialize.

Warning. The depth of the indicated aggregate variable exceeds
the limit of 32 levels.

User Action. To avoid this message and unpredictable results,
simplify or correct the initializer list or declaration. Otherwise,
initialize the variable with explicit assignments.

COMPILERR, Previous errors prevent continued compilation. Please
correct reported errors and recompile.

Fatal. The compiler has detected too many errors to continue.

User Action. Correct the errors reported in the compiler mes­
sages previous to this one.

CONDEXPRPTR, The second and third operands of a conditional ex­
pression, if pointers, must be pointers to objects of
the same type (size).

Error. The two operands must be pointers to the same data type
because the result of such a conditional expression is an object of
the common type.

User Action. Correct the operands accordingly.

VAX-11 C Compiler Messages 381

CONFLICTDECL, This declaration of"****" conflicts with a previous
declaration of the same name.

Warning. A name has been redeclared, and the data types and/or
organizations are different. Any reference to the name resolves to
the most recent declaration, according to the scope rules.

User Action. The purpose of this message is to call a possible
programming error to your attention.

DEFTOOLONG, Text in #define control line is too long; line ignored.

Warning. The total number of symbols in the #define line ex­
ceeds the implementation's limit.

User Action. To avoid this message and unpredictable results,
shorten or otherwise simplify the line.

DIVIDEZERO, Constant expression includes divide by zero; the result
has been replaced with 0.

Warning. A division by zero was encountered in a constant ex­
pression. The expression was replaced by 0.

User Action. Check your constant expressions and correct the
one that is causing the error.

DUPCASE, Case label value **** is a duplicate.

Error. You have specified more than one case for the indicated
value in a switch statement. The cases must be unique.

User Action. Change the case labels and/or combine the cases,
as appropriate.

DUPLDEF, Duplicate definition of 11 **** 11 •

Warning. The named definition appears more than once in the
program. The two definitions are essentially the same. Both defi­
nitions specify the same data types and organizations, but there
may be differences in the values, initializers, or array bounds. If
the name is a function, there may be a difference in the number
or types of parameters, or in the contents of the function body.

User Action. The purpose of this message is to call a possible
programming error to your attention.

DUPDEFAULT, Duplicate default label in switch statement.

382

Error. You specified more than one default case in the same
switch statement.

User Action. Combine the cases or make other changes necessary
to eliminate the duplicate(s).

Appendix C

DUPLICATE, Duplicate label 11 **** 11 •

Error. You have specified duplicates of the indicated label in the
same function. Label identifiers must be unique within a function
definition.

User Action. Rewrite the labels (and goto statements that refer
to them) to eliminate the duplicates.

DUPLPARM, Duplicate macro parameter 11 **** 11 ignored.

Warning. The indicated macro parameter occurred more than
once in the #define line's parameter list. All instances of it after
the first were ignored.

User Action. To avoid this message and unpredictable results,
correct the line.

ENUMOP, Mismatched enum type in "****" operation.

Warning. The indicated operation combines an enum variable or
value with a value of a nonmatching type.

User Action. To avoid this message and unpredictable results,
use a cast operation to cast either the enum value or the other
value to a matching type.

ERRORSUM, Completed with severe errors.

Fatal. The compilation is complete, but there were too many
errors to produce an object file.

User Action. Correct the errors reported in the previous compiler
messages.

EXTRAARGS, Too many arguments specified for a function reference.
Only the first 253 will be passed.

Warning. You have called a function with more than 253 argu­
ments.

User Action. To avoid this message and unpredictable results,
shorten the argument list.

EXTRACOMMA, Extraneous comma in macro parameter list ignored.

Warning. The #define macro definition on this line has extra
commas that were ignored.

User Action. To avoid this message and unpredictable results,
correct the line.

EXTRATEXT, Extraneous text in preprocessor control line ignored.

Warning. Extraneous text appears in the control line, as in

#endif ABC

User Action. To avoid this message, correct the line.

VAX-11 C Compiler Messages 383

FATALSYNTAX, Fatal syntax error.

Fatal. The compiler cannot continue due to syntax errors.

User Action. Correct the error in the indicated line and/or errors
reported in previous compiler messages.

FIELDBADSIZE, "****" is an invalid field declaration. Fields may be
up to 32 bits in length. Size of 32 bits assumed.

Warning. The indicated field declaration is invalid because it
specifies too large a size.

User Action. To avoid this message and unpredictable results,
correct the declaration to specify either a single, smaller field or
several contiguous fields. Note, however, that field alignments
are nonportable.

FIELDBADTYPE, "****" is an invalid field declaration. Fields must
be declared as integers (signed or unsigned) or
enum. The data type int has been assumed.

Warning. You have declared a field with an invalid data type.
Fields must be declared (and manipulated) as integers or enu­
merated types.

User Action. To avoid this message and unpredictable results,
correct the declaration to specify a valid data type.

FILEUNOPEN, Unable to open the **** file.

Fatal. The compiler cannot continue because of the failure to
open the indicated file.

User Action. Be sure that the file exists if it is an input file, or
change the file specification in the program to that of an existing
file.

FNDUPLPARM, Duplicate function formal parameter 11 **** 11 ignored.

Warning. The stated function parameter occurred more than
once in the function's formal parameter list, as in

functCatbtCta) {}

All occurrences of the parameter after the first were ignored.

User Action. To avoid this message and unpredictable results,
correct the line.

FNPARMREDECL, Function formal parameter"****" has been rede­
clared.

384

Warning. Your source program contains a redeclaration of one of
the function's formal parameters, as in:

f(a) { int a; }

Appendix C

User Action. Verify that this is what you want to do. If it is not,
correct the declaration(s).

FUNCBADECL, "****" is not properly declared. The function attrib-
ute will be ignored.

Warning. You have used the "function attribute" in an illegal
manner in the definition of the indicated object; for example, you
have declared an array of functions instead of an array of pointers
to functions. The function attribute was dropped.

User Action. Check the definition carefully to be sure that it is
logical and is what you intended. In general, you should correct
definitions that raise this warning.

IFNOMACSUB, Macro substitution cannot be performed during the
scan of a macro reference; "****" not substituted;
"true" expression assumed.

Warning. You have written a complex macro reference with an
#if control line and another macro reference, as in:

1nac ref (aral'
*lif SUBST

1ara2)

where SUBST has a substitution defined in a previous #define
line. The substitution (here, for SUBST) was not performed, and
the truth value of the control line was assumed to be true.

User Action. To avoid this message and unpredictable results,
replace the reference to the macro in the #if expression with its
actual value, or restructure the #if construct so that it is not
within the complex macro reference.

IFSYNTAX, Syntax error in #if expression; true expression assumed.

Warning. The #if expression on the indicated line cannot be
evaluated because of syntax errors; it is assumed to be true.

User Action. To avoid this message and unpredictable results,
correct the line.

INCDECTAR, The operand of a **** operator is not an lvalue.

Error. You have specified an invalid operand with the -- or ++
operator. The operand must be an lvalue, such as a variable
reference or a dereferenced pointer.

User Action. Replace the operand with an !value.

VAX-11 C Compiler Messages 385

INCMODNOTPORT, #include of a library module is not portable.

Warning. The specification of a library module name in an #in­
clude preprocessor control line is a VAX-11 C extension and is
not portable. This message is issued only if the
/STANDARD=PORTABLE qualifier is specified on the CC com­
mand line.

User Action. No action is necessary if you do not require com­
patibility with other C compilers.

INCNESTLVL, Include files may only be nested 4 levels.

Fatal. You have specified a tree of #include files or modules that
are too deeply nested. The implementation limit is four.

User Action. If you need all the text you specified in the #in­
clude lines, explicitly include some of it in the source file.

INCOMDT, **** is an invalid data type in this declaration. All but the
first data type ignored.

Warning. You specified the indicated data type keyword in a
declaration or definition that already had one, as in float int. The
resulting type in this example is float.

User Action. Check carefully to see which type the object should
have, and remove all the extraneous keywords.

INCOMSC, **** is an invalid storage class in this declaration. Only
the first storage class is used.

Warning. The indicated storage class keyword appears in a dec­
laration that already has one, as in auto register. Only the first
one (here, auto) is used.

User Action. To avoid this message and unpredictable results,
correct the declaration.

INCPTRSUB, Inconsistent pointer subtraction; two pointers may be
subtracted only if they point to equivalent-sized ob­
jects.

Error. You subtracted two pointers that do not point to the same
data type or to objects of equal size. The subtraction is an invalid
operation.

User Action. Change or cast the operands to point to equal-sized
objects.

INITBIT, "****" is a field. Static fields may be initialized only with
constants.

386

Warning. You have initialized the indicated structure field with
a variable.

Appendix C

User Action. The field may not be properly initialized. To avoid
this message and unpredictable results, specify a constant initial­
izer.

INV ADDR, Invalid "address of" operand.

Error. You have used the "address of" (&) operator with an
invalid operand. The operand must be an lvalue, such as the
name of a variable, and it must not be a reference to a bit field.

User Action. Correct the operand.

INVAGGASN, Invalid aggregate assignment; union= union and struc­
ture = structure are valid if the source and the target
are of equal size.

Error. You have attempted to assign an array to another array or
to assign structures or unions of different sizes.

User Action. Correct the assignment.

INVALIDIF, "****" is not a valid constant or operator in an #if expres-
sion; "true" expression assumed.

Warning. You have used an invalid construction in an #if expres­
sion, which is assumed to be true.

User Action. To avoid this message and unpredictable results,
correct the line.

INVALINIT, The initialization of"****" is not valid.

Warning. Th.e indicated object cannot be initialized as specified.
Some objects may not be initialized at all, such as functions,
unions, and extern or globalref objects. In other cases, the ini­
tializer may not be appropriate, for example, a static pointer
cannot be initialized with the address of an automatic variable.
This and any subsequent initializers for the same object have
been ignored.

User Action. To avoid this message and unpredictable results,
eliminate or correct the initializer, or correct the type or storage
class of the target object, or initialize the object with an explicit
assignment.

INV ARRAY, "****" is an improperly declared array.

Warning. You have improperly declared an array, such as an
array of functions.

User Action. The declared object is probably not what you
wanted. To avoid this message and unpredictable results, correct
the declaration.

VAX-11 C Compiler Messages 387

INVBITARR, Fields cannot be subscripted.

Warning. You have specified subscripts in the declaration of a
field. There cannot be arrays of fields.

User Action. To avoid this message and unpredictable results,
correct the declaration.

INv'BREAK, break statement used in an invalid context. break is
valid only in for, while, do, and switch statements.

Error. You have used break outside the body of any of the indi­
cated statements.

User Action. Remove the offending break.

INVCMDVAL, "****" is an invalid command qualifier value.

Warning. The indicated CC command qualifier value was ac­
ceptable to the VAXNMS command interpreter (CLI), but it is
meaningless to VAX-11 C; for example, LIST_OPTS is an in­
valid value for /SHOW, although it is accepted by the CLI.

User Action. Correct the qualifier value.

INVCONST, "****" is an invalid numeric constant.

Warning. The indicated constant has illegal characters or is oth­
erwise invalid.

User Action. To avoid this message and unpredictable results,
correct the constant.

INVCONTINUE, continue statement used in an invalid context. con-
tinue is valid only in for, while, and do statements.

Error. You have used the continue statement outside the body of
any of the listed statements.

User Action. Remove the offending continue.

INVCONVERT, The source or target of a conversion is noncomputa-
tional.

Error. One of the operands in the indicated line cannot be con­
verted as specified. For example, you have attempted to cast
some object to a structure.

User Action. Correct the operation.

INVDEFNAME, Missing or invalid name m **** control line; line
ignored.

388

Warning. The indicated control line is missing a required name,
as in:

#define

The entire line was ignored.

User Action. To avoid this message, correct or remove the line.

Appendix C

INVFILESPEC, Missing or invalid file specification in #include con-
trol line; line ignored.

Warning. The #include line either is missing a file or module
name or specifies one that is syntactically invalid. The line was
ignored.

User Action. To avoid this message and unpredictable results,
correct the line.

INVFOPT, Invalid function definition option ignored.

Warning. You have specified a function definition option that is
not supported. The only valid option is main_program.

User Action. To avoid this message, correct the line.

INVHEXCON, Hexadecimal constant contains an invalid character.

Error. You have specified an invalid hexadecimal constant, such
as OxG.

User Action. Correct the constant.

INVIFNAME, Missing or invalid name in #ifdef or #ifndef control line;
"true" assumed.

Warning. You have specified no name, or a syntactically invalid
one, in the control line; the result of the test is assumed to be
true.

User Action. To avoid this message and unpredictable results,
correct the line.

INVLINEFILE, Invalid file specification in #line preprocessor control
line; line ignored.

Warning. The file specification is syntactically invalid, and the
control line was ignored.

User Action. To avoid this message and unpredictable results,
correct the line.

INVLINELINE, Missing or invalid line number in #line preprocessor
control line; line ignored.

Warning. The line number is missing or is syntactically invalid,
and the control line was ignored.

User Action. To avoid this message and unpredictable results,
correct the line.

INVMODIDENT, Invalid ident in #module preprocessor control line;
line ignored.

Warning. The ident specified in the control line either is not a
valid identifier or is not a valid character-string constant.

VAX-11 C Compiler Messages 389

User Action. To avoid this message and unpredictable results,
correct the line.

INVMODTITLE, Missing or invalid title specification in #module
preprocessor control line; line ignored.

Warning. The required title in the control line either is missing
or is not a valid identifier.

User Action. To avoid this message and unpredictable results,
correct the line.

INVOCTLCHAR, Invalid octal character value; high-order bits trun-
cated.

Warning. The octal value in an escape sequence is too large, as in
'\477'. Its high-order bits are truncated.

User Action. To avoid this message and unpredictable results,
correct the constant.

INVPPKEYWORD, Missing or invalid keyword in preprocessor control
line; line ignored.

Warning. You have written a control line with no keyword, as in:

ABC

The line was ignored.

User Action. To avoid this message and unpredictable results,
correct the line.

INVPTRADD, Invalid pointer addition; the only valid form of pointer
addition is "pointer +[=] integer".

Error.

User Action. Correct the operation.

INVPTROPER, Invalid pointer arithmetic; the only math operations
defined for pointers are addition and subtraction.

Error.

User Action. Correct the operation.

INVPTRSUB, Invalid pointer subtraction; the only valid forms of
pointer subtraction are "pointer - pointer" or "pointer
-[=] integer".

Error.

User Action. Correct the operation.

INVQUAL, One of the command qualifiers is meaningless.

390

Warning. One (or more) of the CC command qualifiers is mean­
ingless to V AX-11 C, although grammatically acceptable to the
V AXNMS command interpreter (CLI).

Appendix C

User Action. To avoid this message and unpredictable results,
correct the qualifier's name.

INVSUBS, Invalid subscript value. Subscripts must be int or un­
signed. Subscripts in array declarations or casts must also
be constants.

Error. You have written an invalid subscript in an array refer­
ence or declaration, or in a cast. Subscripts used in array declara­
tions and casts must be integer constants. For example, you have
put a decimal point on the constant subscript, making its type
double.

User Action. Correct the subscript.

LIBERROR, Error while reading library 11 **** 11 •

Fatal. The compiler cannot read the indicated library. Either it
is not a text library, or its format has been corrupted.

User Action. Verify the spelling of the library's name, and verify
that it is a valid VAX/VMS text library.

LIBLOOKUP, 11 **** 11 was not found in any of the specified libraries.

Fatal. The compiler failed to locate the indicated #include mod­
ule in any of the specified or default libraries.

User Action. Check the CC command line to verify that the
library containing the module was specified and that the module
name, if specified, was spelled correctly. If the library was a de­
fault library, verify (with SHOW TRANSLATION C$LIBRARY)
that its name is the equivalent for C$LIBRARY.

MACDEFINREF, A macro cannot be **** during the scan of a refer-
ence to the macro; line ignored.

Warning. You have tried to redefine or undefine a macro within a
reference to it. The line was ignored.

User Action. To avoid this message and unpredictable results,
correct the lii1e.

MACNONTERMCHAR, Nonterminated character constant in macro
argument; apostrophe added at end of line.

Warning.

User Action. To avoid this message and unpredictable results,
correct the line.

MACREQARGS, Macro reference requires an argument list; 11 **** 11 not
substituted.

Error. You have written a macro reference without an argument
list. The reference was deleted from the source file.

VAX-11 C Compiler Messages 391

User Action. Correct the reference, specifying the same number
of arguments as in the definition of the macro.

MACSYNT AX, Syntax error in macro definition; line ignored.

Warning.

User Action. Correct the error and recompile.

MACUNEXPEOF, Unexpected end-of-file encpuntered in a macro ref-
erence; "****" not substituted.

Error. The end-of-file was encountered during a macro reference;
the reference was deleted.

User Action. Correct the error and recompile.

MAXMACNEST, Maximum text replacement nesting level exceeded;
"****" not substituted.

Error. You have specified a macro reference which is recursive or
otherwise causes repeated substitutions to a depth greater than
the implementation maximum of 64.

User Action. Correct the recursion or simplify the definitions.

MISPARENS, Mismatched parentheses in #if expression; "true" ex-
pression assumed.

Warning.

User Action. To avoid this message and unpredictable results,
correct the line.

MISSEDIT, Misplaced parentheses in function definition.

Error. The parentheses are either missing or misplaced in the
function definition, as in:

double f { function-statement }

In the example, the function name f must be followed by a pair of
parentheses, even if the function takes no parameters.

User Action. Correct the function definition.

MISSENDIF, Missing #endif preprocessor control line(s).

Error. The compiler did not encounter an #endifline for the most
recent #if, #ifdef, or #ifndef.

User Action. Be sure that the control lines are properly struc­
tured, and add the missing #endif if appropriate.

MISSEXP, Missing or invalid exponent in float constant; zero expo-

392

nent (' eO ') assumed.

Warning. You have written a floating-point constant with the
letter 'e' or 'E' but with no exponent or an invalid exponent.
The exponent is assumed to be zero.

Appendix C

User Action. To avoid this message and unpredictable results,
correct the constant.

MODNOMACSUB, Macro substitution cannot be performed during
the scan of a macro reference; 11 **** 11 not substi­
tuted; line ignored.

Warning. You have written a complex macro reference that in­
cludes a #module line containing a macro reference, as in:

111acref (ars1'
#1!1odule SUBST

.ara2)

where SUBST has a substitution defined in a previous #define
line. The substitution (here, for SUBST) was not performed, and
the #module line was ignored.

User Action. To avoid this message and unpredictable results,
replace the macro reference in the #module line with its actual
value, or move the #module line to a position outside the complex
macro reference.

MODNOTPORT, The #module preprocessor control line is not porta-
ble. ·

Warning. You have used the #module line correctly, but you are
warned that it is unique to VAX-11 C and not portable.

User Action. This message occurs when the
/STANDARD=PORTABLE option is used in the CC command
line.

MODZERO, Constant expression includes mod zero; the result has
been replaced with 0.

Warning. The constant expression has an invalid mod expres­
sion, such as 5 % 0. The result is zero.

User Action. Correct the expression (but note that its operands
must not be floating-point).

NAMETOOLONG, Identifier name exceeds 31 characters; truncated
to "****".

Warning.

User Action. To avoid this message, shorten the indicated identi­
fier.

NESTEDCOMMENT, Nested comment encountered.

Warning. You have included one comment inside another, as in
I* I* comment *I */.

VAX-11 C Compiler Messages 393

User Action. Check that you have not misplaced a comment
delimiter and inadvertently "commented out" necessary code.

NOBJECT, No object file produced.

Informational. The compiler did not produce an object file, due
to conditions reported_ in previous messages.

User Action. Make the corrections suggested by the other mes­
sage(s).

NOCLI, This compiler can be run only from VMS DCL.

Fatal.

User Action. Recompile the program, using the CC command
only with the standard command language, DCL.

NOFLOATOP, The**** operand of an**** operator may not be float­
ing point. The operand has been converted to an inte­
ger.

Warning. The left or right operand of the indicated binary opera­
tor, or the operand of the indicated unary operator, cannot be of
type float or double. It was coerced to int.

User Action. To avoid this message and unpredictable results,
change or cast the operand to an integral type.

NOFLOATSTATE, A floating-point value has been used incorrectly in
a **** statement; it has been converted to int.

Warning. A floating-point value is not valid as used in the indi­
cated statement. It was coerced to int.

User Action. To avoid this message and unpredictable results,
change or cast the operand to an integral type.

NOFORMALS, The declaration/definition of "****" specifies one or
more function formal parameters which have been ig­
nored.

394

Warning. You have included a function's formal parameters in a
function declaration or definition. For example, the following
function declaration is not allowed because it names the func­
tion's parameters:

int funct(a,b.c)i

The parameters a, b, and c are ignored.

Similarly, the following example defines a function returning a
pointer to a function returning an integer. The names of the
parameters of the function returning an integer are not allowed:

(*f (pi tP2)) (qi ici2)

int Pit P2;
{ 'i + t }

Appendix C

User Action. To avoid this message, remove the parameters, as
m:

int fu.nct();

and

(*f(pl tP2)) ()

NOLABEL, Label "****" undefined in this function.

Error. You have written "goto label-name" for an undefined la­
bel. The scope of a label name is restricted to the function in
which it is used as a label, and goto statements cannot branch to
labels inside other functions.

User Action. If appropriate, define the appropriate label name
by labeling a statement in the same function as the goto.

NOLISTING, No listing file produced.

Informational. The compiler did not create a listing file, usually
due to previously reported errors.

User Action. None.

NONOCTALDIGIT, Octal escape sequence in a character or string
constant terminated by nonoctal digit.

Warning. There is an 8 or 9 in the second or third position of an
octal escape sequence. In this case, the digits preceding the non­
octal digit are evaluated, and the 8 or 9 is considered a separate
character.

User Action. This message is issued only if the
/STANDARD=PORTABLE option is used in the CC command
line. Make sure that the compiler has resolved the ambiguity
correctly.

NONOCTALESC, Escape sequence in a character or string constant
starts with a nonoctal digit.

Warning. The first of three digits of an escape sequence is an 8 or
9. In this case, the backslash is ignored, and the 8 or 9 is treated
as a character.

User Action. This message is issued only if the
/STANDARD=PORTABLE option is used in the CC command
line. Make sure that the compiler has resolved the ambiguity
correctly.

NONPORADDR, Ampersand with constant is not a portable opera-
tion.

Warning. You have used an ampersand operator with a constant
in the argument list of a function call. VAX-11 C permits this
special case, but you are warned that the use of the ampersand on
anything but !values is not portable.

VAX-11 C Compiler Messages 395

User Action. You can suppress the message with the CC com­
mand qualifier /STANDARD=NOPORTABLE, which is the de­
fault.

NONPORTCONST, **** is a nonportable character constant.

Warning. V AX-11 C allows up to four characters to be specified
in a character constant; constants of more than one character,
however, are not portable.

User Action. You can suppress the message with the CC com­
mand qualifier /STANDARD=NOPORTABLE, which is the de­
fault.

NONPORTSC, **** is a nonportable storage class specifier.

Warning. This message is issued for the use of globalref, global­
def, globalvalue, and readonly storage class specifiers when the
/STANDARD=PORTABLE option is used in the CC command
line.

User Action. No action is required if the program need not be
compatible with other C compilers. You can avoid this message
by not specifying /STANDARD=PORTABLE.

NONSEQUITUR, "****" is not a member of the specified structure or
union.

Warning. You have used a member name in a reference to a
structure or union in which it was not declared. The reference was
valid, because the member name is unique and refers unambigu­
ously to a location in the referenced structure. This use of mem­
ber names is maintained only for compatibility with older pro­
grams.

User Action. Declare the member name properly or use the
/NOW ARN option in the command line to suppress this message.

NONTERMCHAR, Nonterminated character constant; **** assumed.

Warning. The end of a source line was encountered before the
end of a character constant (') was encountered. The indicated
value was assumed.

User Action. To avoid this message and unpredictable results,
correct the line.

NONTERMNULCHAR, Nonterminated character constant contains
no characters; '\O' assumed.

396

Warning.

User Action. To avoid this message and unpredictable results,
correct the constant.

Appendix C

NONTERMSTR, Nonterminated string constant; quotes added at end
of line.

Warning.

User Action. To avoid this message and unpredictable results,
correct the constant.

NOOPTIMIZATION, Complex control flow caused optimization to be
suppressed for procedure or function "****".

Informational. Optimization was not performed for the indi­
cated function.

User Action. None.

NOSTRDEF, "****" is a structure or union type that is not fully de­
fined at this point in the compilation.

Warning. You have used a structure or union tag at a point
where its associated type is undefined, as in:

struct a a_1.iar;

struct a
{

int i ;

float fj
} ;

User Action. This usage is permitted, but not recommended. To
suppress the message, you must fully define a structure or union
before you refer to its tag.

NOTDECL, "****" is not declared within the scope of this usage.

Error. You have referred to an undeclared variable. All C varia­
bles must be declared explicitly; there are no defaults.

User Action. Add an appropriate declaration for the referenced
object.

NOTENUM, "****" is not an enum tag in this context.

Warning. You have used an enum tag before the associated type
has been fully enumerated, as in:

enu11i color cl;

enum color { redo Yellow }j

User Action. This usage is permitted, but not recommended. To
avoid the message, you must fully enumerate a type before you
use its tag.

VAX-11 C Compiler Messages 397

NOTFUNC, Function-valued expression not found.

Error. An identifier is followed by parentheses, but is neither a
function name nor a dereferenced pointer to a function (*fp).

User Action. Correct the expression.

NOTINTV AL, An integer value was not found where expected.

Error. An integer value was not used where required.

User Action. Check the indicated line carefully for missing array
subscripts or for other references that require integer values.

NOTLV ALUE, The target of a **** operator is not an lvalue.

Error. The indicated operator, such as= (assignment) or & (ad­
dress of), requires an lvalue for its operand, that is, an expression
that could appear as the left operand in an assignment.

User Action. Replace the operand with a valid lvalue.

NOTPTRV AL, Address-valued expression not found.

Error. The indicated line requires a unary address (*) operator
with a nonpointer operand, or a nonpointer to the left of an arrow
(->)operator.

User Action. Correct the indicated line.

NOTSWITCH, Default labels and case labels valid only in switch
statements.

Error. You have used case or default as a label outside the body
of a switch statement.

User Action. Change the offending label(s).

NOTUNIQUE, "****" is not a unique member name in this context.

Error. The name of a structure or union member was used in
more than one structure or union, refers to different locations in
its defining structures, and was used to refer to a structure in
which it was not defined. Thus, the name refers ambiguously to a
place in the referenced structure.

User Action. Refer to a structure or union only with a member
name declared in it.

NOWORK, No source file found in command line.

398

Fatal. You specified a CC command without a source file.

User Action. Recompile.

Appendix C

NULCHARCON, Character constant contains no characters; '\O' as-
sumed.

Warning. You have used "for an ASCII NUL character instead
of '\0'.

User Action. This usage is permitted but unconventional. Use
'\0'.

NULHEXCON, Hexadecimal constant contains no digits; OXO as-
sumed.

Warning. You have specified a constant such as OX or Ox.

User Action. Be sure that 0 is a valid value in this context; if so,
change the constant to OxO.

PARMNOTUSED, Macro parameter 11 **** 11 is not referenced in the
definition.

Warning. A macro definition has more parameters than appear
in its substitution, as in:

User Action. This is a possible programming error. Specify the
extra parameter in the substitution or, if it is actually superflu­
ous, delete it from the parameter list.

PPUNEXPEOF, Unexpected end-of-file encountered in preprocessor
control line; line ignored.

Warning.

User Action. Examine the file to see whether the control line is
necessary; if so, correct the error and recompile.

PTRASSIGN, Assignment to/from pointers and integers is nonport-
able.

Warning. You have assigned an integer to a pointer or an address
to an integer variable. This message is issued only if
/STANDARD=PORTABLE was specified.

User Action. This usage is not portable and is not recommended.
The only portable assignment is pointer= 0. Change the operands
or cast them to the same type.

PTRCOMPARE, Pointer comparison with nonzero integer constant or
integer is a nonportable construct.

Warning. You have compared a pointer's value with something
besides the constant 0. This message is issued only if
/STANDARD=PORTABLE was specified.'

User Action. This usage is not portable and is not recommended.
The only portable comparison is of a pointer variable with 0.
Otherwise, avoid the message by changing the operands or cast­
ing them to the same type.

VAX-11 C Compiler Messages 399

PTRFLOATCVT, The operand of a pointer addition or subtraction
operator was forced from floating-point to integer.

Warning. You have combined a pointer operand with a floating­
point value, as in:

i=ip+z.;

User Action. To avoid the message, be sure that pointers are
used only with other pointers or with integers; in the above exam­
ple and in similar situations, remove the decimal point from the
literal constant.

REPOVERFLOW, Length of replacement text exceeds maximum
buffer capacity; "****" not substituted.

Error. The length of the replacement text for a macro reference
or the length of the text plus the rest of the line exceeds the
implementation's limit.

User Action. Shorten the replacement text or use multiple sub­
stitutions to achieve the desired result.

SEMICOLONADDED, Semicolon added at the end of the previous
source line.

Warning. A missing semicolon was added to the line prior to the
line numbered in this message.

User Action. Check the previous line carefully and add the semi­
colon in the appropriate place.

SYMTABOVFL, The total number of symbol table pages exceeds the
implementation's limit.

Fatal. The program is too complex.

User Action. Simplify the program by reducing the number and
size of variables and other names, constants, and so forth.

SYNTAXERROR, ********
SYNTAXERROR2, ********
SYNTAXERROR3, ********
SYNTAXERROR4, ********

400

Error. The illustrated syntax error prevents the generation of an
object file. (There are no important differences between the con­
ditions causing the various forms of the message.)

User Action. Correct the errors shown.

Appendix C

TBLOVRFLW, Internal table overflow, too many procedures, external
symbols (psects), or the program is too complex.

Fatal. Either the source file contains too many functions or ex­
pressions, or the compiler has overflowed its virtual address
space.

User Action. Reduce the size of the source file by dividing it into
smaller, separately compilable files, or change the logic of the
program to reduce the number of complicated expressions.

TOOFEWARGS, Argument list for macro "****" contains too few ar-
guments; missing arguments assumed to be null.

Warning. You have written a reference to the indicated macro
with fewer arguments than are specified in its definition.

User Action. To avoid this message and unpredictable results,
correct the reference.

TOOMANYARGS, Argument list for macro"****" contains too many
arguments; excess arguments ignored.

Warning. You have written a reference to the indicated macro
with more arguments than are specified in its definition.

User Action. To avoid this message and unpredictable results,
shorten the argument list.

TOOMANYCHAR, Character constant contains too many characters;
truncated to****.

Warning. The length of a character constant exceeds the imple­
mentation limit (four characters). The constant was truncated to
the indicated value.

User Action. Reduce the length of the indicated character con­
stant.

TOOMANYERR, The total number of errors exceeds the implementa­
tion's limit of 100.

Fatal.

User Action. Correct the errors reported in previous compiler
messages and recompile.

TOOMANYINITS, The initializer list for "****" specifies too many
initializers; excess initializers ignored.

Warning. This message can be issued for any type of variable.
Some causes might be missing brackets from an array declara­
tion, misplaced braces in an initializer list that would cause array
elements to be skipped, or simply, more initializers than elements
in an array or structure.

User Action. Check the declaration and make the appropriate
corrections.

VAX-11 C Compiler Messages 401

TOOMANYPARM, Too many macro parameters; excess parameters
ignored.

Warning. The number of macro parameters in a #define line
exceeds the implementation limit of 64.

User Action. Reduce the number of parameters.

TOOMANYSTR, String constant contains too many characters; trun-
cated.

Warning. The character-string constant in this line exceeds the
implementation's limit of 1000 characters.

User Action. Shorten the constant.

TRUNCFLT, Double-precision floating-point constant cannot be con-
verted to single precision; 0.0 assumed.

Warning.

User Action. Ensure that 0 is a valid value in this context; if
necessary, redeclare the conversion target as double.

TRUNCSTRINIT, String initialization for "****" contains too many
characters to fit; truncated.

Warning. If the variable is a simple one-dimensional array, the
initializer is truncated (such that the length of the initializer is
array-1) and the null byte is added to the end of the array. If the
array is a multidimensional array or an array within a structure,
the initializer is truncated to the length of the array and a null
byte is not added.

User Action. You should treat arrays of characters as strings,
that is, allowing for the null byte at the end of the array. The
special case of multidimensional arrays and arrays within struc­
tures should be taken into account, especially when you do not
want the null byte to be truncated.

UABORT, Compilation terminated by user.

Fatal. The compilation was terminated by a DCL CTRL/C com­
mand.

User Action. None.

UNDEFIFMAC, "****" is not a currently defined macro; constant zero

402

assumed. ,

Warning. The identifier in a constant expression in an #if pre­
processor control line is not currently defined as a macro. The
expression is evaluated as if the identifier were a constant 0.

User Action. Define the identifier as a macro or remove the
reference to it.

Appendix C

UNDEFNAME, "****" is already undefined; line ignored.

Warning. The specified identifier (in an #undef line) was either
never defined or else occurred in a previous #undef.

User Action. Remove the #undef, or, if applicable, add the defi­
nition of the identifier at the appropriate place.

UNEXPCTL, Unexpected **** control line encountered; line ignored.

Warning. The specified control line occurred out of place and
was ignored.

User Action. Check the logic of all control lines in the program to
be sure that it is valid.

UNEXPEND, Unexpected end-of-**** encountered in #define control
line; line ignored.

Warning. The end of the #define line or end of the source file was
encountered before the definition was complete.

User Action. To avoid this message and unpredictable results,
correct the line.

UNEXPEOF, Unexpected end-of-file encountered in a****.

Error. The unexpected end-of-file prevents the generation of
code.

User Action. Correct the error and recompile.

UNRECCHAR, Unrecognized character ignored.

Warning. The line contains either an entirely meaningless char­
acter or one that appears out of its proper context, for example, a
number sign (#) that is not the first character on a line.

User Action. Move or remove the character.

W ARNSUM, Completed with warnings.

Warning. The compilation was completed, but several warning
messages were issued. The program may not be logically correct.

User Action. If the execution of the program does not produce
the expected results, correct the statements for which warnings
were issued.

VAX-11 C Compiler Messages 403

Appendix D

Compiler Listing Formats

The VAX-11 C compiler has many options that let you control what
information is included in the listing file. This appendix shows the
different listing formats that are available.

When the CC command line contains the /LIST qualifier but does not
contain the /SHOW qualifier, you are given the default listing. All the
information in the default listing· is also included in the other listing
formats. The default listing includes:

• Margin information
• The C source text
• Any errors encountered during the compilation
• The command line used to invoke the compiler

The left-hand margin of the source listing produced by the VAX-11 C
compiler contains several items of information, arranged into fields in
the following format:

nnnnn i ss mm

nnnnn is the compiler-generated listing line number; it starts at 1,
and is incremented by one for each line in the source pro­
gram, including lines read from included files (whether or
not the /SHOW=INCLUDE qualifier was specified in the
command line).

is the level of nesting of lines read from included mes; this
field is present only if /SHOW=INCLUDE was specified on
the command line. Level 0, which appears as a blank, indi­
cates lines read from the source file(s) specified on the
command line.

ss is the level of nesting of compound statements in the
source program; it starts at zero (which appears as a blank)
for external definitions and declarations, is incremented
each time a left brace which introduces a compound state­
ment is encountered (including the brace which introduces
a function body), and is decremented at the corresponding

404

right brace. This field may also appear as an "X" instead
of a number; this indicates that the source line is being
ignored by the compiler as a result of the evaluation of a
previous #if, #ifdef, or #ifndef preprocessor control line.

mm is the level of nesting of the last macro expanded in the
line; this field is present only if the qualifier /SHOW=EX­
PANSIONS or /SHOW=INTERMEDIATE was specified
on the command line. Level 0 corresponds to the original
source line, and appears as a blank. When this field is
nonzero, however, the fields "nnnnn", "i", and "ss" all
appear as blanks.

In all cases, the numbers listed are right-justified in their fields, with no
leading zeros.

Compiler Listing Formats 405

""'" 0
~

-6'
'O

"' ~
0..
~-

ti

0
Ei<AMPLE
~) 1 t (1

0

fJ 30-0CT-1981 15:17:19
0 23-0CT-1981 14:01:11

I* This is a sample prosram to show the format of the comPiler listinS1

1..JAi<- 11 C ~11. 0-00
_OBAS:[CPPOGJEXAMPLE.c;e

as well as the effect of the uarious /SHOW command-line ~ualifier 9alues

0 Pase 1
(1)

0 I* This line is here to show what happens when a line from the source file is so Ions that it extends beYond the riS

11)

11
29
30
31
32
33 0

0 34

#include ''debussins.h''

#include tir11eb

#define NULL

r!la in ()
{

slobal~1alue SS$_NORMALi
%CC-W-NONPORTSC1 Slobalualue is a nonPortable storase class specifier.

0

35
JG
37
38
39
40
41
il2
43
44
45
48
47
48
49
sci

Coi11rnand Line

struct
char
int

ti r11eb ti111e_struct i
+ctirne_strinS_• *ctir11e();
status = SSS_NORMAL;

ftir11e (iii: tirfle_str1_1ct);
if (lctime_strins = ctime <& time_struct.timel l I= NLJLLl

Printf ("Run tir11e is 'X,s"1 ctir11e_strinS)i

#if debussins
Printf (''\n*** Debuss1ns •iersion ***\n\n'');
status

#end if
(l;

return status j

1 LIST/STANDARO=PORTABLE EXAMPLE

Figure D-1: Default Compiler Listing

('1
0 s
~
~

t:
~ s·

(JQ

~ s
~

ft

Figure D-1 shows the default compiler listing. The /STANDARD=PORTABLE option was used to show how the compiler
lists error messages. The notes to the figure are keyed to the numbers appearing on the listing.

0 The name of the module and its identification appear at the top left of the listing.

8 The date and time of compilation and the version of the compiler that was used appear at the center of the listing.

8 The date and time when the source file was created and the file specification appear below the information in
number e .

0 The page numbers of the listing file and the source file (in parentheses) are shown to the far right of the listing.

0 The listing line numbers are generated by the compiler.

0 Long source lines are truncated if neither /SHOW=EXPANSION nor /SHOW=INTERMEDIATE is specified.

8 The nesting level of compound statements starts at zero (appearing as blanks), is incremented each time a left brace is
encountered, or appears as an "X", which means that the line is ignored after a conditional control line is evaluated.

0 Diagnostic messages appear immediately following the source line in question.

C!> The command line that generated the listing appears at the bottom.

The CC command line qualifiers /SHOW=EXPANSIONS and /SHOW=INTERMEDIATE cause the compiler listing to
display the results of macro substitution. /SHOW=EXPANSIONS displays only the final, fully-substituted line, immedi­
ately following the listing of the original source line. /SHOW=INTERMEDIATE displays the complete progress of
substitution, printing a new line each time a macro reference is replaced by its definition. If an error message is issued
against a line which contains substitutions, the message appears between the original line and the first substituted line.

The purpose of displaying the results of macro substitution is to show the source line as it is ultimately seen by the
compiler. Since macro substitution may significantly increase the length of the source line, the specification of either of

~ the above qualifiers also causes the compiler to "wrap" any source line that would exceed the right-hand listing margin

'""

i

-6'"
i p...
~·

t:l

(whether or not the line contained any substitutions). The wrapped portion of the line appears on a new listing line, with
all of the left-margin fields appearing as blanks. Note that if neither of these qualifiers is specified, any source lines which
exceed the right-hand margin are simply truncated.

Figure D-2 is a listing which shows #include modules and intermediate macro expansions.

0 The long line is wrapped around when the /SHOW=INTERMEDIATE or /SHOW=EXPANSION qualifier is used.

0 The level of nesting of lines read from #include files is shown. This column is blank when the lines are read from the
source file.

0 The nesting level is incremented when the #include file also contains #include control lines.

8 The level of nesting of the last macro expanded in the line is shown.

E:<AMPLE
Vl ,O

5
G 0
7 1

10

I
I

30-0CT-1981 1G:l8:4G
23-0CT-1981 14:01:11

/*This is a samPle Prosram to show the format of the camP1ler li!tins1

1.JA}~ - 11 C t.11, (1 -()()

_OBA5:CCPROGJEfAMPLE.c;e

as well as the effect of the iiarious iSHOW command-line qual1f1er ualues */

Pa'.le 1

'1'

8 /* This line is here to show what haPPens when a line from the source file is so Ions that it extends bevond the
risht-hand listinS mars1n *I

#include ''debuSSinS.h''
udefine YES
•define NO
#def 1ne debussins NO f* YES onlY if debuSlinS code l! to be comP1led */

0 11
0 12 s 13

'S. ta

;-' 15

.... 18 l

t".
17 2 0
18

"' 19

s· zo
aq 21 1

22

~ 23

.... 24

s 25

ll> 2.G 1
"'

:;'.'.7

28
29
30
31
32
33
34
35
36
37
38
39
LIO 1 0

1
41
42
43

1
2

44 x
45 x
46 1
47 1
48 1
49
so

~

#include timeb
!•

timeb - ft1me svsteM call return def1n1t1on include file
•!

:11:include tvPes
I•

tYPes - tYPe definitions include file
•1

tvPedef Ions int tiMe_t;

st r uc t t imeb {
ti frle_ t t l 1t1e j

unsisned short rnillitmi
short timezone;
short dstflasi
} j

•define NULL

()

9'lobalvalue SS$_NORMALi
tiMe_struct: struct

char
int

t imeb
*ct1me_strin.g, i!-ctime() j

status = SS$_NQRMALi

ftiMe C& tiMe_~truct);

if ((ctime_strins =ct r11e (ti.. t i11e_struct.t1mel/ '= ~JULL)

if ((ctime_strins = ct 111e 1 &· t rne_struct.time)) ~= (l\

Printf (''Run t me isl '', ctime_str1ns

• f debussins
:11: f NO
• f 0

Pr1ntf (''\n*** Debussinf version ***\n\n"l;
status

#end if
Pr oc e c; s () ;

return status;

~ Figure D-2: Listing Format of Macro Substitutions

""' When the /CROSS_REFERENCE option is used, the compiler produces a storage map with symbol table cross-refer-
o ences, as shown in Figure D-3. The storage map produced by the /SHOW=SYMBOLS is the same as the listing shown in

Figure D-3, except that the cross-references are not included.

-6'"
"C
(!)

t:l p...
~·

t:1

0 The "External Declarations" section of the Storage Map lists all externally declared names (that is, names declared or
defined outside of any function).

8 When the /CROSS_REFERENCE option is used, the compiler gives the line number in which each name is refer­
enced. The cross-reference information is not included in the storage map unless the /CROSS_REFERENCE option is
used.

0 For each function in the source program, the compiler lists each declared name, giving:
- The identifier of the name
- The line on which the name is declared
- The size of the identifier
- The storage class to which the name belongs
- The data type of the name

0 The Program Section (Psect) Synopsis lists the program sections created by the compiler and their attributes.

0 The Function Definition Map lists each function defined in the program and gives the line number in which the
function is defined.

0
0

~-n> ...
t'.
"' ~ ::s
aq

i
~

.....

FXlfMl'rE
v1.o

0
External Declarations

Identifier NaMe

main

t imeb

time

Mil 1 itM

timezone

dstfla.9'

time_t

StoraS'e Map

Line Size
--- -

32

23 10 bYtes

24 1 lonsword

25 1 word

26 1 word

27 1 word

20 1 lonsword

= Figure D-3: Cross-Reference Listing

Class
- -- --

30-0CT-1981 14:18:47
23-0CT-1981 14:01:11

Extern def,

•

VAK-11 C Vl+0-00
_OBA5:[CPROGJEXAMPLE.c;0

PaS'e 2
I!)

~ Function "Main" defined at line 3Z
...... --·
N 8

~
~
5.
~-

t:i

Identifier Name

Ct iMe

ctime_strinS

ftiMe

printf

Process

SSLNORMAL

status

ti111e_struct

ti Me

millitM

tim-ezone

dstflas

• Psect SYnoPsis

Psect Na111e

SC ODE
$CHAR_STRING_CONSTANTS

Line Size

36

36 1 lonsword

39

QI

47

34 lonS'word

37 lonS'word

35 10 bytes

24 lonS'word

25 word

26 word

27 word

Allocation

68 bytes
15 bytes

Class

Extern

Resister

Extern

Extern

Extern

Globalvalue

Resister

Auto

0
0
s
~
ti:
~
"' <'+

Jg"

i
~

~ -~

• Function Definition MaP

Line Name

32 main

CoMmand Lir1e

/SHOW=(INCLUDE1INTERMEDIATEJ/CROSS_REFERENCE EXAMPLE

:TYPe and References

Function returning Ions int
- No references
Structure tas
- Referenced at line 35

Member (offset = 0), lonS' int
- Referenced ·.at line 40
Member (offset = a bytes>, unsisned short int
- No references
Member (offset = G bYtes)' short int
- No references
Member (offset =
- No references

TYPedef: lens int

bytes)' short int

- Referenced at line 24

Figure D-3: (Cont.) Cross-Reference Listing

oj:>. -oj:>.

TYPe and References

Function returninS Pointer to char
- Referenced at line ao
Pointeiw to char
- Referenced at lines 40 and 41
Function returnins lonS int
- Referenced at line 39
Function returnins Ions int
- Referenced at line 41
Function returnins Ions int
- Referenced at line 47
Lontl int
- Referenced at 1 ne 37
Initialized lens nt
- Referenced at 1 ne 49
Struct timeb
- Referenced at lines 39 and 40

Member (offset = 0)' lens int
- Referenced at line 40
Member (offset = a bytes)' unsisned short int
- No references
MeMber (offset =
- No references
Member (offset =
- No references

Attributes

bYtesl' short int

bYtesl, short int

Position-indePendent1 relocatablet shareable1 executable1 readable
Position-indePendentt relocatable, readable, writeable

? Figure D-3: (Cont.) Cross-Reference Listing
"O

[
~·

t:1

Cl
0 s
'E.
if
t""'
{;;"
~ s·

(Jq

~ s
~
"'

.i;..
~

When the /SHOW=STATISTICS option is used, the compiler accumulates and displays statistics for each phase of its
operation. It then lists the amount of 1/0, memory, and CPU time used during the compilation. Figure D-4 shows the
information returned by the /SHOW=STATISTICS option.

0 This column shows the maximum working set size, not the total.

8 The subphases of the compiler are indented in this column and precede the totals for their phase.

8 The phase totals follow the breakdown of their subphases.

0 The totals for the performance indicators may be greater than the sum of the phase totals. For example, the buffered
1/0 total (buf 1/0) is 11, not 10.

0 The compilation rate is the number of lines compiled per minute of CPU time. CPU times are measured in
10-millisecond units .

""" -a'>

.6'"
"C
gJ
Q..
~-

0

EXAMPLE
1;1.0

Performance Indicators

30-0CT-18el 08:a4:32
23-0CT-1881 1a:Ol:ll

phase buf i/o dir i/o PaSeflt virtmem worksetO CPUtim

Parse/semantics totals
8 live analYsis

reorder invariants
eliminate redundancy
eliminate assisnments

8 optimizer totals
allocator totals

senerate code list
resister allocation
Peephole optimization
branch/Jump resolution
write obJect module

code Senerator totals
0 total comPilation

50 lines compiled

8 7
0 0

0
0
0

0 0
0 0
0 0
0 0
0 0
0 0
0 0
I I

11 8

comPilation rate was 2343 lines Per minuteO

331 0
18 0

7 0
2 0
0 0

40 0
15 0
32 0

0 0
3 0
0 0
7 0

GB 0
an 16

Figure D-4: Compiler Performance Statistics

362
362
362
362
362
362
362
362
362
362
362
362
362
362

80
6

1a

1
16

128

VAX-II C Vl,0-00
_OBA5:[CPROGJEXAMPLE.c;a

Pase 2
(II

Finally, when you use the /MACHINE_CODE option, a listing file is created showing the assembly language and
machine code generated by the compiler. This information is generated in line with the C source statements and is listed
below the last substituted line.

Figure D-5 shows the listing generated by the /MACHINE-CODE option. The notes that follow the figure are keyed to
the numbers in the figure.

()
0 s
'E.
Ci)
....
~
00

""'" ~-
>xj
g
s
i:>:i
ft

....

E>~AMPLE:.

t.J 1. 0

10
11
29
30
31
32
33

34
35
JG
37

38
39

40

30-0CT-1981 os:aG:2G
23-0CT-1981 14:01:11

f* This is a sample Prosram to show the format of the comPiler listins,

VAX-11 C Vl,0-00
_QBA5:[CPROGJEXAMPLE.C;8

as well as the effect of the uarious /SHOW command-line ~ual1fier 11alues •I

Pase 1
(1)

I* This line is here to show what haPPens when a line from the source file Ions' that it extends beYond the ris

0 #include ''debussins.h''

#include tir11eb

#define NULL

()

e
0000 main:

0000 0000
SE OC C2 0002

00000000• EF 16 0005

Slobalvalue SS$_NORMAL;
ti1t1e_struct; struct

char
int

ti roe b
•ctime_str ns, •ctime();
status = S $_NORMAL;

5C 00000000• BF DO 006

fti111e (!Ii tir11e_struct);
FG AD SF 0012

00000000• EF 01 FB 0015

8

•entry
subl2
JSb

fTlO l.J l

ma l n 1 111'­
#C 1 s P

C$MAIN

#SS$_NORMAL1aP

P1.1shab -OA(fp)
calls #l 1ftir11e

if ((cti111 _strinS = ctu11e (fi tir11e_struct.tir11e)) != NULL)
FG D OF 001C PUShal -OA(fp)

00000000* EF 1 FB 001F calls #l1cti111e
0 05 0028 tstl rO
F 13 0028 be "1 1 t.J cg. 1

ANTS

::i Figure D-5: Machine Code Listing

..
00

~
"O
CD
1:::$
p..
~-

t:l

ai

az
a3 1

Printf
50 DD

00000000 EF DF
00000000* EF 02 FB

#if debussins

("Run t1Me
002A
ooze
0032

'X.s", ct1me_strin.S) j

PUS h 1 r0
pushal $CHAR_STRING_CONST
ca 11 s uz,Printf

aa x Printf (''\n*** Debussins version ***\n\n'');
as x status
aG 1 #end if
a1 1 Process ();

0039 !JCS+l:
00000000+ EF 00 FB 0039 calls

as
as

50

ComMand Line

/MACHINE_CDDE EXAMPLE

return status;
50 SC DO

oa
0040
0043

Figure D-5: (Cont.) Machine Code Listing

0 The C source statements are shown.

mov 1
r et

#01Process

aP, rO

8 The object module location of each statement and the machine code instructions are listed.

9 The assembly language code generated by each line of source text is shown beside its corresponding machine code
instruction.

Appendix E

VAX-11 C Definition Modules

Table E-1 lists the definition modules contained in the text library
named SYS$LIBRARY:CSYSDEF.TLB. The exact content of the
modules is not included here because the modules may change from
release to release.

The contents of these modules can be examined in the appropriate
definition file. All definition files have the file type H and they are
contained in SYS$LIBRARY. You can print or type individual files, or
you can issue the following command to print all the files with their file
names appearing at the top of each page:

S PRINT SYSSL!BRARY:*.H HEADER

Table E-1: V AX-11 C Definition Modules

accdef Accounting file record definitions

chfdef Structure definitions for condition handlers

ctype Character type and macro definitions for character classification
functions

dcdef Device class and type code definitions

descrip Descriptor structure and constant definitions

errno Error number definitions

errnodef VAX-11 C error message constants

fab File access block definitions

iodef I/0 function code definitions

jpidef $GET JPI system service request code definitions

math Math function definitions

nam Name block definitions

opcdef OPCOM request code definitions

pqldef Process quota code definitions

prvdef Privilege mask bit definitions

psldef Processor status longword definitions

419

Table E-1: (Cont.) VAX-11 C Definition Modules

rah Record access block definitions

rms

rmsdef

secdef

setjmp

sf def

signal

ssdef

stdio

time

timeb

ttdef

types

xab

All RMS structures and return status value definitions

RMS return status value definitions

Image section flag bit and match constant definitions

setjmp and longjmp state buffer definition

Stack call frame definitions

Signal value definitions

System service return status value definitions

Standard I/0 definitions

localtime definitions

ftime definitions

Terminal definitions

Type definitions

Extended attribute block definitions

As noted in Chapter 6, the errno external variable is useful in deter­
mining the cause of a run-time error. When an error occurs during a
function call, the function returns an unsuccessful status to the pro­
gram and sets errno to a value that indicates the reason for the failure.

The errno definition module declares the errno variable and symboli­
cally defines the possible errno values. By including the errno defini­
tion module in your program, you can check for specific values after a
function call. These values, and their meanings, are as listed in Table
E-2.

Table E-2: errno Symbolic Values

420

Symbolic Constant

EPERM
ENO ENT
ESRCH
EINTR
EIO
ENXIO
E2BIG
ENO EXEC
EBADF
EC HILD
EA GAIN
ENOMEM

Description

Not owner
No such file or directory
No such process
Interrupted system call
I/0 error
No such device or address
Argument list too long
exec format error
Bad file number
No child processes
No more processes
Not enough memory

Appendix E

Table E-2: (Cont.) errno Symbolic Values

Symbolic Constant

EACCES
EFAULT
ENOTBLK
EBUSY
EEXIST
EXDEV
EN OD EV
ENOTDIR
EIS DIR
EINVAL
EN FILE
EMFILE
ENOTTY
ETXTBSY
EFBIG
ENOS PC
ESPIPE
EROFS
EMLINK
EPIPE
EDOM
ERAN GE
EVMSERR

Description

Permission denied
Bad address
Block device required
Mount device busy
File exists
Cross-device link
No such device
Not a directory
Is a directory
Invalid argument
File table overflow
Too many open files
Not a typewriter
Text file busy
File too large
No space left on device
Illegal seek
Read-only file system
Too many links
Broken pipe
Math argument
Result too large
VMS-specific error code for nontrans­
latable errors

The errno values can also be translated into a UNIX-like message by
the perror function. If perror cannot translate the errno value, it
prints the following message, followed by the V AXNMS error message
associated with the value:

%s:non-translatable vms error code: xxxxxx ums messase:

%s is the string you supply to perror; xxxxxx is the V AXNMS message
number.

VAX-11 C Definition Modules 421

Example E-1 shows the use of the errno definition module to check for
a domain error during a call to the sqrt function; the program uses
perror to print a UNIX-like message if the error occurs.

#include errno
#include math
#include stdio

1r1a in ()
{

double inPut tsquare_root;

PrintfC"Enter a number: ");
scan.f("%e" .&inPut);

square_root = sqrt(inPut);

I* CHECK FOR DOMAIN ERROR AND PRINT UNIX-LIKE
MESSAGE IF THE ERROR OCCURS */

}

if Cerrno == EDOM>
PerrorC"ExamPle -- inPut was nesatiue"I;

else
Printf("square root of %e = %e\n",

input 1square_root);

Example E-1: Checking the errno Variable

422 Appendix E

Appendix F

VAX-11 C Run-Time Modules
and Entry Points

This appendix summarizes the modules and entry points in the
VAX-11 C run-time system. Table F-1 lists the modules in the library
and describes their function. Table F-2 lists the entry points defined in
each module and describes their function. Table F-3 lists the modules
from the VMS Run-Time Procedure Library that are called by VAX-11
C run-time modules.

Table F-1: VAX-11 C Run-Time Modules

Module

C$$CLEANUP
C$$DATA
C$$DOPRINT
C$$FILBUF
C$$FLSBUF
C$$MAIN
C$$MATH_HAND
C$$TRANSLATE
C$ABORT
C$ABS
C$ACOS
C$ALARM
C$ASIN
C$ATAN
C$ATAN2
C$ATOF
C$ATOL
C$BREAK
C$CEIL
C$COS
C$COSH
C$CTERMID
C$CTYPE
C$CUSERID
C$ECVT

Description

Flush and close all files
Data definitions of standard file structures
Character-string print and scan routines
Fill a file buffer
Flush a file buffer
Main start-off routine for C programs
Math routine condition handler
Translate VMS codes to UNIX codes
Abort the current process
Integer absolute value math function
Arc cosine math function
Set alarm function
Arc sine math function
Arc tangent math function
Arc tangent math function
ASCII to floating-point binary conversion
ASCII to integer binary conversion
Memory allocation routines
Ceiling math function
Cosine math function
Hyperbolic cosine math function
Controlling terminal identification
Character type data definitions
User-name identification
Double float to ASCII string conversion

423

Table F-1: (Cont.) VAX-11 C Run-Time Modules

Module

C$ERRNO
C$EXIT
C$EXP
C$FABS
C$FCLOSE
C$FDOPEN
C$FFLUSH
C$FGETC
C$FGETNAME
C$FGETS
C$FLOOR
C$FOPEN
C$FPUTC
C$FPUTS
C$FREAD
C$FREXP
C$FSEEK
C$FTELL
C$FWRITE
C$GCVT
C$GETCHAR
C$GETENV
C$GETGID
C$GETPID
C$GETS
C$GETUID
C$GETW
C$HYPOT
C$KILL
C$LDEXP
C$LOG
C$LOG10
C$MAIN
C$MALLOC
C$MODF
C$NICE
C$PAUSE
C$PERROR
C$POW
C$PRINTF
C$PUTCHAR
C$PUTS
C$PUTW
C$RAND
C$REWIND
C$RMS_pROTOTYPES

424

Description

Run-time library error message definitions
Close files and exit image
Base e exponentiation math function
Floating-point double absolute math function
Close a file
Open a file by file descriptor
Flush a file buffer
Get a character from a file
Get a file-name string
Get a string from a file
Floor math library function
Open a file
Write a character to a file
Write a string to a file
Read from a file to a buffer
Extract fraction and exponent math function
Position to a byte offset within a file
Return current byte offset within a file
Write from a buffer to a file
double value to ASCII string conversion
Get a character from standard input
Get environment value
Get group identification
Get the process identification
Get a string from standard input
Get user identification
Get a longword from an input file
Euclidean distance math library function
Send signal to process
Power of 2 math library function
Logarithm base e math library function
Logarithm base 10 math library function
C main routines
Memory allocation
Extract fraction and integer math function
Set process priority
Suspend the process until a signal is received
Print an error message
Power math library function
Formatted output routine
Write a character to the standard output
Write a string to the standard output
Write a longword to a file
Random number generator
Return file pointer to the beginning of the file
Definition of RMS data structures

Appendix F

Table F-1: (Cont.) VAX-11 C Run-Time Modules

Module

C$SCANF
C$SETBUF
C$SETGID
C$SETJMP
C$SETUID
C$SIGNAL
C$SIN
C$SINH
C$SLEEP
C$SQRT
C$STRCAT
C$STRCHR
C$STRCMP
C$STRCPY
C$STRCSPN
C$STRLEN
C$STRNCAT
C$STRNCMP
C$STRNCPY
C$STRPBRK
C$STRRCHR
C$STRSPN
C$TAN
C$TANH
C$TIME
C$TIMEF
C$TMPFILE
C$TMPNAM
C$TOLOWER
C$TOUPPER
C$UNGETC
C$UNIX
C$VFORK

Description

Formatted input routine
Associate a buffer with a file
Set group identification
Non-local goto functions (setjmp/longjmp)
Set user identification
Manipulate signal database
Sine math function
Hyperbolic sine math function
Suspend the process for a number of seconds
Square root math function
String concatenation
Search for a character in a string
String comparison
String copy
Search for a character in a set of characters
Determine the string length
String concatenation
String comparison
String copy
Search a string for a set of characters
Search a string
Search a string for characters not in a set
Tangent math library function
Hyperbolic tangent math function
Get real-time values
Manipulate/convert real-time values
Create a temporary file
Generate a name for a temporary file
Uppercase to lowercase conversion
Lowercase to uppercase conversion
Push a character back into an input stream
UNIX emulation routines
Spawn a process

Table F-2: VAX-11 C Run-Time Entry Points

Entry Point

abort
abs

access

a cos

Module

C$ABORT
C$ABS

C$UNIX

C$ACOS

Description

Abort the current process
Integer absolute value math
Ii brary function
Check the accessibility of a
file
Arc cosine math library
function

VAX-11 C Run-Time Modules and Entry Points 425

Table F-2: (Cont.) VAX-11 C Run-Time Entry Points

Entry Point

alarm
a sin

a tan

atan2

atof

atoi

atol

brk

calloc
cc$rms_fab
cc$rms_nam

426

Module

C$ALARM
C$ASIN

C$ATAN

C$ATAN2

C$ATOF

C$ATOL

C$ATOL

C$BREAK

C$MALLOC
C$RMS_PROTOTYPES
C$RMS_pRQTOTYPES

Description

Set alarm library function
Arc sine math library func­
tion
Arc tangent math library
function
Arc tangent math library
function
Convert ASCII to floating­
point binary
Convert ASCII to integer
binary
Convert long ASCII to
binary
Determine the low virtual
address for program data
area

distance math
library function
Allocate and clear storage
File access block prototype
Name block prototype

Appendix F

Table F-2: (Cont.) VAX-11 C Run-Time Entry Points

Entry Point

cc$rms__rab

cc$rms_xaball

cc$rms_xabdat

cc$rms_xabfbc

cc$rms_xabkey

cc$rms_xabpro

cc$rms_xabrdt

cc$rms_xabsum

ceil

cfree
chdir

chmod
chown
close
cos

co sh

creat
ctermid

ctime

cuserid
delete
dup

dup2

ecvt

ex eel
execle

Module

C$RMS_FROTOTYPES

C$RMS_FRQTOTYPES

C$RMS_FROTOTYPES

C$RMS_FROTOTYPES

C$RMS_FROTOTYPES

C$RMS_FROTOTYPES

C$RMS_FROTOTYPES

C$RMS_FROTOTPYES

C$CEIL

C$MALLOC
C$UNIX

C$UNIX
C$UNIX
C$UNIX
C$COS

C$COSH

C$UNIX
C$CTERMID

C$TIMEF

C$CUSERID
C$UNIX
C$UNIX

C$UNIX

C$ECVT

C$UNIX
C$UNIX

Description

Record access block proto­
type
Allocation control extended
attribute block prototype
Date and time extended at­
tribute block prototype
File header characteristics
extended attribute block
prototype
Indexed file key extended
attribute block prototype
File protection extended at­
tribute block
Revision date and time ex­
tended attribute block pro­
totype
Summary extended attrib­
ute block prototype
Ceiling math library func­
tion
Deallocate storage
Change the default direc­
tory
Change a file's access mode
Change a file's owner
Close a file
Cosine math library func­
tion
Hyperbolic cosine math
library function
Create a file
Identify the controlling ter­
minal
Convert time to an ASCII
string
Identify the user name
Delete a file by file name
Create a duplicate file de­
scriptor
Create a duplicate file de­
scriptor
Convert a double value to
ASCII
Execute a program image
Execute a program image

VAX-11 C Run-Time Modules and Entry Points 427

Table F-2: (Cont.) VAX-11 C Run-Time Entry Points

Entry Point

execv
execve
exit
_exit
exp

fabs

fclose
fcvt

fdopen
fflush
fgetc
fgetname
fgets
floor
Copen
fprintf
fputc
fputs
fread
free
freopen
frexp

fscanf
fseek
ftell

ftime
fwrite
gcvt

getchar

getegid

getenv
geteuid

getgid
getname
getpid

428

C$UNIX
C$UNIX
C$EXIT
C$UNIX
C$EXP

C$FABS

Module

C$FCLOSE
C$ECVT

C$FDOPEN
C$FFLUSH
C$FGETC
C$FGETNAME
C$FGETS
C$FLOOR
C$FOPEN
C$PRINTF
C$FPUTC
C$FPUTS
C$FREAD
C$MALLOC
C$FOPEN
C$FREXP

C$SCANF
C$FSEEK
C$FTELL

C$TIME
C$FWRITE
C$GCVT

C$GETCHAR

C$GETGID

C$GETENV
C$GETUID

C$GETGID
C$UNIX
C$GETPID

Description

Execute a program image
Execute a program image
Close files and exit
Exit image
Base e exponentiation math
function
double absolute math func­
tion
Close a file
Convert a double value to
ASCII
Open a file by file descriptor
Flush a file buffer
Get a character from a file
Get a file-name string
Get a string from a file
Floor math library function
Open a file by file pointer
Format a string to a file
Write a character to a file
Write a string to a file
Read from a file
Deallocate storage
Close and reopen a file
Extract fraction exponent
math function
Scan input from a file
Position to an offset in a file
Return current offset in a
file
Get the time
Write to a file
Convert a double value to
ASCII
Get a character from stand­
ard input
Get the effective group iden­
tification
Get an environment value
Get the effective user identi­
fication
Get the group identification
Get a file-name string
Get the process identifica­
tion

Appendix F

Table F-2: (Cont.) VAX-11 C Run-Time Entry Points

Entry Point

gets

getuid
getw

gsignal
hypot

isatty
kill
Id exp

local time

log

log IO

longjmp

)seek
malloc
mktemp

modf

nice
open
pause
perror
pipe

pow
printf

putchar

puts

putw
rand
read
realloc

Module

C$GETS

C$GETUID
C$GETW

C$SIGNAL
C$HYPOT

C$UNIX
C$KILL
C$LDEXP

C$TIMEF

C$LOG

C$LOG10

C$SETJMP

C$UNIX
C$MALLOC
C$TMPNAM

C$MODF

C$NICE
C$UNIX
C$PAUSE
C$PERROR
C$UNIX

C$POW
C$PRINTF

C$PUTCHAR

C$PUTS

C$PUTW
C$RAND
C$UNIX
C$MALLOC

Description

Get a string from standard
input
Get the user identification
Get a longword from an in­
put file
Generate a signal
Euclidean distance math
library function
Check for a terminal file
Send a signal to a process
Power of 2 math library
function
Place time in a time struc­
ture
Logarithm base e math
library function
Logarithm base 10 math
library function
Return to setjmp's entry
point
Seek to a position in a file
Allocate memory
Make a temporary file-name
string
Extract fraction and integer
math function
Set process priority
Open a file by file descriptor
Suspend the process
Print an error message
Allow two processes to ex­
change data
Power math library function
Format a string to standard
output
Write a character to stand­
ard output
Write a string to standard
output
Write a longword to a file
Compute a random number
Read a file
Change the size of an area of
storage

VAX-11 C Run-Time Modules and Entry Points 429

Table F-2: (Cont.) VAX-11 C Run-Time Entry Points

Entry Point

rewind

sbrk'

scanf

setbuf
setgid
setjmp

setuid
signal
sin
sinh

sleep
sprintf

sqrt

srand

sscanf
ssignal
strcat
strchr

strcmp
strcpy

strcspn
strlen

strncat
strncmp
strncpy

strpbrk

strrchr

strspn

tan

430

Module

C$REWIND

C$BREAK

C$SCANF

C$SETBUF
C$SETGID
C$SETJMP

C$SETUID
C$SIGNAL
C$SIN
C$SINH

C$SLEEP
C$PRINTF

C$SQRT

C$RAND

C$SCANF
C$SIGNAL
C$STRCAT
C$STRCHR

C$STRCMP
C$STRCPY

C$STRCSPN
C$STRLEN

C$STRNCAT
C$STRNCMP
C$STRNCPY

C$STRPBRK

C$STRRCHR

C$STRSPN

C$TAN

Description

Return to the beginning of
the file
Add bytes to the program's
low virtual address
Format input from the
standard input
Associate a buffer with a file
Set group identification
Set up a return site for
longjmp
Set user identification
Set a signal
Sine math library function
Hyperbolic sine math li­
brary function
Suspend the process
Format a string to a mem­
ory buffer
Square root math library
function
Reinitialize the random
number generator
Format input from memory
Set a signal
Concatenate two strings
Search for a character in a
string
Compare two strings
Copy a string to another
string
Search string for a character
Determine the length of a
string
Concatenate two strings
Compare two strings
Copy from one string to an­
other
Search a string for a charac­
ter
Search a string for a charac­
ter
Search a string for a charac­
ter
Tangent math library func­
tion

Appendix F

Table F-2: (Cont.) VAX-11 C Run-Time Entry Points

Entry Point Module Description

tanh C$TANH Hyperbolic tangent math
library function

time C$TIME Get the epoch time
times C$UNIX Get the process and CPU

times
tmpfile C$TMPFILE Create a temporary file
tmpnam C$TMPNAM Generate a temporary file

name
tolower C$TOLOWER Convert uppercase to lower-

case
toupper C$TOUPPER Convert lowercase to upper-

case
umask C$UNIX Set a file's protection mask
ungetc C$UNGETC Push a character back into

the stream
vfork C$UNIX Spawn a process
wait C$UNIX Suspend a process
write C$UNIX Write a file

Table F-3: Run-Time Library Procedures
Called by V AX-11 C

Procedure

Ii b$get_foreign
lib$free_vm
lib$get_vm
lib$signal

Description

Get DCL command line
Virtual memory deallocation
Virtual memory allocation
Condition signaling

VAX-11 C Run-Time Modules and Entry Points 431

The VAX-11 C mathematical functions are performed by the
VAXNMS run-time procedures listed below:

mth$dacos_r7
mth$datan2
mth$dexp_r6
mth$dlog10_r8
mth$dsqrt-1"5

mth$dasin_r7
mth$dcos_r7
mth$dsqrt-1"5
mth$dsin_r7
mth$dtan_r7

mth$datan_r7
mth$dcosh
mth$dlog_r8
mth$dsinh
mth$dtanh

V AX-11 C also calls run-time library modules that perform data con­
version. These modules are listed below:

ots$cvLLd
ots$cvLtLJ
ots$cvLto-1
ots$cvt_tz-1
ots$$cvLd_t-1"8
ots$powdd

The following formatting routines are called by VAX-11 C:

for$cvt_d_tg
for$cvt_d_te
for$cvt_d_tf

432 Appendix F

Appendix G

ASCII Character Set

Table G-1 shows the ASCII character set and the values returned by
the character classification functions.

Along the top of the table are the names of the functions. (Each func­
tion name begins with "is"; the "is" was dropped to avoid unnecessary
redundancy.) Along the left side of the table are the ASCII characters
and their octal values. A check mark (v) in the column under the
name of a function means that that function returns a true (nonzero)
value when the corresponding ASCII character is the argument to the
function. (A blank means that the function returns a false value.)

Note that these functions are implemented as preprocessor macros.
Chapter 6 describes each character classification function in detail.

Table G-1: ASCII Character Set
(with character-classification return values)

ASCII is· Function
Cod• alnum alpha ascii cntrl digit graph lower print punct space upper xdigit

NllL !Kl ,,. ,,.
SOH III ,,. ,,.
STX 02 ,,. ,,.
Kl'X 0:1 ,,. ,,.
~:OT 114 ,,. ,,.

ENQ ()!} ,,. ,,.
ACK ()(j ,,. ,,.
HEL Oi ,,. ,,.
HS Ill ,,. ,,.
HT II ,,. ,,. ,,.

LF 12 ,,. ,,. ,,.
VT 1:1 ,,. ,,. ,,.
FF 14 ,,. ,,. ,,.
('){ l!l ,,. ,,. ,,.
so 16 ,,. ,,.

SI Ii ,,. ,,.
DLE 20 ,,. ,,.
DC! ~I ,,. ,,.
DC2 22 ,,. ,,.
DC':! 2:1 ,,. ,,.

433

Table G-1: (Cont.) ASCII Character Set
(with character-classi!ication return values)

ASCII is-Function
Code alnum alpha ascii cntrl digit graph lower print pun ct space upper xdigit

DC4 24
NAK 25
SYN 26
ETB 27
CAN :IO

EM :n
SUB :12
~;sc :1:1
F'S :14
GS :J!}

RS :16
us ;17
SP 40
! 41

42

4:1
$ 44 , ..

(45
& 46

47

50,.
!ll .,.
fi'2 .,. .,. .,.

+ !};J .,.
M .,.,. .,.

55 .,. .,. .,.
!}6,.
fi7 .,.,. .,.
60,. .,.,.
61 .,.,.,. .,.

62,. .,.
6:l,. .,.,.
64,. .,.,.
65 .,.,. .,. .,. .,.
66 .,. .,. .,. .,. .,.

67,. .,.,.
70,. .,. .,. .,.
71,.,.
7'2 .,.,.
n,. .,.

74 .,.,.
75 .,. .,.,.
76,. .,.
77 .,. .,.,. ,, 100 .,. .,. .,. .,.

434 Appendix G

Table G-1: (Cont.) ASCII Character Set
(with character-classification return values)

is-Function ASCII
Code alnum alpha ascii cntrl digit graph lower print punct space upper xdigit

A
ll
('

D
E

F
G
H
I

K
L
M
N
0

p

Q
R
s
T

u
v
w
x
y

z
I
\
J

b

d

g
h

j
k
I
m

1()1

102
10:1
104
I()!)

106
107
110
Ill
112

11:1
114
115
116

117

120

121
122
12:~

124

12!1
126
127
1:m

1:n

1:17

140
141
142
14:1

144

145
146
147
150

151
152
15:1
154

155

v
v
v
v
v

v
v
v
v
v

v
v
v
v
v

v
v
v
v
v

v
.....
v
v
.....

v
v
v
v
v

v
v
v
v
v

v
v
v
v
v

v
v
v
v
v

v
v
v
v
v

v
v
v
v
v

.....
v
.....
v
v

v
v
v
v
v

v
v
v
v
v

v
v
v
v
v

v
v
v
v
v

v
v
v
v
v

v
v
v
v
.....

v
.....
v
v
v

ASCII Character Set

v
v
v
v
v

v
v
v
v
v

v
v
v
v
v

v
v
v
v
v

v
v
v
v
v

v
v
v
v
.....

.....
v
v
v
v

v
v
v
v
v

v
.....
v
v
v

.....
v
v

v
v
v
v
v

v
v
.....
v
.....

v
v
v
v
v

v
v
v
v
v

v
v
v
v
v

v
v
v
v
v

.....
v
v
.....
v

.....
v
v
v
v

v
v
v
v
v

v
v
v
.....
v

v
v
v
v
v

.....
v
v
v

v
v

v
v
v
v
v

v
v
v
v
v

v
v
v
v
v

.....

.....

.....
v
v

v
v
v
v
v

v
v
v
v
v

v
v
v

435

Table G-1: (Cont.) ASCII Character Set
(with character-classification return values)

ASCII is-Function
Code alnum alpha ascii cntrl digit graph lower print punct space upper xdigit

]!)(i v v v v v v
IG'i v v v v v v

p 160 v v v v v
q 161 v v v v v v

162 v v v v v

16:! v v v v v v
164 v v v v v v
165 v v v v v
166 v v v v v v
167 v v v v v v

170 v v v v v v
171 v v v v v
in v v v v v
17:{ v v v v
174 v v v v

17:") v v v
17() v v v v

DEL 177 v v

436 Appendix G

Index

A

abort function, 98
abs function, 98
accdef definition module, 419
access function, 98
Access mode, 175
acos function, 98
Additive operators(+,-), 63
Address of operator, 61
Aggregate, 2

definition of, 367
initialization of, 46

Aggregates
array, 37
structure, 39
union, 39

alarm function, 99
ALLOCATE

DCL command, 254
Alternate key, 174
Ampersand operator (&), 61

definition of, 367
and passing arguments by

descriptor, 220
and passing arguments by

reference, 218
AND bitwise operator (&), 65
Apostrophe ('), 29
argc

main function argument, 313
Argument

command-line, 313
in #define preprocessor macros,

165
definition of, 367
to a function

conversion of, 20, 56
rules governing, 20

Argument list
arrays in, 37
on call stack, 209
structures in, 40
unions in, 40

437

Argument list, (Cont.)
variable-length, 225

Argument passing
definition of, 367
by descriptor, 220
by immediate value, 211

floating-point, 216
by reference, 218
and VAX-11 Calling Standard,

208
Argument pointer (AP)

as debugger's permanent symbol,
334

in mixed-language programming,
209

argv
main function argument, 313

Arithmetic conversion rules, 55
Arithmetic operators

debugger, 329
definition of, 368
negation, 60

Arithmetic types
definition of, 368

Arrays
debugger references to, 340
declaration of, 37
definition of, 368
initialization of, 46
references to, 58

Arrow operator(->), 59
ASCII character set, 433
asin function, 99
ASSIGN

DCL command, 253
Assignment, 66

expression
definition of, 368

operator
definition of, 368
precedence of, 54

Asterisk operator(¥), 32, 61
as debugger arithmetic operator,

329

Asterisk operator (*), (Cont.)
definition of, 368

At sign(@)
as debugger arithmetic operator,

329
in execute procedure commands

DCL, 255
debugger, 323

atan function, 99
atan2 function, 100
atof function, 100
atoi function, 100
atol function, 101
auto storage class, 35

B

Batch job queue
for command procedures,

256
Binary operators

additive, 63
bitwise, 65
definition of, 368
equality, 64
logical, 65
multiplicative, 64
precedence of, 54
relational, 64
shift, 65

Bitwise operators(&,:,·), 65
definition of, 369
for manipulating status values,

229
Block, 22, 69

activation of, 369
definition of, 369
scope of names in, 49

Braces (11)
in compound statements, 22
in initializer lists, 46

Bracket operators ([]), 37
in array references, 58

Brackets, angle (< >)
as debugger arithmetic operator,

329
break statement, 71

in switch statement, 72
Breakpoints
debug~er commands for, 349

brk function, 101

c
C$LIBRARY logical name, 262

438

cabs function, 124
Call stack, 209
Calling sequence

as displayed by debugger, 353
Calling Standard, V AX-11, 208
calloc function, 101
CANCEL

debugger commands, 323
CANCEL BREAK, 349
CANCEL MODULE, 331
CANCEL SCOPE, 338
CANCEL TRACE, 351
CANCEL TYPE/OVERRIDE,

339
CANCEL WATCH, 352

case label, 72
Cast

definition of, 369
Cast operator, 62
cc

See Compile command
cc$rms_fab

initialized RMS data structure,
178

cc$rms_nam
initialized RMS data structure,

178
cc$rms__rab

initialized RMS data structure,
178

cc$rms_xaball
initialized RMS data structure,

178
cc$rms_xabdat

initialized RMS data structure,
178

cc$rms_xabfhc
initialized RMS data structure,

178
cc$rms_xabkey

initialized RMS data structure,
178

cc$rms_xabpro
initialized RMS data structure,

178
cc$rms_xabrdt

initialized RMS data structure,
178

cc$rms_xabsum
initialized RMS data structure,

178
ceil function, 101
cfree function, 118
CHANGE

EDT command, 286

Index

char
See Character data type

CHAR_STRING_CONSTANTS
V AX-11 C program section, 235

Character
classification functions, 86

isalnum, 125
isalpha, 125
isascii, 125
iscntrl, 126
isdigit, 126
isgraph, 126
islower, 126
isprint, 127
ispunct, 127
isspace, 127
isupper, 127
isxdigit, 128
return values, 433

constant, 29
conversion

arithmetic, 55
conversion functions, 89

atof, 100
atoi, 100
atol, 101
ecvt, 108
fcvt, 108
gcvt, 108
toascii, 159
tolower, _tolower, 159
toupper, _toupper, 159

string, 29
de bugger references to, 343

variable, 29
Character data type

definition of, 369
size of, 2

Character mode
See EDT

chdef definition module, 419
chdir function, 102
chmod function, 102
chown function, 103
clearerr function, 103
$CLOSE

RMS function, 176
close function, 103
$CODE psect

global symbol definitions in,
243

as VAX-11 C program section,
235

Comma operator (,), 68
in compile command, 297

Index

Comma operator (,), (Cont.)
definition of, 370
precedence of, 54

Command file
for DCL command procedures,

255
for EDT start-up, 293

Command-line arguments, 313
conversion of, 315

Comment, 23
in #define control lines, 165
definition of, 370
in interpreting declarations,

51
Compile command

format of, 296
for one object module, 297
for program debugging, 320
qualifiers for, 299
for separate object modules,

297
Compiler

diagnostic messages,
377 to 403
format of, 302

listings
default, 406
format of, 404
with machine code, 416
with macro substitutions,

407
with performance statistics,

415
with storage map, 410

operations, 295
Completion status

and returning to the DCL, 318
Compound statement, 22, 69

definition of, 370
scope of names in, 49

Conditional operator (?:), 66
definition of, 370
precedence of, 54
for program control, 5

$CONNECT
RMS function, 176

Constant
definition of, 370
expression

definition of, 370
identifier, 165

Constant, character, 29
CONTINUE

DCL command, 348
continue statement, 74

439

Control lines
#define, 163
#else, 169
#endif, 169
#if, 169
#ifdef, 169
#ifndef, 169
#include, 168
#line, 170
#module, 171
#undef, 168

Conversion
of arithmetic operands, 55
with cast operator, 62
of data types, 55
definition of, 370
of function arguments, 20, 56

COPY
DCL command, 255

to control libraries, 262
EDT command, 281

cos function, 103
cosh function, 104
creat function, 104

file attribute keywords for, 105
CREATE

DCL command, 254
$CREATE

RMS function, 176
CRTLIB.OLB system library, 266
CSYSDEF.TLB system library, 263
ctermid function, 106
ctime function, 106
ctype definition module, 419
cuserid function, 107

D

D-floating binary declaration,
31

Data definition
definition of, 370
external, 25
scope of, 49
scope of external, 25

$DATA psect
global symbol definitions in,

243
as VAX-11 C program section,

235
Data structures

RMS, 175
definition modules, 177
initialized prototypes, 177

See also Aggregates

440

Data types, 1, 26
conversion of, 55
debugger restrictions on, 339
sizes of, 2

dcdef definition module, 419
DEASSIGN

DCL command, 253
DEBUG

DCL command, 321
Debugger

breakpoints, 349
calling functions, 353
commands

EXAMINE and DEPOSIT
for array references, 340
for character-string references,

343
data type restrictions on,

339
for scalar references, 339
for structure references,

345
for union references, 345

GO, 347
STEP, 348
syntax and summary, 323

and effects of optimization,
321

operators
address, 329
arithmetic, 329

references and locations
global symbols, 333
permanent symbols, 334
program locations, 333

symbolic references, 334
run-time symbol table

adding names to, 331
case recognition in, 330
default names in, 330

scope, 335
changing, 337
of automatic variables, 338

session
beginning and ending, 320

tracepoints, 351
watchpoints, 351

Decimal radix operator
debugger, 329
for input character conversion,

143
for output character conversion,

135
Declarations, 26

aggregate

Index

Declarations, (Cont.)
array, 37
structure, 39
union, 39

definition of, 371
format of, 27
interpreting, 49
scalar

character constant, 29
character variable, 29
enumerated, 33
floating-point, 31
integer, 28
pointer, 32

Decrement operator(--), 60
default label, 72
DEFINE

DCL command, 253
debugger command, 324, 334
EDT command, 270, 291

#define
preprocessor control line, 163

Definition modules
organization of, 96
for RMS data structures, 177
standardization of, 13
supplied with VAX-11 C,

419
DELETE

DCL command, 255
to control libraries, 262

EDT command, 280
$DELETE

RMS function, 176
delete function, 108
DEPOSIT

debugger command
for character strings, 343
for scalar variables, 339

descrip definition module, 220,
419

$DESCRIPTOR
preprocessor macro, 224

Descriptors
in mixed-language programming,

220
Direct access modes, 175
DIRECTORY

DCL command, 254
$DISCONNECT

RMS function, 176
Division operator (/), 64
do statement, 70
Dollar sign ($)

in identifier names, 21

Index

double data type
conversion

arithmetic, 55
of function argument, 56

declaration of, 28
dup function, 108
dup2 function, 108

E

ecvt function, 108
EDIT/EDT command, 272
EDT (DEC Standard Editor)

introduction to, 268
invoking, 272
protecting and recovering text,

289
terminating, 274

EDT aids for the programmer
redefinition of keys, 291
start-up command files, 293
structured tabs, 290

EDT HELP facility, 271
EDT operating modes

character
deleting and undeleting text,

288
entering and exiting, 286
inserting text, 288
maneuvering the cursor, 286
moving text, 289

line
creating a file, 274
deleting text, 280
editing a file, 275

from another directory,
283

file input and output, 283
inserting text, 279
maneuvering in the file, 278
moving text, 281
range specifications, 275
replacing text, 280
substituting text, 281

EDTINI.EDT
EDT start-up command file, 293

#else
preprocessor control line, 169

#endif
preprocesor control line, 169

Entry points
to VAX-11 C run-time library,

425
en um

See Enumerated data type

441

Enumerated data type
declaration of, 33
definition of, 371
scope of, 49
size of, 2
with globaldef keyword, 245

envp
main function argument, 313

Equal sign (=)
in debugger DEPOSIT command,

339
as EDT buffer specification,

277
Equality operators (==, !=), 64

definition of, 371
$ERASE

RMS function, 176
errno definition module, 419
errnodef definition module, 419
Errors

compiler, 302
linker, 306
run-time, 316

returning to the DCL, 318
RMS return status values,

177
Escape sequences, 30
EVALUATE

debugger command, 333 to 334
EXAMINE

debugger commands
for arrays, 340

floating-point, 341
for character strings, 343
for scalar variables, 339
for structures, 345
for unions, 345

execl function, 110
execle function, 110
Execute procedure command (@),

255
execv function, 110
execve function, 110
EXIT

debugger command, 320, 324,
348

EDT command, 270
exit, _exit functions, 112
exp function, 112
Expressions, 53

assignment, 66
binary
additive, 63
bitwise, 65
equality, 64

442

Expressions, (Cont.)
logical, 65
multiplicative, 64
relational, 64
shift, 65

comma, 68
conditional operator (?:), 66
definition of, 371
primary

array reference, 58
function call, 57
!value, 58
parenthesized, 57
structure references, 59
union references, 59

statement, 69
unary

addressed, 61
cast, 62
increment and decrement, 60
negation, 60
one's complement, 62
sizeof, 63

Extended attribute block (XAB)
initialization of, 181

extern
See External data type

External data type

F

data definition, 25
vs. global symbols, 243

definition of variable, 371
storage class for, 36

F-floating binary declaration,
31

FAB
RMS data structure, 175

fab definition module, 177, 419
fabs function, 98
fclose function, 113
fcvt function, 108
fdopen function, 113
feof function, 114
ferror function, 115
fflush function, 115
fgetc function, 120
fgetname function, 122
fgets function, 123
File access block (FAB)

creat keywords, 105
initialization of, 179

File specification
defaults

Index

File specification, (Cont.)
changing, 251
temporary, 249

format of, 247
File type

compiler defaults, 297
executable image, 310
library defaults, 265
linker defaults, 308

fileno function, 115
FIND

EDT command, 279
Fixed-length record format, 175
float

See Floating-point data type
Floating-point data type

conversion
arithmetic, 55
of function argument, 56

in debugger references, 341
declaration of, 31
definition of, 371
passed by immediate value, 216
size of, 2

floor function, 116
fopen function, 116
for statement, 70
Foreign command

for passing command-line
arguments, 314

FORTRAN common block
sharing program sections with,

236
fprintf function, 134
fputc function, 139
fputs function, 139
Frame pointer (FP)

as debugger's permanent symbol,
334

in mixed-language programming,
209

fread function, 117
free function, 118
freopen function, 118
frexp function, 119
fscanf function, 141
fseek function, 119
ftell function, 119
ftime function, 120
Function definition, 16

arguments, 20
conversion of, 56

names of, 18
parameters, 20

arrays, 37

Index

Functions
calls to, 6, 57

definition of, 371
debugging, 333, 352
definition of, 371
RMS, 175
run-time

portability of, 355
See also Run-time library
specific to VAX-11 C, 14
standardization of, 13

scope of, 18, 49
undeclared, 57

Fundamental type
definition of, 372

fwrite function, 120

G

gcvt function, 108
$GET

RMS function, 176
getc function, 120
getchar function, 120
getegid function, 123
getenv function, 121
geteuid function, 123
getgid function, 123
getname function, 122
getpid function, 122
gets function, 123
getuid function, 123
getw function, 120
Global name

in program sections, 233
Global symbol, 242

debugger references to, 333
initialization of, 243
link-time scope of, 243
in run-time symbol table,

330
to test return status values,

231
vs. extern variables, 243

globaldef data type
definition of, 243
with enumerated values, 245
and global symbol definitions,

242
program sections for, 233
storage class of, 36

globalref data type
declaration of, 243
with enumerated values, 245
and global symbol references, 242

443

globalref data type, (Cont.)
program sections for, 233
storage class of, 36

globalvalue data type
declaration, 245
and global symbol definitions,

242
program sections for, 233
storage class of, 36

GO
debugger command, 347

goto statement, 74
gsignal function, 124

VAX-11 C signal values for,
148

H

HELP
DCL command, 255
debugger command, 325
EDT command, 271

Hexadecimal radix operator
debugger, 329
for input character conversion,

143
for output character conversion,

135
hypot function, 124

I

I/0 functions, 76
for error-handling, 86

clearerr, 103
ferror, 115

for file input, 85
fgetc, 120
fgets, 123
fread, 117
fscanf, 141
getc, 120
getchar, 120
gets, 123
getw, 120
isatty, 125
read, 140
scanf, 141
sscanf, 141

for file output, 85
delete, 108
fgetname, 122
fprintf, 134
fputc, 139
fputs, 139

444

1/0 functions, for file output, (Cont.)
fwrite, 120
getname, 122
printf, 134
putc, 139
putchar, 139
puts, 139
putw, 139
sprintf, 134
ungetc, 160
write, 162

for opening and closing files, 84
close, 103
creat, 104
dup, 108
dup2, 108
fclose, 113
fdopen, 113
fileno, 115
fopen, 116
freopen, 118
open, 132
pipe, 133
setbuf, 144
tmpfile, 158

for positioning within files, 84
feof, 114
ffiush, 115
fseek, 119
ftell, 119
!seek, 130
rewind, 141

1/0, stream
access to record files, 79
access to stream files, 79
relationship to RMS, 79
standard, 82
UNIX, 82

I/O, terminal, 83
Identifier

definition of, 372
Identifiers

conventions for, 21
in #define control line, 165
predefined, 7

#if
preprocessor control line, 169

if statement, 70
#ifdef

preprocessor control line, 169
#ifndef

preprocessor control line, 169
Image

execution
with the debugger, 320

Index

Image, execution, (Cont.)
with the RUN command, 313

exit, 315
interruption, 317

INCLUDE
EDT command, 283

#include
preprocessor control line, 168

for default libraries, 263
#include modules

descrip, 220
list of, 419
organization of, 96
for RMS data structures, 177
ssdef, 213
stsdef, 229

Increment operator(++), 60
Indexed file organization, 17 4
Initialization

of aggregate variables, 46
of auto variables, 45
of extern variables, 45
of external data definitions, 25
of global symbols, 243
of register variables, 45
of RMS data structures

extended attribute block (XAB),
181

file access block (FAB), 179
name block (NAM), 182
record access block (RAB), 180

of scalar variables, 46
of static variables, 45

INITIALIZE
DCL command, 254

Initializer
definition of, 372

INSERT
EDT command, 279

int
See Integer data type

Integer constants, 28
Integer data type

conversion
arithmetic, 55
of function argument, 56

declaration of, 28
size of, 2

Integral type
definition of, 372

iodef definition module, 419
isalnum function, 125
isalpha function, 125
ISAM, 175
isascii function, 125

Index

isatty function, 125
iscntrl function, 126
isdigit function, 126
isgraph function, 126
islower function, 126
isprint function, 127
ispunct function, 127
isspace function, 127
isupper function, 127
isxdigit function, 128

J

jpidef definition module, 419

K

Key
RMS indexed files, 174

Keypad, EDT
redefining keys for, 291

to insert text, 292
VTlOO, 284
VT52, 284

Keywords
auto, 35
char, 28
creat attributes, 105
default, 72
definition of, 372
double, 28
enum, 33
extern, 36
float, 28
globaldef, 36, 243
globalref, 36, 243
globalvalue, 36, 245
int, 28
list of, 23
long, 28
register, 36
rules for use, 7
short, 28
sizeof, 63
static, 36
struct, 39
union, 39
unsigned, 28

kill function, 128

L

Labels
case, 72
default, 72

445

Labels, (Cont.)
scope of, 49
statement, 75

ldexp function, 128
Libraries

object module, 263
default user, 266
search order, 309

system, 266
text module

in compile command, 298
creating, 260
default,. 262
naming, 260

VAX-11 C
See Run-time library

VAX/VMS run-time procedures
called from VAX-11 C, 431

LIBRARY
DCL command, 262

default file types, 265
for file maintenance, 254

#line
preprocessor control line, 170

Line mode
See EDT

Linker
input files, 308

search order of, 309
messages, 306
operations, 304
output files, 310

Linker command
format of, 306
for program debugging, 320

Literals
definition of, 372

LNK$LIBRARY
logical name, 266
search order of, 309

localtime function, 129
log function, 129
loglO function, 129
Logical

connective
definition of, 372

expression
definition of, 372

names
commands to control, 253
linker search order of, 309
table-

446

by group, 251
by process, 251
by system, 251

Logical, names, (Cont.)
translation of, 252
use of, 252

Logical negation operator, 60
Logical operators (&&,: :), 65
long

declaration, 28
longjmp function, 145
Loops, 5

break statement, 71
continue statement, 74
for statement, 70

lseek function, 130
Lvalue, 58

definition of, 373

M

Macro
definition of, 373

MACRO program
sharing program sections with,

240
Macro substitution, 165

canceling, 168
main function, 18

with main_program option, 19
and returning values to the DCL,

318
synopsis of, 313

malloc function, 131
Map file, 312
math definition module, 419
Mathematical functions, 90

abs, 98
acos, 98
asin, 99
atan, 99
atan2, 100
cabs, 124
ceil, 101
cos, 103
cosh, 104
exp, 112
fabs, 98
floor, 116
frexp, 119
hypot, 124
ldexp, 128
log, lW
loglO, 129
modf, 131
pow, 134
ran, 157
rand, 140

Index

Mathematical functions, (Cont.)
sin, 150
sinh, 151
sqrt, 151
srand, 140
tanh, 157

Memory allocation functions, 92
calloc, 101
cfree, 118
free, 118
malloc, 131
realloc, 141

Messages
compiler, 377 to 403

format of, 302
linker, 306

Minus sign (-)
as additive operator, 63
as arithmetic negation, 60
as debugger arithmetic operator,

329
Miscellaneous functions, 93

ctermid, 106
cuserid, 107
gsignal, 124
longjmp, 145
mktemp, 131
perror, 133
setjmp, 145
signal, 147
sleep, 151
ssignal, 152
tmpnam, 158

Mixed-language programming, 208
argument passing

by descriptor, 220
by immediate value, 211

floating-point numbers,
216

by reference, 218
the call stack, 209

argument list, 209
call frames, 209

return status values, 226
format, 227
manipulating, 229
system service, 213
testing, 230

variable-length argument lists,
225

and the VAX-11 Calling Standard,
208

mktemp function, 131
Modes

RMS record access, 175

Index

Modes, (Cont.)
See Debugger
See EDT

modf function, 131
#module

preprocessor control line, 171
Modules

object
library

creating, 263
default user, 266
search order of, 306
system, 266

linking, 304
RMS definition, 177
run-time, 423

organization of, 96
text Ii brary

creating, 260
de fa ult, 262
naming, 260

VAX-11 C definition, 419
Modulo operator (%), 64
MOUNT

DCL command, 254
MOVE

EDT command, 281
Multiplicative operators (* ,/, %), 64

definition of, 373

N

NAM
RMS data structure, 175

nam definition module, 177, 419
Name block (NAM)

initialization of, 182
Negation

arithmetic and logical, 60
nice function, 131
Null

pointer, 32
statement, 75

0

Object
definition of, 373

Object module
library

creating, 263
default user, 266
search order of, 306
system, 266

linking, 304

447

Octal radix operator
debugger, 329
for input character conversion,

143
for output character conversion,

135
One's complement operator C),

62
opcdef definition module, 419
$OPEN

RMS function, 176
open function, 132
Operand conversion, 55
Operators

arrow(->), 59
assignment, 66
binary

additive, 63
bitwise, 65
equality, 64
logical, 65
multiplicative, 64
relational, 64
shift, 65

bracket ([l)
array references, 58

comma (,), 68
conditional, 66
debugger

address reference, 329
arithmetic, 329
binary addition, 329
current location, 329
decimal radix, 329
division, 329
hexadecimal radix, 329
multiplication, 329
next location, 329
octal radix, 329
precedence, 329
previous location, 329
shift, 329
unary plus, 329

definition of, 373
period (.), 59
precedence of, 54

in interpreting declarations, 50
summary of, 3
unary

address of, 61
cast, 62
increment and decrement, 60
indirection, 61
negation, 60
one's complement, 62

448

Optimization
effects of on debugging, 321

OR bitwise operator (:), 65
OTS$POWRJ

p

VAX-11 Common Run-Time
Procedure, 216

Parameters
in #define preprocessor macros,

165
definition of, 373
main function, 314
rules governing, 20
scope of, 49

Parentheses
in primary expression, 57

Pathname, 335
pause function, 132
Period operator (.)

as debugger address operator,
329

in structure and union references,
59

perror function, 133
pipe function, 133
PL/I externals

sharing program sections with,
239

Plus sign (+)
as additive operator, 63
as debugger arithmetic operator,

329
in compile command, 297

Pointers
declaration of, 32
definition of, 373
null, 32
size of, 2
unary operator, 61

Portability considerations, 355
pow function, 134
pqldef definition module, 419
Precedence of operators, 53

in interpreting declarations,
50

Preprocessor constants, 15
Preprocessor control lines

#define, 163
#else, 169
#endif, 169
#if, 169
#ifdef, 169
#ifndef, 169

Index

Preprocessor control lines, (Cont.)
#include, 168
#line, 170
#module, 171
#undef, 168
definition of, 374
standardization of, 13

Primary expressions
array reference, 58
function call, 57
!value, 58
parenthesized, 57
structure references, 59
union references, 59

Primary key
RMS indexed files, 17 4

Primary operators
definition of, 374
precedence of, 53

printf function, 134
Procedures

Common Run-Time
ORS$POWRJ, 216
STR$CONCAT, 225

VAX-11 Run-Time Library
called from VAX-11 C, 431
SYS$READEF, 218
SYS$SETEF, 211
SYS$SETPRN, 222

Processor status longword (PSL)
as debugger's permanent symbol,

334
Processor status word (PSW)

in mixed-language programming,
209

Program
control, 4
execution, 313

with debugger, 320
GO command, 347
STEP command, 348

run-time errors in, 316
exit, 315
interruption, 317
location

debugger references to, 334
source creation, 268
structure, 6

Program counter (PC)
as debugger's permanent symbol,

334
in mixed-language programming,

209
Program section (psect)

attributes of, 234

Index

Program section (psect), (Cont.)
as compared to storage classes,

235
created by VAX-11 C, 235
for external data definition,

25
for global symbols, 243
link-time scope of, 236
sharing

with FORTRAN common
blocks, 236

with MACRO programs, 240
with PL/I externals, 239

prvdef definition module, 419
psldef definition module, 419
PURGE

DCL command, 255
$PUT

RMS function, 176
putc function, 139
putchar function, 139
puts function, 139
putw function, 139

Q
Qualifiers

CC command, 299
EDT command, 272
LINK command, 306, 312

QUIT
EDT command, 274

Quotation mark(")
in character strings, 29
in #include control lines, 168

R

RAB
RMS data structure, 175

rab definition module, 177, 420
rand function, 140
Random access mode, 175
Range specification (EDT), 275
Read event flag (SYS$READEF),

218
read function, 140
realloc function, 141
Record access block (RAB)

creat keywords for, 105
initialization of, 180

Record file address access mode,
175

register storage class, 36

449

Relational operators(<,<=,>,>=),
64
definition of, 37 4

Relative file organization, 173
RENAME

DCL command, 254
to control libraries, 262

REPLACE
EDT command, 280

return statement, 74
Return status value, 226

format of, 227
manipulating, 229
RMS, 176
system service, 213
testing

for specific values, 231
for success or failure, 230

$REWIND
RMS function, 176

rewind function, 141
RMS (Record Management

Services)
data structures, 175
example program, 182
file organization

indexed, 174
relative, 173
sequential, 173

functions, 175
initialization

extended attribute blocks, 181
file access blocks, 179
name blocks, 182
record access blocks, 180

record access modes, 175
record formats, 175
return status values, 176

rms definition module, 177, 420
rmsdef definition module, 177,

420
RUN

DCL command, 313
with /NODEBUG qualifier, 321

Run-time library
functions, 76, 97 to 162
modules and entry points,

423, 425
portability, 355
procedures

called from V AX-11 C, 431
standardization of, 13

Run-Time Symbol Table
adding names to, 331
names included by default, 330

450

s
sbrk function, 101
Scalar data type

declarations, 27
character, 29
enumerated, 33
floating-point, 31
integer, 28
pointers, 32

definition of, 37 4
initialization of, 46
variable, 2

debugger references to, 339
scanf function, 141
Scope

debugger
of automatic variables, 338
changing, 337
default, 335
resolving references, 335

definition of, 37 4
link-time, 236
of external data definitions,

25
of functions, 18
of global symbols, 243
of names, 49

secdef definition module, 420
Semicolon (;)

null statement, 75
Sequential

access mode, 175
file organization, 173

SET
DCL commands, 254

SET MESSAGE, 302
debugger commands

SET BREAK, 349
SET MODULE, 331, 337
SET SCOPE, 335, 337
SET TRACE, 351
SET TYPE/OVERRIDE, 339
SET WATCH, 352

EDT commands, 270
SET TAB, 290

Set event flag (SYS$SETEF), 211
Set process name (SYS$SETPRN),

222
setbuf function, 144
setgid function, 14 7
setjmp definition module, 420
setjmp function, 145
setuid function, 147
sfdef definition module, 420

Index

Shift operators (< < ,> >), 65
definition of, 375

short data type
conversion

arithmetic, 55
of function argument, 56

declaration of, 28
SHOW

DCL commands
SHOW LOGICAL, 253
SHOW TRANSLATION, 253

debugger commands
SHOW BREAK, 349
SHOW CALLS, 353
SHOW MODULE, 331
SHOW SCOPE, 338
SHOW TRACE, 351
SHOW WATCH, 352

EDT command, 271
signal definition module, 420
signal function, 147

VAX-11 C signal values for,
148

sin function, 150
sinh function, 151
sizeof, 63
Slash (/)

as debugger arithmetic operator,
329

sleep function, 151
sprintf function, 134
sqrt function, 151
srand function, 140
sscanf function, 141
ssdef definition module, 213,

420
ssignal function, 152

V AX-11 C signal values for,
148

Standard I/O, 77, 82
Standardization of the C language,

13
STARLET.OLB system library, 266
Statements

break, 71
compound, 69
continue, 74
definition of, 375
do, 70
expression, 69
for, 70
goto, 74
if, 70
label, 75
null, 75

Index

Statements, (Cont.)
return, 74
switch, 71
while, 70

static storage class, 36
Status values, 226

format of, 227
manipulating, 229
system service, 213
testing

for specific values, 231
for success or· failure, 230

stderr, 83
stdin, 83
stdio definition module, 420
stdout, 83
STEP

debugger command, 348
to control functions, 353
modes of, 349

STOP
DCL command, 348

Storage allocation
for program sections, 233

attributes of, 234
link-time scope of, 236

Storage class, 35
default, 37
definition of, 375
in data types and declarations,

26
STR$CONCAT

Common Run-Time Procedure,
225 .

strcat function, 152
strchr function, 153
strcmp function, 153
strcpy function, 154
strcspn function, 154
Stream

access, 78
to record files, 79
to stream files, 79

files, 78
String

definition of, 375
String data type

declaration of, 29
String-handling functions, 88

strcat, 152
strchr, 153
strcmp, 153
strcpy, 154
strcspn, 154
strlen, 155

451

String-handling functions, (Cont.)
strncat, 152
strncmp, 153
strncpy, 154
strpbrk, 156
strrchr, 153
strspn, 156

strlen function, 155
strncat function, 152
strncmp function, 153
strncpy function, 154
strpbrk function, 156
strrchr function, 153
strspn function, 156
Struct

See Structures
Structures

in argument list, 40
debugger references to, 345
declaration of, 39
definition of, 375
initialization of, 46
members of

alignment of, 41
references to, 41, 59
scope of, 49

passed by descriptor, 220
scope of, 49
valid operators for, 40

stsdef definition module, 229
SUBMIT

DCL command, 256
SUBSTITUTE

EDT command, 281
Subtraction operator(-), 63
SUCCESS bit, 230
switch statement, 71
Symbol table

adding names to, 331
names included by default in,

330
scope of names in, 335

Symbolic constant
definition of, 375

Symbolic Debugger
See Debugger

Synopsis
interpreting, 96
main function, 313

sys$close
RMS function, 176

sys$connect
RMS function, 176

sys$create
RMS function, 176

452

sys$delete
RMS function, 176

sys$disconnect
RMS function, 176

sys$erase
RMS function, 176

sys$get
RMS function, 176

sys$open
RMS function, 176

sys$put
RMS function, 176

SYS$READEF system service, 218
status values, 218

sys$rewind
RMS function, 176

SYS$SETEF system service, 211
return status values, 211

SYS$SETPRN system service, 222
status values, 222

sys$update
RMS function, 176

System libraries, 266

T

Tags
scope of, 49

tan function, 157
tanh function, 157
Text libraries

creating, 260
default, 262
naming, 260

time definition module, 420
time function, 157
timeb definition module, 420
times function, 158
tmpfile function, 158
tmpnam function, 158
toascii function, 159
Token

definition of, 375
Token replacement, 163
tolower, _tolower functions, 159
toupper, _toupper functions, 159
Traceback

run-time errors,
316

Tracepoints
debugger commands for, 351

Translation
of logical names, 252

tt2def definition module, 420
ttdef definition module, 420

Index

TYPE
EDT command, 271, 278

Type
definition of, 375
name

definition of, 375
typedef, 52

format of, 27
scope of, 49

types definition module, 420

u
umask function, 160
Unary expressions

address of, 61
cast, 62
increment and decrement, 60
indirection, 61
negation, 60
one's complement, 62
sizeof, 63

Unary operators
definition of, 376
precedence of, 53

#undef
preprocessor control line, 168

Underscore (_)
in identifier names, 21

ungetc function, 160
Unions

in argument list, 40
debugger references to, 345
declaration of, 39
definition of, 376
members of

references to, 59
scope of, 49

scope of, 49
valid operators for, 40

Uniqueness
definition of, 376

UNIX emulation functions, 94
abort, 98
access, 98
alarm, 99
brk, 101
chdir, 102
chmod, 102
chown, 103
ctime, 106
execl, 110
execle, 110
execv, 110
execve, 110

Index

UNIX emulation functions, (Cont.)
exit, _exit, 112
ftime, 120
getenv, 121
geteuid, 123
getgid, 123
getpid, 122
getuid, 123
kill, 128
localtime, 129
nice, 131
pause, 132
sbrk, 101
setgid, 147
setuid, 147
time, 157
times, 158
umask, 160
vfork, 160
wait, 162

UNIX 1/0, 77, 82
unsigned data type

conversion
arithmetic, 55
of function argument, 56

declaration of, 28
Up-arrow(')

as debugger address operator,
329

as exclusive OR operator, 65
$UPDATE

RMS function, 176
Usual arithmetic conversion

definition of, 376
rules governing, 55

v
Variable-length record formats,

175
Variables

character, 29
debugger

in the run-time symbol table,
330

scope of automatic, 338
definition of, 376
scope of, 49

VAX-11 Calling Standard, 208
VAX-11 Symbolic Debugger

See Debugger
vfork function, 160
VMSRTL.EXE system library, 266
VTlOO keypad, 284
VT52 keypad, 284

453

w
wait function, 162
Watchpoints

debugger commands for, 352
while statement, 70
White space, 127
WRITE

EDT command, 271, 283
write function, 162

454

x
XAB

RMS data structure, 175
xab definition module, 177, 420
XOR bitwise operator('), 65

Index

PROGRAMMING IN VAX-11 C
AA-L370A-TE

READER'S COMMENTS

Your comments and suggestions will help us in our continuous effort to im­
prove the quality and usefulness of our handbooks.

What is your general reaction to this handbook? (format, accuracy, com-

pleteness, organization, etc.) _________________ _

What features are most useful?

Does the publication satisfy your needs? -------------

What errors have you found?

Additional comments

Name

Title

Company Dept.

Address

City State Zip

(staple here)

- - - - Do Not Tear - Fold Here - - - - - - - - - - - -

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03061

(staple here)

No Postage
Necessary

if Mailed in the
United States

