1
{
B

e

Programming in

VAX-11 C

May 1982

This manual defines the VAX-11 C pro-
gramming language and provides the
information necessary for developing
C programs on VAX-11 computers.

Programming in

VAX-11 C

AA-L370A-TE

Software Version V1.0

digital equipment corporation - maynard, massachusetts

First Printing, May 1982

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no respon-
sibility for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that 1s not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright (© 1982 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER’S COMMENTS form on the last page of this
document requests the user’s critical evaluation to assist in preparing
future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DECsystem-10 PDT
DECUS DECSYSTEM-20 RSTS
DIGITAL DECwriter RSX
PDP DIBOL VMS
UNIBUS EduSystem VT
DEC MA dlilgliltlall
DECnet MASSBUS
ZK2164
HOW TO ORDER ADDITIONAL DOCUMENTATION
In Continental USA and Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS (CANADA)
In New Hampshire, Alaska, and Hawaii call 603-884-6660 Digital Equipment of Canada Ltd.
940 Belfast Road
In Canada call 613-234-7726 (Ottawa-Hull) Ottawa, Ontario K1G 4C2
800-267-6146 (all other Canadian) Attn: A&SG Business Manager
DIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)
Digital Equipment Corporation Digital Equipment Corporation
P.O. Box CS2008 A&SG Business Manager
Nashua, New Hampshire 03061 c/o Digital's local subsidiary or
approved distributor
*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)
Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

Contents

Page

Preface, xvii
Chapter 1 A Brief Discussionof G. 1
1.1 DataTypes. e 1
1.2 Operations 3
1.3 Program Control 4
1.3.1 Decisions and Transfers of Control. 4
132 Loopso oo 5
1.3.3 FunctionCalls 6

1.4 Program Structure 6
1.5 Sample Program, 8
1.6 Degree of Standardization. 13
Chapter 2 Program Structure 16
2.1 Function Definitions 16
2.1.1 Main Function and Function Names. 18
2.1.2 Parameters and Arguments 20
2.1.3 Identifiers 21
214 Blocks 22
21,5 Comments 23
216 Keywords 23

2.2 External Data Definitions 25
Chapter 3 Data Types and Declarations 26
3.1 Format of a Declaration. 27
3.2 Scalar Declarations and Types. 27
3.2.1 Integers 28
3.2.2 Characters and Character Strings 29
3.2.3 Floating-Point Numbers. 31
3.24 Pointers 32
3.2.5 Enumerated Types e 33

3.3 Storage Classes. 35
3.4 Data Structures. 37
341 Arrayso e e 37
3.4.2 Structures and Unions 39

iii

3.5

3.6
3.7
3.8

Initializationo,
3.5.1 Initialization of Scalar Variables.
3.5.2 Initialization of Aggregate Variables
Scope of Names,
Interpreting Declarations
typedef.

Chapter 4 Expressions and Operators.

4.1

4.2

4.3

4.4

4.5
4.6
4.7

Data Type Conversions

4.1.1 Conversion of Operands.
4.1.2 Conversion of Function Arguments
Primary Expressions and Operators
4.2.1 Parenthesized Expressions.
422 FunctionCalls
4.2.3 Array References
424 Lvalues Lo

Unary Expressions and Operators

4.3.1 Negating Arithmetic and Logical Expressions ..
4.3.2 Incrementing and Decrementing Variables
4.3.3 Computing Addresses and Dereferencing Pointers. . .
4.3.4 Calculating a One’s Complement
4.3.5 Forcing Conversions to a Specific Type
4.3.6 Calculating Sizes of Variables and Data Types. . . .

Binary Expressions and Operators

4.4.1 Additive Operators
4.4.2 Multiplicative Operators
4.4.3 Equality Operators
4.4.4 Relational Operators
4.45 Bitwise Operators.
4.4.6 Logical Operators.
4.4.7 Shift Operators. Lo
Conditional Expression and Operator

Assignment Expressions and Operators.
Comma Expression and Operator

Chapter 5 Statements

Expression Statement.
Compound Statement.
if Statement
while Statement
do Statement.
for Statement
break Statement
switch Statement.
continue Statement.

iv

5.10 return Statement 74
5.11 goto Statement 74
5.12 Labeled Statement. 75
5.13 Null Statement 75
Chapter 6 Library Functions 76
6.1 Performing I/O from C Programs. 76
6.1.1 Stream Files and Stream Access. 78
6.1.1.1 Relationship to VAX-11 C Record
Management Services (RMS) 79
6.1.1.2 Stream Access to Stream Files 79
6.1.1.3 Stream Access to Record Files. 79
6.1.2 StandardI/O. 82
6.1.3 UNIXI/O 82
6.1.4 Predefined Files 83
6.2 Character Classification. 86
6.3 StringHandling 88
6.4 Character Conversion 89
6.5 Mathematical Functions 90
6.6 Memory Allocation 92
6.7 Miscellaneous Functions. 93
6.8 UNIX Emulation. 94
6.9 Organization of Libraries and Definition (h) Files. 96
6.10 Interpreting Synopses of Functions 96
6.11 Library Functions 97
6.11.1 abort, 98
6.11.2 abs,fabs 98
6.11.3 aceess e e e e e e 98
6.11.4 acos. e e e e e e e e 98
6.1156 alarm 99
6116 asin. 99
6.11.7 atan. e 99
6.11.8 atan2 100
6.11.9 atof, atoi, atol 100
6.11.10 atoi. 100
6.11.11 atol.o 101
6.11.12 brk,sbrk.o, 101
6.11.13 cabs o 101
6.11.14 calloc. 101
6.11.15 ceil. o 101
6.11.16 cfreeo 102
6.11.17 chdir.o, 102
6.11.18 chmod, 102
6.11.19 chown 103
6.11.20 clearerr 103
6.11.21 close00, 103
6.11.22 €0S e e e e e 103
6.11.23 cosh 104

1.62
1.63

creato 104
ctermid., 106
ctime., 106
cuserid 107
delete. 108
dup,dup2. 108
ecvt, fevt, gevt L. L. 108
execl, execv, execle, execve. 110
execle 112
EXECV . . v v v e e e e e e e e e e e e e 112
EXECVE v e e e e e e e e e e 112
exit, _exit 112
23, 4 + 2 112
fabs 113
felose. 113
fevt.o o 113
fdopen 113
feof. 114
ferror. 115
fflush. 115
fgete e 115
fgetname 115
fgets 115
fileno., 115
floor 116
fopen. 116
fprintf L. 117
fpute 117
fputso 117
fread., 117
free,cfree 118
freopen. 118
frexp., 119
fscanf 119
fseek 119
ftell 119
ftime 120
fwrite 120
gevt . . L L L s e e 120
gete, fgetc, getchar, getw. 120
getchar. 121
getegid 121
getenv 121
getewid 122
getgid 122
getname, fgetname 2122
getpid 122
gets, fgets 123
getuid, getgid, geteuid, getegid 123

vi

11.73

e e T T S) Sy ey ey ey (e S g () TV S
€O 1O O (O O O O O O O 00 G0 00 00 G0 Q0 00 00 00 QO ~J ~J ~F ~J ~J ~7J -
COTITATT AR WNHFHFOOXXIDNMTT R WNDHFEOOWO-IO Uk

=5

A1, 101
.11.102

—
—
=3
W

1 104
.11.105
.11.106
.11.107
.11.108
.11.109
.11.110
11,111
J11.112
11,113
.11.114
.11.115
11.116
11,117
.11.118
J11.119

PR RPN DR RPN R RN INNNRNNNNRRNNNRNNIINRNNIIDIRNRRIOIR DD O
[T e R R e e e e el e T S W i e e o T S o S S R T o Y S S SO Gy S g S
=
=
(3]
(=}

1 121

getw L L Lo 123
gsignal, 124
hypot,eabs. 124
isalnamo 125
isalpha 125
isascii 125
isatty. oo 125
isentrl Lo 126
isdigit Lo 126
isgraph. 126
islower 126
isprint 127
ispunct. 127
isspaceo 127
isupper. 127
isxdigit.o 128
kill. 128
Idexp. 128
localtime 129
log,logl0. 129
longgmp 129
Iseek 130
malloc 131
mktemp 131
modf L. 131
nice s 131
OPeN e e e e e e e e e e 132
PAUSE e e e e e e e e 132
PError e e e e e e 133
pipe. o e e 133
POW e e e e e e e e e e e 134
printf, fprintf, sprintf 134
putc, fputc, putchar, putw. 139
putchar 139
puts, fputs. 139
putwo 140
rand, srand 140
read. 140
realloc. 141
rewind 141
sbrk. L 141
scanf, fscanf, sseanf. 141
setbuf 144
setgido 0oL, 144
setjmp, longjmp 145
setuid, setgid 147
signal 147
3 ¢ 150
sinh. 0.0 .. 151

vii

6.11.122 sleep e e 151

6.11.123 sprintf. e e e e e e 151
6.11.124 sqrto 151
6.11.125 srand00 151
6.11.126 sscanf. 151
6.11.127 ssignal 152
6.11.128 streat, strneat. 152
6.11.129 strchr, strechr. L. L., 153
6.11.130 stremp, strncmp. 153
6.11.131 strepy, strncpy 154
6.11.132 strespn 154
6.11.133 strlen 155
6.11.134 strmcat 155
6.11.135 strnemp 155
6.11.136 strnepyo e e e e e 155
6.11.137 strpbrk 156
6.11.138 strechr 156
6.11.139 strspn.o 156
6.11.140 tan oo 157
6.11.141 tanh., 157
6.11.142 time.o 157
6.11.143 times 158
6.11.144 tmpfile 158
6.11.145 tmpnam 158
6.11.146 toascii. 159
6.11.147 tolower, _tolower. 159
6.11.148 toupper, __toupper. 159
6.11.149 wmask. L. 160
6.11.150 ungete.0 160
6.11.1561 vfork 160
6.11.152 wait. 162
6.11.153 write L. L. 162
Chapter 7 Preprocessor Control Lines. 163
Token Replacement. 163
7.1.1 Constant Identifiers. 165
7.1.2 Macro Substitutions 165
7.1.3 Listing of Substituted Lines. 167
7.1.4 Canceling Definitions 168

7.2 FileInclusion. 168
7.3 Conditional Compilation 169
7.4 Specification of Line Numbers. 170
7.5 Specification of Module Name and Identification. 171

viii

Chapter 8 Using VAX-11 Record Management Services
BRMS)

8.1 RMS File Organization
8.1.1 Sequential Organization.
8.1.2 Relative Organization.
8.1.3 Indexed Organization.

8.2 Record Access Modes

8.3 RMS Record Formats.

84 RMS Functions.

8.5 Writing VAX-11 C Programs Using RMS
8.5.1 Initializing File Access Blocks
8.5.2 Initializing Record Access Blocks
8.5.3 Initializing Extended Attribute Blocks.
8.5.4 Initializing Name Blocks

8.6 RMS Example Program.

Chapter 9 Mixed-Language Programming

91 TheCall Stack

9.1.1 Call Frames
9.1.2 The Argument List
9.2 Passing Arguments by Immediate Value
9.2.1 Checking System Service Return Values
9.2.2 Passing Floating-Point Arguments by Immediate
Value e
9.3 Passing Arguments by Reference.
9.4 Passing Arguments by Descriptor
9.5 Variable-Length Argument Lists.
9.6 Return Status Values
9.6.1 Format of Return Status Values.
9.6.2 Manipulating Return Status Values
9.6.3 Testing for Success or Failure
9.6.4 Testing for Specific Return Status Values

Chapter 10 Storage Allocation.

10.1 Program Sections
10.1.1 Attributes of Program Sections
10.1.2 Program Sections Created by VAX-11C.
10.1.3 Link-Time Scope of Names

10.2 Sharing Program Sections with FORTRAN Common
Blocks. s

10.3 Sharing Program Sections with PL/I Externals 239

10.4 Sharing Program Sections with MACRO Programs. 240
Chapter 11 Global Symbols 242
11.1 Global Symbols and extern variables 242
11.2 The globaldef and globalref Keywords 243
11.3 The globalvalue Keyword 245
11.4 Enumerated Global Values. 245
Chapter 12 Program Development. 247
12.1 File Specification Formats and Defaults. 247
12.1.1 Temporary Defaults 249
12.1.2 Changing the Default Directory 251

12.2 Logical Names. 251
12.2.1 Logical Name Translation. 252
12.2.2 Uses of Logical Names 252
12.2.3 Commands to Control Logical Names 252

12.3 Creating and Maintaining Files. 253
124 The HELP Command 255
12.5 Using Command Procedures 255
12.6 Libraries 258
12.6.1 Text Libraries 260
12.6.1.1 Naming Text Modules. 260

12.6.1.2 Default C Libraries 262

12.6.1.3 Default System #include Library. 263

12.6.2 Object Libraries 263
12.6.2.1 Creating an Object Module Library. . . . 263

12.6.2.2 Default User Object Module Libraries . . 266

12.6.2.3 System Libraries 266

Chapter 13 Creating Source Programs. 268
18.1 Introduction to EDT. 268
13.1.1 Line Editing Command Summary. 269
13.1.2 The HELP Facilities 271

13.2 Invoking and Terminating EDT 272
13.2.1 Invoking EDT 272
13.2.2 Terminating EDT 274

13.3 Creating a New File in Line Mode 274
13.4 Editing an Existing File in Line Mode 275
13.4.1 Range Specifications 275
13.4.2 Maneuvering inthe File 278
13.4.3 Inserting New Text. 279
13.4.4 Deleting and Replacing Text 280
1345 Moving Text 281
13.4.6 Substituting Text. 281

13.4.7 Input from and Output to Files 283

13.4.8 Editing a File from Another Directory 283
13.5 Character Editing 284
13.5.1 Entering and Exiting from Character Editing Mode 286
13.5.2 Maneuvering the Cursor 286
13.5.3 Inserting Text 288
13.5.4 Deleting and Undeleting Text 288
13.6.,5 Moving Text 289
13.6 Protecting and Recovering Text. 289
13.7 EDT Aids for the Programmer 290
13.7.1 Structured Tabs 290
13.7.2 Special-Purpose Key Definitions. 291
13.7.3 Start-Up Command Files 293
Chapter 14 Gompiling, Linking, and Executing
CPrograms 294
14.1 The Compile Command (CC). 295
14.1.1 CC Command Format 296
14.1.2 Specifying Input Files. 297
14.1.3 Compiling Files into Separate Object Modules . . . 297
14.1.4 Compiling Files into One Object Module. 297
14.1.5 Specifying Library Files. 298
14.1.6 Command and File Qualifiers 299
14.1.7 Compiler Diagnostic Messages and Error
Conditions 302
14.2 The LINKER Command (LINK) 304
14.2.1 Format of the LINK Command 306
14.2.2 Linker Messages 306
14.2.3 Linker Input Files 308
14.2.4 Linker Output Files 310
14.2.5 Specifying Map File Qualifiers 312
14.2.6 Specifying Debugging Qualifiers. 312
14.3 Executing Programs (RUN) 313
14.3.1 Image Execution with RUN. 313
14.3.2 Command-Line Arguments 313
1433 ImageExit. 315
14.3.4 Run-Time Errors e e e e 316
14.3.5 Interrupting a Program 317
14.3.6 Returning Values to the Command Interpreter . . . 318
Chapter 15 Debugging VAX-11 C Programs 319
15.1 Using the VAX-11 Symbolic Debugger 319
15.1.1 Beginning and Ending a Debugging Session 320
15.1.2 The DEBUG Command. 321
15.1.3 Effects of Optimization on Debugging 321
15.2 Debugger Command Syntax and Summary 322

xi

15.3 Special Characters and Expressions. 328

15.4 The Run-Time Symbol Table. 328
15.4.1 Names Included in the Symbol Table by Default. . 330
15.4.2 Adding Names to the Symbol Table. 331

15.5 Specifying References and Locations 332
15.5.1 References to Global Symbols. 333
15.5.2 References to Program Locations 333
15.5.3 Symbolic References to Program Locations. 334
15.5.4 The Debugger’s Permanent Symbols. 334

15,6 Scope. e e e e e e e e e e 335
15.6.1 Changing the Scope 337
15.6.2 The Scope of Automatic Variables. 338

15.7 The EXAMINE and DEPOSIT Commands 339
15.7.1 Scalar Variables 339
16.7.2 Arrays. o e e e e 340
15.7.3 Character Strings. 343
15.7.4 Structures and Unions 345

156.8 The GO Command. 347

159 The STEP Command 348

15.10 Breakpoints 349

15.11 Tracepoints. e 351

15.12 Watchpoints 351

15.13 Entering and Returning from Functions 352

15.13.1 Stepping Into and Over Functions. 353
15.13.2 Displaying the Calling Sequence. 353
15.13.3 Calling Functions. 353

Appendix A Portability Considerations. 355

Appendix B GGlossary. 367

Appendix C VAX-11 C Compiler Messages 377

Appendix D Compiler Listing Formats 404

Appendix E VAX-11 G Definition Modules 419

Appendix F VAX-11 G Run-Time Modules and

EntryPoints 423

Appendix G ASCII Character Set. 433

Index 437

xii

Examples

[N

CIGDQQO‘AGDCIDQUIQDODNJH»—-»—A
OO0 ~IJC U CON b DN = = O DN =

6-
6-10
8-1
8-2
8-3
8-4
8-5
8-6
8-7

"\OLOCO%DQOQD@@

©
] |
QO -3 Uk LODN = ©

= ©
IOI
-

10-2

Shell Sort in FORTRAN 9
Shell Sort in PASCAL 10
Shell SortinC. 11
Case Conversion Program. 17
Using Arrays as Function Parameters 39
Arrays of Structures 48
Use of switch to Count Blanks, Tabs, and Newlines 73
Calling cuserid with an Argument. 107
Calling cuserid with the Argument 0 107
The ecvt Function 109
The fdopen Function. 114
The printf Function 137
The setjmp and longjmp Functions 146
The signal, alarm, and pause Functions 150
The strespn Function 155
The strspn Function 156
The vfork Function 161
External Data Declarations and Definitions 185
Main Program Section 187
Function Initializing RMS Data Structures 190
Internal Functions 193
Utility Function: Adding Records 196
Utility Function: Deleting Records 198
Utility Function: Typing the File 200
Utility Function: Printing the File. 203
Utility Function: Updating the File 206
Checking System Service Return Values. 213
Passing Floating-Point Arguments by Immediate Value. . . 217
Passing Arguments by Reference 219
Passing Arguments by Descriptor 223
Passing Compile-Time String Descriptors 224
Use of Variable-Length Argument Lists 226
Testing for Success 230
Testing for Specific Return Status Values 232
Sharing Data with a FORTRAN Program in Named
Program Sections 237
Sharing Data with a FORTRAN Program in a VAX-11 C
Structure L. 238
Sharing Data with a PL/I Program in Named Program
Sections Lo e e e e 239
Sharing Data with a PL/I Program in a VAX-11 C
Structure L. Lo e 240
Sharing Data with a MACRO Program in a VAX-11 C
Structure L Lo 241
A Sample Command Procedure 256
Echo Program Using Command-Line Arguments 314
Scope of Symbolic Names 336
Examining and Depositing Values in Scalar Variables. . . 340

xiii

15-3 Examining Data in an Array.
15-4 Examing Floating-Point Elements of an Array
15-5 Examining and Depositing Characters in a Character

15-6 Examining Data in Structures
15-7 Examining Data in Unions.
15-8 Using the CALL Command
E-1 Checking the errno Variable

Figures

3-1 Alignment of Structure Members
6-1 1/O Interface from C Programs
6-2 Mapping Standard and UNIX [/OtoRMS
9-1 The Call Stack.
An Argument List
Passing Arguments by Immediate Value.
Passing Arguments by Reference
Internal Representation of a Status Value
Commands for VAX-11 C Program Development
Creating and Using an #include Module Library
Creating and Using an Object Module Library
VT52 Keypad
VT100 Keypad
Linking Object Modules
Default Compiler Listing.
Listing Format of Macro Substitutions
Cross-Reference Listing.
Compiler Performance Statistics
Machine Code Listing

PPEE
QU W N

e e
rllkOOC)DIIOl\DN)
=N — OO

|

ogoogox
O1-hl‘.|0[\3r—l

Tables

Summary of C Operators
CKeywords e
Precedence of C Operators
Input/Output Functions.
Character Classification Functions.
String-Handling Functions
Character Conversion Functions.
Mathematical Functions
Memory Allocation Functions
Miscellaneous Functions
UNIX Emulation Functions.
File Access Block and Record Access Block Keywords

0 Conversion Characters for Formatted Output

2 VAX-11CSignals.

mmmmmmmm?mmmmm.hwr—a
NHEPFEFHFEO-IDN O WK H H ==

Xiv

1 Conversion Characters for Formatted Input.

Common RMS Run-Time Processing Functions
VAX-11 C RMS #include Modules

8-3 RMS Prototype Data Structures. 178

10-1 Program Section Attributes 234
10-2 Program Sections for VAX-11 C Variables 235
11-1 Comparison of Global Symbols and extern Variables . . . 243
12-1 Summary of File Specification Syntax 250
12-2 Commands for Maintaining Logical Names 253
12-3 VAX/VMS Commands for File Maintenance 254
12-4 Commands to Control Library Files 262
13-1 Summary of Line Editing Commands. 270
13-2 Single-Line Range Specifications. 276
13-3 Multiple-Line Range Specifications. 277
14-1 LINK Command Qualifiers 307
14-2 Specifying Input and Output Files for the Linker 311
14-3 Contents of aMap File 312
15-1 Summary of Debug Commands 323
15-2 Arithmetic Operators e e e e e 329
15-3 Address Reference Operators. 329
A-1 Relationship of VAX-11 C Run-Time Functions to Other

C Run-Time Functions. 355
E-1 VAX-11 C Definition Modules 419
E-2 errno Symbolic Values. 420
F-1 VAX-11 C Run-Time Modules 423
F-2 VAX-11 C Run-Time Entry Points 425
F-3 Run-Time Library Procedures Called by VAX-11 C 431
G-1 ASCII Character Set. 433

4%

Preface

Scope of This Manual

This manual combines reference information on the VAX-11 C lan-
guage with the information necessary for developing and debugging C
programs on a VAX/VMS system.

Who Can Use This Manual

Most readers of this manual should be familiar with at least one other
high-level programming language, possibly several. Therefore, the
manual does not try to teach VAX-11 C to new programmers. Instead,
it answers the questions that are usually posed by experienced pro-
grammers who want to learn a new language quickly.

Where to Find More Information

If you would like a more tutorial introduction to the C language, see
The C Programming Language,' by the designers of the language. That
book contains extensive examples of programs written in C and can
serve as an introduction to the C language in particular or to program-
ming in general. Note that VAX-11 C contains features and enhance-
ments to the C programming language. Therefore, Programming in
VAX-11 C should be used as the reference book for the full description
of VAX-11 C.

Unless you do all your programming in C and make little or no use of
features that depend on VAX/VMS or the VAX-11 machine architec-
ture, you should have all or most of the VAX/VMS system documenta-
tion available for reference. For a complete list of all VAX/VMS docu-
ments and their order numbers, see the VAX-11 Information Directory
and Index.

1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language
(Englewood Cliffs, New Jersey: Prentice-Hall, 1978).

xvil

Conventions Used in This Document

Enter string>Abcd @D

float x;

x;—-5;

option,...

quotation mark
apostrophes

switch statement
fprintf function

joutput-source,...]

sc-specifier ::=
auto
static
extern
register
typedef

declarator initializer

)
=

CTRL/X

In computer dialogs, the user’s response to a
prompt is printed in red.

A vertical ellipsis indicates that not all of the
text of a program or program output is illus-
trated. Only relevant material is shown in the
example.

A horizontal ellipsis indicates that additional
parameters, options, or values can be entered.
A comma that precedes the ellipsis indicates
that successive items must be separated by
commas.

The term quotation mark is used to refer to
the quotation mark symbol ("). The term
apostrophe is used to refer to the single quota-
tion mark symbol ().

Boldface type identifies language keywords
and the names of library functions.

Square brackets, in function synopses and a
few other contexts, indicate that a syntactic
element is optional.

In syntax definitions, items appearing on sep-
arate lines are mutually exclusive alterna-
tives.

Italics, in syntax definitions and most other
contexts, indicate that a syntactic element is
optional.

A delta symbol is used in some contexts to
indicate a single ASCII space character.

The symbol represents a single stroke of
the RETURN key on a terminal.

The symbol CRLX), where x is a letter, repre-
sents a terminal control character, generated
by holding down the CTRL key while pressing
the letter key.

xviii

Chapter 1

A Brief Discussion of G

Because most readers of this manual are familiar with at least one other
high-level programming language, the manual does not try to teach
VAX-11 C to new programmers. Instead, it answers the questions typi-
cally posed by experienced programmers who want to learn a new lan-
guage quickly. These questions include:

e What are the language’s data types?

e What operations can be performed on particular types? What con-
version and type checking take place when different types are
mixed in an operation?

e How is the flow of a program controlled? That is, by what means
are such fundamental tools as decisions, loops, and functions writ-
ten in the language?

e What is the structure of a program?

¢ To what extent is the language standardized, in the practical sense
that a program compiled on one manufacturer’s system can also be
compiled, with a minimum of change, on another system?

e What distinguishes this language from others?

These questions are addressed briefly in this chapter, and in more
detail later.

If you are already familiar with the C programming language, you will
find that VAX-11 C is fundamentally the same language as that to
which you are accustomed. You might want to start with Chapter 12,
Program Development. That chapter and those that follow it explain
how to develop C programs on a VAX/VMS system.

Even if you are already familiar with C on other implementations, you
would be well advised to consult Chapters 1 through 11 to note the
extensions and relaxed rules specific to VAX-11 C.

1.1 Data Types

Programming languages seem to fall into two groups with respect to the
way they represent data. Some, like PL/I, use forms that are closely
related to particular applications. Consequently, such languages have

many data types and, of necessity, have complex rules for operations on
various types and conversions between types. Other languages, C
among them, use data types that are closely related to the way comput-
ers are built. C has a small set of fundamental types in which scalar
variables can be declared as:

e Integers of various, fixed sizes. Integers can be signed or, if de-
clared with the keyword unsigned, unsigned. The integer key-
words (in VAX-specific sizes) are:

— char, an 8-bit byte, usually used to represent an ASCII charac-
ter

— short, or short int, a 16-bit integer

— int, or long int, a 32-bit integer

¢ Floating-point numbers, in two fixed sizes:

— float, a single-precision floating-point number (represented in
the VAX-11 F floating-point format)

— double, a double-precision floating-point number (represented
in the VAX-11 D floating-point format)

e enum values, which are scalars of a user-defined, or enumerated,
type. As in PASCAL, you can define new scalar types in C by
writing a type name followed by an ordered list of identifiers that
are the constants of that type.

¢ Pointers. On the VAX-11, pointer variables contain 32-bit ad-
dresses of other variables.

It can be seen from this list that C’s scalar types were chosen for ease of
implementation, since most machines can represent integers and float-
ing-point numbers directly. In most implementations, VAX-11 C in-
cluded, enum values are represented in some internal integer format.
However, in programs they should be treated as having a type distinct
from the arithmetic types.

C compilers differ in the exact size of a particular kind of variable, but
all use machine representations that are natural to the machine in
question. For example, VAX-11 C uses a longword to represent the
default size integer (int). The language provides a standard operator,
sizeof, which yields the size of its operand in bytes, where a byte is the
amount of storage required to hold one character in the machine’s
native character set. Therefore, in any implementation, sizeof(char) is
usually 1. The sizeof operator can be used to determine the size of other
data types on a particular machine.

As in virtually all programming languages, you can also represent data
in aggregates of associated items. C has three kinds of aggregate:

e The array — an aggregate of items, or elements, which all must
have the same data type. Arrays may be multidimensional. Char-
acter strings in C are declared as one-dimensional arrays of type
char, either explicitly in string variables or implicitly in charac-
ter-string constants.

2 Chapter 1

e The structure — an aggregate of items, or members, which can
have the same or different data types. The amount of storage
occupied by a structure is the sum of the sizes of all its members.

e The union — an aggregate similar to the structure, but whose
storage holds the value of only one member at a time. That is, the
storage occupied by a union is as large as its largest member.

1.2 Operations

C has a very large set of operators, as shown in Table 1-1.

Table 1-1: Summary of C Operators

Operator Example Result
- [unary] -a negative of a
* [unary] *a reference to object at address a
& [unary] &a address of a
- "a one’s complement of a
++ [prefix] ++a a after increment
++ [postfix] a++ a before increment
—— [prefix] --a a after decrement
— [postfix] a—- a before decrement
sizeof sizeof(t1) size in bytes of type t1

sizeof e size in bytes of expression e

(type-name) (tl)e expression e, converted to type tl
+ a+b aplus b
- [binary] a-b a minus b
* [binary] axb a times b
/ a/b a divided by b
% a%b remainder of a/b (a modulo b)
>> a>>b a, right-shifted b bits
<< a<<b a, left-shifted b bits
< a<b 1if a < b; 0 otherwise
> a>b 1if a > b; 0 otherwise
<= a<=b 1 if a <= b; 0 otherwise
>= a>=b 1 if a >= b; 0 otherwise
== a==Db 1 if a equal to b; 0 otherwise
1= al=>b 1 if a not equal to b; 0 otherwise
& [binary] a&hb bitwise AND of a and b
; ‘b bitwise OR of a and b
" a" b bitwise XOR (exclusive OR) of a and b
&& a&&b logical AND of a and b (yields 0 or 1)
H allb logical OR of a and b (yields 0 or 1)
! la logical NOT of a (yields 0 or 1)

A Brief Discussion of C 3

Table 1-1: (Cont.) Summary of C Operators

Operator Example Result

-~

a?el:e2 expression el if a is nonzero,
expression €2 if a is zero

= a=>b a (with b assigned to a)

+= a+=Db a plus b (assigned to a)

-—= a-=D>b a minus b (assigned to a)

= ax=Db a times b (assigned to a)

/= a/=b a divided by b (assigned to a)

%= a%=Db remainder of a/b (assigned to a)
>>= a>>=b a, right-shifted b bits (assigned to a)
<<= a<<=b a, left-shifted b bits (assigned to a)
&= a&="Dh a AND b (assigned to a)

= ail=Db a OR b (assigned to a)

"= a'=b a XOR b (assigned to a)

e2 (el evaluated first)

@
—_
[l
[\

The operands of bitwise operators must be integral; that is, they must
be signed or unsigned integers. The operands of the arithmetic or com-
parison operators are converted automatically to a common type by a
set of rules known as the usual arithmetic conversions (see Section
4.1.1).

The restrictions that do exist on operand types are intended to prevent
meaningless or unrepresentable results. For instance, integers and
pointers may be used together in some expressions, but not in others
where they would probably produce meaningless addresses. Expres-
sions that can appear on the left side of an assignment are called
Ivalues, to distinguish them from other expressions.

Note that it is conventional in C for a logical “true” value to be equiva-
lent to the condition ““is not equal to zero.” Similarly, “false” is equiva-
lent to “is equal to zero.” It is important to realize that a true/false
status may be conveyed by other than the integer constants 0 and 1 or
the least significant bit of an integral value. In C, the constants 200 and
3.297e15, for example, are both “true”.

1.3 Program Gontrol

As in other languages, C has keywords and operators that make deci-
sions, control loops, and call functions.

1.3.1 Decisions and Transfers of Control

Decisions can be made in C programs with the if and else keywords,
and with the conditional operator.

4 Chapter 1

The if statement is a compound statement involving a logical expres-
sion:

if (expression) statement

The statement is executed if the expression is true (that is, has a non-
zero value). The statement can be either a single statement or a com-
pound statement enclosed in braces ({}). It can be followed by an else
statement, which provides an alternative statement to be executed if
the logical expression is false (zero).

A similar kind of operation (but one that produces a value) can be
effected with the conditional operator:

el ?2 e2 : €3

The conditional operator (?:) means: evaluate expression el, and then
evaluate expression e2 if the result of el is nonzero. If the result of el is
zero, evaluate expression e3 instead.

C has facilities to transfer control both conditionally and uncondition-
ally:

¢ The goto statement transfers control unconditionally to a given
label.

e The switch statement transfers control to one of a list of cases,
depending on the value of a given expression.

e The break and continue statements perform transfers of control
in loop and switch statements. break terminates a loop or switch
and transfers control to the next statement; continue transfers
control to the bottom of the enclosing loop.

1.3.2 Loops

Loops are implemented in C with the for, while, and do statements.
The distinctions are as follows:

* The do statement executes its body one or more times; a given
expression is evaluated after each execution of the body, and if the
result is zero the do loop terminates.

¢ The while statement is the same as a do statement except that the
controlling expression is evaluated before each iteration. That is,
the while body may not be executed at all, whereas the do body is
always executed at least once.

e The for statement has three user-specified expressions and a body.
The first expression is executed before the first iteration of the
body; usually, it initializes a control variable. The second expres-
sion is executed before every iteration, including the first; execu-
tion of the loop proceeds only if the result of the second expression

A Brief Discussion of C 5

is nonzero. The third expression is executed at the end of every
iteration; it usually controls the change made to the control varia-
ble. For example:

for (i = 0§ i < 103§ i++) statement

executes the statement 10 times, because i < 10 becomes false
(zero) after the tenth iteration. In other words, the for statement
above is equivalent to:

i = 03
while(i <« 10)
{
statement
i++3
¥

1.3.3 Function Galls

A C function can call any other function simply by declaring its name.
Once declared, the name, followed by parentheses, can be used in ex-
pressions. For example, the following program segment first declares a
function (dfun) and then calls it from a separately compiled source file:

/% MAIN (CALLING) FUNCTION =/

main()

{

/% DECLARE x AND t AS DOUBLE-PRECISION
* UALUES, dfun AS A FUNCTION RETURNING
* SUCH A VALUE
*/

double xstsdfun()i

/% CALL dfuns ASSIGNING RETURNED
* UALUE TO t
*/

o= dfunix)i

¥

A function call like the one shown here is performed the same way
whether the called function is written in C or in some other VAX-11
native mode language, such as FORTRAN, MACRO, or PL/I.

1.4 Program Structure

A C program is made up of one or more function definitions. For exam-
ple, a function named lower might be defined as follows:

/% CONVERT UPPERCASE TO LOWERCASE #*/
lower{c_.up)

int c.upi

{

6 Chapter 1

if {e_up = ‘A7 B& c_ur <= ‘27
return (c_ur + ‘a’ - ‘A7)Y
else return (c.upli
¥

The definition shows, in the first two lines, that lower has one parame-
ter, c__up, and that c__up is an integer. The action taken by the func-
tion, or the body, consists of the statements between the braces ({}).
The execution of a function terminates when a return statement is
executed or when the right brace is encountered.

This example also shows a few other features of C program structure:

e C is a free-form language, like PL/I or PASCAL. The meaning of a
program is independent of the placement of text on a line or page.

e Programs may be commented freely, with comment text written
between the character pairs /+ and */ wherever spaces are valid. A
comment can have more than one open-comment delimiter (/x),
but it can have only one close-comment delimiter (/). This makes
it easy to convert unwanted source lines into comments.

All C functions are external; a function definition may only call other
functions, not define them. Therefore, C is not a block-structured lan-
guage as the term is usually applied. However, C does have facilities for
controlling the scope of variables. The scope of a variable can be part of
a function, the entire function, several functions in a program, or the
entire program.

In addition to function definitions, programs may also contain data
definitions that are external to any of the program’s functions. An
external data definition is one means of extending the scope of a varia-
ble beyond a single function, so that information can be shared among
the functions in the program.

Keywords in C identify data types (such as int and char), storage
classes (such as auto and static), and certain statements (such as if
and return). C keywords are predefined identifiers that may not be
redeclared by the programmer. Keywords must be lowercase, and they
cannot be abbreviated.

Note that many identifiers that have special meaning in C programs
are not keywords. For example, C recognizes main to be the name of the
main function. If any function in a program is named main, execution
starts with that function. However, since it is not a keyword, main can
be used in other contexts, too. Similarly, the names of library functions,
which in C perform such fundamental operations as input and output,
are not keywords.

A Brief Discussion of C 7

1.5 Sample Program

If you are not familiar with the C programming language, you may
want to compare a common algorithm in C with the same algorithm in
a familiar language.

The sample program in this section (Examples 1-1 through 1-3) is a
Shell sort algorithm. A Shell sort first compares elements in the un-
sorted data that are far apart (before comparing adjacent ones), and
then it places them in the proper order. The gap between compared
elements is initially half the size of the unsorted data array. The gap
gradually diminishes until the program is comparing adjacent ele-
ments. Thus, the data end up in the correct order.

8 Chapter 1

10
15

99
100

Sort array of inteders into ascendindg order.

Declare loop counter and arravi initialize arrav.
INTEGER I ARRAY(0:9)
DATA ARRAY/104+94+8+7 468 +1 42434445/

Sort the data in the arrav.
CALL SHELL(ARRAY »10)

Write out the sorted data.
DO 10 I = 0,9

WRITE(G+15) ARRAY(I)
FORMAT (" “,12)

END

SUBROUTINE SHELL (W N)

To makKe these comPparisons easiers bedin subscripts
at zero.

INTEGER V(0O:N-1)

INTEGER GAP,»I»JsTEMP

Initialize the darp to half the arravy size.
GAP = N/Z2
Perform loop from statements 10 to 99 until the
darP 1s zZero.
IF (GAP LE., ©) GO TO 100
Now compare the elements of each Pair that is
separated by the dary and reverse anv that are
out of order.
I = GAP
IF (I +.GE, N) GO TO 90
J = I-GAP
IF ¢ (J LT+ 0) OR. (V(J) JLE. V(J+GAP))) GO TO
Values are out of order: reverse them.
TEMP = W)
Yd) = U(J+GAP)
V(J+GAP) = TEMP
J = J-GAP
GO TO 30
CONTINUE
I = I+1
GO TO Zo
CONTINUE
Reduce the dar
GAP = GAP/2
GO TO 10
RETURN
END

Example 1-1: Shell Sort in FORTRAN

A Brief Discussion of C

80

Program main(outPut) i

const
MAXSUB = 93 (¥ MAXIMUM SUBSCRIPT)

(¥ DECLARE THE TYPE OF ARGUMENT

TO BE PASSED TO THE SHELL PROCEDURE %)
tvpPe

ardtvrpe = arrav[O.,,MAXSUB] of inteder;

var
i: inteder$
arr: argtypel (¥ arr IS5 AN ARRAY OF INTEGERS #*)

value
arr = (10,:9:8:7+6:+14+2:3+4,5)F (¥ INITIALIZE ARRAY *)

(% PASS THE ARRAY TO shell BY REFERENCE *)
procedure shell (var v: ardtvrPed n: inteder)?

var
darsisdstemp: inteders
bedin
dap = n div 23
while (dap » 0) do
bedin
i 1= darsi
while (i < n) do
bedin
J 1= i-daP}
while ¢ (4 *= 0) and (vlJ41 * wld+garl)) do
begin
temp = wlJilj
wldl = vli+garli

vli+garl = temr}
j J

dap 1= dap diuv 2

bedgin (% MAIN PROCEDURE %)

shell(arrs10)3

t
for i 1= 0 to MAXSUB do writeln(arrlil)
end (% END MAIN PROCEDURE *)
' (¥ END OF PROGRAM *)

Example 1-2: Shell Sort in PASCAL

10 Chapter 1

main() /% SORT ARRAY OF INTEGERS INTO ASCENDING ORDER */
{

o200

static int arrav[]l = {10+9484+74+6+1,2,3+4,5%)3

int i3
shell(arrav,»10)3i/% PASS THE ARRAY TO shell */ (4]
/% WRITE OUT THE SORTED DATA */
for (is03 9105 i++) (5]
printf ("%d\n"sarravlil)}
b (6]
shell(usn) (7]
int vllsns (8]
{
int darsisrdstemprs
for (gap = n/2; gap > 0§ gap /= 2) o
for (i = dapi 1 < ni i++)
for (J = i-dapi J»=0 && wvwldil:vld+darls J -= dar)
{
temp = wlJjli (1]
wldl = vldj+darli
uvli+darl = tempi
¥

Example 1-3: Shell Sort in C

The following notes are keyed to the circled numbers in Example 1-3:

© The definition of the main function and execution of the program
begin here. The empty parentheses (required syntax) indicate that
the main function in this program has no parameters.

@ The left brace ({) begins a compound statement. This character is
required; there are no substitutes, such as brackets or parentheses.
Compound statements can be used wherever single statements are
valid, such as in the bodies of loops.

© This line illustrates the declaration of a variable — here, a static
array of integers. Ten initializers are supplied (in the braces). The
size of the array, normally an integer within the brackets ([]), is
omitted in this case, and the size is determined automatically by the
number of initializers. The size of an array in C is the number of its
elements, not the maximum subscript. The size in this example is
10, so the subscripts range from 0 to 9.

A Brief Discussion of C 11

Note also that the line is indented. Indentation is not semantically
meaningful in C, but it is used to show subordination. The state-
ments in the body of the main function are usually indented under
the braces that enclose the body.

O This line illustrates a function call in C; here, the shell function is
called. The format of Example 1-3 suggests that main and shell are
in the same file, but they could be in separately compiled files, too.

Notice that shell has not been formally declared in the main func-
tion. The C default in such situations is to assume that shell is a
function returning an integer. Even when declarations are present in
the calling function, they show only the function’s name and the
type of its return value, not the number or types of the parameters.

The identifier array and the constant 10 are shell’s arguments. The
number and types of arguments in a function call must exactly
match the declaration of the external function’s parameters.

© The for statement is one of C’s facilities for controlling program
loops. The body of a for statement is a single or compound state-
ment, which follows the for statement and a list of expressions.
Here, the body is a call to the function printf, which is executed 10
times to write out the sorted values in the array.

@ The right brace ends a compound statement, which in this case is
the body of the main function. The execution of functions ends
either when a return statement is executed or when the terminating
right brace is encountered.

© This line begins the definition of the function shell, which has two
parameters.! The parameters need not have the same identifiers as
the arguments in the calling function.

© This line declares the parameters vi] and n. Parameter declarations
precede the function body. They show the number and types of the
function parameters — in this case “array of integers” and “inte-
ger”. The function arguments must match the parameter definitions
in both number and type.

© This line begins a series of nested for loops. Notice that, as a result
of C’s grammar, all three for statements precede the body of the
innermost loop.

@ This line begins the for body, which performs the actual exchange of
values in the array. Notice that the body is also the syntactic end of
the shell function; that is, shell does not have a return statement.

1. The term parameter in VAX-11 C is comparable to parameter in PL/I or
dummy argument in FORTRAN; it denotes a variable declared in the called
function, as opposed to argument, which denotes the expression written in the
function call.

12 Chapter 1

The sorted array elements are returned to the main function through
the parameter v. Because v’s corresponding argument is the address
of the first element of the main function’s array, references to v’s
elements are also references to the elements of array. The bracket
operator (used for array subscripting) is actually performing address
arithmetic to determine the appropriate element of the main func-
tion’s array. (The bracket operator and address arithmetic are ex-
plained in Chapter 4.)

However, except in cases of implicit or explicit address passing, you
should regard C as a language that passes arguments by value. That
is, an argument’s value is calculated and copied into the correspond-
ing parameter.

1.6 Degree of Standardization

There is no ANSI standard or other industry-wide standard for the C
programming language. The C language is described in the book writ-
ten by the designers of C,! and in a series of technical notices published
by the American Telephone and Telegraph Company.

Certain features are fundamental to C and exist in most C compilers,
including the VAX-11 C compiler. These features are described in this
manual as follows:

¢ All basic elements of program structure are documented in Chap-
ter 2. (Chapter 2 points out that VAX-11 C allows certain non-
portable characters in identifiers and also has the nonportable
storage classes globaldef, globalref, globalvalue, and readonly.)

¢ The data types and declaration rules are described in Chapter 3.

e The set of (and rules governing) operators are described in Chapter
4. These rules describe the format of a function call, although they
do not describe a set of available functions. The C language has no
built-in or otherwise predefined functions.

¢ The set and semantics of statements are documented in Chapter 5.

In addition to the compiler, virtually every C language implementation
includes: (1) a preprocessor facility; (2) a set of definition files (conven-
tionally identified by the file type H); and (3) a library of run-time
functions. Compared with the features listed above, these aspects of a C
implementation are more loosely standardized and depend on the par-
ticular machine for which the C implementation was designed. The
following commentary suggests guidelines for using these features to
write portable programs:

1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language
(Englewood Cliffs, New Jersey: Prentice-Hall, 1978).

A Brief Discussion of C 13

In most respects, the preprocessor control lines described in
Chapter 7 are compatible with their equivalents in other imple-
mentations. Note, however, that VAX-11 C allows constant ex-
pressions of any integral type in an #f preprocessor control line.
These are valid C expressions, evaluated by the usual rules, that
have constant results. (In this context, constant expressions can-
not include the sizeof operator.) This set of expressions may be
more extensive than some compilers allow. A reasonable precau-
tion is to limit #if expressions to actual constants.

In addition, some aspects of the macro substitutions performed
by the VAX-11 C #define control line may differ from other
implementations. Because this feature is so widely used in C
programming, the best precaution is to compare the results of
the different compilers.

The VAX-11 C definition files are designed to be semantically
compatible with those of other known implementations. The text
in each file may not be identical with other manufacturers’ ver-
sions, but in most cases, you can expect a program that uses
such files to compile successfully and to function correctly.

In addition, the search order for #include files is probably unique
to the VAX-11 implementation, although it is designed to be
useful and functionally similar to other implementations. The
main work for you may be to place the included file in the appro-
priate directory. See Chapter 7.

The functions in the VAX-11 C run-time library are documented
in Chapter 6. There is no guarantee that run-time functions are
absolutely compatible with those of other implementations.
However, the input/output functions, character and string func-
tions, mathematical functions, and memory allocation functions
are common features, and these functions in VAX-11 C are com-
patible with those of other implementations. It is possible that
the set of miscellaneous functions may be specific to the VAX-11
and UNIX! implementations. The UNIX emulation functions
are included in VAX-11 C for the specific purpose of emulating
UNIX system functions; they may not occur in most C imple-
mentations.

4. Finally, the following functions are specific to VAX-11 C:

¢ strspn and strcspn

e strpbrk

e creat, in the form that includes RMS keywords
¢ delete

1. UNIX is a trademark of Bell Laboratories.

14

Chapter 1

Transporting programs between VAX-11 C and other C implementa-
tions may require minor program modifications. VAX-11 C provides
the following predefined constants for constructing portable programs;
all are defined to be nonzero (“true” in C’s logic tests):

Wax
ums
vaxlle

These symbols can be used, for example, in #if and #ifdef control lines

to determine whether source code that may not be portable should be
compiled. Control lines are described in Chapter 7.

Appendix A contains more information on compatibility between
VAX-11 C and other C compilers. The information in Appendix A
may be useful when transporting C programs.

The VAX-11 C compiler command, CC, also has a
/STANDARD=PORTABLE qualifier that detects most nonportable
constructions and issues appropriate warning messages.

A Brief Discussion of C 15

Chapter 2

Program Structure

This chapter describes the two basic elements of a C program: function
definitions and external data definitions.

Functions define the actions performed by a program. Section 2.1 de-
scribes C function definitions and explains the following associated
elements of the C language:

¢ Function names

e Function parameters and arguments
e Identifiers

¢ Blocks

¢ Comments

e Keywords

External data definitions provide an alternative to function parameters
for exchanging information among several functions in a program. They
are described in Section 2.2.

2.1 Function Definitions

Example 2-1 shows a simple C program that consists of two function
definitions; the components of a function definition are labeled in the
second function.

The name lower begins a new function definition; the function lower
has a single parameter, c_up. (Notice that although main has no
parameters, the pair of parentheses must be present.)

The next statement, int c_up, declares the parameter’s data
type — in this case, int for integer. The declaration is omitted if the
function has no parameters; furthermore, declarations in this place in
the program may specify only the names of parameters, not the names
of other variables.

16

#include stdio

/% PROGRAM THAT CONVERTS ITS INPUT TO LOWERCASE %/
main()
{

FILE #infile, %outfiles

int iscroc_outs

/% OPEN INFILE FOR INPUT %/
infile = foren("ex113.in""r") 3

/% OPEN OUTFILE FOR OQUTPUT =%/
outfile = foren("ex113.,o0ut™ »"w")3

while ((c = detc(infile)) t= EOF)
{
c.out = lower(c)i
Putc({c_outsoutfile)i
¥

/% BEGINNING OF FUNCTION DEFINITION:

* GIVING FUNCTION NAME AND PARAMETER NAME
*/

lower{c_upr)

/% DECLARATION OF PARAMETER TYPE */
int coupri

/% BEGINNING OF FUNCTION BODY %/
{
if {e_up = ‘A’ & c_up <= ‘Z27)
return {(c_up + ‘a’ - ‘A’)3
else return (c_up)i

/% END OF FUNCTION BODYS

* END OF FUNCTION DEFINITION
*/

¥

Example 2-1: Case Conversion Program

Program Structure

17

The left brace ({) signifies the beginning of the function body; a right
brace (}) signifies the end. The function body is any set of valid C
statements. Usually, the body includes one or more return statements,
as shown here. A return statement can specify an expression whose
value is returned to the calling function. If the expression is omitted,
the returned value is undefined in the calling function. If the return
statement is not included, the function terminates when the right brace
is encountered, and its return value is undefined.

2.1.1 Main Function and Function Names

The execution of a program begins at a function named main, or, if
there is no function with this name, at the first function seen by the
VAX/VMS Linker. The word main is not a language keyword, however,
so it may be used for other purposes in the program. In Example 2-1,
the main function physically precedes the function lower, but the two
function definitions could appear in the other order.

Function names have compile-time scoping rules that are slightly dif-

ferent from those that apply to other identifiers. Any valid function

identifier followed by a left parenthesis is declared implicitly as the

name of a function returning int. In Example 2-1, the name lower is not

declared in the main function even though it is used there. If lower were

to return something other than an integer, its name would have to be

declared in the main function with the type of the returned value. For

example:

mainl)

{

/% DECLARE lower AS FUNCTION RETURNING A CHARACTER #/
char lower()3§

FILE #infiles, %outfiles
int iscrcoouts

infile = foren("ex113.in"s"r")3
outfile = forpen("ex113,o0ut" +"w") 3
while ((¢c = detclinfile)) != EOF)
{
c.out = lower(c)j
Putcl{c.outsoutfile)s
¥

¥

char lower({c.up)
int c.upi

{

f

+

¥

18 Chapter 2

A function name can also be used without parentheses and arguments.
It is then treated as the address of the function of that name. However,
functions must be defined or declared before they can be referenced in
this way. A typical use is in a list of arguments, to pass the address of a
function to another function as one of the arguments.

In the following example, the main function references two functions, x
and y. The function x is defined before the main function, so it is not
declared in the main function. The function y must be declared because
its definition follows the main function. The statement funct(x,y)
passes the addresses of the two functions to the function funct, which is
contained in a separately compiled source file.

/% () IS DEFINED BEFORE IT IS USED %/

®{() £ return 253 ¥

mainl)

{

/% v() MUST BE DECLARED BEFORE IT IS USED %/
int v()3

+

+

/% x AND v ARE PASSED AS THE ADDRESSES
OF THE FUNCTIONS %/
funct (xsv)3

.

¥
yi) £ return 3035 %

In a serparate compilation:

funct (f1,f2)

/% DECLARES THE ARGUMENTS AS POINTERS TO FUNCTIONS
RETURNING INTEGERS

*/

imt (*Ff1)C0) s (%Ff2)0)

{

¥

Between the definition of a function’s name and the declaration of its
parameters, you can write the option:

main.Prodram

This option identifies the function as the main function in the program.
It is not a keyword, and it can be spelled in either upper- or lowercase.
Use it when the program does not contain a function named main and
when you do not want the program’s execution to begin at the first

Program Structure 19

function linked. For example, the following definition establishes the
function lower as the main function; execution begins there, regardless
of the order in which the function is linked:

char lower(c_up)
MAIN_PROGRAM
int c.upi

{

¥

NOTE

The main__program option is a VAX-11 C language exten-
sion.

2.1.2 Parameters and Arguments

C functions can exchange information by means of parameters and
arguments. In this manual, the term parameter denotes the variable (in
parenthesis) named in a function definition; the term argument de-
notes an expression that is part of a function call. In Example 2-1, the
function lower has a single parameter, c_up. When this function is
called from main, the argument c is evaluated and passed to lower.

The following rules apply to parameters and arguments of C functions:

20

The number of arguments in a function call must always be the
same as the number of parameters in the function definition. This
number may be zero.

In VAX-11 C, the maximum number of arguments (and corre-
sponding parameters) is 2563 for a single function.

Arguments are separated by commas. However, the comma is not
an operator in this context, and the arguments may be evaluated
by the compiler in any order. (In other words, you should not
expect function calls or other complicated expressions in the argu-
ment list to be evaluated in any particular order.)

In C, all arguments are passed by value, that is, when a function is
called, the parameter receives a copy of the argument’s value, not
its address. The rule applies to all scalar variables and to struc-
tures and unions passed as arguments. Strictly speaking, a func-
tion cannot modify the values of its arguments. Of course, since
arguments can be addresses or pointers, a function can use ad-
dresses to modify the values of variables defined in the calling
function.

The types of evaluated arguments must match the types of their
corresponding parameters. When a function is called, C does not
compare the types of the arguments with those of the correspond-

Chapter 2

ing parameters and thus does not generally convert the arguments
to the types of the parameters. Instead, all of the expressions in
the argument list are converted according to the following conven-
tions:

— Any arguments of type float are converted to double.
— Any arguments of types char or short are converted to int.

— Any arguments of types unsigned char or unsigned short are
converted to unsigned int.

— Any function name appearing as an argument is converted to
the address of the named function. The corresponding param-
eter must be declared as a pointer to a function, where the
function returns a value of the same type as the function
named as an argument.

— Any array name appearing as an argument is converted to the
address of the first element of the array. (An array name is the
identifier used to declare an array, either without the pair of
brackets that usually enclose a subscript, or with fewer pairs
of brackets than appear in the array’s declaration.) The corre-
sponding parameter can be declared either as an array of the
given type or as a pointer to the given type. Since character-
string constants are declared implicitly as arrays of charac-
ters, this rule also applies to the use of string constants as
arguments.

No other conversions are performed on arguments. If you know
that a particular argument must be converted to match the type of
the corresponding parameter, use the cast operator, described in
Chapter 4.

2.1.3 ldentifiers

Identifiers can consist of letters, digits, dollar signs ($), and the under-
score (_). The first character must not be a digit. An identifier can
contain any number of characters, but its first 31 characters must be
unique.

The dollar sign should be used only in identifiers for VAX/VMS global
symbols. Identifiers that contain dollar signs may not be portable.

Upper- and lowercase letters specify different identifiers. That is, abc
and ABC are interpreted as different names by the compiler. You must
spell language keywords in lowercase. (Note that the debugger converts
all lowercase identifiers to uppercase, and identifiers that are unique to
the compiler, such as abc and ABC, will not be unique to the debugger.
See Chapter 15 for more information on the debugger.)

Use the following conventions if practical:

e Spell identifiers in uppercase if they are constants that are given
values by the #define control line.

Program Structure 21

e Spell all instances of a global name (for example, a name declared
with globalvalue) in the same case. All names that become part of
the VAX/VMS Linker’s global symbol table are represented there
in uppercase. For example, the compiler would consider

int globalvalue ss%_accvio = 03
dlobalvalue S8$_ACCVIOS

to denote different global names; however, uppercase forms for
both are passed to the linker, potentially causing errors when the
program is linked or executed.

e Spell all other identifiers and keywords in lowercase.

2.1.4 Blocks

A block is a compound statement surrounded by braces ({}).! It can be
used wherever the grammar of C requires a single statement. The com-
mon cases are the bodies of functions and if, for, do, switch, and while
statements.

A block may also contain declarations. If it does, any declarations of
auto, register, or static variables declare names that are local to the
block. For example:

main()
{ /% OUTER BLOCK (BODY OF main FUNCTION) %/
int i}
io= 13
if (i == 1)
{ /% INNER BLOCK =/
float i3
i = 3el0}
¥
¥

In both blocks in the example, the variable i is declared with the de-
fault storage class auto. Within the inner block, i is a single-precision
floating-point value; elsewhere, i is an integer. Since both declarations
are of automatic variables, a new, floating-point version of i is allocated
each time the inner block is activated.

If initialization is specified for any auto or register variables in a block,
it is performed each time control reaches the block normally; that is,

1. Note that this use of the term block may differ from its use in other lan-
guages; in C, the terms block and compound statement are interchangeable.)

22 Chapter 2

such initializations are not performed if a goto statement transfers
control into the middle of the block or if the block is the body of a
switch statement.

2.1.5 Comments

Comments, delimited by the character pairs /* and */, can be placed
anywhere that white space can appear. The text of a comment can
contain any characters except the close-comment delimiter (+/). Com-
ments cannot be nested.

2.1.6 Keywords

Keywords are predefined identifiers. They cannot be redeclared. They
identify C’s data types, storage classes, and certain statements. Note
that many conventional words in C programs are not actually keywords
and can be redeclared. The notable examples are the names of func-
tions, including main and the functions found in standard libraries that
accompany C compilers.

Keywords must be written in lowercase letters.
Table 2-1 lists the C keywords.

Table 2-1: C Keywords

Keyword Meaning

Type specifiers:

int Integer

long Extended precision

unsigned Unsigned integer

short 16-bit integer

char 8-bit integer

float Single-precision floating-point number
double Double-precision floating-point number
struct Structure (aggregate of other types)
union Union (aggregate of other types)
typedef Tagged set of type specifiers

enum Enumerated scalar type

void None (reserved for future use)

Program Structure

23

Table 2-1: (Cont.) C Keywords

Keyword

Meaning

Storage-class specifiers:
auto
static

register
extern

globaldef
globalref
globalvalue
readonly

Statements:
goto

return

continue
break

if
else
for

do
while
switch
case

default
entry

Operator:

sizeof

Allocated at every block activation

Allocated at compile time

Allocated at every block activation

Allocated by an external data definition (at com-
pile time)

Definition of global variable

Reference to global variable

Definition or declaration of global value
Allocated in read-only program section

Transfers control unconditionally

Terminates a function and optionally returns a
value to the caller

Causes next iteration of containing loop
Terminates its corresponding switch or loop
Executes following statement conditionally
Provides an alternative for the if statement
Iterates the next statement (zero or more times)
under control of three expressions

Iterates the next statement (one or more times)
until a given condition is false

Iterates the next statement (zero or more times)
while a given expression is true

Executes one or more of the specified cases (multi-
way branch)

Begins one case for switch

Provides default case for switch

None (reserved for future use)

Computes size of operand in bytes

Although they are not true keywords, the VAX-11 C compiler defines
substitutions for the following identifiers; you should avoid redefining

them:

uins
vax
vaxlle

See Section 7.3 for more information on these identifiers.

24

Chapter 2

2.2 External Data Definitions

An external data definition is one that occurs outside a function. It
defines a name that can be used identically in several functions. The
scope of the name is the remainder of the compilation. (That is, the
scope is the remainder of the source file containing the definition, plus
any files that are concatenated in the same compile command.) Thus,
every function that follows the external data definition in the compila-
tion can use the name as defined in the external definition, without
declaring it.

External data definitions are syntactically the same as declarations of
variables inside a function. A definition gives the data type of the
variable(s), with a list of keywords (such as short int), the identifiers
(which indicate whether the variable(s) are arrays or pointers), and any
initial values. For example:

int x = 53 /% DEFINES A VARIABLE OUTSIDE A FUNCTION %/

main()

{

/% THE FUNCTION CAN REFERENCE x WITHOUT DECLARING IT %/
Pprintf("%d" +x) 3

¥

A function that precedes the external data definition can also reference
the identifier by declaring it with the extern keyword. For example:

main()

{

/% DECLARES x AS EXTERNAL TO THE FUNCTION #/
extern int X3

printf("%d" +x)3
¥
/% THE DEFINITION OF x FOLLOWS THE REFERENCE TO IT %/
int x = 31

Furthermore, the external data definition can be in a separately com-
piled source file. The source file containing the definition and the
source file containing the reference are linked together; the linker then
resolves the external reference.

If no storage-class specifier appears in the external data definition, then
the external definition creates a program section (psect) with the same
name as the identifier and initializes it with the given initial value, if
any. If a storage-class specifier does appear, it can be any storage class
keyword except auto or register. Initializers can appear only when no
storage class appears or when the storage class of the variable is static,
globalvalue, readonly, or globaldef. (For more information on storage
classes, see Chapter 3.)

Program Structure 25

Chapter 3

Data Types and Declarations

In C, data is represented by variables and constants. Every valid con-
stant has a data type that is determined by the way in which the
constant is written. Variables have data types specified in their decla-
rations, and all variables must be declared. This chapter describes C’s
data types and the declaration of variables of these types. The general
format of declarations is described in Section 3.1.

C recognizes the following fundamental, or scalar, data types. Each
type describes the representation of a single datum. These types are
described in detail in Section 3.2:

¢ Integers of various sizes. Integers are used in C to represent 8-, 16-,
and 32-bit signed or unsigned numbers.

e Characters. C also has conventions and functions that facilitate
the treatment of 8-bit integers as ASCII characters.

¢ Floating-point numbers, of either single or double precision.

¢ Pointers, which are variables containing 32-bit addresses that can
point to functions and to variables of any other type, including
other pointers and data structures.

¢ User-defined, or enumerated, types. Enumerated types are used to
manipulate information in which a certain order is implicit, but
for which a numeric representation is unnecessary or inappropri-
ate.

Storage classes, identified in declarations by keywords such as auto
and static, define the storage location and lifetime of variables. Storage
classes are explained in Section 3.3.

Data structures, or aggregates, are made up of many members or ele-
ments, each of which is a fundamental type or an aggregate. The follow-
ing data structures can be defined in C programs and are explained in
detail in Section 3.4:

e Arrays, which are data structures made up of identically typed
members, called elements.

e Structures, which are made up of members that may have differ-
ent types and are stored in consecutive locations in memory.

¢ Unions, which are structures in which the members share the same
storage.

26

Section 3.5 explains how to initialize variables in their declarations.

Section 3.6 explains the scope of names in C programs, that is, it
explains whether a particular declaration permits a variable name to be
used in several parts of a program or restricts its use to a particular
part.

Section 3.7 suggests a model for interpreting complicated declarations
and expressions written in C.

3.1 Format of a Declaration

A declaration is composed of the following items:
e A storage class keyword.

¢ At least one data type keyword, structure or union tag, enum tag,
or typedef name, which gives the data type of the declared object.

® One or more declarators, which list the identifiers of the declared
object and which may contain operators that declare a pointer,
function, or array of objects of the declared type.

¢ At most one initializer for each declared object, giving the initial
value of a scalar variable or the initial values of a structure, union,
or array.

For example, the declaration
static int arrav[101 = { 1+2434+4+53:+6:+7:8:9,10 33

declares a static, 10-element array of integers, named array. The key-
word static specifies the storage class; the keyword int, the data type.
The declarator array(10] specifies an object with the identifier array,
and the bracket operator ([10]) specifies an array size of 10 elements.
The text “= { 1,...10 }”’ is an initializer that supplies the initial values
of the 10 elements; the first element, array[0], is given the initial value
1, and so on.

3.2 Scalar Declarations and Types

In simple scalar declarations, each declarator is an identifier. For
example:

int Hoevsezi

declares three integers named x, y, and z. Since no storage class is
specified, a default storage class is used. If this declaration appears
outside any function, it is a definition of the external variables x, y, and
z; that is, the variables are given the storage class extern by default. If

the declaration appears within a function, x, y, and z are given the
storage class auto by default.

Data Types and Declarations 27

The scalar data types — integers, characters, floating-point numbers,
pointers, and enumerated types — are described in the subsections that
follow.

3.2.1 Integers

Integers are declared with the keywords int, short, long, char, and
unsigned, which specify the following internal representations:

¢ int and long specify a longword (32 bits) representing a signed
integer. int, long, and long int can be used interchangeably in
VAX-11 C. The range of possible int values is -2,147,483,648 to
2,147,483,647.

short specifies a word (16 bits) representing a signed integer. short
and short int can be used interchangeably. The range of possible
short values is -32,738 to 32,767.

char specifies a byte (8 bits) representing a signed integer. char
variables can participate in arithmetic expressions with other in-
tegers. The numeric range of possible char values is -128 to 127.
However, they usually represent ASCII characters.

unsigned specifies a longword representing an unsigned integer.
unsigned and unsigned int can be used interchangeably. The
range of possible unsigned values is 0 to 4,294,967,295. unsigned
char and unsigned short are also valid, meaning 8- and 16-bit
unsigned integers, respectively. The range of possible unsigned
char values is 0 to 255, and the range of possible unsigned short
values is 0 to 65,535.

C also has integer constants in decimal, octal, and hexadecimal ra-
dixes. An integer constant is assumed to be decimal unless it begins
with 0 or Ox; if it begins with 0, it is assumed to be octal; if it begins
with 0x, it is assumed to be hexadecimal.

Integer constants must consist of the characters 0 to 9 and, optionally,
the characters x, X, 1, L, and -. (Because C has no unary plus operator,
integer constants cannot include a plus sign.) In octal constants, the
digits 8 and 9 have the octal values 10 and 11, respectively. Hexadeci-
mal constants may also use either ‘A’ to ‘F’ or ‘a’ to ‘f’.

Integer constants must not include a decimal point; constants with a
decimal point are of type double.

Integer constants that exceed a longword are treated as programming
errors and are flagged by the VAX-11 C compiler.

A decimal, octal, or hexadecimal integer immediately followed by an
upper- or lowercase L is a long constant. Note, however, that int and
long are identical data types in VAX-11 C, so the L suffix is not
necessary.

28 Chapter 3

Examples of invalid integer constants include:

143, /% INCLUDES A DECIMAL POINTS
TYPE IS double */

-3333333333 /% DUT OF RANGE FOR int #/

+33333 /% + IS5 AN INVALID CHARACTER #/

77af /% HEXADECIMAL CONSTANTS MUST BE

PREFIXED WITH Ox */

Note that char constants, such as ‘a’ and ‘$’, are valid integer con-
stants, too. Their integer values in VAX-11 C are the values of the
corresponding ASCII codes.

3.2.2 Characters and Character Strings

A character variable is declared with the keyword char, and character
constants are single characters enclosed in apostrophes, as in:

/% ch IS A CHARACTER VARIABLE */
char chi

/% THE LOWERCASE LETTER ‘a’ IS
A CONSTANT ASSIGNED TO ch */

.

ch = ‘a’}

A character-string variable is declared as an array of type char. A
character-string constant is a series of characters enclosed in quotation
marks and, in expressions, is treated as the address of the first charac-
ter in the string. String constants cannot be directly assigned (with the
assignment operator) to string variables, because arrays cannot be used
on the left-hand side of the assignment operator. Instead, strings are
copied with the strepy and strnepy functions. (strepy and strnepy are
string-manipulating functions described in Chapter 6.) For example:

/% stringd IS A 10-ELEMENT ARRAY OF char %/
char stringdgl1013

/% COPY THE STRING constant INTO THE ARRAY string */
strepy(strinds"constant")i

Data Types and Declarations 29

NOTE

The apostrophe (") and quotation mark (") are significantly
different punctuation marks in C, indicating a char con-
stant and a string constant, respectively. One context in
which the difference is important is in an argument list. If a
function argument is specified as a string, then a constant
argument for that function must be enclosed in quotation
marks, not apostrophes, even if the string contains only one
character.

A single character enclosed in apostrophes is a character constant,
whose value is the ASCII code for the character. Nonprinting charac-
ters, the apostrophe, and the backslash are specified by the following
escape sequences:

Character Mnemonic Escape Sequence
newline NL \n
horizontal tab HT \t

vertical tab VT \v
backspace BS \b

carriage return CR \r

form feed FF \f
backslash \ ARN
apostrophe ’ \’

bit pattern ddd \ddd

Note that an escape sequence, such as ‘\n’, denotes a single character.

The form \ddd is used to specify any byte value (usually an ASCII
code), where ddd is one to three octal digits giving the character’s
value. (Here, the octal digits are limited to 0 to 7.) A common use is
NO Y

to specify the ASCII character NUL.

If the character following the backslash in an escape sequence is not one

shown above, the backslash is ignored; that is, the character constant’s
value is the same as if the backslash were not present.

A string constant is a series of characters enclosed in quotation marks:
"This is a string."

It has the type “array of”’ char and storage class static. The string is
initialized with the given characters and terminated (by the compiler)
with a NUL (‘\0’) character. (The NUL is typically used by programs
to find the end of a string:) Note that this representation means that

1. It is conventional in C programming to refer to these mnemonics as escape
sequences. The term does not have the same meaning here as in “VT52 escape
sequence”’ or other contexts in which it implies a string beginning with the
ASCII character ESC.

30 Chapter 3

there is no formal limit to the length of a string constant. The actual
limit to a string constant’s length in VAX-11 C is 1000 characters. All
strings, even when written identically, are distinct objects.

When used in an expression, a string is treated as the address of the
first character in the string. Thus, if p is a pointer to char, then

P o= "thomasina"j

is a valid expression that copies an address, not a string, to the pointer
p. (Complete strings are transferred from place to place with the func-
tions strepy and strncpy.)

The following rules apply to the characters used in strings:

e All characters, including the escape sequences, can be used in
strings.

¢ A quotation mark within a string must be preceded by a backslash

().

e A backslash followed immediately by a newline is ignored, allow-
ing long strings to be continued on the next line.

3.2.3 Floating-Point Numbers

The keyword float is used to declare a single-precision floating-point
variable, represented internally in the VAX-11 F-floating binary
format. The approximate range of absolute values for a float variable is
0.29 x 1078 t0 1.7 x 10%. The approximate precision of a float variable
is seven decimal digits.

The keyword double declares a double-precision floating-point varia-
ble, represented internally in VAX-11 D-floating binary format. (The
keywords double and long float can be used interchangeably.) The
approximate range of absolute values for double variables is the same
as for floats, but the precision is approximately 16 decimal digits.

A floating constant has an integral part, a decimal point, a fractional
part, an e or E, and an optionally signed integer exponent. The integral
and fractional parts consist of decimal digits; either the integral or
fractional part may be omitted. Either the decimal point or the “E<ex-
ponent>"’ (but not both) may be omitted.

All floating constants are of type double.
Some examples of floating constants are:

3.0e10
3.0E-10
3.0e+10
-3E10
3.0
L120e2

120

Data Types and Declarations 31

Floating-point constants in C can be unsigned or negative; note again
that, because C has no unary plus operator, a constant such as

+3.0el10

is not valid.

3.2.4 Pointers

Pointers in C are variables that contain addresses of other variables.
They are not declared with a keyword, but instead are declared with an
asterisk, as in:

int *px3
The identifier px is declared as a pointer to a variable of type int.

Pointers always contain the addresses of known objects or are null
pointers. A null pointer is a pointer variable that has been assigned the
integer constant 0, and does not point to any object.

A declarator of the form

#declarator

is used to declare a pointer.

The declaration

int *¥intetrs 13

declares intptr as a pointer to an integer and i as an integer.

Pointers are declared as pointing to a particular data type. The “type of
the pointer” (here, int) is used when the pointer participates in certain
arithmetic operations with nonpointer expressions. Furthermore, some
contexts, such as argument lists, may require a pointer of a particular
type.

The unary asterisk (*) is also the indirection operator in C. For
example:

i = *¥intptri
assigns an integer (the value of the object pointed to by intptr) to i.
Since the asterisk can be used in any sort of declarator, you can have

pointers to scalars, to functions, to other pointers, to structures, and so
forth.

The name intptr can also be used without the asterisk operator to
represent the pointer variable, rather than the object it points to. For
example:

intetr = Bxi

assigns the address (using the “address-of”’ unary operator &) of the
variable x to intptr.

32 Chapter 3

3.2.5 Enumerated Types

An enumerated type is a data type that is not derived from other
fundamental types. For example, a type named spectrum can be enu-
merated by writing:

enum sPectrum
{
redsorandesvellowsdreensbluesrindidosviolet
¥

where spectrum is the enumeration tag of the new type, and red,
orange, ...violet are the enumerators. These enumerators are the con-
stant values of the type spectrum and can be used wherever constants
are valid. This declaration merely associates the tag spectrum with the
list of constants and does not declare any data of type spectrum.

Data of type spectrum could be declared by writing a list of identifiers
after the type enumeration

enum sPectrum
{
redsorandgesvellowsdreensbluesrindidosviolet
¥ colorli

or by using the tag spectrum as a reference to the type enumerated
elsewhere, as in:

enum spectrum colorls

Both examples declare colorl as an object of type spectrum — that is, a
spectrum variable. The second form must occur within the scope of the
definition of spectrum.

An enumerated type also can be declared with no tag, as in:

erum
{
outsvervdimsdimsprettvbridghtsbright
Y lidhts

This declaration defines a variable (light) of an enumerated type. The
variable can assume any of the enumerated values, but since there is no
enumeration tag like spectrum, other declarations cannot refer to this
type without replicating the entire list of constant values: out, verydim,
... bright.

enum tags (such as spectrum) can have the same spellings as other
identifiers in the same program (including variables and member
names in structures and unions), because the meanings are distin-
guished by context. Tags are subject to the same scope rules as other
identifiers. However, enum constant names must be spelled uniquely.

Data Types and Declarations 33

In declarations of enumerated types, the place of a data type keyword is
taken by an enum-specifier of the form:

enum-specifier ::=
enum identifier { enum-list }
enum identifier
enum { enum-list |

where the identifier is the name, or tag, of the new type. The enum-list
gives an ordered list of values that a datum of this type can have. Thus:

enum-list ::=
enumerator
enum-list , enumerator

where

enumerator =
identifier
identifier = constant-expression

Internally, each enumerator is associated with an integer constant; the
first enumerator in the enum-list is given the value zero by default, and
the enumerators are incremented by one as they are read from left to
right. Any enumerator can be followed by the syntax “= constant-
expression” to set it to a specific (integer) constant value. The enu-
merators to the right of such a construct (unless they have constant
expressions, too) then receive values that begin at constant-expres-
sion+1. For instance:
enum srPectrum

{

redsvellow=Z2sdreensbluesindidosviolet

T3

gives red, yellow, green, ... the values 0,2,3,

Enumerated data types should be regarded as distinct from the funda-
mental types, although they are stored internally as integers. Examin-
ing the value of an object like spectrum above (by writing it out, for
instance) shows an integer, not a string such as “red” or “yellow.”

34 Chapter 3

Type mismatches between the enumerated and fundamental types, or
between different enumerated types, are considered errors. Thus, it is
not valid to say
enum srPrectrum

{

redsorandesvellowsdreensbluesindidosrviolet

¥ colorls

enum 11lum
{
outsverydimsdimsprettybridhtsbright
¥ lidhts
.

lidht = redj

because red and light have different enumerated types. Nor is it valid
to say
entm

{

outsuerydimsdimsprettybridhtsbright

¥ lidhts

+

lidght = 13
because 1 is not an enumerated value for light.

To make mixed-type operations valid, use the cast operator. For
example:

light = out + (enum illum) red3

+

light = (enum illum) 13

Here, the cast (enum illum) causes the compiler to treat the enum
constant red and the integer constant 1 as values of the enumerated
type illum. (For general information on the cast operator, see Section
4.3.5.)

3.3 Storage Classes

The storage class of a name determines its location and scope. The C
storage classes are:

e auto, indicating that storage is allocated at the activation of the
defining block (that is, at run time) and exists only for the dura-
tion of that block activation.

Data Types and Declarations 35

static, indicating that the storage is allocated at compile time and
exists for the duration of the program. static variables reside in
the program section (psect) named $DATA; however, static
readonly variables reside in the program section named $CODE.

e register, indicating (to C compilers in general) that the variable is
to be placed in a machine register, if possible (only function
parameters and automatic variables can have this class).

In VAX-11 C, registers are allocated based on frequency of use of a
given variable. The keyword register is ignored by the VAX-11 C
compiler. Any scalar variable with the storage class auto or regis-
ter is eligible for allocation to registers as long as its address is not
taken with the ampersand operator and it is not a member of a
structure or union.

extern, indicating a reference to storage defined elsewhere in an
external data definition. No storage is allocated by an extern dec-
laration, and thus no initializers can appear in it.

In VAX-11 C, each extern variable is assigned a separate program
section with the same name as the variable. If readonly appears,
the program section has the NOWRT (not writeable) attribute.
There can be approximately 65,532 extern names per compilation.

globaldef, defining the variable as a global symbol.

globalref, indicating that the variable is a global symbol that is
defined elsewhere.

readonly, used with static, extern, and globaldef. It assigns the
variable in a program section with the attribute NOWRT. The
keyword readonly, used by itself, implies extern.

globalvalue, indicating that the declared object is a global name
for an integer (or enum value).

For more details on globalref, globaldef, globalvalue, and readonly,
see Chapter 10, Storage Allocation, and Chapter 11, Global Symbols.

The auto and register classes are local, or internal, to their defining
blocks. static names may be known internally or externally, depending
on whether the declaration of the object is inside or outside a function
definition. extern names are known everywhere within the scope of
their external definitions.

As with many languages, VAX-11 C programs are often constructed of
separately compiled modules. Each module can contain several func-
tion definitions and several external data definitions. It is primarily in
this case that the difference between static and extern is significant. In
an external data definition, a name can be declared with either static
or extern; however, a static name is known only in the remainder of its
own module, whereas an extern name is known everywhere in the pro-
gram. For more information, see Section 10.1.

36 Chapter 3

If no storage-class specifier appears in a declaration, the defaults are as
follows:

¢ Inside a function, the default is auto (except for function identi-
fiers).

e Qutside a function (that is, in an external data definition), the
construct is considered to be the definition of an extern variable.
globaldef and globalvalue, which are VAX-11 C extensions, are
never taken as defaults.

extern, globaldef, and static variables are initialized to zero by default
(and only once) if no initialization is specified explicitly.

An explicitly initialized auto or register variable is initialized each
time its declaring function or block is activated normally (that is, con-
trol is transferred into the block by some means other than a goto
statement). There is no default initialization of such variables.

3.4 Data Structures

The aggregate data types — arrays, structures, and unions — are de-
scribed in the sections that follow.

3.4.1 Arrays

Arrays are declared with square brackets ([]). The elements of an array
can be other arrays (to form multidimensional arrays), structures,
unions, scalars of all types, and pointers to any object.

If an array name appears in the argument list of a function, the address
of the beginning of the array is passed. Therefore, subscripted refer-
ences in the called function can modify elements of the array.

A declarator of the form
declarator[constant-expression]

is used to declare an array. The constant expression gives the number of
elements in a single dimension. Array subscripts in C begin with 0, not
1, and they must be integral. Therefore, the constant expression gives
the number of elements in a dimension, but not the maximum sub-
script. That is,

int arravint[1013

declares an array of 10 integers; the maximum subscript is 9.

A multidimensional array is declared as an array of arrays, for example:
int arrav2C01010213

where array2 is a two-dimensional array containing 20 integers. The
same syntax is used to reference an individual element, as in:

++arrav2[0IL015 /% INCREMENT FIRST ELEMENT. #*/

Data Types and Declarations 37

An element of a multidimensional array should not be referenced with
multiple expressions in the same set of brackets; in fact, since the
comma is an operator, the reference to arrayl(i,j] is the same as a refer-
ence to array(jl.

In C, arrays are stored in row-major order (the rightmost subscript
varies most rapidly).

The constant expression is optional only in the first pair of brackets
after the array’s identifier. Omission of the constant expression is useful
in the following cases:

38

If the array is external, its storage is allocated by a remote defini-
tion. Therefore, the constant expression can be omitted for con-
venience when the array name is declared, as in:

extern int arrav1[13§
function-1C)

{

'

+

¥
In a separate compilation:

int arrav1C1013
function_.20)
{

+

¥

If the declaration of the array includes initializers, the size of the
array can be omitted; it is calculated from the number of initial-
izers.

If the array is used as a function parameter, it is defined in the
calling function. The declaration of the parameter in the called
function can omit the constant expression. Example 3-1 shows
how an array is used in this way.

Chapter 3

main?l

i

J% STRING TO BE FPASSED AS

A POINTER TO CHAR =/

char *s = "Thomas"3
int sumi
sum = adderis}i

¥

J# ADD UP ASBCII VALUES =/

adderi{istring)

ARGUMENT IS

/+ DECLARATION OF PARAMETER OMITS THE

EXPRESSION */
char strindgll3
{

/% GUM IS5 INITIALLY ZERD =/

int 1:sum=03
for (i=03% stringlil I=
return sumi

¥

TNOTE)

DECLARED

CONSTANT

[£}=1

sumt=stringlils

Example 3-1: Using Arrays as Function Parameters

When the function adder is called, the parameter “string” receives
the address of the first character of the argument s, which can then
be manipulated in adder. The declaration

char stringl13

serves only to give the type of the parameter, not to reserve storage

for it.

3.4.2 Structures and Unions

Structures and unions are declared by the keywords struct and union,
respectively. The members of a structure all begin at different offsets
from the base of the structure. The offset of a particular member corre-
sponds to the order of its declaration; the first member is at offset 0.

In a union, every member begins at offset 0 from the address of the
union; that is, each member of a union denotes the same storage.

Unions cannot be initialized.

Structures and unions share the following characteristics:

e Their members can be variables of any type, including other struc-
tures and unions or arrays. A member can also consist of a speci-

fied number of bits, called a

field.

e They can be assigned to other structures and unions with the
simple assignment operator (=). The two structures or unions in

the assignment must have the same length.

Data Types and Declarations

39

They can be passed as arguments that correspond to structure or
union parameters, and returned by functions. The two structures
or unions involved in argument passing must have the same
length. A structure or union is passed by value, just like a scalar
variable; that is, the entire structure or union is copied into the
corresponding parameter.

The only operators that are valid with structures and unions are
simple assignment (=) and sizeof. In particular, structures and
unions may not appear as operands of the equality (==), inequal-
ity (!=), or cast operator.

Structures and unions are declared with the struct or union type speci-

fier:

struct-or-union-specifier ::=

struct { struct-decl-list }

struct identifier { struct-decl-list }
struct identifier

union { struct-decl-list }

union identifier { struct-decl-list }
union identifier

Except for the keywords struct and union, these aggregates are de-
clared with identical syntax. The optional identifier in the above syntax
is known as the tag of the structure or union. The forms of declaration
are used as follows:

1.

2.

If the tag is omitted, the structure or union definition applies
only to the identifiers that follow it in the declaration.

If a declaration includes both the tag and struct-decl-list, then it
declares one or more identifiers to be variables with the given
structure, and it declares the tag to be a shorthand, or mne-
monic, notation for the structure.

The third form above uses the tag to refer to a previously defined
structure or union. The definition is then applied to the identi-
fiers that follow the struct-or-union-specifier in the declaration.

The following examples illustrate the three forms of structure declara-

tion:

/% FIRST FORM3i STRUCTURE WITH NO TAG %/
struct

40

{
char first[2013F /% FIRST NAME. */
char middlel[213% /% MIDDLE INITIAL AND PERIOD. */
char last[3013F /% LAST NAME. */
int iail /% IQ. %/
Y tomsmary i} /% AND TWO VARIABLES WITH
THIS STRUCTURE., #/

Chapter 3

Each successive nonfield member of a structure begins at the next byte
boundary; there is no implicit type alignment. For example, the mem-
ber iq is not necessarily aligned on a longword boundary, even though it
is an int.!

A reference to a member of a structure must be fully qualified, or it
must be a pointer-qualified reference (discussed later). For example,
the reference to Tom’s IQ is:

tom.iq

A member name denotes the member’s data type and its offset from the
base of the structure. There are no restrictions on the reuse (as a mem-
ber name) or redeclaration of a particular name except that the same
name cannot be used for more than one member in the same structure.
A member name is unique if it conforms to either of the following
requirements:

e It is used only once.

e If it is used more than once (in different structures), every use
denotes a member of the same data type and at the same offset
from the base of its structure.

Member names are normally used to refer to the same structure or
union in which the member name was declared. The following checks
apply to the use of member names for reference to structures and
unions in which they were not declared:

e If a member name is unique, you can use it in a reference to a
structure of which it is not a member, since the address and size of
the referenced datum can be determined without ambiguity. How-
ever, the compiler issues a nonfatal warning message. (This usage
is maintained for compatibility with old C programs.)

e If a member name is not unique (ambiguous), its use in such a
reference causes a fatal error message.

In VAX-11 C, and in other recent compilers, a structure or union refer-
ence must be uniquely qualified; that is, a member name in a reference
must be prefixed either with a pointer qualifier (pointer-name ->) or
with the name of the structure or union and the names of all interven-
ing members that are required to make the reference unambiguous. For
example, consider the following structure declaration:

1. This alignment of structure members is a VAX-11 C convention and is fol-
lowed by all other VAX-11 languages. Other C implementations may align
members differently.

Data Types and Declarations 41

mainl}

{
struct
{
struct £ int alsa2:a3% } memasj
struct £ int alsa2,al33% ¥ membi
P #pointersstructures
Fpointer = &structure:
structure.mema.al = 13 /% NONAMBIGUOUS #/
pointer-smemb.al = 23
structure,al = 33 /¥ AMBIGUOUS */
Pointer-*al = 43
F

A reference to one of the integers in this structure must be of the form:

structure.mema.al
Pointer-smema,al

but not:

structure.al

pointer-ral

In fact, structure members that are themselves structures must be
given member names (as with mema above) to make it possible to
construct fully qualified references.

If the structure has a tag, then the tag can be used to declare more
variables with the same structure. For example:

J# BECOND FORMY STRUCTURE WITH THE TAG rerson #/
sLruct Person

{

char first[20] /% FIRST NAME =/

char middlel21% /% MIDDLE INITIAL #/

char last[3013 /¥ LAST NAME =/

int i FHTIQ w®/

i /% NO VARIABLES DECLARED HERE :

JUST THE STRUCTURE AND ITE TAG =/

/% THIRD FORM: TWO STRUCTURE YARIABLES
OF TYPE rperson #*/
struct rerson dickK»danesd

Structure tags can have the same spellings as other variables. The
compiler distinguishes them by context. Structure tags can also have
the same spellings as member names.

42 Chapter 3

Structures can contain other structures. For example:

struct date
{
int days
int monthsi
int veari
int veardavsi
char month_nameld413
i

struct person /% STRUCTURE WITH THE TAG Person */

{

char first[Z2013

char middlel[215%

char last[3013

int i493

struct date births
struct date elections

/¥
/¥
/¥
/¥
/*
/%

FIRST NAME =/
MIDDLE INITIAL */
LAST NAME */

10 */

DATE OF BIRTH */
DATE OF ELECTION */

¥i /% NDO VARIABLES ARE DECLARED */

/% DECLARE dick AND Jane AS STRUCTURES OF TYPE
person WITH date OF birth AND election #*/

struct person dicksdanes

In a structure or union declaration, the keyword struct or union (and
the tag, if there is one) is followed by a a pair of braces ({}) that enclose

a list of the form:

struct-decl-list ::=
struct-declaration

struct-declaration struct-decl-list

Each struct-declaration describes an individual member, giving its type

and other attributes:

struct-declaration ::=

type-specifier struct-declarator-list ;

where struct-declarators have the form:

struct-declarator ::=
declarator

declarator : constant-expression

: constant-expression

Usually, a struct-declarator is just a declarator for the member of the
structure or union, as in the previous examples where the declarator

char first[2013

specified a member that was a 20-element array of char.

Data Types and Declarations

43

In structure declarations, initializers follow the structure variables, not
the members. Consider, for example:

struct
{
int i3
float cf
Ya =49 143,010 ¥y b = { 241,5e3 }3

This example declares the structure variables a and b with different
initial values.

A structure member may also consist of a specified number of bits,
called a field, which may be either named or unnamed. A colon is used
to separate the member’s declarator (if any) from a constant-expression
that gives the field width in bits. No field may be longer than 32 bits in
VAX-11 C.

If no field name precedes the field-width expression, the struct-declara-
tor indicates an unnamed field of the specified width. Note that since
nonfield structure members are aligned on byte boundaries, this form
can create unnamed gaps in the structure’s storage. As a special case,
an unnamed field of width zero causes the next member (generally
another field) to be aligned on a byte boundary.

The use of field types other than unsigned or int is an error. There are
no restrictions on the use of fields except as follows:

e There can be no arrays of fields.

e The “address of”’ (&) operator cannot be applied to fields, and
consequently there cannot be pointers to fields.

Scalar items (except fields), arrays, structures, unions, and enum
members are aligned on the next byte boundary. Sequences of fields are
packed as tightly as possible. On the VAX-11, fields are assigned from
right to left.

For example, the following structure declaration results in the align-
ments shown in Figure 3-1:

static struct
{
char ci
short int i3
unsidgned fldl @ 31
unsidned f1d42 = 43
unsidgned : 03
unsidgned f1d43 @ 43
Ya =4 A’y 1024y 06y 012, 014 ¥ 3§

44 Chapter 3

31 0

%
unused é 1010110 | 00000100 | 00000000 | 01000001
7
[-~ N g’
a.fld2 a.fld1 a.i a.c
35 32

1100

N— -
unused a.fld3

ZK-286-81
Figure 3-1: Alignment of Structure Members

In Figure 3-1, the member a.i is aligned on the second byte (at bit 8),
because scalar, nonfield members are aligned on byte boundaries. No-
tice that the fields a.fld1 and a.fld2 are packed as tightly as possible in
the high-order byte of the first longword. The unnamed, zero-length
field preceding a.fld3 causes that field to be aligned on the next byte
boundary, bit 32.

You can use the /MAP qualifier on the LINK command to produce a
storage map. The storage map shows how structure members have been
aligned by the linker.

3.5 Initialization

In declarations, variables can be given initial values with an initializer.
An initializer consists of an equal sign (=) followed by either a single
expression or a comma-separated list of one or more expressions in
braces.

For static and extern variables, all expressions in an initializer must be
constant expressions or must give the address of a previously declared
variable, possibly offset by a constant expression.

For auto and register variables, the expressions in an initializer may
be arbitrary expressions involving previously declared variables, con-
stants, and functions. To be used in initializers, variables and functions
must have known values. That is, a variable must have been initialized
or assigned a value, and a function must return a value.

Data Types and Declarations 45

3.5.1 Initialization of Scalar Variables

An initializer that applies to a scalar variable contains a single expres-
sion, possibly enclosed in braces. The evaluated expression is used as
the scalar’s initial value, with the same conversions performed as for an
assignment to the type of the scalar. For example, the declarations

int 1 =

i e

i

a’s
3.,0e103%
13

char ch
float ¢
float f

non

initialize the variables i, ch, ¢, and f with 1, “a’, 3.0e10, and 1, respec-
tively. At compile time, the integer constant 1 is converted to float
before it is used to initialize f.

3.5.2 Initialization of Aggregate Variables

Initializers are assigned to an array or structure in row-major order or
increasing member order. If there are fewer initializers than members
for a static aggregate, the aggregate is padded with zeros. The following
rules govern the use of braces in initializer lists for structures and
arrays:

e If the initializer for an aggregate begins with a left brace ({), then
the following comma-separated list provides initial values for the
aggregate’s elements or members. The list of initializers can end
with a comma, which is ignored. The number of initializers cannot
be greater than the number of elements or members.

e If the initializer does not begin with a left brace, then only enough
elements are taken from the initializer list to supply values to the
aggregate’s members. In this case, there can be more initializers
than there are elements or members, and any remaining values in
the list are left to initialize the next aggregate.

For example, the declaration:

static int x[4103]1 =
{
£ 14243 ¥
{ 44546 ¥
{ 748:9 ¥
i

initializes the first nine elements of the 12-element (two-dimensional)
array x: x[0][0] is initially 1, x[0](1] is 2,...x[2](2] is 9. That is, each inner
set of braces matches one row of the array. So, the initializer for row x[0]
begins with a left brace, and the three initial values following the brace
initialize that row’s elements. There cannot be more than three initial
values. No initializers are given for the last row, row x[3], so, because x

46 Chapter 3

has storage class statie, x[31[0],...x[3][2] are initialized with zero. The
comma following the last initializer ({ 7, 8, 9 }) is ignored. This decla-
ration has the identical effect as:

static int x[43031 = { 1:2:3:4:5:6:7:8:8 X3

In this case, although the initializer for x begins with a left brace, the
initializer for row x[0] does not; therefore, the first three initial values
are taken for x[0][0],...x[0]{2], and the leftover values remain for the next
aggregate. The next aggregate is row x[1]; again, that row’s initializer
does not begin with a left brace, so the values 4, 5, and 6 initialize the
elements in that row.

If the initializers for the rows do not specify enough values for each
column, then the elements corresponding to the missing values are
initialized with zero. For example:

static int x[41[31 =

{

{ 142 ¥

{ 4435 ¥

L 748 ¥

R
initializes x[0][0] with 1, x[01[1] with 2, x[1]1[0] with 4,..., x[2][2] with 8.
The elements in column 2, such as x[0][2], are initialized with zero, as
are all the elements in the row x[3].

When the size of an array is omitted from a declaration, the compiler
determines the size by counting the initializers. For example:

int binsCl = {14+2:+3+4,5%)3
Here, the array bins is given a size of 5 elements.

An array of characters can be initialized with a string constant as long
as the storage class of the array is not auto. In that case, the assumed
size includes the NUL character which terminates all strings. For
example:

static char namell = "Wilbur";j

makes “name”’ an array of 7 characters, and is equivalent to

char nmamell = L7W /17 +717 /b s u’ s s 0"
or
char namel71 = LW 71721 s b s 0’ s 07 N0

There is no way to specify iterations of an initializer or to initialize an
element or member in the middle of an aggregate without also initializ-
ing the previous elements or members.

Example 3-2 shows these rules applied to an array of structures.

Data Types and Declarations 47

main()

{
int 1sms
static struct
{
char chi
float o
Y ar[21031 =
{
/% INITIALIZER FOR ROW arlOI: */
{{7a’+y 1+ 3el0),
{'b7y 2y 4el0},
{/c’y 3y 5el0});
/% NO INITIALIZER FOR ROW arC11 */
¥
for (1 = 03§ 1 < 27 1++)
for (m = 0F m < 3§ m++)
{
printf("first members row %d col %d:
lsmsarl1Imlsich) s
printf{"second members row %d col %d:
TemsarllIiml. i)
printf("third members row %d col %d:
lsmsarL1ICml.c)s
>
¥

This program writes the following output to stdout:

first members row O col O a

second members row O col Oz 1

third members row O col O 3.,000000e+10
first members row O col 1: b

second membersy row O col 1: Z

third members row O col : 4,000000e+10
first membersy row O col HE

second members row O col 2Z: 3

third members row O col 2Z: 5,000000e+10
first members row 1 col O:

second members, row 1 col O O

third members row 1 col O: 0,000000e+00
first members row 1 col 1:
second members» row 1 col 1: O
third members row 1 col 1:
first members row 1 col Z2:
second members row 1 col 2: O

third members row 1 col Z2: 0,000000e+00

1

Example 3-2: Arrays of Structures

48

nein
FdNn'

he\n"

Chapter 3

3.6 Scope of Names

The scope of a name is that ‘portion of a program in which the name has
meaning. The following scope rules apply to the names of enum con-
stants, typedef names, variables, and functions:

¢ The scope of a name defined in an external data definition is the
remainder of the current compilation. That is, the scope is the
remainder of the source file plus any source files that are con-
catenated in the compiler command line after the source file con-
taining the definition. The scope can be overridden by a declara-
tion in a subsequent function or block.

The scope of a name defined in a block is limited to that block.
The definition can be overridden by a declaration in an internal
block.

The scope of a parameter name is the entire function in which the
name is declared. The definition can be overridden by a declara-
tion in an internal block.

e Function names are implicitly declared as extern when an unde-
clared function is called.

There are other categories of names that can be used without conflict
with variable and function names or with each other. These are:

¢ The names of labels. Labels are used only as the targets of goto
statements, and that context distinguishes them from variables of
the same name. The scope of a label name is the entire function in
which the label appears.

¢ The tags used in struct and union declarations. Two structures or
enum types cannot.have the same tag, but the tags can be the
same as the identifiers used for variable and function names. The
scope of tags is the same as the scope of the declarations in which
they appear. (Note that enum constant names, unlike enum tags,
must be distinct from the names of variables or functions in the
same scope.)

e The names of structure or union members. The scope of member
names is the same as the scope of the declarations in which they
appear.

3.7 Interpreting Declarations

The C programming language syntax for declaring objects is rather
unlike the declaration syntax of other languages. Since the exact mean-
ing of a complicated C declaration is not always immediately apparent,
even to an experienced C programmer, this section gives guidelines for
interpreting (or, possibly, constructing) C declarations.

Data Types and Declarations 49

C uses the same set of operators and symbols for declarators as for
identifiers in an expression. For example:

int ®i !

int #¥pui

declare an integer, x, and a pointer to an integer, px. The declarator
*px has the same form as that used to yield an integer in an expression,
such as:

Hom EP

In the case of simple declarators, this symmetry makes it fairly easy to
determine the type of an expression or the meaning of a declarator.

More complicated declarators can be more difficult to interpret without
some additional guidelines. The important one to remember is that the
symbols used in declarators are C operators, subject to the usual rules
of precedence and grouping (associativity). In order of precedence, the
operators used in declarators are:

1. The primary-expression operators () for “function returning...”
and [] for “array of...”, where the ellipsis indicates the type
specified in the declaration. These operators group from left to
right.

2. The unary asterisk (*), for indirection or “‘pointer to...”, which
groups from right to left.

Consider, for example:
int #x[13

Even this brief declaration may be confusing. Does it declare an array
of pointers to integers, or a pointer to an array of integers? Since the
brackets are of higher precedence, it follows that:

1. *x[1is an integer
2. xL[1 is a pointer to an integer
3. x is an array of pointers to integers

Most complicated declarators and expressions can be interpreted fairly
quickly by such a sequential breakdown. Note that the asterisk was
removed before the brackets because it is of lower precedence.

Also note that this interpretation process has the desirable property
that it enumerates all the possible usage constructs involving a
declarator and gives the semantic interpretation.

When constructing or interpreting declarations or expressions, use the
following scheme! for translating operators to English and vice versa:

e “#” == “pointer to”
® “(3)” == “function returning”
e “[1” ==‘“array of”’

1. Bruce Anderson, “Type Syntax in the Language C: An Object Lesson in
Syntactic Innovation,” SIGPLAN Notices 15, No. 2 (March 1980).

50 Chapter 3

For a more interesting example, consider:
char #x (3013
The breakdown is:

1. *x()[1is char

2. x()L[1 is (pointer to) char

3. x () is (array of) (pointer to) char

4. x is (function returning) (array of) (pointer to) char

In step 3, the [] operator is removed first because primary-expression
operators are of equal precedence and group from left to right. That is
to say, “()[]” means “function returning array of ’, not ‘““array of func-
tion returning...”.

As a general rule, when breaking down a declaration this way, remove
the operators with the lowest precedence first. Then, if operators are of
equal precedence and group from left to right, remove the rightmost
operator first; if they group from right to left, remove the leftmost
operator first.

As it happens, the declaration shown above is semantically invalid; C
allows functions returning addresses of arrays, but not functions return-
ing arrays. Perhaps the intention was a function returning the address
of an array of pointers to characters. The declaration can be made valid
by starting at the bottom of a breakdown and working back up to a
valid declaration:

% is (function returning) (pointer to) (array of) (pointer to) char
% () is (pointer to) (array of) (pointer to) char

*x () is (array of) (pointer to) char

(%% ())L[1is (pointer to) char

*#(*x())L[1 is char

char *(*x())L13

O o=

In the final declaration, the first asterisk (since it groups right to left)
applies to char. Clearly, such a declaration, once it is known to have
the desired meaning, should have a comment explaining its purpose.

Parentheses (in addition to the () operator) are used in declarations to
change the binding of operators. For example, the outer parentheses
introduced in step 4 of the previous example prevent the brackets from
binding to the inner set of parentheses.

As a last case, consider:

char (% (*¥x()) [1) ()3

Data Types and Declarations 51

This means:

(% (*#x()) [1) () is char

* (*¥x()) [1is (function returning) char

(%#x()) [1is (pointer to) (function returning) char

*x () is (array of) (pointer to) (function returning) char

% () is (pointer to) (array of) (pointer to) (function returning)
char

% is a function returning a pointer to an array of pointers to
functions returning characters

Ouik wo o=

o

Spaces were used in the example to separate the declarator into its
component parts. Since spaces, tabs, and newlines are ignored by the
parser, they can and should be used in actual declarations for clarity.

3.8 typedef

The keyword typedef is used to define an abbreviated name, or syno-
nym, for a lengthy type definition. Grammatically, the word typedef is
a storage-class specifier, so it can precede any valid declaration. In such
a declaration, the identifiers name types instead of variables. For ex-
ample:

tvepedef char CH, *CP, STRINGL101,CF()]3

In the scope of this declaration, CH is a synonym for ‘“‘character,” CP
for “pointer to character,” STRING for ‘“10-element array of charac-
ters,” and CF for “function returning a character.” Each of the type
definitions can be used in that scope to declare variables, as in:

CF ¢ /¥c IS A FUNCTION RETURNING A CHARACTER */
STRING s3 /%s IS A 10-CHARACTER STRING %/

52 Chapter 3

Chapter 4

Expressions and Operators

An expression is any series of symbols that C uses to produce a value.
The simplest expressions are constants and variable names. They have
no operators and they yield a value directly. Other expressions combine
operators and subexpressions to produce values.

This chapter describes the following aspects of expressions and opera-
tors:

e Data type conversions

® Primary expressions and operators

e Unary expressions and operators

¢ Binary expressions and operators

e Assignment expressions and operators

¢ The conditional expression and operator
¢ The comma expression and operator

Table 4-1 shows the set of C operators arranged by precedence. Those
operators with the highest precedence appear at the top of the table;
those with the lowest appear at the bottom. Operators of equal prece-
dence appear in the same row.

For example, in the expression
A*B+C

A and B are multiplied first, because * is of higher precedence than +.
The table also includes the associativity rule that applies to each row of
operators. That is, the expression

A/B/C

is evaluated as

(A/B)/C

because the / operator groups from left to right.

As Table 4-1 shows, the operators fall into the following categories:

¢ Primary operators, which usually modify or qualify identifiers. For
example, both the arrow operator (->) and the period operator
qualify structure references.

e Unary operators, which take a single operand. A familiar example
is the unary minus sign, which negates its arithmetic operand.

53

Table 4-1: Precedence of C Operators

Category Operator Associativity
primary) ->. left to right
unary 17 44+ —— - (type) * & sizeof right to left
binary (mult.) */ % left to right
binary (add.) + - left to right
binary (shift) << >> left to right
binary (relat.) <<= > >= left to right
binary (equal.) == = left to right
binary (bitand) & left to right

binary (bitxor) left to right

binary (bitor) ! left to right
binary (AND) && left to right
binary (OR) i left to right
conditional ?: right to left
assignment = 4= —= *= /= %= >>= <<= &= "= i= right to left
comma , left to right

e Binary operators, which take two operands and perform a variety
of arithmetic and logical operations.

e The conditional operator (a ternary operator), which, in the ex-
pression
AT B 1 Ci
evaluates either expression B or C, based on the evaluation of
expression A.

® Assignment operators, which assign a value to a variable, option-
ally performing an additional operation before the assignment
takes place.

e The comma operator, which guarantees left-to-right evaluation of
comma-separated expressions.

To understand the details about particular operators, you must also
understand the circumstances in which C performs data type conver-
sions.

54 Chapter 4

4.1 Data Type Conversions

C performs data type conversions in three situations:

1. When two or more operands of different types appear in an ex-
pression (including an assignment).

2. When arguments other than long integers, addresses, or double-
precision floating-point numbers are passed to a function.

3. When the data type of an operand is deliberately converted by
the cast operator. (The cast operator is described in Section
4.3.5.)

. 4.1.1 Gonversion of Operands

The following rules (sometimes referred to as the usual arithmetic con-
version rules) govern the conversion of operands in arithmetic expres-
sions. Although they do not specify explicit conversions at the machine-
language level, the rules govern in the following order:

1. Any operands of type char or short (signed or unsigned) are
converted to their 32-bit equivalents (int or unsigned int), and
any of type float are converted to double.

2. Then, if either operand is double, the other is converted to dou-
ble, and that is the type of the result.

3. Otherwise, if either operand is unsigned, the other is converted
to unsigned, and that is the type of the result.

4. Otherwise, both operands must be int, and that is the type of the
result.

The usual arithmetic conversions are performed on all arithmetic
operands. Note that some operators (such as the shift operators >> and
<<) require integers as operands, and this requirement cannot be met if
one operand is of type float or double.

In general, floating-point arithmetic is carried out in double precision.
Whenever an operand of type float appears in an expression, it is con-
verted to type double; the compiler lengthens the operand by padding
its fractional part with zeros.

When an operand of type double is converted to float — for example,
by an assignment — the operand is rounded before being truncated to
float.

A float or double value operand may also be converted to an integer by
assignment to an integral variable. In VAX-11 C, the truncation of the
float or double value is always toward zero.

Conversions also take place between the various kinds of integers. In
VAX-11 C, chars are bytes treated as signed integers. When a longer

Expressions and Operators 55

integer is converted to a shorter integer or to char, it is truncated on the
left; excess bits are discarded. For example:

int ij

char ci

i

OXFFFFFFA413
c o= i

i

assigns hex 41 (‘A’) to c. Shorter signed integers are converted to longer
ones by sign extension.

Whenever an unsigned integer and a signed integer are combined, the
signed integer is converted to unsigned and the result is unsigned. All
conversions from signed to unsigned perform an intermediate conver-
sion to int. For example, the compiler converts a char or short operand
to an unsigned version by first converting it to a signed int and then by
truncating it to form the unsigned version. All conversions from un-
signed to signed (such as by the cast operator) involve an intermediate
conversion to unsigned int.

You can also add integers to pointers, in which case the integer is scaled
(multiplied) by a factor that depends on the type of the object to which
the pointer points. For more details, see the discussion of the additive
operators (Section 4.4.1).

4.1.2 Conversion of Function Arguments

The data types of function arguments are assumed to match the types
of the formal parameters. C does not compare the types case by case.
Instead, all arguments of type float are converted to double, all chars
and shorts are converted to ints, all unsigned chars and unsigned
shorts are converted to unsigned ints, and an array or function name
is converted to the address of the named array or function. No other
conversions are performed automatically, and any mismatches after
these conversions are programming errors. Use the cast operator to pass
arguments to parameters of different types.

56 Chapter 4

4.2 Primary Expressions and Operators

Primary expressions denote values. Primary expressions include previ-
ously declared identifiers, constants (including strings), array refer-
ences, function calls, and structure or union references. Syntactically,
the primary expressions are as follows:

primary =
identifier
constant
string
(expression)
primary (expression-list)
primary [expression]
Ivalue . identifier
primary -> identifier

The simplest forms are identifiers (variable names) and string or arith-
metic constants. Other forms are parenthesized expressions, function
calls, array references, lvalues and rvalues (see Section 4.2.4), and
structure and union references.

4.2.1 Parenthesized Expressions

An expression within parentheses has the same type and value as the
same expression without parentheses. As in declarations, any expres-
sion can be parenthesized to change the grouping, or associativity, of its
operators.

4.2.2 Function Calls

A function call is a primary expression followed by parentheses. The
parentheses may contain a list of arguments (separated by commas) or
may be empty. An undeclared function is assumed to be a function
returning int. If an identifier was declared as a “function returning...”,
but is used in a context other than a function call, it is converted to
“address of function returning...”. That is, the declaration

double atof ()3}

declares a function returning double. The name atof can then be used
in a function call:

result = atof(c)i

Or atof can be used in other contexts without being followed by the
parentheses:

dispatch(atof)i

In the second case, the name atof is converted to the address of that
function, and the address is passed to the dispatch function.

Expressions and Operators 57

4.2.3 Array References

Bracket operators are used to refer to elements of arrays. Given an
array defined as array(10][5](2], you refer to a specific element within
the array, as in the following example:

int array[10ILSI0214

int i3

i = arravy[9I0430113%

This example assigns the value of the element in array[9][4][1] to i.

In addition, if an array reference is not fully qualified, it refers to the
address of the first element in the dimension that is not specified. For
example, the statements

int *#ipj

irp = arrav[9104713

assign the address of array[9](4][0] to the pointer ip. Therefore, you
could write '

irp = arravl89713

to assign the address of array[9][0][0] to the pointer ip. Finally, a refer-
ence such as

ip = arravi

assigns the address of the array’s first element, array[0]1{0][0], to the
pointer ip. A reference to an array name with no bracket operator is
often used to pass the array’s address to another function, as in:

functlarrav)i

Bracket operators can also be used to perform general address arithme-
tic of the form:

addrlintexr]

where addr is the address of some previously declared object (that is, a
pointer-valued expression), and intexp is an integer-valued expression.
The result of the expression is scaled, or multiplied, by the size in bytes
of the addressed object; if intexp is a positive integer, the result is the
address of a subsequent object of this size; if intexp is zero, the result is
the address of the same object; if intexp is negative, the result is the
address of a previous object.

4.2.4 Lvalues

The values of objects are sometimes categorized further, into lvalues
and rvalues. The computer can be considered a machine that manipu-
lates abstract objects which have a specific location and contain a
specific value. The lvalue then denotes the location of an object. That
location is used when the contents of the object are modified. The

58 Chapter 4

rvalue denotes the contents of the object. It is used when the contents of
the object are read. For instance, in the expression

o= v

the contents of y (if y is a variable) are taken and assigned to x. In other
words, the expressions use the rvalue of y and the lvalue of x in per-
forming the assignment.

The following syntax defines those C expressions that either have or
produce lvalues:

Ivalue ::=
identifier
primary [expression]
lvalue . identifier
primary -> identifier
* expression
(Ivalue)

In order, these expressions represent:

1. Names of scalar variables, structures, and unions.

2. References to array elements (also scalars).

3. References to structure and union members (the meaning of the
period operator or the right-arrow operator), except for refer-
ences to fields which are not lvalues.

4. References to pointed-to objects (also called dereferenced
pointers — that is, the asterisk followed by the name of a
pointer variable or by another address-valued expression).

5. Any of the above, enclosed in parentheses.

All lvalue expressions represent a single location in the computer’s
memory.

4.2.5 Structure and Union References

A member of a structure or union can be referenced with either of two
operators: the period or the right arrow.

A primary expression followed by a dot followed by an identifier refers
to a member of a structure or union and is itself a primary expression.
The first expression must be an lvalue naming a structure or union. The
identifier must name a member of that structure or union. The result is
a reference (if the member is a scalar) to the named member of the
structure or union. The name of the desired member must be preceded

1. The word lvalue is sometimes used to mean either an lvalue or one of these
expressions. The context usually makes the meaning clear. In this manual,
lvalue means one of these expressions.

Expressions and Operators 59

by a period-separated list of the names of all higher level members. For
more information, see Section 3.4.2.

The other form for structure and union references uses the arrow opera--
tor. A primary expression followed by an arrow (built from a hyphen (-)
z:zd a greater-than symbol (>)) followed by an identifier refers to a

ember of a structure or union and is itself a primary expression. The
first expression must be a pointer to a structure or a union. It must be
some expression that results in a structure’s or union’s address. The
identifier must name a member of that structure or union. The result is
a reference to the named member.

4.3 Unary Expressions and Operators

Unary expressions are formed by combining a unary operator with a
single operand. All unary operators are of equal precedence and group
from right to left. They perform the following operations:

® Negate a variable arithmetically (-) or logically (!).

e Increment (++) and decrement (--) variables.

¢ Find addresses (&) and dereference pointers (*).

e Calculate a one’s complement (7).

e Force the conversion of data from one type to another (cast).
e Calculate the sizes of specific variables or of types (sizeof).

4.3.1 Negating Arithmetic and Logical Expressions
The result of the expression
- expression

is the arithmetic negative of the expression. The usual arithmetic
conversions are performed. The negative of an unsigned quantity is
computed by subtracting its value from 232, There is no unary plus
operator in C.

The result of the expression
! expression

is the logical (Boolean) negative of the expression. If the expression is
zero, the result is 1; if the expression is not zero, the result is 0. The
type of the result is int. The expression can be a pointer (or other
address-valued expression) or an expression of any arithmetic type.

4.3.2 Incrementing and Decrementing Variables
The object referred to by the lvalue in the expression
++lvalue

is incremented before its value is used. The result is a new value of the
object, not a reference to the object; for instance, the above expression
could not appear by itself on the left side of an assignment expression.

60 Chapter 4

The object referred to by the lvalue in the expression
Ilvalue++

is incremented after its value is used. The result is the value of the
.object before the increment, not a reference to the object.

If the operand is a pointer, the address it contains is incremented by the
length of the addressed object.

The objects referred to by the lvalues in the expressions

--lvalue
Ilvalue--

are decremented analogously to the prefix and postfix ++ operators.
Again, the result is the value of the object either before or after the
decrement, not a reference to the object; that is, the expression
—-lvalue or lvalue—- cannot be used alone on the left side of an assign-
ment expression.

If the operand is a pointer, the address it contains is decremented by
the length of the addressed object.

4.3.3 Computing Addresses and Dereferencing Pointers
The expression
& lvalue

results in the address of the object to which the lvalue refers. The
ampersand operator may not be applied to register variables or to bit
fields in structures or unions.

In the special case of argument lists, the ampersand operator may be
applied to constants. This use of the ampersand operator passes con-
stants to non-C functions that expect arguments to be passed by refer-
ence. This use is not recommended for other applications.

In the following
* expression

the asterisk operation means indirection. The expression must be a
pointer or other address-valued expression, and the result is a reference
to the object to which the expression points. The type of the addressed
object is the type of the result.

1. In VAX-11 C, any register variable to which the ampersand operator is
applied is simply changed to auto. No warning message is issued.

Expressions and Operators 61

4.3.4 Calculating a One’s Gomplement
The result of
” expression

is the one’s complement of the expression. The expression must be:
integral (an integer or character). The usual arithmetic conversions are
performed.

4.3.5 Forcing Conversions to a Specific Type

The cast operator is used to force the conversion of an operand to a
-specified scalar data type. The operator consists of a data type name,
written in parentheses, which precedes the operand expression:

(type-name) expression

The value of the expression is converted to the named type, just as if
the expression were assigned to a variable of that type. If the operand is
a variable, its value is taken and then converted to the named type.
The variable’s contents are not changed. The type name has the follow-
ing formal syntax:

type-name ::=
type-specifier abstract-declarator
In simple cases, the type specifier is the keyword for the data type, such

as char or double. The type specifier may also be a struct-or-union
specifier or an enum-specifier or a typedef tag.

The abstract declarator is a declaration without the identifier:

abstract-declarator ::=
empty
(abstract-declarator)
+ abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expression |

To avoid confusion with the form
abstract-declarator()

the abstract declarator may not be empty in:
(abstract-declarator)

Abstract declarators may include the brackets and parentheses that
indicate arrays and function calls. However, cast operations may not
force the conversion of any expression to an array, function, structure,
or union. The brackets and parentheses are used in such operations as

(int (*)L1) P1

which casts P1 to “pointer to array of int.” Note that this kind of cast
operation in no way changes the contents of P1; it only causes the
compiler to treat the value of P1 as a pointer to such an array. For

62 Chapter 4

example, casting pointers this way can change the scaling that occurs
when an integer is added to the pointer.

4.3.6 Calculating Sizes of Variables and Data Types
In the expressions

sizeof expression
sizeof (type-name)

the result is the size in bytes of the operand. In the first case, the result
of sizeof is determined from the declarations of the objects in the ex-
pression. In the second case, the result is the size in bytes of an object of
the named type. The syntax of type-name is the same as for the cast
operator.

4.4 Binary Expressions and Operators

The binary operators fall into the following categories:
e Additive operators: addition (+) and subtraction (-).

e Multiplicative operators: multiplication (%), mod (%), and divi-
sion (/).

e Equality operators: equality (==) and inequality (!=).

¢ Relational operators: less than (<), less than or equal to (<=),
greater than (>), and greater than or equal to (>=).

¢ Bitwise operators: AND (&), OR (!), and XOR ().
e Logical operators: AND (&&) and OR (i }).
o Shift operators: left (<<) and right (>>).

4.4.1 Additive Operators

The additive operators + and - perform addition and subtraction. Their
operands are transformed by the usual arithmetic conversions.

The address of an array element and a value of any integral type can be
added. The compiler converts the integer to an address offset by multi-
plying the integer by the length of the addressed object. The result is
the address of an object of the same type as the originally addressed
object, where both objects are in the same array.

A value of any integral type may be subtracted from a pointer or ad-
dress; then, the same conversions apply as for addition.

When two enum constants or variables are combined, the result is of
type int.

Expressions and Operators 63

If two addresses of objects of the same type are subtracted, the result is
converted (it is divided by the length of the object) to an int represent-
ing the number of objects separating the addressed objects. The results
of this conversion are unpredictable unless the two objects are in the
same array.

4.4.2 Multiplicative Operators

The multiplicative operators *, /, and % perform the usual arithmetic
conversions. The binary * operator performs multiplication. The binary
/ operator performs division. When integers are divided, truncation is
toward zero.

The binary % (mod) operator divides the first operand by the second
and yields the remainder. Both operands must be integral. The sign of
the result is the same as the sign of the quotient. If b is not zero, then it
is always true that (a/b)*b + a%b equals a.

4.4.3 Equality Operators

The equality operators == (equal to) and != (not equal to) perform the
usual arithmetic conversions on their two operands. Like the relational
operators, they produce a result of type int, so that

ath == gdd

is 1 if both relational expressions have the same truth value, and 0 if
they do not. Two pointers or addresses are equal if they identify the
same storage location. A pointer or address can be compared with an
integer, but the result is not portable unless the integer is zero; a null
pointer is considered equal to zero.

Although different symbols are used for assignment and equality (=
and ==, respectively), C allows either operator in some contexts, so you
must be careful not to confuse them. For example:

if (x=1) statement-1;
else statement-2;

always executes statement-1, since the value of the expression x=11is 1.

4.4.4 Relational Operators

The relational operators compare two operands and produce a result of
type int. The result is 0 if the relation is false and 1 if it is true. The
operators are < (less than), > (greater than), <= (less than or equal to),
and >= (greater than or equal to). The usual arithmetic conversions are
performed. If two pointers or addresses are compared, the result de-
pends on the relative locations of the two addressed objects. Pointers to
objects at lower addresses are “less than” pointers to objects at higher
addresses. If two addresses indicate elements in the same array, the
address of an element with a lower subscript is less than the address of
an element with a higher subscript.

64 Chapter 4

The operators group from left to right. However, note that the state-
ment

if (adb<e)..,

compares ¢ with the value 0 or 1; it does not mean “if b is between a
and c...”.

4.4.5 Bitwise Operators

These operators may be used only with integral operands (that is, with
chars and with ints of all sizes). The usual arithmetic conversions are
performed. The result is the bitwise AND (&), XOR (exclusive OR,),
or OR (!) of the two operands. All operands are always evaluated.

4.4.6 Logical Operators

The logical operators are && (AND) and i (OR). These operators
guarantee left-to-right evaluation. The right operand is not evaluated if
the result is known from the evaluation of the left operand. The result
(of type int) is either 0 or 1. That is:

E1 && E2

is 1 if both its operands are nonzero, or 0 if one operand is zero. If E1 is
zero, E2 is not evaluated. Similarly:

E1 1! E2
is 1 if either operand is nonzero, and 0 otherwise. If E1 is nonzero, E2 is
not evaluated.

The operands of logical operators need not have the same type, but
each must be one of the fundamental types or must be a pointer or
other address-valued expression.

4.4.7 Shift Operators

The shift operators (<< and >>) take two operands, both of which must
be integral. The usual arithmetic conversions are performed on both
operands; then, the right-hand operand is converted to int, and the
type of the result is the type of the left operand. The result of:

E1 << E2

is the value of expression E1 shifted to the left by E2 bits. Vacated bits
are cleared. The result of

E1 >> E2

is the value of expression E1 shifted to the right by E2 bits. Vacated
bits are cleared if El1 is unsigned; otherwise, the right shift is
arithmetic — vacated bits are filled with a copy of E1’s sign bit.

The result of the shift operation is undefined if the right-hand operand
(E2) is negative or if the value of E2 is greater than 32 bits.

Expressions and Operators 65

4.5 Conditional Expression and Operator

The conditional operator (?:) takes three operands. It tests the result of
the first operand and then evaluates one of the other two operands
based on the result of the first. For example:

E1 ? E2 : E3
If E1 is nonzero, then E2 is evaluated. If E1 is zero, E3 is evaluated.

Conditional expressions group from right to left. Conversions are made
in the following order:

1. If possible, the usual arithmetic conversions are performed on E2
and E3, to make them have the same type.

2. Otherwise, if E2 and E3 are address expressions indicating ob-
jects of the same type, the result has that type.

3. Otherwise, either one of the E2 and E3 operands must be an
address expression, and the other, the constant 0. The result has
the type of the addressed object.

4.6 Assignment Expressions and Operators

In C, there are several assignment operators. An ‘“‘assignment” is not
only an operation but also an expression. Assignments result in the
value of the target variable after the assignment. They can be used as
subexpressions in larger expressions.

The set of assignment operators consists of the equal sign (=) alone and
in combination with binary operators. An assignment expression has
two operands — an lvalue and an expression — separated by one of
these operators. An assignment expression such as

E1 op= E2
is equivalent to
E1 = E1 op (E2)
For example, the expression
E1 += E2;
is equivalent to
E1 =E1 + E2;

E1l is evaluated only once and must be an lvalue. The type of the
assignment expression is the type of E1, and the result is the value of
E1 after the operation is performed. E2 is parenthesized above because
it could contain other operators that are of lower precedence than op.
For example, the expression

a = b 44 13
is the same as

a = a + (b << 133§

66 Chapter 4

a = a + b <4 173
In the simple assignment expression
E1 = E2

the value of E2 replaces the previous value in E1. Another example, the
expression

arravy[1] += 1003

adds 100 to the contents of array[1]. The result of the expression is the
result of the addition and has the same type as array[1].

If both assignment operands are arithmetic, the right operand is con-
verted to the type of the left before the assignment is made.

The simple assignment operator (=) can be used to assign structures
and unions. All other assignment operators, all right operands, and all
left operands that are not pointers must be arithmetic. If the operator is
-= or +=, the left operand may be a pointer, and the right operand
(which must be integral) is converted in the same manner as that in
which the binary + and - operators are converted.

An address may be assigned to an integer, an integer to a pointer, and
the address of an object of one type to a pointer of another type. Such
assignments are simple copy operations, with no conversions. This us-
age may cause addressing exceptions when the resulting pointers are
used. However, if the constant 0 is assigned to a pointer, the result is a
null pointer. The null pointer is distinguishable (by the equality opera-
tors) from a pointer that points to any object.

For the sake of compatibility with older implementations of C, VAX-11
C allows certain deviations from the spellings of compound assignment
operators shown in Table 4-1. Namely:

e When the operators are written in the order shown in Table 4-1,
the two characters can be separated by white space. That is:

E1 += E2;
and
E1 + = E2;

are identical.

e The operators can also be written with the characters in reverse
order, as in:

E1 =+ E2;

Expressions and Operators 67

However, you should avoid the second form for the following reasons:

e The syntax allowed by VAX-11 C is more restrictive in this case.
Specifically, the characters *, +, -, and &, because they also ap-
pear in unary operators, must be immediately adjacent to the ‘=’
character in this form. This placement avoids ambiguities in such
cases as:

E1 =*p;
which multiplies the value in E1 by the value of p.

¢ Even with usage that follows the guidelines, it is possible to intro-
duce ambiguities, as in:

E1 =/*part of a comment...

4.7 Comma Expression and Operator

When two expressions are separated by the comma operator, they are
evaluated from left to right, and the result of the left expression is
discarded. For example:

R = (T = 1 T += 273
assigns 3 to both R and T.

The type and value of the result of a comma expression are the type and
value of the right operand. The operator groups from left to right.

Note that comma expressions must be parenthesized if they appear
where commas have some other meaning, as in argument and initializer
lists. For example:

flay (£t=3:t+2), ¢c)

calls the function f with the arguments a, 5, and c. In addition, t is
assigned the value 3.

68 Chapter 4

Chapter 5

Statements

This chapter describes the statements in the C programming language.
Except as indicated, statements are executed in the sequence in which
they appear in a program.

5.1 Expression Statement

You can use any valid expression as a statement by terminating it with
a semicolon:

expression ;

5.2 Compound Statement

A compound statement in C is sometimes called a block and allows
more than one statement to appear where a single statement is required
by the language. A compound statement has the form:

compound-statement ::=
{ declaration-list statement-list }

That is, the block is an optional list of declarations followed by a list of
statements, all enclosed in braces. If you include declarations, the vari-
ables they declare are local to the block and, for the rest of the block,
they supersede any previous declaration of variables of the same name.
Variables of storage class auto, register, or static can have initializers
in the declaration list.

A block is entered ‘“‘normally”’ when control flows into it, or when a goto
statement transfers control to the label of the block itself. Any auto or
register variables are initialized each time the block is entered nor-
mally; the initializations do not occur if a goto statement refers to a
label inside the block or if the block is the body of a switch statement.

69

5.3 if Statement

A conditional if statement can be written with or without an else
clause:

if (expression) statement
if (expression) statement else statement

In each case, the expression is evaluated, and if it is not zero, the first
statement is executed.

Note that all relational operators define a “true’ result to be nonzero so
that the expression in any if statement (or any other conditional state-
ment) may be a relational expression with predictable results (nonzero
or zero).

If the else clause is included and the expression is zero, the else state-
ment is executed. In a series of if-else clauses, the else matches the
most recent else-less if.

5.4 while Statement

The while statement has the form:
while (expression) statement

The expression is evaluated before each execution, and the statement is
executed zero or more times, as long as the expression is not zero.

5.9 do Statement

The do statement has the form:
do statement while (expression) ;

The statement is executed at least once, and the expression is evalu-
ated after each execution. If the expression is not zero, the statement is
executed again.

5.6 for Statement

The for statement has the form:

for (expression-1 ; expression-2 ; expression-3)
statement
The for statement executes a statement zero or more times. It uses

three control expressions, as shown. (Note that expression-3 is not fol-
lowed by a semicolon.) A for loop is executed in the following steps:

1. Expression-1 is evaluated before the first iteration of the loop,
and only once. It usually specifies the initial values for variables.

70 Chapter 5

2. Expression-2 is a relational or logical expression that determines
whether to terminate the loop. Expression-2 is evaluated before
each iteration. If it is zero, execution of the for statement termi-
nates. If it is not zero, the statement is executed.

3. Expression-3 is evaluated after each iteration. It usually speci-
fies increments for the variables initialized by expression-1.

4. Tterations of the for statement continue until expression-2 pro-
duces a ‘““false’ (zero) value, or until some statement, such as
break or goto, interrupts it.

The for statement is equivalent to:

expression-1;
while (expression-2) { statement expression-3; |

The VAX-11 C compiler optimizes certain for statements for simple
loops such as

forti=0F 1i415§ i++)

printfO"%din" s1i) 3
So the use of for statements rather than the equivalent while state-
ment is preferred.

Any of the three expressions in a loop may be omitted. If expression-2
is omitted, the test condition is always true; that is, the while in the
above expansion becomes while(1). If either expression-1 or expres-
sion-3 is omitted from the for statement, that expression is effectively
dropped from the above expansion.

The construct
for (;;) statement

is an infinite loop. It can be terminated by a break, return, or goto
within the statement.

5.7 break Statement

The break statement has the form:
break ;

It terminates the immediately enclosing while, do, for, or switch
statement. Control passes to the statement following the terminated
statement.

5.8 switch Statement

The switch statement has the form:
switch (expression) statement

The switch statement executes one or more of a series of cases, based
on the value of the expression.

Statements 71

The usual arithmetic conversions are performed on the expression, but
the result must be int. The statement is typically a compound state-
ment, within which any statement or list of statements can be prefixed
with one or more case labels:

case constant-expression :

where the constant expression must also be int. No two case labels may
specify the same value. The value of any constant expression must be
between -32,768 and 32,767.

At most one statement in the compound statement may have the label:
default :

The case and default labels may occur in any order. When the switch
statement is executed, the following sequence takes place (note that
each case “flows into” the next unless explicit action is taken, such as a
break statement):

1. The switch expression is evaluated and compared with the con-
stant expressions in the case labels.

2. If a case label matches the expression’s value, the statement or
list of statements following that label is executed. If the list of
statements ends with the break statement, the break termi-
nates the switch statement; otherwise, the next case encoun-
tered is executed. (See Example 5-1.) The switch statement can
also be terminated by a return or goto statement; if the switch
is inside a loop, it can be terminated by a continue statement.

3. If no case label matches the expression’s value, but there is a
default case, the default case is executed. It need not be the last
case listed. If a break statement does not end the default case,
the next case encountered is executed.

4. If there is no case for the expression’s value and there is no
default, the body of the switch statement is not executed.

NOTE

If declarations appear in the compound statement within a
switch statement, any initializations of auto or register
variables are ineffective. However, this rule does not apply
to compound statements following a case label.

In general, the break statement must be used to ensure that a switch
executes as expected. Example 5-1 uses the switch statement to count
blanks, tabs, and newlines entered from the terminal. A series of case
statements is used to increment the counters. The break statement
causes the program to return to the beginning of the while loop when
one of the counters is incremented. The program returns automatically
to the beginning of the while loop if none of the counters is incre-
mented.

72 Chapter 5

#include stdio

/% A PROGRAM TO COUNT BLANKS: TABS: AND NEWLINES., %/
maint?l

f
int number_tabs = 03
int number_lines = 03
int number_blanks = 03}
int chi
while ({ch = detchar()) != EOF)
switch (ch) {
case ‘\t’: ++number_tabs} break;
case ‘\n’: ++number_linesi breaks
case ' ‘: ++number_blankKsi breaks
¥
printfi{"Blanks\tTabs\tNewlines\n")i
Pprintf("%26d\tZ6dNt%ZB6d\n" snumber_blanks s
number_tabssmumber_lines) i
¥

Example 5-1: Use of switch to Count Blanks, Tabs,
and Newlines

The program responds to the following input:

Everv dood hoy., G
The auick brown fox. G
Line with Z @B tabs. GED

o

by writing out:

Blanks Tabs Newlines
7 2 3

On the other hand, if the break statements were omitted, the program
would write out:

Blanks Tabs Newlines

1z z 5

Without the break statements, each case drops through to the next
case. The number shown for tabs happens to be right, because the tabs
case is first in the switch statement and is executed only if ch == "\t’.
Notice that the number shown for newlines is the correct number plus
the number of tabs, and the number shown for blanks is the total of all
three cases.

Statements 73

5.9 continue Statement

The continue statement has the form:
continue ;

The continue statement immediately passes control to the bottom of
the immediately enclosing while, do, or for statement.

In each of the following statements, a continue is equivalent to goto
label:

while (...) { ... label: ; }
do { ... label: ; } while (...);
for (...; ...; ...) { ... label: ; }

continue is intended only for loops, not for switches. A continue inside
a switch inside a loop causes reiteration of the enclosing loop.

5.10 return Statement

The return statement has the form:
return expression ;

The return statement causes a return from a function, with or without
a return value.

The return value is undefined unless specified in a return statement.
When an expression is specified in the return statement, it is evaluated
and the value is returned to the calling function; the value is converted,
if necessary, to the type with which the called function was declared.

A function that does not have a return statement is the same as a
return statement that does not specify an expression; it does not return
a value to the calling function.

5.11 goto Statement

The goto statement has the form:
goto identifier ;

The goto statement transfers control unconditionally to-the labeled
statement. The identifier must be a label located in the current func-
tion.

goto may be used to branch into a block, but any automatic variables
declared in the block will not be initialized.

74 Chapter 5

5.12 Labeled Statement

A label has the form:
identifier:

Any statement can be preceded by a label. The scope of a label is the
current function. Since the label name is independent of the scope rules
applied to variables, there can be variables with the same name as the
label in the function that contains the label. Labels are used only as the
targets of goto statements.

5.13 Null Statement

A null statement is a semicolon:

Null statements are used to provide null operations in situations where
the grammar of the language requires a statement. In particular, the
bodies of if-else, while, do, and for statements are not optional, so the
null statement is often used to write these statements with null bodies.
The most common use is in loop operations where all the loop activity is
performed by the test portion of the loop. For example, the following

statement finds the first zero element of an array known to have a zero
element:

forl(i=04% arrav[il != 03§ i++) 3

Statements 75

Chapter 6

Library Functions

Because the C language has no predefined or built-in functions, all C
compilers are supplied with libraries of common functions that can be
used by C programmers on their particular system. This chapter de-
scribes the library functions supplied with the VAX-11 C compiler. The
function descriptions are grouped alphabetically in Tables 6-1 through
6-8, according to the following categories:

¢ Input/output (I/O) functions

e Character classification functions
e String-handling functions

e Character conversion functions

e Mathematical functions

e Memory allocation functions

e Miscellaneous functions

¢ UNIX emulation functions

Section 6.11 describes each function in detail.

Programs that use these library functions must contain a C function
named main or a C function with the main__program attribute.

NOTE

When an error occurs during a call to any of the functions
described in this chapter, the function returns an unsuc-
cessful status and sets the external variable errno to a
value which indicates the reason for the failure. See Appen-
dix E for more information.

6.1 Performing 1/0 from C Programs

The C programming language has no built-in I/O functions. However,
each implementation usually provides some I/O capability in the form
of library functions. The amount of I/O support varies from implemen-
tation to implementation; the user interface and language functionality
also differ between implementations.

As shown in Figure 6-1, VAX-11 C makes available four distinct hierar-
chical levels of I/O. The lowest level, VAX/VMS system services, is

76

closest to the operating system; the highest level, standard I/0O, is far-
thest. For the duration of a program, each level of access is exclusive of
the others; you cannot access a file from different levels in the same
program.’

Standard 1/0_

P

r

o UNIX 170

9

; VAX-11 RMS
m

System Services

ZK-493-81
Figure 6-1: I/0 Interface from C Programs

Before deciding which level is appropriate for you, you must first ask
the question: Are you concerned with UNIX compatibility, or are you
developing code that will run solely under VAX-11 C? If UNIX com-
patibility is important to you, you will probably want to use the two
highest levels of I/O — standard I/O and UNIX I/O. — because they
are more independent of the operating system. The two highest levels
are also easier to learn quickly, an important consideration for new
programmers.

If UNIX compatibility is not important to you, or you require the
sophisticated file processing that the standard I/0 and UNIX I/O levels
do not provide, then you will find VAX-11 RMS desirable. Note that
the use of RMS is mandatory for RMS relative and indexed file organ-
izations. For a description of RMS, see Chapter 8.

If you are writing system-level software, you may need to directly ac-
cess VAX/VMS through calls to system services. For example, you may
need to directly access a user-written device driver through QIO$
(Queue I/0) system service requests. To do this, you would need to use
the VAX/VMS level of I/0; this level is recommended for experienced
VAX/VMS programmers only. Chapter 9 contains some examples of
programs that call VAX/VMS system services.

The UNIX and standard I/O functions are contained in the VAX-11 C
run-time library. Only those UNIX and standard I/O functions that are
appropriate for VAX/VMS are provided. That is, some functions that
may be provided by other implementations are not provided by
VAX-11 C because those functions conflict with VAX/VMS. In some
cases, conflicting functions are replaced by an equivalent VAX-11 C
function. For example, the UNIX unlink function has been replaced by

1. The exception to this rule is the fdopen function. It allows a file opened by
UNIX I/0 functions to be accessed by standard 1I/O functions. However, after an
fdopen function call, you can use only standard I/O functions to access the file.

Library Functions 77

the VAX-11 C delete function. Table 6-1 lists the run-time functions
that perform I/O on the UNIX and standard levels.

As shown in Figure 6-2, the UNIX and standard I/O functions map to
RMS and, subsequently, to VAX/VMS. When you create a file on ei-
ther of these levels, you are actually creating an RMS sequential file.
The standard I/O functions create sequential files with stream record
format. The UNIX I/O functions create stream files by default, but you
may specify certain record attributes (including the record format)
when you create the file.

6.1.1 Stream Files and Stream Access

Stream files are files treated as streams of bytes. A series of bytes is
read from or written to a stream file directly, with no record structure or
implied carriage control. In VAX-11 C, and in most other implementa-
tions of C, stream files and their associated functions form the standard
1/0 facilities.

Stream files are created by the fopen and create functions. For exam-
ple, a call to fopen that opens a new file for output creates a stream file.
A call to fopen that opens an existing file for input presents the pro-
gram with a stream file that is processed with the conventional stream
I/0 functions, such as fseek, ftell, fread, fwrite, and fprintf.

File Pointer ————— Standard 1/0

|

File Descriptor

f

File Descriptor == UNIX 1/0

P

r |

o

g RMS Data Structures
r

: !

m

—— RMS Data Structures —s— VAX-11 RMS

I/0 Channel

{

1/0 Channel —— System Services

ZK-494-81

Figure 6-2: Mapping Standard and UNIX I/0 to RMS

78 Chapter 6

6.1.1.1 Relationship to VAX-11 Record Management Services (RMS)

Stream files in VAX-11 C correspond to VAX-11 RMS stream files
with the line feed terminator attribute. VAX-11 C permits stream ac-
cess to stream files. It also permits stream I/O operations on RMS
record files, but the positioning options of stream access are more re-
stricted with record files.

The next sections review the stream access options permissible with
stream files and define the extent to which stream access is permitted
with RMS record files.

If you are not familiar with RMS, you should consult the manuals listed
at the beginning of Chapter 8 before continuing with this section.

6.1.1.2 Stream Access to Stream Files

Stream access to stream files uses the stream I/O facilities of RMS. A
stream of bytes is either written to or read from a file with no transla-
tion. If the file has been opened for update, it can be read (fread) and
written (fwrite) at the current byte position in the file.

An fread followed by an fwrite places bytes in the file after the last
byte of the previous fread. An fwrite followed by an fread causes
reading to begin after the last byte of the previous fwrite.

A stream file can be positioned to an arbitrary byte at any time (fseek).
If positioned beyond the end-of-file, then the file is extended with zero
bytes. The file may be positioned relative to the beginning-of-file, rela-
tive to the current position, or relative to the end-of-file. The first byte
in the file is byte zero; therefore, specifying zero as the absolute position
in an fseek call positions the file at its first byte. You can also deter-
mine the current byte position of a stream file with the ftell function.

You must open a file for update if the file is going to be written ran-
domly. For example:

#include stdio

main()
{
FILE *outfiles
outfile = foren("diskfile.dat" »"w+")3}

+

¥

Here, the stream file diskfile.dat is opened for “write update’” access.
(For the distinction between ‘“read update” and “write update,” see
fopen, Section 6.11.49.)

6.1.1.3 Stream Access to Record Files

Stream access to record files is done with the record I/O facilities of
RMS. A byte stream is emulated by translating carriage control during
the process of reading and writing records. Random access is allowed to
record files, but positioning (with fseek) must be on a record boundary,

Library Functions 79

and writes followed by reads (or reads followed by writes) do not work
as with stream files. Positioning of a record file causes all buffered
input to be discarded and buffered output to be written to the file.

Stream input from record files is emulated by the run-time support in
two steps. First, a logical record is read from the file. Second, the record
is expanded to simulate a stream of bytes by translating the record’s
carriage-control information (if any). In RMS terms, the translation is
performed by one of the following steps:

o If the record attributes are implied carriage control (RAT=CR),
then a newline is appended to the record.

e If the record attributes are print carriage control (RAT=PRN),
then the prefix and postfix carriage controls are expanded and
concatenated before and after the record.

o If the record attributes are FORTRAN carriage control
(RAT=FTN), then the first byte of the record is removed, and
prefix and postfix characters are concatenated to the record. The
following rules describe the way the character in the first byte
maps onto the prefix and postfix bytes that appear in the emu-
lated stream. <record> denotes the bytes contained.in the logical
record exclusive of the first, carriage-control byte; ‘\n’ denotes the
newline character; ‘\f’ denotes the form-feed character; ‘\r’ de-
notes the carriage-return character:

NUL - <record>

0 - \n<record>\n
1 - \f<record>\n
+ - <record>\r
$ - \n<record >

all others -» <record>\n

¢ If the input is coming from a nonterminal file, then the record is
passed unchanged to the user program with no prefix or postfix
characters added to it.

If the record attributes are null (RAT=null) and the input is com-
ing from a terminal, then the terminator is appended to the rec-
ord. If the terminator is a carriage return or CTRL/Z, then it is
translated to a newline.

o If the record format is variable length with fixed control
(RFM=VFC), and the record attributes are not print carriage con-
trol (RAT is not PRN), then the fixed-control area is concatenated
to the front of the record.

As you read from the file, the VAX-11 C run-time support delivers a
stream of bytes resulting from the above translations. Information that
is not read from an expanded record by one function call is delivered on
the next input function call.

80 Chapter 6

CAUTION

An expanded record cannot exceed 512 bytes. Thus, the
input record generally must not exceed 510 bytes of actual
data, since up to two characters may be added in the ex-
pansion process.

Stream output to record files is performed by the VAX-11 C run-time
support in two steps. First, a logical record is formed from the bytes
specified by the output function (fwrite, for example) by translating
any carriage-control bytes into RMS terms. Then, the logical record is
written out.

The first part of the stream output emulation is the formation of a
logical record. As you write bytes to a record file, the emulator exam-
ines the information being written for record boundaries. The handling
of information in the byte stream depends on the attributes of the
destination file or device, as follows:

¢ If the record attributes specify no carriage-control information
(RAT=null), then the stream of bytes presented in an output-
function call is taken to be a logical record.

o If the destination file or device being written to has carriage-con-
trol information (RAT=CR, RAT=FTN, or RAT=PRN), then the
emulator buffers output bytes while it searches for a newline char-
acter. Up to 512 bytes are buffered. If more than 512 bytes are
encountered before a newline is encountered, then an error is sig-
naled and the buffer is written out. Otherwise, when a newline is
found, the logical record is formed by appending the newline to the
buffered bytes.

The second part of stream output emulation is the actual writing of the
logical record formed during the first step. One of the following steps is
executed to form the output record:

o If the output file record format is variable length with fixed control
(RFM=VFC), and the record attributes do not include print car-
riage control (RAT is not PRN), then the beginning of the logical
record is taken to be the fixed-control header, and the number of
bytes written out is reduced by the length of the header. If there
are too few bytes in the logical record, an error is signaled.

If the record attribute is carriage control (RAT=CR), and if the
logical record ends with a newline, the newline is dropped, and the
logical record is written out with implied carriage control.

If the record attribute is print carriage control (RAT=PRN), then
the record is written with print carriage control. If the logical
record ends with a newline, the newline is dropped, and the output
record is preceded by a line feed and followed by a carriage return.

If the record attribute is FORTRAN carriage control (RAT=FTN),
then the logical record is written out with FORTRAN -carriage
control. If the logical record ends with a newline, the newline is

Library Functions 81

dropped and a space character is inserted at the front of the rec-
ord. Otherwise, a NUL is inserted at the front of the record.

¢ If the record attribute is null (RAT=null), then a test is performed
to determine whether the logical record is being written to a termi-
nal device. If so, the record is scanned, and each newline that is
encountered is replaced by a carriage-return/line-feed pair. The
record is then written out with no carriage control.

6.1.2 Standard 1/0

The standard I/O functions access the file by a file pointer. A file
pointer points to a file control block, which is defined in the stdio
#include module as a preprocessor substitution (similar to a typedef)
for a data type named FILE. The structure contains the definition of an
RMS sequential file with stream record format.

A file pointer is declared as follows:
FILE #infiles
In this case, infile is a pointer to a FILE structure.

The VAX-11 C run-time library contains the following functions that
access files by file pointer:

fopen fseek fgets fputs
fclose ftell fscanf ungetc
fileno rewind fwrite fgetname
freopen fread fprintf clearerr
setbuf getc putc ferror
feof fgetc fputc putw
fflush getw

6.1.3 UNIX I/0

The UNIX I/O functions access the file by a file descriptor. A file
descriptor is an integer that identifies the file. A file descriptor is de-
clared as follows:

int fdi
In this case, fd is the name of the file descriptor.

When you create a file on the UNIX I/O level, you can supply values for
the following RMS file attributes:

e Allocation quantity

¢ Block size

¢ Default file extension

e Default file name

e A number of file-processing options
e Multiblock count

e Multibuffer count

¢ Maximum record size

¢ Record attributes

® Record format

82 Chapter 6

Functions such as creat associate the file descriptor with a file. For
example:
fd = creat("infile" 0" rat=cr"s"rfm=var");

This statement creates the file infile., with mode argument 0, carriage-
return control, and variable-length records, and it associates the file
descriptor, fd, with the file. When the file is accessed for other opera-
tions, such as reading or writing, the file descriptor is used to refer to
the file. For example:

write(fdsbufferssizeof(buffer))s
This statement writes the contents of the buffer to infile.

The VAX-11 C run-time library contains the following functions that
access files by file descriptor:

creat close dup dup2
open pipe Iseek read
write getname

6.1.4 Predefined Files

VAX-11 C defines three file pointers that perform I/O to and from the
logical devices usually associated with the user’s terminal (for interac-
tive jobs) or a batch stream (for batch jobs).! These file pointers are
defined when you include the stdio module with the #include pre-
processor control line.

The file pointer stdin is associated with the terminal to perform input.
This file is equivalent to SYS$INPUT. The file pointer stdout is associ-
ated with the terminal to perform output. This file is equivalent to
SYS$OUTPUT. The file pointer, stderr, is associated with the termi-
nal to report run-time errors. This file is equivalent to SYSSERROR.

Three file descriptors also exist that refer to the terminal. The file
descriptor 0 is equivalent to SYS$INPUT, 1 is equivalent to SYS$OUT-
PUT, and 2 is equivalent to SYS$ERROR.

When performing I/O at the terminal, you can use standard I/O func-
tions (giving the name stdin, stdout, or stderr as an argument), you
can use UNIX I/O functions (giving the file descriptor as an argument),
or you can use the following functions, which specifically perform I/O at
the terminal:

getchar
putchar
gets
puts
scanf
printf

1. Since the three process permanent files SYS$INPUT, SYS$OUTPUT, and
SYSSERROR perform the same functions for both interactive and batch jobs,
the term terminal I/O refers to both terminal and batch stream 1/0.

Library Functions 83

Table 6-1: Input/Output Functions

.. #include
Name Description Module Page
Opening and Closing Files

close Closes a file — 103

creat Creates a new file — 104

dup, Creates new descriptors for existing — 108

dup2 files

fclose Closes a file stdio 113

fdopen Creates a FILE structure and associ- stdio 113
ates it with a file descriptor

fileno Returns an integer file descriptor stdio 115

fopen Opens a file stdio 116

freopen Reassigns the address of a FILE struc- stdio 118
ture and opens the file

open Opens a file for reading, writing, or — 132
both

pipe Allows two processes to share data — 133
with read and write calls

setbuf Associates a buffer with an input or stdio 144
output file

tmpfile Creates a temporary file for use during stdio 158
a process; the file is deleted when the
process (and its forks) is terminated

Positioning in Files

feof Tests for end-of-file stdio 114

fflush Writes out any buffered information stdio 115
to the file

fseek Places you at a specified byte offset stdio 119
relative to the beginning of the file,
the end of the file, or the current loca-
tion within the file

ftell Returns the current byte offset from stdio 119

84

the beginning of the file to the current
location within the file

Chapter 6

Table 6-1: (Cont.) Input/Output Functions

#include

N e
ame Description Module Page
Iseek Places you at a byte offset within a file — 130
and returns the new position as an in-
teger
rewind Places you at the beginning of the file stdio 141
Input Functions
fread Reads a specified number of items stdio 117
from the file
fgetc Returns the next character from a file; stdio 120
generates a true function call
fgets Reads a line from a file; the line is stdio 123
terminated by a NUL character
fscanf Performs formatted input from a file stdio 141
getc Returns the next character from a file; stdio 120
implemented as a macro
getchar Returns the next character from the stdio 120
standard input device
gets Reads a line from the standard input stdio 123
device; the newline is replaced with a
NUL character
isatty Determines if a file descriptor is asso- — 125
ciated with a terminal
read Reads a specified numbers of bytes — 140
from a file and places them in a buffer
scanf Performs formatted input from the stdio 141
standard input device
sscanf Performs formatted input from mem- stdio 141
ory
Output Functions
delete Deletes a file — 108
fgetname Returns the file specification for a stdio 122
given file pointer
fprintf Performs formatted output to a speci- stdio 134
fied file
fputc Writes a single character to a file; gen- stdio 139
erates a true function call
Library Functions 85

Table 6-1: (Cont.) Input/Output Functions

e e #include
Name Description Module Page

fputs Writes a string to a file stdio 139

fwrite Writes the specified number of items stdio 120
to the file

getname Returns the file specification for a stdio 122
given file descriptor

printf Performs formatted output to the stdio 134
standard output device

putc Writes a single character to a file; im- stdio 139
plemented as a macro

putchar Writes a single character to the stand- stdio 139
ard output device

puts Writes a string to the standard output stdio 139
device; terminates the string with a
newline

putw Writes a specified integer to a file stdio 139

sprintf Performs formatted output to a char- stdio 134
acter string in memory

ungetc Writes a character to a file buffer and stdio 160
leaves the file positioned before the
character

write Writes a number of bytes from a — 162
buffer to a file

Error-Handling Functions

clearerr Resets the error and end-of-file indica- stdio 103
tors

ferror Returns a nonzero integer if an error stdio 115

occurs during read or write operations

6.2 Character Classification

‘The functions in Table 6-2 operate on characters. All of the functions in
this table take a single argument and perform a logical operation. The
argument can have any value. In the case of isascii, the function re-
turns a logical result which states whether the argument is an ASCII

86 Chapter 6

character (0 to 177 octal). The other functions return a logical result
which states whether the argument is a particular type of ASCII char-

acter.

Appendix G contains a table of the ASCII character set. For each ASCII
character, the table shows which character classification functions re-
turn a true value.

Table 6-2: Character Classification Functions

#include

Name D ipti
escription Module Page

isalnum Determines if the argument is alphanu- ctype 125
meric

isalpha Determines if the argument is alphabetic ctype 125

isascii Determines if the argument is an ASCII ctype 125
character

iscntrl Determines if the argument is a control ctype 126
character

isdigit Determines if the argument is a digit ctype 126

isgraph Determines if the argument is a graphic ctype 126
character

islower Determines if the argument is a lowercase ctype 126
letter

isprint Determines if the argument is a printing ctype 127
character

ispunct Determines if the argument is a punctua- ctype 127
tion character

isspace Determines if the argument is a space, ctype 127
horizontal or vertical tab, carriage return,
form feed, or newline

isupper Determines if the argument is an upper- ctype 127
case letter

isxdigit Determines if the argument is a hexadeci- ctype 128
mal digit

Library Functions 87

6.3 String Handling

The functions in Table 6-3 manipulate strings. Some concatenate
strings. Others search strings for specific characters or perform other
lexicographic comparisons, such as determining the equality of two

strings.

Table 6-3: String-Handling Functions

s ee #include
Name Description Module Page

strcat Concatenates two strings — 152

strchr Searches a string for the first occurrence — 153
of a given character

strcmp Performs lexicographic comparison of two — 153
ASCII strings

strepy Copies one string to another — 154

strespn Searches a string for a character within a — 154
set and returns the number of characters
preceding the first match

strlen Returns the length of a string — 155

strncat Concatenates two strings up to a maxi- —_ 152
mum number of characters

strnemp Performs lexicographic comparison of two — 153
ASCII strings (up to a maximum number
of characters)

strncpy Copies a maximum number of characters — 154
from one string to another

strpbrk Searches a string for a character within a - 156
set and returns the address of the first
match

strrchr Searches a string for the last occurrence — 153
of a given character

strspn Searches a string for the first occurrence — 156
of a character that is not in the search set

88 Chapter 6

6.4 Character Conversion

The functions in Table 6-4 perform character and arithmetic conver-
sions.

Table 6-4: Character Conversion Functioné

#include

Name Description Module Page

atof Converts an ASCII string to a numeric math 100
value (double)

atoi Converts an ASCII string to a numeric — 100
value (int)

atol Converts an ASCII string to a numeric — 100
value (long)

ecvt Converts a double value to a NUL-termi- — 108
nated ASCII string

fetv Converts a double value to a NUL-termi- — 108
nated ASCII string

gevt Converts a double value to a NUL-termi- — 108
nated ASCII string of digits

toascii Converts an 8-bit ASCII character to a — 159
7-bit ASCII character

tolower Converts uppercase characters to lower- — 159

__tolower case; returns lowercase characters un-
changed

toupper Converts lowercase characters to upper- — 159

__toupper case; returns uppercase characters un-
changed

Library Functions 89

6.5 Mathematical Functions

Table 6-5 shows the library functions that perform mathematical oper-

ations.

The errno definition file defines two run-time error return values for
mathematical functions. EDOM causes an error message to be written
to stderr when an argument is inappropriate; that is, when the argu-
ment is not within the function’s domain. ERANGE causes an error
message when a result is out of range; that is, when the argument is too
large to be represented by the machine.

Table 6-5: Mathematical Functions

e s #include
Name Description Module Page

abs Returns the absolute value of the integer — 98
argument

acos Returns a value in the range 0 to pi which — 98
is the arc cosine of the radian argument

asin Returns a value in the range -pi/2 to pi/2 math 99
which is the arc sine of the radian argu-
ment

atan Returns a value in the range —pi/2 to pi/2 math 99
which is the arc tangent of the radian ar-
gument

atan2 Returns a value in the range —pi to pi math 100
which is the arc tangent of the two argu-
ments

cabs Returns “sqrt(x*x + y*y)” math 124

ceil Returns the smallest value which is equal math 101
to or greater than the argument

cos Returns the cosine of the radian argu- math 103
ment

cosh Returns the hyperbolic cosine of the argu- math 104
ment

exp Returns the base e raised to the power of math 112
the argument

fabs Returns the absolute value of the float- math 98
ing-point argument

floor Returns the largest integer which is less math 116
than or equal to the argument

90 Chapter 6

Table 6-5: (Cont.) Mathematical Functions

s e #include
Name Description Module Page

frexp Returns the mantissa of the argument math 119

hypot Returns “sqrt(x*x + yxy)” math 124

Idexp Returns the first argument times 2 to the math 128
power of the second argument

log Returns the natural logarithm of the ar- math 129
gument

log10 Returns the base 10 logarithm of the ar- math 129
gument

modf Returns the fractional part and the inte- math 131
gral part of the argument

pow Returns the first argument raised to the math 134
power of the second argument

rand Returns pseudorandom numbers — 140

sin Returns a value that is the sine of the math 150
radian argument

sinh Returns a value that is the hyperbolic math 151
sine of the argument

sqrt Returns the square root of the argument math 151

srand Reinitializes the random-number genera- — 140
tor

tan Returns the tangent of the radian argu- math 157
ment

tanh Returns the hyperbolic tangent of the ar- math 157
gument

Library Functions 91

6.6 Memory Allocation

The functions in Table 6-6 allow you to control the allocation of mem-
ory from a C program. The functions calloe, malloc, and realloc return
the address of the allocated area. They return a null pointer if there was
insufficient memory.
The memory allocation functions in this section and the facilities listed
below are mutually exclusive and should not be used in the same pro-
gram: :

e The functions brk and sbrk

e The VAX/VMS system services EXPREG and $CNTREG

e The VAX-11 Common Run-Time Procedure Library functions
LIBSGETVM and LIB§FREEVM

Table 6-6: Memory Allocation Functions

#include

Name Description Module Page
calloc Allocates and clears an area of memory — 101
cfree Deallocates the space allocated by calloc — 118
or realloc

free Deallocates the space allocated by malloc — 118
or realloc

malloc Allocates the specified number of contig- — 131
uous bytes of memory

realloc Changes the size of an area previously al- — 141

located by calloc or malloc

92 Chapter 6

6.7 Miscellaneous Functions

The functions in Table 6-7 perform miscellaneous services, such as
identifying the process’s user or terminal, or setting and generating

signals.

Table 6-7: Miscellaneous Functions

#include

Name Description Module Page

ctermid Returns the name of the controlling ter- stdio 106
minal

cuserid Returns the name of the user who initi- stdio 107
ated the controlling process

gsignal Raises a specified software signal signal 124

longjmp Returns to the context saved by setjmp setjmp 145

mktemp Creates a file name from a template — 131

perror Writes (to stderr) the most recent error — 133
encountered by VAX/VMS during execu-
tion of a C program

setjmp Saves the context of the calling function setjmp 145
for a subsequent longjmp call

signal Establishes the action to be taken when a signal 147
specific signal is raised

sleep Suspends the current process for at least — 151
the specified number of seconds

ssignal Establishes the action to be taken when a signal 152
specific signal is raised

tmpnam Creates a character string to take the stdio 158
place of the file-name argument of other
function calls

Library Functions 93

6.8 UNIX Emulation

The functions in Table 6-8 emulate UNIX/C functions of the same
name. The emulation functions can help you convert C programs writ-
ten for the UNIX system to C programs that will run on a VAX/VMS

system.

Table 6-8: UNIX Emulation Functions

o . #include
Name Description Module Page

abort Terminates the process — 98

access ~Checks a file for a specific access mode — 98

alarm Sends a signal to the process after a speci- — 99
fied number of seconds

brk Returns the lowest virtual address that is — 101
not used by the program

chdir Changes the default directory — 102

chmod Changes the protection of the named file — 102

chown Changes the owner user identification — 103
code of the file

ctime Converts the current time to an ASCII time 106
string

execl Executes images that are external to the — 110
current program

execle Executes images that are external to the — 110
current program

execv Executes images that are external to the — 110
current program

execve Executes images that are external to the — 110
current program

exit, Terminates the current process —— 112

_exit

ftime Returns the time elapsed since 00:00:00, timeb 120
January 1, 1970 in seconds and mil-
liseconds

getenv Searches the environment array for the — 121
current process and returns the value as-
sociated with a specified environment

94 " Chapter 6

Table 6-8: (Cont.) UNIX Emulation Functions

Name Description Page

getegid Returns the group and member number 123
from the user identification code

geteuid Returns the group and member number 123
from the user identification code

getgid Returns the group and member number 123
from the user identification code

getpid Returns the current process ID 122

getuid Returns the group and member number 123
from the user identification code

kill Sends a signal to a process 128

localtime Converts the time in seconds to hours, 129
minutes, seconds, and so on

nice Increases or decreases a process priority 131

pause Suspends the calling process 132

sbrk Adds a number of bytes to the current 101
break address and returns the new break
address

setgid Included for compatibility; performs no 147
operation

setuid Included for compatibility; performs no 147
operation

time Returns the time elapsed since 00:00:00, 157
January 1, 1970 in seconds

times Returns process times 158

umask Creates a file-protection mask to be used 160
whenever a new file is created

vfork Sets up communication channels for 160
spawning and controlling a child process

wait Causes the calling process to wait until a 162
signal is received or until one of its child
processes terminates

Library Functions 95

6.9 Organization of Libraries and Definition (h) Files

All object code for the functions described in this chapter is in the
SYS$LIBRARY:CRTLIB.OLB library. The files in this library contain
the standard definitions required by the functions.

All text definition files have the file type h. For example, the definition
file stdio.h defines the FILE structure used by the standard I/O func-
tions.

Calls to most VAX-11 C library functions are preceded by #include
control lines, which name a specific definition module. The definition
modules required by a function are shown in the synopsis for that
function with an #include control line. For more details on the #include
control line, see Chapter 7.

Some VAX-11 C functions are implemented as preprocessor macros for
compatibility with other C compilers. To determine whether a function
is a true C function or whether it is a macro, see the description of that
function.

6.10 Interpreting Synopses of Functions

This chapter follows the usual convention for showing the synopses of
functions. A synopsis is a compact representation of the order of a
function’s parameter list (if any), the parameters’ types, and the type
of the value returned by the function. The representation closely resem-
bles the format of the actual C text for the function and its parameters.

For example, the synopsis of the feof function is:

#include stdio
int feof(file_pointer)
FILE «file__pointer;

The description of feof states that it is implemented as a macro. The
synopsis shows that:

e The function requires the definition module stdio.

e The function returns an int. Since it is a macro, feof is not de-
clared. This line in the synopsis indicates only the return value,
not the form of a declaration.

e There is one parameter, file__pointer, which is a pointer to FILE
(FILE is defined in stdio).

96 Chapter 6

To use feof in a program, you need only write the function call, pre-
ceded at some point by the #include control line, as in:

/% INCLUDE STANDARD DEFINITIONS */
#include stdio
main()
{
/% DEFINE A FILE-POINTER %/
FILE #infiles

/* UNTIL END-OF-FILE REACHED %/
while (1feof(infile))

/% SOME FILE OPERATION */

The format of synopses only resembles, and does not duplicate, the
format of function definitions. Because some library functions take var-
ying numbers of parameters, synopses have additional conventions not
used in actual C function definitions:

¢ Optional parameters are enclosed in square brackets ([1).

e An ellipsis (...) is used to show that a given parameter may be
repeated.

¢ In cases where the type of a parameter may vary, its type is not
shown in the synopsis.

For example:

#include stdio
int printf(format__specification[,output__source,...])
char *»format__specification;

The synopsis for printf shows that the parameter output_source is
optional, may be repeated, and is not always of the same data type.
The remaining information about printf’s parameters is in the descrip-
tion of the function.

6.11 Library Functions

The following sections describe each function in the VAX-11 C run-
time library. The functions are listed alphabetically.

Library Functions 97

6.11.1 abort

The function abort executes an illegal instruction that terminates the
process.

® Synopsis
abort()

6.11.2 abs, fabs

The function abs returns the absolute value of an integer. The function
fabs returns the absolute value of a floating-point value.
® Synopses

int abs(integer)

int integer;

#include math
double fabs(x)
double x;

6.11.3 access

The function access checks a file to see whether a specified access
mode is allowed. It returns 0 if the access is allowed and -1 if not. The
mode argument is interpreted as shown:

Mode Argument Access Mode
0 Tests to see if the file exists
1 Execute
2 Write (implies delete access)
4 Read

Combinations of access modes are indicated by summing the above
values. For example, 7 indicates RWED.

B Synopsis

int access(name,mode)
char *name;
int mode;

6.11.4 acos

The function acos returns a value in the range 0 to pi, which is the arc
cosine of its radian argument. The value of acos(x) is 0 when IxI>1, and
errno is set to EDOM.

® Synopsis

#include math
double acos(x)
double x;

98 Chapter 6

6.11.5 alarm

The function alarm sends the signal SIGALRM (defined in the signal
module) to the invoking process after the number of seconds indicated
by its argument has elapsed. The maximum delay allowed is
2,147,483,647 seconds. Unless it.is caught or ignored, the signal termi-
nates the process.

Successive alarm calls reinitialize the alarm clock. Alarms are not
stacked. Calling alarm with a zero argument cancels any pending
alarms.

The function returns the number of seconds remaining from a previous
alarm request.

Because the clock has a 1-second resolution, the signal may occur up to
1 second early. If the SIGALRM signal is caught, resumption of execu-
tion may be delayed by an arbitrary amount because of scheduling
delays. See also pause, gsignal, ssignal, signal.

® Synopsis

int alarm(seconds)
unsigned seconds;

6.11.6 asin

The function asin returns a value in the range —pi/2 to pi/2, which is the
arc sine of its radian argument. The value of asin(x) is 0 when IxI>1,
and errno is set to EDOM.

® Synopsis

#include math
double asin(x)
double x;

6.11.7 atan

The function atan returns a value in the range -pi/2 to pi/2, which is
the arc tangent of its radian argument.

® Synopsis

#include math
double atan(x)
double x;

Library Functions 99

6.11.8 atan2

The function atan2 returns a value in the range —pi to pi. The returned
value is the arc tangent of x/y, where x and y are the two arguments.

® Synopsis

#include math
double atan2(x,y)
double x,y;

6.11.9 atof, atoi, atol

These functions convert strings of ASCII characters to the appropriate
numeric values. The functions recognize strings in various formats,
depending on the returned data type, as follows:

e The string for atof may contain leading white space (space, hori-

zontal or vertical tab, carriage return, form feed, or newline). This
is followed by an optional sign, then a string of digits (optionally
containing a decimal point), then an optional exponent, composed
of an ‘e’ or ‘E’, and then an (optionally signed) integer:

[white-spaces][+|-]1digits[.digits][e/E[+|-]integer]
The first unrecognized character ends the string.

The string for atoi and atol may contain a series of leading tabs
and spaces, then an optional sign, and then a series of digits (with
no decimal point):

[white-spaces][+I-1digits
atoi and atol are synonymous in VAX-11 C.

These functions do not account for overflows resulting from the conver-

sion.

® Synopses

#include math

double atof(nptr)
char *nptr;

int atoi(nptr)
char *nptr;

long atol(nptr)
char *nptr;

6.11.10 atoi

See atof.

100

Chapter 6

6.11.11 atol
See atof.

6.11.12 brk, sbrk

The function brk defines the lowest virtual address that is not used by
the program. The lowest address is specified by the addr argument,
which the function rounds up to the next 512-byte multiple. The
rounded address is called the break. This address (the address of a
char) is returned by the function. An address that is greater than or
equal to the break and less than the stack pointer is considered to be
outside the program’s address space. Attempts to reference it will cause
access violations.

sbrk adds the number of bytes specified by its argument to the current
break and returns the new break.

When a program is executed, the break is set to the highest location
defined by the program and data storage areas. Consequently, brk and
sbrk are needed only by programs that have growing data areas.

brk and sbrk return -1 if the program requests too much memory.
® Synopses

char ~brk(addr)
char *sbrk(incr)
unsigned incr, addr;

6.11.13 cabs
See hypot.

6.11.14 calloc

The function calloc allocates an area of memory. The number and size
(in bytes) of this area are the arguments. The elements are initialized to
0. If calloc is unable to allocate the space, it returns 0.

= Synopsis

char *calloc(number,size)
unsigned number,size;

6.11.15 ceil

The function ceil returns the smallest integer that is equal to or greater
than its argument.

® Synopsis

#include math
double ceil(x)
double x;

Library Functions 101

6.11.16 cfree

See free.

6.11.17 chdir

The function chdir changes the default directory. The function returns
0 if the directory is successfully changed to the given name, and -1 if
the change fails. The name argument is a NUL-terminated character
string naming a VAX/VMS-style directory.

If chdir is called in USER mode, the default directory change is only
temporary. On image exit, the default is set to whatever it was before
the execution of the image. If you want the change to be effective across
images, you should call chdir from SUPERVISOR, EXECUTIVE, or
KERNEL mode.

® Synopsis

int chdir(name)
char *name;

6.11.18 chmod

The function chmod changes the file protection of a file. Only someone
with a WRITE privilege for the file can change the mode. The function
returns 0 if the change was successful and -1 if unsuccessful.

The first argument is the name of a file. The second argument is a
mode. Modes are constructed by ORing any of the following values:

Value Privilege

0400 OWNER:READ

0200 OWNER:WRITE
0100 OWNER:EXECUTE
0040 GROUP:READ

0020 GROUP:WRITE
0010 GROUP:EXECUTE
0004 WORLD:READ

0002 WORLD:WRITE
0001 WORLD:EXECUTE

When you supply a mode argument of 0, chmod gives the file the user’s
default file protection.

The system is always given the same privileges as the owner. A WRITE
privilege also implies a DELETE privilege.

® Synopsis

int chmod(name,mode)
char *name;
unsigned mode;

102 Chapter 6

6.11.19 chown

The function chown changes the owner UIC (user identification code)
of the file.

The first argument to chown, name, is the address of an ASCII file
name. The second and third arguments are the owner and group names,
respectively. chown returns 0 on success and -1 on failure.

® Synopsis

int chown(name,owner,group)
char *name;
unsigned owner,group;

6.11.20 clearerr

The function clearerr resets the error and end-of-file indications for a
file (so that ferror and feof will no longer return a nonzero value).
clearerr is implemented as a macro.

® Synopsis
#include stdio

clearerr(file__pointer)
FILE «file__pointer;

6.11.21 close

The function close closes the file associated with a file descriptor. Note
that all files are closed on image exit. All buffered data is written to the
file if it was opened for writing or update.

The function returns 0 if the file is properly closed. It returns -1 if the
file descriptor is undefined or if an error occurs while the file is being
closed (for example, if the buffered data cannot be written out).

® Synopsis

int close(file__descriptor)
int file__descriptor;

6.11.22 cos
The function cos returns the cosine of its radian argument.
® Synopsis

#include math
double cos(x)
double x;

Library Functions . 103

6.11.23 cosh
The function cosh returns the hyperbolic cosine of its argument.
B Synopsis

#include math
double cosh(x)
double x;

6.11.24 creat

The function creat creates a new file. The created file has the specifica-
tion given by the name argument. If the file already exists, a version
number one greater than any existing version is assigned to the file.

If the file did not previously exist, it is given the file protection that
results from ANDing the mode argument with the complement of the
current protection mask (see umask). (For details on mode arguments,
see chmod.) The new file is opened for reading and writing, and its file
descriptor is returned. (See also open, close, read, write, and Iseek on
file descriptors.)

The function returns an integer file descriptor. It returns -1 to indicate
protection violations, undefined directories, and conflicting file attrib-
utes.
B Synopsis

int creat(name,mode[,file__attribute,...])

char *name,+file__attribute;
unsigned mode;

name -

A NUL-terminated string containing any valid VAX/VMS file speci-
fication.

mode
An unsigned value that specifies the file-protection mode to be
ANDed with the complement of the current protection mode.

file-attribute
A character string of the form:

“keyword = value,...”

where keyword is an RMS (Record Management Services) field in
the file access block (FAB) or record access block (RAB), and value
is valid for assignment to that field. Some fields permit you to spec-
ify more than one value. In these cases, the values are separated by
commas.

The set of valid keywords is listed in Table 6-9.

104 Chapter 6

Table 6-9: File Access Block and Record Access

Block Keywords

Keyword Value Description
"alqg = n" decimal Allocation quantity
"bls = n" decimal Block size
"deq = n" decimal Default extension quantity
"dna = filespec" string Default filename string
"fop. = val, val,..." File processing options
ctg Contiguous
cht Contiguous-best-try
tef Truncate at end-of-file
cif Create if nonexistent
sup Supersede
scf Submit as command file on close
spl Spool to system printer on close
tmd Temporary delete
tmp Temporary (no file directory)
nef Not end-of-file
"mbec = n" decimal Multiblock count
"mbf = n" decimal Multibuffer count
"mrs = n" decimal Maximum record size
"rat = val, val..." Record attributes
cr Carriage-return control
blk Allow records to span block boundaries
ftn FORTRAN print control
prn Print file format
"rfm = val" Record format
fix Fixed-length record format
stm RMS-11 stream record format
stmlf Stream format with line-feed terminator
stmer Stream format with carriage-return ter-
minator
var Variable-length record format
vfc Variable-length record with fixed control
udf Undefined

Library Functions

105

6.11.25 ctermid

The function ctermid returns a character string giving the equivalence
string of SYS$COMMAND. This is the name of the controlling termi-
nal. The function takes a single argument, which must be a pointer to
char. If this argument is null, the file name is stored internally and is
overwritten by the next ctermid call. Otherwise, the file name is stored
beginning at the location pointed to by the argument.

® Synopsis

#include stdio
char *ctermid(string)
char sstring;

6.11.26 ctime

ctime converts a time in seconds, since 00:00:00 January 1, 1970, to an
ASCII string of the form: wkd mmm dd hh:mm:ss 19yy\n\O0.

The argument to ctime is a pointer to the time value to be converted.
ctime returns a pointer to the 26-character ASCII string.

Successive calls to ctime overwrite any previous time values.
B Synopsis

#include time
char =ctime (bintim)
long *bintim

106 Chapter 6

6.11.27 cuserid

The function cuserid returns a pointer to a character string containing
the name of the user who initiated the current process. If the argument
is null, the user name is stored internally. If the argument is not null, it
points to a storage area of length L__cuserid (defined by stdio), and the
name is written into that storage. If the user name is null, the function
returns a pointer to a null string.

® Synopsis
#include stdio
char *cuserid(string)
char »string;

u Example

Examples 6-1 and 6-2 show two ways to return the user ID with the
cuserid function.

/% WRITE OUT cuserid VALUE %/
#include stdio

maini)
{
static char strindgll.cuseridl = ""j
printf("Initiating user: Y%s\n"scuserid(string))i
¥
Example 6-1: Calling cuserid with an Argument

If the user running the program is named ZENO, the program writes
the following to stdout:
Initiating user: ZENO
The same output results from the program in Example 6-2.
/¥ WRITE OUT cuserid VALUE */
#include stdio
main()
{
/% 0 INDICATES NULL ARGUMENT #*/
printf("Initiating user: %s\n"scuserid(0)) i
¥

Example 6-2: Calling cuserid with the Argument 0

Library Functions 107

6.11.28 delete

The function delete deletes the specified file. The argument is a charac-
ter string that gives a VAX/VMS file specification. The usual defaults
and logical name translation are applied to the file specification.

delete returns 0 if it is successful and -1 if it fails.
® Synopsis

int delete(file__specification)
char +file__specification;

6.11.29 dup, dup2

Given a file descriptor returned by open, creat, or pipe, these functions
allocate a new descriptor that refers to the original file. Both return the
new file descriptor. dup2 causes its second argument to refer to the
same file as its first argument.

Both functions return -1 if their arguments are invalid. The argument
file__descriptor__1 is invalid if it does not describe an open file;
file__descriptor__2 is invalid if the new descriptor cannot be allocated.

® Synopses

int dup(file_descriptor)
int file__descriptor;

int dup2(file__descriptor_1,file__descriptor__2)
int file__descriptor__1,file__descriptor__2;

6.11.30 ecvt, fevt, gevt

Each of these functions converts its argument, a double value, to a
NUL-terminated string of ASCII digits and returns the address of the
string. In all three functions, value is the double-precision value to be
converted, and ndigit is the number of ASCII digits (not including the
NUL) to be used in the converted string. Calls to these functions
overwrite any existing string.

ecvt and fevt return, via the argument decpt, the position of the deci-
mal point relative to the first character in the returned string. A nega-
tive int value means that the decimal point is to the left of the returned
digits, and a zero means that the decimal point is immediately to the
left of the first digit. If ecvt and fevt are given a negative value to
convert, then the integer pointed to by *sign is set to be nonzero.
Otherwise, the integer is set to be zero.

gevt places the converted string in buf and returns the address of buf. If
possible, gevt produces ndigit significant digits in FORTRAN-F for-
mat, or if not possible, in E-format. Trailing zeros may be suppressed.

108 Chapter 6

® Synopses

char *ecvt(value,ndigit,decpt,sign)
double value;
int ndigit,~xdecpt,*sign;
char +fcvt(value,ndigit,decpt,sign)
double value;
int ndigit,~decpt,*sign;
char =gcvt(value,ndigit,buf)
double value;
char *buf;
int ndigit;
8 Example

Example 6-3 shows a program that uses the ecvt function to convert a
double value called val. The program then prints the information

returned by ecvt.

/% ECUT EXAMPLE */
#include stdio
main()

/% VALUE TO BE CONVERTED #*/
double wvalj

/+ UARIABLES FOR SIGN AND DECIMAL PLACE */

int sidgnspointi

/% ARRAY FOR CONVERTED STRING */
static char stringl2013

val = -3,1297830e-103

printf("origdinal value: Ze\n"sval)j
strepy(stringsecvt(val +S+&pPoint +Bsign))i
printf("converted strind: Zs\n"sstring)s
if (sidn)
printf("value is nedativeln")i

else printf("value is Positiveln")}i
printf("decimal Point at Zd\n"srPoint)}

¥

The output of the program is:

oridgirmal value: -3.,129783e-10
converted string: 312898

value is nedative

decimal Point at -9

Example 6-3: The ecvt Function

Library Functions

109

6.11.31 execl, execv, execle, execve

The functions execl and execv execute the image in the file named by
their first argument. Only VAX-11 C images can be executed by these
functions and these images must not be linked with BASE = 0. execl’s
arguments consist of the file name and character strings giving all
arguments for the image. The last argument must be 0, to indicate the
end of the list. execv’s arguments consist of the name of the file and an
array of strings that give the arguments for the image. The last element
of the array must be 0. By convention, the first string (arg0 or argv(0])
in both cases is the same as the name of the file.

Any open files remain open across execv or execl calls. Signals that are
ignored in the calling image are also ignored after calls to these func-
tions, but signals for which actions were specified in the calling image
revert to their default handling.

There is no return from a successful execv or execl call, since the
calling image is lost. The functions return -1 to indicate a variety of
errors, including:

¢ The file cannot be found.

e The file contents are not executable.

® Nobody (not system, group, owner, or world) has EXECUTE pri-
vilege for the file.

¢ The image requires too much memory.

When a VAX-11 C program executes, it is called as follows by the run-
time system:

main(ardgcrardusenur)
int ardesd

char *ardulls*enuvpll}
{

f

+

¥

The arguments argc and argv are the argument count and array of
argument strings, respectively. The argument envp is an array of
strings that specify the program’s environment. Each string in envp has
the form:

name = value

where name is either HOME, TERM, PATH, or USER, and value is a
NUL-terminated value. The last element of envp must be the null

110 Chapter 6

pointer (0). When the run-time system executes the program, it places
a copy of the current environment vector in the external variable envi-
ron. This variable is used by execl and execv to pass the environment
to the new program. The meanings of the names are as follows:

e HOME is the user’s login directory, that is, the translation of the
logical name SYS$LOGIN. The associated value is a VAX/VMS-
style directory specification. For example:

HOME=DB1:[ZENO1]

e TERM is the type of terminal being used. The associated values
are as follows:

la34

1a36

1a38

lalzo

ut0s

utS2

ut55

utlxx-80

utlxx-132

ft1-ft8

unknown

undefined

The values vtlxx-80 and vtlxx-132 indicate any of the VT100-
series terminals in 80- or 132-column mode, respectively. The val-
ues ft1 through ft8 are for user-designated foreign terminals. A
value of unknown indicates that the terminal is not recognized by
VAX/VMS; undefined indicates that the terminal is recognized by
VAX/VMS but not by VAX-~11 C. The null string indicates that
there is no terminal associated with the process.

e PATH is the default device and directory. For example, after the
DCL command:

$ SET DEFAULT WRK$:[ZENO.C.SRC]
the path would be:
PATH = WRK%:[ZEND.C,SRC]

e USER is the name of the user who initiated the current process, as
returned by cuserid. For example, if the process is initiated by
user ZENO, the user environment string is:

USER=ZEND

The strings in envp can be retrieved by the function getenv, which
returns the value associated with the specified name, for example,
PATH (see getenv).

Library Functions 111

The functions execve and execle pass the environment explicitly.
® Synopses

int execl(name,arg0,arg1,...argn,0)
char *name, *arg0, ... *argn;

int execv(name,argv)
char *name, +argv] |;

int execle(name,arg0,arg1i,...argn,0,envp)
char *name, +arg0, ... xargn,*envp[J;

int execve(name,argv,envp)
char »name, *argv|],*envp[|;

6.11.32 execle

See execl.

6.11.33 execv

See execl.

6.11.34 execve
See execl.

6.11.35 exit, _exit

The functions exit and __exit terminate the process from which they
are called. They return the specified status to the parent process, if any.
If the program is invoked by DCL, the status is interpreted by DCL and
a message is displayed. The function exit flushes and closes all open
files before performing the exit; __exit terminates the process immedi-
ately, without these clean-up actions.

® Synopsis

exit(status)
int status;

—exit(status)
int status;

6.11.36 exp

The function exp returns the base e raised to the power of the argu-
ment. If an overflow occurs, exp returns the largest possible floating-
point value and sets errno to ERANGE.

® Synopsis

#include math
double exp(x)
double x;

112 : Chapter 6

6.11.37 fabs

See abs.

6.11.38 fclose

The function feclose closes a file by flushing any buffers associated with
the file control block and freeing the file control block previously associ-
ated with the file pointer.

When a program terminates normally, fclose is called automatically for
all open files. fclose returns 0 on success. If the buffered data cannot be
written to the file, or if the file control block is not associated with an
open file, fclose returns EOF (a preprocessor constant defined in the
#include module stdio).

® Synopsis

#include stdio
int fclose(file__pointer)
FILE +file_pointer;

6.11.39 fevt

See ecvt.

6.11.40 fdopen

The fdopen function associates a file pointer with a file descriptor
returned by an open, creat, dup, dup2, or pipe function. This allows
you to access a file originally opened by one of these UNIX I/O func-
tions with standard I/0 functions. (Ordinarily, a file can be accessed by
either a file descriptor or by a file pointer, but not both, depending on
the way it is opened. See Section 6.1.)

The first argument to fdopen is the file descriptor returned by open,
creat, dup, dup2, or pipe. The second argument, type, is one of the
character strings "r", "w", "a", "r+", "w+", or "a+", for read, write, ap-
pend, read update, write update, or append update, respectively. (See
also fopen.) The type must agree with the opened file’s access mode (0
= reading, 1 = writing, 2 = reading and writing).

On success, fdopen returns a nonzero value which is the file descriptor.
On error, fdopen returns 0.

® Synopsis

FILE «fdopen(file_descriptor,type)
int file__descriptor;
char *type;

= Example

Example 6-4 shows a program that creates a file with variable-length
records (rfm =var) and the carriage-return attribute (rat = cr).

Library Functions 113

The program uses creat to create and open the file and fdopen to
associate the file descriptor with a file pointer. fdopen changes the way
the file can subsequently be referenced. After the fdopen call, the pro-
gram references the file by file pointer to write records (fwrite) and
close the file (fclose).

#include stdio
#define ERROR O
#define ERRORL -1
#define BUFFSIZE 132

/% A STREAM FILE USING A FILE DESCRIPTOR
AND A FILE POINTER =/

main()
{
char bufferl BUFFSIZEIS
int fildes$
FILE *fp3
if ((fildes = creat("data,dat"+0s"rat=cr",
"rfm=var")) == ERRORIL)
perror("FILE3: create() failed\n");:
exit(2)3
if ((fp = fdoren(fildess"w")) == NULL)
perror ("FILE3: fdoren() failed\n"),
exit(2)3
while(fdets(buffer »BUFFSIZEsstdin) = NULL)
{
if (fwrite(bufferssizeof(*buffer).
strlen(buffer)sfp) == ERROR)
perror ("FILE3: fwrite() failed\n")
exit(2)3
¥
if (felose(frp) == EOF)
perror("FILE3: fclose() failedin")
exit(2)3
¥

Example 6-4: The fdopen Function
6.11.41 feof

The function feof tests a file to see if the end-of-file has been reached. If
so, feof returns a nonzero integer; if not, it returns 0. feof is imple-
mented as a macro.

® Synopsis

#include stdio
int feof(file__pointer)
FILE *file__pointer;

114 Chapter 6

6.11.42 ferror

The function ferror returns a nonzero integer if an error has occurred
while reading or writing a file. A call to the function continues to return
this indication until the file is closed or until clearerr is called. ferror
is implemented as a macro.

® Synopsis

#include stdio
int ferror(file_pointer)
FILE «file__pointer;

6.11.43 fflush

The function fflush writes out any buffered information for the speci-
fied file. (Note that output files are normally buffered if and only if
they are not directed to a terminal, but stderr is not buffered unless
setbuf is used.)

fflush returns 0 when it is successful. If the buffered data cannot be
written to the file, or if the file control block is not associated with an
output file, fflush returns EOF (a preprocessor constant defined in the
#include module stdio).

® Synopsis

#include stdio
int fflush(file__pointer)
FILE «file__pointer;

6.11.44 fgetc
See getc.

6.11.45 fgetname

See getname.

6.11.46 fgets
See gets.

6.11.47 fileno

The function fileno returns an integer file descriptor that identifies the
specified file. fileno is implemented as a macro. See also open, lseek,
creat, read, and write.

® Synopsis

#include stdio
int fileno(file__pointer)
FILE +file__pointer;

Library Functions 115

6.11.48 floor

The function floor returns (as a double) the largest integer that is less
than or equal to its argument.

® Synopsis

#include math
double floor(x)
double x;

6.11.49 fopen

The function fopen opens a file by returning the address of a FILE
structure, denoting a file control block. The file control block may be
freed with the fclose function, or by default on normal program termi-
nation.

The first argument to fopen is a character string containing a valid
VAX/VMS file specification. The second argument, access__mode, is
one of the character strings "r", "w", "a", "r+", "w+", or "a+", for read,
write, append, read update, write update, or append update, respec-
tively.

The access modes have the following effects:
e 'r" opens an existing file for reading.

* "w" opens a file for writing and creates a new file. If the file already
exists, it creates a new file with the same name and a higher
version number.

e "a" opens the file for append access. An existing file is positioned
at end-of-file, and data is written there. If the file does not exist, it
is created.

The update access modes allow a file to be opened for both reading and
writing. When used with existing files, "r+" and "a+" differ only in the
initial positioning within the file. The modes are as follows:

e 'r+" opens an existing file for read update access. It is opened for
reading, positioned initially at beginning-of-file, but writing is also
allowed.

® "w+" opens a new file for write update access.

® "a+" opens a file for append update access. The file is positioned at
end-of-file (writing) initially. If the file does not exist, it is created.

116 Chapter 6

The function returns NULL (the null pointer value defined in the
#include module stdio) to signal errors, including:

¢ File protection violations
¢ An attempt to open a nonexistent file for read access
¢ Failure to open the specified file

® Synopsis

#include stdio
FILE ~fopen(file_spec,access_mode)
char +file_spec, *access_mode;

6.11.50 fprintf
See printf.

6.11.51 fputc
See putc.

6.11.52 fputs
See puts.

6.11.53 fread

The function fread reads a specified number of items from the file. The
reading begins at the current location in the file. The items read are
placed in storage beginning at the location given by the first argument.
The size of an item in bytes must also be specified.

The function returns the number of items actually read. If fread en-
counters the end-of-file or an error, it returns 0 (not EOF).
® Synopsis

#include stdio

int fread(pointer,size__of__item,number__items,file__pointer)
int number__items,size__of__item;

FILE «file_pointer;

The first argument, pointer, points to the items being read. The second
argument, size__of__item, is the size of the items being read.

Library Functions 117

6.11.54 free, cfree

The functions free and cfree make available for reallocation the area
allocated by a previous calloe, malloe, or realloc call. The argument is
the address returned by a previous call to malloe, calloe, or realloc.
The contents of the area are unchanged. The functions return O if the
area is successfully freed, -1 if an error occurs. For compatibility with
other C implementations, you should use free with malloc and cfree
with calloc.

® Synopsis

int free(pointer)
char «pointer;

int cfree(pointer)
char =pointer;

6.11.55 freopen

The function freopen substitutes the file named by a file specification
for the open file addressed by a file pointer. The latter file is closed. The
function is typically used to associate one of the predefined names
stdin, stdout, or stderr with a file.

The first argument is a pointer to a string that contains a valid
VAX/VMS file specification. After the function call, the given file
pointer is associated with this file.

The second argument, access__mode, is one of the character strings "r",
"w", "a", "r+", "w+", or "a+", for read, write, append, read update, write
update, or append update, respectively. (See also fopen.)

The third argument is a pointer to a FILE structure, denoting a cur-
rently open file. After the function call, the open file is closed.

If the attempt to reopen fails (that is, if the file specified by the first
argument cannot be accessed), the function returns the null pointer
value. Otherwise, the function returns the address of the reopened file
control block.

® Synopsis

#include stdio

FILE *freopen(file_spec,access__mode,file__pointer)
char *file__spec,*access__mode;

FILE +file__pointer;

118 Chapter 6

6.11.56 frexp

The function frexp returns the mantissa of a double value. The
mantissa is a double and its magnitude is less than one. The second
argument is a pointer to an int, to which frexp returns the exponent.

® Synopsis

#include math

double frexp(value,eptr)
double value;

int ~eptr;

6.11.57 fscanf

See scanf.

6.11.58 fseek

The function fseek positions the file to the specified byte offset in the
file. It returns EOF(a preprocessor constant defined in the #include
module stdio) for improper seeks, 0 for successful seeks.

® Synopsis

#include stdio

int fseek(file__pointer,offset,direction)
FILE +file__pointer;

int offset, direction;

Direction is an integer indicating whether the offset is measured from
the current read or write address (1), from the begmmng of the file (0),
or from the end-of-file (2).

In general, fseek should always be directed to an absolute position
returned by ftell. With stream files, the direction argument can be 0, 1,
or 2. With record files, an fseek to a position that was not returned by
ftell causes unpredictable behavior. See also ftell.

6.11.59 ftell

The function ftell returns the current byte offset to the specified stream
file. The offset is measured from the beginning of the file. With record
files, ftell returns the position of the next record, not the current byte
offset.

This function is useful only for handing an offset to fseek, to reposition
the file to where it was when ftell was called. An error causes -1 to be
returned.

® Synopsis

#include stdio
int ftell(file_—_pointer)
FILE +file__pointer;

Library Functions 119

6.11.60 ftime

The function ftime returns the elapsed time since 00:00:00, January 1,
1970, in a timeb structure. The timeb structure has the members
time__t time (which gives the time in seconds), unsigned short millitm
(which gives the fractional time in milliseconds), short timezone, and
short dstflag. The timezone and dstflag members are always 0.

® Synopsis

#include timeb
ftime (time_pointer)
struct timeb *time__pointer;

6.11.61 fwrite

The function fwrite writes a specified number of items to the file. The
writing begins at the current location in the file. The size of an item in
bytes must also be given.

The function returns the number of items actually written. It returns 0
if there is an error.

® Synopsis

#include stdio

int fwrite(pointer,size__of__item,number__items,file__pointer)
int number__items, size__of__item;

FILE »file__pointer;

The first argument points to the items being written. The second argu-
ment is the size in bytes of the items being written.

6.11.62 gevt

See ecvt.

6.11.63 getc, fgetc, getchar, getw

The function gete returns the next character as an int from a specified
file. The file is left positioned after the returned character, and the next
getc call takes the character from that position. getc is implemented as
a macro. fgete is identical to getc, but it generates an actual function
call, not a macro substitution. getchar is a macro identical to
getc(stdin).

getw returns the next four characters from the specified input file as an
int. No conversion is performed. If end-of-file is encountered during the
retrieval of any of the four characters, then EOF (a preprocessor con-
stant defined in the #include module stdio) is returned and all four
characters are lost.

120 Chapter 6

All the functions return EOF on end-of-file or error, but since EOF is a
perfectly good integer, feof and ferror should be used to check the
success of getw.

® Synopses
#include stdio

int getc(file__pointer)
FILE «file__pointer;

int fgetc(file__pointer)
FILE +file__pointer;

int getchar()

int getw(file__pointer)
FILE «file__pointer;

6.11.64 getchar
See getc.

6.11.65 getegid
See getuid.

6.11.66 getenv

The function getenv searches the environment array for the current
process and returns the value associated with a specified environment
name.

The names can be one of the following:

¢ HOME — The user’s login directory.

e TERM — The type of terminal being used. See execl.

e PATH — The default device and directory.

e USER — The name of the user who initiated the process.
® Synopsis

char *getenv(name)
char *name;

8 Example

cfunc()
{

Pprintf("Terminal tvepe: Zs\n"sdetenuv("TERM"))}
¥

If the terminal in use is a DIGITAL VT100 in 132-column mode, the
function cfunc writes the following to stdout:

Terminal type: uwtlO0-132

Library Functions 121

6.11.67 geteuid
See getuid.

6.11.68 getgid
See getuid.

6.11.69 getname, fgetname

These functions return the VAX/VMS file specification associated with
an integer file descriptor (getname) or file pointer (fgetname).

Both functions place the file specification in a buffer and return the
buffer’s address. The buffer should be an array large enough to contain
a fully qualified file specification (the maximum length is 128 charac-
ters). If an error occurs, getname returns -1, and fgetname returns 0.

® Synopses

char »getname(file__descriptor,buffer)
int file__descriptor;
char +buffer;

#include stdio

char »fgetname(file__pointer,buffer)
FILE +file__pointer;

char «buffer;

6.11.70 getpid
The function getpid returns the process ID of the current process.
® Synopsis

int getpid()

122 Chapter 6

6.11.71 gets, fgets

The function gets reads a line from the file stdin. The newline charac-
ter (‘\n’) that ends the line is replaced by the function with an ASCII
NUL character (‘\0’). The function returns its argument, which is a
pointer to a character string containing the acquired line. If an error
occurs or if end-of-file is encountered before a newline is encountered,
the function returns the null pointer value.

The function fgets reads a line from a specified file, up to a specified
maximum number of characters or up to and including the newline
character, whichever comes first. The function terminates the line with
a NUL (‘\0’) character. Note that, unlike gets, fgets places the newline
that terminates the input record into the user buffer if it fits. On end-
of-file or error, the function returns the NULL pointer value (defined in
the #include module stdio). Otherwise, it returns the address of the
first character in the line.

® Synopses

#include stdio
char »gets(string)
char *string;

char «fgets(string,maxline,file__pointer)
char =xstring;

int maxline;

FILE «file_pointer;

6.11.72 getuid, getgid, geteuid, getegid

These functions return, in VAX/VMS terms, group and member num-
bers from the user identification code (UIC). (For example, if the UIC is
[313,031], 313 is the group number, and 031 is the member number.)

In VAX-11 C, there is no difference between getgid and getegid. Both
return the group number from the current UIC. Similarly, getuid and
geteuid both return the member number from the current UIC.

® Synopses

unsigned getgid()
unsigned getegid()
unsigned getuid()
unsigned geteuid()

6.11.73 getw
See getc.

Library Functions 123

6.11.74 gsignal

The function gsignal raises (generates) a specified software signal.
Raising a signal causes the action established by the ssignal function
to be taken.

The argument to gsignal, sig, identifies the signal to be raised. The
result of a gsignal call is one of the following:

o If gsignal specifies a sig argument that is outside the range de-
fined in the signal module, then gsignal returns 0, and errno is set
to EINVAL.

o If ssignal establishes SIG_DFL (default action) for the signal,
then gsignal does not return. The image is exited with the
VAX/VMS error code that corresponds to the signal.

o If ssignal establishes SIG_IGN (ignore signal) as the action for
the signal, then gsignal returns its argument, sig.

¢ Otherwise, ssignal must have established an action function for
the signal. That function is called, and that function’s return
value is returned by gsignal.

® Synopsis

#include signal
int gsignal(sig)
int sig;

6.11.75 hypot, cabs

The functions hypot and cabs return:
sqrt(x+x + y+y)

® Synopsis
#include math

double hypot(x,y)
double x,y;

double cabs(z)
struct

{

double x,y;
}z;

124 Chapter 6

6.11.76 isalnum

The macro isalnum returns a nonzero integer if its argument is one of
the alphanumeric ASCII characters.! Otherwise, it returns 0.

® Synopsis

#include ctype
int isalnum(character)
char character;

6.11.77 isalpha

The macro isalpha returns a nonzero integer if its argument is an
alphabetic ASCII character.! Otherwise, it returns 0.

® Synopsis

#include ctype
int isalpha(character)
char character;

6.11.78 isascii

The macro isascii returns a nonzero integer if its argument is any
ASCII character.! Otherwise, it returns 0.

® Synopsis

#include ctype
int isascii(character)
char character;

6.11.79 isatty

The function isatty returns 1 if the specified file descriptor is associated
with a terminal, and 0 if it is not. A return value of -1 indicates an
error, for example, the file descriptor is not associated with an open file.
® Synopsis

int isatty(file__descriptor)
int file__descriptor;

1. Refer to Appendix G.

Library Functions 125

6.11.80 iscntrl

The macro iscntrl returns a nonzero integer if its argument is an ASCII
DEL character (177 octal) or any nonprinting ASCII character (code
less than 40 octal).! Otherwise, it returns 0.

® Synopsis

#include ctype
int iscntri(character)
char character;

6.11.81 isdigit

The macro isdigit returns a nonzero integer if its argument is a decimal
digit character (0-9).! Otherwise, it returns 0.

® Synopsis

#include ctype
int isdigit(character)
char character;

6.11.82 isgraph

The macro isgraph returns a nonzero integer if its argument is a
graphic ASCII character.! Otherwise, it returns 0. Graphic ASCII char-
acters are those with octal codes greater than or equal to 41 (‘!’) and
less than or equal to 176 (‘”’). In other words, they comprise the set of
printable characters minus the space.

® Synopsis

#include ctype
int isgraph(character)
char character;

6.11.83 islower

The macro islower returns a nonzero integer if its argument is a lower-
case alphabetic ASCII character.! Otherwise, it returns 0.
B Synopsis

#include ctype
int islower(character)
char character;

1. Refer to Appendix G.

126 Chapter 6

6.11.84 isprint

The macro isprint returns a nonzero integer if its argument is any
ASCII printing character (ASCII codes from 40 octal to 176 octal).!
Otherwise, it returns 0.

® Synopsis

#include ctype
int isprint(character)
char character;

6.11.85 ispunct

The macro ispunct returns a nonzero integer if its argument is an
ASCII punctuation character — that is, if it is nonalphanumeric and
greater than 40 octal.! Otherwise, it returns 0.

® Synopsis

#include ctype
int ispunct(character)
char character;

6.11.86 isspace

The macro isspace returns a nonzero integer if its argument is
“whitespace”, that is, it is an ASCII space, tab (horizontal or
vertical), carriage-return, form-feed, or newline character.! Otherwise,
it returns 0.

® Synopsis

#include ctype
int isspace(character)
char character;

6.11.87 isupper

The macro isupper returns a nonzero integer if its argument is an
uppercase alphabetic ASCII character.! Otherwise, it returns 0.

® Synopsis

#include ctype
int isupper(character)
char character;

1. Refer to Appendix G.

Library Functions 127

6.11.88 isxdigit

The macro isxdigit returns a nonzero integer if its argument is a hexa-
decimal digit (0-9, A-F, or a—f).! Otherwise, it returns 0.

® Synopsis

#include ctype
int isxdigit(character)
char character;

6.11.89 kill

The function kill sends a signal to the process specified by a process ID.
Unless the user has system privileges, the sending and receiving proc-
esses must have the same UIC. The function returns 0 if the kill was
successfully queued. It returns -1 to indicate errors, including:

e The receiving process has a different UIC and the user is not a
SYSTEM user.

e The receiving process does not exist.
See also ssignal, gsignal, getpid.
® Synopsis

int kill(pid,sig)
int pid,sig;

6.11.90 Idexp

The function ldexp returns its first argument multiplied by 2 raised to
the power of its second argument, that is, x(2°).

If underflow occurs, ldexp returns 0, and if overflow occurs, it returns
the largest possible value of the appropriate sign. In both cases, errno is
set to ERANGE.
B Synopsis

#include math

double Idexp(x,e)

double x;
int e;

1. Refer to Appendix G.

128 Chapter 6

6.11.91 localtime

The localtime function converts a time (expressed as the number of
seconds elapsed since 00:00:00 January 1, 1970) into hours, minutes,
seconds, and so on. The converted time value is placed in a time struc-
ture defined in the time #include module with the tag tm. The follow-
ing member names are offsets into the structure. They are integers:

e tm__hour — hours (24)

e tm__min — minutes

e tm__sec — time in seconds

e tm__isdst — daylight savings time (always 0)
e tm_mon — month (0-11)

e tm__mday — day of the month (1-31)

e tm__year — year (last two digits)

e tm__wday — day of the week (0-6)

e tm_yday — day of the year (0-365)

The argument to localtime is a pointer to the time in seconds relative
to 00:00:00 January 1, 1970. This time can be generated by the time
function or supplied by the user. localtime returns a pointer to the time
structure. Successive calls to localtime overwrite the structure.

® Synopsis

#include time
struct tm +localtime(bintim)
int *bintim;

6.11.92 log, log10

The function log returns the natural (base e) logarithm of the argu-
ment, which must be of type double. (The returned value is also dou-
ble.) logl0 returns the double base 10 logarithm of its double argu-
ment. If the argument x is zero or negative, the functions return 0 and
set errno to EDOM.

® Synopses
#include math

double log(x)
double x;

double log10(x)
double x;

6.11.93 longjmp

See setjmp.

Library Functions 129

6.11.94 Iseek

The function lseek positions a file to an arbitrary byte position and
returns the new position as an int. The function sets the new position
relative either to the beginning of the file (direction=0), the current
position (direction=1), or the end of the file (direction=2). The file
descriptor is an integer returned by open, creat, dup, or dup2. The
offset argument and the return value are measured in bytes. See also
open, creat, dup, dup2, and fseek.

The function returns -1 if the file descriptor is undefined or if you
attempt to seek before the beginning of the file.

Iseek can position a stream file on any byte offset. Iseek can position a
record file only on record boundaries. The available standard I/O func-
tions always position a record file at its first byte, at the end-of-file, or,
in the case of fwrite and fread, on the record boundary following the
last record that was written or read. Therefore, the arguments given to
Iseek must specify either the beginning or end of the file, a zero offset
from the current position (an arbitrary record boundary), or the posi-
tion returned by a previous, valid Iseek call.

CAUTION

If you seek beyond the end-of-file, and then write to
the file, the function creates a ‘“hole” by filling the
skipped bytes with zeros.

In general, lseek should always be directed to abso-
lute positions returned by ftell. With stream files, the
direction argument can be 0, 1, or 2. With record files,
an Iseek to a position that was not returned by ftell
causes unpredictable behavior.

® Synopsis
int Iseek(file__descriptor,offset,direction)
int offset,file__descriptor,direction;
The following call obtains the position of the next record in an RMS
record file (which has the descriptor filel):
/% O RELATIVE TO CURRENT POSITION %/
Pos = lseekK(filel,0,1)

The return value in pos can then be used later in the program (perhaps
after the file has been repositioned by write or read) to return to this
position, as in:

/% POSITION RELATIVE TO BEGINNING */
newpos = lseekK(filel,rposs0)3

130 Chapter 6

6.11.95 malloc

The function malloc allocates a contiguous area of memory whose size
in bytes is supplied as an argument. It returns the address of the first
byte, which is aligned on a longword boundary. malloc returns 0 if it is
unable to allocate enough memory.

® Synopsis

char *malloc(size)
unsigned size;

6.11.96 mktemp

The mktemp function creates a unique file name from a template. You
supply the template in the form, “namXXXXXX". The six trailing X’s
are replaced by a unique series of characters. You may supply the first
three characters (nam).

The argument to mktemp is a pointer to the template. mktemp returns
a pointer to the file name it creates. If a unique file name cannot be
created, mktemp returns a pointer to an empty string (\0).

® Synopsis

char rmktemp(template)
char *template;

6.11.97 modf

The function modf accepts two arguments, a double value and a
pointer to an int. It returns the positive fractional part of its first
argument and assigns the address of the integral part to its second
argument.

® Synopsis
#include math

double modf(value,iptr)
double value,iptr;

6.11.98 nice

The function nice increases or decreases process priority by the amount
of the argument. A positive argument decreases priority, and a negative
argument increases priority. The resulting priority cannot be less than
one or greater than the process’s base priority. nice returns 0 on success
and -1 on failure.

When a process forks, the resulting child inherits the parent’s priority.
® Synopsis

nice(increment)
int increment;

Library Functions 131

6.11.99 open

The function open opens a file by file specification, either for reading
(mode = 0), writing (mode = 1), or update (both reading and writing,
mode = 2). It returns an integer file descriptor that is used by read,
write, Iseek, dup, dup2, and close.

The function positions the file at its beginning (byte 0). It returns -1 if
the file does not exist, if it is protected against reading or writing, or if
the file, for any other reason, cannot be opened.

See also creat, read, write, close, dup, dup2, and lseek.

NOTE

If you intend to do random writing to a stream file, the file
must be opened for update (mode = 2).

® Synopsis

int open(name,mode)
char *name;
int mode;

The argument, name, is a NUL-terminated character string containing
a valid VAX/VMS file specification.

6.11.100 pause

The function pause causes its calling process to stop (hibernate) until
the process receives a signal. Control is not returned to the process that
called pause, except after a SYS§WAKE system service call. The proc-
ess may be reawakened by kill or alarm.

See also signal.
® Synopsis
pause()

132 Chapter 6

6.11.101 perror

The function perror writes a short error message to stderr describing
the last error encountered during a call to the C run-time library from a
C program. It writes out its argument (a user-supplied prefix to the
error message), followed by a colon, followed by the message itself,
followed by a newline. The argument typically is the name of the pro-
gram that incurred the error.

The message written by perror is taken from the standard message
string vector sys__errlist; sys__errlist can be indexed by the value of
the external variable errno.

The variable sys__nerr contains the current number of messages in
sys__errlist.

® Synopsis

extern char *sys__errlist[];
extern int sys__nerr;

perror(string)
char =string;

6.11.102 pipe

The pipe function allows two processes, which are spawned by subse-
quent vfork calls, to exchange data with read and write calls. It re-
turns O if the pipe was created and -1 if the attempt to create the pipe
failed.

After a successful return, the array file__descriptor contains two file
descriptors. The first descriptor (in element 0) is used for reading data
from the pipe, and the second (in element 1) is used for writing data to
the pipe. The maximum size of a single write is 512 bytes.

The forked processes inherit the open file descriptors.
® Synopsis

int pipe(file__descriptor)
int file__descriptor[2];

Library Functions 133

6.11.103 pow

The function pow returns the first argument raised to the power of the
second argument. Both arguments must be double, and the returned
value is double. If the result overflows, pow returns the largest possible
floating-point value and sets errno to ERANGE. If the argument y is
negative and nonintegral, or if both arguments are zero, pow returns 0
and sets errno to EDOM.

® Synopsis
#include math

double pow(x,y)
double x,y;

6.11.104 printf, fprintf, sprintf

These functions perform formatted output to the standard output
(printf), to a specified file (fprintf), or to a character string in memory
(sprintf). All three take a format-specification argument that contains
characters to be written literally to the output and/or conversion speci-
fications that correspond to the list of optional output sources.

All three functions return the number of characters actually written
out. printf and fprintf return -1 if an I/O error occurs. sprintf returns
-1 if the output string overflowed the internal buffer.

= Synopses
#include stdio

int printf(format__specification[,output_source,...])
char sformat__specification;

int fprintf(file__pointer,format__specification[,output__source,...])
FILE «file__pointer;
char format__specification;

int sprintf(string,format__specification[,output__source,...])
char sstring, *format__specification;

In the printf, fprintf, and sprintf functions, the output sources are
expressions whose types correspond to conversion specifications given
in the format specification. If no conversion specifications are given, the
output sources may be omitted. Otherwise, the function call must have
exactly as many output sources as there are conversion specifications,
and the conversion specifications must match the types of the output
sources. Conversion specifications are matched to output sources in
simple left-to-right order.

The format specification is a character string that specifies the output
format. The string may contain two kinds of items:

134 Chapter 6

¢ Ordinary characters, which are simply copied to the output.

¢ Conversion specifications, each of which causes the conversion of a
corresponding output source to a character string, in a particular
format.

u Conversion Specifications

Each conversion specification begins with a percent sign (%) and ends
with a conversion character that specifies an output format. The output
formats are are described in Table 6-10.

Table 6-10: Conversion Characters for Formatted Output

Character Meaning
d Convert to decimal format.
o Convert to unsigned octal format (without leading zero).
X Convert to unsigned hexadecimal format (without leading 0x).

An uppercase X causes the hexadecimal digits A-F to be printed
in uppercase. A lowercase x causes those digits to be printed in
lowercase.

u Convert to unsigned decimal format (giving a number in the
range 0 to 4,294,967,295).

c Output single character (NUL characters are ignored).

S Output as character string (write out characters until NUL is
encountered or until number of characters indicated by the preci-
sion specification is exhausted. If the precision specification is
zero or omitted, all characters up to a NUL are output).

e Convert float or double to the format [-Jm.nnnnnnE[+ i-)xx,
where the number of n’s is specified by the precision (default =
6). If the precision is explicitly zero, the decimal point appears
but no n’s appear. An E is printed if the conversion character is
an uppercase E. An e is printed if the conversion character is a
lowercase e.

f Convert float or double to the format [-Jm..m.nnnnnn, where the
number of n’s is specified by the precision (default = 6). Note
that the precision does not determine the number of significant
digits printed. If the precision is explicitly zero, no decimal point
appears and no n’s appear.

g Convert float or double to d, e, or f format, whichever is shorter
(suppress insignificant zeros).

% Write out the % symbol. No conversion is performed.

Library Functions 135

The following characters can be used between the % sign and the con-
version character. They are optional, but if specified, they must occur
in the order listed.

Character

width

precision

m Example

Meaning

Left-justify the converted output source in its field.

Use this integer constant as the minimum field width. If
the converted output source is wider than this minimum,
write it out anyway. If the converted output source is
narrower than the minimum width, pad it to make up the
field width. Padding is with spaces normally, and with
zeros if the field width is specified with a leading zero.
(This does not mean that the width is an octal number.)
Padding is on the left normally and on the right if a
minus sign is used.

Separates field width from precision.

Use this integer constant to designate the maximum
number of characters to print with s format, or the num-
ber of fractional digits with e or f format.

Indicates that a following d, o, x, or u specification corre-
sponds to a long output source. (Note that, in VAX-11 C,
all ints are long by default.)

Can be used to replace the field width specification
and/or the precision specification. The corresponding
width or precision is given in the output source.

Example 6-5 shows how printf interprets different kinds of conversion
specifications.

136

Chapter 6

#include stdio

main()

{
double wval = 123.345Ge+33%
char c = ‘L3
int i = - 15000000003
char *s = "thomasina"sj

/% Print the format codes a colons two tabs.

and the formatted output values, with the

* outeput field delimited by <3,

*/
Printf ("2%9,4f :\Nt\Nt<%94fx\n"sval)i
Printf ("Z%49fs\t\td fe\n"srval)s
Printf("229,0f s\t \t2%9,0Ff \n"yval)i
Printf ("% -9,0Ff s\t \t<%4-9.0F \n\n" rval)i
Pprintf("%4%11,.6esNtNt<%11.Bex\n"yvald)i
printf("%%1lesNtNt<%1lex\n"suval)si
printf ("%4Z11,0esNt\t<%11.0e2\n"yual)s
printf("%Z%-11.0e:NtNts%-11.0e\n\n" svallsi
Printf ("7%%11d:\tNt<%11dx\n" sval)l)i
Printf ("A%49d:\t\Nt<%995\n\n" sual)i
Printf ("%%dsNtNts AAn'"ac) i
Printf{"%%csvtNt AAnt o)
printf("4%o:\Nt\t<%0x\n"yc) i
Printf (" ZhxaNeNt<%xsAnAn" 0 i
printf ("%%d:Ne Nt %ds\n" i) 3
Printf (" A% NeNtSZus\n" »1) 3
printf ("A%xaNt\t AAnAn" i)
Printf(s:NtANLIhsEAn" s8) 3
Printf(=9 Bs Nt N\t iU -9+Bs>\n"+5) 3
printf ("% - %, % i NtANLSY - %, %55 \n" +0:5,+5) 3
Printf("246.,0s5 s VENLI%B 053 \n\n" +s5) 3

¥

Example 6-5: The printf Function

Library Functions

137

The program writes the following to stdout:

£1233453.B6000%
<123345,600000

wa. 41
7afe

" 0f:
%h-9.0fF:

“11.Be:
Wlle:
wil.0ez:
S-11,0p:

willd:
94z
d s

hos

hos

YA

Yd e

YATH

YA

he
4-9.6s:
Y TS
7B+ 05

Example 6-5: (Cont.) The printf Function

138

1233465

<123346
£1.233456e+05 >

+233456e+0

1.e+03%
<1.,e+05

123346
123346

<677

£103>
43

<2794967296
£aB97d100%

“thomasinal
“thomas
“thoma
<thomasinax

Chapter 6

6.11.105 putc, fputc, putchar, putw

The function putc writes a single character to a file and returns the
character. The file is left positioned after the character. putc is imple-
mented as a macro; fpute acts the same as pute but is a true function,
not a macro. The function putchar is implemented as a macro. It
writes a single character to the standard output (stdout) and returns
the character. putchar is identical to pute(stdout).

putw writes four characters to the output file as an int. No conversion
is performed. If end-of-file is encountered during the retrieval of any of
the four characters, then EOF is returned and all four characters are
lost.

All of these functions return EOF (defined in the #include module
stdio) to designate output errors. Since EOF is itself an integer, ferror
should be used to detect errors encountered by putw.

® Synopses
#include stdio

int putc(character file__pointer)
char character;
FILE «file__pointer;

int fputc(character,file__pointer)
char character;
FILE «file__pointer;

int putchar(character)
char character;

int putw(integer,file__pointer)
int integer;
FILE «file__pointer;

6.11.106 putchar
See pute.

6.11.107 puts, fputs

The function puts writes a character string to stdout, followed by a
newline. The function fputs writes a character string to a specified file.
It does not append a newline to the string. Neither function copies the
terminating NUL to the output stream.
® Synopses

#include stdio

int puts(string)

char »string;

int fputs(string,file__pointer)

char sstring;

FILE «file__pointer;

Library Functions 139

6.11.108 putw
See putc.

6.11.109 rand, srand

The function rand returns pseudorandom numbers in the range 0
to 231-1. It uses a multiplicative congruential random number genera-
tor with a repeat factor (period) of 232, The random number generator is
reinitialized by calling srand with the argument 1, or it can be set to a
specific point by calling srand with any other number.

8 Synopses
int rand();

int srand(seed)
int seed;

6.11.110 read

The function read reads bytes from a file and places them in a buffer.
The buffer argument is the address of at least n bytes of contiguous
storage in which the input is placed. The function returns the number
of bytes actually read. The return value does not necessarily equal
nbytes. For example, if the input is from a terminal, at most one line of
characters is read.

A return value of 0 means that end-of-file was encountered. A return
value of -1 indicates any sort of read error, including physical input
errors, illegal buffer addresses, protection violations, undefined file de-
scriptors, and so forth.

The specified file descriptor must refer to a file currently opened for
reading (see open).

® Synopsis

int read(file_descriptor,buffer,nbytes)
int file__descriptor,nbytes;
char +buffer;

140 Chapter 6

6.11.111 realloc

The function realloc changes the size of the area pointed to by the first
argument to the number of bytes given by the second argument. realloe
returns the address of the area, since the area may have moved to a new
address. If the area was moved, the space previously occupied is freed.
If realloc is unable to reallocate the space (for example, if there is not
enough room), it returns 0.

The contents of the area are unchanged up to the lesser of the old and
new sizes. New space in the reallocated area is initialized with 0.

The first argument may point to an allocated area or, unless other
allocations have been made in the meantime, to an area freed by free or
cfree.

® Synopsis
char srealloc(pointer,size)

char =pointer;
unsigned size;

6.11.112 rewind

The function rewind sets the file to the beginning. rewind is equivalent
to fseek(file-pointer,0,0). It returns -1 to indicate failure; 0 to indicate
success. rewind can be used with either record or stream files.

® Synopsis
#include stdio

int rewind(file__pointer)
FILE «file_pointer;

6.11.113 shrk
See brk.

6.11.114 scanf, fscanf, sscanf

These functions perform formatted input from the standard input
(scanf), from a specified file (fscanf), or from a character string in
memory (sscanf). All three take a format-specification argument that
contains ordinary characters, which must match the corresponding
characters in the input, and/or conversion specifications that corre-
spond to the list of optional input targets.

The functions return the number of successfully matched and assigned
input items. If end-of-file (or string) is encountered, the functions re-
turn EOF (a preprocessor constant defined in the #include module
stdio).

Library Functions 141

® Synopses
#include stdio

int scanf(format__specification[,input__pointer,...])
char *format__specification;

fscanf(file__pointer,format__specification[,input__pointer,...])
FILE «file__pointer;
char *format__specification;

sscanf(string,format__specification[,input__pointer,...])
char +string,*format__specification;

In all three functions, the format specification is a character string
specifying the input formats to be used. A format specification can
include three kinds of items:

1. White-space characters (spaces, tabs, and newlines), which
match optional white-space characters in the input field.

2. Ordinary characters (not %), which must match the next non-
white-space character in the input.

3. Conversion specifications, which govern the conversion of the
characters in an input field and their assignment to an object
indicated by a corresponding input pointer (see list below).

Each input pointer is an address expression indicating an object whose
type matches that of a corresponding conversion specification. (Conver-
sion specifications form part of the format specification.) The indicated
object is the target that receives the input value. There must be as
many input pointers as there are conversion specifications, and the
addressed objects must match the types of the conversion specifica-
tions.

® Conversion Specifications

Each conversion specification begins with a percent sign (%). This sign
is followed by an optional assignment-suppression character (*) — see
“Remarks” — an optional number giving the maximum field width,
and a conversion character. The conversion characters are described in
Table 6-11.

® Remarks

e The delimiters of the input field can be changed with the bracket
(L1) conversion specification, described above. Otherwise, an input
field is defined as a string of non-white-space characters. It ex-
tends either to the next white-space character or until the field
width, if specified, is exhausted. (Note, therefore, that the func-
tion reads across line/record boundaries, since the newline charac-
ter is a white-space character.)

e A call to one of these functions resumes searching immediately
after the last character processed by a previous call.

142 Chapter 6

Table 6-11: Conversion Characters for Formatted Input

Character

Meaning

d

e

1d,lo,1x

le,If

hd,ho,hx

[..]

Expect a decimal integer in the input. The corresponding argu-
ment must point to an int.

Expect an octal integer in the input (with or without a leading
zero). The corresponding argument must point to an int.

Expect a hexadecimal integer in the input (without a leading 0x).
The corresponding argument must point to an int.

Expect a single character in the input. The corresponding argu-
ment must point to a char. The usual skipping of white space is
disabled in this case, so that n white-space characters can be read
with %nc. If a field width is given with c, the given number of
characters is read, and the corresponding argument should point
to an array of char.

Expect a character string in the input. The corresponding argu-
ment must point to an array of characters that is large enough to
contain the string plus the terminating NUL character (\0). The
input field is terminated by a space, tab, or newline.

Expect a floating-point number in the input. The corresponding
argument must point to a fleat. The input format for floating-
point numbers is [+ !-Innn[.[ddd]][{E ! e}[+ | -Inn], where the n’s
and d’s are decimal digits (as many as indicated by the field
width minus the signs and the letter E).

Synonym for f.

Same as d, o, x, except that a long integer of the specified radix
is expected. (Retained for compatibility only, since long and int
are the same in VAX-11 C.) The same effect can be achieved by
using D, O, and X.

Same as e, f, except that the corresponding argument is a double
instead of a float. (The same effect can be achieved by using an
uppercase E or F.)

Same as d,0,x, except that a short integer of the specified radix is
expected.

Expect a string that is not delimited by white-space characters.
The brackets enclose a set of characters (not a string). Ordinarily,
this set (or “character class”) is made up of the characters that
comprise the string field. Any character not in the set will termi-
nate the field. However, if the first (leftmost) character is an up-
arrow ("), then the set shows the characters that terminate the
field. The corresponding argument must point to an array of
characters.

Library Functions 143

¢ If the assignment-suppression character (*) appears in the format

specification, no assignment is made. The corresponding input
field is interpreted and then skipped.

The arguments must be pointers or other address-valued expres-
sions, since C permits only calls by value. To read a number in
decimal format and assign its value to n, you must write

scanf ("4d" +&n)
not
scanf ("7%d" sn)

White space in a format specification matches optional white
space in the input field. That is, the format specification:

field = %x
matches:

6.11.115 sethuf

The function setbuf associates a buffer with an input or output file. It
may be used after the file has been opened, but must be used before any
/0 is done to it. It causes file operations to use the specified character
array as a buffer instead of using an automatically allocated buffer. The
buffer must be large enough to hold an entire input record. The
BUFSIZ constant defined in the stdio module is available for you to use
as the size of the buffer. If the buffer is NULL (defined in the #include
module stdio), the file will be unbuffered. Otherwise the buffer is used
for all subsequent I/O operations on the file. A buffer is normally ob-
tained by calling malloc.

® Synopsis

#include stdio
setbuf(file__pointer,buffer)
FILE «file__pointer;

char ~buffer;

6.11.116 setgid

See setuid.

144

Chapter 6

6.11.117 setjmp, longjmp

The setjmp and longjmp function pair provides a way to transfer con-
trol from a nested series of functions back to a predefined point without
returning normally (that is, not by a series of return statements). The
setjmp function saves the context of the calling function in an environ-
ment buffer. The longjmp function restores the context of the environ-
ment buffer.

The environment buffer is declared as an array of integers long enough
to hold the register context of the calling function. It is declared by the
typedef jmp__buf. The contents of the general-purpose registers, in-
cluding the program counter (PC), are stored in the buffer.

When setjmp is first called, it returns the value 0. If longjmp is then
called, naming the same environment as the call to setjmp, control is
returned to the setjmp call as if it had returned normally a second time.
The return value of setjmp in this second return is the value supplied
by the user in the longjmp call. To preserve the true value of setjmp,
the function calling setjmp must not be called again until the associ-
ated longjmp is called.

® Synopses
#include setjmp

setjmp(env)
jmp__buf env;

longjmp(env,val)
jmp_—buf env;

® Example

The program in Example 6-6 uses a series of case statements to deter-
mine how the program has returned from a series of functions. The
NORMAL case is always executed once. The program sets the return
value of setjmp to 0 and calls the function x, which calls y. If the
function y succeeds, it calls z. If it does not succeed, y uses the longjmp
function to return the value Y_FAILED to the main function. If the
function z succeeds, it executes a series of return statements to return
to the middle of the NORMAL case. Otherwise, z uses the longjmp
function to return the value Z__FAILED.

Library Functions 145

#include stdio
#include setdmp
#define NORMAL O
#define Y_FAILED 1
#define Z_FAILED 2

dmpobuf environments

FILE *fp3
main()
{
switch (setdmp(environment))
{
case NORMAL:
fr = foren("anvfile" y"w")j
x ()3
felose(fpr)s
breaks

case Y_FAILED;:

ferintf (fep,"Could not proceedi failed

v-cleanur()}
breaks

case Z_.FAILED]
frrintf(fp,"Could vot Proceed’ failed
felose(fp)i

breaks
b
¥
x()
{
v ()3
¥
v ()
{
if("error")
londdmp(environment s Y_-FAILED)S
/% CONTROL GOES BACK TO THE BEGINNING
OF THE case STATEMENT */
()3
146

in

in

yO)raAn") s

)\

Chapter 6

z()

if("error")
longdmp(environment» Z_FAILED) 3
/% CONTROL GOES BACK TO THE BEGINNING
OF THE case STATEMENT %/
¥

Example 6-6: The setjmp and longjmp Functions

6.11.118 setuid, setgid

These functions are included only for program compatibility. They
both return 0 (to indicate success). They perform no other operation.
® Synopses

int setuid(member_number)

unsigned member__number;

int setgid(group__number)
unsigned group__number;

6.11.119 signal

The function signal allows you either to catch or to ignore a signal.
Signals are raised by a variety of events, including:

e A gsignal call (see gsignal).

e A user typing CTRL/C at a terminal (thus raising the signal
SIGINT).

¢ Certain programming errors.
e A kill function call from another process.

Signals are given the mnemonics (as in SIGINT, above) found in the
definition module signal. Normally, all signals cause the termination of
the receiving process. However, the signal function allows you to ignore
most of them or to interrupt to a specific location for handling. Table
6-12 shows the signals defined in the signal module, ways to generate
the signals on VAX/VMS, and the qualities of the signal, such as
whether or not the signal can be ignored. (Unless noted otherwise, the
signal can be reset and it can be caught or ignored.)

Library Functions 147

Table 6-12: VAX-11 C Signals

Name Description Generated by Notes
SIGHUP Hang up Data set hang up
SIGINT Interrupt VMS CTRL/C inter-
rupt
SIGQUIT Quit CTRL/C if the action
for SIGINT is the
SIG_DFL default
SIGILL Illegal Illegal instruction, re- Not reset when
instruction served operand, or re- caught
served address mode
SIGTRAP Trace trap TBIT trace trap or Not reset when
breakpoint fault in- caught
struction
SIGIOT IOT instruction Not implemented
SIGEMT EMT instruction Compatibility mode
trap or op code re-
served to customer
SIGFPE Floating-point ex- Floating-point
ception overflow/underflow
SIGKILL Kill External signal only Cannot be caught
or ignored
SIGBUS Bus error Access violation or
change mode user
SIGSEGV Segment Length violation or
violation change mode supervi-
sor
SIGSYS System call Bad argument to sys-
error tem call
SIGPIPE Broken pipe Not implemented
SIGALRM Alarm clock Timer AST
SIGTERM Software External signal only
terminate
148 Chapter 6

The first argument in a signal call is sig, the number or mnemonic
associated with a signal. Customarily, the sig argument is one of the
mnemonics defined in the signal module. The second argument is func,
which is either the action to be taken when the signal is raised, or the
address of a function needed to handle the signal.

If the func argument is the constant SIG__DFL (defined in the
#include module signal), the action for the given signal is reset to the
default action, which is the termination of the receiving process. If the
argument is SIG_IGN, the signal is ignored. (Note that not all signals
can be ignored.)

If the func argument is neither SIG_DFL nor SIG_IGN, then it speci-
fies the address of a signal-handling function. When the signal is raised,
the addressed function is called with sig as its argument. When the
addressed function returns, the interrupted process continues at the
point of interruption. (This is called “catching a signal.”’) Except as
indicated in Table 6-12, signals are reset to SIG_DFL after they have
been caught. Thus, you must call signal each time you want to catch a
signal.

The signal function returns the address of the function previously (or
initially) established to handle the signal. If the sig argument is out of
range, signal returns -1, and errno is set to EINVAL.

A child process (see vfork) inherits only the defaulted and ignored
signals of the process that spawned it.

An exec call (see exec) resets all caught signals to the default action.
® Synopsis
#include signal

int (+signal(sig,func))() /+ FUNCTION RETURNING
ADDRESS OF FUNCTION
RETURNING int «/

int sig; /+ SIGNAL NUMBER +/

int («func)(); /+ ADDRESS OF FUNCTION
RETURNING int +/

® Example

Example 6-7 shows how you can use the signal, alarm, and pause
functions to alternately suspend and resume a program.

Library Functions 149

#define SECONDS 5

#include stdio
#include sidnal

J¥ INITIALIZE THE ALARM COUNTER #*/
int number.of.alarms = 53

main ()
4
int alarm.action()3

% PASS SIGNAL AND FUNCTION TO signal #/
sidnal (SIGALRMalarm.action)

/% SET ALARM CLOCK FOR 5 SECONDS #/
alarm(SECONDS) 3

/% SUSPEND THE PROCESS UNTIL THE SIGNAL IS RECEIVED #*/
pautse ()3

¥

alarmoaction()

{

/¥ PRINT THE VALUE OF THE ALARM COUNTER */
Privntf (" \Ne<%dN0075" svumber..of. alarms) i

/% PASS SIGNAL AND FUNCTION TO signal #/
sidgnal (SIGALRMsalarm_action)

/# SET ALARM CLOCK #/
alarm(SECONDS) 3

A% DECREMENT ALARM COUNTER */
if (~-number.of.alarms)
patse ()3
¥

Example 6-7: The signal, alarm, and pause Functions

6.11.120 sin

The function sin returns the sine of its radian argument. Both the
argument and the sine value must be double.

® Synopsis

#include math
double sin(x)
double x;

150 Chapter 6

6.11.121 sinh

The function sinh returns the hyperbolic sine of its argument. Both the
argument and the hyperbolic sine value must be double. The value of
sinh(x), if it causes an overflow, is a double value with the largest
possible magnitude and the appropriate sign.

® Synopsis

#include math
double sinh(x)
double x;

6.11.122 sleep

The function sleep suspends the execution of the current process for at
least the number of seconds indicated by its argument. On success,
sleep returns the number of seconds that the process slept. On error,
sleep returns -1.

B Synopsis

int sleep(seconds)
unsigned seconds;

6.11.123 sprintf
See printf.

6.11.124 sqrt

The function sqrt returns the square root of its argument. The argu-
ment and the returned value are both double. sqrt returns 0 if x is
negative, and errno is set to EDOM (defined in the #include module
errno).

® Synopsis

#include math
double sqrt(x)
double x;

6.11.125 srand

See rand.

6.11.126 sscanf

See scanf.

Library Functions 151

6.11.127 ssignal

The function ssignal allows you to specify the action to be taken when
a particular signal is raised. The first argument, sig, is a number or
mnemonic associated with a signal. (The symbolic constants for signal
values are defined in the #include module signal. See Table 6-12.) The
second argument, action, represents the action to be taken when the
signal is raised, or the address of a function that is executed when the
signal is raised.

ssignal returns the address of the function previously established as
the action for the signal. Note that the address may contain the value
SIG_DFL (0) or SIG__IGN (1).

ssignal calls signal with the same arguments; the only difference be-
tween the two is in their return value on detecting an error (usually an
invalid signal argument). ssignal returns 0 to indicate errors. For this
reason, there is no way to know whether a return status of 0 indicates
failure or whether it indicates that a previous action was SIG_DFL (0).
signal returns -1 on error.

For more details on establishing actions for signals, see signal. For
more details on the actions taken when a signal is raised, see gsignal.

® Synopsis

#include signal

/+ ssignal IS A FUNCTION RETURNING

» THE ADDRESS OF A FUNCTION RETURNING
~ AN INTEGER.

*/

int (»ssignal(sig,action)) ()

/+ action IS A POINTER TO A FUNCTION
» RETURNING AN INTEGER.

* /

int sig, (*action)();

6.11.128 streat, strncat

The function streat concatenates its second argument to the end of its
first argument. Both arguments must be character strings, and, in the
case of strcat, NUL-terminated.

The function strncat performs the same operation, but uses characters
from the second argument up to a specified maximum unless the NUL
terminator is encountered first. The argument max is an integer giving
the maximum number of characters to use from string_2. If max is
zero or negative, no characters are copied from string__2. If a strncat
call reaches the specified maximum, strncat sets the next byte in
string__1 to NUL.

152 Chapter 6

Both functions return the address of the first argument, string__1. It is
assumed to be large enough to hold the concatenated result.

® Synopses

char sstrcat(string_—1,string__2)
char »string__1,*string__2;

char *strncat(string__1,string_2,max)
char sstring__1,*string__2;
int max;

6.11.129 strchr, strrchr

The function strchr returns the address of the first occurrence of a
given character in a NUL-terminated string. It returns 0 if the charac-
ter does not occur in the string. strrchr is similar, but returns the
address of the last (rightmost) occurrence of the character.

® Synopses

char sstrchr(string,character)
char *string,character;

char =strrchr(string,character)
char =string,character;

6.11.130 strcmp, strncmp

The function strcmp compares two ASCII character strings and returns
a negative, zero, or positive integer, indicating that the first string is
lexicographically less than, equal to, or greater than the second string.
The returned value is obtained by subtracting the characters at the first
position where the two strings disagree. (See Table G-1 for the numeric
values of ASCII characters).

strnemp performs the same operation except that it compares a speci-
fied maximum number of characters in the two strings. The argument
max gives the maximum number of characters (beginning with the
first) to be compared. If max is zero or negative, no comparison is
performed, and 0 is returned (the strings are considered equal).

With either function, the comparison is terminated when a NUL is
encountered in one of the strings.

® Synopses

int strcmp(string__1,string_2)

char +string__1,*string_2;

int strncmp(string__1,string__2,max)
char *string_1,*string_2;

int max;

Library Functions 153

6.11.131 strcpy, strncpy

The function strepy copies the argument string__2 into the argument
string__1, stopping after string_2’s NUL character is copied.

strncpy copies exactly max characters from string__2 to string__1; the
value in string_ 2 is either truncated or padded with NUL characters. If
string__2 is truncated, the copy in string__1 is not necessarily termi-
nated by a NUL character.

Both functions return the address of string__1.
® Synopses

char sstrcpy(string_1,string__2)

char sstring__1,+*string_2;

char »strncpy(string—_1,string____2,max)
char =string__1,*string__2;

int max;

6.11.132 strcspn

The function strespn searches a string for a character in a specified set
of characters. It returns the number of characters that precede the
matched one. (That is, the function spans the characters not in the set
and returns the number of such leading characters. See also strspn.)

If the argument string is a null string, strespn returns 0. If no charac-
ters match between string and charset, strespn returns the length of
string.

® Synopsis

int strcspn(string,charset)
char =string,*charset;

® Example

Example 6-8 shows how strespn interprets four different kinds of argu-
ments.

154 Chapter 6

#include stdio

main ()

{
FILE *outfiles
outfile = forpen{("strecsprn.out™ " "w"lj
ferrintfloutfiles"strespen with null charset: Zd\n":

strespn("abeodef" "))

frrintfloutfiles"strespn with null string: %din"
stresen(""y"abcdef"))3

ferintf(outfiles"strecsenlabesabeds Udin™ .
stresen("abe" +"abe"))3

frrintfl{outfiles"strespnlabesdef): %din"
strespn(abe"»"def")) 3

*
The example writes the following to strcspn.out:

strespn with null charset: B
stresen with null string: O
strocspn(abcsabe)s O
stresenlabesdef)s 3

Example 6-8: The strespn Function

6.11.133 strien

The function strlen returns the length of a string of ASCII characters.
The returned length does not include the terminating NUL character
(\0).

® Synopsis

int strlen(string)
char sstring;

6.11.134 strncat

See strcat.

6.11.135 strnecmp

See stremp.

6.11.136 strncpy
See strepy.

Library Functions 155

6.11.137 strpbrk

The function strpbrk searches a string for the occurrence of one of a
specified set of characters. It returns the address of the first character
in the string that is in the set, or NULL if no character is in the set.

® Synopsis

char strpbrk(string,charset)
char sstring,*charset;

6.11.138 strrchr

See strchr.

6.11.139 strspn

The function strspn searches a string for the occurrence of a character
that is not in a specified set of characters. It returns an int giving the
number of characters that precede the mismatched character. (That is,
the function spans the characters in the set and returns the number of
such leading characters. See also strespn.)

If charset is a null string, strspn returns 0. If all the characters in string
are also in charset, the function returns the length of string.

® Synopsis

int strspn(string,charset)
char =string,*charset;

= Example
Example 6-9 shows how strspn interprets different arguments.

#include stdio
main()

{
FILE *outfiles
outfile = foren("strsPrn.out" »"w")j
ferrintf(outfiles"strspn with null charset: %d\n".
strspn("abcdef"»""))3
frrintfloutfiles"strsen with null strind: Zd\n":
strspn(""y"abcdef "))
feprintf(outfiles"strspenlabecsabe): Zd\n"
strspn("abec" s+"abe"))i
frrintf(outfiles"strspn(abesdef): Zd\n",
strespn("abec" s "def")) i
¥

156 Chapter 6

The example writes the following to strspn.out:

strspn with null charset: O
strspn with null string: O
strspnf{abecsabe): 3

strspnlabcsdef): O

Example 6-9: The strspn Function

6.11.140 tan

The function tan returns a double value that is the tangent of its
radian argument, which must also be double. The value of tan(x) at its
“singular points” (...-3pi/2,-pi/2,pi/2...) is the largest possible double
value, and errno is set to ERANGE.

® Synopsis

#include math
double tan(x)
double x;

6.11.141 tanh

The function tanh returns a double value that is the hyperbolic tangent
of its double argument.

® Synopsis

#include math
double tanh(x)
double x;

6.11.142 time

The function time returns the time elapsed since 00:00:00, January 1,
1970, in seconds. If time’s argument is not null, it points to the place
where the returned time is also stored.

® Synopses

long time(time__location)
long *time__location;

Library Functions 157

6.11.143 times

The function times returns the accumulated times of the current proc-
ess and of its terminated child processes. The times are placed in a time
structure defined below. For both process and children times, the struc-
ture breaks down the time by user and system time. Since VAX/VMS
does not differentiate between system and user time, all system times
are returned as 0. Accumulated CPU times are returned in 10-mil-
lisecond units.

struct thuffer
{
int proc.user.timel
int Proc.svystem.times’
int child.user.times
int child_osvstem_timesj
T

® Synopsis

times(buffer)
struct tbuffer «buffer;

6.11.144 tmpfile

The function tmpfile creates a temporary file that is opened for update.
The file exists only for the duration of the process and is preserved
across forks. The function returns the address of a FILE structure (de-
fined in the stdio module), or a null pointer value if there is an error.

® Synopsis

#include stdio
FILE *tmpfile()

6.11.145 tmpnam

The function tmpnam creates a character string that can be used in
place of the file-name argument in other function calls. If the name
argument is null, tmpnam returns the address of an internal storage
area. If name is not null, then it is taken to be the address of an area of
length L__tmpnam (defined in the #include module stdio). In this case,
name is returned by tmpnam. Successive calls to tmpnam with null
arguments cause the current name to be overwritten.

® Synopsis

#include stdio
char *tmpnam(name)
char *name;

158 Chapter 6

6.11.146 toascii

The function toascii converts its argument, an 8-bit ASCII character,
to a 7-bit ASCII character. toascii is a macro.

® Synopsis

#include ctype
int toascii(character)
char character;

6.11.147 tolower, __tolower

The function tolower converts its argument, an uppercase alphabetic
ASCII character, to lowercase. If the argument is already a lowercase
character, it is returned unchanged. __tolower is implemented as a
macro; tolower as a function.

® Synopses

char tolower(character)
char character;

#include ctype
char __tolower(character)
char character;

6.11.148 toupper, __toupper

The function toupper returns its argument, an ASCII lowercase alpha-
betic character, converted to uppercase. If the argument is already
uppercase, it is returned unchanged. __toupper is implemented as a
macro; toupper as a function.

® Synopses

char toupper(character)
char character;

#include ctype
char __toupper(character)
char character;

Library Functions 159

6.11.149 umask

The function umask creates a file protection mask that is used when-
ever a new file is created, and returns the old mask value. The actual
file protection of a newly created file is the bitwise AND of the mode
with the complement of the umask argument. The mode is supplied
when the file is opened. The umask argument shows which bits to turn
off when a new file is created. Initially, the mask is 0 (no restrictions).

See also chmod.
® Synopsis

int umask(mode__complement)
unsigned mode__complement;

6.11.150 ungetc

The function ungetc writes a character to the buffer of a file and leaves
the file positioned before the character. The character is said to be
“pushed back” onto the file, since it will be returned by the next gete
call. The function returns the pushed-back character or EOF if it can-
not push the character back.

One push-back is guaranteed, provided something has previously been
read from the file. fseek erases all memory of pushed-back characters.

® Synopsis
#include stdio

int ungetc(character,file__pointer)
char character;
FILE *file__pointer;

6.11.151 vfork

The function vfork sets up the communication channels necessary to
spawn and control a new process. The process from which vfork is
called is known as the the parent process. The spawned process is
known as the child process.

Note that vfork does not itself create a new process. Instead, it creates
a duplicate of the caller’s call frame, makes a record of the call’s loca-
tion (that is, a record of who the parent is), and returns a value. The
return value is either 0 or the process ID of the child. That is, vfork
returns 0 in the child process and a process ID in the parent.

You can use the value returned by vfork to control the parent and child
processes; usually, the return value is used to decide whether to call one
of the exec functions to create the child process. (See Example 6-10.) A
child process created in such a manner inherits the following context
from its parent:

160 Chapter 6

e The user ID, group ID, and user name.

¢ All signals for which the action is to ignore the signal (see signal);
signals that are caught in the parent are reset to their default
handling in the child.

¢ The set of files opened by the parent. However, only record devices
and files opened for reading can be shared by the parent and child,
and the pointers to positions in the input files cannot be shared.
Files opened by the parent for writing cannot be shared.

e The environment array of the parent (see getenv and the exec
functions).

® Synopsis
int vfork()
= Example

Example 6-10 shows how vfork is used to control the creation of a child
process and to monitor its execution and return status. The child proc-
ess executes the image in the file CHILD1.EXE.

#include stdio
#include ssdef

main()
{
int statusscstatusi

/% SET UP CHILD PROCESS %/
if ((status = wfork()) t= 0)
{
/% WAIT FOR CHILD PROCESS TO RETURN %/
if ((status = wait(lstatus)) == -1)
{
perror("parentl")}
exit (55% _NORMAL) S
¥
Pprintf("Child’s final status: Zd\n"scstatus)i
¥
else
{
/% EXECUTE THE IMAGE IN CHILD1.EXE %/
if ((status = execl("childl"y"child_name",
"ghild_ardl",0)) == -1)
{
perror("parentl")
exit (S58% _NORMAL)
¥

3
Example 6-10: The vfork Function

Library Functions 161

6.11.152 wait

The function wait suspends the calling process until a signal is received
or until one of its child processes terminates. If a child has terminated
since the last wait, wait returns immediately. If there are no children,
wait returns immediately with a return value of —1. A normal return
value is the process ID of the terminated child.

The argument of wait points to an integer that receives the status with
which the child was terminated. If the status is null, then the normal
return value is returned (there are no side effects).

® Synopsis

int wait(status)
int »status;

6.11.153 write

The function write writes a specified number of bytes from a buffer to a
file. The buffer argument is the address of n number of bytes of contigu-
ous storage.

The function returns the number of bytes actually written. It returns -1
for errors, including undefined file descriptors, illegal buffer addresses,
and physical I/O errors.

The file descriptor must refer to a file opened for writing or update (see
open).

® Synopsis

int write(file_descriptor,buffer,nbytes)
int file__descriptor,nbytes;
char *buffer;

162 Chapter 6

Chapter 7

Preprocessor Gontrol Lines

Preprocessor control lines are lines in the source file that modify the
action of the compiler.! The control lines are introduced by number
signs (#) and do not end with semicolons. The number sign must appear
in column 1. The effects of preprocessor control lines are independent of
the usual scope rules and persist from their occurrence until the end of
the compilation. Preprocessor control lines are not defined formally by
the C language. Their implementations may differ from one compiler to
another.

The control lines are:

e #define — defines token replacements (including preprocessor
macro substitutions)

e #include — includes source text from an external file or library

o #if, #ifdef, #ifndef, #else, and #endif — control conditional com-
pilation

e #line — specifies a line number

¢ #module — specifies a module name to the VAX/VMS Linker

7.1 Token Replacement

The #define control line specifies a token string that is substituted for
every subsequent occurrence of the indicated identifier in the program
text (unless it occurs inside a char constant, a comment, or a quoted
string). The #define control line’s forms are:

define identifier token-string
define identifier(identifier,...) token-string

If the token string is omitted, the identifier is deleted from the text
given to the compiler.

1. The term preprocessor is used in this manual for consistency with other
writing on the C language. However, VAX-11 C differs from other implementa-
tions in that these control lines are processed by an early phase of the compiler,
not by a separate program.

163

After a token string is substituted in the source file, the compiler re-
scans the source file from the beginning to determine whether any
previously replaced token strings contain identifiers defined by other
#define control lines. If so, the identifiers are replaced by their token
strings. For example:

/% SHOW MULTIPLE SUBSTITUTIONS AND LISTING FORMAT %/
#define AUTHOR william + LAST

main()
{

int writerswilliamsshakespearesveatss
#define LAST shaKesreare

writer = AUTHORS

#define LABT veats
writer = AUTHORS
¥
When this text is compiled with the command
$ CC/SHOW=INTERMEDIATE RESCANGED
the following listing results:

1 /% SHOW MULTIPLE SUBSTITUTIONS AND
LISTING FORMAT */

2 #define AUTHOR william + LAST
3
4 main ()
3 {
B 1 int writerywilliamsshakespearesveatss
7 1
8 1 #define LAST shakKespeare
9 1
10 1 writer = AUTHORS
1 writer = william + LASTS
2 writer = william + shaKesreares
11 1
12 1 #define LAST veats
13 1
14 1 writer = AUTHORS
1 writer = william + LASTS
2 “writer = william + veats?
15 1 ¥

Line 8 establishes shakespeare as the substitution for LAST, and line 2
establishes william + LAST as the substitution for AUTHOR. In line
10, AUTHOR is replaced by william + LAST. Then, the result is re-
scanned for other substitutable text, as a result of which LAST is
replaced by shakespeare. There is no further substitution possible. In

164 Chapter 7

line 12, the #define control line changes the substitution for LAST from
shakespeare to yeats. In line 14, the final text becomes:

writer = william + veatsi

The #define control line may be continued onto subsequent lines if
necessary. Each line to be continued must be terminated by a back-
slash (\) and a newline. The backslash and newline do not become part
of the definition. The first character in the next line is logically adja-
cent to the character that immediately precedes the backslash. The
backslash/newline as a continuation sequence is valid anywhere after
the identifier being defined, or anywhere after the left parenthesis in a
macro definition.

Comments can be continued without the backslash/newline. In the fol-
lowing example, all of the text must appear on the same line unless
comments appear in the <white-space>:

#<white-space>define<white-space>identifier|(]

The optional left parenthesis begins a macro parameter list (see Section
7.1.2), and it must not be separated from the identifier.

7.1.1 Constant Identifiers

The first form of the #define control line defines a simple substitution,
usually of a constant for a frequently used identifier. A common use of
the control line is to define the end-of-file indicator:

#define EOF (-1)

The substitution text for this example is parenthesized to avoid lexical
ambiguities when the text is substituted in the program, as in

i=EOF 3

7.1.2 Macro Substitutions
Macros are defined with a #define control line of the form:
#define name([parm1[,parm2,...]]) [token-string]

where name, parml, parm2, and so forth are identifiers, and token-
string is arbitrary text.

Anywhere in the source file following such a control line (except within
comments, character constants, or string constants), a macro reference
of the form

name([arg1[,arg2,...]])

is replaced by the token string from the control line. Furthermore, any
formal parameters (such as parml) that appear in the token string are
replaced by the corresponding arguments (such as argl) from the refer-
ence.

Preprocessor Control Lines 165

For example, the definition of the macro __toupper is contained in the
C definition module ctype. This file defines that macro in the following
manner:

#define _toupper(c) ((c) s="a’B&&(c)<="z/ P {c)BOXEF {c))

When you reference the macro __toupper, the compiler substitutes the
macro definition and replaces the parameter (¢) with the argument you
give in the macro reference.

Preprocessor control lines and the macro reference have syntax that is
independent of the C language. The following discussion gives the rules
for specification of macro definitions and references:

1. Macro Definitions. The macro name and the formal parameters
are identifiers and are specified according to the rules for identi-
fiers in the C language.

Spaces, tabs, and comments may be used freely within a #define
control line. In particular, they may appear anywhere that the
delta (A) symbol appears in the following example:

#adefineaname(aparm1A,Aparm2a)atoken-stringa

Note that white space cannot appear between the name and the
left parenthesis that introduces the parameter list. White space
may appear inside the token string. Also, at least one space, tab,
or comment must separate the name from the word define. Com-
ments may appear within the token string, but they do not be-
come part of the macro definition.

2. Macro References. Comments and white-space characters
(spaces, horizontal and vertical tabs, carriage returns, newlines,
and form feeds) may be used freely within a macro reference. In
particular, they may appear anywhere that the delta symbol
appears in the following example:

namea(aargia,aarg2a)

Arguments consist of arbitrary text. Syntactically, they are not
restricted to C expressions. They may contain embedded com-
ments and white space. Comments are ignored, but the white
space is preserved during the substitution.

The number of arguments in the reference must match the num-
ber of parameters in the macro definition, although individual
arguments may be null.

Commas separate arguments except where they occur inside
string or character constants, comments, or parentheses.
Parentheses within arguments must be balanced.

When a macro reference is encountered in the source file, it is replaced
by the token string from the macro definition. Then, the token string is
scanned for the formal parameters. Any that are found are replaced by
the corresponding actual arguments from the macro reference. Since
the token string consists of arbitrary text, this replacement occurs even

166 Chapter 7

if a parameter appears inside a character or string constant in the token
string. (In order to be recognized, a parameter must be delimited from
the surrounding text by white space or punctuation characters.)

You must be careful when specifying macro arguments that use the
increment (++), decrement (—-), and assignment (such as +=) opera-
tors or other arguments that may cause side effects (such as function
calls). For example, you should not pass the following argument to the
__toupper macro:

~Loupper(¥p++)

When xp++ is substituted in the macro definition, the result is:

((*p++) = ‘a’ && (*p++) <= 'z’ 7 (¥p++) & OXSF : (*¥p++))
At run-time, p will have a different value at each reference to it.

If the token string is omitted from the macro definition, the entire
macro reference simply disappears from the source text.

The token string in the macro definition, as well as actual arguments in
a macro reference, may contain other macro references. Substitution
occurs as expected, but such nested references are limited to a depth of
64. The maximum number of parameters or arguments is also 64.

7.1.3 Listing of Substituted Lines

The VAX-11 C compiler command has two /SHOW qualifiers that
enable the listing of all lines that have been modified by macro substi-
tutions.

With the qualifier
SEHOW=EXPANSION

the listing produced by the compiler shows the final form of a line (after
all substitutions), preceded by its original form and followed by the
listing of machine code, if any. Substituted lines are flagged in the
margin.

With the qualifier
SEHOW=INTERMEDIATE

all intermediate substitutions are also listed, with one substitution per
line.

Without one of these two qualifiers, only the original form of a line
(before the substitutions) is listed.

The example in Section 7.1 demonstrates the effect of the /SHOW=
INTERMEDIATE qualifier. For details on the format of VAX-11 C
listings, see Appendix D.

Preprocessor Control Lines 167

7.1.4 Ganceling Definitions
The control line
undef identifier
cancels a previous definition of the identifier.

7.2 File Inclusion

The #include control line inserts external text into the token stream
delivered to the compiler. Its forms are:

#include <file-spec>
#include “file-spec”
#include module-name

file-spec is a valid VMS file specification or logical name. module-name
is the name of a module in a text library.

If the file-spec is delimited by angle brackets (<>), SYS$LIBRARY is
searched for a file of that name.

If the file-spec is delimited by quotation marks (" "), and if, after apply-
ing the usual RMS defaults, no directory is known, then the directory
containing the source file is searched for the file.

Any text not delimited in the #include control line is assumed to be the
name of a module in a VAX/VMS text library. VAX-11 C text libraries
are specified and searched as follows:

e A text library can be created with the LIBRARY command and
specified with a qualifier on the VAX-11 C compile command.

If more than one compilation is done by a single compile com-
mand, the library must be specified for each source file, as in:

CC sourcea+mylib/LIBRARY ssourceb+mylib/LIBRARY
e If more than one library is specified in the compile command, the

libraries are searched in the specified order each time an #include
control line is encountered. For example:

CC sourcea+mylib/LIBRARY+vourlib/LIBRARY

In this example, references to #include modules are searched for
first in MYLIB.TLB and then in YOURLIB.TLB.

e If no library is specified in the compile command, or if the speci-
fied module cannot be found in any of the specified libraries, the
following actions are taken:

— If the user has defined an equivalence name for CSLIBRARY
that names a text library, that library is searched.

— Any remaining unresolved module names are searched for in

SYS$LIBRARY:CSYSDEF.TLB.
#include control lines may be nested to a depth of four.

168 Chapter 7

7.3 Conditional Compilation

Five control lines are available to control conditional compilation. They
delimit blocks of statements that are compiled if a certain condition is
true; they may be nested. The beginning of the block of statements is
marked by one of three control lines: #if, #ifdef, or #ifndef. Optionally,
an alternative block of statements can be set aside with the #else con-
trol line. The end of the block is marked by an #endif control line.

If the condition checked by #if, #ifdef, or #ifndef is true, then all lines
between an #else and #endif are ignored by the compiler. If the condi-
tion is false, then the lines between the #if, #ifdef, or #ifndef and an
#else or #endif control line are ignored. Ignored lines are flagged with
an X in the compiler listing margin.

The #if control line has the form:
#if constant-expression

It checks whether the constant expression is nonzero (true). The
operands must be constants. The increment (++), decrement (——),
sizeof, pointer (x), address (&), and cast operators are not allowed in
the constant expression.

The constant expression in an #if control line is subject to text replace-
ment and can, therefore, contain references to identifiers defined in
previous #define control lines. The replacement occurs before the ex-
pression is evaluated.

If an identifier used in the expression is not currently defined, the
compiler issues a warning message (UNDEFIFMAC), and treats the
identifier as though it were the constant zero.

The #ifdef control line has the form:
#ifdef identifier

It checks whether the identifier was previously defined by a #define
control line.

The #ifndef control line has the form:
#ifndef identifier

It checks to see if the identifier is not defined or if it has been undefined
by the #undef control line.

The #else control line has the form:
#else

It delimits alternative source lines to be compiled if the condition
tested for in the corresponding #f, #ifdef, or #ifndef control line is
false. An #else control line is optional.

The #endif control line has the form:
endif
It ends the scope of the above control lines.

Preprocessor Control Lines - 169

The VAX-11 C compiler defines three preprocessor substitutions with
the names vax, vms, and vaxllc. These symbols are defined as if the
following text fragment were included by the compiler before every
compilation source group.

#define ums 1
#odefine wvax 1
#define vaxlle 1

The symbols may be used by the C programmer to conditionally com-
pile C programs used on more than one operating system to take advan-
tage of system-specific features. For example:

#if wvaxllec
#include rms ¥ odinclude RME definitions #/
#gondif

#

Because the VAX-11 C compiler will substitute 1 for every occurrence
of these identifiers in a program, these three identifiers should be con-
sidered reserved by DIGITAL. The effect of these predefinitions may be
removed by explicitly undefining the conflicting name.

7.4 Specification of Line Numbers

The C compiler keeps track of information about relative line numbers
in each file involved in the compilation. When it displays a diagnostic
message at the terminal, the compiler also displays this information.
The #line control line specifies a new starting line number (the number
is incremented from that point) and a new identifier or string for the
file containing the control line. The new information is in effect until
the end of the file or until another #line control line changes it.

The formats of the #line control line are:

#line constant identifier
#line constant string

constant identifier

constant string

The constant must be an unsigned decimal integer. It supplies the line
number. The second parameter can be specified as either a VAX-11 C
identifier or a character-string constant. It supplies the VAX/VMS file
specification. The character string must not exceed 128 characters.

170 Chapter 7

7.5 Specification of Module Name and Identification

The #module control line causes the following information to be ap-
plied to the object module of the current compilation:

¢ A module name that appears in the compiler listing file and linker
load map. The module name is then recognized by the debugger
and librarian.

¢ An optional identification string (such as a version number) which
also appears in the listing file and load map.

If it does not encounter a #module control line during compilation, the
VAX-11 C compiler gives the output object file (if any) the same mod-
ule name as the first function it encounters and it gives the file an
identification of V1.0. You can use the #module control line to override
these defaults.

The formats of the control line are:

module identifier identifier
module identifier string

The first parameter must be a valid VAX-11 C identifier. It specifies
the module name to be used by the linker. The second parameter speci-
fies the optional identification that appears on listings and in the object
file. It must be either a valid VAX-11 C identifier or a character-string
constant with no more than 31 characters.

Only one #module line can be processed per compilation, and that line
must appear before any C language text. (That is, it can follow other
control lines, such as #define, but it must precede any function defini-
tions or external data definitions.)

The parameters in a #module line are subject to text replacement and
can, therefore, contain references to identifiers defined in previous #de-
fine control lines. The replacement occurs before the parameters are
processed.

The #module control line is a VAX/VMS extension of the preprocessor;
it may not occur in other C implementations.

Preprocessor Control Lines 171

Chapter 8

Using VAX-11 Record Management Services
(RMS)

The C programming language does not provide built-in, or predefined,
facilities for handling files. All input and output (I/O) operations in a C
program are performed by calls to external functions, which vary in
nature and number from one implementation to another. The file-
handling capabilities of VAX-11 C fall into two distinct categories:

1. Those functions which follow the conventions that allow pro-
grams written in one version of the language to run with little or
no modification with other versions of the language and run-time
library. This involves the use of stream files and C functions that
perform standard and UNIX I/O (refer to Chapter 6).

2. The RMS functions which are not portable to other C implemen-
tations, but which provide more kinds of file organization and
more record access modes.

This chapter briefly reviews the basic concepts and facilities of VAX-11
RMS and shows examples of their application in VAX-11 C program-
ming. Because this is an overview, not all RMS concepts and features
are explained. If you want more complete information, consult the fol-
lowing manuals in the VAX/VMS document set:

e Introduction to VAX-11 Record Management Services. This docu-
ment contains a general description of the record management
services of the VAX/VMS operating system. The information in
this document is introductory; programming techniques are not
presented. Indexed sequential access is described.

e VAX-11 Record Management Services Reference Manual. This
manual fully describes the user interface to RMS. It includes some
introductory information on RMS programming and detailed defi-
nitions of all RMS access blocks, attribute blocks, and macro
instructions.

172

8.1 RMS File Organization

VAX-11 RMS supports three kinds of file organization:

¢ Sequential organization
¢ Relative organization
e Indexed organization

The organization of a file determines the way the file is stored on the
medium and, consequently, the possible operations on records. A file’s
organization is specified when the file is created, and it cannot be
changed.

8.1.1 Sequential Organization

Sequential files have consecutive records. There are no empty records
separating records that contain data. This organization limits the oper-
ations on the file to:

¢ Positioning the file at a particular record, generally by sequen-
tially moving from one record to the next.!

¢ Reading data from any record.
e Writing data by adding records at the end of the file.

Sequential organization is the only kind permitted for magnetic tape
files.

8.1.2 Relative Organization

Relative files have records that occupy numbered, fixed-length cells.
The records themselves need not have the same length. Cells can be
empty or can contain records. Consequently, the following operations
are permitted:

e Positioning the file at a particular record, usually by direct access.
In direct access, the relative record number (actually the number
of a cell) is usually used as a key to locate the cell and its record,
without reference to other cells. The records can also be accessed
sequentially, in which case any empty cells are ignored, or they
can be accessed directly by record file address (RFA). (The RFA is
returned in a parameter block whenever a record is written and
can be used subsequently to locate the record directly.)

1. Direct access is also possible, either by key (relative record number) or by the
record file address (RFA). However, access by RFA is limited to files on disk
devices, and access by key is limited to disk files that also have fixed-length
records. These access modes are unusual because most application programs do
not keep track of record positions in sequential files.

Using VAX-11 Record Management Services (RMS) 173

¢ Reading a record from any cell.
e Deleting a record from any cell.
e Writing a record into any cell.
The relative file organization is possible only on disk devices.

8.1.3 Indexed Organization

Indexed files have records that contain, in addition to data and
carriage-control information, one or more keys. Keys can be character
strings, packed decimal numbers, and 16- or 32-bit signed or unsigned
integers. Every record has at least one key, the primary key, whose
value is fixed. Optionally, each record can have one or more alternate
keys, whose values can vary.

Unlike relative record numbers used in relative files, key values in
indexed files are not necessarily unique. When you create a file, you can
specify that a particular key may have the same value in different
records (these keys are called duplicate keys). Keys are defined for the
entire file, in terms of their position within a record and their length.

In addition to maintaining its records, RMS builds and maintains
indexes for each of the defined keys. As records are written to the file,
their key values are inserted in order of ascending value in the appropri-
ate indexes. This organization makes possible the following operations:

e Positioning the file at a particular record, by direct access. In
direct access reads, either a primary or alternate key, plus a speci-
fied key value, is used to locate the record. In direct access writes
(given a record that contains key values in the predefined posi-
tions), RMS automatically adds the record to the file and adds the
primary and alternate key values to the appropriate indexes.
Records can also be accessed sequentially, where the sequence is
defined by the index for a specified key. Finally, records can be
accessed directly by RFA. (The RFA is returned in a parameter
block whenever a record is written and can be used subsequently
to locate the record directly.)

¢ Reading any record, including sequential reads controlled by a
key’s index.

e Deleting any record.

e Updating an alternate key’s value, if the key’s definition permits
its value to change.

e Writing records selectively, based on the value of a key and, when
allowed in the key’s definition, based on duplicate values. If dupli-
cate values are permitted, you can write records containing key
values that are already present in the key’s index. If duplicate
values are not permitted, such write operations are rejected.

Indexed organization is possible only on disk devices.

174 Chapter 8

8.2 Record Access Modes

The record access modes, summarized in Section 8.1, are sequential,
direct (random) by key, and direct by record file address. Again, the
direct access modes are possible only with files that reside on disks.

Unlike a file’s organization, the record access mode is not a permanent
attribute of the file. During the processing of a file, you can switch from
one access mode to any other permitted for that file organization. For
example, indexed files are often processed by locating a record directly
by key, and then using that key’s index to read sequentially all the
indexed records (this is sometimes called the indexed sequential access
method, or ISAM).

8.3 RMS Record Formats

Records in RMS files can have the following formats:

e Fixed-length format, where the length of every record is defined at
the time of the file’s creation. This format is permitted with any
file organization.

e Variable-length format, where the maximum length of every rec-
ord is defined at the time of the file’s creation. This format is
permitted with any file organization.

e Variable-length format with a fixed-length control area (VFC),
where every record is prefixed by a fixed-length field. This format
is permitted only with sequential and relative files.

8.4 RMS Functions

RMS provides a number of functions that create and manipulate files.
These functions use RMS data structures to define the characteristics
of a file and its records.

The RMS data structures are grouped into four main categories, as
follows:
e File Access Block (FAB). Defines the file’s characteristics, such as
file organization and record format.

e Record Access Block (RAB). Defines the way in which records are
processed, such as the record access mode.

o Extended Attribute Blocks (XAB). Various kinds of extended
attribute blocks contain additional file characteristics, such as the
definition of keys in an indexed file. (Extended attribute blocks
are optional.)

e Name Block (NAM). Defines all or part of a file specification to be
used when an incomplete file specification is given in an OPEN or
CREATE operation. (Name blocks are optional.)

Using VAX-11 Record Management Services (RMS) 175

RMS uses these data structures to perform file and record operations.
Table 8-1 lists some of the commonly used functions.

Table 8-1: Common RMS Run-Time Processing Functions

Category Function Description
File sys$create Creates and opens a new file of any organiza-
Processing tion
sys$open Opens an existing file and initiates file proc-
essing
sys$close Terminates file processing and closes the file
sys$erase Deletes a file
Record sys$connect Associates a file access block with a record
Processing access block to establish a record access

stream; a call to this function is required be-
fore any other record processing function can

be used
sys$get Retrieves a record from a file
sys$put Writes a new record to a file
sys$update Rewrites an existing record to a file
sys$delete Deletes a record from a file
sys$rewind Positions the record pointer to the first record
in the file

sys$disconnect Disconnects a record access stream

All RMS functions are directly accessible from VAX-11 C programs.
The synopsis for any RMS function has the following form:

int sys$name(pointer)
struct rms__structure *pointer;

In this synopsis, name corresponds to the name of the RMS function
(such as OPEN or CREATE); rms__structure corresponds to the name
of the structure being used by the function.

The file-processing functions require a pointer to a file access block as
an argument; the record-processing functions require a pointer to a
record access block as an argument. For example, because sys$create is
a file-processing function, its synopsis would be as follows:

int sys$create(fab)
struct FAB «fab;

176 Chapter 8

Note that these synopses do not show all the options available when an
RMS function is invoked. Refer to Chapter 8 of the VAX-11 Record
Management Services Reference Manual for a complete description of
the RMS calling sequence.

Finally, all of the RMS functions return an integer status value. The
format of RMS status values follows the standard format described in
Chapter 9 of this manual. Because they return a 32-bit integer, you do
not need to declare the RMS functions before you use them.

8.5 Writing VAX-11 G Programs Using RMS

VAX-11 C supplies a number of #include modules that describe the
RMS data structures and status codes. These modules are listed in
Table 8-2.

Table 8-2: VAX-11 C RMS #include Modules

Module Structure

Name Tag(s) Description
fab FAB Defines the file access block structure
rab RAB Defines the record access block structure
nam NAM Defines the name block structure
xab XAB Defines the extended attribute block structure
rmsdef — Defines the completion status codes that RMS returns

after every file- or record-processing operation

rms all tags Includes all of the above modules

Most VAX-11 C programmers simply include the rms module, which
includes all the other modules.

These #include modules define all the data structures as structure tag
names. However, they perform no allocation or initialization of the
structures; these modules describe only a template for the structures.
To use the structures, you must create storage for them and initialize
all the structure members as required by RMS.

To assist in the initialization process, VAX-11 C provides initialized
RMS data structure prototypes. You can copy these readonly proto-
types to your uninitialized structure definitions with a structure assign-
ment. You can choose to take the default values for each of the struc-
ture members (as initialized by the prototypes), or you can tailor the
contents of the structures to fit your requirements. In either case, you
must use the templates to allocate storage for the structure and to
define the members of the structure.

Using VAX-11 Record Management Services (RMS) 177

The initialized prototypes supply the RMS default values for each
member in the structure; they specify none of the optional parameters.
To determine what default values are supplied by the prototypes, con-
sult the VAX-11 Record Management Services Reference Manual.

The prototype data structures, and the structures which they initialize,
are listed in Table 8-3.

Table 8-3: RMS Prototype Data Structures

Structure

Prototype Tag Initialized Structure

cc$rms__fab FAB File access block

cc$rms__rab RAB Record access block

cc$rms_nam NAM Name block

cc$rms__xaball XAB Allocation extended attribute block

ccrms__xabdat XAB Date and time extended attribute block

cc$rms__xabthe XAB File header characteristics extended attrib-
ute block

cc$rms__xabkey XAB Indexed file key extended attribute block

cc$rms__xabpro XAB Protection extended attribute block

cc$rms__xabrdt XAB Revision date and time extended attribute
block

cc$rms__xabsum XAB Summary extended attribute block

You need not declare these structures before referencing them; the
declarations of these structures are contained in the appropriate
#include module.

The names of the structure members conform to the following RMS
naming convention:

typ$s_fid

where typ is the abbreviation for the structure, s is the size of the
member (such as | for longword or b for byte), and fld is the member
name (such as sts for the completion status code). See the VAX-11
Record Management Services Reference Manual for a description of the
members in each structure.

178 Chapter 8

8.5.1 Initializing File Access Blocks

The file access block defines the attributes of the file. To initialize a file
access block, you assign the values in the initialized data structure
cc$rms__fab to the address of the file access block defined in your
program. For example:

/% DECLARE ALL RMS DATA STRUCTURES =*/
#include rms

/% DEFINE A FILE ACCESS BLOCK %/

struct FAB fhlocks

maini)

{

/% INITIALIZE THE STRUCTURE %/
fblock = cc$rms_fabsi

3

Any of these RMS structures may be dynamically allocated. For
example, another way to allocate a file access block is as follows:

/% DECLARE ALL RMS DATA STRUCTURES */
#include rms
main()

{
/% ALLOCATE DYNAMIC STORAGE */
struct FAB *feptr = malloc(sizeof (struct FAB))3
/% INITIALIZE THE STRUCTURE %/
*frptr = cc$rms_fabi
¥

More often than not, you will want to change the default values sup-
plied by the prototype. If so, you must reinitialize the members of the
structure individually. You initialize a member by giving the offset of
the member and assigning a value to it. For example, the statement

fbhlock.fab$l_xab = &primarv_Kevs

assigns the address of the extended attribute block named primary__
key to the fab$l__xab member of the file access block named fblock.

Using VAX-11 Record Management Services (RMS) 179

8.5.2 Initializing Record Access Blocks

The record access block specifies how records are processed. You initial-
ize a record access block in a manner similar to the way in which you
initialize a file access block. For example:

#include rms
struct FAB fhlocks

/% DEFINE A RECORD ACCESS BLOCK */
struct RAB rblocks
main()

s
L

/¥ INITIALIZE THE STRUCTURE #*/
fbhlock = cc$drms.fabi
rblock = coc$rms_rabi

/% INITIALIZE THE fab MEMBER #/
rblock.rab$l. fab = Bfblock;d

180 Chapter 8

8.5.3 Initializing Extended Attribute Blocks

There is only one extended attribute block structure, but you can ini-
tialize it seven ways. The extended attribute blocks define additional
file attributes that are not defined elsewhere. For example, the key
extended attribute block is used to define the keys of an indexed file.

All extended attribute blocks are ‘“‘chained” off of a file access block in
the following manner:

1. In a file access block, you initialize the fab$l_xab field with the
address of the first extended attribute block.

2. You designate the next extended attribute block in the chain in
the xab$l_nxt field of any subsequent extended attribute
blocks. You chain each subsequent extended attribute block in
order by the key of reference (first the primary key, then the first
alternate key, then the second alternate key, and so on).

3. You initialize the xab$l_nxt member of the last extended
attribute block in the chain with 0 (the default), to indicate the
end of the chain.

You go through the same steps to declare extended attribute blocks as
you would to declare the other RMS data structures:

1. You define the structures with #include modules.

2. You assign a specific prototype to the structure in your program.

3. You initialize the members of the structure with the desired
values.

In the following example, two extended attribute block structures are
declared. They are initialized as key extended attribute blocks with the
cc$rms__xabkey prototype. The xab$l__nxt member of the primary key
is initialized with the address of the alternate_ key extended attribute
block.

#include rms
struct XAB primarv_-Kevsalternate_Kevi

main()

{
Pprimary._Key = cc$rms_xabKevs$
alternate.Key = coc$rms_xabkev?
primary_-Kev,xab%l_nxt = Ralternate_Kevi

Using VAX-11 Record Management Services (RMS) 181

8.5.4 Initializing Name Blocks

The name block contains default file name values, such as the directory
or device specification, file name, or file type. If you do not specify one
of the parts of the file specification when you open the file, RMS uses
the values in the name block to complete the file specification and
places the complete file specification in an array.

You create and initialize name blocks in the same manner as you would
initialize the other RMS data structures; for example:

#include rms

struct NAM namsi
struct FAB fab3i

main(}

-

{
fab = ccérms.fabs
nam = cokrms._namsi

/% DEFINE THE ARRAY WHERE THE EXPANDED
FILE SPECIFICATION WILL BE PLACED
*/

char expanded_namelNAMEC _MAXREST

/% INITIALIZE THE APPROPRIATE MEMBERES =/

fab.fabsl_ nam = &ram3
nam.nam$él _esa = Rexpanded_names
nam.nam$b._.ess = sizeof exranded.name?

8.6 RMS Example Program

The example program in this section uses RMS functions to maintain a
simple employee file. The file is an indexed file with two keys: social
security number and last name. The fields in the record are character
strings defined in a structure with the tag record.

The records have the carriage-return attribute. Individual fields in each
record are padded with blanks for two reasons. First, those fields that
are key fields must be padded in some way; RMS does not understand
C-style strings with the trailing NUL character. Second, the choice of
blank padding as opposed to NUL padding allows the file to be printed
or typed without conversion.

The program does not perform range or bounds checking. Only the error
checking that shows the mapping of VAX-11 C to RMS is performed.
Any other errors are considered to be fatal.

182 Chapter 8

The program is divided into the following sections:
e External data declarations and definitions
e Main program section
¢ Function to initialize the RMS data structures

e Internal functions to open the file, display HELP information, pad
the records, and process fatal errors

e Utility functions:
— add
— delete
— type
— print
— update

To run this program, you would go through the following steps:

1. Create a source file. (The name of the source file in this exam-
ple is RMSEXP.C.) Chapter 13 describes the EDT editor
which could be used to create the source file.

2. Compile the source file with the command

& CC RMSEXP

Chapter 14 describes the compile command and its options.
3. Link the program with the command

% LINK RMSEXP SYS4LIBRARY :CRTLIB/OLB

Chapter 14 describes the link command.

4. Because the program expects command line arguments, it
must be defined as a foreign command, as follows:

 RMSEXP == $device:[directoryIRMSEXP

where device is the logical or physical name of the device con-
taining your directory; directory is the name of your directory.
The device name must be preceded by the dollar sign ($) to be
recognized as a foreign command by the DCL interpreter.

Chapter 14 describes the use of foreigh commands to execute a
program.

5. Run the program, using the foreign command.
% RMSEXP filevname

The complete listing (by section) of the example program follows.
Notes on each section are keyed to the numbers on the listing.

Using VAX-11 Record Management Services (RMS) 183

¥81

g 19ydey)

Example 8-1 shows the external data declarations and definitions.

© The rms module defines the RMS data structures. The stdio module contains the standard I/O definitions. The ssdef
module contains the system services definitions.

@ Preprocessor variables and macros are defined. A default file-name string is defined as ““.dat.”

The sizes of the fields in the record are also defined. Some (such as the social security number field) are given a
constant length. Others (such as the record size) are defined as macros; the size of the field is determined with the
sizeof operator. VAX-11 C evaluates constant expressions, such as KEY__SIZE, at compile time. No special code is
necessary to calculate this value.

© Static storage for the RMS data structures is declared. The file access block, record access block, and extended
attribute blocks are defined by the rms module. One extended attribute block is defined for the primary key and one
is defined for the alternate key.

O The records in the file are defined using a structure with four fields of character arrays.

© The BUFSIZ constant is used to define the size of the array that will be used to buffer input from the terminal. The
filename variable is defined as a pointer to char.

O rms__status is a variable that is used to receive RMS return status information. After each function call, RMS
returns status information as an integer. This return status is used to check for specific errors, end-of-file, or
successful program execution.

(SINY) sed1aIeg jusuwradeue]y PI0day [T-XVA Suisp

681

Q@ =include rms
#include stdio
#include ssdef

@O sdefine DEFAULT_FILE_NAME "ydat"
#define RECORD_SIZE (sizeof record)
#define SIZE_SSN 15
#define SIZE_LNAME 25
#define SIZE_FNAME 25
#define SIZE_COMMENTS 15
#define KEY_SIZE (SIZE_SSN » SIZE_LNAME ¥ SIZE_S8N : SIZE_LNAME)?

© ciruct FAB fabs
struct RAB rabi
struct XAB primarv._Kevsalternate_Key i

O :iruct {

char ssnlBIZE_SSN1slast _namelSIZE_LNAMEDS
char firstonamelSIZE_FNAMEI: comments[SIZE_COMMENTST S
¥
records’
O char resronselBUFSIZI%filenames
O int rms_cstatuss

Example 8-1: External Data Declarations and Definitions

981

g Iaydey)

The main function, shown in Example 8-2, controls the general flow of the program.

© The main function is entered with two parameters. The first is the number of arguments used to call the program;
the second is a pointer to the first argument (filename).

@ This statement checks to see if the correct number of arguments were used when the program was called.

© If the file name is included in the command line to execute the program, that file name is used. (Note that if a file
type is not given, .dat is the type.) If no file name is specified, then the file name is personnel.dat.

O The file access block, record access block, and extended attribute blocks are initialized.

© The file is opened using the RMS sys$open function.

O The program displays a menu and checks for end-of-file (CTRL/Z).

O A switch statement and a set of case statements control the function to be called, determined by the response from
the terminal. ‘

© The program ends when CTRL/Z is entered in response to the menu. At that time, the RMS sys$close function
closes the employee file.

© The rms__status variable is checked for a return status of RMS$_NORMAL. If the file is not closed successfully,
then the error-handling function terminates the program.

(SINY) sod1aI9g Juamwadeury piooay TI-XVA Suis)

181

© maintargcrardu) char **%argus
£

@O if (argc< 1! oar
Pprintf ("RMSEXP - incorrect number of arduments”} 3
2

{

do 2D

el

w1

Frintf ("RMSEXP -Personnel Database Manipulation Examelesn” i

filename = (ardec == Z 7 *¥++ardv @ "personnel.dat" 13
initializei{filenamel’
oren_file(}}

000

for(is)
{
0 printf{"\nEnter ortion (A:D:FT:U) or P for help ¢"1 3
detsi{resrponse)
if (feoff{stdind}
breaks’
Pprintf ("\ni\n") 3

:

(7] switchiresponsel0l)
{
o

ase ‘a’: case ‘A7 add_emrloves()d

breaks

Example 8-2: Main Program Section

881

8 11dey)

case ‘d’: case ‘D7 ~delete_emplovee()d
breaki

case ‘P’3 case ‘P73 print-emrlorees{}i
breaks
case ‘t7: case ‘T7: tyre.emrlovees ()3
breaks
case ‘u’: case ‘U’ urpdate._emrlovee(}d
breaks
defaults: Printf {"RMEEHXP -Unknown Oreration.sn")i

case ‘T case N0

tvpe_ortions{) s
breaks

(8] rms.status = svekclose(Bfab)s

© if (rms_status != RMS$_NORMAL)
error_exit{("$CLOSE")

Example 8-2: (Cont.) Main Program Section

(SINY) sedlaleg juswageur]y pioddy [T-XVA Suis))

681

Example 8-3 shows the function that initializes the RMS data structures. Refer to the RMS documentation for more
information about the file access block, record access block, and extended attribute block structure members.

O cc$rms__fab initializes the file access block with default values. Some members have no default values; they must
always be initialized. (Such members include the file-name string address and size.) Other members can be
initialized to override the default values.

@ This statement initializes the file-processing options member with the “create-if” option. A file will be created if one
does not exist. ’

© This statement initializes the record attributes member with the carriage-return control attribute. Records will be
terminated with a carriage return/line feed when they are printed on the printer or displayed at the terminal.

® cc$rms__rab initializes the record access block with the default values. In this case, the only member that must be
initialized is the rab$l__fab member, which associates a file access block with a record access block.

O cc$rms__xabkey initializes an extended attribute block for one key of an indexed file.
@ The position of the key is specified by subtracting the offset of the member from the base of the structure.
© A separate extended attribute block is initialized for the alternate key.

©® This statement specifies that more than one alternate key can contain the same value (XAB$M__DUP) and that the
value of the alternate key can be changed (XAB$M__CHG).

© The key-name member is padded with blanks because it is a fixed-length 32-character field.

061

g 191dey)

initialize(fn) char *fnd
{

QO fab =ccsrms_fabs /% Start by initializing FAB #/

fab.fabsbh_ bks = 43
fab,fab$l_dna = DEFAULT_FILE_NAME i
fab.fab$b._ dns = sizeof DEFAULT_FILE_NAME -13
fab,fabk$h_ fac = FAB$M_.DEL | FAB$M. .GET |
FAB$M_PUT | FAB$M_UPD3

fab,fab$l.frna = fni
fab.fabdb_frns = strlen(fndi

O fatb.fab$l_for = FABSM_CIF;
fab,fab$w_mrs = RECORD_SIZES
fab,fab$bh_ord = FAB$C_IDX}

(3] fab,fab$b_rat = FAB$M. .CR
fab,fab$b_rfm = FABSC _FIX}
fab,fab$b.shr = FAB$SM_NIL
fab.fab%l_ xab = &kprimary . Kevi

(4] rab = co$rms.rabi JE Initialize RAB =/

rab.rab$l_fab = &fahi

(5] primarv.Key = cobrms-_xabKevi ¥ Initialize Primary Key HAE

(SINY) s991aI9g juswadeuB]y PI0ody TI-XVA Suis)

161

primary_Kev.xabsb_dtr = XAB$C.5TGH

primarv._Kev.xab$b. . flg = 03}
(6] primary._Kev.xab$w.rosO = (char #) frecord.ssn -~ {(char #) Brecords’
primarv_Key.xab$b_ ref = 0}

primary_Kev.xab$b_ siz0 = SIZE_S8N3
primarvy_Kev.xab$l_.nxt = alternate_Kevs
primarvy_Kev.xab$%l_.Knm = "Emplovee Social Security Number "o

7] alternate_Key = coc$drms_xabkey i % Initialize Alternate Key HAB #/

alternate_Kev.xabsb_ dtr = XAB$C_STG3

(8] alternate-Kev.xab®b_flg = XAB$M_DUP | XABEM_CHGS
alternate_Kev.xab$w_rPos0O = (char %) &record,last_vame - (char %) &record?
alternate_Kev.xab%b_ref = 13
alternate-Kev.xab$b_siz0 = SIZE_LNAME 3

(o] alternate_Kev.xab$l_Knm = "Emplovee Last Name "y

Example 8-3: Function Initializing RMS Data Structures

a61

8 1ndey)

Example 8-4 shows the internal functions for the program.
@ The open__file function uses the RMS sys$create function to open the file, giving the address of the file access block
as an argument. The function returns status information to the rms__status variable.

© The RMS sys$connect function associates the record access block with the file access block.

© The type__options function, called from the main function, prints help information. Once the help information is
displayed, control returns to the main function, which processes the response that is typed at the terminal.

O For each field in the record, the pad_record function fills the remaining bytes in the field with blanks.
© This function handles fatal errors. It prints the function that caused the error, returns a VAX/VMS error code (if
appropriate), and exits the program.

(SINY) Se01AIeg JusWaSeUB]A P1099Y TI-XVA Suls)

€61

open_file()

{
(1] rms_status = syskcreate(Rfab) i
if (rms_status !'= RMS$_NORMAL && rms_cstatus != RME$ _CREATED?
error_exit{"$CREATE")3
if {rms_status == RMS$_CREATED?
printf("[Created new data file.J%n"}3
(2] rms_status = syskconnect{frab)i
if (rms_status !'= RMS$_NORMAL?
error_exit{"$CONNECT" 3
¥

O type_ortions()

{
printf("Enter one of the followingzinin"l1i
rrintf("A Add an emrlovee.\n"13
printf ("D Delete an emrlovee specified by BN ") 3
printf("P Print emploveels) by ascending 85N on line printer.sn"i 3
printf("T Tvre emrlovee(s) by ascending last name on terminal .sn'™d 3
printf "y Urdate emplovee specified by SEN.Ynvn" 13
printf("? Tvrpe this text.:\n")3i
printf(""Z Exit this prodram. nin"li
¥

Example 8-4: Internal Functions

¥61

g 1odey)

O crad_record()

{
int i
for(i = strlen(record.ssn)i i < SIZE_SSNi i++)
record.ssnlil =’ 3
for{i = strlen(record,last_nameli i < SIZE_LNAME: i++}
record,last_namelil = * 73
for(i = strlen(record,first_name)i i < SIZE_FNAME: i++}
record.first_namelil = * 73}
for(i = strlen(record.comments)i i < SIZE_COMMENTSF i++1}
record.commentsli] = 73
¥

© cerror_exit(operation) char *operation /% Fatal error processing subroutine */
{
Printf("RMBEXP -file %s failed (%) n"oreration:filename’’
exit{rms_status)i
¥

Example 8-4: (Cont.) Internal Functions

(SINY) s991AIaG JuaweSeur]y p109dy TT-XVA SUIs()

S61

Example 8-5 shows the function that adds a record to the file. This function is called when ‘a’ or ‘A’ is entered in
response to the menu.

@ A series of do loops controls the input of information. For each field in the record, a prompt is displayed. The
response is buffered and the field is copied to the structure.

® When all fields have been entered, the pad__record function pads each field with blanks.

© Three members in the record access block are initialized prior to writing the record. The record access member
(rab$b__rac) is initialized for keyed access. The record buffer and size members (rab$l__rbf and rab$w__rsz) are
initialized with the address and size of the record to be written.

O The RMS sys$put function writes the record to the file.

© The rms__status variable is checked. If the return status is normal, or if the record has a duplicate key value and
duplicates are allowed, the function prints a message stating that the record was added to the file. Any other return
vealue is treated as a fatal error.

961

g 191dey)

add_emplovee()
s

(1] do

{

Frintf{" (ADD} Enter Social Security Humber "1
dets{responsel i

Fuwhilei{strlen{(response) == 0)3

strncry{record.ssn:response :SIZE_S8NY S

do
{
printf (" (ADD) Enter Last Name "1
detsiresponsel i
Yuwhilei{strlen{resronse) == 0)3

strinepyirecord.last_name:response sSIZE_LNAME) }

do
1{
Printf (" (ADD) Enter First Name "
dets(response)’
Yuwhile(strlen(response) == 0)3

(SINY) s9d1aleg Juswadeue]y pIodsy TI-XVA Suisn

L61

strncry{record.first_namesresponse +SIZE_FNAME) 3

do
{
Pprintf (" (ADD) Enter Comments "
dets(response)
Ywhile(strlen({response) == Q)3

strnory(record.commentssresponse sSTIZE_COMMENTE) §

(2] pad.record ()}

(3] rab.rab$b_rac = RABC_KEY)
rab.rab$l_rbf = &recordsi
rab.,rab$w_rsz = RECORD_SIZE}

©

rms.status = sysdput{&rab)i

(5] if (rms_status != RME5$_NORMAL && rms_status != RMS$_DUP && rms_status != RME$_DK_DUP)
error.exit("$PUT")3
elge if (rms_status == RMS$_NORMAL 1! rms_status == RMS&_OK_DUP?
printf("[Record added successfully,I\n")i
else
Printf("RMSEXP -Existing emplovee with same 58N+ not added.\n") 3

Example 8-5: Utility Function: Adding Records

861

g 1dey)

Example 8-6 shows the function that deletes records. This function is called when ‘d’ or ‘D’ is entered in response to the
menu.

© A do loop prompts the user to type a social security number at the terminal and places the response in the response
buffer.

@ The social security number is padded with blanks.

© Some members in the record access block must be initialized before the program can locate the record. Here, the key
of reference (0 specifies the primary key), the location and size of the search string (this is the address of the response
buffer and its size), and the type of record access (in this case, keyed access) are given.

O The RMS sys$find function locates the record specified by the social security number entered from the terminal.

© The program checks the rms__status variable for the values RMS$_NORMAL and RMS$_RNF (record not
found). A message is displayed if the record cannot be found. Any other error is a fatal error.

@ The RMS sys$delete function deletes the record. The return status is checked only for success.

delete_emrlovee()

-
1

int i3
" do
{
printf{"{DELETE} Enter Social Security Number "
dets{responsel’
i=strlen{responsels’
Yuwhile(i == 013
(2] while(i < SIZE_SSN)
responseli++] = 7 73

(SINY) s9d1a18g juswageuep p1099Yy [I-XVA Suisn

661

(3] rab.rab$b_krf = 03
rab.rab$l_Kbf = Bresponse’
rab.rab$b_Ksz = SIZE_SSHN}
rab.rab$b_rac = RABSC_KEY 3

(4] rms_status = sys$find{&rabls
(5] if (rms_status != RMS$_NORMAL &% rms_status
error_exit ("$FIND") 3
else if (rms_status == RMB$E_RNF?
printf ("RMSEXP -srecified emrlovees
else
{
6 rms_status = svsddelete(brab)s
if (rms_status != RMS$_NORMAL?
error_exit {("$DELETE") 3
¥
¥

Example 8-6: Utility Function: Deleting Records

= RMS$ _RNF?

002

8 1dey)

The type__employees function in Example 8-7 displays the employee file at the terminal. This function is called from
the main function when ‘t’ or ‘T" is entered in response to the menu.

© A running total of the number of records in the file is kept in the number__employees variable.

@ The key of reference is changed to the alternate key so that the employees are displayed in alphabetical order by last
name.

© The file is positioned to the beginning of the first record according to the new key of reference, and the return status
of the rms$rewind function is checked for success.

O A heading is displayed.

© Sequential record access is specified, and the location and size of the record is given.

O A for loop controls the following operations:

¢ Incrementing the number__employees counter.
e Locating a record and placing it in the record structure, using the RMS sys$get function.

e Checking the return status of the RMS sys$get function.
¢ Displaying the record at the terminal.

© This if statement checks for records in the file. The result is a display of the number of records or a message
indicating that the file is empty.

tvpe.emplovees ()

{

(1] int number_emplovees’

(2] rab.rab$b_Krf = 13

9 rms.status = sysbrewind{&rab) 3

if (rms.status != RMS$_NORMAL)
error—exit("$REWIND")3

(SINY) sed1a18g juswaSeue pI0ddy TT-XVA Suisn

102

<’ printf{"\ni\nEmrloveess {Sorted by Last MNamelinin"13

printf{"Last Name First Name S5H
Primtf{"-ceeneea e
(5] rab.rab$b_rac = RAB$C_SEDS

rab.rab%l_ubf = Brecord}
rab.rab$w_usz = RECORD_SIZES

@ forinumber_emplovees = OFinumber_emrlovess++]

{

rms_status = sysddet{krab)i

if {(rms_status != RMS5%_NORMAL && rms_status
error_exit{"$GET" 3

else if {rms_status == RME$_EOF}
breaks

printf ("% .%s% . %%, . #s% . %5 \n" SIZE_LNAME srecord. last_name :

SIZE_FHAME srecord.first_name
SIZE_ESHMsrecord.ssn
SIZE_COMMENMTS srecord.comments? s

¥
0 if {(number_emplovees)
printf{"“nTotal number of emrloveess = % it

m
o
[
m

printf{("[Data file is emPrty . 1sn"13

Example 8-7: Utility Function: Typing the File

snumber _empl

¢0c

8 I9ydey)

Example 8-8 shows the function that prints the file on the printer. This function is called by main when ‘p’ or ‘P’ is
entered in response to the menu.

© This function creates a sequential file with carriage-return-control, variable-length records. It spools the file to the
printer when the file is closed. The file is created using the UNIX I/O ereat function, thus associating the file with

an integer file descriptor (filedes).
@ The file descriptor is associated with a file pointer (fp), so that the file can be processed with standard I/O functions.

© The key of reference for the indexed file is the primary key. '

O The sys$rewind function positions the file at the first record. The return status is checked for success.

O A heading is written to the sequential file using the standard I/O function fprintf.

O The record access, user buffer address, and user buffer size members of the record access block are initialized for
keyed access to the record located in the record structure.

© A for loop controls the following operations:

e Initializing the running total and then incrementing the total at each iteration of the loop.

e Locating the records and placing them in the record structure with the RMS sys$get function, one record at a
time.

¢ Checking the rms__status information for success and end-of-file.

e Writing the record to the sequential file.

© The number__employees counter is checked. If it is zero, a message is printed indicating that the file is empty. If it is
not zero, the total is printed at the bottom of the listing.

© The sequential file is closed. Since it has the spl record attribute, the file is automatically spooled to the printer. The
function displays a message at the terminal stating that the file was successfully spooled.

(SINY) s9d1a10G JuswaSeuey PIoddy TT-XVA Suis)

€0¢

Frint_emplovees ()

{
int number_emrloveess
int filedess
FILE #fp3
" filedes = creat{("personnel.lis"s0+"rat=cr" +"rfm=var" " fop=spl"ii
if (filedes == -1}
perror{"RMSEXP - failed orening listing file {creat {1 i"l
exit(S5% _NORMALD 3
(2] frp=fdoren(filedes +"w")i
if (1fp)
perror{"RMEEXP - failed orening listing file (fdopeniii"i;
exit (S5 NORMAL)§
(3] rab.rab$b_krf = 03
(4] rms.status = sys$frewind{brab)’
if {rms_status = RMEE_NORMAL)D
error_exit {("EREMIND")}
(5] frrintf(fr:"\n nEmplovees (Sorted by SENIYnn"1 3

frrintfi{fr:"Last Name First Mame 55N
frrintfi{fPrs ceeneecan oo e

Example 8-8: Utility Function: Printing the File

¥0¢2

g I;dey)

(6 rab.rab$b_rac = RAB$C_SED;
rab.rab$l_ubf = Brecords
rab.rab$w_usz = RECORD_SIZES

(7] for{number_emplovees = Ofinumber_emplovees++)
{
rims.s5tatus = syskdet (Brabli
if (rms.status != RMEE_NORMAL &8 rms.status = RME$S EOF)
error_exit {("HEGET")}
else if (rms_status == RME$_EOF)
breaks’

frrintf(fr."% . #%c¥ #s¥ . ¥s% %5 \n" +BIZE.LMAME » record.last.name
SIZE.FNAME srecord.first . name .
SIZE.SSNsrecord.ssn s
SIZE.COMMENTS srecord.comments) i

¥
(8] if (number_emplovees)
ferrintf(fr:"\nTotal number of emplovees = Ld.\n" snumber_.emrlovess) i
else
frrintf{fr:"[Data file is emPty.I\n")1
(9] foelose(fr)i

printf("[Listing file N"Ppersonnel.lish" spooled to SYSEPRINT . Ivn") 3
¥

Example 8-8: (Cont.) Utility Function: Printing the File

(SINY) sod1a1ag Juswadeue pIoday TT-XVA Suisn

$0¢

Example 8-9 shows the function that updates the file. This function is called by main when ‘u’ or ‘U’ is entered in
response to the menu.

© A do loop prompts for the social security number and places the response in the response buffer.
© The response is padded with blanks so that it will correspond to the field in the file.
© Some of the members in the record access block are initialized for the operation. The primary key is specified as the

key of reference, the location and size of the key value are given, keyed access is specified, and the location and size
of the record are given.

O The RMS sys$get function locates the record and places it in the record structure. The function checks the
rms__status value for RMS$__NORMAL and RMS$_RNF (record not found). If the record is not found, a message
is displayed. If the record is found, the program prints instructions for updating the record.

© For each field (except the social security number, which cannot be changed), the program displays the current value
for that field. If the user types @D, the record is placed in the record structure unchanged. If the user makes a change
to the record, the new information is placed in the record structure.

O The fields in the record are padded with blanks.

© The RMS sys$update function rewrites the record. The program then checks that the update operation was
successful. Any error causes the program to call the fatal error-handling routine.

90¢

8 Iadey)

urpdate_emplovee{)
£
int i3

(1] do
{
printf{" (UFDATE) Enter Social Security Number
dets{resronsel’
i=strlen{resronse)’

}while(i == 0)3;
(2] while(i < SIZE_S5N)

responseli++]1 = 7 73
(3] rab.rab$b_Krf = 0}

rab.rab$l_Kbf = kresronses
rab.rab$b_ksz = SIZE_S8N3
rab.rab$b_rac = RABSC_KEY 3
rab.rab$l_ubf = Rrecords
rab.rab$w_usz = RECORD_BIZE:

(4] rms.status = sysddet(Brabli

if (rms_status !'= RMB$_NORMAL && rms_status != RMS$_RNF}
error_exit{("$GET") 3

else if (rms_status == RMS$_RNF)
Printf("RMSEXP -sprecified emrloves does not &

(SINY) seo1alag juswadeuey PI00dy [I-XVA Suisn

102

9 else
{
printf("Enter the new data or <return> to leave data
unmodified.\n\n"?3i
printf{"Last Name: s ¥s "GEIZE_LMAME srecord.lastonamel s
dets{resrponse)
if (strlen{resronsel}
strncPy{record.last_name:sresrponse :SIZE_LNAME!

printf("First Name: Y ¥s "YBIZE_FMNAME srecord.first. namel s

dets(response) i

if (strlen(resrPonse))
strncry(record.first_namesresronse :SIZE_FNAMED) 3

Pprintf("Comments: e ¥s "YESIZE_COMMENTS srecord.comments !
dets{response) i
if (strlen{response))

strncPy (record.commentssresronse +SIZE_COMMERNTS) 3

(6] pad_record()}

(7] rms.status = svs$update(frabl i
if (rms_status !'= RMS$_NORMAL)
error_exit("$UPDATE")}

printf("[Record has been sucessfully updated,I\n") 3
¥
*

Example 8-9: Utility Function: Updating the File

Chapter 9

Mixed-Language Programming

Mixed-language programming is possible with VAX-11 C because the
architecture of VAX-11 computers defines a set of conventions — the
VAX-11 Calling Standard — that enables argument passing among
procedures. With the calling standard you can write functions in C that
invoke procedures written in other VAX-11 native-mode programming
languages.

The VAX-11 Calling Standard defines the way a reference to a non-C
function must be written in a C program. For a C function to call a non-
C function that expects to receive immediate values in'its argument
list, the calling method is quite similar to that for calling an external C
function. If the non-C function expects to receive arguments by refer-
ence or by descriptor, a function reference in the C program can still be
written using familiar C operations and concepts. For example, if you
want to call a C function from some other language such as PL/I, the
only specific knowledge you need about C is the precise manner in
which C’s data types are represented on a VAX-11 computer (see
Chapter 11); you can find the remaining information in the documenta-
tion for the other language, in this case the VAX-11 PL/I User’s Guide.

The calling standard allows all communication among the native-mode
VAX languages to be done within the languages themselves. The source
modules for a program can be written in any of the languages, and as
long as each module follows the calling standard, the linker will take
the compiled object modules and construct an executable program
image. It is not necessary to construct your own call interfaces to
VAX/VMS system services, since the necessary definition text is pro-
vided with VAX-11 C #include modules contained in the library
SYS$LIBRARY:CSYSDEF.TLB.

This chapter reviews the implementation of function calls in VAX-11 C
and the VAX-11 Calling Standard. (If necessary, you can consult Ap-
pendix C of the VAX-11 Architecture Handbook for more details.) This
chapter also explains the methods for calling non-C functions in
VAX-11 C. It assumes that you know the C conventions and rules for
passing arguments to external procedures, as described in Chapter 4. If
you are interested in calling C functions from some other language, see
Chapter 10.

208

Most of the examples in this chapter show calls to VAX/VMS system
service procedures. The system services are available to all VAX/VMS
installations and use all forms of argument passing. However, the ex-
amples do not fully describe the procedures themselves. For further
details on system services, see the VAX/VMS System Services Refer-
ence Manual.

9.1 The Call Stack

The calling standard defines a call stack as a temporary storage area for
each user process. The VAX-11 hardware maintains information on the
call stack about each block activation in the current image.

9.1.1 Call Frames

Whenever a function is activated in a C program, the hardware creates
a structure — the call frame — on the call stack for the function. The
call frame for each activation contains:

® A pointer to the call frame of the previous function activation.
This pointer is called the Frame Pointer (FP).

e The saved Argument Pointer (AP) of the previous activation.

e The address in storage of the point of invocation of the function,
that is, the address of the next instruction following the function
reference that activated the current function. This address is
called the Program Counter (PC), or saved PC.

e The saved contents of some of the general registers and other
control information (such as the condition codes in the processor
status word, or PSW). Based on a mask specified in the control
information, the system restores these registers when control re-
turns to the caller.

Figure 9-1 illustrates the call stack and several call frames. Function A
calls function B, which calls function C. When a function reaches a
return statement or when control reaches the end of the function, the
system uses the frame pointer in the call frame of the current function
to locate the frame of the previous function. It then removes the call
frame of the current function from the stack.

9.1.2 The Argument List

All function parameters are passed by means of an argument list, which
consists of a series of up to 255 longwords. The argument list for a
function activation is pointed to by a register called the Argument
Pointer (AP).

Mixed-Language Programming 209

1) ¢4

6 191dey)

b)Y
L(¢
b)Y
{

AP

FP

PC

R2

Q

Q

R11

Figure 9-1: The Call Stack

AP

FP
PC

R2

copy of argument pointer
for function A

pointer to A’s call frame
memory location in A at
which B was invoked
contents of A’s general
registers R2 through R11

ZK-090-81

The first longword in the argument list always contains, in its low-order
byte, the number of arguments (longwords) that were passed; the first
longword itself is not included in this number. Figure 9-2 illustrates the
format of an argument list.

The calling standard defines three ways that data can be passed in an
argument list. When you code a reference to a non-C procedure, you
must know how each argument should be passed and write the function
reference accordingly.

The three argument-passing mechanisms are:

e By immediate value. When an argument is passed by immediate
value, the actual value of the argument is present in the argument
list. This is the default argument-passing mechanism for all func-
tion references written in VAX-11 C.

By reference. When an argument is passed by reference, the ad-
dress of the argument is present in the argument list. The C am-
persand operator (&) is used to pass the address in the argument
list.

By descriptor. When an argument is passed by descriptor, the
address of a data structure describing the argument is present in
the argument list. From a C program, you pass a descriptor first by
creating a structure (struct) that meets the descriptor require-
ments of the called procedure and then by passing the structure’s
address with the ampersand operator (&).

9.2 Passing Arguments by Immediate Value

By default, all values or expressions in a VAX-11 C function’s argu-
ment list are passed by immediate value. That is, the expressions are
evaluated and the results placed directly in the argument list of the
CALL machine instruction.

The following statement declares the entry point of the Set Event Flag
SYS$SETEF! system service, which is used to set a specific event flag
to 1. The Set Event Flag system service call requires one
argument — the number of the event flag to be set — to be passed by
immediate value.

int SYS$SETEF ()3
/% FUNCTION RETURNING INT =/

1. VAX-11 C converts linker-resolved variable names (such as the entry-point
names of system service calls) to uppercase. You do not have to declare them in
uppercase in your program. However, linker-resolved variable names must be
declared with identical cases. The documentation uses uppercase as a conven-
tion for referring to system service calls to highlight them in the text and exam-
ples.

Mixed-Language Programming 211

Like all system services, SYS$SETEF returns an integer value (the
return status of the service) in register 0.1 In the declaration of external
functions, the C syntax does not indicate the number or types of the
arguments, nor does C compare the types of arguments with the types
that the system service requires. It is your responsibility to ensure that
the argument list of an external function reference contains valid argu-
ments.

In the VAX/VMS System Services Reference Manual you can find the
specification of each service’s arguments. SYS$SETEF, for example,
takes one argument, an event flag number. It returns one of four status
values, which are represented by the following symbolic constants:

Returned Status Description
SS$__WASCLR Success Flag was previously clear
SS$_WASSET Success Flag was previously set
SS$_ILLEFC Failure Illegal event flag number
SS$_UNASEFC Failure Event flag not in associated

cluster

The system services manual also defines event flags as integers in the
range 0 to 127, grouped in clusters of 32. Clusters 0 and 1, comprising
flags 0 to 31 and 32 to 63, respectively, are local clusters available to
any process, with the restriction that flags 24 to 31 are reserved for use
by VAX/VMS. There are many ways of passing valid event flag num-
bers from your C program to SYS$SETEF. One way is to use enum to
define a subset of integers:

enum clusterd {completionsbreakdownsbedinningdg} eventi

Once the flag numbers have been defined, the SYS$SETEF service can
be called by writing:

int statusi
suent = compPletioni
status = SYS$SETEF(event) 3 /% SET EVENT FLAG %/

+

1. Most system services return an integer completion status; therefore, the sys-
tem service does not always have to be declared before it is used. The examples
in this chapter declare system services for completeness.

212 Chapter 9

Figure 9-3 shows an argument being passed by immediate value — in
this case, the event flag number passed to SYS$SETEF.

9.2.1 Checking System Service Return Values

The custom in VAX/VMS programming is to compare the return status
of a system service with a global symbol, not with the literal value
associated with a particular return status. Consequently, a high-level
language program should define the possible return status values for a
service as symbolic constants. In VAX-11 C, you can do so by including
the text library module ssdef; Example 9-1 shows how this is done.

/% DEFINE SYSTEM SERVICE STATUS VALUES */
#include ssdef
#include stdio

/% DECLARATION OF THE SERVICE (not reauired) */
int SYS$SETEF ()3

/% CALLING FUNCTION =/

main()
{
/% STATUS OF $SETEF */
int efstatusi
/% ARGUMENT VALUES FOR $SETEF */
enum cluster® {completionsbreakdownsbedinningl
event
event = compPletioni

Example 9-1: Checking System Service Return Values

Mixed-Language Programming 213

/% SET EVENT FLAG #/
efstatus = S5YS54S5ETEF(event) |

/% TEST RETURN STATUS #/

ifiefstatus) == S5%_WASSET:
frrintf {(stderr:"Flad was already setin"):
¥
else iflefstatus == S5%_WASCLR])
{
ferintf{stderr+"Flag was Previously clear\n")3
¥

else frprintfistderr:
"Could not set completion svent flag. n &
Possible prodramming error.n"i3
exitiefstatus)’

Example 9-1: (Cont.) Checking System Service
Return Values

The system service return status values (SS$_WASSET and
SS$_WASCLR) in Example 9-1 are defined by the #include text mod-
ule ssdef.

In the example, the statement executed when an error occurs also shows
behavior typical of programs running under VAX/VMS. With the state-
ments

else frprintfi{stderr,
"Could not set comepletion event flag,\n \
Possible Prodramming error.\n")3
exitl{efstatus)i

the example program attempts to provide a program-specific error mes-
sage and then passes the offending error status to the caller. If the
program were to be executed by the DCL, then any status value re-
turned by the program would be interpreted by DCL. DCL prints a
standard error message on the terminal to provide you with more infor-
mation about the reason for the failure. For example, if the program
were to encounter the SS$__ILLEFC return status, the following mes-
sages would be displayed:

Could not set ‘completion’ event flad.
Possible Pprogramming error.
LEYSTEM-F-ILLEFC: illedal event flad cluster.

214 Chapter 9

Surwrwrerdord sfendue-pexin

14 ¢4

[Argument Pointer (AP)

not used l n

argument_1

argument_2

x

L

~
argument_n J

Figure 9-2: An Argument List

main()

. SYSS$SETEF (4) ;

}

n = argument count

bits 4 through 31
are reserved by
DIGITAL

ZK-091-81

Argument pointer (AP) |

number of arguments: 1

first argument: 4

ZK-092-81

Figure 9-3: Passing Arguments by Immediate Value

9.2.2 Passing Floating-Point Arguments by Immediate Value

Because argument lists consist of longwords, the calling standard dic-
tates that immediate-value arguments be expressible in 32 bits. A
single-precision floating-point (F-floating) value is only 32 bits long,
but all arguments of type float are promoted by C to double (on a
VAX-11, 64 bits). This double-precision value is passed as two immedi-
ate values (two longwords).

NOTE

The passing of double-precision immediate values is a vio-
lation of the usual VAX-11 procedure-calling standard, but
is an allowed exception for VAX-11 C.

On rare occasions, the float-to-double promotion requires some addi-
tional programming. For instance, the function OTS$POWRJ, in the
VAX-11 Common Run-Time Procedure Library, computes the value of
a floating-point number raised to the power of a signed longword (in C
terms, a float to the power of an int). This function (and others like it)
is called implicitly by high-level VAX languages that have an exponen-
tiation operator as part of the language. It requires that both its argu-
ments be passed as immediate values, and it returns a single-precision
(float) result. To pass a floating-point base to the procedure, you must
use some method that avoids the promotion of float arguments. One
such method is to use a structure, as shown in Example 9-2:

By default, structures, like everything else, are passed by immediate
value. Thus, in Example 9-2 the argument is not interpreted as a float
and is not promoted to double.

The great majority of run-time functions that operate on floating-point
values take their arguments by reference, so the procedure illustrated
by Example 9-2 is not usually necessary. You should note, in addition,
that the example does not illustrate the methods for handling arith-
metic errors that result from the operation performed. For more infor-
mation on error handling in this context, and on the run-time library in
general, see the VAX-11 Run-Time Library Reference Manual.

216 Chapter 9

#include stdio

/% FUNCTION RETURNING FLOATS CALLING SEQUENCE IS
DTS$POWRJ(basesrpower) s WHERE base

* IS5 A float AND POWER IS AN int

*/

float OTS$POWRJIC()

/% PROGRAM CALLING OTS$POWRJ */
main()
{
/¥ OTS$POWRJ RESULT =/
float results

/% POWER ARGUMENT #*/
int Power;:

/% STRUCTURE USED TO PASS FLOAT BY VALUE */
struct { float f3 } bases’

/% ASSIGN CONSTANT (IMPLIED float) TO BASE =/
base,f = 3.1453%
PoWer = 23

result = O0TS$POWRJ(base sPower):

printf ("Result= %f \n"sresult)i
¥

Example 9-2: Passing Floating-Point Arguments by
Immediate Value

Mixed-Language Programming 217

9.3 Passing Arguments by Reference

Some system services and run-time library procedures expect argu-
ments passed by reference. This means that the argument list (in the
CALL machine instruction) contains the address of the argument
rather than its value. This mechanism is also used by default by some
programming languages, such as PL/I, and is available at the program-
mer’s option in others, such as PASCAL.

In VAX-11 C, you can use the ampersand operator (&) to pass an
argument by reference, that is, the ampersand operator causes the ar-
gument’s address to be passed. Note also that an array or function
name in an argument list always results in passing the address of the
array or function; the ampersand is not required in such cases.

In the special case of argument lists, VAX-11 C allows the ampersand
operator to be used on constants as well. (However, you should limit
this use of the ampersand to calls to VAX/VMS system functions to
ensure portability of your VAX-11 C programs to other C compilers.)

For example, the Read Event Flags (SYS$SREADEF) system service
requires that its first argument be passed by immediate value and its
second argument be passed by reference. SYS$SREADEF returns the
status of all the event flags in a particular cluster. (Event flags are
numbered from 0 to 127 and arranged in clusters of 32, such that flags 0
to 31 comprise cluster 0, flags 32 to 63, cluster 1, and so forth.) The first
SYS$READEF argument is any event flag number in the cluster of
interest. The second argument is the address of a longword that re-
ceives the status of all 32 event flags in that cluster. In addition to the
event-flag status value, the system service returns one of the following
status values, expressed here as global symbols:

Returned Status Description
SS$__WASCLR Success Specified event flag was clear
SS$_WASSET Success Specified event flag was set
SS$_ACCVIO Failure Could not write to status long-

word
SS$__ILLEFC Failure Event flag number was illegal
SS$_UNASEFC Failure Cluster of interest not accessible

Example 9-3 shows a call to the SYSSREADEF system service from a C
program.

218 Chapter 9

/% DEFINE SYSTEM SERVICE STATUS VALUES */
#include ssdef
#include stdio

/% DECLARATION OF $READEF (not reauired) */
int SYSSREADEF ()3

/% CALLING FUNCTION #*/
main()

{

¥

/% LONGWORD THAT RECEIVES THE
STATUS OF THE EVENT FLAG CLUSTER */
unsidgned cluster_statusi

/% RETURN STATUS OF $READEF */
int return.status;i

/% ARGUMENT VALUES FOR $READEF */

enum clusterd {completionsbreakdownsbedinning ¥

euent i
/% EVENT FLAG IN CLUSTER O #/
euent = completions

/% OBTAIN STATUS OF CLUSTER O:

PASS UVALUE OF event AND

* ADDRESS OF cluster_status

*/

return-.status = SYS$READEF{event
foluster.status?i

/% CHECK FOR SUCCESSFUL CALL #/
ifireturn_status != S53WASCLRE &&
return.status = SS5EWASSET)

s
L

/% ERROR PROCESSING */

¥

else

{

/# CHECK BITS OF INTEREST IN cluster.status

i

¥

Example 9-3: Passing Arguments by Reference

Mixed-Language Programming

219

Figure 9-4 illustrates argument passing by reference — in this case, to
the SYS$READEF system service.

9.4 Passing Arguments by Descriptor

A descriptor is a structure that describes the data type, size, and ad-
dress of a datum. According to the VAX-11 Calling Standard, you must
pass a descriptor by placing its address in the argument list. To pass an
argument by descriptor from a VAX-11 C program, you perform the
following steps:

1. Write a struct declaration that models the required descriptor.
This involves including the text library module descrip to define
struct tags for all the forms of descriptors.

Assign appropriate values to the structure members.

Use the structure name, with an ampersand operator (&) in the
function reference, to put the structure’s address in the argu-
ment list.

In default cases, VAX-11 C never passes arguments by descriptor. For
example, when structure or union names are written in a function’s
argument list without the ampersand operator, the structure or union is
passed by immediate value to the called function. You pass arguments
by descriptor only when the called function is written in another lan-
guage and explicitly requires this mechanism.

There are several classes of descriptor. Each class requires that certain
bits be set in the first longword of the descriptor. These classes, and the
format of the descriptor defined by each, are described in the VAX-11
Architecture Handbook. In accordance with the information in the
handbook, descriptors can be modeled as follows in VAX-11 C:

struct dscé$descrirtor
{
unsidgned short dsc$w_lendthsi /* LENGTH OF DATUM#/

char dsc$b_dtvre /#DATA TYPE CODE #/

char dsc$b_class /#DESCRIPTOR CLASS
CODE #/

char *dsc$a_Pointer /% HAS ADDRESS OF

FIRST BYTE %/
i

220 Chapter 9

Sutwwreidord adenduer-poxIy

|44

FLAGS
main() |
unsigned flags; |Argument Pointer (AP)
SYSSREADEF(4,&flags); number of arguments:
} first argument: 4

second argument:

Figure 9-4: Passing Arguments by Reference

address of variable

ZK-093-81

In this model, dsc$w__length is a 16-bit word containing the length of
the entire datum; the unit (for example, bit or byte) in which the length
is measured depends on the descriptor class. The dsc$b__dtype mem-
ber is an 8-bit byte containing a numeric code; the code denotes the
data type of the datum. The class member dsc$b__class is another byte
code giving the descriptor class. The valid class codes are as follows:

Class Code Symbolic Name Descriptor Class
1 DSC$K_CLASS_S Scalar, string
2 DSC$K_CLASS_D Dynamic string
descriptor
3 — Reserved by DIGITAL
4 DSC$K_CLASS_A Array
5 DSC$K_CLASS_P Procedure
6 DSC$K_CLASS_PI Procedure incarnation
7 DSC$K__CLASS__J Label
8 DSK$K_CLASS_JI Label incarnation
9-191 - Reserved by DIGITAL
192-255 — Reserved for customer
applications

The last member of the structure model, dsc$a__pointer, points to the
first byte of the datum.

To pass an argument by descriptor, you define and assign values to the
datum following the normal C programming practices. You must define
a structure of the form shown above and assign the datum’s address to
the pointer member. You must also assign appropriate values to the
other members, dsc$w__length, dsc$b_dtype, and dsc$b__class. See
the Architecture Handbook for the specific requirements of each de-
scriptor class.

For example, the Set Process Name (SYS$SETPRN) system service,
which enables a process to establish or change its process name,
accepts a process name as a fixed-length character string passed by
descriptor. The character string can have from 1 to 15 characters. The
system service returns the status values denoted by the global names
SS$__NORMAL, SS$_ACCVIO, SS$_DUPLNAM, and
SS$_IVLOGNAM (for normal completion, inaccessible descriptor, du-
plicate process name, and invalid length, respectively). Example 9-4
shows a call to this system service from a C program.

222 Chapter 9

/#DEFINE SYSTEM SERVICE STATUS VALUES */
#include ssdef

/#DEFINE STRUCTURES FOR DESCRIPTORS #/
#include descrir
#include stdi

S#DECLARATION OF THE SERVICE (not reauired) */
int SYSSSETPRNO) 3

/% PROGREAM CALLING $SETPRN*/
mainil
{
f#RETURN STATUS OF $5ETPRN*/
int retsi

/#NAME DESCRIPTOR %/
struct dsc$descrirptor_s name_descs

/#*NEW PROCESS NAME */
char *name = "NEWPROC"S3

/# LENGTH OF MNAME WITHOUT NUL TERMINATOR #/
name_desc.dsckw_lendth = strleniname)’

/#PUT ADDRESS OF SHORTENED
STRING IN DESCRIPTOR %/
name._desc.dscda_Pointer = namej

/#STRING DESCRIPTOR CLASS */
name.desc.dscdb_class = DSCEK_CLASS._S3

F#DATA TYPE IS5 ASCII STRING#*/
name_desc.dscsb_dtyee = DSCEK_DTYPE_TSH

B

ret = SYS$S5ETPRN{&name_desc)

/# TEST RETURN STATUS */

ifiret !'= S55%_NORMAL)

ferintfi{stderrs "Failed to set Process
name\n")

exiti{ret)}

¥

Example 9-4: Passing Arguments by Descriptor

Mixed-Language Programming 223

Note that the call to SYS$SETPRN must use the ampersand operator;
otherwise name__desc, rather than its address, is passed.

Although this example explicitly sets individual fields in its
name__desc string descriptor, in practice, the run-time initialization of
compile-time constant string descriptors is not performed in this man-
ner. Instead, the fields of compile-time constant descriptors are usually
initialized with statically initialized structures.

For the purpose of string descriptor initialization, VAX-11 C provides
a simple preprocessor macro in the #include text library module de-
scrip. This macro is named $DESCRIPTOR. It takes two arguments,
which it uses in a standard C structure declaration. The first argument
is an identifier specifying the name of the descriptor to be declared and
initialized. The second argument is a pointer to the data byte to be
used as the value of the descriptor. (Because a character-string con-
stant is interpreted as an initialized pointer to char, you may specify
the second argument as a simple string constant.) The $DESCRIPTOR
macro may be used in any context where a declaration may be used.
The scope of the declared string descriptor identifier name is identical
to the scope of a simple struct definition as expanded by the macro.

Example 9-5 shows a variant of the program in Example 9-4. Here, the
$DESCRIPTOR macro is used to create a compile-time string descrip-
tor and to pass it to the SYS§SETPRN system service routine. In
Example 9-5, the program simply returns the status value returned by
SYS$SETPRN to DCL for interpretation.

/*DEFINE $DESCRIPTOR MACRO */
#include descrip

/% DECLARE THE SERVICE (not reauired) */
int SYS$SETPRN ()3

/% PROGRAM CALLING $DESCRIPTOR */
main()

{
/% INITIALIZE STRUCT name_desc AS STRING
DESCRIPTOR %/
static $DESCRIPTOR(name_desc»"NEWPROC") 3
return SYS$SETPRN(&name_desc) 3
>

Example 9-5: Passing Compile-Time String Descriptors

The $DESCRIPTOR macro is used in further examples in this chapter.

224 Chapter 9

9.5 Variable-Length Argument Lists

Although most system services and other external procedures require a
specific number of arguments, some accept a variable number of op-
tional arguments. Because C function declarations never show the
number of parameters expected by external functions, the way you call
an external function from a VAX-11 C program depends on the seman-
tics of the called function. Briefly stated, you must always supply the
number of arguments that the external function expects. The rules are
as follows:

¢ When optional arguments occur between required arguments, they
cannot simply be omitted, or nulled. If omitting such an argument
is necessary — for example, to select a default action — the argu-
ment must be written as a zero.

e When optional arguments occur at the end of an argument list, the
format of the function reference depends on the action of the
called function:

— If the called function checks the number of arguments passed,
you can omit optional trailing arguments from the function
reference. (Note that system services generally do not check the
length of the argument list.)

— If the called function does not check the number of arguments
passed, all arguments must be present in the function refer-
ence.

For example, the function STR§CONCAT, in the Common Run-Time
Library, concatenates from 2 to 254 strings into a single string. Its call
format is as follows (see also the VAX-11 Run-Time Library Reference
Manual):

ret = STRSCONCAT(dst,src1,scr2[,src3,...src254);

where dst is the destination for the concatenated string, and srcl,
src2,...src254 are the source strings. (All arguments are passed by de-
scriptor.) All but the first two source strings are optional. The function
checks to see how many arguments are present in the call; if fewer than
three (the destination and two sources) are present, the function re-
turns an error status value. Example 9-6 shows a call to the STR$CON-
CAT function from VAX-11 C.

Mixed-Language Programming 225

#include stdio
#include descrip
#include ssdef

/*DECLARATION OF STR$CONCAT (not reauired) %/
int STR$CONCAT() S

main()

{
/¥ RETURN STATUS OF STR$CONCAT */
int rets

/*DESTINATION ARRAY OF CONCATENATED STRINGS %/
char dest[2171]3

/% CREATE COMPILE-TIME DESCRIPTORS %/
$DESCRIPTOR(dst »dest) s

static $DESCRIPTOR(srcls "abcdefdghid")i
static $DESCRIPTOR(src2:s "Klmnorparst")s

/% CONCATENATE STRINGS %/
ret = STR$CONCAT(Bdst +Bsrclsbsrc) s

/% TEST RETURN STATUS VALUE %/
if (ret != SS$_NORMAL)
frprintf(stderry"Failed to concatenate
strinds.\n")
exit(ret)s}

/% PROCESS STRING %/
else
dest[201 = \NO‘3§ .
printf("Resultant strind: %s\n"sdest)’
¥

Example 9-6: Use of Variable-Length Argument Lists

9.6 Return Status Values

The VAX-11 returns status values from system service procedures in
general register RO. This return status value indicates the success or
failure of the operation performed by the called procedure. In VAX-11
C, passing a return status value in RO is equivalent to a function return-
ing int.

To obtain a return status value from any system procedure, you can
declare the procedure as a function, as shown in the following example:

int SYSSSETEF ()

226 Chapter 9

After declaring a procedure in this way, you can invoke the procedure
as a function and obtain a return status value. (In C, such a declaration
is needed only as program documentation; SYS$SETEF could simply
be called without explicit declaration and would be interpreted by de-
fault as a function returning int.)

This section describes:

e The format of a return status value, that is, the meaning of partic-
ular bits within the value.

¢ The way to manipulate return status values.

¢ Recommended techniques for testing a return status value for suc-
cess or failure or for a specific condition.

9.6.1 Format of Return Status Values

All VAX/VMS system procedures and programs use a longword value
to communicate return status information. When a VAX-11 C main
function executing under the control of the DCL command interpreter
executes a return statement to return control to the command level,
the command interpreter uses the return status value to conditionally
display a message on the current output device.

To provide a unique means of identifying every return condition in the
system, bit fields within the value are defined as follows:

These fields are:
control bits severity

~— —
31 28 27 32 0

condition identification

N— —
-~

27 1615 3

facility message
number number

ZK-283-81

control bits (31-28)
These define special action(s) to be taken. At present, only bit 28 is
used. When set, it inhibits the printing of the message associated
with the return status value at image exit. Bits 29 through 31 are
reserved for future use by DIGITAL and must be zero.

Mixed-Language Programming 227

facility number(27-16)
This is a unique value assigned to the system component, or facility,
that is returning the status value. Within this field, bit 27 has a
special significance. If bit 27 is clear, the facility is a DIGITAL
facility: the remaining value in the facility number field is a number
assigned by the operating system. If bit 27 is set, the number indi-
cates a customer-defined facility.

message number (15-3)
This is an identification number that specifically describes the re-
turn status or condition. Within this field, bit 15 has a special signif-
icance. If bit 15 is set, the message number is unique to the facility
that is issuing the message. If bit 15 is clear, the message is issued by
more than one system facility.

severity (2-0)
This is a numeric value indicating the severity of the return status.
The possible values in these three bits, and their meanings, are as
follows:

Value Meaning
0 Warning

1 Success

2 Error

3 Informational
4 Severe error

5-7 Reserved

Note that odd values indicate success (an informational condition is
considered a successful status) and that even values indicate failures
(a warning is considered an unsuccessful status).

The following names are associated with these fields:

control bits CONTROL
bit 28 (inhibit message) INHIB_MSG
facility number FAC_NO
bit 27 (customer facility) CUST__DEF
message number MSG_NO
bit 15 (facility specific) FAC_SP
severity SEVERITY
bit O (success) SUCCESS

When testing return values in a VAX-11 C program, you can either test
only for successful completion of a procedure, or you can test for spe-
cific return status values.

228 Chapter 9

9.6.2 Manipulating Return Status Values

It is possible to construct a structure or union that describes a return
status value, but in practice this method of manipulating return status
values is unwieldy. A status value is usually constructed or checked
using bitwise operators. VAX-11 C provides the #include module
stsdef, which contains preprocessor definitions to make this job easier.
All of the preprocessor symbols are named according to the VAX/VMS
naming convention, as follows:

STS$type__name

STS
identifies standard return status values.

type
is one of the following characters denoting the type of the constant:

K represents a constant value

M represents a bit mask

S represents the size of a field

\% defines the bit offset to the field
name

is an abbreviation for the field name.

For example, the following constants are defined in stsdef for the facil-
ity number field, FAC_NO, which spans bits 16 through 27:

#define STS$S5_FAC_NO 12 /#SIZE OF THE FIELD
IN BITS %/

#define STS$V_FAC_NO 16 /#BIT OFFSET TO THE
BEGINNING OF THE
FIELD */

#define STS$M_FAC_NO OxFFFOOQOO /#BIT MASK OF THE
FIELD */

Figure 9-5 shows how the status value would be represented internally.

STS$S_FAC_NO STS$V_FAC_NO
31 27 e | & >0

00001111 | 11111111 | 00000000 00000000

—— N ———
STS$M_FAC_NO

ZK-528-81

Figure 9-5: Internal Representation of a Status Value

Mixed-Language Programming 229

The following expression can be used to extract the facility number
from a particular status value contained in the variable named status:

(status & STES$M_FAC_NDO) > STE$V_FAC_NO

Note that the parentheses are required for the expression to be evalu-
ated properly; the relative precedence of the bitwise AND operator (&)
is lower than the precedenceé of the binary shift operator (>>).

9.6.3 Testing for Success or Failure

To test a return status value for success or failure, you need only test
the SUCCESS bit. A value of true in this bit indicates that the return
value is a successful value.

Example 9-7 shows a program that checks the SUCCESS bit.

#include stdio
#include descrip
#include stsdef

mainl)

4
int statusi
$DESCRIPTOR (name s "student ") i

status = SYSESETPRN(&name)§

if (status & STS$M.SUCCESS)
{
/% SBUCCESS CODE #/
ferintfistderrs"Successful completion"ls
¥

else
/¥ FATLLLURE CODE */
ferintfistderrs"Failed to set Process
mame.sn')
exitistatus)i
¥

Example 9-7: Testing for Success
The failure code in Example 9-7 causes the printing of a program-
specific message that indicates the condition that caused the program

to terminate. The error status is passed to the DCL (via the exit func-
tion), which then interprets the status value.

230 Chapter 9

9.6.4 Testing for Specific Return Status Values

Each numeric return status value defined by the system has a symbolic
name associated with it. The names of these values are defined as
system global symbols, and you can access their values by referring to
their symbolic names.

The global symbol names for VAX/VMS return status values have the
format:

facility$__code

facility
The facility is an abbreviation or acronym for the system facility
that defined the global symbol.

code
The code is a mnemonic for the specific status value.

Some examples of facility codes used in global symbol names are:

Facility

Code Used By

SS System services; these status codes are listed in the
VAX/VMS System Services Reference Manual.

RMS File system procedures; these status codes are listed in
the VAX-11 Record Management Services Reference
Manual.

SOR SORT procedures; these status codes are listed in the

VAX-11 SORT User’s Guide.

The definitions of the global symbol names for the facilities listed above
are located in the default system object module libraries, and thus are
automatically located when you link a VAX-11 C program that refer-
ences them.

When you write a VAX-11 C program that calls system procedures and
you want to test for specific return status values using the symbol
names, you must:

1. Determine, from the documentation of the procedure, the status
values that can be returned, and choose the values for which you
want to provide specific tests.

Mixed-Language Programming 231

2. Declare the symbolic name for each value of interest. The ssdef
and rmsdef #include modules define, respectively, the system
service and RMS return status values. (The return status values
in these two modules are defined with the #define control line.)
If you are checking return status values from other facilities,
such as the SORT utility, you must explicitly declare the return

values as globalvalues. For example:
dlobalvalue int SOR$_OPENINS
3. Reference the symbols in your program.

Example 9-8 shows a program that checks for specific return status

values (defined by the ssdef #include module).

#include ssdef
#include stdio
#include descrip

$DESCRIPTOR (messade »"\O7<<Lunch-time>»>\07") 3}

main()
{
int status = sysdbrdcst(Bmessade Q)3
if (status != S5%$_NORMAL)
{
if (status == SS&_NOPRIV)
ferintf(stderr:
"Can’t broadcast? reauires OPER
Privilede, ")}
else
ferrintf(stderr,
"Can‘t broadcast’? some fatal
error.");
exit{status)s
¥
¥

Example 9-8: Testing for Specific Return Status Values

232

Chapter 9

Chapter 10

Storage Allocation

This chapter provides general information on the use of program sec-
tions by the VAX-11 C compiler and the VAX-11 Linker. Examples are
shown in which VAX-11 C shares program sections with VAX-11 FOR-
TRAN, VAX-11 PL/I, and VAX-11 MACRO. For program sections to
be shared among languages, you need to know the way each non-C
language stores various data types, and the way each language allocates
program sections for external data. For full details on sharing program
sections with other languages, see the documentation supplied with
those languages (for example, the VAX-11 PL/I Encyclopedic Refer-
ence or the VAX-11 FORTRAN User’s Guide).

10.1 Program Sections

When the VAX-11 C compiler creates an object module, it groups data
in the object module into contiguous areas called program sections, or
psects. The grouping depends on the attributes of the data and on
whether the psects contain executable code or read/write variables.

The compiler also writes into each object module information about the
program sections contained in it. The linker uses this information when
it binds object modules into an executable image. As the linker allo-
cates virtual memory for the image, it groups together program sections
that have similar attributes.

Finally, the compiler adds any global names to the object module’s
table of global symbols. Names declared with globalref, globaldef, and
globalvalue are written in this table; others are not. Note that global-
value adds a name to the global symbol table but does not allocate
storage in any program section; if an initializer appears with global-
value, the name added to the symbol table is a global symbol for the
given value; if no initializer appears, the name is a global name for a
value defined elsewhere in the system. (For more information on global
symbols, see Chapter 11.)

233

10.1.1 Attributes of Program Sections
Table 10-1 lists the attributes that can be applied to program sections.

Table 10-1: Program Section Attributes

Attribute

Meaning

PIC or NOPIC

CON or OVR

REL or ABS

GBL or LCL

EXE or NOEXE

WRT or NOWRT

RD or NORD
SHR or NOSHR

USR or LIB
VEC or NOVEC

The program section or the data to which it refers does
not depend on any specific virtual memory location
(PIC), or else the program section depends on one or
more virtual memory locations (NOPIC).1

The program section will be concatenated with other
program sections with the same name (CON) or will be
overlaid on the same memory locations (OVR).

The data in the program section can be relocated within
virtual memory (REL) or are not considered in the allo-
cation of virtual memory (ABS).

The program section is part of one cluster, is referenced
by the same program section name in different clusters
(GBL), or is local to each cluster in which its name ap-
pears (LCL).

The program section contains executable code (EXE) or
does not contain executable code (NOEXE).

The program section contains data that can be modified
(WRT) or data that cannot be modified (NOWRT).

These attributes are not currently used.

The program section can be shared in memory (SHR) or
cannot be shared in memory (NOSHR).

These attributes are reserved for future use.

The program section contains privileged change mode
vectors (VEC) or does not contain those vectors (NO-

VEC).

1. C programs can be bound into PIC or NOPIC shareable images. NOPIC
occurs if declarations such as the following are used:

char *x = 8vi

This statement relies on the address of y to determine the value of the pointer x.

234

Chapter 10

10.1.2 Program Sections Created by VAX-11 C
VAX-11 C always creates the following program sections:

e 3CODE — contains all executable code and constant data (includ-
ing variables defined with the readonly keyword).

e $DATA — contains all static variables, as well as global variables
defined without the readonly keyword.

e $CHAR_STRING_CONSTANTS — contains C character-string
constants written in the program, such as:

"This is a stringd.,"

This program section has the same attributes as $DATA (see
Table 10-2).

VAX-11 C also creates additional program sections for extern variables
and global variables (when the global variables’ declarations specify a
program section name explicitly). Table 10-2 summarizes the differ-
ences in program section attributes that correspond to differences in
VAX-11 C storage classes. All program sections created by VAX-11 C
have the attributes PIC, REL, RD, USR, and NOVEC.

All program sections generated by VAX-11 C (except $CODE) are
aligned on longword boundaries; the $CODE psect is aligned on byte
boundaries.

Table 10-2: Program Sections for VAX-11 C Variables

Storage Program

. Program
Ke(;/l;zids Slsztln:)en Attributes
[extern]] name2 OVR, GBL, SHR, NOEXE, WRT
[extern]! readonly name2 OVR, GBL, SHR, NOEXE, NOWRT
static $DATA CON, LCL, NOSHR, NOEXE, WRT
static readonly $CODE CON, LCL, SHR, EXE, NOWRT
globaldef $DATA CON, LCL, NOSHR, NOEXE, WRT
globaldef {"name"} name2 CON, GBL, SHR, NOEXE, WRT
globaldef readonly $CODE CON, LCL, SHR, EXE, NOWRT
[or name)2

1. If extern is present, the declaration is a reference to a previously existing
datum in a program section with these attributes; if extern is absent, storage is
allocated in such a program section.

2. name is either the identifier of the variable declared with the specified key-
word(s) or the name specified in globaldef {'name"}.

Storage Allocation 235

10.1.3 Link-Time Scope of Names

The term link-time scope is sometimes used to describe whether a
particular object is accessible by more than one module in a program
image. For simple variables and arrays, the identifier is recognized by
the linker. For structures and unions, only the identifier, not the tag or
the members, is recognized by the linker. Therefore, only the names of
objects have a link-time scope.

The link-time scope of a variable depends on its storage class, as fol-
lows:

* The scope of a static variable is restricted to the compilation unit
in which it appears. If an identical declaration of the static varia-
ble appears in a different object module, a different object is
defined.

e For all other storage classes covered in Table 10-2, the link-time
scope is the entire image, since all modules in the program have
access to the program sections in which they reside. You must still
declare the name with congruent declarations in every module,
but each declaration refers to the same object. For example,
extern is used to declare the name of an object defined in a stand-
ard external data definition, where the definition can be in another
module. globalref is used to declare the name of an object defined
elsewhere with globaldef.

If two variables are declared with different attributes (for example,
read-only in one instance, not read-only in another), the VAX-11
Linker will issue diagnostics at link-time, usually the MULPSC (con-
flicting psect attributes) warning diagnostic.

10.2 Sharing Program Sections with FORTRAN
Common Blocks

In a FORTRAN program, separately compiled procedures can share
data in declared common blocks which specify the names of one or
more variables to be placed in them. Each named common block repre-
sents a separate program section. Each procedure that declares the
common block with the same name can access the same variable.

As shown in Example 10-1, a VAX-11 C extern variable corresponds to
a FORTRAN common block with the same name.

236 Chapter 10

STRING.C contains:

main()

{
extern char xvz[2013
strncPy(xvzs+"This ©$ a strind
Prstring()j

¥

PRSTRING.FOR contains:

SUBROUTINE PRSTRING
CHARACTER*20 STRING
COMMON /XY¥Z/ STRING

TYPE 20 STRING
20 FORMAT (7 7 4A20)

RETURN

END

rsizeof xvz)i

Example 10-1: Sharing Data with a FORTRAN Program
in Named Program Sections

In Example 10-1, the VAX-11 C extern variable xyz corresponds to the
FORTRAN common block named XYZ. The FORTRAN procedure

displays the data in the block.

To share data in more than one variable in a program section with a
FORTRAN program, the VAX-11 C variables must be declared within

a structure, as shown in Example 10-2.

Storage Allocation

237

NUMBERS.C contains:

struct xs
{
int firsti
int second’
int thirds3

extern struct xs numberssi

i

main()

{
numbers,first
numbers.second
numbers.third
frum() 3

¥

FNUM.FOR contains:
SUBROUTINE FNUM

INTEGER*4 INUM s JNUMKNUM
COMMON /NUMBERS/ INUMJNUM KNUM

TYPE 10+ C(INUMsJNUMKNUM)

10 FORMAT (31I8)
RETURN
END

Example 10-2: Sharing Data with a FORTRAN Program

in a VAX-11 C Structure

In Example 10-2, the int variables declared in the VAX-11 C structure
numbers correspond to the FORTRAN INTEGER+*4 variables in the
COMMON of the same name. Note that in a FORTRAN common
block, all variables must be either integers or character strings. Varia-
bles of different data types cannot be grouped into the same block.

238

Chapter 10

10.3 Sharing Program Sections with PL/1 Externals

A VAX-11 PL/I variable with the EXTERNAL attribute corresponds
to a FORTRAN common block and to a VAX-11 C extern variable.
Examples 10-3 and 10-4 illustrate the sharing of a program section
between VAX-11 C and VAX-11 PL/IL.

A PL/I EXTERNAL CHARACTER attribute corresponds to a VAX-11
C extern char variable, but PL/I character strings are not necessarily
NUL-terminated. In Example 10-3, VAX-11 C and VAX-11 PL/I use
the same variable to manipulate the character string that resides in a
program section named XYZ.

STRING.C contains:

maint)
{
extern char xvz[2013

strncPy {(xyz»"This is a string "ssizeof xvz)i
Prstring ()3

¥

PRSTRING.PLI contains:

PRSTRING: PROCEDURES

DECLARE XYZ EXTERNAL CHARACTER(Z0)}

PUT SKIP LIST(XYZ)]
RETURN 3

END PRSTRINGS

Example 10-3: Sharing Data with a PL/I Program
in Named Program Sections

The PL/I procedure PRSTRING writes out the contents of the external
variable XYZ.

PL/I also has a structure type similar (in its internal representation) to
the struct in VAX-11 C. Moreover, VAX-11 PL/I can output aggre-
gates, such as structures and arrays, in fairly simple stream-output
statements; see Example 10-4.

Storage Allocation 239

NUMBERS.C contains:

main()

{
extern struct xs numberssi
numbers.first = 13
numbers.second = 23
numbers.third = 33
frum() i

¥

FNUM.PLI contains:

FNUM: PROCEDURES
/+ EXTERNAL STRUCTURE CONTAINING THREE INTEGERS */
DECLARE 1 NUMBERS EXTERNAL
2 FIRST FIXED(31) .
2 SECOND FIXED(31) .
2 THIRD FIXED(31)3

PUT SKIP LIST(’Contents of structure:’ ;NUMBERS)};
RETURN 3
END FNUM3

Example 10-4: Sharing Data with a PL/I Program
in a VAX-11 C Structure

The PL/I procedure FNUM writes out the complete contents of the
external structure NUMBERS; the structure members are written out
in the order of their storage in memory, which is the same as for a C
struct.

10.4 Sharing Program Sections with MACRO
Programs

In a MACRO program, the .PSECT directive sets up a separate pro-
gram section that can store data or MACRO instructions. The attrib-
utes in the .PSECT directive describe the contents of the program
section.

240 Chapter 10

You can set up a psect in a MACRO program to allow data to be shared
with a VAX-11 C program, as shown in Example 10-5.

NUMBERS.C contains:

struct
{
int firsts
int second]’
int thirds

} examprles

main()
{
set_value()j

printf("example,first = Yd\n"sexamplefirst) 3
printf("examplessecond = Zd\n"sexamplessecond) i
printf("examplesthird = Zd\n"sexamplesthird) s

SETVALUE.MAR contains:

sentry setvalue Mok

moul 1ifirst
mowl 2ysecond
mouwl 3sthird
ret

+Psect example Picsusrsoursrelsdblishr
noexesrdswrtsnovecslond

first: sB1RL
second: vbBIK1
third: yBIKL

sernd

Example 10-5: Sharing Data with a MACRO Program
in a VAX-11 C Structure

The MACRO program initializes the locations first, second, and third
in the psect named example and passes these values to the C program.
The locations are referenced in the C program as members of the exter-
nal structure named example.

Storage Allocation 241

Chapter 11
Globhal Symbols

In large programs, it is often desirable to share data among program
modules by some means other than argument passing. In all C com-
pilers, a variable to be shared by external functions must be declared
with the extern keyword in each separately compiled function that
refers to it. Each extern variable in VAX-11 C resides in its own pro-
gram section. As illustrated in Chapter 10, extern variables are similar
in this respect to FORTRAN named common blocks and to PL/I exter-
nal variables.

Global symbols provide an alternative method for defining external
variables and values. The keywords globaldef and globalvalue define
objects that differ from externs both in their storage allocation and in
their correspondence to elements of other languages. (These differences
are spelled out explicitly in Table 11-1.) Global symbols provide a
convenient and efficient way for a C function to communicate with
assembly language programs, with VAX/VMS system services and data
structures, and with other high-level languages that support global
symbol definition, such as VAX-11 PL/I.

This chapter describes:

® The use of global symbols within C functions.
e The globaldef, globalref, and globalvalue keywords.
¢ The declaration and use of system-defined global symbols.

11.1 Global Symbhols and extern Variables

Within VAX-11 C programs, you can define variables as global symbols
when you are coding calls to system procedures. You can also use global
symbols instead of extern variables to communicate between two or
more VAX-11 C functions.

Table 11-1 summarizes the differences between global symbols and
extern variables. Note that a primary difference is the manner in which
the linker allocates storage. Linker storage allocation is described in
more detail in Chapter 10.

242

Table 11-1: Comparison of Global Symbols
and extern Variables

Global Symbol extern Variable
Declared with the globaldef, globalref, Declared with the extern key-
or globalvalue keywords. word.
Corresponds to a global symbol declared Corresponds to a FORTRAN
in assembly language. common block.
Can be declared with globalvalue and Always occupy storage in pro-
does not occupy storage in program sec- gram sections.

tions if expressible in 32 (or fewer) bits.

No practical limit on the number of Limited to approximately 65,532
global symbols that can be defined and extern names.
referenced in an object module.

11.2 The glohaldef and globalref Keywords

The globalref and globaldef keywords, respectively, declare and define
a global variable. Global variables are exactly like static variables,
except that their link-time scope is the entire program instead of a
single compilation unit. If you do not specify a program section name,
by globaldef {"name"}, VAX-11 C places globaldef’s definition for the
name in a default program section. The definition is placed in the
$CODE psect if it is defined with the readonly keyword; it is placed in
the $DATA psect if it is not defined with the readonly keyword. Thus,
globaldef avoids the use of named program sections by extern declara-
tions, making the limited number of named program sections available
for operations that require them.

The keywords globaldef and globalref are used similarly with external
data definitions and extern declarations. That is, globalref is used to
refer to storage allocated elsewhere (usually by a globaldef definition).
For example:

Global Symbols 243

In one compilation unit:

/% DEFINITION OF EXTERNAL VARIABLE: counter
RESIDES IN A PROGRAM SECTION NAMED counter %/
int counter = 03F

/% DEFINITION OF GLOBAL YARIABLE: velocity
RESIDES IN THE PROGRAM SECTION $DATA */
dlobaldef double velocity = 3.0e103%

/¥ A C MAIN FUNCTION */
main()
{

In a separate compilation unit:

/% DECLARATION OF EXTERNAL VARIABLE:
THE LINKER RESOLVES THIS REFERENCE
TO THE PROGRAM SECTION counter %/
extern counter’

/% DECLARATION OF GLOBAL VARIABLE:
THE LINKER RESOLVES THIS REFERENCE
TO THE PROGRAM SECTION $DATA */
dglobalref double velocityi

/% ANOTHER C FUNCTION THAT USES
counter AND velocity */

frlf)

{

.

¥

Notice that initializers can appear in definitions of global variables (as
in definitions of extern variables), but not in references to global varia-
bles. Initialization is possible only when storage is allocated for the
object. This distinction is especially important when the readonly key-
word is used; unless the global (or extern) variable is initialized when
the variable is defined, its value is undefined.

NOTE

In the VAX-11 MACRO programming language, it is possi-
ble to give a global variable more than one name. However,
in VAX-11 C, only one global name can be used for a par-
ticular variable. VAX-11 C assumes that distinct global
names denote distinct objects; the storage associated with
different names must not overlap.

244 Chapter 11

11.3 The globalvalue Keyword

A variable declared with globalvalue does not require an address refer-
ence in storage. Instead, the compiler can refer to it by its value during
execution. If an initializer appears with globalvalue, the name be-
comes a global symbol for the given initial value. If no initializer ap-
pears, the globalvalue construct is considered a reference to some pre-
viously defined global value. (Note that globalvalue can be used only
with the data types int and long.)

Predefined global values serve many purposes in VAX/VMS system
programming, such as the definition of status values (see Section 9.6.4).

Global values are useful because they allow many programmers in the
same environment to refer to values by name, without regard to the
actual value (for example, the integer) associated with the name. The
actual values can change, as dictated by general system requirements,
without affecting all the programs that use system resources. As men-
tioned in Chapter 9, it is customary in VAX/VMS system programming
to avoid explicit references to such values as those returned by system
services, and to use instead the global names for those values.

11.4 Enumerated Global Values

When the globaldef storage class keyword is used with an enum defini-
tion, the enumerated constants in the definition become globalvalues,
initialized as required to form a properly ordered list of the values.
Variables of the enumerated type become globaldefs.

When globalref is used with enum, all enumerated variables are
globalrefs, and the enumerated constants refer to globalvalues of the
same names. For example:

In the first compilation unit:
/% DEFINE GLOBAL ENUMERATED TYPE */

dlobaldef enum lidght { dimsmediums:bright ¥ lidht_vali
main)
{
light-val = dim}
/% CALL FUNCTION %/
frnlu()s
¥

Global Symbols 245

In the second compilation unit:

dlobalref enum light { dimsmedium:bright ¥ lidght_vals

frnlu()
{
if (lidght_val < bright) printf("T00 DIMAR")}3
3
In the first compilation unit, the enum definition establishes light__val

as a globaldef of the enumerated type light. It also establishes the
ordered list of enumerated globalvalues dim, medium, and bright.

The globalref declaration in the second compilation unit allows the
enumerated constants to be used as globalvalues. That is, the con-
stants can be referenced, but not initialized.

246 Chapter 11

Chapter 12

Program Development

Throughout the process of VAX-11 C program development, you have
to interact with the VAX/VMS operating system. Through this interac-
tion, you either create or use many different types of files. Figure 12-1
shows the kinds of files required or created during program develop-
ment, as well as the commands that relate to those files.

This chapter summarizes the following information about VAX/VMS:

e The rules for specifying input and output files for commands and
programs.

® The commands available to you for file creation, modification, and
maintenance.

e The use of command procedures as an aid to program develop-
ment.

® The commands for creating and using text and object libraries.

For a tutorial introduction to these concepts, see the VAX/VMS
Primer. For detailed definitions of commands and file specifications,
see the VAX/VMS Command Language User’s Guide.

12.1 File Specification Formats and Defaults

A file specification provides the system with all the information it needs
to locate a unique file. In Figure 12-1, all input and output files are
specified in their simplest form.

To define a unique C source file, you need only give it a unique name
and a file type of C. All other portions of a file specification are allowed
to default to system- and command-supplied names. For example, in
Figure 12-1 the following defaults are in effect:

¢ All the commands shown use the current default device and direc-
tory to locate a specified file.

¢ The EDIT command does not assume any defaults. The file type C
is specified in this example so that the file type can be defaulted
for the CC command.

247

Key.

interactive * input or output file
input &~ optional input or output file

The EDIT command invokes a system editor to create a
disk file containing C source statements.
$ EDIT METRIC.C

text
libraries

The CC command invokes the VAX-11 C compiler to
$ CC/LIST METRIC process the source statements and verify that there are no

syntax errors or violations of the language rules. If there
‘ METRIC.LIS METRIC.OBJ

are no errors, the compiler creates an object module and
The LINK command binds object modules into an execut-
$ LINK/MAP METRIC b ' !

object
module
libraries

optionally a listing.

able program image. The linker searches system libraries
and user-specified libraries, if any, to locate all run-time
modules and global symbols required for the image.

METRIC. MAP METRIC.EXE

The RUN command executes a program image.
$ RUN METRIC

ZK-084-81

Figure 12-1: Commands for VAX-11 C
Program Development

248 Chapter 12

e The CC command assumes, if no file type is specified for a source
file, that its file type is C. If no qualifiers override the default
output file types used by CC, the compiler uses the default file
types LIS and OBJ for the listing and object files, respectively.

e The LINK command assumes, if no file type is specified for an
input file, that its file type is OBJ. If no qualifiers override the
linker’s default output file types, the linker uses the default file
types EXE and MAP for the image and map files, respectively.

e The RUN command assumes, if no file type is specified, that the
input file type is EXE.

Table 12-1 summarizes the syntax of VAX/V MS file specifications.

The following example shows a COPY command with a complete file
specification:

$ COPY TUCSON::DBA3:[WILLIMEMOD.DAT:3 HERE.DAT

This command copies the third version of the file MEMO.DAT in the
directory [WILL] on the device DBA3 from the remote node TUCSON
to the file HERE.DAT on the local system. The input file located at the
node named TUCSON is fully specified. The output file HERE.DAT
will be placed in the current default device and directory. If that direc-
tory does not contain a file named HERE.DAT, the COPY command
will give the copied file a version number of 1. Otherwise, HERE.DAT
will have a version number one greater than the highest version number
of the existing file.

12.1.1 Temporary Defaults

Many VAX/VMS file-handling commands use temporary defaults un-
der certain conditions. When a command such as PRINT or TYPE
accepts a list of input file specifications, it uses explicit elements of one
file specification as a temporary default for subsequent ones. Some
examples follow.

$ PRINT [PROJECT.DATAIALPHA:BETA.DAT :GAMMA

In this example, the PRINT command uses the default input file type
LIS for the first input file and the file type DAT as specified for the
second input file. It then applies the temporary default DAT to the file
GAMMA. The PRINT command prints the highest existing versions of
ALPHA.LIS, BETA.DAT, and GAMMA.DAT from the directory
[PROJECT.DATA] on the current default device.

$ PRINT [PROJECT.DATAIFOREST.TXT:.DAT:.REF
Here, the PRINT command uses the temporary default FOREST as a

file name and prints the files FOREST.TXT, FOREST.DAT, and
FOREST.REF.

Temporary defaults are applied to device names, directories, file
names, and file types. After the command is executed, the temporary
defaults are no longer in effect.

Program Development 249

Table 12-1: Summary of File Specification Syntax

Field Syntax Rules Defaults
node 1 - 6 characters Local node
terminated by ::
device Valid mnemonic or SYS$DISK
dev logical name
c A-7Z A
u 0 - 65535 0
directory 1 - 9 characters Current defaultl
[name) up to 8 names,

[name.name...]

filename

filetype

version

separated by
periods (.)

0 - 9 characters

0 - 3 characters
preceded by a
period (.)

0 - 32767
preceded by

a semicolon (;)
or a period (.)

Input: temporary defaults apply2
Output: same as input file

Applied by command; temporary
defaults apply2

Input: highest3
Output: highest + 1

1. [#] all directories

[name...] all directories in path

[*...] all subdirectories in all directories

[-.name] back up a directory

2. * — all file names
string — match all names containing ‘“‘string”
str%ng — match any character in % position

3. * — all versions

; — use most recent version

250

Chapter 12

12.1.2 Changing the Default Directory

To change the default device or directory that is applied to all file
specifications, use the SET DEFAULT command. Unless you override
them in the explicit specification of a file, defaults set by this command
remain in effect for all subsequent commands until you either issue a
new SET DEFAULT command or log off the system.

For example:

$ S5ET DEFAULT [PROJECT.S0URCE]
$ CC METRIC

The CC command compiles the source program METRIC.C from the
current default directory [PROJECT.SOURCE]. The output file,
METRIC.OBJ, is also placed in this directory.

12.2 Logical Names

Another way to refer to a specific device, directory, or file is with a
logical name. It can represent an entire file specification or the leftmost
portion of one. To create logical names, use the DEFINE command. For
example:

¢ DEFINE SRC [PROJECT.S0URCE]
¢ TYPE SRC:ALPHA.C

This command creates the logical name SRC to represent the directory
specification [PROJECT.SOURCE]. When SRC is used with the TYPE
command, the logical name in the file specification is replaced by its
current equivalence name. The TYPE command displays the file
[PROJECT.SOURCEIJALPHA.C.

Only one logical name is permitted in a file specification. It must be the
first or only element, and it must be followed by a colon if any other
elements are present.

The VAX/VMS system maintains tables of all logical names created by
users. There are three kinds of logical name tables:

® Process. A separate logical name table exists for every user, or
process, on the system. These names are available only to the user
who defines them. A DEFINE command places a logical name in
the process logical name table by default.

¢ Group. A separate logical name table exists for every group on the
system. The names in any of these tables can be accessed only by
users who have the same group number in their user identification
code. To place a name in the group logical name table, you must
specify /GROUP on a DEFINE command, and you must have the
GRPNAM user privilege.

Program Development 251

e System. There is a single system logical name table. The logical
names in this table can be accessed by all users. To place a name
in the system logical name table, you must specify /SYSTEM on a
DEFINE command, and you must have the SYSNAM user privi-
lege.

12.2.1 Logical Name Translation

When the system attempts to locate an equivalence name for the name
of a C source file, or for a portion of a file specification, it is said to be
performing a logical name translation. The system searches the process,
then the group, then the system logical name tables. Each time the
system translates a logical name, it examines the result to see if there is
still a logical name. If so, it translates the result. This recursive transla-
tion occurs until the file specification is complete or until 10 recursive
translations have been made.

You can determine the current equivalence for a logical name by enter-
ing the SHOW TRANSLATION command. For example:

% SHOW TRANSLATION SRC
SRC = "[PROJECT.SRCI" (process)

The response gives the translation and indicates that the logical name
SRC was found in the process logical name table.

A logical name assignment is deleted when a new definition is given for
the name or when the name is explicitly deleted with a DEASSIGN
command. For example:

% DEASSIGN SRC
This command deletes the table entry for the logical name SRC.

12.2.2 Uses of Logical Names

VAX/VMS system programs use logical names in many ways. For ex-
ample, the VAX-11 C compiler and the VAX/VMS Linker use logical
names to provide default libraries for #include text modules and object
module libraries, respectively.

Of principal interest to VAX/VMS programmers is the ability to use
logical names to provide device and file independence when executing
program images or command procedures. For example, the file specifi-
cation associated with a file pointer in a C source program (as in the
fopen function) can be a logical name. Each time you execute the
program, you can issue a DEFINE command to provide a different
equivalence name for the C file.

12.2.3 Commands to Control Logical Names

Table 12-2 lists the VAX/VMS command language, DCL, commands
that maintain logical names.

252 Chapter 12

Table 12-2: Commands for Maintaining Logical Names

Command

Function

DEFINE

DEFINE/USER

ASSIGN

DEASSIGN

SHOW TRANSLATION

SHOW LOGICAL

Creates a logical name and places it in the
process, group, or system logical name table. The
/PROCESS, /GROUP, and /SYSTEM qualifiers
specify the table in which the name is to be
placed.l

Creates a logical name for the execution of the
next image only. The name is automatically de-
leted following the completion of the next com-
mand or program.l

Provides the same function as DEFINE. However,
the order of the command parameters is re-
versed.l

Deletes a logical name from the process, group, or
system logical name table.l

Displays the result of translating a logical name
once and displays the name of the table in which
the logical name was found.1

Displays the result of translating a logical name
recursively. This command is performed by a sep-
arate program and causes the current image that
is executing, if any, to be terminated.

1. This command is executed by the command interpreter and can be issued
when a program is interrupted with .

12.3 Creating and Maintaining Files

Table 12-3 describes some of the basic file-handling commands avail-
able to programmers in the VAX/VMS command language, DCL. For
detailed descriptions, see the VAX/VMS Command Language User’s
Guide. For online assistance in entering a command or determining its
parameters, qualifiers, or options, use the HELP command.

Program Development

253

Table 12-3: VAX/VMS Commands for File
Maintenance

Category

Command

Command Function

File creation

Correcting and
modifying files

Cataloging and
organizing files

Copying and
backing up files

254

CREATE

EDIT

EDIT

SET DIRECTORY

SET FILE

CREATE/DIRECTORY

DIRECTORY

LIBRARY

RENAME

SET DEFAULT

{

ALLOCATE
INITIALIZE
MOUNT

}

Creates a file from records or data
that follows in the input stream,;
for example, lines entered from a
terminal or placed in a batch input
file.

Invokes one of the VAX/VMS in-

teractive editing programs, for ex-
ample, SOS, EDT, or EDI.

Invokes one of the interactive edi-
tors to make changes or additions
to a disk file.

Modify the characteristics of a
directory.

Modify the characteristics of a file.

Establishes a new directory or a
hierarchy of directories to catalog
files.

Lists files and information about
them. Can list files with common
file names or file types, files in one
or more directories, files created
since a certain date, and so on.

Creates and maintains libraries of
#include text modules and librar-
ies of object modules.

Changes the directory in which a
file is cataloged; or changes the file
name, file type, or version number
of a file.

Changes the current default device
or directory.

Provide device-handling and con-
trol commands that let you access
data written on nonsystem disks,
on magnetic tapes, or on punched
cards; or to output data to a disk or
tape.

Chapter 12

Table 12-3: (Cont.) VAX/VMS Commands for File

Maintenance
Category Command Command Function
COPY Copies the contents of a file or files
to another file or files.

Deleting files DELETE Makes the contents of a file inac-
cessible by removing its directory
entry.

PURGE Deletes a specified number of ear-

lier versions of a file or a group of
files.

12.4 The HELP Gommand

Many of your questions about VAX/VMS commands and VAX-11 C
can be answered by the HELP utility. The HELP utility is a tree-
structured group of specially formatted text files and a program that
allows you to display these files at the terminal. Each level of the tree
displays the information for that level plus a list of topics that are
available at the next lower level of the tree.

The format of the HELP command is as follows:
HELP [subtorpic [subtorpic [...1 1 1

The VAX-11 C help file contains information about the CC command
line, the C language, and the VAX-11 C compiler diagnostic messages.

You can obtain the list of the VAX-11 C help topics at the top level of
the tree by typing:

% HELP CC

12.5 Using Command Procedures

A command procedure is a file that contains a sequence of VAX/VMS
commands and, optionally, data. You can cause the commands in the
procedure to be executed in either of two ways:

¢ Interactively, you specify the name of the file following the @
(execute procedure) command. For example:

& BTESTAM

Program Development 255

The @ command assumes that the file type of a command pro-
cedure is COM. Thus, the @ TESTAM command executes the
procedure TESTAM.COM.

e With DCL’s SUBMIT command, you can submit the command
procedure to a system batch job queue for execution. For example:

$ SUBMIT TESTAM

This command enters the file TESTAM.COM in the system batch
job queue. On completion of the job, the system prints a log file
that indicates how the job ran.

You can devise and use command procedures to simplify and enhance
your program development. For example, you can write a command
procedure that will compile, link, and run a specific C program. The
procedure can specify all the libraries needed by the CC and LINK
commands and even contain all the input data you would require to
test the program.

Command procedures can also be generalized. By taking advantage of
such DCL features as the assighment statement and the IF, GOTO,
and ON commands, you can write a command procedure that looks like
a program; it can process variables, make decisions based on their
values, and perform error condition handling.

Example 12-1 suggests a way to construct command procedures for C
program development and testing.

$ ON WARNING THEN EXIT (1)
$ | (2]
¢ LIST = " (3)
$ |

$ IF P1 ,EQS, "L" THEN LIST := /LIST=LP: (4]
$ CC’/LIST’ APPLICIMETRIC+DATAB/LIBRARY (5]
$ LINK APPLICIMETRIC,[APPLICLIBIAPPLIC/LIBRARY

$ |

$ RUN APPLIC (6]

55555.,888868888
4444,333

b
o

‘alrphabetic string’
$ EXIT

Example 12-1: A Sample Command Procedure

256 Chapter 12

The following notes are keyed to the circled numbers in Example 12-1.

© The ON command establishes an error-handling routine for the com-
mand procedure. This command specifies that the procedure is to
exit if any error occurs with a severity of warning or greater. Thus, if
the CC command returns with an unsuccessful status, the procedure
executes an EXIT command that causes the procedure to terminate
immediately. Otherwise, the procedure continues with the LINK
command. If that command issues a warning or error, the procedure
exits. Otherwise, the RUN command executes.

® The exclamation point (!) is a comment delimiter.

© The procedure creates a variable, or command symbol, named LIST
and gives it an initial value of a null string. The assignment state-
ment := gives a symbol a character-string value.

O The procedure then tests whether any values were specified when
the procedure was invoked. A value passed to a command procedure,
that is, a parameter, is given a default name of Pn, where n is the
position of the parameter in the command. For example, the proce-
dure may be executed as follows:

$ BTESTAM L

In this execution, L is the first (and only) parameter. The symbol P1
is given a value of L. In this procedure, L indicates that a listing file
is requested. The IF command tests the value of P1. If P1 is L, then
the symbol LIST is redefined to have a value of /LIST=LP:.

© Following the CC command name, the symbol LIST is specified
inside apostrophes. The apostrophes, in this context, are substitu-
tion operators that request the command interpreter to substitute
the symbol LIST with its current value. If LIST is a null string (that
is, if L was not specified), the command after substitution is:

$ CC APPLIC'METRIC+DATAB/LIB
If . was specified, the command after substitution is:
$ CC/LIST=LP: APPLICMETRIC+DATAB/LIB

O The program APPLIC is executed. It reads input data from the
default input device. When a command procedure executes, the de-
fault input device is the command procedure itself. Thus, the data
are read from the procedure file. In a command procedure, any line
that does not begin with a dollar sign ($) is treated as input data for
the previous command or program. The input terminates (and an
actual end-of-file condition occurs) when a new line that begins with
a dollar sign ($) is encountered. In this example, the program AP-
PLIC reads all the lines between the RUN command and the EXIT
command.

Program Development 257

For more detailed information on the commands shown in the preced-
ing example, and for additional examples of techniques you can use in
command procedures, see the VAX/VMS Guide to Using Command
Procedures.

12.6 Libraries

Libraries collect frequently used text or functions in easily accessible
modules. Libraries make program development efficient in a number of
ways.

With libraries, you can avoid programming at a machine-language or
machine-dependent level. Within reason, the text and object libraries
supplied with VAX-11 C allow you to use your existing programming
methods (and, in many cases, existing source text) to develop C pro-
grams for the VAX-11 computer, without detailed knowledge of the
VAX-11 architecture or VAX/VMS operating system.

In addition, most portability problems occur below the level of the C
language and can be addressed by changing (or creating) a library,
thereby modifying an entire set of programs that use the same features.
Programs then move more easily from one computer system to another.

Libraries help you avoid the pitfall of “reinventing the wheel.” Once a
function or other item has been shown to be correctly designed and
implemented, you can put it in a user library, perhaps for use by sev-
eral programmers in the same environment. For example:

e Commonly used pieces of source text can be grouped into modules
in a text library. The source text need not comprise entire C func-
tions. In fact, text library modules are used frequently in C pro-
grams to supply complicated definitions, macros, or text substitu-
tions needed by the program. You select a module from a text
library by writing an #include control line in the program, specify-
ing the module’s name. (See Chapter 7 for an explanation of the
forms of the #include control line.) You then specify the name of
the library with a qualifier (/LIBRARY) to the CC command.

e Commonly used object (compiled) code can be grouped into mod-
ules in an object library. Again, the object modules need not
comprise entire C programs, although each results from a module
of source text that can be compiled separately. Object modules are
located and selected automatically by the VAX/VMS Linker to
resolve references in the program to otherwise undefined functions
or global symbols. If the object modules are located in a library
that you have created, you must specify the library’s name with a
qualifier to the LINK command.

258 Chapter 12

Libraries can simplify the user’s interface to the program development
commands, CC and LINK. Both commands search a series of default
user libraries and DIGITAL-supplied libraries for unresolved refer-
ences. This feature allows a new VAX/VMS programmer to use the
simplest forms of the CC and LINK commands, with reasonable assur-
ance that a correctly written C program will compile and execute on a
VAX/VMS system. That is:

e The library of source text (SYS$LIBRARY:CSYSDEF.TLB) sup-
plied with the VAX-11 C compiler is searched for references that
are still unresolved after a search for any specified or default text
libraries has been made.

* You can define equivalents for the logical names CSLIBRARY and
LNKS$LIBRARY. These logical names describe the defaults for
user-defined text and object libraries, respectively. If the CC com-
mand cannot resolve references from #include lines in the text
libraries you have specified, it searches the equivalent of C$LI-
BRARY for the necessary text modules. If the LINK command
cannot resolve the function references in the object libraries you
specify, it searches the equivalent of LNK$LIBRARY. The library
SYS$LIBRARY:CRTLIB.OLB, supplied with the VAX-11 C com-
piler, contains the object code for VAX-11 C library functions (the
functions described in Chapter 6). You must specify
SYS$SLIBRARY:CRTLIB.OLB explicitly in the LINK command,
or assign it to the logical name LNK$LIBRARY, in order to resolve
references to these functions.

e The VAX/VMS system libraries (VMSRTL.EXE and STAR-
LET.OLB) call routines in the VAX-11 Common Run-Time Pro-
cedure Library. (These routines are documented in the VAX-11
Run-Time Library Reference Manual.) Any references to functions
that are still unresolved after a search for the libraries specified in
the LINK command and the equivalent for LNK$LIBRARY are
assumed to be calls to these run-time procedures. These calls can
result from an explicit function reference in the program, or they
can be internal calls generated by the compiler to perform com-
mon operations such as input and output, calls to mathematical
functions, and so forth. The LINK command automatically
searches VMSRTL.EXE and STARLET.OLB to resolve these ref-
erences.

The remainder of this section describes how to create text libraries and
object libraries. This description is confined to areas that are of particu-
lar interest to C programmers. For more detailed coverage of the topics
presented here, consult the following VAX/VMS manuals:

Program Development 259

e VAX-11 Utilities Reference Manual — for information on the
VAX/VMS Librarian.

e VAX-11 Guide to Creating Modular Library Procedures — for
more extensive information on modular programming techniques
for VAX/VMS.

e VAX-11 Run-Time Library Reference Manual — for instructions
on making direct calls to procedures in the VAX-11 Common Run-
Time Procedure Library.

12.6.1 Text Libraries

A text library is a file that contains text organized into modules and a
table indexing the modules. The LIBRARY command creates and mod-
ifies text libraries; these libraries have a default file type of TLB. To
use libraries of C #include modules, you must:

1. Create one or more libraries consisting of C source text.

2. Specify the name of a module in an #include control line in the
C source program.

3. Specify the name of the library in the CC command to compile
the source program, or define the library as a default user library
with an equivalence name for CSLIBRARY.

Figure 12-2 illustrates the creation of an #include module library and
its use in compiling C programs.

12.6.1.1 Naming Text Modules

When the LIBRARY command adds a module to a library, it uses by
default the file name of the input file as the name of the module. In the
example in Figure 12-2, the LIBRARY command adds the contents of
the files APPLIC.SYM and DECLARE.C to the library and names the
modules APPLIC and DECLARE.

Alternatively, you can use the /MODULE qualifier to specify a name
for a library module. For example:

¢ LIBRARY/TEXT/INSERT CCFILES -
$ _DECLARE.C/MODULE=EXTERNAL_DECLARATIONS

This command inserts the contents of the file DECLARE.C into the
library CCFILES and names the module EXTERNAL__
DECLARATIONS. This module can be included in a C source file with
the control line:

#include external_declarations

Table 12-4 summarizes the commands that create libraries and provide
maintenance functions. For a complete list of the LIBRARY command
qualifiers and for a description of other DCL commands listed in Table
12-4 see the VAX/VMS Command Language User’s Guide.

260 Chapter 12

APPLIC.SYM DECLARE.C

Y

S LIBRARY/TEXT/CREATE

S_LIBRARY CFILES
S__FILE APPLIC.SYM.DECLARE.C
The LIBRARY/TEXT command creates a library
containing text modules. This command creates
the library CFILES.TLB that contains the modules
APPLIC and DECLARE.
CFILES.TLB

$CC METRIC. CFILES/LIBRARY

The CC command processes the input files
METRIC.C and uses the library CFILES.TLB
to locate all #include references in the

METRIC.0BJ format #include module-name.

Figure 12-2: Creating and Using an #include
Module Library

Program Development

ZK-086-81

261

Table 12-4: Commands to Control Library Files

Function and Command Syntax!

Create a library.
$ LIBRARY/TEXT/CREATE library-name file-spec,...

Add one or more modules to a library.
$ LIBRARY/TEXT/INSERT library-name file-spec,...

Replace one or more modules in a library.

$ LIBRARY/TEXT/REPLACEZ library-name file-spec, ...

Specify the names of modules to be added to a library.
$ LIBRARY/TEXT/INSERT library-name file-spec/MODULE=module-name

Delete one or more modules from a library.
$ LIBRARY/TEXT/DELETE=(module-name,...) library-name

Copy a module from a library into another file.
$ LIBRARY/TEXT/EXTRACT=module-name library-name

List the modules in a library.
$ LIBRARY/TEXT/LIST/OUTPUT=file-spec library-name

Rename a library or move a library to another directory.
$ RENAME old-library-name new-library-name

Delete a library.
$ DELETE library-name

Copy or backup a library.
$ COPY input-library-name output-library-name

1. The LIBRARY command qualifier /TEXT indicates a text module library. By
default, the LIBRARY command assumes an object module library.

2. REPLACE is the default function of the LIBRARY command, if no other action
qualifiers are specified. If no module exists with the given name, /REPLACE is
effectively /INSERT.

12.6.1.2 Defauit C Libraries

You can define one of your private #include module libraries as a de-
fault library. The C compiler searches the default library after it
searches libraries specified in the CC command.

To define a default library, make the library file specification equiva-
lent to the logical name C$LIBRARY, as in the following example:

4 DEFINE C$LIBRARY SYS4$LOGIN:DATAB.TLB

While this assignment is in effect, the compiler automatically searches
the library SYS$LOGIN:DATAB.TLB for any #include modules that it
cannot locate in libraries explicitly specified in the CC command.

262 Chapter 12

You can define the logical name C$LIBRARY in the process, group, or
system logical name table. If the name is defined in more than one
table, the C compiler uses the equivalent for the first match it finds in
the normal order of search (that is, first the process, then the group,
then the system table). Thus, if CSLIBRARY is defined in both the
process and group logical name tables, the process logical name table
assignment overrides the group logical name table assignment.

12.6.1.3 Default System #include Library

When it cannot find #include modules in libraries specified in the CC
command or in the default library defined by CSLIBRARY, the C com-
piler searches the library identified by the name:

SYS$LIBRARY :CSYSDEF.TLB

CSYSDEF.TLB is a library of #include modules supplied with VAX-11
C. It contains declarations of values returned by the VAX/VMS system
services, as well as the text of all files of type h that are supplied with
VAX-11 C. For example, you can include the standard I/O definitions
in a program with either of these #include lines:

#include <stdio.h>

which includes the file SYS$LIBRARY:STDIO.H; or equivalently

#include stdio

which includes the text module STDIO from SYS$LIBRARY:CSYS-
DEF.TLB.

12.6.2 Object Libraries
An object library is a file of object code organized into modules. The
modules are indexed by two tables:

e A module name table, which lists the names of the modules in the
library. The names are those given to the modules when they are
compiled.

¢ A global symbol table, which lists all the global symbols defined in
each module.

These are the tables that the linker searches.

12.6.2.1 Creating An Object Module Library

The LIBRARY command creates and updates libraries. It assumes by
default that a library upon which it is performing a function is an object
module library. You can use object module libraries to:

e Catalog and group commonly used functions.

¢ Provide a default set of modules for the linker to use in resolving
global references in object modules it is linking.

e Enhance the performance of linking operations by putting all
needed modules in a single library, thus reducing the number of
files that need to be opened during linking.

Program Development 263

Figure 12-3 illustrates the steps you would take to create object mod-
ules, to create a library, and to use the library when linking programs.

METRIC.C (GPL/Q’C

\
$ CC METRIC, APPLIC

The CC command compiles the programs
METRIC.C and APPLIC.C separately

and creates the object modules
METRIC.OBJ and APPLIC.OBJ.

METRIC.OBJ APPLIC.OBJ TESTALL.C

\ \

$ LIBRARY/CREATE DEFLIB

$_FILE: METRIC, APPLIC ¥ COTESTALL

The LIBRARY command creates the The CC command compiles the file

object module library DEFLIB.OLB TESTALL.C. This source program

that contains the modules in the contains references to the

files METRIC and APPLIC. global symbols APPLIC and METRIC.
DEFLIB.OLB TESTALL.OBJ

$ LINK TESTALL, DEFLIB/LIBRARY

The LINK command specifies DEFLIB
as the default library to search

for unresolved references in the
module TESTALL. The linker locates
METRIC and APPLIC in this library
and includes them in the image file.

TESTALL.EXE

ZK-087-81

Figure 12-3: Creating and Using an Object Module Library

264 Chapter 12

The LIBRARY command uses the following default file types:

e OLB indicates an object module library file.
e OBJ indicates an object module file.

When the LIBRARY command inserts an object module in a library, it:
¢ Enters the name of the module in the library’s module name table.

¢ Enters all global symbols from the object module in the library’s
global symbol table.

For example, a C program named QUEUES.C might contain the fol-
lowing definitions:

ready ()

{

dlobalref char *zpi
4+

+

¥
dlobaldef char *stkj

addel (aueunespoint)
char *aqueues*pPointi
{

+
'
¥
remvel (aueuesrpoint)
char *aueues*¥pPointi
{

.

+

¥
This module can be compiled and placed in a library as follows:

$ CC QUEUES
¢ LIBRARY/INSERT DEFLIB QUEUES

After the LIBRARY command in this example has been executed, the
module name table for the library DEFLIB.OLB contains an entry for
the module named QUEUES. The library’s global symbol table con-
tains entries for the names ready, addel, remvel, and stk. Object mod-
ules that refer to any of those names can then be linked with this
library. When the library is specified as input to the linker, the linker
searches the library’s module name table and global symbol table for
unresolved references.

Program Development 265

12.6.2.2 Default User Object Module Libraries

You can define one or more of your own object module libraries as
default user libraries. The linker searches them for unresolved refer-
ences after it searches modules and libraries specified in the LINK
command. :

To indicate that a library is a default user library, enter a DEFINE
command as shown in the following example:

$ DEFINE LNK$LIBRARY DBAS:[MY.LIBSIDEFLIB

LNKS$LIBRARY is a logical name; DBA5:[MY.LIBS]DEFLIB is the
name of an object module library that you want the linker to search
automatically in all subsequent link operations.

You can establish any object module library as a default user library
by creating a logical name for the library. The logical names you
must use are LNK$LIBRARY (as above), LNK$LIBRARY__1,
LNKS$LIBRARY__2, and so on, to LNK$LIBRARY__999. If more than
one of these logical names exists when a LINK command executes,

the linker searches them in numerical order, beginning with
LNKS$LIBRARY.

Default libraries may also be shared by users who have the same group
number in their user identification codes. To share a library in a group,
make the logical name assignment in the group logical name table (the
GRPNAM user privilege is required for this assignment). For example:

$ DEFINE/GROUP LNRK$LIBRARY [APPLICLIBIAPPLIC

When this logical name assignment is in effect, the linker searches the
library [APPLICLIBJAPPLIC.OLB, as necessary, for all link operations
performed by processes in the group of the user who entered this com-
mand.

The logical names LNK$LIBRARY through LNK$LIBRARY__999 can
exist in both process and group logical name tables without conflict.
Similarly, these names can also be defined in the system logical name
table to provide a default system-wide user library (the SYSNAM user
privilege is required).

12.6.2.3 System Libraries

The directory identified by the system-defined logical name
SYSSLIBRARY contains the library files:

¢ VMSRTL.EXE
e STARLET.OLB

The file VMSRTL.EXE contains the VAX-11 Run-Time Library. The
procedures in this library provide:

¢ Commonly used mathematical and string-handling functions.
¢ Procedures that support code produced by VAX/VMS compilers.

266 Chapter 12

VMSRTL.EXE is a library in shareable image format; that is, it is
prelinked and can be accessed concurrently by many images. The pro-
cedures in a shareable image library can be used by a program even
though the procedures are not physically included in the program im-
age. The references to the procedures in the shareable image library are
not resolved until the program actually runs. For information about
creating shareable image libraries, and a description of the VAX-11
Run-Time Library, see the VAX-11 Run-Time Library Reference
Manual.

STARLET.OLB contains, in object module form, all the procedures in
VMSRTL.EXE, as well as additional run-time modules required by
various compilers and system programs. The global symbols for
VAX-11 C have nonstandard names for compatibility with other C
implementations. Therefore, the VAX-11 C object modules cannot be
included in STARLET.OLB; they are in a separate library
(SYSSLIBRARY:CRTLIB.OLB).

By default, the linker searches STARLET.OLB and VMSRTL.EXE to
resolve references to external names that are still unresolved after the
libraries specified in the LINK command and the user default libraries
have been searched.

You can control whether the linker searches VMSRTL.EXE and
STARLET.OLB by using the /NOSYSSHR and /NOSYSLIB quali-
fiers. These qualifiers have the following effects:

o If you specify /NOSYSSHR, the linker does not search the share-
able version of the Run-Time Library. Any run-time procedures
required by your program will be included in your image from
STARLET.OLB.

e If you specify /NOSYSLIB, the linker searches neither
VMSRTL.EXE nor STARLET.OLB. You must provide private
versions or copies of any run-time procedures required by your
program.

For example:
$ LINK/NOSYSSHR METRICAFPPLIC:DEFLIB/LIBRARY

In this link operation, the linker searches the library DEFLIB.OLB,
then any default user libraries, then STARLET.OLB. It does not search
VMSRTL.EXE.

For additional information on the LINK command, see Chapter 14. For
information on how to call Run-Time Library procedures and
VAX/VMS system services from a C program, see Chapter 10.

Program Development 267

Chapter 13

Creating Source Programs

The first step in developing a VAX-11 C program consists of creating
the program’s source file. VAX/VMS offers two supported text editors
that allow you to do this: SOS and EDT. This chapter provides an
introduction to the use of EDT. For information on SOS, refer to the
VAX-11 Text Editing Reference Manual.

There are three other sources of information on EDT. The first is the
VAX-11 EDT Editor Reference Manual.' The second is the computer-
assisted course titled “Introduction to the EDT Editor” supplied with
the VAX/VMS operating system. The third is EDT’s help facility.

13.1 Introduction to EDT

EDT, the DEC Standard Editor, is an interactive general-purpose text
editor. It offers two modes of operation: line editing, in which opera-
tions are performed on entire lines of text; and character editing, in
which operations are performed on characters and words as well as on
lines. Line editing is possible at either hard-copy or video terminals.
Character editing, while usable at hard-copy terminals, is most effec-
tive at video terminals.

Line editing mode, with its English-like commands, is simple for the
inexperienced user to learn. Character editing mode, while requiring
practice, is also very simple. Therefore, EDT is a good editor for some-
one who must learn a text editor quickly.

EDT also offers many advanced features:

e Multiple text buffers. By default, editing operations take place
within a single text buffer called MAIN. However, you can main-
tain an unlimited number of alternate text buffers as “holding
areas” for text that you do not necessarily wish to incorporate in
the output file.

1. Some installations may have the EDT Editor Manual instead of the VAX-11
EDT Editor Reference Manual. The two manuals contain the same information
about EDT.

268

e Flexible input and output commands. You can copy files into an
EDT text buffer after beginning the editing session, and you can
output text buffers or portions of text buffers to files before ending
the session.

e Macro capability. You can create sequences of line editing com-
mands that you invoke with a single command.

e The ability to define keys for custom character editing applica-
tions. For example, a keypad key can be defined so that it inserts a
specified line of text each time it is pressed. This function is espe-
cially useful in programming applications where certain state-
ments may be repeated frequently.

Finally, EDT protects your text. Should your editing session end in an
unexpected manner, you can recover all your editing operations by
reentering the EDT command line with the /RECOVER qualifier. EDT
then “replays” your editing session up to the point of interruption,
using the contents of the journal file that it maintained during the lost
session.

The following subsections introduce EDT’s line editing commands and
help facilities.

13.1.1 Line Editing Command Summary

When you invoke EDT, and throughout your editing session, EDT
prompts you to enter line editing commands by displaying an asterisk.
For example:

$ EDIT/EDT METRIC.C
1 main()
*

Table 13-1 describes briefly in alphabetic order the most useful com-
mands that you can enter in response to the line editing prompt (*).
Examples of these commands occur throughout Sections 13.2, 13.3, and
13.4. The smallest acceptable abbreviation for each command is shown
in bold type in the table.

All line editing commands are terminated with a ®ED. Most of the
commands allow or require you to specify a range or ranges; the range
specification tells EDT where the action of the command should take
place. Section 13.4.1 summarizes range specifications, and the com-
mand examples show various ways of specifying a range.

Creating Source Programs 269

Table 13-1: Summary of Line Editing Commands

Command

Function

CHANGE [range]

COPY [rangel] TO [range2] [/QUERY]

DEFINE{ KEY }

MACRO

DELETE [range] [/QUERY]
EXIT [file-spec]

FIND range
HELP (topic ...]
INCLUDE file-spec [range]

INSERT [range]

MOVE [rangel] TO [range2] [/QUERY]

QUIT [/SAVE]
REPLACE [range]

SET [parameter]

SET [INOINUMBERS

270

Invokes character editing mode for
specified buffer

Copies lines specified by rangel to
a location in an EDT buffer speci-
fied by range2; does not delete
lines from original location

Defines a new or revised key func-
tion for character editing mode, or
defines a macro name

Deletes a specified line or lines

Terminates EDT, saving the con-
tents of the text buffer MAIN as
the output file

Moves the current line to a speci-
fied line

Displays information on a specified
EDT command or function

Copies an external file to a location
in a text buffer specified by range

Opens a text buffer for the inser-
tion of text at the location speci-
fied by range

Moves lines specified by rangel to
the location specified by range2,
deleting the lines from the source
location

Terminates EDT without creating
an output file, optionally saving
the journal file

Deletes specified lines from a text
buffer and leaves the buffer open
for insertion of text

Sets a variety of editor operating
parameters

Enables/disables the display of line
numbers

Chapter 13

Table 13-1: (Cont.) Summary of Line Editing Commands

Command

Function

SHOW [parameter]

SUBSTITUTE /stringl/string2/[range]
/QUERY]

[SUBSTITUTE] NEXT [/string1/string2]

[TYPE] range

WRITE file-spec [range]

Displays specified editor operating
parameters

Replaces stringl with string2, ei-
ther in the current line or in the
specified range

Replaces stringl with string2,
based either on the strings speci-
fied or on the previous SUBSTI-
TUTE command

Displays specified lines and makes
the first line in range the current
line; the default command

Moves a copy of specified text from
a buffer to a file

13.1.2 The Help Facilities

EDT offers online help in both line and character editing modes. In line
editing mode, you invoke the help facility by entering the HELP com-
mand. Issued without parameters, this command displays information
on how to get further help, plus a list of subjects for which help is
available. If you enter one of the subjects as a parameter to the HELP
command, EDT displays information on that subject, and possibly an-

other list. For example:
*HELP DELETE

DELETE

The DELETE (abbrewviation: D)
specified

+

command deletes the line

Additional information available:

Creating Source Programs

271

/QUERY
*HELP DELETE /QUERY

DELETE

/QUERY

Q Quits do not delete any of the rest of the
lines
A A1l delete all of the rest of the lines
*

In character editing mode, you obtain help by pressing the HELP key
on the keypad; EDT displays a diagram of the keypad with all the key
functions identified. You can then obtain help on an individual func-
tion by pressing the key that invokes that function. (Section 13.5 shows
how to find the HELP key.)

13.2 Invoking and Terminating EDT

An editing session begins when you invoke EDT with the EDIT/EDT
command, and ends when you terminate EDT with the EXIT or QUIT
command. You may start an editing session with no file and create the
text for the file during the course of the session. Or you may specify an
existing file when you start the session, in which case EDT loads the file
into its MAIN text buffer. EDT does not destroy the contents of any
existing file that you edit; it simply produces a new version, leaving the
old version intact.

13.2.1 Invoking EDT

To invoke EDT, issue an EDIT/EDT command in the format:
EDIT/EDT{/qualifier...] file-spec
Qualifiers Default

/INOJICOMMAND|=file-spec] /COMMAND=EDTINLEDT
/INOIJOURNALI=file-spec] /JOURNAL=infile-name.JOU
/INOJOUTPUT=file-spec] /OUTPUT=infile-spec

/INOIREAD__ONLY /NOREAD__ONLY
/INOIRECOVER /NORECOVER
file-spec

Specifies the file to be created or edited. If the file does not exist,
EDT creates it.

EDT does not provide a default file type. If you do not specify one,
the file type is null.

272 Chapter 13

/OUTPUT =file-spec]

/NOOUTPUT
Supplies an alternate file specification for the output file. By de-
fault, EDT creates an output file upon exit that has the same name
and type as the input file and a version number of 1 (if the input file
does not exist) or one higher than the highest existing version (if the
input file does exist).

If you specify /NOOUTPUT, EDT does not automatically create an
output file when you issue the EXIT command.

The remaining qualifiers, which describe specialized editor functions,
are described elsewhere: the /COMMAND qualifier, in Section 13.7.3;
the /JOURNAL, /READ__ONLY, and /RECOVER qualifiers, in Sec-
tion 13.6.

For convenience, you can issue the following command to equate a
short command symbol (EDT, in this example) to EDIT/EDT:

$ EDT :== "EDIT/EDT"

After you issue this command, the command interpreter will recognize
the symbol EDT (or whatever symbol you specify) as equivalent to
EDIT/EDT.

When you invoke EDT, the response varies depending on whether or
not the file that you specify exists. (Other factors, such as commands
contained in a start-up command file named EDTINIL.EDT, may fur-
ther alter the response.) If the file does not exist, EDT so informs you,
and prompts you to issue editing commands:

$ EDIT/EDT METRIC.C
Input file does not exist

[EOQB]
*

The asterisk (*) is EDT’s line editing prompt. When EDT is display-
ing the asterisk prompt, you can enter any of the commands listed in
Table 13-1.

If the file exists, its first line is displayed instead of [EOB]:

$ EDIT/EDT METRIC.C
1 main()
*

Creating Source Programs 273

NOTE

If you invoke EDT and it does not display an asterisk
prompt, you cannot enter line editing commands. This con-
dition can result when the current default directory con-
tains a start-up command file named EDTINLEDT that
causes EDT to enter character editing mode directly. If this
happens, you can enter line editing mode by typing a CRLD).
You can override the unwanted effects of a start-up com-
mand file by including the /NOCOMMAND qualifier on
the command line.

13.2.2 Terminating EDT

Use the EXIT command to terminate EDT and create an output file
from the contents of the MAIN text buffer. To override the default
output file, you can specify an output file with the EXIT command, as
shown in the following example:

*#EXIT ALTNAME.C
_DB1:[PROJECTIALTNAME.C31 55 lines
%

The QUIT command terminates EDT without creating an output file.
You can use QUIT if you are simply reading a file without modifying it
or if you do not want to save your edits.

13.3 Creating a New File in Line Mode

To create a new file, you issue an EDIT/EDT command that specifies a
file that does not currently exist in your directory. After EDT responds
with the asterisk prompt, issue the INSERT command (abbreviation I)
followed by @®7. The cursor or print head then moves to the right 16
spaces; this space is left by EDT to accommodate line numbers, al-
though none appear at this stage. You can now enter as many lines of
text as you wish. When you are finished entering text, terminate the
insert with €RL2. The following example illustrates this process:

$ EDIT/EDT EMAMPLE.TXT

Input file does not exist

[EOB]

*1
This is the first line of EXAMPLE.TXT
This is the second line of EXAMPLE.THT
This is the third line of EXAMPLE.TXT
This is the fourth line of EXAMPLE.THT
This is the fifth line of EXAMPLE.TXT
This is the sixth line of EXAMPLE.TXT
This is the seventh line of EXAMPLE.TXT
CRI2 “ z

274 Chapter 13

The [EOB] designation indicates that you are currently at end-of-
buffer, and that any text you insert will be the only text in the buffer.

If you do not want EDT to leave space in front of each line for line
numbers, you can issue the SET NONUMBERS command; EDT then
begins each line at the left margin of the terminal. EDT continues to
number lines, but does not display the numbers. You can restore the
line number display later by issuing a SET NUMBERS command.

13.4 Editing an Existing File in Line Mode

To edit an existing file in your directory, issue an EDIT/EDT command
that specifies its name. (For information on how to edit a file from a
directory other than your own, see Section 13.4.8.) EDT displays the
first line in the file, as shown in the following example:

¢ EDIT/EDT EXAMPLE.,TXT

1 This is the first line of EXAMPLE.TXT
*

The number 1 to the left of the line is the line number. It is not part of
the file. The file starts with the word This.

The line displayed is the current line. EDT uses the current line as the
default in many of its operations. For example, an INSERT command
that does not specify a range causes EDT to insert text in front of the
current line.

The concept of “range” is central to all EDT line editing operations.
The next section describes ways of specifying range. The sections that
follow it describe the most common and useful line editing operations.

13.4.1 Range Specifications

A range consists of the line or lines on which EDT performs an opera-
tion. A range specification is a description of a range in terms that EDT
can understand. All the line editing commands (except SUBSTITUTE
NEXT) described in the sections that follow accept one or more range
specifications, although many do not require one.

The simplest range specification identifies a single line of text. A line
can be located by its position in the file relative to the current line, by a
text string, or by its line number. Since line numbers are primarily
useful in range specifications, they are described here.

When you insert lines of text in a new file, or when EDT loads an
existing file into its MAIN buffer, each line of the file receives a num-
ber. The numbering starts with 1 and proceeds upwards by ones. If you
insert lines of text between existing lines, EDT numbers the new lines
using appropriate decimal increments. This technique ensures that
there will be enough unique line numbers to cover any reasonable edit-
ing operation. EDT displays the line numbers whenever it displays

Creating Source Programs 275

text, unless you have issued the SET NONUMBERS command. In that
case, EDT does not display line numbers, but it does continue to assign
them.

Single-line range specifications are listed in Table 13-2; examples
appear below.

Table 13-2: Single-Line Range Specifications

Specification Meaning

The current line

number The line specified by the number

‘string” or The next line containing the string you specify
"string"

- ’string* or The preceding line containing the string you specify
—"string"

The line that is the specified number of lines after (or
before, if minus) the single line specified by range
(range defaults to the current line; number defaults

[range] {j} [number]

to 1)
BEGIN The first line in the text buffer
END An empty line (designated by [EOB]) following the

last line of text in the text buffer.

Specification Meaning

20.6 The line numbered 20.6

"#include" The next line that contains the string
#include

-"putchar(c);" The first preceding line that contains the string
putchar(c);

-6 The line six lines before the current line

‘i+++4 The line four lines after the line that contains the
string i++

When EDT searches for a string, the case of the search string need not
match the case of the target. For example, getchar is a match for
GETCHAR or Getchar. This condition is the default; you can change it
with the SET SEARCH command.

There are several methods available for specifying a range of more than
one line. They are listed in Table 13-3; examples appear below.

276 Chapter 13

Table 13-3: Multiple-Line Range Specifications

Specification

Meaning

[rangel] { } [range2]

THRU
[range] { # }number
FOR

BEFORE
REST
WHOLE
range, range...

or
range AND range AND...

[range] ALL ’string’

The set of lines from rangel through range2,
which are single-line range specifications (both
rangel and range2 default to the current line,
if omitted)

The specified number of lines beginning with
the single line specified by range (range de-
faults to the current line, if omitted)

All lines in the buffer that precede the current
line

The current line and all lines in the buffer that
follow it

The entire buffer

All lines specified by each single-line range

All lines in the range containing the specified
string (the default for range is the entire
buffer)

Specification Meaning

2:6.5 Lines 2 through 6.5, inclusive

“#include '#5 The line containing the string #include and the
four lines following it, for a total of five lines

.-10:. The line 10 lines before the current line through

the current line, inclusive

10:50 ALL ‘get’

All lines from line 10 through line 50 that con-

tain the string get

Most range specifications can be combined with a text buffer specifica-
tion. During your editing session, you may wish to hold and edit text in
buffers other than MAIN. To create and gain access to alternate buff-
ers, include the name of the buffer in a range specification, using the

following syntax:

=buffer [range]
or
BUFFER buffer [range]

Creating Source Programs

277

In this syntax, “buffer” stands for the name of the buffer. It can be
from 1 to 30 alphanumeric characters, but it must start with an alpha-
betic character. If you include a range of lines following the buffer
name, you specify the range within the named buffer. If you omit the
range specification, you specify either the entire named buffer or its
first line, depending on context.

The following examples show buffer specifications in use.
Specification Meaning

=PROG1 The entire contents of the text buffer
named PROGI, or (for commands requir-
ing a single-line range specification) its
first line.

=INC ’“sub1()’:"}’ The lines that contain the strings subl()

and } in the text buffer named INC, and all
lines in between.

=COM ALL ‘copy()” All lines that contain the string copy() in
the buffer named COM.

13.4.2 Maneuvering in the File

This section describes commands for maneuvering in a buffer contain-
ing text; in other words, for changing the location of the current line.

The TYPE command, followed by a range, causes EDT to display the
line or lines in the range and resets the current line to the first (or only)
line displayed. The word TYPE (abbreviation T) is optional; it need
not be entered. For example:

*T 1:3
1 This is the first line of EXAMPLE.THT
2 This is the second line of EXAMPLE.TXT
3 This is the third line of EXAMPLE.TXT
*A#2
4 This is the fourth line of EXAMPLE.TXT
3 This is the fifth line of EXAMPLE.THT
*

If you do not include the word TYPE, and if the range specification
begins with an alphabetic character (such as WHOLE or REST), you
must precede it with a percent sign (%). Otherwise, EDT tries to
interpret the range specification as a command. For example:

278 Chapter 13

*REST

Urirecodnized command

#LREST
4 This is the fourth line of EXAMPLE.THT
5 This is the fifth line of EXAMPLE.THT
G This is the sixth line of EXAMPLE.THT
7 This is the seventh line of EXAMPLE.THT
*

A carriage return in response to the asterisk prompt displays the line
following the current line and sets the current line to the displayed line.
A series of carriage returns, therefore, displays successive lines and sets
the current line to the displayed line each time. This is an easy way to
work through a file line by line. For example:

*RET
5 This is the fifth line of EXAMPLE.,THT
#RED
5] This is the sixth line of EXAMPLE.TXT

*

The FIND command (abbreviation F) locates a specified line without
displaying it. It is useful for setting the current line to the top of a large
block of text that would be cumbersome to display on the terminal. For
example, each of the following commands resets the current line to the
top of the MAIN text buffer:

*=MATN

*F =MATN

However, the first command (an implied TYPE command) displays the
entire contents of the MAIN text buffer. The second command just sets
the current line and displays an asterisk prompt.

If you specify a range that EDT cannot locate, EDT issues a message
and does not change the current line setting.

13.4.3 Inserting New Text

The procedure for inserting new text in a buffer already containing text
is exactly the same as that for inserting text in an empty buffer (see
Section 13.3), except that you can control where the text goes by in-
cluding a range specification with the INSERT command. The lines
you insert are placed in front of the line you specify. If you specify
multiple lines, the insert goes in front of the first line in the range. If
you omit the range specification, the insert goes in front of the current
line.

Creating Source Programs 279

In the following example, the INSERT command causes EDT to insert
text in front of line 5 in the current buffer. Then the range specification
(an implied TYPE command) causes EDT to display lines 4 through 6,
showing the result of the insertion.

*I 3
First insert line
Second insert line
Third insert line

CRD "z

This is the fourth line of EXAMPLE.,THT
First insert line
Second insert line
Third insert line
This is the fifth line of EXAMPLE.TXT
This is the sixth line of EXAMPLE.,TXT

DD
[2% B SV

Gl

NOTE

EDT, which inserts text in front of the current line, is dif-
ferent from many other text editors that insert text follow-
ing the current line.

13.4.4 Deleting and Replacing Text

Use the DELETE command (abbreviation D) to delete a specified
range. If you omit the range, the DELETE command deletes the cur-
rent line. After a delete operation, EDT displays the line following the
last line deleted; this is the new current line. For example:

*D 4. 1w2
2 lines deleted
4,3 Third insert line
*D
1 line deleted
5 This is the fifth line of EXAMPLE.THT
*

The /QUERY qualifier to the DELETE command causes EDT to
prompt you before deleting each line of the range. The prompt is a
question mark (?). You can respond to the prompt in one of four ways:

Y (yes) Delete this line

N (no) Do not delete this line

A (all) Delete all remaining lines in the specified range
Q (quit) Quit the delete operation

The REPLACE command (abbreviation R) deletes a specified range
and allows you to insert lines to replace the deleted lines. You termi-
nate the insertion with a CRLD), just as with the INSERT command.

280 Chapter 13

13.4.5 Moving Text

The COPY and MOVE commands (abbreviations CO and M, respec-
tively) allow you to move one or more lines of text from one place in the
buffer to another, or from one buffer to another. The effect of these
commands is similar; the only difference is that the COPY command
does not delete the text from its original location, whereas the MOVE
command does.

The following example illustrates both commands, as well as alterna-
tive ways of specifying a range:

*UWHOLE .
1 This is the first line of EXAMPLE.TXT
2 This is the second line of EXAMPLE.TXT
3 This is the third line of EXAMPLE.,TXT
4 This is the fourth line of EXAMPLE.TXT
5 This is the fifth line of EXAMPLE.TXT
G This is the sixth line of EXAMPLE.TXT
7 This is the seventh line of EXAMPLE.TXT

¥COPY 1:3 TO 'SIXTH
3 lines corpred

*35:6
) This is the fifth line of EXAMPLE.TXT
5.1 This is the first linme of EXAMPLE.TXT
3.2 This is the second line of EXAMPLE.TXT
5.3 This is the third line of EXAMPLE.TXT
[c} This is the sixth line of EXAMPLE.TXT

*M S5,1#3 TO BEGIN
3 lines moved
*7WH
0.1 This is the first line of EXAMPLE.TXT
0.2 This is the second line of EXAMPLE.TXT
0,3 This is the third line of EXAMPLE.TXT
This is the first line of EXAMPLE.TXT
This is the second line of EXAMPLE.TXT
This is the third line of EXAMPLE.TXT
This is the fourth line of EXAMPLE.TXT
This is the fifth line of EXAMPLE.TXT
This is the sixth line of EXAMPLE.TXT
This is the seventh line of EXAMPLE.TXT

U W

~N @

*

The /QUERY qualifier to either COPY 'or MOVE causes EDT to
prompt you before copying or moving each line of the range. It operates
the same way as the /QUERY qualifier to DELETE (see Section
13.4.4).

13.4.6 Substituting Text

Two commands, SUBSTITUTE and SUBSTITUTE NEXT, substitute
one string for another within a line or lines. These are the only line

Creating Source Programs 281

editing commands that can alter text within a line, as opposed to
changing the entire line. The SUBSTITUTE command (abbreviation
S) operates on the current line or on a specified range; the SUBSTI-
TUTE NEXT command (abbreviation N) makes a substitution at the
next opportunity within the buffer.

The format of the SUBSTITUTE command is:
SUBSTITUTE /stringl/string2/[range] [/QUERY]

The command finds stringl and substitutes string2 for it. If you do not
specify a range, the substitution takes place in the current line. If you
do, the command makes every substitution within the range. The fol-
lowing example illustrates the command first without and then with a
range specified:

#1

1 This is the first line of EXAMPLE.THT
*#5 /first/1lst/

1 This is the 1st line of EXAMPLE.THT

1 substitution
*8 Jof/in/d:B

4 This is the fourth line in EXAMPLE.THT

5 This is the fifth line in EXAMPLE.TXT

[} This is the sixth line in EXAMPLE.THT
3 substitutions

*

Slashes (/) are not the only characters you can use to delimit stringl
and string2. Any nonalphanumeric character will work, as long as the
delimiters are matched and do not occur in either string. For example,
the following command substitutes the string a/3 for /2 in the current
line, using dollar signs ($) as delimiters:

*#G $a/Z¢a/3%

28 size = a/3:}
1 substitution
*

The /QUERY qualifier to SUBSTITUTE causes EDT to prompt you
before making each substitution. It operates the same way as the
/QUERY qualifier to DELETE (see Section 13.4.4).

The SUBSTITUTE NEXT command (abbreviation N) substitutes for
the next occurrence of stringl that it finds in the buffer. If you specify
neither stringl nor string2, the command takes their values from the
last SUBSTITUTE command you issued. For example:
#MN /S oin/d of/

4 This is the fourth line of EXAMPLE.TXT
4N

5 This is the fifth line of EXAMPLE.THT
%

282 Chapter 13

13.4.7 Input from and Output to Files

Two EDT commands, INCLUDE and WRITE, allow you to incorporate
text from files and output text to files during your editing session. The
INCLUDE command (abbreviation INC) incorporates the contents of a
file at a specified location in a text buffer. If you do not want the entire
file incorporated in the MAIN text buffer, you can specify an alternate
buffer as the range, and then copy the desired portions of the file to
their proper places in MAIN. For example:

*#INC SBRTNES.C =5UBS
*

This command creates a buffer called SUBS and fills it with the con-
tents of the file SBRTNES.C from the EDT default directory (that is,
the directory of the input file given with the EDIT/EDT command).

The WRITE command (abbreviation WR) creates a file by copying the
contents of a specified range in a text buffer. The text is not deleted
from the text buffer, and EDT does not terminate following the opera-
tion. If you do not specify a range with the write command, EDT
outputs the entire contents of the current text buffer. The following
example shows the command used with a range:

*#WR ROUTINEL.C =SUBS ‘add:’:’return’
~DB1:IPROJECTIROUTINEL.C31 45 lines
*

This command creates the file ROUTINEL.C from the lines that con-
tain the strings add: and return in the buffer named SUBS, and all
lines in between.

Unless you include a directory in the file specification, WRITE always
creates the file in your current default directory. This is true even if the
input and output files are in another directory.

13.4.8 Editing a File from Another Directory

You can edit a file that exists in another directory and use the /OUT-
PUT qualifier to EDIT/EDT to direct the output file to your directory.
However, EDT uses the directory of the input file that you specify in
the EDIT/EDT command line as its default directory. This default has
the following effects:

e EDT attempts to create its journal file in its default directory, that
is, the other directory. If you do not have the privilege to do this,
EDT issues an error message and terminates. You should instead
use the /JJOURNAL qualifier to place the journal file in your direc-
tory. (See Section 13.6 for a description of the journal file and
/JOURNAL.)

e If you issue an INCLUDE command and do not specify a direc-
tory, EDT attempts to locate the file in its default directory, that
is, the other directory. To specify a file in your own directory, use a
directory specification with INCLUDE.

Creating Source Programs 283

In the following example, a user with the account [WILBUR)] edits a file
from the account [PROJECT]:

% EDIT/EDT [PROJECTIDATADEF.C -
$_/0UTPUT=CWILBUR]I /JOURNAL=CWILBURI]

.

*INCLUDE [WILBURIENTRIES.C

The input file for this editing session is [PROJECTIDATADEF.C; the
output file is [WILBURIDATADEF.C. The INCLUDE command incor-
porates a file from directory [WILBUR]. If the INCLUDE command
had not specified a directory, EDT would have looked for the file
[PROJECTIENTRIES.C.

13.5 Character Editing

EDT’s character editing mode allows you to perform editing operations
at any position in your text instead of line by line. For most applica-
tions, especially those requiring extensive detail modification of exist-
ing text, character editing is faster and more straightforward than line
editing. When you use character editing mode on a video terminal, your
screen always contains an accurate picture of the area of the file in
which you are working. The terminal’s cursor shows exactly where you
are at all times.

There are two types of character editing: nokeypad and keypad. Nokey-
pad character editing works on all terminals, including hard-copy ter-
minals. It requires you to enter short commands through the keyboard
and terminate each command with a ®D. Keypad character editing
works on the VT52 and VT100 video terminals and on terminals that
are compatible with them. In keypad editing, you request editor func-
tions by pressing keys on the auxiliary keypad; no is required to
terminate the command. Anything you type on the keyboard, including
carriage returns, is inserted into the file as text.

This section describes only keypad character editing. To learn about
nokeypad character editing, read the VAX-11 EDT Editor Reference
Manual.

The keypads for the VT52 and VT100 (and compatible) terminals are
different. Therefore, the following description refers to functions rather
than to specific keys. It is a good idea to keep a copy of the appropriate
keypad diagram handy while you are learning character editing. Fig-
ures 13-1 and 13-2 show the keypad diagrams for the VT52 and VT100,
respectively. The numbers or characters in the upper right of each key
correspond to the label on the key.

284 Chapter 13

sweidold 92Inog Surjesr)

¢8¢

——— T = ———
r | i 1
| | | |
| Gowo | wELP | oDELL | upP

| | UNDL | REPLACE |
L e — +_—___l—————l
| 7 8 9 ‘v

| | I
| | I
| PAGE ' o | oL w | DOWN |
| CoMMAND I "eno | unow ST
i Bt st
l Y | °l =l
: novance | eackoe | oecc | menr |
| BOTTOM ToP unoc | seecins |

L 4 4 .J
I T T

1 2 | al |

' [| | |
| womp | EOL | cur | LEFT [
| CHNGCASE | DELEOL | PASTE | APPEND |
| I I BN I
| o o enteR |
|
| LINE | SELECT | ENTER
| OPEN LINE | RESET | suss
L 4]

ZK-088-81

Figure 13-1: VT52 Keypad

| t r vl pu I" A
|
| up | DpowN | LerT | RIGHT |
| | | | |
L L1l
'__——ppTlf_ __521" Pral pra)
|
I Goo | wece | enonxt | peit |
| | | Fno | unol |
| | | .L |
A B BT
| pagE | secT | APPEND : oeLw |
| COMMAND | FILL | REPLACE UNDW |
! I | |
_________ P P
r al 5 | 6 | -
)
| | | | |
| ADvANCE | BACKUP cut oetc |
|
| BOTTOM | TOP | PASTE | UNDC |
| L l— L |
r—__Tl R | T o —?N;F;j'
|

| womD | eor | cHam ll |
| CHNGCASE | DELEOL | SPECINS | |
L_____L____I | EnTER |
| 5 o1 sues |
| | |

I LINE | SELECT | I
| OPEN LINE | RESET |
b L
ZK-089-81

Figure 13-2: VT100 Keypad

Note that most keys perform two functions. To use the upper of the two
functions listed, press the key. To use the lower function, first press and
release the GOLD key, then press the desired key.

13.5.1 Entering and Exiting from Character Editing Mode

To enter character editing mode from line editing mode, use the
CHANGE command (abbreviation C). When you issue the CHANGE
command, the screen first goes blank and then fills with text. The
cursor is positioned at the current line or the line you specified with the
CHANGE command. (If the buffer is empty, the cursor and [EOB]
appear at the top of the screen.)

EDT does not display line numbers while in character editing mode,
although it does continue to assign them as you insert text.

When you have finished your character editing operations and wish to
return to line mode, enter a CTRLD). It terminates character editing and
causes EDT to display the asterisk prompt. You can then perform line
editing operations or end the editing session, as appropriate.

The sections that follow describe some of the character editing opera-
tions available to you.

13.5.2 Maneuvering the Gursor

Before performing most character editing operations, you must move
the cursor to the location in the file where you wish the operation to
take place. There are many ways to move the cursor; experience teaches
which is best in a given situation.

The LEFT and RIGHT functions move the cursor one character to the
left or right. If the cursor is at the end of a line, the RIGHT function
moves it to the beginning of the next line. Conversely, if the cursor is at
the beginning of a line, the LEFT function moves it to the end of the
previous line.

The UP and DOWN functions move the cursor one line up or down.
The column position of the cursor does not change, unless there is no
text in the corresponding column above or below. In that case, the
cursor moves to the end of the preceding or following line.

The beginning-of-line function, obtained by pressing the BACK
SPACE key, moves the cursor to the beginning of the line in which it is
positioned. If the cursor is already at the beginning of a line, the func-
tion moves it to the beginning of the previous line.

The TOP and BOTTOM functions move the cursor to the beginning
and end of the buffer, respectively.

All the remaining cursor movement functions depend in part on the
ADVANCE and BACKUP functions. The ADVANCE function causes
subsequent cursor movement to occur in the forward direction, that is,
toward the end of the buffer. The BACKUP function causes subsequent

286 Chapter 13

cursor movement to occur in the backward direction, toward the begin-
ning of the buffer. When character editing begins, cursor movement is
forward, until reversed by the BACKUP function.

The following functions depend on the current direction established by
ADVANCE and BACKUP:

e The CHAR function moves the cursor one character.

e The WORD function moves the cursor to the beginning of the next
or previous word (the end-of-line character is considered a word).

e The LINE function moves the cursor to the beginning of the next
line, if the current direction is forward. If backward, the LINE
function moves the cursor to the beginning of the line in which the
cursor is positioned, or, if the cursor is at the beginning of a line, to
the beginning of the previous line.

e The EOL (for end-of-line) function moves the cursor to the next or
previous end-of-line character.

e The SECT (for section) function moves the cursor one 16-line
section.

e The PAGE function moves the cursor to the next or previous page
mark (by default, a form feed).

All of these cursor movement functions can be combined with a repeat
count, which causes the function to be repeated a specified number of
times. To enter a repeat count, press the GOLD key, then type in the
count on the keyboard (not keypad) number keys, then type in the
function to be repeated. As you enter the repeat count, the numbers
appear on the screen below the area reserved for text. The numbers
disappear as soon as you enter the function.

You can also use FIND and FNDNXT (for find next) to move the
cursor to a certain string. To find a string, press the FIND function key.
EDT prompts you for a search string. Type the search string without
delimiters, and terminate it with either the ADVANCE or BACKUP
function to determine the direction of search. EDT moves the cursor to
the beginning of the search string. If the search string is not found,
EDT issues a message and does not move the cursor.

The FNDNXT function finds the next occurrence of the current search
string in the current direction. The current search string is the last
string you entered with the FIND function.

Note that you can locate strings that include carriage returns with the
FIND function. Simply enter the carriage return as part of the search
string. The carriage return does not terminate the search string; you do
that with the ADVANCE or BACKUP function. EDT echoes a carriage
return in a search string as "M.

Creating Source Programs 287

13.5.3 Inserting Text

Once the cursor is positioned, you can insert text in front of it simply by
typing the text on the keyboard. No command is required. Whatever
you type becomes part of the file. Your insertion appears on the screen
as you type it, and the surrounding text moves as necessary.

When you insert text at the beginning or in the middle of a line, the end
of the line may disappear off the edge of the screen. The text is not lost.
However: if you enter a carriage return in the text you are typing, the
text appears on the next line. To avoid this problem, you can use the
OPEN LINE function. When the cursor is at the beginning of a line,
OPEN LINE provides a blank line above that line, and positions the
cursor at the beginning of the blank line.

As you type new text, you may notice errors in surrounding text. You
can move the cursor to these errors and correct them at any time, and
then move the cursor back and continue to insert text.

13.5.4 Deleting and Undeleting Text

EDT character editing provides several methods of deleting text in
units of varying sizes. EDT also maintains three buffers to contain text
that has been deleted. The character buffer contains the last character
deleted; the word buffer contains the last word deleted; and the line
buffer contains the last line deleted. You can insert the contents of each
of these three buffers at the cursor position by using the UND C, UND
W, and UND L functions, respectively. There is no limit to the time or
number of operations between a delete operation and the undelete oper-
ation that reinserts the deleted text. Furthermore, you can undelete one
unit of text as many times as you wish, and at any locations you wish.

The DEL C (for character) function deletes the character at which the
cursor is positioned, and moves the cursor to the next character. The
DELETE key on the keyboard deletes the character before the cursor
position (the last character typed, if you are inserting text) but does not
change the cursor position. Both of these functions move the deleted
character into the character buffer, from which it can be retrieved by
using the UND C function.

The DEL W (for word) function deletes text from the current cursor
position to (but not including) the first character of the next word. The
LINE FEED key on the keyboard deletes text from (but not including)
the cursor position back to the first character of the current word. Both
of these functions move the deleted text into the word buffer, from
which it can be retrieved by using the UND W function.

The DEL L (for line) function deletes text from the cursor position
through the next end-of-line character. The DEL EOL (for end-of-line)
function is similar, except that it does not delete the end-of-line charac-
ter. Typing €U deletes from (but not including) the cursor position to

288 Chapter 13

the beginning of the current line. All of these functions move the de-
leted text into the line buffer, from which it can be retrieved by using
the UND L function.

13.5.5 Moving Text

Character editing provides two basic methods of moving text. The first
is available through the three undelete functions. You can delete a unit
of text from one location, move the cursor to another location, and
undelete the text there. However, this method is only effective for units
that can be deleted by the various functions described in Section 13.5.4.
To move larger or more precise blocks of text, use CUT and PASTE.
These two functions allow you to “cut” any amount of contiguous text
from one location and “paste” it somewhere else.

The first step is defining the text to be moved. To do this, move the
cursor to either the beginning or the end of the text, and enter the
SELECT function. Then, move the cursor to the other extremity of the
text. In so doing, you create a select range: that is, all the text between
the cursor position and the position at which you entered the SELECT
function. On VT100 terminals with the advanced video option, EDT
highlights the select range with reverse video. If you make a mistake
while you are defining the select range, enter the RESET function to
cancel the select range currently in effect.

Once you have defined the select range, enter the CUT function. The
text within the select range disappears. (EDT moves it into a text
buffer named PASTE.) Move the cursor to the position at which the
text is desired, and enter the PASTE function. The text appears at the
cursor position.

You can paste the cut text in as many locations as required. Specifi-
cally, you can paste the text as soon as you cut it, then you can move
the cursor and paste the text again. This is in effect a copy operation.

Each CUT operation destroys the previous contents of the PASTE
buffer and replaces them with the select range. To add the select range
to the contents of the PASTE buffer, use the APPEND function.

The PASTE buffer is an ordinary EDT text buffer. You can edit within
it, load it from a file with the INCLUDE command, and create a file
from its contents with the WRITE command.

13.6 Protecting and Recovering Text

Three qualifiers to the EDIT/EDT command allow you to protect files
against inadvertent modification and to recover editing operations that
have been lost. This section discusses them.

The /READ__ONLY qualifier controls whether journaling and the crea-
tion of an output file are enabled. (Specifying /READ__ONLY is equiv-
alent to specifying /NOOUTPUT and /NOJOURNAL.) /NOREAD__

Creating Source Programs 289

ONLY, the default, allows EDT to create an output file and a journal
file. Use /READ__ONLY in situations where you want to be sure you do
not create a modified file, or for reading a file in a directory where you
do not have write privileges.

The /JJOURNAL qualifier allows you to disable (/NOJOURNAL) or to
specify the name of the journal file that EDT creates to record your
editing activity. By default, EDT creates a journal file with the file
name of the input file and a file type of JOU. If the editing session ends
abnormally, EDT can use the contents of the journal file to re-create
the session. If the editing session ends normally (that is, as the result of
an EXIT or QUIT command without a /SAVE qualifier), EDT deletes
the journal file.

The /RECOVER qualifier causes EDT to use the contents of a journal
file to re-create a previous editing session, perhaps one that was lost as
the result of an accidental or system problem. If you specify
/RECOVER, EDT locates a file with the same name as the input file
and a file type of JOU, then it applies all the editing operations re-
corded in the journal file to the input file. These operations appear on
your terminal as EDT performs them. When EDT has exhausted the
contents of the journal file, the activity on the terminal ceases. You can
now continue to edit.

Two notes of caution are necessary. First, it is important for the
EDIT/EDT command that starts a recovery operation to match exactly
the command that started the lost session, including any special start-
up command files. The only difference between the two commands
should be the /RECOVER qualifier. In particular, the input file must
be the same version that you started with at the beginning of the lost
session. Second, note that EDT does not necessarily recover your ses-
sion to the exact point where it was lost. A few keystrokes may be
missing.

13.7 EDT Aids for the Programmer

In addition to the general-purpose editing operations discussed thus
far, EDT provides some advanced functions that are especially useful
for programming. The following sections introduce some of these.

13.7.1 Structured Tabs

Although C is a free-form language, in which excess spaces and tabs
have no significance, it is common practice to indent lines to indicate
the relationship of statements. It is laborious to enter repeatedly the
correct combination of tabs and spaces to achieve the desired inden-
tion. EDT solves this problem by providing a system of structured tabs
in character editing mode. While you are inserting text, a depression of
the tab key inserts the correct combination of tabs and spaces to bring
the cursor to the desired column. When you need to begin lines at a

290 Chapter 13

different column, you can increase or decrease the indention level to
move the starting column to the left or right by a preset increment.

To use the structured tab feature, follow these steps:

1. While in line editing mode, set the increment between tabs by
issuing the SET TAB command with a suitable value. For exam-
ple:

*SET TAB 4
*

At this point, the first 8 on a line (while in character editing
mode) positions the cursor at column 5. Subsequent tab stops
are at the normal locations.

2. When you want to change the indention level, use or .
Each depression of increases the indention by one incre-
ment; the first tab stop is n spaces further to the right, where n is
the number you gave with the SET TAB command. Pressing
€D decreases the indention level.

3. If you want to set the indention level to correspond to a given
column, position the cursor at that column and press CRUA . The
column must be at an even multiple of n spaces from the left
edge of the screen.

4. If you want to change the indention of a block of lines, first
define a select range that includes the lines to be shifted. (To
define a select range, position the cursor at one end of the block
of lines, enter the SELECT function, and then position the cur-
sor at the other end.) Then enter a repeat count (the GOLD key
followed by a number typed on the keyboard) to indicate how
many units of n spaces the lines should be shifted. A positive
repeat count shifts the lines to the right; a negative repeat count
shifts the lines to the left. Finally, press €D .

13.7.2 Special-Purpose Key Definitions

EDT allows you to redefine the functions invoked by all the keys on the
auxiliary keypad and many control characters as well. There are two
ways to redefine a key’s function:

e While in character editing mode, press . EDT prompts you to
press the key you wish to define. Once you have pressed the key,
EDT prompts you to enter the new function. You can do this
either by typing the nokeypad commands that make up the func-
tion, or by pressing the keypad keys that correspond to the func-
tions you require. You must follow the function specification with
a period. The ENTER function terminates a definition of this
type.

e While in line editing mode, issue the DEFINE KEY command.
You define the new function to perform as a string of nokeypad
character editing commands, followed by a period. The string and
period must be enclosed in quotes.

Creating Source Programs 291

Key redefinition requires a good grasp of nokeypad character editing
syntax, as well as a good deal of practice. The EDT help facility (partic-
ularly HELP DEFINE KEY and HELP CHANGE SUBCOMMANDS)
and the VAX-11 EDT Editor Reference Manual are good sources of
information. However, this section describes one common application:
the redefinition of a key to insert a string of text.

While writing a program, you may find that you are typing the same
group of words over and over. For example, you might get tired of
typing ¢ = getchar(). In character editing mode, follow this procedure
to define a key to insert the string ¢ = getchar():

1. Press CRUK. EDT prompts you with:
Press the Key vouwish to define

2. Select a function that you do not use often, for example,
SPECINS. You might also select a control character. Enter the
function or control character. EDT then prompts you with:

Now enter the definition terminated by ENTER
3. Type the following:
ic = gdetchar()CRUD .

(The period is required syntax.)
4. Press ENTER to terminate the definition procedure.

For the remainder of the editing session, the key that used to invoke the
SPECINS function instead inserts the string ¢ = getchar() at the cur-
sor position.

In line editing mode, you can redefine a key by using the DEFINE KEY
command. To identify a keypad key in the command, you use a num-
ber. You can find out which numbers are assigned to which keys by
issuing the command HELP DEFINE KEY VT52 or HELP DEFINE
KEY VT100. These commands display the numbers assigned to keypad
keys on the respective terminals.

Next, you issue a DEFINE KEY command, specifying the key and the
function you wish the key to perform. The following example redefines
the SPECINS function (GOLD/3 on a VT100) to insert the string
¢ = getchar():

#DEFINE KEY GOLD 3 AS "ic = getchar()"Z,"

*

The quotes and period are required syntax. The “Z is not a CRLZ), but a

circumflex followed by a Z. For the remainder of the editing session,
GOLD/3 will insert the string ¢ = getchar() at the cursor position.

The examples above represent only a small fraction of the capabilities
of key redefinition. With practice, you can create powerful custom func-
tions that can save you a great deal of time. You may want to store
these functions in a start-up command file so that you will not have to
define them each time you begin an editing session. The next section
describes start-up command files.

292 Chapter 13

13.7.3 Start-Up Command Files

When you invoke EDT, it searches your current default directory for a
file named EDTINI.EDT. If EDT finds such a file, it executes the line
editing commands contained in the file before turning control over to
you. This function allows you to customize EDT to suit your needs.
Some of the commands that a start-up command file might contain
are:

e DEFINE KEY. These commands redefine the function invoked by
a keypad key or control character while in character editing mode.
(See Section 13.7.2.)

DEFINE MACRO. These commands associate a name with a se-
quence of line editing commands stored in a text buffer. You can
then invoke the sequence by entering the macro name in response
to the line editing asterisk prompt.

¢ INCLUDE. These commands bring text from a file into a text
buffer. You might use them to load macros into a buffer, or to fill a
buffer with text that you often use. (See Section 13.4.7.)

e SET. These commands establish EDT operating parameters. Par-
ticularly useful are SET TAB, which establishes the increment for
structured tabs, and SET MODE CHANGE, which causes EDT to
enter directly into character editing mode. (Section 13.7.1 de-
scribes the use of structured tabs.)

You can use the /COMMAND qualifier to the EDIT/EDT command to
cause EDT to search for a file other than EDTINI.EDT. This means
that you can have several start-up command files, each designed for a
particular application. You may want to include a command in your
login command procedure file to equate a short mnemonic to an
EDIT/EDT command that invokes a special start-up command file.
For example, if you have the following line in your login command file:

% EDC :== "EDIT/EDT/COMMAND=C.EDT"

then the command:
% EDC METRIC.C

invokes EDT with the start-up command file C.EDT to edit the file
METRIC.C.

Creating Source Programs 293

Chapter 14

Compiling, Linking, and Executing
C Programs

If the VAX-11 C compiler and its associated libraries are installed on
your system, you can compile, link, and execute a self-contained C
program with the commands shown in the following example:

¢ DEFINE LNK$LIBRARY SYS&LIBRARY:CRTLIB.OLB GED
¢ CC ZENDGED

¢ LINK ZEND®ED

$ RUN ZENO GED

where ZENO.C is the program source file.
The term self-contained means that:

* A single source file (here, ZENO.C) specifies all the C source text,
either explicitly or with #include control lines.

e The program is written entirely in C and uses only those external
functions that are included in one of the following:

— A user-defined object library associated with the logical name

LNKS$LIBRARY.

— A user-defined text library associated with the logical name
C$LIBRARY.

— The DIGITAL-supplied text library SYS$LIBRARY:
CSYSDEF.TLB.

— The DIGITAL-supplied object libraries SYS$LIBRARY:
VMSRTL.EXE or SYS$LIBRARY:STARLET.OLB.

In this example, the library SYS§LIBRARY:CRTLIB.OLB, which con-
tains the object code for all the functions described in Chapter 6, is
made the equivalence name for LNK$SLIBRARY. While this logical
name assignment is in effect, all references to the VAX-11 C library
functions are resolved to SYS$LIBRARY:CRTLIB.OLB by the LINK
command.

The logical name equivalent for CSLIBRARY is searched for modules of
C text that are named in #include control lines but whose libraries
either were not found or were not (as in the above example) specified in
the CC command. (See Chapter 7 for a description of the forms of
#include control lines.)

294

The text library SYS$LIBRARY:CSYSDEF.TLB is supplied by
DIGITAL with VAX-11 C and contains the necessary C definition text
for calling VAX/VMS system services. This library is searched for any
text specified in the “library-lookup” form of #include control lines
that cannot be located elsewhere.

In practice, many or even most of the programs you write cannot be
prepared with the simple forms of the commands shown above, for two
reasons.

First, the three commands can accept qualifiers to extend their actions.
For example, the CC command as shown above does not cause the
compiler to produce a source listing.

More important, you will often want to develop programs that are not
self-contained. It is also possible to:

e Construct a program from many separate files of C source text.
Each file is compiled separately, producing a separate file of object
code. Then, the object files are linked to form the executable
image.

Concatenate several files of C source text with a single CC com-
mand. This procedure produces a single object file that is then
linked and executed.

Include, with the #include control line, modules (or files) of C
source text rather than writing all the source text in your own
source files. Text libraries are, of course, used in self-contained
programs as well. You can create text libraries to store your own C
text. (Text libraries are discussed in Chapter 12.)

Link the program with libraries of precompiled object code. You
can define your own object libraries to store compiled C functions
or definitions, or you can use the object libraries supplied with the
VAX-11 C compiler. (Object libraries are discussed in Chap-
ter 12.)

14.1 The Compile Command (CC)

The VAX-11 C compile command (CC) performs the following opera-
tions:

¢ Takes the actions specified by #include, #define, and other control
lines encountered in the source file, to modify the contents and/or
interpretation of the C source text.

¢ Checks the validity of C source text and issues warning or error
messages for invalid statements.

¢ Translates the C source text into machine language instructions.

Compiling, Linking, and Executing C Programs 295

Groups data and machine language instructions into program sec-
tions.

Writes the program sections into an object module.

Object modules are subsequently combined by the VAX/VMS Linker
to form an executable image. When the VAX-11 C compiler creates an
object module, it effectively provides the linker with the following infor-
mation:

The module name, which is usually the same as the file name (not
including the file type). That is, if the file given to the compiler is
named ZENO.C, the resulting module name is ZENO.

A list of all entry points (functions), external variables, and global
symbols declared in the module. The linker uses this information
when it binds together two or more modules and resolves refer-
ences to the same name in several modules.

A summary of the program sections it has created and their attrib-
utes, plus the generated machine instruction text and relocation
information.

Traceback information, which is used by the VAX/VMS default
condition handler when a run-time error occurs. Traceback infor-
mation allows the default handler to display a list of the active
blocks, in order of activation, as an aid to debugging.

A symbol table, if you request it. This table lists all internal and
external names used in the module, giving definitions of their
locations. It is used as a debugging aid with the VAX-11 Symbolic
Debugger.

14.1.1 CC Command Format

The syntax of the CC command and its qualifiers is as follows:

CC command:

CC[/qualifier...] file-spec-list

file-spec-list:

296

file-spec[/qualifier...]
file-spec-list , file-spec[/qualifier...]
file-spec-list + file-spec[/qualifier...]

Chapter 14

Command Qualifier Default
/INOICROSS_REFERENCE /NOCROSS_REFERENCE

/INOJIDEBUG(=option] /DEBUG=TRACEBACK

/INOILIST /NOLIST (interactive mode)
/LIST (batch mode)

/INOIMACHINE__CODE /NOMACHINE__CODE

/INOJOBJECT /OBJECT

/INOJOPTIMIZE /OPTIMIZE

/SHOWI[=(option,...)] /SHOW=(NOINCLUDE,SOURCE,

NOSTATISTICS,NOEXPANSION,

NOINTERMEDIATE,NOSYMBOLS)
/STANDARD=(NOJPORTABLE = /STANDARD=NOPORTABLE
/INOJIWARNINGS /WARNINGS

File Qualifier
/LIBRARY

The qualifiers are described in detail in Section 14.1.6.

14.1.2 Specifying Input Files

The file-spec-list specifies one or more files of C source text and, op-
tionally, libraries of C text that are searched for modules named in
#include control lines.

If a file specification does not contain a file type, the compiler assumes
a default file type of C for a source file. If the file specification is
qualified with the /[LIBRARY qualifier and does not contain a file type,
the compiler assumes a default file type of TLB for a text library file.

14.1.3 Compiling Files Into Separate Object Modules

File specifications separated by commas are compiled into separate
object modules. By default, each object module is placed in a file of the
same name as the source file and with the file type OBJ. For example,
the command

CC MDDATE +ZENOMETRIC GED

creates the object module files MDDATE.OBJ, ZENO.OBJ, and
METRIC.OBJ.

14.1.4 Compiling Files Into One Object Module

File specifications separated by plus signs are compiled into a single
object module, as if the source files in the list were a single source file.
By default, the object module is placed in a file with the same name as
the first source file in the list and with the type OBJ. For example, the
command

CC MDDATE sZENO+METRIC GED

Compiling, Linking, and Executing C Programs 297

creates the object module files MDDATE.OBJ and ZENO.OBJ, where
ZENO.OBJ contains the object code resulting from the source code in
files ZENO.C and METRIC.C.

Compiling two or more files this way produces the same results as
compiling the same text from a single file. Consider, for example, the
following:

CC ALPHA + BETA + GAMMA.DELTAGED

This command produces two object modules in separate files:
ALPHA.OBJ and DELTA.OBJ. The scope of any function definitions
or external data definitions in ALPHA.C, BETA.C, and GAMMA.C
includes the files that follow the definition in the plus-sign list. If
BETA.C contains the external data definition

double sumj

then sum denotes a double-precision variable in BETA and GAMMA,
without further declaration. In ALPHA.C, because it precedes the defi-
nition, the variable must be declared with:

extern double sumi

The same extern declaration must be used in DELTA.C, since it is not
part of the same object module.

Note that the component files of ALPHA.OBJ need not represent com-
plete C programs (or C statements or expressions) as long as the combi-
nation of all the source files results in a valid C program.

Note also that the qualifiers described in Section 14.1.6 affect all files in
a plus-sign list. For example, the command

CC ALPHA + BETA + GAMMA/LISTGED

produces an object file and a listing file of the source text from all three
files.

14.1.5 Specifying Library Files

When you specify a library file in a CC command, you must precede the
file specification of the library with a plus sign and use the /LIBRARY
qualifier. For example:

% CC APPLIC+DATAB/LIBRARY

This CC command compiles the source program APPLIC.C and uses
the library DATAB.TLB to locate any #include module references of
the form:

#include text-module-name

The module name must not be enclosed in quotation marks or angle
brackets.

298 Chapter 14

When more than one library is specified in a CC command, the com-
piler searches the libraries in the specified order each time it processes
an #include control line that specifies a text module name. For
example:

$ CC APPLIC+DATAB/LIBRARY+NAMES/LIBRARY+SYMS/LIBRARY

When the C compiler processes an #include control line (with no delim-
iters around the name in the line) in the source file APPLIC.C, it
searches for modules referenced in the libraries DATAB.TLB,
NAMES.TLB, and GLOBALSYMS.TLB, in that order.

In a command that requests multiple compilations, a library must be
specified for each compilation in which it is needed. For example:

$ CC METRIC+DATAB/LIBRARY yAPPLIC+DATAB/LIBRARY

In this example, the C compiler compiles METRIC.C and APPLIC.C
separately and uses the library DATAB.TLB for each compilation.

The order in which the library file specifications appear within a
concatenated list of files is irrelevant. For example, the following are
equivalent:

$ CC ALPHA+MYLIB/LIBRARY+BETA
% CC ALPHA+BETA+MYLIB/LIBRARY

After the compiler has searched all libraries specified in the above
command(s), it searches the default user library, if any, and then the
default library SYS$LIBRARY:CSYSDEF.TLB.

14.1.6 Command and File Qualifiers

Command qualifiers can be placed either on the CC command itself or
on individual file specifications. If placed on a file specification, the
qualifier affects only the compilation of the specified file. If placed on
the CC command, the qualifier affects all files processed by the com-
mand unless it is overridden by a qualifier on an individual file specifi-
cation. The file qualifier /[LIBRARY can be placed only on a file specifi-
cation, not on the CC command.

The rest of this subsection describes the qualifiers individually.

/CROSS_REFERENCE

/NOCROSS_REFERENCE
/CROSS_REFERENCE directs the compiler to generate, in a list-
ing file, cross-references for variable names. The cross-reference lists
each line number in the listing file on which each variable is refer-
enced. By default, the compiler does not generate a cross-reference
(/NOCROSS_REFERENCE). If /CROSS_REFERENCE is speci-
fied, then /LIST and /SHOW=SYMBOLS are implied; a listing file
containing a storage map is generated and named according to the
defaults described for listing files (see /LIST).

Compiling, Linking, and Executing C Programs 299

/DEBUGI[=option]

/NODEBUG
/DEBUG requests information to be included in the object module
for use by the VAX-11 Symbolic Debugger. (For more information
on the debugger, see Chapter 15.) You may select one of the options
shown below.

Option Usage
ALL Includes symbol table records and traceback
records. This is equivalent to /DEBUG with no
option.

TRACEBACK Includes only traceback records. This is the de-
fault if the /DEBUG qualifier is not present on
the command.

NOTRACEBACK Does not include traceback records. This op-
tion is used to exclude all extraneous informa-
tion from thoroughly debugged program mod-
ules. This option is equivalent to /NODEBUG.

NONE Does not include any debugging information.
This is equivalent to /NODEBUG.

/LIBRARY
/LIBRARY indicates that the associated input file is a library con-
taining modules of C source text. If the file specification does not
include a file type, CC assumes the default type TLB. A library
specification must be preceded by a plus sign and pertains only to
the file specification to which it is appended. For example:

$ CC ALPHABETA+USERLIB/LIBRARY GED

Presumably, the file BETA.C contains references (in #include con-
trol lines) to modules in the text library USERLIB.TLB, and the file
ALPHA.C does not. (If ALPHA contains such references, the specifi-
cation USERLIB/LIBRARY must also be appended to ALPHA.)

For more information on the creation and use of text libraries, see
Chapter 12.

/LIST[=file-spec]

/NOLIST
/LIST directs the compiler to produce a listing file. If the CC com-
mand is executed in interactive mode, the default is /NOLIST. In
batch mode, the default is /LIST.

You automatically get a listing file when you specify /CROSS__
REFERENCE, /MACHINE__CODE, or /SHOW with one or more of
the options INCLUDE, SYMBOLS, EXPANSION, or INTERME-
DIATE.

When /LIST is in effect, the compiler, by default, creates a listing
file with the same name as the source file and with the file type LIS.
If you include a file specification with the /LIST qualifier, that spec-
ification is used for the listing file.

300 Chapter 14

/MACHINE__CODE

/NOMACHINE__CODE
/MACHINE__CODE directs the compiler to list the generated ma-
chine code in the listing file. The default is /NOMACHINE _
CODE. If you specify /MACHINE__CODE, /LIST is implied.

/OBJECT [=file-spec]

/NOOBJECT
/OBJECT directs the compiler to produce an object module and is
the default. By default, /OBJECT creates an object module file with
the same name as the source file (or the name of the first file in a
plus-sign list) and with the file type OBJ. If you include a file speci-
fication with /OBJECT, that specification is used instead.

The compiler executes more rapidly if it does not have to produce an
object module. Use the /NOOBJECT qualifier when you need only a
listing of a program or when you want the compiler to check a file of
source text for errors.

/OPTIMIZE

/NOOPTIMIZE
/OPTIMIZE directs the compiler to optimize the generated machine
code. For example, the compiler eliminates common subexpressions,
removes invariant expressions from loops, collapses arithmetic oper-
ations into three-operand instructions, and places local variables in
registers. /OPTIMIZE is the default. /NOOPTIMIZE instructs the
compiler to perform no optimization.

When /DEBUG is specified, the compiler will not perform those
optimizations that would affect debugging.

/SHOW=(option,...)
/SHOW sets or cancels listing options. You can select or cancel any
of the options shown below.

Option Usage
[INOIINCLUDE Prints/does not print the contents of #in-
clude files and modules in the program
listing.
NOINCLUDE is the default.
[NOISOURCE Prints/does not print the source program

statements in the program listing.
SOURCE is the default.

[INOJSTATISTICS Prints/does not print compiler perform-
ance statistics in the program listing.

NOSTATISTICS is the default.

Compiling, Linking, and Executing C Programs 301

[NOISYMBOLS Prints/does not print the symbol table of
the compiled program in the program list-
ing. The symbol table includes a list of all
functions, the sizes and attributes of all
variables referenced in the program, and
a program section summary and function
definition map.

NOSYMBOLS is the default unless
/CROSS_REFERENCE is used.

[INOJEXPANSION Prints/does not print final macro expan-
sions in the program listing.

NOEXPANSION is the default.

[INOIINTERMEDIATE Prints/does not print all intermediate and
also the final macro expansions in the
program listing.

NOINTERMEDIATE is the default.

/STANDARD=PORTABLE

/STANDARD=NOPORTABLE
/STANDARD=PORTABLE directs the compiler to flag certain
VAX-11 C language extensions and VAX-11 C relaxations of con-
ventional C language constructs and rules. For example, pointer/
integer interchangeability is subject to more stringent tests when
/STANDARD=PORTABLE is specified. In summary,
/STANDARD=PORTABLE causes the compiler to issue warning
messages against C usage that may not be portable between VAX-11
C and other implementations. The default is /STANDARD=
NOPORTABLE.

/WARNINGS

/NOWARNINGS
/NOWARNINGS tells the compiler not to display warning (severity
W) messages on the terminal or in the listing file (if any). You may
find this qualifier useful when you are compiling programs that you

know contain statements that cause warnings. The default is
/WARNINGS.

14.1.7 Gompiler Diagnostic Messages and Error Conditions

One of the functions of the C compiler is to identify syntax errors and
violations of language rules in the source program. If it locates any
errors, the compiler writes messages to your default output devices
(SYS$OUTPUT and SYS$ERROR). Thus, if you enter the CC com-
mand interactively, the messages are displayed on your terminal. If the
CC command is executed in a batch job, the messages appear in the
batch job log file.

302 Chapter 14

If the compiler creates a listing file, it also writes the messages to the
listing. Each message in the listing follows the statement that caused
the error.

When it appears on the terminal, a message from the compiler has the
format:

%CC-s-ident, message-text
Listing line number m
At line number n in name

The parts of this message are described below.

%CC
The facility, or program, name of the VAX-11 C compiler. This
portion indicates that the message is being issued by VAX-11 C.

s
The severity of the error, represented as follows:

F Fatal error. The compiler stops executing when a fatal error
occurs and does not produce an object module. You must cor-
rect the error before you can compile the program.

E Error. The compiler continues, but does not produce an object
module. You must correct the error before you can successfully
compile the program.

W Warning. The compiler produces an object module. It attempts
to correct the error in the statement, but you should verify that
the compiler’s action is acceptable. Otherwise, your program
may produce unexpected results.

I Information. This message usually appears with other messages
to inform you of specific actions taken by the compiler. No
action is necessary on your part.

ident
The message identification: a descriptive abbreviation (mnemonic)
of the message text.

message-text
The compiler’s message. In many cases, it consists of more than one
line of output. A message generally provides you with enough infor-
mation to determine the cause of the error so that you can correct it.

listing line number m
The integer m gives the number of the line in the listing file where
the error occurs. This information is given when /LIST is specified or
implied.

At line number n in name
The integer n gives the number of the line where the error occurs.
The number is relative to the top of the file or text library module
specified by name. The #line control line can be used to change the
line number and name that appear in the message.

Compiling, Linking, and Executing C Programs 303

The messages produced by the VAX-11 C compiler are listed in Appen-
dix C. The format of an error message in a program listing is shown in
Appendix D.

Both the CC command and the DCL command SET MESSAGE give
you control over the display of messages. The CC qualifier /NOWARN-
INGS, discussed previously, suppresses warning messages generated by
the compiler. SET MESSAGE lets you decide whether messages will be
displayed in their entirety or in a shortened form. For example, if you
do not want to see the %CC-s-ident part of messages, you can enter the
command:

$ SET MESSAGE/NOFACILITY/NOSEVERITY/NOIDENTIFICATION

This command cancels the facility, severity, and identification portion
of all messages. It remains in effect for all commands you subsequently
enter, until you reissue the SET MESSAGE command or log off the
system.

14.2 The LINKER Command (LINK)

This discussion of the linker is confined to areas of particular interest to
VAX-11 C programmers. For additional information on linker capabili-
ties and detailed descriptions of LINK command qualifiers and op-
tions, see the VAX-11 Linker Reference Manual.

The linker prepares an executable image from object modules. The
primary operations of the linker are the allocation of virtual memory
within the executable image, the resolution of symbolic references
among modules being linked, and the assignment of values to relocat-
able global symbols. The linker allocates storage for user-defined val-
ues, variables, and functions in program sections, whose locations,
names, and characteristics depend on the storage class of the variable
or other name. The linker also allocates storage for the executable code
in the module. The allocation of virtual memory is discussed in Chap-
ter 10.

When two or more object modules are linked, the linker resolves refer-
ences in one module to variables and other names defined in the mod-
ules already linked. This means that the program sections used by the
linker allow the modules to use each others’ variables and functions.
For instance, two C functions can refer to the same extern variable
because each extern variable resides in its own program section. The
linker simply resolves an extern name to a program section of the same
name. Figure 14-1 illustrates the linking of two object modules, in
the files APPLIC.OBJ and READY.OBJ, which use the same extern
variable.

304 Chapter 14

sweidord) Surnosxy pue ‘Suryury ‘Surpidwo))

$0¢

¥ LINKE APPLIC :READY

unsidned flag_buffer=0x0000;3
arplic(}
int vals
} ready{valis
ready {ul
int us
extern unsidned flad_buffers

Figure 14-1:

Linking Object Modules

APPLIC

RN

READY

TN

FLAG_BUFFER

The linker arranges

object modules and

the storage allocated

to external variables.

In the modules APPLIC
and READY, all references
to the external variable
FLAG_BUFFER are
resolved to the same
virtual storage location.

ZK-085-81

Because of the linker’s ability to resolve references, modules written in
different languages can pass information to each other by referring to
the same program section. Chapter 10 includes examples that show
variables in C functions sharing program sections with FORTRAN
common blocks, PL/I external variables, and MACRO program sec-
tions.

The linker must also be used for self-contained programs — those com-
posed of only one object module — because most object modules gen-
erated by the compiler contain calls and references to VAX-11 C run-
time procedures. The linker automatically locates these procedures in
the default system object module libraries. These libraries are de-
scribed in more detail in Chapter 12.

14.2.1 Format of the LINK Command
The format of the LINK command is:
LINK[/qualifier...] file-spec[/qualifier...],...

file-spec,...
The file specifications denote one or more files containing object
modules to be linked and, optionally, libraries containing modules.

You can separate the file specifications with commas or plus signs.
In either case, all the specified files are used to create a single exe-
cutable image.

If the file specification does not contain a file type and is not quali-
fied by /LIBRARY, /INCLUDE, or /OPTIONS, the linker assumes a
default file type of OBJ.

/qualifier...
The list of qualifiers may include one or more LINK command qual-
ifiers. The /LIBRARY, /INCLUDE, and /OPTIONS qualifiers can
only be specified following the specification of an input file. All other
qualifiers listed can be specified following either the LINK com-
mand or any input file specification.

Table 14-1 summarizes the categories of LINK command qualifiers.

14.2.2 Linker Messages

If the linker detects any errors while linking object modules, it displays
messages indicating the cause and severity of the error. If any error or
fatal conditions occur, the linker will not produce an image file. Since
the messages produced by the linker are descriptive, you do not nor-
mally need additional information to determine the meaning of a spe-
cific error.

Some of the more common errors that occur during linking are as fol-
lows:

306 Chapter 14

® The module being linked generated warnings during compilation.
You can often link such modules, but you should verify that the
modules will produce the results you expect.

e The modules being linked define more than one transfer address.
The linker warns you if more than one function in the C program is
identified as the main function. The image file created by the
linker in this case can be run. The entry point to which control is
transferred is the first one found by the linker.

e A reference to a symbol name remains unresolved. This error oc-
curs when you omit required module or library names from the
LINK command, and the linker cannot locate the definition for a
specified global symbol reference. Such images will not usually
execute properly. You can often correct such errors by reenter-
ing the command string and specifying the correct modules or
libraries.

Table 14—1: LINK Command Qualifiers

Function Qualifiers Defaults
Request output files /EXECUTABLE[=file-spec] /EXECUTABLE=name.EXE,
and define a file where name is the name of the
specification. first input file.
/SHAREABLE|=file-spec] /NOSHAREABLE

/SYMBOL__TABLEI=file-specl /NOSYMBOL__TABLE

Request and specify /BRIEF

the contents of a /INOJCROSS_REFERENCE /NOCROSS_REFERENCE

memory allocation /FULL

listing. /INOIMAP /NOMAP (interactive)
/MAP=name.MAP (batch)
where name is the name of the
first input file.

Specify the amount /[NOJDEBUG /NODEBUG
of debugging infor- /INOITRACEBACK /TRACEBACK
mation.

Indicate that input /INCLUDE=(module-name....)
files are libraries /LIBRARY

and specifically in- /SELECTIVE_SEARCH
clude certain mod-

ules.
Request or disable /[NOJSYSLIB /SYSLIB
the searching of de- /[NOJSYSSHR /SYSSHR

fault user libraries /INOJUSERLIBRARY[=table] /USERLIBRARY=ALL
and system librar-
ies.

Indicate that an in- /OPTIONS
put file is a linker
input file.

Compiling, Linking, and Executing C Programs 307

If an error indicates that a module with a name in the format C$__
name or C$$_name cannot be located, you may not be linking the
program with the correct VAX-11 C run-time library. The LINK com-
mand must specify the library SYS$LIBRARY:CRTLIB.OLB, or that
library must be established as the equivalent of the logical name
LNKS$LIBRARY.

14.2.3 Linker Input Files

You can specify the object modules to be included in an executable
image in any of the following ways:

e Specify files containing individual object modules created by a
compiler. The linker assumes that any unqualified file specifica-
tion is an object module.

¢ Specify one or more object module libraries to be searched to
resolve references to external procedures and variables. These li-
braries are searched for all references that are not reselved among
the modules specifically included in the compilation. You must
qualify the file specification of the library with the /LIBRARY
qualifier.

Specify explicit modules from an object module library to be in-
cluded in the image. You must qualify the file specification of the
library with the /INCLUDE qualifier and specify the names of the
object modules to be included.

e Specify an options file containing additional file specifications and
special linker options. You must qualify the file specification of an
options file with the /OPTIONS qualifier.

The linker uses these default file types for input files:

File File Type
Object module OBJ
Library OLB
Options file OPT

You specify object modules and libraries in a command as follows:
$ LINK METRIC:-

% _FORMATS/INCLUDE=(PRINTLINE TERMLINE) »~

$. [PROJECT.OBJLIBIMATHLIB/LIBRARY

This LINK command links the object module METRIC.OBJ with the
modules PRINTLINE and TERMLINE from the library FOR-
MATS.OLB. Any references to external procedures and variables that
are not defined in any of these three modules will cause the linker
to search the library MATHLIB.OLB in the directory
[PROJECT.OBJLIB] before it searches the system libraries.

308 Chapter 14

The format and content of a linker options file are described in detail in
the VAX-11 Linker Reference Manual. You may wish to use an options
file if you have a very long list of input files to be specified, if you want
to link a module with a shareable image file, or if you want to request
special linker options.

When you specify more than one input file for the LINK command, the
linker combines individual object files or library modules in the order in
which they are listed.

When you specify libraries as input for the linker, you can specify as
many as you wish; there is no practical limit. More than one library can
contain a definition for the same module name. The linker uses the
following conventions to search libraries specified in the command
string:

¢ A library is searched only for definitions that are unresolved in the
previous input files specified.

e If more than one library is specified for an object module, the
libraries are searched in the order in which they are specified.

For example:
¢ LINK METRIC,DEFLIB/LIBRARY +APPLIC

The library DEFLIB will be searched only for unresolved references in
the object module METRIC. It is not searched to resolve references in
the object module APPLIC. However, this command can also be en-
tered as follows:

$ LINK METRICsAPPLICDEFLIB/LIBRARY

In this case, DEFLIB.OLB is searched for all references that are not
resolved between METRIC and APPLIC. After the linker has searched
all libraries specified in the command, it searches default user libraries,
if any, and then the default system libraries.

When one or more logical names exist for default user libraries, the
linker uses the following search order to resolve references:

1. The process, then the group, and then the system logical name
tables are searched for the name LNK$LIBRARY. If the logical
name exists in any of these tables and if it contains the desired
reference, the search ends.

2. The process, then the group, and then the system logical name
tables are searched for the names LNK$LIBRARY__1 through
LNKS$LIBRARY__999. If the logical name exists in any of these
tables, and if it contains the desired reference, the search ends.

This search sequence is repeated for each reference that remains unre-
solved.

Compiling, Linking, and Executing C Programs 309

The search order can be modified for a particular link operation. To
override the search of a library, you can do one of the following:

® Delete the logical name of the library you do not want searched.
For example:

% DEASSIGN LNK$LIBRARY

The DEASSIGN command deletes the logical name table entry
LNKS$LIBRARY.

® Specify /USERLIBRARY or /NOUSERLIBRARY on the LINK
command. These qualifiers let you specify the PROCESS,
GROUP, and SYSTEM keyword options to explicitly control
which logical name tables are to be searched for default user li-
braries. For example:

$ LINK/USERLIBRARY=GROUP input-files...
When it executes this command, the linker searches only the

GROUP logical name table. Specify /NOUSERLIBRARY to ex-
clude all default user libraries in the search.

For complete details on defining and using default user libraries, see
the VAX-11 Linker Reference Manual.

14.2.4 Linker Output Files

When you enter the LINK command interactively with no qualifiers,
the linker creates only an executable image file. By default, it has the
same file name as the first or only object module specified, and it has a
file type of EXE. For example:

$ LINK A.BC

This LINK command links the object modules in the files A.OBJ,
B.OBJ, and C.OBJ, and it creates the image file A.EXE.

In a batch job, the linker creates both an executable image file and a
storage map file by default. The default file type for map files is MAP.

Some of the rules for naming input and output files are shown in Table
14-2. These rules also apply to the specification of names with the
/MAP qualifier. To specify an alternate name for a map file or image
file, or to specify an alternate output directory or device, you can in-
clude a file specification on the /MAP or /EXECUTABLE qualifier.

Some examples are:

310 ‘ Chapter 14

Command

% LINK METRIC/MAP=TEST

$ LINK METRIC/EXE-

Output File(s)

METRIC.EXE (by default)

TEST.MAP

-=[PROJECT.EXE]-

$_/MAP=LPROJECT.MAP]
$ LINK METRIC/MAP=LP:

[PROJECT.EXEIMETRIC.EXE

[PROJECT.MAPIMETRIC.MAP
METRIC.EXE (by default)

line printer listing of
the map file

In the third example, the map file is not saved on disk after it is

printed.

Table 14-2: Specifying Input and Output Files
for the Linker

Rule

Example

Output File(s)

If you do not specify
the /EXECUTABLE
qualifier, the linker
gives the image file the
same name as the first
input file.

If you specify /EXE-
CUTABLE following
the name of an input
file, the linker uses
that file’s name to
name the output file.

If you give a file spec-
ification with the
/EXECUTABLE qual-
ifier, the linker uses
that file specification.

When you specify a
device and/or directory
for a file specification,
that device and/or di-
rectory becomes a
temporary default for
the remaining input
and output files.

$ LINK METRIC

$ LINK METRIC -

$_APPLIC/EXECUTABLE

% LINK/EXECUTABLE-

$_=TEST METRIC,APPLIC

$ LINK METRIC -
$_[PROJECTI-

$_MATHLIB/LIBRARY -
$_FORMATS/EXECUTABLE

METRIC.EXE

APPLIC.EXE

TEST.EXE

[PROJECTIFORMATS EXE

Compiling, Linking, and Executing C Programs 311

14.2.5 Specifying Map File Qualifiers

The map file, also called a memory allocation listing or storage map,
describes how the linker has arranged the object modules and their
contents in the image file. The map file also lists the virtual memory
addresses that the linker has assigned to procedure entry points.

When you specify the /MAP qualifier, or when a map is produced by
default in a batch job, the /BRIEF and /FULL qualifiers define the
information included in the file, overriding the default content. The
types of maps and the qualifiers you use to request them are:

o Brief — specify /MAP/BRIEF
e Default — specify /MAP
e Full — specify /MAP/FULL

The contents of these maps are summarized in Table 14-3. For infor-
mation on how the VAX-11 describes object modules to the linker and
arranges program data according to their attributes, see Chapter 10.

Table 14-3: Contents of a Map File

FULL
AL
r N\
Summary of image List of global sym- List of global symbols
characteristics bols by name by value
Names of all modules List of user-defined Summary of character-
in the image program sections istics of each image
and program section in
the image
Linker performance
statistics
N J
Y
BRIEF
“ J
Y~
DEFAULT

14.2.6 Specifying Debugging Qualifiers
You can specify either the /DEBUG or /TRACEBACK qualifiers when
you link an image. The qualifiers control the amount of debugging

information that is available to the VAX-11 Symbolic Debugger and to
the run-time error-reporting mechanism.

By default, the linker includes traceback information, which causes the
run-time system to list all of the procedure invocations active at the
time of a fatal run-time error. If you specify the /NOTRACEBACK
qualifier, that information will not be available.

312 Chapter 14

Regardless of whether you specified /DEBUG to the VAX-11 C com-
piler, you can specify /DEBUG when you link the object module. This
qualifier requests that the object modules containing the debugger pro-
gram be linked to your object modules. When you execute the program,
the debugger initially takes control. The steps required to run a pro-
gram under the control of the debugger and the symbolic debugging
capabilities available for C programmers are described in Chapter 15.

14.3 Executing Programs (RUN)

This section describes the considerations involved in executing C pro-
grams on the VAX/VMS operating system. For further information on
any of the DCL commands or topics presented here, see the VAX/VMS
Command Language User’s Guide.

14.3.1 Image Execution with RUN

You execute a VAX-11 program with the RUN command. The RUN
command assumes by default that the file type of a program image is
EXE. For example, the command

$ RUN METRIC

locates the file METRIC.EXE in the current default directory. Control
then passes to the main function in the C program. If no function in the
program is identified as the main function, then initial control passes to
the first, or only, module that was linked into the image.

14.3.2 Gommand-Line Arguments

The main function in a VAX-11 C program can accept arguments from
the command line that invokes it. The synopsis for a main function is
as follows:

int main(argc,argv,envp)
int argc;
char +argv[],*envp][];

In this synopsis, argc is the count of arguments present in the command
line that invoked the program, and argv is a character-string array of
the arguments. envp is the environment array. It contains process infor-
mation, such as the user name and controlling terminal. It has no
bearing on passing command-line arguments. Its primary use in C pro-
grams is during exec and getenv function calls. See Chapter 6 for more
details on the use of the envp argument.

Compiling, Linking, and Executing C Programs 313

In the main function definition, the parameters are optional; you can
define main in any of the following ways:

main()

main(ardc)

main(ardcrargdu)

main(ardcrardusenup)

However, you can access only the parameters that you define.

To pass arguments to the main function, you must install the program
as a DCL foreign command. When a program is installed and run as a
foreign command, argc is always greater than or equal to 1, and argv(0]
always contains the name of the image file. Example 14-1 shows a
program called COMMARG.C, which displays the command-line argu-
ments that were used to invoke it.

#include stdio

/% ECHO COMMAND LINE ARGUMENTS %/
main(ardcrargu)
int ardci
char *argull3
{
int i3

/% argul0] IS THE PROGRAM NAME %/
printf("prodgram: %s\n"sargul01)}

for (i=14% i<ardci i++)
printf("ardument %Zd: %s\n"sisardulil)}
¥

Example 14-1: Echo Program Using
Command-Line Arguments

The program is then compiled and linked normally:

$ CC COMMARG GED
¢ DEF LNK$LIBRARY SYS$LIBRARY:CRTLIB.OLB GED
$ LINK COMMARG GED

The procedure for installing a foreign command is described fully in the
VAX/VMS Command Language User’s Guide. Briefly, the procedure
uses a DCL assignment statement to assign the name of the image file
to a symbol that is subsequently used to invoke the image. For exam-
ple:

$ ECHO :== $ WRK$:COMMARG.EXE G

Here, ECHO is installed as a foreign command that invokes the image
in COMMARG.EXE. The definition of ECHO must begin with a dollar
sign ($) and include a device name, as shown.

314 Chapter 14

A sample run of the ECHO command follows:

¢ ECHO Now is "the Time" @D
prodram: db7:lzeno.srclcommard.exeil
argument 1: now

-

ardument 2 is
ardument 3: the Time

The command line you enter is subject to the usual DCL rule of conver-
sion to uppercase for most arguments. VAX-11 C internally parses and
modifies the DCL-modified command line to make the command line
more compatible with UNIX-developed programs.

All alphabetic arguments in the command line are delimited by spaces
or tabs. Arguments that have embedded spaces or tabs must be en-
closed in quotation marks ("). Uppercase characters in arguments are
converted to lowercase, but arguments within quotation marks are left
unchanged.

14.3.3 Image Exit

When the main function executes a return statement or reaches the
end of its outer block, the image is terminated. In the context of the
VAX/VMS operating system, the termination of an image (image exit)
causes the system to perform a variety of clean-up operations during
which open files are closed, system resources are freed, and so on.

Image exit also occurs as a result of run-time errors or any of the
following:

e The execution of the image was interrupted by CRLY), followed
either by a command that executes another image or by the DCL
command EXIT. (Note that the DCL command STOP does not
cause image exit.)

e A function in the program called the SYS$EXIT system service.

e A process in the system called the SYS$FORCEX system service,
forcing the exit of the current process.

For complete details on the actions VAX/VMS takes when an image
exits, and for an explanation of the SYS$EXIT and SYS$FORCEX
system services, see the VAX/VMS System Services Reference Manual.

On image exit, the current contents of general register 0 are delivered to
the VAX/VMS command interpreter (DCL) as a status value. To per-
form properly on image exit, the function must be the first function
encountered by the linker, or it must be named main or be defined with
the main-program option. Otherwise, the function must include one of
the following to return a VAX/VMS error code:

e A return statement
e A call to _exit
e A call to exit

Compiling, Linking, and Executing C Programs 315

14.3.4 Run-Time Errors

When an error occurs during the execution of a program, the program is
terminated and one or more messages are displayed by the VAX/VMS
condition handler on the current SYSSERROR device.

A message is followed by a traceback. For each module in the image
that has traceback information, the condition handler lists the modules
that were active when the error occurred, showing the sequence in
which the modules were called.

For example, if an integer divide-by-zero condition occurs, a run-time
message like the following appears:

4C-F-ERRORs C error condition
#SYSTEM-F-INTDIV, arithmetic trars inteder divide by zero
at PC=00000FC3s PSL=03C0O0002

This message is followed by a traceback message similar to the follow-
ing:

ZTRACE-F-TRACEBACK+» svmbolic stacKk dump follows

module name routine name line relative PC absolute PC
MAIN MAIN 8 QOO0Q007 O0000OFC3
C$MAIN C$MAIN 1408 QO0O0DZF7 00000B17

The information in the traceback message is as follows:

module name
The names of image modules that were active when the error oc-
curred. (For errors originating in the C source code, the module
names are those created by the CC command or #module control
line.)

The first module name is that of the module in which the error
- occurred. Each subsequent line gives the name of the caller of the
module named on the previous line. In this example, the modules

are MAIN and C$MAIN; C$MAIN called MAIN.

routine name
The name of the function in the calling sequence.

line
The source program (compiler-generated) line number of the state-
ment in which the error occurred, or at which the call or reference to
the next procedure was made. Line numbers in these messages
match those in the listing file.

relative PC
The value of the PC (program counter). This value represents the
location in the program image at which the error occurred or at
which a procedure was called. The location is relative to the virtual
memory address that the linker assigned to the code program section
of the module indicated by module name.

316 Chapter 14

absolute PC
The value of the PC in absolute terms, that is, the actual address in
virtual memory representing the location at which the error oc-
curred.

Traceback information is available at run time only for modules com-
piled and linked with the traceback option in effect. The traceback
option is in effect by default for both the CC and LINK commands.
You may use the CC command qualifier /NODEBUG and the LINK
command qualifier /NOTRACEBACK to exclude traceback informa-
tion. However, traceback information should be excluded only from
thoroughly debugged program modules.

14.3.5 Interrupting a Program

When you execute the RUN command interactively, you cannot exe-
cute any other program images or DCL commands until the current
image exits. However, if your program is not performing as
expected — if, for instance, you believe your program is in an endless
loop — you can interrupt it with CRLY). For example, the sequence

$ RUN APPLIC

ERvs
I

$

interrupts the program APPLIC. After you have interrupted a program,
you can terminate it by entering a DCL command that executes an-
other image, or by entering the DCL command EXIT.

Following a CTRL/Y interruption, you can also force an entry to the
debugger by entering the DEBUG command. The debugger is described
in Chapter 15.

Some other DCL commands have no direct effect on the image. You
can enter any of the following commands and then resume the execu-
tion of the image with the DCL command CONTINUE:

= INQUIRE
ALLOCATE ON

ASSIGN OPEN

ATTACH READ

CLOSE SET CONTROL__Y
DEALLOCATE SET DEFAULT
DEASSIGN SET ON

DEBUG SET PROTECTION/DEFAULT
DECK SET VERIFY
DEFINE SET UIC
DELETE/SYMBOL SHOW DAYTIME
DEPOSIT SHOW DEFAULT
EOD SHOW PROTECTION
EXAMINE SHOW QUOTA
GOTO SHOW STATUS

IF SHOW SYMBOL

Compiling, Linking, and Executing C Programs 317

SHOW TIME STOP
SHOW TRANSLATION WAIT
SPAWN WRITE

14.3.6 Returning Values to the Command Interpreter

The main function in a VAX-11 C program can use the return state-
ment to return a status value to the command interpreter. When any
program or command is executed under the control of the DCL com-
mand interpreter, general register 0 (RO) indicates the completion
status. The command interpreter has a special routine that uses the
value of RO to print or display a message on completion of a program.

When the returned value is a numeric value expressible in 32 bits or
less, it is placed in RO. Every possible message that can be issued by a
system program, command, or component has a unique 32-bit numeric
value associated with it. By using this value, the command interpreter
locates the message in a central system message file or a user-defined
message file.

Note that if you write a main function that returns arbitrary values, the
values may be detected by the command interpreter and used to dis-
play messages that you would not expect. On the other hand, you can
take advantage of this convention and use the return statement to exit
from a program with a specific status. For example:

#include ssdef

main()
{

+

return SS$_NORMAL S
b

In this example, the #include module ssdef defines linker-resolved sym-
bols for standard VAX/VMS status return values.

Under the following conditions, the command interpreter does not dis-
play messages on completion of a program:

¢ A return statement specifies the value SS3__NORMAL, denoting
normal return status.

¢ The main function does not return a value. If the main function
has no return statement, or if its return statement specifies no
return value, the value SS§_NORMAL is always returned and no
message is displayed.

¢ The status return value suppresses the printing of status messages.
(See Chapter 9.)

318 Chapter 14

Chapter 15

Debugging VAX-11 G Programs

The VAX-11 Symbolic Debugger helps you detect logic and program-
ming errors. Specifically, it lets you control the execution of your pro-
gram so you can monitor specific locations, change the contents of
locations, check the program flow, and otherwise locate and correct
errors as they occur. This chapter describes those areas of debugging
that are specific to VAX-11 C. For a detailed description of the
VAX-11 Symbolic Debugger, refer to the VAX-11 Symbolic Debugger
Reference Manual.

The VAX-11 Symbolic Debugger has many helpful features, among
which are the following:

e]t is interactive. You control your program and interact with the
debugger from your terminal.

e It understands VAX-11 C scalar variable names and their data
types. Thus, when you want to look at the contents of a variable,
or change the value of a variable, the debugger will convert your
ASCII text input to the data type of the variable.

e It understands other programming languages, such as FORTRAN
and COBOL. Thus, if your programs consist of procedures written
in different languages, you can change from one language to an-
other during the course of a debugging session.

For this version of the VAX-11 C compiler, not all functions of the
VAX-11 Symbolic Debugger are supported. This chapter describes the
extent of support as it presently exists.

15.1 Using the VAX-11 Debugger

This section gives brief examples that show how to invoke and use the
debugger with a VAX-11 C program.

319

15.1.1 Beginning and Ending a Debugging Session

To execute a VAX-11 C program with the debugger, you must first
compile and link the program with the /DEBUG qualifier, as in the
following example:

$ CC/DEBUG METRIC
$ LINK/DEBUG METRIC

The /DEBUG qualifier in the CC command requests the compiler to
write symbol table records into the object module. These records permit
you to examine and modify variables by name during the debugging
session.

The /DEBUG qualifier in the LINK command requests the linker to
include the debugger routines, global symbols, and traceback informa-
tion in the executable image. To include only traceback information,
specify /TRACEBACK (which is the default for all LINK commands).

To obtain a program listing and a storage map listing of the functions
being debugged, compile the function(s) with the /SHOW=SYMBOLS
qualifier added to the /DEBUG qualifier. For example:

CC/DEBUG/SHOW=SYMBOLS METRIC

The /SHOW qualifier can request a listing of #include files that are
part of your program. To list the storage map and #include files (with
their statement line numbers), specify:

$ CC/DEBUG/SHOW=(SYMBOLS INCLUDE) METRIC

In addition, if you use #define macros, you can compile your modules
with the /SHOW=EXPANSION qualifier. To list the compiler map,
#include files, and #define macro expansion, specify:

$ CC/DEBUG/LIST/SHOW=(SYMBOLS :INCLUDE sEXPANSION) METRIC

When you execute an image compiled and linked with the debugger,
initial control goes to the debugger, which identifies itself as follows:

% RUN METRIC

UAX-11 DEBUG VYersion ‘Xexx’
ADEBUG-I-INITIAL: landuade is BASIC, module set to ‘CONVERTS
DBG

For this version of the VAX-11 C debugging support, the language is set
to BASIC. The module name displayed in the debugger’s message is the
name of the object module containing the main function. It is not
necessarily the same as the name of the image file. This message indi-
cates that the name of the main function in the image file METRIC is
CONVERT.

The DBG> prompt indicates that the debugger is now ready to process
your commands. You respond to the prompt with one of the commands
recognized by the debugger. (See Table 15-1.)

To terminate the debugging session, use the EXIT command:
DBGYEXIT

320 Chapter 15

When your program has been thoroughly debugged, you can recompile
and relink it without the /DEBUG qualifier. Or, you can run it with the
/NODEBUG qualifier. For example:

& RUN/NODEBUG METRIC

However, the modules required by the debugger occupy space within a
program image file, so recompiling is usually preferable.

15.1.2 The DEBUG Command

When a program that has been linked with /DEBUG is executing, you
can interrupt it with at any time and invoke the debugger by
entering the DEBUG command. For example, if you think a program
may be looping, or if you see erroneous output, you can interrupt it as
follows:

$ RUN COMPUTE

b9
1

$ DEBUG
DBG >

When you press CTRLY), the command interpreter displays its dollar sign
($) prompt, and you can enter the DEBUG command. The DBG>
prompt indicates that the debugger has control.

If the program was compiled and linked with the /DEBUG qualifier,

- you have access to full symbolic debugging; you can reference program
variables, line numbers, and entry-point names. If the program was not
compiled with the /DEBUG qualifier, you have access to limited sym-
bolic debugging; you can reference only entry-point names.

15.1.3 Effects of Optimization on Debugging

When you compile a VAX-11 C program, the resulting object code is
optimized; that is, the compiler has used techniques to make the pro-
gram run faster. For example, the compiler puts automatic scalar varia-
bles in registers, removes invariant expressions from loops, and so on.

You do not need to disable any compiler optimizations in order to

debug a VAX-11 C program. By default, the compiler does not perform

any optimization that would adversely affect debugging when /DEBUG
is specified.

Debugging VAX-11 C Programs 321

15.2 Debugger Command Syntax and Summary

You enter commands to the debugger in much the same way that you
enter DCL commands. The debugger commands have the format:

cmd [keyword] [/qualifier] [param ...] comment

cmd
Is a command verb (for example, SET, CANCEL) that indicates the
general function to be performed.

keyword
Gives the specific function to be performed by the command (for
example, CANCEL MODULE, SET SCOPE, SHOW LAN-
GUAGE).

/qualifier
Modifies the effect of the command.

param
Qualifies the function in some way, such as specifying a range of
locations to be monitored.

comment
Is any text message. The debugger ignores all text after the exclama-
tion mark.

You can enter more than one command on a command line by separat-
ing the commands with semicolons (;).

You can continue a command on a new line by ending the line with a
hyphen (-); the debugger will then prompt for the rest of the command
with an underscore ().

Table 15-1 summarizes the debugger commands. The boldface letters
indicate the minimum abbreviation you must type in order for the
debugger to recognize the command name, qualifier, or parameter.

You can obtain information about a debugging command with the de-
bugger's HELP command.

322 Chapter 15

Table 15-1: Summary of Debug Commands

@file-spec

Reads debugger commands from the specified command procedure file.

CALL entry-name [(argument,...)]

Invokes a specified function and optionally passes arguments to it.

CANCEL ALL

Cancels all breakpoints, tracepoints, and watchpoints, and restores the
mode and scope to their original values.

/ALL

%LINE line-number
CANCEL BREAK { entry-name

symbolic-reference

nonsymbolic-address

Cancels all breakpoints or a specified breakpoint.

CANCEL EXCEPTION BREAK

Cancels the effect of SET EXCEPTION BREAK and restores the
debugger’s default method for handling exceptions.

CANCEL MODE

Restores the radix and display modes to their defaults for VAX-11 C
debugging, which are decimal and symbolic.

CANCEL MODULE { /ALL }

module,...

Deletes all modules from the run-time symbol table, or deletes one or
more modules from the symbol table.

CANCEL SCOPE

Resets the scope to that containing the current program counter.

%LINE line-number

entry-name

symbolic-reference
CANCEL TRACE ¢ nonsymbolic-address

/ALL

/BRANCH

/CALL

Cancels a specified tracepoint or all tracepoints.

Debugging VAX-11 C Programs 323

Table 15-1: (Cont.) Summary of Debug Commands

CANCEL TYPE/OVERRIDE

Restores the debugger’s default interpretation of variables: the variables’
declared data types and sizes.

/ALL 1
CANCEL WATCH variable-reference

symbolic-reference

nonsymbolic-address j

Cancels all watchpoints or cancels a watchpoint on a specified location
or variable.

DEFINE symbol = expression ,...

Creates one or more symbols whose values are equated to program loca-
tions or to numeric expressions.

DEPOSIT location = data [,data,...]

/ASCII:n /DECIMAL

/BYTE [/HEXADECIMAL]
/INSTRUCTION /OCTAL

/LONG

/WORD

Changes the contents of a specified variable or program location.

EVALUATE [/ADDRESS] expression,...
/DECIMAL
/HEXADECIMAL
/OCTAL

Evaluates an expression or an address and displays the results in decimal
or other specified radix.

EXAMINE variable-reference

/ASCIL:n /DECIMAL
/BYTE /HEXADECIMAL
/INSTRUCTION /OCTAL
/LONG
/WORD
/SYMBOLIC
/NOSYMBOLIC
Displays the current contents of a variable.
EXIT
Ends the debugging session and returns control to the command inter-
preter.

324 Chapter 15

Table 15-1: (Cont.) Summary of Debug Commands

%LINE line-number
entry-name

GO .
symbolic-reference
nonsymbolic-address
Starts or continues program execution.
HELP

Displays a description of a debugger command, parameter, or qualifier.

%LINE line-number
entry-name
symbolic-reference
nonsymbolic-address

SET BREAK [/AFTER:n] [DO (cmd [;emd...])

Sets a breakpoint at a specified statement, function, or program address.

SET EXCEPTION BREAK

Requests that the debugger treat external exception conditions as if they
were breakpoints; requests a program interrupt when an exception occurs.

SET LANGUAGE language-name

Specifies the source language of a module or routine, for language-specific
debugging.

SET LOG [file-spec]

Specifies the name of a log file to which the debugger should write pro-
gram output when the SET OUTPUT LOG command has been entered.

DECIMAL
HEXADECIMAL

SET MODE [OCTAL) e
NOSYMBOLIC
SYMBOLIC

Sets the default mode for entering and displaying program locations that
are not declared variables.

module-name ,...
SET MODULE { JALL }

Adds the symbols from the indicated module(s) to the run-time symbol
table.

Debugging VAX-11 C Programs 325

Table 15-1: (Cont.) Summary of Debug Commands

LOG
NOLOG

TERMINAL
SET OUTPUT NOTERMINAL]

3 e

VERIFY]
NOVERIFY

Controls whether the debugger writes output to a log file or to the
terminal, and whether it echoes commands executed from command pro-
cedures.

0
SET SCOPE { \ }) e
scope-number
Specifies the modules to be searched for a symbol and the order in which
they are to be searched.

[OVER
INTO

SYSTEM
SET STEP NOSYSTEM

[INSTRUCTION
LINE

Specifies how the debugger is to behave when the STEP command is
issued.

%LINE line-number
entry-name
symbolic-reference
nonsymbolic-address
/BRANCH

/CALL

Establishes a tracepoint at a specified statement, function, or program
location.

SET TRACE

326 Chapter 15

Table 15-1: (Cont.) Summary of Debug Commands

/ASCII:length
/BYTE

SET TYPE [/OVERRIDE] ! /INSTRUCTION
/LONG
/WORD

Sets the default data E types for the DEPOSIT and EXAMINE com-
mands for locations that do not have declared data types.

SET WATCH variable-reference

Establishes a watchpoint on a specified static variable.

SHOW BREAK

Displays current breakpoints.

SHOW CALLS [integer]

Displays the current program location and all, or a specified number of,
preceding calls.

SHOW LANGUAGE
Displays the current debugging language.

SHOW LOG
Displays the current status of the log file, if any.

SHOW MODE
Displays the current default entry and display modes.

SHOW MODULE

Lists the modules in the image being debugged and shows which modules
have names in the run-time symbol table.

SHOW OUTPUT
Displays the current status of the debugger’s output files.

SHOW SCOPE

Displays the current default scopes.

SHOW STEP

Displays the current default step conditions.

SHOW TRACE

Displays current tracepoints.

Debugging VAX-11 C Programs 327

Table 15-1: (Cont.) Summary of Debug Commands

SHOW TYPE [/OVERRIDE]
Displays current default data type or override type.

SHOW WATCH
Displays current watchpoints and the number of bytes being watched.

[/OVER
/INTO

[/SYSTEM]

STEP /NOSYSTEM

[/INSTRUCTION [integer]]
/LINE [integer]

Executes one or more statements, or steps into or over subroutines.

15.3 Special Characters and Expressions

This section summarizes how the debugger interprets special characters
that perform address arithmetic. For example, you can use the multi-
plication operator (*) in the following manner:

DBEHEXAMINE (% LINE 40) *2

After this command, the debugger displays the value at the program
location whose address is twice that of % LINE 40.

Table 15-2 lists arithmetic operators.

The debugger provides a quick method for referencing relative ad-

dresses or locations in DEPOSIT and EXAMINE commands. Table
15-3 lists these relative addressing operators.

15.4 The Run-Time Symhol Table

The debugger maintains a run-time symbol table that lists the symbols
you can refer to during a debugging session. The run-time symbol table
always contains the names of global symbols in the image. The names
of local symbols, that is, names of variables defined within your pro-
gram, are available in the image file only if you included the /DEBUG
qualifier in the CC command.

328 Chapter 15

Table 15-2: Arithmetic Operators

Character Interpretation

+ Arithmetic addition (binary) operator, or unary plus sign

- Arithmetic subtraction (binary) operator, or unary minus sign

* Arithmetic multiplication operator

/ Arithmetic division operator

@ Arithmetic shift operator

<> Precedence operators; do <enclosed> first
"D Decimal radix operator

"0 Octal radix operator

"X Hexadecimal radix operator

Table 15-3: Address Reference Operators

Operator Meaning

The current location (the location most recently referred to by
an EXAMINE or DEPOSIT command). Use this symbol with
VAX-11 C to refer to a scalar variable or to an element of an
array of scalars.

The previous location (the location at the next lower address
from the current location).

RET The next location (the location at the next higher address from
the current location). Press to refer to the next element in
an array of scalar variables.

Debugging VAX-11 C Programs 329

15.4.1 Names Included in the Symbol Table by Default

Before you can refer to a name, you must ensure that the name is in the
run-time symbol table. By default, when a debugging session begins,
you have access to global symbols and variables declared within the
indicated module. For example, a VAX-11 C function may contain the
lines:

main()
{
static enum color {redsorandesvellow} cli
static char chi
static float lidht_speed}
static double speed_Power]?
static int i3
static unsidned uij
light_speed = 3,0el0}
speed_Power = 3,1234567880123456789e103

cl = redj
ch = ‘a’}
i = -438394;3

ui = 7903742703
¥

The debugger identifies the current module as MAIN, and by default
you can access the names c1, light__speed, speed__power, i, ui, and ch.
When you want to access a variable or location that is not in the symbol
table by default, you must specify the module containing the variable
or location.

1. The debugger does not recognize case differences between C identifiers. For
example, if the function contained the declaration “char C1;”, the debugger
would not distinguish between the character and enumerated versions of the
variable, and it would issue a warning message. In addition, the debugger does
not recognize the difference between labels and variables of the same name, even
though these do not constitute naming conflicts in VAX-11 C.

330 Chapter 15

15.4.2 Adding Names to the Symbol Table

When a program begins executing, the symbol table contains only the
symbols in the first executed function. If you are debugging multiple
functions, you must use the SET MODULE command to copy symbols
from other modules to the symbol table. For example, a VAX-11 C
function can declare an external function as follows:

main()

{
static int 13
statiec double f3

double f20)3%

i = 400%

printf{"contents of 13 Zd\n"si)3
fo= f2(1i)3

printf{"contents of f: Yein",f)i

double f2(p)

int P

{
static double 13
static int J3
io= 3.,0e103
io= 23
return{p*i*.j)i

¥

To refer to the variable j in f2, you must first bring f2’s symbols into the
table with the command:

DBG>SET MODULE FZ2
This command makes the names of static variables in f2 accessible. For

example, after this SET MODULE command, you can examine j with
the command:

DBGEXAMINE J
Automatic variables in a function — for example, in f2 — are not ac-

cessible until the function actually executes, since it is not until then
that variables are allocated storage.

Subsequently, you can use the CANCEL MODULE command to re-
move symbols you no longer need, and then you can use the SET
MODULE command again to insert the symbols you require next. At
any time, you can display a list of the available modules with the
SHOW MODULE command. For example:

Debugging VAX-11 C Programs 331

DBG>SHOW MODULE

module mame symbols landuade size
MAIN ves BASIC 128
F2 Yes BASIC 160
CHMAIN no MACRD 104
C$#$DOPRINT no MACRD 232
CHUNIX no MACRD 1988
CeMaLLOC no MACRO 412
C$CUSERID no MACRO 220
C$STRCPY no MACRO 168
CHSTRLEN no MACRO 168
CHESTRNCPY no MACRO 168
LIB$GET_FOREIGN no BLISS 116
LIB$MSGDEF no MACRD 104
RMEGBL "o MACRD 104
total modules: 13, remaining size: B2982.

The display shows all the modules used by the program, 13 in this case,
and it shows whether a module’s symbols are currently in the symbol
table. For this version of the debugger, C modules appear as “BASIC”
in the language column. For instance, the symbol table currently con-
tains the symbols in modules MAIN and F2, but not those in the other
modules.! The symbols in F2 were inserted by the SET MODULE
command. Thus, when the program first executes, the “symbols” col-
umn for F2 would say “no,” meaning that its symbols are not currently
accessible.

15.5 Specifying References and Locations

The run-time symbol table lets you refer to names and program loca-
tions symbolically. You need concern yourself only with the name, and
not the memory location, of the data. This symbolic form of reference
applies to scalar variables and to program addresses, such as program
line numbers and function names.

You can refer to the following items symbolically:

e Scalar variables (but not function parameters)

¢ Global symbols

¢ Program locations

e Symbols you create with the DEFINE debugger command
e Permanent symbols defined by the debugger

1. The module names prefixed by C$, LIB$, RMS, and OTS$$ are run-time
modules required for the execution of the VAX-11 C programs.

332 Chapter 15

Symbols can be variable references or values. The debugger interprets
them according to the following rules:

1. If a symbol begins with an alphabetic character, the debugger
assumes that it is a program variable or a symbolic reference to
an address.

2. If a symbol begins with a numeric character (0 through 9), the
debugger assumes that it is a numeric constant.

3. If a symbol is enclosed in apostrophes or quotation marks, the
debugger assumes that it is a character-string constant.

15.5.1 References to Global Symhols

Global symbols are those symbols defined with the globaldef or global-
value storage class keywords. The names of the functions are also con-
sidered global symbols. Global symbols can be referenced from all parts
of the program.

15.5.2 References to Program Locations

You can refer to program locations by function name, line number, or
(nonsymbolic) virtual address. To specify a function by name, give the
command followed by the name of the function. For example, the com-
mand

DBG>SET BREAK LIST_BY_FLOWER

sets a breakpoint at the entry to function list__by__flower.

To specify a line number, use the %LINE specifier, as shown here:
DBG=SET BREAK XLINE B

This command sets a breakpoint at line 6, which corresponds to the
compiler-generated line number shown in the listing.

The debugger does not recognize all line numbers. In particular, it does
not recognize those line numbers associated with nonexecutable state-
ments, such as declarations. If you specify such a line number, the
debugger responds with a message indicating that no such line exists.

You can also set breakpoints at a line within a function. For example,
the commands

DBG»SET MODULE LIST.BY_ _FLOWER
DBG»SET BREAK ZLINE LIST.BY_FLOWERMN1L

set a breakpoint at line 11 in list__by__flower.

To specify a virtual address, you issue the command without a prefix.
For example:

DBG:» SET BREAK 700

Debugging VAX-11 C Programs 333

You can determine the virtual address of a line number or a variable by
entering an EVALUATE command as follows:

DBGXEVALUATE/ADDRESS YLINE 17
8O0

The debugger displays the virtual address of the instructions for the
statement on line 17.

15.5.3 Symbolic References to Program Locations

At times you may want to assign a symbolic name to a program loca-
tion. To do this you must first determine the virtual address of the
location with the EVALUATE/ADDRESS command. Then, you must
use the DEFINE command to assign the symbolic name. For example:

DBG*EVALUATE/ADDRESS ZLINE 42
1666
DBG*DEFINE CHK = 1BGG

Subsequent references to line 42 can be made using the defined symbol
CHK. For example, the command

DBG:*SET BREAK CHK
sets a breakpoint at line 42. Similarly, the commands

DBGEVALUATE/ADDRESS CARD-COUNTER
G445
DBG>DEFINE CC = G445

define a symbolic name for the variable card__counter.

15.5.4 The Debugger’s Permanent Symbols

The debugger has the following permanent symbols; you can use them
at any time during the debugging session.

e RO - R11 General registers 0 through 11

e AP Argument pointer

e FP Frame pointer

e SP Stack pointer

e PC Program counter

e PSL Processor status longword

These names cannot be redefined; for example, you cannot use the
name RO to create a symbol definition with the DEFINE command.’

1. The names of permanent symbols may also conflict with identical names used
in your program. Furthermore, all names from your program are entered in
uppercase in the debugger symbol table, so the name of a variable sp in your
program conflicts with the permanent symbol SP.

334 Chapter 15

15.6 Scope

In VAX-11 C, the scope of a name is the function in which the name is
declared. If the program you are debugging consists of more than one
function, symbolic references may be ambiguous. At times, you may
have to tell the debugger how to resolve ambiguous references.

For example, assume that you are debugging two functions; both use a
variable i, and both modules are included in the run-time symbol table.
Unless you explicitly specify the scope of i, the debugger may be unable
to determine which variable i you want.

You can specify the scope in one of three ways:
¢ By using the debugger’s current default scope.

¢ By explicitly specifying the scope of the variable by prefixing the
variable’s name with its pathname.

® By setting a new default scope with the SET SCOPE command.

When you begin a debugging session, the debugger automatically de-
fines the first function linked as the default scope (also called the PC
scope). However, this default scope is dynamic; that is, as you debug
your program, the default scope is always the function that is currently
executing. To resolve a symbolic reference, the debugger goes through
the following steps:

1. If the specified symbolic name is unique within the run-time
symbol table, then the debugger uses that name.

2. If the specified symbol is ambiguous — that is, it is not unique
within the symbol table — but one of its occurrences is within
the current PC scope, then the debugger recognizes the symbol
as it appears in the PC scope.

3. If the specified symbol is not defined in the symbol table, or if it
is ambiguous and does not occur within the current PC scope,
then the debugger issues an error message indicating that the
name is ambiguous.

The program and dialog in Example 15-1 illustrate these rules.

Debugging VAX-11 C Programs 335

PROGRAM:

main()

{
static int i3
static double f3-
double f2()3
i = 4003
fo= f2(i)3

double f2(pP)
int pP3
{
static double i3
static int J3
i = 3,0el0;3
Jd o= 23

return{p*i*j);

DEBUGGER DIALOG:

+

+

DBG:SHOW MODULE

module mame symbols landuagde size
MAIN ves BASIC 168
F2 no BASIC 200

DBG*EXAMINE i

MAINNTI: O

DBG:EXAMINE f2\i

ADEBUG-W-NOSYMBOL + svmbol ‘F2\I‘ is not in the svmbol table
DBG:*SET MODULE 2

DBGEXAMINE f2\i

F2\1I: 0,0000000000000000E+00
DBG*SET BREAK ZLINE f2\17
DBGrdo

routine start at MAIN

break at F2\ZLINE 17
DBGXEXAMINE i

F2\1: 30000000000,00000
DBG:EXAMINE main\i

MAINNT: 400

DBGHEXIT

Example 15-1: Scope of Symbolic Names

336 Chapter 15

The first EXAMINE command displays MAIN’s version of i, because
MAIN is the default scope. The SET MODULE comimand allows you
to examine F2’s version of i and to set the breakpoint at line 17 (which
is in function 2). The GO command starts the program, which is then
interrupted at the breakpoint. Now, the default scope is F2, and the
EXAMINE command shows F2\I. At this point, to look at MAIN’s
version of i, you must use the pathname “main\” in front of the varia-
ble name to resolve the reference to i.

When you use a %LINE specifier, the specifier must appear before the
pathname. For example:

DBG>SET BREAK 7LINE SUBI1N7

This command sets a breakpoint at line 7 in the scope of the module
SUBL.

If you want to make frequent references to a location with a long path-
name, you can define a symbolic name for it with the DEFINE com-
mand. For example:

DBG+SET SCOPE INSIDE
DBG-EVALUATE/ADDRESS CARD_COUNTER
9965

DBG-DEFINE CC = 9965

DBG+SET SCOPE MAINP

+

DBGXEXAMINE CC

In this example, the SET SCOPE command changes the scope to the
module INSIDE, the EVALUATE/ADDRESS command displays the
virtual address of the variable card__counter, and the DEFINE com-
mand uses this value to define the symbol named CC. Subsequently,
the scope is reset to MAINP. During the debugging session, the value of
card__counter can be referred to with the symbolic name CC, regard-
less of the current scope.

15.6.1 Changing the Scope

If you want to make a number of symbolic references within the same
function, you can eliminate the need to specify scope with each sym-
bolic address by using the SET SCOPE command. For example, the
following command sets the scope to SUB3:

DBG>S5ET SCOPE SUB3

You can also define a scope list to specify the order in which the de-
bugger should search for symbols. For example, the command

DBG>SET SCOPE MAR 0 »JAN

Debugging VAX-11 C Programs 337

instructs the debugger to search for symbols first in function mar. If it
cannot find a specified symbol in mar, then the debugger searches the
PC scope, and, if necessary, jan. (The symbol 0 shows that the current
scope is the default PC scope.)

The scope defined in a SET SCOPE command becomes the default
scope for all symbolic references until you explicitly change or cancel
the scope. You can determine the current scope at any time by entering
the SHOW SCOPE command. For example:

DBG*SHOW SCOPE
scope: MAR 0+ JAN

The message shows that the current scope is set first to MAR, then to
the PC scope, and finally to JAN.

The SHOW SCOPE command may also respond as follows:

DBG:*SHOW SCOPE
scorpe: O [= MULTAMULTI

Again, the symbol 0 shows that the current scope is the default PC
scope. Within brackets, the debugger displays the module and routine
name of the default scope; the scope is module MULT, function mult.

The CANCEL SCOPE command resets the scope to the default PC
scope.

When you explicitly SET SCOPE to a function (module) name, the
debugger implicitly performs a SET MODULE command. Therefore,
symbols for the function specified in your SET SCOPE command are
placed in the symbol table. However, if you use the PC scope, you must
also use SET MODULE to place symbols for the function in the symbol
table.

15.6.2 The Scope of Automatic Variables

If you refer to an automatic variable when the function that defines the
variable is not in the current scope, the debugger displays a warning
message. For example, this would occur if you tried to refer to an
automatic variable declared in a function that has executed a return
statement, and control has returned to the debugger:

WDEBUG-I-EXITSTATUSy is ‘ZSYSTEM-S-NORMAL + normal
successful completion’
DBGXEXAMINE ¥
ADEBUG-I~PCNOTINSCPy PC is not within the score of the
routine declaring
symbol HLOOKNXLOOKAX: 3

This message notifies you that the variable x in the function xlook does
not have an address assigned exclusively to it and that its address may
have another use in the current section of your program.

338 Chapter 15

15.7 The EXAMINE and DEPOSIT Commands

The EXAMINE and DEPOSIT commands display and change the con-
tents of variables, respectively. When you examine or deposit data into
a VAX-11 C variable, you do not need to specify the data type of the
variable, unless you want to deposit data of a different type. In the
following example, xvalue is of type float.

DBG*EXAMINE XUALUE
MAINAXUVALUE: 14.50000
DBG*EXAMINE/BYTE XVALUE
MAIN\XUALUE: G8

The debugger always uses the declared data type of a scalar variable
unless you override it. In this example, the /BYTE qualifier tells the
debugger to display only the contents of the first byte of the storage
occupied by the variable xvalue.

The SET TYPE/OVERRIDE command tells the debugger to display all
variables using a certain type. For example, in response to the following
command, the debugger displays only the first byte of any variable’s
storage:

DBG*SET TYPE/OVERRIDE BYTE

To restore the normal interpretation of data, types, use the CANCEL
TYPE/OVERRIDE command.

For this release of VAX-11 C, there are restrictions both on the data
types of variables that you can access and on the syntax used to refer to
them. Because the language in this version of the debugger is set to
BASIC, you cannot examine or modify the following data types in the
usual C syntax:

e Arrays
e Structures and unions
e Function parameters

Furthermore, the debugger cannot properly manipulate array elements
or structure/union members unless they are integers or characters. The
methods for working around the syntactic restrictions are discussed
later in this chapter.

15.7.1 Scalar Variables

You can use EXAMINE to display scalar variables of any C data type.
If you specify more than one variable and separate them with commas,
the contents of each variable are displayed. You can use the DEPOSIT
command to change the contents of one variable at a time. Then the
variable name and the new value must be separated by an equal sign.
The program and debugger dialog in Example 15-2 show how scalar
variables of several types are examined and how a new value can be
deposited into a variable.

Debugging VAX-11 C Programs 339

PROGRAM:

main()

{
static float light_sreed]
static double speed_rPowers
static unsigned uij
static londg 1i3

light_speed = 3,0el03
speed_Power = 3,1234567890123456789e103
1i = -438384;3

ui = 7903742703

DEBUGGER DIALOG:

DBG:>SET BREAK ZLINE 12

DBG GO

routine start at MAIN

break at MAIN\ZLINE 12
DBGEXAMINE/DECIMAL lisuislight_speed:speed_power
MAINNLI: -438394

MAINNUI: 790374270

MAIN\LIGHT_.SPEED: 3.,0000001E+10
MAIN\SPEED_POWER: 31234567890.,12346
DBG:DEPOSIT ui=1

DBG*EXAMINE/DECIMAL ui

MAIN/UI: 1

Example 15-2: Examining and Depositing Values
in Scalar Variables

15.7.2 Arrays

With the EXAMINE command, you can look at the values in arrays,
although the syntax understood and returned by the debugger differs
from the usual C syntax for subscripted references. The valid data
types for array elements are as follows:

e Integers (all sizes, signed or unsigned)
e Enumerated (enum) values

1. In this and all other contexts, the debugger treats enumerated types as
integers.

340 Chapter 15

Note that floating-point arrays cannot be examined by the debugger.

The program and dialog in Example 15-3 illustrate the examination of
elements in the integer array arr:

PROGRAM:

main()
{
int i1
static int arrl[1013
for (i=03% i<103% i++)
{
arr[il=i3}

DEBUGGER DIALOG:

DBG:SET BREAK YLINE B
DBG GO

routine start at MAIN
break at MAINNJLINE 8
DBG*EXAMINE arr
MAINNARR: ©

DBG GO

start at MAINNZLINE 8
break at MAIN\ZLINE B
DBG GO

start at MAINNZLINE 8
break at MAIN\ZLINE 8
DBG =GO

start at MAINAZLINE B
break at MAINAZLINE B8
DBG GO

start at MAINNZLINE 8
break at MAINNZLINE 8
DBGEXAMINE arr
MAINNARR: O
DBGEXAMINE

1028: 1

DBGEXAMINE

1032: 2

DBG*EXAMINE

1036 3

DBG=EXIT

Example 15-3: Examining Data in an Array

Debugging VAX-11 C Programs 341

The debugger does not allow you to write BASIC-like subscripted refer-
ences to the array elements. The dialog in Example 15-3 shows the
correct way to look at the elements’ values, after several GO commands
have executed the loop in the program. The command:

EXAMINE ARR

shows the contents of the first element (in C syntax, arr[0]). Then, the
commands:

KAMINE @D

show the subsequent locations in the array — the elements arr[1],
arr[2], and so on.

In contrast, consider the attempt to examine a floating-point array
shown in Example 15-4.

PROGRAM:

mainl)

{
int i3
static float arr[10713
for (i=03§ 14103 i++)
{

arrlil=i*3,0e103

DEBUGGER DIALOG:

DBG*SET BREAK ZLINE 8
DBG =GO

routine start at MAIN
break at MAINVALINE B
DBG=GO

start at MAINNYALINE 8
break at MAINNZLINE 8
DBG*EXAMINE arr
MAINNARR: O
DBG*EXAMINE

1028: ~Z072620377
DBGSEXIT

Example 15-4: Examining Floating-Point Elements
of an Array

342 Chapter 15

Here, the array elements are of type float, but the debugger displays
them as integers. There is no facility in this version of the debugger for
displaying elements or members of any aggregate unless they are inte-
gral (integers or characters).

15.7.3 Character Strings

To examine or modify parts of a character string, you must override the
default mode of the debugger (long integer), by use of the /ASCII quali-
fier. The program and dialog in Example 15-5 show the EXAMINE and
DEPOSIT commands used to examine and change characters in the
variable string:

The first EXAMINE command shows a meaningless value for the
string, because the debugger uses its default display type, long integer.
Notice that you can either specify the /ASCII:n qualifier on each com-
mand, where n is the number of characters to be displayed, or you can
override the default display type, set it to ASCII:1, and step through
the array with EXAMINE commands. With the deposit command, you
must use the /ASCII qualifier, or the debugger will interpret the value
you try to assign as an integer (hence the warning message).

PROGRAM:

#include stdio
main()
{

char stringdl2013

strepy(string,s"VAX-11 C") 3
¥

Example 15-5: Examining and Depositing Characters
in a Character String

Debugging VAX-11 C Programs 343

DEBUGGER DIALOG:

DBG»SHOW MODE

modes: svmbolic, decimal
tvPe: lond inteder
tvepe/override: none
DBG»SET BREAK %ZLINE GBS

DBG =GO

routine start at MAIN
break at MAINNZLINE BS
DBG-EXAMINE STRING
MAINNSTRING: 760738614
DBGr*EXAMINE/ASCII:1 string
2147233182 Y
DBGrEXAMINE/ASCII:B string
21472533182 VAX-11 C
DBG:DEPOSIT string = ‘PDP’
ZDEBUG-W-INUNUMBER » invalid numeric string ‘PDP’
DBG:DEPOSIT/ASCII:3 strind = 'PDP’
DBGrEXAMINE/ASCII:B string
21472531582 PDP-11 C
DBG»SET TYPE/OVERRIDE asciiz:l
DBG*EXAMINE STRING
2147255152: P

DBG*EXAMINE

21472551533: D

DBG*EXAMINE

2147253154: P

DBGrEXAMINE

21472531585: -

DBG:EXAMINE

2147255156: 1

DBGEXIT

Example 15-5: (Cont.) Examining and Depositing
Characters in a Character String

344 Chapter 15

15.7.4 Structures and Unions

You can manipulate structures and unions in a manner similar to that
shown for arrays. The program and dialog in Example 15-6 illustrate

the examination of structure members:

PROGRAM:
main()
{
static struct
{
int imj

float fm3i
char cmi

} sus
su.im = -243%
su.sfm = 3.0e103
su,cm = ‘a’}l

DEBUGGER DIALOG:

.

.

DBG:*SET BREAK ZLINE 13
DBG:>GO

routine start at MAIN
break at MAINNZLINE 13
DBGFEXAMINE su,fm
“DEBUG-W-NOSYMBOL s+ svmbol ‘SU,FM’ is not in the svymbol
DBG>EXAMINE swu

MAINASY: -24
DBG*EVALUATE/ADDRESS svu
1024

DBG*EXAMINE

-2072620577

HAMINE

1032: 97
DBG>EXAMINE/ASCII:1
1032: a
DBG>EXAMINE/ASCII:1 1032
1032: a

Example 15-6: Examining Data in Structures

Debugging VAX-11 C Programs

table

345

Notice the warning message; the debugger does not accept the C syntax
for a structure reference. Instead, the debugger displays the first mem-
ber in storage, sv.im. Since that member is an integer and the default
display mode is integer, the correct value is shown.

The virtual address of sv is shown by the EVALUATE/ADDRESS com-
mand, and the following EXAMINE command shows the next item in
storage (four bytes away from sv, since the default display mode is a
long, or 32-bit, integer). This EXAMINE command shows the contents
of the longword at virtual address 1028, which is the correct address of
the floating-point member sv.fm, but the value is incorrect. Floating-
point members cannot be examined.

The next EXAMINE command shows the next longword, which con-
tains the member sv.cm, a character. You can display it in either deci-
mal or character form, as shown. Note the use of the EXAMINE com-
mand to redisplay the contents of the “current” (most recently refer-
enced) location.

Unions are manipulated in a way similar to structures except that all
the members of a union occupy the same storage. The dialog in Exam-
ple 15-7 shows several references to the same location after the SET
BREAK and STEP commands have performed the assignment state-
ments individually.

PROGRAM:

main()
{
static union
{
int im}
float fmj
char cmj
} ouui

243
3.0e103

’

Hy s im
uu, fm

’

Hu.ecm a’s

346 Chapter 15

DEBUGGER DIALOG:

DBG*SET BREAK ZLINE 11
DBG>GO

routine start at MAIN
break at MAINNZLINE 11
DBGEXAMINE wuu

MAIN\UYV: -24

DBG:*STEP

start at MAIN\ZLINE 11
sterpped to MAINNZLINE 12
DBG*EXAMINE uu

MAIN\NUY: -2072620577
DBG:STEP

start at MAIN\JLINE 12
sterrped to MAINNZLINE 13
DBG*EXAMINE uu

MAINNUY: 2072620703
DBG*EXAMINE/ASCII:1 wnu
MAINNUY: a

DBG*EXIT

Example 15-7: Examining Data in Unions

As with structures, the floating-point member, uv.fm, cannot be dis-
played meaningfully.

15.8 The GO Command

The GO command starts program execution. You use this command
when you begin the debugging session and when you want to continue
execution after the program has been suspended. For example:

% RUN FLOMWERS

UAX-11 DEBUG Version X.xx

ADEBUG-I-INITIAL:, langduade is ‘BASIC’: score and
module set to ‘FLOWERS'
DBG>GO
WDEBUG-I-EXITETATUS, is ‘ZSYSTEM-S5-NORMAL :+ normal
successful completion’
DBG >

Debugging VAX-11 C Programs 347

The EXITSTATUS message indicates that the program has run to
completion.

When you are finished with the debugging session, use the EXIT com-
mand to leave the debugger. You must not restart a program from the
beginning unless you first exit from the debugger. Otherwise, unpre-
dictable results occur. If your program loops or fails to complete execut-
ing, or if you need to interrupt it for any other reason, you can press
€AY to return to the DCL command level. For example:

DBG:GO

Y

%

The $ prompt on the terminal indicates that you have returned to the
DCL command level. To return to the debugger, type DEBUG or CON-
TINUE. If you type DEBUG, control returns to the debugger and the
debugger prompts you for a command. If you type CONTINUE, the
debugging session continues from where it was interrupted.

If you do not want to continue the debugging session, you can enter a
STOP command or DCL command to stop the debugging session. You
can also reissue the RUN command for the program you are executing,
if you want to rerun it from the beginning.

15.9 The STEP Command

You will often want to maintain control of your program so that you can
display and/or modify variables after single statements have been exe-
cuted. The STEP command executes a program one or more lines at a
time. For example:

DBG:STEP 5

causes the debugger to execute the next five statements and suspend
the program.

When you are stepping through a program, the debugger displays only
the line numbers of the lines as they are executed; it does not display
the statements.

348 Chapter 15

The debugger maintains default modes for stepping commands. You
can override the default modes with the STEP command qualifiers, or
you can change the default with the SET STEP command. For exam-
ple, the default step for high-level languages is STEP/LINE, indicating
a line or statement number increment. In assembly language, the de-
fault is STEP/INSTRUCTION. Thus, if you want to look at the ma-
chine instructions that are executed for each VAX-11 C statement line,
enter the debugger command SET STEP INSTRUCTION, as follows:

DBG*SET STEP INSTRUCTION

DBGHSTEP

start at MAINP\MAINP\ALPHA Y%LINE ZG6

stepred to MAINPAMAINPNALPHA ZLINE 27 @ MOUZMWL #32.R1
DBG:STEP

start at MAIMPAMAINPNALPHA YLINE Z7

stepped to MAINPAMAINPNALPHA YLINE 27 +3: MOVIWL =3Z:R3
DBG:STEP

For each VAX-11 C statement, there are one or more machine-language
instructions. Each STEP command displays the next instruction.

When you subsequently issue a STEP command without qualifiers, the
instruction mode remains in effect. You can supersede this default by
including the /LINE qualifier in a STEP command. For example:

DBG:STEP/LINE 10

This command tells the debugger to execute 10 lines, regardless of the
current step default.

It is better to use STEP to execute only a few instructions at a time. To
execute many instructions and then stop, use a SET BREAK command
to set a breakpoint, and then issue a GO command.

15.10 Breakpoints

The BREAK commands let you select locations for suspending the
program. Thus, you can let a program run until it reaches a specified
statement. Then you can examine and/or modify variables or arrays in
the program. The BREAK commands perform the following functions:

e SET BREAK defines a line number, function name, or address at
which to suspend execution.

e SHOW BREAK displays all breakpoints currently set in the pro-
gram.

e CANCEL BREAK removes one or more breakpoints currently set
in the program.

For example, the command
DBG*SET BREAK %LINE 7

Debugging VAX-11 C Programs 349

sets a breakpoint at the statement corresponding to line number 7 in
the compiler listing. The debugger interrupts the program at line 7,
before the line is executed, as in this example:

DBGHSET BREAK Y%LINE 7

DBG:GOD

routine start at MAINPAMAINP
break at MAINPAMAINP ZLINE 7

After the breakpoint is set, the GO command continues program execu-
tion. When statement 7 is reached, the debugger interrupts the pro-
gram and displays a message indicating that the breakpoint has been
reached. At this breakpoint, you can examine or change static varia-
bles, begin stepping through the program, and so on.

To set a breakpoint at a function entry point, specify it by name. For
example:

DBG*SET BREAK PRINT_ROUTINE

This command sets a breakpoint at the entry to the function print__
routine.

You can use the /AFTER qualifier to control when a breakpoint takes
effect. For instance, if you set a breakpoint on a line that is in the range
of a loop, you can specify the number of iterations that should be
executed before the break occurs, as shown in the following example:

DBGXSET BREAK/AFTER:3 ZLINE 20
In this example, the breakpoint is reported the third time line 20 is
encountered and every time it is encountered thereafter.

The SET BREAK command also lets you specify some-action to be
taken each time a breakpoint is encountered. For example, to set a
breakpoint at a location, examine one or more variables, and continue,
you could enter a SET BREAK command as follows:

DBG:SET BREAK YLINE 29 DO(EXAMINE TOTALIEXAMINE AREAIGD)
DBGXGEO

After this command, the debugger sets a breakpoint at line 29. Each
time the statement on this line is executed, the debugger interrupts the
program, displays the contents of the variables total and area, and
executes the GO command to continue execution.

You can cancel a breakpoint with the CANCEL BREAK command. For
example:

DBG:CANCEL BREAK %LINE 9

This command cancels the breakpoint at line 9. To cancel all break-
points, enter:

DBG>CANCEL BREAK/ALL

You can display the current breakpoints in effect with the SHOW
BREAK command.

350 Chapter 15

15.11 Tracepoints

A tracepoint is similar to a breakpoint in that it suspends program
execution and displays the address at the point of suspension. However,
in the case of a tracepoint, program execution resumes immediately.
Thus, tracepoints let you follow the sequence of program execution to
ensure that execution is carried out in the proper order.

Note that if you set a tracepoint at the same location as a current
breakpoint, the breakpoint is canceled, and vice versa.

The TRACE commands perform the following functions:

e SET TRACE establishes lines or entry points in the program
where execution is to be momentarily suspended.

e SHOW TRACE displays the locations in the program where
tracepoints are currently set.

e CANCEL TRACE removes one or more tracepoints currently set
in the program.

For example, you can use SET TRACE if you want to keep track of the
number of times a given function is called, as follows:

DBG*SET TRACE INSIDEOUT

Each time a call is made to insideout, the debugger displays a message
like the following:

routine trace at MAINP\MAINP\INSIDEDOUT
The message gives the pathname of the symbol.

To set a tracepoint on a given statement, use the %LINE specifier, as in
the example below:

DBG:SET TRACE Z%LINE 30

While this tracepoint is in effect, the debugger displays a message each
time the statement on line 30 is executed.

15.12 Watchpoints

A watchpoint is a location that the debugger monitors. The debugger
informs you when your program tries to modify the contents of the
location. You can determine, therefore, whether locations are being
modified inadvertently during program execution. When you debug a
VAX-11 C program, you can set a watchpoint on a variable, and when
the watched variable is modified, the debugger suspends program exe-
cution, displays the address of the instruction, and prompts for a com-
mand.

Debugging VAX-11 C Programs 351

The following commands control watchpoints:
e SET WATCH defines the location(s) to be monitored.

e SHOW WATCH displays the location(s) currently being moni-
tored.

e CANCEL WATCH disdbles monitoring of a specified location or
of all locations.

You can monitor only static scalar variables. Because automatic varia-
bles are allocated storage on the stack, they are protected from access.
You cannot set watchpoints, tracepoints, and breakpoints at the same
location; the most recently issued command overrides the other.

Run-time errors occur if a watchpoint is in effect while I/O is being
performed. Thus, to watch a variable, you must be careful not to set the
watchpoint until all previous I/O is completed. You can do this by
setting a breakpoint after an I/O statement and then setting a watch-
point. For example, if you want to watch a variable r in a function that
contains a printf call on line 12, you could set the watchpoint as
follows:

DBGXSET BREAK YLINE 13 DO (SET WATCH R3IGO)
DBG:SET BREAK ZLINE 12 DO (CANCEL WATCH R3GO)

The SET BREAK commands in the above example ensure that each
time printf is about to be called, the watchpoint at r is canceled.
Following the printf call, the watchpoint is reestablished.

When a watched variable is modified, the debugger displays its former
contents, if any, and the modified contents. It then prompts you to
enter a command. The message is similar to the following:

write to MAINP\MAINP\R(1:B) at PC MAINP\MAINP %LINE 13 +Z5

old value = +0000000000

new value = +0034002700
DBG*

You must enter GO or STEP to continue the program’s execution.

15.13 Entering and Returning from Functions

You can use the following commands to debug a program that consists
of more than one function:

e The STEP command lets you specify whether you want to debug a
called function or step over it.

e The SHOW CALLS command displays a traceback of the calling
sequence.

e The CALL command lets you call a function and pass arguments
to it.

352 Chapter 15

15.13.1 Stepping Into and Over Functions

When you are stepping through a program, or when you have set a
breakpoint at a function reference, you can decide whether or not to
enter the function. To enter the function, type the following command:

DBG*STEP/INTO

If the names declared in this module are not already in the run-time
symbol table, you must also enter a SET MODULE command to in-
clude the symbols (including line numbers) to which you want to refer.

If you do not want to debug the function, enter:

DBG*STEP/OVER

Then, the debugger continues the program’s execution at the function’s
entry point and returns control to you when the function returns.

The STEP command also lets you decide whether you want to step
through system functions, such as VAX/VMS system services. If you
specify STEP/SYSTEM, then the debugger will step through system
functions for you. You cannot, however, set breakpoints or examine
data that is being used by system functions.

You can use the SET STEP command to set a default mode for step-
ping. For example:
DBGX*SET STEP INTO

After this command, the debugger steps into all functions. Note, how-
ever, that the debugger steps into the VAX-11 C run-time functions
and system services as well as your functions.

15.13.2 Displaying the Galling Sequence

The SHOW CALLS command produces a traceback of calls. This is
particularly useful when you have returned to the debugger after a
€AY interrupt. The debugger displays a traceback list that shows you
the sequence of calls leading to the current module. If you specify a
value, that value determines the number of calls to be displayed. For
example,

DBG:SHOW CALLS B
causes the six most recent calls to be displayed.

15.13.3 CGalling Functions

You can use the CALL command to call a function during the debug-
ging session. You can also specify arguments for the function, although
they must be literal constants. The program and debugger dialog in
Example 15-8 use the CALL command to call the function f2.

Debugging VAX-11 C Programs 353

PROGRAM:

#define C2 10
#include stdio

main()
{
static int i1
i = 4003
io= f20i)3%
>
int f2(r)
int pi
{
return{pr*p) i
>

DEBUGGER DIALOG:

DBG*SET BREAK ZLINE GBS
DBG»GO

routine start at MAIN
break at MAIN\ZLINE GBS
DBG»CALL f2(2)

routine start at F2

value returned is 4
DBG:CALL f2(i)

routine start at F2

value returned is 1048576
DBG:CALL f2(C2)
ZDEBUG-W-NOSYMBOL s+ svmbol ‘C2’ is not in the svymbol table
DBGHEXIT

Example 15-8: Using the CALL Command

Note that when you specify arguments with the CALL command, you
must use only literal constants. Variables are not valid in the argument
list of a CALL command, and neither are constants defined by the
#define control line or enum constant names.

The debugger always displays a return value from the function that was
invoked. Thus, if the function returns a value, the actual return value
will be displayed. However, if the function does not return a value or, as
in this example, you specify an invalid argument, the returned value is
meaningless.

354 Chapter 15

Appendix A

Portability Considerations

The information in this appendix is not meant to be exhaustive, but
rather is meant to serve as a guide to the kinds of portability considera-
tions that C programmers face when porting C programs from different
operating systems. This information is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation on the compatibility or functionality of VAX-11 C.

The functions and library routines in Table A-1 are, in general, sup-
ported by C compilers. The comments next to each function describe
possible differences between the VAX-11 C function and other imple-
mentations of the same function.

It is not a goal of VAX-11 C to duplicate all run-time functions that
exist on every implementation of the language, but rather to provide a
reasonable subset of those functions. Some functions that are available
in other implementations have not been implemented on VAX-11 C for
any or all of the following reasons:

¢ The function is not current; recent developments in the language
may have made the function obsolete or may have created a re-
placement for the function.

¢ The function is incompatible with the VAX/VMS operating
system.

e The function would create serious performance restrictions if it
were implemented.

Table A-1: Relationship of VAX-11 C Run-Time
Functions to Other C Run-Time Functions

abort VAX/VMS does not generate a core dump.

abs Equivalent functionality.

access Equivalent functionality.

acct Not provided in the VAX-11 C run-time library. The DCL

SET command can be used to turn accounting on and off; the
VAX/VMS system service, SYS$SNDACC, can be used to
send messages to an accounting file.

355

Table A-1: (Cont.) Relationship of VAX-11 C Run-Time
Functions to Other C Run-Time Functions

acos Equivalent functionality.

alarm Equivalent functionality.

alloc Equivalent functionality.

arc Not provided.

asctime Not provided.

assert Not provided.

asin Equivalent functionality.

atan Equivalent functionality.

atan2 Equivalent functionality.

atof On VAX-11 C, the string may contain any of the white-space

characters (space, horizontal or vertical tab, carriage return,
form feed, or newline).

atoi See atof.

atol See atof.

brk,sbrk The VAX-11 C version rounds the break address to the next

higher multiple of 512 bytes.

cabs Equivalent functionality.

calloc Equivalent functionality.

ceil Equivalent functionality.

cfree Equivalent functionality.

chdir The VAX-11 C version changes the default directory for the

user’s program only. The user at a terminal will still have the
same default directory as before the call. On VAX/VMS, use
the DCL SET DEFAULT command. Also, remember the dif-
ferences between UNIX and VAX/VMS directory syntax.

chmod VAX/VMS has no equivalent to the “set user id”, “set group
id” or “save text” file attributes. You can specify group and
system read, write, and execute protection individually.
chmod to 1000 (‘“save text”) is done on VAX/VMS using the
INSTALL utility.

chown Equivalent functionality.
circle Not provided.
clearerr Equivalent functionality.
close Equivalent functionality.
closepl Not provided.
cont Not provided.

356 Appendix A

Table A-1: (Cont.) Relationship of VAX-11 C Run-Time

Functions to Other C Run-Time Functions

creat

crypt

ctime

ctype functions

curses
dbm

dup

dup2
ecvt
endfsent
endgrent
endpwent
erase

exec,execl,
execle

exit

exp
fabs
fclose
fevt
ferror
feof
fdopen
fflush
fgetc
fgets
fileno
floor
fprintf
fputc

VAX-11 C adds optional file attributes to allow the creation
of files with RMS formats other than stream.

Not provided.
Equivalent functionality.

VAX-11 C also has isgraph and isxdigit. See also the spe-
cific ctype (character classification) function in this table.

Not provided.
Not provided.
Equivalent functionality.
Equivalent functionality.
Equivalent functionality.
Not provided.
Not provided.
Not provided.
Not provided.

The principle of process overlaying is not used in VAX/VMS.
On VAX-11 C, you can exec C programs only. When specify-
ing the environment array, use the DCL syntax.

If the process was invoked by the DCL command interpreter,
then VAX/VMS interprets the return value and prints a DCL
message.

Equivalent functionality.
Equivalent functionality.
Equivalent functionality.
Equivalent functionality.
Equivalent functionality.
Equivalent functionality.
Equivalent functionality.
Equivalent functionality.
Equivalent functionality.
Equivalent functionality.
Equivalent functionality.
Equivalent functionality.
Equivalent functionality.

Equivalent functionality.

Portability Considerations 357

Table A-1: (Cont.) Relationship of VAX-11 C Run-Time
Functions to Other C Run-Time Functions

fputs Equivalent functionality.

fopen File specification must be a valid VAX/VMS file name.

fork Not provided (see vfork).

fread Equivalent functionality.

free Equivalent functionality.

freopen File specification must be a valid VAX/VMS file name.

frexp Equivalent functionality.

fscanf VAX-11 C provides the following conversion characters: h, Id,
lo, 1x, le, and If.

fseek When using record files, input from ftell is required for
VAX-11 C.

ftell When using record files, VAX-11 C returns the position of the
next record.

fwrite Equivalent functionality.

gamma Not provided.

gevt Equivalent functionality.

gete Equivalent functionality.

getchar Equivalent functionality.

getenv Equivalent functionality.

getgrent Not provided.

getgrgid Not provided.

getgrnam Not provided.

getlogin Not provided.

. getpass Not provided.

getpw Not provided.

getpwent Not provided.

getpwuid Not provided.

getpwnam Not provided.

getw Equivalent functionality.

getfsent Not provided.

getfsfile Not provided.

getfsspec Not provided.

getpid Equivalent functionality.

358 Appendix A

Table A-1: (Cont.) Relationship of VAX-11 C Run-Time
Functions to Other C Run-Time Functions

getuid,getgid, VAX-11 C returns the group and member codes from the
geteuid,getegid UIC; VAX/VMS does not distinguish between real and effec-
tive user IDs.

gets Equivalent functionality.

gmtime Not provided.

hypot Equivalent functionality.

index Not provided.

ioctl Not provided.

isalpha Equivalent functionality.

isascii Equivalent functionality.

iscntrl Equivalent functionality.

isdigit Equivalent functionality.

islower Equivalent functionality.

isprint Equivalent functionality.

ispunct Equivalent functionality.

isspace Equivalent functionality.

isupper Equivalent functionality.

j0,jl,jin Not provided.

kill VAX/VMS requires system privileges if the sending and re-
ceiving processes have different UICs.

killpg Not provided.

13tol Not provided.

label Not provided.

ldexp Equivalent functionality.

link Not provided.

line Not provided.

linemod Not provided.

localtime On VAX-11 C, daylight savings always equals zero.

log,logl0 Equivalent functionality.

longjmp Equivalent functionality.

Iseek The VAX-11 C version positions on record boundaries for
RMS record files.

1tol3 Not provided.

malloc VAX-11 C aligns the area returned on a longword boundary.

Portability Considerations 359

Table A-1: (Cont.) Relationship of VAX-11 C Run-Time

Functions to Other C Run-Time Functions

mknod
mktemp

modf

monitor
mount,umount
move

mpx

nlist

nice

open
openpl

pause

pclose
perror

pipe

point
popen
pow
printf
profil
ptrace
putce
puts
putw
qsort
rand
read
re__comp

re__exec

360

Not provided.
Equivalent fﬁnctionality.
Equivalent functionality.
Not provided.
Not provided.
Not provided.
Not provided.

Not provided. (This information can be obtained from the
linker load map.)

On VAX/VMS, the resulting priority cannot be greater than
the process base priority.

VAX-11 C requires mode = 2 when randomly writing to files.
Not provided.

On VAX/VMS, processes can also be awakened with the
SYS$WAKE system service.

Not provided.
Equivalent functionality.

On VAX/VMS, the maximum size of a single write operation
is 512 bytes.

Not provided.
Not provided.
Equivalent functionality.
Equivalent functionality.
Not provided.
Not provided.
Equivalent functionality.
Equivalent functionality.
Equivalent functionality.
Not provided.
Equivalent functionality.
Equivalent functionality.
Not provided.
Not provided.

Appendix A

Table A-1: (Cont.) Relationship of VAX-11 C Run-Time
Functions to Other C Run-Time Functions

realloc On VAX-11 C you can reallocate only the last freed area. For
example, if you were to make two calls to free, only the sec-
ond area could be reallocated.

reboot Not provided.

rewind Equivalent functionality.

rindex Not provided.

scanf VAX-11 C provides the following conversion characters: h, 1d,
lo, 1x, le, and If.

sscanf VAX-11 C provides the following conversion characters: h, 1d,
lo, Ix, le, and If.

setbuf Equivalent functionality.

setgrent Not provided.

setjmp Equivalent functionality.

setsfent Not provided.

setpgrp,getpgrp Not provided.

setpwent Not provided.

sighold Not provided (see VAX-11 C ssignal,gsignal routines in
Chapter 6).

sigignore Not provided (see VAX-11 C ssignal,gsignal routines in
Chapter 6).

signal Equivalent functionality.

sigpause Not provided (see VAX-11 C ssignal,gsignal routines in
Chapter 6).

sigrelse Not provided (see VAX-11 C ssignal,gsignal routines in
Chapter 6).

sigset Not provided (see VAX-11 C ssignal,gsignal routines in
Chapter 6).

sigsys Not provided (see VAX-11 C ssignal,gsignal routines in
Chapter 6).

sin Equivalent functionality.

sinh Equivalent functionality.

sleep Equivalent functionality.

space Not provided.

sprintf Equivalent functionality.

sqrt Equivalent functionality.

srand Equivalent functionality.

Portability Considerations 361

Table A-1: (Cont.) Relationship of VAX-11 C Run-Time

Functions to Other C Run-Time Functions

stat,fstat
stime
strcat
stremp
strcepy
strlen
strneat
strnemp
strncpy
swab
sync
syscall
system
tgetent
tgetflag
tgetnum
tgetstr
tgoto
time,ftime

times

timezone
tputs
umask

unlink

ungetc
utime
va__alist
va_arg
va__dcl
va_end
va__list

va__start

362

Not provided.

Not provided.
Equivalent functionality.
Equivalent functionality.
Equivalent functionality.
Equivalent functionality.
Equivalent functionality.
Equivalent functionality.
Equivalent functionality.
Not provided.

Not provided.

Not provided.

Not provided.

Not provided.

Not provided.

Not provided.

Not provided.

Not provided.

VAX-11 C does not return timezone or daylight fields.

VAX/VMS does not distinguish between system and user
times. VAX-11 C returns the time in 10-millisecond units.

Not provided.
Not provided.
Equivalent functionality.

Not provided in VAX/VMS. Temporary files can be created
using the RMS extensions to creat.

Equivalent functionality.
Not provided.
Not provided.
Not provided.
Not provided.
Not provided.
Not provided.
Not provided.

Appendix A

Table A-1: (Cont.) Relationship of VAX-11 C Run-Time
Functions to Other C Run-Time Functions

vadvise Not provided.

valloc Not provided.

vfork Equivalent functionality.
vhangup Not provided.

vlimit Not provided.

vread Not provided.

vswapon Not provided.

vwrite Not provided.

wait Equivalent functionality.
wait3 Not provided.

write Equivalent functionality.

ADDITIONAL NOTES

¢ The global symbols end, edata, and etext are not implemented in
VAX-11 C.

* You should not attempt to substitute your own code for functions
that are already supplied by VAX-11 C. For example, the VAX-11 C
version of strepy expects a return value. If you were to include a
version of strepy which did not return a value, the procedure would
not perform correctly. The following code is an example of this:

stroepy(P+a) char #*p %93
£
Wwhile(*¥p++ = ¥a++) 3

¥

This use of strepy will not work; there is code inside the VAX-11 C
run-time library that expects, and makes use of, a return value.

¢ Some UNIX-based applications make use of Shell functionality, such
as I/0 redirection and piping, to achieve program modularity.
VAX/VMS DCL does not exactly duplicate this functionality. You
may be able to emulate the UNIX Shell I/O redirection capability by
setting up the proper values for SYS$INPUT, SYS$OUTPUT, and
SYS$ERROR in a DCL command procedure used to run the applica-
tion(s). For example, the UNIX command

% APPLICI < FILEA | APPLICZ > FILEB

Portability Considerations 363

uses the output file from APPLIC1 as the input file to APPLIC2. The
same results can be achieved with the following VAX/VMS DCL
commands:

DEFINE/USER SYS$INPUT FILEA
DEFINE/USER SYS54$0UTPUT TEMP
RUN APPLIC1

DEFINE/USER SYS$INPUT TEMP
DEFINE/USER SYS$0UTPUT FILEB
RFUN APPLICZ

WO W R 4R

The same series of commands can be written in a general form (to
pass arguments to the DCL command interpreter) in an indirect com-
mand file. See Chapter 12 for information on how to create indirect
command files.

e There are differences in the way that UNIX and VAX/VMS lay out
virtual memory. In UNIX, the address space between 0 and the break
address are accessible to the user program. In VAX/VMS, the first
page of memory is not accessible.

If a program tries to reference location 0 on VAX/VMS, a hardware
error (ACCVIO) is returned and the program terminates abnormally.
VAX/VMS reserves the first page of address space to catch incorrect
pointer references, such as a reference to a location pointed to by a
null pointer. For this reason, some existing UNIX programs may fail
and should be rewritten.

e Some C programmers code all external declarations in #include files.
Then, specific declarations that require initialization are redeclared
in the relevant module. This practice causes the VAX-11 C compiler
to issue a warning message about multiply declared/defined variables
in the same compilation. One way to avoid this warning is to make
the redeclared symbols extern variables in the #include files.

¢ void is not supported by VAX-11 C in this release.
e The asm call is not supported by VAX-11 C.

e Some C programs call the counted string functions strempn and
strepyn. These names are not used by VAX-11 C. Instead, you can
define macros that expand the strempn and strepyn names into the
equivalent names strncmp and strncpy.

® The VAX-11 C compiler does not support the initialization form:
int foo 1233
Programs using this form of initialization will have to be changed.

e There is a fixed limit to the length of a string that VAX-11 C accepts
(1000 bytes). Long strings must be divided, and programs that use
string arrays may need to be changed.

e VAX-11 C defines the compile-time constants vax, vms, and vaxllc.
These constants are useful for programs that must run compatibly on
various machines and operating systems. (See Section 7.3.)

364 Appendix A

e The C language does not guarantee any memory order for the varia-
bles in a declaration such as

int asbsed

e The VAX-11 Linker usually places VAX-11 C extern variables in
program sections (psects) of the same name as the variable. The
linker then links the psects alphabetically by name. If you are porting
a C program from another operating system to VAX/VMS, you may
find that the order of items in the program have been allocated differ-
ently in virtual memory. This has caused existing programs with
hidden bugs to fail.

e The dollar sign ($) and the underscore () are allowed characters
in VAX-11 C identifiers.

e VAX-11 C requires the use of VAX/VMS file specifications. See
Chapter 12 for a description of the necessary file specification syntax.

e The C language does not define any order for the evaluation of expres-
sions in function parameter lists or in general expressions. The way in
which different C compilers evaluate an expression is only important
when the expression has “‘side effects,” as in

alil = i++3
and
flp++ p++)

Neither VAX-11 C nor any other C compiler can guarantee that such
expressions will be portable.

e The size of an integer is 32 bits on VAX-11 C. Programs that were
written for other machines and that assume a different size of an int
will have to be modified.

e The C language defines structure alignment to be dependent on the
machine for which the compiler is designed. VAX-11 C aligns struc-
ture members on byte boundaries. Other implementations may align
structure members differently.

¢ References to structure members in VAX-11 C must not be ambigu-
ous. (See Section 3.4.2.)

e case labels in VAX-11 C must be expressible in 16 bits. Some other
implementations may allow case labels of different sizes.

¢ The keyword register is ignored by the VAX-11 C compiler; registers
are allocated based on how frequently a variable is used. Any scalar
variable with the storage class auto or register may be allocated to a
register as long as the variable’s address is not taken with the amper-
sand operator (&) and as long as it is not a member of a structure or
union.

Portability Considerations 365

e When moving programs from one operating system to another, the
operations of the different linkers must also be taken into account.
The VAX-11 Linker does not load an object module from an object
library unless the module contains a function definition, a globaldef
(definition), or a globalvalue (definition) that is needed to resolve a
reference in another component of the program. When you refer to an
extern variable from a program, the linker does not load the library
module if the module contains only a compile-time initialization of
the variable. This is a temporary restriction, which can be avoided in
either of two ways:

In the following example, the program PROG.C contains an external
declaration of a variable; the module LABDATA.C initializes the
variable.

PROG.C:

main ()
{
extern float lab_datall}

+

¥

LABDATA.C:

lab_.data()
{

float lab.data = { 1.2+ 3.4y 5.6 7.8 ¥i
¥

You could link the object code for the program and the module either
by naming the LABDATA object file in the link command, or by
explicitly extracting the module from a library (here, it is part of the
MYLIB library), as follows:

$ LINK PROG,LABDATASYS$LIBRARY :CRTLIB/LIB
$ LINK PROG.MYLIB/LIB/INCLUDE=LABDATA -
$_GYSELIBRARY :CRTLIB/LIB

You can also bundle the initialization in a module that would be
loaded, that is, in a module that contains a function definition, a
globaldef (definition), or a globalvalue (definition).

366 Appendix A

Appendix B
C Glossary

This appendix defines terms used in this manual.

additive operator
An operator that performs addition (+) or subtraction (-). It per-
forms the usual arithmetic conversions on its operands.

aggregate
One of the derived types: array, structure, or union. An array has
elements of the same data type. A structure has named members
that can be of different data types. A union is essentially a struc-
ture that is as long as its longest declared member and that
contains the value of only one member at a time.

ampersand (&)
As a unary operator, computes the address of its operand. As a
binary (infix) operator, performs a bitwise AND on two operands,
both of which must be of integral type. As an assignment operator
(&=), performs a bitwise AND of an expression with the value of
the object referred to by the left-hand expression and assigns the
result to that object. The double ampersand (&&), a binary oper-
ator, performs a logical AND on two operands (see also logical
operator).

argument
An expression that appears within the parentheses of a function
call. The expression is evaluated and the result is copied into the
corresponding parameter of the called function. See also argu-
ment passing. and parameter.

argument passing

The mechanism by which the argument in a function call is asso-
ciated with a parameter in the called function. In C, all argu-
ments are passed by value; that is, the parameter receives a copy
of the argument’s value. Therefore, a function called in C cannot
modify the value of an argument except via its address. In gen-
eral, addresses are passed by using the ampersand operator (see
ampersand (&)) in the argument expression. In addition, use of
an array or function name (an array or function identifier with no
brackets or parentheses) as an argument always results in the
passing of the address of the array or function.

367

arithmetic operator

A C operator that performs an arithmetic operation. The unary
minus (-) operator is at the highest level of precedence. At the
next lower level are the binary operators for multiplication (*),
division (/), and mod (%). At the next lower level are addition (+)
and subtraction (-). There is no unary plus operator, and there is
no exponentiation operator. All the binary operators perform the
usual arithmetic conversions on their operands.

arithmetic type

array

One of the integral data types, enumerated types, float, or
double.

An aggregate data type consisting of subscripted elements of the
same type. Elements of an array can have one of the fundamental
types or can be structures, unions, or other arrays (to form multi-
dimensional arrays).

assignment expression

An expression of the form:
E1 asgnop E2

where E1 must be an lvalue, asgnop is an assignment operator,
and E2 is an expression. The type of an assignment expression is
that of its left operand. The value of an assignment expression is
that of the left operand after the assignment has taken place. If
the operator is of the form “op="", then the operation E1 op (E2)
is performed, and the result is assigned to the object referred to
by E1; E1 is evaluated only once.

assignment operator

The combination of an arithmetic or bitwise operator with the
assignment symbol (=); also, the assignment symbol by itself.
These operators are used in assignment expressions.

asterisk (*)

As a unary operator, treats its operand as an address and results
in the contents of that address. As a binary operator, multiplies
two operands, performing the usual arithmetic conversions. As an
assignment operator (*=), multiplies an expression by the value
of the object referred to by the left operand, and assigns the
product to the object.

binary operator

368

An operator that is placed between two operands. The binary
operators include arithmetic operators, shift operators, relational
operators, equality operators, bitwise operators (AND, OR, and
XOR), logical connectives, and the comma operator, in that order
of precedence. All binary operators group from left to right.
(Note: C has no operator for exponentiation.)

Appendix B

bitwise operator

An operator that performs a bitwise logical operation on two
operands, which must be integral. The usual arithmetic conver-
sions are performed. Both operands are evaluated. All bitwise
operators are associative, and expressions using them may be
rearranged. The set comprises, in order of precedence, the single
ampersand ([&] bitwise AND), the circumflex (["] bitwise exclu-
sive OR), and the single bar ([!] bitwise inclusive OR).

block

See compound statement.

block activation

cast

The run-time action of activating a block or function, in which
local auto and register variables are allocated storage and, if
they are declared with initializers, given initial values. (static,
extern, globaldef, and globalvalue variables are allocated and
initialized at compile time.) The block activation precedes the
execution of any executable statements in the function or block.
Although it is not literally true, you can think of a block activa-
tion as the “execution of the declarations” in the block. Func-
tions are activated when they are called. Internal blocks (com-
pound statements) are activated when the program control flows
into them. Internal blocks are not activated if they are entered by
a goto statement, unless the goto target is the label of the block
rather than the label of some statement within the block. If a
block is entered by a goto statement, references to auto and
register variables declared in the block are still valid references,
but the variables may not be properly initialized. Blocks which
make up the body of a switch statement are not activated; auto
or register variables declared in the block are not initialized.

An expression preceded by a cast operator of the form “(type-
name)”’. The cast operator forces the conversion of the evaluated
expression to the given type. The precise meaning of a cast is as if
the expression were assigned to a variable of the specified type,
which is then used in place of the whole construction. The cast
operator has the same precedence as the other unary operators.

character

(1) A member of the ASCII character set.

(2) An object of the C data type char — that is, a byte. (An
object of type char always represents a single character, not a
string.)

(3) A constant of type char, consisting of up to four ASCII char-
acters enclosed in apostrophes (°, not ").

See also string.

C Glossary 369

comma operator
A C operator used to separate two expressions:

E1, E2

The expressions E1 and E2 are evaluated left to right, and the
value of El is discarded. The type and value of the comma ex-
pression are those of E2.

comment
A sequence of characters introduced by the pair /* and termi-
nated by */. Comments are ignored during compilation. They
may not be nested.

compound statement
A compound statement consisting of valid C statements enclosed
in braces ({}). Compound statements can also include declara-
tions. The scope of these variables is local to the block.

conditional operator
The C operator (?:), which is used in conditional expressions of
the form:

E17? E2: E3

where E1, E2, and E3 are expressions. E1 is evaluated, and if it is
nonzero, the result is the value of E2; otherwise, the result is the
value of E3. Only one of E2 and E3 is evaluated.

constant
A primary expression whose value does not change. A constant
may be literal or symbolic.

constant expression
An expression involving only constants. Constant expressions are
evaluated at compile time and may therefore be used wherever a
constant is valid.

conversion

The changing of a value from one data type to another. Conver-
sions take place in assignments by changing the type of the right
operand’s result to that of the object referred to by the left oper-
and; that type is also the type of the assignment expression.
Conversions are also performed when arguments are passed to
functions: char and short become int; unsigned char and un-
signed short become unsigned int; float becomes double.
Conversions can also be forced by means of a cast. Conversions
are performed on operands in arithmetic expressions by the usual
arithmetic conversions.

data definition
The syntax that both declares the data type of an object and
reserves its storage. For variables that are internal to a function,
the data definition is the same as the declaration. For external
variables, the data definition is external to any function (an ex-
ternal data definition).

370 Appendix B

declaration
A statement that gives the characteristics (such as data type) of
one or more variables.

enumerated type
A type defined (with the enum keyword) to have an ordered set of
integer values. The integer values are associated with constant
identifiers named in the declaration. Although enum variables
are stored internally as integers, they should be used in programs
as if they had a distinct data type.

equality operator
One of the operators == (equal to) or != (not equal to). They are
analogous to the relational operators, but at the next lower level
of precedence.

exponentiation operator
The C language does not provide an exponentiation operator.

expression
A series of tokens that the compiler can use to produce a value.
Expressions have one or more operands and, usually, one or more
operators. (An identifier with no operator is an expression that
yields a value directly.) Operands are either identifiers (such as
variable names) or other expressions, which are sometimes called
subexpressions. See also operator.

external variable
A variable that is defined externally to any function. External
variables provide a means other than argument passing for ex-
changing data between the functions that comprise a C program.

floating type
One of the data types float or double, representing a single- or
double-precision floating-point number.

function

The primary unit from which C programs are constructed. A
function definition begins with a name and argument list, which
are followed by the declarations of the arguments (if any) and the
body of the function enclosed in braces ({ }). The function body
consists of the declarations of any local variables and the set of
statements that perform its action. Functions need not return a
value to the caller. All C functions are external; that is, a function
may not contain another function. See also function call.

function call
A primary expression followed by parentheses. The parentheses
contain a (possibly empty) comma-separated list of expressions
that are the arguments to the function. Any previously unde-
clared identifier followed immediately by parentheses is contex-
tually declared as a function returning int. Any function may call
itself recursively.

C Glossary 371

fundamental type
The set of arithmetic data types plus pointers. In general, the
fundamental types in C comprise those data types that can be
represented naturally on a particular machine; usually, this
means integers and floating-point numbers of various machine-
dependent sizes, and machine addresses.

identifier
A sequence of letters and digits, the first 31 of which must be
unique. The underscore () and dollar sign ($) are letters in this
context. The first character of an identifier must be a letter.
Upper- and lowercase letters specify different identifiers in
VAX-11 C. Note, however, that all external names are converted
to uppercase to be consistent with VAX/VMS.

initializer
The part of a declaration that gives the initial value(s) for the
preceding declarator. An initializer consists of an equal sign (=)
followed by either a single expression or a comma-separated list
of one or more expressions in braces.

integral type
One of the data types char or int (all sizes, signed or unsigned).

keyword
A word (series of characters) that is reserved by the C language
and cannot be used as an identifier. Keywords identify state-
ments, storage classes, data types, and the like. Function names
are not C keywords; they may be redefined by the user.

literal
A constant whose value is written explicitly in the program.
Literals have type int or double, depending on their forms. Char-
acter constants have type int. Floating constants have type dou-
ble. Character-string constants have type ‘“array of” char.

logical expression

An expression made up of two or more operands separated by
logical connectives. Each operand must be of a fundamental type
or must be a pointer or other address expression. Operands do not
have to be of the same type. Logical expressions always return 1
or 0 (type int) to indicate a true or false value, respectively.
Logical expressions are always evaluated from left to right, and
the evaluation stops as soon as the result is known.

logical operator ;
One of the binary operators && (logical AND) and ! ! (logical
OR).

372 Appendix B

Ivalue

The abstract value that denotes the location of an object whose
contents can be assigned or modified. In this manual, the term is
used to describe a category in C grammar. An lvalue is required
on the left-hand side of an assignment operator (hence its name)
and as the operand of certain other operators, such as the incre-
ment (++) and decrement (--) operators. A variable name is an
example of an lvalue, since its address can be taken (with &), and
values can be assigned to it. A constant is an example of an
expression that is not an lvalue.

macro
A text substitution that is defined with the #define preprocessor
control line and includes a list of “parameters.” The parameters
in the #define control line are replaced at compile time with the
corresponding arguments from a macro reference encountered in
the source text.

multiplicative operator
An operator that performs multiplication (*), division (/), or
modulo arithmetic (%). It performs the usual arithmetic conver-
sions on its operands. The mod operator (%) yields the remainder
of the division of the first operand by the second.

object
One of the basic elements that the language can
manipulate — that is, the elements to which operators can be
applied. In C, objects include data (such as integers, real num-
bers, or characters), data structures (arrays, structures, unions),
and functions.

operator
A token that performs an operation on one or more operands. In
order of precedence (high to low), operators are classified as the
primary-expression operators, unary operators, binary operators,
the conditional operator, assignment operators, and the comma
operator.

parameter
A variable declared in an external function definition, between
the function name and the body of the function. The parameter
receives a copy of the value of an associated argument when the
function is called. The items in parentheses in a macro definition
are also called parameters, although the semantics are different
from C function calls.

pointer
A variable that contains the address of another variable or func-
tion. A pointer is declared with the unary asterisk operator.

C Glossary 373

preprocessor control lines

Lines of text in a C source file that change the order or manner of
subsequent compilation. The control lines are #define (for macro
substitution and other token replacements), #undef (to cancel a
previous #define), #include (for inclusion of external source text),
#line (to specify a line number to the compiler), #module (to
specify a module name to the linker), and #if, #ifdef, #ifndef,
#else, and #endif (to conditionalize the compilation of the pro-
gram). In VAX-11 C, these control lines are processed by an early
phase of the compiler, not by a separate program.

primary expression

An expression that contains only a primary-expression operator,
or no operator. Primary expressions include previously declared
identifiers, constants, strings, function calls, subscripted expres-
sions, and references to structure or union members.

primary-expression operator

A C operator that qualifies a primary expression. The set of such
operators consists of paired brackets (to enclose a single sub-
script), paired parentheses (to enclose an argument list or to
change the associativity of operators), a period (to qualify a struc-
ture or union name with the name of a member), and an arrow (to
qualify a structure or union member with a pointer or other ad-
dress-valued expression).

relational operator

One of the operators <, >, <=, or >=. The result (type int) is 1 or
0, indicating a true or false relation, respectively. The usual arith-
metic conversions are performed on the two operands. Relational
operators group from left to right.

scalar

A single object (as opposed to aggregate). See also object.

scope

374

The portion of a program in which a particular name has mean-
ing. The scope of names declared in external definitions extends
from the point of the definition’s occurrence to the end of the
compilation unit in which it appears. The scope of the names of
function parameters is the function itself. The scope of names
declared in any block (that is, after the brace beginning any
compound statement) is restricted to that block. Names declared
in a block supersede any other declaration of the name, including
external definitions, for the extent of that block. struct, union,
typedef, and enum tags are identifiers that are subject to the
same scope rules as any identifiers. Member names in structure
or union references are not subject to the same scope rules (see
uniqueness). The scope of a label is the entire function containing
the label.

Appendix B

shift operator
One of the binary operators << or >>. Both operands must have
integral types. The value of E1<<E2 is E1 (interpreted as a bit
pattern) left-shifted by E2 bits. The value of E1>>E2 is E1 right-
shifted by E2 bits.

statement
The language elements that perform the action of a function.
Statements include expression statements (an expression fol-
lowed by a semicolon), null statements (the semicolon by itself),
compound statements (blocks), and an assortment of statements
identified by keywords (such as return, switch, do).

storage class
The attribute that, with its type, specifies C’s interpretation of an
identifier. The storage class determines the location and lifetime
of an identifier’s storage. Examples are static, external, and
auto.

string
(1) An array of type char.

(2) A constant consisting of a series of ASCII characters enclosed
in quotation marks. Such a constant is declared implicitly as an
array of char, initialized with the given characters, and termi-
nated by a NUL character (ASCII 0, C escape sequence \0).

structure
An aggregate type consisting of a sequence of named members.
Each member may have any type. A structure member may also
consist of a specified number of bits, called a field.

symbolic constant
An identifier assigned a constant value by a #define control line.
A symbolic constant may be used wherever a literal is valid.

tokens
The fundamental elements making up the text of a C program.
Tokens are identifiers, keywords, constants, strings, operators,
and other separators. White space (such as spaces, tabs, new-
lines, and comments) is ignored except where it is necessary to
separate tokens.

type
The attribute that, with its storage class, specifies C’s interpreta-
tion of an identifier. The type determines the meaning of the
values found in the identifier’s storage. Types include the integral
and floating types, pointers, enumerated types, and the derived
types array, function, structure, and union.

type name
In essence, the declaration of an object of a given type that omits
the name of the object. A type name is used as the operand of the
cast and sizeof operators.

C Glossary 375

unary operator
An operator that takes a single operand. In C, some unary opera-
tors can be either prefix or postfix. The set includes the asterisk
(indirection), ampersand (address of), minus (arithmetic unary
minus), exclamation (logical negation), tilde (["] one’s comple-
ment), double plus (increment), double minus (decrement), cast
(force type conversion), and sizeof (yields size, in bytes, of its
operand).

union
An aggregate type. It can be considered a structure all of whose
members begin at offset 0 from the base and whose size is suffi-
cient to contain any of its members.

uniqueness
A property of the names used for certain structure and union
members. A name is unique if either of these conditions is true:

e The name is used only once.

o It is used in two or more different structures (or unions), but
each use denotes a member at the same offset from the base
and of the same data type.

The significance of uniqueness is that a unique member name can
be used to refer to a structure in which the member name was not
declared (although a warning message is issued).

usual arithmetic conversions
The set of rules that govern the conversion of operands in arith-
metic expressions. The rules are applied in the following order:

1. Any operands of type char or short are converted to int,
and any of type float are converted to double.

2. Then, if either operand is double, the other is converted to
double, and that is the type of the result.

3. Otherwise, if either operand is unsigned, the other is con-
verted to unsigned and that is the type of the result.

4. Otherwise, both operands must be int, and that is the type
of the result.

variable
An identifier used as the name of an object.

376 Appendix B

Appendix C
VAX-11 C Gompiler Messages

This appendix lists the VAX-11 C compiler diagnostic messages alpha-
betically. For each message, the appendix gives the mnemonic, the
message text, an explanation of the message, and suggested actions to
be taken to avoid the message. Chapter 14 gives information on the
format of compiler messages.

You can also obtain the compiler diagnostic messages online. Type:
$ HELP ERROR CC mremonic @ED

To receive a list of all the mnemonics, type:
$ HELP ERROR CC RED

Some messages substitute information from the program in the mes-
sage text. In this appendix, the portion of the text to be substituted is
shown as "****" or **** [f quotes appear around the asterisks, quotes
appear in the substituted message.

ANACHRONISM, The "****" operator is an obsolete form, and may
not be portable.

Warning. You have used an old-style operator such as =+ or =+,
The message is issued only if the /STANDARD=PORTABLE
qualifier is specified in the CC command line.

User Action. For the program to be portable, you should reverse
the order of the parts of the operator. For example, =+ should be
+= and =* should be *=. The old-style operators are supported by
VAX-11 C, but they may not be supported by other C compilers.

ARGLIST, The VAX architecture does not allow argument lists to be
more than 255 longwords (ints) in length. The arguments
beyond this limit have been ignored.

Warning. You have called a function with too long an argument
list.

User Action. To avoid this message and unpredictable results,
rewrite the function definition and function call with a shorter
argument list.

377

ARGNOTPORT, Passing a structure by value is not portable.

Warning. This message occurs when a structure is passed by
value in a function call, or when a function parameter is declared
as a structure, and when the /STANDARD=PORTABLE option
is used in the CC command line.

User Action. If the program must be portable, pass the structure,
by reference, as a pointer to the structure.

ARGOVERFLOW, Length of macro argument list exceeds buffer ca-

pacity; overflowing argument(s) considered to be
null.

Warning. The total length of the arguments in a macro reference
exceeds the compiler’s capacity to store the arguments prior to
substitution.

User Action. To avoid this message and unpredictable results,
shorten one or more arguments.

ASNDATTYPE, Target of assignment operator is noncomputational

data type.

Error. You have specified, as the left-hand operand of an assign-
ment operator, an expression that is not valid for assignment. For
example, you have tried to assign something to an array or func-
tion.

User Action. Correct the statement. The assignment target must
be a scalar variable (including a scalar array element or structure
member), structure, union, or dereferenced pointer.

ASNREADONLY, Target of assignment operator is read-only.

Error. You have attempted to assign a value to a read-only ob-
ject. Such objects include literal constants, enumerated con-
stants, and variables declared with the storage class readonly.

User Action. If you specified a constant, replace it with a valid
assignment target. If you specified a readonly variable, remove
the readonly keyword from its definition.

BADAUTOINIT, The automatic initialization for "****" is not valid. It

378

has been ignored.

Warning. Automatic character arrays cannot be initialized with
string constants. This is a temporary restriction.

User Action. Initialize the array with an explicit list of charac-
ters, or copy the string to the array using the strcpy function.

Appendix C

BADCODE, Invalid code generation sequence.
Fatal. An internal compiler error occurred.
User Action. Gather as much information as you can about the
conditions in effect when the error occurred, and submit an SPR.
BADCONDEXPR, The nonpointer operand of a conditional expression
must be the integer constant 0.

Error. Conditional expression operands involving pointers must
consist of either one or two pointers and the integer constant 0.
For example:

el?(int*) P2 1.23
The float constant 1.2 is not allowed.
User Action. To avoid this message, replace the invalid operand
with an expression of the correct type (pointer or 0).
BADIFEVAL, **** while evaluating #if expression; "true" expression
assumed.

Warning. The substitute text is "Stack overflow", or "Divide by
zero". The expression was taken to be true.

User Action. Reevaluate the line and make the appropriate cor-
rections.
BADMODULE, Redundant #module control line; line ignored.

Warning. You specified more than one #module control line in a
single compilation; the excess line or lines were ignored.

User Action. To avoid this message correct the lines.
BADPARDCL, "****" is not a named formal parameter in the defined
function. It has been declared as auto.

Warning. You declared the specified identifier as a function pa-
rameter, and the identifier does not appear in the parameter list.
For example:

fla) int asbi {...3

The identifier b was declared as an auto variable in the defined
function.

User Action. The identifier’s declaration is nonportable and is
possibly a programming error. To avoid this message and unpre-
dictable results, correct the declaration or function definition.

VAX-11 C Compiler Messages 379

BADPSECT, The program section (psect) specified by this statement

has conflicting READONLY attributes with another def-
inition of the same program section.

Warning. You have specified two or more references to the same
program section, and they do not agree with the program sec-
tion’s attributes. For example, this message can appear when two
globaldef definitions appear for the same name, but only one
specifies the storage class readonly.

User Action. To avoid this message and unpredictable results,
make all references to a program section consistent.

BADSUBVAL, Array subscripts must be specified for subscripts other

than the first.

Warning. You omitted too many subscripts from an array decla-
ration. A subscript (the number of elements) can be omitted if
there is only one dimension. If there is more than one dimension,
only the first (leftmost) pair of brackets in the declaration can be
empty. This applies equally to declarations of array parameters
and extern declarations of arrays.

User Action. To avoid this message and unpredictable results,
correct the declaration, specifying a size for every dimension after
the first.

BADUNARY, The operand of a **** operator was noncomputational.

Error. You specified an expression of an illegal type with a unary
operator, such as ++function-call or ——union.

User Action. Replace the operand with an expression valid for
the illustrated operator.

BADVINIT, "****" is a value. It may be initialized only with a con-

stant expression.

Warning. You attempted to initialize a globalvalue with a non-
constant initializer.

User Action. To avoid this message and unpredictable results,
correct the initializer.

BINNONCOMPUT, The **** operand of a "****" operator is noncom-

380

putational.

Error. Either the left or right operand of the illustrated operator
is an illegal data type, as in function-name+2.

User Action. Specify an expression that is valid for use with the
operator.

Appendix C

BUGCHECK, Compiler bug check during ****. Submit an SPR with a
problem description.

Fatal. An internal error occurred during the specified phase of
compilation.

User Action. Gather as much information as possible about the
conditions under which the error occurred, including the phase of
compilation, and submit an SPR.

CASECONSTANT, Case label value is not a constant expression.

Error. You specified a value in a case label that was not a con-
stant.

User Action. Replace the case value with a valid constant ex-
pression.
CASERANGE, Case label value **** is not a 16-bit integer.

Error. You specified a value in a case label that is not expressi-
ble in 16 bits.

User Action. Correct the case label so that it is expressible in 16
bits.
CMPLXINIT, "****' {5 too complex to initialize.

Warning. The depth of the indicated aggregate variable exceeds
the limit of 32 levels.

User Action. To avoid this message and unpredictable results,
simplify or correct the initializer list or declaration. Otherwise,
initialize the variable with explicit assignments.

COMPILERR, Previous errors prevent continued compilation. Please
correct reported errors and recompile.
Fatal. The compiler has detected too many errors to continue.
User Action. Correct the errors reported in the compiler mes-
sages previous to this one.

CONDEXPRPTR, The second and third operands of a conditional ex-
pression, if pointers, must be pointers to objects of
the same type (size).

Error. The two operands must be pointers to the same data type
because the result of such a conditional expression is an object of
the common type.

User Action. Correct the operands accordingly.

VAX-11 C Compiler Messages 381

CONFLICTDECL, This declaration of "****" conflicts with a previous
declaration of the same name.

Warning. A name has been redeclared, and the data types and/or
organizations are different. Any reference to the name resolves to
the most recent declaration, according to the scope rules.

User Action. The purpose of this message is to call a possible
programming error to your attention.
DEFTOOLONG, Text in #define control line is too long; line ignored.

Warning. The total number of symbols in the #define line ex-
ceeds the implementation’s limit.

User Action. To avoid this message and unpredictable results,
shorten or otherwise simplify the line.
DIVIDEZERO, Constant expression includes divide by zero; the result
has been replaced with 0.

Warning. A division by zero was encountered in a constant ex-
pression. The expression was replaced by 0.

User Action. Check your constant expressions and correct the
one that is causing the error.
DUPCASE, Case label value **** is a duplicate.

Error. You have specified more than one case for the indicated
value in a switch statement. The cases must be unique.

User Action. Change the case labels and/or combine the cases,
as appropriate.

DUPLDEF, Duplicate definition of "****",

Warning. The named definition appears more than once in the
program. The two definitions are essentially the same. Both defi-
nitions specify the same data types and organizations, but there
may be differences in the values, initializers, or array bounds. If
the name is a function, there may be a difference in the number
or types of parameters, or in the contents of the function body.

User Action. The purpose of this message is to call a possible
programming error to your attention.
DUPDEFAULT, Duplicate default label in switch statement.

Error. You specified more than one default case in the same
switch statement.

User Action. Combine the cases or make other changes necessary
to eliminate the duplicate(s).

382 Appendix C

DUPLICATE, Duplicate label "****",

Error. You have specified duplicates of the indicated label in the
same function. Label identifiers must be unique within a function
definition.

User Action. Rewrite the labels (and goto statements that refer
to them) to eliminate the duplicates.
DUPLPARM, Duplicate macro parameter "****" jgnored.

Warning. The indicated macro parameter occurred more than
once in the #define line’s parameter list. All instances of it after
the first were ignored.

User Action. To avoid this message and unpredictable results,
correct the line.
ENUMOP, Mismatched enum type in "****" operation.

Warning. The indicated operation combines an enum variable or
value with a value of a nonmatching type.

User Action. To avoid this message and unpredictable results,
use a cast operation to cast either the enum value or the other
value to a matching type.

ERRORSUM, Completed with severe errors.

Fatal. The compilation is complete, but there were too many
errors to produce an object file.

User Action. Correct the errors reported in the previous compiler
messages.
EXTRAARGS, Too many arguments specified for a function reference.
Only the first 253 will be passed.

Warning. You have called a function with more than 253 argu-
ments.

User Action. To avoid this message and unpredictable results,
shorten the argument list.
EXTRACOMMA, Extraneous comma in macro parameter list ignored.

Warning. The #define macro definition on this line has extra
commas that were ignored.

User Action. To avoid this message and unpredictable results,
correct the line.
EXTRATEXT, Extraneous text in preprocessor control line ignored.
Warning. Extraneous text appears in the control line, as in
#endif ABC
User Action. To avoid this message, correct the line.

VAX-11 C Compiler Messages 383

FATALSYNTAX, Fatal syntax error.
Fatal. The compiler cannot continue due to syntax errors.
User Action. Correct the error in the indicated line and/or errors
reported in previous compiler messages.
FIELDBADSIZE, "****" is an invalid field declaration. Fields may be
up to 32 bits in length. Size of 32 bits assumed.

Warning. The indicated field declaration is invalid because it
specifies too large a size.

User Action. To avoid this message and unpredictable results,
correct the declaration to specify either a single, smaller field or
several contiguous fields. Note, however, that field alignments
are nonportable.

FIELDBADTYPE, "****" ig an invalid field declaration. Fields must
be declared as integers (signed or unsigned) or
enum. The data type int has been assumed.

Warning. You have declared a field with an invalid data type.
Fields must be declared (and manipulated) as integers or enu-
merated types.

User Action. To avoid this message and unpredictable results,
correct the declaration to specify a valid data type.
FILEUNOPEN, Unable to open the **** file.

Fatal. The compiler cannot continue because of the failure to
open the indicated file.

User Action. Be sure that the file exists if it is an input file, or
change the file specification in the program to that of an existing
file.

FNDUPLPARM, Duplicate function formal parameter "****" jgnored.

Warning. The stated function parameter occurred more than
once in the function’s formal parameter list, as in

functlasbscsra) { 2
All occurrences of the parameter after the first were ignored.
User Action. To avoid this message and unpredictable results,
correct the line.
FNPARMREDECL, Function formal parameter "****" has been rede-
clared.

Warning. Your source program contains a redeclaration of one of
the function’s formal parameters, as in:

fta) { int aji ¥

384 Appendix C

User Action. Verify that this is what you want to do. If it is not,
correct the declaration(s).

FUNCBADECL, "**** is not properly declared. The function attrib-
ute will be ignored.

Warning. You have used the “function attribute” in an illegal
manner in the definition of the indicated object; for example, you
have declared an array of functions instead of an array of pointers
to functions. The function attribute was dropped.

User Action. Check the definition carefully to be sure that it is
logical and is what you intended. In general, you should correct
definitions that raise this warning.

IFNOMACSUB, Macro substitution cannot be performed during the
scan of a macro reference; "****" not substituted;
"true" expression assumed.

Warning. You have written a complex macro reference with an
#f control line and another macro reference, as in:

macref(argdl,
#if SUBST

rargl)

where SUBST has a substitution defined in a previous #define
line. The substitution (here, for SUBST) was not performed, and
the truth value of the control line was assumed to be true.

User Action. To avoid this message and unpredictable results,
replace the reference to the macro in the #if expression with its
actual value, or restructure the #if construct so that it is not
within the complex macro reference.

IFSYNTAX, Syntax error in #if expression; true expression assumed.

Warning. The #if expression on the indicated line cannot be
evaluated because of syntax errors; it is assumed to be true.

User Action. To avoid this message and unpredictable results,
correct the line.
INCDECTAR, The operand of a **** operator is not an lvalue.

Error. You have specified an invalid operand with the — or ++
operator. The operand must be an lvalue, such as a variable
reference or a dereferenced pointer.

User Action. Replace the operand with an lvalue.

VAX-11 C Compiler Messages 385

INCMODNOTPORT, #include of a library module is not portable.

Warning. The specification of a library module name in an #in-
clude preprocessor control line is a VAX-11 C extension and is
not portable. This message is issued only if the
/STANDARD=PORTABLE qualifier is specified on the CC com-
mand line.

User Action. No action is necessary if you do not require com-
patibility with other C compilers.

INCNESTLVL, Include files may only be nested 4 levels.

Fatal. You have specified a tree of #include files or modules that
are too deeply nested. The implementation limit is four.

User Action. If you need all the text you specified in the #in-
clude lines, explicitly include some of it in the source file.

INCOMDT, ****is an invalid data type in this declaration. All but the
first data type ignored.

Warning. You specified the indicated data type keyword in a
declaration or definition that already had one, as in float int. The
resulting type in this example is float.

User Action. Check carefully to see which type the object should
have, and remove all the extraneous keywords.

INCOMSC, **** is an invalid storage class in this declaration. Only
the first storage class is used.

Warning. The indicated storage class keyword appears in a dec-
laration that already has one, as in auto register. Only the first
one (here, auto) is used.

User Action. To avoid this message and unpredictable results,
correct the declaration.

INCPTRSUB, Inconsistent pointer subtraction; two pointers may be
subtracted only if they point to equivalent-sized ob-
jects.

Error. You subtracted two pointers that do not point to the same
data type or to objects of equal size. The subtraction is an invalid
operation.

User Action. Change or cast the operands to point to equal-sized
objects.
INITBIT, "****n ig a field. Static fields may be initialized only with
constants.

Warning. You have initialized the indicated structure field with
a variable.

386 Appendix C

User Action. The field may not be properly initialized. To avoid
this message and unpredictable results, specify a constant initial-
izer.

INVADDR, Invalid "address of " operand.

Error. You have used the “address of” (&) operator with an
invalid operand. The operand must be an lvalue, such as the
name of a variable, and it must not be a reference to a bit field.

User Action. Correct the operand.

INVAGGASN, Invalid aggregate assignment; union = union and struc-
ture = structure are valid if the source and the target
are of equal size.

Error. You have attempted to assign an array to another array or
to assign structures or unions of different sizes.

User Action. Correct the assignment.

INVALIDIF, "****" ig not a valid constant or operator in an #if expres-
sion; "true" expression assumed.

Warning. You have used an invalid construction in an #if expres-
sion, which is assumed to be true.

User Action. To avoid this message and unpredictable results,
correct the line.

INVALINIT, The initialization of "****" is not valid.

Warning. The indicated object cannot be initialized as specified.
Some objects may not be initialized at all, such as functions,
unions, and extern or globalref objects. In other cases, the ini-
tializer may not be appropriate, for example, a static pointer
cannot be initialized with the address of an automatic variable.
This and any subsequent initializers for the same object have
been ignored.

User Action. To avoid this message and unpredictable results,
eliminate or correct the initializer, or correct the type or storage
class of the target object, or initialize the object with an explicit
assignment.

INVARRAY, "****' is an improperly declared array.

Warning. You have improperly declared an array, such as an
array of functions.

User Action. The declared object is probably not what you
wanted. To avoid this message and unpredictable results, correct
the declaration.

VAX-11 C Compiler Messages 387

INVBITARR, Fields cannot be subscripted.

Warning. You have specified subscripts in the declaration of a
field. There cannot be arrays of fields.

User Action. To avoid this message and unpredictable results,
correct the declaration.
INVBREAK, break statement used in an invalid context. break is
valid only in for, while, do, and switch statements.

Error. You have used break outside the body of any of the indi-
cated statements.

User Action. Remove the offending break.

INVCMDVAL, "**** ig an invalid command qualifier value.

Warning. The indicated CC command qualifier value was ac-
ceptable to the VAX/VMS command interpreter (CLI), but it is
meaningless to VAX-11 C; for example, LIST__OPTS is an in-
valid value for /SHOW, although it is accepted by the CLI.

User Action. Correct the qualifier value.

INVCONST, "****n i3 an invalid numeric constant.

Warning. The indicated constant has illegal characters or is oth-
erwise invalid.

User Action. To avoid this message and unpredictable results,
correct the constant.
INVCONTINUE, continue statement used in an invalid context. con-
tinue is valid only in for, while, and do statements.

Error. You have used the continue statement outside the body of
any of the listed statements.

User Action. Remove the offending continue.
INVCONVERT, The source or target of a conversion is noncomputa-
tional.

Error. One of the operands in the indicated line cannot be con-
verted as specified. For example, you have attempted to cast
some object to a structure.

User Action. Correct the operation.
INVDEFNAME, Missing or invalid name in **** control line; line
ignored.

Warning. The indicated control line is missing a required name,
as in:

#define
The entire line was ignored.
User Action. To avoid this message, correct or remove the line.

388 _ Appendix C

INVFILESPEC, Missing or invalid file specification in #include con-
trol line; line ignored.

Warning. The #include line either is missing a file or module
name or specifies one that is syntactically invalid. The line was
ignored.

User Action. To avoid this message and unpredictable results,
correct the line.
INVFOPT, Invalid function definition option ignored.

Warning. You have specified a function definition option that is
not supported. The only valid option is main__program.

User Action. To avoid this message, correct the line.

INVHEXCON, Hexadecimal constant contains an invalid character.

Error. You have specified an invalid hexadecimal constant, such
as 0xG.

User Action. Correct the constant.
INVIFNAME, Missing or invalid name in #ifdef or #ifndef control line;
"true" assumed.

Warning. You have specified no name, or a syntactically invalid
one, in the control line; the result of the test is assumed to be
true.

User Action. To avoid this message and unpredictable results,
correct the line.
INVLINEFILE, Invalid file specification in #line preprocessor control
line; line ignored.

Warning. The file specification is syntactically invalid, and the
control line was ignored.

User Action. To avoid this message and unpredictable results,
correct the line.
INVLINELINE, Missing or invalid line number in #line preprocessor
control line; line ignored.

Warning. The line number is missing or is syntactically invalid,
and the control line was ignored.

User Action. To avoid this message and unpredictable results,
correct the line.
INVMODIDENT, Invalid ident in #module preprocessor control line;
line ignored.

Warning. The ident specified in the control line either is not a
valid identifier or is not a valid character-string constant.

VAX-11 C Compiler Messages 389

User Action. To avoid this message and unpredictable results,
correct the line.

INVMODTITLE, Missing or invalid title specification in #module
preprocessor control line; line ignored.

Warning. The required title in the control line either is missing
or is not a valid identifier.

User Action. To avoid this message and unpredictable results,
correct the line.

INVOCTLCHAR, Invalid octal character value; high-order bits trun-
cated.

Warning. The octal value in an escape sequence is too large, as in
\477’. Its high-order bits are truncated.

User Action. To avoid this message and unpredictable results,
correct the constant.
INVPPKEYWORD, Missing or invalid keyword in preprocessor control
line; line ignored.
Warning. You have written a control line with no keyword, as in:
ABC
The line was ignored.
User Action. To avoid this message and unpredictable results,
correct the line.
INVPTRADD, Invalid pointer addition; the only valid form of pointer
addition is "pointer +[=] integer".
Error.
User Action. Correct the operation.
INVPTROPER, Invalid pointer arithmetic; the only math operations
defined for pointers are addition and subtraction.
Error.
User Action. Correct the operation.
INVPTRSUB, Invalid pointer subtraction; the only valid forms of

pointer subtraction are "pointer — pointer" or "pointer
-[=] integer".

Error.
User Action. Correct the operation.

INVQUAL, One of the command qualifiers is meaningless.

Warning. One (or more) of the CC command qualifiers is mean-
ingless to VAX-11 C, although grammatically acceptable to the
VAX/VMS command interpreter (CLI).

390 Appendix C

User Action. To avoid this message and unpredictable results,
correct the qualifier’s name.

INVSUBS, Invalid subscript value. Subscripts must be int or un-
signed. Subscripts in array declarations or casts must also
be constants.

Error. You have written an invalid subscript in an array refer-
ence or declaration, or in a cast. Subscripts used in array declara-
tions and casts must be integer constants. For example, you have
put a decimal point on the constant subscript, making its type
double.

User Action. Correct the subscript.

LIBERROR, Error while reading library "****m,

Fatal. The compiler cannot read the indicated library. Either it
is not a text library, or its format has been corrupted.

User Action. Verify the spelling of the library’s name, and verify
that it is a valid VAX/VMS text library.
LIBLOOKUP, "****" wag not found in any of the specified libraries.

Fatal. The compiler failed to locate the indicated #include mod-
ule in any of the specified or default libraries.

User Action. Check the CC command line to verify that the
library containing the module was specified and that the module
name, if specified, was spelled correctly. If the library was a de-
fault library, verify (with SHOW TRANSLATION C$LIBRARY)
that its name is the equivalent for CSLIBRARY.

MACDEFINREF, A macro cannot be **** during the scan of a refer-
ence to the macro; line ignored.

Warning. You have tried to redefine or undefine a macro within a
reference to it. The line was ignored.

User Action. To avoid this message and unpredictable results,
correct the line.
MACNONTERMCHAR, Nonterminated character constant in macro
argument; apostrophe added at end of line.
Warning.
User Action. To avoid this message and unpredictable results,
correct the line.
MACREQARGS, Macro reference requires an argument list; "****" not
substituted.

Error. You have written a macro reference without an argument
list. The reference was deleted from the source file.

VAX-11 C Compiler Messages 391

User Action. Correct the reference, specifying the same number
of arguments as in the definition of the macro.
MACSYNTAX, Syntax error in macro definition; line ignored.
Warning.
User Action. Correct the error and recompile.
MACUNEXPEOF, Unexpected end-of-file encountered in a macro ref-
erence; "****" not substituted.

Error. The end-of-file was encountered during a macro reference;
the reference was deleted.

User Action. Correct the error and recompile.
MAXMACNEST, Maximum text replacement nesting level exceeded;
EEEX ot substituted.

Error. You have specified a macro reference which is recursive or
otherwise causes repeated substitutions to a depth greater than
the implementation maximum of 64.

User Action. Correct the recursion or simplify the definitions.
MISPARENS, Mismatched parentheses in #if expression; "true" ex-
pression assumed.
Warning.
User Action. To avoid this message and unpredictable results,
correct the line.
MISSEDIT, Misplaced parentheses in function definition.

Error. The parentheses are either missing or misplaced in the
function definition, as in:

double f { function-statement

In the example, the function name f must be followed by a pair of
parentheses, even if the function takes no parameters.

User Action. Correct the function definition.

MISSENDIF, Missing #endif preprocessor control line(s).

Error. The compiler did not encounter an #endif line for the most
recent #if, #ifdef, or #ifndef.

User Action. Be sure that the control lines are properly struc-
tured, and add the missing #endif if appropriate.
MISSEXP, Missing or invalid exponent in float constant; zero expo-
nent (“e0’) assumed.

Warning. You have written a floating-point constant with the
letter ‘e’ or "E’ but with no exponent or an invalid exponent.
The exponent is assumed to be zero.

392 Appendix C

User Action. To avoid this message and unpredictable results,
correct the constant.

MODNOMACSUB, Macro substitution cannot be performed during
the scan of a macro reference; "****" not substi-
tuted; line ignored.

Warning. You have written a complex macro reference that in-
cludes a #module line containing a macro reference, as in:

macref{argl,
#module SUBST

+

+

rarg2)

where SUBST has a substitution defined in a previous #define
line. The substitution (here, for SUBST) was not performed, and
the #module line was ignored.

User Action. To avoid this message and unpredictable results,
replace the macro reference in the #module line with its actual
value, or move the #module line to a position outside the complex
macro reference.

MODNOTPORT, The #module preprocessor control line is not porta-
ble.

Warning. You have used the #module line correctly, but you are
warned that it is unique to VAX-11 C and not portable.

User Action. This message occurs when the
/STANDARD=PORTABLE option is used in the CC command
line.

MODZERO, Constant expression includes mod zero; the result has
been replaced with 0.

Warning. The constant expression has an invalid mod expres-
sion, such as 5 % 0. The result is zero.

User Action. Correct the expression (but note that its operands
must not be floating-point).

NAMETOOLONG, Identifier name exceeds 31 characters; truncated

tO nkkkkn

Warning.

User Action. To avoid this message, shorten the indicated identi-
fier.

NESTEDCOMMENT, Nested comment encountered.

Warning. You have included one comment inside another, as in
/* [* comment */ */.

VAX-11 C Compiler Messages 393

User Action. Check that you have not misplaced a comment
delimiter and inadvertently “commented out” necessary code.

NOBJECT, No object file produced.

Informational. The compiler did not produce an object file, due
to conditions reported in previous messages.

User Action. Make the corrections suggested by the other mes-
sage(s).

NOCLI, This compiler can be run only from VMS DCL.
Fatal.

User Action. Recompile the program, using the CC command
only with the standard command language, DCL.

NOFLOATOP, The **** operand of an **** operator may not be float-
ing point. The operand has been converted to an inte-
ger.

Warning. The left or right operand of the indicated binary opera-
tor, or the operand of the indicated unary operator, cannot be of
type float or double. It was coerced to int.

User Action. To avoid this message and unpredictable results,
change or cast the operand to an integral type.

NOFLOATSTATE, A floating-point value has been used incorrectly in
a **** gtatement; it has been converted to int.

Warning. A floating-point value is not valid as used in the indi-
cated statement. It was coerced to int.

User Action. To avoid this message and unpredictable results,
change or cast the operand to an integral type.

NOFORMALS, The declaration/definition of "****" gpecifies one or
more function formal parameters which have been ig-
nored.

Warning. You have included a function’s formal parameters in a
function declaration or definition. For example, the following
function declaration is not allowed because it names the func-
tion’s parameters:

int functlasbhsc)i
The parameters a, b, and ¢ are ignored.

Similarly, the following example defines a function returning a
pointer to a function returning an integer. The names of the
parameters of the function returning an integer are not allowed:

(#f{plyp2))(alal)
int ply P23
L

394 Appendix C

User Action. To avoid this message, remove the parameters, as
in:

int funct ()3
and
(#f(plsp2)) ()

NOLABEL, Label "****" undefined in this function.

Error. You have written "goto label-name" for an undefined la-
bel. The scope of a label name is restricted to the function in
which it is used as a label, and goto statements cannot branch to
labels inside other functions.

User Action. If appropriate, define the appropriate label name
by labeling a statement in the same function as the goto.

NOLISTING, No listing file produced.

Informational. The compiler did not create a listing file, usually
due to previously reported errors.

User Action. None.

NONOCTALDIGIT, Octal escape sequence in a character or string
constant terminated by nonoctal digit.

Warning. There is an 8 or 9 in the second or third position of an
octal escape sequence. In this case, the digits preceding the non-
octal digit are evaluated, and the 8 or 9 is considered a separate
character.

User Action. This message is issued only if the
/STANDARD=PORTABLE option is used in the CC command
line. Make sure that the compiler has resolved the ambiguity
correctly.

NONOCTALESC, Escape sequence in a character or string constant
starts with a nonoctal digit.

Warning. The first of three digits of an escape sequence is an 8 or
9. In this case, the backslash is ignored, and the 8 or 9 is treated
as a character.

User Action. This message is issued only if the
/STANDARD=PORTABLE option is used in the CC command
line. Make sure that the compiler has resolved the ambiguity
correctly.

NONPORADDR, Ampersand with constant is not a portable opera-
tion.

Warning. You have used an ampersand operator with a constant
in the argument list of a function call. VAX-11 C permits this
special case, but you are warned that the use of the ampersand on
anything but lvalues is not portable.

VAX-11 C Compiler Messages 395

User Action. You can suppress the message with the CC com-
mand qualifier /STANDARD=NOPORTABLE, which is the de-
fault.

NONPORTCONST, **** is a nonportable character constant.

Warning. VAX-11 C allows up to four characters to be specified
in a character constant; constants of more than one character,
however, are not portable.

User Action. You can suppress the message with the CC com-
mand qualifier /STANDARD=NOPORTABLE, which is the de-
fault.

NONPORTSC, **** is a nonportable storage class specifier.

Warning. This message is issued for the use of globalref, global-
def, globalvalue, and readonly storage class specifiers when the
/STANDARD=PORTABLE option is used in the CC command
line.

User Action. No action is required if the program need not be
compatible with other C compilers. You can avoid this message
by not specifying /STANDARD=PORTABLE.

NONSEQUITUR, "****' js not a member of the specified structure or

union.

Warning. You have used a member name in a reference to a
structure or union in which it was not declared. The reference was
valid, because the member name is unique and refers unambigu-
ously to a location in the referenced structure. This use of mem-
ber names is maintained only for compatibility with older pro-
grams.

User Action. Declare the member name properly or use the
/NOWARN option in the command line to suppress this message.

NONTERMCHAR, Nonterminated character constant; **** assumed.

Warning. The end of a source line was encountered before the
end of a character constant (“) was encountered. The indicated
value was assumed.

User Action. To avoid this message and unpredictable results,
correct the line.

NONTERMNULCHAR, Nonterminated character constant contains

396

no characters; '\0" assumed.
Warning.

User Action. To avoid this message and unpredictable results,
correct the constant.

Appendix C

NONTERMSTR, Nonterminated string constant; quotes added at end
of line.

Warning.

User Action. To avoid this message and unpredictable results,
correct the constant.

NOOPTIMIZATION, Complex control flow caused optimization to be
suppressed for procedure or function "****",

Informational. Optimization was not performed for the indi-
cated function.

User Action. None.

NOSTRDEF, "****" is a structure or union type that is not fully de-
fined at this point in the compilation.

Warning. You have used a structure or union tag at a point
where its associated type is undefined, as in:

struct a a_vari
f
+
struct a
{
int i3
float f3
¥

User Action. This usage is permitted, but not recommended. To
suppress the message, you must fully define a structure or union
before you refer to its tag.

NOTDECL, "****" is not declared within the scope of this usage.

Error. You have referred to an undeclared variable. All C varia-
bles must be declared explicitly; there are no defaults.

User Action. Add an appropriate declaration for the referenced
object.

NOTENUM, "****m {g not an enum tag in this context.

Warning. You have used an enum tag before the associated type
has been fully enumerated, as in:

enum color cl3
f

+

enum color { red: vellow }3

User Action. This usage is permitted, but not recommended. To
avoid the message, you must fully enumerate a type before you
use its tag.

VAX-11 C Compiler Messages 397

NOTFUNC, Function-valued expression not found.

Error. An identifier is followed by parentheses, but is neither a
function name nor a dereferenced pointer to a function (*fp).

User Action. Correct the expression.

NOTINTVAL, An integer value was not found where expected.
Error. An integer value was not used where required.
User Action. Check the indicated line carefully for missing array
subscripts or for other references that require integer values.
NOTLVALUE, The target of a **** operator is not an lvalue.

Error. The indicated operator, such as = (assignment) or & (ad-
dress of), requires an lvalue for its operand, that is, an expression
that could appear as the left operand in an assignment.

User Action. Replace the operand with a valid lvalue.

NOTPTRVAL, Address-valued expression not found.

Error. The indicated line requires a unary address (*) operator
with a nonpointer operand, or a nonpointer to the left of an arrow
(->) operator.

User Action. Correct the indicated line.
NOTSWITCH, Default labels and case labels valid only in switch
statements.

Error. You have used case or default as a label outside the body
of a switch statement.

User Action. Change the offending label(s).

NOTUNIQUE, "****' ig not a unique member name in this context.

Error. The name of a structure or union member was used in
more than one structure or union, refers to different locations in
its defining structures, and was used to refer to a structure in
which it was not defined. Thus, the name refers ambiguously to a
place in the referenced structure.

User Action. Refer to a structure or union only with a member
name declared in it.

NOWORK, No source file found in command line.
Fatal. You specified a CC command without a source file.
User Action. Recompile.

398 Appendix C

NULCHARCON, Character constant contains no characters; "\0 " as-
sumed.

Warning. You have used " for an ASCII NUL character instead
of \0".
User Action. This usage is permitted but unconventional. Use
“\O".
NULHEXCON, Hexadecimal constant contains no digits; 0X0 as-
sumed.
Warning. You have specified a constant such as 0X or Ox.

User Action. Be sure that 0 is a valid value in this context; if so,
change the constant to 0x0.

PARMNOTUSED, Macro parameter "****" is not referenced in the
definition.

Warning. A macro definition has more parameters than appear
in its substitution, as in:

#define mlasbsc) a*hb

User Action. This is a possible programming error. Specify the
extra parameter in the substitution or, if it is actually superflu-
ous, delete it from the parameter list.

PPUNEXPEOF, Unexpected end-of-file encountered in preprocessor
control line; line ignored.

Warning.

User Action. Examine the file to see whether the control line is
necessary; if so, correct the error and recompile.

PTRASSIGN, Assignment to/from pointers and integers is nonport-
able.

Warning. You have assigned an integer to a pointer or an address
to an integer variable. This message is issued only if
/STANDARD=PORTABLE was specified.

User Action. This usage is not portable and is not recommended.
The only portable assignment is pointer = 0. Change the operands
or cast them to the same type.

PTRCOMPARE, Pointer comparison with nonzero integer constant or
integer is a nonportable construct.

Warning. You have compared a pointer’s value with something
besides the constant 0. This message is issued only if
/STANDARD=PORTABLE was specified.’

User Action. This usage is not portable and is not recommended.
The only portable comparison is of a pointer variable with 0.
Otherwise, avoid the message by changing the operands or cast-
ing them to the same type.

VAX-11 C Compiler Messages 399

PTRFLOATCVT, The operand of a pointer addition or subtraction
operator was forced from floating-point to integer.

Warning. You have combined a pointer operand with a floating-
point value, as in:

int is*%ips

i = ip + 243
User Action. To avoid the message, be sure that pointers are
used only with other pointers or with integers; in the above exam-
ple and in similar situations, remove the decimal point from the
literal constant.

REPOVERFLOW, Length of replacement text exceeds maximum
buffer capacity; "****" not substituted.

Error. The length of the replacement text for a macro reference
or the length of the text plus the rest of the line exceeds the
implementation’s limit.

User Action. Shorten the replacement text or use multiple sub-
stitutions to achieve the desired result.
SEMICOLONADDED, Semicolon added at the end of the previous
source line.

Warning. A missing semicolon was added to the line prior to the
line numbered in this message.

User Action. Check the previous line carefully and add the semi-
colon in the appropriate place.
SYMTABOVFL, The total number of symbol table pages exceeds the
implementation’s limit.
Fatal. The program is too complex.
User Action. Simplify the program by reducing the number and
size of variables and other names, constants, and so forth.

SYNTAXERROR, *##**x**x
SYNTAXERROR2, ********
SYNTAXERRORS, #******xx
SYNTAXERROR4, *******x

Error. The illustrated syntax error prevents the generation of an
object file. (There are no important differences between the con-
ditions causing the various forms of the message.)

User Action. Correct the errors shown.

400 Appendix C

TBLOVRFLW, Internal table overflow, too many procedures, external
symbols (psects), or the program is too complex.
Fatal. Either the source file contains too many functions or ex-
pressions, or the compiler has overflowed its virtual address
space.
User Action. Reduce the size of the source file by dividing it into
smaller, separately compilable files, or change the logic of the
program to reduce the number of complicated expressions.

TOOFEWARGS, Argument list for macro "****" contains too few ar-
guments; missing arguments assumed to be null.

Warning. You have written a reference to the indicated macro
with fewer arguments than are specified in its definition.

User Action. To avoid this message and unpredictable results,
correct the reference.

TOOMANYARGS, Argument list for macro "****" contains too many
arguments; excess arguments ignored.
Warning. You have written a reference to the indicated macro
with more arguments than are specified in its definition.

User Action. To avoid this message and unpredictable results,
shorten the argument list.

TOOMANYCHAR, Character constant contains too many characters;
truncated to ****,

Warning. The length of a character constant exceeds the imple-
mentation limit (four characters). The constant was truncated to
the indicated value.

User Action. Reduce the length of the indicated character con-
stant.

TOOMANYERR, The total number of errors exceeds the implementa-
tion’s limit of 100.

Fatal.

User Action. Correct the errors reported in previous compiler
messages and recompile.

TOOMANYINITS, The initializer list for "****" gpecifies too many
initializers; excess initializers ignored.

Warning. This message can be issued for any type of variable.
Some causes might be missing brackets from an array declara-
tion, misplaced braces in an initializer list that would cause array
elements to be skipped, or simply, more initializers than elements
in an array or structure.

User Action. Check the declaration and make the appropriate
corrections.

VAX-11 C Compiler Messages 401

TOOMANYPARM, Too many macro parameters; excess parameters
ignored.

Warning. The number of macro parameters in a #define line
exceeds the implementation limit of 64.

User Action. Reduce the number of parameters.

TOOMANYSTR, String constant contains too many characters; trun-
cated.

Warning. The character-string constant in this line exceeds the
implementation’s limit of 1000 characters.

User Action. Shorten the constant.

TRUNCFLT, Double-precision floating-point constant cannot be con-
verted to single precision; 0.0 assumed.

Warning.

User Action. Ensure that 0 is a valid value in this context; if
necessary, redeclare the conversion target as double.

TRUNCSTRINIT, String initialization for "****" contains too many
characters to fit; truncated.

Warning. If the variable is a simple one-dimensional array, the
initializer is truncated (such that the length of the initializer is
array-1) and the null byte is added to the end of the array. If the
array is a multidimensional array or an array within a structure,
the initializer is truncated to the length of the array and a null
byte is not added.

User Action. You should treat arrays of characters as strings,
that is, allowing for the null byte at the end of the array. The
special case of multidimensional arrays and arrays within struc-
tures should be taken into account, especially when you do not
want the null byte to be truncated.

UABORT, Compilation terminated by user.

Fatal. The compilation was terminated by a DCL CTRL/C com-
mand.

User Action. None.
UNDEFIFMAC, "****" is not a currently defined macro; constant zero
' assumed.

Warning. The identifier in a constant expression in an #if pre-
processor control line is not currently defined as a macro. The
expression is evaluated as if the identifier were a constant 0.

User Action. Define the identifier as a macro or remove the
reference to it.

402 Appendix C

UNDEFNAME, "****' i5 already undefined; line ignored.

Warning. The specified identifier (in an #undef line) was either
never defined or else occurred in a previous #undef.

User Action. Remove the #undef, or, if applicable, add the defi-
nition of the identifier at the appropriate place.
UNEXPCTL, Unexpected **** control line encountered; line ignored.

Warning. The specified control line occurred out of place and
was ignored.

User Action. Check the logic of all control lines in the program to
be sure that it is valid.
UNEXPEND, Unexpected end-of-**** encountered in #define control
line; line ignored.

Warning. The end of the #define line or end of the source file was
encountered before the definition was complete.

User Action. To avoid this message and unpredictable results,
correct the line.
UNEXPEOF, Unexpected end-of-file encountered in a ****,

Error. The unexpected end-of-file prevents the generation of
code.

User Action. Correct the error and recompile.

UNRECCHAR, Unrecognized character ignored.

Warning. The line contains either an entirely meaningless char-
acter or one that appears out of its proper context, for example, a
number sign (#) that is not the first character on a line.

User Action. Move or remove the character.

WARNSUM, Completed with warnings.

Warning. The compilation was completed, but several warning
messages were issued. The program may not be logically correct.

User Action. If the execution of the program does not produce
the expected results, correct the statements for which warnings
were issued.

VAX-11 C Compiler Messages 403

Appendix D

Compiler Listing Formats

The VAX-11 C compiler has many options that let you control what
information is included in the listing file. This appendix shows the
different listing formats that are available.

When the CC command line contains the /LIST qualifier but does not
contain the /SHOW qualifier, you are given the default listing. All the
information in the default listing is also included in the other listing
formats. The default listing includes:

e Margin information

e The C source text

¢ Any errors encountered during the compilation
¢ The command line used to invoke the compiler

The left-hand margin of the source listing produced by the VAX-11 C
compiler contains several items of information, arranged into fields in
the following format:

nnnnn i ss mm

nnnnn is the compiler-generated listing line number; it starts at 1,
and is incremented by one for each line in the source pro-
gram, including lines read from included files (whether or
not the /SHOW=INCLUDE qualifier was specified in the
command line).

i is the level of nesting of lines read from included files; this
field is present only if /SSHOW=INCLUDE was specified on
the command line. Level 0, which appears as a blank, indi-
cates lines read from the source file(s) specified on the
command line.

ss is the level of nesting of compound statements in the
source program,; it starts at zero (which appears as a blank)
for external definitions and declarations, is incremented
each time a left brace which introduces a compound state-
ment is encountered (including the brace which introduces
a function body), and is decremented at the corresponding

404

right brace. This field may also appear as an “X” instead
of a number; this indicates that the source line is being
ignored by the compiler as a result of the evaluation of a
previous #if, #ifdef, or #ifndef preprocessor control line.

mm is the level of nesting of the last macro expanded in the
line; this field is present only if the qualifier /SHOW=EX-
PANSIONS or /SHOW=INTERMEDIATE was specified
on the command line. Level 0 corresponds to the original
source line, and appears as a blank. When this field is

nonzero, however, the fields “nnnnn”, “i”’, and “ss” all
appear as blanks.

In all cases, the numbers listed are right-justified in their fields, with no
leading zeros.

Compiler Listing Formats 405

90¥

d xrpueddy

o
EXAMPLE

Ui.,0
©
1 /% This is a sample prodram to show
2
3
a O /% This line is here to show what happens when
5
[} #include "debugding.h"
10
11 #include timeb
29
30 #define NULL 0
31
32 maiv ()
33 o <
© 34 1 glokalvalue 584 _NORMAL
%CC-W-NONPORTSC, dlobalvalue is a nonportable storade class
as 1 struct timeb time_structi
36 1 char #ctime_string, *ctime()3
37 1 int status = SS$_NORMALS
38 1
39 1 ftime (8 time_struct)i
40 1 if ((ctime_strind = ctime
a1 1 printf ("Run time is %s".
a2 1
43 1 #if debudding
a4 X printf ("\n¥** Debugging version
45 ® status =
46 1 #endif
a7 1 process ()3
48 1
49 1 return statuss
50 1 ¥

Command Line

/LIST/STANDARD=PORTABLE EXAMPLE

Figure D-1: Default Compiler Listing

(& time_struct,time))
ctime_string)j

©® 30-0CT-1981
© 23-0CT-1981

the format of the compiler listingd,
as well as the effect of the various /SHOW command-line sualifier

*xx\n\n") 3§

_DBAS: [CPROGIEXAMPLE.C38

a line from the source file is so long that

specifier.,

O Page 1
1)

bevond the

rig

sjewIoy Surysr Ja[idwo))

L0V

Figure D-1 shows the default compiler listing. The /STANDARD=PORTABLE option was used to show how the compiler
lists error messages. The notes to the figure are keyed to the numbers appearing on the listing.

© The name of the module and its identification appear at the top left of the listing.
® The date and time of compilation and the version of the compiler that was used appear at the center of the listing.

© The date and time when the source file was created and the file specification appear below the information in
number .
O The page numbers of the listing file and the source file (in parentheses) are shown to the far right of the listing.

© The listing line numbers are generated by the compiler.
O Long source lines are truncated if neither /SHOW=EXPANSION nor /SHOW=INTERMEDIATE is specified.

© The nesting level of compound statements starts at zero (appearing as blanks), is incremented each time a left brace is
encountered, or appears as an “X”’, which means that the line is ignored after a conditional control line is evaluated.

© Diagnostic messages appear immediately following the source line in question.
© The command line that generated the listing appears at the bottom.

The CC command line qualifiers /SSHOW=EXPANSIONS and /SHOW=INTERMEDIATE cause the compiler listing to
display the results of macro substitution. /SHOW=EXPANSIONS displays only the final, fully-substituted line, immedi-
ately following the listing of the original source line. /SSHOW=INTERMEDIATE displays the complete progress of
substitution, printing a new line each time a macro reference is replaced by its definition. If an error message is issued
against a line which contains substitutions, the message appears between the original line and the first substituted line.

The purpose of displaying the results of macro substitution is to show the source line as it is ultimately seen by the
compiler. Since macro substitution may significantly increase the length of the source line, the specification of either of
the above qualifiers also causes the compiler to “wrap” any source line that would exceed the right-hand listing margin

80%

d xtpuaddy

(whether or not the line contained any substitutions). The wrapped portion of the line appears on a new listing line, with
all of the left-margin fields appearing as blanks. Note that if neither of these qualifiers is specified, any source lines which
exceed the right-hand margin are simply truncated.

Figure D-2 is a listing which shows #include modules and intermediate macro expansions.

© The long line is wrapped around when the /SSHOW=INTERMEDIATE or /SHOW=EXPANSION qualifier is used.

@ The level of nesting of lines read from #include files is shown. This column is blank when the lines are read from the
source file.

© The nesting level is incremented when the #include file also contains #include control lines.
O The level of nesting of the last macro expanded in the line is shown.

EXAMPLE 30-0CT-1981 14:18:46 VAX-11 C V1, 0-00 Pade 1
V1.0 23-0CT-1981 14:01:11 -DBAS:[CPROGIEXAMPLE.C38 (B
1 /% This is a sample Pprodram to show the format of the compiler listing,
2 as well as the effect of the various /SHOW command-line aualifier values */
3
4 © /% This line is here to show what harrens when a line from the source file is so long that it extends hevond the

right-hand listing margin */

#include "debuddind,h"

#define YES

#define NO)

#define debudding NO /% YES only 1f debuggind code 15 to be compiled */

S WomN o U
@

syeurio,] Surysry Jo[iduro))

60¥

[EESRSRS]

[
3 SRR A

a P
0o

WWWRE
1= D

WWWWWWW
[CRRNERY YR

40

41
42
43

44
45
46
a7
a8
49
50

1
1
1
1
1
-

[P &

#include timeb
/*

* timeb - ftime system call return definitian

*/

#include tvpes

/*

* types - tyrpe definitions include file
*/

tyepedef long int time_t3

struct timeb {
time_t timej
unsidgned short millitm}

short timezonesd
short dstflagi
¥

#define NULL 0

main ()

{
dglobalvalue S5¢_NORMAL 3
struct timeb time_structsi
char ¥ctime_string, ¥ctime(}}
int status = SSE_NORMALS

ftime (& time_struct)i

if ((ctime_string = ctime

if ((ctime_string =
printf ("Run time

#if debugddging

#if NO
#if 0
printf ("\n**¥* Debugding version *#*\nin")3i
status =
#endif
process ()3
return statusi
¥

Figure D-2: Listing Format of Macro Substitutions

(B time_struct,time))
ctime (& time_struct,time))
is 7 sy ctime_string)s

include file

NULL Y
53]

orv

d xipueddy

When the /CROSS_REFERENCE option is used, the compiler produces a storage map with symbol table cross-refer-

ences, as shown in Figure D-3. The storage map produced by the /SHOW=SYMBOLS is the same as the listing shown in
Figure D-3, except that the cross-references are not included.

© The “External Declarations” section of the Storage Map lists all externally declared names (that is, names declared or
defined outside of any function).

® When the /CROSS_REFERENCE option is used, the compiler gives the line number in which each name is refer-

enced. The cross-reference information is not included in the storage map unless the /CROSS_REFERENCE option is
used.

© For each function in the source program, the compiler lists each declared name, giving:
— The identifier of the name
— The line on which the name is declared
— The size of the identifier
— The storage class to which the name belongs
— The data type of the name

O The Program Section (Psect) Synopsis lists the program sections created by the compiler and their attributes.

© The Function Definition Map lists each function defined in the program and gives the line number in which the
function is defined.

EXAMPLE
V1.0

(]
External Declarations

main

syewrio,] Sunsry tapiduro)

timeb

time

millitm

timezone

dstflag

time_t

[§84

Line

30-0CT-1981 14:18:47
23-0CT-1981 14:01:11

Size Class

Extern def.
10 bytes

1 longword

word

word

word

longword

Figure D-3: Cross-Reference Listing

VAX-11 C V1i,0-00
-DBAS:[CPROGIEXAMPLE.Ci8

Page

(444

d xpuaddy

Function "main" defined at line 32

ctime
ctime_string
ftime
printf
Process
S5$_NORMAL
status
time_struct
time
millitm
timezone

dstflag

(]
Psect Synoprsis

$CODE
$CHAR_STRING_.CONSTANTS

Line Size

36

36 1 longword
39

a1

a7

34 1 longword
37 1 longword
35 10 bytes
24 1 longword
25 1 word

26 1 word

27 1 word

Allocation

68 brtes
15 brtes

Extern

Redister

Extern

Extern

Extern

Globalvalue

Register

Auto

sjeuwroy Sursry rs[iduo)

1944

(-]
Function Definition Map

Line Name

3z main

Command Line

/SHOW=(INCLUDE s INTERMEDIATE) /CROSS_REFERENCE EXAMPLE

:T“Fe and References

Furction returning long int

- No references
Structure tag

- Referenced at line 35

Member (offset = 0) long int

- Referenced -at line 40

Member (offset = 4 brtes)s unsigned short int
- No references

Member (offset = B bytes), short int
- No references

Member (offset = 8 bytes): short int
- No references
Trredef: long int

- Referenced at line 24

Figure D-3: (Cont.) Cross-Reference Listing

444

 xrpuaddy

Trrpe and References

Function returning pointer to char
- Referenced at line 40
Pointer to char

- Referenced at lines 40 and 41
Function returning lond int

- Referenced at line 39
Furnction returning lond int

- Referenced at line 41
Function returning londg int

- Referenced at line 47

Long int

- Referenced at line 37
Initialized long int

- Referenced at livne 49

Struct timeb

- Referenced at lines 39 and 40
Member (offset = 0)s long int
- Referenced at line 40

Member (offset = 4 bytes), unsigned short int
- No refererces
Member (offset = 6 bvtes)s» short int

- No references
Member (offset = 8 brtes)s short int
- No refererces

Attributes

Position-inderendents relocatable, shareable, executable, readable
Position-independent relocatatle, readables writeable

Figure D-3: (Cont.) Cross-Reference Listing

syeurio] Sumsry reridwo))

SIv

When the /SHOW=STATISTICS option is used, the compiler accumulates and displays statistics for each phase of its
operation. It then lists the amount of I/O, memory, and CPU time used during the compilation. Figure D-4 shows the
information returned by the /SHOW=STATISTICS option.

@ This column shows the maximum working set size, not the total.

© The subphases of the compiler are indented in this column and precede the totals for their phase.

© The phase totals follow the breakdown of their subphases.

O The totals for the performance indicators may be greater than the sum of the phase totals. For example, the buffered
1/0 total (buf I/0) is 11, not 10.

© The compilation rate is the number of lines compiled per minute of CPU time. CPU times are measured in
10-millisecond units.

9y

d xipuaddy

EXAMPLE 30-0CT-1981 09:44:32 VAX-11 C Vi,0-00 Pade Z

U1.0 23-0CT-1981 14:01:11 -DBAS: [CPROGIEXAMPLE,C38 (1)
R e +
i Performance Indicators !
e o +
phase buf i/0 dir i/0 Ppadeflt virtmem workset@ cputim
parse/semantics totals 9 7 331 0 362 a0
@® live analvsis 0 0 18 0 362 6
reorder invariants 0 O 7 0O 362 3
eliminate redundancy 0 4] 2 QO 362 2
eliminate assignments 0 0 0 0 362 0
© optimizer totals 0 s} 40 [362 14
allocator totals QO 0 15 0 362 1
denerate code list 0 0 3z 0 362 7
redister allocation 4] 8] 0 0 362 1
peerhole optimization 0 8] 3 ¢} 362 1
branch/Jump resolution 0 QO 0 0 362 0
write obdect module] 0 7 0 362
code denerator totals 1 1 68 ¢} 362 16
O total compilation 11 8 477 16 362 128

50 lines compiled
compilation rate was 2343 lines per minute®

Figure D-4: Compiler Performance Statistics

Finally, when you use the /MACHINE__CODE option, a listing file is created showing the assembly language and
machine code generated by the compiler. This information is generated in line with the C source statements and is listed
below the last substituted line.

Figure D-5 shows the listing generated by the /MACHINE__CODE option. The notes that follow the figure are keyed to
the numbers in the figure.

syewio] Sunsr 1or1dwo)

LTV

EXAMPLE
vi.0

@ U S W -

10

29
30
31
3z
33

34
35
36
37

38
39

40

_ e e

30-0CT-1981 09:46:26
23-0CT-1981 14:01:11

/% This is a sample Program to show the format of the compiler listing,
various /SHOW command-line qualifier values */

as well as the effect of the

/% This line is here to show what harpens when a line from the source file is so long that it extends bevond the rig

#include "debudging.,h"

#include timeb

ANTS

#define NULL 0
main ()
{ (] ©
main:
0000 ventry mains’m
SE oC C2 sub12 #Cysp
00000000* EF 16 Jsh C$MAIN
globalvalue SS$_NORMAL }
struct timeb time_structsi
char ¥ctime_stringd, *ctime()3
int status = SS$_NORMALS
SC 00000000* BF DO 000B moul #55¢_NORMAL »ar
ftime (& time_struct)j
F6 AD 9F 0012 Ppushabt -0A(fe)
00000000% EF 01 FB 0015 calls #1,ftime
if ((ctime_string = ctime (& time_struct.time)) != NULL)
FG AD DF 001C Pushal -0A(fp)
00000000% EF 01 FB 001F calls #1,ctime
50 DS 0026 tstl ro
OF 13 0028 beal ved.l

Figure D-5: Machine Code Listing

VAX-11 C V1i,0-00
-DBAS: [CPROGIEXAMPLE.C38

Pagde

1
1)

81¥

 xtpueddy

a1 1 printf ("Run time is %s", ctime_string)si

S0 DD 002A Pushl ra
00000000 EF DF 002 pushal $CHAR_STRING_CONST

00000000% EF 0Z FB 0032 calls #2yprintf
az 1
43 1 #if debugding
a4 X printf ("\n*¥% Debugdding version ***¥\n\n")j
as ® status =
46 1 #endif
a7 1 process ()3

0039 wvcdg.l:

00000000% EF 00 FB 0039 calls #0,process
as 1
49 1 return statusi

S0 SC DO 0040 movl ap,r0
a4 0043 ret

50 1 ¥

/MACHINE_CODE EXAMPLE

Figure D-5: (Cont.) Machine Code Listing

@ The C source statements are shown.
® The object module location of each statement and the machine code instructions are listed.

© The assembly language code generated by each line of source text is shown beside its corresponding machine code
instruction.

Appendix E
VAX-11 G Definition Modules

Table E-1 lists the definition modules contained in the text library
named SYS$LIBRARY:CSYSDEF.TLB. The exact content of the
modules is not included here because the modules may change from
release to release.

The contents of these modules can be examined in the appropriate
definition file. All definition files have the file type H and they are
contained in SYS$LIBRARY. You can print or type individual files, or
you can issue the following command to print all the files with their file
names appearing at the top of each page:

$ PRINT BYS5$LIBRARY :%.H/HEADER

Table E-1: VAX-11 C Definition Modules

accdef Accounting file record definitions

chfdef Structure definitions for condition handlers

ctype Character type and macro definitions for character classification
functions

dedef Device class and type code definitions

descrip Descriptor structure and constant definitions
errno Error number definitions

errnodef VAX-11 C error message constants

fab File access block definitions

iodef I/0 function code definitions

jpidef $GETJPI system service request code definitions
math Math function definitions

nam Name block definitions

opcdef OPCOM request code definitions

pqldef Process quota code definitions
prvdef Privilege mask bit definitions
psldef Processor status longword definitions

419

Table E-1: (Cont.) VAX-11 C Definition Modules

rab Record access block definitions
rms All RMS structures and return status value definitions

rmsdef RMS return status value definitions

secdef Image section flag bit and match constant definitions
setjmp setjmp and longjmp state buffer definition
sfdef Stack call frame definitions

signal Signal value definitions

ssdef System service return status value definitions
stdio Standard I/O definitions

time localtime definitions

timeb ftime definitions

ttdef Terminal definitions

types Type definitions

xab Extended attribute block definitions

As noted in Chapter 6, the errno external variable is useful in deter-
mining the cause of a run-time error. When an error occurs during a
function call, the function returns an unsuccessful status to the pro-
gram and sets errno to a value that indicates the reason for the failure.

The errno definition module declares the errno variable and symboli-
cally defines the possible errno values. By including the errno defini-
tion module in your program, you can check for specific values after a
function call. These values, and their meanings, are as listed in Table
E-2.

Table E-2: errno Symbolic Values

Symbolic Constant Description
EPERM Not owner
ENOENT No such file or directory
ESRCH No such process
EINTR Interrupted system call
EIO 1/0 error
ENXIO No such device or address
E2BIG Argument list too long
ENOEXEC exec format error
EBADF Bad file number
ECHILD No child processes
EAGAIN No more processes
ENOMEM Not enough memory

420 Appendix E

Table E-2: (Cont.) errno Symbolic Values

Symbolic Constant

Description

EACCES
EFAULT
ENOTBLK
EBUSY
EEXIST
EXDEV
ENODEV
ENOTDIR
EISDIR
EINVAL
ENFILE
EMFILE
ENOTTY
ETXTBSY
EFBIG
ENOSPC
ESPIPE
EROFS
EMLINK
EPIPE
EDOM
ERANGE
EVMSERR

Permission denied
Bad address

Block device required
Mount device busy
File exists
Cross-device link

No such device

Not a directory

Is a directory

Invalid argument
File table overflow
Too many open files
Not a typewriter
Text file busy

File too large

No space left on device
Illegal seek
Read-only file system
Too many links
Broken pipe

Math argument
Result too large

VMS-specific error code for nontrans-

latable errors

The errno values can also be translated into a UNIX-like message by
the perror function. If perror cannot translate the errno value, it
prints the following message, followed by the VAX/VMS error message

associated with the value:

“esinon-translatable ums error code:

XXXXXX ums messade:

%s is the string you supply to perror; xxxxxx is the VAX/VMS message

number.

VAX-11 C Definition Modules

421

Example E-1 shows the use of the errno definition module to check for
a domain error during a call to the sqrt function; the program uses
perror to print a UNIX-like message if the error occurs.

#include errno
#include math
#indlude stdio

main()

{

¥

double inPutssauare_rooti

Pprintf("Enter a number: ")3
scanf ("%e" sBinPut) i

sauare_root = sart(inpPut)si

/% CHECK FOR DOMAIN ERROR AND PRINT UNIX-LIKE
MESSAGE IF THE ERROR OCCURS */

if (errvo == EDOM)

perror{"Examprle -- inPut was nedative")i
else

Pprintf("sauare root of %e = %e\n":

inPutssauare_root)i

Example E-1: Checking the errno Variable

422

Appendix E

Appendix F

VAX-11 G Run-Time Modules
and Entry Points

This appendix summarizes the modules and entry points in the
VAX-11 C run-time system. Table F-1 lists the modules in the library
and describes their function. Table F-2 lists the entry points defined in
each module and describes their function. Table F-3 lists the modules
from the VMS Run-Time Procedure Library that are called by VAX-11
C run-time modules.

Table F-1: VAX-11 C Run-Time Modules

Module Description
C$$CLEANUP Flush and close all files
C$$DATA Data definitions of standard file structures
C$$DOPRINT Character-string print and scan routines
C$$FILBUF Fill a file buffer
C$$FLSBUF Flush a file buffer
C$$SMAIN Main start-off routine for C programs
C$$MATH_HAND Math routine condition handler
C$$TRANSLATE Translate VMS codes to UNIX codes
C$ABORT Abort the current process
C$ABS Integer absolute value math function
C$ACOS Arc cosine math function
C$ALARM Set alarm function
C$ASIN Arc sine math function
C$ATAN Arc tangent math function
C$ATAN2 Arc tangent math function
C$ATOF ASCII to floating-point binary conversion
C$ATOL ASCII to integer binary conversion
C$BREAK Memory allocation routines
C$CEIL Ceiling math function
C$COS Cosine math function
C$COSH Hyperbolic cosine math function
C$CTERMID Controlling terminal identification
C$CTYPE Character type data definitions
C$CUSERID User-name identification
C$ECVT Double float to ASCII string conversion

423

Table F-1: (Cont.) VAX-11 C Run-Time Modules

Module Description
C$ERRNO Run-time library error message definitions
C$EXIT Close files and exit image
C$EXP Base e exponentiation math function
C$FABS Floating-point double absolute math function
C$FCLOSE Close a file
C$FDOPEN Open a file by file descriptor
C$FFLUSH Flush a file buffer
C$FGETC Get a character from a file
C$FGETNAME Get a file-name string
C$FGETS Get a string from a file
C$FLOOR Floor math library function
C$FOPEN Open a file
C$FPUTC Write a character to a file
C$FPUTS Write a string to a file
C$FREAD Read from a file to a buffer
C$FREXP Extract fraction and exponent math function
C$FSEEK Position to a byte offset within a file
C$FTELL Return current byte offset within a file
C$FWRITE Write from a buffer to a file
C$GCVT double value to ASCII string conversion
C$GETCHAR Get a character from standard input
C$GETENV Get environment value
C$GETGID Get group identification
C$GETPID Get the process identification
C$GETS Get a string from standard input
C$GETUID Get user identification
C$GETW Get a longword from an input file
C$HYPOT Euclidean distance math library function
C$KILL Send signal to process
C3$LDEXP Power of 2 math library function
C3LOG Logarithm base e math library function
C$LOG10 Logarithm base 10 math library function
C$MAIN C main routines
C$MALLOC Memory allocation
C$MODF Extract fraction and integer math function
C3$NICE Set process priority
C$PAUSE Suspend the process until a signal is received
C$PERROR Print an error message
C$POW Power math library function
C$PRINTF Formatted output routine
C$PUTCHAR Write a character to the standard output
C$PUTS Write a string to the standard output
C$PUTW Write a longword to a file
C$RAND Random number generator
C$REWIND Return file pointer to the beginning of the file
C$RMS_PROTOTYPES Definition of RMS data structures
424 Appendix F

Table F-1: (Cont.) VAX-11 C Run-Time Modules

Module Description
C$SCANF Formatted input routine
C$SETBUF Associate a buffer with a file
C$SETGID Set group identification
C$SETIMP Non-local goto functions (setjmp/longjmp)
C$SETUID Set user identification
C$SIGNAL Manipulate signal database
C$SIN Sine math function
C$SINH Hyperbolic sine math function
C$SLEEP Suspend the process for a number of seconds
C3$SQRT Square root math function
C$STRCAT String concatenation
C$STRCHR Search for a character in a string
C$STRCMP String comparison
C$STRCPY String copy
C$STRCSPN Search for a character in a set of characters
C$STRLEN Determine the string length
C$STRNCAT String concatenation
C$STRNCMP String comparison
C$STRNCPY String copy
C$STRPBRK Search a string for a set of characters
C$STRRCHR Search a string
C$STRSPN Search a string for characters not in a set
C$TAN Tangent math library function
C$TANH Hyperbolic tangent math function
C$TIME Get real-time values
C$TIMEF Manipulate/convert real-time values
C$TMPFILE Create a temporary file
C$TMPNAM Generate a name for a temporary file
C$TOLOWER Uppercase to lowercase conversion
C$TOUPPER Lowercase to uppercase conversion
C3UNGETC Push a character back into an input stream
C$UNIX UNIX emulation routines
C$VFORK Spawn a process

Table F-2: VAX-11 C Run-Time Entry Points

Entry Point Module Description
abort C$ABORT Abort the current process
abs C$ABS Integer absolute value math
library function
access C$UNIX Check the accessibility of a
file
acos C$ACOS Arc cosine math library

function

VAX-11 C Run-Time Modules and Entry Points 425

Table F-2: (Cont.) VAX-11 C Run-Time Entry Points

- CchPEN
, icher

C$$MAIN

. C$$MATH__HAND
- C$$TRANSLATE

CSSVFORK

C$MAT

codes to UNIX error codes

;Start up mam programy w1th/‘

Entry Point Module Description
alarm C$ALARM Set alarm library function
asin C$ASIN Arc sine math library func-
tion
atan C$ATAN Arc tangent math library
function
atan2 C$ATAN2 Arc tangent math library
function
atof C$ATOF Convert ASCII to floating-
point binary
atoi C$ATOL Convert ASCII to integer
binary
atol C$ATOL Convert long ASCII to
binary
brk C$BREAK Determine the low virtual
address for program data
area
_ c$8cleanup ' | C$$CLEANUP ~ Flush and close all files
c§$cond_hand C$SMAIN - Image condition handler
betrle_hand ~ C$SMAIN ‘Control/C ast handler
. C$$DOPRINT ~ Internal output formattmgf”]
et L0 iiting o :
. C$$DOSCAN . Internal mput formattmg -

__routine L
Internal file openmg routme ,

Estabhsh vfork envu'on-
ment ‘

~C$UNIX L Emulator exit handler
 C$$FILBUF Fill input buffer
. " C$$PLSBUR ,Flush a file tbuffer

Translate VAX/V MS error

N P ‘arguments :
cabs C$HYPOT Euclidean dlstance math
library function
calloc C$MALLOC Allocate and clear storage
cc$rms__fab C$RMS__PROTOTYPES File access block prototype
cc$rms__nam C$RMS_PROTOTYPES Name block prototype

e rbéewéd for DIG: AT o

426 _ Appendix F

Table F-2: (Cont.) VAX-11 C Run-Time Entry Points

Entry Point Module Description

cc$rms__rab C$RMS_PROTOTYPES Record access block proto-
type

cc$rms__xaball C$RMS_PROTOTYPES Allocation control extended
attribute block prototype

cc$rms__xabdat C$RMS_PROTOTYPES Date and time extended at-
tribute block prototype

cc$rms__xabfhe C$RMS_PROTOTYPES File header characteristics
extended attribute block
prototype

cc$rms__xabkey C3RMS_PROTOTYPES Indexed file key extended
attribute block prototype

cc$rms__xabpro C$RMS_PROTOTYPES File protection extended at-
tribute block

ccdrms__xabrdt C$RMS_PROTOTYPES Revision date and time ex-
tended attribute block pro-
totype

cc$rms__xabsum C$RMS_PROTOTPYES Summary extended attrib-
ute block prototype

ceil C$CEIL Ceiling math library func-
tion

cfree C$MALLOC Deallocate storage

chdir C$UNIX Change the default direc-
tory

chmod C$UNIX Change a file’s access mode

chown C$UNIX Change a file’s owner

close C$UNIX Close a file

cos C$COS Cosine math library func-
tion

cosh C$COSH Hyperbolic cosine math
library function

creat C3UNIX Create a file

ctermid C$CTERMID Identify the controlling ter-
minal

ctime C$TIMEF Convert time to an ASCII
string

cuserid C$CUSERID Identify the user name

delete C$UNIX Delete a file by file name

dup C$UNIX Create a duplicate file de-
scriptor

dup2 C$UNIX Create a duplicate file de-
scriptor

ecvt C$ECVT Convert a double value to
ASCII

execl C$UNIX Execute a program image

execle C3UNIX Execute a program image

VAX-11 C Run-Time Modules and Entry Points 427

Table F-2: (Cont.) VAX-11 C Run-Time Entry Points

Entry Point Module Description

execv C$UNIX Execute a program image

execve C$UNIX Execute a program image

exit C$EXIT Close files and exit

__exit C$UNIX Exit image

exp C$EXP Base e exponentiation math
function

fabs C$FABS double absolute math func-
tion

fclose C$FCLOSE Close a file

fevt C$ECVT Convert a double value to
ASCII

fdopen C$FDOPEN Open a file by file descriptor

fflush C$FFLUSH Flush a file buffer

fgete C$FGETC Get a character from a file

fgetname C$FGETNAME Get a file-name string

fgets C$FGETS Get a string from a file

floor C$FLOOR Floor math library function

fopen C$FOPEN Open a file by file pointer

fprintf C$PRINTF Format a string to a file

fpute C$FPUTC Write a character to a file

fputs C$FPUTS Write a string to a file

fread C$FREAD Read from a file

free C$MALLOC Deallocate storage

freopen C$FOPEN Close and reopen a file

frexp C$FREXP Extract fraction exponent
math function

fscanf C$SCANF Scan input from a file

fseek C$FSEEK Position to an offset in a file

ftell C$FTELL Return current offset in a
file

ftime C$TIME Get the time

fwrite C$FWRITE Write to a file

gevt C$GCVT Convert a double value to
ASCII

getchar C$GETCHAR Get a character from stand-
ard input

getegid C$GETGID Get the effective group iden-
tification

getenv C$GETENV Get an environment value

geteuid C$GETUID Get the effective user identi-
fication

getgid C$GETGID Get the group identification

getname C$UNIX Get a file-name string

getpid C$GETPID Get the process identifica-

428

tion

Appendix F

Table F-2: (Cont.) VAX-11 C Run-Time Entry Points

Entry Point Module Description

gets C$GETS Get a string from standard
input

getuid C$GETUID Get the user identification

getw C$GETW Get a longword from an in-
put file

gsignal C$SIGNAL Generate a signal

hypot C$HYPOT Euclidean distance math
library function

isatty C$UNIX Check for a terminal file

kill C3$KILL Send a signal to a process

ldexp C$LDEXP Power of 2 math library
function

localtime C$TIMEF Place time in a time struc-
ture

log C$LOG Logarithm base e math
library function

logl0 C$LOGI10 Logarithm base 10 math
library function

longjmp C$SETIJMP Return to setjmp’s entry
point

Iseek C$UNIX Seek to a position in a file

malloc C$MALLOC Allocate memory

mktemp C$TMPNAM Make a temporary file-name
string

modf C$MODF Extract fraction and integer
math function

nice C$NICE Set process priority

open C$UNIX Open a file by file descriptor

pause C$PAUSE Suspend the process

perror C$PERROR Print an error message

pipe C$UNIX Allow two processes to ex-
change data

pow C$POW Power math library function

printf C$PRINTF Format a string to standard
output

putchar C$PUTCHAR Write a character to stand-
ard output

puts C$PUTS Write a string to standard
output

putw C$PUTW Write a longword to a file

rand C$RAND Compute a random number

read C3$UNIX Read a file

realloc C$MALLOC Change the size of an area of

storage

VAX-11 C Run-Time Modules and Entry Points 429

Table F-2: (Cont.) VAX-11 C Run-Time Entry Points

Entry Point Module Description

rewind C$REWIND Return to the beginning of
the file

sbrk’ C$BREAK Add bytes to the program’s
low virtual address

scanf C$SCANF Format input from the
standard input

setbuf C$SETBUF Associate a buffer with a file

setgid C$SETGID Set group identification

setjmp C$SETIMP Set up a return site for
longjmp

setuid C$SETUID Set user identification

signal C$SIGNAL Set a signal

sin C$SIN Sine math library function

sinh C$SINH Hyperbolic sine math li-
brary function

sleep C$SLEEP Suspend the process

sprintf C$PRINTF Format a string to a mem-
ory buffer

sqrt C$SQRT Square root math library
function

srand C$RAND Reinitialize the random
number generator

sscanf C$SCANF Format input from memory

ssignal C3$SIGNAL Set a signal

strcat C$STRCAT Concatenate two strings

strchr C$STRCHR Search for a character in a
string

stremp C$STRCMP Compare two strings

strcpy C$STRCPY Copy a string to another
string

strespn C$STRCSPN Search string for a character

strlen C$STRLEN Determine the length of a
string

strncat C$STRNCAT Concatenate two strings

strncmp C$STRNCMP Compare two strings

strncpy C$STRNCPY Copy from one string to an-
other

strpbrk C$STRPBRK Search a string for a charac-
ter

strrchr C$STRRCHR Search a string for a charac-
ter

strspn C$STRSPN Search a string for a charac-
ter

tan C$TAN Tangent math library func-

430

tion

Appendix F

Table F-2: (Cont.) VAX-11 C Run-Time Entry Points

Entry Point Module Description

tanh C$TANH Hyperbolic tangent math
library function

time C$TIME Get the epoch time

times C3$UNIX Get the process and CPU
times

tmpfile C$TMPFILE Create a temporary file

tmpnam C$TMPNAM Generate a temporary file
name

tolower C$TOLOWER Convert uppercase to lower-
case

toupper C$TOUPPER Convert lowercase to upper-
case

umask C$UNIX Set a file’s protection mask

ungetc C$UNGETC Push a character back into
the stream

vfork C$UNIX Spawn a process

wait C$UNIX Suspend a process

write C3$UNIX Write a file

Table F-3: Run-Time Library Procedures

Called by VAX-11 C

Procedure

lib$get__foreign
lib$free__vm
lib$get__vm
lib$signal

Get DCL command line
Virtual memory deallocation
Virtual memory allocation

Condition signaling

VAX-11 C Run-Time Modules and Entry Points 431

The VAX-11 C mathematical functions are performed by the
VAX/VMS run-time procedures listed below:

mth$dacos__r7 mth$dasin__r7 mth$datan__r7
mth$datan2 mth$dcos__r7 mth$dcosh
mth$dexp__r6 mth$dsqrt__r5 mth$dlog_r8
mth$dlogl0__r8 mth$dsin__r7 mth$dsinh
mth$dsqrt__r5 mth$dtan__r7 mth$dtanh

VAX-11 C also calls run-time library modules that perform data con-
version. These modules are listed below:

ots$evt__t__d
ots$evt__ti__1
ots$evt__to_1
ots$evt__tz__1
ots$$cvt_d__t_r8
ots$powdd

The following formatting routines are called by VAX-11 C:

for$evt_d__tg
for$evt__d__te
for$evt__d__tf

432 Appendix F

Appendix G
ASCII Character Set

Table G-1 shows the ASCII character set and the values returned by
the character classification functions.

Along the top of the table are the names of the functions. (Each func-
tion name begins with “is”; the “is” was dropped to avoid unnecessary
redundancy.) Along the left side of the table are the ASCII characters
and their octal values. A check mark (+) in the column under the
name of a function means that that function returns a true (nonzero)
value when the corresponding ASCII character is the argument to the
function. (A blank means that the function returns a false value.)

Note that these functions are implemented as preprocessor macros.
Chapter 6 describes each character classification function in detail.

Table G-1: ASCII Character Set
(with character-classification return values)

ASCII is-Function

Code alnum alpha ascii cntrl digit graph lower print punct space upper xdigit
NUL 00 v v

SOH 01 v v

STX o2 v v

ETX 03 v v

EOT 04 v v

ENQ 05 v v

ACK 06 v v

BEL 07 v v

BS 10 v v

HT 11 v v v
LF 12 v v v
VT 13 v v v
FF 14 v v v
CR 15 v v v
SO 16 v v

SI 17 v v

DLE 20 v v

DC1 21 v v

DC2 22 v v

DC3 23 v v

433

Table G-1: (Cont.) ASCII Character Set
(with character-classification return values)

ASCII is-Function
Code alnum alpha ascii cntrl digit graph lower print punct space upper xdigit
DC4 24 v v
NAK 25 v v
SYN 26 v v
ETB 27 v v
CAN 30 v I
EM 31 v v
SUB 32 v v
ESC 33 v v
FS 34 v v
GS 35 v v
RS 36 v v
us 37 v v
SpP 40 v v [
! 41 v v v v
" 42 v v %4 v
43 v v v v
$ 44 v v v v
Ce 45 v v v v
& 46 v v v v
47 v v v v
(50 v v v v
) 51 v v v v
* 52 v v v v
+ 53 v v v v
s 54 v v v v
— 55 v v v v
56 v v v v
5T v v v v
0 60 v v v v v v
1 61 v v v v v v
2 62 v v v v v v
3 63 v v v v v v
4 64 v v v v v v
5 65 v v v v v v
6 66 v v v v v v
7 7 v v v v v v
8 70 v v v v v v
9 71 v v v v v v
72 v v v v
H 73 v v v v
< 74 v v v v
7 v v v v
> 76 v v v v
9 77 v v v %4
@ 100 v v v v

434 Appendix G

Table G-1: (Cont.) ASCII Character Set
(with character-classification return values)

ASCH is-Function
Code alnum alpha ascii cntrl digit graph lower print punct space upper xdigit
A 101 v v v v v v v
B 102 v v v v v v v
C 103 v v v v v v v
D 104 v v v v v v v
E 105 v v v v v v v
F 106 v v v v v v v
G 107 v v v v v v
H 110 v v v v v v
I 111 v v v v v v
J 112 v v v % v v
K 113 v v v v v v
L 114 v v v v v v
M 115 v v v v v v
N 116 v v v v v v
(0] 117 v v v v v v
P 120 v v v v v v
Q 121 v v v v v v
R 122 v v v v v v
S 123 v v v v v v
T 124 v v v v v v
U 125 v v v v v v
\Y 126 v v v v v v
W 127 v v v v v v
X 130 v v v v v v
Y 131 v v v v v v
YA 132 v v v v v v
[133 v v v v
\ 134 v v v v
] 135 v v v v
136 v v v v
_ 137 v v v v
140 v v v v
a 141 v v v v v v
b 142 v v v v v v v
c 143 v v v v 4 v v
d 144 v v v v v v v
e 145 v v v v v v v
f 146 v v v v v v v
g 147 v v v v v v
h 150 v v v v v v
i 151 v v v v v v
j 152 v v v v v v
k 153 v v v v v v
1 154 v v v v v v
m 155 v v v v v v

ASCII Character Set 435

Table G-1: (Cont.) ASCII Character Set
(with character-classification return values)

ASCII is-Function

Code alnum alpha ascii cntrl digit graph lower print punct space upper xdigit

n 156 v v v v v v

o 157 v v v v v v

p 160 v v v v v v

q 161 v v v v v v

r 162 v v v v v v

s 163 v v v v v v

t 164 v v v v v v

u 165 v v v v v v

v 166 v v v v v v

w 167 v v v v v v

X 170 v v v v v v

v 71 v v v v v v

7 17 v v v v v v

{ 17 v v v ~

| 17 v v v v

{ 175 v v v v
176 v v v v

DEL 177 v v

436 Appendix G

Index

A

abort function, 98
abs function, 98
accdef definition module, 419
access function, 98
Access mode, 175
acos function, 98
Additive operators (+,-), 63
Address of operator, 61
Aggregate, 2
definition of, 367
initialization of, 46
Aggregates
array, 37
structure, 39
union, 39
alarm function, 99
ALLOCATE
DCL command, 254
Alternate key, 174
Ampersand operator (&), 61
definition of, 367
and passing arguments by
descriptor, 220
and passing arguments by
reference, 218
AND bitwise operator (&), 65
Apostrophe ("), 29
argc
main function argument, 313
Argument
command-line, 313
in #define preprocessor macros,
165
definition of, 367
to a function
conversion of, 20, 56
rules governing, 20
Argument list
arrays in, 37
on call stack, 209
structures in, 40
unions in, 40

Argument list, (Cont.)
variable-length, 225
Argument passing
definition of, 367
by descriptor, 220
by immediate value, 211
floating-point, 216
by reference, 218
and VAX-11 Calling Standard,
208
Argument pointer (AP)
as debugger’s permanent symbol,
334
in mixed-language programming,
209
argv
main function argument, 313
Arithmetic conversion rules, 55
Arithmetic operators
debugger, 329
definition of, 368
negation, 60
Arithmetic types
definition of, 368
Arrays
debugger references to, 340
declaration of, 37
definition of, 368
initialization of, 46
references to, 58
Arrow operator (->), 59
ASCII character set, 433
asin function, 99
ASSIGN
DCL command, 253
Assignment, 66
expression
definition of, 368
operator
definition of, 368
precedence of, 54
Asterisk operator (x), 32, 61
as debugger arithmetic operator,
329

Asterisk operator (*), (Cont.)
definition of, 368
At sign (@)
as debugger arithmetic operator,
329
in execute procedure commands
DCL, 255
debugger, 323
atan function, 99
atan2 function, 100
atof function, 100
atoi function, 100
atol function, 101
auto storage class, 35

B

Batch job queue
for command procedures,
256
Binary operators
additive, 63
bitwise, 65
definition of, 368
equality, 64
logical, 65
multiplicative, 64
precedence of, 54
relational, 64
shift, 65
Bitwise operators (&, !,"), 65
definition of, 369
for manipulating status values,
229
Block, 22, 69
activation of, 369
definition of, 369
scope of names in, 49
Braces ({ })
in compound statements, 22
in initializer lists, 46
Bracket operators ([1), 37
in array references, 58
Brackets, angle (< >)
as debugger arithmetic operator,
329
break statement, 71
in switch statement, 72
Breakpoints
debugger commands for, 349
brk function, 101

C
C$LIBRARY logical name, 262

438

cabs function, 124
Call stack, 209
Calling sequence
as displayed by debugger, 353
Calling Standard, VAX-11, 208
calloc function, 101
CANCEL
debugger commands, 323
CANCEL BREAK, 349
CANCEL MODULE, 331
CANCEL SCOPE, 338
CANCEL TRACE, 351
CANCEL TYPE/OVERRIDE,
339
CANCEL WATCH, 352
case label, 72
Cast
definition of, 369
Cast operator, 62
CC
See Compile command
ccrms__fab
initialized RMS data structure,
178
cc$rms__nam
initialized RMS data structure,
178
cc$rms__rab
initialized RMS data structure,
178
cc$rms__xaball
initialized RMS data structure,
178
cc$rms__xabdat
initialized RMS data structure,
178
cc$rms__xabfhe
initialized RMS data structure,
178
cc$rms__xabkey
initialized RMS data structure,
178
cc$rms__xabpro
initialized RMS data structure,
178
cc$rms__xabrdt
initialized RMS data structure,
178
cc$rms__xabsum
initialized RMS data structure,
178
ceil function, 101
cfree function, 118
CHANGE
EDT command, 286

Index

char
See Character data type

CHAR_STRING_CONSTANTS
VAX-11 C program section, 235

Character
classification functions, 86
isalnum, 125
isalpha, 125
isascii, 125
iscntrl, 126
isdigit, 126
isgraph, 126
islower, 126
isprint, 127
ispunct, 127
isspace, 127
isupper, 127
isxdigit, 128
return values, 433
constant, 29
conversion
arithmetic, 55
conversion functions, 89
atof, 100
atoi, 100
atol, 101
ecvt, 108
fevt, 108
gevt, 108
toascii, 159
tolower, __tolower, 159
toupper, __toupper, 159
string, 29
debugger references to, 343
variable, 29
Character data type
definition of, 369
size of, 2
Character mode
See EDT
chdef definition module, 419
chdir function, 102
chmod function, 102
chown function, 103
clearerr function, 103
$CLOSE
RMS function, 176
close function, 103
$CODE psect
global symbol definitions in,
243

as VAX-11 C program section,

235
Comma operator (,), 68
in compile command, 297

Index

Comma operator (,), (Cont.)
definition of, 370
precedence of, 54

Command file
for DCL command procedures,

255
for EDT start-up, 293

Command-line arguments, 313
conversion of, 315

Comment, 23
in #define control lines, 165
definition of, 370
in interpreting declarations,

51

Compile command
format of, 296
for one object module, 297
for program debugging, 320
qualifiers for, 299
for separate object modules,

297
Compiler
diagnostic messages,
377 to 403
format of, 302
listings
default, 406
format of, 404
with machine code, 416
with macro substitutions,
407
with performance statistics,
415
with storage map, 410
operations, 295

Completion status
and returning to the DCL, 318

Compound statement, 22, 69
definition of, 370
scope of names in, 49

Conditional operator (?:), 66
definition of, 370
precedence of, 54
for program control, 5

$CONNECT
RMS function, 176

Constant
definition of, 370
expression

definition of, 370
identifier, 165

Constant, character, 29

CONTINUE
DCL command, 348

continue statement, 74

439

Control lines

#define, 163

#else, 169

#endif, 169

#if, 169

#ifdef, 169

#ifndef, 169

#include, 168

#line, 170

#module, 171

#undef, 168
Conversion

of arithmetic operands, 55

with cast operator, 62

of data types, 55

definition of, 370

of function arguments, 20, 56
COPY

DCL command, 255

to control libraries, 262

EDT command, 281
cos function, 103
cosh function, 104
creat function, 104

file attribute keywords for, 105
CREATE

DCL command, 254
$CREATE

RMS function, 176
CRTLIB.OLB system library, 266
CSYSDEF.TLB system library, 263
ctermid function, 106
ctime function, 106
ctype definition module, 419
cuserid function, 107

D

D-floating binary declaration,
31
Data definition
definition of, 370
external, 25
scope of, 49
scope of external, 25
$DATA psect
global symbol definitions in,
243
as VAX-11 C program section,
235
Data structures
RMS, 175
definition modules, 177
initialized prototypes, 177
See also Aggregates

440

Data types, 1, 26
conversion of, 55
debugger restrictions on, 339
sizes of, 2
dcdef definition module, 419
DEASSIGN
DCL command, 253
DEBUG
DCL command, 321
Debugger
breakpoints, 349
calling functions, 353
commands
EXAMINE and DEPOSIT
for array references, 340
for character-string references,
343
data type restrictions on,
339
for scalar references, 339
for structure references,
345
for union references, 345
GO, 347
STEP, 348
syntax and summary, 323
and effects of optimization,
321
operators
address, 329
arithmetic, 329
references and locations
global symbols, 333
permanent symbols, 334
program locations, 333
symbolic references, 334
run-time symbol table
adding names to, 331
case recognition in, 330
default names in, 330
scope, 335
changing, 337
of automatic variables, 338
session
beginning and ending, 320
tracepoints, 351
watchpoints, 351
Decimal radix operator
debugger, 329
for input character conversion,
143

for output character conversion,
135
Declarations, 26
aggregate

Index

Declarations, (Cont.)
array, 37
structure, 39
union, 39
definition of, 371
format of, 27
interpreting, 49
scalar
character constant, 29
character variable, 29
enumerated, 33
floating-point, 31
integer, 28
pointer, 32
Decrement operator (—-), 60
default label, 72
DEFINE
DCL command, 253
debugger command, 324, 334
EDT command, 270, 291
#define
preprocessor control line, 163
Definition modules
organization of, 96
for RMS data structures, 177
standardization of, 13
supplied with VAX-11 C,
419
DELETE
DCL command, 255
to control libraries, 262
EDT command, 280
$DELETE
RMS function, 176
delete function, 108
DEPOSIT
debugger command
for character strings, 343
for scalar variables, 339
descrip definition module, 220,
419
$DESCRIPTOR
preprocessor macro, 224
Descriptors

in mixed-language programming,

220

Direct access modes, 175
DIRECTORY

DCL command, 254
$DISCONNECT

RMS function, 176
Division operator (/), 64
do statement, 70
Dollar sign ($)

in identifier names, 21

Index

double data type
conversion
arithmetic, 55
of function argument, 56
declaration of, 28
dup function, 108
dup2 function, 108

E

ecvt function, 108
EDIT/EDT command, 272
EDT (DEC Standard Editor)
introduction to, 268
invoking, 272
protecting and recovering text,
289
terminating, 274
EDT aids for the programmer
redefinition of keys, 291
start-up command files, 293
structured tabs, 290
EDT HELP facility, 271
EDT operating modes
character
deleting and undeleting text,
288
entering and exiting, 286
inserting text, 288
maneuvering the cursor, 286
moving text, 289
line
creating a file, 274
deleting text, 280
editing a file, 275
from another directory,
283
file input and output, 283
inserting text, 279
maneuvering in the file, 278
moving text, 281
range specifications, 275
replacing text, 280
substituting text, 281
EDTINLEDT
EDT start-up command file, 293
#else
preprocessor control line, 169
#endif
preprocesor control line, 169
Entry points
to VAX-11 C run-time library,
425
enum
See Enumerated data type

441

Enumerated data type
declaration of, 33
definition of, 371
scope of, 49
size of, 2
with globaldef keyword, 245
envp
main function argument, 313
Equal sign (=)
in debugger DEPOSIT command,
339
as EDT buffer specification,
277
Equality operators (==,!=), 64
definition of, 371
$ERASE
RMS function, 176
errno definition module, 419
errnodef definition module, 419
Errors
compiler, 302
linker, 306
run-time, 316
returning to the DCL, 318
RMS return status values,
177
Escape sequences, 30
EVALUATE
debugger command, 333 to 334
EXAMINE
debugger commands
for arrays, 340
floating-point, 341
for character strings, 343
for scalar variables, 339
for structures, 345
for unions, 345
execl function, 110
execle function, 110
Execute procedure command (@),
255
execv function, 110
execve function, 110
EXIT
debugger command, 320, 324,
348
EDT command, 270
exit, __exit functions, 112
exp function, 112
Expressions, 53
assignment, 66

binary
additive, 63
bitwise, 65

equality, 64

442

Expressions, (Cont.)
logical, 65
multiplicative, 64
relational, 64
shift, 65

comma, 68
conditional operator (?:), 66
definition of, 371
primary
array reference, 58
function call, 57
lvalue, 58
parenthesized, 57
structure references, 59
union references, 59
statement, 69
unary
addressed, 61
cast, 62
increment and decrement, 60
negation, 60
one’s complement, 62
sizeof, 63
Extended attribute block (XAB)
initialization of, 181
extern
See External data type
External data type
data definition, 25
vs. global symbols, 243
definition of variable, 371
storage class for, 36

F

F-floating binary declaration,
31

FAB
RMS data structure, 175

fab definition module, 177, 419

fabs function, 98

fclose function, 113

fevt function, 108

fdopen function, 113

feof function, 114

ferror function, 115

fflush function, 115

fgetc function, 120

fgetname function, 122

fgets function, 123

File access block (FAB)
creat keywords, 105
initialization of, 179

File specification
defaults

Index

File specification, (Cont.)
changing, 251
temporary, 249
format of, 247
File type
compiler defaults, 297
executable image, 310
library defaults, 265
linker defaults, 308
fileno function, 115
FIND
EDT command, 279
Fixed-length record format, 175
float
See Floating-point data type
Floating-point data type
conversion
arithmetic, 55
of function argument, 56
in debugger references, 341
declaration of, 31
definition of, 371
passed by immediate value, 216
size of, 2
floor function, 116
fopen function, 116
for statement, 70
Foreign command
for passing command-line
arguments, 314
FORTRAN common block
sharing program sections with,
236
fprintf function, 134
fputc function, 139
fputs function, 139
Frame pointer (FP)
as debugger’s permanent symbol,
334
in mixed-language programming,
209
fread function, 117
free function, 118
freopen function, 118
frexp function, 119
fscanf function, 141
fseek function, 119
ftell function, 119
ftime function, 120
Function definition, 16
arguments, 20
conversion of, 56
names of, 18
parameters, 20
arrays, 37

Index

Functions
calls to, 6, 57
definition of, 371
debugging, 333, 352
definition of, 371
RMS, 175
run-time
portability of, 355
See also Run-time library
specific to VAX-11 C, 14
standardization of, 13
scope of, 18, 49
undeclared, 57
Fundamental type
definition of, 372
fwrite function, 120

G

gevt function, 108
$GET
RMS function, 176
getc function, 120
getchar function, 120
getegid function, 123
getenv function, 121
geteuid function, 123
getgid function, 123
getname function, 122
getpid function, 122
gets function, 123
getuid function, 123
getw function, 120
Global name
in program sections, 233
Global symbol, 242
debugger references to, 333
initialization of, 243
link-time scope of, 243
in run-time symbol table,
330
to test return status values,
231
vs. extern variables, 243
globaldef data type
definition of, 243
with enumerated values, 245
and global symbol definitions,
242
program sections for, 233
storage class of, 36
globalref data type
declaration of, 243
with enumerated values, 245
and global symbol references, 242

443

globalref data type, (Cont.)
program sections for, 233
storage class of, 36
globalvalue data type
declaration, 245
and global symbol definitions,
242
program sections for, 233
storage class of, .36
GO
debugger command, 347
goto statement, 74
gsignal function, 124
VAX-11 C signal values for,
148

H

HELP
DCL command, 255
debugger command, 325
EDT command, 271
Hexadecimal radix operator
debugger, 329
for input character conversion,
143
for output character conversion,
135
hypot function, 124

I

I/0 functions, 76

for error-handling, 86
clearerr, 103
ferror, 115

for file input, 85
fgete, 120
fgets, 123
fread, 117
fscanf, 141
gete, 120
getchar, 120
gets, 123
getw, 120
isatty, 125
read, 140
scanf, 141
sscanf, 141

for file output, 85
delete, 108
fgetname, 122
fprintf, 134
fpute, 139
fputs, 139

444

I/0 functions, for file output, (Cont.)
fwrite, 120
getname, 122
printf, 134
pute, 139
putchar, 139
puts, 139
putw, 139
sprintf, 134
ungete, 160
write, 162
for opening and closing files, 84
close, 103
creat, 104
dup, 108
dup2, 108
fclose, 113
fdopen, 113
fileno, 115
fopen, 116
freopen, 118
open, 132
pipe, 133
setbuf, 144
tmpfile, 158
for positioning within files, 84
feof, 114
fflush, 115
fseek, 119
ftell, 119
Iseek, 130
rewind, 141
I/0, stream
access to record files, 79 .
access to stream files, 79
relationship to RMS, 79
standard, 82

UNIX, 82
I/0, terminal, 83
Identifier
definition of, 372
Identifiers

conventions for, 21

in #define control line, 165

predefined, 7
#if

preprocessor control line, 169
if statement, 70
#ifdef

preprocessor control line, 169
#ifndef

preprocessor control line, 169
Image

execution

with the debugger, 320

Index

Image, execution, (Cont.)
with the RUN command, 313
exit, 315
interruption, 317
INCLUDE
EDT command, 283
#include
preprocessor control line, 168
for default libraries, 263
#include modules
descrip, 220
list of, 419
organization of, 96
for RMS data structures, 177
ssdef, 213
stsdef, 229
Increment operator (++), 60
Indexed file organization, 174
Initialization
of aggregate variables, 46
of auto variables, 45
of extern variables, 45
of external data definitions, 25
of global symbols, 243
of register variables, 45
of RMS data structures
extended attribute block (XAB),
181
file access block (FAB), 179
name block (NAM), 182
record access block (RAB), 180
of scalar variables, 46
of static variables, 45
INITIALIZE
DCL command, 254
Initializer
definition of, 372
INSERT
EDT command, 279
int
See Integer data type
Integer constants, 28
Integer data type
conversion
arithmetic, 55
of function argument, 56
declaration of, 28
size of, 2
Integral type
definition of, 372
iodef definition module, 419
isalnum function, 125
isalpha function, 125
ISAM, 175
isascii function, 125

Index

isatty function, 125
iscntrl function, 126
isdigit function, 126
isgraph function, 126
islower function, 126
isprint function, 127
ispunct function, 127
isspace function, 127
isupper function, 127
isxdigit function, 128

dJ

jpidef definition module, 419

K

Key
RMS indexed files, 174
Keypad, EDT
redefining keys for, 291
to insert text, 292
VT100, 284
VT52, 284
Keywords
auto, 35
char, 28
creat attributes, 105
default, 72
definition of, 372
double, 28
enum, 33
extern, 36
float, 28
globaldef, 36, 243
globalref, 36, 243
globalvalue, 36, 245
int, 28
list of, 23
long, 28
register, 36
rules for use, 7
short, 28
sizeof, 63
static, 36
struct, 39
union, 39
unsigned, 28
kill function, 128

L
Labels

case, 72
default, 72

445

Labels, (Cont.)
scope of, 49
statement, 75
ldexp function, 128
Libraries
object module, 263
default user, 266
search order, 309
system, 266
text module
in compile command, 298
creating, 260
default, 262
naming, 260
VAX-11 C
See Run-time library
VAX/VMS run-time procedures
called from VAX-11 C, 431
LIBRARY
DCL command, 262
default file types, 265
for file maintenance, 254
#line
preprocessor control line, 170
Line mode
See EDT
Linker
input files, 308
search order of, 309
messages, 306
operations, 304
output files, 310
Linker command
format of, 306
for program debugging, 320
Literals
definition of, 372
LNKSLIBRARY
logical name, 266
search order of, 309
localtime function, 129
log function, 129
log10 function, 129
Logical
connective
definition of, 372
expression
definition of, 372
names
commands to control, 253
linker search order of, 309
table:
by group, 251
by process, 251
by system, 251

446

Logical, names, (Cont.)
translation of, 252
use of, 252
Logical negation operator, 60
Logical operators (&&, ! !), 65
long
declaration, 28
longjmp function, 145
Loops, 5
break statement, 71
continue statement, 74
for statement, 70
Iseek function, 130
Lvalue, 58
definition of, 373

M

Macro
definition of, 373
MACRO program
sharing program sections with,
240
Macro substitution, 165
canceling, 168
main function, 18
with main__program option, 19
and returning values to the DCL,
318
synopsis of, 313
malloc function, 131
Map file, 312
math definition module, 419
Mathematical functions, 90
abs, 98
acos, 98
asin, 99
atan, 99
atan2, 100
cabs, 124
ceil, 101
cos, 103
cosh, 104
exp, 112
fabs, 98
floor, 116
frexp, 119
hypot, 124
ldexp, 128
log, 129
log10, 129
modf, 131
pow, 134
ran, 157
rand, 140

Index

Mathematical functions, (Cont.)
sin, 150
sinh, 151
sqrt, 151
srand, 140
tanh, 157
Memory allocation functions, 92
calloe, 101
cfree, 118
free, 118
malloc, 131
realloc, 141
Messages
compiler, 377 to 403
format of, 302
linker, 306
Minus sign (-)
as additive operator, 63
as arithmetic negation, 60

as debugger arithmetic operator,

329
Miscellaneous functions, 93

ctermid, 106
cuserid, 107
gsignal, 124
longjmp, 145
mktemp, 131
perror, 133
setjmp, 145
signal, 147
sleep, 151
ssignal, 152
tmpnam, 158

Mixed-language programming, 208

argument passing
by descriptor, 220
by immediate value, 211

floating-point numbers,
216

by reference, 218

the call stack, 209
argument list, 209
call frames, 209

return status values, 226
format, 227
manipulating, 229
system service, 213
testing, 230

variable-length argument lists,
225

and the VAX-11 Calling Standard,

208
mktemp function, 131
Modes
RMS record access, 175

Index

Modes, (Cont.)
See Debugger
See EDT
modf function, 131
#module
preprocessor control line, 171
Modules
object
library
creating, 263
default user, 266
search order of, 306
system, 266
linking, 304
RMS definition, 177
run-time, 423
organization of, 96
text library
creating, 260
default, 262
naming, 260
VAX-11 C definition, 419
Modulo operator (%), 64
MOUNT
DCL command, 254
MOVE
EDT command, 281
Multiplicative operators (*,/,%),
definition of, 373

N

NAM

RMS data structure, 175
nam definition module, 177, 419
Name block (NAM)

initialization of, 182
Negation

arithmetic and logical, 60
nice function, 131
Null

pointer, 32

statement, 75

0)

Object
definition of, 373
Object module
library
creating, 263
default user, 266
search order of, 306
system, 266
linking, 304

64

447

Octal radix operator
debugger, 329
for input character conversion,
143
for output character conversion,
135
One’s complement operator (),
62
opcdef definition module, 419
$OPEN
RMS function, 176
open function, 132
Operand conversion, 55
Operators
arrow (->), 59
assignment, 66
binary
additive, 63
bitwise, 65
equality, 64
logical, 65
multiplicative, 64
relational, 64
shift, 65
bracket ([1)
array references, 58
comma (,), 68
conditional, 66
debugger
address reference, 329
arithmetic, 329
binary addition, 329
current location, 329
decimal radix, 329
division, 329
hexadecimal radix, 329
multiplication, 329
next location, 329
octal radix, 329
precedence, 329
previous location, 329
shift, 329
unary plus, 329
definition of, 373
period (.), 59
precedence of, 54
in interpreting declarations, 50
summary of, 3
unary
address of, 61
cast, 62
increment and decrement, 60
indirection, 61
negation, 60
one’s complement, 62

448

Optimization
effects of on debugging, 321
OR bitwise operator (), 65
OTS$POWRJ
VAX-11 Common Run-Time
Procedure, 216

P

Parameters
in #define preprocessor macros,
165
definition of, 373
main function, 314
rules governing, 20
scope of, 49
Parentheses
in primary expression, 57
Pathname, 335
pause function, 132
Period operator (.)
as debugger address operator,
329
in structure and union references,
59
perror function, 133
pipe function, 133
PL/I externals
sharing program sections with,
239
Plus sign (+)
as additive operator, 63
as debugger arithmetic operator,
329
in compile command, 297
Pointers
declaration of, 32
definition of, 373
null, 32
size of, 2
unary operator, 61
Portability considerations, 355
pow function, 134
paldef definition module, 419
Precedence of operators, 53
in interpreting declarations,

Preprocessor constants, 15
Preprocessor control lines

#define, 163

#else, 169

#endif, 169

#if, 169

#ifdef, 169

#ifndef, 169

Index

Preprocessor control lines, (Cont.)
#include, 168
#line, 170
#module, 171
#undef, 168
definition of, 374
standardization of, 13
Primary expressions
array reference, 58
function call, 57
lvalue, 58
parenthesized, 57
structure references, 59
union references, 59
Primary key
RMS indexed files, 174
Primary operators
definition of, 374
precedence of, 53
printf function, 134
Procedures
Common Run-Time
ORS$POWRYJ, 216
STR$CONCAT, 225
VAX-11 Run-Time Library
called from VAX-11 C, 431
SYS$SREADEF, 218
SYS$SETEF, 211
SYS$SETPRN, 222
Processor status longword (PSL)
as debugger’s permanent symbol,
334
Processor status word (PSW)
in mixed-language programming,
209
Program
control, 4
execution, 313
with debugger, 320
GO command, 347
STEP command, 348
run-time errors in, 316
exit, 315
interruption, 317
location
debugger references to, 334
source creation, 268
structure, 6
Program counter (PC)
as debugger’s permanent symbol,
334
in mixed-language programming,
209
Program section (psect)
attributes of, 234

Index

Program section (psect), (Cont.)
as compared to storage classes,
235
created by VAX-11 C, 235
for external data definition,
25
for global symbols, 243
link-time scope of, 236
sharing
with FORTRAN common
blocks, 236
with MACRO programs, 240
with PL/I externals, 239
prvdef definition module, 419
psldef definition module, 419
PURGE
DCL command, 255
$PUT
RMS function, 176
pute function, 139
putchar function, 139
puts function, 139
putw function, 139

Q

Qualifiers

CC command, 299

EDT command, 272

LINK command, 306, 312
QUIT

EDT command, 274
Quotation mark (")

in character strings, 29

in #include control lines, 168

R

RAB
RMS data structure, 175

rab definition module, 177, 420

rand function, 140

Random access mode, 175

Range specification (EDT), 275

Read event flag (SYS$SREADEF),
218

read function, 140

realloc function, 141

Record access block (RAB)
creat keywords for, 105
initialization of, 180

Record file address access mode,
175

register storage class, 36

449

Relational operators (<,<=,>,>=),
64
definition of, 374
Relative file organization, 173
RENAME
DCL command, 254
to control libraries, 262
REPLACE
EDT command, 280
return statement, 74
Return status value, 226
format of, 227
manipulating, 229
RMS, 176
system service, 213
testing
for specific values, 231
for success or failure, 230
$REWIND
RMS function, 176
rewind function, 141
RMS (Record Management
Services)
data structures, 175
example program, 182
file organization
indexed, 174
relative, 173
sequential, 173
functions, 175
initialization
extended attribute blocks, 181
file access blocks, 179
name blocks, 182
record access blocks, 180
record access modes, 175
record formats, 175
return status values, 176
rms definition module, 177, 420
rmsdef definition module, 177,
420
RUN
DCL command, 313
with /NODEBUG qualifier, 321
Run-time library
functions, 76, 97 to 162
modules and entry points,
423, 425
portability, 355
procedures
called from VAX-11 C, 431
standardization of, 13
Run-Time Symbol Table
adding names to, 331
names included by default, 330

450

S

sbrk function, 101
Scalar data type
declarations, 27
character, 29
enumerated, 33
floating-point, 31
integer, 28
pointers, 32
definition of, 374
initialization of, 46
variable, 2
debugger references to, 339
scanf function, 141
Scope
debugger
of automatic variables, 338
changing, 337
default, 335
resolving references, 335
definition of, 374
link-time, 236
of external data definitions,
25
of functions, 18
of global symbols, 243
of names, 49
secdef definition module, 420
Semicolon (;)
null statement, 75
Sequential
access mode, 175
file organization, 173
SET
DCL commands, 254
SET MESSAGE, 302
debugger commands
SET BREAK, 349
SET MODULE, 331, 337
SET SCOPE, 335, 337
SET TRACE, 351
SET TYPE/OVERRIDE, 339
SET WATCH, 352
EDT commands, 270
SET TAB, 290
Set event flag (SYS$SETEF), 211
Set process name (SYS$SETPRN),
222
setbuf function, 144
setgid function, 147
setjmp definition module, 420
setjmp function, 145
setuid function, 147
sfdef definition module, 420

Index

Shift operators (<<,>>), 65
definition of, 375
short data type
conversion
arithmetic, 55
of function argument, 56
declaration of, 28
SHOW
DCL commands
SHOW LOGICAL, 253
SHOW TRANSLATION, 253
debugger commands
SHOW BREAK, 349
SHOW CALLS, 353
SHOW MODULE, 331
SHOW SCOPE, 338
SHOW TRACE, 351
SHOW WATCH, 352
EDT command, 271
signal definition module, 420
signal function, 147
VAX-11 C signal values for,
148
sin function, 150
sinh function, 151
sizeof, 63
Slash (/)
as debugger arithmetic operator,
329
sleep function, 151
sprintf function, 134
sqrt function, 151
srand function, 140
sscanf function, 141
ssdef definition module, 213,
420
ssignal function, 152
VAX-11 C signal values for,
148
Standard I/0, 77, 82
Standardization of the C language,
13
STARLET.OLB system library, 266
Statements
break, 71
compound, 69
continue, 74
definition of, 375
do, 70
expression, 69
for, 70
goto, 74
if, 70
label, 75
null, 75

Index

Statements, (Cont.)
return, 74
switch, 71
while, 70
static storage class, 36
Status values, 226
format of, 227
manipulating, 229
system service, 213
testing
for specific values, 231
for success or failure, 230
stderr, 83
stdin, 83
stdio definition module, 420
stdout, 83
STEP
debugger command, 348
to control functions, 353
modes of, 349
STOP
DCL command, 348
Storage allocation
for program sections, 233
attributes of, 234
link-time scope of, 236
Storage class, 35
default, 37
definition of, 375
in data types and declarations,
26
STR$CONCAT
Common Run-Time Procedure,
225
streat function, 152
strchr function, 153
stremp function, 153
strepy function, 154
strespn function, 154
Stream
access, 78
to record files, 79
to stream files, 79
files, 78
String
definition of, 375
String data type
declaration of, 29
String-handling functions, 88
strcat, 152
strchr, 153
strcmp, 153
strcpy, 154
strespn, 154
strlen, 155

451

String-handling functions, (Cont.)

strncat, 152
strncmp, 153
strnepy, 154
strpbrk, 156
strrchr, 153
strspn, 156
strlen function, 155
strncat function, 152
strncmp function, 153
strnepy function, 154
strpbrk function, 156
strrchr function, 153
strspn function, 156
Struct
See Structures
Structures
in argument list, 40
debugger references to, 345
declaration of, 39
definition of, 375
initialization of, 46
members of
alignment of, 41
references to, 41, 59
scope of, 49
passed by descriptor, 220
scope of, 49
valid operators for, 40
stsdef definition module, 229
SUBMIT
DCL command, 256
SUBSTITUTE
EDT command, 281
Subtraction operator (-), 63
SUCCESS bit, 230
switch statement, 71
Symbol table
adding names to, 331

names included by default in,

330

scope of names in, 335
Symbolic constant

definition of, 375
Symbolic Debugger

See Debugger
Synopsis

interpreting, 96

main function, 313
sys$close

RMS function, 176
sys$connect

RMS function, 176
sys$create

RMS function, 176

452

sys$delete

RMS function, 176
sys$disconnect

RMS function, 176
sys$erase

RMS function, 176
sys$get

RMS function, 176
sys$open

RMS function, 176
sys$put

RMS function, 176

SYS$SREADEF system service, 218

status values, 218
sys$rewind
RMS function, 176

SYS$SETEF system service, 211

return status values, 211

SYS$SETPRN system service, 222

status values, 222
sys$update

RMS function, 176
System libraries, 266

T

Tags

scope of, 49
tan function, 157
tanh function, 157
Text libraries

creating, 260

default, 262

naming, 260
time definition module, 420
time function, 157
timeb definition module, 420
times function, 158
tmpfile function, 158
tmpnam function, 158
toascii function, 159
Token

definition of, 3756
Token replacement, 163

tolower, __tolower functions, 159
toupper, __toupper functions, 159

Traceback

run-time errors,

316

Tracepoints

debugger commands for, 351
Translation

of logical names, 252
tt2def definition module, 420
ttdef definition module, 420

TYPE

EDT command, 271, 278
Type

definition of, 375

name

definition of, 375

typedef, 52

format of, 27

scope of, 49
types definition module, 420

U

umask function, 160
Unary expressions

address of, 61

cast, 62

increment and decrement, 60

indirection, 61

negation, 60

one’s complement, 62

sizeof, 63
Unary operators

definition of, 376

precedence of, 53
#undef

preprocessor control line, 168
Underscore ()

in identifier names, 21
ungete function, 160
Unions

in argument list, 40

debugger references to, 345

declaration of, 39

definition of, 376

members of

references to, 59
scope of, 49

scope of, 49

valid operators for, 40
Uniqueness

definition of, 376
UNIX emulation functions, 94

abort, 98

access, 98

alarm, 99

brk, 101

chdir, 102

chmod, 102

chown, 103

ctime, 106

execl, 110

execle, 110

execv, 110

execve, 110

Index

UNIX emulation functions, (Cont.)

exit, __exit, 112
ftime, 120
getenv, 121
geteuid, 123
getgid, 123
getpid, 122
getuid, 123
kill, 128
localtime, 129
nice, 131
pause, 132
sbhrk, 101
setgid, 147
setuid, 147
time, 157
times, 158
umask, 160
vfork, 160
wait, 162
UNIX I/0, 77, 82
unsigned data type
conversion
arithmetic, 55
of function argument, 56
declaration of, 28
Up-arrow (")
as debugger address operator,
329
as exclusive OR operator, 65
$UPDATE
RMS function, 176
Usual arithmetic conversion
definition of, 376
rules governing, 55

v

Variable-length record formats,
175
Variables
character, 29
debugger
in the run-time symbol table,
330
scope of automatic, 338
definition of, 376
scope of, 49
VAX-11 Calling Standard, 208
VAX-11 Symbolic Debugger
See Debugger
vfork function, 160

VMSRTL.EXE system library, 266

VT100 keypad, 284
VT52 keypad, 284

W

wait function, 162
Watchpoints

debugger commands for, 352
while statement, 70
White space, 127
WRITE

EDT command, 271, 283
write function, 162

454

X

XAB

RMS data structure, 175
xab definition module, 177, 420
XOR bitwise operator ("), 65

Index

PROGRAMMING IN VAX-11 C READER’'S COMMENTS
AA-L370A-TE

Your comments and suggestions will help us in our continuous effort to im-
prove the quality and usefulness of our handbooks.

What is your general reaction to this handbook? (format, accuracy, com-

pleteness, organization, etc.)

What features are most useful?

Does the publication satisfy your needs?

What errors have you found?

Additional comments

Name

Title

Company Dept.
Address

City State Zip

(staple here)

— — — — Do Not Tear - Fold Here — - — -

dlilgliltlall

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD

NASHUA, NEW HAMPSHIRE 03061

(staple here)

No Postage
Necessary
if Mailed in the
United States

Cut Along Dotted Line

AA-L370A-TE

